

--- ------ - ---- ---- - ---- - - ----------_ .. -
GA21-9353-1
55280-01

IBM 5280
Distributed Data
System
Functions Reference Manual

Preface

This reference manual is intended for people who neeQ the
following information about the 5280:

• An overview of system programming and system function

• A description of system and partition data areas

• A description of machine addressing and object code
instructions

• How to use system diagnostic aids

In the appendixes are hexadecimal conversion and addition
tables, eBCD IC and ASCII charts, and SCS control codes.

A second application microprocessor can be added to the
system as a feature. The second application microprocessor
functions the same way as the main microprocessor except
that it does not respond to keyboard attentions. References
in this manual to the main microprocessor apply to the
second application microprocessor as well.

Second Edition (April 1981)

Related Publications

• IBM 5280 Data Areas and Diagnostic Aids Handbook,
SY31-0595

• IBM 5280 Assembler Language Reference Manual,
SC21-7790

• IBM.5280 Communications Reference Manual,
SC34-0247

• IBM 3270 Information Display System Component

Description, GA27-2749 ..

This is a major revision of, and obsoletes, GA21-9353-0, and incorporates TNL
GN20-9557.

Because the changes and additions are extensive, this publication should be reviewed in
its entirety.

Changes are periodically made to the information herein; these changeti will be reported
in technical newsletters or in new editions of this publication.

Use this publication only forthe purposes stated in the Preface.

It is possible that this manual may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such I BM products, programming, or services in yOllr country.

Publications are not stocked at the address below. Requests for copies of IBM publica·
tions and for technical information about the system should be made to your IBM
representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader's Comment Form at the back of this publication to make comments about this
publication. If the form has been removed, address your comments to IBM Corporation.
Information Design and Development, Department 997,11400 Burnet Road, Austin
Texas 78758. IBM may use and distribute any of the information you supply in any
way it believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980.1981

(

CHAPTER 1.5280 FUNCTIONS AND STORAGE
OVERVIEW ••••••••••••••••••••••••••• 1

System Controller • . 1
Main Storage 3

Main Storage Addressing 4
Common Area 5

System Control Block . . 6
Common Functions and Help Text 8
Configuration Table . . . • . . 8
Error Recording Tables 8
Resource Allocation Table .. 9
ASCII Translate Table. 9

Partitions 9
Partition lOB 10
Logical I/O Table 10
Keyboard/Display lOB .. 10
Registers and Indicators. • • 10
Partition Work Buffer . . . 12
System Work Buffer 12
Foreground and Background Partitions . 12

Input and Output Buffers. • • 13
IBM 3270 Mode Buffers 13
External Status Processing . . . • 14
Loading a Partition. . .14

Partial Overlay 14
Error Recovery. 15

Subroutines • .16
Address Validity Checking. . .16
Self Check . . . • 17
Opening a Data Set lOB .. .23

Share Data Set Opens 24
Keyboard/Display I/O Control . . 26

Keyboard/Display Storage .. 27
Screen Format Control Strings 27
Functions and Modes . 27
Magnetic Stripe Reader 28
Elapsed Time Counter 28
Errors Detected by the Keyboard/Display Microprocessor 28

Edge Indicators, IBM 3270 Mode ..•.............. 28
Keyboard States in IBM 3270 Mode• 29

Diskette I/O Control 29
Error Recovery and External Status . 30

Printer Control 30
Error Recovery arid External Status . 30

Communications Control 31
Error Recovery and External Status . 31

Typical Operation 32

CHAPTER 2. MAIN STORAGE DATA AREAS •••••••••• 35
System Control Block 36
Common Functions and Global Tables .. 44

Global Configuration Table 45
Error Recording Tables . . . 46
Hard Error Table Format 47
Soft Error Table Format 56
Resource Allocation Table' .. 57
ASCII Translate Table. 58

Contents

Partition Area
Partition lOB .. .
Logical I/O Table
Keyboard/Display lOB
System Indicators within a Partition
System Registers within a Partition
Diskette lOB
Printer lOB

System Tables• •.
System Table for Data Tables .
System Tables for Edit Format Control Strings
System Tables for Screen Format Control Strings
System Tables for Prompts and Constant Inserts
System Tables for Main Storage Duplicate Areas

Screen Format Control Strings
Byte Group 10•
Control Byte Group
Data Field Byte Groups •.
Constant Insert Data and Prompts
Display Attributes

Edit Format Control Strings .
Header Bytes
Byte Groups

CHAPTER 3. KEYBOARD/DISPLAY STORAGE
Refresh Buffer Area
Validity Table
Storage Area

Monocase Exception Table
Diacritic Table
Refresh Areas for the Status Line
Display Control Area ..
Display Translate Table ...
Katakana Translate Table ..
Scan Code Translate Table .

CHAPTER 4. OBJECT CODE INSTRUCTION FORMAT
Addressing Methods Within a Partition ..

Addressing a Byte Within a Partition .
Addressing an Object Code Instruction
Instruction Displacement ...
Addressing a Decimal Register
Addressing a Binary Register .
Indicator Addressing
Addressing Through a System Table.

Addressing Methods Outside the Partition .
Addressing Through a System Table .

Constants
Instruction Format•..

Mnemonic to Op Code Conversion Chart
Unconditional Branch (GOTO/NOP) ..
Test Decimal Register for 0 IZero) or Blank IIF Rn 0)
Test Format Number /IF fmt)

59
60
66
67
89
91
92

.101

.117

.118

.119

.120

.121

.122
123
124
125
130
133
134

134
135
136

143
145
145

146
147
148
149
149
151
151
152

153
153
154
154
154
155
156
157
158
158
159
159
160
160
162
163
164

iii

iv

Test Binary Register for Zero IIF BRn 0)
Test and Reset Indicator IIFIR In)
Test Decimal Register for Negative IIF Rn-) ..
Decrement Binary Register and Test for Zero !DECR BRn).
Test Indicator (IF In)
Indexed Branch (GOTO BRn/GOTAB BRn)
Subroutine Call (CALL/CALLTB)
Execution Sequence
Subroutine Return or Enable External Status

IRETURN/RETEXT/ENABLE)
Execution Sequence •
Test Decimal Register for Absolute Number (IF Rn AN)
Test Decimal Register for Self-Check Digit (IF Rn CK)
Test Decimal Register for Signed Number (IF Rn SN)
Decimal Register Add (+)
Decimal Register Subtract (-)
Decimal Double-Register Divide (II ••••••••••••
Decimal Register Exchange 1< = »
Decimal Register Copy (=) .•..•..•..
Decimal Double-Register Multiply (*) .•...

Decial Register Shift Right, Blank Pad (SR) .
Decimal Register 0 ivide (/I
Decimal Register Multiply (*)•
Decimal Registers, Move Partial Contents (MVER)
Decimal Registers, Move Partial Contents with Offset

IMOFF)•....•............•
Decimal Register Zone Modification (ZONE)
Decimal Register Shift Left, Blank Fill ISL) ..
Decimal Register Shift Left Signed (SLS) •...
Decimal Register Shift Right Signed (SRS) ...
Decimal Register Shift Right and Round (SRR)
Read a Record from a Data Set (READ) '"
Formatted Read to Storage (REBF) '.'
Open a Data Set or Initialize Communications

(OPEN/TOPEN/TIN IT) ...•.•......
Close a Data Set or Terminate Communications

(CLOZ/TTERM)
Search a Data Set (SEARCH)
Test Data Set Status Indicators (IFDS!)
Position Diskette (POSN)

165
166
167
168
168
169
170
171

172
173
174
175
176
177
178
179
179
180
180
181
182
183
184

185
186
187
188
189
190
191
192

193

194
196
199
200

Communications SCS Conversion (COMMSCS)•.. 201
Read from Communications (TREAD) .. 219
Search Resource Allocation Table (SRAT) . 220
System Lock (SYSLCK) 221
System Unlock (SYSUNL) . 221
Load a Partition (LOAD) . . 222
Exit a Partition (EXIT) . . . 224
Write a Record to a Data Set /WRT) 225
Insert a Record into a Data Set /WRTII . 226
Insert a Block of Records into a Data Set IINSBLK). 227
Initialize a Diskette (lNIT) 228
Allocate a Data Set (ALLOC) 229
Delete a Record from a Data Set (WRTS) 231
Wait for I/O Completion (WAITITWAIT) 232
Write to Communications (TWRT) ... 233
Formatted Write trom Registers (WRBF) . 234
Device Control IDEVCTL) 235
Formatted Write to the Screen (WFMCRT)
Communications Close or Device Control

ITCLOZ/TCTL)
Set Indicator On ISON)
Set Indicator Off (SOFF) ...•......
Skip on AND, Exclusive-OR Mask (AND)

239

240

241
241
242

Skip on Exclusive-OR, AND Mask (RXORW) ..
Constant Insert (= constant) ••..•....•..
Exchange Binary Register Contents «= » ...
Immediate Load of Positive Constant into Decimal Register

243
243
244

(Rn = +n)•........ 244
Immediate Load of Negative Constant into Decimal Register

(Rn = -n) ...•.....•...... 245
Generate Self-Check Number (GSCK) . 245
Convert Binary to EBCDIC (BINHEX) 246
Convert EBCDIC to Binary (HEXBIN) 247
Request or Release a Data Area (Request/Release) •.•••. 248
Skip If Not Equal II FC NOT) 249
Skip If Equal IIFC IS) 249
Debugging Aids (PDUMP/PAUSE/TROFF/TRON) 250
Search Ordered Table for Higher or Equal Entry (TBFH) 251
Write Table Entry (TBWT/TBWE) . • • • . . • . • 252
Read.Table Entry (TBRD/TBRL) •••.••••••••••• 253
Search Unordered Table for Equal Entry (TBFX)•. 254
Search Reverse Ordered Table for Lower Entry (TBFL) •. 255
Search Table Using Binary Search (TBBS) . 256
Insert Table Entry (TBIN) .••.•.•• 257
Delete Table Entry (TBDL) 257
Lock Shared Table (TLCK) . . • • • • . . 258
Unlock Shared Table (TUN LCK) 258
Compare Decimal for Not Equal/lF Rn NE) . . 259
Compare Decimal for Greater Than or Less Than

IIF Rn GT/LT) • . • . . • • • • . 260
Compare Decimal for Equal/lF Rn Ea) 261
Compare Decimal for Greater or Equal, or Less Than or Equal

IIF Rn GE/LE) • . • • • . •• • 262
Compare Decimal Digits for Not Equal,(IFD Rn NE) 263
Compare Decimal Digits for Greater or Less Than

liFO Rn GT/L T)••.....•..
Compare Decimal Digits for Equal liFO Rn Ea)
Compare Decimal Digits for Greater or Equal,

or Less Than or Equal liFO R!I GE/LE) ...
Compare Binary Half-Register for Not Equal

IIFH BRn NE)•....•......
Compare Binary Half-Register for Greater or Less Than

IIFH BRn GT/LT) ...•.......•
Compare Binary Half-Register for Equal

IIFH BRn Ea) ••............
Compare Binary Half-Register for Greater or Equal,

Lessor Equal (lFH BRn GE/LE) ..••..
Compare Binary for Not Equal/lF BRn NE) •.••..
Compare Binary for Greater or Less Than

/IF BRn GT/LT)••.........
Compare Binary for Equal IIF BRn Ea)
Compare Binary for Greater or Equal, or Less or Equal

/IF BRn GE/LE)•.......•.......
Load Decimal Register from Base-Displacement Address

IRn = D(L,BRn) ...•..................
Store Decimal Register into Base Displacement Address

IOIL,BRn) = Rn)•...........
Load Decimal Register from Labeled Storage
IAn = labellL)) •.........•.....

Store"Decimal Register into Labeled Storage
lIabelllen) = Rn)•.

Binary Add (BRn +=)•.
Binary Add Immediate Data (BRn +=)
Binary Subtract (BRn -=)•...
Binary Subtract Immediate Data (BRn -=)
Binary Double Register Add (BRn(4) +=)

264
265

266

267

268

269

270
271

272
273

274

275

276

276

277
277
278
278
279
279

'-. "

(
Binary Double Register Add Immediate Data (BRnI4) +=) . 280
Binary Double Register Subtract (BRnI4) -=) 280
Binary Double Register Subtract Immediate Data

(BRn(4) -=) . . • • . . . • • 281
Binary Register Load or Copy IBRn=) •...... 281
Binary Register Load Immediate Data or Address

(BRn = C'II'/ADDR) . . . • 282
Binary AND (BRn &=) ..•...•.•.... 282
Binary AND with Immediate Data IBRn &=) 283
Binary OR (BRn V=) ...•......... 283
Binary OR with Immediate Data IBRn V=) 284
Binary Exclusive OR (BRn X=) 284
Binary Exclusive OR with Immediate Data (BRn X=) 285
Skip While Index Low or Equal Limit (SKIP WH ILE) 285
Binary Register Shift or Rotate (SL/SR/RL/RR) . 286
Store Binary Register Contents /label = BRn) 287
Store Binary Register Contents, Indexed

(D(L,BRa) = BRbIL))• 288
Move Characters (MVC(BRn)/MVC(BRn(4)) 289
Indirect Instruction Execution (lNXEQ) .. 290
Convert Binary to Decimal (Rn = BRn or BINDEC) . . 291
Convert Decimal to Binary (BRn = Rn or DECBIN) . . 291
Translate (TRANS) 292
Translate and Test ITRT) . . . • 293
Binary Multiply, Single or Double Register

(BRn *= or BRn(4) *=) •.•...••. 294
Binary Divide, Single or Double Register

(BRn /= or BRn(4) /=) . • 295
Move Characters Within a Partition

(MVC/MVCR/MVCV) • • • . 296
Compare Character Strings ICLC) 297
Binary Register Add with BaSe Disphicement Address 1+=) . 298
Set Bits On with Mask (SETON)•...... 299
Binary Register Subtract with a Displacement Address (-=). 300
Set Bits Off with Mask (SETOFF) 301
Binary Double-Register Add with a Base Displacement

Address (+=) •..........•........ 302
Skip If Bits are OFF IIFB OFF) 303
Binary Double-Register Subtract with a Base

Displacement Address (-=)•... 304
Skip If Bits are On IIFB ON) . . • . . . • . . • . . . 305
Binary Register Load from a Base Displacement Address 1=) 306
Insert Constant Into a Base Displacement Address

(= constant) • •....•..
Binary Register AND with Base Displacement Address 1&=)
Skip if Byte Equals Constant (lFB IS)
Binary Register OR with a Base Displacement Address IV=).
Duplicate a Character at Base Displacement Address IDUP) .
Binary Register Exclusive OR with a Base Displacement

Address IX=) ..•.....•..............
Replace Field on Screen IREPFLD)
Keyboard Attach (KATICH)•
Keyboard Detach (KDETCH)
Read Elapsed Time Counter .
Cancel Current Enter Command (CNENTR)
Release Character and Field Edits IKEYOP)
Change Row Attribute (KEYOP)•...
Change Screen Position Pointer (KEYOP)
Accept Keystrokes and Store IKACCPT)
Pass Scan Code to Keyboard (KEYOP)
Pass EBCDIC to Keyboard (KEYOP)
Display Extra Line IDISPEX) ". . ..•..

307
308
309
310
311

312
313
314
314
315
315
316
317
318
319
320
321
322

Display Status Line IDISPST) 322
Request Keyboard Error Mode IKERRST) 323
Reset Keyboard Error Mode IKERRCL) 324
Sound Buzzer (BUZZ) 325
Perform Keyboard Function (KEYOP) 325
Allocate Keyboard/Display Storage IKEYOP) 326
Click Keyboard (CLICK) 327
Open Keyboard/Display IKEYOP) 327
Reset Magnetic Stripe Reader (RSTMG) . 328
Read Magnetic Stripe Reader IREADMG) 328
Device Control Read IKEYOP) 330
Device Control Write IKEYOP) 332
Keyboard/Display External Register Read (KEYOP) .. 333
Keyboard/Display External Register Write IKEYOP) . . 334
Keyboard/Display Read Buffer Assist (KEYOP) 335
Keyboard/Display Read Modified Assist (KEYOP) _ 337
Keyboard/Display Write Assist for the Display (KEYOP). .. 339
Keyboard/Display Write Assist for the Printer (KEYOP) ..• 341
Keyboard/Display Null Non-print Fields (KEYOP) 343
Keyboard/Display Erase All Unprotected Assist

(KEYOP) . 344
Keyboard/Display Read Buffer Assist for SNA
SSCP-SLU Owned Session (KEYOP). 345

Keyboard/Display Indicator and Keyboard Control
(KEYOP) ·346

Keyboard/Display Clear and Initialize Screen (KEYOP) . 347

Load Keyboard/Display Control Area (LCRTC) 348
Store Keyboard/Display Control Area ISCRTC) 349
Move Characters to Screen ICRTMM) 350
Move Characters from Screen IMMCRT) 351
Resume Data Entry IRESUME/RESMXT/RESCAL). 352
Enter IENTR) 354

CHAPTER 5. DIAGNOSTIC AIDS
Display/Alter Function

Display Main Storage
Alter Main Storage
Display the Beginning of a Partition or of an lOB
Move Keyboard/Display Storage ...
Search Storage
Test for a Change in a Byte or a Bit .

Dump and Trace Console Functions.
Dump Function
Trace Function

Address-Stop Mode .. .
Main Storage Display .
Forward Scroll
Backward Scroll
Replace Main Storage .
Single Instruction .
Loop
Main Storage Dump
Trace
Cancel Address-Stop

CHAPTER 6. KEYBOARD FUNCTIONS
Keyboard Function Control
Functions Normally Handled by the 5280

Alpha Shift Function
Character Advance Function .
Character Backspace Function
Clear Screen Function

357
357
362
363
363
364
364
365
366
367
368
369
370
370
370
370
371
371
371
371
371

373
373
374
374
374
375

. . 376

v

Cleer Stetul Llna Punctlon ••••••••••••••••••• 378 /'
The Command Key ••••••••••••••••••••••• 378
Curler Movament •••••••••••••••••••••••• 378
Celeta Punctlon •••••••••.•••••••••••••••• 377
Duplicate Punctlon ••••••.••.•••.•••••••.• 377
Pleld Advance Punctlon ••••••••••••••.••••• 37.8
Pleld Backlpace Punctlon ••••.•••••••••••••• 379
Pleld Correat Punctlon •.•••••••••••.•••..•• 3BO
Plaid Exit Punctlon. • • . . , , • • • • • • • • • • • •• 380
Pield exit Minul Punctlon ••••••••••••••••••• 381
Pleld Exit Mlnul/Da.h Punctlon • • • • • • . • • • • • • • • • 384
Hax Punctlon •••••••••.•••••••••••••••• 384
Inlert Punctlon •••••••••••••........•••• 384
Katakana Alphamarlc Lowenhlft •••.••.•.••.••• 388
Katakana Alphameric Upperlhlft ••••••••••••••• 388
Kaukana Shift Lock Punctlon •••••.•.•••••.••. 388
Katakana Lowerahlft ••.•.•.••••••..•..•••• 388
Katakana Upparshift,............... 386
Record Advance Function ..••...••.......•.. 386
Record Backspece Function .•.•••............ 386
Relit Function • . . • 387
Shift Function • • . 387
Shift Lock Function•.. 387
Skip Function ...•.•......••............ 388
Timeslicing••..................... 388
Keystroke Buffering ..•.....•..........•.... 389

APPENDIX A. HEXADECIMAL CODES AND CHARTS ••• 398
EBCDIC Cherts for Printable Characters 396

APPENDIX B. SCS CONTROL CODE CHARACTERS .••••• 399

APPENDIX C. KEYBOARD FUNCTIONS: EBCDIC CODES
AND BIT NUMBERS ••••••••••••••••••••••• 407

APPENDIX D. KEYBOARD SCAN CODES ••••••••••• 415

APPENDIX E. DISKETTE LABELS ••••••••••••••• 417

APPENDIX F. INSTRUCTION TIMES •••••••••••••• 425

GLOSSARY •••••••••••••••••••••••••••••• 427

vi

(

(~

Chapter 1. 6280 Functions and Storage Overview

Components of the 6280 system Include the:

• 6281 Data Station

• 6282 Dual Data Station

• 6286 Programmable Data Station

• 5286 Dual Programmable Data Station

• 5288 Programmable Control Unit

• 5256 Printer

• 5225 Printer

All data stations and the control unit may contain diskette drives. The 5285 and
5288 can have an optional printer attachment. The 5285 and 5288 can contain an
optional communications attachment. A system controller contained in the 5285,
5286, and 5288 handles all system functions. The 5281 and 5282 data stations do
not have a controller and, therefore, must be attached to a data station or control
unit.

SYSTEM CONTROLLER

The 5280 system controller contains a main microprocessor, the partitioned main
storage, and the device attachments. The device attaChments contain the device
microprocessors. The main microprocessor and the device microprocessors work
independently of each other but share the same main storage.

The following illustration shows the main components of the system controller.

5280 Functions and Storage Overview 1

2

The main microprocessor D performs all of the non-I/O (input/output) operations,
such as mathematical computations and data movement_ The main microprocessor
also controls the device microprocessors fJ through II .
The device microprocessors control all the operations for the attached devices. The
main microprocessor communicates with the device microprocessors via lOBs
(input/output control blocks) in main storage II and hardware attention lines II .
When the main microprocessor determines that work is required of a device micro­
processor, it puts information into the appropriate lOB and activates an attention
line to the device microprocessor. When the device microprocessor detects the
attention from the main microprocessor, it reads the lOB and performs the requested
work. The storage access control II directs access to main storage for all the micro­
processors.

Main Storage
Storage

II II

Attention
Lines,\

Main
MP ROS

-- 1----~ ~;;''''''''/D''"'~ ~";;;,;;;;";- - - - - - - - - - -T KBD/Displ

Diskette Attachment

Printer Attachment

Diskette
Units
(upto 4)

I ---~ To Printer

Communications Attachment

Line
Adapter

• 38LS
• DDSA
• EIA

,/

\.

(
MAIN STORAGE

Main storage is divided into the areas illustrated in the following figure:

Common
Area D

Partition

Area fJ ~'""

System II {
Work Area

System Control Block

Common Functions and Tables

Partition

Partition

The common area D is always located at the beginning of main storage. It con·
sists of the system control block and the common functions and tables.

Thepartition area fJ contains up to eight partitions. Except for the first and
last partition, each partition can be up to 64 K bytes in length. The first partition
can be up to 64 K minus 256 bytes, and the last partition can be up to 64 K minus
768 bytes in length. Total main storage size can be up to 160 K. A program can
be loaded into each partition. After a program is loaded into a partition, the
partition contains the lOBs, registers, indicators, formats, I/O buffers, tables,
data areas, work area, and object code instructions required for the execution of
the program.

The last 256 bytes of main storage are used by the controller as a system work area

II·

.......

5280 Functions and Storage Overview 3

4

Main Storage Addreiling

MaIn Itorage II dIvIded Into 64 I< byte .. etlonl referred to al pagel. There can be a
maxImum of 160 I< by til of main storage.

Page 0 } 64 I< Bytes

Maximum
Storage

Page 1 I 64 I< Bytes Size

Page 2 32 I< Bytes

A partition cannot cross a page boundary, and therefore cannot be greater than
64 I< bytes in length. Each byte within a partition can be uniquely addressed with
16 bits, from hex 0000 to FFFF.

Although the common area is always located on page 0, a partition may be on any
main storage page.

When an application program addresses an area outside the partition, a 4·bit page
number precedes the 16·bit storage address. This 20·bit address is used when a
partition addresses an area within the common area.

(-

COMMON AREA

The following Is a general illustration of the system control block and common
functions and tables located In the common area of main storage.

II.roU'
Md, ...
lin h ••)

0000

DOlO

0040

DOGO

0000

0080

0090

OOAO

0080

oDeD

0000

ODED

OOFO

0100

o I
' I ' I

3

~"tl!;gl1 0

pijrtitign 4

:~
D;,k"U.O

Oi§kuttlJ 4

. ~
Printur loa
PginttJr

CQmm~ltllcRtlollS

CCB Poill1ur

Systllm lJ~fl Onlv

Datil

Systmn Fluys

4 I fi I Q I 7 U I Q I Ai

PllrtitiQIl 1 Partition :l

Partitir.J1l 6 PMtitlon ~

~V'Wm W •• Onlv

p;,k.n" 1

DifikllHIl6

Pi61Ulthl ~

Disl<lJUtt fI

SystlJlTl U~IJ Only

COlllfTllllriealiorls
lOB POl!\tor

I Sturu!ju
Sill) IIPL

FlnU Till\!! I
!Rt:smtrCfI

Allm:i.llion
T;.liJh) (nl

p C.-l o i ~ i

PoIlrtitiQn :)

Partition 7

Oiskattfl ~

p;'"'tto7

System USIl Onlv

Systmn US!! Only

Systwn US!) Only

~'J K,ystr
O~v Buffor Ii>

I ErrOl L"" L"ck"u' By'''' !
Conliq·

5111f Edit
uratiClIl Formut
Talll! .. ~Il

Ch!Jcl< ~Il Tilbll:6il

I
Confiu·
urat/un
Oi;ltu

I Glob"1 Ii""" Scrm!ll
Prom!)t T<lIlIIJ Forrnat

PuillWrs (ill Nurn Tahir: (ill
Tahll!t!il I Sy'Wtll U" Only

COmllHltl Func!inn PUlntorfi

Systl!ll1 USIl Only

Glohal Tahir! Pointms

Common Function ROlrtirws (olJjuct cod,))

f

I:-

...

J ----------H;,i;-, r.;;;- - - _.- - -- - - - - - - -- - - - - --1
Glollal Configuration Data Talll" I

1 Error RUGol'din" Tabl", (variable le,.,."thl I
I Resource Allocation Table (configuration OIHion)

I ASCII Translate Table (configuration option) I

r---Pllftithm
10M Ppint,m,

} Pi.~'tt.
Ion Painten

.--

SYltem
Control
Block

Common Function
Routines and
Global Tables

~L ___ ~~ __

5280 Functions and Storage Overview 5

6

System Control Block

The system 'control block is located in the first 256 bytes of the common area. The
fields of the system control block are assigned to fixed locations; the fields contain
pointers to the partitions, device lOBs, and global system tables that are not assigned
to fixed locations. Other system control block fields contain date, timer, and
configuration information.

Partition Pointers

Each partition pointer is a 4-byte block of information about a partition. This
information includes whether a program has been loaded into the partition, whether
the partition is a foreground or background partition, and the address of the begin­
ning of the partition. The partition lOB is always stored in the first 256 bytes of a
partition, so this address is also the absolute address of the partition lOB. The parti­
tion lOB contains information about the partition and the program loaded into the
partition. The main microprocessor uses the information in the partition pointer to
find the partition; it uses the information in the partition lOB to execute the object
code instructions stored within the partition.

System
Control
Block

Hex
Address

0000 Partition 0 "Partition 1

0010 Part:lion 4 Partihon 5
.,' OJ

Partition 0

\ Partition 1

.. -

Partition 2

Partition 6

Partition 3 } Partition
lOB

Partition 7 Pointers

:~

/

(

Device lOB Pointers

Each device lOB pointer is a 4-byte block of information about a diskette drive, a
printer, or the communications attachment. The information indicates whether the
device is attached and includes the address of the first device lOB assigned to that
device. If more than one lOB is assigned to one I/O device, an lOB chain is used;
each device lOB contains the address of the next assigned device lOB. The device
lOBs are stored within the main storage partitions and describe the I/O to be per­
formed by each I/O device. The device microprocessor uses the information in the
device lOB pointers to find the first device lOB. They use the information in the
device lOB to perform the required I/O and to find the next device lOB. The last
lOB on the chain points back to the first lOB.

System
Control
Block

Hex
Address

0000 Partition 0 Partition 1 Partition 2 Partition 3

0010 Partition 4 Partition 5 Partition 6 Partition 7

System Use On Iy

0040 Diskette 2 Diskette 3

0050 Diskette 7

System Use Only

Partition 0

} "rt~;on
lOB
Pointers

}D;'~ lOB
Pointers

} P,;nte,
lOB
Pointer

lOB
Chains

--I
I
I

~-------+--------------~~--------------~~-

Diskette 0 lOB

Printer lOB

5280 Functions and Storage Overview 7

8

Pointers to Global System Tables

Each global system table pointer contains the address of a global system table.
System tables contain the addresses of prompts, formats, tables, and other data
areas. System tables are used within each partition to contain the addresses of the
data areas within that partition. The global system tables contain addresses of
global data areas that are stored within the common area rather than within a
partition. Data areas stored within a partition can be used only by that partition;
however, global data areas can be used by any partition. Global data areas include
a printer configuration table, screen formats, prompts for keyboard/display I/O,
edit formats for diskette, printer, or communications I/O, data tables for table
operations, and self·check data for self-check operations_

Common Functions and Help Text

Following the system control block is an area of variable length that contains
common function routines. These routines can be called from any partition; return
is made to the calling partition.

The routines stored in the common functions area depend upon the individual
system. A table of help text messages may be included in the common area. These
messages can be called from the keyboard in response to the Help key.

Configuration Table

A configuration table is included in the common area if one or more printers are
attached to the system. The address of the configuration table is stored in the
system control block.

The configuration table has one entry for each printer. Each entry has such informa­
tion as the device subaddress and the number of entries the printer has in the soft
error count table.

Error Recording Tables

Two error tables are stored in the common area as global tables 0 and 1: (1) the
system hardware error log, and (2) the soft error count table. The system error log
is of variable length and is used by the microprocessors to record system hardware­
related errors. Each table entry has information to identify the device, lOB and
program associated with the error. The soft error count table is used by the printer

attachment microprocessor to record the number of soft printer errors that occur
during program executions. These error tables provide a history of system hardware­
related errors and I/O errors that can be written to a diskette with a special error log
dump program. See the Data Areas and Diagnostics Aids Handbook for information
about communications error tables.

;f

{

(- ,

Re.ource Allocation Table

The optional resource allocation table specifies the logical devices that can be
accessed by each partition. Each table entry contains a logical device ID and the
physical address of the device. The logical device 10, a 2·character 10 assigned to
the device during system configuration time, can be used to address the device.
The main microprocessor uses the logical 10 to find the physical address of the
device in the resource allocation table.

ASCII Translate Table

Data is stored in main storage in EBCDIC notation. However, data in another
notation can be translated to EBCDIC as it is read into an I/O buffer. Or data can
be translated from EBCDIC to another notation as it is read from any I/O buffer
other than the printer. The optional ASCII translate table can be used by any
partition to translate data to or from ASCII notation. The ASCII table is another
global table.

PARTITIONS

There may be up to 8 partitions numbered sequentially from zero. There must be
at least one partition for each keyboard. A partition is of variable length, but it can·
not cross a 64 K byte boundary. The number, size, and location of the partitions
is defined at system configuration time. The first 256 bytes of each partition con·
tains control information at fixed displacements from the beginning of the partition.
The next 3840 bytes may be used as needed for indicators, decimal registers, or
binary registers. This area is followed by a variable length storage area. The last
256 bytes of each partition is used for a work area. Each byte of a partition is
addressable relative to the first byte of the partition. The following illustrates the
areas of a main storage partition.

Relative
Hex
Address

0000

0040

0080

0100

1000
... ~

Partition lOB

Logical I/O Table

Keyboard/Display lOB

Indicators and Registers

Stora e for Ob'ect Pro ram, g J g
Buffers, Device lOBs, and
Other Data Areas

Partition Work Area (256 bytes)

... ~

5280 Functions and Storage Overview 9

10

Partition lOB

The partition lOB describes the partition and the program loaded into the partition.
The main microprocessor loads this information into the fields of the lOB, using
information from the common area and from the application program. During pro­
gram execution, the main microprocessor uses the information to determine the
partition status, the program status, the address of the next executable instruction,
and how long to execute instructions within the partition before going to the next
partition.

The absolute address of the beginning of the partition is stored in the lOB. The
main microprocessor adds this address to the relative addresses stored in the parti­
tion to generate absolute addresses for the program instructions.

A timer is set when the main microprocessor enters a partition. The lOB specifies
how long the main microprocessor executes instructions within the partition. This
time is determined by the application program. The main microprocessor exits the
partition when the time limit is reached or when it encounters a nonoverlapped I/O
instruction that is to be handled by a device microprocessor.

Logical I/O Table

The logical I/O table consists of one 4-byte entry for each lOB that is used in the
program. Each entry contains the address of the lOB, flags, and other information
describing the lOB. The entries are numbered sequentially from hex 00 to 15,
corresponding to the numbers assigned to the lOBs. The keyboard/display is
always entry zero. When the main microprocessor encounters an I/O instruction
during program execution, the instruction specifies the number assigned to the lOB
that describes the work. The main microprocessor uses this number as an index into
the logical I/O table; the entry at this index contains the address of the lOB and
specifies the I/O device that is to perform the work.

Keyboard/Display lOB

Every application program must have a properly initialized keyboard/display lOB.
The keyboard/display lOB contains information to control all I/O via the keyboard/
display to which the partition is assigned. This information includes the address of
the I/O buffer, the address of the object code that controls the format of the records
on the screen and in the I/O buffer, and the address of control tables located in key­
board/display storage. Keyboard display storage is not part of main storage; it is
located within the keyboard/display attachment. The keyboard/display storage
contains translate tables and other control information used by the keyboard/display
microprocessor to process keystrokes and to display characters on the screen.

Registers and Indicators

Immediately following the partition control area are bytes that can be used for
indicators, binary registers, and decimal registers. The first 32 bytes contain 255
indicators. The indicators are numbered sequentially from zero. The first 100
indicators are user indicators, and the remaining indicators are used by the system.
The indicators are located in the bytes that also can be used for the first 16 binary
registers or the first two decimal registers.

(

If"

l

The first 256 bytes of this area, including the bytes where the indicators are located,
can be used for 128 two-byte binary registers. The first 16 binary registers are used
for the indicators, and the next 16 binary registers are used by the system. The
remaining binary registers may be used for binary arithmetic or logical operations
by the application program. The binary registers are located in the bytes that also
can be used for the first 16 decimal registers.

0100

0110' BR 9 BR 10 BR 11 BR 12 BR13 BR15
1144·1159 1160·1175 1176·1191 1192·1207 1208·1223 1240·1255

0120 BR 17 BR 18 BR 19 BR 20 BR 21 BR 23

01FO

5280 Functions and Storage Overview 11

12

The remaining bytes of this area, up to relative address hex OFFF, can be used for
16-byte decimal registers. Counting the first 16 decimal registers, which can be
used for the binary registers, there are 240 decimal registers. Decimal registers R16
through R239 can be used for decimal arithmetic or logical operations by the appli­
cation program. Decimal registers store data in EBCDIC notation and can support
sign control.

Any of the bytes up to relative address hex OFFF that are not used for registers
are used for data storage. The bytes following hex OFFF can be used only for data
storage.

Partition Work Buffer

The last 256 bytes of a partition are used as a partition work buffer. This work
buffer is used during load operations, trace operations, decimal arithmetic opera­
tions, self-check, and formatting. The application program does not access this area.

System Work Buffer.

The last 256 bytes of main storage are used as a system work buffer. This system
work buffer is not associated with any partition, and it is not accessed by an appli­
cation program.

Foreground and Background Partitions

One main storage partition is permanently assigned to each keyboard/display. A
. partition that is permanently assigned to a keyboard is a foreground partition. Any

partition that is not permanently assigned to a ke'yboard is a background partition.

(

(

When a program executing in a background partition needs to use a keyboard, it
can cause an edge indicator to be displayed on the keyboard/display screen. This
indicator notifies the operator that a background partition needs the keyboard.
The operator can interrupt the program that is using the keyboard and attach the
background partition. When the background partition no longer needs the key­
board, the partition must be detached to give control of the keyboard back to the
interrupted program. Only one partition can be attached to a keyboard/display
at any given time.

INPUT AND OUTPUT BUFFERS

There must be at least one physical buffer in main storage for each lOB in a pro­
gram that has I/O instructions. The physical buffer length must be a multiple of
128 bytes. Double buffering can be used for minimal delays in interactive programs;
a second physical buffer is set up so the 5280 can process data in one while an input
or output operation is being performed with the other. Double buffers are also
required to duplicate fields of a previous record into the same field of a current
record. The 5280 keeps track of the buffers and the records that are in the buffers.

Data sets can be blocked for better utilization of diskette space; a logical buffer is
set up and the blocking and deblocking functions are performed automatically by
the 5280. Or the logical buffer can be omitted and logical records can be blocked
and deblocked directly to and from the physical buffer.

IBM 3270 MODE BUFFERS

The following threebuffers are used for IBM 3270 emulation.

Data Stream Buffer

This buffer is located in the user partition. It is used to store the IBM 3270 encoded
data. This data is used by the IBM 3270 write assist KEYOPs and is generated by
the IBM 3270 read assist KEYOPs. This buffer is normally 4K bytes in length.

Device Buffer

This buffer is located in the user partition. It is used to format the screen or printer
image. It contains the form image translation of the data in the data stream buffer
and also holds thedata entered by the operator. The main part of the device buffer
is 1920bytes, an additional 128 byte microcode work area is required immediately
following the 1920 bytes making the total size 2048 bytes.

Work Buffer

This buffer is located in the user partition. It is used as an intermediate buffer by
the IBM 3270 write assist KEYOPs. The device buffer contents are first moved to
the work buffer. Then, the write is done to the work buffer. If the write fails, the
screen or printer image and device buffer remain unchanged. If the write is success­
ful, the contents of the work buffer are written to the device buffer and the image
is changed. This buffer is 1920 bytes in length.

5280 Functions and Storage Overview 13

14

EXTERNAL STATUS PROCESSING

While an I/O device is processing I/O, it may encounter a condition that the device
microprocessor cannot handle, such as an error condition or a condition that
requires operator intervention or execution of object code instructions. When this
occurs, the device microprocessor stops processing the I/O, places a condition
code into the device lOB, sets an external status flag in the device lOB, and sets an
attention line to the main microprocessor. The device microprocessor continues
to service the other lOBs.

When the main microprocessor determines that an lOB has the external status flag
set, it enters the partition and executes appropriate object code instructions to
resolve the conditions. The instructions are determined by the application program.
When the application program has resolved the condition, the main microprocessor
resets the external status flag and goes to the next partition. The device micro­
processor returns to the lOB only when it again receives an I/O command. The I/O
command may be a reissue of the last I/O command.

LOADING A PARTITION

At IPL, a program can be loaded into any main storage partition. At any time after
IPL, a partition can be loaded by a program instruction or by the standard load
processor in the common function area. The standard load processor prompts for
load parameters to be entered from the keyboard. A program instruction can
prompt for load parameters to be entered from the keyboard, or can obtain the load
parameters from a storage area. The load parameters include the partition number,
the device 10 or physical address, and the name of the data set to load. The load
operation can load a data set into another partition or can reload the same partition
with the same or a different data set. After the main microprocessor obtains the
load parameters, it attempts to load the data set from diskette into the partition.

Unless the diskette sector size is greater than 256 bytes, the first read will cause
256 bytes to be read into the partition. If the sector size is greater than 256 bytes,
the first read will cause one sector to be read into the partition. In either case, the
rest of the object data set will be read into the partition in 4 K byte blocks.

The data set is read from the diskette from the BOE (beginning of extent) to the
EOO (end of data). There must be no gaps of unused diskette space between BOE

. and EOD. The first block that is read into the partition contains the partition lOB.
The main microprocessor checks the length specified in the partition lOB and then
checks the length of the partition being loaded. If the size of the partition being
loaded is sufficient for the data set, the load proceeds until all data in the data set
is read from the diskette. If the size of the partition being loaded is not sufficient,
a load error results.

Partial Overlay

A partial overlay can spot load a section of object code or data into a partition
without destroying tt)e program object code already in the partition. A partial
overlay is initiated by a program instruction. Tt)e load parameters must include
tt)e address where tt)e partial overlay begins. When tt)e partial overlay is completed,
control returns to the instruction following the load instruction that initiated the
partial overlay operation.

(-

"'--I"'
.. -~

(

Error Recovery

There are two methods of error recovery that may be used when an error occurs
during a load operation. One method allows the main microprocessor to handle
error recovery. The other method uses error recovery procedures written by the
user. The load instruction indicates which method of error recovery is used.

User Defined Error Recovery

When a program instruction loads a data set into another partition, or if the load
takes place through a common function, the load instruction can indicate that user
defined error recovery procedures will handle error recovery. If the load operation
is successful, control returns to the second instruction following the load instruc­
tion. If an error occurs during the load operation, the main microprocessor places
the error code into a system binary register (BR16) and returns control to the first
instruction following the load instruction. This instruction usually branches to the
error recovery procedures.

Main Microprocessor Error Recovery

There are four types of error recovery procedures, depending on the type of load
taking place when the error occurred. When any type of error occurs, the main
microprocessor sends an error message to the screen and waits for the operator to
press the Reset key. After the reset, error recovery is as follows for the different
types of loads:

Global load, prompts for the load parameters to be entered from the keyboard.
After reset, the load prompt is redisplayed with the original information that was
entered. The operator can then enter the correct information.

Program instruction reloading the same partition, with the standard load prompt
in the common functions area available. After reset, the load instruction is replaced
with the standard load prompt, which prompts for the load parameters to be loaded
from the keyboard.

Program instruction reloading the same partition, with no standard load prompt
available. There is no way to retry this type of load. The main microprocessor
issues an exit instruction and goes to the next partition. The partition that was
being loaded is available to be loaded by another partition.

Program instruction loading another partition. After reset, the load instruction is
not retried. The partition that was being loaded is made available to be loaded by
another load instruction or by the standard load processor. Control returns to the
instruction following the load instruction.

5280 Functions and Storage Overview 15

16

SUBROUTINES

The 6280 supports a variable·length address stack for use during subroutine calls
and returns. The assembler places the address (relative to the start of the partition)
of the address stack Into BR18. During program execution when a subroutine call
is executed, the main microprocessor places the 2·byte absolute address of the next
sequential Instruction into the address stack Pointed to by BR18. Then the content
of BR181s Incremented by 2 so that it points to the next available 2·byte entry in
the address stack. When a return is executed, the content of BR18 is decremented
by 2, and the address stored in the address stack at the location pointedto by BR18
is taken as the return address. The last two bits of the address on the stack are used
to indicate what 64K page o.f memory the address resides on.

Bits 14 and 15 Page of Return Address

00 return to same page as currentiy executing on.

01 return to page where common function area one resides.

10 return to page where original partition resides.

11 return to page where common function area two resides.

ADDRESS VALIDITY CHECKING

Addresses in assembler language instructions and control blocks are specified in the
following two ways: (1) directly by a 2-byte address in the object code that was
generated by a reference to a label in the source code, and (2) indirectly by an
address in a binary register (this address is usually calculated), to which a displace­
ment may be added to provide an offset into the base address. No validity check­
ing is made for direct addresses; because the 2-byte address in the object code is
generated by a reference to a label in the source code, the referenced label must
be valid and within.the partition for the code to assemble correctly. For indirect
addresses (except addresses that access areas within the common area), the 5280
checks the address to which access is being made to verify that the address is
·within the partition. If a displacement is included in the instruction, it is added
to the base address and the resulting address is checked to verify that it is within
the partition. No validity checking is made on addresses that access areas within
the common area (2Q.bit addresses). No additional checking is made to an address
within an instruction that is modified by the INXEa instruction; if the INXEa
instruction modifies an address within an instruction and the reSUlting address
points to an area of storage outside the partition, unpredictable results will
occur. The user should beware if addresses of type 1 above are changed at
execution time or assembled incorrectly, since no validity checking will be
performed.

./

(

SELF CHECK

The self check feature gives the user the capability to define a method for either
creating a self check digit from a given alpha numeric field and then stornig the
digit in the field, or to create a self-check digit to be compared with a pre-computed
self check digit already stored in an alpha-nemuric field.

The parameters for a self check algorithm are specified by the user in a self check
control statement which is then used by the assembler to create a self check control
block. The self check control block is used by the main microprocessor when
executing a generate self check or an if self check instruction.

For a non-global self check the self check control block will be located in the same
partition as the program that contains the self check control statement. Bytes X'26'
and X'27' in the partition lOB will contain the relative address of the self check
control block. Also bytes X'20' - X'25' in the self check control block will contain
addresses relative to the start of the partition if translation tables are specified.

For a global self check bytes X'26' and X'27' in the partition lOB will equal zero.
The self check control block will be pointed to by bytes X'Ee' and XED' in the
system control area on page zero. They will contain the absolute address on page
zero of the self check control block. Bytes X'20' - X'25' in the self check control
block will also contain absolute addresses on page 0 if translation tables are
specified.

When an if self check or generate self check instruction is executed, the self check
control block is relocated in the last 128 bytes of the partition executing the
instruction. Here the self check control block is expanded to include some work
area's used to contain intermediate results. What follows is a diagram and a byte
for byte description of the expanded self check control block.

5280 Functions and Storage Overview 17

18

00

04

08

OC

10

14

18

1C

20

24

28

30

34

38

3C

40

44

48

4C

50

54

58

5C

EXPANDED SELF CHECK CONTROL BLOCK RELATIVE ADDRESSES

Self Check Control Block

Weight)
Table

oE Weight
Table

Input Translate Table @ Product of Sums Table@

Output Translate Table @ Self Check Self Check
Modulus Control Byte
(2-1271 One

Self Check Self Check #of Bytes-1 Self Check
Control Byte Displacement' to be checked Weight Table
Two Register

Reserved)

~ Reserved

Self Check ;.
Work Register

oE Self Check
Work Register

\ ,>

(

Byte Number
(Decimal)

Byte 0

Description

Least significant digit self check weight table (weighting
factors)

All 32 bytes of the weighting factors must be in hex and must be less than the
modulus. A weight of hex 00 must be entered in the positions of the self check

digits and any other positions to be bypassed. A weight of hex 01 should be
entered in all positions, except those to be bypassed, when the product table is
used.

Byte X'1F' Most significant digit of self check weight tables (32 bytes)

Byte X'20' Self check input translation table address (2 bytes)

Byte X'22' Self check product of sums table addr (2 bytes)

Byte X'27', bits 1·3 must equal B'OOO' or B'010' if product of sums table provided.

EQU X'24' Self check output translate table address (2 bytes)

Byte X'26' Self check modulus (2·127)

5280 Functions and Storage Overview 19

20

Byte X'27' Self check control byte one

Bit 0 • Decimalize self check number

Bit O· 1

Bit 0 = a

Entry

The rightmost check digit (NR) is used to produce a two·
digit decimal number. The units digit Is converted to the
DR (displayable rightmost self check digit), and the tens
digit is converted to 0 L (displayable leftmost self check
digit).

An F·zone Is OR'ed to the leftmost check digit (NL) and
NR to produce DL and DR.

Bits '·3 = Summing of Products

Explanation

Bit '·3 = B'OOO' and Byte X'22'·X'23' = 0

Entry

Bit' = 1

Entry

Bit 2 = 1

Entry

Bit 3 = 1

Multiply weights times digits· and sum all the digits of the
products.

Explanation

Multiply weights times digits and sum whole numbers.

Explanation

Translate digits to products and sum all the digits. Product
table repeats every fourth digit. (See product table.)

Explanation

Multiply weights times digits and sum the units digits of the
products.

Bit 4·5 = Sum Manipulation

This parameter is used to manipulate the NL and NR. If bit 4 = 1, (byte X'27') or
if bit 4·5 = B'OO', (byte X'27'), N L is forced to O.

If bit 4·5 = B'11', (byte X'27'), bit 6 cannot equal 1 in (byte X'27') for a modulus
less than 8.

Entry Explanation

Bit 4·5 = B'OO' Divide the sum of N Land N R by the modulus.

(Bit4

Entry

Bit 4" 1

Bit 5

Entry

Bit 5 = 1

Bit 4 & 5

Entry

Bit 4 - 5 = B'11'

Entry

Bit 6 = 1

Bit 6 = 0

Entry

Bit 7 = 0

Bit 7 = 1

('

Explanation

Divide the sum of the digits of the sum of N Land N R by
the modulus.

Explanation

Special cross add of the digits of the sum N Land N R. (The
hundreds digit plus units digit equals the N R. The tens digit
plus the carry from N R equals the N L).

Explanation

Special modulus 8 and 3. The units position of the self check
number is stored modulus 8 and the tens position is stored
modulus 3. (Byte X'27'), Bit 1 cannot equal 1.

Explanation

N Land N R complemented to modulus.

N Land N R unchanged.

Explanation

One digit generated or checked.

With an output translate table, and byte X '27', bit 5 = 1,
the NL and NR are summed before translation.

Two digits generated or checked.

If byte X'27', bits 4-5 = B'11', the N L is multiplied by 8
and added to the N R. That sum is then translated.

Note: This option should only be used if an output
translate table is available.

5280 Functions and Storaga Ovarview 21

22

Byte

Entry

Bit 1 = 1

Bit 1 = a

Bit 2 = 1

Bit 3 = 1

Bit 4 = 1

Byte

X'28' Self check control byte two

Bit a = a Reserved

Explanation

Each byte in the input translate table is interpreted as two
hex digits. The low-order hex digit (four bits) becomes the
input translate character. The high-order hex digit (four
bits) becomes the shift left count. The position being
translated, and all higher positions in the register, are shifted
left (with zero fill) the number of positions in the shift
count, when the shifted register contains 16 bytes. (All un­
used high-order bytes of the original register are bypassed.)

All eight bits of any input translate byte are used for the
input translate number.

Standard modulus eleven.

Global self check (set by micro-code).

Double decimal reg used (set by micro-code).

Bit 5-7 = B'OOOO' Reserved

X'29' Self check displacement

This byte specifies the displacement (0-32) of the rightmost self check digit

within the register.

Note: Specification of standard modulus 10 or 11 requires that the rightmost
position of the register specified in the GSCK instruction be blank.

Byte X'2A' Number of bytes (-l)tobe checked

Byte X'2B' Self check alternate weight

Table register

This entry specifies a register or register pair that contains the weighting factors for
the self-checking algorithm. If a register is specified, byte 0-31 decimal in the Self­
Check Control Block are ignored.

If no alternate weight table is used this value will be set to a by the assembler.
Otherwise this byte will contain the decimal register number of the leftmost decimal
register.

Note: All information in the decimal registers will be right justified.

/'. ~
\

(OPENING A DATA SET lOB

The main microprocessor uses the OPEN instruction to prepare for I/O processing.
When the main microprocessor executes an OPEN, it places the lOB on the lOB
chain, initializes (or updates) information in the lOB, and verifies data set sharing
capabilities.

To process an OPEN, the main microprocessor:

1. Obtains the lOB pointer address from the logical I/O table entry for this data

set.

2. If the lOB pointer address specified in the logical I/O table is not between hex
40 and BC inclusive, or is not on a 4-byte boundary, the main microprocessor
uses the device ID (bytes hex 60 and 61 of the lOB) as a search argument and
searches the resource allocation table. If a match is made on the partition
number and device ID, the main microprocessor takes the physical address
given in the resource allocation table and uses it to open the data set lOB. If
the system does not have a resource allocation table, an external status (0736)
occurs. If no match is made on the device 10, an external status (0725) occurs.
If the physical address that is found in the resource allocation table is invalid,
an external status (0726) occurs. There are two lOB pointers in this range
(address hex AO and A4) that are used exclusively by the communications
access method to access the communications microprocessor; these lOB
pointers are not to be used by the application program. No checking is made
to ensure that the application program does not use these lOB pointers, and
unpredictable results may occur if they are used.

3. Determines the proper attention line to use, based on the lOB pointer address,
and checks to determine if the device to open is installed. The main micro­
processor does this by checking the third byte of the lOB pointer for a non­
zero value. After checkout, each device microprocessor places hex FF in this
byte to signal that the device is installed. During an open, the main micro­
processor detects this nonzero value and continues doing the open. When the
main microprocessor places the address of an lOB in the lOB chain, it leaves
bit 1 of the third byte on so that there will always be a nonzero value there
for later opens. If the device is not installed, this byte is left at hex 00 after
checkout; the main microprocessor interprets this zero value to indicate that
the device is not installed and will force an external status (0731) on any
attempt to open the device.

4. Checks to determine if the data set lOB is already open. If it is already open,
skip to step 8.

5. Checks to determine if there are any other lOBs on the chain. If the new lOB
is label update, and if there are other lOBs on the chain, an external status
(0733) occurs. If there are no other lOBs on chain, the address of the label
update lOB is placed on the chain and bit 3 of byte 0 of the lOB pointer for
this lOB is set; this marks the lOB chain as nonshare. If the new lOB is not
label update, and if bit 3 of byte 0 of the lOB pointer is set, external status
(0733) occurs. If there are no other lOBs on the chain, the main micro­
processor places the address of the lOB on the chain and goes to step 8.

5280 Functions and Storage Overview 23

24

6. If there are other lOBs on the chain, the main microprocessor checks the
share specifications.

7. If the share/access specifications are valid, the main microprocessor places
the lOB on the chain. If they are not valid, external status (0727) occurs.

8. Saves the commands and operands in the lOB, turns on bits 0 and 1 in byte 0
of the lOB, and raises the attention line to the appropriate device
microprocessor.

Formatting is not supported during an open (or allocate). If the HDRl label
should be formatted, a formatted read from the physical buffer should be executed
after the open.

Share Data Set Opens

When a request is made to open, data set sharing is,yerified. A test is made to
determine if the device subaddress of the new lOB matches that of the first lOB in
the chain. If they do not match, the test is made on the next lOB in the chain. If
there is a match, a test is made to determine if the lOB pointer ad.:jress for the new
data set is between hex 40 and 7C,inclusive. If it is not within this range, a match
has been found and the share/access checking continues. If the lOB pointer address
is within this range, an additional check based on data set names is made. If the
data set name of the new lOB matches the data set name of the old lOB, the share/
access checking continues. If the new data set name does not match the data set
name of the old lOB, a mismatch has occurred and the next lOB in the chain is
checked. For each match found, options based on read/write, shan~/don't share
must compare. Four bits are assigned to contain the following access and share
information:

Bit Meaning

0 Read
1 Write
2 Read share allowed
3 Write share allowed

The following diagram shows how the main microprocessor compares the access
type to the share options:

Start

I
New share
Status = 0-Yes-Error

I
No

I
New share New share
Status = 11--No- Status = Old --No- Error I Accer type

Yes
Yes~.---------------~I
I

Old share
Status = 00 - Yes _Error

Jo
I

Old share Old share
Status = 11-No-Status= New-No-Error

Access type

I
Yes

Yes •• ________________ ~l

I
Good

If ~he compare of options does not match according to the following diagram, an
external status (0727) occurs. The error code is saved in the lOB, the appropriate
external status code and external status bit are set, and a branch is taken to the
external status subroutine.

5280 Functions and Storage Overview 25

26

R=Read
W=Write
S=Share IS: New

R/RS

R/R
&WS

R/WS

R/NS

W/RS

W/R
&WS

W/WS

WINS

R&W
IRS

R&WI
R&WS

R&W
/WS

R&W
INS

RI
RS

OK

OK

R/R RI RI WI
&WS WS NS RS

OK

OK OK

OK

OK OK

OK OK

OK

OK

KEYBOARD/DISPLAY I/O CONTROL

W/R WI WI R&WI R&WI R&WI R&W
&WS WS NS RS R&WS WS INS

OK OK OK

OK

OK OK OK OK

OK OK

OK OK

OK

The keyboard/display attachment consists of a keyboard adapter, a display adapter,
keyboard/display storage, and the keyboard/display microprocessor. Optional
magnetic stripe readers and an optional elapsed "time counter may also be included.

The keyboard/display microprocessor handles all data entry via the keyboard. It can
handle up to four keyboards. For each keyboard it processes keyboard functions
and data entry, and detects keystroke errors. It processes keystrokes and handles
the character display according to the keyboard/display storage information. It uses
a screen format control string, which is generated from the application program, to
control the format of the input record as it is displayed on the screen and entered
into the I/O buffer.

(

Keyboard/Oisplay Storage

Each display has an assigned keyboard/display storage area. Within this area is a
refresh buffer for the screen, and translate tables and other control information
used by the keyboard/display microprocessor to interpret keystrokes and to display
characters. The translate tables include the: (1) scan code translate table, which
translates each keystroke scan code to a corresponding EBCD IC value that can be
placed into the main storage I/O buffer; (2) display translate table, which trans·
lates each EBCDIC value to a display code before it is displayed on the screen; (3)
validity table, which defines such things as the EBCDIC codes that are valid for
each character set; and (4) diacritic table, which defines diacritic character combina­
tions. Other control 'nformation in the keyboard/display storage area defines con­
figuration of the lines on the screen and the symbols displayed on the status line
for particular field definitions. The keyboard/display lOB specifies the address in
keyboard/display storage of the storage area assigned to the keyboard.

Screen Format Control String

A source statement in the application program generates a string of object code,
referred to as a screen format control string, that describes the format of each input
record. This screen format control string specifies the length and valid characters for
each input field, and describes prompts, display attributes, duplication fields and
constant insert fields. It indicates the position on the screen where each field and
prompt is to be displayed, and the position in the I/O buffer where each field is to
be placed. The application program specifies the screen format control string and
the I/O buffer to use, and the addresses of the string and buffer are stored in the
keyboard/display lOB.

As the keyboard/display microprocessor processes each field of the screen format
control string, it places the input data into the I/O buffer and displays it on the
screen. However, the keyboard/display microprocessor cannot move the data from
the I/O buffer to other main storage locations, or to another I/O device. When a
screen format control string is completed, the keyboard/display microprocessor
places a record advance condition code into the lOB and reports external status to
the main microprocessor. The main microprocessor must process the contents of
the I/O buffer according to the application program instructions.

Functions and Modes

When a function key is pressed, the keyboard scan code is translated by the key­
board/display storage translate tables to an EBCDIC code. This EBCDIC code
initiates the appropriate function. The function may be processed by the key­
board/display microprocessor, by the application program, or by both.

The data entry mode may affect the way the function is processed. The keyboard/
display microprocessor supports several modes of entry. (See the keyboard flags at
hex displacement 3E in the keyboard/display lOB for a list of the modes.) The
modes are selected by the application program, which must set the assigned mode
flags in the keyboard/display lOB. The keyboard/display microprocessor controls
the keyboard/display I/O and functions in the mode specified by the mode flags.

5280 Functions and Storage Overview 27

28

Magnetic Stripe Reader

The optional magnetic stripe reader reads a character string that is stored on a
badge. When the badge is inserted into the reader, the character string is read into a
buffer within the reader. The keyboard/display microprocessor reports an external
status condition to the main microprocessor. The main microprocessor then exe­
cutes the application program subroutine that reads the character string into main
storage and processes it.

Elapsed Time Counter

The optional elapsed time counter records elapsed real time. The keyboard/display
microprocessor maintains a timer that increments a 2-byte field in the system con­
trol block every 1.6 seconds. A program instruction can read this 2-byte field and
the 1-byte timer value into a main storage area to measure the time elapsed during
a job or during a portion of a job.

Errors Detected by the Keyboard/Display Microprocessor

The keyboard/display microprocessor detects keystroke errors and keyboard/display
hardware errors. Most keystroke errors are handled by the keyboard/display micro­
processor, which displays an error code on the screen and waits for the operator to
press the Reset key. All hardware errors are entered into the error recording table
in the common area. In addition, certain conditions cause the application program
to be notified via external status.

Edge I ndicaton, IBM 3270 Mode

During iBM 3270 mode, indicators comparable to the IBM 3270 indicators appear
at the far right side of the screen. These indicators are:

Insert Mode Indicator

This indicator is located on row 12 of the 24 row screen. The microcode turns the
indicator on when the insert mode key is pressed. The application program can also
control this indicator using KEYOP X'87'.

System Available Indicator

This indicator is located on row 10 of the 24 row screen. It is only controlled by
the application program using KEYOP X'ST.

Input Inhibited Indicator

This indicator is located on row 14 of the 24 row screen. It corresponds to the
input inhibited state of the keyboard, when only the reset key is valid. The indica­
tor is manipulated by the microcode as follows:

• The microcode turns the indicator on whenever it posts external status to the
software for a command key sequence or a software-supported function key.

'-, .. ,-'

('
• The microcode turns the indicator off when a keyboard restore is indicated on a

write assist to the scretln operation and when an erase all unprotected assist
operation directed to the display is executed.

• The microcode turns the indicator on when the following errors occur:

When an alphameric or when dup, field mark, erase EOF, or delete is pressed
while the cursor is positioned beneath an attribute character or within a
protected data field.

When a key not.in the numeric key set is pressed while the cursor is within a
numeric field and the numeric lock feature is specified.

When an alphameric key is pressed in insert mode while there are no null
characters at or to the right of the cursor within the field.

- When an invalid scan code is detected.

- When an error keystroke is hit.

The application program can also control this indicator using KEYOP X'87'.

Keyboard States in IBM 3270 Mode

The state of the keyboard determines how keys are handled by the KB/CRT micro­
code. The states and descriptions are:

• KB open

All keys are valid. This state is equivalent to not hard lock and not input
inhibited.

• Hard lock

In this state, all keys are ignored except the shift keys. The KB/CRT microcode
sets the hard lock on whenever it posts external status to the application program
for a function key or a command key sequence. The application program may
also control this state by using KEYOP X'S7'.

• Input inhibited

In this state, only the shift keys and the reset key are active. It corresponds to
the status of the input inhibited indicator. The application program may also
control this state by using KEYOP X'87'.

DISKETTE I/O CONTROL

The diskette attachment consists of a diskette adapter and the diskette micro­
processor. Each diskette microprocessor can handle up to 4 diskette drives.

The diskette microprocessor handles all data I/O functions for the diskette drives.
These functions include reading and writing data set records, blocking and deblock­
ing records, searching data set records, and managing shared data sets. The diskette
microprocessor also handles allocating data sets, opening data sets, and closing data
sets. It can also change data set labels on a diskette and insert or delete records.

5280 F unctions and Storage Overview 29

30

Although all data is stored within main storage in EBCDIC notation, the diskette
microprocessor can read data set records in another notation and translate them to
EBCDIC, or it can translate EBCDIC records to another notation and then write
the translated records to a diskette. The translation requires translate tables, which
may be within a main storage partition or within the common area.

Error Recovery ~nd External Status

Initial attempts to recover from errors are tried by the diskette microprocessor.
When an error occurs during an I/O operation, the operation may be retried a cer­
tain number of times; the number depends on the operation and the type of error.
If the error is not resolved by the diskette microprocessor, the diskette micro­
processor places a 4-digit condition code in the diskette lOB and reports external
status. When the main microprocessor determines that an external status condition
is-pending in the diskette lOB, it uses the condition code to find the appropriate
subroutine in the application program to resolve the condition.

PRINTER CONTROL

The printer attachment consists of a printer adapter and a printer attachment
microprocessor. The printer attachment microprocessor can hand,le up to eight
printers of the types IBM 5222, IBM 5224, IBM 5225, and IBM 5256, with
restrictions as indicated in the IBM 5280 Distributed Data System Generallnforma­
tion Manual, GA21-9350.

Note: Printer speed may be affected by customer programs, application load, forms
design, and/or the number of printers attached to the system.

The format of the printed output may be modified by SCS (standard character
string) control characters. The SCS control characters may be placed in the printer
output data stream by the application program unless the program is using an SCS
conversion data set or unless no modification is desired. ,Each data set is described
with a control statement in the source program. If the data set description specifies
the data set type as an SCS conversion data set, the main microprocessor places the
SCS control characters in the printer output data stream.

The printer attachment microprocessor handles blocking and deblocking of output
records. It also handles data sets that specify share attributes. For the printer,
share attributes indicate that more than one data set can use the same printer.

Error Recovery and External Status

Initial attempts to recover from certain errors are tried by the printer attachment
microprocessor or by the printer. If the error or external status condition is not
resolved by the printer or printer attachment microprocessor, the printer attach­
ment microprocessor places a 4-digit condition code in the printer lOB and reports
external status. When the main microprocessor determines that an external status
condition is pending in the printer lOB, it uses the condition code to find the
appropriate subroutine in the application program to resolve the condition.

The printer attachment microprocessor records errors in the error tables, which are
located in the common area.

'- /'

(

COMMUNICATIONS CONTROL

The communications attachment consists of a communications adapter, a communi­
cations data trap, and the communications microprocessor. The communications
microprocessor supports one communications line. The adapter can provide data
link support for BSC or SDLe protocol. The data trap is used by the communica­
tions microprocessor to store diagnostic information. See the Data Areas and
Diagnostic Aids Handbook and the Communications Reference Manual for
information about communications.

The communications microprocessor handles communications I/O, including send­
ing status information and data to the host, receiving data and status information
from the host, and blocking and deblocking records. The communications micro­
processor uses a communications access method, which may be an IBM program
product or a program written by the user, to control communications operations.
The communications microprocessor interfaces with the communications access
method through the communications control block. The communications access
method, in turn, interfaces with the application program through the communica­
tions lOB. The communications lOB is described by a control statement in the
source application program. The communications access method and communica­
tions control block must be loaded into a main storage partition. The application
program and communications lOB are loaded into another main storage partition.

Error Recovery and External Status

The communications microprocessor attempts to recover from certain I/O errors
and records errors in an error recording table located within the communications
access method partition. If the error or condition is not resolved by the communi­
cations microprocessor, the communications access method places a 4-digit condi­
tion code in the communications lOB and ·reports external status.

5280 Functions and Storage Overview 31

32

TYPICAL OPERATION

This illustration is used with the typical operation description on the following
pages.

System
Control
Block

D Partition {
lOB Pointers

II Device lOB
• Pointers

Common
Functions
and
Tables

Partition Storage
(I/O buffers, formats,
device lOBs, tables,
data areas, object
code instructions)

System Control Information
date etc.)

Partition lOB II
Logical I/O Table II
Keyboard/Display lOB

Indicators and Registers -1---,-.----,-----------------

--, Object Code Instruction

~.--.-----------------------
Device lOB

Partition 0

Partition 1

(

The main microprocessor checks the partition lOB pointer D until it finds a
pointer that indicates that a program is loaded in the partition. If there. are no
active attention lines pending, the main microprocessor goes to the address indio
cated in the partition lOB pointer •• The first 256 bytes of the partition con·
tains the partition 10BIJ.

The partition lOB contains such information as the partition size and the address
of the object code instruction to execute next. When the main microprocessor
enters the partition, it sets a timer. This timer controls how long the main micro'
processor is to remain within the partition. The main microprocessor then goes to
the object code instruction address in the partition storage area II. It executes
instructions in the storage area until the time limit is up or until it encounters a
nonoverlapped I/O instruction. If the timer times out, the main microprocessor
completes the execution of the instruction it is currently working on, returns to the
partition lOB and stores the address of the next instruction to execute when it
returns to this partition, and goes back to the system control block. If no active
attention lines are pending, it continues checking the partition lOB pointers; when
it finds a partition lOB pointer that indicates that a program is loaded in the parti·
tion, it goes to that partition and performs the same steps as described above.

If the main microprocessor encounters an I/O instruction before the timer times
out, it uses the data set number specified in the instruction as an index into the
logical I/O table Ill. It goes to the appropriate entry in the, logical I/O table to
find the address II of the device lOB that describes the I/O operation. The main
microprocessor then goes to the device lOB II, loads the instruction into the
lOB, and activates the device attention line to the appropriate I/O device. If the
I/O instruction specified overlapped I/O, the main microprocessor continues exe·
cuting instructions within the partition while the I/O device is performing the
I/O. If the instruction specified nonoverlapped I/O, the main microprocessor exits
the partition, and the instruction following the I/O instruction is not executed until
the I/O instruction is completed by the device.

When a device microprocessor senses an active device attention line, it checks the
device lOB pointers II in the system control block until it finds a pointer that
contains an lOB address. It then goes to the address EJ and performs the work
described in the lOB. The lOB contains the instruction op code and parameters,
the address of the I/O buffer or buffers, and other information such as format
addresses and data set type. When the device microprocessor encounters a condi­
tion that it cannot handle, it clears the first two bits of the status byte and sets the
external status bit in the status byte of the device lOB, and activates an attention
line to the main microprocessor. If the device microprocessor finishes the I/O
work in a normal way, it clears the first 2 bits of the status byte in the device lOB.
The device microprocessor then checks the device lOB to determine the address of
the next lOB on the lOB chain for this device 1m. It processes the lOBs on the
chain until it encounters an lOB that is marked as the first on the chain. Except

for the printer attachment microprocessor, which has only one lOB pointer, the
device microprocessor then returns to the system control block and checks the next
device lOB pointer. If it finds another device lOB pointer that contains an lOB
address, it goes to the lOB and uses the I/O device associated with the lOB pointer
to process the lOB chain as described above.

5280 F unctions and Storage Overview 33

This page intentionally left blank

34

(

(

Chapter 2. Main Storage Data Areas

This section describes the 5280 main storage data areas. The following figure shows
the main storage organization for the 5280.

Storage
Address
(in hex)

0000

0010

0040

0050

0060

0080

0090

DOAD

OOBO

OOCO

0000

OOEO

OQFO

0100

I I 2 I

Partition 0

Partition 4

DisklJttiJ 0

Diskette 4

Prllltl!r lOB
Pointer

Communications
CeB Pointer

System Usc Only

Date

System Flags

Sys
Keystr

U ..
Only

Buffer@

Sys Confiq-

U" uratioll

Only Datu

I

Partition 1 PattillOll2 Partition 3

Partition 5 Partition 6 Pilrtltioll 7

Systf'tn US!' Only

I OI';ketW 1 I Dtskettl! 2 I Oisketl!! 3

I Diskettl! 6 I Diskette 7

J SYS\()111 USI) Only

I Systl!llI USI! Only

Commlllllcatl()IIS

lOB POI lit!!! System US!: Only

I StoraH!!
Sill: I'PL

TlITw
Fla[J

Eilol LOll Lockout Byws

Syswrn USI: Only

Commoll FunctH)Jl PC)I)lters

SYStl!ll1 Use Only

Global Tabl!! Pointers

I System Use Only

SystWTl USI! Only

I
Config·

S!M
uration
Table@

Check @

I G'oh" .I~'"'' Semen
Tabh: Format
POlntl!rS@ Num Table@

Common Function ReJiltines (object code I

Edit
Format
Table@

Prompt
T(lhlc@

I---------- ----------------------{
H(JIIlText -1
GlolJal Confiquration Data Table 1

I Error RecOfdlflq T(lblf!s (v(lllablf: lenqth)

I Rr:source Allocation Tahle (confiquration option) I
Re,ative.lf------------A-s-c-II-T-n-l"-"-,,-,,-T,-. h-'e-l-co-"-fi-qu-,,-· '-iO-"-0-O,-'0-"-,-----------I1

}:':o~-lOB Pointers

}
Ois.ette
lOB Pointers

-- --

System
Control
Block

Common Function
Routines and
Global Tables

Storage f-r----------------------------------l-- ____ _
Address Begillnilln of first partition .H(la (f!i~lht partitIOI\~ maximum)
(in hex)

0000 Partition lOB

0040 ILoglcai I/O Tabl~ I
0080 Keyboard/Display rOB

0100
BR 0 BR 1 BR 2 BR 3 BR 4 BR 5 BR 6 BR 7
1000·1015 1016·1031 1032·1047 1048·1063 1064·1079 1080·1095 1096·1111 1112·1127 RO

BR 8 SR 9 BR 10 BR 11 BR 12 BR13 BR 14 BR 15
112B·1143 1144·1159 1160·1175 1176·1191 1192·1207 120B·1223 1224·1239 1240·1255

0110 Rl

0120 BR 16 BR 17 BR 18 BR 19 BR 20 BR 21 BR 22 BR 23 R2

~ r-
01FO BR 120 BR 121 BR 122 BR 123 BR 124 BR 125 BR 126 BR 127 R15

..... ..;.
-r

OFFO R239

1000 Object program. buffers. tables, and so on

~r-__ ,r
Microprocessor work area in the last 256 bytes of the partition

I,·",·"
Binary
Registers

Decimal
Registert

Partition
Area

I----------------------------\----~---
0000 Beginning of the next partition

Main Storage Data Areas 35

36

SYSTEM CONTROL BLOCK

The system control block occupies the first 256 bytes of main storage and contains
partition pointers, device lOB pointers, and pointers to system tables.

Hex
Displace­
ment

0000

Length in
Bytes (in
Hex) Description

20 Partition Pointers: (one 4-byte block for each possible
partition). Each 4-byte block has the following meaning:

Byte 0

Bitrs)

o 1

Meaning

A prograrn is being loaded into the
partition.

2
3

1 = The partition is being attached to the
keyboard.
System use only.

= A keyboard attention occurred during a
nonoverlapped, non keyboard-I/O
operation.

4-7 System use only.

Byte 1

Bitrs) Meaning

o 0 = Background partition.
1 = Foreground partition.
1 = There is no program in this partition; there­

fore, a program can be loaded.
2 1 = An attention from the main microprocessor

to the keyboard/display microprocessor is
pending.

3 = An attention from the keyboard/display .

4-7

Byte 2

Byte 3

microprocessor to the main microprocessor
is pending.
0000 = No main microprocessor accessing the partition.
0001 = First main microprocessor accessing the partition.
0010 = Second main microprocessor accessing the partition.

High-order address of the beginning of the
partition. Hex FF indicates this partition is
not defined.

Page number in storage where this partition
is located.

/

Hex Length in
Displace- Bytes (in

(" ment Hex) Description

0020 20 System use only.

0040 20 Diskette lOB Pointers (eight 4-byte blocks). Each 4-byte
block has the following meaning:

Byte 0 Flag Byte

Bitrs) Meaning

0 1 The disl<ette microprocessor has locked the
lOB pointer; the main microprocessor can-
not use the lOB pointer while this bit is on.

1-2 System use only.
3 A label update data set is open. The main

microprocessor cannot put another lOB on
this chain.

4-7 0000 = No main microprocessor using the lOB chain.
0001 = First main microprocessor using the lOB chain.
0010 = Second main microprocessor using the lOB chain.

Byte 1 The high-order address of the first lOB on
the chain.

Byte 2
.. -

,,(

~ Bitrs) Meaning

0 The low-order bit of the lOB address.
1 The diskette drive is installed for this lOB

pointer.
2-3 System use only.
4-7 The page number in storage where the lOB

is· located.

Byte 3 Diskette microprocessor save area.

0060 20 System use only.

0080 4 Printer lOB pointer (same meaning as a diskette lOB
pointer, displacement 0040).

0084 1C System use only.

Main Storage Data Areas 37

38

Hex Length in
Displace- Bytes (in
ment Hex) . Description

OOAO 4 Communications CCB pointer (one 4-byte block). The
4-byte block has the following meaning:

Byte 0

Bit(s)

o

1
2

3

4-7

Byte 1

Byte 2

Bit(s)

0-3
4-7

Meaning When 1

The CCB pointer is valid for use by the
communications feature.
The CCB pointer is available for CAM use.
The CAM load parameter list is located at
the address specified in bytes 1 and 2.
The CAM is loaded and ready to accept
commands from·the application program.
The partition number of the partition that
initiated the loading of CAM.

When bits 0 or 1 of byte 0 = 1, this byte
contains the high-order byte of the CCB
address (relative to the beginning of the
page). When bit 2 of byte 0 = 1, this byte
contains the page number of the load
parameter list.

Meaning

System use only.
When bit 1 of byte 0 = 1, this byte contains
the page number of the CCB storage location.
When bit 2 of byte 0 = 1, this byte contains
the high-order byte of the address of the load
parameter list.

\.,'

"'-..

Hex Length in
Displace- Bytes (in

("' ment Hex) Description

Byte 3

Bit(s) Meaning

0-3 Main microprocessor lock bits, indicate some
user is currently setting up PARM list to load
CAM.

Bit 0 is for the main microprocessor.

Bit 1 is for the second application micropro-
cessor.

4-7 Used by microcode to signal attachment to
the system after the first attention is issued
by the main microprocessor. The microcode
will write a hex 'F' in this position if the
microcode diagnostics ran successfully and
the communications adapter is attached.

SYSIPL initializes bits 4-7 to hex '" if the
BSC Multipoint Monitor is not installed via
SYSCON and SYSCMPU when building the

(
IPL diskette. If the BSC Multipoint Monitor
was defined for this IPL, bits 4-7 are
initialized to hex '0' by SYSIPL and will be
used as follows:

Bit 4 indicates BSC Multipoint Monitor is
installed for this IPL.

Bit 5 indicates BSC Multipoint Monitor is
active, will be turned off by CAM when an
OPEN is issued to microcode to start a
communications session. It will be turned
on by CAM when CAM is canceled if bit 4
is on.

Bit 6, when off, indicates the main micro-
processor lock bits (0-3) are ready for use,
CAM can be loaded.

Bit 7, when on, indicates the communica-
tions microprocessor diagnostics can success-
fully at power up time.

OOA4 14 System use only.

(

Main Storage Data Areas 39

Hex Length in
Displace- Bytes (in

'"
ment Hex) Description

"
00B8 4 Communications lOB Pointer:

Byte 0

Bit(s) Meaning

0 The CAM has locked the lOB pointer; the
main microprocessor cannot use the lOB if
this bit is 1.

1-3 System use only.
4-7 0000 = No main microprocessor accessing the chain.

0001 = First main microprocessor accessing the chain.
0010 = Second main microprocessor accessing the chain.

Byte 1 The high-order address of the first lOB on
the chain.

Byte 2

Bit(s) Meaning

0 The low-order lOB address.

1-2 System use only.
3 1 =CAM is optional.

4-7 The page number of the lOB location.

Byte 3 Hex FF if the CAM is operational.

OOBC 4 System use only.

OOCO 5 Date information as follows:

Byte 0 Year minus 1900.

Bytes 1-2 Day of the year.

Byte 3 Month (date is invalid if this byte = 00).

Byte 4 Day of the month.

00C5 2 Storage size as follows:

Byte 0 Number of 64 K-byte pages of storage.

Byte 1 Number of 256-byte blocks of storage on the
last page.

OOC7 IPL Flag.

40

(

r(

Hex
Displace­
ment

OOC8

ooCA

0000

0006

0008

00E1

OOE3

Length in
Bytes (in
Hex) Description

2

6

6

2

9

2

7

High-order 2 bytes of time (1.6 seconds per count) since the
system was powered on (if the elapsed time counter is
installed). Updated by the keyboard/display microprocessor.

System use only.

System flags as follows:

Byte 0

Bit(s)

0-3
4
5-7

Byte 1

Byte 2

Byte 3

Bytes 4-5

Meaning

System use only.
The resource allocation table is in storage.
System use only.

During IPl, hexadecimal FF indicates the
main microprocessor is ready for IPl data to
be loaded. Not hexadecimal FF indicates
that a diskette microprocessor is loading IPl
data.

The device address of the IPL diskette.

The IPl device subaddress.

System use only.

The address of the resource allocation table, relative to the
beginning of page O.

System use only.

Address of main memory buffer for keystroke buffering.

Error log lockout bytes: Each device lOB pointer is
assigned a bit in the first-level lockout bytes. Up to 8 device
lOB pointers share a bit in the second-level lockout byte.
For entry to the error log, all bits in the first-level byte con­
taining the device lOB pointer lockout bit must be 0, and all
bits in the second-level lockout byte must be O. Also, bit 3
of byte 0 of the table pointer must be 1. To use the table,
the microprocessor must: (1) Set the bit in the first-level
lockout byte corresponding to the lOB pointer of the
device that has the error. All other bits in that byte must
be O. (2) Set the bit in the second-level lockout byte. All
other bits in that byte must be O. (3) Set bits 4-7 of byte 1
of the pointer to system table 0 to hex F. This half-byte
must have been zero.

Main Storage Data Areas 41

Hex Length in
Displace- Bytes (in
ment Hex) Description

OOE3 First-level error lockout bytes:
(cont.)

Bit

Byte E3 0 Partition 0
1 Partition 1
2 Partition 2
3 Partition 3
4 Par.tition 4
5 Partition 5
6 Partition 6
7 Partition 7

Byte E4 System use only (must be zero).

Bit

Byte E5 0 Diskette 5000
1 Diskette 4COO
2 Diskette 4800
3 Diskette 4400
4 Diskette 4000
5 Not defined
6 Not defined
7 Not defined

Bit

Byte E6 0 Printer 80XX

Byte E7 System use only (must be zero).

Byte E8 System use only (must be zero).

OOE9 Second-level error lockout byte:

Bit(s) Use

0 Partitions 0-7.
1 System use (must be 0).
2 Diskettes.
3 Printer and system use only (must be zero).
4-7 System use only (must be zero).

OOEA 2 Address of the global configuration table, relative to the
beginning of page O. The address is set by the configuration
utility.

OOEC 2 Address of global self check control block, relative to the
beginning of page O.

OOEE 2 Address of the global edit format table, relative to the
beginning of page O.

-""

42

Hex Length in
Displace- Bytes (in

(ment Hex) Description

OOFO System use only.

OOF1 Main microprocessor configuration data; initialized by the
configuration program as follows:

Bit(s) Meaning

0-3 The number of partitions-1 to scan.
4-7 The number of the partition at which to

start scanning.

OOF2 Second application microprocessor configuration data;
initialized by the configuration program as follows:

Bit(s) Meaning

0-3 The number of partitions-' to scan.
4-7 The number of the partition at which to

start scanning.

00F3 6 System use only.

OOF9 2 Address of the system table pointers, relative to the begin-
ning of page O.

(FB The page number of the global screen format table and the
global prompt table.

Bit(s) Meaning

0-3 Page number of keystroke buffer in main
memory.

4-7 Page number of global screen format table
and prompts table.

Fe 2 The address of the global screen format table, relative to
the beginning of the page specified in displacement FB.

FE 2 The address of the global prompt table, relative to the
beginning of the page specified in displacement FB.

(

Main Storage Data Areas 43

44

COMMON FUNCTIONS AND GLOBAL TABLES

The common functions and global tables begin at address hexadecimal 0100, and
may include different areas depending on the system and whether the user selected
IBM options. The following diagram is a general description of the common func­
tions and global tables as they are if the common area SVSDPRT2 (the default area)
is selected. Following the general description is a complete description of the global
tables.

I

I System Use Only

Common Function Pointers

Global Table Pointers

Help Text

I

I

I Global Configuration Data Table I
I Error Recording Tables (variable length) I
L Resource Allocation Table (configuration option) :-r
J,... ASCII Translate Table (configuration option) ~
I ~

"'- ...

(

f

(

Global Configuration Table

The address of the global configuration table is at hexadecimal EA, EB in main
storage. This table contains information about the printer for the printer micro­
processor. There are two header bytes, followed by an 8-byte entry for each printer
configured. Hexadecimal FFFF indicates the end of the table. The following is the
format of the 2 header bytes, and of the 8-byte entry.

Hex
Displace­
ment

Length in
Bytes (in
Hex) Description

2 Header Bytes:

Byte 1

Byte 2

Bits

0-3

4-7

8 Printer Entry:

Byte 1

Bits

0-1
2-4
5-7

Bytes 2-3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 8

The address of the printer lOB pointer
(hexadecimal 0080).

Meaning

The number of entries in the configuration
table minus 1.
The length of a table entry minus 1 (hex 7).

Device subaddress.

Meaning

System use only.
Printer port number.
Printer station address.

Displacement into the table to this entry
(must be nonzero).

Table length (hexadecimal 14).

Printer error encoding type:

AO"" Bit encoding
20 "" Byte encoding

Adapter Type

00 "" Twinaxial printer attachment.
02 "" Start-stop printer attachment.

Number of 128-byte blocks in printer buffer
(hex 02).

Must be zero.

Main Storage Data Areas 45

46

Error Recording Tables

A system hard-error table and a soft-error table are stored in the common area.
The system hard-error table is used by ~he microprocessors to record system hard­
ware-related errors. The soft-error table is used by the printer attachment micro­
processor to record the number of I/O errors that occur during program execution.
These error tables provide a history of system hardware-related errors and I/O errors
that can be written to a diskette with a special error table dump program.

How to Find the Error Recording Tables

The error recording table pointers are stored in the common area, in the format of
a system table. The 2-byte address of the error recording table pointers is located
in the system control block, at displacement hex F9. The first pointer always con­
tains the address of the hard error table, and the second pointer always contains the
address of the soft error table. The pointers are 10 bytes in length, in the following
format:

F9 FA
L-.l..-..J (address of the first pointer)

First Pointer (points to hard error table)

/
Second Pointer (points to soft error table)

\

I
I

I

I
I

I

L!..!.2 3 4 5

Lock Control ~J
(X'l.0: indicates
partition not
using table)

Bits 0-3 hold the
page number of the
error recording table
address.

Error Recording
Table Address -----'

Number of Entries}
for the System __
Error Recording .
Table

Num~er of Bytes }
for the Soft Error - -
Counter Table

\ ,
\

\
\.

\
\

6 7 ~

For the System Error Recording Table:

Number of Entries
10 for base system
+5 for diskette drives 2, 3, 4
+5 for diskette drives 5, 6, 7,8
+5 for pri nter (s)

or
_For the Soft Error Counter Table:

~umber of bytes

1------Set to X'OO'.

'-------Length of Entry Minus 1

(,

(

Hard Error Table Format

The hard-error table can contain up to 25 entries. Each entry contains up to 26
bytes of error information in the following format:

00 02 04 OCOD 11 19

~.~ i I ~~i-'-~'i'-.
• Error Code: See Error Code Format.

e Address of lOB Pointer2

• Device Subaddress (printer only)l

• G

o
e
o
1

Program Name

lOB Identification:
Bits 0-3 = The logical unit number from the logical I/O table. l

Bits 4-7 = The partition number in which the lOB is stored.

Device Status: See Device Status for a description.

Data Set Name l

Number of Duplicate Errors: Maximum is X'FF'.

This field contains all Os for the keyboard/display MPU.
2 For the keyboard/display MPU, this field points to the foreground partition associated with this

keyboard. If the partition is a background partition, this field points to the foreground partition
with which this background is associated.

Main Storage Data Areas 47

48

Error Code Format

xxxx

4
• Device Identification as Follows:

0= Main microprocessor
1 = Keyboard/display microprocessor
2 = Printer attachment microprocessor
3 = Diskette microprocessor
4=SNA
5= BSC
6-8 Not used
9 = Application program
C = Previous data set (SNA)
D = Previous data set (BSC)

o Error Category as Follows:

1 = Intervention required
2 = Hard error (operation is not retried)
3 = Retriable error (retried x times)
4 = lOB error (user error)
5 = Soft error (retried successfully)
6 = Exception status (such as the Cancel key pressed on the 5256 printer)
7 = Warning error (user can continue)
8 Not used
9 = User program terminated

e Specific Error Condition: See the IBM 5280 Message Manual, GA21-9354, for
a description of specific conditions.

(
Device Status

For the Keyboard/display MPU: The device status bytes have the following mean­
ing for error codes 1200, 1201, and 1202. For 1204 all status bytes are undefined.

,1,2,X,X,

I
Error Code

OC j.' Byt.. 19 Ha'" E"o,

(~"=~==~I=/'-,,--,,--,,,,-I<~~~'=O=' =O~, 0=,:0:::::,=0:,=0:=,=0='1' Irl Table Entry
1) I ,.

/ " Error Count

/ ""
/ "

/ "" / 00 OE OF ",
10. I " ,7 I " " I , , , , , , , I •••

o For error codes 1200 and 120 1, status 00 has the following mean ing:

Bit(s)

o

2

3-7

Meaning

1 = A keyboard/display feature card is installed.

1 = Keyboard/display storage selected is on a feature storage card.
(see Note)

1 = Keyboard/display storage selected is on the keyboard/display MPU
card. (see Note)

Keyboard/display storage access status as follows:

01111 = Accessed by the keyboard/display MPU or by a translate cycle.

10111 = Storage accessed by display 1 hardware.

11011 = Storage accessed by display 2 hardware.

11101 = Storage accessed by display 3 hardware.

11110 = Storage accessed by display 4 hardware.

For error code 1202, byte 00 contains the invalid scan code.

Main Storage Data Areas 49

50

e For error codes 1200 and 1201, byte OE has the following meaning:

e
CD

•

Bit(s) Meaning

0-2 High-order bits of the keyboard/display storage address when the error
occurred_

3 0 = The error occurred when translating and writing to the display
refresh buffer.

4 0 = The last storage access was for a read operation.

1 = The last storage access was for a write operation (diagnostic use
only).

5 Parity is even (should be even for a read; can be either for a write).

6-7 Indicates model as follows:

00 = 5288
01 = Not Used
10 = 5286
11 = 5285

For error code 1202, byte OE contains the EBCDIC translation for the invalid
scan code.

Not Used

0000

Number of Keyboards Detected (as attached) By the Keyboard/Display MPU

Note: For error codes 1200 and 1201, if bit 1 and bit 2 of status OD are both 0, an
invalid address was accessed.

,/

('-

(

(

For the Diskette MPU: The device status bytes have the following meaning.

04

~ I

/
/'

1
0

G
e
CD

•
..
e
0

OC OD

II)
/

/
/

/
/

/
/

-'" . '

OD OE

fj) '7~i
Failing Head Number:

0= Head 0
1 = Head 1

Failing Track Number

0= FM
1 = MFM

Sector Size:

00 = 128
01 = 256
10 = 512
11 = 1024

,

11

I I I I

19
I I
I

Number Minus 1 of
Duplicate Errors:

................ Maximum is X'FF'.

""'"
Data Set Name

"
........

""'" OFt 10

·liO.O~
• I I I

Failing Sector Number-valid for the following codes:

3301 3501
3302 3502
3303 3503
3306 3506

CRC error occurred

ID found during search

01 = Control address mark (AM) was detected
10 = Missing address mark
11 = Bad track accessed

Main Storage Data Areas 51

52

• Storage overrun: The diskette MPU was unable to obtain the required storage
cycles to transfer data.

Error during a verify read operation. • o Command not complete: The diskette MPU has not completed the operation
requested.

• When 1, the write or erase gate was active during a read operation; or the write
or the erase gate was not active during a write operation.

• Command sent to the diskette adapter by the diskette MPU.2

lit byte OF is equal to FF. the track contains no IDs.
21t the command is hex Ax or 2x. bytes 00 and OE may not be valid.

For the Printer Attachment MPU:

The status bytes have the following meaning for the twinaxial printer attachment.

04 DC 13 19 (. I , I I I , I I , I J Number of Duplicate
'r'-J..L-"--L-1--L-L.-'-...L-,/.......,>I-L-'--'--'---'L-J..--"= :-'-........ -'-..L-J'-rI....,...~Errors: Maximum is

,/

,/
,/

,/

00

,/ -- ~ used. X'FF'.
,/

,// """'- --.--

OE OF 10 ,/
,/
10" " ,71 • 1 I , . , , , .

• Not used.

e First Poll Response Byte

Bit(s) Meaning

o The printer MPU is busy.

The printer received bad data-parity error.

2 The printer is not ready.

11
! ! ,

3 The printer has outstanding status, which must be read by the printer
attachment MPU.

(~

~-

4·6 Exception status from the printer:

000 = No exception status.

010 = The printer received an invalid activate command. A read
command must be followed by a read activate command and a
write command must be followed by a write activate command.

011 = Undefined exception status. l

100 = The printer received an invalid command.

101 = Printer storage overrun: The printer received too much data or
too many commands.

110 = Undefined exception status. 1

111 = The printer was powered off and then powered on.

7 Not used by the 5280.

• Second Poll Response Byte

Bit

0

2

3

4

5

6

7

Meaning When 1

The printer received an invalid SCS character (usually a programming
error).

The printer received an invalid SCS parameter (usually a programming
error).

The printer receive buffer is full.

The printer operation is complete.

The Cancel Request key was pressed on the printer.

The printer mechanism is not ready (usually a voltage missing at the
printer).

End of forms

The printer received an unprintable character (this bit should only be
on if the SGEA command is set to stop).

Main Storage Data Areas 53

54

e Outstanding Status from Printer

Bit Meaning When 1

o Print wire check

Emitter slow speed check

2 Emitter fast speed check

3 Emitter sequence check

4 No emitter pulses

5 Emitter overrun: Printer MPU cannot keep up with the emitter pulses.

6 Forms stopped

7 Forms position check

• Encoding Type:

AO = bit encoding
20 = byte encoding

• Adapter type

00 = Twinaxial printer attachment

IThis exception status should not be received from the printer. If it is, it usually indicates a line hit.

The status bytes have the following meaning for the start-stop printer attachment.

04

~' 1

,/
,/

,/'
,/

,/
,/

,/ 00

,-;. I ! I .71

OC
I 1 ,
,/'

,//

OE
I ! !

o Not used.

1f 1~ 1 Number of Duplicate
,-' I , 'I ' Errors: Maximum is

-- -- __ Not used. X'FF'.

---....-----.... -- ----_. ---- -....---------=-
12-- __

I I ' ! , I,

OF 10 11
, ! , ! I , , , I

/-

G Device status.

(Bit Meaning

0 Interface check

Device check

2 Busy

3 Device exception

4 Receive block pending

5 Reserved

6 Power on transition

7 Reserved

e Device sense 0

Bit Meaning

0 Framing error

Overrun error

2 Parity error

3 Graphic error

4 Invalid SCS command

5 Invalid SCS parameter

6 End of Forms

7 Always 0

(

Main Storage Data Areas 55

56

e

o

Device sense 1

Bit Meaning

0 Buffer overrun

Power supply error

2 Left margin error

3 End of forms switch error

4 CPI/LPI switch error

5 Buffer read error

6 Invalid CPI/LPI switch setting

7 Always 1

Encoding type
AO = bit encoding

Adapter type
02 = Start-stop printer attachment

Soft Error Table Format

The printer soft error. recording table contains a count for each printer soft error
that occurred. The first byte in the table is always 0, followed by one entry for
each printer on the system. Each entry is 21 bytes long, and each byte is assigned
to a specific error code as follows:

Byte: 0 1 10 11 . 20 Soft Table Entry

E"o,R=:~10~~':57 'r ~r
Error Codes 2530 through 2539-5224 and 5225 Printer

I I
Error Codes 2540 through 2549-5256 Printer

I I
Error Codes 2510 through 2519-5222 Printer

~'

/

(

Resource Allocation Table

The resource allocation table defines the physical address of each logical device
that can be used by each partition. The table is created and initialized as a user
option during the system configuration portion of the SCPo If a resource allocation
table has been created and placed into the common area, the system flag at address
hex 00, bit 4 is 1; the address of the table is at hex 06·07 in the system control
block.

The resource allocation table consists of a 4-byte partition header for each partition,
followed by a 4-byte device entry for each device that can be used by that partition.
When the main microprocessor attempts to open an lOB that specifies a logical
device 10 instead of a physical address, it uses the resource allocation table to find
the physical address. The main microprocessor searches the table until it finds the
first entry for that partition or the first global partition entry. It then searches the
device entries for a matching device 10. If no match is found, it continues search·
ing the partition headers for another entry for the partition or another global parti·
tion entry. The search continues until the matching device 10 is found or until the
table is exhausted. If no match is found, an error is reported. If a match is found,
the device at the physical address specified in the table is used to open the data set.

The format of the partition header records and the device entries are as follows.

Partition Header

Byte: 0

Bytes

o

2-3

1 2

INumbe' of En.,; .. 1

Meaning

Partition 10 Number:

FO Global entry (each device entry applies to all partitions)
FF (see the description for bytes 2 and 3)

Bit(s)

3 1
o

4-7

Meaning

The partition number in bits 4 through 7 is not valid.
A valid partition number is in bits 4 through 7.
The number (0 through 7) of the partition to which the
entries apply.

The number (0 through 255) of device entries for this partition.

If bytes 0 and 1 contain hexadecimal FFFF (indicating the end of the
table), bytes 2 and 3 indicate the number of bytes still available in the
table.

If byte 0 is hex FF and byte 1 is not, byte 1 contains the page number
and bytes 2 and 3 contain the remainder of the address of the next
section of the resource allocation table.

Main Storage Data Areas 57

58

Device Entries

Byte: 0

Bytes

0-1

1 2 3

Device
Physical Address

Meaning

Device ID: The EBCDIC code for the logical device ID. This ID is
compared to the ID specified in the lOB during an open. and when
they are equal. the device with that physical address is opened.

2-3 Physical address: Byte 2 is the address of the lOB pointer for this
device. During an open. the main microprocessor moves byte 2 into
the logical I/O table. and byte 3 to the lOB.

ASCII Translate Table

The ASCII translate table contains two 256-bytes sections. The first section is used
for input. to translate EBCDIC notation to ASCII. The second 256-byte section is
used for output. to translate ASCII notation to EBCDIC. The hex value of each
character is used as an offset into the appropriate translate table. and the original
hex value is replaced with the hex value at that offset.

/
(

\ ,,-

/

(

(

(

PARTITION AREA

The partition area contains the program executed by the main micropr.ocessor and
the information required to execute these programs.

All addresses shown in the following description are relative to the beginning of the·
partition area.

Hex Length in
Displacement Bytes (in Hex) Description

0000 40 Partition lOB (see Partition 108).

0040 40 Logical I/O table (see Logical I/O Table).

0080 80 Keyboard/display lOB (see Keyboard/Dis-
play 108).

0100 80 Indicators 1000 through 1254, binary registers
BRO through BR15, and/or decimal registers
RO and R 1. (See System Indicators Within a
Partition for a list of indicators that are used
by system microprocessors.)

0120 Variable (224 Binary register BR16 through BR127 and/or
if all binary decimal register R2 through R 15. (See
registers are System Registers Within a Partition for a list
used) of registers that are used by system

microprocessors.)

Variable Variable Decimal registers R16 through R239.
(0200 if all (3584 if all
binary decimal
registers are registers are
assigned) used)

Variable Variable Object code, buffers, tables, diskette and
(pointed to printer lOBs (see Diskette 108 and Printer
in the 108 later in this chapter), work areas, and
partition other user program areas.
lOB)

Variable 256 The last 256 bytes of a partition area are
used as a microprocessor work area.

Main Storage Data Areas 59

60

Partition lOB

The following is a general description of the partition lOB. Following this general
description is a complete description of each field of the lOB. All addresses shown
are hexadecimal displacements from the beginning of the partition. No validity
checking is made on any of the values in the bytes of the following lOB. If any of
these bytes are modified by the application ~rogram, unpredictable results may
occur.

00 Program Name
4

08 Partition Control Flags Main Micro- System Use Program Start Absolute System Use
Length processor Only Address, High Address of Only

Error Code Program
5 3,6 2,3,6 6 3,4 3,6 6

10 Instruction Address Pointer Common Area Page and Cur- Partition Program Address of Program
Page Number rent Instruc- Page Number Length Check Routine

tion Flags
3,4 1,3,5 3,5 2,3,6 2,3,4 2,3,4

18 Address of System Table Main Microprocessor Save Program Number of Currency Edit Characters
for Data Tables Area Execution Last Edit

Timer Format
1,3,4 3,6 2,3,4 2,3,6 3,4

20 Decimal Edit Comma Edit Edit Count Partition Address of System Table Address of Self Check
Character Character Number for Edit Formats Control Block

3,4 3,4 3,4 2,3,6 1,3,4 1,3,4

28 System Use On Iy Load Flags Save Area For Save Area Remaining
Subroutine Return Address for Trace Number of

Bytes to Load
6 3,6 3,6 3,6 3,6

,
30 Page of lOB Address Address of Part_ Number lOB Pointer I/O Flags Current Instruction

Partition Be- of Partition Partition Work of Partition Address for Address
ing Loaded Being Loaded Buffer Being Loaded Diskette

3,6 3,6 3,6 3,6 3,6 3,6 3,6

38 Page Number Address of Number of Trace Flags Address-Stop Instruction Configura- System Use
of Data to Data to Bytes to Dump Address tion Infor- Only
Dump Dump, High matian

3,6 3,6 3,6 3,6 3,6 3,6 6

1. Application program can read or write this field.
2. Application program can only read this field.
3. Used by the main microprocessor.
4. This field must be initialized by the object module.
5. This field must be initialized at IPL time.
6. This field must be zero in the object module.

" '.

Hex Length in
Di.place- Byte. Un

(ment Hex) Description

00 8 Program Name (eight EBCD IC characters that identify the
program in this partition).

08 Partition length in number of 256-byte blocks minus 1.

09 Control Flags:

Bit(s) Meaning

0 1 lOB is initialized (a program is loaded).
1 Keyboard is attached to this partition.

2-7 System use only.

OA Control Flags:

Bitrs) Meaning

0 1 = Tracing through a Call or Return instruction,
to or from the common function area.

1 System use only.
2 = Processing a newly invoked Cmd, C key

sequence. (Waiting for keystroke after the
Cmd and C keys have been pressed.)

3-6 System use only.
7 Waiting for a response (ENTR) for the

(global load prompt.

OB 1 Main microprocessor error code.

OC System use only.

00 High-order part of the program start address.

OE Absolute program start address. Used by the micro-
processor when returning from a common area subroutine.

OF System use only.

10 2 Points to the next instruction to be executed when the
microprocessor begins executing code in the partition.
When the microprocessor begins executing code in this par-
tition for the first time, it adds the value in byte OD of this
lOB to this address to make it an absolute address. The
microprocessor then updates this address before leaving the
partition.

Main Storage Data Areas 61

62

Hex
Displace­
ment

12

13

14

15

16

18

1A

1C

10

Length in
Bytes (in
Hex) Description

1

2

2

2

Page number of the common functions as follows:

Bit(s)

0-3
4-7

Meaning

Page number of common function area 1.
System use only.

Page and current instruction flags as follows:

Bit(s) Meaning

0-1 01 = Instructions being executed are in the
common function area.

10 = Instructions being executed are in the
partition.

11 = System use only.
2-3 System use only.
4-7 Page number for the.instruction currently

being executed.

Number of the page where this partition is located (range
0-2) plus system flags.

Length of the program in this partition (in 256-byte
blocks).

Address of program-chec::k subroutine.

Address of the system table that contains 8-byte entries,
each of which defines a table in this partition. (See
System Table for Data Tables under System Tables for the
format of the table entries.)

Microprocessor save area

Program execution time (time slice timer) as follows:

Bit(s)

0 1
1 1

2·

3
4-7

=

=

Meaning

Ignore attentions.
Keyboard external status ocCurred after a
RESUME or CNENTR operation.
Keyboard external status occurred during a
nonoverlapped, nonkeyboard operation.
System use only.
Length of time divided by 4 (in milliseconds)
to execute instructions in the partition
(initialized by the assembler).

Binary number assigned to the last edit format index used.

Hex Length in
Displace- Bytes (in

(ment Hex)

1E 2

20

21

22

23

24 2

26 2

28 2

(
2A 2

Description

Characters used as the edit currency characters during
formatted read or write operations.

Character used as the edit decimal character during
formatted read or write operations.

Character used as the edit comma character during format-
ted read or write operations.

Number of characters between edit commas during
formatted read or write operations.

The partition number assigned to this partition (00-07;
set by the microprocessor at load time).

Address of the edit format system table (table that con-
tains 2-byte entries that point to the local edit format
strings stored within the partition).

Address of the self check control block.

System use only.

Load Flags as folloWs:

Byte 2A

Bit A#eaning

o

1

2

3
4

5
6
7

o
1

o

o

1

1
1
o

1

Foreground partition is loading the program.
Background partition is loading the program.
Program is being loaded in a foreground
partition.
Program is being loaded in a background
partition.
Program is loading a program into this same
partition.
Program is loading a program into another
partition.
The loader issued an ENTR command.
Partial load.
Regular load.
Attach a background partition if possible.
System use only.
User error recovery specified.

Main Storage Data Areas 63

---- --._--

Hex Length In
Dilplace- By tel (in
ment Hex) Delcrlptlon

"'-
2A Byte 2B
(cont.)

Bit MNnlng Wh,n ,

0 User external status routines are not
available.

1 One automatic retry was attempted.
2 Clo.e w •• ls.ued by the loader.
3 Clollng open data lete.
4 Error mes.age requested bV the loader.
S Globel Icreen format used.
e EXIT In foreground partition.
7 Detach the background partition at the end

of the load operation.

2C 2 Microprocessor save area.

2E 1 Trace save area.

2F Number of 256·byte blocks left to load.

30 Storage page number In which partition is being loaded.

31 Address of partition lOB for partition being loaded (used
only while loading a program).

32 Address of partition work buffer for partition being loaded
(used only during load operation).

33 Partition pointer address of the partition being loaded.

34 1 Address of diskette lOB Pointer for diskette doing the load
operation (used only while loading a program).

35 I/O Flags:

Bit Meaning When 1

0 Nonoverlapped I/O pending.
1 Nonoverlapped ENTR pending.
2 Formatted read requested.
3 System use only.
4 Keyboard operation pending.
5 During SCS conversion, the logical buffer has

data remaining to be converted.
6 Console function request pending.
7 ENTR issued by loader.

64

(

:(

Hex
DIsplace­
ment

36

38

39

3A

38

3C

3E

3F

Length in
Bytes (In
Hex) Description

2

2

Address of current instruction (used during trace).

Page number of data to dump.

High-order address of data to dump.

Number of 256-byte blocks of data to dump.

Trace Flags:

Bit Mllnlng Wh,n 1

o Address-stop address reached.
1 Address-stop request pending.
2 First time through trace or address-stop.
3 Dump flag.
4 Request trace of binary instructions.
6 Request trace of miscellaneous instructions.
6 Request trace of decimal instructions.
7 Request trace of branching instructions.

Instruction address after which execution stops during step­
stop mode.

Configuration information:

Bit(s) MfNJning

0-3 Number of partition pointers remaining to
scan.

4-7 Number of the partition pointer at which the
main microprocessor begins scanning.

Preliminary work station lock byte. This byte applies to
foreground partitions assigned to work stations. When a
main processor makes a KB/CRT request, it attempts to
lock this byte, by inserting the main processor number, in
order to coordinate multiple KB/CRT requests from various
partitions. If the main processor is successful in locking this
byte, it proceeds to byte 7F of the keyboard lOB in the
same foreground partition and attempts to lock it by in­
serting the requesting partition number. If either lock
attempt fails, because of another partition number in byte
7F of the keyboard lOB or another main processor number
in 3F, the main processor retries until successful.

Main Storage Data Areas 65

66

Logical I/O Table

The logical I/O table is located at relative displacement hex 40 through hex 7F of
each partition. Each data set lOB is represented with a 4-byte entry in the logical
I/O table. The table entries are stored within the table in the order of the data set
numbers.

The logical I/O table entries have two formats: one format is used for the keyboard/
display lOB and the other format is used for diskette lOBs and printer lOBs.

The following is a general description of the logical I/O table. Following the general
description is a complete description of the two formats that are used for the logical
I/O table entries. The address of each table entry is the data set number times 4 plus
hex 40.

Keyboard/Display Format

Byte Meaning

o Not used (initialized to hexadecimal 00).

Flags:

Bit(s) Meaning

o Special processing is required. This bit is set on when
an external status condition is detected during a
RESUME, CANCEL, or ENTR operation and indicates
that external status processing is required after these
operations have completed.
An ENTR command is pending.

2-3 Not used, set to zero.
4 A keyboard/display operation is pending.
5-7 Not used, set to zero.

2-3 Address of the keyboard/display lOB (always 0080).

(

("

(

Diskette and Printer Format

Byte

o

2

3

Note:

Meaning

Address of the device lOB printer

I/O Class:

Bit(s)

0-1

2

3

4

5
6
7

Meaning

I/O type:
01 = Output only
10 = Input only
11 = Input and output

The main microprocessor is waiting to remove an lOB
from an lOB chain.
The main microprocessor is waiting to add an lOB to an
lOB chain.
The main microprocessor is waiting to lock the first lOB
on a chain during an open.
Not used
The lOB is on an lOB chain.
An I/O request is pending for this device.

The high-order address of the lOB.

Flags:

Bit(s) Meaning When 1

0 Low-order address of the lOB.

Device type as follows:
1 Diskette
2 Not used
3 Printer
4 Not used
5 Communications
6-7 Not used

Only one of bits 1-7 may be on at anyone time.

Keyboard/Display lOB

The keyboard/display lOB is located at relative displacement hex 80 through hex
FF of each partition. There are two separate formats for the lOB, one for when a
partition is in IBM 3270 emulation mode and one fo·r IBM 5280 (not IBM 3270
emulation) mode.

IBM 5280 Mode

The following is a general description of the IBM 5280 mode of the keyboard
display lOB. Following this general description is a complete description of each
field of the lOB. All addresses shown are hexadecimal displacements from the
beginning of the lOB. To find the address relative to the beginning of the partition,
add hex 80 to the displacement. No validity checking is made on any of the values
in the bytes in the following lOB. If any of these bytes are modified by the
application program, unpredictable results may occur.

Main Storage Data Areas 67

00 lOB SYltem Foreground Partition lOB lOB Lockout Error Code Next Instruction Address
Statu. Background Pointer

Flags
2 2,7,8,9 2,8,9 2 2 2

08 Command Current Screen Formot Curront Prompt Tablo Partition Prompt Tabla External
OpCode Control String Bytl Addr ... Addr ... Statu.

Addr ...
2 2 2 3,B,7 2

10 btornal SlltUI Routln. Koyboard Keyboard Keybolrd Lilt Slv; Ar •• for Addr ... of
Addr ... FII;' Flag. PIIOI Claorltlc Currant SorlOn Format

CharMcllr Control String Byte
2,7 3270,2 2 3270 2 2

18 Keyboard Bit Mlp Return Operation
Kay Coda Cod.

1,7 2 2

20 Operltlon Parlmetor 1 Ormation Param.ter 2 Operation Parlmeter 3 LI.t Koy Last Kay
Scun Coda E8CDIC

2 2 2 2 2

2B Current Field Addres. Current Fluid Addre.s Currant Record Buffer Previous Record Buffer
In Main Storage In Keyboard/Display Addre.s Addr ...

Storage
3270,2 2 3,4,7 3,4,7

30 Cisplacement to Current Addrl .. of the Current Alphabetic Numeric Addre .. of Storagl
Character In the Buffer Curlor POliti on Rlght·AdJust Rlght·Adjust Duplication Table

Character Charactor
2 2 6,7 11,7 3,4,7

38 Kuyboard Plags Keyboard Flaga Koyboard Keyboard Keyboard
Flagl Flags Flags

5 2 5 2 5

40 Picture Information from Seraen Format Control String
Check
Displacement

3270,2 3270,2

48 Information Picture Fixed Prompt Keystroka Counter Verify Correction
(Continued) Check Line Keystroke Counter

Subfield
3270,2 3,4,7 6,B 6,B

50 Address of Storage Area Address of Diacritic Address of Status Line Address of Address of
in Keyboard/Display Translate Table Refresh Buffer Katakana Scan Code
Storage Trans. Tbl. Trans. Tbl.

2,B 2,B 2,8 2,B 2,B

58 Address of Screen Number of Number of Keyboard Configuration Address of Display
Refresh Buffer Lines on Characters Information Validity Line Map

Screen per Line Table
2,8 2,8 2,8 2,B 2,B 2,8

60 Display Line Map (continued) Language Address of Address of Address of System Use
Group Cu rsor Address Control Area Display Only

Register Control
2,8 2,8 2,B 2,8 Register 2,8

. 68 Current Character Position Current Field Number Address of the Fixed Current Position Counter
within the Field Prompt Line

3270,2 3270,2 3270,2 3270,2

68

70 POlltlons Remaining In Current Record Buffer Normal Dlspl., High Inten· Mlcroproceslor Sava
the Fluid POlltlon Attrlbutu Iity Dllplay Are.

Attribute
3270,2 3270,2 3.4,7 3.4,7 2

78 EBCDIC lor Addr.s. of Partition EBCDIC lor EBCDIC lor Mlcropro· Mlcropro· Main
Blank ChOCK Screon Format Control Vorlfy Mis" Duplication CUllor SaVI cII.or Work Mleropro-

String Table mateh Mismatch Area Area celsor Lock-
3,4,7 3,4,7 :I

1, An application program can changl tnll fluid at any tlmo,
2, An application program Ihould not change thllliola,
3, Normally, In applleltlon program will not chango thl. Iiolg,

:I :2 2 out

4, An .ppllc.tlon progrlm eln chungl thll flald, but only WhOM an ENTR command I. not bllng procu".tl.
5, SOl fl.ld dOlcrlptlonl lor r"trlatlonl,
a, An application program aan chlngo thll fluid, bul only when In ENTR commlnd 10 not blln; proe d or whaM

EXTR proCOIIln; II IUIPlndod, lueh II during utornllltltUI proemln; (baforo I relumo Illuutell,
7, Inltlallnd by thllllumblor,
S, Iniliallud gurlng IPL.,
g, Inlllliind by tho program IClIeluf,

3270, Fluitt II redellnod for 3270 Emuliltlol1 Medo,

Hex Length in
Displace- Bytes (in
ment Hex) Description

00 lOB System Status:

Bit(s)

0-1 11 =

01 =

00=
2 1 =

3

4

Meaning

Main microprocessor sent a command to the
keyboard/display microprocessor: It cannot
send another until the keyboard/display micro­
processor sets the bits to 00.
Keyboard/display microprocessor accepted
the command; however, processing is not yet
complete.
No command pending.
Keyboard/display microprocessor is await-
ing an operator response to a keyboard opera­
tion. The keyboard/display microprocessor
sets this bit on if bit 4 of this byte is on and
the operation code is hexadecimal 09 (place
key-entered data in main storage).
External status sensed; the keyboard/display
microprocessor sets this bit to 1 when it
senses an external status condition. The
main microprocessor clears the bit when it
begins processing the external status. See
also bit 7 in this byte.
Main microprocessor has requested a key­
board/display operation. The keyboard/
display microprocessor clears the bit after it
completes the operation.

2

Main Storage Data Areas 69

70

Hex Length in
Displace- Bytes (in
ment Hex) Description

00
(cont.)

01 1

Bits

5
6

7

1

1

Meaning

System use only.
Current command processing has been
temporarily interrupted. The keyboard/dis­
play microprocessor sets this bit on when a
command or keystroke is interrupted (time
slice elapsed) and clears the bit when it re­
sumes processing the command or keystroke.
An external ~tatus condition is pending or is
being processed. The keyboard/display micro­
processor sets the bit when it senses an
external status .. The main microprocessor
clears the bit after it has processed the
external status condition, or the keyboardl
display microprocessor clears the bit when it
receives a RESUME operation that requests
enable external status.

Foreground and Background Flags:

Bits Meaning

o 0 = Keyboard data is for the foreground
partition.

1 Keyboard data is for the background
partition.

Bit 0 is meaningless in a background partition.

1 1 = Keyboard operation in progress that requires
input from the keyboard. When the opera­
tion is complete, the keyboard/displaymicro­
processor sets the bit to O.

Bit 1 is meaningless in a background partition.

2

3 1

Background partition is attached; meaning­
less in a background partition. .
Bits 4-7 do not contain a valid partition
number.

4-7 In a foreground partition, bits 4-7 contain
the numbersof an attached background parti­
tion (bit 2 = 1 and bit 3 = 0) or the number
of the background partition ~hat has a key­
board operation in progress (bit 2 = 1 or 0
and bit 3 = 0).

In a background partition, bits 4-7 contain
the foreground partition number with which
this background is associated.

/

Hex Length in
Displace- Bytes (in

(ment Hex)

02

03 1

04 2

06 2

08

(
09 2

(

Description

The low-order byte of the address (in the system control
area) of the 4-byte partition lOB pointer.

lOB Lockout:

Bit(s) Meaning

0 1 Keyboard/display microprocessor is using
this lOB. The main microprocessor cannot
use this lOB while this bit is on.

1-3 System use only.
4-7 When bits 4-7 are not O. the main micro-

processor is using the lOB.

The keyboard/display microprocessor uses these 2 bytes to
store keyboard status codes. (Status codes are stored in 4-
digit. zone-stripped format.)

The absolute address of the next sequential instruction
following the command or operation issued to the keyboard/
display microprocessor.

The op code of the command currently being processed by
the keyboard/display microprocessor. When this byte = 00.
no ENTR command is being processed.

During the processing ofthe ENTR command. bytes 09 and
OA contain the address (relative to the beginning of the parti- .
tion or to the beginning of the page that contains the global
table) of the first byte in the screen format byte· group that is
currently being processed. Before the keyboard/display micro-
processor begins processing the ENTR command. bytes 09 and
OA have the following meaning:

Byte 9

Bit

o

Byte OA

Meaning

Screen format control string is in the
partition.
Screen format control string is in the
global area.

The table entry number of the screen format
control string to be used for this ENTR
command.

Main Storage Data Areas 71

Hex Length In
Displace- Bytes (In
ment Hex)

OB 2

00 2

OF

10 2

12

72

Description

While an ENTR command is being processed, these bytes
contain the address of the first byte of the current prompt
table. If the prompt table is in the partition, the address is
relative to the beginning of the partition.

If the prompt table is in the global area, the address is rela-
tive to the beginning of the storage page that contains the
global area.

Address of the partition prompt table relative to the start
of the partition.

External Status Information:

Bit(s) Meaning

0-1 System use only.
2 = Indicates that the keyboard/display and

main microprocessors are operating in diag-
nostic mode, such as dump or trace.

3-7 External status condition number (see the
Assembler Language Reference Manual for
a description of external status conditions).

Address, relative to the beginning of the partition, of the
table or subroutine that is used when processing external
status conditions.

Keyboard Flags:

Bit(s)

o 0

Meaning

There is more than one external status sub­
routine. They are accessed via a subroutine
table.

1-4
5 0

External status is handled by one subroutine.
System use only.
If byte 13, bit 5 is 1, Katakana keyboard
lock is alphameric lowercase.
If byte 13, bit 5 is 1, Katakana keyboard
lock is Katakana lowercase.

6-7 00= Katakana keyboard shift default is alpha­
meric lowercase.

01 = Katakana keyboard shift default is alpha­
meric uppercase.

10 = Katakana keyboard shift default is Katakana
lowercase.

11 = Invalid value.

1/'

,-,/

"
,- /

Hex Length in
Displace- Bytes (In

(ment Hex)

13

(

14

Description

Keyboard Flags:

Bit(s) Meaning

0 0 Katakana Shift Lock key is up.
1 Katakana Shift Lock key is held down.
0 = Katakana Uppershift key is up.
1 Katakana Uppershift key is held down.

2 0 Katakana Lowershift key is up.
1 Katakana Lowershift key is held down.

3 0 For Katakana, alphameric uppershift key is
up. For non-Katakana, numeric shift key
is up.
For Katakana, alphameric uppershift key is
held down. For non-Katakana, numeric
shift key is held down.

4 0 = For Katakana, alphameric lowershift key is
up. For non·Katakana, alpha shift key is up.
For Katakana, alphameric lowershift key is
held down. For non-Katakana, alpha shift
key is held down.

5 0 For Katakana, keyboard shift is not locked.
For non-Katakana, shift default is lowercase.
For Katakana, keyboard shift is locked. The
type of lock is specified in byte 12, bit 5. For
non-Katakana, shift default is uppercase.

6-7 Current shift for all keyboards:
00= Alphameric lower
01 = Alphameric upper
10= Katakana lower
11 = Katakana upper

Keyboard flag byte:

Bit Meaning

o Mode flag:
0= 5280 mode.
1 = 3270 mode.

1. Error buzz flag:
0= No buzz on error detected by microcode.
1 = Buzz on error detected by microcode.

2 Return-to-program exit keystroke buffering
flag:

3-7

0= Do not buffer keystrokes during return­
to-program exit processing.

1 = Buffer keystrokes during return-to­
program exit processing.

Reserved, must be O.

Main Storage Data Areas 73

74

Hex Length in
Displace- Bytes (in
ment Hex) Description

15 EBCDIC of the last diacritic character entered.

16 2 Save area for the address of the current format control
string (bytes 09 and OA) while a secondary format control
string is being processed.

18 6 Keyboard bit map: contains a bit for each function key
that can be processed either partially or totally by the key-
board/display microprocessor or by an object code program.
If the bit is 1, the corresponding function key is processed
by the object code program. See Appendix C, Keyboard
Functions: EBCDIC Codes and Bit Numbers for a descrip-
tion of the bit map and corresponding functions.

1E EBCDIC of the key that caused a return from screen format
processing to the object code program.

1F Op code of the keyboard/display operation issued by the
main microprocessor (see Chapter 4).

20 2 Parameter 1 for the op code in byte 1 F.

22 2 Parameter 2 for the op code in byte 1 F.

24 2 Parameter 3 for the op code in byte 1 F.

26 2 Contains the scan code (byte 26) and EBCDIC value (byte
27) of the last key pressed as follows:

• The function key during external status condition 1.

• The first character- of a hexadecimal pair.

• The keystroke following the Command key during
external status condition 2 and 3.

• The keystroke that caused the error during external
status condition 8.

• The function key when the microprocessor processes a
function key other than the Command, Reset, or Shift
key.

• When the main memory keystroke buffer is overrun and
an 1171 error is posted, byte X'26' is set to X'75' to
indicate main memory buffer overrun rather than key-
board hardware buffer overrun.

28 2 Address in main storage (relative to the beginning of the
partition) of the first byte of the field currently being
entered or processed.

-,

/

"
"

~
-

Hex Length in
Displace- Bytes (in

<:
ment Hex) Description

2A 2 Address in the refresh buffer (keyboard/display storage) of
the first byte of the field currently being entered or
processed.

2C 2 Address (relative to the beginning of the partition) in main
storage of the first byte of the current record buffer for
data being entered.

2E 2 Address (relative to the beginning of the partition) in main
storage of the previous record buffer that normally contains
the previous record entered (used for record duplication).

30 2 Displacement from the beginning of the current record
buffer to the current character position.

32 2 The abso.lute address of the current cursor position or
screen position pointer within the refresh buffer in key-
board/display storage. (The cursor is displayed within data
entry fields only. The screen position pointer is maintained
between fields.)

34 The EBCDIC character that is inserted into the nondata
positions of an alphabetic, right-adjust field when the right-

(
35

adjust is performed.

The EBCDIC character that is inserted into the nondata
positions of a numeric, right-adjust field when right-adjust
is performed.

36 2 Address in main storage, relative to the beginning of the
partition, of the storage duplication table.

Main Storage Data Areas 75

76

Hex
Displace­
ment

38

Length in
Bytes (in
HeX) Description

1 Keyboard Flags:

Bit(s)

o 1

Meaning

Operation is continued; the keyboard/display
microprocessor sets this bit on when a key­
board operation (such as a data movement) is
executed by separate, successive operations.
The application program should not change
this bit.

1 Set by the keyboard/display microprocessor
to indicate that the key code is from an object
code program instead of the keyboard. Indi­
cates that the microprocessor must perform
functions that are not performed when the
code is from the keyboard. The application
program should not change this bit.

2 1 = At least one field of the record has been
processed. Used to determine if a record
advance operation should be performed.
The application program should not change
this bit.

3-5 Used by the keyboard/display microprocessor
to keep track of format control string process­
ing when !=heck indicator for bypass specifica­
tions are encountered in the string. The
application program should not change these
bits.

6-7 Meaning of the current position displayed on
the status line. Normally, no change is made
in these 2 bits by the application program. If
the application program does change these
bits. it should not change them while an
ENTR command is being processed.

00 = Position of the next character to be entered
relative to the first character of the record.

01 = Position in the current record buffer in main
storage (relative to the beginning of the
buffer) in which the next character will be
stored.

10 = Relative position of the cursor on the screen
(from the first position).

11 = Position in the current field (relative to the
beginning of the field) in which the next
character will be stored. For format level 0,
the position of the current 1-byte field rela­
tive to the beginning of the format level 0
field.

/

\. .. /

Hex length in
Displace- Bytes (in

(' ment Hex)

39 1

'(<

('

Description

Keyboard Flags:

Bit Meaning

o Set to 1 by the keyboard/display micro­
processor when the object code program
issues the request for error operation
(KERRST). Reset to 0 when the object
code program issues the request error reset
operation (KERRCL). The application pro-

1 1

2 1

3 1
4 1

0

5 1

6 1

gram should not change this bit.
The keyboard/display microprocessor
detected a keying error. The bit is turned
off when the reset key is pressed. The appli·
cation program should not change this bit.
Keyboard is open for data entry. Set when
an ENTR command or RESUME instruction
is executed. Cleared when a CN ENTR com·
mand is executed or when an external status
condition is detected. The application pro-
gram should not change this bit.
The cursor is within a field.
If a keying error occurs, the keyboard/dis·
play microprocessor checks the status line.
If the status line is not displayed, it displays
it. When the error is reset, it replaces the
status line with the extra line from the
refresh buffer.
Do not check the status line. Normally, no
change is made in this bit by the application
program. If the application program does
change this bit, it should not change it while
an ENTR command is being processed.
Status line is displayed. Indicates that the
extra line must be displayed when the error
is reset. The application program should not
change this bit.
A mismatch error occurred while verifying
a constant insert field. The application
program should not change this bit.

7 Set by the keyboard/display microprocessor
when the perform keyboard operation (hex
11) is issued by the object program. It indio
cates that the EBCDIC code came from the
object code program; therefore, the micro·
processor does not check the keyboard bit
map. The application program should not
change this bit.

Main Storage Data Areas 77

78

Hex Length in
Displace- Bytes (in
ment Hex) Description

3A 1

38

Keyboard Flags:

Bit Meaning When 1

o System use only.
1 The command key was the last key pressed.
2 The last two keys pressed formed a command

key sequence.
3 Data being entered is in hexadecimal format

following a hexadecimal command key
sequence.

4 One hexadecimal digit has been entered follow­
ing a hexadecimal command key sequence.

5 Manual field found in format.
6 One hexadecimal digit has been entered into

the current position of a hexadecimal field.
7 The last key entered was diacritic.

Keyboard Flags:

Bit(s)

o

1-3

4
5-7

2
3

Meaning

Set by the keyboard/display microprocessor
when it sets external status condition 11 (mag­
netic stripe reader data in buffer). Reset when
the object code program reads the data or
resets the reader.
Indicates the screen size for which the pro­
gram was written:
1 = 1920
1 =960·
1 = 480
Special verify mode.
Displacement minus 2 from the address of
the first byte of the picture check screen
format group to the address of the first
picture check subfield byte.

I

\" ./

(
.~

if

\

(..... ,
. /

Hex Length in
Displace- Bytes (in
ment Hex)

3C

3D

Description

Keyboard Flags:

Bit(s) Meaning When 1

0 1 Activate the clicker for function keys.
Normally, no change is made to this bit by
the application program. If the application
program does change this bit, it should not
change it while an ENTR command is being
processed.

1 The home (Record Backspace) key was
pressed with the cursor in the first position
of the record. The application program
should not change this bit.

2 1 Secondary screen format being processed.
The application program should not change
this bit.

3 Screen format control string is outside the
partition. The application program should
not change this bit.

4-7 When bit 3 = 1, bits 4 through 7 contain
the page number of storage in which the
screen format control string is stored. The
application program should not change this
bit.

Keyboard Flags:

Bit Meaning When 1

o During a verify operation, the digit entered
in the last position of a field exit required
field in which the Field- key is allowed does
not match the digit currently in the record.
Dup key enable flag: The Dup key is not
allowed. (See note.)

2 Monocase enabled flag: Characters that may
be monocase, as defined in the validity table,
are displayed and stored in the buffer in
uppercase. See note.

3 Field exit minus key enable flag: The Field­
key is not allowed in a numeric field. (See
note.)

4 Special verify enable flag: If the 5280 is in
verify mode, data entry is allowed without
verify checking against the current record
contents. When the field is exited, normal
verify mode is restored. (See note.)

Note: This flag is set to 0 when the keyboard/display microprocessor begins exe­
cuting an ENTR command but can be changed by the change-keyboard-control-flag
control group in the screen format control string.

Main Storage Data Areas 79

80

Hex
Displace­
ment

3D
(cont.~

3E

Length in
Bytes (in
Hex) Ckscripdon

1

Bit

5

Meaning

When screen format processing is interrupted
by a return to the object program, this bit
indicates the direction the format should be .
processed when format processing resumes,
as foUaws:

o = Forward processing when interrupt occurred.
1 = Backward processing when interrupt

occurred.

Meaningless if byte 1 E is O.

6 During a verify operation:

7

o = The sign of the last position of ~ field exit
required field has not been verified.

1 The entire last position of a field exit
required field has been verified.

1 Indicates to the microprocessor not to per­
form character edit checks or perform checks
for data required, mandatory enter. manda­
tory fill, and blank check fields. The bit is
turned on when keyboard operation hexa­
decimal 06 is executed. Resets to 0 when
each field is advanced into or backspaced
into.

Keyboard Flags:

Bit Meaning When 1

o Keyboard is in enter mode. (See note.)
1 Keyboard is in update mode. (See note.)
2 Keyboard is in rerun mode. (See note.)
3 Keyboard is in verify mode. (See note.)
4 Keyboard is in insert mode. The application

program should not change this bit.
5 Keyboard is in field correct mode. The

application program should not change this
bit.

6 Keyboard is in display mode. (See note.)
7 Fixed prompts are not displayed. Normally,

no change is made to this bit by the applica­
tion program. If the application program does
mange this bit, it should not change it while
an ENTR command is being processed.

Note: An application program can change bits O. 1, 2,3, and 6. but only when an
ENTR command is not being processed. After program load, these bits are main­
tained by the application program to determine the current mode for formatted
data entry. When an ENTR is outstanding, one and only one of bits 0, 1. 2. 3, and
6 must be set.

(

(

('

Hex
Displace­
ment

3F

40

Notes:

Length in
By1eS (in
Hex t Description

1

1

Keyboard Flags:

Bit Meaning

o Set to 0 when the cursor enters a field. Set
to 1 when data is entered into the field.
When the cursor leaves the field, the micro­
processor ORs this bit with the modified
data indicator that is assigned to this field:

1

2

3
4
5

1

1

1
1
1

See System Indicators within a Partition.
(See Note 1.)
The last position of a field exit required field
has been entered. A nondata key is required
to exit the field. The application program
should not change this bit.
Awaiting a record advance key. The ap~ica­
tion program should not change this bit.
Auto dup/skip is enabled. (See Note 1.)
Auto enter is enabled. (See Note 1.)
Altemate record advance is enabled. (See

Note 1.)
6 1 = Data is displayed when in rerun mode. (See

7
Note2.)

1 = A verify mismatch error is pending. The
application program should not change this
bit.

Displacement from the first byte of the current screen for­
mat picture check group to the current subfield format
byte.

1. The application program can change this bit. but only while an ENTR command
is not being processed or when ENTR processing is suspended. as during external
processing before the RESUME is issued.

2. The application program can change this bit. but only while an ENTR command
is not being processed.

Meln Storage Data A.... 81

82

Hex Length in
Displace- Bytes (in
ment Hex) Description

41 8 Contains information about the current field as shown in
the following bytes (from the format control string) while
the field is being processed: (See Screen Format Control
Strings for more information.)

49

4A

48 3

4E 2

50 2

52 2

54 2

56

57

58 2

5A

58

Byte

41
42-43
44
45
46-47
48

Meaning

First byte of the field group.
Field length minus 1.
Field attribute byte.
Field attribute extended byte.
Storage duplicate table-displacement.
Screen format picture check (PIC) byte.

The number of bytes accumulated in a picture-check sub­
field; picture check processing ends when bits 1 through 3
of this byte equal the subfield length in bits 1 through 3 of
the picture check byte.

Screen line on which fixed prompts are displayed.

Nonverify-correction keystroke counter.

Verify-correction keystroke counter.

Address, in keyboard/display storage, of the storage area
that contains keyboard control information (see Chapter 3).

Address, in keyboard/display storage, of the diacritic trans­
late tables.

Address, in keyboard/display storage, of the status line
refresh buffer.

High-order byte of the address, in keyboard/display storage,
of the Katakana translate table.

High-order byte of the address, in keyboard/display storage,
of the scan code translate table.

Address, in keyboard/display storage, of the main refresh
buffer.

Number of lines on the screen.

Number of characters per screen line.

Hex Length in
Displace- Bytes (in

(ment Hex) Description

5C Keyboard Configuration Information:

8it(5) Meaning

0 0 Single screen
Dual screen

0 Single screen or station 0 of dual screen.
Dual screen, station 1.

2-3 System use only.
4 Katakana keyboard.
5 Proof keyboard.
6 Typewriter keyboard.
7 Data entry keyboard.

5D Keyboard Configuration Information:

8it(5) Meaning When 1

0 Not used.
1 Maximum screen size is 1920.
2 Maximum screen size is 960.
3 Maximum screen size is 480.
4-7 Not used.

5E High-order byte of the address in keyboard/display storage
61

of the validity table. !{ "

5F 4 Display line map: Bits 0-25 of the 4-byte group indicate
which screen lines are displayed (lines 0-25 respectively).
Bits 26-31 are O.

63 Language group; the number selected from the language/
keyboards-type table during configuration.

64 Low-order byte of the address in keyboard/display storage
of the cursor address register.

65 High-order byte of the address in keyboard/display storage
of the control area.

66 Low-order byte of the address in keyboard/display storage
of the display control register.

67 System use only.

68 2 Displacement into the current field (0 to field length minus
1) to the current character position.

Main Storage Data Areas 83

Hex Length in
Displace- Bytes (in

" ment Hex) Description

"- .-

6A 2 The relative field number (0 to maximum number of fields
minus 1) of the field within the screen format control string
currently being processed. A format level 0 specification
equals one Tleld.

6C 2 Address, in keyboard/display storage. of the fixed prompt
line.

6E 2 Value of the current position counter (4-digit. zone-stripped
formatt disptayed on the sta1Us line during keyboard entry.

70 2 Number of positions (4-digit, zone-stripped fonnad remain-
ing in the field. The low-order two digits are displayed on
the status fine.

12 2 The relative position {in binary format! minus 1 in the
current record buffer where the next character entered. if
valid, will be stored.

74 1 Normal display attribute from .KBCRT (NMIN) statement.

75 1 Highlight display attribute from .KBCRT (HLIN) statement.

76 2 Microprocessor save area.

/
78 1 EBCDIC value used to check blank-check fields (usually

-,'

hexadecimal 4Ot.

79 2 Address. relative to the start of the partition. of the screen
format control string table that is used to locate the format
control strings with the partition.

18 1 The EBCOIC character for the key that caused the last
verify mismatch error.

1C 1 The EBCDIC character for the dup data that caused a verify
mismatch.

1D 1 Microprocessor save area.

1E 1 Microprocessor work area.

7F 1 Partition number lockout byte. When nonzero. this byte
contains the number of the partition currently requesting
KB/CRT operations. (See byte 3F of partition lOB .•

84

(
IBM 3270 Emulation Mode

The following is a description of the keyboard/display lOB fields that have been
redefined for the IBM 3270 emulation mode. These are the fields of the lOB that
contain different information than for the IBM 5280 mode. The fields not
described here are listed for the IBM 52BO mode.

Hex
Displace­
ment

12

14

28

Length in
Bytes (in
Hex) Description

1 Keyboard flags

1

2

Bits

0,5,6,7
1,3
2

Meaning

See IBM 5280 mode for definition.
Reserved, must be O.
IBM 3270 KEYOP time slice flag:
0= KEYOP not time sliced.
1 = KEYOP time sliced.

4 Numeric lock flag:
0= Numeric lock off.
1 = Numeric lock on.

Keyboard flags:

Bits Meaning

o IBM 5280 mode/IBM 3270 mode flag
0= IBM 5280 mode
1 = IBM 3270 mode
Error buzz flag
o = No buzz on microcode - detected error
1 = Buzz 00 microcode - detected error

2 Return-to-program exit keystroke buffering
flag
o = Do not buffer ke.ystrokes during return­

to-program exit processing
1 = Buffer keystrokes during return-to­

program exit processing
3-1 Reserved - must be O.

Initial cursor address.

Holds the position of the cursor after a write assist to the
display specifies the SNA session is SSCP-SlU owned.
This initial cursor address is used in the read buffer assist
for an SNA SSCP-SlU owned session.

These bytes are initialized to 0 when the operatjon to clear
and initi·al;ize the screen is executed.

86

Hex
Displace­
ment

40

42

44

45

Length in
Bytes (in
Hex) Description

2

2

Next attribute address (NA@).

Offset (0-1919) into the device buffer of the attribute that
defines the start of the field following the one where the
cursor is currently positioned.

Current attribute address (CA@).

Offset (0-1919) into the device buffer of the attribute that
defines the field where the cursor is currently positioned.

When CA@ = NA@, there is only one field on the screen.

When NA@ < CA@, the current field wraps from the
bottom of the screen to the top of the screen.

Current attribute (CA).

The attribute of the field where the cursor is currently
positioned. When CA = 0, the screen is unformatted.

CA@, NA@ and CA will be recalculated or initialized:

1.
2.

When a write assist to the screen is executed ..
When an erase all unprotected assist for the screen is
executed.

3. When the operation to clear and initialize the screen
is executed.

4. Whenever a keystroke causes a field boundary to be
crossed.

Keyboard flags:

Bit Meaning

o System available:
0= System available indicator off.
1 = System available indicator on.
Insert mode:
0= Not insert mode - insert mode indicator

off.
1 = Insert mode - insert mode indicator on.

2 Input inhibited:
0= Not input inhibited· input inhibited

indicator off.
1 = Input inhibited· input inhibited indio

cator on.

Hex Length in

(Displace- Bytes (in
ment Hex) Description

Bit Meaning

3 Hard lock:
0= Keyboard not hard locked.

·1 = Keyboard hard locked.
4-7 Reserved, must be o.

46 Keyboard flags:

Bits Meaning

0-6 Reserved, must be O.
7 One field on screen:

0= Screen is unformatted or screen is
formatted with more than one field.

1 = Screen is formatted with exactly one
field.

47 3 Reserved

68 2 Device buffer address.

(Address relative to the start of the partition for the left-
most byte of the device buffer. This buffer must be at
least 2048 bytes long.

6A 2 Work buffer address.

Address relative to the start of the partition for the left-
most byte of the work buffer. This buffer must be at
least 1920 bytes long.

6C 2 Current buffer address.

Offset (0-1919) into the device buffer or work buffer of the
current position of the buffer pointer used on read and
write data stream assists.

6E 2 Current cursor position.

Offset (0-1919) into the device buffer of the current cursor
position.

70 1 EBCDIC - Internal code table address high.

Absolute address high of table which translates IBM 3270
data stream EBCDIC codes to internal codes.

(

Main Storage Data Areas 87

Hex length in
/' " Displace- 8y1es tin

Hex)
'-

ment Description \, ./

71 1 Flags and table page number.

Bitrs) Meaning

0 Numeric lock feature installed.
o = Numeric lock feature not installed.
1 = Numeric lock feature installed.

1 Audible alarm feature installed.
o = Audible alarm feature not installed.
1 = Audible alarm feature installed.

2 Numeric lock feature enabled flag.
0= Numeric lock feature enabled.
1 = Numeric lock feature disabled.

Note: This bit must be set to zero each time
a switch is made from IBM 5280 mode to
IBM 3270 mode.

3 BSC/SNA flag:
0= BSC.
1 =SNA.

4·7 Page number of absolute address of translate
table specified in byte Fl.

72 1 Internal code· EBCDIC table address high.

Absolute address high of table which translates internal
codes to IBM 3270 data stream EBCDIC codes.

73 1 Reserved.

N01e: Device buffer address, work buffer address, current
buffer address, current cursor address, and translate table
address described above are also defined for IBM 3270
prin1er emulation. However. for IBM 3270 printer emula·
tion this information is located in a printer control block.

System Indicaton Within a Partition

(- The first one hundred indicators within a partition may be used as the user wishes.
The other indicators, however, are assigned a specific purpose for use during pro-
gram execution. Indicators effected by an instruction should be set to 0 by the
programmer before use of the instruction. The indicator assignments are as follows:

Indicator Condition Meaning If Set to 1

1100 System use only

1101 Table search Result is higher
TRT Byte not found
ClC String 1 greater than string 2

1102 Table search Result is lower
TRT Byte is found
ClC String 1 is less than string 2

1103 Table search Result is equal
TRT Byte found in last position (EOF)
ClC String 1 is equal to string 2

1108 External status Restricted external status processing

1109 Program check Program check error

('
1110 Background partition

1115 SCS lSTlN overflow

1116 System use only

1117 Self check A self-check digit of X'10' was generated by a
GSCK instruction using standard modulus 11.

1118 SRAT Resource allocation table search error

1119 HEXBIN Attempt to convert invalid hex EBCDIC to
binary

1120 Decimal divide Divide error (denominator=O}

1121 Edit format Invalid edit format conversion request

t122 Arithmetic Decimal to binary conversion error

1123 Decimat multiply Multiply overflow (+, *,/)

1124 Decimal. arithmetic Decimal arithmetic overflow

1125 Table search Entry not found

(~

Mairt Storage Data Areas 89

Indicator Condition

1126 Table write

1127 Table instruction

1128-159

1160-191 ENTR

1192-254

90

Meaning If Set to 1

Attempt to extend table beyond its limit

Table instruction error

Reserved

Field modification indicators. Each indicator
represents a field in the screen format, up to
32 fields. If there are more than 32 fields in
the screen format, each indicator represents
every 32nd field. 1160 represents field 0, field
32 and so on. A format level zero specification
is represented with one indicator for the entire
group of 1-byte fields. All field modification
indicators are set to 0 when an ENTR is en­
countered: While the ENTR is being processed,
each time the cursor is advanced or backspaced
into a field, bit 0 of byte hex BF of the key­
board/display lOB in the partition is set to O.
If data is entered into the field, bit 0 of the byte
at hex BF is set to 1. When the cursor exits
the field, bit 0 of the byte at hex BF is ORed
with the field modification indicator that
represents the field.

Used by SYSKEU, DE/RPG, and other programs
to communicate with common function routines.

(

(

(

System Registers Within a Partition

Several binary registers are used by the system during program execution. These
registers are listed below, with the conditions or instructions that affect each
register.

Register Condition Register Contents

BR16 LOAD Relative record number for relative record read; also
contains error code after a load error.

BR16

BR17

BR18

BR19

BR20

BR21

BR22

BR23

BR24

BR25

BR26-31

TRT Address of the last position that translated to a non­
zero character.

TRT Function byte.

Subroutine Address of next available entry position in the partition
subroutine stack.

Keyboard
external
status

Keyboard
external
status

Keyboard
external
status

External
status

External
status

LOAD

Current field starting address, relative to the beginning
of the partition, of the field within the current record
buffer.

Current field starting address within the screen refresh
buffer in keyboard/display control storage.

Field definition and field length minus 1 of the current
field.

Relative address of the last data set lOB to report
external status. Not used for keyboard/display external
status.

External status condition code, to be used as the index
into the external status error table of subroutine
addresses.

Used by SCP for PTF log.

Physical device address of the device performing the
load.

System use only.

Main Storage Data Areas 91

92

Diskette lOB

Following is a general description of the diskette lOB. Following this general
description is a complete description of each field of the lOB. Addresses shown are
hexadecimal displacements from the beginning of the lOB. No validity checking is
made on any of the values in the bytes of the following lOB. If any of these bytes
are modified by the application program, unpredictable results may occur.

00 lOB System lOB Chaining Information Page Data and Error Code Next Instruction Addrass
Status Flags

1 1 1 1

08 Command Command Operands Logical Buffer Address Translate External
OpCode Table Num- Status

ber
1 1 1,2

10 Address of External Status Main Micro- Data Set Address of Data Set System Use Partition
Subroutine or Subroutine processor Flags Name Only Address,
Table Flags High

1,2,3 1,2,3 1,2 1

18 Physical 1/0 Buffer 1 PBI Track PBI Sector Logical Record Length Block Length
(PB1) Address and Length

1,2 1 1 1,2,3 1,2,3

20 Physical 110 Buffer 2 PB2 Track PB2 Sector Defective Sector Count Microprocessor Save Area
(PB2) Address and Length

1,2 1 1 1,3 1,3

28 Displacement to Next Microprocessor Save Area
Record Space

1,3 1,3

30 Pointer to HDRI Label Sector Number of Number of Number of Track and Sactor Number of
Address Length Additional Index Sectors per Sectors per Beginning of Extent (BOE)

Cylinders Block Track
1.3 1,3 1,3 1,3 1,3 1,3

38 Relative Record Number of Relative Record Number of Track and Sector Number of
End of Data (EOD) End of Extent (EOE) End of Data (EOD)

1,3 1,3 1,3

40 System Use Table Num- Number of Records Between Key Position Key Length System Use
Only ber of Key Keys Minus 1 Only

Index File
4 1,2,4 1,2,3,4 1,2,4 1,2,4 4

48 Microprocessor Save Area Data Set Type Adapter Micropro-
Error Status cessor

Save Area
1,3 1,2 1 1

50 Number of Bytes to Microprocessor Save Area Seek Count Microprocessor Save Area
Read or Write
(PB1)

1 1,3 1 1,3

/

\0::, ./

(

(~

158

60

68

70

78

Number of Bytes to Number of Nulls Microprocessor Save Area
Read or Write Between Blocks
(PB2)

1

Device Identification Diskette Deleted Record Microprocessor Save Area Current
lOB Character Record
Identifier Pointer

1,3 1,3

Current Record Pointer Microprocessor Save Area
(continued)

1,3

Microprocessor Save Area

Microprocessor Save Area System Use Only

1,3

1. An application program must not alter this field while the lOB is active.
2. Initialized by the assembler.
3. Initialized by the device at open time.

If both 2 and 3 are specified for a field, it indicates that the field can be initialized by either the assembler or the
device, except for bytes 12 and 13, which are initialized by both the assembler and the device.

4. These values apply only to keyed data sets. For SCS conversion data sets, these bytes have a different meaning.
See the complete description of the fields for the SCS values.

Hex
Displace­
ment

Length in
Bytes (in
Hex) Description

00 lOB System Status:

Bit(s) Meaning

0-1 11 = The main microprocessor sent a command to
the diskette MPU. It cannot send another
command until the diskette microprocessor
sets the bits to 00.

10= System use only.
01 = Diskette is executing the command; buffers

are now in use.
00= No command pending.

2 The diskette microprocessor has work to do.
3 1 = The diskette microprocessor sets this bit on

when it senses an error or external status.
The main microprocessor clears the bit after
the external status or the error condition
has been processed.

4 The diskette microprocessor is performing
a physical operation for this data set.

5 System use only.
6 1 The lOB is first in chain.
7 System use only.

1,3

1,3

1,3

1,3

1,3

Main Storage Data Areas 93

Hex length in
Displace- Bytes (in
ment Hex) Description

01 1 lOB Chaining Information:

Bit(s) Meaning

0 1 Diskette microprocessor is processing the
chain pointer. The main microprocessor
cannot use the chaining information when
this bit is on.

1-3 System use only.
4-7 When nonzero, the main microprocessor

is accessing the chain pointer flags.

02 High-order byte of the address of the next lOB in the
chain.

03 1 Page Data and Flags:

Bit(s) Meaning

0 low-order address of the next lOB in the
chain.

1-3 System use only.
4-7 Number of the page in main storage where

the next lOB on the chain is located.

~

04 2 External status error code in 4-byte packed decimal format
,

(not reset by the system). /'

06 2 The absolute address of the next sequential instruction
following the operation issued to the diskette MPU.

08 Op code, see Chapter 4.

09 3 Instruction operand. These bytes contain the rightmost 3
bytes of the object code instruction. See Chapter 4 for the
meanings of these bytes.

OC 2 Address of the logical I/O buffer relative to the beginning
ohhe partition.

OE The number of the table used to translate EBCD IC
characters to ASCII, ASCII characters to EBCDIC, or other
character set translations. Hex F F indicates no translation
requested.

OF External status category.

10 2 Address of the external status subroutine table.

94

Hex Length in

("
Displace- Bytes (in
ment Hex) Description

12 Main Microprocessor Flags:

Bit(s) Meaning

0 0 There is more than one external status sub-
routine. They are accessed via a subroutine
table.
External status conditions are handled by
one subroutine.

1 An error occurred when opening a data set.
2 SCS conversion data set; logical buffer is

empty.
3 SCS conversion is in progress for this lOB.
4 1 SCS last line status flag.
5 1 An error detected by the main micro-

processor is outstanding.
6 CLOZ operation logically complete.
7 SCS purge in progress, set during CLOZ

operation.

13 1 Data Set Flags:

Bit Meaning When 1

0 The lOB is open.

I(1 Logical buffer is within the physical buffer.
2 Diskette is using double physical buffers.
3 Diskette microprocessor is waiting for a

shared data set conflict to be resolved. The
shared data set is being used by another lOB.

4 On open, the logical record and block size
are set to equal the sector size.

5 I/O MPU requires repeat of last command.
The main MPU decrements the external
status table return address for repeat when
a RETURN instruction is used.

6 Not used.
7 SCS continuation of transparent data across

physical buffers, or data set keys are in
ascending order.

14 2 Address of data set name.

16 Device subaddress, must be O.

17 Partition address, high-order byte: The value in byte 17
is added to each address in the lOB to convert it to an
absolute storage address. This byte also points to the
beginning of the partition lOB and is used to find table
addresses.

('

Main Storage Data Areas 95

96

Hex
Displace­
ment

18

1C

1E

20

Length in
Bytes (in
Hex) Description

4

2

2

4

Physical I/O Buffer 1:

Byte 18 and bit 0 of byte 19 contain the address, relative
to the beginning of the partition, of the beginning of
physical I/O buffer 1.

Byte 19, bits 1 through 7 contain the number of 128-byte
blocks allocated to the buffer in main storage.

Byte 1 A contains the head and track number where
physical I/O buffer 1 starts on diskette (bit 0 • head
number).

Byte 1 B contains the sector number where physical I/O
buffer 1 starts on diskette (set to hexadecimal 00 anytime
the buffer is invalid, such as: quick release, early write, or
if an error occurs).

The logical record length of the records in the data set. Not
used by diskette MPU in SCS conversion processing.

Block length for blocking logical records on diskette.

Physical I/O Buffer 2:

Byte 20 and bit 0 of byte 21 contain the address, relative to
the beginning of the partition, of the beginning of physical
I/O buffer 2.

Byte 21, bits 1 through 7 contain the number of 128-byte
blocks allocated to the buffer in storage.

Byte 22 contains the head and track number where physical
I/O buffer 2 starts on diskette (bit 0 = head number).

Byte 23 contains the sector number where physical I/O
buffer 2 starts on diskette (set to hexadecimal 00 anytime
the buffer is invalid, such as: quick release, early write, or
if an error occurs).

Main Storage Data Areas 97

Hex Length in
Displace- Bytes (in
ment Hex) Description "

" /

40 1 Used only for SCSconversion data sets; a pointer into the
physical I/O buffer where the data is formatted.

41 1 For keyed data sets, the table number of the keyed index
file in main storage. Hex FF cannot be used. See Address-
ing Through a System Table, in Chapter 4, for information
about finding tables in storage.

For SCS conversion data sets, the line number of the
current line.

42 2 For keyed data sets, the number of logical records between
key entries on indexed files.

For SCS conversion data sets, the line that generated
external status (42) and the page size (43).

44 2 For keyed data sets, the location of the index key within
the logical record.

For SCS conversion data sets, the address of the format
table entry being processed on open, which contains the
SGEA (set graphic error action) parameters. After open,
byte 44 has the number of blanks processed, and byte 45

" has the number of bytes processed in the logical buffer.

46 For keyed data sets, the length minus one of the index key.

For SCS conversion data sets, the number of characters
processed in the line.

47 Used only for SCS conversion data sets; the number of
characters per line.

48 4 Microprocessor save area.

98

Hex length in
Displace- Bytes (in

(" ment Hex)

4C 2

(

4E

4F

50 2

52 2

54

Description

Data set types as follows:

Byte 4C:

Bit

0

2
3
4
5

6
7

Byte 40:

Bit(s)

0
1
2
3

4

5
6-7

Meaning When 1

Read allowed.
Write allowed.
Read shared.
Write shared.
Label update data set.
Diskette microprocessor builds an index table
when opening keyed data sets.
Keyed data set.
Set EOD equal to BOE when opening.

Meaning When 1

Early write.
Quick release.
Translation of HDR1 labels required.
Diskette MPU does not check for overlapped
extents or duplicate data set names.
Standard character string conversion is
requested.
Pointer mode data set.
System use only.

Used to store temporary status information.

Microprocessor save area.

Number of bytes to read or write; used in conjunction with
physical buffer 1.

Microprocessor save area.

The number of tracks to seek as follows:

Bit(s)

o 1
o

1-7

Meaning

Seek high.
Seek low.
The number of remaining tracks to seek for
this data set. (Seek operations can be over­
lapped with either a read or a write
operation.)

Main Storage Data Areas 99

Hex Length in
Displace- Bytes (in
ment Hex) Description // '"

'r. __ • .;..l

66 3 Microprocessor save area.

68 2 Number of bytes to read or write; used in conjunction with
physical buffer 2.

SA 2 Number of nulls between blocks.

6e 4 Microprocessor save area.

60 2 Logical device Identification from the resource allocation
table.

62 Diskette lOB Identifier:

Bits Meaning

()'3 The logical I/O table number.
4-7 The partition number for the partition in

which this lOB is located.

63 The user specified character that indicates a logically
deleted record for I or E exchange data sets.

64 3 Microprocessor save area.

67 3 A record number used as a pointer to keep track of positions
within the data set. It is not necessarily the same as the
record number of the record in the logical buffer.

6A 14 Microprocessor save area.

7E 2 System use only.

100

Printer lOB

There are two separate formats for this lOB, one for twinaxial printers and one for
start-stop printers.

Twinaxial Printers lOB

00

08

10

18

20

28

30

38

40

48

50

Following is a general description of the printer lOB when used with twinaxial
printers (I BM 5224, IBM 5225, IBM 5256). Following this general description is a
complete description of each field of the lOB. The addresses shown are hexa­
decimal displacements from the beginning of the lOB. No validity checking is made
on any of the values in the bytes of the following lOB. If any of these bytes are
modified by the application program, unpredictable results may occur.

lOB System lOB Chaining Information Page Data and Error Code NeK t Instruction Address
Status Flags

1,2,3 1,2 1,3 1

Command Command Operands Logical Buffer Address Translate EKternal
Op Code T,able Status

Number
1,2 1,2,3 1,2,3 2 1,3

Acldress of External Status Main Micro· Data Set Address of Data Set Printer Partition
Subroutine Table procpssor Flags Name Subaddress Address,

Flags High
1 1 1,2,3 1 1,2,3 1,2

Physical I/O Buffer 1 Number of bytes to be Logical Record Length Block Length
Address and Length sent in last transmission

for physical buffer 1
1,2,3 2,3,4 1,2 1,2,3,4\

Physical I/O Buffer 2 Number of bytes to be Microprocessor Save Area
Address and Length sent in last transmission

for physical buffer 2
2,3 2,3,4 2,3,4

Information From the Global Configuration Table Reserved for
configuration
table information

System Use Only Physical Printer Line Busy Timer Close Timer
Record Length
Length

1,2,3,4 2,3,4 2,3,4 2,3,4

Microprocessor Number of Rec"rds Remain· Number of Printer Buf· Number of Logical Records
Save Area ing to fill the Physical Buffer fers to Transmit to Transfer to Buffer

2,3,4 2,3,4 2,3,4

SCS Parameters

1

Microprocessor Save Area Data Set Type Last Poll Response Before
an Error

1,2 2,3,4

Status from Response to Last Poll Status from Microprocessor Save Area Command Flags
Printer Last Read

2,3,4 2,3,4 2,3,4 2,3,4

Main Storage Date Areas 101

102

58 System Use Only Number of Bytes of Physi-
cal Buffer Not Being Used

60 Printer Identification Printer lOB Microprocessor Error Code Build Area System Use Current Record
Identifier Save A;ea Only Number

1 1 2,3,4 1,2,3,4

68 Current Record Number Microprocessor Save Area Number of Logical Microprocessor
(continued) Records Remaining in Save Area

Pointer Mode
2,3,4 2,3,4

70 Microproces- System Use Only
sor Save Area

78 System Use Only Number of Transmits System Use
to the Printer Required Only
to Empty the Physical
Buffer

1. Accessed by the main microprocessor.
2. Read by the printer attachment microprocessor.
3. Written by the printer attachment microprocessor.
4. Initialized by the,printer attachment microprocessor.

Hex Length in
Displace- Bytes (in
ment Hex) Description

00 lOB System Status:

Bit(s) Meaning

0-1 11 = The main microprocessor sent a command

2

to the printer attachment microprocessor.
The main microprocessor cannot send
another command until the printer micro­
processor sets the bits to 00.

10= The printer attachment microprocessor has
completed logical work for the command
but is still doing physical work.

01 = System use only.
00 = No command pending. (Printer may still be

busy.)
1 The printer attachment microprocessor has

physical work to do.
3 The printer attachment microprocessor sets

this bit on when it detects an error or
external status. The main microprocessor
clears the bit and processes the external
status with the subroutine indicated.

4-5 System use only.
6 This is the first lOB on the chain.
7 System use only.

Hex Length in

{
Displace- Bytes (in
ment Hex) Description

'--
01 lOB Chaining Information:

Bit(s) Meaning

0 The printer attachment microprocessor is
processing the chain pointer. The main
microprocessor cannot use the chaining
information when this bit is 1.

1-3 System use only.
4-7 When nonzero, the main microprocessor is

accessing the chain pointer.

02 High-order byte of the address of the next lOB in the chain.

03 1 Page Data and Flags:

Bit(s) Meaning

0 The low-order address bit of the next lOB
in the chain.

1-3 System use only.
4-7 Page number where the next lOB in the

chain is located.

(
04 2 External status error code in 4-byte packed decimal format

(only valid if byte 0, bit 3 is 1, but remains valid until the
next I/O command is issued to the printer attachment MPU
by the main MPU.

06 2 The absolute address of the next sequential instruction
following the operation issued to the printer attachment
MPU.

08 Command op code. See Chapter 4.

09 3 Command operand. These bytes contain the rightmo5t 3
bytes of the object code instructions. See Chapter 4 for the
meanings.

OC 2 Address of the logical buffer, relative to the beginning of the
partition.

OE Number of the table used to translate EBCDIC characters to
ASCII, ASCII characters to EBCDIC, or other character set
translation. Hex FF indicates no translation required.

OF External status category.

10 2 Address of the external status subroutine table.

(

Main Storage Data Areas 103

104

Hex Length in
Displace- Bytes (in
ment Hex) Description

12 1 Main Microprocessor Flags:

Bit Meaning When 1

0 All external status conditions handled by
one subroutine.
An error that cannot occur on any other I/O
operation has occurred while opening the
data set.

2 SCS conversion data set; logical buffer is
empty.

3 SCS conversion is in progress for this lOB.
4 SCS last line status flag.
5 An error detected by the main micro-

processor is outstanding.
6 CLOZ operation is logically complete.
7 SCS purge in progress, set during CLOZ

operation.

Bits 2-7 are set and maintained by the main micro-
processor.

13 Data Set Flags:

Bit Meaning When 1

0 lOB is open. 1

1 Logical buffer is within physical buffer.
2 Double physical buffers are used.
34 Not used.
5 I/O MPU requires repeat of last command.

Main MPU decrements the external status
table return address to cause the repeat when
a RETURN instruction is used.

6 System use only.
7 For main MPU, SCS continuation of transpar-

ent data across physical buffers. For diskette,
indicates ascending keys.

14 2 Address of the storage area that contains the data set name

llf you issue a second open to a data set without closing the data set and an error occurs during
this reopen, another open or a close is required to recover from the error since the data set re­
mains flagged as open. The printer attachment microprocessor will not automatically close the
data set because an automatic close precludes error recovery without loss of data. (Also, see
note 2.1

2For open commands this bit is not set. This allows programs the option of recovery or exit
using a return command in external status subroutines. Recovery requires that another open
command or a close command follow an error during open. This is not an option to be
determined from bit 0 of this byte (see note 11. \

"-..

Hex Length in

(
Displace- Bytes (in
ment Hex)

16 1

17

18 2

1A 2

1C 2

(
1E 2

20 2

22 2

2.4 4

28 6

(

Description

Device Subaddress:

Bit(s) Meaning

0-2 Not used.
3-4 Port address.
5-7 Station address.

High-order byte of the address of the beginning of the par-
tition. The printer attachment microprocessor adds this
address to all relative addresses to form the absolute address.

Byte 18 and byte 19, bit 0 contain the address of the
beginning of the physical I/O buffer 1 relative to the
beginning of the partition. Byte 19, bits 1-7 contain the
number of 128-byte blocks allocated to the buffer in main
storage.

Number of bytes to be sent in the last transmission for physical
I/O buffer 1.

Logical record length of records in the data set.

Block length; can be either 128 or 256. If not specified in
program, the block length is set to physical I/O buffer 1 size
(maximum length is 256).

Address of the start of physical I/O buffer 2 relative to the
beginning of the partition, and buffer length; same format as
bytes 18-19.

Number of bytes to be sent in the last transmission for physical
I/O buffer 2.

Microprocessor save area.

Information for the printer attachment MPU from the global
configuration table:

Byte 28 Displacement from the beginning of the soft
error log to the first entry for this printer.

Byte 2A Number of entries allocated to the soft
error log for this printer.

Byte 2B Error encoding type as follows:
AD = Bit encoding
20 = Byte encoding

Byte 2C Adapter type:
00 = Twinaxial printer attachment
02 = Start-stop printer attachment

Byte 2D Number of 128-byte blocks in device physical
buffer (2).

Main Storage Data Areas 105

Hex Length in
Displace- Bytes (in
ment Hex) Description '."-

2E 2 Reserved for configuration table information. ,-..... ~ /'

30 2 System use only.

32 Physical record length.

33 Printer line length; set to logical record length at open time.
If the logical record length is longer than the maximum print
line. zero record length is transmitted to cause the printer
to use its default line length.

34 2 Busy timer (busy time-out results in 2291 error).

36 2 Close timer (close time-out results ina 2292 error).

38 2 Microprocessor save area.

3A 2 Number of logical records remaining to be transferred to fill
the physical buffer.

3C 2 Number of printer, buffers that will be transmitted.

3E 2 Number of logical records that will be transferred to the
physical buffer.

40 8 SCS conversion parameters. used only with SCS conversion
data sets.

Byte(s) Meaning

40 A pointer into the physical I/O buffer where
the data is formatted.

41 The line number of the current line.
42 The line that generates external status.
43 The page size.
44-45 The address of the format table entry being

processed on open. which contains the SGEA
(set graphic error action) parameters.

After open. byte 44 has the number of
blanks processed. and byte 45 has the number
of bytes processed in the logical buffer.

46 The number of characters processed in the
line.

47 The number of characters per line.

48 2 Busy timer count value used to delay while waiting for a
response from the pri nter.

4A 2 Pointer to the data buffer containing the data to be trans-
mitted. This pointer is incremented by the value of byte 75 /'

"

when a block of data has been successfully transmitted. '\." -"'

106

Hex Length in
Displace- Bytes (in

(ment Hex) Description

4C Data Set Type:

Bit(s) Meaning

0 1 Read allowed (causes error code 2402).
Write allowed.

2 Not used.
3 1 Write shared. (A printer may be used by

more than one lOB.)
4-7 Not used.

4D Data Set Type:

Bit(s) Meaning

0 1 Early write data set. (Transmit a logical
record each time it is transferred to the
physical buffer.)
Not used.

2 Always O.
3 Not used.
4 SCS conversion requested.
5 Pointer mode data set.
6-7 Not used.

(4E 2 Last poll response that occurred before an error was
detected; also placed in the system hard error table.

50 1 Status from the printer; also placed in the system hard
error table.

51 2 The response to the last poll command.

53 2 Status from the last read status command.

55 2 Microprocessor save area.

57 Command flag; indicates the last command issued.

58 6 System use only.

5E 2 Number of bytes of the physical buffer not being used.

60 2 Printer 10.

62 Printer lOB identifier.

Main Storage Data Areas 107

Hex Length in
Displace- Bytes (in
ment Hex) Description

, "

\ ~ /

63 Microprocessor save area.

64 2 Used to build the error code before it is transferred to
bytes 04-05.

66 System use only.

67 3 Current record number: initialized to hexadecimal 00 at
open time and used during pointer mode to indicate the
number of records transferred to the buffer since open.

6A 2 Microprocessor save area.

6C 2 The number of logical records remaining to be transferred
to the physical buffer in pointer mode.

6E 4 Microprocessor save area.

72 10 System use only.

7C 2 Number of transmissions to the printer physical buffer re-
maining to be done before the physical I/O buffer will be
empty.

7E 2 System use only.
--,

/ -

108

(

00

08

10

(18

20

211

30

3B

40

48

110

Start-Stop Printers lOB

Following is a general description of the printer 108 for start-stop printers (IBM
5222). Following this general description is a complete description of each field of
the 108. The addresses shown are hexadecimal displacements from the beginning
of the 108. No validity checking is made on any of the values in the bytes of the
following 108. If any of these bytes are modified by the application program,
unpredictable results may occur.

lOB System lOB Chaining Information Page Data and Error Code Next I nstruction Address
Status Flags

1.2.3 1.2 1.3 1

Command Command Operands Logical Buffer Address Translate External
Op Code Table Status

Number
1.2 1.2.3 1.2,3 2 1,3

Address of External Status Main Micro· Data Set Address of Data Sat Printer Partition
Subroutine Table processor Flags Name Subaddress Address.

Flags High
1 1 1,2,3 1 1,2,3 1,2

Physical I/O Buffer 1 Microprocessor Logical Record Length Block Length
Address and Length Save Area

1,2,3 1,2,3,4 1,2 1,2,3,4

Physical I/O Bufler 2 Microprocessor Microprocessor
Address and Length Save Area Seve Area

2,3
-

Information From the Global Configuration iable Cevlce Reserved for
Phyalcel Configuration
Bullar iallie Information
Sira 2.3

Synem UII On Iy PhYlical Printer Line MlcropraceOior Idve area
Record I.ength
l.ength

1.2.3.4 2.3.4

Micropraceuor Number of Records Remein· Microproceslor Numb.r of I.oglcol Recordl
Sove Aru ing to fill the Physical Buffer Save Aroo to Transfer to Buffer

2,3.4 2.3.4
-

sea Parameters

1

Busy Timer Bulfer Dati Set Type Statui Senle 0
Adarm Polnllr !'rom From

Printer Print"
2,3,4 2,3,4 1.2 2,3.4 2.3.4

SonlD 1 Microprocftllor Sliva Arili Command Flag
From
Printer

2,3,4 2.3.4

Main Storaga Oata Araa. 109

110

58 Relink Relink Relink Number of Bytes of Physi-
Address # 1 Address #3 Address #4 cal Buffer Not Being Used

2,3,4 2,3,4 2,3,4

60 Printer Identification Printer lOB Microproces- Error Code Build Area Relink Current Record
Identifier sor Save Area Address #2 Number

1 1 2,3,4 2,3,4 1,2,3,4

68 Current Record Number Microprocessor Save Are. Number of Logical Converted Last
(continued) Records Remaining in Printer Interface

Pointer Mode Address Command
2,3,4 2,3,4 2,3,4 2,3,4

70 Number of Bytes Retry Une Block Block Lest ,Lest
Remaining to be Counter Band Byte Size Adapter Adapter
Transmitted Rate Ctr Status Data

2,3,4 2,.3,4 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4

78 Read Read Microprocessor Save Area System Use Only
101 1D2

1. Accessed by the main microprocessor.
2. Read by the printer attachment microprocessor.
3. Written by the printer attachment microprocessor.
4. Initialized by the printer attachment microprocessor.

Hex Length in
Displace- Bytes (in
ment Hex) Description

00 lOB System Status:

Bit(s) Meaning

0-1 11 = The main microprocessor sent a command
to the printer attachment microprocessor,
The main microprocessor cannot send
another command until the printer micro­
processor sets the bits to 00,

10 = The printer attachment microprocessor has
completed logical work for the command
but is still doing physical work.

01 = System use only.
00= No command pending, (Printer may still be

busy,)
2 The printer attachment microprocessor has

physical work to do.
3 The printer attachment microprocessor sets

this bit on when it detects an error or
external status. The main microprocessor
clears the bit and processes the external
status with the subroutine indicated.

4-5 Sy~tem use on Iy.
6 This is the first lOB on the chain.
7 System use only.

Hex Length in

(Displace- Bytes (in
ment Hex) Description

01 lOB Chaining Information:

Bit(s) Meaning

0 The printer attachment microprocessor is
processing the chain pointer. The main
microprocessor cannot use the chaining
information when this bit is 1.

1-3 System use only.
4-7 When nonzero, the main microprocessor is

accessing the chain pointer.

02 High-order byte of the address of the next lOB in the chain.

03 Page Data and Flags:

Bit(s) Meaning

0 The low-order address bit of the next lOB
in the chain.

1-3 System use only.
4-7 Page number where the next lOB in the

chain is located.

(04 2 External status error code in 4-byte packed decimal format
(only valid if byte 0, bit 3 is 1, but remains valid until the
next I/O command is issued to the printer attachment MPU
by the main MPU.

06 2 The absolute address of the next sequential instruction
following the operation issued to the printer attachment
MPU.

08 Command op code. See Chapter 4.

09 3 Command operand. These bytes contain the rightmost 3
bytes of the object code instructions. See Chapter 4 for the
meanings.

OC 2 Address of the logical buffer, relative to the beginning of the
partition.

OE 1 Number of the table used to translate EBCDIC characters to
ASCII, ASCII characters to EBCDIC, or other character set
translation. Hex FF indicates no translation required.

OF External status category.

10 2 Address of the external status subroutine table.

(-'

Main Storage Data Areas 111

112

Hex Length in
Displace; Bytes (in
ment Hex) Description

12 Main Microprocessor Flags:

Bit Meaning When 1

0 All external status conditions handled by
one subroutine.
An error that cannot occur on any other I/O
operation has occurred while opening the
data set.

2 SCS conversion data set; logical buffer is
empty.

3 SCS conversion is in progress for this lOB.
4 SCS last line status flag.
5 An error detected by the main micro·

processor is outstanding.
e CLOZ operation is logically complete.
7 SCS purge in progress, set during CLOZ

operation.

Bits 2·7 are set and maintained by the main micro·
processor.

13 Data Set Flags:

Bit Mf18ning When 1

0 lOB is open. I
1 Logical buffer is within physical buffer.
2 Double physical buffers are used.
3-4 Not used.
5 I/O MPU requires repeat of last command.

Main MPU decrements the external status
table return address to cause the repeat when
a RETURN instruction is used.

6 System use only.
7 For main MPU, SCS continuation of transpar-

ent data across physical buffers. For diskette,
indicates ascending keys.

14 2 Address of the storage area that contains the data set name.

llf you issue a second open to a data set without closing the data set and an error occurs during
this reopen, another open or a close is required to recover from the error since the data set reo
mains flagged as open'. The printer attachment microprocessor will not automatically close the
data set because an automatic close precludes error recovery without loss of data. (Also, see
note 2.)

2For open commands this bit is not set. This allows programs the option of recovery or exit
using a return command in external status subroutines. Recovery requires that another open
command or a close command follow an error during open. This is not an option to be
determined from bit 0 of this byte (see note 1).

\,

"
/

\
~/

(
Hex Length in
Displace- Bytes (in
ment Hex) Description

16 Device Subaddress:

Bitrs) Meaning

0-1 Not used (must be 0).
2-4 Port address (must be 1, 2, 3, or 4).
5-7 Station address (must be 0).

17 High-order byte of the address of the beginning of the par·
tition. The printer attachment microprocessor adds this
address to all relative addresses to form the absolute address.

18 2 Byte 18 and byte 19, bit 0 contain the address of the
beginning of the physical I/O buffer 1 relative to the
beginning of the partition. Byte 19, bits 1-7 contain the
number of 128-byte blocks allocated to the buffer in main
storage.

1A 2 Microprocessor save area.

1C 2 Logical record length of records in the data set.

(
1E 2 Block length; can be' either 128 or 256. If not specified in

program, the block length is set to physical I/O buffer 1 size
(maximum length is 256).

20 2 Address of the start of physical I/O buffer 2 relative to the
beginning of the partition, and buffer length; same format as
bytes 18-19.

22 6 Microprocessor save area.

28 6 Information for the printer attachment. MPU from the global
configuration table:

Byte 28 Displacement from the beginning of the soft
error log to the first entry for this printer.

Byte 2A Number of entries allocated to the soft
error log for this printer.

Byte 2B Error encoding type as follows:
AO = Bit encoding
20 = Byte encoding

Byte 2C Adapter type:
00 = Twinaxial printer attachment
02 = Start·stop printer attachment

Byte 2D Number of 128-byte blocks in device physical

(
buffer (2).

Main Storage Data Areas 113

Hex Length in
Bytes (in

,,' .",

Displace-
ment Hex) Description .'" .~,r

2E 2 Reserved for configuration table information.

30 2 System use only.

32 Physical record length.

33 Printer line length; set to logical record length at open time.
If the logical record length is longer than the maximum print
line, zero record length is transmitted to cause the printer
to use its default line length.

34 6 Microprocessor save area.

3A 2 Number of logical records remaining to be transferred to
fill the physical buffer.

3C 2 Microprocessor save area.

3E 2 Number of logical records that will be transferred to the
physical buffer.

40 8 SCS conversion parameters, used only with SCS conversion
data sets.

Byte(s) Meaning

40 A pointer into the physical I/O buffer where
the data is formatted.

41 The line number of the current line.
42 The line that generates external status.
43 The page size.
44-45 The address of the format table entry being

processed on open, which contains the SGEA
(set graphic error action) parameters.

After open, byte 44 has the number of
blanks processed, and byte 45 has the number
of bytes processed in the logical buffer.

46 The number of characters processed in the
line.

47 The number of characters per line.

48 2 Busy timer count value used to delay while waiting for a
response from the printer.

4A 2 Pointer to the data buffer containing the data to be trans-
mitted. This pointer is incremented by the value of byte 75
when a block of data has been successfully transmitted.

/'

114

(
Hex length in
Displace- Bytes (in

ment Hex) Description

4C Data Set Type:

Bitrs) Meaning

0 Read allowed (causes error code 2402).
1 Write allowed.
2 Not used.
3 Write shared. (A printer may be used by

more than one lOB.)

4·7 Not used.

4D Data Set Type:

Bitrs) Meaning

0 Early write data set. (Transmit a logical
record each time it is transferred to the
physical buffer.)

1 Not used.
2 Always O.
3 Not used.
4 SCS conversion requested.
5 Pointer mode data set.

(
6-7 Not used.

4E Last status from printer when error condition was detected;
also placed in system hard error table.

4F Printer sense 0 data byte; also placed in the system hard
error table.

50 Printer sense 1 data byte; also placed in the system hard
error table.

51 6 Microprocessor save area.

57 Command flags; indicates the last command issued.

58 2 Relink #1 address.

5A 2 Relink #3 address.

5C 2 Relink #4 address.

5E 2 Number of bytes of the physical buffer not being used.

60 2 Printer ID.

62 Printer lOB identifier. (0

Main Storage Data Areas 115

Hex Length in --
Displace- Bytes (in

/

ment Hex) Description -~

63 Microprocessor save area.

64 -2 Used to build the error code before it is transferred to
bytes 04-05.

66 Relink #2 low address.

67 3 Current record number: initialized to hexadecimal 00 at
open time and used during pointer mode to indicate the
number of records transferred to the buffer since open.

SA 2 Microprocessor save area.

SC 2 The number of logical records remaining to be transferred
to the physical buffer in pointer mode.

6E Converted device address
20 = Device address B008
10 = Device address 8010
08 = Device address 8018
04 = Device address 8020

SF Last command to printer over the start-stop interface.

70 2 Number of bytes remaining to be transmitted.
~. - -

72 Retry counter.

73 Adapter baud rate:
Hex 80 = 1200/2400 baud
Hex 81 = 4800/9600 baud

74 Block byte counter" the number of bytes remaining to be
transmitted from this block.

75 Block size" Defines number of bytes to transmit in a block
(16).

76 Last adapter status read.

77 Last data read from adapter.

78 Read I D byte O.

79 Read ID byte 1.

7A 4 Microprocessor save area.

7E 2 System use only.
' ... , .7"

116

(
SYSTEM TABLES

System tables contain the addresses of certain data areas. When an assembler source
program allocates and labels one of these data areas, the system stores the address of
the area in the appropriate system table. When a source program instruction refers
to one of these data areas, the instruction specifies the label assigned to the area.
Then when the source program is assembled, the assembler converts the label to the
index into the system table where the address of that data area is stored. During
program execution, when an object code instruction contains a system table index,
the system finds the address of the area at that index into the appropriate system
table.

System tables may be located within a main storage partition or within the common
area. System tables within the partition contain addresses of data areas within the
partition. System tables within the common area contain addresses of global data
areas located in the common area. The partition or device lOB contain the addresses
of the system tables within the partition. The system control block contains the
addresses of the system tables in the common area.

The data areas that are addressed through a system table are the:

• Data tables

• Edit format control strings

• Screen format control strings

• Prompts and constant inserts

• Main storage duplicate areas (cannot be in the common area)

Main Storage Data Areas 117

118

System Table for Data Tables

The system table for data tables is built by the assembler when it processes the
.TABLE control statements; one system table entry is generated from each .TABLE
control statement. The address of the system table for data tables that are located
within the partition is in the partition lOB at relative address hex 18. The address
of the system table for global data tables is in the system control block at absolute
address hex F9.

The system table for data tables within the partition consists of one 8-byte entry for
each data table. The format of the 8-byte entry is as follows:

Bytes Meaning

0-1 Table address: the relative address of the data table

2-3 Entry number: the number of the last table entry used

4 Entry length: the number of bytes minus 1 of a table entry

5 Bypass length: the length of the bypass portion of the table entry

6-7 Maximum entries: the maximum number of entries the table can have

The index for the system table for tables within the partition must be in the range
o through 127. The index for the system table for global tables must be in the
range 128 through 254. The first two global tables are reserved for system error
tables; one global table may be an ASCII translate table.

The system table for global tables must always be located on storage page zero. The
entries are 10 bytes long, in the following format:

Bytes

o

2-9

Bits

o

Meaning

Lock bit
o Table locked only for 1 table instruction.
1 = Table locked by TLCK instruction until TUNLCK

instruction is issued.
1-2 Not used
3 0 = Valid partition number in bits 4-7.

1 = No valid partition number in bits 4-7.
4-7 Partition number of partition using the table

0-3 Storage page number where the table is located
4-7 0001 = First main processor is accessing the table.

0010 = Second main processor is accessing the table.

As for bytes 0-7 of system table for data tables within the
partition.

(

(

An object code table instruction contains the system table index for the table to
access in the second byte of the 4-byte instruction. The following illustration shows
how the system table index is used to access a data table within the partition. The
data table labeled TAB02 was the second table set up with a .TABLE control
statement.

Source:

Object:

R14 = TBRD(TAB02,BR60);

152,oGFJi)

System Table

System Table for Edit Format Control Strings

Bytes 18 and 19 of
the Partition lOB

Data Table in Storage

'----' ' _---'

The system table for edit format control strings is built by the assembler when it
processes the .FMT control statements; one system table entry is generated by
each series of .FMT control statements. The address of the system table for edit
format control strings that are located within the partition is stored in the partition
lOB, at relative address 24. The address of the system table for global edit format
control strings is stored in the system cont·rol block at absolute address hex EE.
The system table for global edit format control strings must always be located on
storage page 0.

The system table for edit format control strings located within a partition consists
of one 2-byte entry for each control string. T\1e 2-byte entry contains the address,
relative to the beginning of the partition, where the control string is located. There
may be up to 127 edit format control strings within a partition, represented by
system table indexes ° through 126. The last entry in the system table for edit
format control strings always contains hex FFFF. If no edit formats are set up
with the .FMT control statement series in a source program, a system table for edit
format control strings is built; the only 2-byte entry in the table contains FFFF.

The system table for global edit format control strings consists of one 3-byte entry
for each global edit format control string. The 3-byte entry contains the storage
page number in the first byte, and the control string address (relative to the begin­
ning of the storage page) in the second and third bytes. There may be up to 127
global edit format control strings (numbered 128 to 254), represented in the system
table with indexes ° through 126, where index ° represents format 128. The last
entry in the system table always contains hex FFFF.

When a source program instruction refers to an edit format, it includes the format
label. The assembler converts the label to a format number from ° to 127.

Main Storage Data Areas 119

120

The following illustration shows how the system table is used to find an edit format
control string that is located within the partition. In the illustration, FMT02 is
the second edit format set up with a .FMT control statement series.

Source:

Object:

READ (3,FMT02,O,N)

120,03,0(081

System Table

F F F F

Bytes 24 and 25 of
the Partition lOB

Edit Format Control String

1....--_1 I

System Table for Screen Format Control Strings

The system table for screen format control strings is built by the assembler when it
processes the .SFMT control statements; one system table entry is generated from
each series of .SFMT control statements. The address of the system table for screen
format control strings that are located within the partition is stored in the keyboard I
display lOB at hex 79, relative to the start of the lOB. The address of the system
table for global screen format control strings is stored in the system control block,
with the storage page number at hex FB and the address at hex FC.

The system table for screen format control strings that are located within the parti·
tlon consists of one 2·byte entry for each control string. The 2·byte entry contains
the address, relative to the beginning of the partition, where the control string is
located. There may be up to 256 control strings within a partition, represented by
system table indexes 0 through 255.

The system table for global screen format control strings consists of one 2·byte
entry for each global control string. Tha 2·byte entry contains the address, relative
to the beginning of the storage page (In hex FB), where the control string is located.
There may be up to 256 global control strings represented by system table indexes
o through 266. The first global screen format control string Is used by the system
for the standard load prompt.

The ENTR command in the sour~ program includes the label of the screen control
format to use. The assembler converts the label to the system table index, and
also determines whether the control string is within the partition or In the common
area. If the control string is within the common area, bit 9 of the 4·byte object
code Instruction Is set to 1. ,During program execution, if bit 9 equals 1 the address
of the system table Is taken from the system control block. If bit 9 equals 0 the
address of the system table Istaken from the keyboard/display lOB within the
partition.

(

The following illustration shows how the system table is used to find a screen
format control string that is located within the partition. In the illustration, the
screen format labeled SFMT02 was the second screen control format set up with a
series of .SFMT control statements.

Source: ENTR(SFMT02);
Bytes 79 and 80 of

Object: the Keyboard/Display lOB
? l I I I ~

System Table

Screen Format Control Strin:
FF I, , I

System Table for Prompts and Constant Inserts

The system table for prompts and constant inserts is built by the assembler when
it processes .DC control statements with the parameter TYPE=PRMT. The address
of the system table for prompts and constant inserts that are located within the
partition is stored in the keyboard/display lOB at hex 7D, relative to the start of the
lOB. The address of the system table for global prompts and constant inserts is
stored in the system control block at absolute address hex FE. The storage page
number where the system table is located is stored in the system control block at
hex FB. (It must be on the same storage page as the system table for global screen
format control strings.)

The systam table for prompts and constant inserts that are located within the parti·
tion consists of one 2·byta entry for each prompt or constant insert. The 2·byte
entry contains the address. relative to the beginning of the partition, where the
prompt or constant insert is located. The first entry in the system table always
contains 2 bytes of zeros. The address of the first prompt or constant insert is at
index 1 in the table.

The system table for globlll prompts and constant inserts consists of one 2·byte
entry for each global prompt and constant insert. The 2·byte entry contains the
address. relative to the beginning of the storage page, where the prompt or constant
insert is located. The first entry contains 2 bytes of zeros. The first prompt or
constant Insert Is at index 1 In the table. During program execution, If the screen
format control string that referred to the prompt or constant Insert is a global
screen format control string (indicated by bit 9 of the object code ENTR command),
the system table for global prompts and constant inserts Is used.

In II source program, a prompt is referred to in II .SFMTPMT control statement; a
constant insert is referred to in a .SFMTCNS control statement. The assembler
converts the labels included in the control statements to system table indexes.
During program execution. when a screen format control string refers to a prompt
or constant insert system table index, the system finds the address of the prompt
or constant insert in the system table at that index.

Meln Storege Oete Aree. 121

122

The fo.llo.wing illustratio.n shews hew the system table is used to. find a pro.mpt that
is Io.cated within the partitio.n. The pro.mpt labeled PMP02 was the seco.nd prompt
set up by a .DC co.ntrQI statement with the TYPE=PRMT parameter.

So.urce: .SFMTPMT PRMT=SP,PMP02:

~ Bytes 7D and 7E o.f
Object: A l07102'l the Keybo.ard/Display lOB

~ I I I I l
(Screen
format
centro. I
string)

~.

(;~ompt 1 0000 ~

System Table for Main Sto.rage Duplicate Areas

1,\-__ __

The system table fer main sto.rage duplicate areas is built when the assembler
precesses the .DC co.ntro.l statements that have the parameter TYPE=MDUP. The
address of the system table fer main sto.rage duplicate areas that are Io.cated within
the partitio.n is sto.red in the keybo.ard/display lOB at hex displacement A6. Glo.bal
main storage duplicate areas canno.t be specified.

The system table for main sto.rage duplicate areas co.nsists o.f o.ne 2-byte entry fer
each main sto.rage duplicate area within the partitio.n. The 2-byte entry co.ntains
the address, relative to. the beginning o.f the partitio.n, where the area is Io.cated. The
address of the first main sto.rage duplicate area is in the system table at index O.

In a so.urce pro.gram, a main sto.rage duplicate area is referred to. in an .SFMTF LD
centro. I statement with an MD=label (duplicate fro.m the label) o.r an MS=label (sto.re
to. the label) parameter. The assembler converts the labels to. system indexes. Dur­
ing pro.gram executio.n, when a screen fermat co.ntro.l string refers to. a system table
index, the system finds the address o.f the main sto.rage duplicate area in the system
table at that index.

(

(

The following illustration shows how the system table is used to find a main storage
duplicate area. In the illustration, the area labeled DUP02 is the second main stor­
age duplicate area set up by a .DC control statement with a TVPE=MDUP parameter.

Source: .SFMTFLD FLDF=A,9,AD MD=DUP02:

~ Bytes A6 and A7 of
Object: ~£.n 01 0822 81 ~ the Keyboard/Display lOB

(screen format
control screen)

~' , , , ?

Main Storage
Duplicate Area

~-------I'-----~-"""Il '-__

SCREEN FORMAT CONTROL STRINGS

The keyboard/display microprocessor uses screen format control strings to format
and check data that is entered via the keyboard, displayed on the screen, and stored
in the current record buffer in main storage. Screen format control strings are
assembled as specified in the source program. For example, with the assembler
language, screen formats are specified by the .SFMTST, .SFMTCNS, .SFMTPMT,
.SFMCTL, .SFMTFLD, and .SFMTEND statements.

Control information, data fields, prompts, and display attributes are specified by a
byte or a byte group in the control string. The order in which the control string is
assembled is the order in which the string is processed. The following diagram is a
generation description of the contents of the control string. Following this general
description is a complete description of each type of specification that can be in the
control string.

Start of End of
String Byte Groups String

IF FI n
I (J) T 0

o Each screen format control string must begin with hex FF, followed by a byte
group.lD and control byte that indicates the start of the screen format control
string. See Start of Control String under Control Byte Group.

e Each byte group contains an ID (see Byte Group 10) and other bytes to describe
a control specification (see Control Byte Group). data field (see Data Field Byte
Groups). prompt (see Constant Insert Data and Prompts), or display attribute
(see Display Attributes).

e A byte group ID and control byte that indicates the end of the screen format
control string. See End of Control String under Control Byte Group.

Main Storage Data Areas 123

124

Byte Group ID

The type of format specification in each byte group in the control string is identified
by the first byte of the group as follows:

• e
G

1 = This is the last byte of the group.4

1 = Return control to the object code program.3

00 = Field is neither right-adjust nor field exit required.
01 = Field is right-adjust, alphabetic filL!
10 = Field is field exit required.
11 = Field is right-adjust, numeric filL!

0000 = Field is picture check field. I
0001 = Field is alphabetic.
0010 = Field is numeric.
0011 = Field is hex.
01 00 = Field is Katakana.
0101 = Format level zero.
0110 = Fixed position prompt.
0111 = Standard prompt or constant insert data.
1000 = Invalid specification. l

1001 = Field is alphabetic only.
1010 = Field is numer.ic only.
1011 = Field is digits only.
1100 = Field is Katakana only.
1101 = Invalid specification?
1110 = Display attribute.
1111 = Control specification (see Control Byte Group).

llf picture check is specified, the field cannot be right-adjust or processed right to left.
lBit values 1000 and 1101 cause external status for invalid format control string to be posted.
3 1f bit 1 is on, the keyboard/display microprocessor returns control to the object code program.

When the control string is processed forward, control returns after the format group is processed.
When the control string is processed backward (a backspace key was pressed), control returns
before the format group is processed.

4 Bit 0 of each byte in the control string indicates whether this byte is the last byte of a group.

\..

(-

(

Control Byte Group

Control (such as start of control string and end of control string) is specified in the
control string by one or more control bytes. The control byte(s) always follow a
control string byte group 10.

Byte Group 10 Control Byte

i'OIOIOIO;'I'I";~~'~ I I I

• 1 = Last byte of this control byte group.

e Control Code Modifiers: See Control Code Description.

e Control Code (see Control Code Description):

000 = Invalid code.
001 = Change pointer position.
010 = Start of control string.
011 = End of control string.
100 = Check indicator for bypass.
101 = Execute secondary format.
110 = Invalid code.
111 = Change keyboard flags.

Additional Control Bytes: Used for codes 001, 100, 101.

Main Storage Data Areas 125

126

Control Code Description

000 Invalid Code: Control code 000 or 110 causes external status for invalid con­
trol string to be posted.

001 Change Pointer Position: Control code 001 causes the microprocessor to
change the screen position pointer and/or the current record buffer pointer as
follows:

Byte Group 10 Control Code 1 = Last byte of the control group.

..,
e
•
G)

•
•

I

. _i I I I I I I I I I I I III I I

o

1 = Change the screen position pointer.

1 = Change the current record buffer position pointer.

o = Add the number of positions to the pointer if the string is processed forward;
subtract the number of positions if the string is processed backward.

1 = Subtract the number of positions from the pointer if the string is processed
forward; add the number of positions if the string is processed backward.

Not used.

Number minus 1 of positions to move the pointer if less than 128; otherwise
this byte contains 7F and the next 2 bytes indicate the number minus 1 to move
the pointer.

Number minus 1 of positions to move the pointer if the previous byte = 7F.

"",-.. ;::

(

(

(~

010 Start of Control String: Control code 010 indicates the start of a screen format
control string, as follows:

Byte Group 10 Control Code

1 '0 I 0 I 0 I 0 : 1 , 1 , 1 , I'll

o 1 = Begin this screen format at the current screen position.

o = Begin this screen format at row 2, column 1.

o Not used.

• 1 = In enter mode, move prompts and display attributes to the screen, and
move data from the current record buffer to the screen. (In modes other
than enter, this function is performed automatically.)

e 1 = Clear the screen (except the status line) before any function is performed.

011 End of Control String: Code 011 indicates the end of the format control string
as follows:

Byte Group 10 Control Code

1'0 I 0 I 0 I 0 I 1 I 1 I 1 I l' 11

• 1 = Buffer keystrokes at end of record.

o 1 = Sound the buzzer.

• 1 = Clear the screen except for the status line.

e Not used.

For a primary format, end of control string is processed at record advance time and
during a cancel ENTR operation (CNENTR). The status line counters, field shift,
and hex display are set to blanks and external status condition 6 is posted to the
object program. For a secondary format, end of control string modifiers are ignored;
end of control string indicates the end of the secondary format.

Main Storage Data Areas 127

128

100 Check Indle,ror for ByplSS: A check indicator for bypass control group is
located at the beginning of and at the end of the end of the section of control string
to be conditionally bypassed. If the indicator ha. the value specified for bypass, all
field, display attribute, constant insert, and prompt specifications are bypassed.
However, the cursor and current record buffer pointer are moved past the space
on the screen and in the current record buffer where the bypassed fields, display
attributes, CO/istent inserts, and prompts would have appeared. If the bypass
specifications are encountered in a forward direction, the current field counter is
Incremented by the number of fields bypassed. If the bypass specifications are en­
countered In a backward direction, the current field counter is decremented. If a
return to program (RG), change buffer position pointer (BFPS), change screen
position pointer (CSPS), or control specification to change status is encountered
during bypass, it is processed as normal. If an axecute secondary format (ES)
specification is encountered, the fields and control specifications of the secondary
format are processed as described above for a bypass.

The check indicator for bypass control group has the following format:

Byte Group ,10 Control Code

1~,OIOIO;'I,I,I,'jO .~'I~lol' I I ,

• 1 "" Beginning of format string byte groups to bypass.

o = End of format string byte groups to bypass.

e 1 = Bypass if the indicator is off.

0= Bypass if the indicator is on.

e Not used.

CD Not used.

e Indicator Number (0-127)

(

:f

101 Execute Secondary Format: The execute secondary format control group
causes the kayboard/display microprocessor to Intarrupt processing this string,
process e secondary control string, and return to this string. The format of the
execute secondary format control group is as follows:

Byte Group ID Control Code 1 • LIU byte of the control group.

~--------~I----------~ 1~,OIOtO'11',1!;'o, I, ,Wi', "!, 10" I '" I I', I I

• CD

•

i i •
Not used.

Index into the system table for screen format control strings, where the
address of the secondary format is stored, if the index is less than 128;
otherwise this byte contains 7F and the index is specified by the following 2
bytes .

If the previous byte is 7F, these bits specify the index into the system table,
where the address of the secondary format is stored.

111 Change Keyboard Flags: The change keyboard flags control group causes the
microprocessor to change the status of the keyboard flags. That is, if the flag is on,
it is turned off; if it is off, it is turned on. The keyboard flags are turned off at the
start of the processing of each ENTR command.

Byte Group 10

1'0 I 0 I 0 I 0 : , I 1 I , I " I,

Control Code

~

'\iAr 1 I 1 1/

" 1 = Change the status of the Oup key enable/disable flag.

e 1 = Change the status of the monocase enable/disable flag.

• 1 = Change the status of the Field Exit key enable/disable flag.

e 1 = Change the status of the special verify mode enable/disable flag.

Main Storage Data Areas 129

130

Data Field Byte Groups

A data field byte group specifies the format of a data field as it is entered via the
keyboard, displayed on the screen, and stored in the current record buffer. The
field starts at the current screen position and current record buffer pointer position.
Data fields longer than 1 byte require a length specification in the data field format
group as shown in the following diagram:

Byte Group ID

I I

, I
I I

1 = Last byte of the group.
I

, , I I la, I I I

.. Byte Group ID-Must specify one of the following:

0000 (picture check)
0001 (alphabetic)
0010 (numeric)
0011 (hexadecimal)
0100 (Katakana)

0101 (format level 0)
1001 (alphabetic only)
1010 (numeric only)
1011 (digits only)
1100 (Katakana only)

~
I I I , ,

e Field length minus 1 if the field length is less than 128; otherwise, this byte
contains 7F and the following 2 bytJ'l~ specify the length minus 1.

Cit If the previous byte is 7F, these bits specify the length minus 1 of the field.

A data field with only the following attributes requires only the byte group ID and
(if the field is longer than 1 byte) the field length byte(s) to describe the field in the
screen format control string:

• Basic field

• Format level zero field

• Right adjust field (must be at least 2 characters in length)

• Field exit required field

• Manual duplicate field from the previous buffer

A data field with additional attributes requires additional bytes to specify field
attributes, storage duplication areas, or picture specifications.

(

(

Field Attributes and Storage Duplication Group

Field attributes may be specified with 1 or 2 bytes. as necessary. For store and
duplicate fields. the attribute byte(s) must be followed by additional byte(s) that
specify where to find the address of the duplicate or store area. The format is as
follows:

Byte Group 10
and Length byte(s) I r ----1 = Last byte of the group.

, , J l
~ ~~ .L-..I.-.L...-.L......L.r-'1 j:f'~"""""J.r----L-.L1 'l~...-'-r'-~il-'r~ll u i g-r m'lI gl

: I '. " e

" 1 = Another attribute byte follows this attribute byte.

G 1 = Main storage duplicate field. l

e 1 = Verify bypass field.

e 1 = Signed numeric field.

• 1 = Data required field.

0 00 = Field is not auto dup. auto skip. or bypass.
01 = Auto skip field.
10 = Auto dup field.
11 = Bypass field.

e Not used.

0 1 = Main storage store field.!

0 1 = Right to left field.

• 1 = Absolutely automatic field.

0 1 = Blank check field.

• 1 = Mandatory enter field.

• 1 = Mandatory fill field.

I For main storage duplicate and store fields. an index specification must follow the attribute byte(s).
The index specification is 1 byte long if the index is less than 126; it is 3 bytes long if the index is
126 or greater (see Execute Secondary Format) under Control Byte Group for the format of the
index specification. The index specified is the entry number into the system table for main storage
duplicate areas. where the address of the duplicate area is located. The address of the system table is
in bytes hex 46 and 47 of the keyboard/display lOB.

Main Storage Data Areas 131

132

Picture Chsck Subfl,ld Group

Following are the specifications for picture check subfields:

ByteOroup 10
end Length Byte(s)

~l'" '101 I I U
i

Picture Check Subfield Byte
(1 byte for each 8ubfleld)

Field Attribute Byte(s): See Field AttrlbutlSBnd StorafJIJ Duplication Group,
the previous topic In this section • ..

e
•

1 .. Last byte In this group.

Subfield Length Minus 1 (0·7)~

0001 = Subfield is alphabetic.
0010 = Subfield is numeric.
0011 = Subfield is hex.
0100 = Subfield is Katakana.
1001 = Subfield is alphabetic only.
1010 = Subfield is numeric only.
1011 = Subfield is digits only.
1100 = Subfield is Katakana only.

(

Constant Inllrt Data and Prompts

Constant insert format groups specify the location and the length of constant insert
data to be moved to the screen and inserted into the current record buffer. Prompt
format groups specify the length and location of a prompt to be moved to the
screen fixed prompt line or to current screen position. Following are the control
string specifications for constant insert and prompts:

By,. (lroup ID , • Loll hy, •• r ,h. group.

II.
I 19· II. . . . 10 II. . . . -. iii I'. • i =1=

• 0110 = Fixed position prompt.
0111 = Standard prompt or constant insert.

. .

• Index into the system table for prompts, where the address of the prompt is
stored if the index is less than 126; otherwise this byte is 7F and the index is
specified in the following 2 bytes. For constant inserts, this byte must be 7F.2

If this byte is xxOOOOOO, the fixed prompt line is cleared.!

• 1 = Specification is for constant insert data.
o = Specification is for prompt.

If the previous byte is 7F, these bits specify the index into the system table,
where the address of the constant insert or prompt is stored.

• Length minus 1 of the constant insert or prompt if the length is less than 128;
otherwise, this byte is 7F and the length minus 1 is specified by the following
2 bytes. 1

• If the previous byte is 7F, these bits specify the length minus 1.!

. 1/

llf clear the fixed prompt line is specified, the prompt line is cleared (the number of positions
specified in the length bytes of the format group) beginning with the first position of the line. If the
length is not specified in the format group, the full line is cleared.

21f the constant insert or prompt is stored within the partition, the address of the system table is in
bytes hex 00 and OE (address hex 80 and 8E relative to the start of the partition) of the keyboardl
display lOB. If the constant insert or prompt is stored within the common area, the address of the
system table is in bytes hex FE and FF of the system control block.

Main Storage Data Areas 133

134

Display Attributes

A display attribute format specification consists of 2 bytes. the format identifier
and a display attribute byte. as shown below. The display attribute is moved to the
screen at the current screen position.

Byte Gro.up 10 [If 111. display is inhibited.

, , , '1'1'I'O~'G(j)~ I

" 1 = Last byte in the group.

e Not used.

• 1 = Column separators displayed.

CD 1 = Blink.

G 1 = Underline.

• 1 = High intensity.

CD 1 = Reverse image.

EDIT FORMAT CONTROL STRINGS

Control information and field descriptions are specified by groups of bytes in an
edit format control string. The order in which the control string is assembled is the
order in which the string is processed. The following diagram is a general descrip­
tion of an edit format control string. Following this general description is a descrip­
tion of each type of specification that can be in the control string.

(

(

r-------Byte Groups: Repeated for each field in
the edit format control string.

I, "".
I 'I

i

e
e

Header Bytes

Header bytes: 3 header bytes always begin a formatcontrol string. If data
directed formatting is used, these bytes specify the condition character
information.

End Flag and Displacement: 1 or 3 bytes that indicate the last control string
in a series and specify the displacement of the field from the previous field.

Edit Flags: 1 byte that indicates data types and edit control information.

Buffer and Storage Specifications: 4 bytes indicate buffer length and the
length and address of the storage area to which, or from which, data is moved.

Optional Bytes: See Second Optional Edit Control Byte and Picture
Specification under Byte Groups.

The first 3 bytes of a control string are header bytes. If a condition character is used
for data directed formatting, the header bytes specify the condition character and
the position in the record where the condition character is located.

o Condition Character Position: The displacement minus 1 from the left of the
I/O buffer where the character is located. If no condition character is specified,
these bytes contain hex FFFF.

Condition Character: If no condition character is specified, this byte contains a
blank (hex 40).

The header bytes are followed by a series of field description and edit control
bytes. Each field in the record is represented by one group of bytes, which begin
with the end flag and displacement bytes.

Main Storage Data Areas 135

Byte Groups

End Flag and Displacement

One or three bytes specify the displacement from the rightmost position of the
previous field to the rightmost position of the current field. The displacement byte
also contains a flag that indicates the end of the format control string series. If the
displacement is less than 32, 1 byte contains the displacement and the end flag. If
the displacement is greater than or equal to 32, 3 bytes are used: the first 2 bytes
specify the displacement, and the third byte contains the end flag.

Displacement
Byte 1

These bytes are used only if the
displacement is 32 or more.

,

: i
r I , , , 1o,°.°,o,o,o,0 1

6) Displacement Length:

0= Displacement is less than 32; displacement value is specified by bits 3 to 7
of this byte.

1 = Displacement is 32 or greater; displacement value is specified by bits 3 to 7
of this byte and bits 0 to 7 of the next byte. A third byte is used for the
end flag.

Displacement direction:

o = Forward displacement.
1 = Backward displacement.

e End flag: 1 = last in this series.

e Displacement: If bit 0 of this byte is 0, this is the displacement. If bit 0 of this
byte is 1, this is the high-order 5 bits of the displacement_

• Displacement Byte 2: The low-order 8 bits of a displacement of 32 or more.

o End Flag:

o = Not last in series.
1 = Last in this series.

/'

(

i(·
\

Edit Flsgs

The edit flags specify the data type of the data that is moved to or from the I/O
buffer, and the type of the I/O buffer. They also indicate whether the optional
bytes are used to specify edit or picture descriptions.

• Data Type:

0= Binary.
1 = Decimal.

G I/O Buffer Type:

e

00 = Binary buffer.
10 = Decimal buffer.
11 = Hexadecimal buffer.
01 is not valid ..

Optional Bytes specification:

00 = No optional edit bytes or picture specifications are used.
01 = One optional edit byte is used.
10 = Two optional edit bytes are used.
11 = Picture specification is used.

Buffer and Storage Specifications

Four bytes specify the number of positions in the I/O buffer and in the storage area
the field uses, and the address of the storage area.

I I I I I

'OG
• I/O buffer positions: The number minus 1 of positions the field uses in the I/O

buffer.

e Storage positions: The number minus 1 of positions the field uses in the storage
area.

e Storage Address: The address of the beginning of the storage area to which, or
from which, data is moved.

Main Storage Data Areas 137

138

First Optional Edit Control Byte

This edit control byte may be used only when a decimal buffer is used. If a picture
specification is used for the field. this edit control byte is not used. the picture
specification follows the storage area address in the edit format control string. The
decimal control character. comma control character. and currency control character
are found in the partition lOB.

ii I , I I I

" Comma Control:

o = No comma control.
1 = Insert the comma control character to separate groups of digits.

e Decimal Control:

o = Insert blank (hex 40) between the decimal and fraction portions of a
number.

1 = Insert decimal control character between the decimal and fraction portions of
a number.

e Fill Character:

00 = Blank fill.
01 = Zero fill.
10 = Asterisk (*) fill.
11 = Floating currency character.

CD Displacement from the right of the field to the position where the decimal
control character is to be inserted, or 0000 if decimal control is not being used.

(

(

Second Optional Edit Control Byte

This edit control byte may be used only when a decimal buffer is used. If a picture
specification is used for the field, this edit control byte is not used; the picture
specification follows the storage area address in the format control string. The
decimal control character, comma control character, and currency control character
are found in the partition lOB.

" Sign control:

000 = Do not change sign zone in the buffer.
001 = Change sign zone in the buffer to positive (hex F).
100 = Insert blank or minus sign in the field.
101 = Insert a minus or plus sign in the field.
110= Insert two blanks or the characters CR in the field.
111 = Insert two blanks or the characters DB in the field.

e Zero Suppress Control: Valid only with insert decimal.

0= Force 0 to the left of the decimal control character if the field is O.

e
1 = Blank fill if result is 0, unless edit characters are specified to appear in

the field.

Date Edit Control:

o = No date edit.
1 = Date edit (bit 5 may be 0 or 1, and all other bits must be 0).

G Date Edit Control Character:

0= Use a slash for data edit (mm/dd/yy).
1 = Use a period for date edit (mm.dd.yy).

Currency Control Character:

o = No fixed currency character.
1 = Fixed currency character.

Main Storage Data Areas 139

140

Picture Specification

Picture specifications are used only to write to a decimal buffer. If a picture
specification is used, the optional edit control bytes are omitted; in the format
control string, the first picture byte follows the storage area address.

A picture specification consists of a series of 1-byte hex codes. Each hex code
pertains to the corresponding byte in the decimal buffer. Each series of hex codes,
ending with an end of string byte, describes one subfield of the current field
description. Picture specifications are of variable length; however, a picture
specification for a global format is limited to 10 bytes, including the end of string
byte.

Hex Code

00

01

02

03

04

Meaning

Decimal digit. A decimal digit is accepted in the corresponding
position of the buffer. Example:

Subfield Input

12345

Hex Codes

0000000000

Output to Buffer

12345

Suppress leading zeros. If the character in this subfield position is
a leading zero, it is replaced with a blank in the buffer. Example:

Sub field Input

00123

Hex Codes

0101010000

Output to Buffer

123

Insert blank. A blank is inserted into this position in the buffer.
Example:

Sub field Input

12345

Hex Codes

0000020000

Output to Buffer

12 345

Insert blank if zero. If the character in this subfiel<;l position is zero,
it is replaced with a blank in the buffer. Example:

Sub field Input

10203

Hex Codes

0303030000

Output to Buffer

1 203

Insert asterisk. If this subfield position is a leading zero, it is
replaced with an asterisk in the buffer. Example:

Sub field Input

001:?3

Hex Codes

0404040404

Output to Buffer

**123

Hex Code

(05

06

07

(
08

09

Meaning

Insert comma character. A comma character is inserted into the
buffer at this position unless zero suppression has occurred. If zero
suppression has occurred, a blank is inserted. Examples:

Sub field Input

00123
00123

Hex Codes

010105000000
000005000000

Output to Buffer

123
00,123

Insert slash. A slash is inserted into the buffer at this position unless
zero suppress has occurred. If zero suppression has occurred, a blank
is inserted. Examples:

Sub field Input

000285
000285

Hex Codes Output to Buffer

0101060101060101 2/85
0000060000060000 00/02/85

Insert decimal character. A decimal character is inserted into the
buffer at this position unless zero suppression has occurred. If zero
suppression has occurred, a blank is inserted. Examples:

Sub field Input

123456
0001

Hex Codes

0005000000070000
0101070101

Output to Buffer

1,234.56
1

Stop zero suppression. Zero suppression is stopped at this position
in the buffer. This code must be followed by a 05, 06, or 07 code.
The 08 code does not insert a blank or any character into a buffer
position. Example:

Subfield Input

0001

Hex Codes

010108070000

Output to Buffer

.01

Insert currency character. A fixed currency character is inserted into
the buffer if only one 09 code is used. If an 09 code is placed into
every leading digit position of the subfield, a floating currency
character is placed into the buffer at the left of the most significant
digit. The currency character requires two bytes of buffer space.
Examples:

Subfield Input

01234
01234

Hex Codes

09010101070101
090909070000

Output to Buffer

$12.34
$12.34

Main Storage Data Areas 141

Hex Code

OA

OB

OC

00

OE

OF

142

Meaning

Insert minus sign. If the field value is negative, a minus sign is
inserted into this position of the buffer. Example:

Subfield Input

00012

Hex Codes

OA0101010101

Output to Buffer

- 12

Insert plus sign. If the field value is positive, a plus sign is inserted
into this position ofthe buffer. Example:

Subfield Input

12345 .

Hex Codes

080000000000

Output to Buffer

+12345

Insert sign. The appropriate sign is inserted into this position of
the buffer. Example:

Subfield Input

12345

Hex Codes

OCOOOOOOOO

Output to Buffer

-12345

Insert CR. If the value of the subfield is negative, the characters CR
are inserted into the buffer. If the value is positive, the two buffer
positions are blank. Example:

Subfield Input

00123

Hex Codes

01010101010100

Output to Buffer

123CR

Insert DB. If the value of the subfield is negative, the characters DB·
are inserted into the buffer. If the value is positive, the two buffer
positions are blank.

End of string flag. The hex code string for each subfield must end
with OF.

/

//" -

(

(

I­
\.

...

Chapter 3. Keyboard/Display Storage

The keyboard/display storage provides control information and refresh buffers for
processing keystrokes and for displaying characters on the display screen. Each
keyboard/display unit uses a separate portion of keyboard/display storage. The
total size of the portion of keyboard/display storage used by each keyboard/display
unit depends on the size of the refresh buffer necessary for the keyboard/display
unit's screen.

The keyboard/display storage is loaded during system IPL from the IPL diskette.
The keyboard/display lOB in each partition contains the addresses of the keyboard/
display storage areas used by that partition's keyboard/display unit.

The following is a general description of the data areas and refresh buffer areas with­
in keyboard/display storage. The addresses for each keyboard/display unit begins
with an x, wh ich represents hex F, 8, 7, and 3 for keyboard/display units 1 through
4 respectively. For example, if all keyboard/display units have a screen size of 1920
characters, the keyboard/display storage for unit 1 begins at hex F400, for unit 2
at hex 8400, for unit 3 at hex 7400, and for unit 4 at hex 3400. There is also
additional storage in a fifth section, which starts at hex 0000 and which is shared
by the four units.

On a dual unit, the two keyboards share the same keyboard/display storage section.
The first keyboard (keyboard 0) uses the lower-numbered rows of the refresh
buffer, control register 0, cursor address register 0, and status line refresh buffer 1.
The second keyboard (keyboard 1) uses the higher-numbered rows of the refresh
buffer, control register 1, cursor address register 1, and status line refresh buffer 2.

The following illustration shows the format of keyboard/display storage as it is
generated for IPL by the system configuration program (SYSCON).

Keyboard/Display Storage 143

144

K.ybolrd/DlapllY StorigellrX400 ~OO~ __ :ZO __ ... 4_0 e_oIo.o.j1iOo80 __ ..&A_O"",-~C_O E..&0...-oj

AIIlgn.d Addr..... /.
~---------, ---- ----

0000 /

OFFF
1000

B3FF
8400

BFFF
COOO·

F3FF
F400

FFFF

Notes:

Available for
scan code and
Katakana trans.
tables If r.qulred
byconfi uratlon.

/
I
I
I

'1-

.~

Refresh Buffer for
1920·Character
Single or 960·
Character Dual
Displays

, /
/
I
I
I

x800 ------------1-----1------
I '1-

Refresh Buffer for
960·Character
Single or 480-
Character D'ual

xAOO ----r------- ---­
Refresh Buffer

- for 480·Character

xCOO

I.
Assigned to

\ Station xDOO .. \
\

Invalid xEOO \
Address

\
Assigned to \
Station .. \

0 \ ,
Addresses assigned
in keyboard lOB
according to
configu ration,

xFOO

Singli Displays

Validity Table

Not Assigned

/Storage
Area

Monocase
Exception
Table

Diacritic Tables

Status Line 2 Status Line 1 Display Control
Refresh Area Refresh Area Area

Display Translate Table

Katakana Translate Table

Scan Code Translate Table

D Station is either single or dual display, Keyboards for a dual share one block of storage.
fJ x = F for station 0; B for station 1; 7 for station 2; 3 for station 3.

(

(

Because the keyboard/display lOB In each partition contelns pointers Into the .
keyboard/display Itorage, the validity table, storage area, diacritic table, scan code
trenslate table, and the Katakana translate table (If required) can be located any·
where in keyboard/display storage a8 long as the tables that require alignment on a
2SS·byte boundary are properly aligned. However, the refresh buffer, statuI line
refresh area, and display translate table for a particular keyboard must all be located
in the same section of keyboard/display storage (section F, B, 7, or 3). The display
translate table must always begin at address xFOO, and the display control area must
begin at address xEAO of the appropriate section of· keyboard/display storage.

REFRESH BUFFER AREA

The keyboard/display storage contains refresh buffers for each keyboard/display
unit. These buffers act as refresh areas for display characters. The refresh area for
the status line(s) is separated from the refresh area for the remainder of the screen.
This separate area is in addition to the refresh area appropriate for a particular
screen size.

When a keystroke is processed by the keyboard/display microprocessor, it is trans­
lated from the keystroke scan code to EBCDIC code. The EBCDIC code is placed
into the current record buffer in main storage within the partition associated with
the keyboard, and translated to display code. The display code is then placed into
the refresh buffer in order to be displayed on the screen. The hexadecimal repre­
sentations of screen attributes are also placed into the refresh area.

VALIDITY TABLE

The validity table defines:

• The EBCDIC values used in the alphabetic only, numeric only, and Katakana
only character sets.

• The EBCDIC values of keys defined as diacritics.

• The EBCD IC values that have to be translated to uppercase when the monocase
function is enabled.

• The scan codes of keys that are not typamatic.

• The scan codes of keys that can be shifted from lowercase alphameric only if a
shift key (not including the Shift Lock key) is simultaneously pressed, such as
the function keys to the left of the keyboard.

Keyboard/Display Storage 145

146

The validity table contains 1-byte entries that are in the following format:

Bit Meaning When 1

o
1
2
3
4
5
6
7

Ignore the typamatic action in the scan code.
Shift only if the shift key is pressed.
System use only (initialized to 0).
Translate EBCDIC code to up~(case if monocase function is enabled.
EBCD IC code used for diacritic.
EBCDIC code belonging to Katakana-only character set.
EBCDIC code belonging to numeric-only character set.
EBCDIC code belonging to alphabetic-only character set.

Bits 0 and 1 in the table are used when the table is accessed using a scan code. The
7-bit scan code is an index into the validity table to retrieve the corresponding 1-byte
entry.

Bits 3 through 7 are used when the table is accessed using an EBCDIC. The value
hex 40 is subtracted from the EBCDIC code to establish the offset into the table
in order to retrieve the corresponding 1-byte entry.

STORAGE AREA

The storage area holds information needed for interpreting keystrokes and main­
taining the status line, and a monocase exception table. Following is a description
of the first 16 bytes of this storage area:

Byte Description

o Display code for the insert mode indicator.
Display code for the alphabetic shift symbol.

2 Display code for the numeric shift symbol.
3 Display code for the hexadecimal shift symbol.
4 Display code for the Katakana shift symbol.
5 Scan code for the Hex key function.
6 Scan code for the Power On Reset key function.
7 Scan code for the Console key function.
8 Not used.
9 Display code for the alphabetic-only shift symbol.
10 Display code for the numeric-only shift symbol.
11 Display code for the digits-only shift symbol.
12 Display code for the Katakana-only shift symbol.
13-15 Not used.

Display codes for the shift symbols are displayed on the status line to show the
keyboard shift status of the current field.

Scan codes for the command (function) keys in bytes 5, 6, and 7 are processed by
the system. These functions are initiated by pressing the Cmd key first, then the
cor .1mand key.

(

(

(

Monocase Exception Table

Following the first 16 bytes is a monocase exception table. The monocase excep­
tion table contains character values that cannot be conveniently converted from
lowercase to uppercase. (See the logic shown below.) The table begins at displace­
ment hex 10 into the storage area. The table contains pairs of bytes (lowercase
code/uppercase code) that provide translation from lowercase EBCDIC to upper­
case EBCDIC. The byte pairs are in ascending order of the EBCDIC for the lower­
case values. The length of the table is variable, depending on the number of entries
required. The table always ends with hex FFFF; if the table contains no other
entries, it contains only hex FFFF.

Exception
EBCDICs,
Lowercase

ae

FF

Exception
EBCDICs,
Uppercase

AE

FF

A bit in the validity table is used to specify that an EBCDIC can be monocase. If
the monocase flag is set and an EBCDIC value is entered (by a keystroke or dia­
critic or hex key sequence during formatted data entry, or by keyboard operation
hex OA [pass scan code] or OB [pass EBCDIC], or by the KACCPT instruction) that
can be monocase, the system translates the lowercase EBCDIC to its corresponding
uppercase EBCDIC. The following shows how the system translates the EBCDIC
to monocase:

Set bit 1 of
EBCDIC to trans­

>----yes-----I
late to monocase
EBCDIC

~ the EBCD;7-C Translate to mono-
in the mo~ocase yes-----i case EBCDIC

exception entry in table
table

No

I
Translate to monocase
EBCDIC by setting
bit 2 in original EBCDIC

Keyboard/Display Storage 147

148

DIACRITIC TABLE

The diacritic table provides composite EBCDIC codes that represent the diacritic­
character palra for characters defined al diacritic In the validity table.

The diacritic table Is In two parts. Part 1 contalnl 2-byte entries for each diacritic
defined. Byte 1 la the EBCDIC code for each dIacritic and byte 211 a pointer Into
part 2 of the table.

Part 2 of the diacritic table contains the EBCDIC code for each character that can
be used with a diacritic-character pair and also contains the composite EBCDIC
code that represents the diacritic-character pairs.

The following shows how the diacritic table is used:

Part 1

D Diacritic .. Pointer
EBCDIC - into Part 2

I
79 (grave) l
BE (acute) I

I
I :: I :~ I
I
I

FF I
I

Part 2

.. Character .. combination
IIr. EBCDIC EBCDIC

I 44 (~) 81 (a)
85 (e)

I 54 (~)
89 (I) I 58 ())
96 (0) I CO (h)
A4 (u) I DO (u) I

I

I 45 (l) 81 (a)
85 (e) I 51 (i)

I
,

89 (I) 55 (I)

.. I

D EBCDIC for valid diacritics, arranged in ascending order of diacritic EBCDIC
value.

fJ Displacement (from the beginning of part 1) into part 2 of the table, where
the EBCDIC for the first of the characters that can be validly combined with
the diacritic is stored.

II EBCDIC values for characters that can be validly combined with the diacritic.

II EBCDIC of the combined character and diacritic. For each diacritic, this
section is arranged in ascending order of the character EBCD IC value.

II The last entry in part 1 contains hex FF, in the first byte, and a pointer to the
byte following the last combination EBCDIC in part 2 of the table.

(
REFRESH AREAS FOR THE STATUS LINES

There are two status line refresh buffers In keyboard/display storage for each unit.
These buffers are referred to as status line 1 buffer and status line 2 buffer. The
status line 1 buffer Is used as a refresh area for the status line of a single data
station or station 0 of a dual-display data station. Tha status line 2 buffer is used
as a refresh area for the status line of station 1 of a dual data station. The status
line Is usually displayed on row one of the screen. However, if a screen format
uses all of the rows on the screen. the status line can be removed from the screen
so that rem one of the format can be displayed on row one of the screen. The status
line is maintained in the status line refresh buffer whether or not it is being displayed
on the screen.

DISPLAV CONTROL AREA

The display control area contains:

• Display attributes for the beginning of each row on the display screen.

• The refresh buffer address of the first position of the row.

• Control registers that provide control for the upper and lower halves of the
display screen.

• Cursor address registers that provide the current refresh buffer address of the
cursor.

The display control area begins with strings of 3-byte entries; one entry for each
rowan the display screen.

The first byte of a 3-byte entry contains the display attributes for each row. The
format of the first byte is:

Bits Attribute Description

0-1 System indicator:
00 = None
01 = None
10 = Dash
11 = Solid rectangle

2 Valid row starting attribute. This bit must be 1 in order for bits 3
through 7 to be effective.

3 1 = Column separator.

4 1 = Blink.

5 1 = Underscore.

6 1 = High intensity.

7 1 = Reverse image.

Note: If bits 5, 6, and 7 are all on (111). no data is displayed.

Keyboard/Display Storage 149

150

The second and third byte contain the refresh buffer address of the first position
of the row.

The first 3-byte entry in the display control area describes row 1, the second entry
row 2, and so on through row 25. Row 0 is described by the twenty-sixth entry ..

For dual display stations, rows 0 through 11 are assigned to display station 0; rows
14 through 25 are assigned to display station 1.

Control registers 0 and 1 follow the strings of 3-byte entries. Control register 0 is
used for the display screen of a single display station, or for display station 0 of a
dual display station. Control register 1 is used for display station 1 of a dual
display station.

The format of control register 0 is:

Bits Meaning When 1

o Inhibit display of upper half of screen if single, station 0 if dual.
1 Not used (initialized to 0).
2 Blink cursor for display station O.
3 Blink upper half of the display screen if single, station 0 if dual.
4 Reverse image of upper half of screen if single, station 0 if dual.
5-7 Not used (initialized to 00).

The format of control register 1 is:

Bits Meaning When 1

o Inhibit display of lower half of screen if single, station 1 if dual.
1 Not used (initialized to 0).
2 Blink cursor for display station 1.
3 Blink lower half of screen if single, station 1 if dual.
4 Reverse image of lower half of screen if single, station 1 if dual.
5-7 Not used (initialized to 000).

Following the control register bytes there are two 2-byte cursor address registers.
These registers contain the current refresh buffer address of the cursor. Cursor
address register 0 stores the cursor address for a single display station or for display
station 0 of a dual display station. Cursor address register 1 stores the cursor
address for display station 1 of a dual display station.

('

(

xEAO Row starting attribute
Row starting address high
Row starting address low

xEA3 Row starting attribute
Row starting address high
Row starting address low

~~
xEEB Row starting attribute

Row starting address high
Row starting address low

xEEB Row starting attribute
Row starting address high
Row starting address low

xEEE Not used
::'::

xEF2
xEF3
xEF4
xEF5
xEF6
xEF7

Control register 0
Control register 1
Cursor address register 0, high
Cursor address register 0, low
Cursor address register 1, high
Cursor address register 1, low

DISPLAY TRANSLATE TABLE

} Row 1

} Row 2

:: r::

} Row 25

} Row 0

-:: ~

The display translate table converts EBCD IC code to display code so characters are
displayable on the display screen. The display translate table must be located in the
last 256 bytes of the keyboard/display storage area assigned to the unit.

KATAKANA TRANSLATE TABLE

The Katakana translate table is required for a display station with a Katakana key­
board. Some key tops on the Katakana keyboards have more than two characters.
The right side of the key top has Katakana characters; the left side has alphameric
symbols.

The translate table converts scan codes to EBCD IC for the Katakana characters.

The table is divided into two 128-byte segments. The lowerhalf of the table (offset
hex 00 to 7F) is used when the keyboard is in Katakana lowershift. The upper half
of the table (offset hex 80 to FF) is used when the keyboard is in Katakana

. uppershift.

. Keyboard/Display Storage 151

152

SCAN CODE TRANSLATE TABLE

The scan code translate table converts scan codes to EBCDIC for all keyboards.
Katakana keyboards also use the Kata!<ana translate table.

The scan code translate table is divided into two 128-byte segments. The lower
half of the table (offset hex 00 to 7F) is used when the keyboard is in alphameric
lowershift. The upper half of the table (offset hex 80 to FF) is used when the
keyboard is in alphameric uppershift.

Bits 1 through 7 of the 8-bit scan code are used as an offset into the table, either
into the lower half or into the upper half, depending on the keyboard shift status.
For example, a scan code of hex 09 locates the EBCDIC in the tenth byte of the
lower half of the table if the keyboard is in lowershift.

(

(

Chapter 4. Object Code Instruction Format

Each object code instruction is 4 bytes long. The first byte always contains the
operation code. The other three bytes contain flags, addresses and other data.

ADDRESSING METHODS WITHIN A PARTITION

In a source program instruction, a storage area or another instruction is referred to
by a label. A register is referred to by a label or by a number. When source instruc­
tion is converted to object code, these labels and numbers are converted to
addresses. An address in an object code instruction is always relative to the begin­
ning of the partition. When the object code instruction is executed, the relative
address is added to the absolute address of the beginning of the partition. The
absolute address of the beginning of the partition is stored in displacement hex OD
in the partition lOB.

Because instructions and registers must begin on specific boundaries, the l6-bit
address can be compressed. The bits in the object code instruction that are not

used for the address are used for other purposes, such as flags. A relative address
in an object code instruction is in one of the following formats:

• 16-bit address to locate any byte within a partition

• 14-bit address to locate an instruction

• 8-bit address to locate a decimal register

• 7-bit address to locate a binary register

In addition to the relative addresses, an object code instruction may contain the
following types of data:

• 8-bit instruction displacement, used with certain branch instructions to locate
an instruction.

• 8-bit indicator number to locate an indicator.

• 8-bit index into a system table to locate the address of a format, prompt, dupli­
cation area, or table.

• Constant.

Object Code Instruction Format 153

154

Addressing a Byte Within the Partition

The size of the partition cannot be greater than 64 K bytes; therefore, any byte
within the partition can be addressed with 16 bits (hex 0000 through FFFFI. A
16-bit address is stored in the third and fourth byte of an object code instruction.

Example:

16-Bit Address

lop Code I I ~0100100 10110000,'1

Hexadecimal 2461

Addressing an Object Code Instruction

Because object code instructions begin on 4-byte boundaries, the last 2 bits of the
16-bit address are always zeros. These 2 bits can be used for flags; the high-order
14 bits are used to address the instruction. In an object code instruction, a 14-bit
address is stored in the high-order 14 bits of the third and fourth bytes as follows:

Instruction Displacement

Hexadecimal 1394
14-Bit Address

Flag Bits

In certain branch instructions, the label in the source instruction is converted to a
displacement rather than to an address. An instruction displacement is the number
of 4-byte object code instructions from the next sequential instruction to skip
if the branch is taken. An instruction displacement is 8 bits long and is stored in
the fourth byte of an object code instruction. A positive displacement can cause
a forward jump of up to 128 object code instructions. A negative displacement
is stored in the twos complement of the displacement value. A negative displace­
ment causes a backward jump of up to 128 object code instructions from the
instruction following the branch instruction.

(

Addressing a Decimal Register

Each decimal register begins on a 16-byte boundary from hexadecimal 0100 to
OFFO (relative to the beginning of the partition).

In a source program. a decimal register is specified by a register number or a label.
which is converted to a 16-bit address in the object code. A" 16-bit addresses for
decimal registers begin and end with zero. as the following chart shows:

R62 is stored at location hex 04EO.

Hex 00 10 20 30 40 50 60 70 80 90 AO 80 CO DO ~O FO
01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 114 15
02 16 17 18 19 20 21 22 23 24 25 26 27 28 29 0 31
03 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4~ 47 • -~- -4&- -49- -59- -5+ -52- -&8 -54- -55 -5& -&=l -5& -59 ~& -&1 -~2 63
05 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
06 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
07 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
08 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

09 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
OA 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
08 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
OC 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

OD 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

OE 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
OF 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

Fo"owing is an alternative method to convert a register number (using R62 as an
example) to a 16-bit address:

1. Multiply the register number by 16: 16 x 62 = 992

2. Convert the product to hexadecimal: decimal 992 = hexadecimal 03EO

3. Add hexadecimal 0100: 03EO + 0100 = 04EO

When the program is assembled. the 16-bit address is compressed to an a-bit address:

16-Bit 8-Bit
1. Remove the zeros from Address Address

the beginning and end 04EO-4E -E4
of the 16-bit address. _____________ T-J T
Reverse the remaining
two digits.

2.

Object Code I nstruction Format 155

156

Addressing a Binary Register

Each binary register begins on a 2·byte boundary from hexadecimal 0100 to 01 FE
(relative to the beginning of the partition). In a source program, a binary register is
specified bya register number or a label, which is converted to a 16·bit address in
the object code. All 16~bit addresses for binary registers begin with 01, as the
following chart shows:

BR62 is stored at location hex 0U-C.

Hex 0 2 4 6 8 A (C E
010 0 1 2 3 4 5 13 7
011 8 9 10 11 12 13 1~ 15
012 16 17 18 19 20 21 2~ 23
013 24 25 26 27 28 29 3P 31
014 32 33 34 35 36 37 at 39
015 40 41 42 43 44 45 44i 47

9.1!i 48 49 50 51 52 53 54 55 • 1(017 .66-~ 68 1-69 1-6EI 1-&1 ~Z 63
018 64 65 66 67 68 69 70 71
019 72 73 74 75 76 77 78 79
01.4 80 81 82 83 84 85 86 87
018 88 89 90 91 92 93 94 95
01C 96 97 98 99 100 101 102 103
01ll 104 105 106 107 108 109 110 111
01E 112 113 114 115 116 117 118 119
01F 120 121 122 123 124 125 126 127

Following is an alternative method to convert a binary register number (using BR62
as an example) to a 16·bit address:

1. Multiply the register number by 2: 62 x 2 = 124

2. Convert the result to hexadecimal: decimal 124 = hexadecimal 007C

3. Add hexadecimal 0100: 007C + 0100 = 017C

If a binary double register is referred to in a source instruction, tim address in thll
object code is the address of the rightmost register.

(

(

£
\

When the source program is assembled, the 16-bit address for a binary register is
compressed to a 7-bit address:

16-Bit
Address
~ f

7-Bit
Address

1.
017C-7C-0111 1100

Remove01---------------------------------=r-~

2. Because the last bit of
the binary representation
of the remaining two
digits is always 0, that
bit can be used as a flag. --------------------------------'

Indicator Addressing

An indicator is specified in a source instruction with a label or a decimal number
(10 to 1254). This label or decimal number is converted to the hexadecimal repre-
sentation of the indicator number in the object code.

For example:

Binary Value
Indicator Hex Stored in the
Number Value Instruction

147 2F 00101111
106 06 00000110
1126 7E 01111110

Object Code Instruction Format 157

158

Addressing through a System Table

In a source program, a format, prompt, data table, or main storage duplication area
is referred to with a label. In the object code, this label is converted to an index
into a system table. This system table holds the addresses of the labeled data areas,
and the index specifies the position in the system table where the appropriate address
is stored. The index for a format or table is stored in one byte of the object code
instruction; however, the index for a prompt or main storage duplication area is
stored within the screen format control string. Except for prompts, the first address
in a system table is at index o. The following chart shows the valid range for the
system table index for each type of data area:

Type

Screen format
Edit format
Data table
Prompt
Duplication area

Valid
Index
Values

0-255
0-127
0-127
l-(see note)
O-(see note)

Note: The number of prompts and duplication areas is limited only by storage
size and performance considerations.

The formats of the system tables are described in Chapter 2 under System Tables.

ADDRESSING METHODS OUTSIDE THE PARTITION

A 20-bit address must be used to address any location outside the partition. The
format of a 20-bit address is a 16-bit address preceded by a 4-bit storage page
number. Main storage is divided into storage pages; each storage page is 64 K bytes
(K = 1024 bytes). A page with less than 64 K bytes is a partial page. The 16-bit
address can address any byte within the page; therefore, the 20-bit address that
includes the page number can address any byte within main storage.

An instruction never contains a 20-bit address. In a source program, the 20-bit
address must be stored in a double binary register. When a source instruction refers
to the 20-bit address, it specifies the label or number of the leftmost register of the
double binary register that holds the address. The assembler converts the register
specification to a 7-bit compressed address of the rightmost register of the double
register that holds the address. For example, a source program has a 20-bit address
stored in BR100 and BR10l. The source instruction specifies BR100(4), where
the 4 represents a length of 4 bytes. The assembler stores the 7-bit compressed
address of B R 101 in the object code instruction; the flag bit is set to 1 to indicate
that the register is part of a double register that holds a 20-bit address. B R1 01 holds
the 16-bit address and the low-order 4 bits of BR100 specify the page number.

(

(

BR100 BR101

'-------16-Bit Address

'-------------l"cICle Number (0 to 3)

Addressing through a System Table

Format and tables stored in the common area are available to any partition. When a
source program specifies that the format or table is in the common area (with an
.XTRN control statement), the format or table is assigned a system table index
that is greater than a valid index for a table or format within the partition. The
following chart shows the range for a system table index for data areas outside the
partition:

Type

Screen format
Edit format
Data table

Valid
Index
Values

256-512
128-254
128-254

For edit formats and data tables, the index is stored in one byte of the object code
instruction. For screen formats, a bit is set in the object code for the enter instruc­
tion (hex CF) to indicate that the screen format is in the common area.

CONSTANTS

In a source program, a constant can be specified (1) as a decimal, hexadecimal, or
binary value, (2) as a character, or (3) with a label that is equated to a value. In the
object code, any form of constant is stored in the object code as immediate data.
The following list shows the kinds of constants that are used in a source program.

• Data set number: The number of the current data set. The number can be any
number from hexadecimal 1 to F and requires 4 bits of object code.

• Length: The length of data being used by the instruction.

• Displacement: The displacement into a data area; usually an optional parameter
in a data movement instruction.

• Mask: A pattern of bits used in skip operations. Each mask requires 8 bits.

Object Code Instruction Format 159

INSTRUCTION FORMAT

Mnemonic to Op Code Conversion Chart "

'-, ./

The object code instructions in this chapter are in op code (hexadecimal) order. If
It Is necessary to find an object code instruction by assembler language mnemonic,
use the following chart to find the op code. The mnemonics in the chart are listed
In alphabetic order.

Op Op
Mnemonic Code Mnemonic Code

ALLOC 34 d(len,BRa) • BRb A3
AND 42 d(BRn) • constant B9
BINDEC AS d,Rn • constant 44
BINHEX 49 d(len,BRn) • Rn 7L
BRa· BRb 98 DECBIN A7
BRa<·> BRb 415 DECR BRn 06
BRn • constant 99 DISPEX C7
BRn(4) .- 96 OISPST C7
BRn(4) -+ = nn 96 OUP BD
BRn(4)· = nn 97 DVCTL 3D
BRn(4) += 94 ENABLE OC
BRn [(4)] 1= AB ENTR CF
BRn&- 9A EXIT 2F
BRn &= d(len,BRn) BA GOTAB BRn 08
BRn &- nn 9B GOTO 00
BRn V= 9C GOTO BRn (indexed) 08 ",
BRn V= d(len,BRn) BC GSCK 48
BRn V= nn 90 HEXBIN 4A
BRn X= 9E IF BRn EQ 6E
BRn X= d(len,BRn) BE IF BRn GE/LE 6F
BRn X= nn 9F IF BRn GT/LT 60
BRn += 90 IF BRn NE 6C
BRn -= 92 IF BRn 0 03
BRn * = AA IF FMT 02
BRn + = d(len,BRn) BO IF Rn AN 00
BRn - = d(len,BRn) B2 IF Rn CK OE
BRn = (indexed) B8 IF Rn EO 62
BRn - = n 93 IF Rn GE/LE 63
BRn += n 91 IF Rn GT/L T 61
BRn(4) + = d(len,BRn) B4 IF Rn NE 60
BRn(4) - = d(len,BRn) B6 IF Rn SN OF
BRn = Rn A7 IF Rn 0 01
BUZZ C7 IF Rn- 05
CALL OB IFB IS BB
CALLTB OB IFB OFF B5
CLC AE IFBON B7
CLICK C7 IFC IS 4E
CLOZ 23 IFC NOT 4C
CNENTR C7 IFD Rn EO 66
CRTMM CA

;<

160

----- ------~------------ ---- ---- - - -- - - -- -- - - - -- -

Op Op
Mnemonic Code Mnemonic Code

(IFD Rn GE/lE 67 Rn - 11
IFD Rn GT/lT 66 Rn + 10
IFD Rn NE 64 Rn * 18
IFDSI 26 Rn I 17
IFH BRn EO 6A Rn(32) * 16
IFH BRn GE/lE 6B Rn (32) I 12
IFH BRn GT/l T 69 Rn .. BRn A6
IFHI 42 Rn II dOen,BRn) 7l
IFlln 07 Rn -label 8l
IFIR In 04 Rn • +nn 46

IFLO 42 Rn • -nn 47

INIT 33 RR A1

INSBLK 32 RSTMG C7

INXEO A6 RTIMER C7

KACCPT C7 RXORW 43
KATTCH C4 SCRTC C9

KDETCH C6 SEARCH 24

KERRCL C7 SETOFF B3

KERRST C7 SETON B1

KEYOP C7 SKIP WHILE AO

label = BRn A2 SL (binary) A1

label = constant 44 SL (decimal) 1C

label = Rn BL SLS 10

label = SL n A1 SOFF 41

LCRTC CB SON 40
If LOAD 2E SR (binary) A1
':(MMCRT CB SR (decimal) 16

MOFF 1A SRAT 2B
MVC AC SRR 1F
MVC(BRn(4)) A4 SRS 1E
MVCR AC SYSlCK 2C
MVCV AC SYSUNl 2D
MVER 19 TBBS 55
NOP 00 TBDl 57
OPEN 22 TBFH 50

PAUSE 4F TBFl 54

PDUMP 4F TBFX 53

POSN 26 TBIN 56

READ 20 TBRD 52

READMG C7 TBRl 52

REBF 21 TBWE 51

REPlFD C3 TBWT 51

RESCAl CD TClOZ 3F

RESMXT CD TCTl 3F

RESUME CD TINIT 22

RETEXT OC TlCK 58

RETURN OC TOPEN 22

Rl A1 TRANS A8

Rn = 14 TREAD 2A

Rn<=> 13

I
,""

Object Code Instruction Format 161

162

Op Op
Mnemonic Code Mnemonic Code

TROFF 4F WAIT. 36
TRON 4F WFMCRT 3E
TRT A9 WRBF 3C
TTERM 23 WRT 30
TUNLCK 59 WRTI 31
TWAIT 36 WRTS 35
TWRT 3A ZONE 1B

Unconditional Branch (GOTO/NOP)

Source:
GOTO
NOP instruction label

I
1

I I
1

I Object: 00 00 @

0 8 15 ; 31

D

D Branch address: Branch to the instruction at this address. For NOP, this is the
address of the next instruction.

The microprocessor branches to the branch address.

/ '\
I

'" >y

(

(

(

Test Decimal Register for 0 (Zero} or Blank (IF Rn O}

Source: IF Rn [~oJ OGaTa instruction label

1 1 I

~ I ; I Object: I 01 I @ I
0 8 I 15 J 29 31

D fJ II

D Test register address: Test the register at this address.

fJ Branch address: Branch to the instruction at this address.

II Bits:
00 = IS
01 = NOT

The microprocessor branches to the branch address if:

• The test register contains zeros (hex FOs} or blanks (hex 40s} and IS is specified.

• Any byte of the test register contains a value other than blank or zero and NOT
is specified.

Object Code Instruction Format 163

164

Test Format Number (IF fmd

Source: IF fmt label C:oJ FMT GOTO Instr ctlon label

Object: 02
~o~------~--~--~--~~--~~~

.. III

.. Format: The number (hex 01·FE) of the formet to use.

a Branch address: Branch to the Instruction at this address.

• Bits:
OO-IS
01- NOT

The microprocessor branches to the branch address if:

• The format number is equal to the last format used and IS is specified

• The format number is not equal to the last format used and NOT is specified

The format number of the last format used is in the partition lOB at displacement
hex 10.

(

(

Test Binary Register for Zero (IF BRn 0)

BRn [~OTJ 0 GOTO instruction label

Object: .10 __ 03_~18_1+-! ~~"I!!-.I--I-~-~J-;~31
IF

1
Source:

..
II
II
II

.. II II II

Test register address: Test the register at this address.
"

Bit 16 is O.

Branch address: Branch to the instruction at this address.

Bits:
00 = IS
01 = NOT

The microprocessor branches to the branch address if:

• The register contains zeros (hex OOs) and IS is specified

• The register contains a value other than zeros and NOT is specified

Object Code Instruction Format 166

166

Test and Reset Indicator (lFIR In)

[~OTJ Source: IFIR In ON GOTO instruction label

I I
I

l i I ; I Object: I 04 I f
0 8 J 15 I 29 I 31

D rJ II

D Indicator: The indicator number (hex oo-FE) of the indicator to test. The
indicator number is mandatory.

fJ Branch address: Branch to the instruction at this address.

II Bits:
00= IS
01 = NOT

The microprocessor branches to the branch address if:

• The indicator is on and IS is specified

• The indicator is off and NOT is specified

The microprocessor turns off (resets) the indicator whether it branches or not.

/

(

Test Decimal Register for Negative (IF Rn-)

IF Rn [~OTJ - GOTO instruction label

Object' I I5 I ! II -~ II~ I
Source:

~O--------~8~J~'--~1~5~~J~----~~~/+~ -3~1

II fJ II

.. Test register address: Test the register at this address.

fJ Branch address: Branch to the instruction at this address.

II Bits:
00 = IS
01 = NOT

The microprocessor branches to the branch address if:

• The zone portion of the rightmost byte in decimal register is hex D and IS is
specified

• The zone portion of the rightmost byte in the register is not hex D and NOT is
specified

Object Code Instruction Format 167

168

Decrement Binary Register and Test for Zero (DECR BRn)

Source: DECR BRn GOTO instruction label

I } I pi ~ 110 I Object: 06
0 8 /15 I 29 31

D fJ II II

D Test register address: Test the register at this address.

fJ . Bit 15 is O.

II Branch address: Branch to the instruction at this address.

II Bits 30 and 31 are 00.

Each time this instruction is executed, the contents of the test register decrement
by one and are then tested for zero. If the contents are not zero, the microprocessor
branches to the branch address.

Test Indicator (IF In)

Source: IFI In [~OTJ ON GOTO instruction label

1 1 I ~
I

I I; I Object: 07 I. I
0 8 I 15 29 . 31

D fJ II

D Indicator: The indicator number (hex ~O-FE) of the indicator to test.

fJ Branch address: Branch to the instruction at this address.

II Bits 30 and 31:
00= IS
01 = NOT

The microprocessor branches to the branch address if:

• The indicator is on and IS is specified

• The indicator is off and NOT is specified

., "

I"
\

Indexed Branch (GOTO BRn/GOTAB BRn)

GOTO BRn
Source: GOTO BRn instruction label

GOTAB
I

Object: I 08 I
BR~I ~I·l

I
0 8 r 15 31

DB IJ

D Index register address: The address of the register that contains the index.
BRa cannot be used as an index register.

II Bit 15:

II

0= GOTO
1 = GOTAB

Note: If bit 15 is 1, the microprocessor uses the table address and branches
via that table.

Branch address or table address: Branch to the instruction at this address, or
use this table to find the branch address.

Note: This address is all zeros if a GOTO is specified with no instruction label
operand.

If bit 15 is 0, the microprocessor adds the contents of the index register to the
branch address and branches to the resulting address. If no label is specified, an
indirect branch is made to the address in the index register D .
If bit 15 is 1, the microprocessor branches to the address in the table entry indicated
by the index register, using the table indicated by II. If the index is 0, the first
address in the table is used.

Object Code Instruction Format 169

170

Subroutine Call (CALL/CALL TB)

CALL BRn
Source: CALL BRn instruction label

CALLTB Brr) table label
I

~ I ~ I DB
0 8 I 2931

Object:

D fI II II

II Index register address: The address of the register that contains the index.

B Bit 15:
0= CALL
1 = CALL TB

II Branch address for CALL: Branch to the instruction at this address.

Note: This address is all zeros if no instruction is specified.

Table address for CALL TB: The address of the table.

II Bits 30 and 31 for CALL:
00 = Current area
01 = Common function area 1
10 = Base area
11 = Common function area 2

Bits ,30 and 31 for CALL TB: The last 2 bits of the table address.

Note: Bits 0-15 of the table entry correspond to bits 16-31 of the CALL instruc­
tion. Bits 14 and 15 of the table entry may contain the common function flags
described for bits 30 and 31 of the CALL instruction.

If bit 15 is 0, the microprocessor adds the contents of the index register to the
branch address and branches to the resulting address. If bit 15 is 1, the micro­
processor branches to the address in the table entry indicated by the index
register, using the table indicated by II. If the index is 0, the first address in the
table is used.

",

", /'

(
Execution Sequence

The CALL or CALL TB instruction causes the microprocessor to stop executing
instructions in the main program and branch to a subroutine.

Following is the main microprocessor execution sequence for the CALL and
CALL TB instructions:

Start

I
Place the next sequential instruction address
into the subroutine stack at the location
pointed to by BR18.

I
Add 2 to the value in BR18.

I
Is the instruction a CALL instruction
(bit 15 = a)?

~I ----yeS~NO------------------~
Are bits 8 through 15
all zeros?

IYe'~NO---"
Branch to the Add the contents of
instru:;tion
addressed in
bits 16 through
29.

B Rn to the address in
bits 16 through 29 and
branch to the resulting
address.

Get the subroutine address
from the table addressed
in bits 16 through 31.
BRn contains the index into
the table that contains the
subroutine address.

I
Are common function flags zero?

r--------NO~YeS------__,
Branch to the
common area.

Branch within the
partition.

Object Code Instruction Format 171

172

Subroutine Return or Enable Extarnal Statu. (RETURN/RETEXT/ENABLE)

RETURN ~BRnB Source: RETEXT (BRn)
ENABLE ; IInlt'Uj"n label [,POP] J

I
I Object: OC ~I ~ I ~ I 0 8 5 I 2931

aD II II

D Index register address for RETURN and RETEXT: The address of the
register that contains the index.

Note: This address is all zeros if no index register is specified, or if ENABLE
is specified.

D Bit 15:
0= RETURN
1 = RETEXT or ENABLE

II Branch address for ENABLE: Branch to the instruction at this address.

All zeros for RETURN and RETEXT.

a Bits 30 and 31:
00 = RETURN and RETEXT
00 = ENABLE, if POP is specified
01 = ENABLE, if POP is not specified

\. .. ./

(~

(

Execution Sequence

The RETURN instruction causes the microprocessor to stop executing the sub­
routine and return to the main program. RETEXT causes a return to the main
program, and the main microprocessor turns off the external status outstanding
bit in the status byte of the keyboard/display lOB. ENABLE causes the micro­
processor to turn off the external status bit and, if POP is specified, to decrement
the subroutine stack pointer, BR18.

Following is the main microprocessor execution sequence for the RETU RN,
RETEXT, and ENABLE instructions:

Start

I
Is this a RETURN instruction?

Yes------------~I~-----------NO
I

Turn off the external status
bit in the data set lOB.

I
Is this a RETEXT instruction?
(Bits 16 through 29 all zeros?)

1---------------- Yes ------l~-----No
Decrement BR18 contents by 2
to point to the return instruction
address in the subroutine stack.

I
Is an address in bits 16-29?

I
Yes

I

I
Is POP coded?
(Bits 29-31=00?)

I

Yes-----~I----------NO Decrement BR18

I I
Use this address as
the base address to
return to.

I

Use the address from
the subroutine stack
as the base address
to return to.

I
Is this a nonindexed instruction?

Yes------------~I-------------NO
I I

contents by 2.

Return to the Add the contents of BRn to the
base address. base address and return to the

instruction at the resulting
address.

Branch to the
address in
bits 16-29.

I
No

Object Code Instruction Format 173

174

Test Decimal Register for Absolute Number (IF Rn AN)

Source: IF

1
Rn [~OTJ AN GOTO instruction label

! 1,,---, -! / ~ I Object: OD I
o 8 (15 r 29 /31

D D II

.. Test register address: Test the register at this address.

D Branch address: Branch to the instruction at this address.

II Bits:
00= IS
01 = NOT

The microprocessor branches to the branch address if:

• The test register contains a valid positive number or all blanks (hex 40), and IS
is specified

• The test register does not contain a valid positive number, and NOT is specified

/'

(

Test Decimal Register for Self-Check Digit (IF Rn CK)

Source: IF

1
Object: OE

0 8 15 I 29 31

.. II II

.. Test register address: Test the register lit this address.

fJ Branch address: Branch to the instruction at this address.

II Bits:
00= IS
01 = NOT

The microprocessor branches to the branch address if:

• The self-check number in the test register is correct when it is checked by the
self-check algorithm, and IS is specified

• The self-check number in the test register is not correct and NOT is specified

Object Code Instruction Format 175

176

T8It Decimal Regl.ter for Signed Number IIF Rn SN)

Souroe: nltl'uc1:lan label

Object:

a Te.t regllter .dd,. .. : T .. t the reglstar at this .ddr

II Br.nch addr ••• : Branch to the Instruction at this addr'8I.

II Bits:
OO-IS
01 • NOT

The microprocessor branches to the branch address if:

• The test register contains a valid signed numeric value and IS is specified

• The test register does not contain a valid signed numeric value and NOT is
specified

./

(

(

Declmel Regllter Add (+)

[Rb + RO]
Source: RI • 0.8 + Rc

~
,Rb + 0-8

(I I~ I ~ I Object: 10
0 8 I 115 I 23 I 31

D • ..
D Result declmll regllter Iddr,,,.: The Iddre •• of the decimal regllter thet will

contlln the result of thll operation.

Note: If I clrry results out of the hlgh·order position in this register, the
overflow indicator 1124 is set on.

.. Factor 1 decimal register address: The address of the decimal register that
contlins factor 1, or a single·digit constant (hex 0·9) followed by hex O.

II Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single·digit constant (hex 0·9) followed by hex O.

This instruction algebraically adds the factor 1 value to the factor 2 value and stores
the sum in the result register.

Object Code Instruction Format 177

178

Decimal Register Subtract (-)

[Rb Rc]
Source: Ra 0-9 Rc

J

Rb 0-9

J
l

I Object: I 11 I I I @
(

0 8 15 23 I 31 .. IfJ II

.. Resultdecimal register address: The address of the decimal register that will
contain the result of this operation.

Note: If a carry results out of the high-order position in this register, the
overflow indicator 1124 is set on.

II Factor 1 decimal register address: The address of the decimal register that
contains factor 1, or a single-digit constant (hex 0-9) followed by hex O.

II Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or, a single-digit constant (hex 0-9) followed by hex O.

This instruction algebraically subtracts the factor 2 value from the factor 1 value
and stores the result in the result register.

/' ,

,,~_ ..J
,)

(~~

(

Decimal Double-Register Divide (I)

[~-:J Source: Ra Rb (32) /

~ i 1
Object: I 12 I I I ~ I

0 8 I 15 I 23 I 31

D fJ II

D Result decimal register address: The address of the decimal register that will
contain the quotient of this operation.

IfJ Factor 1 decimal register address: The address of the double decimal register
that contains factor 1.

Note: Factor 1 is replaced with the remainder.

II Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex O.

This instruction divides the factor 1 value by the factor 2 value. The result is
stored in the result register; the remainder is stored in the factor 1 register.

Note: If division by zero is attempted, the overflow indicator 1124 and the divide
error indicator 1120 are set on.

Decimal Register Exchange «=»

Source: Ra <=> Rb

I
I 1

I Object: I 13 @ @ I FF
! ,

I 0 8 I 15 I 23 31

D D fJ

D Decimal register addresses: The addresses of the decimal registers that
exchange contents.

fJ Set to hex FF.

This instruction swaps the contents of the specified decimal registers.

Object Code Instruction Format 179

180

Decimal Regllter Copy (.)

Source:

ObJect:

.. Rllult doclmol foglstor odetro.s: The addros. of the coplod-to decimal reglstor.

• Foctor 1 decimal register addrels: Thollddr8l. of tho decimal roglster that
contain. data to copy or a constant O-g.

Note: If a constant is used, it is placed in bits 16 througn 19, and bits 20
through 23 are filled with zeros.

II Set to hex FF.

The constant is copied into the result decimal register. The constant is placed into
byte 15 of the decimal register, and bytes 0 through 14 are filled with blanks (hex
405).

Decimal Double-Register Multiply (*)

CRb * 0-9J Source: Rar l : 0-9 * Rc

I I ,{ I ; I Object: 15 @
J

0 8 } 15 I 23 31

D fJ II

D Result decimal register address: The address of the double decimal register
that will contain the result of this operation.

fJ Factor 1 decimal register address: The address of the decimal register that
contains factor 1. or a single-digit constant (hex 0-9) followed by hex O.

II Factor 2 decimal register address: The address of the decimal register that
contains factor 2. or a single-digit constant (hex 0-9) followed by hex O.

This instruction multiplies the factor 1 value by the factor 2 value and stores the
product in the result double decimal register.

Decimal Reglltar Shift Right, Blank Pad (SR)

Source:

Object: [:
8 1 1& I

D •

SR
SR

23

1

[~':J
i

i :1

.. Rosult doclmlll fogistor addross: Tho oddrosl of tho docimlll rogistor that will
contllin the shifted datil upon complotion of this oporation.

a Shift decimal register address: The address of the decimal register that con·
tains the data to shift, or a constant 1 if you want to blank the result register.

Note: If a constant 1 is used, II must also be 1. This is the quickest way to
blank a decimal register.

II Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex O-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of the
register.

The bytes of the shift register are shifted right the number of bytes indicated by the
shift count, and the shifted result is placed into the result register. The high-order
bytes of the shifted result contain blanks (hex 40) for the number of positions
shifted. If a negative number is shifted right, the D-zone is shifted out of the register
and the register contents are no longer negative.

If a constant 1 is specified for the shift register. the bytes are shifted as thoughfJ
were a decimal register with decimal 1 in the rightmost byte. and bytes 0-14 were
blanks. The rightmost byte is shifted out of the register so the register contains
only blanks. These blanks replace the contents of the result register.

Object Code Instruction Format 181

182

Decimal Register Divide (I)

[~:J Source: Ra Rb I

I I { I ~ I ~ I Object: 17
0 8 I 15 .J 23 I 31 .. fJ II

D Result decimal register address: The address of the decimal register that will
contain the result of this operation ..

II Factor 1 decimal register address: The address of the factor 1 decimal register.

Note: Factor 1 is replaced by the remainder.

II Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex O.

This instruction divides the factor 1 value by the factor 2 value and stores the result
in the result register.

Note: If division by zero is attempted, the overflow indicator 1124 and the divide
error indicator 1120 are set on.

, ., j'

/

(

(

Decimal Register Multiply (*)

[~-;] Source: Ra ~Rb] *

f
0-9

I ~ ~ Object: 18 I I I I
0 8 15 J 23 J 31

0 fJ II

D Result decimal register address: The address of the decimal register that will
contain the result of this operation.

Note: If a carry occurs out of the high-order position in this register, the
overflow indicator 1124 and the multiply overflow indicator 1123 are set on.

II Factor 1 decimal register address: The address of the decimal register that
contains factor 1, or a single-digit constant (hex 0-9) followed by hex O.

II Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex O.

This instruction multiplies the factor 1 value by the factor 2 value and stores the
product in the result register.

Object Code Instruction Format 183

184

Decimal Registers, Move Partial Contents (MVER)

Source: MVER

Object: 19
o 8

D
15

Rb,

l
@ .
I

II 1111

.. Result decimal register address: The address of the decimal register that will
contain the moved data upon completion of this operation.

II From decimal register address: The address of the decimal register from
which data is moved. Data is moved left-to-right, starting with the byte that
is specified in the MVER instruction. The contents of the from register
remains unchanged.

II Byte count: The number minus 1 (hex Q-F) of bytes to be moved (that is,
the length operand minus 1).

Note: If this number of bytes plus the displacement II is greater than 16,
some of the data is moved into the register that follows the result register.

a Displacement: The offset (hex Q-F) into both registers of the leftmost byte
of data to move.

This instruction moves all or part of the contents of the from register into the
result register. The movement is from the specified offset in the from register to
the same offset in the result register.

f
(

(

Decimal Registers, Move Partial Contents with Offset (MOFF)

Source: MOFF

1
Object: 1A

o 8

(Ra,

I
@

I .. r
15 I

I I 23/31
fJ 1111

.. Result decimal register address: The address of the decimal register that will
contain the moved data.

fJ From decimal register address: The address of the decimal register from
which data is moved. The contents of the from register remain unchanged.

II Byte count: The number minus 1 (hex O-F) of bytes to move. (That is, the
length operand, minus 1.)

Note: If this number of bytes, plus the displacement II is greater than 16,
some of the data is moved into the register that foUows the result register.

II Displacement: The offset (hex O-F) into the result register of the leftmost
byte of moved data.

The rightmost number of bytes specified by II are moved from the IJ register to
the result register. The data is moved from left to right and placed in the result
register at the byte specified by offset.

The offset applies orily to the result register (Ra), so the move is not limited to
corresponding byte positions.

Note: If the sum of offset and length is greater than 16, bytes are moved into the
register foUowing the result register.

Object Code Instruction Format 185

186

Decimal Register Zone Modification (ZONE)

Source:

Object:
o

ZONE

1
18

8 I
D

15 I
fJ

, 0-15, 1-16)

l~ I I
23 I 31

liD

D Result decimal register address: The address of the decimal register that con­
tains bytes to modify. The contents of this register are modified with either
the zone modifying digit fJ or the zone portion of the rightmost character in
the specified register.

fJ Zone modifying digit: The digit (hex O-F) followed by hex 0, or the address
of the decimal register that contains the modifying digit.

II Length: The number minus 1 (hex O-F), of bytes to modify.

II Displacement: The offset (hex O-F) into the result register of the leftmost
byte to mod ify.

The bytes of the decimal result register (Ra) are modified, starting at the byte·
specified by offset and continuing to the right for the number of bytes specified by
length. The hex character specified by the operand replaces the original zone of
each byte specified. If the offset plus length exceeds 16 bytes, the bytes of the
next register are also modified.

(

:(

Decimal Register Shift Left, Blank Fill (SL)

[~-:J Source: Ra Rb SL

I ~ ~ co{nt Object: 1C I
0 8 15 I 23 J 31

D fJ II

D Result decimal register address: The address of the decimal register that will
contain the shifted data upon completion of this operation. The low-order
bytes of the result register are filled with blanks (hex 40). Data that is
shifted out of the high end of the register is lost.

o Shift decimal register address: The address of the decimal register that con­
tains the data to shift. The contents of this register remain unchanged.

II Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex O-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of
the register.

The bytes of the shift register are shifted left the number of bytes indicated by the
shift count, and the shifted result is placed into the result register. The low-order
positions of the shifted result contain blanks (hex 40s) for the number of positions
shifted. If a negative number is shifted left, the D-zone is shifted out of the units
position, and the register contents are no longer negative.

Object Code Instruction Format 187

188

Decimal Register Shift Left Signed (SLS)

Source: Ra '" Rb SLS[~:J

I ~ I { I oo~m I Object: I 10
0 8 16 I 23 I 31

D • ..
D Result decimal register address: The address of the decimal register that will

contain the shifted data upon completion of this operation. The low-order
bytes of the result register are filled with zeros (hex Fa). Data that is shifted
out of the high end of the register is lost.

fJ Shift decimal register address: The address of the decimal register that con­
tains the data to shift. The contents of this register remain unchanged.

.. Shift cOunt: The number of bytes to shift the data. The shift count can be
specified as a constant (hex a-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of
the register.

The bytes of the shift register are shifted left the number of bytes indicated by the
shift count, and the shifted result is placed into the result register. The low-order
bytes of the shifted result contain zeros (hex FOs) for the number of positions
shifted. If 8 negative number is shifted left, the units position of the rellult register
retains the O-zone.

,- ..

(

'(" r

Decimal Register Shift Right Signed (SRS)

Source:

Object: 1E
o

.. Result decimal register address: The address of the decimal register that will.
contain the shifted data upon completion of this operation. The high-order
bytes of the result register are filled with zeros (hex FO). Data that is shifted
out of the low end of the register is lost.

fJ Shift decimal register address: The address of the decimal register that con­
tains the data to shift. The contents of this register remain unchanged.

.. Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex O-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of
the register.

The bytes of the shift register are shifted right the number of bytes indicated by the
shift count, and the shifted result is placed into the result register. The high-order
bytes of the result register contain zeros (hex FOs) for the number of positions
shifted. Any blanks present are shifted without change. If the unshifted contents
of the shift register contained a negativlI value, the result register contains fl hex D
in the Zone portion of the rightmost byte. All other lones remain unchanged.

Object Code Instruction Format 189

190

D Result decimal register address: The address of the decimal register that will
contain the shifted data upon completion of this operation. The high-order
bytes of the result register are filled with zeros (hex FO). Data that is shifted
out of the low end of the register is lost.

To round the result, a 5 is used with the same sign as the sign that is in the
shift register; the 5 is added to the last byte of data that is shifted out of the
result register.

fI Shift decimal register address: The address of the decimal register that con­
tains the data to shift. The contents of this register remain unchanged.

II Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex O-F) followed by hex 0 or as a decimal register
that contains the shift count in the digits portion of the low-order byte of the
register.

The bytes of the shift register are shifted right the number of bytes indicated by
the shift count, and the shifted result is placed into the result register. The high­
order bytes of the shifted result contain zeros (hex FOs) for the number of bytes
shifted, and the units position of the shifted result retains the zone of the original
contents of the shift register. The result is rounded by adding 5 of like sign to the
last byte shifted out of the right end of the result register.

(

Read a Record from a Data Set (READ)

Source:

Object:

.. Bits:
8

o

READ

20

D fJ II

o = Sequential record access method

II

9
1 = Relative record or key access methods
0= Overlap mode (0 specified)
1 = Nonoverlap mode (N specified)

10 Not used, always zero
11 Not used, always zero

fJ Data set number: The number (hex 1-F) of the data set to be read.

II Format number: The number (hex 01-FE) of the format to use. If no for­
mat number is specified, this is hex FF. For a data directed read, this is hex
00.

II Record to read: The current record number in the lOB is set to the record
number that is to be read. The location of the record to be read can be:

• Rn for the address of the decimal register that contains the key to the
record.

• BRn for the address of the binary register that contains the relative record
number of the record.

• Hex 07 (- specified) for reading the previous record.

• Hex 08 (0 specified) for reading the current record.

• Hex 09 (+ specified) for reading the next record.

The current record number in the lOB is set to the record number that is to be
read. The specified record is read from diskette and put into the logical I/O buffer.
If formatting (fmt) is specified, data is formatted, moved from the logical I/O
buffer, and put into the storage indicated by the format.

Object Code Instruction Format 191

192

Formatted Read to Storage (REBF)

Source: REBF (BRa,

Object:

.. .
.. Read address: The address of the binary register that contains the address of

the leftmost byte of data to read into the storage.

II Format number: The number (hex 01-FE) of the format to use. For data
directed formatting, the * is specified and bits 16 through 23 contain hex 00.

Data is moved into the register specified by the DCLBL parameters of the format.
The number of bytes moved is determined by the LEN parameter, with editing
controlled by the ED IT parameter of the format.

(

(

Open a Data Set or Initialize Communications (OPEN/TOPEN/TINIT)

Source:
TINIT (dsn)
TOPEN· (dsn)
OPEN (dsn

Object: 22

II Bits:
8

o 11

.. II II

0= TIN IT, or OPEN for a diskette or printer.
1 = TOPEN.

9·10 Always 10
11 0 = 0 is omitted.

1 = 0 is specified to OPEN a printer data set for diagnostic purposes.

This option is only available for machines that have the start·stop printer at·
tachment for the IBM 5222 printer.

II Data set number: The number (hex ,·F) of the data set to be accessed.

II Binary register address: The 10 option for OPEN where the binary register
contains the storage address of the owner 10 information. This oPtional
owner 10 is stored on the volume label and is compared with the owner 10
in storage. If the diskette is secure, the 10 information in storage must match
the owner ID on the volume label in order for the OPEN operation to exe·
cute. If the diskette is not a secure diskette, the binary register is ignored.
The owner 10 information may be up to 14 characters long; if less than 14
characters are used, the owner 10 must be followed by a blank (hex 40). If
the binary register is omitted, or if this is a TINIT or TOPEN instruction,
this byte contains hex 00.

Note: Two commas must precede the binary register if it is included. If the
register is omitted, the commas are also omitted.

For SNA and MRJE, TINIT establishes the communications link and begins the
line connection for communications. For BSC, TlNIT establishes the linkage
between the application and CAM, but does not establish the link connection.

TOPEN sets the open flag in the communications lOB to indicate that the lOB is
opell.

OPEN sets the open flag in the diskette or printer data set lOB to indicate that the
data set is open. It adds the address of the data set lOB to the lOB chain, and
validates the .DATASET parameters in the lOB.

Object Code Instruction Format 193

194

When the open has completed, the data set's HDR1 label will be located in the first
128 bytes of the physical buffer except for pointer 1/0 and SCS data sets that have
the SW or ERS parameter specified in the .DATASET control statement. For a label
update data set, the VOL 1 label wi!! be saved instead of the HDR i iabeL The op
code byte in the data set lOB is replaced with hex 00. If there is an external status
for insufficient physical buffer size (3430), or two physical buffers specified with
unequal sizes (3435), or if any group 7 warning message is presented, the minimum
number of 128-byte blocks required for sufficient buffer size is placed into hex 78
of the data set lOB. If any other external status occurs, this number is not placed
into the lOB.

Close a Data Set or Terminate Communications (CLOZ/TTERM)

TTERM (dsn)

Source:

Object: 23
o 3

D fJ 11111111 II

D Close option for CLOZ

Bits: For a printer, bit 8 = 0 and bits 9-32 are ignored.
0100 = No label update, N specified; HDR1 label is not updated.
0101 = Normal close, no option specified.
0110 = Close and erase, E specified; EOD is set to BOE.
1100 = Close and release, R specified; EOE is set to EOD-1.
1110 = Close and delete, D specified; label is marked deleted.
0100 = TTERM

fJ Data set number: The number (hex 1-F) of the data set to be accessed.

II Write protect option for CLOZ. This affects the write-protect position on
the HDR11abei.

Bits 16 and 17:
00 = Leave write protect as is, no option specified
01 = Clear write protect, W specified
10 = Set write protect, P specified
00 = TTERM

(

(

II Verify and copy option for CLOZ. This affects the verify/copy position on
the HDR11abei.

Bits 18 and 19:
00 = Leave verify and copy as is, no option specified
01 = Clear verify and copy, * specified
10 = Set verify, V specified
11 = Set copy, C specified
00 = TTERM

II Multivolume option for CLOZ. This affects the multivolume positions on the
HDR1 label.

Bits 20 and 21:
00 = Leave multivolume as is, no option specified
01 = Clear multivolume, * specified
10 = Set continued volume, C specified
11 = Set last volume, L specified
00 = TTERM

II Bits 22 and 23: Not used, always 00.

II Multivolume number for CLOZ: The address of the binary register that con­
tains the volume number, or hex 00 if the multivolume option is not specified.
Hex 00 is also for TTERM.

The TTERM instruction terminates the logical connection between the application
program and the communications access method.

The CLOZ instruction removes the data set lOB from the lOB chain and resets the
open-flag in the lOB. If any records have been added, the EOD is updated as
appropriate. Any functions specified in the operand fields of the CLOZ instruction
are performed. When the CLOZ is completed, the op code in the lOB is reset to O.

For an erase type data set, the block length, record length, and EOD are updated on
the HDR1 label to the values in the lOB.

Object Code Instruction Format 195

196

Search a Data Set (SEARCH)

(dsn, BRn'm
----=..J

Source: SEARCH

Object: 24
~o~------~~~~~~~--r-~~~--~ .. fJ

D Type of search

Bits 8 through 11:
0100 = Binary search, B specified
0101 = Forward search, F specified
0110 = Reverse search, R specified

II

1110 = Logical record search, L specified

a

II Data set number: The number (hex 1-F) of the data set that the diskette
microprocessor is to search for a specified record. When the record is found,
it- is placed in the I/O buffer.

II The assembler sets this byte to hex FF; however, you can change it to a
format number, or to hex 00 for data directed formatting.

a Parameters' address: The address of a binary register that contains the address
of the search parameters. The search parameters must be prepared and stored
in main storage before the SEARCH instruction is issued. The format of the
search parameters is described following the purpose statement.

The search operation searches a data set for a record that agrees with the mask
specifications. If a match is found, the matching record is placed into the logical
record buffer and the search ends. If no match is found, the contents of the logical
buffer depend on the type of search performed.

A binary search operation searches for the relative record position within the data
set of a logical record that matches the mask. If a match is not found, the record in
the relative record position following the position where the record would have been
located is placed into the logical buffer and an external status (3702) is reported. If
the record would have been beyond EOD, an external status (3703) is reported, and
the last record is placed into the logical buffer.

/

(

A sequential search operation searches a data set for a record that matches one or
more mask specifications. Multiple mask specifications include the relational
operators. AND and OR, with AND having priority over OR. If no match is
found, the last logical record (for a forward search) or the first logical record (for
a reverse search) is placed into the logical record buffer and an external status
(3702) is reported.

The .format of the search parameters is as follows:

For a Binary Search

Byte Contents

0-1 Length of the mask
2-3 Field position in which to begin search
4-n Mask

Only one mask specification may be used.

Example: The following mask specification uses a binary search to search a data
set for a record containing 137 in position 15.

Length Mask --- -----­X'0003000FFl F3F7' -...-
Position

For a Forward Search, Reverse Search, or Logical Record Search

Byte Contents

0-1 Length of the mask
2 Relative and logical operators. The 5280 does not check bits 0 and

1 when it processes the first mask specification. However, every
following mask specification must have either bit 0 or bit 1 (but not
both) turned on. Each mask specification can have one, and only
one, of bits 2-7 turned on. If more than one is on, an external
status (3417) is presented.

Bit Meaning if 1

o Logical AND
1 Logical OR
2 L T (less than)
3 GT (greater than)
4 LE (less than or equal)
5 GE (greater than or equal)
6 EQ (equal)
7 NE (not equal)

Object Code Instruction Format 197

198

Byte Contents

3-4
5-6
7-n

Field position in which to begin search.
Field position in which to end search.
Mask.

The mask specification can be repeated from byte O. Follow the mask in the last
specification with X'OOOO'to indicate the end.

Example of a Forward Search:

The following mask specifications search a data set for a record that satisfies one of
the following three conditions:

1. Contains 'ABC' in positions 1-5.

2. Contains 'DE' in positions.1-10 AND 'FGH' is not in positions 1-5.

3. Contains 'ABCDE' in positions 6-20.

Mask OR Mask AND Mask OR Mask

El ;::~, I,~w liQ ~~~_ liE ~"n1~ liQ ~"~,,,~Lrn~%j",'
Xl0 3020001 0005c 1~(;30002420001 000Ac4cbOOO381 00010005C6C7CHOO054200060014Cl r.?('~r.4C50000' s:7 m'T"'T ~ TTs::~""" ·""1 s:;~""'"'),(~i.I<1'<i1\""'~·';:;~! .
~ Specification

Length Lengt Length Length
of Mask of Mask of Mask of Mask

(

(

Test Data Set Status Indicators UFDSJ)

Source: IFDSI in, dsn [~OT] ON GOTO instruction label

1
Object: 25 I } ! ~ I ~I 1:-,1

D

fJ

II

II

o

Data set status indicator number: The number of the status indicator (hex
O-F) to be tested. Indicator numbers 0-7 test bits 0-7 of lOB byte O. Indicator
numbers 8-F test bits 0-7 of lOB byte 13.

Data set number: The number (hex 1-F) of the data set to be accessed.

Branch address: The address of the instruction the microprocessor branches
to if the diskette data set status conditions are met.

Bits 30 and 31:
00 = IS-branch to the instruction II if the specified indicator" is on.
01 = NOT -branch to the instruction II if the specified indicator Dis

not on.

The microprocessor branches to the branch address if:

• The specified indicators are on and IS is specified.

• The specified indicators are off and NOT is specified.

• This instruction does not implicitly check for external status.

Object Code Instruction Format 199

200

Position Diskette (POSN)

rOE] Source: POSN
CURR [~]) (dsn, LAST

EOD I I

Object: 26
0 .. fJ

.. Record pointer: Position the data set pointer by the diskette microprocessor
to the record specified or read a specified record into the buffer.

Bit
Settings Meaning

OxOO Set the current record counter to zero, BOE specified.

Ox01 Read a new copy of the current record from diskette, CURR
specified.

Ox10 Set the current record counter to the number of the last logical
record in the data set, and read it from the diskette, LAST
specified.

1 xOO Set the current record counter to the record number following
the last record, EOD specified.

)('" 0 Overlapped (0 specified).
x'" 1 Nonoverlapped (N specified).

• Data set number: The number (hex 1·F) of the data set to be accessed.

This operation modifies the contents of the current record counter. If CURR or
LAST is specified, the logical record indicated is read into the physical buffer.

" ",
"~ //

(

Communications SCS Conversion (COMMSCS)

Source: COMMSCS ([BRN])

Object: 27 00 00 @

o 8 15 23 7 31 ..
.. This binary register contains the 16 bit address of a presentation services

control block (PSCB) that contains all of the data and work areas re­
quired for execution of this instruction. The PSCB must reside in the
same partition from which the call is made and must start on a 128-
byte boundary.

PSCB Format

The format of the PSCB is as follows:

Bytes

o

2

Contents

FM Header information (does not have to be initialized by caller).

Request unit data type.
Bits 6 and 7 are

00 = MRJE
01 = SNA
10 = BSC 3741
11 = BSC 3780

Print data stream indicator, SNA and BSC only.
X'30' = print data stream
Other = nonprint data stream

3 Media type, MRJE only.
X'OO' = console data stream, obtained from RCB '"' X'91'
X'20' = card data stream, obtained from RCB '" X'95'
X'30' = print data stream, obtained from RCB .. X'94'

4 Compression indicator.
B'xxxxx 1 xx' = compressed
Other = noncompressed

(SNA-SDlC and BSC only)

4-5 MRJE data request unit continuation address. This is the relative
address of either an RCB that caused a media change or an unsupported
RCB (MRJE only).

Object Code Instruction Format 201

202

6-7

8

9-B

COD

E-F

10

11-13

14

15

16-18

19

1A-1B

1C-lD

Data request unit starting address, relative within partition_ For com­
pressed SNA data, the first byte of the first request unit must be an
SCB_ For MRJE, the first byte must be an RCB.

System use only. Must be initialized to O.

Logical record starting address, absolute.

Data request unit length. For M RJE, the data request unit length need
not be specified.

Logical record length. For print stream, the length must be at least 15
bytes in order to handle set horizontal format (SHF), set vertical format
(SVF). and an initial carriage movement to the top and left margins
when first called.

System use only. Must be initialized to O.

Vertical tab table starting address, absolute. For print system only.
See description of vertical tab table in this section.

Vertical tab table length. Must be equal to or greater than 4 bytes in
length.

System use only. Must be initialized to O.

Horizontal tab table starting address, absolute. For print stream only.
See description of horizontal tab table in this section.

Horizontal tab table length. Must be equal to or greater than 3 bytes in
length.

Actual number of bytes returned in the logical record.

Return code. The user can enter an instruction code when calling
COMMSCS and will receive a return code when COMMSCS returns
control. The caller must not alter this return code if the SCS processor
is to continue from the current point when recalled.

lE System use only. Must be initialized to O.

(

(

User Actions

For SNA, on the first call the user should:

• Initialize byte X'S' to X'OO'.
• Provide the beginning address of the logical record in X'9-B' of the PSCB.
• Provide the beginning address of the data request unit (the first byte of the in­

coming data to be processed) in X'6-l' of the PSCB.
• Provide the number of bytes of the logical record in X'E-F' of the PSCB.
• Provide the number of bytes of the data request unit to be processed (only data

bytes, not header bytes) in X'C-D' of the PSCB.
• Initialize byte X'15' to X'OO'.
• Provide the horizontal tab table address in X'16-1S' of the PSCB.
• Provide the horizontal tab table length in X'19' of the PSCB.
• Initialize byte X'10' to X'OO'.
• Provide the vertical tab table address in X'11-13' of the PSCB.
• Provide the vertical tab table length in X'14' of the PSCB.
• Set byte 1 on the PSCB to indicate SNA processing.
• Set byte 2 of the PSCB to indicate print or nonprint as the data set type.
• Set byte 4 of the PSCB to indicate compression status.
• Set X'lC-l D' of the PSCB (return code) to X'S015' (begin).
• Initialize byte X'lE' to X'OO'.

After receiving "END OF LR" (X'0414') as the return code, the caller should:

• Give the processed logical record to the proper utility to be printed.
• Obtain a new logical record and place its beginning address and length into the

PSCB, or use the same one again by leaving the address and length unchanged.
• Call again, leaving the return code untouched, to continue processing the data

request unit.

After receiving "END OF RU" (X'03l3') as the return code, the caller should:

• If the final data request unit was just processed, look at the number of bytes in
the logical record to determine if any processed bytes remain that should be sent
to the utility.

• If more data request units are to be processed for this data set, obtain the next
request unit and place its beginning address and length into the PSCB.

• Call again, leaving the return code untouched, to continue processing the next
data request unit.

If on the first call, the user places the vertical tab table and the horizontal tab table
beginning addresses and lengths into the PSCB, the user will not have to do this
again on succeeding calls.

Object Code Instruction Format 203

204

For BSC on the first call the user should:

• Provide the beginning address of the logical record in X'9·B' of the PSCB.
• Provide the beginning address of the data request unit (the first byte of the in·

coming data to be processed) in X'6·7' of the PSCB.
• Provide the number of bytes of the logical record in X'E·F' of the PSCB.
• Provide the number of bytes of the data request unit to be processed (only data

bytes, not header bytes) in X'C·D' of the PSCB.
• Initialize byte X'15' to X'OO'.
• Provide the horizontal tab table address in X'16·1S' of the PSCB.
• Provide the horizontal tab table length in X'19' of the PSCB.
• Initialize byte X'10' to X'OO'.
• Provide the vertical tab table address in X'll·l3' of the PSCB.
• Provide the vertical tab table length in X'14' of the PSCB.
• Set byte 0 of the PSCB to indicate BUSYNC processing.
• Set byte 1 of the PSCB to indicate print or nonprint as the data set type.
• Set X'lC·1D' of the PSCB (return code) to X'80l5' (begin).
• Initialize byte X'lE' to X'OO'.

After receiving "END OF LR" (X'04l4') as the return code, the caller should:

• Give the processed logical record to the proper utility to be printed.
• Obtain a new logical record and place its beginning address and length into the

PSCB, or use the same one again by leaving the address and length unchanged.
• Call again, leaving the return code untouched, to continue processing the data

request unit.

After receiving "END OF RU" (X'03l3') as the return code, the caller should:

• If the final data request unit was just processed, look at the number of bytes in
the logical record to determine if any processed bytes remain that should be sent
to the utility.

• If more data request units are to be processed for·this data set, obtain the next
request unit and place its beginning address and length into the PSCB.

• Call again, leaving the return code untouched, to continue processing the next
data request unit.

If on the first call, the user places the vertical tab table and the horizontal tab
table beginning addresses and lengths into the PSCB, the user will not have to do
this again on succeeding calls.

(

For MRJE, on the first call the user should:

• Provide the beginning address of the logical record in X'9·B' of the PSCB,
• Provide the beginning address of the data request unit (the first byte of the

incoming data to be processed I in the X'6·7' of the PSCB,
• Provide the number of bytes of the logical record in X'E·F' of the PSCB,
• Initialize byte X'15' to X'OO',
• Provide the horizontal tab table address in X'16·1S' of the PSCB,
• Provide the horizontal tab table length in X'19' of the PSCB,
• Initialize byte X'10' to X'OO',
• Provide the vertical tab table address in X'11·13' of the PSCB,
• Provide the vertical tab table length in X'14' of the PSCB,
• Set byte 0 of the PSCB to indicate MRJE processing,
• SetX'1C·1 D' of the PSCB (return codel to X'S01S' (beginl,
• Initialize byte X'1E' to X'OO',

After receiving "END OF LR" (X '0414'1 as the return code, the caller should:

• Give the processed logical record to the proper utility to be printed,
• Obtain a new logical record and place its beginning address and length into the

PSCB, or use the same one again by leaving the address and length unchanged,
• Call again, leaving the return code untouched, to continue processing the data

request unit,

Object Code Instruction Format 205

206

After receiving "END OF RU" (X'0313') as the return code, the caller should:

• If there are more data request units to process, toen obtain the next data
request unit and place its beginning address into the PSCB. Then call again,
leaving the return code untouched, to continue processing the next data
request unit.

• If the caller knows that the last data request unit available to him was just
processed, look at the number of bytes in the LR to determine if there are
processed bytes that should be sent to the utility to be printed or displayed.
Also the caller sets the return code to middle of page (X'8017') when a data
request unit becomes available that is part of the same data stream as a
previous data request unit. This allows printing to continue from the
middle of a printed page.

After receiving "MEDIA TYPE CHANGED" (X'5018') as the return code, the
caller should:

• Give the processed logical record to the utility.
• Determine the new media type and obtain a new logical record and place its

beginning address and its proper length in the M RJE PSCB.
• Get the address of the RCB that caused the media change from X'4·5' of the

PSCB and store it as the begin address of the data request unit pointing to
the first RCB to be processed.

• Set the return code to X'8015' because this condition is now the same as on
the first call.

• If resuming an interrupted printer data stream, set the return code to X'8017'
to retain CAM information. Also set byte 3 to X'30' (printer data code), and
turn on bit X'80' in byte 44 for SCS processing.

After receiving "INVALID RCB" (X'5516') as the return code, the caller
should:

• Get the address of the invalid RCB from X'4·5' of the PSCB and change it to
the next RCB, then store it back in X'4-5'. Handle the invalid RCB properly
because it is control information.

• Leave the return code alone and call again, so this new RCB will be processed
as though an invalid RCB was never detected.

After receiving "PARAMETER ERROR" (X'1005') or "BAD SCB" (X'6006') as
the return code, the caller should:

• Handle the error properly.
• Set the return code to X'8015' on the next call.

,/

/
!

(

Return Codes

The valid values of the return code field (X'lC-1D of the PSCB) are:

Value

X'8015'

X'1005'

X'1003'

X'100l'

X'04l4'

X'03l3'

Meaning

This value must be set by the user at the time of the first call.

Returned when a function or value parameter is detected that
contains an invalid code for that parameter, or when the number
of bytes assigned to either the horizontal tab table or the
vertical tab table is insufficient to handle the parameter count
attached to the SHF or SVF (too many tab stop values to fit
into the tab table).

Returned when an SCS control code is detected that has not
been implemented by the COMMSCS instruction.

Returned when a string control byte is detected that has not
been implemented by the COMMSCS instruction.

Returned when the SCS processor has finished putting data into
the logical record for the present. Bytes X'lA-1B' of the PSCB
contain the number of bytes in the LR. This code also is
returned if, when the SCS processor processes print stream data
sets from the data request unit, a set horizontal format or set
vertical format control character is detected and there is data
in the LR. This return code tells the caller to use the LR before
the tab table changes the format of the presentation surface.
This code will not be returned if a set horizontal format or
set vertical format control character is detected while the
SCS processor is processing a non print data set.

Note: This code is returned for print data if the last byte in the
request unit fills the last byte in the logical record. That is, if
end-of-request unit and end-of-Iogical record occur at the same
time, the end-of-Iogical record (X'04l4) is returned before the
end-of-request unit (X'0313). For nonprint data, if both occur at
the same time, the X'03l3 is returned before the X'04l4'.

Returned when the SCS processor has placed all bytes of the
request unit in the logical record. This does not mean the data
set is completed; there may be more request units. See the note
under X'0414' for a description of which code is returned when
end-of-Iogical record and end-of-request unit both occur at the
same time.

Object Code Instruction Format 207

208

X'0212'

X/55 HI'

X'ISOla'

x/eooo'

X'0619'

X'S017'

X'SOlS'

X'S024'

X'7020'

Returned when a tab table has been changed by en SHF or SVF
from a request unit. The updated maximum presentation column
or maximum presantation line's in the logical record and the
target ,. II print datil set. Call IIIglilln to continue processing the
request unit.

Returned when the RCB detected is not recpgnl~ed (MRJE only).

Returned when the media type has been changed lilll RCB.

Returned when the SCB detected is not recogni~ed (MRJE only).

Returned when end·af-file (MRJE only).

Set by caller to resume printing (MRJE only).

Set by caller to resume printing without changing print pas!.
tions (SNA only),

Set by caller to resume printing at left margin; note changes in
the PSCB (SNA only),

Returned if the subrecord control byte of MRJE print data sets
is not supported.

When either a X'l005', X'10l3', X'lOOl'. X'6006', or X'7020' code is returned,
the SCS processor does not store pointers and does not return the proper number
of bytes in the logical record to X'lA·1B' of the PSCB. These are error conditions,
indicating that the caller should not attempt to continue processing the current
data request unit. To call SCS again, the caller must place the X'S015' (begin)
code in X'lC-1D' of the PSCB.

To switch between print stream and nonprint stream, or to switch between
compressed data and noncompressed data, the caller must place the X'S015'
(begin) code in X'lC·1D' of the PSCB.

There is no need for the caller to blank the logical record when completed; the
SCS processor fills the logical record with blanks for a nonprint data set, or
X'OO' for a print data set.

Horizontal Tab Tabl,

The horizontal tab table Can be up to 255 bytes long, and must be a minimum
of three bytes long. The first three bytes must have a value ranging between
1 and 266. The structure of the table is:

Dllp Byte.

o

2

3

Description

Maximum presentation position (MPP). This byte is
used to set the printer MPP.

Right margin (RM). SCS processing treats RM as the
MPP. RM and MPP should contain the same value.

Left margin (LM).

Tab positions. These do not have to be ascending,
but no tab can be less than the left margin or
greater than the right margin. Tab values are
absolute. not relative.

Vertical Tab Table (or Channel Stops)

The vertical tab table can be up to 255 bytes long, and must be a mini­
mum of four bytes long. The first four bytes must have values ranging
between 1 and 255. The structure of the table is:

Disp Bytes

o

2

3

Description

Maximum presentation line.

Bottom margin.

Top margin.

Tab positions. If these are not in ascending order,
results may be unpredictable. No tab can be less
than the top margin or greater than the bottom
margin. Bytes 4-14 can be used to hold values
for channels 2-12. The top margin is the value for
channell. Values for the channels do not have to
be in ascending order. If a channel or tab stop has
a value of zero, the default is a line feed.

Tab values are absolute. not relative. The first 12
values can be the line numbers for channels 1
through 12. The first tab stop is top margin. For
an absolute index into the tab table, no check is
made to determine if the index is within the table.

Object Code Instruction Format 209

210

Control Characters Within The Data Request Unit For SNA

Compressed Data

If the data request unit contains compressed data the first character is a
string control byte (SCB) having one of the following three formats:

B'OOxxxxxx'

B'11xxxxxx'

B'10xxxxxx'

Nonidentical character string.
Identifies a string of nonidentical characters that
immediately follow this SGB. xxxxxx = .the
number of characters in the string (ranging from
1·63 bytes).

Nonblank identical character string.
Defines the number of repetitions of the character
that follows this SCB, creating a string of identical
nonblank characters. xxxxxx = the number of
times the following character is to be repeated
(ranging from 1-63 bytes).

Blank character string.
Defines, and completely replaces, a series of
blanks that make up a string of blank characters.
xxxxxx = the number of blank characters in the
string.

Note: Any other SCB representation or xxxxxx = 0 will result in a
return code of '1001' or '6006' (SCB not valid).

SNA Data

Control characters within an SNA data request unit that define the format
of the data include:

Control
Character

X'OD'

X'15'

Meaning

Carriage return.
Print data streams - The carriage return is issued and the print
position is moved to the left margin. The print position is
converted into vertical and horizontal presentation position
parameters.

Nonprint data streams - The pointer is reset to the start of the
logical record.

New line.
Print data streams - This increments the line number. If the up­
dated internal line number is greater than the bottom margin, a
forms feed is issued, and the top margin is converted into vertical
and horizontal presentation position parameters. If the updated
internal line number is less than or equal to the bottom margin,
then a new line will be issued. After either of the above, the
print position moves to the left margin and is converted into a
horizontal presentation position parameter.

.. /

(
Nonprint data streams - A new line will result in blanks in the
rest of the record.

X'OC' Forms feed.
Print data streams - Forms feed is issued and the print position is
moved to the top and left margin. The print position is converted
into vertical and horizontal presentation position parameters.

X'1E' I nterrecord separator.
Print data streams - The SCS routine acts the same as X'15'.

Nonprint data streams - This gives the user a full record by pad-
ding to the end of the record with blanks.

X'25' Line feed.
Print data streams - This increments the internal current line
number. If the updated line number is greater than the bottom
margin, a forms feed is issued and top margin is converted into a
vertical presentation position parameter with no change to the
print position.

Nonprint data streams - A line feed places blanks in the remainder
of the record, and blanks in the beginning portion of the next
record, up to the current column number. The current column
number stays the same.

(X'35' Transparent.
All data streams - When this character is received, it is skipped and
its count used to define the number of following characters not
checked for SCS control codes. The transparency count may
span either SeBs or RUs or both. Valid values are 1 to 255.

Print data streams - The line and column values are not updated
until all transparent data has been processed.

X'OB' Vertical tab.
Print data streams - This is a formatting control that moves the
print position vertically down to the next tab stop setting.
Vertical tab stop values may be set through use of the set vertical
format (SVF) function. If there are no vertical tab stops set
below the current line number, this function issues a line feed.
If the tab entry is greater than the bottom margin, a parameter
error is returned. The vertical tab is converted into a vertical
presentation position parameter.

X'05' Horizontal tab.
Print data stream - This is a formatting control that moves the
print position horizontally to the right to the next tab stop set-
ting. Horizontal tab stop values may be set through use of the
set horizontal format (SHF) function. If no horizontal tab
stops are set to the right of the current position, this function

(e~,
creates a space. If the tab entry is greater than the right margin,
a parameter error is returned. The horizontal tab is converted
into a horizontal presentation position parameter.

Object Code Instruction Format 211

X'04'

X'14'

X'24'

X'16'

X'2BC1'

212

Nonprlnt data stream· Inserts a spaoe.

Vertloal ohannel seleot.
Print data stream· This, along with the channel oode, moves the
print position to the correct line number. The line number I,
retrieved from the vertical tab table referred to in the PSCB. If the
new line number referenced by the channel Index Is lasl than or
equal to the current line number I the print position is set to the
new line number on the next page. If the tab entry Is greater
than the bottom margin, a parameter error Is returned. If the tab
antry Is zero, a line feed is inserted and the print position Is not
changed. The print position is converted into vertlCli1 and
horiiZontal presentation position parameters.

Nonprint data streams - This issues a line feed with no change to
the column number.

Enable presentation.
This SCS character is skipped for print and nonprint data streams.

Inhibit presentation.
Same as X'14'.

Backspace.
Print data stream - This moves the print position to the immedi­
ately preceding print position. If the current print position is
column 1, then the backspace results in a NO·OP. The print
position is converted into a horizontal presentation position
parameter. This supports overstrike characters and is not to be
used for error correction.

Nonprint data stream - This moves the column number to the
immediately preceding column number. The character at the
preceding column number is replaced by the character following
the backspace SCS control if the next character is greater than or
equal to X'40'. If the column number is 1, the backspace results
in a NO-OP.

Set horizontal format.
Print data streams - Set horizontal format (SHF) can include set­
ting a maximum print position, left margin position, right margin
position, and horizontal tab stop positions. Since printers for
the IBM 5280 directly support only the maximum print function,
these parameters are placed in the horizontal tab table referred to
by the PSCB, rather than issued in the data stream. The maxi­
mum print position is sent to the printer via an SHF and is fol­
lowed by a presentation position with a value equal to the new
left margin.

A one-byte count field follows the SHF code and counts the
number of bytes to the end of the string, including the count
byte. Note that the maximum oount is the length of the tab .
table plus one. The first three parameters following the oount
define the maximum print position, the left margin, the right
margin respectively. The SHF code sets all controls to default

X'2BC2'

(

X'OO'

X'2F'

values of MPP = 132, AM = 132, and LM = 1. A value of zero for
any of these parameters Is a NO·OP and results In the function
retaining Its default value. Tab stop values start in the fifth
parameter posit/on following the SHF code and may range from
0-265. A tab value of zero will, however, not be placed in the
table. The minimum sequence that can be sent is SHF with a
count value of one. This results in all SH F parameters reverting
to their default values. All tab stops are set initially to zero.

Nonprint data streams - The field is skipped. However, the count
field is inspected for a valid value. The return code of end of LR
is not returned.

Set vertical format.
Print data streams - Set vertical format (SVF) can include setting
maximum print line, a top margin position, a bottom margin
position, and vertical tab stop positions. Since prints for the IBM
5280 directly support only the maximum print line, these
parameters are placed in the vertical tab table referred to by the
PSCB, rather than issued in the data stream. The maximum print
line is sent to the printer via a SVF preceded by a forms feed.
After the SVF is sent, vertical and horizontal presentation posi­
tion parameters are issued to place the print position at the left
margin and the top margin.

If the next character in the RU following the SVF is an FF SCS
control, the forms feed is skipped. A one byte count field

follows the SVF code and counts the number of bytes to the end
of the string, including the count byte. Note that the maximum
count is the length of the tab table. The first three parameters
following the count define the maximum print line, the top
margin, and the bottom margin respectively. The SVF code sets
all controls to default values of MPL = 1, TM = 1, and BM = 1.
The first tab stop is also set to a default value of 1. A value of
zero for any of these parameters is a NO-OP and results in the
function retaining its default value. Tab stop values start in the
fifth parameter position following the SVF code and may range
from 0-255. The minimum sequence that can be sent is SVF
with a count value of one. This results in all SVF parameters
reverting to their default values.

Nonprint data streams - This field is skipped. However, the count
field is inspected for a valid value. The return code of end of LR
is not returned.

Null.
Same as X'14'.

Bell.
This character is sent to the printer. If it is received on a non·
print stream, it is skipped.

Object Code Instruction Format 213

214

X'2BCS'

X'2BC6'

Set graphic error action.
This data is sent to the printer. If it is received on a nonprint
stream, the field is skipped. (See SCS control character Fmt
SGEA in Appendix B.)

Set line density.
The entire set line density field is bypassed for both print and
nonprint data sets, because printers for the IBM 52S0 do not
support this function.

Note: Any SNA control character less than X'40' that is not listed here results in a
return code of X'1003'.

BSC Data

Control characters within a BSC data request unit that define the format of the
data include:

Control
Character

X'15'

X'25'

Meaning

New line.
Print data streams· This increments the line number. If the up­
dated internal line number is greater than the bottom margin, a
forms feed is issued, and the top margin is converted into a
vertical presentation position parameter. If the updated internal
line number is less than or equal to the bottom margin, then a
new line will be issued. After either of the above, the print posi­
tion moves to the left margin and is converted into a horizontal
presentation position parameter.

Nonprint data streams - A new line will result in blanks in the
rest of the record.

Line feed.
Print data streams - This increments the line number. If the up­
dated line number is greater than the bottom margin, a forms
feed is issued, and the top margin is converted into a vertical
presentation position parameter. If the updated line number is
less than or equal to the bottom margin, the pri'nt position is
moved to the left margin and converted into a vertical presenta­
tion position parameter. If there is an outstanding ESC sequence
pending, the ESC sequence is executed instead of N Lor LF if
the device to be emulated is an IBM 3741. If the device is an IBM
37S0, then only N L and I RS cause execution of outstanding
ESC. If there is an outstanding ESC sequence pending and a new
ESC control character is detected, the outstanding ESC is exe­
cuted using the old ESC parameter. The new ESC then becomes
pending.

Nonprint data streams - The hexadecimal byte for the SCS
character is placed directly into the logical record with no other
conversion occurring.

X'OC'

(~

X'OO'

X'1E'

X'OB'

(
X'05'

X'27'

Forms feed.
Print data streams - The forms feed is issued and the print posi­
tions are moved to the top and left margins.

Nonprint data streams - This hexadecimal byte is put directly
into the logical record.

Null.
For print streams, the null character is skipped. No conversion
occurs. For nonprint, null is put in the LR.

I nterrecord separator.
Print data streams - The SCS routine acts the same as X'15'.

Nonprint data streams - This gives the user a full record by pad­
ding to the end of the record with blanks.

Vertical tab.
Print data streams - This is a formatting control that moves the
print position vertically to the line number contained in the
second tab stop (channel 2) in the vertical tab table. If the tab
stop is zero, the vertical tab results in a line feed. If the tab stop
is greater than the bottom margin, a parameter error is returned.
The vertical tab is converted into a vertical presentation position
parameter.

Nonprint data streams - This hexadecimal byte is put directly into
the logical record.

Horizontal tab.
Print data streams - SCS generates a print position to the next tab
setting found in the horizontal tab table. If no horizontal tab
stops are set to the right of the current column number, the
default of 1 space is taken. The print position is converted into
a horizontal presentation position parameter.

Nonprint data streams - This hex byte is put directly into the
logical record.

Escape sequence.
Following this byte is another byte that says either to go to
channell through channel 12, or to skip 1 to 9 lines, or to
suppress a space. The escape (ESC) function is executed by the
N L, LF, I RS, or next ESC control character if the device to be

emulated is an IBM 3741. If the device to be emulated is an
IBM 3780, only. N L, I RS, or ESC cause execution of the ESC
sequence. If the parameter value is not valid or the tab entry is
greater than the bottom margin, a parameter error is returned.
Valid parameters are:

M(X'04')
f(X'61')
S-Z(X'E2 - E9')
A-I(X'Cl-C9')
J-L(X'Ol - 03')

= space suppress
= single space
= space 2-9 lines
= skip to channel 1-9
= skip to channel 10-12

Object Code Instruction Format 215

216

X'1D'

Print data streams· SCS generates either:
• PP (channel (x)) + PP (LM)
• PP (relative vertical (x)) + PP (LM)

where x = channel number or number of lines to skip, LM = left
margin, and PP = presentation position value.

Nonprint data streams· The 2 hexadecimal bytes are put directly
into the logical record.

Repeat blank.
Following this byte is a byte that states the number of blanks to
repeat (up to 63). The blank count has a value of X'41' . X'7F'
for repeat counts of 1·63 respectively. A repeat value not in this
range results in a parameter error.

Print data streams· The SCS routine moves the print position
horizontally to the right for the number of blanks (spaces)
requested. If the right margirl. is reached, a new line is issued and
the print position is moved to the left margin. Then the print
position is moved the remaining number of blanks. The print
position is then converted into a horizontal presentation position
parameter.

Nonprint data streams - The logical record pointer is moved the
number of blanks requested. This leaves blanks in the logical
record because the logical record was filled with blanks at the
start of processing. The blanks will carryover into the next
logical record if the end of the previous logical record is reached
before the requested number of blanks is issued.

MRJE Data

For MRJE, a data request unit contains:
• Record control bytes (RCBi
• Sub-record control bytes (SRCB)
• String control bytes (SCB)

• Data

The 'sequence of control bytes and data within a data request unit follow
the pattern:

RCB Record 1
SRCB Record 1
SCB Record 1, string 1
Data Variable length character string
SCB Record 1, string 2
Data Variable length character string
SCB Record 1, terminating SCB
RCB Record 2
SRCB Record 2
SCB Record 2, string 1
Data Variable length character string
SCB Record 2, terminating SCB
ReB Transmission block terminator

,~

(

(

Record Control Byte (RCB): Each record within a transmission block begins
and ends with a record control byte. The record control byte contains the
following:

Contents

B'lSSSTTTT'

SSS

TTTT

B'OOOOOOOO'

Meaning

Input/output stream indicator.

Specifies to which stream in a group of like streams
this record belongs. For the 5280, this field is always
001.

Specifies the type of record being transmitted.
Bits Meaning
0001 Operator message display request
0010 Operator console input record (invalid RCB)
0011 Normal input record (invalid RCB)
0100 Print record
0101 Punch record

End of block indicator.

Any other combination results in an invalid RCB return code (X'5516')

Subrecord Control Byte (SRCS): Each record control byte is followed by
a subrecord control byte that contains additional information about the
record being received. For non print streams, this record is ignored. The
subrecord control byte contains the following:

Contents Meaning

B'10CCCCCC' Print stream control.

CCCCCC Specifies spacing and skipping control.
Bits Meaning
000000 Suppress line spacing after print
OOOONN Space NN lines after print
01 NNNN Skip to carriage channel NNNN after

1000NN
l1NNNN

printing the record
Space NN lines immediately (before print)
Skip to channel NNNN immediately (before
print)

If on skip to channel a tab value of zero is found, a line space is performed.
If a tab entry is greater than the bottom line, a parameter error is issued.
If an invalid SRCB is found, the return code is set to X'7020'.

Object Code Instruction Format 217

218

String Control Byte (SCB): Each group of characters in a record appears in
a transmission block either as a string control byte (SCB) followed by one
or more characters, or as an SCB alone. An SCB also indicates the end of
a record.

As a record is compressed, it is divided into strings of nonidentical
characters, non blank identical characters, and blank characters. The
compressed record is formed from these strings as follows:

• Strings of nonidentical characters appear as an SCB followed by the
string .

• Strings of non blank identical characters appear as an SCB followed
by one of those characters .

.• Strings of blank characters appear as an SCB only.

Each SCB includes a count of the number of characters in the original
string. If the count is zero, an invaiid SCB indication will be returned
(X'6006').

An SCB can contain the following:

Contents

B'OOOOOOOO'

Meaning

End-of-record indicator.
If this SCB immediately follows an SRCB, the return
code will be set to X'6519', indicating end of file. This
condition is also set if an SCB = X'40' immediately
follows the SRCB.

If the logical record is continued in the next transmission
block (spanned record), the contents of the end-of- record
SCB are B'10000000'.

B'll XXXXXX' Nonidentical character string.
XXXXXX = the number of characters in the string (from
1 through 63 characters).
The string of characters immediately follows this SCB in
the transmission block.

B'l 01 XXXXX' Nonblank identical character string.
XXXXX = the number of identical characters in the string
(from 1 through 31 characters).
To specify which character is duplicated in the record, the
SCB is followed by a single character from the string.

B'100XXXXX' Blank character string.
XXXXX = the number of blank characters in the string
(from 1 through 31 characters).

Note: A code of X'6006' is returned if none of the above are detected.

(

(

Read from Communications (TREAD)

Source:

Object:

D Bits:
8
9

o
2A

D fJ II

Not used, always zero
0= Overlap mode (0 specified)
1 = Nonoverlap mode (N specified)

10 Not used, always zero
11 Not used, always zero

fJ Data set number: The number (hex 1-F) of the data set to access. This
number is assigned by the DSN parameter of the .COMM control statement.

II Format number: The number (hex 01-FE) of the format to use. If an aster­
isk (*) is coded, this will be hex 00 for data directed formatting. If no
format entry is coded, this will be hex FF.

II Bits:
24

25

0= Read the next logical record.
1 = Read the entire block (minus sign coded).
o = Read data.
1 = Return control immediately with status if data is not available

for the read.

Object Code Instruction Formet 219

220

Search Resource Allocation Table (SRAT)

Source:

Object:

D Data set number: The number (hex 1·F) of the data set lOB to access.

II Binary register address: The binary register will be loaded with the physical
device address of the data set, which the 5280 finds in the resource allocation
table.

This instruction searches the resource allocation table within the partition to find
the physical address of the logical device ID. The logical ID is stored in the data set
lOB. If the physical address is found, it is stored in the specified register.

1118 is set on if one of the following is true:

• No logical device identifier is present in the set lOB.

• No match is found in the resource allocation table.

• No resource allocation table is available.

When 1118 is set on, the device OBA address currently stored in the logical I/O
table is placed in the high order byte of the specified binary register. The low
order byte will contain unpredictable data.

(

System Lock (SYSLCK)

Source: SYSLCK

I
1

I I I I Object: 2C FF 00 00
0 8 15 23 31

This instruction sets a bit in the partition lOB. This flag will signal the main micro­
processor to ignore all hardware attentions such as time-out attention and keyboard
attention. The main microprocessor will not exit the partition to execute imitruc­
tions in another partition until the flag is turned off via a SYSUNL instruction.

System Unlock (SYSUNL)

Source: SYSUNL [(*)]

Object: 00
8

D Partition exit option:

o Exit partition immediately; * not specified.
Execute instructions for the normal time limit, then exit partition;
* specified.

This instruction turns off the system lock bit to allow the main microprocessor to
resume normal operation. It may also be used to relinquish the remaining time in a
time slice.

Object Code Instruction Format 221

222

Load a Partition (LOAD)

Source: LOAD

Object:
23 31

.. Load parameters:

Bits:

12 0 = Load a full partition; P is not specified.
1 = Load a partial overlay; P is specified.

13 0 = Do not attempt a background attach; A is not specified.
1 = Attempt a background attach; A is specified.

14 Not used, always O.
15 0 = System is providing error handling; E is not specified.

1 = Program is providing error handling; E is specified.

If) Load parameters address: The address of data area that contains the load
parameters, or all zeros if the data area label is not specified. If the label is
omitted the operator will be prompted to enter the load parameters from
the keyboard.

This instruction loads a partition according to the load parameters. The load param­
eters may be entered from the keyboard or may be read from a data area. If the
parameters are to be read from a data area, they must be stored in the following
format:

1. Partition number; 2 bytes in length. The partition number may contain: (a)
the number (hex 0-7) in the first byte and blank (hex 40) in the second byte,
(b) the 2-byte logical ID assigned to the partition in the resource allocation
table, or (c) two blanks (hex 40) if the current partition is to be reloaded.

2. Device address; 4 bytes in length. The device address may contain: (a) the
4-byte physical address of the device that contains the data set to load, or (b)
the 2·byte logical device ID assigned to the device in the resource allocation
table, followed by two blanks (hex 40).

3. Start address; 2 bytes of hex digits, used only for a partial overlay. The
address must be on a 256-byte boundary and must be greater than hex 100.

(

4. Data set name; up to 32 bytes in length. The data set name may include a
volume ID if volume checking is desired. The volume ID may be up to 6
alphameric characters long, preceded by an asterisk and followed by a
period. The name of the data set follows the period if the volume ID is
included. The name may be up to 8 alphameric characters long for an H, I, or
basic exchange data set. For an E exchange data set the name may be up to
17 bytes long, consisting of one or more simple names of up to 8 alphameric
characters each, and with each simple name separated by a period. No blanks
are allowed within a data set name, but the data set name must end with a
blank.

If a partial overlay is loaded, the load parameters must include the relative address
where the overlay begins. The original contents of the partition remain unchanged
except in the area of the overlay. The first 8 bytes of a partial overlay contain
information added by the assembler. The first 2 bytes contain the length of the
overlay, the next 2 bytes contain the last 2 bytes of the overlay name, and the
remaining 4 bytes are reserved for a patch log. The last 2 bytes of the program
name are replaced with the second 2 bytes of the overlay.

If an error occurs during a load, error recovery can be handled by the system or by
the application program.

If an error occurs and the application program is handling error recovery, the main
microprocessor places an error code into a system binary register (BR16) and
returns control to the first instruction following the load instruction. If the load
operation is successful, the main microprocessor returns control to the second
instruction following the load instruction.

If an error occurs and the system is handling error recovery, the system sends a
message to the screen and waits for the operator to press the Reset key. After the
reset, error recovery depends on the kind of load being performed as follows.

• If the standard load processor from the common functions area was performing
the load, the load prompt is redisplayed with the load parameters previously
entered. The operator then rekeys the correct information.

• If a program instruction was reloading the same partition and the standard load
prompt is available in the common functions area, the standard load prompt is
displayed. The operator then enters the load parameters.

• If a program instruction was reloading the same partition and no standard load
prompt is available, the load cannot be retried. The main microprocessor issues
an exit instruction and goes to the next partition.

• If a program instruction was loading another partition, the load is not retried.
Control returns to the instruction following the load instruction.

Do not put error recovery procedures in a storage area that is to be overlayed with
a partial overlay.

Object Code Instruction Format 223

224

exit a Partition (EXIT)

Source: EXIT

1
I I I

2) ;1 Object: 2F 00 00 00
0 8 16

This instruction detaches a partition if it was attached to a keyboard, closes all
open data sets, and executes a system unlock operation in case the partition was
locked when the exit instruction was issued (see op code 201. If the exit instruc­
tion is issued in a background partition, bit 1 of byte 1 of the partition lOB pointer
in the system control block is turned on to make the partition available to be loaded.
This bit must be on for the partition to be loaded by another partition. If the exit
instruction is issued in a foreground partition, a flag is set in the partition lOB (bit
6 byte 2BI to indicate that the partition is available to be loaded; the bit in ,the
partition lOB pointer is not turned on, so keystrokes can be processed in the
exited partition.

-"

",-./

(-

(

Write a Record to a Data Sat (WRT)

Source: WRT (dsn, [fmt], [:Rn], [~J ' B)
--=-0 I I

Object:

.. Bits:
8 0= Sequential record access method. For a printer, bit 8 must be 0

and bits 10·23 are ignored.
1 = Relative record access method.

9 0 = Overlap mode.
1 = Nonoverlap mode.

10 Not used, always zero.
11 0 = I/O buffer is not blanked.

1 = I/O buffer is blanked at the start of the operation (B is specified)
if edit formatting is specified.

fJ Data set number: The number (hex 1·F) of the data set to be written.

II Format number: The number (hex 01-FE) of the format to use. If no
format number is used, this will be a hex FF.

II Record to write: The location of records to write can be:

• BRn for the address of a binary register. If the data set is an SCS data set,
the register contains the address of an area where SCS command characters
are stored. If the data set is not an SCS data set, the register contains the
record number.

• Hex 07 (- specified) for writing the previous record.

• Hex 08 (0 specified) for writing the current record. For a printer, it must
be hex 08.

• Hex 09 (+ specified) for writing the next record.

This instruction writes the contents of the logical buffer into the specified record
position of the physical buffer. The contents of the physical buffer may be written
to tile diskette. If an edit format is specified, data is moved into the logical
buffer as indicated by the edit format before it is written to the physical buffer.
If this instruction is issued when the current record counter is at EOD, the record
is written into the EOD space and the EOD and current record counter are incre·
mented; otherwise, the current record number Is never changed by II write
instruction.

Object Coda Instruction Format 226

226

Insert a Record into a Data Set (WRTI)

Source:

Object:

D Bits:
8
9

o

WRTI

!
31

8/ 11 I 15 I 23 J
D fJ II II

Not used, always zero.
0= Overlap mode (0 specified).
1 = Nonoverlap mode (N specified).

10 Not used, always zero.
11 0 = I/O buffer is not blanked.

31

1 = I/O buffer is blanked at the start of the operation (B is specified)
if a format is specified.

fJ Data set number: The number (hex l-F) of the data set to be accessed.

II Format number: The number (hex 01-FE) of the format to use. If no format
is specified, this will be hex FF.

II Record to access: Always the current record (hex 08).

This instruction writes the current logical record to the physical buffer, into the
current record position. The record that was in the current record position, and all
records beyond the inserted record, are moved down one position until EOD or a
deleted record is encountered. If the record is inserted as the last record in the data
set, this instruction acts as a write instruction (op code 30).

Note: Two physical buffers and one logical buffer must be available for this
instruction.

Insert a Block of Records into a Data Set (lNSBLK)

Source: INSBLK (dsn

1
I ,S', I FF Object: 32

o

D Bits:
8 Not used, always O.
9 0 = Overlapped mode (0 specified).

1 = Nonoverlapped mode (N specified).
10-11 Not used, always 00.

II Data set number: The number (hex 1-F) of the data set to access.

II Records to insert: The address of the binary register that contains the number
of logical records to be inserted. Two commas must precede the binary
register in the source instruction.

The records from (and including) the current record to the end of the data set are
moved down to make room for the specified number of records to be inserted. The
inserted records are treated as deleted records and may be written with the WRTI
instruction (op code 31). The current record counter is modified to point to the
first inserted record.

Note: Two physical buffers and a logical buffer must be available for this instruc­
tion.

Object Code Instruction Format 227

228

Initialize a Diskette (IN IT)

Source:

Object:

.. 0100 (Always nonoverlapped mode.)

II Data set number: The number (hex 1-F) of the data set to be accessed.

II Parameters' address: The address of the binary register that contains the
address of the initialization parameters.

This instruction initializes the diskette with information from the data set lOB.
The data set lOB must have previously been opened as a write-only label update
data set (TYPE = IN!). The initialization parameters must be stored in a data area
before the initialization instruction is issued. The format of the initialization
parameters is:

Bytes

1

2

3·28

Bits Information

a Head number
1·7 Track number

o 0= FM (1 or 2)
1 = MFM (20)
0= 1-sided
1 = 2-sided

2·7 Number minus 1 of 128·byte blocks that make up the
sector si ze.

Sequence of sector numbers. If byte 3 = hex F F, the track
specified by byte 1 is flagged as a defective track.

./

\

(

Allocate a Data Set (ALLOe)

Source:

Object:

.. Data set number: The number (hex 1-F) of data set to allocate.

II Parameters' address: The address of the binary register that contains the
address of the allocate parameters. The binary register must be preceded by
two commas in the source instruction.

This instruction is always executed in nonoverlapped mode. For a printer. this
instruction is executed as an open instruction. For diskette, when the ALLOe
operation is executed the data set is allocated in the physical space following
the last valid data set existing on the diskette, provided sufficient extent and label
space exists. A data set cannot be allocated between existing data sets and always
originates on a physical track/sector boundary.

The data set HDR1 label is placed in the first deleted HDR1 label space. If there
are no deleted HDR1 label spaces, the allocation cannot take place, and an external
status (3229) is presented. The HDR1 information is taken from the data set lOB
and from the parameter string in storage. The binary register (BRn) in the ALLOe
instruction contains the address of the fifth byte of the parameter string. The
format of the parameter string is as follows:

Byte Meaning

Data set exchange type. A hex number that corresponds to the
appropriate exchange type:

00 = Basic exchange
01 = H exchange
02 = I exchange (this is the type normally used)
03 = E exchange, unblocked and unspanned
04 = E exchange. blocked and unspanned
05 = E exchange. blocked and spanned

2-4 The number of logical records to allocate. Hex 000000 allocates
the maximum number of records that can be placed on the remain·
ing diskette space.

5 The first of up to 14 characters of an optional owner identification,
required for allocating on a secure diskette. The address stored in
the binary register always points to this byte. If the owner identifi­
cation is omitted, the address points to the end blank.

Object Code I nstructlon Format 229

230

Byte Meaning

end The last byte in the parameter string must always be a blank (hex 40)
unless a 14-character owner ID is specified.

Note: This parameter string can also be used to open a data set on a secure
diskette; the OPEN instruction does not use the bytes before the fifth byte.

The information that is taken from the data set lOB is as follows:

Parameter Explanation

DATA set name (NAME) The data set name is mandatory for allocating
a diskette data set. It is optional for a printer.

Logical record length (RECL) If this option .DATASET parameter is
omitted, the length is set to equal to block
size.

Block size (BSIZ)

Delete Character (DFLG)

Except for blocked and spanned data sets, the
block size must equal, or be a multiple of, the
logical record length. For blocked and spanned
data sets, BSIZ is an optional parameter; if
specified it must equal sector size, .and if
omitted the 5280 sets it to sector size.

Delete flag; the character that is placed in the
HDR1 label during the allocate, and which will
be used to indicate a deleted record. Optional
for I and E exchange; ignored for basic and H
exchange. Valid characters can be A-Z, 0-9, or
one of the following symbols: . , - / % #
@; $ &.

During the allocation operation, the data set organization byte of the HDR 1 label is
set to blank (hex 40) for basic and H exchange data sets. It is set to D for I and E
exchange data sets. It is invalid to allocate a data set with the ALLOC instruction
when the data set type is label update.

Upon completion of the ALLOC operation, the allocated data set is also opened.
The op code in the data set lOB is replaced with hex 00. Upon completion of the
ALLOC, or if an external status for insufficient physical buffer size (3430) or for
two physical buffers specified with unequal sizes (3435) occurs, or if any group 7
warning message is presented, the minimum number of 128-byte blocks required
for sufficient buffer size is placed into hex 78 of the data set lOB. If any other
external status occurs, this number is not placed into the lOB.

The HDR1 label is placed into the first 128 bytes of the physical buffer except for
pointer I/O and SCS data sets that have the SWor ERS parameters specified in the
.DATASET control statement.

"<::... ./

(

Delete a Record from a Data Set (WRTS)

Source:

Object:

D Bits:
8
9

o
35

8 I 11· r 15 23· I
D fJ II II

Not used, always zero.
0= Overlap mode (0 specified).
1 = Nonoverlap mode (N specified).

10 Not used, always zero.
11 0 = I/O buffer is not blanked.

31

1 = I/O buffer is blanked at the start of the operation (B is specified)
if a format is specified.

fJ Data set number: The number (hex 1-F) of the data set to be accessed.

II Format number: The number (hex 01-FE) of the format to use. If no
format was specified, this is hex FF.

II Record to access: Always the current record (hex 08).

When this instruction is executed, the record indicated by the current record
counter is written as for the write instruction (op code 30). In addition, the record
is flagged as deleted. For a basic or H exchange data set, a special address mark is
used to flag a deleted record. For an I or E exchange data set, the delete character
in the data set lOB is used to flag a deleted record.

Object Code Instruction Format 231

232

Wait for I/O Completion (WAIT/lWAIT)

Source:

Object:

TWAIT
WAIT

..
(dsn)
(dsn)

D BitS:
0= Data set numberfJ was specified.
1 = No data set number was specified.

When the main microprocessor executes a wait instruction, it waits until all
I/O operations are complete for the specified data set before executing the
next sequential instruction. If no data set number is specified, all data sets
are checked for completed I/O operations.

fJ Data set number: The number (hex O-F) of the data set to check for com­
pleted I/O operations. If data set number zero is specified, it indicates the
keyboard/display lOB.

Write to COn'lmunications (lW RT)

Source:

Object:

D Bits:
8
9

10
11

TWRT (dsn, [fmt],

IJ

Not used, always zero.
0= Overlapped mode (0 specified).
1 = Nonoverlapped mode (N specified).

Not used, always zero.
0= The I/O buffer is not blanked.
1 = The I/O buffer is blanked at the start of the operation (B is

coded) if a format is specified.

II Data set number: The number (hex 1·F) of the data set to access.

IJ Format number: The number (hex OO·FE) of the format to use. If no
format is specified this is hex FF.

II Bit 24:
o = Normal write
1 = Final write (F coded)

For BSC, no data is associated with final write.

This instruction transmits a record from the data set specified to the host system.
If an edit format is specified, data is placed into the logical buffer as indicated by
the format.

Object Code Instruction Formet 233

234

Formatted Write from Registers (WRBF)

Source: WRBF (BRa, [fmt] , BRb)

I
I

I
t

10 I
1 I

Object: 3C @ I @

0 8 i 15 7 23 / 31

D fJ II

.. Write address: The address of the binary register that contains the address of
the leftmost byte of the data area to write into.

fJ Format number: The number (hex 01-FE) of the format to use. This is hex
FF if no format is specified.

II Blank option: The address of the binary register that contains the number of
bytes that are blanked before formatting begins. If BRb is not specified, no
bytes are blanked, and this will contain hex FF.

This instruction moves the data indicated by the format, or blanks if no format and
a binary register is specified, into the data area pointed to by the write address.

'., . /

... , .", ..

(

(

Device Control (DEVCTL)

Source: DEVCTL (dsn, X'IIII' [. ~J [, ~J)
I ?

Object: 3D
~o--------~-+~~~~------+-----~

D Bits:
8

9

10

11

D fJ

o = A omitted (device dependent)
1 = A specified (device dependent)
0= Overlap mode (0 specified)
1 = Nonoverlap mode (N specified)
0= C omitted (device dependent)
1 = C specified (device dependent)
0= D omitted (device dependent)
1 = D specified (device dependent)

fJ Data set number: The number (hex 1-F) of the data set lOB to access.

II Control parameters: 2 bytes of hex digits that specify the control operation.
The hex digits and operations depend upon the different devices.

This instruction is intended for diagnostics use only.

For diskette device control there are write-defective-sector or diagnostic operations.

Object Code Instruction Format 235

236

Diagnostic operations are used for reading or writing data in diskette microprocessor
or adapter registers. (These registers are not the decimal or binary registers used in
an application program.) If A is specified when writing registers, the data to be
written is taken from the binary register specified by bits 24-31. If A is specified
when reading registers, the data that is read is placed into the binary register speci­
fied by bits 24-31. If A is not specified when writing registers, the data to be
written is taken from bits 24-31. If A is not specified when reading registers, the
data is read into bits 24-31.

Bits 16-31 have the following meaning:

Bits Meaning

16

17

18-19

20-23

24-31

o

o

Read register
Write register

Diskette microprocessor register
Adapter register

00 = Diagnostic command

0 Register 16
1 Register 17
2 Register 18
3 Register 19
4 Register 20
5 Register 21
6 Register 22
7 Register 23
8 Register 24
9 Register 25
A Register 26
B Register 27
C Register 28
D Diskette microprocessor register 131

E Diskette microprocessor register 251

F Diskette microprocessor register 261

Binary register address if option A is specified; immediate data if
option A is not specified.

1 These specifications always indicate a diskette microprocessor register regardless of what bit
17 indicates.

(

Write-defective-sector is used for marking the sector specified by the current record
pointer as a defective sector. This instruction can only be used in a data set where
a sector is also a logical record. Write-defective-sector is specified by setting both
bits 18 and 19 to 1.

For twinaxial printer (I BM 5256,5224, and 5225) device control, bits 16 through
31 are:

Hex
Digits Option

FFOO A

FEOO

ODxx A

19xx A

lAxx A

8Dxx

99xx

9Axx

Operation

Wrap test: The POR wrap test is run once each time this
instruction is executed. Any errors encountered are
reported.

Line quality check: This test performs a single poll
command without looking for a response.

Read external register 13: This operation reads the con­
tents of register 13 into the fourth byte of the instruc­
tion (xx).

Read external register 25: This operation reads the
contents of register 25 into the fourth byte of the
instruction (xx).

Read external register 26: This operation reads the
contents of register 26 into the fourth byte of the
instruction (xx).

Write external register 13: This operation writes the
contents of the fourth byte of this instruction (xx)
into register 13.

Write external register 25: This operation writes the
contents of the fourth byte of this instruction (xx)
into register 25.

Write external register 26: This operation writes the
contents of the fourth byte of this instruction (xx) into
register 26.

For start-stop printer (IBM 5222) device control, bits 16 through 31 are:

Hex
Digits

FBXX

Operation

This operation writes the data found in the right most byte of binary
register XX.

After the instruction is executed, the left most byte of binary
register XX must be tested. A value of X'OO' signifies successful
acceptance of the command. Any value other than X'OO' signifies
the adapter has status information. (See the description of the
adapter status byte.) In this case the right most byte of binary
register XX contains any received data. This data mayor may not
be valid depending upon the status information.

Object Code Instruction Format 237

238

FCXX

FDXX

FFXX

This operation reads the adapter status and places this status into
the left most byte of binary register XX. If the receive data available
bit of the adapter status byte is on, the right most byte of binary
register XX contains the data that was in the adapter receive buffer.

This operation writes control information to the adapter. (See the
descriptions of the adapter command byte and the adapter mode
set byte.) The control information to be written is contained in the
right most byte of binary register XX. The left most byte of binary
register XX is set to X'OO' upon execution of this instruction.

This operation transmits data, contained in the right most byte of
binary register XX, internally back to the adapter receiver. The
receive data is placed in the left most byte of binary register XX.
The receive data available bit, bit 6 in the adapter status byte, when
set to 1 indicates successful completion of this wrap data test.

Note: XX is the hex value of two times the binary register number. For example,
if BRn = 14 then XX = X'1C'.

Adapter Status Byte

01 2 3 4 5 6 7 l L L 1 = Transmitter buffer empty

1 == Receive data available

1 = Transmission complete

1 = Transmission line parity error

1 = Receiver overrun

1 = Framing error on received character

1 = Receiver break detected

o = Adapter installed
1 = Adapter not installed

Adapter Mode Set Byte

The adapter mode set byte is always X'7F'. This byte controls the
characteristics of the transmitted data. They are:

1200 BAUD
8 DATA BITS
1 STOP BIT

EVEN PARITY

(

(,

Adapter Command Byte

o 1 234 567 l L L 1 = Enable transmitter

Reserved - Always 0

1 = Enable receiver

1 = Transmit break characters

1 = Reset - parity errors
- overrun errors
- framing errors

Reserved - Always 0

1 = Return to mode set state

Reserved - Always 0

Formatted Write to the Screen (WFMCRT)

Source: WFMCRT (BRa, [fmt] [,BRb] , [:00])

~ ~f~ I I

I I I I Object: 3E @

0 8 I 23 f 31 .. fJ II a .. Screen address: The address of the binary register that contains the row
number to begin the write_

II Bit 15:
0= Data between fields is blanked; B is specified.
1 = Data between fields remains on the screen; ADD is specified.

II Format number: The number (hex 01-FE) of the format to use.

.. The address of the binary register that contains the number of bytes to blank
or add in the screen buffer before formatting begins.

Data is moved to the screen, beginning at column 1 of the row specified by the low­
order byte of the screen address register. Data is moved from the locations speci­
fied by the labeled edit format, for the number of bytes specified by the format.
The format also specifies any punctuation that should appear on the screen, such as
a dollar sign, decimal point, or minus sign. The format must not use more than 200
screen positions. If row 0 is specified, data is moved to the status line; if row 1 is
specified, data is moved to the extra line.

Object Code Instruction Format 239

240

If the binary register II is included, the contents of this register are taken as the
number (1·200) of screen positions to alter before the formatted data is moved to
the screen. If B is coded in the source instruction, all characters on the screen
between the data fields that are defined in the edit format are blanked for the
number of bytes specified in the binary register. If ADO is coded in the source
instruction, only the fields that are defined in the edit format are changed on the
screen; the characters between the edit format fields remain on the screen for the
number of bytes specified by the binary register. If the binary register and BIADD
are omitted, and if the edit format does not account for all of the positions on the
screen within the edit format, the results are unpredictable.

The fields of the format must be in the order of their appearance on the screen.

Communications Close or Device Control (TCLOZITCTL)

Source:

Object:

D Bits:
8

TCLOZ
TCTL

0= TCLOZ
1 = TCTL

, X'III', [~J ,D)

L.----.., _ I I

9 0 = Overlap mode (0 specified).
1 = Nonoverlap mode (N specified).

10 Not used, always zero
11 0 = Normal operation

1 = Diagnose operation, 0 specified (on TCTL only)

IfJ Data set number: The number (hex 1·F) of the data set to access.

II Data type: Hex 0000 for TCLOZ. A hex constant data for TCTL.

The TCLOZ instruction is used with BSC. It closes the specified lOB and signifies
the end of a BSC data set.

The TCTL instruction performs the control operation specified by the hex constant,
as follows:

Constant

0100
0300
0400
0500
0600

Operation Valid for BSC

Write status
Transmit EOT
Transmit RVI
Transmit header (SOH-heading-STX)
Transmit header (SOH-heading-ETB)

(-

(

f

Constant

0700
0800
0900
OAOO
OBOO

0001

Operation Valid for BSC

Transmit header (SOH-heading-ITB)
Transmit header (SOH-heading-STX-ETX)
Execute wrap test
Transmit online test message
Received online test message

Set compression (Expand blank-compressed data)
0002
0003

Reset compression (Do not expand blank-compressed data)
Set transparent mode on

0004 Reset transparent mode off
0005 Set trace on

0006 Reset trace off

Operation valid for SNA

0007 Transmit signal command to the host
0001 Cancel
0002 Chase
0003 LU Status
0004 Request shutdown

0005 Positive response
0006 Negative response
0008 Shutdown complete

Set Indicator On (SON)

Source: SON ([la] [,Ib] [,Ic])

I ~ I ~ Object: 40 I
0 8 I 15 23 7 31 .. II D

D Indicator numbers: The numbers of specified indicators that are set on. An
indicator number from hex OO-FE can be specified. If no indicator is speci­
fied, the contents are hex F F.

This instruction sets the specified indicators on. When the main microprocessor
encounters the first byte that contains hex FF, it stops checking for more
indicators.

Set Indicator Off (SOFF)

So"rce: SOFF ([Ial Llbl [,Icl)

~ ~ ~ Object: 41 I
0 8 I 15 J 23 J 31 .. D D

Object Code Instruction Format 241

242

II Indicator numbers: The numbers of specified indicators that are set off. An
indicator number from hex OO-FE can be specified. If no indicator is speci­
fied, the contents are hex F F.

This instruction sets the specified indicators off. When the main microprocessor
encounters the first byte that contains hex F F, it stops checking for more
indicators.

Skip on AND, Exclusive-OR Mask (AND)

Source: [IFHIJ BRn AND X'II' IS X'II' SKIP
IFLO

! 1 l I
I

I I Object: I 42 I ~ ~ I t t
0 8 I 15 I 23 I 31

II fJ II II

II Test register address: Test the binary register at this address.

fJ Test mask:
o = Mask the leftmost byte

(lFHI specified) in the binary register.
1 = Mask the rightmost byte

(lFLO specified) in the binary register.

II AND mask: 2 hex digits that AND with the specified test mask byte of a
bi nary register.

II Exclusive-OR mask: 2 hex digits that exclusive-OR with the result of the
AND operation.

This instruction applies the AND mask against the specified test mask byte, then
applies the OR mask against the result of the AND operation. If the result of
both operations is zero, the main microprocessor skips the next sequential
instruction. If the result is not zero, the next sequential instruction is executed.
The register contents remain unchanged.

(-

(

(

Skip on Exclusive-OR, AND Mask (RXORW)

Source: RXORW (X'U' , BRn(41. X'W)

I
1 ~ d ~ I ~ I Object: 43

0 8 15 I 23 I 31

D fJ II II

D Exclusive-OR mask: Two hex digits that exclusive-OR the byte specified by
the address in the binary register.

fJ Test register address: The address of the binary register that contains the
address of the byte to test.

II Address bit:
0= BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the

partition.

II AND mask: Two hex digits that are ANDed with the original contents of
the byte specified by the address in the binary register.

This instruction applies the exclusive-OR mask against the byte at the address indi­
cated by the binary register. Then the microprocessor ANDs the original contents
of the byte with the AND mask. If the result of the AND operation is 0, the next
sequential instruction is skipped and the result of the exclusive-OR operation
replaces the original contents of the test bytes. If the result is not 0, the storage
position is restored to its original value and the next sequential instruction is
executed_

Constant Insert (= constant)

Source: [label]
displ, Rn =

constant

I ~ \
Object: I 44 I rr I

0 8 J 15 J 31

D fJ

D Constant: The binary representation of the constant to insert_

fJ Insert address: The address of the byte in storage, or the byte in a decimal
register, where the constant is inserted_

This instruction inserts the specified l-byte constant into the indicated byte_

Object Code Instruction Format 243

244

Exchange Binary Regi.ter Contents «-»

Source: BRa < .. >

Object: 46
o

II Binary register address: The address of the binary register that exchanges
contents with II.

II Binary register or storage address: The address of the area that exchanges
, contents with II.

This instruction exchanges the contents of the two specified data areas.

Immediate Load of Positive Constant into Decimal Register (Rn .. +n)

Source:

Object:

II Decimal register address: The address of the decimal register that is loaded
with the constant.

II Constant: The 2-byte constant (hex a·FFFF) that is converted to the
decimal EBCDIC and placed into the decimal register.

This instruction places the constant into the decimal register. The constant is
padded on the left with hex zeros (Fa).

\"--'./'

(

(

(

Immediate Load of Negative Constant into Decimal Register (Rn '" -n)

Source:

Object:

.. Decimal register address: The address of the decimal register that is loaded
with the constant.

II Constant: The 2·byte constant (hex O·FFFF) that is converted to the decimal
EBCDIC and placed into the decimal register.

This instruction places the constant into the decimal register. The constant is
padded on the left with hex zeros (Fa). The zone of the rightmost byte in the
register is changed to hex D.

Generate Self·Check Number (GSCK)

Source: GSCK

l I
1

I I I 31
Object: 48 00 00

0 8 15 23

D

D Decimal register address: The address of the decimal register or decimal
double register that contains data to which the self-check digit (from the
algorithm defined in the .SELFCHK control block) is added.

This instruction uses the self·check control block to generate a self·check number
from the foundation characters contained in the decimal register(s), and inserts
the self·check number into the register(s) as specified by the self·check control
block.

Object Code I nstruction Format 245

246

Convert Binary to EBCDIC (BINHEX)

Source: BINHEX (label (len), BRn)

Lb-----.
Object: 49

~o~------~--~--~~--~~------~

D II

.. Binary register address: The address of the binary register that contains the
binary data to convert to EBCDIC.

fJ Bit 15:
o = Data area length is 4 bytes.
1 = Data area length is 2 bytes.

II Data area address: The address of the data area where the converted data is
stored upon completion of this operation.

This instruction converts the contents of the low-order byte of the specified register
from binary to 2 bytes of EBCDIC, or the contents of the 2-byte binary register to
4 bytes of binary register to 4 bytes of EBCDIC. The result is sto~ed in the specified
data area. Each half-byte is converted into EBCDIC hex characters 0-9, A-F.

(

Convert EBCDIC to Binary (HEXBIN)

Source: HEXBIN (BRn,

Object:

D fJ II

D Binary register address: The address of the binary register where the converted
data is stored upon completion of this operation.

fJ Bit 15:
o = Data area length is 4 bytes.
1 = Data area length is 2 bytes.

.. Data area address: The address of the data area that contains the EBCDIC data
to convert to binary.

This instruction converts the contents of the specified data area from 2 bytes of
EBCDIC to 1 byte of binary and places it in the low-order byte of the specified

register, or from 4 bytes of EBCDIC to 2 bytes of binary and places it in the speci­
fied binary register. If the characters are not A-F or 0-9, I 119 is set and the speci­

fied binary registers contents are unpredictable.

When the length of the data area is 4 bytes, the binary register should in no way
overlay the data area storage.

Object Code Instruction Format 247

248

Request or Release a Data Area (Request/Release)

Source: REQUEST BRN [(4)]
RELEASE

Object: 4B I 8/ r 723

00

D

fJ

II

0 16

D DII

Constant
Hexadecimal 80 = Request (lock)
Hexadecimal 00 = Release (unlock)

24 31

Binary register compressed address. Contains address of a 2- byte
lock field.

20-bit address indicator. If this bit = 1, then BRN-1 and BRN will
be used to obtain a 20-bit address of the lock field.

For REQUEST, the binary register points to a 2-byte lock field initialized
to zero. If another task has not already requested the data area, the
requesting partition number is placed in the lock field, and control
returns at the next sequential instruction plus 4 bytes. If the partition
number of another task is already in the lock field, control returns at the
next sequential instruction.

For RELEASE, the binary register points to a 2-byte lock field containing
a partition number. If the partition number of the lock field is the same
as the releasing task, or if there is no valid partition number in the lock
field, the lock field is changed to zero and control returns to the next
sequential instruction plus 4 bytes. If the partition number is different
from the releasing task, the lock field is not changed and control returns
to the next sequential instruction.

The 2-byte lock field contains system information that is not to be accessed by the
programmer.

REQUEST and RELEASE are valid only for multiple main microprocessors.

(

(

(

Skip If Not Equal (t FC NOT)

Source: IFC [label]
[disp] Rn NOT C'I' SKIP

I I L; I 4C I I ~ I
0 8 15 I 31

Object:

D fJ

D Test character: The binary representation of the byte of hex, binary,
character, or decimal test data that is compared to the test byte.

fJ Test byte address: The address of the byte of data to compare to the test
character.

If the test byte is not equal to the test character, the microprocessor skips the next
sequential instruction; otherwise, it executes the next sequential instruction.

Skip If Equal (tFC IS)

[label] Source: r [disp] Rn IS C'I' SKIP

Lj I
I I ~ I Object: 4E

I

0 8 I 15 I 31

D fJ

D Test character: The binary representation of the byte of hex, binary,
character, or decimal test data that is compared to the test byte.

fJ Test byte address: The address of the byte of data to compare to the test
character.

If the test byte is equal to the test character, the microprocessor skips the next
sequential instruction; otherwise, it executes the next sequential instruction.

Object Code Instruction Format 249

260

Debugging Aids (PDUMP/PAUSE/TROFF/TRON)

Source:

Object:

PDUMP [(number))
PDUMP ([label] , len)
PAUSE (label)
TROFF
TRON (mask)

4F

D Hex 10 = PDUMP (label, len)
08 = PDUMP (number) or PDUMP
20 = PAUSE
40= TROFF
80 = TRON

fI For PDUMP (label, len): The address, divided by 256, of where to start the
dump. If no address (label) is specified, this is hex 00; the dump starts at the
beginning of the partition.

For PDUMP (number): The partition number of the partition to dump. If
no partition is specified, this is hex FF and the current partition is dumped.

For TRON: The trace options.

II For PDUMP (label, len): The number of 256-byte blocks to dump.

For PDUMP(number): All zeros.

For TRON: All zeros.

fJ For PAUSE: The address of where to stop the program.
and
II For TROFF: All zeros.

The partition must be attached when using these debugging aids.

(

Search Ordered Table for Higher or Equal Entry (TBFH)

Source: Brn = Tj_FH_{_ta_br label. .~n, [T)
1 50 I; 1-; ,ij Object:
o 8 I 15 I 23

.. II ,. II
31

D Table: The index into the system table that contains the address and param­
eters for the table to be searched.

II Index register address: The address of the binary register into which the table
index where the index of the higher or equal entry is placed upon completion
of this operation.

II Bit 23:
0= Begin the search in the table with the first entry (N not specified).
1 = Begin the search in the table with the next entry after the entry in the

index register (N specified).

II Search argument address: The address of the decimal register that contains
the search argument.

The labeled table is searched for an entry equal to or higher than the contents of
the decimal register. The search ends when the first higher or equal entry is found
or when the.last table entry has been searched. If an equal or higher entry is found,
the index of that entry is placed into the binary register. If no equal or higher
entry is found, the binary register remains unchanged and 1125 and 1127 are set
on.

Object Code Instruction Format 251

252

Write Table Entry (TBWTrrBWE)

Source:

Object:

.. Table: The index into the system table that contains the address and param­
eters for the table to be written into.

fJ Index register address: The address of the binary register that contains the
index into the table.

II Bit 23:
o = Write the-entry to the table at the index contained in the index register

(TBWT specified).
1 = Extend the table and add the entry at the end of the table (TBWE

specified).

a Argument address: The address of the decimal register that contains the
argument to be written ..

An entry is written into the table at either the end of the table for a TBWE instruc­
tion, or at a specified location into the table for a TBWT instruction.

/

(

(

Read Table Entry (TBRDITBRLI

Source:

Object:

a Table: The index into the system table that contains the address and param­
eters for the table to be read.

II Index register address: The address of the binary register that contains the
i'1dex into the table.

11 Bit 23:
o = Read the entry in the table at the index contained in the index

register (TBRD specified).
1 = Read the last entry in the table (TBRl specified).

II Argument address: The address of the decimal register where the table argu­
ment is placed upon completion of this operation.

An entry is read from the table and placed into the argument address.

Object Code Instruction Format 253

254

Search Unordered Table for Equal Entry (TBFX)

Source: BRn TBFX (table label, Rn, [N])

,---I _1 1 L-I
Object, I 53 I I~ I.;;

08 /. 15 J yJ-1
D D II a

I
31

.. Table: The index into the system table that contains the address and param­
eters for the table to be searched.

fJ Index register address: The address of the. binary register into which the
table index where the index of the equal entry is placed upon completion
of this operation.

11 Bit 23:
0= Begin the search in the table with the first entry (N not specified).
1 = Begin the search in the table with the entry after the entry in the index

register (N specified).

a Search argument address: The address of the decimal register that contains
the search argument.

The labeled table is searched for an entry that is equal to the search argument. If an
equal entry is found, the index for that entry is placed in the binary register. If no
equal entry is found, the binary register remains unchanged and 1125 and 1127 are
set on.

(

Search Reverse Ordered Table for Lower Entry (TBFL)

BRn = TBFL (table label. Rn. [N])

1...--1 -1 1 ~!
Object, I 54 I I I ~ I, ~ I ~O------~~8--~J--~1~5~/--~i2~J~-t~--~31

D fJ 1111

Source:

D Table: The index into the system table that contains the address and paramo
eters for the table to be searched.

fJ Index register address: The address of the binary register into which the table
index of the lower entry is placed upon completion of this operation.

11 Bit 23:
0= Begin the search in the table with the first entry (N not specified).
1 = Begin the search in the table with the entry before the entry in the

index register (N specified).

II Search argument address: The address of the decimal register that contains
the search argument.

The table is searched for an entry that is lower than the search argument. If a lower
entry is found. the index of that entry is placed into the binary register. If no
lower entry is found, the binary register remains unchanged and 1125 and 1127 are
set on.

Object Code Instruction Format 255

256

Search Table Using Binary Search (TBBS)

Source: BRn

I
Object: 55

o

D Table: The index into the system table that contains the address and param­
eters for the table to be searched.

II Index register address: The address of the binary register into which the table
index of the equal entry is placed upon completion of this operation.

II Search argument address: The address of the decimal register that contains
the search argument.

The labeled table is searched for an entry equal to the search argument. If an equal
entry is found, the index of that entry is placed into the binary register and 1103 is
set on. If no equal entry is found, the binary register remains unchanged and 1125
and 1127 are set on.

''"'--" ./

(

(

(...

Insert Table Entry (TBIN)

Source:

Object: I 56 I , I ~ 10 I@ I
~O------~8~~J~~1~5~/~~2~3~/~~31

.. IJ II

.. Table: The index into the system table that contains the address and param­
eters for the table to be modified.

IfI Index register address: The address of the binary register that contains the
table index where the entry is inserted.

.. Argument address: The address of the decimal register that contains the argu­
ment to insert.

The argument is inserted into the table at the table index specified in the binary
register. All entries below the inserted entry are moved downward, as well.as any
bypass fields. It is the user's responsibility to update the number of entries in any
system table for data tables that describe the bypass fields as active data arguments.

If number of entries in the table equal 0, TBWE must be used to insert the first
entry.

Delete Table Entry (TBDL)

Source:

Object:

o Table: The index into the system table that contains the address and param­
eters for the table to be modified.

IfI Index register address: The address of the binary register that contains the
table index where the entry is deleted.

The entry in the labeled table is deleted and all other entries move up to replace the
deleted entry, as well as any bypass fields. It is the user's responsibility to update
the number of entries in any system table for data tables that describe the bypass
fields as active data arguments.

Object Code Instruction Format 257

258

Lock Shared Table (TLCK)

Source: TLCK (table label)

I
I

I
1

I I I Object: 58
(00 00

0 8 I 15 23 31

0

o Table: The index into the system table that contains the address and param­
eters for the table to be locked.

The specified table is locked for exclusive use by the program that issues the
TLCK instruction.

This instruction can be used only with tables in the common area.

Unlock Shared Table (TUNLCK)

Source: TUNlCK hare label)

I
1

I I I Object: 59 (I 00 00
0 8 I 15 23 31

0

II Table: The index into the system table that contains the address and param­
eters for the table to be unlocked.

This instruction frees the table that was locked by the TLCK instruction.

" ;/

/

(

Compare Decimal for Not Equal (IF Rn NE)

[~-=] Source: IF Ra NE GOTO instruction label

I I I
Object: 60 @ I ; / 0 8 I 15 23 31

D fJ IJ

D Test register: The address of the decimal register that contains the data to
compare.

fJ Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data. If a constant is used, the
bytes on the left are padded with blanks (hex 40s) before the compare.

II Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instruction from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the test register is not equal to the compare
data.

Object Code Instruction Format 259

Compare Decimal for Greater Than or Less Than (I F Rn GT IL T)

Source:

Object:

.. GT. The test register: The address of the decimal register that contains data
to compare.

L T. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data. If a constant is used,
the bytes on the left are ·padded with blanks (hex 40s) before the compare.

fJ GT. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register that contains the compare data. If a constant
is used, the bytes on the left are padded with blanks (hex 40s) before the
compare.

L T. The test register: The address of the decimal register that contains the
data to compare.

II Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

• The content of the test register is greater than the compare data and GT is
specified.

• The content of the test register is less than the compare data and L T is specified.

f'

f'

Compare Decimal for Equal (I F Rn EO)

Source: IF Ra GOTO instruction label

Object: 62

D Test r~gister: The address of the decimal register that contains the data to
compare.

II Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data. If a constant is used, the
bytes on the left are padded with blanks (hex 40s) before the compare.

II Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the test register is equal to the compare data.

Object Code Instruction Format 261

262

Compare Decimal for Greater or Equal, or Less Than or Equal (IF Rn GE/LE)

Source: IF Ra

1
rGLEEl [OR-b9] LJ J GOTO instruction label

~I----~I~~ 1 f t
Object: 63 I , I, I, I

8 -' 15 ~ 23 ~ 31
o

.. GE. The test register: The address of the decimal register that contains
data to compare.

LE. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data. If a constant is used,
the bytes on the left are padded with blanks (hex 40s) before the compare.

rJ GE. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register (RB) that contains the compare data.

LE. The test register: The address of the decimal register that contains the
data to compare. If a constant is used, the bytes on the left are padded with
blanks (hex 40s) before the compare.

II Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

• The content of the test register is greater than or equal to the compare data and
GE is specified.

• The content of the test register is less than or equal to the compare data and LE
is specified.

\ .• >

(

(---

Compare Decimal Digits for Not Equal (lFD Rn NE)

Source: IFD [~:] Ra NE

J , GOTO instruction label

I
I I Object: 64 !@ I ,
0 8) 15 } 23 31

D IfJ

D Test register: The address of the decimal register that contains the data
to compare.

II Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data.

II Branch instruction: The number minus 1 of 4-bvte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the digit portion and the units zone (sign) of the content
of the test register is not equal to the digit portion of the compare data. If the
zone portion of the rightmost byte of a decimal register contains hex D, the
contents of the register are negative. If it is not hex D, the contents of the register
are positive.

Object Code Instruction Format 263

264 .

Compare Decimal Digits for Greater or Le •• Than UFO Rn GT/LT)

Source: IFD

1
Ra [~~] [~-:] GOTO instruction label

+ I I. 1 .
I I I, I I I
8 .. 15 ~ 23 .- 31

Object: 65
0'

.. GT. The test register: The address of the decimal register that contains data
to compare.

L T. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data.

fJ GT. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register that contains the compare data.

LT. The test register: The address of the decimal register that contains the
data to compare.

II Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

• The digit portion of the content of the test register is greater than the digit
portion of the compare data and GT is specified.

• The digit portion of the content of the test register Is less than the digit portion
of the compare data and L T is specified. If the zone portion of the rightmost
byte of a decimal register contain hex D, the contents of the register are negative.
If It is not hex D, the contents of the register are positive.

{

Compare Decimal Digiti for Equal UFO Rn EO)

Source: m"HUleYl .. n label

Object:

.. Test register: The address of the decimal register that contains the data to
compare.

fJ Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data.

II Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the low-order byte of the test register is
equal to the_compare data. If the zone portion of the rightmost byte of a decimal
register contains hex D, the contents of the register are negative. If it is not hex
D, the contents of the register are positive.

Object Code Instruction Format 265

266

Compare Decimal Digits for Greater or Equal, or Less Than or Equal (lFD Rn GE/LE)

~~[~-:] Source: IFD Ra GOTO instruction label

I I I 1
I I

f

I
1

Object: 67 , t
0 8 I 15 I 23 I 31

D fJ II

D GE. The test register: The address of the decimal register that contains data
to compare.

LE. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data.

fJ GE. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register that contains the compare data.

LE. The test register: The address of the decimal register that contains the
data to compare.

II Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

• The digit portion of the content of the test register is greater than or equal to the
digit portion of the compare data and GE is specified.

• The digit portion of the content of the test register is less than or equal to the
digit portion of the compare data and LE is specified. If zone portion of the
rightmost byte of a decimal register contains hex D, the contents of the register
are negative. If it is not hex D, the contents of the register are positive.

./

(

Compare Binary Half-Register for Not Equal (lFH BRn NE)

11H Bf" Nl O_2!55 GOTO instrction label

Object: 1,-1 _6_8 I~+-~ p~I-II~I'-----Ir-, --::o!1
o 8 -' 15 fJ 23 ~ 31

Source:

D Test register: The address of the binary register that contains data to
compare.

fJ Compare constant: Hex OO-FF.

II Branch instructions: The number minus 1 of the 4-byte object code instruc­
tions from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the low-order byte of the test register is not
equal to the compare constant.

Object Code Instruction Format 267

268

Compare Binary Half-Register for Greater or Less Than (I FH BRn GT /L T)

Source:

Object:
1

liB II

II Test register: The address of the binary register that contains data to
compare.

IJ Bit 15:
O=GT.
1 = LT.

II Compare constant: Hex OO-FF.

II Branch instructions: The number minus 1 of the 4·byte object code instruc­
tions from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

• . The content of the low-order byte of the test register is greater than the compare
constant and GT is specified.

• The content of the low-order byte of the test register is less than the compare
data and L T is specified.

(

Compare Binary Half-Register for Equal (IFH BRn EO)

Source:

Object:

D Test register: The address of the binary register that contains data to compare.

fJ Compare constant: Hex OO-FF.

II Branch instructions: The number minus 1 of the 4-byte object code instruc­
tions from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the low-order byte of the test register is equal
to the compare constant.

Object Code Instruction Format 269

270

Compare Binary Half-Register for Greater or Equal, Less or Equal (IFH BRn GE/LE)

Source: IFH BRn [~~] 0-255 GOTO instruction label

I
1

I I 1 ~ I
I
I Object: 6B (@I ~I ~

0 8 } 15 23 J 31

DB II II

.. Test register: The address of the binary register that contains data to

compare.

B Bit 15:
O=GE.
1 = LE.

II Compare constant: Hex OO-FF.

.. Branch instructions: The number minus 1 of the 4-byte object code instruc­
tions from the next sequential instruction to skip if the branch is taken (±128
object code instruction from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

• The content of the low-order byte of the test register is greater than or equal to
the compare data and GE is specified.

• The content of the low-order byte of the test register is less than or equal to the
compare constant and LE is specified.

"

(

(

(

Compare Binary for Not Equal (IF BRn NE)

Source: IF
Br

NE BRb GOTO instruction label

I
1

I
1 I

I Object: 6C @ ~ I

0 8 I 15

~
23 J 31

II II

D Test register: The address of the binary register that contains the data to
compare.

B Compare register: The address of the binary register that contains the com­
pare data.

11 Branch instructions: The number, minus 1 of the 4-byte object code instruc­
tions from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the test register is not equal to the compare
data.

Object Code Instruction Format 271

272

Compare Binary for Greater or less Than (IF BRn GT/lT)

Source: in!l1trUj~til'n label

Object:

.. GT. The test register: The address of the binary register that contains the
data to compare.

L T. The compare register: The address of the binary register that contains
the compare data.

B GT. The compare register: The address of the binary register that contains
the compare data.

LT. The test register: The address of the binary register that contains the
data to compare.

II Branch instruction: The number minus 1 of the 4-byte object code instruc­
tions from the next sequential instruction to skip if the branch is taken (±128
object code instructions from the next instruction). If bit 24 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

• The content of the test register is greater than the compare data and GT is
specified.

• The content of the test register is less than the compare data and L T is specified.

./

(

(

Compare Binary for Equal (I F BRn EO)

Source:

Object:

a Test register address: The address of the binary register that contains the
data to compare.

II Compare register: The address of the binary register that contains the compare
data.

II Branch instructions: The number minus 1 (hex 00-7F) of the 4-byte object
code instructions from the next sequential instruction to skip if the branch is
taken (±128 object code instruction from the next instruction). If bit 24 is 1,
the number is a negative displacement in twos complement form.

The branch is taken if the content of the test register is equal to the compare data.

Object Code Instruction Format 273

274

Compare Binary for Greater or Equal, or Less or Equal (IF BRn GE/LE)

Source: IF

Object: 6F

D GE. The test register: The address of the binary register that contains the
data to compare.

LE. The compart! register: The address of the binary register that contains
the compare data.

II GE. The compare register: The address of the binary register that contains
the compare data.

LE. The test register: The address of the binary register that contains the
data to compare.

II Branch instruction: The number minus 1 (hex 00-7F) of the 4-byte object
code instructions from the next sequential instruction to skip if the branch
is taken (±128 object code instruction from the next instruction). If bit 24 is
1, the number is a negative displacement in twos complement form.

The branch is taken if:

• The content of the test register is greater than or equal to the compare data and
GE is specified.

• The content of the test register is less than or equal to the compare data and LE
is specified.

(

(

Load Decimal Register from Base-Displacement Address (Rn = D(L, BRn))

Source: Rn = displ (len, BRn)

1 L-I-l

~ 1 10 I I Object: @ I ~
0 8 I 15 I 23 31

D fI II II

D Length: The number of bytes minus 1 (hex a-F) of data to load.

fJ Load register address: The address of the decimal register where data is
loaded.

II Base address register: The address of the binary register that contains the base
address.

II Displacement: The number of bytes (hex OO-FF) from the base address where
the bytes to load begin.

The decimal load register is filled with blanks (hex 40s). Then the microprocessor
adds the displacement (if any exists) to the base address register contents and loads
the data at that address to the specified decimal register. The data is right-justified
in the register.

Object Code Instruction Format 275

276

Store Decimal Register into Base Displacement Address (D(L,BRn) = Rn)

Source:

Object:

.. Length: The number of bytes minus 1 (hex a·F) of data to store.

.. Store register address: The address of the decimal register where data is
stored.

II Base address register: The address of the binary register that contains the base
address.

II Displacement: The number of bytes (hex aa·FF) from the base address where
the bytes to store begin.

The microprocessor adds the displacement (if any is specified) to the base address
register contents and stores the contents of the specified decimal register at that
address. Data is taken from the rightmost bytes of the register.

Load Decimal Register from Labeled Storage (Rn = labeHL))

Source:

Object:

D Length: The number of bytes minus 1 (hex a·F) of data to load.

rJ Load register address: The address of the decimal register where data is
loaded.

II Storage address: The storage address (hex aaaQ·7FFF) of data to load.

The microprocessor loads the specified decimal register with blanks (hex 405), then
loads it with data from the specified storage address. Data is right·justified in the
register.

(

Store Decimal Register into Labeled Storage (Jabel (Jen) = Rn)

Source: label
I (Jj"~)= Rn

Object' I :L r ~ I, I ~ I ~o-----t+---~8~--~~~1~5~·~17~---1~----~3~1
.. fJ II

.. Length: The number of bytes minus 1 (hex O·F) of data to store.

fJ Load register address: The address of the decimal register where data is
stored.

II Storage address: The storage address (hex OOOO'7FFF) of data to store.

The microprocessor stores the data in the specified decimal register at the speci·
fied storage address. Data is taken from the rightmost bytes of the register.

Binarv Add (BRn +=)

Source: BRa += [label (Jen)]

I 8~b (li~
Object: I 90 I ~ I: I ~ I

~O--------~8~--I+-~7~1~5------~------~31

alB II

a Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

IB Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is added to factor 1, and the result is placed in the factor 1 register.

Object Code Instruction Format 277

278

Binary Add Immediate Data (BRn +=)

Source:

Object: 91
15

liB II

D Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

B Bit 15=0.

II Factor 2: The binary representation (hex OOOO-FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is added to factor 1, and the result is placed into the
factor 1 register.

Binary Subtract (BRn -=)

Source: BRa -= [label (len)]

1 BR~n)

- "7 Object: I 92 I ~ I ~ I
~O------~~8---,+-~7~15~----/~-------3~1

IIfJ II

II Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

fJ Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is logically subtracted from factor 1, and the result is placed in the factor
1 register.

(

(

Binary Subtract Immediate Data (BRn -=)

Source: BRn -= constant

J 1
Object: I 93 I @ I I I

~O--------~8~--~/~~1~15~------~/~----~31

DIJ II

B Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

fJ Bit 15 = O.

II F,actor 2: The binary representation (hex OOOO·FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate is subtracted from factor 1, and the result is placed in the
factor 1 register.

Binary Double Register Add (BRn(4) +=)

Source: B8a(4) += [,abel (len)] I Bib (ljn)

Object: I 94 I @l IT t I
0 8 }/15 31

DfJ II

D Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

fJ Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is added to factor 1, and the result is placed in the factor 1 register.

Object Code Instruction Format 279

280

Binary Double Register Add Immediate Data (BRn(4) +=)

Source:

Object:
15

liB II

II Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

fJ Bit 15 == O.

II Factor 2: The binary representation (hex OOOO-FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is added to factor 1, and the result is placed in the
factor 1 register.'

Binary Double Register Subtract (BRn(4) -=)

Source: BRa(4) _= [label (len)]
1 . Br~n)

Object: I 96 I @, I,r ~
~0------~8~~/~/~15~--~/------~31

DEI II

.. Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

B Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is logically subtracted from factor 1, and the result is placed in the factor
1 register.

(

(

Binarv Double Register Subtract Immediate Data (BRn(4) --I

Source: BRn(4) -= constant

I I
I I I Object: 97 @(~I ~ o· 8 J 15 J 31

DB B

D Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

B Bit 15 = O.

II Factor 2: The binary representation (hex OOOO·FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is subtracted from factor 1, and the result is placed in
the factor 1 register.

Binary Register Load or Copy (BRn=)

Source: BRa = [label (len)]

1. BRt_~n)

Object: I 98 I @(IT ~ I
0 8 J j15 J 31

DB II

D Result/factor 1: The address of the binary register that contains factor 1 and
the result of this instruction.

If) Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1. (The leftmost register is set to zeros, and the

rightmost byte is loaded.)

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 1 is loaded with factor 2.

Object Code Instruction Format 281

282

Binary Register load Immediate Data or Address (BRn = C'II'/ADDR)

Source: BRn = [ADDR (label ± diSP)]
constant

Object: 99
o

DD II

II Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

D Bit 15 = O.

II Factor 2: The binary representation (hex OOOO·FFFF) of the binary, hex,
decimal, character constant, or a storage address.

The factor 2 constant or address is loaded into the factor 1 register.

Binary AND (BRn &=)

Source: BRa &= [label (len)] I Bib O,n)

Object: I 9A I @(II ~. I
0 8 I /15 I 31

DB II

.. Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

fJ Bit 15:
o = length of factor 2 is 2.
1 = Length of factor 2 is 1. (The leftmost byte of the register is set to

zeros.)

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
the labeled (label) area that contains factor 2.

Factor 2 is logically ANDed with factor 1, and the result is placed in the factor 1
register.

(..

(

Binary AND with Immediate Data (BRn &=)

Source: BRn &= constant

I !
Object: 9B @t r (I ,

0 8 J /15 J 31

liB II

D Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

II Bit 15 = O.

II Factor 2: The binary representation (hex OOOO·FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is ANDed with factor 1, and the result is placed in the
factor 1 register.

Binary OR (BRn V=)

Source: BRa V= [label (ten)] I Bib (tin)

Object: I 9C I @(~ ~ I
0 8 I 15 J 31

II fJlI

D Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

II Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is logically ORed with factor 1, and the result is placed in the factor 1
register.

Object Code Instruction Format 283

284

Binary OR with Immediate Data (BRn V=)

Source:

Object:
15

DB II

D Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

B Bit 15 = O.

II Factor 2: The binary representation (hex OOOO-FFFF) of the binary, hex,
decimal, or character constant.

Factor 2 is logically ORed with the factor 1, and the result is placed in the factor 1
register.

Binary Exclusive OR (BRn X=)

Source: BRa X= [label (len)]
BRb (len)

---.J

Object:

.. Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

B Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is logically exclusive ORed with factor 1, and the result is placed in the
factor 1 register.

(

(

Binary Exclusive OR with Immediate Data (BRn X==)

Source: BRn X= constant

I I
~ol I Object: I 9F I @, «

0 8 I I 31 15

liD II

II Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

D Bit 15 = O.

II Factor 2: The binary representation (hex OOOO-FFFF) of the binary, hex,
decimal, or character constant.

Factor 2 is logically exclusive ORed with factor 1, and the result is placed in the
factor 1 register.

Skip While Index Low or Equal Limit (SKIP WHILE)

Source:

Object:

II Increment value: The number (hex OO·FF) that is added to the contents of
the test register.

• Test register address: The address of the binary register that contains the
value that is incremented and compared with the limit value.

II Limit register address: The address of the binary register that contains limit
value.

The increment value is added to the contents of the test register. The result is
placed into the test register and then compared with the value in the limit register.
If the value in the test register is less than or equal to the value in the limit register,
the microprocessor skips the next sequential instruction.

Object Code Instruction Format 286

286

Binary Register Shift or Rotate (SL/SR/RL/RR)

Source:

Object:

1-16
1-8

15

DBI) II

.. Shift or rotate, bits 8 and 9:
00 = SL (shift left)
10 = SR (shift right)
01 = R L (rotate left)
11 = RR (rotate right)

B Register type, bits 10 and 11:
00 = Binary half-register (BRn(1)) of 1 byte
01 = Binary full register (BRn) of 2 bytes
10 = Binary double register (BRn(4)) of 4 bytes, with the high-order bit

of the shift/rotate count = 0
11 = Binary double-register (BRn(4)) of 4 bytes, with the high-order bit

of the shift/rotate count = 1

.. Shift or rotate count: For a full register, the number minus 1 (hex O-F) of bits
to shift/rotate. For a half register, the number minus 1 (hex 0-7) of bits to
shift/rotate. For a double register, the low-order 4 bits of the number minus 1
(hex 00-1 F) of bits to shift/rotate.

a Result register address: The address of the binary register or labeled area that
contains the data to shift/rotate and that will contain the shifted/rotated data.

The contents of the result register is shifted or rotated a~ specified. Shift operations
move the contents-of the register out of one end of the register and set the bits from
which data was shifted to zero.

Rotate operations move the contents of the register out of one end and into the
other end of the register.

(

Store Binary Register Contents (label = BRn)

Source: I~n) = BRn

;1.f1 I Object: A2 I
0 8 31

DB II

D Binary register address: The address of the binary register that contains data
to be stored at the storage address.

IfJ Storage location length:
o = Storage location length is 2 bytes.
1 = Storage location length is 1 byte. (The rightmost byte of the binary

register is stored.)

II Storage address: The address of the storage location where the contents of
the binary register are stored.

The contents of the binary register are stored in the labeled area.

Object Code Instruction Format 287

288

Store Binary Register Contents, Indexed (D(L,BRa) III BRb(L))

Source:

Object:

.. !:Sinary register address: The address of the binary register that contains data
to be stored.

II Storage location length:
0= Storage location length is 2 bytes.
1 == Storage location length is 1 byte. (The low-order byte of the binary

register, BRb, is stored.)

II Base register address: The address of the binary register that contains the base
address.

II Address bit:
0= BRa contains a l6-bit address.
1 = BRa(4) contains a 20·bit address of a storage location outside the

partition.

II Displacement: The number of bytes (hex aa·FF) from the base address where
the contents of the binary register are stored.

The displacement is added to the base address, and the contents of the bina;v register
are stored in the resulting address.

Move Characters (MVC(BRn) I MVC(BRn(4))

Source: MVC

Object:

.. Length of move: The number minus 1 (hex OO·FF), of bytes to move from
register to register.

II To register address: The address of the binary register (BRa), or the rightmost
register of a double register (BRa(4)), that contains the address of the storage
location into which data is moved.

II Address bit:
0= BRa contains a 16-bit address.
1 = BRa(4) contains a 20·bit address of a storage location outside the

partition.

II From register address: The address of the binary register (BRb), or the right·
most register of a double·register (BRb(4)), that contains the address of the
storage location from which data is moved.

II Addressing bit:
0= BRb contains a 16-bit address.
1 = BRb(4) contains a 20·bit address of a storage location outside the

partition.

The characters are moved from left to right, into the area specified. Either the to
register (BRa) or the from register (BRb) must be a double binary register.

Object Code Instruction Format 289

290

Indirect Instruction Execution (lNXEQ)

Source:

Object:

liB II II

.. Instruction modifier address: The address of the single binary register (BRn),
or the leftmost register of a double register (BRn(4)), that contains the data
needed to modify the instruction.

If a single binary register is specified, thEm the contents of the low-order byte
of the 2-byte register are logically ORed with the contents of the specified
byte of the instruction.

If a double binary register is specified, then the contents of all 4 bytes of the
register are ORed with the contents of all 4 bytes of the instruction, except
that bits 30 and 31 are ignored.

II Address bit:
0= BRn.
1 = BRn(4).

II Instruction address: The address of the instruction to modify and execute.

D Instruction byte modifier, bits 30 and 31:
11 = Modify byte 0 of the instruction (op code)
00 = Modify byte 1 of the instruction
01 = Modify byte 2 of the instruction
10 = Modify byte 3 of the instruction

The specified instruction is modified as indicated, and then the modified instruction
is executed. Control then returns to the instruction following the INXEO instruc­
tion unless the modified instruction causes a branch. If a skip instruction is modi­
fied, and the modified instruction causes a skip, the instruction skipped is the
instruction following the INXEO instruction. The object code of the modified
instruction is not changed.

If a short branch instruction is modified with INXEO, the displacement is calculated
from the INXEO instruction rather than from the branch instruction. No additional
validity for valid addresses is made with the INXEO instruction.

If an INXEO instruction is in the common area, the executed instruction is also in
the common area.

(

(

Convert Binary to Decimal (Rn "" BRn or BINDEC)

Source: BINDEC (Rn . [label])
BRn

Rn BRn

I I
I

I
I

I Object: A6 @ @

0 8 I 15 I 31 .. EJ

.. Decimal register address: The address of the decimal register that will contain
the result of the binary to decimal conversion.

fJ Binary register address: The address of the binary register or labeled area that
contains the data to convert to decimal.

The contents of the binary register or labeled area are converted to decimal and
placed into the decimal register.

Convert Decimal to Binary (BRn "" Rn or DECBIN)

Source: DECBIN <[BRn]
label •

Rn)

BRn Rn I, I

Object: I A7 I I ~ I
0 8 15 I 31

D B

D Decimal register address: The address of the decimal register that contains
the data to convert to binary.

B Binary register address: The address of the binary register or labeled area that
will contain the result of the decimal to binary conversion.

The contents of the decimal register are converted to binary and placed into the
binary register or labeled area.

Object Code Instruction Format 291

292

Translate (TRANS)

Source:

Objer;t:

.. II

.. Length: The number minus 1 (hex OO-FF) of bytes to translate.

II Data to translate address: The address of the binary register that contains
the address of the data to translate.

II Translate table address: The address of the binary register (BRb), or of the
rightmost register of a double binary register (BRb(4)), that contains the
translate table address.

II Addressing bit:
0= BRb contains a 16-bit address.
1 = BRb(4) contains a 20-bit address of a translate table outside the

partition.

The data is translated, character by character, through the specified 256-bytetrans­
late table. The EBCD IC representation of the character is used as a displacement
between 0 and 255 into the translate table. The character at that displacement into
the translate table replaces the original character.

(

(

Translate and Test (TRT)

[BRb.]
TAl T (BRa BRb(4). 1-56. R)

_ l-EI=~~--.:J
Object: ~Io __ A_9~18~--+!_""!!'!!-I--1~ I+I!I~ I-I--'+-.~ 1 15(/& I~

D BIll 1111

Source:

.. Length: The number minus 1 (hex OO-FF) of bytes to test.

fJ Data to test address: The address of the binary register that contains the
address of the data to test.

11 Scanning bit:
0= Forward scanning (R not specified)
1 = Reverse scanning (R specified)

II Translate table address: The address of the binary register (BRb). or of the
rightmost register of a double binary register (BRb(4)). that contains the
translate table address.

1.1 Addressing bit:
0= BRb contains a 16-bit address.
1 = BRb(4) contains a .20-bit address of a translate table outside the

partition.

The data is translated. character by character. through the specified 256·byte trans­
late table. The EBCDIC representation of the character is used as a displacement
between 0 and 255 into the translate table. If the character at that displacement
in the translate table is zero. the next character is translated until the first nonzero
translation is found or until all the characters have been tested. When the first non­
zero translation is found. binary register BR 16 is set to the address of the tested
character. the low-order byte of binary register B R 17 is set to the nonzero translate
table entry, and the operation ends. If no nonzero translation is found BR16 and
BR17 contain zeros when the operation is completed. The original characters are
not changed.

Object Code Instruction Format 293

294

Binary Multiply, Single or Double Register (BRn *= or BRn(4)*=).

$ource:

Object: AA
15

.B II

D . Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

.. Bit 15:
0= Single register result.
1 = Double register result. (The result/factor 1 address is the address of

the leftmost register.)

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 1 is multiplied by factor 2, and the result is placed in the factor 1 register.
For a double register multiply, the first register contains factor 1 and both registers
will contain the result.

(

Binary Divide, Single or Double Register (BRn /= or BRn(4) /=), '

Source:

Object: AB

.. Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction. (Factor 1 is always 16 bits, even if
a double binary register is specified.)

II Bit 15:
0= Single register result.
1 = Double register result. (The result/factor 1 address is the address of the

leftmost register.)

II Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 1 is divided by factor 2, and the result is placed in the factor 1 register. For
a double register divide, the remainder is in the rightmost register, and the result is
in the leftmost register. No remainder is provided unless a double binary register is
used.

Object Code Instruction Format 295

296

Move Characters Within a Partition (MVCIMVCRIMVCV)

Source: (BRa, BRb,

Object:

1-256)
I

D DII 1111

D Length: The number minus 1 (hex OO-FF) of bytes to move.

B Move to address: The address of the binary register that contains the address
of storage of where the data is moved to.

II Bits 23 and 31:
00 = Move characters, left to right (MVC).
10 = Move characters, right to left (MVCR).
11 = Move characters, reverse fill (MVCV).

II Move from address: The address of the binary register that contains the
address of storage of where the data is moved from.

The characters are moved as specified from the from address to the to address.

/

(

(~

("

Compare Character Strings (CLC)

Source:

Object:
23 31

D 611 1111

D Length: The number minus 1 (hex OO-FF) of bytes to compare.

D Character string 1 address: The address of the single binary register (BRn), or
of the rightmost register of a double binary register (BRn(4)), that contains
the address of string 1.

II Bits 23 and 31:

II

0= BRn contains a 16-bit address.
1 = BRn(4) contains a 20-bit address.

Character string 2 address: The address of the single binary register (BRn), or
of the rightmost register of a double binary register (BRn(4)), that contains
the address of string 2.

The microprocessor compares the two character strings, sets one of the following
indicators on, and resets the other two indicators:

Indicator Meaning

1101 Character string 1 is greater than character string 2.

1102 Character string 1 is less than character string 2.

1103 Character string l,is equal to character string 2.

Object Code Instruction Format 297

298

Binary Register Add with Base Displacement Address (+=)

Source:

IB~~~b~1I ~ I Object: BO
0 8 15 I 23 I 3'1

D fJ II III II

D Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

B Bit 15:
0= Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Base address register: The address of the binary register that contains the
base address.

II Address bit:
0= BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the

partition.

II Factor 2 displacement: The number of bytes (hex OO-FF) from the base
address where factor 2 is stored.

The factor 2 displacement is added to the contents of the base register, then the
data at the resulting address is logically added to factor 1.

.. ,

''\.,---/''

(

(

Set Bits On with Mask (SETON)

Source:

Object:

o fill

.. Mask constant: A 1-byte constant to OR with the byte at the base displace­
ment address.

fJ Base address register: The address of the single binary register(BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address.

II Addressing bit:
o = BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

II Displacement: The number of bytes (hex OO-FF) from the base address
where the byte, with the bits to set on, is stored.

The displacement is added to the contents of the base address register, then the
data at the resulting address is logically ORed with the mask constant. The result
is stored at the original storage location.

Note: This instruction should not be used to set different bits in the same byte
of storage when a system has multiple application processors operating in multi­
ple partitions. Use the RXORW instruction instead.

Object Code Instruction Format 299

300

Blnlry Aliliter Sub.lat with I Dllpllatmlnt Addrlll (.. t

SourOl:

ObJect:

D Result/factor 1: The address of the binary register that contains factor 1
and will contain the result cif this instruction.

II Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Base address register: The address of the binary register that contains the
base address.

.. Address bit:
0= BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the

partition.

II Displacement: The number of bytes (hex OO-FF) from the base address where
factor 2 is stored.

Factor 2 is subtracted from factor 1, and the result is placed in the factor 1 register.

(-

alt alt' Ott with MI,k (alTO"")

SourcI:

Object:

a Mask constant: A 1·byte constant to convert to the ones complement, then
AND with the byte at the base displacement address.

fJ Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address.

II Addressing bit:
0= BRn contains a l6·bit base address.
1 = BRn(4) contains a 20-bit base address.

II Displacement: The number of bytes (hex OO·FF) from the base address where
the byte to mask is stored.

The displacement is added to the contents of the base address register, and then the
data at the resulting address is logically ANDed with the ones complement of the
mask constant. The result replaces the original data in storage.

Note: This instruction should not be used to reset different bits in the ,same
byte of storage when a system has multiple application processors operating in
multiple partitions. Use the RXORW instruction instead.

Object Ccide Instruction Format 301

302

Binary Double-Register Add with a Base Displacement Address (+=)

Source:

Object:

.. Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

II Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Base address register: The address of the binary register that contains the
base address.

II Address bit:
0= BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the

partition.

II Factor 2 displacement: The number of bytes (hex OO-FF) from the base address
where factor 2 is stored.

The factor 2 displacement is added to the contents of the base register, then the
data at the resulting address is logically added to factor 1.

\ '" /

Skip if Bits are OFF (lFB OFF)

TB ;:5(1::=1 ==D=:=:~~14~)J OFF 7""-' SKIP

Object: I B5 I I II I I
~0------~8~~J~--~15~~~~2~3~-I+--rl31

Source:

D 611 II

D Mask constant: A 1-byte constant that specifies the bits to test in the byte
at the base displacement address.

6 Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)). that contains the base
address.

II Addressing bit:
0= BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

II Displacement: The number of bytes (hex OO-FF) from the base address where
the byte to test is stored.

The displacement is added to the contents of the base address register, then the ones
complement of the data at the resulting address is tested with the mask constant. If
any of the test bits are off, the next sequential instruction is skipped.

Object Code Instruction Format 303

304

Ilnlry Doulll, .. "lit., lulltrl. wIth. al. Dllplillmint Addreu (..)

Io.urll:

ObJ"t:

a A'lultlflctor 1: Th. Iddr ... of the blnlrv r.gllt,r that contalnl 1Ictor 1
and will contain thl rllult of thll Innructlon.

• Bit 16:
o • Length of factor 2 I, 2.
1 • Length of factor 2 II 1.

• Base address register: The address of the binary regilter that contains the
bale address.

.. Address bit:
0" BAa contains a 1a·bit address.
1 • BRa(4) contains a 20·bit address of a storage location outside the

partition.

II Factor 2 displacement: The number of bytes (hex OO·FF) from the base address
where factor 2 is stored.

The factor 2 displacement is subtracted from the contents of the base register, then
the data at the resulting address is logically subtracted from factor 1.

(

(

.klp It Iltl.re On UPI ON)

8ouro.:

ObJ.ot:

• Milk conltlnt: A 1·bvtl conltlnt th.t 'Plclflll the bit. to tilt In the byte
It the bl.1 dllpllcement .ddr ••••

• B ddre •• register: The Iddr .. , of the ,Ingl. bln.ry register (BRn), or of
the rightmost register of I double register (BRn(4)), th.t contllns the ba ..
address.

II Addressing bit:
0" BRn contains a 16·blt address.
1 .. BRn(4) contains a 20·bit address.

.. Displacement: The number of bytes (hex OO·FF) from, the base address where
the byte to test is stored.

The displacement is added to the contents of the base address register, then the data
at the resulting address is tested with the mask constant. If any of the test bits are
on, the next sequential instruction is skipped.

Object Code I nstruction Format 306

306

Binary Register Load from a Base Displacement Address (=)

Source: BRa

~(~ I I
I

I Object: B8
0 8 J 15 23 31

liB 1111 II

D Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

fJ Bit 15:
0= Length of factor 2 is 2,
1 = Length of factor 2 is 1.

II Base address register: The address of the binary register that contains the
base address.

II Address bit:
0= BRb contains a 16-bit address.
1 = BRb(4) contains a 20-bit address of a storage location outside the

partition.

II Factor 2 displacement: The number of bytes (hex OO-FF) from the base
address where factor 2 is stored.

The factor displacement is added to the base address register contents, and factor 2
is loaded from that address to the specified binary register.

, , ___ J

(

Insert Constant Into a Base Displacement Address (= constantl

[(BRnl]
displ (BRn(4)) = cons{ant

[11--=-1--........".
Source:

Object: 1 B9 1 / 1 @(1/ I: I
~O----~8~~/~~1~5~-I+-~'~23~~/-~31

D all D

D Constant: A l·byte constant to insert into the base displacement address.

a Base address register: The address of the single binary register (BRnl, or of
the rightmost register of a double register (B Rn (4 I I, that contains the base
address.

II Addressing bit:
o = B Rn contains a 16-bit base address.
1 = BRn(41 contains a 20-bit base address.

a Displacement: The number of bytes (hex OO-FFI from the base address
where the character is inserted.

The displacement is added to the base address, and the constant is loaded into the
resulting address.

Object Code Instruction Format 307

308

IInl", ""II'er AND with ,., DIIPI_ment Add"ll (•• ~

louru:

ObJeat: SA

• Relultlfactor 1: The addre., of tho binary regl'ter that contllns factor 1
and will contain the rllult of thlllnitruction.

• Bit 115:
o • Length of factor 2 I, 2.
1 • Length of factor 2 I, 1.

• Ba.e add res. register: The address of the binary register that contains the
base address.

.. Address bit:
O· BRa contains a 16·blt address.
1 • BRa(4) contains a 20·bit address of a storage location outside the

partition.

II Factor 2 displacement: The number of bytes (hex OO·FF) from the base
address where factor 2 Is stored.

The factor 2 displacement is added to the base address register contents, factor 1
is ANDed with the contents of the resulting address, and the result is placed into
the factor 1 register.

(

Iklp If lytllqulll Conltlnt UPI II)

laura.: I B

ObJ.at: BB

.. Constant: A l·byte conltllnt that II compared with the content. of the byte
at the ba.e displacement addr

• Baieaddresl register: The address of theslngla binary register (BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address.

II Ac:Jdressing bit:
0" BRn contains a 16·bit base address.
1 = BRn(4) contains a 20·bit base address.

.. Displacement: The number of bytes (hex OO·FF) from the base address where
the byte to compare with the constant is stored.

The displacement is added to the contents of the base address register, the contents
of the resulting address is compared with the constant, and the next instruction is
skipped if they are equal.

Object Code Instruction Format 309

310

Binary Register OR with a Base Displacement Address (V=)

Source:

Object: Be
o

DB 1111

.. Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

II Bit 15:
0= Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Base address register: The address of the binary register that contains the
base address.

II Address bit:
0= BRa contains a l6-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the

partition.

II Factor 2 displacement: The number of bytes (hex OO-FF) from the base
address where factor 2 is stored.

The factor 2 displacement is added to the base address register contents, factor 1
is ORed with factor 2, and the result is placed in the factor 1 register.

/

(

(

Duplicate a Character at Base Displacement Address (DUP)

Source:

Object:

.. Length: The number minus 1 (hex OO·FF) of times to duplicate the byte at
the base displacement address.

II Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address.

II Addressing bit:
0= BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

II Displacement: The number of bytes (hex OO-FF) from the base address where
the byte to duplicate is stored.

The displacement is added to the contents of the base address register and the
contents of the resulting address is duplicated into the succeeding bytes.

Object Code Instruction Format 311

312

Ilnlry AIgllttr balullVI OA with I lUI Dllpllatmlnt Add,.11 ()(.)

Soural:

Object:

D Result!factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

fJ Bit 15:
o = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

II Base address register: The address of the binary register that contains the
base address.

.. Address bit:
0= BRa contains a l6·bit address.
1 = BRa(4) contains a 20·bit address of a storage location outside the

partition.

II Factor 2 displacement: The number of bytes (hex OO·FF) from the base
address where factor 2 is stored.

The factor 2 displacement is added to the contents of the base address register,
factor 1 is exclusively·ORed with the factor 2, and the result is placed in the factor
1 register.

(

(

Repll. 'Ield on lorlln (RIPPLD)

lourot: AErLD

I f f I I Object: C3 00 00 00
0 B 16 23 31

When the REPFLO instruction Is executed, the main microprocessor does the
following:

• Stores the keyboard operation code C3 and the operation parameters in the
keyboard/display lOB starting at hex displacement 1 F.

• Moves the contents of register BR19, BR20, and BR2l into the op code instruc­
tion to use as parameters. (During keyboard/display external status, BR19 holds
the address of the current field in the I/O buffer; BR20 holds the address of the
current field in the refresh buffer in keyboard/display storage; and BR21 holds
the character set definition, the length minus 1 of the current field, and character
set information about the last field processed.

• Notifies the keyboard/display microprocessor of the service request (keyboard
operation). The keyboard/display microprocessor then moves the data, specified
in the operation parameters, from main storage into the keyboard/display stor­
age main refresh buffer. The bytes are translated through the display translate
table; EBCDIC values between hex 20 and 2F are changed to hex 1 F and dis­
played as solid rectangles. The codes in main storage remain unchanged.

• If the signed numeric bit is on in parameter 3 (from BR21) and the rightmost
byte moved is 00-09, a minus sign is displayed in the sign position of the field
(to the right of the rightmost byte). If the rightmost byte is not 00-09, a blank
is displayed in the sign position.

If the character set bits indicate a numeric only or digits only field and the signed
numeric bit is not on, and if the rightmost byte moved is 00-09, the negative
graphic corresponding to the digit is displayed in the rightmost position of the
field.

This operation is not meaningful for IBM 3270 mode.

Object Code Instruction Formet 313

314

Keyboard Attach (KATTCH)

Source: KATfCH

I I I Object: I C4 00 I 00 00
0 8 15 23 31

The KATTCH instruction provides temporary control of a keyboard/display unit,
attaching the partition to its associated keyboard. This instruction is in effect until
a KDETCH instruction is executed. If the attach is successful, the next sequential
instruction is skipped.

This operation will fail if:

• There is an outstanding keystroke error

• There is an outstanding request for software error mode (KERRST)

• There is an outstanding ENTR

• Another partition is attached

This operation is not valid for IBM 3270 mode.

Keyboard Detach (KDETCH)

Source: KDErCH

I I I I I Object: C5 00 00 00
0 8 15 23 31

The KDETCH instruction detaches the keyboard/display unit from the current
partition. If the detach is successful, the next sequential instruction is skipped.

This operation will fail if:

• There is an outstanding keystroke error

• There is an outstanding request for software error mode (KERRST)

• There is an outstanding ENTR

This operation is not valid for IBM 3270 mode.

/

(

(

Read Elapsed Time Counter

Source: RTIMER (BRa)

~ 1
I I I 101 I Object: C7 @, 00
0 8 15 J 23 31

0 fJ

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

fJ To address: The address of the binary register that contains the main storage
address where the timer value is to be stored.

This instruction stores the timer value into a 3·byte storage area. The high·order 2
bytes are taken from a 2-byte counter in the system control block (see Elapsed
Time Counter in Chapter 1). These 2 bytes of the count indicate the number of
1.6 seconds that have elapsed since power on. The low-order byte is taken from a
keyboard/display timer. Bits 0-3 of the low-order byte are always zero. Bits 4-7
indicate the number of tenths of a second since the last count indicated in the
high-order 2 bytes.

Cancel Current Enter Command (CNENTR)

Source: CNENTR

Object:

II

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

This instruction cancels the current ENTR command. The end of screen format
control string functions are performed. and data is no longer accepted from the
keyboard. On the status line. the counters. insert mode symbol. keyboard shift.
and hex display position are set to blanks. In the 108. the command op code is
set to zeros.

If this operation is issued in an external status subroutine during the processing
of a nonoverlapped ENTR command. the return issued in the subroutine is made
to the interrupted ENTR if the interrupted ENTR was not made complete by the
external status condition. The ENTR is reissued and processing begins at the
start of the screen format control string.

This operation not meaningful for IBM 3270 mode.

Object Code Instruction Format 315

316

A.I •••• Ch.,.oter III"Id FI.ld Edltl (KIVOP)

Sourc.: KlOP (X'08')

j Object: C7 00 00 ..
a Keyboard operation number: The number that the main microprocessor

stored in the keyboard/display lOB starting at hex displacement 1 F.

The following character and field edit checks are discontinued for the current field:

• Character set check

• Data required

• Blank check

• Mandatory enter

• Mandatory fill

The checks are discontinued only until the field is exited in the forward or back·
ward direction. If the same field is later advanced or backspaced into, the checks
will be in effect.

This operation not meaningful for IBM 3270 mode.

,<
-~<

(

Chlnge Row Attribute (KEVOP)

Source:

Object:

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

fJ Row: The address of the binary register that contains in the low-order byte
the number of the row on the screen that is effected.

·11 Masks: The address of the binary register that contains two l-byte masks to
be used for control information.

In keyboard/display storage, there is a 1-byte attribute specification for each row
on the screen. This attribute specification determines how the row is displayed.
The format of the attribute specification is as follows:

Bit ~eaning

0-1 01 = No system indicator
10 = Dash
11 = Solid rectangle

2 Valid row starting attribute. This bit must be 1 for bits 3-7 to be valid
3 Column separators are displayed
4 Blink the row2
5 Underscore the row!,2
6 High intensity!
7 Reverse image!

When this keyboard operation is executed, the attribute specification for the row is
ANDed with the mask in the high-order byte of the binary register that holds the
masks. The result of the AND is then exclusively-ORed with the mask in the low­
order byte of the register. The attribute specified with bits 3-7 stays in effect until
the next row starting attribute or character attribute.

I'f bits 5, 6, and 7 equal 111, the display of the row is inhibited.
2These attributes remain in effect until any attribute is encountered.

Object Code Instruction Format 317

318

Change Screen Position Pointer (KEYOP)

Source: KE[OP (X'OS',

B~)
I I

I
I 101 I Object: C7 O~ 00

0 8 I 15 23 31

D fJ

.. Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

If) Screen position pointer modifier: The address of the binary register that
contains the modifier.

The contents of the screen position pointer are replaced with the modifier. The
binary register that holds the modifier contains the row number in the leftmost
byte and the column number in the rightmost byte.

If this operation is performed prior to an ENTR command and the format control
string for the ENTR specifies that the format should be continued at the current
screen position, the format will be initialized at the position specified by this opera­
tion rather than at row 2, column 1.

If this operation is performed during the processing of an ENTR command (for
example. during an RG exit). all screen definitions such as fields and prompts
encountered after this operation is executed originate from the position specified
by this operation. The cursor is not moved over intervening fields and prompts;
it causes them to be displaced on the screen.

This operation not meaningful for IBM 3270 mode.

Note: It is not recommended to use this operation during the processing of an
ENTR. No checking is made on the specified screen position.

~
_1

(

(

(

Accept Keystrokes and Store (KACCPT)

Source: KACCPT (or BRb[(4)])

I I
I I I I Object: C7 0, I ,@
0 8 15 23 J 31

D fJ II

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

fJ Address: The address of the binary register that contains the main storage
address where the keystrokes are stored.

.. Length and options: If a 2-byte binary register is specified (optional 4 not
supplied), it contains the information described for bytes 0 and 1. The
keystrokes are not displayed as they are entered. If a 4-byte binary double
register is specified (optional 4 is supplied), it contains the information
described for bytes 0 to 3. The keystrokes are displayed as they are entered.

Byte Bit

0
0=1
1-4
5=1

6-7

1

2

3

Meaning

Option Flags:
The keyboard sounds a response click for each keystroke.
Not used.
The monocase function is enabled; keystrokes are con­
verted to their uppercase equivalent as they are entered.
Keyboard Shift Flags: 00 for Alpha shift.
01 for Num shift.
10 for Katakana shift.
11 is invalid.

Number minus 1 of keystrokes to accept.

Row number where keystroke display begins.

Column number where keystroke display begins.

The scan code and its EBCDIC translation are stored for each keystroke accepted
from the keyboard. The codes are stored in pairs. For multiple keystrokes the
scan code and EBCDIC are stored sequentially in the order they are entered.

Object Coda Instruction Format 319

320

The keyltrokel Ire not Ipplled to Iny outltlndlng ENTA commlnd. If I Ihlft key
II preilld during thll oporltlon, the keybolrd Ihlft Is chlnged but the ICln code
Ind EBCDIC for the shift k.y Iro not stor.d; the shift key does not effect the k.y·
Itrok. count. If I function key II pre ... d during thll operltlon, the ICln code Ind
EBCDIC Ire stored but the functl0l'1llnot p.rforined Ind externll statuI doas not
result. If a command kay leCluence II entarad durlngthl. operation, th.code. Ira
.toredand .,(tarnll stltUI dOli not rllult excopt If the Cmd key II followed by the
C key. In thl. CI.e, the code. for the Cmd koy are Itored Ind then tho function for
the Cmd, C key IICluence II performed: the KACCPT operation II made complete
regardllli of the I<eyltroke count.

The keyboard mUlt bl attached when thll operltlon 18 performed.

Thll operltlon II not vilid In IBM 3270 mode.

PI .. SOln Codt to K.ybolrd (KEYOP)

Source:

Object:

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

II Scan code address: The address of the binary register that contains the main
storage address of the scan code.

When this operation is executed, the specified scan code is passed to the keyboard/
display associated with the partition. The scan code is processed as though it
originated from the keyboard.

The keyboard must be attached when this operation is performed.

This operation is not valid in IBM 3270 mode.

(

(

(

PI .. EBCDIC to Klybolrd (KIVOP)

SaurcI: KIVOP (X'OB', BAil

ObJlct:
P-------~--~--~~~~~----~

D Keybolrd operltlon number: The number that the main mlcroproce.lor
star .. In the keyboard/display lOB starting at hele dllplacement 1 F.

• eeco IC Code eddres.: The address of the blnery register that contains the
main storage addre .. of the eeco IC code.

When this operation Is executed, the specified EBCDIC code is passed to the
keyboard/display associated with the partition. If the EBCDIC corresponds to a
data key or function key, It Is processed as though It originated from the keyboard.

Note: 29 (clear screen) and 2A (clear status line) are ignored because they are not
function key EeCO ICs. These functions can be performed with keyboard opera­
tion 11.

The keyboard must be attached when this operation is performed.

This operation is not valid in IBM 3270 mode.

Object Code Instruction Format 321

322

Display Extra Line (DISPEX)

Source: DISPEX

Obi'''' I C7 I ~ I 00 I 00 I
~o--------~8---/~--~1~5~----~2~3L-----~31

o

.. Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

The instruction displays the extra line, replacing the display of the status line.
The row starting address for the status line is set to the address of the extra line
in the keyboard/display storage main refresh buffer area. The status line
information is not available when using this instruction.

Display Status Line (DISPST)

Source: DISPST

I I ~D I Object: C7 00 00
0 8 I 15 23 31 ..

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

The instruction displays the status line, replacing the display of the extra line.
The row starting address for the extra line is set to the address of the status
line in the keyboard/display storage main refresh buffer area.

(

Request Keyboard Error Mode (KERRST)

Source: KERRST (BRa , BRb)

1 I
jE I 10 I I 01 Object: I C7 I @ @

I i

D

0 8 15 I 23 31

D B II

Keyboard operation number: The number that the main microprocessor
stores in the keyboard/CRT lOB starting at hex displacement 1 F.

Attribute mask and control information: The address of the binary register
that contains the attribute mask in byte 0 and control information in byte 1.

Byte Bit

0
0
1·2
3
4
5
6
7

0

1
2·7

Meaning if 1

Attribute Mask:
Buzz keyboard
Reserved
Column separators displayed
Blink
Underscore!
Highlight!
Reverse image!

Control Information:
o = Do not check for display of status line.
1 = Display status line if it is not currently displayed.
Start in column 1. (If bit 1 = 0, start in column 3.)
Message length minus 1, up to 63. If 63 is specified, it
indicates 0 bytes.

II Message: The address relative to the start of the partition of the binary
register that contains the main storage address of the message to move to
the status line refresh buffer.

!It bits 5,6, and 7 equal 111, data will not be displayed.

Object Code Instruction Format 323

324

Thll operation piaOtI thl keyboard In loftware error mode. When the keyboerd/
dllplay II In loftwlre error mode, all dati klYI, function keYI, Ind com mind key
.. qulnc .. arl Ignored. However, If the KEVOP Inltructlon for operation hex 11
(perform keybolrd function) 1lllIued, thl function II plrformed II long I. the
keyboard II In In Ipproprllte Itltl.

Bitt 3·7 of thl attribute milk Ire exclullvlly·OAed with bltl 3·7 of the rowattrl·
bute byte (which determlnll the dllpl.y of the row) for the top row of the Icrean.
If thl st.tuilln. I. not dlspl.yed on the Icrlln, the extr.llne will h.ve the Indlc.ted
.ttrlbute •.

By tel .re moved from the .ddre •• Iplclfled to the .t.tuillne. The byte. ere trens­
lated through the dl.pl.y tranll.te t.ble, .nd .ttrlbutll .re tr.nllattd .nd p d.
The byt .. moved from stor.ge overwrite the orlgln.1 It.tUI line d.t., .nd the
orlgln.1 It.tulllni d.ta destroyed.

If the ItltUI line II currently baing dllplayed when thll Instruction I. executed
the Indlc.ted m ... age II displayed In column 1 or column 3, .ccordlng to byte 1,
bit 1 of the control Information. If the st.tus line I. not being dlspleyed, the
message Is not displayed unless byte 1, bit 0 Is 1.

This operation is invalid If the keyboard/display Is already in software error mode,
or If issued from an unattached background partition.
This operation is not valid in IBM 3270 mode.

Re.t Keyboard Error Mode (KERRCL)

Source:

Object:
~----~~--+---~~--~~----~

a Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

IfJ Attribute mask and control information: The address of the binary register
that contains the attribute mask in byte 0 and control information in byte 1.
See keyboard operation OE for the format.

This operation takes the keyboard/display out of software error mode. It is valid
only after a KERRST operation, and only when issued from an attached partition.
When this operation is executed, if an ENTR command is outstanding and bits 2-7
of the control information do not equal zero, the field shift, hex display, current
position counter, insert mode, and positions remaining in current field counter are
restored in the status line. An attribute change is allowed, as for KERRST. Bits
2-7 of the control information specify the number minus 1 of positions to replace
with blanks when the KERRCL operation is executed.

This operation is not valid in IBM 3270 mode.

(

(

Sound BUller (BUZZ)

Source: BUll

Object: C7
o

.. Keyboard operation number: The number that the main mlcfoprocellor
Itorasln the keyboard/display lOB starting at hu displacement 1 F.

This Instruction sounds the alarm on the keyboard associated with tha partition.
Tha duretlon of the alarm Is approximately 180 milliseconds.

Perform Keyboard Function (KEYOP)

Source: KE (X'11', BRa)

Object:

a Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

II Function address: The address of the binary register that contains, in the
rightmost byte, the EBCDIC code for a function.

When this operation is executed, the function specified by the function EBCDIC
is performed, with the following exceptions:

• The keyboard bit map is not checked to determine if the application program
normally handles the function.

• If the keyboard is in software error mode, the function is executed if the key­
board is in an appropriate state. If the function is 29 (clear screen) or 2A (clear
status line), the function is executed regardless of the state of the keyboard. If a
function EBCDIC other than hex 01 through 2C is specified, an invalid operation
external status condition occurs. The keyboard must be attached when this oper­
ation is performed.

This operation is not valid for IBM 3270 mode.

See Appendix C for a list of the function codes.

Object Code Instruction Format 325

326

Allocate KeyboardlDisplay Storage (KEVOP)

Source: KEVOP (X'12', BRa)

1 1
1

1
10 I I Object: I C7 I 12 @ 00

t f
0 8 I 15 I 23 31

D fJ

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

II Length address: The address of the binary register that contains, in the right­
most byte, the length in K-bytes to allocate for each area, as follows:

Bits Meaning

0-1 Number of K bytes (in binary) to allocate to section F (unit 1).
2-3 Number of K bytes (in binary) to allocate to section B (unit 2).
4·5 Number of K bytes (in binary) to allocate to section 7 (unit 3).
6-7 Number of K bytes (in binary) to allocate to section 3 (unit 4).

This instruction should be issued only at IPL time to allocate keyboard/display stor­
age. The storage address range for one to three K bytes is as follows if the specified
amount of storage is available:

Binary
Specification

01
10
11

Number of K
Bytes

1
2
3

Address Range in
KeyboardlDisplay Storage

xCOO through xFFF
x800 through xFFF
x400 through xFFF

Where x is hex F, B, 7, or 3 for keyboard/display units 1, 2,3, or 4 respectively.

If 3 K of storage is specified for a section and only 1 or 2 K is available, the storage
is allocated beginning at x400. If 2 K of storage is specified for a section and only
1 K of storage is available, the storage is allocated beginning at x800.

If the amount of storage specified for allocation to sections F, B, 7, and 3 is less
than the total amount available, the remaining storage is allocated in section 0
starting at _address hex 0000 to a maximum of 4 K bytes.

Notes:
1. Certain 5280 models have keyboard/display storage that is not dynamically

allocatable. On these models, execution of this instruction does not change
the storage allocation.

2. Regardless of how the allocation is specified, the hardware will not allocate
storage in a section if that section does not have a corresponding display
attachment.

See Chapter 3 for more information about keyboard/display storage.

"-"
"

/ '

(

(-

. Click Keyboard (CLICK)

Source: CLICK

~4 I I I I I Object: C7 00 00
0 8 15 23 31

D

a Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

This instruction clicks the keyboard associated with the partition.

Open KeyboardlDisplay (KEYOP)

Source: KEYOP (X'15')

I
1

I
!

I I I Object: C7 15 00 00
0 8 I 15 23 31

D

.. Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

This instruction initializes the keyboard/display unit.

• The clear scrE)en function (29) is performed.

• The clear status line function is performed.

• The cursor is erased from the screen.

• The blink attribute for the top line displayed on the screen is cleared unless a
keystroke error or software error mode is outstanding.

This operation is performed automatically during a load operation; it should not
normally be issued by an application program. If this operation is issued from an
unattached partition, an external status condition for invalid operation occurs.

This operation is not valid for IBM 3270 mode.

Object Code Instruction Format 327

328

ReNt Megnetlo StrIpe Re.der (RSTMO)

Source: RSTMG

I I JP I I I Object: C7 00 00
0 8 I 15 23 31

D

o Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

This instruction resets the magnetic stripe reader to read data from a badge.

Read Magnetic Stripe Reader (READMG)

Source: READMG (BRa BRb)

I ~7 I ~I o I I 101 Object: C7 I ~
0 8 I 15 I 23 I 31

0 rJ II

o Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

D Length: The address of the binary register that contains the number, minus
1, of bytes to read.

II To address: The address of the binary register that contains the main stor­
age address within the partition where data is read into from the magnetic
stripe reader buffer.

When a badge is inserted into a magnetic stripe reader, the badge characters are
read into a buffer in the reader. External status condition 11 occurs in the partition
associated with the reader. After badge data is read into the buffer, no other badge
data is accepted until the buffer data is read with the READMG instruction or until
the reader is reset with the RSTMG instruction. After the execution of the
READMG instruction, the reader is automatically reset to enable the reader to
accept another badge.

- -,

,,)

/

The megnetlc stripe data coniliu of altrlng of from 3 to 128 characterl. The first
character mUlt be a Itart of millage (SOM) control character. The naxt·to·the·lalt
character must be an end·of·me.sage (EOM) control character. The lalt character
must be a longitudinal redundancy check (LRC) control character of even parity for
the entire data group, Any character can be placed in the other PDsltlons except an
EOM character,

The reader control characters and data characters are as follows:

Bits Meaning if 1

o Device flag: A magnetic stripe reader is installed on the system.

Error flag: One of the following conditions has occurred:

• Parity error

• LRC error

• EOM missing

• Improper badge insertion or removal

• Speed error

• Buffer address overflow

2 LRC control character.

3 Parity bit: Odd parity for bits 4-7.

4-7 Data or control character: If hex 0 through 9, a data character. If
hex B. a SOM control character. If hex F. an EOM character.

If any byte has an error, the error flag is set in all bytes.

Object Code Instruction Format 329

330

Device Control Read (KEYOP)

Source: KEYOP (X'1 F', BRa BRb)

!
tF

l 1
Object: I I o I 10) C7 I @ @

I
,

0 8 15 23 I 31

D IfJ II

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

IfJ To address: The address of the binary register that contains the main stor­
age address where external register 5 contents are stored.

II Command address: The address of the binary register that contains. in the
low-order byte. the attachment command.

When this instruction is issued. external register 5 is set to O. the command is
loaded into external register 13. and external register 5 contents are sorted at the
main storage address specified. (For some EAR commands the 100 contents
remain unchanged.) The command must be one of the following:

Hex Value

41. C1. 45. C5
51.01.55.05
61.E1.65.E5
43.C3.47.C7
49. C9. 40. CO
69. E9. 60. EO
4C.CC
4E
7A
6A
CA. EA. OA. FA
4B.5B.CB
FF
4F. CF

Command

Read keyboard data
Read keyboard status
Activate keyboard click
Activate keyboard buzz
Magnetic strip read data
Magnetic strip error reset
Read extended sense register
Read interval timer
Read mar hi
Read mar 10
Enable translation
Keyboard/display storage read
Power on reset
Read error sense

/ ,

(

(

(

This operation should be issued only for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes, the internal timer, parity errors, and the extended sense register until an
ENTR command or keyboard operation other than 1 F, 20, 21, or 22 is executed.
When a diagnostic operation is issued, there is a change in external status 13 before
the operation is executed. The contents of external register 13 depends on the key­
board/operation is executed. The contents of external register 13 depends on
the keyboard/display unit associated with the partition that issued the instruction
as follows: for unit 1,40; for unit 2, CO; for unit 3,44; for unit 4, C4. Register
25 and bit 7 of register 26 should not be altered by the application program.

Notes:
1. The external registers are used by the microprocessors; external registers are not

binary or decimal registers located within a main storage partition.
2. The execution of a diagnostic operation will cause a change to external register

13 and bit 7 of external register 26 before the operation is performed.
3. External register 25 should not be altered because it is used to determine which

partitions are serviced by the microprocessor.
4. Bit 7 of external register 26 should not be altered because it has status informa­

tion required by the microprocessor.

Object Code Instruction Format 331

332

Device Control Write (KEVOP)

Source: KEVOP (X'20', BRa, BRb)

, Object:
~------~--~--~~~~~~--~

a Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

fJ From address: The address of the binary register that contains the main stor­
age address of data to write into the external register, XR5.

II Command address: The address of the binary register that contains, in the
low-order byte, the attachment command.

When this instruction is executed, external register 5 is loaded with the data at the
specified main storage address, external register 13 is loaded with the command.
The command must be one of the following:

Hex Value

5A
4A
6B,7B,EB
48
C8
5F

Command

Load mar hi
Load mar 10
Keyboard/display storage write
Load configuration register
Load sum register
Load diagnostic control register

This operation should be issued onlv for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes, the interval timer, parity errors, and the extended sense register until
an ENTR command or keyboard operation other than 1 F, 20, 21, or 22 is executed.
When a diagnostic operation is issued, there is a change in external register 13 before
the operation is executed. The contents of external register 13 depends on the
keyboard/display unit associated with the partition that issued the instruction, as
follows: for unit 1,40; for unit 2, CO; for unit 3, 44; for unit 4, C4. Register 25
and bit 7 of register 26 should not be altered by the application program. See
notes under keyboard operation hex 1 F.

('

(

(

KeyboardlDllplay Extemal Regllter Read (KEVOP)

Source: KEVOP (X'21', BRa, BRb)

Object:
~--------~---+--~~-+~~~~--~~

a Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

fJ To address: The address of the binary register that contains the main storage
address to which the contents of the external register is read.

II Register address: The address of the binary register that contains, in the
low-order byte, the external register to read.

The contents of the low-order byte of the binary register II indicates the external
register to read into the main storage address, as follows:

00 = External registers 5, 13, 25, and 26
01 = External register 5
02 = External register 13
03 = External register 25
04 = External register 26

This operation should be issued only for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes. the internal timer, parity errors, and the extended sense register until an
ENTR command or keyboard operation other than 1 F, 20, or 22 is executed. When
a diagnostic operation is issued, there is a change in external status 13 before the
operation is executed. The contents of external register 13 depends on the key­
board/display unit associated with the partition that issued the instruction, as
follows: for unit 1,40; for unit 2, CO; for unit 3,44; for unit 4, C4. Register 25
and bit 7 of register 26 should not be altered by the application program.

See notes under keyboard operation hex 17.

Object Code Instruction Formet 333

334

KeyboardlDisplay External Register Write (KEYOP)

Source: KEYOP (X'22', BRa, BRb)

Object:
~------~--~--~~~~~~--~

D Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

fJ From address: The address of the binary register that contains the main
storage address where the data to write into the external register is
contained.

II Register address: The address of the binary register that contains, in the
low-order byte, the external register to write.

The contents of the main storage address are copied into the external register
specified by the low-order byte of the binary register, as follows:

01 = External register 5
02 = External register 13
03 = External register 25
04 = External register 26

The operation should be issued only for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes, the interval timer, parity errors, and the extended sense register until
an ENTR command or keyboard operation other than 1 F, 20, 21, or 22 is executed.
When a diagnostic operation is issued, there is a change in external status 13 before
the operation is executed. The contents of external register 13 depends on the
keyboard/display unit associated with the partition that issued the instruction, as
follows: for unit 1,40; for unit 2, CO; for unit 3, 44; for unit 4, C4. Register 25
and bit 7 of register 26 should not be altered by the application program.

See the notes under keyboard operation hex 1 F.

(

(

Keyboard/Display Read Buffer Assist (KEVOP)

Source: KEVOP (X'80', BRa, BRb [(4)))

1
Jo I ~ I

Output: C7 @

0 8 / 15 / 23 / 31 .. B II
D Keyboard operation number: The number that the main microprocessor stores

in the keyboard/display lOB starting at hex displacement 1 F.

fJ Address of the binary register that contains the address of the data stream
buffer.

II Address of a single or double binary register. If a 2-byte single binary register
is specified (optional 4 not supplied, meaning the read is for a screen), it
contains the information described in bytes 0 and 1. If a 4-byte double binary
register is specified (optional 4 is supplied, meaning the read is for a printer),
it contains the information described in bytes 0-3.

Byte Bit

0 0

1-3

4-7
and

0-7

2-3

Meaning

Indicator of where to begin read.
o = Device buffer address O.
1 = Current buffer address (held in KB/CRT lOB if read is for a

screen, or printer control block if read is for printer).

Must be O.

Maximum length of data stream.

Address of a printer control block of 11 bytes in the following
format:

Bytes Contents

1-2 Device buffer address
3-4 Work buffer address
5-6 Current buffer address
7-8 Current cursor position
9 EBCDIC-INTERNAL translation table address
10 Flag/translation table page number
11 INTERNAL-EBCDIC translation table address

Object Code Instruction Format 335

336

The microcode builds an IBM 3270 read buffer data stream using the data contained
in the device buffer. The data stream begins with the cursor address.

At the completion of the operation, the microcode stores the length of the data
stream in the 1921st and 1922nd bytes of the device buffer. The length includes
the cursor address bytes. If the length of the data stream to be built is greater than
the maximum length specified, or if the maximum length specified is less than 2,
an external status code 17 is posted.

(

(

(

Keyboard/Display Read Modified As.ilt (KEYOP)

Source: KEYOP (X'81', BRa, BRb [(4)])

Object:

.. Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display lOB starting at hex displacement 1 F.

II Address of the binary register that contains the address of the data stream
buffer.

II Address of a single or double binary register. If a 2·byte single binary register is
specified (optional 4 not supplied, meaning the read is for a screen), it contains
the information described in bytes 0 and 1. If a 4·byte double binary register
Is specified (optional 4 is supplied, meaning the read is for a printer), it contains
the Information described in bytes 0·3.

Byte Bit

0 0

1·3

4·7
and

0·7

2·3

Meaning

Indicator of where to begin read.
0= Device buffer address O.
1 = Current buffer address (held in KB/CRT lOB if read is for a

screen, or printer control block if read is for a printer).

Must be O.

Maximum length of data stream.

Address of a printer control block of 11 bytes in the following
format:

Bytes Contents

1·2 Device buffer address
3·4 Work buffer address
5·6 Current buffer address
7·8 Current cursor position
9 EBCDIC·INTERNAL translation table address
10 Flag/translation table page number
11 INTERNAL-EBCDIC translation table address

Object Code Instruction Format 337

338

The microcode builds an IBM 3270 read modified data stream using the data
contained in the device buffer. The data stream begins with the cursor address.

At the completion of the operation, the microcode stores the length of the data
stream in the 1921 st and 1922nd bytes of the device buffer. The length includes
the cursor address bytes. If the length of the data stream to be built is greater than
the maximum length specified, or if the maximum length specified is less than 2,
an external status code 17 is posted.

',,-- /

(

(

Keyboard/Display Write Assist For The Display (KEYOP)

Source: KEYOP (X'82', BRa, BRb (4))

Object: C7

D Keyboard operation number: The number that the main microprocessor stores
in the keyboard/display lOB starting at the hex displacement 1 F.

fJ Address of the binary register that contains the address of the data stream.

II A 4-byte double binary register that contains the information described in
bytes 0-3.

Byte

o

and

2

3

Bit

o

1-2

3

4-7

0-7

0-7

0-3

4

Meaning

Indicator of where to begin write.

0= cursor address.
1 = current buffer address.

Indicator of work buffer initialization.

00 = no initialization.
01 = initialize to null.
10= initialize to device buffer contents.
11 = no initialization.
If initialize to null is specified, the cursor address and current
buffer address are also set to 0 before the write begins.

Indicator for SSCP-SLU
0= not SSCP-SLU
1 = SSCP-SLU
If bit 3 is set, the work buffer is unconditionally initialized to the

device buffer.

Length of data stream.

Must be O.

Must beO.

Data stream transaction indicator.
0= Translate data stream.
1 = Do not translate data stream.

5 Sound alarm indicator.
0= Do not sound alarm.
1 = Sound alarm.

Object Code Instruction Format 339

340

6 Keyboard restore indicator.
0= 00 not clear input inhibited Indicator offer write.
1 • Clear Input inhibited indicator after write;

7 Reset MOT indicator.
0= 00 not reset modified data tags.
1 .. Reset modified data tags after write.
(Bits 4,6, and 7 are ignored when SSCP·SLU is specified.)

The microcode processes an IBM 3270 write data stream directed to the display.
It scans the data stream, modifying the contents of the work buffer as directed by
the data meam.
If the data stream should be handled as an SNASSCP-BLU data stream, only the new
line (NL) order is processed. When an NL is encountered, nulls are inserted to fill
the remainder of the line and position the current buffer address to the first position
of the next line. Null, I FS, and I RS are treated as graphics and displayed as blank,
*, and; respectively. Any other order encountered in the data stream causes a dash
to appear at the current position in the buffer. When the write is completed, the
cursor is positioned to the next available character location. This IDeation is saved
as the Initial cursor position and used on a subsequent read operation.

If the data stream isnot to be handled as an SNA SSCP·SLU data stream, the
fol/owing orders within the data stream are processed:

Start field
Set buffer address
Insert cursor
Program tab
Repeat to address
Erase unprotected to address

The microcode also checks for invalid order length, regardless of the setting of the
BSC/SNA flag. If an error occurs, external status code 17 is posted with an appro­
priate error code. The device buffer and the screen are unchanged. If no errors are
detected during the write, the contents of the work buffer move to the refresh
buffer and to the device buffer; the screen i mage changes.

While processing the data stream, if the BSC/SNA flag in bit 3 of the byte at address
X'F1' in the KB/CRT is set to 1 to indicate SNA, the microcode checks for invalid
addresses specified in the following orders:

• Set buffer address.

• Repeat to address.

• Erase unprotected address.

(

(

Keyboard/Display Write A.sist For The Printer (KEYOP)

Source: KEYOP (X'B3', BRa, BRb (4))

Object:

a Keyboard operation number: The number that the main microprocessor stores
in the keyboard/display 1.08 starting at hex displacement 1 F .

.. Address of the binary register that contains the address of the data stream.

II A 4·byte binary double register that contai"1s the information described in
bytes 0·3.

Byte

o

and

2·3

Bit

o

Meaning

Indicator of where to begin write.
o .. begin at cursor address.
1 ... begin at current buffer address.

1·2 Indicator of work buffer initialization.
00'" no initialization.

3

4·7

0·7

01 .. initialize to null.
10= initialize to device buffer contents.
11 = no initialization.
If initialize to null is specified, the cursor address and the buffer
address are also set to zero before the write begins.

Reset MDT indicator.
0= Do not reset modified data tags.
1 = Reset modified data tags before write.

Length of data stream.

Address of a printer control block of 11 bytes in the following
format:

Bytes Contents

1·2 Device buffer address
3·4 Work buffer address
5·6 Current buffer address
7·8 Current cursor position
9 EBCDIC·INTERNAL translation table address
10 Flag/translation table page number
11 INTERNAL·EBCDIC translation table address

Object Code Instruction Format 341

342

The microcode processes a 3270 write data stream directed to the printer. It scans
the data stream, modifying the contents of the work buffer as directed by the data
stream.

The following orders within the data stream are processed:

Start field
Set buffer address
Insert cursor (cursor position is stored into the control block following the write
assist if it completes successfully)

Program tab
Repeat to address
Erase unprotected to address

While processing the data stream, if the BSC/SNA flag in bit 3 of the tenth byte of the
the printer control block is set to 1 to indicate SNA, the microcode checks for invalid
addresses specified in the following orders:

• Set buffer address.

• Repeat to address.

• Erase unprotected address.

The microcode processes an IBM 3270 print image. It copies the device buffer byte
for byte into the work buffer, storing a null (X'OO') into the work buffer for each at­
tribute encountered in the device buffer. In addition, if an attribute that specifies
a nondisplay field is encountered, it stores nulls into the work buffer for each device
buffer data byte in the fieldwith the following exception: If the high-order byte of
BRb is nonzero and a byte in the nondisplay field is a forms feed character, that
forms feed character is not changed. The device buffer is not modified. This enables
the printer software to suppress a print line that contains only attributes, nonprint
fields, and nulls.

(
Keyboard/Display Null Non-Print Fields (KEYOP)

Source: KEYOP (X'84', BRa, BRb)

1 { ~ t
Object: C7 @

I.
0 8 / 15 I 23 I 31 .. fJ II

D Keyboard operation number: The number that the main microprocessor stores
in the keyboard/display lOB starting at hex displacement 1 F.

II Address of a binary register that contains the address of a 3270 printer control
block of 11 bytes in the following format:

Bytes Contents
1-2 Device buffer address
3-4 Work buffer address
5-6 Current buffer address
7-8 Current cursor position
9 EBCDIC-INTERNAL translation table address
10 Flag/translation table page number
11 INTERNAL-EBCDIC translation table address

II Address of a binary register that contains the following:

Byte Meaning

o 0 = null all characters in non-display fields.
Not 0 = null all characters in non-display fields except forms feed characters.

1 Not used.

The microcode processes an IBM 3270 print image. It copies the device buffer byte
for byte into the work buffer, storing a null (X'OO') into the work buffer for each
attribute encountered in the device buffer. In addition, if an attribute that specifies
a nondisplay field is encountered, it stores nulls into the work buffer for each device
buffer data byte in the field with the following exception: If the high-order byte of
BRb is nonzero and a byte in the non display field is a forms feed character, that
forms feed character is not changed. The device buffer is not modified. This enables
the printer software to suppress a print line that contains only attributes, non print
fields, and nulls.

Object Code Instruction Format 343

344

KeyboardlDllplay Eras. All Unprotected Assist (KEYOP)

Source: KEYOP (X'8S', BRa)

I 1 1
Object: C7 f!5 @ 00

0 B I 15 / 23 31 .. •
.. Keyboard operation number: The number that the main microprocessor stores

in the keyboard/display lOB starting at hex displacement 1 F.

rJ Address of a binary register that contains either:

• X'OOOO' if the operation is directed to a display.

• The address of an IBM 3270 printer control block of 11 bytes in the
following format if the operation is directed to a printer.

Bytes Contents
1-2 Device buffer address
3-4 Work buffer address
5-6 Current buffer address
7 -8 Current cursor position
9 EBCDIC-INTERNAL translation table address
10 Flag/translation table page number
11 INTERNAL-EBCDIC translation table address

The following functions are performed in the device buffer in the order given:

1. The unprotected device buffer character locations are set to nulls.

2. The MDTs for all unprotected fields are set to O.

3. If this KEYOP is directed to a screen, the contents of the device buffer
are moved into the work buffer and onto the screen. The cursor is
repositioned to the first character location in the first unprotected field
of the buffer. If no unprotected fields exist, the cursor is positioned to
buffer location O. The input inhibited condition is cleared.

4. If this KEYOP is directed to a printer, the contents of the device buffer are
moved into the work buffer. The current cursor position in the control
block is set to point to the first character location in the first unprotected
field of the buffer. If no unprotected fields exist, the current cursor
position is set to point to buffer location O.

(-

(

(

Keyboard/Display Read Buffer Assilt For SNA SSCP·SLU Owned Se .. lon (KEYOP)

Source: KEYOP (X'86',

Object:

.. Keyboard operation number: The number that the main microprocessor stores
in the keyboard/display lOB starting at hex displacement 1 F.

II Address of the binary register that contains the address of the data stream
buffer .

.. Address of the binary register that contains the maximum data stream length,
in the following format:

Byte Bits Meaning

o 0-3 Must be zero.

4-7
and

0-7 Maximum data stream length.

The microcode scans the device buffer beginning at the initial cursor address (saved
from the last write assist) for a maximum of 256 bytes or to the end of the buffer,
whicl'\8ver occurs first. It builds an IBM 3270 data stream from the bytes scanned,
with nulls suppressed.

If the length of the data stream to be generated is greater than the maximum length
specified in BRb or if the maximum length specified is less than 2, external status
code 17 is posted.

At successful completion of the operation, the microcode stores the length of the
data stream generated in the 1921st and 1922nd bytes of the device buffer.

Object Code Instr\lction Format 345

346

Keyboard/Display Indicator and Keyboard Control (KEYOP)

Source: KEYOP (X'87', BRa)

1 ~ ~ Object: C7 I 00

8 / 15 / 23 31

D tJ

D Keyboard operation number: The number that the main microprocessor stores
in the keyboard/display lOB starting at hex displacement 1 F.

fJ Address of a binary register that contains the information described below:

Byte

o

Bit Meaning

0-7 Must be O.

o Must be O.

Insert mode indicator.
1= turn off.
o = no change.

2-3 Hard lock.
00 = no change.
Xl = turn on.
10 = turn off.

4-5 Input inhibited indicator.
00 = no change.
Xl = turn on.
10 = turn off.

6-7 System available indicator.
00 = no change.
Xl = turn on.
10 = turn off.

Note: X denotes either a 1 or a O.

This operation manipulates the status of the system available indicator, the input
inhibited indicator, the insert mode indicator, and the keyboard hard lock. When
an indicator is turned on, a solid rectangle appears in the corresponding indicator
position on the screen. When an indicator is turned off, a dash appears in the cor­
responding indicator position on the screen. The indicators are located to the right
of the screen on the following rows:

Indicator

System available indicator
Insert mode indicator
Input inhibited indicator

Row

1.0
12
14

(

(

(

Keyboard/Display Clear and Initialize screen (KEYOP)

Source: KEYOP (X'BB')

1 1
Object: C7 I 88 00 00

0 8 15 23 31

This operation clears the device buffer to nulls, blanks the screen, positions the cursor
cursor to character location 0, sets the current buffer address to character location 0,
resets the MDT bits, and sets the initial cursor address (used for SSCP-SLU owned

SNA session) to O.

Object Code Instruction Format 347

348

L'oad KeyboardlDisplay Control Area (LCRTC)

Source: LCRTC (Ci6, di[PI, BRn~)

1 . -I=-
2,1 ~J !.l Object: l C8 Ii I ~ 8 16 J

. fJ 1111

.. Length: The number minus 1 (hex OO-FF) of bytes to load into the key-
board/display area from main storage. '

fJ From address: The address of the binary register that contains the main stor­
age address within the partition where data is moved from.

II Displacement: The number of bytes, divided by 8 (hex 00-1 F) into the key­
board/display control area where the loading of bytes begins.

II Control area: The number (hex 0-6) of the control area to load. Control
areas are defined as follows:

0= Validity table
1 = Display control
2 = Storage area
3 = Scan code translate table
4 = Display translate
5 = Katakana translate
6 = Diacritic translate table

This instruction loads the specified storage area into keyboard/display storage. See
Chapter 3 for a description of each area'.

/

(

(

Store Keyboard/Display Control Area (SCRTC)

Source: (Oj6, displ, BRn, len)

I 1~=::::::;---'

I;=J I;I~I Object: I C9
o

D B 1111

D Length: The number minus 1 (hex OO-FF) of bytes to load into main storage
from the keyboard/display area.

fJ To address: The address of the binary register that contains the main storage
address where data is stored.

II Displacement: The number Of bytes, divided by 8 (hex 00-1 F), into the
keyboard/display control area where bytes are moved from.

II Control area: The number (hex 0-6) of the control area to move bytes from.
Control areas are defined as follows:

0= Validity table
1 = Display control
2 = Storage area
3 = Scan code translate table
4 = Display translate
5 = Katakana translate
6 = Diacritic translate table

This instruction copies the specified storage area from keyboard/display storage to
the main storage location specified.

Object Code Instruction Format 349

350

Move Characters to Screen (CRTMM)

Source:

D Length: The address of the binary register that contains the following:

Bit 0: 0 = BRa contains a screen row and column specification, with the
row in the high-order byte and the column in the low-order
byte.

1 = BRa contains an absolute address in keyboard/display storage.
This specification is used for diagnostics.

Bits 1-15: The number minus 1 (hex 0000-7FFF) of bytes to move.

fJ From address: The address of the binary register that contains the main stor­
age address where data is moved from.

II Bit:
0= S is omitted.
1 = S is specified.

II To address: The address of the binary register that contains the screen row
and column, or the absolute address of keyboard/display storage to which data
is moved.

II Bit:
0= NC is specified.
1 = NC is omitted.

The bytes are moved from main storage to the specified location. If the location is
an absolute address,no checking is done to ensure that it is a valid address. If the
location is a row and column, and if the move would extend into the keyboard/
display control area (starting at XEAO), or if the column specification is 0, an
external status for invalid operation occurs. If the move extends out of the refresh
buffer and not into the control area, no external status occurs. No checking is
done to assure that the move does not extend into tables stored in the keyboard/
display storage, or into the refresh buffer for another screen.

If NC and S are omitted, the bytes are translated through the display translate table
before being placed in the refresh buffer. EBCDIC values from hex 20 through hex
2F are translated to display .attributes and moved to the refresh buffer; the display
attributes effect the display of the screen.

(

(

If NC is specified, the bytes are not translated through the display translate table
before being placed into the refresh buffer.

If S is specified, the bytes are translated through the display translate table. How­
ever, EBCDIC values between hex 20 and 2F are changed to hex 1F and displayed
as solid rectangles. The codes in main storage remain unchanged.

If row 0 is specified, the move is to the status line. If row 1 is specified, the move
is to the extra line in the screen refresh buffer.

Move Characters from Screen (MMCRT)

Source: MMCRT (BRa, BRb, Brc')

1 ~r-I 1 I I I 01 Object: CB :!: 101 ~ 101
0 8 15 23 31

D fJ II

D Length: The address of the binary register that contains the following.

BitO:
0= BRb contains a screen row and column specification with the row in

the high-order byte and the column in the low-order byte.
1 = BRb contains an absolute address in keyboard/display storage. This

specification is used for diagnostics.
Bits 1-15:

The number minus 1 (hex 0000-7FFF) of bytes to move.

fJ To address: The address of the binary register that contains the main stor­
age address relative to the beginning of the partition to which data is moved.

II From address: The address of the binary register that contains either the
row and column, or the absolute address of keyboard/display storage where
data is moved from.

The bytes are moved fr()m keyboard/display storage to the main storage address
within the partition. If the from address specifies row 0, the move is from the
status line. If it specifies row 1, the move is from the extra line in the screen
refresh buffer. If the from address specifies an absolute address that is outside the
keyboard/display storage area, an external status for keyboard/display storage parity
error occurs. If the column is 0, an external status for invalid operation occurs.

Object Code Instruction Format 351

362

Rllume Data Entry (RESUME/RESMXT/RESCAL)

Source:

ObJ.ct:

RESUME [(B)]--------_
RESMXT
"C::CI~,..L

(BRn)
(

.. Ind.x addre.s for RESMXT: The addre.1 of the binary register that contain.
the Index for an indexed return.

Index addrCII. for RESeAL: The address of th' binary register that contains
either of the following:

• The index Into the label table for a subroutine call .

• The index for an indexed subroutine call.

If BRn is not specified on either the RESMXT or the RESCAL instruction,
the index address is all zeros.

If RESUME is specified, the index address is all zeros .

.. Bit 15:
0= RESUME is specified.
1 = RESMXT is specified.

OR
o = R ESCAl is specified and the address at II is a subroutine address.
1 = R ESCAl is specified and the address at II is a table address.

II Table address or subroutine address for RESCAL. If RESUME or RESMXT
is specified, this address is all zeros.

II Bit 31 for RESUME:
0= The cursor is repositioned forward (B is not specified).
1 = The cursor is repositioned backward (B is specified).

Bit 31 for RESMXT: O.

Bit 31 for RESCAl: The last bit of either the table address or the subroutine
address.

"... .. _.

(

(

(

This instruction is included in external status subroutines to unlock the keyboard
to allow key entry under the interrupted ENTR command.

For RESUME, the keyboard Is unlocked and interrupted ENTR Is resumed. If an
ENTR Is not outstanding or the keyboard is already open the operation Is not
performed.

If the RESUME I. executed after external status condition 04, format processing
continues In the forward direction beyond the RG specification. If the RESUME
Is executed after external status condition 06, format processing continues in the
backward direction preceding the RG specification.

The backward option (e) on the RESUME is Ignored (a normal RESUME is executed
as described above) unle .. the outstendlng ENTR was Interrupted by the crossing of
an RG 8peclflcetion. If an RG specification was crossed, RESUME (e) causes the
outstanding ENTR to be made active again with the cunor positioned In the nearest
manual position preceding the RG specification.

Normally, the (e) oPtion should only be used to resume processing of the interrupted
ENTR after external status condition 04. The cursor is positioned in the manual
position preceding the RG specification regardless of what keystroke caused the
crossing of the RG specification.

Note that for the (B) option to operate as specified above, there must be at least one
manual data position defined preceding the RG specification.

For RESCAl, the keyboard is unlocked and the interrupted ENTR is resumed. At
the same time a subroutine is called and executed. If a label is specified with no
binary register, the call is made to the label. If a subroutine label is specified with
a binary register, the contents of the register are added to the subroutine with a
binary register, the contents of the binary register are taken as an index into the
label table. The call is made to the address in the label table at the index.

For RESMXT, the keyboard is unlocked and the interrupted ENTR is resumed.
In addition, the external status bit in the lOB is turned off. The external status
subroutine is terminated, BR18 is decremented by 2, and return is made to the
address in the partition subroutine stack pointed to by B R 18. If a binary register
is included, the contents of the register are added to the address pointed to by
BR18, and return is made to the resulting address.

The RESUME, RESeAL, and RESMXT operations are not meaningful for 3270
mode.

Object Code Instruction Format 363

354

Enter (ENTR)

Source:

Object:

.. Op code: The op code is stored in the command operation code byte of the
keyboard/display lOB by the main microprocessor.

fJ Bit8:
0= Overlap mode (0 specified)
1 = Nonoverlap mode (N specified)

.. Bit9:
0= The format is contained in the partition.
1 = The format is contained in the common area.

II Bit 15:
o = The current record buffer address and the previous record buffer

address are not alternated (BRn is not specified).
1 = The current record buffer address and the previous record buffer

address are alternated (BRn is specified).

II Format: The number (hex OO-FF) of the screen format to use.

Note: The source instruction specifies a label that the assembler converts to
the number of the index where the format address is located in the screen
format system table.

D Previous record buffer address: The address of the binary register that the
system loads with the address of the buffer that contains the previous record.

When the main microprocessor encounters an ENTR command, it places the com­
mand op code in the keyboard/display lOB. If the binary register is specified, the
main microprocessor exchanges the contents of the current record buffer address
and the previous record buffer address in the lOB, and places the address of the
buffer that contains the previously entered record in the binary register. The main
microprocessor places the screen format number into the keyboard/display lOB at
hex displacement 09 and OA. If overlapped I/O is specified, the main micro­
processor continues executing instructions following the ENTR command while the
keyboard/display microprocesor processes the screen format control string. If non­
overlapped I/O specified, the main microprocessor waits until the keyboard/display
microprocessor has finished processing the screen format control string before it
executes instructions following the ENTR command.

(

(

The keyboard/display microprocessor uses the screen format number in the key­
board/display lOB as an index into the screen format system table. If the system
table is within the partition, the address of the system table is found in the key­
board/display lOB. If the system table is in the common area, the address of the
system table is found in the system control block. The keyboard/display micro­
processor takes the address at the index into the system table and stores it in the
keyboard/display lOB at hex displacement 09 and OA. While the keyboard/dis­
play microprocessor is processing the screen format control string, the address
of the byte currently being processed is maintained in this lOB location. When
the keyboard/display microprocessor finishes the control string or encounters a
condition that requires the main microprocessor, it reports an external status
condition.

Object Code Instruction Format 355

This page intentionally left blank

356

(

Chapter 6. Diagnostic Aids

Diagnostic ald. Include the display/alter function and the dump and trace functions.
In addition, saveral Instructions are Intended for diagnostic use. See Chapter 4
under D,vle, Control (DEVCTL), opcode 3D, and under K,ybolfd Operation.
(KEYOP), opcode C7 for the following operations:

Keyboard
Operation

12
1F
20
21
22

Da.crlptlon

Allocate keyboard/display storage
Device control read
Device control write
Keyboard/display external register read
Keyboard/display external register write

DISPLAY/ALTER FUNCTION

The display/alter function is a diagnostic tool that allows you to examine and alter
the contents of main storage or keyboard/display storage. move the contents of
main storage to keyboard/display storage and move the contents of keyboard/
display storage to main storage.

You can use only keyboard 0 (the keyboard attached to partition 0) to execute
display/alter functions; however, during power-on checkout, you can start display/
alter from any keyboard. If you do start display/alter during power-on checkout,
power-on checkout and IPL do not continue when you terminate display/alter.

To use the display/alter functions, the keyboard/display MPU must be operational.
While you are using display/alter, no other keyboard/display operations can be
performed. Thus, you will hold up the rest of the system while using display/alter.

Keyboard/display storage for keyboard 0 must be allocated to addresses FEOD
through FFFF. Normally, keyboard/display storage is allocated by the configura­
tion utility.

Other system conditions during display/alter functions are as follows:

• Magnetic stripe reader and elapsed time counter functions are not operational.

• Parity errors in main storage and keyboard/display storage are not detected.

• Status line data is removed from the secondary display of a dual display station.

Diagnostic Aids 367

358

How to Start the Display/Alter Function

During Power-on Checkout and IPL: Press the L key on any keyboard while the
cursor is moving through the power-on checkout display.

After Power-on Checkout and IPL: You must use keyboard 0; press the Cmd key,
then the L key (the keyboard buzzes).

After you have started the display/alter function, if you are using a proof keyboard
or a dual display, press and hold the shift key and press the C key (the keyboard
buzzes). Release the shift key, then enter one of the following:

01-Nonproof keyboard and dual display
10-Proof keyboard and single display
ll-Proof keyboard and a dual display

A line of data is displayed on the bottom of the screen as follows:

E2E8E2C9 ...

~
" Main storage page number of data displayed, or an asterisk (*) if keyboard/

display storage data pointer is displayed; set to 0 when the display/alter is
started.

• Address of the first byte of data displayed. The address is set to 0000 when the
display/alter is first started.

• Data: Displayed in eight 4-byte groups.

Pointers Maintained for Display/Alter

Three pointers are maintained for the display/alter function. The pointers indicate:
(1) the main storage address (the address of the data being displayed on the screen),
(2) the base address, and (3) the keyboard/display storage address.

How to Terminate Display/Alter

To terminate the display/alter function, press and hold the numeric shift key on
the data entry/proof keyboard or the upper shift key on the typewriter keyboard
and press the E key. Then press the Error Reset key.

(

How to Select and Use the Display/Alter Functions

When you use the display/alter functions on a typewriter keyboard, use the numeric
key pad to enter digits a through 9.

To select a function, press and hold the Num (Numeric Shift) key on a data entry/
proof keyboard or the -' (Upper shift) key on the left of the typewriter keyboard,
then press a key a through 9 or A through F to select the desired function. (When
you select a function the keyboard buzzes.) Then release the shift key and enter
the required parameters for the function (if parameters are required). If you press
any key other than 0-9 or A-F, unpredictable results occur.

Diagnostic Aids 359

The following chart shows the options available with the display/alter function.
Following the chart is a more complete description of several of the options.

~

Press this key
to select the·
OPtion. Parameters Option Function

0 Display main storage; display is not updated if
data changes. See Display Main Storage.

2 aabbccdd Search storage, where aabbccdd is the data to
be found. See Search Storage.

3 dddd Display the main storage at a displacement
from the base address, where dddd is the
displacement. See Display Main Storage.

4 aaaa Display main storage at a specified address,
where aaaa is the address. Display is updated
as main storage changes. See Display Main
Storage.

5 Increment main storage address; the address in
the main storage address pointer is incremented
by 16, and the data at that address is displayed.
See To scan the main storage display under
Display Main Storage.

6 Decrement main storage address; the address in
the main storage address pointer is decremented
by 16, and the data at that address is displayed.
See To scan the main storage display under
Display Main Storage.

7 dd ... Alter main storage, where dd is one hexadecimal
character to replace the data in main storage.
See Alter Main Storage.

A 00 Test a byte; the keyboard buzzes when the
byte at the current main storage address
changes. See Test for a Change in a Byte or a
Bit.

A nnxx Test a bit, where nn and xx are masks to test
the byte. See Test for a Change in a Byte or a
Bit.

B 1pO Display the begiiming of a partition, where p
is the partition number. See Display the
Beginning of a Partition or of an lOB.

/

360

Press this key
to select the

(option. Parameters Option Function

B 1pd Display the beginning of an lOB, where p is the
partition number and d is the data set number.
See Display the Beginning of a Partition or of
an lOB.

B O@@ Display the beginning of an lOB chain, where
@@ is the low-order hexadecimal address of
the lOB pointer. See Display the Beginning
of a Partition or of an lOB.

C pd Accept keystrokes, where p= 1 for a proof
keyboard and p=O for a typewriter or data
entry keyboard, and d=1 for dual screen and
d=O for a single screen. See How to Start the
Display/Alter Function, earlier in this section.

D p Set page number, where p is the page number
to use for the current main storage address.
See To set the page number under Display
Main Storage.

E Reset Terminate display/alter. See How to
Terminate Display/Alter.

(F O@@@@ Set keyboard/display address pointer, where
@@@@ is the address. See Move Keyboard/
Display Storage.

F Display keyboard/display address. See Move
Keyboard/Display Storage.

F 2 Display main storage address. See Move
Keyboard/Display Storage.

F 3 Move keyboard/display storage to main
storage. See Move Keyboard/Display Storage.

F 4 Move main storage to keyboard/display
storage. See Move Keyboard/Display Storage.

F 5 Increment keyboard/display address, move
to main storage, and display. See Move
Keyboard/Display Storage.

F 6 Decrement keyboard/display address, move
to main storage, and display. See Move
Keyboard/Display Storage.

(--

Diagnostic Aids 361

362

Display Main Storage

The display main storage function allows you to display main storage at a specified
address or at a specified displacement from the base address. The base address
can be set to the beginning of a partition or to the beginning of an lOB. When the
display/alter function is first started, the base address is set to page 0 address 0000.

To display main storage at a specified address on the current 64 K page, press and
hold the shift key and press the 4 key. Release the shift key and enter the hex·
adecimal address of the storage to be displayed. For example:

40100

causes 32 bytes of data to be displayed starting at the address 0100 within the
current 64 K byte page.

Once the data is displayed, the system can alter the data at that location in main
storage. The displayed data is updated to show the change until you press the
shift key. If you do not want the display to reflect changes being made to the data,
hold the shift key and press O. Release the shift key when you want the display to
stop changing.

To display main storage at a specified displacement from the base address, press
and hold the shift key and press the 3 key, then enter the hexadecimal displace·
ment value. For example:

30010

displays the data beginning with the base address plus 0010.

The display is updated to show any change in main storage data.

To set the page number of the current main storage address, press and hold the
shift key and press the D key. Release the shift key and enter p, where p is the
number of the 64 K byte page.

To scan the main storage display, press and hold the shift key and press the 5 key
to scan forward or the 6 key to scan backward. Each time the 5 key is pressed
the address of the displayed data is incremented 16 bytes. Each time the 6 key
is pressed the address of the displayed data is decremented 16 bytes. If you hold
down the 5 key or the 6 key, the address of the displayed data is automatically
incremented or decremented until you release the key.

(

(

(-

Alter Main Storage

The alter storage function allows you to alter main storage beginning at the
currently displayed address. The format of the alter storage function is:

7dd

where dd is one hex character that replaces the character in main storage.

For each additional hex character entered, the storage position altered is auto­
matically incremented one position. When 16 bytes have been altered, the
displayed address is incremented 16 bytes.

Display the Beginning of a Partition or of an lOB

To display the beginning of a partition:

1. Press and hold the shift key and press the 8 key. Then release the shift key.

2. Enter:

1pO

where p is the number of the partition to be displayed. The beginning of the
partition is displayed, and the base address is set to the beginning of the
partition.

To display the beginning of a device 108 using an lOB pointer address:

1. Press and hold the shift key and press the 8 key. Then release the shift key.

2. Enter:

O@@

where @@ is the low-order hexadecimal address of the device 108 pointer
that points to the device 108 to be displayed.

The first lOB on the chain is displayed. You can increment through the chain by
pressing the 0 key to display the next lOB on the chain.

To display the beginning of a device lOB using a data set number:

1. Press and hold the shift key and press the 8 key. Then release the shift key.

2. Enter:

1pd

where p is the number of the partition that contains the 108 chain to be
displayed, and d is the data set number for the 108 to be displayed.

The base address is set to the beginning of the 108 currently displayed.

Diagnostic Aids 363

364

Move Keyboard/Display Storage

This function allows you to move data from keyboard/display storage to main
storage or from main storage to keyboard/display storage. You can also display
data moved from keyboard/display storage.

To start this function, press and hold the shift key and press the F key, then
release the shift key and enter a number (O-S) to select the desired function as
follows:

Number

()@@@@

Function

Set the keyboard/display address pointer, where @@@@ is
the hexadecimal address to place in the pointer.

Display the current keyboard/display address set by the O@@@@
function.

2 Display the address in the main storage address pointer.

3 Move 32 bytes of keyboard/display storage data into main
storage, using the addresses in the main storage address pointer
and the keyboard/display address pointer.

4 Move 32 bytes of main storage data into keyboard/display
storage, using the address in the main storage address pointer
and the keyboard/display address pointer.

5 Increment the keyboard/display storage address by 16, move 32
bytes of keyboard/display storage data into main storage, and
display the 32 bytes of data.

6 Decrement the keyboard/display address by 16, move .;32 bytes
of keyboard/display storage data into main storage, and display
the 32 bytes of data.

Search Storage

The search storage function allows you to search storage for specified data. To
start this function, press and hold the shift key and press the 2 key. Then enter
the EBCDIC data to be found as follows:

aabbccdd

where aabbccdd is the data to be found.

The search begins with the address displayed and continues until the data is found
or until 4 K (hex 1000) bytes of storage have been searched. If the data is found,
the address of the first byte of the data is displayed along with 32 bytes of data
beginning with the first byte. If the data is not found in the 4 K bytes of storage,
the address displayed is incremented by hex 1000.

(~

(

(

For example, assume the address displayed is 4000 and the data to be found is
D4C8D7C8. If the data is found at address 4COO, the displayed result is:

o 4COO D4C8D7C8 XXXXXXXX ...

If the data is not found, the displayed address is:

o 5000 XXXXXXXX XXXXXXXX ...

If you enter hex 00 for dd or for cc and dd, the hex 00 is not included in the
search. For example, if you enter D4C80oo0, a match occurs when the data
D4C8 is found.

Test for a Change in a Byte or a Bit

To determine when the value at the displayed address changes, press and hold the
shift key and press the A key. Then enter 00. The keyboard buzzes the first time
the data changes.

To determine when a bit(s) turns on or off in a byte at a specified address, press
and hold the shift key and press the A key. Then enter the following:

nnxx (nn must not equal 00)

where nn is a byte to be logically ANDed with the byte at the displayed address,
and xx is a byte to be logically exclusive ORed with the result of the AND opera­
tion. If the result of the operation is zero, the keyboard buzzes. (The byte is not
changed in storage.) Thus, you can determine when a certain bit turns on or off.
For example, to determine if bit 4 of the byte at the displayed address turns on,
you would enter 0808 as shown below:

xxxx 1xxx
0000 1000
0000 1000

0000 1000
0000 0000

This bit is the bit to be tested.
AND the value with this byte.
This is the result of the AND operation if the bit is on.

Exclusive OR the result with this byte.
The keyboard buzzes when the result is zero to indicate that
the bit did turn on.

To determine if the same bit goes off, you would enter 0800; that is, exclusive OR
the result of the AND operation with 00.

Diagnostic Aids 365.

366

DUMP AND TRACE CONSOLE FUNCTIONS

With the dump console function, you can dump any portion or all of main storage.
There are two options with this function: (1) dump storage by page number,
beginning address, and number of blocks, and (2) dump an entire partition by
partition number.

With the trace console functions, you can trace program execution of specified
instructions and display the results, or write the results to a diskette or printer.
You can also display or write the contents of storage. You can use trace options
to display information on the status line.

To write dump or trace output to a diskette or printer, a program must be loaded.
that sets up an lOB for data set 15. (When using trace options, data set 15 is not
required unless the results are to be written to diskette or printer.) If you are using
an assembler program, data set 15 must be set up by a .DATASET control statement.
Following is an example of a .DATASET control statement, and .DC control
statements required by the .DATASET statement:

.DATASET LABEL=DMPTRIOB DSN=15 DEV=X'8000' PBI=BUF256
LBUF=BUF128 RECL=128 NAME=DTNAME TYPE=SW,SHRW
ELAB=ERRRTN;

.DC LABEL=DTNAME TYPE=STOR LEN=9 INIT='DUMPOOoo';

.DC LABEL=BUF256 TYPE=STOR LEN=256 BDY=128;

.DC LABEL=BUF128 TYPE=STOR LEN=128;

If you are using a DE/RPG program, you can set up data set 15 by modifying X'01oo'
from X'OO'to X '80', using the patch function of SYSPTF (see the IBM 5280 System
Control Programming Reference/Operation Manual, GC21-7824.) If you set this
bit, you do not have to recompile; however, you must use a larger partition.

If the dump or trace data is to be written to a diskette data set, you must have
allocated a data set that is large enough to contain the data to be dumped.

Before you start the dump or trace function, you must open data set 15 (if data
set 15, is required for your output). Data set 15 can be opened by calling the
CFDUMPTR routine. If you use CFDUMPTR the name of data set 15 must be
DUMPOOOO. The CFDUMPTR routine is called by pressing the Cmd key, then
shift, then the Dump Trace Open key when using one of the following programs:

SYSSORT
SYSMERGE
SYSCOPy* (except when using the image copy option)
SYSPRINT
SYSKEU
DE/RPG program that has been modified as described above.

*Note: Used only when more than 1 drive is available.

/

(

(

(

When the CFDUMPTR routine is called, the following prompt is displayed:

Dump/Trace file open
Enter device address: __ _

Enter the device address for the printer or diskette to indicate the destination of
the dump or trace output, and press the Enter key. You can now use the dump or
trace function, as described below.

The interactive console dump and trace functions normally accessible by the com­
mand console key sequence are not accessible in 3270 mode because all keystrokes
are handled as 3270 keystrokes. For program debug, trace instructions can be used
within the program. Also, a trace to data set 15 could be set up at a point before the
emulation application program switches from 5280 mode to 3270 mode.

Note: Before attempting to dump to diskette, be sure to allocate a data set (DSN =

'DUMPOOOO' in this example). Use the SYSLABEL utility to allocate the DSN.

Dump Function

To dump storage by page number, address, and number of blocks, do the following:

1. Press the Cmd key.

2. Press the C key.

3. Press the 0 key.

4. Enter the following to specify the main storage data to dump:

P@@BB

where:

P The page in main storage from which the data is dumped.
@@ = The first 2 hex digits of the address (hex OO-FF) at which the dump

begins (the low-order address is always hex 00).
BB = The number (hex OO-FF) of 256-byte blocks of data to dump.

To dump the data from an entire partition, do the following:

1 . Press the Cmd key.

2. Press the C key.

3. Press the P key.

4. Enter the partition number, 0 through 7.

When dumping to data set 15, data set 15 is not closed when the dump is com­
pleted until: (1) the partition is exited, or (2) the partition is reloaded if the
partition exit operation calls the standard load processor, or (3) the application
program explicitly closes the data set.

Diagnostic Aids 367

368

TrlC8 Function

The trace function traces the execution of specified instruction a and displays andlor
writes the trace output after each Instruction Is executed. The trace output Is In
the following format:

P IIMII xx R

where:

P • The partition number of the last instruction traced. If the last
instruction traced lain the common ,function area of main storage,
an asterisk is diaplayed in this field.

@@" • The relative address of the last instruction traced.

xx = The op code of the last instruction traced.

R = The result of the last instruction traced. The length of this field
varies 'from 0 to 16 positions depending upon the type of instruction
traced.

For branch instructions, the result field contains the address of the
next instruction to execute if the branch is successful.

For table and binary instructions, the result field contains the specified
binary result register.

For decimal instructions, the result field contains the specified decimal
result register.

For all other instructions, the result field is blank.

(

(

To start the trace function. pres. the Cmd key. then the C key. then enter
the following:

Tnss

where:

T .. The uppercase letter T to select the trace function.

n .. O·To display trace output on the screen only.

s

4·To write trace output to data set 15 .

.. 01·To trace branching instructions only.
02·To trace decimal arithmetic instructions only.
03·To trace branching Instructions and dacimal instructions.
04·To trace non branching instructions only.
05·To trace all instructions except binary and decimal.
06·To trace nonbranching instructions and decimal instructions.
07·To trace all instructions except binary instructions.
08·To trace binary instructions.
09·To trace branching instructions and binary instructions.
10·To trace decimal and binary instructions.
ll-To trace decimal instructions, binary instructions, and branching

instructions.
12-To trace binary instructions and non branching instructions.
13-To trace all instructions except decimal instructions.
14-To trace binary instructions, decimal instructions, and non­

branching instructions.
15-To trace all instructions.

Note: To cancel trace output to data set 15, specify trace output to the display
screen only (option TOss). This puts the trace program in address-stop mode.
Then press the uppercase letter C to cancel address-stop mode. This does not
close data set 15.

ADDRESS-STOP MODE

Address-stop mode causes the 5280 to stop executing program instructions when
it reaches the instruction at a specified address. To start address-stop mode or alter
the address-stop, enter the following:

A@@@@

where:

@@@@ =The address of the instruction at which to stop, relative to the start of the
the partition.

When the 5280 stops program execution at the selected address, the following
functions can be requested.

Diagnostic Aids 369

370

Main Storage Display

You can request main storage display only after setting single instruction mode by
trace (TOss) or after stopping on address-stop. When you request the main
storage display, the contents of 16 bytes of main storage are displayed on the
status line. The specified address, relative to the start of the partition, is displayed
in positions 41 through 44 of the status line, followed by the byte at the selected
address and the following 15 bytes. To select the main storage display, enter:

M@@@@

where:

@@@@ = The address of the first byte to display.

Forward Scroll

You can request the forward scroll function only after the main storage display
function. The forward scroll function replaces the 16 bytes being displayed on
the status line with the next sequential 16 bytes of main storage. To select
forward scroll, enter the uppercase letter F.

Backward Scroll

You can request the backward scroll function after the main storage display
function. The backward scroll function replaces the 16 bytes being displayed on
the status line with the preceding 16 bytes of main storage. To select backward
scroll, enter the uppercase letter B.

Replace Main Storage

During main storage display, you can replace the byte of storage at the address
displayed in position 4144 of the status line.

To replace the byte at the displayed address, enter:

Rdd

where:

dd = Two digits to store in main storage.

After the two digits are stored in the main storage byte, the address is incremented
by one and the contents of the next 16 bytes are displayed on the status line.

(

(

(

Single Instruction

Loop

When you request the single instruction function, the 5280 executes the next
instruction and stops. After the instruction is executed, trace information is
displayed on the status line, beginning in position 41. To select the single instruc­
tion function, enter the uppercase letter S.

When you request the loop function, the 5280 executes the program instructions
until it again reaches the original address-stop address. It stops at the address-stop
address, and trace information is displayed on the status line, beginning in posi­
tion 41. To select the loop function, enter the uppercase letter L.

Main Storage Dump

Trace

You can request a main storage dump function while the 5280 is operating in
address-stop mode. The dump function is requested the same as a normal dump
(Dp@@BB), that is, the contents of storage are written to data set 15. (See
Dump Function.) When the dump is completed, you may continue with other
address-stop mode functions. Data set 15 is not closed until the partition is
exited, or until the partition is reloaded if the exit operation calls the standard
load processor, or until the application program explicitly closes the data set.

You can request a trace while the 5280 is operating under address-stop mode.
The trace function is requested the same as a normal trace (T4ss). (See Trace
Function.) The 5280 executes the remaining program instructions and does not
stop, but the trace information continues to be written to data set 15.

Cancel Address-Stop

You can cancel address-stop mode by keying an uppercase letter C. The 5280
will execute the remaining program instructions with no stops and no trace output.

Diagnostic Aids 371

This page intentionally left blank

372

(

('

Chapter 6. Keyboard Functions

Keyboard functions may be Initiated by function keys or by program Instructions.
Eech function Is essigned an EBCDIC value between hex 00 and hex 3'F, See
Appendix C for a list of these EBCDIC values, When a keyboard function Is Inl·
tlated, the EBCDIC for that function is placed into the keyboard/display lOB,
at relative address hex A7,

Certain functions are normally processed by the 6280, but may be processed by an
application program subroutine. Other functions are always processed by the
6280, and others are always processed by an external status subroutine for external
status condition 1. Many functions that are processed by the 6280 must first be
enabled by the application program, which must set flags in the keyboard/display
lOB.

Some function keys operate differently during the 3270 mode. See the IBM 3270
Information Display System Component Description Manual, GA27·2749.

KEYBOARD FUNCTION CONTROL

The 5280 performs automatic functions and maintains certain function control.
The application program must enable the automatic functions by setting flags in
the keyboard/display lOB. The keyboard function control flag bytes are main­
tained by both the 5280 and the application program, The flag bytes are located
at relative address hex BE and B F, as follows:

Byte Bit Meaning if 1

X'BE' 0 Keyboard is in enter mode.

X'BF'

Keyboard is in update mode.

2 Keyboard is in rerun mode. (See BF, bit 6.)

3 Keyboard is in verify mode.

4 An application program must not change this bit.

5 An application program must not change this bit.

6 Keyboard is in display mode.

7 Fixed prompts are not displayed.

o Modified data bit is set to 0 by the 5280 when the current field
is entered, and set to 1 by the 5280 if data is entered into the
field. When the field is exited, the 5280 ORs this bit with the
modified data indicator that is assigned to the field.

1 An application program must not change this bit.

2 An application program must not change this bit.

Keyboerd Functions 373

374

Byte Bit Meaning if 1

3 Auto-dup/skip enable bit must be maintained by the application
program. While this bit is 1, the 5280 automatically processes
fields defined as auto-skip (AS) or auto-dup (AD). When this
bit is 0, these fields are treated as manual fields. When this bit
is 1, a field defined as main storage store (MS) is stored; other­
wise, it is not stored.

4 Auto-enter enable bit must be maintained by the application
program. When the bit is 1, the 5280 automatically performs a
record advance when the operator enters the last manual posi­
tion of a record format. If bit is 0, the 5280 puts the keyboard
in the awaiting record advance state after the operator enters
the last position of the record.

5 Alternate record advance bit must be maintained by the appli­
cation program. If this bit is 1, when the operator presses the
Rec Adv key the 5280 ignores all remaining fields and format
specifications. If this bit equals 0, the 5280 processes the remain­
ing fields and format specifications.

6 Rerun/display enable bit must be maintained by the application
program. This bit is 1 and the 5280 is processing in rerun mode,
display is enabled.

7 An application program must not change this bit.

FUNCTIONS NORMALLY HANDLED BY THE 5280

The followi'ng function descriptions detail how each function is initiated and how
the 5280 processes the function. The function descriptions pertain to all modes of
entry unless a mode is specifically mentioned. Most functions are processed dif­
fe~entlY for verify mode; the descriptions for verify mode follow the general
descriptions of each function,

The shift keys on the 5280 Katakana keyboard will operate identically for 3270
emulation. The 3270 Katakana shift key functions (Latin shift, Kana shift, and
lock) will not be emulated.

Alpha Shift Function

The alphabetic shift function is initiated when the operator presses the Alpha key.
The Alpha key is on the data entry and proof keyboards, and is valid at all times.
While the Alpha key is pressed, the lower character on the key top is selected for
any data key.

Character Advance Function

The character advance function is initiated when the operator presses the -+

(Character Advance) key, and is valid only while an ENTR command is being
processed.

(

•• J --

In enter, update, special verify and field correct modes, when the ~ (Character
Advance) key is pressed the cursor moves to the next position within the current
field. If the ~ (Character Advance) key is pressed when the cursor is in the right­
most position of the field or when awaiting field advance, a field advance is per­
formed. The contents of the positions the cursor moves through remain unchanged.
If the character advance key is pressed when the cursor is in the last position of the
record, an error occurs unless the auto-enter flag is on. If the auto-enter flag is
on a record advance is performed.

In verify mode, the ~ (Character Advance) key is not valid except when the system
is awaiting field exit or record advance, or when the cursor is in a position other
than the rightmost position of a right-to-Ieft field. If the system is awaiting field
exit, a field advance is performed. If the system is awaiting record advance, an
error occurs unless the auto-enter flag is on. If the flag is on, a record advance
occurs. If the cursor is in any position other than the rightmost position of a
right-to-Ieft field. the ~ (Character Advance) key is processed as for enter mode
except that any character advanced over is blanked on the screen and must be
reverified before the field is exited.

Character Backspace Function

The character backspace function is initiated when the operator presses the
+- (Character Backspace) key, and is valid only when an ENTR command is being
processed.

In enter, update, and special verify modes, when the +- (Character Backspace) key
is pressed the cursor normally moves back to the previous position within the
field. If the system is awaiting field exit, the cursor remains in the same position
but the awaiting field exit condition is cleared. The cursor stops blinking; the
operator can enter another character into the position. If the system is awaiting
record advance, the condition is cleared and the cursor is positioned to the last
manual input position of the record. If the key is pressed when the cursor is in
the leftmost position of a field, the cursor moves to the rightmost position of
the previous input field. Any automatic fields, display attribute specifications, or
prompts that the cursor moves through are processed, and fields with RG (return
to program) exits specified cause external status condition 5. If the mode is special
verify, the fields are blanked, including the field the cursor was in when the key
was pressed.

If the cursor is in the first input position of the record when the +- (Character
Backspace) key is pressed, screen format specifications between the first input
position and the start of the screen format are processed in the backward direction,
and then in the forward direction. No record backspace function occurs.

In field correct mode, if the cursor is in a field position other than the leftmost
position when the +- (Character Backspace) key is pressed, the backspace is pro­
cessed as described for enter mode. If the cursor is in the leftmost position of the
field, the backspace is processed as described above and, in addition, the field is
blanked on the screen and the mode returns to Verify mode .

Keyboard Functions 375

376

In verify mode, for all fields except a right·to·left field, when the +- (Character
Backspace) key is pressed the backspace is processed as described' above and, in
addition, any position the cursor backspaces through is blanked on the screen. If
the field is a right·to·left field, the +- (Character Backspace) key is not valid unless
the system is awaiting a field exit or record advance; then the field is blanked on
the screen, the awaiting field exit or record advance condition is cleared, the
cursor remains in· the rightmost position of the field, and the entire field must be
reverified.

Clear Screen Function

The clear screen function is initiated by the KEYOP instruction (op code C7)
for keyboard operation hex 11. This function is always handled by the 5280. The
5280 fills the screen, but not the status line, with blanks.

Clear Status Line Function

The clear status line function is initiated by the KEYOP instruction (op code C7)
for keyboard operation hex 11. This function is always handled by the 5280.
The 5280 fills the status line except the first position with blanks. The partition
number in the first position is not cleared.

If this function .is performed when an ENTR command is being processed, the
status line counters and the field shift position will not be completely updated
until the cursor enters the next field in the screen format.

The Command Key

The command function is initiated when the operator presses the Cmd (Command)
key. The Cmd key is a prefix key, valid at all times. When the Cmd key is pressed,
the 5280 sets a flag in the keyboard/display lOB. When the next key is pressed,
except for the Sh ift key, Reset key, the Hex key, Console key, or another Cmd key,
external status is posted. If the keystroke following the Cmd key is lowercase,
external status condition 2 is posted. If the keystroke following the Cmd key is
uppercase, external status condition 3 is posted. After the Cmd key has been
pressed, the Reset key will clear the fact that the Cmd key has been pressed.

Cursor Movement

Cursor movement is initiated when the operator presses one of the cursor movement
keys. Cursor movement keys, which are located on the left of the keyboard, can
move the cursor to the right (~), to the left (+-), up (t) or down (-!-). Or the New­
line key at the right of the keyboard (....,J) can move the cursor to the first posi­
tion of the next line. The cursor movement keys are valid only while an ENTR
command is being processed in enter, update, verify, or special verify modes, ~nd
the current screen format definition is for a format level zero field. (Field correct
mode is not valid for a format level zero field.) If a cursor movement keystroke
moves the cursor out of the format level zero field, an error occurs.

(

(

In verify mode, the cursor movement keys to move right, down or to the next line
are not valid. The keys to move the cursor left and up are valid, and blank the
screen positions through which the cursor moves.

Note: The -+ (Cursor Right) and +- (Cursor Left) keys are normally redefined in
the scan code translated table to invoke the character advance and character back·
space functions, respectively.

Delete Function

The delete function is initiated when the operator presses the Del (Delete) key.
The Del key is valid only when an ENTR command is being processed. The Del
key is not valid in a blank check field or in a mandatory fill field if the mandatory
fill check is enabled.

In enter, update, special verify, and field correct modes, when the Qelete key is
pressed the character above the cursor is deleted. All characters within the field
to the right of the cursor are shifted one position to the left. A blank is inserted
at the end of the field. The cursor position does not change.

If the cursor is within a picture check subfield when the delete key is pressed, the
delete function treats the subfield as a field. If the cursor is within a field defined
as format level zero, the delete function treats the total number of 1·byte alpha·
meric fields as one field.

In verify mode, the Del key is not valid.

Duplicate Function

The duplicate function is initiated when the operator presses the Dup (Duplicate)
key. The Dup key is valid only when an. ENTR command is being processed, and
when the Dup enable flag is set to zero. The Dup key is never valid if the system
is awaiting field exit or record advance. How the Dup key is processed depends
upon the current field definition.

In enter, update, special verify, and field correct modes, if the field definition does
not specify a main storage duplicate field, data is duplicated into the current field
from corresponding field positions in the previous record buffer. The duplication
begins at the current cursor position and continues to the end of the field. If the
field is a right-to-Ieft field, the duplication begins at the current cursor position and.
continues to the leftmost position of the field. A field advance function is then
performed.

If the field definition specifies a main storage duplicate field, data is duplicated
into the field as described above, except that the data is duplicated from the
main storage location specified in the format.

If the field definition specifies a format level zero, only the current position is
duplicated from the previous record.

Kevboard Functions 377

378

No character set checking is performed on data duplicated into the current field.

In verify mode, automatic verification is performed on the data from the current
cursor position to the end of the field, or, for a right-to-Ieft field to the leftmost
position of the field. If the field is a main storage duplicate field the data in the field
in the current record buffer is verified with the corresponding data in the main
storage location. If the field is not a main storage duplicate field, the data is
verified with the corresponding data in the previous record buffer. If the verifica­
tion is successful, a field advance function is performed.

If the field definition specifies format level zero, the data at the current field
position in the current record buffer is compared with the corresponding position
in the previous record buffer.

If the verification is not successful, a verify mismatch error occurs. The cursor
stops at the position where the mismatch occurred, the entire field is displayed on
the screen. If the operator presses the Reset key, and then presses the Dup key
again, the character is replaced with the corresponding character from the previous
record buffer or the main storage location. The automatic verification then continues
to the end of the field unless the field is a format level zero field.

Field Advance Function

The field advance function is initiated when the operator presses the -+1 (Field
Advance) key and is valid only when an ENTR command is being processed.

In enter and update modes, when the -+1 (Field Advance) key is pressed the 5280
checks the characters that have been entered into the field to make sure they
satisfy the attributes (except character set) that are specified in the screen format
definition for the field. If they do not, an error occurs. If they do, the cursor
moves to the first position of the next input field; the first position is the leftmost
position in a left-to-right field and the rightmost position in a right-to-Ieft field.
Intervening automatic fields, prompts, and display attributes are processed. Fields
with RG (return to program) exits specified cause external status condition 4. If
the Field Advance key is pressed while the system is awaiting field exit, the await­
ing field exit condition is cleared and the field advance is performed. If processing
is complete on the last input field of the screen format and the auto-enter flag is
on, a record advance is performed. Otherwise, the system sets the awaiting record
advance condition.

If the -+1 (Field Advance) key is pressed while the system is awaiting record advance,
an error occurs unless the auto-enter flag is on. If the auto-enter flag is on, a
record advance is performed.

If the field is a format level zero field, the field advance is processed as a character
advance.

In special verify mode the field advance is processed as described above except
that the characters in the field are not checked to make sure they satisfy the
attributes specified in the screen format.

(

(

(

In field correct mode, the checks are made as in enter mode. If the checks are
successful, the field is blanked on the screen, the cursor moves to the first position
of the field, and the mode returns to verify mode. The field can then be verified.

In verify mode, the -+1 (Field Advance) key is valid only after a constant insert
verify error or when the system is awaiting field exit or record advance. If await­
ing record advance or field exit, the field advance key is processed as for enter
mode except that the attribute checks are ignored. If the -+1 (Field Advance) key
is pressed after a constant insert verify error has occurred, after the operator has
pressed the Reset key the constant in the current record buffer remains unchanged
and a field advance is performed.

Field Backspace Function

The field backspace function is initiated when the operator presses the I+- (Field
Backspace) key, and is valid only when an ENTR command is being processed.

In enter, update, and special verify modes, if a I+- (Field Backspace) key is pressed
while the system is awaiting the field exit or record advance, the condition is
cleared and the cursor is repositioned to the first position of the field.

If the I+- (Field Backspace) key is pressed when the cursor is in any field position
other than the first position of the field, the cursor is repositioned to the first
position of the field.

If the I+- (Field Backspace) key is pressed when the cursor is in the first position
of the field, the cursor is repositioned to the first position of the preceding input
field. Intervening automatic fields, prompts, and display attributes are ignored.
Intervening RG (return to program) exit specifications are posted with the external
status condition 5. If the mode is special verify, the data field in which the cursor
was positioned when the key was pressed is blanked, and intervening automatic
fields are blanked.

If the I+- (Field Backspace) key is pressed when the cursor is in the first position
of the record, format specifications between the first position and the start of the
screen format are processed in the backward direction, then in the forward direc­
tion. A record backspace is not performed.

If the field definition specifies format level zero, the field backspace is processed
as a +- (Character Backspace) key.

In field correct mode, if the system is awaiting field exit, the I+- (Field Backspace)
key is processed as described for enter mode.

Ifthe I+- (Field Backspace). key is pressed when the cursor is in any position other
than the first position, the key is processed as described for enter mode. If the key
is pressed when the cursor is in the first position of the field or of the record, the
key is processed as described for enter mode except that the entire field is blanked
on the screen and the mode returns to verify mode.

In verify mode, if the I+- (Field Backspace) key is pressed while the system is await­
ing field exit or record advance in a right-to-Ieft field, the condition is cleared, the
field is blanked on the screen, the cursor remains in the rightmost position of the
field and the entire field must be reverified.

Keyboard Functions 379

380

If the I+- (Field Backspace) key is pressed under any other condition, the key is
processed as described for enter mode except that any data character that is back·
spaced over is blanked on the screen, and reverification is required in order to
advance over the position.

If the field definition specifies a format level zero, the I+- (Field Backspace) key
is processed as for al+- (Character Backspace) key.

Field Correct Function

The field correct function is initiated when the operator presses the lowercase
Field Corr (Field Correct) key, and is valid only in verify mode. It is not valid
for a format level zero field.

If the Field Corr key is pressed when the cursor is in an automatic field, verifica·
tion of the field is not done automatically.

When the Field Corr key is pressed and a constant insert verify error has not oc·
curred, the cursor is repositioned at the first input position of the current field and
the field is filled with blanks in the current record buffer and on the screen. The
operator can enter data into the field as in enter mode. Auto dup and auto skip
functions are not performed. Character set and field edit checks are performed.
When the field is exited in the forward direction, the cursor is repositioned to the
first position and the mode returns to verify mode.

Following a constant insert verify error, the operator can press the Reset key, then
press the Field Corr key. The constant insert data from the main storage location
specified in the screen format is placed into the current record buffer. This data
overwrites the data in the buffer. A field advance is then performed.

Field Exit Function

The field exit function is initiated when the operator presses the Field Exit or the
Field+ key, and is valid only when an ENTR command is being processed.

In enter, update, special verify, and field correct modes, if the key is pressed while
the system is awaiting field exit, the awaiting field exit condition is cleared and a
field advance is performed. If the field is a singed numeric field, the sign position of
the field is set to blank. If the key is pressed while the system is awaiting record
advance, an error occurs unless the auto-enter flag is on. If the auto-enter flag is on,
a record advance is performed.

• Right-Adjust Field: For a right-adjust field (that is not signed numeric), the
right-adjust function is performed before the field advance occurs. The data
in the field to the left of the cursor is right-adjusted on the screen and in the
current record buffer. The leftmost positions are filled with alphabetic or
numeric fill characters, according to the field definition. The zone of the
rightmost byte in the buffer is not changed. If the key is pressed when the
cursor is in the leftmost position of the field, the entire field is filled with the
fill characters.

(

(

• Signed Numeric Field: If the field is a signed numeric field, the right-adjust
function is performed as described above for a right-adjust field, except that
the rightmost position of the field on the screen is blank, which represents a
positive sign. The data in the field is right-adjusted to the position to the right
of the blank.

• All Other Fields: When a Field Exit key is pressed when the cursor is in any
other field, and the system is not awaiting field exit or record advance, it is
processed as for the skip function.

In verify mode, if a Field Exit key is pressed while the system is awaiting record
advance, it is processed as described for enter mode. If the system is not await­
ing record advance, the verify function is determined by the field definition.

• Right-Adjust Field or Signed Numeric Field: If the field is specified as right­
adjust or signed numeric, the key may be pressed only when the cursor is in the
leftmost position of the field or when the system is awaiting field exit. When
the key is pressed when the cursor is in the leftmost position, the field is verified
for the appropriate fill characters. When the key is pressed when the system
is awaiting field exit, and if the rightmost character of the field has been com­
pletely verified, a field advance is performed. If only the digit portion of the
rightmost character has been verified, the zone portion is verified against hex F.
If it does not match hex F, a verify sign mismatch error occurs. If the operator
presses the Reset key and then presses the Field Exit key again, the zone of
the rightmost character is changed to hex F. If the field is signed numeric,
the minus sign on the screen is replaced by a blank. If the field is not signed
numeric and not numeric shift, the negative numeric graphic in the rightmost
position is replaced with the routine numeric graphic. A field advance is then
performed.

• All Other Fields

In all other fields the verify action of the key is as for the Skip key.

Field Exit Minus Function

The field exit minus function is initiated when the operator presses the Field­
key, and is valid only when an ENTR command is being processed.

In enter, update, special verify, and field correct modes, if the key is pressed while
the system is awaiting record advance an error occurs unless the auto-enter flag
is on. If the auto-enter flag is on, a record advance is performed. If the system is
not awaiting record advance, the processing of the Field- key depends upon the
field definition.

Keyboard Functions 381

382

• Digits Only Right-Adjust or Numeric Only Right-Adjust: When the system is
not awaiting field exit, the data to the left of the cursor is right-adjusted to the
rightmost position of the field on the screen and in the current record buffer.
The leftmost positions of the field are filled with the appropriate fill characters.
After the right·adjust, if the rightmost character of the data is not a digit (0-9)
an error occurs. Otherwise, the negative graphic for the digit is placed into the
rightmost field position on the screen, and a hex D is placed into the zone
portion of the rightmost byte in the current record buffer. Then a field advance
is performed. If the Field- key is pressed when the cursor is in the leftmost
position of the field, the function is processed as described above except that
the field is filled with the appropriate fill character before the negative
graphic and the hex D zone are processed. If the system is awaiting field exit,
the function is processed in the same way except that no right-adjust occurs.

• Digits Only or Numeric Only (Not Right-Adjust): For a digits-only or numeric­
only field that is not right-adjust, and while not awaiting field exit, the posi­
tions to the right of the cursor except for the rightmost position are filled with
blanks on the screen and in the current record buffer. The negative zero graphic
is placed in the rightmost field position on the screen, a negative zero (hex DO)
is placed into the rightmost byte in the buffer, and a field advance is performed.
If awaiting field exit, the key is processed in the same way except that an
error occurs unless the rightmost data character in the field is a digit (0-9).
The zone of the digit is set to hex D in the current record buffer and the
negative zero graphic is displayed on the screen.

• Numeric Field: For a numeric field, the Field- key is valid only if the field
exit- flag (bit 0 of byte hex 3D into the lOB) is set to O. If the field exit­
flag is zero, the function is processed as for a numeric-only field except that
the negative graphic is not displayed on the screen. If the field exit- flag is
not zero, the Field- key is not valid in the field; an error occurs if it is pressed
while the cursor is within the field.

• Signed Numeric Field: If the system is not awaiting field exit, the data to the
left of the cursor is right-adjusted to the next to the rightmost position of the
field on the screen and to the rightmost position of the field in the current
record buffer. The leftmost positions are filled wi!h the appropriate fill character.
After the right-adjust, if the rightmost character is not a digit (0-9) an error is
posted. Otherwise, the zone of the rightmost digit is set to hex D in the cur-
rent record buffer, a minus sign is displayed on the screen in the sign (rightmost)
position of the field, and a field advance is performed. If the system is
awaiting field exit, the processing is the same except that no right-adjust is
performed. If the key is pressed while the cursor is in the leftmost position of
the field. the processing is the same except that the field is filled with the
appropriate fill character before the sign is processed.

• All Other Fields: The Field- key is not valid for any other field definition for
these modes.

In verify mode, if the system is awaiting record advance when the Field- key is
pressed. an error occurs unless the auto-enter 'flag is on. If the auto-enter flag is
on, a record advance is performed. If the system is not awaiting record advance,
the function is processed depending upon the field definition.

(

(

• Signed Numeric, Digits Only Right-Adjust, Numeric Only Right-Adjust: For a
signed numeric, digits-only right-adjust, and numeric-only right-adjust field, the
Field- key is valid only when the cursor is in the leftmost position of the field
or when the system is awaiting field exit.

Awaiting Field Exit: If the key is pressed when the system is awaiting field
exit, the zone portion of the rightmost byte in the current record buffer is
verified for a hex O. If the zone is not a hex 0, a verify sign mismatch error
occurs. If the operator presses the Reset key, and then presses the Field- key
again, the zone is changed to hex 0 in the buffer and a field advance is per­
formed.

If the field is signed numeric and the rightmost byte is hex 00-09 the negative
graphic for the digit is displayed in the rightmost field position on the screen,
or if it is hex OA-OF, a blank is displayed in the rightmost field position on
the screen; a field advance is then performed.

If the field is numeric·only or digits-only and the rightmost byte is hex 00-09,
the negative graphic for the digit is displayed in the rightmost field position on
the screen, or if it is hex OA-OF, no change is made on the screen; a field advance
is then performed.

Leftmost Position: If the Field- key is pressed when the cursor is in the left­
most position of the field, all field positions except the rightmost position are
verified for the appropriate fill character. The digit portion of the rightmost
byte in the buffer is verified for the digit portion of the appropriate fill char­
acter. The zone portion is verified for a hex O. If the verification is successful,
the rightmost field position on the screen displays as described above. If the
zone of the rightmost character is not hex 0, an error occurs and the zone may
be changed to hex 0 as described above. If verification other than sign verifi­
cation fails, an error occurs and the operator must press the Reset key, then
reenter the field positions from the error keystroke to the end of the field.

• Digits Only or Numeric Only (Not Right-Adjust): If the field is digits-only or
numeric-only but right-adjust is not specified, and if the system is awaiting
field exit the Field- key is processed as for a digits-only or numeric-only
right-adjust field. If the system is not awaiting field exit when the Field- key
is pressed, the positions to the right of the cursor except for the rightmost
field position are verified for blanks. If a non blank character is encountered,
the cursor stops at that position, the remainder of the field is displayed, and a
verify mismatch error is reported. If the operator presses the Reset key and
then presses the Field- key again, a blank replaces the character at that position
and the blank verification continues. The rightmost byte of the field in the
buffer is verified for a negative zero (hex ~O). If it is not a negative zero, the
character is displayed on the screen and a verify mismatch error is reported.
If the operator presses the Reset key and then presses the Field- key again, a
negative zero is placed into the rightmost byte in the buffer and displayed in
the rightmost field position on the screen. After the rightmost position is
successfully verified, a field advance is performed.

• Numeric Field: For a numeric field, the Field- key is valid only if the field
exit minus flag (bit 3 of byte hex 3D into the lOB) is zero. The function is
processed as described above for the numeric-only field except that the negative
graphic is not displaved.

Kevboard Functions 383

384

• The Field- key I, not valid for any other field definition.

FI.ld Exit MlnuI/D •• h Funotlon

The field exit mlnul/dllsh function I, Inltillted when the operllt.or pre •••• the
low,rell.' dllih key on the datil entry ~Ilybo.rc:l.

In 1111 mod.l~ a dllsh eharacter is selact.d whlln Num or Shift is held down while
Field Minua/DlIsh ia pressed. A dash Is also selected if the fi.,ld definition Is not
num.,ric only, digits only, 919n.,0 numeric, or numeric shift, even though Num or
Shift is not held down.

A field minus function Is selected if the field definition is numeric, (and the field
minus key enllble flag in byte 30 bit 3 of the KB lOB is 0) numeric only, digits only,
or signed numeric, and Num or Shift is not held down.

Hex Function

The hex function is valid only when an ENTR command is being processed. It is
not valid for a hex field or when the system is awaiting field exit or record advance.

In all modes, the hex function is selected with a command key sequence from the
operator or by the application program issuing a keyboard operation (KEYOP)
for a keyboard function. When the hex function is selected, the keyboard is
placed in hex mode. The next two keystrokes must be O·g or A·F, and are
combined to make one EBCDIC value. This EBCDIC value is then processed as
a data character. It is not necessary to use the shift key to select the hex
characters.

If the operator presses the Reset key after the Cmdkey and the Hex key have
been pressed, or after the first of the two hex character keystrokes has been
pressed, no data is processed and hex mode is cleared. If a key other than the
O·g or A·F key is pressed following the Cmd key and the Hex key, an error occurs.
The operator must press the Reset key; hex mode is cleared and no data is
processed.

Insert Function

The insert function is initiated when the operator presses the Ins (Insert) key. The
Ins key is valid only when an ENTR command is being processed. The Ins key is
not valid in a field defined as mandatory fill.

In enter, update, special verify, and field correct modes, when the Ins key is pressed
the keyboard is placed in insert mode. The insert mode symbol is displayed in
position 14 of the status line. When the operator presses a data key, the data
character is inserted into the field in the current cursor position. All field positions
to the right of the cursor, and the cursor and character above the cursor, are shifted
one position to the right. If the character that would be shifted out of the end of
the field is not blank, an error occurs. If the cursor is in the rightmost position of
a field when an attempt is made to insert a character, an error occurs. Any attempt
to exit a field while in insert mode causes an error. The operator can cancel insert
mode by pressing the Reset key. /

I

(

(

("

If the cursor is within a picture check subfield when the Ins key is pressed, the
Insert function treats the subfield liS a field. If the cursor is within a field defined
as format level zero, the Insert function treats the total number of 1-byte alpha­
meric fields as one field.

If the first of two hex digits has been entered into a position of a hex field when
the Inl key is pressed, the keyboard is placed into Insert mode but the one previ­
ously entered hex digit Is lost.

In Verify mode, the Insert key is not valid.

Katakana Alphameric Lowershift

Alphameric lowershift is initiated when the operator presses the Alphameric lower­
shift key (ALPH SHIFT) on Klltakana keyboards, and is valid at all times. If a key
is pressed while the Alphameric lowershift key is held down, the bottom left
symbol on the key top is selected. The Alphameric uppershift key overrides the
Alphameric lowershift key.

Katakana Alphameric Uppershift

Alphameric uppershift is initiated when the operator presses the Alphameric
uppershift key (NUM SHIFT) on Katakana keyboards, and is valid at all times. If
a key is pressed while the Alphameric uppershift key is held down, the top
left symbol on the key top is selected.

Katakana Shift Lock Function

The shift lock function is initiated when the operator presses the Shift lock key
(Lock) on Katakana keyboards and is valid at all times. If the Shift lock key is
held down while the Alphameric lowershift key is released, the keyboard is locked
to the Alphameric shift. If the Shift lock key is held down while the Katakana
lowershift key is released. the keyboard is locked to the Katakana shift. The lock
status is overridden by the Alphameric uppershift key. the Alphameric lowershift
key, the Katakana uppershift key, and the Katakana lowershift key. The lock
status is cleared when the Alphameric lowershift key or the Katakana lowershift
key is pressed.

Katakana Lowershift

Katakana lowershift is initiated when the operator presses the Katakana lowershift
key (Kata shift) on Katakana keyboards. and is valid at all times. If a key is pressed
while the Katakana lowershift key is held down. the bottom right symbol on the'
key top is selected. The Alphameric uppershift. Alphameric lowershift. and Kata­
kana uppershift key override the Katakana lowershift key.

Keyboard Functions 385

386

Katakana Uppershift

Katakana uppershift is initiated when the operator presses the Katakana uppershift
key (SYM SHIFT) on Katakana keyboards, and is valid at all times. lfa key is
pressed while the World Trade uppershift key is held down, the top right symbol
on the key top is selected. The Alphameric uppershift and Alphameric lowershift
keys override the Katakana uppershift key.

Record Advance Function

Record advance is initiated when the operator presses the Enter or .Rec Adv (Record
Advance) key, and is valid only when an ENTR command is being processed.

In enter, update, and special verify modes, unless the alternate record advance is
enabled, when the Rec Adv key is pressed the current field and all remaining input
fields in the format are processed as though the ~I (Field Advance) key were pressed
for each field. Edit checks except the character set checks are performed on the
input fields. Intervening automatic fields, prompts, display attributes, and RG
(return to program) exit specifications are processed. When the last field has been
exited, the record advance function is performed. The current ENTR command is
made complete, and external status condition 6, for record advance, occurs. The
record advance function can be initiated by pressing the Rec Adv key or by pressing
a key that causes a field exit to be performed on the last input field of the record
format when the auto·enter switch is on.

If the Rec Adv key is pressed when the alternate record advance is enabled, the
format specifications from the current point to the end of the format are not
performed, but the record advance function is performed.

In field correct mode, the record advance function is processed as a field advance.

In verify mode, if the Rec Adv key is pressed, the remainder of the record format
is verified. Input fields are verified as though the Skip key were pressed for the
field except when: a verify mismatch error occurs, and the operator presses the
Reset key and then presses the Rec Adv key. In this case the non blank character
is replaced with a blank and blank verification continues to the end of the record.
Auto-duplicate fields, auto-skip fields, and constant insert fields are verified as
described under the duplicate function, skip function, and insert function.

Record Backspace Function

Record backspace is initiated when the operator presses the Home (Record Back­
space) key, and is valid only when an ENTR command is being processed. If the
Home key is pressed while the system is awaiting field exit or record advance, the
condition is cleared before the record backspace function is performed.

In enter and update modes, when the Home key is pressed the cursor is reposi­
tioned to the first position of the record. The format specifications between the
podtion of the cursor when the Home key was pressed and the start of the format
are processed in the backward direction. RG (return to program) exit specifica­
tions cause external status 5. The format specification between the start of the
format and the first manual field are processed in the forward direction. RG exit
specification cause external status 4.

/ '

(

(

If the cursor is in the first position of the record when the Home key is pressed,
the current ENTR command is made complete and format specifications between
the position on the cursor when the Home key was pressed and the start of the
format are processed in a backward direction. RG (return to program) exit
specifications cause external status condition 5. After return is made from any
specified external status 5 subroutine, external status condition 7 occurs.

For special verify mode, the Home key is processed as described above except that
the fields on the screen are blanked as they are backspaced through.

For field correct mode, the Home key is processed as described for enter mode,
except that all data on the screen is blanked as it is backspaced through, and
requires reverification. The mode returns to verify mode.

For verify mode, the Home key is processed as described for the enter mode, except
the data on the screen is blanked as it is backspaced through and requires reverifi­
cation.

Reset Function

The reset function is initiated when the operator presses the Reset key. The
Reset key is valid at all times.

In all modes, when the Reset key is pressed following a keystroke error, the blink­
ing stops and the operator may continue keying. The Reset key also cancels hex
mode and insert mode, and resets the Cmd key so the following keystroke is not
treated as part of a command key sequence.

Shift Function

The shift function is initiated when the operator holds down the uppershift or
numeric shift key, and is valid at all times. While the key is held down, the key­
board is in uppershift. Keys that are pressed while the keyboard is in uppershift
select the character, symbol, or function on the upper half of the key top. When
the shift key is released, the shift of the keyboard returns to the shift specified in
the screen format control string for the current field.

Shift Lock Function

The shift lock function is initiated when the operator presses the t (Shift Lock)
key. The ~ (Shift Lock) key is on typewriter keyboards only. It is valid at all
times to lock the keyboard into the uppershift. Except for keys that require
special shifting, when the keyboard is in uppershift, the uppercase character on the
key top is selected when a data key is pressed. The shift lock is cleared when the
, (Shift) key is pressed.

Keyboard Functions 387

388

Skip Funatlon

The skip function 'I Inltllted when the operator pres ... the SkIp key. A Skip key 'I valid only when an ENTA command I. beln; proce8led.

In ,ntf" updiltl, 'P,c/ill "'rltv, Inri fI,'rI.corrflct mod", If the Skip kay I. rmmad
while the syltem II awaiting flelc:llllxlt, the field advance funethm II performed. If
the Skip key Is pre .. ed while the system II aWllltlng record lIc1vanC:III, an arror occur.
unle •• the auto-dup/sklp switch is on. If the auto-dup/sklp switch " on, I record
advanQ!l function oeeun.

If the sVltam I, not awaiting field exit or record .dvane., the poaltlona from the
cunor to the rightmon field position are filled with blanka. If the field is II right­
to-left field. the positions from the cursor to the leftmost field position are filled
with blanks. Character set checks are not performed for the blanks. A field
advance function is performed.

If the field definition specifies format level zero, the Skip key fills the current
position with a blank. The cursor then moves to the next position.

In verify mode, if the system is awaiting field exit or record advance, the
function is processed as for enter mode. If not awaiting field exit or record advance,
the positions from the cursor to the rightmost field position are verified for blanks.
In a right-to-Ieft field the positions from the cursor to the leftmost field position are
verified for blanks. If a nonblank character is encountered, the cursor stops at that
position and the skip action is terminated. The remainder of the field is displayed,
and a verify mismatch error is reported. If the operator presses the Reset key and
then presses the Skip key again, a blank replaces the character and the blank
verification continues. After the last position has been successfully verified, a field
advance function is performed.

If the field definition specified format level zero, the Skip key verifies the current
position for a blank, and the cursor moves to the next position.

TIMESlICING

In order to maintain an acceptable response time for keystrokes from all keyboards
regardless of system load, the KB/CRT microprocessor, when necessary, will tempo­
rarily suspend screen format processing in a partition in order to service keystrokes
or format work in another partition.

After processing a clear screen, field, prompt, or constant insert specification within
the format control string, the microcode checks for the need to timeslice before it
continues processing the same format control string.

Timeslicing is done if anyone of the following conditions exist:

1. There is a new keystroke for a partition where the keystrokes are to be
processed immediately.

2. Another partition is already being timesliced.

(

(

3. The Interval timer (an optional feature) hal overflowed.

4. There I, II new keystroke for II partition whefe tho koystrokas are being
buffen~c:lln the main memory keystroke buffer.

15. There 1& a buffared kaYltroka to be proceuad for Ii partition where the
keYltfoke. life no longef being buffefea.

While a FHlrtltion il bl\lin9 timafillcl\ld, no keyutrokes from Its kaybollrd If a proceSiad
completely. They Famaln in thl\l hardwafe keystroke bufhlf Of lire movlla to the
mlin memory keystroke buff Of until the KB/CAT microprocessor completes the
sequence of format specifications that require timeslicing. Note that if the USOf

executes an ENTA instruction specifying a format with no manual fields, no key·
strokes from that keyboard will be processed completely until the KB/CAT
microprocessor completes processing the ENTA by posting external status for
record advance.

KEYSTROKE BUFFERING

Keystroke buffering gives the application program the ability to protect the operator
from 1110 message codes during interrecord and return-to-program processing by
postponing the processing of keys pressed during those time periods. Across record
boundaries, the KB/CRT MPU can at a user option buffer keystrokes in a main
memory buffer until processing on a new ENTR command begins. During return-to·
program processing, the KB/CRT MPU can at a user option buffer keystrokes in a
main memory buffer until processing on a RESUME operation begins. While key­
strokes are buffered during software processing,t he interval timer is used to time the
maximum length of the buffering period. If a new ENTR (during interrecord buf­
fering) or a RESUME (during return-to-program buffering) is not received within
two timer overflow counts (between 1.6 and 3.2 seconds). the buffering is automati­
cally terminated. This timed termination eliminates the possibility of a hung key­
board due to the software not returning with a new ENTR or a RESUME.

The following diagram shows when keystroke buffering can occur at interrecord time,
the time from when the last key of one record is hit until the cursor is positioned in
the first manual field of the next record.

Interrecord Keystroke Buffering

<- -->
1.6 - 3.2 SEC.

<- - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - X - -- - - - -->
X A X B X C X D XE X F X G X

A A A A A A A A
I I I I I I I I I I I I I I Last Key I Click

I I Main Cursor
of Record I For I MPU I In First
Hit Key I Executes I Manual I I I

ENTR I
I I I

Field
I

KB MPU Begins External Main KB MPU Begins
To Process Key Status MPU To Process ENTR

Posted to begins to
Main Process
MPU External

Status

Diagram A

Keyboard Functions 389

390

During time periods A, B, C, and G the KB/CRT MPU buffers keystrokes because
it is processing the format control string. Buffering during these periods is not
subject to the maximum buffering time since the KB/CRT MPU is actively working
on the screen format and has control. However, during periods 0, E, and F the
KB/CRT MPU is not actively processing a format and must put a limit of between
1.6 and 3.2 seconds on the buffering period.

The following diagram shows when keystroke buffering can occur during return-to­
program time, the time from when the key is pressed that exits to the application
program until the cursor is positioned in the next manual field.

Return-to-Program Keystroke Buffering Time

~--~
1.6 - 3.2 SEC.

<f------------- X· - -- - --- - ------- - - --- - - - -- X-- - ---~
X A X B

A A
I I
I I
Key Hit I
Which I
Exits I
Field I

I
KB MPU Begins
To Process Key

Diagram B

X C X D X E X F X
A A A A A

External
Status
Posted to
Main
MPU

Main
MPU begins
to Process
External
Status

Main
MPU
Executes
ENTR

I
I
I
I
I
I
I

Cursor
In Manual
Field

KB MPU Begins
To Process Resume

During time periods A, B, and F the KB/CRT MPU always buffers keystrokes
because it is processing the format control string. Buffering during these periods is
not subject to the maximum buffering time since the KB/CRT MPU is actively
working on the screen format and has control. However, during time periods C, 0,
and E the KB/CRT MPU is not actively processing a format and must put a limit
of between 1.6 and 3.2 seconds on the buffering period.

./

(

(

Conditions For Keystroke Buffering

There are a number of conditions which must be met in order for the KB/CRT MPU
to do keystroke buffering in a main memory buffer:

1. Buffering of keystrokes in a main memory buffer can occur only if at IPL
time the buffer space is allocated. In order to determine if buffer space is
allocated, the KB/CRT MPU checks the page and address high of the buffer
area specified in the system control area. If both are zero, no buffer is
available and no main memory buffering can occur.

2. During the time the KB/CRT MPU is actively processing the format control
string (periods A,e, and G in diagram A and periods A, e, C, and F in
diagram B) or is processing an IBM 3270 mode keystroke which requires
time slicing, the KB/CRT MPU unconditionally buffers keys hit. If a main
memory buffer is available as in 1 above, the keys will be transferred from
the keyboard hardware buffer into the main memory buffer. If a main
memory buffer is not available, the keys will be left in the hardware buffers.

3. At end of record time, the KB/CRT MPU will buffer keystrokes only if ALL
of the following conditions are met:

A. The interval timer is installed and operational at IPL time.

B. The end of format control string specification in the format specifies
that buffering should be done.

C. The mode is not rerun.

D. The screen format contains at least one manual field.

If all the conditions are met and a main memory buffer is available as in 1
above, buffering is done in that buffer. If all the conditions are met and a
main memory buffer is not available, buffering is done in the keyboard
hardware buffer.

4. At return-to-program time, the KB/CRT MPU will.buffer keystrokes only
if ALL of the follOwing conditions are met:

A. The interval timer is installed and operational at IPL time.

B. The return-to-program keystroke buffering flag in the KB/CRT lOB is
set.

C. The mode is not rerun.;

Keyboard Functions 391

392

Keystroke buffering will be terminated for the following reasons:

1. If a new ENTR is executed during interrecord buffering.

2. If a RESUME operation is executed during return·to·program buffering.

3. If the maximum buffering time is reached.

In addition, buffering will be terminated for the following reasons:

1. If a KACCEPT operation is executed.

2. If an ATTACH or DETACH operation is executed.

3. If a keystroke error occurs.

4. If a KERRST operation is executed.

Keystroke Buffer Overrun •
If the keystroke buffer is filled and another keystroke is hit while buffering is still
enabled, a unique scan code, X'75', (which does not exist on any keyboard) is
written into the last position of the buffer overwriting the key scan code of the
previous key. When the buffer overrun scan code is processed, a keyboard overrun

error -1171- is posted to the operator. The last key scan code byte at offset X'26'
of the keyboard/display lOB is set to X'75' to distinguish the buffer overrun from a
hardware buffer overrun.

Note that when a buffer overrun occurs, the error is not posted at the time the over­
run keystroke is hit. When buffering is terminated, all keystrokes preceding the
buffer overrun code in the buffer will be processed first.

Main Memory Buffer Structure

The KB/CRT microprocessor buffer keystrokes from each workstation in a main
memory buffer reserved and initialized by SYSCON and IPL'ed at power on. The
buffer area is reserved in memory outside the user partitions. Its length varies
depending on the number of keyboards attached to the system and the lengths of the
individual buffers. A pointer in the system control area gives the 20 bit address
of the buffer area.

(

(

To find the buffer area in the system control area, the contents at byte OOFB bits
0-3 give the main memory page of the buffer area. Then, the contents at addresses
OOE1-00E2 point to the buffer area in the page specified.

The buffer area begins with a series of 2-byte pointers, 1 per keyboard on the system.
Each 2-byte pointer is the offset from the start of the buffer area to the first byte
of the individual buffer for the respective keyboard. Each individual buffer begins
wi,th 3 bytes of control information:

1. A pointer to the first element in the buffer.

2. A pointer to the last element in the buffer.

3. A maximum buffer length.

Keyboard Functions 393

This page is left intentionally blank

394

Appendix A. Hexadecimal Codes and Charts

("

Conversion Table

Byte Byte Byte

0123 4567 0123 4567 0123 4567

Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec

0 0 0 0 0 0 0 0 0 0 0 0
1 1048576 1 65536 1 4096 1 256 1 16 1 1
2 2097 152 2 131 072 2 8192 2 512 2 32 2 2
3 3145728 3 196608 3 12288 3 768 3 48 3 3
4 4194304 4 262144 4 16384 4 1024 4 64 4 4
5 5242880 5 327680 5 20480 5 1280 5 80 5 5
6 6291456 6 393216 6 24576 6 1536 6 96 6 6
7 7340032 7 458752 7 28672 7 1792 7 112 7 7
8 8388608 8 524288 8 32768 8 2048 8 128 8 8
9 9437184 9 589824 9 36864 9 2304 9 144 9 9
A 10485760 A 655360 A 40960 A 2560 A 160 A 10
8 11 534336 8 720896 B 45056 8 2816 8 176 B 11
C 12582912 C 786432 C 49152 C 3072 C 192 C 12
0 13631488 0 851968 0 53248 0 3328 0 208 0 13
E 14680064 E 917 504 E 57344 E 3584 E 224 E 14
F 15728640 F 983040 F 61440 F 3840 F 240 F 15

6 5 4 3 2 1

Hexadecimal Addition Table

1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 OA 08 OC 00 DE OF 10

2 03 04 05 06 07 08 09 OA 08 DC 00 DE OF 10 11

3 04 05 06 07 08 09 OA OB OC 00 DE OF 10 11 12

4 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13

5 06 07 08 09 OA 08 DC 00 DE OF 10 11 12 13 14

6 07 08 09 OA DB OC 00 OE OF 10 11 12 13 14 15

7 08 09 OA 08 DC 00 OE OF 10 11 12 13 14 15 16

8 09 OA 08 OC 00 DE OF 10 11 12 13 14 15 16 17

9 OA 08 OC 00 DE OF 10 11 12 13 14 15 16 17 18

A OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 19

B OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 18

D OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 lC

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10

F 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E

(

Hexadecimal Codes and Charts 395

EBCDIC CHARTS FOR PRINTABLE CHARACTERS

'-,

First "- /
Hex

Second Digit-O 1 2 3 4 5 6 7 B 9 A II C D E F
Hex~
Digit

& \ 0 0

1 / ~':l A J 1

2 b k .'; Et K S 2

3 c ·t c L T 3

4 d m u D M U 4

~) Po n v E N V 5

6 l' 0 \II F 0 W 6

"7 9 f.I G P X 7

B h <L Y H Q y fJ

9 I" Z I R Z 9

A If.

B $.& ...
C * " (~

D

E +

F ?

IBM 5256 STANDARD CHARACTER SET

396

First
Hex
Dllllt-O :2 ;5 4 ~> '"

.., B <I A F,t C 0 E F

(- Second

Hex---,
Digit 0 ~ (.II 121 11 It. \ 0

i e I rot ,1 £ A J

:2 a e $. it b k iii ¥ It K S ~1

3 ~':i e i'\ L~ c: r. C L T 3

4 til e A ~: d m u f 0 M U 4

5 a It. e n v Ji E N V 5

(., a iii I f 0 1.<1 '1 F 0 W
'"

'7 ~ 1\ 1. 'j p G P X '7

B s;: ~: h '{ Y H (~ Y 8

9 i'l il N r z I R Z 9

A « 2 ,-:. 2

Ii $.L » Q L () U 0 (j or

C if Yo @ cl if. I) t- o Ii 0 i.i

D ::;. t " [I b ,)

E + l' /I: :Ii I> (I 6 ,~

F '? :!: U 1i Y f.i

IBM 5256 STANDARD CHARACTER SET

LANGUAGE:

Hexadecimal Codes and Charts 397

This page intentionally left blank

398

(

(

(

Appendix B. SCS Control Characters

Printer formatting can be accomplished via an assembler, COBOL or DE/RPG
program or via communiactions. To use the SCS characters supported by com­
munications, see the description under the desired communications access method:
SNA, BSC, or MRJE. To use program to format your printed output, code the
following SCS characters that your printer supports. Code the control characters
in the printer output data stream intended for the printer. The format of the data
stream is:

CC Data CC Data CC Data

where CC is the control characters.

The following table describes the general functions provided by the printer control
characters. A detailed description of each control character follows the table.

SCS Control Valid with

Character Hex Code Function 5222 5224 5225

BEL 2F Alarm; sound alarm on printer V ..! V

CR OD Carrier return
..! ..! ..!

FF DC Forms feed V V V

Fmt 2B ... Format
2BC1nnhh Horizontal (SHF) V V V
2BC2nnvv Vertical (SVF) V V ..J
2BC6nnid Line density (SLD) v ./ ..;
2BC8nngguu Graphic error (SGEA) ..! ..! ..J
2BD10381P1 Set CGCS (SCLl ..; ..;
2BD2042900VV Char distance (SCD) ..J ..; V
2BFEnnmmP1Pn Alt char (LAC) ..; V

IRS 1E Interchange record separator V V V

LF 25 Line feed ..J V V

NL 15 New line ..; ..; V
NUL 00 No operation .j V .j

PP 34 ... Print position V V V
34COnn Horizontal absolute V V V
34C8nn Horizontal relative V V .j
34C4nn Vertical absolute V V V
344Cnn Vertical relative .j ..; V

TRN 35nn Transparent V ..;

5256

..J

V

V

V
V

V

.j

V

V

V

V
V
V
V
V

SCS Control Characters 399

400

• BEL

Function: This control character stops printing, sounds the audible alarm, if
installed, and turns on the Attention indicator.

Code: X'2F'

Results: When the printer detects this control character, it:

1. Allows all preceding data to be printed and all preceding control characters
to be executed

2. Turn the Ready indicator off

3. Turns the Attention indicator on

4. Sounds the audible alarm, if installed

5. Stops printing

6. Stops formatting

7. Returns an unavailable status to the controller

• CR (Carrier Return)

Function: This control character performs a carrier return to the first print position
on the same line.

Code: X'DD'

Results: The horizontal print position logically moves to the first print position on
the same line. If it already is at the first print position, no operation occurs. No
physical motion will occur as a result of this control character.

• FF (Forms Feed)

Function: This control character moves the paper to the next logical page as speci·
fied by the Set Vertical Format control character (see Fmt) in this topic.

Default: 1 logical page = 1 logical line.

Code: X'DC'

Results: The print position moves to the first logical print line and first logical
print position of the next logical page. Physical motion of the paper will occur as
a result of this control character.

• Fmt (Format)

Function: This control character defines forms movement, line length, and other
printer functions as per the following description:

./

(-

(

Code: X'2B'

Format:

Function Associated
Code Parameter Length Parameters

2B (HEX) (HEX) (HEX)

Note: The following table shows the various function types and their associated
parameters. The nn is the number of bytes to follow the function type and includes
the count frame in its value.

Function Types Available for Use with the Format (Fmt) Printer Control Character

Function
Type Format Values of Parameters Description

SHF (set C1nnhh nn = number of bytes in Valid extries are 01 and
horizontal the SH F string. 02.
format)

hh = maximum horizontal Sets the maximum print
print position (greater than position (MPP), which is
or equal to 1 and less than the value of the print line
or equal to 198). The length. MPP is 132 for 10
default is 132 (X'84') 10 cpi and 198 for 15 cpi.
cpi or 198 (X'CS') 15 cpi.

SVF (set C2nnvv nn = number of bytes in Valid entries are 01 and s
vertical the SVF string. 02.
format)

vv = maximum number of Sets the maximum print
lines on a page greater than line (MPL) on the logical
or equal to 1 and less than page.
or equal to 255). The
default is a page length of
one line.

SLD (set C6nnld nn = number of bytes in Allows selection of vertical
line the SLD string. Valid line density of either 6, 8,
density) entries are 01 and 02. or 9 lines per inch. De-

fault is S Ipi.
Id = density parameters.
Line density is defined
in increments of .353
mm (1/72 inch).
Normal values are:
ac = 61pi (12/72 inch).
09 = 8 Ipi (9/72 inch).
08 = 9 Ipi (8/72 inch).

SCS Control Characters 401

SGEA C8nngguu nn = number of bytes in nn must be at least 1 and
(set the SGEA string. not greater than 3 for
graphic SGEA.
error ",,",- /

action) gg = substitute character This substitute character
option. Default is a will be printed in place of
hyphen (X/60'). any unprintable characters

in the data stream.

uu = Error and status
options when an un-
printable character is
encountered.
01=No stop, no status.
02=Defaults to 01.
03=Stop, hard error status.
04=Defaults to 03.
The default for uu is 01.

SCL (set D1nn81P1 nn = number of bytes in
CGCS the SLC string. Must be
through 03.
10callD)

81 = type.

P1 = 10caiiD of Load a predetermined
character set to be graphic character set to be
loaded. used for the next print "

"
job. Default is FF.

./ -
SCD (set D2nn29 nn = number of bytes in
character oovv the SCD string. Must be
distance) 04.

29 = type.

oovv = character per inch. Allows selection of charac-
Valid vv values are: ter density of either 10 or
OA = 10 cpi 15 characters per inch.
OF = 15 cpi.

LAC FEnn01 nn = number of bytes in nn = (N x 10) + 2 where N
(load P1-Pn to be loaded. is the number of alternate
alternate characters being loaded.
characters) Maximum valve of nn =

252 for each command.

P1-Pn define the Allows customer designed
character images. fonts or characters to be

loaded from host for sub-
sequent printing. Each
character image requires
10 bytes.

For load alternate character, see the reference manual for the particular printer you
are using.

'''-,. --"'

402

(

('

The following table shows the characteristics of the SHF and SVF function types.

Valid Values for the SHF and SVF Set Types

Set Type
Code Parameters Results (MPL and MPP) Error

SHF
2BC1nnhh nn=OO I nval id SCS parameter

nn=01 MPP=132 for 10 cpi None
MPP=198 for 15 cpi

nn=02 MPP=132 for 10 cpi None
hh=OO MPP= 198 for 15 cpi

nn=02
hh=01·C6 MPP=hh None

Maximum line length for
15 cpi is 198 characters;
for 10 cpi it is 132
characters.

nn=02
hh=C7·FF Invalid SCS parameter

nn=03·FF Invalid SCS parameter

SVF
2BC2nnvv nn=OO Invalid SCS parameter

nn=Ol MPL=l None

nn=02
vv=OO MPL=l None

nn=02
vv=Ol-FF MPL=1-255 as specified None

nn=03-FF Invalid SCS parameter

• IRS (Interchange Record Separator)

Function: This control character does the same thing that NL does.

Code: X'lE'

Results: Move the print position to the first print position of the next line. If the
current position is on the last line of the page, the new position is the first print
position of the first line of the next page.

SCS Control Characters 403

404

• LF (Lin, FHd)

Function: This control character moves the paper one line without altering the
print position.

Code: X'25'

Results: Moves the paper logically to the same print position on the following line.
If you use this control character on the last line of a page, it will move the print
position to the first line of the next page.

• NL (N,w Line)

Function: This control character moves the paper to the next line.

Code: X'15'

Results: The print position moves to the first print position on the next line if it
is not coded on the last line of the page. If you code this on the last line, it moves
the paper to the first print position on the first line of the next page.

• NUL

Function: No-op

Code: X'QQ'

Results: No characters are printed and no functions are performed.

• PP (Print Position)

Function: This control character moves the logical print position as determined
by the associated parameters.

(

(

Code: X'34'

Format: Function Parameter
(HEX)

Value Parameter
(HEX)

Note: The following table shows the various function types and their associated
parameters. nn is the value parameter for the function type that precedes it.

Function
Type Format

AH COnn
(absolute
horizontal
move)

AV C4nn
(absolute
vertical
move)

Values of Parameters

nn = 00 . No operation.
PP is unchanged; no error.

01 < nn < MPP . The
print position becomes
the value of nn.

nn> MPP· Error;
invalid SCS parameter.

nn = 00 . No operation.
PL is unchanged; no error.

PL < nn < MPL· The
PL becomes the value of
nn and remains on the
logical page.

01 < nn < PL· The
PL becomes the value of
nn and remains on the
logical page.

nn> MPL· Error;
invalid SCS parameter.

Description

Hex value of the horizontal
position (current print
position, PP, less than or
equal to the end of the
line, MPP).

Hex value of the vertical
position (current print
line, PL, less than or equal
to the end of the page,
MPL).

SCS Control Characters 406

RH C8nn nn = 00 - No operation. Hex value of the move-
(relative PP is unchanged; no error. ment from present hori-
horizontal zontal position (current
move) PP + nn < MPP - The print position, PP, less

print position becomes than or equal,to the end
the value of PP + nn. of the line, MPP).

PP + nn > MPP or
nn > PP - Error;
invalid SCS parameters.

RV 4Cnn nn = 00 - No operation; Hex value of the movement from
(relative PL is unchanged; no present vertical position (current
vertical error. print line, PL, less than or equal to
move) the end of the page, MPL).

PL+nn <MPL - The PL
becomes the value of
PL+nn.

PL+nn >MPL or nn >
MPL - error; invalid SCS
parameters.

./

406

Appendix C. Keyboard Functions: EBCDIC Codes and Bit Numbers

(
IBM 5280 Mode Keyboard Functions

The EBCDIC is the code the microprocessor uses to define the key. The bit
number is the number used for the TRAP parameter of the .KBCRT control
statement.

Bit
EBCDIC Number Key Description

X'OO' Invalid scan code generated from translate
table or hardware. An error code is
presented to the operator.

X'Ol' 0 Cmd Command key prefix to select command
function.

X'02' Cmd Shifted command key.

X'03' 2 Keyboard overrun; keyboard has lost two
keystrokes due to hardware keystroke
buffer overrun.

(X'04' 3 Invalid keystroke; the code is generated
directly from the scan code translate
table or the World Trade translate table.

X'05' 4 Reset Reset function; reset error condition, or
reset Hex key command, or insert
function.

X'06' 5 Ins Insert function; initiate character insert.

X'07' 6 Del Delete function; initiate character delete.

X'OS' 7 Alpha Alpha shift, with the Alpha key pressed.

X'09' S t Numeric shift, with the t (Shift) key
or Num or Num key pressed.

X'OA' 9
,

Shift lock, with the t (Shift Lock) key
pressed.

X'OB' 10 Num Katakana numeric shift, with the Num
Shift Sh i ft key pressed.

X'OC' 11 Alpha Katakana alphabetic shift, with the Alpha
Shift Shift key pressed.

(

Keyboard Functions: EBCDIC Codes and Bit Numbers 407

Bit
EBCDIC Number Key Description

X'OO' 12 Kata Katakana shift, with the Kata Shift key
Shift pressed.

X'OE' 13 Sym Katakana uppershift; with Sym. Shift
Shift key pressed.

X'OF' 14 Lock Katakana shift lock; with the Lock key
. pressed.

X'10' Cursor right (not used for normal IPL).

X'11' Cursor left (not used for normal IPL).

X'12' 17 t Move cursor up; valid only for format
level zero.

X'13' 18 Move cursor down; valid only for format
level zero.

X'14' 19 New line; moves cursor to the first posi-
tion on the next line; valid only for
format level zero.

X'15' 20 Field Field exit function.
Exit,
Field+

X'16' 21 Field- Field exit minus function.

X'17' 22 Skip Skip function.

X'18' 23 Alpha Alpha shift, with the Alpha key
released.

X'19' 24 t Numeric shift, with the t (Shift) key
or Num or Num key released.

X'1A' 25 f Shift I~Ck, with the f (Shift Lock)
key released.

X'1B' 26 Num Katakana numeric shift, with the Num
Shift Shift key released.

X'1C' 27 Alpha Katakana alphabetic shift, with the
Shift Alpha Shift key released.

X'10' 28 Kata Katakana shift, with the Kata Shift
Shift key released.

X'1E' 29 Sym Katakana uppershift, with the Sym Shift
Shift key released.

.\

'" /

408

Bit
EBCDIC Number Key Description

(X'1F' 30 Lock Katakana shift lock; with the Lock key
released.

X'20' 31 Dup Duplicate function.

X'21' 32 --*1 Field advance function.

X'22' 33 I~ Field backspace function.

X'23' 34 Unshifted Field correct function.
Corr

X'24' 35 Enter/ Record advance function.
Rec Adv

X'25' 36 Home Record backspace function.

X'26' 37 --* Character advance function.

X'27' 38 +- Character backspace function.

X'28' 39 Hex Hex command function key.
key

(
40 Keystroke error, detected and normally

handled by the keyboard/display.

X'29' No key Clear screen function; blanks all positions
is associ- on the screen except the status line.
ated
with this
function.

X'2A' No key Clear status line function; blanks all posi-
is associ- tions on the status line.
ated
with this
function.

X'2B' No key Keystroke with this EBCD IC is ignored.
is associ-
ated
with this
function.

X'2C' 43 Field-/dash combination key.

Note: Even if the user specifies in the keyboard bit map that the shifted or un-
shifted CMD key be processed by software, the microcode will continue to track

(- ..
and post CMD key sequences to the software through external status code 2 or 3.

Keyboard Functions: EBCDIC Codes and Bit Numbers 409

Functions from 2D-3F are handled by your program, with external status condition
1 subroutines.

Bit
EBCDIC Number Key Description

X'2D-32' Not assigned; you may assign these codes
to special functions for your applications.

X'33' Sel Select format function.
Fmt

X'34' Dup Switches the auto dup/skip flag.
Skip

X'35' Auto Switches the auto enter flag.
Enter

X'36' Cnd Cancel function; defined and processed
by your program.

X '37' Page Page forward function; to read the next
Fwd record without writing out the current

record, processed by your program.

X'38' Next Next format function; to allow the oper-
Fmt ator to exit a repetitive format, processed

by your program.

X'39' Prnt Print function; to initiate output from
the printer.

X'3A' Not used.

X'3B' Erase Erase input function.
Inpt

X'3C' Corr Record correct function; initiated by the
shifted Corr key.

X'3D' Sys System request function.
Req

X'3E' Attn Attention function.

X'3F' Help Help function; to request a help message.

410

/'
I

'.-./

('

(

IBM 3270 Mode Keyboard Functions

The internal code is the code the microprocessor uses to define the key during
the IBM 3270 mode.

Internal
Code Function General Description

00 Invalid scan Scan code improperly generated by hardware or
code problem in scan code translate table or world

trade translate table. This internal code causes
the invalid scan code to be logged to the hard error
log and input inhibited to be set.

80 Ignore Keystroke with this code is ignored.
keystroke

81 Command Command key prefix to select function.

82 Erase EOF Clears the cursor position and all positions to the
right in the current field to nulls.

83 Keyboard Keyboard has lost 2 keystrokes due to hardware
overrun keystroke buffer overrun.

84 Error keystroke Invalid keystroke due to undefined key position.

85 Erase input Clears all unprotected character locations to nulls,
resets mdt's, repositions cursor.

86 Field Mark Causes field mark character code to be inserted
into the current field.

87 NUM lock key Fixes or releases the upshift character selection on
the data entry keyboard.

Keyboard Functions: EBCDIC Codes and Bit Numbers 411

Internal
Code Function General Description

/'.'

,---- /

88/98 Shift key make/ Shifts to upper half of scan code translate table,
break numeric selecting characters on upper half of key.
key make/
break

89/99 Alpha shift Shifts to lower half of scan code tranlsate table,
key makel selecting character on lower half of key.
break

8A/9A Lock make/ Fixes the upshift character selection.
break

88/98 Alpha/numeric On Katakana keyboard, shifts to lower half of scan
lower shift key code translate table, selecting character on lower
make/break left half of key.

SC/9C Alpha/numeric On Katakana keyboard, shifts to upper half of scan
upper ·shift code translate table, selecting character on upper
key make/ left half of key.
break

80/90 Katakana lower On Katakana keyboard, shifts to lower half of
shift make/ world trade translate table, selecting character on
break lower right half of key.

SE/9E Katakana On Katakana keyboard, shift to upper half of world
upper shift trade translate table, selecting character on upper
make/break right half of key.

SF/9F Katakana Locks Katakana keyboard to Katakana lower or
shift lock alpha/numeric lower shift.
make/break

/"

412

Internal

(Code Function General Description

90 Cursor up Moves cursor up 1 line.

91 Cursor down Moves cursor down 1 line.

92 Cursor right Moves cursor one position to the right.

93 Cursor left Moves cursor one position to the left.

94 New line Moves cursor to the first unprotected character
location of the next line.

95 DUP Causes DUP character code to be inserted into the
current field with tab to next field.

96 Insert mode Puts keyboard into insert mode .. Subsequent data
keystrokes are inserted at the cursor position.
Characters above and to the right of the cursor
are shifted to the right.

97 Delete Deletes the character at the cursor position.
Characters to the right in the same field within
the same row are shifted one position to the left.

;1' AO Tab key Moves cursor to first character location of next

It .. skip key unprotected data field.

A1 Backtab Backspaces cursor to first character location of
current field or previous unprotected field.

All other function keys are processed by the application programs. See the IBM 3270
Information Display System Component Description Manual, GA27-2749, for a
detailed description of the function keys.

('

Keyboard Functions: EBCDIC Codes and Bit Numbers 413

This page intentionally left blank

414

(-

(

(

Appendix D. Keyboard Scan Codes

The keyboard scan codes for the different keyboards are shown on the individual
key tops. The make/break keys generate a scan code of X'5n' when they are pressed,
as illustrated in the following illustrations. The make/break keys generate a scan
code of X'Dn' when they are released. For example, the shift key shown in the
first illustration generates a scan code of X'51' when it is pressed and generates a
scan code of X'D7' when it is released.

The 66-Key Data Entry Keyboard and Data Entry with Proof Keyboard

0E)
§8
@JG
GG
@]G

0G0@)G§000~§)8E)0
00000GG0000G(!ol0
0GJ00GG0G0GBGU0
(57)G8~GG88§00(56)

(69) (OF) (68)

o -A make/break key

The 67-Key Data Entry Keyboard and Data Entry with Proof Keyboard (Not used
in the US)

0E)
§8
~8
00
80

* o -Not present on the 66-key keyboard

o -A make/break key

KeVboard Scan Codes 415

416

The 69-Key Data Entry Keyboard and Data Entry with Proof Keyboard
(Katakana only)

* o -Not present on the 67-key keyboard

o -A make/break key

The 83.-Key Typewriter Keyboard

o -A makelbreak key

The 85-Key Typewriter Keyboard (Katakana only)

• o -Not present on the S3-key keyboard

o -A make/break key

(

(

Appendix E. Diskette Labels

DISKETTE VOLUME LABEL

The diskette volume label identifies the volume, owner, security and sequence of
the physical records on the tracks of the specified volume. The volume label is
located at track 00, head 0, record 7, on each diskette. The following table shows
the format of the diskette volume label (VOL 1).

Decimal
Position

01-03

04

05-10

11

12-24

25-37

38-51

52-64

65

Description

Volume label identifier; must be C'VOL'.

Volume label number; must be C'l'.

Volume identification field; up to 6 alphameric characters.

Accessibility indicator; a blank in this field permits access to this
diskette. Any other character requires additional owner 10 infor·
mation to permit access.

Not used.

System code; not supported on the 5280.

Owner identification field; up to 14 alphameric characters used to·
access secure diskette.

Not used.

Volume Label Extension Indicator:

Character

Blank or 0

1-9

Meaning

No additional cylinders allocated.

Number of additional cylinders allocated; valid
only on diskette 20.

66-71 Not used.

72 Surface Indicator:

Character

Blank

2

M

Meaning

1 surface, FM recording (diskette 1)

2 surfaces, FM recording (diskette 2)

2 surfaces, MFM recording (diskette 20)

Diskette Label. 417

418

Decimal
Position

73

74

75

76

77-78

79

80

81-128

Description

Extent arrangement indicator (not used by the 5280).

Special requirements indicator (not used by the 5280).

Not used.

Physical Record (sector) Length Indicator:

Character

Blank

2

3

Meaning

128-byte sectors

256-byte sectors

512 -byte sectors

1024-byte sectors

Physical record sequence code (see Physical Record Sequence
Code).

Not used.

Label standard version; W indicates standard IBM labels are used.
Anything else is invalid on the 5280.

Padding.

~ ..

(-

(

(

Physical Record Sequence Code (Position 77-78): Indicates how the physical
records are sequenced on the diskette. This field contains either blanks or the
characters 01 through 13. Blanks or a 01 indicates the sectors are physically
sequential. Otherwise, this field is used as an increment to determine the next
physical sectors.

26 Sectors Per Track

When this field contains: Blank 01 02 03 04 05 06 07 08 09 10 11

The sequencing is: 1 1 1 1 1 1 1 1 1 1 1 1

2 2 3 4 5 6 7 8 9 10 11 12

3 3 5 7 9 11 13 15 17 19 21 23

4 4 7 10 13 16 19 22 25 2 2 2

5 5 9 13 17 21 25 2 2 11 12 13

6 6 11 16 21 26 2 9 10 20 22 24

7 7 13 19 25 2 8 16 18 3 3 3

8 8 15 22 2 7 14 23 26 12 13 14

9 9 17 25 6 12 20 3 3 21 23 25

10 10 19 2 10 17 26 10 11 4 4 4

11 11 21 5 14 22 3 17 19 13 14 15

12 12 23 8 18 3 9 24 4 22 24 26

13 13 25 11 22 8 15 4 12 5 5 5

14 14 2 14 26 13 21 11 20 14 15 16

15 15 4 17 3 18 4 18 5 23 25 6

16 16 6 20 7 23 10 25 13 6 6 17

17 17 8 23 11 4 16 5 21 15 16 7

18 18 10 26 15 9 22 12 6 24 26 18

19 19 12 3 19 14 5 19 14 7 7 8

20 20 14 6 23 19 11 26 22 16 17 19

21 21 16 9 4 24 17 6 7 25 8 9

22 22 18 12 8 5 23 13 15 8 18 20

23 23 20 15 12 10 6 20 23 17 9 10

24 24 22 18 16 15 12 7 8 26 19 21

25 25 24 21 20 20 18 14 16 9 10 11

26 26 26 24 24 25 24 21 24 18 20 22

12 13

1 1

13 14

25 2

2 15

14 3

26 16

3 4

15 17

4 5

16 18

5 6

17 19

6 7

18 20

7 8

19 21

8 9

20 22

9 10

21 23

10 11

22 24

11 12

23 25

12 13

24 26

When this
field
contains:

15 Sectors Per Track When this
field
contains:

8 Sectors Per Track

The
sequencing
is:

Blank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

01 02

1 1

2 3

3 5

4 7

5 9

6 11

7 13

8 15

9 2

10 4

11 6

12 8

13 10

14 12

15 14

03 04

1 1

4 5

7 9

10 13

13 2

2 6

5 10

8 14

11 3

14 7

3 11

6 15

9 4

12 8

15 12

05 06 07

1 1 1

6 7 8

11 13 15

2 4 7

7 10 14

12 2 6

3 8 13

8 14 5

13 5 12

4 11 4

9 3 11

14 9 3

5 15 10

10 6 2
15 12 9

The
sequencing
is:

Blank

1
2
3
4
5
6
7
8

01

1
2
3
4
5
6
7
8

02 03 04

1 1 1
3 4 5
5 7 2
7 2 6
2 5 3
4 8 7
6 3 4
8 6 8

Diskette Labels 419

420

DISKETTE HEADER LABEL (HDR1)

Diskette 1: The HDR1s on diskette 1 are located on track 0, head 0, on sectors
hexadecimal 08 through 1A.

Diskette 2: The HDR 1s on diskette 2 are located on cylinder 0, head 0, on sectors
hex 08 through 1 A and on cylinder 0, head 1, on sectors 01 through 1 A.

Diskette 20: The HDR1s on diskette 20 are located on cylinder 0, head 0, on
sectors 08 through 1 A and on cylinder 0 head 1 on sectors 01 through 1 A. In addi·
tion, nine additional cylinders can be allocated on diskette 20 for HD R 1 labels on
sectors 01 through 1 A. On cylinder 0, head 1 and on additional index cylinders
there are 2 labels per sector. The following table shows the format of the diskette
header label (HDR 1).

Decimal
Position

01·03

04

05

06·22

23·27

28

Description

Header label identifier; must be C'HDR'.

Header label number; must be C'1'.

Not used.

Data set identifier; user name for the data set. It must be 1 to 17
characters. The first character must be in position 6 and must be
alphabetic. No blanks are allowed between characters. Duplicate
names are not permitted on the same diskette. For basic, H, and
I exchange only 8 characters can be used. The names ERRORSET
and SYSAREA are reserved for special use.

Block length; a numeric value (1 to 16256) specifying the maxi·
mum numbers of characters per block. At label creation, the
contents must be entered. Blocks must begin on physical record
boundaries. For basic exchange, 1 to 128. For H exchange, 1 to
256. For I exchange, the block length must equal the physical
record length.

Record Attribute:

Character

Blank

B

R

Meaning

Records are unblocked, unspanned

Records are blocked, unspanned

Records are blocked, spanned

29·33 Beginning of extent (BOE); the address of the first sector of the data
set. Positions 29 to 30 contain the cylinder number, position 31
contains the header number, and positions 32 to 33 contain the sector
number.

(

(

Decimal
Position

34

Description

Physical record length; must be the same as position 76 of the
volume label.

Blan k 128-byte records.
1 256-byte records.
2 512-byte records.
3 1024-byte records.

35-39 End of extent (EOE); the address of the last sector reserved for this
data set, using the same format as BOE.

40 Record Block Format:

41

42

43

44

Character

Blank or
F

v

Bypass Indicator:

Character

B

Blank

Meaning

Fixed-length records in the fixed blocks.

Record length is variable; not supported on the
5280.

Meaning

Not to be exchanged or copied

Can be exchanged or copied

Data set security; data set cannot be accessed if this byte contains
other than a block.

Write protect; if this position contains a P, the data set can only be
read. This field must be blank to allow both reading and writing.

Exchange Type Indicator:

Character

Blank

H

E

Meaning

Basic exchange for diskette 1 and 2, formats
1 and 4.

H exchange for diskette 2D, format 7.

No summation of attributes exists.

I exchange.

Diskette Labell 421

422

Decimal
Position

45

46·47

48·53

54·57

58·62

63·66

67·72

73

74

Description

Multivolume Data Set Indicator:

Character

blank

C

L

Meaning

The data set is complete on this diskette.

The data set is continued on another diskette.

This is the last volume of a multivolume data set.

Volume sequence number; specifies the sequence of volumes in a
multivolume data set. The sequence must be consecutive, beginning
with 01 (to a maximum of 99). Blanks indicate that volume sequence
checking is not to be performed on this volume and all subsequent
volumes of a multivolume data set.

Creation date; may be used to record the date the data set was
created. The format is digits representing YYMMDD, where YY is
the low-order 2 digits of the year, MM is a 2·digit representation of
the month, and DD is a 2-digit representation of the day of the month.
Blanks indicate that the creation date is not significant.

Logical record length; 1·9999. Blank indicates that the logical record
length equals the block length.

Offset to next record space; indicates the starting position for the
next sequential record relative to the end of the last block before EOD
(end of data) and contains blanks or a decimal value to be used as a
negative displacement. Blanks mean zero displacement from the next
block (starts at EOD address). This field is used only in conjunction
with blocked records.

Not used.

Expiration date; may be used to contain the date the data set (and
the data set label) may be deleted. The format is the same as creation
date (positions 48·53). All blanks indicate the data set is expired. All
9s indicate the data set will never expire.

Verify/copy indicator; V indicates that the data set has been verified.
C indicates that the data set has been copied. Blank indicates that it
has been neither verified nor copied.

Data set organization; blank indicates that the data set organization is
sequential. D indicates the sequential relocation is not allowed.

Decimal
Position

75-79

80

81

·82-95

96-108

109-110

111-118

119

120-121

122

123

124-128

Description

End of data address (EOD); identifies the address of the next
unused sector within the data set extent, using the same format as
BOE. If this field is the same as BOE, the extent contains a null
data set. If this field contains the address of the next block beyond
the extent (for unblocked, unspanned records), the entire extent
has been used. For blocked or spanned records, this field must be
used with offset to next record space (positions 58-62) to determine
the end of actual data recorded.

Not used.

Destination selection code (not used by the 5280).

Not used.

System code; identifies the operating system that created the data
set label for this data set. (For the 5280 system, this field will be
IBM5280.)

File application type (not used by the 5280).

Not used.

Data header/trailer label indicator (for I and E exchange only):

Blank
F

Indicates that the data set uses no data labels.
Indicates that one or more data header labels are stored in
the beginning of the data set.

E Indicates that one or more data trailer labels are stored
at the end of the data set.

B Indicates that one or more data header labels are stored at
the beginning of the data set and one or more data trailer
labels are stored at the end of the data set.

Number of data header labels (I and E exchange only). Can have
values 01 through 99.

Number of data trailer labels (I and E exchange only). Can have
values 1 through 9.

Record delete indicator (for I ad E exchange only); the character
used to indicate deleted records. This character appears in the last
position of a logical record to indicate that it is deleted. Valid
characters are A-Z, 0-9, or one of the following symbols: . , - /
%#@:$&

Not used.

Diskette Labels 423

This page intentionally left blank

424

'l

Appendix F. Instruction Times

ASSEMBLER LANGUAGE INSTRUCTION TIMES

These timings for the specified assembler language instructions assume that no other
programs are running in the system except the one executing the assembler language
instructions being measured. Any other programs running on the system will cause
the instruction times to exceed those tabulated by an amount dependent upon the
number and types of programs.

Instruction Type Time (microseconds)

Indexed branch GOTO 140
Constant insert = Constant 140
Indicator tests and full branches Ox Op codes 160
Binary register operations 9x Op Codes 150-220
Decimal or binary logical
compare operations IF Rn, IF BRn 190-700

Subroutine call or return CALL, RETURN 320
Set indicator ON, OFF SON,SOFF 70 + 130 per indicator
Decimal register operations 1x Op codes 440-1900
Decimal register multiply Rn* 3800-15700
Single decimal register divide Rn/ 3800-16600
Double decimal register divide Rn(32)/ 3800-91700
Table operations 5x Op codes 320+160 per entry + 20

per byte looked at
Translate TRNAS 258 + 22 per byte
Translate and test TRT 350 + 23 per byte
Move characters MVC 240 + 10 per byte
Compare character strings CLC 350 + 21 per byte up

to miscompare
Generate self check number GSCK 1000-8000

I/O processing times (exclusive of physical I/O, which is usually the largest part of
the time) are as follows:

Instruction Type

• Read and write with no format,
SCS, or translation

• Data directed setup

• Format processing

Time (microseconds)

1-2 ms.

1 ms. + 100 microseconds per format
entry searched

0.5,1 ms. for setup + 10 microseconds
per character for straight move + 25-30
microseconds per character for write
editing + 30-35 microseconds per char­
acter for read editing

Instruction Times 425

426

Instruction Type

• SCS processing

Time (microseconds)

0.5-50 ms. for setup + 20-25 micro­
seconds per character

In addition to the times stated above, time must be added for:

Instruction Type

• Time between a main microprocessor
raising attention to device MPU and
device MPU getting to 108.

• Device MPU processing time

Time (microseconds)

About 100 microseconds if device MPU
is not busy.

1-2 ms.

SEQUENTIAL TABLE SEARCH TIMES

The time to search a sequential table in memory with the approriate assembler
language instruction is specified in the graph titled Sequential Table Search. Char­
acters of each entry are assumed to be random, equally distributed decimal digits,
and the chance of a miscompare on any digit is 0.9. (For other kinds of data,
search times are increased by about 20% for each additional character search per
entry on the average.)

Search Time (sec.)

.35-

Sequential Table Search

.30-

.25-

Interrecord Criterion

.20-

.15-
Interfield Criterion

.10-

.05-

.00-1--
o 250 500 750 1000 1250 1500 1750 2000

Number of table entries searched.

(

(

access method: A technique for moving data between main
storage and an input/output device.

active data set: A data set being used by a program.

adapter: The part of an attachment that is needed to
electrically or physically fit a device to another system
component.

address: A name, label, or number that identifies a register,
location in storage, or any other data source.

alphabetic characters: Letters and other symbols, exclud­
ing digits, used in a language.

alphabetic field: One or more alphabetic characters of
related information in a record.

alphabetic shift: A control (attribute or key) for selecting
the alphabetic character set in an alphameric keyboard.

alphameric characters: Same as alphabetic characters, with
the addition of digits 0 through 9.

alphameric field: One or more alphameric characters of
related information in a record.

arithmetic expression: An expression that contains arith­
metic operations and that can be reduced to a single
numeric value. An arithmetic expression is evaluated from
left to right with multiplication and division preceding
addition and subtraction.

alternate record advance: A function that causes the
system to stop processing the current record and ignore
any specifications between the cursor position and the end
of the record when the Enter or Rec Adv key is pressed.

apostrophe: This character (') is used to enclose character
strings such as 'NUMBER'. Two consecutive apostrophe
characters are used to form an apostrophe in a character
constant such as 'DRIVERS"S LICENSE'.

application: A unit of work for which the system will be
used. For example, this unit of work can consist of enter­
ing data from source documents to do payroll for a small
company.

Glossary

application program: A program that processes user data
to perform a particular data processing task; for example,
inventory control or payroll.

arithmetic expression: An expression that contains arith­
metic operations and that can be reduced to a single
numeric value. An arithmetic expression is evaluated
from left to right with multiplication and division preceding
addition and subtraction.

ASCII: American National Code for Information Inter­
change. The standard code, using a coded character set
consisting of 7-bit coded characters (8 bits including parity
check), used for information interchange among data
processing systems, data communication systems, and
associated equipment. The ASCII set consists of control
characters and graphic characters.

assembler: A computer program that prepares an object
program from a source program written in a symbolic
source language.

assembler language: A source language that includes
symbolic machine language statements in which there is a
one-to-one correspondence with the instruction formats
and data formats of the computer.

attachment: An entire device or feature as attached to a
processing unit, including any required adapters.

attention line: A hardware attention used by the micro­
processors to communicate with each other.

attribute: A characteristic. For example, attributes of a
data set include record length, label, and creation date.
Attributes of a displayed field could include high intensity,
reverse image, and column separators.

attribute byte: A control position that describes attributes
to the system.

auto enter: A record advance function is automatically
performed when the operator enters the last position of
a record.

Glossary 427

auto dup: Automatic duplication. (1) The process of
automatically copying the contents of a field in a previous
record or a storage area into the corresponding positions of
the current record. (2) The process of automatically
verifying the contents of a field in the current record with
the contents of the corresponding positions of a previous
record or a storage area.

auto record advance: Automatic record advance. A move­
ment forward to the next sequential record without manual
intervention when the current record is completely entered
and the auto rec adv switch is on.

auto skip: Automatic skip. In enter mode, if the auto
skip/dup switch is on, the process of automatically filling
an auto skip field with blanks and advancing to the next
field. In verify mode, the process of verifying that all the
positions in the field are blank.

auto verify: Automatic verify. In verify mode, auto dup
fields are checked against the same fields in the previous
record. See auto dup, 2.

auxiliary duplication: The process of copying or verifying
data from a named storage location into a field. For
assembler programs, this is called main storage duplication.

awaiting field exit: The state of the keyboard when the
operator has entered the last position of a field that is
defined as a field exit required field.

awaiting record advance: The state of the keyboard when
the operator has entered the last position of a record with
a key other than the Record advance key, and the auto­
enter function is not enabled.

background job: A job that is run in a partition which
does not have immediate access to a keyboard/display unit.

base displacement addressing: An addressing method that
involves setting up a base address from which other
addresses can be calculated.

basic data exchange: A diskette data exchange that uses
128-byte sectors and allows on Iy one record per sector.
The logical record length must be S 128 bytes and is un­
blocked and unspanned. The basic data exchange formats
allow you to exchange data between 5280 and other systems
that use the basic data exchange format.

binary: Base 2 arithmetic.

428

binary register: A 2-byte register in partition storage
which contains binary notation and is used for binary
arithmetic/logical operations.

binary search: At each step of the search the set of items
is partitioned into two equal parts so that the search starts
at the middle.

blank check: A check of a field to ensure that there are
no blank characters (hex 40) in the field.

blank fill: To fill a field with blank characters (hex 40).

block: (1) A set of things, such as words, characters, or
digits, handled as a unit. (2) A collection of contiguous
records recorded as a unit. Each block can contain one or
more records.

blocking: Combining two or more records into one block.

boundary alignment: The positioning of data areas such as
registers or blocks, on an appropriate boundary for that
type of data.

bps: Bits per second.

branch instruction: An instruction that changes the
sequence in which the instructions in a computer program
are executed. Execution of instructions continues at the
address specified in the branch instruction.

BSC: Binary synchronous communications.

buffer: An area of storage that is temporarily reserved for
use in performing an input/output operation, into which
data is read or from which data is written. See also
physical buffer, logical buffer, current record buffer, and
refresh buffers.

CAM: Communications access method.

CCR: Communications configuration record.

CCU: Communications configuration utility.

character constant: Any combination of characters, includ·
ing blanks, enclosed in apostrophes.

collating sequence: The order each character holds in
relation to other characters according to the bit structure.

(-

column separators: A display screen attribute that shows
vertical lines preceding each position of a field on a display.
These lines do not occupy positions on the display. For
example, ABC.

command keys: The 14 keys on the top row of the data
station keyboard that are used with the Cmd key to request
functions.

comments: Words or statements in a program that serve
as documentation rather than instructions to an assembler
or compiler.

common area: The first part of main storage that contains
the system control area, common functions, global tables
(such as ASCII and error recording), and so on. Depending
upon the common function option selected, this area can
be 6 K, 14 K, or 16 K. This area is not available for user
programs.

common functions: A set of IBM-supplied programs in
the common area that is used by programs executing in
any partition.

communications access method (CAM): A 5280 program
that provides the necessary link between a communications
program and the communication line. It performs func­
tions such as data formatting and link protocol.

communications adapter: A hardware feature that enables
the 5280 to become a part of a data communications
network.

communications configuration record: A record that
describes the communications environment. This record
is created by the communications configuration utility.

communications control block pointer: Contains the
address of the communications control block (CCB) and
flags.

concurrent: Pertaining to the occurrence of two or more
activities within a given interval of time.

configuration: The group of machines, devices, features,
and programs that make up a data processing system.

constant: A data item that does not change during the
execution of a program. This item represents itself and is
actually used in processing rather than being a field name
representing the data. For example, 'cost' is a name repre­
senting a field containing data that changes. The constant
100 is actual data used that does not change.

control block: A storage area used by a program to hold
control information.

controller: A device that controls operation of one or more
input/output devices; for example, a 5285 Programmable
Data Station.

copy: To read data from a source, leaving the source data
unchanged, and to write the same data elsewhere in a
physical form that may differ from that of the source.

counter: A register or storage location used to accumulate
the number of occurrences of an event.

current record buffer: The I/O buffer that holds the
current record during data input via a keyboard.

cursor: A movable horizontal line (underscore) on a dis­
play screen, used to indicate where the next character
entered by the operator will appear. It blinks when no
additional entry is allowed and the system is awaiting the
Enter key.

cylinder: The tracks that can be accessed without reposi­
tioning the diskette drive access mechanism.

data-directed format selection: Format selection is
determined by the data contained in the record.

data exchange: The ability to exchange diskettes and the
data recorded on a diskette data set with a system or device
that is different from the one recording the data.

data required: A field attribute that indicates an operator
must enter at least one nonblank character into the dis­
played field.

data set: An organized collection of related data records
treated as a unit and existing on a diskette.

data set label: A 128-byte area on the diskette index
cylinder that describes a data set.

data set name: The name associated with a data set. The
first character must be alphabetic, and the remaining
characters can be any combination of alphabetic or numeric
characters. Blanks cannot appear between characters in a
name.

data stream: Data transferred by stream-oriented trans­
mission, as a continuous stream of data elements in
character form.

Glossary 429

data table: A table defined by the .TABLE control
statement.

decimal register: A 16-byte register wherein data is stored
in EBCD IC or signed decimal numbers and is used for
arithmetic/logical operations.

default value: A value automatically chosen by the
system when a value is not specified by the user.

DE/RPG: Data Entry with RPG Subroutines. A 5280
program product that provides a means for writing pro­
grams that provide the function required for a specific job.

device address: Four hex characters used to identify a
5280 I/O device such as a diskette drive or printer.

device microprocessors: The microprocessors that control
I/O devices, such as the keyboard/display microprocessor,
diskette microprocessor, printer attachment microprocessor,
and communications microprocessor. The device micro­
processors are controlled by the main microprocessor.

diacritic: A modifying mark that changes the phonetic
value of a character. When you enter a diacritic from the
keyboard, the cursor does not advance until another
character is entered to combine with the diacritic.

diacritic table: A table in keyboard/display storage that
defines diacritic characters and valid diacritic-character
composites for graphic display.

direct access method: An access method for processing
files by specifying the address (record number) or key
value of each record to be accessed.

direct addressing: A method of addressing in which the
addressed storage location contains the desired data. See
also indirect addressing.

direct by key access method: An access method for
processing index data files by specifying the key associated
with each record to be accessed. The current key specified
need not have any relative sequence with the last key or
next key to be specified.

diskette attachment: Controls the function for up to four
diskette drives and includes the hardware adapter, a micro­
processor, and read only storage (ROS).

diskette drive: The mechanism used to read and write
diskettes.

430

diskette head: The device that moves a diskette past a
read/write mechanism.

diskette labels: The header (HDR1) and volume (VOL1)
labels that are recorded on a diskette to describe the data
sets on the diskette.

displacement: The number of bytes from the beginning
of a partition or block to the beginning of a particular data
area.

display/alter: A diagnostic function that allows data in
storage to be displayed and changed.

display attributes: The characteristics assigned to a field
record that control the way the data is displayed.

display mode: The mode in which the prompts, display
attributes, and the contents of the current record buffer
are displayed, but the cursor is not displayed and no data
can be entered. This mode is used to inspect prompts and
display attributes of a screen format.

double register: Two decimal or binary registers used
together as one data area. In a source program, the left­
most register is referenced, followed by the length in
parentheses (4 for binary, 32 for decimal).

dup: Abbreviation for duplicate.

EBCDIC (extended binary-coded decimal interchange
code): A character set containing 256 eight-bit characters.

edit format: A description of a record that is read from a
diskette, written to a diskette or printer, or moved from
one storage location to another. An edit format is set up
by a FMT series of control statements in an assembler pro­
gram, and defines the fields, punctuation,data types, and
other editing requirements of the record.

ELAB/ETAB: Parameter in the .COMM and .DATASET
control statements that specifies the name of a routine
(ELAB) or table (ETAB) to be used to handle error or
external status conditions.

enter mode: The mode in which the operator initially
enters data through a display station. Some editing and
interaction may occur. See also verify mode; update
mode.

E-type data exchange: A diskette data exchange format
that uses blocked and spanned, blocked and unspanned, or
unblocked and unspanned records. Block size can be up
to 16256 bytes. /'''-,

(

extent: A continuous space on a diskette that is occupied
by or reserved for a particular data set.

external register: A register that is used by a micro­
processor. External registers are not located within main
storage and are not used by an application program.

extra line: Row 1 of the screen refresh buffer, which can
be displayed on the top row of the screen in place of the
status line_

field: One or more bytes of related information in a record.

field attribute: See attribute_

field correct mode: The mode in which the operator can
enter data into a field during verification.

field separator: A blank character position preceding every
field of an enter record. This position is required for the
attribute byte.

fixed position prompt: A user-written message that
appears on a specified row of the display screen. Contrast
with standard position prompt.

foreground job: The keyboard/display unit is immediately
available to the partition where the job is being executed.

format control string: The object code generated by source
program edit format or screen format specifications.

format level: The identification associated with a format.

format 0 (zero): A screen format for display stations that
allows entering information on an unformatted display.

formatted diskette: A diskette on which track and sector
control information has been written but which mayor
may not contain data.

global load: A load operation that uses the standard load
prompt. A global load is initiated by the system when
the load parameters are not specified for a LOAD instruc­
tion in an assembler program, and when an error occurs
when using the Standard Load Processor.

global table: A table in the common area. The first two
global·tables are the error recording tables. If the ASCII
translate table is selected during system configuration, the
ASCII translate table is another global table.

HOR1Iabel: Control information written on a diskette
index that describes a data set on the diskette.

hex: Hexadecimal. A number system using 16 symbols:
0-9, A-F each representing 4 bits (one-half byte).

host computer: The primary or controlling computer in a
data communications system.

H-type data exchange: A diskette data exchange format
that uses 256-byte sectors. It allows only one record per
sector. The logical record length must be 256 bytes; it is
unblocked and unspanned. The H-type exchange allows
you to exchange data between 5280 and other systems
that use the H-type data exchange format.

10: Identification.

index data set: A data set in which the keys from another
data set and their record position within that data set are
recorded. When index data sets are used, the following
access methods can be used: sequential; direct by relative
record number; and direct by key value.

index register: A register whose contents can be added to
or subtracted from the operand address before or during
execution of a computer instruction.

indexed address: An address that is modified by the
content of an index register before or during the execution
of an instruction.

indexed instruction: An instruction that requires address
modification before the data byte is fetched from storage.

indirect addressing: A method of addressing in which the
addressed storage location contains the address of the
desired data. See also direct addressing.

initial program load (lPL): A sequence of events that
loads the system programs and prepares the system for
execution of jobs.

input data set: A set of records a program uses as source
information.

input/output control block (lOB): A data area that may
be used to pass the required information from the calling
program to the input/output supervisor for data
operations.

Glossary 431

input record: A data record that is transferred to computer
storage for processing.

insert field: A field not present in the enter record, but
which will be inserted by the system and will be present
in the output record.

insert mode: The mode, initiated by the Ins key, in which
the operator can insert characters into a field at the current
cursor position. The cursor, the character above the cursor,
and all characters to the right of the cursor are shifted to
the right.

instruction: A statement that specifies an operation to be
performed by the computer and the locations in storage
of all data involved in that operation.

lOB: Input/output control block.

lOB pointer: A 4-byte block in the system control area
that contains the address of a device lOB and other informa­
tion (such as, if the device is installed).

IPL: Initial program load.

I-type data exchange: A diskette data exchange format that
uses 128-,256-,512-, or 1024-byte sectors. All records in
a data set must be the same length. All records in the data
set are blocked and spanned. The I-type exchange allows
you to exchange data between the 5280 and other systems
that use the I-type data exchange.

keyboard bit map: Control bits in the keyboard/display
lOB that correspond to functions that are totally or
partially processed by the keyboard/display microprocessor.
An application program written in assembler language can
set these bits to indicate that the corresponding function is
to be handled by the application program.

keyboard/display storage: An area of control storage
separate from main storage, which provides control informa­
tion and refresh areas for processing keystrokes and for
displaying characters on the screen.

keyword: A word, coded in source statements, that repre­
sents specific attributes and functions, and that is usually
accompanied by a string of one or more parameters.

label table: A table of addresses set up by the. LABT AB
control statement, and used for indexed branches and
indexed subroutine calls.

432

label update: A data set type that allows the labels on the
diskette index to be updated.

logical buffer: An I/O buffer that contains a logical record,
used to block and deblock logical records in the physical
buffer.

logical record: A record independent of its physical
environment. Portions of the same logical record may be
located in different physical records, or several logical
records or parts of logical records may be located in one
physical record, depending on the exchange type being
used.

Magnetic Stripe Reader feature: Allows use of the 5280
system only after a valid badge (operator ID) is read by an
attached magnetic stripe reader.

main microprocessor: The microprocessor that processes the
the object code instructions and controls the device micro­
processors. References to the main microprocessor can also
apply to the second application microprocessor.

main storage: (1) General purpose storage of a computer.
(2) Storage that can be addressed by programs, from
which instructions can be executed, and from which data
can be loaded directly into registers.

main storage duplication field: See auxiliary duplication.

main storage store field: A field that is automatically
stored from the current record buffer into a main storage
location.

make/break key: A key that generates a scan code when
the key is pressed, and another when the key is released.

mandatory enter: A field attribute that indicates an oper­
ator must enter at least one character into the displayed
field.

mandatory fill: A field attribute that indicates an operator
must enter all or none of the displayed field.

mask: A pattern of characters that is used to control the
retention or elimination of another group of characters.

microprocessor save area: Bytes marked as a microprocessor
save area contain information that depends upon the opera­
tion being executed, and is therefore unpredictable. An
application program must not change these bytes.

(

mode: The operational category of a data station. Modes
for the 5280 include: enter, update, verify, rerun, rerun/
display, field correct, and special verify.

MPU: The main microprocessor.

MRJE: MULTI-LEAVING remote job entry.

multinational character set: The 188-character (or 184-
character) display and printer character set available with
the 5280.

multiprogramming: The concurrent execution of 2 or more
programs (up to the maximum number of partitions) in
which each program appears to be the only program in the
system. Programs can have exclusive use of data sets and/or
system I/O resources or can share them, depending upon
the application requirements.

multivolume data set: A data set that extends beyond the
boundaries of a single data set. It can be extended on the
same diskette or on another diskette.

nest: To embed subroutines or data in other subroutines
or data at a different hierarchical level such that the differ­
ent levels of routines or data can be accessed or executed
in a reentrant fashion.

nondisplay: A field attribute that prevents display of data.
It can be used for fields containing confidential information.

null character: The hexadecimal character 00.

numeric fields: A field that contains one or more numeric
characters. Valid numeric characters are the digits 0-9 and
+ (plus sign), - (minus sign), . (decimal point), blank, and
, (comma).

numeric shift: A control (attribute or key) for selecting
the numeric character set in an alphameric keyboard.

object code: The 4-byte instructions from the compiler or
assembler that are machine executable. The first byte of
the object code contains the operation code.

object program: A set of instructions in machine language
(object code). The object program is produced by the
assembler from the source program.

offset: The distance from the beginning of a register or
record to the beginning of a particular field.

overlay: (verb) The act of one module being called on top
of another to use the same space.

output data set: A data set containing the data that results
from processing.

packed data field: One byte is used to store two numeric
digits. Bits 0 through 3 for one digit and bits 4 through 7
for the other.

packed decimal format: Each byte within a field
represents two numeric digits except the rightmost byte,
which contains one digit in bits 0 through 3 and the sign
in bits 4 through 7. For all other bytes, bits 0 through 3
represent one digit; bits 4 through 7 represent one digit.
For example, the decimal value +123 is represented as
0001 00100011 1111. Contrast with zoned decimal
format.

packed field: A field that contains data in the packed
decimal format.

pad: To fill unused positions in a field with dummy data,
usually zeros or blanks.

parameter: A field of a control statement or instruction.

partition: An area of 5280 storage in which a program can
execute.

partition lOB: A control block that is stored in the first
128 bytes of a partition, and which describes the partition
and the program that is loaded into the partition.

partition pointer: Contains the address of the beginning of
a partition. The partition pointer also contains flags to
indicate the status of the partition (such as whether the par­
tition is a foreground or background partition).

partition stack pointer: See stack pointer.

phYSical buffer: An I/O buffer that contains a physical
record.

physical record: A record whose characteristics depend on
the manner or form in which it is stored, retrieved, or
moved. A physical record may consist of all or part of a
logical record, or more than one logical record.

port: An access point for receiving or transmitting data.

production statistics: Stattstics related to activities occur­
ring during key entry operation.

program listing: A computer printout that gives informa­
tion about the source program, such as source statements,
diagnostic messages, indicators used, storage addresses of
fields and constants used.

Glossary 433

program product: An IBM-written, licensed program for
which a monthly charge is made. A program product
performs functions related to processing user data.

prompt: A message issued by a program that requests
either information or an operator action to continue
processing.

QBA: Queued block address; a pointer to a device or parti­
tion lOB.

reformatting: The rearrangement of an addition or elimina­
tion of fields in a record.

refresh: The continuous redisplaying of data on the display
screen to prevent the data from fading out.

refresh buffers: Areas in keyboard/display storage that are
used to refresh each row of display characters on the screen.
The refresh area for the status line is in an area separate
from the refresh area for the other rows on the screen.

relative addressing: A means of addressing instructions
and data areas by designating their location in relation to
the location counter or to some symbolic symbol. Relative
addresses of areas within a partition are relative to the
beginning of the partition.

relative record number: A number that specifies the loca­
tion of a record in relation to the beginning of the data set.

rerun mode: An operational mode that allows the applica­
tion program to perform the return-to-program (RG) exits
within a screen format control string in a rapid fashion
without operator intervention. No status line information,
prompts, data, or display attributes appear on the display
screen.

rerun/display mode: An operational mode that is the
same as rerun mode except that the status line information,
prompts, data, and display attributes appear on the screen
so the operator can inspect the rerun data.

resource allocation table: A table in storage that is used to
assign a logical device ID (a name) to a physical device.

return-to-program exit: See RG exit.

reverse image: The display attribute that causes characters
to be displayed as dark characters on a light background.

RG exit: A user exit that interrupts the processing of a
screen format to give control to a user's routine.

434

right adjust: The placement of data in a register or field,
or the shifting of the contents of a register or field, so that
the least significant byte at the right end of the data is
placed into the rightmost position of the register or field.
A right adjust field must be at least 2 characters in length.

right justify: The adjustment of positions of characters so
that the rightmost character entered is at the extreme right
of a field.

SCP: See system control programs.

screen format: A description of a record that is entered via
the keyboard/display. A screen format is set up by a
SFMT series of control statements, and defines the fields,
prompts, control specifications, and display attributes of
the record.

screen format control string: The object code that is gener­
ated by a series of SFMT control statements.

SCS: SNA standard character string.

SCS conversion data set: A data set that has SCS conver­
sion specified in the .DATASET control statement that
defined the data set. The system automatically inserts
SCS control characters into an SCS conversion data set.

SCS data set: A data set that contains SCS control
characters. Contrast with SCS conversion data set.

SOLC: Synchronous data link control.

search argument: The data to be compared to specific
parts of a record for a data set search operation, or to
table entries for a table search operation.

second application microprocessor: Is identical to the main
microprocessor except it does not respond to keyboard at­
tentions.

sector: An area on a diskette track reserved to record a
unit of data.

security: Prevention of access to or use of all or part of
data or programs without authorization.

self-check field: A field, such as an account number, con­
sisting of a base number and a self-check digit or digits. For
data entry applications, the self-check digit or digits
entered by the operator is compared to the self-check digit
or digits computed by the system. If the operator makes
a mistake when entering (keying) a self-check field, an error
message is displayed.

sequential access method: An access method in which
records are accessed in the order in which they occur in the
file. Contrast with direct access method.

sequential by key: A method of data set processing that
accesses records in the order in which a keyed or indexed
data set is arranged.

SNA: Systems network architecture.

source program: A set of instructions that represents a
particular job as defined by the programmer. These instruc­
tions are written in a programming language, such as
DE/RPG.

spanned record: (1) A record that crosses a block boundary.
(2) A record that is stored in more than one block.

stack pointer: The binary register (BR18) used for sub­
routine calls and returns. During a subroutine call, the
stack pointer contains the address of the next available
entry in the subroutine stack; during a subroutine return
it contains the address of the last entry in the subroutine
stack.

standard load prompt: The screen format stored in the
common area that is used to prompt for load parameters
during a global load or by the Standard Load Processor.

standard position prompt: A user-written message that can
appear in any position on the display screen. Contrast with
fixed position prompt.

status line: Usually, the first line on a display screen. This
line provides operational information.

stripped zone: See packed data field.

subroutine stack: A table of return addresses used for sub·
routine returns.

subroutine stack pointer: See stack pointer.

Synchronous data link control (SOLe): A discipline for
managing synchronous, transparent, serial-by-bit informa­
tion transfer over a communications line.

syntax: (1) The structure of expressions in a language. (2)
The rules governing the structure of a language.

system configuration: A process that specifies the various
components and devices that form a particular operating
system. System configuration combines user-specified
options and parameters with IBM programs to produce a
system having the desired form and capacity.

system control block: 256 bytes starting at address X'OO'.
This area contains information such as the address of each
partition, device lOB pointers, system flags, machine stor­
age size, and so on.

system control programming: IBM-supplied programs that
are on a diskette. These programs are included with each
system and allows the operator to configure the system,
IPL the system, and recover from power failures.

system table: A table set up and used by the system to
store the addresses of screen formats, edit formats, prompts,
data tables, and duplicate or store fields.

$\Istem network architecture (SNA): A total description
of logical structure, formats, protocols, and operation
sequences for transmitting information throughout a com­
munications network.

system use only: Bytes marked system use only should
never be changed by an application program.

timeout: A time interval during which a station waits for
a certain operation to occur. Some timeouts are automatic
hardware functions and some are program functions.

trace: A record of the execution of a computer program;
it exhibits the sequence in which the instructions were
executed.

track: A circular path on the surface of a diskette upon
which information is magnetically recorded and from
which recorded information is read.

update mode: The mode in which the operator selects
certain records for review and correction.

verify: To determine whether a transcription of data or
other operation has been accomplished accurately.

verify bypass field: A field that was entered, but does not
need to be verified.

Glossary 435

verify mode: The mode in which the operator rekeys data
from a source document that has already been keyed in
order to check that the data has been entered correctly.

VOL 1 label: Control information written on a diskette
index that describes the volume, owner, security, and
sequence of the physical records on the tracks of the speCi­
fied volume.

zaro fill: To fill with the numeric value zero.

zero suppress: The elimination of preceding zeros in a
number. For example, 0057 becomes 67 when zero
suppressed.

zone: The high-order 4 bits of a byte.

zoned decimal format: Representation of a decimal value
by 1 byte per digit. Bits 0 through 3 of the rightmost byte
represent the sign; bits 0 through 3 of all other bytes repre­
sent the zone portion; bits 4 through 7 of all bytes repre­
sent the numeric portion. For example, the decimal value'
+123 is represented as 1111 0001 1111 0010 1111 001L
Contrast with packed decimal format.

zoned field: A field that contains data in the zoned
decimal format.

436

'\,. ./

(

[-] 179,244
+ 177
+- 277
+- constant 278
+- d(len,BRb(411 298
& - 282
& - constant 283
& - d(ian,BRbl 308

178
278

.= constant 279

.= d(len,BRb(411 300
1 179,182
1= 295

180.281.282.287.291
= constant 243. 244.245,282
x 180.183
*= 294

accept keystrokes and store 319
adapter command byte 239
adapter mode set byte 238
adapter status byte 238
add, binary register 277

double register 279.280.302
with base displacement address 298. 302
with immediate deta 278. 280

add. decimal register 177
ADDR 282
address validity checking 16
address·stop mode 369

backward scroll 370
cancel address-stop 371
forward scroll 370
loop 371
main storage display 370
main storage dump 371
replace main storage 370
single instruction 371
trace 371

addressing methods
binary register address 156
compressed address 155. 156. 157
decimal register address 155
indicator address 157
instruction address 154
instruction displacement 154
system table address 158
16·bit address 4.154
20·bit address 4. 159

ALLOC 229
allocate a data set 229
allocate keyboard/display storage 326
alpha shift function 374
alternate record advance bit 374
AN 174

AND Instruction 282
with baae dlsplacamant addre.s 30B
with Immedlata data 283

AND skip Instruction 242
ASCII translata tabla 9,68
ettach keyboard 314
attantlon IIna. 2, 23
attrlbuta byte 317
auto dup/.kip enabla bit 374
auto enter enable bit 374

background partitions 12
ball 400
binary register 11. 156

add 277
base displacement address 298, 302
double register 279,280.302
immediate data 278. 280

AND 282.283.308
compare

for equal 273
for greater than 272
'for greater than or equal 274
for less than 272
for less than or equal 274
for not equal 271

compare half·registar
for equal 289
for greater than 288
for greater than or equal 270
for less than 268
for less than or equal 270
for not equal 287

convert 246.247.291
copy 281
divide 295
exchange 244

I exclusive·OR 284.285.312
load 281.282.306
multiply 294
OR 283. 284.310
rotate 286
shift 286
store 287. 288
subtract 278.279.300

binary search
data set search 196
table search 256

BINDEC 291
BINHEX 246

·bit numbers for keyboard functions 407

Index

Index 437

block length
diskette lOB 96
printer lOB 105

boundary 9
branch instructions

conditional
test binary register 165
test data set indicators 199
test decimal register 163,167,174,175,176
test format number 164
test indicators 166,168

unconditional 169
BRn += d(len,BRb(4)) 298
BRn & = 282
BRn & = constant 283
BRn & '" dllen,BRb) 308
BRn *= 294
BRn -'" dllen,BRb(4)) 300

BRn /= 295
BRn'" 281
BRn "'ADDR 282
BR n '" constant
BRn '" dllen,BRb)
BRn '" Rn 291
BRn V'" 283

282
306

BRn V= constant 284
BRn V'" dllen,BRb(4)) 310
BRn X'" 284
BRn X'" constant 285
BRn X'" dllen,BRb(4)) 312
BRn(4) += 279
BRn(4) +'" constant 280
BRn(4) +'" d(len,BRb(4)) 302
BRn(4) *", 294
BRn(4) -'" 280
BRn(4) -'" constant 281
BRn(4) -'" dllen,BRb(4)) 304
BRn(4) /= 295
buffering, keystroke 389
buffers 13

current record buffer 75
logical buffer 94,103
physical buffer 96, 105
previous record buffer 75

BUZZ 325
bypass field 128

CALL
CALLTB

170
170

cancel current ENTER
carrier return 400
CFDUMPTR routine

315

366
change row attribute 317
change screen position pointer 318
character advance function 374
character backspace function 375

438

check indicator for bypass field 128
CK 175
CLC 297
clear screen function 376
clear status line function 376
CLICK 327
click keyboard 327
close data set 194
close, communications 240
CLOZ 194
CNENTR 315
command key 376
common area 3, 5, 117
common area map 5
common functions 3, 8, 44
communications CCB pointer 38
communications control 31

error recovery and external status 31
communications instructions

close 240
initialize 193
open 193
read 219
terminate 194
write 233

communications lOB pointer 40
compare instructions

binary half-register
for equal 269
for greater than 268
for greater than or equal 270
for less than 268
for less than or equal 270
for not equal 267

binary register
for equal 274
for greater than 272
for greater than or equal 274
for less than 272
for less than or equal 274
for not equal 271

character strings 297
decimal digits

for equal 265
for greater than 264
for greater than or equal 266
for less than 264
for less than or equal 266
for not equal 263

decimal register
for equal 261
for greater than 260
for greater than or equal 262
for less than 262
for less than or equal 262
for not equal 259

compressed address 155
constant compare 309
constant insert 243·
constant insert field 77

f

,,{

l

constant inserts, system table 121
constants 159
control registers 150
control strings

edit format
screen format

134
123

conversion chart, opcode and mnemonic
convert instructions

binary to decimal 291
binary to EBCDIC 246
decimal to binary 291
EBCDIC to binary 247

copy instructions
binary register 281
decimal register 180

CRTMM 350
cursor address registers
cursor movement 376

150

dllen,BRa) = BRb 288
dllen,BRn) = Rn 276
data set 14

opening a data set 23
data set flags, diskette lOB 95
data set indicators 199
data set instructions

allocate 229
close 194
delete 131
insert block 227
insert record 225
open 193
write 225

data set number 159
data information 40
debugging aides 250
DECBIN 291
decimal register 12,155
decimal register instructions

add 177
copy 180
divide 179, 182
exchange 179
load 244,245, 275, 276
move 184, 185
multiply 180, 183
sh itt left signed 188
shift left, blank fill 187
shift right and round 190
sh ift right signed 189
shift right, pad blank 181
store 275, 276
zone modification 186

DECR BRn 168

160

decrement binary register and test for 0 168
delete function 377
delete instructions

delete a record from a data set 131
delete a table entry 257

detach keyboard 314
DEVCTL 135
device attachments
device control 135
device control read 330
device control write 332
device control, communications 240
device lOB 7,33
device lOB display 363
device lOB pointers 7,33
device microprocessor 1
device status for error recording
diacritic table 148
diagnostic aides 357
diagnostic instructions 330
diskette I/O control 29
diskette initialization 128
diskette lOB 92
diskette lOB map 92
diskette lOB pointers 37
diskette labels 417
DISPEX 322
displacement 159
display control area 149
display extra line 322
display status line 322
display translate table 151
display /alter function 357

alter main storage 363
display main storage 362

49

display the beginning of a partition or lOB 363
move keyboard/display storage 364
search storage 364
test for a change in a bit or byte 365

DISPST 322
divide instructions

binary register 295
decimal register 179,182

double buffering 13
dump and trace console functions 366
dump console function 367
dump instruction 250
DUP 311
dupl icate a character 311
dupl icate areas 131
duplicate areas, system table 122
duplicate fiel ds 13
duplicate function 377

Index 439

EBCDIC charts for printable characters
EBCDIC codes for keyboard functions
edit control byte 138
edit ftags 137
edit format control strings 134

byte groups 136
header bytes 136

edit format control strings, system table
elapsed time counter 28,41
elapsed time counter read 316
ENABLE 172
enable external status 172
enter data via kay board 364
ENTR 364
error log lockout bytes
error mode, keyboard
error recording tables
error recovery

41
323,324
8,46

communications 31
diskette 30
keyboard/display 28
printer 30

exchange instructions
binary register 244
decimel register 179

exclusive-OR instructions
binary instructions

396
407

119

with base displacement address
with immediate data 286

skip instructions

312

AND, exclusive..()R mask
exclusive.()R, AND mask

EXIT 224
exit a partition
external register
external status

224
330,333,334

communications 31
diskette 30
printer 30

external status enable 172
external status flag 14,33
external status processing 14
extra line 322

field advance function 378
fie I d attributes 131
field backspace function 379
field correct function 380
field exit function 380
field exit minus function 381

242
243

field exit minus/dash function 384
. field flags in keyboard/display lOB 81
foreground 'partitions 12
formatted read to storage 182
formatted write from registers 234

440

formetted write to the screen 239
formatting printed output 399
forms feed 400
forward search 197
function control, keyboard 373
functions and modes 27
functions and storage overview
functions normelly handled by the 6280

generate self-check number 246
global configuration table 41,46, 114
global load 16
global system tables 6

pointers to global system tables 7
global tables 44
GOTAB BRn 169
GOTO 162
GOTO BRn 169
GSCK 246

hard error table format 47
HDR1 label 416·
help key 8
help text 8
hex function 384
hexadecimal addition table
hexadecimal codes and charts
hexadecimal conversion table
HEXBIN 247

I/O control
communications 31
diskette 30
keyboard/display 28
printer 30

396
396
396

I/O flags in the partition lOB 64
IF BRn EO 273
IF BRn GE 274
IF BRn GT 272
IF BRn LE 274
IF BRn LT 272
IF BRn NE 271
IF BRn 0 166
IF fmt 164
IF In 168
IFRn- 167
IF Rn AN 174
IF Rn CK 176
IF Rn EO 261
IF Rn GE 262
IF RnGT 260

374

(

IF An LE 262
IF An LT 260
IF An NE 259
IF An SN 176
IFAnO 163
IFB IS 309
IFB OFF 303
IFB ON 305
IFC IS 248
IFC NOT 248
IFD An EO 265
IFD An GE 266
IFD Rn GT 264
IFD Rn LE 266
IFD Rn LT 264
IFD Rn NE 263
IFDSI 199
IFH BRn EO 269
IFH BRn GE 270
IFH BRn GT 268
IFH BRn LE 270
IFH BAn L T 268

IFH BRn NE 267
IFHI 242
IFIR In 166
IFLO 242
immediate load of negative constant into
decimal register 245

immediete load of positive constant into
decimal register 244

indexed branch 169
indicator instructions

set off 241
set on 241
test 168
test and reset 166

indicators 10, 11
indirect instruction execution 290
INIT 228
initialize a diskette 228
initialize communications 193
input and output buffers 13
INSBLK 227
insert function 384
insert instructions

insert block into data set 227
insert constant into storage 243
insert record into data set 225
insert table entry 257

instruction displacement 154
instruction modification 290
instruction times 425
interchange record separator 402
INXEO 290
lOB chain 23,33
lOB display 363
lOB lockout flags 71
lOB pointer 23,33
lOB system status

diskette lOB 93
keyboard/display lOB 69
printer lOB 102

lOB system status flags 69

KACCPT 319
Katakana alphameric lowershift 386
Katakana alphameric uppershift 386
Katakana lowershift 385
Katakana shift lock function 385
Katakana translate table 151
Katakana uppershift 386
KATTCH 314
KDETCH 314
KEAACL 324
KEAAST 323
keyboard attach 314
keyboard bit map 74
keyboard data entry 354
keyboard detach 314
keyboard error mode 323, 324
keyboard flags 72, 128
keyboard function 325
keyboard function control 373
keyboard functions 373

bit numbers for TRAP parameter 407
EBCDIC codes for keyboard functions 407

keyboard operations 313
keyboard scan codes 415
keyboard/display 26
keyboard/display clear and initialize screen 347
keyboard/display erase all unprotected assist 344
keyboard/display external register read 333
keyboard/display external register write 334
keyboard/display indicator and keyboard control 346
keyboard/display I/O control 26

errors 28
functions and modes 27
keyboard/display storage 27
magnetic stripe reader 28
screen format control strings 27

keyboard/display lOB 10,67
keyboard/display lOB map 68
keyboard/display null non-print fields 343
keyboard/display open 327
keyboard/display read buffer assist 335
keyboard/display read buffer assist,
SNA SSCP-SLU 345

keyboard/display read modified assist 337
keyboard/display storage 27, 143

allocate 326
load 335
move 364
store 349

keyboard/display write assist display 339
keyboard/display write assist printer 341
keyed data set 98
keystroke buffering 389
KEYOP 316,325

label = BRn 297
label update 21,37,228
label (len) = An 277
LCATC 348
line feed 402
LOAD 222

Index 441

load flags in the partition lOB 63
load instructions

binary register 281,282
from base displacement address

decimal register 244,245,275,276
partition 14, 222

306

load parameters 222
lock shared table 258
lock system 221
logical buffer 13
logical device 10 9,58,100
logical I/O table 10,23,33,66
logical record search 197

magnetic stripe reader 28
magnetic stripe reader, read
magnetic stripe reader, reset
main microprocessor 1
main storage 3

addressing 4
data areas 35
map 35
size 4

328
328

main storage duplicate field 131
main storage store field 131
make/break keys 415
mask 159,242,243,299,301
microprocessors 1
mismatch error 77
MMCRT 351
mnemonic to opcode conversion chart
mode flags in keyboard/display lOB 80
modes 27
modified data bit 373
modify zone 186
MOFF 185
monocase exception table
move characters instructions

from screen 351
left to right 296, 289
reverse 296
right to left 296
to screen 350
within a partition 296

move, decimal register
partial contents 184

with offset 185
multiply instructions

binary register 294

147
289

decimal register 180,183
MVC 289,296
MVCR 296
MVCV 296
MVER 184

new line 403
NOP 162

442

160

object code instruction format 153
op code conversion chart 160
OPEN 193
open data set 193
open instruction

data set 23, 193
share data set opens 24

keyboard/display 327
operation code conversion chart 160
OR instructions 283

with base displacement address 310
with immediate data 284

overlapped I/O 33
owner 10 229,417

page boundary 4
pages 4
partial overlay 14,223
partition area 3
partition instructions

display 363
dump 250, 367
exit 224
load 222

partition lOB 6, 10, 60
partition lOB map 60
partition pointer 33
partition pointers 6,36
partition size 3,61
partition work buffer 12
partitions 9

background 12
foreground 12
format 59

diskette lOB 92
keyboard/display lOB 67
loQical I/O table 66
partition lOB 60
printer lOB 101
system indicators 89
system registers 91

loading a partition 14
pass EBCDIC to keyboard 321
pass scan code to keyboard 320
PAUSE 250
PoUMP 250
perform keyboard function 325
physical buffer 13
picture check 132,140
picture specification 140
pointers 36,40

device lOB pointers 7
parti tion poi nters 6
pointers to global system tables

POP 172
8

(

position diskette 200
POSN 200

399

print position 403
printer control 30
printer formatting
printer lOB 101
printer lOB map
printer lOB pointer
printer subaddress

101
37

104
program execution time 62
prompts 133
prompts, system table 121

READ 191
read instructions

communications record 219
data set record 191
device control 330
elapsed time counter 315
external registers 333
magnetic stripe reader 330
table entry 253
to storage. formatted 192

REAOMG 328
REBF 192
record advance function 392
record backspace function 392
record insert 226
refresh areas for the status Ii ne 149
refresh buffer area 145
registers 11
registers and indicators 10
release character and field edits 316
REPFLO 313
replace field on screen 313
request keyboard error mode 323
rerun/display enable bit 374
RESCAl 352
reset function 387
reset indicator 241
reset keyboard error mode 324
reset magnetic stripe reader 328
RESMXT 352
resource allocation table 9. 23. 57
resource allocation table search 220
RESUME 352
resume data entry 352
RETEXT 172
RETURN 172
reverse search 197
right adj ust fiel d 130
Rl 286
RN [=] 179
Rn + 177
Rn * 180.183
Rn - 178
Rn / 179,182

Rn = 180
Rn = +constant 244
Rn = -constant 245
Rn = BRn 291
Rn = d(len.BRn) 275
Rn = label(len) 276
rotate. binary register 286
RR 286
RSTMG 328
RTiMER 315
RXORW 241

scan code translate table 152
scan codes 320.415
scan main storage display 362
screen format control strings 27. 123

byte group 10 124
constant insert data and prompts 133
control byte group 125
data field byte groups 130
display attributes 134

screen format control strings. system table 120
screen position pointer 318
SCRTC 349 .
SCS control characters 30
SCS control code characters 399
SCS conversion data set 30. 104
SCS conversion data sets 98
SCS conversion parameters 115
SEARCH 196
search instructions

binary search
data set 196
table 256

data set 196
resource allocation table 220
table

for equal entry 254.251
for higher entry 251
reverse ordered table 255
using binary search 256

search times 426
secondary format 129
sector length. diskette lOB 97
secure diskette 229
self-check 17. 175.245
self-check control block 18.245
sequential table search times 426
set bits off with mask 301
set bits on with mask 299
set graphic error action 382
set indicator off 241
set indicator on 241

Index 443

SETOFF 301
SETON 299
share data set opens
shift function 393
shift instructions

24

binary register 286
decimel register

shift lett signed 188
shift left, blank fill 187
shift right and round 190
shift rightsigned 189
shift right, pad blanks 181

shift lock function 393
skip function 394
skip instructions

if bits are off 303
if bits are on 305
if byte equals constant 309
if equal 248
if not equal 248
loop control 285
mask tests

AND, axclusive-OR mask 242
exclusive-OR, AND mask 243

while index low or equal limit 285
SKIP WHILE 285
SL 187,286
SLS 188
SN 176
SOFF 241
soft error count table 8
soft error table format 56
SON 241
sound buzzar 325
SR 181,286
SRAT 220
SRR 190
SRS 189
standard character set EBCDICs 396
standard load processor 14
status line 149,323
storage area in keyboard/display storage
storage dump 367
storage duplication 131
storage size 40
store instructions

bi nary register 287, 288
decimal register 275, 276
keyboard/display storage 349

subfields 140,146
subroutines 25

call instruction 170
SYSLCK 221
system control block 3,6,33,36
system controller 1
system error log 8
system flags in the system control block
system indicators 89 '
system lock 221
system registers 101
system table pointers 7,43
system table, global 8
system tables 117, 168
system tables for data tables 118

444

146

41

221
3

system unlock
system work area
system work buffer
SYSUNL 221

table instructions
tables, system table
TBBS 256
TBDL 257
TBFH 251
TBFL 255
TBFX 254
TBIN 257
TBRD 253
TBRL 253
TBWE 252
TBWT 252
TCLOZ 240
TCTL 240

12

251
118

terminate communications 194
test instructions

binary register for 0 165
decimal regsiter

for absolute number 174
for negative 167
for self-check digit 175
for signed number 176
for 0 or blank 163

Indicator 166, 168
timer 28,33,62
times, instruction 425
timeslicing 388
TINIT 193
TLCK 258
TOPEN 193
trace and dump functions 366
trace flags in the partition lOB 65
trace function 368
trace instruction 250
TRANS 292
translate 292
translate and test 293
TRAP 407
TREAD 219
TROFF 250
TRON 250
TRT 293
TTERM 194
TUNLCK 258
TWAIT 232
TWRT 233
typical operation 32

unconditional branch 162
unlock shared table 258
unlock system 221

('

(

(

,

V'" 283,284
V '" dllen,BRbI4)) 310
validity table 145
VOL11abei 417

WAIT 232
wait for 1/0 completion 232
WFMCRT 238
work buffer 12

pertition work buffer 12
WRBF 234
write instructions

communications record 233
data set record 225
device control 332
external register 334
from register 234
table entry 252
to the screen 239

WRT 225
WRTI 225
WRTS 231

X= 284
X = constant 285
X'" dilen, BRbI4)) 312

ZONE 186

16-bit address 4
20-bit address 4

Index 445

446

... , ~

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions abou t IBM systems, changes in IBM progranvning
support, requests for additional publications, etc, should be directed to your IBM representative Of to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

IBM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may,
of course, continue to use the information you supply.

• No postage necessary if mailed in the U.S.A.

Inaccurate Of misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name ________________________________ __

Company or
Organization

Address ___________________ _

.--.

-n~Qiii
§=~S:
nCD~.01

g'3g"bJ
~ (0
:II
~

'" iil
:::I

2
s:
'" :::I
C
!!.

o
i

G)
»
N -cD w
UI

~

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and Tape

...

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WI LL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 506, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
Fold and tape Please Do Not Staple Fold and Tape

n

0

'T1
0
Cl

~
g
<0

C "'--
:J
m

--..- ------ - ---- ---- - ---- - - ----------_ ... -
International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

GA21-9353-1

Printed in U.S.A.

,.." '\

\~

