
Systems

GA21-9194-3

IBM 3741
Models 3 and 4
Programmable Work Staltion
Programming Referenc'e
Manual

Preface

This manual is prlmaril\' intended for marketing represent

atives, systems engineers, programmers, and operators who

deal with the IBM 3741 Models 3 and 4 Programmable
Work Station. The reader should be familiar with data pro

cessing concepts and th,~ operation of the IBM 3741 Models

1 and 2 Data Station.

The manual is divided into the following chapters:

Chapter 1. Introduction provides general information about

the overall structure and new functions of the work station

and the ACL (appl ication control language).

Chapter 2. Reference Material provides specific i nforma

tion about the control ~tatements and instructions of ACL

used in programming the work station.

Chapter 3. Design and Implementation Considerations pro·

vides detailed information and examples of ACL used in de·

signing and implementing application programs.

Chapter 4. 3741 Operetion pr,wides Information about

operator procedures and interaction with the work station.

Appendixes provide delailed supplementary information.

Fourth Edition (Octobo~r 1977)

Related Publications

• IBM 3741 Models 3 and 4 Programmable Work Station,

General Information, GA21-9196.

• IBM 3741 Data Station Operator's GUide, GA21-9131.

• IBM 3741 Data Station Reference Manual, GAZl-9183.

• IBM 3741 Models 3 and 4 Programmable Work Station

Reference Card, GX21-9204.

• The real measure . .. A Programmer's Design Guide to

the IBM 3741 Models 3 and 4 Programmable Work

Stations, GA21-9229.

• A Programmers Introduction to the Application Control

Language, GA21-9195.

• Application Control Language Support Logic Manual,

SY21-9203.

• IBM 3740 BTAM/TCAM Programmer's Guide,

GC21-5071.

This is a major cevision of, and obsoletes GA21-9194 2 "no Technical Newsletter

GN21-0244. Changes are indicated by a vertical line at the left of the change; new or

extensively revised illustrations are denoted by a bullet (.) at the left of the figure

caption.

Changes are periodically rT" "de to the inforrnatlon herein; any such changes will be

reported in subsequent revisions or technlc"l newsletters.

Requests for copies of IBM publications should be made to your IBM representative or

to the I BM branch office serving your locality.

A Readers' Comment Form is at the back of this publication. If the form has been

removed, address your cor~ments to I BM Corporation, Publications, Department 245,

Rochester, Minnesota 559'J1

©Copyright International Busll1ess Machine; Corpo'ation, 1974, 1975, 1977

CHAPTER 1. INTRODUCTION.
Creating a Source Program.

3741 Models 3 and 4 Architecture

ACL Program Operation

Branching

Data Set Access Methods

Table Operations

Self-Checking

Display and Keyboard

Reformatting and Editing

CHAPTER 2. REFERENCE MATERIAL
Control Statements .

.NAME

Columns 1-5 Control Statement Name (R)

Columns 13-16 Program Name (0)

Columns 18-19 Program Origin Buffer (R)

Column 23 Printer Type (R)

Columns 28-30 Print Form Size (0)

Columns 33-35 Printer Overflow Line Number (0)

Columns 38-40 Decimal and Command Edit Control (0)

Columns 43-44 Edit Currency Characters (0)

Column 48 Prompting Register (0)

Column 53 Proof Keyboard (0)

Columns 54-55 Keyboard Designation 10)
Column 58 Machine Size (Or.

Columns 63-70 I ntermediate Data Set Name 10)
Column 71 Drive Number (0) .

Columns 73-80 Object Data Set Name (0)

Column 81 Drive Number (0) .

.DATASET

Columns 1-8 Control Statement Name (R)

Column 13 Data Set Number (R)

Columns 18-25 Data Set Name (R)

Columns 28-30 Record Length (0/

Column 33 Drive Number (R) .

Columns 38-39 Data Set Input/Output Buffer (R)

Columns 48-51 Deleted Record Routine (0)

Columns 53-56 End-of-File Routine (0)

Columns 58-60 Type (R)

Column 61 Extent Check (0) .

Columns 63-64 Index Length (0)

Columns 68-69 Tracks/Index (0)

Columns 73-74 Key Length (0)

Columns 78-80 Key Position (0)

Columns 83-100.
Columns 83-84 I ndex Origin Buffer (0)

Columns 88-90 Index Start Position (0)

Columns 93-94 Index End Buffer (0)

Columns 98-100 I ndex End Position (0) .

.PRINTER

Columns 1-8 Control Statement Name (R)

Column 13 Printer Type (R)

Columns 18-20 Lines Per Page (0)

Columns 23-25 Overflow Line (0)

Columns 28-30 Characters Per l.ine (R)

Columns 33-34 Primary Buffer (R)

Columns 38-39 Secondary Buffer (0)

Columns 43-46 Pnnter Overflow Routine (0)

3

4
4
4
4
5
5

5

6
6
6
6
6
6

7

7

7

7

7

7

7

7

7

8
8
8
8
8
8

8
8
8

9
9
9

10
13

13

13

13

13

13

13

13
14

14
14
14

14
14

14

14
15
15
15

Contents

.SEl.F·CHECK 15
Columns 1-11 Control Statement Name (R) 15
Columns 13-15 Modulus (R) 15

Columns 18-19 Digit Position (0) 15
Columns 23-25 Algorithm Control 15
Column 24 Sum Manipulation (0) 16
Column 25 Complement (0) 16
Columns 28-30 Digit I/O Control 16
Columns 33-34 Input Translate Table Buffer Number (0). 17

Columns 38-39 Product Table Buffer Number (0) . 17
Columns 43-44 Output Translate Table Buffer Number (0) 18

Columns 48-63 Weighting Factors (0) 18
Column 68 Weighting Factors Register (0) 19
Self-Check Examples 19
Modulus 7 19

.REGISTER 20
Columns 1-9 Control Statement Name (R) 20
Column 13 neglster N<lme (R) 20
Columns 18-33 Register Contents (R) 20

.BUFFER 21
Columns 1 7 Control Statement Name (R) 21
Columns 13-15 Butfer Number (R) 21
Desinnilted BuPer Load (R) 21

FOfiMAT 22
Columns 1-7 Control Statement Name (R) 22
Columns 13-15 Number IR) 22
Columns 18-20 Character Position (0) 22
Cohrrnn 23 Character (0) 22
Co'urnn 28 Second Record (0) 22
Data Directed Formatting . 23
Formatting Blocked Records 23
Formatting Records Greater Than 128 Characters 23

Editing 23
Data Movement 25

FIELD 25
Columns 1·6 Control Statement Name (R) 25
Columns 13·14 Buffer (RI 25
Columns 18-19 Overflow Buffer (0) 25
Column 23 Field Type IR) 26
Columns 24-25 Field Length (R) 26
Column 28 Data Disposition IR) 26
Column 29 Field Chaining (0) 26
Column 30 Exit Control (01 27
Columns 33-35 Data Position (R) 28

Column 36 Srecial Keyboard Close (0) 28

Columns 38105 28
.END 28

Columns 1-4 Control Statement Name (R) 28
Column 13 Operating Mode 101 28

Columns 1825 input/Output Data Set Name (0) 28
Column 26 Drive Number (0) 29

Columns 28-35 Output Data Set or Program Name (0) 29
Column 36 Drive Number 29

Instructions 29
Arrthrnetic Operations . 29
8rallchiny Operations 33

Display and Keyboard Operations. 40
Diskette Operations. 41

Printer Operations 46

iii

Instructions (continued)
Table Operations
Internal Data Movement Operations
Miscellaneous Instructions.

Communications.
Binary Synchronous Communication.
Expanded Communications Feature .
Unattended ACL Prograrn Mode after Communications
Communication Mode from an ACL Program

CHAPTER 3. DESIGN AND IMPLEMENTATION
CONSIDERATIONS .

Considerations for Efficient Key Entry Programs
Storage Allocation and ReqLlirements

Translator Storage Assignments
Storage Requirements .

Efficient Use of Work Station Storage
Using Operator Messages

Using Tables .
Using the Key Indexed Access Method
Providing Operator Error Correction .

Operator Documentation, Training, and Testing
Operator Documentation
Operator Training
Application Debugging.
Additional Documentation

Data Set Access Methods
Sequential Access Method .
Relative Record Number Access Method
Key Indexed Access Method
Index or Label Access Ml!thod

Blocking and Deblocking of Logical Records
Multiple Diskette Data Sets
Current File Disk Address (CFDA)
Programming Hints .

Control Program
.FIELD Control Statement
Keyboard Indicator.

Programming Restrictions
Tables
Program Origin Buffer
Sequence of ACL Source Programs
Display Unit.
Printer Operations .
Arithmetic Operations
Branching Operations
Disk Access Methods
Internal Data Movement

Restricted Areas.

Program Performance
General Considerations.
Overlapped I/O-Printer .
Overlapped I/O-Keyboard
DisklData Set Procedurel'

iv

Program Load of Index Table for Key Indexed Data Set
Record Access
Execution Timing

47

51
58
61
61
62
62
62

64
64
65
66
66
68
68
68
70
70
73
73
75
75
75
75
75
77
79
81
83
85
85
87
87
87
87
88
88
88
88
88
89
89
89
89
89
89
90
90
90
91
91
91
92
92

CHAPTER 4. 3741 OPERATION

Initiating Translation with the Label Processor
Base Pass
Pass 1 .
Pass 2 .
Pass 3 .
Label Processor I nput Data Set
Label Processor Output
Label Processor Error Messages
ACL Label Processor Configurator

Initiating Translation without Label Processor

Program Execution .
Communications

Program Debugging
Step Trace

Register Trace
Step Stop
Single Step Trace
Trace Output
Selecting Trace .
Program Restart .
Customer Diagnostic Diskette

Storage Dumps .
Unformatted Display Dump

Hexadecimal Display
Formatted Display Dump
Printer Dump
Disk Dump

APPENDIX A. INDICATORS
Keyboard Indicators
Indicators Within a Function-Selected Sequence
Indicators Set by Data Movement.

APPENDIX B. TRANSLATOR ERROR MESSAGES

Transla tor Error Formats .
Messages That Stop Translation Appear on Line 1 .
Messages That Do Not Stop Translation Appear on Line 6

Control Statement Messages
General Error Messages.
Warning Error Messages

APPENDIX C. EXECUTION ERROR CODES, MEANINGS,
AND OPERATOR RESPONSES

APPENDIX D. SAMPLE PROGRAMS
Sample Program 1-0rder Entry
Sample Program 2-Mailing List Inquiry

Register Usage
Sample Program 3-0verlay Program .

APPENDIX E. PRINTER LINK (RPQ) FEATURE

Sample Program.

INDEX

96
96
96
96
96
96
96
98

100
101
102

103
103

104

104

104
104
104
104
105
105
105
106
107
107
108
108
109

110
111
113
113

114
114
114
114
115
116
117

118

125
125
130
132
133

137
139

141

This page is intentionally left blank.

v

IBM 3741 Programmable Work Station

vi

The IBM 3741 Models 3 and 4 Programmable Work Station

substantially increase the data entry capabilities of the basic

3740 system. Significant additional functions beyond the

scope of the IBM 3741 Models 1 and 2 Data Station are pro

vided through a programming facility called ACL (application

control language). The noncommunicating 3741 Model 3

provides functions beyond those of the corresponding

3741 Model 1, while the communicating 3741 Model 4 pro
vides functions beyond those of the corresponding 3741
Model 2.

The work station provides programmable functions which

can be adapted tc new data entry appl ications, or be used to
improve processing of existing jobs.

The work station provides the following new functions:

• Expanded aritl1metic functions, including add, subtract,
multiply, and divide operations, which enable additional

field totals, zero balancing, and crossfooting operations

• Data checking operations, including range checking, limit

checking, and table searching, which provide improve
ments in data accuracy

• Data manipulation which allows data entered from the
keyboard to be reformatted according to instructions

before being written onto a diskette, displayed, or
printed

• Additional ke'y'board and display functions which allow
messages to be displayed, including prompts for data

entry, prompt!; for option selection, and prompted

error correcti on

• Additional diskette access methods which allow process
ing of multiple data sets, reading and writing on two
diskette drives, and creation and maintenance of data set

indexes that provide fast access to online data

• Overlapped printing which allows the operator to key
data while datil within the system is being printed by any

of the available printers attached

Chapter 1. Introduction

The 3741 Models 3 and 4 Programmable Work Station has

all these functions in addition to the functions now available

with the 3741 Models 1 and 2 Data Station. The work sta

tion is also compatible with all optional features currently

available With the data station. When not operating under

ACL program control, the work station functions exactly

like the data station.

An optional ACL translator feature, which 1 ranslates coded
ACL source programs into machine-readable object code, is
available. The ACL translator feature IS only required on

those work stations being used to generate object-level pro
grams. These object-level programs can then be executed on

work stations at remote locations (F igure 1). Both the
printer and second disk features are prerequisites for the

ACL translator feature. Work stations with the ACL translator
feature should also be equipped with the optional 3741 record

insert feature for easy source program maintenance.

Creating a Source Program

A source program consists of ACL control statements and

instructions. Control statements define the program name,
define and describe the data sets with which the program

works, define the data set access method, provide printer

control information, and define the prompting message and

self-check algorithm. In addition, these statements specify
data manipulation formats, constant information, and desig

nate the end of the program.

The second type of program source is instructions. Instruc

tions specify how operations are to be executed. Instructions

can initiate I/O operations, internal data movement,
branching within the program, and arithmetic operations.
Instructions can either be preceded by step numbers (0-767 for
a 4K machine, or 0-999 for an 8K machine) or symbolic labels

in the first column on the coding sheet. Symbolic labels can
be up to four characters long, but the first character must be

alphabetic. The succeeding characters can be alphabetic,
numeric, or symbol characters. When symbolic labels are
used, the first phase of translation is label processing, during
which labels are resolved and converted into step numbers.

Introduction

2

Remote

Location

(No

Translator)

---- --- -----1

AC L Cod i ng Sheets

Control Statements

Instructions

I

4 (; ~'i3741 ",,,zua! L'7' Keyboard

Central

Location

(With Translator)

Source

1

I
I
I
I
I

I
I
1 __ -

1/

o 1 __ --01
1

• o

Work

Station

--........
........

Diskette
1 _____ -

Symbolic

Label

Processor

Translator

-1-
r--------~~~~~--~~I o 1...1 __ ---'I

Object
• o

Work

Station

Execute

Diskette

1

I
1

Source

Listing

I __ ~ -
1_-

Standard

Execution

Function

Figure 1. Structure of the 3741 Models 3 and 4

Comments can be included in the source program to clarify

instructions. Control statements can be entered on ACL
Control Statements Coding Sheet One and Two, GX21-9200

and GX21-9201. Instructions can be entered on ACL In
structions Coding Sheet, GX21-9199. These sheets can be

ordered, by ord'3r number, in pads of fifty from your IBM

marketing representative. For a detailed discussion of cod

ing for control statements and instructions, see Chapter 2.

3741 Models 3 and 4 Architecture

The standard 31'41 Model 3 or 4 is structured in a 4K-byte
(K equals 1024) buffer/register concept (Figure 2). The first

1024 bytes of memory are allocated for system control. This
block of memory also contains the 26 general purpose registers
(A-Z). These 1 fl-character registers are used to perform all

arithmetic operations, and can also be specified to move data

internally and to store data. The indicator table contains 255
indicators; indicators 1 through 99 can be assigned by the
programmer.

The balance of read/write storage is allocated to 128-byte
buffers (Figure 2). These buffers are referenced numerically

(1-24) in program source statements. Although buffer 1 and

buffer 2 are assigned to the display, the remaining buffers
can be used to store operator prompting messages, keyboard

control information, tables and data set indexes, and online

disk data sets and printer output. (See Storage Allocation
and Requirements in Chapter 3.)

An optional 8K storage feature provides an additional 32

general purpose buffers (128 bytes each). Throughout th is
manual, any reference to buffers refers to buffers 1-24 for
4K or 1-56 for BK. The 8K feature allows up to 999

executable instructions with an instruction length of 4 bytes.
All other areas of work station architecture (Figure 2) are
unchanged by the feature, except that data formats are
loaded starting in buffer 56.

A basic 4K-byte program can be translated and executed on

a work station with the 8K feature. However, an 8K-byte
program cannot be translated or executed on a 4K work
station.

After you have completed the cod ing sheets, and created

a source program on the diskette via the 3741 keyboard,
the ACL translator feature creates object code from your

coded entries. Translation occurs in two distinct phases of

operation; the label processor phase, and the translator phase.
During the label processor phase, the symbol ic labels that

precede instructions are converted into step numbers for

internal processing. The source file listing of the program can
also be printed during the label processor phase. During the

translator phase of operation, the instructions you enter are

converted into object code, and a I isting of error messages

is always printed out. (See Initiating Translation With the
Label Processor in Chapter 4.) Note that, if step numbers
are used in a source program, the label prClcesso~ phase of

translation must be bypassed.

Registers I nd icators

(16 characters) 1

A

255
Work Station I

Control Programming l

Z

1024 Buffer -1 Display (lines 1,5,6)
-2 Display (lines 2,3, 4i

-3 Printer
-4 Printer

-5 Data set (1)

-6 Data set (2)

-7 Tables

-8 Tables

204 8 Buffer -9 Prompting messages

-10 Prompting messages

-11 Instructions

-12 Instructions

-13 Instructions
-14 Instructions

-15 Instructions

-16 I nstructi ons

307 2 Buffer -17
-18 Disk indexes

-19 Disk indexes

-20 Disk indexes

-21 Disk indexes

-22 Data formats

-23 Data formats

-24 Data formats

4096 Read-write Storage

Figure 2. Typical ACL Program Structure (4K)

} F ixed

(

p

r

t

Variable

under
rogram

ner con
rol)

Introduction 3

ACl PROGRAM OPERAlilON

As indicated previously, tre work station combines the capa

bilities of the 3741 Model~, 1 and 2 Data Station with new

capabilities provided by ACL. The following operations are
available through appropriate implementation of the applica

tion control language.

Branching

Unconditional and conditional branching instructions alter

the sequential execution of the ACL program. All executable

The sequential or consecutive access method requires that the
records (or 128-position sectors) be processed sequentially or

consecutively, based on the physical disk address. Given one
record, the location of the next record is det'~rmined by the

next sequential disk address in the data set. This mel:hod

allows:

_ Writing records into a new data set.

_ Writing or adding records at the end of an existinl~ data set.

_ I~eading records from on existing data set.

instructions in the program can be identified with a step _ Heading and updating records in an existing data set.
number (000-767), or a four-position symbolic label preceding

the instruction Only those instructions branched to must have _ l=leading and updating records in an existing data set, and

a preceding step number or label; all other instructions do adding new records at the end of an existing data set.
not require step numbers or labels. The step numbers or

labels are used in branchin'~ instructions to indicate the in
struction to be branched to if specified conditions are met.

Branching instructions are described in detail under Branching
Operations in Chapter 2. "rhese instructions can also be used

to aid in program debugging (see Program Debugging in

Chapter 4).

Data Set Access Methods

The work station and the data station use the same data set

label. On the work station, the data sets are used to store
both ACL programs and data sets. During execution of an

ACL program, four data sets can be online to the program

at one time.

The ACL programming facility allows you to access data sets

by three methods:

1. Sequential or consecutive

2. Random by relative record number

3. Key indexed

4

The random by relative record number access method per
forms the same read and update operations as the sequential

access method. The difference is that record accessing is
done in a direct manner, thereby reducing or minimizing the

diskette search time. A relative record number, specified
during a read/write operation, designates the record to be
processed. For example, an instruction to read the fifty

eighth record in a data set can be issued.

The key indexed access method requires that the records in

the data set be arranged in ascending sequence, according to

the search argument or control field. The search ar~lument is
a control field or a data element, up to 16 positions in length,

within each record of a data set. The work station control
program automatically builds an index table in storage for the

data set to be accessed when the key indexed method is

specified.

Table Operations

A table is a group of contiguous fields of the same length (for

example, a table of seven-digit customer numbers). The
maximum length of a table is not restricted (except by avail

able storage). Tables are read into one or more general
work ing buffers. Each buffer may contain from 1 to 16

tables. The following table operations may be specified:

_ Search for an equal entry in a nonsequential table

• Search for an equal entry or the next higher entry in a

table sequenced in ascending order

_ Read a specific entry from a table

_ Write a specific entry into a table

Self-Checking

The ACL program provides a broad range of self-checking

capabilities in addition to the standard modulus 10 and 11
available on the base data station. A specific control state
ment contains the self-check parameters. See Control State
ments in Chapter 2. The contents of any register can be

self-checked during program execution. Self-check numbers
can also be generated.

Display and Keyboard

The display (Figure 3) provides station status information,
program information, data, and operator prompting on the
display screen. The work station uses six 40-character lines
of the display screen. Line 1 is used for station status halts
and error messag'~s (positions 5-8 are reserved for error mes
sages). Positions 1-4 of line 1 can be used for user-posted halts.
Lines 2,3, and 4 display up to 120 character positions of

data or program information. The last 30 positions of line
5 and ali positions of line 6 are used to display prompting
information (operator gUidance) and the operator's response
to the prompt.

YXXXXXXXXXXXXXXXXXXXXXXXXX/XY

XXXXXXXXXXXXXXXXxXXXXXXKXX>XXxXXXXXXXYXX

XXXXY)XXXXXXXXXXX\XXX)XXXXXII

XXxXXXXXXXXXXXXXxXXXXXXXXX)XxxXx x~/xXX

Prompt and
Response Lines

Data Lines -------.....

Status Line ----------'
Figure 3. Display Unit

Figure 4 shows an example of a message which is prompting
the operator to enter a name and address. Prompting begins
in position 11 of line 5. A blank is inserted after the prompt
ing message, follcwed by a series of periods or dashes which
indicate the length and type of data that the operator should
enter. Periods indicate that alphabetic data should be entered,
and dashes indicate that the operator should enter numeric
data. The prompting message and response can total a maxi·
mum of 69 charaGters. All data keyed by the operator is
displayed in the area defined by dashes or periods. As each

character is keyed, it replaces the next dash or period. The

work station display unit does not utilize a cursor.

xxxx

NAME AhD ADDRE:.SS •••••••••••••

Figure 4. Example of a Prompt

As indicated, a prompting message can be displayed for each
field to be entered by the operator. The prompting message
and keyboard control information are stored in the general
working buffers. A specific control statement contains key
board control information (see Control Statements in Chapter

2). Fields may be chained together to allow more than one
field to be entered with a single keyboard input instruction.

Reformatting and Editing

Data can be reformatted for display on the operator's display
screen, for writing onto a diskette, or for printed output on a
printer. This reformatting is accomplished by data format
statements within the ACL program. Up to 254 data formats
can be specified via the appropriate control statement and an
associated format field record. The following options are also
available for editing during printing or othel· input/output
operations, induding diskette and display operations:

• Comma and decimal point insertion

• Blank insertion

• Floating or fixed currency sign

• Asterisk protect or asterisk fill

• Zero suppression or zero fill

• Minus sign control

Introduction 5

Chapter 2. Referenc:e Material

Application programs for the work station can be defined in
the same way that progr ams for the host computer system
are defined. A detailed flowchart of the program, print re
port layouts, and diskette record layouts can provide the
necessary documentation for the coding of your program(s).
Programs for the work station are coded in ACL using both
control statements and Instructions. Note that a II entries
coded in your ACL prO£lI"am must be left-justified on the
coding sheets.

CONTROL STATEMENTS

Control statements must begin with a period in the first
column of the coding sheet. The name of the control func
tion immediately follows the period. The control state
ments are listed below in the order they should be entered.
Each control statement 5 described in this chapter.

Statement

.NAME

.DATASET

.PRINTER

.SELF-CHECK

. REGISTER

.BUFFER

.FIELD

.FORMAT

.END

6

Defines

Program name, origin, and edit
control

Data set name, data set charac
teristics, and data set access
methods

Type of attached printer and
buffer containing data to be
printed, and characteristics
of the form

Modulus/algorithm used for
l;elf-checking

I~egister name and initial
content

Buffer number and initial
content

Prompting message length,
content, and disposition of
data after it is entered

Format number and definition
for reformatting of data for
input/output operations

End of source statements and
instructions

The first five control statements should be entered on ACL
Control Statements Coding Sheet One, GX21-9200, in the
order listed. The .BUFFER, .FIELD, and .FORMAT control
statements can be entered anywhere in the source program,
but must precede instructions. Comments can be coded in
the .FIELD, .FORMAT, .BUFFER, and .REGISTER control
statements after the last defined field. ACL Control State
ments Sheet Two, GX21-9201, is designed to accommodate
these statements. Each control statement is described in
detail below. Note that (R) identifies a required entry and
(0) identifies an optional entry.

.NAME

The .NAM E control statement must be the first statement
in your ACL program. Figure 5 shows the coding placement
for a .NAME statement.

~!"j~~~~~--; \;I'~I"I" 'l~': '" H, ":~ '''(-/~IL'f'I''I'5I']6 '1' "JIIII.a " .10 " 323¥'-ITl1
JI,.,.", jill ILl, I Ll L _ .. _.. . l.J .. 1J:

NJIIH' Pllnh'r lines everflow
Per Page hle

1frrtTIljIj~ITrrrCW~{rC]'O!61!IJIfUJ'~20 Edit Currency Rl''l'~l('r t'r,,{)f Kf'ytlClJrd Mdch'nc Intermedliltp. Data

Corllcol ~"",~)ndr" ~,LP Set Name

Figure 5 .. NAME Coding Placement

Columns 1-5 Control Statement Name (R)

You must enter .NAME in columns 1-5 .

Columns 13-16 Program Name (0)

The four-character program name is translated into the object
program and can later be referenced by the operator. Blank
program name is allowed.

Columns 18-19 Program Origin Buffer (R)

This entry identifies the starting odd-numbered buffer in
which the ACL instructions are to be stored. This Ibuffer
number should be greater than the buffer numbers used for
.FIELD and .BUFFER statements.

Column 23 Printer Type (R)

This entry identifies the printer attached to the work
station to print the program listing during translation.
Valid entries are:

1
2
3
4
5

3713 Printer
3717 Pri nter
3715 Printer (single direction)
3715 Printer (bidirectional with floating right margin)
3715 Printer (bidirectional with fixed right margin)

An incorrect entry may cause a translation error.

Columns 28-30 Print Form Size (0)

This entry indiccltes the number of lines (7·127) to be printed
on a page of prirted output during translation. Default is 66.

Columns 33-35 Printer Overflow Line Number (0)

This entry indicates the line number (7·126) Cit which sk ippi ng
to the next page is to begin when the source listing is

Columns 43-44 Edit Currency Characters (0)

This entry specifies the currency sign to be used when pro
cessing monetary data. Default is t6$. This parameter facili
tates easy processing of different currencies. For example,
the entry FF identifies amounts being processed as French
francs. Any vCllid characters can be entered to represent
other currencies and override the default.

Column 48 Prompting Register (0)

This entry specifies the register (A-Z) that Ifeceives dClta
entered via the keyboard in response to a prompting mes
sage (see Column 28 Data Disposition (R) under .FIELD
in this chapter). Default is register K.

Column 53 Proof Keyboard (0)

You can enter 1 in column 53 to indicate that your work
station has the proof keyboard feature. Default is the
standard key-entry configuration.

printed during translation. This parameter must be less than or Columns 54-55 Keyboard Designation (0)

equal to the print form size specified in columns 28-30. De-
fault is 60. Note that there is a 6-line margin at the top of This entry identifies the keyboard on your work station.
every printed pa!le. Valid entries are:

Columns 38-40 Decimal and Comma Edit Control (0)

Column 38 Edit Control Symbol (0)

This entry identifies an edit control symbol to produce a
specific type of punctuated printer output. Default is a
period (.) if you do not specify a substitute symbol.

Column 39 Edit Control Symbol (0)

This entry identifies an edit control symbol that produces a
specific type of punctuated printer output. Default is a
comma (.) if you do not specify a substitute symbol.

Column 40 Symbol Interval Count (0)

This entry specifies an interval (1-9) at which the symbol
specified in column 39 is to be inserted. For example, an
entry of 5 would cause the symbol specified in column 39
to be inserted in every fifth position of the printed data.
Default is 3.

00 United States, United Kingdom, France (Querty).

and Italy
01 Norway
02 Sweden/Finland
03
04
05
06

07
08

Denmark
Germany
Spain
Belgium and France (Azerty)

Portugal
Japan - Katakana

09 Brazil
Default is 00.

Column 58 Machine Size (0)

This entry identifies the size of your work :;tation storage.
You can enter 4 (4K) or 8 (8K). Default is 4K.

Columns 63-70 Intermediate Data Set Name (0)

This entry specifies the label processor output data set name.
Default is TRANSLET. See Label Processor Input Data Set

in Chapter 4.

RefE'rence Material 7

Column 71 Drive Number (0)

This entry identifies the drive that contains the label proces
sor output data set. DI~fault is drive 2.

Columns 73-80 Object Data Set Name (0)

This entry identifies the object data set name of the translator
output. If this name is not entered, translation cannot occur
directly from the label processor.

Column 81 Drive Number (0)

This entry identifies the drive that contains the label proces
sor object data set. Default is drive 1.

.DATASET

The .DATASET control statement should follow the .NAME
statement in the ACL program. Because the work station can
access up to four data sets online during execution, each data
set to be accessed must have a corresponding .. DATASET
control statement. I n the .DATASET statement, the attri
butes of each data set are described for the execution pro
gram. These data set attributes include:

• Data set name

• Characteristics of thH data set

• Data set access method

• Exits for special input/output routines

Figure 6 shows the coding placement for a .DATASET con
tro I statemen t.

~{YII'f'rrrr(rrITYCEfl5'i'r79ILrcn~rrfi1YI'CJ' l

Buffer Uel.,ted E()r Typt I Index Trdcks Key
rpcord routHIf' length length

IOU!lIle Extent
check

9Itfrr'rf cr II f'l8B[mn'fcm
Key lode.. lf1clex Irldt'x Index
position orlgm SId t end end

buffer po~ Ilion hutter jJOSltlon

Figure 6 .. DATASET Coding Placement

8

The required and optional parameters of the .DATASET con
trol statement are listed in the following paragraphs.

Columns 1-8 Control Statement Name (R)

You must enter .DATASET in columns 1-8.

Column 13 Data Set Number (R)

This entry identifies the number of the data set (1-4) that the
program uses. Note that data sets are opened in descending
sequence (4-1) by the system. Thus, if four data sets are defined
and there is an error condition in number 4, data sets 1-3
may not have been opened correctly.

Columns 18-25 Data Set Name (R)

Th is entry indicates the data set name as it appears on the
HDRI label (found on the index track of the diskette). (See

Index or Label Access Method, under Data Set Access Meth
ods in Chapter 3.) Note that an asterisk in column 18 inhib
its system open, but allows the data set name to be specified
during a programmed open (see OPEN Data Set (OPEN) and
Close Instruction (CL OZ) under Diskette Oper.fJtions in this

chapter). A data set with the name specified in columns
1825 can also be dynamically closed and reopened with
another data set name duri ng execution.

Columns 28-30 Record Length (0)

This entry identifies the logical record length (1-128 bytes)
of the data set specified in columns 18-2Ei. Default is the
length from the data set label. If your data set access method
is label update (see Columns 58-60 Type (R) under
.DATASETin this chapter) default is 80 the fil-st time the
file is opened. Afterwards, when the file is opened, it opens
to the size it was when last opened (if the last open speci

fied a record length).

Note.· Standard 3741 data set labels are 80 bytes long.
Therefore, if you are creating or maintaining standard 3741
labels in the label update access method, you should specify

80 in columns 28-30.

Column 33 Drive Number (R)

This entry identifies the physical disk drive addre!;s (1 or 2)
on which this data set is to reside. Drive 1 is 011 the right, and

drive 2 is on the left.

Columns 38-39 Data Set Input/Output Buffer (R)

This entry identifies the buffer that is to be used for
your disk file input/output area. When the system opens

this data set, this buffer is used for reading labels, but data

remains in the Juffer. Thus, the buffer is not blank if no

data set operatlom have occurred.

Columns 48-51 Deleted Record Routine (0)

This entry specifies the step number or label in a subroutine

that is to be executed if a deleted record is read in this data

set. An entry of 0 is invalid, and no entry causes deleted
records to be bypassed.

A record is considered deleted if all of the following condi
tions are met:

1. A eRe (cyclic redundancy check) is successfully made
at the end of the record.

2. A special address indicator is detected.

3. The first position of the record contains aD.

4. No other error indicators are on.

Note' A record with a special address indicator, but without
a 0 in position 1, flags a read error. Under data station func

tions, the 3741 Models 1 and 2 do not provide a eRe for de
leted records.

Columns 53-56 End-of-File Routine (0)

This entry specifies the step number or label in a subroutine

that is to be ex'~cuted on end of file. End of file occurs when
ever an attempt is made to read at or beyond the EOD (end·

of-data) disk address, or whenever an attempt is made to

write above the EOE (end-of·extent) address. If you do not
make an entry, all data sets will be closed, and the job will
abort on end of file. An entry of 0 is invalid.

Deleted Record/End-of-File Routines

Because deleted records or end-of-file conditions can result

from any of several disk operations in a program, a single

subroutine can be programmed for all such conditions for

the same file (all deleted records or end-of·file conditions).

The step numbers or labels specified in the .DA T ASET

control statement cause the following to Jccur during pro

gram execution:

1.

2.

3.

4.

When the specified disk condition 15 detected, (deleted

record or end of fi Ie), program execution leaves the

normal step number stream. This mayor may not be

at a disk operation step.

The next sequential step number or label in the normal
instruction stream (that would have been executed) is
placed at the step number or label specified in the

.DATASET control statement. A dummy uncondi
tional GOTO branch instruction should be coded at
this location to accept the return step number or label

(see Branching Operations in this chapter).

Program execution transfers to the step/label follow
ing the step number or label specified 111 the .DATA

SET statement.

Program execution continues in thi!; subroutine stream

as directed by the subroutine. TYPically, the instruc

tion number/label specified in the DATASET control

statement (which should be coded as a dummy GOTO)
is branched to, so that program execution can return

to the point in the program where execution was

i nterru pted.

Note: A dummy GOTO should be coded with the label
assigned to that GOTO instruction to prevent label

translator errors. Figure 7 is an example of end-of-file

condition and explains the dummy GOTO coding.

Reference Material 9

In Figure 7 assume the LABL instruction is specified in
positions 53-56 of the .D/~ TASET control statement for

data set number 1, and th'9 following instructions are

being executed when an end-of-file condition is detected
during an attempted READ command:

STEP!
LABEL

13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32

-I'-~-H-r-++++++++-,+-14+ -+ .. -+-+-+-+-++-+

Instruction R D2 is not ex,9cuted. Assume also that the follow
ing instructions are also in the program:

STEP!
LABEL

.. 13 14 15 16 17

q

Return to progrclm stream

Post end-of-fi Ie message

18 19 20

8

2122 23 24 25 26" 28 29 30 31

AP,

-

ARIL

'---- Dummy GOTO "or subroutine. For file exits, a dum·

my GOTO must be coded at the beginning of a sub

routine.

DAT1 is executed next and execution returns to the LABL

instruction where the return label (RD2) is placed. Execution
then returns to RD2 via the GOTO at LABL.

CAUTION
I/O operations should not be executed during these routines.

Figure 7. End-of·File Condition During an Attempted READ
Command

Columns 58-60 Type (R)

This entry specifies the data set access method and operation.
Data set access methods are: (1) sequential, (2) key indexed,

and (3) label update.

10

Sequential

Records are processed sequentially based on disk address

order. Given one record, the location of the next is deter

mined by the next sequential disk address in the data set.

Sequential data sets are defined to be accessed as:

Entry in

Col 58-60

SR

SU

SW

Explanation

Sequential read _. records can be read sequen

tially, or directly by relative record number,

or with the minus (-) specification (access
the previous sequential record). Write com

mands are invalid for this data set type. A

read command to thiS data set type will cause

a phYSical read of the record, followed by any
necessary formatting of the data from a buf

fer into registers.

Sequential update - records can be read se·
quentially, or directly by relative record num

ber, or with the minus (-) specification (ac

cess the previous sequential record). This
access method allows update (write) and add

ing of records to the end of a data set. A
Write command (WRT, WRTS) to this data

set type writes to the disk address of the re

cord previously read. To update a record, the

record must first be read, then written. To
add records to the data set, a WRTE com
mand (see Instructions in this chaptel') must

be issued. This increments the EOD disk
address, after which the record is written at

the EOD-1 disk address. If the data set is
write protected, a 5XA error is posted

IX = data set number).

Sequential write ... data sets can be created,

but not read. The EOD is reset to BOE (be

ginning of t;xtent) before any write operations

begin, unless the data set has been write pro

tected (p in position 43 of the data set label)

which posts a 5XA error (Chapter 4). The data

set is accessed starting at the first sequential

record (BOE).

SWE Sequential write extend - records can be writ

ten (added to an existing data set), but not
read. If the data set is write protected, a 5XA

error is posted (X = data set number). This data

set is accessed starting at the next available reo

cord position (EOD).

Key Indexed

The key indexed access method requires that the records in

the data set be arranged in ascending sequence according to
a data key (search argument or control field). The data key
can be up to 16 contiguous characters located in the same
positions of each record of a data set. When the data set is

opened, the work station control program can automatically
build an index table in storage for the data set to be accessed

when key indexed organization is used. Allor part of the
data key can be the index value. If the index is part of the
key, the most significant characters (leftmost) of the key are
the index value.

The index table cO'1tains an entry for the BOE address and
another entry for the EOO-1 address. Between these address·
e~;, entries are made using the index found at specified track
offsets from the BOE address. Thus, the size of the index
table can be controlled by specifying both the length and
the number of entries in the table. The table can be built
automatically at open time, or read from a separate user
maintained data set. When read from the data set, the loca
tion of the index area must be specified in the .OAT ASET
control statement, because the work station does not
check to see if the user supplied the data set or specified a

dynamic open of KRN or KUN files.

Key indexed data sets are defined to be accessed as:

Entry in

Col 58-60

KR

Explanation

Key indexed read only - records can be read
from a data set, but not updated.

KRN Key indexed read only -- no index build -
records can be read, but not updated. How
ever, the automatic build of the index table
is suppressed when the data set is opened.

KU Key indexed update -- records can be read
and updated. The data set is accessed via
the index table when a read command is
issued. A write (WRT, WRTS) command to
this data set type updates the record just
reacl. Note that the key portion of the record
must maintain its correct position in the

sequence.

KUN Key indexed update - no index build -
records can be read and updated, as in the
KU organization, but the automatic build

of the index table is suppressed when the
datCi set is opened.

The key indexed index is used as follows:

1.

2.

3.

4.

5.

6.

7.

I ndex keys need not be unique; however, performance

is best if they are.

The hardware ascends through the index table until

the search index becomes::; the table index.

The hardware steps back to the preceding index entry.

The address of the preceding index entry is

calculated.

The hardware begins searching the data set at the
calculated address. This search continues until
(a) a match is found, or (b) the search key is>
the record key. (The hardware searches as many
tracks as necessary to get the> condition.)

If a match is found, that record is put in the I/O buffer.

If a match is not found, the record with the next
higher record key is put in the I/O buffer and
indicator 225-228 is turned on.

Reference Material 11

If the index table is automatically built when the data set

is opened, the following sequence takes place:

1.

2.

3.

The buffer(s) for the index table is specified by the

program loader or in columns 83-84 of the .DAT A

SET control statement. If the buffer has not been

specified, the system supplies a default buffer, which

is generally between the buffer containing the last

program instruction and the data formats.

The index (data k,~y) at the BOE record is read from
disk and inserted into the table.

The next index is read from the BOE plus the number
of tracks specified for each index. Indexes are read
in this manner until EOO is reached or exceeded. Note

that, during operation, the system issues a warning

message (5X8) (X ,= the data set number) if the index

exceeds available 5torage space (Chapter 4). The oper

ator must press th,~ RESET key to continue operation.

If a deleted track is found when building the index, or

if the index cannot be built in sequence, another

message (5X9) (X " the data set number) is issued,
and the job is terminated.

4. The EOO-1 index is read.

5. The index table is normally terminated with a hexa
decimal FF delimiter. However, if the space allocated

by the system or ill the .OA T ASET statement cannot
hold all the index entries, (there must be room for at

least 2 index entries) the EOO-1 entry is extracted and
a resettable warning error is posted. Note that once a

data set has been opened with a key indexed data set

type, and the index table has been built, the starting

and ending add res:; of the table are recorded and used
for any subsequent opening of this file.

6. The starting and ending table addresses are recorded in

the work station control storage area.

12

The following steps are taken during execution for data set

access of key indexed type:

1.

2.

3.

4.

A R EAO instruction specifies the general register

containing the key of the record. (The key is

right-justified in the register.)

The significant (leftmost) characters of the key are

compared to the indexes in the table. The search stops

when the key is equal to or less than the table entry.

If the table is exceeded, or the key is less than the first
index entry, two indicators (225-232) are set on
(Appendix A).

The BOE, plus the number of tracks specified by the
table index, is sought.

A fast scan is started on the track specified lor the de
sired record. The entire data key is checked for a

match. The scan continues on the next track until a
match or a higher record is found. On a match, no
indicators are set, and necessary formatting takes place.

If no record is found, an indicator (225-2281 is set on,

and no formatting takes place, but the next higher re

cord is contained in the data set buffer.

Label Update

Entry in
Col 58-60 Explanation

Label update - records can be read and up

dated. The diskette index track is accessed

starting at 00001. Operation is the same as

on a sequential update file (except for
WFlTE).

Column 61 Extent Check (0)

The extent boundaries (BOE and EOE) of the file are checked
against all other valid labels on the disk at open time, if col
umn 61 is blank. No overlap extent checking is done when
the labels are modified using the data station functions, as op
posed to the work station functions. Bypass this check by
entering an A in column 61.

The remainder of parameters in the .DATASET control
5,tatement apply only to the key indexed access method, but
can be coded for other access methods and used when a key
indexed data set i5 opened in subsequent OPEN instructions.

IVote: Null data sets received in BSCA mode appear to have
overlapped extent:;, thus causing the extent check to fail
(5X7 error is displayed).

Columns 63-64 Index Length (0)

This entry specifies the number of characters (1-16) in an
mdex entry. The index is taken from the leftmost significant

characters of the key. Default is 4.

Columns 68-69 Tracks/Index (0)

This entry specifies the number of tracks (1-74) associated

with each index e1try. Default is 1.

Columns 73-74 Key Length (0)

This entry specifies the number of characters (1-16) in the
key field within the record. This number must be greater
than or equal to the index entry length (columns 63-64).

Default is 4.

Columns 78-80 Key Position (0)

This entry identifies the location of the index key within

the record. The entry (1-128) specifies the record position
that contains the left end position of the data key. Default

is 1.

Columns 83-100

The entries in columns 83-100 are required for data set types

KRN and KUN.

Columns 83-84 Index Origin Buffer (0)

This entry specifies the number (1-24) of the buffer in
which the index table is to start. This buffer is used with
following .DATASET parameters at open time for the
index table. If you do not make an entry, the system sup

plies a default buffer.

Columns 88-90 Index Start Position (0)

This entry specifies the starting position (1-128) of the
index table within the buffer just specified (columns
83-84). This entry allows the index table to be built at
any position within the buffer, and is required if the index

origin buffer (columns 83-84) is specified.

Refere nee Material 13

Columns 93-94 Index End Buffer (0)

If you entered an index table origin buffer in columns
83-84, you must enter the number of the buffer that is
to contain the end of the index table in columns 93-94.
This entry must be greaNr than or equal to the origin
buffer number.

Columns 98-100 Index End Position (0)

This entry specifies the ending position (1-128) of the index
table within the buffer specified in columns 93-94). This

entry must be one greater than the last position of the index
table.

.PRINTER

The .PR INTER control statement should follow the
.DATASET statement in the ACL program. This control
statement specifies general information about the attached
3713, 3715, or 3717 Printer. Printer output is detailed ac·
cording to your instructions and edit formats. Figure 8
shows the coding placem1mt for a .PRINTER control state
ment (see Printer Operations under Programming Restric
tions in Chapter 3).

, '\ ~'" ''Cirri rrrnlmr'('rrrj'~
Printer Lmes Overflow Characters Primary

per Ime per Buffer
pilt]f> line

Figure 8 .. PRINTER Codin!1 Placement

Columns 1-8 Control Statement Name (R)

.PRINTER must be entered in columns 1-8.

Column 13 Printer Type [R)

Because five different types of printer can be attached to
the work station, the specific printer attachment must be
identified. Specify one of the following (zero is invalid):

Entry Explanation

1 3713 Printer
2 3717 Pri nter
3 3715 Printer
4 3715 Pri nter
5 3715 Printer

14

The 3713 Printer is a single direction character printer with

a printing speed of 40 characters per second.

The 3717 Printer is a line printer with a printing speed of
100-120 lines per minute.

The 3715 Printer is available in two models (40 or BO
characters per second). Each model can be programmed
to print in three different ways:

• Specify a 3 for single-direction printing with a floating
right margin. The print head must travel to the right as
far as required by each print line. Only one printer
output buffer is required.

• Specify a 4 for bidirectional printing with a floating right
margin. Printing occurs two lines at a time, thus
requiring two printer output buffers. Printing occurs
after every other print command, that is, after the
primary and secondary buffers are loaded. The machine
scans the primary buffer to determine how far to the
right to print, and scans the secondary buffer to
determine if it must continue to the right in order to
print the next line in the opposite direction. Data to be
printed is always specified in the primary buffer while
the secondary buffer is used only by the machine to
control printing of the second line.

• Specify a 5 for bidirectional printing with a fixed right
margin. The line length is specified in the program and
the printer always travels to the fixed right mar~lin.
Because of this, :mly one printer output buffer is required.

Columns 18-20 Lines Per Page (0)

This entry specifies the maximum number of lines to be
printed per page, up to six lines per inch. Default is 66.

Columns 23-25 Overflow Line (O)

This entry specifies the line number beyond which no
printing should occur. The overflow condition occurs after
printing the specified line. This entry should be less than or
equal to the entry in columns 18-20. Default is 60.

Columns 28-30 Characters Per Line (R)

This entry specifies the number of characters (1-132) printed
on a horizontal line. If more than 128 characters are specified,
the buffer (columns 33-34) must be odd-numbered; the excess
over 128 is contained in the next sequential buffer.

Columns 33-34 Primary Buffer (R)

This entry specifies the primary output buffer for use by
the printer.

Columns 38-39 St!condary Buffer (0)

Because the 3715 Printer prints bidirectionally, a buffer
must be specified for each direction. This entry is required
only if 4 has been entered in column 13.

Columns 43-46 Printer Overflow Routine (0)

This entry specifies the step number or label of the first
instruction in an overflow subroutine, when the printer
reaches the overflow line number specified in columns
23-25.

Note: A dummy GOTO instruction should be coded at the
step number/labe I specified.

The step number/label of the subroutine may be entered.
An entry of step number a is invalid. If you do not make an
entry, overflow detection requires testing of indicator 148.

. SELF-CHECK

The .SELF-CHECK control statement should follow the
.PRINTER statement in the ACL program. The .SELF
CHECK statement defines the internal algorithm to be
used during execution. All arithmetic is done to the base
of the modulus. Figure 9 shows the coding placement for
a .SELF-CHECK control statement.

bJ~€W~~l~lrl~~1 "n"GIi]~Cr CilJt'76

~' Mod",,,, 0"1" "'"",lion
poSition control

4
-------~~~----------------~

"(TClIfl" rCill'1Jf]lJ·'
DIQlt Input Product Output

1/0 contrul traml,lte table tran~late

hutte! beJ!!('f !luI/Po

4~wlnI~nl~l~fuTiJ~trI6'1~1
';\Ieu/1I1I)9 FdctOf$ Weighting Factors

Register

Figure 9 .. SE LF-CHECK Coding Placement

Columns 1-11 Control Statement Name (R)

.SE LF-CHECK must be entered in columns 1-11.

Columns 13-15 Modulus (R)

This entry specifies the modulus (2-127) for all mathemati
cal operations. If self-checking is with standard modulus
10 or 11, enter S10 or S 11, respectively, and ignore the
remaining parameters.

Columns 18-19 Digit Position (0)

This entry specifies the displacement (0-16) of the right
most self-check digit within the register. Displacement is
the position in the register of the rightmost self-check digit,
as measured by the number of positions (0-'16) from the
left of the register. Blank defaults to zero. If the displace
ment is zero, the result of self-check computation must also
be zero in order to pass the IF /CH K test (see Branching

Operations in this chapter). If the displacement is zero, the
result of the GSCK computation is not stomd (see Instruc

tions in this chapter). If the displacement is 1 and two
self-check digits are specified, then the leftmost digit of
the self-check computation must be zero for the IF /CH K
to be true (the leftmost result of the GSCK computation
is not stored) .

Note: Specification of S10 or Sll requires that the low
order position of the register specified in the GSCK instruc
tion be blank.

Columns 23-25 Algorithm Control

Column 23 Summing of Products (0)

Valid entries for column 23 are:

Entry

Blank

D

u

E

F

Explanation

Multiply weights times digits and sum whole
numbers.

Multiply weights times digits and sum all the
digits of the products.

Multiply weights times digits and sum the
units digits of the products.

Translate digits to products and sum all the
digits. Product table repeats every third
digit (Figure 10).

Translate digits to products and sum all the
digits. Product table repeats every fourth
digit (Figure 10).

Reference Material 15

Product Table (Figure 10): The low-order four bits of each

digit in the self-check register and the position of the digit in

the self-check field are used to determine the buffer location

of the product to be used. If two self-check digits are to be

generated, the second product is displaced 64 positions from
the first.

Digit Position in Register --
Buffer Position With an E With an F
(00 thru OF in Hex) in Col 23 in Col 23

1 thru 16 16,13,10,7,4,1 16,12,8,4

17 thru 32 15,12,9,6,3 15,11,7,3

33thru48 14,11,8,5,2 14,10,6,2

49 thru 64 Not used 13,9,5,1

Second Product if Used

65 thru 80 16,13,10,7,4,1 16,12,8,4

81 thru96 15,12,9,6,3 15,11,7,3

97thru112 14,11,8,5,2 14,10,6,2

113 thru 128 Not used 13,9,5,1

Note: If second product is not used, positions 65-128

should be hex 00.

Figure 10. Product Table

The result is that two numbers are referenced as N L (leftmost
self-check number) and NR (rightmost self-check number).

The NL number is forced to 0 if U is specified or column
23 is blank. See Self-Check Examples in this chapter.

C,?lumn 24 Sum Manipulation (0)

Valid entries for column 24 are:

Entry

Blank

D

K

E

Explanatllon

Divide the sum of N Land N R by the modulus.

Divide the sum of the digits of the sum of NL
and N R by the modulus.

Special cross add of the digits of the sum of
NL and I\IR. (The hundreds digit plus units
digit equals the NR. The tens digit plus the
carry from N R equals the N L).

Special modulus 8 and 3. The units position of

the self-check number is stored modulus 8 and

the tens position is stored modulus 3. Column
23 cannot be blank.

This parameter is used to manipulate the NL and NR. If Dis

specified or if column 24 is blank, N L is forced to O. See Self
Check Examples in this chapter.

16

If E is specified, C cannot be specified in column 25 for a

modulus less than 8.

Column 25 Complement (0)

Valid entries for column 25 are:

Entry

C

Blank

Explanation

N Land N R complemented to modulus

N Land N R unchanged

Columns 28-30 Digit I/O Control

Column 28 Number of Self-Check Digits (0)

Val id entries for column 28 are:

Entry

Blank or 1

2

Explanation

One digit generated or checked

With an output translate table, and a K in
column 24, the NL and NR are summed be

fore translation.

Two digits generated or checked

If E is entered in column 24, the N L is multi

pi ied by 8 and added to the N R. That sum is
then translated.

Column 29 Decimalize Self-Check Number (0)

Valid entries for column 29 are:

Entry

D

Blank

Explanation

The NR is used to produce a two-digit decimal
number. The units digit is converted to the

DR (displayable rightmost self-check digit),
and the tens digit is converted to DL (dis
playable leftmost self-check digit).

An F-zone is ORed to NL and NR to produce
DL and DR.

If the result of this operation exceeds 99, the unit~, digit out
put is correct, and the second digit has an F-zone and a digit

portion between A and C.

Column 30 U.K. Special Algorithm 1 (0)

Valid entries for column 30 are:

Entry

F

Blank

Explanation

Each byte in the input translate table (Figure

111 is interpreted as two hex digits. The low

order hex digit (four bits) becomes the input

translate character. The high-order hex digit

(four bits) becomes the shift left count. The po

sition being translated, and all higher positions

in the register, are shifted left (with zero fill)

the number of positions in the shift count,

when the shifted register contains 16 bytes.

(All unused high-order bytes of the original

re£lister are bypassed.)

All eight bits of any input translate byte are

used for the input translate number.

Columns 33-34 Input Translate Table Buffer Number (0)

Note that columns 33-34 below must contain 1-24 if you

specify the U.K. special algorithm 1.

Valid entries for columns 33-34 are:

Entry

Blank

1-24

Explanation

Zone is ignored

Use the low-order four bits of each source

between 0-9. Use 0 for all numeric portions

of A-F.

Buffer number (F igure 11)

Input Translate Table (Figure 11)

All data must be entered in hex. All positions left blank

will translate the corresponding character to a decimal 64 or

hex 40. Before any self-check operation is performed, all 64
graphic characters can be translated to some other hex char

acter by specifying an input translation (columns 33-34 of

the .SELF-CHECK control statement). Translation occurs

on the low-order seven bits of each character in the self

check register.

When a character in the self-check register matches the char

acte~ in the rightmost column, the hex character at the buf

fer position listed in the leftmost column is used for the

self-check computation.

If no input translate table is specified, the low-order four

bits of each byte are used for numerals 0-9 and all other

EBCDIC characters with low-order values of 0-9. Zero is used

for digits A-F.

Buffer Position Character to be Replaced

65 Blank

66-74 A thru I

75 ¢

76
77 <
78 (

79 +
80 I
81 &
82-90 J thru R

91 !
92 $
93 "
94)

95
96 I
97 - (clash)

98 /
99-106 S thru Z

107 \
108
109 %
110 - (underscore)

111 >
112)

113-122 o thru 9

123
124 :tt

125 @

126
127 =

128 ..

Figure 11. Input Translate Table

Columns 38-39 Product Table Buffer Number (0)

Valid entries for columns 38-39 are:

Entry

Blank

1-24

Explanation

No product table used

Buffer number (Figure 10)

Column 23 must contain E or F.

Refer<gnce Material 17

Columns 43-44 Output Translate Table Buffer Number (0)

Val id entries for columns 43-44 are:

Entry Explanation

Blank No output table used

1-24 Buffer number (Figure 12)

.SELF-CHECK column 29 must be blank.

Output Translate Table

This table provides a capability similar to input translation.
The value of the self-check digit is used to determine the
position of the buffer containing the character to be inserted
in the self-check register.

If two digits and an output translate table are coded in the
statement, the same table is used to translate both digits.

Buffer Position I Self-Check Digit

1 0
2 1
3 2

~ \
34

36 35

~ ~
128 127

Note: Normally (modulus 63 or less), the input and out-

put translate tables can be in the same buffer at the same
time.

Figure 12. Output Translate Table

If an output translate table is used and one digit is to be
generated, the two values are added and the sum is translated
when column 24 is K. If column 24 is E, the NL is multi

plied by 8, added to the NR, and the sum is translated.

Columns 48-63 Weightilllg Factors (0)

All 16 bytes represented in columns 48-63 must be entered
in hex (Figure 13) and must be less than the modulus
(Figure 14). A weight of hex 00 must be entered in the po
sitions of the self-check digits and any other positions to be
bypassed. A weight of hex 01 should be entered in all posi
tions, except those to be bypassed, when the product table
is used (Figure 10).

18

Graphic EBCDIC Hex
Character 8-Bit Code Equivalent

Bit Positions
0123 4567

Blank 0100 0000 40
<I- 0100 1010 4A

0100 1011 4B
< 0100 1100 4C
(0100 1101 40
+ 0100 1110 4E
i 0100 1111 4F
& 0101 0000 50 , 0101 1010 5A
S 0101 1011 5B
* 0101 1100 5C
) 0101 1101 50

0101 1110 5E
l 0101 1111 5F

- 0110 0000 60

/ 0110 0001 61
0110 1011 6B

0'
10 0110 1100 6C
-~ 0110 1101 60
'> 0110 1110 6E
7 0110 1111 6F

0111 1010 7A
:= 0111 1011 7B
@ 0111 1100 7C

0111 1101 7D
~ 0111 1110 OlE
" 0111 1111 7F
A 1100 0001 Cl
B 1100 0010 C2
C 1100 0011 C3
0 1100 0100 C4
E 1100 0101 C5
F 1100 0110 C6
G 1100 0111 C7
H 1100 1000 C8
I 1100 1001 C9
J 1101 0001 Dl
K 1101 0010 D2
L 1101 0011 D3
M 1101 0100 D4
N 1101 0101 05
a 1101 0110 D6
P 1101 0111 07
Q 1101 1000 D8
R 1101 1001 D9
\ 1110 0000 EO
S 1110 0010 E2
T 1110 0011 E3
U 1110 0100 E4
V 1110 0101 E5

W 1110 0110 E6
X 1110 0111 E7
y 1110 1000 E8
Z 1110 1001 E9
0 1111 0000 Fa

1 1111 0001 Fl
2 1111 0010 F2
3 1111 0011 F3
4 1111 0100 F4
5 1111 0101 F5

6 1111 0110 F6
7 1111 0111 F7
8 1111 1000 F8
9 1111 1001 F9

Note: Lowercase letters are not used by the 3741 Models 3
and 4.

Figure 13. EBCDIC Code for Graphic Characters

The following example shows how to compute weights for

a divide by 7.

7 1000000

o
10

7
30

28

20
14

60
56

40

35

50
49

Repeats ,.

Position in

.SELF-CHECK
Statement

48
49

50

51

52

53

54

55

56

57

58

59

60
61

62

63

The remainder for each step

is the weight for that position.

Modulus 7

02

03

01
05

04

06

02

03

01

05
04

06
02

03

01
00

Note: Weights for the self·

check digit posi tions must
be hex 00.

Figure 14. Weight Table Examples

Golumn 68 Weighting Factors Register (0)

This entry specifies a register (A·Z) that contains the
weighting factors j:or the self-checking algorithm. If a reg

ister is specified, columns 48·63 are ignored.

Self-Check Examples

Figure 15 shows the coding necessary for self-checking with

the standard modulus 10 or modulus 11, which are also

avai lable on the 3741 Models 1 and 2. Note that, other

than the entries in columns 1-15, none of the various para

meters must be entered in the statement.

~1~~~;I~I~I~~~I"t.51~r4.0 '"('tYrr·c{Jl.;('rc('1'''(YY('tflJ>IIf(7~
Mnduill', 0141\ Alqoll!ilm Input Product

'(Jiltfui I trJ1151alC tolblt'

9'''rl''r''rrrrrrtlrrrtrrrTfIYT!6fl. hettN ""ff.·,
Wp'qllt"H) F dctor~ Wl"glltlrlg Fat:lor~

"d"IIJ1< Req'~te,
h,d!' ,

r~~~~M~I~H~~I~~I' i (tor r i (1[1 lUI 'I til III' i),Ili
,,,,tt,·, ,,,,tt,, 7

f' .'.,.,,[,',;,.,1,," (''(' [' r;" r "YY r"iTjrrrr -]';"1
Wllqht.ny Fac!Or~
HeYlsler

I"dl,,!

Figure 15. .SELF-CHECK Coding for Standard Modulus 10 and

Modulus 11

Modulus 7

Figure 16 shows the coding for modulus 7.

~~~~M~I~H~*I~J.:I.II· ~!fl r :' 10(:07 

~In C(': "J"( 1"(' r t',( ([\jj' rTrf7 
[)"llt 111PIJ! Product Oulput 

101("'1,.,1 11.111',1"1,, fdlJlp \''''l,IMp 
bult,,! t)Ulft'i bliller 

~"_ifjfifA~65!6616'[68j W"I(]I"'llg F dl tor~ We'lj!ltllllj F(wt()r~ 
Reglst€1 

Figure 16 .. SELF-CHECK Coding for Modulus 7 

The result of the coding shown in Figure 16 is: 

1. 

2. 

3. 

Multiply each digit of the check register times the 

weight for that position. (Weights are 2, 3, 1,5,4, 6, 

2,3, 1,5,4,6,2,3, 1,0). 

Add the products. 

Divide this sum by 7. 

The remainder is the self-check digit. 

Reference Material 19 



.REGISTER 

The .REGISTER control statement should follow the .SELF

CHECK statement in the ACL program. The .REGISTER 

statement initializes any of the 16-byte registers (A-Z) to a 

starting value for ACL program execution. All registers not 

specified in a .REGISTER control statement are initialized 

to blank. The capabilit'{ to identify the initial contents of 

a register allows you to preinitialize registers for subsequent 

execution. Figure 17 shows the coding placement for a 

.REGISTER control statement. 

~~~~~ I lS~~~":" r" t ':' i' i" i i', I 
r H"·,,,,,,,

-- -- ---------'0 "'['rr! rfftyrrG
'. () I B 91011 1]IJ'41',11>

Contl'nh

Figure 17 .. REGISTER Coding Placement

Columns 1-9 Control St~tement Name (R)

.REGISTER must be entered in columns 1-9.

Column 13 Register Name (R)

This entry specifies a re\Jister (A-Z) to be used for a particular

application during program execution.

Columns 18-33 Register Contents (R)

This entry comprises the initial contents of the register speci

fied in column 13 and may contain any message or constant

desired. For example, you can fill all 16 positions of the
register with a message, or fi II only one position with

a constant. The register is in itial ized exactly as specified (data

is not right- or left-adjusted). Position 16 is the low-order

(rightmost) position.

20

.BUFFER

The .BUFFER control statement is used to initialize any of
the buffers (1-24 or 1-56 for 8K) in the work station (for
example to create tables) .. BUFFER statements can be
entered in any order, by buffer number. After the two
parameters for the .BU F FER statement are entered, the
initial load for ths buffer should be designated on the line
immediately following the .BUFFER statement. The coding
placement of a .BUFFER control statement is shown in
Figure 18.

Figure 18 .. BUFH'R Coding Placement

Columns 1-7 Control Statement Name (R)

You must enter .BUFFER in columns 1-7.

Columns 13·15 Buffer Number (R)

This entry is used to assign the number of the buffers you
wish to initialize.

Designated Bufff!r Load (R)

The information entered on the line following the .BUFFER
statement is the content (1-128 positions) of the specified
buffer. Because the system does not right-justify or left
justify this information, it must be positioned exactly as
you want it.

Reference Material 21

.FORMAf

Several instructions contain an operand in which a format is

specified (254 different formats are available). Each format

has associated control information relating a register address

to the location and length of data in the buffer. This infor

mation is defined to the system by the .FORMAT control

statement and an associated format field record{s), which

defi nes the i mage of the buffer and associated regi sters used

in moving data to and from the buffer .. FORMATS must
precede the use of the specified format.

The record immediately following a .FORMAT control state

ment describes the format fields. This record defines the lo

cation and length of the field, and the register affected, by a
contiguous string of alphabetic characters. The character in

diCiJtes the register and the number of characters indicates
the field length. Thus, E~ach data element is described accord

in9 to Its placement in a buffer and its register disposition.

For example, a format record shown below defines three
fields.

CU I.UMN 1, 8 11

eNTRY CCCC~~~AA~EEEEEEEEEEEEEEEE

Field 1 is four character:; long, starting in position 1 of the
buffer. Data is moved to or from register C. Field 2 is two

characters long, starting in position 8 of the buffer. Data is
muved to or from register A. Field 3 is 16 characters long,

starting in position 11 o·f the buffer. Data is moved to or

from register E.

Coding placement for a FORMAT control statement is

shown in Figure 19.

Figure 19 .. FORMAT Coding Placement

22

Columns 1-7 Control Statement Name (R)

.FORMAT must be entered in columns 1-7.

Columns 13-15 Number (R)

This entry specifies the number (1-254) of the format to be

referenced during read and write operations.

Columns 18-20 Character Position (O)

This entry specifies the position in subsequent input records

that will cause the format number (columns 13-15) to be
used, if the character specified in column 23 appears in this

position.

Column 23 Character (O)

Any character may be entered to initiate the use of the for
mat defilOed on the line(s) following the .FORMAT control

statement. Whenever this character is found in the position
specified in column 18 of this statement, the format defined

in the succeeding line on the coding sheet is used.

Column 28 Second Record (O)

This entry is the number of format field records that follow
the .FORMAT control statement. A 2 indicates that two

format field records follow; a blank indicates one following
format record. (Note that use of the 132-print position

printer requires two format field records.)

Data Directed Formatting

Input instructions may be coded to provide automatic or

data-directed format selection. Data-directed format selec

tion results in thE following sequence of operation:

1. Formats with entries in columns 18 and 23 are scanned

in the sequential order in which they are defined in the
source program.

2. The characl:er of the input record which is located at

the specified position is compared with the specified
select character.

3.

4.

If a match is found, the format corresponding to the
detected select character is used to format the input
record into registers.

If a match is not found, the format indicator is zero,
and formatting is suppressed.

An example of this operation is:

Column 1 I 13 18 23 28
24 $ 2

This .FORMAT cDntrol statement specifies that if the char
acter $ is detected in position 24 of the input record during

scanning, format 2 should be used to format the input

record into registers. Work station control programming

internally stores the last format to be used to allow that

format to be tested by an I F format instruction (see
Instructions in th is chapter).

Formatting Blocked Records

When short records (64 characters or less) are used, they may
be compacted, or blocked, within records contained on disk.
Thus, disk space can be used more efficiently. Physical re

cords on disk cannot be more than 128 characters in length.

Thus, each disk record can contain two or more logical rec
ords when using blocked records. When creating formats

for records blocked in this manner, only the format for the

first logical record is necessary. Formatting for the second
and succeeding actual records in the buffer is based upon

the format defined for the first logical record. Upon issuing
a blocked reformat instruction (RBLK, WBLK), formatting

begins in the buffer at the position specified by the register

contained in the instruction, using the format defined for
the first record. See Blocking and Deblocking of Logical
Records in Chapter 3.

Formatting Records Greater Than 128 Characters

If it is necessary to format an output record that IS greater

than 128 characters, two format records can be specified

with one .FORMAT control statement. By entering a 2 in

column 28 of the .FORMAT statement, the next two coding
lines can be used for specifying up to 256 bytes ot formattmg.

Note that the maximum record length to disk is 128 charac

ters and to printer is 132 characters.

Editing

Format fields used in an output (register to buffer) instruc
tion can produce punctuated output data (displayed, f}rinted,

or recorded on diskette). Characters coded directly into the

format field are used to control editing. Edited formatting
is ignored on input operations. Note that any editing forces

an F-zone on all bytes of the register. Edit characters are

as follows. Note that these characters do not take register

positions.

Edit Control

Character

o (zero)

I (slash)

* (asterisk)

$ (dollar sign

fixed)

Function

This character is used for zero fill. The
character must be placed: n the leftmost

position of the field (replacing a register

designation character) where zero fi II is to

begin. Leading blanks in source data are

forced to zero.

This character is used for blank fill (zero
suppress). The character must be placed
in the leftmost position o'r the field where
blank fill is to begin. Leading zeros in the

source data are forced to blanks.

This character is used for asterisk fill. The

character must be placed in the leftmost
position of the field where asterisk fi! I is

to begin. Leading blanks and zeros in the

source data are forced to asterisks.

This character must be used with one of
the above fill control characters. The char·

acter must be placed immediately to the
left of the fill character (leftmost register

designation). The dollar sign is inserted into

the associated position of the output. Any
two characters can be substituted for the

dollar sign in columns 43-44 of the .NAME

control statement (see Control Statements
in this chapter). If two characters are
substituted for the dollar ~;ign, the position
to the left of the $ in the ·format must be

blank.

ReferE'nce Material 23

Edit Control

Character

$ (dollar sign

floating)

- (minus)

Function

The floating dollar sign can be obtained by

placing the dollar sign immediately to the

left of a register designated for output

from the field. The dollar sign is then in

serted to the left of the most significant

digit in the output data. Any two charac

ters can be substituted for this character in

the .I\IAME control statement. If two

characters are substituted for the dollar

sign, the position to the left of the $ in

the format must be blank.
This character must be placed immediately
to the right of a register field. If the field is

negative, as indicated by a D-zone in the

units position of the register, a minus sign
is edited into the position indicated by the

minus edit character. The units position is
then output with a hexadecimal F-zone.

& (ampersand) This character causes a space (hex 40) to

. (decimal
point)

, (oomma)

24

be forced into the associated position of the

field. The character can be used only once
in a fiEdd and is mutually exclusive with a

decimal point.

A decimal point is forced into the associ

ated position of the field. Decimal point

placement is not affected by the sign ificance

of the digits to the right or left. Any char

acter can be substituted in column 38 of

the .NAME control statement.

A comma is forced into the output field at

every third position to the left of the posi

tion indicated by the decimal point or

blank (16) insert. If a decimal point or

blank insert is not specified, the comma

is inserted in every third position of the
field. The comma is repeated automatically

and may appear in the field as often as de

sired. Spacing is controlled by the entry
in the .NAME statement. Comma insertion

is suppressed during the fill operation. A

substitute character can be specified in
column 39 of the .NAME control statement.
A substitute insertion interval (for example,
every fourth position) can be specified in

column 40 of the .NAME control statement.

The ACL programmer must allow an
adequate number of positions in the output

field to provide for the maximum number

of commas to be inserted. Note the comma

control count (.NAME, column 40)

controls the number of commas to be

inserted.

Fill characters will stop with a significant digit within the

field, a decimal point or space caused by an ampe rsand with

in the field, or with the units digit of the field. A minus

field with no fill character specified defaults to blank fill.

The output of a zero register with minus editing will be a

blank field.

For additional information on editing requirements, see
Insert Character in Buffer (ICBF) in this chapter.

Examples of Editing

Field Resultant
Source Data Specification Output

0000000000012345 $AAA.AA $123.45

0000000000000123 $BBB.BB $1.23

000000000000012L $*BB.BB- $"* 1.23-

0000000000000012 /CCCCC 12

0000000000123456 D,DDD.DD 1,234.56

0000000000000000 /HHH.HH .00
0000000000000000 $HHH.HH $.00

0000000000000001 MMMMM-

0000000001234567 E,EEE,EEE l,234,b67

As shown in the last example above, you should allow for

all the edit characters in the output. The .NAM E statement
can override certain edit options as follows:

Column 38 (decimal position character} - blank defaults to
a decimal point.

Column 39 (comma position character) - blank defaults to
a comma.

Column 40 (comma control oount) - blank defaulls to a
value of 3; range is 1 to 9.

If the .NAME statement contained a comma in column 38,
a decimal point in 39, and a 2 in 40, an example of the over
ride is:

Source Data

1234567

Field

Specification

FF,FFF.FF

Resultant

Output

1.23.4!5,67

Data Movemen1

Formats are processed, field by field, from left to right.
Consequently, on input, if fields are specified with duplicate

register addresses, the rightmost field is the end result of the

contents of the register. On output, duplicate fields may be

specified, and the data in the specified register is output many
times.

On input, data is moved from the right to the left into the

register from th~ buffer. Input data is right-justified in the

register with hi!;h-order blank fill, and edit control is ignored.

On output, data is moved from the right to the left from
the register to the buffer, starting from the byte position
(17-n) in the re~lister (n=the number of bytes to be moved

to the leftmost ::Josition in the buffer). The buffer field is

edited while data is being moved from the register.

Note: If the fir!;t positions of a buffer do not specify a

large enough output field, the data is inserted in the last
position of the next lower buffer.

. FIELD

The .FIELD control statement contains the parameters that
are implementec by the ENTR instruction (see Instructions
in this chapter). The .FIELD statement defines the prompting

message displaYE!d to the operator, allows data to be entered
via the keyboarc, and directs the disposition of data entered.

Figure 20 shows the coding placement for the .FIELD con
trol statement.

Figure 20 .. FIELD Coding Placement

Columns 1-6 Control Statement Name (R)

.FIELD must be entered in columns 1-6.

Columns 13-14 Buffer (R)

This entry specifies the number of the buffer that is to

hold the prompting message. This buffer holds the start

of the prompting message. If two or less positions are left

in this buffer, a 76 warning error message is posted by the

translator, even if an overflow buffer is also specified.

Columns 18-19 Overflow Buffer (0)

This entry specifies the number of the buffer that is to hold
the overflow from the prompting message, if the message is

too large to be contained in the buffer specified in columns

13-14.

When chaining. FIE LD messages across bu ffer boundaries,

an overflow buffer is required. For a description of buffer

usage, see Using Operator Messages in Chapter 3 .

Reference Material 25

Column 23 Field Type (R)

This entry specifies the type of data to be entered via the

keyboard in response to a prompting message. If D or U is

entered, dashes are displayed on the display screen. If an

A is entered, periods are displayed. Default is periods.

Column 23 entries are:

Entry

Blank or A

U

D

Explanation

Indicate'; alphabetic or numeric data with the
keyboard shift set for alphabetic (lower), and

a manual shift required for numerics and special
characters (upper).

Indicate!; alphabetic or numeric data with the

keyboard shift set for numeric and special
characters (upper), and a manual shift required
for alph(lbetic.

Indicate:; digits 0-9 only (no override possible).

Columns 24-25 Field Length (R)

This entry specifies the number of characters to be keyed in

response to a promptinu message. This number must be 1·16
if data is moved to a register or 1-64 if data is moved to a
buffer (according to the specification in column 28). Field

length plus message len!lth cannot exceed 68.

Column 28 Data Disposition (R)

Entry

Blank or B

R

M

D

26

Explanation

Data entered is moved to the display screen
buffer (buffer 2) starting at the position speci

fied in columns 33-35.

Data entered is moved to the register specified
in columl1s 33-35.

Data entered and the prompting message dis·
played are moved to the display screen buffer
(buffer 2) starting at the position specified in

columns 33-35.

Data entered is moved to the display screen

buffer (buffer 2) starting at the position speci·

fied in columns 33-35. The data entered is also

moved to the register specified in column 48

of the .NAM E control statement. Default is
register K if you did not specify a register in the

.NAME statement.

Column 29 Field Chaining (0)

Entry

Blank

C

J

L

Explanation

Indicates the last field, terminate chain, and

that no field exit key (RIGHT ADJ, SKIP

or dash) is required unless column 30 contains

a J or Z.

Indicates a chain to the next field, and that no

field exit key is required (unless column 30
contains J or Z).

Indicates a chain to the next field, and that a

field exit key is required.

Indicates the last field, and that a field exit

key is required.

This entry specifies the field exit option. If this column is
blank, the system exits from the ENTR instruction (see

Instructions in this chapter) when the entry field is full or a

field exit key is pressed (unless column 30 contains J or Z).
If C is entered, the system chains to the next field when the entry

field is full or a field exit key is pressed. If J is entered, the

system exits the field and chains to the next field only when
a field exit key is pressed. If L is entered, the system exits the

ENTR instruction when a field exit key is pressed ..

Field Exit Kevs

The following function keys are used for field exit. The
operation resulting depends upon whether column 30 of the

.F I E LD control statement specifies the field to be right

adjusted or not right-adjusted.

Key

RIGHT ADJUST
and SKIP

Operation

Non-right-adjust field: I nserts blanks

into the remaining rightmost positions
of the field, sets the corresponding

field exit indicator, resets the other field

exit indicators, and exits the field.

Right adjust field: Aligns data keyed to

the right boundary of the field and in

serts blanks or zeros to the le"ft of the
first data character, sets the correspond

ing field exit indicator, resets all other
field exit indicators, and exits the field.

Key

Dash (-)

Operation

Non-right-adjust field or alpha right

adjust field: Inserts dash (-) data
character.

Right-adjust numeric field: Inserts a

D-zone on the last character keyed in

the field, sets the corresponding field

indicators, performs the right-adjust

function and exits the field.

The ALPHA SHIFT and dash (_.) keys

insert the dash character.

The CHAR BKSP and FIELD BKSP keys are active while
keying into a prompted message field.

The action of these keys is:

Key

CHAR BKSP

FIELD BKSP

Operation

Replaces the last data character keyed

in the current field with a dash (for
numeric) or period (for alphabetic),

depending on the field shift. Back

spacing is limited to the current field.

Resets the current field to its status
before any data characters were keyed.

Backspacing is limited to the current

field. Field backspacing from the first
position of the field produces a key

ing error unless the special keyboard

close option (a T in column 36 of the

.F IE LD control statement) has been
selected.

If the special keyboard close option is selected, and one of

the following keys is pressed while executing an ENTR in
struction, the respective key indicator and the special key

board master indicator (200) are turned on. The ENTR in

struction is terminated and the keyboard is closed. None of
the special close keys are accepted when not in an ENTR

instruction, even when the special keyboard close option

is selected. No data is transferred from the cu rrent fie Id.

DUP

FIELD ADV
REC BKSP
REC ADV

SEL PROG
FIELD BKSP (The above conditions apply only when

this key is pressed at the first position of

the field; otherwise, the key must be
pressed twice.)

The special keyboard master ind icator is turned off upon

execution of the next ENTR instruction.

If the keyboard close option is not selected (no T in col

umn 36 of the .FIELD control statement). and any of these

keys is pressed, a 90 error results with no indicators set

(FIELD BKSP must be pressed twice for these conditions to

apply, unless at the first position of the field).

The RESET key is active at all times and performs the fol

lowing functions:

• Blanks positions 1-8 of line 1 on the display screen.
Positions 5, 6, 7, and 8 are used for posting system error

messages. User errors may be posted in positions 1-4 of
line 1, and the error line indicator (161) set on. In this

case, the RESET key may have to be pressed more than

once to clear the error line and the posted error.

Note: ThiS condition can be caused by improper program

coding, such as:

STEP/
LABEL

1 r~ 3 4 "> 6 7 8 9 10 11 1;: 13 14 15 16 17 18 1920 21 .1232425 26 27 282930 31

'-~~TiL ~f '" Illb:1
r-- ~ ~~ ~"J trIFII+ LL l<ill. . I~:IT hN AIT 11

~~~~~!~~~,!~!~~xm~f1 
_. -- ~- -

p~ DA T~ 
-'------ - - -

-192 = RESET key 

'---Set on error lille 

• Clears error line (display screen flashing) 

• Sets indicator 192 on and resets some of the indicators, 
but not the special keyboard master indicator 

Note: The RESET key resets ind icators 161, 187, 188, 
189,191, and 201 through 224. (See Appendix A.) 

Column 30 Exit Control (0) 

Valid entries for column 30 are: 

Entry 

Blank 

J 

z 

Explanation 

Data is not justified on exit. 

Data is right justified on exit with blank fill. 
Field exit key required to exit field. 

Data is right justified on exit with zero fill. 
Field exit key required. 

Reference Material 27 



Columns 33-35 Data PO$ition (R) 

Valid entries for columns 33-35 are: 

Entry 

A-Z 

1-128 

Explanation 

The register can be specified if data disposition 

is to a re!lister only. 

You can specify the location (for the begin

ning of the prompting message and/or the 

data) in the display screen buffer (buffer 2) 

if data disposition is to the buffer. (Data 

over 120 positions is moved into positions 
41-48 of buffer 1.) 

Column 36 Special Keyboard Close (0) 

This entry specifies that the following keys (if a T is coded) 

are enabled to terminatE' a chain, close the keyboard, and 
set appropriate indicatol-s and special keyboard master indi

cator 200. No data is moved to buffer 2 or the specified 
register if one of these keys is pressed: 

FIELD BKSP 

DUP 

FIELD ADV 

REC BKSP 

REC ADV 

SEL PROG 

Columns 38-105 

Entry 

1-68 
characters 

Explanation 

Promptir,g message 

The prompting message can be entered in columns 38-105. 
The prompting message plus the field length must not ex

ceed 68 characters. The prompting message must be ter
minated by an asterisk ('). Comments can be added after 
the asterisk. The extra ~,et of numbers (5-72) on the coding 

form indicate the amount of buffer space taken by each 
prompting message. The numbers begin at 5 because each 
message is stored with a four-position control block (which 

is inserted in the .FIELD buffer when an overflow buffer is 
specified). The vertical jotted line at message position 35 
indicates the end of the message on line 5 of the display 

screen. Thus, you can ensure that words in the prompting 

message are not split between lines 5 and 6 when displayed 

to the operator. Note that the message string cannot contain 

hexadecimal 00, hexadecimal F F, or *. 

28 

.END 

The .END control statement must be the last statement in the 
ACL program. This statement indicates the end of source 

statements. You can also use this statement to call any work 

station operating mode, thus providing contlnuow; operation. 

Columns 1-4 Control Statement Name (R) 

.END must be entered in columns 1-4. 

Column 13 Operating Mode (0) 

Valid entries for column 13 are: 

Entry 

Blank 

A 

E 

Explanation 

Calls normal translator termination to end 

the program. 

Calls translator mode. Th is entry bypasses 
normal translator mode operator setup pro

cedures for the next translation. (See Chapter 
4.) 

Calls execution mode. This entry bypasses 
normal execution mode operator setup pm

cedures and executes the next label processor 
run, the ACL program that has just been 

through the label processor and the transla

tor, or any ACL object program. (See Chapter 

4.) 

Columns 18-25 Input/Output Data Set Name (0) 

If an A is entered in column 13, the input (source) data set 

name must be entered as it appears on the data set label. 

This data set contains the coded ACL statements and in

structions. 

If E is entered in column 13, the output (object) data set 
name must be entered as it appears on the data set label. 
This data set contains the object code following transla-
tion. (This entry is the same as the entry required in positions 
1-8 of line 2 of the display for manual operator setup). 



Column 26 DrivE! Number (0) 

The diskette containing the source data set or object data 
set can be mounted on either disk drive 1 or 2. If an A is 
entered in column 13, the number of the disk drive contain· 
ing the input (source) data set must be entered. If E is 
entered in column 13, the number of the disk drive containing 
the output (object) data set must be entered. No entry or an 

entry of 1 indicates drive number 1. An entry of 2 indicates 
drive number 2. 

Columns 28-35 Output Data Set or Program Name (0) 

If an A is entered in column 13, the output (object) data set 
name must be entered as it appears on the data set label. 
This data set contains the object code after translation. 

If E is entered in column 13, the program name must be 
entered as it appears in columns 13-16 of the .NAME con
trol statement. Note that this entry is four positions long. 
(This entry is the same as the entry required in positions 
11-18 of line 2 of the display for manual operator setup.) 

Column 36 Drivil Number 

The diskette containing the object data set can be mounted 
on either disk drive. You can specify that the object data 
set is mounted on drive 1 by leaving column 36 blank or 
entering 1. Driv'~ number 2 is indicated by an entry of 2. 

The A entry in column 13 allows you to translate multiple 
programs by chaining from one to the next. Figure 21 
illustrates this w,e of the .END control statement. 

Column 36 
Entry 2 

Figure 21. Program Chaining with .END Statement 

The E entry in column 13 allows you to execute a program 
immediately after that program is translated, without the 
normal operator setup procedure. Figure 22 illustrates this 
use of the .END control statement. 

Column 36 
Entry 

Figure 22. Program Execution with .END Statement 

INSTRUCTIONS 

Your instructions to the work station can be entered on the 
preprinted ACL Instructions Coding Sheet, GX21-9199. You 
instruct the system by the coding of control information 
within instructions. All coded entries must be left-justified. 
Comments can be added (beginning in column 33) to clarify 
instructions for the operator. (Note that any record con

taining only a comment must be preceded by an asterisk in 
the first column on the coding sheet.) Instructions can either 

be preceded by step numbers (000-767 for 4K or 000-999 
for 8K) in ascending order in positions 1-3 on the coding 
sheet, or by symbolic labels (up to four characters 
beginning with an alphabetic character). Instructions 
are of the following types: 

• Arithmetic operations 

• Branching operations 

• Display and keyboard operations 

• Diskette operations 

• Printer operations 

• Table operations 

• Internal data movement operations 

• Miscellaneous instructions 

Arithmetic Operations 

All arithmetic operations are performed on the contents of 
registers, with an F-zone added to each po:;ition in the regis
ter. Each register (A-Z) is 16 bytes long, and is negative if 
the low-order (units) position contains a D·zone. 

Reference Material 29 



All registers containing results of arithmetic operations are 
filled with zeros in the high-order positions. If the arith· 
metic result is zero, the entire register contains zeros. The 
general format of an arithmetic instruction is: 

Column 
Entry 

Column(s) 

8 

18and28 

23 

28 
Factor 2 

Contents 

Step/label- is the number or symbolic label 
assigned to this instruction. 

Result - is the register that contai ns the reo 
suit of the arithmetic operation. This register 
is, in general, the only register changed in 
arithmetic operations. 

Factor 1 and factor 2 - these can be registers 
or a single·digit constant (except in the divide 
operation). The contents of these registers 
are generally unchanged, unless the registers 
are also sp,ecified as the result register. 

Operator -- identifies the type of operation 
to be performed, such as add or subtract. 

Add Instruction 

The following is a typical add instruction. 

Column I' 18 
Entry Step/Label A 

In this example, factor 1 (register B) and factor 2 (register 
C) are algebraically added and the sum is stored in the result 
register (register A). This example concerns addition of the 
contents of specified regi~;ters. However, the following ex
ample illustrates the use (If a single-digit constant in the add 
instruction. 

Column \1 18 
Entry Step/Label A 

In this example, factor 2 IS a constant (5). Thus, the opera· 
tion adds 5 to the contents of register B and stores the sum 
in register A. The contents of register B are unchanged, un
less, for example, the operation is: 

Column 8 
Entry A 

In this case, the contents of register A would increase by 5. 
Indicators 159 and 160 are set on if a carry results out of 

30 

the high-order position of the register. These indicators must 
be reset by your program. Failure to reset the indicators will 
increase processing time. 

Subtract Instruction 

The subtract instruction is structured much like the add in
struction. An example of the subtract instruction is: 

~C~o~lu~m~n~t~1------~1-8------t_~_3----t~B'_8--~~~~-- 12c8 
Entry Step/Label A --r-
In this example, the contents of register C are subtracted 
from the contents of register B and the result is stOired in 
register A. The same parameters apply to both the add 
and subtract operations. 

Results of the add/subtract operations may be inval id if any 
of the numeric halves of the bytes are other than 0·9. The 
zone halves of the bytes are not used, except for sigln control. 
The zones in the result field are hex F, except for the sign 
which, if negative, is a D·zone for the rightmost (position 16) 
digit only. 

Multiply Instruction 

The multiply instruction, like the add and subtract, can 
employ either the contents of specified registers and/or 
single-digit constants. A sample multiplication operation is: 

~c~ol~um~nt~1------t~8----t~~3~--~I~B18~--~17~~3 ~C 
Entry Step/Label A -----rc 
In this example, the contents of register B are multiplied by 
the contents of register C and the result is stored in register 
A. Many variations using single-digit constants are also pos
sible. Such a variation is: 

In this example, the contents of register A are chan!led to the 
constant 24. 

The multiplicand and multiplier registers cannot be the result 
register. If a carry results from the high-order positilon, indi
cators 158 and 160 are set on. These indicators must be reset 
by your program. Failure to reset the indicators will increase 
processing time. If the numeric halves of the bytes are some
thing other than 0-9, results of the multiply/divide operations 
may be invalid. The zone halves of the bytes are not used, 
except for sign control. The zones in the result field are hex 
F, except for the sign which, if negative, is a D-zone on the 
units digit. 



Divide Instruction 

The divide operation causes factor 1 to be divided by factor 

2, with the result stored in the result register. A sample 

divide instruction is: 

_c_o_lu_m_n_r-'-------;1-8------+1-__ 3----~I~B-18-----rt~2/-3----t-2c--8 
Entry Step/Label A -

In this example, the contents of register B are divided by the 

contents of register e, with the result being stored in register 

A. The remainder is stored in register B, while register e is 
unchanged. Thl~ result register (A) and the dividend register 
(B) cannot be the same. A single-digit constant can be enter
ed for the divisor register (C), but not for the dividend (B). 

Both dividend and divisor can be signed quantities. If both 
have the same sgn, the result is positive; if the signs are dif

ferent, the result is negative. The remainder keeps the sign 

of the dividend Factor e may be a constant. 

No checking is made to determine if the data in the registers 

is alphabetic or numeric. If the divisor is zero, indicators 157 

and 160 are set on. These indicators must be reset by the 
program. 

Shift Left Logical Instruction 

The shift left in~itruction is designated by an L in column 23 

on the coding sheet, with column 24 blank. This instruc

tion shifts the contents of factor 1 (column 18) to the left, 

according to thE number of bytes entered for factor 2 
(column 28). A sample shift left instruction is: 

Co I u mn 1 --_11-8 ____ _rt-' __ 1..:.3-----+I-B1-8-----+1-2L--'3'----~1~22-8 
Entry Step/Label A 

In this example, the contents of register B (factor 1) are 

shifted two positions (factor 2) to the left, with the result 
stored in registel- A (result register). Factor 2 can be a 

number (1-15) or a register. If factor 2 is a register, the 

shift count is determined from the numeric position of the 
units byte in the register (O-F). The shifted result is placed 
in the specified result register. The low-order bytes of the 

result register ar·~ replaced by blanks. Data shifted out of 
the high-order end of the result register is lost. The previ

ous contents of the result register are also lost. Factor 1 
does not change unless it is also specified as the result 

register. Factor 2 does not change. 

Shift Left Signed Instruction 

This instruction is designated by an L in column 23, and an 
S in column 24 on the coding sheet. The execution of the 

instruction is similar to the execution of the shift left logical 

instruction, except that the sign of the result is the same as 

the sign of the register specified by factor 1 (column 18). 

The low-order bytes of the register are filled with zeros. 

For example, the following instructions would cause register 

A to contain - 12300. 

STEP/ 
LABEL 
, 2 3 

f--

4 5 6 7 

---

B 9 10 11 12 13 14 15 16 17 

R := 
.- r-- r--

A := 
. c-r-- -

t--f--~- -

18 19 10 2122 23 14 25 2627 28:zg 303132 

- .l~I~ 

~- -Ib - - 12 

-- t--- t-t-- - H 

J 1 1 ,-

Note that register contents are shown in decimal, although 

actual register contents are in hexadecimal, with aD-zone 

sign in the low-order position. 

Shift Right Logical Instruction 

The shift right instruction is designated by an R in column 

23 on the coding sheet, with column 24 blank. This instruc

tion shifts the contents of factor 1 (column 18) to the 

right, according to the number of bytes entered for factor 

2 (column 28). A sample shift right instruction is: 

Column I' ,'8 
Entry Step/Label A 

In this example, the contents of register B (factor 1) are 
shifted two positions (factor 2) to the right, with the result 

stored in register A (result register). Factor 2 can be a num
ber (1-15) or a register. If factor 2 is a register, the shift 

count is determined from the numeric portion of the units 
byte in the register (O-F). The shifted result is placed in the 

specified result register. The high-order b'{tes of the result 
register are replaced by blanks. Data shifted out of the low

order end of the result register is lost. The previous con

tents of the result register are also lost. Factor 1 does not 
change unless it is also specified as the result register. Fac

tor 2 does not change. 

The shift right logical instruction may be Llsed to blank a 
register by using a constant (0-9) as factor 1. A sample 

instruction blanking a register is: 

Column I' 18 18 23 

R 

I n this example, register A is blanked. 

Reference Material 31 



Shift Right Signed Instruction 

This instruction is designated by an R in column 23, and an 

S in column 24 on the coding sheet. The execution of the 
instruction is identical to the execution of the shift right 
logical instruction, except that the sign of the result is the 

same as the sign of the register specified by factor 1 (column 
18). The high-order bytes of the register are filled with 
zeros. 

For example, the following instructions would cause register 
A to contain - (minus) 0000000000000123 (register con

tents are shown in decimal): 
STEPI 
LABEL 

f-',--' oJ+-4 ,'-,-',-l' ..'-',','1l l' 12 13 14 15 1 

:R = ,-_,.~ 
~~ '_? 20 212212324252627 28?9 1U 31 32 

- 'Hp~~_ ~ _ 
f-+-+-+--t-+-+ ~ , J ip, RS -1.2.. __ 

- f- l-

.- '-....... I-I-L1. 

Shift Right Round Instruction 

This instruction is designated by an R in column 23 and an 
R in column 24 on the coding sheet. Execution is similar 
to execution of the shift riqht signed instruction, except 
that the sign from the factor 1 register is maintained and the 
units position of the result register is incremented by one if 
the last character shifted out of the register is 5 or greater. 
The high-order bytes of the register are filled with zeros. 

For example, assume that register B contains: 

-(MINUS)0000000001234567 

The following instruction 1N0uid cause register A to contain: 

-(MINUS)0000000000001235 

STEPI 
LABEL 
1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 

IA ::: 

+-l-+-f-- 1--

L-!.--'-...l--.l-_L-.J.~.L-~ _ 1-_ .. 

16 17 

. 

18 19 20 2122 231425 

IB IRiR 

-I-

_ _ ,-'-'- -

2627 28 29 30 31 32 

.:1, 

.. - - - 1--1--

,_c __ 

Note: Register contents are shown in zone decimal format. 

Move Register to Register Instruction 

The move register instruction involves only a result register 
and factor 1. I n this operation, the contents of the factor 

32 

1 register replace the contents of the result register. Factor 

1, which is not changed, may be a single-digit constant (0-9). 
Sample move register instructions are: 

Column I' 18 
Entry Step/Label A 

In this example, the contents of register B are stored in regi

ster A. Register B is unchanged. Register contents are 
stored with blank fill if you specify a constant (0-9). 

~C~o~lu~m~n~t~1 __ ~ __ ~I:8~ ____ t~_~~3 ____ ;1~11~8 ___ ~~ 
Entry Step/Label A ~-I-

In this example, the constant 1 is stored with blank fill as 
the contents of register A. 

Assigning a Constant Value to a Register 

The instruction shown below stores a constant (up to 

65535) into a specified register. 

Column 
Entry 

Column 

8 

18 

23 

8 
Result 

Contents 

Step/label - is the number or symbolic label 
assigned to this instruction. 

Result - is the register that will contain the 

assigned constant value. 

Sign - you can also specify whether the con

stant is positive or negative. If the value is 
to be positive, enter a plus (+) sign or leave 
column 18 blank. If the value is to be nega

tive, a minus H sign must be entered. High
order register positions are filled with zeros. 

Value - is the constant being assigned to the 

result (+/-) register. This value can be five 
digits up to a maximum of 65535. 

A sample load constant instruction is: 

In this example, register A would contain the positive value 

2. Assigned val ues are stored with zero fi II. 



Branching Openltions 

The sequence of instruction execution in the work station 

program can be altered by unconditional and conditional 

branching instructions. Conditional branches must be 

within the same 256 instruction block. 

The following is a detailed description of each branching 

instruction. 

Unconditional Branch (GO TO) 

This instruction orders an unconditional branch within the 

ACL program. The format of a GOTO instruction is: 

Column 

8 

28 

\28 
SteplLabel 

Contents 

Step/label - is the number or symbolic label 

a~,signed to this instruction. 

GOTO - identifies the operation to be per

formed (branch to the specified instruction). 

Step/label - is the number or label of the in

struction to which the branch should be taken. 

Upon execution of this instruction, the instruction specified 

in column 28 is the next instruction executed by the pro

gram. A sample GOTO instruction is: 

Columr~ 8 128 
Entry I DA T3 I GOTO DA T1 

The next instruction executed is at label OAT1. 

Indexed GOTO Unconditional Branch 

This instruction branches within the ACL program by simply 

changing the contents of a register. The format of an index

ed GOTO instruction is: 

Column 
Entry Step/Label 8 ¥3~"8 GOTO Index Reg Step Number 

Column 

8 

13 

or Label 

Contents 

Step/label - is the number or symbolic label 

assigned to this instruction. 

GOTO - identifies the operation to be per
formed (branch to the resulting instruction). 

Index register - The value of the low-order 

three bytes of this register is algebraically 

added to the number specified in column 28. 

The branch is taken to the resulting step 

number. The index is negative if the units 

position of the index register contains a 0-

lone. 

28 Step number or label - this number and the 

value of the low-order three bytes of the 

index register are added to arrive at the num

ber or label of the instruction to which the 

branch should be taken. 

A sample indexed GOTO instruction is: 

Column 28 
Entry DBT4 

Assume that register A contains a minus 20. I n this case, 

the next instruction to be executed is at label OBT4 minus 

20 instructions. 

Reference Material 33 



Return Transfer [Subroutine Call} (RGO) 

This instruction branches to and executes a subroutine, then 
returns to the normal sequence of program execution. A 
sample RGO instruction s: 

Column 8 13 28 
Entry Step/Label RGO End Step Number Branch 

or Label Step/Label 

Column Contents 

Step/label -- is the number or symbolic label 
assigned to this instruction. 

8 RGO - identifies the operation to be per

formed (execute specified branch instruction 
and return). 

13 End step number or label - is the number or 

label of th,~ instruction that ends the sub
routine and returns the program to the step 
number or label following the RGO instruc
tion. 

28 Branch step number or label - is the number 

or label of the instruction to which the branch 
is made. Upon execution of the RGO 
instruction, this step or label is branched to 
and executed. Succeeding instructions are then 
executed u nti I the end step/label is reached. 

Upon execution of the RGO instruction, the program 
branches to and executes the instruction specified in 
column 28. The program then continues to execute 
instructions following that instruction until the end step/ 
label is reached. This instruction must be a dummy GOTO. 
A dummy GOTO should reference the step number/label 
on the GOTO as shown ir the following example. The 
actual step number is suppl ied by the system (when the 
RGO is executed) with the step number or label of the 
instruction immediately following the RGO instruction. 
Thus, the end step/label causes the program to branch 
back to one step past the RGO. 

34 

A sample RGO instruction is: 
s rEPI 
LABEL 

=1 

1-- -- +--

,It t-t- _~Ir..."4-+-+---j 

t-f- -

1-+- 1-

_: -: l-l-I-+t---1-t-~-++-+++-I-+-+--+-j-t--+I--+--
1- t- - - -+-I-++++-If-+-++-HI--+-+-

,...-+- blAt'r 11 - ~~lc 1 fUlf""l,jt:'llA+Lh"plf,I-+-I_+--+_++--1+++-fL-Ir"ltplA+LlTfL 

: , 12: ~lr ~rr _.t-.t-+r~ -t-t--t-r_-.. t-,_t-+- ': ' .. ~ 
t-t- I H 1 1t +--1-1--1-+++-++-+--+-+-1 

: - - - ~ f- --+-+--t-+---+--t--+---+--l--+-1--+_It-_+--+-+-1 

r-'- --L I- +-+--+-++-+-+-+-I-t-+-+-+-+--+-+--+-+-I.~ 
IAIr!~ f~- ~II r 
~Jr4 -''A

1 
IB .; r-+--II" 

t= ,-,- -+--J14--lf-+-+--~++-+-\---i'-4-+-+-I 

t- J t-I- -1--+-+-+--+-++-4-+-+-+-++-+--+--1 

- -,-r- 1_ _ -t-t-+_:=::=::~~1---~i_-t-I---+t-;I---tH~:-~~:~:-H 

End 
~ 

subroutine 

"--__ Subroutine 
start 

'-----
Branch to part 
of subroutine 

L-__ _ Executes 
subroutine 

In this example, when the RGO instruction at label DBT6 
is executed, the returning label (DBT7) is stored at the label 
address of the dummy GOTO instruction (DAT6). The 
subroutine starting at label DAT4 is then executed and, 
when label DAT6 is executed, the GOTO branches to label 
DBT7. When the program reaches label DAT1, the dummy 
GOTO (DAT6) contains DAT2. If an EXIT or GOTO is not 
at label DAT3. the program branches back to DAT2. 



Conditional Branching Instructions 

The following conditional branching instructions change tl">e 

sequence of pro~jram execution if specified conditions are 

met. If these conditions are not met, the next sequential 

instruction is executed. 

If Register Zero or Blank: The format of this instruction is: 

Column 
Entry 

Column 

8 

13 

18 

23 

28 

8 
Step/Label IF 

Contents 

13 18 23 
Reg. IS/NOT 0 
Tested 

28 
Branch 
Step/Label 

Step/labe/ ~ is the number or symbolic label 

a~;signed to this instruction. 

IF ~ identifies the conditional branching 

operation. 

Hegister tested - the register (A-Z) that is 

being tested for the specified condition. 

IS/NOT ~ identifies the condition (with 

column 23) that controls branching. 

0- identifies the other condition that con

tl"Ols branching. 

Branch step/label ~ indicates the step or label 

to which the program branches if the condi

tions (columns 18 and 23) are met. 

This instruction causes a branch to the specified step or label 

if the tested register contains a zero or blank value. 

By entering NOT in column 18, you could cause the pro

gram to branch to the specified step number or label if the 

tested register does not contain a zero or blank value. 

If Register Is/Not Negative: The format of this instruction 

is: 

Column 8 13 18 123 28 
Entry SteplLabel IF Reg. 

Tested 
IS/NOT 1- Branch 

Step/Label 

Column 

8 

13 

Contents 

Step/label ~ is the number or symbolic label 

assigned to this instruction. 

IF ~ identifies the conditional branching 

operation. 

Register tested ~ the register that is being 

tested for the specified conditions. 

18 IS/NOT ~ identifies the condition (with 

column 23) that controls branching. 

23 - {minus} ~ identifies the other condition 

that contl"Ols branching (with column 18). 

28 Branch step/label -- indicates the step/label 

to which the program branches if the speci

fied conditions (columns 18 and 23) are met. 

This instruction causes the program to branch to the speci

fied step/label if the units position (low-order) of the tested 

register has a hex D-zone (negative value) imd IS is entered 

in column 18. By entering NOT in column 18, you can 

cause the program to branch to the specified step/label if 

the units position of the tested register does not have a D

zone. 

Reference Material 35 



If Registers Equal: The k,imat of this instruction is: 

COlum~ t8 ~ 
Entry I Step/Label ::0 or I R 1 

18 23 28 
R2 Branch 

SteplLabel 

Column 

8 

13 

18 

23 

28 

Contents 

Srep/label- is the number or symbolic label 

assigned to th is instruction. 

fFD - identifies the conditional branching 

u,leration. 

R 1 - one of the registers to be compared. * 

!dentltips this operation as a compare of 

two registers, with branching to occur if the 
registers are found to be equal. 

R2 - the second register to be compared or 
a constant (+0-9). 

Branch step/lauel -- indicates the step/label 

to which the program branches if the speci
fied conditions are met. This must be in the 
same 256-s(ep instruction block (a contiguous 

stling c;f instructions starting at 0-255, 256-
5 i 1, 512-7(7). (See Error Message 119 in 
/,\ppendix B.) 

Note. To g,~t from one instruction block in

to another, you can issue a branching instruc

tion to a GOTO instruction in the same block. 

1 he GOTO instruction could then be coded 

to transfer the program to an instruction with

ill another illstruction block. 

Upon execution of this insc:ruction, the program branches to 

the specified step/label Jl the two registers specified are equal 

to each other (bl! by lJil). !f a 0 is entered in column 10, 

the branch to the: sp']cified step/label is taken if the digit 

portions of the registers CU~"lpare, regardless of zone portion 

(blanks or zeros), except for the sign zone in the low-order 

pOSitions. All indicators, registers, and buffers are unchanged. 

The legister d Igi t POSI ion compare is algebraic . 

• it R 1 cont,lim lead j'lq zeros and R2 is a constant, a branch 

is not made. Ihwpver. if Fll contains leading blanks and 

R2 is a constani, the brsn:h is made. Thus, IFD should be 
used for numeric comparlS, and IF should be used for char
acter compare of regisTer contents (Rl and R2). 

36 

If Registers Greater/Less: The format of this instruction is: 

Column 

Entry 

Column 

18 

18 

8 13 

.FO or R1 
IF 

Contents 

28 
Branch 

Step/Label 

< - indicates that the branch should be 

taken if the contents of the R 1 register com

pare less than the contents of the R2 I"egister. 

> - indicates that the branch should be 

taken if the contents of the R 1 register com

pare greater than the contents of the 112 

register. 

All other operands and the execution of these instructions 

are identical to the operands and execution of the if regi
sters equal instruction. The 0 entry in column 10 specifies 
that the algebraic compare be done only on the digit por
tions of the registers, regardless of zone characters (blanks 

or zeros), except for sign zone. All indicators, registers, and 
buffers are unchanged. 



If Indicator: This instruction controls branching on the 

condition of a specified indicator. The format of this in
struction is: 

Column 
Entry 

Column 

8 

13 

18 

23 

28 

Contents 

28 
Branch 
Step/Label 

Stf'p/label - is the number or symbolic label 

assigned to this instruction. 

I Fi - identifies this branchi ng operation as 

ba!,ed on the condition of an indicator. 

Indicator - identifies the indicator (1-255) 
bei ng tested: 

IS/NOT - identifies the condition control
ling this branching operation. 

Of\! - indicates the status of the indicator 

being tested. 

Branch step/label - indicates the step or 

label to which the program will branch, 
ba:;ed on the cond it ions specifi ed. 

If the entry in column 18 is IS, the program branches to the 
specified step nurnber if the tested indicator is on. The in

dicator is not reset. If the entry in column 18 is NOT, the 

program branche!. to the specified step/label if the tested 

indicator is not 011. The indicator is not reset. 

In order to reset the specified indicator after this operation, 

you can enter I FIR in column 8 on the coding sheet. 

All other operancis for the I FIR IS/NOT instructions are 

the same as ShOWl above. If NOT IS specified in column 18 

of an I FIR instru ction, and the tested indicator is on, the 

branch is not taken, but the indicator is still reset. Indica

tors for the three switches (AUTO REC ADV, PROG NUM 

SHIFT, AUTO DUP/SKIP) and the error line (keyboard 
lock/display flash) are updated according to their status 

when the instruction is executed. No registers or buffers 

are changed by these instructions. 

If Format: This instruction controls branching according 

to the use of a specified format (1-254). When used in con
junction with a data-directed read operation (see Read, 
Column 18, under Diskette Operations in this chapter), 

this instruction must follow the READ instruction. If for

mat instructions can be used to compare the last format used 

during any operation using a format, then branch to a spe· 

cific routine designed to handle that type of record. Note 

that, on end of file, a format being used is not completed. 

Thus, the if format branch cannot be taken on th is format. 

This instruction is shown below: 

Column 8 13 \18 23 128 
Entry Step/Label IF FMT liS/NoT F I Branch 

Step/Label 

Column 

8 

13 

18 

23 

28 

Contents 

Step/label- is the number or symbolic label 
assigned to this instruction. 

IF - identifies this as a conditional branching 

operation. 

FMT - indicates that a format number is 

bei ng tested. 

IS/NOT - identifies the condition that con

trols branching. 

F -- is the format number tested. 

Branch step/label- indicates the step to 

which the program branches if the specified 

conditions are met. 

Upon execution of this instruction, the pro!Jram branches 

to the specified step number or label if column 18 contains 

IS, and column 23 contains the number of the last format 

level used in any instruction with a format parameter coded. 

The branch is also taken if column 18 contains NOT and 

column 23 does not contain the number of the last format 

level used. If the branch condition is not met, the next se

quential instruction is executed. These instructions do not 
set or reset any indicawrs or change any buffers or registers. 

Reference Material 37 



Skip If Character Is/Not Equal: This instruction skips the 
next sequential instruction according to the presence of a 
specified character. The format of this instruction is: 

C __ o_lu~m~n~~ ______ +-8~~ 23 
Entry SCE ISCN I Buff:':/=R'--eg---+::'::""'---1rC:":h::"'a-r-ac-t-er 

Column 

8 

8 

13 

13 

18 

23 

Contents 

Step/label - is the number or symbolic label 
assigned to this instruction. 

SCE - indicates that the next sequential step 
should be skipped if the tested character 
matches the entry in column 23. 

SCN - indicates that the next sequential step 
should be skipped if the tested character does 
not match the entry in column 23. 

Buffer - the number of the buffer containing 
the character to be tested. 

Register -. if the character to be tested is not 
in a buffer, the register (A·Z) containing the 
character is specified in column 13. 

Position -- the location of the character to 
be tested from the left of the buffer or from 
the leftmost position of the register contain· 
ing the character. 

Character -- this is the character of immediate 
data bein~1 tested. 

Upon execution of this instruction, the next sequential in· 
struction is skipped if SCE is entered in column 8, and 
the character located at the specified position matches the 
character specified in col LImn 23. If SCN is entered in 
column 8, and the character at the position does not match 
the character specified in column 23, the next instruction 
is also skipped. These instructions do not change any 
indicators, registers, or buffers. 

38 

If Register Is/Not Absolute Numeric: This instruction 
branches to a specified step number or label according to 
the contents of a register. The format of the instruction is: 

Column 
Entry 

Column 

8 

13 

18 

18 

23 

28 

Contents 

28 
Branch 
Stepllabel 

Step/label - is the number or symbolic label 
assigned to this instruction. 

IF - identifies this as a conditional branching 
operation. 

Register- is the register (A·Z) beinq tested. 

IS - indicates that the program should branch 
to the step number specified in column 28 
if the register tested has hexadeci ma I F·zones 
in all non blank positions. The program 
branches if the register contains all blanks. 
The register may not contain intermixed or 
trailing blanks. 

NOT - indicates that the program should 
branch to the step/label specified in column 
28 if the register tested has one or more non· 
blank characters with a hexadecimal zone 
other than F, or has intermixed or trailing 
blanks. 

AN - identifies the condition for which the 
register is being tested as absolute numeric. 

Branch step/label - is the step or label to 
which the program branches if the specified 

conditions are met. 



If Register Is/Not Signed Numeric.' This instruction 
branches to a specified step/label accord ing to the contents 
of a register. The instruction format is: 

Column 8 13 ~ 23 28 
Entry SteplLabel IF Register liS/NoT SN Branch 

Step/Label 

Column 

8 

13 

18 

18 

23 

28 

Contents 

Step/label- is the number or symbolic label 
a~;signed to this instruction, 

IF - identifies this as a conditional branch
ing operation, 

Register - is the register (A-Z) being tested. 

IS - indicates that the program should branch 
to the specified step/label if the register tested 
has hexadecimal F-zones in all non blank 
positions except the units position (which 
may have either an F or a D-zone). The 
numeric characters must be contiguous from 
the rightmost position with no intermixed 
blanks. A branch is taken If the tested register 
contains all blanks. The register may not 
contain intermixed or trailing blanks. 

NOT - indicates that the program should 
branch to the specified step number if the 
register tested does not have hexadecimal 
Fzones in all nonblank positions (except 
the units position). The program does not 
branch if the tested register contains all 
blanks. 

SIV - identifies the condition for which the 
register is being tested as signed numeric. 

Branch step/label - is the step or label to 
which the program branches if the specified 
conditions are met. 

If Register Is/Not Self-Check: The work station computes 
a self-check digit based on the algorithm in the .SELF
CHECK statement, from the contents of a register, then 
uses that digit to control branching to a specified step/label. 
The format of the instruction is: 

Column 
Entry 

Column 

8 

13 

18 

18 

23 

28 

13 ~ 
Register liS/NoT 

Contents 

28 
Branch 
Step/Label 

Step/labe/ - is the number or symbolic label 
assigned to this instruction. 

IF - identifies this as a conditional branch
ing operation. 

Register - specifies a register (A-Z) to be 

tested. 

IS - indicates that a self-check digit should 
be computed, according to specifications 
contained in the .SELF-CHECK control 
statement, from the data contained in the 
register specified in column 13. The comput
ed self-check number is then compared to the 
check number contained in the register (as 
specified in the .SELF-CHECK control state
ment). If the numbers compare, the program 
branches to the specified step/label (if IS is 
entered in column 18). 

NOT - indicates that, after arriving at the 
computed self-check digit as described above, 
if the numbers do not compare, the program 
branches to the specified step/label. 

CHK - identifies the condition for which 
the register is being tested. 

Branch step/label- the step or label to which 
the program branches if the specified con
ditions are met. 

Reference Material 39 



If Printer Is/Not Busy: This instruction branches the pro
gram to a particular instruction depending on the status 
of the printer. The format of the IF PRT instruction is: 

Column 
Entry 

28 
Branch 
Step/Label 

Upon execution of this instruction, the program branches 
to the step/label specified in column 28 if the status of the 
printer matches the status specified in column 18. For ex
ample, if IS is entered in column 18, and the printer is 
busy, the branch is taken. I f the pri nter does not match 
the status specified in column 18, the program continues to 
the next sequential instruction. If an error is pending from 
the last print instruction, the printer error is posted, the 
print retry is initiated, and the program control goes to the 
IF PRT instruction. 

If CRD Is/Not Busy: This instruction branches the program 
depending on the status of the attached card I/O device 
(129 or 5496). The format of the instruction is identical 
to the if-printer-is/not-busy instruction, except that CR D 

is required in columns 13:-16. The format of the IF C RD 
instruction is: 

Column 
Entry 

Display and Keyboard Operations 

28 
Branch 
Step/Label 

The ENTR instruction is the means by which the param
eters in a .FIELD control statement are implemented. This 
instruction allows prompting to be displayed to the opera
tor, defines the type of data to be entered, accepts data 
entered via the keyboard, and defines the disposition of 
that data. 

40 

The format of an ENTR instruction is: 

Column 
Entry 

Column 

8 

13 

18 

23 

18 ~3 
Message Number/ Overlap 
Register 

Contents 

Step/label - is the number or symbolic label 
assigned to this instruction. 

ENTR - indicates that the keyboard should 
be opened to accept input. 

Buffer/register - identifies which buffer con
tains the desired prompting message. This 
buffer is also specified in columns 13-14 of 
the .FIELD control statement. A register 
(A-Z) containing the buffer number can also 
be specified in column 13 of the ENTR 
instruction. 

Message number/register - Identifie~; which 
message (1-99) within the buffer is to be 
displayed. An entry of 1 indicates that the 
message starts in the first position of the 
buffer. If the message number is greater 
than 1, the specified buffer is scanned be
ginning at the first position. A register con
taining the message number can also be spec
ified in column 18. The first messa~le in an 
overflow buffer is message number 2 (see 
.FIELD, Columns 18-19). 

Overlap - this entry determines if operation 
is to be overlapped or nonoverlapped. Over
lapped operation (enter an X in column 23) 
means that processing of subsequent in
structions continues concurrently with the 
data being entered. Nonoverlapped operation 
(leave column 23 blank) means that proces
sing of subsequent instructions does not con
tinue until the ENTR instruction is exited 
(waits for data to be entered). Note that the 
ENTR operations cannot be overlapped with 
the OPEN and CLOZ instructions. 

The first prompting message defined by the ENTR instruc
tion is displayed, along with fill characters definingl the 
field to be entered, in lines 5 and 6 of the display screen. 
The field to be entered is identified by a series of either 
dashes (numeric) or periods (alphabetic). Note that the sys
tem inserts a blank between the prompting message and the 
field to be entered. 



Diskette Operations 

Reading and writing of records on a diskette are controlled 
by disk instructions and by the .DATASET control state

ment. The results of execution of a disk instruction depend 
on the information contained in the .DATASET control 
statement (see .DATASET in this chapter). Disk instruc

tions are described in detail in the following paragraphs. 

Read (READ) 

A read instruction causes the system to read or search and 
read a data record from a data set on a diskette. The format 
of a read instruction is: 

Column 

Entry 

Column 

8 

13 

18 

Contents 

23 
Register, Key, 
or Minus 

Step/label- is the number or symbolic label 
cssigned to this instruction. 

HEAD - identifies the operation to be per
formed (read a data record). 

Data set - specifies the number assigned to 

the data set in the .DATASET control state

rnent. The buffer specified in the .DAT AS ET 

control statement (columns 38-39) contains 

the record after the read. The valid range for 
this required entry is 1-4. 

Format no. - specifies the number of the 
format to be used after completion of the 
physical read. Formatting is from the I/O 

buffer into the registers specified in the for
rnat record. The formatting is data-directed 
if a D is entered into column 18 of the READ 
instruction instead of a format number (see 
Data Directed Formatting in this chapter). 
I f no entry is made in column 18, no format
ting takes place, but the I/O buffer (specified 

in the .DAT ASET control statement) con

tains the record just read. 

Column 

23 

Contents 

Register - mdicaws a feyI51'~r address, key, 

or can be blank or minus, ; f data set acces~ 
is sequential (except write or write extend), 

the specified register cont,liflS the relative 

record number to be read. This number IS 

relative to BOE. The register value is in

cremented by one after each READ instruc

tion. 

For key indexed access mf~rhod, the entry in 

column 23 on the coding sheet indicates the 

register containing the key of the record to 

be read. If a matching recerd is not found, 

indicators 225-228 are set on to indicate 
data sets 1-4, respectively, as specified in 

columns 13-15. Formattin) does not take 
place, and the next higher record is contain

ed in the I/O buffer. If the index value is not 
within the index table rangs, indicators 229· 

232 are set on to indicate the respective data 
set specified in columns 13,15, and no disk 

operation takes place. 

If no key register address is entered, the next 

sequential record IS read, regardless of data 

set access method, except for sequential write 
or sequential write extend ,:READ instruction 

invalid). If a minus sign i:. Imtered, the pre

ceding nondeleted sequential record is read 
unless the deleted record e)(it procedure has 

been coded in the .DATASET statement 
(except at BOE), regardless of data set access 
method, except for sequen tial write or se
quential write extend (R [AD instruction i n

valid). 

If a deleted record is read, dnd the delett:d 
record exit has been specified In the .DAT A

SET control statement, the exit routine is 

taken. If the exit 15 not sper.itied in the 
.DATASET statement, sequential reads are 

issued until a nondeleted record or EGO 
(end of date) is encolJntcred if deleted 
records are skipped, th!' relative number is 

incremented for each delctl~d record read. 

Retemnce Material 41 



A sample READ instruction is: 

-~-~_~_;_n~----------r--;~-E-A-D--~I~~_3~1--~-:-+1-2_A3-

Sequential or Index Update Access Methods: If register A 

contains 53 and BOE equals 10001, this instruction reads 

record number 12001 (track 12, sector 1). Format level 15 
is used to fill registers after the physical read. Register A 

contains 54 at the completion of the instruction. The file 
disk address is 1200 1 assuming that there are no deleted 
records within the file. 

Key Indexed Access Method: Assuming that register A 

contains the key Jones, this instruction reads the first 

record with the matchin~1 key of Jones and uses format 
level 15 for formatting. The file disk address is the address 

of the record containing Jones. If no match is found, 
indicator 225 IS turned on, no formatting takes place, and 

the file disk address is the next higher record above the 

position where the match would have been. The I/O buffer 
for the data set also contains the next higher record. 

Write Disk Record (WRTJ 

The work station will write a record on the diskette and 
allow for overlapped machine and operator-machine 

functions, when th is instruction is used. 

The format of a WRT instruction is: 

Column 

Entry 

Column 

8 

13 

18 

42 

Stepl 
label 

8 1 ~, -' 18 23 

WRT Data Set Format BufferlRegister 

Contents 

WRT - identifies the operation to be 

performed (write record). 

Data set - the number assigned to the data 
set in the .DATASET control statement. 
This required operand has a valid range of 
1-4. 
Format - identifies the number of the for

mat to be lIsed before the physical write. 
Formatting is from registers to the output 

buffer. The output buffer specified in the 

.DATASET control statement (columns 38-
39) cOf)tains the record to be written. If no 

entry is made, formatting does not take 

place. (Note that, if both the format and 
buffer numbers are omitted, a blank record 

is written.) 

Column 

23 

23 

Contents 

Buffer - identifies the number of the buffer 

to be moved into the data set output buffer, 
if any. This is the first operation of the 

instruction execution. The contents of the 
specified buffer are not changed. If no 

entry is made, the I/O buffer is blanked 

before formatting. If both the buff.er 

number of the data set and this entry are the 

same, the contents of the I/O buffer are 

not changed. 

Register - identifies the register (A-Z) which 

contains the relative record number within 
the data set where the write takes pllace. 

This number is relative to BOE. When a 
register is coded, no buffer movement or 

blanking takes place at execution. This 

type of write is only valid to a sequential 
update (SU) or label update (I) data set. 

A write invalid error (7XC) is posted if SU 
or I type is not specified. A relative record 

number of 1 accesses the BOE record. A 

record number of zero, or beyond BOE, 

posts a 7XD error. A record number greater 
than or equal to end of file posts a 7XC error. 
If the 7XC or 7XD errors are detected, any 

specified formatting is performed. Under 

this condition, the write operation is 

suppressed. The register value is incl-emented 
by 1 after completion of this instruction. 

If a read with relative record number is issued prior to the 
write with relative record number, the record written will 

be one greater than expected. For example: 

Assume register A = 10: 

Column 

Entry 

Register A is incremented by one after the read: 

Column 23 

Entry A 

Register A contains a value of 11, not 10. Therefore, 

use the following: 

Column 8 13 18~:~ 
=E'::'nt:":r~y~~S-te-p-l-la-be--1 +W-'-:-R-T---t-----.- 1/0 buffer 

number 



A sample WRT imtruction is: 

Column 8 

Entry Step/Label WRT 

In this example, the instruction moves the contents of 
buffer 6 into the output buffer specified, then formats 

data according to format 5. The current file disk address 
and EOO are incremented, if necessary, and the record 
from the specified buffer is written at the current fi Ie disk 
address (data set number 2). The contents of buffer 6 
are unchanged. 

Extend Data Set and Write Disk Record (WRTE) 

The work station will write a record on the diskette and 
allow for overlapped machine and operator-machine 
functions, when this instruction is used. 

The format of a WRTE instruction is: 

Column 

Entry 

Column 

8 

13-24 

23 

Buffer 

Contents 

Step/label - is the number or symbolic label 
assigned to this instruction. 

WHTE - identifies the operation to be 
performed (extend data set and write disk 
record). 

All other operands in this instruction are 
de·fined as for the WRT instruction. 

Execution of the WRTE instruction is identical to execu
tion of the WRT instruction except that it is valid only 
for SU data sets so that the disk is automatically positioned 
at EOO prior to writing. 

Delete a Disk Record (WR TS) 

The format of a WRTS instruction is: 

Column 8 13 

Entry Step/Lab,el WRTS Data Set 

18 23 

Format Buffer / 
Register 

Column 

8 

13-24 

Contents 

WR TS - identifies the operation to be 
performed (delete a disk record). 

All other operands are defined as described 
for the WRT instruction. Execution of a 

WRTS instruction is identical to execution 
of a WRT instruction, except that a special 

data address mark is written to the disk out
side of the 128-position record. If the for
mat and buffer numbers are not specified, 
the character 0 is forced into the first posi
tion of the I/O buffer. Thus, if a buffer or 
format is specified, a 0 must be forced into 
the first position. Therefore, an instruction 
with only a data set number entered writes 
a deleted record, as defined by basic disk 
interchange. 

To ensure successful execution of this instruction, the 
following checks are made: 

• The first character of the written record IS saved. 

• The record is read after the write attempt. 

A record is considered deleted if the following conditions 
are met: 

• A cyclic redundancy check (eRe) is successfully made 
at the end of the record. 

• A special address indicator is detected. 

• The first position of the record contains a o. 

• No other error indicators are on. 

Note: A deleted record is written by the Models 1 and 2 
data station with a 0 in the first position of the record, 
the eRe and a special address indicator. However, no check 
is made to see that the 0 or eRe was written on disk. 
Only the special address indicator is checked when a deleted 
record is read by the Models 1 and 2 or the Models 3 and 4 
in data station mode. 

A sample WRTS instruction is: 

Column 23 

Entry 

In this example, a deleted record is written to data set 1. 
The current file disk address is changed, if necessary. 

Reference Material 43 



Walt I/O (WAIT) 

This Instruction ensurps that any input/output operation 

:s comr:deted before executing the next instruction. This 

instruction waits until all outstanding I/O is complete 

including keyboard, diskette, and printer, and detects any 

pending elrors. The instruction will not, however, wait on 

card I/O. Note that the IF PRT BSY instruction can be 

used to walt on the printer with errors detected. If any 

errors are detected on overlapped files, the system posts a 

700 series error message and the operator must abort the 

job. The instruction is coded by the entry WAIT in 

columns 8-1'1, followirg the step number or label. The IF 

CRD instruction must be used to wait on card I/O. 

Open Data Set (OPEN) 

This ins,rurtlon contrels dynamic opening of data sets 

dur 1119 program execution. However, if this instruction is 

not used, data sds are :>pened by the system prior to 

execution. The re-opening of an open data set resets the 

EOD. The format of a1 OPEN instruction is: 

Column 11k 23 
'E nt. y-1St:~~1 Lab-;I I Ol;-E-N--i----+----+--R-eg-j-st-er 

Column 

13 

18 

23 

44 

Contents 

Step/label - is the number or symbolic label 

aSSigned to this IIlstruction. 

OPEN - identifies the operation to be per

form ed ,'open data set). 

Data set -- the number assigned to the data 

set in th2 .DATASET control statement. This 

required operand has a valid range of 1-4. 

Format -- identifies the format to be used 

when reading desired information from the 

da13 set label into registers. If the data set 

cannot be opened, no formatting occurs. 

If nothing is entered in column 18, no 

formatting occurs. Zero is invalid. 

Register .- identifies a register containing 

information controlling the definition of 

certain (lata set characteristics (such as 

name, drive number). All pending operations 

to the data set are completed before changing 

data set attributes. 

The specified register in column 23 may contain (Ieft

justified) the information in the following specified bytes: 

Bytes 

1-8 

9 

10 

11 

12 

13 

14 

15-16 

Contents 

Data set name 

Drive number (drive one .= 1, drive two = 2) 

Data set access method (See Columns 58-60 
Type (R) under .DATASET in this chapter.) 

Data set access method (See Columns 58-60 
Type (8) under .DATASET in this chapter.) 

Data set access method (See Columns 58-60 
Type (R) under .DATASET in thi,; chapter.) 

Suppress extent checking (Enter character 

A). 

Note: Suppressing extent checking improves 

performance. Also, the extent Chl2Ck will 

fail for null data sets received in BSCA mode. 

Redefine additional parameters in next 

sequential register (Enter character X). 

Not used 

If an X is entered In position 14 of the register, add itional 

attributes are redefined in the next sequE'ntial register (for 

example, A and B). (Bytes 1-12 apply only to key indexed 

data set access methods.) These parameters must be right

justified with leading zeros or blanks. 

Bytes 

1-3 

4-6 

7-9 

10-12 

13-15 

16 

Contents 

Number of bytes per index entry (See Col

umns 63-64 Index Length (0) uncler 

.DA TASET in this chapter.) 

Number of tracks per index entry (See Col

umns 68-69 Tracks/Index (0) under 

.DA TASET In this chaptel·.) 

Number of bytes per key (See Columns 
73-74 Key Length (0) under .DA TASET 

in this chapter.) 

Position of key (starting position) in the 

record (See Columns 78-80 Key Position 

(0) under .DATASET in this chapter.) 

Record length (See Columns 28-30 Record 

Length (0) under .DATASET in this chapter.) 

Not used 



If these parameters are to be bypassed (use the original 
.DATASET specification). blanks must be inserted in the 
appropriate positions of the register (except for extent 
checking). If no register is specified in column 23 of t he 
OPEN instruction, the existing data set is opened (as 
defined in the .DATASET control statement). A sample 
OPEN instruction is: 

Column 

Entry 

Register S = Positions: 

Register S Contents: 

6 

PROBLEM 

Relative .DATASET control statement: 

10 

SU 

23 

S 

16 

1·1£fffli'ls~m III I~ II I FII IIIIII ! ' !I!III~ II~ 
Dataset Dataset name Record Drive 

length 

11111111211111 

I 
Index Tracks 
length 

Extent 
check 

In this example, data set 2 is opened, formatting is done 
according to format 3, and the data set is defined as an 
SUo The data set name is PROBLEM and extent checking 
is specified. The disk drive number is that defined in t he 
.DATASET control statement for this data set, and register 
T is not used (no X in position 14 of register S). 

Open Data. Set Errors: An attempt to open a data set that 
is open already opens the requested data set and does not 
update the original file extents . If a data set cannot be 
opened, a 500 series error, along with the data set number, 
is posted. This error can be reset by: 

• The RESET key which retries the open sequence. 
J 

• ALPHA or NUMER IC SHIFT and RESET which closes 
the data set and posts a 100 error (job complete). 

• ALPHA and NUMERIC SH IFT and RESET which 
returns the work station to index mode. 

End of Job (EXIT) 

All valid ACL programs for the work stat ion must include 
an EXIT instruction fo r a normal end of job (u nless an 
EXEC instruction is specified). Th is instruction closes all 
data sets and waits for all printer ope(ations to complete 
(system close), and then posts a 100 ha lt message on the 
status line (screen flashes). RESET must be pressed to 
return to data station mode. You can indicate an EXIT 
instruction by simply en~ering EXI T beginning in column 8 
on the ,instruction coding sheet. A sam ple EXI T instruction 
is: 

Column 8 
Entry EXIT 

Close Instruction (CLOZ) 

Although the system automatica ll y closes data sets when 
the EX IT instruction is used, you can control the dynamic 
closing of data sets during execution with the CLOZ 
inst ruct ion. The format of a CLOZ inst ruction is: 

Column 13 

Entry Data set Number 

Column Contents 

8 

13 

CLOZ - identi f ies the o peratio[1 to be 
performed (close data set ). 

Data set number - ident ifies the number of 
the data set to be closed. 

Closing Data Sets: The fo llowing steps occur during the 
closing of a data set: 

1. 

2 . 

. 3. 

All phys ical input/output to the data set is completed. 
A close inst ruction for a data set al ready closed is 
ignored and does not cause an error . 

The data set label is read (SU, SW, SWE organization 
only). If th is read develops an I/O error , the CLOZ 
inst ruction posts a terminal error message in the 
di splay. 

The EOD address on the label is updated. 

4. The label is written on the index track . This write 
does not occur if an error is detected during the read 
of the label or if the data set type is read only. 

5. The data set is marked closed with in the system. 

Reference Material 45 



Closing Data Errors: If a data set cannot be closed, a 600 
series error, along with the data set number, is posted. The 
error can be reset by the following: 

• The RESET key, which retries the close sequence 
(except for a drive not ready error - 6XO). 

• ALPHA SHIFT and NUM SHIFT and the RESET key, 
wh ich aborts the job and posts a 100 error (job complete). 

Note that the file EOD is always posted on the display on 
a drive 1 or 2 error, if the drive is found in a not·ready 
state, or a disk error occurs. 

Printer Operations 

Form size, type of printer attached, and printer output 
buffer are specified in the .PRINTER control statement. 
Editing is controlled by specifications in the .FORMAT 
control statement. The primary printer control instruction 
is the PRNT instruction. 

Each time a new program is initiated, the paper must be 
manually set in the printer to the top of the page because 
the internal line counter is set to one at the start of each 
program. 

46 

Print a Line (PRNT) 

This instruction specifies requirements for printer output. 
The instruction format is: 

Column 

Entry 

Column 

8 

13 

8 13 18 23 28 

Stepl PRNT 

Label 

Forms Format Buffer Overlap 

Control 

Contents 

Step/label- is the number (0-767) or 
symbolic label (four-position) assignl~d to 
this instruction. 

PRNT - is the print instruction name. 

Forms control - is the vertical forms control 
to be executed after a line is printed .. 

Valid entries are: 

o 

S or blank 
D 
T 
1-127 

No vertical forms movement. 
For the 3715 single-direction 
printer (type 3), a carriage 
return command is iss.ued. 
Single space 
Double space 
Triple space 
Skipping to a specific line 
number 

18 Format - is the format number for format
ting and editing data out of registers to the 
buffer assigned in the .PRINTER control 
statement. 

23 Buffer - is the buffer which is to have its 
contents moved to the output buffer 
assigned to the printer. 

28 Overlap - if X is entered, successive instruc
tions are executed concurrently with 
previously issued printer output. If column 
28 is blank, further execution of any ACL 
instruction does not proceed until the 
printer cycle is completed. 



The following operations occur when the PRNT instruction 

is executed: 

1. 

2. 

3. 

4. 

The contents of the buffer specified in column 23 are 

moved to the buffer assigned to the printer. If 

column 2:3 is blank, the printer buffer is also blanked 

(hex 40). If the buffer in column 23 is the same as 

the buffer specified in the .PRINTER statement, its 

contents eire not changed. 

Data is moved from registers to the printer buffer as 

specified by the format number in column 18. If 

column HI is blank, no formatting occurs. 

The contents of the printer buffer are output to the 
printer. 11' column 28 of the PRNT instruction 

contains>:, printer operations are overlapped with 

all other processing. 

If line len!lth exceeds 128 characters, both the pri· 
mary (.PRINTER columns 33·34) and secondary 

(.PR INTER columns 38·39) buffers must be odd. 

The characters beyond 128 are then output from 
the next even buffer. Because the 3715 (type 4) 
printer prints two lines at a time, the physical print 

occurs after every other PRNT instruction. This 

allows formatting of lines printed in both directions 

in order to look ahead for the longest line. 

If a 3715 application requires immediate output, use 

a printer wpe 3 or 5. 

If a printer type 4 is used, a PRNT instruction 
containing the desired immediate output, followed 
by a dummy PRNT, (PRNT with format parameter 

and buffer number blank) is required. 

Normal program termination closes the printer, 

although pending lines are printed before the system 

close message (100) is posted. 

The vertical forms control (column 13) is executed 

after the last character is printed. 

Note: Normal non printable chClracters print (on the 
3713 and :3715) as graphic c:laracters (for example, 

hexadecimal FF prints as ' ). This differs from 

printing in standard data station mode on the 3741 
Models 1 and 2. 

If the forms control stops at or between the end of forms 

line and overflow line, as defined in the .PRINTER control 
statement, indicator 148 is set on. Also, in this instance, 

a branch is made to the page overflow processing step 
number/label (if specified in columns 43-46 of the 

.PRINTER control statement). 

Skip to Line Number or Space (PCTL) 

This instruction executed vertical forms control independ· 

ent of actual printing, but always overlaps with other 
executable instructions. The PCTL instruction format is: 

Column 

Entry 

Column 

8 

13 

13 

Forms Control 

Contents 

Step/label - is the number or 
symbolic label (four-position) assigned 

to this instruction. 

PCTL - is the print instruction name. 

Forms control - is the vertical forms 

control with the same valid entries as the 
PRNT instruction. 

This instruction does not output data to the printer, and 
does not change any buffers or registers. Indicator 148 
and page overflow are processed as defined in the PR NT 

instruction. 

Table Operations 

A table is a group of successive fields of the same length. 
The content of anyone field is called the argument, and 
the placement or location of the field in the group of 

fields is called the index. 

For example, a list of employee numbers can be processed 
as a table. The table argument refers to an employee 

number in the list and the table index refers to a location 
in the list. The argument length is fixed at the length of 

the employee number. 

When each table argument is greater (from a collating 

sequence standpoint) than the argument with the next 

lower index, it is said to be an ordered table. 

The total length of a table is limited by available work 
station storage and each table must end in a hexadecimal 

FF. Tables can be loaded or read from disk into buffers 

or they can be created using .BUFFER control statements. 
There may be more than one table in a bu·ffer as shown 

in the following example: 

Buffer 6: 

TRPAC=TRUCKI6I6RAI LI6I6I6POSTI6I6I6AIRI6I6I6I6COUNTER= 

~- ~ - -
Table I Table 2 

Reference Material 47 



Table instructions are as follows. 

Search Table for Equal Entrv (TBFX) 

The format of a TBFX instruction is: 

Column 8 13 18 23 28 

Entry Step/ TBFX Buffer Table 

label 

Register length 

Column Contents 

48 

8 

Step/label - is the number or symbolic label 
assigned to this instruction. 

TBFX - is the table instruction (find equal 
table entry). 

13 Buffer - is the number of the buffer 
in which the table starts. 

18 Table - is the number of the table in the 
buffer specified in column 13. The buffer 
specified and all succeeding buffers are 
scanned for a hexadecimal FF delim iter 
unti I the correct table number is found. 

23 Register - specifies a pair of sequential 
registers (such as A, B; W, X; X,Y). The 
register specified in this operand is always 
the first of the pair and will contain the table 
index. The second (implied) register 
contains the table argument. Registers I, 
R, and Z cannot be specified in this operand. 

28 Length - specifies the argument length. This 
instruction is used when the table argument 
is known and you want to find the table 
index of that argument (Figure 23). The 
instruction can be used on ordered or non
ordered tables because the entire table is 
scanned for an exact compare. If an equal 
ent ry is not found, the program can notify 

the operator by posting an invalid number 
message on the display screen. 

Display 

t 
I nvalid Number 

Message 

621 
622 
701 
705 
801 
806 
808 
809 

----:---t-----t 810 

Storage 

Figure 23. Table Search for Equal Entry 



The number of bvtes specified by the length is taken from 

the low-order bytes of the argument register, and the table 
is scanned looking for an equal entry. If found, it sets the 

four low-order positions of the index register to the 

relative number (If the table entry (first entry in the table 

is number 1). If 110 equal entrY is found, the index register 

is set to zero. Orly the index register is changed. 

Search Table for Equal/High Entry (TBFN) 

The format of a T8FN instruction is: 

Column 

Entry 

Column 

8 

13 

18 

28 

Length 

Contents 

TBFN -- is the table instruction (find equal/ 
hi,~h table entry). 

Buffer - is the number of the buffer in 

which the table starts. 

Table - is the number of the table in the 

buffer specified in column 13. The buffer 

specified and all succeeding buffers are 

sC3nned for a hexadecimal FF delimiter 

until the correct table number is found. 

23 Register - specifies a pair of sequential 

re~isters (such as A, B; W, X; X, V). The 

register specified in this operand is always 
the first of the pair and will contain the table 

index. The second (implied) register 

contains the table argument. Registers I, 

R, and Z cannot be specified in this operand. 

28 Length - specifies the argument length. 

This instruction is used when a table argument is known and 

an equal or high Index entry is to be found. The table, 

which must be in ascending sequence, is scanned sequentially 

looking for an equal or high entry. If the entry found is 

high, indicator 1133 is set on (and must be reset by the 
program), and the index entry number of that higher 
argument is put in the index register. If the argument is 

higher than the last entry in the table, indicator 163 is not 
set on, and the index register is set to zero. 

If an equal entry IS found, this instruction sets the four low
order positions of the index register to the entry number 

of the equal entry. The normal EBCDIC collating sequence 

must be used. Indicator 163 is not set on and the index 
register is not set to zero. 

Read Table Entry (TBRD) 

The format of a TB R D instruction is: 

Column 

8 

13 

18 

23 

28 

Contents 

Step/label- is the number 01 sYlllbolic label 
assigned to this instructioi 

TBRD - is the table instructloll (read table 

entry). 

Buffer - is the number of tl'e butter II' 

which the table starts, 

Table - is the number of the table in the 
buffer specified in column 13, The buffer 

specified and all succeeding buffers are 
scanned for a hexadecimal FF dellmitel 
unti I the correct table 'lUnliJer IS tound. 

Register -- specifies a pdir of sequelHldl 

registers (such as A, B; W, X. x. Yl. The 

register specified in this operann IS always 
the first of the pair and contains the taule 
index. The sign, if any, is ignored. An index 

of zero does not change the argument 

register and sets on indicators 156 ilnd 160. 
The second (implied) register contains the 

table argument at the end 01 the operation. 
Registers I, R, and Z cannot be specified 

in this operand. 

Length - specifies the ill [.Jurnent length. 

This instruction is used when the table entry is known and 

the table argument is to be put into a register. The 

instruction can be used on ordered or nonordered tables. 

Using the low-order four bytes of the index register, the 

instruction takes the argument at that index number and 
puts it into the low-order positions of the e,fqume!lt 
register. The unused high-order positions are Sl'~. to 

blanks. Indicators 156 and 160 are set on f the table read 
goes beyond the table end. These indicato:s must be 

reset by the program. 

Refer,'nce Mater;,,1 49 



Write Table Entry (TBWT) 

The format of a TBWT instruction is: 

Column 

Entry 

Column 

8 

13 

18 

23 

28 

28 

length 

Contents 

Step/label-- is the number or symbolic label 
assigned to this instruction. 

TBWT -- is the table instruction (write 
table entry). 

Buffer -- is the number of the buffer in which 
the tab! e starts. 

Table - is the number of the table in the 
buffer ,pecified in column 13. The buffer 
specified and all succeeding buffers are 
scannecl for a hexadecimal FF delimiter 
until the correct table number is found. 

Register - specifies a pair of sequential 
register:; (such as A, B; W, X; Y, Z). The 
register specified in this operand is always 
the first of the pair and contains the table 
index. The sign, if any, is ignored. An 
index of zero does not change the argument 
register and sets on indicators 156 and 160. 
The second (implied) register contains the 
table arqument to be written. Registers I, 
R, and Z cannot be specified in this operand. 

Length - specifies the argument length. 

This instruction is used when the index and the argument 
are known and the argument is to be written at the index. 
The argument must be in the low-order bytes of the register. 
No registers are changed. When using this instruction in an 
ordered table, be careful that the existing ascending 
sequence is not destroyed. Indicators 156 and 160 are 
set on if a write operation goes beyond the end of the 
table. These indicators must be reset by the program. 

50 

Move Data from Buffer to Register (GETB) 

This is a table-type instruction which indexes through" 
buffer and extracts specific entries. The format of a 
GETB instruction is: 

Column 

Entry 

Column 

8 

13 

18 

23 

28 

28 

length 

Contents 

Step/label - is the number or symbolic label 
assigned to this instruction. 

GETB - is the table instruction (move data 
from buffer to register). 

Buffer - is the number of the buffer 
in which the table starts. 

Table - must be a table number (1-16). 

Register - specifies a pair of sequential 
registers (such as A, B; W, X; X, '1"). The 
register specified in this operand is always 
the first of the pair and contains the byte 
position from the leftmost byte in the table. 
The second register contains the data moved 
from the buffer. Registers I, R, and Z 
cannot be specified in this operand. 

Length - specifies the number of bytes to 
be moved. 

This instruction is a special form of the read table (TBRD) 
instruction and is used to read a specific field from 
buffer into the argument register. The table index register 
is used, not as a field position, but as a byte position from 

the leftmost byte of the character string to be moved. The 
number of bytes moved is specified by the length operand. 
The unused high-order bytes of the argument register are 

set to blanks. Only the argument register is challi~ed. 

This instruction does not set any indicators, and ignores 
the hexadecimal FF delimiter once the correct table 

has been found. 

• 



Move Data from Register to Buffer (PUTB) 

The format of a PUTB instruction is: 

Column 

Entry 

Column 

28 

Length 

Contents 

Step/label - is the number or symbolic label 
a~isigned to this instruction. 

8 PUTB - is the table instruction (move data 
from register to buffer). 

13 Buffer - is the number of the buffer in 
which the table starts. 

18 Tflble - must be a table number (1·16). 

23 

28 

Register - specifies a pair of sequential 
registers (such as A, B; W, X; X, V). The 
register specified in this operand is always 
the first of the pair and contains the byte 
,-Josition from the leftmost byte in the 
bJffer. The second register contains the 
data to be moved to the buffer. Registers 
I, R, and Z cannot be specified in this 
ooerand. 

Length - specifies the number of bytes to 
be moved. 

This instruction is a special form of the write table (TBWT) 

instruction. It is used to write a specific field into buffer. 
The last four bytes of the table index register are used, 
not as a field pm.ition, but as a byte position from the 

leftmost byte of the start buffer. This byte position must 
point to the leftmost byte where the bytes are to be 
moved. Data movement is from left to right into the low
order positions of the argument register. The number of 
bytes moved is specified by the length operand. No registers 

are changed. 

This instruction :;ets no indicators, and ignores the hexa
decimal FF delimiter once the correct table has been found. 

Internal Data Movement Operations 

Internal data movement instructions move and exchange 
the contents of registers and buffers to other registers 

and buffers, read from buffer, and write to buffer. 

Read from Buffer (REFM) 

The REFM instruction internally reads from buffer and 
formats into registers. This instruction is typically used 
to read data from the display screen (buffer 2). The 

format of an REFM instruction is: 

Column 

Entry 

Column 

8 

13 

18 

18 

Format 

Contents 

Step/label - is the number or symbolic 
label (four-position) assigned to this 

instruction. 

REFM - identifies the operation to be 
performed (read from buffer). 

Buffer - identifies the buffer containing 
the data to be read and forrnatted. 

Format - indicates the format to be used. 

Formatting is from buffer to registers. 
This instruction causes no physical I/O 
(except for the display screen). If a D is 

specified for this required operand, 
formatting is data-directed (see Data 

Directed Formatting in th i:; chapter). 

A sample REFM instruction is: 

Column 18 

Entry 9 

In this example, the REFM instruction uses format number 
9 to format data into registers from buffel' 2 (display 

screen lines 2,3, and 4). 

Reference Material 51 



Read Blocked Record (rom Buffer (RBLK) 

This instruction access,~s individual records within a block 

of records which contains records of less than 128 bytes. 

The format of an RBU: instruction is: 

Column 23 

Entry Register 

Column Conten1s 

52 

8 

Step/label -- is the number or symbolic label 

assigned to this instruction. 

RBLK - identifies the operation to be 

performed (read blocked record from buffer). 

13 Buffer -' identifies the number of the buffer 

containing the data to be formatted. This 

entry must be coded. 

18 Format·, identifies the number (1-254) of 

the format to be used. This is a required 

entry. Formatting is from buffer to registers. 

Only the data starting at the position 

specified in the register entry {column 23) 

23 

is formatted. Format definition, however, 

is taken from the start of the format record. 

The format must define formatting for the 

first logical record in the buffer. This 

instruction causes no physical disk reading. 

Formatting is data,directed if D is entered 

in column 18. (See Data Directed Format, 

ting in this chapter.) 

Register- identifies the register containing 

the buffer position (first from the left) at 

which formatting is to start within the 

buffer. This is a required entry. 

Some sample RBLK instructions are: 

Assume the following control statement entries: 

f
~""""'" T. ~" " "',".' "',',":! 1 T l' r~, , ' , , 'i 'I I I I I I I , 'I I 

W-rt-+4+- '~r+-i-;- + "-t-l-.-rtj' ; I-+tffi 
.~q~MMj i I I L l:i I j ~. L i. i i Ij'+l r if ~ I r 
~ 11lllI!SbfIJzi~JziOOz! tAl L .. J, .. 

1 .;,' ,",'.,;., " , , ',' 4" 10 

"" - --
", '"'' -I- J' 

Also assume the follOWing instructions: 

Assuming these cond it ions, the result would be a~; follows. 

Register A would contain 

Register C would contain 

349562 

PROB 

Register D would contain - 01 

Then, assuming the following instruction', are executed: 

The result would be: 

Register A contains -' 458935 

Register C contains 

Register 0 contains 

NAME 
05 



Write to Buffer (VlRFM) 

This instruction writes and formats data into buffer. The 
format of a WR FM instruction is: 

Column 

Entry 

Column 

8 

13 

18 

23 

8 13 18 23 

Step/Lablll WR FM Buffer Format Buffer 

One No. Two 

Contents 

Step/label - is the number or symbolic 
label (four-position) assigned to this 

instruction. 

WRFM - identifies the operation to be 
performed (write to buffer). 

Bulfer one - identifies the buffer that 

receives the contents of the buffer 
spEcified in column 23 of this instruction. 
The buffer does not have to be associated 
with a .DAT ASET control statement. 

Format no. - identifies the number of the 

format to be used. Formatting is from 
registers to buffer. If this entry is not 

coded, no formatting occurs. 

Buffer two - the contents of this buffer are 
moved into the buffer specified in column 13 
of this instruction before formatting. The 
contents are unchanged. If th is entry is not 

coded, the buffer specified in column 13 is 

blanked before formatting. If the same buffer 
is specified in columns 13 and 23, the contents 

of buffer one (column 13) are not changed. 

A sample WRFMmstruction is: 

In this example, tile contents of buffer 4 are moved into 
buffer 2 (lines 2,:3, and 4 of the display). Format 7 is 

then used to format register data into buffer 2. The 

contents of buffer 4 are not changed. 

Write Blocked Record to Buffer (WBLK) 

This instruction writes and formats blocked records into 

buffer. The format of a WB LK instruction is: 

Column 

Entry 

Column 

8 

13 

18 

23 

23 

Register 

Contents 

Step/label - is tne number or symbolic 

label (four-position) assigned to this 

instruction. 

WBLK - identifies the operation to be 
performed (write blocked record to buffer). 

Buffer - identifies the buffer that will be 

partially formatted each time this 
instruction is executed. This operand must 

be coded, although no physical disk writing 

takes place. 

Format - identifies the number of the 

format to be used when formatting from 
registers to buffer. If this operand is not 

coded, an error is flagged by the translator. 

Register - identifies the regiHer containing 

the location (offset) from the first (leftmost) 

position of the buffer. This is a required 

entry. 

Execution is similar to that for a RBLK 

instruction, except that data movement is 

from registers to buffer. 

Assume that buffer 4 contains three blocked, logical records, 

each record being 40 bytes long. Also assume that format 

number 9 specifies data to be moved from registers to the 

logical records. The following sequence will format the 
registers specified in format 9 into the second logical 

record contained in buffer 4. 

- - --~;i"::;--:~-'---I-
:,~( "rid "'(, r(] 

LABe L 

:> 3 .5 6 7 8 9 10 11 121314151617 18 19 20 21 22123 24 15 2627 28 29 30 I 
,-r-

fl A 

~ 
1-H I 

f--

f JBlllK. - - ~-
~ L i ,--~- ~-+- ,-' 

Reference Material 53 



Exchange Buffer Contents (EXCH) 

This instruction exchanges the contents of two separate 
buffers. The number of the buffers to be exchanged 
must be entered. A sample EXCH instruction is: 

Column 

Entry 

In this example, the contents of buffer 2 will be the 
previous contents of buffer 8, and vice versa. 

Move Data from Buffer to Buffer (MOVE) 

This instruction moves the contents of one buffer into 
another buffer. This is done by simply entering both 
buffer numbers. The first buffer specified receives the 
contents of the second buffer specified. A sample 
MOVE instruction is: 

Column 8 13 23 

Entry MOVE 4 

In this example, the contents of buffer 4 are moved into 
buffer 1. The content! of buffer 4 are not changed. 

Move Partial Content from Register to Register (MVER) 

This instruction moves part of the contents of a register 
into corresponding positions in another register. The 
format of a MVER instruction is: 

Column 

Entry 

54 

Step/ 

Label 

8 13 18 23 28 

MVEFI To From Byte Length 

Register Register Positions 

Column Contents 

Step/label- is the number or symbolic label 
assigned to th is instruction. 

8 MVER - Identifies the operation to be 
performed (move specified register contents 
to register indicated). 

13 r 0 register ~ identifies the register to which 
data shou Id be moved. 

18 From register ~ identifies the register from 
which data is to be moved. 

23 Byte positIOn ~ specifies the leftmost byte 
position of both the to and the from registers. 

28 Length ~ indicates the number (1-16) of 
characters to be moved. 

Upon execution of this instruction. characters ane moved 
from the register specified in column 18 to the register 
specified in column.13. Character positions not I'eferenced 
are unchanged. Data is moved from left to right starting at 
the position specified in column 23. The numbel' of 
characters moved is specified in column 28. Thus, data 
moved from the column 18 register is placed in equivalent 
positions in the column 13 register. No indicators are set 
by this instruction. A sample MV E R instruction is: 

Register A contents: 
F F F 
111 

_________ 14 15 16 

Register B contents: 

F F F F F 
" 543 2 

_______ 12 13 14 15 16 

The following MVER instruction produces: 

STEP! 
LABEL 

61'.J.h '(rl~rl~t"r;:'I~ UlliJ Hil Ll 
Register A contents: 

1 ~ 16 17 18 19 20 

B 

f-

L. _ 

F F F F F 
6 5 111 

_________ 12 13 14 15 16 

Register B contents: Unchanged 

2122 :132425 

11. 

2627 28 29 30 31 ,,' 
12 



Move Partial Content to Register with Offset (MOFF) 

This instruction moves part of the contents of a register 
into specific loca,tions in another register. The format of 
a MOFF instruction is: 

Column 

Entry 

Column 

Step I 
Label 

8 13 18 23 28 

MOFF To From Byte Length 

Register Register Position 

Contents 

Step/label - is the number or symbolic label 
assigned to this instruction. 

8 MOFF - identifies the operation to be 
pE·rformed (move specified data into the 
offset position of the register indicated). 

13 

18 

To register - identifies the register to which 
data should be moved. 

From register ~- identifies the register from 
which data should be moved. 

23 Bvte position - specifies the iettmost byte 

28 

position of the register (column 13) into 

which the characters are to be moved. 

Length - specifi es the number of characters 
to be moved. 

Upon execution of this instruction, the number of characters 
(column 28) counting from the low-order (rightmost) end 
of the from register (column 18) are moved to the to 
register (column ·13). The characters start in the receiving 
register at the byte position (column 23), and continue 
for (column 28) positions to the right. Positions not 
referenced in the (column 13) register are unchanged. A 
sample MOF F instruction is: 

Register F contents: 

Register B contents: 

F F F 
321 
14 15 16 

F F F F F 
87654 
12 13 14 15 16 

This MOFF instruction produces the following results: 

Register F contents: 

F F F F F F F F 
876 543 2 1 

----9 10 11 12 13 14 15 16 

Register B contents: Unchanged 

Load Data Buffer to Register (LOAD) 

This instruction is used to access a specific ·field in buffer. 
The buffer position of the field is specified in the instruction 

rather than through a register. The format Df a LOAD 
instruction is: 

Column 

Entry 

Column 

8 

13 

18 

23 

28 

8 13 18 23 28 

SteplLabel LOAD Buffer Buffe'r Register Length 

Offset 

Contents 

Step/label - is the number or symbolic label 

assigned to this instruction. 

LOAD - identifies the operaltion to be 
performed (load specified re!)ister with 

ind icated data). 

Buffer - identifies the number of the buffer 
containing the data. 

Buffer offset - identifies the position in the 
buffer of the leftmost byte to be accessed. 

Register - identifies the register to which 
data is to be moved. 

Length - specifies the number of characters 

to be moved. 

Reference Material 55 



Upon execution of this instruction, the specified register 

is loaded with the number of bytes indicated by length 

from the address computed by the buffer and buffer offset 

entries (columns 13 and 18). The buffer and buffer offset 

address indicates the bytE' that loads into the byte position 

of the register specified by subtracting bytes (column 28) 

from 17. Data is !oaded w that the units (rightmost) position 

of the register is loaded last. Only the specified register is 

changed. The high·order bytes in the register are set 

to blank (hex 40). A sample LOAD instruction is: 

Buffer 2 contents: 

44444CCCC F F 
000005678 7 8 
---------------11 ........ . 

Register A contents: 

FFFFFFFFF F F F F F F F 
999999999 9 9 9 9 9 9 9 

__________________ . __________ 16 

This load instruction produces the following results: 

Register A contents: 

C C C C F F 
~~~~~~~~~ hi 5 6 7 8 7 8 

___________ 11 12 13 14 15 16

56

Store Data Register to Buffer (STOR)

Execution of the STOR instruction is opposite to that of
the LOAD instruction. The rightmost contents of the
specified register are written to the specified buffer area.

Register contents are unchanged.

The format of a STOR instruction is:

Column 8 13 18
Entry Step Number

or Label
STOR Buffer Buffer

Offset

23 ~
Register I Length

Column

8

13

18

Contents

Step/label - is the number or symbolic label

assigned to this instruction.

STOR -- identifies the operation to be

performed (store specified buffer with

ind icated data).

Buffer - identifies the number of the buffer
in which data is to be stored ..

Buffer offset - identifies the position within

the buffer that stored data should start.

23 Register - identifies the register from which
data should be taken.

28 Length - identifies the number of byte posi

tions to be moved from the register.

The following instruction would cause the nine low-order
positions of register A to be stored in buffer 2 (display)

starting at position 40.

Zone Bytes in Register (ZONE; Assume that register Z contains the following:

This instruction 3ssigns zones to specified bytes in a register. 444444444 4 4 4 4 F F F
The format of a ZON E instruction is: 000000000 0 0 0 0 3 2 1

123456789 10 11 12 13 14 15 16

Column 8 f r r .I~; Entry Step/ ZONE Reqlster Zone Byte. Length Sample ZONE instruction l'
label Position

Column Contents

Step/label -- is the number or symbolic label
assigned to this instruction. Resulting register Z contents:

8 ZONE ~ identifies the operation to be per-
formed (zone bytes in a register). FFFFFFFFF F F F F F F F

13 Register identifies the register address con- 000000000 0 0 0 0 3 2 1

taining data to be zoned. 123456789 10 11 12 13 14 15 16

18 Zone ~ specifies immediate data indicating
the zone to be forced (0-9, A·F). Sample ZONE instruction 2:

23 Bvte position·· indicates the position of the

bytes from the leftmost po~ition of the regis·
ter.

28 Length ~ indicates the number oj bytes to

be zoned.

Upon execution of this instruction, the bytes in the register
Resulting register Z contents:

specified in column 13, starting at the entry in column 23, FFFFFFFFF F F F F F F D
and going to the I-ight for the number of bytes specified 000000000 0 0 0 0 3 2 1
in column 28, receive zones as specified by column 18.

10 12 13 14 15 16 123456789 11
Only the register being zoned is changed.

Refen:nce Material 57

Miscellaneous Instructions

The following instructions have important uses in the ACL
program, as shown below.

Set Indicators On (SON)

This instruction selects and turns on certain indicators. The
format of a SON instruction is:

Column

Entry Step/Label SON

where NNN = an indicator (1-255) or blank for no indicator.

Upon execution of this instruction, the selected indicators
are turned on. No registers or buffers are changed. Note
that indicator 161 turn~. on the flashing display screen
while indicator 162 giVES a short audible keyboard buzz.

The ACL instruction, SON 161, turns on indicator 161 and
turns off indicator 192 (R ESET key indicator). The
instruction, SON 161 192, turns on both indicators 161
and 192. The instruction, SON 192 161, turns on only
indicator 161. (After turning on indicator 192, indicator
161 turns on, which then turns off indicator 192.)

Set Indicators Off (SOFF)

This instruction turns off selected indicators. The instruc
tion has the same format as the SON instruction. Upon
execution of this instruction, however, the selected in
dicators are turned off. All indicators, except for the three
switches (AUTO REC ,1\DV, PGM NUM SHIFT, and

AUTO DUP/SKIP), can be turned off with this instruction.
Note that indicator 161 can be set off with this instruction
to turn off the display error line (flashing screen). This in
dicator can be reset by pressing the RESET key. Avoid
turning certain system indicators off or on (Appendix A).
The keyboard indicator (197) can only be tested. This in

dicator does not lock or unlock the keyboard.

Checkpoint Statement (CKPT)

The CKPT statement, which interrupts an ACL program and
provides a reentry point, has the following format:

Column 18
Entry Register

58

Column

8

13

18

Contents

Step/label- is the number or symbolic label

assigned to this instruction. The CKPT can
not be at step number 255, 511, or 767.

CKPT - identifies the operation to be

performed.

Data set number - is the number of the data

set (with a .DATASET statement) that con
tains the executing ACL program as it
exists at the interrupted point, or checkpoint.
This data set must meet the requirements
of an object data set.

Register - is the register that contains in
formation about the checkpoint data set.
The register must contain the following
information:

Register
Position

1-8

9
10-12

13
15-16

Contents

Data set name
Drive number (1 or 2)

Data set access method (SW or
SWE)

Restart point (C or E)
Checkpoint 10 no. (any EBCDIC
character)

Data set name - is the name of the data set
to be used to store the checkpoint records.
This is a required field.

Drive number - is the number of the disk
drive containing the checkpoint data set.
This entry must be 1 or 2. This is a required
field.

Data set type - must be SW or SWE.

Restart point - a C indicates the program is
to continue from the next sequential state
ment after completion of the reque~;t. Note
that for the SWE access method, the current
checkpoint record does no! overlay the pre
vious checkpoint records. An E or any other
character other than a C indicates that the
program is to be terminated and a system
close be attempted after the checkpoint

(see Program Restart in Chapter 4).

Check poin tID - a two-cha racter fie Id used to
identify the checkpoint. These two characters
overlay the last two characters of the program
name on the display screen, and can be used
to identify the current checkpoint.

The CKPT statement saves the status of the machine at the
execution time of the statement. Th is allows a restart from
this point in the program.

The checkpoint data set must not be open when the CKPT

instruction is eXE!cuted. If it is open, a 9X 1 error is posted.
The CKPT instruction opens the checkpoint data set, and
closes it after the checkpoint is completed (see Program
Restart in Chapter 4).

Insert Character in Buffer (lCBF)

This instruction generates a character of code (hexadecimal
or keyboard character) and inserts that character in a speci
fic position in a buffer or register. This can be used for edit

ing a print line (inserting slashes in a date, for example) with
characters not o1therwise available. The format of an ICBF
instruction is:

Column 23
Entry Step/Label Character

Column

8

13

18

23

Contents

/CBF - identifies the operation to be per
formed.

Buffer/register - identifies the number of the
buffer/register that is to receive the character.

Position - indicates the position with in the
buffer at which the character should be
entered.

Character - identifies the character of im

mediate data that is inserted in the buffer/
register.

Generate Self-Check Number (GSCK)

This instruction creates a self-check number when, for ex

ample, a master file of customer numbers is created. This
eliminates calculation of a self-check number. The format

of a GSCK instruction is:

~C~o~lu~m~n~~ ______ -+=-____ ~=-__ ~~1~8 ~
Entry I

Column

8

13

Contents

GSCK - identifies the oper.3tion to be per

formed.

Register - identifies the register (A-Z) con
taining the data which is used to compute
the self-check number. The self-check num
ber is computed from th is data as specified
by the .SELF-CHECK control statement. The
.SELF-CHECK control statement also spec
ifies the placement of the self-check number
in the register.

No Operation (NaP)

The NOP instruction reserves a program step/label for later
use. The instruction causes no operation and does not
change any indicators or registers. The instruction is initiated
by entering NOP in column 8 on the coding sheet.

Reference Material 59

Execute Program Chain (EXEC)

This instruction closes clll data sets and waits for all

printer operations to complete (system close), then chains

directly from the end o'f one job to translation or

execution of the next program. The format of the EXEC
instruction is:

=---~+---------~----~~----
Column 8 113
Entry EXEC A or E

Column

8

13

Contents

Step/label - is the number or symbolic label
assigned to this instruction.

EXEC - is the name of this instruction.

Type of execution to be performed. An entry

of A indi cates that the next program should
be translated. An entry of E indicates that
the next program should be executed.

If an A is entered in column 13, this instruction can be pre

ceded by a MOVE instruction, which moves the input
(source) data set name (as it appears on the data set label)

and the output (object) data set name into buffer 2. (See

Chapter 4 for information about the Translator feature.)

This information can also be read from a data set stored in

buffer 2. The EXEC instruction then reads this data from

the display screen and in itiates translation.

If an E is entered in colLmn 13, this instruction can be pre

ceded by a MOVE instrLction, which moves the output (ob

ject) data set name and 1 he program name into buffer 2.

This information could also be read from a data set stored

in buffer 2. The EXEC instruction reads this data from the
display screen and initia~:es execution of the program. This

option can also be used to execute label processing.

Assigning a Step Number (ORG)

You can assign any valid step number to the next sequential
instruction by using the ORG function. The format of this

function is:

Column
Entry

60

13-15
Step Number
Assigned

When the ORG is executed, the instruction following the

ORG is assigned the step number specified in columns 13-

15. If these columns are blank, step number 000 is assigned.
I n the object data set, space created by the 0 RG function

is filled with hexadecimal FF. The space is considered

unused. Because the ORG is used, then deleted by the

label processor, it is ignored by the translator. ORG may
not be used if the label processor step is bypassed (the

translator will post an invalid instruction error). The ORG

function is useful in moving the object code in storage, or

in program overlays. Note that the step number entry must
be right-justified.

Read a Card (CRDR)

The CRDR instruction reads and transfers data from cards
in the IBM 5496 Data Recorder or the IBM 129 Card Data

Recorder. The transferred data can be loaded into a speci

fied buffer, and then formatted. The CRDR instruction is:

Column
Entry

Column

8

13

18

28

28
Operation

Contents

Step/label- is the number or symbolic label

assigned to this instruction.

CRDR - identifies the operation to be per

formed (read a card).

Buffer - identifies the buffer into wh ich

the data read from the card is to be loaded.

This is a required entry.

Format - identifies the number of the

format which is to control formatting

of the data after it is loaded into the
buffer. A blank defaults to data

directed formatting.

Operation - identifies the sequence of the

operation. Valid entries are:

• S - specifies that the read be started, but
no data be transferred to the work

station.

• X - specifies that data read by the 5496
or 129 be transferred to the specified

buffer.

• Blank - specifies that data be read by
the 5496 or 129 and concurrently loaded

into the specified buffer.

Upon execution of this instruction, data is read from cards
by the 129 or 5496, transferred into the specified buffer,
and then form .ed according to the format specified in
column 18. The S in column 28 allows data to be read
from the card, but not transferred until the entire read is
completed. Data is then transferred by use of the X entry
in column 28. The S parameter can be used in conjunction
with the IF CRD IS/NOT BSY instruction to loop on this
operation until cards are completely read. Because the
reading is fully overlapped with the attached printer,
this eliminates the printer speed from being limited by

reading time.

Punch a Card (CIWP)

This instruction transfers data from the work station to the
IBM 129 Card Data Recorder or the IBM 5496 Data Re
corder. The receiving machine then punches that data onto
80 or 96-column cards. The format of the CRDP instruc
tion is:

Column
Entry Step/

Label

Column

8

13

18

23

8 13 18 I 23
CROP Buffer Format I Buffer

Content

Step/label- is the number or symbolic
label assigned to this instruction.

CROP - identifies the operation to be per
formed (punch a card).

Buffer - identifies the buffer from which
data is transferred to the 129 or 5496.
This is a required entry.

Format - identifies the number of the for
mat which controls formatting of data into
the buffer specified in columns 13-14.

Buffer - identifies the buffer which can
contain additional data to be transferred
to the 129 or 5496. This data is first
loaded into the required buffer (columns
1 :1-14), formatted according to the format
in columns 18-20, then transferred to the
129 or 5496. If columns 23-24 are blank,
the buffer specified in columns 13-14 is
first blanked, then formatted.

COMMUNICATIONS

The 3741 Model 4 Programmable Work Station has all of
the functions available through ACL (application control
language). plus the communications facility currently avail

able on the 3741 Model 2.

Communication capabilities of the Model 2 and Model 4
are described in Chapter 10 of the IBM 3741 Data Station
Reference Manual, GA21-9183. The access method facilities
and macro instructions required to write an application
program that defines, activates, and control!; the 3741
Models 2 and 4 are described in the IBM 3740 BTAM/TCAM
Programmer's Guide, GC21-5071.

Binary Synchronous Communication

The binary synchronous communications aclapter allows
the 3741 to function as a point-to-point terminal. The
basic BSCA function allows data transmission using EBCDIC
directly as the communication line code. Operation is
half-duplex over a private line, a common cCirrier leased
line, or a common carrier switched network. The mode of
transmission is synchronous, serial-by-bit, and serial-by
character.

Operator Transmission End of

selects ------ ~. Procedure

communication Reception

The operator selects BSCA communications from the index
and update modes only. The following procedure estab
lishes a data link and communication begin:;:

1.

2.

3.

4.

5.

Load the diskette.

Position the diskette to the data set label or record
where communication is to start.

Press FUNCT SEL upper and COMM.

Press the appropriate mode key.

Press DATA on the modem.

The 3741 disconnects from the line when communication,
whether transmission or reception, is complete.

Reference Material 61

Expanded Communications Feature

The Expanded Communications feature provides the

following additional functions for the 3741 Models 2 and 4:

• Expanded buffer (512 bytes)

• Transmit selected field

• Transmit selected records

• Receive and insert constants and blanks

• Unattended printing after completion of communication

• Unattended ACL prowam mode after completion of
communication (Model 4 only)

Unattended ACL program mode is explained here because

it relates directly to the 3741 Model 4.

Unattended ACl Program Mode after Communications

The information required to translate or execute an ACL

program is put in track 0, sector 3 of disk 1. When commu
nication is complete, the information in sector 3 is shifted

one position to the left and displayed.

Operator
selects
communication

Trclnsmission

~~I--'---

Reception

AC L translation

ACL execution

Disk 1, with the load pal-a meters properly recorded, must

always be mounted before establishing the mode. The

object data set, containing the Model 4 program, must be

labeled and mounted on the drive as specified by the pa

rameters recorded in track 0, sector 3 of the disk in drive 1.

The information required for translation is:

Position

2-9

10

12-19

20

21

62

Required Information

Source data set name.

1 or 2, dE'pending on the disk drive the

source data set is mounted on. Default is 1.

Object delta set name_

1 or 2, dE~pending on the disk drive the ob

ject data set is mounted on_ Default is 1.

The character A.

The information required for execution is:

Position Required Information

2-9 Object data set name.

10 1 or 2, depending on the disk drive the ob

ject data set is mounted on. Default is 1.

12-15 ACL program name.

21

The operator can set up the unattended ACL program mode

by keying:

1. FUNCT SEL '1pper and COMM

2. The character E

3. The appropriate mode key

Communication Mode from an ACL Program

Oper atar I ntcrvef,tion can be reduced further when the

Communlcatio" LiI~k (Rf'Q) feature is installed on a 3741

with th8 Expa~lded Communications feature.

The purpose of the Communication Link (RPQ) feature is

to set up the communication mode parameters under con

trol ot an ACL program, rather than having an operator key

the setup sequence ITldllually.

The communication mode and additional parameters are

entererlill /\CL r8ljisters A and B by the program. To trans

mit or receive blocked records or to print under format con

trol requires that proper masks or formats be set up in ACL

buffers 8, g, and 10.

The linkage to commuilications begins when the COMM

instructioll j; encountered in an ACL program.

Column

Entry Step/
Label

8

COMM

13 18 23

The 3741 does extended validity checking of Ii put param

eters. The commur ication function lakes conti 01 at the

conclusion of setup checking by cransfell i fl'j re(jiS ters A

and B to Model 2 r~!gisters and the ACL h,J 'fers 8, 9. Jnd

10 to Model 2 prog-am levels 8, 9, and A. The!), communi·

cations takes placE' in the sarm: m,v,ner as with a Model 2
with the Expanded Communications ieatur(,.

COMM
statement in
ACL program

starts
communication

Transmission

Reception

ACL translation

ThE! objE!ct data set must precede the received data sets
during receive mode to avoid overwriting of the object

data set.

RE!!Jister A must contain the followmg Information:

Register

Position

2

3

4

5

6-16

Contents

ThE! character M, if the call is placed at the

374'1. Any othE!r character defaults to auto

answer mode. (This position IS 'lot used on

non~;witched lines,i

The character P, if upon completion of

communications, the first data set receivE!d

is to be printed. The character E. if upon

completion of communications, an ACL

pro~tram is to be loaded and executed, Any

othEr character causes the 3741 to go to

communications complete mode (upon the

completion of communicat'o!ls) requiring

RESET to return to index (X) ["node.

The communications mode cI,aracter (T, J,
P, R, B, K, or D).

Format numbers 2 through 9, This position

is w;ed only if position 2 contains a P and

buffer 10, position 1 contains X'7 A' (:).

If a read or a WI it~ to file 1 has been per

formed and the character N is coded in this

position, no multivolume indicator (contin

uation) check wli! be made and EBSCA will

assume that the entire file reside, on disk 1,

If a read or a write has not been performed

or if a blank is coded in this position, the

multivolume indicator (continuation) check

will be made.

Not used.

Register B must contain the following information if the

terminal 10 feature is installed:

Register

Position

1-15

16

Contents

Remote 10.

Remote 10 length (hex) even if the length is

zero (no remote ID being sent).

Data set 1 must have the following characteristics:

• Open and loaded on disk drive 1

• SW, SWE, or SU type file for receive (R) and inquiry (I)

modes

• KU, KR, or SR type file for transmit (T, B, P, 0, J, K)

modes

Data sets 2, 3, and 4 must be closed when usi ng the commu

nications linkage function.

The mode selected determines whether the first record is

written to disk or transmitted.

The first record is written to disk in receive mode as

follows:

• At the EOD address if data set 1 is an SWE type file.

• At the data set 1 disk address plus one if data set 1 is an
SU or SW type file. If no activity was generated against

the file, the first record is written at the BOE address.

When a read or write instruction is executed before the

COMM instruction, the received records must have the same

record length as the existing records in the file. The first

record is transmitted in transmit mode as follows:

• Null record (STX ETX) if data set 1 is a null data set

(BOE = EOD).

• BOE record if no activity was generated against data

set 1.

• Record at the data set 1 disk address.

Reference Material 63

Chapter 3. Design alild I mplementation Considerations

CONSIDERATIONS FOR EFFICIENT KEY ENTRY
PROGRAMS

The work station coupled with ACL can be an efficient
data entry tool. HowevHr, the efficiency of the data entry
job for the key entry operator is dependent on the program
mer. Paramount in all key entry programs is adequate error
correction facilities for the operator. A discussion and cod
ed examples of error correction routines are provided later
in this chapter. Additional guidelines for writing efficient
key entry programs are as follows.

Alpha/Numeric Fields

Because it is easier to manually shift the keyboard for
numeric characters than for alpha characters, mixed alpha/
numeric fields should be defined as A in position 23 of the
.FIELD; unless there is only a very occasional alpha charac
ter in a field, then U in position 23 should be used.

Error Correction

Operators detect approximately 80 percent of their keying
errors, so immediate operator correction of previously
entered fields should be constantly provided using the T
in column 36 of the .FIELD statement (special keyboard
close) .

Prompting Messages

Prompting messages issued to the operator should be spelled
exactly like the captions on the source document. Prompt
ing messages should also appear in the same sequence as
listed on the source document to facilitate the ease of key
ing. ACL allows you to reformat the fields to meet the
requirements of the output record format. After fields are
entered, they should be displayed on lines 2, 3, and 4 of the
display screen, and should be separated by spaces rather
than displayed in packed diskette output record format,
which is difficult to read.

64

Restart

Because operators are frequently interru pted during their
work, the ACL program should indicate to the operator the
point at which processing was stopped. You should con
sider using the checkpoint/restart capabilities of ACL. The
CKPT instruction is discussed in Chapter 2, and the pro
gram restart procedure is discussed in Chapter 4. Output
data sets are automatically positioned at the interrupted

point upon restart. See .DA TASET in Chapter 2, and note
the SW and SWE access methods.

Guidance Techniques

I n many applications the operator keys directly from a
source document; that is, the operator performs a data
transcription function. The operator's eyes are on the doc
umentation and not following the display screen. The ACL
provides two tools to guide the operator in this environment.

The first of these tools is the display screen flash. The flash
ing screen is turned on by setting on indicator 161 in the
ACL program. This feature is normally used when the ACL
program determines an error condition (for example, keyed
data is outside a range check). Besides flashing the screen,
this indicator locks out the keyboard and provides an audi
tory signal (no key click), so the operator can recognize the
error even if the operator does not look at the screen.

The second tool is the buzzer. Keying throughput can be
increased by setting on indicator 162 (buzzer) to give a
ready buzz when the operator must wait for the machine
(for example, searching a file to validate an account number).
On the other hand, if the operator should be looking at the
screen for visual verification, then the ready buzz should
not be used (for example, searching a file on customer num
ber for the customer name and address and wanting the
operator to visually verify that the address is correGt).

Keying Pattern

The keying pattern of the job should be thoroughlv studied.
If there is a fixed-length field in a logical series of variable
length fields, an exit key such as RIGHT ADJ should be re
quired (position 29 in .FIELD control statement) for all of
the fields so the operator does not have to learn the excep
tional field.

Variable-length fields which are seldom filled should require
an exit key so the operator does not have to be concerned
if the field is full and erroneously exit the next field.

Do not control branching in the ACL program with extra
keystrokes by calling for extraneous yes· and no-type meso
sages rather than controlling branch key blank field on the
(SKIP, RIGHT ADJ) exit keys.

The keying pattern for the job should have a logical flow.
The capability of the work station to allow fields to be
entered in a sequence convenient for the operator and out·
put on the diskette or printer in a different arrangement
to meet other data processing requirements should be
utilized.

Function Keys

The work station installation may be operated in both data
station mode (Models 1 and 2) and ACL program mode
(Models 3 and 4.1. Thus, the ACL programs should simulate
the data station function keys (for example, REC ADV).
This also provides consistency among the various ACL pro·
grams to be run by the same operator.

Key

FIELD BKSP

REC BKSP

FIELD ADV

REC ADV

Displaying Data

Recommended Function

Go back to the previously entered field.

Go back to the beginning of the previous
ly entered group of fields. The beginning
depends on the format of the source docu
ment and not necessarily on the record
written to the diskette (the beginning of
a line on the source document).

Go to the next field to be entered. In
some applications, you may want to in
hibit FIELD ADV if data was not previous
ly entered for the field.

Go to the next group of fields to be enter·
ed or reviewed. The group of fields depends
on the source document. Some applica

tions may require that data is mandatory
in all fields. Thus, you may want to inhib
it REC ADV if this data was not previously
entered.

Displaying data on the display screen should be thoroughly
planned so it is most convenient and readable for the opera·
tor. For example, data is often recorded on the disk in a
compact form, but the capability of the work station to dis
play this data with separations between fields for easier read·
ing should be utilized.

STORAGE ALLOCATION AND REQUIREMENTS

The standard work station has 4096 positions of pro·
grammable storage. This storage is used to accommodate
the ACL programs during execution. Figure 24 shows how
a typical ACL program appears in storage. Note that the
first 1024 positions of storage contain 26 fleneral purpose
registers (A-Z), an indicator table, and work station
control programming. This area of storage cannot be
altered by the ACL programmer, except for the contents
of the registers and the status of certain indicators.

The remaining 3072 positions of storage are divided into
128·position buffers (1·24). Buffers 1 and 2 are permanent·
Iy assigned to the display screen. Any data written to buffer
1 or 2 is immediately displayed (first 120 bytes) on the
screen.

The remaining 22 buffers are used to store:

• Data set and printer input/output buffers.

• Tables.

• Operator prompting messages.

• Program instructions.

• Disk indexes (key indexed access method).

• Data formats.

Buffers 3-24 are assigned by the ACL control statements,
except for the data formats, which are always loaded begin
ning in buffer 24. Dis~ indexes used by the key indexed
access method can be loaded automaticallv or assigned in
the .DAT ASET control statement. I f the automatic option
is selected, the system locates an unused area in storage to

build the index.

As you code an ACL program, buffer assiflnments start with
buffer 3. The first buffers assigned are usually the input/
output buffers for the data sets to be accessed and for the
printer, if required. Tables and messages can be defined by
usi ng the .BU F FER control statement. You control the
point where program instructions are loaded by identifying
the starting buffer number. This must be an odd-numbered
buffer and must follow buffers assigned for data sets, the
printer, prompting messages, tables, and constants.

The 8K storage feature provides 32 additional buffers, for
a total of 56.

Design and Implementation Considerations 65

Translator Storage Assignments

The following rules are used by the translator for placing

instructions in storage. They can aid you in coding or

patching a source program. (For the rules governing the

label processor, see Chapter 4.)

1. I nstructions preceded by step numbers are placed in
storage at the posi tion corresponding to the step num·

ber. (The actual physical location of the instruction

depends on the starting buffer number of the program,

as specified in columns 18-19 of the .NAME control

statement.) If the indicated storage position already

contains an instruction, a translator error is posted.

2.

3.

66

I nstructions not preceded by a step number (columns

1-3 blank) are placed at the next available storage lo
cation. If the first instruction in the program has no

step number, it is placed at the location for step num
ber 000. Note tha t instructions do not have to be

coded in the source program in the exact order they
appear in the object program, unless columns 1-3 are

blank.

When the translator has assigned all instructions to

storage locations, it checks to see that any unused

storage locations are preceded by a GOTO instruc
tion. If any other instruction is followed by an un

used storage location, a translator error is indicated.

Note that comment records should be coded to identi

fy buffer and indicator usage within the program.

Storage Requirements

To determine the storage requirements for your ACL pro

grams, use the ACL storage estimator form shown in Figure

25.

Registers Indicators

A 1

255
Work Station

Z Control Programming

1024 Buffer -1 Display (I ines 1, 5, 6)
-2 Display (lines 2, 3, 4)
-3 Printer

-4 Printer

-5 Data set (1)
-6 Data set (2)

-7 Tables

-8 Tables

2048 Buffer -9 Prompting messages

-10 Prompting messages

-11 Instructions

-12 Instructions

-13 Instructions

-14 Instructions

-15 Instructions

-16 Instructions

3072 Buffer -17 Disk indexes

-18 Disk indexes

-19 Disk indexes

-20
-21

-22 Data formats

-23 Data formats

-24 Data formats

4096 Read-Write Storage

Figure 24. Typical ACL Program Structure (4K)

} Fixed

Variable
(under pro

grammer
wntrol)

Registers, indicators, and work station

control stora!le (FIXED)

2 Display screen buffers (FIXED)

3 Operator prompti ng message *

Number of messages ()x4=(

Total number of characters

in messages + (

TOTAL

4 Data sets

Number of data sets (

5 Pri nter buffers

128 print positions (

132 print positions (

TOTAL

6 Tables*

Number of entries per

table

Entry length

Plus 1

TOTAL

x (

(

(

) x 128

) x 128
) x 256**

Figure 25 (Part 1 of 2). ACL Storage Estimator Form

(1024)

(256)

7 Instructions *

Number of instructions () x 4

8 Data formats *

Number of formats plus 1

Total number of fields in
formats

TOTAL

+ (
(---) x4

9 Index tables (key indexed access method)
per index

Tracks in data set
+ 2 (

Tracks per entry

Entry length x (

TOTAL

TOTAL STORAGE REQUI REMENT

*

**

Because these parts of your program start in a buffer,
that entire buffer may be allocated for only that part,
u'nless you specify another use for the remaining buf
fer area.

Only positions 1-4 are actually used in the next
sequential buffer.

Figure 25 (Part 2 of 2). ACL Storage Estimator Form

Design and Implementation Considerations 67

EFFICIENT USE OF WORK STATION STORAGE

The following sections provide a number of programming
techniques which allow '~ou to conserve and fully utilize
storage space in the work station.

Using Operator Messages

A key area in conserving storage is the definition and use of
operator prompting mes~iages to be displayed. If overused,
these messages can not only slow down the operator but
significantly increase your program storage requirements.
The following are general rules for writing the ACL program:

• Specify M in column 28 of your .FIELD control state·
ments, when applicable.

• Do not use the .BUFF:ER control statement to define
captions displayed on lines 2, 3, and 4 of the screen.

• Reuse prompting mes:;ages defined by your .F I ELD con·
trol statements, when applicable.

• Utilize abbreviations in your operator prompting
messages.

In many cases, it can be advantageous to retain keyed data
by moving it to lines 2,3, and 4 of the display screen. You
may also want to display a caption with the data. By speci·
fying M in column 28 of your .FIELD control statements,
the prompting message and related data is moved to the
specific position on lines 2, 3, and 4, after the data is keyed.
You also specify the starting display position in columns
33·35 of the .FIELD control statement. Do not use the
.BUFFER control statement to define additional captions
to be displayed on lines :i~, 3, and 4. Each .BUFFER control
statement uses 128 positions of additional storage.

It is possible to use the same messages as defined in .FIELD
statements for print, diskette write, or other display opera
tions. Each prompting message defined by a .FI ELD state·
ment is stored contiguowily (followed by a 4-position con
trol block) in the buffer specified in the .FIELD control

statement. If the prompting message overflows to the over
flow buffer, an additional three bytes are used at the end
of the primary buffer.

68

Total buffer space can be utilized by combining .FIELD
prompting messages, initialized .BUFFER data, and table
data in the same buffer .. FIELD information, however,
must start in the first position of the buffer. For example,
a buffer can be initialized (with a .BUFFER statement) or
table data can be loaded to fill the remaining positions of a
buffer containing a .FIELD prompting message. (See Col
umns 13-14 Buffer (R) and Columns 18-19 Overflow Buffer

(0) under .FIELD in Chapter 2.)

You can load prompting messages into general regi~;ters
(A-Z) by issuing a REFM instruction to the buffer contain·
ing the messages. Once in the registers, the message can be
used in anyone of the operations mentioned.

Because the operator needs only enough information to
understand what action must be taken, you can minimize
storage requirements by using abbreviations in your operator
prompting messages. This may, however, depend on the
individual operator and the complexity of the abbreviation,
although the operator will probably rely less on the prompt
ing messages as experience is gained.

Using Tables

ACL allows you to search, read, and write tables in storage.
You may occasionally find that too much storage area is
required to maintain an entire table. It is possible, however,
to segment a long table into subtables, and store the seg-
ments in a diskette data set. The subtables can be retrieved
by using the key indexed or relative record number access
methods. The key indexed method assumes an ascending
sequenced table. The relative record number method
assumes a table with no sequence. For both methods, let us
assume that table entries are 10 positions in length, and that
10 entries are stored in each 128-byte sector, with a hexa
decimal FF in position 121. The hexadecimal FF indicates
the end of a table to the work station. Both access methods
search for an equal entry, as specified in the TBFX Instruction.

I n Figure 26, the key indexed access method starts with a
read or search of the table file based upon the search argu
ment contained in register B. Note that the key is specified
in the .DATASET statement as starting in position 111 with
a length of 10 positions. The search of the fi Ie is termi nated
when an equal key or a higher key is found. The subtable
segment that should contain an equal entry is in buHer 3,
the input buffer for the table file. A table search is then

initiated by the TBFX instruction. If no equal entry is
found, register A will be zero. Register A is then te'ited with
an I F instruction, causing a branch to an error routine called

ERR1.


~~~SrErlrTIJ"Ul'j~16I7ilAr~~1;12I{Ii'w~~j:'1321~134~-"~~~31~3T('('(3j'[TrTI~w'2 '~I54 55156t71~; 60 61 ",:,;i'j' rl~69tl71,72 ~~75 76 77~~~ 
Dataset Dataset name Record Drive Buffer Deleted EOF Type I 'nde)'; Tracks Key Key. 

length record routme ",-I.. length length poSitIOn 

routme Extent 
check 

r---,-, __ ,IL 1# COMMENTS -

8 9 10 11 12 13'4 151/~1 19 20 21 22 23 24 2f!/lfa 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 11 12 73 74 75 76 71 78 

iR :: II ~t- IP'!J R IA rrlAIB II:. cll~LIIN EIAIR H ~R lI"llt: It-itL tIN. 1R1!=Ir-,iT SITIEIR IF! 
frlp Y I:I,-'f:f IAI/.l.Il5 14 IH IScJIB-trlA.1B11.. i- IR C(;ulA ttle.1Y: 
IT AI!? :l' ""7£ .,.~ N. ~ ,I< ~ IN~ y hlJ N D 

-t--+-t--+-+-t- 1-- - --t--t-I--t-t--t-t-t---t--H-t--t--H---H-++-H--+I 

Figure 26. Key Indlexed Method Searching a Table of Ascending Sequence 

The relative record number access method (Figure 27), 
starts by initializing the relative record number in the table 
to 1. A read of the first record in the table fi Ie is done, 
followed by a table search of those table entries contained 
in the input buff,er. If no match is found, the program 
branches back to the read operation and the next record in 
the table is read. When the end of the table file is reached 
and no matching entry has been found, the ACL program 
branches to an error routine called ERR 1. 

Note that the end-of-file routine is specified in columns 53-
56 of the .DATASET statement. If the table is in ascending 
sequence, the reeiding of subtables can be terminated when 
a high entry is found by using the TBFN instruction and 
testing indicator 163 (table high, no equal entry found). 

Design and Implementation Considerations 69 



[mo ' J' ~irliJ'"rr~'fCC5~~l~~rIrct~I.~1~rCj~(TC(J~r(OrCr7fTLLfIu2rnIfijf{'fTj'rrr'l"rrtrYY'(TI'I 
Dataset D~tasct namp Record OIIVP Buffer D"lpt<,cl EOF Type I Index Tracks Ke~ ~ 

ICllgth 11'( (); 'I loutille length len~rth 

"Jellll!!' Extent 

STEPI 
LABEL 
1 2 3 ~~ ~ 7 

1-- -- -f--. 

1- -I-

~jD ~+ + 

t J .. 
l 

Figure 27. Relative Record Number Method Searching a Sequential Table 

Using the Key Indexed Access Method 

The key indexed access method minimizes the time required 
to search data sets arran!led in ascending sequence by using 
the index, which can be built in storage automatically. The 
storage requi red for the index may exceed available storage 
space, depending on the size of the data set. You can vary 
the size of the index to be built with two entries in the 
.oAT ASET control statEment. I n columns 63-64 of the 
statement, you can specify an index length smaller than the 
key length specified in columns 73-74 of the .DATASET 
statement. This reduces the size of the total index because 
the index contains the high-order positions of the key. The 
significance of the key should not be lost. In columns 68-
69 of the DATASET control statement, the number of 

tracks represented by each index entry may be specified_ 
The more tracks represented by an index entry, the less 
storage required for the total index. Note, however, that 
access time increases in proportion to the increase in tracks 
represented. Thus, the size of the index should be deter
mined by both the stora!le required and the access time 
desired. 

Providing Operator Error Correction 

Operator error correction techniques may be provIded in 
the ACL program, although the storage space required must 
be a consideration. The special keyboard close (column 36 
of the .FIELD control statement) and a register in place of 
the actual buffer and me:;sage number (columns 13 and 18 
of the ENTR instruction) may be specified to minimize the 
number of instructions required to provide operator error 
correction techniques. Figures 28 and 29 show the use of 
these options. Note that 14 instructions are needed in 
Figure 28 to provide for antered data and operator error 
correction. Figure 29 shows another method of providing 
operator error correction requiring 24 instructions. 

70 

chlo'ck 

Programming for operator error correction can be ,enhanced 
by use of .FIELD overflow buffers. For example, a corres
ponding ENTR instruction is: 

Where register A contains the current message number, and 
7 is the number of the buffer containing the start of .FIELD 
messages. If the overflow buffer is specified in the .FIELD 
control statement (columns 18-19), the buffer number does 
not have to be incremented or range-checked. When cross-
ing buffer boundaries, the first complete message in the next 
buffer has a message number one greater than the last message 
in the preceding buffer. 



Remember that each instruction, regardless of type, occupies 
four positions of storage. 

STEP! 
LABEL 
1 23 

If 

lAin V 

•• 

IN 

1p,IA rlK 

11'1,-

--
12131415161' 18 1<:l 20 71 n 23 24 25 26 27 28 19 30 313233 

--] Tff' -,I', ',11-, pflTT,l.-r-,ll + -l-t H-
i + I, , t Ib -- t - r '-r 

1 ·1 i t.ll1 H:+Jl:tU 
COMMENTC 

'--,---- _._---,-- - " ._------------------
e 7 8 II 10 11 12 13'04 15 16 11 18 1920 21 n 23 24 ;l5 26 21 281930 31 32333-43536 37 3B 39 40 41 424344 45 46 41 4B 49 !)() 51 525354 5556 57 58 59 6 

I 
, - t--t- -- -, r--+-- - - -t-- +- - - -, - t--- -- - --

ITIR Iv ~ IT IR_ ~ iAlI"IIF IAlnln Ito I,> trl~ Ie Ip 1/'lIN 
IrlR Illqlg IIls 1nJr., -- IRIA Irrk" IE 10 IE IA Ik lAir IPIRIE blE 1D? 

J ~ ~l3 

;~~ 
i--- A tol\L -+- !-Ell- In _ DV. AN I!= PRE.. D? t---f--

IT lr~ loA 9 h INj .B~~ I Q IRn &n VA N./-i!=- PiR ls U? r---
10 if _IX. INln A rr M S A ? 

+~ 
- - --

z. '" Iz T 

r; IT p,1,.. GIN -
T 'In .~ : Iw BIE IrIN T 1c,1T I'IE: A IE" r--- - - r-
2 = Iz 

11~~ 
1. 

t 
RA IKlc Ip lh .. INIE 1M Ie; ~Gl t· t- -- c-

hiT 1 _13. lElEz 

W 
~- t- - -I-- l 

-- -- - -- -

I---- - t--r--- -
- r j I+-' -I f 

- - -

- -I---- -I---- - - - - - .-r-r 
- - I---- . r- ,- t- - t-t-

Ir=rv 12 J.2.r---- IR IA IR IrhlR 

Ir~ 
jRv- Il"l II 10 1A1V' t-- - --- - -

Vi 1J:!1r: 11 u. I - -+- trlr 1£1 tr IK IE -'j- t--+-- -- . 1--

11 = U. -- t--- - r---
IT - 1p,IE ir-.IN 

-+ V /-.- I-t-
i -t-- t--+-- -

I l{ t--t--t-- - --- - -1---

_ L.L- _ _ L. _LJ "1 

Figure 28. Technique for Providing Operator Error Correction 

Design and Implementation Considerations 71 



Data dl~posltlon 

Figure 29. Technique for Providing Operator Error Correction 

72 

(Numbers 5-72 
tOf programmer use only) 



OPERATOR DOCUMENTATION, TRAINING, AND 
TESTING 

Since operating procedures for the work station depend on 
the programming for each application, documentation and 
training for the operator for each job must be provided. 
Clear and complete documentation is essential for the 
following reasons: 

• Work stations and operators may be at remote locations 
where assistance from a programmer is not readily available. 

• The incidence of new operator training exists due to nor
mal operator turnover. 

Operator Documentation 

To aid the operator in running your job, a job run sheet and 
step-by-step instructions should be provided. The job run 
sheet should include: 

• Job name and number. 

• Name, location, and telephone number of the programmer. 

• Printer setup instructions (if used) specifying form num
ber and description, print head vertical alignment, spac
ing desired, and number of parts per form. 

• Diskette data set label specifications (if scratch diskettes 
are used). Note that data set labels should be preestab
lished for the operator and controlled by the program. 

• Instructions for starting the program, including diskettes 
and respective disk drives, and the keying sequence for 
starting a job_ Note that there are three basic techniques 
to start a job depending on (1) if the pmgram identifica
tion is written on sector 8 of the index track, (2) if the 
program identification is written on a reserved sector of 
the index track, or (3) if the program identification is 
keyed by the operator. 

• Instructions for ending the job. 

• Instructions for aborting or continuing the job in the 
event of a system error. 

• A summary of special keys and functions, such as FIELD 
BKSP, REC BKSP, REC ADV, FIELD ADV, DUP, and 
SEL PGM, when used to add or delete records, or for 
special branching. 

A sample job run sheet is shown in Figure 30. 

Step-by-step instructions should be providled to supplement 
prompting messages to the operator. Although the program 
contains prompting messages, these messa<ges only tell the 
operator the location in the job flow. Particularly for the 
new operator, these prompting messages nequire the addi
tional interpretation provided by step-by-step instructions. 
Note that these instructions should include a review of the 
work station error list and any necessary special instructions 
for some of the errors. 

Design and Implementation Considerations 73 



IBM 3741 Models 3 and 4 Job Run Sheet 

Items with a boxD are optional and can be ignored unless checked[8]. 

Job Name _________________________ Job Number _____________ _ 

Programmer _________ . _________ Location ____________ Telephone _____ _ 

Printer Setup 
Form Number/Description ___________________________________ ~ 

Single Double Space 2 3 4 5 6 Part Form 
Printer Alignment ________________________________________ _ 

Starting Program 
Drive 1 Diskette 

~Dri~2Diskette~~~~~~~~~~~~~-----------------------~ 
Program Identification I I I I I I I I I I I I I I I 

Program Identification:C::::::] will be displayed when drive 1 is ready. 
C:::=J is written on the diskette. Press REC BKSP __ times until it is displayed. 
C::=J must be keyed. Press FUNCT SE L lower and DE LETE REC to clear the display, 

then key the program identification. 
After the program identification is displayed, press FUNCT SEL upper then E. 

Ending the Job 

Aborting the Job 

To continue after aborting 

Summary of Special Keys and Functions 

Figure 30. Sample Job Run Sheet 

74 



Operator Training 

The most efficient method of operator training is for the 
programmer to demonstrate the program using the job run 
sheet and step-by-step instructions for reference. During 

this demonstration, the operator should execute each step 
while the programmer explains the meaning of prompting 

messages and special keys and switches. The demonstration 
should include operator correction of errors and unbalanced 
hash totals. New operators must be shown how to key minus 
(or credit) right-adjust fields. Note that the dash key inserts 
the minus sign (D zone) in the units position of numeric 
fields, then performs the right-adjust function. Once trained, 
operators can instruct new operators in the use of the job 
run sheet, step-by-step instructions, and work station 
functions. 

Application Debugging 

When debugging the program, use an operator who typically 
uses the program. This tests both the program and support
ing documentation. The debugging also allows the operator 
to identify difficult keying sequences and make suggestions 
for increased efficiency. 

Additional Documentation 

The programmer should also provide the operator with: 

• A listing of the source program. 

• The files and data set labels for each diskette. 

Although this documentation is not always needed by the 
operator, it could be useful to the IBM service personnel 
if a difficulty arises. 

DATA SET ACCESS METHODS 

The following section is provided to aid in selecting the 
access method most suited to your particular application. 
The format of the diskette for the work station is the same 
as for the data station. The disk unit reads and writes on 

only one side of the diskette. The diskette is divided into 
an index or label track and 73 data tracks. Each track is 
divided into 26 sectors. Each sector can contain up to 128 

positions of data. All ACL read and write operations access 
one sector at a time using one of the following access methods. 

• Sequential 

• Random by relative record number 

• Key indexed 

The index or label track, track 0, can contain up to 19 
different data set labels. These data set labels are used to 
define the data sets contained on the diskette. Data set 
labels are created and modified usi ng the data station func
tions or by an ACL program using the label update access 
method. For detailed information concerning the format 
of the label or index layout, and the data set labels, see the 
IBM 3741 Data Station Reference Manual, GA21-9183. 
Data set access methods available within ACL are discussed 
in the following section. 

Sequential Access Method 

The sequential access method reads or writes sequentially 
based upon the physical disk address, one record or sector 
at a time. This same method is used by the 3741 Models 1 
and 2 Data Station. The sequential method: 

• Writes records into a new data set. 

• Writes records at the end of an existing data set. 

• Reads records from an existing data set. 

• Reads and updates records in an existing data set. 

• Reads and updates records in an existing data set and 
writes new records at the end of an existing data set. 

Design and Implementation Considerations 75 



To use the sequential method, specify an S in column 58 of 

the .DATASET control statement and the appropriate op· 

eration in column 59 (Fl for read, W for write, or U for up· 

date). In addition, to extend or write additional records in 

an existing data set, enter SWE in columns 58-60 of the 

.DATASET statement (Figure 31). To perform the actual 

read and write operations, the following instructions are 
used: 

Instruction Function 

READ Read a data record 

WRT Write a data record 

WRTS Delete a data record 

WRTE Add a data record at the end of a data set 

READ and WRT Update a data record 

You can code two operands with the READ instructions. 

The first operand in column 13 defines the file number to 

be accessed, and the second operand in column 18 defines 
the format number to be used with the operation (Figure 
32). During the read and write operations, data is moved 
to or from the input or output buffer assigned to that data 

set in column 38 of the .DATASET control statement. Dur· 

ing a read operation, the data from the sector read is trans
ferred to the assigned buffer; and, if a format number is 

specified, the appropriate data is also transferred to the 

general purpose registers used in the .FORMAT statement 

specified. 

r) J 4 ',(, I 

Figure 31. Sequential Access Method 

},~tl+t' L~,' .. ~ 9411 II' 
1 I j r" i I 
I I j j 

R~,r DI), ii', !,' 

~w· j 

I ' 

t \ i I 
iJ. + _ in, 

, ' , I +-1. j 11 : I t 
Figure 32. Sequential Read Instructions 

76 

,,':lql' 

The WRT instruction has three operands. The first oper-

and in column 13 defines the file or data set number to be 

accessed; the second, in column 18, identifies the .FOR

MAT statement to be used with the operation; and the third, 

in column 23, defines the buffer number from which data 

is transferred in order to be written on the diskette. 

The WRTE instruction can contain the same operands but 

always writes the record at the end of data in the data set 

or at the current end of data address. 

The WRTS instruction can be used to write a record and 
insert the special address mark used for deletion of a sector 

or record. If a format or buffer is specified in the WRTS 
instruction, the sector is updated to reflect values contained 
in the registers or the buffer. If no format or buffer is 

specified, a D is placed in position 1 of the record and re

maining positions 2-128 are blanked. 

To perform an update on an existing record within a data 

set, first specify the update operation by coding a U in 

column 59 of the .DATASET control statement. 

A read to the record to be updated must be issued followed 
by a write to the same data set in order to update selected 

fields or the entire record (Figure 33). 



Contained within the .DATASET control statement are 
two programmable exits which can be used to exercise pro
gram control when the specific conditions occur during 
processing of a data set: 

• Deleted Record - columns 48-51 

• End of File -- columns 53-56 

These exits are discussed under .DA TASET in Chapter 2. 

Relative Record !\lumber Access Method 

The relative record number access method reads and updates 
records within a data set based upon the relative record num
ber of the record from the start of the data set. With the 
READ instruction, you identify the specific relative record 
number desired. The system then searches to that location 

Figure :J3. Coding Bequired for Sequential Update Access Method 

and reads that record or sector. The relative record number 
access method: 

• Reads records from an existing data set. 

• Reads and updates records in an existing data set . 

To use tile relative record number access method, specify 
S in column 58 and R or U in column 59 of the .DATASET 
control statement. These specifications are the same as for 
the sequential access method. The difference between the 
two methods is in the coding of the READ operation. A 
third operand is required for the relative record method. 
The general purpose register (A-Z) that contains the relative 
record number to be read (Figure .34) must be identified in 
column 23. When the READ instruction is executed, the 
work station control programmingl calculates the physical 
disk address of the relative record specified. A di rect seek 
is then issued to that record, the record is read and trans
ferred to the input/output buffer assigned, and the data is 
transferred to the appropriate registers if a .FORMAT num
ber has been assigned. 

Design and Implementation Considerations 77 



To read and update a record with relative record number 
accessing, the record is -First read into the I/O buffer. The 
program then modifies either the I/O buffer or the content 
of the register used for formatting the I/O buffer. A write 
command then places the updated I/O buffer back on the 
disk. Although the relative record is not referenced by the 
write command, the updating is done to the last record 
read. The content of the register containing the record 
number is incremented after the read operation. The fol
lowing example illustrates this procedure. 

~~~smc·~r:=···'·I;~wrrrl~lmWllnI1' 
Ddtdset D(!taset name Recurd Drive Buffet

length

Note that register E is 5 after the read is completed, al
though the update is to the fourth record.

STEP!
LABEL

~J

I-t-

f-+-

1--+-+-

45 6 I 89101,112

~~
! +-t

~t

13 14 15 16 17 18 19 20 21 22

11 12
1- ~ +++-

Figure 34. Instruction for Read with Relative Record Number

STEP!

The relative record number and sequential access methods
are combined so that both methods can be used to access
the same data set. After the read operation is completed,
when a register has been specified in column 23, the value
in the register is incremented by the work station control
program to reflect the next sequential record to be read.

LABEL COMMENTS

1 2 3 4 5 6 t g 9 10 11 11 13 14 15 16 17 18 192021 22 23 24 25 26 27 282930

mtffl
31 32 33 34 35 36 37 38 39 40 41 42 43 44 4b 46 41 48 49 ,,0 0..1 5

f'> -+ I I I j I I I I I J ~-JJ +
- ~+}(~ flo' fL- 1 12 IE - - - ~'mf!L~~IVFI I I I I I --- p-n+tt

I- t- +t -+ i -j -+-,
--~ -- -- - I. t + - I l j t I ' d ~-j t

I I deleted I deleted I valid I
I I

49 50 51 52

Diskette Records

Figure 35. Relative Record Read to a Deleted Record

78

Deleted records should not be allowed ina data set accessed
with the relative record number access method. If deleted rec
ords are found in a data set being accessed with this method,
they are bypassed until the first valid record is found and
processed. In addition, the value In the register specified
is incremented to reflect the deleted records bypassed.

In Figure 35, a read is issued to relative record number 50.
Record numbers 50 and 51 are deleted. Record 52 is a

valid record. At the completion of the read operation,
record 52 has been processed and the register has been
incremented to 5:3.

To process the deleted records rather than let the work
station control programming bypass them, an exit must be
defined in columns 48-51 of the .DATASET control state
ment and instructions must be provided in the ACL pro
gram to handle the processing of the deleted records. Note
that formatti ng is not performed if the deleted record exit
is taken.

Key Indexed Acc,ess Method

The key indexed access method searches an existing data
set randomly using a search argument up to 16 positions
long. The search argument can be a control field or a data
element withi n each record of a data set. The key indexed
access method requires that the records in the data set be
arranged in ascending sequence, according to the search
argument or control field. When using tile key indexed
access method, the work station control program auto
matically builds an index table in storage for the data set
to be accessed. When a searcll argument is specified by
the ACL program, a search IS first made in the index table.
The index table points to the appropriate track or tracks in
the data set where the record should be found. If the
matching record is not present, a record-nat-found condition
is posted by setting indicator 225, 226, 227, or 228 (for
data set 1, 2, 3, 01' 4, respectively) for appropriate action
by the ACL program.

The key indexed access method provides the ability to:

• Randomly read records from an existing data set.

• Randomly read records and update in an existing
data set.

To use the key indexed method, specify K in column 58
and R or U in column 59 of the .DATASET control state

ment. In addition, the characteristics of the index to be
built by the work station control program and the size and
position of the key within the records of the data set must
be defined. In columns 63-64 specify the size of each
index entry and in column 68-69 the number of tracks
each index entry represents. Columns 73-74 are used to
define the length of the key field within the data records,
and columns 78-80 define the beginning position with;n
the data record where the key is located. At the time the
data set is opened during ACL pro!jram execution, the
index table is built by scanning the data set and extracting
the appropriate keys based upon the above parameters.

Design and Implementation Considerations 79

80

Sector No. 01 02 03 04 26

Track No.

I.KEY101 KEY102 KEY103 KEY104

2 l KEY201 KEY202 KEY203 KEY204

Data 3 l KEY301 KEY302 KEY303 KEY304

Tracks
4 !KEY401 KEY402 KEY403 KEY404

5 l KEY501 KEY502 KEY503 KEY504

6 l KEY601 KEY602 KEY603 KEY604

~6m'II'ITIUwTLI]ll]'iTIl"l'tl"I"j';(: ~~'.'-·i7~'~TTI'l'~cTlT1l71{ I'l~ll'TI~~iu~~I~Y~lI

In Core
Index

Index No.

Record
Location

In Core
Index

Index No.

Record
Location

Index Tracks Key Key
1f'llgth lenqth POSition

~~, Y,b, Z It. ,K,E, Y,t..10,J ,J(£'.'tJ5.IJ~i{,€J'I/1 i1jtJK.l£ltl~~.1I'/U>11K il,ll<i,t :£, ...c..l
'-v-' ~ ~ '--v-' ~ ~ ~'-y-/

2 3 4 5 6

BOE BOE+ BOE+ BOE+ BOE+ BOE+

1 Track 2 Tracks 3 Tracks 4 Track~ 5 Tracks

7 8

EOD·' End of
Index

Mark

~.=.LY ~-L~~t4>~~-,t'~l&e,ta~1'< EXa /Jl~-,y"2~,€,Y,l'(>~L.-LJ. . .L.~ l

'-~~ '-y-/ '~v---' '~v---''--v--/~~

2 3 4 5 6 7 8

BOE BOEt', BOE+2 BOE+3 BOE+4 BOE+5 EOD-l End of

Track Tracks Tracks Tracks Tracks Index
Mark

To perform the search and read operation using the key
indexed method, define a third operand in column 23 of
the HEAD operation. Column 23 must contain the name
of a general purpose register (A·Z) which contains the
search argument.

The contents of the register are compared to the index to
locate the appropriate track or tracks. A scan is then per·
formed on the appropriate track or tracks to locate the
matching record. If the record is found, the data is trans
ferred to the input/output buffer assigned; and, if a .FOR
MAT number is specified, the data is moved to the assigned
registers.

When the index is built by the work station control pro
gram, the program automatically locates vacant storage
(between the last instruction and the data formats) for the
index table. If there is not enough storage available to build
the entire index., the work station control program builds a
partial index and issues a halt message to the operator indi
cating that there is not enough space. The operator can re
set the halt message and continue at a degraded perform
ance level. The work station control program checks the
sequence of index entries. If the index is found to be out
of sequence, a halt is issued to the operator indicating that
the data set is out of sequence, and the job is terminated.

The following parameters in the .DATASET control state
ment define where the index is to be loaded in storage:

Columns

83-84

88-90

93-94

98·100

IFunction

The buffer number where the index table is
to start.

Start address within the start buffer where
the index table is to start.

The buffer number where the index table
is to end.

Position (plus one) in the end buffer where
the index is to end.

These parameters build and load the index into specific
buffers automatically. Once in the buffer, the index can
be written onto a data set. The automatic index build is
bypassed if N is entered in column 60 of the .DATASET
control statement.

If the data set has no changes or very few changes, the
Index can be bui It, stored on a diskette data set, and, load
ed at program execution. This can be done by defining the
data set containing the index entries, reading the entries in
to storage, and moving the entries to buffers defined in
columns 83·84, 88-90, 93-94, and 98-100. This approach
to loading the index table may talke less time than building
the index every time the data set is opened.

Index or Label Access Method

Data set labels for a given diskette are always located in
sector 8 through 26 of the index track, track 00. The for
mat and content of each label are shown in Figure 36. Fig
ure 37 illustrates how the data set labels are displayed on
the display screen to the work station operator. Labels
can be created and maintained by the work station operator
using the standard data station functions. See the IBM
3741 Data Station Operator's Guide, GA21-9131. An ACL
program can also be written to create and maintain the data
labels by using the index or label access method. Selection
of the method used for maintaining data set labels should
consider the qualifications of the operator. Labels 1-26
can be accessed.

To gain access to the data set labels via an ACL program,
define the index track as a data set with a .DATASET con·
trol statement. Starting in column 18, define th·e name as
LABEL. Be sure to specify the record length as 80 in
column 28. Specify the access method in column 58 of the
.DATASET statement as I. No entry in column 59 is reo
quired. Code an A in column 61 to suppress extent check
ing. Access the individual labels by identifYing the relative
record number of the label on track O. The relative record
number is placed in the general purpose register (A-Z)
coded in the third operand of the READ instruction, col
umn 23. To update or modify the label, the READ instruc
tion must be followed by a WRT instruction to the same
file. Note that, when using this access method, you should
avoid creating a data set label with extents that overlap with
an existing data set.

Design and Implementation Considerations 81

Field Name

Header 1

Data set name

Record length

Beginning of extent (BOE)

End of extent (EOE)

Bypass data set

Accessibility

Write protect

I nterchange type indicator

Multivolume indicator

Volume sequence number

Creation date

Expiration date

Verify mark

End of data (EOD)

I Position

1-4

5

6-13

14-22

23-27

28

29-33

34

35-39

40

41

42

43

44

45

46-47

48-53

54-66

67-72

73

74

75-79

80

I Purpose

Label identifier; must be H 0 R 1

Reserved

Descriptive name for data set

Reserved

Logical record length

Reserved

I dentifies the address of the first sector of the data set. Positions 29
and 30 contain the track number, position 31 must be 0, positions

32 and 33 contain the sector number.

Reserved

Identifies the address of the last sector reserved for this data set.

Reserved

The IBM 3747 Data Converter and the 3741 communication feature
require that this field contain a B or a blank. If a B is not present,
the data set is processed. The coding allows the user to store programs
and data on the same disk. I n communications mode on the 3741
Models 2 and 4, a B in column 41 indicates that the data set is to be
bypassed during transmit mode and used during receive mode.

This field must contain a blank in order for processing to take place.

I f this field contains a P, the disk can be read only; otherwise th is

field must be blank, in which case both reading and writing are

permitted.

Must be blank. A blank indicates the data set can be used for data

interchange.

A blank in this field indicates a data set contained on one diskette; a C

indicates a data set is continued on another diskette *; an L indicates

the last diskette on which a continued data set resides.

Volume sequence number specifies the sequence of volumes in a

multivolume data set. The sequence must be consecutive, beginning

with 01 (to a maximum of 99), if used.

Can be used to record the date the data set was created. The format

of the creation date is YYMMDD, where YY is the year, MM is the

month, and DO is the day.

Reserved

Can be used to contain the date that the data set expires. The format
of the expiration date is YYMMDD, where YY is the year, MM is the

month, and DO is the day.

This field must contain a V or a blank. V indicates the data set was

verified.

Reserved

I dentifies the address of the next available sector.

Reserved

*The work station program loader does not rec03nize continued data sets (BSC) when loading the ACL program.

The same is true for the translator source data set, and for data sets used by the ACL program. (See MUltiple Disk
ette Data Sets in this chapter.)

• Figure 36. Data Set Label Format

82

Header 1
Record
length

Beginning of
Extent (BOE)

End of
Extent (EOE)

End of
Data (EOD)

Note the positions in which these fields are located.

Figure 37. Data Set Label Fields on the Display Screen

BLOCKING AND DEBLOCKING OF lOGICAL RECORDS

All read and write operations to diskette data sets are per·
formed on a sector basis. A READ instruction always trans·
fers one sector from the diskette to the work station stor·
age. A write instl'uction (WRT, WRTE, WRTS) always trans·

fers one sector to the diskette from the work station stor·
age. In some cases, storing more than one logical record in
a 128·byte sector may be advantageous, because of file size
or access performance. The ACl programmer must per·
form the blockinl~ and deblocking of logical records within
his program.

To assist in the blocking and deblocking operations, two
instructions are provided within the application control
language:

Instruction Function

RBlK Read blocked record with offset

WBlK Wl'ite blocked record with offset

The RBlK instruction rereads a portion of a blocked record
or sector after it has been transferred by a READ instruc·
tion (without a .FORMAT defined from the diskette) into
the input/output buffer in work station storage. A .FOR·
MAT statement that defines the i mage of the first logical

record within the sector must be defined.

Follow the READ instruction with a series of RBlK in·
structions to reread each logical record, and the appropriate
instruction to process the data. The format of the RBlK

instruction is:

Columns

8·11

13

18

23

Specification

RBlK operation code

Data set input/output buffer defined in

.DAT ASET statement

.FORMAT statement number

General purpose re~lister (A-Z) containing
logical record offset

Assume that there are three logical records, 40 characters
long, stored in a sector. The first logical record begins in
position 1 and the last record ends in position 120. A
.FORMAT statement is defined for record 1 as shown in
Figure 38. Once the sector is read without a .FORMAT
defined from the diskette data set, the RBlK instruction
issues first with the offset of 1, second with an offset of 41,
and, finally, with an offset of 81 stored in register A.

The offset is always equal to the first position in the logical

record. This same technique can be used in the blocking
of logical records using the WBlK instruction. See Figure

39.

Using the RBlK and WBlK instructions in conjunction with
the key indexed access method requires special processing
techniques with the ACl program. The key indexed access
method allows you to specify one key field per sector. Mul
tiple logical records within a sector mean multiple key fields.
To handle multiple records, specify the key field within the
last logical record of the sector in the .DATASET control
statement. When the READ instruction for the key index
ed data set is issued, the sector transferred to i nput!output
buffer is the sector containing an equal key or the next high
er key. Test for the record-not-found condition, indicators
225-229, depending upon the data set number. If the
appropriate indicator is not on, the last logical record in
the sector is equal. If the indicator is on, reread the other
logical records in sector and compare the key field of each
to the search argument to fi nd the equal record.

Design and ImplemElntation Considerations 83

Figure 38. Sample .FORMAT Control Statement

Figure 39. Instructions for Reading Blocked Records with Format Offset

84

MULTIPLE DlSKETIE DATA SETS

The work station control program opens all data sets
defined with a .DATASET control statement when the
operator loads an ACL program. At the conclusion of a
job, when an EXIT or EXEC instruction is executed, all
open data sets are closed and the normal end of job halt
(100) is posted for the operator. These procedures are
followed by the work station control program, unless the
OPEN and CLOZ instructions are specified within the ACL
program.

The OPEN and CLOZ instructions allow you to dynami
cally open and close data sets during the execution of the
ACL program. This ability provides flexibility in creating
your work station application. For example, a data set
may be larger than one diskette. If so, mount one volume
of the data set,. open, process, and close the volume. In
turn, the second volume can be mounted, opened, processed,
and closed.

The OPEN instruction can specify:

• The data set to be opened.

• A .FORMAT statement to be used to read the label.

• A register or a pair of registers containing information
which overrides certain parameters within the .DATA
SET control statement.

The first operand identifies the data set number to be
opened.

The second operand defines a . FO RMAT statement to be
used in reading selected fields within the data set label such
as the BOE, EOD, or EOE.

The third operand overrides selected parameters within the
.DATASET statp.ment. The parameters included are data

set name, drive number, and access method. (See Chapter
2 for the discussion of OPEN and the related parameters.)

This operand makes it possible to open more than four
data sets during an ACL program execution. A dummy
.DAT ASET control statement can be defined with asterisks
for the data set name. This specification indicates to the
work station control programming that the data set is to be
opened during program execution. The .DATASET state
ment can be updated with the actual data set name and its
related attributes.

CURRENT FILE DISK ADDRESS (CFDA)

The CFDA is an internal address consisting of disk sector
and cylinder (track) numbers. The programmer will find it
useful, in some cases, to be able to manipulate this disk
address. The CFDA cannot be changed directly, but its
value can be altered by issuing read or write commands.

When the CFDA is changed by the system, it is altered after
a disk instruction (read, write, for example) is initiated, but
before any physical disk execution is attempted. Figure 40
summarizes how the work station alters the CFDA as a
function of the data set access method and as a function of
the type of disk instruction issued. Note that:

1.

2.

The BOE is the sector-cylinder address of the first
record in the data set.

The EOD is the sector-cylinder address of the first
available record space after the last record in the data
set. EOD is continually updated as records are added
to the end of a data set (extending).

The value of the CFDA is altered by the system as shown
in Figure 40. The system uses the CFDA, plus the change
shown in Figure 40, prior to attempting the operation shown
in the left column.

Design and I mplernentation Considerations 85

Data Set Organization Type

(SR) (SW) (SWE) (SU) (KR,KRN) (KU,KUN) (I)

Sequential Sequential Sequential Sequential Key Key Index

Read Write Write Update Indexed Indexed Update

Extend Read Update

Value after file open BOE-1 BOE-1 EOD-1 BOE-1 BOE-1 BOE-1 0000

Val ue change during

write WRT Invalid +1 +1 None Invalid None None

WRT with relative

record number Invalid Invalid Invalid +1 Invalid Invalid +1

Value change during

write WRTE Invalid Invalid +1 +1 Invalid Invalid Invalid

Value change during

read-offset not

specified +1 Invalid Invalid +1 +1 +1 +1

Value change
during read-offset

specified Value in Invalid Invalid Value in Value in Value in Value in

register register register register register

Value change during

read minus (-) -1 Invalid Invalid -1 -1 -1 -1

Value change during Value in Invalid Invalid Value in CFDA CDFA Value in

read with sequential register register placed at placed at register

key specified-match matched matched

found record record

address add ress

Same as above but Value in Invalid Invalid Value in CFDA CFDA Value in

match not found register register placed at placed at register

next next

higher higher

record record

address address

Figure 40. Alterations to Current File Disk Address

86

PROGRAMMING HINTS

The following section contains a collection of hints for
consideration when designing your ACL program.

Control Program

A control or master program can be created to control pro
gram execution sequence and selection and to minimize the
operator interface in program or job selection. For example,
you can specify that the invoicing program automatically
follow the order entry job. Also, the execution of a specific
job may be inhibited until all prerequisite jobs have been
completed. The major benefit of this approach, however,
is easier usage by the operator. Program or job selection
can then be done interactively to minimize operator con
fusion and resulting errors. See Execute Program Chain
(EXEC) in Chapter 2 for a discussion of implementing this
procedure.

.FIELD Control Statement

When .FIELD control statements are used, consider the
following:

1.

2.

To share a buffer by using .FIELD statements in the
low-numbered positions (positions 1-80) and data for
constants in the high-numbered positions (positions

81-128), the .BUFFER control statement must pre

cede the .FIELD statement.

The use of chained .FIELD statements is not recom
mended, because it eliminates the ability to identify
the current message. This is especially true when us
ing the special keyboard close indicator. In this case,
when the special keyboard close option is specified
(T in column 36 of the .FIELD control statement)
and chaining is also specified, it is impossible to
identify the current message if the special keyboard
close indicator is on when the ENTR instruction is
completed.

Keyboard Indicator

1. Indicator 197 is used to indicate the status of the key
board. It is only significant when overlapped ENTR
instructions are used. When it is on, indicator 197
indicates that the keyboard is open tor data entry.
This means that the program has opened the keyboard
with an overlapped ENTR instruction (an X in column
21) and the operator has not yet exited the field.

2. The keyboard cannot be oplmed by setting on indi
cator 197 (with a SON 197 instruction). Setting on
indicator 197 results in no operation. Most non
data keys and the three switches (AUTO REC ADV,
PGM NUM SHI FT, AUTO DUP/SKIP) are active
(they set their respective indicators) even though
the keyboard is not open.

3. Setting off indicator 197 does not close the keyboard.

Design and Implementatjon Considerations 87

PROGRAMMING RESTRICTIONS

The following are general restrictions to consider when
designing the ACL program.

Tables

1.

2.

3.

No more than 16 tables can start in one buffer.

Registers I, R, and Z cannot be specified as the
table index.

Table entries are limited to 16 positions.

Program Origin Buffer

The program origin buffer (which identifies where instruc

tions are to begin) must be specified in the _NAME control
statement as an odd-numbered buffer.

Sequence of ACL Source Programs

1.

2.

3.

4.

88

The _NAME controll statement must be the first state
ment in the source data set.

The _DATASET, _PRINTER, .SELF-CHECK, and

. R EG ISTE R control statements may follow the

. NAME statement in any sequence.

The remaining control statements, .FORMAT,

. BUFFER, and .FIELD, can follow in any sequence,
but must precede instructions.

The .END control statement must be the last state
ment in the source data set.

Display Unit

Lines 1,5, and 6 are referenced by reading or writing to

buffer 1. Li nes 2, 3, and 4 are referenced through buffer 2.

1. The first 40 positions of buffer 1 contain line 1 of

the display, which is used by the work station con

trol programming_ Positions 1-8 are used to post

error messages and halts. Positions 9-36 are used by

the trace functions (Chapter 4) during program exe

cution. Positions 37-40 are used to post the ACL
program name_

2. . The programmer should leave positions 49 and 50
of buffer 1 (line 5, positions 9 and 10) blank for
aesthetic purposes; however, position 49 can be
used if needed. Position 50 is blanked by the work
station each time an ENTR is processed.

3.

4.

5_

6.

7.

8.

Positions 51-120 of buffer 1 contain prompting mes

sages and fill characters that display on lines 5 and 6_

Positions 121-128 of either buffer 1 or 2 are not dis
played or maintained by the work station control

programming. However, when the above positions

are specified in columns 33-35 of the .FIELD state
ment, the data is moved into positions 121-128 of

buffer 2 and positions 41-48 of buffer 1. Positions

41-48 of buffer 1 are not cleared when buffer 2 is

cleared .

Positions 1-120 of buffer 2 are displayed on lines 2,

3, and 4 .

To display all 128 positions of a diskette record, the

fi rst 120 positions can be displayed on lines 2, 3, and

4, and positions 121-128 can be displayed in positions
41-48 of buffer 1, or on line 5 of the display unit.

The maximum allowable number of positions for a

prompting message and related fill characters is 68_

Position 8 of line 1 must be blank the first time card

I/O (129 or 5496) is called. If position 8 is not blank,

the error line (indicator 161) is turned on. This con
dition only applies to the first call to card I/O (sub

sequent calls do not affect the error line).

9_ If an overflow buffer is specified in columns 18-19

of the _FIELD control statement, and if a message
overflows to that buffer, then the first message in

the overflow buffer is referenced as message number

2.

Printer Operations

1.

2.

3.

A maximum form length of 127 lines can be specified
in the .PRINTER control statement.

When a 132-position print line is specified, two con

secutively numbered buffers are required, and the

first buffer must be an odd-numbered buffer.

Positions 129-132 are not maintai ned by the system.

If 132 print positions are specified, ensure that the

first four positions of the buffer following the print

buffer are cleared, as required.

4. Take care in attempting to print records containing

certain characters. I n some cases, nongraphics print
as graphic characters.

5.

6.

The 3713 Printer allows for suppression of spacing
during a print operation. Time must be allowed, how
ever, for the print head to return to the left margin.

This is done automatically by the ACL control
program.

.PRINTER control statements are required if trace or
dump to printer is to be used. The .PRINTER state

ment should be removed or verification must be made
to ensure that the type printer attached and the

.PR I NTE R statement are in agreement during pro

gram execution. If the .PRINTER statement is not
correct, errors can result.

Arithmetic Operations

The basic format of arithmetic instructions is as follows:

1.

2.

3.

R 1 must always be a general purpose register. Rz can
be a register or a single digit constant (0-9) except in

the divide operation where it can only be a register.

R3 can be a register or a single digit constant.

The move immediate instruction shown below is

limited to it constant of plus or minus 65535.

R = ±6553!:i

R equals general purpose registers A through Z.

In the multiply and divide instructions, the Rz and
R3 register~; cannot be the result register (R 1).

Branching Operations

1.

2.

The Indexed GOTO provides a step number from

a to 767, or 0-999.

The following instructions are limited to branching

within the same 256-instruction block.

IF

IF

IF

A B
A> B
A < B

IFD A B
IFD A > B

IFD A < B

Disk Access Methods

1.

2.

The maximum number of data sets that can be online

at one time duri ng program execution is four.

In the key indexed method, the maximum size for a
search argument or key is 113 positions. The key in

dexed access method provides for read and update

operations.

Internal Data Movement

Take care when processing data directly to and from over
lapped input and output buffers with the following instruc

tions:

ICBF

TBWT

PUTB

STOR
ENTR (keyboard overlap)
WRT and WRTE (diskette operations which are always

overlapped)

PRNT (printer overlap)

To ensure the integrity of these I/O buffers, issue a WAIT

instruction before or after the I/O instruction or test the
I/O busy indicator(s) before issuing one of the above in

structions.

Restricted Areas

Modification of storage used for ACL control can result in

invalid execution of programs if I BM changes the location

or definition of this area.

Design and ImplemEmtation Considerations 89

PROGRAM PERFORMANCE

This section presents various techniques and procedures to
improve the performance of the ACL program. Because the
work station is an operator-oriented device, preserve this

orientation by assuring that the data processing performed
by the machine is not apparent to the operator. In other

words, the op~rator should not have to wait for the machine.

For this reason, the following suggestions are made to im
prove the performance of the program.

General Considerations

ACL application programs can perform some processing
during data entry; however, processing should be kept at
a level that wi II not impact the data entry operators
efficiency. Delaying and overlapping processing steps to
utilize the time it takes an operator to turn pages or skip
to different areas on a data entry form is called effective
overlapping. Combining effective overlapping with the
overlapping capabilities of instructions ENTR, PRNT,
WRT, and WFlTE (actual overlapping) will provide the
most efficient programming performance. Processing may
be delayed until a batch editing run is made after data
entry is complete. This completely minimizes operator
delay time.

Another method of improving program performance is
to reinitialize a diskette to an alternate sequence. A

diskette iQitialized to sequence 01 may require a longer
program«n time than a diskette initialized to alternate
sequence 02, 03, ... 13. Refer to Disk Record Sequences
in the section Disk Initialization in the IBM 3741 Data
Station Reference Manual, GA21-9183.

Overlapped I/O-Printer

Under normal operation of the PRNT instruction, the
machine waits until the printer has completed its action
(print/return, skip is always overlapped) before proceeding
to the next instruction. This prevents the inadvertent modi

fication of the printer buffer by subsequent instructions

before the printer uses the buffer. To improve performance,

enter an X in columll 28 of the PRNT instruction to cause
the machine to begin execution of the next instruction as
soon as the print cycle has been initiated. However, it then
becomes your responsibi lity to preserve the contents of the
printer buffer and ensure that the printer has completed
its cycle before modifying that buffer. Use the IF PRT
BSY to determine if the printer is busy, or use the WAIT
instruction. Figure 41 shows the coding for overlapped
printing. If the printer buffer is not protected, intermittent
print problems can occur, and not be detected during trace
operations. The overlapped print instruction can signifi
cantly improve performance, but should be used only after
it is thoroughly understood. Note that overlapped printing
does not occur during the trace operations (Chapter 4).

In Figure 41, the X in column 28 of the PRNT instruction
indicates that the following READ instruction can be exe
cuted while the print cycle is being completed. The IF
PRT BSY instruction indicates that the program should
loop on this instruction until the printer has completed its
cycle. The contents of buffer 4 (containing data set 1) are

then moved into buffer 5 (printer output buffer).

~1"i'ffi~IJ~t'~nnJCfl~I~~(L'~rrj;brl~no('rl"'r:' ""'!"T'J'Tll"';"r
[)"td,>cl Odta,d ndnle Record Drive BuilL' r), i,'I, 11

Irnqth

I~~'~~;l~~j~l~ "I';["dJIL1'Jl~~Ol' C['~5rUI~~Il[~illll1ILun PI.nt!'! lull:''' Ov>!rflow Ch,lfdcters Prlln,try Sf'conrlarl' f'",o1" I ,'n'

P"1 Ilnc per Buffet Buffer
P.HIL Ilfle 1'1",.[,,,,

Figure 41. Sample Coding for Overlapped Printing

90

•

Overlapped I/O-Keyboard

Like the PRNT instruction, the normal operation of the
ENTR instruction is nonoverlapped. If processing can be
done before the data from the keyboard is available, use
the overlapped ENTR instruction. By entering X in column
23 of the ENTR instruction, you allow the machine to pro

ceed to the next sequential instruction as soon as the prompt
ing message is displayed to the operator. Indicator 197 is

set on by the ENTR instruction and set off as soon as the

last ENTR field is exited. Indicator 197 can be tested to

determine if the required data is available (Figure 42).

In Figure 42, the X in column 23 of the ENTR instruction
indicates that subsequent instructions can be executed as

soon as the prompting message (ENTER QUANTITY) is
display to the operator. The I FI 197 instruction indicates
that the program should loop on this instruction until the
operator has entered required data and exited the field

(indicator 197 off). The IFI 200 instruction indicates that
the program should branch to instruction SP (not shown)
if the operator exited the field via a special keyboard close
key (FIELD, BKSP, DUP, FIELD ADV, REC BKSP, REC
ADV, or SEL PGM). The special keyboard close option is
indicated by the T in column 36 of the .FI ELD statement.

Disk/Data Set Procedures

You can enter an A in column 61 of the .DATASET control
statement to suppress the overlap extent checking which is
part of the process of opening a data set. This decreases the

amount of time required to open a data set. By taking this
option, however, you lose some of the protection provided

by the system to ensure that multiple data set labels do not
address the same disk space (that is, the extents do not

overlap).

Program Load of Index Table for Key Indexed Data Set

By using the options specified for program load of the in
dex table in the .DATASET control statement, the time
required to open a key indexed data set is significantly re

duced. See Data Set Access Methods in Chapter 3, for a dis
cussion of implementing this option.

~- - ---- -----------~-7] :ll[of till I'~,!) I' I '((U II~~!' I'I~'(II ~ 'j' ~l j~RTI~',~£F¥~±U~IJ,ri~~L ,;c·~'%"',~frtf[WWffft[{{t[y[~ITm~
t tte If> qtr) "P~(, ll" I 'Y I " " tOt prulj anll)u uwonlyl

F-o~ld

I ~"1

Figure 42. Sample Coding for Overlapped ENTR Instruction

Design and Implementation Considerations 91

Record Access

Review the ACL access methods to ensure that the method

selected provides the greatest possible advantage for a

specific application. ThE' data sets used in that application

should be positioned to minimize disk seek times. To do

this, place only one active data set on each disk drive. If

this is not practical, ensure that the most active data sets

are on separate disk drives. Analyze the expected usage of

the data sets to determine if special placement on the disk

ette provides any benefits .. For example, if the majority of

activity on a given data set is expected in the first portion

of that data set, place it as the last data set on a diskette.

It should be placed last in terms of extents, not necessarily

in terms of data set labels. This reduces the average time

required to access a different data set on the same diskette.

It is often possible to improve the performance of a program

by controlling the overlap of machine and operator-machine
functions. For example, there is a normal delay in operator

data entry which occurs 3S operator attention shifts from
one line to the next on a source document. This delay in
creases as the operator finishes a document and starts the

next. These intervals can be used to perform I/O functions

that might otherwise affect operator throughput. Certain
I/O functions can also be overlapped (such as EN TR, P RNT,

and disk WRT) to minimize the impact of disk record access

ing. For example, allow the operator to begin keying the

first field of the next document before writing the first

record to the diskette. This makes the record access time

transparent to the operator and improves program perform

ance.

Execution Timing

The execution timings for certain machine operations in

the following list are for use in estimating program execu

tion time, and to aid in selection of alternatives for resolving

specific problems. Since many operation times depend on

92

the data being manipulated, it is not practical to attempt a

calculation of exact execution times. However, ranges are

provided to allow reasonable estimates.

Operation

Shift Right
Shift Right and Round

Shift Left
Shift Left with Sign

Add
Subtract
Multiply

Divide
Equate (A = +XXX)
Replace (A=B)

LOAD
STOR

GOTO
GOTO (indexed)

IF (Logicals)
NOP

ICBF
EXCH

MOVE

SON

SOFF

RGO
SCE - Register

- Buffer
SCN - Register

- Buffer

Table Operations
Disk Operations

Execution Time (ms)

4.4

6.6
4.4

6.6
12-22
12-22

45-148

10-130

11
4.8

3.6-4.8
2.4-4.8

1.8

2.4
2.4-6.0

2.5

1.7
38.0
26.0
2.2 (1 indicator)

2.8 (2 indicators)

3.6 (3 indicators)

2.1 (1 indicator)

2.7 (2 indicators)
3.6 (3 indicators)

2.0

1.6
1.9
1.6
1.9
See Figures 43-46
See Figures 43- 46

The following execution timings have assumed operations
with no overlapped I/O or formatting. T represents time
in milliseconds.

Operation

MVER

MOFF

L

Operation

GETB
PUTB

N
C

L

Operation

REFM

WRFM

A
B
C
H
F
o
E
int

mod 2

Operation

RBLK
WBLK

TMVER = 2.6 + 0.14L
TMOFF = 2.5 + 0.2L

Range

2.74-4.84
2.7-5.7

The value in the length field of the source instruction (column 28).

TGETB = 4.6 + 0.09(N-1) + 0.09C + 0.096L
TPUTB = 3.6 + 0.09(N-1) + 0.09C + 0.16L

The value for table number (column 18).

The number of characters bypassed, including table separator X'FF', until the specified table is

reached. The value is 0 for table 1 (N=1).

The value in the length field of the source instruction (column 28).

(-8
H

) TRIEFM = 9.7 + 0.336H + 1.83
int

+ 0.064F + 2.43 + 0.9(0+1) mod 2 + 0.93E

~ A I (H) TWRFM = 10.6 +) B (+0.336H + 1.83int 8' + 0.064F + 1.780 + 0.9(0+1)mod 2 +0.144E

. C 1

16.4 if source column 23 ~ column 18 is not blank.

0.0 if column 23 = column 18.

5.8 if column 23 is blank.
The number of formats defined before the specified tormat.
The total number of fields defined in all of the formats defined prior to the specified format.
The number of fields defined within the specified format.
The total number of character posit'lons defined within the specified format.
The int means take the integer value of. The term in which int appears assigns an additional 1.83 milliseconds

for every eight formats defined before the specified format. Take the next lowest integer value.

The mod 2 means modulus 2 which adds 0.9 million when 0 is even.

TRBLK = TREFM + .7 milliseconds
TWBLK = TWRFM

The timings for REFM with data directed formatting (0

in column 18) and WRFM with editing will be slightly
higher than the timings for REFM and WRFM which have

been defined.

Design and Implementation Considerations 93

Refer to the preceding Ilist and note the following items.

1. The variation in the execution times of the SON and
SOFF instructions is caused by the varying number

of indicators bein!l set on or off.

2. The execution time of the WRFM instruction de

pends on the number of fields in the referenced for
mat, the length of those fields, and whether or not a
buffer is specified (Figure 43).

3.

4.

5.

The execution time of the REFM instruction depends

on the number of fields in the referenced format, and
the length of those fields (Figure 44).

The variation in e),ecution time of the IF (iogicals)
is caused by left-to-right scan of the specified registers.

The instruction is exited as soon as the required mis
match or unequal entry is found.

The execution times of the table operations depend
on the physical characteristics of the table, and the
index within the table of the element being accessed.

TBFX/TBFN

The following characteristics of TBFX and TBFN instruc
tions have significant impact on the execution time of these

instructions:

• The location of the specified element in the table. Since

the table is searched from the low-ordered end to the
high-ordered end (first of first buffer through last of last
buffer), it takes less time to tind an element of a table
if that eiement is toward the front end of the table.

• The location within each element of the significant char
acters. The search ar~lument is compared against the
individual elements of a table on a character-by-character
basis from the left. The first mismatch within an element
causes the machine to start comparison on the next ele
'ment in the table.

The effect of this can be seen in Figure 45, where the only
difference between the execution time for table operations
on tables with different element lengths (that is, number of
characters per element) is in the potential location of the

significant character. (For example, if an argument of
000123 is compared with an element of 002345, the third
character would be the first significant character).

94

TBRD/TBWT

The execution time of these instructions is a function of the

length of elements within the table and the relative location
(index) of the element being accessed. Sample execution
times are shown in Figure 46.

Diskette Operations

The execution times for the disk operations (READ, WRT,
WRTS, WRTE) are a funr.tion of the access method of the
data set, and the location of the access mechanism of the
affected disk drive when the instruction is issued. The most
significant factor is the distance the read head (access mech
anism) must travel to the record being accessed. Perform
ance is significantly improved if this distance is minimized
by sequential accessing of data sets, and by separating active
data sets onto separate drives. Sample timings for disk read

operations are:

Read with relative
record number
Read with key

Sequential

.06-4.8 seconds/record

.5-6.0 seconds * /record

5 secondsltrack

* Assumes that one index entry is assigned for each track.

Number of Size of Use Execution

Fields Fields Buffer? Time (ms)

0 -- Yes 26.1

1 4 Yes 27.6

1 16 Yes 28.8

2 16 Yes 31.8

8 8 Yes 52.2

8 8 No 42.0

Figure 43. Execution Time for WRFM Instruction

Number of Size of Execution

Fields Fields Time (ms)

1 4 10.8

8 4 30.6

8 8 38.4

32 4 99.0

64 2 179.4

128 1 364.8

Figure 44. Execution Time for REFM InstructIon

Index

Value
50
45
40
35
30
25
20
15
10

5 of first significant character
I I I • I I I I I

10 20 30 40 50 60 70 80 90 100 110 120

Time (Milliseconds)

Figure 45. Execution Time Chart for TBFXiTBFN Instructions

Figure 45 can be used for estimating execution times of

TBFX and TBFN instructions. The chart shows the times

for the TBFX instruction and should be increased by 0.5

milliseconds for TBFN. The only other difference between

the TBFX and TBFN is in the situation where the search
argument is not in the table. In that case, the TBFX execu-

tion time is determined by the size of the table, and the
TBFN is determined by the location, within the table, of

the element which is higher in sequence than the search
argument (if this element exists).

This chart is the result of timings of table operations on

specific tables. To use it for estimating the execution time

for a TBFX instruction for your table, first estimate the

average index which the TBFX instruction will return. This

gives the range for your particular table. For example, if
your table has 501 entries uniformly distributed, then the

.average value of lhe index is 25. From the chart, this gives
a range of 22 to 98 milliseconds for finding an entry in the

table if the elements are 16 characters each, or a range of
22 to 37.5 milliseconds, If the elements of the table are

four characters long.

The range for 16-character elements if the search argument

is not found is 37 to 180 milliseconds.

For a more accurate estimate. it is necessary to determine

the average location of the first mismatch (first significant

character) during a compare. For example, a table made up

of the numbers from 1101 to 1150 (four character elements)

would have the mismatch on the third comparison, with 3.2

as the average. You can use this information to estimate the

average execution time for a TBFX instruction for this table

to be 35 milliseconds.

Index Instruction Character/ Execution
Number Type Element Time (ms)

1 TBWT 1 3.6

1 TBWT 16 6.3

25 TBWT 1 8.4

25 TBWT 16 10.8

50 TBWT 1 13.2

50 TBWT 16 15.6

1 TBRD 1 4.8

1 TBRD 16 6.3
25 TBRD 1 9.3

25 TBRD 16 10.8

50 TBRD 1 14.1
50 TBRD 16 15.6

Figure 46. Execution Time for TBWT/TBRD Instructions

The performance numbers in this section should only be

used for estimating program execution times. Because of
all the variables involved, a 10% variation hom the projec
ted timings could be the case. The timings presented assume
no overlapped I/O is in process, and that the machine check

indicator (160) is not on. Either of these conditions can
cause longer execution times for some instructions, but the

machine check indicator increases the execution of all in

structions by 4%.

Design and Implementation Considerations 95

Chapter 4. 3741 Operation

The 3741 Models 3 and 4 Programmable Work Station has
the same data station functions as the 3741 Models 1 and 2
Data Station unless the work station is under control of an
ACL program. The 3741 Model 3 has the same standard
functions and available ·features as the 3741 Model 1. The

3741 Model 4 has the same standard functions and avai lable

features as the 3741 Model 2. For a detailed description of
the 3741 standard mode of operation, see the IBM 3741

Data Station Operator's Guide, GA21-9131. For a detailed
description of the 3741 standard functions and available
features, see the IBM 3741 Data Station Reference Manual,

GA21-9183.

ACL programs for the work station can only be loaded from
disk. The translator feature is available to translate ACL
source programs into object programs. To gain access to
the translator feature or the ACL program execution mode,

the work station must first be in index (X) mode. It is con
venient for the operator to key a function select delete
sequence in the index (X) mode to blank the screen before
keying the setup parameters.

The following sections contain details on translation, execu
tion, and program debu~lging.

INITIATING TRANSLATION WITH THE LABEL
PROCESSOR

The label processor disk (included with work stations that
have the translator feature) must be used with ACL pro
grams that have labels preceding source statements. The

label processor associates the labels with step numbers for
internal processing. After the labels have been associated
with step numbers, the label processor sends the AC L pro
gram into translation. Label processor operation occurs in
three passes made possible by an overlay structure. The pro
gram code for the base pass and pass 1 is loaded at program
load time. After pass 1 is complete, the object code for
pass 2 is transferred from disk to overlay the code used for
pass 1. The same is true for pass 3 code, which is transferred
from disk to overlay pass 2 code after pass 2 is complete.

Base Pass

The base pass of the label processor controls the execution
of the three passes of label processor operation. The base
pass also loads the object code for passes 2 and 3.

96

Pass 1

The first pass of label processor operation reads the ACL
label processor input file and generates a cross-reference

work file for later use in sorting and printing the cross

reference listing. Pass 1 of the label processor then checks
the four character executable instruction labels, and tables
all defined labels for subsequent association of labels with
step numbers.

Pass 2

The second pass of the label processor reads the ACL label
processor input file and writes the translator input file.

During the one-for-one transfer of records, any 0 RG func
tions are written as deleted records. Label processor pass
2 then prints the ACL label processor input file (when the
AUTO DUP/SKIP switch is on). This pass of operation
then replaces labels with corresponding step numbers and
prints all invalid, unre,olved, or duplicate label error messages.

Pass 3

The third pass of the label processor sorts the defined labels,
links labels With corresponding references., prints the cross
reference listing, and links to the translator.

Label Processor Input Data Set

The first record of the ACL label processor input data set
must be a .NAME control statement, and cannot be a de
leted record. The ACL label processor input data set

(source) name cannot be blank. Columns 63-70 of the
.NAME statement contain the label processor output data
set name (translator input data set). Default IS TRANSLAT.
Column 71 of the .NAME statement contains the drive num

ber for the label processor output data set. Default is drive
2. Columns 73-80 of the .NAME statement contain the
translator output data set name (object data set). Column
81 contains the drive number for this data set. Default is
drive 1. If columns 73-80 are blank, the ACL translator is
not selected upon completion of the label processor.

The label prOCEIssor disk contains the object program (four

tracks), a temporary work data set (four tracks) called

TEMPDATA, and output data sets to be defined by the pro
grammer (65 tracks). The output data sets are also input

for the translator. Note that two data set names are reserved
and cannot be used by the programmer. These are the

TEMPDATA (temporary work data set) and SYMBOLIC
(which contains the object code for passes 2 and 3). Any

attempt to use these data set names may result in an error,

and label processor results are invalid.

The label processor assigns files in the following manner:

• File 1 contalins the ACL label processor input data set,
which is required through pass 2.

• File 2 contai,ns the TEMPDATA temporary work file,
which is required for passes 1 and 3. This file must be
allocated four tracks.

• File 3 contains the label processor output data set, which
is required for passes 2 and 3. This data set is defined in

columns 63-70 of the .NAME control statement.

• File 4 contai,ns the SYMBOLIC data set, which is required
for all three passes. This data set contains the object

code for passes 2 and 3. The ACL label processor config
urator program is used to merge the object code for the

three passes into the SYMBOLIC data set. All printed

headings and error messages are included immediately
after the object code.

A, recommended data set allocation is shown below.

• Drive 1 contains the ACL label processor input data set
and the translator output data set. These can be on the
same disk or on separate disks. The ACL label processor

input data set is required through pass 2.

• Drive 2 contai ns the ACL label processor object code
(Iour tracks:', the temporary work data set (TEMPDATA
- four tracks), and output data sets (65 tracks).

After an ACL program with labeled statements has been

through the label processor, it may be changed without go

ing through the label processor again. This is done by chang

ing the contents in the data sets used for the label processor

output. After the label processor output data set has been

changed, translation is initiated the same way as translation
without using the label processor.

The following steps are required when using the label

processor di sk:

1. While the label processor is in operation, the printed

output can be controlled by setting the three
switches to the following positions:

2.

3.

4.

AUTO DUP/SKIP Switch

ON prints source statements and cross

reference (error messages are always

printed). Printin9 only occurs when this

switch is on.

OF F - suppresses printing of source statements

and cross-reference.

This switch may be set on and off during printing.

PROG NUM SHIFT Switch

ON suppresses generation of cross-reference

work file.

OF F - generates cross-reference work file.

This switch must be set at the start of the program.

REC ADV Switch

This switch should be off. It has no effect on the

label processor, but controls the translator listing.

Load the disk with the ACL program into disk drive

1. The object program mayor may not be on the same

disk. If the object program is not on the same disk,
an error code (511) is displayed when the label proces

sor is finished. The operator should then insert the

disk with the object program data set and press R E
SET to continue. The label processor runs faster if

the label processor input and output data sets are on

different drives.

Load label processor disk into disk drive 2.

Blank display screen by pressing FUNCT SEL lower

and DELETE REC.

3741 Operation 97

5.

6.

Key in the following parameters.

Columns

1-8

9
11-14

Entry

SYMBOLIC
2
LABL

Press FUNCT SEL upper and E.

7. Display message tells the operator to key in the data,
then press RIGHT ADJ.

8. Display message tells the operator to key in the
source data set name, then press RIGHT ADJ.

The following information will be displayed as the label
processor goes through its three passes.

PASS 1:

• Line 1 contains ACL LABEL TRANSLATOR.

• Lines 2, 3, and 4 contain the first 120 characters of the
records as they are read from the input data set.

• Line 5 contains REQUEST INPUT DATA SET AND
DISK DRIVE NUMBER.

• The bottom line contains PASS-l.

PASS 2:

• Lines 2, 3, and 4 contain the first 120 characters of the
records as they are read from the input data set.

• The bottom line contains PASS-2.

PASS 3:

• Lines 2, 3, and 4 contain the cross-reference listing as it
is being printed, followed by any labels which are in
error.

• The bottom line contains PASS-3.

98

Label Processor Output

Label processor printer output includes:

1.

2.

3.

Source listing of statements and instructions.

Cross reference.

Error messages (duplicate labels, undefined and/or
invalid labels, and omitted labels).

Source Listing

The first page of the source listing contains the heading
(ACL SYMBOLIC LABEL PROCESSOR 3741 MODELS
3 AND 4), the file name, the date, and the page number.
Comment statements and control statements are printed
beginning in position 19, with the last 18 positions of the
input record truncated. The disk address of the source in
put record is printed in positions 1-5. The record sequence
number within the input data set is printed in positions 8-
11. Definition records for .FORMAT and .BUFFER are
printed intact beginning in position 1. Executable instruc
tions are printed beginning in position 19, with the last 18
positions of the input record truncated. The disk address
of the source input record is printed in positions 1-5. The
record sequence number in the source data set is printed in
positions 8-11. The generated instruction number is printed
in positions 14-16. Figure 47 shows a sample source listing
printed for Sample Program 2-Mailing List Inquiry in Appen
dix D.

Cross Reference

At the start of the cross-reference listing, the heading
CROSS-REFERENCE is printed. The symbolic label is
printed in positions 1-4. The record sequence number (where
the label is defined) is printed in positions 7-10, followed
by the record sequence numbers of where the label is used.
If the number of references exceeds a printed line, another
line is started beginning under the referenced column. Con
trol statements with label fields are also referenced. Figure
48 shows a sample cross reference printed for the Sample

Program 2-Mailing List Inquiry in Appendix D.

•

A I, itl r'rlll" I III IHI) In t 1· ~ I () :.' I '4

1 ~OO:) OOU I ~ N(~MI ~ I (
1,lO(),\ 000:' • "
t:l004 OOU" "IIA I ,',',1 I M" II I t II I'>
L~OO", 0004)Hf)(

13006 OO()", .rfi~,'MAr 1,'11'111 (',tJfl t,11<Tll Ij'-,rr-'11: rl-If.°MI;l
HHHHHHHHHHIII:I 11111111111 II LJ I J,U,I I II i I r I II I l:lil,lq'i'j,I'I'I 1'1+1:11 I ",1 I I I I "_, 1"1'

1,~O()H O()O/ nFtJl,'MAl !"I,'dl nt,111 I~I"III lC;r'j (1'1' r-nl.'11A-1
11 L 1 I I IT 'J 11 11 11 I U J J.LI J J I J I I I I I I 1::q:HI!lilll,h'IQll\!I'IWI (I. I I I ,.

U010 OOU(!

130J 1 0010
UOl;' 0011
130J l 001.'
[,lOJ 4 (JOl,\
UOl<, 0014
LlOl~ 001",
13011 001 t,
t :JOltl OOll
1301 <; 001H
130::0 00 ['I
130;'1 O()'~0

UO;';' OO~~ L
t 30.':l OU:::.)
130.'4 00;'3
130.'~', 00;'4
13026 00;",
14001 00;'6
1400,' 002!
1400\ oo;'n
14004 OO:?9
1400", 0030
14006 0031
14007 0032
14008 0033
14009 0034
14010 003'~

14011 003f,
14012 0031
1401:3 0038
14014 OO,W
140 1 ~, 0040
14016 004J
14017 004.'
1401B 0043
14019 0044
14020 0045
14021 0046
14022 0047
14023 004B
140:'4 0049
140::>~', 00'';0

(Joe
O()I
00:
(1) ~

004
Oil",
O()c'
OO?

0011

Oi,y
OJu
011
012
013
014

OJ",
O]f,

.. ,
.1 I F I II
• 1111 [I
,,1111 [I
.111111
,,111111
.1' 11111
,,1111 JI

'
IH I-.lN

Al.!ll
'H~1i

Nr x I

')1-**

01i' f<AC~

0111
011}'

020 ~;" J F'
0;'1
0.: ~ ~

o::.:·~; F. H~'

024

,I
4

Ii

"F'I M

f Nl h
II IIC:
h'I' All
II' If':
Will M

Z

EN II,'
II rr,
II lR
IF Ih
IFIR
if'If,

II II
1.IllTCI

I
1111
G{l ru

hI I M
WI, I
(JO IfJ

I NI I,
I',UIO

0)"'; ~ NIl [,xI Y

\
,\
,\

i

I , ",

I (iH
19'1
JIl,,:
186
J 90

:1

14026 005J .LN[I

***************~* NUMI~[F' 01 EE:rdIR!;

I',
I
I ~.:

/
I:,
Jo
1 ~;
IS
1 ~:;

1Ii(! 1,1 (, I I 11",1[1['11 i'Ji I " ~

(il, . 1'41-1 ~; 1 I ,'I I 1'1
n I (, 1,\l;1 I I I I (H

niL, ()','.I 1 1,1 J II r ~ r I.: y CII"- :) 1 nIl " II', I I II I til I (IJl! "
(I ~ 1 / I I)),101 11'1 I I 'HI!NI " (,1)1 Ie I, LI J'.\ 1'1)MI I,: HI] r I l'IIIN\I fe 1,'1 1,1 Y>I

1'1 1- (11,' I I r"l '. ,J, ,'S, ('.r,JI1 4 til- (I I ~',F'I ?ll'

'"I 1<111 I f R '''JMI<III I
(.lI. r MI ;,;)('11," NLlMlILj.: I
I t! I I h' I II~, IOMI-I,: NtlMnrF'

ON l-tJr, II I Nil! >< l<lJ II"I r NIl UI .. IUl~
n c,l td,'j ~I (1~lf(l\d I I I IF<' LJI~:;T(jMf h: Id.CiJr-,f!
ON I 1,'1. II r~cl 1·,'1 i'lll~:II(i 1-()I.JN.l1 1:,r,:F.:Oh MI 'J~"(:I(JI

II I '.>1'1 (.j y h:l· I 111"'11

I rJ]ll(::T!lrF I, I,IIY, ',IMf, lIf'" I,,~[I lEI fTHI.!NL
(lfJ J:!('d r- r-ll'-I {I 1,(1\'1· :·,,·'{H l:-

ON :.)" '11> h:F rJ,h:ft f~[JI.,..IANf:F-

L1N Nc_X I ,;EU, L 1 f'EdJlmAW' "'IoS111':e SliME MLS',,~liE

ON NEXT DUp? RESTORE SAME MESSAGE
ON NEXI RECORD BAC~SrAC[" kESIURl SAMl MESSAGE

I, :,I,Ii" I n';, MI~,;,:.,(41:1 0 IJI'PAIl 111.~:".f I'-l 1,:f,UWll
Altfl

ll[' (d'-l I II;",:; I HI (:;~.;AI:II-::"

Nt X I

[([All 111,,>1'1.(\, 1-111, IJPllAIE kEC[lEW
1.1, I II, IIF'IIA I UI III. :il\ f<FC:lJl~U

1 NVAl. r II LI.JS T HF· (3~iAGf

Figure 47. Source Listing for Sample Program 2

~'i,UI -01-

3741 Operation 99

h: , V f. f(I N l F.

ADD 00:' I 00 :1/
BAC~ OO:l9 ()O30
BEGN OOlU 0040 (;')4', \)\)4H

END OO'cO 00:");'
ERR (l(HI O():.'4
NEXT OO~·'? u03'.-) 00 ~j (1 ~;',-~4 004J
SI\JF' 0043 OO:l.l O(\~{)

Figure 48. Cross Reference Printing for Sample Program 2

Label Processor Error Messages

• An error message is printed prior to any source records if
more than 159 (4K) or 319 (8K) labels are defined, or

more than 1584 references are made to these labels.

• An error listing of the invalid, unresolved, or duplicate
labels is printed. The error is listed before the statement

in error, or at the beginning of the error listing.

• An error message is displayed if the first record of the
ACL source program is not a .NAME control statement.

The operator can press the RESET key to exit the label
processor.

During pass 1 of the label processor, the printed error listing

contains the record in error, followed by the error message

(five asterisks preceding the relative record number of the
record in error), and one of the following headings:

• STATEMENT NUMBER IN ORG STATEMENT NON
NUMERIC - this heading indicates an ORG instruction
in error (ORG is ignored). The instruction number in an

ORG is nonnumeric.

• NUMBER OF LABEL REFERENCES EXCEEDS SYM
BOL TABLE SIZE - this heading indicates reference

symbol table overflow. The reference is not included in
the cross reference or replaced with an instruction num

ber.

• NUMBER OF DEFINED LABELS EXCEEDS SYMBOL
TABLE SIZE - this heading indicates label table overflow.

The label is undefined to the program.

• INSTRUCTION NOT DEFINED - this heading indicates
that the label has an instruction mnemonic (PRT, for

example) that is not defined for ACL.

100

During pass 2, the following errors are detected. If the

AUTO DUP/SKIP switch is off, the record in error is not

printed before the error message. Errors are identified by

the following headings:

• DUPLICA TE LABEL - this heading indicates a label de·
fined more than once in a program. Aill of the multiple

definitions of the label are printed after the heading.

• INVALID LABEL -- this heading indicates that labels
are undefined and/or invalid because they violate syntax

rules. All such labels and their references are listed after

the heading.

• OMITTED OR INVALID REFERENCES - this heading
indicates that an instruction requiring a label has a blank

label field.

• NUMBER OF ERRORS = NNNN - this heading is printed
at the end of pass 2 to indicate the total number of errors

detected.

Note that, because the label processor phase of translation
is a program, execution errors could also occur during trans

lation (Appendix C).

ACL Label Procl!ssor Configurator

In order to tailor the ACL label processor to your particular
system configunltion, a disk is provided at installation time
to record the following parameters:

• Printer type

• Printer forms control
Number o'f characters per line
Number o'f lines per page

Number o-F printed lines per page

• Keyboard
Standard :1741 or proof keyboard

- Language !~roup

The procedure below must be followed at system installa
tion time in ordlH to build a label processor disk.

1. Insert the translator diagnostic diskette in drive 1.

2.

3.

4.

Insert a blank disk in drive 2. (A blank disk has been
initialized, its label has been recorded at sector 08, it
has extents defining the entire disk, it is a null data
set and sectors 09-26 on the index track are deleted.)

Press FUNC SE L upper and E. A message is displayed
to verify that the configurator program is loaded and
the disk in drive 2 is being checked for the following:

Sector 08
BOE 01001
EOD = 01001
EOE = 73026
The data set is not write-protected or secure.

Sector 07 is a VOL 1.

The buzzer also sounds, and the system waits for
the RIGHT ADJ key to be pressed before continuing.

The remaining sectors (09-26) on the index track
do not define a data set with extents overlapping
those of sector 08.

If any of these conditions are violated, the data set
label defined by sector 08 is displayed on lines 2, 3,
and 4 of the display screen. The operator can press
the RIGHT ADJ key to continue, or press RESET
to go to job completion system code 100.

5. If these checks are completed, sectors 08-26 of the
index track are written with the following:

Sector 08
HDRI TRANSLAT

Sector 09
HDR1 TEMPDATA

Sector 10
HDRI SYMBOLIC

P

'128

128

128

09001

05001

01001

73026
09001

08026
05001

04026
01001

Sectors 11-26 (these sectors are written deleted)
DDRI DATAXX 128 74001 73026

74001

(XX = corresponding sector number.)

After the index track is created, messages are displayed re
questing system configuration parameters. These parameters
are:

• Keyboard = STANDARD (RIGHT ADJ) or PROOF (P).

• Machine size = 4 (4K) or 8 (8K)

• Keyboard language group
o = United States, United Kingdom, France (Querty),

Italy, Germany (U.S. graphics), and Japan (English
nomenclature) .

1 Norway

2 Sweden
3 Denmark
4 Germany (German graphics)

5 Spain/Latin America

6 Belgium and France (Azerty)
7 Portuguese

8 Katakana

9 Brazil

• Printer type
1 3713 Printer
2 3717 Printer
3 3715 (bidirectional floating margin)

• Printer forms control (Right-adjusted, unless overridden
by entry of C). Entry is a three-digit number with lead
ing zeros, if required).

Number of characters per printed line (4-128)
Number of printed lines per page (7-127)
Number of lines per page (7-127)

3741 Operation 101

The object code from three data sets is combined into one
data set (SYMBOLIC) to allow execution of the ACL label
processor. Sector 26 of track 1 identifies the level of the
ACL label processor plus the selected system configuration
parameters. Sector 26 of track 1 is:

Position

1-8

9
10-12

13-15
16-18
19
20-21
22
23-128

Description

Revision date-MM-DD-YY (where MM = month,
DO = day, and YY = year)
Printer type

Maximum number of characters per line minus
one
Maximum number of printed lines per page
Maximum number of lines per page
o ,= Standard keyboard
Keyboard language group
Machine size (4 or 8K)
Blank-Reserved

After the ACL label processor disk is built, a message is dis
played requesting one of two responses. RIGHT ADJ ends
the job normally (100 is posted on the display), or 0
creates a link to program execution, which invokes the ACL
label processor.

INITIATING TRANSLATION WITHOUT LABEL

PROCESSOR

The translator feature converts program source statements
into object code. Object programs must be contained in
data sets with a logical record length of 128 characters;
source programs must be in data sets with a record length
of 80 characters or more. The object data set must be at
least two tracks long and start on a track boundary. The
source and object data sets may be on either the same or
separate disks.

102

To initiate the translator, the operator may place the disk(s)
in either disk drive 1 or 2. With the work station in the in
dex (X) mode, the operator should:

1.

2.

3.

4.

Set the AUTO REC ADV switch on to print the
translator input data set.

Blank the display screen by pressing FUNCT SE L
lower and DELETE REC.

Key in the following parameters.

Columns

1-8

9

11-18

19

Entry

Source data set name. (If the operator
keys the wrong data set name, the
translator must be aborted and the job
restarted.)

1 or 2 depending on the disk drive the
source file is mounted on.

Default is disk drive 1.

Object data set name.

1 or 2 depending on the disk drive the
object file is mounted on.

Default is disk drive 1.

Note: The source or object data set name may be
left blank when initiating translation, but both can
not be blank. The first data set, on the disk, with a
blank name is then used for the data set. If both
source and object data set names are left blank, an
error code (10) is posted on the display. This error
code indicates that the source and object data sets
are the same data set. The operator must press
ALPHA and NUM SHIFT with RESET to go to index
(X) mode in this situation.

Press FUNCT SEL upper and A to initiate translation.
The object file is checked for a duplicate program
name as specified in the .NAME control statement. If
a duplicate name is found, a warning message (19) is
displayed. To write the new program over the old
object program, press RESET. If the new object pro
gram is not to replace the old object program, press
ALPHA and NUM SHIFT with RESET to return to
index (X) mode.

PROGRAM EXECUTION

To execute an ACL object program the operator may place
the disk in either disk drive 1 or 2. With the work station in
the index (X) mode the operator should:

1. Blank the display screen by pressing FUNCT SE L
lower and DELETE REC.

2. Key in the following parameters.

Column

1-8

9

Entry

Object code data set name

1 or 2 depending on which drive contains
the disk

Default is disk drive 1

11-14 The program name as it appears in the
.NAME control statement of the program

3. Press FUNCT SEL upper and E to initiate execution
of the ACL program.

After the program has been completed, a job completion·
system code (100) is displayed. The operator must then
press RESET to place the 3741 in index (X) mode.

Communications

See Communications in Chapter 2.

3741 Operation 103

PROGRAM DEBUGGING

To aid program debuggin!l, select from the following pro
gram trace capabilities:

• Step trace

• Register trace

• Step and register trace

• Step stop

• Single step trace

Note that using traces causes the printer to revert to non
overlap mode.

Step Trace

Step trace provides the ability to follow the flow of the pro
gram while it is being executed. This is accomplished by
displaying to the programmer the step number every time
the sequence of execution is altered from sequential.

After the execution of a GOTO, RGO or any I F instruction
that takes the nonsequential path, or any special exits taken
from I/O control operations, the step number of the instruc

tion where control is to be transferred is displayed. Then,
after display is completed, the step number that has just
been displayed is executed.

R.egister Trace

Register trace provides the capabil ity to display the contents
of a register each time a step that changes a register (except
for I/O type steps and GSCK) is executed.

The register trace outputs the contents of the changed regi
ster following execution of: Add, subtract, multiply, divide,
immediate, shift right, shift left, TBRD, GETB, LOAD,
ENTR (to a register), MVER, ZONE, and MOFF. The re
sult register is displayed after execution of the step is com
pleted, and before the next sequential step is started.

10<1

Step Stop

Step stop provides a means to stop at a specified step num
ber or instruction. After initiating the step stop, a + is dis
played in position 10 of line 1 of the display screen followed

by the step number and the program executes until this step
number is reached. When the specified step number is

reached the + changes to a - and program execution stops
before that instruction is executed. To continue, press
NUM SHIFT and RESET.

Single Step Trace

Single step trace provides the capability to step through
the program one step at a time. This trace is used in
conjunction with the step and register trace to monitor
the machine while it steps through the program. Output
must be to the display. Single step trace to the display
requires the NUM SH I FT and RESET keys to execute
the next instruction.

Trace Output

The step, register, step and register, or single step trace can
be outP:Jt to the display or the printer. A .PRINTER state
ment is required to output the trace to the printer. Step
stop is output to the display as described previously.

The output from trace is displayed on the screen beginning
in position 10 of line 1. If the output is to the display only,
execution is halted until the NUM SH I FT and RESET keys
are pressed. Pressing any other key advances the step and
also performs the function of the key. If the output is to
the printer, execution is halted until all the characters are
printed. Execution is then resumed automatically.

The output forms of the step trace and register trace are:

• Snnn

• Rnnn aaaaaaaaaaaaaaaa

• Rnnn

The S indicates a step trace, and nnn indicates the next step
number to be executed. The R indicates that the output is
a register trace, the nnn is the associated step number, and
the a's are the contents of the register being traced. Rnnn
is output in single step mode for steps not included in regi

ster trace.

Selecting Trace

The trace can be turned on or off from the keyboard any
time during program execution. It cannot be started until
after the program is loaded. No change is required in the

source program or translation to activate the trace, except
a .PRI NTE R statement is required to output the trace to
the printer (see Printer Operations under Programming
Restrictions in Chapter 3).

To Turn On Trace:

1.

2.

3.

Hold down ALPHA and NUM SHIFT and press
FUNCT SEL lower.

For step stop trace, key nnn, where nnn is a stepnum
ber, and n is any number 0-9 (a numeric keyed in the
first position specifies step stop). If NUM SHIFT and
RESET are pressed after the program is halted at the
desi red step, the program conti nues until the specified
step number is encountered again.

For the remainder of the trace functions (single step,
step and/or register), key Tnm, where:
n 0 for output to the display screen only.
n

m
m
m

4 for output to printer and display screen.
1 for trace of transfer steps only.

2 for trace register changes only.
3 for trace steps and registers (1 and 2 above).

m 4 for trace all steps not included in 1 and 2
above.

m 5 for trace combining 1 and 4 above.
m 6 for trace combining 2 and 4 above.
m 7 for trace all steps in step stop mode (1, 2, and

4 above).

!Vote: The NUM SHIFT key must be pressed while
keying nand m. If NUM SHIFT is not pressed, the
process must be repeated from step 1.

To Turn Off Trace:

1.

2.

Hold down ALPHA and NUM SHIFT keys and press
FUNCT SEL lower.

Key T10.

Program Restart

It is possible to intermix work station program operation
and base 3741 operations, if the necessary coding has been
introduced in the program. To interrupt the ACL program,
use the checkpoint (CKPT) instruction (see Instructions in

Chapter 2).

To restart the program the operator must:

1.

2.

Blank the display screen by pressing FUNCT SEL
lower and DELETE REC.

Key in the following parameters.

Columns Entry

1-8 Checkpoint program data set name

9

11-14

1 or 2 depending on which disk drive
contains the disk

Default is disk drive 1

Checkpoint program name

3. Press FUNCT SEL upper and E.

The restart program loads the checkpoint program and
opens all data sets which were open at the time of the check
point statement execution. All data sets are positioned at
the point they were when the CKPT was inlitiated. The
checkpoint program name is displaved in positions 37-40 of
the status line. Execution is returned to the sequential step
following the CKPT instruction.

A 5XA (X = the data set number) error is displayed if
a CKPT instruction is issued on a write protected file.

Customer Diagnostic Diskette

Each work station is provided with a diagnostic diskette

which can be used to isolate the cause of an error to either
the program or the execution hardware. A second diskette
is provided for work stations with the translator feature.
This second diskette is updated by the label processor con
figurator to conform to the particular system. The diagnos
tic diskettes contain programs that should be run before you

call for IBM service assistance. These programs exercise the
work station hardware. At the completion of successful
execution of these programs, a 100 message (job completed)
is posted on the display. This indi(:ates that the hardware is
functioning properly and that the Gause of the error may be
in the program_ Both diagnostic program diskettes must be
configured (only once) to the type of printer, keyboard,
and storage attached to the work station. The procedure

for configuration is:

1. Insert one of the diagnostic diskettes in drive 1.

2. Advance to data set label 10.

3. Press FUNCT SEL upper and E.

4. Respond to prompted data entry requests.

3741 Operation 105

When this procedure is completed, data set label 7 is up
dated as a summary of the diagnostic configuration, and
may be used as a quick reference to proper configuration.
Note that configuration is necessary only once.

To process the execution hardware diagnostic:

1.

2.

3.

4.

Insert the execution diagnostic diskette in drive 1.

Check data set label 7 for proper configuration.

If the proper configuration is displayed, backspace to
data set label 6.

Press FUNC SEL upper and E.

With a 3717 Printer attached, this program runs for approxi
mately seven minutes. With a 3713 or 3715 Printer attached,
this program runs for approximately nine minutes. With no
printer attached, program run time is approximately three
minutes. The 100 message is displayed after a successful
program run.

To execute the translator diagnostic:

1. Insert the translator diagnostic diskette in drive 1.

2.

3.

Check data set label 7 for proper configuration.

If the proper configuration is displayed, record back
space to data set label 6.

4. Press FUNC SEL upper and A.

With a 3717 Printer attached, this diagnostic runs for ap
proximately five minutes. With a 3713 or 3715 Printer,
the program runs for approximately seven minutes. The
100 message is displayed after a successful program run.

STORAGE DUMPS

All or part of the 4K/SK storage may be output to the dis
play, the printer, or to disk. If terminal program errors are
encountered, select a dump option, or abort the job (all
data sets are closed and the 100 message is posted). After
completion of the selected dump option, control returns to
index mode, no files are closed, and the 100 message is not
posted. If you select a dump option during normal flxecu-

106

tion, control returns to the interrupted point in the program

after completion of the dump. The four storage dumps are:

• Unformatted display dump.

• Formatted display dump.

• Printer dump.

• Disk dump.

To initiate a storage dump any time during program execu

tion:

• Press FUNC SEL lower with ALPHA and NUMERIC
SHIFT.

• Key Dkn, where:

D

k

the dump function.

0, 1,2,3, (4K) or up to 7 (SK) indicating the start
ing 1 K buffer address of the dump.

n a to specify the unformatted display dump.

n 1, 2, 3, 4 (4K) or up to S (SK) indicating the num
ber of 1 K increments to dump to the printer.

n = 9 to specify the formatted display dump.

kn = 99 to specify the disk dump.

• The NUM SH I FT key must be pressed while keying k and
n. If it is not pressed, the process must be repeated from
FUNC SEL lower with ALPHA and NUM SHIFT.

Note the functions of the following keys:

• Any key advances the display dump.

• The ALPHA SHIFT key and any key backspaces the
display dump.

• The ALPHA and NUMER IC SH 1FT keys and any key
terminate dump operations.

• The ALPHA and NUMERIC SHIFT and the RESET key
(twice) aborts the job.

All display dumps will wrap around storage contents if you
advance beyond the last buffer (the first buffer is displayed)
or backspace past the first buffer (the last buffer is displayed).

Unformatted Display Dump

The unformatted display dump sets the display address to
the specified starting address. The first 120 characters of
the 128·byte buffer are displayed (in hexadecimal) in lines

2,3, and 4 of the display. The last eight bytes of the buffer
are displayed in hexadecimal starting ill position 10 of line
1. By pressing any key, the display is advanced by 128

bytes. By pressing FUNC SEL upper and ALPHA and
NUMERIC SHIFT, the dump mode is exited and the program
is returned to program execution (at the point where the
dump is initiated), Ileaving the display at the address last
displayed.

Hexadecimal Display

When hex data is keyed or displayed, not all of the data
represents displayable characters such as an ABC or 0 1 2

3. When the hex data keyed is not a displayable character,
a hexadecimal display is provided that represents the eight
bit code for the data. The basic display (no bits on) looks
like this:

H
Other I ines are added to the display for each bit that is on
in the EBCDIC code.

Hex Value of
Bit Position Bit Position

Add these values together

0 -8
to get the first hex digit.

--- --

\
Only add those values to·

1 - - - -- -4
gether for the lines display-2 - ---- 2

3 ---- - 1 ed.

4 -8

}
Add these values together ---- to get the second hex digit.

5 - ---- -4
6 ----- 2 Only add those values to-

7 ---- -1 gether for the lines display-

ed.

Example: Assume the di5play looks like this:

8
...... __ •• 4

The fi rst hex di git is 8 + 4 + 1 = D and the second hex digit

is a O. The hexadecimal value is hex DO.

Assume another display looks like this:

...... _ 8

....... _IIIIIII! .. 4

8

:::I==:I:~

The first hex digit is 8 + 4 + 1 = D and the second hex digit
is 8 + 4 + 2 = E. The hexadecimal value is hex DE.

This procedure allows you to observe the dynamic state of
any buffer. The eight bytes displayed on line 1, however,
are not dynamically updated. By pressing any key (except
FUNC SEL upper) with ALPHA and NUMERIC SHIFT,
the dump mode is exited and the display address is restored
to buffer 2. In this case, the eight bytes in line 1 are blanked.
By pressing ALPHA SHIFT with any key, the display is
backspaced 128 bytes.

During any storage dump to the display, a specific register
or indicator may be addressed. Figure 49 shows the actual
storage address of each register and the object code equival

ent for each register.

Indicators are located in storage in the address range of
0120 to 013F. This 32-byte area of storage contains 256
bits, each bit corresponding to an indicator. Each byte, thus

contains eight indicators. For example, in order to address
indicator 72, display byte 0128.

3741 Operation 107

Source Object Actual
Reference Code Address

A 70 0070

B 80 0080

C 90 0090

0 AO OOAO

E BO OOBO

F CO OOCO

G DO 0000

H EO OOEO

I FO OOFO

J 71 0170

K 81 0180

L 91 0190

M Al 01AO

Figure 49. Register Addresses on Storage

Formatted Display Dump

The formatted display dump displays 32 characters as

follows:

• Line 2 - Zone half bytes

• Line 3 - Numeric half bytes

• Line 4 - Displayable EBCDIC character or byte display

The first display shows the first 32 bytes of the specified
starting location. Press any key to advance the display by
32 bytes. Press ALt'HA SH I FT with any key to backspace
the display 32 bytes. A counter on line 1 of the display
shows the number of increments keyed. Press ALPHA and
NUMERIC SHIFT and any key to exit the dump mode.
Note that the display buffer (buffer 2) is not restored to its
original contents.

108

Source Object Actual

Reference Code Address

N Bl 01BO

0 Cl 01CO

P 01 0100

Q El OlEO

R Fl 01FO

S 82 0280

T 92 0290

U A2 02AO

V B2 02BO

W C2 02CO

X 02 0200

Y E2 02EO

Z F2 02FO

Printer Dump

The printer dump formats 128 bytes across the page in three

lines as follows:

Zone Half
Bytes
o \ I 1 I 2 I
4444F F F F44C F F44444444444444'+44444444C C E C4
00001254004040000000000000000000000041310

, 1254 D04-PrintableEBCDIC DATA

Numeric Half Characters

Bytes

The print line is terminated when remaining bytes of the
128·byte segment are the same as the last printecj byte.
Printline length is assumed to be 128. When a printer dump
is to be initiated, the executing program must contain a
.PR I NTE R control statement (see Printer Operations under
Programming Restrictions in Chapter 3). If a .PRINTER
control statement is not included, this function defaults to

a formatted display dump,

When the printer dump is completed, the work station
returns to its state at the time the dump was initiated.
Printed register and indicator addresses are shown in Figure

49,

Disk Dump

The disk dump function provides IBM service personnel with
the ability to write to disk the entire contents of the work
station storage. This data can then be printed or displayed
for analysis. Although you need not be concerned with the
analysis of the stoage dump to disk, debugging ti me can be
saved by initiatin!1 the disk dump function before IBM
service personnel arrive.

The disk dump function can be initiated at any time during
program execution by the following procedure:

1.

2.

3.

4.

Press ALPHA and NUM SH I FT, followed by the
FUNC SEL lower key. This sequence interrupts
the current program for subsequent restart.

Press 099. This sequence specifies the disk dump. The
system saves the volume name of the diskette in drive
1 (disk dumps are output only to drive 1), posts a
OS message, and waits for the drive to go not-ready.

When drive 1 goes not-ready, a MS message is posted
and the system waits for the customer diagnostic disk
ette to be inserted.

The customer diagnostic diskette has a vol ume name
of %OMP66. When dumping to another scratch disk
ette, it must have a volume name of %OMPnn (where
nn is a number from 1-71). If the volume name is
incorrect, a OS message is posted, and steps 2 and 3
must be repeated. The numerics in the volume name
indicate the diskette track at which the dump is to
start. The diagnostic diskette has nine tracks (66-74)
reserved for three dumps. If the initial seek to the
dump area fails, a OC3 error is posted.

5.

6.

7.

The image of the buffers in storage is written into three
tracks of the %DMPnn diskette beginning at the nn
track. The system internally records the number of
dumps taken in the job. If less than three tracks are
available for the next dump, the internal count is re-
set and the next dump overlays the first dump at track
nn. The internal count is reset at each start of job,
and is saved on checkpoint/restart. The VOL label is
never updated. Buffer contents (128 characters) are
written to disk beginning in sector 1 of the track and
continuing for 32 or 64 consecutive tracks.

A ready message (RS) is posted during the dump. If

disk write errors occur during the dump, an RS5 mes
sage is posted, the error line lis turned on, and the
dump continues.

When the dump is completed, a DC message is posted
and the system waits for the drive to go not-ready
(indicating removal of the dump diskette). If the
drive goes not-ready duri ng the dump, no errors are
posted, the internal dump count is not incremented,
and the dump is considered complete.

If the drive is ready when the dump is initiated (step
2), an MC message is posted. Insert the original pro

gram diskette. The system checks the volume name
against the name stored (step 2). If the names match,
the message area is blanked and execution continues
from the interrupted point (step 1). If the names do
not match, a DC message is again posted.

3741 Operation 109

Appendix A. Indicators

INDICATOR DEFINITION SET ON BY SET OFF BY

1-99 User-specified User program User program

100-146 Reserved

147 Printer error Any printer error User program

148 Printer page overflow Printer reaches overflow line Next PRNT instruction
specified in columns 23-25 of
.PRINTER

149 Card I/O end of data set When ?I terminating card User program
is read

150 Card I/O end of job When ?* terminating card User program
is read

151-153 Reserved

154 Invalid GSCK result in GSCK result is 10 User program
modulus 11

155 RBLK!WBLK overflow Low-order three bytes of User program

the register are 000

156 Table index error Attempt to read or write User program
beyond the end of the table

157 Division error Attempt to divide by zero User program

158 Multiply overflow Carry results from multiply User program

operation

110

INDICATOR DEFINITION SET ON BY

159 Add/subtract overflow Carry results out of high-
order positions of factor 1

register

160 Machine check Arithmetic overflow
indicators (155-159)

161 Error line All system errors causing
keyboard lock or display
screen flash

162 Short keyboard buzz User program

163 Table high entry found Equal entry not found, but

a higher entry is found.

164 Printer busy Execution of any print
command.

165 Disk drive busy Disk busy

166 AUTO REC ADV switch Switch on

167 PROG NUM SHIFT switch Switch on

168 AUTO DUP/SKIP switch Switch on

169-184 Reserved

Keyboard Indicators

The keyboard is set to a locked status (indicator 197 off)
until an ENTR instruction opens the keyboard for data
entry, and sets indicator 197 on. After execution of the
ENTR instruction, the keyboard is again locked and indicator
197 is turned off. When the keyboard is locked, only the
keys which set keyboard indicators, special function keys,
and the RESET key are active.

The following are keyboard indicators and their respective
keys.

SET OFF BY

User program

User program

User program or RESET key

User program

User program or by the machine
hardware if an equal entry is found.

Completion of any print com-
mand or end of printing due
to a print error

Disk not busy

Switch off

Switch off

Switch off

Appendix A. Indicators 111

INDICATOR DEFINITION SET ON BY SET OFF BY

185 SEL PGM Pressing key when keyboard User program or next ENTR

open (at ENTR instruction) i nstructi on

186 DUP Pressing key when keyboard User program or next ENTR

open (at ENTR instruction) instruction

187 FIELD COR* Pressing key User program or pressing any

asterisked key

188 NEW LINe Pressing key User program or pressing any

asterisked key

189 TAB* Pressi ng key User program or pressing any

asterisked key

190 REC BKSP Pressing key when keyboard User program or next ENTR

open (at ENTR instruction) instruction

191 CHAR ADV* Pressing key User program or pressing any

asterisked key

192 RESET* Pressing key User program or pressing any

asterisked key

193 FIEl.D ADV Pressing key when keyboard User program or next ENTR

open (at ENTR instruction) instruction

194 SKIP Pressing key to exit field User program or next ENTR

instruction

195 RIGHT ADJ Pressing key to exit field User program or next ENTR

instruction

196 Negative right adj, Pressing key to exit field User program or next ENTR
dash (-) instruction

197 Keyboard open/closed Initiating ENTR instruction Completion of ENTR

instruction

198 FIELD BKSP Pressing key when keyboard User program or next ENTR

open (at ENTR instruction) instruction

199 REC ADV Pressing key when keyboard User program or next ENTR

open (at ENTR instruction) instruction

200 Special keyboard indicator Indicators 185, 186, 190, User program or next ENTR

193,198, and 199 instruction

240 Contiinued checkpoint Completion of continued (C) User program or by start of a

taken CKPT and return to normal CKPT operation

program execution

*Program control keys that are used when the programmer desires to receive communication from the operator without

using an ENTR instruction. Only one of these indicators can be on at a time.

112

Indicators Within a Function-Selected Sequence

The following indicators are set on when the corresponding
key is pressed in a FUNC SEL sequence. Each of these indi
cators can be set off by the RESET key, or by the next key
board indicator (187-189 or 191), or by the next FUNC
SE L sequence (only one of these indicators can be on at a
time), or by the user program.

INDICATOR FUNC SEL key

201 Lower CHAR ADV
202 Lower DUP
203 Lower FIELD COR
204 Lower less than «)
205 Lower asterisk (*)
206 Lower percent (%)

207 Lower slash (I)

208 Lower HEX
209 Upper percent (%)

210 Upper slash (I)

211 Upper HEX
212 Lower dash (-)
213 Lower REC ADV
214 Lower at sign (@)

215 Lower SEL PROG
216 Lower FIELD ADV
217 Upper at sign (@)

218 Upper SEL PROG
219 Upper FIELD ADV

220 Upper CHAR ADV
221 Upper DUP
222 Upper FIELD COR
223 Upper less than «)
224 Upper asterisk (*)

Indicators Set by Data Movement

The following indicators are set by data management during
operation. Each of these must be set off by the user pro
gram.

225*

226*
227*
228*

229*
230*
231*
232*

No record found--data set 1

No record found-data set 2
No record found-data set 3
No record found-data set 4

Key not in table-data set 1
Key not in table-data set 2
Key not in table-data set 3
Key not in table-data set 4

These indicators
are set on if the
desi red record is
not found on the
specified track.

~
These indicators
are set on if the index
table is exceeded, or

/

the key is less than
the first index entry.
Indicators 225-228
are also set on.

*See Columns 58-60 Type (R) under .DATASET in Chap

ter 2.

Indicators 233-255 are reserved.

Appendix A. Indicators 113

Appendix B. Translator Error Messages

TRANSLATOR ERROR FORMATS

Errors detected during the translation phase are listed on
both the display and the printer. An object program with
errors should not be used until all errors are corrected.
Action on warning messalges is at the users discretion.
Disk errors include the disk address (cylinder and sector)
of the error in the source or object file (from the label
processo r) .

The display lists a maximum of seven messages, while the
printer lists all error messages. If the source code is being

printed, the error message is printed before the line found
in error. Error codes have the following format:

XXOyy ZZZ

XXX** ZZZ

***** ZZZ

where XX = track, YY = sector, and
ZZZ = error message.

where XXX = step number and ZZZ =
error message.

where ZZZ = warning message.

Figure 50 shows printed error codes. Appendix B contains
a detailed listing of translator error messages.

Track

I
Sector

1 Error Code

@O@(~
.DATAS~ ~ OBJE(TT 4 ~ 3

~Control Statement

SR

in Error

Step Number Error Code I nstructi on in Error

I
(075) ,:<~<
075

/'
(106)
I(OPEN ~~

/
C

Figure 50. Error and Warning Messages During Translation

114

The following is a list of the error messages displayed to the

operator. The corresponding meaning of each message is

also listed. The first group of messages are those that will

stop translation. To leave translation, the operator should
press the ALPHA and NUM SHIFT keys and the RESET

key. Messages are preceded by an S (reading from the source
file), or an a (reading from the object file).

MESSAGES THAT STOP TRANSLATION APPEAR ON

LINE 1

Message Meaning

o Early disk removal error

3
4
5
8
9

10
11

12

14

15
16
17

18

Disk seek error
Disk read error
Disk write check error
Disk write error
Disk no record found error
(no I D match)

Messages also
display disk
address

Source and object on the same data set
Invalid logical record length for source (must
be greater than or equal to 80)
Empty source file error (beginning of extent =
end of data)
I nvalid logical record length for object (must

be equal to 128)
Object BOE not at track boundary
No space available for object storage
I nvalid entry in .NAM E control statement, or

the .NAME is not the first source statement
(positions 123-128 of .NAM E are reserved)

Printer not ready

MESSAGES THAT DO NOT STOP TRANSLATION

APPEAR ON LINE 6

Message

19

Meaning

Program name already in object data set. To
continue translation, press RESET. The object
stored under this name will be replaced. To
abort translation, press ALPHA and NUMERIC
SHIFT and RESET. Note that this message
appears on line 1.

Control Statement Messages

Message

20

21

. NAME

Message

30

31

32

Meaning

Unrecognizable control statement. Control

statement must have a period in column 1,

followed by the statement name and parameters

in the appropriate columns.

Control statements in invalid order. (.NAME,

.DATASET, .PRINTER, .SELF·CHECK, and

.REGISTER must appear first.)

Meaning

Multiple .NAME statements in the source data
set

Invalid program start address specified (entry

must be an odd-numbered buffer, and may not

exceed available buffer storage)

Invalid machine size specified or attempt to

translate 8K program on a 4K machine

Message

50

51

Meaning

Key length (columns 7~!-74) must be greater

than or equal to the index length (columns 63-

64)
Record length +1 (columns 28-30) must be

greater than or equal to key length (columns
73-74) plus the key position (columns 78-80) in

the record. If the record length is not specified,

the key length plus key position cannot exceed

129.
52 The number of the index end buffer (columns

93-94) is less than the number of the index

53

54

.PRINTER

Message

origin buffer (columns 83-84).
The index end position (col umns 98-100) is less
than or equal to the index start position (col

umns 88-90) for an index table to be built with

in the same buffer.
The character A must be entered in column 61

in order to bypass extent checking.

Meaning

.DATASET 60 Printer type not specified (column 13 must be

Message Meaning

40

41

42

43

44

45

46

47

48

49

Invalid logical record length specified (the entry

in columns 28-30 must be 1-128 bytes)

Invalid data set access method specified (the

entry in columns 58-60 must be SR, SU, SW,
SWE, KR, KRN, KU, KUN, or I)

Invalid tracks/index (the entry in columns 68-

69 must be 1-74)

Invalid bytes/key (the entry in columns 73-74
must be 1-16 and must be greater than or equal

to the index entry length in columns 63-64).

Invalid index length (the entry in columns 63-
64 must be 1-16 bytes)

Invalid key ;:Josition (the entry in columns 78-
80 mlJst be 1-128 bytes)

Origin buffer must be specified for an indexed

data set (KUN or KRN type). The entry in

columns 83-84 must be 1-24.

Invalid physical drive address (the entry in

column 33 must be 1 or 2)
Invalid index start or end position within buffer

(the E:ntry in columns 88-90 and 98-100 must
be 1- 'I 28 bytes)
Multiple .DATASET control statements with
the same data set number (column 13 entry
must be 1-4)

61

62

63

64

65

66
67

1 for 3713, 2 for 3717, 3 for 3715 single direc

tion, 4 for 3715 bidirectional floating margin,
or 5 for 3715 bidirectional fixed margin). Zero

and blank are invalid. This error also applies
to the printer specification in the .NAME state

ment (column 23).
Overflow line (columns 23-25) exceeds lines

per page (columns 18-20). Overflow defaults
to 60, and lines per page to 66.
Buffer (columns 33-34) not specified. Odd

numbered buffer must be specified if the charac

ters to print exceeds 128.
Invalid characters to print (entry in columns

28-30 must be 4·132)
3715 bidirectional printer specified, but no
secondary buffer (columns 38-39) is identified,

or print line exceeds 128 characters and second

ary buffer is not odd-numbered.
Invalid lines per page (columns 18·20 must con

tain 1-127) or overflow line number (columns

23-25 must contain a number less than or equal

to the lines per page entry). This entry also

applies to the .NAME control statement (col

umns 28-30 and 33-35), where lines per page

must be equal to or greater than 7.

Multiple .PRINTER control statements
Primary and secondary print buffers cannot

have the same buffer number.

Appendix B. Translator Error Messages 115

.FIELD

Message

70

71

72

73

74

75

76

77

.FORMAT

Message

80

81

82

83

84

85

86

87

116

Meaning

Invalid field type character (column 23 must

contain A for alpha, U for numeric, or D for

digits).

Data disposition error (column 28 must contain

B or blank, R, M, or D)

Field chaining error (column 29 must contain

blank, C, J, or L or column 36 is not blank or
T)
F-xit control error (column 30 must contain

blank, J, or Z)

Delimiter error (asterisk missing after message)

or prompting message plus field length exceeds
69.

Field length error (columns 24-25 must

contain 1-16 if data is moved to a register, or
1-64 if data is moved to a buffer) or the field

length plus the buffer displacement (columns
33-35) exceeds 129, or the field length plus

the message length is greater than 69.

Buffer full error, or 2 or fewer positions remain
in a .FIELD buffer.

Invalid message character (hex 00 or hex FF
are invalid)

Meaning

*, /, 0 following an invalid field (indicates an
undefined field with no register definition

character)

Blank following an invalid field (no register

defi nition character)

$ following an invalid field (no register defini

tion character)

Minus sign following an invalid field (no register

definition character)

& or period following an invalid field (no regis
ter definition character)

Formats have overlaid instruction storage area.
Blank record warning error (no format
following .FORMAT)

Field break warning error (indicates that more
than 16 register designation characters have
been entered for the same register in a format).

.SELF-CHECK

Message

90

91

92

93
94

95

96

97

Meaning

A GSCK or I FCHK instruction has been issued

without a corresponding .SELF-CHECK state

ment.
Self-check format error (columns 23-25 and

28-30)

Multiple .SELF-CHECK statements error

.SELF-CHECK modulus error

.SELF-CHECK displacement error

.SELF-CHECK table error

.SELF-CHECK weight error

.SELF-CHECK format combination error

General Error Messages

Message

100

101

102

103

104

105
106

107

108

109

110

111

112

113

Meaning

Data set number specified has no .DA T ASET

control statement.
Unrecognizable statement

Invalid register specification Ilmust be A-Z)

Registers I, R, and Z cannot be used in table

instructions.
Buffer number specified must be 1-24 for 4K

program or 1-56 for 8K program. It may

exceed available buffer stora~le.

Out of range arithmetic constant (must be 0-9),

or constant coded in sign position when assign

ing a 2-5 digit constant
Out of range number error (greater than 256)

I nval id character in a numeric field

Invalid data set number (must be 1-4)

Unrecognizable arithmetic statement (column
23 must contain +, --, *, /, or blank)

Invalid displacement or number of characters to

be moved or zoned in MVER, MOFF, or ZONE

instruction
Invalid indicator number specified (must be
1-255)
Invalid format number (must be 1-254)

Invalid print control code specified (must be T,

D, S, or 0-127)
Invalid length or displacement specified in a

LOAD or STOR instruction. (Length must be

1-16 and displacement must be 1-256, but

length plus displacement cannot exceed 257.

For displacements greater than 128, an odd
numbered buffer must be specified.)

114 Invalid table number (must be 1-16)
115 Invalid table entry length field (must be 1-16)

116 Save step number or label missing in RGO

i nstructi on

Message

117

118

119

120

121

122

123

124

125

126

127

128

129
130

131

132

133

134

135

137

Mecming

Message number in ENTR instruction (column

18) must be entered (valid range is 1-99)

Duplicate instruction number or label (program

must not extend into format storage area, and

each control statement must have a buffer speci

fication within the program storage area)

Branching step number or label is not in the

same 256-instruction block. The following

branching instructions must have a GOTO

address within the same 256-instruction block:

IF A=,IF A >, IF A <, IFD A=, IFD A>,
IFDA<.

Invalid step number/label specified in columns
1-4 or 28-31 of a branching instruction.

.PRINTER control statement missing

Invalid replace (move register to register) instruc

tion (columns 23 and 28 must be blank)
Register name cannot be the same as the result

register in multiply and divide instructions.
Invalid constant in shift instruction (column 28
must be 1-15)

Program storage overflow (step number exceeds
avai lable buffer storage)

Factor 1 (column 18) and factor 2 (column 28)
cannot be blank in arithmetic instructions.

Invalid buffer displacement (must be 1-128)
Invalid register displacement (must be 1-16)
Duplicate format number error

Entry appears in field that should be blank

(check columns 5-7,17,21-22, and 26-27)

Constant is out of range in assigning a constant

instruction (columns 23-27 must be 1-65535)

Invalid zone specified (must be 0-9 or A-F)

Invalid overlap specified in ENTR, PRNT, or

CRDR instructions (column 23 or 28 must be

X for overlapped or blank for nonoverlapped
operation)

Unrecognizable shift instruction

Unrecognizable IF instruction

Invalid assigning constant instruction (column
281C0ntains an entry)

138 Invalid option specified in EXEC instruction
139 Zero control code for the printer type

specified

Warning Error Messages

Message

140

141

150

151

152

153

154

155
156
157
158

159

160

161

162

163

164

165

166

167

172

Meaning

Format number not defined by .FORMAT
statement

Column 23 cannot be blank in I F or I FD
branch ing instructions

Dummy GOTO missing at return address in
RGO instruction

Branch to undefined step number/label error
Step number/label missing from sequence. Also

ensure that control statements, (.BUFFER and

.FIELD) do not extend into the source
instructions program area.

Branching address exceeds available buffer
storage

EXIT instructions mi1ssing (can occur if the

EXIT instruction is within the instructions
causing program overflow)
Reserved
Reserved

Reserved
Reserved

Data set 1 deleted record procedure step num
ber/label invalid (must be dummy GOTO)

Data set 2 deleted record procedure step num

ber/label invalid (must be dummy GOTO)
Data set 3 deleted record procedure step num

ber/label invalid (must be dummy GOTO)

Data set 4 deleted record procedure step num

ber/label invalid (must be dummy GOTO)

Data set 1 end of file error step number/label
invalid (instruction must be a dummy GOTO)

Data set 2 end of file error step number/label

invalid (instruction must be a dummy GOTO)
Data set 3 end of file error step number/label

invalid (instruction must be a dummy GOTO)

Data set 4 end of file error step number/label

invalid (instruction must be a dummy GOTO)
Printer overflow routine step number/label
invalid (instruction must be a dummy GOTO)

.EN D control statement missing in program

Note that second pass errors (greater than 150) may occur

if buffers are assigned above the program origin buffer for
data storage.

Appendix B. Translator Error Messages 117

Appendix C. Execution Error Codes, Meanings, and Operator Responses

Errors during execution are displayed in positions 5, 6, 7,
and 8 of display line 1. Printer errors and disk errors over
lay keyboard errors.

Printer Errors

If a printer error is encountered the operator should first
check for the obvious problems, such as the cover open or
no forms. The operator must choose one of the following
responses:

Display
Position
Contents Error Meaning Operator Response

15 6 7 8\
2-16 P P errors preceded by

a numeric are posted Press NUM SH 1FT and
if the 3717 Printer RESET to bypass the
is specified in the print instruction.
.PRINTER state-
ment (Note 2). Press ALPHA SH I FT

and RESET to bypass
P 1 Printer is not any remaining print

attached. i nstructi on.

P 2 Print error during Press RESET to retry
forms movement the dump from one
(Reposition forms last buffer (P3 only).
if necessary.)

Press ALPHA and NUM
P 3 Print error during SHIFT with RESET to

dump (Reposition return to index (X)
forms if necessary.) mode.

P 4 Print error while Press RESET to retry
printing or during the print instruction
trace to printer. (P3 and P4 only).

Keyboard indicators are not turned off when correcting
printer errors.

118

Notes:
1. If a P2 or P3 error occurs and the operator selects to by

pass the print instruction or retry the dump, the operator
must manually check vertical forms alignment to ensure
that it is correct for the next print instruction.

2. For a work station with the 3717 Printer, the numbers
2-16 are displayed in positions 5 and 6 to indicate the
following errors:

2 Print belt synchronization check
3 Not used
4 Thermal overload check
5 Hammer check (1-22)
6 Hammer check (23-44)
7 Hammer check (45-66)
8 Carriage synchronization check
9 Forms jam

10 Busy-too-Iong check
11 Cover interlock open
12 Throat interfock open
13 Hammer echo check
14 Print belt speed check
15 Printer not ready
16 End of form

Card I/O Errors

The following errors apply to the attached card I/O device
(5496 or 129) and have the same operator response options
as the P4 printer errors. Note that resetting read errors be
fore clearing the 5496 can jam two cards in the read station.

Display
Position
Contents Error Meaning

A The attached device is offline, or switches are
set improperfy, or card jam in the transport.

A 2 Hopper empty; stacker full, or misfeed.
A 3 Byte transferred between work station and I/O

device does not compare.
A 4 Program sequence invalid (successive start read

instructions - S in column 23 of CRDR instruc
tion or punch following start read)

Invalid Key Errors

Display
Position
Contents Error Meaning

5 6 7 81
9 0 Invalidkeywas

pressed in an ENTR
statement

9 1 Key is pressed
when not in an
ENTR statement
or entry field is
full (requiring
exit key) and

nonexit key
is pressed

9 2 Keyboard overrun -
keyi n!g rate exceeds
keyboard capability

Job Completion System Halt

Display
Position
Contents Error Meaning

o 0 Job complete - not
an error condition

Operator Response

Press RESET to contin
ue program execution.
Note that this turns off
keyboard indicators.

Operator Response

Press RESET to go to
index (X) mode_

.FIELD Control Statement Errors

If an error is encountered, the .FI ELD control statement'
must be corrected before the program can be executed.

Display
Position
Contents Error Meaning

1

1

1

1

1

5 0 Offset and length is
greater than 128 or
buffer does not con
tain prompting
messages

5 1 Data sent to register

and field length
greater than 16

5 2 Register specifica-
tion is zero

5 3 Message not found
in buffer (message
number greater
than 1 can't be
found in buffer in
ENTR)

5 4 Prompting message
and field greater
than 69

5 5 More than eight
continuation fields
in one ENTR

Operator Response

Press ALPHA and NUM
SHI FT with RESET to
return to index (X)

> mode.

Appendix C. Execution Error Codes, Meanings, and Operator Responses 119

Miscellaneous Errors Display

Position
I f an error is encountered, the operator must choose one of Contents Error Meaning Operator Response
the responses associated with the error code.

5 6 7 81
Display

Position 2 5 5 Hardware parity Press ALPHA and NUM
Contents Error Meaning Operator Response error SH I FT with RESET to

15

return to index (X) mode.

6 7 81

2 0 0 Disk error on Press ALPHA and NUM Disk Open Errors

program load SH I FT with RESET to
return to index (X) mode. I f an error is encountered, the operator must choose one of

the responses associated with the error code(s). Note that

2 0 1 Object data set Press ALPHA and NUM disk open failed in each case.

length is zero SHIFT with RESETto
return to index (X) mode. Display

Position

2 0 2 Object data set Contents Error Meaning Operator Response

is less than two
tracks (4K) or

{
Press ALPHA and NUM 5 6 7 81

4 tracks (8K) SH I FT with RESET to

2 0 3 Attempt to load return to index (X) 5 X 0 Drive not ready

an 8K program mode. 5 X Data set name not
on a 4K machine found in user

program, or object
2 0 4 Program name not Press ALPHA and NUM data set not found Press RESET to retry

found or prO£lram SHIFT with RESET to during program open.
name is not on a return to index (X) mode. load or data set(s)
correct track from .NAME Press NUM SHIFT and
boundary statement missing RESET to go to job

5 X 2 Record length on completion-system code

2 0 5 Invalid drive num- Press ALPHA and NUM index track does 100 or to return to index

ber (position 9 or SHIFT with RESET to not match record mode for 5X1 during

19) is keyed when return to index (X) mode. length specified program load only.

selecting opera- If the data set is a contin- in .DATASET
tion. This error is ued data set, try another

5 X 3 Invalid label
possible for both disk to see if the pro-

extent
translation and gram name is there.
execution 5 X 4 Read error on

index track *

2 0 6 Object data set has Press RESET to initiate
been altered execution with altered 5 X 5 No space available Press RESET to go to

data set. to build index job completion-system

table, or disk error code 100.
Press ALPHA and NUM while building in-
SHIFT with RESET to dex, for key in-
return to index (X) mode.

dexed data set
New translation required.

5 X 6 Register informa-
2 0 7 Feature not Press ALPHA and NUM tion inval id for

available SH I FT with RESET to dynamic open
return to index (X) mode.

(column 23 of

2 5 3 Work station Press ALPHA and NUM
OPEN instruction)

storage failure SHI FT with RESET to
return to index (X) mode.

120

Display
Position
Contents Errolr Meaning

5 X 7 Extents overlap
with some other
data sets on this
disk

5 X 8 Not enough space
to build a com
plete index table
for a key indexed
data set

5 X 9 Key indexed data
set index entries
are not in sequence

5 X A Secured/protected
file (position 11 of
sector 7 is not blank,
position 42 of the
label ,is S, position
43 of the label is P,
and the file is open
ed for a write opera
t;on, or positions
1-4 01' sector 7 do
not contain 'VOL 1 ') * *

5 X ? Write gate check
(hardware error)

Operator Response

Press RESET to retry
open.

Press NUM SHI FT and

RESET to go to job
completion·system

code 100.

This is a warning message.
Press RESET to continue
program execution.

Press NUM SHI FT with
RESET to go to job com-
pletion-system code 100.

Press RES ET to go to
job completion-system
code 100.

Press RESET to retry
open.

Press NUM SHIFT with
RESET to go to job
com pletion-system
code 100.

Press RESET to retry
operation.

Press NUM SHIFT and
RESET to go to job
com pi eti on-system
code 100.

Note: X = data set number (1 through 4).

* If a record len9th is shortened on a data set already writ
ten, a length error (1) occurs when reading these records
in Modell (Data Station) mode. If this data set is speci
fied as key indexed (KR) with index table build, a 544
length error occurs while reading records into the index
table during an open operation in Model 3-4 mode. If
the data set is specified as sequential, a 7X4 (read) error
occurs on the first read to the data set, and not during
the open operation.

* * These errors make the disk unusable in work station

Disk Close Errors

If an error is encountered, the operator should manually
record the EOD value in positions 12 through 16 of buffer
1. The operator must then choose one of the following reo
sponses. Disk close failed in each case.

Display
Position
Contents Error Meaning Operator Response

15 6 7 81
6 X a
6 X 2

6 X 3

6 X 4

6 X 5

6 X 8

6 X 9

Drive not ready*

Read I D error
(can't find label
on index track)

Seek command
error (can't reo
turn to index
track)

Read command
error (found
label, but can't
read it)

Write check error
(located and read
label, but can't
write it)

Write command
error (read label
but can't write it)

Seek read ID error

Press RESET to retry
any error except 6XO.

Press NUM SHIFT and
RESET to go to job
completion-system
code 100.

Note: X = data set number (1 through 4).

* If the drive is opened and closed after a data set has
been opened, a 7XO error occurs when an attempt is
made to access the data set. The EOD of the data set
cannot be updated. If the opened data set is SU, SW, or
SWE, however, a 6XO error is posted. Press N UM SH 1FT
and RESET to bypass the data set, then the remaining
data sets can be closed.

mode, but usable in data station mode. Appendix C. Execution Error Codes, Meanings, and Operator Responses 121

Disk Errors

Display
Position
Contents Error Meaning

15 6 7 .13\

7 X a Data set not open-
ed or drive not
ready *

7 X 2 Read I D error

7 X 3 Seek error

7 X 4 Read error
(See 5X4)

7 X 5 Write check error

7 X 7 Write controll ad-
dress mark error

7 X 8 Write error

7 X 9 Seek read I D error

7 X B Read to writls only

data set error

7 X C Write to read only,
WRTE to nonex-
tended data set,
or WRT with rela-
tive record number
with KU, SW, SWE,
or KUN data set
organization

7 X D Attempt to mad
below BOE

7 X E End of file is en
countered, but no
EOF exit is speci
fied.

Operator Response

Press RESET to go to
job completion system
code 100_

Note: X =0 data set number (1 through 4).

* If the drive is opened and closed after a data set has been
opened, a 7 XO error occurs when an attempt is made to
access the data set. The EOD of the data set cannot be
updated. If the opened data set is SU, SW, or SWE, how
ever, a 6XO error is posted. Press NUM SHIFT and RE
SET to bypass the data set, then the remaining data sets
can be closed.

122

Checkpoint Errors

Display
Position
Contents Error Meaning

\5 6 7 8)

9 X a Drive not ready

9 X 1 Data set open
error. Checkpoint
data set already
open at time of

checkpoint.

Note: CKPT instruc
tion cannot be at
instruction step
number 255,511,
or 767.

9 X 2 Syntax error in
register or data
set length not
128

9 X 3 Data set BOE not
on sector one

9 X 4 EOE reached be-
fore checkpoint
complete

9 X 5 Invalid data set
specified

9 X 6 Write error

Operator Response

Press RESET to go to
job completion-system
code 100.

Note: X =0 data set number (1 through 4).

Communication Link Errors Display

Position

Display Contents Error Meaning Operator Response

Position
Contents Error Meaning Operator Response 16 7 8 91

16 7 8 91 C 1 1 Inquiry or Press RESET to return to

receive mode index (xj mode.

C 0 1 File 1 is an I· Press RESET to return to is selected and

type file index (xj mode. the disk is

CO2 File 1 is not on Press RES ET to retu rn to positioned

drive 1 index (xj mode. beyond sector

C 0 3 File 1 is not Press RESET to return to 73026

open index (xj mode. C 1 3 Transmit mode Press RESET to return to

C 0 4 File is an SU·, Press RESET to return to is selected with index (xj mode.

SW·, or SWE· index (xj mode. the disk at EOD

type file, but C 4 There is a disk Press RESET to return to

the commun· write error index (xj mode

ications mode C 5 There is a disk Press RESET to return to

selected is not read error index (xj mode.

R or I C 6 No record is Press RESET to return to

C 0 5 File 1 is a KU-, Press RESET to return to found index (xj mode.

KR·, or SR-type index (xj mode. C 7 Volume label Remove disk 2 and return

file, but the on disk 2 is to the index (xj mode.

communications secure

mode selected is C 1 9 Receive data Press RESET to return to

not T" P, B, D, and insert con· index (xj mode.

J, or K stants program

C 0 6 Unattended Press RESET to return to is not equal to

print ;is index (xj mode or set the the file 1

selected, but the AUTO REC ADV switch record length

AUTO REC on and press RESET to C 2 1 Disk drive 1 Press RESET to return to

ADV switch is continue. is not ready index (xj mode.

not on when the

C 0 7 Keylock is Press RESET to return to COMM instruc-

locked index (xj mode or unlock tion is executed

key and press RESET to C 2 2 Unattended Press RESET to return to

continue. print is selected index (xj mode.

C 0 8 Unattended Press RESET to return to and byte 4 of

print ,and index (xj mode. register A does

transmit mode not equal 2

are sellected through 9

C 0 9 Unattended Press RESET to return to C 2 3 There is a disk Press RESET to return to

ACL program index (xj mode. seek error index (xj mode.

execution and C 2 4 Disk drive is Press RESET to return to

inquiry mode not ready index (xj mode.

are sellected during ACL

C 1 0 Inquiry mode Press RESET to return to communications

is selected, but index (x) mode linkage

fi Ie 1 record execution

length does not C 2 8 File 2 is not Press RESET to return to

equal 128 closed index (xj mode.
C 3 8 File 3 is not Press RESET to return to

closed index (x) mode.

Appendix C. Execution Error Codes, Meanings, and Operator Responses 123

Display

Position
Contents Error Meaning

C 4 8

C 9 9

C ? ?

124

File 4 is not

closed

Communica
tions feature is

not installed.
There is a write
gate error on
disk drive 2

Operator Response

Press RESET to return to
index (x) mode.

Press RESET to return to
index (x) mode.

Remove disk 1 and return
to the index (x) mode, or
remove disk 2 and press
RESET to continue, or
press RESET to continue.
(Any writing to disk 2 can
be unpredictable.)

Operation Code Error

Display

Position
Contents Error Meaning

y Y Y Attempt to exe

cute an invalid

Operator Response

Press ALPHA and NUM
SHIFT and RESET to

operation return to index mode.
Note: YYY is for diagnostic purposes only.

SAMPLE PROGRAM '-ORDER ENTRY

Sample program 1 illustrates the coding of an order entry
application which operates on the 3741 Models 3 and 4.
Figure 51 is the order form to be used. Note that the fields
to be entered include:

• Customer number

• Order number

• Date

• Salesman number

• Purchase order number

• Shi p instructions

Appendix D. Sample Programs

• Product code

• Quantity

• Price

Figure 52 shows the data displayed after entry, and the
format of the diskette record written for the loader-type
information. Figure 53 shows how the data is displayed
and written for each item on the order.

During the data entry function, a shipping code is used to
search a table to find the corresponding shipping instruc

tion. If an invalid shipping code is keyed, an error message
(Figure 54) is displayed to the operator.

ABC COMPANY
SALES ORDER FORM

CUSTOMER ++

CUSTOMER NAME

STf1EET
CITY, COUNTRY

ORDER DATE SALESMAN

ORDER #

Table Search

PURCHASE ORDER # SHIP VIA

~ ________ --._L-_________ ..L......_~. ___ . _____ ---,_L-_________ --I

PRODUCT CODE DESCRIPTION

Legend: Fields to be entered are in bold type

Figure 51. Order Form for Sample Order Entry Program

PRICE QUANTITY

l'~------i-------I

'---.. Multiply Limit

Check

Appendi>: D. Sample Programs 125

CUSTOMER 00001?40 [JRI'[R c,'

DATE 081073 S4LESMflN f'.!l.

SHIP VIA TRUCK

'------------,---_ .. _-----'--_ ..

CUSTOMER ORDER DATE SALES-
NUMBER NUMBER MAN

"----

1 9 17 23

DISKETTE RECORD

Figure 52. Display of Entered Data and Format of the Diskette Record

,.--------------- ---

CUSTOMER 00001?4U

ITEM 00000236 ~IY.

'--------------r---------- --,

r--------,--------,--------,r-'----,-------,. -
CUSTOMER
NUMBER

ORDER
NUMBER

9

ITEM
NUMBER

17

QTY

!

25
----r--

I 30

.. ----~j

&-_________ ~ ______ _______ J..._ _____ _'_ _____ , ___ .- . __ • -, -- •. -.- •••

DISKETTE RECORD

Figure 53. Display and Diskette Writing for Each Item on the Order

126

After the CjuJ", ~y I, "n,8'< d, d "\,',, cl>.:ck 1_> mude to see if
the qUdntlty ;5 gredter than 1000. If 11 'S, the operator is

nlltd'ed b', ,w (",(,; rnessdqe, shown In ;:' ''lure 55.

--------~

Figure :55. LllTlrt Cheu{ rlnd En·.)r Messaqe hn .,)lldntity Exeeds 1000

Til" COl.my nt'r' ·;';'i. tP,,; !'f"grdf,' 1"" own in Figure

56

{i768 6970 71 72 73 74 75 76 77 78 7 :, l'I'IIlllIITfi5iTiBiTI5TI5TI551561TffrrrrnJ

I

IN
iZ
lx

Hv\iN[SI ! I ! i I I

!

F'gur" C'(, iPalt 1 01 4:. Cuch,,,!

i III IIlI
Data Drive Object DatJ , t)V(,I)w ldlt CurrE'ncy Register Proof Ke\Joard Machine Intermediate

• .7

tz;J-~i
S H,l'~ iv:-:L:A,~

Control Keyboard Sile Set Name

,., 3£ 1/ 38 39 40 41 42434445464748495051 525354 55 56 57 58 59 60 61 626364 65 66 6

r Illlill1mtmllimmu
Buttet Deleted

I{"cord

EOF Type I Index
length

Extent
check

Number Set Nam!_

766697071 72 73 74 !-f 11 7~ 7

i
I ~

-~ J
Tracks Key

Key ~
length POSltlO

I

Appendix D. Sample Programs 127

-r-.l
(I)

"T1
.c'
c:
~

CD

(,n
en
"'C

'" ::l
fv

~
.j:>

C"l
o
0.
:l

'" Q
(I)

'" 3
"E.

CD

o
a.
'" ~
m
;;.
-<
"'C o
~
'" 3

+~J
. j." r~

; r : T : . :
1\ j i i j j i

(E,EEEli

iTT T r r l! r'
I " ! j 1

~-~----~~- ~~~--- -~ ------~-------\

)'.' It III! I',' ,-T~T~;r I,: Irlll! !, 111111, j~i'-t! tll'lqff~~~ftt I~;j l' I' ,t ~ , 1 " j - 1 ~ t ,+, . II, ~t-4, ~ +-1 f,' " ! ,! ; I j t "'"if' I I: " ' I '. I, I I I ' i I I I I I j
+~PI t;1-:II-I, I' ,:," ;t~~':I' i!!t:-t~,-t ',:'!'t,,1t
.;'t1i11i'I.,I",II j 'I, ".' II i ' :', ~,:;.~t 1",1 ! ! +, i: tl'" i : . ' I" 1 : T ': 'I i ' I I '-t f j' ,;' It' +- j 1 t-:

~ '-~ + _1 ii', +,1 - I • j .~" I' ~ 1 t + t • ,. T j t • ~ • -< --+- + . :NJ\': I :! !, 'I I I I I It' j
'~T~, 1+1,+1 '-",'1 i +; -+ "',1 I'll t+t-"t- "I,lt " ""1" : I " I, I I I I I I, I I I I I • I I I I I

-1-. I ~ ~ :t~ ,-j--;-l-+f: ,~-+". '- •• 1 tt 'tfffi'-Itf'~ '~lW....L-~ tI~+-t-·-t i 'P" ' /'I t' 'I i I I , I I I I I I t;h " I +-+, M, 'I i + 1 "~, li-i I t, ;, ~ ~j~-l ~t, ' -+-~ t- ~ ~++ j t +-, t 1 -+ -+ ~ ,- • + ~+ I

i~lbf, ,~,,: '~ ilm~t~w~~ , ~ ! : ~·t .-+!- ; I J±J~1 ~ ~l:i '
+-t'"JAl-<-t""'r-! ~ AT lj - .' ,+ -pc"', ~~ I 1 i t r t t j t + J ~, T - ,- + it

I I I ! : : ! : L. ~ , 1 I 1 LJ I,: ~ , + 1 I ,I LLI ~ j Ul ' " ,J ..l 1 1
I PosTon 1....:'._ :..-_~ ___ '~~__ ___ ,:·:;>~2i'.")8n'" ~.'': ~·:.:'4f4 48 ~C~ 54'S hS'~~"'_"_""ll,;ot-

i : Sp~,. d ,ne 5

8uf f ,. F"j

tlulter iP'lgtn

~1l',<J :,.,J'

DatJ rjlSl-lm t'ur,

_________ indicates continuation of the first and last character (register).

STEP

Figure 56 (Part 3 of 41. Coding for Sample Order Entry Program

SHP

Figure 56 (Part 4 of 41. Coding for Sample Order Entry Program

Appendix D. Sample Programs 129

SAMPLE PROGRAM 2·MAILING LIST INQUIRY

Sample program 2 illustrates the use of two key functions
within the ACL language:

• Using the key indexed access method

• Providing error correction using the special keyboard
close function of the .FIELD control statement, and us
ing registers to specify the buffer and message number in
the ENTR instruction

The operator is first requested to enter the customer number.
A search of the mailing list data set (Figure 57) is initiated.
If the matching record is not found, the operator is request
ed to reenter the customer number. If the record is found,
it is displayed to the operator in the format shown in Fig-
ure 58. The operator is prompted to enter a new street,
city, state, zip code, and telephone number. If any of these
fields are not to be udpated, the operator presses the FIELD
ADV key to advance to the next field, or REC ADV key to
advance to the end of the record and update the diskette.
If an error is detected in a previously entered field, the
operator can press the FIE LD BKSP key to return the pro·
gram to the previous field.

130

The ACL coding necessary for this sample program is shown
in Figure 59.

CUSTOMER NUMBER 1-10
CUSTOMER LAST NAME 11-25

CUSTOMER FIRST NAME 26-36
TELEPHONE NUMBER 37-43

STREET 44-59
CITY 60-75
COUNTRY OR STATE 76-85
ZIP CODE 86-90

Figure 57. Format of Records in Mailing List Data Set

(Program name)

2 (Ldst name) (FII,t l1ilml') (phone No)

3 (Street)

(Prompting

Mpssage)

Figure 58. Format of Mailing List Record Displayed to the Operator

»
'0
'0
0>
:l

90
X

o

~
3
"E-
O>

'tJ
(3
'Q
OJ

g

w
~

"T1

~' ~2 J_'i6~=~" "~Y~BI[[tlIf[JJfl"('(rt'5trrl39I'r(2(J!,,(5(Tr8f'150('15TI54(515"i"t'TI
6

0I"('j6Yf I6YI
6

YI"I"I"j''t''I'Tj'fj'9(YI
CJ'I Name Origin Printer L"H"; Overflow Edit Currency Register Prool Ke\~oard Machine Intermediate Data Drive Object Data Drive
(,0 huffer Ppr Pag." Imp Control Keyboard SOle Set Name Number Set Name Number

! ~"~;~I]lf~J~~~~ ~[r~
3' E~tent buffer buffer positron

~ ~~

"'" 5;
~
3
"E-
O>

S
'"
:l
~

r
~.

:l
.c
::
-<
~
~

~ - Ch",em -----0-.'-----;-, ---
Ql NL.rpt}pI CharJrle' SeL,,"d rec,-,rd

3
Number

12 J 4 ~ 6 78910 121J·4·=1!i1718'91U2122232425262)28.><JJ01'J)3:<J4J~36J738J940414"43444546~74R49';O<;1"?51'i4~~~5~7~1l~96061626364i;~5fi"7r,8J9107\72?374i~76777PI'j~OB182B1848'8{j~7B8~9091929;-~~9~9b979A99~G?§9§§-~2~~:~~~:::;:_'

~F1I EL 0 ~j ~ C"lRi l j A. . rl ~ Ti 1M N. * j 1\ \ 1 f l 11. Uf.1 1.1 i I I I I II 11
/ - ji Ii l'f J: T" J J. -+! .. ~+ -1 . I) + + It - J I I II II I 1

. P =>J CI+ !? 11 III' : t f': I Ii- + I.:.. I. _ 1 'I i I ;1 j ~r
I H 'IJ c.. 5 I i 'n ~ ,rl Ii RY TAfT,Hi I Iii J -c+ ' ~ ,.! '.~. t II .. ', IT ,t; , 1 ~

It; 3 . t ' *' 'I' 'I. .\ 1, I '1,\ '1 tl, ,., , ~ '" I i(II~' ~ b~ ~ ~, .1 i It: iliL : Ii I II . tl rt~C-++j dr '.L4 l·TI-I+ttt--~r!+ r
I ~I=jr 3.' All'll Gi Ij ~ T NTI ,H,)~TrrE:iQ!~ ~~ l< J~ I, J+ i' I I I ' ,I !-IT ,,-h I
iTf., t' It If{ttt- '+1. -+"+ ~ ;L.4T~+ +1+-1...11. I' t"",," I', Itil 1,"',,1;. il,:
D11~. t , t ' r-l1tr I J-L ! tt I iii" I I t I' I I 1: i ' ! • j I! i I I I, ! I . ! I 'TTl
f~-+l t - 1 Iii I I i r+ Ti I-t-W-+-h-.ii ! ' J i ,I!:! I I I', I ! 11 I It : 't: LJ _+1 H-~ ~~_Li I. ! I ,

, 1'1 I ... -I j Til T' 1 l ! I j Ir::~ I ,-l i i-LL j J. : 'I 'i I i r ' I 1! I L iii, i' i : l '
tffitLL . LL _.L -Htfi±ilLU1~UljjlJnJt·tTttIJ_Lj,llJLl~Jl 11"1' I' -It 11'11, I:t t

S"fI., ()-"r",'''" F,~ld E.:l ' (i" 'Cl;':'1'~'5 51 IH '20 17~2~:o251f'i)]cJJ"AIJ~"':-'12)<Jl('4'474.'44~"4r,4745~"",l5 -, ")~SS~bt) 596061L'['3f>4"o66,,7'>8691()~177- Bl,ffer'p~('"
IJldf~r len'll! ~- -------- ---- - ---+----.--- ----------- -------------------~ tor

:J 'I"dy I'~l 5 O,spldy I"" 6

Field rl"q

adr,

"'---- Indicates continuation of the first and last character (register),

Register Usage

A - Customer number (keyed)
B - Street
C - City

D - Country or state
E - Zip Code
F - Telephone
G - Scratch

H - Customer number (read from file)
I - Customer last name

J - Customer first name

STEP/
LABEL COMMENTS

Figure 59 (Part 2 of 3). Coding for Sample Mailing List Inquiry Program

STEP!
LABEL

Figure 59 (Part 3 of 3). Coding for Sample Mailing List Inquiry Program

132

SAMPLE PROGRAM 3-0VERLAY PROGRAM

Sample program 3 illustrates how an overlay program is
coded. In the example, there is one mainline program
and two overlay programs. Some important items to be
considered when using overlays are:

• The .NAME statement must reference the same origin
buffer in the mainline and overlay programs. (Buffer
9 in this example.)

• . FO RMA T statements must be used in the mainl ine
program, while dummy formats may be used in the
overlay program. This is because formats are loaded
in high storage by the work station at translation time
and consist of pointers only.

• The 0 RG instruction references the actual buffer
where the overlay will be positioned in the mainline
program. SinGe each instruction is 4 bytes in length,
there are 32 instructions per buffer, and by assigning
a step number of 128 with the ORG instruction, the
next instruction would start four buffers away from
the buffer referenced in the .NAME statement. A step
number of 000 is in the .NAME referenced buffer.

• I n the example, the overlay programs are executed once
to create the overlay data set. The first overlay program
references the overlay data set as an SW file and writes
the first three records of the file. The second overlay
program refenmces the overlay data set as an SWE file
and writes the next three records of the file.

• The retrieving of the overlays from the data set is
accomplished by using relative record reads.

• Overlays may degrade performance due to the reading
of additional records.

The coding necessary for this program is shown in Figure 60.

Appendix D. Sample Programs 133

.,' '" .,1,1,1',",

I' " , 1 I' • , : ' I' : [I

' .. j' l: !s~ : l;: : :;.l:: j j j II
, ' "':, , 'i i : ' ' ,

, 1 I "'!! : t l , : , j I 1 t ! Itt •• It! l j t

t I ' i ! I I,' Iii i i j
, I I

, I ' •

: t l

, ,

Figure 60 (Part 1 of 3). Coding for Sample Overlay Program

134

Figure 60 (Part 2 of 3). Coding for Sample Overlay Program

I! I I I . :

I !. ; II \1 t
I I I

: ; : . I I I , ',II ! ! : I !

,. -'l . r

~ i :

T sN I I
, I

; 1 \ I
I Ii, I

T vi ~

Appendix D. Sample Programs 135

II]1 [I] ! i
.1 j I 1 j 1,

1 I' • I '4 I', It !! H "I Hl 81 H.' ", !~ ~~ J.j~ HI 8fl H8 90 9' 91 '11Tfl·lll. Lt I-H.+ I
L In n f.··· . . 1

~ Py Inde~

Ipngth ()'''Ii'' Itdrt

buffer ~"tlon

.BUFFER

~'r~~~~rn~f0'·f~W·lr·~~i~);;:t;rM'.r~k~~~I'·;""I"·"""" "'I""·""'""i(
1 '[lAIR 1 {p~ i '~rr ~1.lcll 1,£2 ,[;(1.f1e0
t 11 ~ 17 I 1 I :1;3, I j 1 t 11 1r IW~ '~0/~~ Vl<=~tl ,qiy K b~ ,

,~ I 71 : ' I I I Ml 0 11v (?!y: l" tc~ I ,

~ irihl;: i~~~ l4iv I~ 5 IMvs J j t Iii j i: I t 1 : t I , j : ~ ~ i II i . i

j ¥- 1j -I q 1 t l' ojv~ Iv~~ L~ 11 if I oW • 0, j L +-
I M,7K / 1 , 14'~k 0 It:" R. I 'p: N(lMf. I ' t I I '

~~ Ie V~11: r I II V I or" ~ 'I I Iii II II I' I I 11 I t l' ; 1 ' 1.[f -j j. ~j -I I -+ -!~ t (, + ,I I \ ~ Pl X V~i7~ 1/17V ~W I ~ ~ .1IB:. .f;~~ I ~olf !, t I Ii f I : ~ '¥1~ ~(~~~~~y ol(W~cJ~J .
t I Ijj 11'~II'lt 1111 11,'1' I ~- ,i I :, I : I I I I 1 I j I I I: . I j

, it ; tTjt+ .. ~j 1I'ljl;1 !llfll 1)11:11 j II ~, ," I!," . " I· Il' t! I "'t 11 ! + 1+ I W j Ij1r j j " it . , ..•.. ttl 11i1. - I th It7~+ jjjjiinl+H + I tJlrii-.~: Ii
, , , • , , • , " 10 " U " .. " "" "" '" " n n "IT J" JiJJm", " '" " " " " ~ " " " " '" ,e " " " ~ ,,~ " " " M " "" "",."" '"" " " n " " " n " " '"

Figure 60 (Part 3 of 3). Coding for Sample Overlay Program

136

The Printer Link (RPO) feature allows an ACL program to

load printer control format programs into format buffers,

then select PRINT TO EOO mode at the Model 2 level. At

the conclusion of printing, a method is provided to return

to ACL program mode at the Model 4 level.

Printer Link is applicable only to a 3741 Model 4 with
the Communication Link (RPO) feature, Expanded Commu·

nication feature, and either a 3715 or 3717 Printer attached.

Printer control 'format programs and the Expanded Commu

nication feature are described in the IBM 3741 Data Station

Reference Manual, GA21-9183. The Communication Link

(RPO) feature, the 3715 Printer, and the 3717 Printer are

described in Chapter 2 of this manual.

In order to start the Model 2 PRI NT TO EOO function from
an ACL program you must:

• Close data sets 2, 3, and 4.

• Open data set 1 as an SR type fi Ie on drive 1.

• Load printer programs in ACL buffers 2-10 (buffer 1
cannot be used).

• Load ACL register A with print control information.

• Program the COMM instruction.

• Turn on the AUTO REC AOV switch.

Appendix E. Printer Link (RPQ) Feature

The linkage to print mode begins when a COMM instruction

is encountered in an ACL program. The format of this

instruction is:

Column

Entry Stepl
Label

8

COMM

13 18 23

The work station assumes that the input to the print mode

linkage function is in register A, and that buffers 2 through

10 contain print control programs.

Register A must contain the following information before

the COMM instruction is executed:

Position

2

3

4

5

6-16

Required Information

Not used.

The character O.

Not used.

Format numbers 2 through 9. Used only if

buffer 10 contains a question mark.

The character N if the check for a continued

data set is to be skipped.

Not used_

Appendix E. Printer Link (RPOI Feature 137

When printing is complete, the work station will return

either to the index track or to ACL program mode to
translate or execute a program. You must put one of the

following print control characters in position 001 of buffer
10 to tell the work station which way to return.

Return Point after Print Meaning

Index Track ACL Program Mode

Colon (:) Question mark (?) Printing is under control of the format program
selected by byte 4 in register A.

Percent sign (%) Exclamation point (!) Printer format program is selected by the character
in position 1 of each record.

Plus sign (+) Left parenthesis: (Printing is under control of data stream characters.

When the question mark, exclamation point, or left paren
thesis is in position 1 of buffer 10 and either the COMM
instruction is executed or PR I NT TO EOO is manually
selected, the work station completes PRINT TO EOO and

returns to ACL program mode. The work station will either
translate or execute a program, depending on the informa
tion you put in track 0, sector 3 of drive 1.

The information required to translate an ACL program is:

Position

2-9

10

12-19

20

21

Required Information

Step numbered source program name

Drive number where source data set is
mounted

Object program data set name

Drive number where object data set is
mounted

The character A

The information required to execute an ACL program is:

Position

2-9

10

12-15

21

138

Required Information

Object prowam name

Drive number where object data set is
mounted

ACL program name

The character E

SAMPLE PROGRAM

This program illustrates sample coding required for register

A, a format prO!lram in buffer 9, and the COMM instruction.

It also shows the question mark in buffer 10, and sector 3

which returns the work station to ACL execute mode.

The following is a printout of the SOURCE data set:

(.' I !: L"!
.",:' ! ...

I'

,..' ,

, ,
, !

-I :
L'

"("i . (.. ~

The following is a printout of sector 3:

·',r···' () .:!

The first instruction in this program, the COMM instruction,
uses the information in register A to go to Model 2 PRINT

TO EOD mode. Printing is now under control of the
programs in buffers 9 and 10. When printing is finished, the

question mark in buffer 10 tells the work station to reload
and execute the program in ACL mode by using the infor

mation in sector 3 of the index track.

This program is for a 3715 Printer, but can be used with a

3717 Printer by changing byte 23 of the .NAME statement

to a 2 and byte 13 of the .PR I NTE R statement to a 2.

(: i' i

Appendix E. Printer Link (RPQ) Feature 139

The following steps are required to use this program:

1. Label three unused diskette data sets with the

followi ng names (positions 6·13 of the index track);
SOURCE (one track), OBJECT (two tracks starting

on a track boundary), and RECORD.

2. Key the sample program into the SOURCE data set.

3. Enter the information to be printed into the

RECORD data set.

4. Enter the following information into sector 3 of the

index track:

Positions Entry

2·7 OBJECT

10

12·15 TEST

20 E

5. Translate the sample program.

6. Turn on the AUTO REC ADV switch. The COg error

occurs if this switch is not on.

7. Execute the sample program.

140

Execution error codes for the Printer Link (RPO)

feature are listed in Appendix C of this manual.

Printing can be stopped by turning off the AUTO

REC ADV switch. Printing could be restarted again

by turning on the AUTO REC ADV switch and

pressing R EC ADV.

.BUFFER 21,87

.DATASET 8,1Hi

.END 28
drive number 29

I/O data set name 28

operating mode 28

output data set or program name 29

.FIELD 25,87,1·16

buHer 25
errors 119

overflow buffer 25
.FORMAT 22,83,116

.NAME 6,115

.PRINTER 14,115

.REGISTER 20

.SELF-CHECK lEi,116

ACL control statements coding sheet one 3

ACL control statements coding sheet two 3
ACL instructions coding sheet 3

ACL label processor 3,96
ACL label processol" configurator 101
ACL program operation 4

ACL storage estimator 66,67
ACL translator 1,96
add instruction 30,92
algorithm control 15
application control language 1,96

arithmetic operations 29,30,89
assigning a constant value 32,89,92
assigning a step number (ORG) instruction 60

binary synchronous communication 61

blanking a register 31
blocking and deblocking of logical records 83

branching operations 4,33,89

BSCA 13
buffer assignments 3,65,68
buffer number 1,21,54

card I/O 60,61,138
card I/O errors 118
characters per line 14,89,101

checkpoint errors 122
checkpoint I D number 58
checkpoint stateml!r1t (CKPT) instruction 58

CKPT (checkpoint statement) instruction 58
close (CLOZ) instruction 45, 85

CLOZ (close) instruction 45, 85

Index

COMM (communications link/printer link) instruction 62,137
comma ed it control 7, 24

comments 3,6,29

communication link errors 123

communications 61

communications link (COMM) instruction 62,137

communications mode from an ACL program 62
complement 16

conditional branching 35
considerations for efficient key entry programs 64
control program 87
control statement name 15

control statements 1, 6, 115
CRDP (punch a card) instruction 61

CRDR (read a card) instruction 60
creating a source program 1

cross reference 98, 100
current file disk address 43,85,86

customer diagnostic diskette 105

data directed formatting 23, 51,52
data disposition 26
data movement 25
data position 28
data set access methods 4, 10,75

data set I/O buffer 9, 42, 66
data set labels 82
data set name 8

data set number 8
decimal edit control 7
decimalize self-check number 16
delete a disk record (WRTS) instruction 43, 76

deleted record routine 9,77
design and implementation 64

designated buffer load 21
diagnostic diskette 105
digit I/O control 16
digit position 15

disk close errors 46, 121
disk dump 109
disk errOrS 122

disk open errors 45, 120
diskette operations 41,94
display and keyboard operations 5,40,88

display screen flash 64,111

divide instruction 31

drive number 8
dummy GOTO 9, 15, 34
dynamic close of a data set 45,85

dynamic open of a data set 44,85

Index 141

EBCDIC chart 18

edit control characters 7, 23
edit currency characters 7
editing 5,23
editing examples 24
efficient use of work station storage 68
end of file routine 9, 77
end of job (EX IT) instruction 45
ENTR (keyboard input) in:struction 40

error correction 64, 70
error messages 114, 11' 8
EXCH (exchange buffer contents) instruction 54

exchange buffer contents (EXCH) instruction 54
EXEC (execute program chain) instruction 60
execute program chain (EXEC) instruction 60

execution error codes 118
execution timing 92
EXIT (end of job) instruction 45
exit control 27
expanded communications feature 62
extend data set and write disk record (WRTE) instruction 43, 76

extent check 13, 91

field chaining 26
field exit control 27
field ex it keys 26
field length 26
field type 26
format character 22
format character position 22
format number 22
format record 22
formatted display dump 108
formatting blocked records 23
formatting records greater than 128 characters 23
function keys 65

general error messages 1'16
generate self-check number instruction 59
GETB (move data from buffer to register) instruction 50
GOTO (unconditional branch) instruction 34,9
GSCK (generate self-check number) instruction 59

hexadecimal display 107

I (label update) access method 13, 81
ICBF (insert character in buffer) instruction 59
if CRD is/not busy instruction 40,44
if format is/not instruction 37
if indicator is/not on instruction 37
if printer is/not busy instruction 40
if registers equal instruction 36
if registers greater/less instruction 36
if register is/not absolute numeric instruction 38

142

if register is/not negative instruction 35
if register is/not self-check instruction 39
if register is/not signed numeric instruction 39
if register is/not zero or blank instruction 35
index access method 81
index end buffer 14, 81
index end position 14,81
index length 13

index origin buffer 13,81
index start position 13, 81
index table 12,81,91

indexed GOTO unconditional branch 33
ind icators 110

initiating translation with the label processor 96

initiating translation without the label processor 102
input translate table 17
input translate table buffer number 17
insert character in buffer (lCBF) instruction 59
instruction block 36
instructions 29
intermediate data set name 7
internal data movement operations 51, 89
introduction 1
invalid key errors 119

job completion system halt 119
job run sheet 73, 74

key indexed access 11,42,70,79
key indexed read only access (KR) 11,86
key indexed read only access, no index build (KRN) 11,86
key indexed update access (KU) 11,86
key indexed update access, no index build (KUN) 11,86
key length 13
key position 13
keyboard buzz 64, 111
keyboard designation 7, 101
keyboard indicators 87,111
keyboard input (ENTR) instruction 40
keyboard operations 40
keying pattern 64
KR (key indexed read only) access method 11,86
KRN (key indexed read only, no index build)

access method 11, 86
KU (key indexed update) access method 11,86
KUN (key indexed update, no index build) access method 11,86

label processor error messages 100
label syntax rules 1
label update (I) access method 13, 81
lines per page 14,101
LOAD (load data buffer to register) instruction 55
load data buffer to register (LOAD) instruction 55

machine size 7,101

miscellaneous errors 120

miscellaneous instructions 58

MOFF (move partial content to register with offset)
instruction 55

MOVE (move data from buffer to buffer! instruction 54
move data from buffer to buffer (MOVE) instruction 54

move data from buffer to register (G ETB) instruction 50

move data from regi!;ter to buffer (PUTB) instruction 51

move partial content from register to register (MVER)
instruction 54

move partial content to register with offset (MOF F)
instruction 55

move register to register instruction 32

multiple diskette data sets 85
multiply instruction 30

MVER (move Partial content from register to register!
instruction 54

no operation (NOP) instruction 59

non-printable characters 47, 89
NOP (no operation) instruction 59

object data set name 8

OPEN (open data set) instruction
open data set (OPEN) instruction

operation code error 124

44,85

44,85

operator documentation, training, and testing 73
operator error correction 70
operator training 73,75

ORG (assigning a step number! instruction 60
output translate table 18
output translate table buffer number 18
overflow buffer 25,

overlapped operation 46, 90

PCTL (skip to line number or space) instruction
pri mary printer buffer 15
print a line (PRNT) ilnstruction 46

print form size 7
print forms control 101
printer buffers 15
printer dump 108

printer error messaglls 118
printer link (RPO) filature 137
printer operations 46, 89

printer overflow line' number 7,14
printer overflow routine 15

printer type 7,14,101

PRNT (print a line) instruction 46
product table 16

product table buffer number 17
program debugging 104

program execution
program interruption

program name 6
program origin bUffllr

103

58

6,88

47

program performance 90,92

program restart 58, 64, 105

programming restrictions 88

prompting buffer 25,40

prompting message 28, 64, 68

prompting message abbreviations 68

prompting message number 40

prompting register 7
proof keyboard 7

punch a card (CROP) instruction 61

PUTB (move data from register to buffed instruction 51

random by relative record number access 4
RS LK (read blocked record from buffer) instruction 52,83
read a card (CRDR) instruction 60
read blocked record from buffer (RB LK) instruction 52,83
read from buffer (REFM) instruction ~il, 94

read instruction 41, 76
read table entry (TSRD) instruction 49,94

record length 8
REFM (read from buffer! instruction ~il, 94

reference material 6
reformatting 5
register contents 20
register trace 104
registers 3,20,41
relative record number access 4,69,77

restricted areas 89
return transfer [subroutine call] (RGO) instruction

RGO (return transfer! instruction 34

sample programs 125, 130, 133, 139

34

search table for equal/high entry (TBFN) instruction 49,94

search table for equal entry (TBFX) instruction 48,94

second format record 22
secondary printer buffer 15

selecting trace 105

self check examples 19

self check modulus 15
self checking 5, 15,39
sequential access method 10, 42, 75

sequential read access 10,86
sequential update access 10,86
sequential write access 10,86
sequential write extend 10, 86
set indicators off (SOFF) instruction 58,94
set indicators on (SON) instruction 58,94

shift left logical instruction 31
shift left signed instruction 31
shift right logical instruction 31

shift right round instruction 32
shift right signed instruction 32
single step trace 104
skip if character is/not equal instruction 38
skip to line number or space (PCTL) instruction 47

SOFF (set indicators off) instruction 58,94
SON (set indicators on) instruction 58,94

source listing 98, 99
special keyboard close 28
SR (sequential read) access method 10,86

step numbers 3,29,96

Index 143

step stop 1 04

step trace 1 04
STOR (store data register to buffer) instruction 56

storage 1,61

storage allocation and requirements 65,66
storage dumps 106

store data register to buffer (STOR) instruction 56

SU (sequential update) aCCE!SS method 10,86

subtab les 68

subtract instruction 30

sum manipulation 16
summing of products 15

SW (sequential write) acces!; method 10, 86

SWE (sequential write extend) access method 10,86
symbol interval count 7

symbolic labels 3, 29,96

table argument 47,94

table index 13,47,95
table number 88

table operations 4,47,68
TBFN (search table for equal/high entry) instruction 49,94
TBFX (search table for equal entry) instruction 48,94
TBRO (read table entry) instruction 49,94
TBWT (write table entry) instruction 50,94

trace output 104
tracks per index 13
translation 96
translator error formats 114

translator error messages 114

translator storage assignments 66

144

unattended ACL program mode after communications 62

unconditional branch 33
unformatted display dump 107

United Kingdom special algorithm 1 17

usi ng operator messages 68
using tables 68

WAIT (wait I/O) instruction 44

wait I/O (WAIT) instruction 44

warning error messages 117
WB LK (write blocked record to buffer) instruction 53,83

weighting factors 18
weighting factors register 19
WR F M (write to buffer) instruction 53, 94

write blocked record to buffer (WB LK) instruction 53,83
write disk record (WRT) instruction 42,76
write table entry (TBWT) instruction 50,94

write to buffer (WRFM) instruction 53,94

WRT (write disk record) instruction 42,76
WRTE (extend data set and write disk record)

instruction 43,76
WRTS (delete a disk record) instruction 43,76

ZONE (zone bytes in register) instruction 57

zone bytes in register (ZONE) instruction 57

3713 printer 7,14
3715 printer 7,14,137
3717 printer 7,14,137
3741 operation 96

--- ------ - ---- ---- - ---- - - ---
===-=~= (~

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150
Atlanta, Georgia 30301
(W.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

GA21-9194-3

s:
o
0.
ct>
;;;
IN
Q)

5.
....
"'0 o
'" Ql
3
3
Q)

CT
CD
~
g
,.
(

§.
0'

" "'0 o
'fl
Q)

3
3
:;'
'" ::D
~
~
ct>

" (')
ct>

s:
Q)

" c
!!!.

READER'S IMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming

support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so onl. No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us

about it by using this postage-paid form. We will correct or clarify the

publication, or tell you why a change is not being made, provided you

include your name and address.

Page Number Comment

Name

Address

$:~:,oCJJ
~ 0 0 s:
~ ~ ~ w 3, - 3

3 3 ~ _. a::
::: CT s:
~CD8.
<1l :2 ~ tt 0 (Il

CD ~ W
:J C/l OJ

2 Cit 5. g. ~
:J

G)
»
r-l

to
~

to
~

W

GA21-9194-3

Fold

BUSINESS REPLY MAIL

Fold

====-= =
l~r,1:

<1>

FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N_W ..
P,O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601

U.S.A.
(International)

ARMONK, N.Y.

Fold

~
IO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

Fold

()

S
l>
o
:J

'" r
:J
<II

~
Ql
3
3
:J
co
Jl
S-
eD

~
:J
n
<II

~
:J
c:
~

c
en
l>

READER'S .. MENT FORM

Please use this form ... ,to identify publication errors or request changes to publications. Tech nical questions abou t I BM systems, changes in I BM programming

support, requests for a. Jitional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so onL No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading Information in this publication. Please tell us

about it by using this postage·paid form. We will correct or clarify the

publication, or tell you why a change IS not being made, provided you

include your name and address.

Page Number Comment

Name ----- - ~ --------------

Address

~"l!"l!
Q) .., ..., OJ

~.g.g~
Q)@Q;w
- 3 3

3 3
~

_. Q)

::l CT ~

~'"8.
'" ~ '" CD 0 ;;;
~ ;. w
~ (J) ~
(1) S c.. g. ~

::l

Cl
»
I\l

cO -~
w

GA21-9194-3

Fold

"' I
BUSINESS REPLY MAIL

Fold

--- ------ ----- ---- - ..,,--- - - ----------_.-
®

FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

ARMONK, N.Y.

Fold

~
OPOSTAGE

NECESSARY
IFMAILED

IN THE
UNITED STATES

Fold

o
c

»
o
:J

c.o
r
:J

'"

READEr QMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming

support, requests for additional publications, etc, should be directed to your I BM representative or to the I BM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us

about it by using this postage-paid form. We will correct or clarify the

publication. or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

s:::::,o~CXI
~ 0 0 :s:
~ ~ ~ w

-.J - 3 3
3 3

.j:>

-. III
::l C" :s:
~i08.
co ~ ~ m- 0 Vl

Cti ~ W
::l

" co
(fl'"
.... ::l
III C.

g" ~
::l

G)

»
I'-.l

to
<0
.j:>

W

GA21·9194·3

Fold

BUSINESS REPLY MAIL

Fold

--- ------ - ---
~ - -F"f1:

r!

FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID flY ADDRESSEE'

I BM Corporation
General Systems Division
Development Laboratory
Puhlications, Dept. 245
~ochester, Minnesota 55901

International Business Machines Corporation

Gener/!! •. y'stems Division

4111 Northside Parkway N.W.,
P,O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International

44 South Broadway
White' Plains, New York 10601

USA
! '1ternational)

ARMONK, N.Y.

Fold

NECESSARY
IFMAILED C
O POSTAGE

IN THE
UNITED STATES

-

Fold

}>

0'
OJ
to
r
OJ
<II

