
Washington Systems Center
Gaithersburg, Maryland

Technical Bulletin

VM/370 MAINTENANCE MADE SIMPLE

Written by:
Edited by:

R. W. Benham
A. A. Gigliotti
G. E. Hollendursky

GG22-9277-00
May 1982

PREFACE

There seem to be many misconceptions regarding the generation
and maintenance of VM/CMS systems. I believe that simplicity
has always been the hallmark of VM/370. Many of the problems
arise from new users imagining that the processes must contain
a certain complexity which simply is not there.

Much of the imagined complexity has doubtless been caused by
the many procedures and EXEC's which have been developed over
the years in an effort to simplify the generation and mainte
nance process. And whi Ie they do, indeed, provide valuable and
time-saving tools to the initiated, they tend to obscure the
basic processes from the struggl ing novice.

The purpose of th is paper is to try to clar i fy the process.

Preface iii

THE VIRTUAL MACHINE

The MAINTenance MACHINE

CP-Owned Volumes

MAIHT's Mini-Disks
MAIHT's 190 disk
~'AINT's 191 disk
MAINT's 193 (or 293) disk
MAINT's 194 disk
MAINT's 294 disk

C P / cr·, S N u c 1 e; - fl'o m D; 5 k t 0 Cal' d
The CNTRL file ••••••••••
The Loadl i st EXEC file
The VRSIZE MODULE ••••••••
The VMFLOAD ~10DULE ••••
Some Notes
Summury

cP/cr-1S Nue 1e; - fl'om Card to D; sk
The CP Nuc leus.
The C~1S Nucleus
A Suggest j on

After The Gcn - A Few Comments
On CP •••.
On CMS ••.•••••••••••

NAr-'ED SYSTEMS And DCSS' 5

VM/370 Source Maintenance
The UPDATE Command
The VMFASM EXEC
The V ~1 F ~1 ACE X E C
A Scenar i 0

MY WAY - wh; ch ; 5 one way

POSTLUDE

CONTENTS

Contents

1

3

5

7
8
9
9

10
10

11
12
12
13
14
14
15

17
17
18
19

21
21
21

23

25
25
30
31
31

35

39

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi VM/370 MAINTENANCE MADE SIMPLE

THE VIRTUAL MACHINE

VM/370 is compr i sed of a number of components. The two most
significant of these are CP (the Control Program) and CMS (the
Conversational Monitor System). These are the only two compo
nents with which we will deal at any length, as they are the
head and heart of the system and are the only components which
are absolutely necessary to get the job (generation and mainte
nance) done.

Now let's look at CPo CP hCls but one real mission in life, and
that is to multiprogram virtual machines. True, it provides
other nice functions as L.Jell, such as SPOOLing, Clnd VMCF commu
nications between virtual machines, and DIAGNOSE interfaces to
enhance the function and performClnce of virtual machines, but
the fact remains that CP really exists to create and juggle a
whole bunch of IBM 360 Clnd 370 virtual computers on one real
computer.

And how hard is
think about it,
quite simple.

that? It mClY sound complex at first. If we
it really becomes (conceptually, at leClst)

The most difficult part of any system design or progra~ming
pro b 1 e m i s Cl 1 way s d e fin i t ion, f 0 I I 0 L·J e d a c los e sec 0 n d b y c han g e
("ThClt's not what I meant!!" says the user to the programmer).
CP's "problem definition" is almost cast in concrete. It mClY
b e f 0 u n din IBM pub 1 i cat ion G A 2 2 - 7 0 0 0, II I B ~1 5 y s tern / 3 7 0 P r inc ; -
pIes of OperCltions". It's the function described therein thClt
CP makes every attempt to provide to Cl multitude of concurrent
users.

But whClt does Cl user do wi th his own IBM 360/370 computer?
Surely not everyone wants to be Cl computer operator or a sys
t ems pro g r a r:1 mer, pia yin g wit h P 5 ~~ 's a n c..i 9 e n era 1 reg i s t e r san cJ
con t r 0 1 r e ~l i s t e r san d all t hat n eat stu f f. t~ 0, 9 e n e r Cl 1 1 y the y

w ill w tl n t tor u n S 0 m e 0 per at; n 9 s Y S t e til i-J h i c h ~: ill pro v ide the
services that we have come to expect of operating systems, such
~s I/O C}ccess method support, Clnd compiler support, Clnd support
of vC}rious end-user programs like STAIRS and QEE C}nd SPF, and
storage ntClnagement, "nd dey j ce management, and on and on.

Now the user might choose to run any number of operating sys
tems in that virtual IBM 360 or 370 that CP hC}s created. Over
the years, IBM has developed quite a number of such systems -
BP5, TOS, B05, DOS, PCP, MFT-I, MFT-II, OS/VSl, 005/VSE, SVS,
MVS •.. Since each of these systems WClS designed to run in an
IBn 360 or 370, each of them wi 11 most probClbly run in that vir
tual mach i ne that CP has created.

But wouldn't it be nice to have an operating system that was
custom designed to run to maximum advantage in a virtual

THE VIRTUAL MACHINE 1

machine? One that would provide all that function that we have
come to expect of an operating system?

Enter our second component - eMS. CMS is just such an operat i ng
system with all of those above mentioned functions. and while
it would be a gross misrepresentation to lnfer that there is no
connection between CP and CMS, for our purposes let us just say
that CMS is just another operating system running in a virtual
mac h i n e • So far as C Pis con c ern ed, i t m 1 gIl t beD 0 S 0 r BPS 0 r
whatever. CP is just managing the virtual hardware and cares
not what we run in it.

Now ... J hat i s the poi n t 0 f t his dis c u s s ion abo ute P, and vir t u a 1
IBM 360's and 370's, Clnd operating systems? The point is to
dispell the myth that some virtual m~chines have special quali
ties and do things differently from garden variety virtual
mach~nes. The fact is that CP creates and manages all virtual
IBM 360 and 370 computers as they ~re defined in the current
system 01 RECTORY. All virtual mCJch i nes are created equal in
CP's eyes, CJnd the fact that one is culled MAINT and one is
called RSCS is of absolutely no consequence to CPo

So let's talk now of convention.

2 VM/370 MAINTENANCE MADE SIMPLE

t-~'\
- ... :

-;...,..;'

... ;_~- -'.~- ;i't~

-·$.-.~~r~-
":" - -. ..,;r v),-~ ,;.;'t!-',

-.,~~;:~;~

THE MAINTENANCE MACHINE

As a matter of conven i ence and in an attempt at
standardization, a virtual machine with the name of MAINT has
become something of standard in VM/370 installations. But this
seems also to have led to the belief that th1s virtual machine
has c e r t a i n qua 1 i tie 5 t hat 0 the r mac h 1 n e s 11k e C M S 1 and C tl S 2 d 0

not. Th i sis sheer nonsense.

But surely, you say, there is something unique about MAINT?
And yes, I answer, but the only uniqueness lies in the fact that
the MAINT virtual machine is generally defined in the system
DIRECTORY as having more privileges than most vlrtuCJI machines
are given (via the privilege class entries in the USER stCJte
ment), and as having write access to more system related
mini-disks and full-disk volumes than the "average" userid.

To look a bit m 0 r e c los ely, the use rid g e n era 11 y n am e d M A I t~ r i s
ordinarily given privilege classes ABCDEFG which allows thCJt
particular userid to use ~ny command in the system (including
SHUTDOWN, 50 be careful). It is also generally defines 0S d

rather large machine typically 3 Megs with the opt;cn of
redefining itself right UP to the 16 Meg limit. It will require
this large address spClce to install Discontiguous Shared Seg
ments which typically reside above the "average" user's
address space. It will generally have MDISK statements in its
DIRECTORY entry for all of the system-related mini-disks (the
C M S 5 Y 5 tern dis k, the dis k sus e d for CPa n d C r~ 5 m a i n ten a n c e ,
etc). Other MDISK statements give it read/write «ccess to full
volumes so that it may do systems fntiintenance suel, ~5

re-writing the CP nucleus, changing disk allociltions, tind
writing the DIRECTORY ltself~

Those are the things which make MAINT "di fferent" from tin "av
erage" user.

The MAINTenance MACHINE 3

· '- .

THIS PAGE INTENTIONALLY LEFT BLANK

4 VM/370 MAINTENANCE MADE SIMPLE

CP-OWNED VOLUMES

All VM/370 installations wi 11 have at least one CP-Owned
volume. The volume on which the CP nucleus resides must belong
to CP and cannot be removed while the system is running.

Most VM/370 installations wi 11 have more than one CP-Owned vol
ume. Any volume that is to be used for CP paging, SPOOLing, or
T-Disk space must be defined as a CP-Owned volume ~n DMKSYS.
One should keep in mind, however, that the DASD space used for
CP functions (paging, SPOOLing, T-Disk, DIRECTORY, SYSWRM,
SYSERR, 5YSCKP, etc.) ;s NOT affected by DIRECTORY entries. The
SIPO/E and the clever user may specify such areas under NOLOG
entries in the DIRECTORY for documentation purposes but there
is NO checking done by CP to avo~d overlaps.

Let's look at some of those areas and see exactly where they are
def i ned for use.

Each CP-Owned volume must be formdtted and allocated by the CP
FORMAT/ALLOCATE program. This is quite different from the CMS
FORMl\T program since CP and CMS are two very different "oper
ating systems", and use d~fferent disk formats.

The FORMAT function of the program formats the entire disk (or
mini-disk) to 4096-byte blocks. The first cylinder (or 16
blocks with FBA devices) contains a volume l~bel, an IPL
record, a dummy VTOC, and an allocation bit map.The ~llocation
bit m~p defines how the space on the volume is to be used.

TIle ALLOCATE function of the prograrn fi lIs in the allocation
bit map according to the user's specif~cations (PERM, TDSK,
D R C T, T E ~, p, P AGE). I f the ALL 0 CAT E fun c t ion ; 5 not run, the
d e f a u 1 t fro m the FOR ~1 A T fun c t ion i s PER Mfa r the e n t ire dis k
(or mini-disk).

W hen spa c e i s ~ 1 I 0 cat e d a s ~ n y t h i n g but PER ~1 (i. e. T E M P, T D S K ,
PAGE, DRCT), that spClce hClS been given to CP and if tlie same
5 pac e ; 5 a 1 5 0 ina d v e r tan t 1 y g i v e n t 0 5 0 m e use r v; a a ~, DIS K
statement L.Ji th wr i te access; n the DIRECTORY you cdn expect
disaster. Ag~in, no checking is automatically done by CP, it
i 5 qui t e p 0 5 5 i b let 0 Cl 1 lac ate 5 pac eon a vol u me;) 5 T E ~\ P (i. e •
for CP paging and SPOOLing) and then create a USER entry in the
DIRECTORY with the same cylinders (or blocks) allocated ~s a
user mini-disk. The results will be that CP paging/SPOOLing
occurs in the same area that a virtual mClchine is writing. No
one checks but YOU!

So, simply stated, keep track of how you have allocated your
packs with the FORMAT/ALLOCATE program. Place USER NOLOG
entries in the DIRECTORY to document all your allocation in one
DIRECTORY. Remember that those DIRECTORY entr i es for TDSK,

CP-Owned Volumes 5

TEMP, PAGE, DRCT, and other CP-owned areas are for your conven
ience only, and are of no significance to CP.

But is the space allocated as PERM there to use at wi 11 for
mini-disks? No, ,t least not all of it. In DNKSYS and in DMKSNT
you define areas for CP for the CP-nucleus, various error
recovery areas. and areas to be used for the storing of SAVED
SYSTENS and Discontiguous Shared Segments. You have e)(plicite
ly told CP where and how much DASD space to use for these
various functions. and CP does NOT go to the DIRECTORY to find
out where these areas Clre. The DIRECTORY has only one
function, and that is to describe to CP just what virtual IBM
360/370 computer to create when a user logs on to the system.
So, again, it is up to YOU to assure that there are no overlaps.

Ins u m mar y , b e Cl \II are t hat the rea r ere a 1 I y t h r e e d iff ere n t
things to look at when trying to determine how your DASD space
i s a I 1 0 cat e d: fir s t, h 0 L.J the rea I v 0 I u mew a s a I 1 0 cat e d wit h the
FORNAT/ALLOCATE program; second, what areas were g1 ven to CP in
the DMKSYS and DMKSNT ASSEMBLE files; third, how is mini-disk
space allocated in the system DIRECTORY. The second and third
are easy, in that you need only look at the files, and perhaps
do some simple calculations to convert pages to tr£\cks or
blocks. The first - if you have lost all record of how the disk
was £\llocated can be determined by running the
FOR MAT / ALL 0 CAT E pro 9 r a In and s imp I y s p e c i f yin gEl·! D \II hen pro m p t -
ed for the new allocations. The program will respond with the
current allocations for the disk. Then write it down (or cap
ture it in a file) and save it.

6 VM/370 MAINTENANCE MADE SIMPLE

MAINT'S MINI-DISKS

We will now turn to the MAINT virtual machine and look at cer
tain of the mini-disks customarily associated with this ser
vice machine.

Once again the reader should be aware that the addresses used
for these mini-disks are a matter of convention and not hard
and fast rules. In fact even within IBM's own procedures, the
conventions are periodically changed. VM/SP used 293 vs 193 for
the SIPO/E.

let's lock at what we really need in order to maintain our sys
tem, and then explore the logic behind the choice of where to
put things.

First, consider that we are really maintaining two systems, CP
and CMS, which, though similiar in maintenance procedure, are
quite totally different in function. Therefore it becomes con
venient (although not absolutely necessary) to logically and
p h y sic a I I y s epa rat e the v a rio u s pie c e s 0 f the t LoJ 0 S Y s t ems. The
logical separation is handled quite nicely by a simple naming
convention - a unique three-character prefi xis used for euch
CP or CMS module to identify the component to which it belongs.
DMKxxx identifies a CP module, DMSxxx identifies a CMS module.
The three characters following the prefix give some indication
of the function of the module - Dt1KSCH is u CP scheduler module,
DMSACC is the CMS ACCESS command module, etc.

Now let us digress a moment and review the VM/370 service phi
losophy.

All of CP and CMS is programmed in assembler language. When a
new release level of V~1/370 appears the assembler source is
re-sequenced to include all updates which have been incorpo
rated during the life of the previous release. This becomes
the base source and, with a few exceptions, that source does
not change throughout the life of the release. The current
release level of VM/370 is release 6, the current release level
of Vt1/SP is 1.1 (that 1.1 is simply a mid-life merging of PTF's
to source).

As fixes to problems become available, they are provided to
customers via PUT (Program Update Tapes) or PlC (Program level
Change) tapes in the form of UPDATES to the base source. If
that was all that was provided, it would require that each cus
tomer re-assemble (with the provided updates) every module in
the system that had changed. As this is obviously not feClsable,
IBH also ships the TEXT decks which result from the re-assemble
of those modules. And, as many of the CMS commands are f-10DULES
ere ate d fro m T EXT tJ e c k s wit h the lOA D, INC L U DE, and G E t~ ~1 a D com
mands, those MODULES are also shipped in order to reduce the
customer effort to install updates.

MAINT's Mini-Disks 7

- '-

~~fi;'.(~- ',~-~:-~-:
~ -·4~:·--;~:~·~~:!~;·'

.-.-;-:::"'.-':-.;'

A few other things are generally included in a PUT or PLC. They
include updated HELP screens, EXEC's, MACLIB's, and occa
sionallya replacement for a source module - ASSEMBLE file -
which may have been split into two modules or changed in a way
i ncons i stent ~Ji th a simple update file.

Some users may not keep CP or CMS source (ASSEMBLE) fi les
online, as it is rarely used - unless your system is heavily
modified. Since IBM ships all TEXT decks which have been modi
fied, the source is only needed if customer modifications are
required or if a problem is identified which requires an
on-site modification. In this case, the required source pro
gram can be retrieved from the source tapes which are supplied
by PID with the VM/370 system. All of the DMK (CP) modules Clre
on 0 net ape, Cl n d the D M S (C tl S) mod u I e son a sec 0 n d tap e v 0 I u me.
It would not be correct, however, to infer that online source
is a luxury. Much time may be saved, dnd the very best system
documentation (the source itself) becomes immedidtely avail
able when the source is kept onl i ne.

So we have reduced our requirements for maintaining a CP/CMS
s y s t e m t 0 CPT EXT, MAC LIB , E X E C, and U P D ATE f i I e s, and C ~, S
TEXT, MACLIB, EXEC, MODULE, HELP screens, and UPDATE files.

By convention, (which changes from time to time) these files
are placed on four mini-disks which (also by convention) belong
tot h e use r M A I NT. The y are - 1 9 0, 1 9 3 (0 r 2 9 3), 1 9 4, and 2 9 (••
The SYSGEN manual also recommends a 201 disk for containing the
CPEREP TXTLIB's, which have generally been kept on the 190
disk.

Let's press on then. We really have only five mini-disks to
contend with, so let's look at them and see what they contain.

MAINT's 190 disk

This is historically the CMS System disk, and as such is a bit
different from the other mini-disks. A system disk (be it for a
"real" system or a "virtu~l" system) needs space for writing
the system nucleus so that the system CCln be IPL'ed. When a
d i 5 k i s for In a t ted us i n 9 the C 1'1 S FOR NAT com rn a 11 d , the ~ hoI e
min i - d j s k j s nor mal I y for mat ted for C r'1 Sus e and ass u c h the
entire mini-disk would be av~ilable for writing CMS files.
This would have a most adverse effect on the operation of the
s y s t e m i f a f i 1 e loJ ere w r itt e nove r the C ~1 S n u c 1 e IJ s (w h i chi s NOT
a CNS fj Ie, but an IPL'able operating system). In order to pre
vent such an occurance, the CMS FORMAT commClnd has a RECOMP
option Wllich mClkes available only a specified portion of the
disk for CMS file use. You cun see this difference by comparing
the results of a CP QUERY VIRTUAL 190 command which will show
the true size of the mini-disk, with a CMS QUERY DISK S command

8 VM/370 MAINTENANCE MADE SIMPLE

~
~~~-, 
; ...... ;, .. - .-

,,<.,a...' 



which will show the size of the disk in terms of what the CMS 
file system has available fo,. use. They had best be different. 
This disk (190) contains everything that is necessary to the 
generat i ng and runn i ng of CMS. It conta i ns TEXT files, EXEC's, 
MACLIB's, and MODULE's, as well as the HELP screens for a 
BSEPP, SEPP, or V~1/SP system. 

This is the disk to which all of your CMS users will have 
read-only LINK's, in order that they may IPL and use eMS. When 
CMS is IPL'ed it ACCESSes the 190 (IPL) disk as the S-Disk and, 
as whenever a CMS disk is ACCESSed, bu i Ids an in-storage d i rec
tory to the fi les on the disk. In an effort to reduce the si ze 
of that in-storage di rectory, however, only fi lemode number 2 
(52) files are included in that directory. Thus, if you wish to 
be able to "see" ull of the S-Disk files, you must ulso access 
it as some other mode letter - e.g. ACCESS 190 C. 

MA I NT's 1 91 d; s k 

This is simply the MAINT machines work disk, and is generully 
used to contain those ASSEMBLE fi les which ure needed for 
day-to-duy systems work (DMKRIO, DNKSYS, DMKSNT). It may also 
conta i n the 'system DIRECTORY, unless you choose to hide that 
away ir. some obscure spot for reasons of security. 

MAINT's 193 (or 293) disk 

This disk contuins the UPDATE and AUX fi les for the CMS system. 
These files (dnd this disk) are needed only jf u local modifi
cation is to be mude to CMS source. It is h;)ndy to have Clround, 
however, because you can find out from the FILETYPES on this 
disk ~hether or not a particular PTF is on your system. Let's 
say you cal 1 the Sup p 0 r t C e n t e r wit haC r·, S pro b 1 ern, u n d the y Cl 5 k 
if you huve APAR number 12345 on your system. If you ACCESS the 
193 (or 293) cii!ik as (say) your B-disk ~nd issue LISTFILE * 
S12345DS B, you should get a hit if that PTF is on your system. 
FLIST is even nlcer, in that you can simply enter FLIST * 
*12345* B, ~nd not worry ~bout the naming conventions for sys
tem UPDATE f iIes. 

MAIHT's Mini-Disks 9 



MAINT' 5 194 di sk 

This disk contains all of the code that you normally wiil need 
to do a CP Nucleus Generation. It has all of the CP TEXT, 
MACLIB's, and CNTRL files necessary for putting together a CP 
Nucleus which we will look at more closely in a bit. This is 
really the CP counterpClrt of the 190 disk for eMS, excepting 
that there is no nucleus on this disk - it contains the pieces 
for putting together a CP nucleus for writing on the IPL'able 
system disk. 

MA I tt T 's 29 [t d; s k 

This disk contains the CP UPDATE and AUX files necessary for 
ClPplYlng source ch~n9~s to CP modules. It is the CP counter
part to the 193 (or 293) disk for CMS. As with the 193 disk, it 
1 5 use don 1 y L·J hen ; t b e com e s n e c e s s ~ r y t 0 u p ply 1 0 c a Iso u r c e 
changes or when one L-Ji shes to see if a part i culClr PTF is on ones 
system. 

And that's the lot. True, MAINT has a bunch of other disks 
which normally belong ".:0 that virtual machine, but all of the 
pieces used for normal CP/CMS maintenance (with the exception 
o f s 0 lJ r c e, vi h i c h m ~ y b e s e I e c t i vel y loa d e d fro m tap e a s nee d e d ) 
are c 0 11 t u ; ned 0 nth 0 s e f; vein ; n i - d j s I~ s • And ; f you con sid e r 
t h Cl t I? 3 (0 r 2 9 3) and 2 9 It are nee d e don 1 y i f sou r c e c han g e s are 
to be tnClc.:e, that cuts the 11st to three 190 for eMS 
generatlOn, 194 for CP generution, and 191 for a work disk if 
c e r t a i n mod u 1 e s (5 U c h Cl 5 D ~1 K R I 0) nee d t 0 b ere - ass e m b 1 e d • 

The one exception to the above, is that the MAINT machine (or 
whCltever mochine you choose to use for mClintenance) must have 
READ/WRITE Clcce~s to the system volune which is to contain the 
system CP Nucleus and the system DIRECTORY. This disk need not 
be ACCESS'ed fiS a CMS disk, but must be available whenever a 
D IRE C TOP '( i s t 0 b e ~'J r itt e nor w hen a new C P n u c 1 e U 5 l!i c rea ted • 

~~ e shu 1 1 r: r e .5 son n 0 to.] and 1 0 0 kat e x Cl c t 1 y how Cl CPa n d / 0 reM 5 
nucleus generation is accomplished. 

10 Vf1/370 MAINTENANCE MADE SIMPLE 



CP/CMS NUCLEI - FROM DISK TO CARD 

This section will be a breeze for those among us who remember 
the days of stand-alone programs which were loaded from cards 
via a real card reader. Not JOB's loaded from cards but whole 
programs which consisted of a boot-strap IPL program of gener
ally two or three cards, followed by a LOADER program, which 
loaded and relocClted TEXT decks, resolved external references, 
printed a map showing where everything was loaded, and finally 
gave control to the program wh i ch it had loaded. 

Well that's exactly how a CP or CMS nucleus is generated and 
loaded. 

Now many EXEC's have come into be j ng wh i ch have a way of obscur
i ng the facts - EXEC's 1 ike GENERATE, and GENERBSE - but the key 
MODULE which (with a little information from us) creates those 
great big stand-alone card decks for loading 1S VMFLOAD. 

The process which will now be described is, for all practical 
purposes, identical for CP, Cf1S, and for certain other 
sub-systems (such as RSCS) which have their OL-Jn IPL'able 
nuclei. It 1S quite simply a process of pi 1 ing together many 
card decks - certain of which we may have produced via assembly 
of source - with an IPL program and LOADER program in the front, 
dozens of TEXT decks in the middle, and an LDT (Load Terminate) 
card at the end Hhich directs the LOADER to the symbolic 
Clddress to be given control after all of those TEXT decks have 
been loaded into storage. 

You could very well do all that manually - that is, identify 
each of the appropriate decks to punch, punch them using the 
CMS PUNCH command, gather up all the cards from the card punch, 
place them; n the card reader, and IPl from the reader. Don't! 
For a CP nucleus generation, you would have something in excess 
of 200 PU~~CH commands to issue and ~bout 16 to 20 thousand cards 
to shuffle. 

But the process that you do use 1S functionally identical to 
that described above, except that it is automated by supplied 
lists of the decks to be punched, and the decks are "punched" 
to, and IPl'ed from, disk by virtue of CP virtual SPOOL 
devices, thus reducing the element of human error and the drop
ping of cards. 

let us now turn our attention to the bits and pieces which are 
used to automate the process of bu i Id i ng a nuc leus. As Llole 
explore these various modules and fi les, keep in mind that they 
are the ones wh i ch are invoked when we lise the var i ous 
system-suppl i ed EXEC's such as GENERATE and GENERBSE. 

We really have only three things to consider (four if you are 
planning to include a V=R area in your CP nucleus generation). 

CP/CMS Nuclei - from Disk to Card 11 

. - .... -
-~ ?- - - !'~ 

, ....... -
-. ...~<:..-



The CNTRL fi Ie 

This file Cof which there are several, those for CP normally 
residing on the MAIHT 194 disk, and those for eMS normally on 
the MAINT 190 di~k) is a multi-purpose file. CNTRL is a file
type which is recognized by the CMS UPDATE command and by the 
VMFLOAD MODULE. UPDATE is imbedded in the VMFASM EXEC when we 
assemble a system source module. For purpos~s of VMFLOAD, the 
CNTRL file used specifies the search order which is to be 
applied to filetype when punching out all those TEXT decks 
which wi 11 make up our CP or CMS nucleus. 

This allows us a certain amount of freedom in applying local 
fixes or modifications, in that not all of the decks punched 
need have the fi letype of TEXT (although they wi 11 all be in the 
TEXT, or object code format). Thus, we might wish to have all 
locally altered decks identified l-.lith a filetype of TXTLCL for 
instance, rather than TEXT. With a properly modified CNTRl 
file, we may then specify that the VMFlOAD module is first to 
look for decks with a filetype of TXTlCl, before searching for 
one 1-1 i t h a f i 1 e t y p e 0 f T EXT. ~J e can, i n f act, h a v e man y I eve 1 s 
to the search order by simply adding the appropriate entries to 
the CNTRl file. 

As supplied with the system, there are a number of different 
CNTRl files from which we select depending upon our require
ments. For example, with VM/SP, we have DMKSP CNTRl which is 
used for creating an ordinary uniprocessor version of CP, and 
DMKSPA CNTRl for those needing Attached-Processor support, and 
DMKSPM for Multi-Processor systems. 

The loadl i st EXEC fi Ie 

The next file to cons i der, is one wh i ch conta i ns the names (and 
optionally filetypes) of all the various TEXT decks which are 
to be punched out to make up our system. 

As with the CNTRl fi les, many di fferent loadl 1St fi les are pro
vided with the system, to be used depending upon our particular 
needs and upon which nucleus (CP, CMS, RSCS) that we happen to 
be creating. They are not quite 50 easy to identify as CNTRl 
fi les, however, since they have a fi letype of EXEC, as do 
countless other files ~Jhlch are not 10adlists. Generally, they 
'w i 11 h a vet he c h a r act e r s lOA D 0 r lOa sap art 0 f t he f i I en a me 
(CPlOAD, CPlOADSM, CPlDBSE, etc.) and can thus be identified. 

loadlists will generally have two things in common. They will 
have a loader specified as th~ first file to be punched which 
will probably be named DMKlDOOE lOADER. This loader is sup
plied with the system as a stand-alone loader which produces a 

12 VM/370 MAINTENANCE NADE SIMPLE 

,~ 
-:A..~' .. =-,. -
.~.' 



load map on a printer at address OOE - the address most commonly 
used for the CMS virtual pr inter, and a common real pr inter 
address as well. The second commonality will be the last file 
specified to be punched. This will normally be a file with a 
filename of LOT, and if we inspect files named LDT in our 
system, we will generally find that they consist of a single 
card image wh i ch is the LDT (Load Term i nate) command to the 
loader (DMKLDOOE LOADER). This notifies the loader that its 
work is done and requests that the loader now pass control to 
the program which it has just finished loading. 

The dozens or hundreds of line-items which c6me between these 
first and last items (LOADER and lOT) are the filenames of the 
TEXT (object) decks that are to be punched out to m~ke up our 
nucleus. Notice th~t the filetypes are not generally specified 
within the loadlist, since we may wish to t~ke adv~ntage of the 
flexibility offered by the CNTRl file process to ~ffect a 
search order containing fi letypes of other th~n TEXT. 

The VRSIZE MODULE 

The next item to be optionally considered is a Module on 
MAIHT's 190 disk named VRSIZE. This module hds a very simple 
job to do. If you plan to generate a CP nucleus which wi 11 
allow a V=R area, you will be using one of the loadlists which 
accomodate V=R systems (VRLO/',D, AVLOAD, etc.). 

The big difference in a V=R systelll, 1S that the CP nucleus -
after page zero is lo~ded is relocated to some place in upper 
memory in order to ~ccomodate the V=R system. The V=R system 
runs in storage at virtual addresses which are the s~me as reell 
addresses (with the exception of page zero which belongs to 
CPl. 

The simple function of the VRSIZE MODULE then, is to ask two 
questions. The first ;s whether or not you plan to h~ve a V=R 
system. If your ~nswer is NO th~ module go~s awClY without doing 
anything. If you answer YES, the second question is Clsked. How 
big is your V=R area to be? You ClnS~.Jer, Cl:1U the VRSI2E prcgrClm 
then produces a three record file called DHKSlC TEXT. This is 
an SlC (Set location Counter) Loader command (followed by ~n 

ESD (External Symbol Dictionary) card and an END card). ~Jhen 

e nco u n t ere d b y the loa d e r (D t1 K l 0 0 0 E lOA D E R) the 5 e c a use the 
loader to skip the amount of storage specified by the SlC com
man d b e for ere s U IiI i n 9 the loa din g ~ n d reI 0 cat i n 9 0 f T EXT dec k s . 
Thus we leave a "hole" for the V=R virtual mtichine. 

If your curiosity leads you to explore the v~rious loadlists 
(CPLOAD, VRLOAD, etc.) you wi 11 find that those lo~dl ists which 
are supplied for a V=R system will have an entry for DMKSLC, 
where the non-V=R loadl i sts wi 11 not. 

CP/CMS Nuclei - from Disk to Card 13 



A note for the curious. If you have become intrigued by the 
various loader commands (SLC, LDT etc.) mentioned here, the 
"eMS Command and Macro" manual has a good explanation of many 
of the loader-recognized commands under the LOAD command sec
tion. There are many such commands which were most familiar in 
the days of BPS card systems. 

The VMFLOAD MODULE 

This fourth element in our nucleus generation process is a MOD
ULE fi Ie normally found on MAINT's 190 disk (the CMS system 
disk) with a nClme of VMFLOAD. It is this module that puts 
together all of the above mentioned pieces. 

VMFLOAD expects two operands when it is invoked. The first is 
the name of the loadl i st to be used to i dent i fy the decks to be 
punched, and the second is the nClme of the CNTRL file to be used 
for determining what fi letypes to look for when running through 
that load! i st. 

Thus, the command VMFLOAD CPLOAD DMKSP would CCluse the VMFLOAD 
program to simply search for each file specified by name in the 
loadlist CPLOAD and append a filetype according to the search 
order specified in the CNTRL file DMKSP. The actual disk order 
of search is the standard CMS search order starting with the 
disk ACCESSed as the A-disk and rU:1ning through the alphabet. 
The first file found that satisfies the search criteria is the 
one pun c h e d b y V f1 FLO AD. 

Notice that the VMrLOAD usage of the CNTRL f1 Ie in locating 
filetypes for which to search is from the TOP DOWN so as to be 
cornpatClble with the VMFASM EXEC's usage in naming those TEXT 
decks (as discussed in a later section) which is from the bot
tom up. The update level identifier (ULl) on the MACS record is 
i 9 nor ed, a s Cl rea nyU LIs 0 f n P T F ". V ~1 FLO/', D pre fix est h e c h a r -
acters TXT to the ULI to determine the filetype for which to 
look. Thus, if the ULI is LCL, VMFLOAD will setirch for filetype 
TXTLCL. 

Some Notes 

It should be mentioned th~t when the VMFLOAD command is used 
directly, none of the initial 'set-up' which is normally done 
by the GENERATE EXEC ;s automatic~lly done for you. Thus, you 
are responsible for assuring that the necessary assemblies 
h a v e bee n don e (D ~l K RIO, D M K S Y S, etc.) and t hat the a p pro p r i Cl t e 
TEXT (object) decks are ava; lable to be punched as a part of the 

1 4 V M / 3 7 0 f1 A I NT E NAN C E N A DES I ~1 P L E 



nuc leus to be generated. Nor is the punch SPOOLed to your vi r
tual machine, so unless YOU do it, the resulting 16 thousand 
cards or so wi 11 be dispatched to the real system punch which is 
probably not what you had in mind. 

But on the plus side. you are now working on a more or less bas
ic level with the system, so that if something goes wrong, you 
wi 11 know where you stand. 

GENERATE also takes that 16 thousand card program which has 
been punched, reads it back in «nd writes it to a tape, then 
rewinds the tape and IPL's the new nucleus from the tape. The 
theory is that you now h~ve a copy of the nucleus (in IPL'able 
format) on a tape should you ever have to restore your CP nucle
us ina stand-alone env ironment. The fact is that most 
installations never save or use the resulting tape anyway, so 
why create it? Remember that the big punch deck you have cre
ated can always be read in with some fi lename and saved, 
a I tho ugh the s h 0 r t tim e ; t t a k est 0 r e - c rea t e i t wit h V ~1 FLO A D 
generally makes this unnecessary. 

Another point perhaps worth mentioning is that since CP uses no 
"files" during operation, and is totally resident or paged (as 
discussed later), ALL changes to CP, even seemingly trivial 
ones such as adding a new FCB (Forms Control Buffer) load for a 
real printer, require a CP nucleus generation. With CMS, how
ever, this is not always true, as many CMS functions are simply 
MOD U L E 5' 0 r T EXT f i I est hat res i d f! 0 nth e C t'1 S 5 Y 5 t e m dis k and are 
not a part of the CMS nucleus. You can determine whether a CMS 
nucleus generation is required by simply scanning the CHSLOAD 
E X E I., loa d lis t t 0 see i f the D ~1 S x x x T EXT dec kyo u are c han gin g i 5 

par t 0 f the eMS n u c leu s. I f not, n 0 C t1 S n tI c leu s 9 e n era t ion i s 
required, althougll you may have to re-install certain SHARED 
S E G ~I E N T 5 a s dis c u 5 sed I ate r . 

One ether thing should be noted here. Should you desire to cre
ate your own loadlist EXEC (for a customized SMALL CP option, 
for example) you should start with a stand~rd system-provided 
list, and comment out (an * in column one) those TEXT decks not 
to be included. And be SURE to check your list against new 
loadlists which are supplied with PUT tupes, since they have a 
way of changing from time to tlme. 

Summ~,.y 

What has been described here is the general process of creating 
an IPl'able nucleus in an effort to demonstrate that it is bas
ically a simple process of combining a lot of object programs 
into a single program which can be IPL'ed in a real or virtual 
machine. The process is the same for CP, eMS, and RSCS (RSCS 
hCls its own loadlist EXEC and CNTRL file which have not been 

CP/CMS Nuclei - from Disk to Card 15 

= ........ > -

.... l.-

:- : ;:,s' .. 



discussed here). The work i ngs of the var i ous I PL' ab Ie programs 
differ, however, once they are IPL'ed, and that will be dis
cussed subsequently. 

As a sort of recapitulation of just what we have created with 
this V~1FLOAD process let's look at that big card deck once 
more. The first three or four cards will be a little bootstrap 
loader which will initially get control when we issue an IPL to 
the device which contains our card deck. That little loader 
will serve to load the DMKLDOOE LOADER which will then be given 
control. DMKLDOOE wi 11 now continue the process by reading the 
card images which follow it (these are simply data to the load
er), locating them in stor"ge as they are read, and, when that 
LOT card is encountered the loader (OMKLOOOE) wi 11 in turn gi ve 
up control to the 'data' it has just IOClded. Thus the IPL proc
ess has really caused the loading and execution of three 
'programs' - the bootstrap loader loads the loader and gives it 
control, the loader loads the object decks and gi ves them con
trol, and the program mClde of the object decks then executes. 
We now must look at CP and eMS sepClrately, as they each have 
their own way of doing things. 

16 V~1/370 MAINTENANCE MADE SIMPLE 



\ 

CP/CMS NUCLEI - FROM CARD TO DISK 

We have at this point succeeded in putting together a whole 
bunch of card images from various eMS files and producing an 
IPL 'Clble 'program'. WhClt we do next is to IPL the device (prob
ably a virtual reClder) which contains that big card deck. As 
explained earlier, when we do this Cl program is loaded into 
storage (virtual, if we are working in a virtual mClchine) and 
given control. Up to this point the process has been identical 
regardless of whether we are generating a CP, CMS or RSCS 
nucleus. Now we must look at CP and eMS separately. 

The CP Nucleus. 

The CP nucleus is self-contained, with Clli the information it 
requires supplied within object decks. Thus, it asks no ques
tions, but simply goes about its busines5 as directed in the 
user-tailored module DMKSYS. It is in this module thClt we tell 
CP where, and upon which volume to write itself. The only cave
at is that we must have write access to the volume which we have 
specified, at the Clddress specified, and with the volume label 
specified. 

PLEASE NOTE. If we are doing all this in Cl virtuCll machine - as 
we most probably are - the device address is VIRTUAL. It mayor 
may not be the same as any re()l device on the system. This 
seems to be an area of major confusion to new users who tend to 
ins i 5 t U P 0 n 5 p e c i f yin gar e a Ide vic e add res 5 i n Dr·, K S Y S but f ; n d 
that they get Cln error message from the CP nucleus program when 
it attempts to write itself to that disk becCluse the MAIt,T 
machine 'sees' that device at a different virtual address. 
Remember, no magic, when you are working in a virtual machine, 
that machine has Clccess only to those devices which are given 
to it via ~'DISK or DEDICATE stCltements in the DIRECTORY, or via 
ATTACH commands after logon, although the user can redefine the 
virtuClI Clddresses of those devices with the CP DEFINE command. 
Just because it hClPpens to be a CP nucleus that is trying to do 
something does not alter this basic fact. 

The key to success then is to have enough virtual storage in 
your virtual machine (3 Megs 1S generally a good number), and 
to have write access (this has nothing to do with eMS ACCESS, as 
a t t his rn 0 men t C f1 Sis n 0 Ion 9 e r i nth e pic t u r e, w e h a vel P led 
that new CP nucleus in our virtual mClchine) to the volume and 
the c y 1 i n d e r s 0 r b 1 0 C k s w h i c h LoJ e h a v e s p e c i fie din D "1 K S Y S t 0 

contain our new CP nucleus. 

If all goes well, that new nucleus will write itself to the spe
cified disk and then load a disabled PSW with a code of 12. 

CP/CMS Nuclei - from Card to Disk 17 



VM/SP also nicely informs us just where it has written itself 
on the disk. 

Now, how does this affect our system - since we are probably 
rewriting the real CP nucleus? Not at all, until the next real 
system IPl. The CP nucleus is only used at initial IPL (or sys
tem restart). At that time, the 'resident' nucleus is brought 
into real storage and there it stays. The 'pageable' part of 
the nucleus is loaded and immediately paged out and from that 
point untll the next IPl the actual CP nucleus on disk is never 
referenced. 

As for what parts of the CP nucleus are 'resident' and what are 
'paged', this is decided by one of those TEXT decks that was 
included in the loadlist we used to create the new nucleus. 
Everything UP to the DMKCPE module i5 resident. Everything 
fo llow i n£1 DMKCPE is paged. 

So, as you can deduce from the above, you can go ahead and 
regenerate your CP nucleus six times over while the 5ystem is 
running without affecting Clnything. Just hope you have a good 
one there the next time you IPl. I shall not insult anyone's 
i nte 11 i gence by ment i on i ng system backup tapes, etc •.• 

The eMS Nuclr.us 

When LoJe IPl that card version of the CMS nucleus that we created 
using VMFlOAD, we must be prepared to answer a few questions. 
U n I ike C P, C t1 S r e q IJ ire s n 0 use r ass e m b lie s. The rei s n 0 e qui v
alent to DMKSVS in the eMS nucleus, and therefore we l.Jill be 
prompted by the program for i nformat i on s i mil i ar to that sup
plied to CP in DMKSYS (although the information required is not 
n ear I y Cl s com pIe x for the C ~l S n u c 1 e us) . 

We Clre given the opportunity to customize certain messages, 
which Clppe21r on terminals and printed output, to our own 
requ i rerr.~nts, and we are asked for i nformat i on concern i ng the 
disk addresses to be used. Where should this nucleus be writ
ten (normCllly 190)? What address will be lIsed when the result
ing C:'5 nucleus is IPL'ed from disk (also, normCllly 190)? What 
address should be used for the V-Disk (normCllly 19E)? Hotice 
that in keeping ~.Jith our thesis, very little 1S "hard wired" in 
VM/370. We take certain things for granted - such as virtual 
address 190 for the eMS residence and virtual address 19E for 
the V-Disk (the default extension to the S-Disk) - but these 
are but convenient standards, Clnd we may, should we wish, have 
m u I tip 1 e C ~1 S n u c 1 e ion s epa rat e min i - dis k s pro v ide d we h a v e 
properly prepared the mini-disks (remember FORt-lAT with 
RECOMP?). The SIPO/E, in fact, provides a 390 mini-disk for 
the ~l A I N T vir t u aIm a chi n e for jus t t his pur p 0 s e - t 0 con t a ina 
t est C ~l S n u c leu s • 

18 VM/370 ~1AINTENANCE MADE SINPlE 



We Hi 11 also be asked j f we really want to re-wr j te the eMS 
nucleus (one last chance to back out), and whether cylinder 0 
should also be re-written with the DASD IPL record which will 
bootstrap the eNS IPL process to point to our nucleus area. We 
wi 11 answer "YES" to both quest ions. 

NOtol, one other question wi 11 be asked for which you wi 11 need a 
predetermined answer, and that is the absolute location (rela
tive to the MINI-DISK, NOT to the REAL DISK) of where this 
nucleus is to be written. If you are not prepared with the cor
rect answer, you may find yourself almost coming to blows "Jith 
eMS, when it refuses to accept your answer. The correct dnswer 
(provided the FORMAT RECOHP w~s done correctly) will be the 
cylinder (or for FBA devices, the block multiplied by 2,4 , or 
8 depending upon the CNS blksize - 1024, 2048, or 4096 - of the 
s y s t e m dis k) w h i c h "1 e see L-J hen wed 0 a QUE R Y DIS K S. ~~ i t h C K D 
dasd types (2314, 3330, 33(iO 3350, etc.) it wi 11 be the number 
which appe~rs under the CYL heading in the response to QUERY 
DIS K S. ~J i t h ~ n F BAd e vic e (3 3 1 0, 3 3 7 0 ), the C Y Leo 1 u In n ~.J 1 1 I 
i n d i cat e F B, and went u s t t a k e the B L K TOT 1\ L fig u r e (t his i 5 the 
number of CMS blocks) and convert it to FBA 512 byte blocks by 
multiplying by either 2, 4, or 8, depending on the value of the 
BLKSIZE column - 1024, 2048, or 4096. This v~lue of cylinders 
o r FDA - b 1 0 c k sis the n u m b e r 0 f c y 1 i n d e r s 0 r b 1 0 c k s t h ;) t tile C r1 S 
file-system "sees" as available for lise. In fact the actual 
mini-disk size will be larger (as may be seen by using the CP 
QUERY VIRTUAL 190 command, as CP is unconcerned with the eMS 
file-system and concerns itself only with the "hardware") if L·Je 
have properly done our FORMAT-RECOMP. Since that number - the 
one we ~rrived at with QUERY DISK S - is a 101AL nu~ber of cyl
inders or blocks, it (;Jill dlso be the RELATIVE nUr.1ber (relative 
t 0 z e r 0) 0 f the fir s t c y lin d e r 0 r b lac k NOT "5 e en" b y the C ~l S 
file system. There is one ~dditional caveat with FBA devices. 
The FaA block address specified'must be a multiple of 256 ~5 

s p e c j fie din the " V ~1 5 Y S G E t4 " m ~ n u a I - soy a u W 0 u 1 d dowel 1 t a 
have done your homeL.Jork before this point. 

Ass u min g t hat a 1 I 0 f the abo v e que 5 t ion shu v e bee nun 5 L-.i ere d t 0 

the sat i s f act ion 0 f C ~l S, i t w ill now ~oJ r i t e i t 5 elf tot h e s p e c i -
fie d d j s k C) n d the n i m lit e diu tel yIP L ; t s elf fro m t hat dis k, 5 0 

you will get immediate gratificution if ull went well. 

A SUqgesti on 

Now that we have discussed all these things, go ahead and try 
them. 50 long uS you don't have write access to the reul CP 
system disk or the CM5 system (190) disk, you c~n't hurt a 
thing. And if you refrain from issuing an IPL OOC to YOLlr read
era f t e r you h a v e c rea ted ~ c ~ r d - i mag e n u c leu s, you ~'" 0 n ' t 
change anything even if you have write access to those disks. 

CP/CMS Nuclei - from Card to Disk 19 

~-: 
t-"~ 

~. ~ .. ;~-... :~::.~~~ 



I would suggest that you logon to some unprivileged (class G 
only) machine with about 3 megs of storage. Get read access to 
MAINT's 194 mini-disk (you will no doubt have a read-only link 
to MAINT's 190 mini-disk, but you will have to ACCESS it ~s some 
other mode letter than S, in order to "see" all of the fi les you 
will need), then define a Temporary disk, do the FORMAT, and 
the FOR r·' A T - R E COM P 0 nth a t dis k, and d 0 s 0 me 0 f the t h i n 9 s we 
have talked about. You needn't worry about destroying ~nything 
so long as you are a class G user wi thout wr i te access to those 
system disks. 

Use VMFlOAD to generate a new CP nucleus. Then IPl it and take 
a look at the lo~d mClp that is created in the process. You wi 11 
get <)n error message when CP tr 1 es to wr i te i tsel f to a 
non-exist~nt disk, but you will have ~ll the by-products of a 
sllccessful gen. 

Then use VMFLOAD to cre~te a new eMS nucleus, and you can even 
go ahead Clnd ~'Jrite it on thrlt T-Disk, and put in your own 
installation headings and get a feel for the process. It will 
tC)ke the r.ystery out of it. 

20 V~1/370 MAINTENANCE MADE SIMPLE 



AFTER THE 'EN - A FEW COMMENTS 

On CP 

As mentioned in the previous section, you can regenerate the CP 
nucleus to your heart's content while the system is in use and 
it will have no effect until the real CP is re-IPL'ed. Under NO 
circumstances should you EVER IPL that CP system disk in a vir
t u a I m a c'h i net hat has w r i tea c c e sst 0 the dis k, as t hat w 0 u I d 
guarantee complete and immediate disaster. The result would be 
that two copies (one real and one virtuClI) of CP would be paging 
and SPOOLing and recording errors on the same disk areas and at 
the SClme time. It is quite permissable, however, to define 
separate areas on dedicated mini-disks, and generate a 
VM-under-VM for test purposes. This is, in fact, an excellent 
way to test out a new or changed version of CP, before commiting 
it to production. You would do well, however, to run that vir
tual VM/370 in a virtu~l mClchine with class G privileges only, 
as you run the risk of sending critical operational commands 
( sue has SHU T D 0 ~'J N ) tot h e fir s tie vel (r e a I) C P w h i c h c 0 u I d 
play hClVOC IooJith your user community. So long as you are a class 
G user, such privileged commands will be rejected by 
first-level CP, but will be quite acceptable to your 
second-level (virtual) CPo 

On eMS 

What was said about a CP nucleus generation having no immediate 
effect upon ongoing system operation is NOT true of CMS. When
ever you are making changes to the CMS system disk you should 
either be alone in the system. The reason is, that when a user 
IPl's CMS, a file-directory to the CMS system disk is either 
set up in the user's virtual storage, or - more probably - if 
you use the standard OCSS's (Oiscontiguous Shared Segments), 
the S-Disk directory is made availClble to the user in a shared 
manner. Whichever is the case, when you alter fi les on the 
S-disk, those alterations are not known to the other CMS users 
on t he system, and at some po i nt a user will enter a command or 
invoke some CMS funct i on wh i ch requ ires an S-D i sk access, and -
poof! - things are not where that user's in-storage directory 
SClyS they are. 

Also remember that if you make use of those DCSS's, that any 
change to the S-Disk requires that you re-install the DCSS's. 
And whenever you re-install a Named System or a DCSS you should 
make very sure that no other user is currently using those seg
ments. Otherwise, your users run the risk of winding up with 

After The Gen - A Few Comments 21 



mixed segments - some old pages, some new - if there are any 
pages not yet referenced in the in-use segment. 

22 VM/370 MAINTENANCE MADE SIMPLE 

~, 

-"' 



NAMED SYSTEMS AND Dess' s 

Probably a few words are in order concerning NAMED SYSTEMS and 
DCSS's CDiscontiguous Shared Segments). 

The VH/370 system. as a performance option, allows you to share 
certain read-only segments of storage which may be common to 
many users. In fact, you can share segments in an unprotected 
mode (read-write) but that goes beyond the scope of this dis
cussion. 

NAMED SYSTEMS and DCSS's are conceptually similar, excepting 
that NAMED SYSTE~1S can be IPL'ed by name, where as DCSS are not 
IPL 'able systems, but segments of storage which exist ilbove the 
user's normally addressable storage and may be "attached" for 
use by many users concurrently. The areas defined in DMKSNT 
which are used to contain these segments are in reality "perma
nent paging" areas, in that segments are installed by loading 
them into virtual storage and then - via appropriate CP com
mands - "paging" them out to the predefined System Name Table 
(DMKSNT) disk areas. 

To INSTALL DCSS's, you MUST have addressability to the storage 
areas at which the DCSS's reside. To USE DCSS's, you MUST NOT, 
have addressab iIi ty to the storage areas occup 1 ed by the 
ncss's. A user whose virtual storage size overlaps with a DCSS, 
LoJill not be allowed to "attach" that ness. Therefore, 1f you 
use the standard system location for CMSZER, any user with a 
virtual storage greater thiln 960K will not be able to take 
advantage of that DCSS. 

There are three pr i mary CMS shared segments. One 1 s the named 
system eMS which most users llJill IPL rather than issuing an IPL 
to 190. Try the two different approaches some time one after 
a not her and not ice how m u c h f a s t e rIP L e t1 S res p 0 n d s (j tis a 
page-in operation), than does IPL 190 (which is ~ virtual IPL 
with all of the overhead of clearing and resetting and boot
straping). 

The 0 the r two p rim a r y C M Sse 9 men t s, C f'1 SSE G and e ~1 S Z E R, are "a t -
tach(]ble" ncss's which contil]n high-use CNS moc!ules such as 
editors and as simulation routines in Cr-1SSEG, and segment zero 
sharable code as well as (optionally) S-Disk and V-Disk direc
tories in C~1SZER. 

Two system EXEC's are prov i ded to load the requ ired modu les and 
issue the SAVESYS for CMSSEG and CMSZER. CMSXGEN EXEC loads 
and 5 a v esC ~1 SSE G, and e ~1 S Z G ENE X E C loa d san d s a v esC M S Z E R . You 
need only invoke these EXEC's and specify the load address of 
the segment to be saved (i f you use the recommended DttKSNT 
entries for those segments, the hexadecimill addresses are 
F 0 0 0 0 for C M S Z G EN, and 1 0 0 0 0 0 for C tl S X G EN) • You wi] I b e 
prompted by CMSZGEN as to whether you wish to save the S-Disk 

NAMED SYSTEMS And ncss's 23 



and V-Disk directories. Vou should reply yes to the S-Disk 
question, but be careful about the V-Disk. If you are using IPF 
(the Interactive Productivity Facility), and have all of its 
panels on the V-Disk, the directory for the V-Disk will proba
b I y not fit i nth e s ~' s t e m - r e com men d e d C M S Z ERa rea and you 
should reply "NO". 

The re-installation of the NAMED SYSTEM eMS is done simply by 
IPL'ing 190 and replying SAVESYS CMS when CMS issues its VM 
READ following IPL. eftS wi 11 save itself and then IPL the NAMED 
SYSTEM. 

Keep in mind that the disk areas which wi 11 contClin these NAMED 
SYSTEMs and DeSS's are "hard-wired" in the CP module DHKSNT as 
to actual volume, cylinder, and page location. The virtual 
ntClchine thClt you are using to install these segments must 
therefore have write access to that volume (or volumes), and at 
the virtual addresses) specified in DNKSNT ASSEMBLE. 

24 VM/370 MAINTENANCE MADE SIMPLE 

... '. -'-... - ~~ ~! 
- .:~.~ 



VM/370 SOURCE MAINTENANCE 

The whole area of VM/370 source maintenance ~nd the application 
of temporary fixes or local modifications is really much more 
simple than it may at first appear. 

Wh~t is required is an understanding of the eMS UPDATE command 
and its functions, and a close look at the VMFASM EXEC, which 
simply wraps some standards around the usage of the UPDATE com
mand. 

Tha UPDATE CommClnd 

The CMS UPDATE command is a powerful utility progr~m designed 
to apply modifications to source program files. It has many 
options which may be selected depending upon the requirements 
of the user. It cun fllnction rather simply as ~ "controlled 
merge" of one fi Ie into another (single level lIpdate) where un 
original source fi Ie is updated by a second fi Ie containing 
control records und/or ne~·J source statements. Or it Ciln func
tion ilS a very powerful utility, selectively drawing together 
control und update 1 nform<Jt i on from il great many sources to 
result in C) complex update (multi-level update with auxiliary 
control files). 

For a full understanding of the UPDATE commund one should read 
the appropriate manuals. For our purposes here, we will con
cern ourselves with the somewhClt formulized use of the commund 
within the VMFASM EXEC and the application of source mainte
nance to CP and C~'S. 

When the UPDATE command is invoked, two fi Ie-ids are passeu to 
the cQ:n:-1und. The first is the i d of the file to be upd<1ted (the 
origi!!ill source file) and the second 1S the id of either u sim
ple cpdC1te fi Ie if the NOCTl defilult opt; on is selected, or - as 
i n our C a 5 e - the n ClI~ e of Cl control f 1 Ie i f t he C T l opt i on i 5 

selected. 

The def~ult filetype for Cl control file is CNTRl, and the file 
cons i sts of t!,<;o bas i c types of records. The first record, 
which 1S required. 1S the MACS record. This is an 
information-only record, and is only used by UPDATE if the STK 
and eTL option5 are selected - ClS they are in our usage via the 
V ~1 F A S M E X E C. The MAC S r e cor d has the f 0 I I 0 LoJ 1 n £1 for rn d t -

ULI MACS ml m2 m8 

where - UlI is the Update Level Identifier (be patient). 
MACS identifies this ilS a MACS record. 
ml to m8 are the filenilmes of up to 8 MAClIB's. 

VM/370 Source Maintenance 25 



Thus, the following MACS record from the DMKSP CNTRl file -

TEXT MACS DHKSP DMKMAC DMSSP CMSLIB OSMACRO 

identifies a MACS record with an Update Level Identifier of 
"TEXT", and five macro library (MACLIB) names specified. 

Records which follow the MACS record are called "file records" 
and, depend i ng upon content, can request var i ous act ions. File 
records have the following format -

ULI UAID PAl ••• PAn 

where - ULI is the Update Level Identifier (again, be patient). 
UAID is the Update or Auxfile Identifier. 
PAl thru pan are optional Preferred Auxfile ld's. 

Thus, the following file record from the DMKIPF CNTRL file -

TEXT AUXR60 AUXB20 

is a file record with 
spec; fying Cln Auxfi Ie 
Identifier of AUXD20. 

an Update Level Identifier of "TEXT", 
of AUXR60, and one Preferred Auxfile 

It should be noted that the Update Level Identifier "PTF" is 
treated as a special case Clnd should not be specified without 
an understand; ng of its usage. 

t~ 0 w, wit h a I 1 0 f the p 1 e c e s a f a Con t r a I F i 1 e ide n t i fie d, let' s 
toke an eXClmple, exam i ne ; t, and see just how; tis used. I have 
c h 0 sen the D t 1 KIP F C t~ T R L f i 1 e use d b y the S y s tern sIP 0 / Epa c k a g -
ing of VM/370, as it ;s a more complex control file than the 
ones used for non-Systems IPO/E systems, and is of a format 
which illustrates the construction of a control fi Ie for apply
ing local (customer) modifications. The DMKIPF CNTRl file is 
as folloL-.:s -

LCL MACS CPBSE DMKMAC CMSBSE CMSLID OSMACRO 
LCL AUXlCl· 
T ~1 P A U X T r·, p 
IPF AUXIPF 
TEXT AUXB20 
TEXT AUXR60 AUXB20 

Now let us assume th~t the following command string is entered 
at the termlnal -

UPDATE DMKXYZ ASSEMBLE A DMKIPF CNTRl A (CTl 

Th is will invoke the UPDATE ut iIi ty and spec i fy that the assem
ble source program DMKXYZ on the A-Disk 1S to be updated 

26 VH/370 MAINTENANCE MADE SIMPLE 

. ~. 

.. -~~-' 
~. \,-••.. "!:01 

-~~ . .: ~·A~~i1 
- -'~ .. ~~~-~, 



according to directions contained in the control file (since we 
have specified option "eTL") DMKIPF CNTRl, also on the A-Disk. 

The source program DMKXYZ will be loaded into storage prior to 
performing the updates. There is a STOR/NOSTOR option for the 
UPDATE command and STOR is the defau It if eTl is spec i f i ed. The 
assumptton here is that if a simple update is to be performed, 
it is only a merge of one file into another and performing the 
operation on disk is as efficient as doing it in storage. When 
eTL is specified, however, it is likely that many updates are 
to be forthcriming, which would require re-writing the source 
file to disk many times. Thus, if the source program will fit 
in the virtual storage available, it ;s read in once, all 
updates applied, and then written to disk. If the program is 
too l~rge to fit in the virtual storage available, NOSTOR will 
be used, and the update may take considerClbly longer. 

UPDATE will now locate the DNKIPF CNTRL file and work its way 
from the last record in that fi Ie to the first. In our example 
the last record is the file record "TEXT AUXR60 AUXB20" which, 
according to our formats, speci fies one Preferred Auxfi le 
"AUXB20". UPDATE wi 11 now search for a fi Ie named DNKXYZ 
AUXB20 - the source program name with a filetype as specified 
on this file record. If that file is located, NOTHING is done 
and this fi le record is ignored. If it is not located, then the 
search continues for a file named DMKXYZ AUXR60. This is the 
function of a Preferred Auxfile. In effect it says, "if any of 
the Preferred Auxfiles specified on this file record are pres
ent, ignore the file record, otherwise treat it as an ordinary 
file record and continue processing with the auxfile 
specified" - AUXR60 in our example. 

This may seem a bit strtinge, but now look at the next to last 
file record "TEXT AUXB20". The Preferred Auxfi Ie procedure 
allows us to selectively apply updates depending upon what 
files are avail~ble. In our ex~mple, DMKXYZ AUXR60 will only 
be applied if DMKXYZ AUXB20 is not available. In no case will 
they both be applied. 

And so the process continues from bottom to top, searching in 
t urn for f i 1 e s n ~ In e d D f1 K X Y Z A U X I P F. D M K X Y Z A U X T r 1 P, and D M K X Y Z 
AUXLCL. Note that in elll cases the fi lename ClPplied is the same 
as the filename of the source program to be updated. 

The key to a multi-level update with auxiliary files is in the 
three characters "AUX" in the identifier specified on the file 
record. If the first three characters are anything else, the 
UPDATE utility will assume that the filetype pointed to is an 
update file, not Cln auxiliary file. 

An auxiliary file is not in itself an update file, but is a 
pointer to the Clctual update files. The records in an auxilia
ry file are quite simple - there is one record for each update 
file to be applied and that record specifies the FILETYPE of 
the fi Ie which contClins the lIpdates. The FILENANE, as before, 

VM/370 Source Maintenance 27 

'!.-~ 

~~,~/~ 
- ... ":" "" -- ~}_,..4 



is assumed to be the same as the filename of the sou,.ce P,.og,. ... 
being updated. And, as before, the update files specified in 
an aux iIi iUoy file are appl i ed to the source from the bottom up. 

let's now sharpen the focus by looking at all of the pieces 
together. Assume that the following files are accessable to the 
UPDATE program. 

DMKXYZ AUXB20 
(which contains the following records) 

S12345DK 999 FIX TO BROKEN WIDGET 11/21/81 
S12335DK 110 FIX TO BENT THUNDERBlAST 10/19/79 

(note that anything past the first blank is comments) 

DMKXYZ AUXR60 
(which contains the following record) 

Sl1345DK 999 FIX TO CRACKED BlIVOT 10/04/78 

DMKXYZ AUXlCl 
(which contains the following record) 

199999DK 000 LOCAL CHANGE TO BENT WIDGET 11/24/81 RWB 

Dr1KXYZ S12345DK 
(which contains the actual update data and control records) 

DMKXYZ S12335DK 
(which contains more actual update data and control records> 

DMKXYZ 199999DK 
(whicil contains even more update data and control records) 

DMKXYZ S11345DK 
(which contains .•• you get the picture.) 

And now to continue the UPDATE process that we began above, the 
following takes place. Since the first (last actual record -
remember, bottom to top) record in our DMKXYZ CNTRL fi Ie speci
fied a preferred auxiliary file of AUXB20 and, since a file 
named DHKXYZ AUXB20 exists, UPDATE wi 11 not even look for 
DMKXYZ AUXR60 even though it exists. Therefore the file DMKXYZ 
AUXR60 and the file to which it points, DMKXYZ S11345DK, will 
be ignored. 

The next fi Ie searched for wi 11 be DMKXYZ AUXB20 (second to 
last in our control file) and when this file is found, it in 
turn points to update fi les DMKXYZ S12335DK and DMKXYZ S12345DK 
wh i c h wi 11 be app lied in t hat order (r emember. bottoms up). 

28 VM/370 MAINTENANCE MADE SIMPLE 



The control file search then continues for files named DMKXYZ 
AUXIPF and DMKXYZ AUXTMP, neither of which exist in our 
example, but which may exist with different filenames for 
application to other source modules. Our last "hit" will be 
the file DMKXYZ AUXLCL, which in turn points to file DMKXYZ 
199999DK which wi 11 be appl jed against our source program. 

At this point, the resulting updated source progr~m wi 11 be 
written to disk but, since we have taken the UPDATE option 
default "NOREP", the name of the updClted version Ni 11 be 
changed to a $ followed by the first seven characters of our 
f i lenarne. Thus, our resul t i ng updated source program is a file 
n~med $DMKXYZ ASSEMBLE. 

You have been very patient to this point, so let's now discuss 
the MACS record and those Upd~tc Level Identifiers (ULl). In 
fact, in our example they have absolutely no use, as we 
accessed the UPDATE command di rectly rather than having it 
imbedded within an EXEC as is the CClse with VMFASM and VMFMAC. 

Had we accessed the command with the option "STK", upon com
plet i on of the updC)te, the UPDATE ut iIi ty would have plClced the 
f a 1 low i n g 1 i n e i nth e C tl 5 can sol est d c k -

* L C L C PBS E D ~1 K MAC C H 5 n 5 E C M S LIB 0 5 MAC R 0 

The ~sterisk (*) is placed first in the line so that if the STK 
option is selected from a terminClI rClther than an EXEC, the 
stacked line will be treated as a comment and not generate an 
error. The next token "LCL" is the updClte level identifier on 
the last file record for which a "hit" was found. In our case 
it was the line "LCL AUXLCL" since we had a file called DMKXYZ 
AUXLCL. If no "hits" had been found, the update level identi
fier of the MACS record would have been used (which in our 
e x amp lew a u I d h a v e bee nth e sam e - L C L ). The n ext f i v.e to ken sin 
the st~cked line of our example are the MACLIBs specified on 
the MACS record. 

L.aJe shall see just how this information is used by the VMFASH and 
VMFMAC EXEC's later in our discussion. 

We wi 11 now take a br i ef look at the Update Control statements. 
This is not intended to be ~n in-depth tutorial on the use of 
the uti lity and, for particulars on the control statements, the 
"eMS Command and r-1acro Reference" manuCiI should be consulted. 

All Update Control Statements are identi fied to the UPDATE 
uti lity by the chClracters ./ which must be present in columns 1 
and 2. There ilre five control statements - S, I, D, R, and *
to specify re-sequencing, inserting, deleting, replacing, and 
comments respectively. The I and R control statements have an 
optional $ operand which is worth noting as this requests that 
UPDATE resequence the inserted or replaced lines. If this 
operand is not used, sequence errors may result in the updated 

VM/370 Source Maintenance 29 



source program wh i ch r.an have ser i ous (and samet i mes unde
tected) effects where multiple updCltes are involved. 

The UPDATE utility, as you can see, is not really difficult to 
use, but it does offer considerable flexibility which may be 
reClson for some confusion. We have not covered the full UPDATE 
function. nor discussed all of the options, but we have covered 
enough to see th~t a simple change in control files, or in the 
way in which disks are accessed, can produce totally different 
versions of a source program. 

Thp. VMFASr., EXEC 

VMFASM is an EXEC "lhich is supplied primarily to perform VM/370 
maintenance functions. Once its usage is understood, however, 
it is quite useful either oS is, or in some modified version as 
a tool for many progr~m development and maintenance applica
tions. 

VMFASM does some initial housekeeping by setting up defaults 
for the assembler Clnd checking to determine that both the 
source progrClm dnd the control file, which were specified when 
it was invoked, exist. 

VMFASM then invokes UPDATE, and three non-default options are 
selected by the EXEC: PRINT, which produces an update log on 
the virtual printer; CTL, which informs the UPDATE command that 
this update is to consist of Cl multi-level updClte (the update 
fi Ie specified is a control fi Ie and not a simple updClte fi Ie to 
b e mer g e d I.-J i t h the sou r c e f i 1 e ); S T K, w h i c h r e que s t s t hat the 
UPDATE command stack certain informCltion concerning the out
com e 0 f the II p d ate i nth e C f'1 5 con sol e 5 t a c k . 

Upon return from the upuate utility, condition codes are tested 
and if no updates ex i sted for the program to be assembled, the 
actual program name is passed to the assembler. If updates 
were appl i ed, the $prograrn-n~me ~s created by the upd~te ut ili
ty 1 s the updated program to be assembled. 

That line thClt we looked at earlier, which is placed in the eMS 
console stack by UPDATE, is then read (&READ ARGS) and a little 
MODULE named VMFDATE is executed once for each MACLIB filename 
passed back 1 n the console stack. The VMFDATE module wi 11 
place in a disk file, name, location, and date and time of last 
change information for any file specified. It is used here to 
capture documentary inform~tion which will later be prefixed 
to the resulting TEXT deck along with inform~tion from the AUX
FILES used during upd()te. This provides an excellent audit 
trai I right ~oJithin the TEXT program of all updates applied and 
the currency of the macro libraries used in the assemble. 

30 VM/370 MAINTENANCE MADE SIMPLE 

/ 



The program is now assembled and, if the assemble is 
successful, the resulting TEXT deck is prefixed with the audit 
information and renamed according to the Update Level Identi
fier that was returned in the console stack from UPDATE. If 
this UlI is anything other than TEXT, it is prefixed with the 
characters TXT and, following our example above, if we were to 
enter the following -

VMFASM DMKXYZ DMKIPF 

the result would be an object program named DHKXYZ TXTLCL. 

There i!; one other caveat in the use of VMFASM. If the source 
program to be assembled is on Clny read/write disk other than 
the A-Disk, the resulting TEXT program wi 11 not be renamed 
according to the Update Level Identifier, nor will the audit 
information be added to the object program. 

The VMFJtlAC EXEC 

The VMFMAC EXEC is not nearly so commonly used as the VMFASM 
EXEC, and you may never have occasion to use it at all. It is an 
EXEC of which you should be aware, however, and may also prove 
useful as a prototype for developing maintenance EXEC's for 
other uses. 

If you look at any VM/370-supplied macro library (MACLIB), you 
will find that there is also an EXEC f1 Ie supp! ied wi th the same 
n a mea s the ~~ t, C LIB. The rei s, for e x amp Ie, Cl D ~l K t-1 A C ~1 A C L I 3 and a 
D t1 K 11 ACE X E Can d, cor res p 0 n din 9 to C M 5 LIB ~, A C LIB, you W 1 11 f 1 n d 
a CMSLIB EXEC. If you look at these EXEC's you will f~nd that 
they provide lists of the ~'ACRO ~nd COPY files which make UP 

their corresponding ~'ACLIB, and that they are in the format of 
a CMS EXEC file as produced by the LISTFILE command with the 
EXi::C option. 

T Il e V ~1 F MAC E X E C use s the seE X E C 's and a con t r 0 1 f i 1 e t 0 a p ply 
updates to the individual MACRO and COpy files and then com
pletely recrefJtes the MACLIB. The function of the EXEC 1S much 
the s arne a s the fun c t ion 0 f V ~1 F A S M, e x c e p t for the i I'T1 par tan t 
difference that VNFr1AC updates ALL of the macros and copies in 
a given MACLIB, and therefore all of the MACRO and COpy files 
which make up a MACLIB must be available and accessed when the 
EXEC i 5 invoked. 

A Scen«l"; 0 

Perhaps it would be helpful to descr tbe a typical maintenance 
process. Let us suppose that you discover a problem with your 

VM/370 Source Maintenance 31 



system, and through careful research you decide that it is 
somehow related to a dented widget. You place a call to the IBM 
Support Center and explain that you have a new problem which is 
CP-related. You are assigned problem number OX123 for tracking 
purposes, and connected to a level one support person. 

You explain the problem, and a search of the data-base reveals 
that there is indeed a known fix for your widget problem. It is 
PTF number 12346, and it is a change to CP module OMKXYZ. It is 
also quite short, so rather than mailing the change, the level 
one person reads the fi x to you on the phone. 

You are sitting at your terminal and you can key in the fix 
directly. You already have the information you will need to 
create the update file wi th whatever ed 1 tor you may use, so you 
prepare for the fix by editing a new file named OMKXYZ 
012346DK. (Those last two characters of the filetype would be 
OS, rather than DK if the fix were for a OMS (CMS) module - con-

· vention is nice). You then key in the update inform~tion as it 
is read to you - perhaps -

./ * FIX FOR DENTED WIDGIT 

./ R 2000 2000 $ 2100 
XNAME LM 12,14,XADDRES LOAD REGS 12 THRU 14. 

You thank level one for the fix, and promise to call back for 
more info if it doesn't fix the problem, or to close the inci
dent if it does. 

(If you have the Program Product "Information/System for 
VM/370" at your installation, you would probably have 
researched the problem on your system and found the f j x wi thout 
the call to IB~1.) 

You still hc:lve a bit of research to do, as you have a local mod
ification to thc:lt DMKXYZ module, and you must assure that it 
does not conflict with the IBN fix. You perhaps don't have the 
VM/370 source online, so you Clttach a tc:lpe drive to your MAINT 
virtual machine, mount the CP Source Tape which is in your tape 
library, and issue the command-

VMFPLC2 LOAD DMKXYZ ASSEMBLE 

This will load the assemble source to your A-Disk. You now 
access the 194 disk as your B-Disk to get c:lccess to the neces
sary MACLIn's, and you access the 294 disk as your C-Disk to get 
access to those other AUX and updc:lte files that we looked at 
earlier. 

You wi 11 now ed it that file DMKXYZ AUXB20 that we looked at ear
lier and that currently contains the following records. 

S12345DK 999 FIX TO BROKEN WIDGET 
S12335DK 110 FIX TO BENT THUNDERBLAST 

32 V M / 3 70 M A If~ TEN A NeE MAD E S IMP l E 

11/21/81 
10/19/79 



You .. i 11 add to the TOP of that fi Ie the following record -

D12346DK 999 FIX TO DENTED WIDGIT 01/01/82 FROM IBM St. RWB. 

So that file DMKXYZ AUXB20 now looks like this-

D12346DK 999 FIX TO DENTED WIDGIT 01/01/82 FROM IBM St. RWB. 
S12345DK 999 FIX TO BROKEN WIDGET 11/21/81 
S12335DK 110 FIX TO BENT THUNDERBLAST 10/19/79 

You are now ready to assemble the module with the fix, so you 
enter the following -

VMF ASM DMKXYZ DMK I PF 

Your new DMKXYZ TXTLCL object deck is created which you will 
probably copy to the 194 disk after renaming the old copy to -
perhaps - DMKXYZ OlDTXT just in case the fix doesn't work and 
you wish to easily back it out. 

Now all that is left is to regenerate the CP nucleus as 
described earlier, re-IPL the system at some convenient time, 
and test the fix. You find it works just fine, so you call back 
the IBM Support Center, this time giving incident number OX123, 
thank them kindly, and ask them to close the incident. 

The fi letype for a VM/370 update fi Ie is customari ly made up by 
an S pref ix, followed by the PTF number, and a suff i x OK for CP 
(DMK) modules or OS for CMS (OMS) modules when the fixes are 
sup p lie d v i a PUT 0 r P L C tap e s. ~l e h a v e c h il n 9 edt h e pre fix 5 t 0 

D to identify an IBM fix not included in il PUT, and to l to iden
tify 10cClI (non-IBM) modifications. This allows for easy 
indentification. Remember, it is your responsibility to 
determine whether or not any non-PUT/PlC changes (either 
IBM-supplied or local) are still needed when you apply a new 
PUT or PlC tape. Th is is a good reason for hav i ng your own ver
sion of the CNTRL fi Ie to produce TXTlCl decks rather than just 
TEXT. The TEXT decks will most likely be replaced with the 
appl i cat i on of a PUT/PlC t~pe wh i Ie TXTlCl decks wi 11 not. 
Still, you MUST research to determine if a fix still "fits", 
and then re-assemble all locally altered modules to assure that 
any changed macros or control blocks are properly updated. 

VM/370 Source Maintenance 33 



THIS PAGE INTENTIONALLY LEFT BLANK 

34 VM/370 MAINTENANCE MADE SIMPLE 

..... "-. 



MY WAY - WHICH IS ONE WAY 

I wi 11 now outline my own personal procedures for generating an 
unmodified CP and CMS nucleus upon the arrival of a new PUT 
tape. It is not the only way, just my way. 

I will logon to the MAINT machine and attach a tape drive as 
virtual address 181 and mount the PUT t~pe. Then I issue a 
VMFPLC2 LOAD to get the VMSERV EXEC and the var i ous memos load
ed to MAINT's 191 A-Disk. Then I access the 191 disk as the 
C-Disk which the VMSERV EXEC prefers to run from (because 
VNSERV is going to access many disks as the A-Disk as it pro
ceeds to load the various updated files and if it were running 
from the A-D i sk, it would cut its own head off when it accessed 
another disk as the A-D i sk) • 

The first execution of VMSERV loads in various documentation 
and discovers what products are represented on the PUT tape. I 
normally respond "NO" to the question about whether I want mem
os printed, as I can read them quite nicely at the terminal. It 
is politic at this point to examine the PUT memos to see if 
there are any changes from prev i ous ways of do i ng bus i ness. 

VNSERV i 5 then invoked a second time, and I respond to the 
pro m p tin g que s t ion s a 5 t 0 t.J hat t h i n gsa n d '" her e I wan t loa d e d • 
In our section concerning MAINT's disks, we pretty well covered 
what goes where, and if you prefer (or, as has happened to me on 
occasion, you find you have a bCld fi Ie on the tape! which pre
v e n t s V ~1 S E R Van d the pro d u c t E X [C 's w h i c h V ~1 S E R V i n v 0 k e s fro m 
operating successfully) you might print off Cl copy of the prod
uct documentation which shows the contents of each fi Ie on the 
tape, and simply access the particulClr disk to be Ioad~d as the 
A-Disk (194 for CP TEXT, 293 for CMS AUX, etc.) and load them 
yourself using VMFPLC2. 

You might also choose to selectively load the CP files to the 
1 9 4 and 2 9 4 dis k san dIe a vet 11 e C ~l Sup d <I t e s for dIu t e r t i In e , 
rem e r.l b e r i n 9 t hat mod i f i cat ion s tot h e 1 9 0 dis k III ill a f fee tot h -
er system users. 

Once I am s~tisfied that all of the updated files have been 
loaded to the appropriate mini-disks, I re-assemble the 
installation-tailored modules CDMKSYS, DMKRIO, DMKSNT, etc.). 
This is generally not necessClry, but on occasion, changes are 
mClde to system macro libraries, Clnd considering how little time 
it takes to do three or four assembles, I consider it to be 
faster to do them than to research the nece!isi ty. 

I am now ready to re-generate my CP nucleus, which the follow
ing sequence of commands accomplishes-

ACCESS 191 A 
ACCESS 194 B 

- Just for fun. 
- To get access to the TEXT decks. 

MY WAY - which is one way 35 



PURGE READER 
SPOOL PUNCH * 
SPOOL PRINTER * 
VMFlOAD CPlOAD DMKSP 
IPl OOC 
IPl 190 
ACCESS 194 B 
READ CPNUC MAP B 

- Make sure the reader is empty. 
Get that nucleus sent to me. 

- Get the load map sent to me. 
- Punch out that nucleus. 
- IPl the new nucleus. 
- Re-IPl CMS. 
- Get 194 for my load map. 
- Save load map for debugging. 

And that t;Jkes care of CP - all done. 

Now for CMS (I wa it unt i 1 everyone's left). Then make sure all 
the updated TEXT, MAClIB, MODULE, HELP Screen, and EXEC files 
hav~ been loaded to my 190 disk. And then -

ACCESS 191 A 
ACCESS 190 B/A 

PURGE READER 
SPOOL PUNCH * 
SPOOL PRINTER * 
VMFLOAD CMSlOAD DMSSP 

- Just for fun. 
- Get read ~ccess to All the TEXT 

files. 
- M~ke sure the reader is empty. 
- Get the nucleus sent to me. 
- Get the lo~d map sent to me. 
- Punch out that nucleus. 

IPL DOC - IPl the new CMS nucleus. 
Answer a lot of questions from CMS. 
(Remember to have that relative address available) 
IPL 190 PARM SEG=NUll - Re-IPl eMS without DCSS's. 
ACCESS 190 A - Get read/write access to 190. 
CMSGEt~D ASSEMBLE - Re-generate the Assembler Aux. 

Directory. 
A n s ~,j era not her que s t ion 0 r t l'J 0 (0 r t a ked e f a u Its ) . 
IPL 190 PARM SEG=NUlL - Rc-IPL CMS without DCSS's. 
ACCESS 190 B/A - Get read access to All 190 files. 
C ~l S X G E N 1 0 0 0 0 0 - R e - 1 n s t a I I C ~, SSE G • 
CMSZGEN FOOOD - Re-in5t~11 CMSZER. 
hns~er a couple more 
IPL 190 
SAVESYS CMS 
;\CC~SS 194 B 
~ E A D C ~, S ~~ U C MAP B 

questions. 
- Re-IPL CMS. 
- Re-install the NAMED SYSTEM CMS. 

Get a place to save the load map. 
- Save load map for debugging. 

And busicully, that's it. Of course I may need to re-install a 
number of other DeSS's for DOS, or VSAN, but the above steps 
(provided I h~ve loaded all the right stuff on my 190 and 194 
disks) take care of my basic CP and CMS maintenance. 

Once the new fi les are loaded, the procedures lIsted above take 
perhaps 20 to 3D mi nutes - not so bad. Then, a s j lent prayer, 
S I ; U T D 0 t~ N ~ n d r e - I P L tot est s u c c e s s . 

I keep all my ASSEMBLE files (DMKRIQ, DMKSYS, DMKSNT, DMKBOX, 
and any source that I have had to modi fy because of local fi xes) 
on MAINT's 191 disk. After I have assembled ~ny source, I will 
copy the resultin9 TEXT (object) deck either to my 194 disk 
(CP) or to my 190 disk (CMS), and erase it from my 191 disk. If 
there is any doubt as to the eventual success of a 

36 VM/370 MAINTENANCE MADE SIMPLE 



~odification, I will RENAME the old TeXT .odule to so.ething 
like TXTOlD before copying the new TeXT to the 1900r 194 disk. 
That way, I can always back out. change wi thout re-assembly. 

I feel that by having only one copy of • TEXT deck available 
gives me peace of Mind in that I cannot inadvertantly (by hav
ing disks ACCESSed in the wrong order) include the wrong copy 
of a module in a CP or eMS nucleus. 

MV WAY - which IS one way 37 

-. - ~_~.,;:- __ 4 

; - =--.- -0 ~ .-_.~-

_-"-:ir-~ :.:.1::: 
.. , ....... =-., c._~ ~~::..:' 



THIS PAGE INTENTIONALLY LEFT BLANK 

38 VM/370 MAINTENANCE MADE SIMPLE 



POSTLUDE 

What has herein been described with many wordsJ can really be 
reduced to sayi ng that both CP and CMS are - in the ma in - made 
UP of il few hundred program modules which we combine - and cus
tomize via three or four assemblies - to create a system that is 
acceptable to our needs. 

What has been said holds true not only to the application of 
system updates, but to the generation of new systems as well, 
be they unmodified VM/370 SCP's, BSEPP, SEPP, VM/SP, and (let 
us hope) new th i ngs to come. 

Get your disk allocations in order, combine the right bunch of 
TEXT decks in the right order, and you have conquered VM/370 
maintenance. 

POSTLUDE 39 



THIS PAGE INTENTIONAllV LEFT BLANK 

40 VM/370 MAINTENANCE MADE SIMPLE 

~.. . - . 

. :. ~:"'G 
~ .. ,~' _ .... ~.~"~-r.. 

':!:A -:...J~ -~~ 



Title: 

READER'S COMMENT FORM 

VM/370 MAINTENANCE MADE SIMPLE 
Washington Systems Center 
Technical Bulletin GG22-9277-00 

You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the 
understanding that IBM may use or distribute ,,,hatever informa
tion you supply in any way it believes appropriate without 
incurr ing uny obligation to you. 

Please state your occupation: 

Comments: 

Please mail to: G. E. Hollendurskv 
IBM l~ Cl s h i n 9 ton S y s t ems C e n t e r 
18100 Frederick Pike 
Ga i thersburg, NO 20879 


