A A3

e

Program Product

SC24-5144-1
File No. S370-30

Using VSE/VSAM
Commands and Macros

Program Number 5746-AM2
Release 2

Second Edition (December 1979)

This edition, SC24-5144-1, applies to Release 2 of IBM Virtual Storage Extended/Virtual
Storage Access Method (VSE/VSAM), Program Product 5746-AM2, and to subsequent releases
and modifications until otherwise indicated in new editions or Technical Newsletters. Changes
are continually made to the information contained herein; before using this publication in
connection with the operation of IBM systems, consult the IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and current.

Summary of Amendments

For a list of changes, see page iii.

Changes and additions to the text and illustrations are indicated by a vertical line to the left of
the change.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for copies of IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Programming Publications, Dept.
G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979

Summary of Amendments

for Using VSE/VSAM Commands and Macros

Summary of Amendments
for SC24-5144-1
Release 2

The following is a summary of major changes to
VSE/VSAM for Release 2. The summary is in two parts,
first each individual item is noted and then the changes to
each command are listed:

SHAREOPTIONS parameter - Now allows you to share
VSAM files across VSE systems.

The CANCEL command - Allows you to cancel the cur-
rent job or job step.

The DEDICATE parameter - Indicates that the entire
space of a volume or the remaining free space on a vol-
ume is to be owned by VSAM.

CLASS and USECLASS parameters - Give you the
option of specifying an additional five classes of data
space.

The new NOALLOCATION and current REUSE par-
ameters - Allow you to define a file into a VSAM catalog
without allocating any space to the file.

Both the new DISP operand of the DLBL job control
statement and the current MACRF operand of the ACB
macro - Allow you to specify status options for a file at
OPEN time.

Both the new DISP operand of the DLBL job control
statement and the new CLOSDSP operand of the ACB
macro - Allow you to specify the disposition of the file at
CLOSE time.

The NOALLOCATION parameter - Allows you to re-
place the usual system parameter defaults with your own
list of defaults (via default models).

The DEFAULTVOLUMES parameter - Instructs VSAM
to select the volume(s) it needs from a previously estab-
lished default list of volumes.

The DEFINE CLUSTER NAME parameter - Allows
you to predefine work files for each partition in which
you anticipate using them.

The DEFINE CLUSTER NAME parameter - Allows
you to indicate that work file space is to be shared be-
tween central processors. These processors can run the
same job in any partition of any processor without con-
flict.

VSE/VSAM'’s job control - A greatly simplified way of
specifying job control is now available. (Note that the old
way of specifying job control still applies, however, for
reasons of clarity and brevity, the new way only is presented
in this book.) You can omit:

a. ASSGN and EXTENT job control statements in most
cases.

b. Many of the DLBL statements and their associated
filename (dname) parameters.

c. Many of the FILE (dname) and CATALOG (dname)
parameters.

d. Additionally, some of the existing command parame-
ters have been replaced with parameters that take
advantage of the new simplified way of specifying job
control.

ALTER Command
‘ o CATALOG dname) - dname subparameter no longer

required (also no DLBL and EXTENT statements are
required). Specify carname instead of dname to identify

the needed catalog.
FILE (dname) - no longer needed because the DLBL and
EXTENT statements are no longer required.

SHAREOPTIONS - now allows you to indicate that files
can be shared across VSE systems.

BLDINDEX Command

INFILE (dname) - changed to INDATASET (entryname)
because the DLBL and EXTENT statements are no long-
er required.

OUTFILE (dname) - changed to OUTDATASET
(entryname) because the DLBL and EXTENT statements
are no longer required.

WORKEFILES (dename) - changed to WORKVOLUMES
(volser) because the DLBL and EXTENT statements are
no longer required.

CANCEL Command (a new command)

Allows you to cancel the current job or job step.

DEFINE ALTERNATEINDEX

CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

DEFAULTVOLUMES - a new parameter used in con-
junction with modeling (makes the VOLUMES parame-
ter optional).

FILE (dname) - no longer required because the DLBL
and EXTENT statements are no longer required unless
you specify the UNIQUE parameter.

MODEL (dname) - dname subparameter no longer re-
quired (also no DLBL and EXTENT statements are re-
quired). Specify catname instead of dname to identify the
needed catalog.

NOALLOCATION - a new parameter that indicates no
space allocation is to take place at define time.
SHAREOPTIONS - now allows you to indicate that files
can be shared across DOS systems.

USECLASS - classes 2 to 6 have been added.

DEFINE CLUSTER

CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

DEFAULTVOLUME - a new parameter used in con-
junction with modeling (makes the VOLUMES parame-
ter optional).

FILE (dname) - no longer required because the DLBL
and EXTENT statements are no longer required unless
you specify the UNIQUE parameter.

MODEL (dname) - dname subparameter no longer re-
quired (also no DLBL and EXTENT statements are re-
quired). Specify catname instead of dname to identify the
needed catalog.

NAME (entryname) - has been expanded to allow you to
take advantage of central processor and/or partition
independence.

Summary of Amendments iii

® NOALLOCATION - a new parameter that indicates no
space allocation is to take place at define time.

o SHAREOPTIONS - allows you to indicate that files can
be shared across VSE systems.

e USECLASS - classes 2 to 6 have been added.

Define MASTERCATALOG

® CLASS (value) - classes 2 to 6 have been added.

¢ DEDICATE - use this new parameter to indicate that the
entire space (or remaining space) on a volume is to be
allocated to the catlog.

¢ FILE (dname) - no longer needed because the DLBL and
EXTENT statements are no longer required.

* ORIGIN (tracknumber|blocknumber) - use this new par-
ameter to indicate the beginning point of the catalog’s
data space (this removes the need for an EXTENT state-
ment).

Define NONVSAM

e CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

DEFINE PATH

e CATALOG (dname) - dname no longer required (also no
DLBL and EXTENT statements are required). Specify
catname instead of dname to identify the needed catalog.

¢ FILE (dname) - no longer needed because the DLBL and
EXTENT statements are no longer required).

s MODEL (dname) - dname subparameter no longer re-
quired. Specify catname instead of dname to identify the
needed catalog.

DEFINE Space

o CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

® CLASS (value) - classes 2 through 6 have been added.

e DEDICATE - use this new parameter to indicate that the
entire space (or remaining space) on a volume is to be
allocated to VSAM.

¢ FILE (dname) - no longer needed because the DLBL and
EXTENT statements are not required.

s ORIGIN tracknumberiblocknumber) - use this new par-
ameter to indicate the beginning point of the data space
(this removes the need for a DLBL and EXTENT state-
ment).

Define USERCATALOG

e CLASS (value) - classes 2 through 6 have been added.

¢ DEDICATE - use this new parameter to indicate that the
entire space (or remaining space) on a volume is to be
allocated to the catalog.

e FILE (dname) - no longer needed because the DLBL and
EXTENT statements are no longer required.

¢ MODEL (dname) - dname subparameter no longer re-
quired (also no DLBL and EXTENT statements are re-
quired). Specify catname instead of dname to identify the
needed catalog.

* ORIGIN (tracknumber|blocknumber) - use this new par-
ameter to indicate the beginning point of the catalog’s

iv Using VSE/VSAM Commands and Macros

data space. (This removes the need for a DLBL and EX-
TENT statements.)

DELETE

o CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

¢ FILE (dname) - no longer needed because the DLBL and
EXTENT statements are no longer required.

EXPORT

s INFILE (dname) - no longer needed because the DLBL
and EXTENT statements are no longer required.

e PRIMEDATADEVICE (devtype) - required only for a
tape device.

EXPORTRA

¢ CRA (dnamel dname2 dname3) - changes to CRAVO-
LUMES ENTRIES (entryname) because the DLBL and
EXTENT statements are no longer required.

e PRIMEDATADEVICE (devtype) - required only for a
tape device.

IMPORT

e OBJECTS FILE (dname) - no longer needed because the
DLBL and EXTENT statements are no longer required
(unless you are importing a UNIQUE file).

¢ OBJECTS DEFAULTVOLUMES - directs VSAM to use
the volumes given in a default list.

* OUTFILE (dname) - changed to OUTPW (password)
because the DLBL and EXTENT statements are no long-
egrequired. OUTPW is used for password purposes only.

¢ PRIMEDATADEVICE (devtype) - required only for a
tape device.

IMPORTRA

e OBIJECTS FILE (dname) - no longer needed because the
DLBL and EXTENT statements are no longer required
(unless you are importing a UNIQUE file).

¢ OBJECTS DEFAULTVOLUMES - directs VSAM to use
the volumes given in a default list.

e OUTFILE (dname) - no longer needed because the
DLBL and EXTENT statements are no longer required.

¢ PRIMEDATADEVICE (devtype) - required only for a
tape device.

LISTCAT

e CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

LISTCRA

e CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

e INFILE (dname) - changed to INVOLUMES (volser)
because the DLBL and EXTENT statements are no long-
er required.

<9

REPRO

OUTFILE ENFIRONMENT PREDATADEVICE
(devtype) - required only for a tape device.

RESETCAT

CATALOG (dname) - dname subparameter no longer
required (also no DLBL and EXTENT statements are
required). Specify catname instead of dname to identify
the needed catalog.

CRAFILES (dname) - changed to CRAVOLUMES
(volser) because the DLBL and EXTENT statements are
no longer required.

WORKCAT (dname) - no longer required (also no DLBL
and EXTENT statements are required). Specify catname
instead of dname to identify the needed catalog.

¢ WORKFILE (dname) - changed to WORKVOLUMES
(volser) because the DLBL and EXTENT statements are
no longer required.

VERIFY

e FILE (dname) - changed to DATASET (entryname)
because the DLBL and EXTENT statements are no long-
er required.

ACR Macro
New Operand

PARMS=(CLOSDSP=KEEP|DELETE|DATE) - specifies
the CLOSE disposition for the file.

Summary of Amendments v

vi

Using VSE/VSAM Commands and Macros

This book describes (1) the use of Access Method
Services, a group of programs that provide utility
functions vital to Virtual Storage Extended/Virtual
Storage Access Method (VSE/VSAM), and (2) how
to code VSAM macro instructions to process data.
This publication provides the VSAM information
needed to use Access Method Services in order to
establish and maintain VSAM files, and information
on the VSAM macros. For additional information
about VSE/VSAM, see VSE/VSAM General
Information, GC24-5143.

If you want information about the VSE/VSAM
Space Management for SAM Feature, refer to Using
the VSE/VSAM Space Management for SAM
Feature, SC24-5192.

Readers of this book are presumed to have a back-

ground in programming.

This book has the following major groupings of

information:

e Chapter 1: Introduction to Access Method Ser-
vices, which provides an overview of Access Me-
thod Services, including general language consid-
erations and Access Method Services functions.

e Chapter 2: Using Access Method Services, which
gives examples of general job control relation-
ships and format to be used with Access Method
Services commands. Each command is discussed
in its own section, explaining functions performed
and examples that show how to code typical cas-
es.

¢ Chapter 3: Access Method Services Commands,
which sets out the format for each functional and
modal command.

¢ Chapter 4: Introduction to the VSAM Macros,
which briefly discusses the VSAM macros.

¢ Chapter 5: VSAM Macro Instruction Format,
which describes the coding of each macro and
includes examples of each one.

* Appendix A: Sample Job Streams, which gives

examples with complex combinations of com-
mands.

¢ Appendix B: Interpreting LISTCAT Output,
which provides information on the structure of
LISTCAT output and shows sample output.

e Appendix C: Interpreting LISTCRA Output,
which provides information on the structure of
LISTCRA output and shows sample output.

Preface

¢ Appendix D: Invoking Access Method Services
from a Problem Program, which provides inform-
ation on linkage convention, control blocks, and
macros needed to invoke utility.

¢ Appendix E: Command Parameters Summary,
which lists the commands, command parameters
with their abbreviations, and examples of com-
mand use.

¢ Appendix F: Operand Notation for VSAM Mac-
ros, which provides information on the ways to
express operands.

e Appendix G: Parameter Lists for VSAM Macros,
which describes the format of the parameter lists
and gives the codes used for the operands of each
of the macros.

¢ Appendix H: Making the VSAM Master Catalog
Recoverable, which shows how to convert the
VSAM master catalog of an existing VSE system
from a nonrecoverable to a recoverable catalog.

e Appendix I: Password Requirements, which pro-
vides a summary of the passwords required with
the Access Method Services commands and other
password information.

¢ Appendix J: Acronyms and Abbreviations, which
defines acronyms and abbreviations relevant to
Access Method Services and VSAM.

e Appendix K: Glossary, which defines terms rele-
vant to Access Method Services and VSAM.

Required Publications

You should be familiar with pertinent information
presented in the following publication:

VSE/VSAM General Information, GC24-5143.

Related Publications

The following publications contain information that
is related to this publication:

VSE/VSAM Messages and Codes, SC24-5146

VSE/VSAM Programmer’s Reference, SC24-5145

Using the VSE/VSAM Space Management for SAM
Feature, SC24-5192

VSE/VSAM Documentation Subset, SC24-5191

Preface vii

viii Using VSE/VSAM Commands and Macros

Contents

Chapter 1: Introduction to Access Method Servicesot 1-1
Functions of Access Method Services ...ttt 1-1
Functional Commandscciiiuiiinieinneiinretiirenneeinnenannenns 1-3
Modal Commandsouuiiniuiiiiintiiieeniieeiiiee ittt 14
How to Code Access Method Services Commands (Syntax)oocvievinnnn. 14
Notational ConVEntionsvtiiiinnertnianniiteetiinsnereaneeenans 14
Syntax of the LANGUAEoiiiiiiii ittt ittt iaaaes 14
Continuing Command Statementsuuttiiiiiiinnnannnnnnnnnnnens 1-6
Common Continuation Errors i ittt 1-6
TOMMALOT . ..ottt ettt et e eeeeeeeeeeennnennnnnnnsneeennennnnnannnenees 1-7
Chapter 2: Using Access Method Services ...ttt 2-1
Using Job CoMtroloiiiiiitt ittt ittt eraaet e eaateteeanneennnns 2-1
Using Define: Defining Objectsina Catalogcooiiiiiiiiiiiiinniennnnnnn 2-2
Defining a Catalogcvttriiiiiiiiiit ittt taaa et 2-3
Catalog Space Estimates and Worksheetciiiiiiiinnt. 2-3
TheMaster Catalogiieeiiiininii ittt iieteaannternanneeenns 2-5

How Data Space is AssignedtoaCatalogooviiiiiiiiiiiiiinann 2-5
Allocating Space tothe Catalog’s CRAcciiiiiiiiiiinninnenineanenns 2-8
Defininga VSAM Data Spaceoiiiiiiieierennnneeenennneerennneenns 2-8
VSAM Data SpacesonaVolumettt iiiiniann, 2-8
VSAM ObjectsinaDataSpaceciiuiiiiiiiiiiiiiieinnnnenanennens 2-9

Space Assignment to VSAM Objectscoiiiiiiiiiiiiiiii it 29
Defininga VSAM File (Cluster)ottt ittt iaeaes 2-10
Specifying Information That Definesa Filecooiiiiionn. 2-11
Defining a Suballocated VSAMFile o i, 2-12
Defininga Unique VSAMPFile i i 2-12
Defining a Key-Sequenced File ittt 2-13
Defining an Entry-Sequenced Fileo it 2-16
Defining a Relative-Record File i it 2-17
Defining a File in a Recoverable Catalogcoiitiiiiinennnnnnn 2-17
Loading Recordsintoa Fileottt iieannennns 2-18
Alternate Indexesottt e i 2-19
Alternate-Index Patht e e 2-20
Alternate-Index Recordttt it 2-20
Creating an Alternate Indexiiiiiiiiiiiiiiie ittt 2-21
Defining an Alternate Index ...ttt 2-21
Building an Alternate Indext e 2-23
Defininga Path ittt ittt ittt it 2-24
Specifying Information That DefinesaPathc.cooiiiiiiianen.. 2-25
Accessing a Base ClusterviaaPath iiiiiiiiininnn. 2-25
Alternate-Index Upgradettt ittt 2-25
DefiningaNonVSAMPFileo i 2-26
Using ALTER: Altering Catalog Entrieso i iiiiiiiiiiiinnnann, 2-27
Specifying Information That Altersan Entryoo.. 2-27

Using DELETE: Deleting Catalog Entriescoiiiiiiiiiiiiiinennnnnn.. 2-28
Specifying Information That Deletesan Entrycocoiviiuvnnnn.... 2-29

Using REPRO: For Catalog Backup and File Reorganization 2-30
Backing UpaCatalogcciiniuiiiiiiiiniiiiiiinieiiiennnernnennnn 2-30
Unloading a Catalogcooiiiiiiiiiiiiiiiiiiiiiiiiiiiaienieannennen 2-30
Reloadinga Catalogoviitiiiiiiiii ittt it ie e it 2-30
Reorganizinga File i ittt 2-32

Using EXPORT/IMPORT: Transporting or Backing Up Files......................... 2-34
EXPORT: Makinga FilePortable it 2-37
IMPORT: Loadinga Portable Filec.coiiiiiiiiiiiiiiinnannnnnnn. 2-37
Using LISTCAT: Listing Catalog Entries ittt 2-38
Using PRINT: Printing Data Recordsoiiiiiiiiiiiiiineaeainannanennns 2-38
Using EXPORTRA/IMPORTRA: Recovering Catalog Entriesand Data 2-39
Using EXPORTRA for Moving All Entrieson One Volume 241

Using EXPORTRA for Entries on Multiple Volumes 241

Using EXPORTRA for Selected Entriesccocviiiiiiiiniinineannnnn, 2-42

Using RESETCAT: Resetting Catalog Entriesccooiiiiiiineanennannnn. 243
RESETCAT ReqUIrementscoiuueiiinetninennreenneeniacnnnennennns 24

Contents ix

X

Work File Space Requirementsc..cooiiiiiiiiiiiiniieinnnennnn.. 2-44

Considerations for Multivolume Filesccoiiiiiiiiiina... 2-44
RESETCAT JOb Controlcoiiiiiiiineiiiiieeeeininnneeeennnnneenn 2-46
Verifying a File’s Accessibilityc...ci i 2-46
Chapter 3: Access Method ServicesCommands 3-1
Functional Command Formatciiiiiiiiiiiiiiiriiiiieeiinnnnns 3-1
Notational ConVentionSouieeiittennneeinneennrernnseenseennennnnn 32

N - 33
Catalog Entry-Types That CanBe Alteredccoviinnnn.. 33
ALTER Parameters: SUMMAIYcvvteiinninnreeennnnnneeennnnneenns 3-5
ALTER Parameterscouttiiiiiieeeeninninereeennnnseennnnneenns 3-6
BLDIN D EXttt ittt ettt eanaaeeeer e ettt 3-16
BLDINDEX Parametersouuiuitueeeennnnnnneeerennnnnnseensaseeens 3-16
(078 1[04 = 3-18
CANCEL Parametersouuuiuieueerennnnuneeeenrennnnsnesnnnnenenn 3-18
DEFINE ALTERNATEINDEXc.0iiiiiiiiiiiiii ittt iinneennnnns 3-19
DEFINE ALTERNATEINDEX Parameters: Summary 3-22
DEFINE ALTERNATEINDEX Parametersc..ocvvineenneennnnnnnn 323
DEFINE CLUSTER ...ttt ittt ettt iiie e aarieeannns 341
DEFINE CLUSTER Parameters: SUmMmaryooiveeennnnnnnenns 3-4
DEFINE CLUSTER Parametersooiiineeneeeninnnnrennnnnenennns 345
DEFINE MASTERCATALOGc.iiiiiiiiiiiiiiiiiiiiniiiinnnananannns 3-64
DEFINE MASTERCATALOG Parameters: Summaryccoueveunennn 3-65
DEFINE MASTERCATALOG Parametersc.ccvivinneennnnnnnnnnn 3-66
DEFINE NONV S AM ... ittt ittt ittitaitiiittinaanannaannn 3-74
DEFINE NONVSAM Parametersoovvininnreneenennnnneeeennnsnnnnnn 3-74
DEFINE PATH ittt itinaaeeeereeannseeennasnaseennnn 3-76
DEFINE PATH Parameters: SUMMATYccoceeeeeevnnnneeennnnnnnenn 3-76
DEFINE PATH Parameterscouveiiiinnnneneeeernnnnnneennnnnnnnan 3.77
DEFINE SPACEiititiiiiiiiterernnntneesenenaaseneesananseneens 3-82
DEFINE SPACE Parameters0vittuuinnnnininneesanraeanneanennns 3-82
DEFINEUSERCATALOGottt it iiieeeerinnnnnnenannns 3-86
DEFINE USERCATALOG Parameters: Summaryccovuveineennns 3-87
DEFINE USERCATALOG Parametersc.oeeeeinnnnneneeenannnanen 3-88
DELETE ...ttt itiietttaeeteseeeennaseosneeesnnneesonnnenens 397
DELETE Parameters: SUMMArYcoviveennuetereerannneeenannnnens 397
DELETE Parameterscccoiiiininiineenennnnnnoeeeeronnnseeeesnnnans 3-98

2 € 6) 1y RO 3-103
EXPORT Parameterscooiiiitittiitiiiiiiineneneaaraaseeeeaeeennnns 3-103
EXPOR TR A ... ittt ittt taratanaaaaaaaaaaaaaeaaeaannn 3-109
EXPORTRA Parameters00iittiintiiiininnieeaasonansansannnnn 3-109

1.7 120 2 3-114
IMPORT Parametersoooiiiiiineieeeeeneennnronnnenonssnnnnannnnnnn 3-115

1Y 0) 1 0 3-122
IMPORTRA ParaGmetersoouiiiniineeenennaneneeessennneeeannnnans 3-122

50 1. 107\ L A P 3-127
LISTCAT Parametersccuiiiiineeeeeeeneenunnnnnnnannansannannnns 3-128
LISTC R A .. ittt ittt ite ettt ettaanatasaasasnnnnnncnnnnns 3-131
LISTCRA Parametersovuniiniiteeeenennnnnneeeeenansnnnannnnnen 3-131
PRINT .. ittt ettt et ettt ienennaseenaanasaennnnns 3-133
PRINT Parametersooiiiiiteineeeeeeeeeesunnnnnnnnaassasnannnnnnnnn 3-133
REP RO .. ittt ittt et teeenaeaeeesenanansesannnnnaens 3-140
REPRO PAIAMELErsoiiiiiineineetitnenennnennssasasseaassasananns 3-141
RESET CAT ..ottt it tiiieeteereansaseeeasenenneeseasoinseasanannns 3-149
RESET CAT Parameterscoovtieiierunenneeeneeeennneeeonsneeanennns 3-149
VB RIFY .ottt ittt tiitt ittt teteteereeeeseseaeesssassansnnnennns 3-152
VERIFY Parametersccoiiuiieiieeeeeeeeroenennnnnanunnnnnneannnnns 3-152
Modal Command FOrmat0iiiiiiiiiiiiiiiiieeneennaneannnnannnnnn 3-153
Condition Codesc.oiiiiiiiiieiiteiettetet et 3-153
IF-THEN-ELSE ...ttt itiiietiteeaennneeeeeennnsnseannnnnas 3-154
NullClauses ettt eeeeeeeieaet et e, 3-155
Nested IF Statementsoittitiirneenereneeneeoaacansonasanannn 3-155
DO-END Command Sequencec.ccvviiintenreeriinreeeaannnnaens 3-156
N 8. 3-158
1 210 AU PR 3-160

Using VSE/VSAM Commands and Macros

Chapter 4: Introductiontothe VSAMMacrosooiiiiiiiiiiiiinnn.. 4-1

Assembler Programming Considerationsc.oiiiiiiiiiinireeiiineeiinns 4-1
Specifying Parameters that Relate the Program andtheData 4-1
ACB: Specifying the Access-Method Control Blockol 4-1
EXLST: Specifyingthe Exit Listcoiiiiiiiiiiiiiiiiiiiiiiiinns 4-2

RPL: Specifying the Request Parameter Listcciiiiiiiinn.n. 43
GENCB: Generating Control Blocksand Listscoiiean. 4-4
Connecting and Disconnecting a Processing Programanda File 4-4
OPEN: Connecting a Processing ProgramtoaPFile 44
CLOSE: Disconnecting a Processing Program froma File 44
TCLOSE: Securing Records AddedtoaFilecoiiiiiiinn, 4-5
Manipulating the Information Relating the Program and the Data 4-5
MODCB: Modifying the Contents of Control Blocksand Lists 4-5
SHOWCSB: Displaying Fields of Control Blocksand Lists 4-5
TESTCB: Testing the Contents of Control Blocksand Lists 4-5
Requesting AccesstoaFile i i e e 4-5
Sharing Resources Among Files and Displaying Catalog Information 4-5
Chapter 5: VSAM Macro InstructionFormato, 5-1
Notational CONVENtIONSovtiiuntetttiinieereraaneeetinneeernneens 5-1
Specifying Information that Relates the Program and the Data 5-1
ACB Macro (Specifying an Access Method Control Block 5-2
EXLST Macro (Specifyingan Exit List)coiiiiiiiiiiiiinnnnn. 5-8
Connecting and Disconnecting a Processing ProgramandaFile 5-14
OPEN Macro (Connect Programand Data)ooviiiiiieevinnnn, 5-15
CLOSE Macro (Disconnect Programand Data)ccoovvinineeeinnn., 5-16
TCLOSE Macro (Temporary CloSe)uuuuuiuuuiininrnnnnneeeneeeens 5-17
OPEN/CLOSE/TCLOSE MeSSage ATaovvevnnuunenennneeennnnenns 5-17
Exceptional Conditionsiiiiiiiiiiiiiiiiiiiiiiii i 5-19
Defining Requests for Accessto Datacciiiiiiiiiiieiiinneeeennnnnneennns 5-20
RPL Macro (Creating a Request Parameter List)c.oooiiu... 5-20
Specifying Processing Options fora Requestccoviiiiiiiinnnnnne... 5-25
Keyed and Addressed ACCESSiiineiiiiieiiieinntiii i 5-25
Sequential and Direct Processingccoviiiiiiiiiiiiiiiiiiiiieas 5-25
Keyed ACCESSviiiiiititt ettt et e 5-26
Sequential (SEQ) Retrieval i e e 5-27
Sequential Backward (SEQ BWD) Retrievalt 5-28
Direct (DIR) Retrievalt i i i e i e 5-28

Skip Sequential (SKP) Retrieval i, 5-29
Keyed INSertionottt it iiinet i aannns 5-29
Keyed Deletionttt ittt ittt ittt eeeaeeenns 5-30
Addressed ACCESSttt e i 5-30
Addressed Retrievaloiiiuiiiiitiitiii ittt 5-31
Addressed Deletionottt i e e 5-31
Addressed INSertioniiuiitiitniiiiiii e ey 5-32
Control-Interval ACCESSoviu ittt e 5-32
Processing a Record in a Work AreaorinaBuffer 5-32
Examples of ACB, EXLST,and RPLMACIoscoiviiiiiiinnannnnnnnnn, 5-32
Manipulating the Information Relating the Program andthe Data 5-35
GENCB MACIO . ..ottt et ittt ettt et et aiaeanenaaans 5-35
MODCBMACIO ..ottt ittt ettt et ettt eeeaaaenannnns 5-38
SHOWOCB MaACIO ..ottt et ittt et et et et aae e eannneens 5-39
TESTCB MACTO . ..o ittittitt it te et e ettt et aaeaneananns 5-43

List, Execute, and Generate Forms of the Control-Block Manipulation Macros 5-47
Listand Execute FOImSoiiiiiiiiii it it it enie i enn 5-47
Generate FOTI o ittt ittt 5-47
Requesting Accesstoa Fileooo i 5-49
GET Macro (RetrieveaRecord)ciiiiiiiiiiniiiniiiiiinnininnans 5-49

PUT Macro(Storea Record)ciiuiiiiiiiiinniiiniienniiannnnnns 5-50
POINT Macro (Position for ACCESS)vvuiirtieeiiiineenennnrnenneennns 5-51
ERASE Macro (DeleteaRecord)c.oiiiiiiiiiiiiiiiiiananennns 5-52
ENDREQ Macro (Terminate a Request)cciiiiieienennennnnn. 5-52
Return Codes for the Request Mactosccvviiiiiienninnnennnnnnnnn. 5-53
Examples of Using the Request MacroSvovvevrittireerieennrenneenneannenns 5-54
How to Retrieve a Record: The GETMacroc.ccoviviivniennninnnnnn. 5-55

How to Position for Subsequent Sequential Access: The GET and POINT Macros . .5-60
How to Chain Request Parameter Lists and Terminate a Request:
The ENDREQ MACIO ...\ttt e e e et e 5-62

Contents xi

How to Store a Record: The PUTMACIOcovviiiiiiiiiiinnnnnnnnnnn. 5-64

How to Update a Record: The GET and PUTMacrosccoovvvevennn.. 5-68

How to Delete a Record: The GET and ERASEMacrosc.oooun... 5-71
Sharing Resources Among Filesttt ittt iiiienneennn. 5-73
Providing a Resource Poolottt 5-73
Deciding How Biga Poolto Provideccoiiiiiiiiiiiiinnnnnnnnn.. 5-74
Displaying Information About an Unopened File 5-74
Displaying Statistics Abouta BufferPoolcoiiiiiiiiiiin.... 5-74
BLDVRP: Buildinga ResourcePoolcooiiiiiiiiiiiiiiiiina.., 5-74
Format of the BLDVRPMAcroc.coiiiiiiiiiiiiiiiinnnnnennnennnns 5-74
Return Codes from BLDVRP i ittt 5-76
OPEN: Connecting a Fileto a Resource Poolccoiiiiiiiinnn... 5-76
DLVRP: Deletinga Resource Poolcciiiiiiiiiiiiiiiineennnnn, 5-76
Managing [/O Buffersottt ittt i e, 5-77
Deferring Write Requestsc.oiuiiiiiiiiiiiiiiiiiiiinninennnnnnnns 5-77
Relating Deferred Requests by Transaction-IDccovivuenn... 5-78
WRTBFR: Writing Buffers Whose Writing Has Been Deferred 5-78
Format of the WRTBFRMaCIOoviniiiiiiiiiiiiiiiiiiiiiiiiennnennns 5-719
Preventing Deadlock in Exclusive Controlcoiiiiiiiiina... 5-80
SHOWGCAT MACTO ..ottt ittt ettt eiieeaeeaneeaneeanaennnns 5-80
Format of the SHOWCAT MACIOviittiiintiineennernineninennnennnss 5-81
Return Codes from SHOWCATttt ittt iiiieee e 5-84
Appendix A: Sample Job Streams o i il A-1
Example 1. Definea System’s Catalogsccviiiiiiiereneniineeennnnnnnnn A-1
Example 2. Define a VSAM User Catalog and a VSAM Data Space A-3
Example 3. Define VSAMFilesoiiiiiiiiiiiiiiiiiiiiiiiiniiianeannnn A-6
Example 4. Define NonVSAM and VSAMPFilesoiiiiiiinn.... A-10
Example 5. Loadingand PrintingFilesooiiiiiiiiiiiiiiine, A-15
Example 6. Modifying and Printing the Contents of VSAM Files A-19
Example 7. Modifying and Listing the Cataloged Attributesofa File A-21
Example 8. Creating an Alternate Index anditsPath A-23
Example 9. Defining a VSAM Data Space and Cluster on an FBA Volume........... A-26
Example 10. Exportinga VSAMFile. ...t A-28
Example 11. Exporting an Alternate Indexand Base Cluster A-29
Example 12. Disconnecting a User Catalog From a Master Catalog A-31
Example 13. Importing a Base Cluster and AlternateIndex A-31
Example 14. Importing an Entry-Sequenced File A-33
Example 15. ImportingaFile FromTapeccooiiiiiiiiiiiiiiieennnn. A-34
Example 16. Connecting a User Catalog to the Master Catalog A-36
Example 17. Using REPRO to Unload a User CatalogtoTape A-36
Example 18. Using REPROto Reloada UserCatalogccccvvueinnn.. A-38
Example 19. Listing Catalog Recovery Areasoooviiiiiiiinneiinnnnenn. A-39
Example 20. Using the EXPORTRA Commandccoviiiiinnenennnnnnn A-40
Example 21. Usingthe IMPORTRA Commandcoiviiiiinennnnnnnnn A-41
Example 22. Deleting Entries in a User Catalog and the User Catalog Itself A-43
Example 23. Deleting Entries in the Master Catalog and the Master Catalog Itself A-45
Example 24. Defining an Entry Sequenced Default Model A-47
Example 25. Defininga DynamicFileoooiiiiiiiiiiiiii, A-48
Example 26. Accessinga DynamicFileoooiiiiiiiiin, A-48
Example 27. Defining a Partition Independent File A-49
Appendix B: Interpreting LISTCAT Output Listingso0000 B-1
Appendix C: Interpreting LISTCRA Output Listings C-1
LISTCRA NAME NOCOMPARE Output Listingcoviiuiiiiiiinnn. C3
LISTCRA DUMP NOCOMPARE Output Listingccooviiiiiieiniinnnen C-4
LISTCRA NAME COMPARE Output Listingc.cooiiiiiiiieeneenenn. C-6
LISTCRA DUMP COMPARE Output Listingcoiiiiiiinnieiiinnnnnns C-7
Appendix D: Invoking Access Method Services From a Problem Program D-1
Invoking Macro INStructions ovttttt ittt e D-1
User I/OROULNESvttitttiitttit ittt ittt iineiineenneenans D-3
Appendix E: Command Parameters Summarycooiiiiiiiiiiiininn., E-1
ALTER Parameters: SUMMATYoottttteieeteenenunnenneeeeeeeennnnnnnns E-1
BLDINDEX Parameters: SUMMATYccouiieteenneeernnnereonnaseosaanaanens E-2

xii Using VSE/VSAM Commands and Macros

CANCEL Parameters: SUMMATYouuununtteetetinnineeeiinieeerssnieeinas E-2

DEFINE ALTERNATEINDEX Parameters: Summarycccevureeeeeeeenns E-3
DEFINE CLUSTER Parameters: Summaryc.oiiiiiienininnneninnennns E-§
DEFINE MASTERCATALOG or USERCATALOG Parameters: Summary E-7
DEFINE NONVSAM Parameters: Summaryc.uuuuunninnnnennnnnnnenens E-9
DEFINE PATH Parameters: SUMMATYcoiutiiieiiiinnuineninnnneeiiannenns E-9
DEFINE SPACE Parameters: SUMMATYccoouttuiunnennnnnenuennennnns E-10
DELETE Parameters: SUMMATYoououuteeettiininraeeeennnneeeennnneenns E-10
EXPORT Parameters: SUMMArycouiitttiemnnnnnnnnnnnnnnannannnnnen E-11
EXPORTRA Parameters: SUMMATYoovueeeeerrmnnnneeeeroannceeennneeen E-12
IMPORT Parameters: SUMMATIYcuuueeeeeennnunneeeenanueeeseonaeesonns E-13
IMPORTRA Parameters: SUMMATYcuouueeernnnnuuneeeeennnseeenanneeesnns E-14
LISTCAT Parameters: SUMMATYo.ouuuteeetininnueteeeennneenenonnnnenns E-15
LISTCRA Parameters: SUMMATYcciitteeeiiernnnnnnonnnnnnnnnnnnnes E-15
PRINT Parameters: SUMMATYovuntennneeeeennnnenseeeesnnneeesenneesens E-16
REPRO Parameters: SUMMATYiiiiitiieeitnunnnnnnnnnnonnnnnnneens E-17
RESETCAT Parameters: SUMmMAryccovuieeeeeunnnnnonnnnnnnnnnnnenns E-18
VERIFY Parameters: SUmmaryc.ooiuinunieeiinineneeeeninnneeenaneeens E-18
Appendix F: Operand Notation for VSAMMacresoooiiiiiinnn, F-1
GENCBMacro Operandso.uuiiuttiiieinnttiiieeiiineineeinneenneennens F-4
MODCB Macro Operandsc.c.ceveuiieeeeeeeeeeeeenuneneneenneeneeeaaenns F-5
SHOWCB Macro Operandsc.oiuutiiuuiiiieianntineeeneeinnenneennns F-5
TESTCBMacro Operandsuuvtrinninninnnrerennnneeeeennoteorannneesns F-6
BLDVRP Macro Operandsouuuitintetinieinnnennneenneeonneaneennennns F-8
SHOWCAT Macro Operandsootiuieieettntreeiteetenneeaeannneessnnns F-8
WRTBFR Macro Operandscoiiutmuininniiiniaanaeieanaaraaaannnnnnns F-8
Appendix G: Parameter Lists for VSAMMacroscoiiivievinnnnennn. G-1
The GENCB Parameter Listttt G-1
The MODCB Parameter Listoiuuiiiiiiiiiiiiiiiiiiiiiiiiiiienneannns G-3
The SHOWCB Parameter Listccoiiuiiiiiiiiiiiiiieniiieeinnnenennns G4
The TESTCB Parameter Listcuiiiutiiiiniininenneinnreanennerannenns G-5
The BLDVRP Parameter Listootiiiuiiiiiiiiiiieiiiiiieeinerarennens G-8
Appendix H: Making the VSAM Master Catalog Recoverable H-1
Appendix I: Password Requirements i I-1
Appendix J: Release 1 Command Parametersoiiiiiiiiiniieane., J-1
ALTER Parameterscooiinnutiiitttiiiiii et ieeiiteonnnnenrenanneeennns J-1
BLDINDEX Parametersouuuuuutttenninnnreeeerenneseresonnseenonseenns 1)1
DEFINE ALTERNATEINDEX Parameterscoouuteeeennneeeennnneeennnenns J-2
DEFINE CLUSTER Parameterso.uuuunnenineeanneeneernneannennnesnsennnsn J4
DEFINE MASTERCATALOG Parameteroiinitiiiitiinninneanneennns J-5
DEFINE NONVSAM Parametervuiveenntenennernneenneraneenneenaannns J-5
DEFINE PATH Parametersouuutttanternnrerennernneenneenneeansannnnnns J-6
DEFINE SPACE Parametersououtetnntetinternnnernnnenteraneenneencennan J-7
DEFINE USERCATALOG Parameterscoiiiiiniiiiinennnnennennennnnn J-7
DELETE Parameters cvuunnnttttttanenueeeeeenanannseerennnnssnannseenannns J-8
EXPORT Parameteroouuuinitiniiiiiiieerinnnnieeeeeennrnennanneennnns J-9
EXPORTRA Parametersointttiitt ittt eniitennneenieenneennnennsones J9
IMPORT Par@meterso oottt teeinieeeeneannneeeeennnneeeeannnsennns J-10
IMPORTRA Parameterscouiniiniiiiteennenneneesonnneeaennnnaeeennnns J-11
LISTCAT Parametero ovttiittttiittte it eeiteeeneeanneennsonnarnneenneans J-12
LISTCRA Parametersuuteteenennnunneeennnnnneeeeeeaneseeeenneeeennns J-12
PRINT Parametercoinnuiiiiiitiniinteeteneairieeeeenanseennnnnennnnns J-13
REPRO Parametersottt iiitieieenineanneanannns J-13
RESETCAT Parametersuuttitinninitnereeennnneeeeaannseennnnneennnns J-14
VERIFY Parameterottt ittt it iiiniaeanneanans J-15
Appendix K: Acronyms and Abbreviations 0., K-1
Appendix L: Glossaryo e L-1
T Index 1

Contents xiii

Figures

xiv

Figure 1-1.
Figure 2-1.
Figure 2-2.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 5-5.
Figure 5-6.
Figure 5-7.

Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure S5-11.
Figure 5-12.

Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-S.
Figure B-6.
Figure D-1.
Figure D-2.

Using VSE/VSAM Commands and Macros

Functionsand Commandsociiiitiiiiiiinnneenneennens 1-1
Reorganizinga File it 2-32
Data Portability (Achieved by Moving Volumes or by Moving

Individual Files)cooiiiiiiiiiiiiiiiiiii ittt ittt 2-34
ALTER Parameters and the Entry-Types to Which Each Applies 34
Listing Contents Depending upon Parameters Requested 3-127
Sample Output from PRINT ... 3-139
MACRF Optionsciiiiiiiiiiiiiiiiiiiiinneeanernaaninnnnnns 5-6
Example of an RPL Chain Built by Specifying the NXTRPL Operand.. 5-23
Summary of Processing Optionsc.ccoviiiiieernnnineennnnnnn. 5-26
Example of Backward Sequential Retrieval Through a Path

with Non-unique Alternate Keyscooiiiiiiiiiiiiin... 5-28
Example of VSAM Macros Used to Specify VSAM Control Blocks

foraFile e 5-33
Example of Job Control Statements Needed to Open and Process

aVSAMP ile e e 5-34
Examples of Specifying VSAM Control Blocks by Using GENCB Macro . ..5-37
Examples of Modifying VSAM Control Blocks 5-39
Examples of the List and Execute Formo.... 5-48
Example of the Generate Formcoiiiiiiiiiinnnnnennn. 5-48
Interrelationship Among Catalog Entriesccoov... 5-82
Format of SHOWCAT Work Areacooiiiiiiiiiiiineinn., 5-85
Messages that Follow the Entry Listingcoooiviian. B-14
An Example of LISTCAT Output When no Parameters are Specified B-15
An Example of LISTCAT VOLUMEOutputoovviinnnennn. B-16
An Example of LISTCAT SPACEALLOutput.................co0vnne. B-18
An Example of LISTCAT ALLOutputcooviiiiiiiiinnnenn. B-19
An Example of LISTCAT ALLOCATIONOutputcouvnnn. B-23
Processor Invocation Argument List From a Problem Program D-2
Arguments Passed to and from a User I/ORoutine D4

Chapter 1: Introduction to Access Method Services

Access Method Services is a service program that is used with VSE/VSAM
(Virtual Storage Extended/Virtual Storage Access Method) to create and
maintain files. Access Method Services enables you to request various
functions such as defining a VSAM file and loading records into it, convert-
ing a sequential file on tape or disk or an indexed-sequential file to the
VSAM format, listing VSAM catalog information or file records, copying a
file for reorganization, creating a backup copy of a file, and making a file
portable from one operating system to another.

You can invoke Access Method Services functions by executing the IDCAMS
program (// EXEC IDCAMS) and issuing a command and its parameters in
the job stream that IDCAMS processes. (See VSE/VSAM Programmer’s

Reference for information on job control.)

You can also call the IDCAMS program from within another program and
pass a command and its parameters to the IDCAMS program. (See
“Appendix D: Invoking Access Method Services from a Problem Program.”)

If you plan on using VSE/VSAM, you must use the commands provided by
Access Method Services. This chapter introduces the commands available
through Access Method Services and the functions they perform.

Functions of Access Method Services

Figure 1-1 shows a list of functions that Access Method Services commands

can be used to perform. The left-hand column shows functions that you
might want to perform. The middle column more specifically defines the

functions. The right-hand column shows the commands that can be used to

perform each functiop.
Function Command
Add a password to a new VSAM file ora DEFINE
catalog
a password to an existing VSAM file ALTER
or a catalog
Analyze a nonrecoverable catalog where LISTCAT
data access is impaired
a recoverable catalog where LISTCRA
data access is impaired
Attach a user catalog to the master catalog DEFINE,IMPORT
Build an alternate index BLDINDEX
Cancel a job CANCEL
a job step CANCEL
Catalog a VSAM file DEFINE
anonVSAM file DEFINE
Change a file’s description in the catalog ALTER
the device type of the volume on which REPRO
the catalog resides
a password ALTER
Connect a user catalog to a master catalog IMPORT
Convert a SAM or ISAM file to VSAM format REPRO
a VSAM file to sequential format REPRO
Copy afile REPRO

Figure 1-1. Functions and Commands (Part 1 of 2)

Chapter 1: Introduction

Function

Create

Define

Delete

Disconnect
Enter
List

Load

Modify
Move

Print
Recover

Recreate
Release
Reload
Rename
Reorganize

Uncatalog
Unload

Verify

an alternate index

a backup copy of a catalog

a backup copy of a VSAM file

a catalog

a catalog entry for a nonVSAM file

a path

a VSAM file

an alternate index

a catalog

a data space

anonVSAM file

a path

a VSAM file

an alternate index

a catalog

a data space

anonVSAM file

a password

a path

a VSAM file

a user catalog from the master catalog

a file entry into the catalog

a password

a file

a file’s catalog entry

contents of the catalog

contents of the catalog recovery area

records into a file

a catalog from an unloaded copy

a file’s description in the catalog

a catalog to another system

a file to another system

a file

from loss of data due to
improper closing of a file

from possible loss of data or
catalog entries by means of
catalog recovery areas

a VSAM file from a back up copy

a user catalog from the master catalog

a catalog from a sequential file

afile

afile

afile

a catalog to a sequential file
a file

end-of-file

Figure 1-1. Functions and Commands (Part 2 of 2)

Command

DEFINE,BLDINDEX
REPRO
REPRO,EXPORT
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DELETE
DELETE
DELETE
DELETE

ALTER

DELETE
DELETE
EXPORT
DEFINE
LISTCAT

PRINT

LISTCAT
LISTCAT
LISTCRA
REPRO

REPRO

ALTER
EXPORT,IMPORT
EXPORT,IMPORT
PRINT

VERIFY

EXPORTRA,IMPORTRA,
and RESETCAT

IMPORT

EXPORT

REPRO

ALTER

REPRO or
EXPORT,IMPORT
DELETE

REPRO

REPRO

VERIFY

1-2 Using VSE/VSAM Commands and Macros

Functional Commands

There are two types of Access Method Services commands: functional
commands that are used to request the actual work - for example, defining a
file or listing a catalog — and modal commands that specify options and allow
the conditional execution of the functional commands.

The functional commands are:

ALTER, which is used to alter existing catalog entries.

BLDINDEX, which is used to build alternate indexes for existing VSAM
files.

CANCEL, which is used to cancel a job or job step.

DEFINE, which is used to create catalogs and catalog entries for files,
alternate indexes, paths, and VSAM data spaces.

DELETE, which is used to delete catalog entries.

EXPORT, which is used to create a copy of a file for backup or to make a
file or user catalog portable so that it can be used in another system.

EXPORTRA, which is used to recover data independent of the status of a

catalog by means of duplicate catalog entries in catalog recovery areas
(CRAs).

IMPORT, which is used to read a backup copy of a file or to make a file or
user catalog that was previously exported from one system available for
use in another system.

IMPORTRA, which is used to make data recovered via the EXPORTRA
function again available to the user.

LISTCAT, which is used to list catalog entries.

LISTCRA, which is used to list catalog recovery areas or compare the
entries of a catalog recovery area with the appropriate entries in a catalog
to check whether the catalog and the catalog recovery area are synchron-
ized.

PRINT, which is used to print VSAM and nonVSAM files.

REPRO, which is used to copy files, to convert sequential files on tape or
disk and indexed-sequential files to VSAM format, to convert VSAM and
indexed-sequential files to sequential format, to create backup copies of
VSAM catalogs, and to reload a VSAM catalog from a backup copy.

RESETCAT, which is used to reset a recoverable catalog to the level of its
owned volumes. The owned volume’s CRA information is used to syn-
chronize the catalog with the volume(s).

VERIFY, which is used to cause a catalog to correctly reflect the end of a
file. You should use this command after an error occurred which prevent-
ed normal closing of the file that may have caused the catalog to be incor-
rect.

The functional commands that can be used on nonVSAM files include
ALTER, DEFINE, DELETE, LISTCAT, PRINT, and REPRO.

Chapter 1: Introduction 1-3

Modal Commands

The modal commands are:

¢ [F, which tests a condition code and executes according to the results of
the test. IF is followed by THEN and ELSE clauses which specify alterna-
tive actions.

e DO and END, which specify the beginning and ending of a functional
command sequence, normally within a THEN or ELSE clause.

e SET, which changes condition codes.

e PARM, which specifies diagnostic aids and printed output options and
changes input record margins.

How to Code Access Method Services Commands (Syntax)

Notational Conventions

Syntax of the Language

A uniform system of notation describes the format of Access Method Services
commands. This notation (that is, [], {}, |, ...) is not part of the language; it
simply provides a basis for describing the structure of the commands.

The command-format illustrations in this book use the following conven-
tions:

e Brackets [] indicate an optional parameter.

e Braces {} indicate a choice; unless a default is indicated, you must choose
one of the entries.

¢ Items separated by a vertical bar (|) represent alternative items. No more
than one of the items may be selected.

¢ An ellipsis (...) indicates that multiple entries of the type immediately
preceding the ellipsis are allowed. In examples, an ellipsis may indicate
that entries not relevant to the examples have been omitted.

e Underscored type indicates a default option. If the parameter is
omitted and none is implied by the presence of another parameter in the
set, the underscored value is assumed.

e Other punctuation (parentheses, commas, spaces, etc.) must be entered as
shown. A space is indicated by b.

e UPPER CASE type indicates the exact characters to be entered. Such
items must be entered exactly as illustrated (in upper case).

Italic type specifies fields to be supplied by the user.

All Access Method Services commands have this general structure:
VERBD parameter(s) terminator

VERB specifies the type of service requested. Parameter(s) further describe
the service requested. Terminator indicates the end of the command state-
ment. Refer to “Appendix A: Sample Job Streams” for command statement
examples.

You can abbreviate many of the verbs and parameters. Permitted abbrevia-
tions are listed with each command statement or parameter, in “Appendix K:
Acronyms and Abbreviations,” and in “Appendix E: Command Parameter
Summary.”

1-4 Using VSE/VSAM Commands and Macros

Verbs

Code the verbs beginning at or to the right of the left margin. The default
columns are column 2 through 72. You can specify different columns, if you
want, with the PARM command.

You must separate each verb from its parameter(s) ¢ither with a blank or a
comment.

Comments

You can add comments to a command statement anywhere a blank can
appear. Comments are strings of characters preceded by a /* and followed by
an */. They can contain any characters you desire except an */. You contin-
ue comments to the next line by using a hyphen (-) or plus (+) sign as the last
non-blank character before or at the right margin.

Parameters

Parameters are in bold uppercase type (they must be coded exactly as shown)
or in italicized lowercase type (you substitute an appropriate value or word
for the parameter).

One or more parameters follow the verb; they can be positional parameters or
keyword parameters. Positional parameters follow the verb in a prescribed
sequence. An example of a positional parameter in this manual is the
entryname parameter in the ALTER, DELETE, and EXPORT commands; it
must always be the first parameter following its respective command. If you
specify a positional parameter that consists of a list of names, you must
enclose the list in parentheses (a single item does not require parentheses).

Keyword parameters are specific names that have a particular meaning to
Access Method Services. You can include these parameters in any order
following the positional parameter, if present, or the verb. Keyword parame-
ters are shown in upper-case type; for example: ERASE.

You can also specify values or names with some of the keyword parameters.
You enclose the value or name within parentheses following the parameter;,
for example: DEVICETYPE(3340).

If the value you specify contains commas, semicolons, blanks, parenthesis, or
slashes you must enclose the entire value in single quotation marks.

A keyword parameter might also have a set of subparameters; for example:
ENV (PDEV (2400) RECFM(VARUNB) BLKSZ (5164))

In the preceding example, (PDEV) PRIMEDATADEVICE, (RECFM)
RECORDFORMAT, and (BLKSZ) BLOCKSIZE are subparameters of the
(ENV) ENVIRONMENT keyword parameter. (The parameters are abbrevi-
ated so that the example fits on a single line.)

You can code a list of similiar items (for example, volume serial numbers) in
a parameter or subparameter. Separate the parameters and subparameters
from one another by one or more separators (commas, blanks, or comments).
The only exception is that parameters immediately preceding or following a
subparameter set enclosed in parentheses do not need to be separated from
the opening or closing parenthesis.

Chapter 1: Introduction -5

In some cases it is necessary to specify a password following the name of a
catalog entry or of a job control statement. You do this by coding (1) the
name, (2) a slash, and (3) the password. The name/password combination
must be preceded and followed by separators; for example:

DELETE PAYROLL/CTLGPAY.

Continuing Command Statements

Common Continutation Errors

When you continue a command statement on more than one coding line
(coding line is sometimes referred to as a record) you must use a hyphen (-) or
plus (+) sign to indicate the continuation of the command statement. (The
coding examples in this manual generally use a separate line for the verb and
each of its parameters; this makes it easier to read the command statement.)
The plus sign differs from the hyphen because not only does it indicate
continuation of the command statement but it also indicates continuation of a
value within the command statement.

Blank coding lines or coding lines ending with complete comments (that is,
end of comment */) must also end with a continuation mark when they
appear in the middle of a command statement and when they appear preced-
ing or following the THEN and ELSE clauses of an IF command.

Records ending with partial comments must always end with a continuation
mark.

Also, only blank characters may appear between a continuation mark and the
end of the coding line.

The continuation rules must be used carefully when modal commands,
comments, or blank records appear in the input stream. You must be careful
when continuing a modal command so that you do not inadvertently specify
a null clause. For information on null clauses, see “Null Clauses” in “Modal
Command Format.”

The following examples show common continuation errors, (see “Appendix
A: Sample Job Streams” for examples of correct coding).

IFLASTCC=0-
THEN
LISTCAT

A continuation mark (hyphen) is missing after the THEN keyword. A null
clause is assumed after the THEN keyword, and the LISTCAT command is
unconditionally executed.

IFLASTCC=0-

THEN -

REPRO INFILE(F1)OUTFILE(F2)
/*ALTERNATE PATH*/

ELSE-

PRINT...

Because no continuation mark (hyphen) follows the comment, a null ELSE
clause is assumed. The ELSE keyword will not match up with the THEN
keyword, an error message will be issued, and the PRINT command ignored.
Note the correct use of the continuation marks on the other records.

1-6 Using VSE/VSAM Commands and Macros

J

Terminator

IFLASTCC=0-
THEN-
REPRO...
ELSE -

PRINT ...
Because a blank line with no continuation mark (hyphen) follows the ELSE
keyword, the ELSE becomes null and the PRINT command is uncondition-
ally executed.

PARMTEST (— /*COMMAND* /
TRACE)

The PARM command will not be continued onto the second record because
characters other than blanks appear between the continuation mark (hyphen)
and the end of the record.

PARMTEST (TRA+
/*FIELD CONTINUATION*/
CE)

The end of the PARM command is found after the second record because no
continuation was indicated after the comment. The command is rejected.

The terminator indicates the end of the command. The terminator can be a
semicolon or simply the absence of a continuation mark. If you use the
semicolon as the terminator, the semicolon cannot be enclosed in quotation
marks or embedded in a comment. Everything to the right of the semicolon is
ignored. If there is information to the right of the semicolon that is continued
to another record, all of the information including the continued information
is ignored. For example, if you code:

PARMTEST (TRACE) ; PARM-

GRAPHICS (CHAIN(TN)) /*COMMENT* /-
PRINT...
REPRO ...

the characters following the semicolon terminator are ignored. The continua-
tion marks (hyphens) at the end of the first and second records cause the
PRINT command to be ignored also. The first PARM command and the
REPRO command are the only commands that are recognized.

Chapter 1: Introduction 1-7

1-8 Using VSE/VSAM Commands and Macros

C

Using Job Control

Chapter 2: Using Access Method Services

Chapter 2 discusses the various functions of Access Method Services and
gives examples that combine job control statements with Access Method
Services commands for each function. Many of the command parameters are
not covered in this chapter because the intent here is to provide you with a
basic understanding of the Access Method Services commands. More com-
plex examples that combine sequences of commands are given in Appendix
A.

Access Method Services DEFINE commands and job control statements are
used to set up all catalogs, VSAM data spaces, VSAM files (clusters), alter-
nate indexes, paths, and nonVSAM files.

A VSAM file exists once it has been defined in a catalog. Before you can
define a file, you must have a catalog in which to define it. Generally you
must also have a VSAM data space on a direct-access volume in which to
suballocate space for the file (as opposed to defining a catalog or defining a
file in its own unique data space). Once a VSAM file has been defined,
records can be loaded into it.

When you invoke Access Method Services via job control, you must specify
an EXEC job control statement:

// EXEC IDCAMS,SIZE=AUTO

You must specify the SIZE parameter, otherwise Access Method Services will
terminate your job immediately. The SIZE parameter provides information
to the VSE system which allows it to divide the processing partition into a
static area and a GETVIS area. When you execute IDCAMS, only the first
load, called the root segment, is loaded into the static area. The remainder of
the partition must be left free for GETVIS area required by Access Method
Services and for the subsequent modules it loads. When you specify
SIZE=AUTO, the system determines the amount of virtual storage required
for the IDCAMS root segment and leaves the rest of the partition free for the
GETVIS area.

See VSE/VSAM Programmer’s Reference for more information on job
control.

Chapter 2: Using Access Method Services 2-1

Using DEFINE: Defining Objects in a Catalog

2-2

VSAM uses catalogs as central information points for VSAM files and the
direct-access volumes on which they are stored. You can define a VSAM
object in a VSAM catalog by using the Access Method Services DEFINE
command. Additionally, you can use the DEFINE command to define
nonVSAM objects in a VSAM catalog.

When you specify the DEFINE command, Access Method Services builds a
catalog entry that describes the object. The VSAM objects you can define are:

® Master catalog, which is the primary VSAM catalog. It contains a collec-
tion of information about VSAM objects in the system. You must create a
VSAM master catalog before you can define any other object.

o User catalog, which is a collection of information about VSAM objects
that reside on the volumes owned by the user catalog. You can create a
user catalog after the VSAM master catalog is defined. A pointer to the
user catalog is put in the master catalog.

e Data Space, which is direct-access device space used for a catalog, for
VSAM clusters, for alternate indexes, and for catalog recovery areas.
VSAM controls the allocation of space within each data space.

o Cluster, or VSAM file,which is a collection of user-data records. There are
three types of cluster data organization:

- Entry-sequenced, or sequential, in which data records are read or
written sequentialy.

- Key-sequenced, or indexed, in which a data record is read or written
based on its key value. A key is a field, shorter than and within the
record, that identifies the record.

- Relative-record, or direct, in which a data record is read or written
based on its relative record number—its displacement, in records, from
the beginning of the cluster.

® Alternate index, which allows you to read and write data records in an
entry-sequenced or key-sequenced cluster (called the base cluster) based on
an alternate key.

® Path, which is a file name for the combination of an alternate index and its
base cluster or an alias for a VSAM file. A path entry can be password
protected.

e Non-VSAM file, which is a file that is not in VSAM format, but can be
cataloged in a nonrecoverable VSAM catalog.

When you define an object, you specify attributes to be associated with it.
The attributes include, for example, any passwords required to use data and
how space is to be allocated. After the object is defined, it can be processed
with other Access Method Services commands and with the user’s VSAM
program. After a cluster is defined, for example, you can load data records
into it by using the REPRO command.

VSAM clusters, alternate indexes, and catalogs are stored in data spaces. You
can allow a data space to contain many clusters and alternate indexes
(sometimes called files) by simply not specifying otherwise (the usual case
and the default) or you can restrict a data space so that it contains only one
VSAM file. In the usual case, you define a data space first, then define the
files. To define a VSAM file as the only one in its data space, specify the
parameter UNIQUE when you define the file.

Using VSE/VSAM Commands and Macros

Defining a Catalog

Defining an object doesn’t normally require that a volume be mounted,
because Access Method Services can determine the availability of space in
data spaces by examining the volume information in the catalog. A volume
must be mounted whenever a data space, a unique file, or a catalog is being
defined, deleted, or altered or whenever a VSAM file is being defined, delet-
ed, or altered in a recoverable catalog. (If the volume is not mounted, VSAM
issues a mount message.)

See “Volume Mounting Requirements” in VSE/VSAM Programmer’s
Reference for more information.

You can use the entry of an already-defined VSAM object (that is, an
already-defined alternate-index, catalog, cluster, or path) as a model for the
definition of another object of the same type. When one entry is used as a
model for another, its attributes are copied as the new entry is defined. See
“How to Use One Object as a Model for Another Object and Override
System Defaults” in VSE/VSAM Programmer’s Reference for more informa-
tion.

The DEFINE command is used to define the master catalog or user catalogs.
User catalogs are pointed to by the master catalog.

"The data space that contains the catalog is allocated when the catalog is

defined. The data space may be reserved for the catalog’s exclusive use or it
may contain other VSAM files.

Catalog Space Estimates and Worksheet

The control intervals in a catalog are 512 bytes long, and each control inter-
val contains one record.

If you specify (or default to) the IMBED option, each control area in the data
component of the catalog takes up:

¢ Five tracks (min-CAs) on a 2314 (2319) or 3340,
e Three tracks on a 3330, 3330-11, or 3350, and

e Three min-CAs on a 3310 or 3370.

The first track is for the sequence set record, which is placed adjacent to
(imbedded in) the control area.

If you specify the NOIMBED option, each control area in the data compo-
nent of the catalog takes up:

¢ Four tracks on a 2314 (2319) or 3340,
e Two tracks on a 3330, 3330-11, or 3350, and
e Two min-CAs on a 3310 or 3370.

To estimate the number of tracks required for a catalog, use the following
worksheet:

Chapter 2: Using Access Method Services 2-3

Variable Quantities

Formulas

Estimates

Basic Requirement

10

10

A = number of key -sequenced files

3*A

B

number of entry -sequenced files

2*B

number of relative-record files

2*C

number of alternate indexes

3*D

number of paths

E

number of nonVSAM files

F

O|lm|m|lo|o

number of volumes, depending on device, owned by
the catalog:

Gy = 3" (number of 2314/19 or 3310 volumes)
G, = 4* (number of 3330, 3340, or 3370 volumes)
G3 = 6* (number of 3330-11 or 3350 volumes)

G=G;+G,+G3

for each key -sequenced file with more than 2 volumes,
1 for each additional group of 1 to 5 volumes
For example:

H = 0 for each key -sequenced file of 2 volumes
H =1 for each key -sequenced file of 7 volumes
H = 2 for each key -sequenced file of 8 volumes

for each alternate index with more than 2 volumes,
1 for each additional.group of 1 to 5 volumes.

for each entry-sequenced file with more than 5 volumes,
1 for each additional group of 1 to 8 volumes.

for each relative-record file with more than 5 volumes,
1 for each additional group of 1 to 8 volumes.

for each group of 4 data spaces on a volume, 1.

number of entry records (subtotal of the previous items).

number of records in the catalog’s data component.

N=1.4*M

number of records in the catalog’s index component
where:
If IMBED is specified or defaulted
X = 2 for the 3310, 3330, 3330-11, 3350, or 3370
X = 4 for the 2314 (2319) or 3340
Y =55 for the 2314 (2319)
Y =60 for the 3330, 3330-11, or 3340
Y = 81 for the 3350
Y =96 for the 3310; 186 for the 3370
If NOIMBED is specified
X =40 for the 3330 or 3330-11
X = 44 for the 2314 (2319)
X = 48 for the 3340 or 3350
X =64 for the 3310; 124 for the 3370
(Round O up to a multiple of X.)

O=(N/X)+Y

O=N/X+N/x?

total number of records
(I1f N+O is less than 200, P=200)

P=N+0

total number of Min~-CAs (tracks) where:
Q = P/11 for the 2314 (2319)
Q = P/20 for the 3330 or 3330-11
Q = P/12 for the 3340
Q = P/27 for the 3350

If IMBED is specified or defaulted, round Q up to the
next multiple of 5 for the 2314 (2319) or 3340, or to
3 for the 3330, 3330-11, or 3350.

If NOIMBED is specified, round Q up to the next
multiple of 4 for the 2314 (2319) or 3340, or to 2 for
the 3330, 3330-11, or 3350.

For the 3310, Q=total number of blocks, where:
Q is in units of blocks and is obtained by rounding P
up to the next multiple of 96 for IMBED and 64 for
NOIMBED.

For the 3370, Q=total number of blocks, where:
Q is in units of blocks and is obtained by rounding P
up to the next multiple of 186 for IMBED and 124
for NOIMBED.

2-4

Using VSE/VSAM Commands and Macros

The Master Catalog

The first job you run after you have installed VSAM and Access Method
Services in your system is the one that creates your master catalog. Without a
master catalog you cannot define user catalogs, data spaces, or files. The
volume on which the master catalog is defined must be mounted whenever
VSAM is being used; it is always on a logical unit named SYSCAT. You can
have more than one master catalog at your installation; however, only one
can be connected to the system at a time. It is connected to the system at IPL
by the DEF SYSCAT=cuu command.

How Data Space is Assigned to a Catalog

When a master or user catalog is defined, the catalog is the first VSAM object
contained on the volume. The data space that contains the catalog is built
when the catalog is defined. Two important points about a catalog and the
catalog’s data space need to be understood:

e VSAM allocates a specific amount of data space to a catalog (the catalog
“owns” this space).

¢ All or a portion of that specific amount of data space can be made avail-
able (suballocated) for the catalog itself. If only a portion of the total
amount of data space is suballocated to the catalog, the remaining data
space (still owned by the catalog) is available for a catalog recovery area (if
RECOVERABLE had been specified), for future expansion of the existing
catalog (only if you specify a secondary allocation value), or for other
VSAM objects.

You can assign data space to a catalog in one of the following ways, by
specifying:

e The DEDICATE parameter (at the catalog level only), an optional space
allocation parameter(s) (at the data or index component levels), and a
DLBL job control statement (required for the master catalog only).

e The ORIGIN parameter, a space allocation parameter(s), and a DLBL job
control statement (required for the master catalog only). Note that the first
cylinder (max-CA) on a volume is never specified in an ORIGIN parame-
ter; one reason is because a portion of the first cylinder (by default) con-
tains the VTOC and therefore is not available for your use.

* A space allocation parameter(s), no DEDICATE or ORIGIN parameters,
and a DLBL job control statement (required for the master catalog only).

Using the DEDICATE Parameter for a Catalog: You use the DEDICATE
parameter to specify that all the unowned and unallocated (free) space on a
specified volume is to belong to a catalog. Note that VSAM acquires all the
free space for the catalog if 16 or fewer extents exist on the volume (where
extents are contiguous areas of free space); if more than 16 “free” extents
exist on the volume, VSAM acquires only the first 16 extents for the catalog.

You can specify DEDICATE at the catalog level only; it is mutually exclu-
sive with the space allocation parameters (CYLINDERS, BLOCKS, RE-
CORDS, TRACKS). The amount of space to be suballocated to the catalog
itself, depends on how (or if) you specify a space allocation parameter at the
index component and/or data component levels.

If you are defining a master catalog, a DLBL job control statement is re-
quired; it can appear in the job stream or it can reside on the permanent
standard label area (see “Specifying a VSAM Catalog’s Job Control

Chapter 2: Using Access Method Services 2-5

2-6

Statements” in VSE/VSAM Programmer’s Reference for further informa-
tion).

¢ If you specify DEDICATE and no space allocation parameter at the data
and index component levels (see EXAMPLE 1), the acquired free space on
the designated volume is owned by the catalog. The amount of space
suballocated to the catalog itself is calculated by VSAM to be enough
space for a minimum size catalog (this amount is device-dependent); the
remaining space is available for other VSAM objects.

// JOB EXAMPLE 1
// DLBL IJSYSCT, 'VSAMCAT',,VSAM
// EXEC IDCAMS,SIZE=AUTO
DEFINE MASTERCATALOG -
(NAME (VSAMCAT) -
VOLUME (CATVOL) -
DEDICATE)
/*
/&
¢ If you specify DEDICATE and a space allocation parameter at the data
and index component levels (see EXAMPLE 2), the acquired free space on
the designated volume is owned by the catalog, and the space suballocated
to the catalog is the sum of the data and index level specifications. The

space not suballocated to the catalog (if any) is available for other VSAM
objects.

// JOB EXAMPLE 2
// EXEC IDCAMS,SIZE=AUTO
DEFINE USERCATALOG -
(NAME (USER.CAT) -
VOLUME (USRVOL) -
DEDICATE) -
DATA (CYLINDERS(10)) -
INDEX (CYLINDERS (2))
/#
/&
¢ If you specify DEDICATE and a space allocation parameter at the data
component level (see EXAMPLE 3), the acquired free space on the desig-
nated volume is owned by the catalog. VSAM uses your data component
specification to calculate a value for the index component and it then adds
this value to the data component specification. This sum becomes the

amount of data space that is suballocated to the catalog. The space not
suballocated to the catalog (if any) is available for other VSAM objects.

// JOB EXAMPLE 3
// DLBL IJSYSCT, 'VSAMCAT',,VSAM
// EXEC IDCAMS,SIZE=AUTO
DEFINE MASTERCATALOG -
(NAME (VSAMCAT) -
VOLUME (CATVOL) -
DEDICATE) -
DATA (CYLINDERS (6))
/#
/8
Using the ORIGIN Parameter for a Catalog: You use the ORIGIN parame-
ter to specify the beginning point (track number or block number) of the
catalog’s data space. VSAM determines the ending point of the data space
from the value you specify (at the catalog level) for CYLINDERS, BLOCKS,
RECORDS, or TRACKS (VSAM converts records to tracks). If you specify
a block number value (in the ORIGIN parameter) that does not coincide
with a min-CA (track) boundary, VSAM rounds the value up to the next
min-CA boundary. If the ending block value (ORIGIN plus number of

Using VSE/VSAM Commands and Macros

blocks) does not coincide with a min-CA boundary, VSAM rounds it down to
the previous min-CA boundary.

You can specify ORIGIN at the catalog level only. If you are defining a
master catalog, a DLBL statement is required. It can reside on the permanent
standard label area or it can appear in the job stream. You have three differ-
ent ways of allocating space with the ORIGIN parameter, you can:

e Specify ORIGIN and a space allocation parameter at the catalog level only
(see EXAMPLE 4). In this case VSAM divides the amount of space you

specified between the catalog’s data and index components. The entire
amount of space is owned by and available to the catalog only.

// JOB EXAMPLE 4
// EXEC IDCAMS,SIZE=AUTO
DEFINE USERCATALOG -

(NAME (USER.CAT) -
VOLUME (USRVOL) -
ORIGIN(20) -
TRACKS (260))

/*

/&

e Specify ORIGIN at the catalog level only and a space allocation parameter
at the catalog, data component, and index component levels (see EXAMPLE
6). In this case VSAM adds the data component value to the index compo-
nent value to arrive at the total amount of space to be suballocated to the
catalog; it (the sum) cannot be greater than the space allocation value

specified at the catalog level. If the sum is less than the catalog level
specification, the remainder is available for other VSAM objects.

// JOB EXAMPLE 5

// DLBL IJSYSCT, 'VSAMCAT',,VSAM

// EXEC IDCAMS,SIZE=AUTO

DEFINE MASTERCATALOG -

(NAME (VSAMCAT) -
VOLUME (CATVOL) -
ORIGIN(20) -
TRACKS (60)) -
DATA(TRACKS (40)) -
INDEX (TRACKS (20))

/*

/&

* Specify ORIGIN at the catalog level only and a space allocation parameter
at the catalog and data component levels (see EXAMPLE 6). In this case
VSAM uses your data component specification to calculate a value for the
index component. (It is up to you to provide enough space, via the catalog
level specification, for the index component.) VSAM then adds the calcu-
lated value to the value specified in the data component. This amount is
then suballocated to the catalog; it cannot be greater than the space alloca-
tion value specified at the catalog level. If the sum is less than the catalog
level specification, the remainder is available for other VSAM objects.

// JOB EXAMPLE 6
// EXEC IDCAMS,SIZE=AUTO
DEFINE USERCATALOG —
(NAME (USER.CAT) -
VOLUME (USRVOL) =

ORIGIN(20) -
TRACKS (80)) -
DATA (TRACKS (40))
/*
/&

Using Neither DEDICATE nor ORIGIN for a Catalog: By not specifying the
Chapter 2: Using Access Method Services 2-7

DEDICATE or ORIGIN parameters (see EXAMPLE 7), you indicate that
you want VSAM to choose the first available extent on the volume that is
large enough to contain your primary allocation (VSAM, in effect, defaults to
ORIGIN). The space allocation parameter (TRACKS, CYLINDERS,
RECORDS, or BLOCKS) determines the data space allocation for the
VSAM catalog.

If you are defining a master catalog, a DLBL job control statentent is re-

quired. It can reside on the permanent standard label area or it can appear in
the job stream.

// JOB EXAMPLE 7
// EXEC IDCAMS,SIZE=AUTO
DEFINE USERCATALOG -

(NAME (USER.CAT) -
VOLUME (USRVOL) -
TRACKS (260))

/#

/&

| Allocating Space to the Catalog’s CRA

If you define a catalog as recoverable, one cylinder (max-CA) of the total
data space owned by the catalog is allocated to the CRA (catalog recovery
area). The catalog definition will fail if insufficient space exists for the CRA.
Use the following guidelines as an aid in specifying space allocation parame-
ters for a recoverable catalog.

Allocating Space to a Recoverable Catalog via the DEDICATE Parameter:
If you specify DEDICATE, VSAM (not you) sets aside space for your CRA.

Allocating Space to a Recoverable Catalog via the ORIGIN Parameter: If
you specify ORIGIN and a space allocation value at the catalog level only,
VSAM (not you) sets aside space for your CRA from the space you specified.

If you specify ORIGIN and a space allocation value at the catalog and data
component level (or the catalog, data component, and index component
levels), you must make the catalog level space allocation value large enough
to contain one cylinder for the CRA and still have sufficient space for the
catalog’s data and index components.

Defining a VSAM Data Space

The DEFINE command is used to define VSAM data spaces or to reserve
volumes for VSAM’s future use.

VSAM Data Spaces On a Volume

2-8

A VSAM data space is space on a direct-access volume that is owned and
managed by VSAM. When you define the volumes’s first data space (or you
specify the volume as a candidate to contain VSAM objects) you are, in
effect, giving control over the volume to the catalog that contains the data
space entry. You must define all future data spaces and VSAM objects on
that volume in that same catalog.

A data space can take up all or part of the space on one volume; it cannot take
up space on more than one volume. A volume can contain more than one data
space.

When you define a data space with the DEFINE SPACE command, you
must specify the volume that is to contain the data space. If you specify more
than one volume, a data space of the size you specify is allocated on each
volume and each volume comes under control of the defining catalog. Access

Using VSE/VSAM Commands and Macros

Method Services creates a volume entry in the catalog to describe each
volume on which one or more data spaces have been defined. The volume(s)
on which data space is to be defined must be mounted for the define.

If there is space available and there is no volume ownership conflict (no other
catalog owns this volume), VSAM ownership is indicated in the volume’s
VTOC with a format-4 label and a VSAM data space is allocated on the
volume. See “VSAM Volume Ownership” in VSE/VSAM Programmer’s
Reference for more information on volume ownership.

You can assign space to one of eight performance classes, that is, you can
classify space as standard (non-fixed head) space, fixed-head space, or
whatever other space criteria you wish to choose. See“Data Space
Classification” in VSE/VSAM Programmer’s Reference for more informa-
tion.

If the data space is the first data space on a volume owned by a recoverable
catalog, VSAM also allocates one cylinder (max-CA) of space to a CRA
(catalog recovery area).

VSAM Objects in a Data Space

VSAM catalogs, clusters, and alternate indexes are stored in VSAM data
spaces. A unique object is defined as the only object in its data space. VSAM
allocates the data space for a unique object when you define the object. You
cannot define a unique alternate index or cluster in an “empty” volume if
that volume is to be owned by a recoverable catalog; you must have already
defined space on that volume (via DEFINE SPACE) so that space exists for
the CRA.

A nonunique (suballocated) object can share a data space with other VSAM
objects. That is, a catalog, clusters, and alternate indexes might also be in the
same data space. To define a file that can share a data space with other files,
a data space must have been defined beforehand in which to allocate space
for the file.

A data space can contain more than one suballocated file, and a file can be
stored in more than one data space, on the same volume or on different
volumes.

Space Assignment to VSAM Objects

\ When VSAM suballocates space for a file, it suballocates the space from
space that is available in an existing data space. Data spaces (this includes
unique files and their associated data space) cannot be dynamically extended
in VSE. You must define more space (or free existing space) whenever a
define or extend fails with an insufficient space error. If all of the space given
to a unique file at DEFINE time is used, the unique file cannot be further
extended, even by the definition of new data spaces.

Three examples of defining a data space are shown below. (See also Example
2 in “Appendix A: Sample Job Stream.”) Assume for these examples that the
data space is to be cataloged in the master catalog and the master catalog’s
DLBL statement is in the standard label area. Standard format-1 and format-
3 labels describing the data space are written into the volume’s VTOC.

EXAMPLE 8 specifies that 209 tracks, beginning with track 19, are to be
allocated to VSAM (assume that a 3330 volume is being used).

// JOB EXAMPLE 8
// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE -
(TRACKS (209) -

Chapter 2: Using Access Method Services 2-9

VOLUME (M3330A) -
ORIGIN(19)) -
CATALOG (MASTCAT/UPDPW1)
*
7
EXAMPLE 9 is a “default ORIGIN” example; by not providing the ORI-
GIN (or DEDICATE) parameter you cause VSAM to choose the first possi-
ble extent on the volume that can satisfy your space allocation quantity (in
this case, 209 tracks).

// JOB EXAMPLE 9
// EXEC IDCAMS,SIZE=AUTO
DEFINE SPACE -
(TRACKS (209) -
VOLUME (M3330A)) -
CATALOG (MASTCAT/UPDPW1)
/t
/8
EXAMPLE 10 indicates that the unowned and unallocated data space
(maximum of 16 extents per volume) on volume VSERO1 and VSERO02 is to
be allocated to VSAM.

// JOB EXAMPLE 10
// EXEC IDCAMS,SIZE=AUTO
DEFINE SPACE -

(DEDICATE -
VOLUME (VSERO1 VSER02)) -
CATALOG (MASTCAT/UPDPW1)

/*

/&

Defining a VSAM File (Cluster)

A VSAM file can be suballocated, not allocated (dynamic), or unique. A
suballocated file shares a data space with other files; an unallocated (dynamic)
file has no space allocated to it at define time; a unique file has a data space to
itself.

To define a suballocated VSAM file, you first define a data space, then use
the DEFINE CLUSTER command. VSAM suballocates space for the file in
the data space you have set up and enters information about the file in a
VSAM catalog. (No records are loaded into the file at this time; defining a
file is distinct from loading records into it.) A file can be stored in more than
one data space on the same volume or on different volumes. See “Defining a
Suballocated File” for more information and examples.

To define a dynamic VSAM file, you specify the NOALLOCATION and
REUSE parameters at define time. The required space (specified with a
space allocation parameter at define time) is suballocated to the file when
VSAM opens it. See VSE/VSAM Programmer’s Reference for more informa-
tion about dynamic files.

To define a unigue VSAM file, you do not define the data space beforehand.
You specify the parameter UNIQUE in the DEFINE CLUSTER command
and assign space to the file with a space allocation parameter and the
DLBL/EXTENT job control statements. The data space is acquired and
assigned to the file concurrent with the file definition. The volume(s) to
contain a unique file must be mounted as in defining a data space. See
“Defining a Unique VSAM File” for more information and examples.

With a multivolume key-sequenced file, you may assign data to various
volumes according to ranges of key values. For example: if you have three
volumes, you might assign records with keys A-E to the first volume, F-M to

2-10 Using VSE/VSAM Commands and Macros

the second, and N-Z to the third. (The keys could also be A-D, G-K, L-O,
R-W, etc.)’

VSAM ireats all files as clusters. A cluster consists of a data component only
(in the case of an entry-sequenced file or a relative-record file) or of a data
component and an index component (in the case of a key-sequenced file).
Besides setting up a catalog entry for each component of a cluster, VSAM sets
up a catalog entry for the cluster as a whole. This entry consists mainly of the
name (the 44-byte file-1D) of the cluster which you specify in the DEFINE
command, and, for a key-sequenced file, an indication of the relationship
between the data component and the index component.

You can also specify names for the index and data components of a cluster in
the INDEX and DATA parameters of the DEFINE CLUSTER command.
(If you do not provide names for the data and index components, VSAM
generates them.) These names enable you to process each component indi-
vidually. For example, you may open the index of a key-sequenced file
separately and process it as data (with addressed or control interval access).

You can also specify that the data and index components of a key-sequenced
file are to reside on different volumes; you do this by specifying the VOL-
UMES parameter as an attribute of both DATA and INDEX.

A cluster is defined in the master catalog unless you specify a job catalog or
indicate otherwise through the CATALOG parameter.

Specifying Information that Defines a File

When a DEFINE command is used to define a key-sequenced cluster, three
entries are created in the catalog: an entry for the cluster, its data component,
and its index component.

Attributes of the data and index components can be specified separately from
the attributes of the cluster as a whole. If attributes are specified for the
cluster as a whole and are not specified for the components, the attributes of
the cluster (except for its passwords and other protection attributes) apply to
its components. If an attribute that is applicable to the data or index compo-
nent is specified for both the cluster and the component, the component
specification overrides the cluster specification.

See the DEFINE CLUSTER command in “Access Method Services
Commands” to identify which parameters can be used with each type of
entry.

The following examples are intended to demonstrate how to use the basic
DEFINE parameters to define a file without considering all of the options.
See also Examples 3 and 4 in “Appendix A: Sample Job Streams.”

Chapter 2: Using Access Method Services 2-11

Defining a Suballocated VSAM File

Defining a Unique VSAM File

When a VSAM file is defined and space is suballocated for it in one or more
existing data spaces, DLBL and EXTENT statements are not required and
the volume(s) on which the file is defined need not be mounted. An example
of defining a suballocated key-sequenced file is shown below. The cluster is
defined in the master catalog (no DLBL job control statement is given for the
master catalog because it is assumed that it was previously entered in the
standard label area).

// JOB EXAMPLE 11
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER(-
NAME (MSTRFILE)-
VOLUMES (M3330R) -
TRACKS (38 19)-
KEYS(10 1)-
RECORDSIZE(80 80))-
CATALOG (MASTCAT/UPDPW1)
*
e
The volume on which the file will reside is indicated in the VOLUME param-
eter. Space to be allocated initially (primary allocation) and, optionally,
space to be allocated if the file must be extended (secondary allocation) are
indicated in the TRACKS, CYLINDERS, BLOCKS or RECORDS parame-
ter. VSAM selects the data space(s) on a volume from which to suballocate
space to the file. All volumes must be of the same type for each component of
a file. If more volumes are specified than needed for the primary allocation,
the additional volumes can be used when the file is extended. These volumes
are described in the file’s catalog entry as potential candidate volumes.

The length and offset of a cluster’s key-field (KEYS) and the average and
maximum length of data records (RECORDSIZE) is also specified in Exam-
ple 11.

A file can be defined at the same time as the data space(s) which will contain
it. In this case, the file is called unique and no other file can occupy its data
space(s). The data and the index of a key-sequenced unique file will occupy
separate data spaces; each requires DLBL and EXTENT statements if the
UNIQUE option is specified as part of the cluster definition or both compo-
nents are defined as unique individually. An entry-sequenced file or relative
record file occupy only one data space which also requires a DLBL and an
EXTENT statement.

In Example 12, assume that a unique key-sequenced file is defined into the
master catalog. (This example would fail if the unique file was to be defined
in a recoverable catalog and volume M3330B had no data space defined on it
as yet.) Example 12 causes four entries to be created in the master catalog: a
volume, cluster, data, and index entry.

2-12 Using VSE/VSAM Commands and Macros

J

Defining a Key-Sequenced File

// JOB EXAMPLE 12
// DLBL DFILE,,,VSAM
// EXTENT ,M3330B,,,19,19
// DLBL XFILE,,,VSAM
// EXTENT ,M3330B,,,38,19
// EXEC IDCAMS, SIZE=AUTO
DEFINE CLUSTER (NAME (PAYROLL1)-
RDPW (DEPT27R) -
VOL(M3330B)-
RECORDSIZE (100 475)-
KEYS(12 4))-
DATA (NAME (PAYROLL1.DATA) -
UNIQUE-
CYLINDERS(1 1)-
FILE(DFILE))-
INDEX { NAME (PAYROLL 1 . INDEX) —
UNIQUE-
FILE(XFILE)-
CYLINDERS(1 1))-
CATALOG (MASTCAT/UPDPW1)
/t
/&
For a key-sequenced file with the UNIQUE attribute where the data and
index components reside on the same volume, the FILE parameter must be
specified under both DATA and INDEX. The VOLUMES parameter and
the space allocation parameter (CYLINDERS, BLOCKS, TRACKS, or
RECORDS) must be included in the DEFINE command (unless you speci-
fied the MODEL parameter).

If you specify the size of the area allocated to a unique index, as is done in
this example, you must ensure that it is large enough. For CKD devices, the
space allocated to the data in a unique file must be an integral number of
cylinders and each extent must begin on cylinder boundaries.

For FBA devices, the space allocated to the data in a unique file must begin
on a min-CA (track) boundary and must be a whole number of min-CAs.
You use the BLOCKS parameter for space allocation.

A unique file can have a maximum of 16 extents per volume, but it cannot be
extended, and space left over after the records are loaded cannot be released.

The following example shows the DEFINE command for setting up a key-
sequenced cluster that consists of a data component and an index component.
The CLUSTER, DATA, and INDEX parameters are all specified, so the
data and the index components of the cluster can be explicitly named rather
than letting VSAM name them. No records are loaded into the file; defining
a file is distinct from loading records into it. See “Loading Records into a
File” for an example of how to load a file.

The following example provides space for 10,000 data records (fixed-length,
250 bytes) on each key range. Any future extensions are to be made in
increments of space for 500 records. Keys are 15 bytes long and begin in the
31st byte (defined as relative position 30 since byte 1 is relative position 0) of
the records. Free space is to be 20% of each control interval and 10% of each
control area. Sequence-set index records are to be placed adjacent to control
areas in the file and replicated.

Assume that the cluster is to be defined in the master catalog and be in
suballocated space on volumes M3330A and M3330B. These volumes need
not be mounted, because VSAM can determine whether and what space is
available merely by examining the master catalog, which owns these volumes.

Chapter 2: Using Access Method Services 2-13

2-14

(If the master catalog had been defined as recoverable, VSAM would have
requested you to mount volumes M3330A and M3330B.)

// JOB EXAMPLE 13
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER-
(NAME (MYKSDS) -
VOLUMES (M3330A M3330B)-
KEYRANGES((A M) (N 2))-
RECORDS (10000 500)-
ORDERED) -
DATA-

(NAME (MYDATA) -
KEYS(15 30)-
RECORDSIZE(250 250)-
BUFFERSPACE(8192)—
FREESPACE(20 10))-

INDEX-
(NAME (MYINDEX) -
IMBED) -
CATALOG (MASTCAT/UPDPW1)
/t
/&

The INDEXED parameter, which is the default and therefore need not be
specified, indicates that a key-sequenced cluster is to be defined. The RE-
CORDS parameter indicates primary and secondary allocation quantitites.
Specifying the number of records, independent of the number of physical
units, such as blocks, tracks or cylinders, leaves the calculation of the number
of physical units of space up to VSAM. It calculates the size of the control
interval and control area to be used. You may specify the control interval size
yourself, and VSAM will use it as long as it falls within the acceptable limits
that VSAM calculates.

BUFFERSPACE specifies the smallest amount of virtual storage a process-
ing program will ever provide for 1/0 buffers to process MYKSDS. A
multiple of 512 should, however, be specified to avoid wasting space. If you
do not specify BUFFERSPACE, VSAM determines control interval size first
and then sets buffer space equal to the size of two data control intervals plus
one index control interval.

If the values you specify for record length and key length require control
intervals too large for the buffer space you specify, your DEFINE will fail.

The relationship between control interval size and least amount of I/O buffer
space is further discussed in “Optimizing VSAM’s Performance” in
VSE/VSAM Programmer’s Reference.

With the KEYRANGES parameter, you may assign data to the various
volumes of a multivolume key-sequenced file according to ranges of key
values. For example, if you have three volumes you might assign records
with keys A-E to the first volume, F-M to the second, and N-Z to the third.
The amount of space specified in the primary allocation parameter is allocat-
ed to each key range. If the number of volumes is larger than the number of
key ranges, the excess volumes will become candidate volumes for all the key
ranges. If there are fewer volumes than key ranges, the key ranges collect on
the last volume. If the values specified for KEYRANGES subparameters are
shorter than those specified for keys, then Access Method Services pads the
low key range to the right with zeros and the high key range to the right with

Using VSE/VSAM Commands and Macros

B

X‘FF’s. The following example illustrates the use of the VOLUMES,
ORDERED, CYLINDERS, and KEYRANGES parameters.

VOLUMES (A B C)

KEYRANGES ((00 30) (31 65) (66 99))
ORDERED

CYLINDERS (100 10)

A primary allocation of 100 cylinders will be made for each key range. The
first key range will be on volume A, the second on B, and the third on C. If
100 cylinders cannot be allocated on each volume, the request is rejected. A
key range can be extended only on the volume it occupies or on a candidate
volume. Thus, if volume D were added to the list, all key ranges will be
extended on volume D if the appropriate volume initially assigned to the key
range is full. If only volumes A and B were specified, the first key range
would be allocated on volume A and the second and third key ranges would
be allocated on volume B.

VOLUMES (A B C)

KEYRANGES ((00 30) (31 65) (66 99))
UNORDERED

CYLINDERS (50 5)

A primary allocation of 50 cylinders will be made for each key range. VSAM
will attempt to put one key range on each volume. If volume A does not have
50 cylinders available, the first key range is put on volume B and the second
and third on volume C. If neither A nor B has 50 available cylinders, all
three key ranges are placed on volume C. A key range will be extended first
on the volume it is on, then it will be extended on any candidate volume. A
candidate volume is a volume that is named in the volume list for a key-range
file but was not initially assigned to a key range, that is, there may be more
volumes than key ranges in the list. However, if volume D were available as a
candidate volume, each key range would be extended on volume D if no
more space were available on the volume of its primary allocation. A key
range can cover the volume of primary allocation and any candidate volume.

The ORDERED parameter indicates that space must be suballocated on the
volumes in the order in which they are listed in the VOLUMES parameter.
In particular, for key-ranged files, ORDERED forces primary allocation for
the first key range to be made on the first volume of the volume list, primary
allocation for the second key range to be made on the second volume of the
volume list, etc. If a volume cannot accommodate the space for the appropri-
ate primary allocation, the DEFINE fails.

Thus, in the first example above, M3330A has 10,000 records allocated for
key range A-M, and M3330B has 10,000 records allocated for the key range
N-Z. 1f M3330A does not have enough space to accommodate the 10,000
records in the primary allocation, the DEFINE fails. Contrast this to the
UNORDERED case in which both key ranges would be on M3330B provid-
ed M3330B has enough space, and M3330A would then become a candidate
volume.

Space on each volume could also be specified in the number of records, even
with variable-length records: VSAM uses the average size (250 bytes) to
calculate the number of cylinders for each volume.

The following examples further illustrate the use of the VOLUMES and
ORDERED parameters.

VOLUMES (A B C)
ORDERED
CYLINDERS (50 5)

Chapter 2: Using Access Method Services 2-15

The 50 cylinders of primary space for the file must be available on volume A,
or the request will be rejected. Volumes B and C are candidate volumes. If
the file is extended, a five cylinder secondary space allocation is made on
volume A if it has enough data space. Otherwise, a primary allocation of 50
cylinders is made on volume B. If volume B does not have enough data space
for a primary allocation, the request for extension is rejected. When the file is
subsequently extended, the secondary allocations are made on volume B if it
has enough data space. Otherwise, a primary allocation is made on volume
C.

VOLUMES (A B C)

UNORDERED
CYLINDERS (50 5)

The 50 cylinder primary allocation for the file can be made on either volume
A, B, or C. However, if all 50 cylinders cannot be allocated on one volume,
the request is rejected. The volumes are searched in the order they are
specified. If both volumes A and B have 50 cylinders available, the allocation
will be made on volume A. If the file is extended, the five cylinder secondary
allocations are made on the volume the last primary allocation was made on
until the volume is full. However, the first allocation to be made on any
volume is always a primary allocation of 50 cylinders. If no volume is avail-
able on which a primary allocation of 50 cylinders can be made, the DEFINE
request is rejected. Once again, the volumes are searched for space in the
order specified.

VOLUMES (A B C)

ORDERED
CYLINDERS (1000 10)

This request will be rejected because the amount of primary space to be
allocated on each volume is greater than one volume. The primary allocation
must be small enough to be satisfied by one volume.

Defining an Entry-Sequenced File

Even though the data component of an entry-sequenced file is the only
member of its cluster, you must define a cluster for it. Example 14 shows that
records in the file (a cluster named ENTRY) are to be stored on three vol-
umes.

| You indicate that the cluster is to be defined in job catalog USER.CAT by

specifying a IJSYSUC DLBL statement with file-ID USER.CAT. (Example
15 shows an alternate way of specifying a cluster’s catalog). Records are of
variable length, up to 700 bytes, with an average size of 500 bytes.

// JOB EXAMPLE 14
\ // DLBL IJSYSUC, 'USER.CAT',,VSAM
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER-
(NAME (ENTRY) -
| VOLUMES (USRVOL U2314B U2314C)-
ORDERED-
CYLINDERS (10 2)-
RECORDSIZE (500 700)-
BUFFERSPACE(5120)—

NONINDEXED) -
DATA-
(NAME (ENTRY . DATA))
/ *®
/8
The NONINDEXED parameter indicates that an entry-sequenced cluster is
to be defined.

Using VSE/VSAM Commands and Macros

Defining a Relative-Record File

The primary allocation of 10 cylinders is only made on volume USRVOL;
the additional volumes are used only when the file is extended. These vol-
umes are described in the file’s catalog entry as candidate volumes.

Like an entry-sequenced file, the data component of a relative-record file is
the only member of its cluster. A relative-record file can be seen as a string of
fixed-length slots or record areas, each of which is assigned a relative-record
number, starting from 1.

In Example 15, records in the file (in a cluster named STOCKINYV) are to be
stored on a 2314 volume. The cluster is to be defined in a catalog other than
the default catalog, therefore, you must use the CATALOG parameter to
indicate the correct catalog (USER.CAT). The records in the file have a fixed
length of 132 bytes (the average and maximum record sizes must be equal for
a relative-record file). The NUMBERED parameter indicates that a relative-
record file is to be defined. The primary number of tracks allocated is 50 and
ten secondary tracks are allowed for each extension. Extensions must be
suballocated on the volume specified as U2314B, that is, the same volume
that contains the primary tracks.

// JOB EXAMPLE 15
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER(-
NAME (STOCKINV)-
VOL(U2314B)-
TRACKS (50 10)-
RECORDSIZE(132 132)-
NUMBERED) -
CATALOG (USER.CAT)
/*
/&

Defining a File in a Recoverable Catalog

When you define a file in a recoverable catalog, the space allocated for the
file is recorded in the catalog which owns the volume(s) and in the catalog
recovery area of the initial index volume (for a key-sequenced file) or the
initial data volume (for an entry-sequenced file or relative-record file). All
volumes on the volume list must be mounted since each corresponding
volume entry in the catalog recovery area is updated to reflect the fact that
the file will take space on this volume. (You do not have to premount the
volume(s); VSAM will issue a mount message for them.) You can identify the
recovery volumes by looking at the message output at the end of a DEFINE
operation. The catalog recovery information in these volumes is updated
whenever parallel information in the catalog is modified.

If you want an existing file to be a member of a recoverable catalog, you
should first define a recoverable catalog and then export the file from the old
unrecoverable catalog and import it to the new one. See “Using
EXPORT/IMPORT: Transporting or Backing Up Files” for more informa-
tion. Alternatively, REPRO may be used to copy the file to a new file defined
in a recoverable catalog.

Chapter 2: Using Access Method Services 2-17

Loading Records into a File

In Example 16, space for file MSTRFILE is to be suballocated from data
spaces on volumes U2314B and U2314C.

// JOB EXAMPLE 16
// DLBL I1JSYSUC,'USER.CAT',,VSAM
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER (NAME(MSTRFILE)-
VOLUMES (U2314B U2314C)-
TRACKS (30 10)-

KEYS (10 1)-
RECORDSIZE (80 80)-
ORDERED)

/*

/&

After you have defined a file, you can load records into it with a processing
program of your own or with the REPRO command. This section discusses
only the latter.

The REPRO command causes Access Method Services to retrieve records
from a sequential tape or disk file, an indexed-sequential file, or a VSAM file
and store them, in VSAM format, in a key-sequenced, entry-sequenced, or
relative-record file.

When records are loaded into a key-sequenced file, they must have unlike
keys and be in ascending key sequence. Index entries are created and loaded
into the file’s index as control intervals and control areas are filled up. Free
space is left and records are stored on particular volumes according to key
ranges, as indicated in the file’s definition in the catalog.

You can copy an entire file or only parts of it. You can specify that a certain
range of records is to be copied by indicating the locations in the input file
where copying is to start and stop. These locations can be indicated in several
ways:

* By key for indexed-sequential or key-sequenced files (FROMKEY,
TOKEY).

* By RBA for key-sequenced or entry-sequenced files (FROMADDRESS,
TOADDRESS).

¢ By relative-record number for relative-record files (FROMNUMBER,
TONUMBER).

¢ By number of records for any type of file (SKIP, COUNT).

The file into which records are copied may either be empty (that is, newly
allocated by way of a DEFINE CLUSTER command) or may already
contain records.

See “Reorganizing a File” for information about what happens when records
are added to an empty or nonempty key-sequenced, entry-sequenced,
relative-record, or sequential file.

You can load all of the records in one job or in several jobs. In subsequent
jobs, VSAM continues to store records as before, extending the file as re-
quired.

The job control information for loading a file is the same as for other types of
file processing. Since your VSAM files are already cataloged when you start
a REPRO job, the function of job control here is merely to name the required
files and the volumes on which they are stored and to indicate any user

2-18 Using VSE/VSAM Commands and Macros

Alternate Indexes

catalog(s), so that YSAM can look at the definitions of the files. Example 17
shows the basic loading function of the REPRO command: taking the records
of a sequential file on a disk and storing them in a newly defined VSAM file.

// JOB EXAMPLE 17

// ASSGN SYS002,234

// DLBL SAMFILE,'SAM1'

// EXTENT SYS002,231401,1,0,120,2

// DLBL RRDS, 'STOCKINV',,VSAM

// DLBL IJSYSUC,'USER.CAT',,VSAM

// EXEC IDCAMS,SIZE=AUTO

REPRO INFILE(SAMFILE,ENV(RECFM(F),BLKSZ(100)))-

OUTFILE (RRDS)

/t

/&

Job control statement:
¢ DLBL SAMFILE indicates the nonVSAM input file.
e DLBL RRDS indicates the VSAM file that is to be loaded with records.

e DLBL IJSYSUC indicates the job catalog in which the VSAM file
(STOCKINY) is defined.

The REPRO command copies all the records from the input file SAMI1 to the
output file STOCKINYV.

e The INFILE parameter points to the DLBL statement that identifies the
source, or input, file: SAMI.

¢ The OUTFILE parameter points to the DLBL statement that identifies the
file into which the input records are to be copied: STOCKINYV.

Apart from the prime index that VSAM automatically creates for every
key-sequenced file, you can have VSAM build one or more alternate indexes
over a single key-sequenced or entry-sequenced file. Each alternate index
accesses the data records of a given file via a different key field (alternate
key) within these records.

An alternate index, therfore, provides a unique way to gain access to the same
base data, so that when you have several alternate indexes, you can access a
file in several different ways without having to keep multiple copies of the
same information organized differently for different applications. For exam-
ple, a payroll file originally indexed on employee number can be indexed on
additional fields (called alternate keys) such as employee name, department
number, position code, skill code, or social security number.

The data over which the alternate index is built is referred to as the base
cluster; it can be either a key-sequenced file or an entry-sequenced file, but
not a relative-record file or a file which has been defined as reusable.

The alternate index itself is a key-sequenced cluster, namely the alternate-
index cluster. It is usually referred to simply as the alternate index. Like an
indexed base cluster, it consists of an index component and a data compo-
nent. The index component of an alternate index is identical in structure,
format, and function to the index component of a base cluster, that is, the
prime index. The data component of an alternate index has a fixed format
and serves to establish the relationship between the alternate index and the
base cluster.

When building an alternate index, you can use as the alternate key any field
in the base cluster’s records which has a fixed length and a fixed position

Chapter 2: Using Access Method Services 2-19

Alternate-Index Path

Alternate-Index Record

within each record. The alternate key must be in the first segment of a
spanned record. For each alternate key value, the data component of the
alternate index contains a unique record. This record consists of the alternate
key itself, followed by a pointer that is the prime key (for a key-sequenced
base) or RBA (for an entry-sequenced base) of the base-cluster record that
contains the alternate key. If more than one base-cluster record contains the
same alternate key, then the alternate index record contains a pointer to each
base-cluster record. These duplicate, or non-unique keys are discussed under
“Alternate Keys.”

In order to gain access to a base cluster via an alternate index, you must
define a path between the alternate index and the base cluster. When you
define a path (through Access Method Services), you must specify the name
of the alternate index which is to be considered as the entry for the path. The
termination of the path is the base cluster to which the alternate index is
related. A path requires a name of its own which always refers to the alter-
nate index and the related base cluster as a pair. To use the alternate se-
quence to process records in the base cluster, you specify the PATH’s CLUS-
TER name in the 44-byte file-ID of the DLBL card used to open the file.

When a path is referenced, both its alternate index and its base cluster are
opened. If you want to process only the alternate index, without its base
cluster, you can use the name of the alternate index instead of the path name
and then process the alternate index like any other file.

Each record in the data component of an alternate-index cluster is a variable-
length logical record that contains (1) system header information, (2) the
alternate key, and (3) at least one pointer to the base cluster.

System Header Information: The system header information has a fixed
length and indicates:

e Whether the alternate-index record contains one or more pointers in the
form of prime keys (for key-sequenced files) or in the form of RBAs (for
entry-sequenced files)

¢ The length of a pointer (all pointers have the same length for a given
alternate index)

e The length of the alternate key
e The number of pointers.

Alternate Keys: Any field in the base cluster’s records that has a fixed length
and a fixed position within a record can be used as an alternate key when
building an alternate index over the base cluster. If the base records span
control intervals, the alternate key must be in the first control interval of the
spanned record. If you build several alternate indexes over a base cluster, the
alternate key fields of the different alternate indexes may overlap each other
in the base-cluster records; they can also overlap the prime key.

In contrast to the prime key, a given alternate key may occur in more than
one record in the base cluster. For example, if an alternate index is estab-
lished by department number over a payroll file organized by employee
number, all the employees with the same department number will be grouped
together. This means that there will be several prime-key pointers (employee
numbers) in each alternate-index record, one for each occurrence of the
alternate key (department number) in the base cluster. When a given alter-

2-20 Using VSE/VSAM Commands and Macros

Creating an Alternate Index

Defining an Alternate Index

nate key occurs in more than one base record, it is said to be non-unique. Ifit
occurs in only one base record (for example, social security number), it is
called unique. You must indicate whether an alternate index will contain
unique or non-unique alternate keys when you define the alternate index.

Alternate-Index Pointers: The relationship between the alternate index and
its base cluster is established by two different types of pointers in the
alternate-index record, depending on the type of base cluster. If the base
cluster is a key-sequenced file, the pointer in the alternate-index record is the
prime key of the base-cluster record in which the alternate key occurs. (A
prime key pointer has the same length as the prime key field of the base
cluster it points to.) If the base cluster is an entry-sequenced file, the pointer
is the RBA of the base-cluster record in which the alternate key occurs. (An
RBA pointer is always four bytes long.) There is only one prime key or RBA
pointer allowed, unless the alternate index has the NONUNIQUEKEY
attribute.

For non-unique keys, pointers are associated with a given alternate key value.
The pointers are ordered by their arrival time; that is, if a record in the base
cluster is updated with a key change, or if a new record is inserted with the
same alternate key value, VSAM adds the new prime key pointer to the end
of the alternate-index record. (In the case of a key change, VSAM deletes the
old pointer.)

The fact that the pointers are ordered by arrival time implies that immediate-
ly after an alternate index has been built (and as long as it remains un-
changed), its pointers are in prime-key order. The maximum number of
pointers that can be associated with a given alternate key is 32,767, provided
the maximum possible record length for spanned records is not exceeded.

An alternate index can only be built over a non-empty VSAM base cluster.
The logical steps involved in creating an alternate index are:

1. Define the alternate index and relate it to a base cluster by means of the
DEFINE ALTERNATEINDEX command.

2. Build the alternate index either yourself or by means of the BLDINDEX
command. The Access Method Services routines then perform the follow-
ing operations:

a. Extract the alternate key and the prime key or RBA from each record of
the base cluster during a sequential scan through the base cluster.

b. Order the extracted alternate keys, together with the associated pointers,
in the collating sequence of the alternate key.

c. Build the alternate-index records from the ordered key and associated
pointers. (Records with the same alternate key are merged into a single
alternate-index record.)

d. Build the alternate index from the individual alternate-index records as
a key-sequenced file.

When a DEFINE command is used to define an alternate index, VSAM
creates three entries in the catalog: an entry for the alternate index, its data
component, and its index component.

Attributes of the data and index components can be specified separately from
the attributes of the alternate index as a whole. If attributes are specified for

Chapter 2: Using Access Method Services 2-21

the alternate index as a whole and are not specified for the components, the

attributes of the alternate index (except for its passwords and other protection

attributes) apply to its components. If an attribute that is applicable to the J
data or index component is specified for both the alternate index and the

component, the component specification overrides the alternate index specifi-

cation.

You can also specify that the data and index components of an alternate
index are to reside on different volumes; you do this by specifying the VOL-
UMES parameter as an attribute of both DATA and INDEX.

See the DEFINE ALTERNATEINDEX command in “Access Method
Services Commands” to identify which parameters can be used with each
type of entry.

The following examples are intended to demonstrate how to use the basic
DEFINE parameters to define an alternate index without considering all of
the options. See also Example 8 in “Appendix A: Sample Job Streams.”

No DLBL and EXTENT statements are required if space for the alternate

\ index is suballocated from one or more existing data spaces. VSAM selects
which data spaces or portions of data space(s) on a volume to suballocate to
the alternate index. You only indicate the volume(s) on which the alternate
index is to be allocated and the amount of space to be allocated to it.

// JOB EXAMPLE 18
// EXEC IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX (NAME(DEPTIND)-
RELATE (PAYROLL1/DEPT27R) -
VOLUMES (M3330A) -

TRACKS (100) -
RECORDSIZE(100 200)- —
KEYS(12 1))
CATALOG (MASTCAT/UPDPW1)
/*
/8

In Example 18, the alternate index named DEPTIND is suballocated 100
tracks from data space(s) on volume M3330A. The alternate index is related
to a base cluster named PAYROLL1. The alternate key starts at position 1
(relative to 0) in the data records of the base cluster and has a length of 12
bytes.

Example 19 defines an alternate index over a base cluster. The alternate
index is defined as unique, so you must provide EXTENT information
together with the definition of the alternate index. The FILE parameters link
the file information, which is entered into the catalog, with the space inform-

2-22 Using VSE/VSAM Commands and Macros

Building an Alternate Index

| ation contained in the job control statements. By default, the alternate index
is not reusable, has a key length of 64 beginning at byte 0, an average record
size of 4086 bytes, and a maximum record size of 32,600 bytes.

// JOB EXAMPLE 19

// DLBL IJSYSUC, 'USER.CAT', ,VSAM
// DLBL DFILE,, ,VSAM

// EXTENT ,02314C,,,240,20

// DLBL XFILE,, ,VSAM

| /7 ExTENT ,U2314C,,,260,20

// EXEC IDCAMS, SIZE=AUTO
DEFINE AIX-
(NAME (AIX.PAYROLL2.NAMES)-
RELATE (PAYROLL2) -
RDPW (AIXRDPW) —
VOL(U2314C)-
UNIQUE)-
DATA (NAME(AIX.PAYROLL2.NAMES.DATA)-
CYLINDERS(1 1)-
EXCEPTIONEXIT (ERREXIT1)-
FILE(DFILE))-
INDEX (NAME(AIX.PAYROLL2.NAMES.INDEX)-
CYLINDERS(1 1)-
FILE(XFILE))
/t
/8

After you have defined an alternate index, you must build it from records in
the base cluster (the base cluster cannot be empty) by using the BLDINDEX
command. In order to build an alternate index, BLDINDEX reads each base
cluster record and forms a sort record consisting of the alternate key together
with the prime key (for a key-sequenced file) or the RBA (for an entry-
sequenced file). These records are then sorted into alternate index key
sequence. If the caller of BLDINDEX has provided enough virtual storage,
these records are sorted internally.

You can determine the amount of virtual storage required to sort the records
internally using the following calculation:

1. Sort record length = alternate key length + prime key length (for a key-
sequenced file) or 4 (for an entry-sequenced file).

2. Sort record length * number of records in the base cluster.

3. Record sort area size = result of 2 above, rounded up to next multiple of
2048, or 32,768, whichever is greater.

4. Sort table size = (record sort area size divided by sort record length) * 4.

The sum of 3 and 4 above is the required amount of virtual storage for an
internal sort. This amount is in addition to the normal storage requirements
for processing an Access Method Services command.

You can specify that BLDINDEX is to perform an external sort (in case
insufficient virtual storage exists for an internal sort) by specifying the
EXTERNALSORT parameter. If BLDINDEX is unable to obtain enough
virtual storage to perform an internal sort and you have specified the EX-
TERNALSORT parameter, BLDINDEX dynamically defines two VSAM
entry-sequenced files and uses them as the work files for an external sort.

| The sort work files will be deleted by BLDINDEX at the end of the sort. The

minimum amount of virtual storage required under these circumstances is
calculated as follows:

Chapter 2: Using Access Method Services 2-23

Defining a Path

32,768 + (32,768 divided by sort record length) * 4

The amount of space that Access Method Services requests when defining
each sort work file is calculated as follows:

1. Sort records per block = 2041 # sort record length

2. Primary space allocation in records = (number of records in base cluster +
sort records per block) + 10

3. Secondary space allocation in records = (primary space allocation x .10) +
10

Both primary and secondary space allocations are requested in records with a
fixed-length record size of 2041 bytes and a control interval size of 2048
bytes.

After the records have been sorted into alternate key sequence, BLDINDEX
uses them to form the alternate index records. Each sort record is used to
create one alternate index record unless the NONUNIQUEKEY attribute
has been specified in the definition of the alternate index. In the case of
UNIQUEKEY, each alternate index record contains the alternate index key
and the associated base cluster prime key (key-sequenced file) or RBA
(entry-sequenced file). In the case of NONUNIQUEKEY, each alternate
index record contains one alternate key and all associated base cluster prime
keys or RBAs representing records containing that same alternate key. If the
alternate index has been defined with the REUSE attribute, BLDINDEX
automatically writes the new alternate index records starting from the begin-
ning of the file and overriding any records previously stored.

The parameters of the BLDINDEX command are used to identify the object
over which the new alternate index is to be built INDATASET), the alter-
nate index itself (QUTDATASET), the sort work volumes
(WORKVOLUMES), and the name of the catalog in which the sort work
files are to be defined if they are required (CATALOG), and to specify
whether an external sort is to be performed if insufficient storage exists for an
internal sort (EXTERNALSORT/INTERNALSORT).
// JOB EXAMPLE 20
// EXEC IDCAMS,SIZE=AUTO
BLDINDEX INDATASET (EXAMPLE.KSDS2) -
OUTDATASET (EXAMPLE.AIX/AIXUPPW) -
CATALOG (AMASTCAT/MCATMRPW)
*
e

The DEFINE PATH command is used to establish the relationship, the path,
between an alternate index and its base cluster. A path does not occupy any
data space; it is a catalog entry only. The base cluster and its alternate index
must already be defined when you define the path that relates them.

When your program opens a path for processing, both the alternate index and
its base cluster are opened. When data in the base cluster is read or written
using the path’s alternate index, keyed processing is used; RBA processing is
not allowed.

You can also establish a path directly over a base cluster, without an interme-
diary alternate index and with its own protection attributes. A path so de-
fined provides access for a file under another name. You can specify NOUP-
DATE access for the base cluster, which bypasses allocation of the base
cluster’s upgrade set and thus does not cause upgrading.

2-24 Using VSE/VSAM Commands and Macros

Specifying Information That Defines a Path

The examples given here are intended to demonstrate how to use the basic
DEFINE parameters to define a path without considering all of the options.
See also Example 8 in “Appendix A: Sample Job Streams.”

In Example 21, a path named PATH.PAYROLL1.NAMES is defined over
an alternate index named AIX.PAYROLLI1.NAMES and its base cluster
(named in the RELATE parameter when the alternate index was defined).
// JOB EXAMPLE 21
// EXEC IDCAMS,SIZE=AUTO
DEFINE PATH-
(NAME (PATH.PAYROLL1.NAMES) -
PATHENTRY (AIX.PAYROLL1.NAMES) -
MRPW (MASTER)) -
CATALOG (MASTCAT/MRCATPW1)
/t
/&

Accessing a Base Cluster via a Path

A path is a means for accessing a base cluster either via an alternate index or,
in the case of a base-cluster-only path, via another name. Like an alternate
index or cluster, a path always requires a name of its own, which you specify
in the DEFINE PATH command of Access Method Services. This name is
also used as the “file-ID” operand in the DLBL statement, which you use
when you want to open the path. Opening a path results in associating the
base cluster with the alternate index (for an alternate index path).

You may issue the same requests for an alternate-index path (GET, PUT,
etc.) that you can issue against a VSAM file. However, all access to the base
cluster via the alternate index by way of a path must be by key; addressed
(that is, processing by RBA) and control interval processing are not permit-
ted. All key references are to the alternate-key sequence. If an alternate key
occurs in more than one base cluster record, the base records are returned in
the order in which they are stored in the file.

Alternate-Index Upgrade

All changes in the base cluster that affect the contents of its alternate index or
indexes should be reflected in the base cluster’s alternate index(es), so that an
alternate index is always ‘synchronized’ with its base cluster. This updating
activity is referred to as alternate-index upgrade.

You may have VSAM upgrade an alternate index or you may upgrade it
yourself.

To have VSAM upgrade an alternate index, specify the UPGRADE attribute
when you define the alternate index. As a result, that alternate index be-
comes a member of the upgrade set of the associated base cluster. Whenever
you open the base cluster for any type of update processing other than
control-interval access, VSAM opens all of the alternate indexes in the
upgrade set and updates them, if necessary.

VSAM updates the affected alternate index(es) in the upgrade set of the base
cluster whenever a base record is inserted or erased, or an alternate key field
is changed. This updating activity is part of the request, and VSAM com-
pletes it before returning control to your program.

If the updating of an alternate index fails because of a logical error (such as a
duplicate key condition for a UNIQUEKEY alternate index), the request
which caused the update operation is rejected and the base cluster, together

Chapter 2: Using Access Method Services 2-25

Defining a NonVSAM File

with the alternate indexes of its upgrade set, are restored to the status existing
before the request was issued (except for the sequence of the alternate index
pointers). If a physical error condition occurs, VSAM terminates the upgrad-
ing of the alternate index(es) immediately and enters the EXCEPTIONEXIT
and/or SYNAD exit.

If you specify NOUPGRADE in the DEFINE ALTERNATEINDEX
command or if the base cluster is modified through control-interval access,
you are responsible for upgrading the alternate index yourself because
VSAM considers alternate indexes to be synchronized with the base cluster at
all times. When you open a base cluster, those of its alternate indexes which
have the NOUPGRADE attribute will not be updated by VSAM when you
insert a record into, or erase a record from the base cluster, or change an
alternate key field.

You use the DEFINE NONVSAM command to catalog any existing
nonVSAM file into a nonrecoverable VSAM catalog. An entry is created in a
master or user catalog but no space is allocated or reserved as a result of a
DEFINE NONVSAM command.

When you define or delete a nonVSAM file in a password-protected catalog,
the catalog’s update (or higher level) password is required.

Example 22 shows how to define an existing nonVSAM file entry in the
master catalog:

// JOB EXAMPLE 22
// EXEC IDCAMS,SIZE=AUTO
DEFINE NONVSAM-

(NAME (STOCKINV) -
VOLUMES (M3330B) -
DEVICETYPES(3330))-
CATALOG (MASTCAT/UPDPW1)

/*

/&

See also Example 4 in “Appendix A: Sample Job Streams.”

2-26 Using VSE/VSAM Commands and Macros

Using ALTER: Altering Catalog Entries

Many of the attributes that you define when you create a catalog entry may
be modified subsequently by the ALTER command.

Certain attributes of the file cannot be modified, such as control interval size
and placement of the index in direct access storage relative to the data of a
key-sequenced file. Changing these attributes amounts to a reorganization of
the file and requires that you define a new file and copy the old file into it.

Altering an object’s entry doesn’t normally require that the object’s volume
be mounted, because the object’s use of space and the availability of space in
the volume’s data spaces can be determined by examining the catalog. The
object’s volume must be mounted whenever the volume’s VTOC must be
consulted or modified, such as when a data space, a unique component’s
space, or a catalog’s space is to be altered. When the object is defined in a
recoverable catalog, then the recovery volume must also be mounted (the
recovery volume’s volume serial is identified at the end of the DEFINE
operation).

Specifying Information that Alters an Entry

In Example 23 the control interval and control area free space percentages of
the data component of the file PAYROLL]1 are altered. The ALTER of
PAYROLL1.DATA shows a means of optimizing space usage for a file. The
data component was originally defined with 40 percent free space. After
initial loading this percentage is reduced, since further activity against this
file will not be of the mass insert type.

// JOB EXAMPLE 23
// EXEC IDCAMS,SIZE=AUTO
ALTER PAYROLL?.DATA-
FREESPACE(10 10)-
CATALOG (MASTCAT/MRCATPW1)
/*
/&

In Example 24 the ALTER of ACCOUNTS shows a way to change the
security scheme of a file. Establishing a security scheme for an existing
unprotected file would be done in the same manner.

// JOB EXAMPLE 24
// EXEC IDCAMS,SIZE=AUTO
ALTER ACCOUNTS/DEPT27MR-

MRPW (DEPT26M) -
CTLPW(DEPT26C)~
UPDPW(DEPT26U) -
RDPW(DEPT26R) -
AUTH(D26AUTH)

/*

/&

See also Example 7 in “Appendix A: Sample Job Streams.”

Chapter 2: Using Access Method Services 2-27

Using DELETE: Deleting Catalog Entries

2-28

You use the DELETE command to delete any previously defined VSAM
object (data space, cluster, alternate index, path, catalog) and remove its
catalog entry. In addition, you can remove the entry for a nonVSAM file
from a nonrecoverable catalog and optionally scratch that file from the
volumes containing it.

All objects deleted by a single DELETE command must be defined in the
same catalog.

Deleting a suballocated object normally doesn’t require that its volume(s) be
mounted, because its space allocation can be determined by examining the
catalog. (If the catalog is recoverable, the recovery volume needs to be
mounted.)

If an object is deleted and the ERASE parameter was specified, then the
space is not only freed for use by new objects but also overwritten with binary
zeros. You can delete all alternate indexes and paths related to a base cluster
by deleting the base cluster alone; however, even if the ERASE parameter not
only is specified for the base cluster but was also specified during definition
for all other objects connected with the base cluster, only the space freed by
the base cluster will be overwritten with binary zeros. To cause any related
alternate indexes to be overwritten with binary zeros, you must delete them
individually, before you delete the base cluster. When you delete entries from
a user catalog, you may identify the catalog either with the CATALOG
parameter or (for the job catalog) the IISYSUC DLBL job control statement.
If the entries are to be erased, the catalog containing them is the catalog
specified in the CATALOG catname parameter or the default catalog.

When a unique file or unique alternate index is deleted,the cluster or alter-
nate index entry and the data and index entries are deleted from the catalog
and the data space they occupied is also deleted; however, the volume entries
will not be automatically deleted from the catalog. To do so, you must
specify SPACE in a separate DELETE command and all the data spaces on
the volume must be empty.

A DELETE SPACE will cause all empty data spaces of the specified volume
to be deleted rather than an individual data space. However, if FORCE is
also specified, nonempty data spaces are deleted as well.

When a nonVSAM entry is deleted, the file entry is scratched from the
VTOC of the pack on which the file resides unless the user specifies the
NOSCRATCH parameter.

Using VSE/VSAM Commands and Macros

Specifying Information That Deletes an Entry

Example 25 deletes all of the objects defined in the user catalog and then
deletes the catalog itself. The catalog cannot be deleted as long as it contains
any entries (besides its own and the entry for its own data space).

// JOB EXAMPLE 25
// DLBL IJSYSUC,'USER.CAT',,VSAM
// EXEC IDCAMS,SIZE=AUTO
DELETE PATH.PAYROLL2.NAMES-
PATH
DELETE AIX.PAYROLL2.NAMES-
| ERASE-
AIX
DELETE PAYROLL2-
| PURGE-
CLUSTER
| DELETE (U2314B)-
SPACE
DELETE USER.CAT-
USERCATALOG
/ *
/&
| Example 26 shows the deletion of a base cluster, alternate index, and path.

The alternate index and path are deleted implicitly as a result of deleting the
base cluster.

I // JOB EXAMPLE 26
// EXEC IDCAMS,SIZE=AUTO
DELETE PAYROLL-

PURGE-

CLUSTER-

CATALOG (MASTCAT/MRCATPW1)
/*
/&

Example 27 shows the deletion, with the ERASE option, of a unique cluster.

| ,// JoB EXAMPLE 27
// EXEC IDCAMS,SIZE=AUTO
DELETE ACCOUNTS—

ERASE-
| PURGE-
CATALOG (MASTCAT,/MRCATPW1)
/*
/6

See also Examples 22 and 23 in “Appendix A: Sample Job Streams.”

Chapter 2: Using Access Method Services 2-29

Using REPRO: For Catalog Backup and File Reorganization

Backing Up a Catalog

Unloading a Catalog

Reloading a Catalog

You can use the REPRO command to unload (create a backup copy of) a
catalog. (The backup copy cannot be used as a catalog in the unloaded form.)
If the catalog becomes inaccessible, you can use the REPRO command to
replace (reload) it with the backup copy. To continually have a recent bac-
kup copy available, you should unload a catalog periodically.

You can use the REPRO command to unload a catalog to a sequential
(SAM) file, or to a key-sequenced or entry-sequenced file. (You must unload
a master catalog to a sequential file, or else the subsequent reload will not
work.) Do not allow the catalog to be updated during the unload operation.

If you use a key-sequenced or entry sequenced file to provide backup for a
user catalog, define the file that contains the unloaded catalog in another
catalog; this allows you to recover the unloaded catalog if the original
(copied) catalog is destroyed.

Use LISTCAT before unloading a catalog so that you can compare the listing
of the unloaded catalog with the listing you obtain after reloading.

You can use REPRO to reload the backup copy of a catalog into a catalog
(the “target’) with the same name, volume serial number, and device type as
the original catalog.

The target catalog can be either an earlier or later version of the original
catalog, or a newly-defined user catalog (without any entries other than the
basic catalog information). The newly-defined catalog must be able to hold
at least as many entries as the original catalog could hold at the time the
backup copy was made.

Reloading a version of the original catalog results in a catalog equivalent to the
original one at the time the backup was made. Reloading:

¢ Replaces entries in the target catalog with entries (of the same name) from
the backup.

e Inserts, into the target catalog, entries that exist only in the backup.
¢ Deletes, from the target catalog, entries that exist only in the target catalog.

During reloading, up to 100 messages may be issued to indicate entries that
exist only in the target catalog or only in the backup.

Reloading a newly defined catalog has the same results as reloading a version
of the original catalog, with one exception. The newly-defined catalog’s
Volume record contains only self-describing information. (The assumption is
that, if a catalog is new, no other VSAM data space exists on the volume
under normal conditions.) If the catalog is new, the reload operation bypass-
es the reload of the original version of the Volume record; all the data space
information previously in the Volume record at the time the catalog was
unloaded is lost.

After the reload of a newly-defined catalog, the entries in the reloaded
catalog may reference files previously existing on the volume.

If these files still exist, they can be accessed, but any attempt to extend the
data space in which they reside will fail. In this situation, you can restore the
needed information to the volume record by, first, using EXPORT PERMA-

2-30 Using VSE/VSAM Commands and Macros

NENT to remove the file entries from the new catalog, then defining a data
space large enough to accommodate the files, and then using IMPORT to put
the files into the newly defined data space.

The space allocation used for the reloaded catalog is the space allocation of
the target catalog whether it is a newly defined catalog or an earlier or later
version of the unloaded catalog. In both cases the catalog allocation properly
reflects the VSAM data space for the catalog on the volume.

A DLBL job control statement (IJSYSUC) should be used to identify the
catalog to be unloaded or reloaded. This ensures that the catalog can be
opened as a catalog prior to an unload or a reload operation. The define of a
new catalog and the listing of a catalog should be done in separate steps from
any reload operations.

Password protection of VSAM catalogs is optional. Passwords can be estab-
lished at catalog definition or subsequently added. When a catalog is pass-
word protected, the master password must be provided to permit catalog
unloading and catalog reloading. The password can be supplied in the
REPRO command or through the system console in response to password
prompting.

The following restrictions should be observed when a catalog backup opera-
tion is to be done:

¢ Unload the master catalog only to a sequential file.

¢ The unloaded version of a catalog must be reloaded into a catalog with the
same name, volume serial, and device type.

¢ The unloaded version of a catalog must be reloaded into a catalog with the
same entry capacity (i.e., number of entries cataloged). Some high key
range compression may occur when reloading into a newly defined cata-
log; consequently, the reloaded version may require less high key range
space than a multiple extent source catalog. The target catalog will not be
extended by means of secondary allocations during the reload operation.

¢ After you reload a catalog, use LISTCAT to list its contents. Run
LISTCAT in a separate job step, so that the catalog will be closed after it is
reloaded (to update its self-defining information). Compare the listing
with the one you obtained before unloading the original catalog to ensure
that you have used the right backup.

¢ The catalog contents after reloading may be out of synchronization with
the actual data on the volumes indicated as owned in the reloaded catalog.
After reloading a recoverable catalog, the LISTCRA command with
COMPARE option should be run in a separate job step immediately after
the reload to identify mismatches between the catalog and the catalog
recovery area (CRA). These mismatches should be resolved as necessary
before the catalog can be used. See the section “LISTCRA Mismatch
Messages” in VSE/VSAM Programmer’s Reference. No other jobs should
be run after the reload and before the LISTCRA which access any of the
files cataloged in the reloaded catalog.

¢ When reloading or restoring a nonrecoverable catalog, a LISTCAT
command should be executed with each unload and after each reload
operation (in a separate step after a reload). The LISTCAT output ob-
tained in conjunction with unload may be necessary for comparison to the
LISTCAT output obtained after reload. Both outputs may be necessary to
determine the manual intervention required when mismatches are detected
during reload.

¢ Files or volumes (in the original catalog) that are deleted and redefined or
permanently exported after an unload operation will not be flagged as

Chapter 2: Using Access Method Services 2-31

Reorganizing a File

changed upon reload because detection of this type of change is not possi-
ble. The deleted files or data spaces will still be defined in the restored
catalog. (Entries that exist only in the backup copy are inserted into the
target catalog.) Any attempt to process these entries will yield unpredicta-
ble results because the space reflected in the catalog may no longer be
owned by the catalog. The catalog may be corrected by reissuing the
DELETE commands.

If VSAM file or data spaces have been defined or imported since the last
catalog backup and the catalog is reloaded or restored, then the defined
files or data spaces will not be defined in the reloaded or restored catalog.
Processing these files or data spaces by means of the restored catalog is not
possible since they cannot be accessed. The space formerly occupied by
these VSAM files or data spaces will not be usable, but may be recovered
by scratching the format-1 labels in the VTOC for the data spaces. If any
volumes were added to the catalog (between the backup and the recovery),
they will also be unusable until you use the DELETE command with
FORCE option or IKQVDU to give up volume ownership.

If a VSAM file has been extended since the last catalog backup, the new
extents will not be defined in the restored or reloaded catalog. Any at-
tempt to process records in the added extents will result in a logical error.
If the file has been extended within space already allocated to the file
before the backup but has acquired no new extents, then you can issue the
VERIFY command to update the catalog pointers, and the file may be
accessed normally.

e The data in any extents that have been acquired by the file since the

catalog was backed up is unrecoverable. For an entry-sequenced file the
data in any new extents should consist only of records that have been
added to the end of the file. Therefore, it is possible to recover all of the
data in the old extents by accessing the file sequentially up to the end of
the old physical space allocation. For a key-sequenced file, the new ex-
tents may be any portion of the file because of control-area splits. An
attempt to read the data in logical sequence will fail with an invalid RBA
indication when the data in the new extents is reached. You could access
the key-sequenced file by means of address sequence, but you then have
the problem of identifying the missing records. Individual file recovery for
those files affected will be necessary.

See the section “VSAM Recovery Techniques” in VSE/VSAM
Programmer’s Reference for a discussion of making the contents of the
backup catalog agree with the contents of the original catalog at the time it
became inaccessible.

You use the REPRO command to reorganize an old file by copying it into a
newly-defined file of the same type. With key-sequenced files, for example,
you can specify different percentages of distributed free space and different
performance options for the new file when you define it.

Because data is copied as single logical records, automatic reorganization
takes place when you copy a key-sequenced file into another key-sequenced
file. Reorganization includes:

¢ Relocation of records so that their entry sequence matches their key

sequence.

¢ Redistribution of the free space throughout the file.

¢ Reconstruction of the prime index.

2-32 Using VSE/VSAM Commands and Macros

Fixed-length, unblocked records in an indexed-sequential file are preceded
by the key string when they are written into a VSAM file. Therefore, the
length of the records in the output file must include the length of the key
string.

The new (output) file into which records of the old (input) file are copied may
either be empty or already contain records. Figure 2-1 shows what happens
when records from the input file are added to an empty or nonempty file.

Input File Empty Output File Nonempty Output File
ES/S KS RR ES/S KS RR
ES/S 1 2 5 3 4 7
KS | 2 5 3 4 7
RR 1 2 6 3 4 8
where
ES/S = Entry-sequenced or sequential
KS = Key-sequenced
RR = Relative-record
= Copies in sequential order.
2 = Copies in collating sequence by defined key field and builds an index. The source
records must be in key sequence.
3 = Adds records in sequential order to the end of file (VSAM ES); copies records in

sequential order from the beginning of the file overlaying previous data (SAM
sequential).*

4 = Merges records in collating sequence by the defined key field and updates the index.
A record whose key duplicates a key in the output file is lost, unless you specify that
the new record is to replace the old one.

5 = Copies records sequentially into consecutive slots, beginning with 1.

6 = Copies records in the same position they had in the input file.

7 = Will not copy a record unless the file has the REUSE attribute and the REPRO
REUSE option is specified.

8 = Same as 6 except that a record in the input file that has the same number as one in the

output file is lost, unless you specify that the new record is to replace the old one.

* This action will occur only if the operator responds with “DELETE” when the DOS/VSE message "OVERLAP ON
UNEXPRD FILE” or “DUPLICATE FILE-ID" is encountered.

Figure 2-1. Reorganizing a File

If you use REPRO to locate errors in a file, Access Method Services termi-
nates the copy operation after four recoverable errors have been encountered
while trying to read the file. The types of errors classified as “recoverable”
are duplicate keys, wrong length records, records out of sequence, and I/0
errors in the data component of a VSAM file.

You can save time in reorganizing VSAM files (using the REPRO command)
by specifying the optional BUFSP parameter in the DLBL statement. Ordi-
narily, REPRO uses the ACB macro default values of two data control-
interval buffers and, for indexed files, one index control-interval buffer. By
specifying an appropriate value in the BUFSP=parameter, you can override
the ACB default; you can allocate additional data control-interval buffers for
each of your VSAM files (if you have available virtual storage). For exam-
ple, if your input file is key-sequenced with a 512 byte index control interval
and a 2048 byte data control interval, you can specify BUFSP=10752 ((5 x
2048) + 512 = 10752) and cause five data control-interval buffers (and one
index control-interval buffer) to be allocated when the file is opened.

For other uses of REPRO, see “Loading Records into a File” in “Using
DEFINE: Defining Objects in a Catalog.” See also Examples S and 6 in
“Appendix A: Sample Job Streams.”

Chapter 2: Using Access Method Services 2-33

Using EXPORT/IMPORT: Transporting or Backing Up Files

You use the EXPORT and IMPORT commands to transport VSAM files and
user catalogs between VSE systems (or set of systems in a DASD sharing
environment) or between DOS/VS, VSE, and OS/VS systems. The EX-
PORT command extracts catalog information and produces a portable copy
of the file that is to be moved. The IMPORT command loads a portable file
and its catalog information in the receiving system. Figure 2-2 compares
volume and file portability. File portability is achieved by moving volumes
or by moving individual files.

Volume Portability with a User Catalog File Portability with Access Method Services

7T TSN
SR

Master Catalo First System

s g [I pos/vsEe

| | or
| | os/vs
| |
N . — _’/
Demount Extract Catalog Information Copy in Sequential Format

Disconnect User Catalog Yy

Export Export

User Catalog Transporting

Volume
(Tape or Disk)

Second System Import
Import DOS/VSE

Mount on SYSCAT

Define the File Copy in Original Format

-
i

Connect User Catalog

Master Catalog

User Catalog VSAM Catalog

Figure 2-2. Data Portability (Achieved by Moving Volumes or by Moving Individual Files).

2-34 Using VSE/VSAM Commands and Macros

EXPORT and IMPORT also enable you to create a backup copy of a file and
its catalog entries and reload them into the same system when they are
needed. When you import a backup copy, the catalog entries are regenerated.

See “Multifile Volume Considerations” in VSE/VSAM Programmer’s
Reference for information on how to use the EXPORT/IMPORT commands
to create backup copies of several VSAM files on a multifile tape volume (or
volume set).

In addition, EXPORT and IMPORT enable you to transport a file defined in
an unrecoverable catalog to a recoverable catalog for the purpose of making
its data and catalog entries recoverable in the event of catalog failure. To do
this, you define a recoverable catalog and then export the file from the old
catalog and import it to the new one. Alternatively, you may use REPRO to
copy the file to a file defined in a recoverable catalog. Any object marked not
usable by catalog recovery is not exportable.

Master and user catalogs cannot be copied using EXPORT and IMPORT; a
user catalog can, however, be imported to another system by physically
transporting the volume on which it is stored. When a user catalog is to be
transported, it is not copied; the user catalog remains on its original volume in
its original form. When it is exported by an EXPORT DISCONNECT
command, the master catalog’s pointer to it is removed. When it is subse-
quently imported to a new system by an IMPORT CONNECT command, a
pointer to it is created in the new system’s master catalog. (VSE DASD
Sharing supports shared master catalogs.) You don’t have to issue the EX-
PORT DISCONNECT command to move a user catalog to another system,
but must use an IMPORT CONNECT command to build a pointer to the
user catalog in the new system’s master catalog. If you didn’t issue the
EXPORT DISCONNECT command for it, then it belongs to both systems.
If both systems support VSE DASD Sharing and the user catalog is on a
shared volume, it can be shared. Otherwise, the user catalog can be available
to only one system at a time.

When a file is exported, relevant portions of its catalog entries are copied to a
movable volume along with the cluster’s component(s). The catalog name
cannot be moved with the file. The portable copy is a variable-blocked,
spanned, sequential file; it may be stored on tape or disk. You can control the
block size of the portable file. If the file is exported to tape, if it is to be other
than the first file on the tape and if the tape has just been mounted, you must
issue the MTC command to correctly position the tape.

Exportation of a file is either permanent or temporary. In permanent expor-
tation, the catalog entries are deleted and storage space is freed in the original
system. In temporary exportation, the sending system retains a copy of the
file, but the copy is marked to indicate that there is a copy elsewhere.

When a base cluster and its alternate index(es) are permanently exported, the
alternate index(es) must be permanently exported before the base cluster.
Otherwise, the alternate index(es) will be deleted when the base cluster is
deleted and cannot be exported. EXPORT will automatically export paths
related to the cluster or alternate index being exported. When an object is
exported, the statistics kept in its catalog entry are not extracted for exporta-
tion and are not available when the object is subsequently imported.

When a base cluster and its alternate index(es) are imported, the base cluster
must be imported before the alternate index(es). If you are using a tape as the
transporting volume, you must first forward space the tape to the base cluster
and read it, then rewind to the load point and read the alternate indexes
sequentially. See “Multifile Volume Considerations” in VSE/VSAM

Chapter 2: Using Access Method Services 2-35

, Programmer’s Reference for more information. A path cannot be transported
as an object from one system to another, but is automatically imported when
its related base cluster and alternate index are imported.

You may alter some of a file’s attributes when you import it, but space
allocation problems may occur if a VSAM file is imported onto a device of a
type different from the type it was exported from. The space allocation
quantities are recorded in terms of tracks (min-CAs) (even if you specified
CYLINDERS, BLOCKS, or RECORDS in the DEFINE command) in a
file’s catalog entry. When the file is imported the number of min-CAs in the
catalog entry is not changed to reflect the characteristics of a new device type
unless you import the file into a predefined file with adjusted allocation
quantities. Thus, an attempt to export a VSAM file from a 3330 and import it
onto a 2314 may fail because the allocation quantities in the catalog entry
specify less space on a 2314 than they did on a 3330. (If the secondary space
allocation quantity is not zero, VSAM may be able to allocate enough sec-
ondary space on the 2314 to contain the file.) Conversely, if a file is exported
from a 2314 and imported onto a 3330, it may be allocated more space than it
needs.

You may use EXPORT and IMPORT to redefine a file for a different device
with space parameters that are appropriate to the new device. You may also
change protection attributes. To change the file’s device type, you perma-
nently export it (or temporarily export and delete it), redefine it (by way of
DEFINE) with new allocation attributes, then import the transporting copy
into the newly defined file. (If you use DEFINE before deleting the exported
file, you can use the exported file’s entry as a model assuming you give it a
new name.) The newly defined file must meet the following conditions:

e It must be empty.

¢ It must be the same type of file INDEXED, NONINDEXED, or
NUMBERED) as the file being imported.

e If INDEXED, it must have the same key length and key position as the file
being imported.

¢ It must have a maximum logical record length greater than or equal to that
of the exported file.

To change devices without allocation problems when moving clusters or
alternate indexes between systems or between catalogs, you may use two
techniques.

The first technique is:

1. Use the EXPORT command to create the copy of the cluster or alternate
index to be exported.

2. Use the DEFINE command to define a new entry for the cluster or alter-
nate index in the catalog to which the cluster or alternate index is to be
imported. Specify all the parameters used when the cluster or alternate
index was originally defined, using the MODEL parameter if a catalog
that contains a suitable model entry is available. If space was allocated in
RECORDS, you may specify the same quantity; if it was allocated in
TRACKS or CYLINDERS, you must adjust the quantity for the new
device type. If an entry already exists in the catalog for this file, you must
delete that entry or use a different name in the DEFINE command and
specify the new name in the OBJECTS parameter of IMPORT.

3. Use the IMPORT command to read the cluster or alternate index into the
predefined empty cluster or alternate index. If the empty cluster or alter-

2-36 Using VSE/VSAM Commands and Macros

nate index was defined with a name different from that of the cluster or
alternate index exported, the NEWNAME subparameter of the OBJECTS
parameter must be used to rename the exported cluster or alternate index
file-1D.

The second technique is:

1. Use the REPRO command to create the copy of the cluster or alternate
index to be exported.

2. Follow step 2 above except do not specify a new name by means of
IMPORT.

3. Load the cluster or alternate index into the predefined cluster or alternate
index by issuing a REPRO command to copy it.

EXPORT: Making a File Portable

The EXPORT command enables you to copy a cluster or an alternate index
in sequential form onto a storage volume to be transported to another system.
The transporting volume may be magnetic tape or disk. In addition, the
EXPORT command extracts information from the catalog entry that defines
the object to be transported and copies the information onto the transporting
volume. The information is used to define the file automatically in a VSAM
catalog in the receiving system.

VSAM always defaults to an optimum buffer space value when using the
EXPORT command, it ignores the buffer space value in the catalog entry
and in the DLBL BUFSP statement (if specified).

See Examples 10, 11, and 12 in “Appendix A: Sample Job Streams.”

IMPORT: Loading a Portable File

The IMPORT command enables you to use the catalog information extracted
by EXPORT to automatically define a new cluster or alternate index in the
catalog that you specify and to suballocate space for it. The object itself is
stored, in its VSAM format, in the space allocated for it. Alternately, you can
use DEFINE to define a new cluster or alternate index and allocate space for
the object and use IMPORT to copy the object from the transporting volume
into the space allocated for it, that is, import the object into an empty cluster.

You can also use IMPORT to define a pointer to a user catalog in the master
catalog. The user catalog is not copied, but remains on its original volume in
its original form.

A cluster, alternate index, or user catalog cannot be transported to a system if
its name or the name of any of its components already exists in the receiving

| catalog. The only exceptions are when the cluster or alternate index name
that already exists in the receiving catalog belongs to an object that has been
temporarily exported (that is, TEMPORARY was coded when it was export-
ed), or belongs to the predefined (empty) object that is to receive the import-
ed object. The entry of a temporarily exported object is deleted when an
object with the same name is imported; a new entry is then built for the
imported object. When a base cluster and its alternate indexes are imported,
the base cluster must be imported first, followed by the alternate indexes in
any order. This is necessary because a base cluster must exist before an
alternate index can be defined over it.

You may specify any block size that you choose for the portable file at the
time of its creation by EXPORT by using the BLOCKSIZE subparameter of
the ENVIRONMENT parameter. The default value is 2048 bytes per block.

Chapter 2: Using Access Method Services 2-37

When an IMPORT is issued, you must specify the same BLOCKSIZE that
you specified during the EXPORT operation. If no value is given, the system
assumes a value of 2048 bytes per block.

VSAM always defaults to an optimum buffer space value when using the
IMPORT command, it ignores the buffer space value in the catalog entry and
in the DLBL BUFSP statement (if specified).

See Examples 13, 14, 15, and 16 in “Appendix A: Sample Job Streams.”

Using LISTCAT: Listing Catalog Entries

You use the LISTCAT command to list entries from a given catalog. The
listing shows information about objects defined in the catalog, such as:

e Attributes of the object.
¢ Creation and expiration dates.

¢ Protection specification. Passwords and other protection information in an
entry are not listed unless you specify the master password for the file
defined by the entry or the master password for the catalog itself.

e Statistics, information regarding the dynamic usage or accessing of the
data represented by the entry.

e Space specifications and allocations.
¢ Volume information.

The ENTRIES (entryname) parameter is used to specify the names of indi-
vidual entries to be listed. The CLUSTER, DATA, INDEX, SPACE,
NONVSAM, PATH, USERCATALOG, and ALTERNATEINDEX param-
eters are used to specify types of entries to be listed. The ALL, NAME,
VOLUME, and ALLOCATION parameters specify the fields to be listed for
each catalog entry.

The combination of these parameters allows you to tailor the scope of the
listing to meet your needs. Refer to the chart in the LISTCAT command

section to see the results of coding various combinations of entryname and
type of entry (CLUSTER, DATA, etc.).

See Examples 3, 4, and 7 in “Appendix A: Sample Job Streams.” See also
“Appendix B: Interpreting LISTCAT Output Listings.”

Using PRINT: Printing Data Records

2-38

You use the PRINT command to list some or all of the records of a sequen-
tial, indexed-sequential, or VSAM file in one of the following formats:

¢ Each byte as two hexadecimal digits (HEX).
e Each byte as a single character (CHARACTER).
¢ A combination of these two, side by side (DUMP).

You may specify a range of records to be printed in the same way as you do
for copying records, namely:

¢ By key for indexed-sequential or key-sequenced files (FROMKEY,
TOKEY).

* By RBA for key-sequenced or entry-sequenced files (FROMADDRESS,
TOADDRESS).

e By relative-record number for relative-record files (FROMNUMBER,
TONUMBER).

Using VSE/VSAM Commands and Macros

e By number of records for any type of file (COUNT, SKIP).

The components of a key-sequenced file can be listed individually. To list a
component of a key-sequenced file, specify the component name as the
file-ID in the DLBL statement. To print a user catalog as a key-sequenced
file or to print any file cataloged in a user catalog, the user catalog must either
be a job catalog or be specified in the CAT parameter of the DLBL job
control statement.

Sequential, entry-sequenced, and relative-record files are listed in physical
sequential order. Indexed-sequential and key-sequenced files can be listed in
key order or in physical sequential order. A base cluster can be listed in
alternate key sequence via a path.

Only the data content of records is listed. System-defined control fields are
not listed. Each record listed is identified by one of the following:

o Its relative byte address (RBA) for entry-sequenced files.
o Its key for indexed-sequential and key-sequenced files.
e Its sequential record number for sequential and relative-record files.

If you use PRINT to locate errors in a file, Access Method Services termi-
nates printing after four recoverable errors have been encountered while
trying to read the file. The types of errors classified as “recoverable” are
duplicate keys, wrong length records, records out of sequence, and 1/O errors
in the data component of a VSAM file.

See Examples 5, 6, and 8 in “Appendix A: Sample Job Streams.” See also
“Sample Output from PRINT” in the PRINT command section.

Using EXPORTRA/IMPORTRA: Recovering Catalog Entries and Data

You use the EXPORTRA command to retrieve catalog entries from catalog
recovery areas placed on each volume owned by a recoverable catalog.
VSAM catalogs may be defined with a RECOVERABLE attribute which
allows a catalog to be recovered after it has been destroyed. Recovery is
possible because catalog information about a given volume is recorded on
that volume, as well as in the catalog itself.

Space for recovery information is automatically set aside when you define the
first data space on a volume (provided you defined the catalog with the
RECOVERABLE attribute). This recovery space, called the catalog recovery
area (CRA), is suballocated from the first space allocated on the volume. A

\ file with the UNIQUE attribute cannot be defined on a volume (if the catalog
entry of the file is to be in a recoverable catalog) until a data space is created
on the volume; either with the DEFINE SPACE, DEFINE MASTERCATA-
LOG, or DEFINE USERCATALOG command.

There is no separate catalog or VTOC entry for the recovery space; its physi-
cal address is recorded by VSAM in the volume’s format-4 label.

The recovery information in the CRA of a volume is immediately updated
whenever parallel information in the catalog is modified by catalog manage-
ment. To do so, the affected volume(s) must be mounted. The kind of
operation which is to be performed on an object (data space, cluster, path,
etc.), and which is reflected in the catalog, determines which volume(s) must
be mounted:

* For a DEFINE operation, all volumes on the volume list on which space is
being defined, or all volumes listed in the VOLUMES parameter list. In
addition, for DEFINE PATH or DEFINE ALTERNATEINDEX, the

Chapter 2: Using Access Method Services 2-39

¢ By number of records for any type of file (COUNT, SKIP).

The components of a key-sequenced file can be listed individually. To list a
component of a key-sequenced file, specify the component name as the
file-ID in the DLBL statement. To print a user catalog as a key-sequenced
file or to print any file cataloged in a user catalog, the user catalog must either
be a job catalog or be specified in the CAT parameter of the DLBL job
control statement.

Sequential, entry-sequenced, and relative-record files are listed in physical
sequential order. Indexed-sequential and key-sequenced files can be listed in
key order or in physical sequential order. A base cluster can be listed in
alternate key sequence via a path.

Only the data content of records is listed. System-defined control fields are
not listed. Each record listed is identified by one of the following:

o Its relative byte address (RBA) for entry-sequenced files.
¢ Its key for indexed-sequential and key-sequenced files.
¢ Its sequential record number for sequential and relative-record files.

If you use PRINT to locate errors in a file, Access Method Services termi-
nates printing after four recoverable errors have been encountered while
trying to read the file. The types of errors classified as “recoverable” are
duplicate keys, wrong length records, records out of sequence, and I/0O errors
in the data component of a VSAM file.

See Examples 5, 6, and 8 in “Appendix A: Sample Job Streams.” See also
“Sample Output from PRINT” in the PRINT command section.

Using EXPORTRA/IMPORTRA: Recovering Catalog Entries and Data

You use the EXPORTRA command to retrieve catalog entries from catalog
recovery areas placed on each volume owned by a recoverable catalog.
VSAM catalogs may be defined with a RECOVERABLE attribute which
allows a catalog to be recovered after it has been destroyed. Recovery is
possible because catalog information about a given volume is recorded on
that volume, as well as in the catalog itself.

Space for recovery information is automatically set aside when you define the
first data space on a volume (provided you defined the catalog with the
RECOVERABLE attribute). This recovery space, called the catalog recovery
area (CRA), is suballocated from the first space allocated on the volume. A

\ file with the UNIQUE attribute cannot be defined on a volume (if the catalog
entry of the file is to be in a recoverable catalog) until a data space is created
on the volume; either with the DEFINE SPACE, DEFINE MASTERCATA-
LOG, or DEFINE USERCATALOG command.

There is no separate catalog or VTOC entry for the recovery space; its physi-
cal address is recorded by VSAM in the volume’s format-4 label.

The recovery information in the CRA of a volume is immediately updated
whenever parallel information in the catalog is modified by catalog manage-
ment. To do so, the affected volume(s) must be mounted. The kind of
operation which is to be performed on an object (data space, cluster, path,
etc.), and which is reflected in the catalog, determines which volume(s) must
be mounted:

¢ For a DEFINE operation, all volumes on the volume list on which space is
being defined, or all volumes listed in the VOLUMES parameter list. In
addition, for DEFINE PATH or DEFINE ALTERNATEINDEX, the

Chapter 2: Using Access Method Services 2-39

2-40

recovery volume, that is, the first volume of the prime index, if the base
cluster is a key-sequenced file; otherwise, the first volume of the base data.

¢ For an ALTER operation, all volumes listed under ADDVOLUMES or
REMOVEVOLUMES and the recovery volume. The recovery volume is
as follows:

- Ifthe base cluster is a key-sequenced file, whether the object to be
altered is the cluster or its related alternate index or any of their data or
index components, or its related path, the recovery volume is the first
volume of the prime index.

- If the base cluster is an entry-sequenced file, whether the object to be
altered is the cluster, its data component, its alternate index or the
latter’s data or index components, or its related path, the recovery
volume is the first volume of the base data.

— If the base cluster is a relative-record file, the recovery volume is the
first volume of the base data.

e Fora DELETE operation, all volumes on which space is being deleted. In
addition, for a DELETE PATH or DELETE ALTERNATEINDEX, the
recovery volume, that is, the first volume of the prime index, if the base
cluster is a key-sequenced file; otherwise, the first volume of the base data.

See VSE/VSAM Programmer’s Reference for the contents of CRAs and how
catalog entries are placed in CRAs.

Note: If the catalog is changed by the REPRO command, or restored using a VSE utility, the
CRAs owned by the catalog on volumes other than the catalog volume are unchanged. The
catalog volume’s CRA is restored using the VSE utility and is unchanged by REPRO. A
LISTCRA list of the restored catalog reflects CR A-catalog mismatches.

If a file (alternate index or cluster) is not addressable by way of the catalog,
the EXPORTRA command can be used to gain access to the file through the
CRA to create a copy of the data which can be introduced back into the
system by the IMPORTRA command. Selective recovery can be implement-
ed after use of the LISTCRA command (with the NOCOMPARE and
NAME options) to determine file-IDs and their associated volumes.

If an entire VSAM volume becomes unusable, and a backup copy of the
volume exists, you may want to consider using RESETCAT rather than
EXPORTRA to reset your catalog so that it will correctly access the VSAM
files on the restored volume. See “Resetting Catalog Entries.”

The EXPORTRA command recovers the current information recorded in the
CRAs of the affected volume(s). The IMPORTRA command then rebuilds
complete catalog entries from the recovered information. Thus, if a destroyed
volume was restored to some previous state, the catalog will, after the re-
covery operation, reflect that state. This implies that any changes to catalog
entries made after that point (for example, to the entry of a destroyed file)
will be deleted from the catalog.

The IMPORTRA command accepts portable files produced by VSE,
DOS/VS, 0OS/VSI, or OS/VS2. However, IMPORTRA can accept only
portable files produced by EXPORTRA (similarly, IMPORT can accept only
portable files produced by EXPORT).

Using the information on such files, IMPORTRA reconstructs the catalog
entries for all the files of the recovery volume and recreates the files them-
selves on the appropriate volumes.

IMPORTRA will define and load any VSAM objects found on the portable
file. If the VSAM catalog is not recoverable, any nonVSAM files found on
the portable file will also be defined by IMPORTRA. In addition, any user

Using VSE/VSAM Commands and Macros

catalog pointers found on the portable file will be defined into the receiving
catalog if it is a master catalog.

VSAM always defaults to an optimum buffer space value when using the
EXPORTRA/IMPORTRA commands; it ignores the buffer space value in
the catalog entry and in the DLBL BUFSP statement (if specified).

See Examples 19, 20, and 21 in “Appendix A: Sample Job Streams” for the
use of EXPORTRA/IMPORTRA in combination. Specific EXPORTRA
examples follow.

Using EXPORTRA for Moving All Entries on One Volume

This example shows the EXPORTRA function for one volume, VSERQO,
owned by the VSAM master catalog. All of the files are contained wholly in
the volume. All of the entries in the catalog recovery area on VSER00 and
the files themselves are copied to a sequential file on a tape volume. SYS005
must be used in the ASSGN statement for magnetic tape output (OUTFILE).
// JOB EXPORTRA FOR ONE VOLUME
| // AssGN sys005,381

// TLBL VOLOUT,'OUT.FILE',,TAPEO1
// EXEC IDCAMS,SIZE=AUTO

EXPORTRA -
OUTFILE(VOLOUT ENV(REW PDEV(2400))) -
| CRAVOLUMES (-
VSEROO ALL)
/#
/&

The CRAVOLUMES parameter identifies the catalog recovery volume,
VSERO00. The CRA used for recovery is on this recovery volume. The ALL
subparameter specifies that all files and the corresponding CRA entries are to
be copied from the recovery volume specified.

No other parameters are required because all the files are contained in one
volume.

Using EXPORTRA for Entries on Multiple Volumes

This example shows the EXPORTRA function for one volume owned by the
VSAM master catalog. All files contained in the volume, VSERO00, and their
corresponding CRA entries describing these files are copied to a sequential
file on a tape volume. Some of these are multivolume files but these files
have their prime CRA entries on the recovery volume. Each volume that

| contains a portion of a multivolume file must be mounted. The entries in the
CRAs of volumes other than the recovery volume are not recovered. SYS005
must be used in the ASSGN statement for magnetic tape output (OUTFILE).

// JOB EXPORTRA FOR MULTIPLE VOLUMES
| // ASSGN SYS005,382
// TLBL VOLOUT, 'OUT.FILE',,TAPEO1
// EXEC IDCAMS,SIZE=AUTO
EXPORTRA -
OUTFILE(VOLOUT ENV(REW PDEV(2400))) -
CRAVOLUMES (-
(VSEROO ALL) -
(VSERO1 NONE) -
(VSERO2 NONE)) -
MASTERPW (MCATMRPW)
/#
/6

The CRAVOLUMES parameter identifies the catalog recovery volume,
VSERO00. The ALL subparameter specifies that all files on the recovery

Chapter 2: Using Access Method Services 2-41

volume and their corresponding CRA entries are to be copied. The VSEROI
NONE and VSER02 NONE subparameters are needed because these vol-
umes contain portions of multivolume files, but the CRA’s on these volumes
are not used to recover additional entries. Only those multivolume files that
are described in the CRA of the recovery volume are recovered.

Using EXPORTRA for Selected Entries

2-42

|

This example shows the EXPORTRA function for selected files on volume
VSEROO. Three files on the volume and their corresponding CRA entries
(those describing the files) are copied to a sequential file on another disk
volume. The remaining files on the catalog recovery volume are not re-
covered. Two of the selected files are multivolume files. No files other than
the multivolume files are recovered from the other volumes identified in the
CRAVOLUMES parameter.

// JOB EXPORTRA FOR SELECTED ENTRIES
// DLBL VOLOUT,'OUT.FILE'
// EXTENT SYS013,231401,1,0,140,200
// EXEC IDCAMS,SIZE=AUTO
EXPORTRA -
OUTFILE(VOLOUT) -
CRAVOLUMES (-
(VSEROO ENTRIES (-
(LARGE.DATASET.A) -
(LARGE.DATASET.B) -
(LARGE.DATASET.C))) -
(VSERO1 NONE) -
(VSERO2 NONE))
/*
/%
The CRAVOLUMES parameter identifies the catalog recovery volume,
VSERO00. The ENTRIES subparameter identifies the three files and the
corresponding CRA entries that are to be copied to a sequential file on
another disk volume.

The VSERO1 NONE and VSER02 NONE parameters are needed because
these volumes contain portions of multivolume files, but the CRA’s on these
volumes are not used to recover additional entries.

Using VSE/VSAM Commands and Macros

C

Using RESETCAT: Resetting Catalog Entries

When you define a catalog as recoverable, each volume owned by the catalog
contains a catalog recovery area (CRA). The CRA contains duplicate in-
formation for catalog entries associated with that volume. You would most
likely use RESETCAT when a recoverable catalog or one or more of its
owned volumes cannot be accessed for some catastrophic reason, such as a
dropped pack, a head crash, an accidently scratched pack or some similar
disaster. If such an accident were to occur, you can restore the inaccessible
volume(s) from a backup copy and execute RESETCAT. CRAs contain
enough information to reset the catalog entries, VSAM files owned by that
catalog can again be accessed correctly.

Unlike EXPORTRA/IMPORTRA, RESETCAT is a one-step operation that
enables you to recover your catalog without movement of data. RESETCAT
does not check or process the data itself, only catalog, CRA, and VTOC
VSAM entries are compared and reset. You are responsible for ensuring that
the data is at the correct level for your use.

If a VSAM volume becomes inaccessible, and a backup copy of the volume is
used to restore the volume to a previous level, the volume and the catalog
may no longer be synchronized. A LISTCRA (with the COMPARE option)
can be run to see if there is a mismatch that requires RESETCAT to be run
(see “LISTCRA: Analysis of Recoverable Catalogs” and ‘Inaccessible
Volume”). RESETCAT can now be used to synchronize the catalog with the
volume. After access to the data has been regained, the files on that volume
can be brought up to the current level by rerunning the jobs that were run
after the backup was taken.

If a recoverable catalog becomes unusable, run LISTCRA to help analyze the
problem. If you find you cannot run LISTCRA or if you can and find you
are unable to access your data, restore the catalog volume. Then run
RESETCAT to synchronize your catalog to its owned volumes. If volumes
have been added since the catalog backup was made, RESETCAT can be
used to build these entries in the catalog from the volume’s CRA. If volumes
have been deleted since the last backup, use DELETE SPACE (FORCE) to
delete the volumes space entries in the catalog and delete the files that resided
on those volumes that are now marked unusable by RESETCAT in the
catalog.

If your catalog becomes unusable and no backup copy is available, you can
use RESETCAT to recover all of your catalog entries:

1. If the unusable catalog is a user catalog, remove its catalog connector entry
from the master catalog via EXPORT DISCONNECT and define a user
catalog with the same name on a different volume. It must be defined with
the RECOVERABLE attribute. Volumes owned by the unusable catalog
should not be included as owned by the new user catalog. The DEFINE
operation would flag this as an error condition because the volumes are
already owned by a VSAM catalog.

2. Issue RESETCAT specifying (via CRAVOLUMES) all volumes owned by
the previous catalog (including the unusable catalog’s volume) for reset.
Because the new catalog name is the same as the old catalog name, all
entries in the specified CRAs will be added to the new catalog (including
volume entries).

If some external cause, such as a power failure, were to cause RESETCAT to
fail, then you must restore the volumes being reset and rerun RESETCAT. It

Chapter 2: Using Access Method Services 2-43

RESETCAT Requirements

Work File Space Requirements

is advisable for you to have backup copies of your catalog and CRA
volume(s) before you use RESETCAT.

In planning to use RESETCAT, you should be aware of the following re-
quirements:

¢ The catalog being reset must be capable of being opened and it must have
the RECOVERABLE attribute. It may or may not have valid entries.

* You must always specify a catalog, other than the catalog being reset, to be
a work catalog (WORKCAT).

¢ The CRAs must have been created by a recoverable catalog with the same
name as the catalog being reset.

¢ The catalog must be extendable in the event that it becomes enlarged as a
result of the reset operation.

¢ If the master catalog is password protected, the master password of that
catalog is required.

¢ The master catalog may be reset while it is in use as a master catalog or it
may be connected to the system as a user catalog.

¢ You need to use caution when using RESETCAT to recover accessibility
of a volume that contains a portion of the multivolume file. Prior to
issuing RESETCAT, compatible levels of volumes containing multivo-
lume files should be restored. See “Considerations for Multivolume Files”
in this chapter for more details.

RESETCAT requires a temporary work file for use as temporary storage
while processing the command. The temporary work file is defined by
RESETCAT and deleted at the end of command processing. The space
required is suballocated from VSAM data spaces on the volumes assigned via
WORKVOLUMES. If WORKVOLUMES is not specified, the work catalog
is searched for a relative record file default model. If one is found, the work
file is built on the volume(s) specified in the volumes list of the default model,
otherwise, processing will terminate. Under normal conditions (no exten-
sions) the amount of work file space required will be no larger than the
resultant catalog. You can determine this by a LISTCAT listing of that
catalog.

If the catalog must be extended as a result of RESETCAT processing, (this
may occur when the catalog is restored at a lower level than its owned vol-
umes), enough work file data space must be provided to allow for this exten-
sion.

Considerations for Multivolume Files

The contents of a volume’s CRA depend on the types of files the volume
contains. It is important for you to understand on which CRA the catalog
information resides for a particular object. “Catalog Recovery Area ” in
VSE/VSAM Programmer’s Reference identifies by object type the location of
the CRA.

The primary CRA contains all of the catalog records necessary to describe
the object. Hence, for an entry sequenced file on two volumes, the volume
that contains the first part of the entry sequenced file contains all the records
that describe the entry sequenced file (including its allocation on the second

2-44 Using VSE/VSAM Commands and Macros

volume). The second volume, a secondary CRA for this object, contains
information that shows that the entry sequenced file is allocated on the
second volume. If the second volume had an I/O error that rendered it
useless and a previous version of that volume were restored, the present
catalog information may be erroneous; that is, the catalog may reflect the
file’s extent on the second volume. Prior to issuing a RESETCAT command
compatible levels of volumes containing multi-volume files should be re-
stored. RESETCAT would then be issued to reset the catalog to reflect the
restored level of all files on all reset volumes.

If in the above example, the second volume was restored and RESETCAT
specified only that volume as a reset volume, the entry-sequenced file may be
marked unusable for that volume and the space allocated to it would be
either scratched or returned to the catalog for suballocation. The primary
description is on the first volume, which was not indicated as one to reset.
The description of the file used would be the description that currently
resides in the catalog. If the file is defined differently on the second volume
(e.g., extents don’t match), the file is marked unusable for that volume and
the allocated space marked free.

For a multi-volume entry-sequenced file, a multi-volume key-sequenced file
or an alternate index defined on a volume different from the file it is based
on, minimizing the intersection of different multi-volume files on a common
volume will permit better use of RESETCAT.

When all volumes of a multivolume VSAM file, or structure, are not specified
in the RESETCAT operation, the extent of checking depends on whether the
primary CRA volume is specified for reset. If it is, all information in the
catalog is replaced for the file concerned. For all volumes of the multivolume
file whether specified or not, the following consistency checks are made by
RESETCAT:

® Check the current catalog (if the volume is not specified) or the CRA (if
the volume is specified) to ensure that the file is defined on the volume.

e Check the file specified on each volume. Was it defined at the same time
as the one specified in the primary CRA?

® Check the extents described on the volumes. Are they still allocated to the
multivolume VSAM file?

Although the above file checks guarantee that the catalog physically de-
scribes a file correctly, these checks cannot guarantee that the level of data in
the file is at a consistent level. For instance, if a multivolume key-sequenced
file was defined with the data on one volume and the index on another, the
same define-time would be associated with both. If, over some time, several
additions, deletions, and updates were made without causing an extension of
the file, RESETCAT would be unable to distinguish among different combi-
nations of volumes taken from this time period. Since the index contains
direct VSAM pointers to the data, an inconsistent combination may cause
€rrors.

If the primary CRA volume is not specified for reset, the scope of checking is
limited to volumes specified in the reset. The current catalog is checked to
ensure that the current catalog entry describes the part of the file on the reset
volume. Hence, only verification (no reset) occurs for these partial en-
tries.The check ensures that the part of the file on the reset volume resides in
the same physical place as described in the current catalog and is part of the
same definition as the file described in the current catalog. RESETCAT
cannot guarantee that the level of data in the file is at a consistent level
among different volumes.

Chapter 2: Using Access Method Services 2-45

RESETCAT Job Control

The catalog being reset is specified in the CATALOG parameter of the
RESETCAT command. The catalog in which the work file is defined is
specified in the WORKCAT parameter.

The WORKVOLUMES parameter provides a volume to define a temporary
VSAM file. If WORKVOLUMES is not specified, the work catalog is
searched for a relative record file default model. If one is found, the work file
is built on the volume(s) specified in the volumes list of the default model,
otherwise, processing will terminate.

The following example resets the user catalog “RESET.CAT” for the volume
U2314G. This job might be run because the volume U2314G was destroyed
and a previously copied version of the volume has been restored. At the
completion of the reset operation the user catalog will correctly describe the
files on the restored version of U2314G. U2314H is the second volume of
some multi-volume files starting on U2314G. This volume may be needed

when resetting information in the catalog pertaining to the multi-volume
files.

// JOB RESET A CATALOG
// EXEC IDCAMS,SIZE=AUTO
RESETCAT-
CATALOG (RESET.CAT/MRPASS) -
CRAVOLUMES ((U2314G ALL) (U2314H NONE))-
WORKCAT (USER.CAT2/UPPASS2)~
WORKVOLUMES (U2314J /WKPASS) -
IGNORE
/ *
/&
The next example resets the user catalog “UCAT]1” for volume 333002. The
WORKVOLUMES parameter has been omitted; therefore, the work catalog
is searched for a relative record file default model. If one is found, the work
file is built on the volume(s) specified in the volumes list of the default model,;
otherwise processing will terminate. (The user must have provided a relative
record file default in the catalog.)

// JOB RECOVER
// EXEC IDCAMS,SIZE=AUTO
RESETCAT-

CATALOG (UCAT1/MASTER) -
CRAVOLUMES((333002 ALL) (333001 NONE)) -
WORKCAT (MASTCAT/MCATMRPW) -
MASTERPW (MCATMRPW) —
IGNORE

/*

/&

Verifying a File’s Accessibility

You can use the VERIFY command to protect data when a file was not
closed successfully the last time it was processed. Access Method Services
investigates whether an entry-sequenced file, a relative-record file, or both
the data and index of a key-sequenced file or alternate index were properly
closed. You cannot verify a path defined over an alternate index, but you can
verify a base cluster using a NOUPDATE path defined directly over the base
cluster. This prevents unnecessary allocation of the upgrade set, if one exists.

If the user has started loading into a file with the RECOVERY option (see
DEFINE CLUSTER) then the VERIFY command can be used to save the
file from reload. If, however, SPEED was used, VERIFY will not help since
preformatting is not done. A reload of the file is required if a failure occurs

2-46 Using VSE/VSAM Commands and Macros

during file load with SPEED option. Note that if a VSAM file is extended
{due to resume loading, adding records, etc.) VSAM always extends in
RECOVERY mode. Thus VERIFY can be used to recover from a CLOSE
failure.

The end of the data or of the index of a file is indicated by the end-of-file
indicator and by information in the component’s catalog entry. If a file is
divided into key ranges, the end of each key range is indicated by an end-of-
file indicator. The end may be <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>