IBM VM/370 (CMS) Terminal
s User’s Guide for FORTRAN IV
Program Products

SC28-6891-1

IBM VM/370 (CMS) Terminal
User’s Guide for FORTRAN IV
Program Product Program Products

Program Numbers 5734-FO1
5734-FO2
5734-FO3
5734-LM1
5734-LM3

Page of SC28-6891-0, -1
Revised May 13,1977
By TNL SN20-9225

Second Edition (April 1975)

This edition, as amended by technical newsletters SN20-9201 and SN20-9225, applies to Release 1.0
of the IBM Virtual Machine Facility/370 (VM/370) (CMS).

This edition is a reprint of SC28-6891-0 incorporating changes released in Technical Newsletters
SN28-0609 (dated March 1, 1973) and SN28-0620 (dated January 3, 1974). Changes are listed
in the Summary of Amendments, Number 3, on the facing page.

Information in this publication is subject to significant change. Any such changes will be published
in new editions or technical newsletters. Before using the publication, consult the latest IBM
System/360 Bibliography, GC20-0360, or IBM System/370 Bibliography, GC20-0001, and the
technical newsletters that amend the particular bibliography, to learn which editions are applicable
and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office that serves your locality.

Forms for readers’ comments are provided at the back of this publication. If the forms have
been removed, address comments to IBM Corporation, P. O. Box 50020, Programming
Publishing, San Jose, California 95150. Comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1972

Summary of Amendments Number 1

Date of Publication: March 1, 1973
Form of Publication: TNL SN28-0609 to SC28-6891-0

CP and CMS Command Abbreviations

Maintenance: Documentation Only

Valid abbreviations have been added to the summary descriptions of significant
CP and CMS commands.

XTENT Option

New: Documentation Only

A description of the XTENT option of the FILEDEF command has been added
for users of direct access files.

Flagging of Data Spill
/

New: Documentation Only

A statement has been added to the description of data spill indicating that
several compilers will flag spill as an error even though they process it correctly.

Reproduction of Command Formats for Internal Use Only

New: Documentation Only

Footnotes have been added to the sections describing the compiler command
formats. These footnotes indicate that users may copy the sections for internal
use only.

H Extended SIZE Option

New: Documentation Only

The description of the SIZE option for the H Extended compiler has been
expanded to reflect the operation of the option and to guide the user in its use.

Asynchronous 1/0 Message

New: Programming and Documentation

A message indicating that an asynchronous I/O operation has been attempted
has been added to the restriction on asynchronous 1/O.

Terminal Listing Sheet Examples

Maintenance: Documentation Only

Examples showing terminal listing sheets have been revised to more accurately
reflect their actual appearance.

Foldout Pages for the Sample Terminal Session

Maintenance: Documentation Only

The terminal listing sheets for the sample terminal session have been printed on
foldout pages for ease of reference.

Editorial changes having no technical significance are not noted here.

Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 2

Date of Publication: January 3, 1974

Form of Publication: TNL SN28-0620 to SC28-6891-0 as amended by
TNL SN28-0609

CMS Support of FREEFORM Source Programs

New: Programming and Documentation

A description of preparing free form source programs and of the new
filetype FREEFORT has been added.

SIFT Utility

New: Programming and Documentation

A description of. the changes made to the SIFT Utility program in support
of free-form source files has been added.

ASA Carriage Control Characters

Modification: Documentation Only

The character + has been removed from the list ‘of supported ASA carriage
control characters.

OS File Compatability

Modification: Documentation Only

Restrictions have been added to the description of file compatability and
conditions under which it can be accomplished are outlined.

Editorial changes having no technical significance are not noted here.

Specific changes to the text of this publication are indicated by.a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments v Number 1

Date of Publication: March 1, 1973
Form of Publication: TNL SN28-0609 to SC28-6891-0

CP and CMS Command Abbreviations

Maintenance: Documentation Only

Valid abbreviations have been added to the summary descriptions of significant
CP and CMS commands.

XTENT Option

New: Documentation Only

A description of the XTENT option of the FILEDEF command has been added
for users of direct access files.

Flagging of Data Spill

New: Documentation Only

A statement has been added to the description of data spill indicating that
several compilers will flag spill as an error even though they process it correctly.

Reproduction of Command Formats for Iinternal Use Only

New: Documentation Only

Footnotes have been added to the sections describing the compiler command
formats. These footnotes indicate that users may copy the sections for internal
use only.

H Extended SIZE Option

New: Documentation Only

The description of the SIZE option for the H Extended compiler has been
expanded to reflect the operation of the option and to guide the user in its use.

Asynchronous 1/0 Message

New: Programming and Documentation

A message indicating that an asynchronous I/O operation has been attempted
has been added to the restriction on asynchronous I/O.

Terminal Listing Sheet Examples

Maintenance: Documentation Only

Examples showing terminal listing sheets have been revised to more accurately
reflect their actual appearance.

Foldout Pages for the Sample Terminal Session

Maintenance: Documentation Only

The terminal listing sheets for the sample terminal session have been printed on
foldout pages for ease of reference.

Editorial changes having no technical significance are not noted here.

Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 3

Form of Publication: TNL SN20-9201 to SC28-6891-1

Default Record Format, Logical Record Length, and Block Size

Maintenance: Documentation Only

The default record format, logical record length, and block size when using the
FILEDEF command has been added.
Listing Produced When the PRINT Option is Used

Maintenance: Documentation Only
If the FORTHX command is entered with the PRINT option, a listing is

produced at the offline printer instead of the primary disk.
Base Register Usage When Using the FORTRAN IV (H Extended) Compiler

Maintenance: Documentation Only

A description of base register usage in an object program compiled by the
FORTRAN IV (H Extended) compiler has been added.
Registers Reserved for Branch Optimization

Maintenance: Documentation Only

A description of the registers reserved for branch optimization has been added.

Miscellaneous:

Maintenance: Documentation Only

Various examples have been corrected and/or expanded.

Editorial changes having no technical significance are not noted here.

Specific changes to the text as of this publishing date are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments ' Number 2

Date of Publication: January 3, 1974

Form of Publication: TNL SN28-0620 to SC28-6891-0 as amended by
TNL SN28-0609.

CMS Support of FREEFORM Source Programs

New: Programming and Documentation

A description of preparing free form source programs and of the new
filetype FREEFORT has been added.

SIFT Utility

New: Programming and Documentation

A description of the changes made to the SIFT Utility program in support
of free-form source files has been added.

ASA Carriage Control Characters

Modification: Documentation Only

The character + has been removed from the list of supported ASA carriage
control characters.

OS File Compatability

Modification: Documentation Only

Restrictions have been added to the description of file compatability and
conditions under which it can be accomplished are outlined.

Editorial changes having no technical significance are not noted here.

Specific changes to the text of this publication are indicated by a vertical bar to the left of
the text. These bars will be deleted at any subsequent republication of the page affected.

Preface

This user’s guide is intended for FORTRAN programmers who will be using
the IBM System/360 OS FORTRAN IV (G1) or Code and Go FORTRAN
IV compiler and the FORTRAN IV Library (Mod I) or the FORTRAN IV
(H Extended) compiler and the IBM FORTRAN IV Library (Mod II) under
the control of the Conversational Monitor System component of the Virtual
Machine Facility/370. It is assumed that the reader is familiar with the
FORTRAN IV Language and the CMS component of VM/370.

This publication is divided into 9 parts as follows:
e Introduction

e What You Need To Know before Using CMS and the FORTRAN IV
Compilers for the First Time

e Sample CMS Terminal Session

e VM/370 Commands for the FORTRAN IV Programmer

e CMS Programming Considerations

e FORTRAN IV Programming Considerations

e Using the FORTRAN IV Compilers

e Loading and Executing FORTRAN TEXT files under CMS
e Appendixes

The “Introduction” briefly describes the operation of CMS and the
relation of the FORTRAN IV compilers and libraries to that system.

The part “What You Need To Know before Using CMS and the
FORTRAN IV Compilers for the First Time” lists information about CMS
and the compilers that a new programmer must obtain from the system
administrator in his computing center before using the system.

The “Sample CMS Terminal Session” illustrates a typical terminal session
and introduces a less experienced user to some of the commands and
techniques necessary to write, compile, and execute a FORTRAN program
under CMS.

The “VM/370 Commands for the FORTRAN IV Programmer” part lists
the system commands that the FORTRAN programmer typically needs or
uses. The list does not include all the VM /370 commands available.

The “CMS Programming Considerations” part describes general concepts
in CMS file management and definition for the FORTRAN programmer. It
describes the creation of source files, the characteristics of compiler output
files, and the creation and use of files during the execution of object
programs.

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Reference Publications

The “FORTRAN IV Programming Considerations” part describes
FORTRAN 1V language coding techniques that will make most efficient use
of the compilers that you will be using under CMS. In addition, it describes
the use of the FORTRAN IV libraries and special features that are available
to particular compilers.

The part ‘“Using the FORTRAN IV Compilers” provides specific
information on the use of the FORTRAN IV (G1), Code and Go FORTRAN
IV, and FORTRAN IV (H Extended) compilers by the CMS terminal user. It
describes the commands necessary to invoke these compilers and the various
kinds of output that are available. In addition, it describes the restrictions
placed upon the FORTRAN IV language by the compilers. Each compiler is
treated separately for ease of reference.

The part “Loading and Executing FORTRAN TEXT files under CMS”
presents the commands necessary to load and execute FORTRAN programs.
The commands required for each compiler are treated separately.

The “Appendixes” contain a description of the error messages produced by
CMS for the FORTRAN programmer, information on using assembler
language subprograms with FORTRAN programs, a description of the
FORTRAN IV Debug Facility, a description of the CONVERT utility
program that is available to Code and Go FORTRAN IV programmers who
want to convert free-for source programs to fixed-form, information on
modifying the extended error handling facility option table, and a description
of file characteristics for compatability with OS data sets.

Industry Standards Reflected in this Product

This product is designed according to the specifications of the American National
Standard (ANS) FORTRAN, X3.9-1966, as understood and interpreted by IBM as of
December 1972.

Information on the IBM FORTRAN IV Language and the IBM FORTRAN
IV Libraries (Mod I) and (Mod II) can be found in the following
publications:

IBM System/360 and System/370
FORTRAN 1V Language
Order No. GC28-6515

IBM System/360

FORTRAN 1V Library

Mathematical and Service Subprograms
Order No. GC28-6816

IBM System/360 OS

FORTRAN 1V Mathematical and Service Subprograms
Supplement for the Mod I and Mod II Libraries
Order No. SC28-6864

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Diagnostic messages for the FORTRAN IV (G1) compiler can be found in
the following publication:

IBM FORTRAN IV (G1) Processor
and TSO FORTRAN Prompter
for OS and VM/370 (CMS)

Installation Reference Material
Order No. SC28-6856

Diagnostic messages for the Code and Go FORTRAN IV compiler can be
found in the following publication:

IBM Code and Go FORTRAN IV Processor
for OS and VM/370 (CMS)

Installation Reference Material

Order No. SC28-6859

Diagnostic messages for the FORTRAN IV Library (Mod I) can be found in
the following publication:

IBM FORTRAN 1V Library (Mod I)
for OS and VM/370 (CMS)
Installation Reference Material

Order No. SC28-6858

Diagnostic messages for the FORTRAN 1V (H Extended) compiler and (Mod
II) library can be found in the following publication:

IBM System/360 OS

FORTRAN 1V (H Extended) Compiler
and Library (Mod II)

Messages

Order No. SC28-6865

Information on VM/370 and the command langauge can be found in the
following publications:

IBM Virtual Machine Facility/370
Command Language

User’s Guide

Order No. GC20-1804

IBM Virtual Machine Facility/370
EDIT Guide
Order No. GC20-1805

IBM Virtual Machine Facility/370
Terminal User’s Guide
Order No. GC20-1810

Information on using the FORTRAN IV compilers under OS can be found in
the following publications:

IBM System/360 OS

Code and Go FORTRAN and
FORTRAN IV (Gl)
Programmer’s Guide

Order No. SC28-6853

IBM System/360 OS

FORTRAN IV (H Extended) Compiler
Programmer’s Guide

Order No. SC28-6852

Contents

Introduction

FORTRAN IV (G1) Compller

Code and Go FORTRAN IV Compiler
FORTRAN IV (H Extended) Compiler
FORTRAN IV Library (Mod I)
FORTRAN 1V Library (Mod II)

What You Need to Know Before Usmg CMS or the FORTRAN IV Compnlers for

the First Time .

Information about CMS -
For Gaining Access to the System
For Your Terminal .

For Your Virtual Machine . .
For Your FORTRAN Compiler .
Syntax Conventions Used in this Book

Sample Terminal Session .
Preliminary Procedures and Signing On
Starting the Session .

VM/370 Commands for the FORTRAN IV Programmer .

CMS Programming Considerations
FORTRAN Source Files
Identification .
Characteristics . .
Creating New FORTRAN Source Flles
Preparing to Compile FORTRAN Source Programs
CMS Return Codes Following Compiler Commands
Entering FORTRAN Source Files From Devices Other than the Termlnal
FORTRAN Compiler Output Files .
LISTING File .
Obtaining a Printed Copy of your LISTING Frle
Retaining LISTING Files Coe e
TEXT File .
Identifying Programs ina TEXT Frle
Retaining TEXT Files ..
Contents of the TEXT File
Execution-Time Input and Output Files
Defining Execution-Time Files
Pre-Defined Files .
Pre-Defined Terminal Input Frles
Pre-Defined Terminal Output Files .
Pre-Defined Punched Card Output Files
User-Defined Files
FILEDEF Command for FORTRAN Programmers .
Specifying FORTRAN Record Formats and Logical Character1st1cs
Under CMS Lo
Identifying and Using User-D efmed Flles .
Sequential Files
User-Defined Disk Input and Output Flles
User-Defined Tape Input and Output Files
User-Defined Terminal Input and Output Files .
User-Defined Punched Card Input Files
User-Defined Punched Card Output Files .
User-Defined Printed Output Files

.35
- 36
.36
. 37
.38
. 38
-39

.11
.12
.12
.13
.13
.13

14
‘14

.14
.15
.15
.16

.17
.17
.18

.28

.32
.32
.32
.32
.33
.34
.34

.42
.42
.43
. 44
. 45
. 45
. 45
.47

- 52
.53
- 53
- 53
- 55
- 56
- 57
- 62
- 63

Page of SC28- 6891 0, -1
Revised March 118, 1977
By TNL SN20-9201

Direct Access Files
Using Disk and Tape Mult1f11es

FORTRAN IV Programming Considerations .
FORTRAN Coding Techniques for Greater Efflcwncy . .
Language Considerations for the FORTRAN IV (G1), Code and Go
FORTRAN IV, and FORTRAN IV (H Extended) Compllers

Arithmetic IF Statements . .o .

BACKSPACE Statement

FIND Statement . .

List-Directed Input and Output .

Literals in Data Initialization .

Logical IF Statement

PAUSE n Statement .

READ Statement

RETURN Statement

STOP n Statement

Unformatted Forms of Input and Output Statements (Not Includmg

List-Directed)
Language Considerations for the FO RTRAN IV (G 1) and Code and Go
FORTRAN IV Compilers Only . Coe

Array Notation in Input and Output Statements

Language Considerations for the Code and Go FORTRAN IV Compller Only .

Free-Form Input .

Language Considerations for the FO RTRAN IV (H Extended) Compller Only

Array Notation in I/O Statements

BASE Registers

EQUIVALENCE Statement

EXTERNAL Statement

GENERIC Statement

Name Handling .

OPTIMIZE Compiler Optlon . .
Programming Considerations When Usmg OPTIMIZEI and
OPTIMIZE2 .
Programming Cons1derat10ns When Usmg OPTIMIZE2

Using the FORTRAN Subroutine Libraries

Library Features Available with the FORTRAN IV MOD I and MOD II

Libraries e e e e e
List-Directed and Formatted Input/Output
Extended Error Handling R

The Option Table .

Features Available with the FORTRAN IV lerary (MOD II) Only
Automatic Function Selection e e .o
Automatic Precision Increase Facility .

Precision Conversion Process .

Promotion . .

Effect of the AUTODBL and ALC Optlons on Automatlc

Precision Increase e e e e e e e e
AUTODBL Option
ALC Option

Effect on COMMON or EQUIVALENCE Data Values

‘ProgrammlngCon51derat10nsw1thAPI ... ' e /

Effect on Literal Constants . . e e e e e e e .,‘.

Effect on Programs Calling Subprograms .

Effect on FORTRAN Library Subprograms . . B

Effect on CALL DUMP or CALL PDUMP Statements
Effect on Direct-Access Input/Output Processing
Effect on Unformatted Input/Output Data Sets
Effect on the Storage Map . Coe .
Extended Precision .
EXTERNAL Statement Extens1on .

Using the FORTRAN IV Compilers
FORTRAN IV (G1) Compiler
FORTGI Command . .

-64
-65

102
102
102

Page of $C28-6891-0, -1
Added May 13, 1977

By TNL SN20-9225

Output from the FORTRAN IV (G1) Compiler .
FORTRAN IV (G1) LISTING File .
FORTRAN IV (G1) TEXT File .
Compiler Language Restrictions for FO RTRAN IV (Gl)
Code and Go FORTRAN IV Compiler . Coe e
GOFORT Command Format . . .
Output from the Code and Go FORTRAN IV Comprler .
Code and Go FORTRAN IV LISTING File
Code and Go FORTRAN IV TEXT File .o
Compiler Language Restrictions for Code and Go FORTRAN
FORTRAN IV (H Extended) Compiler coe e
FORTH X Command Format . .
Changing Compiler Options with a *PROCESS Statement
Output From the FORTRAN IV (H Extended) Compiler
FORTRAN IV (H Extended) LISTING File .
FORTRAN IV (H Extended) TEXT File . . .
Compiler Restrictions for FORTRAN IV (H Extended)

Loading and Executing FORTRAN Object Programs Under CMS .
Command Procedure for FORTRAN IV (G1)

Command Procedure for Code and Go FORTRAN IV (w1th the GO Optnon)
Command Procedure for Code and Go FORTRAN IV (with the NOGO
Option) . . e e e
Command Procedure for FORTRAN IV (H Extended)

Appendix A: FORTRAN Compllatnon Debug Faclllty
DEBUG Statement . . .
TRACE .
SUBTRACE
INIT .
SUBCHK
DISPLAY Statement
Special Considerations .

Appendix B: Assembler Language Subprograms
Subroutine References . .
Argument List
Save Area
Calling Sequence . .
Coding the Assembler Language Subprogram .
Coding a Lowest Level Assembler Language Subprogram
Higher Level Assembler Language Subprogram
In-Line Argument List
Sharing Data in COMMON .
Retrieving Arguments from the Argument Lrst .
RETURN iin an Assembler Language Subprogram
Object-Time Representation of FORTRAN Variables .
Integer Type Ce e e e e e e
Real Type
Complex Type
Logical Type

Appendix C: SIFT Utility .
Converting Free Form Input to Fixed Form .
Invoking the SIFT Utility .

Appendix D: Subprograms for the Extended Error Handling Faclhty
Accessing and Altering the Option Table Dynamically .
User-Supplied Error Handling e e
User-Supplied Exit Routine
Option Table Considerations . . .
Considerations for the Library Wrthout Extended Error Handl.mg
Facility . e e e e e .

105

106

111

111

112
112
114
115

116
118
119
119
125
125
126
134
134

136
136
137

137
139

141
141
141
141
142
142
142
143

145
145
145
146
147
148
148
149
151
151
152
154
155
155
156
158
158

161
161
161

165
165
168
172

180

180

Figures

Appendix E: Defining Execution-Time Files for Compatibility with OS

. 181
Appendix F: Error Messages . . 191
Glossary . 197
Index . 199
1. Sample Instruction Sheet for a Hypothetical Terminal 18
2. VM/370 Commands Frequently Used by FORTRAN Programmers e 29 31
3. - CMS Return Codes for FORTRAN Compilations coe 35
4. Producing a LISTING File with Various Compilers 36
5. Producing a TEXT File with Various Compilers . . 38
6. Types of ESD Card Formats in FORTRAN TEXT Files . . 40
7. TEXT File Structure Produced by the FORTRAN IV (G1) and Code and Go
Compilers . . . 41
8. Object Module Deck Structure Produced by the FORTRAN IV (H Extended)
Compiler . .. 41
" 9. Summary of Data Set Reference Numbers, Input/Output Statements and
Record Formats Used for Pre-Defined Files . Coe e 44
10. ASA Carriage Control Characters . 45
11. General Form of the FILEDEF Command for FORTRAN Programmers .. 47
12. Tape Recording Technique Specification Available for the TRTCH Option of
the FILEDEF Command . . 49
13. Record Formats Available for the RECFM Optron of the FILEDEF Command. 50
14. Control Character Specifications Available for the RECFM Optron of the
FILEDEF Command . 50
15. Criteria for Détermining a Value for the LRECL Optron of the FILEDEF
Command . . 51
16. Criteria for Determrmng a Value for the BLOCK Optron of the FILEDEF
Command . . 51
17. FILEDEF Command for User-Defrned Sequentral Drsk Frles 54
18. FILEDEF Command for User-Defined Tape Files 55
19. FILEDEF Command for User-Defined Terminal Files . . 56
20. FILEDEF Command for One User-Defined Punched Card File . 58
21. FILEDEF Command for User-Defined Sequential Disk Files 61
22. FILEDEF Command for User-Defined Punched Card Files 62
23. FILEDEF Command for User-Defined Printed Files 63
24. FILEDEF Command for User-Defined Direct Access Files 65
25. Contents of the FORTRAN Libraries (Mod I) and (Mod II) 82
26. Option Table Preface . . 87
27. Option Table Entry Format 88
28. Option Table Default Values . 89
29. Built-In Functions--Substitution of Srmple and Double Precrsron 93
30. Library Functions--Substitution of Single and Double Precision . 93
31. Format of the FORTG1 Command for the FORTRAN IV (G1) Comprler 102
32. 'The Effect of Various Compiler Options on Compiler Output (G1) .. 106
33. FORTRAN IV (G1) LISTING File . . . 109-110
34. Format of the GOFORT Command for the Code and Go FORTRAN IV
Processor . . 112
35. The Effect of Vanous Compller Optrons on Comprler Output (Code & Go) . 115
36. Code and Go FORTRAN Compiler LISTING File (Default Options) . . 117
37. Format of the FORTHX Command for the FORTRAN IV (H Extended)
Compiler . . . 120
38. The Effect of Varrous Comprler Optrons on Comprler Output (H Extended) . 126
39. H Extended Storage Map Variable Classifications) 128
40. FORTRAN IV (H Extended) LISTINGFile 131-133
41. Save Area Layout and Word Contents . e e e e e e . 146
42. Linkage Registers . 147
43. Linkage Conventions for Lowest Level Subprograms . 148
44. Linkage Conventions for Higher Level Subprograms . 150
45. In-Line Argument List . e e e e . 151
' 46. Dimension and Subscript Format 7153
47. Assembler Subprogram Examples . . 154
48. Free-Form Fixed-Form SIFT Output Lrstmg e . 163
49. Sample Program Using Extended Error Handling Faclhty e e e .. 171172
50. Corrective Action After Error Occurrence . . 174
51. Corrective Action After Mathematical Subroutrne Error Occurrence . . 175-178
52. Corrective Action After Program Interrupt Occurrence . 179
53. Maximum BLKSIZE by Device Types . . 182

Introduction

As a FORTRAN programmer your are probably familiar with batch
processing, punching a card deck, sending it to your computing center, and
waiting several hours or overnight to get your results back. This arrangement
works well for large production programs that are run on a recurring basis, for
programs that handle large amounts of card or tape files and produce
voluminous printed listings, and for programs in which time is not a vital
factor. However, for problem solving, quick retrieval of information, or
system maintenance and modification, batch processing does not always fill
your needs. Often, for example, a small error in an urgently needed program
will keep it from running successfully and the time you spent waiting and
rerunning the program was wasted. When time is critical, a different type of
processing is necessary. '

A time-sharing system is the answer. It allows you to sit at a terminal, use
simple commands, enter your program, run it, and get your results back in a
matter of minutes at the same terminal. The Conversational Monitor System
(CMS), operating in the time-sharing environment produced by the Control
Program (CP) component of the Virtual Machine Facility/370, offers you,
the terminal user, an extensive range of computer functions: console control,
creating and managing files, compiling and executing programs, performing
input and output operations, and system development and maintenance.

The control program component of VM/370 creates a simulated (that is,
virtual) computer and makes it available on a shared-time basis. Each user
has his own simulated computer and, shares with you, the time and facilities
of the real computer in your computing center. Your terminal becomes the
operator’s console for your virtual computer. The CP command language
permits you to control the operation and status of your virtual computer in
the same way that a computer operator controls the real machine. With some
of the commands available, you can initialize control programs, manipulate
devices and data, and communicate with other users or with the system
operator, who runs the real computer to which your terminal is attached.

As a real computer functions most efficiently under the control of an
operating system, so too does a virtual machine. The Conversational Monitor
System is an operating system that you can execute under CP to control your
virtual computer. CMS permits you to use your terminal as the primary
means for entering data and writing programs. The CMS command language
simplifies file and data handling through the CMS editor and its various
subcommands, and minimizes your concern with system functions and
elaborate data management procedures. CMS is, primarily, disk oriented.
Most files are kept on disks and are always available to you through your
terminal. CMS allows you to create files that contain virtual card decks,
printed listings, and magnetic tapes. This means that you can, for example,
create a virtual card deck at your simulated card punch, use CMS commands
to transfer it.to your simulated card reader, and read it back in without having
to handle actual cards. Of course, you can read actual cards and tapes, and
create real card decks, printed listings, and tape files off-line on real devices in
your computing center or a remote entry system. In addition, you may group
a series of related or often used CMS commands together and execute them
as a unit, thus simplifying your use of the command language.

11

With the addition of the FORTRAN compiler commands to the CMS
command language, you can compile FORTRAN source programs and use
the FORTRAN library subprograms. The TEXT files created by the
FORTRAN compilers under CMS can be loaded and executed under CMS or
link edited and executed under OS. In addition object programs created
under OS can be loaded and run under CMS. The FORTRAN compilers and
library that are available as program products under CMS are:

e FORTRAN IV (G1) Compiler

o Code and Go FORTRAN IV Compiler

e FORTRAN IV (H Extended) Compiler

o FORTRAN IV Library (Mod I) (for G1 and Code and Go)

e FORTRAN IV Library (Mod II) (for H Extended)

FORTRAN 1V (G1) Compiler

The FORTRAN IV (G1) compiler is invoked under CMS with the FORTGI
command. FORTRAN IV (G1), offers the capabilities of directing error
diagnostics and/or compiler output to a terminal and of using list-directed
input/output. Additionally, the processor supports FORTRAN Interactive
Debug.

Code and Go FORTRAN IV Compiler

The Code and Go FORTRAN IV compiler is invoked under CMS with the
GOFORT command. Code and Go FORTRAN, as a time-sharing tool, has
been designed to meet the specific needs of two types of users: (1) the
problem solving programmer, who writes, debugs, and executes relatively
short programs at the terminal, and (2) the production programmer who
debugs components of a large program on-line before running the program
through a production-oriented processor, such as FORTRAN 1V (H
Extended). Thus, design emphasis has been placed on rapid
compilation-execution turnaround and on ease of use. Code and Go supports
free-form input format -- which considerably reduces the programmer’s
concern with terminal-typing tasks, such as tab settings and margin stops --
and includes options for obtaining short- or long-form diagnostic messages.
Support is also provided for FORTRAN Interactive Debug and for the use of
list-directed input/output, which frees the programmer from having to code
FORMAT statements.

FORTRAN IV (H Extended) Compiler

The FORTRAN IV (H Extended) compiler is invoked under CMS with the
FORTHX command. FORTRAN IV (H Extended), besides providing
extended language capability for computational power, is a true production
compiler, utilizing advanced optimization technology to produce efficient
object code. The extended language capabilities of FORTRAN IV (H
Extended) include:

e Support for extended precision arithmetic via REAL*16 and
COMPLEX*32 data types or via use of a compiler option.

e Automatic function selection to simplify references to built-in and
library functions.

As a compilation-time option, the user may specify automatic precision
increase, allowing for conversion of floating-point calculations from single to
double and double to extended precision. The FORTRAN IV (H Extended)
compiler requires the FORTRAN IV Library (Mod II), or its equivalent, for
compiling and executing source programs.

FORTRAN Library (Mod I)

The FORTRAN IV (Mod I) library is made available for use under CMS with
the GLOBAL TXTLIB command specifying from one to eight installation
designated library names. Code and Go and G1 are supported by the
FORTRAN 1V Library (Mod I), which provides mathematical, service, and
input/output routines needed by the processors. Additionally, the Mod I
library and the processors incorporate the same data conversion routines,
which round real constants and real data items on input rather than truncate
them. This provides finer resolution and greater accuracy of resuits.

FORTRAN 1V Library (Mod II)

The FORTRAN IV (Mod II) library is made available for use under CMS
with the GLOBAL TXTLIB command specifying from one to eight
installation designated names. FORTRAN IV (H Extended) compiler is
supported by the FORTRAN IV Library (Mod II), in addition to specifically
providing routines required by the processor, encompasses all of the functions
of the Mod I library; thus, an installation equipped with the Mod II library
does not need the Mod I library to support Code and Go or G1.

13

What You Need To Know before Using CMS or the FORTRAN IV Compilers for

the First Time

Information About CMS

Before you use CMS or the FORTRAN IV compilers for the first time, you
should obtain the following information from the system administrator in your
computing center:

For Gaining Access to the System

For Your Terminal

14

What is your user identification code?

These are unique names that identify you and authorize your use of
VM/370.

What is your log-in procedure?

The log-in procedure may vary depending on the type of terminal that
you will be using and the way it is connected to the real computer in
your computing center. This information can also be found in the

publication IBM VM/370 Terminal User’s Guide, Order No.
GC20-1810.

What is the character-delete character?

You must determine which character you will use for deleting a
character from a line.

What is the line-delete character?

You must determine which character you will use for deleting an entire
line.

For Your Virtual Machine

For Your FORTRAN Compiler

What is the line-end character?

You must determine which character you will use for logically ending
an input line.

Note: This information is also available through the QUERY
TERMINAL command.

What is the configuration of your virtual machine?

The needs of your work and the type of programs you will be using
should help your system administrator decide on the best configuration
for your virtual machine.

What disk is normally assigned as your primary (A) disk?

Your primary disk is normally assigned to you at the beginning of each
terminal session. It is usually identified as 191. Your system may
require a different disk and you may have to issue an ACCESS
command for it at the start of your session.

Which FORTRAN 1V compilers and libraries are available?

You will need to know which FORTRAN IV compilers, libraries, and
optional features are available in order to select the compiler that is
best suited to your needs.

What defaults have been established for the compiler and library you
are going to use? ’

You should determine what defaults have been established for: the
compiler options, the maximum number of FORTRAN data set
reference numbers permitted, the data set reference numbers that have
been pre-defined for the READER, PRINTER, and PUNCH files, and
the names of the files in which your library is available. Some of the
defaults in use at your computing center may differ from those
described in this book and may require different techniques than those
described. The defaults in use may differ, since your system
administrator has the ability to tailor his system to better meet the
needs of his users.

15

Syntax Conventions Used in This Book

16

The syntax conventions used to illustrate CMS commands and FORTRAN
statements throughout this book are:

Lower-case letters, digits, and special characters represent information
that you must type exactly as shown.

Upper-case letters digits and special characters represent information
that is typed out by the system.

Italics represent information that you must supply.

Information contained within brackets [] is optional and may be
omitted. Where a list is given any number of the items listed may be
included.

The appearance of braces {} indicates that a choice must be made
between the items contained in the braces.

The appearance of the vertical bar | indicates that a choice must be
made between the item to the left of the bar and the item to the right
of the bar.

An ellipsis (a series of three periods) indicates that the preceding
syntactical unit may be used one or more times in succession.

A list whose length is variable is specified by the format: x,,x,,....x,.
This format indicates that a variable number of items may be specified,
but that at least one is required (commas must separate the items).

Sample Terminal Session

This section describes a hypothetical terminal session using the FORTRAN
IV (G1) compiler; however, any of the other FORTRAN compilers that are
available could be used. You will be introduced to many of the features of
VM/370 and CMS and how they interact with you. You are invited to sit at
your terminal and work along as the sample session is described. If you
follow the session closely, you will begin to develop a facility for
programming at a terminal under the control of CMS. This sample session
does not illustrate all the commands that are available to you, only those that
are directly related to creating, compiling, and executing a FORTRAN
program. An explanation of all the commands is contained in the publication
IBM VM/370 Command Language User’s Guide, Order No. GC20-1804.
It is assumed throughout that you are using an IBM 2741 Communications
Terminal; if you are not, refer to the publication IBM VM/370 Terminal
User’s Guide, Order No. GC20-1810 for information on your terminal.

As you work through the session, remember that with CMS there is usually
more than one way to achieve a desired result. The techniques and
commands outlined here may not be the ones that you will eventually decide
to use; however, they serve as a guide and represent a usable programming
tool.

A printout of the sample session, as it would appear at your terminal, is
included on foldout charts that follow the descriptive text. Turn to the first
chart now and keep it open as you read about the sample session. The circled
numbers in the left-hand margin of the printout indicate important points in
the session. Each number has a corresponding explanation in the text. In this
session, all of the commands and codes that you will type are printed in
lowercase letters and all the systems responses are printed in uppercase letters
(this convention is followed for all the illustrations in this book).

Preliminary Procedures and Signing On

a The first thing you must do to start a terminal session is to turn on
your terminal according to the instructions provided by your
installation. In many cases an instruction sheet, such as the one shown
in Figure 1, will be attached to your terminal. In the example shown,
steps 1 through 8 must be done to turn on the power and establish a
connection with the system. The meaning of step 9 will become
evident in the description of the sample session that follows. If an
instruction sheet is not available at your terminal, consult the
publication IBM VM/370 Terminal User’s Guide, Order No.
GC20-1810 or your computing center.

Starting the Session

Note:

Terminal #7

(Available from 9:00 a.m. - 3:00 p.m. For additional time call E. Souse at extension 7801)

Turn the ON/OFF switch to ON.

Make sure that the COM/LCL switch is set to COM.

Remove the handset from the attached telephone (data set).

Press the TALK buiton on the telephone.

Dial extensions 5555, 5556, or 5557.

Wait for the high-pitched tone. When you hear this tone. you are in contact with
the computer. If you get a busy signal or no answer, hang up and repeat this
procedure starting from step (3) trying another extension.

Upon hearing the high-pitched tone, push the DATA button on the telephone. If
the DATA button light goes off at any point during the session, repeat this
procedure from step (3).

Replace the handset on the cradle.

Enter the LOGIN command.

When you are finished with your terminal session, enter the LOGOFF command,
and turn the ON/OFF switch to OFF. The DATA button light will go out.

Figure 1. Sample Instruction Sheet for a Hypothetical Terminal

The first entry on the printout of the sample session is the system’s
response to your call, notifying you that you have been successfully
connected to the system and that VM /370 is available. The format of
the VM/370 ONLINE response varies slightly depending upon the
type of terminal you are using. (See the publication IBM VM/370
Terminal User’s Guide, Order No. GC20-1810 for the exact response
that your terminal types out.) Once you have received the ONLINE
response, you are ready to identify yourself to the system.

To do so, hit the ATTN key. When the keyboard unlocks, type a
LOGIN command. The system recognizes authorized users by an
identifier and a password that are entered separately. As you can see,
you begin by typing your identifier (here, EUSTACE) as part of the
LOGIN command. The system will then ask for your password.
Depending on your terminal, the password either will not be printed or
will be typed over and obscured. This is a safeguard to protect your
user identification from unauthorized use. If the system recognizes
you as an authorized user, it will type out a LOGIN message and any
messages from the system operator or other users. The LOGIN

message indicates that your virtual computer is available and you may
now initialize an operating system in it.

Initializing an operating system, in this case CMS, is simple: type the
abbreviation IPL followed by at least one blank and CMS. CMS
responds, indicating that it has been successfully initialized. At this
point you are no longer directly connected to the control program
component of VM/370, but are now in communication with CMS. All
the CMS commands are now available to you. Should you wish to
return to the control program environment you need only hit the
ATTN key twice or type the letters CP. To go back to CMS again,
type BEGIN. There is a mechanism that provides an easy check to
determine which component you are communicating with. Simply
enter a null line (that is, a line containing no characters or blanks) by
hitting the RETURN key CR (representing carrier return). The
system will identify the component you are communicating with by
typing the message CP or CMS.

It is assumed for this terminal session, that you already have a
PROFILE EXEC procedure available that contains a GLOBAL
TXTLIB command specifying the entire FORTRAN IV Library that
you are going to use. If you do not have such a procedure, it is
advisable to create one, now, before you continue on. A PROFILE
EXEC procedure that has been filed on your A disk is executed
automatically when you issue the first command. The procedure
usually contains CP and CMS commands that you would need each
time you initialized CMS and that would be required for the type of
work you are going to do. For example, a typical PROFILE EXEC
procedure might contain the following:

ACCESS commands - to obtain disks other than A191
SET commands - to establish a terminal environment
GLOBAL commands - to make text and macro libraries available

To create a PROFILE EXEC procedure now, use the EDIT facility enter
the commands that you want the procedure to contain, and reinitialize CMS.
See the publication IBM VM/370 Command Language User’s Guide,
Order No. GC20-1804 and IBM VM/370 EDIT Guide, Order No.
GC20-1805. For detailed information on creating an EXEC procedure.
Remember, if you do not have a PROFILE EXEC procedure on your A disk,
you must issue any of the required commands listed above at the beginning of
each terminal session. To use this terminal session you will require one
GLOBAL TXTLIB command specifying the entire FORTRAN 1V library
you are going to use.

Now that you have a computer and an operating system at your
disposal, you are ready to begin work. Since you will not be using
punched cards, and all your data will be kept in the system’s internal
storage, you must identify your collection of data, called files, to the
system (your collection of data in this case is a program). To do so,
you need only choose a unique name (one that does not already exist
on any of your disks) for it. Strictly speaking, a CMS file is properly
identified by filename, filetype, and filemode. The filename identifies
the file; the filetype indicates the contents of the file, and the filemode
determines on which of your disks the file is to be placed. Only the
filename and filetype are required for the purposes of this example.

20

The default filemode of A1l is accepted throughout. To avoid the use
of duplicate filenames, type a LISTFILE command. CMS will type a
list of all the files that are being kept on your disks.

You will notice that the system types the characters R; after the list of
files. This is a ready message that indicates the system has successfully
completed your request and is ready for the next command. Should
the system fail to operate properly after the message was typed out, all
of the information preceeding it will be available. This means that if
you are in the midd!e of a long and complicated series of commands
and code, you do not have to start over should the system fail; you can
begin, after reinitializing the system, immediately following the last
ready message.

After choosing a name for your file, in this case MAGICSQ, you can
use the EDIT command to identify it to the system. By entering the
filename (and, since this will be a FORTRAN source program, a
filetype of FORTRAN,) the new file will be created under the
filename of MAGICSQ. The filetype, FORTRAN, tells the CMS
editor that your program statements are to be recorded in a
FORTRAN format. (There are other filetypes that you will encounter
later in this book.) Since this is a new file, the CMS editor responds
with NEW FILE and enters the EDIT mode. In the EDIT mode, all
the editor subcommands are now available to you. Before you can
begin writing your program, however, you must issue an INPUT
subcommand. This command causes the editor to enter the INPUT
mode, in which all subsequent lines will be treated as input data and
will become part of the file MAGICSQ. Since the editor recognizes
the FORTRAN filetype, an internal set of tabs is established. By
depressing the TAB key editor will automatically begin entering the
line in column 7; thereby, saving you the trouble of spacing to column
7.

o You are now ready to begin writing your FORTRAN program. The

program that you will write generates a magic square for a number that
you provide from the terminal. The magic square for a number
consists of a set of numbers (none of them repeated) that are arranged
into a square, so that each row, column, and diagnonal add up to the
original number.

Example:

This is the magic square for the number 45.

18 11 16
13 15 17
14 19 12

To keep this program relatively simple, the magic square produced is
limited to 3-by-3 and the numbers, for which the square can be
generated, must be greater than 15 and divisible by 3. In accordance
with good programming practice comments have been included that
describe what the program does and how it works. Additional
comment lines, containing the letter C, have been included to highlight
the text of the comments and make them easier to read. The program

has been purposely written with errors built-in to demonstrate some of
the facilities of the CMS context editor.

The first contrived error occurs at this point in the sample program.
The right parenthesis has been purposely omitted and a carriage return
CR has been entered to complete the line.

m To correct the error in the middle of your program, you must go from
the INPUT mode to the EDIT mode. A null line (that is, CR only)
entered at the terminal does this switching of modes for you. Simply
strike the CR key and a null line is entered. The editor responds with
EDIT: and the system is back in the EDIT mode ready to receive
editor subcommands.

The TYPE subcommand is used to verify the position of the editor’s
“pointer”’ at the line that contained the error.

Q To make the correction, enter the CHANGE subcommand with a
unique portion of the text that contains the error and the same portion
of text repeated but with the error corrected. The portion of text you
specify must be unique. If not, later portions of your program that
contain the same combination of characters may be inadvertantly
changed also. It is assumed that verification is in effect and that the
system will retype the corrected line as an additional check. (If you do
not have verification in effect, you may issue a VERIFY ON command
before you correct this error.)

To resume writing your program, enter the INPUT subcommand and
the editor reenters the input mode, as the response INPUT: indicates.

m This statement exceeds 72 characters, the maximum length permitted
for FORTRAN source statements. To enter it within the confines of a
72-character line, you must continue the additional portion on the next
line preceded by a continuation character (in this case an X) in column
6. You cannot use the TAB key in this situation; you must use the
SPACE bar to position the carrier in column 6. In handling literal data
of this type, avoid writing, in one statement, a string of characters that
will exceed the maximum length of the terminal’s printed line, 132.

This repetition of the same FORTRAN statement is the second error
in the program. It will be corrected after the program is complete but
before it is compiled. Continue on.

This statement contains an erroneous statement label. It is the last
error that has been included in the source program. It has been left
uncorrected for the time being so that it will cause the compiler to
generate an error message when you attempt to compile this program.

0 With the END statement, you have finished writing your program.
Before compiling it, though, check through it for mistakes. Assume
that you find only the error mentioned in item 15 above. To correct
this error, you must enter the EDIT mode. As you have done before,
hit the CR key to enter the edit mode.

Issue a TOP subcommand to position the editor’s pointer at the
beginning of the file. You can now use the FIND subcommand to
position the pointer at a line near the one in error. In this situation,
the FIND subcommand saves you time since you do not have to

21

22

identify each WRITE statement that preceded the one you want, as
would be required with the LOCATE subcommand (described later in
this section). The line found by the subcommand is typed out for you.

The UP subcommand again can be used to move the pointer up to the
line you want.

The DELETE subcommand removes the extra WRITE statement from
your program.

Before you can compile this program you must file it (that is, store it)
on one of your disks. The FILE subcommand will do this for you.
Once your source program is filed on one of your disks under the name
MAGICSQ, the ready message signals that you have returned to CMS
and you may enter a compiler command.

You are now ready to compile your program. A FORTRAN compiler
command (in this case FORTGI) specifying the file name MAGICSQ
is all that is needed.

@ As you can see, the error that was left uncorrected caused a compiler

error message to be typed out and a CMS return code (00008) to be
included in the ready message. The return code, in this case, indicates
that errors were detected during compilation that may prevent the
program from executing. The return code corresponds to the severity
code of the compiler error message. message to appear as predicted.
The normal compiler error message is typed out, and, in addition, a
CMS return code accompanies it.

Of course, you must correct the error before the program can be
recompiled. Since the file is already on a disk, the EDIT command
must be used to regain access to its contents. In response to the
command, the CMS enters the EDIT mode and responds with EDIT:.

The LOCATE subcommand causes the editor to search your text until
a match is found for the character string that you specify. Here, you
are searching for the IF statement that contains the undefined label.
As you can see, in this case, the first match is not the line you want.
Enter the LOCATE subcommand again. The second match is also not
the line you want. Enter the subcommand again. The third match
locates the right statement. Both the CHANGE and FILE
subcommands are used as described previously: CHANGE corrects
the error, and FILE replaces the old copy of the program on your disk
with the new, corrected copy.

Recompile the program using the FORTGI command a second time.
This time the compilation is successful and a ready message appears

without a return code indicating that no errors were detected in your
program.

If you would like to test the program and actually produce a magic
square, enter the LOAD command and specify the name of the
program, MAGICSQ. The program will begin executing. From then
on, follow the instructions that are typed out by the magic square
program.

Since the compiler generates a default name of MAIN for the
executable code produced for your program, enter a START MAIN
command.

When the program has finished executing, a ready message will appear.
At this point you may continue using CMS and try some programming
on your own or you may log off the system by entering the LOGOUT
command. The system responds again with a summary of the time
your session used and breaks the connection between your terminal
and the computer. The DATA light on the telephone (data set) goes
out and your terminal session is over.

23

24

Pages 25, 27, 27.2, 27.4, and 28 are foldout
pages and have been assembled inside the back
cover. These pages should be removed and

placed following this page in your manual.

© ©0

o000

0000

o

Dial into vm/370

VM/370 ONLINE XXXXXXKXKXXX
login eustace

ENTER PASSWORD :

CP WILL BE UP 24 HOURS A DAY
LOGON AT 11.02.09 EST ON THURSDAY 11/30/72

ipl cms
CMS...VERSION 1.0 11/30/72

listfile

FILENAME FILETYPE FM
INDIAN FORTRAN Al
DUMPREST ASSEMBLE Al
SUPERSCR ASSEMBLE A1l
MY FORTRAN Al
INDIAN TEXT Al
FORTCLG EXEC Al
DUMPREST LISTING Al
INDIAN LISTING Al
R;

edit magicsq fortran

NEW FILE.

EDIT:

input

INPUT:
ccceccececeecceeccecccecececcececeecccceccecceccecccecceceeccecccecceccecececececcececcecccececcecececceccececccecceccecceccccecce

magicsqg

[}
(o}
this is a program for generating a 3-by-3 magic square (od
o} [o}
C this section of the program requests the name of the user that wants to generate the ¢
cmagic square. C.
cccceccecdcececececececececececececcecceccecccecececcecececceccececcececccececcececceecececececcececccceccece
write (6,5)

format (' please enter your name preceded by a blank"')

read (5,10 @)

EDIT:
type
READ (5,10
change /10/10)/
READ (5,10)
input
INPUT:
10 format ('name ')
ccececceceecececececececececececececececceccececcececececececcecececceccecceccecceccececcecceccceccecceccecceccececcecccecccccccccce
Cthis section of the program requests the number for which the user wants the magic C
C square generated. C
(o} oF o o of off off o o o X o o o o o o o oFf o o o o o o o o oF oF o o o oFf o o o o3 o o 0 o oF o oFf o of of o o o o of oF oFf o of o o o X oX of o o o ol oX o}
15 write (6,20)
write (6,22)
write (6,24)
20 format (' enter an integer number of up to 8 digits that is greate
xr than 14 and divisible by 3')

25

22 format (' youmust precede it with enough blanks to make up 8 digi
xts')
24 format (' for example - if your number is 3 digits long precede it
xwith 5 blanks')
25 read (5,30) number
30 format (i8)
ccccceececeeccececeececececceeeccecceccececcececcececeececcecceccecccecceccecececceccececececececcceccecccecccececceccecccceccece

Cthis section of the program tests the number selected by the user to see if it is c
Clarger than 14 - if not, a message is typed out and the user is asked to enter a new c
Cnumber. c

CCC
if (number-15) 35, 45, 45
35 write (6,40)
40 format (' sorry, your number is too small')
go to 15
cceccececeecececcececececececececcecececececececececceccececceceeccecececececceccecceccececcececcececcecceccecceccecccccce
Cthis section of the program tests the number to see if it is divisibleby 3 - if not, a C
Cmessage is tvped out and the user is asked to enter a new number. c
ccececececeeececeececececeeccececececcecceccecceccececcececcecececcececceccecececececcecececceccecececececcceccecccceccecccccece
45 if (mod(number,3)) 50, 60, 50
50 write (6,55)
55 format (' sorry, your number is not divisible by 3')

go to 15
ccccececcecceccececccecececccceccccccccccccccecccecceccecececceccceccecccecccececceccecccce
c if the number the user has selected survives the two tests this section of the c
cprogram calculates the magic square. C

‘ccececeeeeceececceccececececececcececcecceccececcecceccecececececeecececceececcececceccecececcececcececcecceccccece
60 ib = number/3-4

ia=1ib+7

ic=1ib+5

id=1ib + 2

ie=1ib + 4

if=1ib+6

ig=1ib + 3

ih=1ib + 8

ii=ib+1
cccecececeececeecececececececcecececeecececcececececcececceccecceccececceccececcecceccececcecceececcecececceccceccececcecceccecceccccecce
Ccthis section of the program prints out the magic square. C
ccecececececececececeececececcecececececececcecceccececeececcececeeccececceccecececcecececcececceecceccecececcecceccecccccce

write (6,10)

write (6,10)

write (6,65) number
65 format (' here is the magic square for the number ',i8)

write (6,70) ia, ib, ic

write (6,70) id, ie, if

write (6,70) ig, ih, ii
70 format (3(il0))
ccececeeecececececcececceccececcecceccececcecceccecceccecececcececcecceeccceccececceccecececcecceccecceccecceccceccceccecccecceccccceccce

cthis section of the program asks the user if he wants to enter a new number - if he C

canswers yes, he is asked to enter a new number - if he answer no, the program ends. "C

(o of of o o o oF of of o o of o o of of o of o o o o oF o o oF of o o of of o o o oF o o of o o o] oF of o o of of o of o X X o of o X o X oX o o o o X oY o o o]
write (6,75)

75 format (' want to try again? type in yes or no')
read (5,80) noquit
80 format (a4)
data nostop/‘'yes '/
if (noquit.eqg.nostop) go to 14
write (6,85)

27

00 B0 ©

00

27
O

85 format (' thank you for playing - good day')
stop
end
EDIT:
TOP
TOF :
find 65
65 FORMAT (' HERE IS THE MAGIC SQUARE FOR THE NUMBER ',1I8)
up 2
WRITE (6,10)
delete
file
R;

fortgi magicsg

G171 COMPILER ENTERED

1G10221 UNDEFINED LABEL

14

SOURCE ANALYZED
PROGRAM NAME = MAIN
*001 DIAGNOSTICS GENERATED, HIGHEST SEVERITY LEVEL IS 8
R(00008);

edit magicsg
EDIT:
locate /if/

IF (NUMBER-15) 35, 45, 45
locate /if/

IF=IB+6
locate /if/

IF (NOQUIT.EQ.NOSTOP) GO TO 14
change /go to 14/go to 15/

IF (NOQUIT.EQ.NOSTOP) GO TO 15
file
R;

fortgi magicsq

G1 COMPILER ENTERED
SOURCE ANALYZED

PROGRAM NAME = MAIN

* NO DIAGNOSTICS GENERATED
R;

load magicsqg
R;

start main

27.2

EXECUTION BEGINS... :
PLEASE ENTER YOUR NAME PRECEDED BY A BLANK
EUSTACE MCGARGLE
ENTER AN INTEGER NUMBER OF UP TO 8 DIGITS THAT IS GREATER THAN 14 AND DIVISIBLE BY 3
YOU MUST PRECEDE IT WITH ENOUGH BLANKS TO MAKE UP 8 DIGITS
FOR EXAMPL - IF YOUR NUMBER IS 3 DIGITS LONG PRECEDE IT WITH 5 BLANKS
45
EUSTACE MCGARGLE
HERE IS THE MAGIC SQUARE FOR THE NUMBER 45

8 11 16
13 15 17
14 19 12

WANT TO TRY AGAIN? TYPE IN YES OR NO
no .
THANK YOU FOR PLAYING - GOOD DAY

R;

logout
CONNECT= 00:55:00 VIRTCPU= 000:11.91 TOTCPU= 000:31.40
LOGOUT AT 11.23.43 EST ON THURSDAY 11/30/72

27.4

VM/370 \Commands for the FORTRAN IV Programmer

The commands listed in Figure 2 represent only a part of the entire VM/370
command language, which is described in the publications IBM VM /370
Command Language User’s Guide, Order No. GC20-1804 and IBM
VM/370 EDIT Guide, Order No. GC20-1805.

These commands were selected because they best meet the typical needs of
the FORTRAN IV programmer. System commands that are not normally
required or that would be used only by system programmers, system
operators, or system maintenance personnel have been omitted. The
commands are presented alphabetically, and the underlined portion of the
command word identifies the shortest valid abbreviation for that command.
Should you require detailed information about the commands listed here, or
should the needs of your work require commands that are beyond the scope
of this section, consult the publications mentioned above.

28

CP Commands | CMS Commands and Function

Subcommands

ACCESS Activates a virtual disk for the user.

BEGIN Returns the system to the CMS environment and resumes execution of a
program.

CONVERT! Invokes the SIFT utility.

CP Transmits CP commands to the control program without leaving the CMS
environment.

EDIT Enters the EDIT mode and makes the following subcommands available to
the user for file creation and alteration. Entering a null line puts the editor
into the INPUT mode.

BOTTOM Moves the editor’s pointer to the last line of a file.

CHANGE Replaces a string of characters with another in one or more lines.

DELETE Deletes one or more lines from a file.

DOWN Moves the editor’s pointer to a subsequent line.

FILE Places a file on the user’s disk and leaves the EDIT mode.

FIND Performs a string search, which is column-dependent, for the specified group
of characters. The search begins with the next line or the top of the file if the
pointer is at the end of the file.

FMODE Changes the filemode of a file.

ENAME Changes the filename of a file.

GETFILE | Includes a part of an existing file in the file being created.

INPUT Enters the input mode and accepts subsequent lines as part of the file being
created.

LOCATE Performs a string search, which is not column-dependent, for the specified
group of characters. The search begins with the current position of the
editor’s pointer.

NEXT Moves the editor’s pointer to the next line of a file.

QUIT Terminates the operation of the editor without effecting any modifications.

Figure 2. VM/370 Commands Frequently Used by FORTRAN Programmers (Part 1 of 3)

29

REPLACE

Replaces a line with one or more lines.

Moves the editor’s pointer to the null line at the beginning of a file.

TOP
TYPE Types all or part of a file being created.
up Moves the editor’s pointer to a previous line of a file.
VERIFY Controls the typing of ~ny lines that have been changed or replaced.
ERASE Deletes a file from the user’s read/write disk.
EXEC Executes a file containing one or more CMS commands.
FILEDEF Specifies input and output devices and file characteristics to be used by a
program during execution.
FORTGI! Invokes the FORTRAN 1V (G1) Compiler.
- FORTHX! Invokes the FORTRAN IV (H Extended) Compiler.
GLOBAL Specifies text libraries to be searched in resolving external references in a
: program that is being loaded.
GOFORT! Invokes the Code and Go FORTRAN 1V Compiler.
IPL Sirﬁulates an initial program load for the user's virtual machine.
HT Suppresses the typing of output at the user’s terminal.
HX Stops the execution of any CMS command and returns the user to the CMS
environment.
INCLUDE Permits the inclusion of additional TEXT files for use during the execution of a
program.
LISTFILE Provides a list of all the files that exist on disks that the user has access to
during a terminal session.
LOAD Loads a TEXT file into storage and establishes the proper linkages for it to be

executed.

Figure 2. VM/370 Commands Frequently Used by FORTRAN Programmers (Part 2 of 3)

30

_LOGIN Identifies the user to VM/370.
LOGOUT Terminates the terminal session.
fl_{INT Prints a file on the off-line printer in the user’s computing center.
PUNCH Punches a card deck for a file on an offline card punch unit in the user’s
computing center.
_QUERY Q_UERY Types out the status of the user’s virtual configuration and user-defined
parameters.
MCARD Transfers a virtual card deck from the spooled reader to a disk file.
EENAME Changes the filename, filetype, or filemode of a file.
RT Restores typing of output, previously suppressed by HT command.
RUN Initiates processing, loading, and execution of a source file.
EET _S_ET Sets operational characteristics for the user’s virtual machine.
SORT Sorts the contents of a file.
START Begins execution of a previously loaded file.
STATE Verifies the existance of a file.
' TERMINAL Sets operational characteristics for the user’s terminal.
! TESTFORT! Invokes FORTRAN Interactive Debug.
IYPE Types all or a part of a file at the user’s terminal.
IThese commands are available only as program products

Figure 2. VM/370 Commands Frequently Used by FORTRAN Programmers (Part 3 of 3)

31

CMS Programming Considerations

A vital aspect of FORTRAN programming under CMS is the creation and
management of CMS files. You must create files to hold your FORTRAN
source programs. The compiler, in processing your programs, creates files
that contain its listing and the executable code it produces. Some of your
programs, during their execution, may process or create files containing data.
This section describes files in a FORTRAN context. Additional information
on CMS file management can be found in the publication IBM VM/370
Command Language Guide for General Users, Order No. GC20-1804.

FORTRAN IV Source Files

Before you can invoke the FORTRAN IV (G1), Code and Go FORTRAN

IV, or FORTRAN IV (H Extended) compiler, you must have a FORTRAN
source program available in a CMS file on one of your disks. The source
program is usually created using the CMS EDIT facilities, and may be written
in either fixed-form or free-form language format, depending upon the
compiler you will be using to compile it. Fixed-form source is acceptable to
all the compilers, while free-form source is acceptable to only the Code and
Go compiler. You may create these files at your terminal just prior to
compiling them or they may be old files, created some time ago, which you
want to recompile. In either case, all FORTRAN source files must have a
CMS file identifier and file characteristics that conform to the requirements of
the compilers.

Identifying FORTRAN Source Files

32

Every FORTRAN source file that you intend to compile, requires a file
identifier with the following format:

filename JFORTRAN [filemode]
FREEFORT

where:
filename - is any valid CMS filename. A valid name consists of
from one to eight alphameric characters, which may
be any combination of the following:

. Upper Case Letters A through Z

° Lower Case Letters a through z

FORTRAN -

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

) Numbers O through 9
° National Characters $, #, or @

is the filetype for a CMS file that contains
fixed-length, fixed-form FORTRAN IV records. A
FORTRAN record consists of a card image or a line
entered at the terminal. Fixed-form records observe
the standard column alignment of the FORTRAN IV
language (see the publication /BM System/360 and
System/370 FORTRAN IV Language, Order No.
GC28-6515, for a complete description of the
FORTRAN language). For example:

Column 1 7

c sample text
10 d = 10.5
go to 56

c*(d + e**f +

150 (
2.%(q + p))

1+

X

QO o
n+
wBs U

Note: Files with a filetype of FORTRAN can also contain fixed-length
free-form records, similar in form to these described below under the heading
“FREEFORT.” However, the use of the FORTRAN filetype for free-form
records is not recommended, since it requires inefficient use of disk space and
these source files are not acceptable to FORTRAN Interactive Debug.
Information on converting these files to variable length files with a filetype of
FREEFORT can be found in “Appendix C: SIFT Utility.”

FREEFORT -

filemode -

is the filetype for a CMS file that contains
variable-length free-form FORTRAN IV records.
Here, too, a FORTRAN record consists of a card
image or a line entered at the terminal. Free-form
records need not observe any column alignment (see
the section “Free-Form Input” for a detailed
description of preparing free-form FORTRAN
statements). For example, the portion of a
FORTRAN program shown above in fixed-form

would appear like this in free-form:

" " sample text

10 d = 10.5

go to 56

150 a = b + c*(d + e**f +-
g+h-2.%(g+p))

c=3

is any valid CMS filemode. A valid filemode consists
of two characters. The first is alphabetic and
corresponds to the name of the disk on which the files
resides or is to be placed. The second is numeric and
indicates the way in which the disk is to be accessed,
that is, read/write, read only, read and erase, or OS
simulation. See the publication /IBM VM/370
Command Language Guide for General Users,
Order No. GC20-1804 for detailed information on
filemodes.

33

Characteristics of FORTRAN Source Files

Fixed-Form Files (Filetype of FORTRAN)

Fixed-form FORTRAN files contain records that are 80 characters long. You
may type FORTRAN statements or continuation lines of up to 72 characters,
including statement numbers. The remaining 8 characters are filled in by
CMS with a sequence number.

Free-Form Files (Filetype of FREEFORT)

Free-form FORTRAN files contain variable length records that are a
maximum of 81 characters long. The first 8 characters are line numbers
supplied by the CMS editor. You may type your FORTRAN statements or
continuation lines, including statement numbers, in the remaining 73
characters. :

Creating New FORTRAN Source Files

You can easily create new FORTRAN source files at your terminal in either
fixed- or free-form using the facilities of the CMS editor.

Creating Fixed-Form Files (Filetype of FORTRAN)

34

To create a fixed-form source file, type in the EDIT command; specify a
unique filename, and assign it a filetype of FORTRAN.

Example:

edit newprog fortran
NEW FILE:

EDIT:

input

INPUT:

The CMS editor responds to the new filename. The editor recognizes the
filetype FORTRAN and will align the subsequent input lines in a fixed
FORTRAN format by setting its internal tabs at the correct locations (that is,
columns 7 and 10). Striking the TAB key on your keyboard will
automatically position the text internally in column 7, regardless of the
mechanical tab positions that are set for your terminal. You should, however,
set the mechanical tabs on your terminal accordingly, or the terminal listing
sheet may not appear as expected or be unreadable. Enter an INPUT
subcommand to indicate that you are entering source statements. You may
enter your source statements as follows, where the symbols @, @, and ®
represent a TAB, SPACE, and RETURN:

A

Page of $C28-6891-0, -1
Added May 13, 1977

By TNL SN20-9225
10@ format®(3£8.2)@
read®(5,10)@p,r,t®
a=p*(1+r/@®
B)x 100)**t(@®

20@ format@®(£8.2)@
write@®(6,20)Ba@
stop®

end@®

®

EDIT:

file®

R;

Note: For continuation lines, do not tab to column 7 and backspace to
column 6. Use the space bar to space to column 6 from the beginning of the

line.

The statements shown above are arranged by the editor into the following
fixed FORTRAN format.

10 FORMAT (3F8.2)
READ (5,10)P,R,T
A=P*(1+R/

X 100)**T

20 FORMAT (F8.3)
WRITE (6,20) A
STOP
END

When you have completed your program or when you need to make
corrections, be sure to hit two carrier returns. The first return ends the line
you are entering, and the second indicates that you have reached the end of
your input and want to enter editor subcommands. If you do not hit the
second return, any subsequent editor subcommands that you may enter will
be treated as additional lines in your program. The full range of editor
subcommands can be used to modify your source code. When you have
completed your program, it must be filed using the FILE subcommand before
you can enter the command required by the FORTRAN compiler you are
going to use. See the sections in this book that describe how to use your

particular compiler.

Creating Free-Form Files (Filetype of FREEFORT)

To create a free-form source file, type in the EDIT command; specify a
unique filename, and assign it filetype of FREEFORT.

Example:

edit newprog2 freefort
NEW FILE:

EDIT:

input

INPUT:

00000010

34.1

The CMS editor responds to the new filename and recognizes the filetype of
FREEFORT. Enter an INPUT subcommand to indicate that you are entering
source statements. The editor prompts you with a line number. This line
number can be used to locate a line when editing your file and is acceptable to
FORTRAN Interactive Debug, a program product that is available for
debugging Code and Go programs. Do not confuse this number with the
FORTRAN statement number. You must still supply a statement number for
any statements that require them (for example, FORMAT statements, target
statements of a GO TO or IF statement, and the end of range statements in
DO loops). You may enter your FORTRAN statements immediately after
the CMS-supplied line number, as follows without regard for column
alignment or tab settings:

00000010 ""sample program
00000020 10 format (3£8.2)
00000030 read (5,10) p,r,t
00000040 a=p*(l+r/-
00000050 100)**t

00000060 20 format (£8.2)
00000070 write (6,20) a
00000080 stop

00000090 end

00000100

EDIT:
file
R;

Note: The space between the line numbers and the FORTRAN statements
has been inserted for clarity; it is not required and can be omitted. Since the
CMS escape character is a quote, a second quote is required at the beginning
of the comment line. An alternative would be to change the escape character.

When you have completed your program or when you need to make a
correction, be sure to hit two carrier returns. The first return ends the line
you are entering, and a new line number will be typed out. The second
return, immediately after the line number, indicates that you have reached the
end of your input and want to enter editor subcommands. If you do not hit
the second return, any subsequent editor subcommands that you may enter
will be treated as additional lines in your program. The full range of editor
subcommands can be used to modify your source code. When you have
completed your program, it must be filed using the FILE subcommand before
you can enter the GOFORT compiler command for the Code and Go
compiler. See the section of this book that describes how to use the Code and
Go compiler.

Preparing to Compile FORTRAN Source Programs

34.2

If you have an existing FORTRAN source program that is already filed in
your system, and you wish to compile it, first, make sure that it has a filetype
of FORTRAN or FREEFORT. (Remember, that only Code and Go accepts
both FORTRAN and FREEFORT filetypes.) Use the LISTFILE command
specifying the name of the file you want. This will type a list of the file

Page of SC28-6891-0, -1
Added May 13, 1977
By TNL SN20-9225

identifiers that you have already used. If necessary, change the filetype, as in
the example below, with the RENAME command and then issue the
appropriate command (in this case FORTGI) to begin compilation.

Example:
listfile oldprog *
FILENAME FILETYPE MODE
OLDPROG SOURCE A1
R;

rename oldprog source * oldprog fortran *
R;

fortgi oldprog

G1 COMPILER ENTERED
SOURCE ANALYZED

PROGRAM NAME = MAIN

* NO DIAGNOSTICS GENERATED
R;

If you have just created your FORTRAN program and assigned it the
filetype FORTRAN or FREEFORT in your EDIT command, you need only
issue the appropriate compiler command.

Example:

If all the defaults are acceptable:

fortgi newprog

or, if any of the defaults are to be changed:

fortgi newprog (bcd print id list)

CMS Return Codes Following Compiler Commands

CMS produces a return code following the execution of a FORTRAN
compiler command. It appears in the ready message and corresponds to the
highest diagnostic message severity level encountered during the compilation.
Example:

R(00004);

The meaning of the return codes are shown in Figure 3.

34.3

Code Meaning

00000 No errors were detected. There may be warning messages,
however. If a warning message is produced, check your program
for possible errors, as the reliability of your results may be in doubt.

00004 Possible errors were detected or warning messages were issued.
Execution of your program should be successful, but the result may
not be reliable.

00008 Errors were detected. Compilation continues but execution may
fail. If specified, an object module will be created but you may not
be able to execute it.

00012 Severe errors were detected. Compilation may not continue; if it
does, execution of the program is impossible.

00016 Extremely severe errors were detected. Compilation terminates at
the point at which the error was detected.

Figure 3. CMS Return Codes for FORTRAN Compilations

Entering FORTRAN Source Files from Devices other than the Terminal

You may have FORTRAN source files on tape or punched cards. To make
these files known to the system, you must issue a FILEDEF command whose
ddname is FORTRAN and which specifies the appropriate device type.
Examples:
To use a source file on tape, issue the following FILEDEF:

filedef fortran tapn

where:

n is a number from 1 through 4 that corresponds to virtual tape units
181 through 184.

To use a source file on a deck of cards, issue the following FILEDEF:

filedef fortran reader

FORTRAN Compiler Output Files

As a result of a compilation, two files may be produced with filetypes of
LISTING and TEXT. These files are placed on the same disk as your
FORTRAN source file. If this source disk is read only (R/0O), the system
determines if the disk containing your source program is a read only (R/O)
extension of a read/write (R/W) disk. If it is an extension, the system will
attempt to put the LISTING and TEXT files on the R/W parent disk. If this
alternative fails, the system will try to put the output files on your primary

35

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

LISTING File

(A) disk. Should that also fail, an error condition exists, and a message is
typed at your terminal. You must either issue an ACCESS command to make
available a disk on which the system can place the compiler output files or
specify compiler options that will not produce these files before you can
reissue a compiler command.

The LISTING file is a CMS disk file that can be optionally produced by your
compiler. The file contents depend upon the compiler command options
specified. Figure 4 below indicates how the LISTING file can be created for
your particular compiler.

Compiler When a LISTING File is Produced

FORTRAN IV (G1) Always produced, unless the NOPRINT option
is specified with the FORTGI command.

Code and Go FORTRAN IV Produced for error messages or when the
SOURCE option is specified with the GOFORT
command.

FORTRAN IV (H Extended) Always produced unless the NOPRINT option

is specified with the FORTHX command.
Produced on the offline printer, instead of

the primary disk, when the PRINT compilation
option is specified.

Figure 4. Producing a LISTING File with Various Compilers

When produced, CMS gives the LISTING file the same filename as your
source program but a filetype of LISTING. This file collects all the
information that is usually included in a compiler output listing.

Obtaining a Printed Copy of Your LISTING File

36

Normally, the LISTING file is written on a disk (since DISK is the default
option for the compiler commands). Should you wish a printed copy of this
file, you need only issue a PRINT command to obtain a listing on the off-line
printer in your computing center. You can, in addition, issue a TYPE
command to examine the contents of the file at your terminal.
Example:

print newprog listing

or:

type newprog listing

Retaining LISTING Files

If you do not want to place a copy of your LISTING file on disk and only
want a printed copy, you must specify the PRINT option with your compiler
command.

Example:

fortgi newprog (list print)

All LISTING files are placed on one of your accessible read/write disks
unless the PRINT or NOPRINT options are in effect. These files will remain
there until you delete them or they are replaced by the new LISTING file
when you recompile the same source program. (When the options specified
for the new compilation do not produce a LISTING file on disk or when the
program abnormally terminates, the old LISTING file may not be replaced.)
If you want to keep a permanent copy of old LISTING files on your disks, it
is advisable to rename them with any unique filetype before the next
compilation is begun. You can use the RENAME command for this.

Example:

fortgi newprog (list)

G1 COMPILER ENTERED

SOURCE ANALYZED

PROGRAM NAME = MAIN

* NO DIAGNOSTICS GENERATED
R;

listfile newprog #*

FILENAME FILETYPE FM
NEWPROG FORTRAN A1
NEWPROG TEXT Al
NEWPROG LISTING Al
R;

rename newprog listing * newprog oldlist *
R;

fortgi newprog (list)

G1 COMPILER ENTERED
SOURCE ANALYZED

PROGRAM NAME = :MAIN

* NO DIAGNOSTICS GENERATED
R;

listfile newprog *

FILENAME FILETYPE FM
NEWPROG FORTRAN A1
NEWPROG OLDLIST Al
NEWPROG TEXT A
NEWPROG LISTING Al

37

TEXT File

The TEXT file is a CMS disk file that can be optionally produced by your
compiler depending upon the options specified with the compiler command.
Figure 5 below indicates when the TEXT file is created for your particluar
compiler.

Compiler When a TEXT File is Produced

FORTRAN IV (G1) Always produced unless the NOLOAD
option is specified with the FORTGI
command

Code and Go FORTRAN IV Whenever the DECK or TEST option is

specified with the GOFORT command

FORTRAN IV (H Extended) Always produced unless the NOOBJECT
option is specified the the FORTHX
command

Figure 5. Producing a TEXT File with Various Compilers

When produced, CMS gives the TEXT file the same filename as your source
program but a filetype of TEXT. The file contains the executable code that is
created from your FORTRAN source program. The TEXT files produced
under CMS are identical to object programs produced under OS. The code
contained in the TEXT file may be loaded and executed under CMS or
transferred, link edited, and executed under OS.

For more information on loading and executing TEXT files under CMS,
refer to the appropriate section in this book describing your compiler; for
information on link editing and executing object programs under OS, see the
OS programmer’s guide appropriate for your compiler.

Identifying Programs in a TEXT File

38

The entry point name for a main program in a TEXT file is the name you
specified for the NAME option of the compiler command or its defau!lt.
Subprograms have the entry point name that you specified in the FORTRAN
SUBROUTINE statement. A main program that follows a subprogram has
the name MAIN.

The copy of the TEXT file pseudo-assembler listing that is included in your
LISTING file contains an identification for the programs in it. Columns
73-76 of each line of code contain four characters that identify whether that
code was generated for a main program or subprogram as follows:

e Main Programs -- The first four characters of the name specified by
the compiler NAME option or the letters MAIN.

Retaining TEXT Files

® Subprograms -- The first four characters of the name specified in the
SUBROUTINE statement.

All TEXT files are placed on one of your accessible read/write disks. The
criteria to determine which disk will be used is the same as that for the
LISTING file. These files will remain there until you delete them or they are
replaced by the new TEXT file that is produced when you recompile the same
source program. (When the options specified for the new compilation do not
produce a TEXT file on disk or when the program abnormaily terminates, the
old TEXT file may not be replaced.) Therefore, if you want to keep a copy
of old TEXT files on your disks, it is advisable to rename them with any
unique filetype before the next compilation is begun. You can use the
RENAME command for this.

Example:

fortgi newprog (load)

G1 COMPILER ENTERED
SOURCE ANALYSED

PROGRAM NAME = MAIN

* NO DIAGNOSTICS GENERATED
R;

listfile newprog *

FILENAME FILETYPE M
NEWPROG FORTRAN Al
NEWPROG LISTING A1l
NEWPROG TEXT A1l
R;

rename newprog text *¥ newprog oldtext =
R;

fortgi newprog (load)

G1 COMPILER ENTERED
SOURCE ANALYSED

PROGRAM NAME = MAIN

* NO DIAGNOSTICS GENERATED
R;

listfile newprog *

FILENAME FILETYPE FM
NEWPROG FORTRAN A1l
NEWPROG OLDTEXT Al
NEWPROG TEXT Al
NEWPROG LISTING Al
R;

39

Contents of the TEXT File

A TEXT file can be produced by the FORTRAN IV (G1), Code and Go
FORTRAN IV and FORTRAN IV (H Extended) compilers. The file
contains the executable codes in 80 column card format. There are four types
of 80 column card formats. These are identified by the characters ESD, ‘
RLD, TXT, or END in columns 2 through 4. Column 1 of each card format
contains a 12-2-9 punch. Columns 73 through 80 contain the first four
characters of the program name followed by a four-digit sequence number.
The remainder of the card contains program identification.

ESD CARD: ESD cards describe the entries of the External Symbol
Dictionary, which contains one entry for each external symbol defined or
referred to within a module. For example, if program MAIN calls
subprogram SUBA, the symbol SUBA will appear as an entry in the Symbol
Dictionaries of both the program MAIN and the subprogram SUBA. CMS

 ‘'matches the entries in the dictionaries of other included subprograms, and

when necessary, to the library.

ESD cards are divided into four types, and are identified by the digits 0, 1,
2,or 5 in column 25 of the first entry in the card, column 41 if a second
entry, and column 57 is a third entry (there can be 1, 2, or 3 external symbol
entries in a card). The ESD types are described in Figure 6.

ESD Contents

0 Name of the program or subprogram, and indicates the beginning
of the module. It will assume the FORTRAN default value of
MAIN if you have not specified a name in the compiler command.
The name of a subprogram will come from the SUBROUTINE,
FUNCTION, or BLOCK DATA statement.

1 Entry point name appearing in an ENTRY statement of a
subprogram
2 Name of a subprogram referred to by the source module through

CALL statements, EXTERNAL statements, and explicit and
implicit function references. (Some usages of FORTRAN are of
such compiexity, that they call in a function subprogram instead of
generating in-line coding; these are implicit function references)

5 Information about a COMMON block.

Figure 6. Types of ESD Card Formats in FORTRAN TEXT Files

TXT CARD: TXT cards contain the constants and variables used by the
programmer in his source module, any constants and variables generated by
the compiler, coded information for FORMAT statements, and the machine
instructions generated by the compiler from the source module.

RLD CARD: RLD cards describe entries in the Relocation Dictionary
which contain one entry for each address that must be resolved before a
module can be executed. The Relocation Dictionary contains information
that enables absolute storage addresses to be established when a module is
loaded into main storage for execution. RLD cards contain the storage
address of subprograms called by ESD type 2 cards.

END CARD: The END card indicates the end of the object module, the
relative location of the main entry point, and the length (in bytes) of the

object module.

Figures 7 and 8 show typical deck structures for the FORTRAN compilers
under CMS.

TXT Cards for END Card
Temp Storage
ond Constants RLD Cards for
the Object
TXT Cards for Module
FORMAT

P
Statements TXT Cards for

TXT Cards for Caddress
Literal onstants Y
Constants TXT Cards for
Subprogram
TXT Cards for
NAMELIST Addresses
Tables TXT Cards for
Subprogram
ESD, Type 2 Argument Lists
External P
. References TXT Cards for
the BRANCH
ESD, Type 5 Table
COMMON Area
TXT Cards for
ESD, Type ! the BASE
Entry Points Table L
ESD, Type 0 TXT Cards for
Program Name "Object
f the Object 1°¢
° ! Module Code
Module

Figure 7. TEXT File Structure Produced by the FORTRAN IV (G1) and Code and Go
Compilers

ESD, Type 2, ond
RLD for External
References in
CALL, EXTERNAL,
ond Statements
Using Subprograms

l 7 I
RLL Cards for
the Branch List

L — T

TXT Cords for
the Branch List

ESD, Type 5
Indicating the

" Existence of the
COMMON Area

TXT Cards
for Object
Module Instructions

TXT Cards
for Compiler
Generated

Constonts

ESD, Type 2 and
RLD for Compiter

Generated External
References

TXT Cards for
Coded F ORMAT
Statements

ESD, Type | Giving
Entry Points from
ENTRY Statements

TXT Cards
for Source
Module Constants

€5D, Type 0
Giving the Nome
of the Object

Module

Figure 8. Object Module Deck Structure Produced by the FORTRAN IV (H Extended)
Compiler

Execution-Time Input and Output Files

In using TEXT files to do your work, it may be necessary to provide them
with information or have your programs create data. Information can be
presented to and retrieved from your programs through these execution-time
files.

There are two methods by which execution-time files can be organized and
processed: sequential and direct access. Sequential files, as the name implies,
store records in sequential order. The first record that is written into the file
occupies the first position in the file. Each succeeding record follows in
order. The need for sequential files is usually dictated by the type of input
and output devices that you are using. Devices such as terminals, tape units,
printers, and card punches can, by design, only handle sequential records.
Disk units can also accept records in a sequential order; however, their design
is more suited for direct access records. Moreover, direct-access units are the

" only devices that can accept direct access files. In direct access files, records

are not positioned in a sequential order. The first record written in the file
may not be in the first position, since records are placed in any available
space, and pointers are kept to indicate where the parts of the file reside.

Whether a file is sequential or direct access will, to a great extent,
determine how a record is defined, the way it is identified, and how it is
referred to in a FORTRAN program. The following discussion describes how
files are defined through the use of the CMS FILEDEF command, and how
they are identified to the system through the use of file identifiers and
FORTRAN input and output statements.

Defining Execution-time Files

42

All execution-time files that you want to use must be defined to CMS with a
FILEDEF command. Three files are pre-defined for you. They are:

Sequential
¢ Terminal Input
e Terminal Output
o Punched Card Output

An initialization routine supplies the FILEDEF for these files. You must
define all the other files that you want to use. They include:

Sequential

e Disk Input
o Disk Output

Pre-defined Files

e Tape Input

e Tape Output

¢ Punched Card Input

e Printed Output
Direct Access

e Disk Input

e Disk Output

You must supply your own FILEDEF command for any of these files used by
your program. In addition, you may change or replace the three pre-defined
files by supplying FILEDEF commands of your own for them. Regardless of
the type of file you are using, there are several general guidelines that must be
followed in defining and using files.

e Each file that you use in your program must be defined to the system
(either through a system-supplied definition or one that you supply).

® Do not use the same definition for more than one file.

¢ Do not use the same file on more than one type of device in the same
program.

o You may refer to the same file from more than one program through
different devices and access methods, if you change the file and its
definition appropriately before using it.

Three pre-defined files are provided for you by the FORTRAN initialization
routine. These files are recognized by CMS when you refer to them in
FORTRAN input or output statements with the FORTRAN data set
reference number that has been assigned to them. Since they are pre-defined
you do not have to supply a FILEDEF command for them, unless you want
to change their definition or create new files to replace them. (See the section
“User-defined Files” for more information.) Figure 9 summarizes the data
set reference numbers that are assigned to pre-defined files, the FORTRAN
input and output statements in which they can be used, the devices utilized,
and the maximum lengths of the records in the file.

' 43

FORTRAN Used in the Following Requires Records of
Data Set FORTRAN Input and the Following Format
Reference Output Statements and Maximum Length
Numbers Identifies
5 READ (§,b) list Terminal Input Fixed-length, unblocked
READ (5,%) list (F), 130 characters long
6 WRITE (6,b) list Terminal Output Fixed-length, unblocked
WRITE (6,*) list (F), 131 characters long
7 WRITE (7,b) list Punched Card Fixed-length, unblocked
Output (F), 80 characters long
Notes: In the input and output statements the variables are:
b - FORMAT statement number
list - series of variables and array names

Figure 9. Summary of Data Set Reference Numbers, Input/QOutput Statements, and Record Formats Used for Pre-Defined Files

Pre-defined Terminal input Files

44

You can use the FORTRAN list-directed or sequential READ statements to
read data from your terminal. Data set reference number 5 is available as the
default for terminal input. If you use list-directed input and output, refer to
the section “List-directed Input and Output” for more information. If you
use formatted or unformatted input and output, you should construct a
mechanism (called self-prompting) in your program to notify yourself that the
program is ready to read data from the terminal. Add, to your program, a
FORMAT statement with a literal field that reminds you what data to enter.
Following the FORMAT statement, include a WRITE statement that will
type the literal at your terminal. Both these statements should precede the
list-directed or sequential READ statement that will actually read the data
you want to enter. When your program executes, it will first type out your
reminder at the terminal; it will then wait until you enter your data before
continuing. Remember, if you use formatted input, you must type in your
data so that it corresponds to the specifications of the FORMAT statement
that controls it.

Example:

and the following
data entered at
your terminal

The following statements
in your program

produce the following
results at the terminal

WRITE (6,10)

10 FORMAT (' A=?")
READ (5,20) A

20 FORMAT (F8.3)
A=A**2
WRITE (6,30) A

30 FORMAT (' A=',6F8.3)

A=?

00003.4

A=11.560

Pre-defined Terminal Output Files

You can use FORTRAN list-directed or sequential WRITE statements (o
type at your terminal, data created by your FORTRAN program. Data set
reference number 6 is available as the default for terminal output.

Example:
These statements in produce the following
your program at your terminal

20 FORMAT (F8.3)
A=14.2
WRITE(6,20)A 14,200

All terminal output operations include ASA carriage control characters. Each
output line must be preceded by either a blank or a special character or a
FORMAT statement must supply the required character. Figure 10 illustrates
the variety of terminal printer positions that are available.

Character Printed Format Printer Action

blank Single spaced lines The carrier is advanced one linc
A line is printed

0 Double spaced lines The carrier is advanced one line
The carrier is advanced a second line
A line is printed

Figure 10. ASA Carriage Control Characters

Pre-defined Punched Card Output Files

User-defined Files

You may have data created by your program punched into a card deck with
the FORTRAN sequential WRITE statement. Data set reference number 7 is
available as the default for punched output. The data to be punched will be
placed on a spooled punch file and subsequently punched into a deck of cards
on an off-line card punch device. The system identifies your card deck with a
header card that contains your user identification.

User-defined files may already exist in your system, containing data that you
will want your program to process. Conversely, you may want your program
to create a file to hold data that was generated during its execution. Since
they are not pre-defined, they cannot be identified by CMS and associated
with your program. You must define all files, whether new or old, that use
the following access methods and devices:

45

46

Sequential

e Disk Input

o Disk Output

e Tape Input

e Tape Output

e Punched Card Input

Direct Access
o Disk Input
¢ . Disk Output

You may, in addition, define the following files to be used in place of the
system’s pre-defined files or change them to suit your own needs:

Sequential

e Terminal Input

e Terminal Output

e Punched Code Output
To make user-defined files accessible to your programs, you must establish
links to them through the CMS FILEDEF command used in conjunction with

the data set reference numbers in your FORTRAN input and output
statements and the identifier of the file that you want to use or create.

FILEDEF Command for FORTRAN Programmers

Figure 11 illustrates the general form of the FILEDEF command of interest

to you, the FORTRAN programmer.

PRINTER
PUNCH

READER

\ CLEAR

Type the Identify Designate the Type of Select Appropriate Options, if Required
Command the File Device on which the
Word to be File Resides or is to Insert Indicate Device State the Record Indicate
Used or be Created a Left Dependent Options Format and the Whether the
Created paren- for Terminal, Logical Charac- File is to
thesis Disk, and Tape teristics for be Redefined
Devices Terminal, Disk,
or Tape Files
FILEDEF || ddname TERMINAL ({UPCASE } RECFM { F|[B][a]]| [PERM]
xx LOWCASE VilsiM
* - - v CHANGE
DISK (fnft{fm]) E(TENT , anl NOCHANGE
50f [LRECL nn]
l ; |pISP MOD | B BLOCK f nr]
BLKSIZE
DUMMY
TaP(1 47§ TRACK
2 9
3
4 TRTCH ([OC
fo
0]
2 BT ‘
E
DEN (200
556
800
1600

Figure 11. General Form of the FILEDEF Command for FORTRAN Programmers

Command Word

FILEDEF This is a required part of the command and must always
be typed. If you do not include any options after the
command word, all current FILEDEF commands in
effect will be typed at your terminal.

Options

ddname

Establishing a Link Between Input/output Statements and Files

The data definition name provides the link between your
FORTRAN input and output statements and the file that
you want to process or create. The standard FORTRAN
data definition name has the following format:

FTxx Fpyy

47

48

XX

where:

xx is a FORTRAN data set reference number. You
must use this number in any FORTRAN input or
output statements that refer to the file being
‘defined. You may not specify 00 as a data set
reference number. This number may range from
01 to a maximum value that was determined for
your system when it was installed. Consult with
your system administrater for the maximum
number available to you.

yyy is a sequence number (ranging from 001 to 999)
that identifies multiple files under the same data
set reference number. For direct access files this
number is always 001. For sequential files this
number will vary depending upon the order in
which the file is referred to in your program. See
the section “Using Multiple Sequential Files” for
more information.

A FORTRAN data set reference number used alone
performs the same function as the ddname; however, it
cannot be used for multifiles, since it generates a default
ddname of FTxxF0O01. The data set reference number
specified must be used in your FORTRAN input and
output statements referring to the file being defined.

Describing the I/O Device on Which Your File is to Reside

TERMINAL This option specifies that your user-defined file is to be

PRINTER

PUNCH

READER

read or written at the terminal. By using this option, you
can either change the characteristics of the system’s
pre-defined file or create an entirely new file for the
terminal.

UPCASE

Specifies that the data entered at the terminal will appear
on the printout in upper case characters. This is the
default for the option.

LOWCASE

Specifies that the data entered at the terminal will appear
on the printout in lower case characters.

This option indicates that your user-defined file is to be
written on an off-line printer. Files defined as
PRINTER may only be used for output.

This option indicates that your user-defined file is to be
punched into a card deck. Files defined as PUNCH may
only be used for output.

This option indicates that you want to read a
user-defined file consisting of a deck of cards. Files
defined as READER may only be used for input.

DISK This option indicates that you want to use an existing
disk file or want to create a new one.

fn Jt lfm]

1f you are reading an existing file you must include its
file identifier. If you are creating a new disk file, you
may supply your own file identifier for it; if you do not,
the system will supply the following default file
identifier:

FILE FTxxFyyy Al

For files that are defined as spanned (VS or VBS) the
file mode must be specified as 4.

XTENTnn |50}

This option must be included in each FILEDEF
command that defines a FORTRAN direct access file
(that is, a file that requires a FORTRAN DEFINE FILE
statement). The variable nn should correspond to the
number of records that you specified in the DEFINE
FILE statement. If you do not include this option, a
value of 50 records is assumed.

DISP MOD

This option indicates that the read/write pointer is to be
positioned after the last record in the disk file.

DUMMY This option may be used in place of the DISK option
only. It indicates that no real input or output operation
is to be performed for a disk file. You may also specify
any of the disk options; however, they will be ignored.

TAPn This option indicates that you want to use an existing
tape file or create a new one. The variable n represents
the symbolic tape number and can range from 1 through
4. The numbers correspond to tape units attached to
your virtual machine addresses 181 through 184.

nTRACK

This option indicates the type of tape device being used. n
represents the number of tracks that the tape device
records on. Specify either 7 or 9 for the variable n.

TRTCH aa

This option is used for seven track tapes to indicate the
recording technique that is being used. The variable aa
is a code that specifies the parity, converter, and
translator settings. Figure 12 lists the possible technique
specifications that are available for this option.

49

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

aa parity converter translator
oC odd on off
oT odd off on
0 odd off off
ET even off on
E even off off

Figure 12. Tape Recording Technique Specification Available for the TRTCH Option of
the FILEDEF Command

DEN nnnn

This option indicates the density of the tape being used.
The variable nnnn may specify one of the following
densities: 200, 556, 800, or 1600. If the " TRACK
option has not been included, a density of 200 or 556
assumes a default of 7TRACK and a density of 800 or
1600 assumes a default of 9TRACK.

Specifying the Format and Logical Characteristics of Your File

RECFM aaa/a] This option indicates the format of the records being

read or written and whether they contain carriage and
print control characters. The variables aaa and a are
codes that represent the possible record formats and
control characters. Figures 13 and 14 list the possible
record formats and control characters available for this
option. The default RECFM is fixed-length records.

aaa

Record Format

F
FB
\%
VB
u
FS
FBS
A\
VBS

fixed-length records

fixed-length, blocked records

variable-length records

variable-length, blocked records
undefined-length records

fixed-length, standard block records
fixed-length, blocked, standard block records
variable-length, spanned records
variable-length, blocked, spanned records

Figure 13. Record Formats Available for the RECFM Option of the FILEDEF Command

Control Characters

A
M

ASA carriage control characters
machine control characters

Figure 14. Control Character Specifications Available for the RECFM Options of the
FILEDEF Command

See the section “Specifying FORTRAN Record Formats and Logical
Characteristics under CMS” for information on using the RECFM option.

50

LRECL nn

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

This option indicates the length, in bytes, of the logical
records in a user-defined file. The record format, which you
specified in RECFM above, determines, how you must
specify LRECL. Figure 15 lists the criteria for determining
logical record lengths. The default LRECL is 80.

For RECFM

LRECL Must

F. FB. FS. or FBS Specify the actual size of the records

V, VB, VS, or VBS | Specify the size of the longest record

U

Be omitted

The maximum LRECL that can be specified is 65K bytes.

Figure 15. Criteria for Determining a Value for the LRECL Option of the FILEDEF
Command

See the section “Specifying FORTRAN Record Formats and Logical
Characteristics under CMS” for information on using the LRECL option.

BLOCK
BLKSIZE

nn

} This option indicates whether records are to be read or
written individually or in groups. It also establishes the
size of the group of records. Here, too, the record
format specified in RECFM and the value specified in
LRECL determine the value you must specify for
BLOCK. Figure 16 lists the criteria for determining
block sizes. The default BLOCK is 80.

For RECFM BLOCK must

F or FS specify the same value as LRECL

FB or FBS specify a multiple of LRECL

VorVSs specify the value of LRECL plus four bytes for a segment
descriptor word.

VB or VBS specify the value of LRECL plus four bytes for the segment
descriptor word of each record that can be contained in the block
plus four bytes for a block descriptor word.

U specify the greatest amount of space required to hold all the

records that are to be grouped together.

The maximum BLOCK value that can be specified is 65K bytes.

Figure 16. Criteria for Determining a Value for the BLOCK Option of the FILEDEF
Command

s

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

See the section “Specifying FORTRAN Record Formats and Logical
Characteristics under CMS” for information on using the BLOCK or

BLKSIZE option.

PERM This option indicates that the file characteristics
specified in a FILEDEF command are to remain in
effect until they are either explicitly cleared or changed
with a new FILEDEF command that has the CHANGE
option.

CHANGE This option indicates that if a file definition exists for the

ddname that is specified in this command, the options
that are included will replace the corresponding options
in the old FILEDEF command. This is the default if
PERM, CHANGE, or NOCHANGE are not specified.

NOCHANGE This option indicates that if a file definition exists for the
ddname specified in this FILEDEF command, the
'options that are included will not replace the
corresponding options in the old FILEDEF command.

Specifying FORTRAN Record Formats and Logical Characteristics under CMS

The following options of the FILEDEF command describe the format and
logical characteristics of FORTRAN records that are read from or written
into a CMS file during the execution of your program:

e RECFM - indicates the format of a set of FORTRAN records.
e [LRECL - indicates the maximum length of a FORTRAN record.

e BLOCK or BLKSIZE indicates the maximum amount of space
required by one or more FORTRAN records that are to be read or
written by a single input or output statement.

FORTRAN records whose format and logical characteristics are described by
the above FILEDEF options can be transferred into and out of virtual storage
under the control of a FORMAT statement (formatted I/0O) or without a
FORMAT statement (unformatted I/0, including NAMELIST and
list-directed input and output).

For formatted I/0, it is advisable under CMS to define your files as fixed-
block (FB) record format, with a logical record length of 80, and a block size
of 800. This is advantageous as it makes your execution-time files acceptable
to the CMS editor. For unformatted I/O, you must define your files as variable-
length, spanned (VS) or variable-length, blocked, spanned (VBS). In addition,
the filemode for these files must be x4. If you are using unformatted I/O or
should you need to define files for use on an OS system, see Appendix E for
more information.

s2

Identifying and Using User-defined Files

Sequential Files

User-defined Disk Input and Output Files

Each sequential disk file, whether it is used as input or output for a
FORTRAN object program, requires a file identifier with the following
format: :

filename filetype [filemode]
where:
filename - is any valid CMS filename.

filetype - is any valid CMS filetype. It is recommended that you also
use the ddname for the filetype. The ddname is the default
filetype for FORTRAN execution-time files and will remind
you what data set reference number has been defined for the
file.

filemode - is optional, but may specify any user disk (A through G).
These disks may be any available mode on input (1 through
5); however, they can only be modes 1, 4, or 5 for output. If
no mode is specified, Al is assumed. Files that contain
spanned records (that is, RECFM is VS or VBS) must have a
mode of 4.

Sequential disk files are associated with your program through the ddname,
device specification of DISK, and file identifier that you specified in the
FILEDEF command that defines them. To define your own sequential disk
files you must issue, for each file, a FILEDEF command with the following
format:

FILEDEEF FT xx F yyy DISK filename filetype [filemode][options]

where:

xx - isany FORTRAN data set reference number acceptable to your
system.

53

yyw - is any valid sequence number, 001 if you are not using multiple
files or any number form 001 to 999 if you are using multiple
files. (See the section ‘“Using Multiple Files” for more
information.) . - ‘ :

the name of the file to be used or created. If you omit the

filename -
filename, the system assumes FILE.

filetype - the type of the file to be used or created. If you omit the
filetype, the system assumes the ddname of FT xx F yyy.

filemode - is optional, but if specified is the filemode of the file to be
used or created.

options - are any valid FILEDEF options for sequential disk files.

Figure 17 illustrates how the FILEDEF command associates sequential disk
file with the input and output statements in your FORTRAN programs.

\mede’\sw\\] di§k]§new>}‘\fr 07}0@ |

FORTRAN Program

\Y

|
R

T

. u
READ (7,20) list A

. L

D

I

S

K

v

N

|

T

Figure 17. FILEDEF Command for User-defined Sequential Disk Files

For input operations, the system searches for the file identifier specified.
For output operations into an existing file, the system places new data at the
end of the file. For output operations into a new file, the system places the
new data onto your disk and creates for it the file identifier that you specified
in the FILEDEF command.

54

User-defined Tape Input and Output Files

Tape files are associated with your program through the ddname and device
specification of TAP n in the FILEDEF command that defines them. To
define your own tape files, you must issue, for each file, a FILEDEF
command with the following format:

FILEDEF FT xx F yyy TAP n | options]

where:

xx - is any FORTRAN data set reference number acceptable to your
system.

yy - isany valid sequence number, 001 if you are not using multiple
files or any number from 001 to 999 if you are using multiple
files. (See the section ‘“Using Multiple Files” for more
information.)

n - is any valid tape unit (1 through 4).

options - are any valid FILEDEF options for tape files.

Figure 18 illustrates how the FILEDEF command associates tape files with
the input and output statements in your FORTRAN program.

filedef fOOI\\l tap2 N
AN

FORTRAN Program

READ (8,20) list

—F>C - <L

O
{/

“-—zcC

N

\/\/\/\/\/\W

Figure 18. FILEDEF Command for User-defined Tape Files

55

For input and output operations, the system uses the tape that is mounted on
the tape unit specified in the FILEDEF command.

User-defined Terminal Input and Output Files

Terminal files are associated with your program through the ddname and
device specification of TERMINAL in the FILEDEF command that defines
them. To define your own terminal files, you must issue, for each file, a
FILEDEF command with the following format:

FILEDEF FT xx FOO1 TERMINAL [options |
‘where:

XX - isany FORTRAN data set reference number acceptable to your
system.

options- are any Valid FILEDEF options for terminal files.

Figure 19 illustrates how the FILEDEF command associates terminal files
with the input and output statements in your program.

NN
s\\\\ \ \\\ T \

FORTRAN Program Your Terminal

[N END canceL |

10 FO;!MAT (' ENTER DATA') EE[ZIE]
) Jooannnannnn

READ (9,20) LIST CLR RETURN

: ool 1L L Lo AL LILIL G

: s | oo L DL DAL AL])

SPACE BAR]

LA N prrmannn AW

Figure 19. FILEDEF Command for User-defined Terminal Files

For input operations the system waits until you enter data at your terminal.
This means that your programs must provide a means for notifying you when
to enter data. See the section “Predefined Terminal Input Files” for
information on self-prompting. For output operations, data is written at your
terminal.

56

User-defined Punched Card Input Files

Punched card files are associated with your program in one of two ways
depending upon the number of card decks to be read.

e Reading One Card Deck

If your program is going to read only one card deck, that deck is
associated with your program through the ddname and device
specification of READER in the FILEDEF command that defines it.
To define only one punched card input file, you must issue a FILEDEF
command with the following format:

FILEDEF FT xx FO01 READER [options]
where:

xx - is any FORTRAN data set reference number acceptable to your
system. Be sure that you do not assign the same data set
reference number to both the card reader and punch in the
same program.

options- are any valid FILEDEF options for punched card files.

Figure 20 illustrates how the FILEDEF command associates one punched
card input file with the input statements in your FORTRAN program.

57

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

filedef %Jeai: %

VIRTUAL CARD READER

fa

= "

/ID userid

FORTRAN Program

READ (10,20) list /j

Figure 20. FILEDEF Command for One User-defined Punched Card File

For input operations, you must send the card deck you want read to your
computing center or enter it through a remote entry system (if available)
before you attempt to execute your program. The system operator will read
the card deck into a CMS reader file. Your input statement will read data
from this spooled reader file and not from the actual cards. The deck of cards
must be identified as follows:

58

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

/ 1D userid | N\

]
s
|

1

0090
134
(RN}

000
610
P

0

s
i

2202222222222222222222222222022
330333
AL A 0404400040008 4 400 0004044000000 0040404000000 8 00840000448
B55555555655655555555565
BE6666666666666666666666666665666666666666666066666666656666666666666666666666666
[RRL R RN RN R AR R R AR R R R AR AR AR R
8660800600800680868086800803086088808668868008858865086806800688480880086806808886866808868868

99999999999999999999999999999995999999999999999999999896995995999999999999999999
\\'1:4ssl|9mnnnuuununmnnuuuuvnumnnuunnnuuuuuu«unnuummnnasuuun»ﬂnuuuunununnnunnnnnn J

i
1
1
2

where:
ID must appear beginning in column 1.
userid must appear beginning in column 10.

e Reading More than One Card Deck

If your program is going to read more than one deck of cards they
must be converted into disk files with a READCARD command
before they can be associated with your program. Each card deck to
be read must be preceded by a :READ card with the following format:

LREAT filename filetype fm N
i
1
000000CW00000050900000000Y0C00000020000000CC0000000000000000000000000003000000000
T2I A T B IR A TS 19202 22 428 Us 22823300 02 5 35363039 33 A0 A1 474D A ASEE 4T B 4L SO Sk 525354556 ST SO S3 6061 626364 5566 6766970 T, F2TITAIS 671 B TSH0
(AR IRRR RN R RN R AR AR R R R R AR A R R R R R R R AR R R R R R RN AR RN R R R AR AR R R AR NR R R A RR A

B222222222222222222222222222220222222022
33
QAR 43 4084008 A4 4440440044400 4 4404000000800 8404 0404440040448 4440440480084444
SSBSS555555555555555555555555555555556555555555555555555655555555555555555555555
BEGoB666666666656666666666666666566666066C665656666665E66666666A66666666666666666
TN En I N
BoB888608080886806880888800080808088008080868688888550088368888068800806088886888880866886888
9099999999999999996599599999998599999999599999922996999¢499999999999906999995999

t2345818 SNHI?IJ‘?H!E?HE SLUWNWB BT80N IS & 20040 AT IS0 5 LI0I5485 50 ST 59 5960 51626 G4 ESOREV GG 1671 721374751617 1B 128D /

where:
:READ - must appear beginning in column 1
filename - is any valid CMS filename. It must begin in column 8.
filetype - is any valid CMS filetype. It is recommended that you use the
ddname for the filetype. The ddname is the default filetype
for FORTRAN execution-time files and will remind you what

data set reference number has been defined for the file. It
must begin in column 17

59

60

fm - is optional, but may specify any user disk (A through G).

These disks may be any available mode on input (1 through
5). If no mode is specified, A1 is assumed. Files that contain
spanned records (that is, RECFM is VS or VBS) must have a
mode of 4. If specified, the filemode must begin in column 26.

Multiple punched card files are associated with your program through the
ddname, device specification of DISK, and file identifier that you specified in
the FILEDEF commands that define them. To define more than one card file
you must issue, for each file, a FILEDEF command with the following

format:

FILEDEF FT xx Fyyy DISK filename filetype [filemode] [options]

where:
xx - is any FORTRAN data set reference number acceptable to your
system.
yyw - is any valid sequence number, 001 if you are not using multiple
files or any number form 001 to 999 if you are using multiple
files. (See the section ‘“Using Multiple Files” for more
information.)
filename - is the same filename that you specified on the :READ card for
this file. If you omit the filename, the system assumes FILE.
filetype - is the same filetype that you specified on the :READ card for
this file. If you omit the filetype, the system assumes the
ddname of FT xx F yyy.
filemode - is optional, but if specified is the same filemode that you
specified on the :READ card. If you omit the filemode, the
system assumes Al.
options - are any valid FILEDEEF options for punched card files.

Figure 21 illustrates how the READCARD command converts each punched
card deck into a disk file, and how the FILEDEF command associates the
disk file thus created with the input statements in your FORTRAN program.

readcard \newdatu ft 10 f001 al

A

VIRTUAL CARD READER

:READ MOREDATA FT10F002 Al

data

X :READ NEWDATA FT10F001
1D userid

o—

P'

\ filedef fool \@@newdm fHOfOOIJ\ al

FORTRAN Program
v
I
R
T
. u
READ (10,20) list f«
D
1 NEwpaTa FTIOFOO!
S
K
u
N
|
T

e e

Figure 21. FILEDEF Command for Mutliple User-defined Punched Card Files

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

For input operations, you must send your card decks you want read (with the
appropriate :READ cards) to your computing center or enter them through a
remote entry system (if available) before you attempt to execute your
program. The system operator will read the card decks into a CMS spooled
reader file. The entire set of card decks must be identified with the same
header card described previously for only one card deck. When you are ready
to run your program, enter a READCARD command for each card deck to
be read. The READCARD command has the following format:

N READCARD filename filetype [filemode]

61

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

where:
filename - is the same filename that you specified on the :READ card.
filetype - is the same filetype that you specified on the :READ card.

filemode - is optional, but if specified it is the same filemode that you
specified on the :READ card.

Each :READ card will transfer the appropriate deck of cards to a disk file
with the file identifier that you specified on the :READ card. Once
converted, the deck of cards is processed as a disk file.

User-defined Punched Card Output Files

Punched card output files are associated with your program through the
ddname and device specification of PUNCH in the FILEDEF command that
defines them. To define your own punched card output files, you must issue,
for each file, a FILEDEF command with the following format:

FILEDEF FTxxF001 PUNCH J[options]

where:

XX - is a FORTRAN data set reference number acceptable to your
system. Be sure that you do not assign the same data set
reference number to both the card reader and punch in the
same program.

options - are any valid FILEDEF options for punched card files.

Figure 22 illustrates how the FILEDEF command associates punched card
output files with the output statements in your FORTRAN program.

filedef it fom\{
N

punch

N

FORTRAN Program

\

VIRTUAL CARD PUNCH

WRITE (11,20) list

Lt

\l_:;;ﬁﬁ

X data
userid

Figure 22. FILEDEF Command for User-defined Punched Card Files

62

User-defined Printed Output Files

Each printed output file is associated with your program through the ddname
and device specification of PRINTER in the FILEDEF command that defines
them. To define your own printer files, you must issue, for each file, a
FILEDEF command with the following format:

FILEDEF FT xx FOO1 PRINTER [options]
where:

xx -is any FORTRAN data set reference number acceptable to your
system.

options -are any valid FILEDEF options for printed files.

Figure 23 illustrates how the FILEDEF command associates printed files with
the output statements in your FORTRAN program.

SN
filedef ft{12{£001 printer
ANNN! \

NN\

FORTRAN Program VIRTUAL PRINTER

RN

e 5/\”““\)— \N A~~~ A

_/[M | GUSRSNIIS U W

)

WRITE (12,20) list

\
\

2

Figure 23. FILEDEF Commang for User-defined Printed Files
For output operations, the data you want written is placed by the system in a

spooled printer file from which the actual printing will be done. Your WRITE
statements do not directly control the printer in the computing center.

63

Direct Access Files

Each direct access file, whether it is used as input or output, for a FORTRAN
object program, rgquires a file identifier with the following format:

filename filetype [filemode]
where:
filename - is any valid CMS filename.

filetype . - is any valid CMS filetype. It is recommended that you use the
ddname in the FILLEDEF for the filetype. The ddname is the
default filetype for FORTRAN execution-time files and will
remind you what data set reference number has been defined
for the file.

filemode - is optional, but may specify any user disk (A through G).
These disks may be in any available mode (1 through S) on
input; however, they can only be in modes 1, 4, or 5 on
output. If no mode is specified Al is assumed.

Direct access disk files are associated with your program through the ddname,
device specification of DISK, and the file identifier that you specified in the
FILEDEF command that defines them. To define your own direct access
files, you must issue, for each file, a FILEDEF command with the following
format:

_ FILEDEF FT xx FOO1 DISK filename type [filemode] [options]

xx - is any FORTRAN data set reference number acceptable to
your system.

filename - is the name of the file to be used or created. If you omit the
filename, the system assumes FILE.

filetype - is the type of the file to be used or created. If you omit the
filetype, the system assumes the ddname of FTxxF001.

filemode - is optional, but if specified, is the filemode of the file to be
used or created. If you omit the filemode, the system assumes
Al.

options - are any valid FILEDEF options for direct access files.

Figure-24 illustrates how the FILEDEF command associates direct access
files with the input and output statements in your FORTRAN program.

FORTRAN Program

N
\\\rlw newdata ft14£001 c&
l\\ - NSANNN ANNNNNNN \

DEFINE FILE 14(10,50,E, ID)

D=3
READ (14' 1D, 20) list

) Y

FrCc-He—<

Newpata Fr14FO0!

Rw—0

—1—2(:

Figure 24. FILEDEF Command for User-defined Direct Access Files

For input and output operations, the system searches for the file identifier
specified. If the file exists, data will be read or written from the point
specified in the associated variable of the corresponding DEFINE FILE
statement. If the file cannot be found, the system will create a file with the
file identifier specified in your FILEDEF command and fill it with blanks.

You must be certain that the FORTRAN DEFINE FILE statement
accurately describes the file to be used. In addition, you must provide some
mechanism within your program to specify the relative record number for
multiple files created under the same data set reference number. The number
of files specified in the DEFINE FILE statement should be realistic for your
needs. For files being created, the number of records that you specify will be
blanked out on the disk before actual data is read into it. If you have
specified an unnecessarily large number, disk space will be wasted.

CMS supports the FIND statements, although its use slows down the
execution of a FORTRAN TEXT file in a time-sharing environment. Input
and output overlap is achieved through the sharing of CPU time among the
virtual machines that are operating at one time.

Using Disk and Tape Multifiles

It is possible to create sequential disk and tape multifiles under CMS. A
multifile contains several CMS files that are created under the same
FORTRAN data set reference number by the same program. The use of
multifiles involves the sequence number in the ddname of the FILEDEF
command. Sequence numbers are associated with sets of input and output
statements in your program depending upon their position and how they are
used.

65

The first set of input or output statements for a specific data set reference
number refers to the first file in the multifile. The sequence number for this
file is 001. When the end of the first file is reached (either because of an

"END FILE statement or an END= parameter) the next set of input or output
statements for the same data set reference number refers to the second file,
which has a sequence number of 002. When the end of the second file is
reached, the third file is processed, and so on until the last file has been
processed. A FILEDEF command is required for each file (that is, sequence
number) in the multifile. The REWIND statement *‘repositions” the

sequence number back to 001.

The BACKSPACE statement can be used to extend a file, that is, add
additional data. With a multifile, an end of file condition followed by a
" BACKSPACE does not position the sequence numbers to refer to the next
file. The last file processed remains available. The BACKSPACE statement
should not be used with list-directed input and output statements.

Example:
_FORTRAN Program Statements CMS FILEDEF Commands Required

10 read (7,100) b filedef ft07f00| tapl
20 ‘el"ld fi l:e’ 7
30 r;;a (;,loo,end=40)"b filedef F1076002 tapl
40 : backsp:qce 7

"~ 50 write (: ,100) b
60 end fil:e 7
70 read (;, 100) b filedef ft07f003 tapl
80 rewind:7
90 read (;,100) b

At the beginning of the program the sequence number is 001, Statement 10 reads the first file in the multifile, FTO7F001,
Statement 20 sets the sequence number to 002, and statement 30 reads the second file, FTO7F002, setting the sequence
number to 003, When the END = condition is reached statement 40 resets the sequence number back to 002, and statement
50 adds data to the file, Statement 60 sets the sequence number to 003 again, Statement 70 reads the third file, FTO7F003,
Statement 80 resets the sequence number back to 001, and statement 90 rereads the first file.

66

Data can be read or written in the first file (sequence number 001) simply
by supplying a FILEDEF command for the first file. Care should be
exercised in adding new data to an existing file. The new data is placed at the
end of the file and will cause the succeeding files to be written over or lost.
The procedure for reading or writing into a file with a sequence number
greater than 001 is more complex. You must do the following:

1 Perform some input or output operation and include an END FILE
statement for each file preceding the one you want.

OR

Read each preceding file supplying an END= parameter that points to
the next read.

2 Read or write into the file you want. The same caution about adding
data to the first file is applicable here for the following files.

Note: If you execute a REWIND statement before the end of the file
is reached, and data that is written into the first file (001) will overlay
the data already there. (There is no way to write over the data in a
single file with a sequence number greater than 001. All new data
added to it is automatically placed after any existing data.) Writing
over the data in the first file will not shorten it, if the new data is not
as long as the original data. It may, however, lengthen the file, thus
eliminating all the original information. Before you write over all the
information in the file, first erase the prévious information with the
ERASE command, since old data that is not written over remains
untouched.

67

FORTRAN IV Programming Considerations

FORTRAN Coding Techniques for Greater Efficiency

In FORTRAN, as with programming in general, there are usually several
ways to approach a problem and code a program. However, not all the
methods will produce equally efficient or accurate results. Of the techniques

- listed below, all have been included because they take advantage of the

compilers capabilities and produce efficient and accurate executable code.
The FORTRAN statements and topics are presented in alphatetical order.
Additional information about the FORTRAN IV language is available in the
publication IBM System/360 and System/370 FORTRAN IV Language,
Order No. GC28-6515.

Language Considerations foi the FORTRAN IV (G1), Code and Go FORTRAN
IV, and FORTRAN (H Extended) Compilers

Arithmetic IF Statements

68

When using arithmetic IF statements, avoid making tests that depend on the
real floating-point zero. Many real numbers must be represented
approximately (although to a high degree of accuracy) in the internal code of
the computer. Slight errors resulting from computation with these numbers
may prevent an anticipated value of zero from being obtained, and, hence
invalidate any test for zero.

A fixed-point overflow condition in an arithmetic IF statement results in
the following action for G1 and Code and Go:

e If the integer is positive, a negative branch is taken, that is, the first
branch.

o If the integer is negative, a positive branch is taken, that is, the third
branch.

For H Extended, if the integer equals zero the second branch is taken.

BACKSPACE Statement

The BACKSPACE statement can be used to extend a file, that is, add
additional data to it. With a multifile, an end of file condition followed by a
BACKSPACE statement does not position the sequence number to point to
the next file. The last file processed remains available. The BACKSPACE
statement should not be used with the LIST-directed input and output
statements.

FIND Statement

CMS supports the FIND statement, although its use slows down the execution
of a FORTRAN TEXT file in a time-sharing environment. Input and output
overlap is achieved through the sharing of CPU time among the virtual
machines that are operating at one time.

List-Directed Input and Output

The following rules affect the use of list-directed input and output:

e List-directed output statements can be used to create FORTRAN data
files that are acceptable as input to PL/T processors, provided that
these data files do not contain COMPLEX data types.

e The block size must be large enough to contain the largest data item
other than a complex number. For a complex number, the block size
should be larger than half the length of the item plus a comma. If the
block size is not large enough the remainder of the input or output list
is ignored.

For a complete description of list-directed input and output see the section
“Library Features Available with the FORTRAN IV Mod I and Mod 11
Libraries.”

Literals in Data Initialization

In initializing an array, you should consider the following:

69

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

70

Any element of an array may be initialized by subscripting the array
name. Only one element is initialized; if excess characters are
specified, they are not placed into the next element. An array element
that is partially filled is padded on the right with blanks. The example
below illustrates how individual array elements are initialized.

Example:

DIMENSION A(10)
DATAA(1),A(2),A(4),A(5)/"ABCD', "ORSTUVW', '123", '666666"'/

The array elements contain the following:

ACTIAC2)AC3) JA(A) [ACS)|A(G)JA(T)[A(8)|A(9) |A(10)

ABCD| ORST 123 | 6666

Several consecutive elements of an array may be initialized with a
single literal constant by specifying the array name without a subscript.
Data spill occurs over as many elements as are necessary to insert the
entire constant (as long as the constant does not exceed the limits of
the array). The example below illustrates how several array elements may be
initialized with a single literal constant.

Example:

DIMENSION ARRAY(9)
DATA ARRAY/'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/

The array elements contain the following:

ACT)AC2) JAC3) fA(4) JA(S)|A(G) |A(T)] A(8)]| A(9)

ABCD | EFGH | IJKL | MNOP | QRST | UVWX | YZ

Using this method, initialization always begins with the first element of
the array. To begin initialization with an element other than the first
you can use an EQUIVALENCE statement.

Example:

DIMENSION ARRAYA(10), ARRAYB(5)
EQUIVALENCE (ARRAYA(6),ARRAYB(1))
DATA ARRAYB/' ABCDEFGHIJKLMNOPQRST' /

The arrays will be initialized as follows:

ACDIAC2) A A TAS) |A(6) JA(T) JA(B)A(9)|A(10)

ABCD| EFGH { IJKL | MNOP { QRST

Individual elements of an array may be initialized after initializing
several elements with an unsubscripted array name. Each constant
must follow the array name that is to be initialized. The example

Logical IF Statement

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

below shows how the two methods may be combined into one
operation.

Example:

DIMENSION ARRAY(5)
DATA ARRAY/'ABCDEFGH'/, ARRAY(4)/"4444" /, ARRAY(5)/'5555"'/

The array will be initialized as follows:

AT A(2) A3 A4 |A(S)

ABCD | EFGH 4444 15555

If each constant that is to initialize a part of the array is not specified
immediately after the elements that will contain them, data that has
overflowed into subsequent array elements may be replaced by data that was
incorrectly specified. The example below illustrates one possible
unintentional result.

Example:

DIMENSION A(3)
DATA A,X/'ABCDEFGHIJKL',10.0/

The array will be initialized as follows:

A1) A(2)]A(3)|X

ABCD 10.0} IJKL

As you can see the compiler assumes that the second constant is intended for
the second array element. The correct way to code this array is shown in the
example below.

Example:

DIMENSION A(3)
DATA A/'ABCDEFGHIJKL'/,X/10.0/

This would result in the following initialization:

A(T)IA(2)JA(3)]X

ABCD | EFGH | IJKL| 10.0

The FORTRAN IV G1, Code and Go FORTRAN, and H Extended compiler
will flag truncation and spill in data initialization as an error; however,
executing the TEXT file will produce the expected results described above.

Use of the logical IF statement rather than a comparable arithmetic IF
statement can result in a more efficient compilation. Statement 5 below is
more efficient than statement 6.

71

Example:
5 IF(A.GT.B)GOTO?20
6 IF(A-B)10,10,20
20 CONTINUE

Each set of logical comparisons occurring in a logical IF statement is
analyzed separately by the compiler.

Example:
(A.LT.B.OR.C.GT.F.OR. NOT.L) GO TO 10
This statement is analyzed as though it were written:
IF (A.LT.B) GO TO 10
IF (C.GT.F) GO TO 10

IF (.NOT.L) GO TO 10

Therefore, if A is less than B, the remainder of the statements are not
evaluated. You can affect the efficiency of your execution by the order in

which you specify the logical comparisons. For example, if you expect C to
be greater than F more often than A is less than B, test for C being greater

than F first.

PAUSE n Statement

The PAUSE statement message or number will be displayed at your terminal

and execution of your program halted. To restart your program, hit the
ATTN key.

READ Statement

The ERR= parameter in the READ statement causes a branch to another

statement if an input or output error is encountered. The READ statement
that encountered the error does not make the data available to your program.
A second READ statement is necessary to do this. Thus, you can direct the
ERR= parameter to an error processing routine that rereads in the error and

disposes of it before returning to normal processing.
Example:

5 READ (8,100,ERR=200)A
100 FORMAT(I10)
_ GOTO 300
200 READ(8,100)AX
300 CONTINUE

72

RETURN Statement

STOP n Statement

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

If the ERR= parameter is not included, an input or output error causes the
program to stop processing.

The RETURN statement is used in subprograms to return control to the
program that called it. If this statement is included in a main program, it
returns control to the operating system. As a note to assembler programmers,
the RETURN statement issues the following codes in register 15:

0 If the RETURN statement was executed in a normal fashion in
either a main program or subprogram.

4*i If a RETURN i statement was executed in a subprogram.

16 If a terminal error was detected during execution in a library
subprogram.

The number specified in the the STOP n statement should not be larger than
4095, since a large number causes an overflow into a system return code field.
The return code that will be issued is » modulo 4096, that is, the remainder
after dividing n by 4096. However, the number you specified will be
displayed at your terminal. To restart processing, hit the ATTN key.

Unformatted Forms of Input and Output Statements (Not Including List-Directed)

The unformatted form of an input or output statement results in a faster data
transfer rate into and out of storage, since no data conversions are performed.
When operations are being performed on intermediate data files, (those which
are used internally by the program and which you never see) the use of
unformatted data increases program efficiency. In the example below,
statement 11 is more efficient than statement 10.

Example:
DIMENSION A{ 100)
10 WRITE (20,9)A,B

9 FORMAT (100E13.3)
11 WRITE (20)A,B

73

Language Considerations for the FORTRAN 1V (G1) and Code and Go
FORTRAN IV Compilers Only

Array Notation in Input and Output Statements

The use of array notation is more efficient than an implied DO. In the
example below, statement 4 is more efficient than statement 3.

Example:

3 READ (9) (A(I),I=1,10)
4 READ(9)A

Language Considerations for the Code and Go FORTRAN Compiler Only

Free-Form Input

74

The following rules govern the use of free-form input format:

Maximum statement length: 1320 characters, excluding statement
number and statement break characters.

Maximum Line Length: 81 bytes including statement numbers and
statement break characters.

First line of statement: This may start in any typing position.

Statement numbers: The first line of a statement may contain, as the
first non-blank characters of that line, a statement number consisting
of from one through five decimal digits. Blanks and leading zeros in a
statement number are ignored as are any blanks preceding the
statement number. A blank need not separate a statement number
from the first nonblank character that follows the statement number.

Continued line: A line of a statement to be continued is indicated by
terminating the line with a hyphen.

Continuation line: A line following a continued line. A continuation

line can begin in any typing position except where a literal constant is
being continued, in which case the line must begin in position 1. A
continuation line may also be continued; up to 19 continuation lines
are permitted in a single statement. ‘
e Comment line: Any noncontinuation line with an asterisk (*) or a
double quote (‘) as its first non-blank character. A comment line
cannot be continued, but multiple comment lines may be used.

Note: The default line escape character under CMS is also a double quote
(‘). You must change this escape character to a character other than a
double quote before entering free-form source comments.

e FEnd line: An end line consists of the characters END preceded by,
interspersed with, or followed by a maximum of 63 blanks (that is, it
may not be continued on a subsequent line).

The standard form statements:

Typing Position: 1 7
c sample text
10 d=10.5
goto56

150 a=b+c*(d+e**f+
cg+h-2.*%(g+p))
c=3.

could be written in free form as the following:

Typing Position: 1 7
"' sample text
10 D=10.5
go to 56
150 a=b+c*(d+ex*f+-
g+h-2.*%(g+p))
c=3/

A sift utility is provided with the Code and Go processor that will produce
fixed-length standard-form FORTR AN input records from free-form
statements. Fixed-length records may be submitted to other compilers for
processing. You can invoke the sift utility with the CONVERT command.
The GOFORT compiler command allows you to specify whether your source
statements are fixed- or free-form. See Appendix D for more detailed
information on using the sift utility.

Language Considerations for the FORTRAN IV (H Extended) Compiler Only

Array Notation in 1/0O Statements

Array notation is the preferred method for coding 1/0 lists. Under all levels
of the OPTIMIZE option, whenever possible, implied DO statements are

75

Page of SC28-6891-0, -1
Revised March 18, 1977

By TNL SN20-9201

BASE Registers

treated as arrays. In the example, below, statement 4 implementation would
be substituted for statement 3:

DIMENSION A(100)
3 READ (9) X(A(I),I=1,100)
4 READ (9) A

for a nest of implied DOs, array notation is implemente& if the following
conditions are met:

1.

Only one list item is included in the range of any of the implied DO
levels; this list item is not a DO variable.

A list item which is an array does not have variable dimensions.

The initial, test, or increment value of an inner DO loop is not the DO
variable of any outer DO loop.

The DO variable does not occur as a subscript for an element of the
subscript.

The DO variable does not occur as a subscript for an element of the
subscript.

An array subscript contains only constants or variables as operands.

Each arithmetic term occurring in an expression of an array subscript
meets all the following conditions if that term contains a DO variable:

a. No exponentiation or division occurs.
b. All operands except the DO variable are integer constants.
c. No DO variable occurs more than once.

The maximum iteration for each DO level of an implied DO with
constant DO limits is 224 (16,777,216) times.

Register 13 is the primary base register. The following must be addressable
using register 13: 18 words for the save area, 1 word for the adcon for
register 12, branch tables for all computed GOTOs, and parameter lists for
all call statements and external functions. Register 12 is the secondary base
register. If register 13 does not reach the end of the parameter lists or if
register 12 and register 13 are both exceeded, a level 16 error is issued and
the compilation is deleted. This may occur in a program with many branch
tables or parameter lists. ’

EQUIVALENCE Statement

76

To reduce compilation time for equivalence groups, the entries in an
EQUIVALENCE statement should be specified in descending order
according to displacement.

EXTERNAL Statement

GENERIC Statement

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Example:

EQUIVALENCE (VARA,ARAYA(3) ,ARAYB(5),ARAYC(10))
This statement would be compiled faster by reversing the order.
Example:

EQUIVALENCE (ARAYC(10),ARAYB(5),ARAYA(3), VARA)

To reduce compilation time and save internal table space, equivalence groups
should be combined where possible.

Example:

EQUIVALENCE (ARRA(10,10),VAR1), (ARRB(5,5),VAR1)
This statement could be recoded more efficiently.
Example:

EQUIVALENCE (ARRA(10,10),ARRB(5,5),VAR1)

By placing an ampersand before a function name in an EXTERNAL
statement, the programmer ‘‘detaches” that name, that is, declares it to be the
name of a user-supplied function even though the name may be the same as a
function or subroutine appearing in the FORTRAN IV Library (Mod II). If
the function name following the ampersand is not the same as a library
function, it is still considered detached; no diagnostic action is taken.

Also, by specifically typing a subprogram name, the programmer detaches
the name from the library.

Example:
REAL*8 SIN

SIN will be automatically detached from the library.

The GENERIC statement requests the use of the Automatic Function
Selection facility of the FORTRAN IV Library (Mod II). As a result, the
appearance of the generic name in a program causes the appropriate function
name to be substituted according to the length and type of the arguments
specified. For example, the generic name COS, specified with arguments of
REAL*8 causes the function DCOS to be substituted.

77

Name Handling

To avoid conflict with specific references to functions, the function names
substituted as a result of automatic function selection are aliases, which you
cannot otherwise specify. Aliases beginning with the characters IH$$ refer to
function names three characters in length, and TH$ to names four to six
characters in length. Names six characters in length are automatically reduced
to five characters by deleting the next to last characters before prefixing the

name with IH$. For example, the function DCOTAN substituted for
COTAN would appear to have the name IHSDCOTN.

The compiler places names for variables, arrays, and subprograms into a table
and searches the table whenever a reference is made to a name. The table is
divided into six strings. Names that are one character long are placed into the

“second string; and so on. For faster compiling, allocate names as evenly as

possible among the sizes.

OPTIMIZE Compiler Option

78

The OPTIMIZE option of the FORTHX compiler command improves
execution-time and reduces the amount of the executable code produced.

OPTIMIZE(1) causes the entire program to be treated as a loop, with
individual sections of coding, headed and terminated by labeled statements,
treated as blocks. The executable code is made more efficient by:

e Improving local register assignment. (Variables that are defined and
used in a block are retained where possible in registers during the
processing of the block. Time is saved because the number of load and
store instructions are reduced.)

e Retaining the most active base addresses and variables in registers
across the whole program. (Retention in registers saves time because
the number of load instructions are reduced.)

e Improving branching by the use of RX format branch instructions in
the executable code. (An RX branch instruction saves a load
instruction and reduces the number of required address constants.)

OPTIMIZE(2) performs optimization beyond that performed with
OPTIMIZE(1) by:

e Assigning registers across a loop to the most active variables,
constants, and base addresses within the loop.

¢ Moving outside the loop many computations which need not be within
the loop.

e Recognizing and replacing redundant computations.

e Replacing, where possible, multiplication of induction variables by
addition of those variables. (An induction variable is one that is only
incremented by a constant or a variable whose value remains constant
in the loop.)

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

e Using, where possible, the BXLE assembler instruction for loop
termination. (The BXLE instruction is the fastest conditional branch;
time and space are saved.)

Registers 0, 1, and 12-15 are required by the system. The remaining
registers, 2-11, are available for use by optimization techniques. Branch
optimization reserves registers 11, 10, and 9, if needed and as needed,
for object program instructions in large source programs.

Programming Considerations When Using OPTIMIZE(1) and OPTIMIZE(2)

Although these options can result in more efficient code, they place additional
responsibilities on you the programmer and require additional programming
considerations.

Using COMMON Statements: Variables in COMMON are normally not
stored uniess an input/output statement or a subroutine call using them is
issued.

Using Subprograms: If a user-defined subprogram is given the same name as
a FORTRAN-supplied subprogram (for example, SIN, ATAN), errors may be
introduced during optimization. To avoid these errors, specify the
subprogram name in an EXTERNAL statement (with an ampersand
preceding the subprogram name).

If the extended error handling facility is specified and a user-supplied
subroutine uses program variables, there is no assurance that correct values
will be available.

If a subprogram is called at one entry point for the purpose of initializing
arguments and at another entry point for computations, the latter call must
include an argument list to ensure that the subprogram will receive current
values for the arguments. This rule applies when the subprogram refers to the
arguments by name (that is, accesses them in their locations in the calling
routine rather than through local variables).

In the following example, the updated value of N will be correctly stored
and transmitted to the subprogram. If the call to the subprogram did not
include the argument list, N would be updated in a register but not in storage.

Example:
CALL INTIT(N)
10 CALIL COMP(N)
N=N+1
GOTO 10

SUBROUTINE INIT(/J/)

ENTRY COMP (/J/)

79

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Using COMMON Blocks: Because each COMMON block is an
independent program unit, it is independently relocatable, and thus requires a
base address that specifies its beginning point in storage. Each base address
must be stored into a register in order to be accessible. If many COMMON
blocks are defined, the need to load base addresses slows down processing
time. If multiple blocks can be combined into one block of less than 4096
bytes in length (the maximum number that can be accommodated in a
register) one base register can serve to address each variable.

Using the Assigned GO TO Statement: If the list of statement numbers is
incomplete in an assigned GO TO statement, errors that were not present in
the unoptimized code may appear. Hence, you should be sure that all GO TO
statements have complete lists of statement numbers.

Programming Considerations When Using OPTIMIZE(2)

80

OPTIMIZE(2) evaluates expressions and eliminates common expressions.
For example, if an expression occurs more than once, and the program path
always passes through the first occurrence of that expression to reach a
second occurrence without changing the value of the expression, the first
value of the first occurrence is saved and used instead. This is done for

both full expressions and intermediate results within expressions.

Example:
A=C+D
F=C+D+E

The common expression C + D is saved after its first evaluation in A and
is used in F without repeating the computation.

Using Subprograms: If a FORTRAN library function is called, the
computational reordering performed during optimization may cause
unexpected results.

Example:

DO 11 I=1,10
DO12J=1,10
9 IF(B(I).LT.0)GOTO11
12 C(J)=SORT(B(I))
11 CONTINUE

The optimization technique moves the library function call before statement
9, causing the square root computation ot occur before the test for zero. To
avoid this situation, the program should be rewritten as follows:

DO 11 1=1,10

9 IF(B(I).LT.0)GOTO11
DO 12J=1,10

12 C(J)=SQRT(B(I))

11 CONTINUE

Using the FORTRAN Subroutine Libraries

The FORTRAN IV Library (Mod I) or the FORTRAN IV Library (Mod II)
can be used under CMS. The libraries are available in up to three CMS disk
files that were determined when the library was installed in your system.
These files are searched whenever a reference to a subroutine is encountered
after a LOAD or INCLUDE command has been issued. Figure 25 outlines
the contents of the library files depending upon the number of files and the
availability of the Extended Error Handling Facility.

The files you choose to use must be identified in a GLOBAL command
before their contents can be referred to. You can identify them in a
PROFILE EXEC procedure or with individual GLOBAL commands prior to
executing your FORTRAN programs. See the VM /370 Command
Language User’s Guide , Order No. GC20-1804 for a description of these
commands. In addition, you may refer to the publications /BM System /360
OS FORTRAN IV Mathematical and Service Subprograms , Order No.
GC28-6816 and IBM System/360 OS FORTRAN IV Mathematical and
Service Subprograms Supplement for Mod I and Mod Il Libraries , Order
No. SC28-6864 for a complete description of the library routines and their
functions.

Before attempting to use any of the FORTRAN libraries, determine from
the system administrator in your computing center, the number of library
files, the names of the files, and the availability of the Extended Error
Handling Facility. '

If you have the Code and Go compiler with either the Mod I or Mod I1
library, you will need to include an entry in your GLOBAL command for the
text library TSOLIB, which contains CMS system routines that support the
operation of the compiler.

If you have the H Extended compiler and Mod II library and will be using
extended precision arithmetic, you will also need to include in your GLOBAL
command an entry for the text library CMSLIB, which contains the extended
precision simulation routines.

Note: You may substitute a routine of your own for any of the FORTRAN
library subprograms and give it the same name as the library subprogram.
However, in resolving references, CMS searches through libraries specified in
your GLOBAL command. Therefore, care should be exercised in executing
programs that use a FORTRAN library subprogram for which you also have a
TEXT file with the same filename. If you do not want your TEXT file used,
you must rename it prior to executing your program.

81

Z8

Available in
Library One File Two Files “Theee Files
File 1 File 1 File 2 File 1 File 2 File 3
Contains Contains Contains Contains Contains Contains
Mod I and o Initialization e [Initjalization o [nitialization o Initialization e Error Handling o Error Handling
Mod II with and Termination and Termination and Termination " and Termination Routines with Routines without

the Extended
Error Handling
Facility (EEH)

Routines

e Math and Service
Routines

® 1/O Routines

e Conversion

D Antinace
nuuLvy

e Error Handling
Routines with
EEH

Routines

e Math and Service
Routines

o [/O Routines

e Conversion
Routines

e Error Handling
Routines with
EEH

Routines

Math and Service

Routines

I/0 Routines

e Conversion
Routines

o Erior Handling
Routines without
EEH

Routines

e Math and Service
Routines

e 1/0 Routines

e Conversion
Routines

EEH

EEH

Mod I and

Mod II without
the Extended
Error Handling
Facility (EEH)

e Initialization
and Termination
Routines

o Math and Service
Routines

e [/O Routines

e Conversion
Routines

e Frror Handling
Routines without
EEH

e Initialization
and Termination
Routines

e Math and Service
Routines

e I/O Routines

e Conversion
Routines

e Error Handling
Routines without
EEH

Figure 25. Contents of the FORTRAN Libraries (Mod I) and (Mod II)

Library Features Available With the FORTRAN IV Mod I and Mod 11 Libraries

The following features are supported by the G1, Code and Go, and H
Extended compilers.

List-directed and Formatted Input/Output

If your installation has the FORTRAN IV Library (Mod I) or (Mod II) you
can use the list-directed input and output (often called “list I/O”") facilities
which are provided by the interface between the FORTRAN IV Compilers
and the Libraries. List-directed input and output is simpler to use than
formatted FORTRAN 1/0 and is particularly useful for terminal input and
output.

With formatted I/0O you must write a FORMAT statement to specify to
the compiler the format of your input and output data. When you list I/O
statements refer to the terminal, the compiler prompts you for data and then
recognizes the format of each data item as you enter it from the terminal. It
also creates its own format for output data to the terminal.

To enter data using list-directed I/0, make a list of data items in the
sequence in which they are to be read. Separate individual items by commas,
blanks, tabs, or carrier returns. Write individual entries in real, integer,
complex, or double-precision formats. When you wish to use list-directed
input/output, omit the FORMAT statement, and replace the FORMAT
statement number in your READ or WRITE statement with an asterisk. The
data set reference number remains the same and represents whatever device
your installation has assigned to that number.

For example, suppose you have a program that reads in five input values
for variables A, B, C, D, and E. You may now supply the values using the
terminal as your input device. Assume that 5 is the data set reference number
for reading data from the terminal. Code a READ statement as follows:

for list-directed 1/0
50 read (5,*) a,b,c,d,e
for formatted I/O
50 read (5,10) a,b,c,d,e
Now execute your program. In both cases, your program will execute up to
statement 50, the READ statement. The program now needs input data from

you. The values to be supplied are 2.3, 6.74 2.1E+7, 6.4E03, 0.44432. In
the list-directed 1/0 case, the following happens:

83

84

The system prompts you for the data with a question mark and the READ
statement number. The interchange between you and the system is:

terminal: ? 00050

you: 2.3,6.74 2.1e+7
6.4e-03
9.44432

You could just as well have strung the five values out on one line, all
separated by commas, or all separated by one or more spaces, or you could
have entered each value on a separate line.

If you decide to omit an input value (leaving a variable unchanged from its
previous value) use successive commas. In the above example, if you wanted
to leave ¢ without a new input value, you might enter:

2.3,6.74,,6.4¢-03,9.44432

If the value or values you are leaving out are the last ones in the list, end the
list with a slash. For example, to read in just A,B and C, you would enter

236.74,2.1e+7/

In the formatted case, you would have to write a FORMAT statement similar
to:

10 format (2£3.2,2e10.1,£7.5)

No prompting is provided for this data. The terminal keyboard unlocks, and
you can type in the data required. The data must be typed in exactly as it
would be punched on a card:

230674000002.1e70000.64e-30944432

Since no prompting is provided, you should make a list of your data in the
order and form that it is needed, so that you can enter it correctly. An
alternative and recommended method of entering data is to issue prompts
yourself: insert a WRITE before each READ, with a literal message to
yourself to enter the data. In the above example, the statement immediately
preceding statement 50 might be:

write (6,5)
where statement 5 is:
5 format (' enterdatafora,b,c,d,e,"')

Note that the WRITE statement uses 6 as the data set reference number
where the READ statement used 5. Even though the terminal is the 1/0
device in both cases, FORTRAN requires different data set reference
numbers for reading and for writing. Data set reference numbers 5 and 6 are
the defaults used in this book for terminal input/output. Check to be sure
what the terminal data set reference numbers for read and write are at your
own installation.

You can mix conventional and list-directed 1/0O in your program. This may
be necessary since list-directed I/O cannot handle the writing of literal data.

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

The following is an example of mixed list-directed and formatted I/O as it
might occur in a simple program to average three numbers.

Your program reads as follows:

50 read (5,*)x,y,2
sum=xx+Y+2z
avg=sun/3
write(6,100)
100 format('theaverageof thethreenumbersis:')
write(6,*)avg

When your program runs, the I/O at your terminal looks like this:

system: ? 00050

you: 70,105,91

system. the average of the three numbers is:
system: 88.666

Extended Error Handling

The extended error handling facility is an optional feature of the FORTRAN
libraries that may be incorporated into your installation. If it is, you will have
additional diagnostic information available to you for errors occurring during
load module execution. Check with your system administrator to see if your
installation has extended error handling. If it does not, this section does not

apply to you.

When extended error handling is incorporated, it provides you with the
following features:

e ecxecution-time error messages that are more precise than those issued
with standard execution-time diagnostic facilities.

e the ability to continue execution after an error occurs.

e the opportunity to examine errors and to use either standard or
user-supplied corrective action. (If you are a typical CMS user, you
will be using the corrective actions that are built into your installation’s
system. More experienced system programmers can use the methods
described later on to modify existing ones.)

Extended error handling is superior to standard error handling in a number
of ways. Both types of error handling produce messages identifying any
errors that are found when a program is executed, and produce a summary
error count at the end of the job indicating the number of times each error
occurred. Extended error handling, however, allows your installation to
exercise control over the action performed by the system when an error is
encountered. With extended error handling, it is possible to direct the system
to perform standard corrective action and continue processing, or have the
system transfer control to an installation-supplied routine, which can perform
any type of corrective action desired. Your installation also has control over

85

The Option Table

86

the number of times a particular error is allowed to occur before program
termination, the maximum number of times each message may be printed, and
whether or not a traceback map is to be printed for the error.

Your installation controls these features by means fo a collection of
instructions stored in a list called the “option table””. When the FORTRAN
IV Library is installed, there are standard IBM-supplied entries in the option
table; however, your installation can modify these entries to suit its own
needs. These modifications include adding error conditions, changing aspects
of handling particular error conditions, or substituting an installation’s own
corrective routine for the IBM-supplied corrective action for a particular
error. The result is a permanent option table tailored to your installation.
Occasionally, a programmer may wish to change features of the option table
temporarily to suit his own needs. He can do this from the terminal. Changes
made this way last only as long as the session in which they are made; after a
programmer logs off, the system reverts to the permanently stored option
table.

As a CMS user you will normally not be concerned with making changes of
any type in the option table. You can find out from your system
administrator what provisions for error handling are contained in your
installation’s option table.

The general form of the option table and the kind of things in it are given
in Figures 26, 27 and 28. For the majority of applications, this description
together with the error messages produced by the extended error handling
facility (presented in the ‘“Diagnostic Messages” section of this book) will be
sufficient so that the extended error handling will present no problems for you
in your terminal sessions. You need not bother with the sections describing
alterations to the option table.

The option table consists of two sections; a preface and a number of entries
which describe error conditions. The preface is a doubleword entry
describing program handling characteristics, such as whether extended error
handling has been specified. Each error condition entry is a doubleword entry
describing characteristics of a particular error condition. For example, an
error condition entry will define the number of occurrences of the error
encountered, or whether an installation-supplied routine is provided for
handling the error. IBM provides a standard set of error conditions. Your
installation may have additional entries of its own. Figures 26 and 27
describe the fields of the option table and list the values supplied for each
entry when your installation is set up. Figure 28 lists the option table defaults
values for the available error codes.

Systems programmers who want to make temporary changes to the extended
error handling option table can find more detailed information in Appendix
D. ’

Format

< 4 Bytes
Number of entries
Boundary alignment Extended error handling Alignment count Reserved
Description
Field Length
Contents in Bytes Field Description

Number of 4 Number of entries in the Option Table. The default setting is 95.

entries

Extended 1 Indicates whether extended error handling facility was chosen at installation time.

error FF(hexadecimal) = EXCLUDE

handling 00(hexadecimal) = INCLUDE

The default setting is FF.

Alignment 1 Maximum number of boundary alignment messages when extended error handling

count facility is not chosen. The default setting is 10.

Reserved 1 Reserved for future use.

Figure 26. Option Table Preface

87

Field

Field Length
Contents _in Bytes Default’ Field Description
Number of error 1 10? Number of times this error condition should be allowed to occur.
occurrences When the value of the error count field (below) equals this value,
allowed job processing is terminated. The number may range from 0 to 255.
A value of 0 means an unlimited number of occurrences’. A value
greater than 255 sets the field to 0. . .

Number of mes- 1 5 The number of times the corresponding error message is to be printed
sages to print before message printing is suppressed. A value of 0 means no message
is to be printed.

Error count 1 0 The number of times this error has occurred. A value of 0 indicates

that no occurrences have been encountered.
Option bits 1 42 Eight option bits defined as follows:
(hgxa- Bit Setting Default Explanation
decimal)
0 0 0 " No control character supplied
for overflow lines.

1 .Control character supplied to
provide single spacing for over-
flow lines.

1 0 Table entry cannot be mod-
ified’.
Table entry can be modified..
2 0 0 Fewer than 256 errors have oc-
' cured.

1 k More than 256 errors have oc-
cured. (Add 256 to error count
field above to determine the
number.)

36 0 0 Do not print buffer contents
with error message.

1 Print buffer contents.

4 0 0 Reserved.
Unlimited printing of error mes-
sages not requested; print only
default number of times.

1 Unlimited printing requested;
print for every occurrence of
error.

6 0 Do not print traceback map.
1 Print traceback map.
7 0 0 Reserved.
User exit 4 1 Indicates where a user corrective routine is located. A value of 1 indicates

that no user-written routine is available. A value other than 1 specifies
the address of the user-written routine.

! The default values shown apply to all error numbers (including additional user entries) unless excepted by a footnote.
2Errors 208, 210, and 215 are set as unlimited, and errors 217 and 230 are set to 1.

3 An unlimited number of errors may cause the FORTRAN job to loop indefinitely until the operator intervenes.
4Error 210 is set to 10, and errors 217 and 230 are set to 1.

5The entry for error 230 cannot be modified.
$The entry is set to 0 except for errors 212, 215, 218, 222, 223, 224, and 225.

Figure 27. Option Table Entry Format

88

Number Number
of of Print Standard
Error Errors Messages Print Modifiable Buffer Traceback Corrective User
Code Allowed Allowed Control Entry Content Allowed Action Exit”
206 10 5 NA Yes NA Yes Yes No
207 10 5 NA Yes NA Yes Yes No
208 Unlimited 5 NA Yes NA Yes Yes No
209 10 5 NA Yes NA Yes Yes! No!
210 Unlimited 10 NA Yes NA Yes Yes! No
211 10 5 NA Yes NA Yes Yes No
212 10 5 No? Yes Yes Yes Yes No
213 10 S NA Yes NA Yes Yes No
214 10 5 NA Yes NA Yes Yes No
215 Unlimited S NA Yes Yes Yes Yes No
216 10 5 NA Yes NA Yes Yes® No
217 1* 1 NA Yes NA Yes Yes No
218 10° 5 NA Yes Yes® Yes Yes No
219 106 5 NA Yes NA Yes Yes No
220 10 5 NA Yes - NA Yes Yes No
221 10 5 NA Yes Yes Yes Yes No
222 10 5 NA Yes Yes Yes Yes No
223 10) NA Yes Yes Yes Yes No
224 10 5 NA Yes Yes Yes Yes No
225 10 5 NA Yes Yes Yes Yes No
226 10 5 NA Yes NA Yes Yes No
227 10 5 NA Yes NA Yes Yes No
228 10 5 NA Yes NA Yes Yes No
229 10 5 NA Yes NA Yes Yes No
230 1 1 NA No NA Yes No No
231 10 5 NA Yes NA Yes Yes No
232 10 5 NA Yes NA Yes Yes No
233-237 10 5 NA Yes NA Yes Yes No
240 1 1 NA No NA Yes No No
241-301 10 5 NA Yes NA Yes Yes No

"No corrective action is taken except to return to execution. For boundary alignment, the corrective action is part of the support
for misalignment.

21f a print control character is not supplied, the overflow line is not shifted to incorporate the print control character. Thus, if the
device is tape, the data is intact, but if the device is a printer, the first character of the overflow line is not printed, but instead is
treate‘ as the print control. Unless the user has planned the overflow, the first character would be random and thus the overflow
print line control can be any of the possible ones. It is suggested that when the device is a printer, the option be changed to single
space supplied.

3Corrective action consists of return to execution for SLITE.

“It is not considered an error if the END parameter is present in a READ statement. No message or traceback is printed and the
error count is not altered.

5For an 1/O error, the buffer may have been partially filled or not filled at all when the error was detected. Thus, the buffer con-
tents could be blank when printed. When an ERR parameter is specified in a READ statement, it is honored even though
the error occurrence is greater than the amount allowed.

$The count field does not necessarily mean that up to 10 missing FILEDEF commands will be detected in a single debugging run,
since a single WRITE performed in a loop could cause 10 occurrences of the message for the same missing FILEDEF command.

"The system generation process cannot create option table entries with user-exit address specified. A user exit must be specified
at a later time.

Figure 28. Option Table Default Values

89

Features Available with the FORTRAN IV Library (MOD II) Only

The following features are supported by the H Extended compiler only.

Automatic Function Selection

The automatic function selection facility provides a concise set of generic
names for built-in and library functions, which are used in place of the larger
set of specific (data-type dependent) function names. Automatic function’
selection is requested by a new specification statement, GENERIC. The
user’s task of referring to built-in and library-functions is now simplified
because the same name can always be used for a function, even though the
type of the function and the type of its arguments may vary with each use.
Without automatic function selection, different names would have to be
coded, depending upon the type of the function and its arguments.

Automatic Precision Increase Facility

920

The Automatic Precision Increase facility of the FORTRAN compiler
automatically converts single precision floating point calculations to double
precision and/or double precision to extended precision. It is designed to be
used with programs originally written for earlier computers that offered
greater precision than that available with System/360; the conversion facility
may be used to convert programs where this extra precision may be of critical
importance. ' '

The facility is not meant to be used with new programs (those written for
System/360 compilers). If such programs require operations with greater
precision, they should be coded using the convert new programs, the cost in
programmer and compilation time and the increase in storage space makes its
use for this purpose inefficient.

No recoding of source programs is necessary to take advantage of the
facility. Conversion is requested through the FORTHX command
AUTODBL option at compilation time. The automatic precision increase
facility should be considered as a tool for precision conversion; use of the
facility does not assure that every FORTRAN sotrce program, so converted,
will execute correctly at the higher precision.

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Precision Conversion Process

Promotion

The conversion process comprises two functions: promotion and padding.
Promotion is the process of converting items from one precision to a higher
precision, for example, from single precision to double precision. The
promotion function is described in greater detail below. Padding is the
process of doubling the storage size of non-promoted items, Padding helps
the user preserve the size relationships between promoted and non-promoted
items sharing storage. '

The user may request either or both of the following conversions:

1. Single precision items to be promoted to double precision items, that
is, REAL*4 to REAL*8 and COMPLEX*8 to COMPLEX*16.

2. Double precision items to be promoted to extended precision items,
that is, REAL*8 to REAL*16 and COMPLEX*16 to COMPLEX*32,

Note that single precision items cannot be increased directly to extended
precision items.

Constants, variables, and functions are promoted as follows:
Constants: Single-precision real and complex constants are prombted to
double precision. Double-precision real and complex constants are promoted
to extended precision. Logical and integer constants are not affected.

Examples of promoted constants are:

Promoted Form

Constant of Constant
| 3.0 3.0D0
4.24E5 4.24D5
4,24D5 4.24Q5
(3.2, 3.1416E0) (3.2D0, 3.1416D0)

Variables: REAL*4 and COMPLEX*8 vatiables are promoted to REAL*8
and COMPLEX*16, respectively.

91

Examples of promoted variables are:

Promoted Form

Variable of Variable

REAL STAR, REAL*8 STAR,
MOON, PLANET MOON, PLANET
IMPLICIT IMPLICIT
REAL*8(S,T,U) . REAL*16(S,T,U)
COMPLEX*8 COMPLEX*16
AB,C.D A,B,C,.D

Functions: The correct FORTRAN-supplied functions are substituted when a
program is converted. For example, a reference to SIN causes the DSIN
function to be substituted if double precision calculation is to be preformed; a
reference to DINT causes QINT to be substituted if extended precision
calculation is performed. Figure 29 lists FORTRAN-supplied built-in
functions that are substituted. Figure 30 lists FORTRAN-supplied library
functions that are substituted. Function values are promoted in the same
manner as constants; that is, single precision values are promoted to double
precision, double precision values are promoted to extended precision.

Previously compiled subprograms must be recompiled to be converted to
the correct precision. For example, if a user-supplied subprogram accepts
only single precision arguments and is to be used with a program being
converted to double precision, it must be recompiled using API to accept
double precision arguments.

Effect of the AUTODBL and ALC Options on Automatic Precision Increase

AUTODBL Option

92

The programmer requests automatic precision increase and padding through
the AUTODBL and ALC options of the FORTHX command.

The AUTODBL option to indicates the form that the conversion will take
and the ALC subparameter to indicate whether storage alignment is to take
place.

The AUTODBL option has the following format:

{AUTODBL | AD} (NONE)
DBLPAD
DBLPAD4
DBLPADS
DBL
DBL4
DRL8
abcde

Single Precision Function

Corresponding

Double Precision Function

Corresponding
Extended Precision Function

Argument Function Argument Function Argument Function
Name Type Value Type | Name Type Value Type Name Type Value Type
AMOD REAL*4 REAL*4 DMOD REAL*8 REAL*S | QMOD REAL*16 REAL*16
ABS REAL*4 REAL*4 DABS REAL*8 REAL*S. QABS REAL*16 REAL*16
INT REAL*4 INT*4 IDINT REAL*8 INT*4 IQINT REAL*16 INT*4
AINT REAL*4 REAL*4 DINT REAL*8 REAL*8 QINT REAL*16 INT*
AMAXO! INT*4 REAL*4
AMAX1 REAL*4 REAL*4 DMAX1 REAL*8 REAL*8 QMAX1 REAL*16 REAL*16
Maxi1? REAL*4 INT*4
AMINO! INT*4 REAL*4
AMIN1 REAL*4 REAL*4 DMIN1 REAL*8 REAL*8 QMIN1 REAL*16 REAL*16
MIN1' = REAL*4 INT*4
FLOAT INT*4 REAL*4 DFLOAT INT*4 REAL*8 QFLOAT INT*4 REAL*16
IFIX REAL*4 INT*4 IDINT REAL*8 INT*4 IQINT REAL*16 INT*4
HFIX! REAL*4 INT*2
SIGN REAL*4 REAL*4 DSIGN REAL*8 REAL*8 QSIGN REAL*16 REAL*16
DIM REAL*4 ~ REAL*4 DDIM REAL*8 REAL*8 QDIM REAL*16 REAL*16
REAL COMPLEX*8 REAL*4 DREAL COMPLEX*16 REAL*8 QREAL COMPLEX*32 REAL*16
AIMAG COMPLEX*8 REAL*4 DIMAG COMPLEX*16 ' REAL*8 QIMAG COMPLEX*32 REAL*16
CMPLX REAL*4 COMPLEX*8 | DCMPLX REAL*8 COMPLEX*16 | QCMPLX REAL*16 COMPLEX*32
CONJG COMPLEX*8 COMPLEX*8 | DCONJG COMPLEX*16 COMPLEX*16 | QCONJG COMPLEX*32 COMPLEX*32

LThe corresponding double precision function does not exist by name, but the single precision function is expanded as though the
double precision function existed.

Figure 29. Built-In Functions — Substitution of Single and Double Precision

Single Precision Function

Corresponding
Double Precision Function

Corresponding
Extended Precision Function

Argument Function Argument Function Argument Function
Name Type Value Type | Name Type Value Type Name Type Value Type
EXP REAL*4 REAL*4 DEXP REAL*8 REAL*8 QEXP REAL*16 REAL*16
CEXP COMPLEX*8 COMPLEX*8 | CDEXP COMPLEX*16 COMPLEX*16 | CQEXP COMPLEX*32 COMPLEX*32
ALOG REAL*4 REAL*4 DLOG REAL*8 REAL*8 QLOG REAL*16 REAL*16
CLOG COMPLEX*8 COMPLEX*8 | CDLOG COMPLEX*16 COMPLEX*16 | CQLOG COMPLEX*32 COMPLEX*32
ALOG10 REAL*4 REAL*4 DLOG10 REAL*8 REAL*8 QLOG10 REAL*16 REAL*16
ARSIN REAL*4 REAL*4 DARSIN REAL*8 REAL*8 QARSIN REAL*16 REAL*16
ARCOS REAL*4 REAL*4 DARCOS REAL*8 REAL*8 QARCOS REAL*16 REAL*16
ATAN REAL*4 REAL*4 DATAN REAL*8 REAL*8 QATAN REAL*16 REAL*16
ATAN2 REAL*4 REAL*4 DATAN2 REAL*8 REAL*8 QATAN2 REAL*16 REAL*16
SIN REAL*4 REAL*4 DSIN REAL*8 REAL*8 QSIN REAL*16 REAL*16
CSIN COMPLEX*8 COMPLEX*8 | CDSIN COMPLEX*16 COMPLEX*16 | CQSIN COMPLEX*32 COMPLEX*32
Cos REAL*4 REAL*4 DCOS REAL*8 REAL*8 QCOSs REAL*16 REAL*ié6
CCOoS COMPLEX*8 COMPLEX*8 | CDCOS COMPLEX*16 COMPLEX*16 |CQCOS COMPLEX*32 COMPLEX*32
TAN REAL*4 REAL *4 DTAN REAL*8 REAL*8 QTAN REAL*16 REAL*16
COTAN REAL*4 REAL*4 DCOTAN REAL*8 REAL*8 QCOTAN REAL*16 REAL*16
SQRT REAL*4 REAL*4 DSQRT REAL*8 REAL*8 QSORT REAL*16 REAL*16
CSQRT COMPLEX*8 COMPLEX*8 | CDSQRT COMPLEX*16 COMPLEX*16 |CQSQRT COMPLEX*32 COMPLEX*32
TANH REAL*4 REAL*4 DTANH REAL*8 REAL*8 QTANH REAL*16 REAL*16
SINH REAL*4 REAL*4 DSINH REAL*8 . REAL*8 QSINH REAL*16 REAL*16
COSH REAL*4 REAL*4 DCOSH REAL*8 REAL*8 QCOSH REAL*16 REAL*16
ERF REAL*4 REAL*4 DERF REAL*8 REAL*8 QERF REAL*16 REAL*16
ERFC REAL*4 REAL*4 DERFC REAL*8 REAL*8 QERFC REAL*16 REAL*16
GAMMA! REAL*4 REAL*4 DGAMMA'! REAL*8 REAL*8
ALGAMA' REAL*4 REAL*4 DLGAMA' REAL*8 REAL*8
CABS COMPLEX*8 REAL*4 CDABS COMPLEX*16 REAL*8 CQABS COMPLEX*32 REAL*16

!The extended precision equivalences of these functions do not exist.
function will be used.

In promoting REAL*8 to REAL*16, the double precision

Figure 30. Library Functions — Substitution of Single and Double Precision

9%

where:

Note:

NONE - indicates no conversion. This is the default condition.

DBLPAD - indicates promotion and padding of single and double
precision items. REAL*4, REAL*8, COMPLEX*8 and
COMPLEX*16 types are converted. Items of other types are padded
if they share storage space with converted items.

DBLPADA4 - indicates promotion of single precision items only, and
padding of other items that share storage with promoted items.

DBLPADS - indicates promotion of double precision items only, and
padding of other items that share storage with promoted items.

The promotion and padding options, DBLPAD, DBLPADA4, and

DBLPADS ensure that the storage-sharing relationship that existed prior to
conversion is maintained. Note, however, that padding reduces the efficiency
of input/output operations for padded arrays.

DBL - indicates promotion (but no padding) of both single and double
precision items. Items of REAL*4 and COMPLEX*8 types are
converted to REAL*8 and COMPLEX*16 types are converted to
REAL*16 and COMPLEX*32.

DBLA4 - indicates promotion of single precision items only.

DBLS - indicates promotion of double precision items only. If
AUTODBL is specified, and an error in coding the parameter is

- detected, the compiler substitutes the option DBLPADS as a default.

Note:

For most programs, one of the above forms is sufficient. The following

form offers greater flexibility to the user who wishes to tailor the conversion
process to a particular program; however, it also increases the chance of error
and should be used with care.

abcde - indicates that the program is to be converted according to the
value of abcde, a five-position field. Each posision is coded with a
numeric value that specifies how a particular conversion function is to
be performed.

The leftmost position (a) describes the promotion function, that is,
whether promotion is to occur and, if so, which items are to be
promoted. The second position (b) describes the padding function,
that is, whether padding is to occur and, if so, the sections in the
program (such as COMMON or argument lists) where padding is to
take place. The third, fourth, and fifth positions describe whether
padding is to occur for particular types (LOGICAL, INTEGER, and
REAL, respectively) within the program sections specified in position
b.

All five positions must be coded; if a function is to be omitted, the
corresponding position is coded with a zero. The values for each position are
as follows:

e Position a, the promotion function:

Value Mea;ling
0 No promotion
] Promote REAL*4 and COMPLEX*8 items only
2 Promote REAL*8 and COMPLEX*16 items only
3 Promote all real and complex items
e Position b, the padding function:

Value Meaning

0 No padding

1 Pad COMMON statement and argument list variables

2 Pad EQUIVALENCE statement variables equivalenced to promoted
variables

3 Pad COMMON and EQUIVALENCE statement variables and argument
list variables

4 Pad EQUIVALENCE statement variables that do not relate to variables in
COMMON statements

5 Pad all variables

The code specified in this position determines in which areas of a program the
padding requested by positions ¢ to e is to take place.

e Position ¢, padding logical variables in program sections specified in
position b:

Value Meaning

0 Pad no logical variables
1 Pad LOGICAL#*1 variables only
2 Pad LOGICAL*4 variables only
3 Pad all logical variables

¢ Position d, padding integer variables in program sections specified in
position b:

Value Meaning

0 Pad INTEGER#*2 variables only

95

96

2 Pad INTEGER#*4 variables only
3 Pad all integer variables.

* Position e, padding real and complex variables in program sections
specified in position b:

Value Meaning

0 Pad no real or complex variables

1 Pad REAL*4 and COMPLEX*8 variables

2 Pad REAL*8 and COMPLEX*16 variables

3 Pad REAL*4, REAL*8, COMPLEX*8, and COMPLEX*16 variables

4 Pad REAL*16 and COMPLEX*32 variables

5 Pad REAL*4, COMPLEX*8, REAL*16, and COMPLEX*32 variables
6 Pad REAL*8, REAL*16, COMPLEX*16, and COMPLEX*32 variables
7 Pad all real and complex variables

Note that promotion overrides padding. For example, if the first position
specifies promotion to occur for single precision items, REAL*4 and

‘COMPLEX*8 items are promoted regardless of the padding function

specified in position e.
Examples:

The AUTODBL (abcde) settings that correspond to the mnemonic options
are:

abcde Setting Correspond to the Mnemonic
(00000) NONE

(30000) DBL

(10000) DBL4

(20000) DBLS

(33334) DBLPAD

(13336) DBLPAD4

(23335) DBLPAD4

The following examples illustrate other possible combinations of the
AUTODBL (abcde) format.

Example 1:
AUTODBL(12330)

Promotion is performed and padding is performed for all EQUIVALENCE
statements, logical variables, and integer variables.

Example 2:

AUTODBL(01001)

ALC Option

No promotion is performed, but padding is performed for all REAL*4 and
COMPLEX?*8 variables in common blocks and argument lists. This code
setting permits a program not requiring double precision accurracy to link
with a subprogram compiled with the option AUTODBL(DBL).

Example 3:
AUTODBL.(01337)

No promotion is performed, but padding is performed for all integer,
logical, real, and complex variables that are in COMMON or are used as
subprogram arguments. This code setting permits a non-converted program
to link with a program converted with the option AUTODBL(DBLPADS4).

The ALC option is used to specify storage alignment. It has the following
format:

ALC }
NOALC

where:
ALC - indicates that storage alignment is to take place.

NOALC - indicates that storage alignment is not to take place. This is
the default.

Ordinarily, to increase execution-time efficiency, COMMON statements are
coded so that variables in COMMON blocks are aligned on proper
boundaries: doubleword variables on doubleword boundaries, fullword
variables on fullword boundaries, and halfword variables on halfword
boundaries. When the conversion facility is used, these alignments may
become altered. The ALC option restores alignment.

The ALC option should be used with care for it may cause previously
mathced COMMON blocks to become mismatched. Consider the two
COMMON statements below where the variable INTER is to be shared.

Program 1 Program 2
REAL*8 R8 REAL*4 R4
COMMON/X/A, R8, INTER COMMON/X/Z,I,R4, INTER

With neither the AUTODBL nor the ALC option specified, both
occurrences of the variable INTER will be at an offset of 12 bytes from the
start of COMMON block X.

If ALC alone is used, INTER would be 16 bytes from the start of

COMMON X in Program 1 since R8 would have been placed on a double
word boundary. COMMON X in Program 2 would have been unaffected.

97

If AUTODBL(DBL4) and ALC are specified, INTER would be 16 bytes
from start of block X in Program 1 and 24 bytes from start in Program 2.
(This is because of the promotion of REAL*4 to REAL*8 and subsequent
alignment.) :

It is recommended that ALC be used only when the COMMON variables
are identical in type.

Programming Considerations with API

This section provides a brief discussion of how use of the Automatic Precision
Increase facility affects program processing.

Effect on COMMON or EQUIVALENCE Data Values

Effect on Literal Constants

98

Promotion and padding operations preserve the storage sharing relationships
that existed before conversion. However, in items that share storage data
values are preserved only for the following:
1 Variables having the same length
2 Real and complex variables having the same precision
The following items retain value sharing relationships:
LOGICAL*4 and INTEGER*4 (same length)
REAL*4 and COMPLEX*8 (same precision)

The following items do not retain value sharing relationships:

INTEGER*2 and INTEGER*4 (different lengths)
REAL*8 and COMPLEX*8 (different precisions)

. Care should be exercised when specifying literal constants as data

initialization values for promoted or padded variables, as subprogram
arguments, or in NAMELIST input. For example, literals should be entered
into arrays on an element by element basis rather than as one continuous
string.

Example:

DIMENSION A(2), B(2)
DATAA/'ABCDEFGH'/,B(1)/'IJKL'/,B(2)/'MNOP'/

Array B will be initialized correctly but not array A, because padding takes
place at the end of each element.

Effect on Programs Calling Subprograms

FORTRAN main programs and subprograms must be converted so that
variables in COMMUON retain the same relationship to guarantee correct
linkage during execution. The recommended procedure is to compile all
program units using AUTODBL (DBLPAD). If an option other than
DBLPAD is selected, care must be taken if the COMMON variables in one
program unit differ from those in another; COMMON variables that are not
to be promoted should be padded.

Any non-FORTRAN external subprogram called by a converted program
unit should be recoded to accept padded and promoted arguments.

Effect on FORTRAN Library Subprograms

1 If a call to a FORTRAN library subprogram contains promoted
arguments, the next higher precision subprograms are substituted for
the original ones. The external symbol dictionary, used by the CMS
loader to resolve references between program units, will contain the
double and extended precision names for each single and double
precision library program promoted.

2 If you have supplied your own function for a FORTRAN-supplied
function, but has neglected to detach the name through an
EXTERNAL statement, the wrong function may be executed.

Example: AUTODBL(DBL4)

REAL*4 X,Y
4 Y=SIN(X)

STOP

END

FUNCTION SIN(X)

RETURN
END

In this example, because the compiler cannot recognize SIN as a user-supplied
function, it substitutes the name of the FORTRAN-supplied function DSIN in
the statement labeled 4. However, the compiler does not change the function
definition statement; the name remains SIN. At execution time the

99

user-supﬁlied function SIN is ignored and the FORTRAN-supplied function
DSIN is executed in its place.

The programmer can avoid this confusion either by making sure he
detaches the name SIN, preceded by an ampersand, in an EXTERNAL
statement or by changing the name of the function to DSIN.

Effect on CALL DUMP or CALL PDUMP Statements

If a. CALL DUMP or CALL PDUMP statement specifies a dump format of
either REAL*4 or COMPLEX*8, output from a promoted or padded
program is displayed as two single precision numbers rather than as one
double precision number.

For variables that are promoted, the first number is approximately the
value of the stored variable; the second number is meaningless.

The variables that are padded, the first number is exactly the value of the
stored variable; the second number is meaningless.

Effect on Direct-Access Input/Output Processing

‘When a DEFINE FILE statement has been specified, any record exceeding

the maximum specified record length causes record overflow to occur. For

~ converted programs, the programmer should check the record size coded in

the statement to determine if it can handle the increased record lengths. If
not sufficient, the size should be increased appropriately.

Effect on Unformatted Input/Output Data Sets

Effect on the Storage Map

100

Unformatted input/output data sets that have not been converted are not
acceptable to converted programs if the I/O list contains promoted variables.

The storage map produced by the MAP option of the FORTHX command
contains the following codes:

Code Meaning
D Promoted variable
P Padded variable
* Promoted library function name

Extended Precision

Through its extended-precision cabability, the compiler can recognize and
process two additional data types in the FORTRAN source language:
REAL*16 and COMPLEX*32. As a result, programs that were heretofore
limited by insufficient precision can now be run using these data types. For
real and complex data items, the maximum number of storage locations that
can be allocated per data item is twice the previous maximum. Also, the
FORTRAN-supplied functions required to support the extended-precision
data types are provided, with two more exceptions. Extended-precision
equivalents of the GAMMA and ALGAMA functions are not included.

External Statement Extension

An extension to the EXTERNAL statement enables the user to “detach” the
names of FORTRAN library subprograms. Detachment of a subprogram
name causes that name to be dissociated with the FORTRAN-supplied library
subprogram of the same name; instead, it is considered to be the name of
user-supplied subprogram. This extension is provided when you prefix the
special character & to a subprogram name when it appears in the
EXTERNAL statement. The extension enables you to supply your own
subprograms in place of identically named FORTRAN library subprograms,
with the assurance that the compiler will interpret all subprogram references
correctly.

101

Using the FORTRAN IV Compilers

FORTRAN IV(G1) Compiler

The FORTGI command invokes the IBM FORTRAN 1V (G1) compiler,
which will compile the FORTRAN source program contained in the CMS file
that you identify in the command. The FORTGI command allows you to
specify a set of options governing compiler operation and output; however,
should you omit one or all of the options, defauits are assumed for you. If
you include options that are not valid for the FORTRAN IV (G1) compiler or
if you misspell any options, a diagnostic message is typed out at your terminal
(see Appendix F for more information). In the following illustrations and
descriptions all defaults for the compiler default options are underlined.

FORTGI Command Format!

Figure 31 shows the format of the FORTGI command the options that are
available.

FORTGI filename ({(BCDIEBCDIC] [DECK|NODECK] [ID|NOID] [LINECNT(nn |50)]
[LISTINOLIST] [LOAD|NOLOAD] [MAP|NOMAP] [NAME(name | MAIN)]
[DISK|PRINT|NOPRINT] [SOURCE |NOSOURCE] [TERM|NOTERM]
[TEST|NOTEST])

Figure 31. Format of the FORTGI Command for the FORTRAN IV (G1) Compiler
o Identifying the Compiler to be Used

FORTGI -- The word FORTGI identifies the command and must be
typed as shown.

e Specifying a File for Compilation
filename -- Specified the name of the file to be compiled. The file
specified must have a filetype of FORTRAN or it will not be
recognized as input for the FORTRAN IV (G1) compiler.
Note: You must insure that the file named does not contain any statements
that are not acceptable to the FORTRAN IV (G1) compiler (for example,
GENERIC statements).

e Character Code of the Source Program

BCD -- The source program to be compiled is written in BCD.

IThe material in this section may be reproduced for internal use; it may not be offered for
resale.

102

Note: The CMS COPYFILE command with the EBCDIC option
can be used to convert a file containing BCD code to a file in
EBCDIC, thus eliminating the need for this option.

EBCDIC -- The source program to be compiled is written in EBCDIC.

If you omit this option, the compiler will assume that your source
program is written in EBCDIC.

Producing a Card Deck for Your TEXT File

DECK -- The executable code produced by the compiler will be
punched into a card deck in your computing center.

NODECK -- The executable code produced by the compiler will not
be punched into a card deck.

If you omit this option, the compiler assumes NODECK.
Producing a Listing File for Your Program

DISK -- The compiler will place a copy of your LISTING file on a
disk.

PRINT -- The compiler will print your LISTING file on an offline
printer.

NOPRINT -- No LISTING file will be produced.

If you omit this option, the compiler assumes DISK.

Internal Statement Numbers (ISN)

ID -- The compiler will generate internal statement numbers for
statements that call subroutines or contain external function
references. The ID option allows the translate function of the Mod
I library to display the internal statement numbers of the linkages
that are in effect at the time of an error.

NOID -- The compiler will not generate internal statement numbers.

If you omit this option, the compiler assumes NOID.

Number of Lines to be Printed on Each Listing Page

LINECNT nn -- The source listing for your program is to be printed
with a maximum of nn lines per page. You may specify any
number for nn from 1 to 99.

If you omit this option, the compiler assumes 50 lines per page.

Producing a Listing of Your Object Module

LIST -- The compiler will include, in the LISTING file, a

pseudo-assembiler listing of the translated statements contained in
the TEXT file.

103

104

NOLIST -- The pseudd-assembler listing for your program will not be
included in the LISTING file.

If you omit this option, the compiler assumes NOLIST.
Producing Executable Object Code for Your Program

LOAD -- The compiler will create a TEXT file which contains the
executable code of your FORTRAN source program.

NOLOAD -- No TEXT file is produced.
If you omit this option, the compiler assumes LOAD.

Producing a Storage Map for Your Source Program

< MAP -- The compiler will generate tables showing the name and

location in your program of any array, COMMON,
EQUIVALENCE, and scalar variables and FORMAT,
NAMELIST, and subprogram statements. These tables will be
included in your listing.

NOMAP -- The compiler will not create the storage tables for you.

If you omit this option, the compiler will assume NOMAP.

Naming Your Program

NAME name -- The name represented by name will be assigned by
the compiler to the executable code it produces. You may specify
from 1 to 6 characters for name.

If you omit this option and the NOTEST option is in effect, the

compiler assigns the filename as the name of your executable code. If

the TEST option has been specified, MAIN is assumed.

Producing a Source Program Listing

SOURCE -- The compiler will include a copy of your FORTRAN
source program in the LISTING file that it produces for you.

NOSOURCE -- A copy of your source program will not be included in
the LISTING file.

If you omit this option, the compiler assumes SOURCE.

Typing Compiler Error Messages at Your Terminal

TERM -- Any erroneous statements detected in your FORTRAN
program and the corresponding messages will be typed at your

terminal.

NOTERM -- Errors and messages will not be typed at your terminal,
but will appear in your listing as usual.

If you omit this option, the compiler assumes TERM.

e Making Your Programs Acceptablé for Use with FORTRAN
Interactive Debug

TEST -- The object code produced for your program will contain
additional linkages to make it acceptable to execute under
FORTRAN Interactive Debug. When this option is specified, the
LOAD option is assumed. See the publication /BM FORTRAN
Interactive Debug for OS(TSO) and VM/370 (CMS) Terminal
User’s Guide, Order No. SC28-6885 for information on using
FORTRAN Interactive Debug.

NOTEST -- The object code does not include additional linkages for
FORTRAN Interactive Debug.

If you omit this option, the compiler assumes NOTEST.

Output from the FORTRAN 1V (G1) Compiler

The FORTRAN IV (G1) compiler may produce a LISTING file that contains
any errors detected during compilation, and informative and diagnostic
messages. It may include a copy of your source statements, a storage map of
the variables that you used in your program, and a pseudo-assembler listing of
the code that was produced for your program by the compiler. In addition,
you can direct that any error messages included in the LISTING FILE by
typed at your terminal. You can use CMS commands to print the LISTING
file either on a printer or at your terminal. A second file, the TEXT file, may
also be produced that will contain the actual executable code. The
FORTRAN 1V (G1) compiler can produce a printed listing or a punched card
form of your TEXT file. See Figure 32 for a summary of the FORTRAN IV
(G1) compiler options and their effect on output.

105

Option LISTING File TEXT File Terminal
Response
MAP Includes address tables of
FORTRAN variables, and
NAMELIST and
FORMAT statements
DECK Punches a copy of this file
offline
LIST Includes a
" pseudo-assembler listing
of the TEXT file
SOURCE Includes the source code
from the CMS
FORTRAN source file
PRINT Creates this file and prints
a copy offline
o eeierranenetnnerrnnernnneeduuetetiiiraieteteteetere e sernrsseanesedurecaneeratesanneerateereenesenensttnnasdiererssnessennssen
DISK Creates this file and
writes a copy on an
available disk
TERM Prints
error
messages
at the
terminal
LOAD Creates this file

Figure 32. The Effect of Various Compiler Options on Compiler Output (G1)

FORTRAN IV (G1) Listing File

A LISTING file is produced by the FORTRAN IV (G1) compiler unless the
NOPRINT option is specified. It contains the following:

Informative messages that indicate the status of the compilation.

Any errors detected during compilation and the corresponding

diagnostic messages. For a detailed description of the diagnostic
messages produced by the FORTRAN IV (G1) compiler, refer to the
publication /IBM FORTRAN 1V (G1) Processor and TSO
FORTRAN Prompter for OS and VM/370 (CMS) Installation
Reference Material, Order No. SC28-6856.

FORTGI command or their defaults.

106

Optional output as determined by the options you can specify with the

Informative Messages

The informative messages included in your listing identify the compiler used,
the name of your program, the Julian date, and the time of day (based on a
24-hour clock) that the compilation was begun. A list of the options in effect
and the compiler statistics are also provided. See the part of Figure 33,
labeled A for an illustration of the compiler informative messages.

Error Messages

Error messages produced by the FORTRAN IV (G1) compiler have two
formats, depending on when the error was detected. Statements in which an
error, such as syntax, is detected as the statement is being processed, are
followed by a line that contains a $ sign positioned beneath each point at
which an error is detected. This pointer line is followed by a line containing
the number of the error (IGIxxx/) and the text of the diagnostic message.
When more than one error occurs in a single course statement, the error
messages following it are numbered consecutively from left to right.

Example:
0009 106 IF (L*K-I)1,2,4
0010 CONTINUE

$
**xxx*x% 01) IGI002I LABEL

If an error, such as an undefined label, is not detected until all the statements
have been processed, the error message follows the source program and
includes a list of any unresolved items.

Example:

IGI022I UNDEFINED LABEL
4

See the part of Figure 33, labeled B for the format of the error messages
produced by the compiler. In addition to the diagnostic messages produced
by the compiler, the CMS ready message indicates the highest severity level
detected.

Printing Error Messages at Your Terminal
Since it is helpful in correcting your source program to get a copy of any
errors and messages at your terminal as they are produced, the TERM default

option types them out automatically for you. You may suppress these
messages by specifying the NOTERM option with the FORTGI command.

107

108

Optional Output

Additional information can be included in your LISTING file depending on
the defauits in effect or the options you specify with the FORTGI command.
You can include the following:

e A list of your source statements
e A storage map.

e A pseudo-assembler listing of the executable code produced for your
program. ‘

Obtaining a Copy of Your Source Statements

Since the SOURCE option is the default for the FORTGI command, a copy
of your source statements is included in the LISTING file automatically. See
the part of Figure 33 labeled C for the format of the source listing. If you
do not want your source statements included, you must specify the
NOSOURCE option.

Obtaining a Storage Map

The storage map is a table that contains entries generated by the compiler for
each of seven classifications of variables that you may have used in your
program. The classifications are:

e Array Variables

¢ COMMON Variables

¢ EQUIVALENCE Variables
e FORMAT Statements

¢ NAMELIST Statements

e Scalar Variables

e Subprogram Statements

See the part of Figure 33 labeled D for the format of the map. It lists by
classification each variable and its internal location. If you want the storage
map included in the LISTING file, you must specify the MAP option with the
FORTGI command.

Obtaining a Pseudo-assembler Listing of Your Executable Code

The pseudo-assembiler listing contains your FORTRAN source statements
after they have been translated into an executable form by the FORTRAN IV
(G1) compiler. This listing represents the executable code in an assembler
language format. It indicates the relative locations (in hexadecimal format),
the compiler generated sequence numbers, the assembler language codes
showing labels, op-codes and operands, and the BCD operands, which
identifies any significant items (variables, entry points, or labels) referred to
by the instruction. See the part of Figure 33 labeled E for the format of the
object code listing. If you want a copy of your object code included in the
LISTING file, you must specify the LIST option with the FORTGI command.

FORTRAN IV Gl RELEASE 2.0 MAIN DATE = 72305 11/26/21 PAGE 0006
0003F4 BAL 14,16€0+15)
0003F8 11 25 L 154 140¢0,4 13) 1BCOMS
0003FC BAL 144000415}
000400 oc €0000005
C0C404 oc 0000022C
000408 BAL 144800415}
00040C cC 0450006C
CCC4lC BAL 14416(0415)
000414 13 L 04156(0,13) NUMBER
000418 S €y 80C(0412)
l FORTRAN IV Gl RELEASE 2.0 MAIN DATE = 72305 11/26/21 PAGE 0005
LOCATICN STA NUV LABEL aep OPERAND BCD OPERAND
€C0000 BC 15412(0,15)
000004 oc 06D4C1CS
00€008 cc 05404040
coo00C STM 14412,12(13)
000010 (L] 2y 3440015}
€00014 LR 4913
©00016 L 13,36(0,415)
00001A ST 13,8(0+4)
COCClE STH 344,0(13)
FORTRAN TV G1 RELEASE 2.0 MAIN DATE = 72305 11/26/21 PAGE 0004
1610221 UNDEFINED LABEL
Q-
Q SUBPROGRAMS CALLED
SYMBOL LCCATICN SYMBOL LCCAT ICN SYMBOL LOCATION SYMBOL LOCATION syvecet LCCATION
18COM4 BC IBERH# ()
SCALAR MAP
FORTRAN 1V C1 RELEASE 2.0 MAIN DATE = 72305 11/26/21 PAGE 0003
Q44 85 FORMAT (' THANK YCU FOR PLAYING - GOOD DAY') MAGOCSTC
0045 sTOP MAGO0S8C
0C46 END MAGC0S90
FORTRAN IV Gl RELEASE 2.0 MA IN DATE = 72205 11726721 PAGE 0002
(ASKEC TO ENTER A NEW NUMBER C"AGOOA?O
MAGO0500
CC"AGDOS!O
0017 IF (MCD{(NU¥BER+31} 50, 60, 50 MAGO052C
0018 ‘0 WRITE (6,455} MAGOOE20
0c19 55 FORMAT (' SORRY, YOUR NUMBER IS NOT DIVISIBLE BY 3%} MAGOC540
ccae GC TC 15 MAGCC55C
CCCCCCCCCCCCCCCCCCCCCCCCCECCCg::ggg;sg
C IF THE NUMBER THE USER HAS SELECTEC SURVIVES THE TWO TESTS THIS CMAGCCEEC
FORTRAN IV Gl RELEASE 2.0 MAIN DATE = 7230¢% 11/26/21 PAGE 0001
€CCCCCCCCCCerercecereeeceleeceeeelltCeCleeleeeeeCreceetCecccCCiccccCCCCMAGO00L0
CMAGO0020
c MAGICSQ CMAGCOCC3C
c CMAGOQC40
[THIS 1S A PROGRAM FOR GENERATING A 3-BY-3 MAGIC SQUARE CVAGO00S0
C CMAGCOC6C
C CMAGOCOTO
C CNAGO0D 80
C THIS SECTION CF THE PRCGRAM REQUESTS THE NAME OF THE USER THAT CMAGCOCSO
C WANTS TO GENERATE THE MAGIC SQUARE CMAGOO0100
C CMAGCO11C
[Sololoelol of ol of ol vl ol o ol ol o ol o of ot o2 of of o] o] f o ol o ol of e { f f { L { [X o Lol f o o] o { L oA o oL e o Y el A S o o] V.U o1} §-J]
0001 WRITE (645) MAGOO0130
€002 5 FORMAT (' FLEASE ENTER YCUR NAME PRECEDEC BY A BLANK') MAGOC14C
onn3 READ (5,10) "AGOOIEC
0004 10 FORMAT ('NAME 9 MAGCO0160
CCC(‘CCCCCCCCCCCCCCCCCCCCCCCCFAGOO!7O
CMAGOC180
C THIS SECTION OF THE PROGRAM REQUESTS THE NUMBER FCR WHICH THE CMAGO0190
C USER WANTS THE MAGIC SQUARE GENERATED CMAG00200
CMAG00210
CCMAGDOZZO
0Co5 15 WRITE (6,20) MAGD023C —
G006 WRITE (6,22} MAG00240
0007 WRITE (6,24) MAG00250
coos 20 FORMAT (* ENTER AN INTEGER NUMBER OF UP TO 8 DIGITS THAT IS SREATEMAGCO2€C
XR THAN 14 AND DIVISIBLE BY 3') MAG0027C
0009 22 FORMAT (' YOU MUST PRECEDE IT WITH ENOUGH BLANKS TC MAKE UP 8 DIGINAGOO280
XTS*) MAGOC2S0
001c 24 FORMAT (' FOR EXAMPLE ~ IF YOUR NUMBER IS 3 CIGITS LCNG PRECEDE ITMAGO0O300
X WITH 5 BLANKS') AG00310
0011 2¢ READ (5430) NUMBER MAGQ0220
0012 3¢ FORMAT (18) MAGOO330
CCC(‘.CCCCCC(‘LCCECCCCCC:CCI'AGCOBLO
CMAGO0350
C THIS SECTION OF THE PROGRAM TESTS THE NUMBER SELECTED BY THE USER C¥AG00360
C TO SEE IF IT IS LARGER THAN 14 ~ IF NOT, A MESSAGE IS TYPED QUT AND CMAGOC3TC
C THE USER IS ASKED TO ENTER A NEW NUMBER CMAGDO380
CMAGO0390
CCC:CCMAGOC4CO
0013 IF (NUMBER-15) 35, 45, 45 MAGO0410
0014 35 WRITE (6,40) MAGQ0420
0015 40 FORMAT (' SORRY, YOUR NUMBER IS TCO SMALL') MAGOC430
0016 60 14 MAGO0440
CC CCICCMAGCO450
c CMAGO04€0
€ THIS SECTION OF THE PROGRAM TESTS THE NUMBER TO SEE IF IT IS CMAGOCATO
C DIVISIBLE BY 3 - IF NOT, A MESSAGE IS TYPED OUT AND THE USER IS CMAGODO48BC

Figure 33. FORTRAN IV (G1) LISTING File (Part 1 of 2)

109

FORTRAN 1V G1 RELEASE 2.0 MAIN DATE = 72305 11/726/21 PAGE 0009

o #STATISTICS* 001 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CODE IS 8

FORTRAN 1V Gl RELEASE 2.0 MATN DATE = 72305 11/726/21 PAGE 0008

000560 BAL 1448(0415)

000564 tc 0450C0AC

000568 BAL 1498(0,15)

00056C £ 04500080

000570 BAL 144810415)

000574 oc €450D084

080578 BAL 14916(0y15)

00057C 35 L 15,1401(0,13) 1BCOMH

000580 BAL 14,40Cy15)

00C584 oC 00000006
FORTRAN IV Gl RELEASE 2.0 MAIN DATE = 72305 11/26/21 PAGE 0007
000442 ST 0,164(0,13) 1A
0004A6 23 L 0416010413) 18
0004 AA A 0,816(Cy12)
COQ4AE ST 04168(0,13) {4
000482 24 L 0+160(0,13) 18
000486 A 01820(0,13) ’
00048A SY 0,172¢0,13) 10
0004BE 25 L 0,160(C413) 18
0004C2) 0,808(0, 13)
0004C6 ST 04176(0413) 1€
0004 CA 26 L 0+160(Cy13) 18
COC4CE A 04824 10,131
0004D2 ST C+180(0413) 1F
0004D6 27 L €4160(0,13) 18
©CO4DA A 04804(0413)
00040E sT 04184(Cy13) 16
0004E2 28 L 09160004 12) 18
0004E6 A 0+828(0,13)
0004 EA ST 0,188(Cy132) IH
0004EE 29 L 0+160(0,13) 18
0004F2 A C+832¢0,13)
0004 F6 ST €y192(0412) 11
CO04FA 30 L 154140{0,13) 18COM#
0004FE BCR 0,0
000500 BAL 1444104 15)
000504 oc 00000006
000508 oc €0000128
€0¢50C BAL 1441640415)
000510 31 L 15414C(0,13) 1BCCM#
000514 BAL 144 4(Cy15)
€0C518 BC 00000006
00051C oc €0000282
000520 BAL 14,1610, 15)
000524 33 L 154140(0,13) 18COM#
000528 BAL 1444004 15)
0€052C cc 00000006
000530 oC €00002E1
000534 BAL 14, 8(0415)
€0c538 £ 0450 CO A4
00053C BAL 1448(0,15)
000540 X3 0450D0A0
0008544 BAL 14,8(0,15)
000548 oC 04500CAE
00054C BAL 14416(04 15}
000550 34 L 15,140(0413) 1BCOM#
000554 BAL 145 4(Cy15)
000558 tC 00000006
00055¢C oc €00002B1

Figure 33. FORTRAN IV (G1) LISTING File (Part 2 of 2)

110

FORTRAN IV (G1) TEXT File

A TEXT file is created by the FORTRAN IV (G1) compiler whenever the
LOAD default option is in effect. The file contains the compiled FORTRAN
IV program that is identical to the object program produced by the
FORTRAN IV (G1) compiler under OS.

The TEXT file contains the version of your program that can be executed by
CMS or link edited by OS. You can issue a RUN command, a LOAD and a
START command, or an EXEC command that specifies a file containing
these commands and your program will begin executing. (Any additional
FILEDEF commands required for the execution of the program must be
issued before you can enter a START command.)

Obtaining a Punch Card Deck of Your Object Program

To have your TEXT file punched into a card deck, you must specify the
DECK option with the FORTGI command. An alternate method is to use
the PUNCH command specifying the filename of your file and a filetype of
TEXT. This will punch the TEXT file that was created and placed on a disk
by the LOAD option when specified during a compilation.

Example:

punch newprog text

Compiler Language Restrictions for FORTRAN IV (G1)

The following limitations are placed upon the FORTRAN IV language by the
FORTRAN IV (G1) compiler:

e The maximum level of nesting for DO loops and implied DO
statements is 25.

e The maximum level of nested references in an arithmetic statement
function definition to other statement function subprograms is 25.

e The maximum number of expressions that can be nested is 100.

¢ The maximum number of continuation cards for a single statement is
19.

e The repetition field (a) for format codes in a FORMAT statement, if
present, must be an unsigned integer constant less than 256.

e In literal constants in the source program, any valid card code is
permissible, except a 12-11-0-7-8-9 punch (hexadecimal ‘FF’ or
binary (integer) minus one, (-1)).

Refer to the publication /BM System/360 and System/370 FORTRAN IV

Language, Order No. GC28-6515 for a complete description of the
statements involved.

Code and Go FORTRAN IV Compiler

The GOFORT command invokes the IBM Code and Go FORTRAN IV
compiler, which will compile the FORTRAN source program contained in any
CMS files that you identify in the command. The Code and Go Compiler will |
accept free-form FORTRAN source code with 80-character lines and it
allows you to execute your programs immediately after compilation without
the necessity of issuing CMS commands to load and execute. You may
include a set of options in the GOFORT command that govern compiler
operation and output; however, should you omit one or all of the options,
defaults are assumed for you. If you include options that are not valid for the
Code and Go FORTRAN compiler or if you misspell any options, a
diagnostic message is typed out at your terminal (see Appendix F for more
information). In the following illustrations and descriptions all defaults for
the compiler options are underlined.

GOFORT Command Format'

Figure 34 shows the format of the GOFORT command and the options that
are available.

GOFORT filename ([BCDIEBCDIC] [DECK|NODECK] [FIXED|FREE] [GO|NOGO]
[LINECNT (nn {50)] [LMSG|SMSG] [DISK|PRINT|NOPRINT]
[SOURCE | NOSOURCE] (TEST|NOTEST)) \

Figure 34. Format of the GOFORT Command for the Code and Go FORTRAN IV Processor

e Identifying the Compiler to be Used

GOFORT -- The word GOFORT identifies the Code and Go
FORTRAN IV compiler and must be typed as shown.

e Specifying a File for Compilation

. filename -- Specifies the name of the file to be compiled. The file
specified must have a filetype of FORTRAN or FREEFORT or it will
not be recognized as input for the Code and Go FORTRAN IV
compiler. If the file has a filetype of FREEFORT, the FREE option
must be specified.

Note: You must insure that the file named does not contain any

statements that are not acceptable to the Code and Go compiler (for
example, GENERIC statements).

! The material in this section may be reproduced for internal use; it may not be
offered for resale. :

112

Character Code of the Source Program

BCD -- The source program to be compiled is written in BCD.

Note: The CMS COPYFILE command with the EBCDIC option can
be used to convert a file containing BCD code to a file in EBCDIC,
thus eliminating the need for this option.

EBCDIC -- The source program to be compiled is written in EBCDIC.

If you omit this option, the compiler will assume that your source
program is written in EBCDIC.

Producing a TEXT File for your program

DECK -- A TEXT file containing the executable code for your
program is to be produced by the compiler

NODECK -- A TEXT file will not be produced for your program

If you omit this option, the compiler assumes NODECK. When the
TEST option is in effect, DECK is assumed.

Producing a Listing for Your Program

DISK -- The compiler will place a copy of your LISTING file on a
disk.

PRINT -- The compiler will print your LISTING file on an offline
printer.

NOPRINT -- No LISTING file will be produced.

If you omit this option, the compiler assumes DISK.

Executing a TEXT file Immediately after Compilation

GO -- The compiler will generate a TEXT file that is to be executed
immediately after compilation without issuing additional CMS

commands to load or execute it.

NOGO -- The TEXT file produced will not be executed automatically.
Additional CMS commands will be required to load and execute it.

If you omit this option, the compiler assumes GO. When the TEST
option is in effect, NOGO is assumed.

Fixed of Free Form of the FORTRAN Source Code
FIXED -- The source code is written in fixed-form format.
FREE -- The source code is written in free-form format.

If you omit this option, the compiler assumes that your source code is
written in fixed-form format.

113

e Number of Lines to be Printed on Each Listing Page

LINECNT nn -- The source listing for your program is to be printed
with a maximum of nn lines per page. You may specify any
number for nn from 1 to 99.

If you omit this option, the compiler assumes 50 lines per page.
e Format of Compiler Error Messages

LMSG -- The compiler will print error messages in a long and detailed
form.

SMSG -- The compiler will print error messages in a short and concise
form.

If you omit this option, the compiler assumes SMSG.
¢ Producing a Source Program Listing

SOURCE -- The compiler will include a copy of your FORTRAN
source program in the listing that it produces for you.

NOSOURCE -- A copy of your source program will not be included in
the listing.

If you omit this option, the compiler will assume SOURCE.

e Making Your Programs Acceptable for Use with FORTRAN
Interactive Debug

TEST -- The object code produced for your program will contain
additional linkages to make it acceptable to run under FORTRAN
Interactive Debug. When this option is specified, the DECK and
NOGO option is assumed. See the publication /BM FORTRAN
Interactive Debug for OS(TSO) and VM/370 (CMS), Order No.
SC28-6885 for information on using FORTRAN Interactive Debug.

NOTEST -- The object code does not include additional linkages for
FORTRAN Interactive Debug.

If you omit this option, the compiler assumes NOTEST.

Output from the Code and Go FORTRAN IV Compiler

114

The Code and Go FORTRAN IV compiler produces a LISTING file
whenever errors are detected during compilation. It contains diagnostic
messages. It may optionally include a copy of your source statements. A
second file, the TEXT file, may be produced. The Code and Go compiler can
produce a punched deck of cards of your TEXT file. See Figure 35 for a
summary of the Code and Go FORTRAN 1V compiler options and their
effect on output.

Option LISTING File TEXT File Terminal
Response
SOURCE Creates this file and
Includes the source code
from the CMS
FORTRAN source file
DECK Creates this file
PRINT Creates this file and prints
a copy offline
DISK Creates this file and All error and
writes a copy on an diagnostic
available disk. This file is messages are
created whenever errors always typed at
are detected. the terminal

Figure 35. The Effect of Various Compiler Options on Compiler Output (Code & Go)

Code and Go FORTRAN 1V LISTING File

A LISTING file is produced by the Code and Go FORTRAN IV compiler
unless the NOPRINT option is in effect. It contains the following:

o . Informative messages.

e Any errors detected during compilation and the corresponding
diagnostic messages. For a detailed description of the diagnostic
messages produced by the Code and Go FORTRAN 1V compiler,
refer to publication /IBM Code and Go FORTRAN IV Processor
for OS and VM/370 (CMS) Installation Reference Material, Order
No. SC28-6859.

e Optional output as determined by the options you can specify with the
GOFORT command or their defaults.

Informative Messages

The informative messages included in your listing identify the compiler used,
the Julian date, and the time of day (based on a 24-hour clock) that the
compilation was begun. See the part of Figure 36 labeled A for an
illustration of the compiler informative message.

Error Messages

Error messages produced by the Code and Go FORTRAN IV compiler are
listed in a group. They contain the error number (IGK xxx I) and the text of
the message. When a message refers to a specific source statement, an
internal sequence identification number is included to identify the statement
in error. This number is printed after the message identification number and
before the message text. The number is a system-assigned line number. All
compiler messages include this number except the following: IGK 1921
through IGK200I, IGK4051, IGK412I through IGK4181, IGK475I through

115

IGK4771, and IBK586I. These niessages refer to general conditions affecting
compilation and not to specific source statements; therefore, sequence
numbers are not relevant in these cases.

The text of the messages has two forms, long and short. The short form is
automatically provided, since SMSG is the default for the GOFORT
command. You can request a longer, more detailed form of the error message
by specifying the LMSG option.

Examples:
Short form of the message

IGK420I 00000123 NO STMT NMBR

Long form of the message

IGK4201I 00000123 STMT FOLLOWING A TRANSFER OF CONTROL

HAS NO STMT NMBR

See the part of Figure 36 labeled B for an illustration of the error messages.
Optional Output
You may include in the LISTING file a copy of your source program.
Obtaining a Copy of Your Source Statements
Since the SOURCE option is the default for the GOFORT command, you
will have a copy of your source statements included in the LISTING file
automatically. - See the part of Figure 36 labeled C for the format of the

source listing. If you do not want your source statements included, you must
specify the NOSOURCE option.

Code and Go FORTRAN IV TEXT File

116

A TEXT file is created by the Code and Go FORTRAN 1V compiler,
whenever the DECK option is in effect. The file contains the compiled
FORTRAN IV program that is identical to the object program produced by
the Code and Go compiler under OS.

The text file contains the version of your program that can be executed by
CMS. When the NOGO option of the GOFORT command is in effect, you
can issue-a RUN command, a LOAD and a START command or an EXEC
command that specifies a file containing these commands, and your program
will begin executing. (Any additional FILEDEF commands required for the
execution of the program must be issued before you can enter a START
command.) When the GO option is in effect, the compiled program will be
loaded and executed automatically without any additional CMS commands.
(FILEDEF commands must be issued before compilation.)

CODE AND GO FORTRAN RELEASE 2.0 DATE = 723C% 11/29/04 PAGE 0003
16K4761 MAGCGSSC UNDEFINED LABELS
14
CODE AND GO FORTRAN RELEASE 2.0 DATE = 72305 11729734 PAGE 0002
MAGOC540 55 mnnn (- SORRY, YOUR NUMBER IS NOT DIVISIBLE BY 31) nnGoouo
MAG 00550 AG00550
CCNAGO()SM)
c CMAGCC57C
C IF THE NUMBER THE LSER HAS SELECTEC SURVIVES THE TWO TESTS THIS CMAGO0580
c SECTINN OF THE PROGRAM CALCULATES THE MAGIC SQUARE CMAGO0590
CMAGCC60C
CCNAGOOblo
MAG 0CE2C 60 1B = NUMBER/3-4 MAGCCE2C
MAGCO630 1A =18 + 7 MAGO0630
MAGOC640 IC = 18 4 5 MAGC0640
9ccus AND GC FORTRAN RELEASE 2.0 DATE = 723CS 11/29/04 PAGE 0001
e CCCCCCLCeeeecereeCeeeeecelleCleelerceeleCeceCeCleeclereeecececceccccccCCAGo0010
(9 CMAG00020
c MAGICSQ CMAGCCO3C
(4 CMAC00040
[4 THIS IS A PROGRAM FOR GENERATING A 3-BY-3 MAGIC SQUARE CMA 600050
[C4AG00060
3 CMAGO00T0
[4 CMAGCOOEC
C THIS SECTION DF THE PRCGRAM RECUESTS THE NAME OF THE USER THAT CYAG00090
C WANTS TO GENERATE THE MAGIC SQUARE CMAGO0100
c CMAGCCLLC
€CCCCCCCCLLlelllCCllCCCCCeClCCCtClllCClCCCCCCCLCCCCCCLCLLCLCLCCCCLCCCMAGOOL 20
MAGQ0130 WRITE (645) MAGOOY30
MAG 00140 5 FORMAT (' PLEASE ENTER YCUR NAME PRECEDEC BY A BLANK®) MAGCO140
MAGO0150 READ (5,10) MAGO0150
MAGOO16C 10 FORMAT ('NAVE NAGOO1&C
ccr.cc,r.cusoonc
CMAG001 80
c THIS SECTION OF THE FRCGRAM REQUESTS THE NUMBER FOR WHICH THE CMAGLC1SC
c USER WANTS THE MAGIC SQUARE GENERATED CHAGO0200
CMAG00210
CCC::CMAGCOZZC
MAG00230 15 “WRITE (6,20) MAC00230
MAG 00240 WRITE (64221 nAcooz«o
MAGCO250 WRITE (6424} AG00250
MAGO0260 20 FORMAT (' ENTER AN INTEGER NUMBER OF UP TO 8 DIGITS THAT IS GREATEMAGOOZbO
XR THAN 14 AND DIVISIBLE BY 3¢) MAGCO27¢C
MAGC0280 22 FORMAT (' YCU MUST PRECEDE IT WITH ENOUGH BLANKS TC MAKE UP 8 DIGIMAG00280
XTS') MAG00290
MAGCO3CC 264 FORMAT (' FCR EXAMFLE - IF YOUR NUMBER IS 3 DIGITS LONG PRECEDE [TYAGG030C
B X WITH 5 BLANKS!') MAG00310
MAG00320 25 REAC (5,30) NUMBER MAG00320
MAG00330 30 FORMAT_ (18) MAG00330
ccmsooaae
CMAGCC35¢C
c THIS SECTION OF THE FRCGRAM TESTS THE NUMBER SELECTED BY THE USER CMAGCO36C
C TO SEE IF IT IS LARGER THAN 14 - IF NOT, A MESSAGE IS TYPED OUT AND CMAG00370
C THE USER IS ASKEL TC ENTER & NEW NUMBER CYAGCG3EC
C CYAC00390
€CCCCLCCCCCCeCltelrCeCeCCrCClCCCCCCCCCLCLLCCLLCCCCCCCCCCCLLLCCCCLCCCCMAGO0400 —
MAGC041C IF (NUMBER-15) 35, 45, 45 “AGO00410
MAGO0420 35 WRITE (&y4CH MAG00420
MAG 00430 40 FORMAT (' SORRY, YOUR NUMBER IS TOO SMALL'} MAG00430
MAGCO440 60 T0 14 MAG0044C
CELCCCLCCCLCCCCCllLelelelllCllCCCCCCCCLCCCCCLCCCLLCCLLCCCCCCLCCCCCCCCCMAGO04S0
c CMAGCC4éC
C THIS SECTION OF THE PRCGRAM TESTS THE NUMBER TC SEE IF 1T IS CMAGOC4TE
C CIVISIBLE BY 3 - IF NOT, A MESSAGE IS TYPED OUT AND THE USER IS CMAG00480
c ASKED TC ENTER A NEW NUMBER CMAGCL4cSC
CMAG00500
ccc::cmsooslo
MAGD0520 45 IF (MOD(NUMBER,3)) 50, 60, 50 ¥AG00520
MAGO0530 50 WRITE (6455} MAGO0530

Figure 36. Code

and Go FORTRAN Compiler LISTING File (Default Options)

117

Obtaining a Punch Card Deck of Your Object Program

To have your TEXT file punched into a card deck, you must specify the
DECK option with the GOFORT command and use the PUNCH command.

Example:

punch newprog text

Compiler Language Restrictions for Code and Go FORTRAN

118

The language restrictions for Code and Go FORTRAN are as follows:

The maximum number of arithmetic expressions that can be nested is
30 in a minimum CMS configuration. This limit increases as additional
storage is made available.

The maximum level of nested references from within an arithmetic
function definition statement to another statement function or function
subprogram is 10 in a minimum CMS configuration. This limit
increases as additional storage is made available.

The maximum number of source statements for one compilation is
dependent upon the amount of storage available to the compiler. A
minimum CMS configuration will allow up to a maximum of 230
statements or the equivalent. '

There is no restriction on the number of comments or connective
comments in the source program. The maximum size of a statement is
1320 bytes exclusive of labels or sequence numbers but including any
embedded blanks. This is equivalent to 19 fixed form continuation
cards to a statement.

The repetition field (a) for format codes in a FORMAT statement if
present, must be an unsigned integer constant less than 256.

The FORMAT statement specification w, indicating the number of
characters of data in the field, must be an unsigned integer constant
less than 256.

In literal constants in the source program, any valid card code is
permissible, except a 12-11-0-7-8-9 punch.

In free form source, literal constants may be continued on a new line if
the continuation begins in the first position of the new line.

In the format statement no separator is required between H type
format code strings or between X format codes and H format codes.

FORTRAN IV (H Extended) Compiler

Before you can use the H Extended compiler under CMS you must make sure
that sufficient storage is available for it. The ~~piler requires a minimum of
600K bytes of storage, which is sufficient to compile small programs. You
must issue a DEFINE STORAGE command specifying at least 600K prior to
entering the IPL CMS command. The format of the DEFINE command is as
follows:

DEFINE STORAGE nnnK

where:
nnn must be a minimum of 600. This value may be increased, in multiples
of 4 up to the maximum allowed by CMS. The letter K represents
1024 bytes.

The compiler statistics can be used as a guide in calculating the most
economical value for nnn (see part A of Figure 40). It lists the amount of
space a particular program requires. As a guide a value of 800 will permit
compilation of very large programs.

The FORTRAN command invokes the IBM FORTRAN IV (H Extended)
compiler, which will compile a FORTRAN IV source program (see the
publication IBM System/360 and System/370 FORTRAN IV Language,
Order No. GC28-6515 for extensions to the FORTRAN IV language that the
FORTRAN IV (H Extended) compiler will accept). Your source program
must be contained in the CMS file that you identify in the command. You
may include a set of options governing compiler operation and output;
however, should you omit one or all of the options, defaults are assumed for
you. If you include options that are not valid for the FORTRAN IV (H
Extended) compiler or if you misspell any options a diagnostic message is
typed out at your terminal (see “Appendix F”’ for more information). In the
following illustrations and descriptions, all defaults for the compiler options
are underlined.

FORTHX Command Format'

Figure 37 shows the format of the FORTHX command and the options that
are available.

1The material in this section may be reproduced for internal use; it may not be offered for
resale.

119

FORTHX

filename

([ALCINOALC] [ANSF|NOANSF] [{AUTODBL|AD} (value)]

[BCD| {EBCDIC|EB}] [DECK|NODECK] [DISK|PRINT|NOPRINT]
(DUMP | NODUMP] [FLAG(IIEIS)]

[{FORMAT | FMT} | {NOFORMAT | NOFMT}] [GOSTMT | NOGOSTMT]

[{ LINECOUNT | LC}(nn |60)] [LISTINOLIST] [MAP|NOMAP]
[NAME (name |MAIN)] [{OBJECT|OBJ} | {NOOBJECT | NOOBJ}]

[{OPTIMIZEIOPT}(01112)| {NOOPTIMIZE |NOOPT}]

(SIZE(nnnnK |MAX)] [{SOURCE|§} | {NOSOURCE | NOS} |

[TERM|NOTERM] [XREF|NOXREF])

fewer options.

Note: If you specify more than 100 characters in the string of options, you will create an error condition and a message will be
printed at your terminal. To correct this condition, reissue the command using abbreviations, where permitted, or specifying

Figure 37. Format of the FORTHX Command for the FORTRAN IV (H Extended) Compiler

120

“Identifying the Compiler to be Used

FORTHX -- The word FORTHX identifies the FORTRAN IV (H
Extended) compiler and must be typed as shown.

Specifying a File for Compilation

filename -- Specifies the name of the file to be compiled. The file
specified must have a filetype of FORTRAN or it will not be
- recognized by the FORTRAN IV (H Extended) compiler.

Note: You must insure that the file named does not contain any
statements that are not acceptable to the FORTRAN IV (H Extended)
compiler (for example, free form source statements).

Specifying Boundary Alignment of Data Items

ALC -- Data items are to be aligned on proper storage boundaries. It
may be used with the AUTODBL option to restore proper storage
boundaries when a conversion is performed. (For more detailed
information on the ALC option, see the section Automatic Precision
Increase Facility).

NOALC -- Data items will not be aligned on proper boundaries.

If you omit this option, the compiler will assume NOALC.

Library and Built-in Function Recognition

ANSF -- The compiler will recognize only those library and built-in
functions specified by American National Standard, (ANS)
FORTRAN, X3.9-1966 . See the table of functions shown in the
publication IBM System/360 and System/370 FORTRAN IV
Language, Order No. GC28-6515 for a list of the ANS library and
built-in functions. When this option is specified, any function that
is not supported by ANS is assumed to be supplied by the user.

NOANSEF -- The compiler will recognize the entire range of
IBM-supplied library and built-in functions that are listed in the
FORTRAN IV language manual.

If you omit this option, the compiler assumes NOANSF.

Using the Automatic Precision Increase Facility

AUTODBL (value) -- The compiler will call the Automatic Precision
Increase (API) facility. See the section ‘“Automatic Precision
Increase Facility’’ for more detailed information on the AUTODBL
option. This option can be abbreviated AD(value.)

If you omit this option, the compiler will not perform any precision
increase.

Character Code of the Source Program

BCD -- The source program to be compiled is written in BCD.

Note: The CMS COPYFILE command with the EBCDIC option can

be used to convert a file containing BCD code to a file in EBCDIC,

thus eliminating the need for this option.

EBCDIC -- The source program to be compiled is written in EBCDIC’
code. This option can be abbreviated EB. If you omit this option,
the compiler assumes EBCDIC.

Producing a Card Deck for Your TEXT File

DECK -- The executable code produced by the compiler will be
punched into a card deck in your computing center.

NODECK -- The executable code produced by the compiler will not
be punched into a card deck.

If you omit this option, thé compiler assumes NODECK.
Producing a LISTING File for Your Program

DISK -- The compiler will place a copy of your LISTING file on a
disk.

PRINT -- The compiler will print your LISTING file on the offline
printer.

NOPRINT -- No LISTING file will be produced.

If you omit this operand, the compiler assumes DISK.

121

122

Requesting a Dump

DUMP -- The contents of registers, storage, and the files associated
with the compiler are to be printed if an abnormal termination
occurs. !

NODUMP -- No dump will be produced if an abnormal termination
occurs. ‘

If you omit this option, the compiler assumes NODUMP.

Specifying the Level of Diagnostic Messages to be Printed

FLAG(level) -- Diagnostic messages, of the leve!/ indicated will be
printed at your terminal and included in the LISTING file. A level
of I indicates that informative messages, warning messages (those
generating a return code of 4), error messages (those generating a
return code of 8), and severe error messages (those generating a
return code of 12) are to be printed. A level of E indicates that
only error messages and severe error messages are to be printed. A
level of S indicates that only severe error messages are to be
printed.

If you omit this option, the compiler assumes FLAG (I).

Producing a Structured Source Program

FORMAT -- A structured source program listing indicating the loop
structure and logical continuity of your source program is included
in the LISTING file produced by the compiler. This option can be
abbreviated FMT. ‘

Note: This option is useful only when the OPTIMIZE 2 option is in
effect.

NOFORMAT -- A structured source program listing will not be
produced. This option can be abbreviated NOFMT.

If you omit this option, the compiler assumes NOFORMAT.
Generating Internal Statement Numbers

GOSTMT -- Internal Sequence Numbers (ISN) are to be generated for
the calling sequence to subroutines for a traceback map.

NOGOSTMT -- Internal Statement Numbers will not be generated.

If you omit this option, the compiler assumes NOGOSTMT.

Number of Lines to be printed on Each Listing Page

LINECOUNT(nn) -- The source listing for your program will be
printed with a maximum of »nrn lines per page. You may specify any
number for nn from 1 to 99. This option can be abbreviated LC.

If you omit this option, the compiler assumes a line count of 60.

Producing a Listing of Your Object Module

LIST -- The compiler will include, in the LISTING file, a
pseudo-assembler listing of the translated statements contained in
the TEXT file.

NOLIST -- The pseudo-assembler listing for your program will not be
included in the LISTING file.

If you omit this option, the compiler assumes NOLIST.
Producing a Variable and Label Map for Your Source Program

MAP -- The compiler will generate a table of variable names and
statement labels. This table will be included in your LISTING file.

NOMAP -- The compiler will not generate tables for variable names
and statement labels.

If you omit this option, the compiler will assume NOMAP.
Naming Your Program

NAME (name) -- The name represented by name will be assigned by
the compiler to the executable code it produces. You may specify
from one to 6 characters for name.

If you omit this option, the compiler assigns the name MAIN to your
executable code.

Producing an Object Module

OBJECT -- The compiler will create executable code from the
FORTRAN source code in your program. This code will be placed
in the TEXT file. This option can be abbreviated OBJ.

NOOBIJECT -- The compiler will not produce executable code or a
TEXT file. This option can be abbreviated NOOBI.

If you omit this option, the compiler assumes OBJECT.
Specifying the Level of Optimization for Your Compilation

OPTIMIZE (level) -- The compiler will perform the type of
optimization indicated by the level . A level of 0 indicates that no
optimization is to be performed. A level of 1 indicates that each
source module is to be treated as a single program loop and is to be
optimized without regard for register allocation or branching. A
level of 2 indicates that each source module is to be treated as a
collection of program loops and that each loop is to be optimized
with regard for register allocation, branching, common expression
elimination, and replacement of redundant computations.
Optimizing techniques are discussed further in the ‘“Programming
Considerations” sections. This option can be abbreviated OPT.

NOOPTIMIZE -- The compiler will not perform any optimization.
This option is equivalent to specifying OPTIMIZE (0). This option
can be abbreviated NOOPT.

If you omit this option, the compiler assumes NOOPTIMIZE.

123

o Specifying the Amount of Main Storage for Your Compilation.

SIZE (MAX) - The compiler will use all available storage, except for
approximately 3K bytes, which are left for system routines.

SIZE (nnnnK) -- The amount of storage occupied and used by the
compiler is limited to the value indicated by (nnnnK). The value of
nnnn can be any number from 460 to 9999. This capability is not
intended for normal compiler operation. Its use should be restricted
to only those applications in which a problem program invokes the
compiler through a CALL, ATTACH, or LINK macro instruction
and, therefore, must limit the amount of storage available to the
compiler. As a guide to establishing a SIZE, remember that the
compiler is usually loaded into storage beginning at 128K. The
length of the compiler is 460K plus the amount of storage occupied
by the CMAJOR and ADCON compiler tables. In addition, the
compiler requires at least 12K of workspace. Your application will
determine the exact amount of additional workspace that the
compiler will use. The compiler diagnostics will indicate the amount
of unused workspace. The SIZE you choose must account for the
length of the compiler plus tables and workspace. Storage at
addresses higher than SIZE is available for your application. This
storage may be extended with the DEFINE STORAGE command.
Be aware that limiting the amount of storage available to the
compiler may adversely affect its performance.

If you omit this option, the compiler assumes SIZE (MAX).
® Producing a Listing of Your Source Program
SOURCE -- The compiler will include a copy of your source program
in the LISTING file it produces for your program. This option can
be abbreviated S.

NOSOURCE -- A copy of your source program will not be included in
the LISTING file. This option can be abbreviated NOS.

If ybu omit this option, the compiler assumes SOURCE.
e Typing Compiler Error Messages at Your Terminal
TERM -- Any erroneous statements detected in your FORTRAN
program and the corresponding messages will be typed at your
terminal.
NOTERM -- Errors and messages will not be typed at your terminal.
If you omit this operand, the compiler assumes TERM.
¢ Producing a Cross-Reference Listing of Variables and Labels
XREF -- A cross-reference listing of variable names and labels used in
your program will be included in the LISTING file produced for
your program. If XREF is specified, ISNs are generated (regardless

of whether GOSTMT was specified) for each statement in which a
variable or label was used.

124

NOXREF -- A cross-reference listing will not be included in your
FORTRAN IV (H Extended) LISTING file.

If you omit this option, the compiler assumes NOXREF.

Changing Compiler Options with a *PROCESS Statement

The H Extended compiler permits a source program to set the compiler
options that it will require regardless of the defaults or the options that you
specified in the FORTHX command. The compiler accepts a *PROCESS
statement which may contain any of the compiler options that you want to
use in place of the corresponding compiler defaults. This facility permits you
to specify a different set of options for each source program in a file that
contains more than one source program. The options used will be either the
compiler defaults or the options specified in the *PROCESS statement. You
do not need to place a *PROCESS statement in the first program since its
options are set by the FORTHX command.

To code a *PROCESS statement, type an asterisk (*) in column 1 (starting
at the left hand margin indicator); type the word PROCESS in columns 2
through 8, and leave column 9 blank. You may place the compiler options
that you want anywhere after column 9 but before column 72, which must be
left blank indicating the end of the statement. When used in a source
program, the *PROCESS statement must be the first statement in the
program.

Example:
*process deck, optimize(2)

You may use all the options shown in Figure 37 except SIZE, DISK, PRINT,
or NOPRINT.

Output from the FORTRAN IV (H Extended) Compiler

The FORTRAN IV (H Extended) compiler produces a LISTING file that
contains any errors detected during compilation and diagnostic messages. It
may also include a copy of your source program, a map of variable names and
labels, a cross-reference list of variable names and labels, a pseudo-assembler
listing of the executable code produced, a dump in the event of abnormal
termination, an edited source program, and internal statement numbers in the
source program. In addition, all erroneous statements and diagnostic
messag: - included in the LISTING file will be printed at your terminal. A
second file, the TEXT file, can also be produced that will contain the actual
executable code. The FORTRAN IV (H Extended) compiler can also
produce a punched card form of your TEXT file. See Figure 38 for a
summary of the FORTRAN IV (H Extended) compiler options and their
effect on output.

125

Option

LISTING File

Text File

Ternminal
Response

SOURCE

Includes the source code
from the CMS
FORTRAN source file

OBJECT

Creates this file

XREF

Includes a cross reference
list of variables and labels

LIST

Includes a
pseudo-assembler listing
of the executable code
produced

FORMAT

Includes an edited copy of
the source code

MAP

Includes address tables for
variables and labels

DECK

Punches a copy of
this file off line

PRINT

Creates this file prints a
copy offline

DISK

Creates this file and
writes a copy on an
available disk

TERM

Prints all error

and diagnostic

messages at the
terminal

Figure 38. The Effect of Various Compiler Options on Compiler Output

FORTRAN IV (H Extended) LISTING File

The LISTING file is always produced by the FORTRAN IV (H Extended)
compiler unless the NOPRINT option is in effect. It contains the following:

¢ Informative messages that indicate the status of the compilation.

e Any errors detected during the compilation and the corresponding
diagnostic messages. For a detailed description of the diagnostic

messages produced by the FORTRAN IV (H Extended) compiler refer
to the publication IBM System/360 Operating System: FORTRAN
IV (H Extended) Compiler and Library (Mod II) Messages, Order

No. SC28-6885.

126

e Optional output as determined by the options you can specify with the
FORTHX command or their defauits.

Should you need to edit the LISTING file you must include the option
(LRECL 133) with your EDIT command.

Informative Messages

The informative messages included in your listing identifies the compiler used,
the Julian date, and the time of day (based on a 24-hour clock) that the
compilation was begun. A list of the compiler options requested, all the
options that were in effect, and the compiler statistics are also provided. See
the part of Figure 40 labeled A for an illustration of the compiler
informative messages.

Error Messages

The error messages produced by the FORTRAN IV (H Extended) compiler
are listed in a group. They contain the error number (IFE xxx I), its severity
level, and the text of the message. When the message refers to a specific
source statement, an internal sequence number is included to identify the
statement in error.

Messages with a severity level of 4 permit you to execute your program.

Severity levels higher than 4 prevent execution from taking place. See the
part of Figure 40 labeled B for an illustration of the compiler error messages.

Optional Output
Additional information can be included in your LISTING file, depending on
the defaults in effect and the options you specify with the FORTHX
command. You can include the following:

e A list of your source statements.

® A source program map.

e An edited list of your source program.

e A cross-reference listing of your source program.

e A list of the object code produced for your source program.
Obtaining a Copy of Your Source Statements
Since the SOURCE option is the default for the FORTHX command, you will
have a copy of your source program included in your LISTING file
automatically. See the part of Figure 40 labeled C for the format of the
source listing. If you do not want your source statements included, you must
specify the NOSOURCE option.
Obtaining a Source Module Map
The first part of the source module map is a table that contains entries
generated by the compiler for each of eleven classifications of variables that

you may have used in your program. The first line of the map gives the name
of the program and its size in hexadecimal format. The column labeled TAG

127

128

indicates the classification of each variable. Figure 39 explains the
classifications.

Classification Meaning

A A variable that was used as én argument in a parameter list
ASF An arithmetic statement function

C A variable that appeared in a COMMON block

D A promoted (doubled) variable

E A variable that appeared in an EQUIVALENCE block

F A variable that appeared to the right of an equal sign (that is, a

variable whose value was manipulated during some operation)

P A padded variable

S A variable that appeared to the left of an equal sign (that is, a
variable whose value was stored during some operation)

XF An external function
XR An external reference to an array or a variable
* A promoted library function

Note: The combination code ASF should not be confused with the individual A, S, and
F. When a variable has been used for these several purposes, the individual codes will
appear as SFS to avoid confusing it with the arithmetic function code is always ASF.

Figure 39. H Extended Storage Map Variable Classifications

The column labeled TYPE indicates the type and length of each variable
listed.

The column labeled ADD indicated the relative address assigned to the
variable name. (Functions, arithmetic statement functions, subroutines, and
external references have a relative address of 00000.) For variables that you
have not referred to, the letters NR will appear instead of a relative address.

The second part of the source module map is a table of statement numbers.
This label map shows each statement number that you used in your source
program and any labels that the compiler generated. The relative address
assigned to each label is also shown. Any unreferenced symbols are indicated
by the letters NR instead of a relative address.

If the source module contains COMMON or EQUIVALENCE statements,
a third part of the source module map is included. The map for COMMON
blocks contains the same kind of information as for the main program. Any
variable that is made equivalent to a variable in a COMMON block is listed
along with its displacement (offset) from the beginning of the block. See the
part of Figure 40 labeled D for the format of the source module map. If you
want the map included in your LISTING file, you must specify the MAP
option with the FORTHX command.

Obtaining an Edited Copy of Your Source Program

The edited copy of your source program is independent of the usual source
listing; it indicates the loop structure and logical continuity of the program.

Each loop in your program is assigned a unique 3-digit number. The
entrance to each loop is indicated by a left parenthesis followed by a 3-digit
number; the exit from that loop is indicated by the same 3-digit number
followed by a right parenthesis.

The logical continuity of your program is shown through the dominance
relationships among executable source statements. A statement dominates
another if all logical paths to the second statement go through the first. The
first statement is called the dominator and the second is called the dominee.
By this definition, a statement can have only one dominator, but a dominator
may have several dominees. For example, a computed GO TO statement is
the last statement through which control passes before reaching three other
statements. The GO TO statement is a dominator with three dominees.

Example:
A Statement A
dominates B and C
Y
Statement B Statement C
dominates E B c dominates D
Y
Statement D
b dominates Fand G
4 2
E F G

129

In the listing, a dominee is indentend from its dominator unless it is the only
dominee or the last dominee of that dominator. The indention may be broken
by intervening statements; this is dominance discontinuity and is indicated by
a C--- on a separate line above the dominee.

Comments and non-executable statements are not involved in dominance
relationships. Their presence never causes a dominance discontinuity:
Comments are aligned with the last preceding non-comment line and
non-executable statements are aligned with the last preceding executable
statement or the first one following. See the part of Figure 40 labeled E for
the format of the edited source listing. If you want a copy included in the
LISTING file, you must specify the FORMAT and OPTIMIZE2 options with
the FORTHX commannd.

Obtaining a Cross-reference Listing

The cross-reference listing shows the symbols and statement labels that you
used in your source program with the internal sequence numbers of the
statements in which they appeared. Symbols, which define variables, are
listed by name, alphabetically. Statement labels are listed in numeric
sequence. The internal sequence number of the statements that define and
reference each symbol and label are shown after them. See the part of Figure
40 lableled F for the format of the cross-reference listing. If you want a copy
of the listing included in the LISTING file, you must specify the XREF option
with the FORTHX command.

Obtaining a Copy of Your Pseudo-assembler Listing of Your Executable
Code

The pseudo-assembler listing contains your FORTRAN source statements
after they have been translated into an executable form by the FORTRAN IV
(H Extended) compiler. This listing represents the executable code in an
assembler language format. The following items are shown:

e The column labeled 1 indicates the relative address (in hexadecimal
format) of the assembler language instruction.

e The column labeled 2 indicates the storage representation (in
hexadecimal format) of the instruction.

e The column labeled 3 indicates the statement numbers you used in
your program or which the compiler generated (6-digit numbers).

o The column labeled 4 indicates the pseudo-assembler language code
for each statement.

e The column labeled 5 indicates any significant items referred to by the
instruction, such as, entry points of subroutines or other statement
numbers.

See the part of Figure 40 labeled G for the format of the object code listing.
If you want a copy of this listing included in the LISTING file, you must
specify the LIST option with the FORTHX command.

LEVEL 2 (0CT 24 72 } MATA 0S/360 FORTRAN H EXTENDED

DATE 72,305/11.%3.C8 PAGE 5
@ €CLOCO 47 FO F (CC MAIN BC 15412004151
occocs 07 oc XL1107!
002205 D4CLLRES 404040 [CLZMAIN 1
¢ . Se écoc STM 1 112(13)
A e 58 N ca¢ LM 2gP15)
000014 50 3C D €C8 ST 3,8(13) -
C00018 50 [0 3 004 ST 12,4(Cy3)
€0001C €7 F2 BCR 1542
CCNSTANTS
£00290 00090001 0¢ XL410000000]¢
LEVEL 2 (OCT 24 72) MAIN 0S/3¢C FORTRAN H EXTENDED DATE 72.305/11.53.08 PAGE 4
#x%%%F O R T R AN CRDOS S REFERENCE L1 ST I N Gekis
LABEL DEFINED REFERENCES
s 0003 0c02
10 €005 €904 €031
14 UNDEF cc7
15 0006 0021 0043
20 GCos ceo6
22 0610 €ec?
24 0011 cees
25 en12
30 co13 0012
LEVEL 2 (OCT 24 72) MAIN CS/360 FORTRAN H EXTENDED DATE 72.305/11.%3,C8 PAGE 3
#%%k4F O R T R AN CROS S REFERENCE LI ST 1IN Gekdnn
SYMBOL INTERNAL STATEMENT AUMRERS
14 0023 0034
18 0022 0023 0024 0025 0C2¢ 0027 C€C28 C€C29 0030 0C24
1c 024 0034
10 0025 0035
1€ 0026 0035 5
IF ©C27 0035
16 0028 (C2¢
tH 0029 0036
11 0030 1036
LEVEL 2 (OCT 24 72) MAIN 0S/3¢C FORTRAN H EXTENDED DATE 72.305/11.53,08 PAGE 2
ISN 0020 85 FORMAT (' SORRY, YOLR NUMBER IS NCT DIVISIBLE BY 3%) MAGoosao
ISN 0021 G0 T0 15 GCLs5C
cccancoo=ec
600570
c IF THE NUMBER THE USER HAS SELECTEC SURVIVES THE TWO TESTS THIS anscc=ec
c SECTION OF THE PROGRAM CALCULATES THE MAGIC SQUARE CMAGO0550
CFAGO0600
CCC“CCMAGCCQIC
1SN 0022 €0 I8 = NUMBER/3-4 FAG00620
1SN 0023 1A= 18 + 7 VAG00630
ISN 0024 IC = 1B + 5 MAGO0¢4C
LEVEL 2 ¢ OCT 24 72) 05/360 FORTRAN H EXTENDED DATE 72,305/11.53.C8 PAGE 1
REQUESTEC OPTIONS: FMT GOSTMT LIST MAP XREF TERM
OPTIONS IN EFFECT: NAMEC MAIN},NOOPTIMIZE,LINECOUNT(60), STZE(MAX), AUTODBLINONE) 4
NOSOURCE 4EBCOIC,L1ST,NCOECK, CBJECT yMAP, NOFORMAT y GOSTMT ¢ XREFy NOALC,NOANS Fo TERM, FLAG(S)
e €CCCCLCLCCCLCCCClCCCLCcCeCCtCCCecCCeCCeCeCCeCtCeeCeeelllCCCClCCCCLCCICCMAGCOOLE
CMAG00020
c MAGICSQ CFAGON030
[CMAGCOC40
[4 THIS IS A PROGRAM FOR GENERATING A 3-BY-3 MAGIC SQUARE CMAGO0050
4 CMAGO00 60
c CMAGOOCTC
4 CMAG00080
€ THIS SECTICN CF THE FRGGRAM REQUESTS THE NAME OF THE USER THAT CMAGCCCSO
€ WANTS TO GENERATE THE MAGIC SQUARE CMAG00100
3 C¥AGOO110
ccoccccccc‘.cc CCMAGCO12C
ISN 0002 RITE (€45} ¥AG00130
ISN 0003 5 FGRMAT (' PLEASE ENTER YOUR NAME PRECEDEE BY A BLANK') VAG00140
ISN 0004 READ (5,10) MAGO0150
ISN 0005 10 FORMAT ('NAME ") MAGOO160
€CCCOLCECCCEELCCCCCCCCCCCClCCCCCCCCCCCCCLtCClCCCCCCCCCCCCCCCCCCCCICCMAGELYTC
[CMAG00180
C THIS SECTION OF ThE PROGRAM REQUESTS THE NUMBER FCR WHICH THE CMAGO0190
c USER WANTS THE MAGIC SQUARE GENERATEC CMAG00200
CMAGOO210
cccccctccc'cc CCMAG00220
ISN 0006 15 WRITE (6,2C) MAG00230
1SN 0007 WRITE (6422) MAGO0240
ISN 0008 WRITE (6,24} MAGCC25C
ISN 0009 20 FORMAT (% ENTER AN INTEGER NUMBER CF UP TO 8 DIGITS THAT IS GREAT EMAGO02€0
XR THAN 14 AND CIVISIBLE BY 31} MAG00270 _—
ISN 0010 22 FORMAT (% YCU MUST PRECECE IT WITH ENOUGH BLANKS TO MAKE UP 8 DIGIMAGCC2EC
XTS '} MAG00290
ISN 0011 24 FORMAT (' FOR EXAMPLE — IF YOUR NUMBER 1S 2 DIGITS LCNG PRECEDE I TPAGO0300
X WITH 5 ELANKS') MAG00210
ISN 0012 2% READ (5.20) NUMBER ¥AG00320
1SN 0013 30 FORMAT (18 MAG00330
ccmneoouc
CMAG00350
c THIS SECTICN CF THE PRCGRAM TESTS THE NUMBER SELECTED BY THE USER CMAGCC2EC
C 0 SEE IF IT IS LARGER THAN 14 - IF NOT, A MESSAGE IS TYPED OUT AND CMAG00370
c THE USER IS ASKED TO ENTER A NEW NUMBER ancooaeo
CMAGQC350
ccmeooaoo -
ISN 0014 IF (NUMBER-15) 3§, 45, 45 MAG00410
1SN 0015 25 WRITE (644C) MAGCCa42C
ISN 0016 40 FGRHAT (' SORRY, YOLR NUMBER IS TCC SMALL') MAG00430
ISN 0017 VAG00440
CCMAGOO'«‘D
MAGOO460
c THIS SECTICN CF THE PRCGRAM TESTS THE NUMBER TQ SEE IF IT IS cvncccuc
C OIVISIBLE BY 3 - IF NCT, A MESSAGE IS TYPEL OUT AND THE USER IS CMAG00480
c BSKEC TO ENTER A NEW NUMBER CVAGO0490
CMAGCCSCC
cccancoos1o
1SN 0018 IF (MCD(NUMBER,3)) 50, 60, SC VAG00520
ISN 0019 sc WRITE (£,55) MAGOOS2C

Figure 40. FORTRAN IV (H Extended) LISTING File (Part 1 of 3)

131

LEVEL 2 (OCT 24 72) MAIN 057360 FORTRAN H EXTENDEC DATE 72.305/11.53.08 PAGE 10

SOURCE STATEMENT LABELS

LABEL ISN ADDR LABEL ISA ADDR LABEL ISN ACCR LABEL ISN ADDR
15 6 000338 25 12 000374 NR 35 15 00C3SE 45 18 000388
50 19 0003cCC 60 22 0003E6

COMPILER GENERATEC LABELS

LABEL ISN ADLR LABEL ISN ADDR LABEL ISN ADDR LABEL _ISN AODR
100000 1 060310 100061 45 000542
LEVEL 2 (OCT 24 72) MAIN 0S/360 FORTRAN H EXTENDEC DATE 72.305/11.53.08 PAGE 9
’ MAIN / SIZE OF PROGRAM 000586 HEXADECIMAL BYTES
Q NAME TAG TYPE ADD. NAME TAG TYPE ACO. NAME TAG TYPE ACD. NAME TAG TYPE ADD.
1A SF 1% 000284 1B SF 1#4 00C288 IC SF %4 00028C 1D SF 1% 0002C0
1€ SF 1% 0002C4 IF SF 1% 0002C8 16 SF I*4 0C02CC IH SF 1%4 000200
11 SF I%4 000204 IBCOM# F XF 000000 NCGQUIT $ %6 000208 NNSTOP T*4 00C20C
NUMBER SFA 1*4 0002€0
LEVEL 2 (DCT 24 72) MAIN 0S/360 FORTRAN H EXTENDED DATE 72.305/11.%53.08 PAGE 8
00554 45 EC F (16 BAL 14, 16(0,15)
000558 58 FO C 080 L 15y 176t €,13) 18CCHH
CCC55C 45 EO F 034 BAL 14y 52(0,15)
€C0560 €5 oc XL1t05*
000561 40 cc XL1%4C* ,}
€C0562 40 cc XL1140¢®
000563 40 oC XL1'40¢
000564 40 tC XL1%40¢
000565 FC oc XLY*FO?
ADDRESS CF EPILCGUE
CCC566 58 FO € 080 L 15, 17¢(0,13)
LEVEL 2 (DCT 24 72) MAIN 0S8/2¢0 FORTRAN H EXTENDED DATE 72.305/11.53.08 PACE 7
€C0470 45 EO F 004 BAL 14y, 4(0,15)
€00474 C€COCOOCE oC XL4*00000006° 6
000678 O000001AE oC XL4*OCCCCLAE"®
€CC4TC 45 EO F C10 BAL 14y 16(0,15)
CC0480 58 FO D 0BO L 15, 176(0,13} 1BCOM#
000484 45 EO F 004 BAL 14, 40 0,15}
€C0488 €CCCOOCE cc XL4100000006* &
00048C 000001CC DC XL4*000001D0"
000490 45 EO F 008 BAL 14, B¢ 0,15)
C0C494 C45CD074 nC XL4104500074" 1A
000498 45 EQ F 008 BAL 14, 8(0,15)
LEVEL 2 (OCT 24 72) MAIN 0S/360 FORTRAN H EXTENDED DATE 72.205/11.53.C8 PAGE 6
00C394 S8 0C D C7C s 0,y 112(0413) 15
000398 58 50 [0CO L 5y 152(0+13) 45
00039C C7 BS © BCR i1, S
00039E 5€ FO D CBC 35 L 154 176(0,13} IBCOM#
0003A2 18 00 LR ¢, O
€CC3A4 45 EO F 004 BAL 14, 4(0,15)
0003A8 00000006 oc XL4100000006* 6
0003AC 00000150 cc XL4*00CCO15D
CCC3BO 45 EQ F C1C BAL 14y 16(0,15])
0003B4 47 FO O 000 BC 15, 0(0, 0O
000388 58 OC C 0AC 45 L 0y 160 0,13) NUMBER
0003BC 8E 00 0 C20 SRDA 0, 32
0003CO 5D 00 D 058 D Ce EE(Cy13) 3
€C03C4 12 €O LTR 0, 0
00C3C6 S€& 50 D CC8 L 5s 2C0C 0,13) 60
0C03CA 07 95 BCR Sy S
©C€03CC 58 FO D 0BO 50 L 15, 176 0413} 1BCOM¥
0003D0 45 €0 F 004 BAL 14y 4 0,15} —
€00304 00000006 cc XL 4100000006 ¢ 6
000308 €0000181 oC XL4100000181¢
00030C 45 EO F 010 BAL 14, L&C Cy15)
0CO3E0 58 50 D CBS L S, 184(0s13) 15
CO003E4 (T F5 BCR 154 5
C003E6 58 00 D 0AO 60 L Cy 16CC 0,12) NUMBER
CCO3EA €E 00 C C2C SRDA 0, 32
OCO3EE 50 00 € 058 [} Cy 88(0,13) 3
0003F2 SB 10 D C5C S 1, 920 0+12) 4
0003F6 50 10 D 078 ST 1y 120(0,13) 18
0003FA 5A 10 D 068 A 1y 1640 Cy13) 7
CCCIFE SC 10 D 074 ST 1, 1164 0,13) 1A
000402 58 €O D 060 L 0y 96(0,13) 5
000406 5A 00 D 078 A €y 12CC Gy 17) 18 [
CCC4CA 50 €O DO CTC ST 0y 124(0413} 1c
00040E 58 00 C 078 L €, 120(0,13) 18
000412 SA 00 © 054 A 0y 840 0,13) 2
000416 5C CC D C8C ST 0y 128¢ 0413) 10
00041A 58 00 C 078 L Cy 12CC 0413) I8
CCC4LE SA 0C D 05C A 0, 92(0413} 4
000422 50 00 D 084 ST 0+ 132(0,13) 1€
00426 58 00 D 064 L ¢y 1CCt 0,12) 6
€CC42A SA 00 D C78 A 0, 120(0,13) 18
00042E 50 00 C 088 ST C, 136(0,13) 1F
000432 58 00 D C58 L 0, 88(0,13) 3
000436 SA GO D C78 A 0, 120(0,13) 18
00043A 50 00 € 08C ST €y 14C(0,13) 16 _—
CCC43E 58 00 D €78 t 0, 120(0,13) I8
0CC442 5A 00 D 06C A C, 108(04+13) 8
000446 50 00 D 090 ST Cy 1440 Cy13) H
CCC44A 58 00 D €50 L 0, 80(0,13) 1
00044E 5A 00 D 078 A 0, 120(0,13) 18
€CC452 50 CC D CS4 ST 0y 1481 0,13) 11
000456 58 FO C GBO L £y 17€6(Cy13) 1BCOVH
000454 18 00 LR 0y 0
0C045C 45 EO F CC4 BAL 14y 4(0415)
000460 000000C6 2[4 XL4'0C00C00E? 6
€C0464 €C0COCS7 cc XL4100000057*
C0C468 45 EO F 010 BAL 14y 16t 0,415)
0C046C 58 FO D 08O L £y 1760 €y13) 1BCCMN

Figure 40. FORTRAN IV (H Extended) LISTING File (Part 2 of 3)

132

LEVEL 2 ¢ OCT 24 T2) MAIN G 0S/360 FORTRAN H EXTENDED DATE 72.305/11.53.08 PAGE 2
/ STRUCTURED SOURCE LISTING /
¢ PRIME NUMBER GENERATOR gggg:g;:
€003 ISN 0002 WRITEC6,1) ' 00000030
ISN 0003 1 FORMATC® 1FOLLOWING 1S A LIST OF PRIME NUMBERS FROM 2 TO 1000'/19X, So0000a0
*1H2/19X, 1H3) | 00000050
ISN 0004 DO & 125,1000,2 00000060
€002 ISN 0005 K=SQRT(FLOAT(I)) 00000070
1SN 0006 00 2 J=3.K51 00000080
C001 1SN 0007 TFCMODCI,).EQ.0) GO TO & 80000090
1SN 0009 2 CONT INVE
001> c 00000100
ISN 0010 WRITECE,3)1 00000110
ISN 0011 3 FORMAT (120) 00000120
ISN 0012 4 CONTINVE
002) ¢ 00000130
ISN 0013 WRITE(6,5) .
ISN 0014 5 FORMATC! TH1S 1S THE END OF THE PROGRAM') gggggi:g
ISN 0015 zrop
003) 0
1SN 0016 END 0000016
LEVEL 2 (CCT 24 72 MAIN 0S/7360 FORTRAN H EXTENDED DATE 72.305/11.53.08 PAGE 1}
INUMBER LEVEL FORTRAN H EXTENDED EKRCR. MESSAGES
1FE3321 12(S}) LABEL 14 THE STATEMENT NUMBER IS UNDEFINED. CPTI¥IZATION 1S DOWNGRACEC.
*NPTIONS IN EFFECT®AAME(NAIM.NCOPT[MIZE.LH\ECCUM(eclelZEKMMAXl. AUTOCBL (NONE),

*0PTICNS IN EFFECTSNOSOURCE,EBCOIC,LISTNODECKLBJECTNAF,NCFCRYAT,GOSTMT 4 XREF, NCALC,NOANS FoTERM, FLAG(S)

STATISTICS SOLRCE STATEMENTS = 4T, PROCRAM SIZE = 1414, SUBPROGRAM NAME = MAIN

STATISTICS 1 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CCCE IS 12

axkkkx END OF CCNFILATION ®#asns 12CKk BYTES OF CORE NOY USEC

Figure 40. FORTRAN IV (H Extended) LISTING File (Part 3 of 3)

133

Page of 8C28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

FORTRAN IV (H Extended) TEXT File

A TEXT file is created by the FORTRAN IV (H Extended) compiler

whenever the OBJECT option is in effect. This file contains the compiled
* FORTRAN IV object program that is identical to the object program

produced by the FORTRAN IV (H Extended) compiler under OS.

The TEXT file contains the version of your program that can be executed
by CMS or link edited under OS. You can issue a RUN command, LOAD
and a START command, or an EXEC command that specifies a file
containing these commands and your program will begin executing. (Any
additional FILEDEF commands required for the execution of the program
must be issued before you can enter a START command.)

Obtaining a Punch Card Deck of Your Object Program

To have your object program punched into a card deck, you must specify the
DECK option with the FORTHX command. An alternate method is to use
the PUNCH command specifying the filename of your file and a filetype of
TEXT. This will punch the TEXT file that was created and placed on a disk
by the OBJECT option when specified during a compilation.

Example:

| punch newprog text

Compiler Language Restrictions for FORTRAN IV (H Extended)

The compiler language restrictions for the FORTRAN IV (H Extended)
compiler are as follows:

¢ The maximum number of nested open DO statements is 25.

¢ The maximum number of implied DOs per input/output statement is
20.

e The maximum value for a repetition field (a) in a FORMAT statement
is 255.

e The maximum value for the character specification field (w) in a
FORMAT statement is 255.

e The maximum number of arguments in a statement function definition
is 20.

o Within a statement function definition, the maximum number of nested
references to other statement functions is 50. :

e Within a statement function reference, the maximum number of nested
references to other statement functions is 50.

134

The maximum number of arguments in a CALL statement is 196; any
argument containing a subscript is counted as two.

The maximum number of characters permitted in a PAUSE statement
is 255.

The maximum number of characters permitted in literal constants is
255; this restriction applies to literal constants specified in list-directed
input and output statements (statements with no corresponding
FORMAT statement).

The asynchronous input and output facility is not available under
CMS. This feature is designed to make input and output more
efficient under OS, in a batch environment. Since input and output are
handled differently under CMS, in a time-sharing environment,

programs using this feature may be compiled but not executed under
CMS.

If you attempt to load and execute a program that uses asynchronous
1/0, the message:

THE FOLLOWING NAMES ARE UNDEFINED:
IN#
OUT#
WAIT#

will be produced, indicating the type of asynchrounous operation
specified.

The compiler options SIZE , DISK, PRINT, and NOPRINT
may not be specified in an *PROCESS statement.

135

Loading and Executing FORTRAN Object Progl‘anis Under CMS

Once a TEXT file has been created b¥1 your compiler, you are ready to load
and execute it (unless, you are using thé Code and Go compiler with the GO

option, which will load and execute the object program automatically after
compilation). The following examples illustrate CMS command procedures
for compiling a FORTRAN source program, loading the resultant TEXT file,
and executing it using the following compilers:

e FORTRANIV (G1)

e Code and Go FORTRAN 1V (with the GO option)

e Code and Go FORTRAN 1V (with the NOGO option)

e FORTRAN IV (H Extended)

The commands shown can be placed in an EXEC procedure that will
automatically perform all the functions whenever the name of the procedure
is entered. See the publication IBM VM /370 Command Language User’s

Guide, Order No. GC20-1804 for more detailed information on preparing
EXEC procedures and supplying filenames as arguments.

Command Procedure for FORTRAN IV (G1)

136

o load filename
, R;

Example:
a fortgi filename (load)

R;

o global txtlib library names
R;

filedef ftxxfyyy device
start main

R;.

An explanation of the numbered statements follows:

Supply the name of the file that contains the FORTRAN source
program you want to compile. The FORTGI command invokes the
FORTRAN IV (G1) compiler. The LOAD option specifies that a
TEXT file is to be created.

~

If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIB command for the files that contain the Mod 1 library, enter a
GLOBAL TXTLIB command here specifying the names your
installation has assigned to the Mod I Library.

Specify the filename that you used in step 0 The LOAD command
invokes the CMS loader, which loads the TEXT file produced by the
compiler and prepares it for execution. The CMS loader produces a
MAP file that contains the names of the modules loaded and the
locations at which they were loaded. You can use the TYPE or
PRINT commands, specifying LOADMAP or use the TMAP and
TYPE options of the LOAD command to obtain a copy for use as a
debugging aid. :

If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book ““User-defined Files” for more information.

Specify the default name MAIN that is assigned by the compiler unless
you specified a name with the NAME option (see the section
“Identifying Programs in a TEXT File” for more information) and
execution of your program begins.

Command Procedure for Code and Go FORTRAN IV (with the GO Option)

Example:

global txtlib tsolib [library names
R;

filedef ftxxfyyy device
R;

gofort filename (GO)

R;

An explanation of the numbered statements follows:

If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIB command for the files that contain the Mod I library, enter a
GLOBAL TXTLIB command here, specifying TSOLIB and the names
that your installation has assigned to the Mod I Library. TSOLIB
contains system routines necessary for input and output operations.

If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book ““User-defined Files” for more information.

Supply the name of the file that contains the FORTRAN source

program you want to compile. The GOFORT command invokes the
Code and Go FORTRAN IV compiler. The GO option indicates that

137

you want the object code loaded and executed automatically after
compilation. If the file that you named contains free-form source
statements, be sure to include the FREE option.

Command Procedure for Code and Go FORTRAN IV (with the NOGO Option)

138

Example:

gofort filename (nogo deck)

R;

global txtlib tsolib library names
R;

load filename
R;

filedef ftxxfyyy device
start main

R;

An explanation of the numbered statements follows:

Supply the name of the file that contains the FORTRAN source
program you want to compile. The GOFORT command invokes the
Code and Go FORTRAN IV compiler. The DECK option specifies
that a TEXT file is to be created. The NOGO option indicates that
you do not want the TEXT file loaded and executed automatically
after compilation. If the file that you named contains free-form source
statements, be sure to include the FREE option.

If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIB command for the files that contain the Mod I library, enter a
GLOBAL TXTLIB command here specifying TSOLIB and the names
that your installation has assigned to the Mod I Library. TSOLIB
contains system routines necessary for input and output operations.

Specify the filename that you used in step 0 The LOAD command
invokes the CMS loader, which loads the object code in the TEXT file
produced by the compiler and prepares it for execution. The CMS
loader produces a MAP file that contains the names of the modules
loaded and the locations at which they were loaded. You can use the
TYPE or PRINT commands, specifying LOAD MAP, or use the MAP
and TYPE options of the LOAD command to obtain a copy for use as
a debugging aid.

If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book ‘“User-defined Files” for more information.

Specify the default name MAIN that is assigned by the compiler unless
you specified a name with the NAME option (see the section
“Identifying Programs in a TEXT File” for more information) and
execution of your program begins.

Command Procedure for FORTRAN IV (H Extended)

Example:

forthx filename (object)
R;

global txtlib cmslib library names
R;

load filename
R;

filedef ftxxfyyy device
start main

R;

An explanation of the numbered statements follows:

Supply the name of the file that contains the FORTRAN source
program you want to compile. The FORTHX command invokes the
FORTRAN IV (H Extended) compiler. The OBJECT option specifies
that a TEXT file is to be created.

If you do not have a PROFILE EXEC procedure with a GLOBAL
TXTLIB command for CMSLIB and the files that contain the Mod I1
library, enter a GLOBAL TXTLIB here, specifying CMSLIB and the
name that your installation has assigned to the Mod II Library.
CMSLIB contains the extended precision simulation routines.

~ Note: You do not need to include CMSLIB if you are not using

extended precision.

Specify the filename that you used in step o The LOAD command
invokes the CMS loader, which loads the object code in the TEXT file
produced by the compiler and prepares it for execution. The CMS
loader produces a MAP file that contains the names of the modules
loaded and the locations at which they were loaded. You can use the
TYPE or PRINT command, specifying LOAD MAP, or use the MAP
and TYPE options of the LOAD command to obtain a copy for use as
a debugging aid.

139

If your program requires any user-defined execution-time files, issue
the FILEDEF commands for them at this point. See the section of this
book “User-defined Files” for more information.

Specify the default name MAIN that is assigned by the compiler unless
you specified a name with the NAME option (see the section

140

Appendix A: FORTRAN Compilation Debug Facility

The FORTRAN Debug Facility statements (DEBUG, AT, DISPLAY,
TRACE ON, and TRACE OFF) are described in the IBM System/360
and System/370 FORTRAN IV Language , Order No. GC28-6515. This
section describes the output produced when these statements are used in a
FORTRAN source module submitted to the Code and Go FORTRAN or
FORTRAN IV (G1) compilers. These statements are not available if you
specify the TEST option with either the FORTGI or GOFORT commands.

DEBUG Statement

The options UNIT, TRACE, SUBTRACE, INIT, and SUBCHK may- be
specified in the DEBUG statement. The UNIT option indicates the unit on
which the DEBUG output is to be written. If the UNIT option is omitted,
DEBUG output is written in the LISTING file.

TRACE

Trace output is written only when TRACE is on as a result of the TRACE
ON statement. For each labeled statement that is executed, the line:

-DEBUG-TRACE statement-label

is written.

SUBTRACE

SUBTRACE is used to trace program flow from one routine to another. For
each subprogram called, the line:

-DEBUG-SUBTRACE subprogram-name
is written on entry to the subprogram, and the line:
-DEBUG-SUBTRACE *RETURN*

is written on exit from the subprogram.

141

INIT

SUBCHK

DISPLAY Statement

142

The output produced as a result of the INIT option is written regardless of
any TRACE ON or TRACE OFF statements in the source module. Each
time a value is assigned to an unsubscripted variable listed in the INIT option,
the line:

-DEBUG- variable-name = value

is written, with the value given in the proper format for the variable type.
When a value is assigned to an element of an array listed in the INIT option,
the line:

-DEBUG- array-name(element-number) = value

is written, with the format of the value determined by the type of the array
element. The single element number subscript is used regardless of the
number of dimensions in the array.

SUBCHK output is not affected by TRACE ON or TRACE OFF statements
in the source module. When a reference to an array listed in the SUBCHK
option includes subscripts such that the reference is outside the array, the
line:

-DEBUG-SUBCHK array-name(element-number)

is printed. If the element number is negative, the number printed in the line is
the arithmetic sum of 16,777,216 and the negative element number. For
example, if the element number is -1, the number printed in the output line is
16,777,215. An attempt will be made, using the invalid subscripts, to execute
the statement.

DISPLAY statement output is identical to NAMELIST WRITE output. The
first line written is the name of the NAMELIST created by the compiler for
the DISPLAY statement, preceded by the ampersand character:

& DBGnn#

where:

nn is the 2-digit decimal value assigned to the DISPLAY statement; this
value begins at 01 for the first DISPLAY statement in the source
module and increases by one for each subsequent DISPLAY
statement.

The NAMELIST name is followed by the DISPLAY list, in NAMELIST
FORMAT. The output is terminated with the line:

& END

Special Considerations

Any DEBUG output which is produced during an input/output operation is
saved in storage until the input or output operation is complete. It is then
written out. Saving this information may require additional storage space
from the system. If the request cannot be satisfied, some of the DEBUG
output may be lost. If this situation occurs, the message:

-DEBUG-SOME OUTPUT MISSING
is written after the output which was saved.

If a subscript appearing in an input/output list includes a function
reference, and the FUNCTION contains a DISPLLAY statement, the
DISPLAY cannot be performed. In this case the message:

-DEBUG-DISPLAY DURING I/0O SKIPPED

is written in the DEBUG output.

143

Appendix B: Assembler Language Subprograms

Subroutine References

Argument List

If you are an experienced FORTRAN programmer you can use assembler
language subprograms with your FORTRAN main program. This section
describes the linkage conventions that must be used by the assembler
language subprogram to communicate with the FORTRAN main program.
To understand this appendix, the reader must be familiar with the Assembler
Language publication, Form GC28-6514 and the appropriate assembler
language programmer’s guide.

You can refer to a subprogram in two ways: by a CALL statement or a
function reference within an arithmetic expression.

Example:

CALL MYSUB(X,Y,Z)
I=J+K+MYFUNC(L,M,N)

For subprogram reference, the compiler generates:

1. A contiguous argument list; the addresses of the arguments are placed
in this list to make the arguments accessible to the subprogram.

2. A save area in which the subprogram can save information related to
the calling program.

3. A calling sequence to pass control to the subprogram.

The argument list contains address of variables, arrays, and subprogram
names used as arguments. Each entry in the argument list is four bytes and is
aligned on a fullword boundary. The last three bytes of each entry contain
the 24-bit address of an argument. The first byte of each entry contains
zeros, unless it is the last entry in the argument list. If this is the last entry,
the sign bit in the entry is set to 1.

145

AREA :) ‘ .
(word 1) =g This word is used by a FORTRAN compiled routine to store its epilogue address and may not be
used by the assembler language subprogram for any purpose.

AREA+4
(word 2) e e [the program that calls the assembler language subprogram is itself a subprogram, this word
contains the address of the save area of ti-e calling program; otherwise, this word is not used.

AREA+8
(word 3) === The address of the save area of the ca: .uprogram.

AREA+12
(word 4) =l The contents of register 14 (the return address). When the subprogram returns control, the first
byte of this location is set to ones.

AREA+16
(word) = The contents of register 15 (the entry address).

AREA+20
(word 6) el The contents of register 0.

AREA+24
(word 7) =g~ The contents of register 1.

AREA+68
(Word 18) e The contents of register 12.

Figure 41. Save Area Layout and Word Contents

The address of the argument list is placed in general register 1 by the
calling program.

Save Area

The calling program contains a save area in which the subprogram places
information, such as the entry point for this program, an address to which the
subprogram returns, general register contents, and addresses of save areas

- used by programs other than the subprogram. The amount of storage

- reserved by the calling program is 18 words. Figure 41 shows the layout of
the save area and the contents of each word. The address of the save area is
placed in general register 13.

The called subprogram does not have to save and restore floating-point
registers.

146

Calling Sequence

A calling sequence is generated to transfer control to the subprogram. The
address of the save area in the calling program is placed in general register 13.
The address of the argument list is placed in general register 1, and the entry
address is placed in general register 15. If there is no argument list, then
general register 1 will contain zero. A branch is made to the address in
register 15 and the return address is saved in general register 14. Figure 42
illustrates the use of the linkage registers.

Register Number Register Name Function

0 Result Register Used for function subprograms only. The result is returned in general or
floating-peint register 0. However, if the result is a complex number, it is
returned in floating-point registers O (real part) and 2 (imaginary part).
Note: For subroutine subprograms, the result(s) is returned in a
variable(s) passed by the programmer.

1 Argument List Register Address of the argument list passed to-the called subprogram.
2 Result Register See Function of Register 0.
13 Save Area Register Address of the area reserved by the calling program in which the contents

of certain registers are stored by the called program.

14 Return Register Address of the location in the calling program to which control is returned
after execution of the called program.

15 | Entry Point Register Address of the entry point in the calling subprogram.
’ Note: Register 15 is also used as a condition code register, a RETURN
code register, and a STOP code register. The particular values that can be
contained in the register are

16 - aterminal error was detected during execution of a

subprogram (an IHCxxxI message is generated)

4*i- a RETURN i statement was executed

n - aSTOP n statement was executed

0 - aRETURN or a STOP statement was executed

Figure 42. Linkage Registers

147

Coding the Assembler Language Subprogram

Two types of assembler language subprograms are possible: the first type
(lowest level) assembler subprogram does not call another subprogram; the
second type (higher level) subprogram does call another subprogram.

Coding a Lowest Level Assembler Language Subprogram

For the lowest level assembler language subprogram, the linkage instructions

must include:

1. An assembler instruction that names an entry point for the

subprogram.

2. An instruction(s) to save any general registers used by the subprogram
in the save area reserved by the calling program. (The contents of
linkage registers O and 1 need not be saved.)

3. An instruction(s) to restore the “saved” registers before returning
control to the calling program.

4. An instruction that sets the first byte in the fourth word of the save
area to ones, indicating that control is returned to the calling program.

5. An instruction that returns control to the calling program.

Figure 43 shows the linkage conventions for an assembler language
subprogram that does not call another subprogram. In addition to these
conventions, the assembler program must provide a method to transfer
arguments from the calling program and return the arguments to the calling

program.
Name Operation Operand Comments
deckname | start 0 branch around constants in calling
bc 15, m+1+4(15) sequence mmust be an odd integer to insure
dc X'm' that the program starts on a halfword
dc clm' name' boundary. The name can be padded with
* blanks.
stm 14,r,12(13) the contents of registers 14, 15, and 0
* through r are stored in the save area
* of the calling program. r is any
* number from 2 through 12.
balr b,0 establish base register (2b 12)
using *,b
(user-written source statements)
Im 2,r,28(13) restore registers
mvi 12(13),x ff! indicate control returned to calling program
ber 15,14 return to calling program

Figure 43. Linkage Conventions for Lowest Level Subprograms

L il

148

Higher Level Assembler Language Subprogram

A higher level assembler subprogram must include the same linkage
instructions as the lowest level subprogram, but because the higher level
subprogram calls another subprogram, it must simulate a FORTRAN
subprogram reference statement and include:

1. A save area and additional instructions to insert entries into its save
area.

2. A calling sequence and a parameter list for the subprogram that the
higher level subprogram calls.

3. An assembler instruction that indicates an external reference to the
subprogram called by the higher level subprogram.

4. Additional instructions in the return routine to retrieve entries in the
save area.

Note: If an assembler language main program calls a FORTRAN subprogram,
the following instructions must be included in the assembler language program
before the FORTRAN subprogram is called as follows:

L 15,=V(IBCOM#)
BAL 14,64(15)

These instructions cause initialization of return coding, interruption
exceptions, and opening of the error message data set. If this is not done and
the FORTRAN subprogram terminates either with a STOP statement or
because of an execution-time error, the data sets opened by FORTRAN are
not closed and the result of the termination cannot be predicted. Register 13
must contain the address of the save area that contains the registers to be
restored upon termination of the FORTRAN subprogram. If control is to
return to the assembler language subprogram, then register 13 contains the
address of its save area. If control is to return to the operating system, then
register 13 contains the address of its save area.

Figure 44 shows the linkage conventions for an assembler subprogram that
calls another assembler subprogram.

149

Name Operation Operand Comments
deckname | start 0
extrn name., name of the subprogram called by this
bc 15, m+1+4(15) subprogram
dc X'm'
dc clm' name’
* save routine
stm 14,r,12(13) the contents of register 14, 15, and 0
* through r are stored in the save area of the
* calling program. r is any number from 2
* through 12.
balr b,0 establish base register
using *,b
1r q,13 loads register 13, which points to the save
* area of the calling program, into any
* general register,q, except 0, 11, 13, and
* 15.
la 13,area loads the address of this program's save
* area into register 13.
st 13,8(0,q9) stores the address of this program's save
* area into register 13.
st g,4(0,13) stores the address of the previous save
* area (the save area of the calling
* program) into word 2 of this program's
* save area
bc 15, prob
area ds 18f reserves 18 words for the save area
* end of save routine
prob (user-written program statements)
* calling sequence
la 1,arglist load address of argument list
1 15,adcon
balr 14,15
(more user-written program statements)
* return routine
1 13,area+4 loads the address of the previous save
* area back into register 13
1m 2,r,28(13)
1 14,12(13) loads the return address into register 14
mvi 12(13),x"ff"
ber 15,14 return to calling program
* end of return routine
adcon dc a(name,)
* argument list
arglist|dc ald(arg,) address of first argument
dc x'80"' indicate last argument in argument list
dc al3(arg,) address of last argument
Figure 44. Linkage Conventions for Higher Level Subprogram

150

In-Line Argument List

Sharing Data in COMMON

In coding your assembler program, you may establish an in-line argument list

instead of an out-of-line list. In this case, you may substitute the calling
sequence and argument list shown in Figure 42 for that shown in Figure 45.

adcon dc A(prob)
la 14, return
1 15,adcon
cnop 2,4
balr 1,15
dc ala(arg,)
dc al4(arg,)
dc x'80"
dc al3(arg,)
return bc 0,x"isn'

Figure 45. In-Line Argument List

Both named and blank COMMON in a FORTRAN IV program can be
referred to by an assembler language subprogram. To refer to named
COMMON, the V-type address constant is used.

Example:
name dc v(name-of-COMMON)

If a FORTRAN program has a blank COMMON area and blank
COMMON is also defined (by the COM instruction) in an assembler
language subprogram, only one blank COMMON area is generated for the
output load module. Data in this blank COMMON is accessible to both
programs.

To refer to biank COMMON, the following linkage may be specified:

com
name ds of
> chame csect
1 11,=a(name))

using name , 11

151

Retrieving Arguments From The Argument List

152

The argument list contains addresses for the arguments passed to a
subprogram. The order of these addresses is the same as the order specified
for the arguments in the calling statement in the main program. The address
for the argument list is placed in register 1.
Example:

call mysub(a,b,c)

When this statement is compiled, the following argument list is generated.

00000000 | address for A

00000000 | address for B

10000000 1} address for C

For purposes of discussion, A is a real *8 variable, B is a subprogram name,
and C is an array.

The address of a variable in the calling program is placed in the argument
list. The following instructions in an assembler language subprogram can be
used to move the real*8 variable A to location VAR in the subprogram.

1 q,0(1)
mve var(8),0(q)

where
Q is any general register except 0.
For a subprogram reference, an address of a storage location is placed in
the argument list. The address at this storage location is the entry point to the

subprogram. The following instructions can be used to enter subprogram B
from the subprogram to which B is passed as an argument.

1 q,4(7)

1 15,0(q)

balr 14,15
where

Q is any general register except 0.

For an array, the address of the first variable in the array is placed in the
argument list. An array [for example, a three-dimensional array C(3,2,2)]
appears in this format in main storage.

C(1,1,1) C(2,1,1) C(3,1,1) C(1,2,1)
C(2,2,1) C(3,2,1) C(1,1,2) C(2,1,2)
<C(3,1,2) C(1,2,2) C(2,2,2) C(3,2,2)

Figure 46 shows the general subscript format for arrays of 1, 2, and 3
dimensions.

Array A Subscript Format
A(DD) A(SD)
A(D1,D2) A(S1,82)
A(D1,D2,D3) A(S1,52,83)

D1, D2, D3 are integer constants used in the DIMENSION statement. SI,

S2, and S3 are subscripts used with subscripted variables.

Figure 46. Dimension and Subscript Format

The address of the first variable in the array is placed in the argument list. To
retrieve any other variables in the array, the displacement of the variable, that
is, the distance of a variable from the first variable in the array, must be
calculated. The formulas for computing the displacement (DISPLC) of a
variable for one, two, and three dimensional arrays are

DISPLC=(S1-1)*L
DISPLC=(S1-1)*L+(S2-1)*D1*L
DISPLC=(S1-1)*L+(S2-1)*D1*L+(S3-1)*D2*D1*L

where:
L is the length of each variable in this array.
Example:

The variable C(2,1,2) in the main program is to be moved to a location
ARVAR in the subprogram. Using the formula for displacement of integer
variables in a three-dimensional array, the displacement (DISP) is calculated
to be 28. The following instructions can be used to move the variable,

q,8(1)
r,disp
s,0(q,r)
st s,arvar

=

where:
Q and R are any general register except 0.

S is any general register. Q and R cannot be general register 0.

153

Example: An assembler language subprogram is to be named ADDARR, and
a real variable, an array, and an integer variable are to be passed as arguments
to the subprogram. The statement

call addarr (X,Y,J)

is used to call the subprogram. Figure 47 shows the linkage used in the
assembler subprogram.

Name Operation | Operand
addarr | start 0
b equ 8
bc 15,12 (15)
dec x'7
dc cl7'addarr'
stm 14,12,12(13)
balr b,0
using *,b
1 2,8(1) move 3rd argument to location called
mve index(4),0(2) index in assembler language subprogram.
1 3,0(1) move 1st argument to location called var
mve var (4),0(3) in assembler language subprogram.
1 4,4(1) load address of array into register 4.

(user ~written statements)
.

1m 2,12,28(13)
mvi 12(13) ,x'ff°*
becr 15,14
ds of

index ds 1£

var ds 1£

Figure 47. Assembler Subprogram Examples

Return I in an Assembler Language Subprogram

When a statement number is an argument in a CALL to an assembler
language subprogram, the subprogram cannot access the statement number
argument.

To accomplish the same thing as the FORTRAN statement RETURN i
(used in FORTRAN subprograms to return to a point other than that
immediately following the CALL), the assembler subprogram must place 4* i
in register 15 before returning to the calling program.

Example:

When the statement

call sub(a,b, &10,820)

154

is used to call an assembler language subprogram, the following instructions
would cause the subprogram to return to the proper point in the calling
program:

la 15,4 (toreturnto10)
bcr 15,14
la 15,8 (toreturnto20)
ber 15,14

Object-Time Representation of FORTRAN Variables

Integer Type

The programmer who uses FORTRAN in connection with assembler language
may need to know how the various FORTRAN data types appear in the
computer. The following examples illustrate the object-time representation of
FORTRAN variables as they appear under CMS.

INTEGER variables are treated as fixed-point operands by all the compilers
and are governed by the principles of System/370 fixed-point arithmetic.
INTEGER variables are converted into either fullword (32 bit) or halfword
(16 bit) signed integers.

Example:
integer*2 item/76/,value
integer*4 f,f64/100/
f=15

value = ~2

The value of the variables ITEM, VALUE, F, F64 appear in storage as
follows:

155

Real Type

156

<———— 2 Bytes ———p

ITEM 0 0000000 01001100

S 1 15
~«—————— 2Bytes ———>

VALUE | 1 IRRRERRI 11111110

S 1 15
- 4 Bytes >
F 0 0000000 | 00000000 | 00000000 | 00001111
S 1 31
> 4 Bytes >
F64 0 | 0000000 [00000000 | 00000000 { 01100100
S 1 31

where S in bit position 0 represents the sign bit. All negative numbers are
represented in two’s complement notation with a one in the sign-bit position.

All REAL variables are converted into short (32 bit) or long (64 bit)
floating-point numbers by all the compilers. In addition, the H Extended
compiler converts extended-precision REAL variable into extended (128 blt)
floating-point numbers. The length of the numbers is determined by
FORTRAN 1V specification conventions.

Example:

real*4 hold,r/100./
real*8 a,rate/-8./
real*16 x

hold =-4.

a=8.0d0

X =2.0g0

The value of the variables HOLD, R, A, RATE, and X appear in storage as
follows:

- 4 Bytes -
S C F
HOLD| 1 | 1000001 [01000000 | 00000000 | 00000000
0o 1 7 8 31
-« 4 Bytes »>
S C F
R 0 | 1000010 [01100100 | 00000000 | 00000000
0 1 7 8 31
- 8 Bytes —
s C F
A 0 | 1000001 | 10000000 | 00000000 | 00000000 oooﬁgoooo
0 1 7 8 31 63
-« 8 Bytes >
s C F
RATE | 1 1000001 | 10000000 | 00000000 | 00000000 oooﬁ?oooo
0 1 7 8 31 63
< 16 Bytes >
s C F s C F
X 0 | 1000001 | 00100000 | 00000000 0005} oo} o arroon 0000%0000
0 7 8 63 64 65 71 72 127
where:

s (sign bit) occupies bit position 0.

¢ (characteristic), or exponent, occupies bit positions 1 through 7.

f (fraction) occupies either bit positions 8 through 31 for a short,

floating-point number, or bit positions 8 through 63 for long,

floating-point number, or bit positions 8 through 63 and 72 through

127 for an extended-precision floating-point number (bit positions 64
through 71 represent a sign plus a characteristic having a value 14 less
then the data represented in bits 0 through 7.

Note: Floating-point operations in System/360 may sometimes produce a
negative zero, i.e., the sign bit of a floating-point zero will contain a one.

FORTRAN 1V compilers consider all floating-point numbers having a

fraction of zero as equivalent. The setting of the sign bit is unpredictable in

floating-point zeros computed by an object program. (A detailed explanation
of floating-point operations can be found in the publication IBM
System/360: Principles of Operation, Order No. GA22-6821.)

157

Page of SC28-6891-0, -1
Revised March 18, 1977
By TNL SN20-9201

Complex Type

A COMPLEX variable has two parts (real and imaginary) and is treated as a
pair of Real numbers. The COMPLEX parts are converted into two short,
long, or extended floating-point numbers, depending upon the compiler.

Example:
complexd/(2.1,4.7)/,e%¥16,z*%32
e=(55.5,-55.5)
z=(2.0Q0,4.0g0

The value of the variables D, E, and Z appear in storage as follows:

- 4 Bytes >
S C F
D 0 1000001 00100001 10011001 10011001 2.1
0 1000001 01001011 00110011 00110011 4.7
0 1 7 8 31
< - 4 Bytes >
< 8 Bytes >
S C F
E 0 1000010 00110111 10000000 00000000 [0000 LOOOO 55.5D0
1 1000010 00110111 10000000 00000000 0000]/0000 -55.5D0
0 1 7 8 31 63
< 8 Bytes »-
< 16 Bytes >
s C F s C F ,
z 0 1000001 00100000 000 LOOOO 0 0110011 |0000|{0000] 2.0Q0
0 1000001 01000000 (000 /;)000 0 0110011 0000]0000 4.0Q0
0 7 8 ’ 63 & 65 71 72 127
< 16 Bytes >

Logical Type

FORTRAN IV LOGICAL variables may specify only 2 values:
.TRUE. or .FALSE.

These logical values are assigned numerical values of ’1” and ’0’, for .TRUE. .
and .FALSE., respectively.

158

Example:

logical#®*1 11,12/.true./
logical*4 13,14/.false./
11 = .false.
13 = .true.

The value of the variables L1, L2, L3, L4 to be assigned the following values

(using hexadecimal notation):

L1

L2

L3

L4

~¢—1 Byte —»

00

-¢—1 Byte —p

01

~———— 4Bytes ———=

01

~———— 4 Bytes ——>

00

Note: The values shown above for Logical variables are those assigned for the
current implementation of the G1, Code and Go, and H Extended compilers.

The assembler language programmer should not assume these values for
future versions of these compiler, since they are subject to change.

The DUMP or PDUMP subroutine can also be used as an additional tool
for understanding the object-time representation of FORTRAN data. Refer
to the “Use of DUMP and PDUMP” publication IBM System/360
Operating System: FORTRAN IV Library - Mathematical and Service
Subprograms, Order No. GC28-6818.

159

Appendix C: SIFT Utility

You can use the SIFT utility program to convert source programs written in
free-form to fixed-form and vice versa. Since the Code and Go compiler can
compile either fixed-form or free-form source programs, it is possible to
convert free-form source programs written for Code and Go to fixed-form
making them acceptable to the other FORTRAN IV compilers.

Converting Fixed-Form Input to Free-Form (Filetype of FORTRAN to Filetype of
FREEFORT)

Fixed-form input to the SIFT utility program consists of fixed length 80-byte
records. The last eight bytes of the fixed-form input record may optionally
contain sequencing information. (The SIFT utility will ignore this sequencing
information and place a unique sequence number in the first eight positions of
the free-form line.)

When the SIFT utility is converting from fixed-form into free-form, it
performs the following functions:

e Creates a variable-length, free-form record from each fixed-length,
fixed-form record.

e Inserts a statement break character (-) at the end of each continued
free-form line and deletes the continuation character from column 6 of
the fixed-form continuation line.

¢ Changes any comment line by replacing the character C in column 1
with an asterisk (*). ‘

e Creates a unique sequence number in columns 1 through 8 and places
the statement number, text and break character in columns 9 through
81.

Converting Free-Form Input to Fixed-Form (Filetype of FREEFORT or
FORTRAN to Filetype of FORTRAN)

Free-form input to the SIFT utility program consists of fixed-length, 80-byte
records (filetype of FORTRAN) or variable-length records with a maximum
length of 81 bytes (filetype of FREEFORT). The last eight bytes of
fixed-length, free-form records may optionally contain sequencing
information. If the input record is variable-length, the first eight bytes of the
record must contain sequencing information. (The SIFT utility will ignore
existing sequencing information and generate a new unique sequence
number.)

161

When the SIFT utility is converting from free-form in to fixed-form, it
performs the following functions:

o Creates one or more fixed-length, 80-byte records from each free-form
line.

e Deletes the statement break character (-) at the end of each continued
free-form line and inserts a continuation character in column 6 of each
fixed-form continuation line.

e Changes any free-form comment line by replacing the asterisk (*) or
double quote (*‘) with the character C in column 1.

e Begins any statement label in column 1 and begins the text of the
FORTRAN statement in column 7 of the output record.

e (Creates a unique sequence number in columns 73 through 80 of the
fixed-form record.

e Combines free-form continuation lines, if possible.

Invoking the SIFT Ultility

162

The SIFT utility is invoked by the CONVERT command. The format of the
command follows:

CONVERT filenamel filename2 GOFORT ([FIXED | FREE] [NOLIST])
where:

CONVERT — is a required part of the command and must always
appear.

filenamel =~ — specifies the filename of the file to be converted. If you
want to convert a free-form file to fixed-form, filenamel
must have a filetype of either FREEFORT or
FORTRAN, and you must specify the FIXED option.
(If both a FREEFORT and FORTRAN file exist, then
the FREEFORT file will be converted.) If you want to
convert a fixed-form file to free-form, filenamel must
have a filetype of FORTRAN, and you must specify the
FREE option.

filename2 ~ — specifies a unique filename (that is, one that does not
already exist). You must supply this name, which will be
assigned to the output file that will contain the converted
records. If the file created for filename2 has the same
file identifier as a file that already exists, the existing file
will be replaced by the new file. If filenamel has a
filetype of FREEFORT or FORTRAN, contains
free-form records, and the FIXED option is specified,
filename2 will be created with a filetype of FORTRAN
and will contain fixed-form records. If filenamel has a
filetype of FORTRAN, contains fixed-form records, and

GOFORT

FIXED

FREE

NOLIST

the FREE option is specified, filename2 will be created
with a filetype of FREEFORT and will contain
variable-length, free-form records.

is a required part of the command and must always be
typed.

indicates that you want to convert a file with a filetype
of FREEFORT or FORTRAN containing free-form
records to a file with a filetype of FORTRAN containing
fixed-form records. This is the default if no option is
specified.

indicates that you want to convert a file with a filetype
of FORTRAN containing fixed-form records to a file
with a filetype of FREEFORT containing
variable-length free-form records. If you omit this
option, FIXED is assumed.

is optional; however, if specified, the listing of the
converted program that is normally typed at your
terminal is not produced. If specified, this option must
be placed last in the command.

Note: To convert fixed-length, free-form records to variable-length,
free-form records, you have to use the CONVERT command twice. First,
you must convert from free-form to fixed-form, and then you convert the
newly produced fixed-form records back into free-form. The free-form
source thus created will consist of variable length records.

Figure 48 shows a sample free form source program, and the resultant fixed
form program that is created from it by the SIFT utility.

162.1

FORTRAN SIFT UTILITY

C PRIME NUMBER GENERATOR 00000010
WRITE(6,1) cceo

1 FORMAT(*IFOLLOWING IS A LIST CF PRIME NUMBERS FRCM 2 TO 1000'/19X'00000030
*1H2/19X41H3) 00000040

DC 4 1=5,1CC0,2 €0000C50
K=SQRT(FLOAT(I}) 00000060

00 2 J=3,Ks2 00000070
TF(MOD(1,J),EC.O) GC TC 4 00000C80

2 CONTINUE 00000090
WRITE(6,3101 00000100

3 FORMATLT20) 00000110
4 CONTINUE 00000120
WRITE(645) 00000130

5 FORMAT(® THIS IS THE END CF THE FRCGRAM') 00000140
svoe 00000150

END 00000160

FAGE 001

nu PRlME NUMBER GENERATOR

WRITE(CG,

R FORNAT (2 1FOLLOWING 1S A LIST OF PRIME -
NUMBERS FROM 2 TO -

1000 /19X, 1H2/19X, 1H3)

00 4 115,1000,2

KusQRT(PLOAT(i>)

DO 2 u=3,K

IF (MO0l .J$ £Q.0) GO TO &

2 CONT

unrrs(s il

3 FORMAT(120)

4 CONTINUE

WRITE(6,

5 Fonmﬂ'(' THIS IS THE END OF THE PROGRAM')
sToP

END

Figure 48. Free-Form Fixed-Form SIFT Output Listing

163

Appendix D. Subprograms for the Extended Error Handling Facility

The following information is for the use of systems programmers who need to
make temporary changes to the extended error handling option table. As
such changes are not the concern of most programmers, no attempt is made to
explain the material on an elementary level. If you do not need to modify the
option table, skip this appendix entirely.

IBM provides four subroutines for use in extended error handling:
ERRSAYV, ERRSTR, ERRSET, and ERRTRA. These subroutines allow
access to the option table to alter it dynamically. (Certain option table entries
are protected against alteration when the option table is set up. If a request is
made by means of CALL ERRSTR or CALL ERRSET to alter such an
entry, the request is ignored. See Figure 15 to determine which IBM-supplied
option table entries cannot be altered.) Changes made dynamically are in
effect for the duration of the session in which the change was made. Only the
current copy of the option table in main storage is affected; the copy in the
FORTRAN library remains unchanged. All passed parameters, unless
otherwise indicated, are 4-byte (fullword) integers.

Accessing and Altering the Option Table Dynamically

0 The CALL ERRSAYV statement, described below, can be used for
temporarily modifying an entry. This statement causes an option table
entry to be copied into an 8-byte storage area accessible to the
FORTRAN programmer. The format is:

CALL ERRSAV (ierno,tabent)
where:
ierno
is the error number to be referenced in the option table. Should
any number not within the range of the option table be used, an
error message will be printed.

tabent

is the name of an 8-byte storage area where the option table
entry is to be stored.

Example:
call errsav(215,alterx)

e To store an entry in the option table, the following statement is used:

165

166

CALL ERRSTR (ierno,tabent)
where:

ierno

is the error number for which the entry is to be stored in the
option table. Should any number not within the range of the
option table be used, an error message will be printed.

tabent

is the name of an 8-byte storage area containing the table entry
data.

Example:

call errstr (215,alterx)
The CALL ERRSET statement permits the user to change up to five
different options in an option table entry. It consists of six parameters.
The last parameters are optional, but each omitted parameter must
have its place noted by a comma and a zero if succeeding parameters
are specified. (Omitted parameters at the end of the list require no
place notation.) CALL ERRSET has the format:

CALL ERRSET (ierno,inoal,inomes, itrace, iusadr, irange)
where:

ierno

is the error number to be referenced in the option table. Should
any number not within the range of the option table be used, an
error message will be printed. (Note that if ierno is specified as
212, there is a special relationship between the ierno and irange
parameters. See the explanation for irange.)

inoal

is an integer specifying the number of errors permitted before
execution is terminated. If inoal is specified as either zero or a
negative number, the specification is ignored, and the
number-of-errors option is not altered. If a value of more than
255 is specified, an unlimited number of errors is permitted.

inomes

is an integer indicating the number of messages to be printed. A
negative value specified for inomes causes all messages to be
suppressed; a specification of 0 indicates that the
number-of-messages option is not to be altered.

itrace

is an integer whose value may be 0, 1, or 2. A specification of 0
indicates the option is not to be changed; a specification of 1
requests that no traceback be printed after an error occurrence; a

specification of 2 requests the printing of a traceback after each
error occurrence. (If a value other that 1 or 2 is specified, the
option remains unchanged.)

iusadr specifies one of the following:

a. the value 1, as a 4-byte integer, indicating that the option
table is to be set to show no user-exit routine (that is,
standard corrective action is to be used when continuing
execution).

b. the name of a closed subroutine that is to be executed after
the occurrence of the error identified by ierno . The name
must appear in an EXTERNAL statement in the source
program, and the routine to which, control is to be passed
must be made available via a GLOBAL TXTLIB command,
or in the source program itself.

¢. The value 0, indicating that the table entry is not to be
altered.

range
serves a double function. It specifies one of the following:

a. An error number higher than that specified in ierno. The
number indicates that the options specified for the other
parameters are to be applied to the entire range of error
conditions encompassed by ierno and range . (If irange
specifies a number lower than ierno, the parameter is
ignored, unless ierno specifies the number 212.)

4

b. A print control character if ierno specified 212. The value 1
is specified to provide single spacing for an overflow line
(standard fixup for WRITE statements). If a value other
than 1 is specified, no print control is provided.

The default value 0 is assumed if the parameter is omitted (i.e.,

no print control is provided, and the values specified for all

parameters apply only to the error condition in ierno).
Examples:
call errset (310, 20,5, 0, myerr, 320)
call errset (212, 10, 5, 2,1, 1)
call errset (212, 0, 0, 0, 0, 1)
The first example specifies the following:
a. error condition 310 (ierno)

b. the error condition may occur up to 20 times (inoal)

c. the corresponding error message may be printed up to 5
times) (inomes)

167

d. the default for traceback information is to remain in effect
(itrace)

e. the user-written routine MYERR is to be executed after each
error occurrence (insadr)

f. the same options are to apply to all error conditions from
310 to 320 (irange)

The second example specifies:
a. error condition 212
b. the condition may occur up to 10 times
c. the corresponding message may be printed up to 5 times

d. traceback information is to be displayed after each error
occurrence

e. standard corrective action is to be executed after an error
f. print control is to be employed

For purposes of illustration, this example explicitly specifies all
default options except in requesting print control.

The third example illustrates an alternative method of specifying
exactly the same options as the second example. It states that no
changes are to be made to default settings except in requesting
print control.

-

The CALL ERRTRA statement permits the user to dynamically
request a traceback and continued execution. It has the format:

CALL ERRTRA

The call has no parameters.

User-Supplied Error Handling

168

The user has the ability of calling, in his own program, the FORTRAN error
monitor (ERRMON) routine, the same routine used by FORTRAN itself
when it detects an error. ERRMON examines the option table for the
appropriate error number and its associated entry and takes the actions
specified. If a user-exit address has been specified, ERRMON transfers
control to the user-written routine indicated by that address. Thus, the user
has the option of handling errors in one of two ways: (1) simply by calling
ERRMON -- without supplying a user-written exit routine; or (2) by calling
ERRMON and providing a user-written exit routine.

In either case, certain planning is required at the installation level. For
example, error numbers must be assigned to error conditions to be detected

by the user, and additional option table entries must be made available for
these conditions. The routine that uses the error monitor for error service
should have the status of an installation general-purpose function similar to
the IBM-supplied mathematical functions. The number of installation error
conditions must be known when the FORTRAN library is created at program
installation, so that entries will be provided in the option table. The error
numbers chosen for user subprograms are restricted in range.

IBM-designated error conditions have reserved error codes from 000 to 301.
Error codes for installation-designated error situations must be assigned in the
range 302 to 899. The error code is used by FORTRAN to find the proper
entry in the option table.

To call the ERRMON routine, the following statement is used:
CALL ERRMON (imes,iretcd,ierno,datal,data?2,...)
where:
imes

is the name of an array aligned on a fullword boundary, which contains,
in EBCDIC characters, the text of the message to be printed. The
number of the error condition should be included as part of the text,
because the error monitor prints only the text passed to it. The first
item of the array contains an integer whose value is the length of the
message. Thus, the first four bytes of the array will not be printed. If
the message length is greater than the length of the buffer, it will be
printed on two or more lines of printed output.

iretcd

is an integer variable made available to the error monitor for the setting
of a return code. The following codes can be set:

0 - The option table or user-exit routine indicates that standard
correction is required.

1 - The option table indicates that a user exit to a corrective routine
has been executed. The function is to be re-evaluated using
arguments supplied in the parameters datal,data?.... For
input/output type errors, the value 1 indicates that standard
correction is not wanted.

ierno

is the error condition number in the option table. Should any number
not within the range of the option table be specified, an error message
will be printed.

datal,data?,...

are variable names in an error-dectecting routine for the passing of
arguments found to be in error. One variable must be specified for each
argument. Upon return to the error-detecting routine, results obtained
from corrective action are in these variables. Because the content of the
variables can be altered, the locations in which they are placed should
be used only in the CALL statement to the error monitor; otherwise,
the user of the function may have literals or variables destroyed.

169

170

Because daral and data2 are the parameters which the error monitor
will pass to a user-written routine to correct the detected error, care
must be taken to make sure that these parameters agree in type and
number in the call to ERRMON and in a user-written corrective routine,
if one exists.

Example:

call errmon (mymsg, icode, 315,d1,d2)

The example states that the message to be printed is contained in an-
array named MYMSG, the field named ICODE is to contain the return
code, the error condition number to be investigated is 315, and
arguments to be passed to the user-written routine are contained in
fields named D1 and D2.

Figure 49 illustrates the use of the CALL ERRSET and CALL
ERRMON statements in a program using a user-supplied subprogram to
handle divide-by-zero conditions.

c main program that uses the subroutine divide
common e
external fixdiv

c set up option table with address of user exit

call errset(302,30,5,1,fixdiv)

e=0
c get values to call divide with
read(5,9) a,b
if(b) 1,2,1
2 =1.0
1 call divide(a,b,c)
write{(6,10)c
format(2e20.8)
10 format('1',e20.8)
stop
end
subroutine divide(a,b,¢)
c routine to perform the calculation c=a/b
c if b=0 then use error message facility to service error
c provide message to be printed
dimension mes(4)
data mes(1)/12/,mes(2)/' dov'/,mes(3)'302i/,mes(4)/"' b=0"'/
data rmax/z7fffffff/
message to be printed is
div302i b=0
error code 302 is available and assigned to this routine
step? save a,b in local storage
d=a
e=b
c step2 test for error condition
100 if(e) 1,2,1

Q000

c normal case -- compute function
1 c=d/e
return
c step3 error detected call error monitor
c
2 call errmon(mes,iretcd,302,d,e)
c
c step4 be ready to accept a return from the error monitor
if(iretcd) 5,6,5
c if iretcd=0 standard result is desired
c standard result will be c=largest number if d is not zero
c cr ¢c=0 if e=0 and d=0
6 if(d) 7,8,7
c c=0.0
go to 9
7 c=rmax
9 return
c user fix up indicated. recompute with new value placed in e
5 go to 100
end

subroutine fixdiv(iretcd,ino,a,b)

Figure 49. Sample Program Using Extended Error Handling Facility (Part 1 of 2)

171

c this is a user eXit to serve the subroutine divide
c the parameters in the call match those used in the call to
c errmon made by subroutine divide
c stepl is alternate value for b available -- main program
c has supplied a new value in e. if e=0 no new value is available
common e
if(e) 1,2,1
c new value available take user correction exit
1 b=e
i return
|”a c new value not available use standard fix up
- 2 iretcd=0
= return
end

Figure 49. Sample Program Using Extended Error Handling Facility (Part 2 of 2)

User-supplied Exit Routine

When a user-exit address is supplied in the option table entry for a given error
number, the error monitor calls the specified subroutine for corrective action.
The subroutine may be user-written and is called by the assembler language
code equivalent to the following statement:

CALL x (iretcd,ierno,datal,data?...)
where:

x is the name of the routine whose address was placed into the option
table by the iusadr parameter of the CALL ERRSET statement.
(Interpretation of the other parameters -- iretcd,ierno,datal data? -- are
the same as those for the CALL ERRMON statement.) If an input/output
error is detected (that is, an error for codes 211 to 237), subroutine x

must not execute any FORTRAN I/0 statements, that is, READ, WRITE,
BACKSPACE, END FILE, REWIND, PAUSE, or any calls to PDUMP or
ERRTRA. Similarly, if errors for codes 216 or 241-301 occur, the
subroutine x must not call the library routine that detected the error or any
routine which uses that library routine. For example, a statement such as

r = a**b

cannot be used in the exit routine for error 252, because the FORTRAN
library subroutine FRXPR# uses EXP, which detects error 252.

Note that although a user-written corrective routine may change the setting of
the return code (iretcd), such a change is subject to the following restrictions:

1. If iretcd is set to 0, then datal and data2 must not be altered by the
corrective routine, since standard corrective action is requested. If
datal and data2 are altered when iretcd is set to 0, the operations
that follow will have unpredictable results.

172

2. Only the values 0 and 1 are valid for irezcd. A user-exit routine must
ensure that one of these values is used if it changes the return code
setting. Note too, that the user-written exit routine can be written in
FORTRAN or in assembler language. In either case, it must be able to
accept the call to it as shown above. The user-exit routine must be a
closed subroutine that returns control to the caller.

If the user-written exit routine is written in assembler language, the
end of the parameter list can be checked. The high-order byte of the
last parameter will have the hexadecimal value 80. If the routine is
written in FORTRAN, the parameter list must match in length the
parameter list passed in the CALL statement issued to the error
monitor.

When the extended error handling facility encounters a condition or a request
that requires user notification, an informational message is printed.

The error monitor is not recursive: If it has laready been called for an
error, it cannot be re-entered if the user-written corrective routine cuases any
of the error conditions that are listed in the option table.

Actions the user may take if he wishes to correct an error are described in
Figures 50, 51, and 52.

173

Parameters -
Error Passed to
Code User Standard Corrective Action User-Supplied Corrective Action
206 ABI 1 = low order part of number for input too large. | User may alter 1 (see note 3),
211 A,B,C Treat format field containing C as end of (a) If compiled FORMAT
FORMAT statement. statement, put hexadecimal character
in C (see note 1).
(b) If variable format, move EBCDIC
character into C (see note 1).
212 A,B,D Input: Ignore remainder of I/O list. See note 2,
: Output: Continue by starting new output
record. Supply carriage control character
if required by option table,
213 A,B,D Ignore remainder of I/O list, See note 2,
214 A,B,D Input: Ignore remainder of 1/0 list; ignore If user correction is requested, the remainder
1/0 request for ASCU tape. of the I/O list is ignored.,
Output: If unformatted write initially request-
ed, change record format to vs, If formatted
write initially req d, ignore I/O req
215 ABE Substitute zero for the invalid character, The character placed in E will be substituted
for the invalid character.
1/0O operations may not be performed
(see note 1).
217 A,B,D Increment FORTRAN sequence See note 2.
number and read next file,
2184 A,B,D,F Ignore remainder of 1/0 list, See note 2,
2195-224 A,B,D Ignore remainder of 1/0 list. See note 2.
225 ABE Substitute zero for the invalid character. The character placed in E will be substituted
for the invalid character (see note 1).
226 A,B,R R = 0 for input number too small. User may alter R (see note 3).
R=10%-1 for input number too large.
2217 A,B,D Ignore remainder of 1/0O list. See note 2.
228 A,B,D Ignore remainder of 1/Q list. See note 2.
229 A,B,D Move 256 characters and p ing See note 2.
: with the next constant beyond the count
given.
231 A,B,D Ignore remainder of I/0 list. See note 2.
232 A,B,D,G Ignore remainder of I/O list. See note 2.
233 A,B,D Change record number to list See note 2.
maximum atlowed (32,000).
234-236 A,B,D Ignore remainder of 1/0 list. See note 2.
237 A,B,D,F Ignore remainder of 1/0 list. See note 2.
238 A,B,D Ignore remainder of 1/O list. See note 2.
239 A,B,D Ignore remainder of I/O list. See note 2.
MEANINGS:

A-—Address of return code field INTEGER*4)

B- Address of error number (INTEGER*4)

C-—Address of invalid format character (LOGICAL*1)
D—Address of data set reference number (INTEGER*4)

E~— Address of invalid character (LOGICAL*1)

NOTES:

F—Address of DECB

G—Address of record number requested (INTEGER *4)
I-Result after conversion (INTEGER*4)

R-Result after conversion (REAL *4)

1. Alternatively, the user can set the return code to 0, thus requesting a standard cotrective action.

2. The user can do anything he wishes except perform another I/O operation — i.e., issue a READ, WRITE, BACKSPACE, END
FILE, REWIND, PAUSE, PDUMP, or ERRTRA. On return to the library, the remainder of the 1/O request will be ignored.

3. The user exit routine may supply an alternative answer for the setting of the result register. The routine should always set an
INTEGER*1, variable and the FORTRAN library will load fullword or halfword depending on the length of the argument
causing the error.

4. If error condition 218 (I/O error detected) occurs while error messages are being written on the object error data set, the
message is written on the console sheet and the job is terminated.

@

the console sheet and the job is terminated.

If no FILEDEF command has been supplied for the object error data set, error message IHN2191 or IHO2191 is written on

Figure 50. Corrective Action After Error Occurrence

174

Options
Invalid Standard User Supplied
Error FORTRAN Argument Corrective Corrective Action
Code Reference Range Action (See Note 1)
216 CALL SLITE (I) >4 The call is treated as a no opera- I
tion
216 CALL SLITET I>4 J=2 I
(L3}
241 K=I1**] I1=0,J<0 K=0 IJ
242 Y=X**[X=0,I<0 If1=0,Y=1 X, 1
If1<0, Y=*
243 DA=D**] D=0,I<0 IfI=0,Y=1 D, I
IfI<0, Y=*
244 XA=X**Y X=0,Y<0 XA=0 X, Y
245 DA=D**DB D=0,DB<0 DA=0 D,DB
246 CA=C**] C=0+0i,I<0 If1=0,C=1+0i C1
If1<0,C=*+0i
247 CDA=CD*] C=0+0i,1<0 If1=0,C=1+0i CD,1
If1<0,C=*+0i
251 Y=SQRT (X) X<0 Y=iX|12 X
252 Y=EXP (X) X>174.673 Y=* ;
253 Y=ALOG (X) X=0 Y=* X
X<0 Y=log!XI! X
Y=ALOG10 (X) X=0 =_% X
X<0 Y=log,,Ixl X
254 | Y=COS (X) IXI>21%% y= ; X
Y=SIN (X)
255 Y=ATAN2 (X,XA) | X=0,XA=0 Y=0 X, XA
256 Y=SINH (X) IX1<175.366 Y =(sign x)* X
Y=COSH (X) Y=*
Variable Type
LJ Variables of INTEGER*4
X, XA, Y Variables of REAL*4
D, DA, DB Variables of REAL*8
C,CA Variables of COMPLEX*8 .
Z,X,.X, Complex variables to be given the length of the functioned argument when they appear.
CD Variables of COMPLEX*16
Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for

the parameters listed.
2. The largest number that can be represented in floating point is indicated above by *.
3. The value e=approximately 2.7183.

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 1 of 4)

Options
Invalid Standard User-Supplied
Error FORTRAN Argument Corrective Corrective Action
Code Reference Range Action (See Note 1)
257 Y=ARSIN (X) IXI>1 If X>1.0, ARCSIN (X)=% X
If X<-1.0, ARCSIN (X)=-F
Y=ARCOS (X)
258+ | Y=TAN (X) IXI>(2'8)*x If X>1.0, ARCOS=0 X
If X<-1.0, ARCOS=7n
Y=COTAN (X)
259 Y=TAN (X) X is too close to an Y=% X
odd multiple of %
260 Y=COTAN (X) X is too close to a Y=* X
multiple of 7
261 DA=DSQRT (D) D<0 DA=IDI'? D
262 DA=DEXP (D) D>176.673 DA=* D
263 DA=DLOG (D) D=0 DA=-* D
- DO DA =loglXI D
DA=DLOG10 (D) | D=0 DA=-* D
D<0 DA=log,, IXI
264 DA=DSIN (D) IDI > 25%%7 DA= \/Z_ D
DA=DCOS (D) 2
265 DA=DATAN2(D,DB)| D=0,DB=0 DA=0 D, DB
266 DA=DSINH (D) IDI>175.366 DA =(sign X)* D
DA=DCOSH (D) DA=*
Variable Type
Ly Variables of INTEGER*4
X, XA, Y Variables of REAL*4
D, DA, DB Variables of REAL*8
C,CA Variables of COMPLEX*8
Z,X,,X, Complex variables to be given the length of the functioned argument when they appear.
CD Variables of COMPLEX*16
Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for

the parameters listed.

2. The largest number that can be represented in floating point is indicated above by *.
3. The value e=approximately 2.7183.

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 2 of 4)

176

Options
Invalid Standard User-Supplied
Error FORTRAN Argument Corrective Corrective Action
Code Reference Range Action (See Note 1)
267 DA=DARSIN (D) IDI>1 If X>1.0, DARSIN (X)=g- D
If X<~1.0,DARSIN (X)=-12'
DA=DARCOS (D) If X>1.0, DARCOS=0
If X<~1.0, DARCOS =7

268 DA=DTAN (D) IX1>250%, DA=1 D

DA=DCOTAN (D)
269 DA=DTAN (D) D is too close to an DA=*

odd multiple of 2«
DA=DCOTAN (D) Dis too close to a DA=* D
multiple of =

For errors 271 through 275, C=X,+iX,
271 2=CEXP (C) X,>174.673 Z=*(COS X, +SIN X,) C
272 Z=CEXP (C) 1X,122'%%x Z=eX'+0%i C
273 Z=CLOG (C) C=0+0i z=-*+0i C
274 Z=CSIN (C) IX,l<€28*g Z=0+SINH (X,) *i C

Z2=CCOS (C) Z=COSH (X,)+0*i
275 | Z=CSIN (© X,>174.673 Z=7(SIN X, +iCOS X,) c

2=CCOS (C) 2=5(COS X,-iSIN X,) C

*
Z=CSIN (O) X,<~-174.673 Z=§(SIN X,-iCOS X,) C
*

Z2=CCOs (C) Z=E(COS X, +iSIN X,) C
For errors 281 through 285, CD=X,+iX,
281 Z=CDEXP (CD) X, >174.673 Z=*(COS X,+iSIN X,) Ch
Variable Type
L) Variables of INTEGER*4
X, XA, Y Variables of REAL*4
D, DA, DB Variables of REAL*8
C,CA Variables of COMPLEX*8
Z,X,,X, Complex variables to be given the length of the functioned argument when they appear.
(8))] Variables of COMPLEX*16
Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value sei by the user routine for

the parameters listed.
2. The largest number that can be represented in fioating point is indicated above by *.
3. The value e=approximately 2.7183.

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 3 of 4)

177

Options
Invalid Standard User-Supplied
Error FORTRAN Argument Corrective Corrective Action
Code Reference Range Action (See Note 1)
282 Z=CDEXP (CD) IX,1>2%0%g Z=e'+0*i CD
283 2=CDLOG (CD) CD=0+0i Z=-*+0i CD
284 Z=CDSIN (CD) IX,|>2%*g Z=0+SINH (X,) *i cD
42=CDCOS (CD) Z=COSH (X,)+0*i
285 Z=CDSIN (CD) X,>174.673 Z=§(S1N X,+iCOS X,) CD
*
Z=CDCOS (CD) Z=5 (COS X, -iSIN X, CD
Z=CDSIN (CD) X,<-174.673 Z=%(SIN X,-iCOS X,) CDh
*
Z=CDCOS (CD) Z=§(COS X,+iSIN X,) (6]))
290 | Y=GAMMA (X) X<2or y=* X
X>57.5744
291 Y=ALGAMA (X) X<Oor Y=* X
X>4.2937*107
300 DA=DGAMMA (D) | D<2?%or DA=* D
D> 57.5774
301 DA=DLGAMA (D) | D<Oor DA=* D
D>4.2937*10"
Variable Type
I,J Variables of INTEGER*4
X, XA, Y Variables of REAL*4
D, DA, DB Variables of REAL*8
- C,CA Variables of COMPLEX*8
Z,X,,X, Complex variables to be given the length of the functioned argument when they appear.
CD Variables of COMPLEX*16
Notes: 1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for

the parameters listed.
2. The largest number that can be represented in floating point is indicated above by *.
3. The value e=approximately 2.7183.

Figure 51. Corrective Action After Mathematical Subroutine Error Occurrence (Part 4 of 4)

178

Program Interrupt Messages Options
Parameters User-Supplied
Error Passed to Corrective
Code User Exit Reason for lnten'uptl Standard Corrective Action Action
207 D, Exponent Overflow (Interrupt Result register set to the largest pos- User may alter D?
Code 12), sible floating point number. The
sign of the result register is not
altered.
208 D,I Exponent underflow (Interrupt The result register is set to zero. User may alter D.2
Code 13)
209 None Divide check: Integer divide None. See Note 4.
(Interrupt code 9), Decimal
divide (Interrupt Code 11),
Floating point divide (Interrupt
Code 15).
Variable Type Description
D A variable REAL*8 This variable contains the contents of the result register after the interrupt.
I A variable INTEGER*4 The variable contains the “exponent” as an integer value for the number in D.

It may be used to determine the amount of the underflow or overflow. The
value in I is not the true exponent, but what was left in the exponent field of

a floating point number after the interrupt.

1A program interrupt occurs asynchronously.

2The user exit routine may supply an alternate answer for the setting of the result register. This is accomplished by placing
a value for D in the user-exit routine. Although the interrupt may be caused by a long or short floating-point operation,
the user-exit routine need not be concerned with this. The user-exit routine should always set a REAL*8 variable and the

FORTRAN library will load short or long depending upon the floating-point operation that caused the interrupt.
3For floating-point divide check, the contents of the result register is shown in the message.
#The user-exit routine does not have the ability to change result registers after a fixed-point divide check.

Figure 52. Corrective Action After Program Interrupt Occurrence

179

Option Table Considerations

Figures 26, 27, and 28 in the section “Extended Error Handling Facility”
describe the fields of the option table and list the default values for the
contents of these fields.

When a user-written exit subroutine is to be executed for a given error
condition, the programmer must enter the address of the routine into the
option table entry associated with that error condition.

Addresses for user-exit subroutines cannot be entered into the option table
entries during program installation. An installation may, however, construct
an option table containing user-exit addresses and place that option table into
the FORTRAN library. (Each address must be specified as a v-type address
constant.) Use of this procedure, though, results in the inclusion in the load
module of all such user-exit subroutines.

If the user-exit address is not specified in advance through the use of
v-type address constants the programmer must issue a CALL ERRSET
statement at execution time to insert an address into the option table that was
created during program installation.

The programmer should be warned that altering an option table entry to
allow “unlimited” error occurrence (specifying a number greater than 255)
may cause a program to loop indefinitely.

Considerations for the Library Without Extended Error Handling Facility

180

When the extended error handling facility is not chosen, execution terminates
after the first occurrence of an error, unless it is one caused by divide check,
exponent underflow, or exponent overflow. The messages for errors 215,
216, 218, 221-225, and 240-301 are the same as those with the extended
error handling facility. The other error messages are of the form IHN xxx or
THO xxx with no text.

Without the facility, ERRMON becomes an entry point to the traceback
routine. User programs that call the error monitor do not have to be altered.
The error message will be printed with a traceback map and execution will
terminate.

Note, too, that if the facility is not selected, the ERRTRA, ERRSET,
ERRSAYV, and ERRSTR subprograms are assumed to be user supplied if they
are called in a FORTRAN program.

Appendix E: Defining Execution-Time Files for Compatibility with OS

Your FORTRAN programs, running under CMS, can create files that are
acceptable to OS or use files that were originally created under OS. For
sequential, unlabelled tape files, this transfer can be made directly without
any intervening conversion of storage medium. For sequential and direct
access disk files the files must first be placed onto tape and then placed on the
disks of the system that is to receive them. To make use of such files, you
must use the RECFM, LRECL, and BLKSIZE options of the FILEDEF
command as they would be used in the DD statement under OS. The
information presented below is designed as an aid in understanding OS data
set formats and, so, ease the conversion process.

The type of device you are using for your file and the way it is organized
limit your choice of record format and, as a result, the way in which you
specify logical record lengths and blockssizes.

The value of LRECL for all fixed-length (F and FB) and undefined (U)
records on all devices except tape is in the following range:

1 < LRECL < device-capacity

The value of LRECL for all variable-length (V, VB, VS, and VBS) records
on all devices except tape is in the following range:

S < LRECL < device-capacity

The value of LRECL for all types of records on a tape device is in the
following range:

18 < LRECL < 32760

The value of BLKSIZE for fixed-length, unblocked (F) and undefined (U)
records is determined as follows:

BLKSIZE = LRECL

The value of BLKSIZE for fixed-length, blocked (FB) records is determined
as follows:

LRECL e number-of-records = BLKSIZE < device-capacity
The value of BLKSIZE for all variable-length (V, VB, VS, and VBS) records
(LRECL e number-of-records) + 4 = BLKSIZE < device-capacity

The values for device-capacity are listed in Figure 53.

181

182

Device Type Device Capacity (Maximum BLKSIZE)
Terminal’ 133
Direct Access
2301 20483
- 2302 4984
2303 4892
2305
Mod I 14136
Mod 11 14660
2311 3625
2314 7294
2319 7294
3330 13030
Card Reader 80
Card Punch! 81
Printer!
120 chars. 121
132 chars. 133
144 chars. 145
150 chars. 151

For variable-length records, add 8 to the values shown.

Figure 53. Maximum BLKSIZE by Device Types

The description below outlines how these options are used in an OS
environment and what effect they have on your files. Should you need more
information, refer to the appropriate OS programmer’s guide for your
compiler. These books are listed in the preface of this book.

Formatted Records (Sequential and Direct Access)
e F (fixed-length, unblocked records)

All the records to be read or written are the same length, and a single
READ or WRITE statement affects only one record at a time. The
RECFM option specifies F and the BLOCK option specifies the length
of the records. LRECL is not required.

Example: Assume that all records are 80 bytes. RECFM is F and
BLOCK is 80.

e — BLOCK —— — — — — e — — — — e -

FORTRAN Record
(80 bytes)

0

If a FORTRAN record is encountered thaiois smaller than the block
size, the unused portion of the block size is filled with blank
characters.

Example: Assume that a record is 50 bytes. RECFM is F and
BLOCK is 80.

e e et BLOCK- = ~ = = — — = = = — — — 1
!
|
|

FORTRAN Record Blanks
(50 bytes) (30 bytes)

‘ 50
If a FORTRAN record is encountered thataois longer than the block
size, the additional portion of the record is truncated and lost.

Example: Assume that a record is 100 bytes. RECFM is F and
BLOCK is 80.

FORTRAN Record
(100 bytes)

T

—J

0 80 100

See the section ‘“Using and Identifying Files’ for more information on
using sequential and direct access files.

Formatted Records (sequential only)
e U (undefined-length records)

The length of the records to be read or written is not defined;
however, you must account for the longest record that may be
encountered as specified by your FORMAT statement. A single
READ or WRITE statement affects only one record at a time. The
RECFM option specifies U and BLOCK specifies the length of the
longest possible record. LRECL is not required. Any unused space is
not read or written, and records that are too long are truncated.

183

184

Example: Assume that the longest record that can be encountered is
400 bytes. RECFM is U and BLOCK is 400.

FORTRAN Record
(400 bytes)

See the section “Identifying and Using Execution-time Files” for more
information on using sequential files.

FB (fixed-length, blocked records)

All the records to be read or written are the same length; however, a
single READ or WRITE statement affects a group of records (that is,
as many fixed-length records as will fit in the block size specified).
The RECFM option specifies FB, LRECL specifies the size of the
records, and BLOCK will determine the number of records in the
group. It must be an exact multiple of LRECL.

_ Example: Assume that all the records are 20 bytes and that 5 records

are to be grouped together. RECFM is FB; LRECL is 20, and
BLOCK is 100.

i I
=~ LRECL-= = = —=(RECL — — 1~ ——~LRECL-— — 1~ ——-(RECL-— — = —~LRECL- -]

FORTRAN Record 14 FORTRAN Record 2 | FORTRAN Record 3 FORTRAN Record 4 { FORTRAN Record 5
(20 bytes) (20 bytes) (20 bytes) (20 bytes) (20 bytes)

20 A « 80 100

As with fixed-length unblocked records, any FORTRAN records that
are shorter or longer than LRECL or that do not meet the
requirements of BLOCK are padded with blanks or truncated. See the
section “Identifying and Using Execution-time Files” for more
information on using sequential files.

FBS/FS (fixed-length, blocked and unblocked records with standard
blocks)

All records are to be contained in standard blocks (that is, only the last
record may be padded with blanks or truncated if it does not fit the
block exactly). The FILEDEF options are specified in the same way
as fixed-length, blocked and unblocked records.

V (variable-length, unblocked records)

All the records to be read or written are not the same length. A single
READ or WRITE statement affects only one record at a time. The
RECFM option specifies V, LRECL specifies the length of the longest
record plus 4 bytes for a segment control word, and BLOCK specifies
the value of LRECL plus an additional 4 bytes for a block control
word. Since the records are varying lengths the segment and block
control words inform the system of the length of the records involved.
Each record has a segment control word and each block has a block

control word. For all file modes except 4 the block and segment
control words are removed before the block is written.

Example: Assume that the longest record is 50 bytes. RECFM is V;
LRECK is 54, and BLOCK is 58.

- BLOCK —— —— — —— — — — |
| |
| e e e e (R 4
Lor LRECI 1

8|S FORTRAN Record

c|cC (50 bytes)

wlw

0 4 8 58

If a FORTRAN record is encountered that is shorter than the length
specified in LRECL, the unused portion is ignored.

Example: Assume that a record of 20 bytes is encountered. RECFM
is V; LRECL is 54, and BLOCK is 58.

—————————— BLOCK—= — — — — — — —
i A
[LRECL —— ———— ———

! I

|
****** 1
B |s FORTRAN Record Unused “
clc (20 bytes) (30 bytes) |
wIwW |
_________]
0 4 8 2 58

Only the space required for the record is used since the block and
segment control words contafll information on the length and position
of the record. The next record to be written will begin immediately
after the record, not the block; the unused portion of the previous
record is used for the following record.

Example: Assume the next record to be written is 40 bytes. RECFM
is V; LRECL is 54, and BLOCK is 58.

e —m———— BLOCK —— — — — — — —— — -
i 1
| Fem——————— LRECL — —— ———— — — — —

—
I

B[S FORTRAN Record 7B | S FORTRAN Record Unused :

c|c (20 bytes) c|cC {40 bytes) (10 bytes)

wilw wlw I

|
E—

0 4 8 28 32 36 ‘ 76 86

If a record exceeds the size of the block it is truncated. See the section
“Identifying and Using Execution-time Files” for more information on
using sequential files.

VB (variable-length, blocked records)

All records to be read or written are not the same length. A single
READ or WRITE statement affects a group of records (that is, as
many variable-length records as will fit in the block size specified).
The RECFM option specifies VB; LRECL specifies the length of the
longest record plus 4 bytes for a segment control word, and BLOCK
specifies a value longer than LRECL plus 4 additional bytes for a
block control word. Remember, each record placed in the block
requires 4 bytes for its segment control word. Since the block and
segment control words contain information about the length and

185

position of the records each record occupies only the space it requires.
Unused space at the end of the block is ignored. For all file modes,
except 4, the block and segment control words are removed before the
block is written.

Example: Assume that there are to be three records of 20, 40, and 60
bytes in a block. RECFM is VB; LRECL is 64, and BLOCK is 136
(the block size specifies the exact amount of space required to contain
the records).

} o LRECL — — — — — — — — — —

|

S [FORTRAN Record 1§ § FORTRAN Record 2 S FORTRAN Record 3
Cc {20 bytes) Cc {40 bytes) C (60 bytes)
w w w

0 4 8 28 32 72 76

For efficient use of storége when you are using VB records, always do
the following:

1. Specify a value for LRECL. If LRECL is omitted, only one record
will be contained in each block.
-
2. Determine, in advance whenever possible, the exact size for the
BLOCK option. Any unused space in the block is lost and any
records that exceed the block size are truncated.

See the section “Identifying and Using Execution-time Files” for more
information on using sequential files.

Unformatted Records (sequential only)
e VS (variable-length, spanned records)

All the records to be read or written are not the same length. A single
READ or WRITE statement affects only one record at a time. The
RECFM option specifies VS, and the BLOCK option specifies a
pseudo-block size. LRECL is not required. The pseudo-block size
may be smaller than, larger than, or equal to the length of any of the
records used. Block and segment control words contain information
on the length and position of a record or parts of a record in a block.
For a record and its associated segment control word that is smaller
than or equal to the block size minus its block control word, a single
record occupies one block. Unused space is ignored. Spanned records
can only be placed in a file with a file mode of 4.

Example: Assume that a record of 50 bytes is equal to the
pseudo-block size. RECFM is VS, and BLOCK is 58.

186

Bl S FORTRAN Record

clcC (50 bytes)

Wiw /
0 4 58

For a record that is larger than the block size minus it block control
word, the record occupies (that is, spans) as many blocks as are
necessary to contain it. Any unused space is ignored.

Example: Assume that a record of 130 bytes is larger than the
pseudo-block size. RECFM is VS, and BLOCK s 58.

== BOCK ———= ===y m - BLOCK — —— — e — o e BLOCK — = — —— — .
i
| [. |
| b [|
/ 7 , % 7/ s,
B s FORTRAN Record 8 s FORTRAN Racord B {S [FORTRAN Record] Unused
cic Segment 1 cic Segment 2 clc Segment 3 4 (20 bytes)
ww (50 bytes) wfw / (50 bytes) W|WE (30bytes)
7/
0 4 8 58 62 66 16 120124 154

See the section “Identifying and Using Execution-time Files” for more
information on using sequential files.

VBS (variable-length, blocked, spanned records)

All records to be read or written are not the same length; however, a
single READ or WRITE statement may affect more than one record at
a time, depending upon the length of the records. The RECFM option
specifies VBS; the LRECL option specifies the length of the longest
record that may be encountered, and the BLOCK option specifies a
value larger than the value of LRECL but not necessarily a multiple.
The block size specified will contain as many records as will fit and
may span the last record into the next block. Although block and
segment control words are used, they need not be specifically
accounted for in LRECL and BLOCK. Any unused space in a block
containing the last record is ignored. Spanned records can only be
placed in a file with a file mode of 4.

187

174

188

Example: Assume that there are two records of 70 and 60 bytes in a
block. RECFM is VBS; LRECL is 70, and BLOCK is 110.

rm e — —— — — BLOCK—-———— — —— — — —— — — — — — — !
! I
| romm——m s LRECL-——— — = ——— ——— - |
B]S FORTRAN Record 1 S FORTRAN Record 2
clc (70 bytes) C Segment 1
ww w (28 bytes)
0 4 78 82 110
B| S FORTRAN Record 2 Unused if last record
C|cC Segment 2 (70 bytes)
Wiw (32 bytes)
/)
0 4 8 40 110

See the section “Identifying and Using Execution-time Files” for more
information on using sequential files.

Unformatted Records (direct access only)

[]

F (fixed-length, unblocked records)

The length of the records to be read or written is determined by the
FORTRAN DEFINE FILE statement and cannot be changed with the
LRECL option. A single READ or WRITE statement affects only one
record at a time. The RECFM option specifies F, and BLOCK
specifies a pseudo-block size, which may be smaller than, equal to, or
larger than the length of the record specified in the DEFINE FILE
statement. LRECL is not required. There are no block or segment
records. Records that are smaller than or equal to the block size,
occupy one block. Unused space is ignored.

Example: Assume that a record of 80 bytes is equal to the block size.
RECFM is F, and BLOCK is 80.

T BLOCK-== = === = — — — = — — — — :
|
| 1
FORTRAN Record
(80 by?es) / 7
/ // 0

If the record is larger than the block size, the record occupies as many
blocks as are required to contain it.

Example: Assume that a record of 130 bytes is larger than the block
size. RECFM is F, and BLOCK is 50.

pom———- BLOCK — e e o= — S BLOCK —— ——— —— e BLOCK-— - == ===—4
i | | ! I
| | 1
| 1 [|
% / 7 " % /// 7, /
FORTRAN Record 7/ FORTRAN Record /) FORTRAN Record 7] Unused
Segment 1 Segment 2 /. Segment 3 (20 bytes)
(50 bytes) (50 byres) {30 bytes)
s / /

0 50 100 130 150

See the section “Identifying and Using Execution-time Files” for more
information on using direct access files.

189

Appendix F: Error Messages

The following messages are produced in response to entering an incorrect
FORTRAN compiler command or when the command cannot be executed.
The format of the messages is:

DMS xxxnnn E text of the message

where:

xxXx - indicates the compiler in use

IGI - FORTRAN IV (G1) Compiler

IGK - Code and Go FORTRAN IV Compiler

. IFE - FORTRAN1V (H Extended) Compiler

CON - SIFT Utility

nnn. - is'the message number

DMS xxx 001E

 DMS.xxx 002E

NO FILENAME SPECIFIED

Explanation: You have not included a filename in the
compiler command.

System -Action: None

Programmer Response: Reissue the appropriate compiler
command and specify a filename.

FILE ‘filename FORTRAN’ NOT FOUND

- Explanation: The filename that you included in the compiler

command does not correspond to the names of any of the
files. on your disks.

- Supplemental Information: The variable filename in the text

DMS xxx 003E

of the message indicates the name of the file that could not
be found.

System Action: None

Programmer Response: Reissue the compiler command with
an appropriate filename.

INVALID OPTION * option’

. Explanation: You have included an invalid option with your

compiler command.

Supplemental Information: The variable option in the text
of the message indicates the invalid option.

191

192 -

DMSIFE004W

DMS xxx 00SE

DMS xxx 006E

DMS xxx 007E

System Action: None

Programmer Response: Check the format of the appropriate
compiler command and reissue the command with the correct
option.

WARNING MESSAGES ISSUED

Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is 4.

System Action: None

Programmer Response: Check your terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

NO option parameter SPECIFIED

Explanation: You did not supply a required parameter for an
option that was included with your compiler command.

Supplemental Information: The variable option parameter
in the text of the message indicates the option that requires
the parameter.

System Action: None

Programmer Response: Check the format of the appropriate
compiler command and reissue the command with the correct
parameter.

NO READ/WRITE DISK ACCESSED

Explanation: Your virtual machine configuration does not
include a read/write disk for this terminal session or you
failed to specify a read/write disk in your ACCESS
command following LOGIN.

System Action: None

Programmer Response: Issue an ACCESS command
specifying a read/write disk.

FILE ‘ filename FORTRAN’ IS NOT FIXED, 80 CHAR.
RECORDS

Explanation: The FORTRAN source file that you specified
in the compiler command does not contain fixed length
records of 80 characters. The command cannot be executed.

Supplemental Information: The variable filename in the text
of the message indicates the name of the FORTRAN file that
is in error.

System Action: None

DMSIFEO08W

DMSIFEO012W

DMSIFEO16W

DMSxxx034E

D}Sxxx038E

Programmer Response: You must reformat your file into the
correct record length.

ERROR MESSAGES ISSUED

Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is 8.

System Action: None

Programmer Response: Check your terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

SEVERE ERROR MESSAGES ISSUED
Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is 12.

System Action: None

Programmer Response: Check your terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

UNRECOVERABLE ERROR MESSAGES ISSUED
Explanation: The compiler has detected errors in your
program and issued diagnostic messages whose highest
severity level is 16.

System Action: None

Programmer Response: Check your Terminal listing for any
compiler diagnostic messages. Correct the errors in your
program and recompile it.

FILE filename FORTRAN’ IS NOT FIXED LENGTH

Explanation: The file that you specified in the compiler
command does not have fixed length records.

Supplemental Information: The variables filename and in
the text of the message indicates the name of file in error.

System Action: None

Programmer Response: You must reformat your file into the
correct record length.

FILE ID CONFLICT FOR DDNAME ‘ddname’

Explanation: You issued a FILEDEF command that

. conflicts with an existing FILEDEF for the ddname

specified.

193

Supplemental Information: The variable ddname in the text
of the message indicates the ddname in error.

System Action: None

Programmer Response: Reissue the FILEDEF command
with an appropriate ddname.

DMSIGKEO45E PROGRA! NOT EXECUTED DUE TO SEVERITY

DMSxxx052E

DMSxxx070E

DMSxxx075E

194

CODE "
Explanation: This message applies only to the Code and Go
FORTRAN 1V processor. Errors of sufficient severity to

prevent compilation or a successful execution were present in
‘your source program.

System Action: The compilation was terminated or the
compilation was completed but execution was not begun.

Programmer Response: Correct the errors in your source
program and recompile and execute it.

MORE THAN 100 CHARS, OPTIONS SPECIFIED

Explanation: The string of options that you specified with
your compiler command exceeded 100 characters in length.

System Action: None

Programmer Response: Reissue your compiler command
with fewer options specified.

INVALID PARAMETER parameter’

Explanation: You specified an invalid parameter for an
option in the compiler command.

Supplemental Information: The variable parameter in the
text of the message indicates the invalid parameter.

System Action: None
Programmer Response: Check the format of the option with

its appropriate parameters and reissue the command with the
correct parameter.

DEVICE device name ILLEGAL FOR
INPUT/OUTPUT

Explanation: The device specified in your FILEDEF

command cannot be used for the input or output operation
that is requested in your program. For example, you have
tried to read data from the printer.

Supplemental Information: The variable device name in the
text of the message indicates the incorrect device that was
specified. In addition, the text will indicate whether an input
or an output operation was requested.

System Action: None

Programmer Response: Reissue your FILEDEF command
specifying an appropriate device for the desired input or
output operation.

DMSCON300E GOFORT MISSING OR MISSPELLED

Explanation: You omitted or misspelled to GOFORT
portion of the CONVERT command.

System Action: None

Programmer Response: Reissue the CONVERT command
with GOFORT spelled correctly.

DMSCON301E FILENAME NOT FOUND

Explanation: The input filename that you included in the
CONVERT command does not correspond to the names of
any of the files on your disks.

System Action: None

Programmer Response: Reissue the CONVERT command
with an appropriate filename.

DMSCON302E FILENAME ‘ filename’ WRONG RECORD LENGTH

Explanation: The output file that you identified in the
CONVERT command does not have a RECFM of F or a
BLOCK of 80.

Supplemental Information: The variable filename in the text
of the message indicates the filename in error.

System Action: None

Programmer Response: Reissue the CONVERT command
with a filename that has the appropriate characteristics or
redefine the filename that you specified.

DMSCON303E FILENAME FOR SIFT OUTPUT OMITTED

Explanation: You did not specify an output filename in the
CONVERT command.

System Action: None

Programmer Response: Reissue the CONVERT command
specifying an output filename.

195

196

DMSCON304E OUT FILE CANNOT BE THE SAME AS IN

Explanation: You specified the same filename for the input
and output files in the CONVERT command.

System Action: None
Programmer Response: Reissue the CONVERT command

specifying appropriate filenames for your input and output
files.

DMSCON305E NO READ/WRITE DISK ACCESSED

Explanation: Your virtual machine configuration does not
include a read/write disk for this terminal session or you
failed to specify a read/write disk in your ACCESS
command following LOGIN.

System Action: None

Programmer Response: lIssue an ACCESS command
specifying a read/write disk.

DMSCON306E FILE CONFLICT FOR DDNAME ‘ddname’

Explanation: You issued a FILEDEF command that
conflicts with an existing FILEDEF for the ddname
specified.

Supplemental Information: The variable ddname in the text
of the message indicates the ddname in error.

System Action: None

Programmer Response: Reissue the FILEDEF command
with an appropraite ddname.

DMSCON307E DEVICE device name ILLEGAL FOR INPUT

Explanation: The device specified in your FILEDEF
command cannot be used for the input operation that is
requested by the CONVERT command.

Supplemental Information: The variable device name in the
text of the message indicates the incorrect device that was
specified.

System Action: None
Programmer Response: Reissue your FILEDEF command

specifying an appropriate input device for the CONVERT
command.

Glossary

Batch processing. A method of using a computer system that enters sets of
programs or data sequentially. One set is processed before the next is begun.

Dominance relationships. The logical relationships that exist in a program
where parts of the program dominate other parts. That is, logic always flows
to a part of a program through another part.

Pre-defined files. Files that are defined by the system for the user and are
available any time the user wants them.

Problem solving programmer. A programmer who writes, debugs, and executes
relatively short programs at a terminal.

Production Programmer. A programmer who debugs components of a large
program on-line before running the program through a production-oriented
processor.

Self-prompting. A method of coding programs whereby a user notifies
himself at the terminal that the program is ready to accept input from the
terminal.

System administrator. The person in the computing center who is responsible
for the system or who assists terminal users in their use of the system.

Time-sharing. A method of using a computing system that allows a number of
users to execute programs concurrently and to interact with the programs
during their execution.

User-defined files. Files that are used or created by a user’s program and
which the user defines for himself.

Virtual machine. A simulated computer created by VM/370 that offers the user all
the facilities of a real computer and that operates on a shared-time basis with the other
users of the system.

197

+ (plus) 45

| ("or" symbol) 16

* classification 128

* PROCESS statement
description of 125
exceptions to 125

{ } (braces) 16

[1 (brackets) 16

:READ card 59

.+s (elipsis) 16

A classification 128
A control character 50
A disk 15
abcde subparameter 94
ACCESS command 29,38
AD option (see AUTODBL option)
ALC option
with automatic precision increase
facility 97
format of 120
ANS library functions 120,121
ANSF option 120,121
arithmetic IF statement 68
array notation
for Code and Go 74
for G1 74
for H Extended 25,76
ASA control character
+ (plus) 45
0 (zero) 45
blank 45
in FILEDEF command 50
for terminal output 45
ASF classification 128
assembler language subprograins
coding of 148
with COMMON data 151
general 145
high level subprograms
coding of 149
linkage conventions 150
in-line argument lists 151
linkage registers 147
lowest level subprograms
coding of 148
linkage conventions 148
representation of FORTRAN variables
COMPLEX type 158
INTEGER type 155
LOGICAL type 158,159
REAL type 156
retrieving arguments 152
subroutine references
argument lists 145
calling sequence 147
description of 145
save area 146
asynchronous I/0 restriction 135
attention interrupt 19
AUTODBL option 92,121

INDEX

Automatic Function Selection 90
Automatic Precision Increase
Facility 90,121

BACKSPACE statement 66,69

BRCD option
for Code and Go 113
for G1 102

for H Extended 121
BEGIN command 29
blank (see ASA control characters)
BLKSIZE, 05 files 181
BLKSIZE option (see BLOCK option)
BLOCK option
description of 52
format of 51
use under CMS 52
BOTTOM subcommand 29
boundary alignment 120

C classification 128
CaLL ERRSAV statement 165
CALL ERRSET statement 166
CALL ERRSTR statement 165,166
CALL ERRTRA statement 168
CALL ERRMON statement 168
card deck, TEXT file

for G1 103

for H Extended 121
card source files 35
CHANGE option 52
CHANGE subcommand

defined 29

use in sample terminal session 21,22

changing compiler options 125
character code, source program
for Code and Go 113
for G1 102
for H Extended 121
character-delete character 14
CMS
commands
ACCESS command 29
CONVERT command 29
CP command 29
EDIT command 29
EDIT subcommands
BOTTOM subcommand 29
CHANGE subcommand 29
DELETE subcommand 29
DOWN subcommand 29
FILE subcommand 29
FIND subcommand 29
FMODE supcommand 29
FNAME subcommand 29
GETFILE subcommand 29
INPUT subcommand 29
LOCATE subcommand @ 29
NEXT subcommand 29

Index

193

CMS

QUIT subcommand 29
REPLACE subcommand 30
TOP subcommand 30
TYPE subcommand 30
UP subcommand 30
VERIFY subcommand 30
ERASE command 30
EXEC command 30
FILEDEF command 30
FORIGI command 30
FORTHX command 30
GLOBAL command 30
GOFORT command 30
HT command 30
HX command 30
INCLUDE command 30
introduction 11
LISTFILE command 30
LOAD command 30
PRINT command 31
PUNCH command 31
QUERY command 31
READCARD command 31
RENAME command 31
RT command 31
RUN command 31
SET command 31
SORT command 31
START command 31
STATE command 31
TESTFORT command 31
TYPE command 31
description of 11
diagnostic messages
for compiler commands 191-195
for CONVERT command 195,196
editor
creating source files 33
description 20
introduction 11
prerequisite information 14
primary (A) disk 15
programming considerations
return codes
description of 34
used in sample session 22
virtual machine configuration 15
LIB library, for Mod II 81

32-67

code and Go compiler

200

description of 112
GOFORT command
BCD option 113
DECK option 113
DISK option 113
EBCDIC option 113
filename for 112
files for compilation 112
FIXED option 113
format of 112
FREE option 113
GO option 113
identifying 112
LINECNT option 114
LMSG option 114
NODECK option 113
NOGO option 113
NOPRINT option 113
NOSOURCE option. 114

NOTEST option 114
PRINT option 113
SMSG option 114
SOURCE option 114
TEST option 114
introduction 12
language restrictions 118
LISTING file for 37
output from
description cof 114
LISTING file
description of 115
error messages 115
informative messages
optional output 116
source statements 116
summary of 115
TEXT file 3§,116
Code and Go FORTRAN IV compiler
(see Code and Go compiler)
command procedure
for Code and Go
under GO option 137
under NOGD option 138
for G1 136
for H Extended 139
compiler
availability 15
defaults
for Code and Go 102
determining 15
For G1 102
for m Extended 120
error messages 26
optimization 123
output '
from Code and Go 114
from G1 105
from H Extended 126
output files
ACCESS command gor 35
LISTING 35-36
placement on disks 35
TEXT 38-41
compiling programs
with Code and Go
under GO option 137
under NOGO option 138
with G1 136
with H Extended 139
compiling source files 34
configuration, CMS 15
continuation lines 21
Control Program (see CP)
Conversational Monitor System (
CONVERT command 29,195
CP
commands
BEGIN command 29
introduction to 11
IPL command 30
LOGIN command 31
LOGOUT command 31
QUERY command - 31
SET command 31
TERMINAL command 31
introduction to 11
CP command 29

115

see CMS)

creating files 19
creating source files 33

cross-reference lis+ting 124,130

D classification 128
data set reference numbers
for ddname 48
for punched card output 45
for terminal input 45
for terminal output 45
DBL subparameter 94
DBL4 subparameter 94
DBL8 subparameter 94
NDBLPAD subparameter 94
DBLPADY4 subparameter 94
DBLPADS subparameter 94
ddname 47
DERUG statement 141
DECK. option
for Code and Go 113
for 61 103
for H Extended 121
defaults
for Code and Go 112
for G1 102
for H Extended 120
for option table 89
DEFINE FILE statement 65
DEFINE STORAGE command
format of 119
for E Extended 119
DELETE subcommand 22,29
DEN option 50
deviza capacities (0S) 182
diagnostic message levels 122
diagnostic messages
for compiler commands
for CONVERT command
direct access files 42
direct access input/output
DEFINE FILE statement 65
FILEDEF command for 64
operation of 65
user-iefine files 64
DISK option
for Code and Go 113
for FILEDEF command 49
for 1 103
for H Extended 121
disk input/output
FILEDEFP command for 53
operation of Su
user defined files 53
DISP MOD option 49
displaying program variables 142
DISPLAY statement 142
dominance relationships 129
dominator 129
dominee 129
DOWNN subcommand 29
dsrn (see data set reference number)
DUMMY option 49
DUMP option 122
dump requests 122

191-195
193-195

E classification 128
E TRTCH value 49
EB option (see EBCDIC option)
EBCDIC option
for Code and Go 113
for 61 103 -
for H Extended 121
EDIT command
creating source files 33
defined 29
used in sample terminal session
EDIT mode 20
EDIT subcommands 29,0
edited source program 129
END card format 41
END FILE statement 66
END= parameter 66
entry points 138
EQUIVALENCE statement 76
ERASE command 30
error messages
for Code and Go
format of 114
at the terminal 115
for G1
format of 107
at the terminal 104
for H Extended
format of 127
at the terminal 124
errors, correcting 123
ESD card format 40
ET TRTCH value 49
EXEC command 30
executing programs
from Code and Go
under GO option 113,137
under NOGO option 138
from G1 138
from H Extended 139
exacution-time files
direct access 42
PILEDEF command for 42
guidelines for defining 43
identifying 42
introduction 42
predefined 42
sequential 42
user-defined 42
Extended Error Handling Facility
description of 85
library without 180
modifying option table
CALL ERRSAV statement 165
CALL ERRSET statement 166
CALL ERRSTR statement 165, 166
CALL ERRTRA statement 168
description of 165
option table
defaults 89
description of 86
preface for 87
standard corrective action 180
user-supplied error handling
user-supplied exit routine 172
extended precision 101
EXTERNAL statement 77,101

Index

20

168, 169

201

P classification 128
F records
defining S0
description of
FB records
defining S0
description of 184
FBS records
defining .50
description of 184
file characteristics 32
FILE subcommand
defined 29
for source files 33
used in sample terminal session 22
file identifier
for FILEDEF DISK option 49
for source files 32
FILEDEF command
BLKSIZE option 51
BLOCK option
description of 51
relation to RECFM option 51
CHANGE option 52
ddname for 48
default ddname 47
defined 30
for direct access files 64
DISK option
default file identifier 49
description of 49
DISP MOD option 49
file identifier for 49
filemode for spanned recards 49
DUMMY option 49
for execution-time files 42
for fixed-length, blocked records
for fixed-length, blocked, standard
block records 50
for fixed-length records 50
for fixed-length, standard block
records 50
LOWCASE option 48
LRECL option
description of 50
relation to RECFM option 51
NOCHANGE option 52
PERM option 52
PRINTER option 48
PUNCH option 48
READER option 48
RECFM option
A control characters S0
description of 50
F records 50
FB records 590
FBS records 50
PS records 50
M control character S0
Vv records 50
VB records 50
VBS records 50
VS records 50
U records 50
for sequential disk files 53
for sequential printed files 63
for sequential card files
input 60,57

183,188

202

output 62
for sequential tape files 55
for sequential terminal files 56
TAPn option
DEN option 50
description of 49
nTRACK option 49
TRTCH option 49
TERMINAL option 48
syntax of 47
UPCASE option 48
for user~-defined files 47
filemode 32
filename
for LISTING file 37
for source files 32
for TEXT files 33
filetype
for FORTRAN files 20
for source files 32
FIND subcommand 21,29
FIND statement
language considerations 69
restrictions on 65
fixed-form source code 113
fixed-length, blocked records 50
fixed-length, blocked, standard block
records 50
fixed-length records 50
fixed-length, standard block records
FIXED option 113
fixed-form output 161
FLAG option 122
FMIDE subcommand 29
FMT option (see FORMAT option)
FNAME subcommand 29
FORMAT option 122
FORMAT statement, self-prompting 44
FORTGI command
defined 30
format of 102
used in sample terminal session 22
FORTHX command
defined 30
format of 120
PORTRAN compile-time debug facility
{see FORTRAN debug)
FORTRAN debug
DEBUG statement
description of 141
INIT option 142
SUBCHK option 142
SUBTRACE option 141
TRACE option 141
description of 141
DISPLAY statement 142
messages 143
FORTRAN file type 32
FORTRAN Interactive Debug
for Code and Go 114
for 61 105
FORTRAN IV (G1) compiler (see G1 compi
FORTRAN IV (H Extended) compiler
(see H Extended compiler)
FORTRAN libraries
contents of 82
description of 81
GLOBAL command for 82

50

ler)

with INCLUDE command 81
with LOAD command 81
Mod I library
contents of 82
introduction to 13
TSOLIB text library for 81
Mod II library
CMSLIB text library for 81
contents of 82
introduction to 13
PROFILE EXEC procedure for 81

restriction on use of library names

FORTRAN IV Library (Mod I)
(see Mod I library)
PORTRAN IV Library ({(Mod II)
{(see Mod ITI library)
free-form input .
for Code and Go 32,74
identifying 32
for SIFT utility 161
free-form source code 113
FREEFORT filetype 32
FREE option 113
FS records
defining 50
description of 184
*TxxFyyyddnane 47

G1 compiler
description of 102
FORTGI command
BCD option 102
DEC¥X option 103
DISK option 103
EBCDIC option 103
filename for 102
files for compilation 102
format of 102
ID option 103
identifying 102
LINECNT option 103
LIST option 103
LOAD option 104
MAP option 104
NAME option 104
NODECK optiorn 103
NOID option 103
NOL IST option 104
NOLOAD option 104
NOMAP option 104
NOPRINT option 103
NOTEST option 105
NOT ERM option 104
NOSOURCE option 104
PRINT option 103
SOURCE option 104
TERM option 104
TEST option 105
introduction to 12
LISTING file 37
language restrictions 111
output
description of 105
LISTING file
description of 196
error messages 107

informative messages 107

optional output 108

81

pseudo-assembler listing 108
source statements 108
storage map 108
terminal messages 107
summary of 106
TEXT file 38
description of 111
execution under CMS 111
execution under 0SS 111
punched card deck for 111
GENERIC statement 77
GETFILE subcommand 29
GLOBAL command
defined 30
for PORTRAN libraries 81
for Code and Go
under GO option 137
under NOGO option 138
for G1 136
for H Extended 139
usel in sample terminal session 19
GO option 113
GOFORT command 30,112
GOSTMT option 122

H Extended compiler
*PROCESS statement 125
changing compiler options 125
DEFINE STORAGE command for 119
description of 119
FORTHEX command

ALC option 120

ANSF option 120,121
AUTODBL option 121
BCD option 121

DECK option 121

DISK option 121

DUMP option 124
EBCDIC option 121 ~
filename for 120
files for compilation 120
FLAG option 122
format of 120

FORMAT option 122
GOSTMT option 122
identifying 120
LINECOUNT option 122
LIST option 123

MAP option 123

NAME option 123
NOALC option 120
NOANSF option 121
NODECK option 121
NODUMP option 122
NOFPORMAT option 122
NOGOSTMT option 122
NOLIST option 123
NOMAP option 123
OBJECT option 123
NOOBJECT option 123
NOOPTIMIZE option 123
NOPRINT option 121
NOSOURCE option 124
NOTERM option 124
NOXREF option 124
OPTIMIZE option 123
PRINT option 121

Index

203

SIZE option 124
SOURCE option 124
TERM option 124
XREF option 124
introduction to 13
LISTING file 37
language restrictions 134
output
description of 125
LISTING file
description of 126
cross-reference listing 130
edited source program 129
error messages 127
informative messages 127
optional output 127

pseudo-assembler listing 130

source module map 127
source statements 127
summary of 126
TEXT file 38,134
HT command 30
HX command 30

ID option 103
identifying execution-time files 42
IN# 135
INCLUDE command
defined 30
with FORTRAN libraries 81
informative messages
from Code and Go 115
from G1 107
from H Extended 127
INIT option 142
INPUT subcommand 20,29
input/output
direct access 64
sequential disk
disk 53
printed 63
punched card 57,62
tape 55
terminal 56
unformatted 73
interactive debug
(see FORTRAN Interactive Debugq)
internal statement numbers
for G1 103
for H Bxtended 122
internal tabs 20
introduction
to CMS M
to CMS commands 11
to Code and Go compiler 12
to CP commands 11
to execution-time files 42
to G1 compiler 12
to H Extended compiler 13
to Mod I library 13
to Mod II library 13
to sample terminal session 17
to vu/370 11
IPL command 19,30
ISNs (see internal statement numbers)
italics 16

204

language considerations
for Code and Go only
free-form input 74

for Code and Go and G1 only

array notation 74

for Code and Go, G1, and H Extended

arithmetic IF statements

BACKSPACE statements
FIND statements 69

68

list-directed input/output 69
literal data initialization 69

logical IP statements
READ statements 72

RETURN statements 73
STOP n statements 73

71,72

unformatted input/output 73

for H Extended only
array notation 75,76
EQUIVALENCE statements

EXTERNAL statements 77

GENERIC statements 77
name handling 78

76

OPTIMIZE (1) and (2) options
with assigned GOTO statements 80

with COMMON blocks

80

with COMMON statements 79

description of 78

with subprograms 79

OPTIMIZE(2) option
description 80

with subprograms 80

LC option (see LINECOUNT option)

library
availability 15
defaults 15
features
of Mod I and Mod IIX

extended error handling 85-89
list-directed input/output 83

of Mod II only

automatic function selection 90
automatic precision increase

facility 90,100
extended precision
EXTERNAL statements
line-delete character 14
line-end character 15
LINECKT option
for Code and Go 114
for G1 103
LINECOUNT option 122
lines per listing page
for Code and Go 114
for G1 103
for H Extended 122
listed-directed input/output
list items 16
LIST option
for G1 103
for H Extended 122
LISTFILE command 20,30
LISTING file
description of 36-41
filename 37
from Code and Go 113,115
from G1 103,106
from H Extended 113,126
obtaining a copy of 37

101

101

69,83

retaining copies of 37

when produced 37
literal data 21,69
LMSG option 114
LOAD command

defined 30

with FORTRAN libraries 81

used in sample terminal session 22
LOAD option 104
loading programs

from code and Go

under NOGO option 138

from G1 136

from H Extended 139
loading TEXT files 136
LOCATE subcommand

defined 29

used in sample terminal session 22
logical IF statements 71,72
logical record length 50
LOGIN command 18,31
login procedure 14
LOGOUT command 23,31
LOWCASE option 48
lower case characters 16
'LRECL option

description of 52

format of 50

use under CMS 52

use under O0S 181

M control character 50
MAP option

for G1 104

for H Extended 123
messages, FORTRAN debug 143
Mod I library

contents of 82

GLOBAL command for 81

introduction to 13

TSOLIB text library for 81
Mod II

CMSLIB text library for 81

contents of 82

GLOBAL command for 81

introduction to 13
multifiles

BACKSPACE statement for 66

description of 65

END= parameter 66

END FILE statement for 66

example of 66

FILEDEF command for 66

operation of 67

REWIND statement for 66

name handling 78
NAME option
for G1 104
for H Extended 123
for TEXT files 38
naming programs
for G1 104
for H Extended 123

NEXT subcommand 29
NOALC option 120
NOANSF opticon 121
NOCHANGE option 52
NODECK option

for Code and Go 113

for G1 103

for H Extended 121
NODUMP option 122
NOFMT option (see WNOFORMAT option)
NOFORMAT option 122
NOGO option 113
NOGOSTMT option 122
NOID option 103
NOLIST option

for Gi1 1cCu

for H Extended 123
NOLOAD option 104
NONMAP option

for G1 104

for H Extended 123
NONE subparameter 94
NOOBJ option (see NOOBJECT option)
NOOBJECT option 123
NOOPT option (see NOOPTIMIZE option)
NOOPTIMIZE option 123
NOPRINT option

for Code and Go 113

for G1 103

for H Extended 121
NOS option (see NOSCURCE option)
NOSOURCE option

for Code and Go 114

for G1 104

for H Extended 124
NOTERM option

for G1 104

for H Extended 124
NOTEST option

for Code and Go 118

for G1 105
NOTYPE option 161,162
NOXREF option 124
nTRACK option 49
null line 19

O TRTCH value 49
OBJ option (see OBJECT option)
OBJECT option 123
OC TRTCH value 49
ONLINE response 1§
OPT option (see OPTIMIZE option
OPTIMIZE option
with COMMON blocks 80
with COMMON statements 79
format of 123
with GO TO statements 80
with subprograms 79,80
option table
defaults 89
entry formats 88
preface 88
optional output
from Code and Go 116
from G1 108
frow H Extended 127

Index

0S file compatibility 181
OT TRTCH value 49
ouT# 135
output
from Code and Go 114
from G1 105
from H Extended 125

P classification 128
password 14
PERM option 52
predefined files
characteristics 43
description 43
general 42
punched card output 45
terminal input file 44
terminal output files 45
prerequisite information 14
primary disk 15
PRINT command 31,37
print control characters 50
PRINT option
for code and Go 113
for G1 103
for H Extended 121
LISTING file 37
printed output
FILEDEF command for 63
operation of 63
PRINTER option 48
PROFILE EXEC procedure
for Code and Go
under GO option 137
under NOGO option 138
commands in 19
for G1 137
for H Extended 139
for FORTRAN libraries 81
used in sample terminal session 19
promotion 91
pseudo-assembler listing
for G1 103,108
for H Extended 123,130
for TEXT file 38
PUNCH command 31
PUNCH option 48
punched card deck
for Code and Go 118
for Gi1 111
for H Extended 134
punched card input
multiple decks
FILEDEF command for 60
operation of 61
one deck
FILEDEF command for 57
operation of 58
punched card output
FILEDEF command for 62
operation of 62
spooled files for 45

QUERY command 31
QUIT subcommand 29

206

R; (see ready message)
READ card 59
READ statement 72
READCARD command 31,61
READER option 48
ready message 20
RECFM option
description of 52
format of 50
relation to BLOCK option 51
relation to LRECL option 51
for unformatted input/output
use under CMS 52
use under 0S5 181
record format 50¢
RENAME command
defined 31
for LISTING file 37
with source files 34
REPLACE supcommand 30
restrictions
for Code and Go 118
for G1 111
for E Extended 134
on library names §1
return code 22
RETURN key 21
RETURN statement 73
REAIND statement 66
RLD card format 40
RT command 31
RUN command 31
running TEXT files 136

S classification 128
S option (see SOURCE option)
sample terminal session
attention interrupt 19
CHANGE subcommand 21,20
CMS editor 20
CM5 files 19
CMS return code 22
compiler error message 22
compiler output files
LISTING 22
TEXT 22
DELETE subcommand 22
description of 17
EDIT command
correcting errors 22
creating files 20
EDIT mode 20
FILE subcommand 22
filetype, FORTRAN 20
FIND subcommand 21
FORTGI command 22
FORTRAN source statements
continuation lines 21
maximum line length 21
GLOBAL command 19
illustration 17-24
INPUT subcommand 20,21
introduction 17
IPL CMS command 19
LISTFILE command 20
LOAD command 22

literal data 21
LOCATE subcommand 22
LOGIN command 18
LOGOUT command 23
null line 19
preliminary procedures 17
PROFILE EXEC procedure
commands in 19
creating 19
description of 19
ready message (R;) 20
RETURN key 21
SPACE bar 21
START command 22
TAB key 20,21
TOP subcommand 21
TYPE command 22
TYPE subcommand 21
UP subcommand 22
VERIFY command 21
VM/370 ONLINE response 18
self-prompting, at terminal 44
sequential files
defining 42
disk input/output 53
printed output 63
punched card input 57
punched card output 62
tape input/output 55
terminal input/output 56
SET command 31
SIFT utility
CONVERT command 161,162
description of 161
fixed-form output 161
free-form input 161
invoking 161,162
signing-on 17
SIZE option 124
SMSG option 114
SORT command 31
source files
on cards 35
compiling 34
creating 33
description of 32-35
existing 34
file characteristics 32
file identifier 32
filename 32
filemode 32
filetype 32
TAB positions 33
on tape 35
using FILE command 33
source module map
¥ classification 128
A classification 128
ASF classification 128
C classification 128
D classification 128
E classification 128
F classification 128
from H Extended 127
P classification 128
S classification 128
XF classification 128
XR classification 128

SOURCE option
for Code anu Go 114
for G1 104
H Extended 124
source program listing
for code and Go 114
for G1 104
for H Extended 124
SPACE bar 21
spanned records, filemode 49
spooled file 45
START command 22,31
STATE command 31
STOP n statement 73
storage for H wxtended 124
storage map
for G1 104
for d Extended 123
structured source program 122
SUBCHK option 142
SUBROUTINE statement 38
SUBTRACE option 141
syntax conventions
{ } (braces) 16
[1 (brackets) 16
.«. (elipsis) 16
| ("or" symbol) 16
description of 16
italics 16
list items 16
lower-case characters 16
upper-case characters 16

TAB key 20,21
TAB positions 33
tape input/output
FILEDEF command for 55
operation of 56
user-defined files 55
tape source files 35
TAPn option 49
TERM option
for G1 104
for H Extended 124
terminal input/output
FILEDEF command for 56
operation of 56
self-prompting for 4u
user$efined files 56
TERMINAL command 31
TERMINAL option 48
terminals
character-delete character 14
line-end character 15
prerequisite information 14
TEST option
for Code and Go 114

for G1 105
TESTFORT command - 31
TEXT file

from .Code and Go 113,116
contents 40

END card format 41

entry points 38

ESD card format 40
executing under OS 38

Index

filename for 38

from G1 compiler 104,111
general description 35
from H Extended compiler
producing a copy of 38

123,134

pseudo-assembler listing for

retaining 39
RLD card format 40
TXT card format 40
time-sharing system 11
TOP subcommand 21,30
TRACE option 141
tracing source compilation
output 141
subprograms 141
subscripts 142
variables 142
TRACK option 49
TRTCH option 49
TSOLIB text library 81
TXT card format 40
TYPE command 31,36
TYPE subcommand 21,30

'U records

defining 50

description of 183
undefined-length records 50
unformatted input/output 73
UP subcommand 22,30
UPCASE option 48 .
upper-case characters 16
user—-defined files

direct access

DEFINE FILE statement for

file identifier for 64
FILEDEF command for 64
operation of 65

restriction on FIND statement

description of 45,46
FILEDEF command for 47
general 42
with OS
BLKSIZE for 181
description of 181
device capacities 182
F records 183,188
FB records 184
FBS records 184
FS records 184
LRECL for 181
U records 183
V records 184
VB records 185
VBS records 187
VS records 186
sequential
disk input/output
file identifier for
FILEDEF command for
operation of 54
printed output 63

208

53
53

65

punched card input
:READ card for 59
FILEDEF command for 57,60
identifier for 59
operation of 58,61
READCARD, command for 61,62
punched card output 62
tape input/output 55,56
terminal input/output 56
user-identifier code 14

V records
defining 50
description of 184
variable-length, blocked records
(see VB records)
variable-length, blocked, spanned records
(see VBS records)
variable-length records (see V records)
variable-length, spanned records (see VS
records)
VB records
defining 50
description of 185
VBS records
defining 50
description of 187
VERIFY subcommand 21,30
virtual computer 11
Virtual Machine Facility/370 (see Vv¥/370)
VM/370 ‘
commands 28-31
introduction to 11
login procedure 14
password 14
terminals for
line-delete character 14
prerequisite information 14
user—-identification code 14
VS records
defining 50
description of 186

WAIT# 135

XF classification 128
XR classification 128
XREF option 124

0 (zero) control character 45
TTRACK option 49
9TRACK option 49
200 DEN value 50
556 DEN value 50
600 DEN value 50
1600 DEN value 50

Reader’s
Comment
Form

IBM VM/370 (CMS) Terminal User’s Guide
for FORTRAN IV Program Products
SC28-6891-1

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>