
Systems

_GA22-7074-0
File No. S370-01

Virtual-Machine Assist and
Shadow-Table-Bypass Assist

- 2b 6J~ cJ.0(~~,,,,,~
"

- e,.:;Jc<,£~ ~;{'"")r(}_~C" ~~,;:;_~

--- ------ - ---- ---- - ---- - - ----------_.-

Preface

This publication summarizes the assists for
Virtual-Machine Facility/370 (VM/370) and gives
a detailed description of the virtual-machine assist
and the shadow-table,..bypass assist.

This publication is intended for system
programmers. The reader should be familiar with
the general machine functions of System/370, as
described in IBM System! 370 Principles of
Operation, GA22-7000, and with the VM!370
system. The reader may also wish to refer to IBM
Virtual Machine Facility! 370: System Logic and
Problem Determination Guide, SY20-0885, and to
IBM Virtual Machine Facility! 370: Data Areas
and Control Block Logic, SY20-0884.

First Edition (May 1980)
Changes are periodically made to the information herein; before using this
pUblication in connection with the operation of IBM equipment, refer to the
IBM System/360 Bibliography, GC20-0360, IBM System/3 70 and 4300
Processors Bibliography, GC2D-000l, for editions that are applicable and
current.

It is possible that this material may contain reference to, or information
about, IBM products (machines and programs), programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If
the form has been removed, comments may be addressed to IBM Corpora­
tion, Product Publications, Department B98, PO Box 390, Poughkeepsie, NY,
U.S.A. 12602. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980

Contents

Chapter 1. Assists for VM/370
-YM,L31-D-ContrDLan_d_SJiH,-a-&-~L 2
Control of VM/370 Assists 3
Interaction of VM/370 Assists 5
Interaction of VM/370 Assists with Other Facilities 5

Control Mode 5
Program-Event Recording 5
Dynamic Address Translation 6
Low-Address Protection 6
Multiple Processors 6
DOS/OS Compatibility Facility 6

General Conventions 6
Control-Block Alignment 6
Virtual PSW 6
Updating Swap-Table Entries 6
Addressing Conditions 6

Method of Detailed Description 7

Chapter 2. Virtual-Machine Assist 9
INSERT PSW KEY 9
INSERT STORAGE KEY 10
LOAD PSW 12
LOAD REAL ADDRESS] 3
RESET REFERENCE BIT -- 15
SET PSW KEY FROM ADDRESS 17
SET STORAGE KEY 18-

SET SYSTEM MASK 19
STORE CONTROL 20
StORETHENAND-SYSTEM MASK 21
STORE THEN OR SYSTEM MASK 22
SUPERVISOR CALL 23
Shadow-Table Validation 24

Chapter 3. VM-Common-Segment Modification of
VMA 29

Chapter 4. ShadowaTableaBypass Assist 31
Relation of Shadow-Table-Bypass Assist to Other
Assists 31

INVALIDATE PAGE TABLE ENTRY
LOAD CONTROL 33
LOAD REAL ADDRESS 34
PURGE TLB 35
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK
TEST PROTECTION 38
Page-Fault Reflection 39

32

36
37

Appendix. Deviations for Virtual-Machine-Assist
Functions 43

Index 45

I
I

-~
i

I

I

iii

Chapter 1. Assists for VM/370

This pubHcation gives a detailed description of the
virtual-machine assist and the shadow-table bypass
assist.

Six assists are available on the various models of
System/370 to improve the performance of Virtual
Machine Facility /370 (VM/370):
• Virtual-machine assist
• Shadow-table-bypass assist
• Control-program assist
• Expanded virtual-machine assist
• Virtual-interval-timer assist
• Virtual-machine extended-facility assist

The exte11ded control-program support for
VM/370 (or ECPS:VM/370) consists of a
combination of four assists: (1) the virtual-machine
assist, (2) the control-program assist, (3) the
expanded virtual-machine assist, and (4) the
virtual-interval-timer assist.

The six assists for VM/370 (1) execute specific
privileged instructions for virtual machines, (2)
simulate virtual-machine operations (such as
interruptions) or maintain the virtual-machine
interval timer, and (3) provide new instructions for
use by the VM/370 control program to perform
frequently occurring functions.

The virtual-machine assist, the basic assist for
VM/370, directly executes 12 virtual-machine
instructions and validates page-table entries in the
shadow tables. The virtual-machine assist exists in
two forms: with and without the VM-common­
segment modification. The VM-common-segment
modification of the virtual-machine assist maintains
high performance for virtual machines executing
programs that use the common-segment-bit
function of the System/370 extended facility.

Assist

Virtual-machine assist (VMA)

Shadow-table-bypass assist

Control-program assist (CPA)

Expanded virtual-machine I assist I
lVlrtual-interval-timer assistj

IVirt~a!-maChi~e extended- I
facility assist

Figure 1. VM/370 Assists

Instruc-
Prereq- tions
uisites Assisted

- 12

- 7

- -

VMA,CPA 11

12

The shadow-table-bypass assist is a specialized
assist used only for virtual machines for which the
virtual = real option of VMj370 is specified.

The control-program assist provides 22 new
instructions for use by the VM/370 supervisor
program to accelerate completion of the various
functions of the control program itself.

The expanded virtual-machine assist, which has
the virtual-machine assist and the control-program
assist as prerequisites, completely or partially
executes 11 virtual-machine instructions.

The virtual-interval-timer assist maintains the
virtual-machine interval-timer value and causes
virtual or real program interruptions when the
interval timer is decremented through zero.

The virtual-machine extended-facility assist, an
integral part of the System/370 extended facility,
causes the direct execution of 12 instructions of
that facility for a virtual machine.

Figure 1 summarizes the preceding information.
In general, a particular assist directly executes a

virtual-machine instruction only for specific
conditions (for example, DAT on, PER off, or no
exceptional conditions). The same virtual
instruction may be executed by one or another
assist, depending on the specific conditions at
execution. For example, STORE THEN OR
SYSTEM MASK can be assisted by the virtual­
machine assist, the shadow-table-bypass assist, or
the expanded virtual-machine assist. For this
reason, the column in Figure 1 giving the number
of instructions assisted contains some duplication.

Other New
Virtual Instruc-
Functions tions

1 -

1 -

- 22

- -

2

Assists for VM/370 1

VM/370 Control and Storage
This section discusses certain aspects of VM/370
design which are related to the operation of the
various assists for VM/370. It can be skipped by
readers familiar with the VM/370 supervisor
program.

VM/370 is a system-control program that uses
the resources of a real System/370 machine to
execute a number of independent programs, each
appearing to run on its own System/370 machine.
These apparent machines are called virtual
machines in distinguishing them from the real
machine, whose resources are actually used to give
the appearance of concurrent execution of a
number of independent virtual machines.

Virtual-machine programs are executed by a
combination of (1) the simulation of all virtual­
machine I/O and console operations and of certain
machine instructions, and (2) the direct execution
on a real CPU of the remaining virtual-machine
instructions. Figure 2 is a simplified flowchart
showing a CPU alternating between direct
execution of instructions in storage containing
virtual-machine programs and execution of
simulation routines in storage which contains the
VM/370 control program. The figure shows that
VM/370 depends entirely on interruptions to
recapture control of the real CPU for simulation of
virtual-machine functions.

VM/370 divides the storage of the real machine
into 4K-byte page frames. Some page frames are
allocated to contain parts of the VM/370 control
program; other page frames are allocated to hold
pages of the storage of virtual machines. These
latter page frames may be dynamically stolen and
later reassigned to hold a different page of storage
for the same or for a different virtual machine. In
general, at any moment, only some of the pages of
each virtual machine have real page frames
assigned to them. The remaining pages have been
swapped out to VM/370 auxiliary storage.
VM/370 performs input and output paging
operations between auxiliary storage and the real­
machine storage in a manner not apparent to the
virtual-machine program. The paging by VM/370
is in addition to any paging by the virtual-machine
operating system, which may move pages between
virtual-machine storage and the virtual-machine
auxiliary-storage devices.

During direct execution of virtual-machine
instructions, the condition code, instruction
address, PSW key, and program mask of the
virtual-machine PSW are in the real-machine PSW.

2 Virtual-\1achine Assist and Shadow-Table-Bypass Assist

The remaining real PSW bits, however, are
controlled by VM/370. In particular, the
problem-state bit of the real PSW is always one;
hence, any attempt to execute a privileged
instruction for the virtual machine always results in
a program interruption for a privileged-operation
exception if no assist is active.

In VM/370 terminology, an address that is real
to a virtual machine is called a virtual address.
VM/370 may have assigned anyone of a number
of real page frames to hold the page of virtual
storage corresponding to a 4K-byte block of
consecutive virtual addresses. For each virtual
machine, VM/370 keeps a set of real translation
tables for translating virtual addresses to real
addresses. The real translation tables consist of
one real segment table and a real page table for
each 64K bytes of virtual-machine storage. These
tables are formatted for use with the dynamic­
address-translation (DAT) facility of System/370.
When a virtual-machine program is being directly
executed with the virtual machine in BC mode, or
in Ee mode with DAT off, the real PSW is in Ee
mode with DA T on, and real control registers 0 and
1 specify the real segment table of the virtual
machine in execution.

When the virtual machine PSW is in EC mode
with DAT on, control registers 0 and 1 of the
virtual machine specify how to translate logical
addresses to virtual addresses. Such a logical
address, called a virtual/virtual address in VM/370
terminology, after translation to a virtual address
must be translated a second time to obtain a real
address. Because the System/370 DAT mechanism
does not perform this double translation, VM/370
maintains another set of translation tables, called
shadow tables, which can be used by the DAT
facility to translate addresses directly to real
addresses in one step. When a virtual-machine
program is being directly executed in a virtual
machine in EC mode with DAT on, the real PSW is
also in Ee mode with DA T on, but real control
registers 0 and 1 specify the shadow segment table
for the current virtual machine and current values
of virtual control registers 0 and 1. If a new value
is placed in virtual control register 1, VM/370 must
set up real control register 1 -to specify a
corresponding new" shadow table.

Th~ storage keys for each 2K-byte storage block
of a page frame assigned to a virtual machine are
shared by the virtual machine and the VM/370
control program. The access-contro·} bits and the
fetch-protection bit are controlled solely by the
virtual machine, but the reference and change bits

Inter-
ruptions

. . T' ~t1/~7-a-~~~ ~ upt-h-anrl+er-s1 I In real sturdge I

Direct execution of

I
i nstruct ions from r'
the storage of vir-

,tual machine B ,

S
r
i
s

t
imulation
outines
n real
torage

I

~

t
Paging
routines
in real
storage

VM/370 dispatcher in
real storage

LOAD PSW j
Figure 2. Real CPU Control Alternating between Direct Execution and Simulation of

Programs for Two Virtual Machines

are shared by both the virtual machine and the
VM/370 control program. This sharing is
performed in such a manner that, for the purposes
of testing or setting the reference and change bits
of storage keys by program control, there appear to
be two independent sets of reference and change
bits. This is accomplished by maintaining two sets
of reference and change bits in addition to the real
storage key. Both additional sets of reference and
change bits are kept in the swap table.

There is one s\vap table for each real page table.
The word that precedes the first entry of each real
page table contains the address of the
corresponding swap table. A swap-table entry is
eight bytes long. Because VM/370 uses a real
4K-byte page size, each swap-table entry contains
four sets of reference and change bits-two sets for
the lower 2K-byte block and two sets for the upper
2K-byte biock. Each 2K-byte block has a backup
reference bit and a backup change bit for the
VM/370 control program and a virtual reference
bit and a virtual change bit for the virtual machine.

At any instant, the VM/370 reference or change
bit is respectively the logical OR of the backup

reference or change bit and the reference or change
bit in the real storage key. Similarly, the virtual­
machine reference or change bit is the logical OR,
respectively, of the virtual reference or change bit
in the swap table and the reference or change bit in
the real storage key. If a real page-table entry is
invalid, the corresponding virtual page has been
swapped out, but the virtual reference and change
bits have been preserved in the corresponding
swap-table entry.

Control of VM/370 Assists
Control register 6 points to a parameter list in real
storage which is used to locate control blocks and
tables used by the various VM/370 assists.
Additionally, individual bits in control register 6
and in the assist control word (MICACF, the fifth
word in the parameter list) determine which assist
functions are active. Each assist requires a specific
bit or group of bits to be ones for any function of
that assist to be active. Furthermore, additional
bits are used to activate or inhibit individual
functions or groups of functions of some of the
assists. Figure 3 shows these assignments.

Assists for VM/370 3

Positions
That Need I Ones for Positions Used

j General for Specific
Activation Activation

VM!370 Assist CR6 MICACF CR6 MICACF

Virtual machine 0 - 2 thru 5 -
Shadow-table bypass 0 8 - 9 thru 15
Control program 6 - - -
Expanded virtual machine 0,6 - - 0 thru 7
Virtual interval timer 0,7 - - -
VH extended facility 29 - - -

Figure 3. Bit Positions for General and Specific Activation of Assist Functions

The bit positions of control register 6 are used as
follows:

Bits Function

o

2

3

4

5

6

7

8-28

29

30-31

The functions of the virtual-machine assist, the
shadow-table-bypass assist, the expanded
virtual-machine assist, and the virtual-interval
timer assist can be activated only when this bit
is one.
This bit is the problem-state bit of the virtual­
machine PSW.
The insert-storage-key function and the set­
storage-key function of the virtual-machine
assist can be activated only when this bit is
zero.
Functions which assist virtual-machine
instructions not found on System/360 can be
activated only when this bit is zero.
The supervisor-call function of the virtual­
machine assist can be activated only when this
bit is zero.
The shadow-table-validation function of the
virtual-machine assist can be activated only
when this bit is~. 0 "12 ,
The functions of the expanded virtual-machine
assist and the new instructions of the control­
program assist can be executed only when this
bit is one.
The virtual-interval-timer assist can be
activated only when this bit is one.
These bits are bits 8-28 of the real address of
the doubleword-aligned parameter list.
The functions of the VM -extended-f acility assist
can be activated only when this bit is one.
These bits are not used.

VM/370 constructs a six-word parameter list for
each virtual machine. This control block is called

4 Virtual-ylachine Assist and Shadow-Table-Bypass Assist

the MICBLOK in VM/370 logic publications. The
format and names of the words in the parameter
list are:

Bits of
Word 0

0-7
8-25

26-29
30

31

Bits of
Word 1

0-7
8-31

Bits of
Word 2

o

1-7
8-31

Bits of
Word 3

MICRSEG

Real segment-table length.
Bits 8-25 of the address of the real segment
table.
These bits are not used.
When the bit is zero, a 4K-byte real page size
is specified; when it is one, a 2K-byte real page
size is specified.
When the bit is zero, a 64K-byte real segment
size is specified; when it is one, a I M-byte real
segment size is specified.

MICCREG

These bits are not used.
Real address of virtual control registers (bits
29-3] must be zeros).

MICVPSW

When the bit is zero, no virtual interruption is
pending; when it is one, one or more virtual
interruptions are pending.
These bits are not used.
Real address of the virtual PSW (bits 29-31
must be zeros).

MICWORK

0-7 These bits are not used.
8-31 Real address of 64-byte workspace used during

execution of assist functions on some models
(bits 29-3] must be zeros).

Bits of
Word 4

0-7
8-31

Bits of
Word 5

MICVTMR

These bits are not used.
Real address of virtual-intervaHimer word (bits
~l-mttSt-be-ze-rost;---

MICACF

0-7 Each of the] 1 functions of the expanded
virtual-machine assist can be activated only
when a specific bit in this group is one.

8 The functions of the shadow-table-bypass assist
can be activated only when this bit is one.

9-15 Each of the eight functions of the shadow­
table-bypass assist can be activated only when
a specific bit in this group is one.

16-31 These bits are not used.

Programming Note

Placing nonzero values in unused positions of
control register 6 or the parameter list is
inadvisable because these positions may be used
later and could cause incompatible execution.

Interaction of VM/370 Assists
Where the same virtual-machine instruction may be
executed by more than one VM/370 assist, a fixed
order exists among the assists in which similar
functions are invoked. This order is (1) shadow­
table-bypass assist, (2) virtual-machine assist, and
(3) expanded virtual-machine assist. Thus, for a
STORE THEN AND SYSTEM MASK instruction
for a virtual machine, the STNSM function of the
shadow-table-bypass assist is invoked. That
function may (1) complete execution of the
instruction, (2) exit via a program interruption, or
(3) exit by invoking the STNSM function of the
virtual-machine assist. The latter function may in
turn (1) complete execution of the instruction, (2)
exit via a program interruption, or (3) exit by
invoking the STNSM function of the expanded
virtual-machine assist.

Similarly, a page-translation condition may
invoke the shadow-table-validation function of the
virtual-machine assist or the page-fault-reflection
function of the shadow-table-bypass assist if one of
those assists is installed. If both assists are
installed, the page-fault-reflection function of the
shadow-table-bypass assist is invoked first for a
pagE'-translation condition. This function may
result in (1) a virtual-machine program
inlerruption, (2) a real-machine program
interruption, or (3) invocation of the shadow­
table-validation function of the virtual-machine
assist.

Interaction of VM/370 Assists with
Other Facilities

Control Mode
The virtual-machine assist and the shadow-table­
bypass assist are defined to operate only on a CPU
which is in the EC mode.

Program-Event Recording
When any assist for VM/370 completely executes a
virtual-machine instruction, a program interruption
takes place in the real machine for PER events if
the real PER mask is one and in accordance with
the settings of the PER controls in real control
registers 9, 10, and 11. Storage-alteration events
are indicated only for changes to virtual-machine
storage. Changes in VM/370 control blocks in real
storage are not indicated. However, a PER mask
of one in the real or virtual PSWs may cause a
virtual-machine-instruction assist function to exit
by taking a program interruption before completely
executing the instruction,

The-- specific rules governing the effect of PER
mask values on the execution of VM/370 assist
functions are:
1. The PER indication is unpredictable for the

instructions of control-program assist.
2. A real PER mask value of one prevents a

virtual-machine external interruption for a
virtual interval-timer request.

3. A real PER mask value of one causes those
expanded -virtual-machine-assist functions
which can only partially execute a virtual­
machine instruction to exit with a program
interruption for a privileged-operation
exception.

4. Load-PSW and supervisor-call functions of all
assists exit by a program interruption for a
privileged-operation exception or by a
supervisor-call interruption if the PER mask is
9P~)n tJle real pS.W, in the current virtual
PSW, or in the new virtual PSW.

5. Set-system-mask, store-then-AND-system­
mask, and store-then-OR-system mask
functions whose definition allows complete
execution under certain conditions exit with a
program interruption for a privileged-operation
exception if an attempt is made to change the
PER mask in the virtual PSW.

6. Shadow-table validation and page-fault
reflection are inactive when the real PER mask
is one.

Assists for VM/3 70 5

Dynamic Address Translation
In general, references to VM/370 control blocks in
storage use real addresses and are thus not subject
to translation by the dynamic-address-translation
(DAT) facility. References to storage operands of
virtual-machine instructions are subject to the DAT
facility; translation is performed if the real CPU is
in the Be mode with a one in bit 5 of the real
PSW. Such translations are performed under
control of the values in real control register 1 and
in bit positions 8-12 of real control register O.

At the end of the detailed description of each
assist function is a table showing each field in
storage that is or may be referred to in performing
that assist function. For each field, the address
type is shown as real or logical. Only those fields
whose address type is logical are referred to by
addresses subject to the DAT facility.

Low-A.ddress Protection
When any assist for VM/370 makes an operand
store access to virtual-machine storage during
execution of a virtual-machine instruction, low­
address protection is applied if the System/370
extended facility is installed and bit 3 of real
control register 0 is one. The contents of virtual
control register 0 have no effect on the application
of low-address protection. Low-address protection
is not applied to supervisor-call or program
interruptions in the virtual machine, to updates of
the virtual interval timer, or to references to
VM/370 control blocks in the real machine when
virtual-machine instructions are being executed.
Low-address protection does apply to store accesses
in the normal manner for instructions in the
control-program assist.

~ultiJJle Processors
No interlocking exists between the fetch and store
parts of an update to VM/370 control blocks or the
prefix-save areas (first 4K bytes of real storage) in
the virtual-machine assist or shadow-table-bypass
assist. The assist functions are not, in general,
designed for use with multiprocessing or an
attached processor. However, the purge-TLB
function of the shadow-table-bypass assist has
specific provision for operation under VM/370
running in attached-processor mode.

DOS / OS Compatibility Facility
The virtual-machine-assist functions are not
invoked under control of the execute-local function
of the DOS/OS compatibility facility.

6 Virtual-\1achine Assist and Shadow-Table-Bypass Assist

General Conventions
The following control-program conventions are
observed.

Control-Block Alignment
The control blocks ECBLOK and VMBLOK, which
are referred to by functions in the virtual-machine
assist (VMA) and shadow-table-bypass assist
(STBA), are assumed to be doubleword-aligned. If
the address MICCREG or MICVPSW, which is
used to access one of the control blocks, does not
specify the expected alignment, the result of an
attempt to access a field in ECBLOK or VMBLOK
depends on several factors. For the supervisor-call
function of VMA, the supervisor-call interruption
may take place; for the shadow-table-validation
function of VMA or the page-fault-reflection
function of STBA, a program interruption for the
page-translation exception may take place; and for
any other VMA or STBA function, a program
interruption for a privileged-operation exception
may take place. Otherwise, the value of a fetched
field is unpredictable, and the storage locations
modified by a store access may be any locations in
the doublewords containing the misaligned field.
Also, an addressing exception that is recognized
may be for any part of the misaligned field.

Virtual PSW
Bits 0-15 of the virtual PSW are kept in the first
halfword of a doubleword. When the real PSW is
in the problem state, the PSW key, condition code,
program mask, and instruction-address parts of the
virtual PSW are kept in the corresponding parts of
the real PSW, and the problem-state bit of the
virtual PSW is kept in bit position 1 of control
register 6. When storing takes place in the virtual
PSW field, only the first halfword is significant,
and the effect of the store operation on the
remaining six bytes is unpredictable.

Updating Swap-Table Entries
Bytes 0, 2, and 3 of a doubleword swap-table entry
may be updated by the reset-reference-bit fUnction
and the set-storage-key function. The method of
updating may differ among models; individual
bytes, halfwords, a word, or the entire doubleword
of the entry may be fetched and subsequently
stored with the specified bytes changed.

Addressing Conditions
Fields in VM/370 control blocks are accessed in
assist functions with real addresses and with a key
of zero. If such an access is to a storage location
not available to the executing CPU, an addressing
condition occurs.

If an addressing condition is encountered in
accessing any field outside the storage of the virtual
machine during execution of any of the assist
functions, the following action is tak~_l1-=- ________ _
l~If th~defini-tio~-h;s-not specified that a store

access has been made when the condition is
encountered, the execution of the assist ends
with an interruption. For any instructions
assisted, a program interruption takes place,
and instruction execution is suppressed; it is
unpredictable whether a privileged-operation or
an addressing exception is indicated. For the
shadow-table-validation function or the page­
fault-reflection function, a program interruption
takes place, and it is unpredictable whether a
page-translation exception or an addressing
exception is indicated. For the supervisor-call
function, it is unpredictable whether an
interruption takes place or a program
interruption takes place with an addressing
exception indicated.

2. If a store access has been made before the
addressing condition is encountered, a program
interruption for an addressing exception is
taken, and instruction execution is terminated.

The detailed descriptions of assist functions do
not explicitly mention addressing conditions that
may occur when an invalid address is assigned to
the workspace. This address is found in
MICWORK, word 3 of the parameter list.
References to the workspace are model-dependent.
The interruptions resulting from addressing
conditions in accessing the workspace are in
addition to those enumerated in the detailed
descriptions of assist functions.

Method of Detailed Description
Chapter 2 contains a detailed description of each
virtual-machine-assist function. Chapter 4 contains
a __ d_etai1~d_des_criplkm~L~ta~h_Jlm_cJiQn_oLthe_
shadow-table-bypass assist. Function execution is
broken down into steps. An alphameric
designation, the priority indicator, appears in
parentheses at the end of each step.

Most steps state the conditions under which
execution of the function ends with that step. If
the conditions for ending execution are met for two
or more steps, execution ends with the step having
the highest priority. The relative priority of two
steps is determined by comparing the numbers and
letters of the priority indicators of those two steps
from left to right to find the first differing position.
When the first differing position contains a
number, the step whose priority indicator has the
lower number has the higher priority. When the
first differing position contains a letter, both steps
are of equal priority.

When two or more steps having the same priority
have their ending conditions satisfied, it is
unpredictable with which of those steps execution
of the function will actually end.

At the end of the detailed description of each
assist function is a summary showing each field of
each control block in storage that is accessed. The
offset shown is the offset to be applied to the
address by which that control block was located.
In general, this is the same as the offset within the
control block. However, the field, VMPSW, is
located at offset A8 hex within the VMBLOK.
The offset is shown as zero because that field is
directly located by the contents of MICVPSW
without the application of any additional offset.

Assists for V~1/3 70 7

Chapter 2. Virtual-Machine Assist

The virtual-machine assist (VMA) is the basic
assist for VM/370. The virtual-machine assist
improves the performance oTvirtuaTmacnmes-­
executing under VM/370 by directly executing 12
instructions for virtual machines which would
otherwise be simulated by VM/370. The virtual­
machine assist also directly validates the
appropriate page-table entry of the shadow tables
when a page-translation condition is encountered in
executing a virtual-machine program and when the
corresponding virtual and real page-table entries
are both valid.

Figure 4 shows the virtual-machine instructions
that can be directly executed using the virtual­
machine assist, as well as the settings of bits in
control register 6 required for . assisting each
function. An X indicates that the value may be
either zero or one.

Function

I· I nser t PSW key

I I nsert storage key
Load PSW

i~Load real address
I Reset reference bit

I, Set PSW key from address
Set storage key

I Set system mask
. Store contro 1

Store then AND system mask
Store then OR system mask
Supervisor call
Shadow-table val idation

Bits 0-5
of Control
Register 6

10XO XX
100X XX
10XX XX
10XO XX
10XO XX
10XO XX
100X XX
10XX XX
10XO XX
10XO XX
10XO XX
lXXX OX
lXXX Xl

Figure 4. Controls for Activating VMA Functions

Programming Notes
1. Bit 3 of control register 6 is normally set to

zero for a System/370 virtual machine and to
one for a System/360 virtual machine. In this
way, System/370 instructions encountered in a
System/360 virtual-machine program cause a
program interruption to take place for a
privileged-operation exception.

2. Bit 5 of control register 6 is normally set to
zero for a virtual machine in BC mode or in EC
mode with DA T off. It is set to one when
shadow translation tables are in use, that is,
when the virtual machine is in EC mode and
DAT is on. However, shadow tables may be

avoided for a virtual machine with the
virtual = real option in VM/3 70 and the
vfrluaTtfaifs1atTonfiib1es used otre-ctty~

3. A one in bit position 2 of control register 6
inhibits the virtual execution of INSERT
STORAGE KEY and SET STORAGE KEY.
Similarly, a one in bit position 4 of control
register 6 inhibits the virtual execution of
SUPERVISOR CALL.

INSERT PSW KEY./
The INSERT PSW KEY instruction is executed for
a virtual machine if the virtual-machine assist is
activated for System/370 instructions, unless (1) a
virtual-machine exception is recognized or (2) the
virtual PSW cannot be fetched.

The insert-PSW .. key function of the virtual­
machine assist is invoked each time a CPU attempts
to execute an INSERT PSW KEY instruction when
the problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, execution of the insert-PSW-key
function ends, a program interruption takes
place for a privileged-operation exception, and
execution of the INSERT PSW KEY instruction
is suppressed (I.A.l).

2. The word MICVPSW, which contains the
address of the virtual PSW, is fetched with a
key of zero. Execution ends if an addressing
condition is encountered (1.A.2).

3. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (1.A. 3).

4. If an access exception is encountered in
fetching the second halfword of the INSERT
PSW KEY instruction, it is unpredictable
whether this condition is ignored because no
information is needed from that halfword to
execute the instruction. If an access condition
is encountered and is not ignored, execution of
this function ends, and a program interruption
takes place for that access exception (l.B).

5. The four-bit protection key of the virtual PSW
is placed in bit positions 24-27 of general
register 2. Bits 0-23 of general register 2
remain unchanged, and bits 28-31 are set to
zeros (2).

Figure 5 summarizes the fields used.

Virtual-Machine Assist 9

Field Control Address Offset No. Of
Name alack Type (Hex) Bytes Contents

MICVPSW MICBLOK Real 8 4 Address

VMPSW VM.BLOK Real 0 2 Virtual

Figure 5. Fields Used in INSERT PSWKEY

INSERT STORAGE KEY
The INSERT STORAGE KEY instruction is
executed for a virtual machine if the virtual­
machine assist is activated for this instruction
unless (1) a virtual-machine exception is
recognized, (2) the real page size is 2K bytes, or
(3) some pertinentVM/370 control field cannot be
fetched.

The insert-storage-key function of the virtual­
machine assist is invoked each time a CPU attempts
to execute an INSERT STORAGE KEY instruction
when the problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. Execution of this function ends with a program

interruption for a privileged.,.operation
exception if bits 0-2 of control register 6 are
not 100 binary or if bits 28-31 of the general
register specified by the R2 field of the
instruction are not zeros (1).

2. The word MICRSEG, which contains the real
segment-table address, is fetched with a key of
zero. Execution ends if an addressing
condition is encountered (2.A.1).

3. Execution ends with a program interruption for
a privileged-operation exception if bit 30 of
MICRSEG is one (2.A.2).

4. The address in the general register specified by
the R2 field of the instruction is partitioned to
obtain the segment index and the page index.
The partitioning of the address is based on
4K-byte pages and either 64K-byte or 1M-byte
segments, depending on whether bit 31 of
MICRSEG is zero or one, respectively. For a
64K-byte segment, execution ends with a
program interruption for a priVileged-operation
exception if the segment-table-length value in
bit positions 0-7 of MICRSEG is less than the
value obtained by appending four zeros to the
left of bits 8-11 of the address specified
(2.A.3).

s. The address of the real segment-table entry is
computed and the entry SEGPAGE is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (2.A.4).

10 Virtual-Machine Assist and Shadow-Table-Bypass Assist

of VMPSW

PSW bits 0-15

6. Execution ends with a program interruption for
a privileged-operation exception if the
segment-table entry is invalid, if the entry has
an invalid format, or if the value of the
leftmost four bits of the page index exceeds the
value of bits 0-3 of the segment-table entry
(2.A.S).

7. The location of the word P AGSWP, containing
the swap-table address, is computed by
subtracting 4 from the page-table origin derived
from the segment-table entry. The word at this
location is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (2.A.6.A.l).

8. Eight times the page index is added to bits 8-31
of a swap-table-address word. The swap-table
word at the address computed is fetched with a
key of zero. Execution ends if an addressing
condition is encountered. SWPKEYI and
SWPKEY2 are in bytes 2 and 3 of the word
fetched (2.A.6.A.2).

9. Twice the page index is added to the page-table
origin from the segment-table entry to obtain
the address of the page-table entry. The page­
table entry P AGCORE is fetched with a key of
zero. Execution ends if an addressing
condition is encountered (2.A.6.B.l).

10. Execution ends with a program interruption for
a privileged-operation exception if the page­
table entry is valid and has an invalid format
(2.A.6.B.2).

11. If the page-table entry is valid, the real storage
key is fetched. Execution ends if an addressing
condition is encountered in fetching the real
storage key. If the page-table entry is invalid,
this step is not performed (2.A.6.B.3).

12. The word MICVPSW, containing the virtual­
PSW address, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (2.B.1).

13. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (2.B.2).

J 4. Execution of INSERT STORAGE KEY is
completed by modifying the contents of the

general register (first operand) specified by the
R 1 field of the instruction. The modification
depends on the value of bit 20 of the second­
operand address, on whether the virtual PSW is
itt---E&-&-BG--m:eds-,--and-Bu-wb£thet---the-rea1--.. -
page-tabie entry is valid or invalid. The setting
of the first-operand tit positions is as shown in
Figure 6 (3).

Figure 7 summarizes the fields used.

Setting of First-Operand Bits When
Bit 20 of Second Operand Is:

Positions of
First Operand

0-23

24-28

I
! - - -

1

29 3U In virtual
BC mode

29-30 in virtual
mode, inval id PTE

I
!

EC

Zero One

Unchanged Unchanged

Bits 16-20 of Bits 24-28 of
swap-table word swap-table word

- .., .- --Leros Leru:,

Bits 21-22 of

I
Bits 29-30 of

swap-table word swap-table word

29-30 in virtuai ! OR bits 5-6 of stor- OR bits 5-6 of i
EC mode, valid PTE

I
age key, bits 21-22 key, bits 29-30
of swap-table word

31 Zero

Figure 6. Setting of First-Operand Bits

Field Control Address
Name Block Type

MICRSEG MICBLOK Real

MICVPSW MICBLOK Real

.... t'. " I I
__ 1

VM~~W IvMBLOK IRedl

SEGPAGE ISEGTABLE Real

PAGSWP PAGTABLE Real

PAGCORE PAGTABLE Real

SWPKEY 1 I SWPTABLE I Rea 1

SWPKEY2 jSWPTABLE!Real

Offset
(Hex)

0

8

o

4SX

-4

2PX

1
8PX+2

I
I

!SPX+3

No. of
Bytes

4

4

')

4

4

2

Figure 7. Fields Used in INSERT STORAGE KEY

of swap-table
word

Zero

Contents

Address of real
segment table

Address of VMPSW

\1 ~ ... ~ II 1 DC: ~ t- f_1~

Segment-table entry

Address of swap table

Page-table entry

ILOW 2K-byte virtual
key

IHi9h 2K-byte virtual
key

I
I
i - -I

I

I
I

I

I

I

Virtual-Machine Assist 11

LOAD PSW
The LOAD PSW instruction is executed for a
virtual machine if the virtual-machine assist is
activated, unless (1) a virtual-machine interruption
may follow. (2) the second operand or some
pertinent VM/370 control field cannot be accessed,
(3) the PER mask is one in the real PSW or in the
old or the new virtual PSW, or (4) execution would
change the control mode, the DAT bit, or the
wait-state bit of the virtual PSW.

The load-PSW function of the virtual-machine
assist is invoked each time a CPU attempts to
execute a LOAD PSW instruction when the
problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. If bits 0-1 of control register 6 are not 10

binary, execution of the load-PSW function
ends, a program interruption takes place for a
privileged-operation exception, and execution
of the LOAD PSW instruction is suppressed
(1.A).

2. The second halfword of the LOAD PSW
instruction is fetched. If an access condition is
encountered, execution of this function ends,
and a program interruption takes place for the
access exception encountered (l.B).

3. If bits 29-31 of the second-operand address are
not zeros or if the PER mask in the real PSW is
one, execution ends with a program
interruption for a privileged-operation
exception (2.A).

4. A doubleword is fetched with the logical
address of the second operand and the PSW
key. If an access condition is encountered,
execution of this function ends with a program
interruption for the access condition found
(2.B.1).

5. Execution of the load-PSW function ends if
either of the following conditions is found
(2.B.2):
a. The new virtual PSW (second operand) has

the wait-state bit set to one.
b. The new virtual PSW has a one in bit

position 12 (EC mode) and bits 0-4, 16-17,
and 24-39 are not all zeros (PER mask is
one or a format error exists).

If execution ends, control passes to the
load-PSW function of the expanded virtual­
machine assist if that facility is installed.
Otherwise, execution ends with a program
interruption for a privileged-operation
exception.

12 Virtual-Machine Assist and Shado\v-Table-Bypass Assist

6. The word MICVPSW, containing the virtual
PSW address, is fetched with a key of zerO.
Execution ends if an addressing condition is
encountered (2.C.1).

7. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (2.C.2).

8. Execution ends if the virtual PSW has ones in
bit positions 1 and 12 (PER mask is one in the
EC mode). If execution ends, control passes to
the load-PSW function of the expanded
virtual-machine assist if that facility is installed.
Otherwise, execution ends with a program
interruption for a privileged-operation
exception (2.C.3.A).

9. Execution of the load-PSW function ends if any
of the following conditions holds (2.C.3.B):
a. The control mode of the virtual PSW is

being changed from the BC to the EC
mode, or from the EC mode to the BC
mode.

b. The DA T -mode bit of an EC-mode virtual
PSW is being changed.

c. A virtual interruption is pending, and any
channel mask, input/output mask, or
external mask is being changed from zero
to one (bits 0-7 in the BC mode and bits
6-7 in the EC mode). A virtual
interruption is pending when bit 0 of
MICVPSW is one.

Note that, because all these conditions
require the value fetched in step 4, this step
necessarily has a lower priority than step 4
despite the priority rules based on priority
indicators.

If execution ends, control passes to the
load-PSW function of the expanded virtual­
machine assist if that facility is installed.
Otherwise, execution ends with a program
interruption for a privileged-operation
exception.

10. The key, the condition code, the program mask,
and instruction-address-field values of the new
virtual-machine PSW replace the corresponding
fields in the real PSW. Bit 15 of the virtual­
machine PSW is placed in bit position 1 of
control register 6. The new virtual-machine
PSW is stored, with a key of zero, in VMPSW
(3).

Figure 8 summarizes the fields used.

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

i I i - I

I ~~V~_~~ __ -r_~~BLOK I Rea_~ ____ I __ _
IVMPSW iVMBLOK--tReal 1-
I Oper and 2\ - I Log i ca 1 I

' . - . .. -..
q + 4 IAadress ot viiP~w '

-0- I - i-tv i rtua 1 PSW -b-fts-O:'-lst

- I 8 INew virtual PSW I
! . I I I I I I

Figure 8. Fields Used in LOAD PSW

LOAD REAL ADDRESS
The LOAD REAL ADDRESS instruction is
executed for a virtual machine if the virtual­
machine assist is activated for System/370
instructions, unless (1) a virtual-machine exception
is recognized, or (2) some pertinent VM/370

. control field cannot be fetched.
If the shadow-tabIe-bypass assist is not installed,

the load-real-address function of the virtuaI­
machine assist is invoked each time a CPU attempts
to execute a LOAD REAL ADDRESS instruction
when the problem-state bit of the real PSW is one.
If the shadow-table-bypass assist is installed, the
load-real-address function of the virtual-machine
assist may be invoked only from the load-real­
address function of the shadow-table-bypass assist.
Execution of this function consists in performing
the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, execution of the load-real-address
function ends, and a program interruption takes
place for a privileged-operation exception
(l.A.1).

2. The doubleword containing the fields
MICRSEG and NHCCREG is fetched with a
key of zero. MICRSEG contains the address of
the real segment table, and MICCREG contains
the address of the extended control block
(ECBLOK). Execution ends if an addressing
condition is encountered (l.A. 2).

3. The first doubleword (EXTCRO and EXTCR1,
virtual control registers 0 and 1) of the
extended-control block (ECBLOK) is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (l.A.3).

4. Execution of this function ends with a program
interruption for a privileged-operation
exception if bits 8-12 of virtual control register
o have an invalid format (l.A.4).

5. The second halfword of the LOAD REAL
ADDRESS instruction is fetched. If an access
condition is encountered, execution of this
function ends, and a program interruption takes
place for the access exception encountered
(l.B).

6. The segment index, the page index, and the
byte index of the second-oper.and address are
found. They are selected from effective­
address positions dependent on bits 8-12 of
virtual control register O. For a virtual segment
of 64K bytes, execution ends if the segment­
table-length value in bit positions 0-7 of virtual
control register 1 is less than the value obtained
by appending four zeros to the left of bits 8-11
of the second-operand address. In that case,
condition code 3 is set, and the virtual address
~f the segment-table entry that would have
been referred to had no length violation existed
is placed in the general register specified by the
Rl field of the instruction (2).

7. The virtual address of the virtual segment-table
entry is computed. The real segment index and
the real page index of the virtual address of the
virtual segment-table entry are found. The real
page size is 4K bytes or 2K bytes as bit 30 of
MICRSEG is zero or one; the real segment size
is 64K bytes or 1M byte as bit 31 of
MICRSEG is zero or one. For a 64K-byte
segment, execution ends with a program
interruption for a privileged-operation
exception if the segment-table-length value in
bit positions 0-7 of MICRSEG is less than the
value obtained by appending four zeros to the
left of bits 8-11 of the virtual segment-table­
entry address (3).

8. The address of the real segment-table entry,
SEGPAGE, for translating the virtual
segment-table-entry address is computed. This
address is used with a key of zero to fetch the
corresponding real segment-table entry.
Execution ends if an addressing condition is
encountered (4).

q Execution ends with a program interruption for
a privileged-operation exception if the fetched
entry is invalid or has an invalid format or if
the leftmost four bits of the real page index of
the virtual segment-table entry address are
greater in value than bits 0-3 of the real
segment-table entry fetched (5).

Virtual-Machine Assist 13

i
-I

i

I

10. Twice the real page index of the virtual
segment-table entry address is added to the
page-table origin from the segment-table entry
to obtain the real address of the page-table
entry for translating the virtual segment-table­
entry address. This address is used with a key
of zero to fetch the corresponding real page­
table entry P AGCORE. Execution ends if an
addressing condition is encountered (6).

11. Execution ends with a program-interruption for
a privileged-operation exception if the page­
table entry is invalid or has an invalid format
(7).

12. The real address of the virtual segment-table
entry is computed and used with a key of zero
to fetch the virtual segment-table entry.
Execution ends if an addressing condition is
encountered (8).

13. If the segment-table entry fetched was invalid,
condition code 1 is set, the virtual address of
the virtual segment-table entry which was
developed in step 7 is placed in the general
register specified by the R 1 field of the
instruction, and execution of this function ends
with completion of the LOAD REAL
ADDRESS instruction (9).

14. If the segment-table entry fetched had an
invalid format, execution of this function ends
with a program interruption for a privileged­
operation exception (10).

15. If the value of the four leftmost bits of the page
index developed in step 6 is greater than the
value of bits 0-3 of the segment-table entry
fetched, execution of this entry ends with
completion of LOAD REAL ADDRESS. In
that case, condition code 3 is set, and the
virtual address of the page-table entry that
would have been referred to had no length
violation existed is placed in the general
register specified by the Rl field of the
instruction (11).

16. The virtual address of the virtual page-table
entry is computed by using the page index
developed in step 6. The real segment index
and the real page index of the virtual address
for the virtual page-table entry are found. The
real page size is 4K bytes or 2K bytes as bit 30
of MICRSEG is zero or one, and the real
segment size is 64K bytes or 1M byte as bit 31
of MICRSEG is zero or one. For a 64K-byte
segment, execution ends with a program
interruption for a privileged-operation
exception if the segment-table length in bit
positions 0-7 of MICRSEG is less than the
value obtained by appending four zeros to the
left of bits 8-11 of the virtual page-table-entry

14 Virtual-Machine Assist and Shadow-Table-Bypass Assist

address (12).
17. The address of SEGP AGE, the real segment­

table entry for translating the virtual page­
table-entry address, is computed. This address
is used with a key of zero to fetch the
corresponding real segment-table entry.
Execution ends if an addressing condition is
encountered (13).

18. Execution ends with a program interruption for
a priVileged-operation exception if the real
segment-table entry fetched is invalid or has an
invalid format or if the leftmost four bits of the
real-page index of the virtual page-table-entry
address are greater in value than bits 0-3 of the
real segment-table entry fetched (14).

19. Twice the real page index of the virtual page­
table-entry address is added to the page-table
origin from the segment-table entry to obtain
the real address of the page-table entry for
translating the virtual page-table-entry address.
This address is used with a key of zero to fetch
the corresponding real page-table entry
PAGCORE. Execution ends if an addressing
condition is encountered (15).

20. Execution ends with a program interruption for
a priVileged-operation exception if the real
page-table entry fetched is invalid or has an
invalid format (16).

21. The real address of the virtual page-table entry
is computed and used with a key of zero to
fetch the virtual page-table entry. Execution
ends if an addressing condition is encountered
(17).

22. If the virtual page-table entry fetched is invalid,
condition code 2 is set, the virtual address of
the page-table entry which was developed in
step 16 is placed in the general register
specified in the R 1 field of the instruction, and
execution of this function ends with completion
of the LOAD REAL ADDRESS instruction
(18).

23. If the virtual page-table entry fetched had an
invalid format, execution of this function ends
with a program interruption for a privileged­
operation exception (19).

24. Execution ends with completion of the LOAD
REAL ADDRESS instruction. Condition code
o is set, and a new value is placed in the
general register specified by the Rl field of the
instruction. Bits 0-7 of that general register are
set to zeros. Bits 8-31 are set to the value
obtained by prefixing the page-frame address in
the entry fetched in step 21 to the byte index
developed in step 6 (20).

Figure 9 summarizes the fields used.

FIeld Control Address tlffsetNo. of
Name Slock Type (Hex.l8ytes l:of.'ftetlts

i.-. _ M I C~-=-G __ t,i __ ~ic_a~~~1 ~~_i __ ---t-li ____ ~i 4 f' Add reo 5 S of rea ,I i 1- _ -t ---t- ---- segment tab I e -----t

I KtCC~EQ ffrHCBLUK! Real 14 4 I Address of ECBLOK "

I EJ(TCRO IEc-alDK taea1 I 0 4 !Virtual CRG

EXTCRl I ECiLOK 'Real I 4 4 iVir'tual CRl

SC:GPAGE lSEGTABLE Rea I 4SX I 4 I Segment-table entry

-PAGCORE tP'AGTASLE Real 2PXl 2 IPage-table entry I
.t" II Re'a 1 0 4" Vir, tua .• 1 segment ... tab le I

entry

SEGPAGE SEGTABLE Real 4SX2 4 S~egment-tab Ie entry

PAGCQRE PAGTASLE . . Real 2PX2 2 Page-table entry

I Real 0 2 I Vi.r·tual page-table
entry

References to the real trans lat.ion tables to translate
the virtualadd.ress of the virtual segment-table entry

2 References to the real translation tables to translate
the virtual address of the virtual page-table entry

Figure ,,, Fidds Used in LOAD REAL ADDRESS

RESET REFERENCE BIT
The virtual RESET REFERENCE BIT instruction
is executed for a virtual machine if the virtual­
machine assist is activated for System/370
instructions, unless (1) a virtual-machine exception
is recognized, (2) the real page size is 2K bytes, or
(3) some pertinent VM/370 control field cannot be
accessed.

The reset-reference-bit function of the virtual­
machine assist is invoked each time a CPU attempts
to execute a RESET REFERENCE BIT instruction
when the problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. Execution of this function ends with a program

interruption for a privileged-operation
exception if bits 0-3 of control register 6 are
not IOXO binary (1.A.I).

2. The word MICRSEG, which contains the real
segment-table address, is fetched with a key of
zero. Execution ends if an addressing
condition is encountered (1.A.2).

3. Execution ends with a program interruption for
a priVileged-operation exception if bit 30 of
MICRSEG is one (1.A.3).

4. If an access condition is encountered in
fetching the second halfword of the RESET
REFERENCE BIT instruction, execution of
this function ends with a program interruption
for that access exception (1.B).

5. The second-operand effective address is
partitioned to obtain the segment index and the
page index. The partitioning of the address is
based on 4K-byte pages and either 64K-byte or
1M-byte segments, depending on whether bit
31 of MICRSEG is zero or one, respectively.
For a 64K-byte segment, execution ends with a
program interruption for a privileged-operation
exception if the segment-table-length value in
bit positions 0-7 of MICRSEG is less than the
value obtained by appending four zeros to the
left of bits 8-11 of the second-operand address
(2).

6. The address of SEGPAGE, the real segment­
table entry, is computed, and the entry is
fetched with "a key of zero. Execution ends if
an addressing condition is encountered (3).

7. Execution ends with a program interruption for
a privileged-operation exception if the
segment-table entry is invalid, if the entry has

Virtual-Machine Assist 15

-~
I

an invalid format, or if the value of the
leftmost four bits of the page index exceeds the
value of bits 0-3 of the segment-table entry
(4).

8. The location of the swap-table address is
computed by subtracting 4 from the page-table
origin derived from the segment-table entry.
The word at this location, P AGSWP, is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (S.A.l).

9. Eight times the page index is added to bits 8-31
of the swap-table-address word to obtain the
address of the swap-table word. The swap­
table word at the address computed is fetched
with a key of zero. Execution ends if an
addressing condition is encountered. SWPFLG,
SWPKEYl, and SWPKEY2 are in bytes 0, 2,
and 3 of the word fetched (S.A.2).

10. Twice the page index is added to the page-table
origin from the segment-table entry to obtain
the address of the page-table entry. The page­
table entry, PAGCORE, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (S.B.l).

1 1. Execution ends with a program interruption for
a privileged-operation exception if the page­
table entry is valid and has an invalid format
(S.B.2).

12. If the page-table entry is valid, the reference
and change bits of the real storage key are

fetched, and the reference bit in the real
storage key is set to zero. Execution ends if an
addressing condition is encountered. If the
page-table entry is invalid, execution continues
as if real reference-bit and change-bit values of
zero had been fetched (S.B.3).

13. Reference-bit and change-bit values used to
determine the condition-code setting are
obtained by taking the logical OR of the real
reference-bit and real change-bit values and the
virtual reference-bit and virtual change-bit
values, respectively. The swap-table word
previously fetched is updated in storage, with a
key of zero, by computing new values of three
bits. The backup reference-bit value and
backup change-bit value are updated by
logically ORing those values and the values of
the real reference-bit and real change-bit
values, respectively. In addition, the virtual
reference bit of the swap-table word is set to
zero. The swap-table word contains two sets of
virtual and backup reference and change bits.
The value in bit position 20 of the second­
operand effective address determines which set
is used in this step. Figure 10 shows the bit
position in the swap-table word used for each
bit (6).

The condition code is set, and execution of this
function ends with completion of the RESET
REFEREN CE BIT instruction.

Figure 11 summarizes fields used.

!

I Bit

Bit Used in Swap Table When
Bit 20 of Second Operand Is:

Function Zero One

Backup reference-bit position 4 6
Backup change-bit position 5 7
Virtual reference-bit position 21 29
Virtual change-bit position 22 30

Figure to. Bits Used in Swap Table for RESET REFERENCE BIT

16 Virtual-Machine Assist and Shadow-Table-Bypass Assist

I
I

SET PSW KEY FROM ADDRESS
The SET PSW KEY FROM ADDRESS instruction
is executed for a virtual machine if the virtual-
machlne_1lssiSJ_is __ 'l~tiYJ;tl~d_tQJ'_ml~1l1/ 3 70
instructions, unless (1) a virtua!-machin~~-x~~ption
is recognized or (2) the virtual PSW key cannot be
accessed.

The set-PSW-key-from-address function of the
virtual-machine assist is invoked each time a CPU
attempts to execute a SET PSW KEY FROM
ADDRESS instruction when the problem-state bit
of the real PSW is one. Execution of this function
consists In performing the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, execution of the set-PSW-key-from­
address function ends, a program' interruption
takes place for a privileged,..operation exception.
and execution of the SET PSW KEY FROM
ADDRESS instruction is suppressed (l.A).

2. If an access condition is encountered in
fetching the second halfword of the SET PSW
KEY FROM ADDRESS instruction, execution
of this fl.lnction ends with a program
interruption for that access exception (loB).

Field Control Address Offset No. of

3. The word MICVPSW, which contains the
virtual-PSW address, is fetched with a key of
zero. Execution ends if an addressing
condition is encountered (2).

4. BiT~1-1 ufthe-virtuat-PSW-,-VMP-SW,--ar-e
replaced, with a key of zero, by bits 24-27 of
the second-operand address of the SET PSW
KEY FROM ADDRESS instruction. Execution
ends if an addressing condition is encountered
(3).

5. Bits 24-27 of the second-operand address also
replace the PSW key (bits 8 -11) of the real
PSW. Execution ends with completion of the
SET PSW KEY FROM ADDRESS instruction
and the next instruction is fetched with the ne~
PSW key (4).

Figure 12 summarizes the fields used.

Name Block Type (Hex) Bytes Contents

MICRSEG MICBLOK Real 8 4 Address of real
segment table

SEGPAGE SEGTABLE Real 4SX 4 Segment-table entry

PAGSWP PAGTABLE Real -4 4 Address of swap table

PAGCORE 2PX 2 entry IPAGTABLEIReal
I

IPage-table
I

I
SWPFLG ISWPTABLEIReai 0 I 1 IBaCkUP bits

SWPKEYl SWPTABLEIReal 2 I 1 Low 2K-byte virtual
key

SWPKEY2 SWPTABLE Real 3 1 High 2K-byte virtual
I I ke I

Figure 11. Fields Used in RESET REFERENCE BIT

, Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

MICVPSW MICBLOK Real 0 4 Address of virtual
PSW

VMPSW VMBLOK Real 0 2 Virtual PSW bits 0-15

Figure 12. Fields Used in SET PSW KEY FROM ADDRESS

Virtual-Machine Assist 17

SET STORAGE KEY
The SET STORAGE KEY instruction is executed
for a virtual machine if the virtual-machine assist is
activated for this instruction, unless (1) a virtual­
machine exception is recognized, (2) the real page
size is 2K bytes, or (3) some pertinent VM/370
control field cannot be accessed.

The set-storage-key function of the virtual­
machine assist is invoked each time a CPU attempts
to execute a SET STORAGE KEY instruction
when the problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. Execution of this function ends with a program

interruption for a privileged-operation
exception if bits 0-2 of control register 6 are
not 100 binary or if bits 28-31 of the general
register specified by the R2 field of the
instruction are not zeros (1).

2. The word MICRSEG, which contains the real
segment-table address, is fetched with a key of
zero. Execution ends if an addressing
condition is encountered (2).

3. Execution ends with a program interruption for
a privileged-operation exception if bit 30 of
MICRSEG is one (3).

4. The address in the general register specified by
the R2 field is partitioned to obtain the segment
index and the page index. The partitioning of
the address is based on 4K-byte pages and
either 64K-byte or 1M-byte segments,
depending on whether bit 31 of MICRSEG is
zero or one, respectively. For a 64K-byte
segment, execution ends with a program
interruption for a privileged-operation
exception if the segment-table-length value in
bit positions 0-7 of MICRSEG is less than the
value obtained by appending four zeros to the
left of bits 8-11 of the address specified (4).

5. The address of the real-segment-table entry,
SEGPAGE, is computed, and the entry is
fetched with a key of zero. Execution ends if
an addressing condition is encountered (5).

6. Execution ends with a program interruption for
a privileged-operation exception if the
segment-table entry is invalid, if the entry has
an invalid format, or if the value of the
leftmost four bits of the page index exceeds the
value of bits 0-3 of the segment-table entry
(6).

7. The location of the swap-table address is
computed by subtracting 4 from the page-table
origin derived from the segment-table entry.

18 Virtual-Machine Assist and Shadow-Table-Bypass Assist

The word at this location, PAGSWP, is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (7 .A. 1).

8. Eight times the page index is added to bits 8-31
of the swap-table-address word to obtain the
address of the swap-table word. The swap­
table word at the address computed is fetched
with a key of zero. Execution ends if an
addressing condition is encountered. SWPFLG,
SWPKEY 1, and SWPKEY2 are in bytes 0, 2,
and 3 of the word fetched (7.A.2).

9. Twice the page index is added to the page-table
origin from the segment-table entry to obtain
the address of the page-table entry. The page­
table entry, PAGCORE, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (7 .B.1).

10. Execution ends with a program interruption for
a privileged-operation exception if the page­
table entry is valid and has an invalid format
(7.B.2).

11. If the page-table entry is valid, the reference
and change bits are fetched from the real
storage key, and a new value is placed in the
real storage key. Execution ends if an
addressing condition is encountered. Bits 0-4
of the new value are obtained from bit
positions 24-28 of the general register specified
by R2 field of the instruction. Bits 5 -6 (the
reference-bit and change-bit positions) of the
new value are zeros. If the page-table entry is
invalid, execution continues as if real
reference-bit and change-bit values of zero had
been fetched (7.B.3).

12. The swap-table word previously fetched is
updated in storage, with a key of zero, by
computing new values of 10 bits. The backup
reference-bit and change-bit values are updated
by logically ORing those values and the values
of the real reference-bit and real change-bit
values, respectively. In addition, bits 0-6 of the
swap-table byte containing the virtual storage
key are replaced by bits 24-30 of the general
register specified by the R2 field of the
instruction. Bit 7 of that byte is set to an
unpredictable value. The swap-table word
contains two sets of backup bits and virtual
storage-key bytes. The value in bit position 20
of the general register (the second operand)
specified by the R2 field of the instruction
determines which set is used in this step.
Figure 13 shows the bit positions of the bits
and byte used (8).

Execution of this function ends with completion
of the SET STORAGE KEY instruction.

Figure 14 summarizes the fields used.

SET SYSTEM-MASK
The SET SYSTE:rv1 :rvIASK instruction is executed
for a virtual machine if the virtual-machine assist is
activated, unless (1) a virtual-machine interrll:Ption
may follow, (2) the second operand or some
pertinent VM/370 control field cannot be accessed,
or (3) the PER mask or the DAT bit of the virtual
PSW would be changed.

The set-system-mask function of the virtual­
machine assist is invoked each time a CPU attempts
to execute a SET SYSTEM MASK instruction when
the problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. If bits 0-1 of control register 6 are not 10

binary, execution of the set-system-mask
function ends, a program interruption takes
place for a privileged-operation exception, and
execution of the SET SYSTEM MASK
instruction is suppressed (I.A.I).

2. The word MICCREG, which contains the
address of the ECBLOK, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (l.A.2).

Bits Used in

3. The virtual control-register-O value, EXTCRO,
which is in the first word of the ECBLOK, is
fetched with a key of zero. Execution ends if
an addressing condition is encountered (1.A.3).

4. ff--bit position -l-cl'--viTtual control register--9-­
contains a one, execution ends with a program
interruption for a privileged-operation
exception (l.A.4).

5. If an access condition is encountered in
fetching the second halfword of the SET
SYSTEM MASK instruction, execution of this
function ends, and a program interruption takes
place for the access exception encountered
(l.B).

6. One byte is fetched with the logical address of
the second operand and the PSW key. If an
access condition is encountered, execution of
this function ends with a program interruption
for the access exception found (2.A).

7. The word MICVPSW, which contains the
address of the virtual PSW; is fetched with a
key of zero. Execution ends if an addressing
condition is encountered (2.B.1).

8. The first halfword of VMPSW, which contains
the virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (2.B.2).

Swap Table When
Bit 20 of Second Operand Is:

Function Zero One

Backup reference-bit position 4 6
Backup change-bit position 5 7
Vir-f"1I:::11 c;:f" r n -k~v hvte j'" ~ __ . _~o. a::le "-, _, 16-23 24-31

Figure 13. Bits Used in Swap Table for SET STORAGE KEY

Field Control Address Offset
Name Block Type (Hex)

MICRSEG MICBLOK Real 0
I I I

SEGPAGE SEGTABLE Real 4SX

PAGSWP PAGTABLE Real -4

PAGCORE PAGTABLE Real 2PX

SWPFLG ISWPTABLE/Real 0

SWPKEYl lSWPTABLEjReal 2

SWPKEY2 !SWPTABLE1Real

Figure 14. Fields Used in SET STORAGE KEY

No. of
Bytes

4

4

4

2

Contents

Address of real
I segment table

Segment-table entry

Address of swap table

Page-table entry

IBackuP bits

I
LOW 2K-byte virtual
key

High 2K-byte virtual
key

Virtual-Machine Assist 19

9. If the virtual PSW is in EC mode, the following
conditions are verified for byte 0 of the virtual
PSW and the ope,rand byte that is to replace
it (3):
a. TheDAT mode bit is unchanged.
b.. The PER mask is unchanged.
c. Bits 0, 2, 3, and 4 of the new PSW are

z.eros.
d. Neither the I/O mask (bit 6) nor the

external mask (bit 7) of the PSW is to be
changed from zero to one if a virtual
interruption is pending (that is, if bit 0 of
the word containing the virtual PSW
address is one l.

In the absence of any of these conditions,
execution ends with the invoking of the set­
system-mask function of the expanded-virtual­
machine assist if that facility is installed. If
that facility is not installed, execution ends with
a program interruption for a privileged­
operation exception.

When the virtual PSW is in BC mode,
execution ends if any channel mask, I/O mask,
or external mask is to be changed from zero to
one and a virtual interruption is pending.
Execution ends with a program interruption for
a privileged-operation exception.

10. The operand byte fetched is stored with a key
of zero as byte 0 of the virtual PSW.
Execution of this function ends with completion
of the SET SYSTEM MASK instruction (4).

Figure 15 summarizes the fields used.

Programming Note
The value in bit position 1 of the real control
register 0 has no effect on the execution of the
set-system-mask function of the virtual-machine
assist.

Field Control Address Offset No. of

STORE CONTROL
The STORE CONTROL instruction is executed for
a virtual machine if the virtual-machine assist is
activated for System/370 instructions, unless (1) a
virtual-machine exception is recognized, or (2) the
second operand or some pertinent VM/370 control
field cannot be fetched.

The store-control function of the virtual-machine
assist is performed each time the CPU attempts to
execute a STORE CONTROL instruction when the
problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, execution of this function ends, and a
program interruption takes place for a
privileged-operation exception (1.A.1).

2. The word MICCREG, containing the address
of the control block ECBLOK, which in turn
contains the virtual control registers, is fetched
with a key of zero. Execution of this function
ends if an addressing condition is encountered
(1.A.2).

3. If an access condition is encountered in
fetching the second halfword of the STORE
CONTROL instruction, execution of this
function ends, and a program interruption takes
place for the access exception encountered
(1.8).

4. If the second-operand effective address does
not specify a word boundary, execution of this
function ends, and a program interruption takes
place for a privileged-operation exception
(2.A).

5. The virtual control-register values specified by
the R 1 and R 3 fields of the instruction are
fetched from the ECBLOK with a key of zero
and stored with the PSW key in ascending

Name Block Type (Hex) Bytes Contents

MICCREG MICBLOK Real 4 4 Address of ECBLOK

MICVPSW MICBLOK Real 8 4 Address of VMPSWl

EXTCRO ECBLOK Real 0 4 Virtual control
register 0

VMPSW VMBLOK Real 0 2 Virtual PSW bits 0-15

Operand 2 - Logical - 1 New system mask

1 A virtual interruption is pending if bit 0 of MICVPSW is one.

Figure 15. Fields Used in SET SYSTEM MASK

20 Virtual-~1achlne Assist and Shadow·Table-Bypass Assist

locations starting with the location specified in
the second-operand address. Execution ends if
an addressing condition is encountered in
fetching control-register values. On some
m-odeIs,--acrdfesSingcondllollsmayOe--------- --

recognized for all 16 virtual control registers.
If an access condition is encountered on the
second operand, a program interruption takes
place for the exception recognized (2.B).

If no exceptions are recognized, the execution of
this function and the instruction are complete.

Figure 16 summarizes the fields used.

STORE THEN AND SYSTEM
lVIASK
The STORE TH~EN AND SYSTEM MASK
instruction is executed for a virtual machine if the
virtual-machine assist is activated for System/370
instructions, unless (1) a virtual-machine exception
is recognized, (2) the first operand or some
pertinent VM/370 control field cannot be accessed,
or (3) the PER mask or the DAT bit of the virtual
PSW would be changed.

If the shadow-table-bypass assist is not installed,
the store-then-AND-system-mask function of the
virtual-machine assist is invoked each time a CPU
attempts to execute a STORE THEN AND
SYSTEM MASK instruction when the problem­
state bit of the real PSW is one. If the shadow­
table-bypass assist is installed, the store-then­
AND-system-mask function of the virtual-machine
assist may be invoked only from the STNSM
function of the shadow-table-bypass assist.

IField Control Address Offset No. of

Execution of this function consists in performing
the following steps:
1. If bits 0-3 of control register 6 are not lOXO

binary, execution of this function ends, a
plugl am intett aption -takes-place--for--a----------­
privileged-operation exception, and execution
of the STORE THEN AND SYSTEM MASK
instruction is suppressed (1.A.1).

2. The word MICVPSW, containing the address of
the virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (1.A.2).

3. The first halfword of VMPSW, which contains
the virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (I.A. 3).

4. A new first byte for the virtual PSW is
computed by taking the logical AND of the
immediate field (12) of the instruction and byte
o of the virtual PSW fetched. If the virtual
PS\V is in the Ee mode (bit 12 is one) and if
the replacement of byte 0 of the virtual PSW
by the new byte-O value would change bit 1 or
bit 5 from one to zero, execution of this
function ends. Ending of execution invokes the
store-then-AND-system-mask function of the
expanded virtual-machine assist if that assist is
installed. Otherwise, ending of execution
causes a program interruption to be taken for a
privileged-operation exception (l.A.4).

5. The second halfword of the instruction is
fetched. If an access condition is encountered,
execution of this function ends, and a program:

IName Block Type (Hex) Bytes Contents

MICCREG MICBLOK Real 4 4 Address of ECBLOK
(virtual CRs)

EXTCRO ECBLOK Real 0 4 Virtual CRO

EXTCR, ,ECBLOK ,Real , 4 , 4 ,Virtual CRl ,
EXTCRl IECBLOK IReal 4 4 Virtual CRl

EXTCRl ECBLOK Real 4 4 Virtual CRl

EXTCRl ECBLOK Real 4 4 Virtual CRl

IEXTCR15 IECBLOK jReal I 3C 4 IVirtual CR15
I

4n 1 IOperand 21 I Loa i ca 1 , 0 I I
~ I

Ln is the number of registers specified by the R 1 , R3 fields.

Figure 16. Fields Used in STORE CONTROL

Virtual-Machine Assist 21

interruption takes place for a privileged­
operation exception (1. B. 1).

6. If an access exception exists for a store access
made with the PSW key to the location
designated by the first-operand address,
execution of this function ends, and a program
interruption is taken for the access exception
found (1.B.2).

7. The old value of byte 0 of the virtual PSW is
stored at the first-operand logical address. The
updated virtual PSW is stored as the new
virtual PSW with a key of zero (2).

Execution of this function ends with completion
of the STORE THEN AND SYSTEM MASK
instruction.

Figure 17 summarizes the fields used.

STORE THEN OR SYSTEM MASK
The STORE THEN OR SYSTEM MASK
instruction is executed for a virtual machine if the
virtual-machine assist is activated for System/370
instructions, unless (1) a virtual-machine
interruption may follow, (2) the first operand or
some pertinent VM/370 control field cannot be
accessed, or (3) the PER mask or the DAT bit of
the virtual PSW would be changed.

If the shadow-table-bypass assist is not installed,
the store-then-OR-system-mask function of the
virtual-machine assist is invoked each time a CPU
attempts to execute a STORE THEN OR SYSTEM
MASK instruction when the problem-state bit of
the real PSW is one. If the shadow-table-bypass
assist is installed, the store-then-OR-system-mask
function of the virtual-machine assist may be

. invoked only from the STOSM function of the
shadow-table-bypass assist. Execution of this
function consists in performing the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, execution of this function ends, a
program interruption takes place for a
privileged-operation exception, and execution
of the STORE THEN OR SYSTEM MASK
instruction is suppressed (l.A.l).

Field Control Address Offset No. of

2. The word MICVPSW, which contains the
address of the virtual PSW, is fetched with a
key of zero. Execution ends if an addressing
condition is encountered (l.A.2).

3. The first halfword of VMPSW, which contains
the virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (l.A.3).

4. A new first byte for the virtual PSW is
computed by taking the logical OR of the
immediate field (12) of the instruction and byte
o of the virtual PSW fetched. If the virtual
PSW is in the EC mode (bit 12 is one) and if
the replacement of byte 0 of the virtual PSW
by the new byte 0 would change any of the bits
in bit positions 0-5 from zero to one, execution
of this function ends. Execution also ends if
bit 0 of MICVPSW is one and if the
replacement of byte 0 of the virtual PSW by
the new PSW would change any bit from zero
to one. Ending of execution invokes the store­
then-OR-system-mask function of the expanded
virtual-machine assist if that assist is installed.
Otherwise, ending of execution causes a
program interruption to be taken for a
privileged-operation exception (l.A. 4).

5. The second halfword of the instruction is
fetched. If an access condition is encountered,
execution of this function ends, and a program
interruption takes place for a privileged­
operation exception (1.B.O.

6. If an access exception exists for a store access
made with the PSW key to the location
designated by the first-operand logical address,
execution of this function ends, and a program
interruption takes place for the access
exception found (1.B.2).

7. The old value of byte 0 of the virtual PSW is
stored at the first-operand logical address. The
updated virtual PSW is stored with a key of
zero as the new virtual PSW. Execution of this
function ends with the completion of the
STORE THEN OR SYSTEM MASK instruction
(2).

Figure 18 summarizes the fields used.

Name Block Type (Hex) Bytes Contents

MICVPSW MICBLOK Real 8 4 Address of VMPSW

VMPSW VMBLOK Real 0 2 Virtual PSW bits 0-15

Operand 1 - Logical - 1 Old system mask

Figure 17. Fields Used in STORE THEN AND SYSTEM MASK

22 Virtual-Machine Assist and Shadow-Table-Bypass Assist

Control Address Offset No. of fFlel d
Name Block Type (Hex) Bytes Contents

MICVPSW
_ L~~B~OK I i~~~l ___ 1

8

-\
4 iAddress of VMPSW

0-151
- --- -- - - --- -- - - -- ---t-- ----

VMPSW IVMRI nK 1<0.::>1 0 2 iVlrtual PSW bits
I

Operand 21 ":'~. I~::;call - I 1 IOld system mask I

Figure 18. Fields Used in STORE THEN OR SYSTEM MASK

SUPERVISOR CALL
The SUPERVISOR CALL instruction is executed
for a virtual machine if the virtual-machine assist is
activated for SVC interruptions, unless (1) a
virtual-machine interruption may follow; (2) some
pertinent VM/370 control field or the low-storage
locations of the virtual machine cannot be
accessed; (3) the PER mask is one in the real PSW
or in the old or the new virtual PSW; (4) execution
would change the control mode, the DAT bit, or
the wait-state bit of the virtual PSW; or (5) the
SVC interruption code is 76 hex.

The supervisor-call function of the virtual­
machine assist is invoked each time a CPU attempts
to execute a SUPERVISOR CALL instruction
when the problem -state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. If bits 0-4 of control register 6 are not lXXXO

binary, execution of the supervisor-call function
ends, and a supervisor-call interruption takes
place in the real machine in the normal
manner (1).

2. If the real PSW is in EC mode with the PER
mask set to one, execution ends, and a real
supervisor-call interruption takes place (2.A).

3. The word MICVPSW, which contains the
address of the virtual PSW, is fetched with a
key of zero. Execution ends if an addressing
condition is encountered (2.B.1).

4. VMPSW, which contains the current virtual
PSW, is fetched with a key of zero. Execution
ends if an addressing condition is encountered
(2.B.2).

5. If the current virtual PSW is in EC mode with
the PER mask set to one, execution ends, and a
real supervisor-call interruption takes place
(2,B,3),

The virtual machine's real address 0 is
translated through the segment tables addressed
by the first word in the virtual-machine­
parameter list. The page-table entry is
interpreted in the format of a 4K-byte or
2K-byte page-table entry, depending on
whether bit 30 of MICRSEG is zero or one,

respectively. If any of the following conditions
is encountered, a real supervisor-call
interruption takes place:

6. An addressing condition is encountered in
fetching MICRSEG, which contains the address
of the real segment table, with a key of zero
(2.C.l).

7. An addressing condition is encountered in
fetching SEGPAGE, which contains the first
real-segment table entry, with a key of zero

8. The segment-table entry is invalid (2.C.3).
9. The segment-table entry has an invalid format

(2.C.4).
10. An addressing condition is encountered in

fetching P AGCORE, which contains the first
page-table entry of the first segment, with a
key of zero (2.C.5).

11. The page-table entry is invalid (2.C.6).
12. The page-table entry has an invalid format

(2.C.7).
13. The new virtual PSW is fetched, with a key of

zero, from location 60 hex in the first virtual
page. Execution ends if an addressing
condition is encountered (2.C.8).

14. If (1) the wait-state bit of the new virtual PSW
is one or (2) that PSW is in the EC mode with
the PER mask set to one or with an invalid
format, execution ends, and a real supervisor­
call interruption takes place (2.C.9.A).

15. Execution of the supervisor-call function ends
if any of the following conditions holds
(2.C.9.B):
a. The control mode of the virtual PSW is

being changed from the BC to the EC
mode, or from the EC mode to the BC
mode.

b. The DAT mode bit of an EC-mode virtual
PSW is being changed.

c. A virtual interruption is pending and any
channel mask, input/output mask, or
external mask is being changed from zero
to one (bits 0-7 in the BC mode and bits
6-7 in the EC mode). A virtual
interruption is pending when bit 0 of
MICVPSW is one.

Virtual-Machine Assist 23

Note: Because all the preceding conditions
involve the value [etched in step 4, the priority
of step 15 (2. C. 9.B) is necessarily lower than
that of step 4, regardless of the rules based on
priority indicators.

If execution ends, a real supervisor-call
interruption takes place.

16. If the supervisor-call interruption code is 76
(4C hex), execution ends, and a real
supervisor-call interruption takes place (2.D).

17. The old PSW and interruption code are stored,
with a key of zero, in 20 hex and 88 hex of
virtual page 0 as appropriate to the mode of the

Shadow-Table Validation
When the real page-table entry used for dynamic
address translation is invalid and the shadow­
table-validation function is active, the correct, valid
entry value derived from the virtual and real
translation tables is placed in that page-table entry.
However, this validation function is not performed
if any exception condition is found in fetching or
using the corresponding real or virtual translation­
table entries.

,"~I current virtual PSW. The stored values are the

If the shadow-table-bypass assist is not installed,
the shadow-table-validation function of the
virtual-machine assist is invoked whenever a
program interruption is about to take place for a
page-translation condition encountered outside the
shadow-table-validation function itself. If the
shadow-table-bypass assist is installed, the
shadow-table-validation function may be invoked
only from the page-fault-reflection function of the
shadow-table-bypass assist. If this function
successfully validates the shadow-table page entry
which caused the page-translation condition,
instruction execution that was in progress is
resumed or restarted. Otherwise, a program
interruption takes place for the original page­
translation condition or, in some cases, for an
addressing condition encountered in performing the
shadow-table-validation function. The execution of

,J' ;,0-: current virtual PSW, ILC, and SVC-number
values updated by the condition code, program
mask, and inst~1l-'~ti()p._Jl9QI~S~, from the real.",
PSW. 'The n:~w virtual PSW is stored as the

.", ---aIiTeiit virtual PSW in real storagef1ne­
.;', .()' pfogratii-mask;-irey,COn.QIfio:rl--c~ae, and

'~' ~\ I instruction-address parts of the new virtual
.' \ PSW replace the corresponding y~Jl.l_~~j!1.:,Jh.e

"" real PSW.:_~ The--problem'-state bit of the new
vlrtuafpSW is placed in bit posit~9E:_J .. 9i...real
control register ~~'Execiition-ofthis function
efias~" and"-a new virtual instruction is fetched
with the new real PSW (3).

Figure 19 summarizes the fields used.

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

MICRSEG MICBLOK Real 0 4 Address of real
segment table

MICVPSW MICBLOK Real 8 4 Address of VMPSW

VMPSW VMBLOK Real 0 8 Virtual PSW

SEGPAGE SEG Real 0 4 First real segment
TABLE table entry

PAGCORE PAG Real 0 2 Address of PSA of
TABLE virtual machine

- PSA of Real' 20 8 Old SVC PSW
virtual

Rea 11 - machine 60 8 New SVC PSW

- Real 1 88 4 Interruption code2

1 This real address is obtained by the address translation
performed in steps 6 through 12 without using control
registers 0 and 1.

2 This field is stored only when old SVC PSW is in EC mode.

Figure 19. Fields Used in SUPERVISOR CALL

24 Virtual-Machine Assist and Shadow-Table-Bypass Assist

this function consists in performing the following
ste;ps:
L On some models, the segment index and the \ ..pf-

page index of the untranslatable address are tG ~ 7.

entry address, execution of this function ends,
and a program interruption takes place for the
page-translation condition (2.A.S).

- pIaceolnlne· Wotd-aLreat-locatiurr9fi irer.-if7
~~

bits 0-5 of control register 6 are not ,I XJ(~
binary or if the real PSWis in the EC mode
with a PER-mask~bit value of one~ execution of
this function ends, and a program interruption
takes place for the page-translation condition
(1).

2. The doubleword which contains the fields
MICRSEG and MICCREG is fetched with a
key of zero. MICRSEGcontains the address of
the real segment table, and MICCREG contains
the address of the extended control block
(ECBLOK). Execution ends if an· addressing
condition is encountered (2.A.O.

3. EXTeRO and EXTCR 1, virtual controi
registe:rs 0 and 1, are fetched from the
ECBLOK with a key of zero. Execution ends
if an addressing condition is encountered

4.
(2.A.2).
If the translation format in bits 8-12 of virtual

control register 0 is invalid, execution of this
function ends, and a program interruption takes
place for the page-translation condition
(2.A.3).

5. Execution ends with a program interruption for
the page-translation condition if virtual control
register 0 specifies a 64K-byte segment size
and if the segment-table-length value in bit
positions 0-7 of virtual control register 1 is less
than the value obtained by appending four
zeros to the left of bits 8-11 of the
untranslatable address (2.A.4).

6. The untranslatable address is divided into a
virtual-segment index, a virtual-page index, and
a virtual-byte index, based on the translation
format in virtual control register O. The
virtual-segment-table-entry address is computed
by using the contents of virtual control register
1 and the virtual segment index. The virtual­
segment-table-entry address is in turn divided
into a real-segment index, a real-page index,
and a real-byte index, assuming either 4K-byte
or 2K-byte pages, depending on whether bit 30
of MICRSEG is zero or one, and either
64K-byte or 1M-byte segments, depending on
whether bit 31 of MICRSEG is zero or one;
respectively. If bit 31 of MICRSEG is zero
and the real segment-table-length value in bit
positions 0-7 of MICRSEG is less than the
value obtained by appending four zeros to the
left of bits 8-11 of the virtual-segment-table-

Four times the real segment index found in step
6--is-added-te-th.e- re-al-~glOOl1t--tahle address--
fetched in step 2 to obtain the address of the
real segment-table entry SEGP AGE for
translating the virtual segment-table-entry
address. This real segment-table entry is
fetched with a key of zero. Execution ends if
an addressing condition is encountered (2.A.6).

8. If the real segment-table entry is invalid or has
an invalid format, or if the value of the
leftmost four bits of the real page index of the
virtual segment-table entry address exceeds the
page-table length in bits 0-3 of the real
segment-table entry, execution of this function
ends, and a program interruption takes place
for the page-translation condition (2.A.7).

9. Twice the real page index found in step 6 is
added to the real page-table origin found in the
real segment-table entry fetched in step 7 to
obtain the address of the reai page-table entry
PAGCORE for translating the virtual
segment-table-entry address. This real page­
table entry is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (2.A.8).

10. If the real page-table entry is invalid or has an
invalid format, execution of this function ends,
and a program interruption takes place for the
page-translation condition (2.A.9).

11. The real byte index found in step 6 combined
with the page-frame real address found in the
real page-table entry fetched in step 9 obtain
the real address of the virtual segment-tabie
entry. The virtual segment-table entry is
fetched with a key of zero. Execution ends if
an addressing condition is encountered
(2.A.I0).

12. If the virtual segment-table entry is invalid or
has an invalid format, or if the value of the
leftmost four bits of the virtual page index of
the address that could not be translated exceeds
the page-table length in bits 0-3 of the virtual
segment-table entry, execution of this function
ends, and a program interruption takes place
for the page-translation condition (2.A.1I).

13. The virtual-page-table-entry address is
computed by using the contents of the virtual
segment-table entry and the virtual page index
of the untranslatable address. The virtual­
page-table-entry address is in turn divided into
a real segment index, a real page index, and a
real byte index assuming either 4K-byte pages

Virtual-Machine Assist 25

(bit 30 ofMICRSEG is zero) or 2K-byte pages
(bit 30 is one), and 64K-byte segments (bit 31
of MICRSEG is zero) or 1 M,·byte segments (bit
31 is one). If bit 30 of MICRSEG is zero and
the real segment-table-length value in bit
positions 0-7 of MICRSEG is less than the
value obtained by appending four zeros to the
left of bits 8-11 of the virtual-page-table-entry
address, execution of this function ends, and a
program interruption takes place for the page­
translation condition (2.A.12).

14. Four times the real segment index found in step
13 is added to the real segment-table address
fetched in step 2 to obtain the address of the
real segment-table entry for translating the
virtual page-table-entry address. This real
segment-table entry SEGPAGE is fetched with
a key of zero. Execution ends if an addressing
condition is encountered (2.A.13).

15. If the real segment-table entry is invalid or has
an invalid format. or if the value of the
leftmost four bits of the real page index of the
virtual page-table-entry address exceeds the
page-table length in bits 0-3 of the real
segment-table entry, execution of this function
ends, and a program interruption takes place
for the page-translation condition (2.A.14).

16. Twice the real page index found in step 13 is
added to the real page-table origin found in the
real segment-table entry fetched in step 14 to
obtain the address of the real page-table entry
for translating the virtual page-table-entry
address. This real page-table entry PAGCORE
is fetched with a key of zero. Execution ends
if an addressing condition is encountered
(2.A.15).

17. If the real page-table entry fetched is invalid or
has an invalid format, execution of this
function ends. and a program interruption takes
place for the page-translation condition
(2.A.16).

18. The real byte index found in step 13 is
combined with the page-frame real address
found in the page-table entry fetched in step 16
to obtain the real address of the virtual page­
table entry. The virtual page-table entry is
fetched with a key of zero. Execution ends if
an addressing condition is encountered
(2.A. I 7).

19. If the virtual page-table entry is invalid or has
an invalid format, execution of this function
ends, and a program interruption takes place
for the page-translation condition (2.A.18).

20. The virtual address corresponding to the
address that could not be translated is

26 Virtual-Machine Assist and Shadow-TabIe-Bypass Assist

computed by using the contents of the virtual
page-table entry and the virtual.byte index of
the address that could not be translated. This
address is divided into a real segment index, a
real page index, and a real byte index, assuming
either 4K-byte pages (bit 30 of MICRSEG is
zero) or 2K -byte pages (bit 30 of MICRSEG is
one), and either 64K-byte segments (bit 31 of
MICRSEG is zero) or 1M-byte segments (bit
31 of MICRSEG is one). If bit .30 of
MICRSEG is zero and the real segment-table­
length value in bit positions 0-7 of MICRSEG
is less than the value obtained by appending
four zeros to the left of bits 8-11 of the virtual
address, execution of this function ends and a
program interruption takes place for the page­
translation condition (2.A.19).

21. Four times the real segment index found in step
20 is added to the real segment-table address
from MI CRSEG to obtain the address of the
real segment-table entry for translating the
virtual address. This real segment-table entry
SEGP AGE is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (2.A.20).

22. If the real segment-table entry is invalid or has
an invalid format, or if the value of the
leftmost four bits of the page index of the
virtual address exceeds the page-table length in
bits 0-3 of the segment-table entry, execution
of this function ends, and a program
interruption takes place for the page-translation
condition (2.A.21).

23. Twice the real page index found in step 20 is
added to the real page-table origin found in the
real segment-table entry fetched in step 21 to
obtain the address of the real page-table entry
for translating the virtual address. This real
page-table entry P AGCORE is fetched with a
key of zero. Execution ends if an addressing
condition is encountered (2.A.22).

24. If the real page-table entry fetched is invalid or
has an invalid format, execution of this
function ends, and a program interruption takes
place for the page-translation condition
(2.A.23).

25. The address that could not originally be
translated because a page-translation condition
was encountered is divided into a a shadow­
table segment index, shadow-table page index,
and a shadow-table byte index based on the
translation format in bits 8-12 of real control
register O. The real address of the shadow
segment-table entry used for translating the
original address is computed by using the

shadow-table segment index and the shadow
segment-table address from real control register
1. The shadow segment-table entry SEGPAGE
is fetched with a key of zero. Execution ends
if- an addres~i-H-g--e-end-i-tten-is- encountere4-----­
(2.B.1).

26. If the shadow segrr~ent-table entry is invalid or
has an invalid format, or if the value of the
leftmost four bits of the shadow-table page
index obtained in step 25 exceeds the value of
bits 0-3 of the shadow segment-table entry,
execution of this function ends, and a program
interruption takes place for the page-translation
condition (2.B.2).

27. Twice the shadow-table page index found in
step 25 is added to the page-table origin found
in the shadow segment-table entry fetched in
that step to compute the real address of the
shadow page-table entry PAGCORE to be
validated (3).

The real byte index found in step 20 combined
with the page-frame real address found in the
page-table entry fetched in step 23 to obtain the
real address corresponding to the address that

originally was untranslatable. A valid halfword
shadow-table entry is formed by placing bits 8-19
or 8-20 of the real address obtained by translation
in bit positions 0-11 or 0-12, depending on whether
tlw- shadow --tahle--Page-sizeindicated-h¥l"eaLcontrol
register 0 is 4K or 2K bytes, respectively, in size.
Zeros are placed in the remaining rightmost bit
positions. The valid shadow-table entry is stored
with a key of zero at the address computed at the
start of this step. Execution ends if an addressing
condition is encountered. Note that an addressing
condition cannot arise unless the shadow-table
segment-table entry was modified since the original
page-translation condition was found.
28. Execution of this function ends, and execution

of the noninterruptible instruction or the unit
of operation of the interruptible instruction
which was being executed when the original
page-translation condition was encountered is
resumed or restarted. On some models, any
pending I/O, external, or restart interruptions
may take place before an instruction is
executed (4).

Figure 20 summarizes the fields used.

Virtual-Machine Assist 27

Control Address Offset No. of Field
Name Block Type (Hex) Bytes Contents

MICRSEG MICBLOK Real

MICCREG MtCBLOK Real

EXTCRO ECBLOK Real

EXTCR1 ECBLOK Real

SEGPAGE SEGTABLE Real

PAGCORE PAGTABLE Real

Virtual Real
segment
entry

SEGPAGE SEGTABLE Real

PAGCORE PAGTABLE Real

Vi rtual Real
page
entry

SEGPAGE SEGTABLE Real

PAGCORE PAGTABLE Real

SEGPAGE Shadow Real
SEGTABLE

PAGCORE Shadow Real
PAGTABLE

o

4

o

4

4SX1

4

4

4

4

4

2

4

4

2

2

4

2

4

2

Address of real
segment table

Address of ECBLOK

Virtual CRO

Virtual CR1

Entries to find vir­
tual segment entry

Entries to find vir­
tual segment entry

Entries to find vir­
tual page entry

Entries to find vir­
tual page entry

Entries to get real
translated address

Entries to get real
translated address

Shadow segment-table
entry

Validated shadow
page-table entry

Superscripts 1, 2, 3, and 4 refer, respectively, to the seg­
ment and page indexes to translate (1) the virtual segment­
table address, (2) the virtual page-table address, (3) the
virtual address corresponding to the untranslated virtual/
virtual address, and (4) untranslated logical address of the
virtual machine.

Figure 20. Fields Used in Shadow-Table Validation

28 Virtual-Machine Assist and Shadow-Table-Bypass Assist

I

Chapter 3. VM-Common-Segment Modification
ofVMA

Use 6rtne-- vTrtuaf-macnTne a~~fsIst wifh Tne --VM­
common-segment modification by the VM/370
System Extensions program product (Program No.
S748-XEl) improves the performance of virtual
machines which use the common-segment-bit
function of the System/370 extended facility.

The VM-common-segment modification alters
the virtual-machine assist so that checking for a
zero in the common-segment bit position (bit
position 30) of segment-table entries is omitted in
virtual-machine-assist functions:
• For all references to real segment-table entries
• For all references by virtual segment-table

entries
• For reference by the shadow-table-validation

function to a shadow segment-table entry for the
purpose of locating the shadow page-table entry
to be validated.

Tire VM-commurr-segment modification of VMA
has no effect on the checking of shadow segment­
table entries when they are used for translating
instruction or operand addresses. Figure 21 shows
the segment-table entries that are checked in bit
position 30 for each type of reference for each
completely assisted virtual-machine-assist function.

Programming Note
If the common-segment-bit function is used only by
the virtual machine and not in the real or shadow
segment tables, the only effects of installing the
VM-common-segment modification of VMA are:
1. The load-real-address function is completed

without a program interruption when a virtual
common segment is referred to.

2. The shadow-table validation can be completed
without a program interruption when a virtual
common segment is involved.

Shadow Segment-Table Entry
Real Virtual Used for Finding:
Segment- Segment-
Table Table PTE to Be

VMA Function Entry Entry Validated Instruction Operand

IPK, SPKA - - - X -

II SK, RRB
SSK, SVC Yl - - X -

\lRA Y2 Yl - X -

LPSW, SSM I
STeTl, STNSM I I I
STOSM -

I
-

I
-

I
X X

Shadow-table
validation Y3 Yl Yl - -

Explanation:

X

Yl,Y2,Y3

No reference of this type.
Reference is made and bit 30 is ignored if
System/370 extended facility is installed.

One, two, or three references of this type are
made, and bit 30 is ignored if the VM-common­
segment modification IS installed.

Figure 21. Segment-Table Entries Cbeck.ed in Bit Position 30

I
I

VM-Common-Segment Modification of VMA 29

Chapter 4. Shadow-Table-Bypass Assist

The shadow-table-bypass assist enhances the
pertDrmance-uf virttrai--ma:chines for~--the----­
virtual = real option is specified in Virtual Machine
Facility/370 (VM/370) pro-gram pl"oducts.

VM/370 normally employs shadow tables for
virtual machines operating in the Ee mcOde with
DAY on. Shadow tables are segment tables and
page tables. used by the dynamic-address,.
translation (DAT) facility of thereallllachine for
direct translation of logical addresses of the virtual
machine to real addressesQf -the real machine. For
machines with the virtual=-real option, however,
most addresses translated through the shadow
tables give the same result as if they were
translated only through the virtual-:-.tnachine
translation tables. Two specific techniques are
used. in different progr~mproducts to exploit this
character.istic of the. shadow tables of machines
having the virtual = real option.
1. In the true shadow-table-bypass technique, the

virtual,..machine segment and page tables are
used directly by the real-machine DAT
mechanism. Hence, no distinct shadow tables
exist, and the virtual-machine-segment table
origin and length are used wherever the general
VM/370 design calls for the values of the
shadow segment-table origin and length.
However~ because the VM/370 does not map
the first 4K bytes of the virtual-machine
storage to the first 4K bytes of real storage, this
technique requires that those page-table entries
of the virtual machine which refer to the first
4K bytes be modified by VM/370 so that this
remapping can be accomplished without
separate shadow tables.

2. In the single-processor-mode technique used for
a virtual = real virtual machine running MVS,
253 of the 256 page tables of the virtual
machine are used directly, and only three of the
page tables of the virtual machine have distinct
counterpart shadow page tables. The shadowed
tables are the tables that contain some entry
having a real page-frame address for which
prefixing or reverse prefixing of the virtual
machine applies. Thus, single-processor mode
is only a partial bypass of the shadow tables. A
separate shadow segment table is maintained,
253 of whose entries refer directly to virtual
page tables in the storage of the virtual
machine.

The shadow-table-bypass assist improves
performance of certain virtual machines having the
virtual = real option by executing seven specific

virtual-machine instructicns and one type of
virttlal-maehine pro-g-l"amint€l":}"uptiondirectiy
without requiring any intervention or assistance by
the VM/370 control program.

The assisted instructions are:
INVALIDATE PAGE TABLE ENTRY
LOAD CONTROL
LOAD REAL ADDRESS
PURGE TLB
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK
TEST PROTECTION

The virtual-machine program interruption is for
page-fault reflection and consists in taking a
program interruption for a page-translation
condition directly in the virtual machine.

Relation of Shadow-Table-Bypass
Assist to Other Assists
The shadow-table-bypass assist (STBA) is related
to the virtual-machine assist (VMA) and to the
expanded virtual-machine assist (EVMA) which is
part of ECPS:VM/370. All three assists use bits 0,
1, 3, 5, and 8-28 of control register 6 as follows:
Bit Meaning
o When the bit is zero, assists are inactive; when

the bit is one, VMA is active; when it is one
and bit 6 of control register 6 is one, EVMA is
active; when it is one and bit 8 of the assist
control word is one, STBA is active.

1 Virtual-machine problem-state bit.
3 When the bit is zero, only operation codes for

System/370 are assisted.
5 \Vheil the bit is one, shadow-table validation is

active; when it is zero, the page-fault-reflection
function is performed if bits 8 and 11 of the
assist control word are both ones.

8-28 Bits 8-28 are bits 8-28 of the address of the
virtual-machine parameter list (MICBLOK)
aligned on a doubleword boundary.

In addition, these assists use the following words
of the virtual-machine parameter list:

Offset (Hex) Field Symbol Use

0 MICRSEG Real segment-table address
4 MICCREG Address of ECBLOK
8 MICVPSW Address of virtual PSW bits

0-15
14 MICACF Assist control word

None of the eight functions of the shadow­
table-bypass assist is active unless (1) bit 0 of
control register 6 is one, (2) bit 8 of the assist
control word is one, and (3) a specific bit of bits
9-15 of the assist control word is one. The specific
activation bit depends on the function. (See Figure
22.) Six bits are used for eight functions. Each bit

Shadow-Tabie-Bypass Assist 31

(~(. . ¢ \1M Po, "c~,(~\

L \J~ r kuc.& ? rct;,\[J.-' ~;,.lc.~i~",,~
Bits 0-5 Bits 8-15 of 2.. J:~K)s~~:r\l"\~,.~b'k-
of Control Assist

3 ~:s ~f! o~t'C-I.~· ... 1' ~ Function Register 6 Control Word
4 t \I c... '!../\.Y\ ,.~: J

Invalidate page table entry 10XO XX lXlX XXXX r.:" S \('~?W~'C.::.~Jv::'" \JcJ- ,-··,'·v< J I

Load control 10XO XX I lXXX XXXl I :- f~" /'. i".. f"J A"', 1
if" 1 't.!(i. r H (/",;/\.1:'('\.:1-,

Load real address 10XO XX lXXX lXXX
.f \J:=c 1:-. &".4.{0\

'2.'1 \1M E\=" ~b\
~cb 'f~J..A r;. J~J :':.. . ~ ~ Purge TLB 10XO XX l1XX XXXX

Store then AND system mask 10XO XX lXXX XX1X
.. /1, ~:-rt? 3. L?f' II ~? (" A s, S',~ "

Store then OR system mask 10XO XX lXXX XX1X
f:.,(r 2. ¢ 5-r~'\l-:.e.. MoO<; f. ~0 ~ 1-" (:T:;:\,FL

...... '''1 1''''CU5 CbN\l?21L

Test protection 10XO XX lX1X XXX X 'L :1~. -rPPT (Q I\VR 21 L
.3 v-r:«"Tof'tL 2A&12 i-,Ll0LT ~~LC::c.."T=:Ql\..(

Page-fault reflection lXXX XO lXXl

Figure 22. Bits That Activate STBA Functions

activates a single function, except that bit 10
controls INVALIDATE PAGE TABLE ENTRY
and TEST PROTECTION and bit 14 controls
STORE THEN AND SYSTEM MASK and STORE
THEN OR SYSTEM MASK. Additional conditions
must be satisfied to activate each function. The
additional conditions are given in the descriptions
of the individual assist functions.

The shadow-table-bypass assist is logically
independent of the virtual-machine assist. For the
most part, the two assists complement each other.
However, when the load-real-address function of
the STBA is installed and active, and the VMA is
also installed, the load-real-address function of
STBA overrides that of the VMA. The expanded
virtual-machine assist is effective when the other
two assists, though active, are not applicable.

INVALIDATE PAGE TABLE
ENTRY
The INVALIDATE PAGE TABLE ENTRY
instruction is executed for a virtual machine if the
corresponding function of the shadow-table-bypass
assist is activated, unless (1) the virtual machine is
not in the EC mode with DAT on and the
problem-state bit zero, (2) some pertinent VM/370
control field cannot be fetched, or (3) the entry to
be invalidated is in the first 4K-byte locations in
virtual storage.

The invalidate-page-table-entry (IPTE) function
of the shadow-table-bypass assist is invoked each
time a CPU attempts to execute an INV ALIDA TE
PAGE TABLE ENTRY instruction when the
problem-state bit of the real CPU is zero.
Execution of this function consists in performing
the following steps:

32 Virtual-Machine Assist and Shadow-Table-Bypass Assist

XXXX 4 L-v:I\ COI\.\Te21L
S h,) LL S,9T CDf'.{-:-:-e.6 ~

~ . b ~-\S,\ ~ ,Si,;as.M (Dr':~'~'-

+ L-UL. c...ONl~L

1. If bits 0-3 of control register 6 are not lOXO
binary, a program interruption takes place for a
privileged-operation exception, and execution
of this IPTE instruction is suppressed (I.A.I).

2. The assist control word, MICACF, is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (l.A.2).

3. Execution ends with a program interruption for
a privileged-operation exception if bits 8 and
IO of the assist control word are not both ones
(1.A.3).

4. MICVPSW, which contains the address of the
virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (l.A.4)

5. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (l.A.5).

6. Execution ends with a program interruption for
a privileged-operation exception if bits 5 and
12 of the virtual PSW are not both ones (that
is, if the virtual machine is not in the EC mode
with DAT on) (I.A.6).

7. If an access condition is encountered in
fetching the second halfword of the IPTE
instruction, execution of this function ends, and
a program interruption takes place for the
access exception encountered (I.B).

8. The address of the page-table entry is
computed by using the page-table-origin value
from the general register specified by the R I
field and the page index from the address in the
general register specified by the R2 field. Bits
8-12 of real control register 0 determine the bit
positions that contain the page-index value. A
program interruption takes place for a
privileged-operation exception if the computed

page-table address is less than 4096. On some
models, this interruption also takes place when
the page-table origin is less than 4096 (2).

9. This function invalidates a page-table entry just
-as ufliel1\tVJtt;m-A.-'fE--¥AGE--'fABE-E-----­
ENTRY instruction were executed with the
problem-state bit set to zero. In particular,
certain entries in the translation-Iookaside
buffer of all configured CPUs must be purged.
If a protection or addressing exception is
encountered, a program interruption for
protection or addressing takes place in the
normal manner (3).

Figure 23 summarizes the fields used.

Programming Notes
1. IPTE is not assisted if the page-table entry is in

the first 4K bytes of real storage because
VM/3 7 0 does not map that storage as virtual
equals real.

2. A translation-specification exception for a
format error in bits 8-12 of real control register
o cannot arise in executing IPTE under
VM/370 because VM/370 always executes
virtual-machine instructions with real DAT on,
and a format error would prevent the fetching
of any virtual-machine instruction.

LOAD CONTROL
The LOAD CONTROL instruction is executed for
a virtual machine if the corresponding function of
the shadow-table-bypass assist is activated; the
instruction loads virtual control register 1 only
when the virtual machine is in the EC mode with
DAT on.

The load-control function of the shadow-table­
bypass assist is invoked each time a CPU attempts
to execute a LOAD CONTROL instruction when
the problem-state bit of the real PSW is one. The
execution of this function consists in performing
the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, a program interruption takes place for a
privileged-operation exception, and execution

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

of the LOAD CONTROL instruction is
suppressed (I.A.l)".

2. The assist control word, MICACF, is fetched
with a key of zero. Execution ends if an
addre-ssi-n-g~-is-encountered--­
(l.A.2.A.I).

3. Execution ends with a program interruption for
a privileged-operation exception if bits 8 and
15 of the assist control word are not both ones
(l.A.2.A.2).

4. MICVPSW, which contains the address of the
virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (l.A.2.A.3).

S. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (l.A.2.A.4).

6. Execution ends with a program interruption for
a privileged-operation exception if bits 5 and
12 of the virtual PSW are not both ones (that
is, if the virtual machine is not in the BC mode
with DAT on) (l.A.2.A.S).

7. Execution ends with a program interruption for
a privileged-operation exception if the R J and
R3 fields of the LOAD CONTROL instruction
are not both one (hex) (1.A.2.B).

8 .. If an access condition is encountered in
fetching the second halfword of the LOAD
CONTROL instruction, execution of this
function ends, and a program interruption takes
place with that access exception indicated
(l.B).

9. The LOAD CONTROL instruction is executed
just as if the real problem-state bit were zero~
If an exception is recognized, execution o£ this
function ends, and a program interruption takes
place indicating that exception (2).

10. If the value in real control register 1 was .not
changed, execution of the LOAD CONTROL
instruction is complete (3).

11. MICCREG, the word containing the address of
the ECBLOK control block,is fetched with .a
key of zero. Execution of the LOAD
CONTROL instruction is terminated, and a

IMICVPSW MICBLOK Real I 8
I

4 Address of VMPSW

IAssist contral word I
'Virtual PSW bits 0-lS t

/MICACF

VMPSW

Operand 2

lMICBLoKIReal

VMBLOK Real

Real

14

o

4

2

2 Page-table entry

Figure 23. Fields Used in INVALIDATE PAGE TABLE ENTRY

Shadow-Table-Bypass Assist 33

program interruption takes place if an
addressing exception is recognized (4.A.1).

12. The value in real control register 1 is stored,
with a key of zero, in virtual control register 1,
EXTCR 1. Execution of the LOAD
CONTROL instruction is terminated, and a
program interruption takes place if an
addressing exception is recognized (4.A.2.A).

13. The value in real control register 1 is stored,
with a key of zero, in shadow control register
1, EXTSHCRl. Execution of the LOAD
CONTROL instruction is terminated, and a
program interruption takes place if an
addressing exception is recognized (4.A.2.B).

14. The value in real control register 1 is stored,
with a key of zero, in RUNCRl, in the real
PSA (4.B).

Figure 24 summarizes the fields used.

LOAD REAL ADDRESS
The LOAD REAL ADDRESS instruction is
executed for a virtual machine if the corresponding
function of the shadow-table-bypass assist is
activated, unless (1) a virtual-machine-exception
condition is recognized, (2) some pertinent
VM/370 control field cannot be fetched, or (3) the
virtual machine is not in the EC mode with DA T
on.

The load-real-address (LRA) function of the
shadow-table-bypass assist is invoked each time a
CPU attempts to execute a LOAD REAL
ADDRESS instruction when the problem-state bit
of the real PSW is one. Execution of this function
consists in performing the following steps:

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

MICCREG MICBLOK Real 4 4 Address

MICVPSW MICBLOK Real 8 4 Address

1. If bits 0-3 of control register 6 are not 10XO
binary, a program interruption takes place for a
privileged-operation exception, and execution
of the LRA instruction is suppressed (I.A.1).

2. The assist control word, MICACF, is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (l.A.2).

3. Execution ends with a program interruption for
a privileged-operation exception if bits 8 and
12 of the assist control word are not both ones.
If execution of this function is ended, the
load-real-address function of the virtual­
machine assist is invoked when the virtual­
machine assist is installed. When the virtual­
machine assist is not installed, the ending of
execution of this function results in a program
interruption for a privileged-operation
exception (l.A.3).

4. MICVPSW, which contains the address of the
virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (l.A.4).

5. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (l.A.5).

6. Execution ends with a program interruption for
a privileged-operation exception if bits 5 and
12 of the virtual PSW are not both ones (that
is, if the virtual machine is not in the EC mode
with DAT on) (l.A.6).

7. If an access condition is encountered in
fetching the second halfword of the LRA
instruction, execution of this function ends,
and a program interruption takes place for that
access exception (I.B).

of ECBLOK

of VMPSW

MICACF MICBLOK Real 14 4 Assist control word

EXTCRl ECBLOK Real 4 4 Virtual control
register 1

EXTSHCRl ECBLOK Real 44 4 Shadow control
register 1

VMPSW VMBLOK Real 0 2 Virtual PSW bits 0-15

RUNCR1 PSA Real 344 4 Control register
1 atl dispatch

Operand - Logical - 4 New control-register-I
1 value I

Figure 24. Fields Used in LOAD CONTROL

34 Virtual-Machine Assist and Shadow-Table-Bypass Assist

8. The effective address is translated, and a
condition-code value is derived just as if LRA
were being executed with the real problem-state
bit set to zero. If a translation specification or
actclfes-sing conditton -is-encountel ed, execution
of this function ends with the occurrence of a
program interruption for the exception
encountered; otherwise, the translated address
is placed in the general register specified by the
R 1 field of the instruction, and the condition
code is set. Execution of this function then
ends, with execution of LRA completed (2).

Figure 25 summarizes the fields used.

PURGETLB
The PURGE TLB instruction is executed for a
virtual machine if the corresponding function of the
shadow-table-bypass assist is active, unless (1) a
virtual-machine-exception condition is recognized
or (2) some pertinent VM/370 control field cannot
be accessed.

The purge~ TLB (PTLB) function of the
shadow-table-bypass assist is invoked each time a
CPU attempts to execute a PURGE TLB
instruction when the problem-state bit of the real
PSW is one. Execution of this function consists in
performing the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, a program interruption takes place for a
privileged-operation exception, and execution
of the PTLB instruction is suppressed (I.A.l).

2. The assist control word, MICACF, is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (l.A.2).

3. Execution ends if bits 8 and 9 of the assist
control word are not both ones. If execution of
this function is ended, the purge-TLB function
of the expanded virtual-machine assist is
invoked when that assist is installed. When

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

that assist is not installed, the ending of
execution of this function results in a program
interruption for a privileged-operation
exception (1.A.3).

4. if-an-access-condition-is- encountered-in-­
fetching the second halfword of the PTLB
instruction, it is unpredictable whether this
condition is ignored, because no information is
needed from that halfword to execute the
instruction. If an access condition is
encountered and is not ignored, execution of
this function ends, and a program interruption
takes place for that access exception (1.B).

Steps 5 through 7 mayor may not be performed
on a CPU which is not configured in a two-CPU
configuration.
5. The APST A T 1 byte is fetched with a key of

zero from reallocation 69A hex. Execution
ends if an addressing condition is encountered
(2).

6. The CPPTLB bit (bit 6) of APSTAT2 in the
PSA of the CPU executing the purge-TLB
function is set to zero (3).

7. If the APUOPER bit (bit 0) of APSTATI is
zero, indicating that no attached processor is
operational, this step is complete. Otherwise,
the PREFIXB word is fetched with a key of
zero from real location 664 hex. The real
address of the APST A T2 byte in the PSA of
the other CPU is computed by adding 69B hex,
right-justified, to the PREFIXB word. The
t~PPTLBR1bit (bit 6) of the byte whose real
address was just computed is set to one with a
key of zero for the storage-access update.
Execution ends if an addressing condition is
encountered (4).

8. The TLB of the CPU executing the function is
purged (5).

Figure 26 summarizes the fields used.

MICVPSW MICBLOK Real 8 4 Address of VMPSW

MICACF MICBLOK Real 14 4 Assist control word

IVMPSW VMBLOK I Rea 1 I 0
I

2 IVirtual PSW bits 0-151
I

IOperand 2 1 IVirtuall 0 I 1 ill
1 No operand reference to storage is made; however, the

translation-table references at real addresses are made
as if an operand reference were going to be made.

Figure 25. Fields Used in LOAD REAL ADDRESS

Shadow-Table-Bypass Assist 35

Field Control Add.ress Offset No. of
Name Block Type (Hex), Bytes Contents l
MICAtf MJ.CBLOK Real -14 4 As,sist control word

PRfFtXB . PSA Real 664 4 Re.al address of PSA
of ather CPU

APSTATl PSA Real 6_9A 1 Bit 0 S€.t to one indi-
cates attached pro-
cessor operational

APSTAT2. PSA Real 69B 1 Bit 6 set to one
indicates PURGE TLB
is requested on
this CPU

APSTAT2. PSA of Real 69B 1 Bit 6 set to one
Other indicates PURGE TLB
CPU is requested on

the other CPU

Figure 26. Fields Used in PURGE TLB

Programming Note
When the CPPTLBR bit in the PSA of a CPU is
set to one, the translation-Iookaside buffer of that
CPU should be purged before the VM/370 control
program dispatches a different virtual m.achine on
that CPU. This is to ensure that if a virtual
machine that executed a PURGE TLB is later
redispatched on that CPU, any TLB entries left in
that CPU will have been purged.

STORE THEN AND SYSTEM
MASK
The STORE THEN AND SYSTEM MASK
instruction is executed for a virtual machine if the
corresponding function of the shadow-table-bypass
assist is activated and the instruction uses an 12
field value of FB hex to turn off the DAT bit in the
virtual PSW.

The store-then-AND-system-mask (STNSM)
function of the shadow-table-bypass assist is
invoked each time a CPU attempts to execute a
STORE THEN AND SYSTEM MASK instruction
when the problem-state bit of the real PSW is one.
Execution of this function consists in performing
the following steps:
1. If bits 0-3 of control register 6 are not 10XO

binary, a program interruption takes place for a
privileged-operation exception, and execution
of the STNSM instruction is suppressed
(l.A.1).

2. MICVPSW, which contains the address of the
virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (1.A.2).

36 Virtual-Machine Assist and Shadow-Table-Bypass Assist

3. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (l.A. 3).

4. Execution of this function ends if bit 12 of the
virtual PSW is zero. Ending consists in
invoking the STNSM function of the virtual­
machine assist if that assist is installed;
otherwise, the STNSM function of the
expanded virtual-machine assist is invoked. If
neither assist is installed, a program
interruption for a privileged-operation
exception takes place (l.A.4).

S. Execution of this function ends if the second
operand is not FB hex. Ending consists in
invoking the STNSM function of the virtual­
machine assist if that assist is installed;
otherwise, the STNSM function of the
expanded virtual-machine assist is invoked. If
neither assist is installed, a program
interruption for a privileged-operation
exception takes place (l.A.S).

6. The assist-control word, MICACF, is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (1.A.6).

7. If bits 8 and 14 of the assist control word are
not both ones, execution of this function ends.
Ending consists in invoking the STNSM
function of the virtual-machine assist if that
assist is installed; otherwise, the STNSM
function of the expanded virtual-machine assist
is invoked. If neither assist is installed, a
program interruption for a privileged-operation
exception takes place (1.A. 7).

8. If an access condition is encountered in
fetching the second halfword of the STNSM

instruction, execution of this function ends, and
a program interruption takes place for that
access· exception (I.B).

9 .+M-firBt-b-yte-clthe-current virtuaLJ>£W_is
stored, with the real PS\V key, at the location
specified by the first-operand effective (logical)
address. If an access exception is recognized, a
program interruption takes place with that
access condition indicated (2).

10. If bit S of the virtual PSW is zero, execution of
this function ends (3).

11. The virtual PSW, VMPSW, is updated in
storage with a key of zero to set bit S to zero
(4.A).

12. Bits 8-12 of reai control register 0 are set to
10000 binary. The real segment-table pointer,
MI CRSEG, is fetched with a key of zero and
placed in real control register 1. Execution of
the STORE THEN AND SYSTEM MASK
instruction is terminated, and a program
interruption takes place if an addressing
exception is recognized (4.B.1).

13. The values of real control registers a and 1 are
stored with a key of zero in the doubleword
(RUNCRO and RUNCR 1) at real address 340
hex (4.B.2).

Figure 27 summarizes the fields used.

STORE THEN OR SYSTEM MASK
The STORE THEN OR SYSTEM MASK
instruction is executed for a virtual machine if the
corresponding function of the shadow-table-bypass
assist is activated and if the instruction uses an 12
field value of 04 hex to turn on the DA T bit in the
virtual PSW.

The store-then-OR-system-mask (STOSM)
function of the shadow-tabIe-bypass assist is

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

invoked each time a CPU attempts to execute a
STORE THEN OR SYSTEM MASK instruction
when the problem-state bit of the rea! PSW is one.
E~~_ClltiQl1.()f tllj§JJ.l:1:!~ti~ll.c~n§i~!sj!1_p~rforlIling
the following steps:
1. If bits 0-3 of control register 6 are not lOXO

binary, a program interruption takes place for a
privileged-operation exception, and execution
of the STOSM instruction is suppressed
(LA. 1).

2. M1CVPSW, which contains the address of the
virtual PSW, is fetched with a key of zero.
Execution ends if an addressing condition is
encountered (1.A.2).

3. Vrv1PS\V, the virtual PS\V is fetched with a key
of zero. Execution ends if an addressing
condition is encountered (l.A.3).

4. Execution of this function ends with a program
interruption for a privileged-operation
exception if bit 12 of VMPSW is zero. Ending
consists in invoking the STOSM function of the
virtual-machine assist if that assist is installed;
otherwise, the STOSM function of the
expanded virtual-machine assist is invoked. If
neither assist is installed, a program
interruption for a privileged-operation
exception takes place (l.A.4).

S. Execution of this function ends if the second
operand is not 04 hex. Ending consists in
invoking the STOSM function of the virtual­
machine assist if that assist is installed;
otherwise, the STOSM function of the
expanded virtual-machine assist is invoked. If
neither assist is installed, a program
interruption for a privileged-operation
exception takes place (l.A.S).

6. The assist control word, M1CACF, is fetched

I
MICRSEG MICBLOK I I Real 0 4 Real se ment 9

pointer
table

IM,CVPSW
I

I
IMICACF

VMPSW

jRUNCRO
I

lRUNCRl

Operand 1

IMICBLOKIReal
I

MICBLOK Real

VMBLOK

IpSA

IpSA

Real

IReal
I

'Real

Logical

8 4

14 4

0 2

340 4

344 4

Address of VMPSW

Assist control word

Virtual PSW bits 0-15

jeontrOl register 0 atl I dispatch I

atl Control register
dispatch

Figure 27. Fields Used in STORE THEN AND SYSTEM MASK

Shadow-Table-Bypass Assist 37

with a key of zero. Execution ends if an
addressing condition is encountered (l.A.6).

7. If bits 8 and 14 of the assist control word are
not both ones, execution of this function ends.
Ending consists in invoking the STOSM
function of the virtual-machine assist if that
assist is installed; otherwise, the STOSM
function of the expanded virtual-machine assist
is invoked. If neither assist is installed, a
program interruption for a privileged-operation
exception takes place (LA. 7).

8. If an access condition is encountered in
fetching the second halfword of the STOSM
instruction, execution of this function ends, and
a program interruption takes place for the
access exception (1.B).

9. The first byte of the current virtual PSW is
stored, with the real PSW key, at the location
specified by the first-operand effective (logical)
address. If an access exception is recognized, a
program interruption takes place with that
access condition indicated (2).

10. If bit 5 of the current virtual PSW is one,
execution of this function ends (3).

11. The virtual PSW, VMPSW, is updated in
storage with a key of zero to set bit 5 to one
(4.A).

12. MICCREG, the word used to locate the shadow
control register values, is fetched with a key of
zero. Execution of the STORE THEN OR
SYSTEM MASK instruction is terminated, and
a program interruption takes place if an
addressing exception is recognized (4.B.l).

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

MICCREG MICBLOK Real 4 4 Address

MICVPSW MICBLOK Real 8 4 Address

13. The values of shadow control registers 0 and 1
are fetched with a key of zero and loaded into
real control registers 0 and 1. Execution of the
STORE THEN OR SYSTEM MASK instruction
is terminated, and a program interruption takes
place if an addressing exception is recognized
(4.B.2).

14. The values of real control registers 0 and 1 are
stored with a key of zero in the double word
(RUNCRO and RUNCRl) at real address 340
hex (4.B.3).

Figure 28 summarizes the fields used.

TEST PROTECTION
The TEST PROTECTION instruction is executed
for a virtual machine with a virtual problem-state
bit of zero if the test-protection function of the
shadow-table-bypass assist is activated.

The test-protection (TPROT) function of the
shadow-table-bypass assist is invoked each time a
CPU attempts to execute a TEST PROTECTION
instruction when the problem-state bit of the real
PSW is one. Execution of this function consists in
performing the following steps:
1. If bits 0-3 of control register 6 are not lOXO

binary, a program interruption takes place for a
privileged-operation exception and execution of
the TPROT instruction is suppressed (l.A.t).

2. The assist control word, MICACF, is fetched
with a key of zero. Execution ends if an
addressing condition is encountered (1.A.2).

3. Execution ends with a program interruption for
a privileged-operation exception if bits 8 and

of ECBLOK

of VMPSW

MICACF MICBLOK Real 14 4 Assist control word

EXTSHCRO ECBLOK Real 40 4 Shadow control reg-
ister 0

EXTSHCRl ECBLOK Real 44 4 Shadow control
register 1

VMPSW VMBLOK Real 0 2 Virtual PSW bits 0 ... 15

RUNCRO PSA Real 340 4 Control register 0 at
dispatch

RUNCRl PSA Real 344 4 Control register 1 at
dispatch

Operand 1 - Logical - 1 Old system mask

Figure 28. Fields Used in STORE THEN OR SYSTEM MASK

38 Virtual·Machine Assist and Shadow-Table-Bypass Assist

I
I
I

\
I

I
!

10 of the assist control word are not both ones
(1.A.3).

4. If an access exception is encountered in
fetching the second or third halfwords of the
TPROiiTIStruction, executiull-ot-ti1is-iurrctton­
ends, and a program interruption takes place
for the access exception (l.B).

5. The TPROT instruction is executed just as if
the real problem-state bit were zero. If any
exception is recognized, a program interruption
takes place and indicates that exception in the
normal manner. Otherwise, the condition code
is set, and execution of the TPROT instruction
is completed (2).

Figure 29 summarizes the fields used.

Page-Fault Reflection
The page-fauh-reflection function of the shadow­
table-bypass assist performs a program interruption
in the virtual machine for a page-translation
exception if the real PSW and the old and new
virtual PSWs meet specified conditions.

The page-fault-reflection function is invoked
each time the System/370 architecture calls for a
program interruption for a page-translation
exception when the problem-state bit of the real
PSW is one. The execution of this function
consists in performing the following steps:
1. Execution ends and a program interruption for

a page-translation exception takes_ place if the
VM-assist hit (bit 0 of control register 6) is not
one (1).

2. On some models, the segment index and the
page index of the untranslatable address are
placed in the word at real location 90 hex. If
the virtual-machine assist is installed and the
shadow-table-validation bit (bit 5 of control
register 6) is one, this function is completed by
transferring control to the shadow-table­
validation function of the virtual-machine
assist. If the virtual-machine assist is not

I

Field Control Address Offset No. of
Name Block Type (Hex) Bytes Contents

installed, no test is performed, and control
remains in the page-fault-reflection function
(2).

Steps 3 through 8 describe conditions that
cause(iprogram ill tel I up lion irr-the-reatu

machine for the original page-translation
condition:

3. The assist control word, MICACF, is fetched
with a key of zero. Execution is completed if
an addressing condition is encountered (3.A.l).

4. Execution is completed if bits 8 and 11 of the
assist control word are not both ones (3.A.2).

5. MICVPSW, which contains the address of the
virtual PSW, is fetched with a key of zero.
Execution is completed if an addressing
condition is encountered (3.B.l).

6. VMPSW, the virtual PSW, is fetched with a key
of zero. Execution is completed if an
addressing condition is encountered (3.B.2).

7. Execution is completed if in the virtual PSW bit
1 is one or bit 12 is zero (3.B.3).

8. Execution is completed if real PER is on (3.C).
Real address 0 is translated through the

segment tables addressed by the first word in
the virtual-machine parameter list. Steps 9
through 16 describe conditions that cause a
program interruption in the real machine for
the original page-translation condition.

9. An addressing exception is encountered in
fetching the word MICRSEG with a key of
zero. MICRSEG contains the address of the
real segment table (4).

10. Bits 30 and 31 of the word containing the
address of the real segment table are not both
zeros (5).

11. The first segment-table entry, SEGPAGE, in
the real segment table cannot be fetched with a
key of zero because of an addressing exception
(6).

12. SEGPAGE is invalid.
13. SEGPAGE has a format error (8).

I

MICACF MICBLOK Real 14 4 Assist control word

Virtual
- [~:5T:nreal - 4 [segment-table entry

I I
Virtuall I I

- Page Real I - I 2 Page-table entry
table

,Operand 2 - Logical 1 1 Byte tested
i

Figure 29. Fields Used in TEST PROTECTION

Shadow-Table-Bypass Assist 39

14. The first page-table entry, PAGCORE, in the
table addressed by the segment-table entry
cannot be fetched with a key of zero because
of an addressing exception (9).

15. PAGCORE is invalid (10).
16. P AGCORE has a format error (11).
17. The new virtual PSW is fetched with a key of

zero from offset 68 hex in virtual page O.
Execution of this function ends if an addressing
condition is encountered (12).

18. The new virtual PSW is tested for BC mode,
DA T on, PER on, wait-state bit one, and
format errors. If a virtual interruption is
pending, tests are made to determine whether
the input/output mask or the external mask is
being changed from zero to one. If any of
these conditions is found, a program
interruption takes place in the real machine for
the original page-translation condition (13).

A program interruption takes place in the
virtual machine for the original page-translation
condition. This interruption consists in
performing steps 19 through 27.

19. The old PSW, consisting of bits 0-15 from the
current virtual PSW and bits 16-63 from the
real PSW, is stored at virtual-machine location
28 hex with a key of zero (14.A).

20. The program-interruption identification word is
stored with a key of zero at virtual-machine

40 Virtual-Machine Assist and Shadow-Table-Bypass Assist

location 8C hex. This word consists of zeros in
bits 0-12 and 15, the instruction-length code in
bits 13-14, and the page-translation-exception
code, 0011 hex, in bits 16-31 (14.B).

21. A word is stored at location 90 hex of the
virtual machine with a key of zero. This word
contains the segment and page indexes of the
address for which the original page-translation
exception was detected (14. C).

22. Bits 0-15 of the new virtual PSW replace the
virtual PSW, VMPSW, in storage accessed with
a key of zero (14.D).

23. Bits 8-12 of the real control register 0 are set
to 10000 binary (14.E.l.A).

24. Real control register 1 is loaded with the real
segment-table pointer (MICRSEG) (14.E.l.B).

25. Real control registers 0 and 1 are stored in a
double word at a fixed location in the real PSA
(RUNCRO and RUNCRl) with a key of zero
(14.E.2).

26. Bits 16-63 of the new virtual PSW are placed
in the corresponding positions of the real PSW
(14.F).

27. Bit 15 of the new virtual PSW is placed in bit
position 1 of control register 6 (14.G).

28. Execution of the current function is completed,
and virtual instruction execution is nullified
(15).

Figure 30 summarizes the fields used.

i

Field Control Address Offset
Name

MICRSEG

MICVPSW

MICACF

VMPSW

Block Type

iMICSLOKiReal

t -~-
jMICBLOKi Reai

I
MICBLOKllReal

VMBLOK Real

SEGPAGE SEG
TABLE

Real

PAGCORE PAG
ITABLE

RUNCRO

RUNCRl

Real

I Rea 11

Real'

Real 1

(Hex)

I 0

--+ --- -----~
I 8 I

I I: I
o

o

28

68

8C

90

340

No. of
Bytes

4

4

4

8

4

2

8

8

4

4

4

Contents

-Address of real i segment table
-t-
iAddress of VMPSW

IASSist control word

jVirtual PSW

First real segment­
table entry

IAddress of PSA of
\ virtual machine

Old program PSW

New program PSW

t

I

I

prOgram-interruption I

identification

Translation-exceDtionl I address I I

I
Control register 0 at I'

dispatch

!Control register atl
dispatch

This real address is obtained by the address translation
performed in steps 9-16 without using control registers
o and 1. The control block for these items is the PSA
of virtual machine.

2 The control blocks for these items is the PSA of
real machine.

Figure 30. Fields Used in Page-Fault Reflection

Shadow-Table-Bypass Assist 41

Appendix. Deviations for Virtual-Machine-Assist
Functions

l'-fie--4e-viatioBsGi-SGYs-se4-here- apply -w-the-.­
specifications given in this publication.

In certain cases in wlJich both an operand-access
condition and a privileged-operation condition
exist, the program interruption indicates the
operand-access exception instead of the privileged­
operation exception, as called for in the detailed
definition of a particular function. These cases
exist when a privileged-operation condition arises
because of one of the following:
1. Bits 0-1 of control register 6 are 11 binary.
2. Bits 0-3 of control register 6 are lOxl binary.
3. Bits 0-1 of real control register 6 are 10 binary,

and bit 1 of virtual control register 0 is one.
Figure 31 lists, by assist function, the models for

which these cases (1, 2, and 3) arise.

I Cause of Privileged-

I
Operation Exception

l! MA Function

Insert PSW key
Insert storage key
L
L
R
S
S
S
S
S
S
S

oad PSW
oad real address
eset reference bit
et PSW key from address
et storage key
et system mask
tore control
tore then AND system mask
tore then OR system mask
uperviso:_ call

Shadow-table validation -. .!' •

1 2 3

- - -
- - -

168 168 -
- - -
- - -
- - -
- - -

I 168 168 168,3032,3033 I

I 168 168 -
I 168 168 -
I 168 168 -

I - - -

Figure 31. Models That May Indicate Op€iand-Access Exception in Place of
Privileged-Operation Exception

I
I

Deviations for Virtual-Machine-Assist Functions 43

Index

a
add! essing conditwfis 6
assist

control-program
expanded virtual-machine 1
shadow-table-bypass 1, 31
virtual-interval-timer 1
virtual-machine 1, 9
virtual-machine extended-facility

assist control word 3

C
control-block alignment 6
control mode 5
control of VM/370 assists 3
control-program assist
control register

setting of bits in 5
use of 4

conventions, general
for addressing conditions 6
for control-block alignment 6
for updating swap-table entries 6
for virtual PSW 6

d
deviations for VMA functions 41
DOS/OS compatibility facility, interaction of VM/370

assists with 6
dynamic address translation, interaction of VM/370 assists

with 6

e
EC mode as control mode 5
ECBLOK 6
ECPS:VM/370
expanded virtual-machine assist

f
facilities, interaction of VM/370 assists with other

functions 6
executed by STBA 31
executed by VMA 7

i
INSERT PSW KEY in VMA 9
INSERT STORAGE KEY in VMA 10
instructions executed by VMA 9
interaction

of VM/370 assists 5
of VM/370 assists with other facilities 5

INVALIDATE PAGE TABLE ENTRY in STBA 32

I
LOAD CONTROL in STBA 33
LOAD PSW in VMA 12
LOAD REAL ADDRESS in STBA 34
LOAD REAL ADDRESS in VMA 13
low-address protection, interaction of VM/370 assists

with 6

m
method of describing a.s~s 7
MICACF 3~ 5
MICBLOK 4
MICCREG 4
MICRSEG 4
MICVPSW 4
MICVTMR 5
MICWORK 4
mUltiple processors, interaction of VM/37Q assists

with 6

p
page-fault reflection in STBA 39
program-event recording, interaction of VM/370 assists

with 5
PURGE TLB in STBA 35

r
real translation table 2
RESET REFERENCE BIT in VMA 15

s
SET PSW KEY FROM ADDRESS in VMA
SET STORAGE KEY in VMA 19
SET SYSTEM MASK in VMA 19
shadow table 2, 31
shadow-table-bypass assist 1, 31

31 relation with other assists
shadow-table validation in VMA
STBA (shadow-table-bypass assist)
STORE CONTROL in VMA 20

24
31

STORE THEN AND SYSTEM MASK
in STBA 36
in VMA 21

STORE THEN OR SYSTEM MASK
in STBA 37
in VMA 22

SUPERVISOR CALL in VMA
swap table 3
swap-table entries, updating of

t
table

real translation 2
shadow 2,24
swap 3

TEST PROTECTION in STBA

v
virtual-interval-timer assist
virtual-machine assist 1
virtual-machine assist (VMA) 9

23

6

38

virtual-machine extended-facility assist
virtual PSW 6
VM-common-segment modification of VMA
VM/370, assists available on 1

17

VM/370 design, relationship with operation of assists
VMA (virtual-machine assist) 9
VMBLOK 6,40

2

Index 45

GA22-7074-0

===-== '::'R - ----- -- -.-- - ---- - - ------------ -,-

»
(J1
(J1

Vi'
.-+

" ('l)

Z
o
en
w
-....J
o
6

IBM Virtual-Machine Assist and Shadow-Table-Bypass Assist

Order No. GA22-7074-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operatorsoJTmvrsysie-ms.-This form-may De usea-t(j-com-muiikite -Y-our-vIews a156D.llnls publIcatIOn.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you
supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number of latest Newsletter associated with this pUblication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back oft~1t'!I1t cover or title page.)

--i
I

GA22-7074-0

Reader's Comment Form

F old and tape Please Do Not Staple

III " I
BUSINESS REPL V MAIL
FI RST CLASS PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department B98
P.O. Box 390
Poughkeepsie, New York 12602

F old and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UN ITED STATES

Fold and tape Please Do Not Staple Fold and tape

=~==® - - ---- ---- - ---- - - _ ... ---------"-

<II
C

.J
en
c
0 «

"0
"0
u.
(; ...
:J

U

I

I
I
I

<II
C

:J
en
c
o
«
"0
(5
U.

'5
u

I
I
I

CO
:s;:

~
,-+
c
~

:5:
Ql
()
:J

:::J
CD

»
Vl
Vl
Vi"
,-+

Ql
:::J
a.
en
:J
Ql
a.
0
~
.:.,
Ql

~
<p
CO
-<
"0
Ql
Vl
Vl

»
Vl
Vl
Vi"
r-+

"Tl

CD

Z
?
en
w
-.....J
a
6

