
Systems

GC28-0627 -0
File No. S370-36

OS/VS2 System Programming
Library: Job Management

VS2 Release 3

.~irst Edition (February, 1975)

This edition applies to release 3 of OSjVS2 and to all subsequent releases of VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the latest Virtual Storage Supplement to IBM System/360

and System/370 Bibliography, GA20-0001, for the editions that are applicable and current.

This edition, with OS/VS2 System Programming Library: Supervisor, GC28-0628, and OS/VS2

System Programming Library: TSO, GC28-0629, obsoletes OS/VS2 System Programming

Ubrary: Job Management, Supervisor, and TSO, GC28-0682.

JES3 and Mass Storage Systems information contained in this publication is for planning
purposes only until the availability of the products.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

/\. form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Programming
Systems Publications, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

@ Copyright International Business Machines Corporation 1975

Preface

This publication describes job management facilities that can be influenced
by the system programmer.

Part I, the allocation section, discusses volume attributes, considerations in
allocating direct access storage devices, and the function of dynamic
allocation. Dynamic allocation can be invoked through DYNALLOC macro
instruction or through dynamic allocation interface routine (DAIR). This
publication discusses the DYNALLOC macro instruction and its associated
parameter structure, and reference information for the parameter structure.

Part II, the JES2 section, describes those aspects of JES2 processing that can
be affected during system generation, during system initialization, or by user
programming. The discussion is intended to tell the system programmer how
he can affect JES2 processing but not to tell him how to code the system
generation macro instructions and other initialization parameters.

Part III, the miscellaneous job management section, discusses restarting
support, assigning special program properties, limiting user region size,
changing the system log processing, updating MSTRJCL data set, and the
external writer.

I
JES3 and Mass Storage Systems information contained in this publication is
for planning purposes only until the availability of the products.

Publications referenced:

• OS/VS2 System Programming Library: Initialization and Tuning
Guide, GC28-0681.

• OS/VS2 System Programming Library: System Generation Reference,
GC26-3792.

• OS/VS2 Scheduler and Supervisor Logic,
SY28-0624,sY28-0625,SY28-0626. (3 volumes)

• OS/VS2 JCL, GC28-0692.
• OS/VS Data Management Macro Instructions, GC26-3793.
• OS/VS Checkpoint/Restart, GC26-3784.
• OS/VS2 TSO Guide to Writing a Terminal Monitor Program or a

Command Processor, GC28-0648.
I • OS/VS2 IBM 3540 Programmer's Reference, GC24-5111.

• OS/VS2 System Programming Library: Service Aids, GC28-0674.

Preface 3

4 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Contents

Summary of Amendments . 9

Part I: Allocation . 11

Allocation Services 1 3
How Allocation Satisfies Requests 13
Volume Attributes 13

Mount and Use Attributes . . 14
Nonsharable Attribute 16

Satisfying Specific Volume Requests 17
Satisfying Nonspecific Volume Requests 17

MSS Devices 18
Determining Numbers of Volumes/Units per Request 19

Volumes per Request 19
Units per Request 19
Units per Job Step 20

Dynamic Allocation 21
Allocations 21
Checking for Environmental Conflicts 22
Using an Existing Allocation ' 22

Changing the Parameters of an Existing Allocation 23
Choosing Among Satisfactory Existing Resources 23
Allocation of a Ddname 24

New Allocations 24
Unallocating Resources Held for Reuse 24
Differences Between Step Allocation and Dynamic Allocation 25

Device altd Volume Use 25
Mounting Volumes/Offline Devices 26
Cataloging at Allocation 26
Specifying the Data Set Password 26
Returning Information 26

Dynamic Unallocation 27
Unallocating a Data Set 27
U nallocating Concatenated Data Sets 27
Unallocating SYSOUT Data Sets 28
Disposition Processing 28
Removing the In-Usc Attribute 28

Processing a Request to Remove the In-Usc Attribute 28
Identifying a Resource by Task-ID 28

Dynamic Concatenation of Data Sets 29
The Permanently Concatenated Attribute 29

Dynamic Deconcatenation of Data Sets 29
Dynamic Information Retrieval 30
Requesting Dynamic Allocation Functions 30

Parameter Structure Description . . . 30
Dynamic Allocation Return Codes 33
Using the Dynamic Allocation Macros 33
Example of a Dynamic Allocation Request 33
Installation Input Validation Routine 35

Programming Considerations 35

Contents 5

Dynamic Allocation P.arameter Stmcture Fields
Informational Reason Codes
Error Reason Codes
FLAGSI
FLAGS2
Verb Codes ..
Text Unit Fields

Data Set Name Allocation Text Units
DCB Attribute Text Units
Non-JCL Dynamic Allocation Functions
Dynamic Unallocation Text Units
Dynamic Concatenation Text Units
Dynamic Deconcatenation Text Units
Text Units for Removing the In-Use Attribute Based on Task-ID
Ddname Allocation Text Units
Dynamic Information Retrieval Text Units

Part II: Job Entry Subsystem 2 (JES2)

Introduction to JES2
Configuration . . .

JES2 Generation
Local Device Configuration
Internal Reader
Remote Line and Device Configuration
Spool Configuration

Starting or Stopping JES2

JES2 Processing
Controlling Job Submission and Queuing

Submitting Jobs
Local Device Submission . .
Remote Job Submission
The Internal Reader Facility

Controlling Job Enqueuing
The JES2 Queue
Job Class
JES2 Job Scheduling Priority
Priority Aging
The Job Statement Accounting Field Scan

Controlling Conversion and Execution
J CL Conversion
Converter Parameters . . .
Procedure Library Selection
Execution Control
The Initiator Cataloged Procedure
Job Monitoring
Entering Commands in the Jobstream

Execution Batch Scheduling
Submitting Input to an Execution Batch Processing Program
Execution Batch Scheduling Operations
Preparing for Execution Batch Scheduling

Controlling System Output .
Queuing Output

Output Class Assignment
System Message Classes .
Output Class Considerations
JES2 Output Selection
Setup Characteristics
Demand Setup . . .
Defaults
Operation for Printers (Punches)
Output Routing
Processing Held Data Sets
External Writers
3540 Diskette Writers . .
Output Separation

The JES2 Print Separator
The JES2 Punch Separator Card

6 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

37
37
37
40
40
41
41
42
54
64
67
70
71
n
73
74

79

81
83
83
84
84
84
85
86

87
87
87
87
87
87
89
89
89
90
92
92
96
96
()6

96
96
97
97
97
98
99

100
101
102
102
103
103
104
104
104
105
105
106
106
107
107
108
108
108
109

Remote Job Entry
Starting Remote Job Entry
Altering the Sequence of Operations from a Remote Terminal
Options for Disconnecting Remote Lines
SMF Accounting Record

Miscellaneous JES2 Facilities
Automatic Command Processing . .

Writing a Day's Work Scheduler
Limiting Considerations

The JES2 Patching Facility
Rules for Coding Patching Statements
Format of the JES2 Patching Facility Statements
SPZAP Patch Statement Formats

Time Sharing Logon and Started Task Flow
Multi-Access Spool

Configuration
Starting the Multi-Access Spool Complex
Job Submission and Queueing
Output
RJE
TSO
SMF

Part III: Miscellaneous Job Management Facilities

Miscellaneous Job Management
Job Scheduler Restarting Support

Job Journal
Assigning Special Program Properties
Limiting User Region Size - IEALIMIT
System Log

Using thc System Log
Changing the System Log Processing .

Updating the Master Job Control Language Data Set
External Writers

Starting the External Writer
Modifying the External Writer
Stopping the External Writer .
Canceling the Printing of a Data Set

The External Writer Cataloged Procedure
Writing an Output Writer Routine

Characteristics of the Standard External Routine
The Output Writer Routine

Processing Performed by the Output Writer
Output Separation

Characteristics of an Output Separator
Writing an Output Separator Program

Output from the Separator Program
Using the Block Character Routine

Index

109
110
111
111
111

113
113
113
114
114
115
115
117
118
118
120
120
121
122
122
122
122

123

125
125
125
126
127
129
129
129
130
131
132
132
133
133
133
136
136
137
138
142
142
143
144
144

147

Contents 7

Figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure IS.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
igure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.

Combinations of Mount and Use Attributes
Sharable and Nonsharable Volume Requests
Private and Public Volume Requests
Data Area Structure for Dynamic Allocation Input
Dynamic Allocation Return Codes
Example of a Dynamic Allocation Request
Error Reason Codes
Data Set Name Allocation (Verb Code 01) - Text Unit Keys, Mnemonics, and Functions
DCB Attributes (Used with Verb Code 01) - Text Unit Keys, Mnemonics, and Functions
Non-JCL Dynamic Allocation Functions (Used with Verb Code (1) - Text Unit Keys,
Mnemonics, and Functions
Dynamic Unallocation (Verb Code 02) - Text Unit Keys, Mnemonics, and Functions
Dynamic Concatenation (Verb Code 03) - Text Unit Keys, Mnemonics, and Functions
Dynamic Deconcatenation (Verb Code 04) - Text Unit Keys, Mnemonics, and Functions
In Use Attribute Removal (Verb Code 05) - Text Unit Keys, Mnemonics. and Functions
Ddname Allocation (Verb Code 06) - Text Unit Keys, Mnemonics, and Functions
Dynamic Information Retrieval (Verb Code 07) - Text Unit Keys, Mnemonics, and Functions
JES2 Input/Output Relationships
Topics Described Under JES2
JES2 Procedure Provided with the Starter System
The RDR Procedure
JOB Statement Accounting Field Scan Exit
Selected JES2 Job Control Table Fields . .
Entering Commands in the Jobstream
Relationship of SYSOUT Specification to Number of Job Output Elements
Sample JCL for TSO-Submitted Job
Patch Name to CSECT Reference
Two-System Multi-Access Spool Complex
The effects of IEALIMIT and REGION Values on various GETMAINs
MSTRJCL Data Set
General Logic of Standard External Writer Routine

8 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

16
17
17
31
33
34
3~

42
54

64
67
70
71
72
73
74
~I

~3

~6

~X

93
95
9~

103
40
ll~

119
12~
130
141

Summary of Amendments
for GC28-0627-0
OS/VS2 Release 3

This edition, with OS/VS2 System Programming Library:

Supervisor, GC28-0628, and OS/VS2 System Programming

Library: TSO, GC28-0629, obsoletes OS/VS2 System

Programming Library: Job Management, Supervisor, and TSO,

GC28-0682-0.

Multi-Access Spool

The operation of single systems operating as members of a
multi-access spool complex is discussed.

MSS

New return codes 0248, 049C, 04AO, 0498, and text unit
OOSE are discussed.

Miscellaneous

Allocation Services
Dynamic Allocation
Program Properties Table
IEALIMIT
External Writer
Controlling System Output

Summary of Amendments 9

10 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Part I: Allocation

Allocation Services: This topic describes how volume mount attributes (permanently resident,
reserved, and removable) and volume use attributes (public, private, and storage) affect
allocation of a volume. It also describes how the system satisfies specific and nonspecific
volume requests.

Dynamic Allocation: Executing programs can allocate, unallocate, concatenate, and
deconcatenate data sets. This topic describes these facilities and explains how to invoke them.
It also describes how to write a routine to validate dynamic allocation requests.

Dynamic Allocation Parameter Structure Fields: This section explains informational and error
reason codes and describes keys used to specify dynamic allocation requests.

Part I: AUocation 11

12 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Allocation Services

The allocation routines assign units, volumes, and data sets in support of job processing. They
allocate resources in response to JCL DD statements at step initialization, and they also permit
data set allocation for jobs in progress (dynamic allocation), a capability formerly available
only to TSO users.

The considerations and rules for coding DD statements are in OSjVS2 JCL, GC28-0692.

A discussion of how the design of the allocation routines relates to their performance is in
OSjVS2 System Programming Library: Initialization and Tuning Guide. GC28-0681. This
publication is of particular value to the installation system programmer interested in suggesting
coding practices and selecting procedures to maximize allocation efficiency. Allocation treats
MSS devices (3330v) as direct access storage devices.

How Allocation Satisfies Requests
The allocation routines attempt to improve system throughput by filling allocation requests in a
way that results in as little serialization as possible. There are two types of serialization to be
considered. Allocation must serialize to ensure that the status of the devices eligible for
allocation remains static while devices are being selected. Also, some devices must be used in a
serial manner.

The allocation routines try to satisfy requests in this order (from least serialized to most
serialized) :

1. allocating data set requests that require no specific units or volumes. for example,
dummy, VIO, and SYSIN/SYSOUT data sets (not serialized.)

2. allocating data set requests to sharable units, that is, direct access units with permanently
resident or reserved volumes mounted on them (not serialized.)

3. allocating teleprocessing devices (only serializes requested teleprocessing devices.)

4. allocating to mounted volumes and devices that do not need volumes (serialized on only
the set of devices eligible to satisfy the request.)

5. allocating to online, unallocated devices that need volumes mounted by the operator or
by MSS (serialized on only the set of devices eligible to satisfy the request.)

6. allocating all remaining requests, for example, requests that need offline devices and/or
devices allocated to other jobs which can not be used concurrently (serialized on only
the set of devices eligible to satisfy the request.)

Note: For items 4, 5, and 6 the order in which device types are serialized is controlled by the
installation's Device Precedence List.

Volume Attributes
Volume attributes determine a volume's eligibility for demounting and volume sharing, and
control the type of data set that can be allocated to the volume. (Volume sharing is the
allocation of a volume to two or more data sets defined in the same job step, or the allocation
of a direct access volume to two or more data sets defined in different job steps that are
executing concurrently.)

Allocation Services 13

The attributes that are assigned to tape and direct access volumes are the mount attribute:
and the use attribute. The nonsharable attribute may be assigned to direct access volumes only.
The next two topics describe these attributes.

Mount and Use Attributes

Every volume is assigned a mount and use attribute either at IPL via a VATLIST or when first
used by a job. The mount attribute controls volume demounting. The use attribute is one of
the factors that controls allocation of mounted volumes to data set requests. The mount and
use attributes are as follows:

• Mount
- Permanently resident
- Reserved
- Removable

• Use
- Public
- Private
- Storage

A private volume is one that can only be allocated when its volume serial numbers are
explicitly or implicitly specified.

A public volume is a direct-access volume that is eligible for allocation of temporary data
sets when no specific volume is requested and PRIVATE is not specified. It can also be
allocated when its volume serial number is specified.

A storage volume is a direct-access volume that is eligible for allocatilon of both
non-temporary and temporary data sets when no specific volume is requested and PRIVATE is
not specified. Storage volumes usually contain non-temporary data sets, but temporary ones
will be assigned to storage volumes if they cannot be assigned to public volumes.

The following points list the mount attributes and describe how the mount and use
attributes get assigned to a volume:

• Permanently resident volumes cannot be demounted. Only direct access volumes can be
permanently resident. Although the user may designate all direct access volumes as
permanently resident in the "volume attribute list" (VATLSTXX) in SYS1.PARMLlB, the
following volumes are always permanently resident:
- all volumes that cannot be physically demounted, such as drum storage volumes
- the IPL volume
- the volume containing the system data sets, such as SYS1.L1NKLIB and SYSl.PROCLIB.

An installation can assign a permanently resident volume the use attribute of public,
private, or storage in the VATLST member of SYSl.PARMLlB; it is public by default.

• Reserved volumes remain mounted until the operator issues an UNLOAD command. Both
direct access and tape volumes can be reserved volumes. A volume becomes reserved as a
result of a MOUNT command or a VATLST entry (for direct access devices only). A
volume is usually designated as a reserved volume to avoid repeated mounting and
demounting of the volume when it is to be used by many jobs.

An installation can assign a reserved direct access volume the use attribute of public,
private, or storage. The use attribute is assigned to the volume either in the v A TLST

member of SYSl.PARMLIB or in the parameter of the MOUNT command, depending OIn
how the volume becomes reserved.

A reserved tape volume is always assigned the use attribute of ptivate.

14 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

• Removable volumes are those that are neither permanently resident nor reserved.
Removable volumes can be demounted either after the end of the job in which they are
last used or when the unit on which the volume is mounted is needed for another
volume.

The use attribute of public or private can be assigned to a removable direct access
volume as follows. The use attribute of public is assigned when the JCL PRIVATE volume
subparameter is not coded. The use attribute of private is assigned when the PRIV ATE

volume sub parameter is coded.

A removable tape volume can be assigned the use attribute of public or private. The usc
attribute of public is assigned when the PRIVATE subparameter is not coded, a
nonspecific volume request is made, and the data set is temporary (a system-generated
data set name or a disposition of DELETE.) The use attribute of private is assigned when
the PRIVATE subparameter is coded, a specific volume request is made, or the data set is
nontemporary (a non system-generated data set name or a disposition other than
DELETE.)

Figure 1 summarizes the type of volume that can be assigned to satisfy a specific or
nonspecific volume request for a temporary or nontemporary data set; how these attributes are
assigned; and how the volume is demounted.

AUocation Services 15

--
Temporary Nontemporary

Volume Data Set Data Set How Assigned How Demounted State
Type of Volume Request

Public/ Nonspecific Specific VATLST Entry or by default Always2
Permanently or Specific mounted
Resident 1

-----------------------1------ -----

Private/ Specific Specific VATLST Entry Always2
Perma nen tly mounted
Resident 1

Storage/ Nonspecific Nonspecific VATLST Entry Always2
Permanently or Specific or Specific mounted
Resident 1

1------------------- ---_ _-- - --------1--------

Publici Nonspecific Specific VATLST Entry or MOUNT UNLOAD or
Reserved 1 or Specific command VARY OFF LINE

commands
---------r------

Private/ Specific Specific VATLST Entry or MOUf\IT UNLOAD or
Reserved (Tape command VARY OFFLINE
and direct (MOUNT command only for commands
access) tape,)

~-------r-----

Storage/ Nonspecific Nonspecific V A TLST Entry or MO U NT UNLOAD or
Reserved 1 or Specific or Specific command VARY OFFLINE

commands
--------------- --" ... _ ... - -

Publici Nonspecific Specific VO LUME=PR IVATE is not When unit is
Removable or Specific coded on the DD statement. required by
(Tape and (A nonspecific request and a another volume.
direct access) temporary data set for tape

also causes this aSSignment.)

Private/ Specific Specific VOLUME=PRIVATE is coded At job termination
Removable on the D D statement, or when the unit
(Tape and (Specific request or a is required by
direct access) nontemporary data set for another volume.

tape also causes this
assignment.)

1 Direct access volumes only.

2 Note that a VARY OFF LINE effectively accomplishes dismount.

Figure 1. Combinations of Mount and Use Attributes

Nonsharable Attribute

Allocation assigns the nonsharable attribute to direct access volumes that may require
demounting during a step's execution. When a volume has the nonsharable attribute, the
volume cannot be assigned to any other data set until the nonsharable attribute is removed. It
is removed at the end of the step that was using it as nonsharable.

The nonsharable attribute never gets assigned to a permanently resident or reserved volume.
It is always assigned to a volume used to satisfy any of these requests:

• specific volume request that specifies more volumes that devices.
• a nonspecific volume request if it specifies PRIVATE and a volume count greater than the

number of devices. For MSS devices, MSVGP may also be used in place of PRIVATE.

• a request for unit affinity with an earlier data set defined in the job step when the data
sets reside on different volumes.

• a request for deferred mounting of the volume on which the data set resides.

16 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Figure 2 shows the system action for sharable and nonsharable requests.

The Volume is Allocat ed:
The Request is:

Sharable Nonsharable

Sharable a \locate the volume

Nonsharable wait 1
I wait 1

IThe operator has the option of failing the request. The request wi 1\ always fail if wai ting is not allowed.

Figure 2. Sharable and Nonsharable Volume Requests

As an example of when the nonsharable attribute is set, suppose JOBA has indicated a need
for two volumes but only one unit is specified. In this case, the operator will later have to
mount JOBA's second volume. JOBB requests to share the first volume mounted. If JOBA were
to request the mounting of the second volume while JOBB were processing, JOBB would fail.
To avoid this problem, the system marks JOBA's volume request as nonsharable so that no
other job can use those volumes while JOBA is executing.

Satisfying Specific Volume Requests
In the following cases the system can satisfy a request for a specific volume that is already
mounted:

• The volume is permanently resident or reserved. (The volume is assigned regardless of
the requested use attribute, and the use attribute is not changed by the allocation.)

• The direct access volume is a removable volume that does not have the nonsharable
attribute and is being used by a concurrently executing step. (If your request would make
the volume nonsharable, the system waits to assign you that volume until all other job
steps using the volume have terminated.)

• The direct access volume is removable but not allocated. The use attribute (private or
public) assigned to the volume when it is allocated is determined by the presence or
absence or the PRIVATE subparameter.

• The tape volume is a scratch volume and is not in use. The use attribute of private is
assigned to the volume if the request is for a permanent data set or if PRIVATE is coded.

Figure 3 shows the affect on use attributes of the user's request.

---_.-
The Volume is:

The Request is:
Private Public --

Private stays private changes to private
------ - -~--~ --- - --- - --~- -~-. ------

Public stays private stays public

Figure 3. Private and Public Volume Requests

Satisfying Nonspecific Volume Requests
There are four possible types of nonspecific volume requests:

• a private volume for a temporary data set
• a private volume for a nontemporary data set
• a non-private volume for a temporary data set
• a non-private volume for a nontemporary data set

Allocation Services 17

The system satisfies these different types of requests as described below. Since the system
satisfies the first two types of requests in the same way, these two requests are described
together.

1. For a nonspecific volume request for a private direct access or tape volume, the system
requests the operator to mount a volume. The operator should mount a volume whose
space is unused~ this gives the user control over all space on the volume. Once mounted,
the volume is assigned the use attribute of private.

2. For a nonspecific volume request for a non-private direct access volume that is to
contain a temporary data set, the system attempts to assign a public or storage volume
that is already mounted, or, if no space is available, it requests the operator to mount a
removable volume.

If the system selects a mounted volume, its use attribute remains the same. If a
removable volume is mounted, the system assigns it the use attribute of public.

For a nonspecific volume request for a non-private tape volume that is to contain a
temporary data set, the system assigns a scratch volume that is already mounted, or it
request the operator to mount a tape volume. Once mounted, tht~ system assigns the
volume the use attribute of public.

3. For a nonspecific volume request for a non-private direct access volume that is to
contain a non temporary data set, the system assigns a storage volume if one is mounted
on an eligible device. Otherwise, the system treats the request as a nonspecific volume
request for a private volume.

For a nonspecific volume request for a non-private tape volume that is to contain a
nontemporary data set, the system treats the request as a nonspecific volume request for
a private volume.

MSS Devices

There are six possible types of nonspecific volume requests for MSS devices:

• a private volume for a temporary data set
• a private volume for a nontemporary data set
• a private, MSS group volume for a temporary data set
• a private, MSS group volume for a nontemporary data set
• a non-private volume for a temporary data set
• a non-private volume for a nontemporary data set

The system satisfies these different types of requests as described below. (Coding
MSVGP=grpname implies PRIVATE and identifies to the system an installation-defined group of
MSS volumes.)

l. The system handles the first two types identically. It defaults to a private, MSS group
request with a default name of SYSGROUP. If the installation has defined one or more
volumes in this group, the system will select one with sufficient space to satisfy the
request and cause the volume to be mounted.

2. The third and fourth requests are also handled in the same fashion. A volume from the
specified group, which has sufficient space, will be selected and mounted.

3. For a nonspecific request for a non-private 3330v volume that is to contain a temporary
data set, the system attempts to assign a public or storage 3330v volume that is already
mounted. If none is mounted, the request defaults to SYSGROUP and is handled as in (1)
above.

18 OS/VS2 System Programming Library: Job Management(VS2 Release 3)

4. For a nonspecific request for a non-private 3330v volume that is to contain a
nontemporary data set, the system assigns an already mounted storage 3330v volume. If
none is mounted, the request defaults to SYSGROUP and is handled as in (1) above.

Determining Numbers of Volumes/Units per Request
Before assigning volumes and units for a job step or for an allocation request through dynamic
allocation, the allocation routines must determine

• the maximum number of volumes per request.
• the maximum number of units per request.
• the number of units per job step.

The maximum numbers are calculated because more units than specified may actually be
used. The rules for determining unit requirements are explained under the topic "Units per Job
Step" .

Volumes per Request

The maximum number of tape volumes or direct access volumes required to satisfy any request
is the greater of

• the volume count specified in the VOLUME parameter.
• the number of volume serials available.

The number of volume serials available is one of the following:

• The number of volume serials specified.
• The number of volumes obtained through VOL=REF (only if VOL=REF was coded).
• The number of volume serials that the data set resided on when it was passed (only if the

request is for an existing data set that was passed from a prior step, and neither volume
serials nor VOL=REF was specified).

• The number of volume serials obtained from the catalog (only if the request is for an
existing data set that was not passed from a prior step, and neither volume serials nor
VOL=REF was specified).

• The number of volume serials minus the volume sequence number + I (only if the
request is for an existing data set in which the volume sequence number specified is not
greater than the number of volume serials). For example, if g volume serials are
calculated to be used and a volume sequence number of 4 is specified, then the number
of volume serials to be allocated would be 5 (8 - 4 + 1); in this case, the first three
volume serials will be discarded, and the fourth volume would become the first volume
allocated.

• The unit count specified in the UNIT parameter (only if the unit count specified is greater
than the number of volume serials calculated in the previous statement, or if the request
is for a new nonspecific direct access volume that does not specify VOLUME=PRIVATE).

When the required number of volume serials for a request is greater than the number of
specific volume serials obtained through specified volume serial numbers, VOL=REF, from a
passed data set, or from the catalog, the remainder of the volumes are assumed to be requests
for nonspecific volumes.

Units per Request

The maximum number of tape units or direct access units required to satisfy any request is
equal to the greater of

• the unit count specified in the UNIT parameter.
• the total number of volumes required (if parallel mounting is requested).

Allocation Services 19

When UNTT =AFF is specified, the unit requirements are obtained from the referenced
request. The number of units shared with the referenced request is the number of units used
by the referenced request.

For direct access volumes, the number of units required to satisfy a request specifying :a
generation data group (GOG) name is dependent upon the unit requirements of each member
of that GOG. Therefore, each member is handled as a single request.

F or direct access volumes, the number of units required to satisfy a VSAM data set is
dependent upon the unit/v01ume configuration of the data set. If the data set spans multiple
device types, the total number of units required is determined by catalog management.
Additional tables will then be generated by the scheduler to cause the allocation of the
required number of units. For VSAM data sets, a specified unit count or parallel mount may be
overridden by the system once the unit requirements for the data set are determined.

Units per Job Step

The number of units required for a job step is not necessarily the sum of the unit requirements
for each request.

The following rules tend to reduce the total unit requirements for a step:

• A volume can only be allocated to one unit. Therefore, if more than one request asks for
the same volume, all requests will get allocated the same unit.

• For direct access, storage and/or public requests can be allocated on the same volume.
Therefore, two or more such requests may be satisfied with one unit.

• For tape, if VOL=REF is specified, more than one public request can be allocated on the
same volume. Therefore, two or more public requests may be satisfied with one unit.

The following rules tend to increase the total unit requirements for a step:

• A permanently resident or reserved volume cannot be demounted. Therefore, a volume
which is permanently resident or reserved will be assigned its own unit (where it is
mounted) even if, through JCL specification, it was to share a unit with one or more
other volumes.

• For direct access, when more than one request within a job step requires the same
volume. that volume must be shared. Therefore, a direct access volume which is required
by more than one request will be assigned its own unit even if, through JCL specification,
it was to share a unit with one or more other volumes.

• For direct access, a VSAM data set will require additional units if the data set resides on
more than one device type.

• For direct 3.ccess, an additional unit is required for a private catalog volume if it is
as~ociated with and/or used to retrieve volume information about a particular data set.

• For direct access, when a GDG name is specified, additional units may be required to
satisfy the device type requirements of each individual member of the GOG.

• For tape, when conflicting unit assignments are specified for tape volumes, the volume
involved in the conflict will be assigned its own upit. For example, such a conflict would
exist for VOLUM2 in the following DO statements:

IIDDl
IIDD2

DD UNIT=2400,VOL=SER=(VOLUM1,VOLUM2)
DD UNIT=2400,VOL=SER=(VOLUM2,VOLUM3)

In this casc., three units, one for each volume, would be assigned., If the user had
requested via unit affinity that the same tape unit be used for both DOl and 002, then
only one unit would have been assigned.

20 OS/VS2 System Programming Ubrnry: Job Man3.2;ement (VS2 Release 3)

Dynamic Allocation

The allocation performed in response to JCL at step allocation (or at LOGON for time sharing
users) may be altered prior to step unallocation or LOGOFF by invoking dynamic allocation.
Because device requirements may not be fully known prior to execution, dynamic allocation
routines (sYc99) provide the facility to acquire resources as the need develops. It also allows
resources to be used more efficiently, because they can be acquired just before use and/or
released immediately after use. (The term "resource" means a ddname-data set combination
with its attendant volumes and devices, if any.)

The term dynamic allocation not only refers to the allocation of resources, but also to ail
related functions. The major functions of dynamic allocation are:

.. dynamic allocation - allocates a resource

.. dynamic unallocation - unallocates a resource

.. dynamic concatenation - concatenates allocated data sets

.. dynamic deconcatenation - deconcatenates concatenated data sets

.. dynamic information retrieval - provides retrieval of certain data set information.

A typical use for dynamic allocation is in a program that needs temporary use of a device,
volume, or data set for which there is heavy contention. In such a case, dynamic allocation
provides the means for a program to tie up the resource for only as long as necessary rather
than for the life of the program.

Another common use for dynamic allocation is in a program whose need for allocation
resources may vary according to the input. Dynamic allocation permits such programs to
dynamically allocate and free only the files necessary to process the input, so the specific
resources supporting the required files can be in use for the minimll.m time.

The Syc99 dynamic allocation routines can be invoked by both batcn and time-sharing
programs. It can be invoked in two ways - through the DYNALLOC macro instruction or
through the dynamic allocation interface routine (DAIR), which was the only interface between
time-sharing programs and dynamic allocation prior to MVS. When DYNALLOC is used, the
request is specified in the parameter structure discussed under "Requesting Dynamic Allocation
Functions." Requests via DAIR use a different parameter structure, but not all of the dynamic
allocation options are supported through DAIR. The DAIR interface remains to provide
compatibility.

The DAIRFAIL TSO service routine can be used to issue write-to-programmer or TSO

PUTLINE failure messages for both DA1R and SYC99 error codes.

This publication discusses allocation functions available through DYNALLOC and how to
request them. Refer to OS/VS2 TSO Guide to Writing a Terminal Monitor Program or a
Command Processor, GC2S-064S, tor information on using DAIR and DAIRFAIL.

Allocations

A dynamic allocation user can request one of two types of dynamic allocation:

.. allocation of a data set name. This type of allocation is the dynamic allocation equivalent
of a JCL DD statement. (Included in this type of request are requests for allocation of a
sysout data set, a temlinal, a DUMMY data set, or a device, that is, a dsname does not
have to be explicitly specified. A ddname may optionally be specified).

.. allocation of a ddname. This type of request marks the resource currently associated with
the specified ddname as in use. (A resource is considered in use after it has been
dynamically allocated, dynamically concatenated, or opened.)

Dynamic Allocation 21

When dynamic allocation is invoked for either type of request, an alliocation environment
already exists for the user. This allocation environment consists of the user's step and dynamic
allocation request.s which have been previously processed and which have not been dynamically
unallocated. Dynamic allocation considers these existing allocations. For dsname allocation
requests, the dynamic allocation routines first check for environmental conflicts, then try to
satisfy the request with an existing allocation that matches or can be made to match the
request, and finally try a new allocation. If an existing allocation can be used, much of
allocation is avoided. For ddname requests, the routines check if the specified ddname is still
allocated and is not in use. This processing is described in detail below.

Checking for Environmental Conflicts
If the dsname allocation request is not valid with respect to the user's existing allocation
environment, the request is failed. The following is a list of environmental conflicts which
cause a request to be failed:

• the specified ddname is associated with an existing allocation which is in use.
• the specified ddname is associated with a group of concatenated data sets that the user

defined to be permanently concatenated. (See the topic "The Permanently Concatenated
Attribute" for a description of this attribute.)

• the specified ddname is associated with an existing allocation which does not have the
convertible attribute (the convertible attribute means that some of its parameters can be
changed), is not for the specified dsname, and cannot be changed, or which is for the
specified dsname but cannot be used for one of the reasons described in the next topic.

• a status of NEW is specified with a non- & dsname that is the same as that associated with
the existing allocation unless different volume serial numbers are specified.

• a status of OLD or SHR is specified for a dsname which is associated with an existing
allocation that is not permanently allocated, not is use, and has a disposition of DELETE,

unless specified volume serial numbers are different from those associated with the
existing allocation. (A permanently allocated resource can be unallocated only when a
user specifically requests unallocation or at job step unallocation.)

U sing an Existing Allocation
When successive processes usually require the same resource, the overhead of releasing and
reobtaining the resource can be avoided. For example, time-sharing command processors often
use the same data sets. Therefore, the data sets are not dynamically unallocated at the end of
the command process, but are designated "not in use". This avoids un allocation and
reallocation processing.

An existing al1ocation can be used to satisfy only a request for the :allocation of an explicitly
specified dsname, a request for the allocation of the user's terminal as an I/O device, or a
request for the allocation of a DUMMY data set. In addition, if any of the following are
specified the request is not eligible to be satisfied by an existing allocation: data set sequence
number, label type, unit description (unless the dsname is a & dsname. in which case the unit
description is ignored), unit count or parallel mounting, volume sequence number, volume
count, volume reference, private volume, or DeB reference. If MSVGP is specified, it will be
ignored if an existing allocation is used to satisfy the request.

An existing allocation of the specified dsname, or terminal or DUMMY allocation must have
the following properties to satisfy an eligible request:

• it must not be in use.
• it must not be a member of a concatenated group.
• it must have the same volume serial numbers as any that are explicitly specified in the

request.
• it must be permanently allocated if it has a disposition of DELETE and the request

specifies a status of MOD.

22 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

• it must not be a generation data group data set.
• it must have the convertible attribute or, if not, all of the following must be true. (Only

the first requirement must be true for requests specifying an & dsname):
- the request does not specify a ddname or the specified ddname matches the ddname
associated with the existing allocation. A terminal request which does not specify a
ddname cannot be satisfied by a non-convertible existing allocation.
- the member name specified in the request is associated with the existing allocation or
a member name is not specified in the request and no member name is associated with
the existing allocation.
- DCB parameters, Input Only, or Output Only are not specified in the request.
- a status of MOD is either specified in the request and associated with the existing
allocation, or is not specifie.d and not associated with the existing allocation.
- the request does not specify that only convertible existing allocations may be used to
satisfy the request.
- the request does not specify that the convertible attribute be assigned to the
allocation.

If the specified ddname is associated with an existing allocation of the user which was not
selected to satisfy the request, a ddname that is unique within the step is generated and
associated with that existing allocation. This ddname consists of the characters 'SYS' followed
by five digits.

Changing the Parameters of an Existing Allocation

When dynamic allocation uses an existing allocation to satisfy a request, some of the
parameters of the existing allocation may have to be changed to reflect the parameters
specified in the request. The only existing allocations that can have parameters changed are
those allocated dynamically without the Permanently Allocated attribute or with the
Permanently Allocated attribute and the Convertible attribute. Resources allocated via JCL or
the TSO ALLOCATE command cannot have their parameters changed (with the exception of
status and disposition specified via JCL), but they may be used if no changes are necessary.

Not all parameters of an existing allocation can be changed. The following parameters are
eligible for change:

• ddname
• membername
• status
• normal disposition
• conditional disposition
• space
• unallocation at CLOSE
• input only
• output only
• DCB attributes
• password
• permanently allocated attribute

No others are eligible.

Choosing Among Satisfactory Existing Resources

If more than one existing allocation can satisfy the request, dynamic allocation selects:

• the existing allocation which is associated with the specified ddname or, if none,
• the existing allocation for which the in-use attribute has been most recently removed

(data sets allocated via JCL are considered to have had their in use attributes removed at
step allocation).

Dynamic AUocation 23

A /loca lion of a Ddname

This type of dynamic allocation request is used to determine if a particular ddname is
associated with an existing allocation and, if so, to assign the in-use attribute to that existing
allocation. To satisfy a ddname request, an existing allocation with the specified ddname must:

• not be in use
• not have the convertible attribute, or must be permanently concatenated, that is, must

have properties that insure that the ddname could not have been disassociated from the
existing allocation. (See the topic "The Permanently Concatenated Attribute" for a
description of this attribute.)

IT the existing allocation with the specified ddname does not meet the above requirements,
or if the ddname is not associated with any existing allocation of the user, the request is failed
and an error return is made to the user. If the existing allocation meets the above
requirements, it is assigned the in-use attribute and the request has been satisfied. If the
existing allocation is a member of a concatenated group, all members of the group are assigned
the in-use attribute, so the entire group has been allocated.

The user may specify that an indication be returned if the existing allocation which satisfies
the request is associated with a DUMMY data set.

New Allocations

A new allocation is attempted when an existing allocation cannot be used to satisfy the
request. The dynamic allocation routines do not allow a new allocation while a job step is
holding for possible reuse more dynamically allocated resources than it is permitted. The
permitted number, called the control value, is equal to the value in the EXEC statement
DYNAMNBR=n parameter plus the number of DD DYNAM statements and is the number of
dynamically allocated resources which may be held for reuse. This limit is imposed because an
existing allocation even when not in use, can prohibit other users from using its associated
resources, for example, DASD space or a tape drive, or the data set itself.

The control value may be exceeded in this manner: requests for new allocations will be
satisfied, up to the system limit of 1635 concurrent allocations. Some of these allocated
resources may be later designated as not in use when they are no longer needed, and the
number of resoun~es so designated can exceed the control value.

When the dynamic allocation routines need to make a ne:w allocation while the control value
is exceeded, they try to automatically unallocate enough resources to meet the control value
limit.

Unallocating Resources Held for Reuse

The only resources eligible for automatic unallocation are those which were allocated
dynamically without the permanently allocated attribute. (Resources allocated through JCL, and
through the time-sharing ALLOCATE command are not eligible because they have the
permanently allocated attribute.)

When many resources are eligible for automatic unallocation, the dynamic allocation
routines choose those which have been designated as not in use for the longest time. These are
unallocated and the new allocation is processed.

If the control value is still exceeded after all eligible resources have been unallocated, then
the request for a new allocation fails. In this case the user must explici1tly request unallocation
of an existing allocation before the new allocation can be performed.

24 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Differences Between Step Allocation and Dynamic Allocation

A request for a new allocation is processed in a manner similar to the way requests to step
allocation are processed. The following are differences in this processing:

• If a ddname is not specified in the request, a ddname unique within the step will be
generated. This ddname will consist of the characters 'SYS' followed by five digits.

• If space information is not specified in a request for a new direct access data set, a
default of a block length of 1000, 10 primary blocks, 50 secondary blocks, and release of
unused space (RLSE) is used. These space defaults are contained in the Allocation
Def ault CSECT, IEF AB445 (a member of load module IEFW21 SD), so the installation can
conveniently modify them. The contents of the module are (beginning at offset zero):

- three bytes for the binary value of the primary quantity (x'OOOOOA')
- three bytes for the binary. value of the secondary quantity (x'000032')
- three bytes for the binary value of the average block length (x'0003E8')
- three bytes for the binary value of the number of directory blocks (x'OOOOOO')
- one byte of flags with the following bit meanings:

bit 0 - TRK (0)
bit 1 - CYL (0)
bit 2 - blocklength (1)
bit 3 - RLSE (1)
bit 4 - CONTIG (0)
bit 5 - MXIG (0)
bit 6 - ALX (0)
bit 7 - ROUND (0)

• Passed Data Set Information is not used to retrieve volume information.
• ISAM data sets cannot be created through dynamic allocation.
• For time sharing users allocating new data sets, DSORG is defaulted to partitioned

organization if a directory quantity is specified, or to physical sequential otherwise.
• If a unit description is not specified, a unit description is obtained from a time-sharing

user's UADs entry. If the user is not a time-sharing user, or if the UADS entry does not
contain a unit description, a default of 'SYSALLDA', that is, all direct access devices, is
used. This default is contained in the allocation default CSECT IEFAB445, in the 8 bytes
beginning at offset 13 (decimal). The unit description supplied is eligible to override the
unit type for a cataloged data set; however, the default unit description from the UADS is
not eligible for unit override.

• If the request was eligible to be satisfied by an existing allocation, but no existing
allocation of the specified dsname could be used to satisfy the request, the volume and
unit information associated with an existing allocation of the specified dsname is copied
and associated with the request.

• The dynamic allocation routines will not wait for another user to release a data set in
order to obtain use of it. If a conflict occurs, the request fails.

The following topics explain other differences between step and dynamic allocation.

Device and Volume Use

Dynamic allocation supports the same devices that are supported by step allocation. Devices
and volumes are selected to satisfy dynamic allocation requests in the same manner as they are
selected for step allocation requests.

However, dynamic allocation will not wait for devices or volumes to be released by other
users to satisfy an allocation request. Rather, if a specified device or volume is currently
unavailable, the request will be failed.

Dynamic AUocation 25

Mounting Volunles/ Offline Devices

Dynamic allocation can bring devices online and have volumes mounted. Because this is a time
consuming operation and requires operator communication, and therefore is not always
desirable in an interactive environment, this function is an option for time sharing users.
Installations can assign this option to time sharing users via the UADs entries. Non-time sharing
users always have volume mounting ability and the ability to have devices brought online.
However, any user may indicate in the dynamic allocation request that volumes are not to be
mounted and that devices are not to be brought online for a request.

The operator may inform the dynamic allocation routines that a volume is not to be
mounted or that a device is not to be brought online. In this case, the request is failed. In
order to support this operator communication, dynamic allocation must wait for tape volumes
to be mounted. (Step allocation does not wait for tape volumes to be mounted). If the volume
is mounted, OPEN will verify that the correct volume has been mounted.

If the option to have volumes mounted and devices brought online is not in effect, then tape
and direct access devices which have an outstanding mount request or which are not ready are
not eligible for use by dynamic allocation.

Cataloging at Allocation

Direct access data sets that are dynamically allocated with a status of NEW, or MOD are
treated as NEW, and a normal disposition of CA TLG will be cataloged when allocated rather
than when unallocated.

If the data set cannot be allocated, it will not be cataloged. If the data set cannot be
cataloged, no allocation will take place. In either case an appropriate return code will be
returned to the user.

Specifying the Data Set Password

A dynamic allocation user may specify, as part of his request, the password of a password
protected data set. This allows bypassing of prompting when the data set is opened.

Returning Inf onnation

A dynamic allocation request can specify that the ddname, data set name, and volume serial
numbers that are assigned be returned in the dynamic allocation parameter list. A user can also
request the data set organization (DSORG) of the allocated data set. It will be returned as
follows:

• If a DSORG is specified with the allocation request, that DSORG is returned.
• If the allocation request is for a terminal as an I/O device or for a SYSOUT data set, 'Ps'

is returned as a default value.
• If the allocation request is a tape data set, 'Ps' is returned as a default value.
• If the allocation request is for a NEW direct access data set, 'PO' will be returned if a

directory space quantity was specified; otherwise, 'Ps' will be returned.
• If the allocation request is for an existing direct access data set, the data set organization

obtained from the Data Set Control Block (DSCB) is returned. If the organization cannot
be obtained from the DSCB, the allocation request is failed.

• For other types of allocation requests, zeroes will be returned.

26 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Dynamic Unallocation
The dynamic unallocation routines provide the means of releasing resources when they are no
longer needed. There are two functions available through dynamic unallocation:

• releasing a data set, which can involve the following processes:
- disassociating the ddname from the data set name, which allows the ddname to be
used in subsequent dynamic allocations
- processing the data set disposition
- releasing the data set for use by other jobs
- freeing the unit(s) to which the data set was allocated
- releasing the volume(s) on which the data set was allocated

• removing in-use attribute

Normal processing for the dynamic unallocation routines is to remove the in-use attribute
from resources allocated through JCL, through the time-sharing ALLOCATE command, or
dynamically with the permanently allocated option; the routines will release data sets allocated
dynamically without the permanently allocation option. However, a user may explicitly specify
the type of processing to be performed. The explicit specification will be satisfied in all but
one case-the in-use attribute will not be removed from non-permanently allocated,
non- & dsname data sets with a disposition of DELETE, because such a resource cannot be used
to satisfy a subsequent request. Such a resource will be released.

Either dynamic unallocation function can be performed for a dsname or a ddname. The
following rules apply to dsname unallocation requests:

• If no ddname is specified and the dsname is associated with more than one ddname, all
associations are unallocated. If an error occurs while unallocating one ddname, processing
continues for the others and and error code is returned. If errors occur for more than one
ddname, the error code applies to the last ddname for which there was an error.

• If a membername is specified with the dsname, only those associations containing both
the membername and dsname are unallocated.

The following rules apply to ddname unallocation requests:

• Only the occurrence of the data set associated with the specified ddname is unallocated,
even if that data set is associated with other ddnames.

• If a dsname or a dsname and membername are specified in addition to a ddname, they
must be associated with that ddname or the request fails.

Unallocating a Data Set

A data set is not unallocated if it is open, is a member of an open concatenated group, or is a
private catalog. Also, if a data set, unit, or volume is associated with more than one ddname, it
may not be available to other users until all ddnames are unallocated.

The topics below discuss unallocating concatenated data sets, SYSOUT data sets, and
disposition processing.

Unallocating Concatenated Data Sets

If the concatenated group does not have the permanently concatenated attribute, the group is
deconcatenated and the member associated with specified dsname is unallocated. (The first
member is unallocated if a ddname is specified.)

If the group is permanently concatenated and a ddname without a dsname, a VSAM dsname
(for data sets spanning device types), orGDG ALL (request for all members of a generation
data group) dsname is specified, the entire group is unallocated. The unallocation request fails
if any other dsname is specified.

Dynamic Allocation 27

Unallocating SYSOUT Data Sets

When a SYSOUT data set is unallocated it is immediately made available for output unless the
user specifies an overriding disposition of DELETE. In this exceptional case, the information in
the sysout data set is lost.

The output class, remote work station designation, and Hold/Nohold option may be
specified; they will override those specified at allocation.

Disposition Processing

A disposition specified in an unallocation request will override the disposition specified at
allocation. Overriding dispositions are ignored for passed data sets, VSAM data sets, and
system-named data sets.

An overriding disposition of DELETE for a data set allocated as SHR is invalid; the request
fails. A member of a partitioned data set cannot be deleted with a disposition of DELETE; the
entire data set is deleted.

Removing the In-Use Attribute

A request to dynamic unallocation may be to remove the in-use attribute. Removing this
attribute provides a resource that dynamic allocation can use to satisfy a subsequent allocation
request of the same user. Removing the in-use attribute does not actually unallocate the
associated resources.

Processing a Request to Remove the In-Use Attribute

If the specified resource is associated with a concatenated group, all members of the group
have the in-use attribute removed, and the count of the number of resources held for reuse is
increased by the number of members in the group. (An exception is when the group was
generated by the system, that is, VSAM data sets spanning device types and GDG ALL groups.
In these cases, the group is treated as a single resource.)

Requests to remove the in-use attribute from a private catalog are ignored.

(f the resource is associated with an open data set or an open concatenated group, the
resource is considered to be in-use until the data set is closed.

• a non- & dsname, non-permanently allocated data set which has a disposition of DELETE

is unallocated (instead of having the in-use Attribute removed.)
.. a conditional disposition specification which may have been assigned when the data set

was allocated is removed, and therefore will not be honored in the: event of a subsequent
ABEND.

Identifying a Resource by Task-ID

In addition to specifying a ddname or dsname, the user may specify that the in-usc attribute be
removed based on task-id. The attribute may be removed from:

• all resources associated with a specified task, or all resources except those associated with
the current task, its higher-level tasks, and the initiator. This function is used by the time
sharing Terminal Monitor Program (TMP) to have the in-use attribute removed from any
data sets allocated by a command processor when a command processor completes
execution.

28 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Dynamic Concatenation of Data Sets
Dynamic concatenation provides the user with a means of logically connecting allocated data
sets into a concatenated group.

The user identifies the data sets to be concatenated by their associated ddnames. These data
sets must not be open, or the request for dynamic concatenation fails.

The order of the data sets in the concatenated group will be the order in which the
associated ddnames were specified. The name associated with the concatenated group will be
the ddname that was specified first. The other ddnames are no longer associated with any data
set. If a specified ddname is already associated with a concatenated group, this group will be
included in the new concatenation.

After the request for dynamic concatenation is satisfied, all members of the dynamically
concatenated group will be assigned the in-use attribute.

The Permanently Concatenated Attribute

The permanently concatenated attribute may be assigned when concatenation is requested. In
addition, a concatenated group defined via JCL is automatically assigned the permanently
concatenated attribute. Step and dynamic allocation requests which result in a concatenated
group defined by the system are also automatically assigned this attribute. A GDG .ALL request
and a request for a VSAM data set which spans device types are examples of such requests.

A group having the permanently concatenated attribute has the following properties:

• If a dynamic unallocation request specifies the ddname associated with a permanently
concatenated group or specifies the dsname of a system defined permanently
concatenated group, the entire group is unallocated. If a dynamic unallocation request
specifies a dsname associated with a non-system defined permanently concatenated
group, that occurrence of the data set is not unallocated.

• The group cannot by dynamically deconcatenated into its member data sets.
• If a permanently concatenated group is dynamically concatenated with other data sets to

form a new non-permanently· concatenated group, the permanently concatenated group
will remain intact if the new group is dynamically deconcatenated.

• If the group is not a system defined permanently concatenated group, the group is
automatically assigned the permanently allocated attribute.

Dynamic Deconcatenation of Data Sets
Dynamic deconcatenation provides the user with a means of logically disconnecting the
members of a concatenated group. The user identifies the concatenated group to be
deconcatenated by specifying the ddnames of the group.

The request for dynamic deconcatenation fails if the concatenated group is open. A
permanently concatenated group, or members of a concatenated group which are permanently
concatenated, will remain concatenated.

When a concatenated group is dynamically deconcatenated, the ddnames that were
associated with the data sets before they were concatenated are restored unless this would
result in duplicate ddnames. This situation could arise if a dynamic allocation with the ddname
to be restored occurred after a dynamic concatenation. In this case the deconcatenation
request fails.

Dynamic deconcatenation has no effect on the in-use attributes associated with the members
of the group.

Uynamic Allocation 29

Dynamic Information Retrieval

Dynamic information retrieval provides the user with information about his current allocation
environment. The user can request information about ddnames or dsnames. In addition, a user
may ask for information about any or all of his currently allocated requests by specifying a
relative request number.

For example, information about all requests can be obtained by successively asking for
information about the 1st, 2nd, ... Nth entry. A unique return code is provided when
information is requested for a nonexisting relative entry.

The following information can be requested:

• data set name
• ddname
• member name
• the data set organization
• status
• normal disposition
• conditional disposition
• whether or not a resource has the permanently allocated attribute, in~use attribute, or

permanently concatenated attribute
• whether or not a specified ddname is associated with an allocation of the user's terminal

as an I/O device
• whether or not a specified ddname is associated with a DUMMY data set
• the number of resources held in anticipation of reuse which exceed the control value, that

is, the number of existing allocations which must be unallocated before a request which
requires the creation of a new allocation can be satisfied.

• whether or not the allocation is the last relative entry.

Requesting Dynamic Allocation Functions
To request a dynamic allocation function, code the DYNALLOC macro iinstruction (it has no
operands) and supply the parameter structure shown in Figure 15.

This section describes the parameter structure fields, the dynamic allocation return codes,
and the IBM-supplied mapping macros that aid in defining the parameter structure. The section
also contains an example of a dynamic allocation request and describes an exit for an
installation - written routine for checking allocation requests.

The actual values for verb codes, flags, error codes, information codes, and text unit fields
are in the following chapter, Dynamic Allocation Parameter Structure Fields.

Parameter Structure Description

This topic describes the Request Block, Text Pointers, and Text Units fields in Figure 4. The
names in parentheses, and those in Figure 4, are those assigned by the macro IEFZB4DO.

30 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Must be on

8

12

16

Verb
Code

Error Code

~ Text Pointers

Reserved

FLAGS2

FLAGS1

Info.
Code

• Text Unit

Figure 4. Data Area Structure for Dynamic Allocation Input

Request Block Fields

(S99RBLN)

VERB CODE
(S99VERB)

FLAGSl
(S99FLAGl)

ERROR CODE
(S99ERROR)

INFO. CODE
(S99INFO)

LENGTH

One byte containing the length of the request block.

One byte which identifies the dynamic allocation to be performed. The functions that
can be requested are:
• dsname allocation
• ddname allocation
• dsname or ddname unallocation
• concatenation
• deconcatenation
• removing the in-use attribute based on task id

information retrieval

Two bytes of indicators used during dsname allocations to tell dynamic allocation not
to satisfy the request with:
• an existing allocation
• an existing allocation that does not have the convertible attribute
• unmounted volumes or offline units.

Two bytes that dynamic allocation uses to return an error reason code.

Two bytes that dynamic allocation uses to return an information reason code.

Uynamic Allocation 3 t

TEXT POINTERS
address
(S99TXTPP)

RESERVED

FLAGS2
(S99FLAG2)

T ext. Pointers

TEXT UNIT
address
(S99TUPL)

Text Units

TEXT UNITS
(S99TUNIT)

(S99TUKEY)

(S99TUNUM)

(S99TUENT)

(S99TULNG)

(S99TUPAR)

A full word containing the address of a list of pointers 10 the text units.

A fullword of zeros.

Four bytes of indicators for use by authorized programs which direct dynamic
allocation to:

wait for volumes
wait for the specified dsname to become available.
not reserve data sets
wait for a unit
consider offline devices
set special CATALOG data set indicators.
allocate a private catalog on behalf of the initiator.

The indicators are also used to inform dynamic allocation that a TIOT enqueue has
been performed and that it may mount volumes.

A variable-length list of fullword pointers to text units. The end of the list is indicated
by setting on the high-order bit of the last pointer. A fullword of zeroes is ignored.
(S99TUPTR is the label for each pointer in the list. S99TUPLN is a label for the
indicator of the end of the list.)

A variable-length field containing the following subfields:

KEY - two-hytes that contain a unique binary number that identifies a text unit.
Dynamic allocation ignores KEY fields of zero.

Number (#) field - two-byte binary number that specified the number of length
and parameter combinations in the text unit.

the lahel for a length and parameter combination.

LEN field - two-byte binary number that specifies the length of the following
parameter field.

PARM field - contains the parameter information such as dsname, disposition,
status, and so forth.

The following general considerations and rules apply to the structure of the text units:
Special characters - of the type requiring apostrophes in JCL statements - are
not permissible in P ARM values.
Parameters whose values consist of alphameric and national characters may have
trailing blanks.
The text units may be in order.
Each function of dynamic allocation has an associated set of text units, and each
set is independent of any other. For example, the functions of both allocation and
unallocation may use a KEY value of '0007', but that value does not necessarily
have the same meaning for each fU!lction.

32 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Dynamic A 1I0cation Return Codes

When the dynamic allocation routines return control to the requesting program, register 15
contains a return code. Depending on the return code, the S99ERROR and S99INFO fields in
the input request block (S99RB) may additionally contain error and informational reason codes
respectively. The informational reason codes and their explanations and the error reason codes
and their explanations are contained in the following chapter. The return codes in register are
shown in figure 5.

Code Meaning
o Successful completion; there will also be an informational reason code if a non-terminating error

occurred during request processing.
4 An error resulted from the current environment, the unavailability of a system resource, or a

system routine failure; there will also be an error reason code.
8 The installation validation routine denied this request. (See the topic "Installation Input Validation

Routine" for additional information.)
12 The error is due to an invalid parameter list; there will also be an error reason code from Class

3 as show in figure 7.

Figure 5. Dynamic AUocation Return Codes

Using the Dynamic Allocation Macros

IBM supplies two macros - IEFZB4DO and IEFZB4D2 - to aid in constructing the dynamic
allocation parameter structure. IEFZB4DO provides symbolic names (dummy sections) for the
positional information in the structure; IEFZB4D2 provides· mnemonics for the text unit
keyword values.

The following chapter contains a summary of the text unit keys for the dynamic allocation
functions, and their mnemonics.

Example of a Dynamic Allocation Request

The assembler language example in figure 6 illustrates a dynamic allocation request for
allocating SYS 1.LINKLIB with a status of SHARE. It also requests that the dynamic allocation
routines return the ddname associated with the data set that gets allocated.

Dynamic Allocation 33

LA 0,75
GETMAIN R,LV=(O)
LR 8,1
USING S99RBP,8
LA 4,S99RBPTR+4
USING S99RB,4
ST 4,S99RBPTR
01 S99RBPTR,S99RBPND
XC S99RB(RBLEN) ,S99RB
MVI S99RBLN,RBLEN
MVI S99VERB,S99VRBAL
LA 5,S99RB+RBLEN
USING S99TUPL,5
ST 5,S99TXTPP
LA 6,S99TUPL+12
USING S99TUNIT,6
ST 6,S99TUPTR
LA 7,DALDSNAM
STH 7,S99TUKEY
LA 7,1
STH 7,S99TUNUM
LA 7,L'LINKDSN'
STH 7,S99TULNG
MVC S99TUPAR(l2) ,LINKDSN
L.n. 6, S99TUNIT+18
LA 5,S99TUPL+4
ST 6,S99TUPTR
LA 7, DALSTATS
STH 7,S99TUKEY
LA 7,1
STH 7,S99TUNUM
5TH 7,S99TULNG
MVI S99TUPAR,X'08'
LA 6,S99TUNIT+7
LA 5,S99TUPL+4
ST 6,S99TUPTR
01 S99TUPTR,S99TUPLN
LA 7, DALRTDDN
STH 7,S99TUKEY
LA 7,1
STH 7,S99TUNUM
LA 7,8
STH 7,S99TULNG
LR 1,8
DYNALLOC

AMOUNT OF STORAGE THAT THIS REQUEST NEEDS
GET THE STORAGE NECESSARY FOR THE REQUEST
SAVE THE ADDRESS OF THE RETURNED STORAGE
ESTABLISH ADDRESSABILITY FOR 'RBPTR' DSECT
POINT FOUR BYTES BEYOND START OF 'RBPTR"
ESTABLISH ADDRESSABILITY FOR 'ID3' DSECT
MAKE 'RBPTR' POINT TO 'RB'
TURN ON THE HIGH ORDER BIT IN 'HBPTR'
ZERO OUT 'RB' ENTIRELY
PUT THE LENGTH OF 'RB' IN ITS LENGTH FIELD
SET VERB CODE FIELD TO ALLOCATION FUNCTION
POINT TWENTY BYTES BEYOND START OF 'RB'
ESTABLISH ADDRESSABILITY FOR TEXT UNIT PTRS
INITIALIZE THE TEXT POINTERS ADDRESS IN 'RB'
POINT JUST PAST THE THREE TEXT UNIT POINTERS
SET ADDRESSABILITY FOR THE FIRST TEXT UNIT
POINT 1ST TEXT UNIT POINTER TO 1ST TEXT UNIT
GET THE KEY FOR DSNAME
PUT THE KEY IN THE TEXT UNIT KEY FIELD
BECAUSE THE DSNAME KEY REQUIRES ONLY ONE

PARAMETER, LOAD AND STORE 1 IN NUMBER FIELD
GET THE LENGTH OF THE DSNAME FIELD AND PUT

IT INTO THE TEXT UNIT'S LENGTH FIELD
PUT THE DSNAME INTO TEXT UNIT PARM FIELD
POINT JUST PAST THE FIRST TEXT UNIT
POINT TO THE 2ND TEXT UNIT POINTER IN LIST
POINT 2ND TEXT UNIT POINTER TO 2ND TEXT UNIT
GET THE KEY FOR STATUS SPECIFICA-

TION AND PUT THE KEY IN THE TEXT UNIT
BECAUSE THE STATUS KEY REQUIRES ONLY ONE

PARAMETER, LOAD AND STORE 1 IN THE NUMBER FIELD
SET THE STATUS PARM LENGTH FIELD ALSO TO 1
SET THE PARM FIELD TO INDICATE SHARE DISP
POINT JUST PAST THE SECOND TEXT UNIT
POINT TO 3RD TEXT UNIT POINTER IN THE LIST
POINT 3RD TEXT UNIT POINTER TO 3RD TEXT UNIT
TURN ON HIGH ORDER BIT TO INDICATE LAST PTR
GET THE KEY FOR 'RETURN DDNAME' AND

PUT THE KEY IN THE TEXT UNIT KEY FIELD
BECAUSE 'RETURN DDNAME' KEY REQUIRES ONLY 1

PARAMETER, LOAD AND STORE 1 IN NUMBER FIELD
SET LENGTH OF FIELD FOR RETURNING DDNAME TO 8

PUT REQ BLK PTR ADDR IN REG 1 FOR DYNALLOC
INVOKE DYNAMIC ALLOCATION TO PROCESS REQUEST

LINKDSN DC C'SYS1.LINKLIB'

IEFZB4DO
IEFZB4D2

RBLEN EQU (S99RBEND-S99RB)

D:<'igure 6. Example of a Dynamic Allocation Request

3·4 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Note the following concepts that the example illustrates:

• Storage is obtained via a GETMAIN macro instruction.
In the example, the requirement is for 75 bytes, derive as follows -

Bytes
4

20
12
18

7
14

Purpose
Pointer to the request block.
Request block space requirement.
Four bytes each for three text unit pointers.
Text unit space for the data set name.
Text unit space for the data set status.
Text unit space for the requested return of the ddname.

• The parameter structure is mapped by the DSECTs that IEFZB4DO provides.
• Use of the IEFZB4D2 mnemonics in the text unit keys.

Installation Input Validation Routine

An exit from the allocation control routine provides for a user-written routine to validate or
alter any request to dynamic allocation. The routine is entered for all system and user dynamic
allocation requests. The routine must be coded so as not to interfere with system requests.

The validation routine may test and modify the dynamic allocation input request, and it may
indicate through a return code whether ,processing of the request is to continue. For example,
the routine may perform the following functions:

• control the amount of direct access space requested
• check for authorization to use specified units
• check for authorization to usc certain data sets
• check for authorization to hold certain resources for reuse.

Programming Considerations

The input validation routine must observe the following programming conventions and receives
the following input:

• Its CSECT name must be IEFDB401 and it must reside in load module IFFW21SD.
• It receives control in supervisor state under the scheduler's protection key (key 1). At

entry, register 1 pointers to a list of addresses for the fol1owing parameters:
- a copy of the dynamic allocation input request block, text unit pointers, and text units
in scheduler key fetch-protected storage.
- the address of a work area for the use of the routine. This area is contiguous with the
text unit pointer list so that it can be used to extend the list and provide additional text
units.
- A fullword that contains the length of the work area (500 hytes).
- the eight-character job name.
- the twenty-byte programmer name.
- an area that contains accounting information from the JOB statement. The first hyte
of this area contains the number of accounting fields; the accounting fields follow this
byte. Each entry for an accounting field contains the length of the field (one byte,
binary), followed by the field itself. The entry for a null field contains a length of zero.
- The eight-character step name.
- The eight character program name.
- An area containing accounting information from the EXEC statement. The first byte of
this area contains the number of accounting fields (0 for no fields); the accounting fields
follow this byte. Each entry for an accounting field contains the length of the field (one
byte, binary), followed by the field itself. The entry for a null field contains a length of
zero.

Dynamic Allocation 35

• The routine must use register 15 to return to dynamic allocation a code of zero if
processing of the request is to continue, or any other code if processing is to terminate.

The IBM-supplied routine that your routine may repl~ce allows all requests to continue
processing.

36 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Dynamic Allocation Parameter Structure Fields

This chapter contains the values that can be specified or returned in the fields of the dynamic
allocation parameter structure. (See figure 4 in the section" Allocation Services" for an
illustration of the structure.) The fields described here are the Informational Reason Codes, the
Error Reason Codes, Flagsl, Flags2, Verb Codes, and the Text Unit fields - key, number,
length, and parameter. The labels used in this chapter are those assigned by the macros
IEFZB4DO and IEFZB4D2.

Informational Reason Codes

The codes below are returned in the two-byte field S99INFO.

Code
0004

0008

OooC-OOIC

oo2w

I 003x

Meaning
reserved

overriding disposition ignored; returned after an unallocation request

reserved

data set was successfully unallocated but completion of the requested CA TLG or UNCA TLG
disposition was unsuccessful. The digit "w" was a code representing the reason for the failure.
The meaning of each code is:
1 a control volume was required and a utility program must be used to catalog the data set.
2 the data set to be cataloged had previously been cataloged, or the data set to be

uncataloged could not be located, or no change was made to the volume serial list of a data
set with a disposition of CATLG.

3 a specified index did not exist.
4 the data set could not be cataloged because space was not available in the catalog data set.
5 not enough storage was available to perform the specified cataloging.
6 the data set to be cataloged in a generation index is improperly name.
7 the data set to be cataloged was not open and no density information was provided (for

dual density tape requests only).
9 an uncorrectable I/O error occurred in reading or writing the catalog.

data set was successfully unallocated but completion of requested DELETE disposition was
unsuccessful. The one-digit code "x" represents the reason for the failure. Its meanings are:
1 the expiration date had not occurred.
4 no device was available for mounting during deletion.
5 not enough storage was available to perform the specified deletion.
6 either no volumes were mounted or the mounted volumes could not be demounted to

permit the remaining volumes to be mounted.
8 the SCRATCH routine returned an error code. If the user's JOB statement requested

allocation/termination messages, message IEF283I will appear in the SYSOUT listing. This
message will list the volume serial numbers; following each number will be a code that
explains why the number was not deleted.

Error Reason Codes
Error reason codes are divided into these classes:

Class Description
1 reserved
2 unavailable system resource
3 invalid parameter list
4 environment error
5 reserved
6 reserved
7 system routine error

The error reason code contains the codes shown in figure 7. The second hexadecimal digit
will be one of the class designations above. The field is labeled S99ERROR.

Note: The explanations of the codes in figure 7 are followed by an indication of the kind of
request associated with the code.

Dynamic Allocation Parameter Structure Fields 37

CLASS 2 CODES

Code
0204
0208
020C
0210

0214
0218

021C
0220
0224
0228
022C
0230
0234
0238
023C

0240
0244
0248

Meaning
Real storage unavailable; dsname allocation.
Reserved.
Request for exclusive use of a shared data set cannot be honored; dsname allocation.
Requested data set unavailable. The data set is allocated to another job and its usage attribute
conflicts with this request; dsname allocation.
Unites) not available; dsname allocation.
Specified volume or an acceptable volume is not mounted, and user does not have volume
mounting authorization; dsname allocation.
Unit name specified is undefined; dsname allocation.
Requested volume not available; dsname allocation.
Eligible device types do not contain enough units; dsname allocation.
Specified volume or unit in use by system; dsname allocation.
Volume mounted on ineligible permanently resident or reserved unit; dsname allocation.
Permanently resident or reserved volume on required unit; dsname allocation.
More than one device required for a request specifying a specific unit; dsname allocation.
Space unavailable in Task Input Output Table (TIOT); dsname allocation, concatenation.
Required catalog not mounted, and user does not have volume mounting authorization; dsname
allocation.
Requested device is a console; dsname allocation.
Telecommunication device not accessible; dsname allocation.
MSS volume unable to be mounted; dsname allocatioo.

CLASS 3 CODES

Code Meaning
0304-0338 Assigned by DAIR. (See OS/VS2 TSO Guide to Writing a Terminal Monitor

Program or a Command Processor GC28-0648.)
033C-0354
0358
035C
0360
0364

0368
036C
0370
0374
0378
037C
0380

0384
0388

038C
0390

Reserved.
Overriding disposition of DELETE invalid for data set allocated as SHR; un allocation .1
Invalid PARM specified in text unit; all functions.2
Invalid KEY specified in text unit; all functions.2

JOBLlBjSTEPLlBj JOBCAT jSTEPCAT specified as ddname, or associated with specified dsname;
dsname allocation, ddname allocation, unallocation, concatenation, deconcatenation. 1

Authorized function requested by unauthorized user; all functions.
Invalid parameter list format; all functions.
Reserved.
Invalid # specified in text unit; all functions.2

Duplicate KEY specified in text unit; all functions.2

Invalid LEN specified in text unit; all functions.2

Mututally exclusive KEY specified in text unit; dsname allocation, unallocation, information
retrieval, remove In-use.2

Mutually inclusive KEY not specified; unallocation, dsname allocation.2
Required key not specified; ddname allocation, information retrieval, concatenation,
deconcatenation, remove In - Use, unallocation.
Duplicate ddnames specified for concatenation.
GOG group name specified with relative generation number exceeds :35 characters; dsname
allocation.

0394 Status and relative generation number are incompatible; dsname allocation.
0398 Volume sequence number exceeds the number of volumes; dsname allocation.
039C Device type and volume are incompatible; dsname allocation.

2

The informational reason code field contains 0004 if the specified data set has been unallocated, although
an error was encountered processing another occurrence of the data set as the error reason code
indicates.
The informational reason code contains the value of the key that caused the error.

Figure 7. Error Reason Codes (Part 1 of 2)

38 OSjVS2 System Programming Library: Job Management (VS2 Release 3)

CLASS 4 CODES

Code
0404-040C
0410
0414-041C
0420

0424
0428-0430
0434

0438

043C

0440
0444
0448
044C
0450
0454
0458
045C
0460
0464
0468
046C
0470
0474
0478
047C
0430
0484
0488
048C
0490
0494
0498
049C
04AO

Meaning
Reserved.
Specified ddname unavailable; dsname allocation, ddname allocation.
Reserved.
Specified ddname associated with an OPEN data set; ddname allocation, concatenation,
deconcatenation, unallocation, dsname allocation. 1
Deconcatenation would result in duplicate ddnames.'
Reserved.
Ddname specified in ddname allocation request is associated with a convertible or
non-permanently allocated resource.
Specified ddname not found; information retrieval, ddname allocation, concatenation,
deconcatenation, unallocation.
Resources could not be unallocated to decrease the number of resources held in anticipation or
reuse to meet the limit of the control value; dsname allocation.
Specified dsname not found; information retrieval, unallocation.
Relative entry number specified in information retrieval request not found.
Data set requested NEW found allocated; dsname allocation.
Existing data set requested found allocated as eligible for deletion; dsname allocation.
Request would cause the limit of 1635 concurrent allocations to be exceeded; dsname allocation.
Ddname in DCB reference not found; dsname allocation.
Dsname in DeB reference or volume reference is a GDG group name; dsname allocation.
Specified dsname to be unallocated is a member of Permanently Concatenated group.1
Specified dsname or member to be unallocated is not associated with specified ddname.
Specifiec;l dsname to be unallocated is a private catalog. 1

Error while allocating or opening a private catalog.
Remote work station not defined to Job Entry Subsystem; dsname allocation, unallocation.
User unauthorized for Job Entry Subsystem request; dsname allocation.
Error while attempting to select optimum device; dsname allocation.
Unable to process Job Entry Subsystem request; dsname allocation, unallocation.
Unable to establish ESTAE environment; all functions.
The number of units to satisfy the request exceeds the limit; dsname allocation.
Request denied by operator; dsname allocation.
GDG pattern DSCB not mounted; dsname allocation.
GDG pattern DSCB not found; dsname allocation.
Error changing allocation assignments; dsname allocation.
Error processing OS CVOL.
MSS volume not accessible; dsname allocation.
MSS volume not defined; dsname allocation.
Specified MSVGP name not defined; dsname allocation.

CLASS 7 CODES

Meaning Code
17zz LOCATE error; dsname allocation. (Note: Hexadecimal '08', '18', and '2C' are the only expected

LOCATE return codes. 'FF' is returned as the value of zz if an unexpected return code is
returned by LOCATE.)

27zz Reserved.
37zz Reserved.
47zz DADSM error; dsname allocation.
57zz CATALOG error; dsname allocation.
67zz OBTAIN error; dsname allocation, information retrieval.

Note: The failing system routine returns the code represented by "zz".

The informational reason code field contains 0004 if the specified data set has been unallocated, although
an error was encountered processing another occurrence of the data set as the error reason code
indicates.

Figure 7. Error Reason Codes (Part 2 of 2)

Dynamic Allocation Parameter Structure Fields 39

FLAGSl
The FLAGS 1 field is a two-byte labeled S99FLAG that is used during dsname allocation
requests. The meaning of the bits in the field is as follows:

Bit

()

(S990NCYN)

I
(S99NOCYN)

2
(S99NOMNT)

3
(S99JBSYS)

4-15

FLAGS2

Meaning When On

Do not use an existing allocation that does not have the convertible attribute to satisfy
the request.

Do not use an existing allocation to satisfy the request.

Do not mount volumes or consider offline units. (This hit overrides S99MOUNT and
S990FFLN in FLAGS2')

Treat the data set as part of the job's normal output. The data set is not expected to be
dynamically unallocated (spun off). (This flag is used for SYSOUT data sets.)
If the data set is dynamically unallocated the data set will he printed immediately but
paging space will not be released until the job ends.

Reserved. Must be zero.

The FLAGS2 field is a four-byte field of indicators labeled S99FLAG2. These indicators may be
set only by authorized programs. To be authorized the requesting program must meet at lease
one of these criteria:

• it must have a system storage protection key (0-7)
• it must be in supervisor state
• it must be APF authorized
• it must be the installation-writer input validation routine.

If a FLAGS2 indicator is set by an unauthorized program, the dynamic allocation routines
fail the request.

The FLAGS2 indicators are used only for dsname allocation requests except for bit 5 ~ bit 5
may be used for all requests. The meaning of the bits is:

Bit
()

(S99WTYOL)
1

(S99WTDSN)
2

(S99NORES)
3

(S99WTUNT)
4

(S990FFLN)
5

(S99TIONQ)
6

(S99CATLG)
7

(S99MOUNT)
8

(S99UDEYT)
9

(S99PCINT)
10-31

Meaning When On

Wait for volumes

Wait for dsname

Do not reserve data sets

Wait for units

Consider offline devices

TIOT ENQ already performed

Set special catalog data set indicators

Volumes may be mounted

U nit name parameter is a device type

Allocate a private catalog on behalf of the initiator
Reserved. Must be zero.

40 OS/VS2 System Programming Ubrary: Job Management (VS2 Release 3)

When the user requests the wait functions (bits 0, 1, and 3), dynamic allocation assumes
that no conflicts can occur because of resources the requestor already owns. For example, if
the resource requested by user A is held by user B, an interlock will occur if user B in turn
unconditionally requests a resource held by A. With the dsname and volume wait functions
dynamic allocation attempts to gain control of the resource with an unconditional ENQ. If the
resource requested is held by the requestor, the ENQ will result in an ABEND.

Dynamic allocation informs the operator whenever it must wait for a data set, volume, or
unit. The operator may then optionally indicate that dynamic allocation should not wait. If he
does, the request fails.

Verb Codes
The verb code is a one-byte field labeled S99vERB that identifies the dynamic allocation
function to be performed. The following codes may be specified:

Verb Code
01

(S99VRBAL)
02

(S99VRBUN)
03

(S99VRBDC)
04

(S99VRBDC)
05

(S99VRBRI)
06

(S99VRBDN)
07

(S99VRBIN)

Meaning

request for dsname allocation

request for un allocation (based on dsname or ddname)

request for concatenation

request for deconcatenation

request for removing the in-use attribute based on task-id

request for ddname allocation

request for information retrieval

Text Unit Fields
The TEXT UNIT field is a variable-length field labeled S99TUNIT. It contains an identifying key,
one or more parameter length/parameter combinations, and the number of length/parameter
combinations. The fields and their labels are:

KEY field
(S99TUKEY)

Number field
(S99TUNUM)

LEN field
(S99TULNG)

PARM field
(S99TUPAR)

two bytes that contain a unique binary identification number for a specific key. There
is a set of keys for each dynamic allocation function. The key values, their labels, and
their meanings are summarized in figures 8-16. The topics that follow these figures
explain the keys in detail.

two-byte binary number that specifies the number of length/parameter combinations in
the text unit.

two-byte binary number that specifies the length of the parameter field that follows it.

contains parameter information. The parameters that can be specified with each key
are explained together with the explanation of the associated key in the topics that
follow.

S99TUENT is the label for a length/parameter combination. Additionally, IEFZB4DO provides
the following DSECT for use when specifying multiple parameters in a single text unit. This
DSECT places the length field at zero displacement for the second and subsequent
combinations:

S99TUFLD
S99TULEN
S99TUPRM

label for the DSECT
label for the length field
label for the parameter

Dynamic AUocation Parameter Structure Fields 41

Hex Text
Unit Key

0001
0002
0003
0004
0005
0006
0007
0008
n009
OOOA
OOOB
OOOC
0000
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
OOIA
OOIB
OOIC
OOID
OOIE
OOIF
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D

0058
0059
005E

IEFZB·JD2
Mnemonic
DALDDNAM
DALDSNAM
DALMEMBR
DALSTATS
DALNDISP
DALCDISP
DALTRK
DALCYL
DALBLKLN
DALPRIME
DALSECND
DALDIR
DALRLSE
DALSPFRM
DALROUND
DALVLSER
DALPRIVT
DALVLSEQ
DALVLCNT
DALVLRDS
DALUNIT
DALUNCNT
DALPARAL
DALSYSOU
DALSPGNM
DALSFMNO
DALOUTLM
DALCLOSE
DALCOPYS
DALLABEL
DALDSSEQ
DALPASPR
DALINOUT
DALEXPDT
DALPRETPD
DALDUMMY
DALFCBIM
DALFCBAV
DALQNAME
DALTERM
DALUCS
DALUFOLD
DALUVRFY
DALDCBDS
DALDCBDD

DALSUSER
DALSHOLD
DALMSVGP

Dynamic Allocation Function
Associates a ddname with an allocation request.
Names the data set to be allocated.
Allocates only a particular data set member.
Specifics the data set status.
Specifics the data set's normal disposition.
Specifics the data set's conditional disposition.
Specifics the space allocation in tracks.
Specifics the space allocation in cylinders.
Specifics the average data block length.
Specifics a primary space quantity.
Specifics a secondary space quantity.
Specifics the number of PDS directory blocks.
Deletes unused space at data set closure.
Ensures a specific allocated space format.
Specifics space allocation in whole cylinders.
Specifics volume serial numbers.
Specifics the private volume use attribute.
Specifics the volume sequence number processing.
Specifics the data set's volume cownt.
Specifics volume reference to a cataloged data set.
Describes the unit specification.
Specifics the number of devices to be allocated.
Specifics parallel mounting for a data set's volumes.
Specifies the SYSOUT data set and defines its class.
Specifies the SYSOUT program name.
Specifics the SYSOUT form number.
Limits the SYSOUT data set's logical record count.
Frees a data set at closure.
Specifics the SYSOUT listing copies count.
Specifics the type of volume label.
Specifics a tape data set's relative position.
Password protects the created data set.
Specifit::s "input only" or "output only" data set processing.
Specifics the data set's expiration date.
Specifies the data set's retention period.
Allocates a dummy data set.
Identifies the forms control buffer image.
Requests operator verification of the image display or forms alignment.
Names a TPROCESS macro.
Specifics a time sharing terminal as an I/O device.
Specifics a universal character set.
Specifies "fold mode" for loading the requested print chain or train.
Requests operator verification of the correct print chain or train mounting.
Specifies the retrieval of DCB information from a cataloged data set's label.
Specifies the retrieval of DCB information from a ddname-related,
currently allocated data set.
Specifics remote workstation routing for the SYSOUT data set.
Specifies hold 'queue routing for the SYSOUT data set.
Specifies a group of virtual volumes.

Figure 8. Data Set Name Allocation (Verb Code 01) - Text Unit Keys, Mnemonics, and Functions

Data Set Name Allocation Text Units

Most of the information that can be specified on a JCL DD card may be specified in text units
for the allocation function of dynamic allocation (VERB code X'OI '). These text units are listed
below. The meaning of the parameters is the same as when specified on a DD statement as
described in OS / VS2 feL, GC28-0692.

42 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Ddname specification - Key = X'OOOl'

This key is used to specify a ddname to be associated with an allocation request. When this
key is specified, # must be one, LEN is the length of the ddname field, and PARM contains the
ddname.

Example: to specify the ddname DO I, code

KEY
0001

0001

LEN
0003

PARM
C4 C4 Fl

Dsname specification - Key = X'0002'

This key is used to specify the name of the data set to be allocated. The user cannot refer to a
previously defined dsname. The QNAME and IPLTXTID keys are mutually exclusive with this
key. When this key is specified, # must be one, LEN is the length of the dsname, and PARM

contains the dsname.

Example: to specify the dsname MYDAT A, code

KEY
0002

0001

LEN
0006

PARM
D4 E8 C4 Cl E3 Cl

Example: to specify the temporary dsname &LOAD, code

KEY
0002

0001

LEN
0005

PARM
50 D3 D6 Cl C4

Example: to specify the dsname A.B, code

KEY
0002

0001

LEN
0003

PARM
Cl 4B C2

Member name specification - Key = X'U003'

This key is used to specify that a particular member of a data set is to be allocated, rather
than the entire data set. A relative generation group number may be specified as the member
name. The QNAME and IPLTXTID keys are mutually exclusive with this key. When this key is
specified, # must be one, LEN is the actual length of the member name, and PARM contains
the member name.

Example: to specify the member name MEMl, code

KEY
0003

0001

LEN
0004

PARM
D4 C5 D4 Fl

Example: to specify the relative generation number * 1, code

KEY
0003

0001

LEN
0002

PARM
4E Fl

Data Set Status specification - Key = X'0004'

This key specifies the data set status. It is mutually exclusive with a Sysout Specification.
When this key is specified, # and LEN must be one, and PARM contains the value:

X'OI' if OLD is desired
X'02' if MOD is desired
X'04' if NEW is desired
X'08' if SHR is desired

Dynamic Allocation Parameter Structure Fields 43

Example: to specify a status of NEW, code

Key
0004

0001

LEN
0001

PARM
04

Data Set Normal Disposition specification - Key = X'0005'

This key specifics the data set normal disposition. This key is mutually exclusive with a Sysout
specification. When this key is specified, # and LEN must be one, and PARM contains the
value:

x'or if UNCATLG is desired
X'02' if CATLG is desired
X'04' if DELETE is desired
X'08' if KEEP is desired

Example: to specify a normal disposition of DELETE, code

KEY
0005

0001

LEN
0001

PARM
04

Data Set Conditional Disposition specification - Key = X'0006'

This key specifies the conditional data set disposition. The values for #, LEN, and PARM are
the same as for normal disposition. This key is mutually exlusive with a Sysout specification.

Example: to specify a conditional disposition of DELETE code

KEY
0006

0001

LEN
0001

PARM
04

Track Space Type (TRK) specification - Key = X'0007'

This key is used to specify that space is to be allocated in tracks. The primary quantity space
key or the secondary quantity space key (see below) must also be specified when this key is
specified. The Cylinder and Block Space Type specifications are mutually exclusive with this
key. When this key is specified, # must be zero. LEN and P ARM are nolt specified.

Example: to specify Track space type, code

KEY
0007

0000

LEN PARM

Cylinder Space Type (CYL) specification - Key = X'0008'

This key is used to specify that space is to be allocated in cylinders The primary quantity space
key or secondary quantity space key must also be specified when this key is specified. The
Track and Block Space Type specifications are mutually exclusive with this key. When this key
is specified, # must be zero. LEN and P ARM are not specified.

Example: to specify Cylinder space type, code

KEY
0008

0000

LEN PARM

Block Space Ty))e specification - Key = X'0009'

This key is used to specify the average data block length to be used by the system in
computing the amount of space to allocate. The primary quantity space key or the secondary
quantity space key must also be specified when this key is specified. The Track and Cylinder

44 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Space type keys are mutually exclusive with this key. When this key is specified, # must be
one, LEN must be three, and P ARM contains the average data block length.

Example: to specify an average data block length of 80, code

KEY
0009

0001

LEN
0003

PARM
00 00 50

Primary Space Quantity specification - Key = 'OOOA'

This key is used to specify a primary space quantity. A space type key must also be specified
when this key is specified. When this key is specified, # must be one, LEN must be three, and
P ARM contains the primary quantity value.

Example: to specify a primary quantity of 20, code

KEY
OOOA

0001

LEN
0003

PARM
00 00 14

Secondary Space Quantity specification - Key = X'OOOB'

This key is used to specify a secondary space quantity. When this key is specified, # must be
one, LEN must be three, and PARM contains the primary quantity value.

Example: to specify a secondary space quantity of 10, code

KEY
OOOB

0001

LEN
0003

PARM
00 00 OA

Directory Block specification - Key = X'OOOC'

This key is used to specify the number of blocks to be contained in the directory of a
partitioned data set. A space type key and the primary space quantity key must also be
specified when this key is specified. When this key is specified, # must be one, LEN must be
three, and PARM contains the number of directory blocks.

Example: to specify two directory blocks, code

KEY
oooe

0001

LEN
0003

PARM
00 00 02

Unused Space Release (RLSE) specification - Key = X'OOOD'

This key is used to specify that unused space is to be deleted when the data set is closed.
When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify the release of unused space, code

KEY
OOOD

0000

LEN PARM

Format of Allocated Space specification - Key = X'OOOE'

This key is used to ensure a particular format of allocated space. When this key is specified, #
and LEN must be one, and PARM contains:

X'02' if different areas of contiguous space are to be allocated (ALX)
X'04' if maximum contiguous space is required (MXIG)
X'08' if space must be contiguous (CONTIG)

Dynamic Allocation Parameter Structure Fields 45

Example: to specify contiguous space format, code

KEY
OOOE

0001

LEN
0001

PARM
08

Whole Cylinder Allocation (ROUND) specification - Key = X'OOOF'

This key is used to request that allocated space be equal to one or more whole cylinders when
space is requested in units of blocks. When this key is specified, # must be zero. LEN and
PARM are not specified.

Example: to specify allocation of whole cylinders, code

KEY
OOOF

0000

LEN PARM

Volume Serial specification - Key = X'OOlO'

This key is used to specify volume serial numbers. It is mutually exclusive with a Sysout
specification and volume reference specification (see below). When this key is specified, #
contains the number of volume serials being specified, LEN contains the length of the
immediately following volume serial, and PARM contains the volume serial.

Example: to specify the volume serials 231400 and 231401, code

KEY
0010

0002

LEN
0006

PARM
F2F3F1F4FOFO

Private Volume specification - Key = X'OOll'

LEN
0006

PARM
F2F3F1F4FOFl

This key is used to specify that the volume(s) allocated be assigned the PRIVATE volume use
attribute. This key is mutually exclusive with a Sysout specification. When this key is specified,
must be zero. LEN and P ARM are not specified.

Example: to specify the PRIVATE volume attribute, code

KEY
0011

0000

LEN PARM

Volume Sequence Number specification - Key = X'0012'

This key is used to specify which volume of a multi-volume data set processing is to begin
with. This key is mutually exclusive with a Sysout specification. When this key is specified, #
must be one, LEN must be two, and PARM contains the volume sequence number.

Example: to specify a volume sequence number of two, code

KEY
0012

0001

LEN
0002

PARM
0002

Volume Count specification - Key = X'0013'

This key is used to specify the maximum number of volumes an outPUlt data set may require.
This key is mutually exclusive with a Sysout specification. When this key is specified, # and
LEN must be one, and PARM contains the volume count.

Example: to specify a volume count of 10, code

KEY
0013

0001

LEN
0001

PARM
OA

46 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Volume Reference to a dsname specification - Key = X'0014'

This key is used to specify that the system is to obtain volume serial information from the
specified cataloged data set. This key is mutually exclusive with a Sysout specification and
volume serial specification. (Volume reference to a ddname can not be done through dynamic
allocation.) When this key is specified, # must be one, LEN is the actual length of the dsname,
and PARM contains the dsname.

Example: to specify volume reference to the data set, DSNl, code

KEY
0014

0001

LEN
0004

PARM
C4 E2 D5 Fl

Unit Description specification - Key = X'0015'

This key is used to specify a unit group (esoteric) name, device type, or specific unit address
(in EBCDIC). When this key is specified, # must be one, LEN is the actual length of the unit
description, and P ARM contains the unit description.

Example: to specify the unit group name SYSDA, code

KEY
0015

0001

LEN
0005

PARM
E2 E8 E2 C4 Cl

Example: to specify the device type 3330, code

KEY
0015

0001

LEN
0004

PARM
F3 F3 F3 FO

Example: to specify the unit address 230, code

KEY
0015

0001

LEN
0003

PARM
F2 F3 FO

Unit Count specification - Key = X'0016'

This key is used to specify the number of devices to be allocated. It is mutually exclusive with
a parallel mount specification (see below). When this key is specified, # and LEN must be one,
and P ARM contains the unit count.

Example: to specify a unit count of ten, code

KEY
0016

0001

LEN
0001

PARM
OA

Parallel Mount specification - Key = X'0017'

This key is used to specify that each volume of a data set is to be assigned a device. It is
mutually exclusive with the unit count key. When this key is specified, # must be zero. LEN

and P ARM are not specified.

Example: to specify parallel mount, code

KEY
0017

0000

LEN PARM

Dynamic AUocation Parameter Structure Fields 47

Sysout specification - Key = X'0018'

This key is used to indicate that a system output data set is to be allocated and to define the
output class of the data set. When this key is specified and a class other than the default of
the message class is desired, # and LEN must be one, and PARM contains the output class. To
obtain the default of the message class, # must be zero, LEN and PARM are not specified.
Volume, QNAME, Status, and Disposition specifications are mutually exc:1usive with the Sysout
specification.

Example: to specify a Sysout data set in class A, code

KEY
0018

0001

LEN
0001

PARM
C1

Example: to specify a Sysout data set and to default the class, code

KEY
0018

0000

LEN PARM

Sysout Program Name specification - Key = '0019'

This key specifies the sysout program name. The Sysout key must also be specified when this
key is specified. When this key is specified, # must be one, LEN is the actual length of the
name, and PARM contains the program name.

Example: to specify the program name MYWRITER, code

KEY
0019

0001

LEN
0008

PARM
D4 E8 E6 D9 C9 E3 C5 D9

Sysout Form Number specification - Key = 'OOIA'

This key specifies the sysout form number. The Sysout key must also be specified when this
key is specified. When this key is specified, # must be one, LEN is the actual length of the
form number, and PARM contains the form number.

Example: to specify the form number 1234, code

KEY
001A

0001

LEN
0004

PARM
F1 F2 F3 F4

Sysout Output Limit specification - Key = X'OOlB'

This key is used to limit the number of logical records in a sysout data set. The Sysout
specification must also be specified when this key is specified. When this key is specified, *I:
must be one, LEN must be three, and. P ARM contains the output limit.

Example: to specify an Output Limit of 1000, code

KEY
001B

0001

LEN
0003

PARM
0003E8

Unallocation At CLOSE specification - Key X'OOlC'

This key is used to specify that unallocation is to occur when a DeB is CLOSEd rather than at
Step Unallocation. When this key is specified, # must be zero. LEN and PARM are not
specified.

48 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Example: to specify Unallocation at CLOSE, code

KEY
001C

0001

LEN PARM

Sysout Copies specification - Key = X'OOID'

This key is used to request up to 255 hardcopy listings of a particular SYSOUT data set to be
printed. The SYSOUT key must also be specified when this key is specified. When this key is
specified, # and LEN must be one, and P ARM contains the number of copies being requested.

Example: to specify a request for 25 copies, code

KEY
001D

0001

LEN
0001

PARM
19

Label Type specification - Key = X'OOIE'

This key is used to specify the type of label associated with a volume. This key is mutually
exclusive with a Sysout specification. When this key is specified, # and LEN must be one, and
PARM contains:

X'Ol' if the volume has no label (NL)
X'02' if the volume has an IBM standard label (SL)
X'04' if the volume has a non standard label (NSL)
X'OS' if the volume has both an IBM standard label and a user label (SUL)
X'IO' if label processing is to be bypassed (BLP)
X'2l' if the system is to check for and bypass a lead~ng tape mark on DOS unlabeled tape (LTM).
X'40' if the volume has an American National Standard label (AL)
X'4S' if the volume has an American National Standard label and an American National Standard user

label (AUL)

Example: to specify no labels, code

KEY
001E

0001

LEN
0001

PARM
01

Data Set Sequence Number specification - Key = X'OOlF'

This key is used to specify the relative position of a data set on a tape volume (data set
sequence number). This key is mutually exclusive with a Sysout specification. When this key is
specified, # must be one, LEN must be two, and PARM contains the sequence number.

Example: to specify a data set sequence number of 2, code

KEY
001F

0001

LEN
0002

PARM
0002

Password Protection specification - Key = X'0020'

This key is used to specify that the data set being created is to be password protected. This
key is· mutually exclusive with a Sysout specification. When this key is specified, # and LEN

must be one, and PARM contains:

X'IO' if the data set should not be read, changed, extended, or deleted without the password.
X'30' if the data set should not be changed, extended, or deleted without the password. Reading is
permitted.

Example: to specify complete password protection, code

KEY
0020

0001

LEN
0001

PARM
10

Dynamic Allocation Parameter Structure Fields 49

Input Only or Output Only specifications - Key = X'0021'

This key is used to specify that the data set is to be processed for input only or output only.
This key is mutually exclusive with a Sysout specification. When this key is specified, # and
LEN must be one, and PARM contains:

X'40' if output only is to be specified
X'SO' if ;nput only is to be specified

Example: to specify processing for input only, code

KEY
0021

0001

LEN
0001

PARM
80

Expiration Date specification - Key = X'0022'

This key is used to specify the date when the data set can be deleted or overwritten by
another data set. This key is mutually exclusive w;t.h the Retention Period and Sysout
specifications. When this key is specified, # must be one, LEN must be five, and PARM

contains five digits, a two digit year number and a three digit day number (YYDDD).

Example: to specify an expiration date of January 1, 1975 (750Ql), code

KEY
0022

0001

LEN
0005

PARM
F7 1"5 FO FO Fl

Retention Period specification - Key = X'0023'

This key is used to specify the number of days that must pass before the data set can be
deleted or overwritten by another data set. This key is mutually exclusive with the Expiration
Date and Sysout specifications. When this key is specified, # must be one, LEN must be two,
and PARM contains the retention period. (Note: maximum retention petiod is 9999 days.)

Example: to specify a retention period of 10 days, code

KEY
0023

0001

LEN
0002

PARM
OOOA

Dummy Data Set specification - Key = X'0024'

This key is used to specify that a Dummy data set is to be allocated. When this key is
specified, # must be zero. LEN and PARM are not specified.

Example: to specify a DUMMY data set is to be allocated, code

KEY
0024

0000

LEN PARM

Forms Control Buffer (FeB) Image Identification specification - Key = X'0025'

This key is used to specify the code that identifies the image to be loaded into the FCB. This
key is mutually exclusive with the DCB INTVL and FRIO specifications (see below). When this
key is specified, # must be one, LEN contains the length of the image-id (maximum of 4), and
P ARM contains the image-id.

Example: to specify the image-id STDl, code

KEY
0025

0001

LEN
0004

PARM
E2 E3 C4 Fl

50 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

-Form Mignment and Image Verification specification - Key = X'0026'

This key is used to request that the operator check the alignment of the printer forms before
the data set is printed or that he visually verify the image displayed on the printer as the
desired Qne. The FCB image-id specification must also be coded when this key is specified.
When this key is specified, # and LEN must be one, and PARM contains:

X'04' if verification is to be requested (VERIFY).
X'08' if alignment is to be requested (ALIGN)

Example: to specify verification, code

KEY
0026

0001

LEN
0001

PARM
04

QNAME specification - Key = X'0027'

This key is used to specify the name of a TPROCESS macro. The Dsname, member name,
IPLTXTID, and Sysout specifications are mutually exclusive with this key. The DCB BLKSIZE,

BUFL, LRECL, OPTCD and RECFM specifications (see below) are meaningful with this key.
When this key is specified, # must be one, LEN is the length of the process name, and PARM

contains the process name.

Example: to specify the process name, TP 1, code

KEY
0027

0001

LEN
0003

PARM
E3 D7 F1

Terminal specification - Key = X'0028'

This key is used to specify that a time sharing terminal is to be used as an]/0 device. Ina
batch environment, the specification is not used, but is checked for syntax. In a time sharing
environment, all other specifications except DCB specifications are ignored. When this key is
specified, # must be zero. LEN and P ARM are not specified.

Example: to specify a terminal allocation, code

KEY
0028

0000

LEN PARM

Universal Character Set (UCS) specification - Key = X'0029'

This key is used to identify a special character set to be used for printing a data set. The DCB

INTVL and RESERVE specifications (see below) are mutually exclusive with this key. When this
key is specified, # must be one, LEN is the length of the character set code name (maximum is
four) and PARM contains the character set code.

Example: to specify the character set code AN, code

KEY
0029

0001

LEN
0002

PARM
C1 D5

Fold Mode specification - Key = X'002A'

This key is used to specify that the chain or train corresponding to the desired character set be
loaded in the fold mode. The Universal Character Set specification must also be specified when
this key is coded. When this key is specified, # must be zero. LEN and P ARM are not specified.

Dynamic AUocation Parameter Structure Fields 5 t

Example: to specify Fold Mode, code

KEY
002A

0000

LEN PARM

Character Set Image Verification specification - Key = X'002B'

This key is used to specify that the operator is to verify that the correct chain or train is
mounted before the data set is printed. The Universal Character Set sp,ecification must also be
specified when this key is coded. When this key is specified, # must be zero. LEN and PARM

are not specified.

Example: to specify Character Set Image Verification, code

KEY
002B

0000

LEN PARM

DCB Reference to a Dsname specification Key = X'002C'

This key is used to specify that DeB information is to be retrieved from the data set label of a
cataloged data set. This data set must reside on a direct access volume and the volume must
currently be mounted. The DSORG, RECFM, OPTCD, BLKSIZE, LRECL, RKP, and KEYLEN DCB

attributes, and the volume sequence number and expiration date are copied from the data set
label. If text units for these parameters are specified in addition to this key, that specification
overrides the corresponding parameter that was copied. This key is mutually exclusive with a
DCB reference to a ddname (see below). When this key is specified, # must be one, LEN is the
length of the dsname, and PARM contains the dsname.

Example: to specify DCB reference to the dsname ABC, code

KEY
002C

0001

LEN
0003

PARM
Cl C2 C3

DCB Reference to a Ddname specification - Key = X'002D'

This key is used to specify that DCB information is to be retrieved from the currently allocated
data set associated with the specified ddname. For time sharing users, the Expiration Date and
INPUT /OUTPUT ONLY specifications are also retrieved. This key is mutually exclusive with a
DCB reference to a dsname specification. Any DCB attributes, Expiration Date, and
INPUT /OUTPUT ONLY options specified in addition to this key override the corresponding
specifications associated with the ddname. When this key is specified, # must be one, LEN is
the length of the ddname, and PARM contains the ddname.

Example: to specify DCB reference to the ddname DO 1, code

KEY
002D

0001

LEN
0003

PARM
C4 C4 Fl

Sysout Remote Work Station specification - Key = X'0058'

This key is used to specify that the sysout dataset being allocated is to be routed to a remote
work station when it is unallocated. The Sysout key must also be specified when this key is
specified. When this key is coded, # must be one, LEN is the length of the remote work station
name (maximum of 7), and PARM contains the remote user name.

Example: to specify the remote work station USEROl, code

KEY
0058

0001

LEN
0006

PARM
E4 E2 C5 D9 FO Fl

52 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Sysout Hold Queue specification - Key = X'0059'

This key is used to specify that the sysout data set being allocated is to be placed on the Hold
Queue when it is unallocated. The Sysout key must also be specified when this key is specified.
When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify Hold, code

KEY
0059

0000

LEN PARM

MSVGP specification - Key = X'005E'

This key is used to specify a group of MSS volumes. This key is mutually exclusive with
SYSOUT, QNAME, and volume serial specifications. When this key is specified, # must be one,
LEN is the actual length of the MSVGP name, and PARM contains the group name.

Example: to specify a MSS volume group of SYSGROUP, code

KEY
005E

0001

LEN
0008

PARM
E2 E8 E2 C7 D9 D6 E4 D7

Dynamic Allocation Parameter Structure Fields 53

Hex Text
Unit Key

002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
003R
0039
003A
003B
003C
003D
003E
003F
0040
0041
0042
0043
0044
0045
0046

0047

0048
0049
004A
004B
004C
0040
004E

004F
0051
0054
005A

005B

IEFZB4D2
Mnemonic
DALBFALN
DALBFTEK
DALBLKSZ
DALBUFIN
DALBUFL
DALBUFMX
DALBUFNO
DALBUFOF
DALBUFOU
DALBUFRQ
DALBUFSZ
DALCODE
DALCPRI
DALDEN
DALDSORG
DALEROPT
DALGNCP
DAUNTYL
DALKYLEN
DALLlMCT
DALLRECL
DALMODE
DALNCP
DALOPTCD
DALPCIR

DAILPCIS

DALPRTSP
DALRECFM
DALRSRYF
DALRSRYS
DALSOWA
DALSTACK
DALTHRSH

DALTRTCH
DALIPLTX
DALDIAGN
DALFUNC

DALFRID

Dynamic Allocation Function
Specifics buffer alignment.
Specifics the buffering technique.
Specifics blocksize.
Specifics the receiving buffering count.
Specifies the buffer length.
Specifies the buffer count per line.
Specifics the buffer count per DCB.
Specifies the buffer offset.
Specifics the sending buffer count.
Specifies the buffer count per GET macro instruction.
Specifics the line group buffer size.
Specifies the data's paper tape code.
Specifics the relative sending and receiving priority.
Specifies the magnetic tape density.
Specifics the data set organization.
Specifies reading and writing error options.
Specifics the GAM-I/O count per WAIT macro instruction.
Spe...:ifies the line polling interval per group.
Specifies the data set key lengths.
Specifics the search limit.
Specifics the logical record length.
Specifics card punch/reader operational mode.
Specifics the READ/WRITE count per CHECK.
Specifics the control program's operational services.
Specifies the relationship of the receiving PCI to the allocation and freeing
of huffers.
Specifies the relationship of the sending PCI to the allocation and freeing of
buffers.
Specifics printer line spacing.
Specifics the record format.
Specifics the first insertion buffer's reserve byte count.
Specifics the secondary insertion buffer's reserve byte count.
Specifies the user's telecommunications input work areas size.
Specifies the card punch's stacker bin.
Specifics the usc percentage of nonreusable din:!ct access message queue
records per flush c1osedown.
Specifics the 7-track tape recording technique.
Specifics a TCAM network control program name.
Requests OPEN/CLOSE/EOY diagnostic trace option.
Specifies the type of data set to be opened for the 3525
Card-Read-Punch-Print.
Specifies a SYS l.IMAGELIB member for 3886 input.

Figure 9. DCB Attributes (Used with Verb Code 01) - Text Unit Keys, Mnemonics, allld Functions

DCB Attribute Text Units

The following keys are used to specify DCB attributes. These attributes are described in
OSjVS2 JCL. GC28-0692 under the DCB keyword subparameter specification and in the
OSjVS2 Data Management Macro Instructions, GC26-3793.

BF ALN specification - Key = X'002E'

This key is used to specify buffer alignment. The GNCP specification is mutually exclusive with
this key. When this key is specified, # and LEN must be one, and PARM contains:

X'OI' for fullword not a doubleword boundary (F)
X'02' for doublcword boundary (D)

54 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Example: to specify double word boundary, code

KEY
002E

0001

LEN
0001

PARM
02

BFTEK specification - Key = X'002F'

This key is used to specify the buffering technique. The GNCP specification is mutually
exclusive with this key. When this key is specified, # and LEN must be one, and PARM

contains:

X'08' for dynamic buffering (D)
X' 10' for exchange buffering (E)
X'20' for record buffering (R)
X'40' for simple buffering (5)
X'60' for record area buffering (A)

Example: to specify exchange buffering, code

KEY
002F

0001

LEN
0001

PARM
10

BLKSIZE specification - Key = X'0030'

This key is used to specify the block size. The BUF51ZE specification is mutually exclusive with
this key. When this key is specified, # must be one, LEN must be two, and PARM contains the
block size.

Example: to specify a block size of gO, code

KEY
0030

0001

LEN
0002

PARM
0050

BUFIN specification - Key = X'0031'

This key is used to specify the number of buffers to be initially assigned for receiving
operations for each line in the line group. The BUFNO and BUFRQ specifications are mutually
exclusive with this key. When this key is specified, # and LEN must he one, and PARM

contains the number of buffers.

Example: to specify 2 buffers, code

KEY
0031

0001

LEN
0001

Pl\RM
02

BUFL specification - Key = X'0032'

This key is used to specify the buffer length. When this key is specified, # must be one, LEN

must be two, and PARM contains the buffer length.

Example: to specify a buffer length of 80, code

KEY
0032

0001

LEN
0002

PARM
0050

BUFMAX specification - Key = X'0033'

This key is used to specify the maximum number of buffers to be allocated to a line at one
time. The NCP specification is mutually exclusive with this key. When this key is specified, #
and LEN must be one, and PARM contains the number of buffers.

Dynamic Allocation Parameter Structure Fields 55

Example: to specify 4 buffers, code

KEY
0033

0001

LEN
0001

PARM
04

BUFNO specification - Key = X'0034'

This key is used to specify the number of buffers to be assigned to the data control block. The
BUFIN, BUFOUT, and BUFRQ specifications are mutually exclusive with this key. When this key
is specified, # and LEN must be one, and PARM contains the number of buffers.

Example: to specify 2 buffers, code

KEY
0034

0001

LEN
0001

PARM
02

BUFFOFF specification - Key = X'0035'

This key is used to specify the buffer offset. When this key is specified, # and LEN must be
one, PARM contains:

X'80' if the block prefix is four bytes long and contains the block length (L)

or, the length of the block prefix (maximum of X'63).

Example: to specify offset of 16,.code

KEY
0035

0001

LEN
0001

PARM
10

BUFOUT specification - Key = X'0036'.

This key is used 1tO specify the number of buffers to be assigned initially for sending operations
for each line in the line group. The BUFNO and BUFRQ specifications are mutually exclusive
with this key. When this key is specified, # and LEN must be one, P ARM contains number of
buffers.

Example: to specify 4 buffers, code

KEY
0036

0001

LEN
0001

PARM
04

BUFRQ specification - Key = X'0037'

This key is used to specify the number of buffers to be requested in advance for the GET

macro instruction. The BUFNO, BUFIN, and BUFOUT specifications are mutually exclusive with
this key. When this key is specified, # and LEN must be one, and PARM contains the number
of buffers.

Example: to specify 4 buffers, code

KEY
0037

0001

LEN
0001

PARM
04

BUFSZ specification - Key = X'0038'

This key is used to specify the length in bytes of each of the buffers to be used for all lines in
a particular line group. The BLKSIZE specification is mutually exclusive: with this key. When
this key is specified, # must be one, LEN must be two, and PARM contains the buffer length.

56 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Example: to specify a buffer length of 80, code

KEY
0038

0001

LEN
0002

PARM
0050

CODE specification - Key = X'0039'

This key is used to specify the paper tape code in which the data is punched. The KEY LEN ,

MODE, PRTSP, STACK, and TRTCH specifications are mutually exclusive with this key. When
this key is specified, # and LEN must be one, and PARM contains:

X'02' for Teletype 5-track (T)
X'04' for USASCII 8-track (A)
X'08' for National Cash Register 8-track (C)
X'to' for Burroughs 7-track (B)
X'20' for Friden 8-track (F)
X'40' for IBM BCD 8-track (I)
X'80' for no conversion (N)

Example: to specify USASCII, code

KEY
0039

0001

LEN
0001

PARM
04

CPRI specification - Key = X'003A'

This key is used to specify the relative priority to be given to sending and receiving operations.
The THRESH specification is mutually exclusive with this key. When this key is specified, # and
LEN must be one, and PARM contains:

X'01' for send priority (S)
X'02' for equal priority (E)
X'04' for receiving priority (R)

Example: to specify equal priority, code

KEY
003A

0001

LEN
0001

PARM
02

DEN specification - Key = X'003B'

This key is used to specify the magnetic tape density. When this key is specified, # and LEN
must be one, and PARM contains:

X'03' for 200 bpi 7 - track (0)
X'43' for 556 bpi 7 - track (1)
X'83' for 800 bpi 7 - track, 800 bpi 9 - track (2)
X'C3' for 1600 bpi 9 - track (3)
X'D3' for 6250 bpi 9 - track (4)

Example: to specify 1600 bpi 9 - track, code

KEY
003B

0001

LEN
0001

PARM
C3

DSORG specifications - Key = X'003C'

This key is used to specify the data set organization. When this key is specified, # must be
one, LEN must be two, and PARM contains:

X'OOO4' for TCAM 3705
X'OOO8' for VSAM
X'0020' for TCAM message queue (TQ)
X'OO40' for TCAM line group (TX)
X'0080' for Graphics (GS)

Dynamic Allocation Parameter Structure Fields 57

X'0200' for Partitioned (PO)
X'0300' for Partitioned Unmovable (POU)
X'0400' for government of message transfer to or from a telecommunications message processing queue (MQ)
X'0800' for Direct access message queue (CQ)
X'lOOO' for Communication line group (CX)
X'2000' for Direct access (DA)
X'2100' for Direct access unmovable (DAU)
X' 4000' for Physical Sequential (PS)
X'4100' for Physical Sequential Unmovable (PSU)

Example: to specify Partitioned Organization, code

KEY
003C

0001

LEN
0002

PARM
0200

EROPT specification - Key = X'003D'

This key is used to specify the option to be executed if an error occurs in writing or reading a
record. When this key is specified, # and LEN must be one, and P ARM contains:

X' 10' for online BSAM testing (T)
X'20' to cause abnormal end of task (ABE)
X'40' to skip the block causing the error (SKP)
X'80' to accept the block causing the error (ACe)

Example: to specify the SKP error option, code

KEY
003D

0001

LEN
0001

PARM
40

GNCP specification - Key = X'003E'

This key is used to specify the maximum number of GAM input/output macro instructions that
will be issued before aWAIT macro instruction. This key is mutually exclusive with the BFTEK
and BF ALN specifications. When this key is specified, # and LEN must be one, and PARM
contains the GNCP value.

Example: to specify a GNCP value of four, code

KEY
003E

0001

LEN
0001

PARM
04

INTVL specification - Key = X'003F'

This key is used to specify the polling interval for the lines in the line group. This key is
mutually exclusive with UCS and FCB specifications. When this key is specified, # and LEN
must be one, and P ARM contains the INTVL value.

Example: to specify an INTVL value of 10, code

KEY
003F

0001

LEN
0001

PARM
OA

KEY LEN specification - Key = X'0040'

This key is used to specify the length, in bytes, of the keys used in the data set. The CODE,
MODE, PRTSP, STACK, and TRTCH specifications are mutually exclusive with this key. When
this key is specified, # and LEN must be one, and PARM contains the key length.

Example: to specify a key length of eight, code

KEY
0040

0001

LEN
0001

PARM
08

58 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

LIMCT specification - Key = X'0041'

This key is used to specify the search limit. When this key is specified, # must be one, LEN

must be three, and P ARM contain the search limit value.

Example: to specify a search limit of 1000, code

KEY
0041

0001

LEN
0003

PARM
0003E8

LRECL specification - Key = X'0042'

This key is used to specify the actual or maximum length, in bytes, of a logical record. When
this key is specified, # must be one, LEN must be two, and PARM contains:

X' 8000' if, for variable length spanned records processed under QSAM and BSAM, the logical records exceed
32,756 bytes (X)

or, the logical record length.

Example: to specify a logical record length of 80, code

KEY
0042

0001

LEN
0002

PARM
0050

MODE specification - Key = X'0043'

This key is used to specify the mode of operations for a card reader or punch. This key is
mutually exclusive with the CODE, KEYLEN, PRTSP and TRTCH specification. When this key is
specified, # and LEN must be one, and PARM contains:

X'40 for EBCDIC mode (E)
X'50' for EBCDIC, read column eliminate mode (ER)
X'60' for EBCDIC, optical mark read mode (EO)
X'80' for card image mode (C)
X'90' for card image, read column eliminate mode (CR)
X'AO' for card image, optical mark read mode (CO)

Example: to specify EBCDIC mode, code

KEY
0043

0001

LEN
0001

PARM
40

NCP specification - Key = X'0044'

This key is used to specify the maximum number of READ or WRITE macro instructions issued
before a CHECK macor instruction is issued. This key is mutually exclusive with BUFMAX

specification. When this key is specified, # and LEN must be one, and PARM contains the NCP

value.

Example: to specify a NCP value of two, code

KEY
0044

0001

LEN
0001

PARM
02

OPTCD specification - Key = X'0045'

This key is used to specify optional services to be performed by the control program. When
this key is specified, # and LEN must be one, and PARM contains:

X'Ot' for Relative block addressing (R)
X'02' for user totaling facility (T)
X'04' for reduced tape error recovery, or direct access search direct (Z)
X'08' for direct addressing (A), or for translation of ASCII to or from EBCDIC (Q)

Dynamic AUocation Parameter Structure Fields 59

X'10' for feedback (F), or for hopper empty exit (H), or for online correction for Optical Readers (0)
X'20' for chained scheduling, or TCAM segment identification (C), or for extended search (E)
X'40' for end-of-file recognition to be disregarded for tapes (B), or for allowan(:e of data checks caused by

an invalid character, or TCAM work unit is to be handled as a message (U)
X'80' for write validity check (W)

Notes: When more than one OPTCD value is to be specified, PARM contains the sum of the
values.

Examples: to specify OPTCD value U, code

KEY
0045

0001

LEN
0001

PARM
40

Example: to specify OPTCD values U and C, code

KEY
0045

0001

LEN
0001

PARM
60

Receiving PCI specification - Key = X'0046'

This key is used to specify the relationship of program-controlled interrupts (PCI) during
receiving operations to the allocation and freeing of buffers. When this key is specified, # and
LEN must be one, and PARM contains:

X'02' for a PCI and no new buffer allocated (R)
X'08' for no PCl's (N)
X'20' for a PCI and new buffer allocated (A)
X'80' for a PCI, new buffer allocated, and the first buffer remains allocated (X)

Example: to specify no PCI's during receiving operations, code

KEY
0046

0001

LEN
0001

PARM
08

Sending PCI specification - Key = X'0047'

This key is used to specify the relationship of PCI's during sending operations to the allocation
and freeing of buffers. When this key is specified, # and LEN contain one, and PARM contains:

x'ot' for a PCI and no new buffer allocated (R)
X'04' for no PCl's (N)
X'IO' for a PCI and a new buffer allocated (A)
X'40' for a PCI, new buffer allocated, and first buffer remains allocated (X)

Example: to specify no PCI's during sending operations, code

KEY
0047

0001

LEN
0001

PARM
04

PRTSP specification - Key = X'0048'

This key is used to specify printer line spacing. The CODE, KEYLEN, MODE, STACK, and
TRTCH specifications are mutually exclusive with this key. When this key is specified, # and
LEN must be one, and PARM contains:

X'Ot' for no spacing (0)
X'09' for one line spacing (1)
X' 11' for two line spacing (2)
X'19' for three line spacing (3)

60 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Example: to specify no spacing, code

KEY
0048

0001

LEN
0001

PARM
01

RECFM specification - Key = X'0049'

This key is used to specify the record format. When this key is specified, # and LEN must be
one, and PARM contains:

X'02' for machine code printer control characters in record (M), or for complete QT AM record (R)
X'04' for ASA printer control characters in record (A), or for complete QTAM message (0)
X'08' for standard fixed records, spanned variable records, or segment of QT AM message (S)
X'IO' for blocked records (B)
X'20' for variable ASCII records (0), or for track overflow (T)
X' 40' for variable records (V)
X'80' for fixed records (F)
X'CO' for undefined records (U)

Notes: When more than one RECFM value is to be specified in combination, PARM contains
the sum of the values.

Example: to specify fixed records, code

KEY
0049

0001

LEN
0001

PARM
80

First Buffer RESERVE specification - Key = X'004A'

This key is used to specify the number of bytes to be reserved in other than the first buffer for
insertion of data by the OA TETIME AND SEQUENCE macros. The UCS specification is
mutually exclusive with this key. When this key is specified, # and LEN must be one, and
P ARM contains the number of bytes to reserve.

Example: to reserve 8 bytes in secondary buffers, code

KEY
004B

0001

LEN
0001

PARM
08

Secondary Buffer RESERVE specification - Key = X'004B'

This key is used to specify the number of bytes to be reserved in other than the first buffer for
insertion of data by the OATETIME and SEQUENCE macro instructions. The UCS specification
is mutually exclusive with this key. When this key is specified, # and LEN must be one, and
P ARM contains the number of bytes to reserve.

Example: to reserve 8 bytes in secondary buffers, code

KEY
004B

0001

LEN
0001

PARM
08

SOW A specification - Key = X'004C'

This key is used to specify the size, in bytes, of the user-provided input work areas for
telecommunication jobs. When this key is specified, # must be one, LEN must be two, and
PARM contains the SOW A value.

Example: to specify a 256 byte work area, code

KEY
004C

0001

LEN
0002

PARM
0100

Dynamic AUocatlon Parameter Structure Fields 61

ST ACK specification - Key = '004D'

This key is used to specify the stacker bin to receive cards. The CODE, KEYLEN, PRTSP, and
TRTCH specification are mutually exclusive with this key. When this key is specified, # and
LEN are one, and PARM contains:

X'O l' for bin 1 (1)
X'02' for bin 2 (2)

Example: to specify stacker 2, code

KEY
004D

0001

LEN
0001

PARM
02

THRESH specification - Key = X'004E'

This key is used to specify the percentage of nonreusable disk message queue records to be
used before a flush closedown occurs. This key is mutually exclusive with the CPRI

specification. When this key is specified, # and LEN must be one, and lPARM contains the
percentage.

Example: to specify a THRESH percentage of 99, code

KEY
004E

0001

LEN
0001

PARM
63

TRTCH specification - Key = X'004F'

This key is used to specify the recording technique for 7 - track tape. The KEYLEN, MODE,

CODE, STACK, and PRTSP specifications are mutually exclusive with this key. When this key is
specified, # and LEN must be one, and PARM contains:

X'13' for data conversion (C)
X'23' for even parity (E)
X'2B' for even parity and BCD/EBCDIC translation, (ET)
X'3B' for BCD/EBCDIC translation (T)

Example: to specify even parity, code

KEY
004F

0001

LEN
0001

PARM
23

IPLTXTID specification - Key = X'0051'

This key is used to specify the name of a TCAM network control program. This key is mutually
exclusive with the DSNAME MEMBER NAME, and QNAME specifications. When this key is
specified, # must be one, LEN is the length of the name (maximum of 7), and PARM contains
the name.

Example: to specify an IPL TXTID value of PGM, code

KEY
0051

0001

LEN
0003

PARM
D7 D7 D4

Diagnostic TraCie specification (DIAGNS = TRACE) - Key = X'0054'

This key requests the OPEN/CLOSE/EOY trace option which gives a module by module traee of
OPEN/CLOSE/EOY'S workarea and the user's DCB. When this key is specified, # must be zero.
LEN and PARM must not be specified. (GTF must be active in the system while the job that
requested the trace is running).

62 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Example: to specify the Diagnostic Trace specification, code

KEY
0054

0000

LEN PARM

FUNC = function specification - Key = X'OOSA'

This key can be used with BSAM and QSAM and specifies the type of data set to be opened for
the 3525 Card Read-Punch-Print. When this key is specified, # and LEN must be one, and
PARM must be one of the following values:

X'10' for W
X'12' for WT
X'14' for WX
X'16' for WXT
X'20' for P
X'30' for PW
X'34' for PWX
X'36' for PWXT
X'40' for R
X'SO' for RW
X'S2' for RWT
X'S4' for PWX
X'S6' for PWXT
X'60' for RP
X'68' for RPD
X'70' for RPW
X'74' for RPWX
X'76' for RPWXT
X'78' for RPWD
X'80' for I

Where:
D is data protection for a punch data set
I is interpret punch data set
P is punch
R is read
T is two line printer
W is print
X is printer

Note: If this information is not supplied by any source, the system assumes P.
D, X, and T cannot be coded alone
If D is specified as part of a value, the FCB image-id key must also be specified giving the image
identifier for the data protection image.

Example: to specify FUNC=RPWD

KEY
005A

0001

LEN
0001

PARM
78

FRID = member specification - Key = X'OOSB'

This key is used to specify the last four characters of a SYSl.IMAGELIB member to be used in
the interpretation of documents for input to SHARK. The characters must be alphanumeric or
national, and if the member has a name with a length less than four, the entire name must be
specified. This key is mutually exclusive with the FCB specification. When this key is specified
must be one, LEN is the number of characters specified, and P ARM contains the characters
of the member name.

Example: to specify the last four characters of member name SHARK1, code

KEY
005B

0001

LEN
0004

PARM
C1D9D2F1

Dynamic Allocation Parameter Structure Fields 63

Hex Test
Unit Key

0050
0052
0053
0055
0056
0057
0050

IEFl.B4D2
Mnemonic
DALPASSW
DALPERMA
DALCNVRT
DALRTDDN
DALRTOSN
DALRTORG
DALRTVOL

Dynamic Allocation Function
Specifies the password for a protected data set.
Specifics the permanently allocated attribute.
Specifies the convertible attribute.
Requests the return of the associated ddname.
Requests the return of the allocated data set's name.
Requests the return of data set organization.
Requests the return of the volume serial number.

Figure to. Non-JCL Dynamic Allocation Functions (Used with Verb Code 01) - Text Unit Keys, Mnemonics, and

Functions

Non-JCL Dynamic Allocation Functions

The following keys do not have JCL equivalents, rather they only have meaning to dynamic
allocation.

Password specification - Key = X'OOSO'

This key is used to specify the password of a password protected data set. The dsname key
must also be specified when this key is specified. When this key is specified, # must be one,
LEN contains the length of password, and PARM contains the password.

Example: to specify the password, MYKEY, code

KEY
0050

0001

LEN
0005

PARM
D4 E8 D2 C5 E8

Permanently Allocated Attribute specification - Key = X'OOS2'

This key is used to specify that the Permanently Allocated attribute is to be assigned to this
allocation. When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify assignment of the Permanently Allocated attribute, code

KEY
0052

0000

LEN PARM

Convertible Attribute specification - Key = X'OOS3'

This key is used to specify that the Convertible attribute is to be assigned to this allocation.
(Note: this specification is defaulted if the Permanently Allocated attribute text unit is not
specified.) When this key is specified, # must be zero. LEN and PARM are not specified.

Example: to specify assignment of the Convertible attribute, code

KEY
0053

0000

LEN PARM

Ddname Return specification - Key = X'OOSS'

This key is used to specify that the ddname that is associated with the allocation be returned
to the dynamic allocation caller. When this key is specified, # must be one, LEN must be eight,
and P ARM is an eight byte field. Dynamic allocation will place the allocated ddname in P ARM

and update LEN to the length of this ddname.

64 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Example: to specify that the allocated ddname be returned, code

KEY
0055

0001

LEN
0008

PARM

This specification would be updated for the allocation of the ddname, DO I, as follows:

KEY
0055

0001

LEN
0003

PARM
C4 C4 Fl-----

Dsname Return specification - Key = X'0056'

This key is used to specify that the dsname that is allocated be returned to the dynamic
allocation caller. When this key is specified, # must be one, LEN must be forty-four, and PARM

is a forty-four byte field. Dynamic allocation will place the allocated dsname in PARM, and
update LEN to the length of this dsname.

Example: to specify that the allocated dsname be returned, code

KEY
0056

0001

LEN
002C

PARM

This specification would be updated for the allocation of the dsname, ABC, as follows.

KEY
0056

0001

LEN
0003

PARM
Cl C2 C3----- ... --

DSORG Return specification - Key = X'0057'

This key is used to specify that the data set organization be returned to the dynamic allocation
caller. When this key is specified, # must be one, LEN must be two, and PARM is a two byte
field. Dynamic allocation will set PARM as follows:

X'OOOO' if DSORG cannot be determined by dynamic allocation.
X'0004' if TR
X'0008' if VSAM
X'0020' if TQ
X'0040' if TX
X'0080' if GS
X'0200' if PO
X'0300' if POU
X'0400' if MQ
X'0800' if CQ
x'tooo' if CX
X'2000' if DA
X'2100' if DAU
X'4000' if PS
X'4100' if PSU
X'8000' if IS
X'8tOO' if ISU

Example: to specify that the DSORG be returned, code

KEY
0057

0001

LEN
0002

PARM

This specification would be updated for a DSORG of PS as follows:

KEY
0057

0001

LEN
0002

PARM
4000

Dynamic Allocation Parameter Structure Fields 65

Volume Serial Return specification - Key = X'005D'

This key is used to specify that the volume serial associated with the data set being allocated
be returned. Only the first volume serial of the multiple volume data set is returned, and
volume sequence number, if any, is ignored. When this key is specified, # must be one, LEN

must be six, and PARM is a six byte field. Dynamic allocation will place the allocated volume
serial in PARM. If no volume serial is associated with the data set, for example, a VIO or Job
Entry Subsystem data set, # will be set to zero.

Example: to specify that the allocated volume serial be returned, code

KEY
OOSD

0001

LEN
0006

PARM

66 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Hex Text IEFZB4D2
Unit Key Mnemonic

0001 DUNDDNAM
0002 DUNDSNAM
0003 DUNMEMBR
0005 DUNOYDSP
0007 DUNUNALC
OOOR DUNREMOY

OOOA DUMOYSNH
0018 DUNOYCLS
0058 DUNOYSUS
0059 DUMOYSHQ

Dynamic Allocation Function
Specifics the ddname of the resource to be unallocated.
Specifics the data set to be unallocated.
Specifics the PDS member to be unallocated.
Specifics an overriding disposition.
Specifics unal1ocatioll even if a permanently allocated resource.
Specifics the removal of the "in-usc" attribute, even if not permanently
allocated.
Specifies "nohold" status for an unallocated SYSOUT data set.
Specifics an overriding SYSOUT class.
Specifics an overriding remote work station.
Puts the SYSOUT data set on the hold queue and overrides previous
"nohold" specifications.

Figure t 1. Dynamic Unallocation (Verb Code 02) - Text Unit Keys, Mnemonics, and Functions

Dynamic Unallocation Text Units

The following text units are used with the unallocation function of Dynamic Allocation (YERB

code X'02').

Ddname specification - Key = X'OOOl'

This key is used to specify the ddname of the resource to be unallocated. When this key is
specified, # must be one, LEN is the length of the ddname field, and PARM contains the
ddname.

Example: to specify the ddname, DD1, code

KEY
0001

0001

LEN
0003

PARM
C4 C4 Fl

Dsname specification - Key = X'0002'

This key is used to specify the data set name to be unallocated. When this key is specified, #
must be one, LEN contains the length of the dsname, and PARM contains the dsname.

Example: to specify the dsname, MYDAT A, code

KEY
0002

0001

LEN
0006

PARM
D4 E8 C4 Cl E3 Cl

Membername specification - Key = X'0003'

This key is used to specify that a particular member of the data set is to be unallocated.
Dsname must also be specified when this key is specified. When this key is specified, # must
be one, LEN is the length of the member name, and PARM contains the membername.

Example: to specify the membername, MEM 1, code

KEY
0003

0001

LEN
0004

PARM
D4 C5 D4 Fl

Dynamic Allocation Parameter Structure Fields 67

Overriding Disposition specification - Key = X'0005'

This key is used to specify a disposition which overrides the disposition assigned to a data set
when it was allocated. When this key is specified, # and LEN must be one, and PARM contains:

X'O]' for an overriding disposition of UNCATLG
X'02' for an overriding disposition of CA TLG
X'04 for an overriding disposition of DELETE
X'08' for an overriding disposition of KEEP

Example: to specify an overriding disposition of CATLG, code

KEY
0005

0001

LEN
0001

PARM
02

U nalloc Option specification - Key = X'0007'

This key is used to specify that unallocation is to occur even if the resource has the
Permanently Allocated attribute. The Remove option specification (see below) is mutually
exclusive with this key. When this key is specified, # must be zero. LEN and PARM are not
specified.

Example: to specify the Unalloc option, code

KEY
0007

0000

LEN PARM

Remove Option specification - Key = X'0008'

This key is used to specify that the In-Use attribute is to be removed even if the resource does
not have the Permanently Allocated attribute. The Unalloc Option specification is mutually
exclusive with this key. When this key is specified, # must be zero. LEN and PARM are not
specified.

Example: to specify the Remove Option, code

KEY
0008

0000

LEN PARM

Overriding Sysout Nohold specification - Key = X'OOOA'

This key is used to specify that the Sysout data set being unallocated is not to be placed on
the Hold Queue. This specification overrides the Hold/Nohold specification assigned when the
data set was allocated. This specification is ignored if the data set is not a Sysout data set. The
Overriding Hold specification is mutually exclusive with this key. When this key is specified, #
must be zero. LEN and PARM are not specified.

Example: to specify Nohold, code

KEY
OOOA

0000

LEN PARM

68 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Overriding Sysout Class specification - Key = X'0018'

This key is used to specify a sysout class which overrides the class assigned when the sysout
data set was allocated. This key is ignored for non-Sysout data sets. When specified, # and
LEN must be one, and PARM contains the overriding class.

Example: to specify an overriding class of C,code

KEY
0018

0001

LEN
0001

PARM
C3

Overriding Sysout Remote Work Station specification - Key = X'0058'

This key is used to specify that the Sysout data set being unallocated is to be routed to a
remote user. This specification overrides the remote work station specification assigned when
the data set was allocated. This specification is ignored if the data set is not a Sysout data set.
When this key is specified, # must be one, LEN is the length of the remote work station name
(maximum of 7), and PARM contains the remote user name.

Example: to specify the remote work station, USEROl, code

KEY
0058

0001

LEN
0006

PARM
E4 E2 C5 D9 FO Fl

Overriding Sysout Hold Queue specification - Key = X'0059'

This key is used to specify that the Sysout data set being unallocated is to be placed on the
Hold Queue. This specification overrides the Hold/Nohold specification assigned when the
data set was allocated. This specification is ignored if the data set is not a Sysout data set. The
Overriding Nohold specification is mutually exclusive with this key. When this key is specified,
must be zero. LEN and PARM are not specified.

Example: to specify Hold, code

KEY
0059

0000

LEN PARM

Dynamic Allocation Parameter Structure Fields 69

Dynamic Allocation Function
Hex Text
Unit Key

0001
0004

IEFZB4D2
Mnemonic
DCCDDNAM
DCCPERMC

Specifics the ddnames to be concatenated.
Specifies thc permanently concatcnated attribute.

Figure 12. Dynamic Concatenation (Verb Code 03) - Text Unit Keys, Mnemonics, and Functions

Dynamic Concatenation Text Units

The text units for the concatenation function of Dynamic Allocation (VERB code X'03') are as
follows:

Ddname specification - Key = X'OOOl'

This key is used to specify the ddnames that are associated with the data sets to be
concatenated. When this key is specified, # is the number of ddnames being specified (a
minimum of two), LEN is length of the immediately following ddname field and PARM contains
a ddname.

Example: to specify concatenation of SYSLIB to MYLIB, code

KEY
0001

0002

LEN
0005

PARM LEN
D4E8D3C9C2 0006

PARM
E2E8E2D3C9C2

Permanently Concatenated Attribute specification - Key = X'0004'

This key is used to specify that the concatenated group be assigned the Permanently
Concatenated attribute. When this key is specified, # must be zero. LEN and PARM are not
specified.

Example: to specify assignment of the Permanently Concatenated Attribute, code

KEY
0004

0000

LEN PARM

70 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Dynamic Allocation Function
Hex Text
Unit Key

0001

IEFZB4D2
Mnemonic
DDCDDNAM Specifics the ddname of the group to be deconcatenated.

Figure 13. Dynamic Deconcatenation (Verb Code 04) - Text Unit Key, Mnemonic, and Function

Dynamic Deconcatenation Text Units

The text unit for the deconcatenation function of Dynamic Allocation (VERB code X'04') is:

Ddname specification - Key = X'OOOl'

This key is used to specify the ddname of the concatenated group that is to be
deconcatenated. This key must be specified. In specifying this text unit, # must be one, LEN is
the length of the ddname field andP ARM contains the ddname.

Example: to specify the ddname, 001, code

KEY
0001

0001

LEN
0003

PARM
C4 C4 Fl

Dynamic Allocation Parameter Structure Fields 71

Hex Text
lJnit Key

0001

0002

IEFZB4D2
Mnemonic
DRITCBAD

DRICURNT

Dynamic Allocation Function
Removes the "in-use" attribute from all resources associated with the
specified TCB address.
Removes the" in-usc" attribute from all resources but those of the current
task and its higher-level tasks.

Figure 14. In-lJse Attribute Removal (Verb Code 05) - Text Unit Keys, Mnemonics, and Functions

Text Units for Removing the In-Use Attribute Based on Task-ID

The following text units are for the 'Removal of the In-Use attribute based on task-ID
function' of Dynamic Allocation (VERB code X'OS').

TCB Address sl)ecification - Key = X'OOOl'

This key is used to specify that the In-Use attribute is to be removed from all resources
associated with the specified TCB address. The Current Task Option specification (see below)
is mutually exclusive with this key. When this key is specified, # must be one, LEN must be
four, and PARM contains the TCB address.

:Example: to specify the TCB address 22ACO, code

KEY
0001

0001

LEN
0004

PARM
00022ACO

Current Task Option specification - Key = X'0002'

This key is used to specify that the In-Use attribute is to be removed from all resources except
those associated with the current task, its direct ancestors, and the initiator. This key is
mutually exclusive with the TCB Address specification. When this key is specified, # must be
zero. LEN and PARM are not specified.

Example: to specify the Current Task Option, code

KEY
0002

0000

LEN PARM

72 OS/VS2 System Programming Ubrary: Job Management (VS2 Release 3)

Dynamic Allocation Function
Hex Text
Unit Key

0001
0002

IEFZB4D2
Mnemonic
DDNDDNAM
DDNRTDUM

Specifies the ddname to be allocated.
Requests a dummy data set indication.

Figure 15. Ddname Allocation (Verb Code 06) - Text Unit Keys, Mnemonics, and Functions

Ddname Allocation Text Units

The following text units are used with the ddname allocation function (VERB code X'06').

Ddname specification - Key = X'OOOl'

This key is used to specify the ddname to be allocated. This text unit must be specified. When
this key is specified, # must be one, LEN contains the length of the ddname field, and PARM

contains the ddname.

Example: to specify the ddname, SYSLIB, code

KEY
0001

0001

LEN
0006

PARM
E2 E8 E2 D3 C9 C2

Return DUMMY Indication specification - Key = X'0002'

This key is used to request an indication of a DUMMY data set being associated with the
specified ddname. When this key is specified, # and LEN must be one, and P ARM is a one byte
field. Dynamic allocation sets PARM as follows:

X'80' if DUMMY data set associated with the ddname
X'OO' otherwise

Dynamic Allocation Parameter Structure Fields 73

Hex Text
Unit Key

0001
0002
0004
0005
0006
0007
0008
0009
OOOA
OOOB

OOOC
0000
OOOE
OOOF

IEFZB4D2
Mnemonic
DINDDNAM
DINDSNAM
DINRTDDN
DINRTDSN
DINRTMEM
OINRTSTA
DINRTNDP
OINRTCDP
OINRTORG
DINRTLIM

DINRTATT
DINRTLST
OINRTTYP
DINRELNO

Dynamic Allocation Function
Specifies the ddname identifier of the requested information.
Specifies the data set for which the information is requested.
Requests the return of the associated ddname.
Requests the return of the data set name.
Requests the return of the PDS membername.
Requests the return of the data set's status.
Requests the return of the data set's normal disposition.
Requests the return of the data set's conditional disposition.
Requests the return of the data set's organization.
Requests the number of resources that must be unallocated before making a
new allocation.
Requests the return of special attribute indications.
Requests the return of a last relative entry indication.
Requests the return of the data set's type (terminal or dummy).
Specifics the desired allocation information retrieval by relative request
number.

Figure 16. Dynamic Information Retrieval (Verb Code 07) - Text Unit Keys, Mnemonks, and Functions

Dynamic Information Retrieval Text Units

The text units for the information retrieval function of Dynamic Allocation (VERB code '07')
are as follows:

Ddname specification - Key = X'OOOl'

This key is used to specify a ddname that identifies the allocation about which information is
to be returned. It is mutually exclusive with the dsname and relative entry specifications. When
this key is specified, # must be one, LEN is the length of the ddname field and P ARM contains
the ddname.

Example: to specify the ddname, DOl, code

KEY
0001

000'1

LEN
0003

PARM
C4 C4 Fl

Dsname specification - Key = X'0002'

This key is used to specify a dsname that identifies the allocation about which information is
to be returned. It is mutually exclusive with the ddname and relative entry specifications. When
specified, # must be one, LEN is the length of the dsname, and PARM contains the dsname.

Example: to specify the dsname, MYDA T A, code

KEY
0002

0001

LEN
0006

PARM
D4 E8 C4 Cl E3 Cl

Return Ddname specification - Key = X'0004'

This key is used to specify that the ddname which is associated with the specified allocation be
returned. When this key is specified, # must be one, LEN must be eight, and P ARM is an eight
byte field. Upon return to the caller, PARM is an eight byte field. Upon return to the caller,
PARM will contain the ddname and LEN is set to its length.

Example: to specify that the ddname be returned, code

KEY
0004

0001

LEN
0008

PARM

74 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Return Dsname specification - Key = X'0005'

This key is used to specify that the dsname which is associated with the specified allocation be
returned. When this key is specified, # must be one, LEN must be forty-four, and PARM is a
forty-four byte field. Upon return to the caller, PARM will contain the dsname, and LEN will
be set to its length.

Example: to specify that the dsname be returned, code

KEY
0005

0001

LEN
002e

PARM

Return Membername specification - Key = X'0006'

This key is used to specify that the membername which is associated with the specified
allocation be returned. When this key is specified, # must be one, LEN must be eight, and
PARM is an eight byte field. Upon return to the caller, PARM will contain the membername,
and LEN will be set to its length (zero if none).

Example: to specify that the membername be returned, code

KEY
0006

0001

LEN
0008

PARM

Return Status specification - Key = X'0007'

Thi.s key is used to specify that the data set status of the specified allocation be returned.
When this key is specified, # and LEN must be one, and PARM is a one byte field which is set
as follows upon return to the caller:

X'Ol' for OLD
X'02' for MOD
X'04' for NEW
X'08' for SHR

Example: to specify that the status be returned, code

KEY
0007

0001

LEN
0001

PARM

Return Normal Disposition specification - Key = X'0008'

This key is used to specify that the data set normal disposition of the specified allocation be
returned. When this key is specified, # and LEN must be one, and P ARM is a one byte field
which is set as follows upon return to the caller:

X'Ol' for UNCATLG
X'02' for CA TLG
X'04' for DELETE
X'08' for KEEP
X'lO' for PASS

Example: to specify that the normal disposition be returned, code

KEY
0008

0001

LEN
0001

PARM

Return Conditional Disposition specification - Key = X'0009'

The key is used to specify that the data set conditional disposition of the specified allocation
be returned. The values for #, LEN and PARM are the same as for Return Normal Disposition.

Dynamic Allocation Parameter Structure Fields 75

Example: to specify that the conditional disposition be returned, code

KEY
0009

0001

LEN
0001

PARM

Return Data Set Organization specification Key = X'OOOA'

This key is used to specify that the data set organization of the specified allocation be
returned. When this key is specified, # must be one, LEN must be two, and PARM is a two
byte field which is set as follows upon return to the caller:

X'OOOO' if undetermined
X'0004' if TR
X'0008' for VSAM
X'0020' if TO
X'0040' if TX
X'OO80' for GS
X'0200' for PO
X'0300' for POU
X'0400' for MO
X'0800' for CO
X' 1000' for CX
X'2000' for DA
X'2100' for DAU
X' 4000' for PS
X' 4100' for PSU
X'8000' for IS
X'8100' for ISU

Example: to specify that the data set organization be returned, code

KEY
OOOA

0001

LEN
0002

PARM

Return Limit specification - Key = X'OOOB'

This key is used to specify that the number of resources which must be unallocated before a
request can be made which requires the creation of a new allocation be returned. When this
key is specified, # must be one, LEN must be two, and PARM is a two byte field. Upon return
to the caller, P ARM is set to the number.

Example: to specify that the number be returned, code

KEY
OOOB

0001

LEN
0002

PARM

If three resources must be unallocated, this text unit is returned as follows:

KEY
OOOB

0001

LEN
0002

PARM
0003

Return Dynamic Allocation Attribute specification - Key = X'OOOC'

This key is used to specify that an indication of Permanently Allocated, Convertible, In-Use,
and Permanently Concatenated Attributes be returned. When this key is specified, # and LEN

must be one, and PARM is a one byte field. Upon return" to the caller, PARM is set as follows:

Bit 0,
Bit I,
Bit 2,
Bit 3,
Bit 4-7

on if Permanently Concatenated Attribute
on if In-Use Attribute
on if Permanently Allocated Attribute
on if Convertible Attribute
reserved

76 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Example: to specify that the Data Set Attributes be returned, code

KEY
oooe

0001

LEN
0001

PARM

If the allocation has the In-Use and Permanently Allocated attributes, this field is returned as
follows:

KEY
oooe

0001

LEN
0001

PARM
60

Return Last Entry specification - Key = X'OOOD'

This key is used to specify that an indication be returned that the relative entry number
specified corresponds to the last relative entry. When this key is specified, # and LEN must be
one, and PARM is a one byte field. Upon return to the caller, PARM will be set as follows:

X'80' if last relative entry
X'OO' otherwise

Example: to specify that the last entry indication be returned, code

KEY
OOOD

0001

LEN
0001

PARM

Return Data Set Type specification - Key = X'OOOE'

This key is used to specify that an indication of the allocation being a DUMMY data set or
terminal allocation be returned. When this key is specified, # and LEN must be one, and PARM

is a one byte field. Upon return to the caller, PARM is set as follows:

X'OO' otherwise
X' 40' if terminal
X'80' if DUMMY data set

Example: to specify that data set type be returned, code

KEY
OOOE

0001

LEN
0001

PARM

Relative Request Number specification - Key = X'OOOF'

This key is used to specify a relative request number that identifies the allocation about which
information is to be returned. The ddname and dsname specifications are mutually exclusive
with this text unit. When this key is specified, # must be one, LEN must be two, and PARM

contains the relative number.

Example: to specify information is to be returned about the tenth request, code

KEY
OOOF

0001

LEN
0002

PARM
OOOA

Note: One of the three preceding text units must be specified.

Dynamic AUocation Parameter Structure Fields 77

78 OS/VS2 System Programming Ubrary: Job Management (VS2 Release 3)

Part II: Job Entry Subsystem 2 (JES2)

Introduction to JES2: This topic introduces JES2, and describes the configuration that can be
specified during JES2 generation and initialization.

JES2 Processing: This topic describes the asepcts of JES2 processing that can be affected by
user programming: controlling job submission and queuing, controlling conversion and
execution, execution batch scheduling, controlling system output, and controlling RJE.

Miscellaneous JES2 Facilities: This topic discusses the JES2 patching facility, automatic
command processing, flow for time sharing and started tasks, and the multi-access spool.

Part II: Job Entry Subsystem 2 (JES2) 79

80 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Introduction to JES2

A job entry subsystem provided with MVS is JES2, generally compatible with HASP II. JES2
serves as the point of entry for all jobs, and the function which produces all hardcopy job
output. To accomplish these functions, JES2 controls local and remote job entry devices and
output devices. A special job entry source, the internal reader facility, allows MVS to submit
system jobs: started tasks and time-sharing LOGONs. Tape and disk input are also supported
through the internal reader facility. See figure 17 for input/output relationships to the job
entry subsystem and MVS.

Spool Volumes

Local Card

Operator

Figure 17. JES2 I/O Relationships

JES2 Queue

(Pointers to the
spool volumes)

MVS

Remote Card

Remote Stations

3540 Diskette

Time Sharing

An output interface allows MVS to retrieve output for TSO terminals, and allows a special
output facility - the External Writer - to process output to tape, disk, and
installation-written writer routines. The output interface also supports an output facility to the
3540 diskette writer (see OS/VS2 IBM 3540 Programmer's Reference).

While the job is in MVS, the JES2 job queue residing in pageable storage maintains a record
for the job. lob-related system records plus records related to job input and output are
maintained on external spool volumes.

Introduction to JES2 81

The system programmer during JES2 generation and initialization, and the operator during
JES2 processing, define and control the configuration of job entry sources and job output
destinations. JES2 provides centralized control of job input, queueing, and output, such that all
jobs are controlled in the same manner whether submitted from local or RJE (remote job
entry) devices, or through the internal reader facility.

Figure 18 describes the organization of this section of the manual. As is suggested in the
figure, jobs that are batched for execution (Execution Batch Facility) do not go through the
same conversion and execution process as other jobs. The functions described in these sections
are:

• Configuration - including configuration for local and RJE devices, generation of JES2,

and specification of the internal reader facility and the spool volumes.
• Starting and stopping the job entry subsystem - including starting the default (syst(~m

generation) subsystem, and initializing through the use of data sets containing
initialization parameters.

• Controlling job submission and queueing - including the method of passing a job to
JES2, the internal reader facility with support for tape and disks, the RDR procedure, the
role of job class and priority in job queuing, priority aging, and the placing of jobs in
HOLD status.

• Controlling conversion and execution - including JCL conversion, the job account field
scan, defining the procedure library for the job, specifying converter parameters,
command authority and recognition for JES2 and YS2, control of initiators, and job
monitoring.

• The execution batch facility - including the establishment of th(~ facility and writing an
execution batch monitor.

• Controlling output and output devices - including how output is: queued and by what
function, data set enqueuing, device selection, separator pages and separator cards,
overflow, output routing, the external writer and the XWTR procedure.

• Controlling remote job entry - including starting and stopping lines, dedicated versus
nondedicated lines, abortive disconnect, printer suspending, password protection, SMF

recording, and how to name remote devices.
• Miscellaneous functions such as time sharing control, the automatic operator facility, and

modifying JES2 through the card reader.
• Multi-access spool - including an overview, configuration, starting the complex, job

submission and queueing, output, and considerations for RJE, TSO, and SMF.

111e parameters necessary for controlling the various JES2 functions are described in two manuals:
OS/VS2 System Programming Librar)': System Generation Reference, GC26-3792; and as/VS2
System Programminf; Library: Initialization and Tuninf; Guide, GC28-0681. These manuals contain
detailed descriptions of the implementation of each parameter. When groups of parameters are
described in this section, the reader is referred to the System Generation manual or the Initialiaz­
tion manual for imolementation details.

82 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Configu ratio n

Starting and
Stopping
JES2

Execution Batched
Jobs

JES2
Writer

Figure 18. Topics Described Under JES2

Configuration

Controlling Job
Submission and
Queuing

,

Output Control

XWTR

Standard User
Writer Written

Writer

TSO
Writer

Multi-Access Spool

Controlling
Conversion
and
Execution

3540
Diskette
Writer

RJE Considerations

Miscellaneous

During JES2 generation and initialization, the system programmer can specify .the configuration
of JES2 local devices, the JES2 internal reader facility, the JES2 remote lines and devices, and
the JES2 spool volumes.

JES2 Generation

JES2 is created by a process called JES2GEN. The system generation process is designed so that
the operator can generate JES2 while Stage II of SYSGEN is in progress. Following JES2GEN the
operator must issue a START command START JES2BLD in order to linkage edit JES2 into
SYSl.LINKLIB and SYSl.LPALIB. The primary JES2 module HASJES20 resides in SYSl.LINKLIB.

The job entry subsystem to be used with MVS must be named in the PRISUB parameter of
the SCHEDULR system generation macro instruction. The default name is 'JES2'. To change the
name from 'JES2', both the PRISUB parameter and the name of the cataloged procedure in

Introduction to JES2 83

SYS1.PROCLlB must be changed. To use a subsystem other than JES2, the name must be
inserted in PRISUB and the new subsystem placed in SYS1.PROCLlB.

Local Device Configuration

Local devices refer to card readers, printers, and card punches which are attached to the MVS
system and which are used for reading jobs and writing output.

During JES2 generation the system programmer specifies the number of readers, printers and
punches to be controlled by JES2 via the &NUMRDRS, & NUMPRTS and & NUMPUNS
parameters. It is not possible to assign to JES2 more than the number of devices specified
without regenerating the JES2 system.

During JES2 initialization, the system programmer can identify the devices which are to be
used by JES2 via the READERnn, PRINTERnn and PUNCHnn parameters. The system
programmer can also specify JES2 processing parameters to be associated with each device and
indicate whether the device is to be considered active or inactive upon completion of JES2
initialization. An active device is dynamically allocated during JES2 initialization, and processing
on that device begins as soon as work is available. An inactive device must be activated by the
operator via the JES2 START command ($S).

If, during JES2 initialization, the system programmer does not identify as many devices as
were specified during JES2 generation, JES2 selects devices and dynamically allocates them.
Devices are selected according to lowest device address for each type of device (reader,
printer, punch), until the number specified during JES2 generation is obtained or no devices of
that type remain. For a device to be selected, it must be physically attached to the system. For
devices not identified to JES2 during JES2 initialization, default parameters established during
JES2 generation and initialization are used.

During JES2 processing, devices can be activated via the JES2 START command ($s) and
deactivated via the JES2 STOP command ($p), resulting in dynamic allocation or deallocation of
the device.

Internal Readier

During JES2 generation, the maximum number of jobstreams that can be simultaneously
entered through the internal read facility is specified (&NUMINRS). To JES2 it appears that this
number of devices is attached. Actually, there is one 'internal reader facility. Refer to "The
Internal Reader Facility" in the section describing job submission.

During JES2 initialization, the internal reader facility is defined with the INTRDR parameter.

The maximum specified by the & NUMINRS parameter does not apply to the system internal
readers associated with the time-sharing LOGONs (TSUINRDR) and started tasks (STCINRDR).

Remote Line and Device Configura,lion

Configuring RJE devices consists of defining both teleprocessing lines and remote station
facilities. The remote facility can range from one remote terminal (2270,3780), to a remote
workstation consisting of a computer operating many devices including (optionally) a remote
console under the control of a JES2 remote terminal program and communicating with JES2 via
the MUL TI-LEAVING* technique.

*Trademark

84 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Teleprocessing lines are either dedicated (permanently attached) to a single station, or
nondedicated which implies that multiple stations can use the line. JES2 does not support
multiple active remote stations on one line.

During JES2 generation, the system programmer:

• Specifies the maximum number of teleprocessing lines supported by JES2. & NUMLNES
parameter.

• Specifies the maximum number of remote stations supported by 1ES2. &NUMRJE
parameter.

• Specifies the maximum number of remote card readers, remote printers, and remote
punches simultaneously supported by JES2. This includes devices that make up remote
terminals and devices attached to remote work stations. &NUMTPRO, &NUMTPPR,
& NUMTPPU parameters.

• Specifies inclusion of support in JES2 for any remote stations supported with the
&BSCCPU, &BSc2770, &Bsc2780, and &BSc3780 parameters.

• Generates the remote terminal programs by specifying RMTGEN parameters for each
remote workstation.

During 1ES2 initialization, the system programmer can identify and specify characteristics for
each line, remote station, and remote device with the LINEnnn, RMTnnn, Rnnn.Rom,
Rnnn.PRm, and Rnnn.PUm parameters. A line is dedicated to a remote station by designating
the line number in the RMTnnn parameter. Any line not designated by any RMTnnn parameter
is a nondedicated line.

The remote station operator can control the remote station and the remote station devices,
jobs submitted through the remote station, or data routed to it. This control can be effected
through the remote console or the remote' card reader. Each remote station is considered an
extension of the local JES2 facility.

Spool Configuration

JES2 uses the SYSl.HASPACE data set on each volume identified as a spool volume to store all
job input, job output, 1ES2 control blocks, and system data such as the job journal. Spool
volumes are identified to JES2 by volume serial number. A six-character name identifying the
primary spool volume is specified in the &SPOOL parameter during JES2 generation. An
&SPOOL parameter can be used during JES2 initialization to override the 1ES2 generation
parameter. The primary spool volume must exist during JES2 initialization.

Each volume with a volume serial number matching the first five characters of the &SPOOL
parameter is considered a spool volume by JES2, and is searched for a SYSl.HASPACE data set.
The maximum number of volumes that can be used as spool volumes is specified during JES2
generation with the & NUMOA parameter.

The system programmer also specifies the manner in which the tracks of the volumes are
allocated and subdivided into physical records, by specifying the &NUMTGV and &BUFSIZE
parameters. These parameters can be specified only during JES generation.

JES2 also requires one SYSl.HASPCKPT data set on a direct access volume to store a copy of
the JES2 queue and other information needed for warm start. This data set may be on the
primary spool volume or on another volume as specified by the & CHKPT parameter during
JES2 initialization. See OS/VS2 System Programming Library: System Generation Reference
for a description of how to allocate this data set and the SYS 1.HASPACE data sets.

Introduction to JES2 8§

Starting or Stopping JES2
JES2 and the parameters that define its operation are selected during job entry subsystem
initialization. Initialization of VS2 and of the job entry subsystem JES2 are two distinct
processes. Basically this means that those processes associated with initialization (coldstart,
warmstart) are specified separately for VS2 (reloading the LPA, clearing the VIO data sets) and
for JES2 (initializing the job queues). Although for any given IPL it is possible to colds tart one
(VS2 or JES2) and warmstart the other, the usual procedure is a warmstart for both. A detailed
description of the process and options for an IPL generally, and for starting and stopping JES2

particularly, is located in the OS/VS2 System Programming Library: Initialization and Tuning
Guide. The description given here is an overview with considerably less detail.

The starter system provided for installation of a VS2 system contains a JES2 procedure in
SYS 1.PROCLIB that automatically starts JES2. This first start requires that the operator respond
with the COLD or FORMAT options to the message: SPECIFY OPTIONS .. After the initial IPL, it
may be better to provide the system with one or more initialization data sets, which can
quickly specify initialization parameters suited to the conditions under which the system will
run. Utility programs are used to place the initialization data set(s) in a library such as
SYSl.PROCLIB, and the JES2 procedure is modified to reference them. The JES2 procedure
provided with the starter system is shown in figure 19.

IIJES2
IIIEFPROC
IIPROCOO
IIHASPPARM
IIHASPLIST

PROC
EXEC
DO
DO
DO

MEMBER = JES2PARM
PGM = HASJES20,OPRTY = (15,15),TIME = 1440
OSN = SYSl.PROCLlB,OISP = SHR
OSN ='SYSl.PARMLlB(& MEMBER),OISP = SHR
OONAME = IEFROER

Figure 19. JES2 Procedure provided with the Starter System

Different initialization data sets can be created to suit various operating conditions and
workloads. Although the HASPPARM of figure 19 contains only comments (null data set)
immediately after system generation, initialization parameters can be specified to configure
batch, remote, or time sharing operations.

To change initialization parameters, the JES2 queues can be quiesced and then JES2 stopped.
JES2 can then be restarted (by command) with different parameters and/or a different
initialization data set. For an end-of-day halt, it would also be necessary to quiesce the VS2

system - a separate operation. A different initialization data set can lthen be specified as part
of the next IPL.

The automatic starting feature can be removed by removing "I/START prisubname" from
the MSTRJCL. JES2 parameters can then be entered on an operator-issued START command
that must be issued before MVS processing can occur.

86 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

JES2 Processing

Controlling Job Submission and Queuing
Jobs are submitted through the job entry subsystem and queued in priority order. The system
programmer can use various parameters and facilities to control input streams, to control the
specification of job classes and generation of priorities for jobs, to hold or release jobs, to set
the default performance group for a job, and to change these specifications by changing entries
in the JES2 job control table using the JES2 job statement accounting field scan exit.

Submitting Jobs

Jobs are submitted to JES2 in three ways:

• through card readers allocated to JES2.
• through RJE devices allocated to JES2.
• through a JES2 internal reader facility.

Local Device Submission

Local card readers can be supported via the JES2 automatic starting facility by specifying
AUTO on the READERnn JES2 initialization parameter. Jobstreams can then be entered simply
by readying the card reader. No other operator action is necessary. The card reader is
deactivated and deallocated from JES2 with the JES2 stop ($p) command.

Remote Job Submission

The RJE support is described under separate sections (configuration; controlling remote job
entry). It should be noted that JES2 processes remote jobs no differently from those received
from local card readers or the internal reader facility.

The Internal Reader Facility

An internal reader jobstream is identified to JES2 by the fact that an output data set specifying
a special user writer (INTRDR) has been allocated dynamically, or via SYSOUT= (X,INTRDR)
coded on a DD card. JES2 recognizes such data sets and places them in the input stream, thus
allowing jobs and system tasks to enter jobs in the input stream.

A job entered through an internal reader is delimited beginning with a / / JOB statement and
ending with the next IIJOB statement, a I*EoF statement, or the closing of the internal reader
data set. Abnormal closing or closing after a WRITE error causes deletion of the last job. A
/*DEL statement may be used to explicitly delete the last job.

The class to which the Internal Reader data set is allocated, e.g. class X if
SYSOUT=(X,INTRDR), becomes the MSGCLASS for the submitted job unless the JOB statement
contains a MSGCLASS parameter. If the Internal Reader data set is dynamically allocated
without a class specified, the MSGCLASS of the submitting job or TSO user becomes the
default. Two exceptions to this are time sharing LOGONS and started tasks. These are assigned
the TSUMCLASS and STCMCLASS JES2 Initialization parameter values. The DEST parameter, if
specified for the Internal Reader allocation, becomes the default print data destination for all
jobs submitted via that Internal Reader.

JES2 Processing 87

JES2 provides the capability of receiving multiple jobs simultaneously via the internal reader
facility. The system uses it to pass started tasks, TSO logon, and TSO background jobs to JES2.
Also, jobstreams can be read from tape and disk (any QSAM-supported device) and submitted
through the internal reader via the RDR procedure, and any job executing in MVS can use the
internal reader facility to pass a jobstream to JES2.

Controlling the Internal Reader Facility Although the internal reader facility appears to JES2
logically as multiple input devices (maximum specified the & NUMINRS parameter during JES2
generation), the facility is controlled as one entity. The number (&NUMINRS) of internal
readers is the number of jobs that can be received simultaneously through this facility.

Characteristics of the facility are specified during JES2 initialization as subparameters of the
INTRDR parameter.

Using The RDR I~ocedure The procedure supplied by IBM for using the Internal Reader
facility to read jobs from tape or disk is named RDR. The starter system provides the RDR
procedure in SYS l.PROCLIB to allow the operator to start JES2 generation (see figure 20).
Basically the same procedure can be used to read a jobstream from any QSAM-supported
device. The operator uses the RDR procedure as follows:

/ /IEFPROC
//SYSUTI
/ /IEFRDER
//SYSUT2
/ /SYSPRINT
/ /SYSIN

EXEC
DD
DD
DD
DD
DD

PGM = IEBEDIT
DDNAME = IEFRDER
DSN = NULLFILE,DISP = OLD
SYSOUT = (A,INTRDR)
SYSOUT= A
DUMMY

Figure 20. The RDR Procedure

• To read a jobstream from the second file of a tape named JOBT AP on device 180:
START RDR, 180, JOBTAP ,LABEL=2 ,DSN=JOBS

• To read a jobstream from a cataloged library of jobs:
START RDR, 3330, DSN=PRODUCTN(PAYROLL)

• To read a jobstream starting with a specific job on a tape named JOBTAP, the operator
must submit a job to JES2:

IIREADJOBx
II
IIIEFRDER
II
IISYSIN

1$

JOB
EXEC
DD

DD
EDIT

RDR
DSN=JOBS,VOL=SER=JOBTAP,
UNIT=3400,DISP=OLD
* START=JOBx

The system programmer can define internal readers on EXEC statements in such a manner
that they are started conditionally. This allows the formation of a set of dependent jobs that
can execute without operator intervention. For example:

• To submit Jobs Band C if the first four steps of Job A complete successfully.

IIJOBA
IISTEP1

IISTEP5
IIIEFRDER
II

JOB
EXEC

EXEC
DD
DD

RDR,COND=(8,LE)
DSN=JOBS(JOBB), DISP=SHR
DSN=JOBS(JOBC),DISP=SHR

88 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

• To submit Job B if Job A terminates normally, Job C if it terminates abnormally, and
Job D in either case.

//JOBA
//STEPl

//STEPN
//IEFRDER
//STEPNl
//IEFRDER
//STEPN2
//IEFRDER

JOB
EXEC

EXEC
DD
EXEC
DD
EXEC
DD

RDR
DSN=JOBS(JOBB),DISP~SHR
RDR,COND=ONLY
DSN=JOBS(JOBC),DISP=SHR
RDR,COND=EVEN
DSN=JOBS(JOBD),DISP=SHR

Installation-written procedures and programs can further exploit the internal reader facility
to select particular jobs, to generate special job streams, and to allow operator submission of
production jobstreams.

Controlling Job Enqueuing

In JES2, jobs are enqueued by priority sequence and, when ready for execution, within
individual classes. The system programmer can control job selection through determining job
class and priority.

The JES2 Queue

A job received by JES2 is enqueued in job priority order on the JES2 queue residing in the JES2
address space in main storage. A job is considered received by JES2 when it has been totally
read in and the JES2 control blocks placed on the spool.

The queue entry for each job contains the job name, job priority, a flag to indicate the job
is held, pointers to JES2 control blocks on the spool, and the JES2 process (JCL conversion,
execution, output processing, purge) for which the job is next eligible. Jobs are selected in
priority order for each JES2 process. Logically, the one JES2 job queue has queues for each
process, plus 38 (one for each class) within the execution process.

A job which is held is not removed from the queue; instead it is made ineligible to be
selected for any JES2 processing. A job can be he1d at any time. Thus a job in execution that is
held by the operator, is not eligible for output processing until released. The holding of a job
that is read for execution can occur by job, by class, or by holding all jobs.

Job Class

There are 38 classes of jobs possible under JES2. Two are used by the system: STC for started
task control, TSU for time sharing logon. The other 36 classes, A-Z and 0-9, are for normal
jobs and can be used to help control the job mix.

the job class is specified on the JOB statement (CLASs=jobclass). If not specified, a default
based on the particular device through which the job is entered into JES2 is assigned. All jobs
entered through the internal reader facility are considered to be entered through a device
described by the INTRDR parameter.

There are no absolute rules for assigning job classes, and some experimentation is necessary.
Generally, jobs of similar characteristics and specifying identical processing requirements
should be assigned to the same class. For example, if several jobs are time-dependent and
execute in nonpageable dynamic storage, it may not be desirable to tie up all of nonpageable
dynamic storage by having these jobs running concurrently. These jobs may all be assigned to
class B (or C or D - class names have no inherent meaning); then, if only one initiator is
started that can handle class B jobs, there will never be more than one of these jobs executing
at once.

JES2 Processing 89

Suppose the following assignments are made:

Class B = jobs that are time-dependent.
Class C = jobs with high CPU requirements.
Class D = jobs with high I/O requirements.

The system programmer can specify initiator parameters such as:

It CLASS=BCD
12 CLASS=CDB
I3 CLASS=DCB

[f the three initiators are processing jobs with the same priority and all necessary resourees
(for example, I/O devices and data sets) are available, then three jobs, one from each of the
three different classes, run concurrently. If a job within one of the classes has higher priority
than the others in the class, it will be initiated first.

During JES2 initialization, the system programmer can assign job characteristics to jobs
enqueued in each class. Characteristics that can be assigned are:

• A default performance group for each job.
• JCL conversion parameters.
• Whether a JES2 job log is to be produced for jobs in this class. The JES2 job log is a Ust

of all messages and replies issued by, or on behalf of, a job.
• Whether a system journal is to be saved for this job. If it is not saved, the overhead is

avoided but the job may not be automatically restarted in case of job failure or system
restart.

• Whether this class is reserved for the execution batch scheduling facility. (See Execution
Batch Scheduling.)

• Whether output is suppressed for jobs in this class (e.g., started tasks).
• Define the procedure library (PROCnn).
• SMF options.
• Whether the job is held.
• Whether the job is to be simply copied to message class output or converted but not

executed.

The system programmer should assign separate job classes to jobs that are to be assigned
separate characteristics, and to jobs that have different execution charaeteristics such as:

• rate of CPU to I/O processing
• use of special devices
• number of devices used
• use of real storage

JES2 Job Scheduling Priority

Job priority is determined through use of the PRIORITY statement, or by an algorithm that uses
programmer-supplied or generation-defaulted job characteristic data.

[n addition an increment can be added to the priority" and a priority limit enforced,
depending on the device through which the job entered JES2. Those parameters are associated
with the input device during JES2 initialization.

Specifying Priority

Priority is specified on the /*PRIORITY statement. If specified, it must immediately precede the
JOB statement, or the input stream is flushed until another JOB or PRIORITY statement is
found.

90 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Calculating Priority

When the scheduling priority is not specified on the /*PRIORITY statement, priority is
calculated using estimated execution time and the estimated number of output lines and cards.
These values can be entered on the JOBPARM statement, in the accounting information on the
JOB card, or can be entered or defaulted with JES2 generation parameters ($ESTIME,
$ESTLNCT, $ESTPUN).

To calculate priority, these estimates are used in conjunction with four JES2 generation
parameters, each of which is supplied (or defaulted) as a table of values. These are the
&XLIN(m), &RPRT(n), &RPRI(n), &XPRI(m) parameters. The default values for these tables
are used for the examples of priority calculation that follow. The default values are:

For&XLIN:
(&XLlN values are estimates
of the number of output lines
and cards for a job.)

For &RPRT:
(&RPRT values arc estimates
of the number of minutes a job
will take to run.)

For both &XPRI and &RPRI:
(The m and n values are determined from
the &XLlN and &RPRT tables.) Note that
the &XPRI and &RPRI tables can have two
different sets of values. The values described
here are the default values.

&XLIN(m)
2000
5000

15000
224_1

224_1

&RPRT(n)
2
5

15
224 -1

224 -1

morn
1
2
3

9

m

:2
3
4

9

n

:2
:1
4

l)

&XPRI(m)
or &RPRI(n)

l)

B
7

Priority is calculated by using the values specified for &XLIN and &RPRT to determine m
and n from the table. These m and n values are then used with the & XPRI and & RPRI tables
to determine values for &XPRI(m) and &RPRI(n). Priority is then calculated as:

PRIORITY= [E,XPRI (m) + E,RPRI (n)] /2

The following examples illustrate the use of the. various parameters in this calculation.

Example 1. The programmer estimates 2000 lines plus cards, 2 minutes execution time.

From E,XLIN, 2000 lines implies m=l
From E,RPRT, 2 minutes implies n=l
From E,XPRI, m=l implies E,XPRI=9
From E,RPRI, n=l implies E,RPRI=9

Therefore PRIORITY=(9+9)/2=9

Example 2. The programmer estimates 4000 lines plus cards, 15 minutes execution time.

From E,XLIN, 4000 lines implies m=2
From E,RPRT, 15 minutes implies n=3
From E,XPRI, m=2 implies E,XPRI=8
From E,RPRI, n=3 implies E,RPRI=7

JES2 Processing 91

Therefore PRIORITY=(8+ 7)/2=7

(The fraction is ignored; only the integer value is used.)

Example 3. Tht:~ programmer estimates 15,000 lines plus cards, 10 minutes execution time.

From &XLIN, 15,000 lines implies m=3
From &RPRT, 10 minutes implies n=3
From &XPRI, m=3 implies &XPRI=7
From &RPRI, n=3 implies &RPRI=7

Therefore PRIO RITY= (7 + 7)/2=7

If priority is computed for the job during input, it is recomputed for output. Output priority
is based on the count of lines and cards (&XLIN) actually produced during job execution. The
execution time parameter &RPRT is ignored.

The system programmer, by specifying other values for the tables during JES2 generation,
can more closely control priority specification. Values specified on the JOBPARM statement
supercede those in the account field of the JOB statement. During JES2 generation the
& RJOBOPT parameter can be specified to ignore the account field on the JOB card.

Priority Aging

The priority of a job can be increased as a function of the length of time that it has been in
the system. The &PRIHIGH, &PRILOW, and &PRIRATE JES2 generation parameters specify
respectively a limit above which there is no incrementing, a limit below which there is no
incrementing, and an integer representing the number of times that the priority is incremented
in a 24-hour period - subject to the upper limit. The default of zero for the &PRIRATE
parameter specifies no priority aging.

The PRIRATE parameter specifies whether the feature is used and, if so, how many times in
a 24 hour period the priority is incremented. For example, PRIRATE=48 specifies a priority
increment of one unit every 30 minutes. The PRIHIGH parameter specifies the upper limit; a
priority lower than the value of the PRILOW parameter specifies that the job is not subject to
priority aging.

The JOB Statement Accounting Field Scan

During JES2 generation the &RJOBOPT parameter is specified to determine whether JES2 is to
scan the account field of the lOB statement, and to set the conditions under which JCL scan
errors cause job termination prior to JCL conversion. Figure 21 describes the &Rl0BOPT
options.

The account field is considered valid if its format is that specified for HASP II. The format is
assumed to be as follows:

(pano,room,time,lines,cards,forms,copies,log,linect)

where:

pano
programmer's aecounting number. One to four alphameric characters.

room
programmer's room number. One to four alphameric characters.

time
time estimated execution time in minutes. Up to four numeric digits (example: ",30" for 30
minutes). If omitted, a standard value is assumed.

92 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

lines
estimated line count in thousands of lines. Up to four numeric digits (example: ",5" for 500
lines). If omitted, a standard number of lines is assumed.

cards
estimated number of cards to be punched. Up to four numeric digits. If omitted, a standard
number of cards is assumed.

forms

special forms for printing entire job. From one to four alphameric characters (example: ",5"
for 5-part forms). If omitted, standard forms are assumed.

copies
number of times output is to be printed or punched. Up to three numeric digits not
exceeding an installation-specified limit (maximum 255) (example: ",2" for two copies). If
omitted, one copy is assumed.

log
Job Log option. This subfield should consist of one character. If this character is an "N",
the HASP Job Log is not produced. If any other other character, or omitted, the log is
produced.

linect
to be printed per page. Up to three numeric digits not exceeding 255. If coded as zero, no
automatic overflow is produced. If omitted, a standard value is assumed.

The JCL scan is not exhaustive; only JOB, DD *, and DD DATA statements are scanned. Job
termination on a JCL error at this point does not guarantee that all JCL errors have been
found. If the job is not terminated on a JCL error at this point in the process, it can still fail
during JCL conversion when all JCL is scanned.

Terminate if Tenninate
Scan Account Account Field if JCL

&RJOBOPT Field Invalid Invalid

0 Yes Yes Yes
1 Yes Yes No
2 Yes No Yes
3 Yes No No
4 No Yes
5 No No

Figure 21. Job Statement Accounting Field Scan Exit

Job Statement Accounting Field Scan Exit A routine can be written that allows the installation
to control a job by modifying data in the JES2 Job Control Table (JCT) immediately following
the scan of the user's JOB statement. (Figure 22 shows selected fields from the JCT.)

The name of the CSECT must be HASPRSCN and must replace the existing CSECT of that
name in the HASJES20 load module. This routine receives control from JES2 with registers set
as follows:

RO A binary number giving the length (in bytes) of the accounting field
R 1 Address of the accounting field from the JOB card
R2 Address of the SMF job management record (as defined in the description of the VS2 Common

Exit Parameter Area, OS/VS System Management Facilities, GC35·0004.
R8 Addressability
RIO Address of the (JES2) JCT
R13 Save area (18 words)
R14 Return address

JES2 Processing 93

Registers 3-14 must be restored when control is returned to JES2. The save area addressed
by R 13 can be used to store registers.

There are no return codes necessary.

Programming Noh~s: Parameters of the JOBPARM statement or ROUTE statement can override
changes made with this routine. Otherwise the change is effective for the duration of the job.

Data placed in the user identification field of the SMF record at this time, is available to the
programmer at all SMF exits.

If system services that have implied WAITs (e.g., WTO, the SMF WTM) are used by this
routine, severe system degradation may occur.

Since this routine runs under the JES2 task, if abnormal termination occurs the system must
be restarted.

94 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

f

Displacement
(hex)
in JCT
80

8E

8F

90
98
AO
B4
B5
B6

BA
BC
C4
C8
CC
DO
04
08
DO
OF
EO
E2

EC

Notes:
1.
2.
3.
4.

5.
6.

7.

8.

Length
(bytes)
1

8
8
20
1
1
1

2
8
4
4
4
4
4
4
1
1
2
2

8

Notes

1,2

1,2
1,2
1,2

1,2
1,2
1,2,3
2,3

1,2,4
1,2,6,8
1,2

3
3
1,4
1,4
1,5

1,6
1,6,8
1,6,8
1,6,8
1,6,8
1,6,8
1,6,8
1,6,8
1,7
1,7

1,2,8

SMF Flags:
bit 0-1

2
3-4

5
6
7

Job Flags:
bit 0

1
2
3
4
5
6
7

Job Options:

Field

Reserved
If set, IEFUSO exit not taken
Reserved
If set, no Type 6 SMF records produced
If set, IEFUJP exit not taken
If set, no Type 26 SMF record produced

Background job
TSO (foreground) job
Started task
No job journalling
No output
TYPRUN=SCAN
TYPRUN=COPY
Reserved

bit 0 /*PRIORITY card was read, value is in Priority field
(B6)

1 /*SETUP card was read
2 TYPRUN=HOLD was specified
3 No job log for this job
4 Execution batch job
5 The job was read through an Internal Reader

6-7 Reserved
JES2 JOB identifier
Job name
Programmer name
Message class
Job class
Priority

Route code of input device
Input device name
Account number (for HASP compatability)
Room number
Estimated real time job will run
Estimated count of output lines (in thousands)
Estimated number of output cards punched
Job Forms
Job copy count (binary)
Lines per page (binary)
Default print routing (binary)
Default punch routing (binary)

o Any local device
1-999 Remote devices

1001-1999 Specific local devices
Procedure DO name

Can be modified by installation routine.
Preset from $X Initialization Parameter according to job class.
Preset from JOB Statement.
From JOB Statement, if specified; otherwise according to input device as established at JES2
Initialization (e.g. in READERn).
Preset from /*PRIORITY Statement, or an "*".
The HASPRSCN routine is used by JES2 to scan the account field of the JOB statement. If the
HASPRSCN routine is replaced by an installation-written routine, the account field is empty.
Preset according to an input device initialization parameter (e.g. READ ERn). If not set at
Initialization the parameter defaults to the job input source value (LOCAL or RMTnnn). Can be
modified by a ROUTE statement after the scan exit.
Can be modified by a JOBPARM statement after the scan exit.

Figure 22. Selected JES2 Job Control Table Fields

JES2 Processing 95

Controlling Conversion and Execution
The JCL for a job, logon, or started task is passed through the converter and converted into
internal text. The job is then available for execution, which occurs as soon as an initiator
eligible to process the job is available.

JCL Conversion

A job is eligible for JCL conversion as soon as it is placed on the queue. The converter is
invoked separately for each job. JES2 passes to the converter, the converter parameters and a
pointer to a catalog procedure library.

Converter Parameters

If not defaulted (&RDROPSU, &RDROPST, &RDROPSL JES2 generation parameters), the
converter parameters are specified for each class on the CONVPARM subparameter of the
&STC, &TSU, or &X parameters during JES initialization. Converter parameters specify defaults
such as execution time estimate, and JCL and allocation MSGLEVEL options. Command
disposition and authority and the bypass label options are specified. The specific parameters
are described in the OS/VS2 System Programming Library: Initialization and Tuning Guide.

Procedure Library Selection

The JES2 Procedure is located in SYS I.PROCLIB. It defines job-related procedure libraries such
as:

//PROCOO DD
//PROCOl DD

//PROCnn DD
//anyname DD

The programmer can specify any of the libraries included in the JES2 procedure on the
JOBPARM statement by specifying the library DDNAME. If multiple data sets are required they
must be specified as concatenations in the JES2 Cataloged Procedure.

If there is no procedure specification on the JOBPARM statement, class-related initialization
parameters can specify the library as PROCnn. If the procedure is not specified or specified and
not found, PRO cOO is used.

Execution Control

Execution is cont.rolled through controlling the initiators and the jobs on the queue (see
Controlling Job Enqueuing), as well as by monitoring the job and issuing commands.

JES2 associates one logical initiator residing in JES2, with each system initiator interfacing
with JES2. The maximum number of logical initiators is specified during JES2 generation
(&MAXPART parameter). The number of active logical initiators, subject to the maximum, is
controlled by the operator ($S Inn). The operator can also associate with logical initiators the
order in which the classes are selected by JES2.

Classes are associated with each initiator during JES2 initialization OIr dynamically by the
operator. During execution, the initiator selects non-held jobs in priority order within their
class, and the non-held class in the order specified for that initiator. That is, the lowest priority
job in the first non-empty class is selected ahead of the highest priority job of the next class
- assuming neither job nor class i~ held.

96 OS/VS2 System Programming Library: Job Management(VS2 Release 3)

The Initiator Cataloged Procedure

One initiator cataloged procedure (INIT) must be contained in SYSl.PROCUB for use by JES2 in
creating job address spaces into which a system initiator is initialized. JES2 uses the START
command (system command) to create one system initiator for each active JES2 logical
initiator. The number of active injtiators must be controlled by starting and stopping JES2
logical initiators.

The standard initiator cataloged procedure supplied by IBM is named INIT. The procedure is:

//IEFPROC EXEC PGM=IEFIIC,DPRTY=12

Job Monitoring

A job can be monitored by elapsed (wall clock) time, execution time, and by output in terms
of lines and cards.

During JES2 generation, the & TIMEOPT parameter can be specified to cause JES2 to write a
message to the operator when the elapsed time specified on the JOBPARM statement is
exceeded, and an additional message at each interval specified by the & TIMEXS parameter.
The system programmer can use the SMF accounting exit to enforce these values, if the time
was placed in the SMF userid field during the JCL scan exit. The SMF exits are described in
OSIVS2 System Management Facilities (SMF) , GC3S-0004.

Execution time can be specified on either the EXEC statement or the JOB statement, or in
the converter (CONVPARM) parameters. If the time is exceeded, the SMF exit is entered and
the job can be cancelled or continued.

The &OUTXS JES2 generation parameter is used to specified the total number of printed
lines and punched cards that a job can print before action is taken by JES2. The &OUTPOPT
parameter specifies the action that is taken. The job can be allowed to continue after a
message is written to the operator, or the job can be cancelled with or without a dump.

The installation can specify SMF output limiting by class, with the & x, & STC, and & TSU
JES2 generation parameters. Output (OUTUM DD) can be monitored for each data set by SMF.

Entering Commands in the Jobstream

JES2 commands and standard system commands are accepted at different points in a jobstream,
with different types of control. A jobstream is defined as the set of jobs submitted between
the physical start of a reader and physical end-of-file, or between the opening and closing of
an internal reader data set. Refer to figure 23 for a pictorial representation of the following
paragraph.

JES2 commands are accepted in the jobstream only if they are in front of the first II JOB
statement of a jobstream. The commands that are accepted from any given device are
controlled by a command authority associated with the device ($T command). The command
authority associated allows various combinations of display and system, job, or device control
commands to be entered. JES2 commands are in the form I*$command.

System commands in the form I*$vs 'systemcommand' are accepted in front of the JOB
statement, subject to the same authority described for JES2 commands.

JES2 commands found in the jobstream between the first JOB statement and EOF are
ignored.

System commands (ilsystem cmd) which appear in the jobstream after the first Job
statement, are executed in the converter. Whether they are issued is subject to control by the
converter via the converter parameters. System commands appearing before the first JOB
statement are ignored.

JES2 Processing 97

System commands are accepted ~12
(II system oommand) ~-

--------,
-----,

EOF

JES2 commands are accePted~~
1/'$) ~ ((JOB statement r;<

~ ~JES2 commands ace ;gno,ed

- System commands are accepted
U*$VS 'system command')

Figure 23. Entering Commands in the Jobstream

Execution Batch Scheduling

Execution batch scheduling is an extension of normal job scheduling that may provide
improved system performance. It is the process of gathering psuedo-jobs, called execution
hatch jobs, into a single input stream for processing by an execution batch processing program.
The execution batch jobs are submitted to JES2 one at a time; they may have different input
sources, and different print and punch output routing. Execution batch scheduling collects
these numerous related batch jobs into a single data stream and passes them as a SYSIN data
set to the user-written execution batch processing program. This reducles the overhead
associated with setting up for, and processing, numerous individual jobs and/or job steps.
Another advantage is that individual accounting for all but type 4 and 5 records is available.

The processing programs to be used with the execution batch scheduling feature may cover
a wide variety of application areas such as:

" Compile-and-go debugging compilers.
" File inquiry programs.
.. Hardware or software system emulators.

It is desirable that the program process jobs or transactions of relatively short duration. If
not, the saving in job management overhead between successive jobs may not be a large
enough percentage of total job execution time to justify use .of this feature.

At JES2 initialization, the installation defines the job class or classes that are to be dedicated
to execution batch scheduling. One class or group of classes is assigned to each type of
execution batch processing program. Subsequently, the batch user identifies the program
requested by the class stated on the JOB statement.

JES2 can support more than one execution batch processing program to process various
kinds of batch jobs. Each exectuion batch processing program must be associated with at least
one JES2 initiator. The system initiators request a job, any job, and JES2 decides which job is
to be processed.

- To determine which jobs are to be processed by an execution batch processing program,
JES2 recognizes jobs assigned to eligible classes. Instead of sending these jobs directly to an
initiator, JES2 invokes an appropriate procedure from PROCLIB to initiate the execution batch
processing program. The job as submitted is now considered part of the input data of the
execution batch processing program.

For example, consider an order entry system that requires an inventory update and an
invoice for each order. With standard processing, the normal procedure would be to batch all
orders and submit them as a data stream at the end of the day to an order entry system.

98 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

However, this causes delay. Alternatively, the installation can periodically batch together orders
received during a certain time period and run the job several times a day. By using the
execution batch scheduling facility, orders can be processed as if the order processing program
were scheduled for every order, but without the overhead of scheduling the order program for
the runs.

The order entry program would become an execution batch processing program. The orders
themselves would be submitted as execution batch jobs by taking the order data that would
have been submitted in batch, and putting a system JOB statement in front of it. In an order
entry program accustomed to reading batch jobs at the end of the day, the only programming
changes would be (1) to use the ddname SYSIN for the input stream (this may be accomplished
by JCL in PROCLlB), (2) to recognize the null statement as an order separator or establish
other defined terminators, and (3) ignore all other JCL (/ /) cards. The program would have to
print all related information for each order before processing the next order, to distinguish one
from another. JES2 automatically schedules the order entry program when it is needed and
concatenates all orders into the input stream data regardless of where they have originated.

Submitting Input to an Execution Batch Processing Program

A representative input stream follows:

input

JES2controlstatements

II JOB

To submit data to an execution batch processing program, follow these rules:

• The first statement of each job must be a standard JOB statement that includes a
CLASS= jobclass parameter. The jobclass identifies which program is to receive the input.
The installation associates jobclasses with an execution batch facility via the procedure
library. It associates jobclasses with initiators at initialization. The accounting field is
interpreted by JES2 just as it is for normal jobs.

• All JES2 control statements are effective with batching jobs except j*OUTPUT, which is
ignored.

• No other JCL is used. All other statements are input to the execution hatch processing
program. These can be read just as if they had been placed in a DD DATA data set and
the execution batch program has been invoked by standard JCL If the execution batch
program requires it, each transaction can be terminated by a statement with $$ in
columns 1 and 2.

In the order entry system example mentioned earlier, code the following:

IIJOBxx
I*ROUTE
order 1
order 2

JOB
PRINT

(INV01,667),CLASS=X
RMT47

The /*ROUTE statement will cause the invoice to be printed at the remote location.

JES2 Processing 99

Execution Batch Scheduling Operations

Special actions take place when JES2 recognizes input for an execution batch program.

If the execution batch program is not already active, JES2 submits an internal job which uses
JCL from SYS 1.PROCLIB to invoke the execution batch processing program when an initiator
capable of processing it becomes available. JES2 control cards are converted to JCL comment
statements. The entire input, plus a JCL null statement added by JEs2, is allocated to the
execution batch processing program as an input data set with the ddname of SYSIN.

If the execution batch program is already active and simply waiting for another job, JES2

makes the input data set allocation as above, and processing begins immediately without any
use of job management.

The end of input can be detected by the execution batch program when it reads the JCL

null statement added by JES2. After writing any remaining SYSOUT data for the completed job,
the execution batch program attempts to read ahead in its input file for another transaction.
JES2 detects this condition, temporarily forces the execution batch program into a wait state,
and performs job termination actions for the execution batch job (flushes output buffers,
releases input spool space, queues the job for printing, and so forth). The execution batch
program remains active in the MYS address space.

When an execution batch program is waiting, JES2 job selection is altered. Instead of
scanning for all classes eligible to execute in that address space, JES2 first tries to start an
execution batch job which may be processed by that execution batch program. If sucessful,
processing can begin immediately.

If no jobs of the same execution batch class are available to execute, all other job classes of
the address space are scanned in order. If a job is found, JES2 internally cancels the execution
batch processing program and normal scheduling, using job management, takes .place.

If no jobs of the other classes are found, the address space and execution batch processig
program remain idle, awaiting availability of a job in any of its classes. If a job becomes
available in the class of the execution batch program still in the address space, processing
begins immediately.

If an execution batch program ends (ABEND or normal return to YS), JES2 detects this as a
nonbatch termination in the address space. Job management will be used to reinvoke the batch
program when another job for its class is selected.

Use of the operator commands $P I or $P In will cause JES2 to cancel an execution bateh
processing program when it becomes idle, and then delete the address space.

In summary, an execution batch processing program must have certain characteristics:

• It must read all user input from a single sequential data set.
• It must recognize a standard os JOB statement, or its own control statement, to

determine the beginning of a job.
• It must recognize a standard os null JCL statement (/ / followed by 78 blanks), or its

own control statement, to determine the end of a job.

The execution batch processing program will receive an end-of-file condition when a card
with $$ in columns 1 and 2 is read while processing a job. The program may continue to the
next logical subfile by simply resetting appropriate bits in I/o control blocks and continuing
reading, or by closing and reopening the data set to continue reading at the card following the
$$ card.

100 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Preparing for Execution Batch Scheduling

The batching feature is included in JES2 by setting the &XBATCH=YES parameter during JES2
generation. Job classes are reserved for execution batch jobs with the $$x initialization
parameter. The &XBATCHN JES2 generation parameter may be set to define the first five
characters of the catalog procedure name. that contains the JCL necessary to execute an
execution batch program. (See the OS/VS2 System Programming Library: System
Generation Reference for a description of this parameter.)

Each batch class should be associated with one execution batch program. Each batch class
should be made eligible to execute in the MVS address space by setting the Inn initialization
parameter or by using the $T In operator command.

For each combination of batch class and initiator, there must be a procedure in
SYS1.PROCLIB named "nnnnncid", where

• nnnnn are the five characters assigned to &XBATCHN.
• c is the particular batch job class set in $$x.
• id is the 1- or 2-character initiator identification, corresponding to nn of the Inn

parameter

These procedures actually call the execution batch program for each class, and define all
data sets other than the user input data set.

The procedures may be single step, or may have preliminary steps before the single step
that invokes the execution batch program (stepname GO). The execution batch program
invoked by this step must read its input from a SYSIN, or the procedure must refer to
DDNAME=SYSIN on a DD statement used for input by the processing program.

If a given batch class is eligible (the Inn initialization parameter or $T In operator command
defines eligible classes) to be executed by more than one initiator, the requirement for a
separate procedure name for each address space/class combination may be satisfied by alias
names of a sbgle procedure, or by actual separate procedures which can specify different work
fields.

The following example shows the internal job that JES2 generates to initially load a program
to process batch class X jobs for Init=3, assuming the default setting for &XBATCHN.

//$$$$$X3
//FAKE
//GO.SYSIN
//

JOB
EXEC
DD

1,SYS,MSGLEVEL=1
$$$$$X3
DATA, DCB=BUFNO=1

The following is an example of a procedure that an installation might use for a simple file
inquiry program that reads inquiry input from SYSIN, checks a file, and prints responses to
SYSPRINT.

//$$$$$X3
//GO
//SYSPRINT
//PARTFILE
//SYSUDUMP

PROC
EXEC
DD
DD
DD

PGM=FINDPART
SYSOUT=A
DSN=PARTFILE.MASTER,DISP=SHR
SYSOUT=A

The following JCL is for the order entry system example.

//$$$$$X3
//MDSE
//MESSAGE
//INVOICE
//INVTRY
//ORDERS.

PROC
EXEC
DD
DD
DD
DD

PGM=ORDERIN
SYSOUT=M
SYSOUT=(P, , INVC)
DSN=MSTRINVT,DISP=SHR
DSN=ORDERS,DISP=MOD

JES2 Processing 101

• IIMESSAGE - the installation might identify class M as a punch class. This will allow the
submitter of the execution batch job to route the invoices and messages separately, as
shown in the example in "Submitting Input to an Execution Batch Processing Program".

• I IINVOICE -- defines the specially prepared output.
• IIINVTRY -- uses a master inventory list as a base; it is updated as the orders are

received.
• IIORDERS -- accumulates the day's orders. ORDERS has a disposition of MOD because

the execution batch processing program is periodically started and stopped during the
day.

• SYSOUT data sets - the messages and invoices.
• SYSIN data sets - the DO DATA input is every execution batch job that is processed by

the execution batch processing program.

Controlling System Output

JES2 provides:

• Queueing levels beyond the simple output class queueing provided by the output writer.
• The ability to specify print train and either carriage tape name or forms control buffers

for sysout directed to 3211 and 1403 printers plus support of the 3525 print and
interpret features for sysout data sets.

• Features that minimize operator interaction due to forms, carriage tape, and print train
loading.

• An external writer facility that, although possible to use for writing any sysout data, is
specifically intended for writing to devices other than printers and punches and for
controlling all output written by installation-written writers.

Queuing Output

The job output elements (JOE)S are created during output processing, or during execution in
the case of spinoff, by JES2. Each JOE represents a unit of work to JES2, and is placed in a job
output table (JOT) in order of output priority. If the priority was calculated originally, it has
now been recalculated with the actual number of lines and cards. See "Calculating Priority".

The JES(S2 writer and the external writer can select only data sets for which JOES have been
constructed. Varying the number of JOEs, (&NUMJOES JES2 generation parameter) influences
the way output is processed. By specifying a large number of JOEs the output processors are
given a large number of output data sets from which to choose. This minimizes the setup
changes in JES2-controlled printers and punches by providing a series of data sets of the same
class for the external writers. However, a given data set may wait a long time for a printer
with the specified setup, an available device destination, or for an available external writer to
dequeue its class. This long wait may fill spool space, since most of a job's output-related
spool space is freed only when all output data sets have been processed. Specifying many JOEs
tends to optimize output device utilization at the expense of throughput for a specific job.

Specifying few JOEs tends to reduce the number of jobs with output eligible for printing
while processing the entire job output more neady together. This specification may minimize
the turnaround of a particular job at the expense of operational efficiency.

A job output dement that does not yet describe a unit of work is said to be "free". The
$MINJOE parameter specifies the number of JOEs that must be left fre{~ to be used when the $1
command interrupts an output data set or when a printer is started. When the building of JOE8
for a job would drop the number available below the specified minimum, the job or spinoff
data is forced to wait until JOES are available.

102 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

JES2 queues output data by combinations of data set characteristics such as output c1ass,
forms, print train and forms control buffer name. (Data sets are also queued by installation
writer name and destination, as discussed in the External Writer section.) These characteristics
are obtained from the SYSOUT DD statement or the JES2 OUTPUT statement. With the
exception of held data sets and spinoff data sets, a job's, started task's, or time-sharing user's
output that has identical characteristics is queued together in a data set group pointed to by a
job output element (JOE). (This queueing can be altered by the demand setup option.) Each
held and spinoff data set is queued separately and constitutes a "group" of one data set. Each
data set group is considered a processing entity with a set of processing characteristics. JES2
selects work by data set groups and will, if the separator option is specified, delimit each group
with separator pages or cards.

Figure 24 represents how one JOE can represent one of serveral sysout data sets.

SYSOUT=(A,2PRT),UCS=PN
SYSOUT=A,UCS=PN
SYSOUT=B
SYSOUT=A

SYSOUT=A
SYSOUT=A

SYSOUT=B
SYSOUT=B

SYSOUT=(A, , 2PRT)

Total of four ,lUEs
built

Total of three
JOEs built

----- - ------- ------------,--------

Figure 24. Relationship of SYSOUT Specification to Number of Job Output Elements

JOES built for job-related output are duplicated according to the number of job copies
requested on the /*JOBPARM statement. This allows the number of copies being processed for
any job to be governed by the devices available for output.

Output Class Assignment

Output from a problem program is assigned to an output class which is processed by JES2. A
maximum of 36 sysout classes can be named by specifying SYSOUT=X on the DD statement,
where x is any single letter (A-Z) or digit (0-9). The names have no inherent meaning~ they
are simply used to group output of similar characteristics. During .fE52 initialization, the fact
that a class is designated as containing print or punch data is used for output limiting and job
accounting purposes only and has no bearing on the actual device to which the class is
assigned.

JES2 writers and external writers are assigned to process only designated classes of output.
These classes can initially be assigned to JES2 writers during JES initialization, to external
writers in the external writer cataloged procedure, or the operator can assign them to either as
parameters of the START ($S) or MODIFY ($T) commands.

If output is assigned to a class for which no writer is started, it remains indefinitely on the
queue.

System Message Classes

System messages generated during the execution of a program must also be routed to an
output device~ if messages must appear with their program output, they should be assigned to
the same message class as the output. But to guarantee that the messages and data appear
together, all data sets for the job must be described to JES2 in a single job output element
(JOE).

JES2 Processing 103

It is also possible for an installation to specify ($DMNDEST) parameter) during JES2
generation, that all job output of the same class and for the same destination as its system
messages (MSGCLASS), JCL statement images, and job log (if any), be placed in a single JOE.
This keeps the data sets together on output listings but can cause operational inefficiencies.

The message class is assigned as a parameter of the job statement. Its format is
MSGCLASS=x, where x is any single letter (A-Z) or digit(O-9). If no message class is specified,
the default class specified for TSUMCLAS, STCMCLAS, or the device through which the job was
read, is used.

Output Cla.fs Considerations

The system programmer should assign output classes in a manner that distinguishes types of
output and results in the most efficient use of devices. JES2 automatically balances output
scheduling which makes the assignment of classes less· important than in MVT. However,
classes should be assigned with the following characteristics:

• Data to be processed by standard JES2 writers should be distinguished from that to be
processed by external writers.

• Data placed on different devices and data placed on similar devices but with different
characteristics should be in a separate classes. It is not necessary, however, to use classes
to separate data with different punch interpretation ues and FCB requirements if the data
is processed by a JES2 writer, since JES2 handles these parameters automatically. Class
should be separate if an external writer is used to print this data.

• Class should be assigned to give different priority "to different types of data such as that
to be printed on a different work shift.

• Classes need not be specified to give priority to short data sets, since JES2 priority
calculation can be used for that purpose.

JES2 Output Selection

When assigning priority, classes, form requirements, etc., for data sets, the system programmer
should balance the choices against the criteria used by JES2 to select the output data set to be
processed.

Setup Characteristics

As established during JES2 initialization and altered by the operator, each JES2 controlled
printer and punch possesses setup characteristics and a setup mode-manual or automatic. Setup
characteristics are class, destination, forms, print train, and either carriage control tape or
forms control buffer. (For a 1403 printer, JES2 uses the FCB parameter as carriage control tape
name. The operator is requested to mount carriage tapes by this name in a manner similar to
mounting forms.) Setup characteristics determine the data set groups that are eligible for
processing on this device. Each locally attached printer and punch possesses either a
destination of LOCAL or a specific device-name destination. If the device possesses a specific
destination name, it is eligible to process only data sets specifically routed to it by JeL or the
operator. Each remotely attached printer and punch possesses a destination that is the name of
the workstation to which it is attached or the installation-assigned name of a remote pool of
devices. Remote devices are eligible to receive only that output directed to them by JeL or the
operator.

Setup mode determines the manner in which data sets are selected, automatically or
manually. In automatic mode, after all data sets with characterstics matching the setup for a
particular device have been selected, JES2 requests that the operator change the setup for that
device.

104 OS/VS2 System Programming Library: Job Management(VS2 Release 3)

In manual setup mode (operator-controlled), only data set groups with characteristics
matching the setup of the device are selected. Manual mode printers do not request a new
setup when there is no more work in the queue. The printer becomes idle.

When a device is available for output, JES2 selects job output elements according to the
following algorithm:

1. The setup priority

• First choice is between JOEs with setup requirements exactly matching those currently
on the device.

• Second choice is a JOE specifying a setup not currently being processed by any output
device.

• Third choice is a JOE specifying the standard forms setup as described by the
STDFORM, PRTUCS, and PRTFCB JES2 initialization parameters.

2. When the setup has been selected, the first class specified for this device by the
operator, or during JES2 generation, is chos'en.

3. When setup and class are selected, the highest output priority JOE with these
characteristics is chosen.

Some implication of the setup algorithm are:

• If an output device has been setup explicitly by the operator ($T command), JES2 does
not setup another device to process data specifying that setup - unless the explicit
setup is the same as that for standard forms. This is true no matter how many devices
are idle, unless explicitly setup by the operator.

• Output matching an existing device setup and class is processed before output with no
active setup, regardless of relative priority of the jobs producing the output.

• Output with setup requirements not loaded on any device is preferred over output with
the setup loaded by the device busy.

• Installations should ensure that class and setup conflicts do not cause data to be
overlooked. Commands are provided to determine output backlog.

Demand Setup

For those installations wanting job-related data sets, regardless of setup requirements, to
appear together on the output listing, a demand setup option (DMNDSET) can be specified
during JES2 generation. The output data sets of the job, possibly with several different setup
requirements, are then placed in the same data set group. The message data set is the first one
in the group, therefore its characteristics are used as those of the group for setup purposes.

The operator is requested by JES2 to set up the device as different setup requirements
become necessary; Responding to demand setup requests is identical to responding to
automatic setup requests.

Defaults

Defaults are assumed for any data set characteristics that are not specifically requested on the
SYSOUT DD statement or the JES2 OUTPUT statement. Any FCB or UCS image that is specified
as default by the installation will be used to print any data set that does not specify an FCB or
UCS parameter. JES2 uses the name '****' when requesting from the operator a default FCB or
UCS image. The operator satisfies this request by mounting any image specified as default. If
one or more of the parameters (FCB,UCS, form) is not specified, then any default will satisfy it.

The form used for all data sets not specifying a form is identified (STDFORM) during JES2
generation. This is the standard from for both printers and punches.

JES2 Processing lOS

Operation for Printers (Punches)

An installation generally has one or more printers (and/or punches) in manual setup
(operator-controlled) mode for processing output that requires the most common combination
(standard setup) of form, print train, and carriage control. The remaining printers are in
automatic mode. Initially each printer is assigned setup characteristics, and a set of output
ciasses from which to select data sets.

For each printer, data set groups are dequeued that have characteristics matching the printer
"Setup characteristics. As automatic-mode printers exhaust the queue of data sets specifying
their current setup, a data set group with a different set of characteristics is chosen and the
operator notified (message HASP190) to change the setup.

An operator can respond to a request for a setup change from an automatic mode device by
doing one of the following:

.. Execute the request, then issue the $S command to the device.

.. Allow the use of the setup only for the data set group that requested it, by issuing the $S
command followed by the $P command. The $P command causes the device to become
idle 4fter printing the current data set group.

.. Fmce an alternate setup on this data set group by issuing the $T command, followed by
the $S command. The device must be set up, however, and the $T and $5 commands
repeated for each data set in the group. Header and trailer pages are considered data sets
for this sequence.

• Cause the selection of an alternate data set group by holding ($H command) the job,
then issuing the $[or $E command, which causes the data set group to be requeued in a
held state. The held group must be released later by the operator.

• Delete the data set group by issuing the $C command to the device. Another data set
group is then selected for the setup on this device, or another setup is requested.

The operator can also change characteristics of a manual mode device or change the mode
of the device if the device is idle.

Output Routing

A user can route output to a specific local or remote device, to a specific remote station, to a
remote workstation, or to a pool of remote workstations. The user can route a specific data set
via the DEST parameter of the DD statement, a specific data set or group of data sets via the
/*OUTPUT statement, or the entire print/punch output for the job via the /*ROUTE statement.
D EST cannot be used to route a specific device.

If the destination for a data set is specifically stated on the /*OUTPUT statement, or via the
DEST parameter, it is used. For data sets with no destination specified, the destination on the
/*ROUTE statement or a default is used. The default print and punch destinations may be
specified on the reader from which the job was received. If not, the default becomes the
location (LOCAL or RMTnnn) from which the job was received.

The system programmer specifies the destination number (printer or punch) for each local
and remote device, and for each remote station, during JES2 initialization. If a destination
number is specified for any device, that device is eligible to receive only data which is
specifically routed to it.

Destination names are of the form PR[NTERn or PRINTRnn, PUNCHn, RMTnn, or LOCAL.
LOCAL indicates any device attached to the local CPU. The n or nn is a numeric destination ID
assigned to the device or remote stateion during initialization. The form PRINTERn must be
used if the installation has less than ten printers; the form PRINTRnn must be used if ten or
more printers are specified during JES2 generation.

106 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

By assigning the same destination id to a group of remote stations or a group of devices, the
system programmer can create a remote pool or device pool.

Processing Held Data Sets

A data set is explicitly held via the HOLD parameter of a DO statement, or by specifying HOLD

during dynamic allocation or de allocation.

A data set can also be implicitly held if it is in a class that is held and the job's MSGCLASS

is also a held class. Since for a data set to be implicitly held, both the class in which it is
written and its MSGCLASS must be held classes (the $$x JES2 initialization parameter is used to
speicfy held classes), a programmer can control the holding of data sets using only the
MSGCLASS parameter.

Figure 25 describes a Tso-submitted job. Assuming for this job that class and MSGCLASS

are defined as follows:

.. MSGCLASScs A and M are defined as held.

.. MSGCLASS I) is not defined as held.

.. Sysout classes D and C not defined as held.

.. Sysout class M is defined as held.

Then for the job described in figure 25:

.. Since MSGCLASS=A, the SYSUT2 and SYSPRINT data will be held.
• SYSUDUMP will not be held.
.. If the MSGCLASS were changed to C, none of the data would be held.
• If this JeL is submitted through TSO, it can be held with MSGCLSS=A. The same JCL can

be submitted from an RJE terminal with MSGCLASS=C and the output will be printed at
the RJE station.

-------.--.-~.---- ... --.---
//TSOUSER
//STEP

name,MSGLEVEL = 1,MSGCLASS = A
PGM = IEBGENER
SYSOUT= A
SYSOUT= 0
DSN = USERA.DSN1.ASM,DISP = OLD

/ /SYSPRINT
I/SYSUDUMP
//SYSUTI
//SYSUT2
//SYSIN

JOB
EXEC
DO
DO
DO
DO
DO

SYSOUT = M,DCB = (RECFM = F,LRECL = 80,BLKSIZE = 80)
DUMMY

Figure 25. Sample JCL for TSO-Submitted Job

A held data set is enqueued in a special queue. Job output elements are not built for a held
data set.

Data sets are released from the HOLD state either from a time sharing terminal or by the
output operator command ($0). Only data sets in the HOLD state can be retrieved with the TSO
OUTPUT command.

External Writers

After output is described by job output elements and queued in priority order in the job output
table, the output can be written by the JES2 writer or an external writer. An external writer
can be standard IBM-supplied external writer processor, or an installation-written writer name
on the SYSOUT OD statement. The operator starts an external writer in a private address space,
and the data is written using the QSAM access method.

For details on the external writer, see Part 111 of this manual.

JES2 Processing 107

3540 Diskette Writers

When SYSOUT data sets are to be written on 3540 diskettes, the 3540 diskette writer program
must be used. See OS/VS2 IBM 3540 Programmer's Reference for details.

Output Separation

The JES2 writer uses an output separator facility to write separation records prior to writing the
output of each job. These separation records make it easy to identify and separate the various
job outputs that are written contiguously on the same printer or card punch device.

For data processed by a JES2 writer, the JES2 separator pages are written before and after
the writing of the output represented by one JOE.

The JES2 Print Separator

JES2 START JOB and END JOB separator pages consist of one-half page of blocked letters
specifying the jobname, job id and output class; plus a single line of information duplicated as
specified by each installation. All alphanumeric and all national characters are represented in
blocked letter format. (The installation specifies the total number of limes on the separator
page. If less than thirty, no blocked letters will appear.) The operator may request separator
lines or cards via issuing a "$T device,s=Y[ES]" command. This function may be deleted by
issuing a "$T device,S=N[O]" command. The default status is "S=YES" unless specified by an
initialization option. An example of the information line is as follows:

Columns

1- 4
5
8- 12

15- 22
25- 32
35- 54
57- 60
62- 65
68- 78

80- 88

91- 98
101-104
105-108
111-118
121-125

128
129-132

Contents

asterisks(*)
output class
START
CONT
END
job id assigned by JES2
job name
programmer name from job card
ROOM
room number
time of printing the page in the form:
hh.mm.ss. AM or PM
date of printing the page in the form:
day month year
name of JES2 output device
SYS
system id from SMF
job id assigned by JES2
START
CONT
END
output class
asterisks (*)

108 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

The JES2 Punch Separator Card

Each job's punch output will optionally be preceded by an identification card. Below is an
example of the current card which contains the programmer room number and internal job
number. To make the card easy to identify, it has an II-punch and a I2-punch punched in all
80 columns. To make. the room number and job number easy to read, each digit is extended
over ten columns. Alphabetic characters are converted to digits as follows:

Alphabetic Characters

A or J
B, K or S
C, L, or T
D, M, orU
E, N, or V
F, 0, or W
G, P, or X
H, Q, or Y
I, R, or Z

Remote Job Entry

Numeric Punch

1
2
3
4
5
6
7
8
9

Remote job entry is the ability to submit jobs and receive system output at remote facilities as
if the jobs had been submitted at a local facility. The remote facility must be attached to JES2
by a (point-to-point) binary synchronous communication link. The remote facility becomes a
logical extension of the local computer facility and is expected by JES2 to be under the control
of a person called a remote operator.

There are two types of remote job entry stations. The first type is the remote terminal, that
does not have a cpu. A reniote terminal, for example, a 2780 or 2770, can be used for
entering jobs into and receiving data from JES2. The second type is a remote workstation that
does have a cpu. A processor, for example, System/3 or System/370, executes a JES2
generated program that allows the processor to send jobs to and receive data from JES2. A
remote workstation is established by a JES2. program, RMTGEN, during system generation or
later. Also part of the workstation are printers, punches, card readers, and a console. A remote
station is a composite term for a remote terminal and a remote workstation.

Reading, pril1ting, and punching between the cpu and the remote terminal take place one
action at a time. For example, it is either transmitting print data or transmitting punch data or
reading an input stream. The remote operator may influence the order of these events. A
discussion of how this is done is presented later in this section under, "Altering the Sequence
of Operations from a Remote Terminal."

Communication between the local cpu and remote workstations uses a JES2 facility called
MULTI-LEA VING that allows multiple print and punch streams to be transmitted at the same
time and multiple console messages and input streams to be received by JES2. With
MULTI-LEAVING, you can have several operations going simultaneously. Operators at remote
terminals and at workstations that have no console can enter commands into the input stream
in the normal manner. Command replies will be scheduled back to the remote station for
printing on a remote printer.

Remote lines can be configured as dedicated or non-dedicated. This configuration is
established during initialization when the remote stations are specified. If the station parameter,
RMTnnn, designates a line number, the line is dedicated to that station. Lines that are not
pointed to by a station parameter at initialization are non-dedicated lines and are eligible to be
dynamically connected to any non-dedicated station.

JES2 Processing 109

Remote stations that are not physically connected to the CPU, that is, stations that must be
connected via dial facilities, normally do not specify a dedicated line so that the station may be
connected to any available non-dedicated line. There are other reasons for specifying a line as
non-dedicated even if the line is physically connected to a remote station.

• A sign-on card is not required for connecting stations to dedicated lines, and is ignored,
since the station is considered active when the line is started. Therefore, line and station
password authorization is only enforced for non-dedicated lines and stations.

... One physically connected station can be initialized as multiple non-dedicated stations for
use by different groups or at different times. The period of use of each such logical
station would be defined by sign-on and sign-off. Data routed to the logical station will
only be transmitted while that logical station is signed on.

• If remote stations are initialized as non-dedicated, one remote station can be used as
backup for an inoperable station by being signed on with the inoperable station's id.

• A station attached to a dedicated line is considered active whenever the line is active.
Line activation is under control of the central operator. The central operator is not aware
of station usage in this case. (He is aware of station usage when non-dedicated stations
are signed on and off via the console). Also, 1ES2 allocates resources for remote lines
while they are active, which is only between sign-on and sign-off for non-dedicated lines.

One advantage in specifying lines as dedicated is that the station can be used without
signing on the station, a manual process at all remote terminals.

it is possible to configure lines and stations that must be connected by dial facilities as
dedicated. However, there can be only one station id and set of station characteristics
associated with the dedicated line.

Starting Remote Job Entry

Since teleprocessing lines are never considered active at 1ES2 initialization, each line must be
activated using a 1ES2 start command ($S) either by the operator, through a command stream
entered, for example, through the JES2 initialization deck, into a job stream, or through the
automatic command processor.

The first action taken at the non-dedicated remote station is the submission of a sign-on
statement. (Sign-on is ignored for dedicated lines.) The format of this statement must be:

Column

1
16
25
73

Description

/*STGNON
REMOTEnnn
password 1
password2

• REMOTEnnn defines the remote station requesting sign-on. The numbers must be left
justified with no leading zeros.

• P2.ssword 1 defines the password established at initialization or changed by the operator
for that line. If the line has a password, then passwordl is requifl~d. To establish
passwordl, set the LINEnnn JES2 initiali.zation parameter. This password can be changed
or invoked by the operator with the $T command.

... Password2 defines the password established at initialization that is assigned to each
terminal. If the terminal has a password, then password2 is required. To establish
password2, set the RMTnnn 1ES2 initialization parameter. The pa~:sword ensures that the
station signing on is a valid station.

A line is dynamically allocated when activated. A line can be deactivated and deallocated
using the operator's 1ES2 stop command ($p).

t 10 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

A remote device is considered active when its remote station becomes actIve provided that
the device is specified for automatic start (by the START subparameter in the Rnnn.RDm,
Rnnn.PRm, or Rnnn.PUm initialization parameters). Otherwise, the device is considered
inactive and must be started either by the remote or local operator command.

Altering the Sequence of Operations from a Remote Terminal

Two JES2 options are provided to allow the remote terminal operator control of the sequence
of operations at the remote terminal.

During JES2 generation, the system programmer can specify a delay time, using the
$W AITIME parameter, that will take effect between printing and punching the output of each
job. This delay gives the operator the opportunity to ready the card reader and change the
terminal status to transmit data. JES2 will sense this condition and read the input stream hefore
resuming printing or punching.

When each printer or punch device is defined at JES2 initialization, using the Rnnn.PRm or
Rnnn.PUm parameters, the suspend mode of operation can be specified or negated. If the
suspend mode is in effect, the remote operator can alter the sequence of operations by
stopping the output device. When the device is again readied by the operator, JES2 will
simulate an interrupt situation by flushing its current I/O buffers and printing the remote
separator page, if ,any. JES2 will then determine if the remote card reader is ready. If so, the
input will be read in. If not, the highest priority output will be selected. This can he
resumption of the current operation or' another data set. The delay must be sufficiently long
for the terminal to notify JES2 of the stopped device state. The time dependfi on the terminal
type. If suspend mode is not in effect, the current operation is resumed after the device is
readied again.

Options for Disconnecting Remote Lines

At JES2 initialization, the system programmer can use the LINEnn statement to choose whether
each line is to have the abortive disconnect feature. If the feature is selected. a line is
automatically disconnected by simulating a $E command sequence when the transmission
control unit detects a not-ready data set. If the feature is not selected, the line will remain
active and wait for the data set to be made ready or for operator action. The conditions under
which a transmission control unit may detect a not-ready data set are dependent on line
configurations.

The system programmer can also cause JES2 to autol)1atically disconnect an inactive station
by coding a non-zerp value into the DISCINTV parameter of RMTnnn at JES2 initialization.
When this amount of time has elapsed with no data sent or received on the line, JES2 will
disconnect the line by simulating a $E command sequence.

SMF Accounting Record

SMF accounting records, types 47, 48, and 49, contain information useful for tracking the use
of remote stations.

• Type 47 indicates whenever a line is started or a station signs on.
• Type 48 indicates whenever a line is stopped or a station signs off. It also contains

statistical information.
• Type 49 indicates whenever a station uses the wrong password when trying to sign on .

• JES2 Processing 111

112 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Miscellaneous JES2 Facilities

The JES2 patching facility, automatic command processing, the flow for time sharing and
started tasks, and the multi-access spool are described in this section.

Automatic Command Processing

The operator may specify from the console or through a local reader that certain commands or
strings of commands take effect automatically at specific times or at regular intervals. The
procedures for using the following commands to do this are in OS/VS2 Operator's Library:
Reference (JES2), GC38-0210.

• Start Automatic ($SA): starts automatic command processing.
• Set Automatic ($TA): displays, specifies, or modifies the strings of commands (the

"automatic command elements"). This command can also selectively cancel selected
commands .

• Cancel Automatic ($CA): cancels all previously entered automatic commands.
• Halt Automatic ($ZA): stops all automatic command processing until it is restarted.

Typical reasons for using automatic command processing are to provide periodic status
displays and to cause the operator to do no more work than necessary for common, preset
routines or schedules. For example, if it is normal at the installation to do one specific kind of
processing at 8 AM, and another at 9 AM every morning, it is possible to preset automatic
command processing to issue the operator commands that would ordinarily be necessary at
those times.

Writing a Day's Work Scheduler

Establish the use of automatic command processing with the & NUMACE parameter at
initialization. Enter the commands with the $T operator command or write a program to put
cards through an internal reader.

The following statements represent sample cards placed in the initialization deck:

(1) $TA,T=10.30, '$SLNE1 ,LNE2,LNE3'
(2) $TA,T=12.30,'$TI1,ABC;TI2,XBC;L=A'
(3) $TA, T=16. 15, , $PLNE1 , LNE2, LNE3; DM1-9, , 'PLEASE SIGN OFF ASAP' , ,

(4) $TA, T=16. 45, '$ELNE1 , LNE2, LNE3'

These four statements mean the following:

(1) Start the three remote job entry lines defined.
(2) Modify these ini tiators.
(3) Prepare to stop the remote job entry lines and give a warning to users who

are currently us ing the system.
(4) Halt the remote job entry lines.

The sample cards show various times of the day set aside for routine processing that are
part of the standard day's work.

A common source of these commands may be a user-written program for scheduling the
day's work. This program can use the internal reader to get the commands into the subsystem.
To write this program, observe the following considerations:

• When more than one command is to execute at approximately the same time, you should
combine them into one command text entry of multiple commands.

MisceUaneous JES2 Facilities 113

• The responses to the command within the text will normally he directed to the in-line
messages area and to any consoles receiving MCS route code I unless you use the L =caa
operand as described in the operator's reference manual cited above.

• Multiple commands with responses to out-of-line area on graphic consoles will normally
be automatically overlaid too rapidly for the operator to view. Avoid this kind of
command sequencing.

• The authority of the internal reader determines which of your commands entered through
it will be valid. See the operator's reference manual for discussion of command authority
relative to automatic command processing.

• The day's work scheduler program should limit the number of automatic command entries
to a value that does not overload the system consoles or leave the operator insufficient
resources for his interval status displays.

• An entire automatic command processing entry must fit on an SO-column card image.

Limiting Considerations

When automatic command processing is active, the command entered at system speed (rather
than at operator speed) may tend to congest the system. In turn, the system response to the
commands may tend to flood the console with the response messages.

If the installation is experiencing difficulty either with congesting the system or flooding the
console with messages, re-evaluate the mix of commands submitted with automatic command
processing and try some changes.

Automatic command processing may also terminate itself prematurely under the following
conditions:

• The operator enters the "$ZA" command to halt automatic command processing and then
lets 24 hours or more elapse without restarting it.

• The operator specifies a start time for automatic command processing that is either
before midnight of the current day or more than 24 hours latcr than the current moment.

• The system becomes so congested that the automatic commands are delayed
approximately five minutes.

Make sure the operator fully understands the procedures for using automatic command
processing. They are fully outlined in the operator's reference manual cited at the beginning of
this section.

The JES2 Patching Facility

The JES2 patching facility makes temporary patches to any module in JES2 or to any absolute
storage address in the address space into which JES2 is loaded. Because these patches are valid
only until a module is reloaded, they must be applied every time that JES2 is started. These
patches are applied at the time JES2 is initialized. The patching facility statements are
submitted to the .JES2 initialization data set.

Modules which are marked refreshable should not be patched since a system refresh win
nullify the effect of the patch. Since pages in the Page able Link Pack Area (PLPA) are not
paged out, any patches applied to modules residing in this area will not be effective once the
page in which the patch resides has been paged in. For this reason, modules in SYSI.LPALIB

data set (for example, HASPSSSM) must be "fixed" via an entry in the SYSI.PARMLIB fixed list
before patches are applied via the .JES2 patching facility.

The JES2 patching facility in the JES2 initialization data set can be specified in either the
JES2 patching format or in the SPZAP format. All patches in the JES2 patching format should
appear before any SPZAP format patches. These two methods for patching are explained in the
following sections.

114 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Rules for Coding Patching Statements

The following conventions are used in the parameter descriptions:

• Uppercase letters must be coded exactly as shown.
• Lowercase letters represent variables for which you must substitute specific information

or specific values.

The following syntax rules apply to the coding of the parameters.

• The size of a patching facility statement is 71 bytes.
• The statements cannot be continued on successive cards.
• The statements may begin in any column, but the operation name must precede the

parameters.
• A statement beginning with an asterisk is a comment statement.
• There must be at least one blank between the specified operation name and the first

parameter.
• All parameters must be separated by at least one blank space.

Format of the JES2 Patching Facility Statements

The format of the JFS2 patch statement is as follows:

operation csect address data

where:

operation
defines the operation to be performed as follows:

REPLACE

REP

R

comments

The data on the statement will replace the data at the location specified by the "csect"
and "address" fields.

VERIFY

VER

V

The data on the statement will be compared with the data at the location specified by the
"csect" and "address" fields. If the data does not compare, an error message is displayed
in the Parameter Library List data set.

BASE

B

csect

The base used to adjust address values that are to be specified in any subsequent VLR

and REP statements is to be modified. This offset is initialized to a value which is based
upon the distributed CSECT and assembly module relationships of JES2, and the BASE

statement need only be used if this relationship is modified locally. The "data" field on
the BASE statement is ignored and may be omitted.

specifies the control section (or control block) in which the data to be verified and/or
modified is resident. If an asterisk (*) is coded, the CSECT in effect on the previous JES2

patch statement is used. Figure 26 contains a list of the possible names which can be coded
and CSECTS to which these names refer. Note that the patch statement name is simply the
CSECT name with the first four characters (always "HASP") omitted.

Miscellaneous JES2 Fadlities 115

address
specifies the hexadecimal address of the data to be verified and/or modified. This address
does not have to be aligned in any way and can consist of one to six digits (with or without
leading zeros). The address should be taken directly from a JES2 assembly listing containing
the referenced CSECT. If an asterisk (*) is coded, the address will be interpreted as one
greater than the last address reference on the previous JES2 patch statement.

data
specifies the bytes of data that are to be verified and/or modified at the specified location.
The number of bytes of data defined must be specified as a mUltiple of two hexadecimal
digits. If desired, the data within the parameter may be separated by commas (never
blanks). If all the data will not fit into one patch statement (71 bytes), then another patch
statement must be used.
If the data specified contains the address of a location within a JES2 CSECT, the JES2 patch
processing routine will relocate this data by the base location of the CSECT if indicated. This
relocation is indicated by following the data to be relocated with the name of the CSECT

(abbreviated as in "csect" above) enclosed in parentheses. The address specified in the
"data" should be taken directly from a JES2 assembly listing containing the referenced
CSECT. The data to be relocated should contain at least six hexadecimal digits (three bytes),
and, if more than six digits are specified only the last eight digits (four bytes) will be
considered in the relocation process. If an asterisk (*) is coded instE~ad of a CSECT name,
the CSECT in effect for the location of the current patch statement its used.

comments
following the last required parameter and its blank delimiter, the rest of the control
statement space can be used for comments.

Examples of JES2 Patching facility statements:

*
* CORRECT PROGRAMMING ERROR IN HASPRDR

* VER RDR 1E2 41EOOO01 VERIFY INSTRUCTION
REP * lE2 4590B258 BAL TO PATCH SPACE
VER NUC 258 B258,B25A,B25C,B25E,B260 VERIFY PATCH SPACE
REP * 258 41202000 ADD INSTRUCTION
REP * * 41EOOOOl REPLACE INSTRUCTION
REP * * 07F9 RETURN

*
* CORRECT BAD ADDRESS CONSTANT IN HASPPRPU

*
VER PRPU 32E 58FOC65C VERIFY INSTRUCTION
REP * 330 B264 MODIFY DISPLACEMENT
VER NUC 264 B264,B266 VERIFY PATCH SPACE
REP * 264 00000520(PRPU) ADDRESS CONSTANT

116 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

SPZAP Patch Statement Formats

Two formats are required for defining a SPZAP patch. They are the same formats of the
control statements for the OS/VS2 AMASPZAP service aid. The first format type defines what
module you want to change; the second format type defines what change you want made to
the module.

The first format type is used to indicate the control section that is to be the object of
subsequent operations. The format of this section is as follows:

NAME member csect comments

where:

NAME

specifes a keyword that must be coded.

member
specifies the member name on the AMASPZAP control statement. This field is ignored on a
SPZAP patch statement, but must be provided for AMASPZAP compatability.

csect
specifies the control section (or control block) in which the data to be verified and/ or
modified is resident. While this field is optional on the AMASPZAP control statement, it is
required on the SPZAP patch statement. Figure 26 contains a list of the possible CSECTs

which can be coded.

comments
following the last required parameter and its blank delimiter, the rest of the control
statement space can be used for comments.

The second format type is used to indicate what operation is to be performed. The format
of this section is as follows:

operation offset data comments

where:

operation
specifies the operation to be performed as follows:

REP

The data on the statement will replace the data at the offset into the CSECT specified on
the previous NAME statement.

VERIFY

VER

The data on the statement will be compared with the data at the offset into the CSECT

specified on the previous NAME statement. If the data does not compare, an error
message is displayed in the Parameter Library List data set.

BASE

The base used to adjust offset values that are to be specified in any subsequent VERIFY

and REP statements is to be modified. This statement should be used when the offsets
given in the VERIFY and REP statements for a CSECT are to be obtained from an
assembly listing in which the starting address of the CSECT is not location zero. The
"data" field on the BASE statement is ignored and may be omitted.

Miscellaneous JES2 Facilities 117

offset

specifics the hexadecimal displacement of the data to be verified and/or modified in the
specified CSECT. This displacement does not have to be aligned in any way and can consist
of two, four, or six digits.

data

specifies the bytes of data that are to be verified and/or modified all the specified location.
As with the offset parameter, the number of bytes of data defined tli1ust be specified as a
multiple of two hexadecimal digits. If desired, but again, the number of digits between
commas must also be a multiple of two. If all the data will not fit into one SPZAP statement
(71 bytes), then another SPZAP statement must be used.

comments

following the last required parameter and its blank delimiter, the rest of the control
statement space can be used for comments.

___ .• _ ,, ___ • _____ • ____ ~T_.',...

.JES2 AMASPZAP (,SE(,T
Patch Name Patch Name Referenced

ABS HASPABS Absolute Storage Location
ACCT HASPACCT HASPACCT
BLKS HASPBLKS HASPBLKS
COMA HASPCOMA HASPCOMA
COMM HASPCOMM HASPCOMM
CON HASPCON HASPCON
INIT HASPINIT HASPONIT
MISC HASPMISC HASPMISC
NUC HASPNUC HASPNUC
PRPU HASPPRPU HASPPRPU
RDR HASPRDR HASPRDR
RDRO HASPRDRO HASPRDRO
RSCN HASPRSCN HASPRSCN
RTAM HASPRTAM HASPRTAM
SSSM HASPSSSM HASPSSSM
SSVT HASPSSVT Subsystem Vector Table
XEQ HASPXEQ HASPXEQ

Figure 26. Patch Name to CSECT Reference

Time Sharing Logon and Started Task Flow

Time sharing logon and started system tasks appear to JES2 as special form of jobs that are
received from designated internal readers. These jobs arc enqueued in special job classes (TSU

and STC) and arc assigned a MSGCLASS that is set during JES2 initialization (TSUMCLAS and
STCMCLAS). They arc presented to the converter with parameters (& RDROPSU or RDROPST)

established first during JES2 generation and later during JES2 initialization.

The time sharing message class (TSUMCLAS) becomes the output class for all dynamically
allocated sysout data sets for which a class is not specified, and becomes the MSGCLASS for all
submitted jobs with no MSGCLASS parameter in the JOB statement.

'Time sharing users can dynamically allocate sysout data sets, dynamically un allocate them
(spinoff), and print them at the time sharing terminal (OUTPUT command).

Multi-Access Spool

Previous sections have described JES2 functions on a single system (uniprocessor, MP158, or
M P 1(8) operating under a single copy of the MVS control program, as shown in Figure 17. It is
also possible to operate from two to seven such systems (each a uniprocessor or MP) as
members of a multi-access spool complex, as shown in Figure 27.

118 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

MVS

Operator

I
L __ ___

r-­
I

\ r---*
\

Local and
Remote
Card Readers

JES2

Local and
Remote
Printers and
Punches

Figure 27. Two-System Shared JES2 Complex

Spool Volumes

(pointers to the
spool volumes)

Local and
Remote
Card Readers

Local and
Remote
Printers and
Punches

Operator

MVS

The operation of each system in the complex is independent and includes all functions
previously described for single JES2 systems. That is, each JES2 system can read jobs from local
and remote card readers, schedule jobs for conversion and execution under MVS initiators,
print and punch results at local and remote output devices, and communicate with operators
and time sharing users. However, all spool volumes and the volume containing the
SYS I.HASPCKPT data set are used by all systems in the complex.

The systems logically share a common JES2 queue. The workload may be balanced among
systems by allowing jobs to execute on whatever system has an idle initiator with the correct
class and print or punch, on whatever system has an idle device with the correct class, routing,
setup, etc.

Since all systems are functionally the same, if one system in the complex fails, the others
may continue processing from the common queue. Only work in process on the failed system is
interrupted; this work may be recovered by a warmstart of the failed system while other
systems continue processing, or, as explained later, by operator command on one of the other
systems.

Shared DASD hardware features (two channel switch, two channel switch additional, and
string switching) are used to access data on all spool and checkpoint volumes. A copy of the
JES2 queue and other status information (e.g. spool space allocation maps) is written to the
SYSI.HASPCKPT data set for possible warmstart, as with a single JES2 system. This information
is available to all systems, one at a time, as needed. RESERVE/RELEASE channel commands are
used to prevent simultaneous referencing and updating of information kept in the
SYS I.HASPCKPT data set.

Miscellaneous JES2 Facilities 119

Each system in the complex must have at least one channel path to each spool and
checkpoint volume, and these devices must be specified as SHARED during MVS system
generation. It is recommended that each CPU of an MP158 system in the complex have a
channel path to each shared volume.

Configuration

To use the multi-access spool feature, the initialization or generation &SPOOL parameter and
the & CHKPT initialization parameter must specify the same volumes for all systems in the
complex. To make the common spool and checkpoint data compatible, all systems must specify
the same values for the &BUFSIZE, &NUMDA, &NUMTGV, &MAXJOBS, &NUMJOES,
& NUMRJE. and & SPOLMSG generation parameters.

For operational consistency, it is recommended that the &MINJOES, &TGWARN, &XBATCH,
and & XBATCHN generation parameters be specified the same in all systems of the complex.

It is also recommended that local unit record devices and RJE lines be given unique JES2
device names over the whole complex. The & NUMLNES, & NUMPRTS, & NUMPUNS, and
& NUMRDRS generation parameters of each JES2 system should be specified as the total
number of each type of device in the complex. This allows all devices to be attached to one
system (with appropriate manual switching) if other systems are not operational.

Similarly, the LINEnn, PRINTERnn, pUNCHn, and READERn initialization parameters should
be set so that a device has the same name no matter which system it is attached to. For
example, if a 3211 printer is one of four local printers on a two system complex, it could be
initialized as:

PRINTER4 UNIT= 102
for one system and:

PRINTER4 UNIT=302
for the other, if it were attached to different channels on the two systems.

A local unit record device or RJE line can only be attached to one system at any instant.
JES2 initialization will detect devices which are not online and place them in a DRAINED state.
Later, the device may be activated by entering the $P device and VARY OFFLINE commands on
the system to which it is attached, performing hardware switching, then entering the V AR Y
ONLINE and $S device commands on the new system. The $S command will fail if no hardware
path exists.

The & NUMRJE generation parameter must be the same in all systems of the complex, as
previously described. This parameter represents the total number of RJE lines known to the
entire complex. Each RJE line has a unique name, no matter which system it is attached to.
Therefore, the RMTnnn, Rnnn.RDm, Rnnn.PRm, and Rnnn.PUm initialization parameters should
be specified the same in all JES2 systems of a multi-access spool complex.

Starting the Multi-Access Spool Complex

Before starting the complex, the TOD clocks on each system should be carefully synchronized
with a single time source. Since this synchronization is externally performed and subject to
error, the generation parameter $SYNCTOL is provided to specify the maximum error (in
seconds) which JES2 should assume. If the synchronization error is actually greater than
$SYNCTOL, then JES2 will not be able to detect certain illegal operator actions (e.g., performing
cold start with other systems active). On the other hand, certain legal operator actions (e.g.,
warm start after system failure) will be disallowed if attempted before $SYNCTOL seconds have
elapsed since system failure.

120 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

The members of the complex are specified by the Sn initialization parameters. For example:

Sl SID=K158
S2 SID=L168

defines a two system complex where K 15X and L16X are the SMF system ids set during IPL of
the systems. One system must initially do a cold JES2 start with no other systems active and
must define all members of the complex. Other members join operation by warmstart and must
also specify identical Sn parameters. A cold start is required to change or add members of the
complex. If only one or no Sn parameter is specified, JES2 operates as a single system.

There are three types of warm starts:

• If a warm start is specified by the operator and JES2 detects that no other members of
the complex are active, after operator confirmation a total complex warm start is
performed. New spool volumes may be added, all in-process work will be recovered, and
all unused spool space will be accounted for, as in single system operation.

• A warm start is performed when warm start is specified and other members of the
complex are active. The warmstarting system joins the active complex and recovers only
work in-process on the system at a previous failure, if any. No spool volumes may be
added.

• Restart for another system is performed when a system has failed and cannot be
immediately warm started. The operator enters the $ESYS command on any active
member of the complex. In-process work on the specified system is recovered and made
available for selection by other members of the complex, subject to system affinity for
execution restart as discussed later under Queuing.

The algorithm for using the common JES2 queues and other information in the
SYS1.HASPCKPT data set is determined by the HOLD=, MINDORM=, and MAXDORM= keywords
of the QCONTROL initialization parameter. These need not be the same for all systems in the
complex and should be set according to the number of members in the complex, relative CPU
spceds, response requirements, etc. See OS/VS2 System Programming Library: Initialization
and Tuning Guide for details.

Job Submission and Queuing

In a multi-access spool complex, jobs enter the common queue from any input source (local or
remote) attached to any system in the complex. Unless special actions are taken, jobs will
normally be eligible to execute in any system in the complex, selected by priority and the
classes of idle initiators as in single system operation.

Started tasks and TSO users are an exception which execute only in the system in which
they are entered. However, job queue entries also contain a system affinity for" up to seven
systems on the maximum complex and may contain an independent mode affinity.

Individual jobs may be given affinity to one or more systems (less than the total complex)
and may be given affinity for independent mode by the SYSAFF=keyword on the /*JOBPARM
card. Any input device (local or remote) may be set by the $T command to give system and/or
independent mode affinities to all jobs read from that device. The /*JOBPARM card overrides
the input device default.

If a job's affinity is to specific systems in the complex or to independent mode, the job can
be selected only by the system(s) specified and only if the mode of the system (independent or
not) matches that of the job.

System affinity may be useful for special processing requirements (e.g. emulation) not
available on all systems of the complex. Independent mode may be useful for testing new
components with selected jobs while in a shared complex.

Miscellaneous JES2 Facilities 12 t

The display commands ($OA, $ON, $OQ, $OJ) indicate (by SMF system id) the system in
which a job is active or the system(s) eligible to process a queued job. The $TJ and $T ALL
commands permit affinities of jobs or all jobs with given affinity to be changed. The $TSYS
command allows a system to be placed in independent mode. The $LSYS command displays the
states of all systems in the complex.

If a system fails and jobs in execution are recovered and requeued for automatic restart
either by a warmstart or the $ESYS command, those jobs are given affinity only to the failed
system. If the failed system is unavailable, the operator may change affinity with the $TJ or
$TALL commands to attempt restart on another system.

Priority aging is done only by the lowest numbered active system in the complex.

Duplicate jobname protection extends to all systems; i.e., if a jobname matches another
active in execution anywhere in the complex, the job is temporarily delayed. See the TSO
section that follows.

Output

Printed and punched output processing is very little different from singlle system operation.
System affinity does not apply to selection of work from the JOEs.

Output work is selected by eligible devices, no matter to which system in the complex those
devices are attached. Selection criteria are output class, routing (local or remote number), and
set up just as in single systems. The automatic setup algorithm which prevents the same special
forms from being requested for more than one local printer operates for all local printers in the
complex.

The $CJ command entered from any system in the complex will cancel a job active on an
input or output device attached to another system.

RJE

Configuration considerations for RJE lines in the complex were discussed previously.

JES2 enforces that the same remote number cannot signon more than one line any where in
the complex at any given time. For dedicated lines, the user must insure this uniqueness by
proper setting of line and remote initialization parameters as previously described.

The remote operator message queue operates across the entire complex. That is, any remote
operator can send messages to any other remote (even if attached to different systems) and
any central operator can send a message to any remote.

TSO

TSO userids are jobnames to JES2 and, in a multi-access spool complex, the duplicate jobname
protection extends across the complex. A TSO logon will be rejected if a user of the same id is
logged on elsewhere in the complex.

Jobs submitted by TSO users may execute anywhere in the complex, subject to affinities as
previously discussed. However, held output data sets are accessible by the TSO OUTPUT
command by the submitting user regardless of where logged on or where the job executed.
Messages produced by NOTlFY= are also returned to where ever the TSO user is logged on or
to where the job was submitted from, if the user is no longer logged on.

SMF

The SMF type 26 record contains system ids indicating which systems in the complex
performed each major function of processing for a job: input, convert, execute, post-execute
break into output elements, and purge.

The SMF type 6 records contain the system id which processed each element of output
work.

122 OS/VS2 System Programming Ubrary: Job Management (VS2 Release 3)

Part III: Miscellaneous Job Management Facilities

Miscellaneous Job Management: This topic discusses restarting support, assigning special
program properties, limiting user region size, changing the system log processing, updating
MSTRJCL data set, and using external writers.

Part III: MisceUaneous Job Management Facilities 123

124 OS/VS2 System Programming Liibrary: Job Management (VS2 Release 3)

Miscellaneous Job Management

This section discusses the following facilities of JES2 and JES3 job management:

• Job scheduler restarting support
• Assigning special program properties
• Limiting user region size
• Updating the master Job Control Language (MSTRJCL) data set
• External writer

These facilities may be used by a system programmer in meeting the requirements of his
installation for specialized job management support.

Job Scheduler Restarting Support
Job scheduler restarting support consists of job scheduler functions that allow either the
resumption or the termination of a failing job. These functions gather information about the
status of a job and its related control blocks. They provide information about the control
blocks so that reconstruction of a failing job's scheduler work area (SWA) can take place to
support the following restarting situations:

• Automatic step - permits execution to resume at the beginning of a job step.
• Automatic checkpoint - permits execution to resume from the most recently executed

checkpoint in the user's program.
• Deferred checkpoint - permits execution to resume from a user-specified checkpoint

upon resubmission of a job.
• System - permits the termination of active jobs in the event of a system failure.
• Continue - permits a job to continue at the next job step if the system fails during step

termination.

For a detailed discussion of the checkpoint/restart facility, refer to OS/VS
Checkpoint/ Restart, GC26-3784.

Job Journal

The job journal is a temporary sequential data set that resides on the spool volume of the job
entry subsystem (JES). It preserves a set of selected job-related control blocks that are
necessary for restart processing.

The job journal is necessary because scheduler control blocks are maintained in the SWAin
pageable storage. When the system fails, the address space containing the SW A is lost. When a
job abnormally terminates, the job's SW A is released. Reconstruction of the SW A is possible
because the job journal preserves up-to-date copies of the essential control blocks. This facility
is available in the following restarting situations:

• Automatic step
• Automatic checkpoint
• Continue
• System

Unless the user specifies no job journal via the JES initialization parameters, each job is
provided with a job journal. Without a job journal, the capability for automatic restarting is
lost. In addition, jobs that are executing when the system fails forfeit their data set disposition
processing if there is no job journal. For additional information about a "no journal"
environment, refer to the discussion of the NOJOURN initialization parameter, under "Job Class
Parameters," in OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681.

Miscellaneous job Management 125

Two service routines process the job journal. They are:

• Journal write routine - determines which of the scheduler control blocks are necessary to
restart a job, and then writes them to the job journal.

• Journal merge routine - merges the control blocks from the job journal to the SWA

during restarts. This reconstructs the SW A to its condition prior to the job or system
failure.

The job journal contains the following records:

• Step header
• Job control table (JCT)

• Step control table (SCT)

• Step input/output table (SlOT)

• Job file control block and its extension (JFCB and JFCBX)

• Passed data set information block (PDI block)
• Generation data group name table (GDGNT)

• Volume unload table (VUT)

• Account control table (ACT)

• Virtual input/output data set control blocks (VDSCBS - virtual data set control blocks,
and DSPCT .. data set page control table header)

For additional information about restart processing, refer to OS/VS Scheduler and
Supervisor Logic, SY28-0624, SY28-0625, SY28-0626 (3 volumes).

Assigning Special Program Properties
The initiator can assign special properties to privileged programs whose names are in the
Program Properties Table (IEFSDPPT). a nonexecutable CSECT in load module IEFSD060.

Executing the SG1EFOPT macro instruction during system generation makes the table available
for the initiator to use. When the initiator initiates a program, it scans the table to determine
whether special properties apply to the program.

Each entry in the Program Properties Table consists of 12 bytes with the following
contents:

Program Name: the eight-byte name specified in the PGM parameter on the EXEC statement for
the job.

Program Properties: a one-byte field that indicates the special properties assigned to a program.

Bit
o
1

2
3

4

5

6
7

Meaning When On
The program cannot he canceled.
A unique protection key is to be assigned to the program. This key is defined in the flI.::xt
byte of the table entry.
The program cannot be swapped.
The program is privileged and will not be swapped unless addn:ss space is in a long wait.
(A long wait is a wait that results from specifying LONG= YES as an operand on the
WAIT macro instruction.)
The program is a system task and therefore will not be timed. (When a program is not
timed, the system does not check for time limits and does not time for accounting
purposes.) The program must be a one-step program initiated with a START or MOUNT
command.
The program does not require exclusive use of the data sets that is requests. It must be a
one-step program.
The program is to bypass password protection.
Reserved

126 OS/VS2 System Programming lLibrary: Job Management (VS2 Release 3)

Notes:
1. The properties represented by the various bit settings may not always be honored by the

system. When a property is not assigned, the program generally will execute, but without
the properties specified:
• The program will not be assigned special properties unless it comes from an

APF-authorized library.
• The system task property (bit 4) will not be assigned to a job unless the job was

started by a START or MOUNT command.
• The system task property (bit 4) and the no-data-set-integrity property (bit 5) will not

be assigned unless the job is a single-step job.

2. The requirements of the Initiator influence the need to maintain data set integrity as
follows:
• If one or more data sets requested by a program are not available when the job is to

be initiated, the scheduler waits until the job can get exclusive control of all data sets
that it requires. Although the job itself may not require data set integrity, the initiation
process for the job does.

• Jobs that request the no-data-set-integrity property (bit 5) will not be initiated if both
of the following conditions exist:
- the job requests a data set whose name is an alias for a data set that is unavailable

during the job's initiation.
- the job contains either a JOBLIB or STEPLIB.

Protection key: a one-byte field that specifies in bits 0-3 the unique protection key to be
assigned to the program. (A protection key is assigned if bit 1 of the preceding byte is on.)

Affinity mask: a half word that indicates the CPU affinity, which is a system generation option.
Each bit in the 16-bit mask refers to a corresponding CPU identifier (O-F), assigned during
system generation. For example, bit 0 corresponds to CPU O. If bit 0 is on, the program is
eligible to run on CPU O. The bit mask should be set to X'FFFF' if affinity is not required.

The Program Properties Table includes five dummy entries for assigning additional program
names to the list. The dummy entries initially contain the properties necessary for TCAM. The
system programmer can execute the AMASPZAP service aid program to change these entries for
the installation's purposes. To add more than five program names, the system programmer
must update the source module, then assemble and link-edit it again.

The initiator always attaches programs in the problem program state. If a program must
execute in supervisor state, it must issue a MODESET macro instruction. For information on
MODESET, see OS/VS2 System Programming Library: Supervisor.

TCAM Message Control Program (MCP) names other than IEDQTCAM must be added to the
Program Properties Table (IEFSDPPT). These names must be added to the PPT after system
generation by using the AMASPZAP service aid. (For information on AMASPZAP, see OS/VS2
System Programming Library: Service Aids.) If more than six MCPs are required, the PPT
must be reassembled to create more entries. An MCP will not operate unless its name is in the
PPT. TCAM OPEN routines must run in key 6 and will abnormally terminate any caller who was
not initiated in key 6. Prior to MVS, MCP names were put in the PPT to make the MCP
non-cancellable, but the MCP would execute properly if its name were not in the PPT.

Limiting User Region Size - IEALIMIT
An installation can enforce a region-size limit by writing an exit routine that is invoked once
per step when the initiator is establishing region size. If an installation-written exit routine does
not exist, an IBM-supplied routine receives control.

Miscellaneous job Management 127

The installation-written exit routine, which replaces the IBM-supplied routine, must be
named IEALlMIT and must be link-edited into the nucleus. The routine must observe standard
linkage conventions. Upon entry to the IEALlMIT routine, the register contents are as follows:

Register 1 number of bytes requested by the application program for its region (specified explicitly
through the REGION parameter or implicitly through the default JCL value)

Register 13
Register 14
Register 15

address of standard save area
return address
entry point address for the IEALlMIT routine

If IEALlMIT receives control and the input register 1 contains a zero, then IEALlMIT returns
a zero in register 1 and no limit is assigned (to a job, a started program, or a TSO user). No
limit is set only when the REGION parameter is not specified and the default value is zero. If
system programs require "no limit" then the installation must not use "small" default REGION
sizes.

If the input register 1 is non-zero when IEALlMIT receives control, then IEALlMIT adds 64K
to the contents of register 1 and returns. The IEALlMIT routine sets this limit on all types of
requests for storage from subpools 0-127,251, and 252.

After the IEALlMIT routine assigns the appropriate limit, it must pass to lEA VPRTO via
register 1 a numeric value that represents the imposed limit in bytes. (Note that a zero
returned in register 1 indicates that a limit is not imposed.) IEAVPRTO stores the value for
future reference (for example, when subsequent GETMAIN requests are issued).

The REGION parameter specifies the amount of space to be allocated to a job. The
IEALlMIT value specifies the maximum permissible region size. The system honors the
REGION-parameter value unless it exceeds or equals the IEALIMIT value, in which case the
REGION parameter is ignored. If the REGION-parameter value is lower than the IEALIMIT
value, the result of a GETMAIN request depends on whether it is variable-length or
fixed-length, as shown in Figure 28.

Type of GETMAIN

Fixed-length:
IEAllMlT value minus currently alloc space > request
IEALIMIT value minus currently alloc space < request

Variable-length:
REGION parm minus currently alloc space > max
min < REGION parm minus currently alloc space < max
REGION parm minus currently alloc space < min

Result

Satisfied
Rejected

Maximum is allocated.
Unallocated amount is allocated.
Minimu~ is allocated as long as
IEALIMIT is not exceeded (in which
case the request fails).

Figure 28. The Effects of IEALIMIT and REGION Values on Various GETMAINs

For example, assume that application program A has the following characteristics:

IEALIMIT value 150K
REGION-parameter value lOOK
Currently allocated space 80K

Program A issues the following variable-length GETMAIN requests in the order indicated:

1. Request 5K-10K: 10K is allocated; currently allocated space is now 90K. Because the
amount currently allocated (80K) does not exceed the REGION-parameter vah,le (lOOK)

and because the amount unallocated (20K - relative to the REGION-parameter value) is
greater than the maximum amount requested (10K), the maximum amount is allocated.

2. Request 51(.·I00K: 10K is allocated; currently allocated space is now lOOK. Because the
amount unallocated (10K - relative to the REGION-parameter value) is between the
minimum and maximum, the amount unallocated is allocated.

12,8 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

3. Request 40K-100K: 40K is allocated; currently allocated space is now 140K. Because the
amount unallocated (OK - relative to the REGION-parameter value) is less than the
minimum amount requested (40K), the minimum amount is allocated.

4. Request 1 SK-SOK: the GETMAIN request fails. The amount unallocated (OK - relative to
the REGION-parameter value) is less than the minimum amount requested (lSK). If the
minimum amount were allocated, the currently allocated amount would become 1 SSK,

which exceeds the IEALlMIT value (lS0K). Therefore, the request fails.

System Log

The system log is an integral part of MVS. It consists of dynamically-created data sets that
record the communications among problem programs, operators, and the operating system. It
will contain operating data entered by problem programs using the write-to-log WTL macro
instruction. If the log is designated as MCS hardcopy, it can contain:

• Job time, job step time, and data from the JOB and EXEC statements of a job that has
ended.

• Descriptions of unusual events that occurred during a shift.
• Write-to-operator (WTO) and write-to-operator with reply (WTOR) messages.
• Accepted replies to WTOR messages.
• Commands issu'ed through operator's consoles and the input stream, and commands

issued by the system.

Using the System Log

If the installation does not modify system log operation, it works as follows:

• At IPL, the system automatically allocates the system log data set as a class A SYSOUT
data set.

• Subsequently the log keeps track of the number of entries it receives by counting the
WTL macro instructions executed against it. After 500 WTLs, the system:
- opens and allocates a new system log.
- closes and dynamically unallocates the currently full log.

Changing the System Log Processing

The system programmer can alter the default operation of the system log to control the
processing associated with the log data sets. He can change the SYSOUT class of the log data
sets and the number of WTLs received before switching log data sets.

The processing of the log data sets can be controlled from the operator console or from a
SYSl.PARMLIB member named IEASYSxx, where xx is a unique number (chosen by the
installation) that identifies the member. This member must be included in the system during
IPL, in response to the request to specify the system parameters.

From the console, the operator can control the processing with commands. (For further
information about the operator commands, see Operator's Library: OS/VS2 Reference (JES2),
GC38-0210.) For example, the operator can issue a WRITELOG command with the START
operand after a system failure or after a WRITELOG command with the CLOSE operand.

The following SYS1.PARMLIB parameters initialize or alter the system log control values:

• LOGLMT - which controls the number of WTLs received before the system switches data
sets.

• LOGCLS - which controls the SYSOUT class of the system log data set.

Miscellaneous job Management 129

The LOGLMT value must be a six-digit number in the range 000001-999999. An all-zero
entry value results in the system default of 500. When choosing the LOGLMT value, the system
programmer should consider:

• Whether the system log is defined as MCS hardcopy.
• Whether the system log data is sufficiently critical to the system to require frequent

allocating, switching, and queuing to a SYSOUT class.

The LOGCLS value must be one alphameric character. The default is class A.

The following example shows the correct format for including the LOGLMT and LOGCLS
parameters in the IEASYSxx member of SYS1.PARMLIB when specifying the system parameters
during IPL:

LOGLMT=004852,LOGCLS=L

The preceding example would cause the system log task to switch data sets after 4852
WTLS, and the job entry subsystem to queue the current data set to class L for SYSOUT
processing.

Updating the Master Job Control Language Data S~~t
The master job control language data set (CSECT name and load module name are MSTRJCL) is
a nonexecutable module that is created during system generation and resides on SYS1.LINKLIB.
As provided by IBM, MSTRJCL contains data definitions for all system input and output data
sets necessary for communications with the job entry subsystem. MSTRJCL also contains the
START command that starts the job entry subsystem at initialization. Figure 29 shows
MSTRJCL as it exists before it is assembled. During system generation, &SSNAME is replaced
with the name of the job entry subsystem.

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

CL80 1 //MSTRJCL
CL80'//
CL80'//STCINRDR
CL80'//TSOINRDR
CL80'//IEFPDSI
CL80'//IEFPARM
CL80'//SYSUADS
CL80'//SYSLBC
CL80'//SMFMANX
CL80'//SMFMANY
CL80'// START &SSNAME'
CL80'/*'

Figure 29. MSTRJCL Data Set

JOB MSGLEVEL=(O,O)'
EXEC PGM=IEEMB860,DPRTY=(15,15)'
DD SYSOUT=(A,INTRDR),
DD SYSOUT=(A,INTRDR),
DD DSN=SYS1 .PROCLIB,DISP=SHR'
DD DSN=SYS1.PARMLIB,DISP=SHR'
DD DSN=SYS1.UADS,DISP=SHR'
DD DSN=SYS1.BRODCAST,DISP=SHR'
DD DSN=SYS 1 . MANX, DISP==SHR '
DD DSN=SYS 1 . MANY, DISP==SHR'

If an installation does not plan to use TSO, the system programmer can delete the
TSOINRDR, SYSUADS, and SYSLBC data definitions. He can add other data definitions as
necessary, provided that the data sets they define are allocated before the IPL that is to make
use of them. In short, if the allocation of any data set defined in MSTRJCL fails, the IPL also
fails.

Changes to MSTRJCL fall into two categories: modifying an existing statement, and adding
or deleting a statement. To modify a particular statement, the system programmer can use the
AMASPZAP serviee aid program. To delete an existing statement or add a new one, he must
reassemble the MSTRJCL statements, including a MSTRJCL CSECT card and an END card with
the statements shown in Figure 29. In the figure, &SSNAME should be replaced with the name
of the job entry subsystem.

130 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

By deleting the statement that contains the START command for the job entry subsystem,
the system programmer enables the console operator to specify the job entry subsystem during
IPL.

External Writers
After output is queued by JES2 or JES3, the output can be written by the writer associated with
the job entry subsystem or an external writer. An external writer can be standard IBM-supplied
external writer processor, or an installation-written writer name on the SYSOUT DD statement.
The operator starts an external writer in a private address space, and the data is written using
the QSAM access method.

With an external writer, SYSOUT data sets can be written to devices other than local and
remote printers and punches supported by JES2 or JES3. Installation-written writers can effect
special processing of sysout data sets accompanied by special separator pages formatted by an
installation routine. The user requests an installation-written writer by specifying the name of
the writer (other than INTRDR or STDWTR which are reserved) on the SYSOUT parameter of a
DD statement.

There are three rules for selecting data set groups for an external writer:

• Data set groups with data characteristics that include an installation-written writer name
are not eligible for selection by a JES2 or JES3 printer or punch. An external writer should
be started to the group's output class to process these data sets, or they should be
dequeued specifically by the operator who can cause the external writer to dequeue data
sets that specify a specific installation writer name, regardless of the output class. The
JES2 $DF or JES3 *I,U command can be used to determine the classes in which data sets
specifying installation-written writers are queued.

• Data sets that do not specify a special writer can be written by a JES2 or JES3 writer or
an external writer, depending on operator action. If the same class is specified for both a
JES2 or JES3 writer and an external writer, the two routines compete for data sets on a
first-come, first-served basis.

• Print train, carriage, and, optionally, forms specification, are ignored when an external
writer selects data set groups. As with the MVT and VS2 Release 1 output writer, FeB and
UCS specification must be controlled through separating the data by class.

When there are no more data sets to select, the external writer will notify the operator by
issuing a message, which also informs the operator of its current setup.

An external writer can dequeue data sets by any or all of the following characteristics:
output class, job (job ID), forms, destination of LOCAL or remote workstation name, and
installation-written writer name. Selection by local device name is not available in J ES2. A
characteristic, if not specified, is ignored when selecting data sets. (For example, the operator
can set up an external writer to dequeue data sets for a certain installation-written writer name
and a specific set of forms. Since job, class, and destination are not specified, any data set
specifying the forms and writer is eligible regardless of its class or destination.)

For compatibility with the MVT and VS2 Release 1 output writer, the external writer will
dequeue data sets by class and LOCAL destination, if one or more output classes are specified
on either the START command or in the cataloged procedure used to call this external writer.
Forms are mounted and installation-written writers are called on demand.

The IBM-supplied name STDWTR can be used by the operator for selecting data sets that
have not specified any writer. Similarly, the forms name STD causes the external writer to
select only those data sets that have not specified a particular form.

Miscellaneous job Management 131

Starting the External Writer

Thc external writer is started by the operator issuing:

START or S
procname [. id] [, devicename] [, volumeserial] [, classe2;] [, keyword=option 1

where:
the procedure must reside in SYS1.PROCLIB.

classes
1-8 alphanumeric output classes which override the classes specified in the PAR M field of
the cataloged procedure used to start the External Writer.

keyword
Any DO keyword such as: OSN = datasetname [(member)], or LABEL = Any symbolic
parameter.

Modifying the External Writer

The operator can change the options of the external writer by issuing:

MODIFY or F
[procname.]id[,C[LASS]=[Jist]l ,J[OBID]=[job id]] [,F[ORMS]=form
name]] [,D[est]=[LOCAL or remote workstation name]] [,W[riter]=[STDWTR
or user written writer name]] [,P[AUSE]=FORMS/DATASET]

Note: "id" plus one other parameter must be specified.

CLASS or C

= list
(1 to 8 classes in priority order) the external writer only dequeues data sets from these
classes

= null

no selection by class (Le. all data sets are eligible which meet the other criteria)

JOBID or J

=job
id select only data sets generated by the job with the specified id.

= null

select data sets from any job

FORMS or F

= form name
select only data sets requiring the specified form.

= null
disregard forms when selecting data sets. The operator will be instructed to mount forms
as required.

DEST or D

= LOCAL
select only data sets routed to the central CPU (This is the default destination)

= remote workstation
name select only data sets routed to the specified remote workstation.

= null

select data sets irrespective of data set routing.

132 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

WRITER or W

= STDWTR
select only data sets not specifying a user-written writer

= user writer name
select only data sets enqueued for the specified user writer

= null

select data sets irrespective of writer required (The external writer attaches the writer
program required for each data set.)

PAUSE or P

= FORMS
the external writer will pause whenever forms mounting is required (that is, FORMS =
null is thc option in effect.)

= DATASET
the external writer will pause between the processing of each data set.

Stopping the External Writer

The operator can stop the external writer by issuing:

STOP
or
p

[procname.]id

Cancelling the Printing of a Data Set

The data set being printed can be cancelled by issuing:

CANCEL deviceaddress
or
C

The cancel command affects only the data set currently being written. MODIFY and STOP
commands take effect between output for a given job.

The External Writer Cataloged Procedure

A cataloged procedure for external writers requires two job control statements: an EXEC
statement and a DO statement.

An EXEC statement named IEFPROC specifies the external writer program.

A DD statement named IEFROER defines the output data set.

The standard external writer procedure supplied by IBM is named XWTR. The XWTR
procedure is:

IIIEFPROC
II
IIIEFRDER
II
II
II

EXEC

DD

PGM=IASXWROO,REGION=20K,
PARM='PA'
UNIT=2400,VOLUME=(",35),
DSNAME=SYSOUT,DISP=(NEW,KEEP),
DCB=(BLKSIZE=133,LRECL=133,BUFL=133,
BUFNO=2,RECFM=FM)

When creating an external writer procedure, the procedure format and the statement
requirements must be maintained. The IBM-supplied procedure can be used as an example. The
statements are explained individually in the following sections.

Miscellaneous job Management 133

EXEC Statement

The EXEC statement specifies the output writer program and its region size. It also passes a set
of parameters to the output writer program. The format for the EXEC statement is:

IIIEFPROC
II

EXEC PGM=IASXWROO, [REGION=nnnnnK,]
PARM='cxxxxxxxx,seprname'

The step name must be IETPROC, as shown. Th9 parameter requirements arc as follows:

PGM =JASXWROO
specifics the output writer program. The name of the program must be IASXWROO, as shown.

REGION =nnnnnK (should be specified only for ADDRSPC=real)
specifies the region size for the output writer. The value nnnnn represents a number from
one to five digits that is multiplied by K (K= 1024 bytes) to designate the region size. The
region requirement depends on the size of the buffers and the data set writer used. An
insufficient size specification will result in an abnormal termination.

PARM = 'cxxxxxxxx,seprname'

C

is a set of parameters for the output writer program. The first part of this parameter field
can contain from one to nine characters. The second part of this parameter field, if
specified, is separated from the first part by a comma, and contains a program name from
one to eight characters. Both parts of this parameter field are explained below.

an alphabetic character, either P (for printer) orC (for punch), that specifies the type of
control characters for the output of the writer.

XXXXXXXX

from one to eight (no padding required) single-character class names for system output.
These characters specify the type of output that the writer can process, and also establish
the priority of the output classes, with the highest priority on the left. If class name
parameters are included in the START command, they override this entire set of class names
in the cataloged procedure. If no classes are specified in the cataloged procedure, and none
are specified in the START command, the external writer waits for the operator to enter a
MODIFY command before processing any output.

seprname
the name of the program (up to eight characters) that provides job separation in the output
data set. The named program must reside in the link library (SYS1.LINKLIB) or the LPA

library (SYS I.LPALIB). The name IEFSD094 specifies the output separator supplied by IBM,

or the name of a user-written program can be specified. This subparameter may be omitted,
in which case no output separator is used.

134 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

D D Statement

The procedure for the output writer must include a DD statement that defines the output data
set. The format for this statement is:

IIIEFRDER
II

DD UNIT=device,LABEL=(,type)
VOLUME=(",volcount),
DSNAME=anyname,DISP=(NEW,KEEP)
DCB=(list of attributes),
UCS=(code [, FOLD] [, VERIFY]),
FCB=(iTIlage-id 5,ALIGN t)

x
X
X
X
X

II
II
II
II

I, VEIUFY \

This DD name must be IEFRDER as shown. The parameter requirements are as follows:

UNIT=device
specifies the printer, magnetic tape, card punch, or direct access device on which the output
data set will be written.

LABEL= (,type)
describes the data set label (needed only for tape data sets). If this parameter is omitted, a
standard label is assumed.

VOLUME= (",volcount)
limits the number of tape volumes that can be used by this writer during its entire operation
(from the time it is started to the time it is stopped). This parameter is not required for
printer or card punch devices.

DSNAME= anyname
specifies a name for the output data set (tape only, for label purposes), so that it can be
referred to by subsequent job steps. This name is also necessary for specification of the
KEEP subparameter in the DISP field.

DISP = (NEW,KEEP)
specifies the KEEP subparameter to prevent deletion of the output data set (tape and direct
access only) at the conclusion of the job step.

DCB=(list of attributes)
specifies the characteristics of the output data set and the buffers. The BLKSIZE and LRECL

subparameter fields must be specified in all cases. The BUFL subparameter field, if not
specified, is calculated on the basis of the BLKSIZE value. Other subparameter fields may be
specified as needed; if they are not, they will assume the QSAM default attributes which
follow:

BUFNO - three buffers for the 2540 device, two buffers for all other devices.
RECFM - U-format, with no control characters.
TR TCH - odd parity, no data conversion, and no translation.
DEN - lowest density.

ues = (code[,FOLD][,VERIFY])
specifies the code for a universal character set (ucs) image that will be loaded into the UCS

buffer. FOLD causes bits 0 and 1 to be ignored when comparing characters between the ucs
buffer and the print line buffer. This option allows lowercase alphabetic characters to be
printed in uppercase by an uppercase print chain or train. VERIFY causes the specified UCS

image to be printed for verification by the operator. The UCS parameter is optional, and is
valid only when the output device is a 1403 or 321l.

MisceUaneous job Management 135

FeB = (image-id +ALIGN t)
,iVERIFy5

causes the forms control buffer (FCB) image with the specified image-id to be loaded into
the FCB. One of two optional parameters, ALIGN or VERIFY, can be coded. Either
parameter allows the operator to align forms. In addition, VERIFY causes the specified FCB

image to be printed for visual verification. The FCB parameter is valid only when the output
device is a 321l.

For the processing of the output jobs that require special chains for printing, specific classes
should be assigned for each different chain. The desired chain can be specified in the writer
procedure, and when that writer is started the chain will be loaded automatically. (Printers
used with special chains should be named with esoteric device names as defined at system
generation time.)

The following sequence is an example of a writer-cataloged procedure for the Pll chain.

IIIEFPROC
II
IIIEFRDER

II
II
II

EXEC

DD

PGM=IASXWROO,
PARM='PDEG,IEFSD094'

UNIT=SYSPR,DSNAME=SYSOUT,FCB={STD2,ALIGN),

UCS=Pll,

DISP=(,KEEP),DCB={BLKSIZE=133,BUFL=133,

LRECL=133,BUFNO=2,RECFM=FM)

X

X

X

X

[f the output device is a 3211, a UCS or FCB image can be loaded dynamically between the
printing of data sets. Therefore, a mixture of data sets using different images in a single output
class is allowed~ however, this may require mounting trains 'and changing forms, and may not
be desirable. When the output device is a 1403, the UCS image is specified at START WTR time
and cannot be changed until the writer is stopped~all data sets within an output class must be
printed using the same train. This parameter cannot be overridden for a specific data set when
using the (asynchronous) sysout writer. The FCB image is ignored when the 1403 is specified.

Writing an Output Writer Routine

The data set writer routine used for a data set can be specified by name (other than INTRDR

or STDWTR) in a DO statement. If it is, the data set must be processed by an external writer.
If a data set that does not specify an installation-written, or non-standard writer is processed
by the external writer, a standard IBM-supplied writer routine is used. The standard routine
transcribes the data set to the specified output device, making only those data format and
control character transformations required to conform to the attributes specified for the output
data set.

The following material describes how to write a nonstandard data set writer routine.

Characteristics of the Standard External Routine

Before writing or modifying an output writer routine, the functions performed by the standard
data set writer should be understood. In general, these functions include opening the data set
(referred to as an input data set) that contains the processed information, obtaining the
records of the data set, making any necessary transformations in record format or control
character attributes, and placing these (possibly transformed) records in the output data set,
which appears on a specified output device. The standard writer also must close the input data
set and restore system conditions to the state they were in before the writer routine was
invoked. The external writer cannot be named STDWTR or INTRDR.

136 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

The Output Writer Routine

To use the output writer routine, the name of the routine should be specified as a parameter in
the SYSOUT operand of a DD statement. The routine must be in the link library
(SYS1.LlNKLlB) or the LPA library (SYS1.LPALlB).

In Ys2, the routine is attached (via the ATTACH macro instruction) when a data set
requiring the routine is to be processed. The standard linkage conventions for attaching are
used. Any storage required for work areas and tables should be obtained by the GETMAIN

macro instruction and released by the FREE MAIN macro instruction. The output writer routines
must be reenterable.

When the routine is finished, it must return control to the standard writer by using the
RETURN macro instruction.

Parameter List: After job management routines perform initialization requirements and open
the output data set into which the writer routine places records, control is given to the routine
via the ATTACH macro instruction. At this time, general registers 1 and 13 contain information
that the program must use. Register 1 contains the storage address of a 12-byte list. The
information in this parameter list follows:

Output Device Indicator

Byte 0 Bit 0 (High-order bit): This bit should be off (set to 0).
Bit 1 If this bit is on, the output unit is either a punch or a tape with a punch as the

final destination.
Bit 2 If this bit is on, the output unit is either a printer or a punch.
Bits 3-7 No significant information.

Bytes 1-3 Not used, but must be present

Bytes 4-7 This word contains the address of the data control block (DCB) for the opened output data set
to be referred to by the writer.

Bytes 8-11 This word contains the DCB address for the input data set from which the writer will obtain
logical records. (At the time this 12-byte parameter list is given to the writer, the input data set
is not open.)

The switches indicated by the three high-order bit settings in byte 0 should be used to
translate control character information from the input data set records to the form required by
the output data set records. The high-order three bits of byte 0 signify the type of output
device as follows:

OIL .. .
001
otO
000

2520 or 2540 punch unit
1403, 1443, or 3211 printer device
tape device with punch-destined output
tape device with printer-destined output

The writer should save and restore registers.

Programming Conventions: An output writer routine must issue an OPEN macro instruction to
open the desired input data set residing on a direct access device as a result of the previous
execution of a processing program. (Note: The output data set used by a writer is opened by a
job management routine before control is given to the writer. This output data set must be
given records by a PUT macro instruction operating in the "locate" mode.

If the processing program that produces a ·given data set (to be used as an input data set by
a writer) did not open the data set, the data set contains no records, and the DCBBLKSI and
DCBBUFL fields of the input DCB contain zero. The DCBBLKSI field may also be zero even if
the data set does contain records - if the processing program did not put the block size value
for the input set in the DCB. If both these DCB fields are zero, a value (the standard writer
uses the decimal value 18) is inserted in the DCBBLKSI field to permit the open routine to
continue. The standard writer does this via a routine pointed to by an entry in the EXLlST
parameter of the DCB. Since there is no data set, nothing is put on the output device. The data
set writer must provide a SYNAD routine to process errors associated with the output as well as
the input data set.

MisceUaneous job Management 137

The standard data set writer also includes accounting support for the SMF output writer
record (record type 6).

Before the OPEN macro instruction is issued, the DCBD macro instruction can be used to
symbolically define the fields of the DCB, and the EXLlST and/or SYNAD routine addresses can
be inserted. Other than SYNAD, no modifications can be made to the output DCB.

After the routine finishes writing the output data set, it must close the input data set and
return using the RETURN macro instruction. A return code must be placed in register 15. This
code should indicate that an unrecoverable output error either has occurred (code of 8) or has
not occurred (code of 0).

3525 Note - Interpret Punch: The programming support for the 3525 includes an INTERPRET
PUNCH feature that is supported by BSAM and QSAM. The support for this feature includes the
punching and printing of graphically printable punched characters on print lines one and three
of the card. Line one includes the first 64 characters and line three includes the last 16
characters (right justified). Extraneous characters are printed for non-graphic eight-bit codes.

If the INTERPRET PUNCH function is designated via the FUNC parameter in either a DCB or
DD statement, an existing output data set will be interpreted as well as punched.

Note: The output must be 80 bytes, or 81 bytes if first character control is being used.

Processing Performed by the Output Writer

Figure 30 provides a general description of the procedures followed by the standard writer.
When writing a writ.er routine, items can be deleted, modified, or added to some of these
procedures, depending on the characterlstics of the data set(s). However, the procedures must
be consistent with operating system conventions.

Saving Register Cont(~nts: Upon entering the writer program, the program must save the contents
of the general registers, as previously discussed.

Obtaining Main Storage for Work Areas: In this work area, switches are established, record
lengths and control characters are saved, and space is reserved for other uses. Storage is
obtained by a GETMAIN macro instruction.

Processing Input Data Set(s): To process a data set, the writer must get each record individually
from the input data set, transform (if necessary) the record format and the control characters
associated with the record in accordance with the output data set requirements, and put the
record in the output data set. Data set processing by the standard writer can be considered in
three aspects.

t. The first consideration is what must be done before actually obtaining records, from an
input data set. If the output device is a printer, provision must be made to handle the
two forms of record control character that may accompany a record in an output data
set. The printer is designed so that if the output data set records contain machine control
characters, a record (line) is printed before the effect of its control character is
considered. However, if USASI control characters are used in the output data set records,
the control character effect is considered before the printer prints a record.

Thus, if all the input data sets do not have the same type of control characters, it may be
desirable to avoid overprinting of the last line of one data set with the first line of the
following data set. If the records of the input data set have machine control characters
(mcc) and the output data set records are to have USASI control characters (acc), the
standard writer produces a control character that indicates one line should be skipped
before printing the first line of output data.

138 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

If the input data set records have acc and the output data set records are to be written
with mcc, the standard writer prints a line of blanks before printing the first actual output
data set record. Following this line of blanks, a one-line space is generated before the
first output record is printed. The preceding "printer initialization" procedure (or a
similar one based on the characteristics of the data sets) is recommended.

2. After an input data set is properly opened and any necessary printer initialization
completed, the writer obtains records from the input data set. The locate mode of the
GET macro instruction is used. As each record is obtained, its format and control
character must be adjusted, if necessary, to agree with that required for output.

Note: The MACRF field of the input data set DCB should be checked to see if GET in
locate mode can be used. If not, the MACRF field must be overridden.

Since the output data set is previously opened by another routine (job management), a
writer routine must adhere to the established conventions. The data set is opened to
receive records from the PUT macro instruction operating in the locate mode. For
fixed-length record output, the length of the records in the output data set is obtained
from the DCBLRECL field of the DCB. If an input record length is greater than the length
specified for the records of the output data set, the standard writer truncates the
necessary right-hand bytes of the input record. If the input record length is smaller than
the output record length, the standard writer left-justifies the input record and adds
blanks on the right end to give the correct length.

When the output record length is variable and the input record length is fixed, the
standard writer constructs each output record by adding control character information (if
necessary) and variable record control information to the output record. The record
control information is four bytes long and the control character information is one byte
long. Both additions are made to the left end of the record. If the output record is not at
least 18 bytes long, it is further modified by padding bytes (blanks) added to the right
end of the record. If the output record length does not agree with the length of the
output buffer, the standard writer makes the proper adjustment.

3. The third aspect is an end-of-input data set routine. The standard writer handles output
to either a card punch unit or a printer unit, as required. Output to an intermediate
device such as a tape unit is considered in light of the ultimate destination (e.g., punch or
printer). If proper consideration is not given, all records from a given data set may not be
available on the output device until the output of records from the next data set is started
or until the output data set is closed. When the output data set is closed, the standard
writer automatically puts out the last record of its last input data set.

Punch Output: Normally, when the standard writer is using a card punch as the output device,
the last three output records are not in the collection pockets of the punch when the input
data set is closed. To put out these three records with the rest of the data set and with no
intervening pauses, the writer provides for three blank records following the actual data set
records.

Printer Output: When the standard writer uses a printer as an output device, the last record of
the input data set is not normally put in the output data set when the input data set is closed.
To force out this last record, the writer generates a blank record that follows the last record of
the actual data set.

MisceUaneous job Management 139

The problem of overprinting the last line of one data set by the first line of the following
data set must also be considered. Depending on the combination of input record control
character and required output record control character, a line of blanks and a spacing control
character may be used either individually or in combination to preclude overprinting. (Note: If
overprinting is desired for some reason, control characters in the data set records
themselves may be used to override the effect (but not the action) of the previously
described solutions to overprinting.)

Closing Input Data Set(s): After the standard writer finishes putting out the records of an input
data set, it closes the data set before returning control to the system output writer. All input
data sets must be closed.

Releasing Main Storage: The storage and buffer areas obtained for the writer must be released
to the system before the writer relinquishes control. The FREEMAIN macro instruction should
be used for this.

Restoring Register Contents: The original contents of general registers 0 through 12, and 14
must be restored. The RETURN macro instruction is used for this. To inform the operating
sytem of the results of the processing done by the writer, a return code is placed in general
register 15 before control is returned. If the writer routine terminates because of an
unrecoverable error on the output data set, the return code is 8~ otherwise, the return code is
O. Unrecoverable input errors must be handled by the data set writer.

140 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Entry F rom Control
Program Module
IEFSD070

Modify Input Record
Length For Control
Character

Translate Control
Character For Output
If Required

- - - - ~ ... __ D_C_B_E_X_itr-R_O_u_t_in_e_~

No Generate Control

Set Message If Invalid
Control Character

Figure 30. General Logic of Standard External Writer Routine

No

I{Printer, Adjust
Control Character
Attachment

Buffering For End Of
Input Data Set (Put Out
Last Record)

Return To
Module IEFSD070

Miscellaneous job Management 141

Output Separation

The External writer uses an output separator facility to write separation records prior to
writing the output of each job. These separation records make it easy to identify and separate
the various job outputs that arc written contiguously on the same printer or card punch device.

Characteristics of an Output Separator

The external writer can be used by a problem program to channel its output eventually to a
printer or punch. When this is done, however, the output stream goes uninterruptedly from one
job to another, making it difficult to separate the output of one job from that of another,
unless output separation is provided for.

The output separator facility of the system provides a means of identifying and separating
the output of various jobs processed by the same output unit. To do this, the separator writes
separation records to the system output data set between the writing of each section of a job's
output.

For data processed by the external writer, the IBM output separator or the user's own
output separator can be used.

The external writer standard separator function operates under control of the external
writer. The external writer separator program must reside in the link library (SYS1.LINKLIB) or
the LP A library (SYS 1. LP ALIB). Its name, IEFSD094, must be included as a parameter in the
output writer procedure - the second part of the P AR)\1 field in the EXEC statement - to
separate job output. (A cataloged procedure for the writer is fully described elsewhere in this
chapter). The type of separation provided by the separator depends on whether the output is
punch-destined or printer-destined.

Punch-Destined Output: The external writer provides three specially punched cards (deposited
in stacker 1) prior to the punch card output of each job. Each of these separator cards is
punched in the following format:

Columns 1 to 35 hlanks
Columns 36 to 43 johnamc
Columns 44 to 45 hlanks
Column 46 output classnamc
Columns 47 to 80 blanks

Printer-destined Output: The external writer provides three specially printed pages prior to
printing the output of each job. Each of these three separator pages is printed in the following
format:

• Beginning at the channel 1 location (normally near the top of the page), the jobname is
printed in block character format over 12 consecutive lines. The first block character of
the 8-character jobname begins in column 11. Each block charaeter is separated by 2
blank columns.

• The next 2 lines are blank.
• The output c1assname is printed in block character format covering the next 12 lines.

This is a I-character name, and the block character begins in collumn 55.
• The remaining lines to the bottom of the page are blank.

In addition to the above, a full line of asterisks (*) is printed twice (overprinted) across the
folds of the paper. These lines are printed on the fold preceding each of the three separator
pages, and one the fold following the third page. This feature provides easy separation of job
output in a stack of printed pages.

For printer-destined output with the IBM-supplied separator, a channel 9 punch should be
included in addition to the channel 1 punch on the carriage control tape or in the forms control
buffer (FeB). The channel 9 punch controls the location of the line of asterisks and should
correspond to the bottom of the page. To print the line of asterisks on the fold of the pages,
the printer registration should be offset.

142 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

Writing an Output Separator Program

The External writer separator program can be written by using the information provided by
the External writer and by conforming to the requirements explained below. The separator
program, when added to the link library (SYS1.LINKLIB) or the LPA library (SYS1.LPALIB), is
invoked by specifying its name as a parameter in the EXEC statement· of the output writer
cataloged procedure.

Parameter List: The output writer provides the separator program with a 4-word parameter list
of needed information. When the program receives control, register 1 contains the address of a
4-word parameter list, and the parameter list contains the following:

Bytes 0-3

Bytes 4-7
Bytes 8-11
Bytes 12-15

In this word, byte 0 contains switches that indicate the type of output unit, and bytes 1-3
are reserved for future use.
This word is the address of the output DCB (data control block).
This word is the address of an 8-character field containing the jobname.
This word is the address of a I-character field containing the output classname.

In the parameter list, the three high-order bits of byte 0 are switches that the separator
program uses to determine the type of output unit. The first bit to the left is set to O. The
second bit is set to 1 if the output unit is a punch device or a tape device with punch-destined
output. The third bit is set to 1 if the output unit is a printer or punch device. The resulting bit
combinations indicate the following:

011. 2520 or 2540 punch device
001. 1403,1443, or 3211 printer device
010. tape device with punch-destined output
000. tape device with printer-destined output

The parameter list also points to the DCB for the output data set. This DCB is established
for the queued sequential access method (QSAM), and is already open when the separator
program receives control.

The address of the jobname and the address of the output classname are provided in the
parameter list so that this information may be used in the separation records written by the
separator program.

Programming Conventions: When using the External writer, the separator program, if specified
in the External writer cataloged procedure, is brought in by a LINK macro instruction issued by
the output writer. The separator program can be any size, but a program over 8K may affect
the region requirement of the output writer.

Caution: Since the separator program operates with a privileged protection key, but in the
program mode, the separator program must insure data protection during its execution.

When writing a separator program, the following programming conventions must be
observed:

• The program must conform to the standard linkage conventions.
• The program must use the PUT macro instruction in the locate mode to write separation

records on the output data set. (This method is required by the QSAM DCB that is open
for the output data set.)

• The program must establish its own synchronous error exit routine, and the address of
this routine must be placed into the DCBSYNAD field of the output DCB. This gives
control to the error exit routine in case an un correctable I/O error occurs while writing
the program's output.

MisceUaneous job Management t 43

• The program should use the RETURN macro instruction to return control to the output
writer. Before returning, the program must free any main storage it obtained during its
operation; and the program must place a return code (binary) in register 15. The return
codes signify:
o - Successful operation.

8 - Unrecoverable output error (should be set if the error exit routine is entered).

Output from the Separator Program

The separator program can write any kind of separation identification. The jobname and the
output classname for each job are available through the parameter list for inclusion in the
output, if desired" An IBM-supplied routine can be used that constructs block characters
(explained later). As many separator cards can be punched or as many separator pages can be
printed as necessary.

The output from the separator program must conform to the attributes of the output data
set. These attributes, which can be determined from the open output DeB pointed to by the
parameter list, are:

• Record format (fixed, variable, or undefined length)
• Record length.
• Type of carriage control characters (machine, USASI, or none).

For printer-destined output, the separation records should be begun on the same page as the
previous job output, or any subsequent page should be skipped to. However, the separator
program should skip at least one line before writing any records, becaUlse in some cases the
printer is still positioned on the line last printed.

After completing the output of the separation records, the separator program should write
sufficient blank records to force out the last separation record. This also allows the error f!xit
routine to obtain control if an uncorrectable output error occurs while writing the last record.
The requirements are:

• One blank record for printer-destined output.
• Three blank records for punch-destined output.

U sing the Block Character Routine

For printer-destined output, the separator program can use an IBM-supplied routine to
construct separation records in a block character format. This routine is a reenterable module
named IEFSD095, and resides in the module library SYS1.AOSBO.

The block character routine constructs block letters (A to Z), block numbers (0 to 9), and a
blank. The program furnishes the desired character string and the construction area. The block
characters are constructed one line position at a time. Each complete character is contained in
12 lines and 12 columns; therefore, a block character area consists of 144 print positions. For
each position, the routine provides either a space or the character its elL

The routine spaces 2 columns between each block character in the string. However, the
routine does not enter blanks between or within the block characters. The program must
prepage the construction area with blanks or other desired background before entering the:
block character routine.

144 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

To use the IBM-supplied block character routine, the separator program executes the CALL

macro instruction with the entry point name of IEFSD095. Since the block characters are
constructed one line position at a time, complete construction of a block character string
requires 12 entries to the routine. Each time, the address of a 4-word parameter list should be
provided in register 1. The parameter list must contain the following:

Bytes 0-3

Bytes 4-7

Bytes 8-11

Bytes 12-15

This word is the address of a field containing the desired character string in EBCDIC
format.
This word is the address of a full word field containing the line count as a binary integer
from 1 to 12. This represents the line position to be constructed on this c&ll.
This word is the address of a construction area in main storage where the routine will
construct a line of the block character string. The required length in bytes of this
construction area is 14n-2, where n represents the number of characters in the string.
This word is the address of a fullword field containing, in binary, the number of characters
in the string.

MisceUaneous job Management 145

146 OS/VS2 System Programming Ubr.lry: Job Management (VS2 Re!e'lse 3)

Indexes to OS!VS2 publications are consolidated in the
OS/VS2 Master Index, GC28-0693, and the OS/VS2 Master
Index of Logic, GY28-0694. For additional information
about any subject listed below, refer to other publications
listed for the same subject in the Master Index.

abortive disconnect feature 111
affinity, CPU 127
affinity mask, in PPT 127
ALLOCATE command 23
allocating space to a region 127-129
allocation conflicts 22
allocation services 13-20
allocations, order of 13
AMASPZAP service aid program

master job control language data set 130
program properties table 127

assigning special program properties 126-127
automatic command processing 113-114

batch scheduling 98-102
block character routine 144-145
bypassing password protection 126

CANCEL command
external writer 133

card separator 109
catalog, private

removing in-use attribute from 28
restriction on unallocating 27

cataloging
dynamically allocated data sets 26

class, JES2 job 89-90
internal reader 87
JOB 89
message 107
output 106

commands, JES2 97
concatenated group

assigning in-use attribute to 29
forming dynamically 29
removing in-use attribute from 28
unallocating 27

concatenation, dynamic
defined 29

configuration
JES2 83-85
multi-access spool 120

control value
defined 24
exceeded 24

conversion, JES2 96
CPU affinity 127
CPU identifier 127

DAIR (Dynamic Allocation Interface Routine) 21
data set integrity 127
data set name allocation text units 42-53
data set organization

returned by dynamic allocation 26
DCB attribute text units 54-63
DD DYNAM statements 24
DD statement

external writer cataloged procedure 135
ddname

allocation of 24
unallocation of 27

ddname allocation text units 73
deconcatenation, dynamic 29

defined 29
dedicated line 109
direct access space

allocation defaults 25
disposition, data set

changing during un allocation 28
dummy data sets

order of allocating 13
used to satisfy a request 22-23

DYNALLOC macro instruction 21,30
dynamic allocation

compared to step allocation 25
error reason codes 37-39
example of 33-34
flag settings 40-41
functions available with 21
informational reason codes 37
of a ddname 24,21
of dsname 21
parameter structure 30-32
text unit keys 41
verb codes 41

Index

Dynamic Allocation Interface Routine (DAIR) 21
dynamic concatenation 29
dynamic concatenation text units 70
dynamic deconcatenation 29
dynamic deconcatenation text units 71
dynamic information retrieval 30
dynamic information retrieval text units 74
dynamic unallocation 27
dynamic unallocation text units 67-69
DYNAMNBR parameter 24

enqueuing, JES2 job 89-96
environmental conflicts, allocation 22
ERROR CODE field

place in parameter structure 31
purpose 31

error reason codes
in parameter structure 31
meanings 37-39

exclusive use of data sets 126
EXEC statement

external writer cataloged procedure 134
execution, JES2 92
execution batch jobs 98-102

definition 98
execution batch processing program 98-102

definition 98
how to submit input 101
JES2 recognition of input 101

execution batch scheduling 98-102
initialization parameters 101
system generation parameters 101

existing allocations 22-24
changing parameters of 23
choosing among 23
eligible 22-23
ineligible 22-23

External Writer 131-145
canceling 133
cataloged procedure 133-136
modifying 132-133
starting 132
stopping 133

failing job
resumption or termination of 125

FLAGS 1 field
bit meanings 40
place in parameter structure 31
purpose 31

FLAGS2 field
bit meanings 40
place in parameter structure 31
purpose 32

Index 147

generation data groups
permanently allocated 29
removing in-use attribute from 28
unallocating 27

GETMAIN macro instruction
variable-length, as limited by REGION parameter 128

held data sets 107
If OLD 107
HOLD/NOHOLD options

overriding during unallocation 28

IASXWROO 133
IEALIMIT

effect on GETMAIN requests 127-129
IEFPROC 133
IEFRDER 133
IEFSDPPT 126
IEFZB4DO macro instruction 30,33
IEFZB4D2 macro instruction 33
in-use attribute

removing 28
indexed sequential data sets

allocation restriction 25
INFO CODE field

place in parameter structure 31
purpose 31

informational reason codes
in parameter structure 31
meanings 37

initialization, JES2 86
initialization, JES2 data sets, 86
initialization parameters, execution batch scheduling 101
initiator, JES2 logical 96
initiator cataloged procedure 97
nput Validation routine 35

programming considerations 35-36
installation-written exit routines

for IEALIMIT (to limit region size) 127
Internal Reader (JES2) 87-89,84

control 88
RDR procedure 88

INTRDR 131
ISAM data sets

allocation restriction 25

JCL conversion 96
JCT 93
JES2

commands 97
configuration 83-85
conversion 96
execution 96
generation 83-84
initialization 86
patching facility 114-118
queue 89
SMF 97
start 86
statement 115,116
stop 86

JES2GEN 83
job accounting field scan exit 93
job class 89-90
Job Control Table (JES2) 93
job entry subsystem (see also JES2)

START command 130
system data sets for communication with 130

job journal
journal merge routine 126
journal write routine 126
purpose 125
records in 126

Job Output Elements (JOEs) 102-103
job queueing 87
job scheduler restarting support 125-126
JOB statement scan 92-94
job submitting (JES2) 87-89

JOEs (Job Output Elements) 102-103

KEY field
place in parameter structure 31
purpose 32

LEN field
place in parameter structure 31
purpose 32

LENGTH field
place in parameter structUfl:! 31
purpose 31

limiting user region size 127-129
IBM-supplied exit routine 128
installation-written exit routine 128

local devices 84
log data sets

controlling the processing of 129
SYSOUT class of 130

log, system 129-130
LOGCLS initialization parameter 129,130
LOG LMT initialization parameter 129,130
LOGON flow 118

master job control language data set 130-131
MCS (multiple console support)

hardcopy 130
membername

specified for a dynamic unallocation request 27
message class 103-104
MODIFY command

external writer 132
modify, external writer 132-1l33
monitoring, JES2 97
mount attribute 13-15
mounting volumes

UADS authorization for 26
MSGCLASS 103-104
MSTRJCL data set 130
multi-access spool 118-122

configuration 120
job submission and queuing 121
output 122
RJE 122
SMF 122
starting 120
TSO 122

MULTI-LEAVING 84
used with remote job entry 109

new allocations 24
no-data-set-integrity program property 126
NOJOURN initialization parameter 125
non-dedicated line 109
non-JCL dynamic allocation functions 64-66
non-private volume

nonspecific request for 17-18
nonsharable attribute 14

defined 16
nonspecific volume requests

types of 17 -18
nonswappable program property 126

output, controlling 102
output class

overriding during unallocation 28
output routing 106
output selection criteria 104
output separation 142-145

card 109
print 108

output writer (see External Wriiter)

PARM field
place in parameter structure 31
purpose 32

148 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

password protection, bypassing 126
passwords 26
patch name to CSECT reference 118
patching facility 114-118
patching facility statement 114-118
permanently concatenated attribute

how assigned 29
properties of 29

permanently concatenated groups 29
unallocating 27

permanently resident attribute 14-15
permanently resident volumes

order of allocating 13
PPT (see Program Properties Table)
printer

JES2 131
JES3 131

priority, JES2 scheduling 90-92
priority aging (JES2) 92
priority calculation 90-92
private attribute 14-15
private volumes

defined 14
nonspecific request for 17-18

privileged programs 126
program name, in PPT 126
program properties, in PPT 126
Program Properties Table (PPT) 126-127

content 126-127
format of entry in 126-127

CPU affinity mask 127
program name 126
program properties 126
protection key 127

how to change or add an entry 127
protection key, in PPT 127
public attribute 14-15
public volumes

defined 14
punch

JES2 131
JES3 131

punched card separator 109

RDR procedure 88
REGION parameter, effect on GETMAIN requests 127
region size, limiting user 127-129
remote configuration (JES2) 84-85
remote job entry 109-111

how to start 110
remote station, use of 109
remote terminal 109

altering sequence of operations 111
use of 109

remote work station 85
use of 109

remote work station designation
overriding during unallocation 28

removable attribute 14-15
request block fields, dynamic allocation 31
reserved attribute 14-15
reserved volumes

order of allocating 13
restarts, types of 125

automatic checkpoint 125
automatic step 125
continue 125
deferred checkpoint 125
system 125

restarting support, job scheduler 125-126
retrieving allocation information 30
return codes, dynamic allocation 33
RJE 109-111

JES2 109
multi-access spool 122

scheduling priority, JES2 90-92
separator, output 142-145
serialization of allocations 13

setup 104
sharable units

order of allocating 13
SMF 97

JES2 111
multi-access spool 122

SMF accounting records 111
special program properties, assigning 126-127
spool configuration (JES2) 85
SPZAP patch statement 115-118
ST ART command

external writer 132
started task flow 118
starting JES2 86
starting multi-access spool 120
STDWTR 131
step allocation

compared to dynamic allocation 25
STOP command

external writer 133
stopping JES2 86
storage volumes

. defined 14
submitting jobs 87-89
SVC 99 21
SW A (scheduler work area)

reconstruction of 125
SYSIN data sets

order of allocating 13
SYSOUT data sets

order of allocating 13
unallocating 28

system data sets
for communication with job entry subsystem 130

system generation parameters, execution batch scheduling
101
system log 129-130

altering the operation of 129-130
default operation 129

system output
received using remote job entry 109

system task 126
SYS l.HASPACE 85

task id
used to identify allocation resources 28

TCAM message control program 127
teleprocessing devices

order of allocating 13
TEXT POINTERS field

place in parameter structure 31
purpose 32

TEXT UNIT field
place in parameter structure 31
purpose 32
subfields defined 41

text units for removing the in-use attribute based on task-id
72
time sharing logon 118
TSO

multi-access spool 122

unallocation
dynamic 27-28
of resources held for reuse 24

unit description
dynamic allocation defaults 25

updating MSTRJCL data set 130-131
use attribute 14-15
user region size, limiting 127-129

VATLST 14
VERB CODE field

place in parameter structure 31
purpose 31
settings defined 41

VIO data sets
order of allocating 13

Index 149

volume attributes 14-15
volume requests

how satisfied 17 -19
type of volume assigned 14-15

volume sharing 14

workstation, remote 85
write-to-log (WTL) 129
writer

JES2 131
JES3 131

WRITELOG command 129
writer, external (JES2) 131-141

logic flow 141
WTL (write-to-log) macro instruction 129

XWTR 132

150 OS/VS2 System Programming Library: Job Management (VS2 Release 3)

(J

s.

OS/VS2 System Programming Library:
Job Management

GC28-0627-0

Your views about tlzis publication may help improve its usefulness: this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. 1"or more direct handling of such requests, please contact your
IB/VI representative or the [8114 Branch Office serving your locality.

Possible topics for com men tare:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? __ ~ ___ ~__ ~_~_~ __ ~ ~~ ______ ~ _____________ ~~ ___ ~_

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

GC28-0627-0

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

o
(f)
........
<
(f)
I\.)

(f)
-0
r

(f)
W
-.....J
o
W
9

~
:::1
.-+
Cl)
Q.

:::1

C
(f)

~

G)
()
I\.)

co
6
m
I\.)
-.....J

6

OS/VS2 System Programming Library:
Job Management

GC28-0627-0

Your views about this publication may help improve its usefiilness,' this form
will he sent to the author's department for appropriate action. Using this
form to request system assistance or additional pUblications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? ____ ~_~~ _____ ~~ ______ . _____ ~_~ _______ ~ _______ _

READER'S
COMMENT
FORM

Number of latest Technical Newsletter (if any) concerning this publication: __ ~~~_~ _________ _

Please indicate your address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

G C28-0627 -0

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

()

~

~
"T'I
o
0::
»
0"
:J

()'Q

c:
:J
CD

I
Fold Fold

- - - - -- - - - - - --~

~:~~ne:s R-~~~-Y-M-~-I----

L~o postage ~tamp necessary_~~_~~~~d in the U.S.A .
. _-----'

Postage will be paid by:

International Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class I
Permit 81
Poughkeepsie
New York

I
I

I
I

---II
I ---II ---II
I
I

I
I
I

----------------~
Fold

llrn~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

o
en --< en
N
en
""0
r

en
w
-.....J
o
W
~

~
::J
rl
CD
0..

C)
(")
N
00
6
m
N
-.....J

6

OS/VS2 System Programming Library:
Job Management

GC28-0627-0

Your views about tlzis publication may help improve its usefulness; this form
willlJe sent to the author's department for appropriate action. Using this
form to req uest system assistance or additional publications will delay response,
however. For rnore direct handlin!? of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? _____ __ ... _______ _

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your address in the space below if you wish a reply.

[hank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

GC28-0627-0

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department D58, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

I
Fold

--.--------~

First Class
Permit 81
Poughkeepsie
New York

I
I

I
I

I ___ .1

I ----I
--•• 1

I
I
I

I
----------------~

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

o
Ct:l

<
Ct:l
N
Ct:l
-c
r

Ct:l
W
'-J
a
W
m

G)
o
N
co
6
m
N
'-J

6

