Program Product

SC23-0059-5
File No. S370-36

MVS/ Extended Architecture
stem Pro ramming

Library 3

Inltlallzatlon and Tuning

MVS/System Product - JES3
Version 2 Release 2.1

Program Number 5665-291

|
IRTH
II|||||I
<‘l|

||||||||




O

O




SC23-0059-5
File No. S370-36

MVS/Extended Architecture

System Programming

Library: JES3 .
Program Product Initialization and Tuning

Program Number 5665-291

i

4|I|
[ LL




| Sixth Edition (December 1987)

This is a major revision of SC23-0059-4. See the Summary of Amendments following the
contents for a summary of the changes made to this manual. Technical changes or
additions to the text and illustrations are indicated by a vertical line to the left of the
change.

This edition applies to Version 2 Release 2.1 and to all subsequent releases of
MYVS/System Product-JES3 (5665-291) until otherwise indicated in new editions or
Technical Newsletters. The previous edition still applies to the JES3 component of
MVS/System Product Version 2 Release 1.5 (5665-291) and may now be ordered using the
temporary order number ST00-2163. Changes are made periodically to the information
herein; before using this publication in connection with the operation of IBM systems,
consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that are
applicable and current.

| References in this publication to IBM products or services do not imply that IBM intends
| to make these available in all countries in which IBM operates. Any reference to an IBM
| product in this publication is not intended to state or imply that only IBM’s product may
| beused. Any functionally equivalent product may be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
"been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1987

o

N
/




Preface

This book is intended for any JES3 complex that runs Multiple Virtual
Storage/Extended Architecture (MVS/XA). JES3 system programmers or anyone
who is responsible for installing, initializing, customizing, or tuning JES3 should
use this book. This book provides information about:

® Preparing for the installation of JES3

e Initializing and tailoring JES3
o Tuning JES3

Required Books
Before reading this book, you should read the following books:
®  MVS/Extended Architecture JES3 Introduction, GC23-0049

® MVS/Extended Architecture Conversion Notebook, GC28-1143
®  MVS/Extended Architecture JES3 Conversion Notebook, SC28-1412

Organization of this Book
This book contains two parts: Initialization and Tuning Guidelines, which contains

the book’s first eleven chapters, and Initialization Reference, which contains the
twelfth chapter and two appendices.

Preface 1il




Part I: Initialization and Tuning Guidelines

1V MVS/Extended Architecture SPL: JES3 Initialization and Tuning \

// \\“
Chapter 1, “Planning for JES3” lists what your installation plan should k’/
address and introduces you to the process of initializing and customizing
JES3. This chapter introduces factors that affect JES3 performance and

provides an overview of the JES3 tuning process.

Chapter 2, “JES3 Job Management” describes the different phases of JES3
processing. It describes how JES3 initialization statements and user exits
influence the way JES3 handles jobs during each phase of processing (except
converter/interpreter (C/I) service, which the next chapter explains).

Chapter 3, “Defining and Managing C/I Service” describes how to define the
functions needed for JES3 converter/interpreter (C/I) service. This chapter
also explains how to influence C/I service using user exit routines, how to
update the procedure libraries used by C/I service, how to tune C/I service,
and how to recover from C/I functional subsystem address space failures.

Chapter 4, “Defining and Managing Spool Data Sets” describes how to
allocate and format spool data sets, define spool space allocation units, and
define spool partitions. This chapter also explains how to tune the spool
configuration and how to recover from spool I/O errors.

Chapter 5, “Defining Consoles and Message Routing” describes how to define
and manage consoles. This chapter explains the types and functions of
consoles in an MVS/JES3 installation. This chapter also describes how you
can control message traffic.

Chapter 6, “Defining and Managing JES3 Resources” describes how to define
checkpoint data set(s), the JES3 step library, I/O devices, and volumes. This
chapter also explains how to initialize the IBM 3850 Mass Storage System
(MSS) and discusses how JES3 manages resources.

Chapter 7, “Defining and Managing JES3 Mains and Storage” describes how
to define and manage JES3 mains and storage. This chapter also discusses
partitionable processor complexes.

Chapter 8, “JES3 Remote Job Processing” discusses the use of and features
of binary synchronous communication (BSC) remote job processing and
systems network architecture (SNA) remote job processing.

Chapter 9, “JES3 Networking” explains how to add your installation to a job
entry network and how to initialize your installation to send and receive jobs
over a network.

Chapter 10, “JES3 Start-Up and Initialization” describes the different ways
you can start JES3. This chapter also describes how to customize the JES3

start procedure, and how to test your JES3 initialization stream.

Chapter 11, “JES3 Recovery” discusses the internal recovery procedures of
JES3 and steps you must take to recover from hardware or software failures.




Part II: Initialization Reference

How to Use this Book

Chapter 12, “Initialization Statement Reference” explains the format and
parameters of JES3 initialization statements.

Appendix A, “RMT Option Statements” describes the statements that you can
code to generate a remote terminal program for programmable terminals.

Appendix B, “Remote Terminal Bootstrap (RTPBOOT)” shows the object
code for the program that you can use to load into storage the 1130 RTP
program.

To use this book you need not read it from cover to cover. Depending on your
knowledge of JES3 and your information needs, you can read selected chapters or
even selected topics within a chapter. The first time you come to this book,
however, you should read the preface, the table of contents, the figure list, and
Chapter 1. This will help you understand the type of information that the book
contains and the organization of the information.

The task you are doing will determine which parts of the book you should read:

If you are preparing to install JES3, read Chapter 1, “Planning for JES3.” It
gives an overview of the installation requirements.

If you are defining JES3 job management policy for your installation, read
Chapter 2, “JES3 Job Management.” This chapter explains how to use JES3
initialization statements to define policies for job interpretation, resource
allocation, job scheduling and selection, and the processing of job output.
The following chapter includes details about the information you need to
define policies for job interpretation (converter/interpreter service).

If you are defining or tuning converter/interpreter (C/I) service, read

Chapter 3, “Defining and Managing C/I Service.” This chapter explains how
to define the JES3 global address space and/or C/I functional subsystem
address spaces to handle JES3 C/I service without constraining private area
virtual storage. It also explains how to update the procedure libraries used
during C/I service.

If you are defining spool data sets, read Chapter 4, “Defining and Managing
Spool Data Sets.” This chapter explains how to allocate and format spool
data sets, and how to use spool partitioning to increase spool reliability,
availability, and serviceability.

If you are defining JES3 resources, such as the JES3 checkpoint data set(s),
the JES3 step library, I/O devices, volumes, processors, and storage, read:

— Chapter 5, “Defining Consoles and Message Routing”
— Chapter 6, “Defining and Managing JES3 Resources”
— Chapter 7, “Defining and Managing JES3 Mains and Storage”

These chapters explain how to use initialization statements to define and tune
those resources.

Preface V




Vi

o If you are defining remote work stations, read Chapter 8, “JES3 Remote Job
Processing.” This chapter describes how to use JES3 initialization statements
to define both binary synchronous communication (BSC) remote work
stations and systems network architecture (SNA) remote work stations.

o If you are defining programmable remote work stations, besides reading
Chapter 8, “JES3 Remote Job Processing,” you should also read
“Generating Remote Terminal Processing Programs,” Appendix A, “RMT
Option Statements,” and Appendix B, “Remote Terminal Bootstrap
(RTPBOOT).”

e If you are defining your installation as part of a job entry network, read
Chapter 9, “JES3 Networking.”

o If you are changing the JES3 start procedure, read the topics “Starting JES3”
and “Initializing JES3” in Chapter 10, “JES3 Start-Up and Initialization.”

e If you have changed the initialization stream, read “Testing Your
Initialization Stream,” in Chapter 10, “JES3 Start-Up and Initialization.”
This section describes how to use the initialization stream checker utility to
test the validity of the new initialization stream.

o If you are defining JES3 recovery policy or are defining the dynamic system
interchange (DSI) procedure, read Chapter 11, “JES3 Recovery.” If you are
trying to recover from spool 1/O errors, read “Recovering From Spool 1/O
Errors,” in Chapter 4, “Defining and Managing Spool Data Sets.”

e If you are tuning JES3, refer to the chapter that describes the resource you
are tuning.

Many tasks require that you code JES3 initialization statements. These
statements, defined in Chapter 12, “Initialization Statement Reference,” enable
you to define to JES3 your installation’s job management policies and the
resources that JES3 can use. Within the chapter, statement descriptions appear in
alphabetical order with the statement name appearing at the top of each page.
This arrangement lets you quickly find a statement description without going to
the index.

Many statement parameters influence or change the values of other initialization
parameters. For example, a particular parameter coded on one statement may
override a parameter coded on another statement. Figure 10-4, in

Chapter 10, “JES3 Start-Up and Initialization,” identifies statement parameters
that affect each other.

If you specify an invalid subparameter on specific JES3 initialization statements,
JES3 substitutes the subparameter’s default value and continues to run. To find
out which initialization statements and subparameters select defaults, see

Figure 10-5 in Chapter 10, “JES3 Start-Up and Initialization.”

As a general rule, do not use generic terms, such as ALL or NONE, as variable
names when coding JES3 initialization statements.

MVS/Extended Architecture SPL: JES3 Initialization and Tuning

o

\/



Publications Referenced by this Book

Throughout the text, this book refers to other books. Most of these references
use shortened book titles. For example, the shortened title JES3 User
Modifications and Macros refers to the book MVS/Extended Architecture System
Programming Library: JES3 User Modifications and Macros. The full book title
and order numbers of all referenced books follow the shortened titles.

The first list contains the full title and order number of all referenced JES3
publications. Besides providing the name and order number of each book, this
list also gives a short description of the information contained in the book.

Following the list of JES3 publications is a list of referenced non-JES3 books.
This list shows the shortened title of each book (if applicable) and the book’s full
title and order number.

If this book references another book by its full title, the word none appears in the
table where a shortened title would normally appear. In the column next to the
word none is the book’s full title and order number.

Related JES3 Publications

®  MVS/Extended Architecture JES3 Introduction, GC23-0049

The Introduction describes JES3 from an external point of view, emphasizing what
JES3 is and how you can use it. This book provides a knowledge base that makes
the information in the rest of the JES3 library more meaningful.

o MVS/Extended Architecture JES3 Logic Library Vols. 1 - 11: 1LY28-1529,
LY28-1531, L'Y28-1533, LY28-1535, L'Y28-1537, LY28-1539, LY28-1541,
LY28-1543, LY28-1545, LY28-1547, LY28-1549

These eleven volumes can help you understand the details of JES3’s organization
and how individual JES3 modules work. Vol. 1: Logic Overview provides a
high-level explanation of how JES3 works. Volume 1 can help you initialize and
tuning JES3. Vol. 11: Logic Reference contains module description summaries,
data area description summaries, and control block chaining diagrams, among
other reference materials. You can use the Logic Library as a directory for
getting into the program listings.

o MVS/Extended Architecture Message Library: JES3 Messages, GC23-0062

This book describes all JES3 messages. The messages are organized by message
number. This book describes the causes of each message, accompanying actions
by JES3, and suggests appropriate responses. This book also lists the names of
the detecting, issuing, and containing modules for each message and, where
applicable, includes problem determination information.

®  MVS/Extended Architecture Operations: JES3 Commands, SC23-0063
This book describes how to operate JES3. It includes directions for using

consoles; for starting, stopping, and restarting JES3; for controlling jobs, devices,
volumes, and data; and for using utility programs. The book explains each JES3

Preface Vil




viil

operator command in detail. The book also contains an appendix that lists all
JES3 commands, and shows where to look for commands.

® MVS/Extended Architecture Operations: JES3 Command Syntax, SX23-0012 -

This booklet contains a summary of all JES3 commands. Detailed descriptions
are absent, but the booklet shows the complete syntax of every JES3 command.

® MVS/Extended Architecture JES3 Diagnosis, LC28-1370

This book describes tools that you can use for debugging JES3. Included are
descriptions of commands that collect information about JES3 processing, details
about how you can obtain dumps and traces, and explanations of the contents of
dumps and traces.

® MVS/Extended Architecture System Programming Library: JES3 User
Modifications and Macros, LC28-1372

This book can help you tailor JES3 beyond the point you could reach by using
JES3 initialization statements, commands, and control statements. The book

includes descriptions of JES3 user exits, guidelines for writing dynamic support
programs, and descriptions of JES3 macro-instructions.

MVS/Extended Architecture SPL: JES3 Initialization and Tuning

N



Related Non-JES3 Books

Short Title

Full Title and Order Number

Assembler Language

Bulk Data Transfer Facility

Catalog Administrator’s Guide

Checkpoint/Restart

Configuration Program Guide
Data Management

Data Management Macros
JCL

MYVS Initialization and Tuning

NetView Installation Guide

Print Services Facility
Recovery and Reconfiguration
RMF Monitor 1 and 2
Service Aids

System Commands

System Generation Reference

System Logic Library Vol. 2

Assembler H Version 2 Application Programming: Language
Reference, GC26-4037

Assembler H Version 2 Application Programming Guide, GC26-4036

MVS/Bulk Data Transfer Facility: Initialization and Network
Definition, SC28-1314

MVS/Bulk Data Transfer Facility: Operator’s Guide, SC28-1322

MVS|/Extended Architecture Catalog Administrator’s Guide,
GC26-4138

MVS|Extended Architecture Checkpoint/Restart, GC26-4139

MVS|Extended Architecture Configuration Program Guide and
Reference, GC28-1335

MVS/Extended Architecture System Programming Library: Data
Management, GC26-4149

MV S|Extended Architecture Data Management Macro Instructions,
GC26-4041

MYVS|Extended Architecture JCL User’s Guide, GC28-1351
MVS|Extended Architecture JCL Reference, GC28-1352

MV S|Extended Architecture System Programming Library:
Initialization and Tuning, GC28-1149

NetView Installation and Administration Guide, SC30-3360

Print Services Facility/ MV'S System PrograMer’s Guide,
SH35-0091

MVS|Extended Architecture Planning: Recovery and
Reconfiguration, GC28-1160

MVS|XA RMF Monitor 1 and 2 Reference and User’s Guide,
LC28-1556

MV S|Extended Architecture System Programming Library: Service
Aids, GC28-1159

MV S|Extended Architecture Operations: System Commands,
GC28-1206

MV S|Extended Architecture System Generation Reference,
GC26-4148

MV S/Extended Architecture System Logic Library: Volume 2,
LY28-1210

Preface 1X




VIAM SPG

,4 troduction m VTAM‘ . : i

o IBM 37‘74 and 3775 Operatmg Pracedures Gut, h, A

. Introducuon w0 VTAM GC27-6987

g Advanced Communwatmns Function for VTAM Verszon 3
Programmmg, 8023-0115

7 (GC35-0098

,IBM System/.i' 70 and 4300 Proce.vsors szhography, GC20~060

i

" Operator’s Lzbrary OSVS2 Remote Termmals, GC38-0228 -

L ¢ Systems Network Archztecture General lnformanon, GA27—3 102

"IBM 3480 Magneuc Tape Subsystem Planmng and Mtgratzon Guzde, o

X MYVS/Extended Architecture SPL: JES3 Initialization and Tuning




Program Products Referenced by this Book
This book refers to the following program products:
® Advanced Communication Facility/Virtual Telecommunication Access
Method (ACF/VTAM) Version 3 (5665-289) -- This book refers to this
program product as VTAM.

o MVS/Bulk Data Transfer (5665-302) and MVS/Bulk Data Transfer Version 2
(5665-264) -- This book refers to these program products as MVS/BDT.

o NetViewT™! (5665-362)
e Print Services Facility (5665-275)

o Time Sharing Option (TSO) Extensions (5665-285) -- This book refers to this
program product as TSO.

e Virtual Storage Personal Computing (VSPC) (5665-283)

Installed User Program Referenced by this Book
This book refers to the following Installed User Program:

o JES3 Monitoring Facility II (JMF II) (5796-PLW)

Your Role in Improving this Book

At the end of this book is a Reader’s Comment Form. This form is your means
to communicate with the writer of this book. Use this form to tell the writer
about problems that you have when using the book, to send the writer suggestions
about how to improve the book, or to tell the writer when there is something
about the book that you like. Your comments will help improve the quality of
this book.

1 NetView is a trademark of International Business Machines Corporation.
All rights reserved.

Preface X1




Xil MVS/Extended Architecture SPL: JES3 Initialization and Tuning

AN



Contents

Part I: Initialization and Tuning Guidelines

Chapter 1. Planning for JES3  1-1
Developing Your Installation Plan  1-1
Defining How JES3 Manages Resources and Jobs  1-2
Developing JES3 Performance Objectives  1-3
Installing JES3  1-3
Performing a System Generation 1-3
Executing the MVS Configuration Program  1-3
Initializing MVS  1-4
Maintaining JES3  1-4

Chapter 2. JES3 Job Management 2-1
Input Service  2-1
Reader Phase 2-1
Control Statement Processing Phase  2-2
Examining Job Control Blocks  2-5
Converter/Interpreter Service  2-5
Converter/Interpreter Phase  2-6
Prescan Phase 2-6
Postscan Phase 2-7
JES3 Resource Allocation 2-9 _
System Allocation Compared with MDS Allocation  2-9
Types of Setup  2-13
Initializing MDS  2-15
Operator Control of MDS  2-18
Job Selection and Scheduling  2-18
Job Selection Algorithm  2-18
Deadline Scheduling  2-20
Dependent Job Control  2-21
Controlling Job Selection  2-24
Controlling Job Scheduling  2-29
Output Service  2-32
Queueing Output  2-32
Scheduling Output  2-40
Writing Output  2-41
External Writers = 2-42
NJERDR 2-42
Internal Reader 2-42
Accessing Job Output Through TSO  2-44
Virtual Storage Personal Computing: Output Requirement  2-45
Output Service User Exits  2-45
Purge 2-46

Contents

Xiii




Chapter 3. Defining and Managing C/I Service  3-1
Setting Up C/I Service 3-2

Advantages to Using C/I FSS Address Spaces  3-2

Deciding How Many C/I FSS Address Spaces to Use and Where to Put

Them  3-3

Defining a C/I FSS Address Space  3-5

Defining the Maximum Number of CI and POSTSCAN DSPs  3-6
Controlling Jobs through C/I Service 3-9

Controlling Job Flow with User Exits 3-10

Assigning Jobs to the Appropriate Processor and Address Space for C/I

Service  3-11

Defining a Converter/Interpreter Options List  3-12
Managing the Scheduler Work Area  3-13

Creating SWA Space  3-13

Preventing a Job from Dominating the SWA  3-14

Preventing Abnormal Termination of JES3 or a C/I FSS Address Space
Monitoring and Modifying C/I Service  3-17

Keeping an Eye on C/I Service 3-17

Modifying C/I Service  3-18
Managing Procedure Libraries  3-20

Updating Procedure Libraries  3-21

Displaying the Status of Procedure Library Data Sets  3-22
Recovering from C/I FSS Address Space Failures  3-22

Chapter 4. Defining and Managing Spool Data Sets  4-1
Defining Spool Data Sets  4-1

Determining How Many Spool Data Sets You Should Allocate  4-2

Allocating Spool Data Sets  4-2

Formatting Spool Data Sets  4-3
Using Spool Partitions  4-5

Advantages to Spool Partitioning 4-5

Isolating Different Spool Data Types 4-6

Defining Spool Partitions  4-7

Defining Spool Partition Overflow  4-7

Specifying Spool Data Sets as Members of Spool Partitions 4-9

Specifying a Spool Partition for Spool Data  4-9

Determining the Order of Spool Partition Overrides  4-10

How the User Can Request a Spool Partition 4-11
Defining Spool Space Allocation Units  4-14

Defining a Track Group 4-14

Determining Track Group Allocation Sizes  4-17
Managing Spool Space  4-18

Adding or Deleting a Spool Data Set  4-19

Balancing the Work Load Across Spool Partitions  4-19

Deleting Held Output Data Sets Using JSSM  4-21

Freeing Spool Space Using the Dump Job Facility = 4-21
Recovering From Spool I/O Errors  4-21

Intermittent I/O Errors  4-22

Permanent I/O Errors  4-22

Replacing a Spool Data Set  4-24

Moving a Spool Data Set to Another DASD Volume  4-25

Chapter 5. Defining Consoles and Message Routing  5-1

XV MVS/Extended Architecture SPL: JES3 Initialization and Tuning

3-15

I




Defining Consoles  5-1
JES3 Console Management  5-8
MCS Console Management  5-9
Establishing Logical Associations  5-10
Changing the Status of a Console  5-12
Defining Console Authority  5-14
Entering Commands  5-16
Defining Program Function Keys 5-17
Defining Alternate Consoles  5-18
Defining a Time Limit for Console Messages  5-18
Defining the System Log  5-19

Defining Message Routing  5-21
Where and How Messages Originate  5-22
Where Messages Can Go  5-22
Understanding the General Path of a Message  5-23
JES3 Destination Classes and MVS Routing Codes  5-25
Two Types of Messages  5-26
Routing JES3 Messages to Consoles  5-26
Routing MVS Messages to Consoles  5-27
Message Routing Exceptions ~ 5-30
Diagnosing Misrouted Message Traffic  5-32
Retaining Action Messages  5-33
Suppressing the Display of Messages  5-33
Automating Message Processing  5-37

Chapter 6. Defining and Managing JES3 Resources  6-1
JES3 Data Sets  6-1
Allocating JES3 Data Sets  6-1
Allocating the JES3 Checkpoint Data Set(s) 6-2
Dynamically Allocating the JES3 Step Library  6-3
Determining the Size of the JCT Data Set  6-3
Identifying Resident Data Sets  6-4
Using System Catalogs 6-4
I/O Devices  6-5
Defining I/O Devices to JES3  6-5
Defining Process Modes  6-7
Running a Printer Under an Output Writer Functional Subsystem  6-8
Defining the Mass Storage System (MSS)  6-11
Grouping [/O Devices  6-19
Specifying Device Fencing  6-21
Using an MSS Drive as a Real DASD  6-21
Dynamically Reconfiguring I/O Devices  6-21
Volumes  6-22
How Resource Definition Affects JES3 Resource Management  6-23
I/O Device Management  6-24
Data Set Management  6-25
Data Set Integrity  6-27
Volume Management  6-30
Dynamic Allocation  6-31

Chapter 7. Defining and Managing JES3 Mains and Storage  7-1
Processor, Mains, and Storage  7-1

Defining Mains  7-1 _

Determining Storage Capacity  7-8

Contents

XV




xvi

Determining the Size of the JES3 Buffers  7-8
Determining the Size of the JES3 Buffer Pool  7-9 ()
Reducing the Amount of Common Service Area Used by JES3  7-10 R
Determining How Many Buffers to Allocate in the JES3 Auxiliary Address
Space 7-10
Reducing Page Fixing/Freeing for PBUFs  7-11
Using the Writer Output Multitasking Facility = 7-12
Restart Considerations  7-12
DSI Considerations  7-12

Chapter 8. JES3 Remote Job Processing  8-1
Binary Synchronous Communication Remote Job Processing =~ 8-1
Data Security Considerations  8-2
Data Compression  §-2
Operator Communications  8-2
Debugging Facilities  8-2
Initialization Statements that Affect BSC RJP  8-3
Generating Remote Terminal Processing Programs  8-4
Systems Network Architecture Remote Job Processing  8-5
SNA RJP Implementation of SNA Concepts  8-5
Function Management Presentation Services (FMPS)  §-8
JES3 to VTAM Interface  8-11
Initialization Statements that Affect SNA RJP  8-12
Basic Exchange Support  8-12
Exchange Support 8-13
Exchange and Basic Exchange Initialization Considerations  8-13

Chapter 9. JES3 Networking  9-1 NS
Networking Protocols  9-2
Converting Networking Protocols  9-2
Types of Nodes  9-3
Defining the Home Node 9-4
Defining a Remote Node  9-5
Specifying a Communications Path for Indirectly-Connected Nodes  9-6
BSC Considerations  9-7
Defining the Buffer Size  9-7
Specifying Passwords  9-7
Defining BSC Communication Lines  9-9
Logical Senders: How JES3 Names Them  9-12
SNA Considerations  9-13
Changing Node Definitions 9-13
How Restarts Affect Networking Jobs  9-13
Rerouting Jobs and SYSOUT 9-14
Networking Job Numbers  9-15
Defining a Network Message Class  9-15
Defining a Network Console  9-15
Defining a Command Routing Table 9-15
Monitoring the Job Entry Network with User Exits 9-16
Monitoring Files Sent via TSO/E TRANSMIT or CMS SENDFILE 9-18
Deleting Files from the Spool  9-18

Chapter 10. JES3 Start-Up and Initialization  10-1 P
Starting JES3  10-1 \&J
Hot Start  10-1

MYVS/Extended Architecture SPL: JES3 Initialization and Tuning




Hot Start with Analysis  10-2
Warm Start  10-3
Warm Start with Analysis  10-4
Warm Start to Replace a Spool Data Set  10-5
Warm Start with Analysis to Replace a Spool Data Set  10-5
Cold Start  10-5
Local Start  10-7
Initializing JES3  10-8
Modifying the JES3 Cataloged Start Procedure  10-8
Modifying or Creating a JES3 Initialization Stream  10-11
Testing Your Initialization Stream  10-18
How to Execute the Initialization Stream Checker 10-18
Storage Requirements  10-20
Abends 10-20

Chapter 11. JES3 Recovery 11-1
JES3 and C/I Functional Subsystem Failsoft 11-1
Job Recovery 11-2
Function or DSP Recovery  11-3
Alternate CPU Recovery 11-4
Reconfiguring a Processor Complex  11-5
Checkpoint/Restart  11-6
Restarting A Job  11-6
Operator Restart Considerations  11-7
Restarting JES3 After a Failure 11-9
Restarting the Global Processor 11-9
Assigning Global Processor Functions to a Local Processor 11-10
Restarting a Local Processor  11-10
JES3 Checkpoint Data Set(s) 11-10
Recovering from Permanent Errors on the JES3 Checkpoint Data Sets
Recovering from a Checkpoint Data Set Qut-of-Space Condition  11-12
Dynamic System Interchange 11-12
Disabling the Old Global 11-13
Starting a Local Main as a Global 11-13
Defining Dynamic System Interchange Procedures 11-14
Recovering from CTC Failures 11-16
BSC RJP Recovery  11-17
Recovering from Output Writer FSS Failures  11-18
Recovering an IBM 3480 Tape Drive for a Stand-Alone Dump  11-19

Part II: Initialization Reference

Chapter 12. Initialization Statement Reference  12-1
Coding Rules for Initialization Statements  12-1
Notation for Initialization Statement Format Descriptions  12-3
ACCOUNT (Job Accounting) 12-6
BADTRACK (Bypass Defective Tracks)  12-8
BUFFER (JES3 Spool Work Buffers) 12-9
CIPARM (Converter/Interpreter Parameters) 12-14
CLASS (JES3 Job Class Definition) 12-17
COMMDEFN (Communication Subsystem Interface Definition
Records) 12-24
* (Comment Statement) 12-25
COMPACT (Compaction Table Definition) 12-26

Contents

11-12

Xvil




CONSOLE for MVS/BDT Console Support  12-28

CONSOLE for JES3 Operator Consoles (JES3-managed) 12-29

CONSOLE for JES3 Operator Consoles (MCS-managed) 12-36

CONSOLE for RJP Operator Consoles  12-38

CONSTD (Console Service Standards)  12-40

DEADLINE (Deadline Type Definition) 12-44

DEVICE (Define Processor CTC Connections) 12-46

DEVICE (Network BSC line or CTC Connection) 12-50

DEVICE (Define I/O Devices) 12-51

DYNALDSN (Integrity Requirements for Dynamically Allocated Data
Sets) 12-75 .

DYNALLOC (Dynamically Allocate Data Sets and Devices) 12-76

ENDINISH (End of Initialization Stream) 12-78

ENDJSAM (End of JES3 I/O Statements)  12-79

FORMAT (Format Spool Data Set) 12-80

FSSDEF (Functional Subsystem Definition) 12-82

GROUP (Job-Class Group Definition) 12-86

HWSNAME (High Watermark Setup Names) 12-92

INTDEBUG (Initialization Debugging Facility) 12-97

JES3LIB (JES3 Library Dynamic Allocation)  12-98

MAINPROC (Define a JES3 Processor) 12-100

MSGROUTE (MVS Message Route Table) 12-109

NIJECONS (JES3 Networking Message Class Assignment) 12-112

NIJERMT (JES3 Network Node Definition) 12-113

OPTIONS (JES3 Options) 12-118

OUTSERY (Output Service Defaults and Standards) 12-122

PFK (Program Function Key) 12-129

PROC (Frequently Used Procedures) 12-131

RESCTLBK (Resident Control Block)  12-132

RESDSN (Resident Data Set Names)  12-133

RJPLINE (BSC Remote Job Processing Line)  12-134

RIPTERM (BSC Remote Job Processing Terminal)  12-137

RIJPWS (SNA Work Station Characteristics)  12-147

SELECT (Job Selection Mode) 12-151

SETACC (Specify Accessibility to Direct-Access Volumes)  12-157

SETNAME (Set JES3 Device Names) 12-158

SETPARAM (Set MDS Parameters) 12-161

SETRES (Mount Direct-Access Volumes) 12-168

SPART (Spool Partition Definition) 12-169

STANDARDS (Installation Defaults and Standards) 12-174

SYSID (Define the Default MVS/BDT Node) 12-184

SYSOUT (SYSOUT Class Characteristics)  12-185

TRACK (Preformatted Spool Data Set)  12-195

Appendix A. RMT Option Statements  A-1
RMT Control Cards A-2
RMT Update Control Cards  A-3
RMT Update Cards A-3
RMT Parameter Descriptions A-4
The System/360 Model 20 BSC RTP Program  A-4
&CCT Parameter A-4
&CMPTYPE Parameter A-5
&CORESIZ Parameter A-5
&ERRMSGN Parameter  A-5

XVili MVS/Extended Architecture SPL: JES3 Initialization and Tuning

o
(

N

4



&LINESPD Parameter A-5
&MLBFSIZ Parameter A-6
&NUMBUFS Parameter A-6
&NUMTANK Parameter A-6
&PDEV(1) Parameter A-7
&PRTCONS Parameter A-7
&PRTSIZE Parameter A-7
&RADR(1) Parameter A-8
&RDEV(1) Parameter A-8
&SUBMOD Parameter A-8
&UADR(1) Parameter A-8
&UDEV(1) Parameter A-9
&WDEV(1) Parameter A-9
&WTOSIZE Parameter A-9
&XPARENT Parameter A-9
RMT Parameters for the 2922 Remote Work Station RTP Program
The System/360 (Except Model 20) and System/370 BSC RTP
Program  A-10
&ADAPT Parameter A-10
&CCT Parameter A-11
&CMPTYPE Parameter A-11
&CORESIZ Parameter A-11
&ERRMSGN Parameter A-11
&LINESPD Parameter A-12
&MACHINE Parameter A-12
&MLBFSIZ Parameter A-12
&NUMBUFS Parameter A-12
&NUMTANK Parameter A-13
&PADR(n) Parameter A-13
&PDEV(n) Parameter A-14
&PRTSIZE Parameter A-14
&RADR(n) Parameter A-14
&RDEV(n) Parameter A-15
&UADR(n) Parameter A-15
&UDEV(n) Parameter A-16
&WADR(1) Parameter A-16
&WTOSIZE Parameter A-16
&XPARENT Parameter A-16
The 1130 RTP Program  A-17
&CLOCK Parameter A-17
&CMPTYPE Parameter A-17
&DELAY Parameter A-18
&FULLIST Parameter A-18
&LINESPD Parameter A-18
&MACHSIZ Parameter A-19
&MLBFSIZ Parameter  A-19
&PN1442 Parameter A-19
&PRFOTLW Parameter A-19
&PR1132 Parameter A-20
&PR1403 Parameter A-20
&RD1442 Parameter  A-20
&RD2501 Parameter A-20
&RTPLORG Parameter A-21
&TRANPRN Parameter A-21

A-10

Contents  XIX




The 1130 Loader Program  A-21
&FULLIST Parameter A-22
&MACHSIZ Parameter A-22
&RTPLORG Parameter A-22

The System/3 RTP Program  A-23
&COMP Parameter A-23

&DEBUG Parameter A-23

&DIAL and &DIALI1 Parameters A-23
&MACHSIZ Parameter A-24

. &MLBFSIZ Parameter A-24

&PASSWD Parameter A-24
&PC(n) Parameter A-24
&PRTCONS Parameter A-25
&S3BSCA Parameter A-25
&S3CMDS Parameter A-26
&S3FORML Parameter A-26
&S3NPUNS Parameter A-26
&S3NRDRS Parameter A-26
&S30BJDK Parameter A-27
&S3SIP Parameter A-27
&S3TRACE Parameter A-27
&S3XPAR Parameter A-27
&S31442 Parameter A-28
&S35424 Parameter A-28
&S35471 Parameter A-28
&S35475 Parameter A-29
&S396COL Parameter A-29
Output  A-29

System/3 96-Column Card Output  A-30

Appendix B. Remote Terminal Bootstrap (RTPBOOT) B-1

Index X-1

XX MVS/Extended Architecture SPL: JES3 Initialization and Tuning

://\\‘
N



Figures

2-1.
2-2.
2-3.

4-3.

5-8.

5-10.

6-1.
6-2.
6-3.
6-4.
6-5.

6-6.
6-7.
6-8.
8-1.
8-2.
8-3.
8-4.

Overview of Job Flow to Input Service  2-3

JES3 Job Selection Environment  2-26

Output Parameter Overrides Using a Direct OUTPUT JCL
Statement  2-35

Example of Output Parameter Overrides Using Direct and Default
/[*FORMAT Statements  2-36

Example of Output Parameter Overrides Using a Default OUTPUT JCL
Statement  2-38

Example of Output Parameter Overrides Using a Default //*FORMAT
Statement  2-39

Output Service User Exits  2-45

User Exits for Monitoring JCL Interpretation  3-10

Procedure for Selecting and Setting an Address Space JCL Statement
Limit 3-16

Sample Job Using IEBDG to Format a Spool Data Set 4-4

Spool Partition Overrides  4-11

Spool Partitions Used in Spool Partition Example  4-13

Record, Track, and Cylinder Characteristics for DASD Devices 4-16
Complex With JES3-managed and MCS-managed Consoles  5-4
Changing the State of a Console  5-13

Key to Abbreviations  5-13

JES3 Authority Levels  5-14

JES3 Commands Allowed from MCS-managed and MCS-only
Consoles  5-15

Authority Levels for Remote Consoles  5-16

Sample Log Entries  5-19

Simplified Path of a Message Issued from a Local Processor  5-23
Simplified Path of a Message Issued from a Global Processor  5-24
Valid Destination Classes and their Corresponding Routing

Codes  5-25

Default Value(s) for ALTPM = when MODE=COMP  6-8
Default Values for ALTPM = When MODE=FSS  6-8

The MSS Table Build Program Job Control Statements  6-12
Subgeneric Groups  6-20

JES3-Managed, MVS-Managed, and Jointly Managed Device
Determination  6-24

JES3-Managed and System-Managed Data Set Determination  6-26
JES3 Volume Management 6-30

JES3 and System Handling of Allocation Requests  6-31

Overview of SNA Environment for JES3  8-7

JES3-VTAM Interface  8-8

SCS Function Characters Supported by FM Inbound Routines  8-9
SCS Function Characters Supported by FM Outbound Routines  8-9
Parameter Requirements for the NJERMT Statement 9-4

Figures XXi




XXii

9-2.

9-4.
9-5.
9-6.
9-7.
10-1.
10-2.
10-3.

10-4.
10-5.
10-6.
10-7.
12-1.
12-2.
12-3.

12-4.
12-5.
12-6.
12-7.
12-8.
12-9.

12-10.

12-11.
A-1.

How JES3 Creates a Logical Sender Name  9-12

The Number of Logical Senders Created and Suffixes Used for Valid
Combinations of the MAXLINE and STREAM Parameters 9-13
Network User Exit Summary 9-16

Job Related User Exits 9-17

SYSOUT Related User Exits  9-17

Command Related User Exits 9-18

Characteristics of Global Processor Starts  10-7

Sample JES3 Cataloged Start Procedure  10-9

Description of the Statements in the JES3 Cataloged Start

Procedure  10-9

Related Initialization Statements  10-12

Invalid Subparameter Default Selections  10-15

Structure of the JES3 Initialization Stream  10-17

Data sets Required to Execute the Initialization Stream Checker  10-19
JES3 Initialization Statements and Their Functions  12-4

1/O Devices Supported as JES3 Consoles  12-30

Valid Keywords by Device for the DEVICE Initialization

Statement  12-54

I/O Generic Device Type Names Supported in a JES3 Complex  12-56
Tape Drive Device Types Eligible for Allocation  12-93
HWSNAME Statements for 3400-series Tape Drive

Configurations 12-94

Parameter Combinations and Their Effects on Messages Issued from a
Local Process 12-110

Parameter Combinations and Their Effects on Messages Issued from a
Global Processor  12-111

DEVICE Statement Defaults and Parameters Associated with the
RIJPTERM Statement  12-138

CONSOLE Statement Parameters Associated with the RJPTERM
Statement  12-139

JOBMIX Default Values 12-154

RTP Program Identification Cards  A-2

MVS/Extended Architecture SPL: JES3 Initialization and Tuning

a

A
\‘k/



Summary of Amendments

Summary of Amendments
for SC23-0059-5
MVS/System Product - JES3 Version 2 Release 2.1

This major revision applies to MVS/Extended Architecture System Programming
Library: JES3 Initialization and Tuning, SC23-0059-5.

A new chapter, “Defining Consoles and Message Routing,” is added in this
revision. This chapter defines the types and functions of consoles and describes
how to define and use consoles to control your installation. This chapter also
provides information about how to control message traffic.

o MCS consoles can now coexist with JES3. That is, you can use MCS
consoles attached to the JES3 global to enter most JES3 commands as well as
MYVS commands. Previously, you could not enter JES3 commands from
MCS consoles.

e Information is added about defining consoles to MVS. You no longer define
devices during system generation (SYSGEN). Instead, you define devices in
members of SYSI.PARMLIB and in the input data set for the MVS
configuration program.

® A new section, “Defining MCS Consoles,” describes MCS console support.
This section lists the subset of JES3 commands that you cannot enter from
MCS consoles.

¢ Information is added about using MCS consoles to send MVS commands to
another processor.

o Information is added about the JES3 and MVS action message retention
facilities. You can use either action message retention facility to retrieve
unresolved action messages.

® A new section, “Defining Message Routing,” describes how you can control
message traffic using JES3 destination classes and MCS routing codes. You
can specify up to 95 JES3 destination classes to control the display of JES3
messages and as many as 128 routing codes to control the display of MVS
messages. You can map MVS routing codes to JES3 destination classes to
customize message traffic in your installation.

Information is added about creating Scheduler Work Area (SWA) space for jobs.

You can now control which jobs will have space created above 16-megabytes in
storage using the CIPARM initialization statement.

Summary of Amendments  XX1ii




| Information is added about overriding the JCL statement limit on the
| STANDARDS initialization statement using user exit IATUX41.

| Information is added about using an automation product, such as the IBM
| NetViewT™2 Program Produet, to automate the processing of messages.

| A new keyword, THWSSEP = is added to the STANDARDS initialization
| statement. This keyword allows you to establish device allocation preferences
| when a job uses high watermark setup or tape high watermark setup.

| You can now suppress the display of JES3 action messages as well as the display
| of JES3 non-action messages using the MVS Message Processing Facility.

| The following JES3 initialization statements are updated in this release:

BUFFER
CIPARM

CONSOLE (MVS/BDT)
CONSOLE (Non-RJP)
CONSTD

DEVICE

DYNALLOC

GROUP

MAINPROC
MSGROUTE
OUTSERV

RIPLINE

RIPTERM

SELECT

SETNAME
STANDARDS

| 2 NetView is a trademark of International Business Machines Corporation.
| All rights reserved.

XX1V  MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Summary of Amendments

for SC23-0059-4

MYVS/System Product - JES3 Version 2 Release 1.5
as Updated March 31, 1986

This major revision applies to MVS/Extended Architecture System Programming
Library: JES3 Initialization and Tuning, SC23-0059-3. The changes or additions
to this manual support the SNA/NJE Enhancement, the truncation of blanks, and
increased process mode capability.

To allow SNA/NJE networking capability, two new parameters (TYPE = and
BDTID =) are added to the NJERMT initialization statement.

Chapter 9, “JES3 Networking,” is reorganized to incorporate such SNA/NJE
considerations as rerouting of jobs, conversion from BSC to SNA protocol, and
effects of restarting JES3 and MVS/BDT.

Two new parameters (the TRUNC= parameter on the BUFFER initialization
statement and the TRUNC = parameter on the SYSOUT statement) allow an
installation to control the truncation of trailing blanks on SYSOUT data.

The DEVICE initialization statement is updated to accommodate changes to the
function of the PM = parameter and to include the new ALTPM = parameter.
Both parameters allow new flexibility when defining process modes.

Also, a new parameter (OUTSVFCT =) included on the OUTSERY initialization
statement allows output service to process multiple jobs simultaneously.

Summary of Amendments

for SC23-0059-3

MVS/System Product - JES3 Version 2 Release 1.5
as Updated December 31, 1985

This major revision applies to MVS/Extended Architecture System Programming
Library: JES3 Initialization and Tuning, SC23-0059-2 and includes minor technical
changes and editorial changes, as well as information for the JES3 support of
31-bit addressing and some RAS improvements.

Added is information concerning:

Running mixed JES3 release levels in the same complex
Coding conventions for writing initialization statements
Networking job numbers

Console support

User exits

In addition, the chapter which was entitled “Using the Dump Job Facility to
Convert from JES3 SP1.3.1 to SP1.3.4” has been removed from this book and
now appears as an appendix in MVS/Extended Architecture JES3 Conversion
Notebook. Chapters are renumbered as a result of this change.

Summary of Amendments XXV




XXVi

MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Part I: Initialization and Tuning Guidelines

Part I includes the following chapters:

Chapter 1, “Planning for JES3”

Chapter 2, “JES3 Job Management”

Chapter 3, “Defining and Managing C/I Service”

Chapter 4, “Defining and Managing Spool Data Sets”
Chapter 5, “Defining Consoles and Message Routing”
Chapter 6, “Defining and Managing JES3 Resources”

Chapter 7, “Defining and Managing JES3 Mains and Storage”
Chapter 8, “JES3 Remote Job Prdcessing”

Chapter 9, “JES3 Networking”

Chapter 10, “JES3 Start-Up and Initialization”

Chapter 11, “JES3 Recovery”

Part I: Initialization and Tuning Guidelines




MVS/Extended Architecture SPL: JES3 Initialization and Tuning



| Chapter 1. Planning for JES3

i

You must make many decisions and perform many tasks to install, initialize, and
customize JES3. You must:

1. Develop an installation plan
2. Define how JES3 manages resources and jobs
3. Develop performance objectives for JES3

This book helps you make the necessary decisions and perform the required tasks.
Before installing JES3 however, you must make sure that your installation has the
hardware needed to support JES3. You should also plan the layout of your I/O
devices and learn how to install JES3. The Program Directory, a document you
receive with JES3, explains how to install JES3.

If you are installing JES3 for the first time, you must define it to MVS. This
means you must become familiar with the MVS system generation process and the
macros that define JES3.

Developing Your Installation Plan

You should develop a well thought out plan to perform a smooth and orderly
installation of JES3. Your plan should address questions such as:

What hardware should I use and how should I configure it?
o Must I execute the MVS configuration program (MVSCP)?
® Must I change any members of SYS1.PARMLIB?

e How do I install JES3?

Only after you have developed this plan should you proceed to install JES3.

You must carefully plan the configuration of hardware and software required to
satisfy your installation’s needs. You should also consider ways to reconfigure
your complex early in your planning. You can initially define MVS/XA processor
complexes in such a way that will allow reconfiguration without having to restart
JES3. For more information about reconfiguring a processor complex, see
“Defining Mains” in Chapter 7, “Defining and Managing JES3 Mains and
Storage.” For information about planning an I/O configuration that supports
reconfiguring and for instructions on the reconfiguration process, see
MVS|Extended Architecture Planning: Recovery and Reconfiguration.

Chapter 1. Planning for JES3 1-1




l

JES3 provides great flexibility in the location of equipment in your machine
room. For example, you can use additional operator consoles to physically
separate the operational functions (card I/O, printing, tape setup) across multiple
systems and locate them in areas most convenient to your local work flow. You
can locate your card readers, punches, and printers in the job dispatching area
where programs are submitted for execution and output is returned. You can
place your mountable I/O units in an area that is convenient to the tape and disk
library. In addition, you can place an operator console at the tape and disk
librarian’s desk to receive library volume fetch requests. You can then place the
processing units in some other area that is free of the congestion typical of the
peripheral units.

Defining How JES3 Manages Resources and Jobs

You code JES3 initialization statements to define how you want JES3 to manage
resources and jobs. These statements tell JES3 how to manage the following
resources:

Mains (global and local)

I/O devices

Main and external storage

The system log

Communication lines and/or protocols
Operator communication

JES3 allows you to use a subset of the I/O devices that MVS supports. For a list
of the I/O devices that JES3 allows you to use, see the following JES3
initialization statements in Chapter 12, “Initialization Statement Reference”:

Statement Devices listed
CONSOLE consoles

DEVICE consoles, magnetic tape drives, printers, punches, readers, direct access devices, and
remote terminals

RJPTERM remote binary synchronous communication (BSC) work stations

The job management information that you code on initialization statements
specify how you want JES3 to:

Process job input

Interpret JES3 control statements
Select and schedule jobs for execution
Process job output

Recover from failures

1-2 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




. Developing JES3 Performance Objectives

|

Installing JES3

Many factors that you can control affect JES3 performance. Among the factors
that you should consider when stating your performance objectives are:

Hardware used

Availability of resources

JES3 work load

Job processing options selected

b

You should develop a set of performance objectives that state what you expect of
JES3.

After you have developed your performance objectives and install JES3, you can
tune it. Tuning, however, is not something that you do just one time. It is an
iterative process; you measure performance and make adjustments, measure
performance and make more adjustments, and so forth. Each chapter contains
information about tuning the JES3 function that you are defining.

Before you can initialize JES3, you must first initialize MVS. To initialize MVS
you must:

Perform a system generation

Execute the MVS configuration program
Update the MVS SYS1.PARMLIB data set
Initialize MVS

| Performing a System Generation

l
[
|
l
l

System generation is an MVS procedure that you use to construct the MVS
operating system. When you perform a system generation, you must code the
JES macro that defines the JES3 libraries to the generated system. For more
information about the JES3 macro and the system generation process, see
MVS/Extended Architecture System Generation Reference.

Executing the MVS Configuration Program

The MVS configuration program (MVSCP) provides a way for you to define I/O
configurations to MVS. You can also use MVSCP to request I/O configuration
data for the JES3 initialization stream checker.

MVSCP, with other program enhancements, enables you to maintain one copy of
the MVS nucleus to support multiple I/O configurations. For more information
about MVSCP, see MVS/Extended Architecture MVS Configuration Program
Guide and Reference.

Chapter 1. Planning for JES3 1-3



I
I
I
I
l

l
|
|
|
I
l

|

Initializing MVS

An operator can specify certain system parameters during MVS initialization or
you can specify system parameters in an MVS data set named SYSI.PARMLIB.
The purpose of SYSI.PARMLIB is to provide many initialization parameters in a
pre-specified form in a single data set, and thus minimize the need for operator

entry of parameters during MVS initialization.

To use JES3 as the primary job entry subsystem, you must specify JES3 in
member IEFSSNxx of SYSI.PARMLIB. Otherwise MVS will default to
TIEFSSNO0 which specifies JES2. You must also define all consoles in your
installation in the CONSOLxx member of SYSI.PARMLIB to ensure console
integrity. See MVS/Extended Architecture System Programming Library:
Initialization and Tuning for information about how to use SYS1.PARMLIB.

Maintaining JES3

From time to time, you may receive updates or enhancements for your JES3
product. Although IBM delivers JES3 and MVS service in the same manner, the
installation requirements can differ. You must apply JES3 service to all mains in
your JES3 installation at the same time to avoid unpredictable results.

1-4 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

N
.

i S
o



Chapter 2. JES3 Job Management

Input Service

Reader Phase

JES3 job management consists of the following phases:

Input service
Converter/interpreter service
Resource allocation

Job selection and scheduling
Output service

Purge

This chapter describes how each phase contributes to job management and
discusses how you can use JES3 initialization statements and user exits to tailor
job management. Although this chapter discusses the purpose of user exits,
MVS|Extended Architecture System Programming Library: JES3 User
Modifications and Macros discusses how to code user exits.

Input service, the first phase of JES3 job management, reads jobs and places each
job into a queue for subsequent processing by other phases. Input service consists
of two phases:

® Reader phase
e Control statement processing phase

The reader phase reads jobs (JCL and input stream data) and stores the jobs on a
spool data set. The only jobs not read by the reader phase are jobs from an
internal reader and demand select jobs. These jobs are read directly by the
control statement processing phase. Jobs can come from a card reader, a tape
unit, a disk reader or from a remote work station. The reader phase treats jobs
from a remote work station as though the job came from a card reader.

Figure 2-1 shows the flow of jobs to the reader phase.

Chapter 2. JES3 Job Management 2-1




Control Statement Processing Phase N
N /‘
After the reader phase completes execution, the control statement processing e
phase receives control. This phase analyzes JES3 control statements, checks

RACF authorization, if required, and writes each job to the JES3 job queue. This

phase also reads jobs from the internal reader.

If the job contains no //*PROCESS control statements, the control statement
processing phase defines the job as requiring the standard sequence of scheduler
elements (SEs). The standard sequence is:

Converter/interpreter (CI)

Main device scheduler and generalized main scheduling (MAIN)
Output service (OUTSERYV)

Purge (PURGE)

If the job contains a //*MAIN control statement with the UPDATE parameter
specified, the control statement processing phase adds the DISABLE SE (before
the MAIN SE) and the ENABLE SE (after the MAIN SE) to the job’s
processing.

If the job contains one or more //*PROCESS statements, the control statement

processing phase defines the job as requiring the sequence of scheduler elements

named on the //*PROCESS statements.

You can use user exit IATUX17 to modify the sequence of scheduler elements. RS
For information on using user exits, see MVS/Extended Architecture System
Programming Library: JES3 User Modifications and Macros.

Figure 2-1 shows job flow during the control statement processing phase.

2-2 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




LOGON SYSOUT File Tape Disk Card | Remote
START/ From Reader Reader Reader @ | Work
MOUNT SYSOUT Batch Station
Demand Internal Remote
Select Reader Job
Processing
v
INPUT
Service
Reader
Phase
Control
Statement
Processing
Phase
Figure 2-1. Overview of Job Flow to Input Service

The control statement processing phase also determines which procedure library
should be used for the job. If the job contains a //*MAIN JES3 control
statement with the PROC parameter specified, the control statement processing
phase assigns the designated procedure library as the one to be used for the job.
If the PROC parameter is not specified, the control statement processing phase
assigns the default procedure library. The default procedure library is specified on
the STANDARDS initialization statement as follows:

e for an internal reader job, the INTPROC parameter
e for a started task, the STCPROC parameter
e for a TSO LOGON job, the TSOPROC parameter

For a batch job, the standard procedure library (IATPLBST) is the default.

Chapter 2. JES3 Job Management 2-3




If the PROC parameter specifies an invalid procedure id (procid), the job is TN
flushed from the system. If the job does not use any procedures (even if the ’
PROC parameter is specified), JES3 does not assign a default procedure library to
the job.

"/

Selecting a Processor for Job Execution

Sometimes a user may want to select the processor on which a particular job will
execute. For example, the job could need a feature or require an I/O device that
is unavailable to some processors or not defined to JES3. To be sure the job
executes on the right processor, the user can do one of the following:

e Code the SYSTEM parameter on the job’s //*MAIN statement.
e Assign the job to a job class that is enabled on only the required processor.

If the user has specified a processor by coding the SYSTEM parameter on the
/[*MAIN statement, the control statement processing phase assigns the job to
execute on the specified processor. Otherwise, the control statement processing
phase assigns the job to execute on a processor eligible for the job’s job class.
The SYSTEM = parameter on the CLASS initialization statement defines the
eligible processor(s) for a job class.

If no eligible processors are available, the job completes input service processing,
then waits until an eligible processor becomes available before starting C/I
processing.

Modifying JCL and JES3 Control Statements

After JES3 reads the input stream but before JES3 or MVS uses the information
specified in the input stream, JES3 user exits can verify, modify, add, or delete
information on:

e JOB, EXEC, DD, or OUTPUT JCL statements (except DD * or DD DATA
statements)

e JES3 control statements (statements that begin with //*) except //[*DATASET
or /[*ENDDATASET

To verify or change the JOB JCL statement, use user exit IATUX28. This exit
also allows you to remove the job from the system.

To verify or change the EXEC JCL statement or JES3 control statements, use
user exit IATUX33. This user exit also allows you to request that JES3 ignore
the statement.

To verify or change DD JCL statements, use user exit IATUX34. This user exit
also allows you to request that JES3 ignore the statement.

To verify or change an OUTPUT JCL statement or any JCL statements besides

those listed above, use user exit IATUX44. This user exit also allows you to
request that JES3 ignore the statement.

2-4 MVS/Extended Architecture SPL: JES3 Initialization and Tuning



Examining Job Control Blocks

After input service has built the control blocks needed to process a job, you can
use user exit IATUX29 to:

Examine or modify the Job Control Table (JCT)

Examine or modify the Job Description and Accounting Block (JDAB)
Examine or modify the Job Management Record (JMR)

Write to JESMSG (IATXISMG)

Through this user exit you can request that JES3 continue to process the job or
you can request that JES3 cancel the job.

Converter/Interpreter Service

Converter/interpreter (C/I) service controls the conversion of JCL statements to
internal text and then into control blocks. This service comprises primarily the
JES3 CI and POSTSCAN DSPs, the C/I subtasks under which the MVS C/I
routines run, and the initiator support routines.

C/I service controls the conversion and interpretation of a job’s JCL. The three
principal phases of C/I service are:

e  Converterfinterpreter phase: Uses the MVS C/I routines to convert and
interpret the JCL into scheduler control blocks. At this time, the scheduler
control blocks are created in the scheduler work area (SWA).

® Prescan phase: Creates job tables from the scheduler control blocks for use in
the postscan phase. At the end of the prescan phase, the scheduler control
blocks are moved from the SWA to the JES3 spool.

®  Postscan phase: Creates the job summary table for use in JES3 main device
scheduling (MDS).

You can move the converter/interpreter and prescan phases for some or all jobs
into one or more C/I functional subsystem (FSS) address spaces. A C/I FSS
address space contains many functions similar to a JES3 address space and can
operate on the global processor or any local processor. A job is processed in the
C/I FSS address space by a CI DSP through the prescan phase. Then, the
postscan phase of the job’s C/I processing takes place in the JES3 address space
on the global processor (hereafter called the JES3 global address space) under a
separate POSTSCAN DSP.

A POSTSCAN DSP also provides postscan processing for rescheduled jobs, such
as dependent job control (DJC) jobs for which at least one predecessor job has
not completed.

When a job enters the MAIN scheduler element, the JES3 initiator support
routines move the scheduler control blocks from spool to the SWA in the user’s
address space. You can modify the scheduler control blocks before they are
moved to the SWA using user exit routine IATUX26.

Chapter 2. JES3 Job Management 2-5




For detailed information about how you can set up and influence C/I service, see
Chapter 3, “Defining and Managing C/I Service.”

Converter/Interpreter Phase

The primary function of the converter/interpreter phase is to convert the JCL into
internal text, then interpret the internal text and create scheduler control blocks.

When the job segment scheduler (JSS) has a job that can be scheduled for C/I
processing, JSS determines whether a CI DSP in the JES3 global address space or
a C/I FSS address space is available for the job. You can select the processor
where the job will be scheduled for C/I service as well as whether the job is
eligible for C/I processing in the JES3 global address space by using user exit
IATUX46. If the initialization stream defines C/I FSS address spaces, you can
override JSS’s selection of an address space using user exit IATUX49. JSS
schedules the job to an available CI DSP based on the user exit routines’
responses.

A C/I subtask, operating under the direction of the CI DSP, links to the MVS
converter to read the JCL and to convert it to internal text. If the number of
JCL statements in a job exceeds the job JCL statement limit, the C/I subtask calls
user exit routine IATUX41 to see if the job should be canceled. If so, the job is
canceled from the system with print. (Operator messages refer to this type of
cancellation as the job being “express canceled.”) If the job is not to be canceled
and there are no JCL errors, the C/I subtask links to the MVS interpreter to
create the scheduler control blocks from the internal text.

The JES3 internal text and FIND routines are invoked as exits from the MVS
converter. JES3 user exit IATUXO3 is entered from the internal text exit, and
IATUXO02 is entered from the FIND routine. The JES3 SWA queue manager
routine is invoked as an exit from the MVS interpreter and the JES3 SWA
manager invokes the MVS SWA queue manager.

When the C/I subtask finishes its work, the job enters the prescan phase of C/I

service.

Prescan Phase

The primary function of the prescan phase is to create the intermediate job
summary table (IJS), the skeleton job volume table (JVT), and the data set name
locate table (LVS). These tables reflect job resource requirements extracted from
the scheduler control blocks created in the interpreter phase.

On entry to the prescan phase, the SETUP parameter on the STANDARDS
initialization statement is examined:

e If SETUP=NONE is specified (that is, JES3 is to do no preexecution setup
for the complex), JES3 does not build any tables.

e If you specify any value other that NONE on the SETUP= keyword, JES3
searches the scheduler control blocks to create the 1JS, JVT, and LVS.

Job setup is discussed later in this chapter.

2-6 MVS/Extended Architecture SPL: JES3 Initialization and Tuning



Postscan Phase

User exits IATUX04, IATUXO05, and IATUXO06 allow you to examine or change
job, step, and DD information, respectively. You can use these exits to examine
or change the information before processing begins (for example, you can examine
where SWA is in the initiator). For an installation with the mass storage system
(MSS) you may specify, via IATUXO04, that unit requests for MSS staging drive
groups (SDGs) are to be ignored for the job in question. You should modify
TATUX04 to allow allocation by SDG when using VSAM IDCAMS.

During the prescan phase, the JCL for the job is examined for PGM =JCLTEST
or PGM =JSTTEST. If PGM=JCLTEST is found on an EXEC statement, the
JCL is interpreted and the job is then canceled-with-print on completion of the CI
DSP. If PGM =JSTTEST is found on an EXEC statement, the job is processed
through the prescan and postscan phases, a printed format of the job summary
table (JST) is printed on the JESMSG data set, and the job is then
canceled-with-print on completion of the CI DSP. For more information on
JCLTEST and JSTTEST, see MVS/Extended Architecture JES3 Diagnosis.

At the end of the prescan phase, the scheduler control blocks, the 1JS, JVT, and
LVS are written to the JES3 spool. If the job is part of a DJC network and
requires a predecessor job to run, the job waits until the predecessor job
completes. Then, the job is rescheduled on the POSTSCAN DSP.

The IJS contains a header, step entries, and DD entries. One IJS DD entry is
created for each DD statement referencing a JES3 unit type identified in a
SETNAME or DEVICE initialization statement.

The skeleton JVT contains all volumes of any DD requests that were defined in
the JCL for a job. The JVT is not completed until all volumes of cataloged data
sets are known.

The LVS contains all data set names for which a catalog search must be made. If
JOBCAT or STEPCAT DD statements are included in the JCL for a job, entries
are created for each statement. JES3 uses this information to locate and set up
the job and step catalogs.

If the job was being processed by a CI DSP in a C/I FSS address space (whether
on the global processor or a local processor), the job is returned to the JES3
global address space for postscan processing. There the job is processed by a
POSTSCAN DSP (unless the job was cancelled during the earlier phases).

The functions of the postscan phase are to resolve cataloged data set references,
and to construct and modify the job summary table (JST) according to the
installation’s requirements.

Cataloged Data Set Resolution

Before the JST is created, JES3 accesses the system catalogs. If a LOCATE
(catalog search) request fails to find a data set name, the postscan phase calls user
exit ITATUXO07. Through this user exit, the system programmer can examine the
available data set information and, if necessary, supply the unit and volume
information.

Chapter 2. JES3 Job Management 2-7




JST Construction

When a job’s JCL explicitly calls for private catalogs to be used through the use
of JOBCAT and STEPCAT DD statements, C/I service utilizes MDS services to AN
setup those catalog requests. N

A request for an unavailable catalog volume causes the job to be canceled.

If a data set has been migrated (or is eligible to be migrated) by the Hierarchical
Storage Manager (HSM), the LOCATE request for that data set causes JES3 to
associate the data set with a set of volumes to which it can be recalled. HSM
limits the choice of volumes eligible for recall during LOCATE processing in
accordance with its space management algorithms. JES3 processing continues as
though the data set is recalled to all eligible volumes. However, the actual recall
does not occur until job execution when MVS issues a LOCATE request. At that
time, HSM determines which volume is the best choice to recall the data set to
and then recalls the data set to that volume.

In addition, whenever the response of a LOCATE request has been received, the
system programmer can use user exit routine IATUXI11 to inhibit printing of the
LOCATE request/response in the JESMSG data set.

After all LOCATE requests have been processed, the postscan phase constructs
the JST from the now complete IJS and JVT. The JST at this time contains a

complete profile of the job. To allow the system programmer access to the JST
before the CI or POSTSCAN DSPs relinquish control, the postscan phase calls
user exit IATUX09. The user exit routine can examine the information in the N
JST and then continue or terminate the job.

If high watermark setup (HWS) is specified on the SETUP parameter of the
STANDARDS statement, the postscan phase determines the minimum number of
devices required to run the job and modifies the JST appropriately. If

PGM =JSTTEST is specified on an EXEC statement, the postscan phase
produces a formatted version of the JST in the JESMSG data set and cancels the
job.

C/I Service Preparation for the Main Device Scheduler

Although the JES3 main device scheduler performs volume fetching and setup,
JES3 must first build the job summary table and the job volume table according
to the type of setup used for each job. You specify the type of job setup by
coding the SETUP parameter on the STANDARDS initialization statement or
the end user can override your specification by coding the SETUP parameter on
the //*MAIN statement in a job’s JCL.

You can have user exit IATUXO08 examine the setup requirements for each job
that uses job setup. Once coded, the user exit can modify the type of job setup or
fail a job before the main device scheduler receives control. See MVS/Extended
Architecture System Programming Library: User Modifications and Macros for a
complete description of user exit IATUXO08.

2-8 MVS/Extended Architecture SPL: JES3 Initialization and Tuning



JES3 Resource Allocation

JES3 provides a device management facility called the main device scheduler
(MDS) that can wholly or partially support the MVS allocation process. The
purpose of MDS is to satisfy job resource requirements (the devices, volumes, and
data sets needed) before and during job execution, thus allowing execution to
proceed without allocation delays. MDS also allows controlled multisystem
access to commonly accessible data sets in the loosely coupled environment.

You must choose whether to use MDS or use the operating system (which
controls the job execution) for the entire allocation process as each step begins
execution. If you choose MDS, you must then decide whether utilization of MDS
is to be partial (set up some jobs, some resources) or total (set up all jobs, all
resources).

System Allocation Compared with MDS Allocation

System Allocation

MDS and system allocation consider a job’s resource requirements at different
levels. System allocation considers job requirements one step at a time for the
processor executing the job; MDS considers the resource requirements for all the
steps in a job for all processors in the loosely-coupled complex. These two
approaches lead to the following differences between MDS and system allocation.

In systems that do not use MDS, jobs are presented to the operating system based
on criteria such as job class, priority, or workload mix. In these systems, a job’s
requirements are not known until the job entry subsystem selects the job for
execution, and a system initiator begins the step allocation process. At each job
step, system allocation attempts to satisfy the requirements for the step, in
contention with every other job step currently executing on the same processor. If
the requirements cannot be met, system allocation gives the operator the option of
canceling the job or allowing it to wait for resources. Thus, in a system that does
not use MDS, there may be jobs executing and other jobs waiting for resources.

The jobs waiting in system allocation hold critical resources (a system initiator, an
address space, data sets, and possibly devices). Holding these resources longer
than necessary makes it very difficult for the system programmer to determine
how many initiators should be started to keep the system fully utilized, because at
any given time, an unknown number of initiators may be waiting. MDS offers a
solution to this problem.

Main Device Scheduler (MDS) Allocation

With MDS, the resources (data sets, devices, and volumes) that a job requires are
already set up when the job is passed to MVS for execution. There should never
be an idle initiator caused by a job waiting for these resources. Setup occurs
while a job is in the JES3 address space, and the only system resource used while
the job is waiting is the JES3 queueing space. MDS helps the system make
maximum use of devices and allows jobs to run in a minimum amount of time
once they are passed to the system for execution.

Chapter 2. JES3 Job Management 2-9




The main device scheduler requests and verifies the mounting of the initial

volumes a job requires on each device before the job can be selected for execution N
(unless deferred volume mounting is specified in the JCL). After JES3 N
converter/interpreter service scans the JCL for required volumes and data sets and

after it determines the volumes required (by accessing the system catalog), the

volume fetch facility issues tape or disk volume request messages. If the system

programmer specifies ALLOCATE =MANUAL on the SETPARAM

initialization statement, JES3 puts the job into the volume-wait queue. The job

stays in the queue until the operator releases it.

JES3 can schedule, for each processor, a combination of jobs that will execute
without contention for both the sharable and nonsharable devices and data sets
attached to that processor. Because MDS considers the volumes and data sets for
a total job and for all systems in the complex, it has more information on their
utilization than does system allocation. Thus, MDS can determine the volume
and data set utilization for the combination of jobs running at one time on any
processor.

The JES3 default method of reserving devices on a total job basis (Job Setup)
may cause more devices to be used by a job than would be required under system
allocation. For example, because devices are initially set up on a job basis, a
device used in a later job step may be reserved (but not used) during all the prior
job steps. System allocation avoids this problem by allocating at the job step
level, and thus minimizing the number of devices used by a job.

Because setup occurs before job execution, JES3 cannot react to processing

dependencies that can occur between different jobs and between different steps in e
the same job. This limitation is particularly important when considering the W
cataloging and passing of data sets. JES3 cannot determine whether any

conditional job steps are skipped as a result of condition code processing. JES3

assumes that all job steps will execute. JES3 also counts the number of I/O

devices needed by each step. Another consequence of this limitation is that if the
VOLUME = (,RETAIN) parameter is specified in the JCL, all retained volumes

are treated as public, even though PRIVATE may have been explicitly specified

on the DD statement. Therefore, a private volume may end up being unloaded at

the end of a step even though RETAIN was specified. In such cases, the MVS

RETAIN message is issued.

Note: Mass storage volumes are not premounted by MDS; they are mounted by
MYVS.

The JES3 main device scheduler controls the volume fetching, allocation,
mounting, and deallocation of I/O devices associated with job execution on all
processors in a loosely-coupled complex.

MDS is divided into the following stages:

Volume fetch
Allocation

Volume verification
Breakdown

|
2-10 MVS/Extended Architecture SPL: JES3 Initialization and Tuning . l
\




Volume Fetch

Allocation

Volume fetch, the first phase of MDS, is performed for all jobs entering MDS.
This phase determines the volumes required by the job and, if necessary, instructs
the operator to get the volumes from the library. This phase also eliminates those
processors on which the job cannot run.

During fetch processing, JES3 builds volume entries and issues messages for
volumes that have no entries in the SETVOL table. The SETVOL table contains
the volume serial number for each reference to a device managed by MDS.

Volume fetch messages are selected optionally by specifying FETCH =YES on the
SETPARAM initialization statement. When the fetch option is used, JES3 issues
volume fetch messages to indicate which volumes are required for specific jobs to
execute. JES3 sends fetch messages to the console specified by the TAFETCH
(for tape volumes) and DAFETCH (for direct-access volumes) parameters on the
SETPARAM initialization statement. Volumes already mounted require no fetch
processing, and volumes that have been fetched but not mounted get action-coded
messages. Device types other than tape or disk do not require operator action. If
the volume fetch option is not selected at initialization, jobs go directly into the
allocation stage of MDS.

The ALLOCATE parameter on the SETPARAM initialization statement controls
the way in which jobs are processed during the MDS allocation phase. If the
ALLOCATE parameter is specified (or defaulted) as ALLOCATE=AUTO, MDS
sends incoming jobs directly into the allocation phase. If
ALLOCATE=MANUAL is specified, the operator must issue the
*START,SETUP command for each job requiring volumes to be fetched before
the job can go through MDS allocation. Jobs which require volumes to be
fetched are kept in the MDS WAITVOL queue; the contents of this queue can be
obtained by issuing the *INQUIRY,S,W, command. The MDS queues are made
of resident job queue (RESQUEUE) entries, grouped in subchains based on the
MDS function to be performed. Setup is performed for dynamic allocation
requests at the time each request is made. If the request cannot be satisfied, a
return code is issued to dynamic allocation.

To start the allocation phase of MDS, a job is selected from the ALLOCATE
queue. MDS examines the JST for the selected job and attempts to allocate the
required devices, volumes, and data sets. When MDS initially tries to set up a
job, it records the total device, volume, and data set requirements for the job. If
a job cannot be set up because a resource is unavailable, the job will not be
selected until the required resource becomes available.

Device selection (through initialization parameters) limits the number of
processors that can execute a job whenever a needed I/O device is not shared
among all eligible processors. Any processor that cannot allocate a requested
device or satisfy the total resource requirement is ineligible to run the job.

A job that requests use of a volume that the operator has designated as
“unavailable” (via the *F,S,VU= command) is placed on the volume unavailable
queue as long as the job has not already completed the allocation process. A job
that allocated a volume prior to that volume being made unavailable is allowed to
complete normally.

Chapter 2. JES3 Job Management 2-11




Volume Verification

Breakdown

TN

JES3 issues mount messages to direct the operators to mount the job’s required N
volumes. User exit IJATUX62 may be used if you wish to check the validity of

mounts requested by JES3. This user exit routine, which is invoked after

verification, can accept or override JES3’s mount request.

The VERIFY function automatically obtains the volume serial number, label
status, and other information for MDS once a job’s volumes are mounted. User
exit IATUX25 provides a way for the user to validate any nonstandard labels
used in the installation. When all volumes are properly mounted, the job is ready
for execution. Device types other than tape or disk do not require operator
action. Premounting of anticipated MSS volumes on JES3-managed devices is
not required and should not be done.

For more information about user exits IATUX25 and IATUX62, see
MYVS/Extended Architecture System Programming Library: JES3 User
Modifications and Macros.

The breakdown phase of MDS is automatically performed by JES3 when the
resource (data set, volume, or device) is no longer required by a job. The
resource is then available for use by other jobs.

JES3 issues messages to the operators to indicate whether volumes should be kept
available for other jobs or demounted. The RETAIN and KEEP messages issued
by MVS allocation apply only to the resources used within one job, while the \
RETAIN and KEEP messages issued by MDS consider volume usage by all jobs

currently in the system that use JES3-managed or jointly-managed devices. In the

event that both MVS and JES3 issue KEEP or RETAIN messages regarding a

specific volume, the JES3 messages take priority.

Jobs that have had errors during the FETCH, ALLOCATION, or VERIFY
phases of MDS, or that have failed MDS restart processing are placed on the
MDS error queue. These jobs must be restarted or cancelled by the operator.
User exit IATUX61 saves operator intervention by allowing the system
programmer to selectively cancel jobs that would otherwise be placed on the error
queue. This user exit routine can check the reasons why the job is failing, and
according to specified conditions, cancel the job before it is placed on the queue.

For more information about user exit IATUXG61, see MV S/Extended Architecture
System Programming Library: JES3 User Modifications and Macros.

~
.

2-12  MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Types of Setup

Job Setup

The JES3 setup type is defined by JES3 initialization statement parameters and
JCL control statements, and by JES3 operator commands. This section describes
some of the parameters needed to define setup to the system.

JES3 performs three different types of setup based on the installation and user
requirements:

o Job setup
e High watermark setup
e Explicit setup

The system programmer can use JES3 initialization parameters and JES3 control
statements to control allocation according to device types. For example, job
setup can be used for disks, and high watermark setup for tapes.

General considerations for each type are discussed below; setup examples are
described in MVS/Extended Architecture JCL User’s Guide.

By using job setup you can cause JES3 to:

® Reserve all devices needed by a job before the job executes
e Mount all volumes needed by the job before the job executes

Thus, after the job starts to execute, it does not have to wait between job steps to
have a device allocated or a volume mounted.

There are exceptions to the previous statements, however. The exceptions occur
for:

® Deferred volume mounting
e Dynamic allocation

o The mounting of other than the first volume of a multivolume data set on the
same device.

For a multivolume data set, if the unit count and the volume count are unequal
(unit count and volume count are DD statement subparameters), JES3 mounts the
number of volumes specified as the unit count. Thereafter, MVS mounts
subsequent volumes as they are needed.

When job setup is used, devices, volumes, and data sets are available for use by
other jobs as soon as the DD statement is deallocated in the last step using the
resource. Disadvantages of job setup are inefficient device usage and reserving
devices for a job during steps when they are not used.

Job setup is used when SETUP =JOB is specified on a //*MAIN control
statement for the job. If the SETUP parameter is not specified on the //*MAIN
statement, then job setup is used only when specified (or assumed by default) on
the STANDARDS initialization statement. Setup for MSS virtual units is
specified on the SETPARAM initialization statement.

Chapter 2. JES3 Job Management 2-13




High Watermark Setup

Explicit Setup

High watermark setup, as defined on the HWSNAME initialization statement,
reduces the number of devices JES3 reserves for a job. To determine how many
devices of a particular type to reserve for a job, JES3 considers the needs of each
of the job’s steps. In this way, JES3 determines which step needs the greatest
number of devices of that type. JES3 then reserves that many devices of that type
for the job. JES3 repeats this process for each device type the job needs. As a
result, high watermark setup can cause premounting of all mountable volumes.
Volume unloading and remounting may occur for both private and public
volumes, even when RETAIN has been specified on the applicable DD statement.

High watermark setup for MSS virtual units may temporarily reserve more
devices than the maximum number required by any single job step. This is the
result of JES3 processing designed to improve the efficiency of MSS utilization by
the entire job mix.

When high watermark setup is used, as in job setup, devices, volumes, and data
sets are returned to JES3 for use by other jobs as soon as the DD statement is
deallocated in the last step using the resources. When it is advantageous to use
fewer devices for a job, high watermark setup is preferable to job setup.

High watermark setup is used when SETUP =THWS (for tapes only),
SETUP=DHWS (for disks only), or SETUP=HWS (for tapes, disks, graphics,
and unit-record devices), or MSS=HWS is specified on a //*MAIN statement for
the job. If the SETUP or MSS parameter is not specified on a //[*MAIN
statement, then high watermark setup is used only when SETUP=THWS,
SETUP=DHWS, or SETUP=HWS is specified on the STANDARDS
initialization statement, when the specified setup is overridden by user exit
TATUXO08, or when MSS=HWS is specified on the SETPARAM initialization
statement.

This setup provides a means for the application or system programmer to

combine the execution advantages of job setup and the device usage advantages of
high watermark setup. To specify explicit setup, use the SETUP parameter on the
/[*MAIN JES3 control statement.

When explicit setup is specified, the job’s devices are allocated using job setup.
Only the device premount characteristic is affected by specifying explicit setup.
Explicit setup is mutually exclusive with any high watermark setup. The device
allocation for job setup is the default when explicit setup is specified.

An advantage of explicit setup over high watermark setup is that volumes can be
forced to remain mounted on devices until they are no longer needed. Job setup
and high watermark can deallocate resources (device, volumes, and data sets) at
the end of any step if the resources are no longer needed.

Explicit setup is used when the SETUP = (ddname[,ddname}...) parameter is
specified on a //[*MAIN statement for the job. To explicitly specify data sets that
are not to be set up, the SETUP = /(ddname[,ddname]...) parameter should be
specified.

2-14 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

AN
X



( Initializing MDS

The operation of MDS is affected by the parameters chosen for the following
JES3 initialization statements: CLASS, DEVICE, GROUP, SELECT, SETACC,
SETNAME, SETPARAM, SETRES, and STANDARDS.

CLASS Initialization Statement

The SDEPTH parameter on the CLASS statement limits the number of jobs of a
specific class (requiring mountable devices) that can be active in setup at the same
time. Thus a class restricted to a small number of devices (such as a test class)
can be prevented from monopolizing mountable devices.

DEVICE Initialization Statement

The XUNIT parameter of the DEVICE statement specifies a console destination
code for messages that pertain to the device being defined. You must assign this
same destination code to the console that is to display these messages. To do this,
specify the DEST = parameter on the CONSOLE statement that defines the
console. For efficiency, the console should be near by the device. For example,
given two 3330 facilities and one tape:

DEVICE

VR R e
Do AU LR

R Ry A A 4
i

(3330,DA) , XUNIT=(

Lo

The XTYPE parameter allows the specification of device class and volume
removability. These subparameters, normally defaulted to tape (TA) and
removable (RM), can be used to indicate a JES3-managed device that contains a
permanently resident volume. For example:

e e I T e N e Ve T e o TN T T ¢ 7Y
DEVICE ¥V RE- {0530, 08, PRy AUNTT= (230

would establish the volume on local processor SY2 unit 230 as permanently
resident.

If a device has multiple access, it should be specified in the XUNIT parameter of
the DEVICE statement for all processors. For example:

( DEVTOW R ( 5300, 00 R I T { 230
,//

Chapter 2. JES3 Job Management 2-15




GROUP Initialization Statement .

Device pooling for job-class groups is controlled by the specification of either the
DEVPOOL parameter or the device dedication positional subparameters in the
EXRESC parameter. The basic difference between the two methods of dedication
is that devices dedicated via the EXRESC parameter are dedicated when the
group is allocated on the processor specified in the EXRESC parameter, while
DEVPOOL-requested dedication is accomplished when the group is enabled on
any processor. The allocation options of ANY or GROUP are used to determine
whether a job that is not able to obtain all its required devices for volume
mounting is allowed to go beyond the dedicated devices to satisfy its
requirements. Normally, a group representing higher priority work would be
allowed to go beyond the dedicated devices (ANY) if fewer than the total number
required were dedicated. A group representing testing might be assigned
dedicated devices to limit its impact on the throughput of production work by
only allowing it to allocate dedicated devices (GROUP).

SELECT Initialization Statement

Several parameters on the SELECT statement affect the operation of MDS
allocation on a processor basis (SDEPTH, SBAR, INCR, INCL, SAGER,
SAGEL). Through these parameters, MDS allocation may be biased toward one
processor (a larger SDEPTH), devices may be reserved but not entirely allocated
to one processor (a higher SBAR), and jobs on a specific processor may be
favored for selection (higher INCR, INCL, SAGER, and SAGEL parameters).

SETACC Initialization Statement

The SETACC statement is used to describe volumes that are found on
permanently resident devices not totally shared by all processors in the complex.
If the processor from which these volumes can be accessed has not been
initialized, jobs requiring these volumes wait rather than request them to be
mounted elsewhere. When a processor is initialized, the volumes found supersede
those (if different) specified in the SETACC statement.

SETNAME Initialization Statement

The JES3 MDS algorithm uses the information specified on the SETNAME
statement when searching for the proper device to be allocated for a DD request.

If a DD request is to be handled by JES3, the value (excluding the specific device \
number) specified in the UNIT parameter of the DD statement must also be [
specified in the NAMES parameter of the SETNAME statement. If the request !
specifies a device number in the UNIT parameter, the device number must also be i
specified in the XUNIT parameter of the DEVICE statement. j

2-16 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




By specifying the same names in a different order for the same XTYPE, it is
possible to create a preference order of device selection for requests requiring
volume mounting. This preference might be to achieve channel path separation, if
possible, while still allowing this job to run if separation cannot be achieved. For
example, with devices on three channel paths:

DEVICE,XTYPE=(3330CH1,DA) ,XUNIT=(130,S5Y2,S1,0N)
DEVICE,XTYPE=(3330CH2,DA) ,XUNIT=(230,SY2,S1,0N)
DEVICE,XTYPE=(3330CH3,DA) ,XUNIT=(330,SY2,S1,0N)
SETNAME, XTYPE=3330CH1,NAMES=(DACH1,DISK1)

SETNAME, XTYPE=3330CH2 ,NAMES=(DACH1,DACH2,DISK2)
SETNAME , XTYPE=3330CH3,NAMES=(DACH1,DACH2,DACH3,DISK3)
SETNAME, XTYPE=3330CH1,NAMES=(DACH2 ,DACH3)

SETNAME , XTYPE=3330CH2 ,NAMES=(DACH3)

Requests for DACH1 would attempt allocation on channel path 1, then channel
path 2, and finally on channel path 3. Similarly, requests for DACH2 would
attempt allocation first on channel path 2, then channel path 3, then channel path
1. By using DISK1, DISK2, or DISK3, strict channel path separation could be
achieved. :

Although a name may appear in more than one SETNAME statement, all
XTYPE parameters applying to the name must be the same type (all DA for
example). All names on the SETNAME statement must be defined to MVS.

The maximum number of unique names specified on the SETNAME statement
must not exceed 255. Each XTYPE should be defined to allow JES3 allocation to
reference as large a collection of devices as possible to minimize the number of
name/unit references that need to be examined by the JES3 allocation algorithm.
The most frequently referenced names should be specified first (DASD, then tape,
unit-record, and graphic devices).

The POOLNAMS parameter is provided to allow a convenient method of
dedicating specific devices, even though there is no specific generic or esoteric
name subset that exactly describes the attributes to be used to choose a specific
set of devices. These names are allowed to be used only to dedicate devices and
may not be used in the DD statement UNIT parameter.

To allow the use of devices outside of MDS control, define MVS names to
include the desired devices and then omit these names from the SETNAME
initialization statement.

SETPARAM Initialization Statement

The ADDRSORT parameter can be used to dictate the order in which MDS
looks for mountable devices in attempting allocation. If ADDRSORT=NO is
coded, the SETUNIT tables are ordered in the same sequence as the DEVICE
statements in the initialization stream. This may be useful in cases when device
locations are not physically ordered by ascending device number.

Chapter 2. JES3 Job Management 2-17




SETRES Initialization Statement

The SETRES statement is used to describe volumes that are to be MDS-mounted
when found on removable direct-access devices during processor initialization.
Any volume found may later be made removable by an MDS unload command
(*MODIFY,S) issued by the operator.

STANDARDS Initialization Statement

The STANDARDS statement indicates the system standard for allocation of
devices identified by the NAMES parameter on the SETNAME statement. The
SETUP parameter on the STANDARDS statement specifies the type of setup
processing.

Operator Control of MDS

The operator may use several commands to control the JES3 MDS process. For
detailed information on the MDS commands, see MV'S/Extended Architecture
Operations: JES3 Commands.

Job Selection and Scheduling

Each time an MVS initiator requests work, generalized main scheduling (GMS)
selects and schedules a job for execution. The job that GMS selects depends
primarily upon initialization parameters that you have specified.

Deadline scheduling and dependent job control (DJC), additional GMS functions,
enable you to control when jobs execute. With deadline scheduling, you specify a
deadline by which you want the job executed. JES3 periodically increases the
job’s selection priority in an attempt to execute the job by the specified deadline.
DIJC allows you to create a network of related jobs.

Job Selection Algorithm

When a job has completed processing in MDS, the job is placed in the queue of
jobs awaiting selection for execution. This queue is ordered by job priority, with
the last jobs to arrive being placed last within the priority. Thus, the time at
which a job completes setup processing partly determines its place in the queue.

When a request for work arrives from an initiator, the source of the request
narrows the choice in two ways: (1) the group identification of the initiator limits
the choice to jobs of that group, and (2) the processor on which the initiator is
started limits the choice to jobs that can run on that processor.

The selection process first determines whether the select mode on the processor on
which the request originated includes the IORATE parameter (from the CLASS
initialization statement) as a factor. This determination is made on the basis of
what CHOICE parameter on the SELECT initialization statement was specified.
If CHOICE was BMIX or FMIX, then IORATE is a factor in this job selection.
If IORATE is a factor in this selection, the job selection algorithm computes the
best and alternate rates for later use. If the CHOICE parameter was other than

2-18 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




BMIX or FMIX, then IORATE is not a factor and best and alternates rates are
not computed.

The best and alternate I/O rates are based on the total number of initiators with
started jobs on the particular processor, and on the JOBMIX parameter specified
on the SELECT initialization statement for this processor. For each number of
active initiators, a set of jobs with low, high, and medium I/O rates is specified by
the JOBMIX parameter. When the I/O rate computation begins, it determines the
number of active initiators, and from this, the number of jobs for low, high, and
medium I/O rates that the JOBMIX parameter specifies for this number of started
initiators. The low, high, and medium numbers specified during initialization are
the numbers of jobs that ideally should be executing for this total number of
active initiators. The algorithm then computes which I/O rate (low, high, or
medium) is farthest from the ideal, as specified during initialization. The I/O rate
that most needs to be increased to meet the ideal becomes the best rate, and the
one that needs to be increased second-most becomes the alternate rate. In case of
ties, the choice favors low, then high, then medium for best or alternate. As far
as I/O rate is a factor in job selection, the choice favors the I/O rate that most
needs to be increased.

The job selection algorithm next moves to the queue of jobs ready for execution
and looks up the first job in the group of the requesting initiator. The algorithm
determines whether this first job is in hold status, either as the result of an
operator command or because it is part of a DJC network. If the job is in hold
status, the algorithm determines whether it has reached the end of the group’s
selection span. The JSPAN parameter on the GROUP initialization statement
defines the span.

If the job being tried as a candidate for job selection could be executed on the
processor from which the request originated, the algorithm determines the
candidate’s job class. The CLASS initialization statement parameters MDEPTH,
MLIMIT, TDEPTH, and TLIMIT are all checked for this class. If any of these
limits are met or exceeded for this job candidate, the scan checks for JSPAN and
BAR parameters on the GROUP statement. If these are not exceeded, it moves
to the next job candidate in this group and starts again.

The maximum number of job selection candidates examined in response to a job
selection request is specified by the JSPAN parameter on the GROUP
initialization statement. If the number of jobs scanned as candidates for selection
reaches the value specified by JSPAN, the algorithm terminates the job selection
pass. In this case, the initiator continues waiting, and the job-select request
remains queued.

If the value specified by JSPAN has not been reached, the algorithm determines
whether a priority barrier is effective at this point. If a priority barrier is reached,
then the result is the same as if JSPAN has been reached: no more jobs in the
queue can be scanned.

If all the CLASS statement limits were found acceptable, the selection algorithm
next determines whether this job can fit into the available logical storage of this
processor. If not, the algorithm checks whether the CHOICE parameter on the
SELECT statement is set for FJOB (first job of the group in the queue).
Specifying the FJOB parameter simply tries the first job of the group; if it can be
executed, it is selected, and if it cannot, no job is selected.

Chapter 2. JES3 Job Management 2-19




Deadline Scheduling

If the job selection candidate fits into storage on the processor and the CHOICE
parameter is not FJOB, the algorithm looks back to the earlier determination of
whether IORATE is to be considered in this selection. If it is not, a suitable job
has been found, and this job is returned to the requesting initiator. If IORATE is
a factor (CHOICE is specified as BMIX or FMIX), the algorithm compares the
I/O rate of this job with its earlier determination for best I/O rate. If the I/O rate
of this job is the same as the best I/O rate, this job is returned to the initiator as
the selected job. If the I/O rate of this job is the same as the alternate I/O rate
and the CHOICE parameter is set for FMIX, this job is returned to the initiator
as the job selected. If the job does not match the best or alternate I/O rate, the
algorithm checks for JSPAN and BAR and starts examination of the next job of
the group on the queue.

Deadline scheduling is a technique that allows a user to schedule a job by
time-of-day, week, month, or year. The job’s priority remains in force, but as the
deadline approaches, JES3 increases the job’s priority. Thus, deadline scheduling
increases the likelihood that the job will be scheduled for execution by the
specified deadline.

A deadline scheduling algorithm specifies how often and by what amount JES3 is
to increase the job’s priority. You must specify the algorithm on a DEADLINE
initialization statement. You can specify a maximum of 36 deadline scheduling
algorithms.

To specify deadline scheduling for a job, the user must code the DEADLINE
parameter on a //*MAIN statement. This parameter specifies the time or date by
which the user wants the job scheduled. It also specifies which deadline
scheduling algorithm JES3 is to use for the job.

The DEADLINE DSP controls the scheduling of these jobs.

The DEADLINE DSP examines all the jobs in the deadline queue and issues an
ATIME macro instruction for the shortest time interval until a job priority
change is required. Unless another job with a shorter time interval is placed in
the queue, the DEADLINE DSP waits until the time expires. Then, the priority
of the waiting job is increased to increase the probability of the job being
processed on time.

If the operator presses the STOP button or enters an MVS QUIESCE command,
deadline scheduling stops. When the system is restarted, the operator must
reinitialize the DEADLINE DSP by entering the *START,DEADLINE
command. Reinitializing the DSP resets the deadline scheduling internal clock to
the correct time. If the DSP is not reinitialized, the clock continues from the time
at which deadline scheduling stopped and jobs in the deadline queue are delayed
by the amount of time the system was stopped or quiesced.

If no jobs are in the deadline queue, the DEADLINE DSP sets the ATIME
macro instruction to expire at midnight (as a default), and the DEADLINE DSP
waits until it is canceled by the operator or until another deadline job is placed on
the queue.

2-20 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

//ﬂ\\
|



Dependent Job Control

Dependent job control (DJC) allows jobs to be executed in a specific order, as
determined by job dependencies. Job dependencies may occur because of data
dependencies or may be defined to achieve better device utilization or to manage
job streams.

To define a DJC network, the user must include a //*NET control statement in
the JCL stream for each job in the network. The //*NET control statement
specifies the dependency that must be satisfied before the job can be scheduled for
processing. Jobs normally must wait for scheduling until a predecessor job
completes. A predecessor job is a job that must complete execution before this
job can be scheduled. Jobs that have one or more predecessor jobs are called
successor jobs. (Nonstandard DJC jobs are defined with the inclusion of
//¥PROCESS DJCPROC statements.)

For a complete description of the //*NET and //*PROCESS control statements,
see MVS/Extended Architecture JCL User’s Guide.

Early Dependent Job Control (DJC) JCL Scan

The CI DSPs process the JCL for all jobs in a DJC network through the prescan
phase, regardless of the progress of predecessor jobs through the system. As a
result, most JCL and control statement errors in those dependent jobs can be
detected and corrected, and the job can be resubmitted prior to its release. Once
the required predecessor jobs have indicated that dependent jobs can be released
for execution, a POSTSCAN DSP is subsequently scheduled to complete postscan
processing.

Initializing the DJC Job Network

The first job of a given DJC network entering the system causes the specified DJC
network to be defined to JES3. All subsequent jobs with the same DJC network
identification become members of that DJC network.

The first DJC job of a particular DJC network can use the DEVPOOL parameter
of the //*NET control statement to reserve devices for the entire network. When
reserving devices, the user can code the DEVPOOL parameter to refer to the
requested devices by name. This parameter should refer to the names defined by
the POOLNAMS parameter on the SETNAME initialization statement.

It is important to reserve devices for a DJC network if the DJC jobs pass data
sets from one to another; this means that they have similar setup requirements. If
devices are not reserved for a DJC network, the DJC jobs contend with other jobs
in the system for the available devices when they enter setup. Since DJC jobs are
normally held before setup and they are only released for setup when their
predecessor jobs have completed, other jobs can take over the devices that the
DJC network will soon need again. Both volume mounting operations and the
time required by successor jobs to get through the system can be reduced by
reserving the commonly required devices for the network. User exit IATUX24
allows you to examine information coded on a //*NET statement. You can
examine the network id and the list of requested devices. A return code allows
you to accept or reject the device request.

Chapter 2. JES3 Job Management 2-21




Scheduling the DJC Job Network

The NHOLD parameter on the //*NET control statement specifies the number of
predecessor jobs that must complete before the job is eligible for scheduling. If
no NHOLD parameter is specified, then the job is eligible for immediate
scheduling. If the NHOLD parameter is specified or if the job is in an
operator-hold state, only the converter/interpreter and prescan phases of C/I
service are scheduled. Postscan processing is suspended until the job is released

~ when all predecessors complete execution.

It is possible to make a job eligible for device setup before its predecessor jobs
complete execution. To do this, code the NHOLD and RELSCHCT parameters
on the job’s //*NET statement. The values of these parameters determine when
the job becomes eligible for device setup.

The job becomes eligible for device setup when its NHOLD value is equal to or
less than its RELSCHCT value. JES3 reduces the NHOLD value by 1 each time:

® A predecessor job completes execution

® A job (the job need not be part of the DJC network) issues the following
form of the DJC write-to-operator message:

JESDJC1 jobname net-id

(The variable ‘jobname’ refers to the name of the job to be terminated;
NHOLD values for successor jobs will be decremented.)

For more information about using this write-to-operator message, see “DJC
Completion Option” in this chapter.

If a job becomes eligible for device setup before its predecessor jobs complete
execution, JES3 schedules the job up to but not including generalized main
service. JES3 then places the job in DJC-hold status.

Modifying the DJC Job Network

Use the *MODIFY,N operator command to:

e Hold an entire DJC job network or a specific job within the network
e Release an entire DJC job network or a specific job within the DJC network
e Cancel an entire DJC network or a specific job within the DJC network

For additional information, see MVS/Extended Architecture Operations: JES3
Commands.

2-22 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Terminating the DJC Job Network

DJC Completion Option

A DJC job network is purged when all of the following conditions are satisfied:

All jobs in the DJC network are completed

There are no missing successor jobs in the DJC network
There are no missing subnetworks

The job pending count is equal to zero

The job pending count is the number of abended jobs that have been resubmitted,
or have abended with the ABCMP =KEEP parameter specified on the //*NET
statement. Specifying this parameter ensures that the DJC network will be
retained in the system until the job is resubmitted and completed normally or
until the DJC network is flushed by operator commands.

A job completion option is available for the standard DJC job. A problem
program may issue a write-to-operator (WTO) message which invokes DJC
updating when the message is received. Thus, a job can become eligible for device
setup before its predecessor jobs complete execution.

The WTO text format to invoke this option is:

JESDJCx jobname net-id

This format is positionally dependent. JES must begin in position 1; jobname,
which is the name of the job to be terminated, must be 1 to 8 characters and must
begin in position 9; net-id must be 1 to 8 characters and must begin in position

18. Comments must begin in position 26. The x in JESDJCx must be specified as
1 for normal job completion or as 2 for abnormal job completion.

Nonstandard DJC Job Processing

A nonstandard DJC job contains //*NET and //*PROCESS statements. For
nonstandard DJC jobs, a //*PROCESS DJCPROC statement is required only
when a //*PROCESS MAIN statement is not included in the job stream. If a
//*PROCESS DJCPROC statement is included without a //*NET statement, an
error message is issued and the job is flushed. The position of the //*PROCESS
DJCPROC control statements indicates when the job is considered complete to
DIJC, that is, when its successor jobs should be considered for scheduling. A
//*PROCESS DJCPROC statement has no parameters and must be preceded by a
//*NET control statement. Note that in a standard job not issuing a DJC WTO
message, DJC processing occurs after main service has completed.

With the use of the //*PROCESS DJCPROC statements or the DJC WTO
message, job completion is always considered normal completion.

For more information on DJC, see MVS/Extended Architecture JCL User’s
Guide.

Chapter 2. JES3 Job Management 2-23




Controlling Job Selection

The JES3 job selection process can be used by the system programmer to tailor QKA/
JES3 initialization to meet installation requirements.

Determining Main Eligibility
Main eligibility is determined in the following stages:

1. Input service determines the mains that can execute the job when the
SYSTEM and TYPE parameters of the //*MAIN control statement and the
job class are analyzed.

2. JES3 MDS selects mains by location of nonshared devices and permanently
resident volumes and data sets.

3. The assignment of removable devices by the job can again restrict the mains
eligible to run it.

For these reasons, jobs in a JES3 loosely coupled complex are selected for
execution on the basis of processor eligibility (an implied attribute) as well as by
the explicitly stated class and priority attributes for scheduling.

Determining Job Eligibility

After a job is set up, it becomes eligible for selection by GMS. GMS determines
which jobs to select according to the SELECT mode under which the main is :/ N
running. This gives the I/O rate (CHOICE) for jobs to select and the classes and N
job class groups eligible for selection for this processor. GMS considers all class

constraints (MLIMIT, TLIMIT, TDEPTH, and MDEPTH) in further limiting the

jobs that it can select.

Controlling the Job Mix on Each Processor

The system programmer can specify the IORATE parameter of the CLASS
initialization statement to describe the I/O rate of jobs in the class. (A low,
medium, or high I/O rate can be determined by SMF or performance
measurement.) By properly mixing jobs with different I/O-to-processor ratios, the
throughput can be increased over that obtained by random mixing.

Defining the Job Selection Environment

Through the use of the MVS JOB statement, the //*MAIN JES3 control
statement, and several JES3 initialization statements, you can define the JES3 job
selection environment. You can use the GROUP statement to define a job class
group and to assign resources (main, initiators, and I/O devices) to that group.
The CLASS statement allows you to define job classes, give them a priority, and
specify them as members of job class groups. The user can use the MVS JOB
statement or the //*MAIN statement to assign a job priority and a job class.

JES3 assigns each main a job selection mode. The SELECT parameter on the
MAINPROC initialization statement tells JES3 which mode to assign. The job £

selection mode can be dynamically changed by a JES3 *MODIFY command if &/
alternate selection modes are defined at initialization. '

2-24 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




The effect of partitioning a processor complex should be considered when defining
the job selection environment for a main. If one side of a processor complex is
partitioned and taken offline, some jobs may not be able to run using the
remaining resources. Less storage is available and particular devices, if only
attached to the side that has been partitioned off, may no longer be accessible.
Alternate selection modes should be defined and used to adjust the amount of
batch work scheduled as resources are lost or regained through partitioning.

Figure 2-2 shows two jobs of class C5 in the input stream, and each of these jobs
references a specific I/O device number as a DD UNIT parameter. One of these
jobs references a nonshared device and, therefore, must execute on the JES3 local
processor (designated WORKCPU) in this example. The other job of class C5
references a specific I/O device number that is shared between the JES3 global
processor and the JES3 local processor. Since class CS5 is assigned to group G2
and has execution resources allocated to both processors, the job may run on
either processor.

Chapter 2. JES3 Job Management 2-25




///“ \
.
4

~

N

e

SpON UOi}23[8S S
8}buJa}|y S8}031pU] <+

BpON UOI}O3|8S
jua1in) S8}D3IpU]

“19)=dnods
Vo= JAWN

sansnp SSY10
03 wpals qop yndug

9°2*19)-doND

£0Z
JaqunN
Hun
- - - T Jossasoud
HOM) =0STUXT | 6D=SSVID NIVW+// N doune
L dNOM9 b Sl uo unu
- / , uod | qop
soireq : V=Nod 03X3 1S//7
paJpysuoN [
1oL=11Nn-007100//
101 : : - J
JaquinN ——
yun
| co-ssvio NIWAR//,
; ——— NdOMYOM uo

unJ snw zp qop

201A8(

| Emod oaxa 157/
paJoys = e

Sl Ndossog uo
$0=dNoyg unJ isnuw o
03dS=INVN isnuee qor

ad1A8(]
paioysuoN

ironment

tion Eny

JES3 Job Selec

2-2.

Figure

2-26 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Default Job Selection--Adding Initiators

(. Jobs are selected for execution by the GMS algorithms. The specific path
followed through GMS for a job selection attempt is determined by the
parameters specified in the MAINPROC, SELECT, GROUP, and CLASS
initialization statements.

The default job selection environment is established when the SELECT, GROUP,
and CLASS initialization statements are not specified. Jobs are then selected by
priority only, in first-in-first-out order. In this case, two initiators are started on
each processor, and default selection mode, group, and class are established with
the name JS3BATCH. If more initiators are desired, the dedicated initiator count
for the default group can be increased with a *MODIFY command, or a GROUP
initialization statement for JS3BATCH can be specified with dedicated initiator
counts for each processor.

Thus, the primary decision to be made is the number of initiators to be assigned
to each group. This, in turn, determines the number of jobs that can run
concurrently on each processor. The dedicated initiator counts, therefore, should
not be set substantially above the job processing capability of a processor.

Starting and Stopping Initiators

The initiator allocation and deallocation options specified in the EXRESC
parameter of the GROUP initialization statement control the conditions under
which initiators are started and stopped.

( Demand or dynamic initiator allocation occurs when jobs are available for
execution and when the group is enabled. (Dynamic allocation is used to allocate
all initiators when the first job of the group in the queue is eligible for main
scheduling; demand allocation is used to allocate initiators as they are needed.)
Demand or dynamic deallocation occurs when no jobs are available for execution.

If jobs are not continually available for execution, the overhead of starting and
stopping initiators may be undesirable. In this case, the IPL allocation option
should be used to allocate execution resources during processor connection, or the
MANUAL allocation or deallocation option should be specified to indicate that
all execution resources are not to be allocated or released until the operator
disables the job class group with a *MODIFY command. The allocation and
deallocation options should be chosen to maintain initiator availability and
minimize start/stop overhead.

Defining Logical Storage for Processors
The LSTOR parameter on the SELECT initialization statement allows you to:

e Use dynamic real storage more efficiently
® Reduce the probability of excessive paging (thrashing)

JES3 schedules jobs on processors according to their available logical storage.
When jobs are scheduled, their logical storage requirements are subtracted from
the processor’s logical storage; if sufficient logical storage is not available to
( schedule a job, it is not scheduled.

Chapter 2. JES3 Job Management 2-27




A job’s logical storage requirements are determined either by the LREGION
parameter on the //*MAIN control statement or by taking a percentage of the
region size of the job’s largest step. To specify the percentage, code the LSTRR
parameter on the CLASS initialization statement.

Warning: Installations that run jobs specifying more than 16 megabytes for the
REGION parameter on the JOB or EXEC JCL statement should be aware that
JES3 logical storage scheduling considers the region size for those jobs to be 16
megabytes exactly. If jobs require a region size greater than 16 megabytes, logical
storage scheduling should be disabled by specifying LSTRR =0 on the
appropriate. CLASS initialization statement(s).

The combination of methods chosen to control real storage utilization can lead to
one of the following operating conditions:

® Real storage is underutilized, and throughput is limited regardless of any
other tuning.

e Real storage is fully utilized, and paging is optimum. This condition allows
maximum throughput.

o Real storage is fully utilized, but paging is excessive. Again, throughput is
limited.

The third condition, excessive paging, can be caused by the system programmer
specifying a high LSTOR value, allowing JES3 to schedule too many jobs on the
processor. Excessive paging can also be caused by the application programmer
specifying a low LREGION value or by defaulting to a low LSTRR percentage
(defined by the system programmer).

To obtain maximum throughput, start with underutilization of real storage and
gradually increase utilization. Until you optimize throughput, you should retain
full control of the logical storage parameters. Application programmers should
not use the LREGION keyword on the //*MAIN statement during this phase,
and the system programmer should set the LSTRR keyword on the CLASS
statement to 99. The maximum value that you can specify on the LSTOR
keyword is 32,767.

These guidelines should provide reasonable real storage utilization while the
actual real storage requirements (working sets) are determined for typical jobs and
job classes. When working set measurements are obtained (through SMF data
and other performance measurement tools) and identified for the various jobs and
classes, the LREGION and LSTRR parameters can be used to fine-tune the
processor throughput.

Job classes should be defined for low, medium, and high I/O rates. If this is not
done, all jobs are given the default I/O rate (medium). To use the I/O rate,
specify the job selection preference in the CHOICE parameter on the SELECT
statement. If I/O rate is considered in scheduling, GMS attempts to select jobs
that produce the desired job mix (as specified in the JOBMIX parameter of the
SELECT initialization statement). Because the LREGION parameter on the
//*MAIN JES3 control statement overrides the LSTRR parameter, use user exit
IATUX33 to delete the LREGION parameter when you want logical storage
scheduling disabled.

2-28 MVS/Extended Architecture SPL: J ES3 Initialization and Tuning

&
S

£
L



Controlling Job Scheduling

The GMS function of JES3 allows the system programmer to define a set of
parameters that determine the scheduling of jobs on each processor in the JES3
complex. Each processor can have a unique set of scheduling parameters.

MAINPROC, SELECT, CLASS, and GROUP initialization statements allow the
system programmer to control the key variables in the job scheduling and
execution process. The dynamic interaction of these statements defines a
job-selection mode that controls job selection in a specified way. The following
parameter description provides an overview of these controls.

Assigning a Job Selection Mode

The MAINPROC statement describes each processor. The SELECT parameter
on this statement specifies the name of the job selection mode to be assigned
initially to the processor. The name designated with the SELECT parameter must
also be specified in the NAME parameter of a SELECT initialization statement.

If the SELECT parameter is omitted, a selection mode is established using the
SELECT statement default values. (The default selection mode is designated by
JES3 as JS3BATCH.)

Defining Job Selection Parameters

The SELECT statement defines the job selection parameters for each job selection
mode. The job selection mode is assigned to a processor by the SELECT
parameter on the MAINPROC statement. After initialization, the system
operator can change the association of processors with selection modes by using
the *MODIFY command.

The system programmer can control the number of jobs that are candidates for
allocation by setting the SELECT statement SBAR parameter. The SBAR
parameter specifies a job priority that is a barrier to main device scheduling:

e Ifits full allocation requirements cannot be satisfied, a job with a priority
greater than the barrier can reserve available JES3-managed resources
(devices, volumes, and data sets) to prevent lower priority jobs from obtaining
them.

e If a resource is reserved, only a job of the same priority or higher than the job
that reserved the resource can allocate it.

o If a volume or data set is reserved, another job with compatible references
(such as a share reference to a direct-access volume) can use it.

e If SBAR=PRTY is specified, the priority of the first job that cannot be set
up is the barrier value.

The CHOICE parameter on the SELECT statement can be used to specify job
selection criteria (based on the size of the job and its I/O rate) to control the
order of job selection on a processor. JES3 uses the specified scheduling choice to
select the most suitable jobs for execution.

Chapter 2. JES3 Job Management 2-29




Aging is the process of increasing a job’s priority whenever an unsuccessful
attempt is made to allocate the job’s requirements. Although jobs flow through
the priority queues in first-in first-out order, only the job that is first on a priority
queue is eligible for aging. The system programmer controls aging by setting the
following parameters on the SELECT statement:

® MAGER: Specifies the number of times a job must be eligible for aging (due
to unsuccessful job selection) before its job priority is actually increased. (For
example, MAGER = 10 means that a job must be passed over for job
selection 10 times while it is at the top of its priority queue before it is put at
the bottom of the next higher priority queue.) If this parameter is omitted or
if MAGER =0 is specified, no aging is performed.

® MAGEL: Limits the priority that can be reached (due to unsuccessful job
selection attempts). For example, MAGEL = 10 means that a job is not aged
if its priority is 10 or greater.) If this parameter is omitted, jobs are not aged
past priority 14.

® SAGER: Specifies the number of times that a job must be eligible for aging
(due to unsuccessful resource allocation) before its job priority is actually
increased. If this parameter is omitted or if SAGER =0 is specified, no aging
is performed.

® SAGEL: Specifies an aging priority limit (0-15) beyond which a job cannot
be aged during job setup.

The JES3-managed resource allocation (setup of devices, volumes, and data sets)
for each job must be completed before the job is eligible for execution. The
system programmer controls the execution queueing process by setting the
following parameters on the SELECT initialization statement:

o SDEPTH: Specifies the maximum number of jobs (requiring mountable
devices) that can be set up at one time for each processor. SDEPTH
influences MDS allocation in two ways: First, SDEPTH can be used to limit
the number of jobs set up for a processor; this should be done carefully to
avoid delaying job execution. If SDEPTH is omitted, a value of 255 is
assumed. Second, SDEPTH causes MDS to set up more work for one
processor than another. MDS biases processor selection for setup toward the
processor that is most below its SDEPTH. Therefore, by making the
SDEPTH values different for each processor, a setup bias initially exists
toward processors with higher SDEPTHs. MDS prefers the higher SDEPTH
processors for setup until all processors are at equal differences from their
SDEPTH values. Biasing setup toward certain processors may be desired
because of device availability (if devices are not totally shared) or to keep a
larger queue of jobs available for a fast executing processor.

o INCR: Specifies a number that is added to the priority of the job when it is
set up. This parameter expedites the processing of jobs once devices have
been assigned to them. (For example, if a job has a priority of S when it is
set up, and INCR =4 is specified, the job’s priority is increased to 9 after the
devices have been allocated and set up.) If this parameter is omitted, a job’s
priority is increased by one after setup.

2-30 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

N
N

P



C

Defining JES3 Job Classes

e JNCL: Sets a limit to the priority assigned when the job is set up. If this
parameter is omitted, job priorities are not increased past priority level 14 by
setup.

The CLASS statement defines the characteristics of the JES3 job classes. Up to
255 job classes can be defined. A CLASS statement must define each job class
that appears on the JOB or //*MAIN control statement. If an undefined class is
specified, the job is canceled. If a class is not specified on a JOB or //*MAIN
control statement, the default class is used.

The system programmer controls class execution limits and limit dependencies by
setting the following parameters on the CLASS statement:

e SDEPTH: Sets the maximum number of jobs requiring mountable devices (0
to 255) that can be set up at one time. If the SDEPTH parameter is omitted,
no SDEPTH default is assumed for this class. (A typical use of SDEPTH
would be to prevent overuse of devices by limiting the number of jobs that
could be set up at one time in test class.)

e TDEPTH: Sets the maximum number of jobs of this class (0 to 255) that can
execute in the total JES3 complex at one time. If the TDEPTH parameter is
omitted, no TDEPTH default is assumed for this class.

e MDEPTH: Sets the maximum number of jobs of this class (0 to 255) that
can execute on a given processor at one time. Each processor name specified
in this parameter must also be specified on the NAME parameter of a
MAINPROOC initialization statement. If the MDEPTH parameter is omitted,
no MDEPTH default is assumed for this class.

o TLIMIT: Specifies the maximum number of jobs of other job classes that
can execute in the total JES3 complex and still allow jobs in this class to be
scheduled. If any class limit is exceeded, no more jobs in this class are
scheduled; that is, jobs in this class are scheduled only when the number of
jobs running from other classes is equal to or less than the assigned limit.
Each class name specified in this parameter must also be specified on the
NAME parameter of another CLASS statement. If the TLIMIT parameter is
omitted, no TLIMIT default is assumed for this class.

o MLIMIT: Specifies the maximum number of jobs of other job classes that
can execute on a given processor and still allow jobs in this class to be
scheduled. If any class limit is exceeded, no more jobs in this class are
scheduled on the given processor; that is, jobs in this class are scheduled only
when the number of jobs running from other classes is equal to or less than
the assigned limit. Each class name specified in this parameter must also be
specified on the NAME parameter of another CLASS statement. If the
MLIMIT parameter is omitted, no MLIMIT default is assumed for this class.

Chapter 2. JES3 Job Management 2-31




Grouping JES3 Job Classes

Output Service

Queueing Output

The GROUP statement defines the resources available to a group of JES3 job
classes. A maximum of 255 groups can be defined. The system programmer
controls execution by specifying the EXRESC parameter on the GROUP
statement. The EXRESC parameter defines the execution resources (initiators
and devices) dedicated to a group. Devices assigned to the group satisfy requests
for mountable volumes (not permanently resident) from jobs within the group.
The EXRESC parameter should be repeated for each processor’s execution
resources.

The EXRESC parameter also defines the initiator allocation and deallocation
options (see “Starting and Stopping Initiators” in this chapter).

The BAR parameter on the GROUP statement specifies a job priority used as a
barrier to the generalized main scheduling process; it determines when no more
jobs should be scheduled on an associated processor. Within a job class group,
no jobs with priorities lower than the barrier are run until all jobs with priorities
higher than the barrier have run. BAR can limit job scheduling due to processing
requirements (such as, a job that cannot obtain sufficient storage on a processor
or a job that is incompatible with the current job mix under a best-mix scheduling
algorithm). If BAR=PRTY is specified, the priority of the first job that cannot
be scheduled is the barrier value. BAR =16, the default, means that there is no
priority barrier for the group.

Output service executes on the global processor and processes SYSOUT data sets
destined for print, punch, TSO, internal reader, and external writer. The output
service driver receives control after a job completes breakdown in main service,
after a job spins off an output data set, or after JES3 spins off an output data set.

JES3 output service performs three distinct functions:

® queueing output
e scheduling output
e writing output

Normally, output data produced by a job is placed in one of three output service
queues when the job terminates. Spin-off data sets are placed in an output queue
while the job is still in execution. The three output queues are:

o MVS/BDT work queue (Q=BDT): This queue contains SNA/NJE
networking job or networking SYSOUT streams. MVS/BDT sends these job
or SYSOUT streams to the proper node within a SNA/NJE network for
processing by JES3. Using commands, the operator may hold, release, or
cancel the networking requests from the queue.

®  Output service writer queue (Q= WTR): This queue contains data sets
waiting for output processing. Such data sets are processed automatically by

2-32 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




output service, based on data set selection characteristics, such as output
device-related requirements, output class, and output priority. Data sets in
this queue may be temporarily placed in operator-hold status.

®  Qutput service hold queue (Q=HOLD): This queue, sometimes called the
hold-for queue, contains data sets that are to be processed by other than
normal JES3 output services. These data sets must be processed by the
function for which they are held (external writer, internal reader, or TSO).
The function that processes the data set may then release it for JES3
processing or cause JES3 to purge it. If necessary, the operator can force a
JES3 writer to process the data set. The operator can also delete held output
data sets using the JES3 spool maintenance facility (JSM). For information
about using JSM, see Chapter 4, “Defining and Managing Spool Data Sets.”

The RESQUEUE entry for the job to be processed by the queueing function is
placed on a queue of output service work. When the queueing function receives
control, it dequeues the next job on the work queue.

The queueing function of output service accesses the job data set (JDS) for the
job or for the spin data sets of a job. The queueing function builds output
scheduling elements (OSEs) from the JDS. One OSE is built for each group of
data sets that have unique writer requirements.

The information in an OSE for output data sets on the writer queue comes from:

® JCL parameters on the SYSOUT DD and OUTPUT JCL statements for the
job (The installation can change these parameters during input service by
coding user exit routine IATUX34 for the SYSOUT DD statement and user
exit routine IATUX44 for the OUTPUT statement.)

e the //*FORMAT JES3 control statements for the job (The installation can
change these statements during input service by coding user exit routine
TIATUX33.)

e the SYSOUT class table (defined by SYSOUT initialization statements)

Information from //*FORMAT control statements is not included in OSEs for
data sets on the hold queue.

When moving data sets from the hold queue to the writer queue, all the original
output characteristics may not be maintained. This occurs if JES3 is unable to
determine which output JCL statement was used to build the OSE on the hold
queue.

The OUTSERY initialization statement specifies default values for information
not provided on other JES3 initialization statements or on JCL statements. If the
OUTSERY initialization statement parameters are not overridden, the default
values specified are applied to all jobs entered in the system.

The information in an OSE includes:

Data set priority

Data set destination

Specific device types requested
Forms requested

Chapter 2. JES3 Job Management 2-33




Carriage tape name or FCB specified

Train name specified

Number of lines

SYSOUT class

Data set type (print, punch)

External writer name, if specified

Copy count for the 3800 or 3820 printer

Forms flash ID for the 3800 printer

Copy modification ID for the 3800 printer

Character assignment tables for the 3800 or 3820 printer
Stacker for the 3800 printer

Data set processing mode

Checkpoint-related information for the 3800-3 or 3820 printer
TSO user ID

Data set ID (for 3540 device only)

Override Sequences for Output Data Set Information

For the output parameters of a data set, you can override the OUTSERV
initialization statement parameters. The method used to override the parameters
depends on whether OUTPUT JCL statements and/or //*FORMAT JES3 control
statements are specified for a data set, and whether the references are explicit or
by default. JES3 does not merge the information from the OUTPUT and
/[*FORMAT statements that refer to the same data set. Under certain
circumstance (explained below), JES3 creates separate OSEs from the two types of
statements.

Override Sequence with “Direct” OUTPUT JCL Statements: A “direct”
OUTPUT JCL statement is one explicitly referenced by the OUTPUT parameter
of a SYSOUT DD JCL statement for a data set, or an OUTPUT JCL statement
that specifies the JESDS parameter. If there is a direct OUTPUT JCL statement
for the data set, the OUTSERY initialization statement parameters are overridden
by the following sources:

1. SYSOUT class table: This table is constructed from the parameters on the
SYSOUT initialization statement.

2. “Direct” OUTPUT JCL statement: The values specified on the direct
OUTPUT JCL statement override the values specified by source 1 (above).

3. SYSOUT DD JCL statements: The values specified on the SYSOUT DD
JCL statements override the values specified by sources 1 and 2. This

includes changes to the DD statements, such as changes made using TSO
OUTPUT commands.

Following is an example of this override process using the FORMS parameter on
the OUTSERY initialization statement and “direct” OUTPUT JCL statements.
In this example, the JES3 initialization statements include:

OUTSERV , FORMS=1PRT
SYSOUT,CLASS=F, FORMS=3PRT

2-34 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Under these conditions, the following job is run:

//PRTFORMA JOB MSGCLASS=F , PRTY=7

/ /OUTDEF OUTPUT BURST=Y,DEST=POK, FORMS=2PRT , DEFAULT=NO
//STEP1 EXEC  PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=(F, ,4PRT) ,OUTPUT=* . OUTDEF
//SYSUT1 DD SYSOUT=F ,OUTPUT=* .OUTDEF

Figure 2-3 illustrates the override process for this situation.

~ : _Orderof Overrides.

FORMS R VR 2. S SR e

Initial ; ~ | DDSYSOUT=| o b

Value in (F,.4PRT), DD SYSOUT=F,. |FORMS

OUTSERV | SYSOUT, OUTPUT OUTPUT = OUTPUT= " | Final
Data Set Statement | CLASS=F FORMS =2PRT ‘| *OUTDEF ~ | *.OUTDEF | Value
SYSPRINT | 1PRT 3PRT 2PRT L APRT ot o 4PRT |
SYSUT1 | 1PRT 3PRT 2PRT n/a . fnone o JOPRT.
JESICL - 1IPRT - | 3PRT n/a n/a- . & nja . . |3PRT
JESMSG | 1PRT {3PRT . fnja colmga o bafa 0 P | 3PRT
SYSMSG IPRT 3PRT nja nfa lnja | 3PRT
Figure 2-3. Output Parameter Overrides Using a Direct OUTPUT JCL Statement

JES3 builds one OSE for each direct OUTPUT JCL statement referring to a data
set. The user receives a copy of the output data set for each OUTPUT statement.
Each copy is formatted according to the processing options specified on the
OUTPUT statement that produced it.

Opverride Sequence with “Direct” |[*FORMAT JES3 Control Statements: A
“direct” //*FORMAT JES3 control statement is one that uses the DDNAME
parameter to explicitly reference a specific data set (that is, having the format
/[¥*FORMAT xx,DDNAME =xxxx). If there is a direct //*FORMAT statement,
the OUTSERY initialization parameters are overridden by the following sources:

1.

[|[*FORMAT xx,DDNAME=, JES3 control statements: When
DDNAME =, is given and no ddname follows, the parameters specified on
this statement become the defaults for the job and apply to all TSO, punch
and print data sets.

SYSOUT class table: This table is constructed from the parameters on the
SYSOUT initialization statement. The values specified here override those
specified by source 1.

SYSOUT DD JCL statements: The values specified on the SYSOUT DD
JCL statements override the values specified by sources 1 and 2. This
includes changes to the DD statements, such as changes made using TSO
OUTPUT commands.

[[¥*FORMAT xx,DDNAME= xxxx JES3 control statement: The values
specified here override those specified by sources 1, 2, or 3.

Chapter 2. JES3 Job Management 2-35




Figure

2-4.

Following is an example of this override process using the FORMS parameter on
the OUTSERY initialization statement and both direct and default //*FORMAT
JES3 control statements. In this example, the JES3 initialization statements
include:

OUTSERV,FORMS=1PRT
SYSOUT,CLASS=F,FORMS=3PRT

Under these conditions, the following job is run:

//PRTFORMB JOB MSGCLASS=F,PRTY=7
//*FORMAT PR,DDNAME=, FORMS=SPECIAL
//*FORMAT PR,DDNAME=SYSMSG, FORMS=2PRT
//STEP1 EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=F
//SYSUT1 DD *

(data)
/‘k
//SYSUT2 DD SYSOUT=(F, , 2PRT)
//SYSIN DD *

PRINT MAXFLDS=100
RECORD FIELD=(80)
/*

Figure 2-4 illustrates the override process for this situation.

T 'i'kkmﬁk%ofciiﬁiESff EERER e,
- | [|"FORMAT PR,
DD SYSOUT= | DDNAME=

Ana o toa
2PRT  |nja 21

Ina [ na 3PRT
nfa n/a 0 MI3PRT
nfa. o PRT o [2PRT

Example of Output Parameter Overrides Using Direct and Default //*FORMAT
Statements

If there are more than one default //*FORMAT statements for the same data set,
JES3 merges the information from them. JES3 lets parameters specified by later
default //*FORMAT statements override those specified by earlier default

. /[*FORMAT statements. The user receives the data set formatted only one way.

Note: If both direct OUTPUT JCL statements and direct [[*FORMAT JES3
control statements apply to the same data set, JES3 formats the data set according
to the specifications of each direct OUTPUT JCL statement and each direct
[[*FORMAT JES3 control statement. That is, JES3 creates a separate OSE for
each direct OUTPUT JCL statement and each direct //*FORMAT JES3 control
statement. Each OSE results in a formatted version of the data set, so that there
are as many formatted versions of the data set as there are direct OUTPUT JCL
statements and direct //*FORMAT JES3 control statements for that data set.

2-36 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

A
Lo

S




Override Sequence With Only “Default” QUTPUT JCL Statements: Next, if
there is neither a direct OUTPUT JCL statement for the data set nor a direct
//*FORMAT JES3 control statement, JES3 looks for a “default” OUTPUT JCL
statement. A “default” OUTPUT JCL statement is a step-level or job-level
OUTPUT JCL statement that specifies YES on the DEFAULT parameter. If
there is a default OUTPUT JCL statement, the OUTSERY initialization
parameters are overridden by the following sources:

1. SYSOUT class table: This table is constructed from the parameters on the
SYSOUT initialization statement.

2. “Default” OUTPUT JCL statement: 1If a step-level default statement applies,
JES3 ignores the job-level default statement. The values specified here
override those specified by source 1.

3. SYSOUT DD JCL statements: The values specified on the SYSOUT DD
JCL statements override the values specified by sources 1 and 2. This
includes changes to the DD statements, such as changes made using TSO
OUTPUT commands.

Note: “Default” OUTPUT JCL statements do not apply to system data sets,
such as JESJCL, JESMSG, and SYSMSG, unless explicitly specified. To learn
how to use the OUTPUT JCL statement with system data sets, see
MYVS|Extended Architecture JCL User's Guide.

Following is an example of this override process using the FORMS parameter on
the OUTSERY initialization statement and a “default” OUTPUT JCL statements.

- In this example, the JES3 initialization statements include:

QUTSERV, FORMS=1PRT
SYSOUT ,CLASS=F , FORMS=3PRT

Under these conditions, the following job is run:

//PRTFORMC JOB MSGCLASS=F , PRTY=7

//OUTDEF QUTPUT DEFAULT=YES,BURST=Y,DEST=POK, FORMS=2PRT
//STEP1 EXEC ~ PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=(F, , 4PRT)

//SYsuTl DD SYSOUT=F

Chapter 2. JES3 Job Management 2-37




Figure 2-5 illustrates the override process for this situation.

Figure 2-5. Example of Qutput Parameter Overrides Using a Default OUTPUT JCL Statement

As with the direct OUTPUT JCL statement, JES3 builds a separate OSE for each
default OUTPUT JCL statement of the same level (job or step) referring to the
same data set. The user receives a copy of the data set for each OUTPUT
statement, each formatted according to the characteristics specified by the
OUTPUT statement that produced it. This process occurs only if there are no
direct OUTPUT JCL statements for the data set. If direct OUTPUT JCL
statements apply to the data set, JES3 ignores default OUTPUT JCL statements.

Override Sequence With Only “Default” |[* FORMAT JES3 Control Statements:
Finally, if there are no direct or default OUTPUT JCL statements and no direct
/[*FORMAT JES3 control statements, the OUTSERYV initialization parameters
are overridden by the following sources:

1. /[*FORMAT xx,DDNAME=, JES3 control statements: When
DDNAME =, is given and no ddname follows, the parameters specified on
this statement become the defaults for the job and apply to all TSO, punch
and print data sets that have no FORMAT statements.

2. SYSOUT class table: This table is constructed from the parameters on the
SYSOUT initialization statement. The values specified here override those
specified by source 1.

3. SYSOUT DD JCL statements: The values specified on the SYSOUT DD
JCL statements override the values specified by sources 1 and 2. This

includes changes to the DD statements, such as changes made using TSO
OUTPUT commands.

Following is an example of this override process using the FORMS parameter on
the OUTSERY initialization statement and a “default” //*FORMAT JES3
control statement. In this example, the JES3 initialization statements include:

OUTSERV, FORMS=1PRT
SYSOUT,CLASS=F, FORMS=3PRT

2-38 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Under these conditions, the following job is run:

//PRTFORMD JOB MSGCLASS=F ,PRTY=7
//*FORMAT PR,DDNAME=, FORMS=SPECIAL

//STEP1 EXEC  PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=(F, , 4PRT)
//SYSUT1 DD SYSOUT=F

Figure 2-6 illustrates the override process for this situation.

T | ~ , Order of Overrides /
1 ,"l.' " | AR Ny 3‘ a2 4. : A
' /[*FORMAT , i : | FORMES
PR, SYSOUT, DD SYSOUT= | . |Final
DDNAME= | CLASS=F (F,4PRT) | DD SYSOUT=F | Value
‘| SPECIAL | 3PRT _|4RT  Ina |4PRT |
v Tl ] ~|sPECIAL  |3PRT  |mja  fnome  [I3PRT
JESJICL | IPRT ~ | SPECIAL  |3PRT  ~ fmnfa lma ~  I3PRT
JESMSG [ IPRT | SPECIAL | 3PRT ~ fma  ~  fnm  |3PRT
SYSMSG | tPRT | SPECIAL |3PRT = |na  ‘lnm = i?PRT~

Figure 2-6. Example of OQutput Parameter Overrides Using a Default //[*FORMAT Statement

Override Sequence for Held Output Classes: The following example shows
override processing using the forms parameter on the OUTSERYV and SYSOUT
initialization statements. In this example, the initialization statements include:

OUTSERV, FORMS=1PRT
SYSOUT,CLASS=F,HOLD=TSO, FORMS=3PRT

In the following JCL, output from the SYSPRINT and SYSUT1 DD statements
is directed to a held output class (F). Only the SYSPRINT DD statement
references an QUTPUT JCL statement.

//HOLD JOB MSGCLASS=F ,PRTY=7
//OUTDEF  OUTPUT BURST=N,DEFAULT=NO
//STEP1 EXEC  PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=F ,OUTPUT=* , OUTDEF
//SYSUT1 DD SYSOUT=F

Rule: Whenever a SYSOUT statement uses an OUTPUT statement (a direct or
default type), JES3 uses values from the OUTPUT JCL statement, the OUTSERV
initialization statement, and the SYSOUT initialization statement to establish the
data set’s output characteristics.

In the above example, SYSPRINT and SYSUT1 will both be placed in the output
service hold queue for processing by TSO. However, the forms value for
SYSPRINT becomes 3PRT because JES3 merges the values from the OUTPUT
JCL statement with the values on the OUTSERYV and SYSOUT initialization
statements.

Chapter 2. JES3 Job Management 2-39




Scheduling Output

If a SYSOUT DD statement specifies a held output class and does not use an
OUTPUT JCL statement, JES3 uses values from only the OUTSERV
initialization statement and the SYSOUT DD statement to establish a data set’s
output characteristics. Therefore, the forms value for SYSUT1 remains 1PRT
since values from the SYSOUT initialization statement are not used. If a
/[*FORMAT card had been coded for the SYSUT1 DD statement, it also would
not have been used.

For information about how to use the JCL statements and JES3 control
statements to achieve the output results you desire, see

As each data set is selected, a temporary OSE is constructed containing all
scheduling requirements. A call is then made to user exit IATUX19 to allow the
system programmer to examine and, if desired, to change the information before
the OSE is spooled.

When control is returned from the user exit, if the OSE copy count is nonzero,
the OSE is added to the job’s OSE spool file. Then, the master OSE (MOSE)
pool, which is in main storage, is searched. If an identical master OSE is found,
an output scheduling summary (OSS) entry is chained onto that master OSE. If
no identical master OSE is found, a new master OSE is created and an OSS is
also created, chained to the new MOSE, and added to the pool.

After all the above processing for the current job has completed, the queueing
function posts the start writer function to determine which jobs are eligible for
writer scheduling. The start writer function tries to associate each master OSE of
a job with an output device or with an active writer that is waiting for more work.

JES3 output service schedules OSEs to writers in one of two ways:

e An OSE is used to scan the ‘writers waiting for work’ queue and the
available-devices queue to find a device that can process the OSE.

® A set of writer scheduling parameters is used to search the OSEs for the first
perfect-fit OSE or for the OSE which best fits the requirements of the writer
requesting a job. You can specify these parameters on the DEVICE or
OUTSERY initialization statement by coding the WC and WS parameters.
The operator can change these parameters when calling, starting, or restarting
a writer. The operator does this by specifying the WC and WS parameters on
the *X, *S, or *R commands.

If two or more OSEs fit the requirements of this writer equally well, JES3
schedules the OSE with the highest JES3 job queue priority. The JES3 job
queue priority is based on the job priority specified on the JCL JOB
statement.

2-40 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Writing Output

JES3 writer support consists of a writer driver, writer scheduling (selection)
routines, device-dependent routines, command-processing routines (also called
message-processing routines) and spool-access routines (for print and punch
writers).

In most cases, the writer support is provided within the JES3 global address
space. Certain devices, however, use device-dependent routines that operate in a
separate address space called an output writer functional subsystem (FSS) address
space. In this case, the writer driver and the command-processing routines
operate in the JES3 global address space and communicate with the output writer
FSS using the functional subsystem interface (FSI). The device-dependent
routines, also called a functional subsystem application (FSA), and the
spool-access routines operate in the output writer FSS. To define an output
writer FSS, see “Running a Printer Under an Output Writer Functional
Subsystem,” in Chapter 6, “Defining and Managing JES3 Resources.”

Note: The spool-access routines in an output writer FSS read and write spool
data from USAM protected data buffers (PBUFs) in CSA. JES3 does not release
a PBUF until all the records in the PBUF have been copied to a private area
buffer in preparation for passing them to the FSA. To allocate enough pages of
storage for PBUFs used by all the output writer FSSs in the JES3 complex, use
the PRTPAGE parameter on the MAINPROC statement.

Two methods of controlling the starting and stopping of writing are provided.
The start/stop criteria identify the writer as a hot writer or a dynamic writer:

® Hot writer: The operator controls the writer and its associated devices via the
*CALL, *START, *RESTART, or *CANCEL commands. The writer
notifies the operator when it is waiting for work and remains available for
processing.

®  Dynamic writer: The starting and stopping of the writer and its associated
devices is controlled by JES3 output service based on the availability of
output devices and output data set requirements that exist at any given time.
When no more data sets with defined characteristics for the writer are
available for processing, the writer is automatically terminated.

Caution: Running an output writer FSS as a dynamic writer could slow
output processing, because an address space must be brought up or down
each time the writer is started or stopped.

The output service writers process system output data sets destined for print,
punch, external writers or for the internal reader:

e Print: The print (hot or dynamic) writer processes any output data sets for
which SYSOUT classes were defined during JES3 initialization as
TYPE =PRINT and any additional data sets described by //*FORMAT PR
control statements. The printer writer accepts data in EBCDIC format, ready
for printing with either MVS channel command forms control or the
MVS-supported extended ASCII channel command code, or with no carriage
control. Output to the printer is command-chained.

Chapter 2. JES3 Job Management 2-41




® Punch: The punch (hot or dynamic) writer processes any output data sets for .
which SYSOUT classes were defined during JES3 initialization as ) \‘,
TYPE=PUNCH, and any additional data sets described by //*FORMAT PU ) e
control statements. The punch output writer ignores ASCII and MVS
channel-command stacker selection characters. Also, the punch output writer
does not support column binary mode (DCBMODE = C).

e  External writer: For a description of external writer usage, see the following
subsection.

® MVS internal reader: The MVS internal reader acts as a JES3 writer that
passes submitted jobs to input service.

External Writers

External writer routines execute in an address space other than the JES3 address
space. This type of writer is functionally independent of JES3 and operates as a
completely separate MVS job. However, the external writer interacts with JES3,
via the subsystem interface, to request data sets for processing. A subset of the
output service scheduling function called PROCESS SYSOUT is invoked as a
result of this kind of request.

No attempt is made by output service to schedule external writers as a result of
constructing OSEs requiring their services; it is the responsibility of the operator
to start external writers as required.

For more information on external writers, see MVS/Extended Architecture System L\ J
Programming Library: System Modifications. '

NJERDR

The NJE reader accepts incoming SNA networking job or SYSOUT streams from
MVS/BDT. The reader interacts with JES3 by using the PROCESS SYSOUT
scheduling function to request work from output service.

Data sets with the destination ‘NJERDR’ are passed to the reader. The reader
determines whether the networking streams can be processed at the home node or
be forwarded to another node. The networking streams are spooled and a JES3
job is created to process them.

The NJE reader is started and terminated by the operator using the
*CALL,NJERDR and *CANCEL,NJERDR commands, respectively.

Internal Reader

Internal reader routines allow TSO jobs or application programs to submit job
streams to JES3 via output data sets. When a job stream enters the system, input
service assigns the data sets directly to an internal reader. If an internal reader is
not available, the system dynamically creates one. When JES3 schedules the
internal reader, input service can proceed to process the data set as an input P
stream. ¥ ‘

2-42 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




As mentioned, an application program can create a job and pass it to the JES3
internal reader. To pass the job to the internal reader, the program must write
the job to a data set for which SYSOUT = (class,INTRDR) has been specified.
The internal reader reads the job, then gives it to JES3 where the job is processed
like other reader-submitted jobs.

To display a list of all the internal readers in the system at any one time, issue the
*INQUIRY,A,D=INTRDR command. As the workload slows, input service will
automatically terminate internal readers when they are no longer required. The
operator can also stop the internal reader by issuing a *CANCEL,INTRDR or a
*CANCEL,J =jobno command. For additional information about commands
that control the internal reader see MVS/Extended Architecture Operations: JES3
Commands.

A check is made for a /*EOF and /*DEL statement. If either is found, an
ENDREQ request is issued via SVC 111 to spin off the data set.

Following is an example of the DD specification and application program code
needed to use the internal reader:

//SYSUT2 DD SYSOUT= (X, INTRDR) , DEST=PRINTER2
PGMX CSECT
OPEN (SYSUT2,0UTPUT) OPEN JCL DATA SET
PUT ('CARDS') CREATE JOB STREAM
CLOSE  (SYSUT2) SPIN OFF DATA SET
CARDS DATASTART
//TEST1 JOB
//STEP1 EXEC PGM=IEFBR14
*

//TEST2 JOB
//STEP1 EXEC PGM=IEFBR14
*

DATAEND
END

In the example, SYSOUT class X is specified on the DD statement. However,
any class may be specified. In this example, class X becomes the MSGCLASS for
the job unless the MSGCLASS parameter has been specified on the JOB
statement. Sometimes, the spin-off data set is dynamically allocated without a
MSGCLASS specified, as in the case of a TSO SUBMIT created job. When this
occurs, the MSGCLASS of the submitting job, or TSO user, becomes the default
MSGCLASS. TSO LOGON jobs and started tasks, such as initiators, are
assigned the default MSGCLASS defined in the initialization deck.

The DEST parameter on the DD statement specifies the destination for
print/punch output from submitted jobs. If no destination or an invalid
destination is specified, print/punch output is routed to any printer or punch
directly attached to the global processor (DEST=ANYLOCAL).

Specifying FREE=CLOSE on a SYSOUT DD statement causes the data set to
be deallocated and made available for further system processing at the time the
data set is closed. JES3 creates a separate track allocation table (TAT) for this
type of data set. This allows the spool space allocated to be freed independently
of the job with which the data set is associated. This type of data set is called a
spin data set. A spin data set must be purged from the system before its
associated job is purged.

Chapter 2. JES3 Job Management 2-43




The FREE =CLOSE parameter should not be specified for a data set that is
opened and closed more than once during a job step. If the data set is reopened,
the job step abnormally terminates unless there is an intervening dynamic
allocation.

TEST! and TEST2 are passed to JES3 as a spin data set. This spin data set then
becomes available for processing by the internal reader. To invoke the internal
reader, enter *X, INTRDR on the global processor. The first available internal
reader data set will be returned. The internal reader passes this data set to input
service to be processed as a job stream.

The spin data set is treated as a batched input stream. Job processing does not
begin until the data set is closed. When the data set is closed, a job number is
assigned to the spin data set. When input service processes the first job of the
data set, the preassigned job number is given to the job. Subsequent jobs in the
data set are assigned job numbers when input service processes the job.

If the data set has an independent TAT to control spool space assigned to the

/ data set, the spin data set'facility releases the spool space occupied by the data set
once the output processing of the data set is complete. If the data set does not
have an independent TAT, the space associated with the spin data set is retained
until all JES3 processing for the job is complete and the job is purged.

Abnormal closing of the data set or closing after a write error causes deletion of
the last job in the input stream. A /*DEL statement may be used to explicitly
delete the job.

For more information about using the internal reader, see MV'S/Extended
Architecture System Programming Library: System Modifications.

Accessing Job Output Through TSO

It is possible for a TSO user to access the output--job control language (JCL),
system messages, and system output (SYSOUT) data sets--of a batch job. The
user that submits the batch job must first make the job’s output available to TSO.
There are two ways the user can do this:

e Assign the job’s output that is to be accessed to a SYSOUT class for which
you have specified HOLD =TSO.

e Specify on the // JOB statement MSGCLASS parameter a SYSOUT class for
which you have specified TYPE =RSVD; and assign the job’s SYSOUT data
sets to a SYSOUT class for which you have also specified TYPE =RSVD.

You must have previously specified HOLD =TSO and TYPE=RSVD on the
appropriate SYSOUT initialization statements.

To access the output of a batch job, which is on the JES3 spool, the TSO user
must issue the TSO command, OUTPUT. How to use this command is described
in TSO/E Command Reference.

2-44 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

%/



Following is an example of the use of reserved classes:

//J0B1 JOB ...,MSGCLASS=T
//S EXEC ...

/ /D01 DD SYSOUT=A

//DD2 DD SYSOUT=E

//DD3 DD SYSOUT=F

The following initialization statements are included in the initialization stream:

SYSOUT,CLASS=A,TYPE=PRINT
S¥YS0UT,CLASS=E,TYPE=(PRINT,RSVD)
SYS0UT, CLASS=F, TYPE=PRINT , HOLD=TSO
SYS0UT, CLASS=T, TYPE=(PRINT,RSVD)

In this example, SYSOUT data from DD1 is processed by output service as
normal SYSOUT. SYSOUT data from DD?2 is placed in HOLD for return to the
TSO user (because the MSGCLASS SYSOUT class of the job is also assigned to
a RSVD SYSOUT class). SYSOUT data from DD?2 is processed by output
service as normal SYSOUT if the MSGCLASS SYSOUT class is changed to class
A (because the MSGCLASS SYSOUT class is no longer assigned to a RSVD
class). SYSOUT data from DD3 is placed in HOLD for return to the TSO user
(because class F is specified as unconditional HOLD for TSO).

Virtual Storage Personal Computing: Output Requirement
You must assign output from the VSPC (Virtual Storage Personal Computing)

program product to a SYSOUT class whose SYSOUT initialization statement
specifies HOLD =EXTWTR or TYPE=RSVD.

Output Service User Exits

Output service provides five user exits, which are summarized in Figure 2-7.

User Exit
Routine Purpose

IATUX19 | Allows the user to access the contents of the temporai'y OSEsf'

TATUX20 | Allows the user to access the information to be wntten
IATUX21 | Allows the user to access the data that i is to be Wi ;
TATUX22 | Allows the user to alter the forms ahgnment
IATUX23 | Allows the user to access the data to be writt 4

IATUX45 | Allows the user to modify the }ob mformauon or da
functional subsystems ‘ :

Figure 2-7. OQOutput Service User Exits

The output writer functional subsystem application (FSA) in an output writer FSS
includes several non-JES3 user exits, which are explained in Print Services
Facility/MV'S System Programmer’s Guide. Refer to that document for all
information on user exits from the output writer FSA.

Chapter 2. JES3 Job Management 2-45




Purge

Purge is the last processing function for a job in the JES3 system. It releases all
JES3 DASD space assigned to the job, making it available for allocation to
subsequent jobs. A message is issued to the operator indicating that the job has
been purged from the system.

Since purge is the last processing segment for a job, it is at this point that an
installation accounting program can be placed to summarize the accounting data
for a job.

At the conclusion of purge, the JES3 installation accounting routine writes out a
type 26 SMF record. This record contains times and dates of the processing on
the processor writing the record. Since the clocks on the various processors are
not synchronized, elapsed times should all be taken from the same types of
records (for example, from type 26 records). Otherwise, timing differences in the
records may result.

See MVS/Extended Architecture System Programming Library: System
Management Facilities for a complete description of record type 26.

~
N

L

2-46 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Chapter 3. Defining and Managing C/I Service

Converter/interpreter (C/I) service controls the conversion of JCL statements to
internal text and then control blocks. The three principal phases of C/I service
are:

o  Converter/interpreter phase: Uses the MVS C/I routines to convert and
interpret the JCL into scheduler control blocks. At this time, JES3 (through
the MVS interpreter) creates the scheduler control blocks in the scheduler
work area (SWA) in the JES3 address space on the global processor (hereafter
called the JES3 global address space) or C/I functional subsystem address
space(s).

® Prescan phase: Creates job tables from the scheduler control blocks for use in
the postscan phase. At the end of this phase, JES3 moves the scheduler
control blocks from the SWA to the JES3 spool.

®  Postscan phase: Locates data sets and creates the job summary table for use
in JES3 device setup.

In the JES3 global address space, the CI DSP controls all three of the above
phases. More than one copy of the CI DSP can be active at a time. You specify
the number of CI DSPs that may be active in the JES3 global address using the
STANDARDS initialization statement.

C/1 service can also take place in a C/I functional subsystem (FSS) address space.
A C/I FSS address space contains many functions similar to a JES3 address space
and can operate on the global processor or any local processor. Where the
address space operates depends on what you specify for the FSS on its FSSDEF
initialization statement.

The CI DSPs that run in a C/I FSS address space process jobs only through the
converter/interpreter and prescan phases of C/I service. You specify the
maximum number of CI DSPs that may be active in a C/I FSS address space
using the FSSDEF statement defining that address space.

After a job passes through the converter/interpreter and prescan phases in a C/I
FSS address space, C/I service returns the job to the JES3 global address space
for the postscan phase. There, the job’s postscan processing takes place under a
separate POSTSCAN DSP. You specify the number of POSTSCAN DSPs that
may be active in the JES3 global address space using the STANDARDS
initialization statement.

Chapter 3. Defining and Managing C/I Service 3-1



This chapter includes the following sections:

1. “Setting Up C/I Service” explains how to set up C/I services to make the best Kk/
use of the address spaces available to JES3.

2. “Controlling Jobs through C/I Service” briefly describes the user exit routines
and other means available to influence a job’s C/I processing.

3. “Managing the Scheduler Work Area” explains how to avoid storage
constraints in the scheduler work area (SWA).

4. “Monitoring and Modifying C/I Service” lists the operator commands that
| you can use to monitor and change the C/I setup after JES3 initialization.

S. “Managing Procedure Libraries” explains how to update the procedure
libraries used by C/I service.

6. “Recovering from C/I FSS Address Space Failures” describes what actions to
take if a C/I FSS address space fails. It also describes the actions taken by
JES3 if a C/I FSS address space fails.

Setting Up C/I Service

JES3 interprets each job’s JCL using a separate copy of the CI DSP. For jobs
processed in C/I FSS address spaces or for rescheduled jobs, JCL interpretation /
occurs in a CI DSP and then in a POSTSCAN DSP. Thus, for every job in C/I S
service, there is one CI or POSTSCAN DSP allocated to the job. JES3 defines

each CI and POSTSCAN DSP to handle either batch or demand select jobs.

Demand select jobs are started tasks and TSO LOGON jobs.

To set up C/I service, you must first determine whether to use C/I FSS address
spaces and, if so, where to place them. Then, decide how many CI DSPs to
define for each address space in which C/I processing can take place. Finally,
determine how many POSTSCAN DSPs should run in the JES3 global address
space.

Advantages to Using C/I FSS Address Spaces

C/I service uses large quantities of the scheduler work area (SWA) and storage in
subpool 0. Because JES3 support of 31-bit addressing relieves virtual storage
constraint, an installation may choose to increase CSA and consequently reduce
the size of the JES3 region. In this case, an installation running many CI DSPs in
the JES3 global address space may encounter private virtual storage constraint.
When virtual storage is severely constrained, one of three actions occurs:

e JES3 functions terminate with out-of-storage abend codes (such as 80A)
o /I service fails jobs that would cause out-of-storage abends

e Address space JCL statement limit processing causes CI DSPs and jobs to 4 ’ \j
wait Qk S

3-2 MYVS/Extended Architecture SPL: JES3 Initialization and Tuning




To relieve actual or foreseen private virtual storage constraint in the JES3 global

( ' address space, you can establish C/I FSS address spaces. For every CI DSP you
define in the C/I FSS address space, you can reduce by one the number of CI
DSPs in the JES3 global address space. This reduction means C/I service in the
JES3 global address space uses less virtual storage. If private virtual storage
becomes constrained in the C/I FSS address space and causes out-of-storage
abends, JES3 global address space functions are not affected.

Another advantage to having C/I FSS address spaces is that you can define more
CI DSPs in the JES3 complex than the JES3 global address space alone can
handle. Thus, C/I service can process more jobs in the JES3 complex at a time.

Deciding How Many C/I FSS Address Spaces to Use and Where to Put Them

How many, if any, C/I FSS address spaces your installation needs depends how
constrained virtual storage is in the JES3 global address space. An installation
with no virtual storage constraint and no expected need for more CI DSPs needs
no C/I FSS address spaces. An installation with severe virtual storage constraint
and a heavy work load should set up C/I FSS address spaces. That installation
should also decrease the number of CI DSPs in the JES3 global address space,
perhaps eliminating them altogether. (Remember that postscan processing always
takes place in the JES3 global address space, whether under a CI DSP or a
POSTSCAN DSP.)

Where should a C/I FSS address space be placed? Placing one on a local
- processor requires CTC communication with the global processor. CTC

( communication causes more overhead than placing a C/I FSS address space on
the global processor. However, placing a C/I FSS address space on the global
processor uses processing capability that other JES3 functions that must run on
the global processor could use. Placing C/I FSS address spaces on the global
processor, then, reduces performance for jobs being processed in the JES3 global
address space. Placing C/I FSS address spaces on a local processor reduces
performance for jobs being processed by those C/I FSS address spaces.

If you establish C/I FSS address spaces on one or more local processors, you must
ensure that they can access the same system procedure libraries. To ensure that
all CI DSPs use identical procedure libraries, place the procedure libraries on
DASD devices that are defined to MVS as shared among all processors eligible
for C/I FSS address spaces. Also define the DASD devices as jointly-managed by
JES3 and MVS (that is, defined to MVS as permanently resident).

Deciding how many C/I FSS address spaces to define for a particular processor
requires additional calculation. Each C/I FSS address space requires some space
in the common service area (CSA) and the system queue area (SQA) for control
blocks. (See the following subsection for the space requirements.) The control
blocks either reduce the amount of available CSA and SQA or require the
installation to define more SQA, thus reducing the amount of private area virtual
storage. Also, C/I FSS address spaces can degrade system performance because
they are non-swappable.

Chapter 3. Defining and Managing C/I Service 3-3




Avoiding Common Storage Constraints

The JES3 support for 31-bit addressing provides storage constraint relief for the
C/I FSS address spaces because much of the JES3 code and many control blocks
reside above 16 megabytes. However, you may still want to examine potential
areas of constraint.

Some data areas associated with the C/I FSS address spaces occupy common
storage. Factor the amount of common storage occupied by these data areas
(given below) into your calculations of how many C/I FSS address spaces to
establish on each processor.

e JATYBAL (BALJ) - For every C/I FSS address space active in the processor,
there is one BALJ data area in SQA. The BALJ data area occupies 64 bytes
plus one byte per page of JSAM buffer space. For example, suppose you
specify a 250-page JSAM buffer pool for FSS address spaces. If 2 C/I FSS
address spaces are active in a given processor, that processor will have 2
BALJ data areas, each occupying 314 bytes of SQA.

e JATYDMC (DMC) - For every data buffer block (DAT) defined in the
JSAM buffer pool of every active C/I FSS address space, a data management
control block (DMC) occupies 128 bytes of CSA in subpool 231. The DMC
data area cannot cross page boundaries, and each C/I FSS address space has
its own DMC pool. For example, suppose you specify a JSAM buffer pool
size of 250 pages for FSS address spaces and a buffer size of half a page. If 2
C/I FSS address spaces are active in a given processor, that processor will
have 1000 DMC data areas occupying a total of 128k of CSA.

e JATYRAB (RAB) - For every job in the converter/interpreter or prescan
phase of C/I service, a record allocation block (RAB) occupies 112 bytes of
CSA.

e JATYDSS (DSS) - For every C/I subtask, there are 3 data set status blocks
(DSSs) in CSA. Each DSS occupies 120 bytes.

MYVS Performance Considerations

C/I FSS address spaces are not swappable because they use JSSAM to perform I/O
operations. Non-swappable address spaces occupy real storage at all times and
therefore may adversely affect MVS performance. To avoid adverse effects on
MYVS performance, tune the number of C/I FSS address spaces after initialization
using operator commands. For a list of those commands, see “Monitoring and
Modifying C/I Service” in this chapter.

3-4 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




C

Defining a C/I FSS Address Space

If you decide that establishing C/I FSS address spaces will help your installation,
you must supply a cataloged procedure for starting the C/I FSS address spaces.
Then, define each C/I FSS address space you want to establish using the FSSDEF
initialization statement. (You cannot define or add a C/I FSS address space using
operator commands.) Follow the steps given below.

L.

Include a procedure for starting a C/I FSS address space in the appropriate
procedure library for your installation. The default C/I FSS start procedure
resides in SYS1.PROCLIB in the member named JES3CI. The JCL
statements included in this procedure are:

//JES3CI EXEC PGM=IATINTKF,DPRTY=(15,14)
//STEPLIB DD DSN=SYS1.JES3LIB,DISP=SHR
//CHKPNT DD DSN=SYS1.JES3CKPT,DISP=SHR
//CHKPNT2 DD DSN=SYS1.JES3CKP2,DISP=SHR
//JES30UT DD SYSOUT=A
//JES3SNAP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//JESABEND DD SYSOUT=A

Using this default procedure as a guide, you can change the data set names
and the SYSOUT classes to meet your installation’s needs. Always specify
the same checkpoint data set(s) as specified in the JES3 start procedure and
share the data set(s).

In order to ensure an adequate region size, you may want to add a

REGION = keyword to the EXEC JCL statement. The JES3CI procedure
provided by IBM does not include a REGION = keyword. Do not include
JCL statements to define procedure libraries in the C/I FSS start procedure.

Include the appropriate FSSDEF statement(s) in your initialization stream,
one for every C/I FSS address space you wish to create.

Specify TYPE=CL.

The PNAME parameter should give the name of the cataloged procedure
that starts C/I FSS address spaces, which is in the procedure library used
for started tasks.

Use the SYSTEM parameter to specify the JES3 processor on which you
want to establish the C/I FSS address space.

Use the START parameter to specify whether you want JES3 to
automatically start this C/I FSS address space when an eligible processor
is available and both subparameters of the DSPCNT parameter (see
below) do not equal 0.

Use the DSPCNT parameter to specify the maximum number of CI DSPs
that may operate in the C/I FSS address space. Specify this number by
giving the maximum number of DSPs for batch jobs and/or the maximum
number of DSPs for demand select jobs that may operate concurrently.
See “Specifying the Number of CI DSPs in a C/I FSS Address Space” for
guidelines on setting values for this parameter.

Chapter 3. Defining and Managing C/I Service 3-5



o Use the MAXASST parameter to specify the maximum number of JCL B
statements all CI DSPs may process concurrently in this C/I FSS address f/ N
space. See “Selecting the Address Space JCL Statement Limit” for NS
guidelines on setting a value for this parameter.

Defining the Maximum Number of CI and POSTSCAN DSPs

You can specify the maximum number of CI DSPs that can run in the JES3
global address space using the STANDARDS initialization statement. You can
also specify the maximum number of CI DSPs that can run in a C/I FSS address
space using the appropriate FSSDEF initialization statement. To specify the
maximum number of POSTSCAN DSPs (which can run only in the JES3 global
address space), use the STANDARDS statement.

The combined maximum number of CI and POSTSCAN DSPs in all address
spaces equals the maximum number of jobs that C/I service can process at any
time. Increasing the number of CI DSPs in any address space allows C/I service
to process more jobs concurrently in that address space and in the JES3 complex.
However, a CI DSP in a C/I FSS address space that has finished processing a job
is considered “in use” until a POSTSCAN DSP becomes available. The number
of POSTSCAN DSPs, therefore, can limit the number of CI DSPs in a C/I FSS
address space that are actively processing jobs.

Each CI DSP uses at least 13k of private area virtual storage, in addition to the
private area virtual storage occupied by reentrant modules used by all CI DSPs.
To calculate how many CI DSPs you should define for each address space, you
must know two things: .

e How much private area virtual storage is available

e How much of the private virtual storage is not being occupied by other
necessary functions

The following subsections describe how to specify and choose the appropriate
maximum number of CI and POSTSCAN DSPs for an address space.

Specifying the Number of CI DSPs in the JES3 Global Address Space

Use the STANDARDS initialization statement to specify the maximum number !
of copies of the CI DSP that can operate in the JES3 global address space at any i
time. The CICNT parameter defines the maximum number of CI DSPs that can

process (1) batch and (2) demand select (started task and TSO LOGON) jobs.

The combined maximum number of CI DSPs active in the JES3 global address

space at any time cannot exceed 255.

If you specify CICNT = (0,0), no CI DSPs will run in the JES3 global address

space. If you do not specify the CICNT parameter, JES3 defines 2 C/I DSPs
assigned to batch jobs and 1 CI DSP assigned to demand select jobs.

3-6 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




To determine how many CI DSPs to run in the JES3 global address space,
consider how much private area virtual storage is available in that address space.
CI DSPs for demand select jobs use less SWA space than CI DSPs for batch jobs
because demand select jobs normally have fewer JCL statements. If private area
virtual storage is constrained, define demand select CI DSPs but no batch CI
DSPs.

Note: If you define C/I FSS address spaces for your installation, JES3 creates a

special C/I subtask in the JES3 global address space for starting C/I FSS address

spaces; it cannot be used for starting other tasks or TSO LOGONs. This subtask
allows a C/I FSS address space to be started even if you specify CICNT =(0,0) in
the initialization stream. The DSP counts for the JES3 global address space do

not include this subtask, but you should account for the subtask when

determining how much private area virtual storage is available.

Specifying the Number of CI DSPs in a C/I FSS Address Space

Use the FSSDEF initialization statement that defines a C/I FSS address space to
specify the maximum number of CI DSPs that can operate in that C/I FSS
address space. The DSPCNT parameter defines the maximum number of CI
DSPs that can process (1) batch and (2) demand select (started task and TSO
LOGON) jobs.

No more than 255 CI DSPs may be active in a C/I FSS address space at one time.
Just as too many CI DSPs in the JES3 global address space can cause private
virtual storage constraint, too many CI DSPs within a given C/I FSS address
space can cause private virtual storage constraint. However, if a C/I FSS address
space fails because it has no more virtual storage available, the JES3 global
address space is not affected.

Avoiding Private Area Virtual Storage Constraint Within a C[I FSS Address
Space: To avoid private virtual storage constraint within a C/I FSS address
space, you must know how much storage C/I service requires. You must also
know how much common storage is defined on the processor where the C/I FSS
address space executes.

The amount of storage required for each C/I FSS support item is listed below.
From these numbers, you can determine how many CI DSPs may run
concurrently within a C/I FSS address space without constraining private virtual
storage.

® Nucleus support services, those service routines required to execute the C/I
routines, require roughly 103K of storage in subpool 251. These routines also
support the rest of the JES3 functions available in the C/I FSS address space.

e Resident reentrant modules, required when one or more CI DSPs are active in

a C/I FSS address space, occupy approximately 30k of storage in subpool 0.
The amount of storage varies depending on the size of the user exit routines.

Chapter 3. Defining and Managing C/I Service 3-7




e Resident CI DSP private area control blocks, required when one or more CI
DSPs are active in a C/I FSS address space, occupy about 2K of storage.
The exact amount of storage depends on the size of the procedure library
tables and the HWS, CIPARM, and RESDSN tables.

o DSP-specific data areas occupy about 6k of storage for every CI DSP. Data
areas used by the CI DSP on behalf of a job occupy about 50 bytes in
subpool 0 and 384 bytes in subpool 236 or 237 for each DD statement.

e /I subtask data areas occupy about 28k of storage in subpool 229 for every
C/I subtask.

o  Control blocks for the C/I subtasks to access the JESJCL, JCLIN, and
SYSMSG data sets require the following storage space for each data set to be
accessed:

— IATYDSB (DSB), the data set block: 176 bytes in subpool 230
— IATYDSS (DSS), the data set status block: 120 bytes in subpool 241
— IEZDEB (DEB), the data extent block: 32 bytes in subpool 0

— JTATYDAT (DAT), the USAM spool data buffer block: 2 pages in
subpool 229. To determine how many DATs fit in the 2 pages, divide
8192 bytes (2 pages) by the number of bytes in one buffer, as specified
using the BUFSIZE parameter on the BUFFER statement.

— IATYDMC (DMC), the data management control block: 128 bytes in
subpool 229 for every DAT (see above)

o The RESQUEUE cell pool requires 320 bytes for each CI DSP defined on the
FSSDEF statement using the DSPCNT parameter (or as modified by the
*F,F command), rounded upwards to the nearest page. For example, if the
CI DSP count has not been modified and is specified as DSPCNT =(1,2),
then the number of required bytes would be 3 times 320, or 960. That
number would be rounded upwards to 4096 bytes, for one page. The
RESQUEUE cell pool is in subpool 6.

o The preallocated FCT entries require 496 bytes for each CI DSP defined on
the FSSDEF statement using the DSPCNT parameter (or as modified by the
*F,F command). This value is not rounded upward to the nearest page. The
preallocated FCT entries are in subpool 0.

In sum, a C/I FSS address space contains at least 171k of private area virtual
storage for modules and data areas, plus storage for the JSAM buffer pool and
job-related data areas. The functional subsystem interface (FSI) modules and
control blocks occupy about 4k of additional storage.

3-8 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

\4\,/



(

Specifying the Number of POSTSCAN DSPs

Use the STANDARDS initialization statement to specify the maximum number
of POSTSCAN DSPs that can operate in the JES3 global address space at any
time. A POSTSCAN DSP performs postscan processing for each job processed
by a CI DSP in a C/I FSS address space and for each rescheduled job.
(Rescheduled jobs include dependent job control (DJC) jobs for which predecessor
jobs have not completed.) The PSTCNT parameter defines the maximum number
of POSTSCAN DSPs that can process (1) batch and (2) demand select (started
task and TSO LOGON) jobs.

To choose values for the PSTCNT parameter, add the maximum number of batch
jobs that each C/I FSS address space can process. Then, separately add the
maximum number of demand select jobs that each C/I FSS address space can
process. If your installation uses dependent job control (DJC), increase the batch
value to account for rescheduled DJC jobs. You can use these batch and demand
select values as the initial PSTCNT values.

Then, consider the effect of the number of POSTSCAN DSPs on the number of
catalog locate requests being processed and the number of catalog volumes set up
for postscan processing. Each job and step catalog data set for a job causes a
setup call for the volume, which may require an operator to mount a volume. A
volume mount causes a significant delay in processing. Even if the volume does
not need mounting, volume setup and allocation to the job or step catalog library
increases processing time. If your installation experiences delays in processing
because of jobs waiting for locate processing or catalog volume setup, reduce the
number of POSTSCAN DSPs using the *MODIFY,X command.

Controlling Jobs through C/I Service

You can use user exit routines to ensure that jobs going through C/I service
comply with installation standards or to approve exceptions. Another way to
affect C/I service is to define one or more options lists for use by the MVS
converter. The options lists can specify various job-related requirements and
default values.

This section describes, in brief, the user exit routines and initialization statements
available to you for controlling jobs through C/I service.

Chapter 3. Defining and Managing C/I Service 3-9



Controlling Job Flow with User Exits =

3-10

The user exit routines available for controlling job flow through C/I service are \&j
summarized in Figure 3-1. Some of these exits are taken during input service,

before C/I processing. The input service exits influence C/I service by allowing

the user to change a job’s JCL statement values. The C/I service user exits let

you write routines to examine and change the results of C/I processing. One user

exit JATUX26) is taken at MVS execution time (after C/I processing) but lets the

exit routine make changes to the results of C/I processing. User exits IATUXO03 -

IATUX09, IATUXI11, IATUX26, IATUX28, and IATUX41 let you decide

whether to continue processing a job or remove it from the system. For detailed

information on the user exit routines, see MVS/Extended Architecture System

Programming Library: JES3 User Modifications and Macros. 1

/S you: to determme hat action to take w
ame in the m-storagc BLDL hst (f any)

\llows you to supply a mﬁssage when the zﬁessage number speci
ATXIWT macro is not m a predefined tahle

Tlows you to inhibit the writing of ¢
MSG data se’e 5

kAllows you to access MVS schoduler control blocks (durmg job )
ey are moved tor the scheduler work area (SW ) Lo |

llows you vemfy or change (durmg mput ervice DD JCL
D i)r bD ;ATA statements) St

select the processors whc
n ‘take place and specify wh 83 glo d
have deﬁned CAFsS add sp S ‘

Figure 3-1. User Exits for Monitoring JCL Interpretation

MVS/Extended Architecture SPL: JES3 Initialization and Tuning




(

Assigning Jobs to the Appropriate Processor and Address Space for C/I Service

If you have defined C/I FSS address spaces, two user exits let you control where
jobs get processed through C/I service. If you have defined C/I FSS address
spaces on local processors, remember that C/I processing of jobs might take place
on a local processor. Also, remember that in a complex having processors with
different release levels of MVS or different JCL definitions, jobs may use JCL
parameters or statements that require conversion and interpretation as well as
execution on a particular system. You must ensure that JES3 routes those jobs to
the proper system.

Before the job enters C/I processing, you can use user exit IATUX46 to examine
and limit the processors eligible for selection for the job’s C/I processing. You
can also specify whether the JES3 global address space is eligible. You can use
user exit IATUX49 to override JES3’s choice of address space (and, thus, the
processor) for the job’s C/I processing. For detailed information on the user exit
routines, see MVS/Extended Architecture System Programming Library: JES3
User Modifications and Macros.

Within the limits imposed by user exits IATUX46 and IATUX49, JES3 schedules
jobs to a CI DSP using a priority scheme that considers whether jobs are batch or
demand select jobs.

JES3 schedules demand select jobs to demand select CI DSPs in the following
priority:

1. in the JES3 global address space

2. in the FSS address space with the greatest number of available demand select
CI DSPs on the global processor

3. in the FSS address space with the greatest number of available demand select
CI DPSs on a local processor

JES3 attempts to schedule batch jobs to batch CI DSPs in the following priority:

1. in the FSS address space with the greatest number of available batch CI DSPs
on the global processor

2. in the FSS address space with the greatest number of available batch CI DSPs
on a local processor

3. in the JES3 global address space

Chapter 3. Defining and Managing C/I Service 3-11




Defining a Converter/Interpreter Options List

The MVS converter/interpreter runs under a C/I subtask during the
converter/interpreter phase of C/I service. You can define one or more options
lists for use by the MVS converter/interpreter. The options list provides
installation defaults for certain JCL keywords. Each options list can specify:

Whether a JOB statement must specify a programmer name or an account
number, or whether the scheduler work area is located above 16-megabytes
when a job executes

The maximum execution time for a job step

The default region size for a job step

Whether MVS is to bypass label processing

Whether the MVS C/I routines are to write the following information to the
system message data set:

— JOB statement
— Input JCL (including in-stream procedures)

Whether the MVS allocation routines are to write allocation/termination
messages to the system message data set

The message class default

To define and name an options list, code a CIPARM initialization statement.
Use the PARMID = parameter on this statement to name the list. You must
code a separate CIPARM statement for each options list.

Each time the operator calls a disk reader, a card reader, or a tape reader, the
operator can select one of the options lists that you defined. Thereafter, each
time the MVS C/I routines process a job read from that particular reader, the
MVS C/I routines use the selected options list.

To call a reader and select an options list, the operator must issue one of the
following commands:

The variable xx is the name of the options list the operator wishes to select. This

*CALL,CR,...PARMID =xx
*CALL,DR,..PARMID =xx
*CALL,TR,.. PARMID =xx

must be the same name you used when you defined the options list.

To specify which options list the MVS C/I routines should use for internal reader

jobs, started tasks, and TSO LOGON jobs, use the INTPMID, STCPMID, and
TSOPMID parameters on the STANDARDS initialization statement.

3-12 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

o

o



¢

| Creating SWA Space

l
!
|
I

Managing the Scheduler Work Area

The scheduler work area (SWA) of the JES3 global address space or the C/I FSS
address space serves as storage for the scheduler control blocks derived from a
job’s JCL statements during the converter/interpreter phase. At any time, the
SWA contains the scheduler control blocks for all jobs that CI DSPs are
processing at that time, from the converter/interpreter phase through the prescan
phase. When a CI DSP finishes processing a job, JES3 or the C/I FSS writes that
job’s scheduler control blocks to the spool. JES3 or the C/I FSS then frees the
SWA space occupied by that job’s scheduler control blocks.

If a CI DSP starts to process a job but there is not enough SWA space to store
the job’s scheduler control blocks, C/I service cancels the job, or JES3 or the C/I
FSS address space processing the job may terminate abnormally.

There are two reasons why there might not be enough space in the SWA for a
job’s scheduler control blocks.

e The job itself contains so many JCL statements that the control blocks
derived from the JCL will not fit in the SWA.

e JCL statements from other jobs that CI DSPs are processing concurrently
have caused scheduler control blocks to temporarily fill most or all of the
SWA. A single large job (that is, a job with many JCL statements) or many
smaller jobs that CI DSPs are processing could cause this condition.

You can limit the amount of SWA space generally used by C/I service in three
ways:

e Balance the C/I service work load among the JES3 global address space and
C/I FSS address spaces so that no one address space requires more SWA
space than it has available.

e Limit the number of JCL statements allowed for each job, thus preventing a
large job from dominating the SWA.

o Limit the number of JCL statements that can be processed by the JES3 global
address space or a C/I FSS address space at any time. This limit prevents the
address space from running out of SWA space and abnormally terminating.

For further information about balancing the work load, see “Setting Up C/I
Service.”

SWA space is created twice for each job. It is first created during C/I processing
in the global address space or in the C/I FSS address space. This initially-created
SWA space is always located above 16-megabytes.

Although you need not be concerned with storage constraint in extended storage,
you can still specify a limit on the number of address space JCL statements that
can be processed concurrently. The address space JCL statement limit indicates
the number of JCL statements that all CI DSPs in a given address space may

Chapter 3. Defining and Managing C/I Service 3-13




process concurrently. See “Preventing Abnormal Termination of JES3 or a C/I
FSS Address Space” later in this chapter for more information.

The second time SWA space is created is when the job executes. For job
execution, SWA space is located in the private area of the job’s address space
above or below 16-megabytes. To control which jobs will have SWA space
created in extended storage, use the CIPARM initialization statement.

Because jobs with a large number of JCL statements can cause storage constraint
problems, you may want to specify a job JCL statement limit. The job JCL
statement limit indicates the number of JCL statements a job may have and
continue into MVS interpretation. See the following topic, “Preventing a Job
from Dominating the SWA” for further information.

Preventing a Job from Dominating the SWA

To prevent a job with many JCL statements from dominating the SWA, use the
job JCL statement limit. If a job contains more JCL statements than the job JCL
statement limit allows and you have not provided an exit routine for user exit
IATUX41, JES3 cancels the job. If you provide the exit routine, JES3 allows the
exit routine to decide whether to cancel the job or to let the job continue.

Selecting the Job JCL Statement Limit

To select the job JCL statement limit, determine the number of JCL statements
that are in the largest job you want to run at your installation. Specify that
number on the MAXJOBST = parameter of the STANDARDS initialization
statement. The next time you do a warm start or cold start using the
initialization stream containing that STANDARDS statement, JES3 uses the job
JCL statement limit you specified.

You can override the effects of this limit on a particular job by writing an exit
routine for user exit IATUX41. This user exit lets you decide whether a job that
exceeds the job JCL statement limit should continue processing. To find out how
to write an exit routine for user exit IATUX41, see MVS/Extended Architecture
System Programming Library: JES3 User Modifications and Macros.

To set or change the job JCL statement limit without restarting JES3, issue the
*F.X,D=CILMAXJOBST =nnn command. This command becomes effective for
the next job to enter C/I processing and remains in effect across a hot start. To
display the current value of the job JCL statement limit, issue the *I,X,D=CI
command.

If the initialization stream does not specify a job JCL statement limit, JES3 uses
the default value of 0. When the job JCL statement limit is 0, there is no limit on
the number of allowable JCL statements. JES3 does not check to see if jobs have
too many JCL statements to fit in the SWA.

3-14 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Preventing Abnormal Termination of JES3 or a C/I FSS Address Space

To prevent abnormal termination of the JES3 global address space or a C/I FSS
address space when there is not enough SWA space to store the scheduler control
blocks derived from a job’s JCL, specify an address space JCL statement limit.
The address space JCL statement limit defines the maximum number of JCL
statements that all CI DSPs in an address space can process concurrently.

For the JES3 global address space, specify the address space JCL statement limit
using the MAXASST parameter on the STANDARDS initialization statement or
the MAXSYSDD = operand on the *F,X,D=CI operator command. For a C/I
FSS address space, specify the address space JCL statement limit using the
MAXASST parameter on the FSSDEF initialization statement or using the
MAST = operand on the *F,F operator command.!

After you set the address space JCL statement limit(s), JES3 allows a CI DSP to
process a job only if both of the following are true:

1. The number of JCL statements for the job is less than the address space JCL
statement limit

2. The sum of the number of JCL statements for the job plus the number of
JCL statements all CI DSPs are processing at that time in the address space is
less than the address space JCL statement limit

If the first condition is not true, JES3 cancels the job. If the second condition is
not true, JES3 makes the job wait. In addition, all jobs that have not yet begun
MYVS converter processing wait, while jobs that are into or past MVS
interpretation continue processing.

After JES3 writes a job’s JCL (as scheduler control blocks) to the spool, JES3
frees the SWA space. The total number of JCL statements that all CI DSPs are
processing in the address space decreases by the number of JCL statements in the
job. When this total decreases to a point where the waiting jobs can be processed
without exceeding the address space JCL statement limit, JES3 allows the jobs to
continue processing.

1 The address space JCL statement limit and the job JCL statement limit do not
affect demand select (started task and TSO LOGON) jobs. This means that:

® A demand select job can contain more JCL statements than either JCL
statement limit allows.

®  When counting the total number of JCL statements that all CI DSPs are
processing, JES3 does not count the JCL statements for demand select jobs.

However, demand select jobs generally use few JCL statements. Most installations

will not encounter virtual storage constraint while converting or interpreting
demand select jobs.

Chapter 3. Defining and Managing C/I Service 3-15



Selecting the Address Space JCL Statement Limit

Figure 3-2 describes a procedure for selecting and setting the address space JCL
statement limit. The left column of the figure explains each step of the procedure;
the right column shows an example of the procedure. The example shows how to
use the procedure.

Figure 3-2. Procedure for Selecting and Setting an Address Space JCL Statement Limit

If you change an address space JCL statement limit, the change remains in effect
across a hot start.

If the initialization stream does not specify an address space JCL statement limit,
JES3 uses the default value of 0. The default value of 0 means the number of
JCL statements for the address space has no limit. In this case, JES3 does not

3-16 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




prevent a CI DSP from processing a job even though there is not enough SWA

space for the job’s scheduler control blocks. If there is not enough SWA space,

the address space processing the job will abnormally terminate or the job will be
canceled by the MVS interpreter.

To display the current value of the address space JCL statement limit in the JES3
global address space, issue the command *I,X,D=CI. To display the current
value of the address space JCL statement limit for a C/I FSS address space, issue
the command *I,F,FSS =fssname.

Monitoring and Modifying C/I Service

After you have set up C/I service for your installation, you may need information
about jobs in C/I processing or about the CI DSPs themselves. You might use
such information to judge how well C/I service meets the installation’s needs and
the needs of individual jobs. If any problems become evident, you might also
need to change the C/I service setup. The sections below briefly list the operator
commands that let you monitor and change C/I service.

For details about the particular commands and operands, see MV'S/Extended
Architecture Operations: JES3 Commands.

Keeping an Eye on C/I Service

The *INQUIRY command lets you display the status of jobs and the status of CI
DSPs, as described below.

Finding Out The Status of Jobs

Use the *INQUIRY (*I) command to learn what phase of C/I processing a job or

jobs are in and which C/I FSS address space (if any) is processing the job.

e For a specific job:
*I,J =jobname|jobnoljj*

e For jobs of a specific priority:
*LLP=prty,N=nnn/ALL

e For jobs in the job queue:

*1,Q,J=jobno,N =nnn|ALL

Chapter 3. Defining and Managing C/I Service 3-17




Finding Out The Status of CI and POSTSCAN DSPs

Use the *INQUIRY command to display information about the status of CI and N/
POSTSCAN DSPs.
e For jobs waiting to be scheduled for a CI DSP:
*,Q,D=CI
o For jobs currently being processed by CI DSPs:
*LA,D=CI
o For the status (held or released) of C/I scheduling:
*LX,.D=CI
e For jobs waiting to be scheduled for a POSTSCAN DSP:
*,Q,D=POSTSCAN
o For jobs currently being processed by POSTSCAN DSPs:
*LLA,D=POSTSCAN
e For the number of jobs currently being processed by or waiting for CI and
POSTSCAN DSPs: 7N
s
*I,B
o For the complex-wide job JCL statement limit and the JES3 global address
space JCL statement limit for CI DSPs:
*LX,D=CI
e For the maximum CI DSP count and use count for the JES3 global address
space:
*LX,D=CI
e For the maximum DSP count and the address space JCL statement limit for a
C/1 FSS address space:
*L,F,FSS = fssname
Modifying C/I Service
After you have set up C/I service, you can change the configuration without
restarting JES3 by using operator commands.
e To stop (HOLD) or resume (RELEASE) scheduling jobs for C/I processing N
throughout the complex: o
L W

*F,X,D=CLHOLD|RELEASE

3-18 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




To change the number of batch and demand select CI DSPs in the JES3
global address space:

*F,X,D =CI,MC = (maxbatch,maxdemsel)

(This command works even if you specified no CI DSPs on the CICNT
parameter of the STANDARDS initialization statement.)

To change the number of batch and demand select CI DSPs in the specified
C/I FSS address space:

*F,F,FSS = fssname, DSPC = (maxbatch,maxdemsel)

Note: If you specify DSPC=(0,0) on the above command, the C/I FSS
address space will not be started or terminates after all work completes.

To change the maximum number of JCL statements that all the CI DSPs in
the JES3 global address space may process concurrently:

*F,.X,D=CI,MAXASST=nn

To change the maximum number of JCL statements that all the CI DSPs in
the specified C/I FSS address space may process concurrently:

*F,F,FSS =fssname, MAST =nn

To change the maximum number of JCL statements a job may have before
C/1 processing fails the job:

*F,X,D=CILMAXJOBST =nn

To change the maximum number of batch and demand select POSTSCAN
DSPs that may operate concurrently in the JES3 global address space:

*F,X,D=POSTSCAN,MC = (maxbatch,maxdemsel)

To change whether JES3 automatically starts the C/I FSS address space or to
restart a C/I FSS that has terminated:

*F,F,FSS =fssname,ST=Y|N

Note: This change of the C/I FSS address space’s characteristics carries over
a hot start but not a warm start. Also, JES3 starts the address space
automatically only if the DSPCNT parameter value is not 0.

To cancel a job in C/I service:

*F,J=jobno,C|CP or *C,J =jobno

To reduce the number of C/I FSS address spaces on a given processor, change
the C/I FSS address space DSP counts to zero using the *MODIFY

command, or cancel the C/I FSS address space using the MVS CANCEL
operator command.

Chapter 3. Defining and Managing C/I Service 3-19




e To fail a C/I FSS, the C/I driver, or the CI DSP that is processing a job, use -
the *FAIL command. (

You cannot add a C/I FSS address space using operator commands. You must
add a FSSDEF statement defining the C/I FSS address space to the initialization
stream and perform a warm start.

Managing Procedure Libraries

Procedure libraries are partitioned data sets used to hold pre-defined sets of JCL
statements called procedures. You can specify those procedures by name in
EXEC JCL statements. A procedure library can be one partitioned data set or
several partitioned data sets concatenated together. A partitioned data set can be
a member of more than one procedure library.

The user identifies a partitioned data set as a member of a procedure library using
a ddname of IATPLBxx on either:

e a DD JCL statement in the JES3 start procedure (see “Initializing JES3”)
e the DYNALLOC initialization statement

The last two characters of the ddname are called the procedure library id (procid).

The user must define a standard, or default, procedure library with the ddname o
IATPLBST. The IBM-supplied start procedure defines the standard procedure N
library as including the partitioned data set SYSI.PROCLIB. SYS1.PROCLIB N
contains IBM-supplied procedures, to which the user can add procedures. The

user can also change the standard procedure library to a procedure library of the

user’s choosing.

When a job requires a procedure in a procedure library, the PROC parameter of
the //*MAIN JES3 control statement can be used to specify the procid identifying
the procedure library. If the PROC parameter is not specified, JES3 uses the
default procid appropriate to the job type, as specified on the STANDARDS
initialization statement (the INTPROC, STCPROC, or TSOPROC parameter).
The default for batch jobs is the standard procedure library, IATPLBST. If the
job does not use any procedures (even if the PROC parameter is specified), JES3
does not assign a default procedure library to the job.

If you have C/I FSS address spaces on local processors, they need access to all
procedure libraries. To ensure that all CI DSPs use identical procedure libraries,
place the procedure libraries on DASD devices shared among all processors
eligible for C/I FSS address spaces. The DASD devices must also be
jointly-managed by JES3 and MVS (that is, defined to MVS as permanently
resident or reserved).

The procedure libraries must be cataloged in the MVS catalogs for all processors
sharing access.

Note: Converter/Interpreter functional subsystems obtain unit and volume P
information for the procedure libraries from the MVS catalog. For these FSSs, {

3-20 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




JES3 ignores unit and volume information that you specify on in the JES3
start-up procedure or on a DYNALLOC initialization statement.

Updating Procedure Libraries

If you want to update one or more procedure libraries, you must ensure the
integrity of the procedure libraries by letting JES3 know which data set(s) your
job will update. List the names of the data set(s) to be updated on the UPDATE
parameter of the //*MAIN JES3 control statement for that job. Before the job
enters setup processing, JES3 disables all procedure libraries containing those data
sets. JES3 and the C/I FSS address spaces, if any, deallocate the procedure
libraries so that C/I service cannot use them. However, another job can update
those procedure libraries if the job updates different data sets in the library
concatenation.

The procedure libraries remain inaccessible (disabled) to C/I service until the
updating job(s) finish executing. Other jobs needing those procedure libraries for
C/I service must wait. To avoid making other jobs wait for long periods, keep
updating jobs brief, with simple setup requirements. Jobs using other procedure
libraries are not affected.

When the updating job(s) finish executing, JES3 reallocates the procedure libraries
to JES3 and the C/I FSS address spaces. JES3 enables the procedure libraries
when no more data sets in the procedure libraries are being updated.

If a job updating a procedure library is placed in spool hold over a restart, the
procedure library remains disabled until the job is released from hold and all the
processing described above finishes.

If a job updating a procedure library moves any procedure library data set to
another volume, the job must update the catalog entry for that data set on all
processors having C/I FSS address spaces. Otherwise, C/I service cannot find the
correct catalog entry to enable the procedure libraries after the job finishes
executing. When the procedure libraries are enabled, JES3 updates or verifies
other information about the updated procedure library, such as the BLDL list
entries and block size data.

Warning: Make sure that at least one initiator for the appropriate job class has
been started before allowing any jobs to enter the system that update the
procedure libraries used by the initiators. Otherwise, a deadlock will occur: the
procedure libraries are disabled, the job is waiting for an initiator, and the
initiator is waiting for the procedure libraries to be enabled. If this situation
arises, the updating job must be canceled and resubmitted.

To prevent new jobs from updating the procedure library, change the DISABLE
DSP maximum use count to 0 or issue the *F,X,D =DISABLE,HOLD command.
To resume updating, increase the DSP maximum use count or issue the
*F,X,D=DISABLE,RELEASE command.

Chapter 3. Defining and Managing C/I Service 3-21




Displaying the Status of Procedure Library Data Sets

You can display the status of the procedure libraries using the

*L,PROCLIBLID =procid] command. This command shows whether a procedure
library concatenation is enabled or disabled and shows the individual data set
names in the procedure library concatenation with the job number and job name
of the job updating each data set (if any). If you specify the procedure library id,
the command displays this information only for the specified procedure library.

Recovering from C/I FSS Address Space Failures

Failure of a C/I FSS address space does not cause any JES3 address space or
other C/I FSS address spaces to fail. If a C/I FSS address space encounters an
error and is able to recover, no other address spaces, including JES3, even become
aware of the problem. For recoverable errors, the system operator sees messages
from the C/I FSS failsoft routines. The messages are similar to those the operator
sees if a JES3 address space encounters an error.

If a C/I FSS address space does fail, there are two ways the JES3 global address
space becomes aware of the failure:

o The C/I FSS address space disconnects through the functional subsystem
interface (FSI).

e If the C/I FSS address space fails without ending communication with JES3,
JES3 becomes aware of the failure at job termination.. (The C/I FSS runs as
a demand select job.)

JES3 never automatically restarts a C/I FSS address space that terminates.
(When a C/I FSS address space abnormally terminates, JES3 changes the START
value, defined by the FSSDEF statement, to NO.) However, JES3 automatically
reschedules all jobs that were active in the C/I FSS address space at the time of
failure. Jobs restart at the beginning of C/I service.

To restart the address space, use the *F,F,FSS =fssname,ST=Y operator
command.

If the JES3 global address space abnormally terminates, all C/I FSS address
spaces continue operating until they run out of work. Then they are idle until the
JES3 global address space restarts. If the FSSDEF statement for the C/I FSS
address space specifies TERM =YES, an *RETURN or *DUMP command for
the JES3 global address space terminates the C/I FSS address space.

If a C/I FSS address space terminates during an IPL of a processor, JES3 will
restart the C/I FSS provided:

e the processor is connected and online

e the DSPCNT is not zero
e the START option is specified as YES

3-22 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

A
O



Chapter 4. Defining and Managing Spool Data Sets

Before initializing JES3, decide how many spool data sets you should allocate and
then allocate them. During initialization, format any unformatted spool data sets.
You can also define spool space allocation units suited to the type of work
handled by your JES3 complex. Then, define how many of these allocation units
are to be allocated (on each request) to jobs that use a particular processor, job
class, or SYSOUT class.

Optionally, you can define spool partitions, which are logical groups of spool data
sets. Further, you can specify the spool partitions JES3 is to use for each

processor, for each job class, and for each SYSOUT class.

To adjust the spool configuration in your JES3 complex as the installation’s work
load and other needs change, you can:

e Balance the work load across spool partitions using operator commands

e Free spool space permanently or temporarily, as needed, using the JES3 spool
maintenance facility and the dump job facility

e Add or delete spool data sets

o Keep track of I/O errors on a spool data set using operator commands and
BADTRACK statements

e Temporarily remove or permanently replace a spool data set having
permanent I/O errors

Defining Spool Data Sets

Defining spool data sets requires:

Determining how many data sets you should allocate
Determining where to allocate a spool data set
Allocating spool data sets

Formatting spool data sets

This section includes guidelines and procedures for these tasks.

Chapter 4. Defining and Managing Spool Data Sets  4-1




Determining How Many Spool Data Sets You Should Allocate

Several factors determine the number and size of spool data sets that you should
allocate:

® The amount of spool space that all jobs in the complex may need at any one
time. Allocate enough spool space to handle peak usage.

o The number of processors in the complex competing for available control
units and devices. The more processors competing for control units and
devices, the more spool data sets needed for reasonable performance. A spool
data set should not be busy more than 30 to 40 percent of the time or there
will be too much contention for the data set.

e The type of work being carried out in the complex. Jobs that include large
amounts of output handled by JES3 need more spool space than jobs with
little output, such as TSO jobs.

e The number of spool partitions in the complex. Each active partition must
include at least one spool data set. Spool partitions cannot share spool data
sets.

You cannot allocate more than 1024 spool data sets.
After you initially allocate a number of spool data sets, you may need to adjust

that number as the installation’s work load changes. See “Managing Spool
Space” to learn how to adjust the number of spool data sets.

Allocating Spool Data Sets

To allocate a spool data set, include a DD statement for the data set in the JES3
start procedure. To dynamically allocate the spool data set, omit the DD
statement and include a DYNALLOC statement for the data set in the JES3
initialization stream. Dynamic allocation provides an easier method for changing
your spool configuration than allocating the spool data sets through the JES3
start procedure with DD statements.

You can allocate a spool data set on a 3330, 3340, 3350, 3375, or 3380 device.
The volume on which a spool data set is allocated must be accessible to the global
processor and to all local processors. Each spool data set must be contained in a
single extent. (A single extent is one adjoining group of tracks or cylinders.) You
cannot allocate any secondary extents.

To avoid degradation of JES3 performance and possible lockouts, do not allocate
more than one spool data set per volume. When a volume contains more than
one spool data set, the average seek time to access the data increases. Similarly,
do not allocate data sets to a volume that JES3 rarely accesses.

JES3 spool data sets are location-dependent and unmovable. Utility programs
that defragment should not be allowed to move these data sets. Spool data sets
can be marked unmovable by coding DSORG=PSU on the DCB parameter of
the DD statement.

4-2 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




C

Formatting Spool Data Sets

Before JES3 can use a spool data set, you must format the spool data set. Two
ways to do this are:

e Format it during JES3 initialization by including a FORMAT statement in
the JES3 initialization stream.

e Format it by executing the utility program IEBDG as a batch job. This fills
the extent with hexadecimal ‘FF’ data.

If you format a spool data set during JES3 initialization, JES3 can use the spool
data set after initialization completes. If you use IEBDG to format a spool data
set, you must then do a warm start or cold start so JES3 can use the data set.

Formatting During JES3 Initialization

Formatting with IEBDG

To format a spool data set during JES3 initialization, include a FORMAT
statement for the spool data set in the JES3 initialization stream. Then start JES3
using that initialization stream.

The type of start you use depends on why you are formatting the spool data set:

e If you have changed the BUFSIZE= parameter on the BUFFER statement,
use a cold start (C). (In this case, you must format all spool data sets.)

e If you are replacing a spool data set, use a warm start to replace a spool data
set (WR). If you also want an analysis of the jobs in the job queue, use a
warm start with analysis to replace a spool data set (WAR).

e [f you are adding a spool data set, use a warm start (W) or a warm start with
analysis (WA).

For a discussion of each of these methods of starting JES3, see “Starting JES3” in
Chapter 10, “JES3 Start-Up and Initialization.”

After JES3 processes the initialization stream, replace the FORMAT statement
with a TRACK statement. If the FORMAT statement contained the STT or
STTL parameter, also code this parameter on the TRACK statement.

If you use a warm start and the initialization stream contains a FORMAT
statement for a spool data set that is already formatted, JES3 issues a warning
message. JES3 continues with initialization, however, and does not reformat the
spool data set.

You can use the utility program IEBDG to format a data set that you plan to use
as a spool data set. The book MV'S/Extended Architecture Utilities explains how
to use IEBDG. Figure 4-1 shows a sample job that uses IEBDG to format a
spool data set.

Chapter 4. Defining and Managing Spool Data Sets  4-3




Figure 4-1. Sample Job Using IEBDG to Format a Spool Data Set

The value of the variable nnn must equal the value of the BUFSIZE = parameter
on the BUFFER initialization statement. The variable nnn appears on both the
SPXTNT DD statement and on the FD utility program control statement.

The value of the QUANTITY = parameter on the CREATE statement determines
how much of the spool data set IEBDG formats. To ensure that IEBDG formats
the entire data set, specify QUANTITY =9999999.

If IEBDG successfully formats the entire spool data set, the formatting job ends
with an abend code of D37. In addition, MVS issues message IEC0311. Ignore
the corrective action specified in the message. The formatting job abnormally
terminates because the value of the QUANTITY = parameter causes IEBDG to
try to format more records than the data set can contain.

If the job ends without the D37 abend code and the message, IEBDG may not
have formatted the entire spool data set. Do not use the spool data set. Instead,
find the problem, fix it, and then rerun IEBDG.

After the spool data set has been formatted, include a TRACK statement for it in

the initialization stream. To make the spool data set available to JES3, restart
JES3.

The type of restart you use depends on why you are formatting the spool data set:

e If you have changed the BUFSIZE = parameter on the BUFFER statement,
use a cold start (C). (In this case, you must format all spool data sets.)

e If you are replacing a spool data set, use a warm start to replace a spool data
set (WR) or a warm start with analysis to replace a spool data set (WAR).

e If you are adding a spool data set, use a warm start (W) or a warm start with
analysis (WA).

For a discussion of each of these methods of starting JES3, see “Starting JES3” in
Chapter 10, “JES3 Start-Up and Initialization.”

4-4 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Reformatting a Spool Data Set

Once formatted, reformat a data set only when:

the spool data set has been damaged

you change the BUFSIZE = parameter on the BUFFER initialization
statement (in this case, you must reformat all spool data sets)

To reformat a spool data set, use either of the procedures just described.

Using Spool Partitions

A spool partition is a logical grouping of spool data sets. You control five
factors:

the number of spool partitions used

the number of spool data sets that are in each spool partition
the work load distribution across spool partitions

the type(s) of spool data to be included in each spool partition
the size of a track group for each partition

These factors influence the reliability, availability, and serviceability (RAS) of
spool data sets and the performance impact of accessing a spool data set.

The following discussion assumes that you allocate no more than one spool data
set per volume (as previously recommended).

Advantages to Spool Partitioning

Most JES3 installations can benefit from using several spool partitions. If used
properly, spool partitioning can provide many advantages. However, if these
advantages do not apply to your installation, one spool partition will serve as
well. The major advantages to using spool partitions are:

If a spool data set fails, the failure affects only a subset of the jobs in the
JES3 complex. That is, the failure affects only those jobs that have data in
the spool partition including the failed spool data set, not jobs that have data
in other spool partitions. (The failure may not affect all jobs in that spool
partition, however. Some jobs may not have had any data on the failed data
set.) Thus, spool partitioning improves spool RAS.

By spreading the use of spool partitions across jobs, job classes, and SYSOUT
classes, you can limit the number of processors that compete for each
partition. If processor competition for spool data sets is an actual or
potential problem for your installation, spool partitioning could improve
system performance.

Chapter 4. Defining and Managing Spool Data Sets  4-5




e By specifying track group size on a partition by partition basis, you can tailor
spool space allocation to the requirements of jobs using that partition.
Efficient use of spool space minimizes spool access time and can improve
performance. (See “Determining the Size of a Track Group” later in this
chapter.)

e By isolating the JES3 initialization data in its own spool partition, you can
prevent the infrequently-accessed initialization data from occupying the track
groups that have the best performance characteristics in the default partition
or any other partition.

e By isolating critical work in specific spool partitions, you can ensure that
spool space is available for critical jobs and users. At the same time, you can
ensure that spool space requirements of noncritical applications do not
interfere with spool space requirements of critical applications.

e By isolating certain types of work in specific partitions, you can better
determine what action to take if a spool data set fails. Refer to the section
below entitled “Isolating Different Spool Data Types” for details.

If none of the above advantages apply to your installation, you need not define
any spool partitions. In that case, JES3 assumes that all spool data sets belong to
a single spool partition.

If spool partitioning seems advantageous for your installation, consider carefully
which data sets you assign to each partition. To get the best balance of high RAS
and high performance, distribute the installation’s work load evenly across the
spool partitions. You can adjust the balance after your installation has set up the
spool configuration for the first time. See “Managing Spool Space” for
information on how to tune your spool configuration.

Isolating Different Spool Data Types

Spool partitioning allows you to isolate different types of spool data. Isolating
spool data in separate partitions can help you improve spool performance, spool
recovery procedures, and spool space management.

e To improve spool performance, group SYSOUT data sets with similar
characteristics in one spool partition. For example, you could put spool data
for TSO LOGON jobs in one partition and spool data for batch jobs in a
different partition. Contention for processors, data sets, and other resources
can thus be reduced.

e To improve spool recovery, keep critical spool data separate from noncritical
data. (Your installation might consider spool data generated while running a
payroll job to be critical, but data generated while compiling programs might
be easily replaced and therefore noncritical.) If a spool data set fails, you will
know whether you must try to recover the data or can simply replace the data
set. You will also be better able to judge how quickly you must reinstate the
data set.

4-6 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




e To improve spool space management, you can isolate data controlled by the
system programmer or operator from data controlled by an end user. If the
installation needs more spool space, you will know which data sets you
control. Then you can release stored data in those data sets for printing or
other final processing.

Defining Spool Partitions

Using SPART initialization statements, you can define up to 1024 spool
partitions. Additionally, you can identify one of the partitions as the default
partition by specifying DEF =YES on a SPART statement.

You need not define spool partitions or specify a default partition. If you define
no partitions--you include no SPART statements in the initialization stream--JES3
defines one partition and names it JES3PART. If you define partitions but not a
default partition, JES3 uses as the default partition the partition defined on the
first SPART statement in the initialization stream.

The default spool partition always contains:

o JES3 spool access method (JSAM) single and multirecord files
® job input (SYSIN) data

e JES3 control blocks created by input service

It may also contain output spool data for:

® jobs requesting a spool partition with no free space that overflows into the
default partition

® jobs requesting a spool partition that has been deleted

e jobs that do not request a spool partition and for which the job class and
processor have no spool partition designation

JES3 selects the partition used for a job’s data when the job is ready to execute.
If the requested partition and its overflow partitions do not have enough space
available, JES3 bypasses selection of the job until enough space becomes
available.

Defining Spool Partition Overflow

To provide for occasions when a requested spool partition is full, you can specify
where each spool partition’s overflow data should go. To do this, use the
OVRFL parameter on the SPART initialization statement:

o To specify that spool data directed to a particular spool partition should
overflow into another named spool partition, specify OVRFL =name on the
SPART statement that defines the requested spool partition.

e To specify that spool data directed to a spool partition should overflow into

the default partition, specify OVRFL=YES. This specification is also the
default.

Chapter 4. Defining and Managing Spool Data Sets 4-7




e To specify that spool data directed to a spool partition should not overflow
into another partition, specify OVRFL=NO. In this case, the requestor waits
until track groups within the requested partition become available.

o The default partition cannot overflow. It always has the attribute of
OVRFL=NO.

A spool partition that accepts overflow from another partition may, in turn,
overflow into a third partition, and so on. This can continue until the
overflowing spool data reaches a partition that allows no overflow. For example,
consider the following SPART initialization statements:

SPART ,NAME=TSODATA, OVRFL=SMLBATCH
SPART ,NAME=SMLBATCH,OVRFL=YES
SPART ,NAME=DEFPART, DEF=YES

SPART ,NAME=BIGBATCH, OVRFL=NO

The TSODATA partition contains TSO output data, the SMLBATCH partition
contains output data from small batch jobs, and the BIGBATCH partition
contains output data from large batch jobs. If the TSODATA partition becomes
full, the TSO output data overflows into the SMLBATCH partition. If the
SMLBATCH partition becomes full, it overflows into the default partition,
DEFPART. The default partition cannot overflow. Neither can the BIGBATCH
partition, because its SPART statement specifies OVRFL =NO.

If an overflow partition begins running low on space, JES3 suspends job selection
for jobs requesting that partition or for any partition that overflows into that
partition. (The marg subparameter of the SPLIM parameter on the SPART
initialization statement for that partition or on the BUFFER initialization
statement defines when the partition is running low on space.) If an overflow
partition reaches a critical space shortage, JES3 suspends all SYSOUT buffer
processing for jobs requesting that partition or any partition that overflows into
that partition. (The min subparameter of the SPLIM parameter on the SPART
initialization statement for that partition or on the BUFFER initialization
statement defines when the partition has a critical space shortage.)

CAUTION

1. Avoid allowing too many partitions to overflow into the default partition. If the
default partition begins running low or critically short on space, JES3 takes
the same actions as for any overflow partition that runs low or critically short
on space. With a critical spool space shortage, JES3 also prevents any new
work from starting because the default partition has no room for a job’s input
data (SYSIN).

2. The initialization stream must not define a circular spool partition overflow.
Below is an example of SPART statements defining a circular overflow:

SPART ,NAME=TSODATA , OVRFL=SMLBATCH
SPART ,NAME=SMLBATCH,OVRFL=TNYBATCH
SPART ,NAME=TNYBATCH, OVRFL=TSODATA

If the TSODATA partition overflows into the SMLBATCH partition, and the
SMLBATCH partition overflows into the TNYBATCH partition, the
TNYBATCH partition cannot overflow into the already-overflowing
TSODATA partition. JES3 detects the circular overflow condition on the

4-8 MVS/Extended Architecture SPL: JES3 Initialization and Tuning



SPART statement for the TNYBATCH partition and changes the overflow
specification to OVRFL =NO. If this situation arises in your initialization
stream, use the *INQUIRY and *MODIFY commands to respecify the spool
partition overflow.

Specifying Spool Data Sets as Members of Spool Partitions

For each spool partition, you can specify the data sets that are to be members of
that partition. You do this by specifying the name of the spool partition on the
FORMAT or TRACK statement associated with each spool data set. A spool
data set, however, can be a member of only one spool partition at any time.

If you do not name some spool data sets as members of a spool partition, JES3
makes them members of the default spool partition. If you have defined no spool
partitions, JES3 makes all spool data sets members of the spool partition named
JES3PART. JES3 defines and names the JES3PART spool partition.

Except for the default spool partition, it is not necessary for every spool partition
to have spool data sets. For the default spool partition, you must specify at least
one spool data set as a member of that partition, or you must let JES3 make a
spool data set a member by default. During JES3 initialization, if the default
spool partition has no spool data sets, JES3 terminates with an abend code of
DMO012. Any spool partition without a spool data set is called a “dummy
partition.”

-You can also specify which spool partition you want JES3 to use when it writes
the initialization data that it needs to perform hot starts and local starts.
Isolating the initialization data in this way causes JES3 to allocate the most
accessible track groups to that data. To define a spool partition for initialization
data, specify INIT=YES on the SPART statement that defines the spool
partition you want to use.

For better performance, keep spool data sets within a partition about the same
size.

Specifying a Spool Partition for Spool Data

You can specify which spool partition JES3 is to use for allocating spool space
for:

e OQOutput from jobs that execute on a specific processor
e Qutput from jobs that belong to a specific job class
e Specific SYSOUT classes

To do this, use the SPART parameter on the MAINPROC, CLASS, or SYSOUT
initialization statements:

e To specify a spool partition for output from jobs that execute on a specific

processor, specify the partition’s name on the SPART parameter of the
MAINPROC statement that defines the processor.

~ Chapter 4. Defining and Managing Spool Data Sets 4-9




e To specify a spool partition for output from jobs that belong to a specific job o
class, specify the partition’s name on the SPART parameter of the CLASS q )
statement that defines the job class. -

e To specify a spool partition for a specific SYSOUT class, specify the
partition’s name on the SPART parameter of the SYSOUT initialization
statement that defines the SYSOUT class.

Each SYSOUT data set in the SYSOUT class for which you specify a specific
spool partition must have its own track allocation table (TAT). To give each
SYSOUT data set in a SYSOUT class its own TAT, specify TYPE =DSISO on
the SYSOUT initialization statement that defines the SYSOUT class.

You can specify the name of a “dummy partition” on the SPART parameter of
the MAINPROC, CLASS, or SYSOUT initialization statement. However, JES3
will not allocate any space for jobs requesting a “dummy partition” (unless the
SPART statement defining the “dummy partition” specified an overflow partition
to which spool data sets are assigned). The operator receives a message that the
requested partition is full and does not overflow. Then the job waits until space
becomes available in the partition.

Determining the Order of Spool Partition Overrides

Each time a job is ready to execute on a processor, JES3 decides which spool

partition to use for the job’s spool output. Consider this situation, for example.

You specify that JES3 is to use partition A for jobs that execute on processor 7N
PROCI1 and partition B for jobs in job class CL1. If a user submits a job N
assigned to job class CL1 and that job executes on processor PROCI1, JES3 must

decide whether to use spool partition A or B.

In making this type of decision, JES3 uses the following order of initialization
statement overrides for job output:

e SYSOUT overrides CLASS and MAINPROC
e CLASS overrides MAINPROC

JES3 always writes a job’s input data (SYSIN) to the default spool partition.

Figure 4-2 shows how the hierarchy of overrides works. It shows to which spool
partition JES3 writes a job’s spool data for different combinations of the SPART
parameter on the MAINPROC, CLASS, and SYSOUT statements. To use this
figure, make the following assumptions about the job:

e The job has data in two or more SYSOUT classes

e When a MAINPROC statement specifies a spool partition, the job executes
on the processor defined by that statement

e When a CLASS statement specifies a spool partition, the job belongs to the
class defined by that statement

&

4-10 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




If you specify a spool partition for:

Data in a Jobs on a Jobs in a
SYSOUT class | processor job class
(SYsouTt (MAINPROC | (CLASS
statement) statement) statement) | JES3 writes a job’s spool data to partitions as follows:
X - - ® Data that belongs to the SYSOUT class for which a partition is
defined is written to that partition.
® All other data is written to the default partition.
- X - @ Input data (SYSIN) is written to the default partition.
@ All other data is written to the partition specified on the
MAINPROC statement.
- - X ® Input data (SYSIN) is written to the
- X X default partition.

All other data is written to the partition specified on the
CLASS statement.

X X - ® Input data (SYSIN) is written to the default partition.

® Data that belongs to the SYSOUT class for which a partition is
defined is written to that partition.

® All other data is written to the partition specified on the
MAINPROC statement.

- X ® Input data (SYSIN) is written to the default partition.
X ® Data that belongs to the SYSOUT class for which a partition is
defined is written to that partition.
@ All other data is written to the partition specified on the CLASS
statement.

»
>

Figure 4-2. Spool Partition Overrides

How the User Can Request a Spool Partition
When submitting a job, the user can request that JES3 write the job’s spool data
to a specific spool partition. To do this, the user specifies the name of the spool
partition on a //*MAIN JES3 control statement. This allows the user to override
partition names specified on MAINPROC or CLASS statements. The user,
however, cannot override partition names specified on SYSOUT statements.
Instructions for coding the //*MAIN statement are in MV'S/Extended Architecture
JCL User's Guide.

The installation can override the spool partition specified by the user by coding
user exit routine IATUX29 or IATUX33.

Example of Spool Partitioning

The following example illustrates most of the spool partitioning concepts
discussed to this point. The JES3 initialization statements in the example:

e Define five partitions, PARTA, PARTB, PARTC, PARTD, and PARTE
e Define a default partition, PARTA
® Assign the spool data for jobs in job class IMSBATCH to partition PARTB

® Assign the spool data for jobs that will execute on a specific processor (SY2)
to partition PARTC

e Assign data in SYSOUT class S to partition PARTD

Chapter 4. Defining and Managing Spool Data Sets 4-11




spool partition for output data.

The //*MAIN statement in the third job shows how the user can request a specific

T

N ./;

Figure 4-3 refers to the previous example. Part 1 shows to which spool partition
JES3 writes the jobs’ spool data when the jobs execute on processor SY1. Part 2
shows the same thing when the jobs execute on processor SY2.

4-12 MVS/Extended Architecture SPL: JES3 Initialization and Tuning



The text following Part 1 and Part 2 of the figure explains why JES3 writes the

spool data to certain partitions.

_ JES3 writes the job’s spool data to this partition:
‘When this jobruns | input (SYSIN) | | SYSOUT class S
on processor SY1 (see note 1) - | SYSOUT class N | (seenote:2)

Jobl [ PARTA | PARTA | PARID =
Job2 [PARTA  |PARTB | PARTD
Tob3 | PARTA | PARTE | PARTD

Figure 4-3 (Part 1 of 2). Spool Partitions Used in Spool Partition Example
Notes:

1. JES3 writes input (SYSIN) for all jobs to the default spool partition, PARTA,
because JES3 always writes input data to the default partition.

2. The SYSOUT statement that defines SYSOUT class S also specifies spool
partition PARTD. Therefore, JES3 writes all data in SYSOUT class S to
spool partition PARTD.

JOBI1:

JES3 writes the data in SYSOUT class N to the default partition because:

e The SYSOUT statement that defines class N specifies no spool partition.

o The MAINPROC statement that defines processor SY1 specifies no spool
partition.

JOB2:

JES3 writes the data in SYSOUT class N to spool partition PARTB because the
CLASS statement that defines job class IMSBATCH specifies spool partition
PARTB. (The //*MAIN statement assigns this job to job class IMSBATCH.)

JOB3:
JES3 writes the data in SYSOUT class N to spool partition PARTE because the

//*MAIN statement specifies partition PARTE. (A spool partition specified on a
//*MAIN statement overrides a spool partition specified on a CLASS statement.)

[ JES3 writes the job's sp
‘When this job runs | input (SYSIN) |~
.on processor SY2 . | (seemote1) | 'S

Jo PARTA |

PARTA

Figure 4-3 (Part 2 of 2). Spool Partitions Used in Spool Partition Example
Notes:

1. JES3 writes input (SYSIN) for all jobs to the default spool partition, PARTA,
because JES3 always writes input data to the default partition.

2. The SYSOUT statement that defines SYSOUT class S also specifies spool

partition PARTD. Therefore, JES3 writes all data in SYSOUT class S to
spool partition PARTD.

Chapter 4. Defining and Managing Spool Data Sets 4-13




JOBI1:

JES3 writes the data in SYSOUT class N to spool partition PARTC because the 7

MAINPROC statement that defines processor SY?2 specifies PARTC.
JOB2:

JES3 writes the data in SYSOUT class N to spool partition PARTB because the
CLASS statement for job class IMSBATCH specifies PARTB. (The user assigned
the job to job class IMSBATCH.)

JOB3:

JES3 writes the data in SYSOUT class N to spool partition PARTE because the
/[*MAIN statement specifies PARTE. (A spool partition specified on a //*MAIN
statement overrides a spool partition specified on a CLASS statement.)

Defining Spool Space Allocation Units

The basic unit of spool space allocation is called a track group. A track group is
a group of spool records, with the size of each spool record equal to the size of a
JES3 buffer. JES3 buffer size is defined by the BUFSIZE parameter on the
BUFFER initialization statement (see “Determining the Size of the JES3
Buffers”). You can define the number of spool records in a track group using the
GRPSZ parameter on the BUFFER statement or on the SPART statement.

JES3 allocates one or more track groups to a job when the job needs spool space.
The number of track groups allocated on each request depends on the number
defined using the TRKGRPS parameter for the job’s SYSOUT class, //*MAIN
JES3 control statement, job class, or assigned processor.

Defining a Track Group

A track group is the number of records that JES3 treats as a unit when allocating
spool space. You can specify the size of a track group using the GRPSZ
parameter, choosing a value from 1 to 999. The GRPSZ parameter can be used
on two initialization statements:

o the BUFFER statement, if you want to define a “default” track group size for
spool partitions that do not have an explicit track group size specification, or
if you do not define any spool partitions

o the SPART statement, if you want to override the BUFFER statement and

tailor the track group size to the type of data in the spool partition being
defined

o

4-14 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

AN



(

Determining the Size of a Track Group

The GRPSZ value on the BUFFER statement should correspond to the spool
space requirements of a typical job in the JES3 complex. For example:

o If the workload consists mainly of small jobs, specify a GRPSZ value of less
than half the number of records per cylinder for the spool device type. The
small value uses spool space efficiently and reduces access time on moveable
head devices.

e If the workload consists mainly of jobs producing much output, specify a
GRPSZ value of roughly the number of records per cylinder. The large value
reduces the number of requests for additional spool space and thus reduces
the amount of time the job must wait to be allocated additional space. (The
number of allocation requests also depends on the track group allocation size
defined by the TRKGRPS parameter. Track group allocation sizes are
discussed later in this chapter.)

If you have defined spool partitions to isolate different types of data, specify a
“tailored” GRPSZ value on the appropriate SPART statement. Tailoring the
GRPSZ value this way helps especially when part(s) of the installation’s workload
requires much less or much greater spool space than average.

Example: Suppose an installation processes a significant number of small files,
such as TSO interactive data transmission files. However, the installation’s
average job requires much larger spool space allocations. To satisfy the space
requirements of an average job, the system programmer specifies a GRPSZ value
on the BUFFER statement of moderate size; say, 30 records of 4k each. Then,
the programmer defines a spool partition to hold the small files. On the SPART
statement defining that partition, the programmer specifies a GRPSZ value equal
to the average size of a small file; say, 3 records of 4k each. Setting up a separate
spool partition for small files and defining a track group size for that partition
uses spool space efficiently, thus improving performance when accessing that data.

Suppose the installation also runs some critical jobs that produce large quantities
of output. The system programmer wants to improve the chance that these jobs
will continue processing during a failure of the JES3 global address space or
during a dynamic system interchange. By creating a spool partition with large
track groups (say, 300 records of 4k each), these jobs might not need secondary
allocations of spool space. Then the jobs could run to completion without
needing to wait for the JES3 global address space to become available.

CAUTION

A spool data set keeps its original track group size even if you move
it to a spool partition with a different track group size (unless the
data set is reformatted). Try not to move a spool data set to a
partition having a different track group size. Having spool data sets
with different track group sizes within one partition could result in
performance problems.

To change the track group size of a data set, replace the data set. See

MVS/|Extended Architecture Operations: JES3 Commands for instructions on how
to replace a data set.

Chapter 4. Defining and Managing Spool Data Sets 4-15




Relating Track Group Sizes to Physical Tracks: Another consideration for
determining track group size is the physical track size of the device type on which
the spool data sets reside. JES3 rounds the number of records specified by the
GRPSZ parameter to the next track boundary. Suppose the initialization stream
includes the following BUFFER statement:

BUFFER,GRPSZ=192

For a spool data set residing on a 3380 device with a record size of 4k, the
number of records per track is 10. JES3 rounds the number of records to the next
track boundary, resulting in a track group size of 200 records. If you want your
GRPSZ parameter specification to exactly match the number of records JES3
allocates to a track group, specify a GRPSZ value that is a multiple of the
number of records per track on the device type. (See Figure 4-4.)

If your installation uses more than one device type for spool data sets, you can
take one of two approaches to defining track group size:

1. Mix different device types within spool partitions so that one GRPSZ value
applies to all the devices. Specify one GRPSZ value on the BUFFER
statement. As a result, JES3 rounds the number of records per track group as
appropriate for each device type. The track group size will be approximately
the same for all the devices.

2. Separate different device types into different spool partitions. Then specify a
GRPSZ value on the SPART statement for each partition that is a multiple of
the number of records per track for the device type. In this case, JES3 does
not need to round the number of records per track group.

The approach you choose depends on whether you want your installation to have
a single GRPSZ value for all spool data sets (the first approach) or to use spool
space as efficiently as possible (the second approach).

In the following chart, “Record Size” is approximated; 2k refers to the minimum
allowable BUFSIZE value of 1952 bytes.

Figure 4-4. Record, Track, and Cylinder Characteristics for DASD Devices

4-16 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

{

=

~

S



Determining Track Group Allocation Sizes

When a job needs spool space for the first time, JES3 allocates one or more track
groups to the job. You can specify how many track groups JES3 should allocate
by using the TRKGRPS parameter on the MAINPROC, CLASS, and SYSOUT
initialization statements. The person submitting a job can specify the track group
allocation size on the //*MAIN JES3 control statement.

When a job uses up its first, or “primary,” allocation of spool space, JES3
allocates more track groups. You can also specify, using the TRKGRPS
parameter, how many units JES3 may allocate for each additional, or
“secondary,” allocation. JES3 continues allocating secondary quantities of spool
space until the job needs no more space.

To determine the track group allocation size, then, you determine two things:
how much spool space JES3 should allocate to a job initially, and how much
JES3 should allocate thereafter.

1. Primary TRKGRPS allocation. Use the following general equation to
determine the value for your primary TRKGRPS allocation:

spool space required for

average job (in bytes) 1

--------------------- X ========—---- = primary TRKGRPS value
BUFSIZE GRPSZ value

You can determine how much spool space an average job in your installation
requires by using a resource monitoring program, such as the JES3
Monitoring Facility or the system management facilities (SMF).

Tailor this equation to the particular initialization statement on which you
specify the TRKGRPS parameter. For example, if you specify the
TRKGRPS parameter on the CLASS statement, use the value for the spool
space required for an average job in that job class. If the installation uses
spool partitions on a job class basis, use the GRPSZ value from the
appropriate SPART statement, not from the BUFFER statement.

Note that the primary TRKGRPS allocation value cannot exceed 9.

2. Secondary TRKGRPS allocation. The number specified for secondary
allocations depends on whether jobs that are larger than average are much
larger or only somewhat larger. If the jobs are much larger, you need to
specify a larger secondary allocation than if the jobs are only slightly larger.
Set the value to keep as low as possible both the number of times JES3
allocates spool space and the amount of unused spool space.

Note that the secondary TRKGRPS allocation value also cannot exceed 9.

Notice that you have greater control over spool space allocation when you use
spool partitioning. You can vary track group size, and thus primary and
secondary allocation sizes, partition by partition. You can also use spool space
more efficiently by assigning large jobs to one spool partition and small jobs to
another partition and selecting their GRPSZ and TRKGRPS parameters
accordingly.

Chapter 4. Defining and Managing Spool Data Sets 4-17




See the section entitled “Using Spool Partitions” earlier in this chapter for
information about defining spool partitions.

Track Group Allocation Overrides

As noted above, you can specify the TRKGRPS parameter on the MAINPROC,
CLASS, and SYSOUT initialization statements and on the //*MAIN JES3 control
statement. The order of overrides for job spool space allocation, beginning with
the statement that overrides the others, is:

1. SYSOUT initialization statement (SYSOUT class basis)

2. //*MAIN JES3 control statement (for a specific job)

3. CLASS initialization statement (job class basis)

4. MAINPROC initialization statement (for a specific processor)

Note: User exit routine IATUX33 can override the specification on the //*MAIN
JES3 control statement.

If you do not specify the TRKGRPS parameter on any of the above statements,
JES3 uses default values of 1 for primary allocation and 2 for secondary
allocation.

Managing Spool Space

JES3 provides several facilities for managing spool space. These facilities help
you balance the workload across spool partitions and gain additional spool space
when available space runs low.

If you need to allocate more spool data sets, or if you have allocated too many
spool data sets, you can add or delete a spool data set over a warm start. You
can also use operator commands to determine the amount of spool space
remaining in particular spool data sets or partitions and to redistribute the
workload.

To gain additional spool space without adding data sets, the JES3 spool
maintenance facility (JSM) lets you delete held SYSOUT data sets that are no
longer needed. If you need more spool space but also need to save the jobs or
SYSOUT on spool, the dump job (DJ) facility lets you copy spool data to tape.
Then you can use the dump job facility to restore the data when space becomes
free.

Another way to gain additional spool space without adding data sets is to replace
existing data sets with larger ones. Replacing a spool data set requires a warm
start. “Replacing a Spool Data Set” later in this chapter gives the steps to follow.

4-18 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

v’f/

A
N



Adding or Deleting a Spool Data Set

You can increase or decrease your installation’s spool capacity without
performing a cold start by adding or deleting a spool data set. To know whether
your installation’s spool capacity is appropriate for your installation, you can
monitor spool usage using the *1,Q,S operator command. To monitor the use of
channel paths, control units, and spool data sets, use a system monitoring facility
such as system management facilities (SMF), resource measurement facility
(RMF), or JES3 monitoring facility (JMF).

To add a spool data set over a warm start, follow the guidelines given in
“Allocating Spool Data Sets” and “Formatting Spool Data Sets” earlier in this
chapter. To delete a spool data set over a warm start, remove the appropriate
DD statement from the JES3 cataloged start procedure or DYNALLOC
statement from the initialization stream. Also remove the TRACK or FORMAT
statement for the spool data set. MVS/Extended Architecture Operations: JES3
Commands explains the operator activities required to add or delete a spool data
set during a warm start.

If you delete a spool data set, JES3 cancels all jobs in the system that have spool
data or allocation tables on the affected data set. Try not to delete a data set that
contains important information (for example, the single track table (STT) or the
JESNEWS data set). If this information is lost, the system issues messages giving
you the opportunity to take appropriate actions.

Balancing the Work Load Across Spool Partitions

To help you determine the work load distribution across the spool partitions,
JES3 provides commands that you can use to:

e Determine the amount of space remaining in each spool data set
(*1,Q,DD = ddname)

e Determine the amount of space remaining in each spool partition
(*1,Q,SP =spart)

o Determine where spool data overflows to when each spool partition becomes
full (*1,Q,SP=spart,0)

® Determine if any spool partitions are overflowing, in a minimum or marginal
spool space condition, or out of space (*I,R,JSAM)

Using the SPLIM parameter on the SPART and BUFFER initialization
statements, you can have JES3 notify you when space in a spool partition begins
running low and when it runs critically low.

BUFFER,SPLIM = (min,marg)
SPART,NAME = partitionname,SPLIM = (min,marg)

The min (minimal) and marg (marginal) subparameters define percents of the total

number of track groups in the partition that remain available. The value specified
on a SPART statement overrides the value specified on the BUFFER statement.

Chapter 4. Defining and Managing Spool Data Sets 4-19



A good value for the marg subparameter is the point at which spool performance

begins falling because of increased seek time. Seek time increases as JES3 writes N
and reads data farther from the middle of the volume. A good value for the min \\ J
subparameter is the point at which spool performance becomes severely degraded.

Another good value is the point at which active jobs will likely need to overflow

into another partition.

N

JES3 issues messages indicating when a spool partition reaches a marginal or
minimal condition.

If you want to redistribute the work load, there are commands that let you:

e Respecify a spool data set as a member of another spool partition:
*F,Q,DD =ddn,SP =spart...

e Respecify the spool partition that JES3 is to use for specific processors:
*F,G,main...

e Respecify the spool partition that JES3 is to use for specific job classes:
*F,C=cls...

e Respecify the spool partition that JES3 is to use for the overflow of spool
data when a spool partition becomes full:

*F,Q,SP =spart,O = spart N

If this command would result in circular overflow, JES3 prevents the
modification and issues a message rejecting the command.

During the next warm start, the initialization statements will override changes
made using these commands. To retain the changes, make the same changes to
the initialization stream. During a hot start, changes made using these commands
remain in effect, except the *F,G and *F,C=cls commands.

Over a warm or cold start, you can make additional changes to the spool
configuration by changing the initialization stream. You may add or delete
partitions, change the use of any partition, or move spool data sets from one
partition to another. (Try not to move a spool data set to a partition having a
different track group size. Having spool data sets with different track group sizes
within one partition could result in performance problems.) Any spool partition
created without any spool data sets (a “dummy partition”) should overflow.
Otherwise, if a job requests the dummy partition, JES3 will never select the job
for execution.

4-20 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




(:

Deleting Held Output Data Sets Using JSM

You can delete output data sets from the output service hold queue by using an
operator command that calls the JES3 spool maintenance (JSM) facility. The
operator command, *X JSM, allows you to specify the criteria by which JSM
selects data sets for deletion. Selection criteria include the data sets” SYSOUT
class and age and the TSO userid of the data sets” creator. For details on using
the *X JSM command, see MVS/Extended Architecture Operations: JES3
Commands.

The installation can override the operator command parameters that select the
data sets to be deleted by coding user exit routine IATUX47. The JSM DSP calls
TATUXA47 after JSM selects the data sets. For information on IATUX47, see
MYVS|Extended Architecture System Programming Library: JES3 User
Modifications and Macros.

Freeing Spool Space Using the Dump Job Facility

You can free spool space without losing jobs already in the system by using the
dump job (DJ) facility. Use this facility to copy one or more jobs to tape, then
let JES3 purge the job. When spool space becomes available, use the dump job
facility to restore the job(s) to the system. Call the dump job facility as a DSP,
using operator commands that are explained in MV'S/Extended Architecture
Operations: JES3 Commands.

Recovering From Spool I/O Errors

It is possible to recover from many kinds of spool I/O errors without the need to
perform a cold start. This includes, for example, errors caused by defective tracks
on a spool volume or errors caused by a failing I/O device or control unit. The
type of error indications you receive from JES3 can help you to determine the
corrective action to take.

When an I/O error occurs on a spool data set, JES3 adds an entry to the
BADTRACK table. Entries in the BADTRACK table prevent JES3 from
allocating the track group containing the track with the I/O error. JES3 does not,
however, create BADTRACK table entries for the following types of 1/O errors:

e Read errors

o I/O error retry failures

e Write errors that can be attributed to some cause other than failure of the
spool device (for example, channel errors and machine checks)

e temporary I/O errors

If the error caused JES3 to create a BADTRACK entry, you use the
*INQUIRY,Q,BT operator command to display:

e the location of the track having the error

Chapter 4. Defining and Managing Spool Data Sets  4-21



o the exact time JES3 found the error, if JES3 found the error while performing
1/O to the track

e whether the BADTRACK entry for the track having the error was added to
the BADTRACK table during formatting of the spool data set or by a
BADTRACK statement during initialization

BADTRACK table entries that JES3 adds dynamically are lost during a warm
start. To avoid further allocation of these tracks, system operators must inform
you of I/O errors. Operators should also save the track address information given
in the message stating that JES3 has added an entry to the BADTRACK table.
Then, before performing a warm or cold start, update the initialization stream
with BADTRACK statements as appropriate.

Intermittent I/O Errors

If you receive one or a few I/O error messages and DM711 or DM725 abend
codes and JES3 continues to execute, the error is probably intermittent. Such an
error might be caused by a defective track on a spool volume.

If a defective track caused the error, JES3 dynamically adds an entry to the
BADTRACK table identifying the defective track. JES3 also issues a message
indicating the ddname, cylinder, and track described by the new entry. As stated
above, the system operator should save the information in the message. (The
operator can also get this information at a later time using the *I,Q,BT command,
if JES3 is active.) Then you must update the initialization stream with a
BADTRACK statement for each 1/O error before the next warm or cold start.
The operator should also keep track of the frequency of errors. Frequent I/O
errors suggest that the spool data set needs replacing.

- Permanent I/O Errors
If you receive DM711 or DM725 abend codes, several I/O error messages, and
JES3 functions no longer execute, the I/O error is probably permanent. (You can
tell when JES3 functions no longer execute because you will no longer receive any
JES3 messages.) To try recovery, use the following procedure:

1. Issue the command *F,Q,DD =ddname,STOP. This command requests that
JES3:

e suspend scheduling of jobs that have track groups allocated to the
affected spool data set

® stop jobs that are executing and have track groups allocated to the
affected spool data set

e stop all JES3 writers that are writing on the affected spool data set and
reschedule them for later processing, beginning from the last checkpoint.

e stop allocating track groups to the affected spool data set

2. If JES3 accepts the command, you can try to correct the problem that caused
the I/O error.

4-22 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

S



If you correct the problem, issue the *F,Q,DD =ddname,RELEASE
command. This command requests that JES3:

e resume scheduling of jobs that have track groups allocated to the affected
spool data set

e resume allocating track groups to the affected spool data set

JES3 uses the job failure options to determine how to process jobs that were
executing at the time you issued the command *F,Q,DD =ddname,STOP.

If JES3 does not accept the *MODIFY,Q,DD = ddname,STOP command, or
if you cannot quickly correct the problem that caused the I/O error, let JES3
continue execution without the affected spool data set.

e If you used a DD statement in the JES3 cataloged procedure to allocate
the affected spool data set, remove that DD statement from the procedure
and perform a hot start.

o If you used a DYNALLOC statement in the initialization stream to
allocate the affected spool data set, issue the MVS VARY command on
the global to vary offline the volume that contains the affected spool data
set and perform a hot start.

Note: Changes made to the JES3 spool configuration require a special
operator dialog to complete the initialization process. Read the section
Removing and Reinstating a Spool Data Set in MV'S|/Extended
Architecture Operations: JES3 Commands before performing a JES3 hot
start.

If JES3 issues message IAT4102 during the hot start, the spool data set
that you are attempting to remove contains the checkpointed initialization
stream. You must perform a warm start to recreate the checkpointed
initialization data.

If you continue having problems because of the data set on the local
processors, issue the MVS VARY command on the local processors.
Perform a local start for each processor.

If you need to restart JES3 before you can restore the spool data set,
reissue the MVS VARY command on every processor to which you want
the volume offline. If you cannot repair the volume quickly, you may
want to remove the DYNALLOC statement for that spool data set from
the initialization stream, perform a warm start on the global processor,
and restart the local processors.

JES3 is now executing without the spool data set that caused the I/O errors.
JES3 maintains information about the spool data set, including its size, its
device characteristics, and the volume serial number of the volume on which
it resides. However, JES3 considers the spool data set unavailable for use.
Removing the spool data set in this manner does not release the spool space
of jobs with data on the unavailable data set, unless the jobs have been
cancelled. You may now repair the spool data set.

Chapter 4. Defining and Managing Spool Data Sets 4-23



To restore the repaired data set to the JES3 complex:

1. If you removed a DD statement from the JES3 cataloged procedure, reinsert
it and perform a hot start.

2. If you issued the VARY command on one or more processors to take the
volume offline, issue the VARY command on those processors to bring the
volume online. Perform a hot start on the global processor and a local start
on the appropriate local processors.

3. If you removed the DYNALLOC statement from the initialization stream,
reinsert the statement and perform a warm start.

4. Issue command *F,Q,DD =ddname,RELEASE. This command requests that
JES3 resume scheduling of jobs that have track groups allocated to the
affected spool data set. JES3 will use the job failure options to determine
how to handle the jobs that were executing on a processor when you issued
the command *F,Q,DD =ddname,STOP.

Replacing a Spool Data Set

If a permanent I/O error occurs on a spool data set and you cannot recover the
data (for example, there is a head crash on a direct access device), you can replace
the affected spool data set. To replace the data set, perform a warm start and
follow the procedures outlined below. You may create the new data set on a
volume or device type different from the one being replaced. You may also
change the size of the data set and redefine the single track table (STT) range
using the STT or STTL parameter on the TRACK or FORMAT initialization
statement.

Be aware that when you replace a spool data set, JES3 cancels all jobs with data
on the replaced spool data set. Other risks include the possible loss of JES3
control blocks, STT extents, checkpoint records, and the JESNEWS data set,
which may have been on the damaged spool data set. If these losses occur, the
system will issue messages giving you the opportunity to take appropriate actions.

If you cannot immediately perform a warm start (for example, if it takes some
time for you to make the changes needed to replace the spool data set), you can
cancel jobs that have track groups allocated on the spool data set being replaced.
To cancel the jobs, issue the command *F,Q,DD =ddname,CANCEL. After you
cancel the jobs, the user can resubmit them. You can then replace the spool data
set at the time most convenient for your installation.

When you replace the spool data set, you must use the same ddname for the new
spool data set as for the old.

4-24 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

Foa



To replace a spool data set, use the following procedure:

1. If you allocated the old spool data set by using a JES3 cataloged procedure,
update the DD statement in the cataloged procedure to reflect information
about the new data set. You may need to change the data set name, device
number, device type, or volume serial number. Do not change the ddname.

If you allocated the old spool data set by including a DYNALLOC statement
in the initialization stream, update the optional parameters as necessary. Do
not change the ddname.

2. If the old spool data set is cataloged, replace its catalog entry with an entry
for the new spool data set.

3. If the new spool data set is unformatted and your initialization stream
currently includes a TRACK statement for the old spool data set, replace it
with a FORMAT statement. Otherwise, leave your TRACK or FORMAT
statement alone.

4. Perform a warm start. Specify WR or WAR as the restart mode. JES3 will
prompt you to enter the ddnames of replaced spool data sets (message
IAT4009 for unformatted spool data sets and message IAT4008 for formatted
spool data sets). JES3 will then cancel all jobs that have track groups
allocated to the spool data sets being replaced.

Moving a Spool Data Set to Another DASD Volume

If you must move the contents of a spool data set to another DASD volume,
perform a hot start with the data set not allocated or the DD statement for the
data set removed from the JES3 start procedure. During JES3 initialization, JES3
considers the spool data set unavailable. After moving the data to the new
DASD volume, perform a hot start with the data set (on the new volume)
allocated or with the DD statement for the data set included in the JES3 start
procedure. JES3 now considers the data set available.

Chapter 4. Defining and Managing Spool Data Sets 4-25




4-26 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




| Chapter 5. Defining Consoles and Message Routing

This chapter provides information about defining and tailoring consoles that you
use to control your operating system. It also describes how to control where and
how messages appear in your installation.

Defining consoles and message routing requires you to coordinate definitions in
the MVS configuration program, the MVS SYS1.PARMLIB data set, and your
JES3 initialization stream. These statements and the books in which you can
reference them are cited throughout this chapter.

Defining Consoles

Consoles are devices that you use to enter commands and receive messages from
JES3, MVS and application programs. Consoles fall into one of the following
classes:

JES3 consoles

Multiple console support (MCS) consoles
Remote job processing (RJP) consoles
MVS/Bulk data transfer (MVS/BDT) consoles
Network Job Entry (NJE) consoles
Subsystem-allocatable consoles

JES3 consoles are devices that you can physically attach only to the JES3 global
processor. You can use them to control your entire JES3 installation.

MCS consoles are devices that you can physically attach to global or local
processors. Because MCS consoles are known only to the processor to which they
are attached, communication is generally limited to within that processor.
However, you can issue most JES3 commands from MCS consoles attached to the
global and display messages from any processor in your installation. To give an
MCS console attached to the global the ability to control your entire installation
(that is, send commands to local processors), you must define a logical association
to an MCS console on each local processor during JES3 initialization.

RJP consoles are devices that you attach to the JES3 global as part of a remote

workstation using telecommunications lines. RJP permits you to transfer jobs to
and from workstations that reside at some distance from your installation.

Chapter 5. Defining Consoles and Message Routing  5-1




BDT consoles are logical devices that you define for the MVS/bulk data transfer
facility. Refer MV S/Bulk Data Transfer Facility: Initialization and Network
Definition for information about using MVS/BDT.

NJE consoles are logical devices that you define for a job entry network. Refer to
Chapter 9, “JES3 Networking” for for information about using NJE.

Subsystem-allocatable consoles are logical devices that you define for purposes
such as console associations, which permit processor-to-processor communication.
Refer to “Establishing Logical Associations” on page 5-10 later in this chapter
for a discussion about logical associations.

The functions of JES3 and MCS consoles frequently overlap. To properly
configure consoles in your installation, be aware of the distinctions that are
created depending on how you define them:

e JES3-only console: This console accepts only JES3 commands; you cannot
use it to enter MVS commands because you do not establish console
associations for this device (refer to “Establishing Logical Associations” on
page 5-10 for information about defining logical associations). You cannot
use this console to send commands to local processors. However, this console
can display messages that originate from any processor in your installation.
You define JES3-only consoles in your JES3 initialization stream using JES3
CONSOLE and DEVICE initialization statements. You can omit the
command prefix when entering JES3 commands (usually the digit 8 or an
asterisk (*)) because all commands go to JES3.

e JES3-managed or MCS-managed console: You define this console to MVS in
the CONSOLxx member of SYSI.PARMLIB and to JES3 by coding a device
type on the TYPE= keyword of a JES3 CONSOLE initialization statement.
You can initialize this console as either a JES3-managed console or as an
MCS-managed console and can dynamically convert this console between
console managers:

— When JES3-managed, this console accepts both JES3 and MVS
commands; you cannot use it to send commands to local processors.
JES3-managed consoles can display messages that originate from any
processor in your installation.

— When MCS-managed, this console communicates only with the processor
to which it is attached. You can enter all MVS commands from this
console. If the console is attached to the JES3 global, you can also enter
most JES3 commands and receive messages that originate from any
processor in your installation. If attached to a JES3 local, you can enter
only a subset of JES3 commands. See the topic, “Defining MCS
Consoles” on page 5-6, later in this chapter for a list of commands that
an MCS-managed console accepts.

5-2 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

A



JES3-managed console with a legical association: This console can
communicate with JES3 and MVS on one or more local processors in your
installation, as well as on the global. Communication with local processors is
possible because of logical associations that you define during initialization.
Refer to “Establishing Logical Associations” on page 5-10 for information
about defining logical associations. You define this console as an MCS
console during MVS initialization and as a JES3 console during JES3
initialization. You can dynamically convert this console to MCS-management
using operator commands. If you dynamically convert this console to an
MCS-managed console, the console retains its logical associations to other
Pprocessors.

MCS-only console: You define this console during MVS initialization as an
MCS console; therefore, it can communicate only with MVS on the processor
to which it is attached. You do not define it during JES3 initialization;
however, you can enter most JES3 commands if the console is attached to the
global. You can issue only a subset of JES3 commands if the console is
attached to a local processor. See the topic, “Defining MCS Consoles” on
page 5-6, later in this chapter for a list of JES3 commands that an MCS-only
console accepts.

MCS-managed console with a logical association: You define this console as
an MCS console during MVS initialization. You also define it to JES3 by
coding TYPE =MCS on a JES3 CONSOLE initialization statement. Coding
TYPE=MCS and the UNIT = parameter establishes a logical association
with a console on another processor. A logical association allows you to send
commands from the MCS console on the global to a local using the JES3
*SEND command. As with all MCS consoles, you can enter most JES3
commands and display messages that originate from any processor if you
attach the console to the JES3 global. If you attach this console to a local
processor, you can enter only a subset of JES3 commands. This console
differs from an MCS-managed console in that you cannot dynamically modify
it to become JES3-managed.

Subsystem-allocatable console: You define this console as an MCS console
using the CONSOLE statement in the CONSOLxx member of the MVS
SYS1.PARMLIB data set. This console is reserved for use by a subsystem,
such as JES3. To JES3, subsystem-allocatable consoles are logical devices.
This book often refers to logical consoles used by JES3 as MCS DUMMY
consoles. For example, you can use a subsystem-allocatable console to create
a logical association between a real console on your global with a logical
console on the local instead of, or in place of a real console device.

JES3 Dummy Console: This is an internally-defined console for use by JES3
dynamic support programs (DSPs) that do not have access to a console.
DSPs use this console to submit commands to the operating system. Do not
confuse the JES3 DUMMY console with an MVS subsystem-allocatable
console which is called an MCS DUMMY console.

MYVS allows you to define as many as 99 consoles (real and subsystem-allocatable)
for each processor in your installation.

Chapter 5. Defining Consoles and Message Routing  5-3




Defining JES3 Consoles

Figure 5-1 shows a simple installation with JES3-managed and MCS-managed
consoles.

Global ~ Local

JES3-managed
with association

MCS-only

MCS-managed
with association

MCS-only

Direct communication
———— Logical association permitting communication

Figure 5-1. Complex With JES3-managed and MCS-managed Consoles

The term JES3 consoles means both JES3-only consoles and JES3-managed
consoles. JES3-managed consoles are often referred to as full-function consoles
because you can use them to communicate with both JES3 and MVS. Use the
following guidelines when defining JES3 consoles:

Define all devices that you plan to use as JES3 and/or MCS consoles (except
RJP devices) on IODEVICE statements. You specify IODEVICE statements
in the input data set for the MVS configuration program.

You must define all JES3 consoles in your JES3 initialization stream using
JES3 CONSOLE initialization statements. You should also define all JES3
consoles to MVS in the CONSOLxx member of the MVS SYS1.PARMLIB
data set.

You must also include a JES3 DEVICE statement in your JES3 initialization
stream for each JES3 console. If you plan to use the device only as a console,
specify DTYPE =CNSxxxx on the DEVICE statement. If you want to use
the device for some other purpose, as well as a console, specify a non-console
device type such as a printer (DTYPE =PRTxxxx). Do not include a
DEVICE statement for MCS-managed consoles that have logical associations;
you can never make these devices JES3-managed.

5-4 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

- </l

AN
\



Initializing JES3 Consoles

If you plan to use a device as both a JES3 console and for some other
purpose (such as a printer), and you want to initialize the device as a JES3
console, specify a valid destination class on the DEST = keyword of the
device’s CONSOLE statement. If you want to initialize the device as a
non-console device, specify DEST=NONE and a non-console device type on
the DTYPE = keyword such as a printer (DTYPE =PRTxxxx). You can use
the JES3 *VARY command to change the function of such a device.

Code the UNIT = keyword of the JES3 CONSOLE initialization statement to
create a logical association. You can associate a JES3-managed or
MCS-managed console attached to the global with a real or
subsystem-allocatable console attached to a local processor. Refer to
“Establishing Logical Associations” for information about logical
associations.

JES3 cannot acquire a device and initialize it as a console if it is in use by
another component. For example, if MVS is currently using a device that
you want to use as a JES3 console, you must first release the device by
varying the device online to MVS (varying the device online to MVS makes
the device available to all subsystems, including JES3).

Before JES3 attempts to acquire a device, it checks the device’s JES3
online/offline status (which is independent of its MVS online/offline status).
If the device is online to both JES3 and MVS and not in use by another
component, JES3 can acquire the device and initialize it as a JES3 console.
Use the JUNIT = keyword of the JES3 CONSOLE initialization statement to
define a console’s initial JES3 online/offline status.

Because you define consoles to both MVS and JES3, MVS can ‘steal’ a device
that you intend to initialize as a JES3 console unless you prevent MVS from
acquiring it during MVS initialization. If you want JES3 to acquire a device as a
JES3 console, you should:

L.

Make the device offline before MVS initialization using the IODEVICE
statement that you include in the input data set for the MVS configuration
program. MYVS cannot acquire a device as a console during MVS
initialization if you set its initial status as offline to MVS.

After MVS initializes, vary the device online to MVS using the MVS VARY
ddd,ONLINE command! (at this point, it is too late for MVS to
automatically acquire the device as a console). You perform this step because
JES3 cannot acquire a device as a console unless it is online to MVS and not
in use by MVS or another subsystem.

Initialize JES3. JES3 can now acquire the device as a JES3-managed console
if you define its JES3 status as online.

You can automatically issue this command during MVS initialization by placing it
in the SYS1.COMMNDxx member of the MVS SYS1.PARMLIB data set.

Chapter 5. Defining Consoles and Message Routing  5-5




| Defining MCS Consoles

~
| The term MCS consoles means both MCS-only consoles and MCS-managed </ /
| consoles. You must define all MCS consoles in the CONSOLxx member of the

| MYVS SYS1.PARMLIB data set. MCS consoles accept all MVS commands based

| on their MCS authority level.

| The MCS master console is the principal device for communication with its MVS

| processor, and is required by MVS on each processor. The master console has the
| highest MCS authority level assigned to it. Master consoles can issue MVS

| commands of any authority level, and can receive all messages. MCS secondary

| consoles cannot issue all MVS commands or respond to all action messages; these
| consoles receive only those messages specifically routed to them.

| If attached to the global, MCS consoles accept all JES3 commands except the
| following, which affect console screen presentation:

*DELAY

*ERASE

*FREE (non-directed)
*START,CNT 2

| If an MCS console is attached to a local processor as the master console, you can
l issue only the following JES3 commands:

*CALL, *START, *CANCEL,DSI
*CALL, *START, *CANCEL,VARYL
*RETURN (requires a password)
*DUMP (requires a password)

| In addition to the commands listed above, MCS-only consoles do not accept the
| following commands:

| e *SEND
| e *INQUIRY,0,MAIN
| ® *MODIFY,M,MAIN

You can also assign a JES3 authority level to MCS-managed consoles with a
logical association (master or secondary) by coding the LEVEL = keyword on the
JES3 CONSOLE initialization statement. You can also change the JES3
authority level of these consoles using the JES3 *MODIFY,O command. The
MCS command authority level that you specify in the CONSOLxx member of the
MVS SYS1.PARMLIB data set determines the JES3 authority level for
MCS-managed consoles without logical associations. Refer to “Authorizing JES3
Commands” on page 5-14 for information about defining console authority.

To send commands directly to a local processor from an MCS console on the
global processor, you must create an association with a console on each local
processor with which communication is desired. To associate MCS-managed
consoles, you must specify TYPE =MCS in conjunction with the UNIT =
parameter on a JES3 CONSOLE initialization statement. Refer to “Establishing
Logical Associations” on page 5-10 for information about defining logical
associations.

L
| 2 Qutput from the console test DSP can not be directed to an MCS console.

5-6 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Defining RJP Consoles

JES3 DSPs that you call into execution retain the ID of the console from which
they were called. You should symmetrically define your MCS-only consoles.
That is, if you have defined an MCS-only console as the fifth valid entry in the
CONSOLxx member of SYS1.PARMLIB, you should define that console as the
fifth valid entry in the CONSOLxx member for all processors. If you do not
symmetrically define your MCS-only consoles, then messages about those DSPs
may not appear on the expected console after a DSI or hot start with IPL.

For full flexibility in initiating the JES3 console environment, you should generate
as many MCS consoles and subsystem-allocatable MCS consoles (combined) as
the maximum number of JES3 consoles planned for attachment to each processor.
You must define subsystem-allocatable MCS consoles during MVS initialization
through statements in the CONSOLxx member of SYS1.PARMLIB.
Subsystem-allocatable MCS consoles do not have a device number and do not
correspond to any physical device. On a JES3 CONSOLE initialization
statement, specify DUMMY on the UNIT = parameter for those mains on which
you want to use the console. For additional information about defining
subsystem-allocatable consoles see MV'S/Extended Architecture System
Programming Library: Initialization and Tuning.

Remote job processing consoles can be either bisynchronous communication (BSC
RJP) consoles or system network architecture (SNA RJP) consoles. You define a
BSC RIJP console during initialization using a JES3 CONSOLE initialization
statement. The name you specify on the INAME = keyword of the JES3
CONSOLE initialization statement must match the name you specify on the N=
keyword of the JES3 RJPTERM initialization statement.

If you want a work station to have the facilities of a JES3 console, you must code
the work station name and console options on the JES3 CONSOLE initialization
statement for that console.

You can define simulated consoles for work stations that do not have real
consoles. In this case, you enter console commands through the card reader, and
receive messages on the terminal’s printer.

You also define a SNA RJP console during initialization using a JES3 CONSOLE
initialization statement. The name you specify on the INAME = keyword of the
CONSOLE statement must match the name you specify on the N= keyword of
the RJPWS statement.

Chapter 5. Defining Consoles and Message Routing  5-7




JES3 Console Management

JES3 console service manages communication between consoles and JES3. In
managing console communication, console service:

Provides operator communication with JES3 functions
Manages the buffers used for communication

Provides processing for input and output messages
Coexists with the multiple console support (MCS) facility

Operator Communication

You communicate with JES3 dynamic support programs (DSPs) using JES3
commands. When a JES3 DSP initiates execution, it must identify itself to
console service. You can refer to JES3 DSPs by the name or number of the
device assigned to the dynamic support program.

Console Message Buffer Pool

JES3 uses a preallocated buffer pool for both input and output console messages.
Each time a buffer is required, JES3 obtains it from this buffer pool. When the
buffer is no longer needed, JES3 returns it to the pool.

To define the number of buffers in the pool, use the JES3 CONSTD initialization
statement. To define buffer depth, the number of messages that a DSP may
queue for a specific console, code the DEPTH = keyword on the JES3
CONSOLE initialization statement.

Input Processing
Input commands which you initiate are directed to the operating system.

You can enter all JES3 commands (except *DUMP and *RETURN) from a card
reader (CR), tape reader (TR), or disk reader (DR). You can use the tape or disk
reader to enter repetitive commands based on system requirements (such as shift
change). Any output messages generated from a card reader, tape reader, or disk
reader are displayed at the console from which you called the reader.

You can enter a pause command from any reader through the use of the
//¥*PAUSE control statement. JES3 recognizes this statement only if the
statement appears before the first //JOB statement in the job’s input stream.
Once the //*PAUSE statement is recognized, the reader issues a message and
waits for a reply. (For example, if *CALL and *START DSP commands are
entered through the reader, the //*PAUSE statement can be used to stop the
reader after the *CALL,dsp command is issued. This allows the DSP to be
readied before the *START command is executed. When the DSP is ready, you
can start the reader to have the next command executed.) The use of the
//*PAUSE statement is intended primarily for system checkout and test.

5-8 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




(

Output Processing

Output messages are initiated by JES3 DSPs on any main, output writer
functional subsystems, C/I functional subsystems, MVS, or any user program that
issues a write-to-operator or write-to-operator reply (WTO/WTOR) to a JES3
console. These messages may be job status messages, replies to operator inquiries,
or operator action-required messages.

All output messages are prefixed with a time stamp. In addition, JES3 messages
contain the component identification IAT. MVS messages that are displayed on
JES3 consoles contain the name of the processor from which the message
originated and the name of the job (if applicable) that issued the message. Refer
to “Defining Message Routing” on page 5-21 for information about controlling
message traffic.

JES3 supports the display of messages in 4 colors on 3279 consoles and the
intensification of important messages on 3277 and 3278 consoles. For
information on the meaning of the colors or intensification, see MV'S/Extended
Architecture Operations: JES3 Commands.

MCS Console Management

JES3 allows you to use the multiple console support (MCS) facility of MVS.
MCS provides the following support:

®  Backup console service: When a console fails, you can specify an alternate
console to process messages that were being sent to the original console. In
this case, the routing codes of the two consoles are merged.

®  Operator action messages: On MCS consoles configured in conversational
mode or in roll-deletable mode, action messages remain on the screen until
deleted by the program issuing them or until you delete them manually. (If
the MCS console was defined as an output-only console, the messages can be
deleted from the screen by entering a system command from a JES3 console
associated with that MCS console.)

®  Screen-oriented displays on display consoles: At system generation, the MCS
console screen can be divided into multiple screen areas for receiving these
displays in out-of-line or nonmessage screen areas. If operator action is
unnecessary, MCS consoles can also be designated as output-only consoles.

®  Authority levels: You can assign authority levels to allow or restrict the types
of MVS commands that an operator can enter at a console; however, you
must set up the MCS master console on each processor to accept all MVS
commands. For MCS-managed consoles with logical associations, you can
also specify an authority level for JES3 commands using the LEVEL =
keyword of the JES3 CONSOLE initialization statement. Refer to
“Authorizing JES3 Commands” on page 5-14 for information about defining
console authority.

o Log facilities: You can use a real device as a hard-copy log or you can use
the system log facilities.

o  Enhanced Display Capability: You can control several characteristics of MCS
console such as reverse video, extended highlighting and seven color support.

Chapter 5. Defining Consoles and Message Routing ~ 5-9




|

|
l
|
l

Establishing Logical Associations

A logical association is an internal communication path that permits you to send
commands to MVS on a local processor from a JES3-managed or MCS-managed
console attached to the global. An association also permits you to receive
responses to those commands.

To send commands to a local processor from a JES3-managed or MCS-managed3
console from the global, you must associate that console with an MCS real or
subsystem-allocatable console on each local processor with which communication
is desired. You define an association using the UNIT = keyword of the JES3
CONSOLE initialization statement. This keyword identifies all MCS consoles
with which the console you are defining can communicate. Use the JES3 *SEND
command to route commands to another processor after you establish a logical
association.

You can associate a JES3-managed console with one MCS real or
subsystem-allocatable console defined to each local processor. You can also
associate a JES3-managed console to a subsystem-allocatable console or to itself
on the global.

You can associate an MCS-managed console? with only one MCS or
subsystem-allocatable console defined to each local processor, other than the
global.

How to Define Logical Associations

Use the UNIT = keyword of the JES3 CONSOLE initialization statement to
define logical associations. How you code the UNIT = keyword depends on the
type and purpose of each console. For example, if you have a global processor
named SY1 and two local processors named SY2 and SY3, you can define logical
associations as follows:

e JES3-managed consoles with logical associations: You can associate a
JES3-managed console with actual console numbers. For example, if you
specify:

CONSOLE , JNAME=CN1,UNIT=(SY1,3E1,S8Y2,3E1,SY3,3El)...
DEVICE,CNS3277,JNAME=CN1,JUNIT=(3E1l,SY1)

This definition allows you to send commands from console 3E1 on SY1 to
MVS on processors SY2 and SY3 and receive responses to those commands.
These associations are retained if you dynamically convert this console to
MCS management. Specifying actual device numbers rather than
subsystem-allocatable (DUMMY) or no association (NONE) allows you to
issue all JES3 commands other than the *SEND command when you make it
MCS-managed. Specifying the same device number (3E1) across all mains
also prevents problems when you perform a dynamic system interchange
(DSI).

3 This console is known as an MCS-managed console with logical associations. You
define it to MVS in the CONSOLxx member of the SYSI.PARMLIB data set and
to JES3 by specifying TYPE =MCS on a JES3 CONSOLE initialization statement.

5-10 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




MCS-managed console with logical associations: You can also associate an
MCS-managed console with actual device numbers. For example:

CONSOLE, TYPE=MCS,UNIT=(SY1,3E1,SY2,3E1,SY3,3E1)

Commands and commands responses appear on both the console from which
you enter the command and on the associated consoles on the global. You
can avoid this condition by defining three separate console statements for this
console. For example,

CONSOLE, TYPE=MCS,UNIT=(SY1,3E1l,SY2,DUMMY,SY3,DUMMY) , INAME=MCS1
CONSOLE, TYPE=MCS ,UNIT=(SY1,DUMMY,SY2,3E1l,SY3,DUMMY) , INAME=MCS2
CONSOLE , TYPE=MCS ,UNIT=(SY1,DUMMY,SY2,DUMMY,SY3,3E1) , JNAME=MCS3

Defining your console in this fashion permits you to establish logical
associations with local processors without echoing commands and command
responses on actual consoles attached to those processors. If you use this
method, use unique names on the INAME = keyword so that the system log
contains the console name that you are currently using. Both examples
shown above allow you to retain your associations across a DSI.

Rules for Defining Logical Associations

You can specify mains in any order on the UNIT = keyword of a JES3
CONSOLE initialization statement. However, you can not specify a main
more than once.

You can use a console only once for an association within a given processor.
For example, if you associate a JES3 console with an MCS console, you
cannot use that MCS console in an association for another console attached
to the global.

If you are associating a JES3-managed console with a real MCS console
attached to the global, you must use the device number specified on the
JUNIT = keyword of the JES3 DEVICE initialization statement for that
JES3 console when defining the association.

You must specify the actual device number of an MCS-managed console on
the UNIT = keyword for the global device number. For example, if SY1 is
your global, you must specify UNIT=(3E1,SY1...) on the JES3 CONSOLE
initialization statement. You cannot specify DUMMY or NONE for the
global.

The console with which you create an association on the target processor
determines the MCS command authority level for commands that you send to
that processor. If you create an association with a subsystem-allocatable
console, you cannot control which subsystem-allocatable console you get.
Therefore, the authority level is unpredictable unless you assign the same
authority level to all subsystem-allocatable consoles in your installation.

Chapter 5. Defining Consoles and Message Routing 5-11




Sending Commands From JES3-managed Consoles

You can send commands to another processor without using the *SEND
command if you establish a logical association with the target processor and
include the MAIN = keyword on the console’s JES3 CONSOLE initialization
statement. If you omit the MAIN = keyword, you must use the *SEND
command. You cannot specify the MAIN = keyword for MCS-managed consoles
that have logical associations; you must always use a JES3 *SEND command
from these consoles.

If you dynamically migrate a JES3-managed console to MCS-management, you
must use the *SEND command afterwards. Refer to MV S/Extended Architecture
Operations: JES3 Commands for information about using the *SEND command.

Changing the Status of a Console

You are not required to have any JES3-managed consoles in your JES3
installation because you can use MCS consoles to enter JES3 commands and
receive JES3 messages. Of course, if you want to hardcopy messages to MLOG,
rather than DLOG, you need at least one JES3-managed console.

You can permanently migrate a JES3-managed console to MCS management by
changing the TYPE = keyword on the CONSOLE statement to TYPE=MCS.
However, this change requires a warm start of JES3. You must use this method if
you have not defined the JES3 console with an association to an MCS console.

You can use commands to dynamically change the status of a console.

Figure 5-2 summarizes the command(s) required to change the status of a
console. Refer to MVS/Extended Architecture Operations: JES3 Commands for
the syntax of these commands.

5-12  MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Device’s current Vary the Vary the Make the Vary the Vary the Disable the Enable the
MVS/JES3: device online device offline device an device online device offline device as a device as a
state to MVS to MVS MCS console to JES3 to JES3 JES3 console JES3 console
(AV) (OFF) (CON) (CON)
MYVS ONLINE current state VOFFLINE VCONSOLE Determine Determine *VCONSOLE *VCONSOLE
& not a MCS current JES3 current JES3 *SWITCH
console state and use state and use *DISABLE
corresponding corresponding
commands in commands in
this column this column
MVS VONLINE current state VCONSOLE Determine Determine VONLINE VONLINE
OFFLINE & current JES3 current JES3 *VCONSOLE *VCONSOLE
not a MCS state and use state and use *SWITCH
console corresponding corresponding *DISABLE
commands in commands in
this column this column
MYVS ONLINE VONLINE VOFFLINE current state Determine Determine VONLINE VONLINE
& a MCS current JES3 current JES3 *VCONSOLE *VCONSOLE
console state and use state and use *SWITCH
corresponding corresponding *DISABLE
commands in commands in
this column this column
ONLINE to VONLINE! VOFFLINE! VCONSOLE! | current state *VOFFLINE Determine Determine
JES3 (AV) current MVS current MVS
state and use state and use
corresponding corresponding
commands in commands in
this column this column
OFFLINE to VONLINE! VOFFLINE! VCONSOLE! *VONLINE current state Determine Determine
JES3 (OFF) current MVS current MVS
state and use state and use
corresponding corresponding
commands in commands in
this column this column
JES3 console VONLINE! VOFFLINE VCONSOLE *VCONOFF *VCONOFF current state *ENABLE
disabled (CON) *VONLINE *SWITCH
JES3 console VONLINE! *SWITCH *SWITCH *SWITCH *SWITCH *SWITCH current state
enabled (CON) *DISABLE *DISABLE *DISABLE *VOFFLINE *DISABLE —
*VCONOFF *VCONOFF *VCONOFF N
VOFFLINE VCONSOLE *VONLINE

Figure

5-2. Changing the State of a Console

Note 1: You do not need to enter this command if the device is currently in the desired MVS state. Issue an MVS D U,ddd,1 command to determine the
device’s MVS status.

A Rovintt Mot
VONLINE MYVS vary online d
VOFFLINE MVS vary offline cc d
VCONSOLE MYVS vary console command

*VONLINE JES3 vary online command
*VOFFLINE JES3 vary offline d
*VCONSOLE JES3 vary console d
*VCONOFF JES3 vary console,off command
*SWITCH JES3 switch command
*ENABLE JES3 enable d
*DISABLE JES3 disabl d

Figure 5-3. Key to Abbreviations

Chapter 5. Defining Consoles and Message Routing  5-13




Defining Console Authority

MYVS and JES3 allow you to control which commands operators can enter at
consoles. MVS and JES3 perform independent authority checking. JES3 checks
all JES3 commands entered at JES3 and MCS consoles. MVS checks all MVS
commands entered at JES3 and MCS consoles.

Authorizing JES3 Commands

JES3 groups its commands into command authority levels that range from 1 to
15. You can assign a JES3 authority level to a JES3 or MCS console with a
logical association by specifying the LEVEL = keyword on the JES3 CONSOLE
initialization statement for each console.

Every time you issue a JES3 command, JES3 checks the authority of the console
from which you entered the command. If you authorize the console to issue the
command, JES3 processes the command; otherwise, JES3 rejects the command
and displays an error message. Figure 5-4 lists the JES3 commands associated
with each authority level:

Figure 5-4. JES3 Authority Levels

After initialization you can alter a console’s authority level by issuing a
*MODIFY,O command. Use the *INQUIRY,O command to display a console’s
current authority level. You can use the JES3 user exit IATUXIS to redefine
authority levels in specific cases. See MVS/Extended Architecture System
Programming Library: JES3 User Modifications and Macros for information about
IATUXI18.

5-14 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Notes:

e You must authorize a least one console in your MVS/JES3 installation to
issue authority level 15 commands.

® You should always specify the highest JES3 authority level when defining
consoles for use by automation packages, such as the IBM NetViewTM4
program product. Specifying a lower authority level may prevent your
automation package from issuing certain commands.

The MCS authority level that you define on the AUTH parameter of the
CONSOLE statement in the CONSOLxx member of the MVS SYS1.PARMLIB
data set determines which MVS commands are allowable from JES3-managed as
well as MCS-managed consoles. The MCS authority level also determines which
JES3 commands are allowable from MCS-managed’ or MCS-only consoles as

follows:
MVS Authority Level | Corresponding JES3 Allowable JES3 Commands
(Command Group) Authority Level )
Informational 0 : - *ERASE i
SINOUI
System Control 5
Console Control 10 ' All of the commands hsted above plus‘ i
1/0 Control *DELAY -
f‘DISABLE
‘ *ENABLE. =
“} . *MODIFY:
- *SWITCH
| *TRACE"
*VARY
*FREE e
Master 15 All of the commands hstad above plus: !
*FREE;con
1 *DUMP:
*FAIL . -
*RETURN

_ Figure 5-5. JES3 Commands Allowed from MCS-managed and MCS-only Consoles

Figure 5-6 on page 5-16 shows the commands and authority levels for RJP
consoles (BSC and SNA).

4 NetView is a trademark of International Business Machines Corporation.
All rights reserved.

5 Excluding MCS-managed consoles with logical associations. These consoles obtain
their authority level from the LEVEL = keyword on the JES3 CONSOLE

statement.

Chapter 5. Defining Consoles and Message Routing 5-15




T *START‘

| sRESTART

- For BSC terminals, the *START, ‘RESTART, and "CANCEL must speclfy a remote tetmlnal name

1 2 | which is part of the remote work station. :
‘ ,g?g&%l;{ : r SN the *START, *RESTART, and *CANCEL must specify a Ioglcal devme name
*MESSAGE SNA Wofk statloﬂ 4
10-14 All of the commands ) and output (OUT =) keywords specified on a *CALL command must be devices
: listed above plus: associated with the remote work station. 'You can specify the long form (such as IN=REMOTRD1) or:
*CALL. short form (N=RD1). .If you omit both keywords on a *CALL command for'a funcuon in whlch card
1 *varYy input is expected, (that is *X,CR), the remote card reader is assumed.
*MODIFY

|*The restrictions discussed previously for the *START; *RESTART, *CANCEL and "VARY commands ;

also-apply for. this authority level..

Three “'MODlFY commands are: permltted mod:fy ]Ob (*F,J =), modlfy output (*F,U,...) and modify

RIP (*F,T,...). The modify job command allows the remote oparator to 'modify jobs submitted from "
that termmal group. If 'you omit group or termmal name from:the T= keyword, JES3 inserts-those .
parameter values into the message.

The SNA remote console operator can enter *START, *RESTART, and CANCEL commands, but each

must specify ‘a logical device name which belongs to the SNA work station.

The SNA remote console operator can also enter *INQUIRY, *MODIFY, and *MESSAGE commands,
but onlzcI two *MODIFY commands (MODIFY,J =jobname and *MODIFY T,T=termname) are
permitts

*SWITCH
*DUMP

- *RETURN.
*ENABLE
| *DISABLE

All commands except:

JES3 does not provide any default parameters.

Figure 5-6. Authority Levels for Remote Consoles

Autherizing TSO Commands

If TSO user exit IKJEFFS3 is not performing authority checking, you can use
JES3 user exit IATUX30 to authorize the use of the TSO CANCEL, STATUS, or
OUTPUT commands. JES3 invokes IATUX30 each time a user issues one of
these TSO commands.

Entering Commands

You can enter JES3 commands from all JES3 consoles. You can enter MVS
commands and most JES3 commands from MCS-managed consoles with logical
associations.

You cannot enter JES3 commands to inquire about or modify the status of MCS
consoles. You must use the equivalent MVS commands instead. For example,
MCS-managed consoles with logical associations reject JES3 *ERASE, *DELAY,
and *FREE commands (however, you can issue *FREE,con which is also known
as a directed *FREE command from MCS-managed consoles with logical
associations if the target console is a JES3 console.)

You can issue only the following JES3 commands from master MCS consoles that
are attached to local processors:

*RETURN (with password)

*DUMP (with password)

*CALL, *START, and *CANCEL,VARYL
*CALL, *START, *CANCEL,DSI

5-16 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




During JES3 initialization, you should not enter any JES3 commands other than
the *DUMP, *RETURN, and *START JSS commands. You should always use
equivalent MVS commands.

You can enter MVS commands from all MCS consoles. You can also enter MVS
commands from JES3-managed consoles for which you have defined logical
associations, but you must precede them with the *SEND$ command if you direct
them to a processor other than the one to which the console is attached.

Defining Program Function Keys

You can enter commands using program function keys on JES3 consoles if you
prepare beforehand using JES3 initialization statements. You define program
function keys for MCS consoles in the PFKTABxx member of the MVS
SYS1.PARMLIB data set.

To prepare, you must name and define one or more PFK tables. You can specify
up to 24 program function keys in each table and can assign up to 12 commands
with each key. Use the JES3 PFK initialization statement to name and define a
PFK table. Each statement defines the commands you want to assign to each
program function key. The name you specify on the N= keyword is the name of
the PFK table to which JES3 will assign the PFK statement.

After defining a PFK table, you can assign a table to each JES3 console by
specifying the table name (the same name you specified on the N= keyword) on
the PFK = keyword of the JES3 CONSOLE initialization statement. You can
associate any number of consoles with one PFK table. However, you can assign
only one table at a time to a given console.

After you assign a PFK table to a console and you depress a program function
key (or select keys 1-12 with a selector pen), JES3 executes the commands
assigned to that key. If you depress or select a key for which no commands are
defined, JES3 cancels the current input line.

Optionally, you can use the E= keyword of the PFK statement to request that
JES3 display the commands associated with a key when you depress or select the
key. This allows you to add parameters to the displayed list. When you have
finished modifying the list of parameters, you can depress the ENTER key or a
similar key and JES3 will execute the command.

You can dynamically redefine individual program function keys using the
*MODIFY.K command. The *MODIFY,O command, assigns a different PFK
table to a console. If you enter JES3 commands that modify program function
keys from a console when it is MCS-managed, you affect only the JES3 program
function key settings, not the MCS program function keys. Use MVS commands
to change program function keys for MCS-managed consoles. Refer to
MVS/Extended Architecture: System Commands for information about using MVS
commands to change program function keys for MCS consoles.

6  You can omit the *SEND command from JES3-managed consoles if you include the
MAIN= keyword on the JES3 CONSOLE initialization statement.

Chapter 5. Defining Consoles and Message Routing 5-17




| Defining Alternate Consoles

| You can define an alternate console for each locally-attached JES3 console in
| your installation. Use the ALTCON = keyword of the JES3 CONSOLE
| initialization statement to define an alternate console.

| JES3 switches console operations to the alternate console if the primary console

| encounters an I/O error or if the console goes out of ready status. For example, a
| console can go out of ready status if it reaches the message limit that you specify

| on the DEPTH = keyword of the JES3 CONSOLE initialization statement.

b The following rules apply when defining and using alternate consoles:

I ® You cannot use the following consoles as alternate consoles, nor can they
| have alternates themselves:

[ —  RIJP consoles
I — JES3 DUMMY consoles
| — MCS-managed consoles with logical associations

| Note: Although remote consoles cannot have alternates, JES3 will not
| prevent you from defining one on the ALTCON = keyword. JES3 simply
| ignores the value in the event of a console failure.

| e If you do not define an alternate console, or you specify an invalid console,
| such as DUMMY, JES3 switches to the first active, locally-attached JES3
| console (other than itself) defined in the initialization stream.

| o If a failing console cannot locate an alternate, it uses itself as the alternate
| and attempts to correct the problem.

I e To prevent automatic switching, specify the same name on the ALTCON =
[ keyword that you specify on the INAME = keyword for that console.

Defining a Time Limit for Console Messages

You can limit how long I/O operations can take for those I/O operations that
send messages to consoles. If an I/O operation exceeds the time limit, JES3
switches to the alternate console (JES3 assumes that a failure in the original
console caused the time limit to expire). You can use the IOWAIT = keyword of
the CONSOLE statement to specify a time limit for each JES3 console. The
following factors determine the time limit you should specify:

o For all consoles: The more activity there is on the channel path to which the
console is attached, the more time you should specify. Use performance
measurement tools such as the MVS Resource Monitoring Facility (RMF) to
measure channel path activity.

e For a console without a buffer: Base the time limit on the size of the largest

message that will be sent to the console (the larger the message, the more time
you should specify).

5-18 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




e For a console with a buffer: Base the time limit on the time it takes to write a
( full buffer to the console (the more time it takes, the more time you should
: specify).

e For printers defined as consoles: Consider the printer speed (the faster the
printer, the less time the I/O operation should take) and the carriage return
time (for printers with a moveable carriage).

| Defining the System Log

[ The system log is a device or pair of devices that record message traffic in your
| installation. The log can be a hardcopy device, such as a printer, a graphic
l console, or a disk data set which resides on spool.

JES3 uses the term master log (MLOG) to identify a JES3-managed console
(usually a printer or a graphic console defined to receive destination class MLG),
and disk log (DLOG) to identify the disk data set log. The MLOG and DLOG
are collectively referred to as the system log.

JES3 manages logging devices. JES3 requires you to have at least one type of log
active at all times. However, if you do not use MLOG, then all JES3 and MVS
messages originally destined for MLOG are sent to DLOG.

| JES3 and MVS record all message traffic in the system log. Each log entry
| includes a time stamp, a date stamp, and the text of the message. Each entry in

( ' | the log can also include:
| ® The JES3 destination class to which the message was routed.
| ® The JES3 or MCS console from which a command was entered’.
| ® The JES3 or MCS console to which a message was routed.
| ® The name of the job associated with the message.
| ® Whether or not the system suppressed the message from console display.
| ® The system ID for messages issued by another processor.
| ® Flags indicating unusual conditions or marking lines of special interest.

| Figure 5-7 shows sample log entries.

1908053 +LQY o :
1908055 IAT8541 < NAME ADDR ' LV
1098055 IAT8542 'CN3EL - (3El) 15
111908055 TAT8542 - MASTER ~ (3E0) .15
1 1908055 IAT8542 MCSI5 - (320) .15
1908055 IATS542  MCS10 & - (320) . 10
1908055 TATS542  MCS05. (3DC) 05 -
311 1908055 IAT8542 MCS00 ~ (3DD) 00
73111908055 ' TATS542  MCS02 (302) 15
1908055 TAT8542  MCS03  (303) 15
(11908055 TAT8542  AUTOMCS () = 15
7311 - 1908055 TAT8542 CN310: = ~(310) . 15
311 1908055 TAT8542 CN3IL 0 @) 15

| Figure 5-7. Sample Log Entries

7 Entries for MCS-managed consoles used by automation packages will show an MCS
console number in the log until the automation package issues a *SEND command.
The *SEND command activates the console’s logical associations, after which the
console’s JES3 name (JNAME) appears in the log.

~

Chapter 5. Defining Consoles and Message Routing  5-19




'

Rules

¢  You must have both MLOG and DLOG active if you want to direct the .
*FREE command to a hardcopy device that has failed or run out of paper.

e If you specify HARDCOPY = MLOG or HARDCOPY = (DLOG,MLOG),
JES3 sends the message log to consoles that have a destination class of MLG.
Therefore, assign this destination class to only those consoles that you want
to receive passwords if you are logging security messages (routing code 9)
and/or write-to-programmer messages (routing code 11).

e For MLOG, a JES3 hard-copy console whose active destination classes
include MLG (that is, you specified DEST = MLG on the JES3 CONSOLE
initialization statement), records the system log. If you choose MLOG and
no such console exists, JES3 assigns the MLG destination class to the first
hard copy device defined in the initialization stream.

e For DLOG, the system log is spooled and periodically printed by JES3
output service. By default, the log is printed every 500 lines to output class
A. To change these defaults, code the LOGLIM and LOGCLS parameters of
member IEASYSnn of the MVS SYS1.PARMLIB data set. You can also
print the disk log by entering the MVS WRITELOG command from the
global.

® You can select either a hardcopy log or a disk log or both during JES3
initialization. Through the use of *MODIFY,O commands, you can enable
or disable either log. However, JES3 rejects any command that would leave
your installation without some form of system log.

o If the disk log fails, and a hardcopy log is not currently active, JES3 will
enable the first hardcopy console that you defined during initialization.

® You must ensure that the hard copy device on which JES3 prints the system
log is fast enough to print at the message rate your installation requires.

® You can specify which MVS commands you want recorded in the system log
using the HARDCOPY parameter in the CONSOLxx member of the MVS
SYS1.PARMLIB data set. For information about SYSI.PARMLIB sce
MVS|Extended Architecture System Programming Library: Initialization and
Tuning.

'

5-20 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




| Defining Message Routing

Your system issues messages for many reasons. For example, MVS and JES3
issue messages to inform you of your system’s status, on behalf of jobs that
require resources, in response to commands, or to instruct you to perform some
type of action.

| MYVS and JES3 together determine where and how messages are routed and
| presented in your installation. You can use many facilities to control message
| traffic including:

JES3 initialization statements

Statements in members of the MVS SYSI.PARMLIB data set
The MVS message processing facility (MPF)

Automation packages, such as NetView

Macros used to issue messages

JES3 and MVS user exits

JES3 and MVS commands.

This chapter provides information about how to control message routing using
JES3 initialization statements. Overviews of non-JES3 facilities such as MPF and
automation packages, are provided to introduce you to those topics. You should
refer to the appropriate book for detailed information about using those facilities.
The following books also contain information about message routing:

| JES3 Conversion Notebook

| JES3 User Modifications and Macros

| JES3 Commands

| JES3 Logic Library Volume 7: Complex Management
| MYVS Initialization and Tuning

| To control message routing in a JES3/MVS environment, you must first
| understand the following basic concepts:

Where and how messages originate
Where messages can go

The general path of messages
JES3 destination classes

MYVS routing codes

Message routing exceptions

| The following sections describe the tasks of controlling message traffic using JES3
| initialization statements, message retention facilities, the MVS message processing
| facility, and automation packages, such as the IBM NetView program product.

Chapter 5. Defining Consoles and Message Routing  5-21




| Where and How Messages Originate

JES3, MVS, and application programs can originate messages on both global and
local processors. You can also issue messages from user exits and user-written
dynamic support programs using the following macros:

e The JES3 MESSAGE macro
e The MVS WTO or WTOR macro.

The JES3 MESSAGE Macro: Most JES3 messages are issued using the
MESSAGE macro. You can specify many routing and display options using this
macro, including the following characteristics:

Routing
Logging
Retention
Presentation
Deletion

The MESSAGE macro always converts messages into WTOs or WTORs before
message routing begins. The following sections generically refer to messages issued
by a WTO or WTOR macro as WTOs. Refer to MVS/Extended Architecture
System Programming Library: JES3 User Modifications and Macros for additional
information about using the JES3 MESSAGE macro.

The MVS WTO and WTOR Macros: Both JES3 and MVS can use the MVS
write-to-operator (WTO) or write-to-operator-with-reply (WTOR) macros to issue
messages.

You can specify information on the WTO and WTOR macro that is similar to
that on the MESSAGE macro. In addition, you can also specify whether
subsystems can or cannot modify the message’s original routing information.
Refer to MV'S/Extended Architecture System Programming Library: System
Macros and Facilities for information about using the WTO or WTOR macro.

Where Messages Can Go

MYVS and JES3 present messages in many placés. Notice that the term present is
used rather than display, because message destinations can be internal, such as
disk logs and automation packages in addition to, or instead of external
destinations, such as operator display consoles and hardcopy logs. Depending on
the JES3/MVS routing algorithms and the routing decisions you make, the system
may or may not present messages to:

JES3 and/or MCS consoles

The system log (MLOG or DLOG)

The MVS message processing facility (MPF)
The MVS action message retention facility
The JES3 action message retention facility
Automation packages, such as NetView

5-22 MVS/Extended Architecture SPL: JES3 Initialization and Tuning

AN

S



| Understanding the General Path of a Message

!
|
I
|
1
l
l

|

A message can pass through many functions of MVS and/or JES3 along the route
to its final destinations. Many of these functions can add, change, or delete a
message’s original routing and presentation characteristics. Figures Figure 5-8
and Figure 5-9, illustrate the general path of a message. This figure includes
optional functions such as the MVS message processing facility (MPF), user exits
and automation packages. There are special exceptions to this path that are
discussed in the following sections:

GLOBAL LOCAL
e e e ——..
automation | .. e |MEssace/| automation [
subsystem €« MPF | MPE > subsystem
interface o interface
MCS
console

JES3
console

Console Services ® Functional Message
i Routin
reissue g
IATUX31 <—— w0 (IATUXS7 and
(logging) MSGROUTE

\

MCS
console

processing)

staging
area

Figure 5-8. Simplified Path of a Message Issued from a Local Processor

1.

When a message originates ) from a local processor, MPF @) can alter the
message’s routing and presentation characteristics.

Next, MVS places the message on the subsystem interface (SSI). The SSI @
is the portion of the system on which other subsystems, such as JES3, can
access and alter the path of a message.

While on the SSI, JES3 (IATUXS57 and MSGROUTE processing specifically)
can modify the message’s original routing information ) if the issuer allows
subsystem modification (using SUBSMOD = keyword of the WTO macro).
The sections “Routing MVS Messages to Consoles” describes this portion of
message processing in greater detail.

Depending upon the results of JES3’s processing, the message can be
packaged in a staging area and sent to the global @@ for further processing.
The message is also placed back on the SSI for processing by an automation
package @) if present, or for display on local MCS consoles.

The staging area is sent to the global where JES3 reissues the message @
using a WTO macro and sends it to both JES3 and MCS for final processing.

\ Chapter 5. Defining Consoles and Message Routing  5-23



|

|

GLOBAL

automation

subsystem
interface

Console Services Functional Message
P Routing
IATUX31 < (IATUXS57 and
(logging) MSGROUTE
rocessin
JES3 P g MCS
console console

Figure 5-9. Simplified Path of a Message Issued from a Global Processor

Path of a Message Issued from a Global Processor

Messages that originate on a global processor travel a path similar to that of a
message issued on a local processor except that the message is not reissued as a
WTO on another processor.

When a message originates ) on the global processor, MPF @) can alter the
message’s routing and presentation characteristics.

Next, MVS places the message on the subsystem interface (SSI). The SSI @
is the portion of the system on which other subsystems, such as JES3, can
access and alter the path of a message.

While on the SSI, JES3 IATUX57 and MSGROUTE processing specifically)
can modify the message’s original routing information @ if the issuer allows
subsystem modification (using SUBSMOD = keyword of the WTO macro).
The sections “Routing MVS Messages to Consoles” describes this portion of
message processing in greater detail.

The message is then sent to both MCS consoles and JES3 consoles attached
to the global.

Refer to MVS/Extended Architecture JES3 Logic Library Volume 7: Complex
Management Logic for additional information about message processing.

5-24 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




| JES3 Destination Classes and MVS Routing Codes

JES3 uses 95 destination classes to route messages to JES3 consoles. You can
define which messages you want displayed on a JES3 console by specifying one or
more destination classes on the DEST = keyword of the JES3 CONSOLE
initialization statement.

MYVS uses 128 routing codes to route messages to MCS consoles. You can define
which messages an MCS console displays by specifying routing codes on the
ROUTCODE keyword of the CONSOLE statement in the CONSOLxx member
of the MVS SYS1.PARMLIB data set. Each destination class corresponds to an
MYVS routing code. However, no JES3 equivalent exists for routing codes 1, 2, 4,

5, 6, and 11 to 40. Figure 5-10 shows the 95 JES3 destination classed and their
corresponding MVS routing codes.

JES3 Destination Equivalent MVS Destination Class Purpose
Class Routing Code/Function
All Broadcast Messages intended for MCS consoles on the global that display broadcast messages and all JES3
consoles except those whose CONSOLE statement specifies DEST = NONE.
ERR 10 Equipment failure and JES3 failsoft and problem messages.
JES 42 General information about JES3.
LOG 41 General information about jobs.
MLG Hardcopy All input and output messages.
SEC All security messages.
TAP Messages about JES3-controlled tape requirements.
TP Messages about teleprocessing.
UR Messages about JES3-controlled unit-record equipment.
DALL Messages about a user-defined console configuration. The exact JES3 destination class-route code
or D1-D22 mappings are:
D1=43 D4=46 D7=49 D10=52 D13=55 D16=58 D19=61 D22=64
D2=44 D5=47 D8=50 D11=53 D14=56 D17=59 D20=62
D3=45 D6=48 D9=51 D12=54 D15=57 D18=60 D21=63
MALL Messages unique to a JES3 main. Use the MDEST parameter of the MAINPROC statement to define
or M1-M32 the destination class for messages about specific mains. The exact JES3 destination class-route code
mappings are:
M1=65 M5=69 M9= 73 MIl13=77 MI17=81 M21=85 M25=89 M29=93
M2=66 M6=70 M10=74 MI14="78 M18=82 M22=86 M26=90 M30=94
M3=67 M7=71 MI1=75 MI15=79 M19=83 M23=87 M27=91 M31=95
M4=68 M8=72 MI2=76 MI16=80 M20=84 M24=88 M28=92 M32=96
SALL Messages pertaining to JES3 device setup. Use the XUNIT or JUNIT keywords of the DEVICE.
or S1-832 statement to define the consoles to receive device related messages. The exact JES3 destination
class-route code mappings are:
S1=97 S5=101 S9= 105 SI13=109 S17=113 S21=117 S25=121  S29=125
S2=98 S6=102 S10=106 S14=110 Si18=114 S22=118 $26=122 S30=126
S3=99  S§7=103 S11=107 SI15=111 S19=115 S23=119 S27=123  S31=127
S4=100 S8=104 S12=108 S16=112 S20=116 S24=120 S28=124 S32=128

Figure 5-10. Valid Destination Classes and their Corresponding Routing Codes

The following destination classes are also valid, but are not considered part of the
95 JES3 classes:

® NONE: No messages
® (QUTPUT: All messages except MLG messages
® TOTAL: All messages.

You can control the routing of MVS-issued messages by mapping MVS routing
codes to JES3 destination classes using the JES3 MSGROUTE initialization
statement. You cannot control the routing of most JES3-issued messages (that is,
those messages issued with the IATxxxx prefix) even though JES3 messages travel
through most of the message path as WTOs. The following sections explain how
to control the routing of messages.

Chapter 5. Defining Consoles and Message Routing  5-25




| | Two Types of Messages

You can group messages into one of two basic categories when controlling the
routing of messages in an MVS/JES3 environment, regardless of the originator:

e Messages whose routing can be changed (subsystem-modifiable).
o Messages whose routing cannot be changed.

Most JES3-issued messages fall into the non-modifiable category. The routing
information of most MVS-issued messages can be modified. The following
sections describe how to control the routing characteristics of these messages.

Routing JES3 Messages to Consoles

You cannot change the routing of most JES3-issued messages, (that is, messages
that begin with the IATxxxx prefix) because most JES3 messages prohibit
subsystems from modifying their original routing information. For these messages,
the original destination class specified on the JES3 MESSAGE macro is converted
to its MVS equivalent routing code when it becomes a WTO or WTOR. MCS
consoles on both global and local processors can display the message if you have
defined them to receive that equivalent routing code. JES3 converts that code
back to its original destination class for display on JES3 consoles.

If you issue a message with multiple routing codes during JES3 initialization,
JES3 ignores the destination class you specify and uses only the specified routing
codes to route messages to MCS consoles. After initialization, JES3 ignores the
routing codes and uses only the destination class to route messages.

If you issue a message using the WTO/WTOR macro that prohibits subsystem
modification, JES3 selects a single routing codes using the following algorithm:

1. MCS consoles on the global display the message using the original set of
routing codes you assigned to the message on the WTO/WTOR macro.

2. JES3 selects the highest routing code (128 being the highest) that has an
equivalent JES3 destination class.

3. If none of the original routing codes correspond to a JES3 destination class,
JES3 routes the message using the destination class you specify on the
MDEST = keyword of the JES3 MAINPROC initialization statement.

Refer to MVS/Extended Architecture System Programming Library: JES3 User
Modifications and Macros for information about using macros to issue messages.

5-26 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




| Routing MVS Messages to Consoles

Selecting a Single Routing Code

If an MVS-issued message has multiple routing codes (excluding MVS routing
code 11), JES3 invokes user exit IATUXS57 to select a single code so that JES3
can translate that code to a single destination class for display on JES3 and MCS
consoles attached to the global. If you omit IATUXS57 and a message contains
multiple routing codes, JES3:

1. Discards routing code 11 if present.
2. Selects the highest routing code below 16 if one exists or,
3. Selects the lowest routing code between 17 an 128.

For additional information about user exit IATUXS57 and the default selection
algorithm see MV'S/Extended Architecture System Programming Library: JES3
User Modifications and Macros.

Using MSGROUTE to Control Message Routing

You can use the JES3 MSGROUTE initialization statement to route messages:

directly to JES3 consoles or MCS-managed consoles with associations
to only MCS consoles attached to the local processor

to only JES3 and MCS consoles attached to the global

to JES3 consoles, as well as local and global MCS consoles

to only the system log

The routing instructions you place on the MSGROUTE statement affect only
those messages that allow subsystems to modify their routing information, such as
most MVS-issued messages. MSGROUTE provides two methods to route MVS
messages to JES3:

1. You can map an MVS routing code directly to a console name.
2. You can map an MVS routing code to a JES3 destination class.

For example if you want all MVS security messages (routing code 9) displayed on
JES3 consoles that receive JES3 security messages, you could use the
MSGROUTE statement to map routing code 9 to destination class SEC.
Afterwards, all JES3 consoles that display destination class SEC messages would
also display MVS security messages.

You can define one MSGROUTE statement for each processor in your
installation. The following example shows the use of the MSGROUTE statement
and the various processing that occurs:

MSGROUTE,MAIN=SY1l,1=(M1,CN1,J),2=(M28,CN1),3=(S1,,J),8=(TP),9=(,,J)

Note: If you omit one or more routing codes from a MSGROUTE statement,
those messages are sent only to the system log and to the originating processor’s
MCS consoles.

Chapter 5. Defining Consoles and Message Routing  5-27




Processing if SY1 is the Local:
AN

o Messages assigned routing code 1 will be displayed on console CN1 and all &x o

JES3 consoles defined to receive M1 messages. MCS consoles attached to the

global display those messages only if you have defined them to display the

routing code equivalent of M1 (which is routing code 65). The J parameter

prevents these messages from being displayed on MCS consoles attached to

the originating processor.

o Messages assigned routing code 2 will be displayed on console CN1 and all
JES3 consoles defined to receive M28 messages. MCS consoles on the global
processor display those messages if you have defined them to display the
routing code equivalent of M28 (which is routing code 92). MCS consoles on
the originating processor are also eligible to display these messages using the
message’s original set of routing codes.

o Messages assigned routing code 3 will be displayed on all JES3 consoles
defined to receive S1 messages. MCS consoles attached to the global display
those messages only if you have defined them to display the routing code
equivalent of S1 (which is routing code 97). The J parameter prevents these
messages from being displayed on MCS consoles attached to the originating
Pprocessor.

® Messages assigned routing code 8 will be displayed on all JES3 consoles
defined to receive teleprocessing (TP) messages and on all MCS consoles
attached to the global defined to display the routing code equivalent of TP
(which is routing code 8). MCS consoles on the originating processor are also 7
eligible to display these messages using the message’s original set of routing W/
codes.

-/

o Messages assigned routing code 9 are sent only to the log (MLOG and/or
DLOG) if you have defined that routing code on the ROUTCODE keyword
of the HARDCOPY statement in the MVS SYS1.PARMLIB data set console
defined to display MLG messages. Otherwise, these messages are not
displayed or logged.

e Messages assigned to routing codes that you omit from the MSGROUTE
statement are available for display on only the originating processor’'s MCS
consoles. The messages are also received by the system log (MLOG and/or
DLOG) if you’ve defined those codes on the ROUTCODE keyword of the
HARDCOPY statement in the MVS SYS1.PARMLIB data set.

Processing if SYI is the Global:

o Messages assigned routing code 1 will be displayed on console CN1 and all
JES3 consoles defined to receive LOG messages. MCS consoles attached to
the global display those messages only if you have defined them to display the
routing code equivalent of LOG (which is 41).

® Messages assigned routing code 2 will be displayed on console CN1 and all
JES3 consoles defined to receive LOG messages. MCS consoles on the global
processor display those messages if you have defined them to display either
the routing code equivalent of LOG (which is 41), or one of the message’s C
original routing code(s). L

5-28 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




Messages assigned routing code 3 will be displayed on all JES3 consoles
defined to receive S1 messages. MCS consoles attached to the global display
those messages only if you have defined them to display the routing code
equivalent of S1 (which is routing code 97).

Messages assigned routing code 8 will be displayed on all JES3 consoles
defined to receive teleprocessing (TP) messages and on MCS consoles
attached to the global defined to display either the routing code equivalent of
TP (which is routing code 8), or one of the message’s original routing code(s).

Messages assigned routing code 9 are sent only to the log (MLOG and/or
DLOG) if you have defined that routing code on the ROUTCODE keyword
of the HARDCOPY statement in the MVS SYS1.PARMLIB data set and to
JES3 consoles defined to display MLG messages. Otherwise, these messages
are not displayed or logged.

Messages assigned to routing codes that you omit from the MSGROUTE
statement are displayed only the originating processor’s MCS consoles. if
you’ve defined them to display at least one of the message’s original routing
codes. The messages are also received by the log (MLOG and/or DLOG) if
you’ve defined those codes on the ROUTCODE keyword of the
HARDCOPY statement in the MVS SYS1.PARMLIB data set.

Coding Rules for the MSGROUTE Statement

If you omit one or more of the 128 MVS routing codes on the MSGROUTE
statement, messages assigned those codes will be sent to the log (MLOG
and/or DLOG). These messages are also available to the originating
processor’s MCS console(s) using the message’s original set of routing codes.

Specify the J parameter to make messages available for display on only JES3
and MCS consoles attached to the global. If you omit the J parameter,
messages assigned the specified routing code are eligible for display on
consoles attached to the originating processor as well as consoles attached to
the global.

Define a routing code with only the J parameter (do not specify a destination
class or a console name) if you want messages with that routing code sent
only to MLOG and/or DLOG. However, you must also define that routing
code on the ROUTCODE keyword of the HARDCOPY statement in the
MYVS SYS1.PARMLIB data set if you want the log to receive those messages.

Usage Notes for the MSGROUTE Statement:

MSGROUTE processing occurs only on the processor that originates the
message. For example, if a local processor originates a message, that message
will undergo MSGROUTE processing only on the local. MSGROUTE
processing does not occur on the global if the message is sent there.

MSGROUTE does not affect messages that prohibit subsystem modification
(such as JES3 IATxxxx messages).

Chapter 5. Defining Consoles and Message Routing 5-29




I

I
|
|
|
|

|

Message Routing Exceptions

There are several types of messages that undergo special message routing. For
example, messages issued from functional subsystems or device-related messages
are subject to message routing in addition to, or other than the routing you define
on the JES3 MSGROUTE initialization statement. The following sections explain
each of these special message types:

Action Messages That Must Be Displayed

The master MCS console attached to the global displays all action messages that
no other console (JES3 or MCS) displays. For example, if MVS issues an action
message with a routing code that you haven’t defined to any console, then the
master console attached to the global displays that message.

If an action message originates on a local processor, the MCS consoles attached
to the originating processor can also display the message unless you specify the J
parameter for that routing code on that processor’s MSGROUTE statement.

Hardcopy Only Messages

You can specify that a message be sent only to the hardcopy log. For example, if
a message is eligible for subsystem modification, you can use the MVS message
processing facility (MPF), a user exit, or the macro used to issue the message to
suppress the message display. If you specify hardcopy only, the system sends the
message only to the hardcopy log. No additional message routing is performed.

Deleted Messages

You can use the MVS IEAVMXIT to prevent messages from being displayed or
logged. These messages however, travel the entire message path and are
presented to internal functions such as automation packages (if installed). These
messages are subject to a subset of message routing but are not available on the
global for display or logging. This type of message is often referred to a deleted
message. These messages are also written to the JES3 JESMSG data set. No
additional message routing is performed.

Routing and Descriptor Codes Absent

If a message is issued without routing information, or you use a facility such as
MPF to remove all routing information, and you specify DEFAULT = NONE on
the CONSOLE keyword in the CONSOLxx member of SYSI.PARMLIB, the
message is displayed only on the issuing processor’'s MCS console and on any
JES3 consoles that receive messages about that processor. No additional message
routing is performed.

5-30 MVS/Extended Architecture SPL: JES3 Initialization and Tuning




l

Messages That Originate From Functional Subsystems

Broadcast Messages

Suppressed Messages

Use the JUNIT = keyword of the JES3 DEVICE initialization statement to assign
a destination class to messages that originate from an output writer functional
subsystem (FSS). The destination class that you specify overrides the destination
class selected by other message processing (such as the JES3 MSGROUTE
initialization statement for modifiable messages, and default processing for
non-modifiable messages).

If you define a destination class for messages that originate from an output writer
functional subsystem, the following rules apply:

e JES3 consoles attached to the global 