Program Product

“Restricted M aterials of IBM”

All Rights Reserved

Licensed M aterials - Property of IBM
©Copyright IBM Cormp. 1987

LY28-1765-0

File No. S370-36

MVS/Extended Architecture
System Logic Library:
Supervisor Control

MVS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

[lim]]
[HIHI
Yy
II|||||I
<'l|
||||||||

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

This publication supports MVS/System Product_
Version 2 Release 2.0, and contains information
that was formerly presented in

VS/Extended Architectur stem Logic Lib

Volume 13, LY28-1254-2, which applies to
MVS/System Product Version 2 Release 1.7. .
See the Summary of Amendments for more information.

First Edition (June, 1987}

This edition applies to Version 2 Release 2.0 of MVS/System
Product 5665-291 or 57640-XC6 and to all subsequent releases
until otherwise indicated in new editions or technical
newsletters.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest I em/3 Bibliogra

GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products or services do
not imply that IBM intends to make these available in all
countries in which IBM operates. Any reference to an IBM
product in this publication is not intended to state or imply
that only IBM's product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below.

Requests for IBM publications should be made to your IBM
Ieprf§§ntative or to the IBM branch office serving your

ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Information Development,
Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y.
12602. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any
obligation to you.

{c) Copyright International Business Machines Corporation 1987

“Restricted Materials of IBM"
Licensed Materials - Property of IBM

PREFACE

The §x§%gm_ngig_L;h:g;x is intended for people who debug or
modify the MVS control program. It describes the logic of most
MVS control program functions that are performed after master
scheduler initialization completes. Refer to /
for detailed information about the MVS

control program prior to this point; refer to the MVYS/XA

for general information about the MVS control program
and the relationships among the components; and refer to the
list of Corequisite Reading and Related Publications in the
Master Preface to obtain the names of publications that describe
some of the components not in the System Logic Library.

HOW THE LIBRARY IS ORGANIZED

MULTIPLE VOLUMES

ORGANIZATION OF THE

The §x§19¥_ngigILi§;a:¥ consists of multiple volumes. Volume 1
contains the master preface, the master table of contents, the
master figure list, and the master index for the remaining
volumes in the library. The last volume, or the module
description volume, contains module descriptions for all of the
modules in the components documented in the

and an index. Each of the other volumes, or e component
volumes, contains its own table of contents and index of the
information in that particular volume. The component volumes
describe the logic of the components in the MVS control program.

COMPONENTS

The component volumes are organized alphabetically by section
name. Each section contains information about one or more of
the components in the MVS control program. A section contains
more than one component when the components are closely related,
frequently referenced at the same time, and not so large that
they require a volume of their own.

A three or four character mnemonic is associated with each
section and is used in all figure, diagram, and page numbers in
that section. For example, the mnemonic ASM is associated with
the section "Auxiliary Storage Management.”

All figures in this section are identified as Figure ASM-n, all
diagrams as Diagram ASM-n, and all pages as ASM-n, where n
represents the specific figure, diagram, or page number.
Whenever possible, existing component acronyms are used as the
mhemonic for a section. The mnemonics are in alphabetic order.
The Table of Section Names in the Master Preface lists the
section names, the components included in each section (if a
section contains more than one component), the mnemonics for the
sections, and the volume and order number for each volume.

HOW Y0 USE THE LIBRARY

To use this library efficiently, readers must be able to find
the information that they need quickly; they must be aware of
the types of information provided for each component; and they
must know how to obtain add;t:onal information before
referencing the . The followxng topics
cover these points.

LY28-1765-0 (c) Copyright IBM Corp. 1987 Preface iii

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

FINDING INFORMATION USING THE VOLUME TITLES

As readers become familiar with the section names, their
mnemonics, and contents, they will be able to use the Systenm
Lﬁg;g_L;b;gcx as they would an encyclopedia and go directly to
the ‘volume that- they need. To help readers locate the correct
volume, section mnemonics are included in the titles of the
component volumes. If a volume contains one section, the
mnemonic for that section is specified; if a volume contains
more than one section, the mnemonics for the first and last
section in the volume are specified.

The Table of Section Names in the Master Preface contains a list
of section names and mnemonics. It provides a quick reference
to the mnemonics and the components included in each section.

FINDING INFORMATION USING THE MASTER INDEX

Readers who are not sure which section contains the information
they are looking for can locate information by using the master
index in Volume 1. For the component volumes, the page number
in an index entry consists of the mnemonic for the section, the
volume number as a superscript on the mnemonic, and the page
number; for the last volume (which contains the module
descriptions), the page number consists of the volume number
instead of a mnemonic and the page number. For example:

ASM-12 refers to the "Auxiliary Storage Management®™ section
in volume 3, page 12.

The volume number and section mnemonic are not repeated for
successive references to the same section in a single entry in
the master index; for example, ASM-12, 17 refers to both pages
ASM-12 and ASM-17. Familiarity with the library will aid in
locating the exact volume in which a component is documented.

INFORMATION PROVIDED FOR EACH COMPONENT

The following information is provided for each of the components
described in the S i ib .

1. An introduction that summarizes the component's function

2. Control block overview figures that show significant fields
and the chaining structure of the component's control blocks

3. Process flow figures that show control flow between the
component's object modules

G. Module information that describes the functional
grganiiation of a program. This information can be in the
orm of:

° Method of Operation diagrams and extended descriptions.

U Automatically-generated prose and logic diagrams. The
automated module information is generated from the
madule prologue, block and line comments within the
code, and the code itself. It consists of four parts:
module description, module operation summary, diagnostic
aids, and a logic diagranm.

5. Module descriptions that describe the operation of the
modules

Some components also include diagnostic techniques information,
used for debugging the component, following the Introduction.

Items 1 through 4 are located in the component volumes; item 5
is located in the last volume.

iv MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

FURTHER INFORMATION

For more information about the §¥§$gm5§ggig,Lih;nng including
;heforder numbers of the library's publications, see the Master
reface.

LY28-1765-0 (c¢) Copyright IBM Corp. 1987 Preface v

_“"Rastpicted Materials of IBMY
Licensed Materials — Property of IBM

vi: MVUS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

CONTENTS

LY28-1765-0

Supervisor Control SUP-1

Introduction SUP-3
Supervisor Control Services SUP-3
Service Management SUP-3
Interruption Handlers SUP-5
Interprocessor Communications (IPC) SUP-6
Exit Effectors (Scheduling Exit Routines) SUP-7
Lock Management ‘SUP-10
Spin Loop Timeout SUP-12
Intersect Serialization SUP-12
Validity Checking SUP-12
Supervisor Control Recovery SUP-13
Module Naming Conventions SUP-15
Addressing and Residency Modes SUP-15

Diagnostic Techniques SUP-17

Problem Analysis for the SRB/SSRB Pool Manager SUP-17
SRB/SSRB Pool Manager Entry Points SUP-17
SRB/SSRB Pool Manager Recovery Considerations SUP-18
SRB/SSRB Pool Manager Error Conditions SUP-19

Problem Analysis for Stop/Reset Services SUP-19
Stop/Reset Entry Points SUP-19

" Stop/Reset Recovery Considerations SUP-ZD
Stop/Reset Error Conditions SUP-21

Problem Analysis for SUSPEND/RESUME/TCTL Services SUP-21
SUSPEND/RESUME/TCTL Entry Points SUP-22
RESUME/TCTL Recovery Considerations SUP-24
SUSPEND/RESUME/TCTL Error Conditions SUP-24

Control Block Overview SUP-25
Process Flow SUP-29

Method of Operation SUP-45

SUP-1. Address Verification (IEAVEADVY) SUP-50

SUP-2. Bind Break Service Routine (IEAVEBBR) SUP-52

SUP-3. Control Block Verification Routine (IEAVECBV) SUP-58

SUP-4. CMSET, LOCASCB, and CALLDISP Macro Service Routine
(IEAVECMS) SUP-68

SUP-5 Interprocessor Communication (IPC) Direct Signal Routine
(IEAVEDR) SUP-76

SUP-6. Stage 3 Exit Effector (IEAVEEEO) SUP-78

SUP-7. Stage 2 Exit Effector (IEAVEEE2) SUP-84

SUP-8. Emergency Signal Second Level Interruption Handler
(IEAVEES) SUP-86

SUP-9. EXIT Prolog Processing (IEAVEEXP) SUP-94

SUP-10. External First Level Interruption Handler
(TEAVEEXT) SUP-100

SUP-11. Stage 1 Exit Effector (IEAVEF00) SUP-116

SUP-12. INTERSECT Processing (IEAVEINT) SUP-118

SUP-13. I/0 Interrupt Handler (IEAVEIO) SUP-124

SUP-14. Low Storage Refresh (IEAVELCR) SUP-138

SUP-15. Spin Lock Manager Processing (IEAVELK) SUP-140

SUP-16. Obtaining Shared/Exclusive Locks (IEAVELK) SUP-148

SUP-17. Releasing Shared/Exclusive Locks (IEAVELK) SUP-154

SUP-18. CPUOBT - Obtaining CPU Lock (IEAVELK) SUP-158

SUP-19. Releasing the CPU Lock (IEAVELK) SUP-160

SUP-20. Spin Lock Repair Routine (IEAVELKR) SUP-164

SUP-21. Spin Lock Repair Routine (IEAVELKR) SUP-176

SUP-22. Spin Lock Manager FRR Routine (IEAVELKR) SUP-178

SUP-23. Program Check First Level Interrupt Handler (IEAVEPCO
and IEAVEPC) SUP-180

SUP-24. PURGEDQ Processing (IEAVEPDO) SUP-194

SUP-25. PURGEDQ Recovery (IEAVEPDR) SUP-196

SUP-26. QUEUE Verification (IEAVEQV0) SUP-198

SUP-27. Restart Interruption Handler (IEAVERES) SUP-202

(¢) Copyright IBM Corp. 1987 Contents vii

viii

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

SUP-28. Restart Interruption Handler Extension
(IEAVEREX) SUP-204
SUP-29. Interprocessor Communications Remote Immediate Signal
Routine (IEAVERI) SUP-208
SUP-30. Interprocessor Communications Remote Pendable Signal
Routine (IEAVERP) SUP-212
SUP-31. SCHEDULE Processing (IEAVESCO0) SUP-214
SUP-32. SCHEDULE Recovery Processing (IEAVESCR) SUP-236
SUP-33. Interprocessor Communication SIGP Routine
(IEAVESGP) SUP-238
SUP-34. Suspend Lock Manager Processing (IEAVESLK) SUP-246
SUP-35. Suspend Lock Repair Routine (IEAVESLR) SUP-256
SUP-36. Suspend Lock Manager FRR Routine (IEAVESLR) SUP-258
SUP-37. Super FRR (IEAVESPR) SUP-262
SUP-38. STOP/RESET Service Routine (IEAVESRT) SUP-266
SUP-39. Dynamic SVC Table Entry Installer (IEAVESTU) SUP-288
SUP-40. SVC Interrupt Handler (IEAVESVC) SUP-3038
SUP~41. SUSPEND Service Routine (IEAVETCL) SUP-322
SUP-42. TCTL Service Routine (IEAVETCL) SUP-324
SUP-43. RESUME Service Routine (IEAVETCL) SUP-330
SUP-44. Validity Check Processing (IEAVEVAL) SUP-336
SUP-45. Supervisor Analysis Router Routine (IEAVESAR) SUP-340
SUP-46. Address Space Verification Processing
(IEAVEVRR) SUP-346
SUP-47. External Call Second Level Interruption Handler
C(IEAVEXS) SUP-350
SUP-48. Lock Freeing Routine (IEAVFRLK) SUP-354
SUP-49. CML Lock Cleanup for Current DAT ERROR Process
(IEAVLKRM) SUP-356
SUP-50. CML and LOCAL Lock Resource Managers (IEAVLKRM and
IEAVELRM) SUP-358
SUP-51. DATOFF Macro Service Routine (IEAVMVCO0) SUP-364
SUP~-52. Processor Controller Damage Monitor Routine
(IEAVEPDM) SUP-368
SUP-53. Checkpoint/Restart Exit Routine Router
CIEAVCKRS) SUP-374
SUP-54. Vector Checkpoint/Restart Exit Routine
(IEAVCRVF) SUP-387
SUP-55. Vector Second Level Interrupt Handler (IEAVEVS) SUP-403
SUP-56. Vector Status Save Area Dump Formatter
(IEAVSSAF) SUP-428
SUP~57. Vector Service Routine (IEAVVMCH) SUP-439
SUP-58. Vector SLIH Recovery Routine (IEAVVSR) SUP-462
SUP-59. Create Vector Environment SRB Routine
(IEAVVSRB) SUP-456
SUP-60. Suspend Lock Analysis Exit for IPCS (IEAVESLK) SUP-466

Index I-1

MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

EIGURES

SRB Scheduling Pointer Structure SUP-4

Asynchronous Exit Effector Data Structure SUP-9

Supervisor Control Recovery Data Structure SUP-14

Control Block Overview SUP-26

Program Check Interruption Handlers SUP-30

SVC Interruption Handler Process Flow SUP-31

RESTART Interruption Handler Process Flow SUP-32

I7/0 Interruption Handler Process Flow SUP-33

External Interruption Handler Process Flow SUP-34

Interprocessor Communication (IPC) Remote Immediate Signal

Process Flow SUP-35

11. Interprocessor Communication (IPC) Remote Pendable Signal
Process Flow SUP-36

12. Exit Effectors for Asynchronous Exits Process Flow SUP-37

13. PURGEDQ Process Flow SUP-38

14. Spin Lock Manager Process Flow SUP-39

15. Suspend Lock Manager Process Flow SUP-40

16. Supervisor Control Recovery Process Flow SUP-4l

17. Bind Break Process Flow SUP-43

18. Symbols Used in Method of Operation Diagrams SUP-45

OWVWOONAWMLWNN -

LY28-1765-0 (c¢) Copyright IBM Corp. 1987 Figures ix

"Restpicted Materials of IBM"
Licensed Materials — Property of IBM

x MVS/XA SLL: Supervisor Control 'LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

SUMMARY OF AMENDMENTS

LY28-1765-0

Summary of Amendments
for LYZ28-1765-0
for MVS/System Product Version 2 Release 2.0

This publication is new for MVS System Product Version 2 Release
2.0. It contains information that was reorganized from the

MWMMML' LY28-1254-2, which
applies to MVS/XA System Product Version 2 Release 1.7.

This publication contains changes to support MVS/System Product
Version 2 Release 2.0. The changes include:

] New module
IEAVESLX

. Changed modules
IEAVELK
IEAVELCR
JEAVEVRR
IEAVESTU

. Minor technical and editorial changes throughout the
publication.

(c) Copyright IBM Corp. 1987 Summary of Amendments xi

‘WRestricted Materials of IBM"
Licensed Materials = Property of IBM

xii MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

PRestricted Materials of IBM"
-Licensed Materials — Property of IBM

LY28-1765-0 (c) Copyright IBM Corp. 1987 . - Supervisor Control SUP-1

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

SUP-2 MVS/XA SLL: Supervisor Control LY28-1765-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

INTRODUCTION

Supervisor control includes the following services:

The service manager, which schedules requests.

The dispatcher, which dispatches work. The dispatcher and
gemory switch are described in the DISP section of the
vystem Logic Library.

The various interruption handlers, which route control to
appropriate routines for given interruptions.

Interprocessor communications (IPC), which senses or changes
the hardware status of another processor.

The exit effectors, which provide a mechanism for scheduling
asynchronous exits.

The lock managers, which permit serialization of systenm
resources.

Spin loop timeout, which prevents inter-processor deadlock
situations from occurring.

Intersect serialization function, which serializes the
dispatching queues.

Validity checking routines, which validate queues, control
blocks and addresses.

Supervisor control recovery routines, which provide
functional recovery for supervisor control.

] S ONTROL_SERVICES

The following topics give a brief overview of the supervisor
control services.

SERVICE MANAGEMENT

In order to facilitate multiprocessing, MVS uses a category of
facilities, called service management, to schedule system
services. Service management consists of:

The SCHEDULE macro instruction, which allows new service
requests to be entered into the queue of dispatchable work
with a minimal amount of overhead.

A control block, supplied to SCHEDULE as input and called a
service request block (SRB), which represents a service
request. The SRB contains information needed to dispatch
the routine.

The PURGEDQ macro instruction, which allows service requests
to be terminated.

Figure 1 on page SUP-% shows the basic pointer structure
utilized by the service management facilities. This structure
incorporates two levels of system priority, global and local.
SRBs queued off the SVT are global SRBs; SRBs queued off the
ASCB are local SRBs.

LY28-1765-0 (c) Copyright IBM Corp. 1987 Introduction SUP-3

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

SRB
SRB
SVT >
>
) J
CcvT SVTGSMQ
> SRB
SVTGSPL >
CVTGSMQ SVTGLSMQ
>
CVTGSPL
CVTLSMQ
CVTASCBH >SRB
ASCB
—
ASCB
> ASCB
ASCB I > <— SRB
> > ’—>
PSA ASCBLSMQ
ASCBLSPL |—
SRB
PSAANENW —
——|PSASVT

Figure 1. SRB Scheduling Pointer Structure

At the global level, there are two queues, the global service
management queue (GSMQ) and the global service priority list
(GSPL). Likewise, at the local level there are two queues, the
LSMQ and the LSPL. In addition, there is a single SMQ at the
local level (SVTLSMQ) that is maintained for compatibility
reasons. The SMQs are used as staging queues, and the SPLs are
used as dispatching queues.

Service requests scheduled at the global level are placed on the
appropriate global queue and have a priority higher than any
address space, regardless of the actual address space in which
they will be dispatched. Service requests scheduled at the
local level will be placed on the single local SMQ (SVTLSMQ) or
the appropriate local queue in the address space in which the
SRB will be dispatched. Any SRBs scheduled to the single local
SMQ will eventually be moved to the appropriate local queue in
the address space in which it will be dispatched.

Service requests scheduled at a local level have a priority
equal to the address space in which they will be dispatched, but
higher than any task within that address space.

These scheduled routines have the following characteristics:

° They receive control in supervisor state.

U They may execute enabled for interruptions, but will not
lose control to higher priority work unless they are
suspended for a page fault, a lock, or a page fix.

] They may free the SRB control block once they get control.

. They may not issue SVCs.

SUP-4 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

‘"Restricted Materials of IBM"
Licensed Materials — Property of IBM

. They may execute in any designated address space.
To use the service ménagement facility, the user must:
1. Construct the SRB.

2. Schedule it, using the SCHEDULE macro, to the appropriate
global or local queue.

The user will then continue to execute until he is interrupted,
causing an entry into the dispatcher.

INTERRUPTION HANDLERS

The interruption handlers route control to the appropriate
routines after machine interruptions occur. Any interruption
causes processor control to be taken from the executing program
and given to an interruption handling routine.

Any interruption causes the current PSWH to be saved as the old
PSH, and the new PSWH to be loaded. This new PSH passes control
to the appropriate interruption-handling routine.

The interruption handlers process:

° SVC interruptions, which occur when an SVC instruction is
executed. The SVC FLIH (first level interruption handler)
detgrm}nis ygich SVC routine the requester wants and passes
contro o it.

° I/0 interruptions, which occur when a channel or device
signals a change of status. For example, an 1/0 operation
terminates, an error occurs, or a device becomes ready. The
I/0 FLIH branches to the 1/0 supervisor, which performs the
I/0 services and handles I/0 errors.

L External interruptions, which occur for:

- Timer interruptions (for processor timer expiration,
clock comparator interruption, or clock synchronization
failure; see the TIME section of the System lLogic
Library

.

- Hitting interrupt key (when the operator presses
interrupt key on the console).

- External calls (when remote pendable signal routine
signals another processor).

- Emergency signals (when machine check handler or remote
immediate signal routine signals another processor).

- Service signal interruptions (resulting from the Service
Processor Call SVC 122).

- Malfunction alerts (caused by machine failure of another
processor).

The external FLIH determines the cause of the interruption
and branches to the external service routine.

] Restart interruptions, which occur when the operator
initiates restart on the system operator's console, or when
a system program issues a SIGP (signal processor)
instruction with restart order code. The restart FLIH
routes control to RTM (recovery termination management).

U Program interruptions, which may be caused by program errors
(invalid operation, protection exception); page faults or
segment faults (caused by referencing a page not in main
storage); event monitoring (caused by a monitor call
instruction (MC) or a program event recording (PER)

LY28-1765-0 (c) Copyright IBM Corp. 1987 Introduction SUP-5

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

interruption). The program FLIH determines the cause of the
interruption, and does one or more of the following:

- Calls real storage management on paging exceptions to
determine if this is a valid page fault, and if so, to
initiate processing to bring the page into real storage.

- Calls the generalized trace facility (GTF) for tracking.

- Calls RTM if the program exception appears to be a
program error.

- Calls the vector SLIH to build the environment required
for using the vector feature.

INTERPROCESSOR COMMUNICATIONS (IPC)

Interprocessor communications (IPC) include the signal service
routines, plus the external call and emergency signal SLIHs
(second level interruption handlers). The main purpose of IPC
consists of sensing or changing the hardware status of another
processor or causing special routines to be invoked on another
processor.

The signal service routines perform two different types of
signal services — direct and remote. The direct signal service
(IEAVEDR), invoked via the DSGNL macro, uses the signal routine,
IEAVESGP, to issue the signal to modify, sense or alter the
physical state of a specific processor. The remote signal
services, (IEAVERI or IEAVERP), invoked via the RISGNL or RPSGNL
macros, use the signal routine, IEAVESGP, to issue the emergency
signal or the external call signal to route control to a routine
on a specific processor.

Direct Signal Services

The direct signal function is invoked via the DSGNL macro. The
direct service is defined for those control program functions
that require the modification or sensing of the physical state
of one of the configured processors.

The direct signal function consists of the following:

. IEAVEDR executes on the sending processor to validate the
DSGNL request and to set up the interface to IEAVESGP so
that the SIGP instruction can be issued.

° IEAVESGP (signal routine) executing on the sending processor
issues the SIGP for one of the following order codes:

Sense

Start

Stop

Restart

Stop and Store Status
Initial CPU Reset

CPU Reset

Set Prefix Register
Store Status at Address

L The specified receiving processor's physical state is sensed
or altered.

SUP-6 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

pestricted Materials of IBM"
Licensed Materials — Property of IBM

Remote Signal Services
There are two types of remote signal services:

. Remote immediate signal — invoked via the RISGNL macro.
. Remote pendable signal — invoked via the RPSGNL macro.

The remote immediate signal function consists of the following:

. IEAVERI, executing on the sending processor, sets up the
interface to the receiving routine.

. IEAVESGP (signal routine), executing on the sending
processor, issues the emergency signal SIGP instruction.

o IEAVEES (the emergency signal SLIH) receives control from
the external FLIH on the receiving processor and routes
control to the receiving routine.

The remote pendable signal function consists of the following:

. IEAVERP (executing on the sending processor) indicates to
the receiving processor what functions to perfornm.

° IEAVESGP (signal routine) also executing on the sending
processor, issues the external call SIGP.

. IEAVEXS (the external call SLIH) receives control from the
external FLIH on the receiving processor and routes control
to the receiving routine.

EXIT EFFECTORS (SCHEDULING EXIT ROUTINES)

A service exists whereby a program may request that a
user-defined exit routine execute asynchronously. System
routines use this service to handle asynchronous events such as
end-of-task condition, expiration of a timer interval, or
special I/0 handling (for example, tape label checking or I/0
error checking).

The scheduling of user exit routines, called asynchronous exit
routines, is handled by three supervisor routines: the stage 1
e¥it :ffector. the stage 2 exit effector, and the stage 3 exit
effector.

In order to schedule a routine to execute asynchronously under a
specific task, an interrupt request block, IRB, must be placed
on that task's RB chain. The following describes the control
flow for that mechanism.

1. The user must first create and format the IRB via the CIRB
macro instruction. CIRB invokes the stage 1 exit effector,
which obtains storage from LSQA and formats the IRB.

2. The user must set up the interface (to the stage 2 exit
effector), which is in one of the following forms:

a. Interrupt queue element (IQE). This contains the TCB
and IRB addresses.

b. Request queue element (RQE). This is exclusively a data
management interface, allowing asynchronous exits to be
scheduled from I/0 appendages. The RQE contains the TCB
and IRB addresses.

c. Service request block (SRB). This is used by only 10S
when scheduling a non-resident error recovery procedure.
In each address space there is a predetermined task
designated as the error task. (Its address is contained
in ASXBETSK). Each address space also has a
pre~formatted system IRB (SIRB). An SRB passed to stage
2 exit effector represents a request to schedule the

LY28-1765-0 (c) Copyright IBM Corp. 1987 Introduction SUP-7

"Restricted Materials of IBM"
Licensed Materials -— Property of IBM

SIRB to the error task. The SIRB always gives control
to the I0S error recovery procedure loader.

The user branch-enters the stage 2 exit effector with either
the address of an IQE, RQE, or SRB. Stage 2 queues the
request off of the ASXB for the current address space and
returns to the caller.

3. HWhen the dispatcher checks an address space for available
work, it determines if there are queued requests. If so, it
invokes the stage 3 exit effector.

4. Stage 3 processes the queued requests. Stage 3 dequeues the
requests (IQE, RQE, or SRB) from the asynchronous exit queue
agd.places the associated IRB on the indicated task's RB
chain.

When the dispatcher dispatches that task, with the IRB
higgesf on the RB chain, the asynchronous exit will get
control.

See Figure 2 on page SUP-9 for an illustration of exit effector
data structure.

SUP-8 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

TRestricted Materials of IBM"
Licensed Materials — Property of IBM

Stage 1
IQE IRB
l__ TCB RB RBOPSH — PSW for asynchronous exit
> > entry point
L<
1__ RB __J RBEP — Entry point of
< asynchronous exit
Stage 2
PSA IQE TCB
ASCB I > >
>
IQE case
: IRB
| ASXB __J—J >
>
1 TCB
4Ll RQE case >
SRB case T RQE
TTT N TCB >
l SRB L SIRB IRB
> > >
Stage 3
IRB
>
TCB 5 IQE
RBOPSH —= PSH for asynchronous
<1 exit entry point
RQE
o >
RBEP - Entrvfpoint for
asynchronous exit
RB - RB SRB

Figure 2. Asynchronous Exit Effector Data Structure

LY28-1765-0 (c) Copyright IBM Corp. 1987 Introduction SUP-9

LOCK MANAGEMENT

spin Locks

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

In a multiprocessor system, some method of serialization must be
used to prevent interference between processors competing for a
resourca. MVS/XA uses locking to serialize resources.

There are two types of locks; spin and suspend.

An unconditional request for a spin lock causes a disabled loop
on the processor until the lock becomes available if it cannot
be immediately obtained. The owner of a spin lock must run
2is?21ed for I/0 and external interrupts and cannot take a page
au .

A list of global locks in hierarchical order, highest first, are
listed below.

Lock Name |Description

RSMGL Real storage management global lock - serializes
RSM global resources.

VSMFIX Virtual storage management fixed subpools lock -
serializes VSM global queues.

ASM Auxiliary storage management lock - serializes ASM
resources on an address space level.

ASMGL Auxiliary storage management global lock -
serializes ASM resources on a global level.

RSMST Real storage management steal lock - serializes RSM
control blocks on an address space level when it is
not known which address space locks are currently

held.

RSMCM Real storage management common lock - serializes
RSM common area resources (such as page table
entries).

RSMXM Real storage management cross memory lock -

serializes RSM control blocks on an address space
level when serialization is needed to a second
address space.

RSMAD Real storage management address space lock -
Teri?lizes RSM control blocks on an address space
evel.

RSM Real storage management lock (shared’/exclusive) -
feriﬁlizes RSM functions and resources on a global
evel.

VSMPAG Virtual storage management pageable subpools lock -
segializes the VSM work area for VSM pageable
subpools.

DISP Global dispatcher lock - serializes the ASVT and
the ASCB dispatching queue.

SALLOC Space allocation lock - serializes receiving
routines that enable a processor for an emergency
signal or malfunction alert.

TIOSYNCH I/0 supervisor synchronization lock - serializes,
using a table of lockwords, I0S resources.

SUP-10 MVS/XA SLL: Supervisor Control LY28~-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

sSuspend Locks

LY28-1765-0

Lock Name

Description

Iosucs

I/0 supervisor unit control block lock - serializes
access and updates to the UCBs. There is one
IOSUCB lock per UCB.

SRM

System resources management lock - serializes SRM
control blocks and associated data.

TRACE

Trace lock (shared/exclusive) - serializes the
reading (shared) and writing (exclusive) of the
system trace buffer.

CPU

Processor lock - provides system—-recognized (legal)
disablement. Note that the CPU lock has no
hierarchy in respect to the other spin type locks.
Hg:eyera once ocbtained, no suspend locks can be
obtained.

For a more
S/ ia

detailed explanation of spin lock managers, refer to
osti echniques.

A request for a suspend lock suspends the requestor (if the lock
cannot be obtained immediately) to allow that processor to
process other work. The owner of a suspend lock can run enabled

for 170 or

external interruptions and can take a page fault.

The local and cross memory services locks are suspend type

locks; all

others are spin locks.

A description of the global and local suspend locks and their
hierarchy are listed below.

Lock Name

Type |Description

CMSSMF

Global |System management facilities cross memory

services lock - serializes SMF functions and
control blocks.?!

CMSEQDQ

Global |ENQ/DEQ cross memory services lock -

serializes ENQ/DEQ functions and control
blocks.?

CcMs

Global |General cross memory services lock -.

serializes on more than one address space
where this serialization is not provided by
one or more of the other global locks. The
CMS lock provides global serialization when
enablement is required.?

CML

Local |Local storage lock - serializes functions and
storage within an address space other than the
home address space. There is one CML lock per
address space.?

LOCAL

Local |Local storage lock - serializes functions and
storage within a local address space. There
is one LOCAL lock per address space.?

equal to

1The cross memory services locks (CMSSMF, CMSEQDQ, and CMS) are

each other in the hierarchy.

2The CML and LOCAL locks are equal to each other in the
hierarchy.

For a more
to S/

detailed explanation of suspend lock managers, refer

(c) Copyright IBM Corp. 1987 Introduction SUP-11

SPIN LOOP TIMEOUT

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

A spin loop is a situation in which one processor in a
multiprocessor environment is unable to communicate with another
processor or requires a resource currently held by another
processor. The processor that has attempted communication {(Px)
is the "detecting™ or "spinning™ processor. The processor that
has failed to respond (Py) is the "disabled™ or "failing"
processor,

The "detecting™ processor attempts communication with the
"disabled" processor for a period of time that is determined by
an excessive spin loop factor located in that processor's PCCA
(PCCAXSLF). This factor, computed by SRM during NIP processing,
is the approximate number of instructions that the processor
will execute in 40 seconds. The spinning program on processor Px
calculates its 40 second spin loop by dividing the spin loop
factor by the number of instructions in the loop.

During its loop, the spinning processor periodically "opens a
window™ for a malfunction alert (MFA) or emergency signal (EMS),
which would indicate that processor Py has malfunctioned. If a
malfunction occurs, alternate CPU recovery (ACR) is invoked on
processor Px to take Py offline and free any resources that it
holds. Px can then exit from its spin loop and continue
processing. If processor Px completes its spin loop without the
desired response from processor Py, a spin loop timeout
condition exists. The spinning routine (on Px) invokes the
excessive spin notification routine (IEEVEXSN) to inform the
system operator. The operator has the option of initiating an
ACR to remove processor Py from the complex or instructing
processor Px to begin spinning again for another forty seconds.
This occurs repeatedly until the processor Py releases the
required resources or is removed from the complex. If the
identified processor (Py) is removed from the complex via
alternate CPU recovery (ACR), all global resources held by the
identified processor (Py) are released so that the spinning
processor (Px) can continue.

INTERSECT SERIALIZATION

VALIDITY CHECKING

The intersect function is used by any routine that alters the
dispatching queues. This mechanism indicates to the dispatcher
that it should not begin processing until the intersecting
function has completed. In the same manner, a routine cannot
intersect until the dispatcher has completed. The two levels of
intersect are:

. Global — used by any routine that modifies the ASCB queue
or the dispatchability of an ASCB. The dispatcher lock must
be held before requesting the global intersect.

. Local — used by any routine that modifies the TCB queue or
the dispatchability of a TCB. The local lock must be held
before requesting the global intersect.

The validity check routine determines whether the storage
protect key for a specified address or address range matches the
task's assigned protect key.

SUP-12 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

SUPERVISOR CONTROL RECOVERY

Supervisor control recovery routines can receive control by one
of three mechanisms:

. Direct interface with RTM
. Normal SETFRR/ESTAE mechanism
. Supervisor control FRR stack mechanism

Direct Interface With RTM

There are a number of routines (IEAVELCR, IEAVELKR, IEAVESLR,
IEAVEVRR) called on SLIH mode entry to RTM to validate certain
basic system information.

Normal SETFRR/ESTAE Mechanism

A number of supervisor control functions use the standard
SETFRR/7ESTAE mechanism to control the recovery environment.

Supervisor Control FRR Stack Mechanism

In order to bypass SETFRR processing on high-performance paths,
a multiple FRR stack mechanism is used to provide recovery for
some supervisor control routines.

There is a pointer in the PSA to the FRR stack that this
processor is using currently. When an error occurs, RTM will
route control only to FRRs on that stack. (See the RTM section
g;Rth? System Logic Library for a description of routing to

50

For each processor there are eight FRR stacks — a normal stack
and seven super stacks, which are used to provide recovery for
supervisor control functions. The current stack pointer will
always point to one of the stacks.

If the dispatcher or any of the interruption handlers receives
control, rather than issuing a SETFRR to establish recovery, it
will flip the current stack pointer to point to the appropriate
super FRR stack. .

If a routine called by a supervisor control function issues a
SETFRR, the FRR entry will appear on the current stack. If an
error occurs while a super stack is current, then RTM will first
route control to all the FRRs on that stack and will then route
control to the super FRR routine (IEAVESPR).

See Figure 3 on page SUP-14 for an illustration of the
supervisor control recovery data structure.

LY28-1765-0 (¢) Copyright IBM Corp. 1987 Introduction SUP-13

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Part 1
PSA
—— | PSACSTK
PSANSTK Dispatcher/SVC/
I/0 FLIH stack
PSASSTK >
IEAVESPR
PSASSAV
>
——>|normal stack
---FRR
---FRR
Part 2
PSA
PSACSTK
PSANSTK Dispatcher/SVC/
I7/0 FLIH stack
PSASSTK >
IEAVESPR
PSASSAV
-=-=FRR
>
normal stack
---FRR ---FRR
---FRR

Figure 3. Supervisor Control Recovery Data Structure

SUP-16 MVS/XA SLL: Supervisor Control LY28-1765-0 {(c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

MODULE NAMING CONVENTIONS

Each supervisor control module name consists of at least seven
characters. The first four characters are 'IEAV'. The remaining
characters are an abbreviation of the module description.

LY28-1765-0

SIDENCY MODES

The addressing and residency mode of the supervisor control
modules vary. The modules with their respective addressing and
residency modes are listed below.

Module |RMODE|AMODE
IEAVEADV| 24 ANY
IEAVEBBR| ANY | 31
IEAVCKRS| ANY | 31
IEAVCRVF] ANY | 31
IEAVECVB| 24 ANY
IEAVECMS| 24 ANY
IEAVEDR | ANY | 31
IEAVEEEO| ANY | 31
IEAVEEE2| 24 ANY
IEAVEES | ANY | 31
IEAVEEXP| 24 ANY
IEAVEEXT| ANY | 31
IEAVEF00| 24 ANY
IEAVEINT| 24 ANY
IEAVEIO | 24 31
IEAVEJST| ANY | 31
IEAVELCR| ANY | 31
IEAVELK | 24 ANY
IEAVELKR| ANY | 31
IEAVEPCO| ANY | 31
IEAVEPC | ANY | 31
IEAVEPDR| ANY | 31
IEAVEPDO| 24 31
IEAVEQVO| 24 ANY
IEAVERES| ANY | 31
IEAVEREX] ANY | 31

[+]

a

(c) Copyright IBM Corp. 1987

3

Module |RMODE]|AMODE
IEAVERI | ANY | 31
IEAVERP | ANY | 31
IEAVESCR| ANY | 31
IEAVESCO| 24 ANY
IEAVESGP| ANY | 31
IEAVESLK| 24 ANY
IEAVESLR| ANY | 31
IEAVESLX]| ANY | 31
IEAVESPR| ANY | 31
IEAVESRT| ANY | 31
IEAVESTU| ANY | 31
IEAVESVC| 24 ANY
IEAVETCL| ANY | 31
IEAVEVAL| 24 ANY
IEAVEVS | ANY | 31
IEAVESAR| ANY | 31
IEAVEVRR| ANY | 31
IEAVEXS | ANY | 31
IEAVFRLK]| ANY | 31
IEAVLKRM| ANY | 31
IEAVELRM| ANY | 31
IEAVSSAF| ANY | 31
IEAVMVCO| ANY | 31
IEAVSPDM| ANY | 31
IEAVVMCH| ANY | 31
IEAVVSR | ANY | 31
IEAVVSRB| ANY | 31

For additional informgtion on addressing and residency mode, see
Syst P T Li 31-Bit Add

Introduction SUP-15

"Restricted Materials of IBM".. -
Licensed Materials = Property of IBM -

SUP-16 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

DIAGNOSTIC TECHNIQUES

This section contains problem analysis for the following:

U SRB/SSRB pool manager
. STOP/RESET services
[SUSPEND/RESUME/TCTL services

OBL/ ALYSIS_FOR_THE SRB/SSRB_POOL MANAGE

The SRB/SSRB pool manager, IEAVESPM, obtains and frees SRBs from
the SRB pool and SSRBs (with their associated XSBs) from the
SSRB pool. System routines (in key 0, supervisor state) issue
the GETSRB, FREESRB, GETSSRB, and FREESSRB macros to request the
pool manager services.

SRB/SSRB POOL MANAGER ENTRY POINTS

The pool manager entry points are:

IEAVSPMI — entered key 0, supervisor state, enabled for DAT,
system mode acceptable to SETFRR (not EUT), ne
locks required (except the CPU lock might be
required for UNCOND and EXPAND type requests).

This entry point is called by the GETSRB macro and
obtains an SRB and six-word parameter area from the
SRB pool in subpool 245. The SRB is initialized as
follows:

— SRB acronym field

— pointer to the parameter area

—SRFI;REEMAIN flags, which indicate the origin of the

— other fields and the parameter area cleared.
IEAVSPM2 — entered key 0, supervisor state, enabled for DAT,

system mode acceptable to SETFRR (not EUT), no
locks required (except the CPU 1lock might be
required).
This entry point is called by the GETSSRB macro and
obtains an SSRB and its associated XSB from the
SSRB pool in subpool 239. The SSRB/XSB are
initialized as follows:

— SSRB acronym field

— pointer to a resource management termination
routine (RMTR)

—- pointer to the SSRB save area
-~ SSRB pointer to the XSB
— non-quiesceable and suspended flags set on

— FREEMAIN flags, which indicate the origin of the
SSRB/XSB

— XSB acronym field

— other fields cleared.

LY28-1765-0 - (¢) Copyright IBM Corp. 1987 Diagnostic Techniques SUP-17

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

IEAVSPM3 — entered key 0, supervisor state, enabled for DAT,
system mode acceptable to SETFRR (not EUT), no
locks required (except the CPU 1lock might be
required).

This entry point is called by the FREESRB macro and
frees an SRB and its six-word parameter area.

the specified SRB acronym field is not the same as
when the SRB was obtained, the program issuing the
macro is abended.

IEAVSPM4 — entered key 0, supervisor state, enabled for DAT,
system mode acceptable to SETFRR (not EUT), no
locks required (except the CPU lock might be
required).

This entry point is called by the FREESSRB macro
and frees an SSRB and its XSB. If the specified
SSRB acronym field is not the same as when the SSRB
wgs dol:’tained, the program issuing the macro is
abended.

SRB/SSRB POOL MANAGER RECOVERY CONSIDERATIONS

Fixed Data

Variable Data

When an error occurs, the SRB/SSRB pool manager recovery routine
(IEAVSPMR) records information about the error in the SDHA. The
queue verifier routine (IEAVEQV1) +then uses an SRB/SSRB
verification routine in IEAVSPMR to verify that the SRB and SSRB
pools are intact. Two tests are used to determine if a given
storage area is a valid SRB or SSRB: (1) the storage address
must be a valid virtual address, and (2) the acronym field must
contain the correct acronym.

If an error is found with a pool, the queue verifier routine
attempts to repair the pool, which might include removing
invalid SRBs or SSRBs from their pools. Any removed blocks of
storage are unavailable for the remainder of the IPL.

The data that the SRB/SSRB pocl manager recovery routines record
in the SDWA is:

SDWAMODN — NUCLEUS, pool manager is nucleus resident.
SDWACSCT ~— IEAVESPM, CSECT name.

SDWAREXN — IEAVESPM, recovery CSECT name.

SDWACID — SC1C5, component ID.

SDWASC — descriptive module name.

SDHAMLVL — module level information.

SDWARRL — IEAVSPMR, recovery routine label.

The variable data in <the SDWAVRA is recorded in the
key-length-data format.

. FRR parm area — the six-word parameter area passed to
IEAVSPMR by the mainline routine is as follows:

- Mainline CPU footprint — indicates if the CPU lock was
obtained by the pool manager.

- FRR CPU footprint — indicates if the CPU lock was held
on entry to the recovery routine.

- Return address — contents of register 14 on entry to
he pool manager (caller's return address).

. ASCBASID — address space ID of the current ASCB.
U] PSATOLD — address of the current TCB.

SUP-18 MVS/XA SLL: Supervisor Control LY28-1765-0 (c¢) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

. General register 14 — contents of register 14 on entry to
the mainline pool manager (caller's return address).

U Pool problem information — information recorded by the
ggﬁge veiifier routine if problems are found with the SRB or
pools.

. Lock name — CPU, indicates that the CPU lock was held by
the pool manager mainline routine.

SRB/SSRB POOL MANAGER ERROR CONDITIONS

ROB NALYSIS FO

If the IEAVSPM3 (FREESRB) or IEAVSPM& (FREESSRB) routines are
called and an error is detected, completion code X'05A' is
issued and the caller is abended. Register 2 contains the
address of the invalid SRB or SSRB.

Refer to System Codes for a description of code X'05A' and
specific reason codes in register 15.

OP/RESET SERVICE

WKhen a unit of work (a current task or SRB) has been dispatched
and is executing, the unit of work might need to be suspended.
For example, to satisfy a page-in due to a page fault.

System routines (in key 0, supervisor state) use the stop/reset
service to suspend and then reset a unit of work. The caller is
not required to have addressability to the home address space to
suspend a unit of work, and is not required to have
addressability to the address space containing the unit of work
to reset the unit of work.

STOP/RESET ENTRY POINTS

LY28-1765-0

The stop/reset entry points are:

IEAVSUSC — entered disabled, key 0, supervisor state, no locks
required.

This entry point is called by the paging supervisor
to suspend a current task or SRB because a page
fault occurred, or by system routines (other then
thessgging supervisor) to suspend the current task
or .

IEAVSUSF — entered disabled, key 0, supervisor state, no locks
required.

This entry point is called by system routines +to
suspend the current task or SRB. The caller may
specify a number of FRRs not to be copied when the
normal stack is saved.

IEAVRSTC — entered disabled, key 0, supervisor state, no locks
required.

This entry point is called by the paging supervisor
or other system routines to reset a task or SRB
that was suspended.

(c) Copyright IBM Corp. 1987 Diagnostic Techniques SUP-19

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

STOP/RESET RECOVERY CONSIDERATIONS

Fixed Data

variable Data

The stop recovery routine (STOPFRR) records information about
the error and, depending on the error, either attempts to
restore the system and unit of work to a consistent state, or
attempts to complete the stop function.

The reset recovery routine (RESETFRR) records information about
the error and then attempts to complete the reset function.

The reset STERM, reset schedule, and reset SRB recovery routine
(IEAVSCHF) frees the SRB (if one was obtained but not
scheduled), clears the stop/reset super bit (PSASTPRT), and
releases the LOCAL lock (if the LOCAL lock was obtained by the
calling routine).

The data that the stop/reset recovery routines record in the
SDKHA is:

SDWAMODN — NUCLEUS, stop/reset is nucleus resident.

SDWACSCT — IEAVESRT, CSECT name.

SDWAREXN — IEAVESRT, recovery routine.

SDWACID — SC1C5, component ID.

SDHAMLVL — module level information.

SDHWARRL — STOPFRR, RESETFRR, or IEAVSCHF, label of the
recovery routine.

The variable data in the SDWA is recorded in the key-length-data
format. The variable data recorded by the recovery routine is:

For the stop recovery (STOPFRR) and the reset recovery
(RESETFRR) routines:

U FRR parm area - the six-word parameter area passed to
STOPFRR and RESETFRR by the mainline routine is as follows:

- General register 13 -~ caller's register save area
address.

- TCB/SSRB address - address of the TCB or SSRB to be
reset.

- RB address - address of the RB if a TCB is to be reset.

- Request code - type of reset requested (conditional,
unconditional, or page I/0 error), or completion code
for a termination reset.

- Flag byte - if X'80', recovery has been entered
recursively.

. ASCBASID - address space ID of the current ASCB.
. PSATOLD - address of the current TCB.

U General register 14 - contents of register 14 on entry to
the mainline stop routine (caller's return address).

. General registers - for STOPFRR, contents of the original
registers, if they were changed by the recovery routine.

. Abend code - for STOPFRR, the original abend code, if it was
changed by the recovery routine.

For the reset STERM, reset schedule, and reset SRB recovery
routine (IEAVSCHF):

SUP-20 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

L FRR parm area - the six-word parameter area passed to
IEAVSCHF by the mainline routine as follows:

- SSRB address - address of the SSRB associated with the
scheduled SRB. (Note that an SSRB is obtained, made to
look 1like an SRB, and scheduled as an SRB. The
remainder of the SSRB is used as a work area by the
scheduled routine. The SSRB is restored to an SSRB
before it is returned to the SSRB pool.)

- Flag byte - recovery footprint flags:

X'80' - stop/reset super bit footprint, indicates the
mainline code set the bit.

X'40' - LOCAL lock footprint, indicates the mainline
code had obtained the LOCAL lock and had not
released it before the error occurred.

. ASCBASID - address space ID of the current ASCB.
. PSATOLD - address of the current TCB.

. If an SRB was obtained but not scheduled, the following are
also present in the SDWAVRA:

- IHASRB - identifies the following control block.
- SRB - contents of the unscheduled SRB.

- SRB parm area header - describes the following six-word
parameter area.

— SRB parm area - contents of the SRB parameter area.
. Lock name - LOCAL, indicates the LOCAL lock was held.

STOP/RESET ERROR CONDITIONS

The stop/reset services issue the X'059' completion code when an
:;ror exists, and abnormally terminates the program requesting
e service.

Refer to §xg$gm_4%g§g§ for a description of code X'059' and
specific reason codes in register 15.

B Sus /RESUME/TCTL S S

The SUSPEND/RESUME/TCTL services are used to place an unlocked
task in a suspended state (SUSPEND), resume an unlocked task
from a suspended state (RESUME), and to transfer control from an
SRB to an unlocked task (TCTL). These macros can only be issued
by key 0, supervisor state routines.

SUSPEND can be issued in any cross memory mode and in task mode;
it places the caller in a suspended state. Control is returned
to the caller and the task is suspended only when the task
?:Rf'i'ﬁs?? interruption or enters the dispatcher (such as via

RESUME can be issued in any cross memory mode and in SRB or task
mode, with current addressability to the address space of the
TCB that is to be resumed.

TCTL can be issued in SRB mode and home mode, with current

addressability to the address space of the task to which control
is to be transferred.

LY28-1765-0 (c¢) Copyright IBM Corp. 1987 Diagnostic Techniques SUP-21

SUSPEND/RESUME/TCTL ENTRY POINTS

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

The SUSPEND/RESUME/TCTL entry points are:

IEAVSPND —

IEAVRSUH —

IEAVRSUS —

IEAVRSCS —

IEAVRSUA —

entered enabled or disabled, key 0, supervisor
staze, task mode, no locks held, any cross memory
state.

This entry point is called by the SUSPEND macre and
places the current TCB/RB or previous RB is a
suspended state.

entered enabled, key 0, supervisor state, no locks
held, SRB or task mode, home mode.

This entry point is called by the RESUME macro to
resume a task in the home address space. This
entry point performs an unconditional synchronous
resume function. The caller must execute enabled
and hold no locks unless the LOCAL lock is already
held, because this entry point can require the
LOCAL lock to serialize the resume function. This
is the only entry point where RETURN=N can be
specified to indicate that control should be
traasferred from the calling SRB to the resumed
85 .

entered enabled, key 0, supervisor state, no locks
held, SRB or task mode, any cross memory state,
current addressability to the resumed TCB.

This entry point is called by the RESUME macro to
resume a task in the address space specified by the
input. Current addressability to the task to be
resumed must have been established by the caller.
This entry point performs an unconditional
synchronous resume function. The caller must
execute enabled and hold no locks unless the LOCAL
lock of the address space of the resumed TCB is
already held, because this entry point can require
the specified 1lock to serialize the resume

“function.

entered enabled or disabled, key 0, supervisor
state, SRB or task mode, any cross memory state,
locks can be held, current addressability to the
resumed TCB.

This entry point is called by the RESUME macro to
resume a task in the address space specified by the
input. Current addressability to the task to be
resumed must have been established by the caller.
This entry point performs a conditional synchronous
resume function. If serialization to perform the
resume function is not available, the function is
not performed and the caller receives a nonzero
return code.

entered enabled or disabled, key 0, supervisor

state, SRB or task mode, any cross memory state,
locks can be held, current addressability to the
resumed TCB.

This entry point is called by the RESUME macro to
resume a task in the address space specified by the
input. Current addressability to the task to be
resumed must have been established by the caller.
This entry point performs an unconditional
asynchronous resume function. If serialization to
perform the resume function is not available, an
SRB is obtained and, asynchronously, an
unconditional synchronous function is performed; a
nonzero return code is returned to the caller.

SUP-22 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

IEAVRSCA — entered enabled or disabled, key 0, supervisor
state, SRB or task mode, any cross memory state,
locks can be held, current addressability to the
resumed TCB.

This entry point is called by the RESUME macro to
resume a task in the address space specified by the
input. Current addressability to the task to be
resumed must have been established by the caller.
This entry point performs a conditional
asynchronous resume function. If serialization to
perform the resume function is not available, an
SRB is obtained conditionally, and if successful,
asynchronously scheduled to perform an
unconditional synchronous resume function. Return
codes are returned to the caller to indicate
whether the SRB could be obtained or not obtained.

IEAVTCTL — entered enabled or disabled, key 0, supervisor
state, SRB mode, home mode, no locks held.

This entry point is called by the TCTL macro to
transfer control from an SRB to a task in the home
address space.

Note: Module IEAVETCL performs the functions just
described. IEAVETCL resides above the 16 megabyte
line and executes in 31-bit addressing mode. To
allow programs that execute in 26-bit addressing
mode to use SUSPEND/RESUME/TCTL services, the
macros actually invoke entry points of IEAVEGLU, an
addressing mode interface module. IEAVEGLU makes
the <transition to 31-bit addressing mode, if
necessary, and invokes a corresponding entry point
in IEAVETCL, where the function is performed. The
following table shows the relationship between the
entry points in IEAVEGLU and IEAVETCL.

IEAVEGLU Entry Point IEAVETCL Entry Point
IEAVSPND IEAVSPN1
IEAVRSUH IEAVRSH1
IEAVRSUS IEAVRSS1
IEAVRSCS IEAVRSC1
IEAVRSUA IEAVRSU1
TEAVRSCA IEAVRSAl
IEAVTCTL IEAVTCT1

IEAVETCR — entered disabled, key 0, supervisor state, any
cross memory state, SRB or task mode.

This entry point is called by RTM and performs

recovery processing for the resume and transfer
control functions.

LY28-1765-0 (c) Copyright IBM Corp. 1987 Diagnostic Techniqu;s sup-23

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

RESUME/TCTL RECOVERY CONSIDERATIONS

Fixed Data

Variable Data

SUSPEND/RESUME/TCTL

SUP-24 MVS/XA SLL:

RESUME/TCTL processing is protected by an FRR (IEAVETCR) that
receives control from RTM when an error occurs. The FRR records
debugging information in the SDWA, attempts to restore the
system and unit of work to a consistent state, and then
percolates to the caller's recovery routine.

The data that the RESUME/TCTL recovery routine recorded in the
SDHA is:

SDWAMODN — NUCLEUS, nucleus load module.

SDWACSCT — IEAVETCL, mainline microfiche name.
SDWAREXN — IEAVETCL, recovery microfiche name.
SDWACID — SC1C5, component ID.

SDWASC — RESUME or TCTL ABEND, subfunction in error.
SDWAMLVL — module level information.

SDWARRL — IEAVETCR, recovery routine name.

Variable data in the SDWAVRA is recorded in the key-length-data

format. A header contains RSLG in key-length-data format
;oiiowed by the RSLG mapping in key-length—-data format as
ollows:

Offset RESUME data TCTL data
X'00" flag byte: Bit 0=0,RESUME flag byte: Bit 0=1,TCTL
X'l 0 SVTDACTV
X102? flag byte: Bit 0=1,lock obtained 0
Bit 1=1,SRB obtained
X'04°* PSASUPER PSASUPER
X'08"* PSACSTK PSACSTK
Xroc! PSATOLD PSATOLD
X*10° PSAAOLD PSAAOLD
X'14" input TCB address input TCB address
X*18? input ASCB address SVTDSREQ
X'1C? PSAHLHI ASCBSRQ
§:§g: home address space ID —

0
X124 ASCBTCBS
X128? address of SRB, or 0

ERROR CONDITIONS
The SUSPEND, RESUME, and TCTL macros issue the X'070°' completion

code when an error condition exists, and abnormally terminate
the program issuing the macro.

Refer +to §_)gj_e_m__%9_g§_§ for a description of code X'070' and
specific reason codes in register 15.

Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

0 OCK _OVERVI

Due to the complexity of the control block overview for
Supervisor Control, it has been divided into two sections.

LY28-1765-0 (c) Copyright IBM Corp. 1987 Control Block Overview SUP-25

Restricted Materials of IBM"
Licensed Materials — Property of IBM

PSA
SRBs?
X'10' —
FLCCVT > —_
5 SVT
PSASVT o
SRBs!?
T > | SYRGSMQ N
— _I >|SVTGSPL —I_
r Points to
CsSD | ASCB — > SVTLSMQ ke
dispatch- SRBs?
>1Contains —|ing queue
common > —_
data used ASVT
by system
—|Points to |< L
created 1Global SRBs:
address Dispatched before
space address space
Local SRBs:
ASCB Dispatched at the
>{See Part 2) priority of an
—+->|Represents (of Figure 8) address space.
address
spaces
located in
SQA
L
. a
PCCAVT LCCAVT] SRBS
5 >
—>|Points Points
to to .
— | PCCAs LCCAs
PCCAs LCCAs
| SRB
—>|Contains >{Contains >
—>{information|— r—>]|information
for a for a
physical logical
processor processor
[__ PSA
>
RSVT |[Points to
| FRR stacks
l Normal Stack
(part of the PSA) P> > The FRR stacks used by the
> control program components
>

|Any one of these FRR
Lstacks can be the current stack.

Figure % (Part 1 of 2). Control Block Overview

SUP-26 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

(See Part 1) ASXB IQEs RQEs SRBs
(of Figure 8) >

Extension > —> —>

of ASCB, [-

located in
LSQA I_ IQEs RQEs SRBs
I > —> —2>
TCBs IHSA
> >
Contains|— Contains
task - saved status XSB
related during inter-|—>
info. ruptions of a Extended
locally status
L - locked task. block

N XSB _‘.> RB

Extended (IRB) XSB
status (SIRB) |->
block Request Extended
for a status
service block
SCA

Contains
SPIE I PIE
information >r

Points PICA

'to the|—>

PICA Used for
program
check
exits

Figure ¢ (Part 2 of 2). Control Block Overview

LY28-1765-0 (c) Copyright IBM Corp. 1987 Control Block Overview SUP-27

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

SUP-28 MVS/XA SLL: '‘Supervisor Control LY28-1765-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

PROCESS FLOW

The module flows for Supervisor Control are included in this
section. Each figure contains the calling module or routine,
the modules called, and the exit for each specific module.

LY28-1765-0 (c) Copyright IBM Corp. 1987 Process Flow SUP-29

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

/ N\
(\Program Check ,) IEAVETIH
0 r{——>|Trace SLIH
7] routine
vV
IEAVEPCO/IEAVEPC
Program check IEAVTPER
interruption
handler F,———>|Program FLIH/
SLIP interface
routine
IEAVESPI
& ————=> | SPIE/ESPIE
routine

Route control
depending on the |—>4
type of program
check. Generalized
+{——————>|Trace
Facility

IARFP

RSM module to
v b {——————> | process page or
' segment fault.

To interrupted program
(for monitor call,
program event recording
or page reclaim)

or IEAVTRTM

to dispatcher (IEAVEDSO) —-)>
if SRB scheduled for PIE/ CALLRTM
PICA processing or page
exception requires I/0

or

to RTM for supervisor
recovery.

Figure 5. Program Check Interruption Handlers

SUP-30 MVS/XA SLLc‘Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

“Restricted Materials of IBM"

Licensed Materials = Property of IBM

V4 \
(fvc interruptiog)

q|
v

IEAVESVC

SVC interruption
handler

error

IEAVTRTM

v

SVC routine
or
Extended SVC routine

For requestors
that cannot
issue SVCs.

IEAVTEST

TESTAUTH

IEAVELK

Spin lock
manager

IEAVESLK

Suspend lock
manager

Figure 6. SVC Interruption Handler Process Flow

LY28-1765-0 (c) Copyright IBM Corp. 1987

Process Flow SUP-31

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

RESTART interruption (RESTART

initiated via operator's console,
RESTART SIGP instruction) IEAVERO
) ——>|Restart FLIH
/& DATOFF routine
IEAVERES
IEAVEREX
RESTART <—
interruption Restart inter-
handler {———————>|ruption handler |<
extension
|
\Y
| IEAVTRTM
v RTM routine
To program that
was processing

at time of RESTART

IEAVESAR IEAVELCR

——>|Supervisor . {——>|Low storage
analysis routine |< ‘ refresh routine

IEAVELKR

>|Spin_lock
repair routine

A

:

IEAVESLR

Suspend lock
repair routine

IEAVEVRR

>1ASVT 7 AFT
verification/
reconstruction
routine

Figure 7. RESTART Interruption Handler Process Flow

SUP-32 MVS/XA SLL: Supervisor Control LY28~1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

/ \
({/0 interruptioe)

1
v

IEAVEIO

170 interruption
handler <

Accumulate
processor wait
time if coming
from wait state.

For interrupted
TCB only.

v

To interrupted program
(if executing under SRB
or if non-preemptive)

or
to dispatcher (IEAVEDSO)

at one of the FLIH entry
points.

IOSVSLIH

170 supervisor

Figure 8. 1I/0 Interruption Handler Process Flow

LY28-1765-0 (c) Copyright IBM Corp. 1987

Process Flow SUP-33

. "Restricted Materials of IBM"
Licensed Materials — Property of IBM

V4 \)
(sxternal inierruptiog IEAVEXS
-{—>| External call
/& (RPSGNL)
——>See IPC module flows
IEAVEEXT or
IEAVEES
External
interruption -<—> | Emergency signal
handler (RISGNL)
or IEAVRTIO
(csect IEAOTIO0O0)
< > F<—>{Timer expired
or IGFPXMFA
-{~—=—>|Malfunction
alert
or
IEEBC1PE
Communication
F<——>| task caused
interruption
or IEAVMFIH
Accumulate
processor wait Service signal
time if coming —>](X'2401*)
out of wait interruptions
state.
|
v

To interrupted program
(if executing under

SRB, in a valid spin,
interrupt was an EMS, or
in non-preemptive mode)

or

to dispatcher at one
of the FLIH entry points

Figure 9. External Interruption Handler Process Flow

SUP-34 MVS/XA SLL: Supervisor Control LY28~-1765-0 (c¢) Copyright IBM Corp. 1987

"Restricted Materials of IBM™
Licensed Materials — Property of IBM

Emergency signal (RISGNL)

/ \
(sequest for signai

(4

A
& via RISGNL

IEAVERI

Emergency signal
processing

A

|
v

IEAVESGP

SIGP issuer

/& External interruption

IEAVEEXT

External
interruption
handler (running
on the signalled
processor)

A

I
v

IEAVEES

Process the

emergency signal
(parallel or K
serial request).

Routine specified
by requestor.

Figure 10. Interprocessor Communication (IPC) Remote Immediate Signal Process Flow

LY28-1765-0 (c) Copyright IBM Corp. 1987

Process Flow SUP-35

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Emergency call (RPSGNL)

/ \
(Request for call)
\ /

A
& via RPSGNL

IEAVERP

External call
processing

A

|
v

IEAVEDR

SIGP issuer

/& External interruption

SUP-36 MVS/XA SLL: Supervisor Control

IEAVEEXT IEAVEMS3
in IEAVEMSO
External
interruption > MEMSKHT
handler (running
on the signalled
processor)
or
A IEAVQCK
& in IEAVRTIO
> RQCHECK
IEAVEXS
Process the or
external call. AHLSTCLS
in AHLMCIH
> GTF
Depending on the |<—>| or
type of external IGFPEX12
call, invoke in IGFPEX11
subroutines or
process the > MODE
SHWITCH option
inline.
Figure 11. Interprocessor Communication (IPC) Remote Pendable Signal Process Flow

LY28-1765-0

(c) Copyright IBM Corp. 1987

YRestricted Materials of IBM"™
Licensed Materials — Property of IBM

CALLER
IEAVEFOO
via CIRB
Issuer of CIRB —————>|Stage 1 For CIRB entry
macro. (Create IRB). I
> Vv
or BR
IEAVEEXP
Data management For BR entry
or supervisor <
routine. Exit prolog
< IBR
IEAVEEE2
< >

Stage 2 (Add
IQE) RQE, or SRB
to queue.)

The dispatcher receives control following
= = = = = = - o an interruption or a specific request for
dispatching. See Dispatcher and Scheduler
process flow in DISP.

\
IEAVEDSO
DISPATCHER
IEAVEEEOD
{——>|Stage 3 For stage 3 recovery,
(Complete sched-|— — — {see Supervisor Control
uling of the Recovery Process Flow
Dispatch the asynchronous —
asynchronous request).
exit.
Vv
—_——
Execute the

asynchronous exit

Figure 12. Exit Effectors for Asynchronous Exits Process Flow

LY28-1765-0 (c) Copyright IBM Corp. 1987 Process Flow SUP-37

“Rastricted Materials of IBM"
Licensed Materials — Property of IBM

PURGEDQ
(cancel SRBs)

/ \
(Issuer of PURGEDQ’)
\ /

& via PURGEDQ macro

IEAVEPDO
Invalid param-
eters / \
----- >(ABEND)
\ /
IEAVESETS
< > Stop SRBs.
Start SRBs.
RMTR to clean up
SRBs. Address
< >|of RMIR is in
field SRBRMTR.
Unrecoverable
error.
-———> IEAVTRT] IEAVEPDR _
See process > PURGEDQ
flow recovery &~
!
/ \
C ABEND)
\ -/
IEAVESCR
> SCHEDULE
recovery
IEAVSETS
>{Start SRBs that
have been stop-
ped in the
mainline.

Figure 13. PURGEDQ Process Flow

SUP-38 MVS/XA SLL: Supervisor Control LY28-1765-0 (c¢) Copyright IBM Corp. 1987

Restricted Materials of IBM"
Licensed Materials — Property of IBM

/—\
¢ CALLER)
\——/

/& via a SETLOCK macro for a spin-type lock

IEAVELK

Obtaining a lock: IEAVTRT1
ABEND X'073°
If the caller >|See process
violates locking flow

hierarchy.

If the lock /7 \
request is ~———————>(CALLER)
conditional and/ \ /
or the lock is
obtained.

If a spin lock
cannot be
obtained, check
for ACR process-
ing.

IEAVTRTM
If ACR condition |< >
exists RTM
module

If a spin lock ;
cannot be

obtained after IEEVEXSN
an excessive
amount of time, {—— >|Excessive spin
notify the notification
operator. routine

Releasing a lock:

If the lock is
not held. —D{

/ \
CALLER)
\ /

Clear current
locks held
ownership bit.
Set lockword to
Zero.

|
v

/ \
C CALLER)
\ /

Figure 14. Spin Lock Manager Process Flow

LY28-1765-0 (c¢) Copyright IBM Corp. 1987 Process Flow SUP-39

)\
(CALLER)
\ o/

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

/& via a SETLOCK macro for a suspend lock

IEAVSLK

Figure 15.

Obtaining a lock: IEAVTRT1
ABEND X'073°*
If the caller > See process
violates locking flow
hierarchy.
If the lock N
request is >(CALLER)
conditional and/ \=————y
or the lock is
obtained.
If a suspend lock
cannot be obtain- | IEAVESRT I
ed, suspend the < >
requestor on the STOP/RESET
lock's suspend service routine
queue.
Releasing a lock: IEAVTRT1
ABEND X'073°
If the caller > See process
violates locking flow
hierarchy.
If there is a
pending STATUS IEAVSETS
request to stop < >
a suspended CML (at IGC07904)
requestor, mark STATUS routine
that task non-
dispatchable.
Make the routines IEAVESCO IEAVEMSO
on the lock's
suspend queue < > SCHEDULE < > Memory
dispatchable. service routine switch
|
v

/ \

(CALLER)

\ /

Suspend Lock Manager Process Flow
SUP-40 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

Repair routines

Error in the

supervisor routine IEAVELCR

I
7| | Low storage
v | —>| refresh routine
IEAVTRT1 |
Recovery termin- IEAVESAR IEAVELKR
ation management | __J
< >|Supervisor < Spin lock
analysis routine < >| repair routine
—
A
|
IEAVELKR
Spin lock

repair routine

IEAVEVRR

—> ASVT/AFT
verification/
reconstruction
routine

I
|
I
I
I
|
!
v |
I
I
|
i
I
I
I

r—----===-=--=-=--=-==-="="="===="==="=======- |
| IEAVESAR IEAVELKR IEAVEADVY |
| |Supervisor Spin lock Address |
| analysis routine repair routine verification |
L ;e e e e o e e e e m e e e .. m - - - = - - -4
Functional recovery See individual supervisor
FRR is on stack. < >lroutine for a super-|- - functions' recovery routines
visor function

\ 7/
v

Figure 16 (Part 1 of 2). Supervisor Control Recovery Process Flow

LY28-1765-0 (c) Copyright IBM Corp. 1987 Process Flow SUP-41

[

\N 7/

FRR is last on
super stack.

No FRRs on stack.

Depending on the
type of recovery
indicated, invoke
appropriate
recovery routine,
via retry address
specified by
IEAVESPR.

SUP-42 MVS/XA SLL:

Figure ;6 (Part 2 of 2).

’—>

or

or

or

or

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

IEAVESPR

See the Dispatcher
process flow in DISP

Supervisor FRR

Set indicator for
type of recovery
and return

For dispatcher
recovery, this
FRR must retry.

IEAVESVR

SVC FLIH
recovery

IEAVEIOR

170 FLIH
recovery

IEAVERER

RESTART FLIH
recovery

IEAVEEILR

IEAVEEZ2R

IEAVEE3R

External FLIH
recovery

IEAVEPCR

Program check
FLIH recovery

IEAVEDSR

Dispatcher_
recovery routine

IEAVETCL
(at IEAVETCR)

—>

TCTL recovery

IEAVEEER

Stage 3 exit
effector
recovery

or

IEAVESCR

SCHEDULE
recovery

—D

> 7/ \
(ABEND)
>\ /

/

(
\

N\
N

>(ABEND task that)

issued SPIE)

(4

Supervisor Control Recovery Process Flow

Supervisor Control

LY28-1765-0

(c)

Copyright IBM Corp.

1987

"Restricted Materials of IBM"
Licensed Materials -~ Property of IBM

Executing on the signalling processor

I\,
(Enter)
\ e

!

IEAVEBBR

Repeat the following
loop for each online
processor in the
tightly coupled
multiprocessing
configuration.

e Issue a serial
RISGNL macro to
the processor.

¢ Spin until not-
ified that the
receiving routine
has completed on
the signalled
processor.

o If the bind break
function was not
successfully com-
pleted, reissue
the RISGNL macro
to the same
processor (repeat
the loop).

Receiving routine
entry point:
IEAVEBB2

Determine if the
emergency signal
occurred while the
signalled processor
was in a window
spin.

Emergency signal (EMS)
external interrupt

Executing on the signalled processor

IEAVEEXT

\
\
\
\

Figure 17.

LY28~1765-0

V4 \
(Exit to Caller)
\ /

\
N

IEAVEES

>|Give control to
the receiving
routine speci-
fied on the
RISGNL macro.

from it spin.

Return to
IEAVEEXT.

Reissue IEAVEBBR

Bind Break Process Flow

(¢c) Copyright IBM Corp. 1987

—>

o

Save (among other
information cross
memory control

registers 3 and 4.

Call IEAVEES to
handle interrupt.

Issue a CMSET RESET
macro to force each
processor to check
if its cross memory
environment is
still valid, and to
reload its cross
memory control

registers.

v
/ \
(Exit to the)

(interrupted program)

Process Flow SUP-43

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

SUP-44 MVS(XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

METHOD OF OPERATION

This section contains method of operation diagrams. The diagrams use
either hipo format or prologue format. The following

figure shows the symbols used in hipo format

method-of-operation diagrams.

The relative size and the order of fields in control block
illustrations do not always represent the actual size and format

of the control block.

Key to Symbols Used in Msthod—of-Operation Diagrams

h Primary processing - indicates major funtional flow.

- Secondary processing - indicates functional flow
within a diagrom.

|:> Dota movement, modification, or use.

—_— > Data reference -- indicates the testing or reading
of o data area to determine the
course of subsequent processing.

Pointer -- indicotes that a data area contains the
address of another data area.

— Indirect pointer -- indicates intermediate pointers
have been omitted .

Connector - indicotes that a diagram is
continued on the next page.

Figure 18. Symbols Used in Method of Operation Diagrams

LY28-1765-0 (c) Copyright IBM Corp. 1987 Method of Operation SUP-465

YRestricted Materials of IBM"
Licensed Materials — Property of IBM

The prologue format diagrams contain detailed information that is
broken down into four different headings. The four headings and the
topics they document are:

Module Description, which includes:

. Descriptive name

U Function (of the entire module)

U Entrv point names, which includes:
Purpose (of the entry point)
Linkage
Callers
Input
Output
Exit normal
Exit error, if any

xternal references, which includes:
Routines
Data areas, if any
Control blocks

. Tables

] Serialization

llmlllll_l

Note that brief module descriptions are also included in the

last volume of the §¥§$§ELL£SL§.LL§L§£¥ (which includes

module descr;gt;ons or all modules described in the System

Logic Library).

Module Operation, which includes:

U Operation, which explains how the module performs its function.

. Recovery operation, which explains how the module performs any
recovery.

Diagnostic aids, which provide information useful for
debugging program problems; this includes:

L Entry point names

U Messages

U Abend codes

. Wait state codes

. Return codes for each entry point. Within each entry point, returr
codes might be further categorized by exit-normal and exit-error.

. Entry register contents for each entry point

L Exit register contents for each entry point

Logic Diagram, which illustrates the processing of the

module, the input it uses, the output it produces, and the flow of
control. Some modules do not have a logic diagram because the
processing is sufficiently explained in the module description, the
module operation, and the diagnostic aids sections. The following
illustrates the graphic symbols and format used in the logic diagrams.

SUP-66 MVS/XA SLL: Supervisor Control LY28-1765~-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

LOGICKEY - Key to the Logic Diagrams STEP 01

Callers "
This paragraph describes shat this module
\ does. The sace text appears under the
2| {FUNCTION heading on the Module Description
/ page.
LOGICKEY

01| Numbered steps describe the
processing at a high level.

A. Lettered steps describa the processing
it a lower level.

SPQA mmmmme=s> 02] Input and output fields. e _I\SPQE
\ ~n/
SPQAADGE SPQAEDQE /| Tha control block acronym or data area name SPQENEXT
appears above the input and output boxes, SPRESPQRA
SPQE and tha field names appear within the SPQETCB
boxes. A dotted arrow means the data is SPQESPID
SPQENEXT SPQESPQA[—-—‘ referenced; a solid arrow means tha data is SPQEKEY
wodi fied. . } SPRESHR
TCB SPREOWN
TCBPKF — 03| calls an external routine LU\SPQA
passing the parameter TROB. —/
: SPQAFADQ
b=\ SPQALADQ
\r——y/ ITRFER SPQAFEDQ
SPQALEDQ
TROB
04} Calls an internal subroutine
(at the step indicated)
fas§ins tuo parameters.
/ \
\ p——— / SUBROUTN: 11
EFMSGL .
TFUARNSS
EAECB ‘pee=------=>{ 05| ISssues a macro instruction
-: -\ Wi th these keyuords,
EAERIMUT | p—— parameters, and options.:
ASCB ; POST
: (EAERIMWT
: RCO) ASCB{TOBAASCB->ASCB) ERRET(CVTBRET)
cvT :
-
CVTERET
TOB
06| Branches to the internal
TOBAASCB [label at the step indicated.
\
>BRLABEL: 08
/

LY28-1765-0 (c) Copyright IBM Corp. 1987 Method of Operation SUP-47

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

LOGICKEY - Key to the Logic Diagrams STEP 07

07| Issues an SVC.

< > SvC TSOTEST
I\
08 >{{08| Step 06 branches here. EXxits
V4 by issuing a program call
BRLABEL (PC). .
\
/ PC
Callers
\
> This is a secondary entry point. This

PARAMETERS paragraph describes the function of this

/
SECONDEP entr int. Four paromaters are passed
1 Y PO pa

TROB THISLINE \ an input.
MAXLINES ETPBOP"I’SF'—M .

TTE OOLABEL| [09| This is the beginning of an
> iterative DO group.
TTEMBZ1
A. Iterates this DO instruction at the 09
specifed step number. —
B. Leaves this DO instruction and —y
branches to the step indicated. 10
10§ Returns to the calling step
outside of this modula. I '

1
\

11 >{{11] This is an internal
v/ subroutine.

SUBROUTN

This paragraph describes the function
of this subroutine.

12| Returns to the calling step -
within this modula. ’J—l

\N/

SUP-48 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

"Restricted Materials of IBM"
Licensed Materials = Property of IBM

This page left'blank

LY28-1765-0 (c) Copyright IBM Corp. 1987 Method of Operation SUP-49

0-99.1-82A1 1043u0) JosTAJedng 1775 YX/SAW 05-dNS

*da0) WAT IYBTJAdO] (2)

L1861

Diagram SUP-1. Address Verification (IEAVEADYV) (Part 1 of 2)

From supervisor

Input routine
Register O
LENGTH OF STORAGE RANGE >
Register 1
l $ sowa 1
Register 2
[aecmumc § sTORAGE RANGE

Step 1 or 2

—

Process

71 Check if a storage check occurred.

e If not.

2 Insure the SDWA storage error
range contains valid data.

— Step 4

o Not valid.

3 Notify the caller when the input
storage range intersects with the
storage error range indicated in
the SDWA.

o Storage intersacts.

4 Check for a page fault or segment
exception by loading the
beginning address of the range
and the ending address of the
range.

B sto 4

Register 16

Return 8

® Successful load.

® Unsuccessful load.

To caller

Register 15

Return O

Register 15

r Return 4

WEI 30 A3Jadodd — STETJ3IBW PasSUa’T]

uHgI 30 STeTJa3}el Pa3OITJIISaU,

0-69.1-82A1

L861 'd40) WAI IYSTJAdO] (9)

16-dnS uorjedadg 30 Poyyol

Diagram SUP-1. Address Verification (IEAVEADV) (Part 2 of 2)

Extended Description Module Label

1 The address verification routine checks the SDWA IEAVEADV
flags for indication of a storage check error. If a
storage check did not occur processing continues at step 4.

2 The error range validity is checked via the SDWA
flags. If it is not valid, processing continues at
step 4.

3 A check is made to see If tha input storage range

intersacts with the storage error range indicated in
the SDWA. If 50, return is to the caller with a code of
8 in register 16.

4 The final test is to check if the indicated storage [s

in real storege by doing an LRA on the beginning
and ending addresses. |f not in storage, a return code of
4 is returned to the caller in register 15. If it is in storege,
a return code of O is returned to the caller.

uWdI JO STETJaIeH POYITJIS3Y,

WgI 30 Ajuedodd — STETJOlel Pasusdtl

T043U0) JosTABdnS :77S VX/SAW 25-dnS

0-69.1-82A1

L1861 °dJ4ol WAI IYBIJAdO) (d)

Diagram SUP-2. Bind Break Service Routine (IEAVEBBR) (Part 1 of 6)’

Called by a module that has
changed the cross memory
‘environment of an address space
Input l I Process
Register 0 Register 1
function ASID Nl 1 1f requested, merk a specified
code e address space invalid for cross
16 31 ry)
e If the input ASID is not
assigned
o If the function code is
invalid
CDS
CSDCPUAL t) 2 Datermine if there are any
online processors in the
CSDCPUOL system other than this one,
CSDMASK o If not

Output

ASCB associated with the input

ASID

ASCBASTE

ASTE

ASTEICMA (invalid-for-cross-
memory-access flag)

Register 15

a1 Le

Return
to caller
Register 16
L) 4
Register 16
» 0
Return
to caller

WEI 40 Ajuadodd — STETJSIEH Pasuedtl

uWgI JO STETJaeN Pa3ITJISAY,,

0-99L1-82A1

1861 °dJy0) WEI IYBTJAdO] (D)

£6-dNS uot}BJAdQ jO poyjey

Diagram SUP-2. Bind Break Service Routine (IEAVEBBR) (Part 2 of 6)

Extended Description

The bind break module (IEAVEBBR) is called in two
situations:

e When a module changes the cross memaory environ-
ment (the AX, LX, or LT) of an address space, it calls
IEAVEBBR to determine if the change made the
cross memory environment of any tightly-coupted
online processor invalid. If it did, the unit of work
on that processor is abended. If a processor’s cross
memory environment is still valid, |IEAVEBBR ensures
that the processor’s cross memory control registers
contain current information.

o When an address space can no longer be accessed
using cross memory instructions, or when an address
space that can be accessed in cross memory mode
is being terminated, the modute handling the situation
calls IEAVEBBR to set the address space’s invalid-
for-cross-memory-access (ASTEICMA) flag, and to
break all active binds to the address space. If any
tightly-coupled online processor’s primary or secondary
address space is the same as the address space that is
no longer accessible, the unit of work on that processor
is abended.

At entry, register O contains a function code indicating
which of the above functions IEAVEBBR is to perform.
If the ASTEICMA flag is to be sot, register 1 specifies the
target ASID.

1 If the function code is 4, IEAVEBBR sets to one the

ASTEICMA flag associated with the address space
identified in register 1. To locate the specified ASCB,
1EAVEBBR calls IEAVECMS at entry point IEAVLACB.
If IEAVLACB determines that the specified ASID is not
assigned, |EAVEBBR sets a return code of 8 and returns
to the caller.

If the function code is invalid {neither O nor 4)
{EAVEBBR sets a return code of 4 and returns to the
caller.

Module

Label

Extonded Description

2 If the current system configuration includes only one

online processor, there are no binds to break and
IEAVEBBR's work is finished. {EAVEBBR sets a return
code of zero and returns to the caller.

"Modute

uldl JO0 STerJajey pPajydfJIsay,,

HEI 30 AjJoadodd - STETJajel pasuasy

T043u0) JosTAJdedng 177§ YX/SAW HG-dnsS

0-S9L1-82A1

L86T °duol WAI IYSTJAdO] (D)

Diagram SUP-2. Bind Break Service Routine (IEAVEBBR) (Part 3 of 6)

Input

CcsD

CSDCPUAL

From steps

2,4,orb
Process

N

)l 3 Signal anonline processor to

PSA

PSAPCCAV

'PCCA

PCCAEMSI

PCCATOOP

v

validate its cross memory
environment and reload its cross
memory control registers {cause
a bind break).

WEI 40 Ajuadodd — STETJUIIEH POSUaITT

uN8I 30 STBTJOIEN POIITJIISOY,

0-99L1-82A1

L1861 °dJ40) WYI 3IYETJAdO) (9)

G5-dNS UOTIEJed) 30 POYIel

Diagram SUP-2. Bind Break Service Routine (IEAVEBBR) (Part 4 of 6)

Extended Description Module Label

3 .IEAVEBBR ensures that every tightly-coupled online
processor checks whather its cross memory environment
is still valid after the change, and, if necessary, updates its
cross memory control registers to reflect the change. To
do this, IEAVEBBR issues a RISGNL SERIAL macro to
each online processor except the ona on which it is exe-
cuting. The macro triggers the following sequence of
events. See the Bind Break Module Flow figure for a
picture of thesa events.

® An external interrupt occurs on the gignalled
processor,

o I|EAVEBBR enters a spin loop on the signalling
processor, and loops until the interrupt handler clears
the PCCAEMSI word indicating that the receiving
routine has completed on the signalled processor.

® The external interrupt FLIH (IEAVEEXT) gots
control on the signalled processor and saves the
processor's control registers 3 and' 4 (the primary
and secondary ASIDs and the AX value) in the PSA.

o Because this is an emergency signal (EMS) interrupt,
IEAVEEXT gives control to the emergency signal
SLIH (IEAVEES), which gives control to the RISGNL
recelving routine (IEAVEBB2 in. IEAVEBBR).

o |IEAVEBB2 determines whether the EMS interrupt
occurred while the signalled processor was in a
window spin, and sets the LCCABBRC fiald in the
signalling processor’s LCCA accordingly. {EAVEBBR
uses this fiald later to determine whether the bind
break function was completed successfully. (Binds
cannot be broken when the signalled processor is in
a window spin.)

® When the signalled processor is not in a window spin,
IEAVEBB?2 also issues a precautionary CMSET.SET
macro, which sets the primary and secondary ASID
to the home ASID. The CMSET SET macro is neces-
sary because IEAVEES informs the signalling proces-
sor to resume executing before it returns control to
IEAVEEXT, which then performs the bind break
function, The CMSET macro ensures that the signal-
ling processor’s cross memory environment is valid
between now and the time IEAVEEXT actually
performs the bind break operation.

Extendod Description Module
3 (continued)

o I|EAVEBB2 returns to IEAVEES, which releases the
signalling processor from its spin by clearing the
PCCAEMS| word in the signalling processor’s PCCA.
IEAVEES then returns to IEAVEEXT. Thus,
1EAVEBBR resumes executing on the signalling
processor while IEAVEEXT completes the bind break
‘function on the signalled processor. The next step
(step 4) describes what IEAVEBBR does when it
resumes executing. The next bullets describe how
1EAVEEXT completes the bind break function.

o If the signalled processor was in a window spin when
the interrupt occurred, lEAVEEXT returns to the
interrupted program. [t cannot complete the bind
break function.

o If the signalled processor was not in 8 window spin
when the interrupt occurred, IEAVEEXT issues a
CMSET RESET,CHKAUTH=(YES) macro. The
CMSET service routine (|IEAVECMS) first checks
whether the signalled processor’s primary and second-
ary ASIDs can still be accessed using cross memory
instructions, and whether they can access each other.
If they can, IEAVECMS reloads the signalled proces-
s0r's cross memory control registers. This ensures
that, if applicable, the signatled processor picks up
the cross memory change that triggered the call to
IEAVEBBR. Note that the CMSET RESET is done
on all eligible online processors, even though the
processor might not have an active bind to the address
space whose cross memory envircnment changed
{neither its primary nor secondary address space is
the same as the changed address space). In this
instance, the CMSET RESET macro resets, but does
not change, the control register values.

If the processor’s cross memory environment is not
valid after the change, IEAVECMS terminates the unit
of work in progress by issuing ABEND X‘068’ with
the appropriate reason code.

e |EAVEEXT returns to the interrupted unit of work.

Label

uldI 30 STETJajel PajdTJISAY,

WEI 30 AjJadoud — STETJOIBH Pasuasti

T0J43U0) JOSTAJRdNS 111§ YX/SAW 9G-dNS

0-99.1-82A1

L86T 'd40) WEI IYBTJAdO] (D)

Diagram SUP-2. Bind Break Service Routine (IEAVEBBR) (Part 5 of 6)

input Process
,LCCA
LCCABBRC N 4 Determine whether the bind break
v function completed successfully.
o If not, repeat step 3 on the

same processor.

5 Determine if any processors remain
to be signalled,

e If 5o, repeat step 3 on the next
processor,

o If not, set a return cade of zero,

From
IEAVEES

Entry point IEAVEBB2 (the receiving
routine that gets control on the signalled
processor after the mainline signals the
processor):

6 Determine if the signal interrupt
occurred while the signalled processor
was in a window spin,

bs«m
) s

Return
to caller

= -

Output

Rogister 16
0

Signalling processor's LCCA

LCCABBRC

WA 30 Ajuadodd - STETJUdleW POSUdITT

uWgI 30 STeTJajel pPelxdTJISay,,

0-99L1-82A1

L86T "dJo) WEI IYSBTJAdO) (9)

LS-dNS UuoT3eJsdQ JO poyjey

Diagram SUP-2. Bind Break Service Routine (IEAVEBBR) (Part 6 of 6)

Extended Description

4 VEAVEBBR checks the LCCABBRC field to determine
whether the interrupt occurred while the signalled
processor was in a window spin. If it did not, IEAVEBBR
assumes that the bind break function completed suc-
cessfully and continues processing at the next step.

If the signalled processor was in a window spin,
IEAVEBBR adds one to the number of unsuccessful
signal attempts and reissues the RISGNL macro to the
same processor, When the number of attempts made
exceeds a specified limit, IEAVEBBR calls the excessive
spin notification routine. (IEEVEXSN) to issue message
IEE331A. IEAVEBBR then resets the spin count and
continues signalling the processor.

5 IEAVEBBR looks for another online processor to
signal, If there is ons, IEAVEBBR repeats step 3

for that processor. After all the online processors have

been signalled, IEAVEBBR sets a return code of zero and

returns to the caller.

6 |EAVEBB2's processing is described in step 3.
Recovery Processing:
IEAVEBBR does not establish its own recovery envir-

onment. If an error cccurs while IEAVEBBR is execu-
ting, the caller’s recovery routine receives control.

-Modute

Label

ulddl 30 SICTJdICH POIITJISAY,

WAI 40 Ajuadoud — STETJVd, . Pasusdt

[043U0) JOSTAJEdNg :77S VYX/SAW 85-dNS

0-S9L1-82A1

1861 °"dJ4o) WAI IY6TJAdO) ()

Diagram SUP-3. Control Block Verification Routine (IEAVECBYV) (Part 1 of 10)

Input

Register 2

POTENTIAL ASCB §

Process Output
IEAVECAS ENTRY:
CURRENT ASCB
VERIFICATION CHECKS
IEAVEADV
1 Verity the ASCB storago is Verify
referenceable. address
: Register 16
©® ' Not referencaable.
> Return 4
To caller
2 Verify that the ASID is less than or
equal to the maximum. Register 15
o Invalid. > Return 8
. ﬂ To caller
3 When the ASID is not zero, verity that
the input ASCB address matches the
address found by indexing into the ASVT. Register 16
e Invalid. D Retumn 8
ﬂ To caler
4 When the ASID is zero the input
address must match the address of “WAIT
ASCB”. Register 16
o No match. : a ‘Return 8
* To catter
B Verify that the ASCB contains a
valid acronym, Register 15
e Invalid. :> Raturn 4
ﬁ To caller

WGl 30 Ajuadoud — STETJ93}EH PasusaTl

uHgI JO STeTJelel PajaTJdISay.

0-99L1-82A1

1861 °"dJ40) WEI IYBTJIAdO] (D)

uorjededg O POY}ol

65-dNS

Diagram SUP-3. Control Block Verification Routine IEAVECBYV) (Part 2 of 10)

Extended Description Modute Label

This module will determine whether an input address is
the address of a valid 1) current ASCB, 2) genaral ASCB,
3) SRB, 4) TCB, or 5) STCB.

15. For current ASCB verification (EAVECAS),
the input address must pass the following
criteria:

® Addressable potential ASCB storage.
® ASID < maximum.

@ When the ASID # 0, the input address matches the
address found by indexing into the ASVT.

o When the ASID = 0, the input address must match
the address of “WAIY ASCB*,

e Valid acronym (ASCB).
® Addrassable and valid SRB address on SPL.
® Addressable ASXB.

o ASXB must have a valid acronym, an addsessable IHSA,
and an addressable local work/save area vector table.

A return code of 0 indicates a vatid control block.

A return code of 4 indicates a control block contains
bad information,

A return code of 8 indicates not a control block.

uWal 30 STefJoajel Pal}ITJISaY,

HEI 30 A3uddodd — STETJUdIEl POasSuadT

ToJ43uU0) JostAdadng :77S YX/SAW 09-dNS

0-S9.1-82A1

1861 °dJ4ol WAI IYBTJAdO] ()

Diagram SUP-3. Control Block Verification Routine (IEAVECBY) (Part 3 of 10)‘

Process

6 Verify that the SRB on the SPL
is addressable

° Not addressable.

7 Verify that the ASXB is
addressable.

o Not addressable.

g Verify that the ASXB contains
valid acronym.,

e Invalid.

9 Verify that the IHSA is
addressabla,

o Not addressable.

Output
. |IEAVEADV
Verify
address
Register 16
> Return 4
———
JEAVEADV
Verify
address
Register 16
> Return 4
* To caller
Register 16
> Return 4
* To calter
IEAVEADV
Verify
address
Register 16
> Return 4
d To caller

KHII JO Ajuddoudd — STETJaIel PasuUaalry

uHEI 3O STETJ8]el PIJITJIS8Y,

0-99.1-82A1

L1861 'duo) WAI IYBTUADO] ()

19-dnNS uoryeJadg jo poyzay

Diagram SUP-3. Control Block Verification Routine (IEAVECBYV) (Part 4 of 10)

Extended Description Module Label

69 For current ASCB verification (IEAVECAS),
the input address must pass the following
criteria:

® Addressable potential ASCB storage.
e ASID < maximum.

o When the ASID # 0, the input address matches the
address found by indexing into the ASVT.

o When the ASID = 0, the input address must match the
address of “WAIT ASCB".

@ Valid scronym (ASCB).
® Addressable and valid SRB address on SPL.
o Addressable ASXB.

® ASXB must have a valid acronym, an addressable IHSA,
and an addressable local work/save area vector table.

A raturn code of 0 Indlicates a valld control block,

A return cods of 4 indicates a control block contains
bed informaticn.

A return code of 8 indicates not a control block.

uWdI JO STETJ3}e POIITUISAY,

WEI 30 Ajuadoud — STETJ9IEH Pasuasri

T043U0) JOSTAJOANG :77S VYX/SAW 29-dNS

0-S9.L1-82A1

1861 °dJ0) WAI IYETJAdO) ()

Diagram SUP-3. Control Block Verification Routine (IEAVECBY) (Part 5 of 10)

Process

10 Verify that the local work/save area
vector table is addressable.

® Not addressable.

® Addroessable.

IEAVEGAS ENTRY:
General ASCB Verification

11 Verify that the potential ASCB
storaga is addrassable; the ASID <
maximum; when the ASID is not
zero, the input ASCB address
matches that found by indexing into
the ASVT; and when the ASID is
zero, the input ASCB matches
the address of the WAIT ASCB.

o Failure on any test.

92 Verify that the ASCB acronym is
present,

o No acronym.

13 Verify that the SRB address
on the SPL is addressabe,

o Not addressable,

Output
IEAVEADV
Verify
address Register 16
>u Return 4
1 4
')
Return 0
To caller
IEAVEADV
BT
address
Register 16
:> Return 8
ﬂ To calter
Register 16
> Return 4
) oo
IEAVEADV
Verify
address ‘ Rogister 16
> Return 4
To caller

WEI 30 Ajusdoud - STeTJd}el pasusdt

uHgI JO STETJOICN PaJITJISAY,

0-99.1-82A1

1861 °dJol WAI IYBTJADOD (9)

£9-dNS UuOTiEJed) 3O Poyiey

Di;sgram SUP-3. Control Block Verification Routine (IEAVECBYV) (Part 6 of 10)

Extended Description Module Labsel
10 ASXB must have a referenceable local work/save
area vector table,

A return code of 0 indicates a valid control block.

A return code of 4 indicates a control block contains
bad information.

11-13 For general ASCB verification (IEAVEGAS),

the input address must pass the first six
criteria listed under the current ASCB verification. The
return codes indicate the same conditions.

.

WAI 30 Ajdadoud - STETJ33}EW pasuasr’
uHEl 30 STeTJajel Po3OTJISaY,,

[0J43u0) JosTAJEdng 1715 YX/SAW H9-dNS

0-99L1~-82A1

1861 °"duo) WEI IYBTIJADO] ()

Diagram SUP-3. Control Block Verification Routine (IEAVECBY) (Part 7 of 10)

Process Output
IEAVESRB ENTRY:
SRB Verification Routine
"IEAVEADV
14 Verify the SRB is referenceabla.
‘ Register 16
o Not referenceabls. > Return 4
To caller
15 Verify that the ASCB pointer
associated with the SRB is valid.
Register 16
e invalid. >4 Return 4
16 Verlify that the save area is
avallable. Register 16
o No save area. > Return 4
To caller
17 When the sava area address is not zero,
the address of the resource manager
routine must be that qf the resource
manager for the suspended SRB’s.
Register 16
id .
e Invalid address > Return 4

* To caller

WEI 30 Ajusdodd — STETJoleH Pasuadtl

uHEI 30 STBFJSIEBH P3YITUISOU,

0-99.1-82A1

1861 °dJ40) WAI IY6TJIAdO] (2)

§9-dNS UOTIEJOdQ 40 POYIOY

Diagram SUP-3. Control Block Verification Routine (IEAVECBY) (Part 8 of 10)

Extendad Description

14-17 For SRB verification, the following criteria
must be met:

@ Referenceable SRB storage.
@ Valid ASCB pointar.
o Valid save area data.

@ When the save area address # 0, the address of the
resourca manager routine must be that of the resource
manager for suspended SRB’s.

e When the save address = 0, the routine entry point
address must be non-zero.

Return codes indicate the samse conditions as indicated-
under current ASCB verification,

Module

Label

WEI 3O AjJododd — STETJO3IEH Pasuadti
uldI JO STefJddjel pPaITJIsaYy,

1043U0) JOSTAJEGdNG 177S YX/SAW 99-dNnS

0-99.1-82A1

1861 °dJ40) WAI IYSTJADO] (D)

Diagram SUP-3. Control Block Verification Routine (IEAVECBV) (Part 9 of 10) -

Input

Process

/

IEAVETCB ENTRY:
TCB Verification

18 Verify that the TCB address s
roferenceable.

IEAVEADV

Verify
address

o Not referenceable.

—r—_—

19 Verify that the last 4 bits of the
storage protect key are zero.

20 Verify a valid TCB acronym.

o Invalid.

21 Verify that the AOS/2 common extension
pointer is valid and that the RB is in fixed

storage.

e Any fallure.

22 Verify that the STCB pointer
is valid and that the STCB is
referenceable and has a valid
acronym,

Cutput

Reglster 16

Q Return 8
Register 16

Q " Retun 8
Register 16

>. Return 4
Register 16

:) Return +4

Register 15

Return +4

o Any failure

To caller

WEI 30 Ajuadoud — STETJaIL Pasuasty

uWEI F0 STETJO3el PalITJISaY,,

0-9921-82A1

L1861 °dJ40) WAI IYBTJAdO) (9)

L9-dN§ UO¥3eJedp 3O POYIOY

Diagram SUP-3. Control Block Verification Routine (IEAVECBYV) (Part 10 of 10)
Extended Dascription © Module Label

18-22 For TCB verification, the following criteria
must be met:

o Referencaeable potential TCB storage.

o Last 4 bits of the storage protect key must be zero.

e Valid acronym,

e Valid AOS/2 common extension pointer.

@ Current RB in fixed storage.

e Valid STCB must exit.

Return codes are the same as for the current ASCB
verification routine,

uHEI 3O STETJ93eH PBIdTJIsey,

WGI 30 AjJedoudd — STEFJeIeH Pasuasti

0-G9LT-82A1 To4ju0) JosTAJEdng : 7S YX/SAW 89-dNS

*d40) WEI IYBTIAO) (2)

L861

Diagram SUP-4. CMSET, LOCASCB, and CALLDISP Macro Service Routine (IEAVECMS) (Part 1 of 8)

Branched to
from the
CMSET SET

macro

Input Process Output

Entry point: IEAVCMS1
Register 0 ve Register 0 Caller's save area

I f Cross memory save area or 0 | :‘:> 1 f the caller provided a ::> [Control register 3

cross memory save area,
save current control Control register 4

registers 3 and 4.

Register 1
ICMA ::> 2 Determine if the service
flog 1 ASCB of target address space can be performed, Register 16
0 1 @ If not valid for cross Iz
memory access
ASCB Return
to caller
ASCBASID Register 15
e If invalid ASCB address ::> ABEND X ‘28"
ASCBASTE is input X ‘058
ASTE Register 16
ASTEICMA (cross memory — 3 Establish primary and — ‘I]
access validity indicator) secondary addressability
to the specified address Control Registers
ASTEAX (authorization space.
index) Return
to caller
CR1
ASTESTD (segment table
designator) CR3
- Cross memory
ASTELTD (linkage table CR4 control registers
indicator)
CR5
CR7

WII 40 AjJadodd — STETJal}EN PasuasT

aWdl JO STeTJda3el pPal3IaTJIIsay,,

0-99.1~-82A1

L86T "dJ40) WAI FYBTJAdO] ()

uorjeJedg JO poyjel

69-dnS

Diagram SUP4. CMSET, LOCASCB, and CALLDISP Macro Service Routine (IEAVECMS) (Part 2 of 8)

Extsnded Description
When any of the following macros is issued, IEAVECMS
receives control to perform the requested service.
CMSET SET
CMSET RESET with authorization checking
CMSET RESET without authorization checking
CMSET SSARTO
CMSET SSARBACK
LOCASCB
' CALLDISP (specifying the BRANCH=YES option).

Each macro has its own entry point and is described sepa-
rately in this diagram.

CMSET SET processing:

The CMSET SET service routine establishes an input ASCB
as both the caller’s primary and secondary address space.
The caller spacifies whether IEAVECMS is to perform the
service unconditionally or only when the input ASCB can
be accessed in cross memory moda.

9] If the caller provided a cross memory save area,
IEAVECMS saves current cross memory control regis-
ters 3 and 4 in the caller's save ares.

2 If the caller requested that IEAVECMS perform the
service only if the input ASCB can be accessed in cross

memory mode, IEAVECMS checks the invalid-for-cross-

memory-eccess indicator {the ASTEICMA field) in the

input ASCB’s ASTE. If it is sot to 1, IEAVECMS sets a

return code of 4 and returns to the cafler.

if the input ASCB address is not a valid ASCB, IEAVECMS

issues an ABEND with an X'058' completion code and an

X’28' reason code in register 16.

3 When the request can be performed, IEAVECMS

establishes primary and secondary addressability to
the specifiod ASCB by changing the processor’s cross mem-
ory control registers. To do this, IEAVECMS:

Module Label

IEAVECMS IEAVCMS1

Extended Description Module Label

® Loads the ASID of the specified address space into
control register 3. This establishes itas the secondary
ASID. in the process, the PSW key-mask contained
in the high order bits of control register 3 is set to zero-

o Loads the ASID of the specified address space and the
caller’s authorization index (AX) into control register 4.
This sets the new PASID and AX.

o Loads the caller’s linkage table designator (LTD) into
control register b, primary sagment table designator
(STD) into control register 1, and secondary STD into
control register 7.

IEAVECMS returns to the caller with a return code of 0.
This indicates that the specified address space is now the
PASID and SASID.

uHEI O STETJaIel Pa3dTJISeY,,

WEI 30 Ajuadoud -~ STETJd3el Pasusadli

1043u0) JoSTAJEdng 1715 YX/SAW 0L-dNS

0-99.1-82A1

L86T 'dJo) WAI IYBTJADOD (9)

Diagram SUP-4. CMSET, LOCASCB, and CALLDISP Macro Service Reoutine (IEAVECMS) (Part 3 of 8)

Output

Branched to
from the o
Input CMSET RESET Process
L CHKAUTH=
' YES macro
-l Entry point: IEAVCMR1
Register 0 XMSAVE
SAVCR3 ™ 4 Detormine if the input
- primary and sacondary
SAVPKM address spaces can be
accessed using cross
SAVSASID memory instructions, and
’ are authorized to reference
SAvchd each other. .
SAVAX Je ot p—
SAVPASID
. Branched to L. N
Asce from the § Restora the previously >
ASCBASID ASTE CMSET RESET existing cross memory
CHKAUTH= net. Return tof
ASTEICMA NO macro caller
ASCBSSJS . .
(job step ASTEAX ‘ Entry polnt: IEAVCMA2
termination
flog) ASTESTD N ; ;
), 6 Restore the previously ; __-——__—-':>
ASCBASTE L/ ASTESSBT . axisting cross memory
state if primary and
ASTESSEM secondary address eturn to]
spaces aexist. cailer
ASTELTD
e If not.

ABEND X‘058'

Control Registers

CR1]

CR3

CR4

CR6

CR7

ABEND X ‘058’

Register 16
Reason code

Cross
memory
control
registers

Register 15

Reason Code

HEI 30 Ajuadodd - STETJOIBW Pasussti

uHgI 40 STETJUSICH PIITJISAY.

0-99.1-82A1

L86T °d40) WEI IY6TJAdO] (D)

1/-dNS uoTjeJadg JO Poyyay

Diagram SUP-4. CMSET, LOCASCB, and CALLDISP Macro Service Routine (IEAVECMS) (Part 4 of 8)

Extended Description Modute Label.

N

‘CMSET RESET proocessing:

The CMSET RESET service routine restores a previously
exlisting cross memory environment. At entry, register 0
points to a save area contsining the cross memory status to
be restored.

4 When the calier specified the CHKAUTH=YES : IEAVCMR1
. option, EAVECMS datermines if the input primary
and secondery address spaces mest the following conditions:

® Both address spacas can currently be accessed in cross
memory mode

o The job step task in neither address space has tarmi-
nated .

¢ Both ASIDs are assigned

o The address spaces are authorized to reference each
other

If any of these conditions Is not satisfiod, IEAVECMS
issues ABEND X'058° with a unique resson code. (See Sys-
tom Mossages and System Codes for the specific reason
codes.)

B When the processor’s cross memory environment can
be restored, IEAVECMS loads:

@ The primary segment tabla designator (STD) into con-
trof register 1

o The sacondery ASID into control register 3

e The primary ASID and suthorization index into control
rogister 4

e The linkags table designator into control register 6
o The secondary STD into control register 7

@ When the CMSET RESET macro is issued and no IEAVCMR2
authorization check is requested, |EAVECMS restores

the previously existing cross memory environment as de-

scribed in step b if the input primary and secondary address

spaces are currently assigned. If the address spaces do

not exist, IEAVECMS issues ABEND X‘058’ with a unique

reason code. (See System Messages and System Codes for

the specific reason codes.)

uHEI JO STeTJolel PaldTJISaAY,

H9I 30 AjJadoud — STETJ33EW Pasuaatl

0-G9.T1-82A1 T0J43U0] JOSTAJIdANG 775 YX/SAW 2.-dNS

"dd0) WET IYSTIADOY (9)

L861

Diagram SUP-4. CMSET, LOCASCB, and CALLDISP Macro Service Routine (IEAVECMS) (Part 5 of 8)

Branched to
from the CMSET
8SARTO

Input macro Process Output
Entry point: IEAVCMST
Register 1 Register 1
ASCB of target eddress space T——— 7 i valid ASCB address is input p— Token
Branched to !
) § th set secondary ASID to
ASCB Input SASID’s ASTE é&?ETe the specified address space Return
ASCBASTE ASTESTD SSARBACK and put th::::'lefsil:wmo " to caller
macro secondary 9) Register 15
. ABEND X'58'
Control Registers > X'34°
PSA
Entry point: IEAVCMSB
8 |If the caller’s token
contains a currently CR1
valid secondary ASID, CR3
reset the secondary
Register 1 ASID and addressing CR4
mode specified by the
Token token. CR?7
TE for the call PASID Control Registers
ASTE for the caller’s .
If
ASTE for the Branched to not a valid ASCB L‘> CR3
ASTEAX input SASID from the
LOCASCB CR4
ASTESTD macro Return .
ﬂ to caller CR7 Register 15
Register 1 If not valid > ABEND X ‘058’ X ‘38’
| | asi — Entry point: IEAVLACB
16 31
Register 1
PSA ASVT 9 Locate the address of the > =
FLCCVT ASCB associated with the ASCB address (zero or negative
ASVTMAXU specified ASID. value if the input ASID is invalid)
{maximum ASID) Return
Cvt to caller
CVTASVT ASVTENTY (§AsCB)

WgI 30 Ajuadoud — STETJ33el Pasuastl

uWdI JO STETJaleW P3IIATJIIS3Y,,

0-99.1-82A1

4861 °duo) WAI IY6TJAdO] (9)

uotjedadg Jo poyzey

£.-dnsS

Diagram SUP-4. CMSET, LOCASCB. and CALLDISP Macro Service Routine (IEAVECMS) (Part 6 of 8)

Extended Description

CMSET SSARTO procossing:

The CMSET SSARTO service routine unconditionally estab-
lishes the input address space as the secondary address

space and puts the caller into secondary addressing mode.
As a result, the caller executes in secondary mode and
accesses data in the secondary address space.

7 To establish secondary addressability to the input
address space, IEAVECMS:

@ Checks the validity of the input ASCB address. If the address
is not valid, IEAVECMS issues an ABEND with an X ‘058’
completion code and an X ‘34’ reason code in register 15.

o Saves in register 1 a token containing the current SASID
and PSW S-bit. IEAVECMS returns this token to the
caller, The caller uses it when issuing a CMSET
SSARBACK macro, which restores the cross memory
environment to its state prior to executing this macro.

Loads the new SASID into control register 3.

o Puts an authorization index (AX) of 1 into control
register 4, which authorizes the caller to access any
address space in secondary mode.

e Loads the new SASID’s sagment table designator (STD)
into control register 7.

o Sets the S-bit inthe PSW, which puts the processor in
secondary addressing mode.

® When cross memory hardware is being simulated, toads
control register 1 with the SASID’s STD.

o Returns to the caller.

CMSET SSARBACK processing:

The CMSET SSARBACK service routine restores the
secondary ASID and cross memory addressing mode that
existed before the CMSET SSARTO macro was executed.
IEAVECMS receives as input the token it returned to the
caller aftar processing the CMSET SSARTO macro. The
token contains the SASID and PSW S-bit values that are to
be restored.

Modute

Label

IEAVCMST

IEAVCMSB

Extendod Description

8 To restore the cross mamory environment,
IEAVECMS:

e Verifies that the input SASID contained in the token is
currently assigned. If the input SASID is not currently ,
assigned, IEAVECMS issues an X'38' reason code in
register 15.

Puts the input SASID into control register 3

o Puts the PASID’s authorization index (AX) into control
register 4
Puts the SASID’s STD into control register 7
Restores the previous addressing mode by adjusting the
PSW S-bit

o Returns to the caller

LOCASCB processing:
The LOCASCB macro service routine locates and returns

the address of the ASCB associated with the ASID specified
in register 1.

9 If the input ASID is assigned, IEAVECMS returns the

associated ASCB‘s address in register 1. If the ASID is
not assigned, IEAVECMS returns a zero or negative value in
register 1.

Modute

Labe!

IEAVLACB

uHdl 3O STETJA}EeH PBIITJIISAY,

WAI 30 Ajusdoud — STETJ93IEW Pasuaafi

1043U0) JOSTAJBdANG : 77§ YX/SAW HL-dNS

0-99.1-82A1

1861 °dJ40) WEI IYSTJAdO] ()

Branched to from the CALLDISP
BRANCH=YES, FIXED=NO macro Process

Diagram SUP-4. CMSET, LOCASCB, and CALLDISP Macro Service Routine (IEAVECMS) (Part 7 of 8)

Input
Branched to
from the
CALLDISP
BRANCH=
YES,FIXED=
YES macro
Register 0 ‘
0—do not save the FRR stack
4—save the FRR stack p—
Register 1 PSA —ﬁ
o PSATOLD
Registers PSASUPER
' o
PSALOCAL
1
: PSAHLHI
5 PSACSTK
PSANSTK
LCCA-

LCCACDXM (4 cross.
memory save area)

Entry point: IEAVCDEN for
enabled callers

10 Dissbts the processor for

external and 1/O Inter-
rupts.

Entry point: IEAVCDDS for

-disabled callers

11 Determine if the request
can be processed.

e If not

42 Save tho caller’s status,
release the CMS or local
lock {if hald), and fres
the FRR stack (if
requested),

13 Branch to the dispatcher,

Output

—
—

Dispatcher

Rogister 16
ABEND X‘068’ Reason code
TCB RB
TCBRBP RBOPSW
TCBGRS0
TCBGRS1 PSA
: PSALOCAL
TCBGRS16
HLH1
TCBXSB PSA
XSB
XSBXMCRS

HEI 40 Ajuadoud — STETJd3el Pasuedti

uWEI 3O STETJAeH P3aJITJIISaY,

L86T °dJy0o) WAI IYSTJIAdO] (9) 0-G9.1-82A1

§/-dNS UuOTIEJedQ JO POYISY

Diagram SUP-4. CMSET, LOCASCB, and CALLDISP Macro Service Routine (IEAVECMS) (Part 8 of 8)

Extended Desaription Module Label

CALLDISP processing:

The CALLDISP service routine provides a means for key 0,
supervisor state, task mode routines to give up control and

enter the dispatchaer.

10 if the caller is enabled, IEAVECMS disables the pro- IEAVCDEN
cassor for external and /O intesrupts and saves register

141 in the PSA.

11 To determine if the request can be processed, 1EAVCDDS

IEAVECMS checks the following conditions in the
order specified. If a condition is not met, IEAVECMS issues
ABEND X'06D with a unique reason code. (See System
Messages and System Codes tor the specific reason codes.)

o The caller is in TCB mode

« Register 1 contains a zero

« No super bits are set (PSASUPER=0)

o Register 0 containsa O ora 4

« The normal FRR stack is the current one

« If the FRR stack is not being saved, RTM1 is not active
« If the FRR stack is not being saved, only the CML or
LOCAL lock is held. Note that no locks are required.

o If the FRR is being saved and the LOCAL or CML lock
is held then an EUTFRR must exist

« If the FRR stack is being saved, no locks can be held
except as stated above.

12 In preparstion for branching to the dispatcher,
IEAVECMS:
@ Saves tha caller’s registars in the TCB.

o Saves the caller’s cross memory registers in the TCB's
XS8.

o Saves the caller’s resume PSW in the RB.
® [f the caller hoids the LOCAL or CML lock, frees It.

o If the caller requests it, frees the FRR stack. Otherwiss,

the dispstcher (ater decides whether to free the FRR
stack.

13 IEAVECMS branches to the dispatcher at entry point
IEACDSY.

uHdI JO STETJOIEN PBIITJISAY,

WEI 30 Ajuadodd - STETJI93EH pPasuadll

T0J43u0) JOSTAJGdNg :71S VX/SAW 91-dNS

0-59.1-82A1

1861 °"d40) WAI IYBTJAMO) (2)

Diagram SUP-5. Interprocessor Communication (IPC) Direct Signal Routine (IEAVEDR) (Part 1 of 2)

Input

Register 0

Order code

Process

Register 1

f PCCA of
processor to be
signalled

\/?

Register 2

Parameter
value

\/

IHAPSA

PSAIPCSM

\/b

1 Save the caller’s

rogisters and system
mask.

If the order code is
invalid

if the PCCA address is
invalid

Otherwise, sat up an
interface to IEAVSIGP:

o Sat CPU ID of the processor
to be signalled in register 3.

o Set the parameter value
in register 1.

e Seat the order coda in
register 2.

Issue the SIGP instruction.

Check the return code:

o If the return code is X ‘08’,
the status code is in register
0. Copy the status infor-
mation to register 1.

Restore the original system
mask and return to caller.

Output
') IHAPSA
SCWEDR
N Complstion code
_ —;; X ‘078’
ABEND Reason code
-l ABEND Completion code
Reason code
Register 3
Register 1
—
Register 2
—N
—>
q IEAVESGP
SIGP service
routine
{entry point
is IEAVSIGP)
Register 16
> Return code

HEI 30 A3juadoud — STETJIIEW POsSuUdaTi

uWEI JO STefJoleN P83dTJISaY,,

0-99.1-82A1

2861 *dJ40) WEI 3IYBTJADO] (D)

LL-dNS UOTIBJEdQ O pPOyloy

Diagram SUP-S. Interprocessor Communication (IPC) Direct Signal Routine (IEAVEDR) (Part 2 of 2)

Extended Description

{EAVEDR provides the user with the necassary
interfaces and facilities to signal another online
processor via the SIGP hardware instruction. The
SIGP instruction allows the user to invoke a

spocific hardware function on the signalled processor.

1 saves the caller’s ragisters in the SCWA. Save the
system mask in PSAIPCSM.

2 Validates the order code. If the order code is not
valid, issues an X‘07B° ABEND and a reason code
of X ‘14",

3 Validates the PCCA address. If the PCCA address

is invalld, issues an X'078’, ABEND and a reason
code of X ‘08°. If the PCCA address is valid, oxtracts
the physlcal processor 1D to be signalled from the PCCA
in anticipation of calling the SIGP service routine (entry
point IEAVSIGP4n module IEAVESGP).

4 Calls IEAVESGP to issue the SIGP instruction.

5 Checks the return code from IEAVESGP. If the
return code is X ‘08’, status has been returned to
register 0 and |IEAVEDR copies the status information
into register 1.

6 Returns to the caller after restoring the original
system mask and registers.

Module Label

IEAVEDR

IEAVEDR

IEAVESGP |EAVSIGP

IEAVEDR

uWdI JO STCTFJOIEN POJITJIISAY,

WAI 30 Ajuadoud — STeTJajzel pasuasty

T1043U0) JosSTAJGdNG 7S VX/SAW 8.-dNS

0-99.1-82A1

1861 °d40) WAI IYSTJIAdO) (9)

Diagram SUP-6. Stage 3 Exit Effector (IEAVEEE() (Part 1 of 6)

Branch from the
dispetcher to complete the
schoduling of an‘t
Input asynchronous exit routine Pr s
PSA o
PSAAOLD
’E > 1 ODequeus ths IQEs, if possibte
= @ If an IQE is dequeued ~3m4
y
RQE
> 2 Degueue the RQEs, if possible
o if en RQE is dequeusd Step 4
ASXBFIQE RQE ﬁ
ASXBLIQE 4
ASXBFRQE . po
ASXBLROE . 8

ASXBFSRB

\

ASXBLSAB__ "'E

HEI 30 Ajuadoud — STETJ81eN Pasuadfl

uHgl 30 STBTJO}EH POJITIISOY,

0-99.1-82A1

1861 °"dJyo) WYII IYBTJAdO) (2)

6.-dNS uoT}eJedg jo poyjzey

Diagram SUP-6. Stage 3 Exit Effector (IEAVEEEQ) (Part 2 of 6)

Extended Description Module Label Extendad Description Module Label
The stage 3 exit effector (the last routine used to schedule 2 Data management uses RQEs as a special interface In
an asynchronous exit), dequeues 1QEs (interruption queue scheduling an asynchronous exit.
elements), RQEs (request queue elements) or SRBs e For sach RQE on the asynchronous exit queus, a
(service request blocks) from asynchronous exit queues series of tests are made to detarmine if it can be de-
pointed to by the ASCB. For each element removed, it queued at this time. An RQE cannot be dequeued if:
Initializes and chains to the TCB an IRB/XSB or SIRB/ a. Asynchronous exits are suppressad for the task
XSB pair. The dispatcher enters the stege 3 exit effector (TCBFX=1).
as a subroutine. b. The task it is baing scheduled to [s active en on-
1 Supervisor services use IQEs as a general interfaco for IEAVEEEO other processor or holds a tock. -
. c. The IRB s already in use (RBFACTV=1).
requaesting scheduling of an asynchronous routine. d. The asynchronous exit is being scheduled to the
For each IQE on the asynchronous exit queue, the stage : . .
3 exit effector does the following: address space’s error task and an error recovery
' procedure is atready executing on the error task.
o Datermines if the IQE can be dequeued at this time. e. The resume or transfer control function is excut-
An 1QE cannot be dequeued if: ing for the TCB that the stage 3 exit effector is
a. The IQE has been purged by DUMP (IQEPURGE=1). checking (TCBS3A=1 and TCBACTIV=1). The
b. The IRB {interruption request block) is already be- stoge 3 exit effoctor turns on theé flags.
ing used (RBFACTV=1). f. The TCB has any EUT mode FRRs (TCBNSSP£0).
c. The task that the asynchronous exit Is to process 9. The vector facility environment is being established
is executing on anothar processor or holds a lock. for th k. and an SRB has b heduled to com
d. The asynchronous exit is being scheduled to the or the task, and an as been schacule cpmp
error task and an error recovery procedure is exe- complete the environment (STCBP1Q=1).
cuting on that task. e For those RQEs that can be dequeued, IEAVEEEQ
6. Asynchronous exits have been suppressed for the removes the RQE from the queus and chains the
intended task (TCBFX=1). specified IRB to the TCB, as described in step 4.
f. The IQE is for an attention éxit and either all
asynchronous exits or attention exits are sup- 3 SRaBs on the queus represent requests by 108 to
pressed (TCBFX=1 or, TCBATT=1) for tha in- schedule non-resident error recovery procedures.
tended task or one of the task’s descendants in the There is a single system IRB per addrass space that runs
task tree. only under the error task of the address space. The stage
8. The resume or transfer control function is execut- 3 exit effector tries to schedule this SIRB for only the top
ing for the TCB that the stage 3 exit effector is SRB on the queus.
checking {TCBS3A=1 and TCBACTIV=1). The stage
3 exit effector turns on the flags. The SIRB cannot be scheduled if:
h. The TCB has any enabled, unlocked task (EUT) e The error task is already executing on another pro-
mode FRRs (TCBNSSP#£0). cessor or holds a lock.
i. The vector facility environment Is being ® An esror recovery procedure s already executing in

the address space.

. o The resume or transfer control function is executing
scheduled to complete the environment for the error task (TCBS3A=1 and TCBACTIV=1).
(STCBPIQ=1). The stage 3 exit effector turns on the flags.

e If the IQE can be dequaued and the IRB is for an @ The error task has any EUT moda FRRs

attention exit, the stage 3 exit effector (IEAVEEEO) {TCBNSSP40).

turns off the TCBTIOTG flag (which exit prolog sets If the esror task can b scheduled, IEAVEEEQ d

3 equaues
to ensuré that TGETITPUT SYRB' aré pu'”d"." the top SRB and chains the SIRB to the error task, as
the TCBS3MR flag is set (making the task non-dis- . .
patchable until the attention exit executes) described in step 4.
IEAVEEEO turns off the flag and adds one to the o (71'_‘; ::g;;‘j;‘; has any EUT mode FRRs

ready TCBs count (ASCBTCBs). The vector facility envi ¢ s baina estoblished
Fo h 1QE th be dequeued, IEAVEEEQ ° e vector fac environment is being establis
° r that can equeued for the task, and an SRB has been scheduled to

removes it from the queue and chains the speci-
fied IRB to the TCB, as described in step 4. complete the envircnment (STCBPI1Q=1).

established for the task, and an SRB has been

uHEI JO0 STeTJolel PaldTJISaY,

NEI 30 AjJadodd - STefJdjlel Pasuast

[043U0) JoSTAJBdNg :77S YX/SAW 08-dNS

0-99.1-82A1

Diagram SUP-6. Stage 3 Exit Effector (IEA VEEEQ) (Part 3 of 6)

Process

4 Get an XSB (if necessary) and

queue the IRB or SIRB to the _
TCB.

e If the IRB or SIRB makes

the task dispatchable, call
memory switch,

o If there are more {QEs,

Step 1,
RQEs, or SRBs to process 2,0r3

@ When the |QE, RQE, and SRB
chains have all been processed,
perform processing necessary

bef:re thehIeRdB or SIRB can Retumn to
be dispatched. dispatcher

From step
1,2,0r3
Input l |
PSA
PSAAOLD IQE ——N
ASXB
1QE
ASCBASXB
RQE
-
ASXB
ASXBFIQE RQE
ASXBLIQE
SRB
ASXBFRQE -
ASXBLRQE
SRB
ASXBFRSB /
ASXBLSRB
ASXBXSBA
XSB
XS8
XSB

L861 *dJo) WAI IYSTIAdO) (9)

{Recovery processing
is described on the

next page)

Output
R TCB
TCBRBP
IEAVEMSO TCBXSB
IEAVEMSS5
’ XSB
Memory
Switch IRB or SIRB XSBKM
RBXSB
XSBSASID
RBFACTV
(which::?r XSBPASID
branch
to step 4) RBOPSW
RBGRSAVE
RBIQE
ASCB
ASCBTCBS

WEI 40 A3Jododd — STETJS31el Pasusdst

wHEI 30 STeTJajel PaidTJIsay,,

0-99L1-82A1

1861 °'dJ0) WAI FY6TJAdO] (D)

18-dNS uorjeJodg j0 Poyzoy

Diagram SUP-6. Stage 3 Exit Effector (IEAVEEEO) (Part 4 of 6)
Extended Description Module Label

4 In order to schedule the asynchronous routine, the
stage 3 exit effector:

® Gets an XSB when preparing an IRB for scheduling.
(Every RB on the TCB/RB queue must have an
XSB; an SIRB already has one). If an XSB from
a pravious IRB is available (ASXBXSBAY0),
IEAVEEEO uses it. Otherwise, it gets storage for a new
one,

o Initializes the XSB for non-cross memory mode axe-
cution (the primary and secondary ASIDs equal the
home ASID).

@ Uses the PSW and TCB keys to form the key mask
in the XSB.

o Places the IRB on the RB chain of the specified task.
The IRB becomes the current RB for that task.

® Updates the TCBXSB field to point to the new top
RB‘s XSB.

® Marks the IRB active (RBFACTV=1) so that any
other requests for use of the same IRB will be defer-
red,

o Moves the saved registers of the previously current
routine from the TCB to the IRB general register
save area.

@ Sets the address portion of the RBOPSW to the ad-
dress specified in the RBEP field. This ensures that
tha dispatcher gives control to the asynchronous
routine at the specified entry point.

o If the ASCBPER bit is on, turns on the PER bit
in the RBOPSW. ’

o Sets the RBIQE to point to the queue element that
scheduled the asynchronous routine (IQE, RQE, or
SRB) so that the asynchronous exit gets control
with specific register contents.

o |If the task is ready but previously was not, increases
the count of ready TCBs (ASCBTCBS) by one, updates
the TCB ready pointer (ASCBTNEW) if the task is of
higher priority than the current ASCBTNEW, and calls
Memory Switch (at entry point IEAVEMSS) to check
for a processor in a wait to pick up the task,

uWgI JO STerJdajel PajdTJ3ISdY,

WEX 30 AjJadoud — STETJ33IEH pPasuadrri

0-99.1-82A1 T0J3uU0) JOSTAJadNG 1775 YX/SAW 28-dNS

*dJ0g WEI IYBTIAdO) (9)

L1861

Diagram SUP-6. Stage 3 Exit Effector (IEAVEEEQ) (Part 5 of 6)

input

From dispatcher
recovery (IEAVEDSR)

Register O

Process

I f work area

| em—

Register 1

[+ sowa

Stage 3 Exit Effector Recovery

5 Verify and correct the
asynchronous exit queues
(IQE, RQE, SRB, and XSB).

Output

SDWA

-

Return to
RTM

IEAVEQV2
Verifies the ?ec::rded
queues rrors
PSA =
PSAAOLD
ASCB
IQE
, ASCBASXB
RQE
ASXB
ASXBFIQE RQE
ASXBLIQE 1
ASXBFRQE 4 po—
ASXBLRQE ’/
ASXBFSRB - SAB
ASXBLSRB +—
ASXBXSBA 1 \

XsB

XsB

WEI 30 AjJdadodd - STETJ83BW Pasuadrl

uHdI 30 STeTJalel PaITJIISaU.

0-59L1~82A1

L86T 'dJy0) WAI IYBTJIAdO] (9)

£8-dNS uorjeJedQ jo poyiey

Diagram SUP-6. Stage 3 Exit Effector (IEAVEEEO) (Part 6 of 6).
Extended Description

B The stage 3 exit effoctor recovery routine verifies and

corracts the exit effector gueues (which consist of an

1QE queue, an RQE queus, an SRB queue and an XSB
queus). It uses the queue verifier (IEAVEQVO) to per-
form this verification. It calls the routine once for each
queus. After each call, it will store a word of zeros in-
to the recording area to dalimit the end of the recorded
output. The verification of each queus element is per-
formed as follows:

For an |QE, the address verification routine ensures
that the IQE address, the TCB address contained in
the IQE, and the |RB address contained in the I1QE,
are all referenceable.

For an RQE, verification includes ensuring that

the RQE storage' and the IRB and TCB storage
pointed to by RQERRQ and RQETCB are all refer-
enceable.

For an SRB, verification ensures that the SRB storage
is referenceable,

For an XSB, verification ensures that the XSB stor-
age can be referenced.

Module Label
IEAVEEER IEAVEEEF

ulSI 40 STBTJOBH POJITJISOY,,

WEI JO0 AjJodoud - STETJO3}EH POSUBITT

T0J3uU0) JOSTAJadng :71S VX/SAW H8-dNS

0-S9.1-82A1

*dJ4o) WEI IYBTJADO) ()

L1861

Diagram SUP-7. Stage 2 Exit Effectoi (IEAVEEE2) (Part 1 of 2)

From supervisor and

-

data management routines
to perform the second
step in schedulingan
asynchronous exit routine
Input lI Process
IEACEF00
Register 0
| oorfsrs Je- —— — — — — — 1 The catiing routine has buitt on
an IQE, RQE, or SRB. Queus it
on the appropriate exit quaue.
Register 1
Address of IQE,
RQE, or 0

0:

IQE: Complomented address
RQE: True addres, high-order

byte = X‘00’.
Register 0 contains an
SAB pointer.

2 Set the stage 3 switch for the

dispatcher and the stage 2
switch for SETLOCK.

3 Call memory switch to update
PSAANEW,

e For IRBs and RQEs

IEAVEMS4

@ For SRBs ~

IEAVEMS2

Branch to
caller

AV

Output

Register 1

Address of IQE, SRB or RQE In
true form

IQE on ASXBFIQE
RQE on ASXBFRQE
SRB on ASXBFSAB

{See stage 3 exit effector for
the queue structure)

HEI 30 A3uddoud — STETJa3el Pasuadl

a8l JO STeTJelel pPaldTJIsoy,

0-99.1-82A1

L861 °duo) WAI IYBTJAdO) (D)

§8-dNS uor}BJSdQ jO poyrey

Diagram SUP-7. Stage 2 Exit Effector (IEAVEEE2) (Part 2 of 2)
Extanded Descripticn Moduls Label

1 The exit queue on which the stage 2 exit affector IEAVEEE2 IEAOEF00
places the input queue element depends on whether

the queus element is an 1QE (intesruption queus element),

an RQE (request quaue element), or an SRB (service request

block).

Type of Typse of

Queue Exit

Element Purpose Queue

1QE Suparvisor routine wants to ASXBFIQE
schedule an asynchronous ASXBLIQE
exit routine.

RQE Data management routine ASXBFRQE
wants to schedute an ASXBLRQE
asynchronous routine.

SR8 1/0 supervisor wants to ASXBFSRB
schedute an error recovery ASXBLSRB
procedure (ERP).

2 The stage exit effector sots the stage 3 switch
(ASCBS3S=1) to indicate to the dispatcher that an
asynchronous event is available for scheduling and causes the

dispatcher to call the stage 3 exit effector.

The SETLOCK service checks the stage 2 switch (ASCBS2S)
when it releases the local lock,

3 Memory switch is invoked to alert the system of the
new asynchronous work in the address space,

If the work is an SRB entry point IEAVEMS2 is called,

Otherwise IEAVEMS4 is called.

uHEIl JO STeTJdalel PaYITJISaY,,

WEI 30 Ajuadoudd — STETJ9lel pPasuadti

T043U0) JOSTAJOdNG 1775 VX/SAW 98-dNS

0-S9L1-82A1

L86T °dJ40) WAI IYSTJAdO] (2)

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEAVEES) (Part 1 of 8)

From external first leve)

interruption handler (IEAVEEXT)

1 Establish the recovery
environment.

2 Obtain the address of

the sending processor’s
PCCA.

I\

> 3 Check the level of entry to the

|l‘lpl.lt 10 procass emergency signals Process
PCCA Vector ”
Table
CVT
\ .
/ CVTPCCAT
PSA
PSASPAL
PSASCWA
SCWA
'SCWEES

PCCAEMS! _

PCCAEMSP

PCCAEMSE

PCCAEMSA

emergency signal SLIH and
sst the flags.

OCutput

@ Ist entry leval

® 2nd entry leve!
@ 3rd entry level

- Step 9

> 4 Check if the request flags are set:

® Yes, next step
e No h Step 6

V

PSASCWA

SCWA

.SCWAEES

HEI 30 Ajuddoudd — STETJO3IEH POIsSUdITT

uHEI JO STETJaleHd PajITJIsal,

0-59.1-82A1

1861 °"d40) WAI IYBTJAdO] ()

18-dNS uoTjeJedg jo poYyrol

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEAVEES) (Part 2 of 8)

Extended Description Module Label

When an emergency signal (EMS) interruption occurs, the
external FLIH ([EAVEEXT) gives control to the emergency
signal second level interruption handler (IEAVEES).
IEAVEES routes control to the specified receiving routine
to process the emergency signal. '

An emergency signal can be one of three types:

e A recovery management support {(RMS) request
o A request for serial processing

@ A request for parallel processing

For RMS requests, IEAVEES branches to an RMS service
routine. If the requast is for serial processing, the signal-
ling routine and receiving routine execute serially. For
parallel requests, they can execute simultaneously. Step 5
describes these differences in greater detail.

1 IEAVEES establishes a recovery routine to handle IEAVEES
errors tin the receiving routines and to clear entry
flags if an error occurs in the emergency signal SLIH.

Extended Description Moduls Label

2 |EAVEES indexes into the PCCA vector table, using
the PSASPAD, to obtain the signalling processor’s
PCCA.,

3 IEAVEES checks the bits in SCWEES to determine the

. level of the entry. If this is the first or second entry
level, IEAVEES sets the bits in SCWEES. If this is the
third entry level, IEAVEES processes as an error and
continues with step 9.

4 |EAVEES checks the bits in PCCAEMSI of the sending
processor to determine if there is a valid request. If
there is no request, IEAVEES continues at step 6.

uldI 30 STETJOIEH POJITUIS3Y,

HEI 40 Ajuadodd — STETJ83EH PasuasyT

T0J43u0) JostAdedng :77S VX/SAW 88-dNS

0-S9L1-82A1

*dJo) WAI IYBIJAdO) ()

L1861

Input

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEAVEES) (Part 3 of 8).

PCCA
Vector Table

CcvT

CVTPCCAT

CCA

PSA

PSASPAD

PCCAEMSI

PCCAEMSP

PCCAEMSE

A PSASCWA

SCWA

SCWEES

v

V

N

Output

5 Give control to appropriate

RMS

e RMS Request

receiving routine.

Entry point
to IGFPTSIG
Process

the request

Receivi
routinem

o Farallel or serial
request

=)

Performs
requested
service

6 Clear flags set on entry to

emergency signal SLIH.
7 Delete recovery environment.

8 Return to caller.

External first level

interrupt handler
(IEAVEEXT)

PCCA

PCCAEMSI

SCWA

SCWEES

WEI 30 Ajuadodd — STETJ91El POsSuasti

uWEI JO STetrJyajel pajdTJd}say,,

0-99L1-82A1

L4861 °dJo)d WA IYSTJIAdO) (D)

68~dNS UOTiedsdy 30 poyjey

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEAVEES) (Part 4 of 8)
Extended Description Module Label

5 For an RMS request, IEAVEES gives control to the

RMS service routine specified ina VCON. For both
parallel and serial requests, |EAVEES gives control to the
receiving routine specified in the PCCAEMSE field of the
signalling processor’s PCCA.

When handling a serial request, |EAVEES informs the sig- IEAVEES RETRYPT
nalling processor that the request has been received, then

gives control to the receiving routine. The signalling pro-

cessor spins in IEAVERI while the receiving routine executes.

After the receiving routine completes, | EAVEES clears the

serial indicator bit in the PCCAEMS! buffer to allow

IEAVERI to return control to the issuer of the RISGNL

macro. If the receiving routine fails, IEAVEES sets the

fail indicator in PCCAEMSI to allow |EAVERI to abend

the signalling routine.

When handling a parallel reguest, |IEAVEES clears

the parallel indicator bit in the signalling processor’s
PCCAEMSI buffer before giving control to the
receiving routine. This allows control to be returned
to the routine issuing the RISGNL macro, which then
may execute simultaneously with the receiving routine.

6 1EAVEES cleans up the entry flags sat in the SCWA RETRTN1
(SCWEES) for IEAVEES.

1EAVEES deletes the recovery environment.

Exits to the external FLIH.

uH9I 30 STeTJaiel pajzdfJisey,

WAEI 30 Ajuadodd — STETJOICH PEsuadf

§
©
mwm
gl 5 | §
al x | 8
E T
8
AN
a
2
]
@
<

9 Deloteths recovery
environment.

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEAVEES) (Part 5 of 8)

SUP-90 MVS/XA SLL: Supervisor Control

“Restricted Materials of IBM"
Licensed Materials — Property of IBM

LY28-1765-0 (c) Copyright IBM Corp. 1987

0-59.1-82A1

L86T °dJ40) WAI IYBTJAdOD ()

16-dNS uoTjeJadg jo poyrsy

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEAVEES) (Part 6 of 8)

9 Second level recursion has occurred indicating that
a receiving routine has opened a window without
proper serialization. |EAVEES deletes the recovery
environment and abends. This error causes the receiving
routine to fail and IEAVEES passes the error to the
signalling routine by setting a bit in PCCAEMSI.

Wax 40 A3Juodoud — STETJBIEH PAsuast

uHEI JO STeTJOjeH Pa3ITJISAY,

1043U0) JOSTAJEdNg :71S YX/SAW 26-dNS

0-S9.41-82A1

4861 °du40) WAI IYSTJAdOD (2)

Register 1

-*WA

From RTM

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEA VEES) (Part 7 of 8)

Process

SDWA

SDWACLUP

)

SDWAFMID

. SDWAPARM

FRRFLAGS

FRR Parmsarea

FRRPEMSB

FRRPPCCA

IEAVEESR

Output

10 Record information.

" Determine type of
error condition.

Indicate retry
or percolate

RTM

Rogister 1

[’SDWA

SDwA

F SDWAVRA

VRA

WGI 30 AjJdododd - STEBTJ3}EH POSUBITT

ulgI 40 STETJIIBW PIJITJIISAY.,

0-69.1-82A1

2861 °dJ40) WAI IYSTJIAdO] (D)

£6-dNS UOTIEJOdQ o poyjey

Diagram SUP-8. Emergency Signal Second Level Interruption Handler (IEAVEES) - (Part 8 of 8)

Extended Description Module Label
10 Indicates error information in the SDWA IEAVEES IEAVEESR
and VRA areas.

11 Depending on the reason entered, uses the SETRP
macro, indicating to RTM to either retry to the
mainline or to percolate.

w8l JO STeTJolel Pa3ITJISAY,

HEX 30 Ajuadoud — STETJBIRH PasuadTl

T0J43U0) JoSTAJGdNS :771S VYX/SAW H6-dNS

0-S9L1-82A1

1861 °dJ0) WAI IYSTJAdOD (9)

Diagram SUP-9. EXIT Prolog Processing (IEAVEEXP) (Part 1 of 6)

input

From SVC routines/type 1 ESR routines
for tasks that cannot receive contro) after

processing

Control registers 3 and 4

PSASTKE |—

For tasks that
cen recéive
control after
processing

Process
Illlhl' IEAVEXP1

H IEAVEXPR

1 [Indicate that the task cannot
be redispatched. Gotostep 3

2 Indicate that the task can be
redispatched.

- 3 Disable and check that the
task Is in home mode.

B 4 If the cross memory state
has not been cleaned up,
do so.

5 Release all locks, and de-
termine the SVC type.

e Type 1SVC

- Go to step 7

o Types 2,3, & 4, continue.

Output

WEI 30 AjJuedodd — STETJOIEH POSUSIT

uH9l 30 STEBTJO}EH Paj3ITJISoY,,

0-99.1-82A1

4861 °d40) WAI IYBTJAdO] ()

§6-dnS uoTjeJadp j0 pPoyjol

Diagram SUP-9. EXIT Prolog Processing (TEAVEEXP)- (Part 2 of 6)

'Extended Description

EXIT prolog performs the exiting procedure for SVCs, in-
cluding EXIT (SVC 3). The exiting SVC routine can pro-
vide information in registers 0, 1, and 16. EXIT prolog re-
turns these registers to the SVC caller. ’

1 EXIT prolog indicates the SVC issuer cannot be re-
dispatched by setting the force dispatch switch in a re-
gister and goes to step 3. Routines that cannot be redis-
patched after EXIT prolog processing have EXIT prolog,
when it finishes processing, pass control to the dispatcher.

2 EXIT protog indicates that the SVC issuer can be redis-
patched after processing.

3 EXIT prolog disebles the processor for 1/0 and external

interrupts and checks that the SVC exit is in home
mode (that is, the exit has current addressebllity to the
SVC issuer’'s TCB, RB, and XSB). If the exit is not in hcme
mode, EXIT prolog establishes home mode by issulng a
CMSET SET macro to the home address space.

4 \f the pointer 10 the PCLINK stack contains any-
thing except 0, the cross memorv state has not been

cleaned up correctly. EXIT prolog issues a PCLINK

UNSTACK instruction to purge the PCLINK STACK..

5 EXIT prolog reteases all of the locks held by the

caller of EXIT prolog and then determines the SVC
type. If the SVC is type 1 (ASCBTYP1 bit equals 1), pro-
cessing continues at step 7.

Modute Label

1EAVEEXP IEAVEXP1

IEAVEXPR

GOTYP1

uWGI 3O STETJB3eH PBIOTJISoYy,

WEI 0 Ajuadodd — STETJa3Bl POSUSIT

T0J43U0) JOSTAJAdNS :71S VX/SAW 96-dNS

0-99.1-82A1

L861 °"dJo) WAI IYSTJIAO] ()

Diagram SUP-9. EXJT Prolog Processing (IEAVEEXP) (Part 3 of 6)

Input : Process Output
TCB
PSATOLD
TCBRBP
TCB
TCBATT
TeBATT TCBPNDSP
TCBFLGS — — — — — 4~ — — -1 9= 6 Determine whather to do . TCBSTPP
end-of-task processing. EAVEOR
TCBFLGS5 ! TCBSTPPR
TCBSTPPR If the last RB on the chain 2‘)’("31_3 stine TCBXSB
TCBRBP represants the SVC Issuer rof
TCBXSB If not the last RB, perform ')
RB special processing. vV ASCB
RBXS8B
Xs8 ASCBTCBS
RBATTN 7
RBWCF |
RBSCB |
RB RBLINK l
RBXSB '— -~ —— —— —9» 7 Return control
I TCB
| > TCBS3MR
PSAAOLD ———————|
| IEAVEDSO
. ASCB | o |f the task cannot be redispatched. Dispatcher
XsB | -
XSBXMCRS ASCBS3S |-
o |f the task can be redispatched. Return to the caller
XSBSTKE that issued the SVC

WEI 0 AjJadoud - STeTJdajled POSUIIT]

ulEI 30 STETJIAIEW Pd3ITJIISAY,,

0-99L1-82A1

1861 °dJ03 WEI 3YSTJAdO] (9)

L6-dNS uoTjededg jo poyiey

Diagram SUP-9. EXIT Prolog Processing (IEAVEEXP) (Part 4 of 6)

Extended Description Modute

© If the last RB on the RB chain represents the SVC

issuer, for type 2, 3, and 4 SVCs, the EXIT prolog rou-
tine gives control to EXIT to perform end-of-task proces-
sing.

EXIT prolog performs special processing for RBs other than
the last:

Fialds Fields
Operation Read Modified
a) Fortype 1 SVCs, ASCBFLG1

resets the type 1 (ASCBTYP1 bit)

switch,

Completes STATUS TCBATT

processing for the RB TCBSTPPR

unless other RBs in-

dicate that stops can-

not be done.

c) Gives control to

IEAVSETS at

entry point

IEAVESSS to per-

form stop SYNCH

procassing.

If the task becomes RBLINK

nondispatchable, de- RBWCF

creases the countof TCBFLGS4
ready tasks. TCBFLGS5

Dequeues the RB RBLINK

and XSB and marks RBXSB

the RB inactive.

f) Purgesany SCBsby RBSCB

giving control to

IEAVTSBP.

Moves registers 2-14

from the RB into the

TCB.

h) Depending on how
they were obtained,
returns dynamic RBs
and XSBs to the
SVRB pool
(RBNOCELL=1) or
issues a FREEMAIN
to free them
(RBNOCELL=0).

b

TCBATT
TCBSTPPR
TCBSTPP
TCBPNDSP

d

=3

ASCBTCBS

~—

e TCBRBP

TCBXSB

-~

g TCBGRS

RBFDYN
RBNOCELL

Label

GOTOSVC3

Extended Description Modula

7 The EXIT prolog analyzes the task dispatchability state
to determine where to pass control.

If both the stage 3 exit effector flag (ASCBS3S) and the
TCB attention flag {TCBATT) are set, the attention exit
must execute before the SVC issuer is given control. (The
ASCBS3S indicates that an |QE has been queued and that
the stage 3 exit effector is to be invoked to schedule an at-
tention exit; the TCBATT flag indicates the task is not to
have an attention exit scheduled on it by the stage 3 exit
effector.) When the attention exit must execute before the
SVC issuer is given control, EXIT prolog sets the
TCBS3MR flag to make the task non-dispatchable, and
gives control to the dispatcher at entry point IEAODS1.

If the task is non-dispatchable for any of the following rea-
sons, EXIT prolog also gives control to the dispatcher at
entry point IEAQODS1:

e The ASCBS3S flag is set, but the TCBATT flag is not,
indicating that an attention exit must be dispatched be-
fore the task.

o The force dispatcher switch Is set, indicating that the
task cannot be redispatched. .

o The non-dispatchability flags (TCBFLGS4 a
TCBFLGSS) are nonzero.

® The wait count (RBWCF) in the top RB is nonzero, in-
dicating that the task is in a wait state,

If none of the above conditions are met, the task can be re-
dispatched. EXIT prolog makaes a trace entry; if necessary,
resets the cross memory state to what it was when the SVC
was issued by issuing a CMSET RESET macro; and returns
to the caller that issued the SVC.

Label

WSI 30 AjJadoud — STETJ23IeW PasuadTi
gl 30 STerJdlel PaITJISAY,

10J43U0) JoSTAJBdng 177§ VX/SAH 86-dNS

0-G9.1-82A1

1861 °dv0) WAI IYSTJIAdO] (3)

Diagram SUP-9. EXIT Prolog Processing (IEAVEEXP) (Part 5 of 6)

Froma
type 1
assisted
Input svc Process Output
Control registers IEAVEXP2:
3and 4 PSA
- — —}— —— — — — 1 8 Dissbleand check that the task is in N
home mode. PSASTKE
PSA
ASCB
PSASTKE > 9 1f necessary, purge the PCLINK stack. r— |
ASCBTYP1
XsB 10 Restore the PCLINK stack.
XSBSTKE —_—
11 Resat the type 1 indicator and relsass
the locks. A TCB
| 4
Registers 0, 1, and 16 TCBS3MR
TCBGRSO
12 Return control TCBGRS1
o If the task cannot b redispatched. TCBGRS16
Registers 0, 1, and 15
1EAVEDSO
Dispatchar
‘PSA
a |
) PSW
Return to }
o If tho task can be redispatched. the caller
: that issued
the SVC.

WEI 30 AjJadoud — STETJaleN Pasuadtl

uWgI 3O STETJO}BH PIYITIISSY,

0-59.1-82A1

{861 °du0) WAI IYBTIJIAdOD (9)

66-dNS UOTIeJed) JO POYIoy

Diagram SUP-9. EXIT Prolog Processing (IEAVEEXP) (Part 6 of 6)
Extanded Description Module Label

8 EXIT prolog disables the processor for 1/0 and external IEAVEXP2
interrupts and checks that the SVC exit is in home

mode (that is, the exit has current addressability to the

SVC issuer's TCB, RB, and XSB). If the exit is not in home

mode, EXIT prolog establishes home mode by Issuing a

CMSET SET macro to the home address space.

9O (f the current PCLINK stack is not empty, EXIT prolog
issues a PCLINK UNSTACK macro with the PURGE
option to clear the PCLINK stack.

10 EXIT prolog restores the PCLINK stack for the
issuer of the SVC by placing a pointer to the
PCLINK stack in the PSASTKE.

11 EXIT prolog resets the type 1 SVC indicator

(ASCBTYP1) and releases the locks it currently holds.
If only tha local lock is held, EXIT prolog uses SETLOCKI
to release it.

12 If-the task is non-dispatchable for any of the following
reasons, EXIT prolog gives control to the dispatcher.
Before exiting to the dispatcher, EXIT prolog saves the ex-
iting SVC’s registers 0, 1, and 16.
@ The stage 3 exit effector flag (ASCBS3S) is sat.
o The non-dispatchability flags (TCBFLGS4 and
TCBF LGSB) are sot.
e The wait count (RBWCF) in the top RB is nonzero, in-
dicating the task Is In a wait state.

Otherwise, EXIT prolog returns to the issuer of the SVC.

Before exiting, EXIT prolog does the following:

o Builds a PSW in the PSA.

o Traces the SVC return.

o Flughes the normal FRR stack.

o Restores the SASID and PKM to the values current be-
fore the SVC was issued.

e Restores the original contents of registers 2-14 from the
TCB.

NZI 40 Ajusdoud - STETJO3EH pasuaa'h

uHgIl 40 STETJOIBW POJITJISEY,

ToJ43u0) JostAdedng :77S VYX/SAW 001-dNS

0-S9L1-82A1

86T °du0) WAI IYSTJAdO] ()

Diagram SUP-10. Extemnal First Level Interrupt Handler IEAVEEXT) (Part 1 of 16)

From external new PSW
after hardware stores

Input external old PSW Process

PSA IEAQEX00

PSASUPER ——— 1 Check for recursion:

@ No recursion

® Recursion

DEH —— _—:) 2 Branch to the proper subroutine
PSAMO using PSAMODEH:

o TASK mode

e SRB/non-preemptive mode

e WAIT mode

o Dispatcher spin mode

Step 2
Step 20

Step3 (IEAVEEX1)

Step8 (IEAVEEX2)
Step 11 (IEAVEEX3)

Step 15 (IEAVEEXS5)

Output

HEI 30 Ajuadodd — STETJO}EH POsSuaat

uKEI JO STETJS1EW PAFITJIISAY,,

4861 'dJ0Q WAI IYBTJIAdO] (2) 0-G9LT-82A1

101-dNS uotrjeJedg j0 poyyey

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 2 of 16)

Extended Description Modute Label

The external FLIH gets control from the external new
PSW. The FLIH uses the system mode indicator to
determine how to save interrupt status. IEAVEEXT
calls a subroutine to trace the interrupt and route
control to the appropriate SLIH. The FLIH also
supports recursive interrupts if an interrupt occurs
while an external SLIH is in control.

1 Theexternal FLIH checks a super bit (PSAEXT bit IEAVEEXT |EAQEX00
in PSASUPER) to determine if this is a recursive
entry. If it is, processing continues at step 15.

2 The system mode at the time of the intarrupt
determines which subroutine in the external FLIH

should handle the interrupt. |EAVEEXT uses the

PSAMODEH as an index to reference the proper routine.

ulgl 30 STefJajel PajdOFJdISaY,

NEI 30 AjJuodoud — STETJa3el PasuaaTi

T0J43u0) JostAdedng :77S YX/SAW 20T1-dNS

1861 °d40) WEI IYBTJAdO] (9) 0-59L1-82A7

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 3 of 16)

input Process Output
A ASCB of home
FLCEICGD PSA address space
' A 3 Establish recovery and
) save interrupt status. F:D PSATOLD ASCBASXB
PSALCCAV :> 4 f an emergency signal interrupt PSAAOLD ASX8
occurred or if any spin bits are PSASUPER
PSAHLH! set, do not preampt the task. % ASXBIHSA
PSACSTK # Step 8 | PSALOCAL IHSA
OSAESTK 5 Call the COMMON sub- pSACSTK IHSACPSW
~ routine to trace the
interrupt and to call the PSAESAV1 IHSAGPRS
LCCA appropriate SLIH.
IHSAXSB
‘ —_
COMMON. XSB
SLIH
interface XSBXMCRS
PSA routine Tc8 | T—
. 18|
PSALCCAV {stop.18) Svm— _ASCB of address space
TCBRBP whose CML lock Is held
| & oo —— Toacrs | /] asconsve |
LCCAXGPR the TCB/RB/XSB or | Y
_ IHSA/XSB. o
LCCAXPSW
LCCAXXM1
XSBXMCRS
LCCAXTIM
:"> 7 Establish a recovery envi- IHSAGPRS
ronment for the dispatcher
osA entry. IEAVEDSO IHSAXSB
] oS " PSA XSB

PSACSTK I XSBXMCRS l

WAl JO Ajuadoud — STETJS3EH Pasuestl

uldI JO STEFJOICW PaITJISOY,,

0-99.1-82A1

L861 "d40) WAI IY6TJAdOD (D)

€01-dnS UoTjeJdedg jo poyrey

Diagram SUP-10. External First Level Interrupt Handler IEAVEEXT) (Part 4 of 16)

Extended Description

The external FLIH mainline gives control to IEAVEEX1
when the system is in task moda.

3 IEAVEEX1:

@ Saves the current FRR stack pointer (PSACSTK) in
the PSAESAV1 field.

o Sets the current FRR stack pointer to the external
FLIH stack (PSAESTK1),

_® Seats the external FLIH super bit in PSASUPER.

@ Saves the CPU timer in LCCAXTIM

@ Saves cross memory control registers 3 and 4 in the
LCCAXXM1 field.

® Saves the interrupt registers in LCCAXGR1.

® Saves the interrupt PSW in LCCAXPSW.

4 If en emergency signal interrupt occurred or if any
spin bits are on, the task is not pre-empted, instead,
processing continues at step 8.

5 IEAVEEX1 calls the COMMON subroutine which

tracesthe interrupt via svstem traca and GTF and
«allg the appropriste SLIH. After the SLIH.completes,
1t rewsrns control here.

@ If the home address space s not already the primary

address space, JEAVEEX1 issues a CMSET SET macro
to make it so. This allows IEAVEEX1 to store into the
TCB/RB/XSB or IHSA/XSB.

IEAVEEX1 saves the status of preemptible work as fol-
lows,

If the interrupted task is unlocked, IEAVEEX1:

o Saves the'intecrupted task's registers in TCBGRS from
LCCAXGPR
Saves the PSW in RBOPSW from LCCAXPSW.

o Copies the interrupted cross memory control registers

3 and 4 from the LCCAXXM1 field into the
XSBXMCRS field.

Module

IEAVEEXT

Label

IEAVEEX1

Extended Description

If the interrupted task holds the LOCAL lock,
IEAVEEX1 saves status in the IHSA and XSB of the
home address spece. It:
Saves the registers in IHSAGPRS from LCCAXGPR
fiold.
e Saves the PSW in IHSACPW from LCCAXPSW field.

o Copies the interrupted cross memory control registers
3 and 4 from the LCCAXXM1 field into the
XSBXMCRS field.

o If the interrupted task holds the CML lock,
IEAVEEX1 saves status in the IHSA and XSB of the
address space whose CML lock is hald. It:

— lssues a CMSET SSARTO macro to establish
secondary addressability to the address space
whose CML lock is held.

— Saves the interrupted task’s registers in the
IHSAGPRS field from LCCAXGPR.

— Saves the PSW in the IHSACPSW field from
LCCAXPSW field.

— Copies the interrupted cross memory control
registers 3 and 4 from the LCCAXXM1 field
to the XSBXMCRS field.

7 IEAVEEX1 sets the current FRR stack pointer to the
super stack (PSASSTK) and branches to the dis-
patcher at entry point IEAPDS7, IEAPDS?A, or IEAPDS7C.

Module

Labe)

uHaI JO STETJS1EW POITJIISaU.

WEI 30 Ajuedodd — STETJOlel pasuadti

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 5 of 16)

1043U0) JOSTAJBdANG :71S VX/SAW H0T-dNS

0-S9LT1-82A1

"d40) WEI IYBTJAdOD (D)

L861

From step 2
input orstep4 Process Output
IEAVEE X2 SRB/non-preemptive PSA
PSA PSALCCAV
PSACSTK . 8 Perform initiatization and PSASUPER LCCAXXM1
—:> save the status for entry at
PSAESTK1 LCCAXGR1
9 Call COMMON subroutine COMMON
PSA to trace the interrupt and to SLIH PSACSTK
call the appropriate SLIH. interface LCCAXPSW
FLCEICOD. zx;qg) PSAESAV1
::> 10 |f an EMS interrupt is being
PSA LCCA processed, validate and reset
the processor’s cross memory PSA
PSALCCAV 4 LCCAXTIM environment. If not an EMS
interrupt, restore the processor’s
LCCAXXM1 cross memory environment PSASUPER
only.
LCCAXGR1 PSAESAV1 1
-"——> 11 Reload the status of the \
PSAESAV1 From step 2 Interrupted routine.
. PSACSTK
LCCAXPSW ‘ IEAVEEX3 wait mode " Return to the PSASUPER
" interrupted
routine PSACSTK
:"> 12 Establish recovery, clear
waiting processor and
active dispatcher indicators
and accumulate processor PSASVT
waiting time.
PsA OMMON
13 Call COMMONCR subroutine COM (svT
PSALCCAV LCCA to trace the interrupt and SLIH \ ¥Yicca
to call the appropriate SLIH. inler.face
PSACSTK LCCAWTIM (";“:');1) SVTDACTV LCCAWTIM
ste|
PSAESTK1 SVTPWAIT LCCAXTIM
14 Establish a recovery environ-
ment for entry to the dis-
tcher.
PSA pa IEAVEDSO PSA
PSASSTK PSACSTK

WEI 30 Ajuadoudd — STETJaiel Pasuadf

uWgI 30 STeTJdajel pa3dTJl1say,,

0-99.1-82A1

L86T °dJ0) WAI IYBIJAdO) (D)

S0T-dNS UOT}EJadp Jo poyjzey

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 6 of 16)

Extended Description

IEAVEEX2 receives control from the external FLIH
maintine when the system is in SRB moda, or from
IEAVEEXT1qwhen an interrupted task is not to be
preempted.

8 IEAVEEX2:

® Saves the current FRR stack pointer (PSACSTK) in
the PSAESAV1 field.

o Sets the current stack pointer to the external FLIH
stack (PSAESTK1).

o Sets the external FLIH super bit in PSASUPER.
e Saves the processor timer in LCCAXTIM.

o Saves the interrupted cross memory control registers
3 and 4 in the LCCAXXM1 field.

@ Saves the registers in LCCAXGR1

o Saves the PSW in LCCAXPSW

9 |EAVEEX2 calls the COMMON subroutine, which

traces the interrupt via system trace, and GTF, and
calls the appropriate SLIH. After the SLIH completes,
it returns control here.

10 If an EMS interrupt is being processed, IEAVEEX2
issues a CMSET RESET CHKAUTH=(YES) macro.
The macro processor (IEAVECMS) checks whether
the primary and secondary ASIDs can be accessed using
cross memory instructions and whether they can access
each other. If they can, IEAVECMS reloads cross mem-
ory control registers 1, 3, 4, 5, and 7. |If the cross mem-
ory state is invalid, IEAVECMS issues abend X'058°
with the appropriate reason code.

IEAVEEX2 issues the CMSET macro in case the bind
break routine (IEAVEBBR) caused the EMS interrupt

Module Label

IEAVEEXT IEAVEEX2

Extendod Description

in order to validate and reset the processor’s cross mem-
ory environment, See the IEAVEBBR diagram for de-
tails on when IEAVEBBR issues an EMS. See the
IEAVECMS diagram for a description of CMSET RESET
processing.

If the interrupt was not an EMS interrupt, IEAVEEX2
issues a CMSET RESET, CHKAUTH=NO macro. This
rastores the cross memory controls to the state they were
in when the interrupt occurred.

11 |EAVEEX2 reloads tha status of the interrupted
routine and returns control to the interrupted
routine.

The external FLIH mainline gives IEAVEEX3 control
when the system is in wait mode.

12 IEAVEEX3:

® Saves the current FRR stack pointer (PSACSTK) in
the PSAESAV1 field.

Sets the current stack pointer to the external stack
1 (PSAESTK1).

Sets the external FLIH super bit in PSASUPER,
Saves the processor timer in PSACPUT.
Accumulates wait time in LCCAWTIM.

Clears SVTDACTV and SVTPWAIT.

13 IEAVEEXS calls the COMMONCR subroutine, which
traces the interrupt via GTF and calls the appropriate
SLIH. After the SLIH completes, it returns control here.

14 VEAVEEXS sets the current FRR stack pointer
to the super stack (PSASSTK) and branches to
the dispatcher at entry point IEAPDS7B.

Module Label

IEAVEEXT IEAVEEX3

uHEI JO STeTJalel PajlITJIsSaY,

WII 30 Ajuadoud — STETJajel Pasuasti

0-G9.1-82A1 1043U0) JoSTAJAdANG 775 YX/SAW 901-dNS

*d10) WEI 3YBTJIADOD ()

L861

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 7 of 16)

Input

PSA

From
step 2

PSACSTK

—

| PSAESTK1

o

IEAVEEXS dispatcher spin mode

15 Establish recovery
environment.

Output

PSA

PSASUPER

PSACSTK

PSAESAV1

WEI 30 Ajuadoud — STETIJ3IEW PasuadT]

uHgI 30 STETJ3}BW P3JITUISAY,,

4861 °dJ40) WAI IYBTJIAdO] (9) 0-G9.T1-82A1

L0T-dnS uorieJedg 30 poyjey

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 8 of 16)

Extended Description Module Label

The external FLIH mainline gives IEAVEEXS control
when an interrupt occurs while the dispatcher is making
a recursive scan of the dispatching queues before entering
a wait state, or while the dispatcher is spinning on an
intersoct flag waiting to procsed.

15 1EAVEEXS: IEAVEEXT IEAVEEXS
o Saves the current FRR stack pointer in the

PSAESAV1 field,
o Sets the external FLIH super bit in PSASUPER.

HgI 30 Ajuedoud - SIPTJSIEH POSUBdIT
uHEI 3O STETJOIEN PO3IITJUISAY,,

ToJ43u0) JosTtAJedng :775 YX/SAW 80I-dNS

0-99.1-82A1

*d10) WAT IYSTJAdO) (9)

L1861

Diagram SUP-10. External First Level Interrupt Handler JEAVEEXT) (Part 9 of 16)

Process

16 $f no spin bits are set:

o Clear the dispatcher active

Output

and processor waiting flags.

COMMONCR

e Process the interrupt. “

SLIH
interface
subroutine
(step 18)

e Establish a recovery environ-
ment for the dispstcher.

17 |f any spin bits are set:

o Save the status of the

IEAVEDSO

7

interrupted routine.

COMMONCR

o Process the interrupt. “

SLIH
interface
routine
(step 18)

> e Restore the status of the

Input
PSA
PSACPUPA LCCA
PSALCCAV_{/ LCCASPIN
PSASSTK
PSA
PSALCCAV
PSASSTK |
\LCCA
LCCAXGR1
LCCAXPSW
LCCAXXM1

interrupted routine.

-

Return to
interrupted
program

PSA
PSACSTK
PSASVT
SVT
SVTDACTV
SVTPWAIT
PSA
LCCA
{
LCCAXGR1
PSALCCAV 4 LCCAXPSW
LCCAXXM1
PSA
PSASUPER
PSACSTK

WdI 30 Ajuadodd — STETJ93eH PasueaTi

uH8I 30 SsTetJdajel pPs3ITJISaY,,

L86T °d40) WEI IYSTJIADO] (d) 0-99L1-82A1

601I-dnS UoTjBJEdQ jO POYIoY

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 10 of 16)
Extended Description Module Label

16 When no spin bits are sot, IEAVEEXG praempts the

interrupted routine. It:

Clears the dispatcher active and processor waliting
flags (the SVTDACTV and SVTPWAIT fields, ro-
spectively).

Branches to the COMMONCR subroutine (step 18}
which traces the interrupt and routes control to the
appropriate SLIH.

Makes the super stack current for the dispatcher.
Branches to the digspatcher at entry point IEAPDS78B.

17 When spin bits are sat, instead of preempting the

interrupted routine, |EAVEEXS returns control
to it after the interrupt has been processed. IEAVEEXSG:

Saves the interrupted routine’s registers in the LCCAXGR1
field.

Saves the interrupted routine’s PSW in the LCCAXPSW
field.

Saves the interrupted routine’s cross memory

contral registers 3 and 4 in the LCCAXXM1

field.

Branches to the COMMONCR subroutine {step 18),
which traces the interrupt and routes control to the
appropriate SLIH.

After the SLIH returns control, restores the status of
the interrupted routine, and returns to it.

uHgI 3O STETJOleH POIITJIISOU.

HEI 30 AjJododd — STEYVOICH POsSuUadt

1043U0) JOSTAJGdNg :171S VX/SAW 0TT1-dNS

0-S9.1-82A1

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 11 of 16)

From steps 6, 10,
13,16,17, 22,and 26

L1861 'dJod WAI IYBTJIADO] ()

Input Process Output
'COMMON or COMMONCR (SLIH interface
) routines)
_PSA LCCA
. ' ——N 18 Trace the interrupt. -
- - - 14 18 rrup .PTRACE
| | PSALCCAV LCCAXXM1
. System trace
routine
and GTF
m General
trace
PSA facility
FLCIECOD ::D 19 Determine the type of
external Interruption and give
cantrol to the appropriate
sacond level interruption handler
Routine FLCIECOD
External call X‘1202’
Emergency signal X‘1201°
Timer X'10’
Monitoring and system support
facility (MSSF) or Service
processor architecture X‘2401° A Hat
Malfunction alert X'1200’ sun o
Com. Task X‘'04'
Return to the address speciniea

by the caller of COMMON or COMMONCR

HEI 40 Ajuadoud — STEFJUSIEH PBSUBIT]

uWEI 3O STETJdled PAJITJISAN,

0-99L1-82A1

1861 °d40) WAI IYBTJAdO) (2)

uotjededg jO poyjiey

ITT-dnS

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 12 of 16)

18 The COMMON and COMMONCR routines trace the IEAVEEXT COMMON

external interrupt by invoking the system trace and COMMONCR

the generalized trace facility (GIF). IEAVEEXT obtains

cross memory status from the LCCAXXM1 in COMMON

and from the current control registers 3 and 4 in COMMONCR.
The routines are otherwise the same.

19 The external FLIH determines what type of external

interrupt occurred and routes control to the appropri-

ate SLIH.

) External call (IEAVEXS) — Occurs after a user issues
an external call SIGP (signal processor) instruction.

e Emergency signal (IEAVEES) — Occurs after a user
issues an emergency signal SIGP instruction.

e Timer {(module IEAVRTIO, entry point IEAOTI00) —
Occurs when a selected timer interval expires or when
a TOD synch check occurs.

e Monitoring and system support facility (MSSF) or
Service processor architecture (IEAVMFIH) — Occurs
after the service processor signals the completion of a
software-requested service.

e Malfunction alert (IGFPXMFA) — Occurs if another
processor fails.

o Communications task (IEEBC1PE) — Occurs when the

operator presses the external interrupt key on the
operator’s console.

When the SLIH complates, it returns control to the caller of
COMMON or COMMONCR.

aHgI 30 sSTeTJdajel pajzoTJdisay,,

W4l 30 AjJododd — STETJO3eH PasuadTl

0-99.1-82A1

*da0) WAT IYSTJAdOY (9)

L861

1043u0) JOSTAJEdNS :77S VYX/SAW 2TIT-dNS

rocess

Diagram SUP-10. External First Level Interrupt Handler IEAVEEXT) (Part 13 of 16)

RECURSE (recursion routine)

20

21

22

23

If the first level recursion
bit has already been set

Establish recovery and
save interrupt status.

Call COMMONCR sub:
routine to trace the
interrupt and call the
appropriate SLIH.

Restore the status of the inter-
rupted routine.

Output
?-Step 28
‘ PSA
PSALCCAV.
LCCA
‘COMMON
“. SLIH | ‘PSAESAV2 LCCAXGR2
interface |
‘routine PSACSTK LCCAIHR1
(step 18)
LCCAXXM2
_
LCCAXPS2
.) -PSA
PSALCCAV LCCA
‘ Roturn to the PSACSTK
interrupted
routine. LCCAIHR1

From
1
Input step P
PSA LCCA h
PSALCCAV LCCAIHRT —
PSA
FLCEOPSW
PSACSTK
PSAESTK2
PSA
PSALCCA LCCA_ —
LCCAXGR2
PSAESAV2 LCCAXXM2
LCCAXPS2 -

HEI 30 Ajuedodd — STETJe3RH Pasuadtl

uWdI 30 STefudsjel pPajdtTJIsay,,

0-59.1-82A1

4861 °dJ40) WAI IYBTJAdO] (9)

€TT-dNS UOT3}eJedQ jo poyjey

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXI‘) (Part 14 of 16)

Extorded Description

The RECURSE routine receives control when an

external interruption occurs while an external SLIH
isactive. Two levels of recursion are allowed.

20 |EAVEEXT determines if this is the first or sacond
recursion. If this is the second recursion, continues
processing at step 25.

21 For the first level recursion, IEAVEEXT:

@ Savas the current FRR stack pointer (PSACSTK)
in PSAESAV2 field.

o Sats the current FRR stack pointer to the external
stack 2 (PSAESTK2)

o Saves the registers in LCCAXGR2.

e Saves the old PSW in LCCAXPS2.

@ Saves the cross memory control registers 3 and 4
in LCCAXXM2. .

o Sets the recursion flag in LCCAIHR1.

22 RECURSE calls the COMMONCR subroutine to
system and GTF trace the interrupt and to call

the appropriate SLIH. After the SLIH completes, control

is returned to here.

23 IEAVEEXT restores the status of the interrupted
routine and returns control to it.

Module Label

IEAVEEXT RECURSE

ukdI 30 STETJdeN P3ITIISIAY,

WEI 30 Ajuadoud — STETJaEH Pasusatl

0-G9.LT-82A1 T043u0) JoSTAJRdANG 1715 VX/SAW HII-dNS

*du0) WA IYSTJAdE) ()

L86T

Diagram SUP-10. External First Level Interrupt Handler IEAVEEXT) (Part 15 of 16)

From

step20 Process

24

25

26

27

Input
PSA LCCA
FLCEOPSW /4 LCCAIHR1
PSALCCAV
PSACSTK
PSAESTK3
PSA LCCA
LCCAXGR3
FLCEOPSW
LCCAXXM3
PSALCCAV
PSAESAV3

From RTM
for the first,
second

or third
recursion.

28

29

30

SECOND (Recursion routine)

If the second level recursion
bit has already been set, issue
an ABEND.

Establish recovery and save
interrupt registers and cross
memory status. Set second
level recursion bit.

Call COMMONCR subroutine

to trace the interrupt and call #
the appropriate SLIH.

Restore the status of the
interrupted program.

Clear the external interruption
indicator, according to the
level of recursion.

Clear the DAT translation
buffers (PTLB).

Issue an ABEND to terminate

the program that received the i

L—>

external interrupt.

Output
ABEND X‘3FC’ Register 15
PSA | PSALCCAV |
ﬁ> PSALCCAV LCCA
PSAESAV3
LCCAXGR3
PSACSTK
COMMONCR LCCAINRT
SLIH
Interface LCCAXXM3
routine
(step 18) 7
PSA
J‘> PSALCCAV LCCA
Return to the PSACSTK LCCAIHR1
interrupted
routine
e LCCA
> PSAEXT
_:> LCCAXRC1
PSA
r\
1] PSACSTK

Completion Code

X'3FC’

HEI 40 AjJadoud — STETJa3el pPasuasty

uHEI 3O STETJ3lel PaIITJIISaY,

0~-S9.1-82A1

1867 °dJ40) WEI IYBTJIAO) ()

STI-dnS uoTjeJdedg jo poyyey

Diagram SUP-10. External First Level Interrupt Handler (IEAVEEXT) (Part 16 of 16)

Extandod Dwipﬂon

If an external interrupt occurs while IEAVEEXT is
processing a praevious recursive external interrupt,
IEAVEEXT gives control to the SECOND subroutine.

24 if the second level recursion indicator (LCCAIHR1)

has already been set, IEAVEEXT gives control to
the THIRD subroutine to issue ABEND X'3FC’ with reason
code 0.

25 For the second leve! recursion, SECOND:

o Saves the current FRR stack pointer (PSACSTK)
in the PSAESAVS field.

e Sets the current FRR stack pointer (PSACSTK)
to the external stack 3 (PSAESTK3).

® Saves the registers in LCCAXGR3.

o Saves cross memory control registers 3 and 4
in the LCCAXXMS3 field.

e Sats the second level recursion indicator (the
LCCAIHR1 fiag).

26 SECOND calls the COMMONCR subroutine to trace

the interrupt via system trace and GTF and to call
the appropriate SLIH. After the SLIH completes, it
returns control here.

27 After the SLIH returns, SECOND restores the status
of the interrupted routine and returns control to
the interrupted routine.

IEAVEEXT

Label

SECOND

Extended Description

28 The oxternal FLIH has three retry routines which
the supervisor FRR {IEAVESPR) will retry to.
The retry routine is chosen based upon whichever FRR
stack is the current stack when the interrupt occurs.
These routines clear various external FLIH recursion
indicators, restore the previous {saved) FRR stack, and
ABEND the program which received the interrupt.
RETRY Routine Clears Indicator Restores FRR Stack From
IEAVEE1IR
IEAVEE2R
JEAVEE3R

PSAEXT
LCCAXRC1
LCCAXRC2

PSAESAV1
PSAESAV2
PSAESAV3

29 Allthree retry routines issue a PTLB instruction
to ensure that there is no invalid information in
the DAT translation buffers.

30 Al three retry routines issue an ABEND macro with
an X‘3FC’ completion code to terminate the program
which was running when the external interrupt occurred.

Module

Label

uNEI 30 SIBTJOJeN PAJITJISAU,

WGI 30 AjJodoud — STETJOIEH Pasuaarl

[043uU0) JosTAJedng 1775 YX/SAW 91T1-dNS

0-99.1-82A1

*d40) WET IYSTJAdO) (9)

L861

Diagram SUP-11. Stage 1 Exit Effector (IEAVEF00) (Part 1 of 2)

From SVC IH to
begin scheduling an

asynchronous
lnput exit routine Output
1IGC043
Branch
entry
- IGC0438R
1 Obtain storage for an IRB.
2 Obtain a work area if requested
with the IRB.
Register 0
l ‘ exit routine 1 3 Obtain a save area if requested
with the IRB.
Register 1
[optionbin | 4 [Initialize the IRB.

Size of workarea

7

Jet-———- +

For branch entries,
to caller via branch

For SVC entriss, t0
caller via exit prologue

Process
GETMAIN
routine Register 1
RMBRANCH A R8B J
72-byte problem
program save
area
IRB
RBPPSAV
Work
area

WEI 30 Ajuadoud — STETJaIeW Pasuaari

uHEI 3O SY2TJU3}EeW Pa3ITJIISAY,,

2861 °duo) WAI IYBTJADO) (d) 0-59L1-82A1

LIT-dnS uor}sJadg jo poyiey

Diagram SUP-11. Stage Exit Effector JEAVEF00) (Part 2 of 2)

Extended Description Moduls Label

The stage 1 exit effector is called by supervisor or data
management routines. |ts purposa is to create and initialize,
according to input parameters, an IRB (interruption request
block) to control a user exit routine whose future use is
requested by the caller.

1 The stage 1 exit effector calls GETMAIN to obtain IEAVEF00 1GC043
storage for the IRB from LSQA, subpool 2563. 1IGC043BR

2 The caller may request a work area to ba appended to
the IRB. This work area will be released when the IRB
is freed.

3 Stage 1 exit effector cbrains storage for the save area
from the problem program’s subpool 0, if requested.

4 The information placed in the IRB during initialization
includes the save area address, the entry point address
and addressing mode of the user exit routine, the size of the
RB, the PSW to be loaded to start execution of the asynchronous
exit routine, and bits indicating whether the IRB should be freed
by EXIT.

ulgI 3O STETJOIEH POIDTJISOY,

HEI 30 Ajuadoud — SIETJSIEN PAsuaaTl

1043U0) JosTAJedng :77S VX/SAW 8TT-dNS

0-S9.1-82A1

Diagram SUP-12. INTERSECT Processing (IEAVEINT) (Part 1 of 6)

Input

From supervisor routines to obtain
intersect using the INTSECT macro

Process

WSAL

Output

WSALISEC -

Roglsiér ss\;e'
area

SVTDACTV

(1

CSDACR

WSAL

L4

WSALISEC

Réglster sa;m'
area

‘\/-

Check the state of
the caller.

Dissbled * Step 5

Save the caller’s
registers in the local
work save area.

Spin on the dispatcher
active field until it
is zero.

o ACR processing required?

Restore the caller’s registers :

when serialization is

.complete.

WSAL

—

WSALISEC"

Réglster save

-area

2861 °d40) WAI IYSTJAdO) ()

Return to
the caller

NAI 30 AjJedodd - STETJejel pesusdtl

uHaI JO STBTJOIEW POIITJISOY,

0-99L.1-82A1

1861 °dJol WEI IYSTJAdOD (9)

611-dNS UOT}eJ0d) 40 Poyjzey

Diagram SUP-12. INTERSECT Processing (IEAVEINT) (Part 2 of 6)

Extended Description Module Label

The intersect function provides 8 means to serialize process-
ing with the dispatcher. The INTSECT macro provides the
interface to this function. If an invoker of the INTSECT
macro was assembled with pre-MVS/XA macro libraries, the
INTSECT macro passes control to the intersect module to
ensure that the dispatcher has exited on all processors.
Otherwise, the INTSECT macro makes an inline check of
the dispatcher active field (SVTDACTYV). if the dispatcher
active field is non-zero, the INTSECT macro passes control
to the intersect module which will wait for the dispatcher to
exit each online processor.

Two levels of intersect are provided:
® Local

The routine that raquests. tha intersect must hold the local
lock. The requesting routine then issues the INTSECT macro,
which turns on the requestor’s intersect bit in the local ’
intersect field (ASCBSRQ). If the invoker was assembl-

ed with MVS/XA macros, the INTSECT macro

checks the dispatcher active field (SVTDACTV) for zeros.

If SVTDACTV is zero, indicating that the dispatcher is not
active, the requesting routine continues processing. If
SVTDACTYV is non-zero, the macro branches to the intersect
module at entry point IEAVEINL to perform the required
serialization. If the invoker was assembled with pre- MVS/XA
macro libraries, the INTSECT macro passes control to the
intersect module at entry point {EAVEINT. Note that

the pre - MVS/XA 4-byte SVTDACTYV field is initialized

to all X’FF’s. This forces control to be passed to the service
routine at IEAVEINT, which checks the new 16-byte
SVTDACTYV field.

e Global

The routine requesting the global intersect must hold the
dispatcher lock. The macro turns on the requestor’s inter-
sect bit in the global intersect field (SVTDSREQ). If the
invoker was assembled with MVS/XA macro

libraries the INTSECT macro checks the dispatcher ac-
tive field (SVTDACTV) for zeros. It SVTDACTYV is zero,

Extended Description Module Label

indicating that the dispatcher is not active, the requesting
routine continues processing. If SVTDACTYV is non-zero,
the INTSECT macro branches to the intersect module
(IEAVEINT) at entry point IEAVEING to perform the
required serialization. If the invoker was assembled with
pre - MVS/XA macros, the INTSECT macro passes control

. to the intersect module at entry point IEAVEINT.

IEAVEINT IEAVEINT
IEAVEINL
IEAVEING

1 if the function was entered at the entry point

JIEAVEINT and the dispatcher active field is zero,
IEAVEINT returns to the caller. IEAVEINT determines
the state of the caller (either enabled or disabled). If dis-
abled, the module continues processing at step 5.

2 IEAVEINT saves the caller’s registers O through 14
in the intersect local work save area. If the caller is
enabled, IEAVEINT assumes that the local lock is held
since the dispatcher lock is a disabled lock. The local lock
serializes the local work save areas.
3 The spin on the dispatcher active field (SVTDACTV) IEAVEINT SPINENBL
ansures soriclization with the dispatcher in the follow-
ing way. IEAVEINT examines the SVTDACTV one byte at
a time. When one byte becomas zero, indicating the corres-
ponding processor’s dispatcher Is not active, IEAVEINT
examines the next byte. After all 16 bytes have become
zero, proper serialization has been obtained and IEAVEINT
returns to the module that issued the INTSECT macro.

In order to ensure that the dispatcher does not interfere
with an intersecting routine, the dispatcher checks the local
intersect word (ASCBSRQ) for zero before searching the
TCB queus in the address space. A nonzero ASCBSRQ
indicates that the requesting routine owns the local inter-
sect and that the dispatchar should not change anything in
the address space. Therefore, if the ASCBSRQ is nonzero,
the dispatcher will look at the next addrass space.

4 Thae serialization process s now complete. The
registers are reloaded from the local work save area,
and control is passed to the caller.

wHEI JO STETJBIEN PAIITJIISAY.,

WGI 40 A3juadoudd — STETJa3BW posusdTi

T0J43U0) JOSTAJAdNg 1775 YX/SAW 021-dNS

0-99.T1-82A1

L86T "d40) WEI IYBTJAdO] (9)

Diagram SUP-12. INTERSECT Processing (IEAVEINT) (Part 3 of 6)

Input

SVT

SVTDACTV

CVvT

CVTEXSNR

LCCA

LCCAINGR

Step 1

Process

) s

Requestor disabled.

Save the registers 1-8.

6 Spin on the dispatcher
active field until it is zero.

o Excessive disabled
spin loop detected ?

7 Restore the registars,

® ACR processing required ? RTM

Output

LCCA

LCCAINGR

Yes ACR

JEEVEXSN

Spin

Yes notification
routine

Return to
the caller

WAI 30 AjJodoud — STETJS3lBl Pasuadtl

uWEI JO STeTJa}eH PajITJISay,,

0-S9.1-82A1

1861 °dJ40) WYI IYSTJAdO] (9)

121-dNS UOTiededg jo poyjey

Diagram SUP-12. INTERSECT Processing (IEAVEINT) (Part 4 of 6)

Extended Description Module Label
Requestor Disabled
B IEAVEINT saves the caller's registers 1 through 8 in IEAVEINT SPINDSBL

the LCCA intersect save area and establishes
IEAVINTR as the functional recovery routine for the dis-
gbled spin processing described below. (See ‘Recovery
Processing’’ at the end of this extended description for a
description of IEAVINTR).

6 IEAVEINT examines the dispatcher active field
(SVTDACTV) one byte at a time until the byte

is zero. Since this is a disabled spin, the dispatcher

issues the WINDOW macro to accept an emergency

signal (EMS) or malfunction alert (MFA) and determines

if ACR processing is required. If an ACR condition has

occurred, IEAVEINT gives up control to RTM so that work

on the dead processor can run. If the time spent in this dis-

abled spin loop becomes greater than a global constant,

IEAVEINT calls IEEVEXSN, the spin notification routine,

to give the operator the option of initiating ACR.

7 When all bytes of the dispatcher active field
(SVTDACTYV) have been tested and become zero,
serialization is complete. IEAVEINT removes IEAVINTR
from the FRR stack, reloads registers 1 through 8 from the
LCCA intersect save area, and returns control to the caller.

uHEI JO STETJOJEH PO3ITJISaY,

WEI 30 Ajuadoud — STETJIIEW PasuadIT

T0J43u0) JOSTAJGdNS :77S VYX/SAW 221-dNS

0-59L1-82A1

L86T °du40) WEI FYSTJAdO) ()

Diagram SUP-12. INTERSECT Processing (IEAVEINT) (Part § of 6)

Input

From the supervisor routine
when intersect is reset by
the INTSECT macro

Process
h Local Interssct Reset
8 Save the work
registers,
ASCB
ASCBSRQ > @ Check for any intersect
bits.
e If any bits are on {(other
than past bits)
SVT
" SVIPWAIT N 10 Signal eny waiting
v processor.
PSA
PSASLSA > 11 Restore the registers.

Output

N

PSA

PSASLSA

Return to
the caller

Return to
the caller

WEI 30 Ajuadoud — STETJ91el Pasuesfl

uHgI JO STetJajel pajlaTJdisay,,

0-99L1-82A1

4861 "dJ0) WEI FYBTJAdO] (2)

€21-dnS uoTjeJedQ jo poyjzsy

Diagram SUP-12. INTERSECT Processing (IEAVEINT) (Part 6 of 6)

Extended Description Modute Label

Local Intersect Resst

The Iintersect module is entered using the INTSECT
macro on a local intersect reset when the post bits are on
in the local intersect word (ASCBSRQ). The dispatcher
turns on the post bits before dispatching the wait task
when the local intersact is not avalleble for an address
space that might have work ready.

Note: Post bits exist in the local intersect word
{ASCBSRQ) and are sot by the dispatcher to request not-
ification when the local intersect becomes available,

8 After disabling the processor, IEAVEINT saves the IEAVEINR

work rogisters in the PSA single level save area.

9 IEAVEINT examines the local intersect word
(ASCBSRQ), ignoring|the post bits. If any oty
Intersect bits are on, the routine returns to the caller.

10 If only the post bits are on, IEAVEINT signals
waiting processors to enter the dispatcher to pro- .
cess any work that might now ba ready. IEAVEINT
uses the SVTPWAIT field to determine which processors
are waiting. It usesa SIGP Instruction to signal them.

11 IEAVEINT restores the registers from the PSA single
leve! save area, and returns control to the caller.

Extended Description Module Label
Recovery Processing

When an error occurs while IEAVEINT is in a disabled IEAVEINT IEAVINTR
spin loop waiting for the dispatcher active field to go to

zero, RTM gives control to IEAVINTR. 1EAVINTR saves

{in the variable recording area of the SDWA) the current-

locks-held string (PSACLHS), the global intersect word

(SVTDSREQ), the dispatcher active field (SVTDACTV),

and the local intersect word (ASCBSRQ). If a restart

interrupt caused the entry, IEAVINTR checks whether

IEAVEINT was in a valid spin loop at the time of the in-

torrupt. If it was, IEAVINTR issues a SETRP macro to

return the ID of the processor that is keeping IEAVEINT

in the spin (the processor with the non-zero dispatcher

active byte). The macro also requests that the error be

recorded in the SDWA. 1IEAVINTR then returns to RTM,

and RTM signals the procassor causing the spin via SIGP

restart.

If IEAVEINT is not in a valid spin loop, IEAVINTR
issues an SETRP macro requesting an SDUMP, error
recording, and percolation.

uKgI JO STBTJBIEH PIITJISAY,,

NEI 30 Ajusdoud — STRFJd}EH Pasuasti

H21-dns

YIS VX/SAW

0-99.1-82A1 1043U0) JOSTAJSdNgG

*d40) WEI IYBTIAO) ()

L1861

Diagram SUP-13. 1/0 Interrupt Handler (IEAVEIO) (Part 1 of 14)

Input

From the 1/0 new PSW after hardware

stores the 1/O old PSW

PSA

PSAMODEH

Control Registers

CR3

CR4

CPU Timer

Process

N2

A4

IEAQIOC00

Save the interrupt registers and
branch to the proper routine
using PSAMODEH:

o Task mode
e SRB mode
o Wait mode
o Dispatcher spin mode

IEAVEIO1T Task mode

Establish recovery and set the
1/O FLIH super bit to one.
Save the interrupted task’s
processor timer value, and
cross memory status.

Call the 1/O SLIH to process ”——
the interrupt. IECSLIHA

Output

Step 2
Step 10
Step 13

Step 16

1/0 SLIH

PSA

PSAIOGPR

PSA

PSASUPER

PSACSTK

PSACPUT

PSAIOXMS

WAl 30 Ajuadodd — STETJaiel pasuasti

uldI JO STETJ3lBH Pa3ITJISaY,

0-S9L1-82A1

1861 °dJ40) WAI IYBSTJIAdO] (D)

£€T-dNS uoTieuedg jo POY3IeYy

Diagram SUP-13. 1/0 Interrupt Handler (IEAVEIC) (Part 10 of 14)

Extended Description Module Label

13 When the interrupt occurs while the system is 1IEAVEIO IEAVEIO3
in wait mode, the 1/0 FLIH:

o Sets the 1/O FLIH super bit.in the PSASUPER.
o Saves the CPU timer in the PSACPUT.

14 The /O FLIH accumulates the wait time by calculating
the amount of tima in wait state and adding it to the

LCCAWTIM. It also sats to zero the dispatcher active

(SVTDACTV) and processor waiting (SVTPWAIT) fletds.

16 The /O FLIH:

o Sets the return address so that the 1/0 SLIH will retum

directly to the dispatcher at entry point IEAPDS7B.
@ Passes control to the 1/0 SLIH.

16 When the interrupt occurs while the system is in dis-
patcher mode, the 1/0 FLIH:

IEAVEIO4
e Sets the 1/O FLIH super bit in PSASUPER.

® Sets to zero the dispatcher active byte (SVTDACTV) and
the processor waiting byte (SVTPWAIT).

17 Thel/OFLIH:

o Sets the return address so that the 1/0 SLIH will return
directly to the dispatcher at entry point IEAPDS7B.
® Passas control to the 1/0 SLIH.

ulEI JO STEFJSICH POJITJIISAYU,

HEI J0 Ajuodoud — STETJOIEH POasusdtl

[oJ43u0) JosTAJedng :7S VX/SAW HETI-dNS

0-S9L1-82A1

L86T °dJ40) WAI IYBTJIAdO] (D)

Diagram SUP-13. 1/0 Interrupt Handler (IEAVEIO) (Part 11 of 14)

Input

Entered from 1/O SLIH when scheduling
an SRB during a TCB mode interrupt.

Register 1

Process

SRBASCB

IEAVEIOP

18 Determine if the SRB is
scheduled to a higher
priority address space.

o |Ifitis, sat the PSAIOPR
bit on.

19 Place the SRB on the
global SRB queue.

20 |faprocessorisina
wait state:

® Turn the PSAIOPR
bit off.)

e Link to SCHEDULE
modute {IEAVESCO)
to signal the waiting
Processor.

IEAVESCO

Entry point
IEAVESC4

) Return o

1/0 SLIH

Output
PSA
J\
) PSAIOPR
SVT
SVTGSMQ
SR8

HgI JO0 Ajuadoud — STETJIO}EH PasUdldT

uwHgI 3O STEFJa3EHd POIITJISOU.

0-99L1-82A1

4861 'dJ40) WAI IUBTJADO] ()

§ST-dNS UOT}vJed) 30 Poyzoy

Diagram SUP-13. 1/0 Interrupt Handler (IEAVEIO) (Part 12 of 14)

Extended Dascription Modute Label

18 When the interrupt occurs while the system is in IEAVEIOP
TCB mode, the 1/0 FLIH determines if an SRB

is scheduled to a higher pricrity addrass space by

comparing the dispatching priorities of the SRBs target

address space and the home address space. If the target

address space is a higher priority, the 1/O FLIH sets the

PSAIOPR bit.

If the interrupted task and the task associated with the
SRB is for the same addrass space, the PSAIOPR bit is
also set, since the relative priorities of the tasks are unknown.

19 The 1/O FLIH places the SRB on the global SR8
queus.

20 f there is a processor in a walit state, the 1/0O FLIH resets IEAVESCO |IEAVESC4

the PSAIOPR bit to zero and calls the schedule
modute (IEAVESCO) to signal the waiting processor.

The 1/O FLIH then returns to 10S,

w8l JO STeTJalel POITJISAY,

WAI 40 A3uadoud — STETJd3BH PasusaTi

T043u0) JosTAdedng 7S YX/SAW 9ST-dNS

0-99L1-82A1

*d40) WET IYBTIAdOY (9)

L861

Diagram SUP-13. 1/O Interrupt Handler (IEAVEIO) (Part 13 of 14)

Input

PSA

From
IEAVEIOR
Process
heeovery processing:
IEAVEIOX

PSAMODEH

> 21 Branch to the proper
routine using

PSAMODEH
o Task mode
e SRB mode

IEAVEIOR

22 If possible to con-
tinue retry processing,
exit to IEAVEIOX.

Otherwise, continue
at step 23.

23 Clear the 1/0 indica-
tor and restore the
FRR stack pointer to
point to the normal
FRR stack.

Step 4
Step 12

IEAVEIOX

Step 23

ABEND

Output
PSA Normal
FRR stock
> | psasurer
PSACSTK
Completion codes

]

= e

NEI 30 Ajuedodd - STETJa3lel pPasuast

algI 30 STETJd1EW POJIOTJIISAY,,

0-S9L1-82A1

1861 °dJ40) WAI 3IY6TJAdO) (D)

LE1-dNS uorjeJdadg 30 poyjoy

Diagram SUP-13. 1/O Interrupt Handler (IEAVEIO) (Part 14 of 14)

Extendod Description

Recovery Processing:

21 Control is received when the 1/O FLIH recovery rou-
tine {IEAVEIOR) indicates to continue retry pro-

cessing after an error. The system mode determines which

routine is to continue retry processing. |[EAVEIO uses

PSAMODEH as an index to the internal table IORETTAB

to reference the proper routine.

22 If the error occurred when the 1/0 SLIH was invokea

to process a task mode or SRB mode 1/0 interrupt,
resume normal processing by exiting to entry point
IEAVEIOX of IEAVIO.

23 The 1/O FHIL FRR {IEAVEIOR) clears the 1/0 FLIH

super bit in PSASUPER and points the FRR stacker
pointer (PSACSTK) in the PSA to the normal FRR stack.
It then ABENDS the interrupted program with a X'2FC’
completion code.

Label

IEAVEIOX

IEAVEIOR

uHdI JO STEFJ8IBW POIITJIISAY,

HEI 30 AyJadoud - STLTJO3EH PasSusasr

T0J43u0) JosSTAJSdNng :77S YX/SAW 8EI-dNS

0-S9L1-82A1

Diagram SUP-14. Low Storage Refresh (IEAVELCR) (Part 1 of 2)

From IEAVESAR
Input Process ‘Output

1 Refresh selected static | PSAFIELD
SVTVCONS PSA fields. 1 > PSASVT
|:| - =\ 2 Refresh slected VCONS SVTFIELD
T [
CVTVCONS 3 Refresh the PSA 7 Py
—_— pointers to the CVT. _.___] .
— ‘ j FLCCVT2
ISTAVT _—1—| :> 4 Refresh VCONS in CVT. _4I ‘ m
S e | | > [1
: __'> 5 Refresh the PSA pointer v -
ovT : to VTAM’s address vector PSA,
table. > PSAATCVT
GSDAASVT v
GSDPCCT
GSDAGDA VT
GSDACSD
GSDAMAXLL A A CVTASVT
3> 6 Refresh pointars to the : 2 CVTPCCAT
GSDASTRT following critical system - -
control blocks from fields CVTGDA
GSDA i\l; (.‘T:‘)?\l C.SSD or froma CVTCSD
GSDAASVT ’
GSDAPCCT e ASVT
GSDAGDA e PCCA AT
= e CSD ASVTMUSI
SeDACeD e GDA ASVTMAXI
GSDAMAXU e SPTT
GSDASTRT Refresh ASVT max user's field ASVTMAXU
and related ASVT control fields.
N GDA
ASVT GDA) 7 Refreshes the PCCA
pointer (PSAPCCAV). :
ASVTSTRT GDASPTT
GDASPTT
ASVTNONR
ASVTMAXI
'
ASVTMAXU _l_Q CVTLLCB
| CVTPCCAT |
PCCAT
PCCATOOF Caller

L1861 °d40) WAI IYBTIJAdO] ()

NEI 30 Aju3dodd — STEFJdalel Pasuadri

uHEl JO STETJOJEN PO3ITJISOY,

1861 °'d40) WEI IYBTJIAdO] (9) 0-S9.1-82A1

6ST-dNS UOT}eEJSd) JO POYIOY

Diagram SUP-14. Low-Storage Refresh (IEAVELCR) (Part 2 of 2)

Extended Description Module

|EAVELCR checks, and if necessary, refreshes critical
fields in the PSA, SVT, CVT, ASVT, and the GDA.

1 Refrashes static fields in the PSA.
2 Refreshes the critical values in the SVT.

3 Refreshes the PSA secondary pointer to the CVT
(FLCCVT2).

4 Refreshes the VCONs in the CVT.

6 Refreshes the PSA pointer to VTAM's CVT
{PSAATCVT) from VTAM's vector table (AVT).

6 Refreshes pointers to critical system control blocks.
These control blocks are the ASVT, PCCA, CSD, and
the GDA, The ASVT max user’s field and rolated

fields are recalculated and refreshed:

* ASVTMAXI - The installation specified max user’s count.

* ASVTNONR - The number of ASVT entries reserved to
replace non-reusable ASIDs.

® ASVTSTRT - The number of ASVT entries reserved for
STARTed/SASI address spaces.

* ASVTMAXU - The installation specified max user’s count
plus the number of ASVT entries reserved to place
non-reusable ASIDs and the number of ASVT entries
reserved for STARTed/SASI address spaces.

These pointers and fields are checked against write protected

fields in the GSDA. The SPTT (subpool translator table pointer)

is refreshed via a VCON.
7 Refreshes the pointer to the PCCA (PSAPCCAV).
The alternate path to the PCCA is
CVTPCCAT = PCCATOOP —>PCCA. If both the
PSAPCCAYV and the PCCATOOP for this processor fail
LRA checks, then this processor is set to a disabled
wait with a PSW wait code X‘083".

Label

uNdI 30 STIBTJOICH POJOITJISAY,

WAI 30 Ajuedodd - STETJOIEKH POISUBITT

1043u0) JOSTAJGdNg :77S VX/SAW 051-dNS

0-S9.1-82A1

L1861 °"d40) WEI IYBTJAdO) (2)

Diagram SUP-15. Spin Lock Manager Processing (IEAVELK) (Part 1 of 8)

From supervisor routines
to obtain a lock, via
Input SETLOCK macro instructions PrOCess Output

Obtaining Locks (Spin type locks
only, not including the CPU lock
or shared/exclusive locks) Completion code
PSA
g— — |- - 1 Perform hierarchy violation checks — ‘/\ I X073 J
PSACLHS | — — —~|—~ —~ .' for unconditional requests for mul-
i tiple level spin locks. Reogister 16
PSACLHT : e If the caller violates reason code X'08" |
i locking hierarchy :
PSACPULA :
t= — =]— — 2 Detormine if the processor already
] owns the lock for multiple level Register 13
] in locks. N
1 sin foe) I Return code = 4]
: e Ifso
i Register 13
| Return to I Return code = 0]
| Caller
] Lockword
e —]~— 3 Trytoobtain the lock and, if ical CPUID
obtained, indicate that this I Los 1
procassor owns it. PSA
Return to -
o If obtained
Caller PSACLHT
PSACLHS

HAI 30 AjJadoud - STeTJalel PasuadLl

uHEI JO STEeTJoleH PaJITJISaY.

0-99.1-82A1

1861 °"dJ0) WAI IYBTJAdO] (9)

Ibl;dﬂs uotjeJdadg jo poyjey

Diagram SUP-15. Spin Lock Manager Processing (IEAVELK) (Part 2 of 8)

Extendad Description

The spin lock manager provides the means for a user to
obtain locks that serialize the use of a resource. The lock
manager provides the following locks:

RSMGL (RSM global lock)

VSMFIX (VSM fixed subpools lock)
ASM (auxiliary storage management lock)
ASMGL (ASM global lock)

RSMST (RSM steal lock)

RSMCM (RSM common lock)

RSMXM (RSM cross memory lock)
RSMAD (RSM address space lock)

RSM (RSM lock, shared/exclusive)
VSMPAG (VSM pageable subpools lock)
DISP (dispatcher lock)

SALLOC (space allocation lock)
IOSYNCH (108 synchronization lock)
10SUCB (10S unit control biock lock)
SRM (the system resource management lock)
TRACE (TRACE lock, shared/exclusive)
CPU (processor lock)

The lock manager both obtains and releases locks. There
are two distinct methods of obtaining locks; conditionally
and unconditionally. if the lock cannot be obtained for a
conditional request, the lock manager immediately re-
turns control to the caller with the appropriate return
code in register 13. If an unconditional request for a spin
lock cannot be satisfied, the lock manager keeps control
unti! the lock Is obtained.

Note;
For non-class spin locks, step 3 Is performed prior to steps
1and 2,

Module

IEAVELK

Label

Extended Description Module

1 If an unconditional request for a multiple level spin lock JEAVELK
is presented, the lock manager determines whether the
caller has violated the locking hierarchy by:

o Unconditionally requesting a lock lower in the hler-
archy than a lock it already holds,

o Requesting a class lock when another lock In that
class is already held,

The lock manager abnormally tarminates callers who vio-
late the hierarchy with a X'073' completion code and a
reason code of X‘08’ in register 15.

2 The lock manager determines whether this processor
already owns the requested lock. If this processor

owns it, the lock manager puts a return code of-4 in register

13, and returns control to the caller. Otherwise, processing

continues.

3 The lock manager trigs to obtain the tock. If the lock
is available (the lockword contains 0), the lock man-

ager indicates ownership by:

e Placing into the lockword the logical processor 1D.

e Setting the appropriate bit in the processor-ocks-hetd
string (PSACLHS)

o For any class lock, storing the address of the lockword
into the processor-locks-held table (PSACLHT)

The lock manager then returns to the caller with a zero
return code. |f the lock is not avalilable, processing con-
tinues at step 4.

Label

uHEI J0 STeTJajel PajdTJdIsay,

HEI 30 AjJadoud — STeETJd3el PISUIIET

T0J43uU0) JOSTAJOdng 171§ VX/SAW 2H1-dNS

0-99.T-82A1

1861 °da0) WAI IYBTJAdO) (2)

Diagram SUP-15. Spin Lock Manager Processing (IEAVELK) (Part 3 of 8)

Input

Process

4

a)

b}

c)

If the processor cannot obtain

the lock, perform the necessary

processing.

For conditional requests of

multiple level spin locks:

e Determine if the lock is
held by another processor:

- Yes

e A level error has been detected,

Returns to
Caller

V

Returns to

For unconditionai requests or mul- ' Caller

tiple level spin locks:

® Dataermine if a level error
has been detected:
— Yes

- No

For unconditional requests of
single level locks

® |f the lock is already owned.

[] If a higher lock is held.

* Continue at

step 4d

e
— 1=

\/?

Output

Register 13

Raturn code X‘08’

Register 13

Return code X‘10’

Completion code
X073’

Reason code
X‘28'

Register 13

Return code X‘'04°

Completion code

X'073'

Register 16

Reason code
X‘08'

HEI 30 AjJedodd — STBTJOIEH POSUSITT

uHdI 30 STETJ83eH PaIITJISAY,

0-99.1-82A1

{861 °d40) RWAI IYBTJIAdOD (2)

£HI-dnS uoTjeJdadg jo poyysy

Diagram SUP-15. Spin Lock Manager Processing IEAVELK) (Part 4 of 8)

Extondad Dosorigalon

4

For conditional requests, IEAVELK sots one of the
following return codes:

X ‘04’ — Lock already owned by caller.

X ‘08’ — Lock held by another processor.

X‘10': — Level error detected. {Lavel errors are only
defined for muitiple level locks.)

For unconditional requests for multiple level spin
locks, IEAVELK determines if a level error has
occurrad. A leval error indicates that:

The caller is attempting to use the same lockword to
represant two distinct locks. This is detected if
the PSACLHT slot for the lock requested is zero,
the lockword contains the currant CPU ID, and
another PSACLHT slot contains the user-supplied
lockword address.
The caller is attempting to use two different
lockwords for the same lock. This is detected if
the PSACLHS indicates the lock is held but the
PSACLHT slot contains a lockword address
different than the user-supplied lockword address.
If a level error has been dstected, the lock manager
abnormally terminates the lock request with a
complation code of X‘073’ and a reason code of

X ‘28’ in register 15, if the request was for un-
conditional ownership. A return code of X'10’

is generated for level errors detected on conditional
requests.

Module

Label

Extended Description

Module

Label

uW8I 3O STETJIICH POIITJISBY,

WA JO Ajuadoud — STeTJajel pasusdti]

T043u0) JOSTAJRdNS :71S VX/SAH HHI-dNS

0-99L1-82A1

1861 "d40) WEI IYSTIADO] ()

Diagram SUP-15. Spin Lock Manager Processing (IEAVELK) (Part 5 of 8)

Input

CVT

Process

>5

CVTEXSLF
spin factor

Lockword.

If the processor cannot
obtain the lock for a
valid unconditional
request

a)

b|

-

c)

d

—3

e)

f)

Prepare to enter
spin.

If the lockword is
zero,

— Prepare to exit
spin.

— Try again to
obtain the lock.

Issue a WINDOW

macro instruction

and check for ACR
processing.

If the ACR occurred

— Call RTM.

— Prepare to exit
spin.

— Try again to
obtain the lock.

If lock ownership
changed

— Restart spin loop.

If spin loop count is
zero

— Inform operator
of excessive spin.
— Restart spin loop.

__$ continue at

continue at
step 3

continue at
step 5b

IEEVEXSN
Excessive spin
notification

routine

Output

continue at
step 5b

HEI 30 Ajuadoud — STETJd3IEH Pasuadstl

ulgI JO STETJOleH P3JITJISAN.,

0-S99L1-82A1

L1861 °dJ40) WAI IYBTJAdO) (d)

uorjeJadg JO poy3ey

SHI-dns

Diagram SUP-15. Spin Lock Manager Processing (IEAVELK) (Part 6 of 8)

Extended Description Module Label

B If the processor cannot obtain the lock for a valid
unconditional request, the lock manager loops (*'spins’’)
to check if the lockword is zero.

a) IEAVELK issues a SETFRR macro to establish ELKFRR
as the functional recovery routine (FRR), turns on the
lock manager super bit, and calculates the spin lcop time
out count.

b

-~

The lockword is checked again to see if it is zero. If it
is, IEAVELK turns off the super bit, issues the
SETFRR macro to delete the FRR, and resumes pro-
cessing at step 3, where it tries to obtain the lock again.

¢} The lock manager issues a WINDOW macro to enable
EMS (emergency signal) and MFA {malfunction alert)
interruptions. (This is done to prevent deadlock in case
of failure on the other processor.)

d

~—

The lock manager then determines if an ACR (alternate
CPU recovery) condition occurred. If so, it returns con-
trol to RTM and turns off the super bit, issues the
SETFRR macro to delete the FRR, and resumes pro-
cessing at step 3, where it tries to obtain the spin lock
again.

~

e} If lock ownership has changed, lock manager restarts

the spin at step 5b, resetting the spin loop time count.

f) If the spin loop count is zero, the lock manager calls
IEEVEXSN to inform the operator of the excessive
spin and restarts the spin loop at step 5a by resetting the
spin loop time count.

Otherwise, IEAVELK goes to step 5b to check the lock-
word and repeats the loop.

uNEI JO STETJ31EW PajITJISay,

WEI 30 AjJadoud — STeTJajel pasuast

T0J43u0) JosTtAJedng :77S VX/SAW 9HT1-dNS

0-99.1-82A1

L86T 'd403 WEI IYBTJADO] (D)

Diagram SUP-15. Spin Lock Manager Processing (IEAVELK) (Part 7 of 8)

input

Register 11

4 to lock, or 0

From SETLOCK
macro to release
a spin-type lock Process

Releasing Spin-type Locks
(Spin locks only, not
including the CPU lock or

shared/exclusive locks)

Register 12

Lock’s parm
list

Displacement
into PSACLHT

PSACLHS
owership mask

Hierarchy mask

Release mask

Register 13

Entry point address

for lock request

Register 14

Caller’s return address

PSA

PSACLHT

PSA

PSAUPER

PSACLHS

6 Determine if the proces-
sor holds the lock.

e Lock held by this
processor.

o Lock held by
another processor or
lock not held.

7 Update the lock
indicators.

> 8 Determine the return
environment.

Owned

Output

Lock

We

v Lo

o |

Register 13

Held by

Code X'08°' — another

processor

Register 13

Returns to
caller

D Code X'04’ — Not held

Code X‘08' — Held by
another processor

> L

PSA
PSACLHS
PSACLHT
Register 13
Code = 0 B

Return to the caller:

o Enabled if no spin locks are held, no

super bits are on, and the caller has
not requested a disabled release.

e Disabled when the conditions above

are not met.

WEI 30 Ajuadodd — STETJ8lel pasuasti

uWNdI JO STETJ33BH PAIITJIISAY,,

0-99.1-82A1

4861 °dJ40) WGI IYBTJAdO) ()

LYT-dNS UOT}eJedQ 3O Poyjey

Diagram SUP-15. Spin Lock Manager Processing IEAVELK) (Part 8 of 8)

Extended Description

6 The lock manager releases the locks when the caller
issues the SETLOCK macro using the RELEASE
operand.

IEAVELK determines if the lock is held by this processor.

e |f the processor owns the lockword, the lock manager
releases it by setting the lockword to zeros.

o |f the lock is not held by this processor, IEAVELK
returns to the caller with a return code in register 13.
If no processor holds the lock, the return code equals
X'04’; if another processor owns the lock, it equals
X'08°.

7 |EAVELK updates the lock indicators by clearing the

appropriate bit in the locks-held string. If thisisa class
lock, IEAVELK clears the appropriate entry in the locks-
held table.

8 If any one of the following conditions is met,
IEAVELK returns to the caller in a disabled state.
® A spin lock is held.
A super bit is set.

The caller requested control be returned in a disabled
state.

Otherwise, IEAVELK returnsin an enabled state. Ineither
case, the return code is zero.

Moadule

Label

uWEI 3O STETJOICH PIJITJIISAY,,

WEI 30 Ajuadoud - STETJalel Pasuadri

1043U0) JOSTAJBdNG :77S YX/SAW 8HT-dNS

0-G9LT-82A1

L861 °"d40) WAI IYBTJAdO] (D)

Diagram SUP-16. Obtaining Shared/Exclusive Locks (IEAVELK) (Part 1 of 6)

From SETLOCK macro to obtain

Process

1 Perform hierarchy
violation checks.

a shared/exclusive lock
Input
PSA
PSACLHS
LCCA Register 11
LCCACAFM 1 Lockword

o [f the lock is already
held or a higher lock
is held

2 Try to obtain the lock.

e If the lock is obtained

owns it and return to the
caller.

3 if the processor cannot
obtain the lock then

o For conditional
requests.

indicate that the processor

.Continue at
step 4

” To caller

—>
Return to

routine that
issued

Output

Lockword

Ownership
bit sat

PSA

PSACLHS

SETLOCK

Register 15

Return code 8

WEI 30 Ajuadoud — STETJOlel Pasudadfl

ulEl JO STETJOIEeN PBIITJIISBY,

0-S9L1-82A1

1861 °dJo) WAI IYSTJAdO) ()

651-dnNS uotjeJadQ jo poyjsy

Diagram SUP-16. Obtaining Shared/Exclusive Locks (IEAVELK) (Part 2 of 6)

Extended Description

1 Thetock manager determines if the lock requested is
already held by the caller or if a higher lock in the
locking hierarchy is already held. If 0, continue at step 4.

2 The lock manager tries to obtain the lock. If the lock-

word is available, then: For shared requests, the
exclusive ownership and exclusive pending bits 0 and 1 of
the lockword must be zero; for exclusive requests, the
lockword must be zero. Ownership of the lock is indicated
as follows:

o If the lock is obtained shared the lock manager turns on
the appropriate bit reflecting the requesting processor.
(Bits 16-31 of the lockword represent CPU O through F,
respectively).

o If the lock is obtained exclusive, the lcck manager sets
the appropriate bit in the low order two bytes. Bit 0
of the lockword is set to one to indicate exclusive
ownership.

3 For conditional requests, IEAVELK returns a return
code of 8 in register 13.

Module

Label

uNgl 30 STeTJalel PaldTJlsay,

WEI 30 AjJdadoud — STETJa3el Pasuaarl

ToJ43u0) JosTAJedng :17S VYX/SAW 0ST-dNS

0-99.1-82A1

L1861 °"du0) WAI IYBTIJAdOD (2)

Diagram SUP-16. Obtaining Shared/Exclusive Locks (IEAVELK) (Part 3 of 6)

Input

Process

CVvT

CVTEXSLF
Spin Factor

tockword

1

-

4 If the processor cannot
obtain the lock for a
valid unconditional
request:

a)
b)

c)

d)

e)

Prepare to enter spin.

If lockword indicates
lock is available:

~— Prepare to exit
spin..

— Try again to
obtain the lock.

Issue a WINDOW
macro instruction
and check for ACR
processing.

If ACR occurred:
— Call RTM.

— Prepare to exit
spin.

— Try again to
obtain the lock.

If spin loop count
is zero.

— Inform operator
of excessive spin.

— Restart spin loop.

Continue at
step 2

Output

WAI 30 AjJadoudd - STETJ93EH PBSUsIT

uN8I 3O STBTJa3EW POaJITJISAY,,

0-99L1-82A1

1861 °dJ40) WAI IYBTJAdO) (D)

uorjedadg 4O Poyiou

1S1-dnSs

Diagram SUP-16. Obtaining Shared/Exclusive Locks IEAVELK) (Part 4 of 6)

Extended Description

4

If a shared lock is requested, the lock manager considers
the lock available when the exclusive ownership bit and
the exclusive pending bit (bits 0 and 1 of the lockword,
respectively) become zero.

If exclusive ownership is requested, the lock manager
considers the lock available when either the lockword
becomes zero or the only bit on in the lockword is the
exclusive pending bit.

If the processor cannot obtain the lock for a valid
unconditional request, the lock manager loops {*spins”’)
to check if the lockword is zero.

a) IEAVELK issues a SETFRR macro to establish
ELKFRR as the functions recovery routine (FRR),
turns on the lock manager super bit, and calculates
the spin loop time-out count .

b) The lockword is checked again to see if it is zero.
if it is, IEAVELK turns off the super bit, issues the
SETFRR macro to delete the FRR, and resumes
processing at step 2, where it tries to obtain the lock
again.

c) The lock manager issues a WINDOW macro to enable
EMS (emergency signal) and MFA (malfunction
alert) interruptions. (This is done to prevent dead-
lock in case of failure on the other processor.)

d) The lock manager then determines if an ACR (alter-
nate CPU recovery) condition occurred. If so,
returns control to RTM and turns off the super bit.
Issues the SETFRR macro to delete the FRR, and
resumes processing at step 2, where it tries to obtain
the spin lock again.

e) If the spin loop count is zero, the lock manager calls
IEEVEXSN to inform the operator of the excassive
spin and restarts the spin loop at step 4a by resetting
the spin loop time count.

Otherwise, IEAVELK goes to step 4b to check the
lockword and repeats the loop.

uldI 30 STETJO3CH PaJITJISaAY,

WEI 30 Ajuadoud — STETJ93ILW PasSuadTl

T043u0) JoSTAJGdNng :77S VYX/SAW 2ST1-dNS

0-S9L1-82A1

1861 °d40) WEI IYBTIADO] (2)

Diagram SUP-16. Obtaining Shared/Exclusive Locks (IEAVELK) (Part 5 of 6)

input

Process

5 If a higher lock in
the locking hierarchy
is held, a hierarchy
violation exists.

11

6 1f the lock is already held,
determine if it is held with
the same scope as was
requested.

e No.

Output

To caller.

Completion code

X073’

Register 16

Reason code X'08’

Completion code

X073’

Rogister 15

Reason code X‘24’

Register 13

Return code 4

WEI 30 A3uadoud — STRTJOIEH Pasusdti

uW3I 3O STRTJBIEN PaJITJISeY,

0-99L1-82A1

L4861 °d40) WAI IYSTJIAdO) (D)

€G1-dNS uoT}BJSd) JO POy}l

Diagram SUP-16. Obtaining Shared/Exclusive Locks (IEAVELK) (Part 6 of 6)
Extended Description Module Label

5 ifalock held is higher than the one requested, the caller
abnormally terminates with a completion cods of
X073’ and a reason code of X’'08’ in register 15.

6 The caller owns the lock requested. The lock manager
validates the request by checking if the lock is

held with the same scope as was requested.

o If the scope is different, abnormally terminates the
caller with a completion code of X'073’ and a reason
code of X‘24’ in register 15

o If the scope is the same, returns control to the caller
with a return code of X'04’ in register 13.

WGI 30 Ajusdoud — STEFUdILl Pasuadll
uME8I 30 STETJOIEBN PBIITIISAY.,

T043u0) JoSTAJSdNg 177S VX/SAW HST-dNS

0-G9L1-82A1

1861 °d40) WAI IYSTJIAdO) (D)

Diagram SUP-17. Releasing Shared/Exclusive Locks - Unconditional and Conditional (IEAVELK) (Part 1 of 4)

Input

Register 11

+ Lockword

Register 12
Lock’s parm
list

Lock’s parm list.
Displacement
into PSACLHT

PSACLHS
ownership mask

Hierarchy mask

Release mask

PSA

.7

PSACLHS

PSA

PSACLHT

1 Determine if the lock
is hald by this processor.

o Lock is not held by this

processor.

The lock is not being
released with the same
scope as it had specified
when it was obtained.

The lock is held by this
processor and is being
released as shared.

The lock is held by this
processor and is being
released as exclusive.

>

* To caller

Register 13

Return code X'04’

Comgpletion code

x'073'

Register 16
Reason code
X'24'

Lock

Corresponding
ownership bit
set to zero.

|

Lock
Corresponding
ownership bit
sat to zero.
Exclusive
ownership bit-
set to zero.

HEI Jo A3uadoud — STEFJalel Pasuasti

uWE8I 30 STETJIEN POaJITJISAY,

1861 *dJ0) WAI IYSTJIADO) (9) 0-59.L1-82A1

GST-dNS UOT}eJod) Jo poyjey

Diagram SUP-17. Releasing Shared/Exclusive Locks - Unconditional and Conditional (IEAVELK) (Part 2 of 4)

Extended Description

1

IEAVELK dstermines if the lock is held by this
processor.
If the lock is not held by this processor, IEAVELK
returns to the caller with a return code of X'04’ in register
13.
if the lock is being released with a different scope attribute
than was specified when the lock was obtained, the
caller abnormally terminates with a completion code
of X‘073’ and a reason code of X'24’,
If the lock is being released as shared, resets the corres-
ponding ownership bit in bit positions 16 - 31 of the
lockword to zero.
If the lock is being released as exclusive, resets the
corresponding ownership bit in bit positions 16 - 31
of the lockword to zero. Additionally, resets the
exclusive ownership bit (bit O of the lockword) to
zero. After releasing the lock as exclusive,
the only bit in the lockword that could still be on
is the exclusive pending bit (bit 1 of the lockword).

Module

Label

w8l JO STETJdICH POIITJUISAY,

HEI 3O AjJuadoud — SIETJSIEW PIsSusIT

T043u0) JoSTAJEdNg :71S VX/SAW 99T-dNS

0-S9L1-82A1

L86T °duo) WAI IY6TJAdO) (D)

Diagram SUP-17. Releasing Shared/Exclusive Locks — Unconditional and Conditional (IEAVELK) (Part 3 of 4)

Input

PSA

Process

PSASUPER

—

PSACLHS

2 Updatoe the lock

indicators.

3 Determine the’
return environment.

l To caller

Output
PSA
k) PSACLHS
d PSACLHT
Register 13

HEI 30 Ajuadoudd - STETJajel Pasuadty

uHEI JO STETJ33eY PajOTJIsay,

0-99.1-82A1

L86T *dJy0) WAI IYSTJAdO] (D)

IST-dNS UOTededQ Jo poyyey

Diagram SUP-17. Releasing Shared/Exclusive Locks — Unconditional and Conditional (IEAVELK) (Part 4 of 4)

Extended Description

2 |EAVELK updates the lock indicators by clearing

the appropriate bit in the current locks held string.
If the lock was released as exclusive, IEAVELK also
sets the high order bit of the corresponding current
locks held table (PSACLHT) slot to zero to indicate
that the lock is no longer held.

3 If any one of the following conditions is met,
IEAVELK returns to the caller in a disabled state:

® A spin lock is held.

® A super bit is set.

o The caller requested that control be returned in a
disabled state.

Otherwise, IEAVELK returns in an enabled state. In
either case, the return code is zero.

uH8I 30 STETJI}El PAIITUISAYa.

WEI 30 Ajuadoud — STETJIIEN Pasuastl

0-G9.1-82A1 ToJ4ju0) JostAJedng 1775 YX/SAW 8ST-dNS

*du0) WEI IY6TIAdOY (9)

L1861

Diagram SUP-18. Obtaining CPU Lock (IEAVELK) (Part 1 of 2)
From SETLOCK request to
obtain the CPU lock.

Input Process

Register 11
Lockword
address PSACPUL
CPU lockword
count J>

Disable the PSW for
1/0 and external
interrupts.

Set the CPU lock held
bit in the PSACLHS.

Increment the CPU
lockword count.

Set return code to zero.

Output

Disabled PSW

PSACLHS

8 v

Register 13

To SETLOCK caller

WEI 30 Ajuadoud — STETJ23BH Pasuast]

uWdI 3O STeTJaieW pajydTJ3isay,

0-99L1-82A1

4861 °dJ40) WAI IYSTJIAdO] (D)

6GT-dNS UuoT}BJEdQ JO POy}l

Diagram SUP-18. Obtaining CPU Lock (IEAVELK) (Part 2 of 2)

Extended Description Module

1)EAVELK disebles the PSW for 1/O and external IEAVELK
interrupts to serialize the CPU lockword, PSACPUL.

2 |EAVELK sots bit 0 of the current locks held string,
PSACLHS, to one to indicate that the CPU lock is
owned on this processor.

3 1EAVELK increments the CPU lock count in the
CPU lockword, PSACPUL, by one.

4 |EAVELK sots a return code of zero in register 13.

Label

CPUOBT

WEI 30 Ajuadoud — STETJ0IeN POSUBIT
uWal JO STEBTJSIEH POIITIISAY,

ToJ43ju0) JostAdedng :77S YX/SAW 091-dNS

L86T °dJ40) WAI IYBTJAdO] () 0-G9L1-82A1

Diagram SUP-19. Releasing the CPU Lock (IEAVELK) (Part 1 of 4)

input
PSACLHS
Current locks -
held string —:>'
Register 11
CcPU
lockword PSACPUL i A
CPU lockword | _)
count
PSACPUL
PSASUPER
PSACLHS

Process

From SETLOCK request to
release the CPU lock.

1 1f the CPU tock is not
held.

2 Decrease the CPU
lockward count,

3 if the CPU lockword
count is zero, turn off
the corresponding bit
in the current locks
held string.

4 Set return code to zero
in register 13.

5 1 caller owns any other
spin locks, super bits, or
the CPU lockword is greater
than zero, return to caller
in a disabled state.

Continue at
step 7

\/7

B Return to caller

Output

PSACLHS

Register 13

e 1]

Disabled PSW

WGI 30 Ajuadodd — STRTJa3el Pasusstl

uHdI 4O STETJ8IEH POIITJIISAY,

0-99.1-82A1

{861 °d40) WAI IYSTJAdO] ()

191-dNS UoTiededg jo poyjay

Diagram SUP-19. Releasing the CPU Lock (IEAVELK) (Part 2 of 4)

Extended Description Module Label

1 1f the CPU tock held bit is off in the current locks
held string, PSACLHS, IEAVELK goes to step 7. IEAVELK CPUREL

2 |EAVELK decreases the CPU lock count in the CPU
lockword, PSACPUL, by 1.

3 If the count has gone to zero, IEAVELK turns off the
CPU lock held bit in the current locks held string,
PSACLHS.

4 IEAVELK sets a return code of zero in register 13.

5 any super bits are on in the field PSASUPER or if

the caller of this service owns any other spin locks,
or the CPU lockword is greater than zero, IEAVELK
returns to the caller in a disabled state,

WEI 30 AjJadoud — STETJS}EN Pasusasti
ulgl 30 STETJBICH PIJITJISAY,,

"Restricted Materials of IBM"
Licensed Materials — Property of IBM

|.ﬂ
2
2 ol <
LA
]
g
© 2\ PN
5
M ;
i
1
£ 58
. ©® ~

Diagram SUP-19. Releasing the CPU Lock (IEAVELK) (Part 3 of 4)
input

SUP-162 MVS/XA SLL: Supervisor Control LY28-1765-0 (c) Copyright IBM Corp. 1987

0-99.L1~82A1

L86T °d40) WAI IYBTJAdO) ()

£91-dNS uoTj}eJedg JO pPoYyjoly

Diagram SUP-19. Releasing the CPU Lock (IEAVELK) (Part 4 of 4)

Extended Description Module
6 IEAVELK retums to the caller in an enablad state.

7 |EAVELK sets a return code of four in register 13
indicating that the lock to be freed is not owned
by the caller.

Recovery Processing:

Lock recovery processing is described in the diagram
“’Address Spacs Verification Processing IEAVELCR,
IEAVELKR, and IEAVEVRR"'.

The FRR routine for spin lock manager, ELKFRR, is an
entry point within IEAVELKR.

Label

uHgI 3O STETJBIECH POJITJIISAY,,

HEI 30 AjJedodd — STETJOlel POSUSIT

0-99L1-82A1 T043uU0) JosSTA4BdNg : 7S VX/SAW H9T-dNS

*da0) WGI IYBTJAdO] (9)

L1861

Diagram SUP-20. Spin Lock Repair Routine (IEAVELKR) (Part 1 of 12)

Input

Register O

Register 1

Parmlist

Process

D 2

A Pseudo SDWA

ARTMerror data

Refresh critical PSA and
SVT fields.

Was invocation due to a
restart for system diag-
nosis and repair (entry
code=0)?

No, continue at step 4.

Was the spin lock man-
ager (IEAVELK) or the
suspend lock manager
(IEAVESLK) in con-
trol at the time of the
interrupt?

No, continue at step 4.

Yes, Return to caller.

Was invocation due to a
non-home mode DAT
error?

No, continue at step 8.

Output

PSA

——Dstep4

Step 4

To caller

Y

PSADZERO

PSALFTA

PSHSVT

PSALSCH1

PSALSCH2

PSALSCH?7

PSALSCHS8

SVT

SVTGSCH1

SVTGSCH2

WEI 30 AjJadodd — STeTJuajel pasuadt

wHEI 30 STETJ33EW Pa3ITJISaY,,

0-S9.L1-82A1

4861 °dJyo) WAI FIYSTJIAdO) (9)

G91-dNS uorjededg jo poyjey

Diagram SUP-20. Spin Lock Pepair Routine IEAVELKR) (Part 2 of 12)

Extendod Description

The spin lock repair routine is called as follows:

e By IEAVESAR (the Supervisor Analysis Router) due to
SLIH mode processing by RTM or due to a restart for
system diagnosis and repair via the Restart FLIH.

e By IEAVTRT1 due to non-home mode DAT error.

The spin lock repair routine correlates the current locks
held string (PSACLHS) to the spin lockword with the
assumption that a double error has not occurred. It ensures
that a valid PSACLHS exists with respect to the spin lock-
words. For spin locks, the lockword contents are always
assumed to be correct. There are cases where the spin lock
routine alters the PSACLHS, while in others, it may correct
a lockword,

1 Spin lock repair refreshes system critical fields needed
to successfully complete lock repair processing.

2 If the entry code in register 0 is zero, then a restart for

system diagnosis and repair interrupt occurred. For
this type of restart, repair and refresh processing is done,
then the interrupted process is resumed at the next
sequential instruction.

3 IEAVELKR checks the super bits and compares the

interrupt PSW address to the beginning and end of
spin lock manager (IEAVELK) and suspend lock manager
(IEAVESLK). If either lock manager is executing at the
time of interrupt, then IEAVELKR returns to the caller
without doing lock repair. (Since the obtain/release of a
lock may be partiatly complete, lock repair could clean up
lockword and indicators if allowed to process.)

4 RTM (IEAVTRT1) calls lock repair for non-home

mode DAT errors. If the first word of the parmlist is
zero, RTM i