
Systems

GC28-1143-2
File No. S370-34

MVS/Extended Architecture
Conversion Notebook

Your conversion hints, please ...

This book will be updated as additional information becomes
available. You can submit conversion hints for possible
publication in this book. Use the reader's comment form
or the conversion notebook input form at the back of this
book or send your information to:

IBM Corporation
Publications Department
Department D58, Building 920-2
PO Box 390
Poughkeepsie , New York 12602
ATTN: MVS/Extended Architecture Conversion Notebook

When submitting hints, see the Preface for details.

--- ------ ----- ---- ----- - - -------------

Third Edition (May, 1984)

This is a major revision of, and obsoletes, GC28-1143-1. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.

This edition applies to the following program products until otherwise indicated in new
editions or technical newsletters:

Assembler H Version 2'(5668-962)
MVS/XA Data Facility Product (DFP) (5665-284)
MVS/System Product - JES2 (MVS/SP) Version 2 (5740-XC6)
MVS/System Product - JES3 (MVS/SP) Version 2 (5665-291)

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System Bibliography,
GC20-000 1, for the editions and technical newsletters that are applicable and current.

It is possible that this material might Gontain references to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your country.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications
Development, Department 058, Building 920, PO Box 390,Poughkeepsie, New York
12602. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1982, 1984

Preface

This book is for two audiences:

• People responsible for converting to MVS/Extended Architecture (MVS/XA)
from an OS/VS2 MVS Release 3.8 system with at least one of the following
installed:

For JES2 users, MVS/SP Version 1 Release 3.0 or a later release
For JES3 users, MVS/SP Version 1 Release 3.1 or a later release

In this publication, MVS/370 refers to operating systems at one of those
levels. Although it is possible to convert other releases of MVS/370 to
MVS/XA, this book does not describe how to do so.

• People who have already converted to MVS/XA and are installing subsequent
releases of MVS/SP Version 2 and MVS/XA Data Facility Product (DFP).

Readers are expected to have an in-depth knowledge of MVS/370, the
configuration and procedures of the current installation, and the configuration of
the target installation. They also need to be familiar with the MVS/XA overview
information in the Licensed Programming Announcement letters and General
Information Manuals for MVS/SP Version 2 and MVS/XA DFP. Reading the
MVS / XA Overview is also helpful.

This book contains conversion information related to the program products
required for MVS/XA:

• MVS/System Product - JES2 (MVS/SP) Version 2 (5740-XC6)
• MVS/System Product - JES3 (MVS/SP) Version 2 (5665-291)
• MVS/XA Data Facility Product (DFP) (5665-284)
• Assembler H Version 2 (5668-962)

Frequently, the book refers to different releases of MVS/SP Version 2 and
MVS/XA DFP by the release number only:

Release 1.0 refers to MVS/SP Version 2 Release 1.0 and MVS/XA DFP
Release 1.0

• Release 1.1 refers to the Release 1.1 levels of those products

Release 1.2 refers to their Release 1.2 levels

The information in this book is organized as follows:

"Chapter 1: Introduction" summarizes the work required to convert to
MVS/XA, lists conversion tasks you can do on your MVS/370 system before
receiving MVS/XA, and describes changes in the MVS/XA library.

"Chapter 2: Installation and Initialization" includes information related to
installing and initializing an MVS/XA system and generating stand-alone
dump.

Preface iii

"Chapter 3: Programming Considerations" describes changes that might affect
user-written code, including changes to assembler language instructions and
macros. It also describes new function available to programmers.

"Chapter 4: Operating Considerations" describes new and changed commands
and operational procedures.

"Chapter 5: System Modifications" describes new and changed user exits and
ways of tailoring the system.

"Chapter 6: Problem Determination" describes new and changed ways of
tailoring and suppressing dumps, new and changed dump formats, trace
facilities, and debugging considerations.

"Chapter 7: Accounting" describes changes that might affect your accounting
procedures.

"Chapter 8: Measurement and Tuning" describes changes related to
performance. .

"Chapter 9: Coexistence Considerations" contains considerations for running
J both MVS/370 and MVS/XA in a single installation.

"Appendix A: Parameter Changes in Incompatible Macros" describes
differences between the MVS/370 and MVS/XA parameters lists that
downward incompatible macros pass to their service routines.

"Appendix B: Control Block Changes" lists control blocks that are new,
changed, or deleted or that can reside anywhere in virtual storage (above or
below 16 Mb).

The Conversion Notebook does not describe:

• How to install the program products. The Program Directory shipped with the
product describes the installation procedure.

• JES conversion information other than "Installing the JES2 Component of
MVS/SP - JES2 Version 2" in Chapter 2. MVS/SP-JES21.3.3,
MVS/SP-JES2 2.1.1 JES2 Migration Considerations, a technical bulletin from

the Washington Systems Center, provides an overview of new JES2 functions,
conversion information, a sample migration plan, and results of field text
experiences.

• The virtual storage constraint relief that MVS/XA provides. Technical
bulletin, Virtual Storage Tuning Cookbook, provides that information. In
addition, it describes how each subsystem uses virtual storage, tools available
for measuring virtual storage use, rules for using virtual storage efficiently, and
techniques for tuning subsystems for efficient storage use.

• How to write programs that execute in 31-bit addressing mode. SPL: 31-bit
Addressing contains that information. The Conversion Notebook does, however,
describe system changes that take advantage of or support 31-bit addressing
and the impact the changes have on user-written programs. For example, the
Conversion Notebook lists control blocks that have been moved to the extended

iv MVS/Extended Architecture Conversion Notebook

area of virtual storage and gives an example of how you can change programs
to access them.

The phrase 'published external interfaces' appears several times in the book. It
refers to interfaces documented in the following publications:

• OS/VS2 MVS JCL, GC28-0692

OS/VS2 Supervisor Services and Macro Instructions, GC28-1114

• OS/VS2 TSO Command Language Reference, GC28-0646

• OS/VS2 Guide to Writing a Command Processor or Terminal Monitor Program,
GC28-0648

• MVS/370 Data Management Macro Instructions; GC26-4057

MVS/370 Access Method Services Reference for the Integrated Catalog Facility,
GC26-4051

• MVS/370 Access Method Services Reference for VSAM Catalogs, GC26-4059

• MVS/370 Virtual Storage Access Method (VSAM) User's Guide, GC26-4066

Submitting Conversion Hints

Related Publications

This book will be updated as more information becomes available. You can submit
conversion hints for possible publication in th~s book. Use the reader's comment
form or the conversion notebook input form at the back of this book or send your
information to:

IBM Corporation
Publications Department
Department D58, Building 920
PO Box 390
Poughkeepsie, New York 12601
ATTN: MVS/Extended Architecture Conversion Notebook

It is understood that IBM and its affiliated companies shall have the nonexclusive
right, in their discretion, to use, copy, and distribute all submitted information or
material, in any form, for any and all purposes, without any obligation to the
submitter, and that the submitter has the unqualified right to submit such
information or material upon such basis.

When submitting conversion hints, please indicate from what system you are
converting, the program products installed on it, and the program products being
installed on the MVS/XA system.

The Conversion Notebook highlights differences in MVS/XA to help you identify
changes you need to make to existing procedures, programs, and system
modifications. You will, however, need other books in the MVS/XA library to
make any required changes to your procedures and programs. The following table
lists all books referred to in the Conversion Notebook. The table shows the short
title used in the reference, the corresponding full title, and the order number of the
book. For a complete list of the publications that support MVS/XA, see the
general information manuals.

Preface V

Short Title Used in
This Publication Title Order No.

Principles of Operation IBM System/3 70
Extended Architecture
Principles of Operation SA22-7085

Operator's Guide IBM 3081 Operator's Guide
for the System Console GC38-0034

Operator's Guide IBM 3083 Operator's Guide
for the System Console GC38-0036

Operator's Guide IBM 3084 Operator's Guide
for the System Console I GC38-0037

IOCP User's Guide Input/Output Configuration
and Reference Program User's Guide and

Reference GC28-1027

***** Device Support Facilities
User's Guide and Reference GC35-0033

Data Facility Product: MVS / Extended Architecture
Planning Guide Data Facility Product: GC26-4040

Planning Guide

DFP General MVS / Extended Architecture
Information Data Facility Product
Information General Information GC26-4007

Diagnostic Techniques MVS/ Extended Architecture
Diagnostic Techniques LY28-1199

***** MVS / Extended Architecture
General Information Manual GC28-1118

***** MVS / Extended Architecture
Interactive Problem Control
System Guide and Reference GC28-1297

Linkage Editor and MVS / Extended Architecture
Loader Linkage Editor and Loader GC26-4011

System Commands MVS / Extended Architecture
Operations: System Commands GC28-1206

MVS / XA Overview MVS/ Extended Architecture
Overview GC28-1348

RMF Reference and User's MVS/ Extended Architecture
Guide Resource Measurement Facility (RMF)

Version 3 Reference and User's
Guide LC28-1138

Supervisor Services and MVS / Extended Architecture
Macro Instructions Supervisor Services and Macro

Instructions GC28-1154

System Generation MVS / Extended Architecture
Reference Installation: System Generation GC26-4009

System-Data MVS / Extended Architecture
Administration System-Data Administration GC26-4010

SPL: Initialization and MVS / Extended Architecture
Tuning System Programming Library:

Initialization and Tuning GC28-1149

SPL: JES2 Initialization MVS / Extended Architecture
and Tuning System Programming Library:

JES2 Initialization
and Tuning SC23-0065

SPL: JES3 Initialization MVS / Extended Architecture
and Tuning System Programming Library:

JES3 Initialization
and Tuning SC23-0059

vi MVS/Extended Architecture Conversion Notebook

Short Title Used in
This Publication Title Order No.

SPL: Service Aids MVS/ Extended Architecture
System Programming Library:
Service Aids GC28-1159

System Macros and MVS/ Extended Architecture
Facilities System Programming Library:

System Macros and Facilities GC28-1150
Volumes 1 and 2 GC28-1151

SPL:SMF MVS / Extended Architecture
System Programming Library:
System Management Facilities GC28-1153

SPL: System MVS/ Extended Architecture
Modifications System Programming Library:

System Modifications GC28-1152

SPL: User Exits MVS/ Extended Architecture
System Programming Library:
User Exits GC28-1147

SPL: 31-Bit MVS/ Extended Architecture
Addressing System Programming Library:

31-Bit Addressing GC28-1158

Utilities MVS/ Extended Architecture
Utilities GC26-4018

MSS Installation Planning OS/VS Mass Storage Subsystem
and Table Create (MSS) Installation Planning

and Table Create GC35-0028

Global Resource OS/VS2 MVS Planning:
Serialization Global Resource

Planning GC28-1062

RMF General Resource Measurement Facility
Information General Information GC28-1115

***** TSO Extensions '(TSO / E)
General Information Manual GC28-1061

Preface vii

viii MYS/Extended Architecture Conversion Notebook

Contents

Chapter I. Introduction I-I
Conversion Tasks You Can Do Before Installing MVS/XA 1-2
Publications Changes 1-3

New Books 1-3
Changes to SPL: Supervisor and SPL: Job Management 1-3
Changes to Diagnostic Techniques and Program Logic Manuals 1-4
MVS/XA DFP Inforpation 1-4
Title Changes 1-5

Chapter 2. Installation and Initialization 2-1
Installing an MVS/XA System 2-1

Performing a Full Sysgen 2-2
SMP /E APPLY Processing 2-2
Required Environment for Generating MVS/XA 2-2
Providing a Backup Copy of the Existing System 2-2
Defining Additional Devices 2-3
Creating a New IOCDS 2-3
New I/O Configuration Requirements 2-5
Coding Sysgen Macros 2-5
Devices Not Supported 2-6
Rebuilding Alternate Eligible Device Tables (EDTs) 2-7
Changes to the Program Properties Table (PPT) 2-7
Defining System Data Sets 2-8
Initializing DASD 2-10
Loading the IPL Programs 2-10
Loading the Microcode EC Tapes for Mass Storage Subsystems 2-10
Installing the JES2 Component of MVS/SP - JES2 Version 2 2-11

System Parameter and SYS 1.P ARMLlB Considerations 2-12
Fixed Storage for SLIP Command Processors (IEACMDOO) 2-12
Specifying the RSU Parameter (IEASYSxx) 2-12
Increasing the Minimum SQA Allocation (IEASYSxx) 2-13
Specifying the Size of CSA and SQA Above 16 Mb (IEASYSxx) 2-13
Minimizing Private Area Storage Lost Because of Rounding (IEASYSxx) 2-14
Specifying Dump Data Sets (IEASYSxx) 2-15
Requesting Storage for RMF I/O Measurements (IEASYSxx) 2-] 5
Controlling the Number of Available ASVT Entries (IEASYSxx) 2-15
Removing TRACE Commands from COMMNDxx PARMLIB Members 2-16
Updating the IEAFIXxx PARMLIB Member 2-16
Removing References to Device Allocation Tables (IEALPAxx) 2-16
Keeping RNLs in GRSRNLxx PARMLIB Members 2~16
Specifying MIH Intervals (IECIOSxx) 2-17
New, Changed, or Deleted PARMLIB Members 2-17

SYS1.PROCLlB Changes 2-23
DUMPSRV Procedure 2-24
IEESYSAS Procedure 2-24
LLA Procedure 2-24
PRDMP Procedure 2-24
RMF Procedure 2-25

Using Default RNLs 2-26
Duration of the RMF Initialization Process 2-26
Generating Stand-Alone Dump 2-26
Stand-Alone Dump Macro Instruction Changes 2-27

Chapter 3. Programming Considerations 3-1
Changes that Might Affect Unauthorized Programs 3-1
Changes that Might Affect Authorized Programs 3-1
31-bit Addressing Considerations 3-2
New Function 3-2
Macro Instructions Mentioned in This Publication 3-3
CHKPT Macro Instruction 3-6
IOHALT Macro Instruction (SVC 33) 3-7
IOSGEN UCBLOOK Macro Instruction 3-7
RESETPL (BT AM) Macro Instruction 3-8
Differences in SPIE Processing 3-8
STATUS STOP,SYNCH Macro Instruction 3-9

Contents ix

SDW A Changes 3-9
Differences in GETMAIN Processing 3-9
TSO TEST Command 3-10
Deleted Instructions 3-11
Macro Expansions in JES Modifications 3-11
Limiting Concurrent Global Resource Serialization Requests 3-11
Format Changes to Hardcopy Log Records 3-12
Link Editing Allocation User Routines 3-13
Removal of the Interval Timer 3-13
Checklist for Determining if Authorized Programs Must be Changed 3-13
Changes to the SVC Table 3-17
Changes to the Locking Structure 3-17
Determining Which Locks a Processor Holds 3-17
Page Protection 3-17
PSA Low Address Protection 3-18
Fetch-Protected PSA Areas 3-19
Patch Areas in the PSA 3-19
Real Addressing Considerations 3-19

Using the EXCPVR Macro Instruction 3-19
Changes in the Way RSM Backs Virtual Storage 3-20
DAT-off Restrictions 3-21

Cross Memory Entry Table Entries 3-22
Interfaces to System Services 3-22

Services Independent of Addressing Mode 3-23
Services with Some Restrictions on the Address Parameter Values 3-24
Services that Do Not Support 31-bit Addressing 3-24

31-bit Addressing Considerations 3-24
Impact of 31-bit Addressing on Programmers 3-25
Changing Addressing Mode 3-26
Establishing a Program's Addressing Mode 3-26
Restrictions on Using a Linkage Editor Overlay Structure 3-28

Changed Instructions 3-28
BAL and BALR (Branch and Link) Instructions 3-28
BAS and BASR (Branch and Save) Instructions 3-29
CLCL, EDMK, MVCL, and TRT Instructions 3-29
LA (Load Address) Instruction 3-29
LRA (Load Real Address) Instruction 3-29

New Instructions 3-30
BSM (Branch and Set Mode) Instruction 3-30
BASSM (Branch and Save and Set Mode) Instruction 3-31

Modifying Programs that Invoke Modules Above 16 Mb 3-31
Using BASSM and BSM Instructions 3-32
Using Linkage Assist Routines 3-32

Retrieving Data from a Control Block Above 16 Mb 3-34
Performing I/O in 31-bit Addressing Mode 3-35
Using the EXCP Macro 3-36
Entry Points in IEFW21SD 3-37
Summary of New and Changed Macros 3-37
New Parameters on the GETMAIN Macro Instruction 3-42

VRC and VRU Parameters 3-42
LOC Parameter 3-43

SDUMP Macro Instruction 3-43
SETLOCK RELEASE,TYPE=(reg) I ALL Macro Instruction 3-43
Using GTF to Trace User Events 3-44
Unit Verification 3-44

IEF AB4 UV 3-44
IEFEB4UV 3-45

Chapter 4. Operating Considerations 4-1
Loading 370-XA Microcode at Power-on Reset Time 4-1
SYSCTL (SCP Manual CNTL) Console Frame 4-1
Storing Status Before Taking a Stand-alone Dump 4-3
Using Labeled Tapes for Stand.;.alone Dumps 4-3
JCL Changes to Jobs that Allocate SYS I.DUMP Data Sets 4-3
Processing Hot I/O Interrupts 4-3
Extended Color Support on 3279 MCS Consoles 4-4
Controlling Message Traffic on Operator Consoles 4-5
New Response to Message IOS201E 4-6
Summary of New, Changed, or Deleted Commands 4-6

x MVS/Extended Architecture Conversion Notebook

Chapter 5. System Modifications 5-1
Print Dump Exit Control Table (ECT) Modifications 5-1
Updating SYSTEMS Exclusion RNLs 5-1
Serializing VSAM Data Sets 5-1
Limiting User Region Size using IEFUSI Instead of IEALIMIT 5-2
Obtaining an Extended Region Size of More Than 32 Mb 5-3
Bypassing the Storage Availability Check Before a Job Executes 5-3
Changing the Hot I/O Threshold and Recovery Actions 5-4
Pre-dump Exits 5-4
Post-dump Exits 5-4
RMF Exits 5-4
JES2 User Exits 5-4
JES2 Interfaces 5-5
JES3 Dynamic Support Programs (DSPs) and User Exits 5-5
PRDMP Exits 5-6
PRDMP Header Exits 5-6
SMF Exits 5-6
New WTO/WTOR User Exits 5-7
New Services for Dump Processing Exits 5-8

Exit Services Router 5-8
Format Model Processor Service 5-9
Control Block Formatter Service 5-9
ECT Service 5-10
GET Symbol Service 5-10
EQUATE Symbol Service 5-10
Select ASID Service 5-10

Chapter 6. Problem Determination 6-1
New and Changed Dump Options 6-2
New Symptom Dumps for Task-Mode Abends 6-4
New User Summary Dumps 6-5
Dump Format Changes 6-6

Changes to User Dump Headers 6-6
User Dump Indexes 6-6
Changes to SYSMDUMP and SVC Dump Formats 6-6

Suppressing Dumps 6-7
New Operands on the SLIP Command for Suppressing Dumps 6-7
MVS/XA's Use of SLIP Commands 6-7
Dump Analysis and Elimination (DAE) 6-8

New and Changed PRDMP Control Statements 6-10
Print Dump Index 6-12
Print Dump Requirements for Printers 6-13
New and Changed IPCS Subcommands 6-13
Accessing Additional Sources of Dump Data Using IPCS 6-16
New IPCS Panels 6-16
Changes to the IPCS BROWSE Panels 6-17
Changes to the Titles of IPCS Print Files 6-18
Using the MVS/XA Versions of IPCS and PRDMP on Other Systems 6-18

Copying Release 1.2 IPCS and PRDMP Modules and Data Sets 6-19
Copying Release 1.0 and 1.1 IPCS and PRDMP Modules and Data Sets 6-19

Debugging Considerations 6-20
-Changes to the System Trace Facility 6-20
SDW A Changes 6-22
Addressing Mode Reflected in Dumps 6-22
Specifying Reason Codes 6-23
System Termination Facility Wait State Codes 6-23
Exceeding the Region Limit 6-23
Diagnosing Checkpoint/Restart Errors 6-24

Chapter 7. Accounting 7-1
Device Connect Time 7-1
New Fields Measuring Virtual Storage Use 7-2
SMF30PRV and SMF30SYS Fields 7-2
Type 22 SMF Record Changes 7-3
Increases in EXCP Counts for Program Fetch Activity 7-3
Summary of SMF Record Changes 7-4
SMF Compatibility Between Release 1.0 and Later Releases 7-5

Contents xi

Chapter 8. Measurement and Tuning 8-1
Ensuring Optimal Program Fetch Performance 8-1

Performance Related Changes to the Linkage Editor and IEBCOPY 8-2
Performance Related Changes to Program Fetch 8-2
Recommended Actions 8-3
Maintaining Count Values and Optimal Block Sizes 8-4
Factors Affecting Text Block Sizes 8-6

Using a New Directory for LNKLST Data Sets 8-7
Starting the LLA Function 8-8
Including Data Sets that Are Not APF Authorized 8-8
Updating the LLA Directory 8-8

SMF Data Set Placement 8-9
Using the ASM Backing Slot Function 8-9
Using Residency Time to Calculate the Page-in Rate of an Address Space 8-9
Changes to ASM's Paging Algorithms 8-9

Changes to the Data Set Selection Algorithm 8-10
Changes to the Slot Selection Algorithm 8-10

Chapter 9. Coexistence Considerations 9-1
Maintaining Programs that Can Run on Both MVS/370 and MVS/XA Systems 9-1

Assembling and Link Editing Programs 9-2
Guidelines for Ensuring Program Compatibility 9-2
Guidelines for Developing New Programs 9-3
Handling Downward Incompatible Macros 9-4
Downward Incompatible SYNCH Macros 9-7

Backup Considerations 9-7
Routing Jobs in a Mixed JES2 or JES3 Complex 9-8
Using Global Resource Serialization 9-8
System Data Sets that Cannot be Shared 9-9
Using SYS1.PROCLIB in a Loosely-coupled JES3 Configuration 9-9
DSI Procedures in a Loosely-coupled JES3 Configuration 9-9

Appendix A. Parameter Changes in Incompatible Macros A-I
ATTACH Parameter List Changes A-I
EST AE Parameter List Changes A-2
EVENTS Parameter Changes A-3
SMFEXIT Parameter List Changes A-3
STAX Parameter List Changes A-3
STIMER Parameter Changes A-3
SYNCH Parameter List Changes A-4
WTOR Parameter List Changes A-4

Appendix B. Control Block Changes B-1

Index X-I

xii MVS/Extended Architecture Conversion Notebook

Figures

2-1. Obsolete Sysgen Macro, Keywords, and Options 2-6
2-2. Functionally Equivalent JES2 Components 2-11
2-3. New, Changed, or Deleted PARMLIB Members 2-18
2-4. Stand-Alone Dump Macro Instruction Changes 2-27
3-1. Unauthorized Macro Instructions Mentioned in This Publication 3-4
3-2. Authorized Macro Instructions Mentioned in This Publication 3-6
3-3. Example of Using BSM and BASSM3-32
3-4. Example of a Linkage Assist Routine 3-34
3-5. Retrieving Data from Above 16 Mb 3-35
3-6. Summary of New and Changed Macros 3-38
4-1. Default Hot I/O Recovery Actions 4-4
4-2. Summary of New, Changed, or Deleted Commands 4-7
6-1. New, Changed, or Deleted Dump Options 6-3
6-2. New, Changed, or Deleted Print Dump Verbs 6-11
6-3. New and Changed IPCS Subcommands 6-14
7 -1. SMF Record Changes 7-4
8-1. Processing Load Modules 8-5
B-1. Control Block Changes B-1

Figures xiii

xiv MVS/Extended Architecture Conversion Notebook

Summary of Amendments

Summary of Amendments
for GC28-1143-2
MVS/Extended Architecture

This major revision adds conversion information for Releases 1.1 and 1.2 of
MVS/SP Version 2 and MVS/XA DFP. It also includes new Release 1.0
information and several editorial changes. Bars (I) in the left-hand margin
highlight the new information. EditorIal changes are not barred.

The new and changed topics are, by chapter:

Chapter 2, "Installation and Initialization"

"Installing an MVS/XA System"
"Performing a Full Sysgen"
"SMP /E APPLY Processing"
"Creating a New 10CDS"
"New I/O Configuration Requirements"
"Devices Not Supported"
"Changes to the Program Properties Table (PPT)"
"Defining System Data Sets"
"Installing the JES2 Component of MVS/SP - JES2 Version 2"
"System Parameter and SYS 1.P ARMLIB Considerations"
"SYS 1.PROCLIB Changes"
"Using Default RNLs"
"Stand-Alone Dump Macro Instruction Changes"

Chapter 3, "Programming Considerations"

"Macro Instructions Mentioned in This Publication"
"Deleted Instructions"
"Macro Expansions in JES Modifications"
"Limiting Concurrent Global Resource Serialization Requests"
"Format Changes to Hardcopy Log Records"
"Link Editing Allocation User Routines"
"Removal of the Interval Timer"
"Checklist for Determining if Authorized Programs Must be Changed"
"Determining Which Locks a Processor Holds"
"Interfaces to System Services"
"Changed Instructions"
"New Instructions"
"Performing I/O in 31-bit Addressing Mode"
"Entry Points in IEFW21SD"
"New Instructions"
"Summary of New and Changed Macros"

Chapter 4, "Operating Considerations"

"JCL Changes to Jobs that Allocate SYS1.DUMP Data Sets"
"Processing Hot I/O Interrupts"
"Controlling Message Traffic on Operator Consoles"

Summary of Amendments xv

"New Response to Message IOS201E"
"Summary of New, Changed, or Deleted Commands"

Chapter 5, "System Modifications"

"Print Dump Exit Control Table (ECT) Modifications"
"Updating SYSTEMS Exclusion RNLs"
"Serializing VSAM Data Sets"
"Obtaining an Extended Region Size of More Than 32Mb"
"Bypassing the Storage Availability Check Before a Job Executes"
"Changing the Hot I/O Threshold and Recovery Actions"
"JES2 User Exits"
"PRDMP Header Exits"
"SMF Exits"
"New WTO/WTOR User Exits"
"New Services for Dump Processing Exits"

Chapter 6, "Problem Determination"

"Dump Analysis and Elimination (DAE)"
"New and Changed PRDMP Control Statements"
"Print Dump Requirements for Printers"
"New and Changed IPCS Subcommands"
"Accessing Additional Sources of Dump Data Using IPCS"
"New IPCS Panels"
"Changes to the IPCS BROWSE Panels"
"Changes to the Titles of IPCS Print Files"
"Using the MVS/XA Versions of IPCS and PRDMP on Other Systems"
"Exceeding the Region Limit"
"Diagnosing Checkpoint/Restart Errors"

Chapter 7, "Accounting"

"Increases in EXCP Counts for Program Fetch Activity"
"Summary of SMF Record Changes"
"SMF Compatibility Between Release 1.0 and Later Releases"

Chapter 8, "Measurement and Tuning"

"Ensuring Optimal Program Fetch Performance"
"Using a New Directory for LNKLST Data Sets"
"SMF Data Set Placement"
"Using the ASM Backing Slot Function"
"Using Residency Time to Calculate the Page-in Rate of an Address Space"
"Changes to ASM's Paging Algorithms"

Chapter 9, "Coexistence Considerations" (previously Chapter 10)

"Handling Downward Incompatible Macros"
"Downward Incompatible SYNCH Macros"
"Using SYS1.PROCLIB in a Loosely-coupled JES3 Configuration"

Appendix A, "Parameter Changes in Incompatible Macros"

"SYNCH Parar)leter List Changes"

xvi MVS/Extended Architecture Conversion Notebook

Appendix B, "Control Block Changes"

This chapter now includes control block changes for all releases of MVS/XA.

Two chapters are deleted: "Chapter 10: Incompatibilities" and "Chapter 11:
Optional Program Products. II The information from Chapter 10 is incorporated
elsewhere in the book, as is the information about BTAM/SP (5665-279), RMF
Version 3 (5665-274), and TSO Extensions for MVS/XA (5665-285). For
additional information about optional program products, see announcement letters
and general information manuals for the program products.

Summary of Amendments
for GC28-tt43-t
MVS/Extended Architecture

This major revision incorporates additional conversion considerations related to
MVS/SP Version 2 Release 1.0, MVS/XA DFP Release 1.0, CICS/VS Version 1
Releases 5 and 6, and IMS/VS Version 1 Releases 2 and 3. Most of the
information was gathered from early installation experience.

The following topics, listed by chapter, contain new information:

Chapter 2: System Generation and Initialization

"Loading the IPL Programs"
"Loading the Microcode EC Tapes for Mass Storage Subsystems"
"Specifying the RSU Parameter (IEASYSxx)"
"Duration of the RMF Initialization Process"
"Using the MVS/XA Versions of IPCS and PRDMP on Other Systems"

Chapter 3: Programming Considerations

"Differences in GETMAIN Processing"
"Macro Expansions in JES Modifications"

Chapter 5: System Modifications

"PRDMP Exits"

Chapter 8: Measurement and Tuning (new chapter)

Chapter 11. Optional Program Products

"CICS/VS Version 1 Releases 5 and 6 (5740-XXl)"
"IMS/VS Version 1 Releases 2 and 3 (5740-XX2)"

The following topics, listed by chapter, contain technical changes:

Chapter 2: System Generation and Initialization

"Installing an MVS/XA System" -- The topic includes SMP /E as an
alternative to using SMP Release 4 to generate MVS/XA.

"Creating a New lOCOS" -- The last paragraph is new.

Summary of Amendments xvii

"Defining System Data Sets" -- The information about defining the
SYSl.NUCLEUS data set is new.

"Fixed Storage for SLIP Command Processors (IEACMDOO)"

"RMF Procedure"

Chapter 3: Programming Considerations

"Macro Instructions Mentioned in This Publication" -- SYNCH is now in the
unauthorized rather than the authorized macro table.

"IOSGEN UCBLOOK Macro Instruction" -- The topic includes using
10SVSUCB to obtain UCB addresses in MVS/XA.

"Interfaces to System Services" -- The lists of examples is changed.

"Summary of New and Changed Macros" -- A description of RACROUTE is
included in the table.

"New Parameters on the GETMAIN Macro Instruction" -- The topic describes
two additional GETMAIN parameters, VRC and VRU.

Chapter 4. Operating Considerations

"Processing Hot I/O Interrupts" -- The default recovery action for recursive
hot I/O conditions on reserved DASD is changed.

"CONFIG Command" -- The sample response from a CONFIG ONLINE
command is changed.

Chapter 5. System Modifications

"JES2 User Exits" -- The topic now describes how to obtain the correct level
of downward incompatible macros in JES2 user exits.

"JES3 Dynamic Support Programs (DSPs) and User Exits" -- The topic now
describes how to obtain the correct level of downward incompatible macros in
JES3 user exits.

Chapter 6. Problem Determination

"Print Dump Index" -- The topic describes changes to two additional PRDMP
verbs, ASMDATA and DISPLAY.

Chapter 7. Accounting

The entire chapter is rewritten.

Chapter 9. Incompatibilities

"Features Not Supported" and "Programs and Functions Not Supported" are
deleted. (That information is included in the Licensed Programming
Announcement letter titled "Programs Supported in an MVS/Extended
Architecture Environment.")

xviii MVS/Extended Architecture Conversion Notebook

"Devices Not Supported" -- The list includes additional devices.

Chapter 10. Coexistence Considerations

"Assembling and Link Editing Programs"

Appendix B. Control Block Changes

Summary of Amendments xix

xx MVS/Extended Architecture Conversion Notebook

Chapter 1. Introduction

Conversion to MVS/Extended Architecture (MVS/XA) is the process of installing
the program products that will comprise your MVS/XA system, making any
required changes to existing programs and procedures, and running and testing the
new system as the production system. At a minimum, you must install
MVS/System Product (MVS/SP) Version 2 and MVS/XA Data Facility Product
(DFP). Beyond that, the work required to convert to MVS/XA varies greatly from
one installation to another and depends on:

• The level of the MVS/370 system to be converted. The more your current
system resembles your target system, the less work you have to do at the same
time you install the MVS/XA components. The next topic describes several
ways you can prepare your MVS/370 system for conversion to MVS/XA.

• The number of programs that must be modified. Early installers reported that
none of their high-level (assembler) language programs had to be changed.
About fifteen percent of their authorized assembler language programs
required modification.

With few exceptions, user-written assembler language programs that use only
unauthorized services and published external interfaces will run unchanged.
Many programs that use authorized services or undocumented interfaces will
also work unchanged, but you might have to modify some. Specifically, you
need to modify programs that depend on the structure and content of system
control blocks or interfaces that are changed. The changed interfaces are
almost exclusively authorized, internal interfaces.

• The number and type of modifications-your installation has made to MVS/370
that must be adapted to MVS/XA, and which components your installation has
modified. Some components are' changed more than others.

In general, there is a high degree of compatibility between MVS/370 and
MVS/XA:

• Exit interfaces, in general, are unchanged or compatibly expanded.

• You do not have to recompile or relink edit existing programs, unless, of
course, you change them.

• JCL and JES control statements are not changed. In some instances, however,
you might have to change JCL specifications, including:

DD statements for SYSl.DUMPnn data sets. The DD statements must
specify DISP=SHR.

The REGION parameter on a linkage editor job.

JCL that specifies programs not supported in MVS/XA (for example,
IEHDASDR).

JCL that specifies unsupported devices.

Chapter 1. Introduction 1-1

MVS/XA uses the same system data sets as MVS/370. Some changes have
been made to SYS 1.P ARMLIB members.

Most operator procedures and commands remain the same, although some
exceptions are noted in Chapter 4.

Conversion Tasks You Can Do Before Installing MVS/XA

You can stage the conversion to MVS/XA by performing many of the conversion
tasks on your MVS/370 system before installing the MVS/XA components.
Moving in the direction of MVS/XA as early as possible has several advantages.
The most obvious is that it minimizes the activities you must perform at the same
time you install MVS/SP Version 2 and MVS/XA DFP. In addition, you become
familiar with the new environment gradually and have less to learn all at once.
Finally, the MVS/370 system will be in the best position for coexistence and
back-up. MVS/370 and MVS/XA can operate and share data in the same system
complex.

To prepare for MVS/XA, you can:

Upgrade your system to at least MVS/SP - JES3 Version 1 Release 3.1 or
MVS/SP - JES2 Version 1 Release 3.0 with PTFs installed. If your MVS/370
system is at one of these levels, you do not have to install the JES component
of MVS/SP Version 2.

The JES3 component at that level is functionally equivalent to the JES3
component in MVS/SP Version 2 (all releases). The JES2 component is
functionally equivalent to the JES2 in MVS/SP Version 2 Release 1.0.
Releases 1.1 and 1.2 can run with that JES2 as well, although both include
enhanced JES2 components that are functionally equivalent to the JES2 in
later releases of MVS/SP Version 1. (See "Installing the JES2 Component of
MVS/SP - JES2 Version 2" in Chapter 2.)

Install the MVS/XA-compatible levels of other program products that your
installation needs in MVS/XA. Ideally, you will then have to change only the
base control program (BCP) of MVS at the time you install MVS/SP Version
2. The Licensed Program Announcement letter, "Programming Support in an
MVS/XA Environment," lists the program products, IBM Field Developed
Programs (FDPs), and Installed User Programs (IUPs) that can be installed on
and will support both MVS/370 and MVS/XA.

When initially installing an MVS/XA-compatible program product on
MVS/370, check the RETAIN Preventive Service Planning (PSP) bucket for
that product. Some products might require PTFs to ensure compatibility with
MVS/XA. Check RETAIN again just before testing the product under
MVS/XA.

Install products whose functions are included in MVS/XA. Such products
include Data Facility Device Support, Data Facility Extended Function, and
SAM-E, as well as MVS/370 Data Facility Product (MVS/370 DFP), which
includes each of the previous three products.

• Review the devices and functions that are not supported in MVS/XA. If you
are currently using any of them, migrate to the successor product or function.

1-2 MVS/Extended Architecture Conversion Notebook

Publications Changes

New Books

• Find out which of the FDPs, IUPs, and other program products you have
installed will work in MVS/XA. (Licensed Programming Announcement
letters contain that information.) If a product your installation uses is not
supported, migrate to a successor product.

• Check the RPQ devices or features you have on your system to determine if
they will work in MVS/XA.

Install compatibility PTFs on your MVS/370 system and reassemble the
affected programs. See the following topics in Chapter 3:

"IOHALT Macro Instruction (SVC 33)" on page 3-7
"IOSGEN UCBLOOK Macro Instruction" on page 3-7

Identify and make required programming changes that can be made on your
MVS/370 system.

Most MVS/XA publications are technically updated versions of their MVS/370
counterparts, reissued with new order numbers. Most title pages of MVS/SP
Version 2 and MVS/XA DFP publications include "MVS/Extended Architecture"
to allow you to easily distinguish between MVS/370 and MVS/XA publications.
The following topics describe specific differences between the MVS/370 and
MVS/XA libraries.

The MVS/XA Library includes two new books: SPL: 31-bit Addressing and SPL:
User Exits.

SP L: 31-bit Addressing describes system changes that support 31-bit addressing,
and how to change existing programs or to develop new programs to execute in
31-bit addressing mode.

SP L: User Exits contains reference information for coding exits provided by the
base control program (BCP) of MVS/SP Version 2, with the exception of SMF
exits (which are still documented in SPL: System Management Facilities) and TSO
exits (which remain in SPL: TSO). In some cases, consolidating this information
involved removing it from other books in the library.

Changes to SPL: Supervisor and SPL: Job Management

SPL: Supervisor and SPL: Job Management have been redesigned.

SPL: Supervisor has been retitled SPL: System Macros and Facilities and
documents macros and facilities that can be used in any installation-written
extension to the system, regardless of the part of the system being extended.

SPL: Job Management is now titled SPL: System Modifications and documents
ways an installation can use IBM-provided interfaces other than initialization
parameters to modify the BCP (non-JES) part of MVS/SP Version 2. SPL:
System Modifications contains planning information on using exit routines (such as
the new dumping services exits); SPL: User Exits contains reference information
for coding the exits. SPL: System Modifications also describes facilities (such as
virtual fetch) that are related to subsystems.

Chapter 1. Introduction 1·3

Changes to the content of these books are not as radical as the changed titles might
imply. Examples of changes include:

• Information on dynamic allocation has been moved to SPL: System Macros
and Facilities.

• Information on intercepting hot I/O has been moved to SPL: System
Modifications.

Changes to Diagnostic Techniques and Program Logic Manuals

MVS/XA DFP Information

Section 5, "Component Analysis," and Appendix A, "Process Flows," have been·
deleted from the MVS/XA version of Diagnostic Techniques and incorporated into
the component introductions of program logic manuals (PLMs, specifically System
Logic Library and JES2 Logic).

In addition to information formerly in Diagnostic Techniques, System Logic Library
includes logic documentation for global resource serialization and the I/O
supervisor. These components are documented in separate PLMs in the MVS/370
library.

Some of the MVS/XA DFP books consolidate information from more than one
book in the previous library, as follows:

Previous Titles

DFEF: Administration and
Services

OS/VS Planning for Enhanced
VSAM

OS / VS VSAM Programmer's
Guide

OS/VS VSAM Programmer's
Guide

OS/VS VSAM Options for
Advanced Applications

DFEF: Administration and
Services

OS / VS Planning for Enhanced
VSAM

OS / VS VSAM Options for
Advanced Applications

OS/VS VSAM Programmer's
Guide

OS/VS AMS Cryptographic
Option

MVS/XA Title

Data Facility Product:
Planning Guide

VSAM Administration:
Macro Instruction Reference

VSAM Administration Guide

1-4 MVS/Extended Architecture Conversion Notebook

Title Changes

OS/VS2 CVOL Processor
DFEF: Administration and

Services

OS/VS Planning for Enhanced
VSAM

OS / VS VSAM Options for
Advanced Applications

OS/VS VSAM Programmer's
Guide

Catalog Administration Guide

Minor changes have been made to several titles, either to shorten titles or to
achieve more consistency among titles of books with similar information. For
example:

MVS/370 Title

SPL: Initialization and
Tuning Guide

JES3 SPL: Installation Planning
and Tuning

SPL: JES2 Installation,
Initialization, and Tuning

MVS /XA Title

SPL: Initialization and
Tuning

SPL: JES3 Initialization
and Tuning

SPL: JES2 Initialization
and Tuning

Chapter 1. Introduction 1-5

1-6 MVS/Extended Architecture Conversion Notebook

I Chapter 2. Installation and Initialization

This chapter contains information related to installing an MVS/XA system,
initializing it, and generating stand-alone dump. Topics related to installing
MVS/XA are grouped under "Installing an MVS/XA System" and include:

• "Performing a Full Sysgen" on page 2-2
• "SMP /E APPLY Processing" on page 2-2

"Required Environment for Generating MVS/XA" on page 2-2
• "Providing a Backup Copy of the Existing System" on page 2-2
• "Defining Additional Devices" on page 2-3
• "Creating a New 10CDS" on page 2-3

"New I/O Configuration Requirements" on page 2-5
"Coding Sysgen Macros" on page 2-5

• "Devices Not Supported" on page 2-6
"Rebuilding Alternate Eligible Device Tables (EDTs)" on page 2-7

• "Changes to the Program Properties Table (PPT)" on page 2-7
"Defining System Data Sets" on page 2-8

• "Initializing DASD" on page 2-10
• "Loading the IPL Programs" on page 2-10
• "Loading the Microcode EC Tapes for Mass Storage Subsystems" on page

2-10
"Installing the JES2 Component of MVS/SP - JES2 Version 2" on page 2-11

Topics related to initializing MVS/XA are:

• "System Parameter and SYS1.PARMLIB Considerations" on page 2-12
"SYS1.PROCLIB Changes" on page 2-23

• "Using Default RNLs" on page 2-26
• "Duration of the RMF Initialization Process" on page 2-26

Topics related to generating stand-alone dump include:

• "Generating Stand-Alone Dump" on page 2-26
"Stand-Alone Dump Macro Instruction Changes" on page 2-27

I .
I InstallIng an MVS/XA System

\ You can install the MVS/XA products several ways. Your options depend on
whether you are:

Initially installing MVS/XA (that is, installing Release 1.0, or installing Release
1.1 or 1.2 concurrently with earlier MVS/XA releases)

• Installing Release 1.1 or 1.2 on a system with earlier MVS/XA releases
installed

To initially install MVS/XA, you can either perform a full sysgen or use SMP /E
APPLY processing. To install Releases 1.1 or 1.2 on top of earlier releases, use
either SMP Release 4 or SMP /E. The program directories for the products
separately describe each method.

Chapter 2. Installation and Initialization 2-1

I Performing a Full Sysgen

\
I
I
I

If. your MVS/XA system needs optional products that have sysgen support, accept
th()se products into your DLIBs before performing the sysgen. Install optional
products that do not have sysgen support and any related service after performing
the 'sysgen. System Generation Reference describes how to perform a sysgen.

I SMP /E APPLY Processing

\
I
I
I
I
I
I
I
I
I
I

'SMP /E APPLY processing replaces and deletes the same base control program and
OFP-related products and service as a full sysgen. ("Providing a Backup Copy of
the Existing Program" lists the parts of MVS Release 3.8 that are replaced or
deleted.) However, APPL Yprocessing leaves intact all other products and related
service. Therefore, you do not need to re'-install optional products or modifications
that do not have sysgen support.

To use SMP /E APPLY processing, SMP /E must be installed on the system you
are using to create the MVS/XA system. Also, the required SMP data sets in the
target system must be in SMP /E format. The SMP / E User's Guide describes
SMP /E APPLY processing in detail.

Required Environment for Generating MVS/XA

You can generate an MVS/XA system on either:

• An MVS/370 system that is at least at the OS/VS2 Release 3.8 level. The
MVS/370 system must also support the device types on which the MVS/XA
system libraries are to reside.

• An MVS/XA system.

The following program products must be installed on the system used to build the
MVS/XA system:

• Assembler H Version 2.

• The linkage editor in MVS/XA DFP.

• SMP Release 4 or SMP /E.

• Device Support Facilities Release 6, which is required to write the IPL text and
to initialize the volumes on which the new system will resid~.

In addition, DFDSS (Data Facility Data Set Services) or an equivalent
dump/restore product is recommended to make a backup copy of the new system.
IEHDASDR does not work in MVS/XA. Furthermore, DFDSS cannot restore
data dumped using IEHDASDR.

DFDSS 1.2 run$ on both MVS/370 and MVS/XA. Using DFDSS you can dump
data on one system and restore it on the other.

Providing a Backup Copy of the Existing System

Before using the SMP ACCEPT function to incorporate the MVS/XA products
into your DLIBs, copy the DLIBs using DFDSS or an equivalent product.
MVS/SP Version 2 completely replaces (and, therefore, deletes from the existing

2-2 MVS/Extended Architecture Conversion Notebook

Defining Additional Devices

Creating a New lOCOS

DLIBs), the base control program (BCP) in MVS Release 3.8. MVS/XA DFP
completely replaces all MVS/370 modules containing the functions that MVS/XA
DFP provides. The ACCEPT function also deletes:

• System Activity Measurement Facility (MF /1)
• Display Exception Monitor Facility (DEMF)
• The External Writer
• TSO TEST
• The TSO command package. The functions in that package are:

Support for running terminal sessions as batch jobs
Automatic saving of data
Accounting facilities enhancements
Defaults for the user attribute data set
ATTRIB and FREE subcommands
ALL keyword for the FREE command and subcommand
Eight-character station ID

• TSO/E for MVS/370, which includes the TSO command package
• All service information for the deleted modules

MF/1 and DEMF are not replaced. TSO TEST, the TSO command package, and
the TSO/E functions are included in TSO/E for MVS/XA (5665-285). If your
installation requires these functions, install TSO /E for MVS/XA. The External
Writer function is incorporated into the MVS/SP Version 2 BCP. The program
directories for MVS/XA DFP and MVS/SP Version 2 list the FMIDs that
MVS/XA replaces.

Once the DLIBs are updated, there is no simple way to restore them to the
MVS/370 level unless you have a backup copy. The SMP RESTORE function
cannot restore OLIBs.

In addition, if you are updating your existing sysgen and IOCP deck to use for the
MVS/XA sysgen, first copy the deck. If your installation intends to use the
existing master catalog in MVS/XA, provide backup for its contents also.

MVS/XA supports a maximum of 4096 devices. However, the number that your
installation can actually connect depends on the processor model. The number is
usually a few less than 4096.

MVS/370 allows no more than 1917 devices because UCB pointers are only
2-bytes long. MVS/XA removes that limitation by using 3-byte UCB -pointers.

You must create a new lOCOS for MVS/XA. To create a new lOCOS, execute
the 370/370-XA version of IOCP (either the stand-alone IOCP or the MVS IOCP
that is shipped in MVS/SP Version 2). The 370/370-XA MVS IOCP ,executes on
an MVS/370 or an MVS/XA system. If creating the new lOCOS on an
MVS/370 system, obtain the 370/370-XA MVS IOCP by copying it from the
MVS/XA OLIBs after accepting MVS/SP Version 2. IOCP is a set of fifteen
CSECTS in the SYS1.AOSC5 data set of the OLIB. The sysgen macro SGICP400
contains the linkage editor control statements required to link edit IOCP. You
must supply the J CL.

Chapter 2. Installation and Initialization 2-3

Although you can run 10CP before or after sysgen is completed, running it before
sysgen is preferable. ·IOCP performs many validity checks on the input deck. If
any input statements contain errors, rerunning 10CP is quicker than rerunning
sysgen.

As long as you provide 370-dependent information (such as channel numbers), the
370/370-XA 10CP creates an locns that can be used in either 370 or 370-XA
mode. The 370 level of 10CP creates an locns that can be used only in 370
mode. Also, you cannot use the 370 level of 10CP to read or print reports from a
370/370-XA locns. If you attempt to, the system issues message ICP4041,
which indicates that the level of the locns directory is invalid.

During the migration period, it is important that you create an 10CDS that can be
used in both 370 and 370-XA modes. Therefore, you must run the 370/370-XA
10CP to create the locns. In addition, to ensure that the 10CDS works for both
370 and 370-XA, you can use the same 10CP macro specifications to create it as
used to create a 370 locns. Although the macro instructions are upward
compatible between 370 and 370-XA modes, be aware of differences in the way
10CP treats the macro specifications when defining a 370-XA I/O configuration.
Most of the differences support the new I/O architecture:

Macro

CHPID

10DEVICE

MVS/XA Differences

IOCP requires channel numbers and channel sets only for devices to be used in 370
mode. The 370-XA architecture does not use channel numbers and channel sets.

ADDRESS keyword. IOCP treats the ADDRESS keyword value as a device address
in 370 mode and as a device number in 370-XA mode. During the conversion
period, specify the device numbers exactly the way you specify 370 device addresses.

From a users point of view, MVS/XA device numbers are equivalent to MVS/370
device addresses (sometimes referred to as CUAs in MVS/370). Both uniquely
identify a device. In some publications and messages, you might still see device
numbers referred to as device addresses.

UNIT ADD keyword. UNIT ADD is a new optional keyword that specifies the
two-digit physical unit address of the device being described. UNIT ADD provides
an alternative to specifying the unit address on the ADDRESS keyword (the last two
digits of ADDRESS=xxx). If you specify UNITADD, the last two digits of
ADDRESS=xxx need not be the device's actual physical unit address, as previously
required. Instead, they can be any value that: (a) makes the device number unique,
and (b) follows the rules listed in the IOCP User's Guide and Reference.

UNIT ADD allows you to assign the same unit address to more than sixteen devices.
Without UNITADD, the limit is sixteen because the first digit of ADDRESS=xxx
must be I-F, the last two digits must be the device's unit address, and the three-digit
combination must be unique. The first two restrictions allow only sixteen unique
combinations (for example, IFF-FFF for devices having unit address FF).

You cannot use UNITADD on 10DEVICE macros used to generate an MVS/370
system. The MVS/370 sysgen program does not recognize UNITADD on
IODEVICE and fails.

PATH keyword. PATH is a new optional keyword that has meaning only in 370-XA
mode. It specifies a preferred path, which the channel subsystem tries first when
initiating I/O to the device. You cannot include PATH on IODEVICE macros used
to generate an MVS/370 system. As with UNITADD, the MVS/370 sysgen
program does not recognize the PATH keyword on IODEVICE and fails.

WARNING: When coding the CNTLUNIT macro, remember to specify on the
UNIT ADn parameter all unit addresses that the control unit can address,
regardless of whether a device is actually attached. This rule is not new. However,

2-4 MVS/Extended Architecture Conversion Notebook

not specifying all unit addresses can degrade performance more in MVS/XA. If all
unit addresses are not specified, channel processing is less efficient.

New I/O Configuration Requirements

Coding Sysgen Macros

Before running the 370/370-XA 10CP, review your current I/O configuration to
ensure that it is valid in 370-XA mode, even if you plan to run only in 370 mode.
The 370/370-XA IOCP imposes new restrictions on the I/O configuration (for
example, no physical control unit can share devices with more than three other
physical control units). Current I/O configurations might violate the new
restrictions, in which case the 370/370-XA IOCP issues error messages.

The new restrictions are related to logical control units. A logical control unit
represents a group of physical control units that physically and logically attach I/O
devices in common. The 370-XA channel subsystem uses logical control units
when queueing I/O requests and establishing path selection orders, The IOCP
User's Guide and Reference describes logical control units in more detail and lists

the new I/O configuration requirements they must satisfy.

Incompatibilities you need to check for when coding sysgen macros are:

Macros that specify unsupported device types. (See "Devices Not
Supported.") The macros you need to check include CONSOLE, DATASET,
GENERATE, IODEVICE, and SCHEDULR. If a specified device is
unsupported (for example, IODEVICE UNIT=2314), sysgen processing
identifies the invalid device, issues an error message indicating the quit switch
has been set, and does not produce a Stage II jobstream.

• Invalid specifications on the lock (L) parameters of SVCT ABLE macros.
MVS/XA changes to the locking structure might affect which locks the system
must obtain before calling the SVC routine. Sysgen processing, however, does
not identify invalid lock requests. See "Changes to the Locking Structure" for
more detail.

Figure 2-1 summarizes the changes to sysgen macros. Most of the changes are
compatible. MVS/XA sysgen processing generally ignores MVS/370 macros,
keywords, and options that have no meaning when generating an MVS/XA
system. In a few cases, it accepts them and issues an informational or warning
message.

Chapter 2. Installation and Initialization 2-5

Devices Not Supported

Obsolete Sysgen Macro, Keywords, and Options

Macro Description of Changes

CHANNEL Obsolete. If sysgen processing encounters a CHANNEL macro, it issues an
informational message and continues.

CTRLPROG The following keywords and options are obsolete:

-ACRCODE
-STORAGE
-WARN
-CRH

DATASET A new DUMPDSN keyword specifies the suffixes or ranges of suffixes for dump data
set names. You can define up to 100 dump data sets. Earlier releases allow a
maximum of 10.

You can specify secondary extents for the PARMLIB data set.

GENERATE The default name for the INDEX keyword is SYSX, instead of SYS 1.

IODEVICE The following keywords are obsolete:

-AP
-GCU
-OPTCHAN

The following options on the FEATURE keyword are obsolete:

-ABSLTVEC
- BUFFER4K
- BUFFER8K
-CHARGNTR
-DATACONV
- DEKYB2260
- DESIGNFEAT
- LIGHTPEN
-LINEADDR
-MDECOMPAT
- NMKEYB2260
- NODESCUR
-READWRITE
- 2-CHANSW

Sysgen processing ignores all options except DATACONV, MDECOMPAT, and
READWRITE. If those are specified, sysgen processing issues a warning message.

SCHEDULR TAVR=200 is obsolete.

UNITNAME The maximum number of unique groups allowed is increased from 100 to 256. The
maximum number of device numbers allowed is 4112 minus the number of unique
groups. Earlier releases allow 2056. You can include a maximum of 4111 device
numbers in one group.

Figure 2-1. Obsolete Sysgen Macro, Keywords, and Options

The devices listed below are ones you might be using on your MVS/370 system
but that you cannot use when running MVS/XA. Either the devices cannot be
attached to a 308x processor, or MVS/XA does not support them. A asterisk (*)
next to a device number indicates an RPQ has been approved for that device. To
obtain RPQ approvals, descriptions, and details, see your IBM marketing
representative.

2-6 MVS/Extended Architecture Conversion Notebook

Card I/O and Printers

1053 Model 4
1403 Model 3
1442
1443
2520
2596

Consoles

1052 Model 7
2150
2250 Modell
2260*
3036
3066
3158
3210
3213
3215
2715

Tapes

2401
2402
2403
2404
2420
3410
3411 *

Cartridge Readers

2495

Rebuilding Alternate Eligible Device Tables (EDTs)

OCR/MICR

1275
1287*
1288*
1419
3881
3886
3895*

Disks

2305 Modell
2311
2314
2319

Transmission Controllers

2702*
2703*

Other

1012
1066
2671*
2790
2816
2955
3540*
3670
7443
7770*

EDTs are not compatible between MVS/370 and MVS/XA. Neither an
MVS/XA nor an MVS/370 system can use EDTs verified on the other system. If
your installation uses alternate EDTs, you must rebuild them using the EDTGEN
macro in the MVS/XA SYSGEN macro library. You can build the EDTs on either
an MVS/370 or an MVS/XA system, but you must verify them on an MVS/XA
system.

Changes to the Program Properties Table (PPT)

Installing Release 1.1 replaces the program properties table (PPT)., The updated
PPT contains two new entries: one for IF ASMF and one for CSVLLCRE.
IF ASMF is a new SMF module that is required to start the new SMF address
space. CSVLLCRE creates and maintains a new directory of modules in the
LNKLST concatenation. (See "Using a New Directory for LNKLST Data Sets"
for more information.)

If your installation has added PPT entries, either include them in the new PPT
table, or copy the new Release 1.1 entries into your version of the PPT. System
Modifications describes how to update the PPT.

Note: ACF /VTAM (5665-280) also replaces the PPT table. If you install that
product after Release 1.1, you need to make your PPT updates again.

Chapter 2. Installation and Initialization 2-7

Defining System Data Sets

An MVS/XA system requires data sets with the same names and characteristics as
an MVS/370 system. Additional information related to defining system data sets is
described below.

Device Types Allowed

Except for page data sets, you can place system data sets on all devices that were
previously allowed, provided MVS/XA supports those device types. The next
paragraph describes the page data set exception. You must move data sets on
unsupported devices to supported devices. See "Devices Not Supported."

Page Data Sets

You can use the same page data sets as used in MVS/370 with one exception.
Release 1.0 does not support page data sets that reside on a 3350 device attached
to a 3880 Model 11 (UNIT=3350P on the IODEVICE macro). That support is
added in Release 1.1.

You need to evaluate the number and size of page data sets you have defined.
Both the system's and users' virtual storage requirements might increase enough to
require additional external page space.

Swap Data Sets

You need to evaluate the number and size of swap data sets defined. As virtual
storage requirements increase, you might need to define additional swap space.

Dump Data Sets

Installations can now define up to 100 SYS I.DUMPnn data sets. A maximum of
10 dump data sets are allowed in MVS/370.

Your installation might want to increase the number and size of dump data sets
defined during the migration period. Allocate dump data sets large enough to
contain the maximum size SVC dump expected. The size of the dump depends on
the dump options. Early test experience indicates that SYS I.DUMPnn data sets
used with MVS/370 are probably large enough for MVS/XA SVC dumps.

A new command, DUMPDS, allows installations to add and delete SYS I.DUMPnn
data sets after IPL/NIP time. See "Summary of New, Changed, or Deleted
Commands" in Chapter 4. Also, SYS I.DUMPnn data sets must be allocated
DISP=SHR instead of DISP=OLD. See "JCL Changes to Jobs that Allocate
SYS1.DUMP Data Sets" in Chapter 4 ..

SYSl.DAE Data Set

To start dump analysis and elimination (DAE), Release 1.1 requires that a new
system data set, SYS1.DAE, be allocated at IPL time. DAE, a new function in
Release 1.1, stores in SYS 1.DAE symptom information from dumps it identifies as
unique. It uses that inform~tion when determining if subsequent dumps are
duplicates. "Dump Analysis and Elimination (DAE)" in Chapter 6 gives an
overview of DAE and describes in more detail how and when SYS1.DAE is used.

2-8 MVS/Extended Architecture Conversion Notebook

You can create SYSl.DAE using JCL in the DAEALLOC member of
SYSl.SAMPLIB. (The DATASET sysgen macro does not support SYSl.DAE.)
For instructions, see System Modifications.

New MSTRJCLxx Members in the SYSl.LINKLIB Data Set

In Release 1.1, the JCL for starting the master scheduler address space is contained
in MSTRJCLxx members of SYS1.LINKLIB. MSTRJCL, the member that earlier
releases use, is deleted. IBM supplies default JCL in MSTRJCLOO instead. To
change the JCL, create additional members. Use the new MSTRJCL system
parameter to specify which member the system is to use. The default is
MSTRJCL=OO.

Concatenating Data Sets to the SYS 1.LPALIB Data Set

If Release 1.1 is installed, you can concatenate data sets to the SYS I.LP ALIB data
set. The system uses the modules in the concatenated data sets, as well as the
SYS I.LP ALIB data set, to build the PLP A, the MLP A, and the FLP A. Earlier
releases of MVS use only the modules in the SYS I.LP ALIB. LP ALIB
concatenation allows you to share a single SYS I.LP ALIB data set among several
systems, yet still tailor the PLP A, MLP A, and FLP A of each system by varying the
concatenation.

To concatenate data sets:

List in a new LP ALSTxx P ARMLIB member which data sets are to be
concatenated. The data sets must be included in the master catalog and must
be APF authorized.

• Specify on the new LP A system parameter which LP ALSTxx members are to
be processed. You can include the LP A parameter in IEASYSxx, or an
operator can specify it when prompted for system parameters. If you omit the
LPA parameter, the system uses SYSl.LPALIB only, as in previous releases of
MVS.

See System Initialization and Tuning for more detail on creating LP ALSTxx
members and specifying the LPA system parameter.

SYSl.LOGREC Data Sets

If you install Release 1.1, you can place SYS I.LOGREC data sets on a volume
other than the SYSRES volume. Several systems can then share a SYSRES volume
and still have separate SYS I.LOGREC data sets. To use an alternate
SYSl.LOGREC data set, simply include a data set named SYSl.LOGREC in the
master catalog. The system searches for a data set with that name first in the
master catalog, then in the SYSRES volume.

The sysgen process requires that the SYSl.LOGREC data set reside on the
SYSRES volume. Therefore, do not include a data set named SYS I.LOGREC in
the master catalog until after the sysgen process is completed.

You might want to increase the size of your SYSl.LOGREC data set because
MVS/XA can produce more diagnostic information.

Chapter 2. Installation and Initialization 2-9

Initializing DASD

Loading the IPL Programs

SYSI.NUCLEUS Data Set

As in MVS/370, the MVS/XA SYSl.NUCLEUS must be a single extent. If you
attempt to allocate a mUltiple extent data set, MVS/XA enters a restartable wait
state (wait state code x'081'). MVS/370takes different actions.

SYS I.P ARMLIB Data Set

In MVS/XA, the SYS1.PARMLIB dataset can be blocked and can have mUltiple
extents. In MVS/370, the PARMLIB has to be unblocked and a single extent.
Also see "New, Changed, or Deleted PARMLIB Members."

System Data Set Qualifiers

You cannot specify a system data set qualifier of SYS 1 on the INDEX parameter of
the GENERATE macro. You can either specify some other high level qualifier or
let sysgen processing assign the default (SYSX). Sysgen Stage II processing
changes the high level qualifiers to SYS 1. This restriction is not new. It always
applies when using a system other than a starter system to do a complete sysgen.
Note that the default high level qualifier is changed from SYS 1 to SYSX.

You must use Device Support Facilities to initialize DASD volumes. IEHDASDR is
no longer supported. See the Device Support Facilities User's Guide for directions.

To IPL MVS/XA, you must use the IPL text distributed with MVS/SP Version 2.
The MVS/370 and MVS/XA IPL programs are not compatible. You must use
Device Support Facilities Release 6 to write the IPL text to DASD.

Device Support Facilities loads the second MVS/XA bootstrap record into the
frame at main storage absolute address 8 K. It loads the IPL text into main storage
frame O.

If you write your own bootstrap programs, ensure that the addresses used to load
the bootstrap records are in storage that will not be taken offline. In MVS/XA,
your choices are:

• Main storage frame 0, 2, 4, 8, and so on, throughout the first main storage
range.

• The low end of the highest storage range specified on the CONFIG frame on
the system console. That storage range always remains online.

Loading the Microcode EC Tapes for Mass Storage Subsystems

To load MSS microcode in an MVS/XA environment, use the MSC Table Create
(MSCTC) utility with PTF UZ09020 installed, instead of IEHDASDR.
IEHDASDR does not work in MVS/XA.

The MSCTC control statement to use is CREATE, the required parameter is
RESTOREC. For more information, see MSS Installation Planning and Table
Create.

2-10 MVS/Extended Architecture Conversion Notebook

I Installing the JES2 Component of MVS/SP - JES2 Version 2

\ If you are converting to MVS/XA from an MVS/370 system that has at least
MVS/SP Version 1 Release 3.0 with PTFs installed, you do not have to install the
JES2 component of MVS/SP Version 2, regardless of which release you install.
The Release 3.0 JES2 with PTFs installed is functionally equivalent to the JES2
component in MVS/SP Version 2 Release 1.0. Furthermore, it will run on all
releases of MVS/SP Version 2, although Releases 1.1 and 1.2 include enhanced
levels of JES2.

The JES2 component of Release 1.1 is functionally equivalent to the JES2
component of MVS/SP Version 1 Release 3.3. The JES2 component of Release
1.2 is functionally equivalent to the JES2 component of MVS/SP Version 1
Release 3.4.

If your current and target systems have equivalent JES2 components, you need not
reinstall JES2. To install an enhanced JES2 component, perform either a warm or
a cold start, depending on the level of your current JES2 component.

Note that the JES2 components mentioned are upward, but not downward,
compatible. That is, they work only on systems that have functionally equivalent or
enhanced JES2 components.

The following chart summarizes the JES2 correlations between MVS/SP Versions
1 and 2. It also indicates whether you perform a cold or warm start to upgrade the
level of JES2.

Level of your Level of the target MVS/XA system
current system's

JES2 component Release 1.0 Release 1.1 Release 1.2

MVS/SP Version 1 The JES2 The target The target
Release 3.0 with PTFs components are system can run system can run
Release 3.1 functionally with the current with the current
Release 3.2 equivalent. level of J ES2. level of J ES2.

Upgrading JES2 Upgrading JES2
requires a cold requires a cold
start. start.

MVS/SP Version 1 The current JES2 The JES2 The target
Release 3.3 component will components are system can run

not work on the functionally with the current
MVS/SP Version 2 target system. equivalent. level of JES2.

Release 1.1
Upgrading JES2
requires a warm
start.

MVS/SP Version 1 The current JES2 The current JES2 The JES2
Release 3.4 component will component will components are

not work on the not work on the functionally
MVS/SP Version 2 target system. target system. equivalent.

Release 1.2

Figure. 2-2. Functionally Equi~alent JES2 Components

Chapter 2. Installation and Initialization 2-11

System Parameter and SYSl.PARMLIB Considerations

The topics in this section contain information related to specifying system
parameters. "New, Changed, or Deleted P ARMLIB Members" on page 2-17
summarizes changes to SYS 1.P ARM LIB members.

Fixed Storage for SLIP Command Processors (IEACMDOO)

A new PARMLIB member, IEACMDOO, contains IBM-supplied SLIP commands
to suppress dumps that are not usually required for problem determination. (See
"Suppressing Dumps" in Chapter 6 for detail.)

When the system processes IEACMDOO at IPL time, it allocates fixed storage for
the SLIP action processors and the control blocks they use. The action processors
require approximately 30 K bytes of fixed storage in extended LP A. The control
blocks require approximately 1 K bytes of fixed storage in extended SQA.

If your installation does not use SLIP commands in MVS/370, the fixed storage
requirement is new. Because the fixed storage is allocated above the 16 Mb line,
installations that previously used SLIP commands will gain approximately 31 K
bytes of virtual storage below 16 Mb.

Specifying the RSU Parameter (IEASYSxx)

I If you specified an RSU parameter in the past, when initializing Release 1.1, you
I need to review that specification. Release 1.1 satisfies the RSU request in a
I different way than previous releases do. The same RSU value might result in less
I reconfigurable storage.
i
I In Release 1.1, the RSU parameter specifies the total number of storage units MVS
I is to mark reconfigurable. The system attempts to satisfy the request using offline
I storage units. It marks online storage reconfigurable only if there is not enough
I offline storage. After satisfying the RSU request, the system marks all remaining
I storage units (both online and offline) as preferred. If the system cannot satisfy
I the RSU request, the operator receives message IAR004I, as in previous releases.
I
I In Release 1.0 and earlier releases, the RSU parameter specifies the number of
I online storage units to be marked reconfigurable when initializing the system. Those
I releases use only online storage to satisfy the request. However, they also
I automatically mark storage that is offline at IPL time as reconfigurable when
I bringing it online. Thus, the total amount of reconfigurable storage is the amount
I marked reconfigurable when satisfying the RSU parameter, plus the amount
I brought online after the IPL. As a result, the RSU parameter in earlier releases can
I be less than the resulting amount of reconfigurable storage.
I
I On a 3084 processor, the RSU value needs to be equivalent to at least the amount
I of storage you plan to take offline before the next IPL. Some installations specify
I one additional storage unit to increase the probability that storage can be taken
I offline later. Remember that you can lose reconfigurable storage during normal
I processing in two ways:
I
I • If the system runs out of preferred storage frames, it dynamically converts some
I reconfigurable storage to preferred storage.
I
I • The system might not be able to reconfigure storage that contains storage
I errors that cannot be corrected.

2-12 MVS/Extended Architecture Conversion Notebook

Do not, however, specify more reconfigurable storage than you anticipate needing.
Specifying too much can negatively affect performance.

If performing an IPL on a 3081 processor, you do not need to specify an RSU
value. Storage is not reconfigurable, and the RSU default value is zero.

System Initialization and Tuning contains more detail on specifying the RSU
parameter.

Increasing the Minimum SQA Allocation (IEASYSxx)

If you changed the NVTNVSQA field in module lEA VNIPO to increase the
minimum SQA allocation during previous system initializations, you need to read
this topic. During system initialization, if the PAGE parameter specifies a large
number of page data sets or if several 2305 Model 2 page data sets are active, the
system's minimum allocation for SQA and extended SQA (seven 64 K blocks)
might be depleted before the system processes the SQA parameter. In MVS/370,
you can solve that problem by changing the contents of the NVTNVSQA field.
That method does not work in MVS/XA. You can, however, increase the
minimum allocations by changing the halfwords NVSQA and/or NVESQA in
module IEAIPL04. Consult microfiche for the locations of these fields. If you
increase the minimum SQA and/or extended SQA allocations and you want the
total SQA size to remain the same, decrease the corresponding value on the SQA
parameter.

The following Release 1.2 changes cause more SQA and extended SQA to be
available earlier in the initialization process. As a result, you might not need to
change the minimum SQA allocation:

The minimum SQA allocation is increased to four 64 K blocks. In earlier
releases, it is three.

The system processes the SQA parameter earlier during system initialization.

Specifying the Size of CSA and SQA Above 16 Mb (IEASYSxx)

You can use the CSA and SQA parameters on the CTRLPROG macro to specify
the size of CSA and SQA below, but not above, 16 Mb. MVS/XA assigns default
sizes for extended CSA and extended SQA (CSA and SQA above 16 Mb). To
override those defaults, use new options on the CSA and SQA system parameters.

The default sizes are:

CSA/ extended CSA - 100 K/ 1 00 K
SQA/extended SQA - 256 K/256 K plus approximately 8 Mb

The CSA and SQA system parameters each have an additional option for
specifying the size of extended CSA and extended SQA:

CSA = (a,b) where "a" specifies the size of CSA or SQA,
SQA = (a,b) and "b" specifies the size of extended CSA or SQA.

Chapter 2. Installation and Initialization 2-13

The CSA values indicate the number of 1 K units to be reserved. The values
override the default specifications. For example:

CSA = (100,200) results in:

Reserved CSA = 100 K
Reserved extended CSA = 200 K

The SQA values specify the number of 64 K blocks MVS/XA is to reserve in
addition to the minimum amount of storage it allocates for SQA and extended SQA.
The minimum amounts are 256 K for SQA and 256 K plus approximately 8 Mb for
extended SQA. For example:

SQA = (3,5) results in:

Reserved SQA = 3 x 64 K + 256 K
Reserved extended SQA = 5 x 64 K + 256 K + approximately 8 Mb

The default SQA values are SQA=(l,O).

See Initialization and Tuning for more information.

Minimizing Private Area Storage Lost Because of Rounding (IEASYSxx)

Because the segment size in MVS/XA increases from 64 K to 1 Mb, you need to
pay closer attention to the amount of private area storage lost to CSA at
initialization time because of rounding. During IPL processing, MVS/XA builds
the common area below 16 Mb beginning at the 16 Mb address and working
down.

Extended
Private

Extended

Common

Common

Private
20K

Common

,-

<

I
>

I

t
~

t

\

Extended LSQA/SW A/229/230

Extended user region

Extended CSA

Extended PLPA/FLPA/MLPA

Extended SQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA

CSA

LSQA/SW A/229/230

User Region

System region

PSA

2G

16 Mb

20K

4K
o

To determine the lower boundary of the common area (which is the upper
boundary of the private area), MVS/XA rounds the bottom CSA address to the
the next lowest 1 Mb. Thus, as much as 1020 K bytes (1 Mb minus 4 K) of virtual
storage can be added to the CSA, and consequently lost from the private area,
because of rounding. Although it is not expected that your installation will lose

2-14 MVS/Extended Architecture Conversion Notebook

that much private area, choose your CSA and SQA parameters carefully. If the
size of the private area falls below 8 Mb, MVS/XA informs the operator.

MVS/XA also builds a common area above 16 Mb. Private area storage above 16
Mb can also be lost because of rounding. However, users are not expected to have
virtual storage constraint problems above 1 ~ Mb.

Specifying Dump Data Sets (IEASYSxx)

An additional operand of the DUMP parameter in IEASYSxx, 'DASD,xx-yy',
allows an installation to request that the system being initialized use a specific
range of DASD dump data sets. The DASD operand was redesigned specifically
for systems that use SYS I.DUMP data sets that can be accessed by other systems.
An installation can specify unique dump data sets for each system, which prevents
SDUMP routines from using a dump data set concurrently for different systems.

The DASD operand also shortens dump data set catalog processing at initialization
time. When specific dump data sets are indicated, the initialization routines do not
have to issue all 100 locates to determine which dump data sets are cataloged.

Requesting Storage for RMF I/O Measurements (IEASYSxx)

If your installation wants RMF I/O data for device classes other than tape or
DASD, you must request storage at initialization time for the control blocks in
which the data is to be collected. SRM collects the I/O data that RMF uses in new
control blocks, one per device. To request control block storage, specify on the
new CMB parameter in IEASYSxx the non-tape and non-DASD device classes for
which I/O data is to be collected.

Controlling the Number of Available ASVT Entries (IEASYSxx)

A system with Release 1.2 installed creates and manages the address space vector
table (ASVT) differently. The changes are designed to prevent the system from
running out of ASVT entries.

When creating the ASVT, the system adds extra entries and reserves them for use
when no unreserved entries are available. It uses one group of reserved entries
only for address spaces being created in response to a START command. It uses a
second group as replacements for entries that are not reusable because of latent
cross-memory binds.

Two new system parameters allow your installation to specify the number of entries
to be reserved for each purpose:

RSVSTRT Specifies the number of entries to be reserved for address spaces created in response to
a START command. The default is five.

RSVNONR Specifies the number of entries to be used as replacements for entries that are not
reusable. The default is also five.

The system still uses the MAXUSER parameter to limit the number of jobs and
started tasks that can execute concurrently under normal conditions. However,
MAXUSER no longer specifies the maximum number of jobs or started tasks the
system allows. That number is usually the MAXUSER value plus the RSVSTR T
value. If supervisor recovery reconstructs the ASVT, the maximum number might
be the sum of the MAXUSER, RSVSTRT, and RSVNONR values. The default
MAXUSER value is still 256.

Chapter 2. Installation and Initialization 2-15

Removing TRACE Commands from COMMNDxx PARMLIB Members

You might want to remove or update any TRACE operator commands in the
COMMNDxx P ARMLIB member. The syntax of the TRACE command is
changed. MVS/370 TRACE commands do not work in MVS/XA. Also, the
MVS/XA system trace remains active after system initialization time. No TRACE
ON command is required to keep it active, as in MVS/370. Issuing MVS/370
TRACE commands~ however, does not prevent MVS/XA system trace from being
initialized or activated. "Summary of New, Changed, or Deleted Commands" in
Chapter 4 describes the TRACE command changes.

Updating the IEAFIXxx PARMLIB Member

Remove from IEAFIXxx the names of modules that have been moved from LP A to
the nucleus. Module names to be removed include:

IGC0004F (the TTIMER service routine, which is renamed IGC046 in
MVS/XA)

• IGC0004G (the STIMER service routine, which is renamed IGC047 in
MVS!XA)

IEWFETCH (program fetch, aliases IEWMBOSV and IEWMSEPT)

• IGC0001F (the PURGE service routine)

If those modules are in IEAFIXxx, the operator receives a message indicating that
the modules could not be found. The P ARMLIB member is not rejected.

Removing References to Device Allocation Tables (IEALPAxx)

The DEVNAMET, IEFDEVPT, and DEVMASKT device allocation tables are
deleted in MVS/XA. Remove any references to these tables in P ARM LIB
members (for example, in the MLPA list).

Keeping RNLs in GRSRNLxx PARMLIB Members

If Release 1.2 is installed, you can keep global resource serialization resource name
lists (RNLs) in new GRSRNLxx PARMLIB members instead of in the ISGGRNLO
load module in SYS 1.LINKLIB. RNLs are easier to update when kept in
PARMLIB members. You can, however, continue using the RNLs in
SYS 1.LINKLIB.

Regardless of where the RNLs are located, if your system is to be part of a global
resource serialization complex (GRS=START or GRS=JOIN), you must have at
least one GRSRNLxx member. Use the new system parameter, GRSRNL=, to
specify which members the system is to use.

If you keep RNLs in SYS 1.LINKLIB, the GRSRNLxx member must begin with a
statement that tells the system to use the RNLs in SYS 1.LINKLIB (and ignore the
rest of the statements in the member). That statement is RNLDEF
LINKLIB(YES) .

To keep RNLs in a GRSRNLxx member, you need to include in the member one
statement for each RNL entry. Each statement begins with RNLDEF, specifies the

2-16 MVS/Extended Architecture Conversion Notebook

resource name, and indicates the RNL to which it belongs. Initialization and
Tuning describes how to write RNLDEF statements.

One member, GRSRNLOO, is shipped with Release 1.2. GRSRNLOO contains
entries for the same resources as the default RNLs in SYS1.LINKLIB (which are
also shipped in Release 1.2). In addition, it begins with the statement RNLDEF
LINKLIB(YES), which causes the system to use the RNLs in SYSl.LINKLIB.
IEASYSOO contains the parameter GRSRNL=OO, so the system uses GRSRNLOO
by default.

Because of the defaults, if using RNLs in SYS I.LINKLIB, you need not do
anything. To use the RNLs in GRSRNLOO, you need to:

Remove the first statement: RNLDEF LINKLIB(YES)

Add, delete, or modify RNLDEF statements to match your installation's
resource serialization requirements.

You can also create and use other GRSRNLxx members.

Systems in the same global resource serialization complex can use different
methods of defining RNLs (either statements in GRSRNLxx PARMLIB members
or the ISGGRNLO LINKLIB module). However, as before, the RNLs for all
systems in the complex must be identical. The resources identified in the RNLs
must be the same and they must appear in the same order.

Specifying MIH Intervals (IECIOSxx)

Installations can specify by device the time intervals at which MIH scans for
missing interrupts. A new MIH statement in the IECIOSxx P ARMLIB member
allows installations to specify separate time intervals for:

• All DASD except 3330V devices. The default is 15 seconds.

• 3330V devices (MSS virtual DASD). The default is 12 minutes.

3851 devices (mass storage controller). The default is 12 minutes.

Specific devices identified by device number. There is no default. Installations
can bypass MIH processing for specific devices by setting a time interval of
zero.

All other devices. The default is 3 minutes.

New, Changed, or Deleted P ARM LIB Members

Figure 2-3 summarizes SYS1.PARMLIB members that are new, changed, or
deleted in MVS/XA. Most of the changes are compatible, some are not. For
example, if the MVS/370 version of IEASYSxx specifies the ALT parameter, you
cannot use it in place of the MVS/XA version of IEASYSxx. (See the entry for
IEASYSxx.) In other cases, MVS/XA ignores parameters that it no longer
supports and uses defaults for new parameters. If you use the MVS/370 IEAIPSxx
member, you need to review the specifications to ensure optimal performance.

Initialization and Tuning describes the PARMLIB members in more detail.

Chapter 2. Installation and Initialization 2-17

Release

Member 1.0 1.1 1.2 Description of Change

ADYSETxx x A new member. It contains records that control dump analysis and elimination
(DAE). Each record can specify:

- Whether or not DAE is to be active

- The functions DAE is to perform

- The number of symptom records to be kept in the SYS I.DAE data set

See "Dump Analysis and Elimination (DAE)" in Chapter 6 for more information
about DAE processing.

CONFIGxx x New and changed parameters:

- CHAN and CHANNEL are deleted. MVS/XA does not use channel set
information. If CHAN and CHANNEL are specified, the operator receives a
message indicating that they are ignored. MVS/XA continues processing
CONFIGxx.

- CHP specifies the configuration of channel paths. It replaces CHAN and
CHANNEL.

- CPU specifies a processor and can be used in place of CPUAD. You can
continue to specify the CPUAD parameter, however.

- The syntax of the DEV parameter is changed. It specifies channel path
identifiers instead of channel set IDs.

The operator can use the CONFIGxx member when reconfiguring the system.
The new CONFIG command has an operand, MEMBER, Which specifies a
CONFIGxx member. In response to a CON FIG MEMBER command, the
system logically and physically reconfigures processors, storage, and channel
paths as defined by the CPU, STOR, and CHP parameters in the specified
CONFIGxx member.

GRSRNLxx x A new member that contains either global resource serialization resource name
lists (RNLs), or a statement indicating the system is to use the RNLs in
SYSl.LINKLIB. (In Release 1.2, you can keep RNLs in GRSRNLxx members or
in SYSl.LINKLIB.) IBM provides one default member, GRSRNLOO. See
"Keeping RNLs in GRSRNLxx PARMLIB Members" earlier in this chapter for
more information.

GTFPARM x Contains new options for requesting I/O event recording. USRP is also a new
option, which prompts for specific USR events to be recorded.

Figure 2-3. (Part lof 6). New, Changed, or Deleted PARMLIB Members

2-18 MVS/Extended Architecture Conversion Notebook

Release

Member 1.0 1.1 1.2 Description of Change

IEAABDOO x New and changed options on the SDA T A keyword:
(SYSABEND)

- ALLSDATA includes all of the SDATA options except ALLYNUC and
NOSYM.

- ALL YNUC requests the PSA, CYT, and OAT -on nucleus.

- NOSYM requests that symptom dumps be suppressed. Unless NOSYM is
specified, the system produces a symptom dump each time a task abends, even
if the user did not specify a dump DD statement.

- NU C requests only the DA T -on, non-page protected section of the nucleus and
the PSA and CYT. In MYS/370, NUC causes the entire nucleus to be dumped.

- SUM requests a summary dump.

- TRT requests trace data from the active trace facilities, as in MYS/370.
However, only an MYS/XA dump can include both system trace and GTF
data. Both trace facilities can be active at the same time in MYS/XA, but not
in MYS/370.

SUBT ASKS, a new option on the PDA T A keyword, specifies that the requested
PDATA information be dumped for all subtasks of the abending task. When a
task receives ABEND code 'x22', the system dumps SUBTASKS data, regardless
of whether the SUBT ASKS option is specified.

The PDAT A default options specified in the IBM-supplied member are changed.
The MYS/XA default options are all of the POA T A options except SUBT ASKS.
In MYS/370, ALLPDAT A is the default.

The IBM-supplied member includes an additional SOATA default option, SUM.
It also includes the options specified in the MYS/370 member (LSQA, CB, ENQ,
TRT, ERR, DM, and 10).

Figure 2-3 (Part 2 of 6). New, Changed, or Deleted PARMLIB Members

Chapter 2. Installation and Initialization 2-19

Release

Member 1.0 1.1 1.2 Description of Change

IEABLDxx x Systems with Release 1.0 installed process any IEABLDxx member you supply,
but provide no default members. Before using existing BLDL lists, ensure their
accuracy. Some system modules are moved to different libraries in MVS/XA.

x Systems with Release 1.1 installed do not process IEABLDxx members. The
LNKLST look aside (LLA) function in Release 1.1 provides a directory of
modules in the LNKLST concatenation. The new directory eliminates the need
for the BLDL table and, thus, the need for IEABLDxx members. The system
ignores the BLDL and BLDLF system parameters. For more information about
the LLA function, see "Using a New Directory for LNKLST Data Sets" in
Chapter 8.

IEACMDOO x A new member that contains IBM-supplied commands. Except for one
CHNGDUMP command, all of the commands in the Release 1.0 member are
SLIP commands. The CHNGDUMP command adds trace table and LSQA
information to SVC dumps. The SLIP commands suppress dumps that are
normally not required for problem determination. See "Suppressing Dumps" in
Chapter 6.

x Release 1.1 adds two new commands:

- SET DAE=OO, which causes the system to process the ADYSETOO PARMLIB
member. ADYSETOO starts DAE processing. For more information, see
"Dump Analysis and Elimination (DAE)" in Chapter 6.

- START LLA, which starts the LLA procedure in SYSl.PROCLIB. The LLA
procedure in turn starts the LNKLST lookaside (LLA) function. See "Using a
New Directory for LNKLST Data Sets" for a description of the LLA function.

IEADMPOO x The new and changed parameters for IEADMPOO are the same as
(SYSUDUMP) those for IEAABDOO. See the IEAABDOO entry in this table.

The only default option specified in the IBM-supplied member is SUM. In most
cases, the summary dump will be sufficient to debug user program checks and
ABEND dumps.

IEADMROO x New and changed SDAT A options are:
(SYSMDUMP)

- ALLNUC, which requests that the entire nucleus be included in the dump.

Note: You can also request that the entire nucleus be included in
SYSMDUMPs via the SNAP parameter list and the CHNGDUMP command.
The required SNAP parameter list option is ALLVNUC, not ALLNUC. The
CHNGDUMP option is ALLNUC.

- ALLSDATA includes all of the SDATA options except ALLNUC and
NOSYM.

- NOSYM, NUC, and TRT request the same data as when specified in
IEAABDOO. See the IEAABDOO entry in this table.

- SUM requests summary dump information like that included in SVC dumps.

The default options specified in th~ IBM-supplied member include SUM, in
addition to the SDATA options specified in the MVS/370 default member
(NUC, SQA, LSQA, SWA, TRT, and RGN).

IEAFIXxx x Unless the NOPROT option is specified on the FIX parameter in the IEASYSxx
member, the system page-protects the modules listed in IEAFIXxx. See "Page
Protection" in Chapter 3.

IEAIPSxx x A new parameter, IOSRVC, specifies whether SRM is to base I/O service on
EXCP counts or device connect time"; The default is EXCP counts.

x A new parameter, PPGRTR, requests that SRM use residency time instead of
execution time when it calculates the page-in rate for address spaces in the
specified performance group. PPGRTR specifies the high or low limit the rate
must exceed before SRM adjusts the address space's working set size. See "Using
Residency Time to Calculate the Page-in Rate of an Address Space" in Chapter 8
for more detail.

Figure 2-3 (Part 3 of 6). New, Changed, or Deleted PARMLIB Members

2-20 MVS/Extended Architecture Conversion Notebook

Release

Member 1.0 1.1 1.2 Description of Change

IEALPAxx x Unless the new NOPROT option is specified on the MLPA parameter in the
IEASYSxx member, the system page-protects the modules listed in IEALPAxx.
See "Page Protection."

IEALODOO x If IEALODOO is specified, MVS/XA ignores it. Unlike MVS/370, MVS/XA
does not build contents directory entries (CDEs) for PLPA modules. It uses the
LPA directory entries (LPDEs) instead.

IEAOPTxx x New parameters:

- CPENABLE specifies upper and lower thresholds for the percentage of I/O
interrupts that occur while the channel subsystem is processing another I/O
interrupt. SRM uses the thresholds to control I/O interrupt processing.

- ICCLPB(TAPE), ICCLPB(NDPSDASD), and ICCLPB(DPSDASD) specify
logical path utilization thresholds for tape, DASD without the dynamic path
selection feature, and DASD with the dynamic path selection feature,
respectively. SRM uses the thresholds for I/O load balancing and for
non-specific device allocation.

IEAPAKxx x x MVS/SP Version 2 does not provide PAK lists. However, it processes
IEAPAKxx members that you supply. Release 1.0 and earlier releases recognize
only IEAPAKOO. Release 1.1 and later releases allow multiple IEAPAKxx
members.

By using more than one member, you can vary the LPALST concatenation from
system to system or from IPL to IPL without changing IEAPAKOO. The
P AK=xx system parameter specifies which members the system is to use.
IEAPAKOO is the default, which is consistent with earlier releases.

Do not use existing PAK lists without first reevaluating their usefulness. Unless
all modules in a group have the same RMODE (that is, they all reside in virtual
storage either above 16 "Mb or below 16 Mb), IPL/NIP ignores the PAK list.

IEASYSxx x New, changed, and deleted parameters:

- CMB specifies the I/O device classes for which measurement data is to be
collected. The CMB specifications are in addition to DASD and tape device
classes, for which measurement data is always collected.

- The AL T parameter is no longer supported. Have operators use the SYSCTL
console frame to specify an alternate nucleus. If ALT is specified, MVS/XA
truncates processing and asks the operator for another member. Because some
system parameters might already have been processed, have operators re-IPL
and request an IEASYSxx member that does not contain the AL T parameter.

- The MLPA and FIX parameters have an additional option, NOPROT.
NO PROT indicates that the LPA modules listed in the IEALPAxx or
IEAFIXxx PARMLIB member are not to be page-protected. Unless the
NOPROT option is specified, the system page-protects those modules. See
"Page Protection" in Chapter 3.

- A new option on the DUMP parameter, 'DASD,xx-yy', specifies which
currently cataloged SYS 1.DUMPnn data sets the system is to use. If none are
specified, the system uses any that are cataloged.

- CSA has an additional option that specifies the size of CSA above 16 Mb.

- SQA has an additional option that specifies the size of SQA above 16 Mb.

Figure 2-3 (Part 4 of 6). New, Changed, or Deleted PARMLIB Members

Chapter 2. Installation and Initialization 2:-21

Release

Member 1.0 1.1 1.2 Description of Change

IEASYSxx x New parameters:
(continued)

- LNKAUTH specifies whether all data sets in the LNKLST concatenation are to
be treated as APF authorized or only those named in the APF table. The
default is to treat all of the data sets as APF authorized, as do previous releases
of MVS. See "Using a New Directory for LNKLST Data Sets" for more
information.

- LPA identifies the LPALSTxx member to be processed. See the LPALSTxx
entry in this table for more information.

- MSTRJCL specifies which MSTRJCLxx member in SYS 1.LINKLIB the system
is to use. If you omit the MSTRJCL parameter, the system uses the JCL in the
IBM-supplied default, MSTRJCLOO.

MSTRJCLxx members are new in Release 1.1. For more information, see
"New MSTRJCLxx Members in the SYS1.LINKLIB Data Set," under
"Defining System Data Sets."

- PAK identifies the IEAPAKxx member to be processed. See the IEAPAKxx
entry in this table for more information.

The BLDL and BLDF parameters are obsolete. If specified, the operator receives
warning message IEA240I. The LNKLST lookaside (LLA) function provides a
directory of modules in the LNKLST concatenation. The new directory
eliminates the need for an IEABLDxx member, and consequently, the BLDL and
BLDF parameters. For more information, see "Using a New Directory for
LNKLST Data Sets" in Chapter 8.

x New and changed parameters:

- GRSRNL specifies which GRSRNLxx member the system is to process. If your
system is to be part of a global resource serialization complex, you must specify
a value for GRSRNL. It has no default.

The IEASYSOO member shipped in Release 1.2 includes the 'statement
GRSRNL=OO. However, unless your installation performs a sysgen to install
Release 1.2, your copy of IEASYSOO is not updated. You need to add the
GRSRNL statement yourselves. (The sysgen process creates IEASYSOO. No
other methods of installation modify it.) See "Keeping RNLs in GRSRNLxx
P ARMLIB Members" for more information.

- RSVSTRT specifies the number of ASVT entries ASM is to reserve for address
spaces created in response to a START command. ASM uses these reserve
entries only if no unreserved ASVT entries are available. The default value is
five.

- RSVNONR specifies the number of ASVT entries ASM is to reserve as
replacements for entries it cannot reuse. ASM uses the replacements only if it
runs out of unreserved ASVT entries. The default is five.

- MAX USER still limits the number of jobs and started tasks that can execute
concurrently under normal conditions. However, it no longer specifies the
maximum number of jobs or started tasks the system allows. In Release 1.2,
that number is normally the MAXUSER value plus the RSVSTRT value. The
default MAXUSER value is still 256.

The last three parameters are related to changes described in "Controlling the
Number of Available ASVT Entries (IEASYSxx)."

Figure 2-3 (Part 5 of 6). New, Changed, or Deleted PARMLIB Members

2-22 MVS/Extended Architecture Conversion Notebook

I
I
I
I
I
I

Release

Member 1.0 1.1 1.2 Description of Change

IEClOSxx x The LCH parameter is no longer supported.

A new MlH control statement specifies intervals at which MlH is to scan for
MlH conditions. MlH allows installations to specify different time intervals for
different devices and/or types. See "Specifying MlH Intervals (IECIOSxx)."

x A new statement, HOTIO, allows you to change:

- The threshold lOS uses to detect hot I/O conditions

- The recovery actions lOS takes when it detects a hot I/O condition

See "Processing Hot I/O Interrupts" in Chapter 4 for more information.

LNKLSTxx x The data sets in the LNKLST concatenation no longer have to be APF
authorized. Also, you can concatenate up to 123 data sets. Earlier releases allow
no more than 16. See "Using a New Directory for LNKLST Data Sets" in
Chapter 8 for more information.

LPALSTxx x A new member that lists data sets to be concatenated to the SYS I.LPALIB data
set. See "Concatenating Data Sets to the SYS1.LPALIB Data Set" under
"Defining System Data Sets."

MPFLSTxx x Release 1.0 adds two new keywords:

- .MSGCOLR specifies how messages are to be displayed on MCS color consoles
that can use seven colors and other forms of highlighting. An MPFLSTxx
member can also include the statement .MSGCOLR NOCHANGE, which
maintains the color and highlighting attributes in effect when the member
became active.

- .MSGIDS NOCHANGE requests that the system not change the message IDs
already in effect.

x Release 1.2 allows new options on .MSGCOLR statements and on message
suppression records.

The new option on .MSGCOLR specifies whether the message area is to be
displayed in normal or high intensity.

On message suppression records, you can specify:

- SUP(YES I NO) to control whether or not the messages are suppressed. The
default is SUP(YES) to maintain compatibility with previous releases.

- RETAIN(YES I NO) to control whether or not the messages are to be retained
via the action message retention facility. RETAlN(YES) is the default.

- USEREXIT(NAME) specifies the name of a WTO/WTOR user exit the system
is to call each time it issues the messages. WTO/WTOR user exits are new in
Release 1.2. For more information, see "New WTO/WTOR User Exits" in
Chapter 5.

SMFPRMxx x Release 1.1 ignores the BUFNUM parameter. The SMF buffers are moved to the
new SMF address space. Consequently, the number of buffers SMF can obtain is
limited only by the amount of virtual storage in the SMF address space. SMF
initially obtains 100 buffers and requests more as needed. If the number of
buffers in use exceeds 1000, SMF informs the operator via message IEE978E.

Figure 2-3 (Part 6 of 6). New, Changed, or Deleted PARMLIB Members

SYSl.PROCLIB Changes

The SYS I.PROCLIB data set in Release 1.0 contains a new DUMPSRV procedure
and a new statement in the PRDMP procedure. The RMF procedure in RMF
Version 3 is also changed. Release 1.1 adds two new procedures, LLA and
IEESYSAS.Release 1.2 changes the PRDMP procedure. Either use the
SYS I.PROCLIB shipped with the product, or copy the new and changed
procedures into your version of SYS I.PROCLIB.

Chapter 2. Installation and Initialization 2-23

DUMPSRV Procedure

IEESYSAS Procedure

LLA Procedure

PRDMP Procedure

Following are descriptions of the new and changed procedures. If your MVS/XA
system is part of a loosely-coupled JES3 configuration that includes MVS/370
systems, also read "Using SYS 1.PROCLIB in a Loosely-coupled JES3
Configuration" in Chapter 9.

The new DUMPSRV procedure starts the dump service (DUMPSRV) address
space:

//DUMPSRV EXEC PGM=IEAVTDSV

IEESYSAS is a new procedure in Release 1.1 that starts full-function system
address spaces, which include the SMF address space.

//IEESYSAS PROC PROG=IEFBR14
// EXEC PGM=&PROG

The LLA procedure starts the LNKLST lookaside (LLA) function:

//LLA EXEC PGM=CSVLLCRE

The IEACMDOO PARMLIB member shipped with Release 1.1 contains a START
LLA command, which starts the LLA procedure. See "Using a New Directory for
LNKLST Data Sets" in Chapter 8 for more information about the LLA function.

The PRDMP procedure in Release 1.2 is changed. Release 1.2 PRDMP runs as a
command processor under TSO. As a result, the EXEC statement has been
changed and three DD statements, SYSPRINT, SYSTSIN, and SYSTSPRT, are
now required. You can, however, specify dummy DD statements for any of the
three. The INDEX DD statement is new in Release 1.0.

The new Release 1.2 procedure is:

//PRDMP
//DMP
//SYSTSIN
//SYSTSPRT
//SYSPRINT
//TAPE
//INDEX
//PRINTER
//SYSUT1

PROC DUMP=DUMPOO
EXEC PGM=IKJEFT01,PARM=AMDPRDMP
DD DUMMY, DCB= (RECFM=F,LRECL=80,BLKSIZE=80)
DD DUMMY
DD SYSOUT=A
DD DSN=SYS1.&DUMP,DISP=SHR
DD SY-SOUT=A
DD SYSOUT=A
DD UNIT=SYSDA,SPACE=(4104, (1027,191))

The EXEC statement must invoke IKJEFTO 1, the TSO terminal monitor program.
Specifying PARM=AMDPRDMP on EXEC causes IKJEFTOI to invoke PRDMP.
You can also specify on PARM additional parameters for AMDPRDMP, as in
previous PRDMP procedures. The same parameters are valid.

SYSPRINT, which previously was optional, directs system messages (except those
IKJEFTOI issues) to the specified data set. If you use a dummy statement, the ,
system does not log those messages.

2-24 MVS/Extended Architecture Conversion Notebook

RMF Procedure

SYSTSIN and SYSTSPRT are both DD statements that IKJEFTOI uses. SYSTSIN
specifies a data set that contains commands or sub commands IKJEFTO I is to
execute. SYSTSPR T identifies the data set in which the system is to log messages
that IKJEFTOI issues. If you specify a dummy SYSTSPRT DD statement, the
system does not log the messages.

The INDEX DD statement requests that PRDMP write the dump index to a
sequential data set other than the PRINTER data set. If the INDEX DD statement
precedes the PRINTER DD statement, the index is printed before the dump. If the
INDEX DD statement is missing, PRDMP prints the index on the PRINTER data
set after the dump.

RMF Version 3 contains a new procedure for starting RMF. The new procedure
adds one statement:

RMF Version 3 procedure:

II
II .. .
II .. .
IIIEFPARM DD DDNAME=IEFRDER (new statement)
IIIEFRDER DD DSN=SYS1.PARMLIB,DISP=SHR

The IEFPARM statement must come before IEFRDER.

The new statement is required because RMF Version 3 opens IEFP ARM, not
IEFRDER, as does RMF Version 2. The IEFRDER statement is necessary to
allow operators to override or specify additional options on IEFRDER via the
START command. (See the RMF Reference and User's Guide for details.)

The RMF Version 3 procedure cannot start RMF Version 2 because the Version 2
procedure opens IEFRDER. When processing the Version 3 procedure, the
system associates the data set information on the IEFRDER statement with the
IEFPARM ddname, then deletes the IEFRDER name. Therefore, if MVS/370
executes the Version 3 procedure, RMF cannot find the IEFRDER statement when
it attempts to open SYS I.P ARMLIB.

You can, however, modify the IEFPARM statement in the Version 3 procedure to
obtain a procedure that can start either RMF Version 2 or 3. Replace the
IBM-supplied IEFPARM statement with the following one:

II .. .
I I .. .
I I .. .
IIIEFRDER DD DSN=SYS1.PARMLIB,DISP=SHR
IIIEFPARM DD DSN=*.IEFRDER,DCB=*.IEFRDER,

VOLUME=REF=*.IEFRDER,DISP=SHR

Notice that, unlike the original IEFPARM statement, the modified statement must
come after the IEFRDER statement. You can specify additional data set
information on IEFRDER. However, you must also specify the same keywords
and values on IEFP ARM or the system ignores the information.

Chapter 2. Installation and Initialization 2-25

I Using Default RNLs

\ You can IPL a system at the Release 1.2 level without modifying the IBM-supplied
resource name lists (RNLs). Previously, if GRS=JOIN or GRS=START, you had
to include entries in the SYSTEMS exclusion RNL for global RESERVE requests
that the system issues during IPL processing (for example, the RESERVE request
for the system master catalog). If earlier releases encounter a global RESERVE
request before global resource serialization is initialized and the request is not in
the SYSTEMS exclusion RNL, the system stops. (Global ENQs are not mentioned
here because the system issues none before resource serialization is initialized.)

Release 1.2 IPL processing treats global RESERVE requests as local requests until
global resource serialization is initialized. For each global RESERVE processed,
the system issues message ISG066I, which states that the resource is temporarily
excluded from global processing.

In the following situations, however, you still need to add entries to the default
SYSTEMS exclusion RNL:

• Other systems in the global resource serialization complex have additional
entries in the RNL (for example, systems at earlier levels of MVS, which
require. entries in the SYSTEMS exclusion RNL.) The RNLs of all systems in
the complex must be identical.

Some global RESERVE requests are to be treated as local requests after global
resource serialization is initialized.

Duration of the RMF Initialization Process

The first RMF initialization following an IPL takes up to a minute longer in
MVS/XA than in MVS/370. The increase represents the time required for the
initialization routines to obtain configuration information from the IOCDS. The
MVS/370 initialization routines do not use comparable information.

Generating Stand-Alone Dump

You can generate the stand-alone dump program (SADMP) and initialize the
volumes on which it resides in one batch job instead of two, as required in
MVS/370. The old two-step procedure still works. SPL: Service Aids describes
how to perform the same functions in one step. You can use either Assembler H
Version 1 or Version 2 to generate MVS/XA SADMP. Do not use Assembler XF.

MVS/SP Version 2 introduces several other improvements to stand-alone dump
that might affect how you code the AMDSADMP macro instruction. The next
topic describes the changes.

2.;..26 MVS/Extended Architecture Conversion Notebook

Stand-Alone Dump Macro Instruction Changes

The stand-alone dump macro (AMDSADMP) has several new and changed
keywords that improve its usefulness. The following figure summarizes the
changes:

Keyword Status Description of Change

CONSOLE Changed Accepts up to 21 device addresses and device types in MVS/XA. In
MVS/370, CONSOLE identifies only one device. The default device
type is also changed. The MVS/XA default is 3278, the MVS/370
default is 3215. The default device address (OIF) remains the same.

In MVS/XA, CONSOLE must include the addresses of all consoles
that SADMP can use. Unlike the MVS/370 version, MVS/XA
SADMP does not accept interrupts from any console not listed. Also,
after performing an SADMP IPL, the MVS/XA operator must press
the ENTER or ATTN key to signal which console SADMP is to use.

DUMP New Allows the user to select storage areas to be dumped in an unformatted
dump. The areas specified are in addition to the areas that a
stand-alone dump normally includes. DUMP is valid only for high
speed stand-alone dumps.

LOADPT New Specifies an absolute address where the stand-alone dump real storage
dump module (AMDSARDM) is to be loaded. LOADPT allows users
to avoid bad or offline storage.

MSG New Requests that SADMP display only messages that require action. If
MSG=ACTION is not coded, SADMP displays both information and
action messages. Suppressing information messages speeds up dump
processing.

PROMPT New Requests that SADMP prompt the operator at execution time for
additional storage areas to be dumped. PROMPT provides the same
function as the DUMP keyword, but allows the operator to make
storage requests at the time a dump is taken instead of when SADMP
is generated. You can specify PROMPT 011 the same macro as
DUMP. Like DUMP, PROMPT is valid only for high speed
stand-alone dumps.

Figure 2-4. Stand-Alone Dump Macro Instruction Changes

Chapter 2. Installation and Initialization 2-27

2-28 MVS/Extended Architecture Conversion Notebook

Chapter 3. Programming Considerations

This chapter describes differences that might affect user-written assembler
programs, including user modifications to the system. The changes are grouped
according to the type of programs each might affect.

Changes that Might Affect Unauthorized Programs

With few exceptions, programs that use only unauthorized services and published
external interfaces will work unchanged in MVS/XA. The exceptions include
programs that use the following macro instructions:

IOHALT
IOSGEN UCBLOOK
RESETPL

• SPIE (in two circumstances only)
• STATUS with the STOP,SYNCH option specified

You can modify the affected programs before installing MVS/SP Version 2. See
the topics describing each macro.

Some unauthorized programs might also require modification because of changes
described in "SDWA Changes" on page 3-9 and"Differences in GETMAIN
Processing" on page 3-9.

Topics describing changes that apply to all programs are:

"CHKPT Macro Instruction" on page 3-6
"TSO TEST Command" on page 3-10
"Deleted Instructions" on page 3-11
"Macro Expansions in JES Modifications" on page 3-11
"Limiting Concurrent Global Resource Serialization Requests" on page 3-11
"Format Changes to Hardcopy Log Records" on page 3-12
"Link Editing Allocation User Routines" on page 3-13

• "Removal of the Interval Timer" on page 3-13
"Changed Instructions" on page 3-28
"Summary of New and Changed Macros" on page 3-37

Changes that Might Affect Authorized Programs

Authorized programs are those that execute either in:

" • Supervisor state (bit 15 in the PSW is zero)
A system key (bits 8-11 in the PSW are in the range 0-7)

• As part of an APF-authorized job step task (bit JSCBAUTH in the JSCB is 1)

Although many authorized programs will work unchanged in MVS/XA, you might
have to modify some. Those most likely to require modification are programs that:

Use system interfaces that are not documented externally.

Communicate directly with system modules (for example, via branch entry)

Access system control blocks that are changed or that have been moved to
virtual storage above 16 Mb

Chapter 3. Programming Considerations 3-1

Modify the system

Have dependencies on the names or virtual storage locations of system modules

In addition to topics already mentioned, the following describe changes that might
affect authorized programs:

"Checklist for Determining if Authorized Programs Must be Changed" on
page 3-13
"Changes to the SVC Table" on page 3-17
"Changes to the Locking Structure" on page 3-17
"Determining Which Locks a Processor Holds" on page 3-17
"Page Protection" on page 3-17
"PSA Low Address Protection" on page 3-18
"Fetch-Protected PSA Areas" on page 3-19
"Patch Areas in the PSA" 9n page 3-19
"Real Addressing Considerations" on page 3-19
"Cross Memory Entry Table Entries" on page 3-22
"Interfaces to System Services" on page 3-22

31-bit Addressing Considerations

New Function

During the migration period, most users do not need to be concerned with
addressing mode. The information in this section is for installations with programs
that:

Access system control blocks that have been moved to virtual storage above 16
Mb.

Use unpublished internal interfaces to communicate with system programs that
must be entered in 31-bit addressing mode.

The following topics describe changes that support 31-bit addressing:

• "Using the EXCPVR Macro Instruction" on page 3-19
• "Interfaces to System Services" on page 3-22

"31-bit Addressing Considerations" on page 3-24
"Changed Instructions" on page 3-28
"New Instructions" on page 3-30
"Modifying Programs that Invoke Modules Above 16 Mb" on page 3-31

• "Retrieving Data from a Control Block Above 16 Mb" on page 3-34
"Performing I/O in 31-bit Addressing Mode" on page 3-35
"Using the EXCP Macro" on page 3-36

• "Entry Points in IEFW21SD" on page 3-37

The information in this section does not affect existing programs. The topics
describe new function available to both authorized and unauthorized users:

"Using the EXCPVR Macro Instruction" on page 3-19
• "New Instructions" on page 3-30

"Using the EXCP Macro" on page 3-36
• "Summary of New and Changed Macros" on page 3-37
• "New Parameters on the GETMAIN Macro Instruction" on page 3-42
• "SDUMP Macro Instruction" on page 3-43

3-2 MVS/Extended Architecture Conversion Notebook

"SETLOCK RELEASE,TYPE=(reg) I ALL Macro Instruction" on page 3-43
• "Using GTF to Trace User Events" on page 3-44
• "Unit Verification" on page 3-44

"Chapter 9: Coexistence Considerations" contains additional considerations for
maintaining programs that must run in both MVS/XA and MVS/370.

The following topic, "Macro Instructions Mentioned in This Publication," lists the
executable macros that might require attention and indicates why.

Macro Instructions Mentioned in This Publication

Figure 3-1 lists the executable macros that might require attention when converting
to MVS/XA. The macros are included in the list for one or more of the following
reasons:

1. The MVS/XA expansion of the macro will not work in MVS/370 (that is, the
macro is downward incompatible). The downward incompatibility affects only
programs that must run on both MVS/370 and MVS/XA systems. If such a
program uses one of these macros, ensure that the program either:

Includes the MVS/370 expansion of the macro

Has two paths, one that MVS/370 executes, the other that MVS/XA
executes

For more information, see "Handling Downward Incompatible Macros" in
Chapter 9.

2. The MVS/370 macro expansion does not work in MVS/XA. You must
reassemble, using the MVS/XA MACLIB, all programs that use these macros.
For most of the macros, you can install compatibility PTFs or compatible
program products on an MVS/370 system and reassemble the affected
programs before installing MVS/XA. See the references in the notes column.

3. The macro expansion passes different parameters to the associated service
routine. The parameter changes affect only programs that generate, test, or
alter the parameters. You must change those programs. "Appendix A.
Parameter Changes in Incompatible Macros" describes the differences between
the MVS/370 and MVS/XAparameter lists.

4. The MVS/XA expansion is required if used in programs that exec~te in 31-bit
addressing mode. Thus, you must assemble such programs using Assembler H
Version 2 and the MVS/XA MACLIB.

5. The macro provides new function. The list includes macros that are new or
that have new parameters or new options on existing parameters. The added
function does not affect existing programs. Figure 3-6 summarizes the new
function that each macro provides.

You must use the MVS/XA MACLIB to assemble programs that use new
functions. With two exceptions, the programs will then not work on MVS/370
systems. New GETMAIN options are one exception. The new AMODE=24
option on the SYNCH macro is the other. See "New Parameters on the

Chapter 3. Programming Considerations 3-3

GETMAIN Macro Instruction" in this chapter and"Downward Incompatible
SYNCH Macros" in Chapter 9 for more detail.

6. The macro requires attention for another reason. The notes column refers to
the topic that describes the reason.

System Macros and Facilities documents authorized macros. Supervisor Services and
Macros documents unauthorized macros. Some of the macros listed as
unauthorized have parameters that only authorized users can specify. Those
macros are documented in both publications.

3-4 MVS/Extended Architecture Conversion Notebook

Unauthorized
Macros

ABEND

ATTACH

BLSABDPL

BLSQMDEF

BLSQMFLD

BLSRESSY

BT AM RESETPL

CALL

CHKPT

CPOOL

CPUTIMER

ENQ

ESPIE

ESTAE

EVENTS

EXCP

GETMAIN

GQSCAN

GTRACE

LINK

IOHALT

IOSGEN UCBLOOK

LOAD

PGSER

RESERVE

RETURN

SETRP

SMFEXIT

x

x

x

x

x

x

x

x x

x

x

x

x x

x x

x

x

x x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

The MVS/XA expansion is required only if
parameter addresses are greater than 16
Mb.

See "RESETPL (BT AM) Macro
Instruction. "

The MVS/XA expansion is required only if
VL is specified when the program executes
in 31-bit mode.

See "CHKPT Macro Instruction."

See "Limiting Concurrent Global Resource
Serialization Requests."

See "Using the EXCP Macro."

See "New Parameters on the GETMAIN
Macro Instruction."

See "Limiting Concurrent Global Resource
Serialization Requests."

The MVS/XA expansion is required only if
PARAM, VL= 1, DE, or ERRET is
specified.

See "IOHAL T Macro Instruction (SVC
33)."

Deleted. See "IOSGEN UCBLOOK
Macro Instruction."

x x See "Limiting Concurrent Global Resource
Serialization Requests."

x

x

See the entry for RETURN in "Summary
of New and Changed Macros"

Figure 3-1 (Part 1 of 2). Unauthorized Macro Instructions Mentioned in This Publication

Chapter 3. Programming Considerations 3-5

~ I ---1

~ ~
.~ .~
~ ~ ~
~ ~ ~ Z ~~ ~ ~ ~ ~

:;::~:£~ 6 -& ~ :8
~~ ~Q t' 0 e CJ
s?$. ~:;; t ~ Q) §
O~ or;j- S .-::;:.!:t ... t' ~:;;; CJ:;;; ~ ~;. ~ ~.s~ ~, Q) ~ 'S

Unauthorized , .Q.; ~r::< 0
Macros

...., r.i ~ ~ Ir)' 0.0 Notes

SMFIOCNT x

SNAP x

SPIE x Works differently in some situations. See
"Differences in SPIE Processing."

~-

SPLEVEL x See "Handling Downward Incompatible
Macros" in Chapter 9.

STATUS STOP,SYNCH x See "STATUS STOP,SYNCH Macro
Instruction. "

STAX x x x The MVS/XA expansion is required only if
parameter addresses are greater than 16
Mb.

STIMER x x x

STIMERM x --
SYNCH x x x See "Downward Incompatible SYNCH

Macros" in Chapter 9.

WTL x
............... A.~

WTO x See the entry for WTO in "Summary of
New and Changed Macros." --

WTOR x x x x

XCTL x The MVS/XA expansion is required only if
P ARAM or VL= 1 is specified .

... ".---' -...... ~

Figure 3-1 (Part 2 of 2), Unauthorized Macro Instructions Mentioned in This Publication

3-6 MVS/Extended Architecture Conversion Notebook

('"7lIKl'TMacro Instruction

Authorized
Macros

CALLDISP

CALLRTM

CIRB

DATOFF

EXCPVR

FESTAE

IOSLOOK

INTSECT

MODESET

MGCR

NUCLKUP

PTRACE

SCHEDULE

SDUMP

SETFRR

SETLOCK

SVCUPDTE

VSMLIST

VSMLOC

VSMREGN

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

Notes

See "Using the EXCPVR Macro
Instruction. "

Replaces other methods of locating UCBs.
See "IOSGEN UCBLOOK Macro
Instruction. "

The MVS/XA expansion is required only if
EXTKEY =RBT234 is specified.

Downward incompatible only if
SCOPE=GLOBAL is specified.

Downward incompatible only if new
parameters are specified. See "SDUMP
Macro Instruction."

See also the entry for SDUMP in
"Summary of Macros that Provide New
Function."

Downward incompatible only if
INLINE= YES is specified.

Downward incompatible only if RELEASE
TYPE=(reg) I ALL is specified. See
"Determining Which Locks a Processor
Holds" for an example of new SETLOCK
function.

Figure 3-2. Authorized Macro Instructions Mentioned in This Publication

User programs that successfully take checkpoints in MVS/370 can take
checkpoints in MVS/XA. Howey=r, a program that has taken a checkpoint must
restart on the same operating sysh::m (either MVS/370 or MVS/XA).

Chapter 3. Programming Considerations 3-7

IOHALT Macro Instruction (SVC 33)

You must recompile modules that use the IOHALT macro and modify programs
that issue SVC 33 directly (without using IOHALT). The SVC 33 service routine
requires different input in registers 0 and 1:

MVS/370 Input

Register 0

Offset from lOB to CCW to
be modified, or 0

Register 1

Options UCB address
byte

7/8 15/16

Options: X'OO' - Halt I/O
X'80' - Modify the CCW

31

MVS/XA Input

register 0
UCB address

Register 1

Offset from Options
lOB to CCW byte
to be modified,
or 0

15/16 23/24 31

Options: X'Ol' - Halt I/O
X'81' - Modify the CCW

PTF UZ29156 provides the new version of IOHALT and the new SVC 33
interface that are compatible with MVS/XA. You can install the PTF on an
MVS/370 system and reassemble and modify the affected programs before
installing MVS/SP Version 2. (You do not have to reassemble programs that will
not be run on an MVS/XA system.) The reassembled programs will work on both
MVS/370 and MVS/XA systems.

If you use GTF to trace modules that use IOHALTor SVC 33 and you install the
IOHAL T compatibility PTF, you might need to install an additional PTF on
MVS/370. Unless you have installed MVS/SP Version 1 Release 1 or a later
release, install either:

PTF UZ32985 for systems with SE2 installed
PTF UZ32984 for systems with SEl installed
PTF UZ32983 for MVS 3.8 systems with neither SEl nor SE2 installed

The PTFs allow GTF to trace programs that use either the old or the new SVC 33
interface. MVS/SP Version 1 Release 1 and later releases incorporate the PTF
changes.

IOSGEN UCBLOOK Macro Instruction

You must change programs that use the IOSGEN UCBLOOK macro or that
directly access the UCB look-up table. Neither the IOSGEN UCBLOOK function
nor the UCB look-up table is supported in MVS/XA.

To obtain UCB addresses in MVS/XA, use either:

• The UCB scan routine (IOSVSUCB)
• The IOSLOOK macro

IOSVSUCB allows you to scan each UCB in the system or in a specified device
class. Each time it is invoked, IOSVSUCB returns the address of one UCB's
common segment. To scan several UCBs, invoke IOSVSUCB repeatedly. Both
authorized and unauthorized programs can use IOSVSUCB.

3-8 MVS/Extended Architecture Conversion Notebook

IOSLOOK returns the address of the common segment of the UCB associated with
a given device number. Unlike IOSVSUCB, IOSLOOK requires that users be in
supervisor state.

Both IOSVSUCB and IOSLOOK are documented in System Macros and Facilities.

Both services are also available in MVS/370. MSV /SP Version 1 Release 3 and
later releases include IOSVSUCB. PTF UZ28392 includes IOSLOOK. Therefore,
you can change the affected programs before installing MVS/XA. The changed
programs will run on both MVS/370 and MVS/XA.

RESETPL (BTAM) Macro Instruction

Programs, including CICS and IMS BTAM modules, that use the OS/VS BT AM
expansion of RESETPL will not work in MVS/XA. You must reassemble them
using the RESETPL macro included in BTAM/SP (5665-279). (BTAM/SP is
required to run BTAM application programs and subsystems in MVS/XA.)

You can install BTAM/SP on MVS/370 and reassemble the affected programs
before installing MVS/XA. The reassembled programs will work on both
MVS/370 and MVS/XA systems.

Note: Because the RESETPL expansion issues an IOHAL T macro, you must also
install the IOHALT compatibility PTF on MVS/370 before reassembling the
programs. See "IOHALT Macro Instruction (SVC 33)" for more detail.

Differences in SPIE Processing

Most programs using SPIE macros will continue to work correctly in MVS/XA.
However, you need to modify programs that create a SPIE to protect a program
running under a different RB.

MVS/XA terminates the SPIE when the program that created it completes,
whether normally or abnormally. In MVS/370, the SPIE usually remains in effect
until all programs in the step complete (task termination time). The exception
occurs when the program that creates the SPIE abends. If that happens, MVS/370
terminates the SPIE also.

Following are two examples of programs that do not work the same in MVS/XA as
in MVS/370:

Program A links to Program B, which issues a SPIE macro and returns. In
MVS/XA, the SPIE is deleted. In MVS/370, it remains in effect.

Program A issues a SPIE macro, followed by an XCTL macro to invoke
Program B. In MVS/XA, the SPIE is deleted. In MVS/370, the SPIE is in
effect for Program B.

You can change affected programs before installing MVS/XA.

Chapter 3. Programming Considerations 3-9

STATUS STOP,SYNCH Macro Instruction

SD WA Changes

The SYNCH operand on the STATUS STOP macro is no loqger supported.
Change programs that issue STATUS STOP,SYNCH to issue STATUS STOP
without the SYNCH operand. You can make the changes before installing
MVS/XA.

The SDW A is increased in size. The additional storage is included in previously
existing or new SDW A extensions. The sizes of the FRR work area and the
ESTAE save area remain the same.

Programs that use indirect pointers into the SDWA work unchanged in MVS/XA.
However, you must modify programs that:

• Depend on the 72-byte save area passed to EST AE exits being located at a
given offset into the SDW A. MVS/XA uses register 13 to pass to FRRs the
address of the user save area, as does MVS/370.

• Depend on the 200-byte FRR work area that is passed to FRR routines being
located at a given offset into the SDWA. MVS/XA uses Register 0 to pass to
FRRs the address of that work area, as does MVS/370.

Use explicit length values to free the SDWA. Modify the programs to use the
value in the SDW ALNTH field.

• Depend on the order of the SDW A and its extensions. Modify the programs to
use indirect pointers.

• Place data in the SDW A variable recording area (VRA) without updating the
SDW AURAL field. Programs must maintain an accurate count in the
SDW AURAL field to prevent data from being overlaid.

• Assume that the unused section of the SDW A contains zeros. Programs need
to ignore data in the unused area.

Differences in GETMAIN Processing

Two differences in GETMAIN processing might cause programs to fail in isolated
instances:

• Although the MVS/XA GETMAIN service routine does not introduce any new
parameter restrictions, it does enforce some restrictions that were documented
but not enforced in MVS/370. With one exception, the GETMAIN routine no
longer allows the parameter list, address list, or length list specified on the LC,
LU, VU, EC, or EU forms of GETMAIN to overlap. If the request is for a
single element, MVS/XA allows the pointer to the address list to point to
itself. All other overlaps cause the program to fail with ABEND code x'S04'.

Because programs seldom use the forms of GETMAIN mentioned or overlap
parameters, you probably will not want to spend time looking for programs
that have to be changed. Instead, keep in mind the parameter restrictions. If a
program fails with ABEND code x'S04', you can change it then.

3-10 MVS/Extended Architecture Conversion Notebook

TSO TEST Command

• GETMAIN routines obtain storage differently in MVS/XA. Although, the
rules GETMAIN uses have never been externally documented, at least one
installation has written a program that now fails because of the change.
Specifically, the program expects that additional virtual storage will be
contiguous with currently owned virtual storage. If your installation has
written similar programs, you need to modify them.

To use TSO TEST on an MVS/XA system, you must install the MVS/XA version
of TSO/E (5665-285). TSO TEST is not part of the MVS/XA base control
program. If you issue TSO TEST and have not installed TSO/E for MVS/XA, you
receive message IKJ565001 stating that the TEST command is not found. In
addition, unless TSO/E for MVS/XA is installed, user programs that issue either
SVC 61 or SVC 97 receive a return code of 4.

Following are TSO TEST compatibility considerations:

• You can test on MVS/370 programs created in MVS/XA as long as the
programs do not use any MVS/XA instructions, new macros, new parameters
or options on existing macros, downward incompatible macros, or addresses
above 16 Mb.

• When executing TSO TEST on an MVS/XA system, AT subcommands and
LIST subcommands that specify the instruction data type support only
MVS/XA instructions.

• User-written TEST subcommands that do any of the following will not work
with the MVS/XA version of TSO TEST:

Use IKJEGST A as an EST AE exit. The parameter list that IKJEGST A
requires is incompatible.

Use the TCOMTAB mapping macro to access fields in the TCOMTAB
control block. Many labels on the TCOMT AB macro are deleted because
TSO TEST no longer uses the corresponding fields.

Use labels and equates in TSO TEST mapping macros to determine the
length of the corresponding TEST control blocks. The names of the
equates used to define the lengths of control blocks are changed.

• Installations that altered the TSO TEST subcommand table (IKJEGSCD) must
rebuild their changes in the new table. To update the table:

Copy the IKJEGSCD CSECT of assembly module IKJEGMNL in the
TEST load module into a separate data set.

Make the required changes.

Assemble and again link edit IKJEGSCD into TEST.

The IKJEGSUB macro that generates IKJEGSCD in MVS/370 is deleted from
TSO/E for MVS/XA.

Chapter 3. Programming Considerations 3-11

I
I Deleted Instructions

\
I
I
I
I
I
I
I

UNALLOC is now an alias for the TSO FREE command. AND and OR are
new sub commands of TEST. In type 32 SMF records, the UNALLOC
command and the AND and OR subcommands of TSO TEST are recorded as
*OTHER, unless your installation adds those names to CSECT IEEMB846.

The following instructions are deleted from the standard 370-XA instruction set:

ISK (Insert Storage Key)
SSK (Set Storage Key)
All 370 I/O instructions

ISK and SSK are deleted because MVS/XA replaces segment protection with page
protection.

Macro Expansions in JES Modifications

I

The MVS/XA expansions of fourteen macros are downward incompatible. That
is, their MVS/XA expansions will not work in MVS/370. The MVS/XA
MACLIB contains both the MVS/370 and MVS/XA expansions of those macros.
JES2 and JES3 both require the MVS/370 expansions. Therefore, JES system
programs that issue downward incompatible macros use the SPLEVEL macro to
ensure that the MVS/370 expansions are generated at assembly time. (SPLEVEL
specifies which level is to be used.) The programs, however, do not issue
SPLEVEL directly. Each includes another macro, whose expansion issues
SPLEVEL. JES2 programs use $HASPGEN in Release 1.0 and $HASPEQU in
Release 1.1 and later releases. JES3 programs use IATYMOD.

If you modify JES system programs and your modification includes a downward
incompatible macro, either:

Ensure that your modification comes after the $HASPGEN, $HASPEQU, or
IATYMOD macro. (The macros appear near the beginning of programs.)

Use SPLEVEL to ensure that the MVS/370 expansion of the downward
incompatible macro is assembled.

"Handling Downward Incompatible Macros" in Chapter 9 lists the macros and
describes SPLEVEL.

I Limiting Concu"ent Global Resource Serialization Requests

I
I
I
I
I
I
I
I
I
I

\ In Release 1.1, global resource serialization limits the number of ENQ, RESERVE,
and certain types of GQSCAN requests a single job, started task, or TSO user can
have outstanding at a given time. The GQSCAN requests it limits are those that
specify the TOKEN parameter. The change is designed to prevent one address
space from using up all of GRS virtual storage, which causes subsequent GRS
requests to fail.

Generally, the new processing does not require any action on your part. However,
you need to be aware of the changes. Users might receive new ABEND or return
codes indicating their programs failed because of too many concurrent global
resource serialization requests. Also, you might want to change the limits global

3-12 MVS/Extended Architecture Conversion Notebook

\

resource serialization enforces, although the default values are satisfactory for most
installations.

To enforce the limit, global resource serialization uses a new threshold for each
address space. The thresholds are in the GVTCREQ fields of the GVTs. If the
number of outstanding ENQ, RESERVE, or specific types of GQSCAN requests
reaches the threshold (the default is 4096), global resource serialization:

• Rejects subsequent ENQ and RESERVE requests from unauthorized callers in
the address space. The system terminates unconditional requests with ABEND
code x'538', and rejects conditional requests with a return code of x'014'. In
earlier releases, if GRS virtual storage is depleted, users receive a return code
of x'08'.

• Allows authorized callers in the address space to issue a limited number of
additional ENQ and RESERVE requests. The number cannot exceed the
tolerance value specified in the GVTCREQA field of the GVT. The tolerance
value is also new. Its default value is 4111. Global resource serialization
allows authorized callers the additional ENQ and RESERVE requests to
enable recovery and normal termination routines to obtain the resources
required to finish processing.

• Rejects with a return code of x' 14' GQSCAN requests that specify the TOKEN
option and request more information than can fit into the caller's buffers.
Global resource serialization returns the buffers of information but does not
continue the scan as it normally would. (If the threshold had not been reached,
global resource serialization would have queued the request for continuation,
returned the full buffers to the caller, and, after the caller cleared the buffers,
resumed the scan.)

If you find the threshold and tolerance values in the G VT are too high or low, you
can change them for your installation using the AMASPZAP service aid. For
details, see Service Aids.

Format Changes to Hardcopy Log Records

The formats of all hardcopy log records except those written using JES3 are
changed in Release 1.2 to provide additional machine-readable information. As a
result, you need to modify most programs that scan the SYSLOG data set. Scan
programs that run on a JES3 system might work unchanged. However, be aware
that records logged before JES3 is initialized and all records written via the LOG
command or the WTL macro have the new format. If your installation keeps the
hardcopy log on a JES2 multi-access spool that systems at earlier levels can access,
the scan programs must be sensitive to which system wrote the record.

The new log format includes the following additional information:

• A record ID, which identifies the type of record written (for example, a WTOR,
label line, or command response). The record ID appears only in SYSLOG
and not in printed output.

• The system ID.

• The date the message was issued.

Chapter 3. Programming Considerations 3-13

I
I
I
I
I
I

\

\

The ID of the console from which the command or command response was
issued.

• User exit and message suppression flags.

• The full text of the message. If the text requires more than one line, one or
more WTL entries might be interspersed among the continuation lines. If
printed, however, the text appears on consecutive lines.

The text of entries written using the LOG command begin with the prefix '0'.
The text of entries written using the WTL macro begin with either a
user-specified prefix or an 'X'.

A new macro, IHAHCLOG, maps the new record format. When modifying your
programs, use the mapping macro instead of offsets to access the data.

Link Editing Allocation User Routines

Release 1.1 removes the following routines from the device allocation load module,
IEFW21SD, and places them in their own single-CSECT load modules. Therefore,
you need to link edit them differently:

IEFDB401 - Dynamic allocation user exit
IEFXVNSL - Non-standard tape label routine
IEF AB445 - Allocation space defaults CSECT
IKJEFDOO - Dynamic allocation interface routine

IEFDB401 and IEFXVNSL can reside above or below the 16 Mb line. Specify
their RMODEs on the link edit statements for each. The sysgen link edit control
statements omit the RMODE specification. IEF AB445 resides below the 16 Mb
line. IKJEFDOO resides above that line, but you can invoke it via an interface
routine, IKJDAIR, in either 24- or 31-bit addressing mode.

Release 1.1 changes some of the entry points in IEFW21 SD. Programs to be
executed in 31-bit addressing mode must use the new rather than old entry points.
See "Entry Points in IEFW21SD" for more information.

Removal of the Interval Timer

The 370-XA architecture deletes the interval timer. Modify programs that use the
interval timer to use the CPU timer instead. Although the CPU timer works like a
stopwatch, you can use it like an interval timer. Use the STIMER macro to set the
CPU timer, the CPUTIMER or TTIMER macro to obtain its current value, and the
SRBTIMER macro to set a time limit for SRB processing. Although you can use
either the CPUTIMER or TTIMER macro, CPUTIMER is faster and you can use
it in SRB or task mode. You can use TTIMER in task mode only.

Checklist for Determining if Authorized Programs Must be Changed

The following checklist is for use in examining authorized assembler programs for
incompatibilities and is not applicable to other programs. Programs written in high
level (non-assembler) languages are compatible and require no change. Most
unauthorized assembler programs also work unchanged. The few exceptions are
noted in the introduction to this chapter.

3-14 MVS/Extended Architecture Conversion Notebook

Most of the following programs require modification and/or reassembly:

Programs that issue any of the following macros:

RESETPL (a BT AM macro)
IOHALT (or SVC 33)
IOSGEN UCBLOOK
STATUS STOP,SYNCH

In all cases, you can change programs that use these macros before installing
MVS/XA. For details, see the topics describing the macros.

Programs that access system control blocks that are changed or that now reside
in virtual storage above 16 Mb. "Appendix B. Control Block Changes" lists
the control blocks requiring attention.

Programs that directly invoke system modules that now require entry in 31-bit
addressing mode, or that require parameter addresses to be 31-bit values.

Programs using SVCs or published macros to invoke service routines that now
execute in 31-bit addressing mode generally work unchanged in MVS/XA. In
most cases, the macro invokes a routine that changes modes, if necessary,
before entering the service routine.

The MVS/XA components having a large percentage of modules that execute
in 31-bit addressing mode include: contents supervision (CSV), GTF, lOS,
RMF, RSM, RTM, SRM, system trace, and VSM in Release 1.0; ALLOCATE
in Release 1.1; SVCDUMP in APAR OZ78216; and VSAM record
management load modules and contents supervision in Release 1.2.

See "Interfaces to System Services" for more detail.

• Programs that use the high-order byte of address fields for flags. When
running in 31-bit addressing mode, MVS/XA treats addresses as 31-bit values
and, if applicable, uses the high-order bit to set the PSW A-mode bit.

Specific examples of programs that will fail include those that use the
high-order byte of:

Address fields they pass to IARUTRV (translate real to virtual routine).
IARUTRV, which replaces lEA VTRV in MVS/XA, treats the real
addresses as 31-bit values.

The SRBEP or SRBRMTR field in the SRB. MVS/XA trea~s each field as
a 31-bit value, and uses the high-order bit to set the PSW A-mode bit.

The SVC screening table address in the TCB (the TCBSVCA2 field).
MVS/XA also treats that address as a 31-bit value and uses the high-order
bit to set the PSW A-mode bit.

• Programs that treat UCB addresses as 2-byte values. In MVS/XA, UCB
addresses are three bytes instead of two.

Chapter 3. Programming Considerations 3-15

• Programs that directly access the UCB look-up routine. It does not exist in
MVS/XA. "IOSGEN UCBLOOK Macro Instruction" describes alternate
ways of obtaining the same information.

• Programs that depend on the structure of the nucleus and the FLP A. In
MVS/XA, the FLPA no longer resides in the nucleus buffer. Also, neither the
nucleus nor the FLP A is mapped V =R, and modules in those areas might not
be loaded into contiguous real frames.

Examples of programs that must be modified are:

V=R programs that use EXCP to perform I/O into or out of the FLPA.

Programs in the nucleus or FLP A that run DAT -off. "DAT -off
Restrictions" describes how to change the programs.

Programs that use the CVTNUCB field to determine if they have been
loaded into the FLP A. Change the programs to test the CVTFLP AS and
CVTFLP AE fields to determine residency in the FLP A below 16 Mb, and
the CVTEFLPS and CVTEFLPE fields for residency above 16 Mb. Each
pair of fields indicates the beginning and ending addresses of the FLP A
areas.

• Programs sensitive to virtual storage location changes; for example, programs
that treat parameter addresses below 64 K as invalid.

Programs sensitive to changes in the locking structure. Programs requiring
modification are those that:

Use the 10SCA T or the 10SLCH lock. Those locks are deleted in
MVS/XA.

Obtain the DISP lock in order to hold the highest lock in the system.

Request the DISP lock after obtaining the ASM lock.

Use the PSAHLHI field to determine locking heirarchy.

For more information, see "Changes to the Locking Structure" and
"Determining Which Locks a Processor Holds."

Programs that use the following system-created data:

GTF, system trace, or LOGREC records. The record formats are different.
Also, the structure of the system trace table is changed.

Programs that scan the SYSLOG data set. Release 1.2 changes the format
of the hardcopy log records. See "Format Changes to Hardcopy Log
Records."

Dump data. Dump contents and formats have changed. See Chapter 6 for
more information.

SMF data that is changed. Chapter 7 identifies which SMF records are
changed and briefly describes the differences.

3-16 MVS/Extended Architecture Conversion Notebook

Programs that examine the PSW field in MVS/XA control blocks (for example,
programs that use trace data or print reports). The PSW format is changed.
Among other differences, the instruction addresses are contained in 4-byte,
instead of 3-byte, fields.

• Programs that use the LRA instruction. LRA always returns a 31-bit address
in MVS/XA, even when executed in 24-bit addressing mode.

• Programs that call IEFSCAN or that directly access MVS/370 device
allocation tables (DEVNAMET, IEFDEVPT, and DEVMASKT). IEFSCAN
and the tables are deleted in MVS/XA. "Unit Verification" describes how
both authorized and unauthorized programs can perform unit verification in
MVS/XA.

• Programs that use extended ECBs for POST exits. The programs must be
authorized to fetch from the ECB extension, as well as to fetch and store the
extended ECB.

• Programs that specify an ACON length other than 4 (for example,
AL3(location», if the location in parentheses is above 16 Mb.

• Programs that examine the SVTDACTV or SVTPW AIT fields in the SVT
(usually programs that code their own expansions of SCHEDULE or
INTSECT, respectively). The offsets of these fields in the SVT have changed.
Their previous locations are initialized to x'FFFFFFFF'.

• Programs that depend on CPU (processor) addresses being 0, 1, or 2. A CPU
address can be any number from O-F.

• I/O drivers that call IEASMFEX to record EXCP counts. Change the drivers
to use a new SMF macro, SMFIOCNT.

• If your installation includes data sets in the LNKLST concatenation that are
not APF authorized, programs that depend on the data sets being APF
authorized.

The DEBAPFIN bit in the LNKLST DEB indicates whether or not all data sets
in the LNKLST concatenation are APF authorized. The LL T APFIN field in a
data set's LL T APFTB entry indicates whether the data set is APF authorized.
The LLT APFTB is a new extension to the LLT that contains one entry for
each data set in the LNKLST concatenation. See "Using a New Directory for
LNKLST Data Sets" for more information.

• Programs that access SMF BQEs (buffer queue elements). Release 1.1 moves
the BQEs from common storage to the new SMF address space.

• Programs that read· SMF data sets directly instead of via SMF dump programs.
Release 1.1 initializes SMF data sets with dummy records that are shorter than
valid SMF records. They contain the characters 'SMFEOFMARK.'

• Programs that obtain storage for data extent blocks (DEBs) from
fetch-protected areas (subpools 0-172). If called to add a DEB table entry for
a DEB that is in fetch-protected storage, the MVS/XA DEBCHK service
routine issues ABEND x'16E' with reason code x'lC'. MVS/370 does not
impose the same restriction.

Chapter 3. Programming Considerations 3-17

I
I
I
I
I

Changes to the SVC Table

The following changes have been made to the SVC table:

SVC

SVC 16 (PURGE)
SVC 46 (TTIMER)
SVC 47 (STIMER)
SVC 82 (DASDR)
SVC 88 (MOD88)
SVC 109 (Extended

SVC Router)

SVC 138 (PGSER)

Description of Change

Changed from type 3 to type 2
Changed from type 3 to type 2
Changed from type 3 to type 2
Deleted
Deleted
A new entry has been added:

28 - ESPIE, a type 3 SVC

A new type 2 SVC

Changes to the Locking Structure

The locking structure has changed in MVS/XA:

• MVS/XA uses nine new locks instead of the SALLOC lock for storage
management serialization.

• A new TRACE lock serializes the system trace buffer structure.

• A new CPU lock causes the requestor to be physically disabled for I/O and
external interrupts. It provides system-recognized disablement.

• The 10SCAT and 10SLCH locks have been deleted.

• The hierarchy of the ASM and DISP locks is reversed. In MVS/XA, the ASM
lock's position is above the DISP lock's position in the locking hierarchy.

You must change programs that:

• Use the 10SCAT or 10SLCH locks.
• Use the SALLOC lock to serialize storage management.
• Obtain the DISP lock in order to hold the highest lock in the system.
• Request the DISP lock after obtaining the ASM lock.

Determining Which Locks a Processor Holds

Page Protection

You must change programs that use the PSAHLHI (highest lock held) field to
determine locking hierarchy. The PSAHLHI field·is now referred to as PSACLHS
(current locks held string), although the old name is retained for compatibility. The
bit positions in the PSACLHS field indicate which locks the processor owns. They
no longer represent the hierarchy of locks.

MVS/XA provides a new SETLOCK service that indicates whether the processor
owns any locks at a higher position in the hierarchy than the one specified as input.
For example, the following SETLOCK macro tests whether the processor owns any
locks at a higher position than the dispatcher lock:

SETLOCK TEST,TYPE=HIER,LOCK=DISP,REGS=(11,12)

MVS/XA uses a new page-protection facility to enforce read-only access to the:

3-18 MVS/Extended Architecture Conversion Notebook

PSA Low Address Protection

Read-only nucleus (above and below 16 Mb)
Resident BLDL list in Release 1.0
PLPA (above and below 16 Mb)
MLPA (above and below 16 Mb)
FLP A (above and below 16 Mb)
NUCMAP (an area in the non-page-protected nucleus that maps the nucleus)

Page protection is optional only for the MLPA or FLP A. Installations can turn off
page protection for those areas by specifying a new subparameter, NOPROT, on
the MLP A and FIX system parameters, respectively, in the IEASYSxx P ARM LIB
member. When NOPROT js specified, none of the MLPA or FLPA is
page-protected. The system default is to page protect those areas.

You cannot include in page-protected areas any module that stores into itself. If
any program running DAT -on attempts to store into a page that is page-protected,
the processor generates a program interrupt, regardless of the program's state or
protect key.

Modules that modify themselves might include:

Modules that use macros which create parameter lists, but do not use the
LIST /EXECUTE forms of the macros to eliminate stores into the module

Modules marked reentrant that page-fix, serialize, and modify themselves

If you have any such modules in the PLP A, either:

1. Modify the module so that it stores the data somewhere else; for example, in
dynamically-acquired storage.

2. Include the module in another library; for example, in SYS I.LINKLIB.

3. Include the module in the MLPA or FLPA and specify NOPROT for that ~rea.

Unless you turn off page protection in the MLPA or FLPA, handle self-modifying
modules in those areas as described in 1 or 2.

The page protect facility replaces MVS/370 segment protection, which enforces
read-only access to segments (64 K blocks) of storage fully occupied by PLPA
pages. MVS/370 installations can override the segment protection using the
AMASPZAP service aid program. Installations do not have that capability in
MVS/XA.

PSA low address protection prevents user programs from storing into PSA
locations 0 through 511. The only way to. turn off PSA low address protection in
MVS/XA is by using the PROTPSA macro. The CVTPRON bit in the CVT is
deleted.

To disable low address protection in MVS/370, programs can either use the
PROTPSA macro or change the CVTPRON bit.

Chapter 3. Programming Considerations 3-19

Fetch-Protected PSA Areas

Patch Areas in the PSA

You might have to change some programs that fetch data from the PSA. In
MVS/XA, some PSA locations are key 0 fetch-protected. That is, only programs
in key 0 can fetch data from those area:

The last 2 K of the PSA (2 K through 4 K minus 1) are always key 0
fetch,..protected.

• The first 2 K are key 0 fetch-protected from programs running on a different
central processor. However, programs require no authorization to fetch data
from the first 2 K of the PSA of the central processor on which they are
running. The programs must still be in key 0 to store data into the first 2 K,
however.

The PSA work/save areas have been moved into the fetch-protected area to
improve integrity. Therefore, you must also modify programs that access the
moved data while not in key 0 and programs (usually FRRs) that fetch data from
the FRR six-word parameter area while not in key O.

Fetch-protection of PSA locations is new in MVS/XA. In MVS/370, programs
have to be in key 0 to store into the PSA, but no authorization is required to
reference data there.

MVS/XA uses some PSA locations that are available for system patches in
MVS/370. If you use areas of the PSA for system patches, ensure that your patch
applications use only areas that are not system-defined. Otherwise, normal system
processing might overlay the patch.

To determine which areas are safe to use, patch applications can check whether the
storage contains zeros. When initializing the PSA, MVS/XA puts non-zero values
in the system-defined areas within the range most commonly used as a patch area
(x'600' to x'COO'). Available areas contain zeros.

Real Addressing Considerations

You might need to change programs that:

Use the EXCPVR macro instruction
Depend on RSM backing virtual pages with real storage below 16 Mb
Execute DA T -off code

Using the EXCPVR Macro Instruction

EXCPVR users need to be aware of two changes:

The list of data areas that the page fix (PGFX) appendage passes to the I/O
supervisor must contain 31-bit addresses. The high-order bit of each address
must be zero.

Using EXCPVR, CCWs, and IDAWs, programmers can perform I/O to any
location in real storage (above or below 16 Mb). The channel programs must
use IDA Ws to specify the address of buffers in real storage above 16 Mb:

3-20 MVS/Extended Architecture Conversion Notebook

CCW (format 0, the CCW format used in MVS/370)

IDAW I/O buffer

IDAW

IDAW

address

Because the EXCP service routine (which processes both EXCP and EXCPVR
macros) supports only Format 0 CCWs, CCWs and IDA Ws used with EXCPVR
must reside in virtual storage below 16 Mb.

As in all cases where IDAWs are used with real addresses, an IDAW is required for
each 2 K real storage boundary that the data transfer operation will cross.

Unless a program uses IDA Ws, EXCPVR users must ensure that all buffers are
backed by real storage below 16 Mb. EXCPVR users must assume that buffers
obtained via data management access methods have real addresses above 16 Mb.
When requesting buffer storage, data management access methods specify
LOC=(BELOW,ANY) on the GETMAIN request. LOC=(BELOW,ANY)
indicates that virtual storage can be backed with real storage above 16 Mb. (See
"New Parameters on the GETMAIN Macro Instruction.") The following situation
can happen:

1. An program uses an access method to open a data set. The access method
obtains buffer storage that might be backed by real storage above 16 Mb.

2. The program uses the access method to read data into the buffer.

3. The program attempts to write data from the buffer using EXCPVR. If the
buffer is in real storage above 16 Mb, the program does not work unless it uses
IDA Ws to specify the real addresses above 16 Mb.

Change the program to either obtain its own buffer or use IDA Ws.

SPL: Data Management describes how to use EXCPVR.

Changes in the Way RSM Backs Virtual Storage

RSM uses different algorithms to determine whether to back a virtual page with
real storage above or below 16 Mb. Generally, only users who have programs with
real address dependencies need to be aware of the changes. RSM:

Attempts to back all virtual storage above 16 Mb with real storage above 16
Mb.

Chapter 3. Programming Considerations 3-21

•

DA T -off Restrictions

• Attempts to back the following virtual storage areas below 16 Mb with real
storage above 16 Mb:

SQA (except subpool 226)
LSQA
Nucleus
Pageable private areas
Page able CSA
PLPA
MLPA
Resident BLDL (in Release 1.0 only)

• Always backs the following virtual storage areas below 16 Mb with real storage
below 16 Mb:

V=R regions
FLPA
Subpool 226 (a new subpool in SQA)

• Backs subpools 227 and 228 (fixed CSA) in virtual storage below 16 Mb with
real storage below 16 Mb, except when GETMAIN requests specify
LOC=(BELOW,ANY).

• Whe:n satisfying a page-fix request, RSM generally backs pageable virtual pages
that reside below 16 Mb with real storage below 16 Mb. (Pageable virtual
pages are pages in CSA, PLPA, MLPA, or the pageable private area.)
However, in the following situations, RSM attempts to use real storage above
16Mb:

The GETMAIN request to obtain the storage specified either
LOC=(BELOW,ANY), LOC=(RES,ANY), or LOC=(ANY,ANY).

The PGSER macro specified ANYWHERE

Note: EXCPVR users need to be aware that DFP access methods use
LOC=(BELOW,ANY) on GETMAIN requests for buffer storage.

Impact of Programmers:

RSM's page backing rules are, for the most part, compatible with the way real
storage is backed in MVS/370. Because programs that have real address
dependencies work with fixed storage, it is expected that most existing programs
will continue to receive real addresses that are less than 16 Mb. However, you
must change programs that run in 24-bit addressing mode and have real address
dependencies on the nucleus, SQA, or LSQA. RSM ignores requests to fix storage
in the nucleus, SQA, or LSQA because those areas are already fixed. Therefore,
real addresses in those areas might be greater than 16 Mb. Modify the programs to
correctly handle 31-bit addresses.

You must modify programs in the nucleus or FLP A that run with dynamic address
translation (DAT) turned off. In MVS/370, programs can turn DAT on or off by
manipulating the system mask (using the STNSM and STOSM instructions).
However, because the nucleus and FLPA are not mapped V=R in MVS/XA,
modules in those areas can no longer use the STNSM and STOSM instructions to

3-22 MVS/Extended Architecture Conversion Notebook

control DAT. (Programs executing as V =R jobs can use STNSM and STOSM
instructions in MVS/XA and do not have to be modified unless they refer to data
outside the V =R region.)

To modify modules containing DAT -off code:

1. Move the DA T -off code to a separate module. Give the module AMODE= 31
and RMODE=ANY attributes. Use as its entry point, lEA VEURn, where n is
a number from 1 to 4. (MVS/XA reserves four entry points in the DA T -off
nucleus for users.) Use BSM 0,14 as the return instruction.

2. In the original module (which executes DAT-on), code a DATOFF macro to
invoke the DAT -off module created in the previous step. DATOFF is new in
MVS/XA:

DATOFF INDEX=INDUSRn

The suffix of INDUSRn must be the same as the suffix of the DAT -off
module's entry point, IEAVEURn. See System Macros and Facilities for more
detail on coding DATOFF macros.

3. Link edit the DAT -off module (lEA VEURn) into the lEA VEDAT member of
SYSl.NUCLEUS (the DAT-off nucleus).

When the DA TOFF macro executes, it branches to a routine in the PSA. The
routine turns DA T off and branches to entry point lEA VEURn in lEA VEDA T
The DAT -off module returns via a PSA routine that turns DAT back on.

Cross Memory Entry Table Entries

Interfaces to System Services

You might have to change entry table entries that your installation created.
MVS/XA ~ses a previously reserved bit in cross memory entry table entries to
determine the addressing mode in which to enter the program. Entries that require
modification are those that specify program addresses and either:

Use bits in the entry description that are reserved in MVS/370
• Specify programs to be entered in 31-bit addressing mode.

Some system services are changed to execute in 31-bit addressing mode. Some can
now accept callers in either mode, but have restrictions on the length or value of
parameter addresses. Others are restricted to using MVS/370-supported
interfaces. During the migration phase, most programmers do not have to be
concerned about changes to system service interfaces. Most programs that execute
in 24-bit addressing mode and invoke system services via an SVC or a macro
instruction continue to work unchanged in MVS/XA. (Exceptions are noted in the
introduction to this chapter.) Interface changes might, however, affect existing
programs that invoke service routines directly instead of via an SVC or macro
instruction.

Chapter 3. Programming Considerations 3-23

When modifying or developing programs that invoke system services directly or
that execute in 31-bit addressing mode, programmers must now consider:

The mode of the caller.

The desired mode of the routine being called.

The location of data areas passed to the service routines. Some data areas,
such as the DCB, cannot reside in virtual storage above 16 Mb.

The location of routines whose addresses are passed as parameters.

The length of the address parameter fields. Some services expect parameter
address fields to be 31 bits long even though the addresses contained in the
fields might point to locations in virtual storage below 16 Mb. Other services
use parameter fields that must be 24 bits long (for example the DCB address in
an OPEN parameter list).

Programmers need to refer to the publications documenting the macros and SVC
interfaces when using system services in 31-bit addressing mode or when invoking
them directly.

System services can be categorized according to their interface requirements.
Following are descriptions of the categories and examples of service routines in
each. The list is not comprehensive.

Services Independent of Addressing Mode

Service routines in this category:

• Accept callers in either 24- or 31-bit addressing mode.

• Use 31-bit parameter address fields and, for callers in 31-bit mode, allow the
addresses contained in those fields to point to any location.

EXAMPLES:

ABEND EXIT RESTORE
ATTACH* FESTAE SCHEDULE
CALLRTM FREEMAIN (SVC 120) SDUMP
CHAP GET (VSAM) SETFRR
eIRB GETMAIN (SVC 120) SETLOCK
CMSET GETSRB SETRP
CPOOL GTRACE SNAP*
DATOFF GQSCAN STATUS
DELETE HOOK STIMER
DEQ IDENTIFY SYNCH
DETACH LINK* SYSEVENT
DOM LOAD* TESTAUTH
DYNALLOC PGSER TTIMER
ENQ POST WAIT
ESPIE PTRACE WTO
ESTAE PUT (VSAM) WTOR
EVENTS RESERVE XCTL*

*When a DCB parameter is specified, the DCB must reside in 24-bit addressable
storage.

3-24 MVS/Extended Architecture Conversion Notebook

Services with Some Restrictions on the Address Parameter Values

Services in this category:

• Accept SVC callers in either 24- or 31-bit addressing mode.

• Might require that branch entry callers be in 24-bit addressing mode.

• Require that one or more parameter addresses point to locations below 16 Mb.
In some cases, the length of an address field must be 24 bits. In other cases,
the length of an address field must be 31 bits long, but the address contained in
the field must be a 24-bit value.

EXAMPLES:

BLDCPOOL
BLDVRP
CLOSE
DLVRP
EVENTS
EXCP
EXCPVR
EXTRACT
FRACHECK
FREECELL
FREEMAIN (SVC 5 and 10)
GENCB

Services that Do Not Support 31-bit Addressing

Services in this category:

GETLINE
GETCELL
GETMAIN (SVC 4 and 10)
MGCR
MODCB
OPEN
PGFIX
PGFREE
PGLOAD
PGOUT
PGRLSE
PURGE

PUTLINE
QEDIT
RACDEF
RACLIST
RACHECK
RACINIT
RACROUTE
SHOWCM
SMFWTM
SMFEWTM
STACK
TESTCB

• Accept callers in 24-bit addressing mode only.

• Require that all parameter addresses point to storage below 16 Mb. Parameter
lists (both in-line and remote), control blocks, buffers, and user exit routines
must reside in virtual storage below 16 Mb.

EXAMPLES:

SPIE
STAE
SEGLD
SEGWT

Data management macro instructions for all DFP access methods except VSAM
(specifically, SAM, PAM, DAM, and ISAM)

31-bit Addressing Considerations

A 370-XA system can treat instruction and data addresses as 24- or 31-bit values.
A new concept, addressing mode, describes the size of addresses being used. The
value of a bit in the PSW (the PSW A-mode bit) determines the addressing mode.
If the bit is 0, the system treats addresses (except those returned from the LRA
instruction) as 24-bit values. If the bit is 1, the system treats them as 31-bit values.
Programs executing while the system is in 24-bit addressing mode can address up to
16 Mb of virtual storage. Programs executing in 31-bit mode can address up to
two gigabytes (approximately 2 billion bytes) of virtual storage.

Chapter 3. Programming Considerations 3-25

Impact of 31-bit Addressing on Programmers

During the migration phase, most programmers do not have to be concerned with
addressing mode. Most existing user-written programs that use standard system
interfaces run unchanged on an MVS/XA system in 24-bit mode.

Programmers need to be concerned about addressing mode only if they:

• Have existing user-written programs that access system control blocks that
have been moved to virtual storage above 16 Mb. (Appendix B, "Control
Block Changes" lists those control blocks.) Programs that run in 24-bit
addressing mode must switch modes to access data above 16 Mb. The next
topic describes ways of changing the addressing mode. "Retrieving Data from
a Control Block Above 16 Mb" illustrates how 24-bit mode programs can be
changed to reference virtual storage above 16 Mb.

• Have existing user-written programs that use non-standard interfaces to invoke
system programs (for example, programs that branch enter system programs
rather than use macros, SVCs, or documented entry points). Some system
programs must now be entered in 31-bit addressing mode or using a BASSM
instruction.

Also, some system programs now expect input addresses to be 31-bit values.
Modules that run in 24-bit mode must ensure that the addresses they pass to
programs in 31-bit mode do not contain flags or other data in the high-order
byte, unless the 31-bit mode program ignores the first byte or sets it to zero.

See "Modifying Programs that Invoke Modules Above 16 Mb" for examples
of how you can make affected programs work in MVS/XA.

• Develop application programs, exit routines, or system modifications that
execute in 31-bit addressing mode. Developing new programs to execute in
31-bit addressing mode is not described in this publication. See SP L: 31-Bit
Addressing.

The following address mode related topics give programmers an introduction to
how mode switching is performed so they can assess the work required to modify
existing programs:

• "Changing Addressing Mode"
• "Establishing a Program's Addressing Mode"

"BSM (Branch and Set Mode) Instruction"
• "BASSM (Branch and Save and Set Mode) Instruction"
• "Modifying Programs that Invoke Modules Above 16 Mb"
• "Retrieving Data from a Control Block Above 16 Mb"
• "Performing I/O in 31-bit Addressing Mode"

"Using the EXCP Macro"

See SPL: 31-bit Addressing for more detail.

3-26 MVSjExtended Architecture Conversion Notebook

Changing Addressing Mode

The only way to change the addressing mode is to change the value of the PSW
A-mode bit. Following are ways of changing the A-mode bit:

• New 370-XA instructions:

BSM (branch and set mode)
BASSM (branch and save and set mode)

BSM and BASSM both save the current addressing mode, set a new addressing
mode, and branch to an address. BASSM also saves a return address. The
instructions allow problem programs in different addressing modes to
communicate. See "New Instructions" for more detail.

Supervisor assisted linkages (XCTL, LINK, and ATTACH). When a module
uses XCTL, LINK, or ATTACH to invoke another routine, MVS/XA ensures
that the called routine receives control in the correct addressing mode. (The
way programs establish an addressing mode is described in the next topic.)
Programs issuing XCTL, LINK, or ATTACH macros do not have to be aware
of the addressing mode of the called routines except to ensure that the
parameter requirements are met. When the routine called using LINK or
ATTACH returns, the supervisor restores the addressing mode of the caller.

Supervisor calls (SVCs). The supervisor saves and restores the issuer's
addressing mode and ensures that the service routine receives control in the
correct mode.

Programs that reside below 16 Mb and pass parameters located in virtual
storage below 16 Mb can issue SVCs without being aware of the service
routine's addressing mode or input requirements. However, before using SVCs
in programs that will execute in 31-bit mode and/or use parameters located
above 16 Mb, consult documentation on the SVC interface. Some SVCs
require that input parameters be located below 16 Mb. See "Interfaces to
System Services" for more detail.

SYNCH macro. A new parameter, AMODE, allows programs to specify the
addressing mode in which the called routine is to get control.

• SRB dispatch. When the SRB is dispatched, MVS/XA replaces the PSW
A-mode bit with the high-order bit of the SRBEP or SRBRMTR field.

PC and PT instructions, which establish the identified addressing mod~.

• LPSW instruction.

Establishing a Program's Addressing Mode

Every program that executes in MVS/XA is assigned two new attributes, an
AMODE (addressing mode) and an RMODE (residency mode). (Existing
programs are assigned default AMODE/RMODE attributes, which are described
below.) AMODE specifies the addressing mode in which the program is designed
to receive control. Generally, the program is also designed to execute in that mode,
although a program can switch modes and can have different AMODE attributes
for different entry points within a load module. The RMODE indicates where in
virtual storage the program can reside.

Chapter 3. Programming Considerations 3-27

Valid AMODE and RMODE specifications are:

AMODE=24

AMODE=31

AMODE=ANY

RMODE=24

RMODE=ANY

Specifies 24-bit addressing mode

Specifies 31-bit addressing mode

Specifies either 24- or 31-bit addressing mode

Indicates that the module must reside in virtual storage below 16 Mb.
You can use the RMODE=24 specification for 31-bit programs that have
24-bit dependencies.

Indicates that the module can reside anywhere in virtual storage

You do not have to specify AMODE and RMODE attributes for a program. When
none are specified, the system assigns the following defaults: AMODE=24,
RMODE=24. To override the defaults, specify AMODE and/or RMODE on one
or more of the following:

• AMODE and RMODE statements within the assembler source code for a
program. Only Assembler H Version 2 recognizes AMODE and RMODE
statements.

XYZ CSECT
XYZ AMODE xxx
XYZ RMODE xxx

The EXEC statement of a link edit step:

//LKED EXEC PGM=HEWLH096, PARM= 'A MODE=xxx,RMODE=xxx,

The linkage editor MODE control statement (one per load module):

MODE AMODE(xxx) ,RMODE(xxx)

• The LINK or LOADGO TSO commands:

LINK AMODE(xxx),RMODE(xxx)

LOADGO AMODE(xxx) ,RMODE(xxx)

Each of the AMODE/RMODE specifications listed overrides the previous ones in
the list. For example, the AMODE/RMODE specifications on the MODE control
statement override the specifications on the linkage editor EXEC statement.

MVS/XA uses a program's AMODE attribute to determine whether a program
invoked using ATTACH, LINK, or XCTL is to receive control in 24- or 31-bit
addressing mode. MVS/XA uses the RMODE attribute to determine whether a
program must be loaded into virtual storage below 16 Mb or can reside anywhere
in virtual storage (above or below 16 Mb).

Assembler H Version 2 establishes flags in the external symbol dictionary (ESD) to
indicate the specified (or default) AMODE and RMODE of each CSECT. The
MVS/XA linkage editor retains these flags in the composite external symbol
dictionary (CESD). The linkage editor also inserts AMODE and RMODE flags in
the partitioned data set (PDS) directory entry for each load module. The linkage
editor by default uses the AMODE and RMODE indicators from the ESD entries.
As noted earlier, the linkage editor also accepts AMODE and RMODE
specifications in the EXEC statement and in the MODE control statement. If
either of these are used to specify AMODE or RMODE, they are reflected in the
PDS directory entry, but do not affect the information in the CESD.

3-28 MVS/Extended Architecture Conversion Notebook

You can use the MVS/XA version of AMBLIST to print the directory entry and
the CESD to determine a program's AMODE and RMODE. You can also use the
LOAD macro to determine the addressing mode in which a module expects to
receive control. The high order bit of the entry point address that LOAD returns
indicates the addressing mode.

Note: Do not confuse AMODE with the current addressing mode. Specifying an
AMODE attribute guarantees that the module will receive control in the specified
mode only when invoked using one of the methods defined in this topic. Specifying
an AMODE does not, for example, prevent a program in 24-bit mode from issuing
a BALR to a program with an AMODE of 31, although the program will not
execute as expected. Also, there is nothing to prevent a programmer from
specifying an AM ODE of 31 on a program designed to execute in 24-bit mode,
although doing so is incorrect.

Restrictions on Using a Linkage Editor Overlay Structure

Changed Instructions

Programs executing in 31-bit addressing mode cannot use a linkage editor overlay
structure.

The following instructions work differently either when executed in 31-bit
addressing mode or when executed on a 370-XA processor: BAL, BALR, BAS,
BASR, CLCL, EDMK, LA, LRA, MVCL, and TRT. The following topics
describe the differences.

Also remember that when executing in 31-bit mode, 370-XA processors treat all
virtual addresses as 31-bit values. When executing in 24-bit mode, they treat
virtual addresses as 24-bit values.

BAL and BALR (Branch and Link) Instructions

The way BAL and BALR work depends on the addressing mode. In 24-bit
addressing mode, BAL and BALR work the same way as they do when executed
on a 370 processor. BAL and BALR put information from the PSW into the
high-order byte of the first operand register and put the return address into the
remaining 3 bytes before branching:

next sequential instruction address

ILC - instruction length code
CC - condition code
PGM MASK - program mask

31

In 31-bit addressing mode, BAL and BALR put the return address into bits 1
through 31 of the first operand and save the current addressing mode in the
high-order bit. Because the addressing mode is 31-bit, the high-order bit is always
al.

First operand register

next sequential instruction address
31

Chapter 3. Programming Considerations 3-29

Note that when executed in 31-bit addressing mode, BAL and BALR do not save
the instruction length code, the condition code, or the program mask. A new
370-XA instruction, IPM (Insert Program Mask), saves the program mask and the
condition code.

BAS and BASR (Branch and Save) Instructions

BAS and BASR instructions execute on 308x processors in either 370 or 370-XA
mode. They:

• Save the return address and the current addressing mode in the first operand.
Replace the PSW instruction address with the branch address.

The high-order bit of the return register indicates the addressing mode.

Note that BAS and BASR perform the same function that BAL and BALR perform
when BAL and BALR execute in 31-bit addressing mode.

CLCL, EDMK, MVeL, and TRT Instructions

LA (Load Address) Instruction

When executed in 31-bit addressing mode, the following four instructions load
31-bit values into return registers and leave bit 0 unchanged. When executed in
24-bit addressing mode, they load 24-bit addresses and leave bits 0-7 unchanged:

CLCL (Compare Logical Long)
EDMK (Edit And Mark)
MVCL (Move Long)
TRT (Translate And Test)

Most programs using these instructions will run unchanged in 31-bit addressing
mode. You need to change only programs that depend on bits 1-7 remaining
unchanged.

Return Registers in 24-bit Addressing Mode

I / / / / / / / / I 24-bit address
31

Return Registers in 31-bit Addressing Mode

L2 I 31-bit address I
31

The LA instruction works differently when executed in 31-bit addressing mode. It
loads a 31-bit value and clears the high-order bit instead of the entire high- order
byte.

LRA (Load Real Address) Instruction

The LRA instruction performs the same functions as in 370 mode. However, it
always returns a 31-bit address regardless of the issuing program's addressing
mode. Also, the meaning of condition code 1 (CC= 1) from an LRA instruction
might be different. Because some page tables for the user region above 16 Mb are
themselves page able in MVS/XA, a condition code of 1 can mean either that:

• The page table does not exist because the virtual space has not been obtained.
The page table is paged out or has not yet been built.

3-30 MVS/Extended Architecture Conversion Notebook

I
I New Instructions

I
I
I
I
I
I
I

\

In MVS/XA, neither situation is necessarily an error. Users receiving a condition
code of 1 can access the page in question to determine which condition exists.
Accessing the page causes either an x'OC4' program check or segment fault/page
fault resolution.

Standard instructions that are new in 370-XA mode include:

BASSM (Branch and Save and Set Mode)
BSM (Branch and Set Mode)
DXR (Divide Extended)
IPM (Insert Program Mask)
TRACE
All I/O instructions

The following topics describe BSM and BASSM in more detail. For more
information on the other instructions, see Principles of Operation.

BSM (Branch and Set Mode) Instruction

BSM is a branch instruction that also sets the addressing mode.

The BSM instruction:

Saves the current addressing mode. BSM puts into the high-order bit of the
first operand the value of the current PSW A-mode bit. The rest of the
operand is unchanged.

Sets a new addressing mode. BSM replaces the PSW A-mode bit with the
high-order bit of the second operand.

Replaces the PSW instruction address with the branch address. Note that BSM
sets the new addressing mode before computing the branch address. Thus, a
program executing in 24-bit mode can use BSM to branch to a program in
virtual storage above 16 Mb.

Uses for BSM

Programs called via a BASSM instruction (described in the next topic) can use
BSM to return to the caller in the caller's addressing mode.

When the first operand is ° (for example, BSM 0,14), BSM:

Does NOT save the current addressing mode
Sets the PSW AMODE bit
Executes a branch

When the second operand is ° (for example, BSM 14,0), BSM:

Saves the current addressing mode
Does NOT change the PSW AMODE bit
Does NOT execute a branch

Chapter 3. Programming Considerations 3 -3 1

BASSM (Branch and Save and Set Mode) Instruction

The BASSM instruction works like BSM, except that it saves the return address as
well as the current addressing mode in the first operand.

BASSM:

Saves the next instruction address in bits 1 through 31 of the first operand.

Saves the current addressing mode in the high-order bit of the first operand.

• Replaces the PSW A-mode bit with the high-order bit of the second operand.

• Replaces the PSW instruction address with a branch address. Like BSM,
BASSM sets the new addressing mode before computing the branch address.
Thus, programs executing in 24-bit mode can use BASSM to call programs in
virtual storage above 16 Mb.

Uses of BASSM

Programs can use BASSM when branching to modules that might have different
addressing modes. In addition, a program called via BASSM can return to its caller
in the caller's addressing mode using either BSM or BASSM, provided the called
program saves the full contents of the linkage register.

When the second operand is ° (for example, BASSM 14,0), BASSM:

• Saves the current addressing mode
Saves the next instruction address

• Does NOT change the PSW AMODE bit
• Does NOT execute a branch

When the first operand is ° (for example, BASSM 0,14), BASSM does not
suppress the saving operation.

Modifying Programs that Invoke Modules Above 16 Mb

You must change existing user-written programs that branch to MVS/XA system
programs that must be entered in 31-bit addressing mode or via a BASSM
instruction. Following are two examples of how you can adapt such programs work
in MVS/XA. One method requires that you change user-written programs to use
BASSM and BSM instructions. The other method uses a linkage assist routine,
which does not require that you change your program.

To understand the following examples, you need to know:

• How BASSM and BSM work. Both are described in "New Branch
Instructions. "

• That the LOAD macro returns in the high order bit of Register ° the addressing
mode in which the module expects to receive control.

The modified program in the first example uses LOAD to determine not only the
entry point address of the SYSRTN module, but also its addressing mode. The
linkage assist routine in the second example uses LOAD to determine the same
information for XYZNEW.

3 .. 32 MVS/Extended Architecture Conversion Notebook

Using BASSM and BSM Instructions

SYSRTN CSECT
SYSRTN AMODE 31
SYSRTN RMODE ANY

BSM 0,14
END

/\
/ \

16Mb

EXISTING PROGRAM: / \ MO

AMODE=24 RMODE=24 (by default) /

USER CSECT /

LOAD EP=SYSRTN :II
ST O,EPSYSRTN

L 15,EPSYSRTN
BALR 14,15

Figure 3-3. Example of Using BSM and BASSM

Using Linkage Assist Routines

.. - SYSRTN CSECT
SYSRTN AMODE 31
SYSRTN RMODEANY

BSM 0,14
END

1 6Mb

DIFIED PROGRAM:

AMODE=24 RMODE=24

USER CSECT

LOAD EP=SYSRTN
ST O,EPSYSRTN ~

L 15,EPSYSRTN
BASSM 14,15

Linkage assist routines are programs that handle the mode switching required to
pass control between programs in 24- and 31-bit addressing mode:

... - XYZCSECT

r----..

16Mb

~ USERCSECT I

~ ...
~ I LINKAGE

ASSIST ROUTINE -

Chapter 3. Programming Considerations 3-33

The linkage assist routine should:

• Save registers.

• Ensure that all parameter addresses and linkage registers contain 31-bit address
values.

Obtain a new save area.

Branch to the target module using a BASSM instruction.

• Receive control from the target module after it executes.

Free the new save area.

Restore registers.

Return to the caller.

SPL: 31-bit Addressing provides guidelines for using linkage assist routines.
Linkage assist routines are mentioned in this publication for two reasons:

You can use linkage assist routines to make user-written programs work in
MVS/XA without change. Using a linkage assist routine is practical when:

A 24-bit mode program repeatedly calls a program that now executes in
31-bit mode.

Several 24-bit mode programs call the same program that now executes in
31-bit mode.

If a user-written program invokes a 31-bit mode program only once, other
methods of mode switching might be preferable to using a linkage assist
routine.

Some system programs that have been moved above 16 Mb are invoked via
linkage assist routines. This change is transparent to most users. Programmers
might, however, notice linkage assist routines when tracing control flow during
problem determination. Some addresses in the CVT now point to linkage
assist routines instead of to the target module itself.

Following is one example of a linkage assist routine that passes control between a
24-bit mode user program and a 31-bit mode system program. Using the routine
requires renaming the target routine and giving the linkage assist routine the
original name of the target module.

3-34 MVS/Extended Architecture Conversion Notebook

TARGET MODULE: (formerly named XYZ)

~--
XYZNEW CSECT
XYZNEW AMODE31
XYZNEW RMODEANY

BSM 0,14
END

16Mb

USER ROUTINE: LINKAGE ASSIST ROUTINE:

AMODE=24, RMODE=24 (by default)

USER CSECT XYZ CSECT
XYZ AMODE24
XYZ RMODE24

LOAD EP=XYZ
ST 0, EPXYZ (Save registers)

LOAD EP=XYZNEW
L 15,EPXYZ ST O,EPXYZNEW
BALR 14,15 at..

(Prepare for entry
to target module)

(Provide new save area)

L 15,EPXYZNEW f--...J
BASSM 14,15

(Restore registers) ~
RETURN

Figure 3-4. Example of a Linkage Assist Routine

Retrieving Data from a Control Block Above 16 Mb

You must change existing user-written programs that access system control blocks
that have been moved to virtual storage above 16 Mb. Following is one way you
can modify those programs. The example requires that you insert mode-switching
code before and after the instruction that must be executed in 31-bit addressing
mode (L 2,0(,15)).

Chapter 3. Programming Considerations 3-35

EXISTING PROGRAM

USER CSECT /
/

1\
/ \

/ ~
/

I
OUXB

16Mb

/
L 15,ASCBOUXB
L 2,0(,15) V

MODIFIED PROGRAM

USER CSECT

L 15,ASCBOUXB

L 1,LABEL1 (Put a 1 into the high-order
bit of Register 1.)

BSM 0,1 (Switch to 31-bit addressing mode.)

LABELl DC A(LABEL2 + X'80000000')
LABEL2 DS OR

L 2,0(,15) (Retrieve the data from above 16Mb.)
LA I,LABEL3 (Put a 0 into the high order

bit of Register 1.)
BSM 0,1 (Switch to 24-bit addressing mode.)

LABEL3 DS OR

Figure 3-5. Retrieving Data from Above 16 Mb

Performing I/O in 31-bit Addressing Mode

To perform I/O, a program executing in 31-bit addressing mode must either:

• . Use VSAM services, which accept callers in either 24- or 31-bit addressing
mode. (See "Services with Some Restrictions on Address Parameter Values. ")
Programs using VSAM can access buffers that reside above 16 Mb.

• Use the EXCP macro. All parameter lists, control blocks, and EXCP
appendage routines must reside in virtual storage below 16 Mb. See "Using
the EXCP Macro."

Use the EXCPVR macro. All parameter lists, control blocks, and appendage
routines must reside in virtual storage below 16 Mb. See "Using the EXCPVR
Macro Instruction."

'3~36 MVS/Extended Architecture Conversion Notebook

Using the EXCP Macro

• Use an intermediate routine that executes in 24-bit addressing mode as an
interface to non-VSAM access methods, which accept callers executing in
24-bit addressing mode only.

To perform I/O to buffers located in virtual storage above 16 Mb, programs must
use either:

• VSAM. Specify on the access method control block (ACB) at OPEN time that
I/O buffers are to reside above 16 Mb. The ACB must be below 16 Mb, but
the request parameter list (RPL) can be above 16 Mb.

• The EXCP macro and new virtual IDA W support, which "Using the EXCP
Macro" describes.

• The EXCPVR macro. IDAWs can contain real addresses above 16 Mb, as
described in "Using the EXCPVR Macro Instruction."

EXCP users can now:

Back all I/O buffers with real storage above 16 Mb. To back I/O buffers
below 16 Mb with real storage above 16 Mb, callers must specify
LOC=(BELOW,ANY) on the GET MAIN request. (See "New Parameters on
the GETMAIN Macro Instruction.")

Perform I/O to virtual storage areas above 16 Mb. CCWs in the channel
program that EXCP initiates can point to a virtual IDA W. The virtual IDA W
contains the 31-bit virtual address of an I/O buffer, which can be anywhere in
virtual storage. The EXCP service routine supports only Format 0 CCWs, the
CCW format used in MVS/370.

CCW (Format 0)

Virtual address of
an I/O buffer

Any CCW that causes data to be transferred can point to a virtual IDAW.
Virtual IDA W support is limited to non~ VIO data sets. Programmers must be
aware of this fact when coding the JCL to execute a program that uses virtual
IDAWs.

Although the I/O buffer can be in virtual storage above 16 Mb, the virtual
IDAW that contains the pointer to the I/O buffer and all other areas related to
the I/O operation (CCWs, lOBs, DEBs, DCBs, and appendages) must have
24-bit virtual addresses.

See SPL: Data Management for information. on using the EXCP macro.

Chapter 3. Programming Considerations 3-37

I Entry Points· in IEFW21SD

\
I
I
I
I
I
I
I
I
I
I

The following entry points in the device allocation load module, IEFW21 SO, are
changed in Release I. I. When writing programs to be executed in 3 I-bit
addressing mode, use the new entry points. Programs that run in 24-bit addressing
mode can continue to use the old entry points.

Old Entry
Point

IEFAB4DC
IEFAB445
IEFAB4UV

Summary of New and Changed Macros

New Entry
Point

IEFGB4DC
None
IEFGB4UV

Figure 3-6 lists macros that are new or that have new or changed options. When
assembling programs that use any of the new function, use the MVS/XA
MACLIB. With the following exceptions, the object code generated will be
downward incompatible:

• The new LOC, VRC, and VRU options on the GETMAIN macro are
downward compatible, as described in "New Parameters on the GETMAIN
Macro Instruction."

• The MVS/XA MACLIB expansions of SYNCH macros that specify
AMODE=24 are downward compatible. However, if the AMODE parameter
is omitted or if it specifies any option other than 24, the MVS/XA expansion
of SYNCH will not run on an MVS/370 system. See "Downward
Incompatible SYNCH Macros" in Chapter 9 for more information.

3 ... 38 MVS/Extended Architecture Conversion Notebook

Release

Macro 1.0 1.1 1.2 Description of Change

ABEND x A new keyword, REASON, specifies a reason code that supplements the
completion code for abnormal termination.

The list form of the SNAP macro to which the DUMPOPT parameter points can
specify all of the new SNAP dump options.

BLSABDPL x A new macro that maps the BLSABDPL exit parameter list. Dump analysis and
formatting exit routines that run under IPCS, PRDMP, or SNAP can use
BLSAHDPL when invoking the new services decribed in "New Services for
Dump Processing Exits" in Chapter 5.

BLSQMDEF x A pair of macros that when used together define the structure of a control
and block. BLSQMDEF marks the beginning of the control block and
BLSQMFLD defines the header. Several BLSQMFLD macros follow, each of which defines a

single field in the control block. A second 3LSQMDEF macro denotes the end
of the control block.

The definition is called a control block model. Dump analysis and formatting
routines can use the models instead of format patterns for formatting control
blocks. See "Format Model Processor Service" in Chapter 5 for more
information.

BLSRESSY x A new macro that maps one IPCS symbol table record. Dump analysis and
formatting routines that run under IPCS and use either the new GET or
EQUATE service can use BLSRESSY to describe the record to be retrieved or
stored in the symbol table. See "New Services for Dump Processing Exits" in
Chapter 5 for more information about the GET and EQUATE services.

CALLRTM x A new keyword, REASON, specifies a reason code that supplements the
completion code for abnormal termination.

The list form of the SNAP macro to which the DUMPOPT parameter points can
specify all of the new SNAP dump options.

CHKPT x New keywords:

- IDADDR specifies the address of a checkpoint ID
- IDLNG specifies the length of the checkpoint 10 field
- DDNADDR specifies the address of a DDNAME

You can use IDADDR and IDLNG instead of the ID and LNG parameters.

CIRB x A new parameter, AMODE, specifies the addressing mode in which the specified
asynchronous exit routine is to get control. If the AMODE parameter is not
specified, the exit routine gets control in the issuer's addressing mode.

CPOOL x A new macro that:

- Creates a cell pool as described by the requestor
- Obtains or returns a cell to a previously constructed cell pool
- Deletes a previously constructed cell pool

Requestors require authorization only when the storage to be obtained is in an
authorized GETMAIN subpool.

\

CPUTIMER x A new macro that obtains the current CPU (processor) timer clock value.
CPUTIMER allows users to determine the amount of time remaining in a time
interval established by an SRBTIMER or STIMER macro. CPUTIMER uses a
PC instruction instead of an SVC. Therefore, it is faster than using TTIMER.
Also, users can issue CPUTIMER in task or SRB mode. Issuers of TTIMER
must be in task mode.

DATOFF x A new macro that provides linkage to DA T -off routines. See "DAT-off
Restrictions. "

Figure 3-6 (Part 1 of 5). Summary of New and Changed Macros

Chapter 3. Programming Considerations 3-39

Release

Macro 1.0 1.1 1.2 Description of Change

ENQ x Users might receive a new return or abend code. In Release 1.1, global resource
serialization limits the number of ENQ, RESERVE, and certain GQSCAN
requests a single job, started task, or TSO user can have outstanding at a given
time. If an address space reaches the limit, the system terminates unconditional
ENQ requests with abend code x'538' and rejects conditional requests with a
return code of x'OI4'. See "Limiting Concurrent Global Resource Serialization
Requests" for more detail.

x ENQ has two new keywords, MASID and MTCB, which are designed for internal
use. They are mentioned here only because you might see them in dumps or
source code.

MASID and MTCB specify the ASID and TCB address of a task, respectively.
They are useful in situations where one task is performing work for another and
might require resources that task owns. If an ENQ specifying MASID and
MTCB fails because another task owns the resource. the task issuing the ENQ
can determine whether the identified task is the owner. New return codes provide
that information. If the specified task owns the resource, the issuing task can
choose to use the resource anyway. Both tasks, however, must have previously
established an alternate method of serialization.

ESPIE x A new macro that provides services similar to the SPIE macro for callers in either
24- or 31-bit addressing mode. SPIE users must be in 24-bit addressing mode.

GETMAIN x Three new parameters: VRC, VRU, and LOC. See "New Parameters on the
GETMAIN Macro Instruction."

GTRACE x A new parameter, TEST, determines whether data gathering and tracing are to be
done. See "Using GTF to Trace User Events." SPL: Service Aids describes
GTRACE.

GQSCAN x Users might receive a new return code. In Release 1.1, global resource
serialization limits the number of ENQ, RESERVE, and certain GQSCAN
requests a single job, started task, or TSO user can have outstanding at a given
time. If an address space reaches the limit, global resource serialization rejects
subsequent GQSCAN requests that specify the TOKEN option and request more
information than can fit into the caller's buffers. The issuer receives a return
code of x'14.' Global resource serialization returns the buffers of information, but
does not continue the scan. For more information, see "Limiting Concurrent
Global Resource Serialization Requests."

x Release 1.2 allows you to specify generic (partial) rnames and qnames on the
RESNAME keyword. GQSCAN attempts to obtain information about any
resource that matches the specified part.

The keywords and parameters that provide the new support are GENERIC,
SPECIFIC, rna me length, and qname length. GENERIC indicates that the
qname and rnarne on GQSCAN are generic names. The qname and rname
lengths specify the number of characters in the qname or rname that must match
the qname and rname specified on GQSCAN. SPECIFIC indicates that the
complete qname and rname must match. It is the default.

LOAD x New keywords:

- EOM=NO I YES specifies whether a module in global storage is to be deleted at
address space termination (YES) or end-of-task time (NO). The de1ault is NO.
Previously, the system deleted the modules at end-of-task time.

- LOADPT requests that the virtual address of the first byte of the load module
be returned at the location indicated on the LOADPT keyword.

The high-order bit of the entry point address that LOAD returns indicates the
addressing mode in which the routine expects to receive control.

MGCR x With Release 1.2installed, you can use MGCR to issue internal REPLY
commands, as well as internal START commands. This new function enables you
to write WTO/WTOR exits that respond to particular WTOR macros. User Exits
shows an example of such an exit. (WTO/WTOR. exits are also new in Release
1.2. See "New WTO/WTOR User Exits" for more information.)

Figure 3-6 (Part 2 of 5). Summary of New and Changed Macros

3-40 MVS/Extended Architecture Conversion Notebook

Release

Macro 1.0 1.1 1.2 Description of Change

NUCLKUP x A new macro that retrieves either: (a) the address and addressing mode of a
CSECT or entry point in the DA T -on nucleus, or (b) the name and address of a
CSECT that resides at a given address in the DA T -on nucleus.

PGSER x A new macro that performs the same services as PGANY, PGFIX, PGFIXA,
PGFREE, PGFREEA, PGLOAD, PGOUT, and PGRLSE. PGSER can use
31-bit addresses, the other services listed cannot.

PTRACE x A new macro that creates system trace table entries.

RACROUTE x A new macro that requests the RACF services that FRACHECK, RACDEF,
RACLIST, RACHECK, and RACINIT invoke. The REQUEST parameter on
RACROUTE indicates which service is to be performed.

Any of the parameters that are valid on the other RACF macros are also valid on
RACROUTE. Thus, using RACROUTE is very similar to using the other
macros. Note one difference, however. RACROUTE requires a 512-byte work
area, while the other RACF macros to not.

RESERVE x Users might receive a new return or abend code. In Release 1.1, global resource
serialization limits the number of ENQ, RESERVE, and certain GQSCAN
requests a single job, started task, or TSO user can have outstanding at a given
time. If an address space reaches the limit, the system terminates unconditional
RESERVE requests with abend code x'538', and rejects conditional requests with
a return code of x'014'. See "Limiting Concurrent Global Resource Serialization
Requests" for more detail.

x Release 1.2 adds two new keywords, MASID and MTCB. See the ENQ entry for
more information.

RETURN x Release 1.1 changes the flag that the T parameter requests the system to set. The
new flag is the low-order bit of the fourth word in the called program's save area.
The system sets that bit to one after the called program has returned to its caller.
In previous releases, the same flag is the entire fourth word in the save area.

SDUMP x New parameters:

- ALLNUC, a new option on the SDA T A keyword, requests that the OAT-off
nucleus and the entire DA T -on nucleus be dumped.

- SUBPLST and KEYLIST specify the subpool and key of storage to be dumped.

- TYPE=NOLOCAL indicates that SDUMP is not to obtain a local lock.

Changed parameters:

- NUC requests that the DA T -on, non-page-protected section of the nucleus be
dumped. In MVS/370, NUC causes the entire nucleus to be dumped. The
ALLNUC option requests the entire MVS/XA nucleus.

- TRT requests trace data from the active trace facilities, as in MVS/370.
However, in MVS/XA, if the caller is unauthorized, the dump includes system
trace data for the caller's address space only. MVS/XA dumps for authorized
requestors and all MVS/370 dumps include the entire system trace table.

Also, unlike MVS/370, MVS/XA dumps can include both system trace and
GTF data, because both trace facilities can be active at the same time.

If SDUMP specifies any new parameters, the macro must be assembled using the
MVS/XA macro expansion. If it is not,the system ignores the new parameters
and flags the others as errors.

x Release 1.1 dumps 4 K of storage before and 4 K after the addresses in the PSWs
. and registers stored in the IHSA, SDW A, and PSA. Earlier releases dump only 2
K of storage before and 2 K after those addresses.

SETLOCK x New parameters support the new lock types.

Programs that issue SETLOCK RELEASE,TYPE=(reg) I ALL must use the
MVS/XA expansion of SETLOCK in some situations. See "SETLOCK
RELEASE,TYPE= (reg) I ALL Macro Instruction."

Figure 3-6 (Part 3 of 5). Summary of New and Changed Macros

Chapter 3. ProgrammingCansiderations' 3-41

Release

Macro 1.0 1.1 1.2 Description of Change

SETRP x A new keyword, REASON, specifies a reason code that supplements the
completion code for abnormal termination.

The list form of the SNAP macro to which DUMPOPT points can specify all of
the new SNAP dump options.

SMFIOCNT x A new macro that supplies to SMF either the EXCP count, the device connect
time, or both.

SNAP x New parameters:

- SUM, a new option on the SDA T A keyword, requests a new summary dump.
See "New User Summary Dumps" in Chapter 6.

- SUBPLST requests individual subpools. When SNAP specifies the SUBPLST
option, the length of the list and standard forms of the macro expansion
increase. The object code generated is downward incompatible.

- ALL VNUC, a new option on the SDATA keyword, requests that the entire
DAT -on nucleus be dumped. In SYSMDUMPs, ALL VNUC causes the entire
nucleus to be dumped.

- SUBTASKS, a new option on the PDA T A keyword, requests that program data
for all subtasks of a designated task be dumped.

Changed parameters:

- NUC requests that the DAT -on, non-page-protected section of the nucleus be
dumped. SYSABEND dumps also include the PSA and CVT. In MVS/370,
NUC causes the entire nucleus to be dumped.

- TRT requests trace data from the active trace facilities, as in MVS/370. In
MVS/XA, the dump can include system trace data and GTF data. In
MVS/370, system trace and GTF cannot be active at the same time.
Therefore, MVS/370 dumps never include both system trace and GTF data.

- SDATA=ALL requests all of the SDATA options except ALLVNUC. In
MVS/370, it includes all SDATA options.

SPLEVEL x A new macro that controls which expansion of a macro the assembler generates.
The MVS/XA MAC LIB contains both MVS/XA and MVS/370 expansions of
macros whose MVS/XA expansions do not work in MVS/370. See "Handling
Downward Incompatible Macros" in Chapter 9.

STIMERM x A new macro that sets a timer for a real time interval, as does the existing
STIMER macro. STIMERM is different from STIMER, however, in that:

- Each task can have up to 16 STIMERM intervals in effect at the same time.
Only one STIMER interval is allowed.

- STIMERM sets only real time intervals; STIMER sets both task and real time
intervals.

- STIMERM can also test how much time remains in the interval and cancel the
interval. TTIMER provides those functions for STIMER intervals.

- STIMERM can pass a 4-byte parameter to the exit routine that receives control
when the interval expires. STIMER cannot.

STIMERM is provided so that a task can easily have a task interval and one or
more real time intervals in effect at the same time. A task can, for example, set
an STIMER interval to measure task time and an STIMERM interval to
simultaneously measure real time.

Figure 3-6 (Part 4 of S). Summary of New and Changed Macros

3-42 MVS/Extended Architecture Conversion Notebook

Release

Macro 1.0 1.1 1.2 Description of Change

SVCUPDTE x A new macro that allows authorized programs to dynamically update the SVC
table. In MVS/370, defining an SVC after sysgen requires an IPL of the system.

SYNCH x A new parameter, AMODE, indicates the addressing mode in which the specified
program is to get control. If the AMODE parameter is not specified, the program
gets control in the issuer's addressing mode.

Unless SYNCH specifies the AMODE=24 parameter, programs that use SYNCH
and are assembled using the MVS/XA MACLIB will not run on MVS/370
systems. See "Downward Incompatible SYNCH Macros" in Chapter 9 for more
information.

VSMLIST x A new macro that returns information about virtual storage allocation within an
address space.

VSMLOC x A new macro that verifies a given virtual storage area has been allocated to
satisfy a GETMAIN request.

VSMREGN x A new macro that returns the starting ~ddresses and sizes of the private area
regions associated with a given TCB in the current address space.

WTL x A new keyword, OPTION=PREFIX or OPTION=NOPREFIX, indicates
whether. the WTL text contains a prefix to identify the log record. If the text
already contains a prefix, specify the PREFIX option. If you specify NOPREFIX
or omit the OPTION keyword altogether, the system inserts a two-character
prefix. ('X'is the default prefix.)

WTO x You can specify routing code 11 (programmer information) on multiline WTO
messages, an option earlier releases do not allow. If, because of that restriction,
you have programs that issue a series of single line WTOs with the same message
ID, you can improve performance by combining the messages into one multiline
message.

You can also use the HRDCOPY option when writing multiline WTOs. In earlier
releases you cannot write multiline messages to hardcopy only.

x A new CMD option on the MCSFLAG keyword enables you to record system
commands in the system log. MCSFLAG=CMD indicates that the text is a
system command and requests that it be entered in the system log.

WTOR x Release 1.2 adds the CMD option on the MCSFLAG keyword. See the WTO
entry.

Figure 3-6 (Part 5 of 5). Summary of New and Changed Macros

New Parameters on the GETMAIN Macro Instruction

VRC and VRU Parameters

MVS/XA provides three new parameters on GETMAIN: VRC, VRU, and LOC.

VRC (variable request conditional) and VRU (variable request unconditi9nal) are
two new forms of GETMAIN. Both issue SVC 120.

GETMAIN VRC,LV=(maximum length,minimum length)
GETMAIN VRU,LV=(maximum length,minimum length)

VRC and VRU request a single area of virtual storage having a length between the
maximum and minimum lengths specified. MVS/XA returns the address of the
allocated virtual storage in Register 1 and the length of the storage in Register O.

Callers in 24- or 31-bit addressing mode can use VRC or VRU. However,
MVS/XA treats all parameter lengths and addresses as 31-bit values.

VRU and VRC are exceptions to the general rule that programs using new
MVS/XA function are not downward compatible. Both generate object code that
runs on MVS/370 systems. MVS/370 treats VRC and VRU parameters as RC

Chapter 3. Programming Considerations 3-43

LOC Parameter

SDUMP Macro Instruction

and RU, respectively, and obtains the maximum length of storage specified on the
LV operand. MVS/370, of course, also uses 24-bit parameter values.

The new LOC parameter has two subparameters for specifying whether virtual
storage is to be obtained above or below 16 Mb and how it is to be backed if fixed
(below 16 Mb or anywhere). (RSM always allocates real storage anywhere until
the storage is fi~ed.) Possible LOC specifications are:

LOC=(BELOW) VSM must allocate virtual storage below 16 Mb.

LOC=(ANY) VSM can allocate virtual ston~ge anywhere.

LOC=(RES) VSM allocates storage according to the requestor's residence. If the requestor
resides in virtual storage below 16 Mb, VSM allocates storage below 16 Mb. If
the requestor resides above 16 Mb, VSM allocates storage anywhere.

LOC=(parml,ANY) RSM attempts to back the page with real storage above 16 Mb. If unsuccessful,
RSM backs the page with real storage below 16 Mb. Note that, regardless of
the LOC specification, RSM backs virtual storage with real storage anywhere
until the storage is fixed (either by definition or by a PGFIX or PGSER macro).

The first subparameter (parml) can be BELOW, ANY, or RES.

LOC is especially useful in programs with 24-bit dependencies. Programs that
reside above 16 Mb must specify LOC=(BELOW) on requests for storage that has
24-bit dependencies.

You can specify LOC only on the RU, RC, VRU, and VRC forms of GETMAIN
(SVC 120). VSM satisfies all other forms with virtual storage below 16 Mb, which
RSM backs with real storage below 16 Mb.

Like VRU and VRC, LOC is downward compatible. Regardless of the LOC
specification, however, MVS/370 always obtains storage below 16 Mb.

If you use any new SDUMP keywords, be aware that SDUMP generates a longer
parameter list. In addition, once the longer list is assembled in a module, the
assembler generates the long form of all subsequent SDUMP parameter lists in the
module, regardless of which keywords the SDUMP macros specify. 'The long list is
similar to the short list, except that it has additional bytes appended to the end.

If you do not want the long form to be generated on subsequent macros, use the
SPLEVEL macro to request the MVS/370 expansion. See "Handling Downward
Incompatible Macros" in Chapter 9.

SETLOCK RELEASE, TYPE=(reg) I ALL Macro Instruction

If any new locks are held when the SETLOCK RELEASE,TYPE=ALL macro is
issued, you must use the MVS/XA expansion. The MVS/370 expansion does not
recognize the new locks and, therefore, does not release them. Likewise, if the
SETLOCK RELEASE,TYPE=(reg) macro is issued and the bit string in the
register specifies a new lock, you must use the MVS/XA expansion. If you use the
MVS/370 expansion, the system does not release the new locks. You can use an
SPLEVEL macro to request either expansion. See "Handling Downward
Incompatible Macros" in Chapter 9.

3-44 MVS/Extended Architecture Conversion Notebook

Using GTF to Trace User Events

Unit Verification

IEFAB4UV

MVS/XA provides an alternate way of using GTF to trace USR events. Using the
new method:

Applications no longer need to supply and support an external interface that
requests tracing. Starting GTF with the appropriate USRP options specified is
sufficient to allow applications to trace their own USR events. (The USRP
option is new in MVS/XA. See the TRACE entry in Figure 4-2 in Chapter 4.)

In MVS/370, applications have to provide their own interface for requesting
USR event tracing. One example of an interface is the DIAGNS=TRACE
subparameter of the DCB parameter on a DD statement, which requests
module flow tracing through OPEN, CLOSE, and EOV. Also, any program
can support and request tracing of their own USR events by specifying a trace
keyword in the P ARM field of the EXEC statement.

Applications can use the new TEST keyword on the GTRACE macro to
determine whether or not GTF tracing is active for their USR events.
Depending on the return code from GTRACE, applications can either gather
the trace data and have it written or bypass tracing.

In MVS/370, applications have to make two tests before issuing GTRACE,
one to determine if the application has requested tracing, and another to
determine if GTF is active for USR tracing.

The MVS/370 method of establishing tracing capability continues to work in
MVS/XA. GTRACE TEST offers an alternate method for MVS/XA users.

The way that applications build the data records to be traced and issue the
GTRACE macro to write them to the SYSl.TRACE data set has not changed.

See SPL: Service Aids for more information on using GTRACE.

Two modules in MVS/XA provide unit verification: IEFAB4UV for programs in
scheduler key (key 1) and IEFEB4UV for programs in user key (key 8-15) and
task mode. The MVS/370 device allocation tables (DEVNAMET, IEFDEVPT,
and DEVMASKT) and module IEFSCAN have been deleted. You must change
programs that call IEFSCAN or that directly access the device allocation tables to
use either IEFAB4UV or IEFEB4UV.

The MVS/XA version of IEFAB4UV provides all of the services that the
MVS/370 version provides, all of the IEFSCAN services, and some new function.
Specifically, IEF AB4 UV can:

1. Check whether the device numbers supplied as input are all associated with the
same group.

2. Check whether the device numbers supplied as input are associated with the
unit name specified in the eligible device table (EDT).

Chapter 3. Programming Considerations 3-45

IEFEB4UV

3. Return the unit name associated with an input value such as a device type. The
unit name is the EBCDIC representation of the IBM generic device name (for
example, 2305) or the user-defined esoteric name (for example, TAPE).

4. Return the UCB addresses associated with a specified unit name.

5. Return group identification for each input UCB.

6. Indicate whether a specified unit name is an internal representation of the unit
name (that is, whether the unit name is an index into the EDT). This service is
used with 2 and 4.

7. Return the internal representation of a specified unit name, which can then be
used as an index into the EDT.

8. Convert a four-byte UCB device type to an internal representation of a unit
name, which can then be used as an index into the EDT.

9. Return general information about a specified unit name, including:

• Whether the unit name is esoteric, VIO eligible, contains 3330V units, or
contains teleprocessing class devices

• The number of device classes in the unit name

• The number of generic device types in the unit name

10. Indicate that the parameter list should not be altered, thereby allowing the
parameter list to be in storage that is not protected by key 1. This service is
used with 2.

IEFEB4UV performs the functions described in 3, 4, 6, 7, 8, and 9 of the
IEFAB4UV description for programs in user key and task mode.

See SPL: System Modifications for information on using IEFAB4UV or
IEFEB4UV.

3-46 MVS/Extended Architecture Conversion Notebook

Chapter 4. Operating Considerations

This chapter contains information that pertains to operators and operational
procedures. System programmers might also be interested in some of the command
changes it describes (for example, SLIP, DISPLAY DUMP, and DUMP). The
topics included in this chapter are:

• "Loading 370-XA Microcode at Power-on Reset Time"
"SYSCTL (SCP Manual CNTL) Console Frame"

• "Storing Status Before Taking a Stand-alone Dump" on page 4-3
• "Using Labeled Tapes for Stand-alone Dumps" on page 4-3
• "JCL Changes to Jobs that Allocate SYSl.DUMP Data Sets" on page 4-3
• "Processing Hot I/O Interrupts" on page 4-3

"Extended Color Support on 3279 MCS Consoles" on page 4-4
"Controlling Message Traffic on Operator Consoles" on page 4-5

• "New Response to Message IOS201E" .
"Summary of New, Changed, or Deleted Commands"

Loading 370-XA Microcode at Power-on Reset Time

To initialize a 308x processor to run in 370-XAmode, the operator must use the
CONFIG frame to:

1. Release the current configuration (option A= 1)

2. Once the current configuration is released, select 370-XA mode (option M= 1)

3. Select the processors and storage that are to be online at power-on-reset time
(P and S options)

4. Perform the power-on-reset function (option A=2)

The configuration frame is unchanged, except that it has a new option, M= 1, for
selecting 370-XA mode. Previously, however, the frame appeared with some
options already selected. Releasing the current configuration might be a new step
for some operators.

SYSCTL (SCP Manual CNTL) Console Frame
I

An SYSCTL) console frame comes with 308x processors. The SYSCTL frame is
very similar to the SC frame available on 3036 consoles attached to 3033
processors. The frame allows the operator to request some of the functions offered

Chapter 4. Operating Considerations 4-1

on the existing OPRCTL (operator control) frame, as well as some additional
functions. The SYSCTL frame allows the operator to:

• Specify an alternate nucleus. Operators should use the SYSCTL frame instead
of previous methods for specifying an alternate nucleus. Previous methods
include:

Using the OPRCTL frame or the SCframe.

Storing an alternate nucleus identifier in absolute location 8 after the
hardware IPL completes and while the processor is in instruction step
mode. VM users must still use this method.

Specifying 'ALT=xx' when asked to specify system parameters at IPL time.
MVS/XA does not support the AL T parameter.

• Specify the device number from which to IPL the operating system.

• Specify the device number from which to IPL the stand-alone dump program.
Having the stand-alone dump IPL option separate from the operating system
IPL option prevents the operator from inadvertently loading the wrong
program. In addition, issuing the stand-alone dump IPL command from an
SYSCTL frame causes the hardware to automatically store status.

• Specify how MVS/XA is to perform restart processing. The operator can
request that MVS/XA:

Option 0 - Display information about the work in progress. The operator can
then choose to either terminate the interrupted work and invoke
the necessary recovery routines, or return to the point of
interruption.

Option 1 - Attempt to diagnose and repair the problem. In response, the
system takes several corrective actions.

With an OPRCTL frame, the operator does not have an option. MVS
performs restart processing as described in option 0 for the SYSCTL frame.

When performing restart processing, operators should use the SYSCTL frame.
If the system is in a restartable wait state, operators should either:

Select option 0 on the SYSCTL frame. Operators must not select any other
option.

Use the restart button. Using the restart button is a valid option only if the
operator knows which processor is the target of the restart. The current
frame might not identify the target processor, in which case the hardware
uses a previously-established target.

Use a bottom line command. The bottom line command allows the user to
specify a target processor and can be used with any frame.

Use the OPRCTL frame.

4-2 MVSjExtended Architecture Conversion Notebook

• Request instruction recording. The operator can have the hardware record a
total of 470 instruction addresses on a disk in the service processor. The
operator can obtain a hardcopy using stand-alone dump or SVC dump
formatted by print dump. Previously, when a program was looping, the
operator had to record by hand the instruction counter addresses before taking
a dump.

• Allow instruction stepping on both processors.

See the Operator's Guide for the 308x processor for more information on using the
SYSCTL frame.

Storing Status Before Taking a Stand-alone Dump

If the operator IPLs stand-alone dump using an SYSCTL (SCP manual CNTL)
frame, the hardware automatically stores status. The operator is not required to
store status manually.

If the operator uses an OPRCTL (operator control) frame to IPL stand-alone
dump, the operator must store status manually. If the operator does not store
status, the stand-alone dump might be missing critical information.

Using Labeled Tapes for Stand-alone Dumps

Stand-alone dump (SADMP) can use labeled tapes that are not
password-protected. If the operator mounts such a tape, SADMP displays the
VOLSER and asks the operator if the tape is to be used. Note, however, that
SADMP writes over the label. If used again as a labeled tape, the tape ha~ to be
re-Iabeled.

In MVS/370, SADMP rejects all labeled tapes.

JCL Changes to Jobs that Allocate SYSl.DUMP Data Sets

Jobs that allocate SYS 1.DUMPnn data sets (for example, AMDPRDMP or
IEBGENER to unload dump data sets) must specify DISP=SHR on the JCL. You
must change DISP=OLD to DISP=SHR on any DD statements that allocate
SYSl.DUMPnn data sets.

MVS/XA now allocates dump data sets to the DUMPSRV address space to
improve integrity. The data sets are allocated with DISP=SHR and DUMPSRV
does not free them after taking a dump. Thus, jobs that request SYS 1.DUMPnn
data sets with DISP=OLD cannot access them.

I
I Processing Hot I/O Interrupts

I
I
I
I
I
I
I

\ Hot I/O interrupt processing is changed. (Hot I/O interrupts are consecutive,
unsolicited interrupts on a sub channel. They are caused by hardware
malfunctions.) In MVS/XA:

• lOS uses a single criterion for detecting hot I/O conditions. Because of the
new I/O architecture, no other thresholds are necessary. In MVS/370, IDS
uses separate thresholds to detect excessive time-outs and hot I/O conditions
on channels, devices, and control units.

Chapter 4. Operating Considerations 4-3

Installations can specify hot I/O recovery actions that lOS performs
automatically. Unlike MVS/370, recovery does not have to involve the
operator.

You can specify recovery actions for the following device categories:

• Reserved DASD
• Non-reserved DASD
• All other devices

Valid recovery actions are:

• Asking the operator to direct recovery·(as in MVS/370)

• Boxing the hot device (forcing the device offline in such a way that future I/O
requests for the device are returned to the I/O driver as permanent errors)

• Performing channel path recovery

• Forcing the channel path offline

The following figure shows the IBM-supplied recovery actions:

Device Non-recursive Recursive
Category Condition Condition

RESERVED DASD Request direction from the Request direction from the operator
operator

NON-RESERVED DASD Perform channel path Request direction from the operator
recovery

ALL OTHER Request direction from the Request direction from the operator
operator

Figure 4-1. Default Hot I/O Recovery Actions

The hot I/O threshold and recovery actions are contained in a new module,
IOSRHIDT, which replaces IECVHIDT. If Release 1.1 or a later release is
installed, you can change the defaults using the new HOTIO keyword in the
IECIOSxx P ARMLIB member. If the system is at the Release 1.0 level, use the
AMASPZAP service aid instead. SPL: System Modifications describes how to
change the defaults in more detail.

Extended Color Support on 3279 MCS Consoles

MVS/XA provides additional ways of highlighting messages on 3279 MCS color
consoles, Models 2B and 3B. You can:

• Display message types or console fields in up to seven different colors.
(MVS/SP Version 1 Release 3 provides four-color support for 3279 MCS
color consoles. Four-color support is still available on Models 2A, 2C, and
3A.)

Highlight messages with underscoring, blinking, or reverse video display (black
characters on a colored background).

4-4 MVS/Extended Architecture Conversion Notebook

Color-coding and other highlighting techniques help operators distinguish the
importance of messages. As such, highlighting can be an effective way of
controlling message traffic.

You can specify highlighting attributes for your installation in an MPFLSTxx
PARMLIB member. If none are specified, the system uses default values. The
same highlighting attributes are in effect for all 3279 consoles, Models 2B and 3B.
A SET MPF=xx command, where xx identifies an MPFLSTxx PARMLIB member,
causes the system to use the attributes in the specified MPFLSTxx member~ When
highlighting attributes are changed, the system puts the name of the old
MPFLSTxx member in the SET MPF command section of a type 90 SMF record.
The DISPLAY MPF command displays the current specifications. SPL:
Initialization and Tuning describes how to use MPFLSTxx.

Controlling Message Traffic on Operator Consoles

In general, as the system workload increases, messages appear on the operator
console at a faster rate. To keep the message rate manageable, your installation
needs to evaluate its current methods of tailoring message output. Methods of
controlling message traffic include using:

The WTO/WTOR user exits, which are new in Release 1.2, or the existing
WTO user exit (IEECVXIT). The new WTO/WTOR exits can modify
processing for any message. They can also alter processing in more ways than
IEECVXIT can. See "NewWTO/WTOR User Exits" in Chapter 5 for more
information.

• Additional operator consoles with multiple console support (MCS). System
Commands describes how to use MCS consoles.

• The message processing facility, which suppresses nonessential messages from
the operator console. Initialization and Tuning describes how to use the
message processing facility.

Console clusters, which reduce message traffic on a single console. System
Commands describes how to use console clusters.

The TRACK command to display system status, instead of having JOB
ST ARTED /ENDED messages displayed on the console. System Commands
describes the TRACK command.

Message routing codes to direct application messages to the appropriate
console. System Commands describes how to assign routing codes.

• Color displays to help operators distinguish important messages. Four-color
message coding is available on 3279 consoles, Models 2A, 2C, and 3A;
seven-color message coding is available on 3279 consoles, Models 2B and 3B.
System Commands and SPL: Initialization and Tuning describe how to assign
color. attributes.

Precise inquiries. By requesting only pertinent data, operators can reduce
message volume. For example, by using D U",130,1 instead of D U to display
the status of device 130, the operator generates 3 lines of output instead of 52
(a default maxifl?um) ..

Chapter 4. Operating Considerations 4-5

I

• A console other than the master console to start tasks, such as VT AM, that
communicate with the console on which they are started. VT AM retains the
ID of the console from which the START VT AM command is issued and
directs all messages to that console. Therefore, if possible, start VT AM on a
console defined to receive TP messages. to reduce traffic on the master console.

A terminal dedicated to RMF. Use RMF Monitor II reports to determine what
the system is doing. See RMF Reference and User's Guide for more
information.

I New Response to Message IOS201E

\ MVS issues message IOS201E after it recovers from an error condition that
required it to stop processors that shared a resource. The message indicates
whether or not the resource was lost (that is, whether a task was in the process of
updating the resource and lost its reserve before the update was finished). After
Release 1.1 is installed, operators must reply U to message IOS201E before the
system restarts the processors that have been stopped. If the system cannot
communicate with the operator console, it puts itself in restartable wait state
x'114'. In earlier releases, the system displays the message for five seconds then
automatically restarts all processors that were stopped.

Requiring a response improves system integrity. It ensures that the operator is
aware of the lost resource and allows the operator options for recovery. The
operator might, for example, want to re-IPL instead of restart processors that
depended on the update being completed.

Summary of New, Changed, or Deleted Commands

Figure 4-2 summarizes the commands that are new, changed, or deleted in
MVS/XA. Most of the changes are compatible (that is, commands that specify
existing parameters, keywords, or options can be entered the same way in
MVS/370 and MVS/XA). Exceptions are:

• TRACE (except TRACE STATUS)
• MODE El, E2, E3, and E4
• VARY CHP, CPU, STOR, and PATH

REPLY id,ASID in response to a DUMP command

These commands must be specified differently in MVS/XA.

The syntax of the following commands is the same. However, they produce
different output in MVS/XA:

• DISPLAY M=DEV
• DISPLAY MPF
• REPL Y SDATA= (NUC) or (TRT) in response to a DUMP command

System Commands describes the syntax of the commands and how to use them.

4-6 MVS/Extended Architecture Conversion Notebook

Release

Command 1.0 1.1 1.2 Description of Change

CANCEL x Using the new A keyword, operators can terminate specified jobs, time-sharing
users, or started processes that do not have unique names or have not yet been
assigned job names. The A keyword identifies the task to be canceJled.

If two tasks with the same name are both active when the operator issues a
CANCEL command, the MVS/XA system rejects the command. The operator
can then use A to specify the ASID of the task to be canceJled and reissue the
command. In MVS/370, the system terminates the first task found.

Operators can also use the A keyword to cancel partially-initiated tasks that have
not yet been assigned names. The DISPLAY A,L command identifies those tasks
as 'STARTING' or '*LOGON*.' The operator can cancel them by issuing a
CANCEL command that specifies the A keyword and a job name of
'STARTING' or a user ID of '*LOGON*.'

CHNGDUMP x Following are new or changed options for SYSABEND, SYSMDUMP,
SYSUDUMP, and SVC dumps: ALLVNUC, ALLNUC, NOSYM, NUC, SUM,
TRT, and SUBTASKS. Figure 6-1 in Chapter 6 describes each of the options.

CONFIG x A new reconfiguration command that:

- Physically and logically reconfigures channel paths, processors, and storagl!.
The CONFIG CPU, CONFIG CHP, and CONFlG STOR commands,
respectively, replace the MVS/370 VARY CPU, VARY CH, and VARY STOR
commands.

- Allows the operator to reconfigure the system as specified in a CONFIGxx
PARMLIB member. The CONFIG MEMBER command requests this function.
Note that the CONFIG MEMBER command does not reconfigure devices or
DASD volumes.

- Allows the operator to select elements to be reconfigured from a display of
elements that are in the current configuration or that can be brought online.
The operator issues either CONFIG ONLINE or CONFIG OFFLINE to
request this function.

- Allows the operator to determine the online or offline status of aJl available
processors, channel paths, and storage in the configuration.

CONTROLM x A new keyword, UEXIT, activates and deactivates the lEA VMXIT user exit. If
lEA VMXIT is in the LNKLST concatenation at IPL time, the system
automatically activates it. Thereafter, you can use the UEXIT keyword to control
lEA VMXIT's status.

lEA VMXIT is new in Release 1.2. See "New WTO/WTOR User Exits" in
Chapter 5 for more information.

CONTROLS x Two new keywords:

- L=cc specifies which console the CONTROL S command is to affect. In earlier
releases, you can change the console specifications for only the console on
which the CONTROL command is issued.

- MFORM specifies the form in which messages are to be displayed. The choices
are: (1) the message text alone, (2) the message text with the issuer's job name
or. the job ID, or (3) the message text with either the issuer's job name or the
job ID and a timestamp.

Figure 4-2 (Part 1 of 8). Summary of New, Changed, or Deleted Commands

Chapter 4. Operating Considerations 4-7

Release

Command 1.0 1.1 1.2 Description of Change

CONTROL V x When processing a CONTROL V command that switches a console between
full-capability and message stream modes, the system reestablishes the console
specifications that were in effect the last time the console was in that mode during
the IPL. Earlier releases reestablish the console specifications set during system
generation.

x A new LEVEL keyword specifies which type of messages a particula~'console will
accept. You can use LEVEL in addition to routing codes to further control
message traffic.

The options on LEVEL are:

ALL - All messages routed to the console. ALL is the default.

R - WTORs.

I - Immediate action messages (descriptor codes 1 and 2).

CE - Critical eventual action messages (descriptor code 11).

E - Eventual action messages (descriptor code 3).

IN - Informational messages, excluding broadcast and action messages.

NB - No broadcast messages, regardless of the descriptor code.

UNCOND is also an option on LEVEL. It indicates the system is to perform the
LEVEL request unconditionally, even if some broadcast or informational
messages are sent only to the hardcopy log as a result. (The system sends
WTORs and action messages that are suppressed from all consoles to the master
console as well as to the hardcopy log.)

If you specify LEVEL=UNCOND and messages are sent to hardcopy only, you
receive a warning message. To identify which messages are sent only to
hardcopy, use a DISPLAY CONSOLES command with the HCONLY keyword
specified.

If you omit the UNCOND option on a command that would cause some messages
to go to hardcopy only, the system rejects the command.

Figure 4-2 (Part 2 of 8). Summary of New, Changed, or Deleted Commands

4-8 MVS/Extended Architecture Conversion Notebook

.. -
Release

Command 1.0 1.1 1.2 Description of Change

DISPLAY x Several new keywords request status information about specific consoles.
CONSOLES They are useful for limiting the display to information that is pertinent.

Previously, DISPLAY CONSOLES always produced the status of all consoles In

the system.

The new keywords and the consoles they specify are:

ACTIVE - Active consoles, including the master console and the hardcopy
console. ACTIVE is the default.

NACTIVE - Consoles that are not active.

SS - Consoles that subsystems can use.

CN(xx) - Consoles whose IDs are listed on CN.

U(aaa) - Consoles identified by the device numbers on U.

ROUT(rr) - Consoles that receive messages with the routing codes specified on
ROUT.

BACKLOG - Consoles with a message backlog.

MASTER - The master console and any pseudo-master consoles.

* - The comole from which the DISPLAY command is issued.

LIST - All consoles defined to the system. Thus, the output from LIST is
equivalent to the output from previous DISPLAY CONSOLES
commands.

You can now route the DISPLAY CONSOLES command. A new L keyword
specifies the display area, console, or both where the system is to display the
output.

The HCONL Y keyword is also new. It requests information about messages that
are recorded only on the hardcopy log and not sent to any console. The display
lists routing codes not assigned to any console. If any broadcast messages are
being sent to hardcopy only, the display also includes the word BROADCAST.

The HCONL Y keyword is introduced in Release 1.2 because of changes to the
CONTROL V command. You can now use CONTROL V to specify which type
of messages a console does or does not accept. Thus, it is possible that some
broadcast and informational messages are routed to hardcopy only. For more
detail, see the entry for the CONTROL V command.

DISPLAY x Two new keywords, TITLE and ERRDA T A, display information stored
DUMP in the header record of DASD SYS1.DUMP data sets that are full. The TITLE

keyword lists the dump titles; the ERRDAT A keyword displays errpr data from
the dump header .. TITLE and ERRDA T A are valid options for displaying DASD
dump data set information only. You can specify the DSN operand with the
TITLE and ERRDA T A keywords to restrict the display to a specific group of
DASD dump data sets.

The OPTIONS parameter supports the new SYSABEND, SYSUDUMP,
SYSMDUMP, and SVC dump keywords.· Figure 6-1 describes the new key.words.

The information displayed when the STATUS operand is specified has changed.
The display lists the full and available dump data sets grouped by device (DASD
and tape). It does not provide any titles. Users must specify the TITLE operand
to display dump titles. Previously, the display gave the status (full or available) of
each dump data set on a separate line and included the titles of full dump data
sets.

Figure 4-2 (Part 3 of 8). Summary of New, Changed, or Deleted Commands

Chapter 4. Operating Considerations 4-9

Release

Command 1.0 1.1 1.2 Description of Change

DISPLAY x Release 1.2 provides new keywords for displaying additional
GRS global resource serialization information:

- CONTENTION displays information about all resources for which at least one
task is waiting. For a description of the information shown, see the RES
keyword entry.

- RES displays information about every resource that is currently allocated. The
display includes the resource's marne, qname, and scope, and the following
information about each task that owns or is waiting fo.r the resource: the
sysname. jobname, ASID, TCB address, type of request (shared or exclusive),
and the task's status (owner or waiting).

- RNL displays one or more RNLs, depending on which options RNL specifies.

- HEX displays CONTENTION, RES, and RNL information in hexadecimal as
well as regular format.

- ALL displays the information that CONTENTION, RNL, SYSTEM, and LINK
request. (SYSTEM and LINK are old keywords.)

If you specify DISPLAY GRS with no keywords, you see SYSTEM and LINK
information, which is consistent with earlier releases.

Note: You can display CONTENTION, RES, and ALL information even if the
system is not part of an active global resource serialization complex.

DISPLAYM x New and changed parameters:

- ddd requests the online or offline status of all channel paths to device ddd.

- nn requests the status of each device on channel path nn.

- CHP requests the status of all channel paths in the system.

- DEV displays the number of online channel paths to each device defined during
sysgen. In MVS/370, DEV displays the online or offline status of all devices
and the channel sets to which the online devices are connected.

DISPLAY x The display now also includes the color and highlighting defaults for
MPF 3279 MCS consoles.

x DISPLA Y MPF displays additional information in Release 1.2. It has two new
keywords for limiting the output, MSG and COLOR.

MSG displays:

- The IDs of messages MPF is to suppress

- The IDs of action messages that the action message retention facility does not
retain

- Which WTO/WTOR user exits are associated with which messages

- Whether or not the general WTO/WTOR exit (IEAVMXIT) is active

COLOR displays the color, intensity, and highlighting options in effect for 3279
consoles.

If you specify no keywords, you see all of the information.

DUMP x The syntax of the DUMP command is the same; the content of the reply to the
command is different.

The NUC option on the SDAT A keyword requests only the non-page-protected
DAT-on section of the nucleus. Previously, it requested the entire nucleus.

ALLNUC, a new option on the SDATA parameter, requests a dump of the
DA T -off nucleus and the entire DA T -on nucleus, including the page-protected
section.

Users must specify the ASID list in hexadecimal rather than decimal values.
Thus, the ASID specifications in the dump request are consistent with the
message describing its completion and the internal description of the dump
contents.

Figure 4-2 (Part 4 of 8). Summary of New, Changed, or Deleted Commands

4-10 MVS/Extended Architecture Conversion Notebook

Release

Command 1.0 1.1 1.2 Description of Change

DUMPDS x Using the new DUMPDS command, operators can:

- Add or delete SYS l.DUMP data sets after IPL/NIP time without having to
re-IPL. Before adding a data set, it must be allocated and cataloged. In
MVS/370, installations can only add and delete dump data sets at IPL/NIP
time.

Be aware that if the DUMPSRV address space terminates, you must again add
dump data sets that were added using the DUMPDS command. When
DUMPSRV restarts, the system adds the dump data sets that were added at
IPL/NIP time.

- Clear SYS I.DUMP data sets on DASD or tape. The DUMPDS CLEAR
command avoids having to either run a utility job (AMDPRDMP or
IEBGENER) or reset, load, and ready a tape drive to clear a DASD dump data
set.

Operators can issue the DUMPDS command only from consoles that have system
authority.

FORCE x Using new A and ARM options on the FORCE command, operators can
terminate specified jobs, time-sharing users, or started processes that:

- Do not have unique names

- Have not yet been assigned job names.

- Are not eligible for cancellation via the CANCEL command.

If two tasks with the same name are both active when the operator issues a
FORCE command, the MVS/XA system rejects the command. The operator can
then use A to specify the ASID of the task to be cancelled and reissue the
command. In MVS/370, the system terminates the first task found.

Operators can also use the A keyword to cancel partially-initiated tasks that have
not yet been assigned names. The DISPLAY A,L command identifies those tasks
as 'STARTING' or '*LOGON*.' The operator can cancel them by issuing a
FORCE command that specifies the A keyword and a job name of 'STARTING'
or a user ID of '*LOGON*.'

The ARM keyword requests that the specified job, time-sharing user, or started
process be terminated, even if it is not eligible for cancellation via the CANCEL
command. Operators can use ARM to cancel any address space except one that
is not eligible for termination (ASCBNOMT= 1).

MODE x ENABLE, E I, E2, E3, and E4 are no longer valid parameters and cause the
MODE command to be rejected.

MODIFY x New keywords, LLA, REFRESH, cause the system to rebuild the LNKLST
lookaside (LLA) directory. The LLA directory is new in Release 1.1. See
"Using a New Directory for LNKLST Data Sets" in Chapter 8 for more
information.

MONITOR x You can now route the MONITOR command. In earlier releases, the output is
always displayed at the console from which MONITOR is issued. To route
MONITOR, either:

- Include the L=cc keyword on MONITOR. L=cc specifies the ID of the console
on which the output is to be displayed.

- Issue an MSGRT command that specifies the new MN keyword.

MSGRT x A new keyword, CF, specifies to which MCS console the system is to route
CONFIG commands.

x You can now issue the MSGRT K command from display, as well as non-display,
consoles. Earlier releases restrict its use to non-display consoles only.

x A new MN keyword routes MONITOR and STOPMN commands. MN specifies
the console to which the commands are to be routed. Neither of those commands
can be routed in earlier releases.

Figure 4-2 (Part S of 8). Summary of New, Changed, or Deleted Commands

Chapter 4. Operating Considerations 4-11

Release

Command 1.0 1.1 1.2 Description of Change

SET x DAE=xx is a new keyword that specifies which ADYSETxx PARMLIB member
the system is to process. ADYSETxx contains options for controlling dump
analysis and elimination (DAE). Issuing SET DAE=xx causes the system to
begin using the options in the specified member. See "Dump Analysis and
Elimination (DAE)" in Chapter 6 for more information.

You can now use SET SMF to restart SMF after it is terminated. Because SMF
runs in its own address space, you no longer need to perform an IPL to restart it.

SLIP MOD x You can now enable or disable several SLIP traps with one command. Release
1.2 allows asterisks in place of any or all of the four characters of the ID
keyword. The system enables or disables all traps having identifiers that match
the characters you do specify. For example, SLIP MOD,ENABLE,ID=O***
causes the system to enable all SLIP traps that have identifiers beginning with O.

SLIP SET x New options and keywords in Release 1.0:

- NOSYSA, NOSYSM, NOSYSU, and NOSVCD are new options on the
ACTION keyword. They suppress respectively SYSABEND, SYSMDUMP,
SYSUDUMP, and SVC dumps for specified abend conditions. See
"Suppressing Dumps" in Chapter 6 for more information.

- ALLNUC on the SDATA keyword requests the entire nucleus (both the
DAT-on and DAT-off sections).

Indirect addresses on SLIP command keywords (DATA, LIST, SUMLIST, and
TRDATA) can be 31-bit values. To indicate that an indirect address is to be
treated as a 31-bit value, use a '1' instead of a '%' as the indirect address
indicator. When a keyword specifies '%', the system treats the indirect address
as a 24-bit value.

x New options and keywords in Release 1.1:

- NUCMOD specifies a nucleus module or an address range within a nucleus
module. When specified on an error event trap, NUCMOD indicates the range
Within which the error must occur. On IF or SB PER traps, it establishes the
range of addresses to be monitored. On SA PER traps, NUCMOD specifies
boundaries for the instruction causing the storage alteration.

- NOSUP, a new parameter on the ACTION keyword of error event traps,
indicates that the system is to take dumps for the trapped event, regardless of
any attempts to suppress the dumps. Thus, NOSUP overrides dump suppression
via dump analysis and elimination (DAE) or the ABDUMP pre-dump exit
routine ..

- AND (&) or OR (I) on the OAT A keyword logically compare triplets of target
locations, operators, and values. You can specify AND and OR together with
any number of triplets. You can also group triplets llsing parentheses. If you
specify no logical operator, AND is the default, which is consistent with earlier
releases. In earlier releases, AND is the implied logical operator.

- REASON, a new keyword on error event traps, specifies a reason code for
filtering errors. It is valid only with the COMP (completion code) keyword.

Figure 4-2 (Part 6 of 8). Summary of New, Changed, or Deleted <;:ommands

4-12 MVS/Extended Architecture Conversion Notebook

Release

Command 1.0 1.1 1.2 Description of Change

SLIP SET x New keywords and options in Release 1.2 are:
(continued)

- RECORD, a new option on the ACTION keyword of error event traps, causes
recovery routines to record the trapped error in SYS1.LOGREC.

- STRACE, a new option on the ACTION keyword of PER traps, causes the
system to write a system trace table entry for each trapped event. Thus, you
can use PER to isolate problems without stopping the system when the program
event occurs.

- PVTMOD is now valid on all PER and non-PER traps. Previously, it'was an
option only on non-PER and storage alteration PER traps. Thus, for the first
time you can monitor instruction fetch and successful branch events in the
private area.

- PVTEP, LPAEP, and NUCEP specify entry points in modules that reside in the
private area, LPA, and nucleus, respectively. They cause monitoring to begin at
the address associated with the entry point or at the specified offset from that
address. PVTEP and LPAEP are particularly useful for monitoring the section
of a module that begins at an alternate entry point. NUCEP is equivalent to
NUCMOD.

You can now monitor events in modules whose names end in x'CO' (SVC load
modules). Because x'CO' is not alphanumeric, the system does not accept in on
the LPAMOD, LPAEP, NUCMOD, NUCEP, PVTMOD, or PVTEP keywords.
However, you can now use an asterisk in place of x'CO'. The system interprets
the asterisk as x'CO'.

START x A new keyword, SUB, directs the JCL for a started task to the internal reader of
a secondary JES or to the master subsystem. By routing started tasks to a
secondary JES or to the master subsystem, operators can:

- Run started tasks independently of the primary JES.

- Start certain tasks be~ore the primary JES initialization is completed.

See SPL: System Modifications for more information.

x A new keyword, LLA, starts the LLA procedure, ,which in turn starts the
LNKLST look aside (LLA) function. The LLA function builds and maintains a
new directory of modules in the LNKLST concatenation. BLDL then searches
that directory inste,ad of the PDS directories for LNKLST modules. For more
information about the LLA function, see "Using a New Directory for LNKLST
Data Sets" in Chapter 8.

STOP x A new keyword, LLA, stops the LNKLST lookaside (LLA) function. The system
then searches PDS directories instead of the LLA directory to locate modules in
the LNKLST concatenation. For more information, see "Using a New Directory
for LNKLST Data Sets" in Chapter 8.

STOPMN x You can now use STOPMN to suppress MONITOR command output from any
console except the one from which STOPMN is issued. A new keyword, L=cc,
identifies the console on which the output is to be suppressed.

Figure 4-2 (Part 7 of 8). Summary of New, Changed, or Deleted Commands

Chapter 4. Operating Considerations 4-13

Release

Command 1.0 1.1 1.2 Description of Change

TRACE x The syntax of the TRACE command has changed. Except for TRACE STATUS,
MVS/370 TRACE commands do not work in MVS/XA. In addition, the

~\ TRACE command controls system tracing differently:

- MVS/XA continues system tracing after system initialization, unless an
installation requests that tracing be stopped. Thus, no TRACE command is
required in the COMMNDxx PARMLIB member to request system tracing. In
MVS/370, to continue system tracing after system initialization, you have to
issue a TRACE ON command.

- The MVS/XA trace facility performs branch tracing, address space tracing, or
explicit tracing. ("Changes to the System Trace Facility" in Chapter 5 lists the
system events in each category.) A new TRACE operand, BR, allows
installations to start and stop branch tracing independently of address space and
explicit tracing. Options are:

--Explicit and ASID tracing on, branch tracing off
--All tracing on
--All tracing off

The system can perform branch tracing only when the other trace options are
active.

- TRACE can start or stop system tracing or change the TRACE options at any
time after system initialization is completed. To start system tracing in
MVS/370, you have to issue a TRACE ON command before the system starts
JES2 or JES3. Also, in MVS/370 you cannot use the TRACE command to
stop system tracing after subsystem initialization is completed.

- TRACE allows you to dynamically change the size of the system trace table
using a new option on the ST keyword. The default size is 16 K per processor.
In MVS/370, the trace table size is fixed at IPL time.

The master trace (MT) and display trace status (STATUS) functions of the
TRACE command are not changed. However, you must use the new syntax of
the TRACE command to start or stop master trace, as well as system trace. The
order in which you specify the parameters is changed. System Commands
describes the new syntax.

VARY CPU, x The VARY CPU, VARY CH, and VARY STOR commands
VARYCH, are deleted. The new CONFIG CPU, CONFIG CHP, and CONFIG STOR
VARYSTOR commands perform equivalent functions in MVS/XA. See the CONFIG entry in

this table.

VARY x The syntax is changed to support the new I/O architecture.
PATH MVS/370 VARY PATH commands do not work in MVS/XA. Also, the VARY

PA TH,OFFLINE command might take longer to process. The system will not
vary a device path offline untilI/O activity to the target device has completed. If
I/O is not completed after 150 seconds, the system issues message IEE717D,
which gives the operator a chance to cancel the command.

FIgUre 4-2 (Part 8 of 8). Summary of New, Changed, or Deleted Commands

4-14 MVS/Extended Architecture Conversion Notebook

Chapter 5. System Modifications

I

This chapter contains information related to modifying the system. The topics it
includes are:

"Print Dump Exit Control Table (ECT) Modifications"
"Updating SYSTEMS Exclusion RNLs"
"Serializing VSAM Data Sets"
"Limiting User Region Size using IEFUSI Instead of IEALIMIT" on page 5-2
"Obtaining an Extended Region Size of More Than 32 Mb" on page 5-3
"Bypassing the Storage Availability Check Before a Job Executes" on page
5-3
"Changing the Hot I/O Threshold and Recovery Actions" on page 5-4
"Pre-dump Exits" on page 5-4
"Post-dump Exits" on page 5-4
"RMF Exits" on page 5-4
"JES2 User Exits" on page 5-4
"JES2 Interfaces" on page 5-5
"JES3 Dynamic Support Programs (DSPs) and User Exits" on page 5-5
"PRDMP Exits" on page 5-6
"PRDMP Header Exits" on page 5-6
"SMF Exits" on page 5-6
"New WTO/WTOR User Exits" on page 5-7

• "'New Services for Dump Processing Exits" on page 5-8

I Print Dump Exit Control Table (ECT) Modifications

I
I
I

\ The system uses some previously-empty ECT entries for new print dump exits. If
your installation added ECT entries, you must add them to the new ECT at
different offsets. The ECT is in module AMDPRECT.

I Updating SYSTEMS Exclusion RNLs

I
I
I
I
I
I
I
I

\

I Serializing VSAM Data Sets

I
I
I
I
I
I
I

,

If a system with Release 1.1 installed is part of a global resource serialization
complex, you might have to add the resource name for the SYS 1.DAE data set
(SYSDSN, SYS1.DAE) to the SYSTEMS exclusion RNLs of other systems in the
complex. Because SYS 1.DAE cannot be shared among systems, the SYSTEMS
exclusion RNL shipped in Release 1.1 inciudes an entry for SYS 1.DAE. Global
resource serialization requires that all systems in a complex have identical RNLs.
Therefore, you need to add the same entry to the SYSTEMS exclusion RNLs of
any system in the complex that is not at Release 1.1 or a later level.

If your installation has a global resource serialization complex that includes both
systems with MVS/XA DFP 1.1 or MVS/370 DFP installed and systems with
neither, you need to take certain actions to ensure that VSAM data sets are
serialized correctly. MVS/XA DFP 1.1 and MVS/370 DFPinclude a new level of
VSAM. The ENQs that the new VSAM OPEN processing issues to enforce
VSAM cross-region share options 1 and 2 are different. The scopes of the ENQs
are changed to SYSTEMS, and their rnames (minor names) include catalog names.
Only the qnames (major names) remain the same.

Chapter 5. System Modifications 5-1

I
I
I
I
I
I
I
I
I
I
I
I
I
I

A catalog name is system-independent information. Therefore, if all systems in the
complex include the new level of VSAM and all systems accessing the data set
belong to the complex, you can use the VSAM ENO to serialize access to the data
set as a global resource. The scope of SYSTEMS causes global resource
serialization to treat the data set as a global resource by default.

The old level of VSAM uses ENOs with scopes of SYSTEM and rnames that
include catalog ACB addresses. Because catalog ACB addresses vary from system
to system, you cannot use these ENOs to serialize access to data sets as global
resources. The scope of SYSTEM causes global resource serialization to treat the
data set as a local resource by default.

The following figure summarizes the differences in the ENOs:

Old VSAM ENQs New VSAM ENQs

QNAME SYSVSAM SYSVSAM

RNAME system-dependent system-independent

SCOPE SYSTEM (local resource) SYSTEMS (global resource)

Because of the differences, systems in complexes that include both levels of VSAM
cannot share the VSAM data sets globally. Therefore, place a generic entry for
SYSVSAM in the SYSTEMS exclusion RNL of each system. Also ensure that the
SYSTEM inclusion RNLs do NOT include an entry for SYSVSAM.

After all systems in the complex have the new level of VSAM installed, remove the
SYSVSAM entry from the SYSTEMS exclusion RNLs. The VSAM OPEN
processing then enforces share options 1 and 2 as follows:

• If a data set assigned share option 1 is opened for output, no other user in the
complex can open it for output or input.

• If a data set assigned share option 2 is opened for output, other users in the
complex can open it for input but not output.

Limiting User Region Size using IEFUSI Instead of lEALIMIT

Installations can now use the SMF step initiation exit (IEFUSI) to limit the sizes of
user regions above and below 16 Mb. The methods available in MVS/370
continue to work in MVS/XA:

• Specifying the REGION parameter on JCL statements
Assigning default values through JES2 or JES3.

• Using the IEALIMIT installation exit

However, using IEFUSI has the following advantages:

• IEFUSI is a separate load module in the LP A. IEALIMIT must reside in the
nucleus. Thus, you must link edit the nucleus every time you replace
IEALIMIT with a new version.

IEFUSI users can readily obtain information required to set a region size and
region limit. IEALIMIT must scan system control blocks to gather that
information. Thus, IEFUSI is easier to write and less susceptible to system
changes.

5-2 MVS/Extended Architecture Conversion Notebook

I

• IEALIMIT requires that the local lock be held and, therefore, cannot issue
SVCs. IEFUSI has neither of those restrictions.

• IEFUSI can control the region size and region limit of both1he area above and
the area below 16 Mb. IEALIMIT can set values for the area below 16 Mb
only; VSM uses defaults defined in the code for the area above 16 Mb.

To indicate that VSM is to use IEFUSI instead of IEALIMIT for controlling the
user region area, you must set a flag in the IEFUSI parameter list. VSM then
bypasses the IEALIMIT exit and limits the user area as IEFUSI requests. IEFUSI
does not have to set new limits. It can, for example, request that VSM set limits
identical to the IEALIMIT defaults.

SPL: User Exits describes how to use IEALIMIT. SPL: SMF describes how to
use IEFUSI. SPL: System Modifications provides general information on limiting
the user region.

I Obtaining an Extended Region Size of More Than 32 Mb

~

~

VSM changes in Release 1.2 make it easier for a job to obtain an extended region
size greater than 32 Mb:

You can now specify values greater than 16 Mb on the JCL REGION
parameter. The values can be expressed in K or Mb units ar ~. can be as high
as 2096128 K or 2047Mb.

VSM now uses the REGION parameter (if nonzero) to calculate the extended
region size and the limit for GETMAIN requests above 16 Mb. VSM sets both
to the smaller of: (1) the size of the extended private area, or (2) the
REGION parameter value or 32 Mb, whichever is greater. In earlier releases,
VSM sets both to 32 Mb.

If the REGION parameter is greater than 16 Mb, the only limits onGETMAIN
requests below 16 Mb and the region size below 16 Mb are the limits that
IEALIMIT or IEFUSI set, or the size of the private area. System Modifications
contains more information about limiting the user region size.

Bypassing the Storage Availability Check Before a Job Executes

If Release 1.2 is installed, you can control whether or not VSM checks that the
amount of storage requested on the REGION parameter is available before
permitting a job to execute. The change is intended to prevent jobs from failing
simply because programmers specify REGION values that are unnecessarily 'large.

Earlier levels of VSM always check for availability of storage below 16 Mb but
never check for availability above 16 Mb. The Release 1.2 level of VSM does the
same by default.

To change the default, use IEFUSI. Bits 1 and 2 in the first word of the VSM
parameter list passed to IEFUSI control checking. Bit 1 indicates whether VSM is
to check for available storage below 16 Mb. Bit 2 controls checking above 16 Mb.
See System Modifications and SPL: SMF for more detail.

Chapter 5. System Modifications 5-3

I Changing the Hot I/O Threshold and Recovery Actions

\
I
I
I
I
I
I
I
I
I
I

Pre-4ump Exits

Post-4ump Exits

RMFExits

JES2 User Exits

A new HOTIO statement in the Release 1.2 IECIOSxx P ARMLIB member makes
it easier to change: (1) the threshold lOS uses for detecting hot I/O conditions,
and (2) the recovery actions lOS performs when it detects a hot I/O condition.
Module 10SRHIDT contains the threshold and recovery actions. It replaces the
MVS/370 IECVHIDT module. Previously, you had to use the AMASPZAP
service aid to update 10SRHIDT (or IECVHIDT).

The first release of MVS/SP Version 2 changes hot I/O processing. "Processing
Hot I/O Interrupts" in Chapter 4 briefly describes the changes. System
Modifications contains more detail. Initialization and Tuning describes how to write

the HOTIO statement.

Installations can now provide exit routines that get control before the ABDUMP
routine takes a dump. The exits can analyze the requested dump and either:

Continue with the dump as requested
• Modify the dump options and continue with the dump
• Terminate the dump request.

IBM supplies a load module, lEA VT ABX, that contains blank entries for the
pre-dump exit routine names. SPL: System Modifications describes pre-dump exits.
SP L: User Exits provides coding information.

Installations can now provide exit routines that get control after each SYSMDUMP
and SVC dump is taken. The post-dump exit routines can examine dumps in dump
data sets, evaluate the dump and the dump symptoms, and take appropriate action
(for example, tell the operator to clear the dump data set using the new DUMPDS
command or to start a PROC to offload the dump data set). IBM supplies a new
load module, lEA VTSEL, that contains an SDUMP exit list with blank entries.

SPL: System Modifications describes post-dump exits in more detail. SPL: User
Exits provides coding information.

RMF exits require modification. RMF invokes all user exits in 31-bit addressing
mode and expects return in that mode. In addition, most RMF user exits need to
access control blocks that have been moved to virtual storage above 16 Mb.

JES2 invokes user exits in 24-bit addressing mode and expects return in that mode.
Thus, JES2 user-exit routines must reside in virtual storage below 16 Mb. They
can, however, switch modes after entry as long as they do not use JES2 interfaces
while in 31-bit addressing mode. Note that these restrictions do not apply to the
SMF exits that JES2 takes in the JES2 or user address space.

5-4 MVS/Extended Architecture Conversion Notebook

JES2 Interfaces

If a JES2 exit contains any of the fourteen downward incompatible macros listed in
Chapter 9, you also need to ensure that the exit (the part of it that uses JES2
interfaces) contains their MVS/370 expansions. JES2 requires the MVS/370
expansions.

The MVS/XA MACLIB contains both the MVS/370 and MVS/XA expansions of
the downward incompatible macros. To ensure that exit routines include the
MVS/370 expansions, use either a $HASPGEN or a $HASPEQU macro before
any other macro. (If your system is at the Release 1.0 level, use $HASPGEN; if it
is at a later level, use $HASPEQU.) Both $HASPGEN and $HASPEQU issue
SPLEVEL macros that request the MVS/370 expansions (SPLEVEL SET= O.

If an exit routine requires the MVS/XA expansion of a downward incompatible
macro, use an SPLEVEL macro before and after the incompatible macro. On the
SPLEVEL macro that precedes the incompatible macro, request the MVS/XA
expansion (SPLEVEL SET=2). On the SPLEVEL macro that follows, request
MVS/370 expansions of subsequent downward incompatible macros.

For more information about downward incompatible macros or SPLEVEL, see
"Handling Downward Incompatible Macros" in Chapter 9.

Programs executing in 31-bit addressing mode cannot invoke JES2's subsystem
interface (SSI) routines or its spool access method (HAM) routines. Spool data set
requests (for example, OPEN, CLOSE, GET, PUT) must be made while executing
in 24-bit addressing mode. All control blocks used as input to the JES2 subsystem
via SSI (for example, SSOBs) must reside in virtual storage below 16 Mb.

JES3 Dynamic Support Programs (DSPs) and User Exits

JES3 invokes DSPs and user exits in 24-bit addressing mode and expects return in
that mode. Thus, JES3 user-written programs must reside in virtual storage below
16 Mb. They can, however, switch modes after entry as long as they do not use
JES3 interfaces while in 31-bit addressing mode.

If a JES3 exit contains any of the fourteen downward incompatible macros listed in
Chapter 9, you also need to ensure that the exit (the part of it that uses JES2
interfaces) contains their MVS/370 expansions. JES3 requires the MVS/370
expansions.

The MVS/XA MACLIB contains both the MVS/370 and MVS/XA expansions of
the downward incompatible macros. To ensure that exit routines include the
MVS/370 expansions, use an IATYMOD macro before any other macro.
IATYMOD issues an SPLEVEL macro that request the MVS/370 expansions.
(SPLEVEL SET=l).

If an exit routine requires the MVS/XA expansion of a downward incompatible
macro, use an SPLEVEL macro before and after the incompatible macro. On the
SPLEVEL macro that precedes the incompatible macro, request the MVS/XA
expansion (SPLEVEL SET=2). On the SPLEVEL macro that follows, request
MVS/370 expansions of subsequent downward incompatible macros.

For more information about downward incompatible macros or SPLEVEL, see
"Handling Downward Incompatible Macros" in Chapter 9.

Chapter 5. System Modifications 5-5

PRDMPExits

I •
I PRDMP Header EXIts

I
I
I
I
I
I
I
I
I

\

I SMF Exits

\
I
I
I
r
I
I
I
I
I
I
I
I
I
I

You need to change PRDMP exit routines that use the print service and supply
their own output buffers. In MVS/XA, the print service routine expects a
132-byte output buffer. It prints 132 bytes, beginning at the output buffer address
specified in the ADPLBUF field of the exit parameter list (BLSABDPL). In
MVS/370, the output buffer is 121 bytes, but only 120 bytes are printed.

PRDMP exits that use the PRDMP-supplied output buffer continue to work
unchanged in MVS/XA. The buffer is set to blanks after each use. However, if
you modify the ADPLBUF field to point to a 121-byte output buffer, either:

• Each printed line will contain 12 bytes of unexpected data.
The PRDMP exit will fail with an x'OC4' ABEND.

The Release 1.1 level of PRDMP allows a new type of user exit, header exits.
Using header exits you can add information to the title pages of dumps. PRDMP
calls header exits when processing title pages.

Dump analysis and elimination (DAE) supplies one header exit, ADYHDFMT,
which formats and prints DAE symptom data. You can supply additional header
exits, but do not change the ECT (exit control table) entry for ADYHDFMT
(entry 21). PRDMP also calls that entry when processing the new DAEDATA
PRDMP verb.

You might have to modify two SMF exits, IEFU29 and IEFU84. In Release 1.1,
IEFU29 and sometimes IEFU84 run in the new SMF address space instead of the
master scheduler address space. (IEFU84 runs in the SMF address space when
SMF calls it during system initialization to write record types 0, 8, 19, 22, and 90.)
If either exit requires data located in the private area of the master scheduler
address space, you need to change the exit. Use cross memory instructions (SSAR,
MVCP, and MVCS) to move data between the two address spaces.

Other SMF exits continue to run unchanged in the same address spaces as in
previous releases of MVS. You can, however, write SMF exits that run in 31-bit
addressing mode, reside above 16 Mb, or address data above 16 Mb. Exits that
run in 31-bit addressing mode must return control to SMF using a BSM instruction.
In addition, SMF records that IEFU83 or IEFU84 passes to SMF must reside
below 16 Mb. See SPL: 31-bit Addressing for help in writing programs that use
31-bit addresses.

5-6 MYS/Extended Architecture Conversion Notebook

I New WTO/WTOR User Exits

~ Installations with Release 1.2 installed can use new WTO/WTOR exits to modify
message processing. The new exits are in addition to IEECVXIT. Unlike
IEECVXIT, they can modify processing for any message. They can also alter
processing in more ways than IEECVXIT can. The new exits can:

Alter routing and descriptor codes.

Change the message text.

Change the console on which the message is displayed.

Queue messages to a particular active console; queue them unconditionally to
any console, regardless of whether it is active; or queue messages by routing
codes only.

Direct messages to the hardcopy log only, to consoles only, or to both the
hardcopy log and consoles.

• Delete messages, except WTORs.

Control whether or not messages are broadcast to active consoles.

• Override MPF suppression.

Issue SVCs (for example, SVC 34 and SVC 35).

• Reply to or suppress WTORs.

Control whether or not the action message retention facility retains a message.

The system invokes WTO /WTOR exits after IEECVXIT and M'PF processing is
completed and before calling the subsystem interface (SSI). It can invoke only one
WTO/WTOR exit for each message processed. However, you can provide several
exits and specify which the system is to call for particular messages. You can also
write one general exit that the system invokes for all messages not associated with a
specific exit. You must name the general exit IEAVMXIT. Both the general and
specific WTO /WTOR exits must execute in 31-bit addressing mode and reside in
an authorized data set that is included in the LNKLST concatenation.

To associate a specific exit with a message or group of messages, include
statements like the following in the MPFLSTxx P ARMLIB member:

message ID USEREXIT(name of exit routine)

The message ID can identify either a particular message or a class of messages, for
example, IEF404I or IEF*. The system then calls the specified exit when
processing those messages. (Y ou can also put the new RETAIN and SUP
keywords on the same statement as USEREXIT. See "New, Changed, or Deleted
PARMLIB Members" in Chapter 2 for more information.) Use mUltiple
MPFLSTxx members and the SET MPF=xx or SET MPF=NO command to
control which specific exits are active.

Chapter 5. System Modifications 5-7

I

If the system is to call lEA VMXIT when processing a message, you need not do
anything except make that exit available and possibly activate it. If lEA VMXIT is
in the LNKLIST concatenation at IPL time, the system automatically activates it.
Thereafter, you can activate and deactivate it using a new UEXIT= YIN keyword
in the CONTROL V command.

I New Services /Qr Dump Processing Exits .

\

Exit Services Router

Release 1.2 provides several new services for dump processing exits that are
invoked from IPCS, PRDMP, and SNAP:

Format model processor service
Control block formatter service
ECT service
GET symbol service
EQUATE symbol service

. Select ASID service

In addition, Release 1.2 includes a new exit services router, which serves as an
interface between dump exits and new and existing exit services. However,
Release 1.2 continues to support existing interfaces between dump exits and the
services available to them. Thus, existing dump exits will run unchanged in Release
1.2.

Dump exits can use the exit services router to invoke the following services:

Storage. access service
• Print service .

Format model processor service
Control block formatter service
Index service

• ECT service
GET symbol service
EQUATE symbol service

• Select ASID service

The storage access, print, and index services are not new. The service router
simply provides a new method of invoking them.

Dump exits can invoke any of the services listed by calling the exit service router
and passing it three parameters:

• The address of the user exit parameter list, ABDPL, which is mapped by
BLSABDPL.

A service code indicating which service the router is to invoke.

The address of the parameter list the requested service expects (except when
invoking the print or index service, which uses no parameter list). ABDPL
includes each service's parameter list.

Most services also require some additional information in fields of the ABDPL.
IPCS User's Guide and Reference describes those requirements. It also describes in
more detail how to invoke services using the exit services router.

5'..;8 MVS!Extended·,Architecture Conversion Notebook

I Format Model Processor Service

II
I
I
I
I
I
I

Control Block Formatter Service

The format model processor service formats and prints a control block or other
data area using a format model. The exit routine supplies the model and the virtual
address of the storage to be formatted. The format model processor returns the
formatted control block.

In addition to formatting control blocks, you can use format models and the format
model processor to:

Decode flag bytes
• Summarize dump data
• Present data in hexadecimal representation

The IPCS User's Guide and Reference describes each of these uses in more detail.

Using format models is an alternative to using format patterns. A format model
consists of several BLSQMDEF and BLSQMFLD macros. The BLSQMDEF
macro begins the model and describes the header. A series of BLSQMFLD macros
follow, one for each field to be formatted. A second BLSQMDEF macro denotes
the end of the model. The models can be part of a program load module or
separate load modules. System Macros and Facilities describes how to write
BLSQMDEF and BLSQMFLD macros. The IPCS User's Guide and Reference
shows how to write format models.

Format models are flexible. Programs that use models can call a user-supplied exit
routine to examine or modify a formatted line before printing it. They can also
vary which fields of the model are printed. Thus, programs can use the same model
to format different levels of the control block. Models can format arrays within a
control block. They are also independent of the line length, starting column, and
column spacing. PRDMP, IPCS, or SNAP modules determine that information.

The control block formatter service formats and prints a control block, given a
control block acronym and a bit string indicating which type of fields are to be
included. You can use this service to format any of the following control blocks:

ASCB LCCA SRB
ASXB LLE STKE
COE PCCA SUPVT
CSD PSA SVT
CVT RB TCB
EED RTCT TIOT
FRRS RTM2WA XSB
IHSA SCB XTLST

Using the control block formatter has several advantages over using format
patterns:

The user needs to know nothing about the control block structure.

• You can invoke the service once and format the entire control block.

If the control block format changes, only the control block model that the·
control block formatter service uses needs to be modified.

• You can request multiple levels of detail using only one control block model.

Chapter 5. System Modifications 5-9

I ECT Service

\
I

I GET Sy~bol Service

~
t
I
I

I EQUATE Symbol Service

\
I
I
I

I Sel~ct ASID Service

\

The ECT service searches the ECT (exit control table) for the requested exit, then
links to it. This service allows one dump exit to invoke another.

The GET symbol service returns a specified symbol from the IPCS symbol table.
Thus, it performs the same function as the GET subcommand of IPCS and is
meaningful only during IPCS processing. PRDMP and SNAP modules ignore
requests for this service.

The EQUATE symbol service adds a symbol to the IPCS symbol table, as does the
EQUATE subcommand of IPCS. Like the GET symbol service, it is meaningful
only during IPCS processing. PRDMP and SNAP modules ignore requests for this
service.

The select ASID service returns a list of pointers to ASCBs in a dump. The exit
routine specifies which ASCB pointers are to be returned using one or more of the
following keywords:

ALL

CURRENT

ERROR

TCBERROR

ASIDLIST

JOBLIST

All ASCBs in the dump

ASCBs for address spaces that were active at the time the dump was taken

ASCBs for all address spaces that terminated abnormally (ASCBCC~O) or that
contain TCBs representing tasks that completed abnormally (TCBCMP~O or
TCBRTWA~O)

ASCBs for all address spaces that contain TCBs representing tasks that completed
abnormally (TCBCMP~O or TCBRTWA~O). TCBERROR specifies a subset of the
ASCBs that ERROR selects.

ASCBs corresponding to the ASIDs listed on ASIDLIST.

ASCBs corresponding to the jobs listed on JOB LIST.

5 ... :1 0 MVS/Extended Architecture Conversion Notebook

Chapter 6. Problem Determination

This chapter includes information related to dumping services, trace facilities, and
debugging.

The following topics describe differences in dump content and format:

"New and Changed Dump Options" on page 6-2
"New Symptom Dumps for Task-Mode Abends" on page 6-4
"New User Summary Dumps" on page 6-5
"Dump Format Changes" on page 6-6

Topics describing new ways of suppressing dumps include:

"New Operands on the SLIP Command for Suppressing Dumps" on page 6-7
• "MVS/XA's Use of SLIP Commands" on page 6-7

"Dump Analysis and Elimination (DAE)" on page 6-8

Print dump (PRDMP) changes are described in:

"New and Changed PRDMP Control Statements" on page 6-10
• "Print Dump Index" on page 6-12

"Print Dump Requirements for Printers" on page 6-13

The topics below describe IPCS changes introduced in Release 1.2. Note that to
use Release 1.2 IPCS dialogs, you must also have ISPF Version 2 installed.

"New and Changed IPCS Subcommands" on page 6-13
"Accessing Additional Sources of Dump Data Using IPCS" on page 6-16

• "New IPCS Panels" on page 6-16
• "Changes to the IPCS BROWSE Panels" on page 6-17
• "Changes to the Titles of IPCS Print Files" on page 6-18

"Using the MVS/XA Versions of IPCS and PRDMP on Other Systems" on page
6-18 describes how to obtain MVS/XA versions of IPCS and PRDMP on earlier
systems.

Debugging considerations include:

• "Changes to the System Trace Facility" on page 6-20
"SDWA Changes" on page 6-22
"Addressing Mode Reflected in Dumps" on page 6-22
"Specifying Reason Codes" on page 6-23

• "System Termination Facility Wait State Codes" on page 6-23
"Exceeding the Region Limit" on page 6-23

• "Diagnosing Checkpoint/Restart Errors" on page 6-24

Chapter 6. Problem Determination 6-1

New and Changed Dump OptiolU

Figure 6-1 summarizes the new and changed dump options for user and system
dumps. It indicates whether the option is valid on the SNAP macro, the SDUMP
macro, and/or the DUMP command. None of the changes are incompatible.
However, the following MVS/370 options produce different dump data in
MVS/XA: NUC, TRT, CB, SPLS, and SQA. Some options (for example, NUC
and SUBPLST) are designed or changed to eliminate unnecessary dump data.
Other options (such as SUM) improve the usefulness of dump data.

Figure 2-3 describes changes to dump options in the IEAABDOO, IEADMPOO, and
IEADMROO P ARMLIB members.

6-2 MVS/Extended Architecture Conversion Notebook

Dump Option SNAP SDUMP DUMP Data Included in the buritp :.

ALLNUC x x The entire nucleus, both the DA T -on nucleus
(new) and the DAT-off nucleus. (NUC no longer

requests the entire nucleus.) Although ALLNUC is
an SDAT A keyword, specifying SDAT A=ALL
does not cause the ALLNUC information to be
dumped. You must explicitly specify the ALLNUC
option to obtain the entire nucleus.

Your installation might want to keep one copy of a
dump of the page-protected nucleus to use with
other dumps. To obtain a dump of only the
nucleus, use a DUMP command with the
ALLNUC, NOSQA, and NOSUM SDA T A options
specified.

ALLVNUC x The entire DAT -on nucleus. Users cannot
(new) obtain the DA T -off nucleus in a formatted dump.

However, ALLVNUC causes the system to dump
both the DA T -on nucleus and the DA T -off nucleus
in SYSMDUMPs. Although ALLVNUC is an
SDATA option, specifying SDATA=ALL does not
cause the ALLVNUC information to be dumped.

When ALLVNUC is specified, dumps also include
the PSA and the CVT. Unauthorized users receive
only the section of the PSA that is not
fetch-protected (locations 0 through 2 K minus 1).
Authorized (key 0) users receive the entire PSA.

CB x In SYSABEND, SYSUDUMP, and SNAP dumps,
(changed) a storage map that contains:

- The starting storage address
- The subpool number
- The length of the storage allocated to the task
- The storage key
- Flag information pertaining to the storage and the

owning TCB, if the storage is shared

In MVS/370, the CB option causes formatted VSM
control blocks to be dumped.

CSA'and x x x The specified area below and above 16 Mb.
LSQA No additional SDA T A options are required to
(changed) include extended storage areas in a dump.

KEYLIST x Areas in the subpools listed on the SUBPLIST
(new) keyword that have the specified key(s). KEYLIST

is only valid when specified with SUBPLST. It
allows users to obtain a subset of the specified
subpool storage.

NUC x x x The DA T -on, non-page-protected section of
(changed) the nucleus, the PSA, and the CVT. Authorized

(key 0) users receive the entire PSA. Unauthorized
users receive only the section of the PSA that is not
fetch-protected (locations 0 through 2 K minus 1).
Users that need the page-protected section must
specify either the ALLVNUC or ALLNUC option.

In MVS/370, NUC requests the entire nucleus.
The change in NUC output is designed to eliminate
from dumps those areas of the nucleus that are not
expected to change (the page-protected areas).
Those aieas are normally not required to debug
problems. The change was made in such a way that
most installations can suppress the page-protected
areas without having to respecify dump options.

Figure 6-1 (Part 1 of 2). New, Changed, or Deleted Dump Options

Chapter 6. Problem Determination' 6-3

Dump Option SNAP SDUMP DUMP Data Included in the Dump

SPLS x Subpool storage printed in ascending address
(changed) order, instead of by ascending subpool number as

in MVS/370. To obtain storage by subpool ID,
specify the new SUBPLST parameter.

SQA x x x No system trace entries are included because
(changed) the trace buffers have been moved to the TRACE

address space. SUM and TRT are the only dump
options for including the system trace table in a
SNAP / ABDUMP dump. SUMDUMP and TRT
are the only options for including it in a system
dump.

The SQA option requests both the SQA area above
and below 16 Mb.

SUBPLST x x Specified subpools, which appear in ascending
(new) order, as does the storage contained in each

subpool.

Another parameter for requesting subpool storage
already exists, SPLS. However, SPLS causes all
user subpools to be dumped. Also, the storage is
printed in ascending address order instead of by
subpool number.

SUBTASKS x Program data (PDA T A) information for
(new) subtasks.

SUM x x Summary dumps for abending tasks.
(new) See "New User Summary Dumps."

TRT x x x The trace data included in dumps is
(changed) changed. See "Changes to the System Trace

Facility." The trace output is formatted the same
in SNAP dumps, stand-alone dumps, and dumps
printed via print dump. It is different from
MVS/370 trace output.

As in MVS/370, TRT causes trace data from the
active trace facilities to be dumped. In MVS/XA,
the dump can include master trace data, system
trace data, and GTF data. In MVS/370, system
trace and GTF cannot be active at the same time.
Therefore,MVS/370 dumps never include both
system and GTF trace data.

Figure 6-1 (Part 2 of 2). New, Changed, or Deleted Dump Options

New Symptom Dumps for Task-Mode Abends

When an ABEND or program check occurs and the ABDUMP module gets control,
the system automatically issues a ten-line symptom dump. The symptom dump,
which appears in the job listing, includes:

• The ABEND code and error ID

• The PSW at the time of the error, the instruction length code, and the interrupt
code

• The name and address of the active load module, if the PSW points to an active
load module

• The offset into the module where the error occurred, if the PSW points to an
active load module

6-4 MVS/Extended Architecture Conversion Notebook

New User Summary Dumps

• Six bytes of storage before and six bytes after the PSW address at the time of
the error

The register contents at the time of the error

Unless the NOSYM parameter is specified in the appropriate PARMLIB member
(IEAABDOO, IEADMPOO, or IEADMROO), all users get the symptom dump
regardless of whether or not they supply a dump DD statement. However, TSO
users must specify the WTPMSG parameter on the PROFILE command to see the
symptom dump output. Installations that do not want symptom dumps can
suppress them by specifying the NOSYM option in the appropriate P ARMLIB .
member or by using the CHNGDUMP command. Specifying NOSYM in the
IEADMPOO P ARMLIB member also suppresses symptom dumps for users who do
not specify dump DD statements.

The symptom dump is designed to help users identify duplicate problems and, in
some cases, solve the problems without a full dump. Thus, symptom dumps can
reduce the time required for problem determination. Note that symptom dumps are
only issued for task-mode ABENDs.

Users can now obtain a summary dump for abending tasks. A new SDATA
keyword, SUM, requests a summary dump. Summary dumps show information that
can help identify duplicate problems, followed by control blocks and storage areas.
In many cases, the summary dump is sufficient to debug user program checks and
ABEND dumps.

If SUM is the only dump option specified, the summary data for SYSUDUMP and
SYSABEND dumps has the following format:

1. The dump title.

2. The ABEND code and PSW at the time of error.

3. The name and address of the load module in error.

4. The offset into the load module where the error occurred.

5. Control blocks (the same as if the CB option were specified).

6. Error control blocks (RTM2WAs and SCBs).

7. Save areas.

8. The general purpose registers at the time of error (from the RTM2WA).

9. The contents of the active load module and the load module associated with the
last PRB.

10. One K of storage before and after the addresses pointed to by the PSW and
registers at the time of error. The summary dump includes only storage areas
for which the caller is authorized.

Chapter 6. Problem Determination 6-5

Dump Format Changes

Changes to User Dump Headers

User Dump Indexes

11. System trace table entries for the dumped ASID. (GTF records are not
dumped.)

If SUM is not the only SDA T A option, the summary data might be dispersed
throughout the dump, depending on the other options specified.

The summary output produced for SYSMDUMP dumps is different from the
summary output produced for other user dumps. You must use PRDMP and
specify the SUMDUMP verb to get summary output. The output contains the same
information and is in the same format as the summary information in SVC dumps.

SUM is a default option in the IEAABDOO, IEADMPOO, and IEADMROO
P ARMLIB members. Unless installations delete the SUM options from those
PARMLIB members or suppress them using the CHNGDUMP command,
MVS/XA automatically produces a summary dump. In MVS/XA, SUM is the
only default option in IEADMPOO. Therefore, unless users that specify
SYSUDUMP DD statements request additional data, they receive only summary
data.

The dump headers in user, SVC, and SYSMDUMP dumps contain additional
information to aid in problem determination. Information in user dump indexes is
presented differently. The SYSMDUMP and SVC printed summary dumps are
restructured.

In MVS/XA, the dump headers in SNAP dumps caused by errors, SYSUDUMP,
and SYSABEND dumps contain:

• The name of the load module that was executing at the time of the error.

The offset into the load module, indicated by the PSW. The offset points the
user to the failing instruction or to the next sequential instruction at the time of
the error.

The SYSMDUMP dump header contains a new symptom buffer to help users
identify duplicate problems or solve problems without a full dump. "New Symptom
Dumps for Task-Mode Abends" describes the information contained in the
symptom buffer.

The indexes of SYSUDUMP, SYSABEND, and SNAP dumps list alphabetically the
name of each active load module and the page number in the dump where it starts.

Changes to SYSMDUMP and SVC Dump Formats

The printed summary dump is restructured to make it easier to use. Following is a
summary of the changes:

• Individual control blocks are formatted and dumped as separate logical records
with unique IDs.

• The general, unformatted storage areas are printed in ascending address order
within an address space.

6-6 MVS/Extended Architecture Conversion Notebook

Suppressing Dumps

• The dump index gives the starting page number of all formatted storage areas.
It also has entries for each storage area requested.

Trace data is no longer included in the formatted summary output. The trace
table appears in the main body of the dump and can be formatted using IPCS
or the TRACE verb of PRDMP.

The dump header records of SVC dumps and SYSMDUMP dumps contain the
following additional information to aid in problem determination:

• The name of the active load module at the time of the error, if that information
is available in the SDW A.

• The offset into the active load module of the instruction that caused the
ABEND (1n SYSMDUMP headers only).

• The 'PSW at the time of the error (in SYSMDUMP headers only).

• Six bytes of storage preceding the PSW address at the time of the error and six
bytes following the address (in SYSMDUMP headers only). The failing
instruction will be in one of those six-byte areas.

• The current SDW A control.block, if available.

• Flags indicating whether SYSMDUMP or SVC dump produced the dump.

• The ID of the processor on which the dump was initiated.

• The name of the dump data set.

Note that the SYSMDUMP dump header record contains all of the information
available in user symptom dumps, but in a different format.

The SLIP command has new operands for selectively suppressing dumps.
MVS/XA uses SLIP commands to suppress user and system dumps that are
normally not required for problem determination. Release 1.1 introduces dump
analysis and elimination (DAE), a new SDUMP function that also suppresses
dumps.

New Operands on the SLIP Command for Suppressing Dumps

The SLIP ACTION keyword has new operands, NOSYSA, NOSYSU, NOSYSM,
and NOSVCD, that separately suppress SYSABEND, SYSUDUMP, SYSMDUMP,
and SVC dumps, respectively. The new operands make the command more
versatile. Installations can suppress specific types of dumps for ABENDs without
suppressing all types.

MVS/XA's Use of SLIP Commands

MVS/XA uses SLIP commands to automatically suppress user and system dumps
for ABEND codes that normally do not require a dump for problem determination.
Examples are ABEND codes x'B37', x'D37', x'E37' and x'80A' (out-of-space

Chapter 6. Problem Determination 6-7

ABENDs). The SLIP commands that suppress those dumps are in a new
PARMLIB member, IEACMDOO.

When a system dump is suppressed, the system puts the SVC dump status code in
the appropriate LOGREC entry, as it does in MVS/370. When a user dump is
suppressed because of a SLIP command, the system issues a write-to-programmer
(WTP) message to inform the user.

If your installation already uses SLIP commands to suppress dumps, compare your
list with the SLIP commands in IEACMDOO. Delete all unnecessary commands to
conserve SQA space. SLIP commands in your PARMLIB member (COMMNDxx)
override commands in IEACMDOO. Therefore, if any commands in IEACMDOO
are undesirable, delete them or add SLIP commands to override them in
COMMNDxx. Keep in mind that IEACMDOO might be refreshed with subsequent
system updates.

When the system processes IEACMDOO at IPL time, it allocates fixed storage for
the SLIP action processors and the control blocks they use. "Fixed Storage for
SLIP Command Processors (IEACMDOO)" describes the fixed storage
requirements.

Dump Analysis and Elimination (DAE)

Dump analysis and elimination (DAE) is a new SDUMP function in Release 1.1
that collects symptom data before taking SYSMDUMP or SVC dumps. DAE uses
that data to identify and suppress duplicate dumps. If DAE does not suppress a
dump, you see the symptom data in the dump header record.

For each dump type (SYSMDUMP and SVC), you can request that DAE do one or
more of the following:

.. UPDATE - Record th~ symptom data in the SYSl.DAE data set. If the data
already appears in SYS 1.DAE (that is, a problem with the same symptoms has
already occurred), instead of creating an identical entry, DAE adds one to the
incidence count in the existing entry. Incidence counts thus indicate the
number of times particular problems have occurred. They appear in dump
header records along with the symptom data.

If you do not request updating, the system keeps the symptom data in storage
elsewhere, but only until DAE processing is stopped. Consequently, DAE
cannot use that data for comparison the next time it is active.

• MATCH - Determine if the symptom data matches data already collected for
the same dump type. Depending on other criteria described later, the system
either suppresses duplicate dumps or reports matches in dump header records.

• SUPPRESS - Suppress dumps having symptom data that matches data already
collected for the same dump type. Instead of duplicate SYSMDUMPs, users
receive message IEA838I, which contains the symptom data. MVS does not
notify users when DAE suppresses SVC dumps. If you request dump
suppression, the dump header records of dumps that are NOT suppressed
indicate why.

Note: Requesting the SUPPRESS option does not guarantee that DAE
suppresses all duplicate dumps.

6-8 MVS/Extended Architecture Conversion Notebook

The following parameters on the SLIP command prevent DAE from
suppressing dumps: SVCD (SVC dump), TRDUMP (trace dump), and
NOSUP (no suppression). NOSUP is new in Release 1.1. See the SLIP
entry in Figure 4-2 for more detail.

DAE does not suppress a dump unless the recovery routine that calls RTM
to take the dump: (1) provides in the ABDUMP symptom area, SDW A,
SDW A VRA, or SDW A extensions the symptom info'rmation that DAE
requires, and (2) sets to 1 the VRADAE key in the SDW A VRA.

The following components' recovery routines are changed in Release 1.1 to
allow DAE to suppress dumps they produce: DAE, allocation,
converter/interpreter, display dump command processor, DUMPDS
command processor, and scheduler JCL facility in Release 1.1; contents
supervision, global resource serialization, SRM, TRACE, and VSM in
Release 1.2.

Controlling DAE Processing

You control DAE processing via records in the new ADYSETxx P ARMLIB
members. Each record can specify:

• Whether DAE is to be started or stopped

• The type of processing DAE is to perform for each dump type (UPDATE,
MATCH, SUPPRESS, or a combination)

• How many dump entries DAE can store in the SYS I.DAE data set

IBM supplies three ADYSETxx members in Release 1.1: ADYSETOO,
ADYSETOl, and ADYSET02. ADYSETOO and ADYSET02 are the same. Both:

• Start DAE processing.

• Request UPDATE, MATCH, and SUPPRESS processing for SYSMDUMPs
and UPDATE and MATCH processing for SVC dumps.

• Allow DAE to store up to 400 entries in SYS1.DAE.

ADYSETOI stops DAE processing. If you require different options, create
additional ADYSETxx members or modify ADYSET02.

A new SET DAE=xx command specifies which ADYSETxx member MVS/XA is
to use. Only one member can be in effect at a time. However, you can issue a SET
DAE command at any time to change DAE processing.

The IEACMDOO P ARMLIB member shipped with Release 1.1 includes the
command SET DAE=OO. Thus, unless you change the defaults, during
initialization, the system automatically starts DAE processing with the options
specified in ADYSETOO.

Chapter 6. Problem Determination ,6~9

You also have some control over:

• The symptoms DAE collects for each dump type

The minimum number of symptoms that must match before DAE considers the
dump a duplicate

• The minimum number of bytes of meaningful data each symptom must contain
before DAE can use it

A new non-executable load module, ADYDFLT, contains default symptoms and
specifies which are required and which are optional. It also establishes the
minimum number of bytes the symptoms must contain. System Modifications
describes how to change those defaults using the VRADAT A macro.

Actions to be Taken

Before performing an IPL:

• Create a SYS I.DAE data set. If SYS I.DAE is not cataloged at IPL time, the
operator receives a message stating that attempts to start DAE processing
failed.

System Modifications describes how to create SYSl.DAE using JCL in the
DAEALLOC member of SYS l.SAMPLIB. Consider allocating SYS I.DAE
with DISP=SHR so you can browse, add, or delete records in the data set.
You might, for example, want to delete information related to a problem after
applying service to fix it. Note also that you cannot share SYSl.DAE among
systems.

• Ensure that an ADYSETxx member specifies the desired DAE options.

• Either ensure that the IEACMDxx member MVS/XA uses contains the
appropriate SET DAE=xx command, or instruct the operator to issue that
command.

New and Changed PRDMP Control Statements

The following figure describes the print dump (PRDMP) control statements that
MVS/XA adds, changes, or deletes. For more information, see SPL: Service Aids.

6-10 MVS/Extended Architecture Conversion Notebook

Release

Verb 1.0 1.1 1.2 Description of Change

ASMDATA x Requests auxiliary storage management (ASM) control blocks. ASMDATA no
longer formats RSM control blocks, as it did in MYS/370.

DAEDATA x Formats and prints the error data (symptoms) that dump analysis and elimination
(DAE) collects. A new DAE header exit, ADYHDFMT, puts the same
information on the title page. DAEDAT A causes PRDMP to repeat the DAE
symptoms later in the dump. It is designed mainly for use at the terminal.

DISPLAY x DISPLA Y is deleted in MYS/XA. Interactive Problem Control System (lPCS)
provides equivalent interactive dump scanning functions. See the IPCS
information in this chapter and MVS Interactive Problem Control System for
MVS/System Product User's Guide and Reference for more information.

FORMAT x Has new operands to limit formatting and printing to selected address spaces.
The new operands are ASID, JOBNAME, CURRENT, ERROR, and ALL. Thc
CURRENT address spaces are the primary, secondary, home, and CML lock
holder's address spaces. When FORMAT is specified without operands, PRDMP
formats and prints control blocks from the CURRENT and ERROR address
spaces only.

In MYS/370, the FORMAT statement has no operands. PRDMP formats and
prints control blocks from all address spaces contained in the dump. To get that
same output in MYS/XA, you must specify the ALL operand.

x Release 1.2 treats the FORMAT control statement as though it were a
SUMMARY FORMAT statement. It formats major system control blocks and
data associated with each address space in the dumped system.

IOSDATA x Requests lOS control blocks.

LPAMAP x Requests the names of all modules in the link pack area of the dumped system or
on the LPA active queue at the time of the dump. In MYS/370, PRDMP lists
only the names of modules on the LPA active queue at the time of the dump.

LPAMAP also has new operands, EPA and MODNAME, to indicate how lists
are to be ordered. The EPA operand requests sorting by entry point address.
MODNAME requests alphabetical sorting by module name. If neither is
specified, the printed output includes lists sorted both ways.

MTRACE x Formats and prints the master trace table for the dumped system. The console
messages appear in the order in which they were issued.

NUCMAP x Requests the names of system modules in the nucleus when the dump was taken.
The list includes the name, entry point, entry point attributes, and length of each
module. Note that the NUCMAP statement does not produce a map of storage in
the nucleus. To get a map of storage, use either the PRINT STORAGE= control
statement or the AMBLIST utility.

RSMDATA x Requests real storage management (RSM) control blocks.

SUMMARY x Release 1.2 adds keywords that specify: (1) for which address spaces the system
is to collect information, and (2) the information to be collected. The new
keywords are the same as the keywords on the IPCS SUMMARY subcommand,
which is also changed. See "New and Changed IPCS Subcommands."

Figure 6-2 (Part 1 of 2). New, Changed, or Deleted Print Dump Verbs

Chapter 6. Problem Determination 6-11

Release

Verb 1.0 1.1 1.2 Description of Change

TRACE x Requests trace data. Programmers must specify the new TRACE verb to obtain
the system trace table in PRDMP output. TRACE also allows users to limit the
trace data printed. See SPL: Service Aids for a description of trace operands.

VSMDATA x A new verb that requests virtual storage management (VSM) control blocks.

x Release 1.2 provides keywords for limiting the output.

The following keywords request the VSM control blocks in the private areas of
specific address spaces:

ASIDLIST - Address spaces whose ASIDs are listed on the ASIDLIST
keyword.

JOBLIST - Jobs listed on the JOBLIST keyword. You can use JOBNAME
as an alias for JOBLIST.

CURRENT- Address spaces that were active when the dump was taken.

ERROR- Address spaces that terminated abnormally (ACSBCC#=O) or
that contain TCBs representing tasks that completed abnormally
(TCBCMP#=O or TCBRTWA#=O).

TCBERROR- Address spaces that include TCBs representing tasks that
terminated abnormally (TCBCMP#=O or TCBRTW A#=O).
TCBERROR specifies a subset of the information requested
using the ERROR keyword.

ALL- All address spaces in the system.

NOASIDS - Prevents the system from including VSM control blocks from
the private areas of any address spaces.

You can also limit output using:

GLOBAL- Requests the VSM control blocks in the SQA and CSA.

NOGLOBAL- Prevents the system from including VSM control blocks in the
SQA and CSA.

In previous releases, VSMDA T A has no keywords. It requests VSM control
blocks from the private areas of all address spaces, the SQA, and the CSA. To
get that same information in Release 1.2, you must specify the ALL and
GLOBAL keywords. If VSMDAT A is specified alone, you get only the VSM
control blocks that the ERROR, CURRENT, and GLOBAL keywords request.

Figure 6-2 (Part 2 of 2). New, Changed, or Deleted Print Dump Verbs

Print Dump Index

The MVS/XA version of PRDMP writes a dump index and allows user exits to
insert their own entries into the index. See SPL: Service Aids.

The MVS/XA PRDMP procedure in SYS 1.PROCLIB includes a new DD
statement requesting that PRDMP write the dump index to a sequential data set
other than the PRINTER data set. Using a separate index data set allows you to
print the index before the dump.

To have the index printed at the beginning of the dump, either use the PRDMP
procedure in the MVS/XA PROCLIB, or add a DD statement in your own
PRDMP procedure in PROCLIB. For example:

//INDEX DD SYSOUT=A

To obtain the index in front of the dump, the INDEX DD statement must precede
the PRINTER DD statement. Unless the INDEX DD statement is specified,
PRDMP prints the index on the PRINTER data set after the dump.

6-12 MVS/Extended Architecture Conversion Notebook

I Print Dump Requirements for Printers

I
I
I

\ Print dump (PRDMP) output lines are 132 characters long. If your installation
uses a printer with a line length of less than 132 characters, you might lose
information.

I New and Changed IPCS Subcommands

\
I

The Release 1.2 level of IPCS adds or changes the IPCS sub commands listed in the
following figure. Only the change to EV ALDUMP is incompatible.

Chapter 6. Problem Determination 6-13

Subcomm~nd Description of Change

EVALDEF The variable list on the CLIST and DIALOG keywords can include
SOURCE(variable name). The new term is an alternative to using
DATASET(variable name) and DSNAME(variable name).

EVALDUMP You must use one of the following keywords to specify the dump source:

ACTIVE I MAIN I STORAGE
DSNAME(dsname) I DATASET(dsname)
FILE(ddname) I DDNAME(ddname)

Previous IPCS releases expect the second positional parameter to be the data
set name. Therefore, you need to change programs that use the EV ALDUMP
subcommand.

The formatted output from EV ALDUMP now includes the keyword ACTIVE,
DSNAME, or FILE before the dump source. Previous IPCS releases
formatted the data set name without the keyword and surrounding
parentheses. You might have to modify programs because of this change as
well.

The variable list on the CLIST and DIALOG keywords can include
SOURCE(variable name). The new term is an alternative to using
DATASET(variable name) and DSNAME(variable name).

LISTDUMP The format of the output is changed to display the dump source.

OPEN You can now designate on the TITLE keyword the timestamp IPCS is to
include on the top of every print file page. The default timestamp is the time
problem analysis started. You might want change it to the time the dump was
taken.

RENUM A new subcommand that renumbers the symbols in the symbol stack so that
every numeric suffix between the first and the last symbol is used.

RUNCHAIN A new EXEC keyword specifies a CLIST statement or an IPCS subcommand
that IPCS executes each time it processes a control block in the chain. That is,
IPCS locates a control block, processes it as requested, then executes the
statement or subcommand on the EXEC keyword before continuing to the
next control block. Thus, you can use the EXEC keyword on RUNCHAIN
for iterative processing that previously required several statements.

You can, for example, use RUN CHAIN to look at the RBs queued from a
chain of TCBs. On the RUN CHAIN command that searches the TCB chain,
use an EXEC keyword that specifies another RUN CHAIN command, one
that searches the RB chain. The system then displays the first TCB, all of the
RBs chained to it, the second TCB and its RBs, and so on.

SETDEF The format of the output is changed to display the dump source.

STACK A new subcommand that creates a symbol in the symbol stack. It is similar to
EQUATE, except that you need not specify the symbol to be created. IPCS
always creates the symbol using the next suffix after the largest one used.

Subcommands Except for ADDDSN, DELDSN, LISTDSN, and MODDSN, all
that specify IPCS subcommands that accept dump data set names are changed
the dump to accept these additional dump source keywords:
source

ACTIVE I MAIN I STORAGE
FILE(ddname) I DDNAME(ddname)

The existing keywords, DSNAME(dsname) and DATASET(dsname), are still
valid. For more information, see "Accessing Additional Sources of Dump Data
Using IPCS."

Figure 6-3 (Part 1 of 2). New and Changed IPCS Subcommands

6-14 MVS/Extended Architecture Conversion Notebook

Subcommand

SUMMARY

Description of Change

Several new keywords provide additional options that specify: (t) for which
address spaces the system is to collect information, and (2) the information to
be extracted. Also, some old keywords have been replaced by similar ones
that request the same information. These changes are to make the IPCS
SUMMARY subcommand like the PRDMP FORMAT and SUMMARY
FORMAT verbs, which are also changed. Following are the keyword
changes:

ALL - Requests information from all address spaces in the system. In
previous IPCS releases, if you do not specify from which
address spaces IPCS is to take information, the default is all
address spaces. In this release, the default is the ERROR and
CURRENT address spaces.

ASIDLIST - Replaces the ASID keyword. Like ASID, it specifies a list of
ASIDs to be processed. The list can include a range of ASIDs,
which is not allowed in earlier releases. The system accepts
ASID as an abbreviation of ASIDLIST, so the change is
compatible.

JOBLIST - Replaces the JOB keyword. Like JOB, it specifies a list of job
names whose associated address spaces are to be processed.
To distinguish JOBLIST from the new JOBSUMMARY
keyword, the minimum abbreviation for JOBLIST is JOBL.
JOBNAME is also an acceptable substitute. You need to
change any programs that specify JOB or J to request
JOBLIST information.

CURRENT - Requests information from all address spaces that were active
when the dump was taken.

ERROR - Requests information from address spaces that terminated
abnormally (ASCBCC#:O) or that contain TCBs representing
tasks that completed abnormally (TCBCMP#:O or
TCBRTW A#:O.)

TCBERROR - Requests information from all address spaces that contain
TCBs representing tasks that completed abnormally
(TCBCMP#:O or TCBRTWA#:O). TCBERROR specifies a
subset of the address spaces that ERROR selects.

ANOMALY - Requests different information in Release t.2 than in previous
releases of IPCS. In Release t .2, ANOMALY requests the
same information as TCBERROR. In previous IPCS releases.
it requests a subset of the TCBSUMMARY information.

FORMAT - A new keyword that requests major system control blocks and
data associated with each address space in the dumped system.
FORMAT produces the same output as the PRDMP
FORMAT and SUMMARY FORMAT verbs.

KEYFIELD - Requests key fields in the ASCBs, TCBs, and RBs of the
specified address spaces. The output matches the output from
the PRDMP SUMMARY verb. If you do not request specific
information on the SUMMARY subcommand, IPCS gives you
the information that KEYFIELD requests.

JOBSUMMARY - Requests the following summary information:

- A list of active CPUs

- Scheduled services

- For each address space specified: the jobname, ACSB
location, ASID, status of the address space, local
service manager queue, local service priority queue,
TCB locations, completion codes, and whether or not
the TCBs were active at the time of the dump

TCBSUMMARY - Produces the same output, but in a different format.

Figure 6-3 (Part 2 of 2). New and Changed (peS Subcommands

Chapter 6. Problem Determination 6-15

I Accessing Additional Sources 0/ Dump Data Using [PCS

\

\
New [PCS Panels

The IPCS component of Release 1.2 can access: (1) data sets stored on tape as
well as direct access devices, and (2) main storage of the MVS/XA address space
in which IPCS is executing. Also, multi-volume data sets no longer need to contain
fixed-length records. Earlier releases of IPCS can access only cataloged data sets
on direct access devices. Multi-volume data sets previously had to contain
fixed-length records.

To access the additional sources of dump data, you can now specify the keywords
listed below on most IPCS subcommands that specify the dump source. The only
subcommands that do not accept the keywords are ADDDSN, DELDSN,
LISTDSN, and MODDSN:

ACTIVE, MAIN, or STORAGE

FILE (ddname) or DDNAME(ddname)

ACTIVE, MAIN and STORAGE all request that information be taken from
main storage.

FILE and DDNAME both specify ddnames currently associated with a dump
data set. Three subcommands, CLOSE, DROPDUMP, and OPEN, allow
more than one ddname in parenthesis.

Four other subcommands, LISTDUMP, SETDEF, EV ALDEF, and EV ALDUMP,
are also changed to support new dump sources. Only the change to EVALDUMP
is incompatible. See "New and Changed IPCS Subcommands" for descriptions of
the changes.

Support for additional dump sources calls for new rules regarding which dump data
sets you can move without invalidating the data set's dump directory entry. You
can safely move:

Data sets containing fixed length records to direct access devices
Any data set to a single reel of tape

Release 1.2 includes two new IPCS panels, BLSPDISE and BLSPDSLE.
BLSPDISE is a top selection panel that, when hooked into the ISPF primary option
menu, provides a convenient way of initiating IPCS dialogs. The two selections on
BLSPDISE are:

BROWSE, which invokes BLSLDISP, the full-screen dump viewing dialog
program.

IPCS, which displays the other new panel, BLSPDSLE. BLSDPSLE allows you
to enter IPCS subcommands.

Your installation might have created similar panels in the past using instructions in
the IPCS User's Guide and Reference. BLSPDISE is similar to the IPSELCT panel
described in the guide. BLSPDSLE is identical to IPCMD, which is also described.

6-16 MVS/Extended Architecture Conversion Notebook

I Changes to the IPCS BROWSE Panels

\ Following are several changes in the way you use the Release 1.2 BLSLDISP
panels. Most of the changes are to make BLSLDISP more like the ISPF BROWSE
and EDIT panels.

• To identify on entry panels the storage IPCS is to display, use one of the
following keywords:

ACTIVE, MAIN, or STORAGE
DSNAME(dsnarne) or DATASET(dsname)
FILE (ddnarne) or DDNAME(ddname)

Because IPCS can now access main storage or data sets using a ddname, you
can no longer simply specify a data set name.

• Instead of displaying on storage panels repetitive data or blanks for storage that
cannot be obtained, IPCS inserts a one-line summary, either:

LENGTH(xxxxx)==>
LENGTH(xxxxx)==>
LENGTH(xxxxx)==>

Storage not available
All bytes contain X'xx' (or C'c')
Same as above

• On pointer and storage panels, you can now use the following primary
commands:

STACK

RENUM

FIND

RFIND

Adds a symbol to the symbol stack.

Renumbers the symbol stack so that every numeric suffix between the first and last
symbol is used.

Locates and displays the storage to which the specified value points.

Repeats the last FIND command. RFIND is disabled in Release 1.2. You can enable
it by creating a command table for IPCS, as described in the [peS User's Guide and
Reference.

• You can use two new operands, CURSOR and X, on the primary commands
you enter on storage panels. CURSOR represents the fullword that the cursor
precedes or is under. IPCS treats that full word as the target address of a
command. For example, LOCATE CURSOR % displays the storage beginning
at the 24-bit address in the byte the cursor precedes or is under when the
command is executed.

X represents the first byte of the displayed storage. IPCS treats the contents
of that byte as the target address of the command.

• You can put address space keywords on STACK and LOCATE subcommands.
Thus, you can display data from an address space other than the one currently
displayed without leaving the storage panel.

• IPCS displays the output from IPCS subcommands and dump processing exits
in full-screen mode rather than line mode.

• You can update the dump's symbol stack from more than one logical screen.
Previously, if working in split-screen mode, you could update the stack from
only one screen.

Chapter 6. Problem Determination 6-1 7

I

For more information, see either the IPCS User's Guide and Reference or the
tutorial panels for the BLSLDISP dialog program. You can access the online
tutorial by entering HELP on the command line of any BLSLDISP panel.

I Changes to the Titles of IPCS Print Files

\

\

Release 1.2 IPCS print files have different default titles. Also, instead of DATE
and TIME headings, the first line of each page contains a 17 -character timestamp.

The default title is the title in the default dump data set. If no title is available,
IPCS uses the old default, "IPCS PRINT LOG FOR userid." As in previous
releases, you can override the default by specifying a different title on the OPEN
subcommand that opens the print file.

Although the format of the date and time is changed, the default values are still the
date and time problem analysis started. In Release 1.2, however, you can specify a
different value (for example, the time the dump was taken) on the TITLE keyword
of the OPEN subcommand.

Using the MVS/XA Versions of IPCS and PRDMP on Other Systems

To aid in migrating to MVS/XA, IBM allows you to execute MVS/XA versions of
IPCS and PRDMP on certain MVS/SP 1.3 systems. You need the MVS/XA
versions to view and print MVS/XA dumps. The MVS/370 versions of IPCS and
PRDMP can process only MVS/370 dumps; the MVS/XA versions can process
only MVS/XA dumps. In fact, PRDMP erases dumps taken on different versions
of MVS.

IBM imposes some restrictions on running the MVS/XA modules on MVS/370
systems. The MVS/370 processor must be in a location where MVS/SP Version 2
and MVS/XA DFP are licensed. You can use IPCS and PRDMP on the
MVS/370 system up to 18 months after the first shipment of MVS/XA program
products to that location. The Agreement for IBM Licensed Programs
(Z 120-2800) defines the term "location."

The remainder of this topic describes how to obtain the modules and data sets
required to run MVS/XA PRDMP and IPCS on an MVS/370 system. You might
also want run the PRDMP and IPCS programs from one release of MVS/XA on an
earlier Telease. Although you can use any MVS/XA release of PRDMP or IPCS to
print or view dumps taken on another MVS/XA system, to format all control
blocks correctly, the level of PRDMP or IPCS must match the level of the dump.

IBM provides the jobstreams required to copy the MVS/XA IPCS and PRDMP
modules (except those supporting the EREP PRDMP exit) into. a data set you can
use on another system. In addition to creating that data set, you need to ensure
that the IPCS modules access the correct IPCS/ISPF panel and message libraries.
The way you perform these tasks depends on whether you are copying Release 1.2
or earlier levels of IPCS and PRDMP. This topic describes each method
separately.

Finally, to obtain the EREP PRDMP exit, you must have EREP Version 2 installed
on your MVS/370 system. The EREP PRDMP exit, which is contained in EREP
Version 2 instead of in MVS/XA, is required to print MVS/XA LOGREC
records: EREP Version 2 runs on both MVS/XA and MVS/370 and can process
LOGREC records created on either.

6-18 MVS!Extended Architecture Conversion Notebook

Copying Release 1.2 IPCS and PRDMP l\:1odules and Data Sets

The jobstreams for creating a data set containing Release 1.2 PRDMP and IPCS
modules are in several members of SYS 1.ASAMPLIB and, after sysgen,
SYS 1.SAMPLIB.

1. Combine the jobstreams into one member by running the jobstream in the
MIGJOB01 member. MIGJOB02 will then contain the combined jobstreams.

2. Replace the data set specification on the SYSLMOD DD statement with the
name of your target data set. The default name on the SYSLMOD statement is
SYS 1.MIGLIB.

3. Edit the JOB statement in MIGJOB02 to reflect your account's requirements.

4. Run the jobstream in MIGJOB02 to create the target data set.

Release 1.2 IPCS modules use panels and messages in two Release 1.2 data sets,
SYS 1.SBLSPNLO and SYS 1.SBLSMSGO, respectively. Earlier systems with IPCS
installed might also have data sets with the same names. Therefore, to ensure that
Release 1.2 IPCS uses the Release 1.2 copies of those data sets:

1. Allocate two data sets in which to copy the Release 1.2 panels and messages.
Give the data sets names other than SYS 1.SBLSPNLO or SYS 1.SBLSMSGO.

2. Copy the Release 1.2 SYS1.SBLSPNLO and SYS1.SBLSMSGO data sets into
the new data sets.

3. When allocating the data sets required to run Release 1.2 IPCS, concatenate
the new data sets in front of the ISPF message and panel data sets and, if
included, the SYS1.SBLSPNLO and SYS1.SBLSMSGO data sets. (You can
omit SYS1.SBLSPNLO and SYS1.SBLSMSGO from the concatenation.)

Note: To use the Release 1.2 IPCS dialogs on your MVS/370 system, you must
have ISPF Version 2 installed on the system.

The PRDMP procedure for starting Release 1.2 PRDMP on either an MVS/XA or
an MVS/370 system is different from the one for starting earlier PRDMP releases.
In Release 1.2, PRDMP runs as a command processor under TSO. Therefore, the
EXEC and DD statements in the procedure are changed. See "SYS 1.PROCLIB
Changes" for a listing of the Release 1.2 procedure.

Copying Release 1.0 and 1.1 IPCS and PRDMP Modules and Data Sets

The jobstreams for creating a data set that contains Release 1.0 or 1.1 PRDMP
modules and compatible IPCS modules are in the PRDMPXA and BLSAMPLE
members of SYS1.ASAMPLIB and, after sysgen, SYS1.SAMPLIB:

1. Replace the data set specification on the SYSLMOD DD statement with the
name of your target data set.

2. Edit the JOB statements in each member to reflect your account's
requirements.

3. Run both jobstreams to create the target data set. (The PRDMP jobstream
copies component analysis routines that IPCS also uses into the target data set.

Chapter 6. Problem Determination 6-19

Debugging Considerations

Therefore, to use the MVS/XA level of IPCS on MVS/370, you must run
both jobstreams.)

The Release 1.0 and 1.1 levels of IPCS use panels and messages contained in the
SYS1.ABLSPNLO and SYS1.ABLSMSGO data sets, respectively. To guarantee
access to the panels and messages:

1. Allocate two data sets in which to copy SYS 1.ABLSPNLO and
SYS 1.ABLSMSGO. Give the data sets names other than SYS 1.SBLSPNLO or
SYS 1.SBLSMSGO, because systems with IPCS installed might already have
data sets with those names.

2. Copy SYSl.ABLSPNLO and SYSl.ABLSMSGO into the new data sets.

3. When allocating the data sets required to run MVS/XA IPCS, concatenate the
new data sets in front of the ISPF message and panel data sets, and if included,
the SYS 1.SBLSPNLO and SYS 1.SBLSMSGO data sets. (You can omit
SYSl.SBLSPNLO and SYSl.SBLSMSGO from the concatenation.)

Changes to the System Trace Facility

The MVS/XA system trace facility is significantly different from the MVS/370
version. The following list summarizes the differences:

• Flexibility in selecting events to be traced

The MVS/XA system trace facility can perform explicit tracing, address space
tracing, and branch tracing. Explicit tracing records all of the normal system
interrupt and dispatch events traced in MVS/370, plus the following:

New I/O instructions
Machine check interrupt (MCH)
Restart interrupt (RST)
Alternate CPU recovery interrupt (ACR)
Lock suspension (SUSP)
Trace options alteration (AL TR)
User-defined event trace (USRn)

Address space tracing records successfully-executed PC, PT, and SSAR
instructions. Branch tracing records successfully executed BALR, BASR, and
BASSM instructions. (The system does not, however, trace branch instructions
that do not branch out of line, for example, BALR x,O.)

The TRACE command is changed to allow installations to dynamically control
which type of tracing is performed. Options are:

Explicit and address space tracing on, branch tracing off
All tracing on
All tracing off

The system treats explicit and address space tracing as a single option. Also,
the system can perform branch tracing only when the other trace options are
active.

6-20 MVS/Extended Architecture Conversion Notebook

System trace is automatically activated

The system automatically activates explicit and address space (but not branch)
tracing at system initialization time. If you prefer other trace options, put an
appropriate TRACE command in a COMMNDxx P ARMLIB member or issue
the command from the master operator console. In MVS/370, installations
must use a TRACE command to keep system trace active after system
initialization time.

Concurrent system and GTF tracing

System and GTF tracing can be active at the same time on an MVS/XA
system. Activating GTF trace no longer turns off system trace, as it does in
MVS/370.

Explicit system tracing and GTF tracing record some of the same events.
Therefore, if you activate both, you might want to tailor GTF trace to record
only events that explicit system tracing does not record. Diagnostic Techniques
lists the events that system trace records. SPL: Service Aids describes the
events that GTF trace records and how to tailor GTF trace.

The structure, location, and format of the system trace table is changed

The system trace table consists of queues of trace buffers, one queue for each
processor sharing the operating system. The system trace table formatter
merges the entries from the separate trace buffers into a single logical table. In
MVS/370, the system trace table is a single buffer.

The trace buffers are located in the LSQA of a new TRACE address space. In
MVS/370, the system trace table is located in SQA. Moving the trace data
reduces the system's use of common virtual storage. It also isolates the trace
data from the rest of the system, which provides a greater degree of data
integrity.

System trace entries vary in length. MVS/370 entries have fixed length.

Installations can control the size of the trace table

The TRACE command is changed to allow installations to dynamically change
the size of the trace table. The default size is 16 K of trace buffers per online
processor. The size of the MVS/370 trace table is fixed at IPL time.

Installations can create and format their own trace entries

Installations can use a new macro, PTRACE, to create their own trace table
entries. System Macros and Facilities describes PTRACE. Diagnostic
Techniques describes how to create and format user entries.

Dumping trace data

TRT, SUM, and SUMDUMP are the only dump options for including the
system trace data in dumps. The SQA option no longer dumps system trace
entries because the trace buffers have been moved to the TRACE address
space. The system trace data printed in user dumps depends on the requestor's
authorization. If the requestor is authorized, the dump includes the system

Chapter 6. Problem Determination 6-21

SDW A Changes

trace table entries for all address spaces. If the requestor is unauthorized, the
dump includes only system trace entries from the current address space that
were made after the job started. Dumping only job-related trace entries for
unauthorized users improves system integrity and makes debugging problem
programs easier.

SVC dumps include trace entries for all address spaces. The trace data always
appears in the non-summary part of the dump, even when dumped in response
to a SUM or SUMDUMP request.

Because the MVS/XA trace data is in separate buffers and the trace entries
vary in length, it is not feasible to read unformatted dumps of the trace table.
Installations need to use print dump (PRDMP) or SNAP / ABDUMP dump to
format trace table entries. The system trace table formatter merges the entries
from the separate trace buffers into a single logical table. The formatter
merges timestamped entries (explicit trace events) from oldest to newest. It
merges branch and address space trace entries, which are not timestamped, in
relative order to the timestamped entries.

Note: To obtain formatted trace table entries you must include the new
TRACE verb in the PRDMP procedure. The TRACE verb has operands that
allow installations to limit the trace information printed. See "New and
Changed PRDMP Control Statements."

The SDW A has increased in size. All of the additional storage is included in
SDWA extensions. The additional storage contains data for I/O machine checks,
new locks, new dump tailoring options that specify storage subpoollists, and new
service data. The information is contained in the following extensions:

• The previously-existing recordable extension 1 (SDW ARC 1) contains
additional service data.

• The new recordable extension (SDWARC2) contains I/O machine check data.

The new recordable extension (SDW ARC3) contains new lock and lockword
information that can be specified in the FRELOCK keyword of the SETRP
macro.

• A new non-recordable extension (SDWANRC2) contains the SNAP dump
tailoring information for storage subpools.

Addressing Mode Reflected in Dumps

When producing summary (SUM or SUMDUMP) dumps, dump routines use the
addressing mode at the time of the error to determine whether the addresses in
registers are 24-bit or 31-bit values. If a program is running in 31-bit addressing
mode when an error occurs, the system treats addresses as 31-bit values. If a
program is running in 24-bit mode, the system treats them as 24-bit values. If a
program has 31-bit addresses in some registers and switches to 24-bit mode just
before an error occurs, the dump routines consider the addresses to be 24-bit
values. As a result, dumps at times might not include the desired areas.

6-22 MVS/Extended Architecture Conversion Notebook

Specifying Reason Codes

Users can specify a reason code on ABEND, CALLRTM, and SETRP macros.
The reason code supplements the completion code associated with abnormal
termination. It allows users to uniquely identify the cause of abnormal termination.
RTM propagates the reason code to each recovery exit and to the TCB and ASCB
control blocks. Thus, the reason code appears in system messages.

System Termination Facility Wait State Codes

Exceeding the Region Limit

In MVS/370, the system termination facility (IGFPTERM and IGFPTREC) issues
wait state code X'024' when IGFPTREC fails to receive an I/O interrupt while
attempting either to write a LOGREC record or to issue a WTO message. Users
are prevented from seeing the wait state code of interest, namely the wait state
code indicating the error condition that caused system termination processing to
begin (the wait state code in the LRB passed to IGFPTERM).

In MVS/XA, the system termination facility puts into the PSW the wait state code
and the optional reason code found in the LRB, and a reason code indicating why
IGFPEMER is in a wait state. (In MVS/XA, IGFPEMER replaces IGFPTREC.)

PSW

rrrrwwww
~

Wait state code (wwww) and
optional reason code (rrrr) found in
the LRB passed to IGFPTERM

The reason IGFPEMER is in a wait
state. IGFPEMER is either waiting for:

1 - an interrupt indicating that the
channel path is cleared, or

3 - an interrupt indicating that I/O
is completed

Programmers seeing a wait state code in a PSW with this format can locate the
message that was to be displayed at the operator's console and the LOGREC
record that was to be written to SYS 1.LOGREC. At the time the wait state code is
loaded, Register 1 points to a 2-word parameter list. The first word contains the
address of the WTO message, the second word contains the address of the
LOGREC record.

With MVS/XA, installations can use the SMF step initiation exit (IEFUSI) to
specify region size and region limits. When IEFUSI changes the VSM region size
and region limits, MVS/XA records the change in an SMF type 30 record.
Therefore, if a job is cancelled for exceeding the limit when the JCL specified
adequate space, check for an SMF record indicating that IEFUSI changed the limit.
See "Limiting User Region Size using IEFUSI Instead of IEALIMIT" in Chapter 5
for a description of the IEFUSI enhancements.

Chapter 6. Problem Determination 6-23

I Diagnosing Checkpoint/Restart Errors

\ If an internal error occurs in Release 1.2, checkpoint/restart puts diagnostic
information into the SDWA for recording in SYS1.LOGREC. Checkpoint/restart
also issues an SVC dump to store selected dump information in a SYS1.DUMPxx
data set. The dump information includes:

• All storage currently allocated to checkpoint/restart
• Four K of storage on each side of each register
• Load modules
• The SDWA

Dumps obtained using SYSUDUMP or SYSABEND DD statements are not useful
for solving problems in checkpoint/restart. Use PRDMP instead to print dumps
that checkpoint/restart creates.

6-24 MVS/Exterided Architecture Conversion Notebook

Chapter 7. Accounting

Device Connect Time

This chapter contains information pertaining to accounting procedures. In general,
converting to MVS/XA does not require that you change your accounting
programs significantly, if at all. You do, however, need to examine accounting
programs to determine whether they will:

Execute successfully in MVS/XA. Most SMF records are the same or
compatibly expanded in MVS/XA. Therefore, in many cases, accounting
programs will work unchanged.

• Bill jobs the same whether executed on MVS/XA or MVS/370. After
MVS/XA is installed and operating, you can perform comparison runs
between your present system and MVS/XA. Depending on the results, you
might need to adjust your accounting or billing algorithms.

Although SMF reports additional measures of I/O activity and virtual storage
use, it continues to report the old data as well. In most instances, the data is
also derived the same way. Processor or CPU utilization times and EXCP
counts for application data sets are calculated as in MVS/370. EXCP counts
for program libraries, however, are slightly different. "Increases in EXCP
Counts for Program Fetch Activity" describes the differences.

The topics in this chapter describe some changes that might affect existing
accounting programs. Most of the information, however, describes new
measurements you will want to use in the future, after your MVS/XA system is
stabilized. The topics included are:

"Device Connect Time"
"New Fields Measuring Virtual Storage Use" on page 7-2
"SMF30PRV and SMF30SYS Fields" on page 7-2

• "Type 22 SMF Record Changes" on page 7-3
• "Increases in EXCP Counts for Program Fetch Activity" on page 7-3

"Summary of SMF Record Changes" on page 7-4
"SMF Compatibility Between Release 1.0 and Later Releases" on page 7-5

In addition to the EXCP counts available in MVS/370, SMF accumulates device
connect time for each data set defined by a DD statement, for each address space,
and for each command issued during a TSO session. Device connect time is similar
to channel busy time in MVS/370. It measures the amount of time during an I/O
operation that the channel subsystem is transferring data or control commands
(such as SEEK) on the channel path. Device connect time. is a more accurate
measure of actual device use than the number of physical blocks transferred (the
EXCP count).

Type 30 and 32 SMF records include new fields for reporting device connect time.
In type 30 records, the SMF30DCT field in the EXCP section indicates the device
connect time for a data set. The SMF30TCN field shows the total device connect
time for the address space. The SMF32TCT field in type 32 records reports the
total device connect time used while executing a command during a TSO session.

Chapter 7. Accounting 7 -1

If you currently obtain EXCP counts from type 4, 5, 34, or 35 records and plan to
use device connect time in MVS/XA, consider modifying those programs to obtain
EXCP counts from type 30 and 32 records instead. Changing the programs now
might ease the transition later. Device connect time is not reported in the other
records mentioned.

New Fields Measuring Virtual Storage Use

The storage and paging section of type 30 SMF records includes new fields that
report virtual storage use above and below 16 Mb. Eventually, you might want to
modify accounting routines that measure virtual storage to use the new data.
Many system control blocks have moved to virtual storage above 16 Mb. Also,
user programs will begin using storage above 16 Mb.

The new fields report:

The region size below and above 16 Mb (SMF30RGB and SMF30ERG)

• The maximum amonnt of virtual storage allocated from the LSQA and SW A
subpools below and above 16 Mb (SMF30ARB and SMF30EAR)

The maximum amount of virtual storage allocated from the user subpools below
and above 16 Mb (SMF30URB and SMF30EUR)

SMF30PRVand SMF30SYS Fields

The SMF30PRV and SMF30SYS fields continue to report private area use below
16 Mb. However, MVS/XA calculates the source for the fields differently than
MVS/370. In MVS/XA, SMF30SYS and SMF30PRV show the total number of
bytes (in 1 K units) allocated from subpools in the high and low ends of the private
area, respectively. The amounts do not include imbedded free blocks.

The MVS/370 values report the total number of bytes between the highest and
lowest addresses allocated from subpools in the high and low ends, respectively.
The amounts include any fr~e blocks imbedded in the respective ranges. Therefore,
the MVS/XA values might be lower than the MVS/370 values for the same job.

7-2 MVS/Extended Architecture Conversion Notebook

The following picture illustrates the differences between the MVS/XA and
MVS/370 values.

High end

allocations

Low end

allocations

1

{

Private Area Below 16 Mb

/ / / / / / / Free Block / / / / / / / /

/ / / / / / / Free Block / / / / / / / /

Field

SMF30SYS
SMF30PRV

MVS/XA Value

128K
552K

8192K

8092K

8012K

7984K

588K

240K

224K

20K

MVS/370 Value

208K
568K

Two new fields in the type 30 record (SMF30ARB and SMF30URB) report the
same data as the MVS/XA SMF30SYS and SMF30PRV fields, but in bytes
instead of 1 K units. SMF30ARB is equivalent to SMF30SYS. SMF30URB is
equivalent to SMF30PRV.

Type 22 SMF Record Changes

MVS/XA replaces the channel section of type 22 records with channel path
information. Therefore, you must at least reassemble existing programs that use
type 22 records. You might also want to modify the programs to use the new
channel path data.

Increases in EXCP Counts for Program Fetch Activity

The EXCP counts that SMF records for program fetch activity are likely to be
higher in MVS/XA than in MVS/370. In both systems, SMF records EXCP
counts in either the SMF30TEP field or, if a STEPLIB is used, in the SMF30BLK
field or the equivalent SMF4EXCP field. (SMF30TEP and SMF30BLK are type
30 SMF records; SMF4EXCP is a type 4 record.) If your installation uses any of
these fields to measure program fetch activity, you need to determine if the
increase affects you accounting programs.

The higher counts result from program fetch changes described in "Ensuring
Optimal Program Fetch Performance" in Chapter 8. MVS/XA records all fetch
I/O activity, whereas MVS/370 misses some. (For example, it appears that
MVS/370 does not count redrives caused by the need to fix additional storage.)

The MVS/XA Release 1.0 and 1.1 versions of program fetch count actual EXCPs.
In systems with Release 1.2 program fetch or its equivalent (the version obtained
by installing the PTF for APAR OZ75713 on Release 1.1), the EXCP counts for
non-overlay modules with correct RLD count values report the number of text
blocks transferred instead of actual EXCPs. These counts are likely to be the same
as the actual EXCP counts obtained in earlier MVS/XA releases. For overlay

Chapter 7. Accounting 7-3

modules the SMF counts in Release 1.2 and its equivalent are likely to be less than
in earlier MVS/XA releases, but more than in MVS/370.

Summary of SMF Record Changes

SMFRecord

Type 4

The following chart summarizes the SMF record changes. For more detail, see
SPL: SMF.

Release

1.0 1.1 1.2 Description of the Change

x In Release 1.2, the SMF4RSHO field is increased from 2
(Step Termination) bytes to 4 bytes to accommodate a region size greater than 16 Mb.

is moved from the beginning to the end of the storage and paging
section to avoid changing the offsets of other fields in the record.
You must recompile programs that use the SMF4RSHO field.

Type 6 (JES2 x Includes several new fields at the end of the 3800

It

(Output Writer) Printing Subsystem section. The new fields are meaningful only if the
3800 Printing Subsystem Model 3 is running under a functional
subsystem (FSS).

Type 22 x The channel section of the configuration record is
(Configuration Record) replaced by a channel path section. Also, the format of the storage

section is changed to report 31-bit counters and addresses.

Type 30 (Common x Includes additional fields described in "Device Connect Time" and
Address Space Work "New Fields Measuring Virtual Storage Use." One other new field
Record) in the completion section, SMF30ARC, reports the abend reason

code.

Also, MVS/XA calculates the values in the SMF30PRV and
SMF30SYS fields differently. See "SMF30PRV and SMF30SYS
Fields."

x In Release 1.2, the SMF30RGN field is increased from 2 bytes to 4
bytes to accommodate a region size greater than 16 Mb. It is moved
from the beginning to the end of the storage and paging section to
avoid changing the offsets of other fields in the record. You must
recompile programs that use the SMF30RGN field.

Type 32 (TSO User x Includes the device connect time per TSO user, in addition to the
Work Accounting existing data.
Record)

Type 34 (TSO x In Release 1.2, the TIVEFRGN field is increased from 2 bytes
Step Termination) to 4 bytes to accommodate a region size greater than 16 Mb. It is

moved from offset 74 to offset 82 to avoid changing the offsets of
other fields in the record. You must recompile programs that use the
TIVEFRGN field.

Types 4, 14, 15, 19,30, x The adjacent fields containing channel addresses
34, 40, 64, and 69 and unit addresses are combined to form a single field for a device

number.

Type 4, 30, 34 and 40 x VIO data sets are designated by the value X'7FFF' in the device
address field. MVS/370 uses the value X'OFFF', which is a valid
device number in MVS/XA.

Figure 7-1 (Part 1 of 2). SMF Record Changes

7 -4 MVS/Extended Architecture Conversion Notebook

Release

SMF Record 1.0 1.1 1.2 Description of the Change

Type 70-79 x The formats of these records have changed. As a result:

- Installations must use the post processor and report writers shipped
with RMF Version 3 to process Version 3 SMF records.

- Installations must modify user programs that process SMF records
70-79. RMF Reference and User's Guide describes the new format.
Most fields contain the same information in Version 3 as they did in
Version 2.

- The RMF Version 3 post processor can process SMF records
written by RMF Version 2 Release 2.2 (SE2 support) or later
levels. The post processor converts the old records to the new
format before processing them. Installations cannot assume that all
data in the old records appears in the converted records. Because
the contents of some records are changed (particularly those dealing
with I/O operations), the post processor omits some data from the
old records. The meanings of other fields have changed.

- Installations that require data in SMF records written by an earlier
level of RMF than RMF Version 2 Release 2.2 need to keep both
the records and the earlier level of the post processor.

All records x Bit 5 in the header is set to 1. The flag allows users to distinguish
MVS/XA records from MVS/370 records.

Figure 7-1 (Part 2 of 2). SMF Record Changes

I
I SMF Compatibility Between Release 1.0 and Later Releases

\ To improve performance, Release 1.1 changes SMF data set handling in two ways:

• When formatting an SMF data set, SMF fills it with dummy records instead of
binary zeros, as before. The dummy records are shorter than any valid SMF
record and contain the characters 'SMFEOFMARK'. The SMF dump
program, IFASMFDP, recognizes dummy records and terminates processing
when it encounters one. Thus, IFASMFDP no longer reads to the physical end
of file when processing partially filled data sets.

SMF uses a binary search rather than a linear search to find where to start
recording in a partially full data set. A binary search reduces the number of
control intervals read before finding the starting point.

The Release 1.1 changes are compatible. Release 1.0 and later versions of
IFASMFDP can read data sets with or without the SMF EOF marks. Although
you can use the same SMF data sets for all levels of the system, you need to
consider the following points:

• If you use the CLEAR or ALL options when running IFASMFDP, SMF
formats the SMF data sets according to the release level of IFASMFDP.

• When processing data sets that contain SMF EOF marks, the Release 1.0 level
of IF ASMFDP ignores the marks and reads every control interval to the end of
the data set. There is no performance gain. The Release 1.1 and later levels of
IFASMFDP recognize the SMF EOF marks and terminate processing. You
see the most significant performance gain when processing a large data set that
contains SMF EOF marks and is almost empty.

Chapter 7. Accounting 7-5

• When processing data sets that do not contain SMF EOF marks, all levels of
IF ASMFDP read every control interval to the end of the data set. There is no
performance gain.

• If you IPL a Release 1.0 system using SMF data sets that contain SMF EOF
marks, the data sets appear full during normal data set selection. The operator
must dump and clear at least one data set before SMF can begin recording.

• To find where to begin recording, the Release 1.1 level of SMF performs a
binary search, regardless of the data set's format. The Release 1.0 level always
performs a linear search. In neither case are any records lost.

• SMF initialization does not reformat any data set unless:

The data set has a bad control interval that caused an 110 error during the
previous IPL. The data set was taken out of service after the error
occurred, but the control interval is still bad.

The data set has just been allocated and has not been formatted.

In summary, you probably want to use the Release 1.0 level of IFASMFDP until
your more current system is in production. You thereby avoid the situation where
all SMF data sets appear full and, when running Release 1.1, you still have the
advantage of a binary search. You will not, however, see any performance
improvements during SMF data set processing,

7 -6 MVS/Extended Architecture Conversion Notebook

I

Chapter 8. Measurement and Tuning

This chapter includes topics related to performance:

"Ensuring Optimal Program Fetch Performance"
"Using a New Directory for LNKLST Data Sets" on page 8-7
"SMF Data Set Placement" on page 8-9

• "Using the ASM Backing Slot Function" on page 8-9
"Using Residency Time to Calculate the Page-in Rate of an Address Space"
on page 8-9
"Changes to ASM's Paging Algorithms" on page 8-9

I Ensuring Optimal Program Fetch Performance

\ Program fetch is rewritten in MVS/XA and further modified in Release 1.2. All
MVS/XA versions of program fetch can fetch the same modules as the MVS/370
version. However, for optimal performance, the Release 1.2 level of program fetch
requires:

•

•

A count value for each text block. The count value is the number of relocation
dictionary (RLD), control, and RLD/control records associated with the text
block.

Text blocks as large as the linkage editor allows for the output device.

"Recommended Actions" later in this topic describes how to modify program
libraries to attain optimal fetch performance. The changes have no effect on the
MVS/370 fetch process. The programs you can use to insert count values and
reblock modules are:

The linkage editors supplied with MVS/XA DFP, MVS/370 DFP, and DFDS
1.41.

The MVS/XA DFP and MVS/370 DFP versions of IEBCOPY. The
IEBCOPY in both MVS/370 DFP Release 1.1 and MVS/XA DFP Release
1.1 can insert count values in and reblock only non-overlay modules (modules
that are not in an overlay structure). The IEBCOPY in MVS/XA DFP
Release 1.2 and Release 1.1 with the fix for APAR OZ75717 installed can
insert count values in both overlay and non-overlay modules. However, you
need to use the linkage editor to reblock overlay modules.

You need to install the fix for APAR OZ57635 on DFDS 1.4 to obtain correct counts. Modules
link edited using the DFDS 1.4 linkage editor without the required PTF installed might contain
incorrect counts. Incorrect counts have no effect on the MVS/370 fetch process. However, they
degrade fetch performance in MVS/XA. If MVS/XA program fetch encounters an incorrect
count value, it issues message CSV300I and continues without using count values.

The steps described in "Recommended Actions" correct any incorrect counts. If you take those
actions, you need not separately search for and link edit modules with incorrect counts.

Chapter 8. Measurement and Tuning 8-1

\
I
I
I
I
I

Following are descriptions of how the new linkage editors and the MVS/XA
Release 1.2 versions of IEBCOPY and program fetch work. You can obtain
equivalent levels of IEBCOPY and program fetch on a system running MVS/XA
Release 1.1 by installing PTFs for the following AP ARs:

OZ75713

OZ75717

OZ76136

- Replaces program fetch

- Changes the AL TERMOD and COPYMOD functions

- Changes a sysgen macro to ensure that future sysgens correctly
include the new version of program fetch

Performance Related Changes to the Linkage Editor and IEBCOPY

The linkage editor and IEBCOPY programs identified earlier record the number of
relocation dictionary (RLD), control, and RLD / control records following each text
block. They put the record count following the first text block in the load module's
PDS directory entry. They record the counts for subsequent text blocks in the
RLD / control or control record immediately preceding the text block.

I Because the count values are located in existing fields that neither MVS/370
I program fetch nor previous linkage editors use, load modules containing count
I values are downward compatible.

I Performance Related Changes to Program Fetch

\ Release 1.2 program fetch reads in non-overlay modules differently from the way it
reads in overlay modules.

Fetching Modules that Are Not in an Overlay Structure

If valid counts are available, Release 1.2 program fetch reads one text record and
up to 48 associated RLD, control, or RLD/control records using a single I/O
operation. Program fetch uses PCTs to dynamically chain additional read
operations to the channel program whenever possible. The PCI processing in
Release 1.2 involves less disabled time than the PCI processing in MVS/370.

When the count values are invalid or missinr, program fetch issues one I/O request
for each text record and the first RLD or control record that follows, and one I/O
request for each additional RLD, control, or RLD/control record. Therefore, fetch
performance in MVS/XA depends on:

Whether or not valid count values are present.

• The size of each text block. It is best to have block sizes as large as the linkage
editor allows for the device type. The larger the block size, the more time
program fetch has to chain additional read requests to the currently executing
channel program. Chaining read requests improves performance by eliminating
the need to:

Initiate separate I/O requests
Perform SEEK operations if the access mechanism has been repositioned
Re-establish the rotational position required to begin the read operation

Fetching Modules that Are in an Overlay Structure

Release 1.2 program fetch reads each text record and the associated RLD, control,
or RLD/control records of an overlay module with one I/O operation. However,

8-2 MVS/Extended Architecture Conversion Notebook

Recommended Actions

program fetch does not use PCls to chain the read operations when fetching
overlay modules. Therefore, the text block sizes in overlay modules have a greater
effect on performance--the larger the text blocks, the fewer I/O operations
required to fetch the overlay segment.

You can improve fetch performance by inserting count values in modules that lack
them, and by reblocking modules. The method you choose for making the changes
depends on whether you are changing modules in an overlay or non-overlay
structure.

Changing Modules that are Not in an Overlay Structure

You can update non-overlay modules using new operations that the MVS/XA DFP
or MVS/370 DFP versions of IEBCOPY provide:

ALTERMOD simply inserts count values.

• COPYMOD copies modules from one library to another. In the process, it
inserts count values and reblocks the modules.

Using IEBCOPY with the COPYMOD parameter produces a new data set.
Therefore, after copying the modules, you need to scratch the original data set and
rename the new one.

The primary candidates for reblocking are:

SYSl.LINKLIB
SYSl.CMDLIB
Program libraries used by interactive applications (for example, CICS and IMS,
provided those programs use the standard program fetch)

Reblock the system libraries after constructing the system.

When using the IEBCOPY COPYMOD statement, you need to consider two
parameters, MAXBLK and MINBLK, which specify the maximum and minimum
block sizes IEBCOPY can create.

Take the default MAXBLK value to obtain the largest block sizes the linkage
editor supports for the device type.

Use a MINBLK value of 1 K. The initial default value for MINBLK is 1 K;
however, your installation might have changed it. MVS/XA Utilities describes
how to reset MINBLK.

Setting a small MINBLK default value might seem like a contradiction.
However, the MINBLK value affects only the size of the last data record on a
track. Because of the way program fetch chains read requests across tracks,
that record can be small without negatively affecting program fetch
performance.

You can also update modules by link editing them using any of the linkage editors
identified earlier. Unless you need to link edit a module for other reasons,
however, using IEBCOPY is easier.

Chapter 8. Measurement and Tuning 8-3

Changing Modules that are in an Overlay Structure

As stated earlier, you can improve fetch performance by inserting count values in
modules that lack them, and by reblocking modules. To insert count values in
overlay modules, you can use the same techniques as described for non-overlay
modules. However, the IEBCOPY COPYMOD function does not reblock overlay
modules. It only copies overlay modules and inserts count values. The IEBCOPY
ALTERMOD function works the same for modules in overlay and non-overlay
structure.

To reblock and insert count values in overlay modules, you can use one of the
linkage editors identified earlier. Note that, to link edit overlay modules, you must
provide the link edit control statements required to create the overlay structure.
Use the maximum block size the linkage editor allows for the device type.

Increasing the Size of the Page-fixed Area

Some MVS/370 installations improve fetch performance by increasing the amount
of virtual storage program fetch fixes at one time. They make the change by
adjusting a constant value within the page fix program. Because ~1VS/XA
program fetch fixes 96 K at one time, the equivalent modification is not required in
MVS/XA. (MVS/370 program fetch fixes 18 K. MVS/370 DFP program fetch
fixes 64 K.)

Maintaining Count Values and Optimal Block Sizes

To maintain count values and optimal block sizes when link editing the modules
you modify, always use one of the linkage editors listed earlier. In addition, ensure
that the linkage editor constructs the largest possible block size for the device being
used. "Assembling and Link Editing Programs" in Chapter 8 describes additional
maintenance considerations. The following figure summarizes how different
versions of program fetch, IEBCOPY, and the lipkage editor handle modules with
and without count values.

8-4 MVS/Extended Architecture Conversion Notebook

INPUT PROGRAM OUTPUT /COMMENTS

A load module MVS/XA DFP linkage editor A load module with count values
without count inserted. Depending on the JCL used
values MVS/370 DFP linkage editor and other linkage editor contraints,

the text records might also be
DFDS 1.4 linkage editor with reblocked.
the required PTF installed

Earlier version·s of the linkage A load module without count values.
editor Depending on the J CL used and other

linkage editor constraints,
the text records might also be
reblocked.

The ALTERMOD or COPYMOD A load module with count values
functions of the IEBCOPY inserted. If COPYMOD is used,
program in MVS/XA DFP a non-overlay module might also
Release 1.2 or Release 1.1 with be reblocked.
the required PTF installed

The ALTERMOD or COPYMOD A non-overlay load module has
functions of the IEBCOPY count values inserted; an
program in MVS/370 DFP overlay module does not. If
Release 1.1 COPYMOD is used, a non-overlay

module might also be reblocked.

Earlier versions of IEBCOPY A load module without count values.
The module is not reblocked.

MVS/XA program fetch In some cases, you might observe
program fetch performance
degradation.

MVS/370 program fetch No change. .' ,

A load module MVS/XA DFP linkage editor A load module with count values
with count inserted. Depending on the J CL used
values MVS/370 DFP linkage editor and other linkage editor constraints,

the text records might also be
DFDS 1.4 linkage editor with reblocked.
the required PTF installed

Earlier versions of the linkage A load module without count values.
editor Depending on the JCL used and other

linkage editor constraints,
the text records might also be
reblocked.

The ALTERMOD or COPYMOD A load module with count values
functions of the IEBCOPY inserted. If COPYMOD is used,
program in MVS/XA DFP a non-overlay module might also
Release 1.2 or Release 1.1 with be reblocked.
the required PTF installed

The ALTERMOD or COPYMOD A non-overlay load module has
functions of the IEBCOPY count values inserted; an
program in MVS/370 DFP overlay module does not. If
Release 1.1 COPYMOD is used, a non-overlay

module might also be reblocked.

Earlier versions of IEBCOPY The count values remain. The
module is not reblocked.

MVS/XA program fetch Depending on the text record lengths,
program fetch might perform at its
best.

MVS/370 program fetch No change.

Figure 8-1. Processing Load Modules

Chapter 8. Measurement am::i Tuning 8-5

Factors Affecting Text Block Sizes

Several fact<?rs affect how the linkage editor determines text block sizes:

The REGION parameter on the JOB and EXEC JCL statements and on the
EXEC statements in SYS 1.PROCLIB. The default REGION values defined
for the installation can also affect the text block size.

The values specified for the 'SIZE= (valuel ,value2) , parameter on the LKED
EXEC statement. The SIZE values specify the amount of virtual storage the
linkage editor is to use.

• The block size of the previously allocated output library identified on the
SYSLMOD DD statement.

The DCBS option on the PARM parameter of the LKED EXEC statement.
Using DCBS allows you to override the block size originally specified for the
output data set.

The block size of the intermediate data set (the data set named on the SYSUTI
DD statement). The linkage editor determines the intermediate data set's
block size based on several factors, including the device type.

• The block size of the:

Primary input data set (named on the SYSLIN DD statement)
Automatic call library (named on the SYSLIB DD statement)
The diagnostic output data set (named on the SYSPRINT DD statement)

• The DC option on the LKED EXEC statement. DC causes the linkage editor
to construct text blocks of 1 K or less.

• The sizes of the control sections (CSECTs) and named common areas being
combined into one load module. When building a text record, the linkage
editor puts mUltiple CSECTs and named common areas into the same record,
until it runs into a CSECT or named common area that does not completely fit.
The linkage editor then truncates that text record and begins a new one. It
never splits CSECTs or named common areas across text records that contain
other CSECTs or named common areas.

That restriction also applies if a CSECT or named common area is larger than
the maximum text block allowed. The linkage editor does not put any other
CSECT or named common area in the last text record occupied by the large
CSECT or named common area. Because of this restriction, text records are
not always uniform in size or as large as the linkage editor allows for the output
device.

The linkage editor uses all of these controls to determine the maximum block size.
Poorly chosen values can force the linkage editor to build text blocks smaller than
necessary. Therefore, you need to carefully consider any that you specify. The
Linkage Editor and Loader describes how the linkage editor determines block size
and how you can control it.

8-6 MVS/Extended Architecture Conversion Notebook

Following are some of the more common reasons less-than-optimal block sizes are
produced:

The REGION value is too small. Unlike the MVS/370 linkage editor, the
MVS/XA version does not execute in an overlay environment. Therefore, it
requires 32 K more virtual storage than the MVS/370 linkage editor. Because
of the additional storage requirement, the link edit step might fail or the linkage
editor might be forced to build smaller text blocks than would the MVS/370
linkage editor.

The values specified on the SIZE parameter cause an inadequate output buffer
length.

• The intermediate data set (SYSUT1) supports a smaller maximum record length
than the output data set (SYSLMOD).

• The data set was copied from a different type of device and not link edited
again. For example, a data set was copied from a 3330 device to a 3350
device. (Text records cannot exceed 12 K on 3330 devices; 3350 devices
allow 18 K records.)

The SYSLMOD DD statement specifies a less-than-optimal BLKSIZE value.

I Using a New Directory for LNKLST Data Sets

\ A new LNKLST lookaside (LLA) function in Release 1.1 creates and maintains a
directory of modules in the LNKLST concatenation. BLDL can use the new
directory instead of the PDS directories or the BLDL table to locate modules in the
LNKLST concatenation. Because the new directory is hashed and resides in the
new LLA address space, using it has several advantages:

You no longer need to tune the LNKLST concatenation for optimal
performance, nor do you need to maintain BLDL lists. The order in which
data sets are concatenated does not affect the time required to search hashed
directories. Because the new directory is in storage, BLDL lists are
unnecessary.

The new directory eliminates the channel and device contention that occurs
when searching PDS directories.

• Data sets in the LNKLST concatenation no longer have to be APF authorized.
Consequently, you can include unauthorized data sets formerly included in
STEP, JOB, and TASK libraries. The procedure for including unauthorized
data sets is described later.

The LNKLST concatenation can include up to 123 data sets. Earlier MVS
releases allow a maximum of 16.

You can update the LLA directory without performing an IPL. Adding or
changing entries in the BLDL table requires an IPL. New commands for
updating the directory are described later.

You can control the amount of paging done for the LLA directory by putting
the LLA address space in a separate SRM performance group and adjusting its
working set size.

Chapter 8. Measurement and Tuning 8-7

I Starting the LLA Function

\ You might not have to do anything to start the LLA function. The IEACMDOO
PARMLIB member shipped with Release 1.1 contains a new command, START
LLA, which starts a new LLA procedure in SYS 1.PROCLIB. The new procedure,
in turn, causes the system to build and begin using the LLA directory.

If you use an IEACMDxx member other than IEACMDOO, ensure that it includes a
START LLA command. Also ensure that the SYS1.PROCLIB data set you use
includes the LLA procedure. In addition, if you want to include unauthorized data
sets in the LNKLST concatenation, you must specify the new LNKA UTH system
parameter, as described in the following topic. The default is to treat all modules
fetched via the LNKLST concatenation as APF authorized, which is consistent
with earlier releases.

Including Data Sets that Are Not APF Authorized

Updating the' LLA Directory

The new LNKAUTH system parameter has two values:

LNKAUTH=APFTAB - The system treats only those data sets named in the APF table as APF
authorized.

LNKAUTH=LNKLST - The system treats all data sets in the LNKLST concatenation as APF
authorized, regardless of whether their names are in the APF table.
LNKLST is the default.

To include data sets that are not APF authorized in the LNKLST concatenation:

Either include LNKAUTH=APFT AB in the appropriate IEASYSxx PARMLIB
member or have the operator specify it when prompted for system parameters.

Include in the APF table all LNKLST modules to be APF authorized.

Note that the APF authorization established at IPL time remains in effect for the
duration of the IPL, even if the LLA function is stopped.

To add or change an entry in the new directory, either:

• Issue a MODIFY LLA,REFRESH command to refresh the directory.

• Stop the LLA function by issuing the STOP LLA command, then build a new
directory by issuing a START LLA command.

Unless your installation shares LNKLST data sets among multiple systems, the first
method is preferable. The system can refresh the directory without interrupting its
use. Stopping the LLA function causes BLDL to search the PDS directories
instead of the LLA directory, which can degrade performance.

If more than one system shares the LNKLST data sets, the second method might
be better. It allows you to synchronize directory updates. Operators stop the LLA
function on all systems, then restart it via the LLA START command.

8-8 MVS/Extended Architecture Conversion Notebook

I SMF Data Set Placement

I
I
I
I
I
I

\ If the device on which an SMF data set resides requires intervention, SMF can
generate a large backlog of records while the device is unavailable. Changes in
Release 1.1 can alleviate the backlog, provided you do not put all SMF data sets on
the same device. If a system with Release 1.1 installed detects that SMF is not
writing from buffers, it attempts· to use another SMF data set. However, moving to
another data set solves the problem only if that data set is on another device.

I Using the ASM Backing Slot Function

I
I

\

\

~

In Release 1.2, the constants that control the number of slots ASM reserves as
back up for each new address space or VIO data set are changed to prevent ASM
from reserving any. The changes were made because most installations provide
adequate paging space and prefer not to use the backing slot function to limit
address space and VIO data set creation.

If your installation wants ASM to reserve backing slots, you need to change the
constants. In Release 1.2, the constants are in the ASMSLOTC and ASMSLOTV
fields in the ASJ\1VT. ASM uses the ASMSLOTC value when calculating the
number of slots to reserve for address spaces. It uses the ASMSLOTV value when
calculating the number for VIO data sets. Earlier releases keep the same values in
the nucleus CSECTs ILRSLOTC and ILRSLOTV. Initialization and Tuning
describes how ASM uses ASMSLOTC and ASMSLOTV and how to change them.

Using Residency Time to Calculate the Page-in Rate of an Address Space

If your installation is at the Release 1.2 level, you can request that SRM use
residency time instead of execution time when calculating the page-in rate for
address spaces ina specified performance group. However, SRM continues to base
the page-in rate for cross memory address spaces on elapsed time. Previously, the
system used execution time only, except in the case of cross memory address
spaces.

Basing the rate on residency time allows the system to decrease the target working
set size of an address space while the address space is inactive. Because most
installations prefer to maintain minimum working sets for swappable address
spaces, requesting residency time calculations is an option mainly for address
spaces that are non-swapp able.

Basing the rate on execution time protects the frames in the working set while the
address space is inactive. The system adjusts the target working set size only while
the address space is active. While the address space is inactive, the target size
remains the same as when last calculated.

To request that SRM use residency time, use the new IPS parameter, PPGRTR.
PPGRTR specifies the high or low limit the rate must exceed before SRM adjusts
the address space's working set size. Previously, PPGRT and CPGRT were the
only parameters for specifying page-in thresholds.

Changes to ASM's Paging Algorithms

The Release 1.2 level of ASM uses different algorithms for selecting local page
data sets and slots on page data sets. The changes are designed to make the paging
process more efficient and might result in less tuning effort on your part.

Chapter 8. Measurement and Tuning 8-9

I Changes to the Data Set Selection Algorithm

\ The new data set selection algorithm distributes paging 110 more evenly among
local page data sets. ASM continues to maintain the same three circular queues of
control blocks representing local page data sets: one for local page data sets on
cached auxiliary storage subsystems, one for data sets on fixed-head devices, and
one for data sets on movable-head devices. As before, ASM tries to write first to a
data set on a cached auxiliary storage subsystem. However, instead of picking the
next available data set that contains free space, ASM now also considers the
responsiveness of the device and might avoid unresponsive data sets.

ASM begins searching at the data set following the one last selected from the
queue. ASM considers each data set on one queue before continuing to the next
queue.

Changes to the Slot Selection Algorithm

The new slot selection algorithm tries to reduce device arm movement and seek
time by concentrating paging 110 toward the front of the data set.

8-10 MVS/Extended Architecture Conversion Notebook

Chapter 9. Coexistence Considerations

Running both MVS/370 and MVS/XA in the same installation is referred to as
coexistence. Installations maintain coexistence because they:

Have processors that support only MVS/370
Must use one type of operating system as backup for the other

Most installations will maintain some form of coexistence during the migration
period. Many will continue to run both operating systems for some time after
MVS/XA is established as a production system.

MVS/370 and MVS/XA can coexist either as independent operating systems
running on different processors, as independent operating systems that alternately
run on the same 308x processor, or as loosely-coupled operating systems.

In a loosely-coupled JES3 configuration or in a JES2 multi-access spool
environment, MVS/370 and MVS/XA must have the same level of JES installed.
The JES3 component in MVS/SP Version 1 Release 3.1 with PTFs installed is
functionally equivalent to the JES3 component in MVS/SP Version 2. "Installing
the JES2 Component of MVS/SP - JES2 Version 2" in Chapter 2 identifies
functionally equivalent JES2 components.

In all types of coexistence, the major objectives are to:

• Maintain programs that can run on either system.

• Insome cases, ensure that MVS/370 can run the MVS/XA workload or that
MVS/XA can run the MVS/370 workload in backup situations.

When MVS/XA and MVS/370 systems are loosely-coupled, installations have
some additional considerations, including:

Ensuring that jobs that must run on a particular system are routed to that
system

Determining which data sets can be shared

Reviewing DSI procedures

This chapter includes information related to these topics.

Maintaining Programs that Can Run on Both MVS/370 and MVS/XA Systems

Topics in this section describe:

Instructions for assembling and link editing programs that must run on both
MVS/370 and MVS/XA systems

• Criteria for ensuring that programs can run on both systems

• Ways to avoid unnecessary 24-bit dependencies in new programs

Chapter 9. Coexistence Considerations 9-1

Instructions for using the SPLEVEL macro to generate compatible expansions
of fourteen downward incompatible macros

• Two methods of ensuring that programs using the SYNCH macro can run on
both MVS/370 and MVS/XA systems

Assembling and Link Editing Programs

In a mixed installation, use Assembler H Version 2 to assemble all programs that
use new 370-XA instructions or that are to be run in 31-bit addressing mode. Use
the linkage editor in either DFDS Release 1.4 (with the PTF for APAR OZ57635
installed), MVS/XA DFP, or MVS/370 DFP to link edit programs that will be run
on the MVS/XA system in 24-bit addressing mode. Using one of those linkage
editors is important for fetch performance reasons, as described in Chapter 8. Use
the MVS/XA linkage editor to link edit programs that are to be run in 31-bit
addressing mode.

The MVS/XA linkage editor is the only one that inserts AMODE and RMODE
indicators in CESD entries for load module CSECTs and in the partitioned data set
(PDS) entries for load modules. The linkage editors in OS/VS2 MVS and DFDS
do not support AMODE and RMODE indicators.

• They do not insert or retain the AMODE and RMODE indicators in the PDS
directory entry. If a load module is link edited using one of those linkage
editors, any AM ODE or RMODE indicators already in the PDS directory entry
are deleted.

• The same linkage editors ignore any AMODE or RMODE indicators in the
ESD or CESD. Indicators already present remain unchanged. New ones are
not inserted. (Assembler H Version 2 and selected HLL compilers~ not the
linkage editor, insert AMODE and RMODE indicators in the ESD entries of
object modules.)

"Establishing a Program's Addressing Mode" in Chapter 3 describes how AMODE
and RMODE indicators are inserted and used in more detail.

Guidelines for Ensuring Program Compatibility

If a program is to run on both MVS/370 and MVS/XA systems, the program
must:

Perform the desired function on both systems. A program might execute
without error on both systems, but not produce the desired results (for
example, an SMF post processor that analyzes data that has different formats
in MVS/XA and MVS/370).

Use the MVS/370 expansion of macros whose MVS/XA expansions do not
work on MVS/370 systems. There are fourteen such macros. "Handling
Downward Incompatible Macros" lists them and describes ways of obtaining
the appropriate expansion. In some cases, the SYNCH macro is also
downward incompatible. See "Downward Incompatible SYNCH Macros" for
details.

• Not use new MVS/XA function. New function includes new instructions, new
macros, and new parameters, keywords, or options on existing macros.
Exceptions are the new LOC, VRC, and VRU parameters on the GETMAIN

9-2 MVS/Extended Architecture Conversion Notebook

macro and the AMODE=24 parameter on SYNCH. Those parameters
generate object code that works on MVS/370 systems. See "New Parameters
on the GETMAIN Macro Instruction" in Chapter 3.

• Use only system services that are supported in both MVS/370 and MVS/XA.
Chapter 3 identifies functions not supported in MVS/XA.

• Provide dual paths for functions that are not compatible between MVS/370
and MVS/XA and dynamically select the proper path at execution time. Bit 0
in the CVTDCB field of the CVT indicates whether MVS/XA is executing.
(If it is, bit 0 equals 1.) The MVS/XA CVT map defines the bit as
CVTMVSE. Method 3 in "Handling Downward Incompatible Macros" shows
the dual path section of a sample program.

If the program uses non-standard interfaces to system modules or uses system
control blocks, you must also ensure that:

• Methods of invoking system services work in both MVS/370 and MVS/XA.
• Control block references can be used in both MVS/370 and MVS/XA.

Some programs require different versions to run in MVS/370 and MVS/XA (for
example, RMF analysis routines). Installations can either:

Keep each version of the program in a separate library.

• Keep both versions of the program in the same library, but give each a different
name.

• Rewrite the program so that it has dual paths and dynamically selects the
proper path at execution time, as mentioned earlier.

Guidelines for Developing New Programs

When designing new programs that must run on both MVS/370 and MVS/XA
systems, avoid unnecessary 24-bit dependencies in programs that might be
executed in 31-bit mode:

Use fullword address fields, even if the value in the field is below 16 Mb.

Avoid using the load address (LA) instruction to clear the high-order byte. In
31-bit mode, the LA instruction clears only the high-order bit, not the entire
byte, as it does in 24-bit mode.

• When coding BAL or BALR, avoid using the information saved in the
high-order byte of the first operand (the instruction length code, program
mask, and condition code). When executed in 31-bit mode, BAL and BALR
do not save that information. 370-XA processors provide a new instruction,
IPM (Insert Program Mask), which saves the program mask and condition code
when executing in 370-XA mode.

• Use EST AE instead of ST AE. ST AE is not changed to support 31-bit
addressing.

• When obtaining large amounts of storage, use the VRU, VRC, RU, and RC
forms of GETMAIN and FREEMAIN. These forms support a new LOC

Chapter 9. Coexistence Considerations 9-3

parameter, which allows users to specify from where virtual storage is to be
obtained and how it is to be backed when fixed. See "New Parameters on the
GETMAIN Macro Instruction" in Chapter 3.

In contrast, VSM satisfies the LC, LU, VC, VU, EC, EU, and R forms of
GETMAIN requests with virtual storage below 16 Mb. Also, when fixing
storage obtained via those forms of GETMAIN, RSM always uses real storage
below 16 Mb.

The following macros are not changed to provide full 31-bit support. MVS/XA
provides new services instead. You might want to use dual paths when using any of
these services:

• PGFIX, PGFREE, PGRLSE, PGLOAD, and PGOUT. A new PGSER macro
provides the equivalent services and supports 31-bit addresses.

• SPIE. ESPIE is the MVS/XA counterpart.

Handling Downward Incompatible Macros

Most of the MVS/XA expansions of previously existing macro instructions run on
both MVS/370 and MVS/XA systems (that is, the macro instructions are
downward compatible). The following macro instructions are exceptions. The
MVS/XA expansions of these macros will not run on an MVS/370 system.

ATTACH
CHKPT
ESTAE
EVENTS
FESTAE
INTSECT
SCHEDULESCOPE=GLOBAL
SDUMP if it specifies new parameters

SETFRR INLINE= YES
SETLOCK RELEASE,TYPE=(reg)/ ALL
SMFEXIT
STAX
STIMER
SYNCH, unless it specifies the parameter AMODE=24
WTOR

To share user-written programs among MVS/370 and MVS/XA systems and to
have backup capability while migrating to MVS/XA, users must be able to override
the downward incompatible macro expansions with macro expansions that will run
on both MVS/370 and MVS/XA systems. MVS/XA provides that capability for
all of the macros listed, except SYNCH. (See "Downward Incompatible SYNCH
Macros" for instructions on maintaining SYNCH compatibility.)

The MVS/XA MACLIB contains two different expansions for all of the above
macros, except SYNCH: an MVS/SP Version 1 Release 3 expansion and an
MVS/XA expansion. Note that the source statements that invoke the macro
instructions remain the same, only the expansions are different for the two
environments. The Version 1 expansions run on both MVS/370 systems and
MVS/XA systems executing programs in 24-bit addressing mode. The MVS/XA
expansion is required when using any new parameters or options on the above
macros. In most cases, the MVS/XA expansion is also required when executing in
31-bit addressing mode. (SCHEDULE, SDUMP, and SETLOCK are exceptions.)

The level of the macro expansion (MVS/370 or MVS/XA) that is generated
during assembly depends on the value of an assembler language global SET
symbol. When the SET symbol value is one, the system generates MVS/370
expansions. When the SET symbol value is two, the system generates MVS/XA
expansion~.

9-4 MVS/Extended Architecture Conversion Notebook

MVS/SP Version 2 includes a new macro, SPLEVEL, which allows programmers
to change the value of the SET symbol. When SPLEVEL itself is assembled, it
assigns a value to the SET symbol. That value becomes the default value for the
entire installation.

The SPLEVEL macro shipped with MVS/SP Version 2 assigns a SET value of 2.
Therefore, unless a program specifically changes the SET value, the assembler
generates MVS/XA macro expansions.

Your installation can change the SET value shipped with MVS/SP Version 2, or
individual programmers can override the SET value in particular programs:

• To change the SET value for the entire installation, after sysgen, modify the
SPLEVEL source code in SYS 1.MACLIB. Change the statement that assigns
the SET value: '&DEFAULT SETC n', where 'n' is 1 or 2. Note that when
assembling MVS/XA system programs, either at sysgen or when applying
service, the SET value must be 2. (MVS/XA expansions are required.)

Programmers can issue within a program the SPLEVEL SET=n macro, where
n equals 1 to obtain MVS/370 expansions, or 2 to obtain l\1VS/XA
expansions. The SPLEVEL macro sets the symbol to the specified value for
that program's assembly only. Thus, issuing the SPLEVEL macro only affects
expansions within the program being assembled. A single program can include
multiple SPLEVEL macros to generate different macro expansions.

Obtaining the Appropriate Macro Expansions

Following are three ways programmers can use SPLEVEL to obtain the
appropriate macro expansion within their programs. Methods 1 and 2 generate
different expansions in different programs (for example, MVS/370 expansions in
Program A and MVS/XA expansions in Program B). Method 3 generates
different expansions within the _same program:

Method 1 - Obtaining different expansions in different programs

Keep the SPLEVEL macro shipped with MVS/SP Version 2 in the SYS1.MACLIB
macro library. Put a copy of SPLEVEL into another macro library by itself, and
change the source code to establish SET = 1 as the installation default. When
assembling programs, use JCL to access the appropriate macro library.

In the following example, the SPLEVEL macro that establishes SET = 1 as the
installation default is by itself in the SETIMACS macro library.

To assemble the MVS/XA expansions in programs, use:

IISYSLIB DD DSN=SYS,1. MACLIB, DISP=SHR

To assemble MVS/370 expansions, use:

IISYSLIB DD DSN=SET1MACS,DISP=SHR
II DD DSN=SYS1.MACLIB,DISP=SHR

You can, of course, switch the SPLEVEL macros and put the one that establishes
SET = 1 as the installation default in SYS 1.MACLIB.

Method 2 - Obtaining different expansions in different programs

Chapter 9, Coexistence Considerations 9-5

Issue the SPLEVEL SET=n macro once at the beginning of the module to obtain
the appropriate expansions:

MODULE CSECT
SPLEVEL SET=1

Method 3 - Obtaining different expansions within the same program

Assemble both levels of the macro and make an execution-time test to determine
which level to execute. The following example invokes the correct level of the
WTOR macro:

* DETERMINE WHICH SYSTEM IS EXECUTING
TM CVTDCB,CVTMVSE (CVTMVSE is bit a in
BO SP2 the CVTDCB field. It

indicates whether
MVS/XA is executing.)

* INVOKE THE MVS/370 VERSION
* OF THE WTOR MACRO INSTRUCTION

SPLEVEL SET=1
WTOR
B CONTINUE

SP2 DS OH

* INVOKE THE MVS/XA VERSION
* OF THE WTOR MACRO INSTRUCTION

SPLEVEL SET=2

* WTOR
CONTINUE DS OH

Determining Which Level of the Macro Instruction to Use

• You can use a SET value of 2 when you assemble programs that will be run
only on MVS/XA systems, regardless of whether they will run in 24- or 31-bit
addressing mode.

Programs that must run on both MVS/370 and MVS/XA systems must
assemble at least MVS/370 macro expansions. (Programs with dual paths
assemble the MVS/XA expansions as well.)

Programs that are designed to run on both MVS/370 and MVS/XA systems
and that require MVS/XA expansions on the MVS/XA system must obtain
both expansions and determine at execution time which level to execute. (See
Method 3 in the previous examples.)

When assembling MVS/XA system programs, either at sysgen or when
applying maintenance, the SET value must be 2 (that'is, MVS/XA expansions
are required).

Programs that run on MVS/XA systems in 31-bit addressing mode must use
the MVS/XA expansions of the following downward incompatible macros:

ATTACH
ESTAE
EVENTS

9-6 MVS/Extended Architecture Conversion Notebook

FESTAE
INTSECT
SMFEXIT

STAX
STIMER
WTOR

• Programs that specify any new parameters, keywords, or options on the macros
must use the MVS/XA expansions.

Downward Incompatible SYNCH Macros

Backup Considerations

In some cases, programs that use the SYNCH macro and are assembled using the
MVS/XA MAC LIB will not rU,n on an MVS/370 system. The downward
incompatible programs are those that do NOT specify the parameter AMODE=24
on SYNCH (that is, programs that either omit the AMODE parameter or specify
AMODE=31, AMODE=DEFINED, or AMODE=CALLER).

Unless SYNCH specifies AMODE=24, after assembly, the SYNCH macro
expansion contains a nonzero value in a previously reserved field in the SYNCH
parameter list. The MVS/XA expansion uses that field as an AMODE indicator.
The MVS/370 SYNCH processor treats the nonzero field as an error and issues
ABEND x'206'.

If a program that issues SYNCH must run on both MVS/XA and MVS/370
systems, you need to ensure that the AMODE indicator field in the SYNCH
parameter list is zero. You can either:

Use the MVS/370 MACLIB when assembling the program.

Specify the parameter AMODE=24 on the SYNCH macro and use the
MVS/XA MACLIBfor assembly.

Following are backup considerations for installations that must use an MVS/370
system as backup for an MVS/XA system, or use an MVS/XA system as backup
for an MVS/370 system:

For program products that have separate licenses for MVS/370 and MVS/XA,
installations need both licenses for backup capability. Such programs include:

RMF Version 2 and RMF Version 3
MVS/SP Version 1 Release 3 or later releases and MVS/SP Version 2

• User-written programs that access system control blocks or that use authorized
services and interfaces might not run on both MVS/370 and and MVS/XA
systems. If such programs are not compatible between systems, the installation
is without backup capability.

• The size of the available private area increases in MVS/XA. Installations that
use the additional private area will have to reevaluate the capability of using an
MVS/370 system for backup.

When using the same 308x processor for backup, installations need to ensure
that the backup system can use the current system's IOCDS. The
370/370-XA IOCP can create an IOCDS that can be used in either 370 or
370-XA mode. See "Creating a New IOCnS" in Chapter 2 for more
information.

• Installations need to have a procedure defined for changing processor modes
and for changing the IPL volume.

Chapter 9. Coexistence Considerations 9-7

On the MVS/370 system, use DFDSS or an equivalent product instead of
IEHDASDR or DRWDASDR to produce backup tapes that might need to be
restored on an MVS/XA system. Neither IEHDASDR nor DRWDASDR are
available in MVS/XA. You must use DFDSS or an equivalent function to
perform dump/restore operations in MVS/XA. DFDSS cannot use the dump
format [hat IEHDASDR or DRWDASDR produces.

MVS/XA can support a larger workload than MVS/370. An MVS/370
system might not be able to support the MVS/XA workload.

Routing Jobs in a Mixed JES2 or JES3 Complex

When MVS/370 and MVS/XA systems are loosely-coupled, installations must
ensure that JES routes jobs that must run on a particular systefil to that system (for
example, jobs that use new MVS/XA function).

If a job needs a device that is attached to only one processor, JES3 automatically
routes the job to that processor. To ensure the proper job-system match in other
situations, installations and programmers can use existing job routing procedures:

An installation can define specific execution job classes for jobs that must run
on MVS/XA, for jobs that must run on MVS/370, and for jobs that can run
on either system. The installation then associates each job class with the
appropriate processor. Users ensure that their jobs run on the appropriate
system by specifying the CLASS= parameter on the job's JCL. JES2 users
specify the CLASS= parameter on the JOB statement. JES3 users specify it
on the / /*MAIN or / /JOB statement.

Note: Routing by job class works only in situations where processors are
always running the same operating systems when the job routing takes place.
For example, if Job A specifies CLASS=XA, the processor associated with
class XA must always be running MVS/XA when Job A executes.

• If a user knows which operating system is running on a processor, the user can
specify on the job's JCL the processor on which the job is to run. JES2
programmers use the SYSAFF parameter on the /*JOBPARM statement.
JES3 programmers use the SYSTEM parameter on the / /*MAIN statement.

TSO users that require a particular system must log on and submit started tasks to
that system.

See SPL: JES2 Initialization and Tuning or SPL: JES3 Initialization and Tuning
for more information.

Using Global Resource Serialization

The global resource serialization components of MVS/SP Version 2 and MVS/SP
Version 1 Release 3 and later releases are compatible. Therefore, loosely-coupled
MVS/XA and MVS/370 systems can use global resource serialization to control
data sharing. The RESERVE/DEQ functions are also compatible.

9-8 MVS/Extended Architecture Conversion Notebook

I

In general, the fact that a global resource serialization complex includes mixed
systems does not impose additional restrictions on the types of data sets that can be
shared. Depending on the level of the systems in the complex, you might need to
modify the RNLs to ensure that VSAM data sets are shared properly. See
"Serializing VSAM Data Sets" in Chapter 5 for more information. Also read
"Updating SYSTEMS Exclusion RNLs" in the same chapter. Global Resource
Serialization describes data set sharing in general.

MVS/XA systems and MVS/370 systems that have MVS/370 DFP installed can
share VSAM and CVOL catalogs. If Data Facility Extended Function
(5740-XYQ) is also installed on the MVS/370 system, the systems can share ICF
catalogs as well.

System Data Sets that Cannot be Shared

MVS!XA and MVS/370 systems cannot share the following system data sets:
SYS1.LINKLIB, SYS1.LPALIB, SYS1.NUCLEUS, and SYS1.SVCLIB.
MVS/370 systems cannot use the MVS/XA SYS1.PARMLIB data set as shipped.
Installations also need two versions of SYS 1.MACLIB. The MVS/XA system
requires the MVS/XA expansions of downward incompatible macros. Also, some
mapping macros are unique to MVS/370 or MVS/XA.

I Using SYSl.PROCLfB in a Loosely-coupled JES3 Configuration

\ All converter-interpreter (CI) processing in a loosely-coupled JES3 configuration
occurs on one processor. When converting jobs that execute procedures, the
system performing CI processing uses the procedures in its own PROCLIB, not
necessarily those in the PROCLIB of the system that will run the job.

In a loosely-coupled configuration that includes both MVS/370 and MVS/XA
systems, you need to ensure that the processor performing the CI service uses the
procedure appropriate for the system that will run the job. If the procedure for
starting a task in MVS/370 is different from the equivalent MVS/XA procedure
(as is the RMF procedure), you need to either:

• Modify the procedure to work on both MVS/370 and MVS/XA systems.
• Maintain two procedures and change the name of at least one of them.

"RMF Procedure" in Chapter 2 describes how to create an RMF procedure that
starts either RMF Version 2 or Version 3.

DSf Procedures in a Loosely-coupled JES3 Configuration

If one of the processors involved in dynamic system interchange (DSI) is running
MVS/XA and the other processor is running MVS/370, you must ensure that:

The JES3. global function has sufficient devices that are supported by both the
MVS/370 and MVS/XA systems. "Devices Not Supported" in Chapter 2 lists
devices supported in MVS/370 but not in MVS/XA.

• Any user-written JES3 routine that must run on a particular system (either
MVS/370 or MVS/XA) is disabled before using DSI.

Chapter 9. Coexistence Considerations 9-9

9-10 MVS/Extended Architecture Conversion Notebook

Appendix A. Parameter Changes in Incompatible Macros

This appendix describes changes to the parameters that the following macros pass
to their service routines:

• ATTACH
• ESTAE
• EVENTS

SMFEXIT
• STAX
• STIMER

SYNCH
WTOR

You need to be concerned about the changes only if you have programs that invoke
the associated service routines directly (for example, by branch entry) instead of
using the macros. You need to modify the parameter lists that those programs
build.

To maintain compatibility, the MVS/XA service routines for all of macros listed
except SYNCH accept MVS/370 or MVS/XA parameters. In most cases, the
service routines check a flag bit (identified as FLAG BIT in the following figures)
to determine which format (MVS/370 or MVS/XA) the input parameters are in.
If the bit is 0, the parameters are in MVS/370 format. If the bit is 1, the
parameters are either in MVS/XA format or in the format indicated by a format
number somewhere in the parameter list. (The only defined format number is 1,
which indicates MVS/XA format.)

If you build your own parameters, ensure that the flag bit and, in some cases, the
format number correctly specify which version of the parameters you are passing to
the service routine.

Note: In the following figures, blank fields represent fields that are not changed.

AITACH Parameter List Changes

The FLAG BIT is the high-order bit of byte 8. The FORMAT NUMBER is byte
61.

Appendix A. Parameter Changes in Incompatible Macros A-I

MVS/370 MVS/XA

Flags Entry address Entry address

DCB address DCB address
or zeros or zeros

Flags ECB address ECB address

~FLAGBIT

Flags Give subpool Give subpool
number or number or
list address list address

Flags Share subpool Share subpool
number or number or
list address list address

Flags End-of -task End-of-task
exit routine exit routine
address address

Resv. JSCB address JSCB address

Task STAI or EST AI STAI or EST AI
ID parameter list parameter list

address address

Flags STAI or EST AI STAI or EST AI
routine address routine address

Resv. TASKLIBDCB TASKLIBDCB
address address

Flags Resv. Length of Flags Task Length of
parameter ID parameter
list list

Subpool number(s) Subpool number(s)

Flags FORMAT Reserved
NUMBER

ESTAE Parameter List Changes

The FLAG BIT is the low-order bit of byte 13.

MVS/370 MVS/XA

EST AE routine
address J Reserved

Reserved Reserved

~FLAGBIT

EST AE routine address

A-2 MVS/Extended Architecture Conversion Notebook

EVENTS Parameter Changes

The FLAG BIT is the fourth bit of byte 0 in Register O. The FORMAT NUMBER
is the second byte of Register O.

Register 0

Flags

Register 15

Not used

MVS/370

ECB address or
address of last
entry in EVENTS
table

MVS/XA

Register 0

FORMAT
NUMBER

~
FLAG BIT

Register 15

ECB address or
address of last
entry in EVENTS table

Reserved

SMFEXIT Parameter List Changes

If the user specifies a work register on the SMFEXIT macro, the macro sets bit six
of the parameter list to 1. In MVS/370, the bit is reserved. SMF uses the work
register to save and restore the caller's addressing mode.

STAX Parameter List Changes

STIMER Parameter Changes

The FLAG BIT is the bit 6 of byte 16. The FORMAT NUMBER is byte 17.

MVS/370 MVS/XA

FLAG BIT
~~

Flags I Address of
parameter list

Flags I FORMAT I Reserved
NUMBER

Address of parameter
list

The FLAG BIT is the high-order bit of byte O.

Register 0

Flags

Register 15

MVS/370

I Exit routine
address

Not Used

MVS/XA

Register 0

Reserved

FLAG BIT

Register 15

I Exit routine address

Appendix A.. Parameter Changes in Incompatible Macros A-3

I SYNCH Parameter List Changes

\ MVS/370 MVS/XA II Reserved II Reserved II
o r

AMODE flag

AMODE flags:

00 AMODE=24
01 AMODE=DEFINED
10 AMODE=31
11 AMODE=CALLER

For more information, see "Downward Incompatible SYNCH Macros" in Chapter
9.

WTOR Parameter List Changes

The FLAG BIT is the high-order bit of byte O.

MVS/370 MVS/XA

Reply I Address of reply
length buffer I Address of reply

buffer

~LAGBIT

Zero I Reply I length

A-4 MVS/Extended Architecture Conversion Notebook

Appendix B. Control Block Changes

Figure B-1 lists the control blocks that are new, changed, or deleted or that can
reside anywhere in virtual storage (above or below 16 Mb). If a control block can
reside anywhere, the figure indicates it might be above 16 Mb. If a control block's
virtual storage location depends on the caller, the notes column indicates that the
location is specified by the user. The figure does not include control blocks that are
not changed and that must reside below 16 Mb.

1111.!!h~1
~ '; "! ~ ~
~ ~ ~ 't:I ~IO 10 9 3j 3j & ~ ~~ ~~
~ CI1 CI1 $ t:: ~ !t $

Control Block ;f ! ! ~ a ~ ~~l Notes

ABDA (IHAABDA) x x x

x x x

ABDPL (IHAABDPL) x x x

x x x

ABEPL (IHAABEPL) x x x

AE (IHAAE) x x x

AMDDATA x x x

x x x

AMRQ (IHACTM) x x x

AQAT (IHAAQA T) x x x

AQE (IHAAQE) x x Replaced by IHAAE

ASCB (IHAASCB) x x x

x x x

ASMHD (ILRASMHD) x x x

ASMVT (lLRASMVT) x x x

x x x

x x x

ASTE (IHAASTE) x x x

ASVT (IHAASVT) x x x

x x x

ASXB (IHAASXB) x x x

ATECB (IEFZB432) x x x

ATTCH (IEZA TTCH) x x x User-specified

x x x

A W A (IEFVMA W A) x x x

BASEA (lEEBASEA) x x x Resides in the nucleus

x x x

BEB (IECDBEB) x x x

BLSRDTDT x x x

BLSRDUT x x x

BLSRESSY x x x

BLSRRDSY x x x

BLSRSST x x x

CAT (IECDCAT) x x

Figure B-1 (Part 1 of 12). Control Block Changes

Appendix B. Control Block Changes B-1

Control Block /1 /l/l/i /1/1 4!~)O/ Notes

CAW x x

CCT (IRACCT) x x x

CCW (IOSDCCW) x x x New Format 1 CCW. Format
o (the MVS/370 format) is
unchanged.

CDA (IGFCDA) x x

CDE (IHACDE) x x x

x x x

CHPT (IHAICHPT) x x x

CHRB (IOSDCHRB) x x x

CHT (IECDCHT) x x

CIB (IEZCIB) x x x

x x x

CIFP (IEFCIFP) x)t' x

CIMP (IEFVMMW A) x x x

CLRATT (IEEVC102) x x x

CMCT (IRACMCT) x x x In the extended nucleus

COMMON x x x

x x x

x x x

COMWA (IEFCOMWA) x x x

CPT (IECDCPT) x x

CQB (IHACTM) x x x

CQE (IHACTM) x x x

CRCA (IECDCRCA) x x

CSCB (IEECHAIN) x x x

x x x

CSD (IHACSD) x x x

CST (IECDCST) x x

CSWK (IECDCSWK) x x

CTM (IHACTM) x x Only the XVSA V and CXSA
maps have changed. The
DOMPL can be above 16 Mb.
The others must be below 16
Mb.

CTXT (IEZVX 1 00) x x Mapping macro

CVRWA (IEFCVRWA) x x x

CVT x x x

x x x

CXSA (IHACTM) x x x

x x x

DACB (IKJDACB) x x x

DALDDNAM (IEFZB4D2) x x x

DB OX (IOSDBOX) x x x

x x x

Figure B-1 (Part 2 of 12). Control Block Changes

B-2 MVS/Extended Architecture Conversion Notebook

Control Block / j /f /f /1 / J / J 4j~)'l Notes

DCQ (IHADCQ) x x x

DDP (IGFDDPRM) x x x

DDR (IHADDR) x x x

DDT (IECDDT) x x x

x x x

DEB (IEZDEB) x x x

DEVTAB (IFDEVTAB) x x x

DFE (IHADFE) x x x

DFLM (ADYDFLM) x x x

DMDT (IRADMDT) x x

DOMC (IHADOMC) x x x

DOMPL (IHACTM) x x

x x x
DQE (IHADQE) x x x

DSAB (IHADSAB) x x x

x x x

DSCA (ADYDSCA) x x x

DSPD (ADYDSPD) x x x

DST AT (ADYDSTAT) x x x

DSVCB (IHADSVCB) x x x

x x x

DSX (ADYDSX) x x x

ECB (IHAECB) x x x User-specified

ECBE x x x User-specified

ENFCT (IEFENFCT) x x x

ENV (IGFENV) x x x

EPCB (IECDEPCB) x x x

EPIE (IHAEPIE) x x x

ERPIB (IGFERPIB) x x

ESPI (IHAESPI) x x x

EST A (IHAEST A) x x x User-specified

ESW (IHAESW) x x x

x x x

ETD (IHAETD) x x x User-specified

ETE (IHAETE) x x x

EVNT (IHAEVNT) x x x

EWA (EWAMAP) x x x

x x x

EXTD(ADYEXTD) x x x

FBQE (IHAFBQE) x x x

Figure B-1 (Part 3 of 12). Control Block Changes

Appendix B. Control Block Changes B-3

/.~!/.!/.~~~
~ ~ ~ ~ ~
~ ~ ~ ~~ ~ H i ~ 'H ~ ~ ~ r::~

Control Block J ! I J I Iii jJ Notes

FIX (IECDFIX) x x x

FQE (IHAFQE) x x x

FRRS (IHAFRRS) x x x

FTPT (lHACTM) x x x

GDA (IHAGDA) x x x

GENX (IEEZB816) x x x

GETPTWT (lEFZB600) x x Replaced by the VSM
parameter list

GTF records:

CCW x x

EOS x x

10 x x

I/O instructions x x

PCI x x

SID x x Replaced by new I/O
instructions

VIO x x

GSDA (IHAGSDA) x x x

GVT (lSGGVT) x x x

x x x

x x x

GWT (lHAGWT) x x x

HCL (IHAHCLOG) x x Mapping macro

ICHPT (IHAICHPT) x x x

ICSE (IRAICSE) x x

ICSM (IRAICSM) x x

ICSS (IRAICSS) x x

ICT (IRAICT) x x x

IDAL (IECDIDAL) x x x

IEAPMNIP x x x

IEAPPNIP x x x

IEAPQSR x x

IEAPXNIP x x

IEAVNPB x x

IEAVSPSA x x x

IECDCPT x x

IEEMBBQE x x x

IEEMBWKA x x x

IEESMFID x x x

IEEVCIOI x x x

IEFVMSWA x x x

IEFZB4D2 x x x

Figure B-1 (Part 4 of 12). Control Block Changes

B-4 MVS/Extended Architecture Conversion Notebook

!~I.~/'1. /, I. ~ ~ r ""-10 ...; ...; CDIO CDIO
fJi ~ ~ '51 'H ~...., ~....,

Control Block !!Jlliil~1 Notes

IFASMFR x x x

IFASMFRA x x x

IFASMFR2 x ·x x

IFASMFR3 x x x

IHAGSDA x x x

IHARCT (IHARCT) x x x

IHARRRA x x x

IHASNAP x x x User-specified

IHSA (IHAIHSA) x x x

INTW A (IEFVMIW A) x x x

x x x

IOCM (IECDIOCM) x x x

IOCOM (IECDIOCM) x x x

IOCX (IECDIOCX) x x x

IOE (ILRIOE) x x

IOQ (IECDIOQ) x x x

x x x

IORB (ILRIORB) x x

IOSB x x x The lOS driver determines the
location of the IOSB.

x x x

x x x

IOE (IHAIQE) x x x

x x x

IRB (IHARB) x x x See RB in this table.

ITK (IEFVKEYS) x x x

IVT (IHAIVT) x x x

JCTX (IEFJCTX) x x x

x x x

JESCT (IEFJESCT) x x x

x x x

JFCB (IEFJFCBN) x x x

x x x

JMR (IEFJMR) x x x

JSBVT (IEFJSBVT). x x x

JSCB (IEZJSCB) x x x

LCCA (IHALCCA) x x x Fetch-protected

x x x

LCH (IECDLCH) x x

LCT (IEF ALLCT) x x x

x x x

Figure B-1 (Part 5 of 12). Control Block Changes

Appendix B. Control Block Changes B-5

!'!'!'/'/'/'j~7
q ~ ~ ~ ~, ...,..., 'H ~\() ~IC
~ ~ ~ 'l:I ~..., ~...,
{f. g g ~ ~ ~ ~

Control Block i~;:Jai~~l Notes

LDA (IHALDA) x x x

x x x

LLCB (IHALLCB) x x x

LLPM (IHALLPM) x x x

LMSG (IECDLMSG) x x x

LPBT (IRALPBT) x x x

LPDE (IHALPDE) x x x

LRB (IHALRB) x x

MCHTRACE x x x

MCT (IRAMCT) x x x

MIHW (IGFDMIHW) x x

MPL (IHAMPL) x x x

MSG (IGFMSG) x x

MSRASDCA (IEEZB808) x x x

x x x

NEL (IEFNEL) x x x

NVT (IHANVT) x x x

ORB (IHAORB) x x x

OUCB (IRAODCB) x x x

OUXB (IHAODXB) x x- x

PCCA (IHAPCCA) x x x

PEL (ISGPEL) x x x

x x x

PEXB (ISGPEXB) x x x

PIPL (IEZPIPL) x x x User-specified

PQA x x

PQE (IHAPQE) x x Replaced by IHARD

PRULE (IEZPRULE) x x x User-specified

PSA (IHAPSA) x x x The upper 2 K is
fetch-protected.

x x x

x x x

PTUD (IOSDPTUD) x x

PVT (IHAPVT) x x x The old PVT is split among
IHAPVT, IARRIT, and
IARRCE.

x x x

PW A (IGFPW A) x x x

P25C (EW AP25C) x x x

QCB (ISGQCB) x x x

QEL (ISGQEL) x x x

QHT (ISGQHT) x x x

Figure B-1 (Part 6 of 12). Control Block Changes

B-6 MVS/Extended Architecture Conversion Notebook

! ~/,~/,~!.! ! ~ ~ 0/ ...; ...;...; 'tI ~IC ~\Q
~ I ~ !U i Q:)""", Q:)""'"
C , it ~ ~ ~: ~it

Control Block ~ ~ ar ~ ~ ~ .j 2 ~ -D Notes
~ ~ ~ ~ CJ C) .~~ Q:)

QRO (IHACTM) x x x

QW A (ISGQW A) x x x

QWB (ISGQWB) x x x

QXB (ISGQXB) x x x

RB (IHARB) x x x

RCE (IARRCE) x x x

x x x

RCT (IRARCT) x x x

RCTD (IEARCTD) x x x

RD (IHARD) x x x

RDCM (IEERDCM) x x x

x x x

RESV (IOSDRESV) x x x

RGR (IHARGR) x x x

RMCA (IRARMCA) x x x

RMCT (IRARMCT) x x x

x x x

RMEP (IRARMEP) x x x

RMEX (IRARMEX) x x x

RMPL (IHARMPL) x x x

RMPT (IRARMPT) x x x

x x x

RMQH (IRARMQH) x x

RMSB (IRARMSB) x x x

RNLE (ISGRNLE) x x x

RPT (ISGRPT) x x x

RQE (IECDRQE) ~ x x

x x x

RQSV (IRARQSRV) x x

RRQ (IECDRRQ) x x x

RSMHD (IHARSMHD) x x Replaced by IARRAB

RTCT (IHARTCT) x x x

x x x

x x x

RTSD (IHARTSD) x x x

RTI W (IHARTI W) x x x

RVT (IHARVT) x x In the non-page protected
nucleus

SCA (IHASCA) x x x

SCB (IHASCB) x x x

SCD (IECDSCD) x x

SCHIB (IHASCHIB) x x x

Figure B-1 (Part 7 of 12). Control Block Changes

Appendix B. Control Block Changes B-7

/, Qf ~/, ~/. / Z J ~ r ...; ...;...; i ~IQ ~IQ
~ ~ ~ 'tr ~ ~ ; I I ~.s oj: ~

Control Block ·at at "ar : 1 ~ fi2 j-§ Notes
~ ... ~ ~ ~ U .Q ~ ~

SCL (IEEZB815) x x Mapping macro

SCSR (IEZVGlOO) x x x

SCT (IEF ASCTB) x x x

SCVT (lHASCVT) x x x

x x x

SCW A (lHASCW A) x x x

x x x

x x x

SDEPL (IHASDEPL) x x x

x x x

SDRSB (IHASDRSB) x x x

SDUMP (IHASDUMP) x x x User-specified

SDWA (IHASDW A) x x x

x x x

SDWORK '(IHASDWRK) x x x

SHDR (IHASHDR) x x x

I x x x

SlAB (IECDSIAB) x x

SlOT (IEF ASIOT) x x x

SJDFP (IEFSJDFP) x x x

SJDLP (IEFSJDLP) x x x

SJEXP (IEFSJEXP) x x x

SJFNP (IEFSJFNP) x x x

SJGEP (IEFSJGEP) x x x

SJINP (IEFSJINP) x x x

SJJDP (IEFSJJDP) x x x

SJPRFX (lEFSJPFX) x x x

SJPUP (IEFSJPUP) x x x

SJREP (lEFSJREP) x x x

SJRUP (lEFSJRUP) x x x

SJWRP (IEFSJWRP) x x x

SLCA (IF ASLCA) x x x

SLFP (lHASLFP) x x x

x x x

x x x

SLPL (IHASLPL) x x x

x x x

SLWA (IHASLWA) x x x

x x X
/

SMCA (IEESMCA) x x x

x x ~

SMDLR (IHASMDLR) x x x

Figure B-1 (Part 8 of 12). Control Block Changes

B-8 MVS/Extended Architecture Conversion Notebook

!/'I./'/'/'~~!
~ ~ ~ ~ ~
~ ~. ...j ~\Q 10
a.I a.I ~ "i".QQ~ ~~ t: t:!': ~.2J a.I ~ cu cu cu ~ c: a.I ;:,. C"J

Control Block ~ ~ ar a.I ~ qr .j 0 :::J ~ Notes
'< '< '< ~ (j C) ~~ ~~

.. ~-. _._-

SMWK (IHASMWK) x x x

x x x

SPCT (IHASPCT) x x Replaced by IARSFTE

SPQA (IHASPQA) x x x

SPQE (IHASPQE) x x x

SPT (IHASPT) x x x

SQAT (IHASQAT) x x x

SRB (IHASRB) x x x User-specified

SRCD (ADYSRCD) x x x

SRIO (IOSDSRIO) x x x

SRPL (IEEZB814) x x x

SSAL (IEFSSAL) x x x

SSCM (IEFSSCM) x x x
SSCVT (IEFJSCVT) x x x

SSDA (IEFSSDA) x x x

SSJS (IEFSSJS) x x x

SSL (IHASSL) x x x User subpool and key

SSOB (IEFJSSOB) x x x If the subsystem(s) given
control runs in 31-bit
addressing mode, the SSOB
can be above 16 Mb.

SSOBH (IEFSSOBH) x x x

SSRB (IHASSRB) x x x

SSVS (IEFSSVS) x x x

SSWT (IEFSSWT) x x x

STKE (IHASTKE) x x x

SUB (IEECSUB) x x x Resides in the nucleus

SVCS (ADYSVCS) x x x

SVCT ABLE (IHASVC) x x x

SVT (IHASVT) x x x

SWB (IEFSWB) x x x

SYMPQ (ADYSYMP) x x x

T AXE (IKJT AXE) x x x

TBUF (IHATBVT) x x x

TBVT (IHATBVT) x x x

x x x
TCB (IKJTCB) x x x

TCCW (IECDTCCW) x x x

x x x

TCT (IEFTCT) x x x

x x x

x x x

Figure B-1 (Part 9 of 12). Control Block Changes

Appendix B. Control Block Changes B-9

!~!.~~!!! II ~ y ~ ~ ~ ~~ ~~
~. ~ ~ i 'l:f .a:,"-f.a:,"-f i g g ~.& & tJ~

Control Block ;: : ;: I a ! ~ ~i Notes

TDCM (IEETDCM) x x x

x x x

x x x

TFWA (IHATFWA) x x x

TOB (IHATOB) x x x

TOT (IHATOT) x x x

TPC (lEA VVTPC) x x x

TQE (IHATQE) x x x User-specified

x x x

Trace. table entries: Mapped by IHA TTE

ACR x x x

ALTR x x x

BRANCH TRACE x x x

CALL x x x

CLKC x x x

DSP x x x

EMS x x x

EXT x x x

10 x x x

I/O instructions x x x

MCH x x x

PC trace x x x

PGM x x x

PT trace x x x

RST x x x

SIO x x

SRB x x x

SS x x x

SSAR trace x x x

SSRB x x x

SUSP x x x

SVC x x x

SVCR x x x

SVCE x x x

USRn x x x

WAIT x x x

TRBP (lHATRBPL) x x User-specified

TREP (lHATREPL) x x User-specified

TRNSQ (ADYTRNM) x x x

TROB (lHATROB) x x x

TRQE (lRATRQEL) x x User-specified

Figure B-1 (Part 10 of 12). Control Block Changes

B-IO MVS/Extended Architecture Conversion Notebook

Izz1.7.!~~r
o ~ ~ ~ ~
...; ...;...; b ~ ~~ fZ)~

Control Block J I J J I J Ii iJ Notes

TRVT (IHA TRVT) x x x

x x x

TTCH (IHATTCH) x x x

TTE (IHATTE) x x x See trace table entry in this
table.

x x x

TXTFT (IEFTXTFT) x x x

UCB (IEFUCBOB) x x x

x x x

x x x

UCB look-up table x x

UCDX (IEEUCDX) x x x

UCM (IEECUCM) x x x Resides in the nucleus

x x x

x x x

USECB (IOSUSECB) x x

UXIR (IHACTM) x x x

VCB (IHA VCB) x x x User subpool and key

VFPM (IHA VFPM) x x User subpool and key

VFOE x x x

VFVT (IHA VFVT) x x x

VOID (IECDVOID) x x x

x x x

x x x

VRAMAP (lHA VRA) x x x

VSL (IHA VSL) x x User subpool and key

VSRI (IEEZB812) x x x

VTPC (lEA VVTPC) x x x

VTSP (IEFVTSPL) x x x

WMST (IRA WMST) x x x

WPGDT (IRA WPGDT) x x

x x x

WPL (IEZWPL) x x x User-specified

x x x

WOE (lHA WOE) x x x

x x x

WSAC x x x

WSA VTC (lHA WSA VT) x x x Component-specified, fetch
protected

x x x

x x x

Figure B-1 (Part 11 of 12). Control Block Changes

Appendix B. Control Block Changes H-ll

!. ~!.1~!. ! !. ~ ~ r ~ ~ ~ ~~ ~~
~ ~ 0:> Jr 't:1 ~"-t ~ I :: ~ ~ : ~

Control Block l ~ : J a J ~~1 Notes

WSA VTa (IHA WSA VT) x x x Component-specified, fetch
protected

WSA VTL (lHA WSA VT) x x Unchanged

WWB (lHACTM) x x x

x x x

XCPS (lECDXCPS) x x x

x x x

XDBA (IECDXDBA) x x x

x x x

XFRR (IECDXFRR) x x x

XSA. (IEEXSA) x x x

x x x

XSB (IHAXSB) x x x User-specified

XTLST (lHAXTLST) x x x

XV (IHACTM) x x x

XV SA V (IHACTM) x x x

YSTAK (IHA YSTAK) x x x

x x x

x x x

Figure B-1 (Part 12 of 12). Control Block Changes

B.,.12 MVS/Extended Architecture Conversion Notebook

Index

$

$HASPEQU macro 3-12, 5-5
$HASPGEN macro 3-12, 5-5

A

ABEND
B37 6-8
D37 6-8
E37 6-8
macro 3-5,3-39,6-23
out-of-space 6-8
16E 3-17
504 3-10
538 3-13
80A 6-8

access methods 3-25
accessing control blocks above 16 Mb 3-35
accounting procedures 7-1
ACF/VTAM 2-7
ACONs 3-17
action message retention facility 5-7
address

constants 3-17
space tracing 6-20
space vector table (ASVT) 2-15,2-22
spaces

DUMPSRV 2-24
full-function 2-24
master scheduler 2-9
page-in rate 2-20, 8-9
SMF 2-23,2-24
working set size 2-20, 8-9

addresses
device 2-4
in the PSW 3-17
processor 3-17
real 3-20
size of 3-25
VeB 3-15

addressing mode
changing 3-27
definition of 3-25
establishing 3-27
parameter on CIRB 3-39
parameter on SYNCH 3-43
31-bit considerations 3-2

ADYDFLT load module 6-10
ADYHDFMT DAE header exit 5-6, 6-11
ADYSETxx PARMLIB member 2-18,6-9
ADYSETOO PARMLIB member 6-9
ADYSETOI PARMLIB member 6-9
ADYSET02 PARMUB member 6-9
algorithms

data set selection 8-9
slot selection 8-10

ALLNUC dump option 6-3
ALLOCATE modules 3-15
allocating SYS l.DUMPxx data sets 1-1
allocation space defaults CSECT 3-14
ALLVNUC dump option 6-3
AL T system parameter 2-21
alternate nucleus, specifying 4-2
AMASPZAP service aid program

changing global resource serialization thresholds 3-13
changing hot I/O recovery actions 4-4,5-4
changing hot I/O thresholds 5-4
overriding segment protection 3-19

AM BUST utility 3-29, 6-11
AMDPRDMP service aid

See PRDMP
AMDPRECT module 5-1
AMDSADMP macro 2-27
AMDSARDM module 2-27
AMODE

compared to current addressing mode 3-29
description of 3-27
determining 3-29
flags in the CESD 3-28,9-2
flags in the ESD 3-28
flags in the PDS directory entry 3-28,9-2
parameter on CIRB 3-39
parameter on SYNCH 3-3,3-43,9-7
specifying 3-28

APARs
for DFDS 1.4 8-1
for IEBCOPY AL TERMOD and COPYMOD 8-1, 8-2
for program fetch 7-3,8-2
for SVCDVMP 3-15

APF authorization 2-22,2-23,3-17,8-7
ASM (auxiliary storage manager)

backing slot function 8-9
control blocks in PRDMP output 6-11
data set selection algorithm 8-9
lock 3-18
slot selection algorithm 8-10

ASMDA T A PRDMP statement 6-11
ASMVT

ASMSLOTC field 8-9
ASMSLOTV field 8-9

Assembler H Version 1 2-26
Assembler H Version 2

indicating AMODE/RMODE 3-28
sysgen requirement 2-2
when to use 9-2

assembler language global SET symbol 9-1
assembling programs

after installing BT AM/SP 3-9
after installing compatibility PTFs 3-3, 3-8
containing SYNCH macros 9-7
MVS/XA system programs 9-6
to run in MVS/XA 9-2

ASVT (address space vector table) 2-15,2-22
ATTACH macro

changing the addressing mode 3-27
differences 3-5
incompatible MVS/XA expansion 9-4
parameter list changes A-I

authorized programs, changes affecting 3-1

B

backing slot function in ASM 8-9
backup considerations

copying MVS/370 DUBs 2-2
producing backup tapes 9-8
program incompatibilities 9-7
program product licenses 9-7
size of private area used 9-7

Index X-I

switching between 370 and 370-XA 9-7
using a common 10CDS 9-7
workload 9-8

BAL instruction 3-29, 9-3
BALR instruction 3-29, 9-3
BAs instruction 3-30
BASR instruction 3-30
BASSM instruction

description of 3-32
example of using 3-33,3-34

BLDL
lists 2-20, 8-7
system parameter 2-20,2-22
using LLA directory 8-7

BLDLF system parameter 2-20, 2-22
BLSABDPL mapping macro 3-5, 3-39, 5-6
BLSAMPLE member of SYS I.SAMPLIB 6-19
BLSPDISE IPCS panel 6-16
BLSPDSLE IPCS panel 6-16
BLSQMDEF macro 3-5, 3-39
BLSQMFLD macro 3-5, 3-39
BLSRESSY macro 3-5, 3-39
BQEs for SMF 3-17
branch

instructions 3-29, 3-30, 3-31,3-32
tracing 6-20

BROWSE IPCS panel 6-17
BSM instruction

description of 3-31
example of using 3-33, 3-34, 3-35

BTAM RESETPL macro 3-5,3-9
BTAM/SP program product 3-9
buffer queue elements for SMF 3-17
buffers

I/O 3-37
obtained by access methods 3-21
real addresses of 3-20
SMF 2-23
used with EXCP 3-37
used with EXCPVR 3-20
used with VSAM services 3-36

bypassing VSM's storage availability check 5-3
B37 ABEND code 6-8

C

CALL macro 3-5
CALLDISP macro 3-7
CALLRTM macro 3-7,3-39,6-23
CANCEL command 4-7
catalogs

CVOL 9-9
ICF 9-9
sharing 9-9
VSAM '9-9

CB dump option 6-3
CCWs

used with EXCP 3-37
used with EXCPVR 3-20

CDEs (contents directory entries) 2-21
cell pool 3-39
CESD (composite external symbol dictionary) 3-28,9-2
channel

command words
See CCWs

numbers 2-4
sets 2-4

CHANNEL macro 2-6
checking for available storage 5-3

X-2 MVS/Extended Architecture Conversion Notebook

checkpoint/restart diagnostic data 6-24
CHKPT macro 3-5,3-7,3-39,9-4
CHNGDUMP command 4-7
CHPID macro 2-4
CI (converter-interpreter) processing 9-9
CIRB macro 3-7,3-39
CLCL (Compare Logical Long) instruction 3-30
CMB system parameter 2-15,2-21
CNTLUNIT macro 2-4
coexistence

considerations 9-1
definition 9-1
DSI procedures 9-9
handling downward incompatible macros 9-4
programming considerations 9-2
routing jobs 9-8
sharing data sets 9-8

color consoles
controlling message traffic 4-5
display options 4-5
specifying color attributes 2-23,4-5

commands
CANCEL 4-7
CHNGDUMP 4-7
CONFIG 4-7,4-11
CONTROL

M 4-7
S 4-7
V 4-8,5-8

DISPLAY
CONSOLES 4-9
DUMP 4-9
GRS 4-10
M 4-10
MPF 4-10

DUMP 4-10
DUMPDS 4-11
FORCE 4-11
incompatible 4-6
MODE 4-11
MODIFY 4-11, 8-8
MONITOR 4-11,4-13
MSGRT 4-11
SET

DAE 4-12, 6-9
MPF 4-5,5-7
SMF 4-12

SLIP 4-12, 4-13
START 4-13, 8-8
STOP 4-13, 8-8
STOPMN 4-11,4-13
summary of changes to 4:-6
TRACE 4-14
TRACK 4-5
VARY

CH 4-14
CPU 4-14
PATH 4-14
STOR 4-14

COMMNDxx P ARMLIB member 2-16
Compare Logical Long (CLCL) instruction 3-30
composite external symbol dictionary (CESD) 3-28,9-2
concatenating data sets

to SYSl.LINKLIB 2-22,2-23,8-7
to SYSl.LPALIB 2-9

CONFIG
command 4-7, 4-11
frame 4-1

Configuration (CONFIG) frame 4-1
CONFIGxx PARMLIB member

summary of changes 2-18
using with the CON FIG command 4-7

console
changing specifications for 4-7
clusters 4-5
color 4-5
frames

OPRCTL (operator control) 4-2
SYSCTL (SCP manual CNTL) 4-1

reestablishing console specifications 4-8
requesting status information 4;,..9
3279 4-4

CONSOLE macro 2-5
contents directory entries (CDEs) 2-21
contents supervision (CSV) modules 3-15
control blocks

See also specific control block name
formatter service 5-9
in PRDMP output 6-10
list of differences B-1
retrieving data above 16 Mb 3-35

CONTROL command
M 4-7
S 4-7
V 4-8,5-8

control records 8-2
converter-interpreter (CI) processing 9-9
copying

DUBs 2-2
IOCP CSECTs 2-3
IOCP deck 2-3
IPCS modules 6-19
modules for fetch performance 8-3
PRDMP modules 6-19

count values in load modules
how used 8-2
inserting 8-2, 8-3, 8-4
maintaining 8-4

CPENABLE parmeter in IEAOPTxx 2-21
CPOOL macro 3-5, 3-39
CPU

addresses 3-17
lock 3-18
timer 3-14

CPUTIMER macro 3-5,3-14,3-39
cross memory entry table entries 3-23
CSA

dump option 6-3
specifying the size of 2-13,2-14,2-21
system parameter 2-13,2-14,2-21

CSV (contents supervision) modules 3-15
CSVLLCRE module 2-7
CSV300I message 8-1
CTRLPROG macro

specifying CSA and SQA size 2-13
unsupported parameters and options 2-6

CVOL catalogs 9-9
CVT

o

CVTDCB field 9-3,9-6
CVTEFLPE field 3-16
CVTEFLPS field 3-16
CVTFLPAE field 3-16
CVTFLPAS field 3-16
CVTMVSE bit 9-3,9-6
CVTNUCB field 3.-16

DAE (dump analysis and elimination)
command 2-20
components using 6-9
controlling 6-9
description 6-8
header exit, ADYHDFMT 6-11
symptom data 5-6,6-8,6-11
SYS1.DAE data set 2-8

DAEALLOC member of SYS I.SAMPLIB 2-9, 6-10
DAEDAT A PRDMP statement 5-6, 6-11
DAM 3-25
DASD

initializing 2-10
operand on DUMP system parameter 2-15
use of space 8-3

DASDR service routine 3-18
OAT-off

modifying programs that run 3-22
module 3-23
nucleus 3-23

data extent block 3-17
Data Facility Data Set Services (DFDSS) 2-2, 9-8
Data Facility Extended Function (DFEF) 9-9
data management services 3-25
data sets

See also system data sets
selection algorithms 8-9
SMF 8-9

DATASET macro 2-5,2-6,2-9
DATOFF macro 3-7

example 3-23
function of 3-39

DC option on LKED EXEC statements 8-6
DCBS option on LKED EXEC statements 8-6
DO statements

for SYS l.DUMPxx data sets 1-1
in the PRDMP procedure 2-24

DEB
for fetch-protected areas 3-17
for the LNKLST concatenation 3-17

DEBAPFIN bit in the LNKLST DEB 3-17
DEBCHK service routine 3-17
debugging considerations 6-20
deleting messages 5-7
DEMF (Display Exception Monitor Facility) 2-3
descriptor codes for messages 5-7
device

address on IODEVICE 2-4
addresses for stand-alone dump 2-27
allocation load module 3-14
allocation tables

changing programs that access 3-17, 3-45
removing references to 2-16

allocation, non-specific 2-21
connect time

definition of 7-1
in calculating I/O service 2-20
in SMF records 7-1,7-5

number 2-4
Device Support Facilities Release 6 2-10
devices

DASD, initializing 2-10
for page data sets 2-8
for system data sets 2-8
maximum allowed 2-3
not supported 2-6
specifying MIH intervals for 2-17

I.ndex X-3

DEVMASKT table 2-16,3-45
DEVNAMET table 2-16, 3-45
DFDSS (Data Facility Data Set Services) 2-2,9-8
DFEF (Data Facility Extended Function) 9-9
direct access storage devices

SeeDASD
DISP

JCL parameter 4-3
lock 3-18

DISPLAY
command

CONSOLES 4-9
DWMP 4-9
GRS 4-10
M 4-10
MPF 4-10

PRDMP statement 6-11
Display Exception Monitor Facility (DEMF) 2-3
disposition of SYSl.DUMPxx data sets 1-1
Divide Extended (DXR) instruction 3-31
DUBs 2-2
downward incompatible macros 9-4
DRWDASDR 9-8
DSI (dynamic system interchange) procedures 9-9
DSP (dynamic support program) 5-5
dual paths in programs

example 9-6
selecting path 9-3
when required 9-3

dummy SMF records 7-5
dump

command 4-10
data sets

accessing via IPCS 6-16
allocating 1-1, 4-3
associating with a specific processor 2-15
clearing 4-11
defining 2-8, 4-11
deleting 4-11
eligible devices for 2-8
location of 6-16
moving 6-16
nurpber and size of 2-8
scanning 6-11

exit routines 5-4, 5-8
format changes 6-6
headers

in formatted user dump 6-6
in SVC dumps 6-7
in SYSMDUMP 6-6, 6-7

indexes 6-6
options

ALLNUC 6-3
ALLVNUC 6-3
in IEAABDOO 2-19
in IEADMPOO 2-20
in IEADMROO 2-20
in SNAP parameter list 6-2
NOSYM 6-5 '
on SNAP macro 3-39, 3-42
on the DUMP command '6-2
on the SDUMP macro 3-41;6-2
on the SNAP macro 3-42
SPLS 6-4
SQA 6-4
SUBPLST 6-4
SUBTASKS 6-4
SUM 6-4,6-5
summary of new and changed 6-2
TRT 6-4

X-4 MVS/Extended Architecture Conversion Notebook

stand-alone (See stand-alone dump)
suppressing 6-7
SVC (See SVC dumps)
symptom 6-4
SYSMDUMP (See SYSMDUMP)
system parameter 2-15,2-21
SYSUDUMP (See SYSUDUMP)
user summary 6-5

dump analysis and elimination
See DAE (dump analysis and elimination)

DUMP system parameter 2-15
DUMPDS command 4-11
DUMPSRV

address space 4-3
procedure in SYS1.PROCLIB 2-24

DXR (Divide Extended) instruction 3-31
dynamic address translation

See DAT-off
dynamic allocation interface routine 3-14
dynamic allocation user exit 3-14
dynamic support program (DSP) 5-5
dynamic system interchange (DSI) procedures 9-9
D37 ABEND code 6-8

E

ECBs, extended 3-17
ECT (print dump exit control table) 5-1, 5-6
ECT service 5-10
Edit and Mark (EDMK) instruction 3-30
EDMK (Edit and Mark) instruction 3-30
EDTs (eligible device tables) 2-7
eligible device tables (EDTs) 2-7
ENQ macro

for VSAM data sets 5-1
limiting concurrent requests 3-12
summary of changes 3-5,3-40

entry points in IEFW21 SD 3-38
Environmental Recording, Editing, and Printing Program

See EREP
EREP (Environmental Recording, Editing and Printing Program)

PRDMP exit 6-18
program produce co-requisite 6-18

ESD (external symbol dictionary) 3-28
ESPIE

macro 3-5, 3-40, 9-4
service routine 3-18

EST AE macro 3-5, 9-3, 9-4, A-2
EVALDEF IPCS subcommand 6-14
EVALDUMP IPCS subcommand 6-14
EVENTS macro 3-5, 9-4, A-3
EXCP

counts 2-20,7-1,7-3
macro

backing I/O buffers 3-37
parameter requirements 3-36
performing I/O above 16 Mb 3-37
performing I/O in 31-bit mode 3-36
using virtual IDAWs 3-37

EXCPVR macro 3-7
parameter requirements 3-36
performing I/O above 16 Mb 3-20,3-37
performing I/O in 31-bit mode 3-36
using the PGFX appendage 3-20

EXEC statement
in the PRDMP procedure 2-24
LKED 8-6

execution time 2-20, 8-9
exit routines

See user exit routines
exit services router 5-8
explicit tracing 6-20
extended

color support 4-5
CSA 2-13,2-21
ECBs 3-17
region size, obtaining 5-3
SQA 2-13,2-21

external symbol dictionary (ESD) 3-28
External Writer 2-3
E37 ABEND code 6-8

F

FOPs (Field Developed Programs) 1-2
FEST AE macro 3-7, 9-4
fetch

See also program fetch
protection in PSA 3-20

Field Developed Programs (FOPs) 1-2
FIX system parameter 2-21
FLPA (fixed link pack area)

building 2-9
changes 3-16
page protection 3-19

FORCE command 4-11
format model processor service 5-9
FORMAT PRDMP statement 6-11
frames

See console frames and configuration frames
full-function address spaces, starting 2-24

G

generalized trace facility
See GTF

GENERATE macro 2-5,2-6,2-10
generating

an MVS/XA system 2-1,2-2
stand-alone dump 2-26

GETMAIN macro 3-5
differences in processing 3-10
in summary of changes 3-40
limit on requests

determining 5-3
exceeding 6-23

LOC parameter 3-44
overlapping parameters 3-10
suggestions for using 9-3
VRC parameter 3-43
VRU parameter 3-43

global RESERVE requests 2-26
global resource serialization

displaying information about 4-10
in a mixed environment 9-8
limiting concurrent requests 3-12
RNLs (resource name lists) 2-16
serializing VSAM data sets 5-1

global SET symbol 9-1
GQSCAN macro

limiting concurrent requests 3-12
summary of changes 3-5,3-40

GRS
See global resource serialization

GRSRNL system parameter 2-16,2-22

GRSRNLxx PARMLlB members 2-16. 2-1~. 2-22
GRSRNLOO PARMLlB member 2-17
GTF (generalized trace facility)

modules 3-15
records 3-16
tracing USR events 3-45

GTFPARM PARMLlB member 2-18
GTRACE macro 3-5, 3-40, 3-45
GVT

H

GVTCREQ field 3-13
GVTCREQA field 3-13

HAM (JES2 spool access method) 5-5
hardcopy log records 3-13
header exits for PRDMP 5-6
highlighting messages 2-23
hot I/O interrupts

controlling processing 2-23,4-3
recovery actions 4-4, 5-4
thresholds 4-3, 5-4

HOTIO statement in IECIOSxx 2-23. 5-4

I/O
above 16 Mb 3-37
configuration data set

See lOCOS
configuration requirements 2-5
event recording 2-18
hot 2-23, 4-3
in 31-bit mode 3-36
instructions 3-12, 3-31
interrupt processing 2-21, 4-3
load balancing 2-21
service, calculating 2-20
to FLPA 3~16
to real storage above 16 Mb 3-20
using access methods 3-25,3-36
using EXCP 3-36,3-37
using EXCPVR 3-36,3-37

IAR UTVR module 3-15
IAR004I message 2-12
IA TYMOD macro 3-12, 5-5
ICCLPB parameter in IEAOPTxx 2-21
ICF catalogs 9-9
ICP4041 message 2-4
IDAWs (indirect addressing words)

used with EXCPVR 3-20
virtual 3-37

IEAABDOO PARMLlB member 2-19
IEABLDxx PARMLlB member 2-20
IEACMDOO PARMLlB member

fixed storage allocations when executed 2-12
SET DAE command 6-9
START LLA command 2-24,8-8
summary of changes 2-20

IEADMPOO PARMLlB member 2-20
IEADMROO PARMLlB member 2-20
IEAFIXxx PARMLlB member 2-16,2-20
IEAIPL04 module 2-13
IEAIPSxx P ARMLlB member 2-'20
IEALlMIT exit 5-2
IEALODOO PARMLIB member 2-21

Index X-5

IEALPAxx PARMLIB member 2-16,2:"21
IEAOPTxx PARMLIB member 2-21
IEAPAKxx PARMLIB members 2-21,2-22
IEAPAKOO PARMLIB member 2-21
IEASMFEX module 3-17
IEASYSxx PARMLIB member

parameters
ALT 2-21
BLDL 2-20, 2-22
BLDLF 2-20, 2-22
CMB 2-21
CSA 2-13,2-14,2-21
DUMP 2-15,2-21
FIX 2-21
GRSRNL 2-16, 2-22
LNKAUTH 2-22, 8-8
LPA 2-9,2-22
MAX USER 2-15,2-22
MLPA 2-21
MSTRJCL 2-22
PAK 2-22
RSU 2-12
RSVNONR 2-15,2-22
RSVSTRT 2-15,2-22
SQA 2-13,2-21

summary of changes to 2-21
IEAVEDAT, DAT-off nucleus 3-23
IEAVEURn, DAT-off module 3-23
lEA VMXIT user exit 4-7, 5-7
lEA VNIPO module 2-13
lEA VT ABX module 5-4
IEAVTRV module 3-15
lEA VTSEL module 5-4
IEA240I message 2-22
IEA8381 message 6-8
IEBCOPY

ALTERMOD parameter 8-3
changes to 8-2
COPYMOD parameter 8-3

IECIOSxx PARMLIB member
HOTIO statement 5-4
specifying MIH intervals 2-17
summary of changes 2-23

IECVHIDT module 5-4
IEECVXIT user exit 4-5,5-7
IEEMB846 module 3-12
IEESYSAS procedure 2-24
IEE978E message 2-23
IEFAB4DC entry point in IEFW21SD 3-38
IEFAB4UV entry point in IEFW21SD 3-38
IEFAB4UV load module 3-45
IEFAB445 entry point in IEFW21SD 3-38
IEF AB445 load module 3-14
IEFDB401 load module 3-14
IEFDEVPT table 2-16,3-45
IEFEB4UV load module 3-45
IEFGB4DS entry point in IEFW21 SD 3-38
IEFGB4UV entry point in IEFW21SD 3-38
IEFPARM statement in the RMF procedure 2-25
IEFRDER statement in the RMF procedure 2-25
IEFSCAN module 3-45
IEFUSI exit

bypassing the storage availability check 5-3
changes recorded in SMF 6-23
limiting user region size 5-2

IEFW21SD load module 3-14,3-38
IEFXVNSL load module 3-14
IEHDASDR 2-2, 2-10, 9-8
IEWFETCH module 2-16
IEWMBOSV, alias for IEWFETCH 2-16

X-6 MVS/Extended Architecture Conversion Notebook

IEWMSEPT, alias for IEWFETCH 2-16
IFASMF module 2-7
IFASMFDP module 7-5
IGCOOOIF module 2-16
IGC0004F module 2-16
IGC0004G module 2-16
IGC046 module 2-16
IGC047 module 2-16
IGFPEMBR module 6-23
IGFPTERM module 6-23
IGFPTREC module 6-23
IHAHCLOG macro 3-14
IKJDAIR interface routine 3-14
IKJEFDOO load module 3-14
IKJEFTOI module 2-24
IKJEGSCD table 3-11
IKJEGSTA module 3-11
IKJEGSUB macro 3-11
ILRSLOTC nucleus CSECT 8-9
ILRSLOTV nucleus CSECT 8-9
IMPL 4-1
INDEX DD statement in PRDMP procedure 2-24
indirect address notation on SLIP commands 4-12
initializing

DASD 2-10
MVS/XA 2-12

Insert Program Mask (lPM) instruction 3-31
Insert Storage Key (lSK) instruction 3-12
Installed User Programs (lUPs) 1-2
installing MVS/XA

IPCS modules on other systems 6-19
JES2 component 2-11
performing a full sysgen 2-1, 2-2
PRDMP modules on other systems 6-19
using SMP Release 4 2-1
using SMP /E 2-1, 2-2

instructions
changed 3-29
deleted 3-12
LPSW 3-27
new 3-31
recording 4-3
stepping through 4-3
STNSM 3-23
STOSM 3-23

Interactive Problem Control System
See IPCS

Interactive System Productivity Facility (ISPF) 6-1
interface routines

IKJDAIR 3-14
IKJEFDOO 3-14

interfaces
to access methods 3-25
to JES2 5-5
to routines above 16 Mb 3-34
to system services 3-23

interval timer 3-14
INTSECT macro 3-7, 9-4
10CDS (I/O configuration data set)

creating for MVS/XA 2-3
using in 370 mode 2-4

10CP (I/O configuration program)
creating an 10CDS 2-3
I/O configuration requirements 2-5
macros 2-4

10DEVICE macro 2-4, 2-5, 2-6
10HALT macro 3-5,3-8
lOS

control blocks in PRDMP output 6-11
modules 3-15
unit control block

See UCB
IOSCAT lock 3-1 8
IOSDAT A PRDMP statement 6- 11
IOSGEN UCBLOOK macro 3-5,3-8,3-15
IOSLCH lock 3-18
IOSLOOK macro· 3-7, 3-8
IOSRHIDT module 5-4
IOSRVC parameter in IEAIPSxx 2-20
IOSVSUCB module 3-8
IOS201E message 4-6
IPCS (Interactive Problem Control System)

BLSPDISE panel 6-16

IPL

BLSPDSLE panel 6-16
BROWSE panel 6-17
dump processing exits 5-8
installing the MVS/XA version on other systems 6-18
ISPF co-requisite 6-1
migration aid 6-18
new panels 6-16
specifying the dump source 6-16
subcommands 6-13
titles of print files 6-18

options on SYSCTL frame 4-2
text 2-10

IPM (Insert Pogram Mask) instruction 3-30, 3-31
IPS parameters

IOSRVC 2-20
PPGRTR 2-20, 8-9

ISAM 3-25
ISGGRNLO load module 2-16
ISG0661 message 2-26
ISK (Insert Storage Key) instruction 3-12
ISPF (Interactive System Productivity Facility) 6-1
IUPs (Installed User Programs) 1-2

J

JCL
allocating SYS1.DAE 2-9,6-10
allocating SYS l.DUMP data sets 4-3
copying PRDMP and IPCS modules 6-19
DISP parameter. 4-3
routing jobs 9-8
starting the master scheduler address space 2-9

JES2
functionally equivalent levels 1-2,2-11
hardcopy log records 3-13
interfaces 5-5
multi-access spool environment 9-1
spool access method 5-5
user exits 5-4
user modifications to 3-12

JES3
converter-interpreter (CI) processing 9-9
DSPs (dynamic support programs) 5-5
functionally equivalent levels 1-2
hardcopy log records 3-13
loosely-coupled configuration 9-1
user exits 5-5
user modifications to 3-12
using SYS1.PROCLIB 9-9

jobstreams for copying PRDMP and IPCS modules 6-19

K

KEYLIST dump option 6-3

L

LA instruction 3-30, 9-3
labeled tapes, using for stand-alone dumps 4-3
LCH parameter in IECIOSxx 2-23
library

(See the Preface for a list of related publications)
changes 1-3

limiting
dump output 6-10
user region size ·5-2

link editing
allocation user routines 3-1 4
programs for optimal fetch performance 8-3,8-4
programs to run in MVS/XA 9-2

LINK macro 3-5, 3-27
link pack area modules in PRDMP output 6-1 1
li~kage assist routine

description of 3-33
example of 3-34

linkage editor
changes to 8-2
in DFDS 1.4 8-2, 9-2
in DFP 8-2, 8-3, 9-2
indicating AMODE/RMODE 3-28
overlay structure 3-29
performance related changes 8-2
REGION parameter 8-6
sysgen requirement 2-2
text block sizes 8-6

LISTDUMP IPCS subcommand 6-14
LKED EXEC statement 8-6
LLA (LNKLST lookaside)

directory 2-20, 2-22, 4- 1 I, 8-7, 8-8
function 8-7
procedure 2-20, 2-24, 8-8

LLT
LLT APPIN field 3-17
LLT APFTB extension 3-17

LNKAUTH system parameter 2-22, 8-8
LNKLST

concatenation 2-22, 2-23, 5-7, 8-7
look aside function (See LLA)

LOAD macro
changes 3-5, 3-40
using to determine addressing mode 3-29,3-40

load modules·
See also specify module names
copying 8-3
count values 8-2, 8-4
link editing 9-2
program fetch considerations 8-1
reblocking 8-3
text block sizes 8-3,8-6

loading microcode 2-10,4-1
LOC parameter on GETMAIN 3-44
locks

changes to structure of 3-18
determining hierarchy position 3-18
determining locks held 3-18
on the SVCTABLE macro 2-5

LOG command 3-13
log records

for system commands 3-43

Index X-7

hardcopy 3-13
in SYSLOG data sets 3-13
in SYS1.LOGREC data sets 3-16,6-18
prefixes 3-43

logical
control units 2-5
path utilization 2-21

LOGREC records
format changes 3-16
in PRDMP output 6-18

loosely-coupled configuration
DSI procedur\s 9-9
JES component 9-1
MVS/XA and MVS/370 9-1
routing jobs 9-8
sharing data sets 9-8

low address protection 3-19
LP A (link pack area)
, directory entries (LPDEs) 2-21

system parameter 2-9,2-22
LPALST concatenation 2-21,2-23
LPALSTxx PARMLIB members 2-9,2-22,2-23
LPAMAP PRDMP statement 6-11
LPDEs (LPA directory entries) 2-21
LPSW instruction, changing the addressing mode 3-27
LRA instruction 3-30
LSQA dump option 6-3

M

macro instructions
See also specific macro names
$HASPEQU 3-12, 5-5
$HASPGEN 3-12,5-5
BT AM RESETPL 3-9
CHKPT 3-7
comprehensive list of 3-3
downward incompatible 9-4
IA TYMOD 3-12, 5-5
incompatible parameter changes A-I
IOCP

See IOCP, macros
IOHALT 3-8
IOSGEN UCBLOOK 3-8
IOSLOOK 3-8
new downward compatible parameters 3-38
RESETPL 3-9
SPIE 3-9
SPLEVEL 3-42, 9-4
STATUS STOP,SYNCH 3-10
summary of new and changed 3-38
SYNCH 3-3,3-27,3-38,3-43,9-4,9-7
sysgen

See sysgen, macros
when MVS/XA expansions are required 9-6

Mass Storage Subsystems 2-10
master catalog

LPALIB entries 2-9
making a backup copy 2-3
SYS I.LOGREC entry 2-9

master scheduler address space 2-:9
master trace table in PRDMP output 6-11
MAXBLK parameter on IEBCOPY 8-3
MAXUSER system parameter 2-15,2-22
message PFocessing facility (MPF) 4-5, 5-7
messages

controlling traffic 4-5, 4-8, 5-7
CSV300I 8-1
displaying in color 4-5

X-8 MVS/Extended Architecture Conversion Notebook

format of display 4-7
from PRDMP processing 2-24
highlighting 2-23,4-5
IAR004I 2-12
ICP404I 2-4
IEA240I 2-22
IEA838I 6-8
IEE978E 2-23
IOS201E 4-6
ISG0661 2-26
modifying processing of 5-7
reporting suppressed dumps 6-8
retaining 2-23
routing 4-5,4-8
suppressing 2-23

MF /1 (System Activity Measurement Facility) 2-3
MGCR macro 3-7, 3-40
microcode, loading 2-10, 4-1
migration aids

IPCS 6-18
PRDMP 6-18

MIH (missing interrupt handler)
intervals, specifying 2-17, 2-23
parameter in IECIOSxx 2-17

MINBLK parameter on IEBCOPY 8-3
missing interrupt handler

See MIH
MLPA

building 2-9
page protection 3-19
system parameter 2-21

MODE command 4-11
MODESET macro 3-7
MODIFY command 4-11,8-8
modules

See load modules and specific module names
MOD88 service routine 3-18
MONITOR command 4-11, 4-13
Move Long (MVCL) instruction 3-30
MPF (message processing facility) 4-5,5-7
MPFLSTxx PARMLIB member 2-23,4-5,5-7
MSCTC (MSC table create) utility 2-10
MSGRT command 4-11
MSS, loading microcode EC tapes for 2-1 °
MSTRJCL system parameter 2-9,2-22
MSTRJCLxx member of SYS1.LINKLIB 2-9,2-22
MSTRJCLOO member of SYSl.LINKLIB 2-9
MTRACE PRDMP statement 6-11
MVCL (Move Long) instruction 3-30

N

new function for programs 3-2
non-specific device allocation 2-21
non-standard tape label routine 3-14
NO PROT option on system parameters 2-21, 3-19
NOSYM parameter in P ARMLIB members 6-5
NUC dump option 6-3
nucleus

dumping 2-19,6-3
in PRDMP output 6-11
read-only 3-18

NUCLKUP macro 3-7, 3-41
NUCMAP

area in the nucleus 3-19
PRDMP statement 6-11

NVESQA fields 2-13

NVSQA fields 2-13
NVTNVSQA field 2-13

o

OPEN
IPCS subcommand 6-14
processing, VSAM 5-1

operating system
initializing 2-12
installing 2-1
IPL option 4-2
restarting 4-2

operator control (OPRCTL) console frame 4-2
operator response to message IOS201E 4-6
OPRCTL (operator control) console frame 4-2
overlay modules

P

fetching 8-2
inserting count values 8-3
reblocking 8-3
restrictions on using 3-29

page data sets
defining 2-8
eligible devices for 2-8

page fix appendage 3-20
page protection

areas protected 3-18
of IEAFIXxx modules 2-20,2-21
of IEALPAxx modules 2-21
turning' off 3-19

page-in rate for address spaces 2-20,8-9
PAK

lists 2-21
system parameter 2-22

PAM 3-25
parameters

See system parameters
P ARMLIB members

See SYS1.PARMLIB data set
patch area 3-20'
PC instruction, changing the addressing mode 3-27
PDS directory entry, AMODE/RMODE specifications in 3-28,9-2
performance considerations

page-in rate of an address space 8-9
paging algorithms 8-9
program fetch processing 8-1
SMF data set placement 8-9
SMF data set processing 7-5
using the ASM backing slot function 8-9

performing
a full sysgen 2-1,2-2
I/O in 31-bit addressing mode 3-36
IMPL 4-1

PGFIX macro 9-4
PGFREE macro 9-4
PGFX (page fix appendage) 3-20
PGLOAD macro 9-4
PGOUT macro 9-4
PGRLSE macro 9-4
PGSER

macro 3-5, 3-41, 9-4
service routine 3-18

PLPA
building 2-9
page protection 3-19

positioning tasks
POST exits 3-17
post-dump exit routines 5-4
power-on-reset function, performing 4-1
PPGRTR parameter in IEAIPSxx 2-20,8-9
PPT (programming properties table) 2-7
PRDMP

c;ommand processor 2-24
control statements 6-10
EREP exit 6-18
exit control table 5-1, 5-6
exit routines 5-6, 5-8
header exits 5-6
index

inserting user entries 6-12
obtaining before the dump 2-25, 6-12

length of output lines 6-13
migration aid 6-18
output buffer 5-6
procedure in SYSl.PROCLIB 2-24,6-19

PRDMPXA member of SYS I.SAMPLIB 6-19
pre-dump exit 5-4
preferred path 2-4
preparing for MVS/XA 1-2
print dump

See also PRDMP
exit control table 5-1
macro (PRDMP) 6-11

printer requirements for PRDMP 6-13
private area storage

minimizing amount lost because of rounding 2-14
reporting use of 7,..2

procedures
See SYS I.PROCLIB data set

processor addresses 3-17
program fetch

amount of virtual storage fixed 8-4
differences 8-2
performance 8-1

program mask, obtaining 3-30
program products

BTAM/SP 3-9
DEMF 2-3
Device Support Facilities Release 6 2-10
DFDSS 2-2
DFEF 9-9
EREP 6-18
IPCS 6-1
ISPF 6-1
licenses 9-7
MF/l 2-3
RMF

See RMF
program status word

See PSW (program status word)
programming considerations 3-1
programming properties table (PPT) 2-7
programs requiring modification

authorized 3-1
unauthorized 3-1

PSA
changes to 3-20
fetch protection 3-20
low address protection 3-19
patch area 3-20
PSACLHS field 3-18
PSAHLHI field 3-18
work/save area locations 3-20

Index X-9

PSACLHS field 3-18
PSAHLHI field 3-18
PSW (program status word)

addresses in 3-17
addressing mode bit 3-25

PT instruction, changing the addressing mode 3-27
PTFs

for GTF module AHLTSVC 3-8
for IOHALT 3-8
for IOSGEN UCBLOOK 3-9
for JES2 1-2
for' program fetch 8-2
for SVC 33 3-8
for the DFDS 1.4 linkage editor 8-5

PTRACE macro 3-7,3-41
publications

(See the Preface for a list of related publications)
changes 1-3

PURGE service routine 2-16,3-18

Q

queuing messages 5-7

R

RACROUTE macro 3-41
real addresses

in IDA Ws 3-20
in LSQA 3-22
in SQA 3-22
in the nucleus 3-22
topics related to using 3-20
using with EXCPVR 3-20

real storage dump module (AMDSARDM) 2-27
real time interval, setting 3-42
reason codes 3-39,6-23
reblocking modules 8-3
reconfigurable storage, specifying 2-12
roconfiguring the system 2-18
records

control 8-2
GTF 3-16
hardcopy log 3-13
in SYSLOG 3-13,3-43
LOGREC 3-16
RLD 8-2
RLD/control 8-2
SMF 3-12, 7-5
system trace 3-16
text 8-1,8-2,8-6

recovery actions for hot I/O 4-3
recovery termination manager (RTM) 3-15
REGION parameter

compared to using IEFUSI 5-2
on link edit jobs 8-6
specifying more than 16 Mb 5-3
storage availability check 5-3

region size
exceeding 6-23
extended 5-3
specifying 5-2

relocation dictionary (RLD) records 8-2
RENUM IPCS subcommand 6-14
reports, RMF 4-6
RESERVE macro

limiting concurrent requests 3-12
summary of changes 3-5,3-41

x-tO MVS/Extended Architecture Conversion Notebook

RESERVE requests, global 2-26
reserving ASVT entries 2-15,2-22
RESETPL macro 3-1,3-5,3-9
residency time 2-20, 8-9
resident BLDL list 3-19
Resource Measurement Facility

See RMF
resource name lists

See RNLs
restart processing 4-2
restarting

options 4-2
processors 4-6
SMF 4-12

retaining messages 2-23,5-7
retrieving data above 16 Mb 3-35
RETURN macro 3-5,3-41
RLD (relocation dictionary) records 8-2
RMF (Resource Measurement Facility)

duration of initialization process 2-26
modules 3-15
Monitor II reports 4-6
obtaining storage for I/O data 2-15
post processors 7-5
procedure in SYS I.PROCLIB 2-25
SMF records 70-79 7-5
starting 2-25
user exit routines 5-4

RMODE
description of 3-27
determining 3-29
flags in the CESD 3-28, 9-2
flags in the ESD 3-28
flags in the PDS directory entry 3-28,9-2
specifying 3-28

RNLDEF statements 2-16
RNLs (resource name lists)

defining 2-17
in GRSRNLxx PARMLIB members 2-16
SYSTEM inclusion 5-2
SYSTEMS exclusion 2-26,5-2
using defaults 2-26

routing
codes for messages

altering 5-7
using 4-5

jobs 9-8
messages 4-8

RPQs for devices and features 1-3,2-6
RSM

backing virtual storage 3-21
control blocks in PRDMP output 6-11
modules 3-15

RSMDA T A PRDMP statement 6-11
RSU system parameter 2-12
RSVNONR system parameter 2-15,2-22
RSVSTRT system parameter 2-15,2-22

. RTM (recovery termination manager) 3-15
RUN CHAIN IPeS subcommand 6-14

S

SADMP
See stand-alone dump

SALLOC lock 3-18
SAM 3-25
save areas in the PSA 3-20

SCHEDULE macro 3-7,9-4
SCHEDULR macro 2-5, 2-6
SCP manual CNTL (SYSCTL) console frame 4-1
SDUMP

DAE function 6-8
macro 3-7, 3-41, 3-44, 9-4

SDWA
additional information in 6-22
changes to structure 3-10
checkpoint/restart data 6-24

SDWAVRA 6-9
segment protection in PLPA 3-19
select ASID service 5-10
serializing VSAM data sets 5-1
SET

command
DAE 4-12, 6-9
MPF 4-5,5-7
SMF 4-12

symbol 9-1
Set Storage Key (SSK) instruction 3-12
SETDEF IPCS subcommand 6-14
SETFRR macro 3-7
SETLOCK macro 3-7

example of new function 3-18
incompatible MVS/XA expansion 9-4
new parameters 3-41
specifying RELEASE,TYPE=(reg) I ALL 3-44

SETRP macro 3-5,3-42,6-23
SIZE parameter for LKED EXEC 8-6
SLIP command

in lEACMDOO 2-12, 2-20
in summary of commands 4-13
MOD 4-12
SET 4-12
suppressing dumps 6-7
31-bit indirect address notation 4-12

slot selection algorithm 8-10
slots, backup 8-9
SMF

address space 2-23, 2-24
BOEs 3-17
buffers 2-23
compatibility between releases 7-5
data set placement 8-9
EOFmarks 3-17,7-5
format of data sets 3-17
recording lEFUSI changes 6-23
recording TSO commands 3-12
records 3-16, 7-2, 7-3, 7-4, 7-5
reporting device connect time 7-1
reporting virtual storage use 7-2
step initiation exit 5-2

SMFEOFMARKs in SMF records 3-17,7-5
SMFEXIT macro 3-5,9-4, A-3
SMFIOCNT macro 3-6, 3-17, 3-42
SMF30ARB field 7-2, 7-3
SMF30BLK field 7-3
SMF30DCT field 7-1
SMF30EAR field 7-2
SMF30ERG field 7-2
SMF30EUR field 7-2
SMF30PRV field 7-2
SMF30RGB field 7-2
SMF30RGN field 7-4
SMF30SYS field 7-2
SMF30TCN field 7-1
SMF30TEP field 7-3
SMF30URB field 7-2, 7-3
SMF32TCT field 7-1

SMF4EXCP field 7-3
SMF4RSHO field 7-4
SMP Release 4 2-1, 2-2
SMP/E 2-1,2-2
SNAP

dump headers 6-6
dump indexes 6-6
dump processing exits 5-8
macro 3-6, 3-42

SPlE macro 3-6, 3-9, 9-4
SPLEVEL macro 3-6

examples 9-5
function of 3-42, 9-5
in JES system programs 3-12
use in JES modifications 3-12
use in JES2 user exits 5-5
use in JES3 user exits 5-5

SPLS dump option 6-4
SQA

SRB

dump option 6-4
increasing minimum allocation for 2-13
specifying the size of 2-13, 2-21
system parameter 2-13, 2-21

SRBEP field 3-15
SRBRMTR field 3-15

SRM (system resources manager)
calculating I/O service 2-20
calculating page-in rate 2-20, 8-9
collecting I/O data 2-15
I/O interrupt processing 2-21
I/O load balancing 2-21
IOSRVC parameter 2-20
modules 3-15
non-specific device allocation 2-21
PPGRTR parameter 2-20,8-9

SSI(subsystem interface) routines 5-5
SSK (Set Storage Key) instruction 3-12
STACK IPCS subcommand 6-14
STAE macro 9-3
stand-alone dump

generating 2-26
IPL option 4-2
macro (AMDSADMP) 2-27
real storage dump module (AMDSARDM) 2-27
requesting 2-27
storing status 4-3
using labeled tapes 4-3

ST ART command
LLA keyword 2-20, 2-24, 4-13, 8-8
SUB keyword 4-13

starting
DUMPSRV address space 2-24
full-function address spaces 2-24
LLA function 2-24, 8-8
master scheduler address space 2-9
PRDMP 2-24
RMF 2-25
SMF address space 2-24

STATUS STOP,SYNCH macro 3-6,3-10
ST AX macro 3-6, 9-4, A-3
STIMER

macro 3-6,3-14,3-42,9-4, A-3
service routine 2-16, 3-18

STIMERM macro 3-6, 3-42
STNSM instruction 3-23
STOP command 4-13,8-8
STOPMN command 4-11,4-13

Index X-II

storage
availability check 5-3
management locks 3-18
specifying reconfigurable 2-12

storing status before taking a stand-alone dump 4-3
STOSM instruction 3-23
SUBPLST dump option 6-4
subpools 3-17,3-22
subsystem interface (SSI) routines 5-5
SUBT ASKS dump option 6-4
SUM dump option 6-4
SUMMARY IPCS subcommand 6-15
SUMMARY PRDMP statement 6-11
suppressing

SVC

dumps
preventing 6-9
using DAE 6-8
using SLIP commands 6-7

messages 2-23,5-7

changing the addressing mode 3-27
dumps

checkpoint/restart data 6-24
DAE options for 6-8
format changes 6-6
suppressing 6-7

issued by WTO/WTOR user exits 5-7
Router 3-18
screening table addresses 3-15
table

changes 3-18
updating 3-43

109 3-18
138 3-18
16 3-18
33 3-8
46 3-18
47 3-18
61 3-11
82 3-18
88 3-18
97 3-11

SVCDUMP modules 3-15
SVCT ABLE macro 2-5
SVCUPDTE macro 3-7, 3-43
SVT

SVTDACTV field 3-17
SVTPW AIT field 3-17

swap data sets
defining 2-8
eligible devices for 2-8

symptom
data from DAE 5-6,6-8,6-11
dump

description 6-4
obtaining via TSO 6-5
suppressing 6-5

SYNCH macro 3-3, 3-6, 3-27, 3-38, 3-43, 9-4, 9-7, A-4
SYSABEND dumps

headers 6-6
indexes 6-6
options 2-19
summary dump 6-5
suppressing 6-7

SYSCTL (SCP Manual CNTL) console frame 4-1
sy~gen

creating an IOCDS 2-3
defining devices 2-3
defining system data sets 2-8
DLIB changes 2-3

X -12 MVS/Extended Architecture Conversion Notebook

functions deleted 2-3
initializing DASD 2-10
IPL text required 2-10
macros

CHANNEL 2-6
CONSOLE 2-5
CTRLPROG 2-6, 2-13
DATASET 2-5, 2-6, 2-9
GENERATE 2-5,2-6,2-10
incompatible differences 2-5
IODEVICE 2-5, 2-6
SCHEDULR 2-5, 2-6
SVCTABLE 2-5
UNITNAME 2-6

performing 2-1,2-2
requirements for 2-2
SYS1.LOGREC placement 2-9

SYSLIB DD statements 8-6 (
SYSLIN DD statements 8-6
SYSLMOD DD statements 8-6
SYSLOG data set records 3-13,3-43
SYSMDUMP dumps

DAE options for 6-8
format changes 6-6
headers 6-6
options 2-20
summary dump 6-6
suppressing 6-7
symptom dumps 6-5

SYSPRINT DO statement 2-24, 8-6
system data sets

defining during sysgen 2-8
dump data sets 2-8
eligible device types for 2-8
incompatible 9-9
page data sets 2-8
sharing 6-10
swap data sets 2-8
SYS1.DAE 2-8,6-8
SYS1.DUMPxx 1-1,2-8,2-15
SYS1.LOGREC 2-9
SYS I.PARMLIB 2-10
SYS1.PROCLIB 2-23
using the SYS 1 qualifier 2-10

system generation
See sysgen

SYSTEM inclusion RNLs 5-2
system log 3-43
system parameters

ALT 2-21
BLOL 2-20, 2-22
BLDLF 2-20,2-22
CMB 2-15,2-21
CSA 2-13,2-14,2-21
DUMP 2-15,2-21
FIX 2-21
GRSRNL 2-16,2-22
LNKAUTH 2-22,8-8
LPA 2-9,2-22
MAXUSER 2-15,2-22
MLPA 2-21
MSTRJCL 2-9, 2-22
PAK 2-22
RSU 2-12
RSVNONR 2-15,2-22
RSVSTRT 2-15,2-22
SQA 2-13,2-21

system patch area 3-20

system resources manager
See SRM (system resources manager)

system services
interfaces to 3-23
parameter list changes A-I

system termination facility 6-23
system trace

activating 6-21
buffers 6-21
changes to 6-20
creating entries 6-21
data in dumps 2-19,6-21
modules 3-15
records 3-16
selecting events 6-20
table 4-14,6-12
types of 6-20

SYSTEMS exclusion RNLs 2-26,5-2
SYSTSIN DD statement 2-24
SYSTSPRT DD statement 2-24
SYSUDUMP dumps

headers 6-6
indexes 6-6
options 2-20
summary dump 6-5
suppressing 6-7

SYSUTI DD statements 8-6
SYS I.AOSC5 data set 2-3
SYSl.DAE data set 2-8,2-9,6-8,6-10
SYS I.DUMPxx data sets

See dump, data sets
SYS1.LINKLIB data set

location of RNLs 2-16,2-22
MSTRJCLxx members 2-9,2-22
sharing 9-9

SYSl.LOGREC data sets
checkpoint/restart data 6-24
increasing the size of 2-9
placement 2-9
recording suppressed dumps 6-8

SYS I.LPALIB data set
concatenation 2-9
sharing 9-9

SYS 1.MACLIB data set
different expansions of same macro 9-4
sharing 9-9

SYSl.NUCLEUS data set
allocating 2-10
sharing 9-9

SYS I.PARMLIB data set
characteristics 2-10
members

ADYSETxx 2-18, 6-9
ADYSETOO 6-9
ADYSETOI 6-9
ADYSET02 6-9
COMMNDxx 2-16
CONFIGxx 2-18
GRSRNLxx 2-16,2-18,2-22
GRSRNLOO 2-17
GTFPARM 2-18
IEAABDOO 2-19
IEABLDxx 2-20
IEACMDOO 2-20, 8-8
IEADMPOO 2-20
IEADMROO 2-20
IEAFIXxx 2-20
IEAIPSxx 2-20
IEALODOO 2-21
IEALPAxx 2-16,2-21

IEAOPTxx 2-21
IEAPAKxx 2-21
IEAPAKOO 2-21
IEASYSxx 2-21
IECIOSxx 2-23,5-4
LPALSTxx 2-9,2-23
MPFLSTxx 2-23,4-5,5-7

sharing 9-9
summary of changes to 2-17

SYS 1.PROCLIB data set
DUMPSRV procedure 2-24
IEESYSAS procedure 2-24
in a JES3 configuration 9-9
in converter-interpreter (CI) processing 9-9
LLA procedure 2-24,8-8
PRDMP procedure 2-24
RMF procedure 2-25
summary of changes 2-23

SYS 1.SAMPLIB data set
BLSAMPLE member 6-19
DAEALLOC member 2-9,6-10
MIGJOB01 and MIGJOB 02 members 6-19
PRDMPXA member 6-19

SYS1.SBLSMGO data set 6-19,6-20
SYS1.SBLSPNLO data set 6-19,6-20
SYS 1.SVCLIB data set, sharing 9-9

T

tapes, labeled 4-3
TCBSVCA2 field 3-15
TCOMT AB control block 3-11
terminating

jobs 4-7, 4-11
started processes 4-7, 4-11
time-sharing users 4-7, 4-11

text records, sizes of 8-1, 8-6
thresholds

for hot I/O interupts 2-23
for I/O interrupt processing 2-21
for I/O load balancing 2-21
for limiting concurrent global resource serialization

requests 3-13
for logical path utilization 2-21

time
execution 2-20, 8-9
residency 2-20, 8-9

time interval, real 3-42
timer

CPU 3-14
interval 3-14

titles of IPeS print files 6-18
TIVEFRGN field in type 34 SMF records 7-4
TRACE

command 4-14,6-20
instruction 3-31
lock 3-18
PRDMP statement 6-12

tracing
See also system trace
USR events via GTF 3-45

TRACK command 4-5
Translate and Test (TRT) instruction 3-30
translating real addresses to virtual addresses 3-15
TRT

dump option 6-4
instruction 3-30

Index X-I3

TSO
command package 2-3
obtaining symptom dump output in 6-5
terminal monitor program 2-24
TEST command 2-3,3-11
TEST subcommand table 3-11

TSO/E for MVS/XA 2-3,3-11
TTIMER

macro 3-14,3-39
service routine 2-16, 3-18

U

UCB
addresses 3-15
look-up routine 3-15
scan routine (IOSVSUCB) 3-8

UNALLOC command 3-11
unauthorized programs, changes affecting 3-1
unit control block

See UCB
unit verification 3-45
UNITN AME macro 2-6
user exit routines

v

dump processing 5-8
dynamic allocation 3-14
EREP PRDMP 6-18
IEALIMIT 5-2
lEA VMXIT 4-7, 5-7
IEECVXIT 4-5,5-7
IEFDB401 3-14
IEFUSI 5-2
JES2 5-4
JES3 5-5
post-dump 5-4
PRDMP 5-6
PRDMP header 5-6
pre-dump 5-4
print dump 5-1
RMF 5-4
SMF step initiation exit 5-2
using ECT entries 5-1
WTO 4-5
WTO/WTOR 2-23,4-5,5-7

V=R programs 3-16
VARY command

CH 4-14
CPU 4-14
PATH 4-14
STOR 4-14

virtual IDA Ws 3-37
virtual storage

amount program fetch fixes 8-4
changes in use of 7-2
for RMF I/O measurements 2-15
for the SLIP command processors 2-12
map 2-14
obtaining information about 3-43
obtaining via GETMAIN 3-10
reporting use of 7-2
rules for backing 3-21

VRADAE key in the SDW A VRA 6-9
VRADA T A macro 6-10
VRC parameter on GETMAIN 3-43
VRU parameter on GETMAIN 3-43

X-14 MVS/Extended Architecture Conversion Notebook

VSAM
catalogs 9-9
data sets 5-1
interfaces to 3-25
OPEN processing 5-1
performing I/O in 31-bit mode 3-36
record management load modules 3-15

VSM
control blocks in PRDMP output 6-12
GETMAIN limit

calculating 5-3
exceeding 6-23
specifying 5-2

modules, residence of 3-15
region size limit

calculating 5-3
exceeding 6-23
specifying 5-2

storage availability check 5-3
VSMDA T A PRDMP statement 6-12
VSMLIST macro 3-7, 3-43
VSMLOC macro 3-7, 3-43
VSMREGN macro 3-7, 3-43

W

wait state codes
OC4 6-23
081 2-10
114 4-6

work/save areas in the PSA 3-20
working set size 2-20, 8-9
WTL macro 3-6, 3-13, 3-43
WTO macro 3-6, 3-43
WTO/WTOR user exits 2-23,4-5,5-7
WTOR macro 3-6, 3-43, 9-4, A-4

x

XCTL macro

o

changing the addressing mode 3-27
differences 3-6

OC4 wait state code 6-23
081 wait state code 2-10

114 wait state code 4-6
16E ABEND code 3-17

2

24-bit dependencies in programs 9-3

3

31-bit addressing
description of 3-25
impact on programmers 3-26

indirect addresses on SLIP commands 4-12
list of related topics 3-2
modules running in 3-15

3279 MCS consoles 4-5
370 I/O instructions 3-12
370-XA mode

initializing processor in 4-1
instruction addresses 3-25
10CP differences 2-4
switching to 4-1

5

504 ABEND code 3-10
538 ABEND code 3-13

8

80A ABEND code 6-8

Index X-IS

X-16 MVS/Extended Architecture Conversion Notebook

N
M

"'"
oj
N
()
<:)

MV!:i/Extended Architecture Conversion Notebook (File No. S370-34) Printed in U.S.A. GC28-1143-2

@

11111111
Ila.

11111111

mllal
11111111

E
~

0 -.!!!
.s::
(ij
Q)
III

0
Q)
Q.
tV

QI
"0 c:
Q) ::i E 01 E c:
:::l 0
en «
~ "t7 Q)

.s:: '0 u.
0

0 ~

0 ...
Q) ;:,

> (J

'';:;
. iii
c:
Q)
III

Q)
~

::J
III
III
Q)
~
Q.

Q)
III
:::l
Q)
III
tV
Q)

0:

MVS/Extended Architecture
Conversion Notebook

GC28-1143-2

READER'S
COMMENT
FORM.

This manual is part of a library that serves as a reference source for system analysts, programmers, and
operators of IBM systems. You may us~ this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation? __________________________ _

How do you use this publication? _______________________ _

Number oflatest Newsletter associated with this pUblication: _____________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the back of the title page.)

· GC28-1143~2

Reader's Comment Form

Fold and tape

Fold and tape

-------- ----- ---- - ---- - - ----------- _.-®

Please Do Not Staple

I II II I

BUSINESS REPLY MAIL

FI RST CLASS PERMIT 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department 058, Building 920-2
PO Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

Fold and tape

~
<
~
n
>
~
c
ct c
}

§
;::;
<t
C"l
I""i s: .,
CIl

('
0
:::::I
<
CIl ..,
VI

0
:::::I

:2
0
CIl
0
0
0
A .,.
CD
2
?
u:
c..:
-...J
0
W
.j:::o

-c
::!.
:::::I
CIl

I c..
:::::I

I c
Ctl

I ?>

I
Gl
("')
N

I
~ -.j:::o.

I
w
r()

I
I
I
I
I
I

E
0

<t-

,!!?
.s:;
+-'

co
Q)
II)

0
+-'
Q)

C.
co
+-'
"0

Q)

c::
Q) :J E

Cl
E c::
::::l 0
0) ~
~

~ Q)

.r::. (5
+-' U. 0

0 ~

0 ...
Q) ::I

> U
'.j:i
'Vi
c
Q)
II)

~
::::l
II)
II)
Q)
~

c.
Q)
II)

::::l
Q)
II)

co
Q)

C[

MVS/Extended Architecture
Conversion Notebook
GC28-1143-2

You can use this form to submit conversion hints for
possible publication in this book. It is understood that
IBM and its affiliated companies shall have the
nonexclusive right, in their discretion, to use, copy and
distribute all submitted information or material, in any
form, for any and all purposes, without any obligation
to the submitter, and that the submitter has the
unqualified right to submit such information or material
upon such basis. When submitting conversion hints,
indicate the system and release level from which you are

CONVERSION
NOTEBOOK
INPUT
FORM

converting and the system and release level to which you
are converting.

Your views about this publication might help improve
usefulness; this form will be sent to the author's depart
ment for appropriate action. Using this form to request
system assistance or additional publication will delay
response, however. For more direct handling of such
requests, please contact your IBM representative or the
IBM Branch Office serving your locality.

Whatisyouroccupation? __ __

Number of latest Technical Newsletter (if any) concerning this publication:_-----------------------__

Please indicate your name, address, and phone number in the space below.

I BM representative, __ --__

State problem and suggested solution for resolving problem. Attach examples, etc., when available.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A, (Elsewhere,
an IBM office or representative will be happy to forward your comments).

GC28-1143-2

Input Form

Fold and tape

Fold and tape

--- ------ ----- ---- -. ---- --"---------- _.-®

Please Do Not Staple

I II II I

BUSINESS REPLY MAIL

FIRST CLASS PERMIT 40 ARMONK, NEW YORK

POSTAGE WI LL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department 058, Building 920-2
PO Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IFMAILED

IN THE
UNITED STATES

Fold and tape
--I

I
I
I
I
I
I
I
I
I
I
I
I

s:
< en -m
X
.-+
(1)

::J
Co
(1)

Co

» ..,
n
:T
;:j:
(1)

~
c: ..,
(1)

(")
o
::J
<
(1) ..,
(I)

o·
::J

Z
o
g-
O' o o
7\

"T1

CD
z
?
en
(oJ

'" o
W
~

