

--------... ------­... - ---- -- ----------_.- MVS/Extended Architecture
VSAM Administration Guide

Version 2 Release 4

GC26-4151-5

Sixth Edition (September 1989)

This edition replaces and makes obsolete the previous edition, GC26-4151-4.

This edition applies to Version 2 Release 4 of MVS/Exlended Architecture Data Facility Product,
Program number 5665-XA2, and to any subsequent releases until otherwise indicated in new editions
or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the table of con­
tents. Specific changes are indicated by a vertical bar to the left of the change. Editorial changes that
have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM Systeml370, 30xx, 4300, and 9370 Processors Bibli­
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Department J57, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1986, 1987, 1989. All rights reserved.

Trademarks

The following names have been adopted by IBM for trademark use and are
used throughout this publication:

MVS/SPT:\t

MVS/XA'r:\1

Trademarks Iii

Contents

Chapter 1. Introduction

Chapter 2. VSAM Data Set Organization
Data Storage

Data Set Size
Control Intervals

Control Information Fields
Control Areas
Spanned Records

Choosing a Data Set Type
Key-Sequenced Data Sets

Free Space
Using Control Interval Free Space
Prime Index
Key Compression
Control Interval Splits ...

Entry-Sequenced Data Sets .
Linear Data Set
Relative Record Data Sets

Types of Data Set Access
Accessing Records in a Key-Sequenced Data Set

Sequential Access
Direct Access
Skip-Sequential Access

Accessing Records in an Entry-Sequenced Data Set
Accessing Records in a Linear Data Set
Accessing Records in a Relative Record Data Set

Accessing Records through an Alternate Index
Alternate Index Paths

Chapter 3. Defining a VSAM Data Set
Cluster Concept .
Defining a Data Set

Naming a Cluster
Duplicate Data Set Names

Specifying Cluster Information
Descriptive Information
Performance Information
Security and Integrity Information

Allocating Space for a Data Set
Small Data Sets
Multiple Cylinder Data Sets
Linear Data Sets
Sample Calculation of Space Allocation for a VSAM Key-Sequenced

Data Set

3
3
3
3
4
6
6
7
8
9

10
10
11
11
11
12
12
13
13
14
14
14
14
15
15
15
18

19
19
19
20
20
21
21
22
22
23
24
24
25

25
Direct Access Device Characteristics 26

Modifying Attributes of a Component 27
Loading a Data Set 27

Using REPRO to Load a Data Set 27
Using Your Own Program to Load a Data Set 29
Reusing a VSAM Data Set as a Work File 30

Contents V

Copying a Data Set
Using REPRO to Copy a Data Set

Creating an Alternate Index , ..
Naming an Alternate Index
Specifying Alternate Index Information
How an Alternate Index Is Built
Alternate Index Maintenance .
Defining a Path

Defining a Page Space
Checking for Problems in Catalogs and Data Sets

Listing Catalog Entries
Printing a Data Set

Chapter 4. Processing a Data Set
Creating an Access Method Control Block
Creating an Exit List
Opening a Data Set
Creating a Request Parameter List .

Chaining Request Parameter Lists
Manipulating Control Block Contents

Generating a Control Block
Testing Contents of Fields in the ACB, EXLST, and RPL .
Modifying Contents of the ACB, EXLST, and RPL
Displaying Contents of Fields in the ACB, EXLST, and RPL

Requesting Access to the Data Set
Inserting a Record

Insertions into a Key-Sequenced Data Set
Insertions into a Relative Record Data Set
Insertions into an Entry-Sequenced Data Set
Insertions into a Linear Data Set .

Retrieving Records ,
Sequential Retrieval
POinting VSAM to a Record
Direct Retrieval

Updating a Record
Deleting a Record
Deferred and Forced Writing of Buffers
Retaining Data Buffers and Positioning
Multistring Processing
Concurrent Requests
Accessing Records Using a Path
Asynchronous Requests

Checking for Completion of Asynchronous Requests .
Ending a Request

Closing a Data Set
VSAM Macro Relationships
Operating in SRB or Cross Memory Mode

Chapter 5. Establishing Backup and Recovery Procedures

. 31
31
32
33
33
34
~5
35
36
36
37
37

39
39
40
41
42
43
44
44
45
45
45
46
46
46
47
48
48

. 48
48
49
49
50
50
51
51
52
53
53
54
54
54
55
56
58

Using REPRO for Backup and Recovery
59
59
59
61
61
61
62

Options Using REPRO
Using EXPORTIIMPORT for Backup and Recovery

Structure of an E>fported Data Set
Procedure for Using EXPORTIIMPORT

Data Facility Data Set Services (DFDSS)

vi MVSIXA VSAM Administration Guide

Writing Your Own Program for Backup and Recovery
Updating after Data Set Recovery
Synchronizing Data Set and Catalog Information

Synchronizing Values following Data Set or Catalog Damage
Synchronizing Values following an Abnormal Termination
Using VERIFY to Synchronize Values

Chapter 6. Optimizing VSAM Performance
Optimizing Control Interval Size

Control Interval Size Limitations
Physical Block Size and Track Capacity

Data Control Interval Size
Index Control Interval Size
How VSAM Adjusts Controllnterval Size

Optimizing Control Area Size
Advantages of a Large Control Area
Disadvantages of a Large Control Area Size

Optimizing Free Space Distribution
Choosing the Optimal Percentage of Free Space
Altering the Free Space Specification When Loading a Data Set

Key Ranges
Examples of How Key Ranges Are Assigned

Example 1
Example 2
Example 3
Example 4

Naming Key Ranges
Determining 110 Buffer Space for Nonshared Resources .

Obtaining Buffers above 16 Megabytes
Buffer Allocation for Concurrent Data Set Positioning
Buffers for Direct Access

Allocating Data Buffers for Direct Access .
Allocating Index Buffers for Direct Access

Buffers for Sequential Access
Data Buffers for Sequential Access Using Nonshared Resources

Buffer Allocation for a Path
Acquiring Buffers

Index Options :
Index Set Records in Virtual Storage
Avoiding Control Area Splits
Index and Data on Separate Volumes
Replicating Index Records
Sequence-Set Records Adjacent to Control Areas

Staging VSAM Data Sets on a Key or Key Range Basis for MSS
Prestaging Discretely Identified Records ...

62
62
62
62
63
63

65
65
65
66
67
67
68
69
69
70
70
71
72
73
73
73
74
74
75
75
76
76
76
76
77
77
79
80
80
81
81
82
82
82
82
83
83
83

Prestaging of a Specified Range of Records 84
Non-MSS Support
Restrictions and Limitations
Using Alternate Indexes with MSS Macros

84
84
85

Chapter 7. Processing Control Intervals 87
Gaining Access to a Control Interval .. 88
Structure of Control Information 89

CIDF-Control Interval Definition Field 90
RDF-Record Definition Field 90

Contents vii

Control Field Values for Nonspanned Key-Sequenced and
Entry-Sequenced Data Sets 92

Control Field Values for Spanned Key-Sequenced and Entry-Sequenced
Data Sets 93

Control Field Values for Relative Record Data Sets
User Buffering
Improved Control Interval Access

Opening an Object for Improved Control Interval Access .. .
Processing a Data Set with Improved Control Interval Access
Fixing Control Blocks and Buffers in Real Storage

Control Blocks in Common (CBIC) Option

Chapter 8. Data Security and Integrity ..
Resource Access Control Facility (RACF)

Using a Generic Profile
Checking Authorization
Erasing Residual Data

Authorized Program Facility (APF)
Access Method Services Password Protection ..

Passwords to Authorize Access
Password Protection Considerations and Precautions .

For a Catalog
For a Data Set
Relation of Data Set and Catalog Protection

Password Prompting
Passwords for Non-VSAM Data Sets

User-Security-Verification Routine (USVR)
Access Method Services Cryptographic Option

Key Management
Data Encryption Keys .. .
Secondary File Keys

Requirements

Chapter 9. Sharing a VSAM Data Set
Subtask Sharing

Preventing Deadlock in Exclusive Control
Data Set Name Sharing

Cross-Region Sharing
Read Integrity during Cross-Region Sharing ..

Invalidating Data and Index Buffers
Write Integrity during Cross-Region Sharing

Cross-System Sharing
Control Block Update Facility (CBUF)

User Considerations with CBUF Processing ..
Issuing a Checkpoint with Shared Data Sets

Techniques of Sharing-Examples
Cross-Region Sharing
Cross-System Sharing
User Access to VSAM Shared Information

Chapter 10. Sharing Resources among Data Sets
Providing a Resource Pool

Building a Resource Pool: BLDVRP
Deciding How Big a Resource Pool to Provide ..
Displaying Information about an Unopened Data Set

viii MVS/XA VSAM Administration Guide

• * •••

.....

94
94
94
95
95
96
96

99
99
99

100
100
100
102
102
104
104
104
105
105
105
106
106
108
108
109
110

113
114
115
116
118
119
119
120
120
121
122
123
124
124
125
126

127
127
127
129
129

Displaying Statistics about a Buffer Pool
Connecting a Data Set to a Resource Pool: OPEN
Deleting a Resource Pool: DLVRP

Managing 1/0 Buffers for Shared Resources
Deferring Write Requests
Relating Deferred Requests by Transaction ID

Writing Buffers Whose Writing Is Deferred: WRTBFR
Handling Exits to Physical Error Analysis Routines
Using the JRNAD Exit with Shared Resources
Accessing a Control Interval with Shared Resources
Locating an RBA in a Buffer Pool: SCHBFR
Marking a Buffer for Output: MRKBFR ...

Summary of Restrictions for Shared Resources

Chapter 11. User-Written Exit Routines

130
130
131
131
132
132
133
134
134
134
134
135
135

137

Chapter 12. Checking a VSAM Key-Sequenced Data Set Cluster for Errors 139
Introduction to EXAMINE 139

Types of Data Sets 139
Users of EXAMINE 139

How to Run EXAMINE 140
Sharing Considerations 140
Deciding to Run an INDEXTEST. a DATATEST or Both Tests 140
Controlling Message Printout 140
Skipping DATATEST on Major INDEXTEST Errors 141
Special Considerations When Examining a VSAM Catalog 141
Special Considerations When Examining an Integrated Catalog Facility

User Catalog 141
Output from EXAMINE 141

Message Hierarchy 141
Controlling Message Printout 142

Samples of Output from EXAMINE Runs 143
INDEXTEST/DATATEST against an Error-Free Data Set 143
INDEXTEST/DATATEST against a Data Set with a Structural Error 143
INDEXTEST/DATATEST against a Data Set with a Duplicate Key Error 144

Appendix A. Using 31-Bit Support 147

Appendix B. Job Control Language 149
How to Code JCL 149

Mounting a Subset of Volumes .
JCL Parameters Used with VSAM
Coding the AMP Parameter
JCL Parameters Not Used with VSAM

150
150
152
155

Appendix C. Examples of Defining and Manipulating Data Sets 157
Example 1: Define VSAM Data Sets 157

Explanation of Commands 159
Example 2: Define Non-VSAM and VSAM Data Sets 162

Explanation of Job Control Language Statements 163
Explanation of Commands 163

Example 3: Alter the Cataloged Attributes of VSAM Data Sets 166
Explanation of Commands 167

Example 4: Copying and Printing 168
Explanation of Job Control Language Statements 169

Contents ix

Explanation of Commands
Example 5: Record Replacement

Explanation of Job Control Language Statements"" .
Explanation of Commands

Example 6: Creating an Alternate Index and Its Path
Explanation of Job Control Language Statements .
Explanation of Commands

Example 7: Exporting VSAM Data Sets
Explanation of Job Control Language Statements .
Explanation of Comm~nds

Example 8: Importing VSAM Data Sets
Explanation of Job Control Language Statements .
Explanation of Commands

Example 9: Deleting a Linear Data Set
Explanation of Job Control Language Statements .
Explanation of Commands

Appendix D. Processing the Index of a Key-Sequenced Data Set
How to Gain Access to a Key-Sequenced Data Set's Index

Accessing an Index with GETIX and PUTIX
Opening the Index Component Alone
Prime Index
Index Levels

Format of an Index Record
Header Portion
Free Control Interval Entry Portion
Index Entry Portion

Key Compression
Index Update following a Control Interval Split ..
Index Entries for a Spanned Record

Appendix E. Calculating Virtual Storage Space for an Alternate Index .
DO Statements That Describe the Sort Work Files

Appendix F. Using ISAM Programs with VSAM Data Sets
How an ISAM Program Can Process a VSAM Data Set
Converting an Indexed-Sequential Data Set

JCL for Converting from ISAM to VSAM ."
JCL for Processing with the ISAM Interface

AMP Parameter Specification
Restrictions on the Use of the ISAM Interface

Example: Converting a Data Set
Example: Issuing a SYNADAF Macro

Gloss~ry of Terms and Abbreviations

Index

X MVS/XA VSAM Administration Guide

170
173
173
173
175
176
176
178
179
179
182
183
183
186
186
186

187
187
187
188
188
189
191
192
194
194
195
199
199

201
202

205
206
211
212
212
214
217
219
219

221

229

Summary of Changes

Release 4, September 1989

Service Changes
All information about processing an index has been consolidated in
Appendix D. "Processing the Index of a Key-Sequenced Data Set."

Minor technical and editorial changes have been made.

Release 3.0, June 1987

New Device Support

Enhancements

In Chapter 3. "Defining a VSAM Data Set." a new section - "Direct Access
Device Characteristics" has been added. as well as Figure 15 on page 26.
Chapter 7. "Processing Control Intervals" has also been updated to renect all
models of the 3380. The above changes were made to this manual to renect
basic support of the following types of devices:

DASD

• IBM 3380 Direct Access Storage Models AJ4. BJ4. AK4. and BK4
• IBM 3380 Direct Access Storage Direct Channel Attach Model CJ2

Storage Control

• IBM 3880 Storage Control Model 3 with 3380 AJ4/AK4 Attachment (feature
3005)

• IBM 3990 Storage Control Models 1 and 2

Cache Storage Control

• IBM 3880 Storage Control Model 23 with 3380 AJ4/AK4 Attachment (feature
3010)

• IBM 3990 Storage Control Model 3.

Local shared resource (LSR) support allows separate resource pools for the
data and index portions of a VSAM data set. Chapter 10. "Sharing Resources
among Data Sets" on page 127 renects this change.

The alternate index is synchronized with the base data set following errors.
Chapter 3. "Defining a VSAM Data Set" on page 19 describes this change.

VSAM control blocks and buffers may be obtained above 16 megabytes to
provide virtual storage constraint relief. Appendix A. "Using 31-Bit Support" on
page 147. other appendixes and chapters renect this change.

Information describing the new linear data set has been added.

Summary of Changes xi

Customization Restructure

Service Changes

The contents of Chapter 11, "User-Written Exit Routines," and Appendix G,
"Datestamp Routine," have been moved to Data Facility Product:
Customization.

Information has been added to reflect technical service changes.

Release 2.0, June 1986

Enhancements

Service Changes

For VSAM data sets cataloged in integrated catalog facility catalogs as well as
the integrated catalog facility catalogs themselves, the physical block sizes sup­
ported are the same as the data control interval sizes.

Documentation for the datestamp control module (IDATMSTP) is included in
Appendix G, "Datestamp Routine."

Documentation for the VSAM trace facility is included in Appendix H, "VSAM
Trace Facility."

Information has been added to reflect technical service changes.

Release 1.0 Update, December 1985

New Programming Support
A new command, EXAMINE, has been added to Access Method Services. In
support of the EXAMINE service aid, "Chapter 12. Checking a VSAM Key­
Sequenced Data Set Cluster for Structural Errors" describes, with examples,
how EXAMINE is used to analyze a VSAM key-sequenced data set cluster for
structural inconsistencies.

Erase-on-Scratch Security Enhancement
With the installation of RACF Version 1, Release 7, erase-on-scratch can be
controlled by RACF options and data set profiles for integrated catalog facility
cataloged VSAM data sets.

Export and Import by Control Interval
Access method services EXPORT command parameters provide a method of
requesting exporting by control interval for ESDS base clusters.

xii MVS/XA VSAM Administration Guide

Service Changes
Information has been added to reflect technical service changes.

Release 1.0, April 1985

Enhancements
Enhancements have been added to the JRNAD user exit that allow you to
cancel a request for a control interval or control area split.

Version 2 Publications

RACF Support

The Preface includes order numbers for Version 2 publications.

Information to support Version 1 Release 7 of the Resource Access Control
Facility (RACF) has been added.

Summary <Of Changes xiii

Preface

About This Book
This book is intended to help you use access method services commands,
VSAM macro instructions, and JCL to process VSAM data sets. This book con­
tains information on the use of the virtual storage access method (VSAM).
Unless specifically stated otherwise, the information in this book must not be
used for programming purposes. However, this book also provides the fol­
lowing types of information, which are explicitly identified where they occur:

General-Use Programming Interface

General-use programming interfaces are provided to allow you to write pro­
grams that use the services of MVS/XA Data Facility Product.

L-... _____ End of General-Use Programming Interface ______ ...J

Product-Sensitive Programming Interface

Installation exits and other product-sensitive interfaces are provided to allow
your installation to perform tasks such as product tailoring, monitoring, modifi­
cation, or diagnosis. They are dependent on detailed design or implementation
of the product. Such interfaces should be used only for these specialized pur­
poses. Because of their dependencies on detailed design and implementation,
it is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

'--_____ End of Product-Sensitive Programming Interface _____ --'

Throughout this book, the term DFDSS refers to either the IBM Data Facility
Data Set Services product or an equivalent product. Likewise, the term RACF
refers to either the IBM Resource Access Control Facility product or an equiv­
alent product.

Required Product Knowledge
To use this publication effectively, you should be familiar with:

• Catalog administration

• Job control language

• Principles of operation

Preface XV

Required Publications
You should be familiar with the information presented in the following publica­
tions:

• MVSIExtended Architecture VSAM Administration: Macro Instruction Refer­
ence, GC26-4152, describes the macro instructions that are used with VSAM
programs.

• MVSIExtended Architecture Integrated Catalog Administration: Access
Method Services Reference, GC26-4135, or MVSIExtended Architecture
VSAM Catalog Administration: Access Method Services Reference,
GC26-4136, describes the access method services commands that are used
with VSAM.

• MVSIExtended Architecture Catalog Administration Guide, GC26-4138,
describes the administration of tasks for catalogs and how to use the
access method services commands to manipulate catalogs, and the objects
cataloged in them.

• MVSIExtended Architecture Data Facility Product Version 2: Customization,
contains consolidated customization information for the DFP library.

• MVSIExtended Architecture JCL User's Guide, GC28-1351, and
MVSIExtended Architecture JCL Reference, GC28-13S2, describes the JCL
parameters referred to in this publication and describes dynamic allocation.

• MVSIExtended Architecture Message Library: System Messages, Volumes 1
and 2, GC28-1376 and GC28-1377, provides a complete listing of the mes­
sages issued by VSAM.

Referenced Publications
Within the text, references are made to the publications listed in the table
below:

Short Title Publication Title Order
Number

Access Method MVSIExtended Architecture Inte- GC26-4135
Services Reference grated Catalog Administration:

Access Method Services Refer-
ence

MVSIExtended Architecture GC26-4136
VSAM Catalog Administration:
Access Method Services Refer-
ence

Catalog Adminis- MVSIExtended Architecture GC26-4138
tration Guide Catalog Administration Guide

Checkpoint! Restart MVSIExtended Architecture GC26-4139
User's Guide Checkpoint/Restart User's Guide

xvi MVS/XA VSAM Administration Guide

Short Title Publication Title Order
Number

Data MVSIExtended Architecture Data GC26-4141
Administration: Administration: Macro Instruc-
Macro Instruction tion Reference
Reference

Data Facility MVSIExtended Architecture Data GC26-4267
Product: Facility Product Version 2:
Customization Customization

Data Facility MVSIExtended Architecture Data GC26-4146
Product: Master Facility Product Version 2:
Index Master Index

Data Facility MVSIExtended Architecture Data GC26-4147
Product: Planning Facility Product Version 2: Plan-
Guide ning Guide

DFDSS: User's Data Facility Data Set Services: SC26-4125
Guide and Refer- User's Guide and Reference
ence

Global Resource MVSIExtended Architecture GC28-1062
Serialization Planning: Global Resource

Serialization

JCL User's Guide MVSIExtended Architecture JCL GC28-1351
User's Guide

JCL Reference MVSIExtended Architecture JCL GC28-1352
Reference

RACF General Resource Access Control Facility GC28-0722
Information Manual General Information

System - Data MVSIExtended Architecture GC26-4149
Administration System - Data Administration

Supervisor Ser- MVSIExtended Architecture GC28-1154
vices and Macro Supervisor Services and Macro
Instructions Instructions

System Macros and MVSI Extended Architecture GC28-1150
Facilities System Programming Library: and

System Macros and Facilities GC28-1151
Volumes 1 and 2

System Messages MVSIExtended Architecture GC28-1376
Message Library: System Mes- and
sages GC28-1377
Volumes 1 and 2

System Modifica- MVSIExtended Architecture GC28-1152
tions System Programming Library:

System Modifications

Preface xvii

Short Title Publication Title Order
Number

VSAM Adminis- MVS/Extended Architecture GC26-4152
tration: Macro VSAM Administration: Macro
Instruction Refer- Instruction Reference
ence

Notational Conventions
A uniform system of notation describes the format of VSAM macro instructions.
This notation is not part of the language; it merely provides a basis for
describing the structure of the macros.

The macro format illustrations in this book use the following conventions:

• Brackets [] indicate optional parameters.

• Braces { } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

• Items separated by a vertical bar (I) represent alternative items. No more
than one of the items may be selected.

• An ellipsis (...) indicates that multiple entries of the type immediately pre­
ceding the ellipsis are allowed.

• Other punctuation (parentheses, commas, and so forth) must be entered as
shown.

• BOLDFACED type indicates the exact characters to be entered. Such items
must be entered exactly as illustrated (in uppercase, except in TSO).

• Italic type specifies fields to be supplied by the user.

• BOLDFACED UNDERSCORED type indicates a default option. If the param­
eter is omitted, the underscored boldfaced value is assumed.

• A I I in the macro format indicates that a blank (an empty space) must be
present before the next parameter.

xviii MVS/XA VSAM Administration Guide

Chapter 1. Introduction

The virtual storage access method (VSAM) is an access method used to
organize data and maintain information about that data in a catalog.

There are two major parts of VSAM:

• Catalog management. VSAM maintains extensive information about data
sets and direct access storage space in a catalog. The catalog can be
either an integrated catalog facility catalog or a VSAM catalog. The cata­
log's collection of information about a particular data set defines that data
set. Every VSAM data set must be defined in a catalog. You cannot, for
example. load records into a VSAM data set until its definition has been
established. For information about catalog management, see Catalog
Administration Guide.

• Record management. VSAM can be used to organize records into four
types of data sets. These data sets are called key-sequenced data sets.
entry-sequenced data sets, linear data sets and relative record data sets.
The primary difference among these types of data sets is the method of
storing and accessing records.

VSAM programming is performed using access method services commands
and VSAM macro instructions.

• Access method services. In VSAM. you define data sets and establish cata­
logs using a multifunction services program called access method services.
Access method services is directed by a set of control statements called
commands.

• VSAM macro instructions. Two types of VSAM macros are used to process
VSAM data sets.

Control block macros generate control blocks of information needed by
VSAM to process the data set.

Request macros are used to retrieve. update, delete, or insert logical
records.

You can use either 24-bit or 31-bit addresses for VSAM programs. If you use
31-bit support. see Appendix A, "Using 31-Bit Support" on page 147 for proce­
dures and restrictions.

VSAM allows you to do the following:

• Share a data set among different operating systems. different jobs in a
single operating system, or different subtasks in an address space.

• Share buffers and control blocks among VSAM data sets.

• Provide exit routines to analyze logical errors, and physical errors. to
perform end-of-data processing, to keep a record of transactions against a
data set, to perform user-security verification. and for special user proc­
essing.

• Back up and recover data sets.

• Provide measures to maintain data security and integrity.

Chapter 1. Introduction 1

Chapter 2. VSAM Data Set Organization

Data Storage

Data Set Size

Control Intervals

When you request information from or supply information to VSAM data man­
agement. the unit of information you request or supply is a logical record.
Logical records of VSAM data sets are stored differently from logical records in
non-VSAM data sets. VSAM uses control intervals to contain records. When­
ever a record is retrieved from direct access storage. the entire control interval
containing the record is read into a VSAM 1/0 buffer in virtual storage. From the
VSAM buffer. the desired record is transferred to a user-defined buffer or work
area. Figure 1 shows how a logical record is retriev~d from direct access
storage.

:f lID Buffer

�__---...;;',a-p-at....:.~---+::: ll·:I--· ~~I: R1 1 R2 1 RS 1

CI - ControllnCBrval
R-RBCOrd

Figure 1. VSAM Logical Record Retrieval

::1 R2 1
',: ... '.

A VSAM data set can be extended beyond its original size to include up to 123
extents. or to a maximum size of 232 (4.294.967.296) bytes. For additional infor­
mation on space allocation for VSAM data sets. see" Allocating Space for a
Data Set" on page 23.

A control interval is a continuous area of direct access storage that VSAM uses
to store data records and control information that describes the records. A
control interval is the unit of information that VSAM transfers between virtual
storage and disk storage.

The size of control intervals can vary from one VSAM data set to another. but
all the control intervals within the data portion of a particular data set must be
the same length. You can let VSAM select the size of a control interval for a
data set. or you can request a particular control interval size using the access
method services DEFINE command. For information on selecting the best
control interval size. see "Optimizing Control Interval Size" on page 65.

Chapter 2. VSAM Data Set Organization 3

A control interval consists of the following:

• Logical records
• Free space
• Control information fields

Note: In a linear data set all of the control interval bytes are data bytes. There
is no imbedded control information.

Control Information Fields
Figure 2 shows that control information consists of two types of fields: one
control interval definition field (CIDF), and one or more record definition fields
(RDFs). CIDFs are 4 bytes long, and contain information about the control
interval, including the amount and location of free space. RDFs are 3 bytes
long, and describe the length of records and how many adjacent records are of
the same length.

RDF - Record Definition Fjeld
CIDF - Control Interval Definition Field

Figure 2. Control Interval Format

Control Information
Fields

There is no parameter in VSAM to define the data set records as fixed length or
variable length (like RECFM for non-VSAM data sets). VSAM takes into consid­
eration the length 0f adjacent records in a control interval when writing a
record. If two or more adjacent records have the same length, only two RDFs
are used for this group. One RDF gives the length of each record, and the
other gives the number of consecutive records of the same length.

Figure 3 on page 5 shows RDFs for records of the same and different lengths.

4 MVS/XA VSAM Administration Guide

Control Interval 1

Control interval size = 512 bytes
Record length = 160-byte records
Record definition fields-Only 2 RDFs are needed because all records are
the same length.

Record Length 180 180 180 22 3 3 4

Control Interval 2

Control interval size = 512 bytes
Record length-All record~ have different lengths
Record definition fields-One RDF is reguired for each logical record (RDF 1
for record 1, RDF 2 for record 2, and so forth).

R1 R4

130 70 110 140 49 33334

Control Interval 3

Control interval size = 512 bytes
Record length-Records 1 through 3 are 80-byte records.
Records 4 and 5 have different lengths.
Record definition fields-Two RDFs are used for records 1 through 3.
Records 4 and 5 each have their own RDF.

so 80 so 100 B3 83 33334

F6 - Free SpICe

Figure 3. Relation between Records and RDFs

Chapter 2. VSAM Data Set Organization 5

Control Areas

Spanned Records

The control intervals in a VSAM data set are grouped together into fixed-length
contiguous areas of direct access storage called control areas. A VSAM data
set is actually composed of one or more control areas. The number of control
intervals in a control area is fixed by VSAM.

The maximum size of a control area is one cylinder, and the minimum size is
one track of DASD storage. When you specify the amount of space to be allo­
cated to a data set, you implicitly define the control area size. For information
on finding the best control area size, see "Optimizing Control Area Size" on
page 69.

Sometimes a record is larger than the optimal control interval size for a partic­
ular data set. In VSAM, you do not need to break apart or reformat such
records, because you can specify spanned records when defining a data set.
The SPANNED parameter allows a record to extend across or span control
interval boundaries.

Spanned records may reduce the amount of DASD space required for a data
set when data records vary significantly in length. Figure 4 and Figure 5 dem­
onstrate how spanned records can be employed for more efficient use of space.

In Figure 4, each control interval is 10240 bytes long. Control interval 1 con­
tains a 2000-byte record. Control interval 2 contains a 10000-byte record.
Control interval 3 contains a 2000-byte record. 30720 bytes of storage are used
to contain these 3 records.

CI1 CI2 CI3

Con- Con-
R Frea Space tmI R FnsaSpace bal

Infa Infa

CI Length 10240 Bytes

Figure 4. Data Set with Nonspanned Records

CI1

C1length 4088 Bytes

Figure 5 shows a data set with the same space requirements as that in
Figure 4, but one that allows spanned records.

CI2 CI3 CI4 CIS

R Con-
Sag FS tral

3 Infa

Figure 5. Data Set with Spanned Records

The control interval size is reduced to 4096 bytes. When the record to be stored
is larger than the control interval size, the record is spanned between control
intervals. In the figure, control interval 1 contains a 2000-byte record. Control

6 MVS/XA VSAM Administration Guide

intervals 2, 3, and 4 together contain one 1oo00-byte record. Control interval 3
contains a 2000-byte record. By changing control interval size and allowing
spanned records, the three records can be stored in 20480 bytes, reducing the
amount of storage needed by 10240 bytes.

You should remember:

• A spanned record always begins on a control interval boundary and fills
more than one control interval within a single control area.

• For key-sequenced data sets, the entire key field of a spanned record must
be in the first control interval.

• The control interval that contains the last segment of a spanned record may
also contain unused space. This unused space can be used only to extend
the spanned record; it cannot contain all or part of any other record.

• Spanned records can only be used with key-sequenced data sets and entry­
sequenced data sets. (For information on key-sequenced data sets and
entry-sequenced data sets, see "Choosing a Data Set Type. ")

• To span control intervals, you must specify the SPANNED parameter when
you define your data set. VSAM decides whether a record is spanned or
nonspanned, depending on the control interval length and the record length.

Choosing a Data Set Type
VSAM supports four different data set types: key-sequenced, entry-sequenced,
linear and relative record. Before you choose a data set type, consider the fol­
lowing questions:

• Will you need to access the records in sequence, randomly, or both ways?

• Are all the records the same length?

• Will the record length change?

• How often will you need to move records?

• How often will you need to delete records?

• Do you want spanned records?

• Do you want to keep the data in order by the contents of the record?

• Do you want to access the data by an alternate index?

• Do you want to use access method services utilities with an IBM DATA­
BASE 2 (082) cluster?

Figure 6 on page 8 is a quick summary of what each data set type offers.

Chapter 2. VSAM Data Set Organization 7

Figure 6. Comparison of Key-Sequenced, Entry-Sequenced, Relative Record and
Unear Data Sets

Key-Sequenced Entry- Relative Record Linear
Data Set Sequenced Data Set Data Set

Data Set

Records are in Records are in Records are in No processing
collating order in which relative record at record level
sequence by they are number order
key field entered

Direct access Direct access Direct access Access with
by key or by by RBA by relative Data-In-Virtual
RBA record number (DIV)

Alternate Alternate No alternate No alternate
indexes allowed indexes allowed indexes allowed indexes allowed

A record's RBA A record's RBA A record's rela- No processing
can change cannot change tive record at record level

number cannot
change

Free space is Space at the Empty slots in No processing
used for end of the data the data set are at record level
inserting and set is used for used for adding
lengthening adding records records
records

Space given up A record cannot A slot given up No processing
by a deleted or be deleted, but by a deleted at record level
shortened you can reuse record can be
record becomes its space for a reused
free space record of the

same length

Spanned Spanned No spanned No spanned
records allowed records allowed records records

Key-Sequenced Data Sets
In a key-sequenced data set, logical records are placed in the data set in
ascending collating sequence by a field, called the key. As shown in Figure 7
on page 9, the key contains a unique value, such as an employee number or
invoice number, which determines the record's collating position in the data
set. The key must be in the same position in each record, the key data must be
contiguous, and each record's key must be unique. After it is specified, the
value of the key cannot be altered.

8 MVS/XA VSAM Administration Guide

Free Space

4285
Part Numbar

The kay muat be:

• Unique

Kay Field

~
I 854 I
I I
I Invoice Numbar I
I I

• In the aame position In oach rocord

• In the flrat aOllment of Il apannod rooord

1598
Unit Price

Figure 7. Record of a Key-Sequenced Data Set

100
Ouantlty

When a new record is added to the data set, it is inserted in its collating
sequence by key, as shown in Figure 8.

KayFlald

~
I ... !]

1 198 1 II I 3B9 I I 1 r I 771 I
Figure 8. Inserting Records in a Key-Sequenced Data Set

When a key-sequenced data set is created, unused space can be scattered
throughout the data set to allow records to be inserted or lengthened. This
space is called free space. When a new record is added to a control interval or
an existing record is lengthened, subsequent records are moved into the fol­
lowing free space to make room for the new or lengthened record. Conversely,
when a record is deleted or shortened, the space given up is reclaimed as free
space for later use. When you define your data set, you can use the
FREESPf',CE parameter to specify what percentage of each control interval is to
be set aside as free space when the data set is initially loaded.

Within each control area, you can reserve free space in the form of free control
intervals. If you have free space in your control area, it is easier to avoid split­
ting your control area when you want to insert additional records or lengthen
existing records. When you define your data set, you can specify what per­
centage of the control area is to be set aside as free space, using the
FREES PACE parameter.

For information on specifying the optimal amount of control interval and control
area free space, see "Optimizing Free Space Distribution" on page 70.

Chapter 2. VSAM Data Set Organization 9

Using Control Interval Free Space

Prime Index

Figure 9 shows how control interval free space is used to insert and delete a
logical record in a key-sequenced data set.

Before

Free Space

After

R R R C
I 11 12 14 Free Space D D D D F F F F

Figure 9. Inserting a Logical Record in a Control Interval

Two logical records are stored in the first control interval shown in Figure 9.
Each logical record has a key (11 and 14). The second control interval shows
what happens when you insert a logical record with a key of 12.

1. Logical record 12 is inserted in its correct collating sequence in the control
interval.

2. The control interval definition field (CIDF) is updated to show the reduction
of available free space.

3. A corresponding RDF is inserted in the appropriate location to describe the
length of the new record.

When a record is deleted, the procedure is reversed, and the space occupied
by the logical record and corresponding RDF is reclaimed as free space.

A key-sequenced data set always has an index that relates key values to the
relative locations of the the logical records in a data set. This index is called
the prime index. The prime index, or simply index, has two uses:

• To locate the collating position when inserting records
• To locate records for retrieval

When initially loading a data set, records must be presented to VSAM in key
sequence. The index for a key-sequenced data set is built automatically by
VSAM as the data set is loaded with records.

When a data control interval is completely loaded with logical records, free
space, and control information, VSAM makes an entry in the index. The entry
consists of the highest possible key in the data control interval and a pointer to
the beginning of that control interval.

10 MVS/XA VSAM Administration Guide

Key Compression
The key in an index entry is stored by VSAM in a compressed form. This key
compression eliminates from the front and back of a key those characters that
aren't necessary to distinguish it from the adjacent keys. Compression helps
achieve a smaller index by reducing the size of keys in inc!ex entries.

Control Interval Splits
When a data set is first loaded, the key sequence of data records and their
physical order are the same. Howe~er, when data records are inserted, control
interval splits can occur, causing the data control intervals to have a physical
order that differs from the key sequence.

Entry-Sequenced Data Sets
An entry-sequenced data set is comparable to a sequential access method
(SAM) data set. It contains records that may be either spanned or nonspanned.
As Figure 10 shows, records are sequenced by the order of their entry in the
data set, rather than by a key field in the logical record.

RS 1-------,

R4 1-------,

Figure 10. Entry-Sequenced Data Set

Records are only added at the end of the data set. Existing records cannot be
erased. If you want to delete a record, you are responsible for nagging that
record as inactive. As far as VSAM is concerned, the record is not deleted.
Records can be updated, but they cannot be lengthened. To change the length
of a record in an entry-sequenced data set, you must store it either at the end
of the data set (as a new record) or in the place of a record of the same length
that you have nagged as inactive, or that is no longer required.

Because entries are always added to the end of an entry-sequenced data set,
the reserved free space concept does not apply.

VSAM does not maintain a prime index for an entry-sequenced data set. To
retrieve records directly (not in sequence) from an entry-sequenced data set,
you must keep track of the record's relative byte address (RBA) and associate
this RBA with the contents of the record.

The RBA of a logical record is the "ffset of this logical record from the begin­
ning of the data set. The first record in a data set has an RBA of 0; the second
record has an RBA equal to the length of the first record. and so on. The RBA
of a .Iogical record depends only on the record's position in the sequence of
records. The RBA is always expressed as a fullword binary integer. Figure 11
on page 12 illustrates the record lengths and corresponding RBAs for the data
set shown in Figure 10.

Chapter 2. VSAM Data Set Organization 11

Linear Data Set

RBA X'ot)' X'e2' X'SA' X'D6' X'11C' X'162'

RBCOfd Length 88 58 80 70 70

Figure 11. RBAs of an Entry-Sequenced Data Set

When a record is loaded or added, VSAM indicates its RBA. You can build an
alternate index to keep track of these RBAs. (See "Creating an Alternate Index"
on page 32.)

A linear data set (LOS) is a VSAM data set with a control interval size of 4096
bytes and a block size of 4096 bytes. An LOS does not have imbedded control
information. All LOS bytes are data bytes. Only integrated catalog facility cata­
logs can support an LOS.

An LOS is processed as an entry-sequenced data set, with certain restrictions:

• Because an LOS does not contain any definition fields (CloFs and RoFs), it
cannot be processed as if it contained individual records. An LOS is proc­
essed using the olV macro. For information about the olV macro, see
Supervisor Services and Macro Instructions.

• An LOS cannot have the spanned attribute.

• An LOS cannot have an alternate index.

• Other processing restrictions are covered in Chapter 4, "Processing a Data
Set" on page 39.

Relative Record Data Sets
A relative record data set consists of a number of fixed-length slots. Each slot
has a unique relative record number, and the slots are sequenced by ascending
relative record number. Each record occupies a slot, and is stored and
retrieved by the relative record number of that slot. The position of a data
record is fixed; its relative record number cannot change. There is no prime
index for a relative record data set.

Because the slot can either contain data or be empty, a data record can be
inserted or deleted without affecting the position of other data records in the
relative record data set. The record definition field (RoF) indicates whether the
slot is occupied or empty. Free space is nbt provided in a relative record data
set because the entire data set is divided into fixed-length slots.

In a relative record data set, each control interval contains the same number of
slots. The number of slots is determined by the control interval size and the
record length. Figure 12 on page 13 shows the structure of a relative record
data set after adding a few records. Each slot has a relative record number
and an RoF.

12 MVSIXA VSAM Administration Guide

R R R R C

1 2 3(E) 4(E) D D D D I
F F F F D
4 3 2 1 F

R R R R C

5 SeE) 7(E) S(E) D D D D I
F F F F D
8 7 B 5 F

R R R R C

9 1O(E) 11 12 D D D D I
F F F F D
12 11 10 9 F

(E) - Empty Slot

Figure 12. Relative Record Data Set

Types of Data Set Access
VSAM allows both sequential and direct access for all types of VSAM data
sets-key-sequenced, entry-sequenced, linear, and relative record. Skip­
sequential access is possible with key-sequenced data sets and relative record
data sets. For a key-sequenced data set, the primary form of access is keyed
access, using the primary key as a search argument. Another way of accessing
a key-sequenced data set is addressed access, using the RBA of a logical
record as a search argument. If you use addressed access to process key­
sequenced data, you should be aware that RBAs may change when a control
interval split occurs or when records are added, deleted, or changed in size.
Therefore, access by address is not suggested for normal use.

An entry-sequenced data set without an alternate index can be accessed
directly by address (using the RBA determined for a record when it was stored
in the data set), or accessed sequentially.

A relative record data set can be accessed either directly, by providing the rela­
tive record number, or sequentially.

A linear data set can be accessed by control interval access. The other three
types of data sets can also be accessed by control interval access, but this is
used only for very specific applications. Control interval access is described in
Chapter 7, "Processing Control Intervals" on page 87.

Accessing Records in a Key-Sequenced Data Set
The most effective way to access records of a key-sequenced data set is by
key, using the associated prime index. The three methods of keyed access that
can be specified for a key-sequenced data set are:

• Sequential access
• Direct access
• Skip-sequential access

Chapter 2. VSAM Data Set Organization 13

Sequential Access

Direct Access

Sequential access is used to load a key-sequenced data set and to retrieve,
update, add and delete records in an existing data set. When you specify
sequential as the mode of access, VSAM uses the index to access data records
in ascending or descending sequence by key. When retrieving records, you do
not need to specify key values because VSAM automatically obtains the next
record in sequence.

Sequential processing can be started anywhere in the data set. Positioning is
necessary if your starting point is within the data set. Positioning can be done
in two ways:

• Using the POINT macro

• Issuing a direct request, then changing the request parameter list with the
MODeB macro from "direct" to "sequential."

Sequential access allows you to avoid searching the index more than once,
thereby taking less time than direct access. (Direct access processing
searches the index from top to bottom for each record.)

Direct access is used to retrieve, update, add and delete records. When direct
is specified as the mode of access, the prime index is used to directly access
selected records by key value; the index is searched from top to bottom for
each record. You need to supply a key value for each record to be processed.

For retrieval processing, you can either supply the full key, or a generic key.
The generic key is the high-order portion of the full key. For example, you
might want to retireve all records whose keys begin with the generic key AB,
regardless of the full key value.

Direct access allows you to avoid retrieving the entire data set sequentially in
order to process a relatively small percentage of the total number of records.

Skip-Sequential Access
Skip-sequential access is used to retrieve, update, add and delete records.
When skip sequential is specified as the mode of access, VSAM retrieves
selected records, but in ascending sequence of key values. Skip sequential
processing allows you to:

• Avoid retrieving the entire data set sequentially in order to process a rela­
tively small percentage of the total number of records

• Avoid retrieving the desired records directly, which causes the prime index
to be searched from the top to the bottom level for each record

Accessing Records in an Entry-Sequenced Data Set
Entry-sequenced data sets are accessed by address, either sequentially or
directly. When addressed sequential processing is used to process records in
ascending relative byte address (RBA) sequence, VSAM automatically retrieves
records in stored sequence.

To access a record directly from an entry-sequenced data set, you must supply
the RBA for the record as a search argument. For information on how to obtain
the RBA, refer to "Entry-Sequenced Data Sets" on page 11.

14 MVS/XA VSAM Administration Guide

Skip-sequential processing is not supported for entry-sequenced data sets.

Accessing Records in a Linear Data Set
Because linear data sets do not contain control information, they cannot be
accessed as if they contained individual records. You can access a linear data
set with the DIV macro. For information on how to use Data-In-Virtual (OIV), see
Supervisor Services and Macro Instructions.

Accessing Records in a Relative Record Data Set
For a relative record data set, keyed-sequential, keyed-skip-sequential, and
keyed-direct processing are supported. The relative record number is always
used as a search argument.

Sequential processing of a relative record data set is the same as sequential
processing of an entry-sequenced data set. Empty slots are automatically
skipped by VSAM.

Skip-sequential processing is treated like direct requests, except that VSAM
maintains a pointer to the record it just retrieved. When retrieving subsequent
records, the search begins from the pointer, rather than from the beginning of
the data set. Records must be retrieved in ascending sequence.

A relative record data set can be processed directly by supplying the relative
record number as a key. VSAM converts the relative record number to an RBA
and determines the control interval containing the requested record. If a record
in a slot flagged as empty is requested, a "no-record-found" condition is
returned. You cannot use an RBA value to request a record in a relative record
data set.

Accessing Records through an Alternate Index
An alternate index provides a way to access records by more than one key
field. This eliminates the need to store multiple copies of the same information
for different applications. Unlike primary keys, which must be unique, the key
of an alternate index may refer to more than one record in the base cluster. An
alternate key value that points to more than one record is non-unique; if the
alternate key points to only one record, it is unique.

You use access method services to define and build one or more alternate
indexes over a key-sequenced or an entry-sequenced data set, which is
referred to as the base cluster. In terms of access, an alternate index performs
the same function as the prime index of a key-sequenced data set. Alternate
indexes are not supported for linear data sets, relative record data sets or reus­
able data sets (data sets defined with the REUSE attribute). For information on
defining and building alternate indexes, see "Creating an Alternate Index" on
page 32.

In structure, the alternate index is a key-sequenced data set. It consists of an
index component and a data component. The records in the data component
contain an alternate key and one or more pointers to data in the base cluster.
For an entry-sequenced base cluster, the pointers are RBA values; for a key­
sequenced base cluster, the pointers are prime key values.

Chapter 2. VSAM Data Set Organization 15

Allamata
Index

Ba80
Clu8tor

Figure 13.

Index [-

Datil

Datil

Each record in the data component of an alternate index is of variable length
and contains header information, the alternate key, and at least one pointer to a
base data record.

Header information is fixed length and indicates:

• Whether the alternate index data record contains prime keys or RBA
pointers

• Whether the alternate index data record contains unique or non-unique keys
• The length of each pointer
• The length of the alternate key
• The number of pointers

Figure 13 illustrates the structure of an alternate index with non-unique keys
connected to a key-sequenced data set. The salesman's name is the alternate
key in this example. The customer number is the prime key.

Note: The maximum number of pointers associated with the alternate index
data record cannot exceed 32767.

FRED TOM

til

BEN 21 BILL 38 FRED 15 FRED 23 FRED 39

rI

10 TOM 41 TOM 54 Free Space

I I I
I I I

10 ! TOM 12
I

: MIKE 15 ! FRED Free Space
I I I
I I I

I Con-I

21 BEN 23 ! FRED 38 BILL Free Space tral
I Info I

I I I
I I I
I ! TOM ! TOM Free Space 39 : FRED 41 54
I I I
I I I

Alternate Index Structure for a Key-Sequenced Data Set

16 MVS/XA VSAM Administration Guide

I~:e~ I"
L-

A:terrate 1-
Inde:-: I

I ~:a

l
RBA

e
Bese
Cl.Js:er

If you ask to access records with the alternate key of BEN. VSAM does the fol­
lowing: •••

a. VSAM scans the index component of the alternate index. looking for a
value great.er than or equal to BEN.

b. The entry FRED points VSAM to a data control interval in the alternate
index.

c. VSAM scans the alternate index data control interval looking for an
entry that matches the search argument. BEN.

d. When located. the entry BEN has an associated key. 21. This key points
VSAM to the index component of the base cluster.

e. VSAM scans the index component for an entry greater than or equal to
the search argument. 21.

f. The index entry. 38. points VSAM to a data control interval in the base
cluster. The record with a key of 21 is passed to the application
program.

Figure 14 illustrates the structure of an alternate index connected to an entry­
sequenced data set. The salesman's name is the alternate key in this example.

a

0001 540 I
Con-

3::N 4CC BILL ~RED 1.10 FR:D FR:D 940 Irol
I Info

d

I
r Con-

MIf:E 680 TO\.1 280 TOM 800 TOM ABO ~ree S:lece 1'01 , Info

X'~4()' X'280' x'aco'

36 BILL 23 FREDI 10 TOM I rrce Space

X'540' X'680' X'1CO'

21 B:N 23 FRED I 12 • MIKE Free Space

X'940'

i
TOM 39 Ft1ED I 54 TOM Free Space

Note: RBAs are always written as fullword binary integers.

Figure 14. Alternate Index Structure for an Entry-Sequenced Data Set

Chapter 2. VSAM Data Set Organization 17

If you ask to access records with the alternate key of BEN, VSAM does the fol­
lowing:

a. VSAM scans the index component of the alternate index, looking for a
value greater than or equal to BEN.

b. The entry FRED points VSAM to a data control interval in the alternate
index.

c. VSAM scans the alternate index data control interval looking for an
entry that matches the search argument, BEN.

d. When located, the entry BEN has an associated pointer, 400, which
points to an RBA in the base cluster.

e. VSAM retrieves the record with an RBA of X'400' from the base cluster.

When building an alternate index. the alternate key can be any field in the base
data set's records having a fixed length and a fixed position in each record. The
alternate key field must be in the first segment of a spanned record. Keys in
the data component of an alternate index are not compressed; the entire key is
represented in the alternate index data record.

A search for a given alternate key reads all the base cluster records containing
this alternate key. For example, Figure 13 and Figure 14 show that in some
cases one salesman has several customers. For the key-sequenced data set,
several prime key pointers (customer numbers) are in the alternate index data
record. There is one for each occurrence of the alternate key (salesman's
name) in the base data set. For the entry-sequenced data set, several RBA
pointers are in the alternate index data record. There is one for each occur­
rence of the alternate key (salesman's name) in the base data set. The
pointers are ordered by arrival time. When multiple pointers are associated
with a given alternate key value. the alternate key is said to be non-unique; if
only one pointer is associated with the alternate key, it is unique.

Note: The maximum number of pointers associated with the alternate index
data record cannot exceed 32767.

Alternate Index Paths
Before accessing a base cluster by way of an alternate index. a path must be
defined. A path provides a way to gain access to the base data through a spe­
cific alternate index. You define a path with the access method services
command DEFINE PATH. You must name the path and may also give it a pass­
word. The path name refers to the base cluster/alternate index pair. When you
access the data set through the path, you must specify the path name as well
as the DSNAME parameter in the JCL. For information on how to define a path.
see "Defining a Path" on page 35.

18 MVS/XA VSAM Administration Guide

Chapter 3. Defining a VSAM Data Set

VSAM data sets are defined using access method services commands. The fol­
lowing is a summary of how to define a VSAM data set.

1. Define a catalog using access method services commands, unless a catalog
you can use already exists. The procedure for defining a catalog is
described in Catalog Administration Guide.

2. Define a VSAM data set in the catalog, using the access method services
DEFINE CLUSTER command. A VSAM data set does not exist until it is
defined in a catalog.

3. Load the data set with data by using the access method services REPRO
command, or by writing your own program to load the data set.

4. Optionally, create any alternate indexes, and relate them to the base
cluster. Use the access method services DEFINE AL TERNATEINDEX,
DEFINE PATH, and BLDINDEX commands to do this.

After any of these steps, you can use the access method services commands
LlSTCAT and PRINT to verify what has been defined, loaded, and processed.
This is useful for identifying and correcting problems.

Appendix C, "Examples of Defining and Manipulating Data Sets" on page 157,
provides a set of examples illustrating various aspects of creating VSAM data
sets.

Cluster Concept
For a key-sequenced data set. a cluster is the combination of the data compo­
nent and the index component. The cluster provides a way to treat the index
and data as a single component with its own name. This allows you to print or
dump the data component and the index component of a key-sequenced data
set individually. You can give each component a name, and process the data
portion separately from the index, or vice versa.

The concept of a cluster is carried over to entry-sequenced, linear and relative
record data sets. These are considered to be clusters without index compo­
nents. To be consistent, they are given cluster names, which are normally used
when processing the data set.

Defining a Data Set
VSAM data sets are defined with the DEFINE CLUSTER command. When a
cluster is defined, VSAM uses the following catalog entries to describe the
cluster:

• A cluster entry describes the cluster as a single component.

• A data entry describes the cluster's data component.

• For a key-sequenced data set, an index entry describes the cluster's index
component.

Chapter 3. Defining a VSAM Data Set 19

Naming a Cluster

All of the cluster's attributes are recorded in the catalog. The information that
is stored in the catalog provides the details needed to manage the data set and
to access the VSAM cluster or the individual components.

Attributes of the components can be specified separately from attributes of the
cluster.

• . If attributes are specified for the cluster and not the components, the attri­
butes of the cluster (except for password and USVR security attributes)
apply to the components.

• If an attribute that is applicable to the data or index component is specified
for both the cluster and the component, the component specification over­
rides the cluster's specification.

You specify a name for the cluster when defining it. Generally, this name is
given as the dsname in JCL. A cluster name that contains more than eight
characters must be segmented by periods; one to eight characters may be
specified between periods. A name with a single segment is referred to as an
unqualified name. A name with more than one segment is referred to as a quali­
fied name. Each segment of a qualified name is referred to as a qualifier.

You can, optionally, name the components of a cluster. Naming the data com­
ponent of an entry-sequenced cluster, the data and index components of a key­
sequenced cluster: or a linear data set, makes it easier to process the
components individually.

If you do not specify a name for each component of a cluster, VSAM generates
a name. VSAM uses the following format in order to generate 44-byte unique
names:

clustername.Tbbbbb.bb.DFDyyddd.Taaaaaaa.Tbbbbbbb

where:

clustemame
is the first qualifier of the cluster name

yyddd
is the date (year, last two digits only, and day of the year)

aaaaaaa and bbbbbbb
are system generated values

Duplicate Data Set Names
Catalog management prevents you from cataloging two objects with the same
name in the same catalog, and from altering the name of an object so that its
new name duplicates the name of another object in the same catalog. However,
this does not prevent duplication of names from one catalog to another. If you
have multiple catalogs, you should ensure that a data set name in one catalog is
not duplicated in another catalog.

The section, "Order of Catalog Use: DEFINE," in Access Method Services Refer­
ence, describes the order in which one of the catalogs available to the system
is selected to contain the to-be-defined catalog entry. When you define an

20 MVSIXA VSAM Administration Guide

object, you should ensure that the catalog the system selects is the catalog you
want the object entered into.

Note also that data set name duplication is not prevented when a user catalog
is imported into a system; no check is made to determine whether the imported
catalog contains an entry name that another catalog already in the system con­
tains.

Note: If an unqualified data set name is the same as the first qualifier of a qual­
ified data set name, the two cannot be placed in the same catalog unless one is
the name of the catalog. For example, PAYROLL and PAYROLL.DATA cannot
exist on the same catalog unless one is the catalog name.

Specifying Cluster Information
All the necessary descriptive information and the performance, security, and
integrity options must be specified when you create a cluster. This information
can apply to the data, the index, or both. Specify information for the cluster as
a whole in the CLUSTER parameter. Specify information for the data only or
the index only in the parameters DATA or INDEX.

Descriptive Information
Descriptive information includes:

• Type of data organization (key-sequenced, entry-sequenced, linear or rela­
tive record), as specified in the INDEXEDINONINDEXEDINUMBEREDILINEAR
parameter.

• Average and maximum lengths of data records, as specified in the
RECORDSIZE parameter. This parameter is not used for a linear data set.

• Length and position of the key field in the records of a key-sequenced data
set, as specified in the KEYS parameter.

• Name and password of the catalog in which the cluster is to be defined, as
specified in the CATALOG parameter.

• Volume serial number(s) of the volume(s) on which space is allocated for
the cluster, as specified in the VOLUMES parameter.

• Amount of space to allocate for the cluster, as specified in the
CYLINDERSI RECORDSITRACKS parameter.

• Space is allocated for a linear data set with the number of control intervals
equal to the number of records.

• Whether entries are re-created from information in the VVDS, or defined for
the first time, as specified in the RECAT ALOG parameter.

• Whether the cluster is reusable for temporary storage of data, as specified
in the REUSEINOREUSE parameter. (See "Reusing a VSAM Data Set as a
Work File" on page 30.)

• Minimum amount of 1/0 buffer space that must be allocated to process the
data set. as specified in the BUFFERSPACE parameter. (See "Determining
1/0 Buffer Space for Nonshared Resources"on page 76.)

Chapter 3. Defining'a VSAM Data Set 21

Performance Information
Information for performance includes:

• Whether records can span control intervals, as specified in the SPANNED
parameter. This parameter is not allowed for linear and relative record
data sets.

• The control interval size for VSAM to use (instead of letting VSAM calculate
the size), as specified in the CONTROLINTERVALSIZE parameter. This
parameter is not allowed for a linear data set.

• Whether to preformat control areas during initial loading of a data set, as
specified in the SPEEDIRECOVERY parameter. (See "Using Your Own
Program to Load a Data Set" on page 29.)

• How to stage a cluster or component that is stored on a mass storage
volume, as specified in the DESTAGEWAIT parameter. (This applies only to
a system with the IBM 3850 Mass Storage System.)

• For an indexed cluster, additional information for performance includes:

Whether to replicate index records in order to reduce rotational delay,
as specified in the REPLICATE parameter.

Whether to place the sequence set of an index adjacent to the data
control area, as specified in the IMBED parameter.

Whether to place the cluster's index on a separate volume from data, as
specified in the VOLUMES parameter for the index component.

The amount of free space to remain in the data component's control
intervals and control areas when the data records are loaded, as speci­
fied in the FREESPACE parameter.

How data should be sp~ead over multiple volumes, as specified in the
KEYRANGES parameter.

All these performance options are discussed in Chapter 6, "Optimizing VSAM
Performance" on page 65.

Security and Integrity Information
Information for security and integrity options includes:

• Passwords and related information.

• Identity of your own authorization routine to verify that a requester has the
right to gain access to data, as specified in the AUTHORIZATION parameter.

• Identity of an I/O error-handling routine (the exception exit routine) that is
entered if the program does not specify a SYNAD exit. This routine is spec­
ified in the EXCEPTIONEXIT parameter. For information on user exit rou­
tines, refer to Data Facility Product: Customization.

• Whether to verify that write operations have completed and that the data
may be read, as specified in the WRITECHECK parameter.

• Whether and to what extent data is to be shared among systems, and jobs,
as specified in the SHAREOPTIONS parameter.

• Whether to erase the information a data set contains when you delete the
data set, as specified in the ERASE parameter.

22 MVS/XA VSAM Administration Guide

Note: To control the erasing of data set information for a VSAM component
whose cluster is RACF-protected and is cataloged in an integrated catalog
facility catalog you can use an ERASE attribute that is kept in a generic or
discrete profile. For information about how to specify and use this option,
refer to RACF General Information Manual and associated RACF publica­
tions. (See also "Erasing Residual Data" on page 100.)

• Whether to destage a cluster or component that is stored on a mass
storage volume before VSAM returns control to the program that issued the
CLOSE macro. This is specified in the DESTAGEWAIT parameter. (This
applies only to a system with the IBM 3850 Mass Storage System.)

See Chapter 8, "Data Security and Integrity" on page 99 for more information
on the types of data protection available.

Allocating Space for a Data Set
When you define your data set, you must specify the amount of space to be
allocated for it. Space for VSAM data sets may be allocated in units of cylin­
ders, tracks, or records. The amount of space you allocate depends on the size
of your data set and the index options you have chosen. "Index Options" on
page 81 explains the index options you might choose.

When you allocate space for your data set, you can specify both a primary and
a secondary allocation. A primary space allocation is the initial amount of
space that is to be allocated. A secondary allocation is the amount of space
that is to be allocated each time the cluster extends. Space for a data set
defined in an integrated catalog facility catalog, or defined with the SUBALLO­
CATION parameter in a VSAM catalog, can be expanded to a maximum of 123
extents or to a maximum size of 232 (approximately 4290000000) bytes. The last
four extents are reserved for extending a data set when the last extent cannot
be allocated in one piece. For data sets defined in VSAM catalogs defined with
the UNIQUE parameter, the space for a data set can be expanded to a
maximum of 16 extents per volume.

You can specify space allocation at the cluster or alternate index level, at the
data level only, or at both the data and index levels. VSAM allocates space as
follows:

• If allocation is specified at the cluster or alternate index level only, the
amount needed for the index is subtracted from the specified amount. The
remainder of the specified amount is assigned to data.

• If allocation is specified at the data level only, the specified amount is
assigned to data. The amount needed for the index is in addition to the
specified amount.

• If allocation is specified at both the data and index levels, the specified data
amount is assigned to data and the specified index amount is assigned to
the index.

• If secondary allocation is specified at the data level, secondary allocation
must be specified at the index level (when it is not specified at the cluster
level).

VSAM acquires space in increments of control areas. The control area size is
based on primary and secondary space allocations.

Chapter 3. Defining a VSAM Data Set 23

Small Data Sets

• If either primary or secondary allocation is smaller than one cylinder, the
smaller value is used as the control area size. (If RECORDS is specified, the
allocation is rounded up to full tracks.)

• If both primary and secondary allocation are equal to or larger than one cyl­
inder, the control area size is one cylinder. (A control area is never larger
than one cylinder.)

If you allocate space for a data set in a unit smaller than one cylinder, VSAM
allocates space in tracks when defining the data set. For data sets less than 1
cylinder in size, it is advantageous to specify the maximum number of tracks
required in the primary allocation for the data component, 1 track for the
sequence set index (which should not be embedded), and no secondary allo­
cation for either data or index.

VSAM checks the smaller of primary and secondary space values against the
specified device's cylinder size. If the smaller quantity is greater than or equal
to the device's cylinder size, the control area is set equal to the cylinder size.
If the smaller quantity is less than the device's cylinder size, the size of the
control area is set equal to the smaller space quantity.

For example:

CYLINDERS(5,10)

TRACKS(1 00,3)

RECORDS(2000.5)

TRACKS(3,100)

Results in a 1-cylinder control area size

Results in a 3-track control area size

Assuming 10 records would fit on a track, results in a
1-track control area size (minimum control area size is 1
track)

Results in a 3-track control area size

A spanned record cannot be larger than a control area less the control informa­
tion (10 bytes per control interval), so do not specify large spanned records and
a small primary or secondary allocation not large enough to contain the largest
spanned record.

VSAM data sets cataloged in an integrated catalog facility catalog are allocated
with the CONTIG attribute if the allocation unit is TRACKS. Therefore, the
primary and secondary allocations are in contiguous tracks.

Multiple Cylinder Data Sets
To define a data set larger than one cylinder, calculate the number of cylinders
needed for data in a newly defined data set, and specify this amount in cylin­
ders for the primary allocation. Make the secondary allocation equal to or
greater than one cylinder, but less than the primary allocation. "Sample Calcu­
lation of Space Allocation for a VSAM Key-Sequenced Data Set" on page 25
demonstrates how to calculate the size of a data set.

When you allocate space for your cluster, you must consider the index options
you have chosen:

• If IMBED is specified (to place the sequence set with the data), the data
allocation includes the sequence set. This means that more space must be
given for data allocation when IMBED is specified.

24 MVS/XA VSAM Administration Guide

Linear Data Sets

• If REPLICATE is specified and IMBED is not specified, an allocation of 3
primary and 1 secondary track for the index set is a valid choice.

• If the REPLICATE option is not used, specify 1 primary and 1 secondary
track for the index set.

For information about index options, refer to "Index Options" on page 8L

Space may be allocated either in tracks, cylinders, or records. For allocation, a
record is equal to a control interval. Refer to Figure 15 on page 26 for DASD
capacity on various devices.

A linear data set is created by access method services. When a linear data set
is defined, the catalog will force the block size to 4096 bytes. If the specified
BUFFERSPACE is greater than 8192 bytes, it will be decremented to a multiple
of 4096. If BUFFERSPACE is less than 8192. access method services will issue
a message and fail the command.

Sample Calculation of Space Allocation for a VSAM Key-Sequenced Data Set
This example shows how to calculate the size of the data component for a key­
sequenced data set.

The following are assumed for the calculations:

Device type
Unit of space allocation
Data control interval size
Physical block size (calculated by VSAM)
Record size
Free space definition-control interval
Free space definition-control area
Number of records to be loaded
Index options defined

3380
cylinders
1024 bytes
1024 bytes
200 bytes
20%
10%
3000
IMBED/REPLICATE

Figure 15 provides information on DASD capacity in.terms of the number of
physical blocks per track and the number of tracks per cylinder.

Chapter 3. Defining a VSAM Data Set 25

Direct Access Device Characteristics
Figure 15 lists the physical characteristics and information about DASD
capacity in terms of the number of physical blocks per track and the number of
tracks per cylinder.

Figure 15. DASD Physical Characteristics

DASD Characteristics Block Size

512 1024 2048 4096

Type Trk/Cyl CylNol Number of Physical BlockslTrack

2305-2 8 96 20 12 6
3330-1 19 404 20 11 6
3330-11 19 808 20 11 6
3340/3344 12 348 12 7
3350 30 555 27 15 8
3375 12 959 40 25 14
33801 15 885 46 31 18
33802 15 1770 46 31 18
33803 15 2655 46 31 18

Note: . Not selected for this device .

1 3380 single capacity Models A04.AA4.B04.AD4.BD4.AJ4.BJ4.CJ2.
2 3380 double capacity Models AE4.BE4.
3 3380 triple capacity Models AK4.BK4.

3
3
3
2
4
8
10
10
10

Using the specifications in Figure 15. you can calculate space for the data com­
ponent as follows:

1. Maximum number of records per control interval1 «1024-10)/200) = 5

2. Subtract bytes of free space (20% • 1024) = 204

3. Number of loaded records per control interval (1024 -10 - 204)/200 = 4

4. Number of physical blocks per track2 = 31

5. Number of control intervals per track = 31

6. Maximum number of control intervals per control area3 (31 • 14) = 434
(1 cylinder = 15 tracks - 1 track for index sequential set)

7. Number of loaded control intervals per control area = 391
(434 - 10% • 434)

8. Number of loaded records per cylinder (4' 391) = 1564

9. Total space for data component (3000/1564) (rounded) = 2 cylinders

26 MVSIXA VSAM Administration Guide

Notes:

2

3

The value (1024 - 10) is the control interval length minus 10 bytes for 2
RDFs and 1 CIDF.

On an IBM 3380, 31 physical blocks with 1024 bytes can be stored on one
track. (See the physical block sizes in Figure 15 on page 26.)

The value (31 • 14) is the number of physical blocks per track multiplied by
the number of data tracks per cylinder (15 minus 1 for the embedded
sequence set control interval). (See the information on tracks per cylinder
in Figure 15 on page 26.)

Modifying Attributes of a Component
After a data set has been defined, you can change some of its attributes using
the access method services command, ALTER. You identify the component by
name, and specify the new attributes. ALTER can also be used as a migration
path to change an entry-sequenced data set, with the proper attributes, into a
linear data set. For an example of altering an entry-sequenced data set into a
linear data set, see "Example 3: Alter the Cataloged Attributes of VSAM Data
Sets" on page 166.

Loading a Data Set
After a data set is defined, data can be loaded into it. This entails moving
records from a source data set to the VSAM data set you have defined. After
the data records are written in the VSAM data set and a CLOSE operation is
performed, the loading is complete, and the VSAM data set can be accessed.

When loading a key-sequenced data set, the records to be loaded must be in
ascending order, with no duplicates in the input data set. With an entry­
sequenced or relative record data set, the records to be loaded can be in any
order. Data is loaded as single logical records in either key order or physical
order. As a result, reorganization takes place. This reorganization can cause
any of the following:

• Physical relocation of logical records
• Alteration of a record's relative pOSition within the data set
• Redistribution of free space throughout the data set
• Reconstruction of the prime index

You can load all the records in one job or in several jobs. In subsequent jobs,
VSAM stores records as before, extending the data set as required.

Using REPRO to Load a Data Set
The REPRO command causes access method services to retrieve records from
a sequential, indexed-sequential, or VSAM data set and store them in VSAM
format in a key-sequenced data set, a relative record data set, an entry­
sequenced data set. or a sequential data set. This command is also used to
load data from one linear data set into another linear data set.

When records are to be stored in key sequence, index entries are created and
loaded into an·index component as data control intervals and control areas are
filled. Free space is left as indicated in the cluster definition in the catalog,

Chapter 3. Defining a VSAM Data Set 27

and, if indicated in the definition, records are stored on particular volumes
according to key ranges.

VSAM data sets used for either input or output must be cataloged. Sequential
and indexed-sequential data sets need not be cataloged.

If a sequential or indexed-sequential data set is not cataloged, include the
appropriate volume and unit parameters on your DD statement. Also, supply a
minimum set of DCB parameters when the input data set is sequential or
indexed sequential, and/or the output data set is sequential. The following
table shows the four key parameters.

Parameters

DSORG
RECFM
BLKSIZE
LRECL

User Must Supply

IS
F,FB, V, VB, VS, VBS
block size
logical record length

Default if Not Supplied

PS
U
none
BLKSIZE for F or FB
BLKSIZE-4 for V, VB, VS, VBS

The one parameter not supplied by default is BLKSIZE: you must supply this
value. The DCB parameter DSORG must be supplied via the DD statement.
The DCB parameters RECFM, BLKSIZE, and LRECL can be supplied via the
DSCB or header label of a standard labeled tape, or by the DD statement.

If you are loading a VSAM data set into a sequential or indexed-sequential data
set, you must remember that the 3-byte VSAM record definition field (RDF) is
not included in the VSAM record length. When REPRO attempts to copy a
VSAM record whose length is within 4 bytes of LRECL, a recoverable error
occurs and the record is not copied.

Access method services does not support records greater than 32760 bytes for
non-VSAM data sets (LRECL = X is not supported). If the logical record length
of a non-VSAM input data set is greater than 32760 bytes, or if a VSAM data set
defined with a record length greater than 32760 is to be copied to a sequential
data set, the REPRO command terminates with an error message.

Records in an indexed-sequential data set that have a fixed-length, unblocked
format with a relative-key-position of zero are preceded by the key string when
used as input. The records in the output data set must have a record length
defined that includes the extended length caused by the key string. To copy
"dummy" indexed-sequential records (records with X'FF' in the first byte)
specify the DUMMY option in the ENVIRONMENT parameter.

The REPRO operation is terminated if:

• One physical 110 error is encountered while writing to the output data set

• A total of four errors is encountered in any combination of the following:

Logical error while writing to the output data set
Logical error while reading the input data set
Physical error while reading the input data set

For information on physical and logical errors, refer to Data Facility Product:
Customization.

28 MVSIXA VSAM Administration Guide

Using Your Own Program to Load a Data Set
To use your own program to load a key-sequenced data set, first sort the
records (or build them) in key sequence, then store them by sequential access
(using the PUT macro). When you are initially loading a data set, direct access
is not permitted. For more information on inserting records into a data set,
refer to "Inserting a Record" on page 46.

VSAM uses the high-used RBA field to determine if a data set is empty or not.
An implicit ve~ify will update the high-used RBA. Immediately after a data set
is defined, the high-used RBA value is zero.

The terms "create mode," "load mode," and "initial data set load" are syno­
nyms for the process of inserting records into an empty VSAM data set. This
processing is started by calling the VSAM OPEN macro. It continues while
records are added following the (successful) open and concludes when the data
set is closed. After loading and closing the data set, the high used RBA is
equal to the offset of the first byte of the first unused control interval in the data
set.

Note: If create mode loading of an entry-sequenced data set abends before the
data set is loaded, a verify will not show the data set as being empty. An entry­
sequenced data set must be defined with the RECOVERY option or it cannot be
verified. You must specify the REUSE attribute for this data set and reset it to
make the data set empty.

Certain restrictions apply during load mode processing:

• PUT and CHECK are the only macros you can use.

• Do not use improved control interval processing.

• You cannot do update or input processing until the data set has been
loaded and closed.

• Specify only one string in the ACB (STRNO> 1 is not permitted).

• Specify only one RPL for a relative record data set defined with the SPEED
parameter.

• Do not specify local shared resources (LSR) or global shared resources
(GSR).

• You may not open a data set for,input processing.

• You cannot share data sets.

• Direct processing is not permitted (except relative record keyed direct).

If your application calls for direct processing during load mode, you can avoid
this restriction by doing the following:

1. Open the empty data set for load mode processing.
2. Sequentially write one or more records. (These may be "dummy" records.)
3. Close the data set to terminate load mode processing.
4. Reopen the data set for normal processing. (You can now resume loading.)

For information on how to use exit routine macros when loading records into a
data set, see Data Facility Product: CLl~tomization.

Chapter 3. Defining a VSAM Data Set 29

During load mode. each control area can be preformatted as records are
loaded into it. Preformatting is useful for recovery if an error occurs during
loading; however, performance is better during initial data set load without pre­
formatting. The RECOVERY parameter of the access method services DEFINE
command is used to indicate that VSAM is to preformat control areas during
load mode.

Preformatting clears all previous information from the direct access storage
area and writes end-of-file indicators. For VSAM, an end-of-file indicator con­
sists of a control interval with a CIDF equal to zeros.

• For an entry-sequenced data set, VSAM writes an end-of-file indicator in
every control interval in the control area.

• For a key-sequenced data set, VSAM writes an end-of-file indicator in the
first control interval in the control area following the preformatted control
area. (The preformatted control area contains free control intervals.)

• For a relative record data set, VSAM writes an end-of-file indicator in the
first control interval in the control area following the preformatted control
area. All RDFs in the preformatted control area are marked "slot empty."

As records are loaded into a preformatted control area of an entry-sequenced
data set, an end-of-file indicator following the records indicates how far loading
has progressed. If an error occurs that prevents loading from continuing, you
can identify the last successfully loaded record by reading to end of file. You
can then resume loading at that point, after verifying the data set.

Without preformatting (SPEED parameter), an end-of-file indicator is written only
after the last record is loaded. If an error occurs that prevents loading from
continuing, you may not be able to identify the last successfully loaded record
and you may have to reload the records from the beginning.

Note: Remember that, if you specify SPEED, it will be in effect for load mode
processing. After load mode processing. RECOVERY will be in effect, regard­
less of the DEFINE specification.

Reusing a VSAM Data Set as a Work File
VSAM allows you to create reusable data sets that you can use as work files.
To do this, you must define the data set as reusable and specify that it be reset
when you open it.

A data set that is not reusable may be loaded once and only once. After the
data set is loaded, it can be read, written into, and the data in it can be modi­
fied. However, the only way to remove the set of data is to use the access
method services command DELETE, which deletes the entire data set. If the
data set is to be used again, it must be re-created with the access method ser­
vices command DEFINE.

Instead of using the DELETE - DEFINE sequence, you can specify the REUSE
parameter in the DEFINE CLUSTERIALTERNATEINDEX command. This allows
you to treat a filled data set as if it were empty and load it again and again
regardless of its previous contents.

A reusable data set may be a key-sequenced data set, an entry-sequenced data
set, a linear data set, or a relative record data set that resides on one or more

30 MVS/XA VSAM Administration Guide

volumes. A reusable base cluster cannot have an alternate index, and it cannot
be associated with key ranges. Reusable data sets on an IBM 3850 Mass
Storage System must begin on a cylinder boundary to prevent staging in RESET
mode.

VSAM uses a high-used RBA (relative byte address) field to determine if a data
set is empty or not. Immediately after a data set is defined, the high-used RBA
value is zero. After loading and closing the data set, the high-used RBA is
equal to the offset of the last byte in the data set. In a reusable data set, this
high-used RBA field can be reset to zero at OPEN, and VSAM can use this data
set like a newly-defined data set.

Copying a Data Set
You may want to copy a data set or merge two data sets for a variety of
reasons. For example, you may want to create a test copy, you may want two
copies to use for two different purposes, or you may want to keep a copy of
back records before updating a data set. You can use the access method ser­
vices REPRO command to copy data sets.

Using REPRO to Copy a Data Set
You can use the REPRO command to do any of the following:

• Copy or merge a VSAM data set into another VSAM data set.

• Copy or merge a sequential data set into another sequential data set.

• Copy an alternate index as a key-sequenced VSAM data set.

• Copy a VSAM data set whose records are fixed length into an empty VSAM
relative record data set.

• Convert a sequential or indexed-sequential data set into a VSAM data set.

• Copy a data set (other than a catalog) to reorganize it. Data set reorgan­
ization is an automatic feature.

When copying to a key-sequenced data set, the records to be copied must be in
ascending order, with no duplicates in the input data set. With an entry­
sequenced data set, the records to be copied can be in any order.

Because data is copied as single logical records in either key order or physical
order, automatic reorganization takes place. The reorganization can cause any
of the following:

• Physical relocation of logical records
• Alteration of a record's physical position within the data set
• Redistribution of free space throughout the data set
• Reconstruction of the VSAM indexes

If you are copying to or from a sequential or indexed-sequential data set that is
not cataloged, you must include the appropriate volume and unit parameters on
your DO statements. For more information on these parameters, see "Using
REPRO to Load a Data Set" on page 27.

Chapter 3. Defining a VSAM Data Set 31

Figure 16 describes how the data from the input data set is added to the output
data set when the output data set is an empty or nonempty entry-sequenced,
sequential, key-sequenced, linear or relative record data set.

Figure 16. Adding Data to Various Types of Output Data Sets

Type of Data Set

Entry-Sequenced/
Sequential
Key-Sequenced

Linear

Relative Record

Empty

Creates new data set in
sequential order.
Creates new data set in
key sequence and builds
an index.

Creates new linear data
set in relative byte order.
Creates a new data set
in relative record
sequence, beginning
with 1.

Nonempty

Adds records in sequential order to the end of
the data set.
Merges records by key and updates the index.
Unless the REPLACE option is spectfied,
records whose key duplicates a key in the
output data set are lost.
Adds data to control intervals in sequential
order to the end of the data set.
Records from another relative record data set
are merged, keeping their old record numbers.
Unless the REPLACE option is specified, a new
record whose number duplicates an eXisting
record number is lost. Records from any other
type of organization cannot be copied into a
non empty relative record data set.

The REPRO operation is terminated if:

• One physical I/O error is encountered while writing to the output data set

• A total of four errors is encountered in any combination of the following:

Logical error while writing to the output data set
Logical error while reading the input data set
Physical error while reading the input data set

Creating an Alternate Index
An alternate index can be defined over a key-sequenced cluster or an entry­
sequenced cluster. An alternate index cannot be defined to support a reusable
cluster, a relative record cluster, a catalog, another alternate index, a linear
cluster or a non-VSAM data set. For information on the structure of an alter­
nate index, see "Accessing Records through an Alternate Index" on page 15.

The sequence for building an alternate index is as follows:

1. Define the base cluster, using the DEFINE CLUSTER command.

2. Load the base cluster either by using the REPRO command or by writing
your own program to load the data set.

3. Define the alternate index, using the DEFINE ALTERNATEINDEX command.

4. Relate the alternate index to the base cluster, using the DEFINE PATH
command. The base cluster and alternate index are described by entries in
the same catalog.

5. Build the alternate index, using the BLDINDEX command.

32 MVS/XA VSAM Administration Guide

VSAM uses three catalog entries to describe an alternate index:

• An alternate index entry describes the alternate index as a key-sequenced
cluster.

• A data entry describes the alternate index's data component.

• An index entry describes the alternate index's index component.

Attributes of the alternate index's components can be specified separately from
the attributes of the alternate index. If attributes are specified for the alternate
index as a whole and not for the components, these attributes (except for pass­
word and USVR security attributes) apply to the components. If the attributes
are specified for the components, they override any attributes specified for the
entire alternate index.

Naming an Alternate Index
You specify an entry name for the alternate index when defining it. The entry
name is the JCL DD statement's dsname. You can also name the alternate
index's components so a 'user program can open and process the alternate
index's data or index component as a data set. For more details on this kind of
processing, see Chapter 7, "Processing Control Intervals" on page 87.

Specifying Alternate Index Information
When you define an alternate index, you specify descriptive information and
performance, security, and data integrity options. The information can apply to
the alternate index's data component, its index component, or the alternate
index as a whole. Information for the entire alternate index is specified with the
AL TERNATEINDEX parameter and its subparameters. Information for the data
component or the index component is specified with the parameter DATA or
INDEX.

Descriptive information includes:

• The name and password of the base cluster related to the alternate index,
as specified in the RELATE parameter.

• Whether the alternate index entries are re-created from information in the
VVDS, or defined for the first time, as specified in the RECATALOG param­
eter.

• Whether the alternate index is reusable, as specified in the REUSE param­
eter.

• Average and maximum lengths of alternate index records, as specified in
the RECORDSIZE parameter.

• Length and position of the alternate key field in data records of the base
cluster, as specified in the KEYS parameter.

• Name and password of the catalog that will contain the alternate index's
entries, as specified in the CATALOG parameter. (This must be the same
catalog that contains the base cluster's entries.)

• Volume serial number(s) of the volume(s) on which space is allocated for
the alternate index, as specified in the VOLUMES parameter.

• Amount of space to allocate for the alternate index, as specified in the
CYLINDERSI RECORDSITRACKS parameter.

Chapter 3. Defining a VSAM Data Set 33

• The minimum amount of I/O buffer space that OPEN must provide when the
program processes the alternate index's data, as specified in the
BUFFERS PACE parameter.

The performance options and the security and integrity information for the alter­
nate index are the same as that for the cluster. See "Specifying Cluster
Information" on page 21.

How an Alternate Index Is Built
When an alternate index is built by BLDINDEX processing, the alternate index's
volume and the base cluster's volume must be mounted. Any volumes identi­
fied with the WORKFILES parameter must also be mounted. The base cluster
cannot be empty (that is, its high-used RBA value cannot be zero). Each
record's alternate key value must be unique, unless the alternate index was
defined with the NONUNIQUEKEY attribute.

Access method services opens the base cluster to read the data records
sequentially, sorts the information obtained from Ihe data records, and builds
the alternate index data records.

The base cluster's data records are read and information is extracted to form
the key-pointer pair:

• When the base cluster is entry-sequenced, the alternate key value and the
data record's RBA form the key-pointer pair.

• When the base cluster is key-sequenced, the alternate key value and the
data record's prime key value form the key-pointer pair.

The key-pointer pairs are sorted in ascending alternate key order.

If your program provides enough virtual storage, access method services per­
forms an internal sort. (The sorting of key-pointer pairs takes place entirely
within virtual storage.) If you do not provide enough virtual storage for an
internal sort, or if you specify the EXTERNALSORT parameter, access method
services defines and uses two sort work files and sorts the key-pointer pairs
externally. If you have the available virtual storage, an internal sort is faster.
An external sort is slower because of I/O to the work files, but, if you have a
large data base, an external sort resolves the virtual storage problem.

For information on calculating the amount of virtual storage required to sort
records, see Appendix E, "Calculating Virtual Storage Space for an Alternate
Index" on page 201.

After the key-pointer pairs are sorted into asc~nding alternate key order,
access method services builds alternate index records for key-pointer pairs.
When all alternate index records are built and loaded into the alternate index,
the alternate index and its base cluster are closed.

34 MVS/XA VSAM Administration Guide

Alternate Index Maintenance

Defining a Path

VSAM assumes alternate indexes are synchronized with the base cluster at all
times and makes no synchronization checks during open processing; therefore,
all structural changes made to a base cluster must be renected in its alternate
index or indexes. This is called index upgrade.

You can maintain your own alternate indexes or you can have VSAM maintain
them. When the alternate index is defined with the UPGRADE attribute of the
DEFINE command, VSAM updates the alternate index whenever there is a
change to the associated base cluster. VSAM opens all upgrade alternate
indexes for a base cluster whenever the base cluster is opened for output. If
you are using control interval processing, you cannot use UPGRADE. (See
Chapter 7, "Processing Control Intervals" on page 87.)

All the alternate indexes of a given base cluster that have the UPGRADE attri­
bute belong to the upgrade set. The upgrade set is updated whenever a base
data record is inserted, erased, or updated. The upgrading is part of a request
and VSAM completes it before returning control to your program. If upgrade
processing is interrupted due to a machine or program error such that a record
is miSSing from the base cluster but its pointer still exists in the alternate index,
record management will synchronize the alternate index with the base cluster
by allowing you to reinsert the missing base record. However, if the pOinter is
miSSing from the alternate index, i.e., the alternate index does not renect all the
base cluster data records, you must rebuild your alternate index to resolve this
discrepancy.

If you specify NOUPGRADE in the DEFINE command when the alternate index is
defined, insertions, deletions, and changes made to the base cluster will not be
renected in the associated alternate index.

When a path is opened for update, the base cluster and all the alternate
indexes in the upgrade set are allocated. If updating the alternate indexes is
unnecessary, you can specify NOUPDATE in the DEFINE PATH command and
only the base cluster will be allocated. In that case, VSAM does not automat­
ically upgrade the alternate index. If two paths are opened with MACRF = DSN
specified in the ACB macro, the NOUPDATE specification of one may be nulli­
fied if the other path is opened with UPDATE specified.

Before an alternate index is built (by BLOINDEX processing), you need to estab­
lish the relationship between an alternate index and its base cluster, using the
access method services command, DEFINE PATH.

When your program opens a path for processing, both the alternate index and
its base cluster are opened. When data in a key-sequenced base cluster is
read or written using the path's alternate index, keyed processing is used.
RBA processing is allowed only for reading or writing an entry-sequenced data
set's base cluster.

Chapter 3. Defining a VSAM Data Set 35

Defining a Page Space
A page space is a system data set that contains pages of virtual storage. The
pages are stored into and retrieved from the page space by the auxiliary
storage manager. A page space is a non indexed data set (an entry-sequenced
cluster) that is entirely preformatted before it is used, and is contained on a
single volume. In a system with the Mass Storage System, a page space
cannot be defined on a mass storage volume. A page space cannot be opened
as a user data set.

A page space has a maximum usable size equal to 65535 paging slots
(records). For further details, see the description for space size declarations
(CYLINDERS, RECORDS, and TRACKS for "DEFINE PAGESPACE") in Access
Method Services Reference.

You can define a page space in a user catalog, then move the catalog to a new
system and establish it as the system's master catalog. When you define a
page space in a user catalog, code a STEPCAT or JOBCAT statement to identify
and allocate the catalog. A page space cannot be used if its entry is in a user
catalog.

When you issue a DEFINE PAGES PACE command, the system creates an entry
in the catalog for the page space, then preformats the page space. If an error
occurs during the preformatting process (for example. an 1/0 error or an allo­
cation error), the page space entry remains in the catalog even though no
space for it exists. Issue a DELETE command to remove the page space entry
before you redefine the page space.

Each page space is represented by two entries in the catalog: a cluster entry
and a data entry. (A page space is conceptually an entry-sequenced cluster.)
Both of these entries should be password protected if the page space is to be
password protected.

Note: The passwords you specify with the DEFINE PAGESPACE command are
put in both the page space's cluster entry and its data entry. When you define
page spaces during system generation (sysgen), use the ALTER command to
add passwords to each entry, because passwords cannot be specified during
system generation. Unless you ensure that the catalog containing the page
space entry is password protected, a user can list the catalog's contents and
find out each entry's passwords.

A page space is made known to the system as a system data set at sysgen or
through members of a partitioned data set: SYS1.PARMLIB. To be used as a
page space, it must be defined in a master catalog.

Checking for Problems in Catalogs and Data Sets
VSAM provides you with several means of locating problems in your catalogs
and data sets. Procedures for listing catalog entries and printing out data sets
are described below. You can also use the access method services REPRO
command to copy a data set to an output device. For more information on this
option, refer to "Copying a Data Set" on page 31. The access method services
VERIFY command provides a means of checking and restoring end-of-data-set
values after system failure. This is described in "Using VERIFY to Synchronize

36 MVS/XA VSAM Administration Guide

Values" on page 63. Information on using the DIAGNOSE command to indicate
the presence of invalid data or relationships in the BCS and VVDS is found in
Catalog Administration Guide. The access method services EXAMINE command
allows the user to analyze and report on the structural inconsistencies of key­
sequenced data set clusters. This is described in Chapter 12, "Checking a
VSAM Key-Sequenced Data Set Cluster for Errors" on page 139.

Listing Catalog Entries
After you define a catalog or data set, use the access method services
command LlSTCAT to list all or part of a catalog's entries. This listing will
show information about objects defined in the catalog, such as:

• Attri butes of the object

• Creation and expiration dates

• Protection specification

• Statistics regarding the dynamic usage or accessing of the data set repres­
ented by the entry

• Space allocation

• Volume information

The listing can be customized by limiting the number of entries, and the infor­
mation about each entry, that is printed.

Printing a Data Set
In the event of a problem, you can use the access method services command
PRINT to list part or all of a key-sequenced, relative record, a linear or entry­
sequenced VSAM data set, an alternate index, or a catalog. If you use the rela­
tive byte address, you may print part of a linear data set. Partial printing will
be rounded up to 4096 byte boundaries. The components of a key-sequenced
data set or an alternate index can be listed individually by specifying the com­
ponent name as the data set name. An alternate index is printed as though it
were a key-sequenced cluster.

Entry-sequenced and linear data sets are listed in physical sequential order.
Key-sequenced data sets can be listed in key order or in physical sequential
order. Relative record data sets are listed in relative record number sequence.
A base cluster can be listed in alternate key sequence by specifying a path
name as the data set name for the cluster.

Only the data content of logical records is listed. System-defined control fields
are not listed. Each record listed is identified by one of the following:

• The relative byte address (RBA) for entry-sequenced data sets

• The key for indexed-sequential and key-sequenced data sets, and for alter­
nate indexes

• The record number for relative record data sets

Note: If four logical and/or physical errors are encountered while trying to read
the input, printing is terminated.

Chapter 3. Defining a VSAM Data Set 37

To use the PRINT command to print a catalog, access method services must be
authorized. For information about program authorization, see "Using the
Authorized Program Facility (APF)" in System Macros and Facilities.

38 MVS/XAVSAM Administration Guide

Chapter 4. Processing a Data Set

General-Use Programming Interface

This chapter is intended to help you process a data set. It primarily contains
general-use programming interfaces, which allow you to write programs that
use the services of MVS/XA Data Facility Product.

VSAM data sets are processed using VSAM macro instructions. You can
process a VSAM data set to read, update, add, or delete data by following this
procedure:

1. Create an access method control block to identify the data set to be
opened. Use the ACB or GENCB macro instruction to do this.

2. Create an exit list to specify the optional exit routines that you supply, using
the EXLST or GENCB macro instruction.

3. Optionally, create a resource pool, using the BLDVRP macro. (See
Chapter 10, "Sharing Resources among Data Sets" on page 127.)

4. Connect your program to the data set you want to process, using the OPEN
macro instruction.

5. Create a request parameter list to define your request for access, using the
RPL or GENCB macro instruction.

6. Manipulate the control block contents using the GENCB, TESTCB, MODCB
and SHOWCB macros.

7. Request access to the data set, using one or more of the VSAM request
macro instructions (GET, PUT, POINT, ERASE, CHECK, and ENDREQ).

8. Disconnect your program from the data set, using the CLOSE macro instruc­
tion.

For information on the syntax of each macro, and for coded examples of the
macros, see VSAM Administration: Macro Instruction Reference.

Creating an Access Method Control Block
Before you can open a data set for processing, you must create an access
method control block (ACB). that identifies the data set to be opened, specifies
the type of processing, specifies the basic options, and indicates whether exit
routines are to be used while the data set is being processed.

Include the following information in your ACB for OPEN to prepare the kind of
processing required by your program:

• The address of an exit list for your exit routines. You use the EXLST macro
to construct the list.

• If you are processing concurrent requests, the number of requests (STRNO)
defined for processing the data set. For more information on concurrent
requests, refer to "Concurrent Requests" on page 53.

Chapter 4. Processing a Data Set 39

• The size of the 1/0 buffer virtual storage space andlor the number of 1/0
buffers that you are supplying for VSAM to process data and index records.

• The password required for the type of processing desired.

• The processing options which you plan to use:

'--______ End of General-Use Programming Interface ______ ---'

Product-Sensitive Programming Interface

Keyed, addressed, control interval, or a combination

'--_____ End of Product-Sensitive Programming Interface _____ ---'

General-Use Programming Interface

Sequential, direct, or skip sequential access, or a combination
Retrieval, storage, or update (including deletion), or a combination
Shared or nonshared resources

• The address and length of an area for error messages from VSAM.

You can use the ACB macro to build an access method control block when the
program is assembled, or the GENCB macro to build a control block when the
program is executed. For information on the advantages and disadvantages of
using GENCB, see "Manipulating Control Block Contents" on page 44.

Creating an Exit List
In order to access exit routines during data set processing, you must specify
the addresses of your exit routines using the EXLST macro. Any number of
ACB macros in a program can indicate the same exit list for the same exit rou­
tines to do all the special processing for them, or they can indicate different exit
lists. You can use exit routines for:

Analyzing physical errors: When VSAM encounters an error in an 1/0 operation
that the operating system's error routine cannot correct, the error routine
formats a message for your physical error analysis routine (the SYNAD exit) to
act on.

Analyzing logical errors: Errors not directly associated with an 1/0 operation,
such as an invalid request, cause VSAM to exit to your logical error analysis
routine (the LERAD exit).

End-of-data-set processing: When your program requests a record beyond the
last record in the data set, your end-of-dala-set routine (the EODAD exit) is
given control. The end of the data set is beyond either the highest addressed
or the highest keyed record, depending on whether your program is using
addressed or keyed access.

Journalizing transactions: To journalize the transactions against a data set, you
might specify a journal routine (the JRNAD exit). To process a key-sequenced
data set by way of addressed access, you need to know whether any RBAs

40 MVS/XA VSAM Administration Guide

changed during keyed processing. When you're processing by key, VSAM exits
to your routine for noting RBA changes before writing a control interval in
which there is an RBA change.

User processing: User processing (UPAD) exits are available to assist subsys­
tems which need to dispatch new units of work. The UPAD wait exit is given
control before VSAM issues any WAIT SVCs. The UPAD post exit may be used
to facilitate the use of cross memory processing.

The EXLST macro is coordinated with the EXLST parameter of an ACB or
GENCB macro used to generate an ACB. To make use of the exit list, you must
code the EXLST parameter in the ACB.

Data Facility Product: Customization provides a more detailed description of
exit routines.

You can use the EXLST macro to build an exit list when the program is assem­
bled, or the GENCB macro to build an exit list when the program is executed.
For information on the advantages and disadvantages of using GENCB, see
"Manipulating Control Block Contents" on page 44.

Opening a Data Set
Before your program can access a data set, it must issue the OPEN macro to
open the data set for processing. Opening a data set causes VSAM to do the
following:

• Mount the volumes on which the data set is stored, if necessary. VSAM
calls for the required volumes to be mounted by examining the DD state­
ment indicated by the ACB macro and the volume information in the
catalog.

Note: For multivolume data sets defined in integrated catalog facility cata­
logs, OPEN requires all primary volumes to be parallel mounted.

• Verify that the data set matches the description specified in the ACB or
GENCB macro (for example, MACRF = KEY implies that the data set is a
key-sequenced data set).

• Construct the internal control blocks that VSAM needs to process your
requests for access to the data set.

VSAM determines what processing options are to be used by merging the
information in the DD statement and the catalog definition of the data set
with the information in the .access method control block and the exit list.

The order of precedence is:

1. The DD statement AMP parameters
2. The ACB, EXLST, or GENCB parameters
3. The catalog entry for the data set

For example, if information about buffer space is specified both in the DD
statement and in the ACB or GENCB macro, the values in the DD statement
override those in the macro. The catalog entry acts as a default when
buffer space specified in the DD statement or in the macro is either less
than the minimum specified when the data set was defined, or when buffer
space is not specified in either the DD statement or the macro.

Chapter 4. Processing a Data Set 41

• Check for consistency of updates to the prime index and data components if
you are opening a key-sequenced data set, an alternate index or a path. If
a data set and its index have been updated separately, VSAM issues a
warning message to indicate a time stamp discrepancy.

• Check the password your program specified in the ACB PASSWD parameter
against the appropriate password (if any) in the catalog definition of the
data. The password required depends on the kind of access specified in
the access method control block (for example, access for retrieval or for
update), as follows:

Full access allows you to perform all operations (retrieving, updating,
inserting, and deleting) on a data set and any index or catalog record
associated with it. The master password allows you to delete or alter
the catalog entry for the data set or catalog it protects.

Control interval access requires the control password. This password
allows you to use control interval access and to retrieve, update, insert,
or delete records in the data set it prot!'lcts. For information on the use
of control interval access, see Chapter 7, "Processing Control Intervals"
on page 87.

Update access requires the update password, which allows you to
retrieve, update, insert, or delete records in the data set it protects.

Read access requires the read password, which allows you to examine
records in the data set it protects; the read password does not allow
you to add, change, or delete records.

A password of one level authorizes you to do everything authorized by a
password of a lower level.

In addition to passwords, you can have protection provided by the Resource
Access Control Facility (RACF), an IBM program product. When RACF pro­
tection and password protection are both applied to a data set, password
protection is bypassed, and use is authorized solely through the RACF
checking system. Password and RACF protection are further described in
Chapter 8, "Data Security and Integrity" on page 99.

• If an error occurs during open, a component opened for update processing
may improperly close (leaving the open-for-output indicator on). At OPEN,
VSAM issues an implicit VERIFY command when it detects an open-for­
output indicator on and issues an informational message stating whether
ihe VERIFY command is successful.

If a subsequent OPEN is issued for update, VSAM turns off the open-for­
output indicator at CLOSE. If the data set is opened for input, however, the
open-for-output indicator is left on.

Creating a Request Parameter List
After you have connected your program to the data set, you can issue requests
for access. A request parameter list defines a request. It identifies the data set
to which the request is directed by naming the ACB macro that defines the data
set. Each request macro (GET, PUT, ERASE, POINT, CHECK, and ENDREQ)
gives the address of the request parameter list that defines the request.

42 MVS/XA VSAM Administration Guide

You can use the RPL macro to generate a request parameter list when your
program is assembled, or the GENCB macro to build a request parameter list
when your program is executed. For information on the advantages and disad­
vantages of using GENCB, see "Manipulating Control Block Contents" on
page 44.

When you define your request, specify only the processing options appropriate
to that particular request. Parameters not required for a request are ignored.
For example, if you switch from direct to sequential retrieval with a request
parameter list, you don't have to zero out the address of the field containing the
search argument (ARG = address).

The following information defines your request:

• Access by address (RBA), key, or relative record number. Address access
can be sequential or direct; key access can be sequential, skip sequential,
or direct. Access can be forward (next sequential record) or backward (pre­
vious sequential record). Access can be for updating or not updating. A
non update direct request to retrieve a record can, optionally, cause VSAM
to position to the following record for subsequent sequential access. For
more information on VSAM positioning, see "Pointing VSAM to a Record"
on page 49.

• RPLs (including RPLs defined by a chain), either synchronous, so that
VSAM does not give control back to your program until the request com­
pletes, or asynchronous, so that your program can continue to process or
issue other requests while the request is active. With asynchronous
requests, your program must use the CHECK macro to suspend its proc­
essing until the request completes. For more information on synchronous
and asynchronous processing. see "Asynchronous Requests" on page 54.

• For a keyed request, either a generic key (a leading portion of the key field).
or a full key to which the key field of the record is to be compared.

• For retrieval, either a data record to be placed in a work area in your
program or the address of the record within VSAM's buffer to be passed to
your program. For requests that involve updating or inserting, the work
area in your program contains the data record.

• For a request to directly access a control interval. specify the RBA of the
control interval. With control interval access, you are responsible for main­
taining the control information in the control interval. If VSAM's buffers are
used, VSAM allows control interval and stored record operations simultane­
ously. If your program provides its own buffers, only control interval proc­
essing is allowed. For information on control interval access, see
Chapter 7. "Processing Control Intervals" on page 87.

Chaining Request Parameter Lists
You can chain request parameter lists together to define a series of actions for
a single GET or PUT. For example. each parameter list in the chain could
contain a unique search argument and point to a unique work area. A single
GET macro would retrieve a record for each request parameter list in the chain.

A chain of request parameter lists is processed serially as a single request.
(Chaining request parameter lists is not the same as processing concurrent
requests in parallel.) Processing in parallel requires that VSAM keep track of
many positions in a data set.

Chapter 4. Processing a Data Set 43

Each request parameter list in a chain should have the same OPTCD subpa­
ra:neters. Having different subparameters may cause logical errors. You can't
chain request parameter lists for updating or deleting records-only for
retrieving records or storing new records. You can't process records in the 1/0
buffer with chained request parameter lists. (RPL OPTCD = UPD and RPL
OPTCD = LOC are invalid for a chained request parameter list.)

With chained request parameter lists, a POINT, a sequential or skip-sequential
GET, or a direct GET with positioning requested (RPL OPTCD=NSP) causes
VSAM to position itself at the record following the record identified by the last
request parameter list in the chain.

When you are using chained RPLs, if an error occurs anywhere in the chain, the
RPLs following the one in error are made available without being processed
and are posted complete with a feedback code of zero.

Manipulating Control Block Contents
VSAM provides a set of macros, GENCB, TESTCB, MODCB, and SHOWCB, to
allow you to manipulate the contents of control blocks at execution time. You
can use these macros to generate, test, modify, and display the contents of
fields in the access method control block, the exit list, and the request param­
eter list. You don't have to know the format of the control block when you use
these macros.

The GENCB, MODCB, TESTCB, and SHOWCB macros build a parameter list that
describes, in codes, the actions indicated by the parameters you specify. The
parameter list is passed to VSAM to take the indicated actions. An error can
occur if you specify the parameters incorrectly.

Generating a Control Block
The GENCB macro can be used to generate an access method control block, an
exit list, or a request parameter list when your program is executed. Gener­
ating the control block at execution time with GENCB has the advantage of
requiring no reassembly of the program when you adopt a new version of
VSAM in which control block formats migh't have changed. If you use the ACB,
EXLST, and RPL macros to build control blocks, and then adopt a subsequent
release of VSAM in which the control block format has changed, you will have
to reassemble your program. GENCB also gives you the ability to generate
multiple copies of the ACB, EXLST, or RPL to be used for concurrent requests.
The disadvantage of using GENCB is that the path length is longer. It takes
more instructions to build a control block using GENCB than to code the control
block directly.

You may use the WAREA parameter to provide an area of storage in which to
generate the control block. This work area has a 65K (X'FFFF') size limit. If
you do not provide storage when you generate control blocks, the ACB, RPL,
and EXLST will reside below 16 megabytes unless LOC=ANY is specified.

44 MVSIXA VSAM Administration Guide

Testing Contents of Fields in the ACB, EXLST, and RPL
With the TESTCS macro, VSAM compares the contents of a field that you
specify with a value that you specify. To show the result of this comparison,
VSAM sets the condition code in the PSW (program status word). Only one
keyword can be specified each time TESTCB is issued. This is useful to:

• Find out whether an action has been done by VSAM or your program (for
example, opening a data set or activating an exit).

• Find out what kind of a data set is being processed in order to alter your
program logic as a result of the test.

After issuing a TESTCS macro, you examine the PSW condition code. If the
TESTCB is not successful, register 15 contains an error code and VSAM passes
control to an error routine, if one has been specified. For a keyword specified
as an option or a name, you test for an equal or unequal comparison; for a
keyword specified as an address or a number, you test for an equ~l, unequal,
high, low, not-high, or not-low condition.

VSAM compares A to B, where A is the contents of the field and B is the value
to which it is to be compared. A low condition means, for example, that A is
lower than B-that is. that the value in the control block is lower than the value
you specified. If you specify a list of option codes for a keyword (for example,
MACRF = (ADR.DIR)), each of them must equal the corresponding value in the
control block for you to get an equal condition.

Some of the fields can be tested at any time: others. only after a data set is
opened. The ones that can be tested only after a data set is opened can, in the
case of a key-sequenced data set, pertain either to the data or to the index, as
specified in the OBJECT parameter.

You can display fields using the SHOWCB maco at the same time that you test
the fields.

Modifying Contents of the ACB, EXLST, and RPL
The MODCB macro ai-lows you to customize the control blocks generated with
the GENCB macro. The MODCB macro can be used tomodify the contents of
an access method control block. an exit list, or a request parameter list.
Typical reasons to modify to a request parameter list are to change the indi­
cation of length of a record (RECLEN) when you're processing a data set whose
records are not all the same length. and to change the type of request (OPTeD),
such as from direct to sequential access or from full-key search argument to
generic key search argument.

Displaying Contents of Fields in the ACB, EXLST, and RPL
The SHOWCB macro causes VSAM to move the contents of various fields in an
access method control block, an exit list. or a request parameter list into your
work area. You might want to learn the reason for an error or to collect statis­
tics about a data set to allow your program to print a message or keep records
of transactions.

Chapter 4. Processing a Data Set 45

Requesting Access to the Data Set
After your program is opened and a request parameter list is built, you can use
the action request macros GET, PUT, ERASE, POINT, CHECK, and ENDREQ.
Each request macro uses a request parameter list that defines the action to be
taken. For example, when a GET macro points to a request parameter list that
specifies synchronous, sequential retrieval, the next record in sequence is
retrieved. When an ENDREQ macro points to a request parameter list, any
current request (for example, a PUT) for that request parameter list ends imme­
diately.

The action request macros allow you to do the following:

• Insert new records
• Retrieve existing records
• Point to existing records
• Update existing records
• Delete existing records
• Write buffers
• Retain buffers
• Perform multistring processing
• Perform concurrent requests
• Access records using a path
• Check for completion of asynchronous requests
• End request processing

Inserting a Record
Record insertions in VSAM data sets occur in several ways:

PUT RPL OPTCD = DIR,NSP
Allows you to insert records directly; VSAM remembers its position for sub­
sequent sequential access.

PUT RPL OPTCD=DIR,NUP
Allows you to insert a record directly; VSAM does not remember its posi­
tion.

PUT RPL OPTCD=SEQ,NUP or NSP
Allows you to insert records sequentially; VSAM remembers its position for
subsequent sequential access.

PUT RPL OPTeD = SKP ,NUP or NSP
Allows you to insert records in skip sequential order; VSAM remembers its
position for subsequent sequential access.

Insertions into a Key-Sequenced Data Set
Insertions into a key-sequenced data set use the free space provided during the
definition of the data set or the free space that develops as a result of control
interval and control area splits. To create a data set or make mass insertions,
use RPL OPTCD=SEQ,NUP,or NSP. This type of insertion uses the sequential
insert strategy, and maintains free space during load mode and during mass
insertions. All the other types use the direct insert strategy. If MACRF = SIS is
specified in the ACB, all inserts use sequential insert strategy.

With addressed access of a key-sequenced data set, VSAM does not insert or
add new records.

46 MVS/XA VSAM Administration Guide

Sequential Insertion

• If the new record belongs after the last record of the control interval and the
free space limit has not been reached, the new record goes into the
existing control interval. If the control interval does not contain sufficient
free space the new record is inserted into a new control interval without a
true split.

• If the new record does not belong at the end of the control interval and
there is free space in the control interval, it is placed in sequence into the
existing control interval. If adequate free space does not exist in the control
interval, a control interval split occurs at the point of insertion. The new
record is inserted into the original control interval and the following records
are inserted into a new control interval.

Mass Sequential Insertion

When VSAM detects that two or more records are to be inserted in sequence
into a collating position (between two records) in a data set, VSAM uses a tech­
nique called mass sequential insertion to buffer the records being inserted.
This reduces I/O operations. Using sequential instead of direct access in this
case enables you to take advantage of this technique. You can also extend
your data set (resume loading) by using sequential insertion to add records
beyond the highest key or relative record number. There are possible
restrictions to extending a data set into a new control area depending on the
share options you specify. See Chapter 9, "Sharing a VSAM Data Set" on
page 113.

Mass sequential insertion observes control interval and control area free space
speCifications when the new records are a logical extension of the control
interval or control area (that is, when the new records are added beyond the
highest key or relative record number used in the control interval or control
area).

When several groups of records in sequence are to be mass inserted, each
group may be preceded by a POINT with RPL OPTCD = KGE to establish posi­
tioning. KGE specifies that the key you provide for a search argument must be
equal to the key or relative record number of a record.

Direct Insertion

A new record is inserted into an existing control interval if enough free space
exists in the control interval. If there is not enough free space, and the
insertion is not to the end of the control interval, the control interval is split, and
approximately half of the records are moved to a new control interval. If there is
still not enough free space, the control interval is split again, and approximately
half of the records are moved to a new control interval. This process continues
until there is enough free space to insert the new record.

Insertions into a Relative Record Data Set
Insertions into a relative record data set go into empty slots. When a record is
inserted sequentially into a relative record data set, it is assigned the next rela­
tive record number in sequence. If the slot is not empty, VSAM sets an error
return code, indicating a duplicate record. The assigned number is returned in
the argument field of the RPL.

Chapter 4. Processing a Data Set 47

Direct or skip-sequential insertion of a record into a relative record data set
causes the record to be placed as specified by the relative record number in
the argument field of the RPL. You must insert the record into a slot that does
not contain a record. If the slot specified does contain a record, VSAM sets an
error return code in the RPL and rejects the request.

Insertions into an Entry-Sequenced Data Set
VSAM does not insert new records into an entry-sequenced data set. All
records are added at the end of the data set.

Insertions into a Linear Data Set
Linear data sets cannot be processed at the record level. Use of the GET, PUT
and POINT macros is not allowed at the record level. You must use the DIV
macro to process a linear data set. See Supervisor Services and Macro
Instructions for information on how to use Data-In-Virtual (DIV).

Retrieving Records
The GET macro is used to retrieve records. To retrieve records for update, use
the GET macro with the PUT macro. You can retrieve records sequentially or
directly. In either case, VSAM returns the length of the retrieved record to the
RECLEN field of the RPl.

Sequential Retrieval
Records can be retrieved sequentially using keyed access or addressed
access.

• Keyed sequential retrieval. The first time your program accesses a data set
for keyed sequential access (RPL OPTCD =(KEY,SEQ)), VSAM is positioned
at the first record in the data set in key sequence if nonshared resources
are being used. With shared resources, you must use a POINT macro to
establish position, or a direct request which retains position. A GET macro
retrieves the record. The GET then positions VSAM at the next record in
key sequence. VSAM checks positioning when processing modes are
changed between requests.

For keyed sequential retrieval of a relative record data set, the relative
record number is treated as a full key. If a deleted record is encountered
during sequential retrieval, it is skipped and the next record is retrieved.
The relative record number of the retrieved record is returned in the argu­
ment field of the RPL.

• Addressed sequential retrieval. Retrieval by address is identical to retrieval
by key, except that the search argument is an RBA, which must be matched
to the RBA of a record in the data set. When a processing program opens
a data set with nonshared resources for addressed access, VSAM is posi­
tioned at the record with RBA of zero to begin addressed sequential proc­
essing. A sequential GET request causes VSAM to retrieve the data record
at which it is positioned and then positions VSAM at the next record. The
address specified for a GET or a POINT must correspond to the beginning of
a data record; otherwise the request is invalid. Spanned records stored in
a key-sequenced data set cannot be retrieved using addressed retrieval.

GET-previous (backward-sequential) processing is a variation of normal keyed
or addressed-sequential processing. Instead of retrieving the next record in
ascending sequence (relative to current positioning in the data set),
GET-previous processing retrieves the next record in descending sequence. To

48 MVS/XA VSAM Administration Guide

process records in descending sequence, specify BWD in the RPL OPTCD
parameter. You can select GET-previous processing for POINT, GET, PUT
(update only). and ERASE operations. The initial positioning by POINT, other
than POINT LRD, requires that you specify a key. The following GET-previous
processing does not need any specified key to retrieve the next record in
ascending sequence.

GET-previous processing is not permitted with control interval or skip­
sequential processing.

Pointing VSAM to a Record

Direct Retrieval

You can use the POINT macro to begin retrieving records sequentially at a
place other than the beginning of the data set. This macro places VSAM at the
record with the specified key or relative byte address. However, it does not
provide data access to the record. If you specify a generic key (a leading
portion of the key field), the record pointed to is the first of the records having
the same generic key. The POINT macro can position VSAM for either forward
or backward processing, depending on whether FWD or BWD was specified in
the RPL OPTCD parameter.

If, after positioning, you issue a direct request by way of the same request
parameter list, VSAM drops positioning unless NSP or UPD was specified in the
RPL OPTCD parameter.

When a POINT is followed by a VSAM GET/PUT request, both the POINT and the
subsequent request must be in the same processing mode. For example, a
POINT with RPL OPTCD =(KEY,SEQ,FWD) must be followed by GET/PUT with
RPL OPTCD = (KEY,SEQ,FWD); otherwise, the GET/PUT request is rejected.

For skip-sequential retrieval, you must indicate the key of the next record to be
retrieved. VSAM skips to the next record's index entry by using horizontal
pointers in the sequence set to find the appropriate sequence-set index record
and scan its entries. The key of the next record to be retrieved must always be
higher in sequence than the key of the preceding record retrieved.

If your request fails, with an error code, positioning may not be maintained. To
determine whether positioning is maintained in the case of a logical error, see
"Macro Instruction Return Codes and Reason Codes" in VSAM Administration:
Macro Instruction Reference Positioning is always released when you specify
the ENDREQ macro.

Records can also be retrieved directly using keyed access or addressed
access.

• Keyed direct retrieval for a key-sequenced data set does not depend on
prior positioning; VSAM searches the index from the highest level down to
the sequence set to retrieve a record. You can specify the record to be
retrieved by supplying one of the following:

The exact key of the record
- An approximate key, less than or equal to the key field of the record
- A generic key

You can use an approximate specification when you do not know the exact
key. If a record actually has the key specified, VSAM retrieves it; otherwise,

Chapter 4. Processing a Data Set 49

it retrieves the record with the next higher key. Generic key specification
for direct processing causes VSAM to retrieve the first record having that
generic key. If you want to retrieve all the records with the generic key,
specify RPL OPTCD = NSP in your direct request. That causes VSAM to
position itself at the next record in key sequence. You can then retrieve the
remaining records sequentially.

To use direct or skip-sequential access to process a relative record data
set, you must supply the relative record number of the record you want in
the argument field of the RPL macro. If you request a deleted record, the
request will cause a no-record-found logical error.

A relative record data set has no index; VSAM takes the number of the
record to be retrieved and calculates the control interval that contains it
and its position within the control interval.

• Addressed direct retrieval requires that the RBA of each individual record
be specified; previous positioning is not applicable.

With direct processing, you can optionally specify RPL OPTCD = NSP to indicate
that position be maintained following the GET. Your program can then process
the following records sequentially in either a forward or backward direction.

Updating a Record

Deleting a Record

The GET and PUT macros are used to update records. A GET for update
retrieves the record and the following PUT for update stores the record that the
GET retrieved.

When you update a record in a key-sequenced data set, you cannot alter the
prime key field.

You can update the contents of a record with addressed access, but you cannot
alter the record's length. To change the length of a record in an entry­
sequenced data set, you must store it either at the end of the data set (as a
new record) or in the place of an inactive record of the same length. You are
responsible for marking the old version of the record as inactive.

After a GET for update retrieves a record, an ERASE macro instruction can
delete the record. The ERASE macro can be used only with a key-sequenced
data set or a relative record data set.

When you delete a record in a key-sequenced data set, the record is physically
erased. The space the record occupied is then available as free space.

You can erase a record from the base cluster of a path only if the base cluster
is a key-sequenced data set. If the alternate index is in the upgrade set (that is,
UPGRADE was specified when the alternate index was defined), it is modified
automatically when you erase a record. If the alternate key of the erased
record is unique, the alternate index data record with that alternate key is also
deleted.

When you erase a record from a relative record data set, the record is set to
binary zeros and the control information for the record is updated to indicate an

50 MVS/XA VSAM Administration Guide

empty slot. You can reuse the slot by inserting another record of the same
length into it.

With an entry-sequenced data set, you are responsible for marking a record you
consider to be deleted. As far as VSAM is concerned, the record is not deleted.
You can reuse the space occupied by a record marked as deleted by retrieving
the record for update and storing in its place a new record of the same length.

Deferred and Forced Writing of Buffers
For integrity reasons, it is sometimes desirable to force the data buffer to be
written after a PUT operation. At other times, it is desirable to defer the writing
of a buffer as long as possible to improve performance. At the time the PUT is
issued, if the RPL OPTCD speciries direct processing (DIR), and NSP is not
specified. forced writing of the buffer occurs. Otherwise, writing is deferred. An
ERASE request follows the same buffer writing rules as the PUT request. If LSR
and GSR deferred writes are not speciried. an ENDREQ macro always forces
the current modified data buffer to be written.

Retaining Data Buffers and Positioning .
Some. operations retain positioning while others release it. In a similar way.
some operations hold onto a buffer and others release it with its contents.
Figure 17 shows which RPL options result in the retention of data buffers and
positioning. and which options result in the release of data buffers and posi­
tioning:

Buffer and Posltlonlft9

RPL Optiona Retained Released

SEQ •
SKr • ----------_._-_ ... _----
Din I\:sr •
DIR (no NSr) •

------_._--------_._-------
DIRLOC •
urn (with GET) •

Figure 17. Effect of RPL Options on Data Buffers and Positioning

Notes to Figure 17:

1. A sequential GET request for new control intervals releases the previous
buffer.

2. The ENDREQ macro and the ERASE macro with RPL OPTCD=DIR releases
data buffers and positioning.

3. Certain options that retain positioning and buffers upon normal completion
may not do so if the request fails with an error code. To determine whether
or not positioning is maintained in the case of a logical error, see "Macro
Instruction Return Codes and Reason Codes" in VSAM Administration:
Macro Instruction Reference.

Chapter 4. Processing a Data Set 51

The operation that uses but immediately releases a buffer and does not retain
positioning is:

GET RPL OPTCD = (DIR,NUP,MVE)

Multistring Processing
In multiple string processing, there may be multiple independent RPLs within a
region for the same data set. The data set may have multiple tasks that share
a common control block structure. There are several ACe and RPL arrange­
ments to indicate that multiple string processing will occur:

• In the first ACe opened, STRNO or eSTRNO is greater than 1.

• Multiple ACBs are opened for the same data set within the same region
and are connected to the same controJ block structure.

• Multiple concurrent RPLs are active against the same ACB using asynchro­
nous requests.

• Multiple RPLs are active against the same ACB using synchronous proc­
essing with each requiring positioning to be held.

If you are doing multiple string update processing, you must take into account
VSAM look-aside processing and the rules surrounding exclusive use. Look­
aside means VSAM checks its buffers to see if the control interval is already
present when requesting an index or data control interval.

For GET nonupdate requests, an attempt is made to locate a buffer already in
storage. As a result. a down-level copy of the data may be obtained either from
buffers attached to this string or from secondary storage.

For GET to update' requests, the buffer is obtained in exclusive control, and then
read from the device for the latest copy of the data. If the buffer is already in
exclusive control of another string, the request fails with an exclusive control
feedback code. If you are using shared resources, the request may be queued,
or may return an exclusive control error.

The exclusive use rules are as follows:

1. If a given string obtains a record with a GET for update request, the control
interval is not available for update or insert processing by another string.

2. If a given string is in the process of a control area split caused by an
update with length change or an insert, that string ob~ains exclusive control
of the entire control area being split. Other strings cannot process insert or
update requests against this control area until the split is complete.

If you are using nonshared resources, VSAM does not queue requests that have
exclusive control connicts, and you are required to clear the conflict. If a con­
nict is encountered. VSAM returns a logical error return code, and you must
stop activity and clear the connict. If the RPL that caused the conflict had
exclusive control of a control interval from a previous request, you issue an
ENDREQ before you attempt to clear the problem. You can clear the conflict in
one of three ways:

• Queue until the RPL holding exclusive control of the control interval
releases that control and then reissue the request

52 MVS/XA VSAM Administration Guide

• Issue an ENDREQ against the RPL holding exclusive control to force it to
release control immediately

• Use shared resources and issue MRKBFR MARK = RLS

Note: If your RPL has provided a correctly specified MSGAREA and MSGLGN.
the address of the RPL holding exclusive control is provided in the first word of
the MSGAREA. Your RPL field. RPLDDDD. contains the RBA of the requested
control interval.

Concurrent Requests
With VSAM. you can maintain concurrent positioning for many requests to a
data set. Thus you can process many portions of a data set concurrently. even
within the same program. merely by providing many RPLs for that data set.
The same ACB is used for all requests, and the data set needs to be opened
only once. This means. for example. you could be processing a data set
sequentially using one RPL, and at the same time, using another RPL. directly
access selected records from the same data set.

For concurrent requests that require VSAM to keep track of more than one posi­
tion in a data set. you can issue up to 255 request macros to process the data
set at anyone time.

For each request. a string defines the set of control blocks for the exclusive use
of one user. If the number of strings you specify is not sufficient. the operating
system dynamically extends the number of strings as needed by concurrent
requests for the ACB. Strings allocated by dynamic string addition are not nec­
essarily in contiguous storage. Dynamic string addition does not occur with
LSR and GSR-it occurs only with NSR buffering.

Accessing Records Using a Path
When you are processing records sequentially using a path. records from the
base cluster are returned according to ascending or. if you are retrieving the
previous record. descending alternate key values. If there are several records
with a non-unique alternate key. those records are returned in the order in
which they were entered into the alternate index. VSAM sets a return code in
the RPL when there is at least one more record with the same alternate key to
be processed. For example. if there are three data records with the alternate
.key 1234. the return code would be set during the retrieval of records one and
two and would be reset during retrieval of the third record.

When you use direct or skip-sequential access to process a path. a record from
the base data set is returned according to the alternate key you have specified
in the argument field of the RPL macro. If the alternate key is not unique. the
record which was 'first entered with that alternate key is returned and a feed­
back code (duplicate key) is set in the RPL. To retrieve the remaining records
with the same alternate key. specify RPL OPTCD = NSP when retrieving the first
record with a direct request. and then switch to sequential processing.

You can insert and update data records in the base cluster using a path if:

• The PUT request does not result in non-unique alternate keys in an alter­
nate index. which you have defined with the UNIQUEKEY attribute.
However. if a non unique alternate key is generated and you have specified
the NONUNIQUEKEY attribute. updating can occur.

Chapter 4. Processing a Data Set 53

• You do not change the key of reference between the time the record was
retrieved for update and the PUT is issued.

• You do not change the prime key.

When the alternate index is in the upgrade set, the alternate index is modified
automatically by inserting or updating a data record in the base cluster. If the
updating of the alternate index results in an alternate-index record with no
pointers to the base cluster, the alternate-index record is erased.

Asynchronous Requests
In synchronous mode, VSAM does not return to your program from a PUT or
GET operation until it has completed the operation. In asynchronous mode,
VSAM returns control to your program before completing a PUT or a GET. This
means that a program in asynchronous mode can perform other useful 'work
while a VSAM PUT or GET is completed.

Asynchronous mode can improve throughput with direct processing because it
permits processing to overlap with accesses from and to the direct access
device. When reading records directly, each read often involves a seek on the
direct access device, a relatively slow operation. In synchronous mode, this
seek time does not overlap with other processing.

In order to specify asynchronous mode, you must specify OPTCD = ASY rather
than OPTCD = SYN in the RPL.

Checking for Completion of Asynchronous Requests

Ending a Request

Suppose your program is ready to process the next record, but VSAM is still
trying to obtain that record. (The next record is not yet read in from the direct
access device.) It may be necessary to stop execution. of the program and wait
for VSAM to complete reading in the record. The CHECK instruction stops eXe­
cution of the program until the operation in progress is completed. You must
issue a CHECK macro after each request for an RPL. If you attempt another
request without an intervening CHECK, that request will be rejected.

Once the request is completed, CHECK releases control to the next instruction
in your program, and frees up the RPL for use by another request.

Suppose you determine, after initiating a request but before it is completed, that
you don't want to complete the request. For example, suppose you determine
during the processing immediately following a GET that you don't want the
record you just requested. You can use the ENDREQ macro to cancel the
request. ENDREQ has the following advantages:

• It allows you to avoid checking an unwanted asynchronous request.
• It writes any unwritten data or index buffers in use by the string.
• It cancels the VSAM positioning on the data set for the RPL.

Note: If you issue the ENDREQ macro, it is important that you check the
ENDREQ return code to make sure it completes successfully. If an asynchro­
nous request does not complete ENDREQ successfully, you must issue the
CHECK macro. The data set cannot be closed until all asynchronous requests
successfully complete either ENDREQ or CHECK.

54 MVS/XA VSAM Administration Guide

Closing a Data Set
The CLOSE macro disconnects your program from the data set. It causes
VSAM to do the following:

• Write any unwritten data or index records whose contents have changed.

• Update the catalog entry for the data set if necessary (if the location ot the
end-ot-file indicator has changed, for example).

• Write SMF records if SMF is being used.

• Restore control blocks to the status they had before the data set was
opened.

• Release virtual storage that was obtained during OPEN processing for addi­
tional VSAM control blocks and VSAM routines.

If a record management error occurs while CLOSE is flushing buffers, the data
set's catalog information is not updated. The catalog may not properly reflect
the data set's status and the index may not accurately reflect some of the data
records. If the program enters an abnormal termination routine (abend), all
open data sets are closed. The VSAM CLOSE invoked by abenddoes not
update the data set's catalog information, it does not complete outstanding 110
requests, and buffers are not flushed. The catalog may not properly reflect the
cluster's status, and the index may not accurately reference some of the data
records. You can use the access method services VERIFY command to correct
catalog information. The use of VERIFY is described in "Using VERIFY to Syn­
chronize Values" on page 63.

When processing asynchronous VSAM requests, all strings must be quiesced
by issuing the CHECK macro or the ENDREQ macro before issuing CLOSE or
CLOSE TYPE=T (temporary CLOSE).

You can avoid an incomplete write to a direct access device by doing synchro­
nous direct inserts or by using abnormal termination exits in which you issue a
CLOSE or CLOSE TYPE =T to properly close the data set.

CLOSE TYPE =T causes VSAM to complete any outstanding 1/0 operations,
update the catalog if necessary, and write any required SMF records. Proc­
essing can continue after a temporary CLOSE without issuing an OPEN macro.

If a VSAM data set is closed and CLOSE TYPE =T is not specified, you must
reopen the data set before performing any additional processing on it.

When you issue a temporary or a permanent CLOSE macro, VSAM updates the
data set's catalog records. If VSAM was invoked by an abend, the data set's
catalog records are not updated, and contain inaccurate statistics.

It is the user's responsibility to ensure that shared DD statements are not
dynamically unallocated until all ACBs sharing these DD statements have been
closed. For an explanation of dynamic allocation, see JeL User's Guide.

Chapter 4. Processing a Data Set 55

VSAM Macro Relationships
At this point it is important to see how all of these macros work together in a
program. Figure 18 shows the relationship between JCL and the VSAM macros
in a program.

f/ddnamc DJ OS\NA:: -" dsnamc,DISP-=~-OLJ:SHA}

I--~;---- 1-~-;~~-:'(~P'iO~l;~ .. -:,----------- ------·1
! '-________ -' L-__ _

~_~ _________ J L--____ .. ____ j I

-_. __ ._--_._--_ .. _- -.. --- --_._--'

RPL=adC~S---·-- ------------l
,
I

[-/'IC-B-~~~~~~s-l---- .--.-----,
I

[,OPTCD= (DIRISEOS(P i !
: J)]

'---======~ "--=-============-----------_.
I
I :laoel~1 ~!II ACB ,---- -------

. I I (.i:;D~j._\\.iE;·cdnameJ
iii I

[.BLFND: number J
.. BLFNI: nt.moe-]
~ .8LFSP= number 1
[.MACR= = (Dlf{[.SEOJ.SK;>]

[,INI,Ol,iTJ
[.NRS r,RST)
[........ Jl]

[.STflNO= number)
[.PASS'i\'D = aCdress)
[.EXLST=adcressj I

I

L-____ -' '-___ ---' L_ --------"

Figure 18. VSAM Macro Relations

[JRNAD= (adcress[A;N[.Lj)]
[Sy'NAD= (addreSS[A!N;[.L]} 1

Figure 19 on page 57 is a skeleton program that shows the relationship of
VSAM macros to each other and to the rest of the program.

56 MVS/XA VSAM Administration Guide

I

START CSECT
SAVE(14, 12)

B INIT

!·lASACB ACB DDfW1E=t4ASDS,AI4=VSAI·l,
MACRF=(KEY,SEQ,OUT) ,
EXLST=EXITS,
Rt·lODE31=ALL

'·lASRPL RPL ACB=t·1ASACB,

Standard entry code

Branch around file specs

File specs X
X
X

X
OPTCD=(KEY ,SEQ,NUP,t·1VE,SYN), X

EXITS

TRANDCB

INIT

EOTRF

LOGER

JOURN

lolA

AREA=\-IA,
AREALEN=8e,
RECLEN=Se

EXLST LERAD=LOGER,
JRNAD=JOURN

DCB DDNAt·IE= T RANDS,
DSORG=PS,
f.1ACRF=Gt4,
EODAD=EOTRF,
LRECL=Se,
BLKSIZE=Se,
RECH1=F

OPEN (MASACB"TRANDCB)

GET TRANDCB, \-IA

PUT RPL=t·1ASRPL

CLOSE (~lASACB" TRANDCB)

RETURN (14,12)
.Exit routines

DS
END

CL8e

Figure 19. Skeleton VSAM Program

X
X

X

X
X
X
X
X
X

Program initialization

Connect data sets

Processing loop

Disconnect data sets

Return to calling routine

\-lork area

Chapter 4. Processing a Data Set 57

Operating in SRB or Cross Memory Mode
Operating in service request block (SRB) or cross memory mode allows you to
use structures in other memories to increase the amount of space available.
SRB and cross memory mode are privileged modes of operation reserved for
authorized users. Cross memory is a complex concept, and there are a number
of warnings and restrictions associated with it. For information, see System
Macros and Facilities.

You can only operate in cross memory or SRB mode for synchronous, super­
visor state requests. An attempt to invoke VSAM asynchronously in either
mode results in a logical error. Also, VSAM makes no attempt to synchronize
cross memory mode requests. This means that the RPL must specify WAITX,
and a UPAD exit (user processing exit routine) must be provided in an exit list
to handle cross memory request synchronization. You must provide an UPAD
routine that ensures the ECB is posted before returning to VSAM.

In order to function in cross memory or SRB mode, record management does
not issue any supervisor call instructions (SVCs) or take any user exits as they
were entered. Instead of issuing SVCs, RPL return codes are set to indicate
that an SVC (such as an end of volume) is required, in order to complete the
request.

Whenever VSAM cannot avoid the SVC, it sets an RPL return code to indicate
that you must change processing mode so that you are running under a TCB
(task control block) in the address space in which the data set was opened. You
cannot be in cross memory mode. You may then reissue the request to allow
the SVC to be issued by VSAM. The requirement for VSAM to issue an SVC is
kept to a minimum. Areas identified as requiring a TCB not in cross memory
mode are EXCEPTIONEXIT, loaded exits, EOV (end of volume), dynamic string
addition, AIX (alternate index) processing, and MSS-related macros.

If a logical error or an end-of-data condition occurs during cross memory or
SRB processing, VSAM attempts to enter the LERAD (logical error exit) or
EODAD (end of data exit) routine. If the routine must be loaded, it cannot be
taken; VSAM sets the RPL feedback to indicate "invalid TCB." If an 1/0 error
occurs during cross memory or SRB processing and an EXCEPTIONEXIT or
loaded SYNAD (physical error exit) routine is specified, these routines cannot
be taken; the RPL feedback indicates an 1/0 error condition.

See Data Facility Product: Customization for more information on exit routines.

~ ______ End of General-Use Programming Interface ______ --'

58 MVS/XA VSAM Administration Guide

Chapter 5. Establishing Backup and Recovery Procedures

It is important to establish backup and recovery procedures for your data sets
so that you can replace a destroyed or damaged data set with its backup copy.
There are several methods of backing up and recovering VSAM data sets:

• Using the ?,ccess method services REPRO command.

• Using the access method services EXPORT and IMPORT commands.

• Writing your own program for backup and recovery.

• Using the Data Facility Data Set Services (DFDSS) DUMP and RESTORE
commands. This option is available only if DFDSS Release 2 or later is
installed on your system, and if your data sets are cataloged in an inte­
grated catalog facility catalog.

Each of these methods of backup and recovery has its advantages. You will
need to decide which method is best for the particular data that you need to
back up.

Using REPRO for Backup and Recovery
The REPRO command is used to create a duplicate VSAM data set for backup.
Using REPRO for backup and recovery has the following advantages:

• Backup Copy Is Accessible. The backup copy obtained by using REPRO is
accessible for processing. It can be a VSAM data set or a sequential (SAM)
data set.

• Type of Data Set Can Be Changed. The backup copy obtained by using
REPRO can be a different type of VSAM data set than the original. For
example, you could back up a VSAM key-sequenced data set by copying it
to a VSAM entry-sequenced data set.

• Data Is Reorganized. Using REPRO for backup results in data reorganiza­
tion and the re-creation of an index for a key-sequenced data set. The data
records are rearranged physically in ascending key sequence (control
interval and control area splits may have placed them physically out of
order) and free-space quantities are restored. Because the data is reorgan­
ized, you must remember that any absolute references by way of RBA
become invalid.

Options Using REPRO
REPRO provides you with several options for creating backup copies and using
them for data set recovery. The following are suggested ways to use REPRO.

1. Create a backup copy on another catalog. then use the backup copy to
replace the original.

a. To create a backup copy, define a data set on another catalog. and use
REPRO to copy the original data set into the new data set you have
defined. Because the two data sets are defined on separate catalogs,
they m.ay have the same name.

b. Because a backup copy created by REPRO is accessible for processing,
when you want to replace the original with the backup copy, you can

Chapter. 5. Establishing Backup and Recovery Procedures 59

leave the backup copy on the catalog it was copied to. If you do this,
the JOBCAT and STEPCAT statements in the JCL must be changed to
reflect the name of the catalog containing the backup copy.

2. Create a copy of a nonreusable data set on the same catalog, then delete
the original data set, define a new data set, and load the backup copy into
the newly defined data set.

a. To create a backup copy, define a data set, and use REPRO to copy the
original data set into the newly defined data set. If you define the
backup data set on the same catalog as the original data set, the
backup data set must have a different name.

b. To recover the data set, delete the original data set if it still exists,
using the DELETE command. Next, redefine the data set using the
DEFINE command, then restore it with the backup copy using the
REPRO command.

3. Create a copy of a reusable data set, then load the backup copy into the
original data set. When using REPRO, the REUSE attribute allows repeated
backups to the same VSAM reusable target data set.

a. To create a backup copy, define a data set, and use REPRO to copy the
original reusable data set into the newly defined data set.

b. To recover the data set, load the backup copy into the original reusable
data set.

4. Create a backup copy of a data set, then merge the backup copy with the
damaged data set. When using REPRO, the REPLACE parameter allows
you to merge a backup copy into the damaged data set. This option is not
available for entry-sequenced data sets, since records are always added to
the end of an entry-sequenced data set.

a. To create a backup copy, define a data set, and use REPRO to copy the
original data set into the newly defined data set.

b. To recover the data set, use the REPRO command with the REPLACE
parameter to merge the backup copy with the destroyed data set. With
a key-sequenced data set, each source record whose key matches a
target record's key replaces the target record. Otherwise, the source
record is inserted into its appropriate place in the target cluster. With a
relative record data set, each source record, whose relative record
number identifies a data record in the target data set, replaces the
target record. Otherwise, the source record is inserted into the 'empty
slot its relative record number identifies.

When only part of a data set is damaged. you can replace only the
records in the damaged part of the data set. The REPRO command
allows you to specify a location at which copying is to begin and a
location at which copying is to end.

60 MVS/XA VSAM Administration Guide

Using EXPORT/IMPORT for Backup and Recovery
Using EXPORT/IMPORT for backup and recovery has the following advantages:

• Data Is Reorganized. Using EXPORT for backup results in data reorganiza­
tion and the re-creation of an index for a key-sequenced data set. The data
records are rearranged physically in ascending key sequence (control
interval and control area splits may have placed them physically out of
order) and free-space quantities are balanced. Because the data is reor­
ganized, you must remember that any absolute references by way of RBA
become invalid.

• Redefinition Is Easy. Because most catalog information is exported along
with the data set, you are not required to define a data set before importing
the copy. The IMPORT command deletes the original copy, defines the new
object, and copies the data from the exported copy into the newly defined
data s~t.

• Attributes Can Be Changed or Added. When you IMPORT a data set for
recovery, you can specify the OBJECTS parameter to indicate new or
changed attributes for the data set. This allows you to change the name of
the data set, the key ranges, and the volumes on which the data set is to
reside.

Structure of an Exported Data Set
An exported data set is an unloaded copy of the data set. The backup copy can
only be a sequential (SAM) data set.

Most catalog information is exported along with the data set, easing the
problem of redefinition. The backup copy contains all of the information neces­
sary to redefine the VSAM cluster or alternate index when you IMPORT the
copy.

Procedure for Using EXPORT/IMPORT
When you export a copy of a data set for backup, specify the TEMPORARY attri­
bute. This indicates that the data set is not to be deleted from the original
system.

You can export ESOS or LOS base clusters in control interval by specifying the
CIMOOE parameter. When CIMOOE is forced for an LOS, a RECOROMOOE
specification is overridden.

Use the IMPORT command to totally replace a VSAM cluster whose backup
copy was built using the EXPORT command. The IMPORT command uses the
backup copy to replace the cluster's contents and catalog information.

You can protect an exported data set by specifying the INHIBITSOURCE or
INHIBITT ARGET parameters. These parameters indicate that the source or
target data set cannot be accessed for any operation other than retrieval.

Chapter 5. Establishing Backup and Recovery Procedures 61

Data Facility Data Set Services (DFDSS)
The IBM Data Facility Data Set Services, program product (5740-UT3) Release 2
or later, can be used to back up and recover VSAM data sets cataloged in an
integrated catalog facility catalog. With the DUMP operation, you can dump
DASD data to a sequential data set. With the RESTORE operation, you can
restore a data set to a DASD volume from a DFDSS-produced dump volume.

The DUMP procedure produces an image copy of the data set; the data set is
not reorganized when it is restored.

For more information on using DFDSS for backup and recovery, refer to DFDSS:
User's Guide and Reference.

Writing Your Own Program for Backup and Recovery
There are two methods of creating your own program for backup and recovery.

• If you periodically process a data set sequentially, you can easily create a
backup copy as a by-product of normal processing. This backup copy can
be used like one made by REPRO.

• You can write your own program to back up your data sets. Whenever pos­
sible, this program should be integrated into the regular processing proce­
dures.

The JRNAD exit routine is one way to write your own backup program.
When you request a record for update, 'your program can call the JRNAD
exit routine to copy the record you are going to update, and write it to a
different data set. When you return to VSAM, VSAM completes the
requested update. If something goes wrong, you have a backup copy. For
more information on the JRNAD exit routine, see Data Facility Product:
Customization.

Updating after Data Set Recovery
After replacing a damaged data set with its backup copy, rerun the jobs that
updated the original between the time it was backed up and the time it became
inaccessible. This updates the backup copy.

Synchronizing Data Set and Catalog Information
Because the physical and logical description of a data set is contained in its
catalog entries, VSAM requires up-to-date catalog entries to access data sets.

Synchronizing Values following Data Set or Catalog Damage
If either your data set or your catalog is damaged, your recovery procedure
must match both data set and catalog entry status. Recovery by way of
reloading the data set automatically takes care of this problem. A new catalog
entry is built when the data set is reloaded.

62 MVS/XA VSAM Administration Guide

Backing up the data sets in a user catalog allows you to recover from damage
to the catalog. You can import the backup copy of a data set whose entry is
lost or redefine the entry and reload the backup copy.

If the catalog is completely lost, you can redefine it, then import or redefine and
reload all the data sets that were defined in the catalog.

Synchronizing Values following an Abnormal Termination
When a data set is closed, its end-of-data and end-of-key-range information is
used to update the data set's cataloged information. If a system failure occurs
before the data set is closed (before the user's program issues CLOSE), the
data set's cataloged information is not updated.

When the data set is subsequently opened and the user's program attempts to
process records beyond end-of-data or end-of-key range, a read operation
results in a "no record found" error, and a write operation might write records
over previously written records. To avoid this, you can use the VERIFY
command which corrects the catalog information.

Using VERIFY to Synchronize Values
The VERIFY command is used to compare the end-of-data and end-of-key range
information in a catalog with the true end-of-data and end-of-key range. If the
information in the catalog does not agree with the true end-of-data or
end-or-key range, the catalog information is corrected.

The VERIFY command should be used following a system failure that caused a
component opened for update processing to be improperly closed. Clusters,
alternate indexes, and catalogs can be verified. Paths over an alternate index
cannot be verified. Paths defined directly over a base cluster can be verified.
Although the data and index components of a key-sequenced cluster or alter­
nate index can be verified, the timestamps of the two components are different
following the separate verifies, possibly causing further OPEN errors. There­
fore, use the cluster or alternate index name as the target of your VERIFY
command.

To use the VERIFY command to verify a catalog, access method services must
be authorized. For information about program authorization, see "Using the
Authorized Program Facility (APF)" in System Macros and Facilities.

You cannot use VERIFY to correct catalog records for a key-sequenced data set
or a relative record data set after load mode failure. 'An entry-sequenced data
set defined with the RECOVERY attribute may be verified after a create (load)
mode failure; however, you cannot run VERIFY against an empty data set or a
linear data set. Any attempt to do either will result in a VSAM logical error.
See "Opening a Data Set" on page 41 for information about VSAM issuing the
implicit VERIFY command.

Chapter 5. Establishing Backup and Recovery Procedures 63

Chapter 6. Optimizing VSAM Performance

This chapter describes many of the options and factors that either influence or,
in some cases, determine VSAM's performance as well as the performance of
the operating system. The main topics include control interval and control area
size, free space, key ranges, buffer management, index options, and staging
VSAM data sets for MSS.

Most of the options are specified in the access method services DEFINE
command when a data set is created. In some cases, options can be specified
in the ACB and GENCB macro instructions and in the DD AMP parameter.

Optimizing Control Interval Size
You can let VSAM select the size of a control interval for a data set, or you can
request a particular control interval size in the DEFINE command. You may be
able to improve VSAM's performance by specifying a control interval size in the
DEFINE command, depending on the particular storage and access require­
ments for your data set. For information on the structure and contents of
control intervals, see "Control Intervals" on page 3.

Control interval size affects record processing speed and storage requirements
in these ways:

• Buffer space. Data sets with large control interval sizes require more buffer
space in virtual storage. For information on how much buffer space is
required, see "Determining I/O Buffer Space for Nonshared Resources" on
page 76.

• 110 operations. Data sets with large control interval sizes require fewer I/O
operations to bring a given number of records into virtual storage; fewer
index records must be read. This is significant primarily for sequential and
skip-sequential access. Large control intervals are not beneficial for keyed
direct processing of a key-sequenced data set.

• Free space. Free space is used more efficiently (fewer control interval
splits and less wasted space) as control interval size increases relative to
data record size. For more information on efficient use of free space, see
"Optimizing Free Space Distribution" on page 70.

Control Interval Size Limitations
When you request a control interval size, you must take into account the length
of your records and whether or not the SPANNED attribute has been specified.

The valid control interval sizes are from 512 to 8192 bytes in increments of 512
bytes and from 8K to 32K bytes in increments of 2K bytes for objects cataloged
in integrated catalog facility catalogs and for the integrated catalog facility cata­
logs themselves. The valid sizes for index components cataloged in VSAM cat­
alogs are 512, 1024, 2048 and 4096 bytes.

Unless the data set was defined with the SPANNED attribute, the control
interval must be large enough to hold a data record of the maximum size speci­
fied in the RECORDSIZE parameter. Because the minimum amount of control

Chapter 6. Optimizing VSAM Performance 65

information in a control interval is 7 bytes, a control interval is normally at least
7 bytes larger than the largest record in the component. If the control interval
size you specify is not large enough to hold the maximum size record, VSAM
increases the control interval size to a multiple of the minimum physical block
size. The control interval size VSAM provides is large enough to contain the
record plus the overhead.

The use of the SPANNED attribute removes this constraint by allowing data
records to be continued across control intervals. The maximum record size is
then equal to the number of control intervals per control area multiplied by
control interval size minus 10. The use of the SPANNED attribute places certain
restrictions on the processing options that can be used with a data set. For
example, records of a data set with the SPANNED attribute cannot be read or
written in locate mode. For more information on spanned records, see
"Spanned Records" on page 6.

Control interval size is limited by the requirement that it be a whole number of
physical blocks. The information recorded on a DASD track is divided into
physical blocks. Block sizes the same as the supported control interval sizes
are supported for objects cataloged in integrated catalog facility catalogs as
well as the integrated catalog facility catalogs themselves. Block sizes of 512,
1024, 2048 and 4096 bytes are supported for index components cataloged in
VSAM catalogs. If you specify a control interval that is not a proper multiple for
the supported block size, VSAM increases it to the next multiple. For example,
2050 is increased to 2560.

Physical Block Size and Track Capacity
Figure 2Q illustrates the relationship between control interval size, physical
block size, and track capacity. The information on a track is divided into phys­
ical blocks. Control interval size must be a whole number of physical blocks.
Control intervals may span tracks. However, poor performance results if a
control interval spans a cylinder boundary, because the read/write head must
move between cylinders.

CI1 CI2 CI3

PBlpB IPB PB PB IPB PB I PB PB PB I PB I PB

Track 1 Track 2 Track 3 Track 4

PB - Physical Block

Figure 20. Control Interval Size, Physical Block Size, and Track Capacity

The physical block size is always selected by VSAM. VSAM chooses the
largest physical block size that is an integral multiple of the control interval
size. The block size is also based on device characteristics.

66 MVS/XA VSAM Administration Guide

Data Control Interval Size
You can either specify a data control interval size or default to a system­
calculated control interval size. If you don't specify a size, the system calcu­
lates a default value that will best use the space on the track for the average
record size of spanned records or the maximum record size of nonspanned
records.

If you specify control interval size at the cluster level only, the size applies to
the data component, and VSAM calculates the index control interval size.

Normally, a 4096-byte data control interval is reasonably good regardless of the
DASD device used, processing patterns, or the processor. A linear data set, in
fact, requires a 4096-byte control interval. However, there are some special
considerations that might affect this choice:

• If you have very large control intervals, more pages are required to be fixed
during I/O operations. This could adversely affect the operation of the
system.

• Small records in a data control interval can result in a large amount of
control information. Often free space cannot be used.

• The type of processing you use may also affect your choice of control
interval size.

Direct processing. When direct processing is predominant, a small
control interval is preferable, because you are only retrieving one
record at a time. In general, select the smallest data control interval
that yields a reasonable space utilization.

Sequential processing. When sequential processing is predominant,
larger data control intervals may be good choices. For example, given
a 16K-byte data buffer space, it is better to read two 8K-byte control
intervals with one 1/0 operation than four 4K-byte control intervals with
two 1/0 operations.

Mixed processing. If the processing is a mixture of direct and sequen­
tial, a small data control interval with multiple buffers for sequential
processing may be a good choice.

If you specify free space for a key-sequenced data set, the system determines
the number of bytes to be reserved for free space. For example, if control
interval size is 4096, and the percentage of free space in a control interval has
been defined as 20%, 819 bytes are reserved.

To find out what values are actually set in a defined data set, you can issue the
access method services LlSTCA T command.

Index Control Interval Size
For a key sequenced data set, you can either specify an index control interval
size or default to a system calculated size. If you don't specify a size, VSAM
uses 512. After VSAM determines the number of control intervals in a control
area (see "How VSAM Adjusts Control Interval Size" on page 68), it estimates
whether an index record is large enough to handle all the control intervals in a
control area. If the index record is too small, either the size of an index control
interval is increased or the size of the control area is reduced by decreasing
the number of control intervals.

Chapter 6. Optimizing VSAM Performance 67

The size of the index control interval must be compatible with the size of the
data control interval. If you select too small a data control interval size, the
number of data control intervals in a control area may be large enough to
cause the index control interval size to exceed the maximum. VSAM first tries
to increase the index control interval size and, if not possible, then starts
decreasing the number of control intervals per control area. If this does not
solve the problem, the DEFINE fails.

A 512-byte index control interval is normally chosen, because this is the
smallest amount of data that can be transferred to virtual storage using the
least amount of device and channel resources. A larger control interval size
may be needed, depending on the allocation unit, the data control interval size,
the key length, and the key content as it affects compression. (It is rare to have
the entire key represented in the index, because of key compression.) A
catalog listing will show the number of control intervals in a control area. This
number plus the key length, can be used to estimate the size of index record
necessary to avoid control area splits, which occur when the index control
interval size is too small. To make a general estimate of the index control
interval size, you can multiply one half of the key length by the number of data
control intervals per control area.

How VSAM Adjusts Control Interval Size
The control interval sizes you specify when the data set is defined are not nec­
essarily the ones that appear in the catalog. VSAM makes adjustments, if pos­
sible, so that control interval size conforms to proper size limits, minimum
buffer space, adequate index-to-data size, and record size. This happens when
your data set is defined.

For example:

1. You specii"y data and index control interval size. After VSAM determines
the number of control intervals in a control area, it estimates whether one
index record is large enough to handle all control intervals in the control.
area. If not, the size of the index control interval is increased. if possible. If
the size cannot be increased. VSAM decreases the number of control inter­
vals in the control area.

2. You specify maximum record size as 2560 and data control interval size as
2560. and have no spanned records. VSAM adjusts the data control interval
size to 3072 to allow space for control information in the data control
interval.

3. You specify buffer space as 4K, index control interval size as 512. and data
control interval size as 2K. VSAM decreases the data control interval to
1536. Buffer space must include space for two data control intervals and
one index control interval at DEFINE time. For more information on buffer
space requirements. see "Determining 110 Buffer Space for Nonshared
Resources" on page 76.

68 MVS/XA VSAM Administration Guide

Optimizing Control Area Size
There is no way to explicitly specify control area size. The control area size is
determined on the basis of the space allocation requested. For a key­
sequenced data set. data and index control interval size. and the amount of
buffer space available also affect control area size. When extents are allo­
cated. they are composed of a whole number of control areas. By calculating
the size of a control area as it does. VSAM is able to meet the primary and
secondary space requirements without overcommitting space for the data set.
For information on the structure and contents of control areas. see "Control
Areas" on page 6.

A control area is never larger than one cylinder. If you allocate space in a
DEFINE command using the CYLINDERS parameter. VSAM sets the control area
size to one cylinder. If you allocate space in tracks or records. VSAM checks
the smaller of the primary and secondary space allocation against the specified
device's cylinder. size. If the smaller space allocation is less than the device's
cylinder size. the size of the control area is set equal to the smaller space
quantity. If the smaller quantity is greater than or equal to the device's cylinder
size. the control area size is set equal to cylinder size.

If the control area is smaller than a cylinder. its size will be an integral multiple
of tracks. and it can span cylinders. However. a control area can never span
an extent of a data set. which is always composed of a whole number of control
areas. For more information on allocating space for a data set. see" Allocating
Space for a Data Set" on page 23.

Advantages of a Large Control Area
Control area size has significant performance implications. One-cylinder
control areas have the following advantages:

• There is a smaller probability of control area splits.

• The index is more consolidated. One index record addresses all the control
intervals in a control area. If the control area is large. fewer index records
and index levels are required. For sequential access. a large control area
decreases the number of reads of index records.

• There are fewer sequence set records. The sequence set record for a
control area is always read for you. Fewer records means less time spent
reading them.

• If the sequence set of the index is embedded on the first track of the control
area to reduce disk-arm movement and rotational delay. a large control
area reduces the storage space needed for sequence sets.

For example. the IMBED option requires one track per control area for
sequence set information. If the control area on a 3380 is three tracks. 1/3
of the DASD space is required for sequence sets. If the control area on a
3380 is one cylinder. 1115 the DASD space is required.

• If you have allocated enough buffers. a large control area allows you to
read more buffers into storage at one time. This is useful if you are
accessing records sequentially.

Chapter 6. Optimizing VSAM Performance 69

Disadvantages of a Large Control Area Size
The following disadvantages of a one-cylinder control area must also be consid­
ered:

• If there is a control area split, more data is moved.

• During sequential 110, a large control area ties up more real storage and
more buffers.

Optimizing Free Space Distribution
With the DEFINE command, you can specify the percentage of free space in
each control interval and the percentage of free control intervals per control
area. Free space improves performance by reducing the likelihood of control
interval and control area splits. This, in turn, reduces the likelihood of VSAM
moving a set of records to a different cylinder away from other records in the
key sequence. When there is a direct insert or a ·mass sequential insert that
does not result in a split, VSAM inserts the records into available free space.

The amount of free space you need depends on the number and location of
records to be inserted, lengthened, or deleted. Too much free space may result
in the following:

• Increased number of index levels, which affects run times for .direct proc­
essing.

• More direct access storage required to contain the data set.

• More 110 operations required to sequentially process the same number of
records.

Too little free space may result in an excessive number of control interval and
control area splits. These splits are time consuming, and have the following
additional effects:

• More time is required for sequential processing because the data set is not
in physical sequence.

• More seek time is required during processing because of control area
splits.

Consider using L1STCAT or the ACB JRNAD exit to monitor control area splits.
When splits become prevalent, you can reorganize the data ~et. For informa­
tion about the JRNAD exit, refer to Data Facility Product: Customization.

Figure 21 illustrates how free space is determined for a control interval.

70 MVS/XA VSAM Administration Guide

Byte Number SOD 1000

FREESPACE(20 10)
CONTROLINTERVALSIZE(4e96)
RECORDSIZE(S0e S0e)

Figure 21. Determining Free Space

2500 3267

FI86 8p8c:e Thresholcl

For this data set, each control interval is 4096 bytes. In each control interval, 10
bytes are reserved for control information. Because control interval free space
is specified as 20%, 819 bytes are reserved as free space. (4096 •. 20 = 819).
This puts the free space threshold at 3267 bytes. The space between the
threshold and the control information is reserved as free space.

Because the records loaded in the data set are 500-byte records, there is not
enough space for another record between byte 3000 and the free space
threshold at byte 3267. These 267 bytes of unused space are also used as free
space. This leaves 1086 bytes of free space; enough to insert two five hundred
byte records. Only 86 bytes are left unusable.

When you specify free space, ensure that the percentages of free space you
specify yield full records and full control intervals with a minimum amount of
unusable space.

Choosing the Optimal Percentage of Free Space
The amount of control interval free space you specify should be consistent with
expected record insertion activity. Determine the amount of free space based
on the percentage of record additions expected, and their distribution:

• No additions. If no records will be added and if record sizes will not be
changed, there is no need for free space.

• Few additions. If few records will be added to the data set, consider a free
space specification of (00). When records are added, new control areas
are created to provide room for additional insertions.

If the few records to be added are fairly evenly distributed, control interval
free space should be equal to the percentage of records to be added.
(FSPC (nn 0), where nn equals the percentage of records to be added.)

• Evenly distributed additions. If new records will be evenly distributed
throughout the data set, control area free space should equal the per­
centage of records to be added to the data set after the data set is loaded.
(FSPC (0 nn), where nn equals the percentage of records to be added.)

• Unevenly distributed additions. If new records will be unevenly distributed
throughout the data set, specify a small amount of free space. Additional
splits, after the first, in that part of the data set with the most growth will
produce control intervals with only a small amount of unneeded free space.

Chapter 6. Optimizing VSAM Performance 71

• Mass insertion. If you are inserting a group of sequential records, you can
take full advantage of mass insertion by using the ALTER command to
change free space to (0 0) after the data set is loaded. For more informa­
tion on mass insertion, refer to "Inserting a Record" on page 46 .

• Additions to a specific part of the data set. If new records will be added to
only a specific part of the data set, load those parts where additions will not
occur with a free space of (0 0). Then, alter the specification to (n n) and
load those parts of the data set that will receive additions. The example in
"Altering the Free Space Specification When Loading a Data Set" demon­
strates this.

Altering the Free Space Specification When Loading a Data Set
The following example uses the ALTER command to change the FREESPACE
specification when loading a data set.

Assume that a large key-sequenced data set is to contain records with keys
from 1 through 300000. It is expected to have no inserts in key range 1 through
100000, some inserts in key range 100001 through 200000, and heavy inserts in
key range 200001 through 300000.

An ideal data structure at loading time would be:

Key Range
1 through 100000
100001 through 200000
200001 through 300000

Free Space
none
5% control area
5% control interval and 20% control area

This structure can be built as follows:

1. DEFINE CLUSTER with FREESPACE (00), or without any FREES PACE param­
eter.

2. Load records 1 through 100000 with REPRO or any user program using a
sequential insertion technique.

3. CLOSE the data set.

4. Change the FREES PACE value of the cluster with the access method ser­
vices command ALTER clustername FREESPACE (0 5).

5. Load records 100001 through 200000 with REPRO or any user program using
a sequential insertion technique.

6. CLOSE the data set.

7. Change the FREES PACE value of the cluster with the access method ser­
vices command ALTER clustername FREES PACE (5 20).

8. Load records 200001 through 300000 with REPRO or any user program using
a sequential insertion technique.

This procedure has the following advantages:

• It prevents wasting space. For example, if FREES PACE (0 10) were defined
for the whole data set, the free space in the first key range would all be
wasted.

72 MVS/XA VSAM Administration Guide

Key Ranges

• It minimizes control interval and control area splits. If FREES PACE (0 0)
were defined for the whole data set, there would be a very large number of
control interval and control area splits for the first inserts.

With a key-sequenced data set, you may specify specific key ranges to be
stored on specific volumes. For example, if you have three volumes, you might
assign records with keys A through E to the first volume, F through M to the
second, and N through Z to the third. Key range data sets cannot be defined as
reusable.

All the volumes specified for the cluster's data component or for the index com­
ponent must be of the same device type. However, the data component and the
index component can be on different device types. When you define a key
range data set, all volumes to contain key ranges must be mounted.

When you define a key range data set, the primary space allocation is acquired
from each key range. Secondary allocations are supplied as the data set is
extended within a particular key range.

Using key ranges can optimize performance in the following ways:

• To access records in a specific key range, you only have to mount the
volume containing that key range, if you assign data to various volumes
according to ranges of key values.

• Having a primary space allocation for each key range in a data set provides
an implied amount of free space in each portion of the data set.

Examples of How Key Ranges Are Assigned

Example 1

The following examples demonstrate how key ranges are assigned for VSAM
data sets defined in integrated catalog facility catalogs.

This example illustrates how space is allocated for a key range data set with
three key ranges on three volumes.

DEFINE CLUSTER ••• VOLUf4ES (Vl,V2,V3)

A-F

A-F
A-F

KEYRANGES ((A,F) (G,P) (Q,Z))
CYL (11:18,59)

G-P

G-P

G-P

G-P

Q-Z

Q-Z

Chapter 6. Optimizing VSAM Performance 73

Example 2

Example 3

This example illustrates how space is allocated for a key range data set with
two key ranges on three volumes. When there are more volumes than there
are key ranges, the excess volumes are marked as candidates and are not
required to be mounted. The candidate volumes are used for overnow records
from any key range.

DEFINE CLUSTER .•• VOLUMES (Vl,V2,V3)
KEYRANGES ((A,F) (G,Z»
CYL (100,50)

A-F B-Z
A-F B-Z
A-F B-Z
A-F G-Z
A-F B-Z
A-F B-Z
A-F B-Z

A-F

G-Z
A-F
G-Z

This example illustrates how space is allocated for a key range data set with
five key ranges on three volumes.

DEFINE CLUSTER ... VOLUMES (Vl,V2,V3)
KEYRANGES ((A,D) (E,H) (I,f·l) (N,R) (S,Z»
CYL (100,50)

E-H I-M

E-H
E-H N-R

6-Z

6-Z

I-M

74 MVS/XA VSAM Administration Guide

Example 4
This example illustrates how space is allocated for a key range data set with
four key ranges on two volumes when each volume is specified twice. When a
volume serial number is duplicated in the VOLUMES parameter, more than one
key range is allocated space on the volume.

DEFINE CLUSTER ... VOLUMES (Vl,V2,Vl,V2)

A-D

I-M

I-M
A-D

KEYRANGES ((A,O) (E,H) (I,t·l) (N,Z))
CYL (108,58)

E-.H

N-Z

E-H
N-Z

Naming Key Ranges
If you name the data component of a cluster, a generated name is used for
each additional key range on a volume. If you do not name the data compo­
nent, then all names on all volumes are generated. The names of user-named
data components appear once on each volume in the Format-1 DSCB. Gener­
ated names are used on all volumes for the Format-1 DSCBs, but each name
has a unique key range qualifier so that you can correlate the Format-1 DSCB
and the key range.

Format-1 DSCB names are used for data sets defined in an integrated catalog
facility catalog or defined with the UNIQUE attribute in a VSAM catalog.

For a multivolume key range cluster, the name specified on the data component
is used for the first key range on each volume. If more than one key range
resides on a volume, a special key range qualifier is appended to a generated
name.

A key range qualifier is a unique qualifier appended to the generated name to
form a unique name for a particular key range. A key range qualifier is
4-characters, starting with an alphabetic" A" followed by three digits that start
at 001. The first generated key range name would therefore be: CLUSTER/AIX
high-level qualifier.Taaaaaaa.VDDyyddd.Tbbbbbbb.A001.

If the data component name you specify is longer than 39 characters, the first
37 characters are joined to the last 2 characters, and the 4-character key range
qualifier is appended.

If a duplicate generated name is found on a volume, the key range qualifier
starts with the letter "B" or "C" and so on, until a unique name is found.

Chapter 6. Optimizing VSAM Performance 75

Determining 110 Buffer Space for Nonshared Resources
1/0 buffers are used by VSAM to read and write control intervals from DASD to
virtual storage. VSAM requires a minimum of three buffers, two for data control
intervals and one for an index control interval. (One of the data buffers is used
only for formatting control areas and splitting control intervals and control
areas.) The VSAM default is enough space for these three buffers.

To increase performance, there are parameters to override the VSAM default
values. There are three places where these parameters may be specified:

• BUFFERSPACE, specified in the access method services DEFINE command.
This is the least amount of storage ever provided for ilo buffers.

• BUFSP, BUFNI, and BUFND, specified in the VSAM ACB macro instruction,
is the maximum amount of storage to be used for a data set's I/O buffers. If
the value specified in the ACB macro is greater than the value specified in
DEFINE, the ACB value overrides the DEFINE value.

• BUFSP, BUFNI, and BUFND, specified in the JCL DD AMP parameter, is the
maximum amount of storage to be used for a data set's 1/0 buffers. A
value specified in JCL overrides DEFINE and ACB values if it is greater than
the value specifie~ in DEFINE.

VSAM must always have sufficient space available to process the data set as
directed by the specified processing options.

Obtaining Buffers above 16 Megabytes
To increase the storage area available below 16 megabytes for your problem
program, you can request VSAM data buffers and VSAM control blocks from
virtual storage above 16 megabytes. To do this, specify the RMODE31 param­
eter on the ACB macro. See Appendix A, "Using 31-Sit Support" on page 147
for more information.

Buffer Allocation for Concurrent Data Set Positioning
To calculate the number of buffers you need, you must determine th-e number of
strings you will use. A string is a request to a VSAM data set requiring data set
positioning. If different concurrent accesses to the same data set are neces­
sary, multiple strings are used. If multiple strings are used, each string
requires exclusive control of an index 1/0 buffer. Therefore, the value specified
for the STRNO parameter (in the ACS or GENCS macro, or AMP parameter) is
the minimum number of index 1/0 buffers required when requests that require
concurrent pOSitioning are issued.

Buffers for Direct Access
Generally, you can increase performance for direct processing by increasing
the number of index buffers, because direct processing always requires a top­
down search through the index. A large number of data buffers does not
increase performance, because only one data buffer is used for each access.

76 MVS/XA VSAMAdministration Guide

Allocating Data Buffers for Direct Access
Because VSAM does not read ahead buffers for direct processing, only the
minimum number of data buffers are needed. Only one data buffer is used for
each access. If you specify more data buffers than the minimum, this has little
beneficial effect.

When processing a data set directly, VSAM reads only one data control interval
at a time. For output processing (PUT for update), VSAM immediately writes
the updated control interval, if OPTCD = NSP is not specified in the RPL macro.

Allocating Index Buffers for Direct Access
If the number of 1/0 buffers provided for index records is greater than the
number of requests that require concurrent positioning (STRNO), one buffer is
used for the highest-level index record. Any additional buffers are used, as
required, for other index set index records. With direct access, you should
provide at least enough index buffers to be equal to the value of the STRNO
parameter of the ACB, plus one if you want VSAM to keep the highest-level
index record always resident.

Unused index buffers do not degrade performance, so you should always
specify an adequate number. For optimum performance, the number of index
buffers should at least equal the number of high-level index set control intervals
plus one per string to contain the entire high-level index set and one sequence
set control interval per string in virtual storage. Note that additional index
buffers will not be used for more than one sequence set buffer per string unless
shared resource pools are used. For large data sets, specify the number of
index buffers equal to the number of index levels.

VSAM reads index buffers one at a time, and if you are using shared resources,
you can keep your entire index set in storage. Index buffers are loaded when
the index is referred to. When many index buffers are provided, index buffers
are not reused until a requested index control interval is not in storage.

VSAM keeps as many index set records as the buffer space will allow in virtual
storage. Ideally, the index would be small enough to allow the entire index set
to remain in virtual storage. Because the characteristics of the data set may
not allow a small index, you should be aware of how index 1/0 buffers are used
so you can determine how many to provide.

The following example, illustrated in Figure 22, demonstrates how buffers are
scheduled for direct access.

Chapter 6. Optimizing VSAM Performance 77

Assume the following:

Direct Get
from CA

CAl

"

• Two strings

• Three-level index structure as shown

• Three data buffers (one for each string, and one for splits)

• Four index buffers (one for highest level of index, one for second level, and
one for each string)

Index Buffers Data Buffers

Pool
String 1 String 2

String 1 String 2 SS S5

IS1 IS2 s..C;2 CA2-CI _0 .. ________
----~.- - ----- . --- ...

CA3 SS3 CA,-CI
------- ----- --- .. ---~

CAS-1m CI 1S3 SS6 CAS-1:..1 CI ,--_._._--- ----- ---- --.",.------
CAS-1mCI SS6 CAS-lsI CI

IS1

-------1--------- -------.--- ---------- -----.-.- .. -... - --.. ----.
182 153 IS~ . . . ,

.' " '. /i '.

" " \ ". "

-' . I

"
/

5S1 SS2

I I
CM C!l2

IS - Ince>. Set
55 - SeQuerce Set
CA - Control Area

"~" ~ j ,
':',

S53

I ...
CA3

/ ,
/ ,

Sf).! SSS ssa

I I I
I

CM CAS CAS

" ." . , ',,-,

,
"- /

SS7 ssa SS9 5510 SS11 S512

I
I

I I I I ! ,
CA7 Cf,8 0.9 CA10 C/\11 CA12

Figure 22. Scheduling Buffers for Direct Access

Here's what happens:

• Request 1: A control interval from CA2 is requested by string 1,

The highest level index set, 181, is read into an index buffer, 181
remains in this buffer for all requests.

181 points to 182, which is read into a second index buffer.

182 points to the sequence set, 882, which is read into an index buffer
for string 1.

8S2 points to a control interval in CA2. This control interval is read into
a data buffer for string 1.

78 MVS/XA VSAM Administration Guide

• Request 2: A control interval from CA3 is requested by string 2.

IS1 and IS2 remain in their respective buffers.

SS3 is read into an index buffer for string 2.

SS3 points to a control interval in CA3. This control interval is read into
a data buffer for string 2 .

• Request 3: The first control interval in CAB is requested by string 1.

IS1 remains in its buffer.

Since IS1 now points to IS3, IS3 is read into the second index buffer,
replacing IS2.

SSB is read into an index buffer for string 1.

SS6 points to the first control interval in CAB. This control interval is
read into a data buffer for string 1.

• Request 4: The first control interval in CA6 is now requested by string 2.

IS1 and IS3 remain in their respective buffers.

SS6 is read into an index buffer for string 2.

SS6 points to the first control interval in CAB. This control interval is
read into a data buffer for string 2.

If the string 1 request for this control interval was a GET for update, the
control interval would be held in exclusive control, and string 2 would
not be able to access it.

Suggested number of buffers for direct processing:

• Index Buffers

Minimum = STRNO
Maximum = Number of Index Set Records + STRNO

• Data Buffers

STRNO + 1

Buffers for Sequential Access
When you are accessing data sequentially, you can increase performance by
increasing the number of data buffers. When there are multiple data buffers,
VSAM uses a read-ahead function to read the next data control intervals into
buffers before they are needed. Having only one index 1/0 buffer doesn't hinder
performance, because VSAM gets to the next control interval by using the hori­
zontal pointers in sequence set records rather than the vertical pointers in the
index set. Extra index buffers have little effect during sequential processing.

Chapter 6. Optimizing VSAM Performance 79

Data Buffers for Sequential Access Using Nonshared Resources
For straight sequential processing environments, start with four data buffers per
string. One buffer is used only for formatting control areas and splitting control
intervals and control areas. The other three are used to support the read­
ahead function, so that sequential control intervals are placed in buffers before
any records from the control interval are requested: By specifying a sufficient
number of data buffers, you can access the same amount of data per 1/0 opera­
tion with small data control intervals as with large data control intervals.

When SHAREOPTIONS 4 is specified for the data set, the read-ahead function
can be ineffective because the buffers are refreshed when each control interval
is read. Therefore, for SHAREOPTIONS 4, keeping data buffers at a minimum
can actually improve performance.

If you experience a performance problem waiting for input from the device, you
should specify more data buffers to improve your job's run time. This allows
you to do more read-ahead processing. An excessive number of buffers,
however, can cause performance problems, because of excessive paging.

For mixed processing situations (sequential and direct), sta'rt with two data
buffers per string and increase BUFND to three per string, if paging is not a
problem.

When processing the data set sequentially, VSAM reads ahead as buffers
become available. For output processing (PUT for update), VSAM does not
immediately write the updated control interval from the buffer unless a control
interval split is required. The POINT macro does not cause read-ahead proc­
essing unless RPL OPTCD=SEQ is specified; its purpose is to position the data
set for subsequent sequential retrieval.

Suggested number of buffers for sequential access:

• Index buffers = STRNO
• Data buffers = 3 + STRNO (minimum)

Buffer Allocation for a Path
Processing data sets using a path can increase the number of buffers that need
to be allocated, since buffers are needed for the alternate index, the base
cluster, and any alternate indexes in the upgrade set.

The BUFSP, BUFND, BUFNI, and STRNO parameters apply only to the path's
alternate index when the base cluster is opened for processing with its alter­
nate index. The minimum number of buffers are allocated to the base cluster
unless the cluster's BUFFERSPACE value (specified in the DEFINE command) or
BSTRNO value (specified in the ACB macro) allows for more buffers, VSAM
assumes direct processing and extra buffers are allocated between data and
index components accordingly.

Two data buffers and one index buffer are always allocated to each alternate
index in the upgrade set. If the path's alternate index is a member of the
upgrade set, the minimum buffer increase for each allocation is one for data
buffers and one for index buffers. Buffers are allocated to the alternate index

80 MVS/XA VSAM Administration Guide

Acquiring Buffers

Index Options

as though it were a key-sequenced data set. When a path is opened for output
and the path alternate index is in the upgrade set, you can specify ACB
MACRF = DSN and the path alternate index shares buffers with the upgrade
alternate index.

Data and index buffers are acquired and allocated only when the data set is
opened. VSAM dynamically allocates buffers based on parameters in effect
when the program opens the data set. Parameters that influence the buffer
allocation are in the program's ACB: MACRF=(lNIOUT, SEQISKP, DIR),
STRNO = n, BUFSP = n, BUFND = n, and BUFNI = n. Other parameters that influ­
ence buffer allocation are in the DD statement's AMP specification for BUFSP,
BUFND, and BUFNI, and the BUFFERS PACE value in the data set's catalog
record.

If you open a data set whose ACB includes MACRF = (SEQ,DIR), buffers are
allocated according to the rules for sequential processing. If the RPL is modi­
fied later in the program, the buffers allocated when the data set was opened
do not change.

Data and index buffer allocation (BUFND and BUFNI) can be specified only by
the user with access to modify the ACB parameters, or via the AMP parameter
of the DD statement. Any program can be assigned additional buffer space by
modifying the data set's BUFFERS PACE value, or by specifying a larger BUFSP
value with the AMP parameter in the data set's DD statement.

When a buffer's contents are written, the buffer's space is not released. The
control interval remains in storage until overwritten with a new control interval;
if your program refers to that control interval, VSAM does not have to reread it.
VSAM checks to see if the desired control interval is in storage, when your
program processes records in a limited key range, you might increase
throughput by providing extra data buffers. Buffer space is released when the
data set is closed.

Note: More buffers (either data or index) than necessary might cause exces­
sive paging or excessive internal processing. There is an optimum point at
which more buffers will not help. You should attempt to have data available
just before it is to be used. If data is read into buffers too far ahead of its use
in the program, it may be paged out.

Five options influence performance through the use of the index of a key­
sequenced data set. Each option improves performance, but some require that
you provide additional virtual storage or auxiliary storage space. The options
are:

• Specifying enough virtual storage to contain all index-set records (if you are
using shared resources).

• Ensuring that the index control interval is large enough to contain the key of
each control interval in the control area.

• Placing the index and the data set on separate volumes.

• Replicating index records (REPL option).

Chapter 6. Optimizing VSAM Performance 81

• Embedding sequence-set records adjacent to control areas (IMBED option).

Index Set Records in Virtual Storage
To retrieve a record from a key-sequenced data set or store a record using
Reyed access, VSAM needs to examine the index of that data set. Before your
processing program begins to process the data set, it must specify the amount
of virtual storage it is providing for VSAM to buffer index records. The
minimum is enough space for one I/O buffer for index records, but a serious
performance problem would occur if an index record were continually deleted
from virtual storage to make room for another and then retrieved again later
when it is required. Ample buffer space for index records can improve perform­
ance.

You ensure virtual storage for index-set records by specifying enough virtual
storage for index lID buffers when you begin to process a key-sequenced data
set. VSAM keeps as many index-set records in virtual storage as possible.
Whenever an index record must be retrieved to locate a data record, VSAM
makes room for it by deleting the index record that VSAM judges to be least
useful under the prevailing circumstances. It is generally the index record that
belongs to the lowest index level or that has been used the least. VSAM does
not keep more than one sequence set index record per string unless shared
resource pools are used.

Avoiding Control Area Splits
The second option you might consider is to ensure that the index-set control
interval is large enough to contain the key of each control interval in the control
area. This reduces the number of control area splits. This option also keeps to
a minimum the number of index levels required, thereby reducing search time
and improving performance. However, this option may increase rotational
delay and data transfer time for the index-set control intervals. It also
increases virtual storage requirements for index records.

Index and Data on Separate Volumes
When a key-sequenced data set is defined, the entire index or the high-level
index set alone can be placed on a volume separate from the data. either on
the same or on a different type of device.

Using different volumes enables VSAM to gain access to an index and to data
at the same time. Additionally, the smaller amount of space required for an
index makes it economical to use a faster storage device for it.

Replicating Index Records
You can specify that each index record be replicated (written on a track of a
direct access volume) as many times as it will fit. Replication reduces rota­
tional delay in retrieving the index record. Average rotational delay is half the
time it takes for the volume to complete one revolution. Replication of a record
reduces this time. For example, if 10 copies of an index record fit on a track,
average rotational delay is only 1120 of the time it takes for the volume to com­
plete one revolution.

Because there are usually few control intervals in the index set, the cost in
terms of direct access storage space is small. If the entire index set is not
being held in storage and there is significant random processing, then repli-

82 MVS/XA VSAM Administration Guide

cation is a good choice. If not, replication does very little. Because replication
requires little direct access storage, and it is an attribute that cannot be altered,
it may be desirable to choose this option.

Sequence-Set Records Adjacent to Control Areas
When the data set is defined, you can specify that the sequence-set index
record for each control area is to be embedded on the first track of the control
area. This allows you to separate the sequence set from the index set and
place them on separate devices. You can put the index set on a faster device
to retrieve higher levels of the index. Sequence set records can be retrieved
almost as fast because there is little rotational delay. (When you choose the
IMBED option, sequence set records are replicated regardless of whether you
also chose the REPL option.)

With the IMBED option, one track of each control area is used for sequence set
records. In some situations, this may be too much space for index in relation to
the data. For example, the space required for the sequence-set is 1/12 of the
data space on a 3340, but only 1/15 of the data space on a 3380. IMBED must
be specified explicitly to get the performance benefits of a replicated,
embedded sequence-set.

Staging VSAM Data Sets on a Key or Key Range Basis for MSS
Certain Mass Storage System (MSS) applications with very large data bases
require a capability for selective staging, since staging or binding of all o.f the
data at OPEN time is not practical. Cylinder fault mode is also impractical since
retrieval of data from large data sets characteristically requires a large number
of queries. What you want is a mechanism to stage necessary data from mUl­
tiple adjacent or nonadjacent cylinders with a single MSS cartridge load opera­
tion. This will improve performance by avoiding an inordinate amount of time
spent in loading and unloading MSS cartridges for each cylinder required by
the processing program.

VSAM provides a stage-by-key range function to support staging in this type of
MSS environment. This function involves the following two interfaces:

• Prestaging of discretely identified records using the CNVTAD (convert
address) and MNTACQ (mount acquire) macros.

• Prestaging of a specified range of records using the ACQRANGE (acquire
range) macro.

The use of the stage-by-key range function enables you to prestage your data
and thus to optimize your use of MSS in environments with large data bases.
With prestaging, data extents can be acquired in advance of their use, thus
reducing the number of cylinder faults incurred during processing.

Prestaging Discretely Identified Records
The CNVTAD/MNTACQ interface is typically used when your MSS application
needs to refer to a small, noncontiguous subset of data contained within a large
data set. The following three steps describe the processing procedure for a
general application using the CNVTAD/MNTACQ interface:

Chapter 6. Optimizing VSAM P~rformance 83

STEP 1
Your application program queues a number of transactions for data stored
on the MSS. On the basis of either time or the number of elements on the
queue, STEP 2 is initiated.

STEP 2
The transactions for a given data set are processed to extract the keys to
be used to access the data set. You supply these keys as input to the
CNVTAD macro, which deter"mines the volume and RBA on which each
record resides in MSS. For a key-sequenced data set, you provide the full
key of the record; for an entry-sequenced data set, you provide the RBA of
the record: and for a relative record data set, you provide the relative
record number of the record. The entries for a given volume may then be
used by your application as input to the MNT ACQ macro. MNT ACQ causes
the volume to be mounted (if it is not already mounted) and stages the cyl­
inders corresponding to the RBAs provided. This results in acquiring the
data from the corresponding MSS cartridges with a minimum number of
cartridge loads.

STEP 3
Your application program can now process transactions for a given data set
and volume, and, generally, will not encounter cylinder faults for the data
acquired in STEP 2.

Prestaging of a Specified Range of Records

Non-MSS Support

The ACQRANGE interface gives you the capability of prestaging a continuous
subset of a data set rather than individual cylinders or the entire data set. You
typically use ACQRANGE when you are processing within a range of keys and
when you know the volume serial number of the virtual volume on which your
range of keys resides. Input to ACQRANGE is a starting and ending pair of
arguments (keys, RBAs, or relative record numbers) which delineate the contin­
uous subset of data you want to stage. The data to be staged may cross
volume boundaries, but the volumes must be mounted (via JCL or dynamic allo­
cation) prior to execution of ACQRANGE. If not, your request is rejected.
Mounting must be in parallel, which means you must have at least as many
units as virtual volumes. Defining key ranges for key-sequenced data sets
helps minimize the subset of volumes to be mounted.

As an aid to MSS migration, installation, and testing, VSAM allows you to issue
CNVTAD, MNTACQ, and ACQRANGE macros against non-MSS data sets" Such
use against DASD that is not virtual results in register 15 being set to zero;
however, the RPLERRCD field in the RPL will- be nonzero for ACQRANGE and
MNTACQ. For reason code information, see VSAM Administration: Macro
Instruction Reference.

Restrictions and Limitations
The MSS function of staging VSAM data sets on a key or key range basis has
the following restrictions and limitations:

• For keyed processing, key equal and key equal or greater than are sup­
ported, but the generic key facility is not supported. If you want to use
generic keys, you must pad your generic key to the full key length.

• The RPL option, OPTCD=WAITX, is not supported.

84 MVS/XA VSAM Administration Guide

• Chained RPLs are not supported.

• The data set must be opened in NCI (normal control interval access) mode.

• User buffers are not supported for LSR and GSR.

• You cannot use these macros against a data set in load mode.

• When used in path processing, alternate indexes are not supported.
However, alternate indexes are supported when opened as end-use VSAM
objects.

• You cannot use these macros against a key-sequenced data set with an
embedded single-level index.

• Data staged by MNTACQ and ACQRANGE is not "bound." That is, it may be
destaged prior to use of the data because of the requirements for MSS facil­
ities, either by your own program or by another MSS user program.

• Prestaging data should be avoided if a data set is being shared by another
task or region. Because the index is used well in advance of the actual
reference to the data, concurrent insertions by other users can render the
target addresses derived by ACQRANGE or CNVT AD obsolete and erro­
neous before or after data records have been prestaged. Prestaging, as
described in this chapter, has no facility for detecting or enforcing various
sharing situations. If your installation allows prestaging concurrent with
data set sharing, you can expect unpredictable errors and inaccurate
staging.

• MNTACQ and ACQRANGE macros obtain virtual storage dynamically via the
GETMAIN macro. If the request for storage fails, a logical error code is set
in the RPL.

Using Alternate Indexes with MSS Macros
Although MSS macros do not specifically support alternate indexes and paths,
support for alternate indexes can be gained. The alternate index is a key­
sequenced data set and can be processed as such. CNVTAD, MNTACQ, and
ACQRANGE macros can be used to stage the data portion of the alternate
index. After you have staged the alternate index, the RBA and key pointers can
be extracted from the data component of the alternate index. These pointers
can be used as input to CNVTAD, MNTACQ, and ACQRANGE for the base data.

Chapter 6. Optimizing VSAM Performance 85

Chapter 7. Processing Control Intervals

Product-Sensitive Programming Interface

This chapter is intended to help you process control intervals. It contains
product-sensitive programming interfaces provided by MVS/XA Data Facility
Product. Installation exits and other product-sensitive interfaces are provided
to allow your installation to perform tasks such as product tailoring, monitoring,
modification, or diagnosis. They are dependent on detailed design or imple­
mentation of the product. Such interfaces should be used only for these spe­
cialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces
may need to be changed in order to run with new product releases or versions,
or as a result of service.

Control interval access gives you access to the contents of a control interval;
keyed access and addressed access give you access to individual data records.

With control interval access, you have the option of letting VSAM manage 1/0
buffers or managing them yourself (user buffering). With keyed and addressed
access, VSAM always manages 1/0 buffers. If you choose user buffering. you
have the further option of using improved control interval access. which pro­
vides faster processing than normal control interval access. With user buf­
fering, only control interval processing is allowed.

Control interval access allows you greater Oexibility in processing entry­
sequenced data sets. The definition of an entry-sequenced data set includes
the unchangeability of RBAs and the permanence of records. With control
interval access. you can change the RBAs of records in a control interval and
delete records by modifying the RDFs and the CIDF.

When using control interval processing, you are responsible for maintaining
alternate indexes. If you have specified keyed or addressed access (ACB
MACRF = {KEYIADR} •...)· and control interval access, then those requests for
keyed or addressed access (RPL OPTCD = { KEYIADR}, ...) cause VSAM to
upgrade the alternate indexes. Those requests specifying control interval
acces's will not upgrade the alternate indexes. You are responsible for
upgrading them.

When you process control intervals. you are responsible for how your proc­
essing affects indexes. RDFs. and CIDFs. Bypassing use of the control informa­
tion in the CIDF and RDFs may make the control interval unusable for record
level processing. For instance. key-sequenced data sets depend on the accu­
racy of their indexes and the RDFs and the CIDF in each control interval. You
should not update key-sequenced data sets with control interval access.
Upgrading an alternate index is described in .. Alternate Index Maintenance" on
page 35.

Chapter 7. Processing Control Intervals 87

Gaining Access to a Control Interval
Control interval access is specified entirely by the ACB MACRF parameter and
the RPL (or GENCB) OPTCD parameter. To prepare for opening a data set for
control interval access with VSAM managing 110 buffers, specify:

ACB MACRF-(CNV •...), ...

With NUB (no user buffering) and NCI (normal control interval access), you may
specify, in the MACRF parameter, that the data set is to be opened for keyed
and addressed access as well as for control interval access. For example,
MACRF = (CNV, KEY, SKP, DIR. SEQ, NUB, NCI. OUT) is a valid combination of
subparameters.

You define a particular request for control interval access by coding:

RPL OPTCD-CCNV •...), ...

In general, control interval access with no user buffering has the same free­
doms and limitations as keyed and addressed access have. Control interval
access may be synchronous or asynchronous; may have the contents of a
control interval moved to your work area (OPTCD = MVE) or left in VSAM's 110
buffer (OPTCD = LOC), and may ~e defined by a chain of request parameter
lists (except with OPTCD = LOC specified).

With the exception of ERASE, all the request macros (GET, PUT, POINT, CHECK,
and ENDREQ) can be used for normal control interval access. To update the
contents of a control interval, you must (with no user buffering) previously have
retrieved the contents for update. You cannot alter the contents of a control
interval with OPTCD = LOC specified.

Both direct and sequential access may be used with control interval access, but
skip sequential access may not. That is, you may specify OPTCD = (CNV,DIR)
or (CNV,SEQ), but not OPTCD = (CNV,SKP).

With sequential access, VSAM takes an EODAD exit when you try to retrieve the
control interval whose CIDF is filled with O's or, if there is no such control
interval, when you try to retrieve a control interval beyond the last one. A
control interval with such a CIDF contains no data or unused space, and is used
to represent the software end-of-file. However, VSAM control interval proc­
essing does not prevent you from using a direct GET or a POINT and a s.equen­
tial GET to retrieve the software end-of-file. The search argument for a direct
request with control interval access is ·the RBA of the control interval whose
contents are desired.

The RPL (or GENCB) parameters AREA and AREALEN have the same use for
control interval access in relation to OPTCD = MVE or LOC as they do for keyed
and addressed access. With OPTCD = MVE, AREA gives the address of the
area into which VSAM moves the contents of a control interval; with
OPTCD = LOC, AREA gives the address of the area into which VSAM puts the
address of the 110 buffer containing the contents of the control interval.

You may load an entry-sequenced data set with control interval access. If you
open an empty entry-sequenced data set, VSAM allows you to use only sequen­
tial storage. That is, you may issue only PUTs, with OPTCD = (CNV,SEQ,NUP).

88 MVS/XA VSAM Administration Guide

PUT with OPTCD=NUP stores information in the next available control interval
(at the end of the data set).

You may not load or extend a data set with improved control interval access.
VSAM also prohibits you from extending a relative record data set by way of
normal control interval access.

You can update the contents of a control interval in one of two ways:

• Retrieve the contents with OPTCD = UPD artd store them back. In this case,
the RBA of the control interval is specified during the GET for the control
interval.

• Without retrieving the contents, store new contents in the control interval
with OPTCD = UPD. (This is only possible if you specify UBF for user buf­
fering.) In this case, because no GET (or a GET with OPTCD = NUP) pre­
cedes the PUT, you have to specify the RBA of the control interval as the
argument addressed by the RPL.

Structure of Control Information
With keyed access and addressed access, VSAM maintains the control informa­
tion in a control interval. With control interval access, you are responsible for
that information.

Note: A linear data set has no control information imbedded in the control
interval. All of the bytes in the control interval are data bytes; there are no
CIDFs or RDFs.

Figure 23 shows the relative positions of data, unused space, and control infor­
mation in a control interval. For more information on the structure of a control
interval, see "Control Intervals" on page 3.

Recorda,
Record Slota. or
Record Segment

Data

Unused &pace ROF's CIOF

Controllnfonnatlon

Figure 23. General Format of a Control lriterval

Control information consists of a CIDF (control interval definition field) and, for a
control interval containing at least one record, record slot, or record segment,
one or more RDFs (record definition fields). The CIDF and RDFs are ordered
from right to left.

Chapter 7. Processing Control Intervals 89

CIDF-Control Interval Definition Field
The CIDF is a 4-byte field that contains two 2-byte binary numbers:

Offset Length

0(0) 2

2(2) 2

2(2) 1

Description

The displacement from the beginning of the control
interval to the beginning of the unused space, or, if
there is no unused space, to the beginning of the
control information. This number is equal to the
length of the data (records, record slots, or record
segment). In a control interval without data, the
number is o.
The length of the unused space. This number is equal
to the length of the control interval, minus the length
of the control information, minus the 2-byte value at
CIDF +0. In a control interval without data (records,
record slots, or record segment), the number is the
length of the control interval, minus 4 (the length of
the CIDF; there are no RDFs). In a control interval
without unused space, the number is O.
Busy flag; set when the control interval is being split;
reset when the split is complete.

In an entry-sequenced data set, when there are unused control intervals beyond
the last one that contains data, the first of the unused control intervals contains
a CIDF filled with O's. In a key-sequenced or relative record data set or a key­
range portion of a key-sequenced data set, the first control interval in the first
unused control area (if any) contains a CIDF filled with O's. This represents the
software end-of-file.

RDF-Record Definition Field
The RBAs of records or relative record numbers of slots in a control interval
ascend from left to right. RDFs from right to left describe these records or slots
or a segment of a spanned record. RDFs describe records one way for key­
sequenced and entry-sequenced data sets and another way for relative record
data sets.

In a key-sequenced or entry-sequenced data set, records may vary in length
and may span control intervals. This affects the contents of the RDF.

• A nons panned record with no other records of the same length next to it is
described by a single RDF that gives the length of the record .

• Two or more consecutive nonspanned records of the same length are
described by a pair of RDFs. The RDF on the right gives the length of each
record, and the RDF on the left gives the number of consecutive records of
the same length.

• Each segment of a spanned record (one segment per control interval) is
described by a pair of RDFs. The RDF on the right gives the length of the
segment, and the RDF on the left gives its update number. (The update
number in each segment is incremented by one each time a spanned
record is updated. A difference among update numbers within a spanned
record indicates a possible error in the record.)

90 MVS/XA VSAM Administration Guide

In a relative record data set, records do not vary in length or span control inter­
vals. Each record slot is described by a single RDF that gives its length and
indicates whether it contains a record.

An RDF is a 3-byte field that contains a 1-byte control field and a 2-byte binary
number:

Offset

0(0)

1(1)

Length and
Bit Pattern

1
x xx
.x

.. xx

.... x ...

..... x ..

2

Description

Control Field
Reserved
Indicates whether there is (1) or is not (0) a
paired RDF to the left of this RDF.
Indicates whether the record spans control inter­
vals:

00 No.
01 Yes; this rs the first segment.
10 Yes; this is the last segment.
11 Yes; this is an intermediate segment.
Indicates what the 2-byte binary number gives:

o The length of the record, segment, or slot
described by this RDF.

1 The number of consecutive nonspanned
records of the same length, or the update
number of the segment of a spanned
record.

For a relative record data set, indicates whether
the slot described by this RDF does (0) or does
not (1) contain a record.
Binary number:

When bit 4 of byte 0 is 0, gives the length of the
record, segment, or slot described by this RDF.

When bit 4 of byte 0 is 1 and bits 2 and 3 of byte
o are 0, gives the number of consecutive records
of the same length.

When bit 4 of byte 0 is 1 and bits 2 and 3 of byte
o are not 0, gives the update number of the
segment described by this RDF.

Ch<lptcr 7. Processing Control Intervals 91

Control Field Values for Nonspanned Key-Sequenced and Entry-Sequenced Data Sets
In a key-sequenced or entry-sequenced data set with nonspanned records, the
possible hexadecimal values in the control field of an RDF are:

Length a a

Left
RDF

X'08'

Right
RDF

X'OO'

X'40'

Description

This RDF gives the length of a single non­
spanned record.
The right RDF gives the length of each of two or
more consecutive nonspanned records of the
same length. The left RDF gives the number of
consecutive nonspanned records of the same
length.

Figure 24 shows the contents of the CIDF and RDFs of a 512-byte control
interval containing nonspanned records of different lengths.

CI Length - 512 Bytes

a 3a 2& 4BIHJ.I 12 4

R4

.. -

... --_ -....... -..................... -_.'

RDF4 RDF3 RDF2 RDF1 CIDF

X'OO' I 2& x'oo., 38 X'OB' -, 3 X'400' , a Sa I :0-
RS R40 R1 through R3

a - Unit of Length

Figure 24. Format of Control Information for Nonspanned Records

The four RDFs and the CIDF comprise 16 bytes of control information as follows:

• RDF4 describes the fifth record.

• RDF3 describes the fourth record.

• RDF2 and RDF1 describe the first three records.

• The first 2-byte field in the CIDF gives the total length of the five
records-8a, which is the displacement from the beginning of the control
interval to the free space.

• The second 2-byte field gives the length of the free space, which is the
length of the control interval minus the total length of the records and the
control information-512 minus 8a minus 16, or 496 minus 8a.

92 MVS/XA VSAM Administration Guide

Control Field Values for Spanned Key-Sequenced and Entry-Sequenced Data Sets

Length

,

I

A control interval that contains the record segment of a spanned record con­
tains no other data; it always has two RDFs. The possible hexadecimal values
in their control fields are:

Left
RDF

X ' 18 1

X' 28 1

X ' 38 1

Right
RDF

X' 50 '

X'60 '

X ' 70 '

Description

The right RDF gives the length of the first segment
of a spanned record. The left RDF gives the
update number of the segment.
The right RDF gives the length of the last segment
of a spanned record. The left RDF gives the
update number of the segment.
The right RDF gives the length of an intermediate
segment of a spanned record. The left RDF gives
the update number of the segment.

Figure 25 shows contents of the CIDF and RDFs for a spanned record with a
length of 1306 bytes. There are three 512-byte control intervals that contain the
segments of the record. The number "n" in RDF2 is the update number. Only
the co~trol interval that contains the last segment of a spanned record can
have free space. Each of the other segments uses all but the last 10 bytes of a
control interval.

CI Length - 512 Byte9

RDF2 RDF1 CIDF

Segment 1 X'18" n X'50' , 502 502 , 0

502 3 3 4

RDF2 RDF1 CIDF

Segmant2 X'38·1 n X'70" 502 502 I 0

502 3 3 4

RDF2 RDF1 CIDF

I Segment 3 I Free Space X'28" n X'BO' I 302 302 I 200

302 200 3 3 4

n - Update Number

Figure 25. Format of Control Information for Spanned Records

In a key-sequenced data set. the control intervals might not be contiguous or in
the same order as the segments (that is, for example, the RBA of the second
segment can be lower than the RBA of the first segment).

Chapter 7. Processing Control Intervals 93

All the segments of a spanned record must be in the same control area. When
a control area does not have enough control intervals available for a spanned
record. the entire record is stored in a new control area.

Control Field Values for Relative Record Data Sets

User Buffering

In a relative record data set, the possible hexadecimal values in the control
field of an RDF are:

X '04 1 This RDF gives the length of an empty slol.

X 100 I This RDF gives the length of a slot that contains a record.

Every control interval in a relative record data set contains the same number of
slots and the same number of RDFs. one for each slot. The first slot is
described by the rightmost RDF; the second slot is described by the next RDF to
the left. and so on.

With control interval access. you have the option of user buffering. This means
that you provide buffers in your own area of storage for use by VSAM.

User buffering is required for improved control interval access (ICI) and for PUT
with OPTCD=NUP.

With ACB MACRF = (CNV.UBF) specified (control interval access with user buf­
fering). the work area specified by the RPL (or GENCS) AREA parameter is. in
effect. the 1/0 buffer. VSAM transmits the contents of a control interval directly
between the work area and direct access storage.

If you specify user buffering. you cannot specify KEY or ADR in the MACRF
parameter; you can specify only CNV. That is. you cannot intermix keyed and
addressed requests with requests for control interval access.

OPTCD = LOC is inconsistent with user buffering and is not allowed.

Improved Control Interval Access
With user buffering you have the option of specifying improvea control interval
access:

ACB MACRF=(CNV.UBF.ICI •...) •...

Improved control interval access is faster than normal control interval access
because the path length is shorter. However. with user buffering there is no
read-ahead buffering. so you can only have one control interval scheduled at a
time. This means that improved control interval access performs well for direct
processing.

You cannot load or extend a data set using improved control interval proc­
essing.

A processing program can achieve tbe best performance with improved control
interval access by combining it with SRB dispatching. SRB mode with fixed

94 MVS/XA VSAM Administration Guide

control blocks provides the fastest path. (SRB dispatching is described in
System Macros and Facilities.)

Opening an Object for Improved Control Interval Access
Improved control interval processing is faster because functions have been
removed from the path. However, this causes several restrictions:

• The object must not be empty.

• The object must be one of the following:

An entry-sequenced or relative record cluster

The data component of an entry-sequenced, key-sequenced, linear, or
relative record cluster

The index component of a key-sequenced cluster (index records must
not be replicated)

• Control intervals must be the same size as physical records. When you use
the access method services DEFINE command to define the object, you can
specify control interval size equal to a physical record size used for the
device on which the object is stored. VSAM uses physical record sizes of
(n x 512) and (n x 2048), where n is a positive integer from 1 to 16.

The following table identifies the direct access devices for which the phys­
ical record size equal to the control interval size is selected for a data com­
ponent. The physical record size is always equal to the control interval size
for an index component.

Control Interval Size (Bytes)
Device 512 1024 ·2048 4096

2305-2 X X X X
3330 X X X X
3330-1 X X X X
3340 X X X
3344 X X X
3350 X X X X
3375 X X X X
33801 X X X X

Processing a Data Set with Improved Control Interval Access

1 3380, all models

To process a data set with improved control interval access, a request must be:

• Defined by a single RPL (VSAM ignores the NXTRPL parameter).

• A direct GET, GET for update, or PUT for update (no POINT, no processing
empty data sets). A relative record data set with slots formatted is consid­
ered not to be empty, even if no slot contains a record.

• Synchronous (no CHECK, no ENDREQ).

Chapter 7. Processing Control Intervals 95

In order to release exclusive control after a GET for update, you must issue a
PUT for update, a GET without update, or a GET for update for a different
control interval.

With improved control interval access, VSAM assumes (without checking) that
an RPL whose ACB has MACRF = ICI has OPTCD = (CNV, DIR, SYN): that a PUT
is for update (RPL OPTeD = UPD); and that your buffer length (specified in RPL
AREALEN = number) is correct. Because VSAM does not check these parame­
ters, you should debug your program with ACB MACRF = NCI, then change to
ICI.

With improved control interval access, VSAM does not take JRNAD exits and
does not keep statistics (which are normally available by way of SHOWCB).

Fixing Control Blocks and Buffers in Real Storage
With improved control interval access, you can specify that control blocks are to
be fixed in real storage (ACB MACRF = (CFX, ...)). If you so specify, your 1/0
buffers must also be fixed in real storage. Having your control blocks fixed in
real storage, but not yciur 1/0 buffers, may cause physical errors or unpredict­
able results. If you specify MACRF = CFX without ICI, VSAM ignores CFX. NFX
is the default; it indicates that buffers are not fixed in real storage. except for an
I/O operation. A program must be authorized to fix pages in real storage,
either in supervisor state with protection key 0 to 7, or link-edited with authori­
zation. (The authorized program facility is described in System Macros and
Facilities.) An unauthorized request is ignored.

Control Blocks in Common (CBIC) Option
When you are using improved control interval processing, the CBIC option
allows you to have multiple address spaces that address the same data and
use the same control block structure. The VSAM control blocks associated with
a VSAM data set are placed into the common service area (CSA). The control
block structure and VSAM 1/0 operations are essentially the same whether or
not the CBIC option is invoked, except for the location of the control block struc­
ture. The user-related control blocks are generated in the protect key (0
through 7); the system-related control blocks are generated in protect key o.
The VSAM control block structure generated when the CBIC option is invoked
retains normal interfaces to the region that opened the VSAM data set (for
example, the DEB is chained to the region's TCB).

The CBIC option is invoked when a VSAM data set is opened. To invoke the
CBIC option, you set the CBIC flag (located at offset X'33' (ACBINFL2) in the
ACB, bit 2 (ACBCBIC» to one. When your program opens the ACB with the
CBIC option set, your program must be in supervisor state with a protect key
from 0 to 7; otherwise, VSAM will not open the data set.

The following restrictions apply when using the CBIC option:

• The CBIC option must be used only when the ICI option is also specified.

• You cannot also specify LSR or GSR.

• You cannot use the following types of data sets with the CBIC option: cata­
logs, catalog recovery areas, swap data sets, or system data sets.

96 MvsiXA VSAM Administration Guide

• If an address space has opened a VSAM data set with the CBIC option, your
program cannot take a checkpoint for that address space.

If another region accesses the data set's control block structure in the CSA via
VSAM record management, the following conditions should be observed:

• An OPEN macro should not be issued against the data set.

• The ACB of the user who opened the data set with the CBIC option must be
used.

• CLOSE and temporary CLOSE cannot be issued for the data set (only the
user who opened the data set with the CBIC option can close the data set).

• The region accessing the data set control block structure must have the
same storage protect key as the user who opened the data set with the
CBIC option.

• User exit routines should be accessible from all regions accessing the data
set with the CBIC option.

'--_____ End of Product-Sensitive Programming Interface _____ ---'

Chapter 7. Processing Control Intervals 97

Chapter 8. Data Security and Integrity

The protection of data includes:

• Data security, or the safety of data from theft or intentional destruction
• Data integrity, or the safety of data from accidental loss or destruction

The following sections describe the available data protection:

• Resource Access Control Facility (RACF)
• Authorized program facility (APF)
• Access method services password protection
• User-security-verification routine (USVR)
• Access method services cryptographic option

Resource Access Control Facility (RACF)
Resource Access Control Facility (R~CF) provides an optional software access
control measure you may use in addition to, or instead of, passwords. Pass­
word protection and RACF protection can coexist for the same data set. When
RACF protection is applied to a data set that is already password-protected and
the catalog containing it is protected by RACF, password protection is bypassed
and access is controlled solely through the RACF authorization mechanism. If
a user-security-verirication routine (USVR) exists, it is not invoked for
RACF-derined data sets.

To apply RACF protection to a data set in a VSAM catalog. the catalog con­
taining it must be RACF-protected. An integrated catalog facility catalog.
however, does not have to be RACF-protected in order for its data sets to be
RACF-protected.

To have password protection take effect for a data set, the catalog containing it
must be either RACF-protected or password-protected and the data set itself
must not be defined to RACF. Although passwords are ignored for a
RACF-protected data set, they can still provide protection if the data set is
moved to a system that does not have RACF protection.

Using a Generic Profile
RACF Release 5 and later releases provide a generic profile checking facility.
With the always call capability of integrated catalog facility catalogs, you can
consolidate the access authorization requirements of several Similarly named
and similarly used data sets under a single generic profile definition. A generic
profile is used to protect one cluster or a group of clusters that require similar
access authority. For example, you could build a generic profile with a high
level qualifier of userid.·. In a TSO environment, this profile would protect all
your data sets cataloged in integrated catalog facility catalogs.

VSAM data sets that are generically protected are not RACF-indicated in the
catalog. Therefore, whether or not a data set is RACF-indicated or password­
protected, RACF is always called for access to data sets cataloged in integrated
catalog facility catalogs. If the data set is not protected by either a discrete
profile or a generic profile, password protection is in effect.

Chapter 8. Data Security and Integrity 99

For clusters cataloged in an integrated catalog facility catalog, a generic profile
is used to verify access to the entire cluster, or any of its components. Discrete
profiles for the individual components may exist, but only the cluster's profile
(generic or discrete) is used to protect the components in the cluster.

Note: Profiles defined by ADSP processing during a data set define operation
will be cluster profiles only.

Data sets protected with discrete profiles are nagged as RACF-indicated. If a
data set protected by a discrete profile is moved to a system where RACF is not
installed, no user is given authority to access the data set. However, if the data
set is protected with a generic profile, it is not nagged as RACF-indicated;
therefore, access authority is determined by normal VSAM password protection.

Checking Authorization
RACF authorization checking is generally compatible with the pass'1ord authori­
zation checking scheme. The compatibility includes the time the authorization
check is made and the sources of authorization. The RACF authorization levels
of alter, control, update, and read correspond to the VSAM password levels of
master, control, update, and read.

Deleting any type of RACF-protected entry from a RACF-protected catalog
requires alter-level authorization to the catalog or the entry being deleted.

Altering the passwords in a RACF-protected catalog entry requires RACF alter
authority to the entry being altered, or the operations attribute. Alter authority
to the catalog itself is not sufficient for this operation.

Erasing Residual Data
You can use RACF to control the erasure of residual data for integrated catalog
facility cataloged VSAM clusters or alternate indexes by specifying an erase
indicator in generic or discrete profiles. To control the erasure of sensitive data
with RACF:

• The erase feature must be activated by the RACF SETROPTS command,

• The cluster must be RACF-protected, with the RACF ERASE option specified
in the generic or discrete profile, and

• Specifying NOERASE using the access methods services commands will not
override erasure if the RACF profile has the ERASE option set.

For more information about RACF security features see RACF Generallnforma­
tion Manual and associated RACF publications.

Authorized Program Facility (APF)
The authorized program facility (APF) limits the use of sensitive system ser­
vices and resources to authorized system and user programs. For information
about program authorization, see "Using the Authorized Program Facility
(APF)" in System Macros and Facilities.

All access method services load modules are contained in SYS1.LlNKLlB, and
the root segment load module (IDCAMS) is link-edited with the SETCODE AC(1)

100 MVS/XA VSAM Administration Guide

attribute. These two characteristics ensure that access method services exe­
cutes with APF authorization.

APF authorization is established at the job step level. If. during the execution of
an APF-authorized job step. a load request is satisfied from an unauthorized
library, the task is abnormally terminated. It is the installation's responsibility
to ensure that a load request cannot be satisfied from an unauthorized library
during access method services processing.

The following situations could cause the invalidation of APF authorization for
access method services:

• An access method services module is loaded from an unauthorized library.

• A user-security-verification routine (USVR) is loaded from an unauthorized
library during access method services processing.

• An exception exit routine is loaded from an unauthorized library during
access method services proceSSing.

• A user-supplied special graphics table is loaded from an unauthorized
library during access method services processing.

Because APF authorization is established at the job step task level. access
method services is not authorized if invoked by an unauthorized problem
program or an unauthorized terminal monitor program (TMP).

You must enter the names of those access method services commands
requiring APF authorization to execute under TSO in the authorized command
list.

The restricted functions performed by access method services that cannot be
requested in an unauthorized state are:

CNVTCAT

DEFINE

DELETE

EXPORT

IMPORT

PRINT

REPRO

VERIFY

when converting to an integrated catalog facility catalog

when the RECATALOG parameter is specified

when the RECOVERY parameter is specified

when the object to be exported is an integrated catalog facility
catalog

when the object to be imported is an integrated catalog facility
catalog

when the object to be printed is a catalog

when copying an integrated catalog facility catalog, or the inte­
grated catalog facility catalog unload/reload is to be used

when a catalog is to be verified

If the above functions are required and access method services is invoked from
a problem program or a TSO terminal monitor program, the invoking program
must be authorized.

Chapter 8. Data Security and Integrity 101

Access Method Services Password Protection
Access method services provides options to protect data sets against unauthor­
ized use and loss of data. To effectively use the protection features, you must
understand the difference between operations on a catalog and operations on
data sets represented by a catalog entry:

• Referring to a catalog entry when new entries are defined (DEFINE), or
existing entries are altered (ALTER), deleted (DELETE), or listed (LiSTCAT).

• Using the data set represented by a catalog entry when it is connected to a
user's program (OPEN), or disconnected (CLOSE).

Different passwords may be needed for each type of operation.

Operations on a catalog may be authorized by the catalog's password or, in
some cases, by the password of the data set defined in the catalog. The
Access Method Services Reference describes which level of password is
required for each operation.

The following are examples of passwords required for defining, listing, and
deleting catalog entries.

• Defining a data set in a password-protected catalog requires the catalog's
update (or higher) password.

• Listing, altering, or deleting a data set's catalog entry requires the appro­
priate password of either the catalog or the data set. However, if the
catalog, but not the data set, is protected, no password is needed to list,
alter, or delete the data set's catalog entry.

OPEN and CLOSE operations on a data set may be authorized by the password
pointed to by tlie PASSWD parameter of the ACB macro. The" ACB Macro"
section in VSAM Administration: Macro Instruction Reference describes which
level of password is required for each type of operation.

Passwords to Authorize Access
You may, optionally, define passwords for access to clusters, cluster compo­
nents (data and index), page spaces, alternate indexes, alternate index compo­
nents (data and index), paths, master and user catalogs. Different passwords
have various degrees of security, with higher levels providing greater protection
than lower levels. The levels are:

• Full access. This is the master password, which allows you to perform all
operations (retrieving, updating, inserting, and deleting) on an entire VSAM
data set and any index and catalog record associated with it. The master
password allows all operations and bypasses any additional verification
checking by the user-security-verification routine.

• Control access. This password authorizes you to use control interval
access. For further information, see Chapter 7, "Processing Control
Intervals" on page 87.

• Update access. This password authorizes you to retrieve, update, insert, or
delete records in a data set. The update password does not allow you to
alter passwords or other security information.

1 02 MVS/XA VSAM Administration Guide

• Read access. The read-only password allows you to examine data records
and catalog records, but not to add, alter, or delete them, nor to see pass­
word information in a catalog record.

Each higher-level password allows all operations permitted by lower levels.
Any level may be null (not specified), but if a low-level password is specified,
the DEFINE and ALTER commands give the higher passwords the value of the
highest password specified. For example, if only a read-level password is spec­
ified, the read-level becomes· the update-, control-, and master-level password
as well. If you specify a read password and a control password, the control
password value becomes the master-level password as well. However, in this
case, the update-level password is null because the value of the read-level
password is not given to higher passwords.

Catalogs are themselves VSAM data sets, and may have passwords. For some
operations (for example, listing all the catalog's entries with their passwords or
deleting catalog entries), the catalog's passwords may be used instead of the
entry's passwords. If the master catalog is protected, the update- or higher­
level password is required when defining a user catalog. because all user cata­
logs have an entry in the master catalog. When deleting a protected user
catalog, the user catalog's master password must be specified.

Some access method services operations may involve more than one password
authorization. For example, importing a data set involves defining the data set
and loading records into it. If the catalog into which the data set is being
imported is password protected, its update-level (or higher-level) password is
required for the definition; if the data set is password protected. its update-level
(or higher-level) password is required for the load. The IMPORT command
alloWs you to specify the password of the catalog; the password, if any, of the
data set being imported is obtained by the commands from the exported data.

Every VSAM data set is represented in a catalog by two or more components: a
cluster component and a data component, or, if the data set is a key-sequenced
data set, a cluster component, a data component, and an index component. Of
the two or three components, the cluster component is the controlling compo­
nent. Each of the two or three components can have its own set of four pass­
words; the passwords you assign have no relationship to each other. For
example, password protecting a cluster but not the cluster's data component,
allows someone to issue LlSTCAT to determine the name of your cluster's data
component, open the data component, and access records in it. even though
the cluster itself is password protected.

One reason for password protecting the components of a cluster is to prevent
access to the index of a key-sequenced data set. (One way to gain access to
an index is to open it independently of the cluster.) See Chapter 7, .. Proc­
essing Control Intervals" on page 87 for a description of access to an index.

Chapter 8. Data Security and Integrity 103

Password Protection Considerations and Precautions

For a Catalog

For a Data Set

Observe the following precautions when using protection commands for the
catalog:

• To create a catalog entry (with the DEFINE command), the update- or
higher-level password of the catalog is required.

• To modify a catalog entry (with the ALTER command). the master password
of the entry or the master password of the catalog which contains the entry
is required. However, if the entry to be modified is a non-VSAM or gener­
ation data group entry, the update-level password of the catalog is suffi­
cient.

• To gain access to passwords in a catalog (for example, to list or change
passwords), specify the master-level password of either the entry or the
catalog. A master-level password must be specified with the DEFINE
command to model an entry's passwords.

• To delete a protected data set entry from a catalog requires the master­
level password of the entry or the master-level password of the catalog con­
taining the entry. However, if the entry in a VSAM catalog describes a
VSAM data space, the update-level password of the catalog is sufficient.

• To delete a non-VSAM, generation data group, or alias entry, the update
level password of the catalog is sufficient.

• To list catalog entries with the read-level passwords, specify the read pass­
word of the entry or the catalog's read level password. However, entries
without passwords may be listed without specifying the catalog's read-level
password. To list the passwords associated with a catalog entry, specify
the master password of the entry or the catalog's master password.

To avoid unnecessary prompts, specify the catalog's password, which
allows access to all entries that the operation affects. A catalog's master­
level password allows you to refer to all catalog entries. However, a pro­
tected cluster cannot be processed with the catalog's master password.

• Specification of a password where none is required is always ignored.

Observe the following precautions when using protection commands for data
sets:

• To access a VSAM data set using its cluster name, instead of data or index
names, you must specify the proper level password for the cluster even if
the data or index passwords are nUll.

• To access a VSAM data set using its data or index name, instead of its
cluster name, you must specify the proper data or index password.
However, if cluster passwords are defined, the master password of the
cluster may be specified instead of the data or index password.

• If a cluster has only null (not specified) passwords, you may access the
data set using the cluster name without specifying passwords. This is tru~
even if the data and index entries of the cluster have defined passwords.
This allows unrestricted access to the VSAM data set as a whole but pro­
tects against unauthorized modification of the data or index as separate
components.

104 MVS/XA VSAM Administration Guide

Relation of Data Set and Catalog Protection
If you define passwords for any data sets in a catalog, you must also protect the
catalog by defining passwords for the catalog or by defining the catalog to
RACF. If you do not protect the catalog, no password checking takes place
during operations on the data set's catalog entries or during open processing of
data sets cataloged in that catalog.

Password Prompting
Computer operators and TSO terminal users may supply a correct password if
a processing program does not give the correct one when it tries to open a
password-protected data set. When the data set is defined. you may use the
CODE parameter to specify a code instead of the data set name to prompt the
operator or terminal user for a password. The prompting code keeps your data
secure by not allowing the operator or terminal user to know both the name of
the data set and its password.

A data set's code is used for prompting for any operation against a password­
protected data set. The catalog code is used for prompting when the catalog is
opened as a data set. when an attempt is made to locate catalog entries that
describe the catalog. and when an entry is to be defined in the catalog.

If you do not specify a prompting code, VSAM identifies the job for which a
password is needed with the JOBNAME and DSNAME for background jobs or
with the DSNAME alone for foreground (TSO) jobs.

When you define a data set, you may use the ATTEMPTS parameter to specify
the number of times the computer operator or terminal user is allowed to give
the password when a processing program is trying to open a data set.

If the ATTEMPTS parameter is coded with 0, no password prompting is done. If
the allowed number of attempts is exceeded and you are using System Man­
agement Facilities, a record is written to the SMF data set to indicate a security
violation.

Note: When logged onto TSO, VSAM tries the logon password before
prompting at the user terminal. Using the TSO logon password counts as one
attempt.

Passwords for Non-VSAM Data Sets
When you define a non-VSAM data set in an integrated catalog facility catalog,
the data set is not protected with passwords in its catalog entry. To password
protect a non-VSAM data set when it is created, specify
LABEL=(PASSWORDINOPWREAD) in the DD statement that describes the data
set (for more details. see JeL). Use the PROTECT macro instruction to assign a
password to the non-VSAM data set (for more details, see System - Data·
Administration).

If the catalog is update-protected, you must supply the catalog's update- or
higher-level password to define, delete, or alter a non-VSAM data set. The
password can be supplied as a subparameter of the command's CATALOG
parameter, or as a response to the password-prompting message.

Chapter 8. Data Security and Integrity 105

User-Security-Verification Routine (USVR)
In addition to password protection, VSAM allows you to protect data by speci­
fying the program that verifies fl user's authorization. Specific requirements of
the user-security-verification routine are described in Data Facility Product:
Customization. To use this routine, specify the name of the authorization
routine you have written in the AUTHORIZATION parameter of the DEFINE or
ALTER command.

If a password exists for the type of operation being performed, the password
must be given, either in the command or in response to prompting. The user­
security-verification routine is called only after the password specified is veri­
fied; it is bypassed whenever a correct master password is specified, whether
or not the master password is required for the requested operation.

Access Method Services Cryptographic Option
Although you can provide security for online data by using such facilities as
VSAM password protection and the IBM Resource Access Control Facility
(RACF) program product, these facilities do not protect data when it is stored
offline. Sensitive data stored offline is susceptible to misuse.

It is generally recognized that data cryptography is an effective means of pro­
tecting offline data, if the enciphering techniques are adequate. The enci­
phering function is available by using the ENCIPHER option of the access
method services REPRO command. The REPRO command uses the services of
the IBM Programmed Cryptographic Facility (S740-XYS) or the Cryptographic
Unit Support (S740-XY6). The Programmed Cryptographic Facility conforms to
the Data Encryption Standard (DES) of the United States National Bureau of
Standards for enciphering data. The data remains protected until the REPRO
DECIPHER option is used to decipher it with the correct key.

Note: The format and examples of the REPRO command are in Access Method
Services Reference.

There are three types of offline environments in which the enciphering of sensi­
tive data adds to its security:

• Data sets that are transported to another installation, where data security is
required during transportation and while the data is stored at the other
location

• Data sets that will be stored for long periods of time at a permanent storage
location

• Data sets that are stored offline at the site at which they are normally used

You can use REPRO to copy a plaintext (not enciphered) data set to another
data set in enciphered form. Enciphering converts data to an unintelligible form
called a ciphertext. The enciphered data set can then be stored offline or sent
to a remote location. When desired, the enciphered data set can be brought
back online and you can use REPRO to recover the plaintext from the ciphertext
by copying the enciphered data set to another data set in plaintext (deciphered)
form.

106 MVS/XA VSAM Administration Guide

Enciphering and deciphering are based on an 8-byte binary value called the
key. Using the REPRO DECIPHER option, the data can be either deciphered on
the system it was enciphered on, or deciphered on another system that has this
functional capability and the required key to decipher the data. Given the same
key. encipher and decipher are inverse operations. This option uses the ser­
vices of the Programmed Cryptographic Facility or the Cryptographic Unit
Support to encipher/decipher the data, and uses block chaining with ciphertext
feedback during the encipher/decipher operation.

With the exception of catalogs, all data sets supported for copying by REPRO
are supported as input (SAM, ISAM, VSAM) for enciphering and as output
(SAM, VSAM) for deciphering. The input data set for the decipher operation
must be an enciphered copy of a data set produced by REPRO. The output data
set for the encipher operation can only be a VSAM entry-sequenced or sequen­
tial (SAM) data set. The target (output) data set of both an encipher and a deci­
pher operation must be empty. If the target data set is a VSAM data set that
has been defined with the reusable attribute, you can use the REUSE parameter
of REPRO to reset it to an empty status.

The REPRO ENCIPHER parameter indicates that REPRO is to produce an enci­
phered copy of the data set, and to supply information needed for the
encipherment. The INFILE or INDATASET parameter identifies and allocates the
plaintext (not enciphered) source data set. The OUTFILE or OUTDATASET
parameter identifies and allocates a target data set to contain the enciphered
data.

The REPRO DECIPHER paramete·r indicates that REPRO is to produce a deci­
phered copy of the data set, and to supply information needed for deciphering.
The INFILE or INDATASET parameter identifies and allocates the enciphered
source data set. The OUTFILE or OUTDATASET parameter identifies and allo­
cates a target data set to contain the plaintext data.

Figure 26 on page 108 is a graphic representation of the input and output data
sets involved in REPRO ENCIPHER/DECIPHER operations.

You should not build an alternate index over a VSAM entry-sequenced data set
that is the output of a REPRO ENCIPHER operation.

When a VSAM relative record data set is enciphered, the record size of the
output data set must be at least 4 bytes greater than the record size of the rela­
tive record data set. (The extra 4 bytes are needed to prefix a relative record
number to the output record.) You can specify the record size of an output
VSAM entry-sequenced data set through the RECORDSIZE parameter of the
DEFINE CLUSTER command. You can specify the record size of an output
sequential (SAM) data set through the DCB LRECL parameter in the output data
set's DD statement. When an enciphered VSAM relative record data set is sub­
sequently deciphered with a relative record data set as the target, any empty
slots in the original data set are reestablished.

If you specify the REPLACE parameter of the REPRO command together with
either the ENCIPHER or the DECIPHER parameter, access method services
ignore REPLACE, because the target VSAM data set must be empty and has no
records to replace.

Chapter 8. Data Security and Integrity 107

An, date
. sa: =I[PRO
can copy ir:o
(except ICO' or
VSAW ca:alogs); .. :
_VSAM

ESOS
"SOS
RR::>S

-ISAM
-SAW

When you encipher a data set, you can specify any of the delimiter parameters
available with the REPRO command (SKIP, COUNT, FROMADDRESS, FROMKEY,
FROMNUMBER, TOADDRESS, TO KEY, TONUMBER) that are appropriate to the
data set being enciphered. However, no delimiter parameter can be specified
when a data set is deciphered. If DECIPHER is specified together with any
REPRO delimiter parameter, your REPRO command terminates with a message.

When the REPRO command copies and enciphers a data set, it places one or
more records of clear header data preceding the enciphered data records. This
header data consists of information necessary for the deciphering of the enci­
phered data. Information a header may contain consists of:

• Number of header records
• Number of records to be ciphered as a unit
• Key verification data
• Enciphered data encrypting keys

.: A1)' Ce:a
. !let REPRO
can cOPf into

. {e;:cep: ICF or
.: VSAM c2talo!,;sl:

:: - VSAM !:{~::!:.!.:!!i':::::;:'i.i.::::::::.!:-:'·.:·:::·'·::iI:!
; ~~~ 1m: .;-:.;.;.;.:.:.:.:.;.;;.:;-:.;.
; R~DS
: -SAM

Figure 26. REPRO Encipher/Decipher Operations

Key Management
This section is intended to give you an overview of key management used when
enciphering or deciphering data via the REPRO command.

Data Encryption Keys
A "key" is defined as an 8-byte value. When you use the encipher/decipher
function of the REPRO command, you may specify keys that the Programmed
Cryptographic Facility or the Cryptographic Unit Support generates and
manages for you (system-key management), or keys that you manually gen­
erate and privately manage (private-key management). In either case, REPRO

108 MVS/XA VSAM Administration Guide

invokes the appropriate Programmed Cryptographic Facility program product
service.

For both private- and system-key management, REPRO allows you to supply an
8-byte value to be used as the plaintext data encrypting key. If you do not
supply the data encrypting key, REPRO provides an 8-byte value to be used as
the plaintext data encrypting key. The plaintext data encrypting key is used to
encipher/decipher the data using the Data Encryption Standard.

If you supply your own plaintext data encrypting key on ENCIPHER or DECIPHER
through the REPRO command, you risk exposing that key when the command is
listed on SYSPRINT. To avoid this exposure, you may direct REPRO to a data
encrypting key data set to obtain the plaintext data encrypting key. You identify
the DD statement for this data set through the DATAKEYFILE parameter of the
REPRO command. REPRO obtains the data encrypting key from this data set by
locating the first nonblank column in the first record of the data set and proc­
essing 16 consecutive columns of data. These 16 columns contain the
hexadecimal character representation for the 8-byte key. Each column of data
must contain the EBCDIC character representation of a hexadecimal digit (that
is, 0 through F). If a blank column is found before 16 nonblank columns have
been processed, the data key is padded to the right with EBCDIC blanks. If the
end of the first record is encountered before 16 columns have been processed,
the data key is considered invalid. If a valid data encrypting key cannot be
obtained from the first record of the data encrypting key data set, then REPRO
either generates the data encrypting key (ENCIPHER) or terminates with a
message (DECIPHER).

If you allow (or force, by an invalid data encrypting key data set record) REPRO
to provide the data encrypting key on ENCIPHER, you risk exposing the data
encrypting key only if you manage your keys privately; REPRO lists the gener­
ated data encrypting key only for privately managed keys.

Secondary File Keys
When you want to decipher the data, you must supply the data encrypting key
that was used to encipher the data. However, as a security precaution, you
may want to supply the data encrypting key in a disguised form. When enci­
phering the data set, you may supply the name of a system-managed key,
called a secondary file key. REPRO uses the secondary file key indicated by
the supplied name to disguise (encipher) the data encrypting key. When deci­
phering the data set, the name of the file key and the disguised data encrypting
key may be supplied rather than the plaintext data encrypting key. In this way,
the actual plaintext data encrypting key is not revealed. (Note that the sec­
ondary file key is used only in key communication, not when enciphering data.)

The Programmed Cryptographic Facility or the Cryptographic Unit Support
offers the installation this secondary file key-management facility. To use this
facility, your installation must first execute the Programmed Cryptographic
Facility key generator utility. This utility is used to generate the secondary-file
keys to be used by the installation.

The Programmed Cryptographic Facility key generator utility generates the
secondary-file keys you request and stores the keys, in enciphered form, in the
cryptographic key data set (CKDS). It lists the external name (key name) of
each secondary key and the plaintext form of the secondary key. To access a
particular secondary file key, you supply the keyname of the secondary file key.

Chapter 8. Data Security and Integrity 109

Requirements

If the secondary key is to be used on a system other than the system on which
the keys were generated, the utility must also be executed at the other system
to define the same plaintext secondary file keys. The plaintext secondary file
keys may be defined in the CKDS of the other system with different keynames.

If you choose to manage your own private keys. no secondary file keys are
used to encipher the data encrypting key; it is your responsibility to ensure the
secure nature of your private data encrypting key.

If you choose to have the Programmed Cryptographic Facility or the
Cryptographic Unit Support manage your keys, REPRO uses secondary file keys
to encipher the data encrypting key. You specify a secondary file key to REPRO
through the key name by which it is known in the CKDS. Two types of sec­
ondary file keys are recognized by REPRO:

• An internal file key, defined in the CKDS by using a remote or cross key 2
statement as input to the Programmed Cryptographic Facility key generator
utility. Use of a cross key 2 statement for DECIPHER requires APF (Author­
ized Program Facility) authorization and can provide an additional level of
security.

• For ENCIPHER, an external file key, defined in the CKDS by using a local or
cross key 1 statement as input to the Programmed Cryptographic Facility
key generator utility. An internal file key may be used for ENCIPHER but
not for DECIPHER operations.

Although both internal and external secondary file keys may be used when
doing a REPRO ENCIPHER, only internal secondary file keys may be used when
doing a REPRO DECIPHER. Thus, external secondary file keys may not be
used to do a REPRO ENCIPHER and REPRO DECIPHER on the same system.
External secondary file keys are used when the enciphered data is to be deci­
phered on another system. The REPRO DECIPHER is done on the other system
using the same secondary file key; however, in this other system's CKDS, the
secondary file key must be defined as an internal secondary file key.

An internal secondary file key may be used to do a REPRO ENCIPHER and
REPRO DECIPHER on the same system, and, if the same secondary file key is
also defined as an internal secondary file key in another system's CKDS, then a
REPRO ENCIPHER and REPRO DECIPHER may also be done on that system.

In planning to use the ENCIPHER or DECIPHER functions of the REPRO
command, you should be aware of the following requirements:

• Either the Programmed Cryptographic Facility Program Product, Program
Number 5740-XY5, or the Cryptographic Unit Support Facility Program
Product, Program Number 5740-XY6, and its prerequisites must be installed
on your system.

• Prior to issuing the REPRO command (via a batch job or from a TSO ter­
minal), the Programmed Cryptographic Facility program product must have
already been started through a START command at the operator's console.

In planning to use REPRO DECIPHER with the SYSTEM KEYS parameter speci­
fying a cross ,key 2 secondary file key, you should be aware of the following
requirement:

110 MVS/XA VSAM Administration Guide

• Access method services must be authorized. For information about
program authorization, see "Using the Authorized Program Facility (APF)"
in System Macros and Facilities.

Chapter 8. Data Security and Integrity 111

Chapter 9. Sharing a VSAM Data Set

General-Use Programming Interface

This chapter is intended to help you share data within a single system and
among multiple systems. It contains general-use programming interfaces,
which allow you to write programs that use the services of MVS/XA Data
Facility Product.

When you define VSAM data sets, you may specify how the data is to be shared
within a single system or among multiple systems that may have access to your
data and share the same direct access devices. This chapter provides guide­
lines for accessing shared data sets and for controlling data set sharing to
prevent the loss of data. Before you define the level of sharing for a data set,
you must evaluate the consequences of reading incorrect data (a loss of read
integrity) and writing incorrect data (a loss of write integrity)-situations that
may result when one or more of the data set's users do not adhere to guide­
lines recommended for accessing shared data sets.

The extent to which you want your data sets to be shared depends on the appli­
cation. If your requirements are similar to those of an integrated catalog facility
catalog, where there may be many users on more than one system, more than
one user should be allowed to read and update the data set simultaneously. At
the other end of the spectrum is an application where high security and data
integrity require that only one user at a time have access to the data.

When your program issues a GET request, VSAM reads an entire control
interval into virtual storage (or obtains a copy of the data from a control interval
already in virtual storage). If your program modifies the control interval's data,
VSAM ensures within a single control block structure that you have exclusive
use of the information in the control interval until it is written back to the data
set. If the data set is accessed by more than one program at a time, and more
than one control block structure contains buffers for the data set's control inter­
vals, VSAM cannot ensure that your program has exclusive use of the data. You
must obtain exclusive control yourself, using facilities such as ENQ/RESERVE
and DEQ.

Two ways to establish the extent of data set sharing are the data set disposition
specified in the JCL and the share options specified in the access method ser­
vices DEFINE or ALTER command. If the VSAM data set cannot be shared
because of the disposition specified in the JCL, a scheduler allocation failure
occurs. If your program attempts to open a data set that is in use and the
share options specified do not allow concurrent use of the data, the open fails,
and a return code is set in the ACB error field.

During load mode processing, you may not share data sets. Share options are
overridden during load mode processing. When a shared data set is opened
for create or reset processing, your program has exclusive control of the data
set within your operating system.

Chapter 9. Sharing a VSAM Data Set 113

Subtask Sharing
Subtask sharing is the ability to perform multiple OPENs to the same data set
from different subtasks in a single region and still share a single control block
structure. This allows many logical views of the data set while maintaining a
single structure. With a single structure, you can ensure that you have exclusive
control of the buffer when updating a data set.

If you share multiple control block structures within a task or region, VSAM
treats this like cross-region sharing. You must adhere to the guidelines and
restrictions specified in "Cross-Region Sharing" on page 118.

To share successfully within a task or between subtasks, you should assure
that VSAM builds a single control block structure for the data set. This Includes
blocks for control information in addition to input/output buffers. All subtasks
access the data set through this single control block structure, independent of
the SHAREOPTION or OISP specifications. The three methods of achieving a
single control block structure for a VSAM data set while processing multiple
concurrent requests are:

• A single access method control block (ACB) and a STRNO> 1

• ddname sharing, with multiple ACBs (all from the same data set) pointing to
a single DD statement. This is the default.

For example:

//001 DO OSN=ABC

OPEN ACB1,OON=001
OPEN ACB2,OON=001

• Data set name sharing, with multiple ACBs pointing to multiple DD state­
ments with different ddnames. The data set names are related with an ACB
open specification (MACRF = DSN).

For example:

//001 00 oSN=ABC
//002 00 oSN=ABC.PATH

OPEN ACB1,DON=OD1,oSN
OPEN ACB2,DoN=oD2,oSN

Multiple ACBs must be in the same region, and they must be opening to the
same base cluster. The connection occurs independently of the path selected to
the base cluster. If the ATTACH macro is used to create a new task that will be
processing a shared data set, allow the ATTACH keyword SZERO to default to
YES or code SZERO = YES. This will cause subpool 0 to be shared with the
subtasks. For more information on the ATTACH macro, see System Macros and
Facilities. To ensure correct processing in the shared environment, all VSAM
requests should be issued in the same key as the jobstep TCB key.

In this environment with a single control block, VSAM record management seri­
alizes updates to any single control interval and provides read and write integ­
rity. When a control interval is not available for the type of user processing
requested (shared or exclusive), VSAM record management returns a logical
error code with an exclusive control error indicated in the RPL feedback code.
When this occurs, you must decide whether to retry later or to free the resource

114 MVS/XA VSAM Administration Guide

causing the conflict. See Figure 27 for a diagram on exclusive control conflict
feedback and results of different user requests.

User
A
Wants:

User
A
Wants:

NONSHARED RESOURCES (NSR)

User B Has:

EXCLUSIVE
CONTROL SHARED

EXCWSIVE UsarAgats OK
CONTROL logical Error User A gats

Second Copy
of Buffer

SHARED OK OK
US8rA gats U98rAgets
Second Copy Second Copy
of Buffer of Buffer

SHARED RESOURCES (LSR!GSR)

User B Has:

EXCWSIVE
CONTROL SHARED

EXCWSIVE User A gets VSAM Queues
CONTROL Logical Error User A Until

Buffer Is
Released by
UserS-

SHARED User A gets OK
Logical Error User A Shares

Same Buffer
wlthUserB

• Only a slnQle request for saell bUffer call will be def9rred
at a time. Once a request Is deferred, a/o(JIcal error Is
mtuffled for the seoottd and wcooodlfIQ mquestB until
the first mquest Is dsqlJ8U9d.

Figure 27. Exclusive Control Conflict Resolution

Preventing Deadlock in Exclusive Control
Contention for VSAM data (the contents of a control interval) can lead to dead­
locks, in which a processing program is prevented from continuing because its
request for data cannot be satisfied. A and B can engage as contenders in four
distinct ways:

1. A wants exclusive control, but B has exclusive control. VSAM refuses A's
request: A must either do without the data or retry the request.

2. A wants exclusive control, but B is only willing to share. VSAM queues A's
request (without notifying A of a wait) and gives A use of the data when B
releases it.

3. A wants to share, but B has exclusive control. VSAM refuses A's request:
A must either do without the data or retry the request.

4. A wants to share, and B is willing to share. VSAM gives A use of the data,
along with B.

Chapter 9. Sharing a VSAM Data Set 115

VSAM's action in a contention for data rests on two assumptions:

• If a processing program has exclusive control of the data, it can update or
delete it.

• If a processing program is updating or deleting the data, it has exclusive
control. (The use of MRKBFR, MARK = OUT provides an exception to this
assumption. A processing program can update the contents of a control
interval without exclusive control of them.)

In 1 and 3 above, B is responsible for giving up exclusive control of a control
interval by way of an ENDREQ, a MRKBFR with MARK = RLS, or a request for
access to a different control interval. (The RPL that defines the ENDREQ,
MRKBFR, or request is the one used to acquire exclusive control originally.)

Data Set Name Sharing
Data set name sharing is established by the ACB option (MACRF = DSN). To
understand DSN sharing, you must understand a sphere and the base of the
sphere and how they function.

A sphere is a VSAM cluster and its associated data sets. The cluster is ori­
ginally defined with the access method services command DEFINE CLUSTER.
The most common use of the sphere is to open a single cluster. The base of the
sphere is the cluster itself. When opening a path (which is the relationship
between an alternate index and base cluster) the base of the sphere is again
the base cluster. Opening the alternate index as a data set results in the alter­
nate index becoming the base of the sphere. In Figure 28, DSN is specified for
each ACB and output processing is specified.

CLUSTER.REAL-PATH •

CWSTER.REALAIX(UPGRADE) ClUSTER.REAL
CWSTER.ALIAS

Figure 28. Relationship between the Base Cluster and the Alternate Index

Connecting Spheres: VSAM will connect an ACB to an eXisting control block
structure for data set name sharing only when the base of the sphere is the
same for both ACBs. The following three OPEN statements illustrate how infor­
mation is added to a single control block structure, permitting data set name
sharing.

1. OPEN ACB=(CLUSTER.REAL)

• Builds control block structure for CLUSTER.REAL
• Builds control block structure for CLUSTER.REAL.AIX

116 MVS/XA VSAM Administration Guide

2. OPEN ACB=(CLUSTERREAL.PATH)

• Adds to existing structure for CLUSTER REAL
• Adds to existing structure for CLUSTERREAL.AIX

3. OPEN ACB = (CLUSTERALlAS)

Adds to existing structure for CLUSTER REAL.

If you add this fourth statement, the base of the sphere changes, and multiple
control block structures are created for the alternate index CLUSTERREAL.AIX.

4. OPEN ACB = (CLUSTERREAL.AIX)

• Does not add to existing structure as the base of the sphere is not the
same.

• SHAREOPTIONS are enforced for CLUSTER.REAL.AIX since multiple
control block structures exist.

To be compatible, both the new ACB and the existing control block structure
must be consistent in their specification of the following processing options.

• The data set specification must be consistent in both the ACB and the
existing control block structure. This means that an index of a KSDS, which
is opened as an ESDS, does not share the same control block structure as
the KSDS opened as a KSDS.

• The MACRF options DFR, UBF, ICI, CBIC, LSR, and GSR must be consistent.
For example, if the new ACB and the existing structure both specify
MACRF = DFR, the connection is made. If the new ACB specifies
MACRF = DFR and the existing structure specifies MACRF = DFR,UBF, no
connection is made.

If compatibility cannot be established, OPEN tries (within the limitations of the
share options specified when the data set was defined) to build a new control
block structure. If it cannot, OPEN fails.

When processing multiple subtasks sharing a single control block, concurrent
GET and PUT requests are allowed. A control interval is protected for write
operations using an exclusive control facility provided in VSAM record manage­
ment. Other PUT requests to the same control interval are not allowed and a
logical error is returned to the user issuing the request macro. Depending on
the selected buffer option, nonshared (NSR) or shared (LSR/GSR) resources,
GET requests to the same control interval as that being updated mayor may
not be allowed. Figure 27 on page 115 illustrates the exclusive control facility.

When a subtask issues OPEN to an ACB that will share a control block structure
that may have been previously used, issue the POINT macro to obtain the posi­
tion for the data set. In this case, it should not be assumed that positioning is
at the beginning of the data set.

Chapter 9. Sharing a VSAM Data Set 117

Cross-Region Sharing
The extent of data set sharing within one operating system depends on the data
set disposition and the cross region share option specified when you define the
data set. Independent job steps or subtasks in an MVS/XA operating system or
multiple systems with global resource serialization (GRS) can access a VSAM
data set simultaneously. To share a data set, each user must specify
DISP = SHR in the data set's DD statement. The level of cross-region sharing
allowed by VSAM is established (when the data set is defined) with the
SHAREOPTIONS value:

• Cross-region SHAREOPTIONS 1: The data set can be shared by any
number of users for read processing, or the data set can be accessed by
only one user for read and write processing.

• Cross-region SHAREOPTIONS 2: The data set can be accessed by any
number of users for read processing and it can also be accessed by one
user for write processing.

• Cross-region SHAREOPTIONS 3: The data set can be fully shared by any
number of users.

• Cross-region SHAREOPTIONS 4: The data set can be fully shared by any
number of users, and buffers used for direct processing are refreshed for
each request.

With options 3 and 4 you are responsible for maintaining both read and write
integrity for the data the program accesses. These options require your
program to use ENQ/DEQ to maintain data integrity while sharing the data set,
including the OPEN and CLOSE processing. User programs that ignore the
write integrity guidelines can cause VSAM program checks, lost or inaccessible
records, uncorrectable data set failures, and other unpredictable results. These
options place heavy responsibility on each user sharing the data set.

When your program requires that no updating from another control block struc­
ture occur before it completes processing of the requested data record, your
program can issue an ENQ to obtain exclusive use of the VSAM data set. If
your program completes processing, it can r~linquish control of the data set
with a DEQ. If your program is only reading data and not updating, it is probably
a good practice to serialize the updates and have the readers wait while the
update is occurring. If your program is updating, after the update has completed
the ENQ/DEQ bracket, the reader must determine the required operations for
control block refresh and buffer invalidation based on a communication mech­
anism or assume that everything is down-level and refresh each request.

The extent of cross-region sharing is affected by the use of OISP = SHR or
DISP = OLD in the DD statement. If the data set's DD statement specifies
DISP = OLD, only· the dsname associated with the DD statement is exclusively
controlled. In this case, only the cluster name is reserved for the OPEN rou­
tine's exclusive use. You can include DD statements with DISP = OLD for each
of the cluster's components to reserve them as well. Doing this ensures that all
resources needed to open the data set will be exclusively reserved before your
task is initiated.

Protecting the cluster name with DISP processing and the components by
VSAM OPEN SHAREOPTIONS is the normally accepted procedure. When a

118 MVS/XA VSAM Administration Guide

shared data set is opened with DISP=OLD, or is opened for create or reset
processing, your program has exclusive control of the data set within your
operating system.

Note: Scheduler "disposition" processing is the same for VSAM and
non-VSAM data sets. This is the first level of share protection.

Read Integrity during Cross-Region Sharing
You are responsible for ensuring read integrity when the data set is opened for
sharing with cross-region SHAREOPTIONS 2, 3, and 4. When your program
issues a GET request, VSAM obtains a copy of the control interval containing
the requested data record. Another program sharing the data set may also
obtain a copy of the same control interval, and may update the data and write
the control interval back into the data set. When this occurs, your program has
lost read integrity. The control interval copy in your program's buffer is no
longer the current copy.

The following should be considered when you are providing read integrity:

• Establish ENQ/DEQ procedures for all requests, read as well as write.

• Decide how to determine and invalidate buffers (index and/or data) that are
possibly down level.

• With an entry-sequenced or relative record data set, do not allow secondary
allocation. If you do allow secondary allocation you should provide a com­
munication mechanism to the read-only tasks that the extents are
increased, force a CLOSE, and then issue another OPEN. Providing a buffer
refresh mechanism for index I/O will accommodate secondary allocations
for a key-sequenced data set.

• With an entry-sequenced or relative record data set, you must also use the
VERIFY macro prior to the GET macro to update possible down-level control
blocks.

• Generally, the loss of read integrity results in down-level data records and
erroneous no-record-found conditions.

Invalidating Data and Index Buffers
To invalidate index buffers. you could use the following technique.

• In the ACB, specify:

STRNO> 1.
MACRF = NSR to indicate non-shared resources.
Let the value for BUFNI default to the minimum.

• Ensure that your index is a multilevel index.

• Ensure that all requests are for positioning by specifying the following:

GET RPL OPTCD = DIR
POINT
PUT RPL OPTCD=NUP

To invalidate data buffers, ensure that all requests are for pOSitioning by speci­
fying the following:

• GET/PUT RPL OPTCD=(DIR,NSP) followed by ENDREQ

• POINT GET/PUT RPL OPTCD=SEQ followed by ENDREQ

Chapter 9. Sharing a VSAM Data Set 119

Write Integrity during Cross-Region Sharing
You are responsible for ensuring write-integrity if a data set is opened with
cross-region SHAREOPTIONS 3 or 4.

When an application program issues a "direct" or "skip-sequential"
PUT-for-update or no-update. (RPL OPTeD = DIRISKP). the updated control
interval is written to direct access storage when you obtain control following a
synchronous request (RPL OPTeD = SYN) or following the CHECK macro from
an asynchronous request (RPL OPTeD = ASY). To force direct access I/O for a
sequential PUT (RPL OPTCD = SEQ), the application program must issue an
ENDREQ or MRKBFR TYPE=OUT.

Note: Whenever an ENDREQ is issued, the return code in Register 15 should
be checked to determine if there is an error. If there is an error, normal check
processing should be performed to complete the request.

The considerations that apply to read integrity also apply to write integrity. The
serialization for read could be implemented as a shared ENQ and for write as
an exclusive ENQ. You must ensure that all 1/0 is performed to DASD before
dropping the serialization mechanism (usually the DEQ).

Cross-System Sharing
Use the following share options when you define a data set that must be
accessed andlor updated by more than one operating system simultaneously:

• Cross-system SHAREOPTION 3: The data set may be fully shared. With this
option, the access method uses the control block update facility (CBUF) to·
provide assistance.

• Cross-system SHAREOPTION 4: The data set may be fully shared, and
buffers used for direct processing are refreshed for each request. Output
processing is limited to update andlor add processing that does not change
either the high-used RBA or the RBA of the high key data control interval if
DISP = SHR is specified.

You must assume full responsibility for read and write integrity. Incorrect write
integrity processing can cause access method program checks, lost or inacces­
sible records. uncorrectable data set failures, and other unpredictable results.
These options place very heavy responsibility upon you and should not Qe
treated lightly. The RESERVE and DEQ macros are required with these options
to maintain data set integrity.

When sharing data sets in a cross region or system environment, you should
run VERIFY before opening a data set. VERIFY updates the catalog description
of the data set and discards any erroneous information that may result from
improper closing of the data set. This information and its effects may not be
evident to all systems sharing the data set. VERIFY eliminates the problem if it
is run as the first step of a jobstream.

When the data set is shared under cross-system SHAREOPTIONS 4, regardless
of cross-region requests, VSAM does not allow changes to high-used and
high-key RBAs. In addition, VSAM provides assistance to the application to aid
in preserving the integrity of the data:

120 MVSIXA VSAM Administration Guide

• Control area splits and the addition of a new high-key record for a new
control interval that results from a control interval split are not allowed;
VSAM returns a logical error to the user's program if this condition should
occur.

• The data and sequence-set control interval buffers are marked invalid fol­
lowing I/O operation to a direct access storage device.

Job steps of two or more systems may gain access to the same data set
regardless of the disposition specified in each step's JCL. To get exclusive
control of a volume, a task in one system must issue a RESERVE macro. For
other methods of obtaining exclusive control using global resource serialization
(GRS), see Global Resource Serialization.

Control Block Update Facility (CBUF)
Whenever a data set is opened with cross-region SHAREOPTION 3 or 4, cross­
system SHAREOPTION 3, and DISP=SHR, VSAM record management main­
tains a copy of the critical control block data in common storage. The control
block data in the common storage area is available to each program (each
memory) sharing the data set. The common storage area is available only to
regions within your operating system. Communicating this information to
another operating system is your responsibility.

CBUF eliminates the restriction that prohibits control area splits under cross­
region SHAREOPTION 4. Therefore, you do not need to restrict code to prevent
control area splits, or allow for the control area split error condition. The
restriction to prohibit control area splits for cross-systems SHAREOPTION 4 still
exists.

If the data set has cross-system SHAREOPTION 4, but does not reside on
shared DASD when it is opened, the data set is still processed as a cross­
system SHAREOPTION 4 data set on shared DASD; that is, CBUF processing is
not provided. When a key-sequenced data set has cross-system SHAREOPTION
4, control area splits are prevented; also, split of the control interval containing
the high key of a key range (or data set) is prevented. With control interval
access, adding a new control interval is prevented.

Cross-system sharing can be accomplished by sending the VSAM shared infor­
mation (VSI) blocks to the other host at the conclusion of each output request.
Generally, the VSls will not have changed and only a check occurs.

It should be noted that the SHAREOPTION 3 user must continue to provide
read/write integrity. Although VSAM ensures that SHAREOPTION 3 and 4 users
will have correct control block information if serialization is done correctly, the
SHAREOPTION 3 user will not get the buffer invalidation that will occur with
SHAREOPTION 4.

When improved control interval processing is specified with SHAREOPTION 3 or
4, the data set can be opened; however, if another control block structure
extends the data set, the control block structure using improved control interval
processing will not be updated unless it is closed and reopened.

Chapter 9. Sharing a VSAM Data Set 121

Figure 29 illustrates how the SHAREOPTIONS specified in the catalog and the
disposition specified on the DD statement interact to affect the type of proc­
essing.

(CR CS) when DISP=SHR 1 Functions Provided

(3 3)

(3 4)

(4 3)

(4 4)

CBUF

Data and sequence set buffers
invalidated.
CA split not allowed.

Data and index component buffers
invalidated. CBUF

Data and sequence set buffers invalidated.
CA split not allowed.

Legend:

CA = Control Area
CR = Cross-Region
CS = Cross-System
CBUF = Control Block Update Facility
Buffer invalidated = Invalidation of buffers is automatic

When DISP = OLD is specified or the data set is in create or reset mode
(regardless of the disposition specified), the share options specified in the
catalog are ignored. The data set is processed under the rules for
SHAREOPTIONS(1 3). OPEN ensures that the user has exclusive control of
the data set within a single system. If the data set can be shared between
systems, VSAM does nothing to ensure that another system is not
accessing the data set concurrently. With cross-system sharing, the user
must ensure that another system is not accessing the data set before spec­
ifying DISP=OLD.

Figure 29. Relationship between SHAREOPTIONS and VSAM Functions

User Considerations with CB"UF Processing
If your program shares a data set defined with SHAREOPTIONS(3 3) or
SHAREOPTIONS (4 3). you should note that:

• In a shared environment, VSAM does not allow you to process the data set
in an initial load or reset mode (create). VSAM forces your data set to be
processed as though it were defined with SHAREOPTIONS(1 3).

• A user program cannot share a system data set (for example, the master
catalog, page space data sets, SYS1. data sets, duplex data sets, and swap
data sets).

• The user's program must serialize all VSAM requests against the data set,
using ENQ/DEQ (or a similar function).

• The user's program must ensure that all VSAM resources are acquired and
released within ENQ/DEQ protocol to:

122 MVS/XA VSAM Administration Guide

- Force VSAM to write sequential update and insert requests.
- Release VSAM's positioning within the data set.

• VSAM invalidates buffers used with SHAREOPTIONS 4 data sets, but does
not Invalidate buffers used with SHAREOPTIONS 3 data sets. When a buffer
is marked invalid (it is invalidated), it is identified as a buffer that VSAM
must refresh (read in a fresh copy of the control interval from DASD) before
your program can use the buffer's contents.

• Programs that use GSR and LSR can invalidate and force writing of buffers
using the MRKBFR and WRTBFR macros.

• Because programs in many regions can share the same data set, an error
that occurs in one region may affect programs in other regions that share
the same data set. If a logical error (register 15=8) or physical error (reg­
ister 15 = 12) is detected, any control block changes made before the error
was detected will be propagated to the shared information in common
storage.

• When a VSAM data set requires additional space, VSAM end-of-volume
processing acquires new extents for the VSAM data set, updates the VSAM
control block structure for the data set with the new extent information, and
updates the critical control block data in common storage so that this new
space is accessible by all regions using this VSAM data set. If an abend or
unexpected error occurs, which prevents this space allocation from being
completed, all regions will be prevented from further extending the data set.
To obtain additional space, you must close the VSAM data set in all
regions, then reopen it.

• To correct the data set's control blocks following an abnormal termination
(ABEND), the ACBSWARN flag should be off in the ACB (the default) that is
reopening the data set in order to allow implicit VERIFY processing to take
place. If implicit verify is suppressed (ACBSWARN flag is on), the VERIFY
macro should be issued to update the data set's control blocks. A subse­
quent CLOSE will update the catalog record. Updating of the data set's
catalog record is bypassed following an abnormal termination.

• Implicit VERIFY is invoked by the open-for-output indicator in the catalog.
When a data set is opened and the open-for-output indicator is already on,
CLOSE processing resets the indicator only if the data set was just opened
for output; otherwise it leaves the bit on.

• Data sets shared in a cross-region or cross-system environment should
either use access method services VERIFY command or issue the VERIFY
macro from wit,hin the application program.

Issuing a Checkpoint with Shared Data Sets
If you issue a checkpoint or if a restart occurs, none of the VSAM data sets
open in your region at that time may be using CBUF processing. If you issue
checkpoints, you should open the VSAM data sets that are eligible for CBUF
processing with a disposition of OLD, or CLOSE them prior to the checkpoint.
Note that, if an alternate index was using CBUF processing, the associated
base cluster and any other paths open over that base cluster must also be
closed prior to the checkpoint, even if they are not using CBUF processing.

Chapter 9. Sharing a VSAM Data Set 123

Techniques of Sharing-Examples

Cross-Region Sharing
To maintain write integrity for the data set, your program must ensure that
there is no conflicting activity against the data set until your program completes
updating the control interval. Conflicting activity may be divided into two cate­
gories:

1. A data s.et that is totally preformatted and the only write activity is update­
in-place!

In this case, the sharing problem is simplified by the fact that data cannot
change its position in the data set. The lock that must be held for any write
operation (GET/PUT RPL OPTCD = UPD) is the unit of transfer that is the
control interval. It is your responsibility to associate a lock with this unit of
transfer; the record key is not sufficient unless only a single logical record
resides in a control interval.

The following is an example of the required procedures:

a. Issue a GET for the RPL that has the parameters
OPTCD = (SYN,KEY,NUP,DIR),ARG = MYKEY.

b. Determine the RBA of the control interval (RELCI) where the record
resides. This is based on the RBA field supplied in the RPL(RPLDDDD).

RELCr=CrSrZE * integer-part-of (RPLDDDD / CrSIZE)

c. Enqueue MYDATA.DSNAME.RELCI (the calculated value).

d. Issue a GET for the RPL that has the parameters
OPTCD = (SYN,KEY,UPD,DIR),ARG = MYKEY.

e. Issue a PUT for the RPL that has the parameters
OPTCD =(SYN,KEY,DIR,NSP).

f. Issue an ENDREQ. This forces I/O to DASD, and will drop the position
maintained by NSP and cause data buffer invalidation.

g. Dequeue MYDATA.DSNAME.RELCI.

2. A data set in which record additions and updates with length changes are
permitted.

In this case, the minimum locking unit is a control area to accommo~ate
control interval splits. A higher level lock must be held during operations
involving a control area split. The split activity must be serialized at a data
set level. To implement a multi-level locking procedure, you must be pre­
pared to provide additional programming using the information provided
during VSAM JRNAD processing. This exit is responsible for determining
the level of data movement and obtaining the appropriate lock(s).

Higher concurrency can be achieved by a hierarchy of locks. Based on the
particular condition, one or more of the locking hierarchies must be
obtained.

124 MVS/XA VSAM Administration Guide

Cross-System Sharing

Lock

Control Interval

Control Area

Data Set

Condition

Updating a record in place or adding a record to a
control interval without causing a split.

Adding a record or updating a record with a length
change, causing a control interval split, but not a control
area split.

Adding a record or updating a record with a length
change, causing a control area split.

The following is a basic procedure to provide the necessary protection
while incurring the penalty of locking all updates at the data set level:

SHAREOPTION = (4 3)
Enqueue t·1YDATA.DSNAf.1E

Issue VSAt·, request macros

Dequeue t·1YDATA.DSNAt4E

CBUF processing
Shared for read only;
exclusive for write

In any sharing situation, it is a general rule that all resources be obtained
and released between the locking protocol. All positioning must be
released by using all direct requests or by issuing the ENQREQ macro prior
to ending the procedure with the DEQ.

With cross-system SHAREOPTIONS 3, you have the added responsibility of
passing the VSAM shared information (VSI) and invalidating data and/or index
buffers. This may be done by the use of an informational control record as the
low-key or first record in the data set. The following information is required to
accomplish the necessary index record invalidation:

1. Number of data control interval splits and index updates for sequence set
invalidation

2. Number of data control area splits for index set invalidation

All data buffers should always be invalidated. In order to perform selective
buffer invalidation, an internal knowledge of the VSAM control blocks is
required.

Your program must serialize the following types of requests (precede the
request with an ENQ and, when the request completes, issue a DEQ):

• All PUT requests.

• POINT, GET-direct-NSP, GET-skip, and GET-for-update requests that are fol­
lowed by a PUT-insert or PUT-update request.

• VERIFY requests. When VERIFY is executed by VSAM, your program must
have exclusive control of the data set.

• Sequential GET and PUT requests.

Chapter 9. Sharing a VSAM Data Set 125

User Access to VSAM Shared Information
You can code the following instructions to get the length and address of the
data to be sent to another processor:

• Load ACB address into register RY.

• To locate the VSI for a data component:

L RX,a4(,RY) Put AMBL address into register RX
L 1,52(,RX) Get data Ar-1B address
L 1,68(,1) Get VSI address
LH a,62(,I) Load data length
LA 1,62(,1) Point to data to be communicated

• To locate the VSI information for an index component of a key-sequenced
data set:

L RX,a4(,RY)
L 1,56 (,RX)
L 1,68(,1)
LH a ,62 (,1)
LA 1,62 (,1)

Put AMBL address into register RX
Get index AMB address
Get VSI address
Load data length
Point to data to be communicated

Similarly, the location of the VSI on the receiving processor may be located
through the AMB. The VSI level number must be incremented in the receiving
VSI to inform the receiving processor that the VSI has changed. To update the
level number, assuming the address of the VSI is in register 1:

LA a,l
AL a,64 (,1)
ST a,64(,I)

Place increment into register a
Add level number to increment
Save new level number

All processing of the VSI must be protected by the use of ENQ/DEQ to prevent
simultaneous updates to the transmitted data.

If the data set can be shared between MVS/XA operating systems. a user's
program in another system may concurrently access the data set. Before you
open the data set specifying DISP = OLD, it is your responsibility to protect
across systems with ENQ/DEQ in the UCB option or equivalent functions.

'--______ End of General-Use Programming Interface ______ -'

126 MVS/XA VSAM Administration Guide

Chapter 10. Sharing Resources among Data Sets

General-Use Programming Interface

This chapter is intended to help you share resources among your data sets. It
contains general-use programming interfaces, which allow you to write pro­
grams that use the services of MVS/XA Data Facility Product.

VSAM has a set of macros that enables you to share I/O buffers and 1I0-related
control blocks among many VSAM data sets. In VSAM, an 110 buffer is a virtual
storage area from which the contents of a control interval are read and written.
Sharing these resources optimizes their use, reducing the requirement for
virtual storage and therefore reducing ;Jaging of virtual storage.

Sharing these resources is not the same as sharing a data set itself (that is,
sharing among different tasks that independently open it). Data set sharing can
be done with or without sharing 110 buffers and 1I0-related control blocks. For
a discussion of data set sharing. see Chapter 9, "Sharing a VSAM Data Set" on
page 113.

There are also macros that allow you to manage I/O buffers for shared
resources.

Sharing resources does not improve sequential processing. VSAM does not
automatically position itself at the beginning of a data set opened for sequential
access, because placeholders belong to the resource pool, not to individual
data sets. When you share resources for sequential access, pOSitioning at the
beginning of a data set has to be specified explicitly with the POINT macro or
the direct GET macro with RPL OPTCD = NSP. You may not use a resource
pool to load records into an empty data set.

Providing a Resource Pool
To share resources, follow this procedure:

1. Use the BLDVRP macro to build a resource pool.

2. Code a MACRF operand in the ACB and use OPEN to connect your data
sets to the resource pool.

3. After you have closed all the data sets, use the DLVRP macro to delete the
resource pool.

Building a Resource Pool: BLDVRP
Issuing BLDVRP causes VSAM to share the 1/0 buffers and I/O-related control
blocks of data sets whose ACBs indicate the corresponding option for shared
resources. Control blocks are shared automatically; you may control the
sharing of buffers.

Chapter 10. Sharing Resources among Data Sets 127

You may share resources locally or globally:

• LSR (local shared resources)

You can build up to 16 data resource pools and 16 index resource pools in
one address space. Each resource pool must be built individually. _ The
data pool must exist before the index pool with the same share pool identifi­
cation can be built. The parameter lists for these multiple LSR pools can
reside above or below 16 megabytes. The BLDVRP macro RMODE31
parameter indicates where VSAM is to obtain virtual storage when the LSR
pool control blocks and data buffers (specified by the SHRPOOL keyword)
are built.

These resource pools are built with the BLDVRP macro TYPE = LSR and
DATAl INDEX specifications. Specifying MACRF = LSR on the ACB or
GENCB-ACS macros causes the data set to use the LSR pools built by the
BLDVRP macro. The DLVRP macro processes both the data and index
resource pools.

The separate index resource pools are not supported for GSR.

• GSR (global shared resources)

All address spaces for a given protection key in the system share one
resource pool. Only one resource pool can be built for each of the pro­
tection keys a through 7. With GSR. an access method control block and all
related request parameter lists, exit lists, data areas, and extent control
blocks must be in the common area of virtual storage with protection key
the same as that of the resource pool. To get storage in the common area
with that protection key, issue the GETMAIN macro while in that key, for
storage in subpool 241.

Generate ACBs, RPLs, and EXLSTs with the GENCB macro-code the
WAREA and LENGTH operands. The program that issues macros related to
that global resource pool must be in supervisor state with the same key.
(The macros are: BLDVRP, CHECK, CLOSE, DLVRP, ENDREQ. ERASE,
GENCB, GET, GETIX, MODCS. MRKBFR, OPEN. POINT, PUT, PUTIX,
SCHBFR, SHOWCB, TESTCB. and WRTBFR. The SHOWCAT macro is not
related to a resource pool, because it is issued independently of an opened
data set.)

You may have both a global resource pool and local resource pools. Tasks in
an address space that have a local resource pool may use either the global
resource pool. under the restrictions described above, or the local resource
pool. There may be multiple buffer pools based on buffer size for each
resource pool.

To share resources locally. a task in the address space issues BLDVRP
TYPE=LSR. DATAIINDEX. To share resources globally, a system task issues
BLDVRP TYPE = GSR. The program that issues BLDVRP TYPE = GSR must be
in supervisor state with key 0 to 7.

When you issue BLDVRP, you specify the size and number of buffers in each
buffer pool and the number of buffer pools in the resource pool. For the data
pool or the separate index pool at OPEN time, a data set is assigned the one
buffer pool with buffers of the appropriate size-either the exact control interval
size requested. or the next larger size available.

128 MVS/XA VSAM Administration Guide

Deciding How Big a Resource Pool to Provide
You have to provide a resource pool before any clusters or alternate indexes
are opened to use it. To specify the BUFFERS, KEY LEN, and STRNO operands
of the BLDVRP macro, you must know the size of the control intervals, data
records (if spanned), and key fields in the components that will use the
resource pool. You must also know how the components are processed. You
can use the SHOWCAT and SHOWCB macros to get this information.

For each VSAM cluster that will share the resource pool you are building, follow
this procedure:

1. Determine the number of concurrent requests you expect to process. This
number represents 'STRNO' for the cluster.

2. Specify 'BUFFERS = (SIZE{STRNO + 1))' for the data component of the
cluster.

• If the cluster is a key-sequenced cluster and the index CISZ (control
interval size) is the same as the data CISZ, change the specification to
'BUFFERS =(SIZE(2 X STRNO) + 1)' .

• If the index CISZ is not the same as the data component CISZ, specify
'BUFFERS = (dataCISZ(STRNO + 1),indexCISZ(STRNO)),.

Following this procedure will provide the minimum number of buffers needed to
support concurrently active STRNO strings. An additional string is not dynam­
ically added to a shared resource pool. The calculation can be repeated for
each cluster which will share the resource pool, including associated alternate
index clusters and clusters in the associated alternate index upgrade sets.

For each cluster component having a different CISZ, add another
',SIZE(NUMBER)' range to the 'BUFFERS = 'specification. Note that the data
component and index component buffers may be created as one set of buffers,
or, by use of the 'TYPE =' statement, may be created in separate index and
data buffer sets.

Additional buffers may be added to enhance performance of applications
requiring read access to data sets by reducing 1/0 requirements. You should
also consider the need for cross region or cross system sharing of the data
sets where modified data buffers must be written frequently to enhance read
and update integrity. A large number of buffers is not usually an advantage in
such environments. In some applications where a resource pool is shared by
multiple data sets and not all data set strings are active concurrently, less than
the recommended number of buffers may produce satisfactory results.

If the specified number of buffers is not adequate, VSAM will return a logical
error indicating the out of buffer condition.

Displaying Information about an Unopened Data Set
The SHOWCAT macro enables you to get information about a component before
its cluster or alternate index is opened. The program that is to issue BLDVRP
can issue SHOWCAT on all the components to find out the sizes of control inter­
vals, records; and keys. This information enables the program to calculate
values for the BUFFERS and KEY LEN operands of BLDVRP.

Chapter 10. Sharing Resources among Data Sets 129

A program need not be in supervisor state with protection key 0 to 7 to issue
SHOWCAT, even though it must be in supervisor state and in protection key 0 to
7 to issue BLDVRP TYPE = GSR.

The SHOWCAT macro is described in Catalog Administration Guide.

Displaying Statistics about a Buffer Pool
The statistics cannot be used to redefine the resource pool while it is in use.
You have to make adjustments the next time you build it.

The use of SHOWCB to display an ACB is described in "Manipulating Control
Block Contents" on page 44. If the ACB has MACRF = GSR, the program that
issues SHOWCB must be in supervisor state with protection key 0 to 7. A
program check can occur if SHOWCB is issued by a program that is not in
supervisor state with the same protection key as that of the resource pool.

For buffer pool statistics, the keywords described below are specified in the
FIELDS operand. These fields may be displayed only after the data set
described by the ACB is opened. Each field requires one fullword in the display
work area:

Field

BFRFND

BUFRDS

NUIW

STRMAD

UIW

Description

The number of requests for retrieval that could be satisfied
without an 1/0 operation (the data was found in a buffer)

The number of reads to bring data into a buffer

The number of nonuser-initiated writes (writes that VSAM was
forced to do because no buffers were available for reading the
contents of a control interval)

The maximum number of placeholders currently active for the
resource pool (for all the buffer pools in it)

The number of user-initiated writes (PUTs not deferred or
WRTBFRs. see "Deferring Write Requests" on page 132).

Connecting a Data Set to a Resource Pool: OPEN
You cause a data set to use a resource pool that was built by BLDVRP by spec­
ifying LSR or GSR in the MACRF operand of the data set's ACB before you
open the data set.

ACB MACRF=({NSRllSRIGSR}, •••), •••

NSR. the default, indicates the data set does not use shared resources. LSR
indicates it uses the local resource pool. GSR indicates it uses the global
resource pool.

If the VSAM control blocks and data buffers reside above 16 megabytes, the
RMODE31 = ALL operand must be specified in the ACB before OPEN is issued.
If the OPEN parameter list or the VSAM ACB resides above 16 megabytes, the
MODE = 31 parameter of the OPEN macro must also be coded.

When an ACB indicates LSR or GSR. VSAM ignores its BSTRNO, BUFNI,
BUFND, BUFSP, and STRNO operands because VSAM will use the existing
resource pool for the resources associated with these parameters.

130 MVS/XA VSAM Administration Guide

To connect LSR pools with a SHRPOOL identification number other than
SHRPOOL =0, you must use the SHRPOOL parameter of the ACB macro to indi­
cate which LSR pool you are connecting.

If more than one ACB is opened for LSR processing of the same data set, the
LSR pool identified by the SHRPOOL parameter for the first ACB will be used
for all subsequent ACBs.

For a data set described by an ACB with MACRF = GSR, the ACB and all
related RPLs, EXLSTs, ECBs, and data areas must be in the common area of
virtual storage with the same protection key as that of the resource pool.

Deleting a Resource Pool: DLVRP
After all data sets using a resource pool are closed, delete the resource pool by
issuing the DLVRP (delete VSAM resource pool) macro. Failure to delete a
local resource pool causes virtual storage to be lost until the end of the job
step or TSO session. This loss is protected with a global resource pool. If the
address space that issued BLDVRP terminates without having issued DLYRP,
the system deletes the global resource pool when its use count is O.

To delete an LSR pool with a SHRPOOL identification number other than
SHRPOOL =0, you must use the SHRPOOL parameter to indicate which
resource pool you are deleting. If both a data resource pool and an index
resource pool have the same SHRPOOL number, both will be deleted.

If the DLVRP parameter list is to reside above 16 megabytes, the MODE = 31
parameter must be coded.

Managing I/O Buffers for Shared Resources
Managing I/O buffers includes:

• Deferring writes for direct PUT requests, which reduces the number of I/O
operations.

• Writing buffers that have been modified by related requests.

• Locating buffers that contain the contents of specified control intervals.

• Marking a buffer to be written without issuing a PUT.

• When your program accesses an invalid buffer, VSAM refreshes the buffer
(that is, reads in a fresh copy of the control. interval) before making its con­
tents available to your program.

Managing I/O buffers should enable you to speed up direct processing of VSAM
data sets that are accessed randomly. You probably will not be able to speed
up sequential processing or processing of a data set whose activity is consist­
ently heavy.

Chapter 10. Sharing Resources among Data Sets 131

Deferring Write Requests
VSAM automatically defers writes for sequential PUT requests. It normally
writes out the contents of a buffer immediately for direct PUT requests. With
shared resources, you can cause writes for direct PUT requests to be deferred.
Buffers are finally written out:

• When you issue the WRTBFR macro.

• When VSAM needs a buffer to satisfy a GET request.

• When a data set using a buffer pool is closed. (Temporary CLOSE is inef­
fective against a data set that is sharing buffers, and ENDREQ does not
cause buffers in a resource pool to be written.)

Deferring writes saves 110 operations when subsequent requests can be satis­
fied by the data in the buffer pool. If you are going to update control intervals
more than once, data processing performance will be improved by deferring
writes.

You indicate that writes are to be deferred by coding MACRF = DFR in the ACB,
along with MACRF = LSR or GSR.

ACB ~~CRF=({lSRIGSR},{DFRINDF}"")",,

The DFR option is incompatible with SHAREOPTIONS 4. (SHAREOPTIONS is a
parameter of the DEFINE command of access method services. It is described
in Access Method Services Reference.) A request to open a data set with
SHAREOPTIONS 4 for deferred writes is rejected.

VSAM notifies the processing program when an unmodified buffer has been
found for the current request and there will be no more unmodified buffers into
which to read the contents of a control interval for the next request. (VSAM will
be forced to write a buffer to make a buffer available for the next 110 request.)
VSAM sets register 15 to 0 and puts 12 (X 'OC') in the feedback field of the RPL
that defines the PUT request detecting the condition.

VSAM also notifies the processing program when there are no buffers available
to be assigned to a placeholder for a request. This is a logical error (register
15 contains 8 unless an exit is taken to a LERAD routine); the feedback field in
the RPL contains 152 (X ' 98 '). You may retry the request; it gets a buffer if one
is freed.

Relating Deferted Requests by Transaction ID
You can relate action requests (GET, PUT, and so forth) according to trans­
action by specifying the same 10 in the RPLs that define the requests.

The purpose of relating the requests that belong to a transaction is to enable
WRTBFR to cause all the modified buffers used for a transaction to be written.
When the WRTBFR request is complete, the transaction is physically complete.

RPl TRANSID=number, •••

TRANSID specifies a number from 0 to 31. The number 0, which is the default,
indicates that requests defined by the RPL are not associated with other
requests. A number from 1 to 31 relates the request(s) defined by this RPL to
the request(s) defined by other RPLs with the same transaction 10.

132 MVSIXA VSAM Administration Guide

You can find out what transaction 10 an RPL has by issuing SHOWCB or
TESTCB.

SHOWCB FIELDSc([TRANSID], •••), •••

TRANSIO requires one fullword in the display work area.

TESTCB TRANSIDcnumber, •.•

If the ACB to which the RPL is related has MACRF = GSR, the program that
issues SHOWCB or TESTCB must be in supervisor state with the same pro­
tection key as that of the resource pool. With MACRF = GSR specified in the
ACB to which the RPL is related. a program check can occur if SHOWCB or
TESTCB is issued by a program that is not in supervisor state with protection
key 0 to 7. For more information on the use of SHOWCB and TESTCB, see
"Manipulating Control Block Contents" on page 44.

Writing Buffers Whose Writing Is Deferred: WRTBFR
If any PUTs to a data set using a shared resource pool are deferred, you can
use the WRTBFR (write buffer) macro to write:

• All modified unwritten index and data buffers for a given data set
• All modified unwritten index and data buffers in the resource pool
• The least recently used modified buffers in each buffer pool of the resource

pool
• All buffers that were modified by requests with the same transaction 10
• A buffer, identified by an RBA value, that has been modified and has a use

count of zero

You can specify the OFR option in an ACB without using WRTBFR to write
buffers-a buffer is written when VSAM needs one to satisfy a GET request. or
all modified buffers are written when the last of the data sets that uses them is
closed.

Besides using WRTBFR to write buffers whose writing is deferred, you can use
it to write buffers that are marked for output with the MRKBFR macro, which is
described in "Marking a Buffer for Output: MRKBFR" on page 135.

Using WRTBFR can improve performance, if you schedule WRTBFR to overlap
other processing.

When sharing the data set with a user in another region, your program might
want to write the contents of a specified buffer without writing all other modified
buffers. Your program issues the WRTBFR macro to search your buffer pool for
a buffer containing the specified RBA. If found, the buffer is examined to verify
that it is modified and has a use count of zero. If so, VSAM writes the contents
of the buffer into the data set.

Note: Before using WRTBFR TYPE=CHKITRNIORBA, be sure to release all
buffers. (For details about releasing buffers, see "Multistring Processing" on
page 52.) If one of the buffers is not released, VSAM defers processing until
the buffer is released.

Chapter 10. Sharing Resources among Data Sets 133

Handling Exits to Physical Error Analysis Routines
With deferred writes of buffers, a processing program continues after its PUT
request has been completed, even though the buffer has not been written. The
processing program is not synchronized with a physical error that occurs when
the buffer is finally written. A processing program that uses MRKBFR
MARK = OUT is also not synchronized with a physical error. An EXCEPTION or
a SYNAD exit routine must be supplied to analyze the error.

The ddname field of the physical error message identifies the data set that was
using the buffer, but, because the buffer might have been released, its contents
might be unavailable. You can provide a JRNAD exit routine to record the con­
tents of buffers for I/O errors. It can be coordinated with a physical error anal­
ysis routine to handle 1/0 errors for buffers whose writing has been deferred. If
a JRNAD exit routine is used to cancel I/O errors during a transaction, the
physical error analysis routine will get only the last error return code. See Data
Facility Product: Customization for more information on the SYNAD and JRNAD
exit routines.

Using the JRNAD Exit with Shared Resources
VSAM takes the JRNAD exit for the following reasons when the exit is associ­
ated with a data set whose ACB has MACRF = LSR or GSR:

• A data or index control interval buffer has been modified and is about to be
written.

• A physical error occurred. VSAM takes the JRNAD exit first-your routine
can direct VSAM to bypass the error and continue processing or to termi­
nate the request that occasioned the error and proceed with error proc­
essing.

• A control interval or a control area is about to be split for a key-sequenced
data set. Your routine can cancel the request for the split and leave VSAM.
An example of using JRNAD exit for this purpose is given in Data Facility
Product: Customization.

See Data Facility Product: Customization for information describing the contents
of the registers when VSAM exists to the JRNAD routine, and the fields in the
parameter list pointed to by register 1.

Accessing a Control Interval with Shared Resources
Control interval access is not allowed with shared resources.

Locating an RBA in a Buffer Pool: SCHBFR
When a resource pool is built, the buffers in each buffer pool are numbered
from 1 through the number of buffers in each buffer pool. At a given time,
several buffers in a buffer pool may hold the contents of control intervals for a
particular data set. These buffers mayor may not contain RBAs of interest to
your processing program. The SCHBFR macro enables you to find out. You
specify in the ARG operand of the RPL that defines SCHBFR the address of an
8-byte field that contains the first and last control interval RBAs of the range
you are interested in.

The buffer pool to be searched is the one used by the data component defined
by the ACB to which your RPL is related. If the ACB names a path, VSAM
searches the buffer pool used by the data component of the alternate index. (If
the path is defined over a base cluster alone, VSAM searches the buffer pool

134 MVS/XA VSAM Administration Guide

/

used by the data component of the base cluster.) VSAM begins its search at
the buffer you specify and continues until it finds a buffer that contains an RBA
in the range or until the highest numbered buffer is searched.

For the first buffer that satisfies the search, VSAM returns its address
(OPTCD = LaC) or its contents (OPTCD = MVE) in the work area whose address
is specified in the AREA operand of the RPL and returns its number in register
O. If the search fails, Register 0 is returned with the user specified buffer
number and a one-byte SCHBFR code of X 'DO '. To find the next buffer that
contains an RBA in the range, issue SCHBFR again and specify the number of
the next buffer after the first one that satisfied the search. You continue until
VSAM indicates it found no buffer that contains an RBA in the range or until you
reach the end of the pool.

Finding a buffer that contains a desired RBA does not get you exclusive control
of the buffer. You may get exclusive control only by issuing GET for update.
SCHBFR does not return the location or the contents of a buffer that is already
under the exclusive control of another request.

Marking a Buffer for Output: MRKBFR
You locate a buffer that contains the RBA you are interested in by issuing a
SCHBFR macro, a read-only GET, or a GET for update. When you issue GET for
update, you get exclusive control of the buffer. Whether you have exclusive
control or not, you can mark the buffer for output by issuing the MRKBFR macro
with MARK = OUT and then change the buffer's contents. Without exclusive
control, you should not change the control information in the CIDF or RDFs (do
not change the record lengths).

MRKBFR MARK = OUT, indicates that the buffer's contents are modified. You
must modify the contents of the buffer itself-not a copy. Consequently, when
you issue SCHBFR or GET to locate the buffer, you must specify RPL
OPTCD = LOC. (If you use OPTCD = MVE, you get a copy of the bUffer but do
not learn its location.) The buffer is written when a WRTBFR is issued or when
VSAM is forced to write a' buffer to satisfy a GET request.

If you are sharing a buffer or have exclusive control of it, you can release it
from shared status or exclusive control with MRKBFR MARK = RLS. If the
buffer was marked for output, MRKBFR with MARK = RLS does not nullify it; the
buffer is eventually written. Sequential positioning is lost. MRKBFR with
MARK = RLS is similar to the ENDREQ macro.

Summary of Restrictions for Shared Resources
Restrictions for using the LSR and GSR options are:

• Empty data sets cannot be processed (that is. loaded).

• Multiple LSR pools in an address space are obtained by using the
SHRPOOL parameter of the BLDVRP macro to identify each LSR pool.

• Control interval access cannot be used.

• Control blocks in common (CBIC) cannot be used.

• User buffering is not allowed (ACB MACRF = UBF).

Chapter 10. Sharing Resources among Data Sets 135

• Writes for data sets with SHAREOPTIONS 4 cannot be deferred (ACB
MACRF = DFR).

• Request parameter lists for MRKBFR, SCHBFR, and WRTBFR cannot be
chained (the NXTRPL operand of the RPL macro is ignored).

• For sequential access, positioning at the beginning of a data set must be
explicit: with a POINT macro or a direct GET macro with RPL
OPTCD=NSP.

• Temporary CLOSE and ENDREQ do not cause buffers to be written if
MACRF = DFR was specified in the associated ACB.

• With GSR, an ACB and all related RPLs, EXLSTs, data areas, and ECBs
must be stored in the common area of virtual storage with protection key 0
to 7; all VSAM requests related to the global resource pool may be issued
only by a program in supervisor state with protection key 0 to 7 (the same
as that of the resource pool).

• Checkpoints cannot be taken for data sets whose resources are shared in a
global resource pool. When a program in an address space that opened a
data set whose ACB has MACRF = GSR issues the CHKPT macro, 8 is
returned in register 15. If a program in another address space issues the
CHKPT macro, the checkpoint is taken, but only for data sets that are not
using the global resource pool.

Checkpoint/restart can be used with data sets whose resources are shared
in a local resource pool, but the restart program does not reposition for
processing at the point where the checkpoint occurred-processing is
restarted at a data set's highest used RBA. For information about
restarting the processing of VSAM data sets, see Checkpoint/Restart User's
Guide.

• If a physical 1/0 error is encountered while writing a control interval to the
direct access device, the buffer remains in the resource pool. The write­
required flag (BUFCMW) and associated mod bits (BUFCMDBT) are turned
off, and the BUFC is flagged in error (BUFCER2 = ON). The buffer is not
replaced in the pool, and buffer writing is not attempted. To release this
buffer for reuse, a WRTBFR macro with TYPE = DS can be issued or the
data set can be closed (CLOSE issues the WRTBFR macro).

L-______ End of General-Use Programming Interface ______ -'

136 MVS/XA VSAM Administration Guide

Chapter 11. User-Written Exit Routines

User-written routines may be supplied to:

• Analyze logical errors (LERAD routine)

• Analyze physical errors (SYNAD routine)

• Perform end-of-data processing (EODAD routine)

• Record transactions made against a data set (JRNAD routine)

• Perform special user processing (UPAD routine)

• Perform user security verification (USVR routine)

• Perform datestamp processing (IDATMSTP program)

For more information about user-written exit routines, refer to data Facility
Product: Customization.

Chapter 11. User-liVritten Exit Routines 137

Chapter 12. Checking a VSAM Key-Sequenced Data Set
Cluster for Errors

This chapter describes how the service aid, EXAMINE, is used to analyze a
VSAM key-sequenced data set (KSDS) cluster for structural errors. The topics
discussed are:

• Types of data sets that can be tested by EXAMINE
• Types of EXAMINE end users
• Selection criteria for running the tests INDEXTEST and DATATEST
• Controlling message printout
• Skipping the OAT ATEST on major INDEXTEST errors
• Breakdown and meaning of EXAMINE error message types
• Samples of output from EXAMINE runs

Introduction to EXAMINE
EXAMINE is an access method services command that allows the user to
analyze and collect information on the structural consistency of key-sequenced
data set clusters. This service aid consists of two tests: INDEXTEST and
DATATEST.

INDEXTEST examines the index component of the key-sequenced data set
cluster by cross-checking vertical and horizontal pointers contained within the
index control intervals, and by performing analysis of the index information. It
is the default test of EXAMINE.

DATATEST performs an evaluation of the data component of the key-sequenced
data set cluster by sequentially reading all data control intervals, including free
space control intervals. Tests are then carried out to ensure record and control
interval integrity, free space conditions, spanned record update capacity, and
the integrity of various internal VSAM pointers contained within the control
interval.

For a complete description of the EXAMINE command format, see the "Func­
tional Command Format" chapter in Integrated Catalog Administration: Access
Method Services Reference.

Types of Data Sets
There are three types of data sets that can be tested by EXAMINE:

• Key-Sequenced Data Set
• VSAM Catalog
• Integrated Catalog Facility Catalog (BCS component)

Users of EXAMINE
EXAMINE end users fall into two categories:

1. Application Programmer/Data Set Owner. These users will want to know of
any structural inconsistencies in their data sets, and they will be directed to
corresponding IBM-supported recovery methods by appropriate summary
messages. Their primary focus is to know the condition of data sets, and it

Chapter 12. Checking a VSAM Key-Sequenced Data Set Cluster for Errors 139

is suggested that they use the ERRORLlMIT(O) parameter of EXAMINE to
suppress printing of detailed error messages.

2. System Programmer/Support Personnel. System programmers or support
personnel will obtain information from detailed error messages necessary
to determine what is wrong with a certain data set because they may want
to document or fix a problem.

Users must have master level access to a catalog or control level access to a
data set in order to examine it. Master level access to the master catalog is
also sufficient to examine an integrated catalog facility user catalog.

How to Run EXAMINE

Sharing Considerations
There should not be any users open to the data set during the EXAMINE run.

EXAMINE will issue message "IDC017231 ERRORS MAY BE DUE TO CONCUR­
RENT ACCESS" if errors are detected and determine that the data set may have
been open for output during testing. Presence of this message does not neces­
sarily indicate that the reported errors were due to concurrent access.

When EXAMINE is run against a catalog, concurrent access may have occurred
without the message being issued. Because it may be difficult to stop system
access to the catalog, jobs should not be run that would cause an update to the
catalog.

For further considerations of data set sharing, see Chapter 9, "Sharing a VSAM
Data Set" on page 113.

Deciding to Run an INDEXTEST, a DATATEST or Both Tests
INDEXTEST reads the entire index component of the KSDS cluster.

DATATEST reads the sequence set from the index component and the entire
data component of the KSDS cluster. For this reason, it should take consider­
ably more elapsed time and more system resources than INDEXTEST.

If you are using EXAMINE to document an error in the data component, run both
tests. If you are using EXAMINE to document an error in the index component, it
is usually not necessary to run the DATATEST.

If you are using EXAMINE to confirm a data set's integrity, the decision to run
one or both tests depends on the time and resources available to you.

Controlling Message Printout
For details about using the ERRORLIMIT parameter of EXAMINE to suppress
printing of supportive and individual data set structural error messages, see the
section "Output from EXAMINE."

140 MVS/XA VSAM Administration Guide

Skipping DATATEST on Major INDEXTEST Errors
If you decide to run both tests (INDEXTEST and DATATEST), INDEXTEST runs
first. If INDEXTEST finds major structural errors, DATATEST doesn't run, even
though you requested it. This gives you a chance to review the output from
INDEXTEST and to decide whether or not you need to run DATATEST.

If you want to run DATATEST unconditionally, you must specify the
NOINDEXTEST parameter on the EXAMINE statement to bypass the INDEXTEST.

Special Considerations When Examining a VSAM Catalog
When analyzing a VSAM catalog, a STEPCAT DD statement should be used to
point to that catalog, and a VERIFY DATASET command should be applied
before the EXAMINE command. The STEPCAT DD statement is not required for
the master catalog.

Special Considerations When Examining an Integrated Catalog Facility User
Catalog

The user must have master level access to either the user catalog being exam­
ined or to the master catalog. If the user has master level access to the master
catalog, the self-describing records in the user catalog will not be read during
open. If the user has only master level access to the user catalog being exam­
ined, a STEPCAT DD statement for the user catalog is required, and the catalog
self-describing records will be read during open.

If the master catalog is protected by the Resource Access Control Facility or an
equivalent product and the user does not have alter authority to it, a message
may be issued indicating an authorization failure when the check indicated
above is made. This is normal. and, if the user has master level access to the
catalog being examined and the required STEPCAT DD statement, the examina­
tion will continue.

Output from EXAMINE

Message Hierarchy
Messages describing errors or inconsistencies are generated during EXAMINE
processing as that condition is detected. The detection of an error condition
may result in the generation of many messages. There are five distinct types of
EXAMINE error messages:

1. Status and Statistical Message. This type of message tells you the status of
the EXAMINE operation, such as the beginning and completion of each test.
It provides general statistical data. such as the number of data records. the
percentage of free space in data control intervals (Cis), and the number of
deleted Cis. The four status messages are: IDC01700l, IDC017011,
IDC017091, and IDC017241. The five statistical messages are IDC017081,
IDC01710l, IDC017111, IDC017121, and IDC017221.

2. Supportive (Informational) Message. Supportive messages (all remaining
IDCO-type messages) issued by EXAMINE are used to clarify individual data
set structural errors and to provide additional information pertinent to an
error.

Chapter 12. Checking a VSAM Key-Sequenced Data Set Cluster for Errors 141

3. Individual Data Set Structural Error Message. The identification of an error
is always reported by an individual data set structural error (IDC1-type)
message which may be immediately followed by one or more supportive
messages.

4. Summary Error Message. One or more summary error (IDC2-type) mes­
sages are generated at the completion of either INDEXTEST or DATATEST
to categorize all individual data set structural error (IDC1-type) messages
displayed during the examination. The summary error message represents
the final analysis of the error(s) encountered, and the user should follow the
course of recovery action as prescribed by the documentation.

5. Function-Not-Performed Message. Function-not-performed messages are all
IDC3-type messages which indicate that the function you requested cannot
be successfully performed by EXAMINE. In each case, the test operation
t~rminates before the function completes.

Function-not-performed messages are issued for a variety of reasons,
among which are the following:

• An invalid request such as an attempt to examine an entry-sequenced
(ESDS) data set

• A physical I/O error in a data set

• A system condition such as insufficient storage

• A system error (such as an OBTAIN DSCB failed)

• An error encountered during INDEXTEST (see "Skipping DATATEST on
Major INDEXTEST Errors" on page 141)

Controlling Message Printout
The ERRORLIMIT parameter in the EXAMINE command can be used to sup­
press supportive and individual data set structural error messages during an
EXAMINE run. This parameter indicates the number of errors for which sup­
portive and individual data set structural error messages are to be printed.
When this value is reached, EXAMINE stops issuing error messages, but con­
tinues to scan the data set. ERROR LIMIT (0) means that none of these mes­
sages will be printed. When the ERRORLIMIT parameter is not specified by the
user (the default condition). all supportive and individual data set structural
error messages are printed. Note that the status and statistical messages,
summary messages, and function-not-performed messages are not under the
control of ERRORLIMIT, and will print regardless of the ERRORLIMIT settings.
The ERRORLIMIT parameter is used separately by INDEXTEST and DATATEST.
For more details about using this parameter, see Integrated Catalog Adminis­
tration: Access Method Services Reference.

142 MVS/XA VSAM Administration Guide

Samples of Output from EXAMINE Runs

INDEXTEST/DATATEST against an Error-Free Data Set
In this run, INDEXTEST and DATATEST are both executed successfully against
an error-free data set. The first four messages tell us the status of the two
EXAMINE tests performed with no errors detected. The next five messages
then summarize component statistics as revealed by the DATATEST.

IDCAI·IS SYSTEf.l SERVICES

EXAmNE NAI.1E(EXAI·lINLKD05) -
INDEXTEST -
DATATEST

IDC017001 INDEXTEST BEGINS
IDC017241 INDEXTEST Cor·IPLETES NO ERRORS DETECTED
IDC017011 DATATEST BEGINS
IDC017091 DATATEST CO~lPLETES NO ERRORS DETECTED

IDC017081 45 CONTROL INTERVALS ENCOUNTERED
IDC017101 DATA COMPONENT CONTAINS 1000 RECORDS
IDC017111 DATA Cor·1PONENT CONTAINS 0 DELETED CONTROL INTERVALS
IDC017121 MAXIMUM LENGTH DATA RECORD CONTAINS 255 BYTES
IDC017221 65 PERCENT FREE SPACE

IDC00011 FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

INDEXTEST/DATATEST against a Data Set with a Structural Error
The user intended to run both tests, INDEXTEST and DATATEST, but INDEXTEST
found an error in the sequence set. From the messages, we learn the following:

• A structural problem was found in the index component of the KSDS cluster.

• The current index level is 1 (which is the sequence set).

• The index control interval (beginning at the relative byte address of decimal
23552) where it found the error is displayed.

• The error is located at offset hexadecimal 10 into the control interval.

Because of this severe INDEXTEST error, DATATEST will not run in this partic­
ular case.

Chapter 12. Checking a VSAM Key-Sequenced Data Set Cluster for Errors 143

IDCAMS SYSTEM SERVICES

EXAMINE NAME(EXAMINE.KD99) INDEXTEST DATATEST
IDC01700I INDEXTEST BEGINS
IDC11701I STRUCTURAL PROBLEM FOUND IN INDEX
IDC01707I CURRENT INDEX LEVEL IS 1
IDC01720I INDEX CONTROL INTERVAL DISPLAY AT RBA 23552 FOLLOWS
000000 01F90301 00000000 00005EOO 00000000 02000021 010701BC 2D2C282A 29282726
000020 25000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OOOOAO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OOOOCO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OOOOEO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000100 00000000 0000F226 01240007 F7F12502 23F82601 22F72601 21F42601 20F32601
000120 1FF6F025 021E001B F525011D F626011C F5260118 F226011A F5F12502 19F82601
000140 18001CF4 F7250217 F4260116 F3260115 F4F02502 14260013 F6260112 001BF3F5
000160 250211F2 260110F3 F125020F F826010E F726010D F426010C 001CF2F3 25020BF2
000180 F025020A 260009F6 26010BF5 260107F2 26010600 40FOFOFO FOFOFOFO FOFOFOFO
0001AO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOF1Fl 002705F8
0001CO 260104F7 260103F4 260102F3 260101FO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO
0001EO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOF00027 000001F9 01F90000
IDC01714I ERROR LOCATED AT OFFSET 00000010
IDC21701I MAJOR ERRORS FOUND BY INDEXTEST
IDC31705I DATATEST NOT PERFORMED DUE TO SEVERE INDEXTEST ERRORS
IDC3003I FUNCTION TERMINATED. CONDITION CODE IS 12

IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 12

x.g•..................... X
x •••••••••••••••.•.•••••••••••••• x
x •••••••••••••••••.•••••••••••••• x
x •••••••••••••••••••••••••••••••• x
x ••••••••.•••...••••.•••....••••• x
x ••••••••••..•••.•.•••••••••••••• x
x •••••••••••••••••••••••••••••••• X
x •••••.••.•.••••••.••••.•••••••.• x
x •••.•• 2 •.•.• 71 •.• 8 •.• 7 ••• 4 •.• 3 .• x
x.60 ••.•• 5 ... 6 ••. 5 .•• 2 ••• 51. .• 8 .• x
x ••• 47 ••• 4 ••• 3 ••. 40 ••.•.• 6 .•••• 35x
x ••• 2 .•• 31 ••• B ••• 7 ••• 4 ••••• 23 .•• 2x
xO •••.•• 6 ••• 5 .•. 2 .•.• OOOOOOOOOOOx
x0000000000000000000000000011 .•• 8x
x ••• 7 .•• 4 ••. 3 ••• 00000000000000000x
xOOOOOOOOOOOOOOOOOOOOOO ••••• 9.9 •• x

()
~
(1)
(')

Co
J
co
~

r;5
» s::

" (1)

"'f en
(1)
.c
c:
(1)
J
(')

~
o
~ or
en
II
()

C
(II

CD .,
0' .,
m ., .,
o .,
(II

IDCAMS SYSTEM SERVICES

EXAMINE NAMEtEXAMINE.KD99) INDEXTEST DATATEST
IDCOl700I INDEXTEST BEGINS
IDCOl724I INDEXTEST COMPLETE NO ERRORS DETECTED
IDCOl701I DATATEST BEGINS
IDCl1741I DUPLICATE CONSECUTIVE KEYS FOUND
IDCOl717I DATA KEY FOLLOWS
000000 FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO xOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOx
000020 FOFOFOFO FOFOFlF1 xOOOOOOl1 x

DICOl713I DATA CONTROL INTERVAL DISPLAY AT RBA 512 FOLLOWS
000000 00000000 0000DOC1 AB33FOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO
000020 FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FIFIC3C3 C3C3C3C3 C3C3C3C3 C3C3C3C3
000040 C3C3C3C3 C3C3C3C3 C3C3C3C3 C3C3C3Cl ClClC3C3 C3C3C3C3 C3C3C3C3 CJCJC3Cl
000060 CJCJC3C3 C3C3C3C3 C3C3C3C3 C3C3ClCl ClClC3C3 C3CJClC3 C3C3C3Cl CJC3C3C3
OOOOBO C3C3C3C3 C3C3C3C3 C3C3C3C3 C3C3C3C3 ClClC3C3 C3000000 0000006E E065DEFO
OOOOAO FOFOFOFO FOFOFOFO FOFOFOFO OFOFOFOF FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO
OOOOCO FOFOFOFO FOF1F1C4 C4C4C4C4 C4C4C4C4 C4C4C4C4 C4C4C4C4 C4C4C4C4 C4C4C4C4
OOOOEO C4C4C4C4 C4C4C4C4 C4C4C4C4 C4C4C4C4 C4C4C4C4 00000000 000055E2 0706FOFO
000100 FOFOFOFO FOFOFOFO FOFOFOFO OFOFOFOF FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO
000120 FOFOFOFO F3F1C1C1 CIC1CIOO 00000000 00000000 00000000 00000000 00000000
000140 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OOOIAO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OOOICO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OOOlEO 00000000 00000000 00000000 00000000 00000000 00370000 5F000095 012BOOC8
IDC01714I ERROR LOCATED AT OFFSET 0000009F
IDC21703I MAJOR ERRORS FOUND BY DATATEST
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 8

IDC0002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 8

x ...•••• A •. OOOOOOOOOOOOOOOOOOOOOOx
xOOOOOOOOOOOOOOOOl1CCCCCCCCCCCCCCx
xCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCX
xCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCx
xCCCCCCCCCCCCCCCCCCCCC .••••• > ••• Ox
xOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOx
xOOOOOllDDDDDDDDDDDDDDDDDDDDDDDDDx
xDDDDDDDDDDDDDDDDDDDD ••.••.• S .• OOx
xOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOx
x000031AAAAA •..••.•.••••••••••••• x
x ••••••••••••••••.••••••••••••••• x
x •••••.•..•...•••.••••••••••••••• x
x •••••••••••••..••••••••••••••.•. x
x •••••••••••.•.•••••.••..•....... x
)(. , , ..)(

x •.••.••••.••••.•.•••.••• - •••••• Hx

Appendix A. Using 31-Bit Support

VSAM allows you to obtain control blocks, buffers and multiple local shared
resource (LSR) pools above or below 16 megabytes. However, if your program
uses a 24-bit address, it may program check if you attempt to reference control
blocks, buffers or LSR pools located above 16 megabytes. With a 24-bit
address, you do not have addressability to the data buffers.

If you attempt to use LOCATE mode to access records while' in 24-bit mode,
your program will program check (ABENDOC4).

When using 31-bit support, you must observe the following:

• All VSAM control blocks that currently have fields defined as 31-bit
addresses must contain 31-bit addresses. You may not use the high-order
byte of a 31-bit address field as a user-defined flag field. This is true
whether you are using 24-bit or 31-bit support .

• I/O buffers and control blocks may be obtained either above or below 16
megabytes in storage.

I/O buffers and control blocks may be requested below 16 megabytes by
taking the ACB and BLDVRP macro defaults.

1/0 buffers may be requested above 16 megabytes and control blocks
below 16 megabytes by specifying the RMODE31 = BUFF parameter on
the ACB or BLDVRP macro.

Control blocks may be requested above 16 megabytes and buffers
below 16 megabytes by specifying the RMODE31 = CB parameter on the
ACB or BLDVRP macro.

Control blocks and buffers may be requested above 16 megabytes by
specifying the RMODE31 =ALL parameter on the ACB or BLDVRP
macros.

Note: Prior to Data Facility Product Version 2, Release 3.0, the ACB's
AMODE31 subparameter specified that buffers were to be obtained above
16 megabytes. Control blocks were always obtained below 16 megabytes.
With Data Facility Product Version 2, Release 3.0, the RMODE31 parameter
specifies where buffers and control blocks are to be obtained. The
AMODE31 subparameter still indicates buffers are requested above 16
megabytes, but it is mutually exclusive with the RMODE31 parameter. If
both are specified, the AMODE31 subparameter is ignored. When you add
the RMODE31 parameter to your programs, you should remove the
AMODE31 subparameter .

• The parameter list passed to your UPAD and JRNAD exit routine resides in
the same area specified with the VSAM control blocks. If RMODE31 =CB or
RMODE31 = ALL is specified, the parameter list resides above 16 mega­
bytes.

• You must recompile the portion of your program that contains the ACB,
BLDVRP, and DLVRP macro specifications.

• You cannot use JCL parameters to specify 31-bit parameters.

Appendix A. Using 31-Bit Support 147

MACRO

ACB

BLDVRP

CLOSE

DLVRP

GENCB

MODCB

OPEN

• The following table summarizes the 3~-bit support keyword parameters and
their use in the applicable VSAM macros.

RMODE31= MODE= LOC=

Virtual storage location of INVALID INVALID
VSAM control blocks and
1/0 buffers

Virtual storage location of Format of the BLDVRP INVALID
VSAM LSR pool, VSAM parameter list (24-bit or
control blocks and 1/0 31-bit format)
buffers

INVALID Format of the CLOSE INVALID
parameter list (24-bit or
31-bit format)

INVALID Format of the DLVRP INVALID
parameter list (24-bit or
31-bit format)

RMODE31 values to be INVALID Location for the
placed in the ACB that is virtual storage
being created. When the obtained by VSAM
generated ACB is for the ACB, RPL,
OPENed, the RMODE31 or EXIT LIST.
values will then determine
the virtual storage
location of VSAM control
blocks and 1/0 buffers.

RMODE31 values to be INVALID INVALID
placed in a specified ACB

INVALID Format of the OPEN INVALID
parameter list (24-bit or
31-bit format)

"Obtaining Buffers above 16 Megabytes" on page 76 explains how to create
and access buffers that reside above 16 megabytes. Chapter 10, "Sharing
Resources among Data Sets" on page 127, explains how to build multiple LSR
pools in an address space.

148 MVS/XA VSAM Administration Guide

Appendix B. Job Control Language

This appendix describes job control language. an optional method for con­
necting a data set and the program that is to use it. There is also a description
of how to code the VSAM JCL parameter (AMP).

The data set name is a necessary link between a processing program and the
data set to be processed. When JCL is used, the access method control block
gives the name of the DD statement so that the OPEN macro can make the con­
nection between the program and the data set named in the DO statement, con­
necting the program and data. JCL is also used to catalog, uncatalog. and
delete non-VSAM data sets in a catalog.

If JCL is not used. an attempt is made to dynamically allocate the data set or
volume as required. When you define a VSAM data set or catalog. no DD state­
ment is required if access method services can dynamically allocate the
volume. (For an explanation of dynamic allocation. see the JCL manual.)

The catalog contains most of the information required by VSAM to process a
data set. so VSAM requires minimal information from JCL. Data set name and
disposition describe the data set. A key-sequenced data set is described with a
single DD statement.

How to Code JCL
VSAM data sets are created using access method services and are cataloged
in a catalog. To identify a VSAM data set through JCL. specify a DD statement
of the form:

//ddname DD DSNAI·IE=dsname,DISP={OLDISHR}

Optionally. the AMP parameter may be specified to modify the program's oper­
ation.

If a data set has been defined in a user catalog, it is also necessary to identify
the user catalog by means of either a JOBCAT or a STEPCAT DD statement. For
more information on coding DD statements for a catalog. see Catalog Adminis­
tration Guide.

The DSNAME parameter specifies the name of the data set you are processing.
Each VSAM data set is defined as a cluster of one or two components. A key­
sequenced data set is made up of a data component and an index component;
and an entry-sequenced and a relative record data set are made up of only a
data component. If you need to process a component separately. you may
specify the component's name in the DSNAME parameter.

To allow only one job step to access the data set. specify DISP = OLD. If the
data set's share options allow the type of sharing your program anticipates. you
can specify DISP = SHR in the DD statements of separate jobs to enable two or
more job steps to share a data set. With separate DD statements. several sub­
tasks can share a data s.et under the same rules as for cross-region sharing.
When separate DD statements are used and one or more subtasks will perform
output processing, the DD statements must specify DISP=SHR. For more

Appendix B. Job Control Language 149

details on sharing data sets, see Chapter 9, "Sharing a VSAM Data Set" on
page 113.

Mounting a Subset of Volumes
With a data set defined in a VSAM catalog, you may mount a subset of the
volumes on which a data set is stored (called subset mount). To do this, specify
the DO parameters VOLUME and UNIT. When mounting a subset, consider the
following:

• This may cause excessive processing time because of mount and demount
activities directed to those volumes.

• Specifying those parameters to open a DCB (to be processed through the
ISAM interface program) prevenls a reference to the VSAM catalog and
requires that you use the AMP subparameter AMP =' AMORG' to identify
the data set as a VSAM data set.

• If you specify VOLUME and UNIT to open a VSAM ACB, AMORG is not
required.

JCL Parameters Used with VSAM
Because the operating system allows DD parameters and subparameters that
do not apply to a VSAM data set, you should only use the DD parameters and
subparameters that have a clear meaning when used with VSAM. Figure 30 on
page 151 shows the DD parameters and subparameters that can be used with
VSAM and indicates their meaning for a VSAM data set. DD parameters and
subparameters not shown in Figure 30 on page 151 should be avoided.

150 MVS/XA VSAM Administration Guide

Figure 30 (Page 1 of 2). JCL DO Parameters
Parameter Subparameter Comment

AMP

DDNAME

DISP

DSNAME

DUMMY

UNIT

VOLUME

ddname

SHR

OLD

PASS
dsname

address

type
group
p

unitcount

DEFER

PRIVATE

RETAIN

See "Coding the AMP Parameter" on page 152.

Specifies name of DO statement.

Indicates that you are willing to share the data set with other
jobs. This subparameter alone, however, does not guarantee
that sharing will take place. See Chapter 9, "Sharing a VSAM
Data Set" on page 113, for a description of data-set sharing.
Defaults to SHR, if specified for an integrated catalog facility or
VSAM catalog.
For VSAM, KEEP is assumed for PASS.
Specifies VSAM data set or non-VSAM object.

An attempt to read results in an end-of-data condition, and an
attempt to write results in a return code that indicates the write
was successful. If specified, AMP= 'AMORG' must also be spec­
ified (see "Coding the AMP Parameter" on page 152). No 1/0
activity is performed for a dummy data set.

Note: Unit information should not be specified for data sets cata­
loged in an integrated catalog facility catalog.
Must be the address of a valid device for VSAM. If not, OPEN will
fail.
Must be a type supported by VSAM. If not, OPEN will fail.
Must be a group supported by VSAM. If not, OPEN will fail.
There must be enough units to mount all of the volumes speci­
fied. If sufficient units are available, parallel mounting (p) can
improve performance by avoiding the mounting and demounting
of volumes.
If the number of devices requested is greater than the number of
volumes on which the data set resides, the extra devices are
allocated anyway. If data and index components reside on unlike
devices, the extra devices are allocated evenly between the
unlike device types. If the number of devices requested is less
than the number of volumes on which the data set resides but
greater than the minimum number required to gain access to the
data set, the devices over the minimum are allocated evenly
between unlike device types. If devices beyond the count speci­
fied are in use by another task but are sharable and have
mounted on them volumes containing parts of the data set to be
processed, they will also be allocated to this data set.
The volume to be used does not have to be mounted until the
data set is opened. This causes all the units associated with
demountable volumes to be flagged as nonshared.

Specifies volume is demounted unless RETAIN is coded.

Specifies that the volume is to be retained at the system if it was
demounted during the job.

Appendix B. Job Control Language 151

Figure 30 (Page 2 of 2). JCL DO Parameters
Parameter Subparameter Comment

SER Note: Volume serial number should n<?t be specified for data sets
cataloged in an integrated catalog facility catalog. The volume
serial number(s) used in the access method services DEFINE
command for the data set must match the volume serial numbers
in the VOLUME = SER specification in the job in which the data
set is defined. After a VSAM data set is defined, the volume
serial number(s) need not be specified on a DO statement to
retrieve or process the data set.

For data sets defined in VSAM catalogs if VOLUME = SER and
UNIT=type are specified, only those volumes named are initially
mounted. Other volumes may be mounted when they are
needed, if at least one of the units allocated to the data set is not
sharable and the number of OPENs issued against the volume is
less than or equal to 1, or the unit count is greater than the total
number of volumes initially mounted. One unit is flagged as
nonsharable when u.nit count is less than the number of volume
serial numbers specified. If VOLUME = SER is specified and the
data set is cataloged in a user catalog, include a JOBCAT or
STEPCAT DO statement to identify the catalog to the current job
step unless the high-level qualifier of the data set name is also
the name of the user catalog.

Coding the AMP Parameter
VSAM has one JCL parameter of its own: AMP. The AMP parameter takes
effect when the data set defined by the DO statement is opened. It has subpa­
rameters for:

• Overriding operands specified by way of the ACS, EXLST, and GENCS
macros

• Supplying operands missing from the ACS or GENCS macro

• Indicating checkpoint/restart options

• Indicating options when using ISAM macros to process a key-sequenced
data set

• Indicating that the data set is a VSAM data set when you specify unit and
volume information or DUMMY in the DO statement

• Indicating that you want VSAM to supply storage dumps of the access
method control block(s) that identify this DO statement

The AMP parameter takes effect when the data set defined by the DO statement
is opened.

152 MVS/XA VSAM Administration Guide

The format of the AMP parameter is:

II ... DO ... AMP=(['AMORG']
[,'BUFND=number']
[,'BUFNI=number']
[,'BUFSP=number']
[, 'CROPS= {RCKINCKINREINRC} ']
[,'OPTCD= {IILIIL} ']
[,'RECFM= {FIFBIVIVB} ']
[,'STRNO=number']
[, 'SVNAD = modufename']
L'TRACE'l)

where:

AMORG
specifies that the DD statement defines a VSAM data set. When you specify
unit and volume information for a DCB (through the ISAM interface
program) or DUMMY in the DD statement, you must specify AMORG. Under
these conditions, the system doesn't have to search a catalog to find out
what volume(s) are required, and therefore doesn't know that the DD state­
ment defines a VSAM data set. You never have to specify unit and volume
information, unless you want to mount a subset of the volumes on which the
data set is stored, or want to defer mounting.

BUFND = number
specifies the number of data buffers.

BUFNI=number
specifies the number of index buffers.

BUFSP = number
specifies that one or more of these values is to override whatever was
specified in the ACB or GENCB macro, or that one or more of these values
is to be provided if not previously specified. For further information on
BUFND. BUFNI, and BUFSP, see VSAM Administration: Macro Instruction
Reference.

CROPS = [RCKI NCKI NREI NRC]
specifies one of four checkpoint/restart options, described in detail in
Checkpoint/Restart User's Guide. If you specify an option that is not appli­
cable for a data set, such as the data-erase test for an input data set, the
option is ignored.

RCK
specifies that a data-erase test and data set-post-checkpoint modifica­
tion tests are to be performed.

NCK
specifies that data set-post-checkpoint modification tests are not to be
performed.

NRE
specifies that a data-erase test is not to be performed.

NRC
specifies that neither a data-erase test nor data set-post-checkpoint
modification tests are to be performed.

Appendix B. Job Control Language 153

OPTCD={IILIIL}
specifies the type of processing of records nagged for deletion (binary 1's in
the first byte) with an ISAM processing program using the ISAM interface. I
and L are described in Appendix F, "Using ISAM Programs with VSAM Data
Sets" on page 205.

RECFM={FIFBIVIVB}
specifies record format in the same way as the DCB (data control block)
parameter that is used for processing an indexed-sequential data set. You
use it when processing a VSAM data set with an ISAM processing program
to indicate what record format the processing program assumes·. The
options are described in Appendix F, "Using ISAM Programs with VSAM
Data Sets" on page 205.

STRNO = number
specifies a value that is to override the STRNO value specified in the ACB
or GENCB macro, or to provide a value if one was not specified.

SYNAD = modulename
specifies a value that is to override the address of a SYNAD exit routine
specified in the EXLST or GENCB macro that generates the exit list. The
exit list intended is the one whose address is specified in the access
method control block that links this DD statement to the processing
program. If no SYNAD exit was specified, the SYNAD parameter of AMP is
ineffective. You can also use this parameter, when you are processing a
VSAM data set with an ISAM processing program, to provide an ISAM
SYNAD routine or to replace one with another.

TRACE
specifies that generalized trace facility (GTF) is to be active, along with your
processing job, to gather information associated with opening, closing, and
end-of-volume processing for the data set defined on this DO statement.
You can print the trace output with the AMDPRDMP service program.

Note: See Appendix F, "Using ISAM Programs with VSAM Data Sets" on
page 205 for additional information on the use of the AMP parameter with an
ISAM processing program.

If you have more than one subparameter, you must enclose them in apostro­
phes. Apostrophes can enclose each individual subparameter or group of sub­
parameters. If you have more than one pair of apostrophes, you must enclose
all the subparameters in a pair of parentheses. For example,
AMP= 'AMORG,TRACE' or AMP=('AMORG','TRACE'). If the subparameters
continue from one line to another, a pair of apostrophes cannot extend from
one line to the next, and you must use a pair of parentheses to enclose all the
subparameters.

The AMP parameter cannot be defined as a symbolic parameter (a symbol pre­
ceded by an ampersand (&) that stands for a parameter or the value assigned
to a parameter or subparameter in a cataloged or in-stream procedure).

154 MVS/XA VSAM Administration Guide

JCL Parameters Not Used with VSAM
VSAM ignores parameters for defining tape data sets; data-set sequence
numbers, NSL, NL, SLP, and Al. You cannot use the parameters for a sequen­
tial data set (DATA, SYSOUT, and .) for specifying a VSAM data set. DD names
that are invalid for VSAM data sets are: JOSUS, STEPLlS, SYSASEND,
SYSUDUMP, and SYSCHK.

DO parameters that are invalid are: UCS, QNAME, DYNAM, TERM, and the
forms of OSNAME for ISAM, PAM (partitioned access method), and generation
data groups. VSAM does not allow for temporary data sets or concatenated
data sets.

Appendix B. Job Control Language 155

Appendix C. Examples of Defining and Manipulating Data
Sets

This set of examples illustrates a wide range of functions available through
access method services that allow you to do the following:

• Define data sets
• Alter a data set's attributes
• Copy and print data sets
• Define alternate indexes and paths
• Export and import VSAM data sets for backup and recovery
• Delete a linear data set

The integrated catalog facility system catalog that exists is assumed to be secu­
rity protected at the update-password, control-password, and master-password
levels.

Example 1: Define VSAM Data Sets
This example defines five VSAM data sets: two key-sequenced data sets into a
previously defined user catalog, USERCAT1; a relative record data set into the
system catalog; a reusable entry-sequenced data set into a previously defined
user catalog, USERCAT2; and a linear data set into the previously defined user
catalog, USERCAT2.

j jDEFVSAr·I JOB
jjSTEPI EXEC
jjVVSER03 DO
jjSYSPRINT DO
jjSYSABEND 00
j jAI·ISDUI·1P 00
jjSYSIN 00

PGI·I= IDCAI·IS
DISP=OLD,UNIT=3380,VOL=SER=VSER03
SYSOUT=A
SYSOUT=A
SYSOUT=A
*

DEFINE CLUSTER -
(NAr·IE(ALlAS01.mDATA) -
VOLUMES(VSER02) -
RECOROS(1000 500)) -

DATA -
(NANE(ALlAS01. KSDATA) -
KEYS(15 0) -
RECORDSIZE(250 250) -
FREESPACE(20 10) -
BUFFERSPACE(25000)) -

INDEX -
(NA~IE(ALlAS01.KSINDEX) -
nlBED) -

CATALOG (USERCATljUCATUPP\oI)

DEFINE CLUSTER -
(NA~lE(ALlAS01. EXAI.JPLE. KSDSl) -
REAOPt'J(KSDIPSHD) -
MODEL(ALIAS01.MYDATA)) -

DATA -
(NAME (ALI AS01. EXA~lPLE. KSOSI. DATA) -
UNIQUE -
CYLINDERS(2 1)) -

Appendix c. Examples of Defining and Manipulating Data Sets 157

/*

INDEX -
(NAME(ALIAsel.EXAMPLE.KSDSl.INDEX) -
UNIQUE -
CYLINDERS(1 1)) -

CATALOG (USERCAT l/UCATUPPI'/)

IF LASTCC = €I -
THEN -
LISTCAT ENTRIES -

(ALIAS01.EXAt4PLE.KSDSl/KSDIPSWD) -
ALL

DEFINE CLUSTER -
(NAt4E(t-IASTEl1.RRDSI) -
VOLUMES(VSER01) -
TRACKS(10 5) -
RECORDSIZE(IE1e lee) -
NUI·1BERED) -

CATALOG (I eFt-lAST 1jf.1ASUlPIH)

IF LASTCC = €I -
THEN -
LISTCAT ENTRIES -

(14ASTEll.RRDSl) -
CLUSTER -
ALL

DEFINE CLUSTER -
(NAt.1E(ALIAse2. ESDS1.CLUSn:ll) -
VOLUt-IES(VSER03) -
FILE(DD3) -
NONINDEXED -
TRACKS (3 1) -
C[SIZE(4096)) -

CAT ALOG (USERCAT2/USERI.1P~/)

IF LASTCC = €I -
THEN -
LISTCAT ENTRIES -

(ALIAS02.ESOS1.CLUST01) -
ALLOCATION

DEFINE CLUSTER -
(NAME(ALIASEl2.LINEAR.CLUST01) -
VOLUt·1ES (VSEREl3) -
LINEAR -
TRACKS(3 1)) -

CATALOG(USERCAT2/USE~1PW)

IF LASTCC = €I -
THEN -
LISTCAT ENTRIES -

(ALIAS02.LINEAR.CLUSTElI) -
ALL

158 MVS/XA VSAM Administration Guide

Explanation of Commands
The first DEFINE command defines a key-sequenced data set on volume
VSER02. The high-level name of the data set is the alias name of the catalog
into which it is defined.

1. The CLUSTER parameter is required, and NAME specifies the cluster being
defined.

2. The VOLUMES parameter is required and specifies the volume containing
the data set.

3. The RECORDS parameter specifies the space to be allocated to the cluster.
This is a required parameter.

4. The DATA parameter is required when attributes are to be explicitly speci­
fied for the data component of the cluster. The NAME parameter specifies
the name of the data component.

5. The KEYS parameter specifies the key length and offset.

6. The RECORDSIZE parameter specifies the average and maximum record
sizes.

7. The BUFFERSPACE parameter is specified for improved performance.

8. The INDEX parameter is required when attributes are to be explicitly speci­
fied for the index component of the cluster. The NAME parameter specifies
the name of the index component.

9. The IMBED parameter specifies that the index sequence set is to be placed
with the data component.

10. Because the catalog is password protected, the CATALOG parameter is
required.

The second DEFINE command defines a unique key-sequenced data set. The
high-level name of the data set is the alias name of the catalog into which it is
being defined. This example shows how data set attributes can be specified by
modeling and direct specification.

1. The CLUSTER parameter is required and NAME specifies the cluster being
defined.

2. The READPW parameter specifies the read password of this cluster.
Because no master password is defined, this password will be propagated
up to the master level. Thus, this cluster is security protected even though
its model was not protected.

3. The MODEL parameter specifies the name of the data set to be used as the
model.

4. The DATA parameter is required if attributes are to be specified for the data
component. The NAME parameter specifies the name of the data compo­
nent. If a name is not specified, a name is generated.

5. The UNIQUE parameter specifies that this portion of the data set is the only
one that occupies the data space allocated to it.

6. The CYLINDERS parameter specifies the amount of space to be allocated to
the cluster's data component.

Appendix C. Examples of Defining and Manipulating Data Sets 159

7. The INDEX parameter is required if attributes are to be specified for the
index component. The NAME parameter specifies the name of the index
component. If a name is not specified, a name is generated.

8. The UNIQUE parameter specifies that this portion of the data set is the only
one that occupies the data space allocated to it.

9. The CYLINDERS parameter specifies the amount of space to be allocated to
the cluster's index component.

10. Because the user catalog is password protected, the CATALOG parameter
is requif"ed. It specifies the name of the user catalog and its update pass­
word which is required to define into a protected catalog.

If the define of the unique key-sequenced data set was successful, then the fol­
lowing LlSTCAT command is executed. The high-level name of the data set will
direct the LlSTCAT to the appropriate user catalog. The ENTRIES and ALL
parameters cause the entire catalog description of the data set just defined to
be listed.

The third DEFINE command defines a suballocated relative record data set on
volume VSER01.

1. The CLUSTER parameter is required and NAME specifies the cluster being
defined.

2. The VOLUMES parameter is required and specifies the volume containing
this data set. Because the master catalog is recoverable, access method
services dynamically allocate this volume to access the catalog recovery
area for the data set. This requires that the volume be mounted perma­
nently RESIDENT or RESERVED.

3. The TRACKS parameter specifies the amount of space allocated to this data
set. A space parameter is required.

4. The RECORDSIZE parameter specifies the average and maximum record
sizes which, in the case of a relative record data set, must be equal.

5. The NUMBERED parameter is required to specify that this is a relative
record data set.

6. The CATALOG parameter is required because the master catalog is pass­
word protected. It specifies the name of the master catalog and its master
password which is required (or its update password) to define into a pro­
tected catalog.

If the define of the suballocated relative record data set was successful, then
the following LlSTCAT command is executed. The ENTRIES, CLUSTER, and ALL
parameters cause the entry just defined to be listed-limited, however, to the
cluster entry (that is, the data component's entry is not listed).

The fourth DEFINE command defines a suballocated entry-sequenced data set
on volume VSER03. The high-level name of the data set is the alias name of
the catalog into which it is defined.

1. The CLUSTER parameter is required and NAME specifies the cluster being
defined.

2. The VOLUMES parameter is required and specifies the volume containing
this data set.

160 MVS/XA VSAM Administration Guide

3. The FILE parameter names the DD statement that identifies the direct
access device and volume on which space is to be allocated to the cluster.

4. The NONINDEXED parameter is required to override the default (INDEXED).

5. The TRACKS parameter specifies the amount of space to be allocated to
this data set. A space parameter is required.

6. The CISIZE parameter specifies the control interval size.

7. The CATALOG parameter specifies the name of the catalog into which the
cluster is to be defined. The catalog's update- or higher-level password is
required.

If the define of the suballocated entry-sequenced data set was successful, then
the following LlSTCAT command is executed. The high-level name of the data
set will direct the LlSTCAT to the appropriate catalog. The ENTRIES and ALLO­
CATION parameters cause the data set entry just defined to be listed-limited,
however, to only volume and allocation information.

The fifth DEFINE command builds a cluster entry and a data entry to define the
linear data set cluster ALlAS02.LlNEAR.CLUST01. The high-level name of the
data set is the alias name of the catalog into which it is being defined. The
command's parameters are:

1. NAME specifies the cluster's name.

2. VOLUMES specifies that the cluster is to reside on volume VSER03.

3. TRACKS specifies that 3 tracks are allocated for the cluster's space. When
the cluster is extended, it is to be extended in increments of 1 track.

4. LINEAR specifies that the cluster's data organization is to be linear.

5. CATALOG specifies the catalog into which the cluster is to be defined. The
example also supplies the user catalog's master password.

If the define of the linear data set was accomplished, the LlSTCAT command
lists the catalog entry for a linear data set.

1. The LISTCAT command invokes the AMS list catalog function.

2. The ENTRY parameter defines which object's catalog entry to list.

3. The ALL parameter defines the scope of the listing.

Appendix C. Examples of Defining and Manipulating Data Sets 161

Example 2: Define Non-VSAM and VSAM Data Sets
This example defines a non-VSAM data set into an integrated catalog facility
user catalog, a VSAM key-sequenced data set into the integrated catalog facility
system catalog, and a VSAM entry-sequenced data set into an integrated
catalog facility user catalog.

/ /DEFVSr·12 JOB ...
//JOBCAT DD DSN=USERCAT2,DISP=SHR
/ /STEPI EXEC PGt·' .. IDCAr·1S
//SYSPRINT DD SYSOUT=A
//SYSABEND DO SYSOUT=A
j jA.MSOUNP DD SYSOUT=A
//SYSIN DD *

DEFI NE NONVSA~1 -
(NAI4E(EXA~lPLl.NONVSAtH) -
VOLUMES (VSER02) -
DEVICETYPES(3380)) -

CATALOG(USERCATl/UCATUPP\oJ)

IF LASTCC = 0 -
THEN -
LISTCAT NONVSAI·l -

ALL -
CATALOG (USERCATl)

OEFINE CLUSTER -
(NAt.1E(~1AST01.KSDS2)) -

DATA -
(NAt·1E(~1AS TEll. KSDS2 . DATA) -
r·1ASTERPH (DAT2t·1RP~J) -
UPDATEP~i (DAT2UPPvi) -
READP\oJ(DAT2RDPH) -
RECORDS(500 100) -
EXCEPTIONEXIT(DATEXIT) -
ERASE -
FREESPACE(20 10) -
KEYS(6 4) -
RECORDSIZE(80 100) -
VOLUMES(VSER01)) -

INDEX -
(NAME(MAST01.KSDS2.INDEX) -

. r·1ASTERPI'i (I ND2t·1RP\'J) -
UPDATEPI'i (I ND2UPP\'J) -
READP\'i (I ND2RDP\'i) -
RECORDS(300 30a) -
IMBED -
VOLUMES(VSER01)) -

CATALOG (ICFMASTl/I-1ASnlPVIl)

IF LASTCC ., a -
THEN -
LISTCAT DATA -

ALL -
ENTRIES -

162 MVS/XA VSAM Administration Guide

(~lASTa1. KSDS2/DAT2MRP\'/) -
CATALOG (ICFMASTl)

j*

DEFINE CLUSTER -
(NA~IE (EXNIPL2. ESDS2) -
VOLUNES(VSER03) -
SPANNED -
CYLINDERS(2 1) -
NON! NDEXED -
REUSE -
14ASTERP\oJ (ESD21·IRPloJ) -
CONTROLPt'J (ESD2CTPH) -
UPDATEP\OI(ESD2UPP\'J) -
READP\oJ (ESD2RDpt'I)) -

CATALOG (USERCAT2/UCATt-lRP\oI)

IF LASTCC '" 0 -
THEN -
DO -
LISTCAT ENTRIES -

(EXAf.IPL2. ESDS2/ESD21·IRP\'J) -
ALL

LISTCAT NAI·IE -
CATALOG (ICFt-IAS Tljl·IASH4PloJ1)

END

Explanation of Job Control Language Statements
The JOBCAT DO statement describes the user catalog USERCAT2 as a job
catalog. All references will be to this job catalog unless otherwise directed.

Explanation of Commands
The first DEFINE command defines an existing non-VSAM data set into user
catalog USE RCA T1.

1. The NONVSAM parameter is required and NAME specifies the non-VSAM
object being defined.

2. The VOLUMES parameter is required and specifies the volume containing
the data set.

3. The DEVICETYPES parameter is required and specifies the device type of
the volume.

4. The CATALOG parameter specifying the name of the integrated catalog
facility user catalog is required, because:

• A job catalog also appears in the job control language so this param­
eter explicitly directs the define to the user catalog.

• The catalog is protected and its update password is required for the
define.

If the definition of the non-VSAM entry was successful, the following LlSTCAT
command is executed.

1. The NONVSAM and ALL parameters cause all the non-VSAM entries cata­
loged in USERCAT1 to be listed.

2. The CATALOG parameter directs the LlSTCAT to a specific user catalog.

The second DEFINE command defines a key-sequenced data set. Note that
attributes are specified at the data and index level rather than the cluster level.

Appendix C. Examples of Defining and Manipulating Data Sets 163

1. The CLUSTER parameter is required, and NAME specifies the cluster being
defined.

2. The DATA component is explicitly named via the NAME parameter.

3. The MASTERPW, UPDATEPW, and READPW parameters specify the master,
update, and read passwords, respectively, of this data component.

4. The RECORDS parameter specifies the amount of space to be allocated to
the data component. A space allocation parameter is required.

5. The EXCEPTIONEXIT parameter specifies the name of the routine to be
given control if an exception occurs while processing the data component.

6. The ERASE parameter specifies that the data component is to be over­
written with binary zeros when it is deleted.

7. The FREESPACE parameter specifies the percentage of space within control
intervals and control areas, respectively, that is to remain free.

8. The KEYS parameter specifies the key length and offset.

9. The RECORDSIZE parameter specifies the average and maximum record
sizes.

10. The VOLUMES parameter is required and specifies the volume containing
this data component.

11. The INDEX component is explicitly named via the NAME parameter.

12. The MASTERPW, UPDATEPW, and READPW parameters specify the master,
update, and read passwords, respectively, of this i,ndex component.

13. The RECORDS parameter specifies the amount of space to be allocated to
the index component. A space allocation parameter is required.

14. The IMBED parameter specifies that the index sequence set is to be placed
with the data component.

15. The VOLUMES parameter is required and specifies the volume containing
this index component.

16. Because the master catalog is password protected, the CATALOG param­
eter is required. It specifies the name of the master catalog and its update
password, which is required to define into a protected catalog. This param­
eter is also required, because a DO statement for the job catalog (JOBCAT)
appears in the job control language and this define must, therefore, be
explicitly directed to the master catalog.

If the definition of the key-sequenced data set was successful, the following
LlSTCAT command is executed.

1. The DATA, ALL, and ENTRIES parameters cause all the information con­
tained in the data component entry to be listed.

2. The CATALOG parameter directs the LlSTCAT to the master catalog.

164 MVS/XA VSAM Administration Guide

The third DEFINE command defines an entry-sequenced data set.

1. The CLUSTER parameter is required and NAME specifies the cluster being
defined.

2. The VOLUMES parameter specifies the volume (VSER03) that is to contain
the data set being defined.

3. The SPANNED parameter specifies that records may span control interval
boundaries.

4. The CYLINDERS parameter specifies the amount of space to be allocated to
this data set. A space parameter is required.

5. The NONINDEXED parameter is required to override the default (INDEXED).

6. The REUSE parameter specifies that the data set can be reused, that is,
reloaded without being deleted and redefined.

7. The MASTERPW, CONTROLPW, UPDATEPW, and READPW parameters
specify passwords different from the passwords specified for the data set
being modeled.

8. The CATALOG parameter is required, because the user catalog is password
protected.

If the define of the entry-sequenced data set was successful, the following
L1STCAT commands are executed.

1. The ENTRIES and ALL parameters of the first L1STCAT command cause all
the cataloged information in the entry just defined to be listed.

2. The NAME parameter of the second L1STCAT command causes only the
names of the objects cataloged in the master catalog to be listed.

3. The CATALOG parameter specifies the master password of the master
catalog that allows access to all objects in the catalog and directs the
L1STCAT to the master catalog.

Appendix C. Examples of Defining and Manipulating Data Sets 165

Example 3: Alter the Cataloged Attributes of VSAM Data Sets
This example shows how the cataloged attributes of three VSAM data sets are
modified. Each ALTER command is followed by a LlSTCAT command, which
will execute only if its previous ALTER command completed successfully. The
LlSTCAT command prints the updated catalog entry.

This example depends on the successful completion of examples 1 and 2, which
define the VSAM data sets whose attributes are being altered.

//ALTER JOB •••
/ISTEP1 EXEC PGI·l=IDCAI·1S
//SYSPRINT DO SYSOUT=A
//SYSABEND DO SYSOUT=A
/ /AI·ISOUf.1P DD SYSOUT =A
/ISYSIN DD *

1*

ALTER -
ALIAS01.EXAf.1PLE.KSDSl.DATA -
FREESPACE (HI 10)

IF LASTCC = 0 -
THEN -
LlSTCAT -

ENTRIES(ALIAS01.EXAf.1PLE.KSDS1.DATA/KSDIPSWD) -
ALL

ALTER -
EXAI·1PL2. ESDS2/ESD21·1RPH -
1·1ASTERPH (ESD2P\'JI.1R) -
COfHROLPH(ESD2PHCT) -
UPDATEPH (ESD2P\'JUP) -
READPH(ESD2PHRD)

IF LASTCC = 0 -
THEN -
LlSTCAT -

ENTRI ES (EXAI·1PL2. ESDS2/ESD2P\'Jf·1R) -
CLUSTER -
ALL

ALTER -
ALIAS02.ESDSl.CLUST01 -
TYPE(LlNEAR) -
CAT ALOG (USERCAT2/USERI·1P\'J)

IF LASTCC = 0 -
THEN -
LlSTCAT -

ENTRI ES (ALIAS02. ESDS1. CLUST01/USER~lPtoJ) -
ALL

166 MVS/XA VSAM Administration Guide

Explanation of Commands
The first ALTER command shows how the space management attributes of a
data set are "tuned" for optimum performance.

The data component ALlAS01.EXAMPLE.KSDS1.DATA of the key-sequenced
VSAM data set ALlAS01.EXAMPLE.KSDS1 was defined with 40% free space in
both control intervals and control areas. Now that data records have been
loaded into the data set, its free space attributes no longer appear to require
40% free space. It is now desirable to have 10% free space in both control
intervals and control areas. The catalog containing the component to be
altered is located through its alias 'ALlAS01', which is the high-level qualifier of
the component name.

1. ALlAS01.EXAMPLE.KSDS1.DATA names the entry whose attributes are to be
altered with· this command. No password is required, because the data
object is not password protected.

2. The FREES PACE parameter respecifies percentages of free space that apply
to the data component.

The ALTER command is followed by a modal command that examines the con­
dition code set when the ALTER command completes. If the ALTER command
completes successfully, the LlSTCAT command that immediately follows it
prints the changed catalog entry. The ENTRIES and ALL parameters explicitly
name the entry to be listed and specify that the entire entry is to be listed.
Because all information about the data component is to be listed, some infor­
mation in the associated cluster must be accessed; this requires the cluster's
read password.

The second ALTER command shows how a data set's passwords can be modi­
fied.· You could use the same technique to provide passwords for an existing
VSAM object that does not have passwords.

1. EXAMPL2.ESDS2 names the entry whose attributes are to be altered with
this command. The entry's master password, ESD2MRPW, is supplied to
allow the command to alter the entry's passwords.

2. The MASTERPW, CONTROLPW, UPDATEPW, and READPW parameters
respecify passwords for the data set.

If the ALTER command was successful, the LlSTCAT command lists the entire
cluster entry.

The third ALTER command shows how to alter an existing entry-sequenced
data set into a linear data set.

1. ALlAS02.ESDS1.CLUST01 names the entry-sequenced data set. (Note: This
data set was defined with a control interval size of 4096 bytes.)

2. TYPE specifies the altered form of the original data set.

3. CATALOG specifies the location of the original data set.

If the ALTER command was successful, the LlSTCAT command lists the entire
cluster entry.

Appendix C. Examples of Defining and Manipulating Data Sets 167

Example 4: Copying and Printing
This example shows various techniques that can be used to load and print data
sets using the REPRO and PRINT commands. This example depends on the
successful completion of examples 1 and 2 for the existence of VSAM data sets
into which records are loaded. This example also requires that various
non-VSAM data sets exist. so that data records can be loaded into the VSAM
data sets.

IICOPYPRNT JOB •• ,
IISTEP1 EXEC PGr'l=IDCA~lS

IISYSPRINT DD SYSOUT=A
IISYSABEND DD SYSOUT=A
I IA~lSDUr4p DO SYSOUT=A
11* NONVSAI·l INDEXED-SEQUENTIAL DATA SET
IIINDSETl DD DSNAt·1E=D4G.IF1G0,DISP=OLD,DCB=DSORG=IS,
II VOL=SER=VSER03,UNIT=33SG
11* NONVSAt4 SEQUENTIAL DATA SET (VARIABLE-LENGTH
11* RECORDS)
IIINDSET2 DD DSNAt·1E=D4G.SVB20G,DISP=OLD,
II VOL=SER=VSER03,UNIT=33SG
11* NONVSAM SEQUENTIAL DATA SET (FIXED-LENGTH
11* RECORDS)
IIINDSET3 DO DSNAt·1E=D40.SFlGG,DISP=OLD,
II VOL=SER=VSERG3,UNIT=33SG
/1* NONVSAt·l SEQUENTIAL DATA SET
I IINDSET 4 DD DSNAt·1E=EXAt·1PLl. NONVSAf.11, DISP=OLD,
II VOL=SER=VSERG2,UNIT=33SG
11* LINEAR DATA SET
I II NOSE DO DSNAt·1E=ALIASG2. LI NEAR. CLUSTG1 ,DISP=OLD,
II VOL=SER=VSERG3, UNIT =33SG , At·1P=Ar·l0RG
/ISYSIN DO *

1* LOAD A VSA~1 KEY -SEQUENCED OAT A SET *1
1* FRON AN ISAN DATA SET *1

REPRO INFILE(INDSET1) -
OUTDAT ASET (AL I ASG 1. EXA~1PLE. KSDS 1/KSD 1 PS\oJD)

IF r·1AXCC = G -
THEN -
PRI NT I NDATASET (ALI ASGl. EXAr·1PLE. KSDS1/KSDIPSHD) -

FRO~lKEY (X I 4GFGFGF0FGF6 ')

1* LOAD A VSAM ENTRY-SEQUENCED DATA SET FRO~l AN *1
1* EXISTING VARIABLE UNBLOCKED SAI·l DATA SET *1

REPRO INFILE(INDSET2) -
OUTDATASET (ALlAS02. ESDSl. CLUSTG1/ESDIUPP~J) -
COUNT(03G)

IF LASTCC :: G -
THEN -
PRINT INDATASET(ALIAS01.ESDSl.CLUSTGl)-

FROMADDRESS(17G) -
HEX

1* LOAD A VSAM RELATIVE RECORD DATA SET FRO~l AN *1
1* EXISTING SA~l DATA SET*/

168 MVS/XA VSAM Administration Guide

1*

REPRO INFILE(INDSET3) -
OUTDATASET(MAST81.RRDSl) -
SKI P(18)

IF LASTCC = 8 -
THEN -
PRINT INDATASET(MAST81.RRDSl)­

TON·Ut·1BER (25)

/* PRINT THE CONTENTS OF THE SAM DATA SET */

PRINT INFILE(INDSET3) -
COUNT(28) -
CHARACTER

1* LOAD A VSAt·l KEY -SEQUENCED DATA SET * /
1* FROt~ A NONVSAt·l DATA SET * /

REPRO INFILE(INDSET4) -
OUTOATASET(MAST81.KSDS2)

IF LASTCC = 8 -
THEN -
PRINT INDATASET(MAST81.KSDS2)­

FROt·1KEY (AAAAJA) -
TOKEY(AAAAJ9)

/* LOAD A LINEAR OATA SET FROM ANOTHER */
/* LINEAR DATA SET, THEN PARTIALLY PRINT THE */
1* CONTENTS OF THE NEI'lL Y LOADED DATA SET * /

REPRO INFILE(INDSETS) -
QUTDATASET(ALIAS82.LINEAR.CLUST02) -

IF LASTCC = 8 -
THEN -
PRINT INDATASET(ALIAS82.LINEAR.CLUST02)­

FROf·1ADDRESS (4896) -
TOADDRESS(B191)

Explanation of Job Control Language Statements
1. The INDSET1 DO statement describes the ISAM data set, which is to be

copied into the VSAM data set ALlAS01.EXAMPLE.KSDS1.

2. The INDSET2 DO statement describes the variable-length SAM data set,
which is to be copied into the VSAM data set ALlAS02.EXAMPLE.ESDS1.

3. The INDSET3 DO statement describes the SAM data set, which is to be
copied into the VSAM data set MAST01.RRDS1.

4. The INDSET4 DO statement describes the SAM data set. which is to be
copied into the VSAM data set MAST01.KSDS2.

5. The INDSET5 DO statement describes the linear data set, which is to be
copied into the linear data set ALlAS02.LlNEAR.CLUST02.

Appendix C. Examples of Defining and Manipulating Data Sets 169

Explanation of Commands
The first REPRO command causes a VSAM key-sequenced data set to be
loaded from an ISAM data set.

1. The INFILE parameter identifies the data set containing the source data.
(Note: Either INFI LE or INOAT ASET is required.) The ddname of the DO
statement for this data set must be identical to this name.

2. The OUTOATASET parameter identifies the name of the data set to be
loaded. (Note: Either OUTFILE or OUTOATASET is required.) The data set
is dynamically allocated by access method services. The catalog con­
taining the data set is located by its alias 'ALlAS01'. The update- or higher­
level password of the VSAM data set is required.

If the REPRO operation was successfully executed, the contents of the VSAM
key-sequenced data set just loaded are printed. The format of the listing is
DUMP because the default is taken.

1. The INOATASET parameter identifies the name of the data set to be printed.
(Note: Either INFILE or INOATASET is required.) The data set is dynamically
allocated by access method services. The catalog containing the data set
is located by its alias 'ALlAS01'. The update- or higher-level password of
the VSAM data set is required.

2. The FROMKEY parameter specifies that printing is to begin with the record
whose key (high-order three bytes) is greater than or equal to '00006' (that
is, the character equivalent of X '40FOFOFOFOF6').

The second REPRO command causes a VSAM entry-sequenced data set to be
loaded from an existing variable unblocked SAM data set.

1. The INFILE parameter identifies the data set containing the source data.
The ddname of the DO statement for this data set must be identical to this
name.

2. The OUTOATASET parameter identifies the name of the data set to be
loaded. The data set is dynamically allocated by access method services.
The catalog containing the data set is located by its alias 'ALlAS02'. The
update- or higher-level password of the VSAM data set is required.

3. The COUNT parameter specifies that the first 30 records of the SAM data
set are to be loaded.

If the REPRO operation was successfully executed, the contents of the VSAM
entry-sequenced data set just loaded are printed in hexadecimal format.

1. The INOATASET parameter identifies the name of the data set to be printed.
The data set is dynamically allocated by access method services. The
catalog containing the data set is located by its alias '040'. Because the
data set is not read protected, no password is required.

2. The FROMAOORESS parameter specifies that the first record printed is that
record whose relative byte address is exactly equal to 170.

3. The HEX parameter specifies that the listing is to be in hexadecimal format.

The third REPRO command causes a VSAM relative record data set to be
loaded from an existing fixed SAM data set. The relative record data set can
receive only fixed length records that equal its defined record length.

170 MVS/XA VSAM Administration Guide

1. The INFILE parameter identifies the data set containing the source data;
Therefore, the ddname of the DD statement for this data set must be iden­
tical to this name.

2. The OUTDATASET parameter identifies the name of the data set to be
loaded. The data set is dynamically allocated by access method services.
The data set is cataloged in the master catalog; therefore, no JOBCAT or
STEPCAT DD statement is required.

3. The SKIP parameter specifies that the first 10 records of the SAM data set
are to be bypassed.

If the REPRO operation was successfully executed, the contents of the VSAM
relative record data set just loaded are printed.

1. The INDATASET parameter identifies the name of the data set to be printed.
The data set is dynamically allocated by access method services. The data
set is cataloged in the master catalog; therefore, no JOBCAT or STEPCAT
DD statement is required. Because the data set is not read protected, no
password is required.

2. 'The TONUMBER parameter limits the output to those relative records with
relative record number less than or equal to 25.

The PRINT command causes the contents of the SAM data set to be printed.

1. The INFILE parameter identifies the data set to be printed. The ddname of
the DD statement for this data set must be identical to this name.

2. The COUNT parameter specifies that only 20 records are to be printed.

3. The CHARACTER parameter specifies that the listing is to be in character
format.

The fourth REPRO command causes a VSAM key-sequenced data set to be
loaded from a non-VSAM data set.

1. The INFILE parameter identifies the data set containing the source data.
The ddname of the DD statement for this data set must be identical to this
name.

2. The OUTDATASET parameter identifies the name of the data set to be
loaded. The data set is dynamically allocated by access method services.
The data set is cataloged in the master catalog. Note that, because the
cluster component is not password protected, although its data and index
components are, a password is not required.

If the REPRO operation was successfully executed, the contents of the VSAM
key-sequenced data set just loaded are printed. The FROM KEY and TOKEY
parameters are used to limit the output to a specific range of keys.

1. The INDATASET parameter identifies the name of the data set to be printed.
The data set is dynamically allocated by access method services. The data
set is cataloged in the master catalog. No password is required, because
the cluster component is not password protected.

2. The FROMKEY and TO KEY parameters specify the keys at which printing is
to begin and end, respectively.

Appendix C. Examples of Defining and Manipulating Data Sets 171

The last REPRO command causes a linear data set to be loaded into another
linear data set. For a linear data set, REPRO must include the entire data set.

1. The INFILE parameter identifies the data set containing the source data.
The ddname of the DD statement for this data set must be identical to this
name.

2. The OUTDATASET parameter identifies the name of the data set to be
loaded. The data set is dynamically allocated by access method services.

If the REPRO operation was successfully executed, the contents of the linear
data set just loaded is partially printed from relative byte address 4096 up to an
RBA of 8191. This is the second 4K page of the linear data set.

172 MVS/XA VSAM Administration Guide

Example 5: Record Replacement
This example shows techniques for modifying the contents of VSAM data sets
using the REPRO command.

This example depends on the successful completion of examples 1 and 2 for the
existence of nonempty VSAM data sets.

IIREPlACE JOB ...
IISTEPl EXEC PG~I=IDCA~lS
IISYSPRINT DD SYSOUT=A
IISYSABEND DD SYSOUT=A
IIAI·1SDUr·1P DO SYSOUT=A
III NDSET 4 DO DSNAt'lE=EXA~IPL2. NONVSAI42) DISP=OLD I
II VOL=SER=VSER03,UNIT=DISK
IISYSHI DO *

/*

REPRO INFILE(INDSET4)-
OUTDATASET(MAST01.KSDSZ) -
REPLACE

IF LASTCC = 0 -
THEN -
PRINT INDATASET(MAST0l.KSDSZ) -

FROI·1KEY (AAAAJA) -
TOKEY(AAAAJ9)

REPRO INDATASET(MAST0l.RRDSl)-
OUTDATASET(ALIAS0Z.ESDSl.CLUST01/ESDZUPPW) -
REUSE

IF LASTCC = 0 -
THEN -
PRINT INDATASET(ALIAS02.ESDSl.CLUST0l)

Explanation of Job Control Language Statements
The INDSET4 DO statement describes the non-VSAM data set to be copied into
the VSAM data set MAST01.KSDS2.

Explanation of Commands
The first REPRO command causes records in the VSAM key-sequenced data set
to be replaced with input from a non-VSAM data set.

1. The INFILE parameter identifies the data set containing the source data.
(Note: Either INFILE or INDATASET is required.) The ddname of the DO
statement for this data set must be identical to this name.

2. The OUTOAT ASET parameter identifies the target data set. (Note: Either
OUTFILE or OUTDATASET is ·required.) Access method services dynam­
ically allocate the data set. The data set is cataloged in the master catalog;
therefore, no JOBCAT or STEPCAT DO statement is required. Because the
cluster is not password protected, no password is required.

Appendix C. Examples of Defining and Manipulating Data Sets 173

3. The REPLACE parameter causes replacement of a record in the output data
set that has the same key as a record in the input data set. Records in the
input data set, whose key is not already contained in the output data set,
are inserted into the output data set.

If the REPRO operation was successfully executed, the contents of the VSAM
key-sequenced data set just changed are printed.

1. The INDATASET parameter identifies the data set to be printed. (Note:
Either INFILE or INDATASET is required.) Access method services dynam­
ically allocate the data set. The data set is cataloged in the master catalog;
therefore, no JOBCAT or STEPCAT DO statement is required. Because the
cluster is not password protected, no password is required.

2. The FROMKEY and TOKEY parameters specify the keys at which printing is
to begin and end, respectively.

The second REPRO command causes the VSAM entry-sequenced data set to be
loaded from the VSAM relative record data set.

1. The INDATASET parameter identifies the source data set. Access method
services dynamically allocate the data set. The data set is cataloged in the
master catalog. Because the cluster is unprotected, no password is
required.

2. The OUTDATASET parameter identifies the target data set. Access method
services dynamically allocate the data set. The catalog containing the data
set is located by its alias" ALlAS02." The update- or higher-level password
is required to load the data set.

3. The REUSE parameter specifies that any records already in the entry­
sequenced data set output are to be overwritten because the entry­
sequenced data set was defined with the REUSE attribute.

If the REPRO operation was successfully executed, the entire contents of the
reloaded VSAM entry-sequenced data set are printed.

The INDATASET parameter identifies the data set to be printed. Access
method services dynamically allocate the data set. The catalog containing
the data set is located by its alias" ALlAS02." Because no read password
exists for this data set, no password is required.

174 MVS/XA VSAM Administration Guide

Example 6: Creating an Alternate Index and Its Path
This example defines an alternate index over a previously loaded VSAM key­
sequenced base cluster. defines a path over the alternate index to provide a
means for processing the base cluster through the alternate index. and builds
the alternate index. The alternate index, path. and base cluster must all be
defined in the same catalog. in this case, the master catalog. Because the
master catalog is recoverable, access method services dynamically allocate the
volume containing the base cluster's index component in order to access its
recovery area.

This example depends on the successful completion of examples 2, 4. and 5 for
the existence of the nonempty VSAM base cluster MAST01.KSDS2.

//MAKEAIX JOB •••
//STEPl EXEC PGM=IDCAMS
//SYSPRINT DO SYSOUT=A
//SYSABEND DO SYSOUT=A
//AMSDUMP DO SYSOUT=A
//IDCUTl DO DSNAME=SORT.WORK.ONE,DISP=OLD,
// AMP='AMORG ' ,VOL=SER=VSER04,UNIT=33S0
//IDCUT2 DO DSNAME=SORT.WORK.TWO,DISP=OLD,
// AMP='AMORG',VOL=SER=VSER04,UNIT=33S0
//SYSIN DO *

/*

DEFINE ALTERNATEINDEX -
(NAME(MAST0l.AIX) -
RELATE(MASTEll.KSDS2) -
MASTERPW(AIXMRPW) -
UPDATEPW(AIXUP~~) -
KEYS(3 EI) -
RE~ORDSIZE(4E1 59) -
VOLUMES(VSEREll) -
CYLINDERS(2 1) -
NONUNIQUEKEY -
UPGRADE) -

CATALOG (ICFMASTl/MASTMPWl)

DEFINE PATH -
(NAME(MAST91.PATH) -
PATHENTRY(MAST0l.AIX/AIXMRPW) -
READPW(PATHRDPW» -

CATALOG(ICFMASTl~1ASTM~Jl)

BLDINDEX INDATASET(MAST91.KSDS2) -
OUTDATASET(MAST01.AIX/AIXUPPW) -
CATALOG (ICFMASTl/MASTMPWl)

PRINT INDATASET(MAST01.PATH/PATHROPW)

Appendix C. Examples of Defining and Manipulating Data Sets 175

Explanation of Job Control Language Statements
The IDCUT1 and IDCUT2 DO statements describe the dsnames and a volume
containing data space made available to BLDINDEX for defining and using two
sort work data sets in the event an external sort is performed. This data space
is not used by BLDINDEX if enough virtual storage is available to perform an
internal sort.

Explanation of Commands
The first DEFINE command defines a VSAM alternate index over the base
cluster MAST01.KSDS2.

1. The NAME parameter is required and names the object being defined.

2. The RELATE parameter is required and specifies the name of the base
cluster over which the alternate index is defined.

3. The MASTERPW and UPDATEPW parameters specify the master and update
passwords, respectively, for the alternate index.

4. The KEYS parameter specifies the length of the alternate key and its offset
in the base cluster record.

5. The RECORDSIZE parameter specifies the length of the alternate index
record. Because the alternate index is being defined with the
NONUNIQUEKEY attribute, it must be large enough to contain the prime
keys for all occurrences of anyone alternate key.

6. The VOLUMES parameter is required and specifies the volume containing
the alternate index MAST01.AIX.

7. The CYLINDERS parameter specifies the amount of space to be allocated to
the alternate index. A space parameter is required.

8. The NONUNIQUEKEY parameter specifies that the base cluster can contain
multiple occurrences of anyone alternate key.

9. The UPGRADE parameter specifies that the alternate index is to renect all
changes made to the base cluster records, for example, additions or
deletions of base cluster records.

10. Because the master catalog is password-protected, the CATALOG param­
eter is required. It specifies the name of the master catalog and its update
or master password, which is required to define into a protected catalog.

The BLDINDEX command builds an alternate index. It is assumed that enough
virtual storage is available to perform an internal sort. However, DO state­
ments with the default ddnames of IDCUT1 and IDCUT2 have been provided for
two external sort work data sets in the event that the assumption is incorrect
and an external sort must be performed.

176 MVS/XA VSAM Administration Guide

1. The INDATASET parameter identifies the base cluster. Access method ser­
vices dynamically allocate the base cluster. The base cluster's cluster
entry is not password protected even though its data and index components
are.

2. The OUTDAT ASET parameter identifies the alternate index. Access method
services dynamically allocate the alternate index. The update- or higher­
level password of the alternate index is required.

3. The CATALOG parameter specifies the name of the master catalog. If it is
necessary for BLDINDEX to use external sort work data sets, they will be
defined in and deleted from the master catalog. The master password
permits these actions.

The second DEFINE command defines a path over the alternate index. After the
alternate index has been built, opening with the path name causes processing
of the base cluster via the alternate index.

1. The NAME parameter is required and names the object being defined.

2. The PATHENTRY parameter is required and specifies the name of the alter­
nate index over which the path is defined and its master password.

3. The READPW parameter specifies a read password for the path; it will be
propagated to master-password level.

4. The CATALOG parameter is required, because the master catalog is pass­
word protected. It specifies the name of the master catalog and its update
or master password, which is required to define into a protected catalog.

The PRINT command causes the base cluster to tie printed by means of the
alternate key, using the path defined to create this relationship. The INDA-
T ASET parameter identifies the path object. Access method services dynam­
ically allocate the path. The read password of the path is required.

Appendix c. Examples of Defining and Manipulating Data Sets 177

Example 7: Exporting VSAM Data Sets
This example shows various methods of exporting data sets to provide backup
and portability.

Note: This example depends on the successful completion of previous exam­
ples for the existence of the various objects to be exported.

IIEXPORT JOB •••
IISTEPl EXEC PGt·l= IDCAr·IS
IISYSPRINT DO SYSOUT=A
IISYSABENO DO SYSOUT=A
IIAf·1SDUt·1P DO SYSOUT =A
IIRECEIVE DO DSNAI·1E=PORTABLE. DSETl ,SPACE=(CYL, (l, l)) ,
II UlHT=33S0,OISP=(NHI,KEEP), VOL=SER=VSER0l,
II OCB=BLKSIZE=6000
IISYSIN DO *

EXPORT -
AUAS01. EXAr·IPLE. KSDS1/KSD1PS\O/D -
PURGE -
OUTFILE(RECEIVE)

IISTEP2 EXEC PGr.J=IOCAf.1S
IISYSPRINT DO SYSOUT=A
IISYSABENO DO SYSOUT=A
IIAf·1SDUr·1P DO SYSOUT=A
IIRECEIVE DO DSNAI·1E=PORTABLE. DSET2 ,SPACE=(CYL, (l, 1)) ,
II UrHT=33S0,OISP=(I-IEH,KEEP), VOL=SER=VSER01
IISYSIN DO *

EXPORT -
AUAS02. ESDS1. CLUST01/ESD2P\·it·1R -
OUTFILE(RECEIVE) -
TEl-IPORARY -
INHIBITSOURCE -
I NH I BITT ARGET

liS T EP3 EXEC PGI·l= IDCAl·1S
IISYSPRINT DO SYSOUT=A
IISYSABEND DO SYSOUT=A
IIAI·1SDUr·IP DO SYSOUT=A
IIRECEIVE DO DSNAr·1E=PORTABLE. OSET3, SPACE=(CYL, (1,1)) ,
II DISP=(NEH,KEEP), VOL=SER=VSER01,UNIT=33S0
IISYSIN DO *

EXPORT -
r·IAST01. AIX/'·1ASmp~J1 -
OUTFILE(RECEIVE)

IISTEP4 EXEC PGI·l=IDCAl·1S
IISYSPRINT DO SYSOUT=A
IISYSABEND DO SYSOUT=A
IIAI·1SDUI·1P DO SYSOUT=A
I IRECEI VE DO DSNAI.JE=PORTABLE. DSET 4, SPACE=(CYL (l, 1)) ,
I I DISP=(NEH, KEEP) ,VOL=SER=VSER01, UNIT=3380
IISYSIN DO *

EXPORT -
~IAST01. KSDS2/f.1ASTI4PloJl -

178 MVSIXA VSAM Administration Guide

OUTFILE(RECEIVE)

IISTEPS EXEC PGt~=IDCAt~S
I/SYSPRINT DO SYSOUT=A
I/SYSABEND DO SYSOUT=A
I/AMSOUI·1P DO SYSOUT=A
/IRECEIVE DO DSNAI4E=PORTABLLOSETS,SPACE=(CYL, (3,1)),
/1 UNIT=3380, DISP= (NEH, KEEP) , VOL=SER=VSER3
IISYSIN DO *

/*

EXPORT -
ALIAS02.LINEAR.CLUST01 -
OUTFILE(RECEIVE) -
CH10DE

Explanation of Job Control Language Statements
The RECEIVE DO statements describe the portable data sets. The record format
(VBS) and logical record length are set by EXPORT. Except where overridden
as in STEP1, the block size is set by EXPORT as 2048.

Explanation of Commands
The first EXPORT command causes a key-sequenced VSAM data set to be
exported from a user catalog. When it has been exported, the key-sequenced
data set is deleted from the user catalog.

Note: When an object is exported, the record format of its records on the port­
able file is "VBS", and the EXPORT process determines the appropriate record
size. However, the RECEIVE DO statement specifies a block size
(BLKSIZE = 6000) to override the block size used by the EXPORT process (2048
bytes) and to improve performance.

1. ALlAS01.EXAMPLE.KSOS1 names the key-sequenced VSAM data set being
exported. Its password, KS01 PSWD, is also supplied. (When the data set
was defined, its read password propagated upward and all passwords for
the data set are KS01 PSWD.) Access method services dynamically allocate
the cluster. The catalog containing the cluster is located through its alias
'ALlAS01', which is the high-level qualifier of the cluster name.

2. The PURGE parameter is required, because the data set was defined with a
retention period of 365 days. The data set cannot be exported permanently
(that is, deleted from the catalog after its copy is made in the portable file)
unless the PURGE parameter is specified to override its cataloged retention
period.

3. The OUTFILE parameter names the DO statement that describes and allo­
cates the output data set. (Note: Either OUTFILE or OUTDATASET is
required.)

The second EXPORT command causes an entry-sequenced VSAM data set to
be exported from a user catalog. When it has been exported, the data set's
entry in the user catalog is marked "temporary export" and "inhibit update,"
which prevents the data set from being modified in any way. The user's
program can only read the data set's records. In addition, when the data set's
copy is imported into another system catalog, the data set's entry in the new, or
"target," catalog is marked "inhibit update."

Appendix C. Examples of Defining and Manipulating Data Sets 179

1. ALlAS02.EXAMPLE.ESDS1 names the entry-sequenced data set being
exported. Its master password, ESD1 PWMR, is also supplied. (Example 7
shows how the data set's passwords were changed.) Access method ser­
vices dynamically allocate the cluster. The catalog containing the cluster is
located through its alias I ALlAS02 1 , which is the high-level qualifier of the
cluster name.

2. The OUTFILE parameter names the DO statement that describes and allo­
cates the output data set.

3. The TEMPORARY parameter specifies that the data set is ·not to be deleted
from the catalog when it is exported.

4. The INHIBITSOURCE parameter specifies that the data set that remains in
the "source" catalog and system is not to be updated or modified.

5. The INHIBITTARGET parameter specifies that the data set's exported copy
is not to be updated or modified when it has been imported into t-he
"target" catalog and system.

The third and fourth EXPORT commands cause the alternate index and base
cluster to be exported from the master catalog. Any paths defined over either
object are exported with their PATHENTRY object. Because the export is per­
manent, both the base cluster and the alternate index are deleted from the
catalog. The alternate index must be exported first, because a delete of the
base cluster causes deletion of all objects defined over it.

The third EXPORT command causes an alternate index to be exported from the
master catalog. .

1. The name of the alternate index being exported is required. A master pass­
word is required for the deletion and to allow VSAM locates against both
the alternate index and path to obtain the catalog information (including
passwords) to be exported. The master password of the catalog covers all
requirements. Access method services dynamically allocate the alternate
index.

2. The OUTFILE parameter names the DO statement that describes and allo­
cates the output data set.

The fourth EXPORT command causes a base cluster to be exported from the
master catalog.

1. The name of the base cluster being exported is required. Because the
cluster level is not protected, no password would be required for the
deletion. However, a password is required for the VSAM locates against
the data and index components to obtain the catalog information (including
passwords) to be exported. Because only one password can be supplied, it
must be that of the master catalog. Access method services dynamically
allocate the cluster.

2. The OUTFILE parameter names the DO statement that describes and allo­
cates the output data set.

180 MVS/XA VSAM Administration Guide

The fifth EXPORT command causes the export of a linear data set from the
master catalog. To be successful, both the IMPORT source and the RECEIVE
data sets must be linear data sets.

1. The name of the data set being exported is required.

2. The OUTFILE parameter names the DO statement that describes and allo­
cates the output data set.

3. CIMODE is forced for EXPORT. If RECORDMODE is specified, it will be
overridden.

Appendix C. Examples of Defining and Manipulating Data Sets 181

Example 8: Importing VSAM Data Sets
This example shows various methods of importing data sets.

Note: This example depends on the successful completion of Example 7. which
created a portable data set that contains a copy of each VSAM data set to be
imported.

IIHlPORT JOB •••
IISTEPl EXEC PGM=IDCAt·1S
IISYSPRINT DO SYSOUT=A
IISYSABEND DO SYSOUT=A
IIAI·1SDUI·1P DO SYSOUT=A
IISOURCE DO OSNAt·1E=PORTABlE. DSET 4,
II OISP=(OlD,DElETE),VOl=SER=VSER61,UNIT=33S6
IISYSIN DO *

If.1PORT -
INFIlE(SOURCE) -
OUTOATASET (MASTal. KSDS2) -
CATALOG (ICFMASTl/MASU1PWl)

IISTEP2 EXEC PGM=IOCAMS
IISYSPRINT DO SYSOUT=A
IISYSABEND DO SYSOUT=A
IIAI.1SDUt·1P DO SYSOUT=A
IISOURCE DO DSNAt·1E=PORTABlE.DSET3,
II DISP=(OLD,DELETE),VOl=SER=VSERal,UNIT=33S6
IISYSIN DO *

HlPORT -
INFILE(SOURCE) -
OUTOATASET (t4ASTa1.AIX/AIXI.1RPI'J) -
CAT AlOG (I CFMAST l/l4ASTI-1P~Jl)

IISTEP3 EXEC PGI4=IDCAI·1S
IISYSPRINT DO SYSOUT=A
IISYSABEND DO SYSOUT=A
IIAI·1SDUt·1P DO SYSOUT=A
IISOURCE DO DSNAt·1E=PORTABLE.DSET2,DCB=LRECl=3aa4,
II UNIT=33S6,DISP=(OLO,DELETE),VOl=SER=VSER61
IIRECEIVE DO DSN=ALIAS6Z.ESDSl.ClUSTal,DISP=SHR
IISYSIN DO *

HlPORT -
INFILE(SOURCE) -
OUTFIlE(RECEIVE) -
CATALOG (USERCATZ/UCAU1RPW)

IISTEP4 EXEC PGM=IDCAI·1S
IISYSPRINT DO SYSOUT=A
IISYSABEND DO SYSOUT=A
IIAt·1SDUI·1P DO SYSOUT=A
IISOURCE DO DSNAt4E=PORTABlE.DSETl,
II UNIT=33S6,DISP=(OlO,OElETE),VOL=SER=VSERal,
II OCB=(LRECl=479,BLKSIZE=6aaa)
IISYSIN DO *

182 MVS/XA VSAM Administration Guide

HlPORT -
INFILE(SOURCE) -
OUTDAT ASET (ALI AS02. EXA~INH/. KSDS 1) -
CATALOG (USERCAT2/UCATUPP\·/) -
OBJECTS -

((ALIAS01. EXAI·1PLE. KSDSI -
VOLUMES(VSER03) -
NEHNAt·1E(ALIAS02. EXAt·1NEH. KSOSl)) -

(ALIAS01.EXAt·1PLE.KSDS1.0ATA -
NEHNAt·1E(ALIAS02. EXAt·1PLE. KSOS 1. DATA)) -

(ALIAS01.EXAI4PLE.KSOS1.INOEX -
NEHNAt·1E(ALIAS02. EXAI·1PLE. KSOS 1. INDEX)))

I ISTEP5 EXEC PGM=IOCAI4S
IISYSPRINT 00 SYSOUT=A
IISYSABENO DO SYSOUT=A
IIAt4S0Ut4P DO SYSOUT=A
IISOURCE DO OSNAI·1E=PORTABLE. OSET5, UNIT =3380, OISP= (OLD ,DELETE) •
II VOL=SER=VSER03
IISYSIN 00 *

1*

Jt.1PORT -
INFILE(SOURCE) -
OUTOATASET(ALIAS02.LINEAR.CLUST01) -
CATALOG (USERCAT2/UCA Tt4RPI·J)

Explanation of Job Control Language Statements
• The SOURCE DD statements describe the portable data sets. Unless over­

ridden by DCB parameters, the EXPORT command sets the block size to
2048 and the record length to block size minus 4.

• The RECEIVE DD statement in STEP3 describes and allocates
ALlAS02.ESDS1.CLUST01, which was exported with the TEMPORARY attri­
bute.

Explanation of Commands
the first and second IMPORT commands import the base cluster and alternate
index exported in Example 11 into the master catalog. The importation causes
each component to be newly defined. Because the alternate index cannot be
defined until the base cluster has been defined, the base cluster must be
imported first. The importation causes any paths over the exported objects to
be redefined.

The first IMPORT command causes the base cluster to be imported into the
master catalog.

1. The INFILE parameter names the DD statement that describes and allocates
the portable data set. (Note: Either INFILE or INDATASET is required.)

2. The OUTDAT ASET parameter identifies the data set being imported. (Note:
Either OUTFILE or OUTDATASET is required.) Access method services
dynamically allocates the data set after it has been defined; this also pro­
vides access to the catalog recovery area.

3. Because the master catalog is password protected, the CATALOG param­
eter is required. It specifies the name of the master catalog and its update
password, required to define into a protected catalog.

Appendix C. Examples of Defining and Manipulating Data Sets 183

The second IMPORT command causes an alternate index to be imported into
the master catalog.

1. The INFILE parameter names the DD statement that describes and allocates
the portable data set.

2. The OUTDAT ASET parameter identifies the data set being imported.
Access method services dynamically allocates the alternate index after it
has been defined; this provides access to the catalog recovery area.

3. Because the master catalog is password protected, the CATALOG param­
eter is required. It specifies the name of the master catalog and its update
password, required to define into a protected catalog.

The third IMPORT command causes the previously exported entry-sequenced
VSAM data set to be imported. The data set is imported into the catalog from
which it was exported. The portable data set (that is, the copy being imported)
replaces the copy that exists in user catalog USERCAT2. With an entry name of
ALlAS02.ESDS1.CLUST01, the IMPORT process searches user catalog
USERCAT2 for the entry. It deletes that entry, then redefines a cluster entry
using the catalog information obtained from the portable data set. Because the
data set was exported with the TEMPORARY attribute (see the previous
example), the IMPORT command doesn't need to supply volume information.

Note: The SOURCE DD statement specifies a record size (LRECL = 3004),
because the largest record in the portable data set is 3000 bytes (that is, LRECL
= (largest-record size) + 4). Otherwise, the default record size, block size
minus 4, would be erroneously used by the EXPORT command. In the two pre­
vious steps, the default record size was used.

1. The INFILE parameter names the DD statement that describes and allocates
the portable data set to be imported.

2. The OUTFILE parameter names the DD statement that describes and allo­
cates the data set to be imported. Note that, because the data set was
exported with the TEMPORARY attribute, it exists in the catalog USERCAT2
at step allocation time.

3. Because the catalog is password protected, the CATALOG parameter is
required. It names the catalog that is to contain the imported data set. The
catalog's master password is supplied, and allows the IMPORT process to
delete the existing entry in the catalog and redefine a new entry for the
entry-sequenced VSAM data set.

The fourth IMPORT command causes the previously exported key-sequenced
VSAM data set, ALlAS01.EXAMPLE.KSDS1 to be imported from its copy (that is,
the first portable data set on the magnetic tape reel) to a different user catalog
than it was exported from, USERCAT2. The IMPORT .command renames the
data set and each of its components. as specified with the NEWNAME parame­
ters, and specifies that the data set is to reside on a volume different from
which it was exported. The high-level qualifier (ALlAS02) of the new compo­
nent's name is the alias name of the user catalog USERCAT2.

Note: The SOURCE DD statement describes the portable data set created in
STEP1 of Example 7. The block size parameter is included to emphasize that
information specified when the data set is imported must be the same as that
specified when the data set is exported. The LRECL parameter is not required,
because maximum record size is 475 bytes and the default (block size minus 4)
is adequate. By specifying a record size, however, the default is overridden

184 MVS/XA VSAM Administration Guide

and virtual storage is used more efficiently. When record size is specified, it is
the largest record size + 4.

1. The INFILE parameter names the DO statement that describes and allocates
the portable data set containing the to-be-imported VSAM data set.

2. The OUTDAT ASET parameter identifies the renamed data set. Access
method services dynamically allocates the data set after it has been
defined.

3. Because the catalog is password protected, the CATALOG parameter is
required. It names the catalog that is to contain the imported data set's
entry. The catalog's update password is supplied and allows the data set to
be imported into the catalog.

4. The OBJECTS parameter identifies the volume that is to contain the
imported data set and specifies new names for each of the data set's com­
ponents. The OBJECTS parameter identifies each entry of the imported
data set with its original entry name, then specifies information that is to
replace the information found in the portable data set's imported catalog
entries.

The fifth IMPORT command processes a linear data set. To be successful, both
the source and EXPORT receive data sets must be linear.

1. The INFILE parameter names the DO statement that describes and allocates
the portable data set containing the to-be-imported VSAM data set.

2. The OUTDATASET parameter identifies the renamed data set. Access
method services dynamically allocates the data set after it has been
defined.

3. CATALOG names the catalog that is to contain the imported data set's
entry.

Note: CIMODE cannot be specified because IMPORT uses the same mode as
EXPORT.

Appendix C. Examples of Defining and Manipulating Data Sets 185

Example 9: Deleting a Linear Data Set
This example shows how to delete a linear data set.

jjOELETE JOB .•.
j jSTEPl EXEC PGr4=IOCAI·1S
jjSYSPRINT 00 SYSOUT=A
jjSYSABENO 00 SYSOUT=A
j jAMSOUr·1P 00 SYSOUT =A
jjoASo 00 oISP=OLO)UNIT=3380)VOL=SER=VSER03
jjSYSIN 00 *

jj*

DELETE (ALIAS82.LINEAR.CLUST81) -
CLUSTER -
FILE(OASO) -
PURGE -
CAT ALOG (USERCAT2jUSERr·1P\'J)

Explanation of Job Control Language Statements
The DASD DO statement identifies the disposition and location of the object
being deleted.

Explanation of Commands
1. The complete name of the object being deleted is listed.

2. CLUSTER specifies that the object being deleted is a cluster.

3. FILE specifies the name of the DO statement that identifies the disposition
and location of the object being deleted.

4. PURGE specifies the object to be deleted regardless of the specified
retention period.

S. CATALOG specifies the name of the catalog that contains the object being
deleted.

186 MVS/XA VSAM Administration Guide

Appendix D. Processing the Index of a Key-Sequenced Data
Set

Product-Sensitive Programming Interface

This appendix is intended to help you diagnose problems you may have with an
index of a key-sequenced data set. It contains product-sensitive programming
interfaces provided by MVS/XA Data Facility Product. Installation exits and
other product-sensitive interfaces are provided to allow your installation to
perform tasks such as product tailoring, monitoring, modification, or diagnosis.
They are dependent on the detailed design or implementation of the product.
Such interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in
order to run with new product releases or versions, or as a result of service.

VSAM allows you to access the index of a key-sequenced data set. This may
be useful to you if your index is damaged or if pointers are lost and you want to
know exactly what the index contains. You should not attempt to duplicate or
substitute the index processing done by VSAM during normal access to data
records.

How to Gain Access to a Key-Sequenced Data Set's Index
You can gain access to the index of a key-sequenced data set in one of two
ways:

• By opening the cluster and using the GETIX and PUTIX macros

• By opening the index component alone and using the macros for normal
data processing (GET, PUT, and so forth)

Accessing an Index with GETIX and PUTIX
To process the index of a key-sequenced data set with GETIX and PUTIX, you
must open the cluster with ACB MACRF = (CNV, ...) specified. CNV provides for
control interval access. which you use to gain access to the index component.

Access using GETIX and PUTIX is direct. by control interval: VSAM requires
RPL OPTCD = (CNV,DIR). The search argument for GETIX is the RBA of a
control interval. The increment from the RBA of one control interval to that of
the next is control interval size for the index.

GETIX can be issued either for update or not for update. VSAM recognizes
OPTCD~NUP or UPD but interprets OPTCD=NSP as NUP.

The contents of a control interval cannot be inserted by way of PUT IX. VSAM
requires OPTCD = UPD. The contents must previously have been retrieved for
update by way of GETIX.

RPL OPTCD = MVE or LOC may be specified for GETIX, but only OPTCD = MVE
is valid for PUTIX. If you retrieve with OPTCD = LOC, you must change OPTCD

Appendix D. Processing the Index of a Key-Sequenced Data Set 187

to MVE to store. With OPTCD = MVE. AREALEN must be at least index control
interval size.

Beyond these restrictions. access to an index by way of GETIX and PUTIX
follows the rules under Chapter 7. "Processing Control Intervals" on page 87.

Opening the Index Component Alone

Prime Index

You can gain addressed or control interval access to the index component of a
key-sequenced cluster by opening the index component alone and using the
request macros for normal data processing. To open the index component
alone. specify: DSNAME =indexcomponentname in the DO statement identified
in the ACB (or GENCB) macro.

You can gain access to index records with addressed access and to index
control intervals with control interval access. The use of these two types of
access for processing an index is identical in every respect with their use for
processing a data component.

Processing the index component alone is identical to processing an entry­
sequenced data set; an index itself has no index and thus cannot be processed
by keyed access.

A key-sequenced data set always has an index that relates key values to the
relative locations of the the logical records in a data set. This index is called
the prime index. The prime index. or simply index. has two uses:

• To locate the collating position when inserting records
• To locate records for retrieval

When initially loading a data set, records must be presented to VSAM in key
sequence. The index for a key-sequenced data set is built automatically by
VSAM as the data set is loaded with records. The index is stored in control
intervals. An index control interval contains one pointer to each index control
interval in the next lower level. or one entry for each data control interval in a
control area.

When a data control interval is completely loaded with logical records. free
space. and control information. VSAM makes an entry in the index. The entry
consists of the highest possible key in the data control interval and a pointer to
the beginning of that control interval. The highest possible key in a data control
interval is one less than the value of the first key in the next sequential data
control interval. Figure 31 illustrates that a single index entry. such as 19. con­
tains all the information necessary to locate a logical record in a data control
interval.

188 MVSIXA VSAM Administration Guide

Index [
CI

Free
CIPTR 19 25
LIBt

Ii"_ Data CI1

11 15 18

DataCI2

Can-
trol 20 25
Info

Con-
tral
Info

Data CI3

Free Space

C
I

D
F

Figure 31. Relation of Index Entry to Data Control Interval

lncex
CI

Figure 32 illustrates that a single index control interval contains all the informa­
tion necessary to locate a record in a single data control area.

c a

20 25

Figure 32. Relation of Index Control Interval to Data Control Area

Index Levels

The index contains the following entries:

a. A free control interval pointer list, which indicates available free space
control intervals. Because this control area has a control interval that
is reserved as free space, VSAM places a free space pointer in the
index control interval to locate the free space data control interval.

b. 19. the highest possible key in data control interval 1. This entry points
to the beginning of data control interval 1.

c. 25, the highest possible key in data control interval 2. This entry points
to the beginning of data control interval 2.

A VSAM index can consist of more than one index level. Each level contains a
set of records with entries giving the location of the records in the next lower
level.

Sequence Set

The index records at the lowest level are the sequence set. There is one index
sequence set level record for each control area in the data set. This sequence
set record gives the location of data control intervals. An entry in a sequence

"
Appendix D. Processing the Index of a Key-Sequenced Data Set 189

set record consists of the highest possible key in a control interval of the data
component, paired with a pointer to that control interval.

Index Set

If there is more than one sequence set level record, VSAM automatically builds
another index level. Each entry in the second level index record points to one
sequence set record. The records in all levels of the index above the sequence
set are called the index set. An entry in an index set record consists of the
highest possible key in an index record in the next lower level, and a pointer to
the beginning of that index record. The highest level of the index always con­
tains only a single record.

When you access records sequentially, VSAM refers only to the sequence set. It
uses a horizontal pointer to get from one sequence set record to the next
record in collating sequence. When you access records directly (not sequen­
tially), VSAM follows vertical pOinters from the highest level of the index down
to the sequence set to find vertical pointers to data.

Figure 33 on page 191 illustrates the levels of a prime index and shows the
relationship between sequence set index records and control areas. The
sequence set shows both the horizontal pointers used for sequential proc­
essing, and the vertical pointers to the data set. Although the values of the
keys are actually compressed in the index, the full key values are shown in the
figure.

190 MVS/xA VSAM Administration Guide

IndexSBt

0 --------

Sequenc8 Sat [

-----------~ , , I n --------

11001 11002110091 FS I r:-I
. . . . Info

f:f]
Info

Control Area 1 1105211080 11080 1 FS I~-I Control 114021142~ 114281 FS f:~-I Area 2 Info

1102211025110331 FS I:rl 12345 12352123831 Fa I ~~-I
HDR - Header Infarmatlon

Figure 33. levels of a Prime Index

Format of an Index Record
Index records are stored in control intervals the same as data records, except
that only one index record is stored in a control interval, and there is no free
space between the record and the control information. Consequently, there is
only one RDF that contains the flag X 100 I and the length of the record (a
number equal to the length of the control interval minus 7). The CIDF also con­
tains the length of the record (the displacement from the beginning of the
control interval to the control information); its second number is 0 (no free
space). The contents of the RDF and CIDF are the same for every used control
interval in an index. The control interval after the last-used control interval has
a CIDF filled with O's, and is used to represent the software end-of-file (SEOF).

Index control intervals are not grouped into control areas as are data control
intervals. When a new index record is required, it is stored in a new control
interval at the end of the index data set. As a result, the records of one index

Appendix D. Processing the Index of a Key-Sequenced Data Set 191

Header Portion

level are not segregated from the records of another level, except when the
sequence set is separate from the index set. The level of each index record is
identified by a field in the index header (see "Header Portion".)

When an index record is replicated on a track, each copy of the record is iden­
tical to the other copies. Replication has no effect on the contents of records.

Figure 34 shows the parts of an index record.

Free Unuaad
Haader CIPTR Space Index - Entry Portion

LIst

Figure 34. General Format of an Index Record

An index record contains the following:

• A 24-byte header containing control information about the record.

• For a sequence set index record governing a control area that has free
control intervals, there are entries pointing to those free control intervals.

• Unused space, if any.

• A set of index entries used to locate, for an index set record, control inter­
vals in the next lower level of the index, or, for a sequence set record, used
control intervals in the control area governed by the index record.

The first 24 bytes of an index record is the header, which gives control informa­
tion about the index record. Figure 35 on page 190 shows its format. All
lengths and displacements are in bytes. The discussions in the following two
sections amplify the meaning and use of some of the fields in the header.

-
Figure 35 (Page 3 of 3). Format of the Header of an Index Record

Field Offset Length Description

IXHLL 0(0) 2 Index record length. The length of the index record is equal to
the length of the control interval minus 7.

IXHFLPLN 2(2) 1 Index entry control information length. This is the length of the
last three of the four fields in an index entry. (The length of the
first field is variable.) The length of the control information is 3,
4, or 5 bytes.

192 MVS/XA VSAM Administration Guide

Figure 35 (Page 2 of 3). Format of the Header of an Index Record

Field Offset Length Description

IXHPTLS 3(3) 1 Vertical-poi nter-Iength i nd icator.

The fourth field in an index entry is a vertical pointer to a
control interval.

In an index set record, the painter is a binary number that des-
ignates a control interval in the index. The number is calculated
by dividing the RBA of the control interval by the length of the
control interval. To allow for a possibly large index. the pointer
is always 3 bytes.

In a sequence set record, the pointer is a binary number. begin-
ning at 0, ~nd calculated the same as for index set record, that
designates a control interval in the data control area governed
by the sequence set record. A free-control-interval entry is
nothing more than a vertical pointer. There are as many index
entries and free control interval entries in a sequence set
record as there are control intervals in a control area.
Depending on the number of control intervals in a control area,
the pointer is 1. 2, or 3 bytes.

An IXHPTLS value ofX I 01 1 indicates a 1-byte pointer; X I 03 1

indicates a 2-byte pointer; X 107 1 indicates a 3-byte pointer.
IXHBRBA 4(4) 4 Base RBA. In an index-set record, this is the beginning RBA of

the index. Its value is O. The RBA of a control interval in the
index is calculated by multiplying index control interval length
times the vertical pointer and adding the result to the base RBA.

In a sequence set record, this is the RBA of the control area
governed by the record. The RBA of a control interval in the
control area is calculated by multiplying data control interval
length times the vertical pointer and adding the result to the
base RBA. Thus, the first control interval in a control area has
the same RBA as the control area (length times 0, plus base
RBA, equals base RBA).

IXHHP 8(8) 4 Horizontal-pointer RBA. This is the RBA of the next index record
in the same level as this record. The next index record contains
keys next in ascending sequence after the keys in this record.

12(C) 4 Reserved.

IXHLV 16(10) 1 Level number. The sequence set is the first level of an index,
and each of its records has an IXHLV of 1. Records in the next
higher level have a 2, and so on.

17(11) 1 Reserved.

IXHFSO 18(12) 2 Displacement to the unused space in the record. In an index
set record, this is the length of the header (24)-there are no
free control interval entries.

In a sequence set record, the displacement is equal to 24. plus
the length of free control interval entries, if any.

Appendix D. Processing the Index of a Key-Sequenced Data Set 193

Figure 35 (Page 1 of 3). Format of the Header of an Index Record

Field Offset Length Description

IXHLEO 20(14) 2 Displacement to the control information in the last index entry.
The last (leftmost) index entry contains the highest key in the
index record. In a search, If the search-argument key is greater
than the highest key in the preceding index record but less than
or equal to the highest key in this index record, then this index
record governs either the index records in the next lower level
that have the range of the search-argument key or the control
area in which a data record having the search-argument key is
stored.

IXHSEO 22(16) 2 Displacement to the control information in the last (leftmost)
index entry in the first (rightmost) section. Index entries are
divided into sections to facilitate a quick search. Individual
entries are not examined until the right section is located.

Free Control Interval Entry Portion

Index Entry Portion

If the control area governed by a sequence set record has free control intervals,
the sequence set record has entries pointing to those free control intervals.
Each entry is 1, 2, or 3 bytes long (indicated by IXHPTLS in the header: the
same length as the pointers in the index entries).

The entries come immediately after the header. They are used from right to
left. The rightmost entry is immediately before the unused space (whose dis­
placement is given in IXHFSO in the header). When a free control interval gets
used, its free entry is converted to zero, the space becomes part of the unused
space, and a new index entry is created in the position determined by
ascending key sequence.

Thus, the free control interval entry portion contracts to the left, and the index
entry portion expands to the left. When all the free control intervals in a control
area have been used, the sequence set record governing the control area no
longer has free control interval entries, and the number of index entries equals
the number of control intervals in the control area. Note that if the index
control interval size was specified with too small a value, it is possible for the
unused space to be used up for index entries before all the free control inter­
vals have been used, resulting in control intervals within a data control area
that cannot be utilized.

The index entry portion of an index record takes up all of the record that is left
over after the header, the free control interval entries, if any, and the unused
space.

Figure 36 on page 193 shows the format of the index entry portion of an index
record. To improve search speed, index entries are grouped into sections, of
which there are approximately as many as the square root of the number of
entries. For example, if there are 100 index entries in an index record, they are
grouped into 10 sections of 10 entries each. (The number of sections does not
change, even though the number of index entries increases as free control
intervals get used.)

194 MVS/XA VSAM Administration Guide

[-. ---- - ---.-.-.. ----1
Last
Section i

[
---- .. ---.- ._._-_ .. -. ·'1

3rd '
Sec:ion i

I1S!
I Sect:or

~

I
~

Inde>: Ireet. Incex Index

I ' 0
~

lntries .~ , E,:ries Lr:ries
: .~ j

Lntr:es

::>isplacemert trom beGi,ning o~ :his sec:ion to
the beginning of t"le neAt section.

Figure 36. Format of the Index Entry Portion of an Index Record

The sections, and the entries within a section, are arranged from right to left.
IXHLEO in the header gives the displacement from the beginning of the index
record to the control Information in the leftmost index entry. IXHSEO gives the
displacement to the control information in the leftmost index entry in the right­
most section. You calculate the displacement of the control information of the
rightmost index entry in the index record (the entry with the lowest key) by sub­
tracting IXHFLPLN from IXHLL in the header (the length of the control informa­
tion in an index entry from the length of the record).

Each section is preceded by a 2-byte field that gives the displacement from the
control information in the leftmost index entry in the section to the control infor­
mation in the leftmost index entry in the next section (to the left). The last (left­
most) section's 2-byte field contains O's.

Figure 37 gives the format of an index entry.

Controllnformll.tlon

Compressed Key

F-Number of charactars eliminated from the front
L-Number of charactarsleft In key after compreBBlon
P-Vertlcal pointer

p

- Figure 37. Format of an Index Entry

Key Compression
Index entries are variable in length within an index record, because VSAM com­
presses keys. That is. it eliminates redundant or unnecessary characters from
the front and back of a key to save space. The number of characters that can
be eliminated from a key depends on the relationship between that key and the
preceding and following keys.

For front compression, VSAM compares a key in the index with the preceding
key in the index and eliminates from the key those leading characters that are
the same as the leading characters in the preceding key. For example, if key
12356 follows key 12345, the characters 123 are eliminated from 12356 because

Appendix D. Processing the Index of a Key-Sequenced Data Set 195

they are equal to the first three characters in the preceding key. The lowest
key in an index record has no front compression; there is no preceding key in
the index record.

There is an exception for the highest key in a section. For front compression, it
is compared with the highest key in the preceding section, rather than with the
preceding key. The highest key in the rightmost se~tion of an index record has
no front compression; there is no preceding section in the index record.

What is referred to as "rear compression" of keys is actually the process of
eliminating the insignificant values from the end of a key in the index. The
values eliminaied may be represented by X' FF'. VSAM compares a key in the
index with the following key in the data and eliminates from the key those char­
acters to the right of the first character that are unequal to the corresponding
character in the following key. For example, if the key 12345 (in the index) pre­
cedes key 12356 (in the data), the character 5 is eliminated from 12345 because
the fourth character in the two keys is the first unequal pair.

The first of the control information fields gives the number of characters elimi­
nated from the front of the key, and the second field gives the number of char­
acters that remain. When the sum of these two numbers is subtracted from the
full key length (available from the catalog when the index is opened). the result
is the number of characters eliminated from the rear. The third field indicates
the control interval that contains a record with the key.

The example in Figure 38 on page 198 gives a list of full keys and shows the
contents of the index entries corresponding to the keys that get into the index
(the highest key in each data control interval). A sequence-set record is
assumed, with vertical pointers 1 byte long. The index entries shown in the
figure from top to bottom are arranged from right to left in the assumed index
record.

Key 12345 has no front compression because it is the first key in the index
record. Key 12356 has no rear compression because, in the comparison
between 12356 and 12357, there are no characters following 6, which is the first
character that is unequal to the corresponding character in the following key.

You can always figure out what characters have been eliminated from the front
of a key; you cannot figure out the ones eliminated from the rear. Rear com­
pression, in effect, establishes the key in the entry as a boundary value instead
~f an exact high key. That is, an entry does not give the exact value of the
highest key in a control interval, but gives only enough of the key to distinguish
it from the lowest key in the next control interval. In Figure 38 on page 198, for
example, the last three index keys, after rear compression, are 12401, 124, and
134. Data records with key fields between 12402 and 124FF are associated with
index key 124; data records with key fields between 12500 and 134FF are associ­
ated with index key 134.

If the last data record in a control interval is deleted, and if the control interval
does not contain the high key for the control area, then the space is reclaimed
as free space. Space reclamation can be suppressed by setting the RPLNOCIR
bit, which has an equated value of X '20', at offset 43 into the RPL.

The last index entry in an index level indicates the highest possible key value.
The convention for expressing this value is to give none of its characters and

196 MVS/XA VSAM Administration Guide

indicate that no characters have been eliminated from the front. The last index
entry in the last record in the sequence set looks like this:

~
~

where x is a binary number from 0 to 255. assuming a 1-byte pointer.

In a search, the two O's signify the highest possible key value in this way:

• The fact that 0 characters have been eliminated from the front implies that
the first character in the key is greater than the first character in the pre­
ceding key.

• A length of 0 indicates that no character comparison is required to deter­
mine whether the search is successful; that is. when a search encounters
the last index entry, a hit has been made.

Appendix D. Processing the Index of a Key-Sequenced Data Set 197

Full Ke, Index Entr,

123.!5------~1-·1 2 ~ 3=:j-H-tffl
12350

12353

12354 1-5!~ ·6-1-:_[1·~+~·1
12356 ---~ ___ ---'-_.:..-.....;...1---' '.

12357

12358

12359 -_._-. L.........l..._:"'--J

123/0

12373

12380

12385

12390 1 ~ i 4~==
12~O' ____ ~ ... _4_· __ 0 __ 1 __ '_ 22...:-1_3.....:...l2J_3...J

12t.C5

12~10

12~17

12SCO

13200 13 K .l F:~ :1
13t.56 ----~L ____ -'--___J_

13567

LeGend:
K-Characters left i'l ,<e~' after compression
F-Nu~ber Of ct'a'acte's eli~inated from the front
L-Nurrber of ct'a'acte's left in ke:t atar com;>'ession
P-Vertiea I ::>ointer

Figure 38. Example of Key Compression

198 MVS/XA VSAM Administration Guide

Eliminated Eliminated
from Front .rom Rear

none 5

123 none

1235 9

12 none

'24 21

56

Index Update following a Control Interval Split

Index [
CI 14

r:I

.~

11

•

19

0

When a data set is first loaded, the key sequence of data records and their
physical order are the same. However, when data records are inserted, control
interval splits can occur, causing the data control intervals to have a physical
order that differs from the key sequence.

Figure 39 illustrates how the control interval is split and the index is updated
when a record with a key of 12 is inserted in the control area shown in
Figure 32 on page 189.

2S

DataCI1
~,.

DataCI2 .~ DataCI3

Con- Con- Con-
12 FS trol 20 25 trol 15 18 FS trol

Info Info Info

Figure 39. Control Interval Split and Index Update

a. A control interval split occurs in data control interval 1, where a record
with the key of 12 must be inserted.

b. Half the records in data control interval 1 are moved by VSAM to the
free space control interval (data control interval 3).

c. An index entry is inserted in key sequence to point to data control
interval 3, that now contains data records moved from data control
interval 1.

d. A new index entry is created for data control interval 1, because after
the control interval split, the highest possible key is 14. Because data
control interval 3 now contains data, the pOinter to this control interval
is removed from the free list and associated with the new key entry in
the index. Note that key values in the index are in proper ascending
sequence, but the data control intervals are no longer in physical
sequence.

Index Entries for a Spanned Record
In a key-sequenced data set, there is an index entry for each control interval
that contains a segment of a spanned record. All the index entries for a
spanned record are grouped together in the same section. They are ordered
from right to left according to the sequence of segments (first, second, third,
and so on).

Only the last (leftmost) index entry for a spanned record contains the key of the
record. The key is compressed according to the rules described above. All the
other index entries for the record look like this:

Appendix D. Processing the Index of a Key-Sequenced Data Set 199

~
~

where y is a binary number equal to the length of the key (y indicates that the
entire key has been "eliminated from the front"); L indicates that 0 characters
remain; and x identifies the control interval that contains the segment.

'--_____ End of Product-Sensitive Programming Interface _____J

200 MVS/XA VSAM Administration Guide

Appendix E. Calculating Virtual Storage Space for an
Alternate Index

When an alternate index is built by BLOINOEX processing, access method ser­
vices opens the base cluster to sequentially read the data records, sorts the
information obtained from the data records, and builds the alternate index
records:

1. The base cluster is opened for read-only processing. To prevent other
users from updating the base cluster's records during BLOINOEX proc­
essing, include the DISP = OLD parameter in the base cluster's DO state­
ment. If INDATASET is specified, access method services dynamically
allocates the base cluster with OISP=OLD.

2. The base cluster's data records are read and information is extracted to
form the key-pointer pair:

• When the base cluster is entry-sequenced, the alternate key value and
the data record's RBA form the key-pointer pair.

• When the base cluster is key-sequenced, the alternate key value and
the data record's prime key value form the key-pointer pair.

If the base cluster's data records can span control intervals the alternate
key must be in the record's first control interval.

3. The key-pointer pairs are sorted in ascending alternate key order. If your
program provides enough virtual storage, access method services performs
an internal sort. (The sorting of key-pointer pairs takes place entirely within
virtual storage.)

Use the following process to determine the amount of virtual storage
required to sort the records internally:

a. Sort record length = alternate key length + (prime key length (for a
key-sequenced data set) or 4 (for an entry-sequenced data set».

b. Record sort area size = either the sort record length times the number
of records in the base cluster rounded up to the next integer multiple of
2048 (the next 2K boundary), or a minimum of 32768, whichever is
greater.

c. Sort table size = (record sort area size/sort record length) x 4.

d. The sum of b + c = required amount of virtual storage for an internal
sort. (This amount is in addition to the normal storage requirements for
processing an access method services command.)

If you do not provide enough virtual storage for an internal sort, or if you
specify the EXTERNALSORT parameter, access method services defines
and uses two sort work files and sorts the key-pointer pairs externally.
Access method services uses the sort work files to contain most of the key­
pointer pairs while it sorts some of them in virtual storage. An external sort
work file is a VSAM entry-sequenced cluster, marked reusable. The
minimum amount of virtual storage you need for an external sort is:

32768 + «32768/sort record length) x 4)

Appendix E. Calculating Virtual Storage Space for an Alternate Index 201

The amount of space that access method services requests when defining
each sort work file is calculated as follows:

a. Sort records per block = 2041/sort record length

b. Primary space allocation in records = (number of records in base
cluster/sort records per block) + 10

c. Secondary space allocation in records = (primary space allocation x
0.10) + 10

Both primary and secondary space allocation are requested in records with
a fixed-length record size of 2041 bytes; the control interval size is 2048
bytes.

There must be enough space on a single DASD volume to satisfy the
primary allocation request; if there is not, the request fails. To correct the
problem, specify the volume serial of a device that has sufficient space (see
"DD Statements That Describe the Sort Work Files").

4. When the key-pointer pairs are sorted into ascending alternate key order,
access method services builds an alternate index record for each key­
pointer pair. If the NONUNIQUEKEY attribute is used and more than one
key-pointer pair has the same alternate key values, the alternate index
record contains the alternate key value, followed by the pointer values in
ascending order. If the UNIQUEKEY attribute is used, each alternate key
value must be unique.

When the record is built, it is written into the alternate index as though it is
a data record loaded into a key-sequenced cluster. Attributes and values to
the load data records specified when the alternate index is defined include:

RECORDSIZE
CONTROLI NTERVALSIZE
BUFFERSPACE
FREESPACE
WRITECHECK
SPEED
RECOVERY
REPLICATE
IMBED

5. When all alternate index records are built and loaded into the alternate
index. the alternate index and its base cluster are closed. Steps 1 through
4 are repeated for each alternate index that is specified with the OUTFILE
and OUTDATASET parameter. When all alternate indexes are built, any
defined external sort work files are deleted. Access method services fin­
ishes processing and issues messages that indicate the results of the proc­
essing.

DD Statements That Describe the Sort Work Files
VSAM data set space available for the sort routine can be identified by speci­
fying two dnames with the WORKFILES parameter and supplying two DD state­
ments that describe the work files to be defined. Each work file DD statement
should be coded:

I/ddname DD DSNAME=dsname,VOL=SER=volser,
I / UNIT=devtype,DISP=OLD,A~'P= 'A~'ORG I

202 MVS/XA VSAM Administration Guide

ddname
As specified in the WORKFILES parameter. If you do not specify the
WORKFILES parameter and you intend to provide VSAM data set space
VSAM data space for external sort work files, identify the work file DO state­
ments with the names IOCUT1 and IOCUT2.

dsname
A data set name. The scheduler generates a data set name for the work
file if none is provided. A data set name must be specified if the user is
defined to RACF with a connect attribute of ADSP. The data set name must
be a valid group name.

VOL = SER = volser
Required. Identifies the volume owned by the STEPCAT, JOBCAT, or
master catalog where the work file is cataloged. The work file's space is
allocated from the volume's space. You can specify a maximum of five
volumes for each work file. For a description of how to calculate the
amount of space to be allocated for each sort work file, see "How an Alter­
nate Index Is Built" on page 34. If your BLOINOEX job requires external
sort work files, this space must be available on the volume(s) identified by
volser or your job will fail.

UNIT=devtype
Type of direct access device on which the volume is mounted. You can
specify a generic device type (for example, 3380) or a device number (for
example 121). You cannot specify SYSDA.

DISP=OLD
Required.

AMP='AMORG'
Required.

If BLDINDEX is used interactively in a TSO environment, these sort work file DO
statements must be in the logon procedure.

Appendix E. Calculating Virtual Storage Space for an Alternate Index 203

Appendix F. Using ISAM Programs with VSAM Data Sets

General-Use Programming Interface

This appendix is intended to help you use ISAM programs with VSAM data sets.
It contains general-use programming interfaces, which allow you to write pro­
grams that use the services of MVS/XA Data Facility Product. Use of ISAM is
not recommended. The information in this appendix is shown for compatibility
only.

Although the ISAM interface is an efficient way of processing your existing
ISAM programs, all new programs that you write should be VSAM programs.
ISAM data sets should be migrated to VSAM key-sequenced data sets. Existing
programs can use the ISAMIVSAM interface to access those data sets and
need not be deleted. You can use the REPRO command with the ENVIRON­
MENT keyword to handle the VSAM "dummy" records.

VSAM, through its ISAM interface program, enables a debugged program that
processes an indexed-sequential data set to process a key-sequenced data set.
The key-sequenced data set may have been converted from an indexed­
sequential or a sequential data set (or another VSAM data set) or may have
been loaded by one of your own programs. The loading program may be coded
with VSAM macros or with ISAM macros or PUI or COBOL slatements. That is,
you can load records into a newly defined key-sequenced data set with a
program that was coded to load records into an indexed sequential data set.

Figure 40 on page 206 shows the relationship between ISAM programs proc­
essing VSAM data with the ISAM interface and VSAM programs processing the
data.

Appendix F. Using ISAM Programs with VSAM Data Sets 205

ISAMor
VSAM
Programs

VSAM Load

Convert

Acc88S

. '"

. '"
NewVSAM
Programs

Existing
ISAM
Programs

•

.~

ISAM
Interface

VSAM
Accoaa

~

Accoaa ,.
ISAM Prcgrams
Converted to
VBAM Programs

Figure 40. Use of ISAM Processing Programs

There are some minor restrictions on the types of processing an ISAM program
may do if it is to be able to process a key-sequenced data set. These
restrictions are described in "Restrictions on the Use of the ISAM Interface" on
page 217.

Significant performance improvement can be gained by modifying an ISAM
program that issues multiple OPEN and CLOSE macros to switch between a
QISAM and BISAM DCB. The ISAM program can be modified to open the
QISAM and BISAM DCBs at the beginning of the program and to close them
when all processing is complete. The performance improvement is proportional
to the frequency of OPEN and CLOSE macros in the ISAM program.

How an IS AM Program Can Process a VSAM Data Set
When a processing program that uses ISAM (assembler-language macros, PLlI,
or COBOL) issues an OPEN to open a key-sequenced data set, the ISAM inter­
face is given control to:

• Construct control blocks that are required by VSAM

• Load the appropriate ISAM interface routines into virtual storage

• Initialize the ISAM DCB (data control block) to enable the interface to inter­
cept ISAM requests

• Take the DeB exit requested by the processing program

206 MVS/XA VSAM Administration Guide

The ISAM interface intercepts each subsequent ISAM request, analyzes it to
determine the equivalent keyed VSAM request, defines the keyed VSAM
request in a request parameter list. and initiates the request.

The ISAM interface receives return codes and exception codes for logical and
physical errors from VSAM, translates them to ISAM codes, and routes them to
the processing program or error-analysis (SYNAO) routine by way of the ISAM
DCB or OECB. Figure 41 shows QISAM error conditions and the meaning they
have when the ISAM interface is being used.

Figure 41 (Page 1 of 2). QISAM Error Conditions

Request
Byte Error Parameter
and Detected List
Offset QISAM Meaning By Error Code Interface/VSAM Meaning

DCBEXCD1
Bit 0 Record not found Interface Record not found (SETL K for a

deleted record)
VSAM 16 Record not found
VSAM 24 Record on non mountable volume

Bit 1 Invalid device - - Always 0
address

Bit 2 Space not found VSAM 28 Data set cannot be extended
VSAM 40 Virtual storage not available

Bit 3 Invalid request Interface Two consecutive SETL requests
Interface Invalid SETL (lor 10)
Interface Invalid generic key (KEY =0)
VSAM 4 Request after end-of-data
VSAM 20 Exclusive use conflict
VSAM 36 No key range defined for

insertion
VSAM 64 Placeholder not available for

concurrent data-set positioning
VSAM 96 Key change attempted

Bit 4 Uncorrectable input VSAM 4 Physical read error (register 15
error contains a value of 12) in the

data component
VSAM 8 Physical read error (register 15

contains a value of 12) in the
index component

VSAM 12 Physical read error (register 15
contains a value of 12) in the
sequence set of the index

Bit 5 Uncorrectable output VSAM 16 Physical write error (register 15
error contains a value of 12) in the

data component
VSAM 20 Physical write error (register 15

contains a value of 12) in the
index component

VSAM 24 Physical write error (register 15
contains a value of 12) in the
sequence set of the index

Appendix F. Using ISAM Programs with VSAM Data Sets 207

Figure 41 (Page 2 of 2). QISAM Error Conditions

Byte
and
Offset

Bit 6

Bit 7

DEBEXCD2
Bit 0

Bit 1
Bit 2

Bit 3
Bit 4

Bits 5-7

Request
Error Parameter
Detected List

QISAM Meaning By Error Code Interface/vSAM Meaning

Unreachable block VSAM Logical error not covered by
input other exception codes
Unreachable block VSAM Logical error not covered by
(output) other exception codes

Sequence check VSAM 12 Sequence check
Interrace Sequence check (occurs only

during resume load)
Duplicate record VSAM 8 Duplicate record
DCB closed when VSAM Error in close error routine
error routine entered entered
Overflow record Interface - Always 1
Length of logical Interrace - Length or logical record is
record is greater than greater than DCBLRECL (VLR
DCBLRECL(VLR only)
only)

VSAM 108 Invalid record length
Reserved - Always 0

Figure 42 shows BISAM error conditions and the meaning they have when the
ISAM interrace is being used.

If invalid requests occur ion BtSAM that didn't occur previously and the request
parameter list indicates that VSAM isn't able to handle concurrent data-set
positioning. the value specified for the STRNO AMP parameter should be
increased. If the req~est parameter list indicates an exclusive-use conflict • .r:ee­
valuate the share options associated with t-he data.

Figtlre 42 (Page 1 of 2). BISAM Error Conditions

Request
Byte Error Parameter
and Detected List
Offset BISAM Meaning By Error Code Interface/VSAM Meaning

DCBEXC1
Bit 0 Record not round VSAM 16 Record not found

VSAM 24 Record on nonmountable volume
Bit 1 Record length check VSAM 108 Record length check
Bit 2 Space not found VSAM 28 Data set cannot be extended
Bit 3 Invalid request Interface - No request parameter list avail-

able
VSAM 20 Exclusive-use conflict
VSAM 36 No key range defined for

insertion
VSAM 64 Placeholder not available for

concurrent data-set positioning

208 MVS/XA VSAM Administration Guide

Figure 42 (Page 2 of 2). BISAM Error Conditions

Request
Byte Error Parameter
and Detected List
Offset BISAM Meaning By Error Code Interface/VSAM Meaning

VSAM 96 Key change attempted
Bit 4 Uncorrectable 110 VSAM - Physical error (register 15 will

contain a value of 12)
Bit 5 Unreachable block VSAM - Logical error not covered by any

other exception code
Bit 6 Overflow record Interface - Always 1 for a successful READ

request
Bit 7 Duplicate record VSAM 8 Duplicate record
DECBEXC2
Bits 0-5
Bit 6

Bit 7

Reserved - Always 0
Channel program ini- - Always 0
tiated by an asyn-
chronous routine
Previous macro was Interrace - Previous macro was READ KU
READ KU

Figure 43 gives the contents of registers 0 and 1 when a SYNAD routine speci­
fied in a DCB gets control.

Figure 43. Register Contents for DCB-Specified tSAM SYNAD Routine

Reg.

0

1

BISAM QISAM

Address of the 0, or, for a sequence check, the address of a field containing the
DECB higher key involved in the check
Address of the
DECB 0

You may also specify a SYNAD routine by way of the DO AMP parameter (see
"JCL for Processing with the ISAM Interface" later in this chapter). Figure 44
gives the contents of registers 0 and 1 when a SYNAO routine specified by way
of AMP gets control.

Figure 44. Register Contents for AMP-Specified ISAM SYNAD Routine

Reg.

0

1

BISAM QISAM

Address of the 0, or, for a sequence check, the address of a field containing the
DECB higher key involved in the check
Address of the
DECB Address of the DCB

If your SYNAD routine issues the SYNADAF macro, registers 0 and 1 are used
to communicate. When you issue SYNADAF, register 0 must have the same
contents it had when the SYNAD routine got control and register 1 must contain
the address of the DCB.

Appendix F. Using ISAM Programs with VSAM Data Sets 209

data set: Register 0 contains a completion code, and register 1 contains the
address of the SYNADAF message.

The completion codes and the format of a SYNADAF message are given in Data
Administration: Macro Instruction Reference.

Figure 45 shows abend codes issued by the ISAM interface when there is no
other method of communicating the error to the user.

Figure 45. Abend Codes Issued by the ISAM Interface

ABEND
Code

03B

031

039

001

Error DCB/DECB Set By Abend Error Condition
Detected By Module/Routine Issued By

OPEN

VSAM

VSAM

LOAD

LOAD

VSAM

VSAM
BISAM

BISAM

OPEN/OPEN ACB OPEN Validity check; either (1)
and VALID CHECK access method services and

DCB values for LRECL,
KEYLE, and RKP do not corre-
spond, (2) DISP=OLD, the
DCB was opened for output,
and the number of logical
records is greater than zero
(RELOAD is implied), or (3)
OPEN ACB error code 116
was returned for a request to
open a VSAM structure.

SYNAD SYNAD SYNAD (ISAM) was not speci-
fied and a VSAM physical and
logical error occurred.

SCAN/GET and SETL SYNAD SYNAD (ISAM) was not speci-
fied and an invalid request
was found.

LOAD/RESUME LOAD SYNAD (ISAM) was not speci-
fied and a sequence check
occurred.

LOAD LOAD SYNAD (ISAM) was not speci-
fied and the ROW (record
descriptor word) was greater
than LRECL.

SCAN/EODAD SCAN End-of-data was found, but
there was no EODAD exit.

SYNAD I/O error detected.
SYNAD BISAM I/O error detected during

check.
BISAM BISAM Invalid reauest.

If a SYNAD routine specified by way of AMP issues the SYNADAF macro, the
operand ACSMETH may specify either QISAM or BISAM, regardless of which of
the two is used by your processing program.

A dummy DEB is built by the ISAM interface to support:

• References by the ISAM processing program
• Checkpoint/restart
• Abend

210 MVS/XA VSAM Administration Guide

• Checkpoint/restart
• Abend

Figure 46 shows the DEB fields that are supported by the ISAM interface.
Except as noted, field meanings are the same as in ISAM.

Figure 46. DEB Fields Supported by ISAM Interface

DEB Section Bytes Fields Supported

PREFIX 16 LNGTH
TCBAD, OPATB, DEBAD, OFLGS (DISP ONLY), FLGS1 (ISAM-interface
bit), AMLNG (104), NMEXT(2), PRIOR, PROTG, DEBID, DCBAD, EXSCL

BASIC 32 (a-DUMMY DEB), APPAD
ISAM Device 16 EXPTR, FPEAD
Direct Access 16 UCBAD (VSAM UCB)
Access WKPTS (ISAM-interface control block pointer), FREED (pointer to
Method 24 IDAIIFBF)

Converting an Indexed-Sequential Data Set
Access method services is used to convert an indexed-sequential data set to a
key-sequenced data set. Assuming that a master and/or user catalog has been
defined, define a key-sequenced data set with the attributes and performance
options you want. Then use the access method services REPRO command to
convert the indexed-sequential records and load them into the key-sequenced
data set. VSAM builds the index for the key-sequenced data set as it loads the
data set.

Each volume of a multivolume component must be on the same type of device;
the data component and the index component, however, may be on volumes of
devices of different types.

When you define the key-sequenced data set into which the indexed-sequential
data set is to be copied, you must specify the attributes of the VSAM data set
for variable- and fixed-length records.

For variable-length records:

• VSAM record length equals ISAM DCBLRECL-4.
• VSAM key length equals ISAM DCBKEYLE.
• VSAM key position equals ISAM DCBRKP-4.

For fixed-length records:

• VSAM record length (average and maximum must be the same) equals
ISAM DCBLRECL (+ DCBKEYLE, if ISAM DCBRKP equals a and records are
unblocked).

• VSAM key length equals ISAM DCBKEYLE.

• VSAM key position equals ISAM DCBRKP.

The level of sharing allowed when the key-sequenced data set is defined should
be considered. If the ISAM program opens multiple DCBs pointing to different

Appendix F. Using ISAM Programs with VSAM Data Sets 211

DD statements, a share-options value of 1, which is the default, allows only the
first DD statement to be opened. See "Sharing" for a description of the share­
options values.

JCL for Converting from ISAM to VSAM
JCL is used to identify data sets and volumes for allocation. Data sets can also
be allocated dynamically. For a description of dynamic allocation, see JeL and
System Modifications.

If JCL is used to describe an indexed-sequential data set to be converted to
VSAM using the access method services REPRO command, include
DCB=DSORG=IS. Use a STEPCAT or JOBCAT DD statement as described in
the chapter Appendix B, "Job Control Language" on page 149 to make user
catalogs available; you may also use dynamic allocation.

With ISAM. deleted records are flagged as deleted. but are not actually
removed from the data set. To avoid reading VSAM records that are flagged as
deleted (X 1 FF '). code DCB = OPTCD = L. If your program depends upon a
record's only being flagged and. not actually removed. you may want to keep
these flagged records when you convert and continue to have your programs
process these records. The access method services REPRO command has a
parameter (ENVIRONMENT) that causes VSAM to keep the flagged records
when you convert.

JCL for Processing with the ISAM Interface
To execute your ISAM processing program to process a key-sequenced data
set, replace the ISAM DD card with a VSAM DD card using the DDNAME that
was used for ISAM. The VSAM DD card names the key-sequenced data set and
gives any necessary VSAM parameters (by way of AMP). Specify DISP = MOD
for resume loading and DISP= OLD or SHR for all other processing. You don't
have to specify anything about the ISAM interface itself. The interface is auto­
matically brought into action when your processing program opens a DCB
whose associated DD statement describes a key-sequenced data set (instead of
an indexed-sequential data set). If you have defined your VSAM data set in a
user catalog. specify the user catalog in a JOBCAT or STEPCAT DD statement.

The DCB parameter in the DD statement that identifies a VSAM data set is
invalid and must be removed. If the DCB parameter is not removed. unpredict­
able results can occur. Certain DCB-type information may be specified in the
AMP parameter. which is described later in this chapter.

Figure 47 on page 213 shows the DCB fields supported by the ISAM interface.

212 MVS/XA VSAM Administration Guide

Field
Name Meaning

BFALN Same as in ISAM; defaults to a doubleword

BLKSI Set equal to LRECL if not specified

BUFCB Same as in ISAM

BUFL The greater value of AMDLRECL or DCBLRECL if not specified

BUFNO For QISAM, one; for BISAM, the value of STRNO if not specified

DDNAM Same as in ISAM

DEBAD During the DCB exit, contains the address of the OPEN work area;
after the DCB exit, contains the address of the dummy DEB built by
the ISAM interface

DEVT Set from the VSAM UCB TYPE

DSORG Same as in ISAM

EODAD Same as in ISAM

ESETL Address of the ISAM interface ESETL routine

EXCD1 See the QISAM exception codes

EXCD2 See the QISAM exception codes

EXLST Same as in ISAM (except that VSAM does not support the JFCBE
exit)

FREED Address of the ISAM-interface dynamic buffering routine (IDAIIFBF)

GET IPUT For QtSAM LOAD, the address of the ISAM-interface PUT routine; for
QISAM SCAN, 0, the address of the ISAM-interface GET routine; 4,
the address of the ISAM-interface PUTX routine; and 8, the address
of the ISAM-interface RELSE routine

KEYLE Same as in ISAM

LRAN Address of the ISAM-interface READ K/WRITE K routine

LRECL Set to the maximum record size specified in the access method ser­
vices DEFINE command if not specified (adjusted for variable-length,
fixed, unblocked, and RKP=O records)

Figure 47 (Part 1 of 2). DCB Fields Supported by ISAM Interface

Appendix F. Using ISAM Programs with VSAM Data Sets 213

Field
Name Meaning

LWKN Address of the ISAM-interface WRITE KN routine

MACRF Same as in ISAM

NCP For BISAM, defaults to one

NCRHI Set to a value of 8 before DCB exit

OFLGS Same as in ISAM

OPTCD Bit 0 (W). same as in ISAM; bit 3 (I), dummy records are not to be
written in the VSAM data set; bit 6 (L), VSAM-deleted records
(XX I FF ') are not read; dummy records are to be treated as in ISAM;
all other options ignored

RECFM Same as in ISAM; default to unblocked, variable-length records

RKP Same as in ISAM

RORG1 Set to a value of 0 after DCB exit

RORG2 Set to a value of XX '7FFFF' after DCB exit

RORG3 Set to a value of 0 after DCB exit

SETL For BISAM, address of the ISAM-interface CHECK routine; for
QISAM, address of the ISAM-interface SETL routine

ST Bit 1 (key-sequence check), same as in ISAM; bit 2 (loading has
completed), same as in ISAM

SYNAD Same as in ISAM

TIOT Same as in ISAM

WKPT1 For QISAM SCAN, WKPT1 + 112 = address of the W1CBF field
pointing to the current buffer

WKPT5

WKPT6

Address of the ISAM-interface control block (IICB)

For QISAM LOAD, address of the dummy DCB work area vector
pointers; the only field supported is ISLVPTRS + 4 = pointer to
KEYSAVE

Figure 47 (Part 2 of 2). DeB Fields Supported by ISAM Interface

AMP Parameter Specification
When an ISAM processing program is run with the ISAM interface, the AMP
parameter enables you to specify:

• That a VSAM data set is to be processed (AMORG)

• The need for extra index buffers for simulating the residency of the highest
level(s) of an index in virtual storage (BUFNI)

• The need for additional data buffers to improve sequential performance
(BUFND)

• Whether to remove records flagged (OPTCD)

214 MVS/XA VSAM Administration Guide

• What record format (RECFM) is used by the processing program

• The number of concurrent BISAM and QISAM (basic and queued indexed­
sequential access methods) requests that 'the processing program may
issue (STRNO)

• The name of an ISAM exit routine to analyze physical and logical errors
(SYNAD)

The AMP parameter has some subparameters that are peculiar to the ISAM
interface. The other subparameters of AMP (BUFSP. CROPS. and TRACE).
which can also be used with the interface. are described in Appendix B. "Job
Control Language" on page 149. The format of the AMP parameter (with the
subparameters discussed here) is:

II ... DO AMP=(['AMORG']
[. 'BUFND=number']
[. 'BUFNI = number']
[. 'OPTCD= {IILIIL} ']
[. 'RECFM={FIFBIVIVB} 'J
[. 'STRNO=number'J
[. 'SYNAD = modulename'])

where:

AMORG
specifies that a VSAM data set is to be processed. When you specify unit
and volume information for a DCB (through the ISAM interface program) or
when you specify DUMMY in the DO statement. you must specify AMORG.
Under these conditions •. the system doesn't have to search a catalog to find
out which volume(s) are required, and therefore doesn't know that the DO
statement defines a VSAM data set. You never have to specify unit and
volume information unless you want to mount some, but not all. of the data
set's volumes, or if you want to defer volume mounting.

BUFND = number
specifies the number of 110 buffers VSAM is to use for data records. The
minimum number you may specify is 1 plus the number specified for
STRNO (if you omit STRNO. BUFND must be at least 2, because the default
for STRNO is 1).

BUFNI = number
specifies the number of 110 buffers VSAM is to use for index records. If you
don't specify BUFNI, VSAM uses as many index buffers as the number spec­
ified for STRNO (1 if you don't specify STRNO). You may specify for BUFNI
a number 1 greater than STRNO (2 if you don't specify STRNO) to simulate
having the highest level of an ISAM index resident. If you specify for BUFNI
a number 2 or more greater than STRNO. you simulate having intermediate
levels of the index resident.

OPTeD = {ilLIIL}
specifies how records nagged for deletion are to be treated. The values
that can be specified are:

L
specifies that a record marked for deletion by your processing program
is to.be kept in the data set. Although this parameter has the same
meaning and restrictions for the ISAM interface as it has for ISAM. it

Appendix F. Using ISAM Programs with VSAM Data Sets 215

IL

may have to be specified in the AMP parameter when it wasn't previ­
ously needed in the ISAM job control language. It is required when
OPTCD = L is not specified in the DCB in the processing program
because OPTCD is not merged into the DSCB when the ISAM interface
is used.

specifies that, when coded along with OPTCD = L in the DCB, records
marked for deletion by your processing program are not written into the
data set by the ISAM interface. If OPTCD = I is specified in the AMP
parameter, but OPTCD = L isn't specified in the processing program's
DCB, records flagged for deletion are treated as any other records: that
is, AMP= 'OPTCD=I', without L anywhere specified, has no effect.

specifies that, if your processing program writes a record marked for
deletion, the ISAM interface is not to put the record into the data set. (It
issues a VSAM ERASE to delete the old record if your processing
program had previously read the record for update.) The result of this
parameter is the same as when AMP= 'OPTCD=I' is coded with
OPTCD = L in the DCB in the processing program.

RECFM = {FIFBIVIVB}
specifies the ISAM record format that your processing program is coded for.
Although this parameter has the same meaning and restrictions for the
ISAM interface as it has for ISAM, it may have to be specified in the AMP
parameter when it wasn't previously required in the ISAM job control lan­
guage. RECFM is required when it is not specified in the DCB in ~he proc­
essing program because RECFM is not merged into the DSCB when the
ISAM interface is used. All VSAM requests are for unblocked records. If
your program issues a request for blocked records, the ISAM interface sets
the overflow-record indicator for each record to indicate that each is being
passed to your program unblocked. If RECFM isn't specified in the AMP
parameter or in the processing program's DCB, V is the default.

STRNO = number
specifies the number of request parameter lists the processing program can
use concurrently. Neither VSAM nor the ISAM interface can anticipate the
number, so you should indicate it in the STRNO parameter. Specify a
number at least equal to the number of BISAM and QISAM requests that
your program can issue concurrently. (If you have subtasks. add together
the number of such requests for each subtask, plus an additional one for
each subtask that sequentially processes the same data set.) In a create
step, STRNO cannot be greater than 1. The ISAM interface uses a request
parameter list to describe a request that your program issues. The inter­
face uses the same request parameter list over and over:

• With BISAM, a READ for update uses a request parameter list until a
WRITE or FREEDBUF is issued (at which time the interface issues an
ENDREQ for the request parameter list).

• With QISAM, a request parameter list is used until an ESETL is issued
(at which time the interface issues ENDREQ).

If the processing program issues an ISAM request when no more request
parameter lists are available, the ISAM interface returns an ISAM code that
indicates an invalid request. If you're running subtasks, it's possible to

216 MVSfXA VSAM Administration Guide

reissue the invalid request and have it complete successfully when another
subtask frees a request parameter list.

SYNAD = modulename
specifies the name of a routine to which the ISAM interface loads and exits
if a physical or logical error occurs when you are gaining access to the key­
sequenced data set. If your processing program already indicates a SYNAD
routine, the routine specified in the AMP SYNAD parameter replaces it.

The SYNAD routine must not issue VSAM macros or check for VSAM return
codes. The ISAM interface translates all VSAM codes to appropriate ISAM
codes.

You need not modify or replace a SYNAD routine that issues only a CLOSE,
ABEND, SYNADAF, or SYNADRLS macro or that merely examines DCB or DECB
exception c·odes.

Restrictions on the Use of the ISAM Interface
Some restrictions were indicated earlier in this chapter that may require you to
modify an ISAM processing program to process a key-sequenced data set. All
operating system and VSAM restrictions apply to the use of the ISAM interface;
for example:

• VSAM doesn't allow the OPEN TYPE = J macro: If your program issues it,
remove it or replace it with the OPEN macro.

• If your processing program was coded on the assumption that the indexed­
sequential data set it was processing was a temporary data set, you may
need to modify the program: A VSAM data set cannot be temporary.

• If a GET command is issued to an empty data set, the resulting messages
will indicate "no record found (NRF)" rather than "end of data (EOD)," as it
would appear in the noninterface QISAM environment.

Additional restrictions are:

• A program must run successfully under ISAM using standard ISAM inter­
faces; the interface doesn't check for parameters that are invalid for ISAM.

• If your DCB exit list contains an entry for a JFCBE exit routine, remove it.
The interface doesn't support the use of a JFCBE exit routine. If the DCB
exit list contains an entry for a DCB open exit routine, that exit is taken.

• If your ISAM program creates dummy records with a maximum key to avoid
overflow, remove that code for VSAM.

• If your program counts overflow records to determine reorganization needs,
its results will be meaningless with VSAM data sets.

• The work area into which data records are read must not be shorter than a
record. If your processing program is designed to read a portion of a
record into a work area, you must change the design. The interface takes
the record length indicated in the DCB to be the actual length of the data
record. The record length in a BISAM DECB is ignored, except when you
are replacing a variable-length record with the WRITE macro.

• You may share data among subtasks that specify the same DD statement in
their DCB(s), and VSAM ensures data integrity. But, if you share data

Appendix F. Using ISAM Programs with VSAM Data Sets 217

among subtasks that specify different DD statements for the data, you are
responsible for data integrity. The ISAM interface doesn't ensure DCB
integrity when two or more DCBs are opened for a data set. All of the
fields in a DCB cannot be depended on to contain valid information.

• When a data set is shared by several jobs (DISP = SHR). you must use the
ENQ and DEQ macros to ensure exclusive control of the data set. Exclusive
control is necessary to ensure data integrity when your program adds or
updates records in the data set. You can share the data set with other
users (that is, relinquish exclusive control) when reading records.

• If your processing program issues the SETl I or SETl ID instruction, you
must modify the instruction to some other form of the SETl or remove it.
The ISAM interface cannot translate a request that depends on a specific
block or device address.

• Although asynchronous processing may be specified in an ISAM processing
program, all ISAM requests are handled synchronously by the ISAM inter­
face; WAIT and CHECK requests are always satisfied immediately. The
ISAM CHECK macro doesn't result in a VSAM CHECK macro's being issued
but merely causes exception codes in the DECB (data event control block)
to be tested.

• For processing programs that use locate processing, the ISAM interface
constructs buffers to simulate locate processing.

• For blocked-record processing, the ISAM interface simulates unblocked­
record processing by setting the overflow-record indicator for each record.
(In ISAM. an overflow record is never blocked with other records.) Pro­
grams that examine ISAM internal data areas (for example, block descriptor
words (BDW) or the MBBCCHHR address of the next overflow record) must
be modified to use only standard ISAM interfaces. The ISAM RElSE
instruction causes no action to take place.

• If your ISAM SYNAD routine examines information that cannot be supported
by the ISAM interface (for example, the lOB). specify a replacement ISAM
SYNAD routine in the AMP parameter of the VSAM DD statement.

• Your ISAM program (on TSO) cannot dynamically allocate a VSAM data set
(use lOGON PROC).

• CAT AlOG/DADSM macros in the ISAM processing program must be
replaced with access method services commands.

• The ISAM interface uses the same RPl over and over, thus, for BISAM, a
READ for update uses up an RPl until a WRITE or FREEDBUF is issued (at
which time the interface issues an ENDREQ for the RPl). (When using
ISAM you may merely issue another READ if you don't want to update a
record after issuing a BISAM READ for update.)

• ISAM programs will run, with sequential processing, if the key length is
defined as smaller than it actually is. This is not permitted with the ISAM
interface.

• VSAM path processing is not supported by the ISAM interface.

• The ISAM interface does not support RELOAD processing. RELOAD proc­
essing is implied when an attempt is made to open a VSAM data set for
output, specifying DISP = OLD. and, in addition, the number of logical
records in the data set is greater than zero.

218 MVS/XA VSAM Administration Guide

Example: Converting a Data Set
In this example, the indexed-sequential data set to be converted (ISAMDAT A) is
cataloged either in the system catalog or in a VSAM catalog. A key-sequenced
data set, VSAMDATA, has previously been defined in user catalog USERCTLG.
Because both the indexed-sequential and key-sequenced data set are cata­
loged, unit and volume information need not be specified.

ISAMDATA contains records flagged for deletion; these records are to be kept
in the VSAM data set. .

IICONVERT JOB •••
IIJOBCAT DO DISP=SHR,DSNAt·'E=USERCTLG
IISTEP EXEC PG~1=IDCAt·'S
IISYSPRINT DO SYSOUT=A
IIISAt·1 DO DISP=OLD,DSNAt·'E=ISAt·IDATA,DCB=DSORG= IS
IIVSAt·1 DO DISP=OLD,DStlAt·'E=VSAt·IDATA
IISYSIN DO *

1*

REPRO -
INFILE(ISAr4 ENVIROr-u·1E1H(DUr.(fW)) -
OUTFILE(VSAf.l)

To drop records nagged for deletion in the indexed-sequential da'ta set, omit
ENVIRONMENT(DUMMY).

Example: Issuing a SYNADAF Macro
The following example illustrates how a SYNAD routine specified by way of
AMP may issue a SYNADAF macro without preliminaries. Registers 0 and 1
already contain what SYNADAF expects to find.

At·(PSYN CSECT

USING

SYNADAF

STf.1

BALR

USING

L

L

Tf.1

BO

Tf.1

BO

*,15

Acsr·1ETH=QI SAf·'

14,12,12(13)

7,O

*,7

15,132(1)

14,128(1)

42(15),X'4f)'

QISAf.J

43(15),X'4f)'

QISAt·1

Register 15 contains the entry
address to AI·1PSYN.

Ei ther QISAI'(or BISAI·(may be
specified.

Load address of next instruction
into register 7 for base register.

The address of the DCB is stored
132 bytes into the SYNADAF message.

The address of the DECB is stored
128 bytes into the SYNADAF message.

Does the DCB indicate QISAt·' scan?

Yes.

Does the DCB i ndi cate QISAt·' load?

Yes.

Appendix F. Using ISAM Programs with~SAM Data Sets 219
I.

BISAI·' HI 24(14),X'10' Does the DECB indicate an invalid
BISAI4 request?

BO INVBISAM Yes.

The routine might print the SYNADAF
message or issue ABEND.

QISAN HI 80(15) ,X '10' Does the DCB indicate an invalid
QISAl4 request?

BO INVQISAI·' Yes.

The routine might print the SYNADAF
message or issue ABEND.

INVBISAN EQU *

I NVQ I SAl4 EQU *

LN 14,12,12(13)

DROP 7

USING A~lPSYN, 15

SYNADRLS

BR 14

END AI·1PSYN

When the processing program closes the data set, the interface issues VSAM
PUT macros for ISAM PUT locate requests (in load mode). deletes the interface
routines from virtual storage, frees virtual-storage space that was obtained for
the interface. and gives control to VSAM.

'--______ End of General-Use Programming Interface ______ ...J

220 MVS/XA VSAM Administration Guide

Glossary of Terms and Abbreviations

The following terms are defined as they are used in
this book. If you do not find the term you are looking
for, see the index or the Dictionary of Computing,
SC20-1699.

A

access method services. A multifunction service
program that is used to define VSAM data sets and
allocate space for them, convert indexed-sequential
data sets to key-sequenced data sets, modify data set
attributes in the catalog, reorganize d~ta sets, facili­
tate data portability between operating systems,
create backup copies of data sets, help make inacces­
sible data sets accessible, list the records of data sets
and catalogs, define and build alternate indexes, and
convert OS CVOLs and VSAM catalogs to integrated
catalog facility catalogs.

acquire. To allocate space on a staging drive and to
stage data from an MSS cartridge to the staging
drive.

addressed·direct access. The retrieval or storage of
a data record identified by its RBA, independent of
the record's location relative to the previously
retrieved or stored record. (See also keyed-direct
access, addressed- sequential access, and keyed­
sequential access.)

addressed-sequential address. The retrieval or
storage of a data record in its entry sequence relative
to the previously retrieved or stored record. (See
also keyed-sequential access, addressed-direct
access, and keyed-direct access.)

ADSP. (See automatic data set protection.)

AIX. (See alternate index.)

alternate index. A collection of index entries organ­
ized by the alternate keys of its associated base data
records. It provides an alternate means of locating
records in the data component of a cluster on which
the alternate index is based.

alternate index cluster. The data and index compo­
nents of an alternate index.

alternate index entry. A catalog entry that contains
information about an alternate index. An alternate­
index entry points to a data entry and an index entry
to describe the alternate index's components, and to

a cluster entry to identify the alternate index's base
cluster.

alternate index record. A collection of items used to
sequence and locate one or more data records in a
base cluster. Each alternate-index record contains an
alternate-key value and one or more pointers. When
the alternate index supports a key-sequenced data
set, each data record's prime key value is the pointer.
When the alternate index supports an entry­
sequenced data set, the data record's RBA value is
the pointer.

alternate index upgrade. The process of reflecting
changes made to a base cluster in its associated
alternate indexes.

alternate key. One or more consecutive characters
taken from a data record and used to build an alter­
nate index or to locate one or more base data records
via an alternate index. (See also generic key, key,
and key field.)

APF. (See authorized program facility.)

application. As used in this publication, the use to
which an access method is put or the end result that
it serves; contrasted to the internal operation of the
access method.

authorized program facility. A facility that permits
the identification of programs that are authorized to
use restricted functions.

automatic data set protection. A user attribute that
causes all permanent DASD data sets created by the
user to be automatically defined to RACF.

B

base cluster. A key-sequenced or entry-sequenced
data set over which one or more alternate indexes
are built.

base RBA. The RBA stored in the header of an index
record that is used to calculate the RBAs of data or
index control intervals governed by the index record.

BIND. (1) An attribute of a data set that keeps the
data set on one or more MSS staging drives until the
data set is released by the user regardless of the
length of time or the demands for space. (2) An attri­
bute of a mass storage volume that reserves an
entire staging pack for the mass storage volume
whenever the volume is mounted.

Glossary of Terms and Abbreviations 221

c
catalog. (See master catalog and user catalog.)

CBIC. Control blocks in common, a facility that
allows a user to open a VSAM data set so the VSAM
control blocks are placed in the common service area
(CSA) of the MVS operating system. This provides the
capability for multiple memory accesses to a single
VSAM control structure for the same VSAM data set.

chained RPL. (See RPL string.)

CI. (See control interval.)

CIDF. (See control interval definition field.)

CKDS. In the Programmed Cryptographic Facility,
cryptographic key data set.

cluster. A named structure consisting of a group of
related components (for example, a data component
with its index component). A cluster may consist of a
single component. (See also base cluster and alter­
nate index cluster.)

collating sequence. An ordering assigned to a set of
items, such that any two sets in that assigned order
can be collated.

component. A named. cataloged collection of stored
records. A component. the lowest member of the
hierarchy of data structures that can be cataloged,
contains no named subsets.

control area. A group of control intervals used as a
unit for formatting a data set before adding records to
it. Also, in a key-sequenced data set, the set of
control intervals pointed to by a sequence-set index
record; used by VSAM for distributing free space and
for placing a sequence-set index record adjacent to its
data.

control area split. The movement of the contents of
some of the control intervals in a control area to a
newly created control area, to facilitate the insertion
or lengthening of a data record when there are no
remaining free control intervals in the original control
area.

control interval. A fixed-length area of auxiliary
storage space in which VSAM stores records. It is the
unit of information transmitted to or from auxiliary
storage by VSAM.

control interval access. The retrieval or storage of
the contents of a control interval.

control interval definition field. In VSAM, the 4-byte
control information field at the end of a control
interval that gives the displacement from the begin-

222 MVS/XA VSAM Administration Guide

ning of the control interval to free space and the
length of the free space. If the length is 0, the dis­
placement is to the beginning of the control informa­
tion.

control interval split. The movement of some of the
stored records in a control interval to a free control
interval, to facilitate the insertion or lengthening of a
record that won't fit in the original control interval.

control volume. A volume that contains one or more
indexes of the catalog.

cross memory. A synchronous method of communi­
cation between address spaces.

CVOL. (See control volume.)

cylinder fault. A condition that occurs when the oper­
ating system requires data that has not been staged.
The cylinder fault causes a cylinder of data to be
staged.

D

DASD. (See direct access storage device.)

data integrity. Preservation of data or programs for
their intended purpose. As used in this publication,
the safety of data from inadvertent destruction or
alteration.

data record. A collection of items of information from
the standpoint of its use in an application, as a user
supplies it to VSAM for storage.

data security. Prevention of access to or use of data
or programs without authorization. As used in this
publication, the safety of data from unauthorized use,
theft, or purposeful destruction.

data set. The major unit of data storage and retrieval
in the operating system, consisting of data in a pre­
scribed arrangement and described by control infor­
mation to which the system has access. As used in
this publication, a collection of fixed- or variable­
length records in auxiliary storage, arranged by
VSAM in key sequence or in entry sequence. (See
also key-sequenced data set and entry-sequenced
data set.)

data space. A storage area defined in the volume
table of contents of a direct access volume for the
exclusive use of VSAM to store data sets, indexes,
and catalogs.

DO statement. Data definition statement.

DES. The United States National Bureau of Stand­
ards data encryption standard.

destage. To move data from a staging drive to a
mass storage volume.

direct access. The retrieval or storage of data by a
reference to its location in a data set rather than rela­
tive to the previously retrieved or stored data. (See
also addressed-direct access and keyed-direct
access.)

direct access storage device. A device in which the
access time is effectively independent of the location
of the data.

E

EBDIC. Extended binary-coded decimal interchange
code. A coded character set consisting of S-bit coded
characters.

ECB. (See event control block.)

entry sequence. The order in which data records are
physically arranged (according to ascending RBA) in
auxiliary storage. without respect to their contents.
(Contrast with key sequence.)

entry-sequenced data set. A data set whose records
are loaded without respect to their contents. and
whose RSAs cannot change. Records are retrieved
and stored by addressed access, and new records are
added at the end of the data set.

EOD. End of data.

EODAD. The end of data exit routine.

EOKR. End-of-key range.

EOV. End of volume.

event control block. A control block used to repre­
sent the status of an event.

exception. An abnormal condition such as an 1/0
error encountered in processing a data set or a file.

EXCEPTION EXIT. An exit routine invoked by an
exception.

F

field. In a record or a control block, a specified area
used for a particular category of data or control infor­
mation.

free control interval pointer list. In a sequence-set
index record. a vertical pointer that gives the location
of a free control interval in the control arp-a governed
by the record.

free space. Space reserved within the control inter­
vals of a key-sequenced data set for inserting new
records into the data set in key sequence; also, whole
control intervals reserved in a control area for the
same purpose.

front compression. The elimination, from the front of
a key, of characters that are the same as the charac­
ters in the front of the preceding key.

G

GENDSP. An option of LOCATE to obtain the control
interval number of the catalog record of each object.

generation data group. A collection of data sets that
are kept in chronological order; each data set is
called a generation data set.

generic key. A high-order portion of a key, con­
taining characters that identify those records that are
significant for a certain application. For example, it
might be desirable to retrieve all records whose keys
begin with the generic key AB, regardless of the full
key values.

global shared resources. An option for sharing 110
buffers. 1I0-related control blocks. and channel pro­
grams among VSAM data sets in a resource pool that
serves all address spaces in the system.

GSR. (See global shared resources.)

H

header. index record. In an index record, the 24-byte
field at the beginning of the record that contains
control information about the record.

header entry. In a parameter list of GENCS, MODCB,
SHOWCS, or TESTCS, the entry that identifies the
type of request and control block and gives other
general information about the request.

horizontal pointer. In the header of an index record,
the RBA of the index record in the same level as this
one that contains keys next in ascending sequence
after the keys in this one.

index. As used in this publication, an ordered col­
lection of pairs, each consisting of a key and a
pointer, used by VSAM to sequence and locate the
records of a key-sequenced data set.

index level. A set of index records that order and
give the location of all the control intervals in the next
lower level or in the data set that it controls.

Glossary of Terms and Abbreviations 223

index record. A collection of index entries that are
retrieved and stored as a group. (Contrast to data
record.)

index record header. In an index record, the 24-byte
field at the beginning of the record that contains
control information about the record.

index replication. The use of an entire track of direct
access storage to contain as many copies of a single
index record as possible; reduces rotational delay.

index set. The set of index levels above the
sequence set. The index set and the sequence set
together comprise the index.

integrated catalog facility. The name of the catalog
associated with the Data Facility Product program
product.

ISAM. indexed sequential access method

ISAM interface. A set of routines that allow a proc­
essing program coded to use ISAM (indexed sequen­
tial access method) to gain access to a
key-sequenced data set.

J

JCL. (See job control language.)

job catalog. A catalog made available for a job by
means of the JOBCAT DD statement.

job control language. A problem-oriented language
designed to express statements in a job that are used
to identify the job or describe its requirements to an
operating system.

job step catalog. A catalog made available for a job
by means of the STEPCAT DD statement.

K

key. One or more characters within an item of data
that are used to identify it or control its use. As used
in this publication, one or more consecutive charac­
ters taken from a data record, used to identify the
record and establish its order with respect to other
records. (See also key field and generic key.)

key compression. The elimination of characters from
the front and the back of a key that VSAM does not
need to distinguish the key from the preceding or fol­
lowing key in the index record; reduces storage space
for an index.

224 MVS/XA VSAM Administration Guide

key field. A field located in the same position in each
record of a data set, whose contents are used for the
key of a record.

key sequence. The collating sequence of data
records, determined by the value of the key field in
each of the data records. May be the same as, or
different from, the entry sequence of the records.

key-sequenced data set. A VSAM file (data set)
whose records are loaded in key sequence and con­
trolled by an index. Records are retrieved and stored
by keyed access or by addressed access, and new
records are inserted in key sequence by means of dis­
tributed free space. Relative byte addresses of
records can change, because of control interval or
control area splits.

keyed.direct access. The retrieval or storage of a
data record by use of either an index that relates the
record's key to its relative location in the data set or
a relative record number, independent of the record's
location relative to the previously retrieved or stored
record. (See also addressed-direct access, keyed­
sequential access, and addressed-sequential access.)

keyed.sequential access. The retrieval or storage of
a data record in its key or relative record sequence
relative to the previously retrieved or stored record,
as defined by the sequence set of an index. (See also
addressed-sequential access, keyed·direct access.
and addressed-direct access.)

L

LOS. (See linear data set.)

LERAD. The logical error exit routine

level number. For the index of a key-sequenced data
set, a binary number in the header of an index record
that indicates the index level to which the record
belongs.

linear data set. A named linear string of data, stored
in such a way that it can be retrieved or updated in
4096 byte units. An LDS object is essentially a VSAM
entry-sequenced data set that is processed as a
control interval. However, unlike a control interval,
an LDS contains data only; that is, it contains no
record definition fields (RDFs) or control interval defi­
nition fields (CIDFs).

local shared resources. An option for sharing 1/0
buffers. I/O-related control blocks. and channel pro­
grams among VSAM data sets in a resource pool that
serves one partition or address space.

LSR. (See local shared resources.)

M
Mass Storage System (3850). The name for the
entire storage system, consisting of the Mass Storage
Facility and all devices that are defined to the Mass
Storage Control.

master catalog. A catalog that contains extensive
data set and volume information that VSAM requires
to locate data sets, to allocate and deallocate storage
space, to verify the authorization of a program or
operator to gain access to a data set, and to accumu­
late usage statistics for data sets.

MSS. (See Mass Storage System.)

multiple virtual storage. Another name for OSIVS2,
release 2.

MVS. (See multiple virtual storage.)

o
operating system. Software that controls the exe­
cution of programs; an operating system may provide
services such as resource allocation, scheduling,
input/output control, and data management.

p

page space. A system data set that contains pages
of virtual storage. The pages are stored into and
retrieved from the page space by the auxiliary
storage manager.

password. A unique string of characters stored in a
catalog that a program, a computer operator, or a ter­
minal user must supply to meet security requirements
before a program gains access to a data set.

path. A named, logical entity composed of one or
more clusters (an alternate index and its base cluster,
for example).

physical record. A physical unit or recording on a
medium. For example, the physical unit between
address markers on a disk.

pointer. An address or other indication of location.
For example, an RBA is a pointer that gives the rela­
tive location of a data record or a control interval in
the data set to which it belongs.

portability. The ability to use VSAM data sets with
different operating systems. Volumes whose data
sets are cataloged in a user catalog can be
demounted from storage devices of one system,
moved to another system, and mounted on storage
devices of that system. Individual data sets can be

transported between operating systems using access
method services.

prestage. To move data from an MSS cartridge to a
staging drive before the data is needed by the proc­
essing program.

prime index. The index component of a key­
sequenced data set that has one or more alternate
indexes. (See also index and alternate index.)

prime key. (See key.)

Q
QSAM. (See queued sequential access method.)

queued sequential access method. An extended
version of the basic sequential access method
(BSAM). When this method is used, a queue is
formed of input data blocks that are awaiting proc­
essing or output data blocks that have been proc­
essed and are awaiting transfer to auxiliary storage
or to an output device.

R

RACF. Resource Access Control Facility.

random access. (See direct access.)

RBA. Relative byte address. The displacement
(expressed as a fullword binary integer) of a data
record or a control interval from the beginning of the
data set to which it belongs; independent of the
manner in which the data set is stored.

RDF. (See record definition field.)

rear compression. The elimination, from a key, of
characters to the right of the first character that is
unequal to the corresponding character in the fol­
lowing key.

record. (See index record, data record.)

record definition field. A field stored as part of a
stored record segment; it contains the control infor­
mation required to manage stored record segments
within a control interval.

recoverable catalog. A catalog defined with the
recoverable attribute. Duplicate catalog entries are
put into CRAs that can be used to recover data in the
event of catalog failure. (See also CRA.)

relative byte address. (See RBA.)

relative record data set. A data set whose records
are loaded into fixed-length slots.

Glossary of Terms and Abbreviations 225

relative record number. A number that identifies not
only the slot, or data space, in a relative record data
set but also the record occupying the slot. Used as
the key for keyed access to a relative record data set.

replication. (See index replication.)

resource pool, VSAM. (See VSAM resource pooL)

reusable data set. A VSAM data set that can be
reused as a work file, regardless of its old contents.
Must not be a base cluster.

RPL string. A set of chained RPLs (the set may
contain one or more RPLs) used to gain access to a
VSAM data set by action macros (GET, PUT, etc).
Two or more RPL strings may be used for concurrent
direct or sequential requests made from a processing
program or its subtasks.

s
SAM. (See sequential access method.)

security. (See data security.)

sequence checking. The process of verifying the
order of a set of records relative to some field's col­
lating sequence.

sequence set. The lowest level of the index of a key­
sequenced data set: it gives the locations of the
control intervals in the data set and orders them by
the key sequence of the data records they contain.
The sequence set and the index set together comprise
the index.

sequential access. The retrieval or storage of a data
record in either its entry sequence, its key sequence,
or its relative record number sequence, relative to
the previously retrieved or stored record. (See also
addressed-sequential access and keyed-sequential
access.)

sequential access method. An access method for
storing or retrieving data blocks in a continuous
sequence, using either a sequential access or a/direct
access device.

shared resources. A set of functions that permit the
sharing of a pool of I/O-related control blocks, channel
programs. and buffers among several VSAM data sets
open at the same time.

skip-sequential access. Keyed-sequential retrieval or
storage of records here and there throughout a data
set, skipping automatically to the desired record or
collating position for insertion: VSAM scans the
sequence set to find a record or a collating position.
Valid for processing in ascending sequences only.

226 MVS/XA VSAM Administration Guide

slot. For a relative record data set, the data area
addressed by a relative record number which may
contain a record or be empty.

spanned record. A logical record whose length
exceeds control interval length, and as a result,
crosses, or spans, one or more control interval
boundaries within a single control area.

SRB. Service request block. A system control block
used for dispatching tasks.

stage. To move data from an MSS cartridge to a
staging drive.

step catalog. A catalog made available for a step by
means of the STEPCAT DO statement.

supervisor call instruction. An instruction that inter­
rupts the program being executed and passes control
to the supervisor so that it can perform a specific
service indicated by the instruction.

SVC. (See supervisor call instruction.)

SYNAD. The physical error exit routine.

task control block. The consolidation of control infor­
mation related to a task.

T

TCB. (See task control block.)

terminal monitor program. In TSO, a program that
accepts and interprets commands from the terminal,
and causes the appropriate command processors to
be scheduled and executed.

time sharing option. An optional conliguration of the
operating system that provides conversational time
sharing from remote stations.

TMP. (See terminal monitor program.)

transaction 10. A number associated with each of
several request parameter lists that define requests
belonging to the same data transaction.

TSO. (See time sharing option.)

u
UPAD. The user processing exit routine.

update number. For a spanned record, a binary
number in the second RDF of a record segment that
indicates how many times the segments of a spanned
record should be equal. An inequality indicates a pos­
sible error.

upgrade set. All the alternate indexes that VSAM has
been instructed to update whenever there is a change
to the data component of the base cluster.

user buffering. The use of a work area in the proc­
essing program's address space for an 110 buffer;
VSAM transmits the contents of a control interval
between the work area and direct access storage
without intermediary buffering.

user catalog. An optional catalog used in the same
way as the master catalog and pointed to by the
master catalog. It also lessens the contention for the
master catalog and facilitates volume portability.

v
vertical pointer. A pointer in an index record of a
given level that gives the location of an index record
in the next lower level or the location of a control
interval in the data set controlled by the index.

virtual storage access method. An access method for

direct or sequential processing of fixed and variable­
length records on direct access devices. The records
in a VSAM data set or file can be organized in logical
sequence by a key field (key sequence), in the phys­
ical sequence in which they are written on the data
set or file (entry sequence), or by relative record
number.

virtual volume. The data from a mass storage
volume while it is located on a staging drive.

VSAM. (See virtual storage access method.)

VSAM resource pool. A virtual storage area that is
used to share 110 buffers, IIO-related control blocks,
and channel programs among VSAM data sets. A
resource pool is local or global; it serves tasks in one
partition or address space or tasks in all address
spaces in the system.

VSAM shared information. Blocks that are used for
cross-system sharing.

VSI. (See VSAM shared information.)

Glossary of Terms and Abbreviations 227

Index

A
abend

codes issued by ISAM interface 210
synchronizing values 63
updating catalog information 55

abnormal termination
See abend

ACB 39
control interval access, improved 94

access method control block
See ACB

access method services
cryptographic option 106
data protection 102
password protection 102
used in VSAM 1

accessing
index with GETIX and PUTIX 187
records 13

entry-sequenced data set 14
key-sequenced data set 13
linear data set 15
relative record data set 15
through alternate index 15
using a path 53

ACQRANGE macro 83
acquire range 83
acquiring buffers 81
action request macro 46
adding records to a data set 32

effect on free space 71
addressed

access 14
access to an index 187
direct retrieval 50
sequential retrieval 48

addressing mode residence restrictions 44
adjusting control interval size 68
advantages of a large control area 69
allocating

data buffers for direct access 77
index buffers for direct access 77
space for a data set 23

altering a VSAM data set
example 166
free space specification 72
migration of an entry-sequenced data set into a

linear data set 27
alternate index 15-18

allocating buffers 80
building 34
calculating virtual storage space 201
creating, example 175

alternate index (continued)
defining 32
format 15
maintenance 35
naming 33
path 18
stage by key range 85
structure

entry-sequenced data set 17
key-sequenced data set 16

alternate key 18
non-unique path processing 53

AMORG subparameter
in AMP parameter 153,215

AMP parameter
in JCL 152
with ISAM interface 214

AMP-specified SYNAD routine
register contents 209

analyzing
logical errors 40
physical errors 40

APF (authorized program facility)
authorization 100
TSO 101

asynchronous mode 54
asynchronous requests 54
authorized program facility

See APF
avoiding control area splits 82

B
backup

and recovery procedures 59
using EXPORTIIMPORT 61
writing your own program 62

backward sequential processing 48
base

cluster 15
RBA index entry 193
sphere 116

BFRFND field 130
BISAM error conditions 208
blank, in notation convention xviii
BLDINDEX command 34
BLDVRP macro 128
block chaining, with ciphertext feedback 107
block size and track capacity 66
boldface, in notation convention xviii
braces, in notation convention xviii
brackets, in notation convention xviii
buffer

above 16 megabytes 76

Index 229

buffer (continued)
acquiring 81
allocation

concurrent data set positioning 76
direct access 76
for a path 80
sequential access 79

fixing in real storage 96
in your own storage area 94
invalidation

CBUF processing 123
pool

deferred writes 132
locating an RBA 134
statistics 130

scheduling for direct access 78
space

improving non shared resource performance 76
obtaining buffers above 16 megabytes 76
related to control interval size 65

BUFFERSPACE parameter 76
BUFND parameter 76
BUFND subparameter

in AMP parameter 153,215
BUFNI parameter 76
BUFNI subparameter

in AMP parameter 153,215
BUFRDS field 130
BUFSP parameter 76
BUFSP subparameter

in AMP parameter 153
building

alternate index 34, 201
resource pool 127

BWD subparameter
in RPL OPTCD parameter 48

C
calculating space allocation 25
calculating virtual storage space for an alternate

index 201
catalog

checking for problems 36
damage recovery 62
management 1
password-protected 102

CBIC (control blocks in common)
option 96

CBUF (control block update facility)
for integrated catalog facility catalogs 121
user considerations 122

chaining request parameter lists 43
CHECK macro 54
checking

authorization 100
for problems in catalogs and data sets 36
VSAM key-sequenced data set cluster for structural

errors 139

230 MVS/XA VSAM Administration Guide

checkpoint
restriction with global resource pool 136
with shared data sets 123

choosing the optimal percentage of free space 71
CIDF (control interval definition field) 4

format 90
structure 89

CIMODE parameter 61
ciphertext

feedback 107
with block chaining 107

CLOSE macro 55
invoked by abend 55

closing a data set 55
cluster

definition 19
descriptive information 21
naming 20

CNVTAD macro 83
coding

AMP parameter 152
JCL 149

common service area
See CSA

component naming 20
compression. key 195
concurrent requests 53

buffer allocation 76
connecting a data set to a resource pool 130
connecting spheres 116
control access password protection 102
control area

adjacent sequent-set 83
format 6
preformatting 29
size 69

control block update facility
See CBUF

control blocks
displaying 45
fixing in real storage 96
generating 44
manipulating 44
modifying 45
sharing with a single control block structure 114
structure 121
testing contents 45

control blocks in common
See CBIC

control field values
nonspanned data sets 92
relative record data sets 94
spanned data sets 93

control information
field 4
index entry length 192
structure 89

control interval
access

improved
to an index

94
187

updating contents of control interval
device selection 95
format 3
free space 1 0
gaining access 88
optimizing size 65
size

adjusted by VSAM 68
direct processing 67
limitations 65
sequential processing 67

split 11, 199
control interval definition field

See CIDF
control password 102
convert address 83
converting a data set

ISAM to VSAM 219
JCL used 212

copying
data set 31

example 168
key-sequenced 31

plaintext 106
create mode 29
creating

access method control block 39
alternate index 32

example 175
cluster 20
exit list 40
request parameter list 42

CROPS subparameter 153
cross-region sharing 118

examples 124
read-integrity 119
write integrity 120

cross-system sharing 120
example 125

cryptographic
key data set 109
option, protection of offline data 106

CSA (common service area) 96
cylinders, space allocation 24

D
DASD

device selection 95
track capacity 66

DASD (direct access storage device)
capacity 26

data
integrity 99
protection 99

RACF 99

89

data (continued)
protection (continued)

USVR 106
security 99
storage 3

data buffers
affect of RPL options 51
allocating 77
sequential access 80

data component 26
data control interval

index control interval relation
index entry relation 188
size 67

data encryption key 109
Data Encryption Standard

See DES
Data Facility Data Set Services

See DFDSS
data set

access 13
adding data 32
attributes 20
backup 59

189.

checking for problems 36
connecting to a resource pool 130
copying 31

example 168
damage recovery 63
defining 19
duplicate names 20
format 7

comparison 7
entry-sequenced data set 11
key-sequenced data set 13
linear data set 12
relative record data set 12

key ranges 73
loading 27, 72
modifying attributes 27
multiple cylinder 24
name sharing 114, 116
naming 20
opening 41
password-protected 102
printing 37

example 168
processing procedure 39
recovery 59
requesting access 46
reusable 30
sharing 113
small 24
space allocation 23
with nonspanned records 6
with spanned records 6

DATATEST parameter 139
examples 143

Index 231

DATATEST parameter (continued)
used in EXAMINE command 140

DCB
fields supported by ISAM 214
SYNAD routine 209

DO
name sharing 114
sort work file statements 202

DDNAME parameter in JCL 151
deadlock in exclusive control, preventing 115
DEB fields supported by ISAM interface 211
deciding how big a resource pool to provide 129
DECIPHER parameter 110
deciphering data 106-111
deferred

requests by transaction 10 132
write requests 51, 132
writes of buffers 133

exit routines 134
DEFINE ALTERNATEINDEX command 32

descriptive information 33
specifying information 33

DEFINE CLUSTER command 19, 20
descriptive information 21
performance options 22
security and integrity 22

DEFINE command
determining control area size 69

DEFINE PAGESPACE command 36
DEFINE PATH command 35
defining 19

alternate index 32
cluster 20, 21
data set 19

performance options 22
security and integrity 22

non-VSAM data set example 162
page space 36
path 35
VSAM data set 19
VSAM data set example 157

deleting
entry-sequenced data set 11
key-sequenced data set 9
linear data set, example 186
record 50
relative record data set 12
resource pool 131

delimiter parameters
See REPRO DECIPHER and ENCIPHER

DES (Data Encryption Standard), Programmed
Cryptographic Facility 106

determining 1/0 buffer space for nonshared
resources 76

DFDSS (Data Facility Data Set Services)
for backup and recovery 62

DFR option
deferred write requests 132

232 MVS/XA VSAM Administration Guide

direct
insertion 47
processing control interval size
retrieval 49

direct access
allocating buffers 76
device selection 95
key-sequenced data set 14
number of buffers 79
relative record data set 15
scheduling buffers 78
suggested number of buffers 79

disadvantages of a large control area size 70
disconnecting your program

CLOSE macro 55
discrete records, prestaging 83
DISP parameter in JCL 151
displaying

contents of fields in the ACB, EXLST, and RPL 45
control blocks 45
information about an unopened data set 129
statistics about a buffer pool 130

DLVRP macro 131
DSN sharing 116
DSNAME parameter in JCL 151
DUMMY parameter in JCL 151
DUMP operation 62
duplicate data set names 20
dynamic allocation 149

E
ellipses, in notation convention XVIII

embedding the sequence set 83
empty VSAM data set

load mode processing 29
newly defined 29
reusable 31

ENCIPHER parameter 110
enciphering data 106-111
end-of-data 63

during SRB processing 58
indicated by CIDF 88
processing 40
restoring values with VERIFY 63

end-of-file
indicators 30
software 90

end-of-key-range 63
end-of-volume processing

with CBUF 123
ending a request 54
ENDREO macro 54

giving up exclusive control 116
entry-sequenced data set

accessing records 14
alternate index structure 17
format 11
inserting records 48

entry-sequenced data set (continued)
migration to a linear data set 27
retrieving records

RBA (relative byte address) 11
EODAD 40

operating in SRB mode 58
with control interval access 88

ERASE macro 50
erasing residual data 100
error

conditions
BISAM 208
QISAM 207

handling deferred writes 134
locating 36
using multiple regions 123

ERRORLIMIT parameter 142
establishing backup and recovery procedures 59
EXAMINE command

controlling message printout 140
DATATEST 139
INDEXTEST 139
introduction 139
message hierarchy 141

function-not-performed message 142
individual data set structural error

message 142
status and statistical messages 141
summary error message 142
supportive messages 141

output 141
run selection criteria 140
sample output 143

date: set with duplicate key error 144
data set with structural error 143
error-free data set 143

service aid 139
special considerations 141
tests. two 139
types of data sets 139
types of users 139
when to run 140

examples
altering a VSAM data set 166
copying a data set 168
creating an alternate index 175
defining a non-VSAM data set 162
defining a VSAM data set 157
defining and manipulating data sets 157
deleting a linear data set 186
exporting a VSAM data set 178
importing a VSAM data set 182
modifying a VSAM data set 173
printing a data set 168
VSAM macro instructions 56

EXCEPTION with deferred write of buffers 134
EXCEPTION EXIT operating in SRB mode 58

exclusive
control

conflict resolution 115
preventing deadlocks 115
releasing 116

use with multiple string processing 52
exit

list 40
user written routines 137

EXLST macro 40
EXPORT command

backing up a data set 61
by control interval 61
data set structure 61
example 178

exporting a data set
See EXPORT command

external sort 201

F
file key

secondary 109
fixing

control blocks and buffers in real storage 96
pages in real storage 96

forced writing of buffers 51
format

alternate index 15
control area 6
control interval 3
control interval definition field 90
entry-sequenced data set 11
free space 9
header of an index record 192
index entry 195
index entry portion of an index record 194
index record 191
key-sequenced 8
key-sequenced data set 13
linear data set 12
record definition field 90
relative record data set 12

free control interval
entry portion 194
pointed to by index record 194

free space
altering 72
control interval 10
determining 70
format 9
improving performance 70
optimal control interval 71
related to control interval size 65
threshold 71
used to insert records 9

front key compression 195

Index 233

full access password protection 102

G
gaining access to a control interval 88
GENCB macro 44
generalized trace facility

See GTF
generating

control block 44
exit list

generic
key 49
profile checking facility 99

GET macro 50
GET-previous processing 48
GETIX macro 187
global resource serialization

See GRS
global shared resources

See GSR
GRS 118
GSR 53, 128
GTF 154

H
handling exits to physical error analysis routines 134
header

alternate index 16
index record 192

high-used RBA 31
horizontal pOinter index entry 193
how

alternate index is built 34
to code JCL 149
to gain access to a key-sequenced data set's

index 187
VSAM adjusts control interval size 68

ICI (improved control interval access) 96
debugging with normal control interval access 96

IMBED parameter 83
IMPORT command 61
importing a data set 61

example 182
improved control interval access

See ICI
index

and data on separate volumes 82
component opening 188
control interval size 67, 82
embedding 83
entry 188

for spanned records 199
format in an index record 194

index set 190, 191
records in virtual storage 82

234 MVS/XA VSAM Administration Guide

index (continued)
levels 189
options 81
pointers 190
prime 10, 188
processi ng 187
record format 191
replicating 82
sequence set 189,191
structure 189
update 11, 199
upgrade 35

index buffers
allocating 77
effect of unused 77

indexed sequential access method
See ISAM

INDEXTEST parameter 139
errors 141
examples 143
used in EXAMINE command. 140

initial data set load 29
inserting records 46

into entry-sequenced data set 48
into key-sequenced data set 46
into linear data set 48
into relative record data set 47
path processing 53

integrity
of data 99
of information 22

interface program, ISAM 205
internal sort 201
invalidating data and index buffers 119
ISAM (indexed sequential access method)

converting a data set example 219
converting to VSAM 211
interface

abend codes 210
DCB fields 214
DCB fields supported 212
DEB fields 211
restrictions 217

interface program 205
issuing a SYNADAF macro example 219

issuing a checkpoint with shared data sets 123
italics, in notation convention xviii
110

buffers
managing with shared resources 131
sharing 127
space management 76

journaling of errors 134
related control block sharing

J
JCL (job control language)

converting from ISAM to VSAM 212
DO parameters 151
how to code 149
parameters not used with VSAM 155
parameters used with VSAM 150
used with ISAM interface processing 212
with VSAM 149

job control language
See JCL

journaling 1/0 errors 134
journalizing transactions 40
JRNAD 40

K

backing up data 62
values for 134
with deferred writes 134
with shared resources 134

key
compression 11, 195

example 198
data encryption 108
field alternate 18
management 108
parameters 28
pointer pair 34
pointer pair sorting 201
ranges 73

examples 73
naming 75
staging VSAM data sets for MSS 83

secondary file 109
key-sequenced data set

accessing records 13
accessing the index 187
alternate index structure 16
checking for structural errors 139
copying 31
format 8
inserting records 8, 46

keyed

L

access 13
direct retrieval 49
sequential retrieval 48

LERAD 40
operating in SRB mode 58

levels of an index 193
levels of index 189
linear data set

accessing records 15
allocating space 25
altering example 166

linear data set (continued)
cluser information 21
control interval access 13
copying and printing example 168
definition 12
deletion example 186
exporting example 178
importing example 182
inserting records 48
migration of an entry-sequenced data sct 27
printing 37

listing catalog entries 37
load mode 29

preformatting control areas 29
restrictions 29

loading a data set 27
altering free space 72
using REPRO 27
using your own program 29

local shared resources
See LSR

locating an RBA in a buffer pool 134
locking unit 124
logical record 3
look-aside processing 52
LSR (local shared .resources) 53, 128

multiple pools per address space 128

M
macro instructions

control block macros
request macros 1

maintenance, alternate index 35
managing 1/0 buffers for shared resources 131
manipulating control block contents 44
marking a buffer for output

MRKBFR macro 135
mass sequential insertion 47
Mass Storage System

See MSS
master password 102
merge backup copy into data set 60
mixed processing 67
MNTACQ macro 83
MODCB macro 45
mode, asynchronous 54
modifying

attributes of a component 27
contents of the ACB, EXLST, and RPL 45
control blocks 45
data set attributes 27
example 173

mount acquire 83
mounting a subset of volumes 150
MRKBFR macro

giving up exclusive control 116
marking a buffer for output 135

Index 235

MSS (Mass Storage System)
function restrictions and limitations 84
staging VSAM data sets 83
using alternate indexes 85

multiple string processing 52

N
name, duplicate 20
naming

alternate index' 33
cluster 20
component 20
data set 20
key ranges 75

NCK subparameter 153
non-MSS support 84
non-unique alternate key path processing 53
non-unique key, alternate index 15
non-VSAM data set

defining example 162
password protection 105

nonshared resources
data buffers for sequential access 80

nonspanned records
data set 6
RDF structure 92

NONUNIQUEKEYattribute 53
NRC subparameter 153·
NRE subparameter 153
NSR subparameter 53, 130
NUIW field 130

o
obtaining buffers above 16 megabytes 76
offline protection 106
OPEN macro 41, 130

improved control interval access 95
opening

data set 41
index component alone 188
object for improved control interval access 95

operating in SRB or cross memory mode 58
OPTCD subparameter 154, 215
optimizing

control area size 69
control interval size 65
free space distribution 70
VSAM performance 65

options using REPRO 59
or sign, in notation convention xviii

p
page space, defining 36
pages, fixing in real storage 96
paging, excessive with extra buffers 81

236 MVS/XA VSAM Administration Guide

password
authorize access 102
authorize access to data set 42
prompting 105
protection 102

path

access method services 102
catalog 104
considerations and precautions 104
data set 104
non-VSAM data sets 105

alternate index 18
processing 53

buffer allocation 80
performance 65

improved control interval access 94
information 22

physical block size and track capacity 66
plaintext data encrypting key 109
POINT macro 49

shared resources 127
pointers

alternate index 18
index 190

pointing VSAM to a record 49
positioning

data buffers 51
with shared resources 127

preformalting control areas 29
prestaging records

discretely identified 83
restrictions and limitations 84
specified range 84
with MSS 83

preventing deadlock in exclusive control 115
primary space allocation 23
prime index 10, 188

entry 188
levels 190
structure 189
update 11, 199

PRINT command 37
printing a data set 37

example 168
problem checking, data sets and catalogs 36
procedure for using EXPORTIIMPORT 61
processing

control intervals 87
data set 39

improved control interval access 95
index of a key-sequenced data set 18T
multiple string 52

protection
of data 99
RACF 99

providing a resource pool 127
punctuation, in notation convention xviii

PUT macro 46, 50
deferred writes 132
updating with control interval access 89

PUTIX macro 187

Q
QISAM

error conditions 207
qualified name, data set 21

R
RACF (Resource Access Control Facility)

erasing residual data 100
protection and integrity 99

range of records, prestaging 84
RBA (relative byte address)

JRNAD parameter list 134
retrieving records directly 11
used to locate a buffer pool 134

RCK subparameter 153
RDF (record definition field) 4

examples 5
format 90
structure 90

nonspanned records 92
spanned records 93

read access password protection 103
read integrity during cross-region sharing 119
rear key compression 196
RECFM subparameter

of AMP parameter 154.216
record

insertion errect on free space 71
replacement example 173
size related to control interval size 65
space allocation 24

record definition field
See RDF

record management
recovery

and backup procedures 59
using EXPORTIIMPORT 61
writing your own program 62

RECOVERY parameter 29
register contents

AMP-specified ISAM SYNAD routine 209
DCB-specified ISAM SYNAD routine 209
ISAM SYNAD routine 209

relating deferred requests by transaction 10 132
relation of data set and catalog protection 105
relationship between SHAREOPTIONS and VSAM func-

tions 122
relative byte address

See RBA
relative record data set

accessing records 15
format 12

relative record data set (continued)
inserting records 47
RDFs 94

relative record number 12
releasing

control
ENDREQ macro 116
MRKBFR macro 116

data buffers and positioning 51
REPL parameter

in DEFINE command 82
REPLACE parameter, REPRO command 60
replicating index records 82
REPRO command 31

backup and recovery 59
loading a data set 27
options 59

REPRO DECIPHER and ENCIPHER 108
request parameter list 42

chaining 43
concurrent requests 53
effect on data buffers and positioning 51
transaction IDs 132

requesting access to data set 46
residence restriction

RPL and EXLST 44
VSAM 31-bil support 147

Resource Access Control Facility
See RACF

resource pool 127
deferred writes 132
deleting 131
determining size 129
statistics 130

RESTORE operation 62
restrictions

during load mode 29
for shared resources 136
of MSS staging function 84
on the use of the ISAM interface 217

retaining data buffers and positioning 51
retrieving records

direct access 14
direct retrieval 49
sequential access 14
sequential retrieval 48
skip-sequential access 14

reusable data set 30
REUSE parameter 30
rotational delay, reducing 82
RPL

See request parameter list
RPL macro 42
RPL parameter 88

Index 237

S
SCHBFR macro

locating an RBA in a buffer pool 134
secondary file key 109
secondary space allocation 23
security

and integrity information 22
of data 99

selective staging 83
separating index and data 82
sequence set 189, 191
sequence-sel

records adjacent to control areas 83
sequential

access
allocating buffers 79
key-sequenced data set 14
relative record data set 15
suggested number of buffers 80

insert strategy 47
processing control interval size 67
retrieval 48

serializing requests
ENQ and DEQ 125

share options
using CBUF under SHAREOPTION 3 121

shared resources
restrictions 135
using the JRNAD exit 134

SHAREOPTIONS parameter
stage by key range 85
type of processing specified 122

sharing 127
cross-region 118

examples 124
cross-system 120

examples 125
resources among data sets 127
VSAM data sets 113

between subtasks 114
single control block 117

SHOWCAT macro
determining size of resource pool 129

SHOWCB macro 45
displaying buffer pool statistics 130
displaying transaction ID of request parameter

list 132
field descriptions 130

size
control area 69
control interval 65
control interval limitation 65
data control interval 67
index control interval 67
VSAM data set 3

skeleton VSAM program 57
skip-sequential access

key-sequenced data set 14

238 MVS/XA VSAM Administration Guide

skip-sequential access (continued)
relative record data set 15

slots relative record data set 12
small data sets 24
software end-of-file 90
sort work files 34, 201
space allocation

calculation 26
data set 23
key-sequenced data set, example 25
linear data set 25
multiple cylinder data sets 24
VSAM data sets 24
with key ranges 73

SPANNED attribute 66
spanning control intervals 7

spanned records 6, 7
index entries 199
RDF structure 93

specifying
alternate index information 33
cluster information 21

SPEED parameter 29
sphere, data set name sharing 116
splitting control intervals 11, 199
SRB (service request block)

dispatching 94
invocation 58

stage by key range 83
restrictions 84

staging .data sets for MSS 83
statistics for a resource pool 130
STEPCAT DO statement 149
storage, data 3
string processing 52, 76

multiple strings 76
STRMAD field 130
STRNO subparameter

in AMP parameter 154,216
structure

of control information 89
of exported data set 61

subpool241 (for shared resources) 128
subset mount 150
subtask sharing 114
summary of restrictions for shared resources 135
SVC invokation

in SRB mode 58
SYNAD 40

in AMP parameter 154,217
operating in SRB mode 58
using ISAM interface 209
with deferred writes 134

SYNADAF macro
example 219
in ISAM program 209

synchronizing values
data set and catalog information 62

synchronizing values (continued)
following abnormal termination 63
following catalog damage 62
following data set damage 62
using VERIFY 63

T
techniques of sharing examples 124
TEMPORARY attribute 61
temporary close 55
terminal monitor program

APF authorization 101
termination, REPRO operation 28
TESTCS macro 45

listing transaction 10 of request parameter
list 132

testing contents of ACB, EXLST, and RPL fields 45
time sharing option

See TSO
TRACE subparameter

in AMP parameter 154
tracing 154
track

capacity 66
space allocation 24

TRANSID parameter 132
translating ISAM requests 206
TSO (time sharing option)

APF authorization 101
TYPE = T parameter 55

U
UBF option

in ACB MACRF operand 94
UIW field 130
underlining, in notation convention xviii
unique key, allernate index 15
UNIQUEKEY attribute 53
UNIT parameter in JCL 151
UPAD 41

operating in SRB mode 58
update

access password protection 102
after data set recovery 62
control interval 89
record 50
spanned record segments number 93

UPDATE attribute 35
upgrade

index 35
set 35

UPGRADE attribute 35
user

access to VSAM shared information 126
buffering 94
catalog

JCL 149

user (continued)
considerations with CBUF processing 122
of EXAMINE command 139
processing 41
program sequential load 29
written exit routines 137

user generated exit routines 40
user-security-verification routine

See USVR
using

allernate indexes with MSS macros 85
EXPORTIIMPORT for backup and recovery 61
generic profile 99
REPRO for backup and recovery 59

USVR (user-security-verification routine) 106

V
VERIFY

implicitly issued 42
with CBUF processing 123

use and restrictions 63
vertical bar, in notation convention xviii
vertical pointer, index entry 193
virtual storage

calculating space for an allernate index 201
for index buffers 82

volume
JCL parameter 151
separate for index and data 82

VSAM
capabilities 1
data set

altering example 166
copying and printing examples 168
defining 19
defining example 157
exporting example 178
importing example 182
modifying example 173
size 3

macro relations 56
program 57
trace facility 154
31-bit support

buffers above 16 megabytes 76
keywords 147
multiple LSR pools 128
restrictions 147

VSAM shared information blocks
See VSI blocks

VSI blocks 121
example 126

W
waiting for a request, asynchronous processing 54
work file

reusable data set 30

Index 239

work file (continued)
sorting 34

write integrity during cross-region sharing 120
writing a buffer

deferred 51
forced 51
WRTBFR macro 133

writing own program for backup and recovery 62
WRTBFR macro

writing buffers 133

Numerics
31-bit support

buffers above 16 megabytes 76
keywords 147
multiple LSR pools 128
restrictions 147

240 MVS/XA VSAM Administration Guide

MVS/Extended Architecture
VSAM Administration Guide

GC26-41S1-S

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers. and operators of IBM systems.
You may use this form to communicate your comments about this publication, its organization. or subject matter. with the under­
standing that IBM may use or distribute whatever Information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent 10 the author's department for whatever review and action, if any, are deemed appro­
priate.

Note: Do not use this 'orm to request IBM publlcalions. II you do, your order will be delayed because publications are not slocked al
the address printed on Ihe reverse side. Instead, you should direct any requesls for copies 0' publlcallons, or for assistance In using
your IBM system, to your IBM representallve or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs; to this book. please list them here:

Comments (please include specific chapter and page references) :

If you want a reply. please complete the following information:

Name __ _ Date ___________________ _

Company ____________ _ Phone No. (_____) ___________ __

Address ___ _

Thank you for your cooperation. No postage is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be
happy to forward your comments or you may mail them directly to the address in the Edition Notice on the back of the title page.)

GC26-4151-5

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

... '11' ~~ ~~~~~~~ i

NECESSARY I
IF MAILED i

IN THE I

Fold and tape

--..--. -------- -------- -. ---- - - ------------------ ~,-
®

BUSINESS REPL V MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department J57
P.O. Box 49023
San Jose, CA 95161·9945

11.111.1.1 •••• 11.1111"1111.1111.1 ••• 11.'.1.1,".111

Please do not staple

UNITED STATES I

Fold and tape

I
I
I
I

	00000
	00001
	00002
	00003
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00015
	00016
	00017
	00018
	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	139
	140
	141
	142
	143
	144
	145
	147
	148
	149
	150
	151
	152
	153
	154
	155
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	replyA
	replyB
	xBack

