]
||I|
[}

Order Number
GC26-4149-2

MVS/Extended Architecture
System — Data Administration

Data Facility Product
5665-XA2

Licensed
Program

Version 2
Release 3.0

i=Ers MVS/Extended Architecture Licensed
System — Data Administration Program
Order Number Data Facility Product ' Version 2

GC26-4149-2 5665-XA2 ; Release 3.0

| Third Edition (June 1987)
| This is a major revision of, and makes obsolete, GC26-4149-1.

| This edition applies to Version 2 Release 3.0 of MVS/Extended Architecture Data
Facility Product, Licensed Product 5665-XA2, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under “Summary of Changes” following the
preface. Specific changes are indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM licensed program in this publication is not intended to state or imply
that only IBM’s program may be used. Any functionally equivalent program may be used
instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you. :

© Copyright International Business Machines Corporation 1985, 1986, 1987

Preface

Organization

This publication provides information for system programmers about
MVS/Extended Architecture Data Facility Product, and how to modify and extend
the data management capabilities of the operating system.

This publication contains the following chapters and appendixes:

Chapter 1, “Managing the Volume Table of Contents (VTOC)” on page 1,
defines and discusses the structure of the VTOC and VTOC index, and the use
of system macros to read a data set control block (DSCB), rename a data set,
delete a data set from the VTOC, or obtain DASD volume free space
information.

Chapter 2, “Executing Your Own Channel Programs (EXCP)” on page 63,
defines and discusses the use of the EXCP macro to control the organization of
data based on device characteristics with your own channel programs.

Chapter 3, “Reading from and Writing to Direct Access Devices (XDAP)”’ on
page 99, defines and discusses the use of the XDAP macro to read, verify, and
update blocks without using an access method.

Chapter 4, “Password Protecting Data Sets” on page 111, defines and
discusses system password protection and how to create and maintain the
PASSWORD data set.

The information formerly in Chapter 5, “Exit Routines” on page 125 has
been moved to Data Facility Product: Customization.

Chapter 6, ‘“‘System Macro Instructions” on page 127, defines and discusses
the system macros used to refer to, validate, and modify system data areas.

Chapter 7, “Maintaining SYS1.IMAGELIB” on page 203, defines and
discusses adding a UCS or FCB image to the system image library, and
maintaining the UCS image tables.

Chapter 8, “JES2 Support for the IBM 1403, 3203 Model 5, and 3211

Printers” on page 225, defines and discusses JES2 support for UCS alias
names and the 3211 indexing feature.

Preface il

The information formerly in Chapter 9, “CATALOG, SCRATCH, and
RENAME Dummy Modules” on page 227 has been moved to Data Facility
Product: Customization.

Chapter 10, “Specifying Buffer Numbers for DASD Data Sets” on page 229,
defines and discusses the performance considerations when using the BUFNO
keyword and subparameter.

Appendix A, “CVAF VTOC Access Macros” on page 231, defines and
discusses the format of the VTOC access macros: CVAFDIR, CVAFDSM,
CVAFFILT, CVAFSEQ, and CVAFTST, and their return codes.

Appendix B, ‘“Examples of VTOC Access Macros’ on page 259, defines and
discusses examples of using the VTOC access macros in your programs.

Appendix C, “VTOC Index Error Message and Associated Codes” on
page 297, defines and discusses the error message and field codes issued by
the Common VTOC Access Facility (CVAF).

The information formerly in Appendix D, ‘“Example of an OPEN Installation
Exit Module” on page 305 has been moved to Data Facility Product:
Customization.

Appendix E, “DFP ISMF Services” on page 307, defines and discusses the
DFP user services available with ISMF.

Prerequisite Knowledge

In order to use this book efficiently, you should be familiar with the following
topics:

Assembler language
Standard program linkage conventions
The utility programs IEHLIST and IEHPROGM

Data management access methods and macro instructions

Required Publications

You should be familiar with the information presented in the following
publications:

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037, and Assembler H Version 2 Application Programming: Guide,
GC26-4036, contain more information on coding in assembler language.

MVS/Extended Architecture System Programming Library: Supervisor Services
and Macro Instructions, GC28-1154, contains a description of standard linkage
conventions.

iV MVS/XA System—Data Administration

o MVS/Extended Architecture Data Administration: Utilities, GC26-4150,
describes how to use IEHLIST to maintain the VTOC, and IEHPROGM to
protect data sets.

e MVS/Extended Architecture Data Administration Guide, GC26-4140, and
MYVS/Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4141, contain information on using access methods and macro
instructions to do input and output.

Specific prerequisite reading is listed at the beginning of some chapters, as it relates
to the particular topic.

Related Publications

Within the text, references are made to the publications listed in the table below.

Short Title
(as it appears
in the text) Publication Title Order Number
Access Method MYVS/Extended Architecture GC26-4135 = L —
Services Reference Integrated Catalog 7
Administration: Access Method
Services Reference
GC26-4136
MVS /Extended Architecture
VSAM Catalog Administration:
Access Method Services Reference
Assembler H V2 Assembler H Version 2 SC26-4036
Application Application Programming: Guide
Programming:
Guide
Assembler H V2 Assembler H Version 2 GC26-4037
Application Application Programming:
Programming: Language Reference
Language
Reference
Checkpoint/Restart | MVS/Extended Architecture GC26-4139
User’s Guide Checkpoint / Restart User’s Guide
Conversion MYVS/Extended Architecture GC28-1143
Notebook Conversion Notebook
Data MVS/Extended Architecture Data | GC26-4140
Administration Administration Guide
Guide

Preface V

Short Title

(as it appears

in the text) Publication Title Order Number

Data MVS/Extended Architecture Data | GC26-4141

Administration: Administration: Macro

Macro Instruction Instruction Reference

Reference

Data Facility MVS/Extended Architecture Data | GC26-4267

Product: Facility Product: Version 2

Customization Customization

Debugging MVS/Extended Architecture LC28-1164!

Handbook Debugging Handbook, Volumes 1 | LC28-1165

through 5 LC28-1166

LC28-1167
LC28-1168

Device Support Device Support Facilities User’s GC35-0033

Facilities User’s Guide and Reference

Guide and

Reference

IBM System/370 IBM System/370 Principles of GA22-7000

Principles of Operation

Operation

IBM 2821 Control IBM 2821 Control Unit GA24-3312

Unit Component Component Description

Description

IBM 3203 Printer IBM 3203 Printer Component GA33-1515

Component Description and Operator’s Guide

Description and

Operator’s Guide

IBM 3211 Printer, IBM 3211 Printer, 3216 GA24-3543

3216 Interchangeable Train Cartridge,

Interchangeable and 3811 Printer Control Unit

Train Cartridge, Component Description and

and 3811 Printer Operator’s Guide

Control Unit

Component

Description and

Operator’s Guide

IBM 3262 Printer IBM 3262 Printer Model 5 GA24-3936

Model 5 Product Product Description

Description

Note:

1 All five volumes may be ordered under one order number, LBOF-1015.

Vi MVS/XA System—Data Administration

Short Title

(as it appears
in the text) Publication Title Order Number
IBM 3800 Printing IBM 3800 Printing Subsystem GC26-3846
Subsystem Programmer’s Guide
Programmer’s
Guide
IBM 4245 Printer IBM 4245 Printer Model 1 GA33-1541
Model 1 Component Description and
Component Operator’s Guide
Description and
Operator’s Guide
IBM 4248 Printer IBM 4248 Printer Description GA24-3927
Description
Initialization and MVS/Extended Architecture GC28-1149
Tuning System Programming Library:
Initialization and Tuning
JCL User’s Guide MYVS/Extended Architecture JCL GC28-1351
User’s Guide B
JCL Reference MVS/Extended Architecture JCL - ‘GC28-1352
Reference
JES?2 Initialization MVS/Extended Architecture SC23-0065
and Tuning System Programming Library:
JES? Initialization and Tuning
JES3 Data Areas MYVS/Extended Architecture Data | LYB8-1195
: Areas (MVS/JES3)
JES3 Initialization MYVS /Extended Architecture SC23-0059
and Tuning System Programming Library:
JES3 Initialization and Tuning
Linkage Editor and MYVS/Extended Architecture GC26-4143
Loader User’s Linkage Editor and Loader User’s
Guide Guide
Magnetic Tape MVS/Extended Architecture GC26-4145
Labels and File Magnetic Tape Labels and File
Structure Structure Administration
Administration
Open/Close/EOV MVS/Extended Architecture LY26-3966
Logic Open/Close/ EOV Logic
RACF General Resource Access Control Facility GC28-0722
Information (RACF): General Information

Manual

Preface Vil

Short Title
(as it appears
in the text) Publication Title Order Number
Service Aids MYVS /Extended Architecture GC28-1159
System Programming Library:
Service Aids
Supervisor Services MYVS /Extended Architecture GC28-1154
and Macro System Programming Library:
Instructions Supervisor Services and Macro
Instructions
System Generation MYVS /Extended Architecture GC26-4148

Installation: System Generation

System Logic
Library

MVS/Extended Architecture
System Logic Library: Volume 8
of 17, Parts 1 and 2 (I0S)

LY28-1234 (Part
1)
LY28-1235 (Part
2)

System Macros and MVS/Extended Architecture GC28-1150
Facilities System Programming Library: GC28-1151
System Macros and Facilities,
Volumes 1 and 2
System Messages MYVS/Extended Architecture GC28-1376
Message Library: System GC28-1377
Messages, Volumes 1 and 2
TSO Command MVS Extended Architecture TSO GC28-0646
Language Command Language Reference
Reference (0S/VS2 TSO Command
Language Reference, as updated
by Supplement SD23-0259 for
MVS/XA)
TSO/E Data Areas MVS /Extended Architecture LYBS8-1119
TSO/E Data Areas (plus
Supplement LDB3-0276)
Utilities MVS /Extended Architecture Data | GC26-4150
Administration: Utilities
VSAM MVS/Extended Architecture GC26-4152
Administration: VSAM Administration: Macro
Macro Instruction Instruction Reference
Reference

viii MVS/XA System—Data Administration

-
L W%

Notational Conventions

A uniform system of notation describes the format of data management macro
instructions. This notation is not part of the language; it simply provides a basis for
describing the structure of the commands.

The command format illustrations in this book use the following conventions:

Brackets [] indicate an optional parameter.

Braces §{ } indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

Items separated by a vertical bar (|) represent alternative items. No more
than one of these items may be selected.

An ellipsis (...) indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

Other punctuation (such as parentheses, commas, and spaces) must be entered
as shown. A space is indicated by a blank.

BOLDFACE type indicates the exact characters to be entered, except as

described in the bullets above. Such items must be entered exactly as
illustrated.

Lowercase italic type specifies fields to be supplied by the user.

BOLDFACE UNDERSCORED type indicates a default option. If the
parameter is omitted, the underscored value is assumed.

Parentheses () must enclose subfields if more than one is specified. If only
one subfield is specified, you may omit the parentheses.

Address and Register Conventions

The following describes the meaning of each notation used to show how an
operand can be coded:

symbol

)

1)

The operand can be any valid assembler-language symbol.

General register 0 can be used as an operand. When used as an operand in a
macro instruction, the register must be specified as the decimal digit 0
enclosed in parentheses as shown above.

General register 1 can be used as an operand. When used as an operand in a
macro instruction, the register must be specified as the decimal digit 1
enclosed in parentheses as shown above. When you use register 1, the
instruction that loads it is not included in the macro expansion.

Preface 1X

(2-12)
The operand specified can be any of the general registers 2 through 12. All
registers as operands must be coded in parentheses; for example, if register 3
is coded, it is coded as (3). When one of the registers 2 through 12 is used, it
can be coded as a decimal digit, symbol (equated to a decimal digit), or an
expression that results in a value of 2 through 12.

RX-Type Address
The operand can be specified as any valid assembler-language RX-type
address. The following shows examples of each valid RX-type address:

Name Operation Operand

ALPHAL1 L 1,39(4,10)

ALPHA2 L REG1,39(4,TEN)
BETAI1 L 2,ZETA(4)

BETA2 L REG2,ZETA(REG4)
GAMMAL1 L 2,ZETA

GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F’1000’
LAMBDA1 L 3,20(,5)

Both ALPHA instructions specify explicit addresses; REG1 and TEN have
been defined as absolute symbols. Both BETA instructions specify implied
addresses, and both use index registers. Indexing is omitted from the
GAMMA instructions. GAMMAI1 and GAMMA? specify implied
addresses. The second operand of GAMMAZ3 is a literal. LAMBDAL1
specifies an explicit address with no indexing.

A-Type Address
The operand can be specified as any address that can be written as a valid
assembler-language A-type address constant. An A-type address constant
can be written as an absolute value, a relocatable symbol, or relocatable
expression. Operands that require an A-type address are inserted into an
A-type address constant during the macro expansion process. For more
details about A-type address constants, see Assembler H Version 2
Application Programming: Language Reference.

absexp
The operand can be an absolute value or expression. An absolute expression
can be an absolute term or an arithmetic combination of absolute terms. An
absolute term can be a nonrelocatable symbol, a self-defining term, or the
length attribute reference. For more details about absolute expressions, see
Assembler H Version 2 Application Programming: Language Reference.
OS/VS—DOS/VSE—-VM/370 Assembler Language.

relexp
The operand can be a relocatable symbol or expression. A relocatable
symbol or expression is one whose value changes by n if the program where
it appears is relocated n bytes away from its originally assigned area of
storage. For more details about relocatable symbols and expressions, see
Assembler H Version 2 Application Programming: Language Reference.

X MVS/XA System—Data Administration

“a,

Summary of Changes

| Release 3.0, June 1987

| Enhancements and New Support

| Data sets may now be retained beyond the year 1999 or be retained indefinitely
| (never-scratch). “Deleting a Data Set from the VTOC (SCRATCH and CAMLST
| SCRATCH)” on page 33 describes never-scratch designations.

Information about the new LSPACE macro instruction has been added.

Chapter 1, “Managing the Volume Table of Contents (VTOC)” on page 1,
explains how to use the LSPACE macro to determine the amount of free space and
the degree of space fragmentation on a direct access volume. The LSPACE macro
also allows you to obtain VTOC status information.

Open, Close, and End-of-Volume parameter lists may now reside at an address
above 16 megabytes. Chapter 2, “Executing Your Own Channel Programs
(EXCP)” on page 63 explains the changes to the EOV macro format and
description in support of parameter lists above 16 megabytes.

The retrieval area for information extracted from a JFCB can now be allocated at
an address above 16 megabytes. Chapter 6, “System Macro Instructions” on
page 127 now includes the following information in support of the retrieval area
above 16 megabytes.

| « The differences in the RDJFCB and OPEN macro operands and parameter
| lists.

| « The new X'13" exit list entry code.
| « The use of the [IHAARL macro.

Information related to customizing the Data Facility Product for individual users
has been moved to Data Facility Product: Customization, a new book. This includes
the information in Chapter 2 under “Appendages” on page 71, all of Chapter 5
(including the new information about the conventions that installation-written
DADSM preprocessing and postprocessing modules must follow for 31-bit versus
24-bit addressing), all of Chapter 9, and the example formerly in Appendix D.

Summary of Changes Xi

Service changes have been made throughout the manual, and are indicated in the
text by revision bars. .

Release 2.0, June 1986

Enhancements and New Support
Information has been added for support of CVAF Filter Services.

o The format of the CVPL in Chapter 1, “Managing the Volume Table of
Contents,” has been updated.

« Appendix A now contains the CVAFFILT macro syntax and explains the
parameters, register contents, and return codes.

« Appendix B now contains an example of a CVAFFILT invocation.

Information has been added for support of DASD Calculation Services.

« Chapter 5, “Exit Routines,” describes the use of the DASD Calculation
Services precalculation and postcalculation installation exits. It also explains

the parameters, register contents, and return codes.

Appendix E has been added to provide interface information for DFP/ISMF :
services. S

Chapter 1, “Managing the Volume Table of Contents,” has been reorganized and
rewritten.

Chapter 7, “Maintaining SYS1.IMAGELIB,” has been reorganized and rewritten.

Service changes have been made throughout the manual, and are indicated in the
text by revision bars.

Release 1.0, April 1985

Enhancements and New Support

The SCRATCH and CAMLST SCRATCH macro descriptions have been updated
to include support for the erasure of residual DASD data.

Information has been added to the description of the REALLOC macro for
DADSM support of DFDSS that:

e Describes the new support and explains what it does.

e Adds new keywords. LW

Xii MVS/XA System—Data Administration

« Adds new return codes.

The PARTREL macro has been added to the partial release section that:

¢ Describes the new support and explains what it does.

e Addsall keywords and descriptions.

e Adds new return codes.

Information supporting the ERASE-ON-SCRATCH option for RACF-defined
data sets has been added to “Deleting a Data Set from the VTOC (SCRATCH and
CAMLST SCRATCH)” on page 33.

Information has been added to Figure 29 on page 134 to support the:

e 3262 Model 5 Printer.

e 4245 Printer.

e 4248 Printer.

Information has been added to support the IBM 3380 (all models).

The following IBM 3480 Magnetic Tape Subsystem support information has been
added:

o The high-speed positioning feature.
e Chapter 6, “System Macro Instructions” on page 127, has been updated.

e The MSGDISP macro has been added to permit loading a message display on
the 3480.

o The 3480 has been added to Figure 29 on page 134.

Summary of Changes Xiii

“High-Speed IBM 3480 Positioning”” on page 149 in Chapter 6, ‘“‘System Macro
Instructions” on page 127 has been added and describes how to set the tape block
ID for the IBM 3480 Magnetic Tape Subsystem in full function mode.

Chapter 1, formerly titled ‘“Controlling Space on DASD Volumes,”” has been
renamed, “Managing the Volume Table of Contents (VTOC).”

Version 2 Publications

The Preface includes new order numbers for Version 2.

XiV MVS/XA System—Data Administration

A

Contents

Chapter 1. Managing the Volume Table of Contents (VTOC) 1
3 T X T i
Data Set Control Block (DSCB) Format Types 3
Allocating and Releasing DASD Spacecciiiiiiiinnnn... 5
The VTOC INdexcitiiiniitiiiiit ittt ittt ieanannnn 8
An Example of a VIOC and ItsIndex, 8
The VTOC Index Entry Record (VIER)ciiiiinneann.. 9
The VTOC Pack Space Map (VPSM) ...ttt iiiiiiiennnnn 12
The VIOCIndexMap (VIXM)ttt 14
The VTOC Map of DSCBs (VMDS)iiiiiiiiiiiiinnennn.. 15
Structure of an Indexed VTOC iiiiiiiiennnnn. 16
Scratch/Rename/Allocate Restrictionsccovuuun... 16
Initializing and Maintaining the VTOC 17
Creating the VTOC and VTOC Indexcivnininnn.. 17
Protecting the VITIOC and VTOC Index, 17
Copying/Restoring/Initializing the VTOCc.co... 18
Operations on Volumes Containing a Nonindexed VTOC 18
Operations on Volumes Containing an Indexed VTOC 18
Accessing the VTOC with DADSM Macrosc.ovviuennuenn.. 19
Obtaining DASD Volume Information (LSPACE) 20
Reading a Control Block from the VTOC 29
Deleting a Data Set from the VTOC (SCRATCH and CAMLST
SCRATCH) ..ttt ittt ittt ntneeteneaernenneneenenns 33
Renaming a Data Set in the VTOC (RENAME and CAMLST RENAME) 38
Accessing the VTOC and its Index with CVAF Macros 42
Diagnosing VTOC EITOISciitiittnt et ieneieernnenneennns 60
Listinga VTOC.and VTOC Indexcoiuiiiitinnnennennnn. 61
Chapter 2. Executing Your Own Channel Programs (EXCP) 63
Using EXCP in System and Problem Programs 64
How the System UseS EXCPiiutttiririrnnrnnnnnnnnn 64
How To Use EXCP in Problem Programs 65
31-Bit IDAW Requirementscciuittennuenennnneenennnns 66
How EXCP Operates ina V=R AddressSpace 66
EXCPRequirementsc..cutiinmneernneennnnenennnneneeannns 67
Channel Programc..iiiutiiinetnnnnnenennnnnennnnnns 67
Control BIOCKS ..t oti ittt ittt it n et 67
How the Channel Program Executesccitiiriiuennnnnnn. 68
Initiation of the Channel Program 68
Modification of a Channel Program during Execution 70
Completion of Execution00iiiiiitiinnnneeennnnns 70
Interruption Handling and Error Recovery Procedures 70
APPeNdageS e e e ettt 71
Channel Programming Considerationsccoviiiiian.. 72

Contents XV

Macro Specifications for Use WwithEXCPciiiiinann. 73

Defining Data Control Blocks for EXCP(DCB) 73
Initializing Data Control Blocks (OPEN) e 80
Executing a Channel Program (EXCP)c.cuiuitiennn. 81
Endof Volume (EOV) ittt iiietennenannas 81
Restoring Data Control Blocks (CLOSE)c.ciiiiinan... 83
Assigning an Alternate Track and Copying Data from the Defective Track
(ATLAS) oot i et e e e e e e e i e e 83
Control Block Fieldsiittiiiiiinirnrennenennennnn 88
Input/Output Block (IOB) Fieldsc.cciiiiiinnnnennnan.. 89
Event Control Block (ECB) Fieldscciiviiinn... cee. 92
Data Extent Block (DEB) Fieldscciittiiiinneennnn. 92
Executing Fixed Channel Programs in Real Storage (EXCPVR) 92
Building the List of Data AreastoBe Fixed 94
Page Fix (PGFX) and Start-I/O (SIO) Appendage 94
Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 99
XDAPREQUITEMENESot vveitnesneeeeneeeneeeenenennenennnns 100
Macro Specifications for Use with XDAPc0iiiiiiinnnnn.. 100
Defining a Data Control Block (DCB)c.ciiiiiiineennnn. 100
Initializing a Data Control Block (OPEN)cco.... 101
Executing Direct Access Programs (XDAP)ccovvuunn. 101
Endof Volume (BEOV) ...ttt ittt eeinnnnn. 104
Restoring a Data Control Block (CLOSE)cccivinnenn. 104
Control Blocks Used with XDAPcoiiitiiiiiinnninaennnn. 104
Event Control BIock (ECB) ... oi ittt ittt ittt iiieeinnneennn 104
Input/Output Block IOB)oiiiiriiieinnnrannannns 105
Direct Access Channel Programcc0iiuinnennnnn. 105
Converting a Relative Track Address to an Actual Track Address 106
Return Codes from the Conversion Routine 107
Converting an Actual Track Address to a Relative Track Address 107
Obtaining Sector Number of a Block on a Device with the RPS Feature 108
Chapter 4. Password ProtectingDataSetsccciieveeneesacnss 111
Providing Data Set Securitycitiiuiiniinrinneanenneaans 112
PASSWORD Data Set Characteristicscoivereeneenn.. 113
Creating Protected Data Setsccotiiiininernennnenn. 113
Protection Feature Operating Characteristics 114
Maintaining the PASSWORD Data Set (PROTECT Macro) 116
PASSWORD Data Set Characteristics and Record Format (With
PROTECT MACIO) .. i ottt tiitinieeeeenreeneneeenennnennns 116
PROTECT Macro Syntaxvieerieennnnnenneeannneennns 117
PROTECT Macro Parameter Lists iiinne... 118
Return Codes from the PROTECTMacroc.covevuennnn. 124
Chapter 5. Exit Routinescccieeeieeveresrtcsccccosnsssnnns 125
Chapter 6. System MacroInstructionscceoevveencnncnncnns 127
Introductionc. it i e e 127
Mapping System Data Areasc.otiitiitinnrnernnenneanns 128
IEFUCBOB—Mappingthe UCBccitiiniinennennennnns 128
IEFJFCBN—Mapping the JFCBcciiiinitininnnnnnennns 128
CVT—Mapping the CVT ittt ieieenneannn 129
Obtaining I/O Device Characteristicscvvuevnerennnnnnennns 129

XVi MVS/XA System—Data Administration

A

N

DEVTYPE Macro Specification i, 130

Device Characteristics Information 131
Return Codes from the DEVTYPEMacro 133
DEVTYPE—List Form iiiitiiuiiniinnenn. 136
DEVTYPE—Execute Form 0.0t iiiiteennnnennn. 136
Reading and Modifying a Job File Control Block 136
RDJFCB—Read a Job File Control Block 137
DEQ at Demount Facility for Tape Volumes 147
OPEN—Initialize Data Control Block for Processing the JFCB 148
High-Speed IBM 3480 Positioningcoiutiinnnrennnn. 149
Ensuring Data Security by Validating the Data Extent Block 151
DEBCHK—Macro Specificationc.iieviirneon.. 152
Purging and Restoring I/O Requestsccovuirerenenennnnn. 156
PURGE—Halt or Finish I/O-Request Processing 158
Modifyingthe IOB Chainc.0iiiiiiiiiiiinnneennn. 161
RESTORE—Reprocess I/ORequestscoviivennnenen... 161
Performing Track Calculations 000 iiuiennnennnnnn 162
TRKCALC—Standard Form c.iiiiinentnnan.. 162
TRKCALC—Execute Form 0iiiiiiiieannninnnnn. 165
TRKCALC—List Form0ttt 167
TRKCALC—DSECT Onlycouiuiiinriiitieeenennnnn. 167
Input Register Usage for Al Formsof MF 167
Output from TRKCALC i ittt iie e, 168
Return Codes from TRKCALCt tiitiinnnenn. 169
TRKCALC Macro Examplesc.uiiiueinnnneennnnennnns 169
Releasing Unused Space from a DASD DataSet 170
The PARTREL MAcrocciiuinuiniiiineneennennennn 170
PARTREL—Execute Formoiiiiion.. 171
PARTREL—List Formttt 172
PARTREL—DSECT Formiiuiiniiiiniiiiiiinennnnnn 173
Return Codes From PARTREL iionnn. 174
Allocatinga DASD Data Setc.ciiitiitiitinieennennennn. 174
REALLOC—Execute Formc.0.tiietiiniennnnnnnnn 176
REALLOC—LIist FOrmc0iitiitiittnitinennnnnnnns 179
REALLOC—DSECT Onlyc.iuiiii ittt 180
Return Codes from REALLOC 0 iittiiineennn. 181
Message Displays on the IBM 3480 Magnetic Tape Subsystem 184
MSGDISP—Displaying a Mount Messageccovv..... 184
MSGDISP—Displaying a Verify Message 187
MSGDISP—Displaying a Ready Messagecou.. 189
MSGDISP—Displaying a Demount Messagec.... 191
MSGDISP—Resetting the Message Display 194
MSGDISP—Providing the Full Range of Display Options 197
Return Codes from MSGDISP e .. 200
Chapter 7. Maintaining SYSI.IMAGELIBccititenennnns 203
UCS Imagesin SYSIIMAGELIB it 204
Adding a UCS Image to the Image Library 204
UCS Image Tables in SYSI.IMAGELIB 209
Examples of Adding to the UCSImage Table 216
FCB Images in SYSI.IMAGELIBci it iiuiiniennnnnnn. 217
Adding an FCB Image to the Image Library 219
Retrieving an FCB Image from SYSI.IMAGELIB 222

Chapter 8. JES2 Support for the IBM 1403, 3203 Model 5, and 3211 Printers 225

Contents XVil

UCS AIaS NaImes .. .ivviiit ittt it ttetette et enannnnnennees 225

The 3211 Indexing Feature i iininunennnnn. 226
IBM 3203 Model 5 Printeriuuiuientinnenneneennennannnn 226
Chapter 9. CATALOG, SCRATCH, and RENAME Dummy Modules 227
Chapter 10. Specifying Buffer Numbers for DASD DataSets 229
Performance Considerationsciuiitiiiniennennnann.. 229
Appendix A. CVAF VTOC AccessMacrosccceeeevveneenns eees 231
CVAFDIR MaCIO ... iititii ittt it ettt ettt et eeneennns 231
Overview of the CVAFDIRMacroovvuiiiuennnnnennn 231
2 11 U 231
ACCESS: Read or Write a DSCB or VIR(S), or Release Buffer Lists ... 232
DSN: Specify the Name of the DSCBc.vin... 233
BUFLIST: Specify One or More Buffer Lists 233
VERIFY: Verify that a DSCBis a Format-0DSCB 233
UCB | DEB: Specify the VTOC to Be Accessed 233
IOAREA: Keepor Freethe I/OWork Areacovvvuennn. 234
MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers 235
IXRCDS: Retain VIERS in Virtual Storage 236
BRANCH: Specify the Entry totheMacro 237
MF: Specify the Formof theMacroc.cviinn... 237
Return Codes from the CVAFDIRMacroccvvuuvnnnnnn 238
CVAFDSM MaACIO ...ttt ittt ettt ittt e tnneneananns 239
Overview of the CVAFDSM Macroc.oiiuinuennennnnnns 239
I 117 QN 239
ACCESS=MAPDATA: Request Information from the Index Space Maps 239
MAP: Identify the MaptoBe Accessedc..cc.... 240
EXTENTS: Identify Where Extents from the VPSM Are Returned 240
MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers 240
UCB | DEB: Specify the VTOCtoBe Accessed 241
COUNT: Obtain a Count of Unallocated DSCBsor VIRs 242
CTAREA: Supply a Field to Contain the Number of Format-0 DSCBs .. 242
IOAREA: Keepor Freethe /OWork Area 242
BRANCH: Specify the Entry totheMacro 243
MF: Specify the FormoftheMacroccciiiiuenn.. 243
Return Codes from the CVAFDSM Macrooocvnnn. 244
CVAFFILT MaCrO ...t ittt ittt etenaeneeaesnenneannaeannss 245
Overview of the CVAFFILTMacCroccvivieennneennneennnn 245
IS 11 S PP 245
Control Block Address Resolution: 245
ACCESS: Retrieve or Resume Retrieving a DSCB, or Release FLTAREA
and/or IOAREA i e et 246
UCB | DEB: Specify the VTOC to Be Accessed 247
BUFLIST: Specify aBufferListo, 247
FCL: Specify a Filter CriteriaListcciiieiennne... 247
FLTAREA: Keep or Free the Filter Save Area 247
IOAREA: Keep or Free the /O Work Area 248
BRANCH: Specify the Entrytothe Macro 248
MF: Specify the Formof theMacro, 249
Return Codes from the CVAFFILT macrocceeeueen.. 249
Examples of Partially Qualified Names for CVAFFILT 250
CVAFSEQMAacCIO ...ttt ittt ittt it eeneeneeaenaeanens 251

MVS/XA System—Data Administration

AN

S

‘/v

oo

Overview of the CVAFSEQMacrociiiiiinnnnn.
(074 117 G
ACCESS: Specify Relationship between Supplied and Returned DSN . ..
BUFLIST: Specify One or More Buffer Lists
DSN: Specify Access by DSN Order or by Physical-Sequential Order . ..
UCB | DEB: Specify the VTOC to Be Accessed
DSNONLY: Specify That Only the Data Set Name Be Read
ARG: Specify Where the Argument of the DSCB Is to Be Returned
IOAREA: Keepor Free the I/OWork Areacco....
IXRCDS: Retain VIERs in Virtual Storage
BRANCH: Specify the Entry tothe Macro e
MF: Specify the Formof the Macro
Return Codes from the CVAFSEQMacroc.co....
CVAFTSTMACIO ..ottt ittt e et e et ettt ei e
Overview of the CVAFTST Macro e e
B 1L -
UCB: Specify the VTOCtoBe Tested
Return Codes from the CVAFTST Macroccovvnn...

Appendix B. Examples of VTOC AccessMacroscoeveeeeecoceans
Example 1: Using the CVAFDIR Macro with an Indexed or Nonindexed
VO e e e e e e
Example 2: Using the CVAFDIR Macro with an Indexed VTOC
Example 3: Using the CVAFFILTMacrococviuennn...
Example 4: Using the CVAFSEQ Macro with an Indexed VTOC
Example 5: Using the CVAFSEQ Macro with a Nonindexed VTOC
Example 6: Using the CVAFTST and CVAFDSM Macros

Appendix C. VTOC Index Error Message and Associated Codes
Error Messageoutiiiimn ittt
Explanation e e et
System ACtiOnt e e e e
Programmer ReSPONSEvuitirineneneeneenennenennennns
Routing and Descriptor Codescoiiiiiiiinnnnnnnnn.
Codes Putinthe CVSTAT Field0t iiiunnennn.

Appendix D. Example of an OPEN Installation Exit Module

Appendix E. DFPISMF Servicesccceiieteeeencreecccenssanas
Introductionttt et e

Standard Linkage and Error Handling

Input Register Usage i ittt rininnnnnnnnn.

Output Register Usage iiiiiiiiiiiiinnennnn.
DFPISMF ServiCesuiiniueneennenneennenneenneenaennnns
DGTCDTO1 Decrement Use Countcciiteiuennuennnn.
DGTCDVO01 Data Set Name Syntax Verification
DGTCEPO1 Free Storage and Exit vue....
DGTCFMO1 Free MemMOIYciueununnneenernneenneenaennens
DGTCGMO1 Get Storagec..cieurinteneenaennneneaeenens.
DGTCLDO1 LoadaModuleo iiiienneann..
DGTCLGO1 Place Informationinthe ISPFLog
DGTCPRO1 Obtain Automatic Data Areac.ccvvuvennn.
DGTCVVO01 Volume Serial Number Syntax Verification
DGTCWOO1 Word Finder0iuititininiennnnnnennnns
DGTFARF1 Find an Entry in the Data Set List Array

Contents

Xix

DGTFARP1 Position Current Row Pointer at Topof List 322

DGTFARS1 Obtain Count of Data Sets 323 A0
DGTFARU1 Update Data Set List Array 324 N
DGTFCTCK Verify Commandsouitiitenennenneenn.. 325
DGTFCTPR Processcommandsc.couiviienunneennenn.. 326
DGTFCTSE Enable Valid Commands, 327
DGTFFOE1 Obtain Input Information From the Screen Area Image 328
DGTFFOL1 Refresh the Screen Image Area From the Data Set List Array . 329
DFP Common ServiCesoeuteeeenneenneeeneenaneennnnn 330
IGBDIS00 Call Device Information Services for UCB Address 330
DFP ISMF Messages Available to External Applications 331
DFP ISMF Control Blocks Available to External Applications 335
ARV T e e e e 335
@ 500 P 335
CONH .. e e e e e 336
CONH ...t it ittt e e e e e 336
PP .. e et e 337
G AP . e e e 338
CTFU i it e e e et e e e 338
4 1 - U 339
O A AP 340
DAB . e e e e 341
DABL .. e e e 342
BRI .. i e e e 343
BRNT . i e e e e 343
BT o e e e e 344
FOVT i i et e e e e 344
GDRB ... e e 345
1.7 1 ¢ A 345 :
IMIN T . e e e 346
LOGB .o e e e e 346
L P A e e e 347
L P OB .. e e e e 347
PP .. e e 348
PCCB ..t e e e e 349
PV T e e e e e e 349
PV TV e e e 350
SEL B .. e et e 351
SRV T L e e e 352
IndexXviiiiiiinninneeeononooasssesseseenssosssnanssssssons 353

XX MVS/XA System—Data Administration

Figures

e i A ol e

35.

36.
37.
38.
39.
40.
41.

Locating the Volume Table of Contents (VIOC) 2
Contents of VTOC—DSCBs Describing Data Sets 7
Relationship of a VTOC to ItsIndexcccuiuo.... 9
Format of the VTOC Index Entry Record (VIER) 10
Structure of Linked VIERso 13
AnIndexMapttt i e e 14
Formatof aVTOC Mapciiiiiiiiiiii i, 15
Format of the LSPACE Parameter List MF=D) 24
LSPACE Status Information Relationships 26
DADSM LSPACE Free Space Information Format, MF=(D,MSG) ... 27
DADSM LSPACE Message AreaContentscc0.... 27
Format of the LSPACE DataReturn Area 28
Format of the CVAF Parameter List (CVPL) 44
CVFCTN Field of CVPL—Contents and Definitions 45
Format of a Buffer List Header 46
Formatof aBuffer List Entry 47
Control Blocks Required for CVAF Filter Services 53
Format of a Filter Criteria List (FCL)Header 54
Format of a Filter Criteria List (FCL)Entry 56
Data Control Block (DCB) Format for EXCP (After OPEN) 75
Input/Output Block (IOB) Formatc.couuiuinennenn.. 90

Event Control Block (ECB) after Posting of Completion Code (EXCP) 93
Event Control Block (ECB) after Posting of Completion Code

10,00 7. N) T 105
The XDAP Channel Programscoitiiieennnenn.. 106
Parameter List for ADD Function 118
Parameter List for REPLACE Function 120
Parameter List for DELETE Function 122
Parameter List for LIST Function 123
Output from DEVIYPEMacroccctiieiieeennnn. 134
Sample Code Using RDJFCBMacrocoiiuiinnen.. 138
Format of the Allocation Retrieval List 144
Format of the Allocation Retrieval Area 145
Sample Code Retrieving Allocation Information 146
Macro Definition, JCL, and Utility Statements for Adding PURGE

Macro to the System Macro Library 157
Macro Definition, JCL, and Utility Statements for Adding RESTORE

Macro to the System MacroLibrary 158
The PIRLandIOB Chainc..uiiiinreennnneennnns 161
Sample Code to Add a 1403 UCS Image to SYSI.IMAGELIB 206
Sample Code to Add a 3203 UCS Image to SYS1.IMAGELIB 207
Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB 208
UCS Image Table Entry Formato oo, 210
UCS5 Image Table Contentsccceiieerennnenennn 211

42.
43.
44.
45.

46.
47.

UCS6 Image Table Contentscviuiniennennnnn. 212

Sample of the Standard FCB Image STD1 218
Sample of the Standard FCB Image STD2 219
Sample Code to Assemble and Add an FCB Load Module to

SYSIIMAGELIBttt iitainannannans 221
DFP ISMF Messages Available to External Applications 331
DFP ISMF Problem Determination Messages 334

XXii MVS/XA System—Data Administration

AN

Chapter 1. Managing the Volume Table of Contents (VTOC)

The VTOC

The direct access device storage management (DADSM) routines control allocation
of space on direct access volumes through the volume table of contents (VTOC) of
that volume, and through the VTOC index if one exists. This chapter gives an
overview of the VTOC and the VTOC index and discusses how to use system
macros to access the VITOC and VTOC index.

The VTOC is a data set on a direct access volume that describes the contents of
that volume. It resides in a single extent (that is, it is a continuous data set)
anywhere on the volume after cylinder 0, track 0. Its address is located in the
VOLVTOC field of the standard volume label (see Figure 1 on page 2).

Chapter 1. Managing the Volume Table of Contents (VTOC) 1

Standard Volume Label N Ki/

(4

11(B)

VOLVTOC (10 bytes)

CCHHR of first

record in VTOC "

N U %
N /
N /
/
/
| /
| /
/
Cylinder 0 \ /
Track 0
Record
3
VTOC Data Set SN
(Can be located anywhere ! J
Record on the volume after :
y |Record| Record cylinder 0, track 0.)
3

Figure 1. Locating the Volume Table of Contents (VTOC)

The VTOC is composed of 140-byte! data set control blocks (DSCBs) that
correspond either to a data set or VSAM data space currently residing on the
volume, or to contiguous, unassigned tracks on the volume. DSCBs for data sets or
data spaces describe their characteristics. DSCBs for contiguous, unassigned tracks
indicate their location.

1 The 140 bytes are defined as a 44-byte key portion followed by a 96-byte data 4 k
portion. You may make references to the logical 140-byte DSCB or to either of its A W
parts.

2 MVS/XA System—Data Administration

Data Set Control Block (DSCB) Format Types

Format-0 DSCB

The VTOC has seven different kinds of DSCBs. This section lists the different
kinds of DSCBs, what they are used for, how many exist on a volume, and how
they are found.

The first record in every VTOC is the VTOC (format-4) DSCB that describes (1)
the device that the volume resides on, (2) the attributes of the volume itself, and
(3) the size and contents of the VTOC data set itself.

The format-4 DSCB is followed by a free-space (format-5) DSCB that, for a
nonindexed VTOC, lists the extents on the volume that have not been allocated to
a data set or VSAM data space. Each format-5 DSCB contains 26 extents. If
there are more than 26 available extents on the volume, another format-5 DSCB
will be built for every 26 extents. The format-5 DSCBs are chained, using the last
field of each format-5 DSCB. An indexed VTOC does not use format-5 DSCBs
for describing free space; however, one empty format-5 DSCB is provided to allow
a basis for converting back to a nonindexed VTOC.

The third and subsequent DSCBs in the VTOC have no prescribed sequence.

A data set or VSAM data space is defined by one or more DSCBs in the VTOC of
each volume on which it resides. The number of DSCBs needed to define a data
set or VSAM data space is determined by (1) the organization of the data set
(ISAM data sets need a format-2 DSCB to describe the index) and (2) the number
of extents the data set or VSAM data space occupies (a format-3 DSCB is needed
to describe the 4th through the 16th extents; additional format-3 DSCBs may be
required to describe the extents for a VSAM data set cataloged in an Integrated
Catalog Facility catalog). Figure 2 on page 7 shows the general makeup of a
VTOC and the DSCBs needed to define two types of data sets (ISAM and
non-ISAM).

Data set A (in Figure 2 on page 7) is an ISAM data set; three DSCBs, a format-1,
format-2, and format-3, are identified. Data sets B, C, and D could be sequential,
partitioned, or direct data sets or they could be VSAM data spaces. Data set B has
more than three extents and therefore requires both a format-1 and a format-3
DSCB.

Data sets C and D have three or fewer extents and need only a format-1 DSCB.
The format-6 DSCB, pointed to by the format-4 DSCB, is used to keep track of
the extents allocated in order to be shared by two or more data sets (split-cylinder
data sets). For example, if data sets C and D share an extent made up of one or
more cylinders, this extent would be described in the format-6 DSCB. Note that
split-cylinder data sets cannot be allocated, but existing split-cylinder data sets can
still be processed.

Name: Free VTOC Record

Function: Describes an unused record in the VTOC (contains 140 bytes of binary
zeros). To delete a DSCB from the VTOC, a format-0 DSCB is written over it.

Chapter 1. Managing the Volume Table of Contents (VIOC) 3

Format-1 DSCB

Format-2 DSCB

Format-3 DSCB

How Many: One for every unused 140-byte record on the VTOC. The
DS4DSREC field of the format-4 DSCB is a count of the number of format-0
DSCBs on the VTOC. This field is not maintained for an indexed VTOC.

How Found: Search on key equal to X'00' (sometimes X'00000000') for a
nonindexed VTOC; for an indexed VTOC, the VTOC map of DSCBs is used to
find a format-0 DSCB.

Name: Identifier
Function: Describes the first three extents of a data set or VSAM data space.

How Many: One for every data set or data space on the volume, except the
VTOC.

How Found: Search on key equal to the data set name. For an indexed VTOC, a
CCHHR pointer for each data set name is in the VTOC index.

Name: Index
Function: Describes the indexes of an ISAM data set.

How Many: One for every ISAM data set (for a multivolume ISAM data set, a
format-2 DSCB exists only on the first volume).

How Found: Chained from a format-1 DSCB that represents the data set.

Name: Extension

Function: Describes the 4th through 16th extents of a data set or VSAM data
space. Data sets and VSAM data spaces are restricted to 16 extents per volume.
VSAM data sets cataloged in an Integrated Catalog Facility catalog may be
extended to a maximum of 123 extents, in which case there may be as many as ten
format-3 DSCBs.

How Many: One for each data set or VSAM data space on the volume that has
more than three extents. There may be as many as ten for a VSAM data set
cataloged in an Integrated Catalog Facility catalog.

How Found: Chained from a format-2 or a format-1 DSCB that represents the
data set or VSAM data space. In the case of a VSAM data set cataloged in an
Integrated Catalog Facility catalog, the chain may be from a preceding format-3
DSCB.

4 MVS/XA System—Data Administration

Y

J

Format-4 DSCB

Format-5 DSCB

Format-6 DSCB

Name: VTOC

Function: Describes the extent and contents of the VTOC and provides volume
and device characteristics. If the VTOC is indexed, certain fields of this DSCB are
not maintained by DADSM. See “Structure of an Indexed VTOC.”

How Many: One on each volume.

How Found: VOLVTOC field of the standard volume label contains its address. It
is always the first record in the VTOC.

Name: Free Space

Function: On a nonindexed VTOC, describes the space on a volume that has not
been allocated to a data set or to a VSAM data space (available space). For an
indexed VTOC, format-5 is zero, and the volume pack space map describes the
available space.

How Many: One for every 26 noncontiguous extents of available space on the
volume for a nonindexed VTOC; for an indexed VTOC, there is only one.

How Found: The first format-5 DSCB on the volume is always the second DSCB
of the VTOC. If there is more than one format-5 DSCB, it will be chained from
the previous format-5 DSCB via the DSSPTRDS field of each format-5 DSCB.

Name: Shared Extent

Function: Describes the extents shared by two or more data sets (split-cylinder
extents).

How Many: One for every 26 split-cylinder extents on the VTOC.

How Found: The address of the first format-6 DSCB is contained in the
DS4F6PTR field of the format-4 DSCB. If there is more than one format-6 DSCB
on the volume, it will be chained from the previous format-6 DSCB via the
DS6PTRDS field of the format-6 DSCB.

Allocating and Releasing DASD Space

The DADSM allocate and extend routines assign tracks and cylinders on direct
access volumes for new data sets and VSAM data spaces. The DADSM extend
routine obtains additional space for a data set or VSAM data space that has already
exceeded its original, primary allocation. The DADSM scratch and partial release
routines are used to release space that is no longer needed on a direct access
volume.

The DADSM routines allocate and release space by adding, deleting, and
modifying the DSCBs. When space is needed on a volume, the allocate routines

Chapter 1. Managing the Volume Table of Contents (VTOC) S

search the appropriate DSCBs for enough contiguous, available tracks to satisfy the
request. If there are not enough contiguous tracks, the request is filled, using as
many as five noncontiguous groups of free tracks. The appropriate DSCBs are
modified to reflect the assignment of the tracks.

When space is released, the scratch routines free the DSCBs of the deleted data set
or data space. For a nonindexed VTOC, to indicate that the tracks containing the
affected data set or data space can be reallocated, a free space (format-5) DSCB is
built (or modified if existent). For an indexed VTOC, the index is updated.

6 MVS/XA System—Data Administration

Standard Volume Label
{ (

11(B)
VOLVTOC
field

N
-

VTOC Data Set

Data Set B

Format-4 DSCB

Description of
device, volume,
and the VTOC

extent I—-

First F5 DSCB

Description of
26 available
extents

Format-1 DSCB _%
Description of
the data set and

its first 3 extent/ilﬁ

J

\ {

Data Set C

Description of Description of
as many as 26 as many as 26
shared-cylinder available exents
extents

Format-3 DSCB

Description of
the 4th - 16th
extents of

Description of
data set C and
its first 3 extents

data set B

Data Set D

Format-1 DSCB
Description of

the data set and
its first 3 extents/

~~
~

~N-
\T-.

DSCB for an ISAM
data set (Data Set A)

DSCB for a non-ISAM
data set (Data Sets B, C, D)
or a VSAM data space

Note: Empty boxes in the VTOC data set represent free VTOC Records (Format-0 DSCBs)

Figure 2. Contents of VTOC—DSCBs Describing Data Sets

Chapter 1. Managing the Volume Table of Contents (VTOC)

7

The VTOC Index

The VTOC index is a physical-sequential data set, residing on the same volume as s
the VTOC. It contains an index of data set names of format-1 DSCBs in the

VTOC and free space information. The index is searched instead of the hardware
keys.

The VTOC index is optional. You may build it when you initialize the volume, or
for an existing VTOC (with the volume online or offline). You may subsequently

inactivate it (online or offline) so that the VTOC is processed without using the
index.

Each VTOC index is formatted by Device Support Facilities with physical blocks
20438 bytes in length. These physical blocks are the VTOC index records (VIRSs),
the basic structural units of the index. The kind of information they contain
depends on the part of the index they belong to.

Several different kinds of records, each built from one or more VIRs, are in a
VTOC index:

¢ The VTOC index entry record (VIER) that is used to access format-1 DSCBs
and the format-4 DSCB

o The VTOC pack space map (VPSM) that shows what space has been allocated
on a disk pack

e The VTOC index map (VIXM) that shows which VIRs have been allocated in
the VTOC index

e The VTOC map of DSCBs (VMDS) that shows which DSCBs have been
allocated in the VTOC

An Example of a VTOC and Its Index

A format-1 DSCB in the VTOC contains the name and extent information of the
VTOC index. The name of the index must be 'SYS1.VTOCIX xxxxxxxx', where
'xxxxxxxx' can be anything valid in a data set name and is generally the serial
number of the volume containing the VTOC and its index. The name must be
unique within the system to avoid ENQ contention. The relationship of a VTOC
to its index is shown in Figure 3 on page 9. Each of the components of the index
is discussed separately in the following sections.

8 MVS/XA System—Data Administration

(vTOC

VTOC Index
—
Format-4 DSCB VIXM
Format=5 DSCB VPSM
VMDS
Other DSCBs
’ VIER
VIER
Format—1 DSCB for the VTOC
Index: SYS1.VTOCIX.nnn VIER
Other DSCBs

Figure 3. Relationship of a VTOC to Its Index

The VTOC Index Entry Record (VIER)

VIERs have these characteristics:

Contents of VIER Fields

A VIER uses one VIR and contains variable-length index entries. The number
of VIERSs in an index varies depending upon the number of data sets on the
volume.

VIERSs in a VTOC index may be on one or many levels. All index entries in a
VIER are at the same index level. VIERSs have a hierarchic relationship. Index
entries in higher-level VIERs point to lower-level VIERs. Index entries in
level-one VIERs (those at the lowest level) point to format-1 DSCBs for data
sets on the volume.

A higher-level VIER is created when the fourth lower-level VIER is created.
When that new higher-level VIER is filled with pointers to lower-level VIERs,
a new VIER at the same level is created. Again, when the fourth VIER at the
same level is created, a VIER at a still higher level is created, adding another
level to the index.

Each VIER contains a header and sections (see Figure 4 on page 10). The VIER
header contains:

A field identifying the VTOC index record as a VIER.
The relative byte address (RBA) of the VIER.
A pointer to a VIER at the same level (hence, a “horizontal” pointer). The

VIER pointed to contains index entries whose keys are greater than any key in
the pointing VIER.

Chapter 1. Managing the Volume Table of Contents (VTOC) 9

+ The level number (LVL) of this VIER.

« The number (SECNO) of sections (a VIER contains eight sections).

« The length (SECL) of the sections (each section is 246 bytes in length).

o The offsets to the first-used and the last-used sections.

o The 44-byte high key of the VIER.

Each section contains:

« An offset to the last entry in the section (or zero if the section is empty)

¢ Index entries

o(o00) EBCDIC Characters 'VIER'
k(o) RBA of This VIER
8(08) Horizontal Pointer
12(ocC) 01d Horizontal Pointer
16(10) LVL FLG1 Reserved
20(14) PTRL SECNO SECL
24(18) Offset to First—Used Section
28(1cC) Offset to Last-Used Section
32(20) Highest Key in This VIER
76(4C) Section 1

Section 8

Figure 4. Format of the VTOC Index Entry Record (VIER)

Index
Header

8 Sections
Containing
Index Entries

10 MVS/XA System—Data Administration

Format of a VTOC Index Entry

The format of an index entry is:

FLG KEYL Unused Record Pointer Key
NAME OFFSET BYTES DESCRIPTION
VXEFLG 00(00) 1 Flag byte
VXEKEYL 01(01) 1 Length of the VXEKEY field
VXEFC 02(02) 1 Unused
VXERPTR 03(03) 4 or 5 Record pointer
VXEKEY 07(07) 1 to 44 Name of a data set, if a

or level—one VIER; if not, the
08(08) high key in the header of a
lower—level VIER
Each index entry contains:

« A flag byte.

« A keylength field (containing a value of 1 to 44, depending on the length of the
data set name).

« A record pointer (VXERPTR) that is one of the following:

— Inlevel-one VIERSs, the 5-byte CCHHR of the format-1 or format-4
DSCB that represents the data set whose name is the key in the entry

— In other VIERSs, the 4-byte RBA of the lower-level VIER whose high key
is the key in the entry

e A key that, for level 1 VIERS, is the data set name, and for level 2 or higher
VIERs is the high key of a lower-level VIER. Trailing blanks are suppressed in
the VTOC index entry.

When a VIER Is Created

The first level-one VIER is created when the VTOC index is created. Subsequent

VIERs are created when a data set name is to be added to the VTOC index but the

VIER where it should be added is full. A new VIER is created in the following

manner:

« A new VIER is allocated.

« Half of the sections from a full VIER (those containing the highest keys) are
moved into the new VIER, leaving each VIER half empty.

e The new index entry is added to one of the two VIERs, depending on its key.

Chapter 1. Managing the Volume Table of Contents (VTOC) 11

A Tree of Linked VIERs

Figure 5 on page 13 shows how VIERS are related to each other. Note that the
VIERSs (which are simplified here—only the high key is shown in the header) form
a type of “tree structure.”

How to Find a Format-1 DSCB

In the search for the format-1 DSCB for a particular data set, one path along the
tree structure is followed.

As seen in Figure 4 on page 10, a field in the header of a VIER contains the
highest key of any index entry in that VIER. Beginning with this field in the first
high-level VIER, the following search logic is used: Is the key of the data set (the
data set name) lower than or equal to the VIER’s high key? If neither, the test is
again applied with the VIER having a greater high key pointed to by the horizontal
pointer. This procedure continues until a VIER is found having a high key that is
greater than or equal to the key of the data set. Comparisons are then made with
the entries in the VIER’s sections. Eventually, an entry is found with a key greater
than or equal to the data set key. This entry points to a VIER at the next-lower
level.

The search proceeds to successively lower levels until an entry in a level-two VIER
is found whose key is greater than or equal to the key of the data set. This entry
points to a level-one VIER that, in turn, contains an entry with a key that is equal
to the data set key and that points to the format-1 DSCB for the desired data set.

Special Cases in a DSCB Search

If there is only one level in the VTOC index, the entries in the VIERs all point to
format-1 DSCBs, so that only one level need be searched.

If an update to the VTOC index requires a new VIER and the update is interrupted
(for example, because of an I/0 error or a system failure), the entry in the level-n
VIER may contain a key that is greater than the high key in the lowerslevel VIER
pointed to by that entry. In this case, two VIERs at level n-1 may have to be
searched. This situation is corrected when DADSM next processes the volume.

The VTOC Pack Space Map (VPSM)

The VPSM accounts for space on a disk pack. It shows what space on the volume
has been allocated and what space remains free.

The map contains bit maps of the cylinders and tracks on the volume. A value of
one indicates that the cylinder or track has been allocated; a value of zero, that it
has not been allocated. The bit representing a cylinder is set to zero if no tracks on
the cylinder have been allocated,; it is set to one if any track has been allocated.
Tracks assigned as alternate tracks are marked as allocated.

The VPSM replaces the chain of format-5 DSCBs, but one empty format-5 DSCB

is left in the VTOC to allow for conversion back to a nonindexed VTOC, a process
that requires reconstruction of a format-5 DSCB chain.

12 MVS/XA System—Data Administration

"

W

VIER VIER
High Key =————— M32107.LIB 44X'FF’ Level-2
VIERs
Entries — B41103.TEST r— SYS1.MACLIB
M32107.LI8B 44X'FF’
Y Y \
VIER VIER VIER VIER
B41103.TEST M32107.LIB SYS1.MACLIB 44X'FF’ Level-1
¢ VIERs
44X'04° SYS1.VTOCIX.A
)
A11307.CLIST &%12(:‘0??7‘8 X.Y.2. Dummy Last
BO102.DATA : 44X'FF’ ltt— Entry in
VTOC Index

Format-1 DSCBs
in the VTOC

<
-

- Format-4 OCSCB in the VTCC

Figure 5. Structure of Linked VIERs

The format of an index map (including the VPSM) is shown in Figure 6 on
page 14.

Chapter 1. Managing the Volume Table of Contents (VTOC) 13

00(00) ID of This Map
ok4(okL) RBA of This Map
08(08) Horizontal Pointer to Next VIR
12(oc) Sequence Number of First Entry
16(10) VRFDA VRFO
20(14) FLG1 LUF1 LUOF
24(18) Size of Large Unit Map
28(1c) SUF1 | SuBIT SUOF
32(20) | Size of Small Unit Map
36(24) Reserved VIR
4o(28) RBA of First High-Level VIER

Large Unit Map

(VTOC Pack Space Map Only)
Small Unit Map
VTOC Recording Facility Data
(VTOC Index Map Only)

Figure 6. An Index Map

The VTOC Index Map (VIXM)

The VIXM contains a bit map in which each bit represents one VTOC index record
(VIR). The status of the bit indicates whether the VIR is allocated (1) or
unallocated (0).

An area of the VIXM is reserved for VTOC recording facility (VRF) data. (This is
the facility that allows detection of and recovery from certain errors in an indexed
VTOC.)

A field in the first VIXM record points to the first high-level VIER. Another field

in the first VIXM record (VIR in Figure 7 on page 15) contains the number of
VTOC index records that contain all the space maps.

14 MVS/XA System—Data Administration

o

The VTOC Map of DSCBs (VMDS)

The VMDS contains a bit map where each bit represents one DSCB in the VTOC.
The status of the bit indicates whether the DSCB is allocated (1) or unallocated

(0).

Name Offset Bytes Description

VIMAP 00(X'00') 2048 VTOC map

VIMH 00(X'00') 44 VTOC map header

VIMID 00(X'00') 4 Map ID in EBCDIC ('VPSM',
'VIXM!, or 'VMDS')

VIMRBA 04(X'04') 4 RBA of this map

VIMHZPTR 08(X'08') 4 Horizontal RBA pointer to next VIR
of this map

VIMORG 12(X'0C') 4 Sequence number of the first entry in
the map

VIMVRFDA 16(X'10') 2 Offset to current VRF data (if
VIMVRFSW=1) or offset where VRF
data may be written (if
VIMVRFSW=0), (first VIXM only)

VIMVRFO 18(X'12') 2 Offset to VRF area (first VIXM VIR
only)

VIMFLG1 20(X'14") 1 Flag byte

VIMVRFSW X'80' VREF data exists if 1

XXX XXXX Reserved

VIMLUF1 21(X'15') 1 Large unit flag byte

VIMLUOF 22(X'16') 2 Offset into VIR of large unit map
(zero if none)

VIMLUSZ 24(X'18') 4 Size in bits of large unit map

Figure 7 (Part 1 of 2). Format of a VTOC Map

Chapter 1. Managing the Volume Table of Contents (VTOC) 15

Name Offset Bytes Description £

kW
VIMSUF1 28(X'1C") 1 Small unit flag byte
VIMSUBIT 29(X'1D') 1 Number of small unit bits per large
unit (zero if none)
VIMSUOF 30(X'1E') 2 Offset into VIR of small unit map
VIMSUSZ 32(X'20') 4 Size in bits of small unit map
36(X'24') 3 Reserved
VIMVIR 39(X'27') 1 Number of map records (VIXM only)
VIMFHLV 40(X'28') 4 RBA of first high-level VIER (VIXM
only)
VIMLUMAP 44(X'2C') kk Large unit map (kk is VIMLUSZ/8,
rounded up)
VIMSUMAP mm nn Small unit map (mm is VIMSUOF, nn
is VIMSUSZ/8, rounded up)
VIMVRF PP qq VREF area (pp is VIMVRFO, qq is 7
remainder of first VIXM) h

Figure 7 (Part 2 of 2). Format of a VTOC Map

Structure of an Indexed VTOC

An indexed VTOC is identical to a nonindexed VTOC, except that, for an indexed
VTOC, only a single format-5 DSCB exists and is empty, and certain format-4
DSCB data (the number of format-0 DSCBs and the CCHHR of the highest
format-1 DSCB) is not maintained by DADSM. The DOS bit (bit O in field
DS4VTOCI), set to one in the format-4 DSCB, indicates that these fields (and the
format-5 DSCB) cannot be relied on. The index bit (bit 7 in field DS4VTOCI) is
set in the format-4 DSCB,; it indicates that a VTOC index exists.

Scratch/Rename/ Allocate Restrictions

A VTOC index data set may not be scratched if the VTOC index is active. Neither
may a VTOC index data set be renamed if the VTOC index is active, unless it is
being renamed to another name beginning with 'SYS1.VTOCIX.'. A data set may
not be renamed to a name beginning with 'SYS1.VTOCIX.! if there is already such
a data set on the volume. Only one data set whose name begins with
'SYS1.VTOCIX.' may be allocated on a volume.

e

16 MVS/XA System—Data Administration

Initializing and Maintaining the VTOC

Creating the VTOC and VTOC Index

To prepare a volume for use (to initialize it), the Device Support Facilities utility is
used. One of the things this utility does is to build the VTOC. After initialization,
this VTOC will contain a format-4 DSCB and a format-5 DSCB. For a
nonindexed VTOC, the format-5 DSCB contains an extent entry for all the free
space on the volume; the initial number of extents in the format-5 DSCB is one or
two, depending on where the VTOC is located on the volume. If the VTOC is
located somewhere other than at the beginning or end of the volume, two extent
entries are needed to describe the free space that precedes and follows it. For an
indexed VTOC, the format-5 DSCB contains a zero.

A VTOC index can be created when a volume is initialized by using the Device
Support Facilities command INIT and specifying the INDEX key word.

A nonindexed VTOC can be converted to an indexed VTOC by using the
command BUILDIX and specifying the IXVTOC keyword. The reverse is also
possible by using the BUILDIX command and specifying the OSVTOC keyword.

For more detailed information, see Device Support Facilities User’s Guide and
Reference.

Protecting the VTOC and VTOC Index

Resource Access Control Facility (RACF)
You can protect the VTOC and VTOC index by using the Resource Access
Control Facility (RACF). This is done by defining the volume serial entity under
the RACF class DASDVOL. A user must be authorized to the
DASDVOL/volume serial entity at the following levels:
« At the UPDATE level, to open the VTOC for output processing.

« At the UPDATE level, to open for output processing any data set whose name
begins with 'SYS1.VTOCIX.'.

« At the ALTER level, to allocate, rename, or scratch any data set whose name
begins with 'SYS1.VTOCIX.'.

e At the ALTER level, to rename a data set to any name that begins with
'SYS1.VTOCIX.'.

Neither the VTOC nor the VTOC index is protected from being opened for input
processing by the DASDVOL/volume serial entity.

Note that neither the VTOC nor the VTOC index can be protected through the
RACEF class DATASET.

Chapter 1. Managing the Volume Table of Contents (VTOC) 17

Authorized Program Facility (APF) Requirements

P

A program must be authorized by the authorized program facility (APF) to N
perform any of the following functions:

Password Protection

Opening a VTOC for output processing

Opening for output processing a data set whose name begins with
'SYS1.VTOCIX.'

Allocating, renaming, or scratching any data set whose name begins.with
'SYS1.VTOCIX.'

Renaming a data set to any name that begins with 'SYS1.VTOCIX.'

The VTOC index data set may be password protected. The protection is the same
as for any password-protected data set. Password checking is bypassed if the
volume in which the VTOC index resides is protected by RACF through the
DASDVOL class.

Copying/Restoring/Initializing the VTOC

Operations on Volumes Containing a Nonindexed VTOC

Restoring a Volume from a Dump Tape. There are no operational requirements
if you change the volume serial number or do a partial restore that does not
modify the VTOC. If you do a restore and change the VTOC size without
changing the volume serial number, the volume must be varied offline after it is
restored. You should not do a restore on a volume with an indexed VTOC.

Copying a Volume. There are no operational requirements if you change the
volume serial number or do not modify the VTOC of the receiving volume. If
you do a copy and change the VTOC size without changing the volume serial
number, the volume must be varied offline after it is copied. You should not
do a copy from a volume with an indexed VTOC.

Operations on Volumes Containing an Indexed VTOC

You should use Device Support Facilities to convert a VTOC to a nonindexed
format to update the volume. If you do not, take note of the following
information:

Initializing a Volume. If you do not change the volume serial number, the
volume should be varied offline before starting the job.

Restoring a Volume from a Dump Tape. There are no operational requirements

if you change the volume serial number or do a partial restore that does not

modify the VTOC or VTOC index. If you do a restore and modify the VTOC I
or VTOC index without changing the volume serial number, the volume should w«
be varied offline after it is restored.

18 MVS/XA System—Data Administration

o Copying a Volume. There are no operational requirements if you change the
volume serial number of the receiving volume or do a partial dump without
modifying the VTOC or VTOC index. If you modify the VTOC or VTOC
index without changing the volume serial number, the receiving volume should
be varied offline after it is copied.

o Shared DASD Considerations. In shared DASD environments, whenever the
VTOC index is modified or relocated or whenever the volume is changed from
indexed VTOC to OS VTOC or from OS VTOC to indexed VTOC, the device
should be varied offline to the sharing system or systems.

Accessing the YTOC with DADSM Macros

You may use DADSM or CVAF to access the VTOC and its index. (CVAF access
is described in ““Accessing the VTOC and its Index with CVAF Macros” on
page 42.) DADSM macros and associated tasks include:

| LSPACE - Obtain free space, volume fragmentation, and VTOC
[status information for a DASD volume.
OBTAIN - Read a DSCB from a VTOC.
PARTREL - Release unused space from a SAM or PAM data set.
REALLOC - DASD space allocation.
RENAME - Rename a non-VSAM data set.
SCRATCH - Release all space and DSCBs for a non-VSAM data set.

The PARTREL macro is described in ‘“‘Releasing Unused Space from a DASD
Data Set” on page 169. The REALLOC macro is described in *‘Allocating a
DASD Data Set” on page 174.

| This section tells how to use the LSPACE, OBTAIN, SCRATCH, and RENAME
macro instructions. These macros are most commonly used by the operating
system and the data set utility programs (IEHMOVE, IEBCOPY, and
IEHPROGM), but you may use them in your own routines. The functions you can
perform with these macros are:

| LSPACE Obtaining free space, volume fragmentation, and VTOC status
| information for a DASD volume

OBTAIN Reading a data set control block from the VTOC
RENAME Changing the name of a data set
SCRATCH Deleting a data set

You can obtain free space, volume fragmentation, and VTOC status information
for a DASD volume by using the LSPACE macro instruction. LSPACE returns
information to any of three user-specified areas.

You can read a data set control block (DSCB) into virtual storage by using the
OBTAIN and CAMLST macro instructions. There are two ways to specify the
DSCB that you want to read: by using the name of the data set associated with the
DSCB, or by using the absolute track address of the DSCB. You must provide a
140-byte data area in virtual storage, into which the DSCB is to be read. When
you specify the name of the data set, an identifier (format-1 or format-4) DSCB is

Chapter 1. Managing the Volume Table of Contents (VTOC) 19

read into virtual storage. To read a DSCB other than a format-1 or a format-4
DSCB, you must specify an absolute track address (see “Example” on page 32).

You can change a data set name by using the RENAME and CAMLST macro
instructions. This causes replacement of the data set name in the data set’s
format-1 DSCB with the new name.

You can delete a non-VSAM data set by using the SCRATCH and CAMLST
macro instructions. This causes deletion of the data set’s DSCBs.

Coding examples, programming notes, and exception return code descriptions
accompany the following macro instruction descriptions.

Note: You cannot use LSPACE, OBTAIN, SCRATCH, or RENAME macro
instructions with either a SYSIN or SYSOUT data set.

Obtaining DASD Volume Information (LSPACE)

You can use the LSPACE macro to obtain free space, volume fragmentation, and
VTOC status information for a DASD volume. LSPACE normally returns status
information (such as LSPACE subfunction, return code, and reason code) to the
parameter list. The format of the LSPACE parameter list is shown in Figure 8 on
page 24. You may request that LSPACE return additional information such as the
total number of free extents on the volume, or the fragmentation index. This
additional information can be returned in either:

o A message return area: ‘“Message Return Area’” on page 27 describes the \
format and content of the message return area. R

e A data return area: “Data Return Area” on page 27 describes the format and
content of the data return area.

e A Format-4 DSCB return area: ‘‘Format 4 DSCB Return Area” on page 28
describes the format and content of the Format-4 DSCB return area.

The format of the LSPACE macro is:

[symbol] | LSPACE [UCB={addr | (reg)}]

[,lMSG=1{addr | (reg) | 0}

| DATA={addr | (reg) | 0}]
[,SMF={TEST | YES | NONE}]
[,FADSCB={addr | (reg) | 0}]
[,LMF={I| D | (D,MSG) | (D,DATA)
| L] (L,MSG) | (L,DATA)

| (E,addr) | (E,(reg))}]

UCB={addr | (reg)} ,
specifies the address of the UCB for the volume whose free space
information you are requesting.

addr—RX-type address £
specifies the address of a fullword that contains the address of the \Q\ ¥
UCB.

20 MVS/XA System—Data Administration

— — — —

(reg)—(2-12)

specifies a register containing the UCB address for the device.

When using the standard (MF=I) form of the macro, you must provide a
UCB address.

MSG=1{addr| (reg) | 0% | DATA={addr | (reg) | 0}
specifies the way LSPACE is to return free space information.

Note: The MSG and DATA parameters are mutually exclusive.

MSG={addr | (reg) | 0}
specifies the address of a caller-provided 30-byte message return area
into which LSPACE returns either a free space message or, for
unsuccessful requests, status information. For a description of this
area, see ‘‘Message Return Area” on page 27.

addr—RX-type address
specifies the address of the message return area.

(reg)—(2-12)
specifies a register containing the address of the message return
area.

0

specifies that you do not want the free space message. This is
the default for all forms of the macro except execute.

DATA={addr| (reg) | 0}
specifies the address of a caller-provided 36-byte data return area into
which LSPACE returns free space and volume information. For a
description of this area, see ‘“‘Data Return Area” on page 27.

addr—RX-type address
specifies the address of the data return area.

(reg)—(2-12)
specifies a register containing the address of the data return
area.

0

specifies that you do not want the free space and volume
information.

SMF={TEST | YES | NONE}
specifies the type of SMF processing desired.

TEST
specifies that LSPACE is to test for an SMF system and whether SMF
volume information is desired. Only programs executing in supervisor
state, protect key 0-7, or APF-authorized may specify this operand.

Chapter 1. Managing the Volume Table of Contents (VITOC) 21

22

YES
specifies that you want LSPACE to provide SMF volume information.
Only programs executing in supervisor state, protect key 0-7, or
APF-authorized may specify this operand.

-

NONE
specifies that you do not want LSPACE to provide SMF volume
information. This is the default for all forms of the macro except
execute.

F4DSCB={addr| (reg) | 0}
specifies the address of a 96-byte DSCB return area provided by the calling
program, into which LSPACE returns the volume’s format-4 DSCB. For a
description of the format-4 DSCB fields, see the DSCB4 data area section in
Debugging Handbook.

addr—RX-type address
specifies the address of the format-4 DSCB return area.

(reg)—(2-12)
specifies a register containing the address of the format-4 DSCB
return area.

0

specifies that you do not want the data portion of the format-4 DSCB
for the volume. This is the default for all forms of the macro except
execute.

MF={|D | (D,MSG) | (D,DATA) | L | (LLMSG) | (L,DATA) | (E,addr) | (E,(reg))}
specifies the form of the LSPACE macro.

I
specifies the inline (standard) form of the macro. This generates an
inline parameter list containing the required variables, loads the
address of the parameter list in register 1, and issues an SVC 78. This
form is the default.

generates a DSECT that maps the LSPACE parameter list. See
Figure 8 on page 24 for the format of the LSPACE parameter list.

(D,MSG)
generates a DSECT that maps the message return area. For the
format of the area, see ‘“Message Return Area” on page 27.

(D,DATA)
generates a DSECT that maps the data return area. For the format of
the area, see “Data Return Area’ on page 27.

generates the required constants in the calling program. You may then
issue the execute form of the macro, which uses these constants.

s

MVS/XA System—Data Administration

(L,MSG)
generates the required message return area constants in the calling
program.

(L,DATA)
generates the required data return area constants in the calling
program.

(E,addr)
loads the address of the parameter list specified by addr into register 1,
puts the specified variables into the parameter list, and issues an SVC
78.

(E,(reg))
loads the address of the parameter list specified by (reg) into register 1,
puts the specified variables into the parameter list, and issues an SVC
78.

Chapter 1. Managing the Volume Table of Contents (VTOC) 23

Name Offset Bytes Description A

LSPAPL

LSPAPLID 00(X'00") 4 EBCDIC 'LSPA'

LSPANGTH 04(X'04") 2 Length of parameter list
LSPAFLAG 06(X'06") 1 Parameter flag byte

LSPASMFY X'80! SMF=YES

LSPASMFT X'40' SMF=TEST

LSPADATA X'20' Free space data request
LSPARSVB ...X XXXX Reserved

LSPARSVD 07(X'07") 1 Reserved

LSPAERCD 08(X'08") 1 LSPACE return code

LSPASFID 09(X'09') 1 LSPACE subfunction
LSPASFPC X'00' Processing complete

LSPASFVP X'or - Validate parameters

LSPASFUS X'02! Check UCB status

LSPASFNQ X'03! Enq on SYSZDMNT

LSPASF45 X'04' Read F4 and first FS (EXCP)
LSPASFNS X'05! Read next F5 (EXCP)
LSPASFRV X'06' Read volume label (EXCP)
LSPASF4X X'80' Read F4 and maps (CVAFDIR)
LSPASFEX X'81' Get free extents (CVAFDSM)
LSPASFFO X'82' Get FO count (CVAFDSM)
LSPASFVR X'83' Get VIR count (CVAFDSM)
LSPASFVD X'84!' Check for VRF (CVAFVRF)
LSPASFRT 10(X'0A"') 1 Subfunction return code
LSPASFRS 11(X'0B') 1 Subfunction reason code
LSPARSO1 X'o1! Check parameter list storage key
LSPARS02 X'02' Check parameter list ID
LSPARSO03 X'03! Check LSPACE flag

LSPARS04 X'04! Check authorization for SMF flag
LSPARSO0S5 X'05! Check message or data return area storage key
LSPARSO06 X'06' Check format-4 DSCB return area storage key
LSPARSOQ7 X'07! Check UCB address

LSPARSO8 X'08! Check for virtual UCB address
LSPARSO09 X'09! Check for zero VTOC pointer
LSPAUCB 12(X'0C") 4 UCB address

LSPAFRSP 16(X'10") 4 Address of message or data return area
LSPAFMT4 20(X'14") 4 Address of format-4 DSCB

Figure 8. Format of the LSPACE Parameter List (MF=D)

Note: For more information about the LSPAERCD, LSPASFID, LSPASFRT, and
LSPASFRS fields, see “LSPACE Status Information” on page 26.

24 MVS/XA System—Data Administration

| Return Codes from LSPACE

| Return codes from LSPACE are as follows:

| Code Meaning

| 0(X'00") Successful processing

| 4(X'04") Permanent I/0O Error

| 8(X'08') Non-Standard OS Volume

| 12(X'0C') Invalid Parameter or UCB Not Ready

| 16(X'10') Invalid Parameter List

Chapter 1. Managing the Volume Table of Contents (VTOC) 25

LSPACE Status Information

Register 0 and the LSPACE macro’s parameter list? contain additional diagnostic
information. Figure 9 shows the relationship between the following LSPACE
parameter list fields:

LSPAERCD (return code)
LSPASFID (subfunction identifier)

LSPASFRT (subfunction return code)
LSPASFRS (subfunction reason code)

LSPAERCD
16 (X'10')
16 (X'10'")
12 (X'0C")
12 (X'0C")
12 (X'0C")
12 (X'0C")
12 (X'0C")
12 (X'0C")
12 (X'0C")
12 (X'0C")
12 (X'0C")
08 (X'08'")
04 (X'04')
04 (X'04'")
04 (X'04')
04 (X'04')
04 (X'04')
04 (X'04')
04 (X'04')
04 (X'04')
00 (X'00")

LSPASFID
01 (X'01')
01 (X'01")
01 (X'01')
01 (X'01'")
01 (X'01")
01 (X'01")
01 (X'01')
01 (X'01')
01 (X'01')
02 (X'02')
03 (X'03")
04 (X'04')
04 (X'04')
05 (X'05')
06 (X'06")
80 (X'80")
81 (X'81")
82 (X'82')
83 (X'83")
84 (X'84')
00 (X'00")

LSPASFRT
N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ENQ RETC
N/A

ECB STAT

ECB STAT

ECB STAT

DIR RETC

DSM RETC
DSM RETC
DSM RETC
VRF RETC
N/A

LSPASFRS
01 (X'01")
02 (X'02')
03 (X'03')
04 (X'04")
05 (X'05")
06 (X'06')
07 (X'07")
08 (X'08')
09 (X'09")
N/A

N/A

N/A

N/A

N/A

N/A
CVSTAT
CVSTAT
CVSTAT
CVSTAT
CVSTAT
N/A

Description

Bad parm list storage key
Bad parm list ID

Invalid LSPACE flag

Not authorized for SMF

Bad MSG/DATA area storage key
Bad FMT4 area storage key
UCB not found

UCB not direct access device
UCB VTOC pointer is zero
Invalid UCB status

Failed ENQ on SYSZDMNT
F5s are invalid

Error reading F4 and first F5
Error reading next F5

Error reading volume label
Error getting F4/space maps
Error getting free extents
Error getting FO count

Error getting VIR count
Error checking for VRF

No problems

Figure 9. LSPACE Status Information Relationships

LSPACE Subfunction Return Code and Reason Code

26 MVS/XA System—Data Administration

The following table identifies the information returned in the LSPASFRT and
LSPASFRS fields of the LSPACE macro’s parameter list.

N/A - Not Applicable
CVSTAT field of CVAF parameter list
- Return code from ENQ

CVSTAT -
ENQ RETC
DIR RETC
DSM RETC
VRF RETC
ECB STAT

2

Return code from CVAFDIR
Return code from CVAFDSM
Return code from CVAFVRF
ECB completion code

Status information does not appear in the parameter list for return code 16.

-

| LSPACE Information Return Areas

| The LSPACE macro returns status information to the parameter list and,
| optionally, the return of volume information to any of the three caller requested
| return areas described below.3

| Message Return Area: 1.SPACE returns information to a 30-byte message return
| area (Figure 10). If you provide a message return area with the MSG option,

| LSPACE returns EBCDIC text, qualified by return codes as shown in Figure 11.
|

| LSPMSG DSECT Message Area
| LSPMTEXT DS CL30 Message Text

| Figure 10. DADSM LSPACE Free Space Information Format, MF=(D,MSG)

| Return Text or

| Code Explanation

| 16(X'10') No text returned (invalid parameter list or SMF indicator)
| 12(X'0C') Text: LSPACE—UCB NOT READY

| Text: LSPACE—UCBVTOC IS ZERO

| Text: LSPACE—INVALID PARAMETER

| Text: LSPACE—NOT A DIRECT ACCESS VOL

| 08(X'08') Text: LSPACE—NON-STANDARD OS VOLUME

| 04(X'04') Text: LSPACE—PERMANENT I/O ERROR

| 00(X'00') Text: SPACE=aaaa,bbbb,cccc/dddd,eeee

|
|
|
|
I
I
I

where:

aaaa = Total number of free cylinders

bbbb = Total number of additional free tracks

ccee = Total number of free extents

dddd = Number of cylinders in largest free extent

eeee = Number of additional tracks in largest free extent

| Figure 11. DADSM LSPACE Message Area Contents

| Data Return Area: If you provide a data return area with the DATA option,
| LSPACE returns information as described in Figure 12.

| 3 Requests for the MSG and DATA areas are mutually exclusive. LSPACE checks to
| ensure that the storage key of each information return area is equal to the caller’s key
| or that the caller is authorized prior to its use.

Chapter 1. Managing the Volume Table of Contents (VTOC) 27

Name Offset Bytes Description

LSPDRETN 00(X'00") 1 Return area status byte

LSPDSPAC X'80' Returned space information

LSPDFOCN X'40! Returned format-0 DSCB count
LSPDVRCN X'20!' Returned free VIR count

LSPDRRES ...X XXXX Reserved

LSPDSTAT 01(X'01") 1 Status byte

LSPDIXDS X'80! Index exists for VTOC

LSPDIXAC X'40! Index VTOC active

LSPDIRES ..XX XXXX Reserved

LSPDRSV1 02(X'02'") 2 Reserved

LSPDNEXT 04(X'04") 4 Number of free extents

LSPDTCYL 08(X'08'") 4 Total free cylinders

LSPDTTRK 12(X'0C") 4 Total additional free tracks

LSPDLCYL 16(X'10") 4 Number of cylinders in largest free extent
LSPDLTRK 20(X'14") 4 Number of additional tracks in largest free extent
LSPDFO0S 24(X'18') 4 Format-0 DSCB count

LSPDVIRS 28(X'1C") 4 Free VIR count

LSPDFRAG 32(X'20") 4 Fragmentation index!

Figure 12. Format of the LSPACE Data Return Area

Note to Figure 12:

1 The fragmentation index is a numeric representation of the relative size and
distribution of free space on the volume. A large index value indicates a high
degree of fragmentation.

Format 4 DSCB Return Area: If you provide a format-4 DSCB return area with the

F4DSCB option, LSPACE returns information as described by the DSCB4 data

area in Debugging Handbook.

Example of LSPACE Using Message Return Area

The following example requests that LSPACE return free space information in the
message return area.

LSPAMFIM LSPACE MSG=MYMSG,UCB=(R10) ,MF=I

Example of LSPACE Using Data Return Area

The following example requests that LSPACE return free space information in the
data return area.

LSPAMFID LSPACE DATA=MYDATA,UCB=(R10),MF=I

28 MVS/XA System—Data Administration

| Example of LSPACE Specifying List and Execute Forms

The following example uses the list form of the macro to define the parameter list,
and the execute form to refer to the same parameter list

LSPALIST LSPACE MSG=MYDATA,MF=L

LSPAEX LSPACE MF=(E,LSPALIST) ,UCB=(R10)

Reading a Control Block from the VTOC

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)

If you specify a data set name using OBTAIN and the CAMLST SEARCH option,
the OBTAIN routine reads the 96-byte data portion of the identifier (format-1)
DSCB and the absolute track address of the DSCB into virtual storage. The
absolute track address is a 5-byte field in the form CCHHR. The absolute track
address field contains zeros for VSAM and VIO data sets.

Because the VTOC does not contain a format-1 DSCB for a suballocated VSAM
data space, an OBTAIN request, which searches the VTOC for such a data space’s
DSCB, fails. If the volume contains VSAM data sets, the OBTAIN routine uses
information from the VSAM catalog to build a pseudo format-1 DSCB, setting its
CCHHR to zeros.

The format is:

[symbol] OBTAIN | listname-addrx
listnhame CAMLST | SEARCH
sdsname-relexp
yvol-relexp
;wkarea-relexp

listname-addrx
points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

SEARCH
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long.

Note: A DSNAME of 44 bytes of X'04' (X'040404...04') can be used to
read a format-4 DSCB.

Chapter 1. Managing the Volume Table of Contents (VTOC) 29

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number on
which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work area that you must
define.

Example: In the following example, the identifier (format-1) DSCB for data set
A B.C is read into virtual storage using the SEARCH option. The serial number of
the volume containing the DSCB is 770655.

OBTAIN DSCBABC READ DSCB FOR DATA
* SET A.B.C INTO DATA
* AREA NAMED WORKAREA
DSCBABC CAMLST SEARCH,DSABC, VOLNUM, WORKAREA
DSABC DC CL44'A.B.C' DATA SET NAME
VOLNUM DC CL6'770655" VOLUME SERIAL NUMBER
WORKAREA DS 140C 140-BYTE WORK AREA

Note: Check the return codes.

The OBTAIN macro instruction points to the CAMLST macro instruction.
SEARCH, the first operand of CAMLST, specifies that a DSCB be read into
virtual storage, using the data set name you have supplied at the address indicated
in the second operand. DSABC, the second operand, specifies the virtual storage
location of a 44-byte area into which you have placed the fully qualified name of
the data set whose format-1 DSCB is to be read. VOLNUM, the third operand,
specifies the virtual storage location of a 6-byte area into which you have placed
the serial number of the volume containing the required DSCB. WORKAREA, the
fourth operand, specifies the virtual storage location of a 140-byte work area into
which the DSCB is to be returned.

Control is returned to your program at the next executable instruction following the
OBTAIN macro instruction. If the DSCB has been successfully read into your
work area, register 15 contains zeros. Otherwise, register 15 contains one of the
following return codes. The return codes are shown in decimal, with hexadecimal
values in parentheses.

30 MVS/XA System—Data Administration

F - H
o

Return Codes from OBTAIN (Reading by data set name)

Reading a DSCB by Absolute Device Address (OBTAIN and CAMLST SEEK)

Code Meaning

4(X'04") The required volume was not mounted.

8(X'08"') The format-1 DSCB was not found in the VTOC of the

specified volume.

12(X'0C") A permanent I/O error was encountered, or an invalid
format-1 DSCB was found when processing the specified
volume, or an unexpected error return code was received
from CVAF (Common VTOC Access Facility).

16(X'10') Invalid work area pointer.

After execution of these macro instructions, the first 96 bytes of the work area

contain the data portion of the identifier (format-1 or format-4) DSCB; the next 5

bytes contain the absolute track address (CCHHR) of the DSCB. These 5 bytes

contain zeros for VSAM or VIO data sets.

You can read any DSCB from a VTOC using OBTAIN and the CAMLST SEEK
option. You specify the SEEK option by coding SEEK as the first operand of the

CAMLST macro and by providing the absolute device address of the DSCB you
want to read, unless the DSCB is for a VIO data set. Only the SEARCH option
can be used to read the DSCB of a VIO data set.

The format is:

[symbol}
listname

OBTAIN
CAMLST

listname-addrx
SEEK
scchhr-relexp
,vol-relexp
;wkarea-relexp

listname-addrx

points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

SEEK

this operand must be coded as shown.

cchhr-relexp

specifies the virtual storage location of the 5-byte absolute device address
(CCHHR) of a DSCB.

Chapter 1. Managing the Volume Table of Contents (VTOC)

31

vol-relexp
specifies the virtual storage location of the 6-byte volume serial number on
which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work area that you must
define.

Example: In the following example, the DSCB at actual-device address
X'00 00 00 01 07'is returned in the virtual storage location READAREA,
using the SEEK option. The DSCB resides on the volume with the volume serial

number 108745.

OBTAIN ACTADDR READ DSCB FROM
* LOCATION SHOWN IN CCHHR
* INTO STORAGE AT LOCATION
* NAMED READAREA
ACTADDR CAMLST SEEK,CCHHR,VOLSER,READAREA
CCHHR DC XL5'0000000107' ABSOLUTE TRACK ADDRESS
VOLSER DC CL6'108745" VOLUME SERIAL NUMBER
READAREA DS 140C 140-BYTE WORK AREA

Note: Check the return codes.

The OBTAIN macro points to the CAMLST macro. SEEK, the first operand of
CAMLST, specifies that a DSCB be read into virtual storage. CCHHR, the second
operand, specifies the storage location that contains the 5-byte actual-device
address of the DSCB. VOLSER, the third operand, specifies the storage location
that contains the serial number of the volume where the DSCB resides. The fourth
operand, READAREA, specifies the storage location to which the 140-byte DSCB
is to be returned.

Control is returned to your program at the next executable instruction following the
OBTAIN macro instruction. If the DSCB has been successfully read into your
work area, register 15 contains zeros. Otherwise, register 15 contains one of the
following return codes. The return codes are shown in decimal, with hexadecimal
values in parentheses.

32 MVS/XA System—Data Administration

N

Return Codes from OBTAIN (Reading by Absolute Device Address)

Code Meaning
4(X'04'") The required volume was not mounted.

8(X'08'") The format-1 DSCB was not found in the VTOC of the
specified volume.

12(X'0C') A permanent I/O error was encountered or an
unexpected error return code was received from CVAF.

16(X'10') Invalid work area pointer.

20(X'14') The SEEK option was specified and the absolute track
address (CCHHR) is not within the boundaries of the VTOC.

Deleting a Data Set from the VTOC (SCRATCH and CAMLST SCRATCH)

You can use the SCRATCH and CAMLST macro instructions to delete a
non-VSAM data set. SCRATCH processing deletes the associated data set control
(blocks (DSCBs) and makes the space occupied by the data set available for
reallocation. Be aware that this process may not erase the data from the disk.
Data sets that contain sensitive data should be erased (overwritten with zeros)
before their space is made available. This erase can either be done before issuing
the SCRATCH macro, or be requested in scratch processing by

« Providing an associated RACF ERASE attribute, or
e Activating bit 21 (X'00 00 04 00') of the SCRATCH parameter list.

Authorized callers of SCRATCH may set bit 22 to '1' to override the RACF
profile ERASE attribute.

If you want to scratch a data set being processed using virtual input/output (VIO),
the data set must have been allocated for use by your job. Scratching VIO data
sets not allocated to your job is not allowed.

If the data set to be deleted is sharing one or more cylinders with one or more data
sets (a split-cylinder data set), the space will not be made available for reallocation
until all data sets on the shared cylinders are deleted.

A data set cannot be deleted if the expiration date in the identifier (format-1)
DSCB has not passed, unless you choose to ignore the expiration date. You may
specify that DADSM is to ignore the expiration date by specifying the OVRD
option in the CAMLST macro instruction.

| DADSM SCRATCH processing supports three never-scratch dates. To ensure that
a data set will never be scratched, specify the expiration date as either of the
| following:

~~

Chapter 1. Managing the Volume Table of Contents (VTOC) 33

. 1999.365 -
. 1999366 o
. 1999.999 | "

For information on RACF-defined data sets, see RACF General Information
Manual. You may scratch a RACF-defined data set (that is, the DSCB indicates
RACF-defined) only if you have alter access authority to either the data
set/volume serial in the DATASET class, or to the volume serial in the DASDVOL
class (if the volume is RACF-defined).

If a data set to be deleted is stored on more than one volume, either a device must
be available for mounting the volumes or at least one volume must be mounted. In
addition, all other required volumes must be serially mountable.

When deleting a data set, you must build a volume list in virtual storage. This
volume list consists of an entry for each volume on which the data set resides. The
first two bytes of the list indicate the number of entries in the list. Each 12-byte
entry consists of a 4-byte device code, a 6-byte volume serial number, and a 2-byte
scratch status code that should be initialized to zero.

If the space to be deleted is a VSAM data space, you must use the DELETE
command provided by access method services. For complete information about the
DELETE command, see Access Method Services Reference.

Volumes are processed in the order that they appear in the volume list. The

volume at the beginning of the list is processed first. If a volume is not mounted, a

message is issued to the operator requesting that a volume be mounted. (A volume P
mount message will not be issued for a mass storage system (MSS) virtual volume; “‘
however, a status code will be returned to your program.) This is only done if
register 0 has been loaded with the address of the UCB associated with the device
where unmounted volumes are to be mounted. (The device must be allocated to
your job.) If you do not load register 0 with a UCB address, its contents must be
zero, and at least one of the volumes in the volume list must be mounted before the
SCRATCH macro instruction is issued.

If the requested volume cannot be mounted, the operator issues a reply indicating
that the request cannot be fulfilled. A status code is then set in the last byte of the
volume pointer (the second byte of the scratch status code) for the unavailable
volume, and the next volume indicated in the volume list is processed.

The format is:

[symbol] SCRATCH | listname-addrx
listname CAMLST | SCRATCH
,dsname-relexp

ssvol list-relexp
[,,OVRD]

listname-addrx
points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

C

34 MVS/XA System—Data Administration

SCRATCH
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully qualified data set name. The
area that contains the name must be 44 bytes long. The name must be
defined by a C-type Define Constant (DC) instruction.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a halfword boundary.

OVRD
when coded as shown, specifies that the expiration date in the DSCB should
be ignored.

Example: 1In the following example, data set A.B.C is deleted from two volumes.
The expiration date in the identifier (format-1) DSCB is ignored.

SR 0,0 SET REG 0 TO ZERO
SCRATCH DELABC DELETE DATA SET A.B.C
* FROM TWO VOLUMES,
* IGNORING EXPIRATION
* DATE IN THE DSCB
DELABC CAMLST SCRATCH,DSABC, ,VOLIST, ,OVRD
DSABC DC CL44'A.B.C' DATA SET NAME
VOLIST DC H'2' NUMBER OF VOLUMES
DC X'3030200E' 3380 DISK DEVICE CODE
DC CL6'000017" VOLUME SERIAL NO.
DC H'O' SCRATCH STATUS CODE
DC X'3030200E' 3380 DISK DEVICE CODE
DC CL6'000018' VOLUME SERIAL NO.
DC H'O' SCRATCH STATUS CODE

Note: Check the return codes and SCRATCH status codes.

The SCRATCH macro instruction points to the CAMLST macro instruction.
SCRATCH, the first operand of CAMLST, specifies that a data set be deleted.
DSABC, the second operand, specifies the virtual storage location of a 44-byte
area where you have placed the fully qualified name of the data set to be deleted.
VOLIST, the fourth operand, specifies the virtual storage location of the volume
list you have built. OVRD, the sixth operand, specifies that the expiration date in
the DSCB of the data set to be deleted be ignored.

When you attempt to delete a password-protected data set that is not also
RACF-protected, the operating system issues a message (IEC301A) to ask the
operator at the console or the terminal operator of a remote console to enter the
password. The data set will be scratched only if the password supplied is
associated with a WRITE protection mode indicator. The protection mode
indicator is described in Chapter 5, ""Password Protecting Data Sets."

Control is returned to your program at the next executable instruction following the

SCRATCH macro instruction. If the data set has been successfully deleted,
register 15 will contain zeros, and the scratch status code in the volume list entry

Chapter 1. Managing the Volume Table of Contents (VTOC) 35

for each volume will be set to zero. Otherwise, register 15 will contain one of the

return codes that follow. To determine whether the data set has been successfully
deleted from each volume on which it resides, you must examine the scratch status
code, that is, the last byte of each entry in the volume list.

Return Codes from SCRATCH

Code Meaning

4(X'04") No volumes containing any part of the data set were mounted, nor
did register O contain the address of a unit that was available for
mounting a volume of the data set. The data set may be a VIO data
set that was not allocated during your job. (This return code is
accompanied by a scratch status code of 5 in each entry of the
volume list.)

8(X'08'") An unusual condition was encountered on one or more volumes.
12(X'0C') The volume list passed was invalid. The scratch status code (the last

byte of each volume list entry) will not have been modified during
scratch processing.

36 MVS/XA System—Data Administration

Status Codes from SCRATCH

After the SCRATCH macro instruction is executed, the last byte of each 12-byte

entry in the volume list indicates one of the following conditions in binary codes:

Scratch
Status
Code

Meaning

All DSCBs for the data set have been deleted from the
VTOC on the volume pointed to.

The VTOC of this volume does not contain the format-1
DSCB for the data set to be deleted.

The macro instruction failed when the correct password

was not supplied in the two attempts allowed, or an

attempt was made to scratch a VSAM data space or data set
cataloged in an Integrated Catalog Facility catalog.

The data set was not deleted from this volume because
either the OVRD option was not specified or the
retention cycle has not expired.

A permanent I/0 error was encountered, or an invalid
format-1 DSCB was found when processing this volume,
or an unexpected error return code was received from
CVAF.

It could not be verified that this volume was mounted,
and no device was available for mounting this volume.

The operator was unable to mount this volume.

For IBM Mass Storage Systems (MSS), a volume mount
failure occurred.

For a JES3-managed virtual volume, JES3 would not
allow the volume to be mounted.

The specified data set could not be scratched
because it was being used.

The DSCB indicates the data set is defined to RACF,

but either the user is not authorized to access the

data set or the volume, or the data set is a VSAM

data space, or the data set is cataloged in an Integrated Catalog
Facility catalog, or the data set is not defined to RACF.

Chapter 1. Managing the Volume Table of Contents (VTOC)

37

Renaming a Data Set in the VTOC (RENAME and CAMLST RENAME)

You rename a data set that is not cataloged in an Integrated Catalog Facility
catalog or VSAM catalog by using the RENAME and CAMLST macro
instructions. These cause the data set name in all format-1 DSCBs for the data set
to be replaced by the new name you supply. (VIO data sets cannot be renamed.)

If a data set to be renamed is stored on more than one volume, either a device must
be available for mounting the volumes, or at least one volume must be mounted. In
addition, all other volumes of the data set must be serially mountable.

For information on RACF-defined data sets, see RACF General Information
Manual. Only a user with alter access authority may rename a RACF-defined data
set.

When renaming a data set, you must build a volume list in virtual storage. This
volume list consists of an entry for each volume on which the data set resides. The
first two bytes of the list indicate the number of entries in the list. Each 12-byte
volume list entry consists of a 4-byte device code, a 6-byte volume serial number,
and a 2-byte rename status code that should be initialized to zero. Volumes are
processed in the order in which they appear in the volume list. The first volume on
the list is processed first. If a volume is not mounted, a message is issued to the
operator requesting that the volume be mounted. (A volume mount message will
not be issued for an MSS volume; however, a status code is returned to your
program.) This is only done if you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with the address of the
UCB associated with the device to be used. (The device must be allocated to your
job.) If you do not load register 0 with a UCB address, its contents must be zero,
and at least one of the volumes in the volume list must be mounted before the
RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list, a reply is issued that the
request cannot be fulfilled. A status code is then set in the last byte of the volume
list entry (the second byte of the rename status code) for the unavailable volume,
and the next volume indicated in the volume list is processed or requested.

The format is:

[symbol] RENAME | listname-addrx
listname CAMLST | RENAME
sdsname-relexp
;new name-relexp
,vol list-relexp

listname-addrx

points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

RENAME
this operand must be coded as shown.

38 MVS/XA System—Data Administration

Y

dsname-relexp
specifies the virtual storage location of a fully qualified data set name to be
replaced. The area that contains the name must be 44 bytes long. The name
must be defined by a C-type Define Constant (DC) instruction.

new name-relexp
specifies the virtual storage location of a fully qualified data set name that is
to be used as the new name. The area that contains the name must be 44
bytes long. The name must be defined by a C-type Define Constant (DC)
instruction.

vol list-relexp
specifies the virtual storage location of an area that contains a volume list.
The area must begin on a halfword boundary.

Example: In the following example, data set A.B.C is renamed D.E.F. The data
set resides on two volumes.

SR 0,0 SET REG 0 TO ZERO
RENAME DSABC CHANGE DATA SET
NAME A.B.C TO D.E.F

DSABC CAMLST RENAME,OLDNAME,NEWNAME, VOLIST

OLDNAME DC CL44'A.B.C' OLD DATA SET NAME
NEWNAME DC CL44'D.E.F' NEW DATA SET NAME
VOLIST DC H'2' TWO VOLUMES

DC X'3030200E" 3380 DISK DEVICE CODE

DC CL6'000017"' VOLUME SERIAL NO.

DC H'O' RENAME STATUS CODE

DC X'3030200E" 3380 DISK DEVICE CODE

DC CL6'000018" VOLUME SERIAL NO.

DC H'O' RENAME STATUS CODE

Note: Check the return codes and RENAME status codes.

The RENAME macro instruction points to the CAMLST macro instruction.
RENAME, the first operand of CAMLST, specifies that a data set be renamed.
OLDNAME, the second operand, specifies the virtual storage location of a 44-byte
area where you have placed the fully qualified name of the data set to be renamed.
NEWNAME, the third operand, specifies the virtual storage location of a 44-byte
area where you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the virtual storage location of the volume list you have built.

Control is returned to your program at the next executable instruction following the
RENAME macro instruction. If the data set has been successfully renamed,
register 15 will contain zeros, and the rename status code in the volume list entry
for each volume will be set to zero. Otherwise, register 15 will contain one of the
return codes below. To determine whether the data set has been successfully
renamed on each volume where it resides, you must examine the rename status
code, the last byte of each entry in the volume list.

Chapter 1. Managing the Volume Table of Contents (VIOC) 39

Return Codes from RENAME

Code Meaning

4(X'04") No volumes containing any part of the data set were
mounted, nor did register O contain the address of a unit
that was available for mounting a volume of the data set
to be renamed.

The data set may be a VIO data set and cannot be renamed.
(This return code is accompanied by a rename status code
of 5 in each entry of the volume list.)

8(X'08") An unusual condition was encountered on one or more
volumes.

12(X'0C') The volume list passed was invalid.
The rename status code, the last byte of each volume list
entry, will not have been modified during rename
processing.

After the RENAME macro instruction is executed, the last byte of each 12-byte
entry in the volume list indicates one of the following conditions in binary code:

40 MVS/XA System—Data Administration

Rename
Status
Code Meaning

0 The format-1 DSCB for the data set has been renamed in
the VTOC on the volume pointed to.

1 The VTOC of this volume does not contain the format-1
DSCB for the data set to be renamed.

2 The macro instruction failed when the correct password
was not supplied in the two attempts allowed, or the
user tried to rename a VSAM data space or VSAM data
set cataloged in an Integrated Catalog Facility catalog.

3 A data set with the new name already exists on this
volume.

4 A permanent I/O error was encountered, or an invalid
format-1 DSCB was found when trying to rename the data
set on this volume, or an unexpected error return code
was received from CVAF.

5 It could not be verified that the volume was mounted,
and no device was available for mounting the volume.

6 The operator was unable to mount this volume.
For Mass Storage Systems (MSS), a volume mount
failure occurred.
For a JES3-managed virtual volume, JES3 would not
allow the volume to be mounted.

7 The specified data set could not be renamed on
this volume because it was being used.

8 The data set is defined to RACEF, but either the
user is not authorized to alter the data set
or the data set is defined to RACF on multiple
volumes.

When you attempt to rename a password-protected data set, the operating system
issues a message (IEC301A) to ask the operator or remote console operator to
verify the password. The data set will be renamed only if the password supplied is
associated with a WRITE protection mode indicator. The protection mode
indicator is described in Chapter 4, ‘“Password Protecting Data Sets’ on

page 111.

Chapter 1. Managing the Volume Table of Contents (VTOC) 41

Accessing the VTOC and its Index with CYAF Macros

Serialization and Updating

Identifying the Volume

You may use CVAF or DADSM to access the VTOC or its index. DADSM access
is described in ““Accessing the VTOC with DADSM Macros” on page 19.

CVAF macros and associated tasks include:

CVAFDIR - Directly access DSCBs or VTOC index records.
CVAFDSM - Obtain volume free space information.
CVAFFILT - Read sets of DSCBs for one or more DASD data sets.
CVAFSEQ - Retrieval of the following:

- Data set names from an active VTOC index.

- DSCBs in physical-sequential order.

- DSCBs in data set name order (index required).

CVAFTST

Appendix A, “CVAF VTOC Access Macros” on page 231, contains detailed
descriptions of these macros. Appendix B, “Examples of VTOC Access Macros”
on page 259, contains examples of their use.

CVAF requires that you provide all necessary system resource serialization for
your request. You can only ensure the integrity of multiple data elements (sets of
DSCBs and/or VIRs) returned by CVAF if you serialize system resources
adequately. You compound this exposure if you must make multiple CVAFFILT
requests for a desired set of DSCBs and/or VIRs.

You must weigh possible system performance loss because of serialization against
the potential loss of data integrity. If you make updates without adequate
serialization, you may compromise the integrity of the volume’s VTOC, the VTOC
index, and/or any associated data set.

CVAF only honors requests to modify the volume’s VTOC and/or index from
authorized programs.

CVAF assumes that an authorized program holds an exclusive RESERVE (or
ENQ) on the gname (major name) of SYSVTOC, rname (minor name) of the
volume’s serial number, with the scope of SYSTEMS. The SYSVTOC gname does
not serialize access to the format-1 DSCB for a data set. You may provide this
serialization by allocating the data set with disposition OLD, MOD, or NEW (not
SHR). This causes the proper ENQ, ensuring that no other job can update that
data set’s format-1 DSCB.

If you are authorized, you may identify the volume to the CVAFDIR, CVAFDSM,
CVAFFILT, and CVAFSEQ macros by specifying the address of its UCB. If you
are not authorized, you must identify the volume by specifying the address of a
SAM or EXCP DEB opened to the volume’s VTOC.

The DEB can be obtained by opening a DCB using the RDJFCB and OPEN
TYPE=J macros. The DCBs DDNAME is that of a DD statement allocated to the
unit whose VTOC is to be accessed. After issuing the RDJFCB macro, the
JFCBDSNM field is overlaid with the data set name of the format-4 DSCB:
44X'04'. You open the DCB for INPUT by using OPEN TYPE=J. The DEB

42 MVS/XA System—Data Administration

Determine if a DASD volume has an active VTOC index.

i

Using Registers

address is in DCB field DCBDEBA. The OPEN macro is described under
“OPEN—1Initialize Data Control Block for Processing the JFCB” on page 148;
the RDJFCB macro is described under “RDJFCB—Read a Job File Control
Block” on page 137.

If a CVAF macro call specifies IOAREA=KEEP, a subsequent CVAF call using a
different CVPL may omit the UCB and DEB keywords and supply the IOAREA
address from the other CVPL. You can use the IOAREA keyword to do this.

The requirements cited above do not apply to the CVAFTST macro. The
CVAFTST macro only allows you to identify the VTOC by specifying a UCB, and
does not require that you be authorized.

Register 1 contains the address of the CVAF parameter list (CVPL). Register 15
contains the return code when processing for a function is complete.

Generating a CVPL (CVAF Parameter List)

All the CVAF macros except CVAFTST use the CVPL to pass parameters to
CVAF. The CVAFTST macro expands to provide its only parameter (UCB
address) in register 1, and calls the associated CVAF module. CVAF uses the
CVPL to return information related to the CVAF request.

CVAF generates a CVPL when you specify the CVAFDIR, CVAFDSM,
CVAFFILT, or CVAFSEQ macro with MF=L or MF=I as a subparameter. If
you do not specify the MF subparameter, MF=I is the default. Upon return, the
CVI1IVT bit indicates whether an indexed or nonindexed VTOC was accessed.
The CVSTAT field contains feedback when an error occurs. The address of the
map records buffer list is returned in the CVMRCDS field. The address of the
VIER buffer list is returned in the CVIRCDS field. CVAF returns the CVAF I/0
area address in the CVIOAR field. CVAF returns the CVAF Filter Save Area
address in the CVFSA field.

You may use the CVPL generated by the MF=L or MF=I form of the CVAFDIR,
CVAFDSM, CVAFFILT, or CVAFSEQ macros (by using the MF=E keyword) to
execute a different function than that specified by the macro that originally
generated the CVPL. If you specify a CVAF filter request, you must use a CVPL
generated by the CVAFFILT macro. (To support the CVFSA field, the
CVAFFILT macro generates a CVPL four bytes larger than that generated by the
other CVAF macros.)

The ICVAFPL macro maps the CVPL. The format of the CVPL is shown in
Figure 13 on page 44.

Chapter 1. Managing the Volume Table of Contents (VTOC) 43

Name

CVPL
CVLBL
CVLTH

CVFCTN
CVSTAT
CVFL1
CVIIVT
CV1IOAR
CV1PGM

CVIMRCDS

CV1IRCDS
CVIMAPIX

CVIMAPVT
CVIMAPVL

CVFL2
CV2HIVIE
CV2VRF
CV2CNT
CV2RCVR
CV2SRCH
CV2DSNLY
CV2VER
CV2NLEVL
CVFL3
CV3FILT
CV3IXERR

CVUCB
CVDSN
CVFCL
CVBUFL
CVIRCDS
CVMRCDS
CVIOAR
CVDEB
CVARG
CVSPACE
CVEXTS
CVBUFL2
CVVRFDA
CVCTAR
CVFSA

Offset

00(X'00')
04(X'04')

06(X'06')
07(X'07'")
08(X'08')

09(X'09')

10(X'0A")

11(X'0B')
12(X'0C")
16(X'10')
16(X'10')
20(X'14")
24(X'18")
28(X'1C")
32(X'20')
36(X'24")
40(X'28")
44(X'2C")
48(X'30')
52(X'34")
56(X'38")
60(X'3C")
64(X'40")

Bytes

1

1

1
X'80'
X'40'
X'20'
X'10!
X'08'
X'04'
X'02!
X'o1'
1
X'80'
X'40'
X'20!
X'10'
X'08'
X'04'
X'02!
X'o1!
1
X'80'
X'40!
..XX XXXX

N A LRI IR R R N

Description

EBCDIC 'CVPL!

Length of CVPL

64(X'40') for macros other than CVAFFILT
68(X'44') for CVAFFILT macro
Function byte (See Figure 14 on page 45)
Status information

First flag byte

Indexed VTOC accessed
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX

MAP=VTOC

MAP=VOLUME

Second flag byte

HIVIER=YES

VREF data exists

COUNT=YES
RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES

New highest level VIER (output)
Third flag byte
FLTAREA=KEEP

Index error found

Reserved

Reserved

UCB address

Data set name address

Filter criteria list address

Buffer list address

Index VIRs buffer list address
Map VIRs buffer list address
I/0 area address

DEB address

Argument address

SPACE parameter list address
Extent table address

New VRF VIXM buffer list address
VREF data address

Count area address

Filter save area

Figure 13. Format of the CVAF Parameter List (CVPL)

Note: The CVAFFILT macro generates a CVPL four bytes longer (total length =
X'44') than that generated by the other CVAF macros (total length = X'40').

44 MVS/XA System—Data Administration

AN

NS

Buffer Lists

The possible contents of the CVFCTN field in the CVPL and their meanings are as

follows:

Name Description

CVDIRD X'01' -CVAFDIR ACCESS=READ
CVDIWR X'02' -CVAFDIR ACCESS=WRITE
CVDIRLS X'03' -CVAFDIR ACCESS=RLSE
CVSEQGT X'04' -CVAFSEQ ACCESS=GT
CVSEQGTE X'05' -CVAFSEQ ACCESS=GTEQ
CVDMIXA X'06' -CVAFDSM ACCESS=IXADD
CVDMIXD X'07' -CVAFDSM ACCESS=IXDLT
CVDMALC X'08' -CVAFDSM ACCESS=ALLOC
CVDMRLS X'09' -CVAFDSM ACCESS=RLSE
CVDMMAP X'0A' -CVAFDSM ACCESS=MAPDATA
CVVOL X'0B' -CVAFVOL ACCESS=VIBBLD
CVVRFRD X'0C' -CVAFVRF ACCESS=READ
CVVRFWR X'0D' -CVAFVRF ACCESS=WRITE
CVFIRD X'0E' -CVAFFILT ACCESS=READ
CVFIRES X'0OF' -CVAFFILT ACCESS=RESUME
CVFIRLS X'10' -CVAFFILT ACCESS=RLSE

Figure 14. CVFCTN Field of CVPL—Contents and Definitions

A buffer list consists of one or more chained control blocks, each with a header and
buffer list entries, obtained and initialized by your program before calling CVAF.
The header indicates whether the buffer list is for DSCBs or VTOC index records.
The entries point to and describe the buffers.

You can create buffer lists in two ways:

« Directly, when you fill in the arguments and buffer addresses of DSCBs or
VIRs to be read or written

« Indirectly (by CVAF), when you code the IXRCDS=KEEP and/or
MAPRCDS=YES keywords

The ICVAFBFL macro maps CVAF buffer lists. Figure 15 on page 46 shows the
format of a buffer list header. Figure 16 on page 47 shows the format of a buffer
list entry.

Buffer List Header: The buffer list header indicates whether the buffer list
describes buffers for DSCBs or for VTOC index records. The DSCB bit must be
set to one and the VIR bit to zero for CVAF to process a request to read or write a
DSCB. CVAF requires that you provide buffer lists and buffers in your program’s
protect key. CVATF uses the protect key and subpool fields in the buffer list header
only if you code ACCESS=RLSE.

Chapter 1. Managing the Volume Table of Contents (VTOC) 45

Each buffer list header contains a count of the number of entries in the buffer list
that directly follows the header.

The forward chain address chains buffer lists together. You must not chain DSCB
buffer lists to VIR buffer lists, or VIR buffer lists to DSCB buffer lists.

The format of the buffer list header is shown in Figure 15.

Name Offset
BFLHDR 0(X'00")
BFLHNOE 0(X'00")
BFLHFL 1(X'01")
BFLHKEY
BFLHVIR
BFLHDSCB

2(X'02"Y)
BFLHSP 3(X'03")

BFLHFCHN 4(X'04')

Bytes Description

8 Buffer list header

1 Number of entries

1 Flag byte and key

XXXX Protect key of buffer list and buffers
X'08! Buffer list entries describe VIRs

X'04' Buffer list entries describe DSCBs

...... XX Reserved

1 Reserved

1 Identifies the subpool of buffer list and buffers
4 Forward chain address of next buffer list

Figure 15. Format of a Buffer List Header

Buffer List Entry: A buffer list contains one or more entries. Each entry provides
the buffer address, the length of the DSCB or VIR buffer, the argument, and an
indication whether the argument is an RBA, a TTR, or a CCHHR.

The fields and bit uses are listed below.

For a VIR buffer, the TTR and CCHHR bits must be 0, and the RBA bit must
be 1.

For a DSCB buffer, the RBA bit must be 0, and one of either the TTR or
CCHHR bits must be set to 1 (they must not both be 1).

The BFLEAUPD bit is an output indicator from CVAF that the BFLEARG
field of a VIR buffer list was updated.

The BFLEMOD bit indicates that a VIR buffer was modified and must be
written; if no BFLEMOD bits are on in any of the entries for a CVAFDIR
ACCESS=WRITE, all buffers are written.

The BFLESKIP bit is used to cause an entry to be ignored.

The BFLEIOER bit is an output indicator from CVAF to indicate an I/O error
occurred during reading or writing of the DSCB or VIR.

The BFLELTH field is the length of the buffer; for a DSCB buffer, the length
must be 96 or 140; for a VIR buffer, the length must be the length of the
buffer divided by 256.

The BFLEARG field is the argument of the DSCB or VIR. Specify the desired
format of the 5-byte field by setting either the BFLECHR, BFLETTR, or

46 MVS/XA System—Data Administration

P

L

BFLERBA bit to 1. The respective BFLEARG values and formats are as
follows:

— CCHHR=S5 byte CCHHR

— TTR=0TTRO

— RBA=One byte of 0 followed by a 4-byte RBA
The optional and required values for BFLEARG are dependent upon the variables
associated with a given request. These are described in the following

request-oriented topics.

The format of the buffer list entry is shown in Figure 16.

Name

BFLE
BFLEFL
BFLERBA
BFLECHR
BFLETTR
BFLEAUPD
BFLEMOD
BFLESKIP
BFLEIOER

BFLELTH

BFLEARG
BFLEATTR
BFLEARBA
BFLEBUF

Offset Bytes Description
0(X'00'") 12 Buffer list entry
0(X'00") 1 Flag byte
X'80! Argument is RBA
X'40! Argument is CCHHR
X'20! Argument is TTR
X'10! CVAF updated argument field
X'08' Data in buffer has been modified
X'04' Skip this entry
X'02' 1/0 error
....... X Reserved
1(X'01') 1 Reserved
2(X'02'") 1 Length of VIR buffer divided by 256, or length of DSCB
buffer
3(X'03") 5 Argument of VIR or DSCB
4(X'04'") 3 TTR of DSCB
4(X'04") 4 RBA of VIR
8(X'08') 4 Buffer address

Figure 16. Format of a Buffer List Entry

Accessing the DSCB Directly

You may use the CVAFDIR macro to read or write a DSCB. You may also use it
to read or write VTOC index records for indexed VTOCs. “CVAFDIR Macro” on
page 231 discusses detailed information about the CVAFDIR VTOC access
macro.

After a CVAFDIR call, you may test the CVAF parameter list bit, CV1IVT, to
determine whether the VTOC is indexed or nonindexed.

Chapter 1. Managing the Volume Table of Contents (VTOC) 47

Specifying a Data Set Name to Read or Write a DSCB: 1f you want to read or write
a single DSCB by specifying only the data set name (that is, BFLEARG is zero)
you must specify either ACCESS=READ or ACCESS=WRITE.

Specify the address of the data set name in the DSN keyword. Specify the address
of the buffer list in the BUFLIST keyword. Each of these areas and the associated
buffers must be in your program’s protect key.

The buffer list must contain at least one buffer list entry with the skip bit off and a
pointer to a 96-byte buffer. You must not provide 140-byte buffers. You may
chain buffer lists together, but CVAF only uses the first eligible entry.

For an indexed VTOC, CVAF searches the index for the data set name and, if it is
found, puts the DSCB argument into the buffer list entry and uses it to read or
write the DSCB. If CVAF cannot find the data set name in the index, CVAF does
a key search of the VTOC.

For a nonindexed VTOC, CVAF uses a channel program to do a key search of the
VTOC to locate the data set name and read or write the DSCBs. If CVAF finds
the data set name, CVAF puts the DSCB argument into the buffer list entry.

The DSCB argument returned in the buffer list entry is in the format determined by
the buffer list entry bits BFLECHR or BFLETTR.

If CVAF does not find the data set name in the VTOC, it provides a return code of
'4' in register 15, and an error code of '1' in the CVSTAT field.

Specifying the DSCB Location: If you want to read or write a DSCB by specifying
the DSCB’s location (that is, BFLEARG), you must specify either
ACCESS=READ or ACCESS=WRITE.

Specify the address of the data set name in the DSN keyword. Specify the address
of the buffer list in the BUFLIST keyword. Each of these areas and the associated
buffer(s) must be in your program’s protect key.

The buffer list must have at least one buffer list entry with the skip bit off and a
pointer to a 96-byte or 140-byte buffer. You may chain buffer lists together, but
CVAF only uses the first eligible entry.

If the buffer is for a 96-byte read or write, CVAF issues a channel program to
verify that the key in the DSCB is the same as the 44-byte data set name you
provide. CVAF does not execute the read or write unless the keys match. If they
do not match, CVAF ignores the specified BFLEARG and reads or writes the
DSCB according to the rules given in “Specifying a Data Set Name to Read or
Write a DSCB” on page 48.

If the buffer is for a 140-byte read or write, CVAF issues a channel program to
read or write the DSCB at the location specified in the buffer list entry. CVAF
does not use the data set name you specified. If you specify VERIFY=YES,
CVAF verifies that the designated DSCB is a format-0 DSCB before issuing the
write channel program.

48 MVS/XA System—Data Administration

i\

Reading or Writing VTOC Index Records: You may read or write VIRs explicitly by
using the BUFLIST keyword. You may read them implicitly by using the IXRCDS
and MAPRCDS keywords. You may supply a buffer list address in the BUFLIST
keyword to read or write one or more VIRS. The buffer list header must have the
VIR bit set to one and the DSCB bit set to zero. CVAF inspects each entry in the
buffer list (and any chained extensions). If the skip bit is set to zero, the RBA bit
is set to one (and the CCHHR and TTR bits are set to zero), and the buffer
address is nonzero, CVAF processes the entry. CVAF uses the RBA in the
argument field of the buffer list entry to read or write a VIR using the buffer
address. CVAF processes read and write requests in the order of their appearance
in the buffer list.

Each of the storage areas you provide must be in your program’s protect key.

For a write request, CVAF inspects the modification bit in the buffer list entries. If
the bit is not set to '1' in any entry, CVAF writes all the entries. CVAF sets the
modification bit to zero for entries whose VIR is written.

If you specify the keywords MAPRCDS=YES and/or IXRCDS=KEEP and, at
the same time, you do not provide an address in the CVMRCDS/CVIRCDS fields
of the CVPL, CVAF reads the map records and the first high-level VTOC index
entry record.

Reading Map Records and VIERS: If you want to read the VTOC index map
records and first high-level VIER, and retain them in virtual storage, you must code
either ACCESS=READ or ACCESS=WRITE. CVAF does not require either the
DSN or BUFLIST fields.

If you want to read and retain map records, you must code MAPRCDS=YES. The
CVAF parameter list field CVMRCDS must be zero. CVAF obtains a buffer list
with the number of entries and buffers required to read all the map VIRs. CVAF
puts the buffer list address into the CVMRCDS field.

If you want to read and retain the first high-level VIER and (if this requires an
index search) all VIERSs read, you must code IXRCDS=KEEP. If the CVAF
parameter list field CVIRCDS is zero, CVAF obtains a buffer list with entries and
buffers, and reads the first high-level VIER. CVAF determines the number of
entries and buffers. If CVIRCDS is not zero, CVAF reads only the VIERs
required for an index search.

You can only ensure the integrity of the maps and VIER that CVAF reads if you
enqueue the VTOC and (for shared DASD) issue a reserve to the unit.

You must release the map and VIER buffers acquired and retained by CVAF by
issuing a subsequent CVAF call.

Releasing Buffers and Buffer Lists Obtained by CVAF: You may release buffers and
buffer lists acquired by CVAF in the three following ways:

« To free the MAP records buffer list, code MAPRCDS=NO or
MAPRCDS=(NO,addr) specifying any ACCESS.

¢ To free the index records buffer list, code IXRCDS=NOKEEP or
IXRCDS=(NOKEEP,addr) specifying any ACCESS.

Chapter 1. Managing the Volume Table of Contents (VTOC) 49

« Issue a CVAF call with ACCESS=RLSE, and specify a buffer list address with
the BUFLIST keyword.

CVAF frees all eligible buffers and any buffer lists if they become empty. Eligible
buffers are those pointed to by buffer list entries with the skip bit off. CVAF frees
a buffer list if none of its buffer list entries have the skip bit on. If buffer lists are
chained together, CVAF checks and frees all buffer lists if appropriate.

Ensure that you do not request CVAF to release the same buffer list twice by
specifying its address in more than one place.

Accessing DSNs or DSCBs in Sequential Order

Each CVAFSEQ call may request the return of one of the following:
e One format-1 or format-4 DSCB in indexed (data-set-name) order.

« One or more DSCBs in physical-sequential order (if you are unauthorized, you
can only request one DSCB).

o The next data set name in the index.

CVAF reads the DSCBs into buffers supplied with the BUFLIST keyword.
“CVAFSEQ Macro” on page 251 discusses detailed information about the
CVAFSEQ VTOC access macro.

Use the buffer list to specify the argument of each DSCB to be read. For indexed
access, you must request 96-byte DSCBs in the buffer list. For physical-sequential
access, you must request 140-byte DSCB:s.

If you select indexed order, CVAF returns each format-1 or format-4 DSCB whose
name is in the index. If you want CVAF to return only the data set names in the
index (not the DSCBs), specify DSNONLY=YES. In this case, CVAF returns the
CCHHR of the DSCB in the argument area supplied through the ARG keyword.
CVAF updates the DSN area you specify, with the data set name of each DSCB
read, each time you issue CVAFSEQ.

Initiating Indexed Access (DSN Order): To initiate indexed access (DSN order),
either supply in the area coded through the DSN keyword 44 bytes of binary zeros
(to indicate the first data set name in the index) or supply the data set name you
want to serve as the starting place for the index search.

The name that CVAF returns in the DSN area is the one equal to or greater than
the DSN supplied, depending on the specification of the ACCESS keyword.
CVAF updates the DSN field.

The ACCESS keyword determines whether the search is for a DSN greater than or
equal to that which you specify.

If you specify DSNONLY=NO, CVAF returns the DSCB and argument to you,
using the buffer list you provide with the BUFLIST keyword. CVAF uses the first
entry in the buffer list with the skip bit set to '0' and a nonzero buffer address.
You must specify the argument value if you set either the TTR or CCHHR bit in
the buffer list entry to '1'. The default is CCHHR. For indexed access, the DSCB
size in the buffer list entry must be 96 bytes.

50 MVS/XA System—Data Administration

A

If you specify DSNONLY=YES, you must specify the CCHHR argument in the
ARG area.

Note that the data set name of the format-4 DSCB is in the index and that CVAF
may return its name (44 bytes of X'04'). The format-4 DSCB’s name is likely to
be the first data set name in the VTOC index.

Initiating Physical-Sequential Access: To initiate physical-sequential access, you
must either specify DSN=0, or not specify the DSN parameter at all. To begin the
read, you must initialize the argument field in the first buffer list entry to zero or to
the argument of the DSCB. If the argument is zero, CVAF uses the argument of
the start of the VTOC.

You must set the DSCB size to 140 in buffer list entries.

The ACCESS= specification determines whether CVAF reads the DSCB whose
argument is supplied or the DSCB following it.

For example, to read the first DSCB (the format-4 DSCB) in the VTOC, you may
set the BFLEARG in the first buffer list entry to zero and specify
ACCESS=GTEQ in the CVAFSEQ macro. If you subsequently specify
ACCESS=GT, CVAF reads the second DSCB (the first format-5 DSCB).

If you are authorized, CVAF reads as many DSCBs as there are entries in the
buffer list, with a single CVAF call. If you are not authorized, CVAF only reads
one DSCB.

CVAF only uses one buffer list. CVAF does not inspect a second buffer list
chained from the first. If you are authorized, CVAF uses all entries in the buffer
list. CVAF does not inspect the skip bit. Each entry must have a buffer address,
the length field set to 140, and the TTR or CCHHR bit set to 1 (if neither bit is
set, CVAF sets the CCHHR bit on). If you are unauthorized, CVAF only uses the
first entry. CVAF updates the argument field of each buffer list entry with the
argument of the DSCB. The argument value is returned in either TTR or CCHHR
format, depending on whether you set the TTR or CCHHR bit to 1 in the buffer
list entry. The default is CCHHR.

CVAF uses only the argument in the first entry to begin the search. CVAF does
not inspect arguments in subsequent entries. If you specify a nonzero argument
value in the first entry, a DSCB with that argument must exist.

CVAF indicates an end-of-data condition by providing return code 4 in register 15,
and a value of X'20' in the CVSTAT field. CVAF sets the argument fields of all
buffer list entries following the last DSCB read, to zero (the first entry is zero if
CVAF does not read any DSCBs).

Note that CVAF reads all DSCBs, including format-0 DSCBs. You cannot be
certain that you have read all format-1 through format-6 DSCBs until CVAF had
read the entire VTOC. For a nonindexed VTOC, the format-4 DSCB field
DS4HPCHR contains the CCHHR of the last format-1 DSCB. Format-2 through
format-6 DSCBs may reside beyond that location. For an indexed VTOC, the
VMDS contains information about which DSCBs are format-0 DSCBs.

Chapter 1. Managing the Volume Table of Contents (VTOC) 51

Reading Sets of DSCBs with CVAF Filter

The CVAF filter service retrieves sets of DSCBs into buffers provided by the
calling program. The following text summarizes this service and its requirements.

You may invoke the CVAF filter service by issuing the CVAFFILT macro.
“CVAFFILT Macro” on page 245 describes the macro’s syntax and
parameters.

You request DSCBs by specifying either one or more fully qualified data set
names, or one partially qualified name. See “Filter Criteria List” on page 53
and “Examples of Partially Qualified Names for CVAFFILT” on page 250 for
further information.

For each of the qualifying data sets, CVAF Filter returns DSCBs in the order
that they are chained in the VTOC: format 1, format 2, then format 3. CVAF
does not return DSCBs of other formats.

CVAF filter service returns complete DSCB chains for one or more qualifying
data sets into caller-provided buffers. See ‘“Example of CVAFFILT Macro
Sequences” on page 57 and ‘“‘Example 3: Using the CVAFFILT Macro” on
page 271 for further information. CVAF filter service does not return a
partial DSCB chain:

— If you do not provide enough buffers to hold all of the requested DSCBEs,
CVAF filter service returns one or more complete DSCB chains and/or a
status code (CVSTAT in the CVPL). The status code indicates whether
or not you may use a “RESUME” CVAF call to retrieve the rest (or more)
of the requested DSCBs. See “RESUME Capability” for specific
information.

— If the total number of buffers provided is not sufficient to contain a data
set’s complete DSCB chain, CVAF filter service sets a status byte
(FCLDSNST in the FCL), ignores the data set, and processes the next
qualifying data set. You can avoid this situation by providing a minimum
of eleven DSCB buffers (enough for a data set at the 123 extent limit).

You must identify a single DASD volume in the CVAF parameter list (CVPL).
CVAF filter service supports both indexed and nonindexed VTOCs.

When calling CVAF, your program can be in either 24-bit or 31-bit addressing
mode. If it is in 31-bit mode, the control blocks shown in Figure 17 on

page 53 may reside above the 16Mb line. All these areas must be accessible in
your program’s storage key.

RESUME Capability: 1f CVAF filter service terminates before returning a data
set’s DSCBs because you did not provide enough buffers, CVAF filter service
saves the information necessary for a RESUME function in the filter save area
(You must specify FLTAREA=KEEP on the initial CVAFFILT call to cause
CVAF filter service to obtain and keep the filter save area).

To allow RESUME processing to execute correctly, you must maintain the
relationship between the requested volume (identified by CVDEB, CVUCB, or a
kept IOAREA), your FCL, and CVAF’s FSA. If you observe this requirement,
you can initiate and resume multiple CVAF filter service operations

52 MVS/XA System—Data Administration

asynchronously on one or more DASD volumes. You can ensure this relationship
by providing a unique CVPL and FCL for the duration of the
READ/RESUME/RELEASE sequence associated with each logical request.

If you issue an ACCESS=RESUME without having previously specified
FLTAREA=KEEP, CVAF filter service provides return code '4' in register 15
and '66' in the CVSTAT field.

If you specify FLTAREA=KEEP, you must issue a subsequent CVAFFILT call
with the ACCESS=RLSE keyword to release the filter save area storage.

Reg 1 — CVPL

CVFCL > FCL
FLCH
CVBUFL——» BFL
BFLH FCLDSN
BFLE FCLDSNA—}—» DSN
BFLEBUF——» DSCB FCLDSN—L,
Buffer
BFLE——L FCLDSNA——» DSN
BFLEBUF——» DSCB
Buffer
FCLDSN
BFLE FCLDSNA——> DSN
BFLEBUF——» DSCB
Buffer

Figure 17. Control Blocks Required for CVAF Filter Services

Filter Criteria List

The filter criteria list consists of two kinds of elements; a list header, and a variable
number of list entries. The list entries immediately follow the header, and each
entry represents a different data set name to be processed by CVAF filter. The
header and entries, shown in Figure 18 and Figure 19 are mapped by the
ICVFCL macro. The format of the FCL header is shown in Figure 18.

Chapter 1. Managing the Volume Table of Contents (VTOC) 53

Name Offset Bytes Description
FCLID 00(X'00") 4 EBCDIC 'FCL !
FCLCOUNT 04(X'04') 2 Number of data set name entries provided in the list.
FCLDSCBR 06(X'06") 2 Number of DSCBs returned
FCL1FLAG 08(X'08') 1 Request flag byte
FCLI1LIST X'80' List contains fully qualified data set names
FCL1ORDR X'40' FCL data set name order requested
..XX XXXX Reserved
FCL2FLAG 09(X'09') 1 Status flag byte
FCL2SEQ X'80' CVAFFILT executed sequential VTOC access
FCL2SDIR X'40' CVAFFILT executed sequential VTOC access, but did at least
one direct DSCB read
..XX XXXX Reserved
FCLDRSV 10(X'0A') 6 Reserved
Figure 18. Format of a Filter Criteria List (FCL) Header

54

FCLID
Must be a 4-character EBCDIC constant of '"FCL '.

FCLCOUNT

Specifies the number of data set name entries (FCLDSN) supplied in the list.

You must not change this parameter between the initial CVAFFILT call and
any subsequent RESUME operations.

« When you specify a partially-qualified data set name, you must specify
FCLCOUNT = 1. See “Examples of Partially Qualified Names for
CVAFFILT” on page 250 for the format of partially qualified data set
names.

« When you specify a list of fully qualified names, CVAFFILT processes
only the number of names specified in FCLCOUNT.

FCLDSCBR
Indicates the total number of DSCB entries (including format-1, format-2,
and format-3) returned to the caller’s buffers by a single CVAFFILT call.

Because CVAF may encounter an error after successfully processing a data
set, you may:

1. Initialize FCLDSCBR to 0 before each READ and RESUME call.

2. Upon return from CVAF filter service, process the number of DSCBs
indicated by FCLDSCBR,.

3. Then, interpret the CVAF return code and CVSTAT.
FCL1FLAG
Define your request for ACCESS=READ with this flag byte. Any

subsequent RESUME requests refer to a copy of these bits in the filter save
area (FSA).

MVS/XA System—Data Administration

FCL1LIST
Set this bit to 1 if you specify a list of fully qualified data set names.
Set it to O if you specify a single partially qualified data set name.

FCL1ORDR
If you specify that CVAF return DSCB chains in the data set name
sequence implied by the placement of the FCLDSN elements, set this
bit to 1. Note that:

« If you allow CVAF to determine the sequence of return for
format-1 DSCBs, you may realize a performance gain.

¢« CVAF always returns DSCBs for a given data set in format-1,
format-2, format-3 order.

« If you specify a single partially-qualified data set name, CVAF
filter does not use this field.

FCL2FLAG
CVAF filter indicates the following status conditions in this byte.

FCL2SEQ
CVAF filter sets this bit to 1 if it determines that its sequential VTOC
access path is most efficient. If CVAF filter selects the direct VTOC
access path, it sets this field to 0.

FCL2SDIR
CVAF filter sets this bit to 1 if storage limitations within its sequential
VTOC access path require direct DSCB reads. CVAF initializes this
bit to 0 on each ACCESS=READ and ACCESS=RESUME request.
You may test this bit when CVAPF filter returns control to you, to
determine if you must take some action to relieve the storage
limitation.

Chapter 1. Managing the Volume Table of Contents (VTOC) 55

The format of the FCL entry is shown in Figure 19.

Name Offset

FCLDSN 16(X'10')
FCLDSNST 00(X'00')

FCLDSNLG 01(X'01')
FCL3FLAG 02(X'02')
FCL3UPDT

FCLDSNRV 03(X'03')
FCLDSNA 04(X'04')

Bytes Description

8 Data set name information entry

1 Data set name status

X'00! Data set name not yet processed

X'01! DSCB:s returned successfully

X'02' Data set name not found

X'03! Error in DSCB chain. RESUME function recommended.

X'04' Error in CVAFFILT processing. RESUME not recommended.

X'05' Insufficient user buffer list elements. RESUME function
recommended.

1 Data set name length

1 Flag byte

X'80! This data set name processed during this invocation

XXX XXXX Reserved

1 Reserved

4 Data set name address

Figure 19. Format of a Filter Criteria List (FCL) Entry

FCLDSN

Contains data set name information. This, and the following fields are
repeated in the FCL as a “set,”” as many times as indicated by the value in
FCLCOUNT.

FCLDSNST

Indicates DSCB retrieval status.

« CVAF filter initializes this byte to 0 for ACCESS=READ
requests.

o CVAF filter updates this byte after processing this data set name
for either ACCESS=READ or ACCESS=RESUME.

« ACCESS=RESUME requests do not process data set names
whose FCLDSNST field is non-zero, thus results may be
unpredictable if you alter this field.

« For partially-qualified data set name requests, CVAF filter does
not post the FCLDSNST field until it has returned all DSCB
chains for all qualifying data sets. CVATF filter posts the highest
numeric value which applied during the its processing.

« For fully-qualified data set name requests, CVAF filter returns a
FCLDSNST byte for each data set name. If the value is greater
than 1, CVAF filter has not returned any DSCBs for the
associated data set name.

See Figure 19 for the meanings of the possible values in this field.

56 MVS/XA System—Data Administration

-~

FCLDSNLG
Indicates length of data set name. You must provide this value.

FCL3FLAG

This is the status flag byte associated with the data set name pointed
to by FCLDSNA.

FCL3UPDT
This bit indicates that CVAF filter processed the associated
data set name during the current invocation of CVAFFILT.

o When initializing for either a READ or RESUME request,
CVAF filter sets this bit to 0.

« When CVAF filter has completed processing for the
associated data set name, it sets this bit to 1.

FCL3DSNRV
Reserved, unused.

FCLDSNA
Specifies the address of a fully-qualified data set name, or, if this is the
only data set name and FCL1LIST is 0, a partially-qualified data set
name. You must provide both this address and the storage area to
which it points.

Example of CVAFFILT Macro Sequences: The following example demonstrates the
order in which you might issue CVAFFILT macro calls to:

1. Request the DSCBs for a list of data sets.

2. Resume CVAFFILT processing interrupted because of insufficient user
buffers.

3. Release the kept filter save area.
The example assumes the following conditions:

« You are an authorized caller (that is, you are specifying a UCB address and
IOAREA=KEEP).

¢ You have initialized a CVAF buffer list as follows:
— You have specified four buffers.

— You have defined the buffer list address in your program with the label
'BUFADDR'.

— You will use the same buffer list for ACCESS=READ and
ACCESS=RESUME processing.

¢ You have initialized a filter criteria list (FCL) as follows:

— FCLCOUNT = 6 (You are requesting DSCB chains for six data set
names.)

Chapter 1. Managing the Volume Table of Contents (VTOC) 57

— FCLI1LIST = '1'B (The data set names are fully qualified.)

— FCL1ORDR = '1'B (You want the DSCB chains returned in the order
implied by data set name elements in the FCL.)

— You have initialized each of the six data set name elements such that they
form a list requesting SYS1.A, SYS2.B, SYS3.C, SYS4.D, SYSS.E, and
SYS6.F respectively.

o The first five data sets have DSCB chain lengths or 1, 5, 2, 3, and 1
respectively on the volume.

¢ The sixth data set (SYS6.F) is not defined on the volume.

To obtain an initialized CVPL, you could issue the following CVAFFILT macro
(list form—does not call CVAF). This example requests the branch entry to
CVAF and specifies that the caller is in supervisor state.

CVPLIST CVAFFILT BRANCH=(YES,SUP) , MF=L

To obtain the first set of DSCB chains, you could issue the following CVAFFILT
macro (execute form—calls CVAF). This example specifies that the filter save
area is to be kept to allow for ACCESS=RESUME calls. The IOAREA is to be
kept for improved efficiency.

CVAFFILT ACCESS=READ,BUFLIST=bufaddr,FCL=fcladdr,

UCB=ucbaddr , FLTAREA=KEEP, IOAREA=KEEP,
MF=(E,CVPLIST)

This CVAFFILT call would return DSCBs as follows:

Buffer Contents of Buffer
1 Format-1 DSCB, SYS1.A
2 Format-1 DSCB, SYS3.C
3 Format-3 DSCB, SY¥S3.C
4 Undefined (unused)

CVAF filter would provide return code = 4, CVSTAT = X'40' (RESUME
recommended), and FCLDSCBR = 3 (CVAF would return a total of three
DSCB:s for the two data sets). CVAF would not return DSCBs for data set
SYS2.B because its chain contains more DSCBs than the total number of buffers
provided. To retrieve SYS2.B’s DSCBs, you would have to specify at least five
buffers AND execute another ACCESS=READ. (Even though CVAF allows you
to specify a different buffer list for each READ OR RESUME, or modify the
existing list between READ and RESUME calls, modifying the FCL would result
in unpredictable results.) Buffer entry 4 would not have any DSCBs returned,
because SYS4.D’s DSCB chain size is larger than the number of remaining buffers.
The FCL status information would be as follows:

DSN FCLDSNST FCL3UPDT Comments

SYS1.A 1 1 DSCBs returned from this call
SYS2.B 5 1 DSCB chain exceeds total buffers
SYsS3.C 1 1 DSCBs returned from this call
SYS4.D 0 0 DSCBs may be returned by RESUME
SYSS5.E 0 0 DSCBs may be returned by RESUME
SYS6.F 0 0 DSCBs may be returned by RESUME

58 MVS/XA System—Data Administration

Because this CVAFFILT invocation recommends RESUME, and you specified
FLTAREA=KEEDP, you could use the following execute form of CVAFFILT to
obtain more DSCB chains:

CVAFFILT ACCESS=RESUME, MF=(E,CVPLIST)

This CVAFFILT call would return DSCBs as follows:

Buffer Contents of Buffer

1 Format-1 DSCB, SYS4.D
2 Format-2 DSCB, SYS4.D
3 Format-3 DSCB, SYS4.D
4 Format-1 DSCB, SYS5.E

CVAF filter would provide return code = 0, CVSTAT = 0 (request completed),
and would have updated the FCL status as follows:

DSN FCLDSNST FCL3UPDT Comments

SYS1.A 1 0 DSCBs returned from prior call
SYS2.B 5 0 DSCB chain exceeds total buffers
SYs3.C 1 0 DSCBs returned from prior call
SYS4.D 1 1 DSCBs returned from this call
SYS5.E 1 1 DSCBs returned from this call
SYS6.F 2 1 Data set name not found

FCLDSCBR would contain 4. (This CVAFFILT call returned a total of four
DSCBs.) CVAF Filter would not return any DSCBs for SYS6.F, because its
format-1 DSCB cannot be found on the volume (FCLDSNST = '2').

Because this status indicates that CVAF Filter has returned all requested DSCBs,
and you requested FLTAREA=KEEP and IOAREA=KEEP on the previous call,
you should request the RLSE function as follows:

CVAFFILT ACCESS=RLSE,FLTAREA=NOKEEP, IOAREA=NOKEEP,
MF=(E,CVPLIST)

Obtaining Information from the VTOC Index

You may use ACCESS=MAPDATA to obtain information contained in the space
maps. “CVAFDSM Macro” on page 239 discusses detailed information about the
CVAFDSM VTOC access macro.

To count the number of unallocated VIRs in the VTOC index space map (VIXM),
you must code COUNT=YES and MAP=INDEX. CVAF returns the number of
unallocated VIRs in the 4-byte area specified by the CTAREA keyword.

To count the number of format-0 DSCBs, you must code COUNT=YES and
MAP=VTOC. CVAF returns the number of format-0 DSCBs in the VTOC map
of DSCBs VMDS in the 4-byte area specified by the CTAREA keyword.

To obtain one or more free space extents from the VTOC pack space map
(VPSM), you must code COUNT=NO and MAP=VOLUME. CVAF returns the
extents in the area specified by the EXTENTS keyword. Each extent is returned in
a 5-byte XXYYZ format, the same as for a format-5 DSCB extent, where XX is
the relative track address (RTA) of the first track of the extent, YY is the number
of whole cylinders in the extent, and Z is the number of additional tracks in the
extent. The RTA specified by your program to CVAF in the first (or only) extent

Chapter 1. Managing the Volume Table of Contents (VIOC) 59

serves as a starting point for the VPSM search; the extent returned is the next free
extent with a higher starting RTA than the one your program specified. £

If all the unallocated extents in the VPSM are supplied before filling in all the
extents supplied, the remaining extents are set to zero. CVAF provides return code
4 in register 15 and indicates end-of-data condition by putting a value of X'20"' in
the CVSTAT field.

Diagnosing VTOC Errors

Actions Taken When an Error Occurs

These actions are taken if an error occurs:

« If an index structure error is detected, DADSM or CVAF causes the VITOC
index to be disabled. The indexed VTOC bit is zeroed in the format-4 DSCB.
A software error record is written to SYS1.LOGREC. A system dump is
taken. The VTOC is converted to a nonindexed format at the next DADSM
allocate or extend call.

o If a program check, machine check, or other error occurs while using a VTOC
access macro, a SYS1.LOGREC message is written, and a system dump is
taken.

* An error code is put in the CVSTAT field of the CVPL. The values and
explanations of these error codes are listed in Appendix C, ‘“VTOC Index
Error Message and Associated Codes™ on page 297.

Recovering from System or User Errors

60

Because an unauthorized user cannot modify a VTOC, neither the VTOC nor the
VTOC index need be recovered from a user error caused by an unauthorized user.

A system error affects a VTOC and VTOC index, probably by interrupting
DADSM while it is updating, thus leaving the VTOC and/or the VTOC index in a
partially updated state. Both the VTOC and the VTOC index are designed to
allow DADSM to recover from such an interruption.

For a nonindexed VTOC (or a VTOC with an index that has been disabled), a
subsequent call to DADSM ALLOCATE or EXTEND causes VTOC convert
routines to reestablish the free space (format-5 DSCBs).

For an indexed VTOC, a subsequent call to any DADSM function causes the
recovery of the previous interrupt (either by backing out or completing the
interrupted function).

MVS/XA System—Data Administration

GTF Trace
A trace function exists to trace all CVAF calls for VTOC index output I/0, all

VTOC output I/0, and all VTOC index and space map modifications. For
information on this function, see DFP Diagnosis.

Listing a VTOC and VTOC Index

You may obtain dump, formatted, or abridged listings of the VTOC and the VTOC
index by using the LISTVTOC command of the IEHLIST utility program.

Chapter 1. Managing the Volume Table of Contents (VTOC) 61

A

Chapter 2. Executing Your Own Channel Programs (EXCP)

The execute-channel-program (EXCP) macro instruction provides you with
complete control of the data organization based on device characteristics. This
chapter contains a general description of the function and application of the EXCP
macro instruction, accompanied by descriptions of specific control blocks and
macro instructions used with EXCP. Factors that affect the operation of EXCP,
such as device variations and program modification, are also discussed.

Before reading this chapter, you should be familiar with system functions and with
the structure of control blocks, as well as with the operational characteristics of the
I/0 devices required by your channel programs. Operational characteristics of
specific I/O devices are described in IBM publications for each device.

You also need to understand the information in these publications:

o Data Administration Guide contains the standard procedures for I/O processing
under the operating system.

o Assembler H Version 2 Application Programming: Guide contains the
information necessary to code programs in the assembler language.

o Data Administration: Macro Instruction Reference describes the system macro
instructions that can be used in programs coded in the assembler language.

o Conversion Notebook describes the factors to consider when converting from
MVS/370 at the MVS/SP Version 1 level to MVS/XA.

The execute-channel-program (EXCP) macro instruction causes a supervisor-call
interruption to pass control to the EXCP processor. (I/0 process is the name we
will use for the EXCP processor and the I/O supervisor. For our purposes, it’s
unnecessary to understand how input/output processing is divided between the
two.) EXCP also provides the I/O supervisor with control information regarding a
channel program to be executed. When an IBM access method is being used, an
access method routine is responsible for issuing EXCP. If you are not using an
IBM access method, you must issue EXCP in your program. (The EXCP macro
instruction cannot be used to process SYSIN or SYSOUT data sets.)

You issue EXCP primarily for I/O programming situations to which the standard
access methods do not apply. If you are writing your own access method, you must
include EXCP for I/0 operations. EXCP must be used for processing
nonstandard labels, including reading and writing labels and positioning magnetic
tape volumes.

To issue EXCP, you must provide a channel program (a list of channel command
words) and several control blocks in your program area. The I/0 process then

Chapter 2. Executing Your Own Channel Programs (EXCP) 63

schedules 1/0 requests for the device you have specified, executes the specified)
1/0 commands, handles 1/O interruptions, directs error recovery procedures, and A
posts the results of the I/O requests. N

Using EXCP in System and Problem Programs

This section explains the procedures performed by the system and the programmer
when EXCP is issued by the routines of IBM access methods. The additional
procedures you must perform when issuing EXCP yourself are then described by
direct comparison.

How the System Uses EXCP

When using an IBM access method to perform I/O operations, the programmer is
relieved of coding channel programs and constructing the control blocks necessary
for the execution of channel programs. To permit I/O operations to be handled by
an access method, the programmer need only issue the following macro
instructions:

¢ A DCB macro instruction that produces a data control block (DCB) for the
data set to be retrieved or stored

« An OPEN macro instruction that initializes the data control block and
produces a data extent block (DEB) for the data set

« A macro instruction (for example, GET or WRITE) that requests I/0
operations

Access method routines will then:

1. Create a channel program that contains channel commands for the I/0
operations on the appropriate device

2. Construct an input/output block (IOB) that contains information about the
channel program

3. Construct an event control block (ECB) that is later posted with a completion
code each time the channel program terminates

4. Issue an EXCP macro instruction to pass the address of the IOB to the routines
that initiate and supervise the I/O operations

The I/0 process consists of:
5. Constructing a request queue element (RQE) for scheduling the request
6. If the requestor is in a V=V address space, fixing the buffers so that they

cannot be paged out and translating the requestor’s virtual channel program
into a real channel program

7. Issuing a start subchannel (SSCH) instruction to cause the channel to execute
the real channel program

64 MVS/XA System—Data Administration

8. Processing I/0 interruptions and scheduling error recovery procedures when
necessary

9. Posting a completion code in the event control block after the channel program
has been executed

Note: If the requestor is an authorized program in a V=R address space, a real
channel program is provided; thus, item 6 is not performed.

The programmer is not concerned with these procedures and does not know the
status of I/O operations until they are completed. Device-dependent operations
are limited to those provided by the macro instructions of the particular access
method selected.

How To Use EXCP in Problem Programs

To issue the EXCP macro instruction directly, you must follow the procedures that
the access methods would perform, as summarized in items 1 through 4 of the
preceding discussion. In addition to constructing and opening the data control
block with the DCB and OPEN macro instructions, you must construct a channel
program, an input/output block, and an event control block before you can issue
EXCP. The 1/0 process generally handles items 5 through 9.

After issuing EXCP, you should issue a WAIT macro instruction, specifying the
address of the event control block, to determine whether the channel program has
terminated. If volume switching is necessary, you must issue an EOV macro
instruction. When all processing of the data set has been completed, you must
issue a CLOSE macro instruction to restore the data control block.

All external interfaces for EXCP are compatible between MVS/370 and
MVS/XA, except for the restrictions noted below. These restrictions relate only to
the support of virtual and real addresses above 16 megabytes.

EXCP will be available to programs executing in either 24-bit or 31-bit addressing
mode. However, in order to maintain the required compatibility, the following
restrictions apply:

« EXCP will only support a 24-bit virtual storage interface. In addition, all areas
related to 1/0 operations (for example, I/O buffers, channel command words,
I0Bs, DEBs, appendages, and so forth), must remain 24-bit virtual
addressable. EXCP (channel command word translator) will allow 24-bit
virtual I/O buffers to be fixed above 16-megabyte real. When a channel
command word (CCW) references a real address above 16-megabyte, the
CCW translator will build an indirect addressing word (IDAW) for that CCW.
Note that this is not supported for format-1 CCWs. All virtual addresses must
be below 16-megabyte. For V=R users, CCWs and IDAWs must be below
16-megabyte real.

e Only format-0 CCWs are accepted as input.

« All user-specified appendage routines are given control in 24-bit addressing
mode and must return in the same mode.

Chapter 2. Executing Your Own Channel Programs (EXCP) 65

Note: Access methods run in 24-bit addressing mode. Users running in 31-bit
mode must interface to the access methods by using a user-written routine that is
resident below 16-megabyte virtual (because the access methods will be able to
return control only to a 24-bit addressable location). All addresses, buffers,
parameters, control blocks, save areas and exit addresses must be below
16-megabyte virtual. All access methods (except VSAM), for example, GET or
PUT, must be called in 24-bit addressing mode.

31-Bit IDAW Requirements

A virtual channel program provided by the EXCP caller may have one or more
CCWs with the IDA flag set and the address portion of these CCWs pointing to a
single 4-byte IDAW. This EXCP function is referred to as virtual IDAWs.

The 4-byte IDAW can contain a virtual address that ranges from 0 to the maximum
31-bit address. Virtual IDAWSs are supported on all virtual CCWs except:

o Transfer in channel (TIC) commands.

» All non data-transfer type commands: for example, recalibrate, rewind, set
space, fold, block data check, no operation, control commands.

¢ Read, read backward, and sense commands, with the skip flag set.

The same addressing restrictions apply to EXCPVR inputs with the exception that
31-bit real data areas may be specified by the user-created CCWs through the use
of IDAWs. All CCWs and IDAWSs must be below 16-megabyte real.

Only format-0 CCWs are accepted as input.

All other areas related to the EXCP/EXCPVR I/0 operation (for example,

CCWs, IDAWSs, I0Bs, DEBs, DCBs, appendages, and so forth) must remain 24-bit
addressable.

Note, however, that the EXCP processor will allow both 24-bit and 3 1-bit virtual
I/0 buffers to be fixed above 16-megabyte real.

How EXCP Operates in a V=R Address Space

User-constructed channel programs for 1/0 operations of an authorized program in
a V=R address space are not translated. Because the address space is V=R, any
CCWs created by the user have correct real data addresses. (Translation would
only re-create the user’s channel program, so the CCWs are used directly.)

Modification of an active channel program by data read in or by processor
instructions is legitimate in a V=R address space, but not in a V=V address space.

66 MVS/XA System—Data Administration

EXCP Requirements

Channel Program

Control Blocks

Input/Qutput Block (IOB)

This section describes the channel program that you must provide in order to issue
EXCP. This section also describes the control blocks that you must either directly
construct or cause to be constructed by using macro instructions.

All areas related to the EXCP/EXCPVR 1/0 operation (for example, CCWs,
IDAWs, I0Bs, DEBs, DCBs, appendages, and so forth) must remain 24-bit
addressable.

Note, however, that the EXCP processor will allow both 24-bit and 31-bit virtual
1/0 buffers to be fixed above 16-megabyte real.

The channel program supplied by you and executed through EXCP is composed of
CCWs on doubleword boundaries. Each channel command word specifies a
command to be executed and, for commands initiating data transfer, the area to or
from which the data is to be transferred.

Channel command word operation codes used with specific I/O devices can be
found in IBM publications for those devices. All channel command word operation
codes described in these publications can be used. In addition, both data chaining
and command chaining may be used.

To specify either data chaining or command chaining, you must set appropriate bits
in the channel command word and indicate the type of chaining in the input/output
block. Both data and command chaining should not be specified in the same
channel command word; if they are, data chaining takes precedence.

EXCP does not support channel programs that modify themselves, regardless of
the method of modification: data chaining, command chaining, or a program to do
the modification. The intended modification in virtual storage has no effect on the
running real-channel program (see ‘“Modification of a Channel Program during
Execution” on page 70).

When using EXCP, you must be familiar with the function and structure of the
IOB, the ECB, the DCB, the DEB, and the IDAW. IOB and ECB fields are
illustrated under ‘“Control Block Fields” on page 88. DCB fields are illustrated
under ‘“Macro Speciﬁcations for Use with EXCP” on page 73. The handling of
IDAWs is described under “SIO Appendage” on page 95. Descriptions of these
control blocks follow.

The input/output block is used for communication between the problem program
and the system. It provides the addresses of other control blocks, and maintains
information about the channel program, such as the type of chaining and the
progress of I/0 operations. You must define the input/output block and specify
its address as the only parameter of the EXCP macro instruction.

Chapter 2. Executing Your Own Channel Programs (EXCP) 67

Event Control Block (ECB)

The event control block provides you with a completion code that describes
whether the channel program was completed with or without error. A WAIT
macro instruction, which can be used to synchronize 1/0O operations with the
problem program, must identify the event control block. You must define the
event control block and specify its address in the input/output block.

Data Control Block (DCB)

The data control block provides the system with information about the
characteristics and processing requirements of a data set to be read or written by
the channel program. A data control block must be produced by a DCB macro
instruction that includes parameters for EXCP. If you are not using appendages, a
short DCB is constructed. Such a DCB does not support reduced error recovery.
You specify the address of the data control block in the input/output block.

All DCBs must be located in storage that is not fetch-protected, or, if the task is
authorized, in storage that is in the key of the task (TCB KEY).

Data Extent Block (DEB)

The data extent block contains one or more extent entries for the associated data
set and other control information. An extent defines all or part of the physical
boundaries on an I/0 device occupied by, or reserved for, a particular data set.
Each extent entry contains the address of a unit control block (UCB) that provides
information about the type and location of an I/O device. More than one extent
entry can contain the same UCB address. For all I/O devices supported by the
operating system, the data extent block is produced during execution of the OPEN
macro instruction for the data control block. The system places the address of the
data extent block into the data control block. All DEBs must be located in storage
that is not fetch-protected, or, if the task is authorized, in storage that is in the key
of the task (TCB key). Only authorized tasks (APF-authorized or TCB PKF=0-7)
may build DEBs to be used for I/O operations.

How the Channel Program Executes

This section explains how the system uses your channel program and control blocks
after you issue EXCP.

Initiation of the Channel Program
By issuing EXCP, you request the execution of the channel program specified in
the input/output block. The I/0 process validates the request by checking certain
fields of the control blocks associated with this request. If the I/O process detects
invalid information in a control block, it initiates abnormal termination procedures.
The EXCP processor gets:
« The address of the data control block from the input/output block

« The address of the data extent block from the data control block

68 MVS/XA System—Data Administration

Fa

PR

« The address of the unit control block from the data extent block

It places the IOB, TCB, DEB, and UCB addresses and other information about the
channel program into an area called a request queue element (RQE). (Unless you
are providing appendage routines (described under “Appendages’ on page 71)
you should not be concerned with the contents of RQEs.)

If you have provided an SIO (start 1/0O) appendage, the EXCP processor now
passes control to it. The return address from the SIO appendage determines
whether the EXCP processor must:

« Execute the I/O operation normally, or
« Skip the I/O operation.

For a description of the SIO appendage and its linkage to the EXCP processor, see
“Appendages” on page 71.

If you are issuing EXCP from a V=V address space, the channel program you
construct contains virtual addresses. Because channel subsystems cannot use
virtual addresses, the EXCP processor must:

o Translate your virtual channel program into one that uses only real addresses.

« Fix in real storage the pages used as I/O areas for the data transfer operations
specified in your channel program.

The EXCP processor builds the translated (real) channel program in a portion of
real storage.

For direct access devices, specify the seek address in the input/output block. The
I/0O supervisor constructs a CCW chain to issue the seek and the set file mask
specified in the data extent block, and to pass control to your real channel program.

If your channel program begins with a locate-record CCW, the 1/0 process builds
a define-extent CCW and passes control to your real channel program. (You
cannot issue the initial seek, set file mask, or define extent CCWs. The file mask is
set to prohibit seek-cylinder CCWs, or, if space is allocated by tracks, seek-head
commands. If the data set is open for INPUT, write CCWs are also prohibited.)

For a magnetic tape device, the I/0 supervisor constructs a CCW chain to set the
mode specified in the data extent block and passes control to your real channel
program. (You cannot set the mode yourself.)

If the I/O device is other than a direct access device or a magnetic tape device, the

I/0 supervisor then places the starting CCW of the channel program into the
operation request block (ORB) and issues a start subchannel (SSCH) instruction.

Chapter 2. Executing Your Own Channel Programs (EXCP) 69

Modification of a Channel Program during Execution

Any problem program that modifies an active channel program with processor
instructions or with data read in by an I/O operation must be run in a V=R
address space. It cannot run in a V=V address space because of the channel
program translation performed by the I/O supervisor. (In a V=V address space,
an attempt to modify an active channel program affects only the virtual image of
the channel program, not the real channel program being executed by the channel
subsystem.)

A program of this type can be changed to run in a V=V address space by i 1ssu1ng
another EXCP macro for the modified portion of the channel program.

Completion of Execution

The system considers the channel program completed when it receives an
indication of a channel-end condition in the subchannel status word (SCSW).

Unless a CHE (channel-end) or ABE (abnormal-end) appendage directs otherwise,

the request queue element for the channel program is made available, and a
completion code is placed into the event control block. The completion code
indicates whether errors are associated with channel end. If device end occurs
simultaneously with channel end, errors associated with device end (that is, unit
exception or unit check) are also accounted for.

If device end occurs after channel end and if an error is associated with device end,

the completion code in the event control block does not indicate the error.
However, the status of the unit and channel is saved by the 1/O supervisor for the
device, and the UCB is marked as intercepted. The input/output block for the
next request directed to the I/O device is also marked as intercepted. The error is
assumed to be permanent, and the completion code in the event control block for
the intercepted request indicates interception. The DCBIFLGS field of the data
control block is also flagged to indicate a permanent error. Note that, if a
write-tape-mark or erase-long-gap CCW is the last or only CCW in your channel
program, the I/O process will not attempt recovery procedures for device end
errors. In these circumstances, command chaining a NOP CCW to your
write-tape-mark or erase-long-gap CCW ensures initiation of device-end error
recovery procedures.

To be prepared for device-end errors, you should be familiar with device
characteristics that can cause such errors. After one of your channel programs has
terminated, you should not release buffer space until you have determined that
your next request for the device has not been intercepted. You may reissue an
intercepted request.

Interruption Handling and Error Recovery Procedures

An I/0 interruption allows the processor to respond to signals from an 1/0 device
that indicate either termination of a phase of I/O operations or external action on
the device. A complete explanation of I/0 interruptions is contained in IBM
System/370 Principles of Operation. For descriptions of interruption by specific
devices, see the IBM publications for each device.

70 MVS/XA System—Data Administration

Appendages

If error conditions are associated with an interruption, the 1/O supervisor schedules
the appropriate device-dependent error routine. The channel subsystem is then
restarted with another request that is not related to the channel program in error.
(The following paragraphs discuss “related” channel programs.) If the error
recovery procedures fail to correct the error, the system places ones in the first two
bit positions of the DCBIFLGS field of the data control block. You are informed
of the error by an error code in the event control block.

If a channel program depends on the successful completion of a previous channel
program (as when one channel program retrieves data to be used in building
another), the previous channel program is called a “related” request. Such a
request must be identified to the EXCP processor. To find out how to do this, see
“Input/Output Block (IOB) Fields” on page 89 and “Purging and Restoring I/O
Requests” on page 156.

If a permanent error occurs in the channel program of a related request, the EXCP
processor removes the request queue elements for all dependent channel programs
from their queue and makes them available.

The related request queue (RRQ) reflects the order in which request queue
elements are removed from their queue.

For all requests dependent on the channel program in error, the system places
completion codes into the event control blocks. The DCBIFLGS field of the data
control block is also flagged. Any requests for a data control block with error flags
are posted complete without execution. To reissue requests dependent on the
channel program in error, you must reset the first two bits of the DCBIFLGS field
of the data control block to zeros. You then reissue EXCP for each channel
program desired.

With the IBM 3800 Printing Subsystem, a cancel key or a system-restart-required
paper jam causes both a lost data indicator to be set in DCBIFLGS and a lost page
count and channel page identifier to be stored in the UCB extension. (See JES3
Data Areas, TSO/E Data Areas, and IBM 3800 Printing Subsystem Programmer’s
Guide.)

The detailed information about appendages that appeared in this section has been
moved to Data Facility Product: Customization.

An appendage is a user-written routine that provides additional control over I/O

operations. By using appendages, you can examine the status of I/O operations
and determine the actions to be taken for various conditions.

Chapter 2. Executing Your Own Channel Programs (EXCP) 71

Channel Programming Considerations

Command retry is a function of the channel supporting the IBM 2305-2,
3330/3333, 3340/3344, 3350, 3375, and 3380 direct access devices. When the
channel subsystem receives a retry request, it repeats the execution of the CCW,
requiring no additional input/output interrupts. For example, a control unit may
initiate a retry procedure to recover from a transient error.

A command retry during the execution of a channel program may cause any of the
following conditions to be detected by the initiating program:

Modifying CCWs: A CCW used in a channel program must not be modified
before the CCW operation has been successfully completed. Without the
command retry function, a command was fetched only once from storage by a
channel. Therefore, a program could determine through condition codes or
program controlled interruptions (PCI) that a CCW had been fetched and
accepted by the channel. This permitted the CCW to be modified before
reexecution. With the command retry function, this cannot be done, because
the channel will fetch the CCW from storage again on a command retry
sequence. In the case of data chaining, the channel will retry commands
starting with the first CCW in the data chain.

Program Controlled Interrupts (PCI): A CCW containing a PCI flag may cause
multiple program-controlled interrupts to occur. This happens if the
PCI-flagged CCW was retried during a command retry procedure and if a PCI
could be generated each time the CCW is reexecuted.

Residual Count: If a channel program is prematurely terminated during the
retry of a command, the residual count in the channel status word (CSW) will
not necessarily indicate how much storage was used. For example, if the
control unit detects a “wrong-length record” error condition, an erroneous
residual count is stored in the CSW until the command retry is successful.
When the retry is successful, the residual in the CSW reflects the correct length
of the data transfer.

Command Address: When data chaining with command retry, the CSW may
not indicate how many CCWs have been executed at the time of a PCI. For
example:

CCW# Channel Program
1 Read, data chain
2 Read, data chain
3 Read, data chain, PCI
4 Read, command chain

In this example, assume that the control unit signals command retry on Read
#3 and the processor accepts the PCI after the channel resets the command
address to Read #1 because of command retry. The CSW stored for the PCI
will contain the command address of Read #1 when the channel has actually
progressed to Read #3.

Testing Buffer Contents on Data Read: Any program that tests a buffer to
determine when a CCW has been executed and continues to execute based on

72 MVS/XA System—Data Administration

P
A W

—
\ j

this data may get incorrect results if an error is detected and the CCW is

(’ : retried.

Macro Specifications for Use with EXCP

If you are using the EXCP macro instruction, you must also use DCB, OPEN,
CLOSE, and, in some cases, the EOV macro instruction. The parameters.of the
DCB, EOV, and EXCP macro instructions are described here. The parameters and
different forms of the OPEN and CLOSE macro instructions are described in Data
Administration: Macro Instruction Reference. A diagram of the data control block
(DCB) is included in this section with the description of the DCB macro
instruction.

Defining Data Control Blocks for EXCP (DCB)

The EXCP form of the DCB macro instruction produces a data control block that
can be used with the EXCP macro instruction. You must issue a DCB macro
instruction for each data set to be processed by your channel programs. (Notation
conventions and format illustrations of the DCB macro instruction are given in
Data Administration: Macro Instruction Reference.) DCB parameters that apply to
EXCP may be divided into four categories, depending on the following portions of
the data control block that are generated when they are specified:

» Foundation block. This portion is required and is always 12 bytes in length.
(You must specify two of the parameters in this category.

o EXCP interface. This portion is optional. If you specify any parameter in this
category, 20 bytes are generated.

« Foundation block extension and common interface. This portion is optional
and is always 20 bytes in length. If this portion is generated, the
device-dependent portion is also generated.

« Device dependent. This portion is optional and is generated only if the
foundation block extension and common interface portion is generated. Its
size ranges from 4 to 20 bytes, depending on specifications in the DEVD
parameter. However, if you do not specify the DEVD parameter (and the
foundation extension and common interface portion is generated), the
maximum 20 bytes for this portion are generated.

Some of the procedures performed by the system when the data control block is
opened and closed (such as writing file marks for output data sets on direct access
volumes) require information from optional data control block fields. You should
make sure that the data control block is large enough to provide all information
necessary for the procedures you want the system to handle.

Figure 20 on page 75 shows the relative position of each portion of an opened
data control block. The fields corresponding to each parameter of the DCB macro
instruction are also designated, with the exception of DDNAME, which is not
included in a data control block that has been opened. The fields identified in
(parentheses represent system information that is not associated with parameters of
the DCB macro instruction.

Chapter 2. Executing Your Own Channel Programs (EXCP) 73

Sources of information for data control block fields other than the DCB macro
instruction are data definition (DD) statements, data set labels, and data control
block modification routines. You may use any of these sources to specify DCB
parameters. However, if a particular portion of the data control block is not
generated by the DCB macro instruction, the system does not accept information
intended for that portion from any alternative source.

You may provide symbolic names for the fields in one or more EXCP DCBs by
coding a DCBD macro to generate a dummy control section (DSECT). To map
the common interface, foundation block extension, and foundation block, you code
DSORG=XE. To map the foundation block and EXCP interface, you code

‘ DSORG=XA. You may code DSORG=(XA,XE) to map both. For further
information, see Data Administration: Macro Instruction Reference.

Foundation Block Parameters

DDNAME=symbol
The name of the data definition (DD) statement that describes the data set
to be processed. This parameter must be given.

MACRF=(E)
The EXCP macro instruction is to be used in processing the data set. This
operand must be coded.

REPOS={Y | N}
Magnetic tape volumes: This parameter indicates to the dynamic device
reconfiguration (DDR) routine whether the user is keeping an accurate block
count. If the user is keeping an accurate block count, the DDR routine can

attempt to swap the volume. (You must maintain the block count in the
DCBBLKCT field.)

Y—The user is keeping an accurate block count, and the DDR routine can
attempt to swap the volume.

N—The block count is unreliable, and the DDR routine cannot and will not
attempt to swap the volume.

If the operand is omitted, N is assumed.
EXCP Interface Parameters

EOEA=symbol
2-byte identification of an EOE appendage that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

PCIA=symbol
2-byte identification of a PCI appendage that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

SIOA=symbol

2-byte identification of a SIO appendage that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

74 MVS/XA System—Data Administration

0
The device—dependent portion of the data control]
_ block varies in length and format according to _
~specifications in the DSORG and DEVD parameters. _ »
T Illustrations of this portion for each device
type are included in the description of the DEVD
parameter. —
20 —_
BUFNO BUFCB
24 >
BUFL DSORG
28
10BAD -
32 BFTEK,
BFALN EODAD -]
»
36
RECFM EXLST —
Lo —
(T10T) MACRF
Ly >
(1FLGS) (DEB Address)
48
(OFLGS) Reserved —
52 —
OPTCD Reserved
56
Reserved
60 >
EOEA PCIA
64
SI10A CENDA
68
XENDA Reserved ~

Figure 20. Data Control Block (DCB) Format for EXCP (After OPEN)

Device
Dependent

Common
Interface

Foundation
Block
Extension

Foundation
Block

EXCP
Interface

CENDA=symbol

2-byte identification of a CHE appendage that you have entered into

SYS1.LPALIB or SYS1.SVCLIB.

XENDA=symbol

2-byte identification of an ABE appendage that you have entered into

SYS1.LPALIB or SYS1.SVCLIB.

Chapter 2. Executing Your Own Channel Programs (EXCP)

75

OPTCD=Z
indicates that, for magnetic tape (input only), a reduced error recovery P
procedure (5 reads only) will occur when a data check is encountered. It
should be specified only when the tape is known to contain errors and the
application does not require that all records be processed. Its proper use
would include error frequency analysis in the SYNAD routine. Specification
of this parameter will also cause generation of a foundation block extension.
This parameter is ignored unless it was selected at system generation.

IMSK=value
Any specification indicates that the system will not use IBM-supplied error
routines.

Foundation Block Extension and Common Interface Parameters

EXLST=address
the address of an exit list that you have written for exception conditions. The
| format of the exit list is provided in Data Facility Product: Customization.

EODAD=address
the address of your end-of-data-set routine for input data sets. If this
routine is not available when it is required, the task is abnormally terminated.

DSORG={PS | PO | DA | IS}
the data set organization (one of the following codes). Each code indicates
that the format of the device-dependent portion of the data control block is
to be similar to that generated for a particular access method:

Code DCB Format for R

PS QSAM or BSAM
PO BPAM

DA BDAM

IS QISAM or BISAM

For direct access devices, if you specify PS or PO, you must maintain the
following fields of the device-dependent portion of the data control block so
that the system can write a file mark for output data sets:

o The track balance (DCBTRBAL) field that contains a 2-byte binary
number that indicates the remaining number of bytes on the current
track. This number can be obtained from the system track algorithm
routine.

o The full disk address (DCBFDAD) field that indicates the location of
the current record. The address is in the form MBBCCHHR.

These fields are written into the format-1 DSCB and are used by Open
routines for staging MSS data sets. Staging is done only up through the last
cylinder specified by these fields if the data set is reopened for OUTPUT,
INOUT, OUTIN, OUTINX, or EXTEND.

If you specify PO for a direct access device, the DCBDIRCT field will not be £
updated. Therefore, you should be careful when using EXCP with the {)
STOW macro. -

76 MVS/XA System—Data Administration

I0BAD=address
the address of an input/output block (IOB). If a pointer to the current IOB
is not required, you may use this field for any purpose.

The following parameters are not used by the EXCP routines. They provide
additional information that the system will store for later use by access methods
that read or update the data set.

RECFM=code
the record format of the data set. (Record format codes are given in Data
Administration: Macro Instruction Reference.) When writing a data set to be
read later, RECFM, LRECL, and BLKSIZE should be specified to identify
the data set attributes. LRECL and BLKSIZE can only be specified in a DD
statement, because these fields do not exist in a DCB used by EXCP.

BFTEK=1{S | E}
the buffer technique, either simple or exchange.

BFALN={F | D}
the word boundary alignment of each buffer, either fullword or doubleword.

BUFL=/ength
the length in bytes of each buffer; the maximum length is 32767.

BUFNO=number
the number of buffers assigned to the associated data set; the maximum
number is 255. See Chapter 10, ‘““Specifying Buffer Numbers for DASD
Data Sets” on page 229, for further details and performance considerations.

BUFCB=address
the address of a buffer pool control block, that is, the 8-byte field preceding
the buffers in a buffer pool.

Device-Dependent Parameters
DEVD=code

the device in which the data set may reside. The codes are listed in order of
descending space requirements for the data control block:

Code Device

DA Direct access
TA Magnetic tape
PR Printer

PC Card punch
RD Card reader

Note: For MSS virtual volumes, DA should be used.

If you do not want to select a specific device until job setup time, you should
specify the device type requiring the largest area; that is, DEVD=DA.

The following diagrams illustrate the device-dependent portion of the data control

block for each combination of device type specified in the DEVD parameter and
data set organization specified in the DSORG parameter. Fields that correspond to

Chapter 2. Executing Your Own Channel Programs (EXCP) 77

device-dependent parameters in addition to DEVD are indicated by the parameter
name. For special services, you may have to maintain the fields shown in
parentheses. The special services are explained in the note that follows the
diagram.

Device-dependent portion of data control block when DEVD=DA and
DSORG=PS:

4
Reserved DCBFDAD
8
13
DCBDVTBL
16 17 18
DCBKEYLE DCBDEVT DCBTRBAL

For output data sets, the system uses the contents of the full disk address
(DCBFDAD) field, plus one, to write a file mark when the data control block is
closed, provided the track balance (DCBTRBAL) field indicates that space is
available. If DCBTRBAL is less than 8, the file mark is written on the next
sequential track. You must maintain the contents of these two fields yourself if the
system is to write a file mark. OPEN will initialize DCBDVTBL and DCBDEVT.

Device-dependent portion of data control block when DEVD=DA and
DSORG=DA:

16 18

DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

12
DCBBLKCT

16 17 18 19
DCBTRTCH Reserved DCBDEN

Reserved

The system uses the contents of the block count (DCBBLKCT) field to write the
block count in trailer labels when the data control block is closed or when the EOV
macro instruction is issued. You must maintain the contents of this field yourself if
the system is to have the correct block count. (Note: The 1/O supervisor

78 MVS/XA System—Data Administration

£

increments this field by the contents of the IOBINCAM field of the IOB at the
completion of each I/0 request.)

When using EXCP to process a tape data set open at a checkpoint, you must be
careful to maintain the correct count; otherwise, the system may position the data
set incorrectly when restart occurs. If REPOS=Y, the count must be maintained
by you for repositioning during dynamic device reconfiguration.

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

16 18
DCBPRTSP Reserved

Device-dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

16 18
DCBMODE ,DCBSTACK Reserved

The following DCB operands pertain to specific devices and may be specified only
when the DEVD parameter is specified.

KEYLEN=/ength
for direct access devices, the length in bytes of the key of a physical record,
with a maximum value of 255. When a block is read or written, the number
of bytes transmitted is the key length plus the record length.

DEN=value
for magnetic tape, the tape recording density in bits per inch:

Density

Value 7-track tape device 9-track tape device

1 556 —

2 800 800 (NZRI)
3 — 1600 (PE)

4 — 6250 (GCR)

NRZI—Non-return-to-zero change to ones recording
PE—phase encoded recording
GCR—group coded recording

If this parameter is omitted, the highest density available on the device is
assumed.

TRTCH=value
for 7-track magnetic tape, the tape recording technique:

Chapter 2. Executing Your Own Channel Programs (EXCP) 79

Value Tape Recording Technique

C Data conversion feature is available.

E Even parity is used. (If omitted, odd parity is assumed.)

T BCDIC to EBCDIC translation is required.
MODE=value

for a card reader or punch, the mode of operation. Either C (column binary
mode) or E (EBCDIC code) may be specified.

STACK=value
for a card punch or card reader, the stacker bin to receive cards, either 1 or
2.

PRTSP=value
for a printer, the line spacing, either O, 1, 2, or 3.

DSORG Parameter of the DCBD Macro
In addition to the operands described in Data Administration: Macro Instruction
Reference for the DSORG parameter of the DCBD macro, you may specify the
following operands.

DSORG=

XA specifies a DCB with the EXCP interface section (including appendage
names)

XE specifies a DCB with the foundation block extension

Initializing Data Control Blocks (OPEN)

The OPEN macro instruction initializes one or more data control blocks so that
their associated data sets can be processed. You must issue OPEN for all data
control blocks that are to be used by your channel programs. (A dummy data set
may not be opened for EXCP.) Some of the procedures performed when OPEN is
executed are:

« Reading in the JFCB (job file control block), unless the TYPE=J option of the
macro instruction was coded

o Construction of the data extent block (DEB)

o Transfer of information from the JFCB and data set labels to the DCB
« Verification or creation of standard labels

« Tape positioning

« Loading of your appendage routines

The parameters and different forms of the OPEN macro instruction are described
in Data Administration: Macro Instruction Reference.

80 MVS/XA System—Data Administration

If you intend to process a multivolume direct data set, you must cause the open
routines to build a data extent block for each volume and issue mount messages for
them. This can be done by reading in the JFCB with a RDJFCB macro instruction
and opening each volume of the data set. See ‘“ Using RDJFCB to Process a
Multivolume Direct Data Set” on page 141 for an example of how to code a
routine to do this, and “Reading and Modifying a Job File Control Block” on

page 136 for further uses of the RDJFCB macro.

Executing a Channel Program (EXCP)

End of Volume (EOYV)

The EXCP macro instruction requests the initiation of the I/O operations of a
channel program. You must issue EXCP whenever you want to execute one of
your channel programs. The format of the EXCP macro instruction is:

[symbol] EXCP iob-addr

iob-addr—A-type address, (2-12), or (1)
the address of the input/output block of the channel program to be
executed.

The EOV macro instruction identifies end-of-volume and end-of-data-set
conditions. For an end-of-volume condition, EOV causes switching of volumes
and verification or creation of standard labels. For an end-of-data-set condition,
EOV causes your end-of-data set routine to be entered. Before processing trailer
labels on a tape input data set, you must decrement the DCBBLKCT field. Your
program issues EOQV if switching of magnetic tape or direct access volumes is
necessary, or if secondary allocation is to be performed for a direct access data set
opened for output.

For magnetic tape, you must issue EOV when either a tapemark is read or a
reflective spot is written over. In these cases, bit settings in the 1-byte
DCBOFLGS field of the data control block determine the action to be taken when
EOV is executed. Before issuing EOV for magnetic tape, you must make sure that
appropriate bits are set in DCBOFLGS. Bit positions 2, 3, 6, and 7 of
DCBOFLGS are used only by the system; you are concerned with bit positions 0,
1,4, and 5. The use of these DCBOFLGS bit positions is as follows:

Bit 0
set to 1 indicates that a write command was executed and that a tapemark is
to be written.

Bit 1
indicates that a backward read was the last /O operation.

Bit 4
indicates that data sets of unlike attributes are to be concatenated.

Bit 5
indicates that a tapemark has been read.

Chapter 2. Executing Your Own Channel Programs (EXCP) 81

If bits 0 and 5 of DCBOFLGS are both off when EOV is executed, the tape is

spaced past a tapemark, and standard labels, if present, are verified on both the old A
and new volumes. The direction of spacing depends on bit 1. If bit 1 is off, the &
tape is spaced forward; if bit 1 is on, the tape is backspaced.

If bit 0 is on, but bit 5 is off, when EOV is executed, a tapemark is written
immediately following the last data record of the data set. Standard labels, if
specified, are created on the old and the new volume.

After issuing EOV for sequentially organized output data sets on direct access
volumes, you can determine whether additional space was obtained on the same or
a different volume. You do this by examining the data extent block (DEB) and the
unit control block (UCB). If neither the address of the UCB, as shown in the
DEB, nor the volume serial number, as shown in the UCB, has changed, additional
space was obtained on the same volume. Otherwise, space was obtained on a
different volume.

The parameters of the EOV macro instruction are:

[symbol] EOV (dcb addr | ach addr)
[LMODE=424 | 31}]

dcb addr | acb addr—A-type address, (2-12), or (1)
the address of the data control block or access method control block that is
opened for the data set. If this parameter is specified as (1), register 1 must
contain this address.

MODE=424 | 31} W S
indicates whether the EOV parameter list may reside above or below the 16
megabyte line in virtual storage. The modes are:

24
If you do not specify the MODE operand, this mode is assumed. The
expansion of the EOV macro generates a parameter list of the
standard form (4 bytes per entry). The parameter list must be below
the 16 megabyte line, but the calling program may be above the line.
If your program is in 24-bit mode and you do not use a register to
provide the address of the DCB or ACB, the DCB or ACB must be
below the 16 megabyte line.

31
The expansion of the EOV macro generates a parameter list in the
31-bit addressing mode format (8 bytes per entry). The parameter list
may reside above or below the 16 megabyte line. The first byte (byte
0) in each entry contains option information and the last four bytes
(bytes 4-7) contain the 4-byte DCB or ACB address. The DCB (and
all ACBs except VSAM/VTAM ACBs) must be below the 16
megabyte line; therefore, byte 4 must be zeros. Bytes 1 through 3 must
also be zeros.

Note: Failure to provide a DCB below the 16 megabyte line causes an
ABEND 50D. {‘\

I§
{4

82 MVS/XA System—Data Administration

Note: To determine how the system disposes of a tape volume when an EOV
macro is issued, see the description of the DISP parameter of the OPEN macro in
Data Administration: Macro Instruction Reference.

Restoring Data Control Blocks (CLOSE)

The CLOSE macro instruction restores one or more data control blocks so that
processing of their associated data sets can be terminated. You must issue CLOSE
for all data control blocks that were used by your channel programs. Some of the
procedures performed when CLOSE is executed are:

« Release of data extent block (DEB)

+ Removal of information transferred to data control block fields when OPEN
was executed

» Verification or creation of standard labels
e Volume disposition
« Release of programmer-written appendage routines

When CLOSE is issued for data sets on magnetic tape volumes, labels are
processed according to bit settings in the DCBOFLGS field of the data control
block. Before issuing CLOSE for magnetic tape, you must set the appropriate bits
in DCBOFLGS. The significant DCBOFLGS bit positions are listed in the EOV
macro instruction description.

The parameters and different forms of the CLOSE macro instruction are described
in Data Administration: Macro Instruction Reference.

Assigning an Alternate Track and Copying Data from the Defective Track (ATLAS)

A program that uses the EXCP macro instruction for input and output and that is
APF authorized may, during the execution of the program, use the ATLAS macro
instruction to obtain an alternate track and to copy a defective track onto the
alternate track. With the use of ATLAS, the program can recover from permanent
(hard) errors encountered in the execution of the following types of I/O
commands:

e Search ID.

e Write. (The error condition must be confirmed during the execution of the
channel program by a CCW that checks the data written.)

« Read count. Errors in the CCHHR part of the count area can be recovered
from, unless the record is the home address or record zero. Errors in the KDD
part of the count area cannot be recovered from, unless the user has identified
the defective record.

Note: ATLAS may be used for all direct access devices with the exception of MSS
volumes (3330V).

Chapter 2. Executing Your Own Channel Programs (EXCP) 83

Your DCB must include the DCBRECFM field, and the field must show whether
the data set is in the track overflow format. If it is, recovery from errors in last
records on tracks depends on your identifying the track overflow record segments. p

AN

Recovery takes the form of obtaining a good alternate track and copying the
defective track onto the good alternate one. Unless a reexecution of the channel
program by ATLAS can correct the defect, the user should examine, and if
necessary replace, defective records in a subsequent job if the data set is to be
processed again.

The format is:

[symbol} ATLAS | PARMADR={addr}
[,CHANPRG={R | NR}]
[LCNTPTR={P | F}]
[LWRITS={YES | NO}]

PARMADR
Address of a parameter address list of the following format:

Address of 10B for the channel program that
encountered the error

Address of count area field S

The count area field contains the CCHHRKDD of a defective record or the
CCHH of a track that is to be copied.

addr—A-type address, (2-12), or (1)
CHANPRG={R | NR}

specifies whether the channel program that encountered the error can be
executed again.

R Channel program may be executed again by ATLAS. Before
permitting reexecution of the channel program by ATLAS, you must
reset the error indications of the previous execution fields in the
DCBIFLGS. (See the example of the use of ATLAS below.)

NR Channel program may not be executed again.
If this parameter is omitted, R is assumed.
CNTPTR

specifies whether the count area field contains a full count area -
(CCHHRKDD) or a partial count area (CCHH). q

84 MVS/XA System—Data Administration

Using ATLAS

P Part of the count area (the CCHH address of the track to be copied).

F Full count area (CCHHRKDD count of the record that was found
defective).

If this parameter is omitted, P is assumed.

WRITS
track overflow segment identification.

If your data set is in the track overflow format, this identification determines
recovery from errors in last records on tracks.

YES If this is the last record on the track, it is a segment other than the last
of a track overflow record.

NO If this is the last record on the track, it is the last or only segment of a
track overflow record.

If this parameter is omitted, it is assumed that it cannot be established
whether a last record is a segment of an overflow record.

If a channel program encounters a unit check condition (shown in the CSW) in its
execution, the EXCP processor program will place the sense bytes in the IOB.
ATLAS can be used to recover from sense conditions shown by the following bit
settings:

IOBSENSO X'o8' Data check

IOBSENS1 X'80" Permanent

Also, before using ATLAS, you must reset error indications as follows:

NI DCBIFLGS,X'3F' Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track and will attempt to
copy the defective track onto the good track, including all error conditions in either
key or data areas. The error conditions may be rectified by reexecuting the
channel program or through the use of the IEHATLAS utility program in a
subsequent step.

Example: The following illustrates the use of the ATLLAS macro instruction.

Chapter 2. Executing Your Own Channel Programs (EXCP) 85

EXCP MYIOB

WAIT ECB=MYECB

™ MYECB,X'7F' TEST FOR I/0 ERROR

BO NEXT NO, SUCCESSFUL, GO TO
* ANOTHER ROUTINE

™ IOBCSW+3,X'02" UNIT CHECK

BZ OTHER NO, DO OTHER ERROR
* PROCESSING

T™ IOBSENSO,X'08' DATA CHECK

BNO OTHER NO, CAN'T HANDLE

™ TOBSENS1,X'80' PERMANENT

BNO OTHER NO, CAN'T HANDLE

NI DCBIFLGS,X'3F' RESET ERROR
* INDICATORS

ATLAS PARMADR=THERE , CHANPRG=R

Operation of the ATLAS Program
The ATLAS program (SVC 86):

o Establishes the availability and address of the next alternate track from the
format-4 DSCB of the VTOC.

« Brings all count fields from the defective track into storage to establish the
description of the track.

+ Initializes the alternate track. (Writes the home address and record zero.)
o Brings the key and data areas of each record into storage, one at a time, and

combines them with their new count area to write the complete record onto the
alternate track.

o When the copying is finished, chains the alternate to the defective track and
updates the VTOC.

Control is returned to your program at the next executable instruction following the
ATLAS macro instruction.

Return Codes from the ATLAS Program

The success of the ATLAS macro instruction can be determined by examining the
contents of register 15, which will contain one of the return codes described below.
If register 15 contains decimal 0, 36, 40, or 44, the contents of register 0 may be
significant.

86 MVS/XA System—Data Administration

Code

0(X'00")

4(X'04")

8(X'08")

12(X'0C")

16(X'10')

20(X'14')

24(X'18")

28(X'1C")

32(X'20")

36(X'24')

40(X'28"')

Meaning

Successful completion. Key and data areas have been copied from
the defective track onto a good alternate one. The only error
encountered was in the record identified by the user’s CCHHRKDD
value.

If the channel program is reexecutable, it has been successfully
reexecuted.

This device type does not have alternate tracks that can be assigned
by programming.

All alternate tracks for the device have been assigned.

A request for storage (GETMAIN macro instruction) could not be
satisfied.

All attempts to initialize and transfer data to an alternate track failed.
The number of attempts made is equal to 10% of the assigned
alternates for the device.

The type of error shown by the sense byte cannot be handled
through the use of the ATLAS macro instruction. The condition is
other than a data check (in the count or data areas) or a missing
address marker.

The format-4 DSCB of the VTOC cannot be read; therefore
alternate track information is not available to ATLAS.

The record specified by the user was the format-4 DSCB, and it
could not be read.

An error found in count area of last record on the track cannot be
handled because last-record-on-track identification is not supplied.

An error was encountered when reading or writing the home address
record or record zero. No error recovery has taken place.

If register O contains X'01 00 00 00', the defect is in record zero.

Successful completion. Key and data areas have been copied from
the defective track onto a good alternate one. However, the alternate
track may have records with defective key or data areas. Register 0
identifies the first three found defective as follows:

n RRR

n—The number of record numbers that follow (0, 1, 2, or 3).

Chapter 2. Executing Your Own Channel Programs (EXCP) 87

Code

44(X'2C")

48(X'30")

52(X'34")

56(X'38")

60(X'3C")

64(X'40")

Meaning N

R—The hexadecimal number of the record found defective but
copied anyway.

If the channel program is reexecutable, it has been successfully
reexecuted.

Errors encountered and no alternate track has been assigned. The
return parameter register (register 0) will contain the R of a
maximum of three error records.

Error conditions that return this code are:

+« ATLAS received an error indication for a record with a data
length in the count field of zero. Recovery was not possible
because a distinction cannot be made between an EOF record
and an invalid data length.

e An error occurred while reading the count field of a record, and
the KDD (key length-data length) was found to be defective.

¢ More than three records on the specified track contained errors
in their count fields.

No errors found on the track, no alternate assigned. ATLAS will not
assign an alternate unless a track has at least one defective record. RS

I/O error in reexecuting user’s channel program. A good alternate is
chained to the defective track, and data has been transferred. The
user’s control blocks will give indication of the error condition
causing failure in reexecution of the channel program.

The DCB reflects a track overflow data set, but the UCB device type
shows that the device does not support track overflow.

The CCHH of the user-specified count area is not within the extents
of the data set.

The device is an MSS virtual device, which is not supported.

Control Block Fields

The fields of the input/output block, event control block, and data extent block are
illustrated and explained here; the data control block fields are described with the
parameters of the DCB macro instruction under “EXCP Requirements” on

page 67.

88 MVS/XA System—Data Administration

Input/Output Block (IOB) Fields

The input/output block (IOB) is not automatically constructed by a macro
instruction; it must be defined as a series of constants and must be on a fullword
boundary. For unit-record and tape devices, the IOB is 32 bytes in length. For
direct access, teleprocessing, and graphic devices, 8 additional bytes must be
provided. You may want to use the system mapping macro IEZIOB, which
expands into a DSECT, to help in constructing an IOB.

In Figure 21 on page 90 the diagonally ruled areas indicate fields in which you
must specify information. The other fields are used by the system and must be
defined as all zeros. You may not place information into these fields, but you may
examine them.

IOBFLAGI (1 byte)
You must set bit positions 0, 1, and 6. One-bits in positions 0 and 1 indicate
data chaining and command chaining, respectively. (If both data chaining
and command chaining are specified, the system does not use error recovery
routines except for the direct access devices.) A one-bit in position 6
indicates that the channel program is not a “related” request; that is, the
channel program is not related to any other channel program. If you intend
to issue an EXCP macro with a BSAM, QSAM, or BPAM data control
block, you may want to turn on bit 7 to prevent access-method appendages
from processing the 1/0 request.

IOBFLAG?2 (1 byte)
If you set bit 6 in the IOBFLAGT1 field to zero, bits 2 and 3 in this field must
then be set to:

« 00, if any channel program or appendage associated with a related
request might modify this IOB or channel program.

« 01, if the conditions requiring a 00 setting don’t apply, but the CHE or
ABE appendage might retry this channel program if it completes
normally or with the unit-exception or wrong-length-record bits on in
the CSW.

e 10 in all other cases.

The three combinations of bits 2 and 3 represent the three kinds of related
requests, known as type 1 (00), type 2 (01), and type 3 (10). The type you
use determines how much the EXCP processor can overlap the processing of
related requests. Type 3 allows the greatest overlap, normally making it
possible to quickly reuse a device after a channel-end interruption. (Related
requests that were executed on a pre-MVS system are executed as type-1
requests if not modified.)

IOBSENSO and IOBSENSI1 (2 bytes)
are placed into the input/output block by the EXCP processor when a unit
check occurs. On occasion, the system is unable to obtain any sense bytes
because of unit checks when sense commands are issued. In this case, the
system simulates sense bytes by moving X'10FE' to IOBSENSO and
IOBSENSI1.

Chapter 2. Executing Your Own Channel Programs (EXCP) 89

0(0)/ / - e
//////|10BFLAG1]/ 10BFLAG2 I0OBSENSO I0BSENS1
11111/ /
L(4) LLLILI1101110001770077711717717111777
I0BECBCC [//////7/////// V\OBECBPT /////////////
II11177717071077777000771117777111717177
8(8)
|0BFLAG3
10BCSW
12(c)
» All
16(10) L1011711077010177777117117777771771177¢7 Devices
10BS10CC [//77/1777////// V\OBSTART ///////1/1////
I1117110777077771711717177717171171717
20(14) LI1111177170777107171711771777707777177
Reserved ////7/1/7/////// \0BDCBPT /////////////
[117717770701170017777770717777177777¢7
24(18)
I0BRESTR IOBRESTR+1
28(1C) //11111111111111111111111
[///1/////// \0BINCAM /////1///// IOBERRCT
LI1111010077007177077770771117117 —
32(20) ////111111 |+
/// 10BSEEK // | » Direct Access, Teleprocessing, and
/ (first byte, M) | Graphic Devices
33(21) ///1171771111171111111111171117
I1117111171111717177711777711111171177 Direct
1117711117711717117717177771171117177177 Access
/// I0BSEEK //// | » Storage
/111717/711717/1111117177/7/11] (second through elghth bytes, //// Devices
[1117117111111711771777 R) 11/ (DASD)
/// 39(27)
Figure 21. Input/Output Block (IOB) Format
IOBECBCC (1 byte)
the first byte of the completion code for the channel program. The system
places this code in the high-order byte of the event control block when the
channel program is posted complete. The completion codes and their
meanings are listed under ‘“Event Control Block (ECB) Fields” on page 92.
IOBECBPT (3 bytes)
the address of the 4-byte event control block you have provided.
IOBFLAGS3 (1 byte)
is used only by the system. £
'

90 MVS/XA System—Data Administration

IOBCSW (7 bytes)
the low-order seven bytes of the channel status word that are placed into this
field each time a channel-end or PCI interruption occurs.

IOBSIOCC (1 byte)
in bits 0 and 1, the instruction-length code; in bits 2 and 3, the start
subchannel (SSCH) condition code for the instruction the system issues to
start the channel program; and, in bits 4 through 7, the program mask.

IOBSTART (3 bytes)
the starting address of the channel program to be executed.

Reserved (1 byte)
used only by the system.

IOBDCBPT (3 bytes)
the address of the data control block of the data set to be read or written by
the channel program.

IOBRESTR (1 byte)
used by the system for volume repositioning in error recovery procedures.

IOBRESTR+1 (3 bytes)
if a related channel program is permanently in error, used by the system to
chain together IOBs that represent dependent channel programs. To learn
more about the conditions under which the chain is built, see “Interruption
Handling and Error Recovery Procedures” on page 70.

IOBINCAM (2 bytes)
for magnetic tape, the amount by which the block count (DCBBLKCT) field
in the device-dependent portion of the data control block is to be
incremented. You may alter these bytes at any time. For forward
operations, these bytes should contain a binary positive integer (usually +1);
for backward operations, they should contain a binary negative integer.
When these bytes are not used, all zeros must be specified.

Reserved (2 bytes)
used only by the system.

IOBSEEK (first byte, M)
for direct access devices, the extent entry in the data extent block that is
associated with the channel program (O indicates the first entry; 1 indicates
the second, and so forth). For teleprocessing and graphic devices, it contains
the UCB index.

IOBSEEK (last 7 bytes, BBCCHHR)
for direct access devices, the seek address for your channel program.

Chapter 2. Executing Your Own Channel Programs (EXCP) 91

Event Control Block (ECB) Fields

You must define an event control block (ECB) as a 4-byte area on a fullword
boundary. When the channel program has been completed, the input/output
supervisor places a completion code containing status information into the ECB
(Figure 22 on page 93). Before examining this information, you must test for the
setting of the “complete bit.” If the complete bit is not on, and your problem
program cannot perform other useful operations, you should issue a WAIT macro
instruction that specifies the event control block. Under no circumstances should
you construct a program loop that tests for the complete bit.

Data Extent Block (DEB) Fields

The data extent block (DEB) is constructed by the system when an OPEN macro
instruction is issued for the data control block. You may not modify the fields of
the DEB, but you may examine them.

Executing Fixed Channel Programs in Real Storage (EXCPVR)

The EXCPVR macro instruction provides you with the same functions as the
EXCP macro instruction (that is, a device-dependent means of performing
input/output operations). In addition, it allows your program to improve the
efficiency of the I/O operations in a paging environment by translating its own
virtual channel programs to real channel programs. Authorized programs are
allowed to execute in a V=V area and provide the EXCP processor with real
channel programs. This eliminates the translation of channel programs by the
EXCP processor. The program issuing the EXCPVR must remain in authorized
state until the completion of the channel programs.

Problem programs are authorized to use the EXCPVR macro instruction under the
authorized program facility (APF). A description of how to authorize a program
can be found in Supervisor Services and Macro Instructions.

[symbol] EXCPVR | iob-addr

iob-addr—A-type address, (2-12), or (1)
the address of the input/output block of the channel program to be
executed.

To use EXCPVR, you must do all the things you would do to execute an EXCP
request; in addition you must:

1. Code PGFX=YES in the DCB associated with the EXCPVR requests and
provide a page-fix (PGFX) appendage by specifying SIOA=symbol in the
DCB.

2. Fix the data area that contains your channel program, the data areas that are
referred to by your channel program, your PCI appendage (if your program

can generate program-controlled interrupts), and any area referred to by your
PCI appendage. To cause EXCP to fix these data areas, you build a list that

92 MVS/XA System—Data Administration

WAIT bit=0 COMPLETE bit=1 Remainder of completion code

bit

0 1 2 31

Wait bit
A one bit in this position indicates that the WAIT macro instruction has been
issued, but the channel program has not been completed.

Complete bit
A one bit in this position indicates that the channel program has been completed;
if it has not been completed, a zero bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the following
L-byte hexadecimal expressions:
CODE MEANING
7F000000 The channel program has terminated without error.
41000000 The channel program has terminated with a permanent error.

42000000 The channel program has terminated because a direct access extent address
has been violated.

44000000 The channel program has been intercepted because of a permanent error
associated with a device end for the previous request. You may
reissue the EXCP macro instruction to restart the channel
program.

48000000 The request queue element for a channel program has been made available
after it has been purged.

4B000000 One of the following errors occurred during error recovery processing for
a tape device.

e The CSW command address in the 10B is zeros.
e An unexpected load point was encountered.

4F000000 Error recovery routines have been entered because of direct access error
but are unable to read the home address or record 0.

Figure 22. Event Control Block (ECB) after Posting of Completion Code (EXCP)

contains the addresses of these virtual areas. You should build the list in your
PGFX appendage.

3. Determine whether the data areas in virtual storage specified in the address
fields of your CCWs cross page boundaries. If they do, you must build an
indirect data address list (IDAL) and put the address of the IDAL in the
affected CCW.

4. Translate the addresses in your CCWs from virtual to real addresses.

All other areas related to the EXCP/EXCPVR I/0 operation (that is, CCWs,
IDAWS, I0Bs, DEBs, DCBs, appendages, and so forth) must remain 24-bit

Chapter 2. Executing Your Own Channel Programs (EXCP) 93

addressable. Note, however, that the EXCP processor will allow both 24-bit and
31-bit virtual I/O buffers to be fixed above 16 megabytes real.

Items 3 and 4 must be done in your start-I/O (SIO) appendage. A description of
the SIO appendage is presented under ‘“Appendages” on page 71.

Building the List of Data Areas to Be Fixed

The EXCP processor expects programs using the EXCPVR macro instruction to
pass a list of data areas to be fixed. This list is to be built in the PGFX appendage,
as described below.

The data areas you must fix in real storage (if not already fixed in real storage) are:

1. The channel program. If the channel program is already in a fixed subpool, it
does not have to be fixed.

2. The data areas to which your channel program will write and from which your
channel program will read. If the data areas are already in a fixed subpool, they
do not have to be fixed.

3. The PCI appendage, if used, and any areas accessed by the PCI appendage
(DEB, IOB, and so forth). ‘

EXCPVR users can specify 31-bit real data areas by creating CCWs through the
use of IDAWs.

Page Fix (PGFX) and Start-I/O (SIO) Appendage

Page-Fix List Processing

This appendage consists essentially of two independent appendages. The complete
appendage can be viewed as a re-enterable subroutine having two entry points, one
for the SIO appendage and one for the PGFX appendage.

The SIO entry point is located at offset 0 in the subroutine; any other location in
the appendage may be branched to from this entry point. The entry point of the
PGFX appendage is at offset +4 in the SIO subroutine, which is set in register 15
as the entry point of the PGFX appendage.

Page Fix (PGFX) Appendage: The purpose of this appendage is to list all the areas
that must be fixed to prevent paging exceptions during the execution of the current
I/0 request. This appendage may be entered more than once. However, each time
it is entered, it must create the same list of areas to be fixed. The appendage may
use the 16-word save area pointed to by register 13. Registers 10, 11, and 13 may
be used as work registers.

Each page-fix entry placed in the list by the appendage must have the following
doubleword format:

94 MVS/XA System—Data Administration

A

[0]1 31]32|33 63|

0 Starting virtual 0 Ending virtual
address of area address of area
to be fixed to be fixed + 1

On return from your PGFX appendage to the EXCP processor (via the return
address provided in register 14), register 10 must point to the first page-fix entry
and register 11 must contain the number of page-fix entries in the work area. The
EXCP processor then fixes the pages corresponding to the areas listed by the
PGFX appendage. The pages remain fixed until the associated I/O request
terminates.

If either the channel end appendage or the abnormal end appendage returns via the
return address in register 14 plus 8, the PGFX appendage is not normally
reentered. Instead, the SIO appendage is entered, and the page-fix list built by the
PGFX appendage is still active. However, the PGFX appendage is entered after
either the channel end appendage or the abnormal end appendage returns via the
return address in register 14 plus 8 when a PURGE macro has been issued (for
instance, when a storage swap has occurred). In this case, when I/0O is restored,
the PGFX appendage is entered.

Note: The page-fix list must be in page-fixed storage.

S10 Appendage: If you are using EXCPVR to execute your channel program, you
must translate the virtual addresses in the operands of your channel program to real
addresses. This should be done in your SIO appendage. If indirect data addressing
is required, the SIO appendage should also build the indirect data address lists
(IDALSs) and turn on the IDA indicators in the associated CCWs.

Translating Virtual Addresses and Building the IDAL: You must convert the virtual
addresses in the channel program to real addresses. You must also check the areas
whose addresses appear in bits 8 through 31 of your CCWs to determine whether
the data areas cross 2K-byte boundaries. If they do, you must provide an entry in
the IDAL for each 2K-byte boundary crossed. The channel subsystem uses the
IDAL to identify the address where it will continue reading or writing when a
2K-byte boundary is crossed during a read or write operation. The IDAL must
contain real addresses when it is processed by the channel.

In MVS/XA, the LRA instruction returns a 31-bit real address regardless of the
addressing mode. You must be careful when you construct the IDAW to ensure
that the real storage obtained by GETMAIN (or branch entry) is below 16
megabytes. Do your page fixing before you issue the LRA. (See Supervisor
Services and Macro Instructions or System Macros and Facilities for information on
how to obtain real storage below 16 megabytes real.)

Chapter 2. Executing Your Own Channel Programs (EXCP) 95

CCw

Command Address of the 04 ////1///// | Byte
Code DAL ///////7// | Count
0 78 31 32 39 40 47 48
I DAL
> 0

First Indirect Data
Address Word

Second Indirect Data
Address Word

Subsequent Indirect
Data Address Word

Notes:

1. You must put one entry in the IDAL for each 2K-byte page boundary your data
area crosses.

2. Ifthe CCW has an IDAL address rather than a data address, bit 37 must be set
to signal this to the channel.

3. The maximum number of entries needed in the IDAL is determined from the
count in the CCW as follows:

Number of IDAL entries=((CCW byte-count — 1)/2048) + 1.
(Round up division to next highest integer if remainder is not zero.)

The number of IDAL entries required ultimately depends on the number of
2K-byte boundaries crossed by the data. For example, if your data is 800 bytes
long and does not cross a 2K-byte page boundary, no IDAL entries are required.
If your data crosses a 4K-byte page boundary, then two IDAL entries are required.
If your data is 5000 bytes long, at least two IDAL entries are required. If your
data crosses two 4K-byte page boundaries, four IDAL entries are required.

The first indirect address is the real address of the first byte of the data area. The

second and subsequent indirect addresses are the real addresses of the second and
subsequent 2K-byte boundaries of the data area.

96 MVS/XA System—Data Administration

For example, if the data area real address is X'707FF"' and the byte count is
X'1802', the IDAL would cqntain the following real addresses (assuming the real
addresses are contiguous, which may not always be the case):

707FF
70800
71000

If the data area real address is X'707FF' and the byte count is X'800', the IDAL
would contain the following addresses:

707FF
70800

Chapter 2. Executing Your Own Channel Programs (EXCP) 97

.
S

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP)

Execute direct access program (XDAP) is a macro instruction that you may use to
read, verify, or update a block on a direct access volume. This chapter explains
what the XDAP macro instruction does and how you can use it. The control block
generated when XDAP is issued and the macro instructions used with XDAP are
also discussed.

Because most of the specifications for XDAP are similar to those for the execute
channel program (EXCP) macro instruction, you should be familiar with the
“Executing Your Own Channel Programs (EXCP)” chapter of this publication,
and with the information contained in Data Administration Guide that provides
how-to information for using the access method routines of the system control
program.

If you are not using the standard IBM data access methods, you can, by issuing
XDAP, generate the control information and channel program necessary for
reading or updating the records of a data set. (However, XDAP cannot be used to
read, verify, or update a SYSIN or SYSOUT data set.)

You cannot use XDAP to add blocks to a data set, but you can use it to change the
keys of existing blocks. Any block configuration and any data set organization can
be read or updated.

Although the use of XDAP requires less storage than do the standard access
methods, it does not provide many of the control program services that are included
in the access methods. For example, when XDAP is issued, the system does not
block or unblock records and does not verify block length.

To issue XDAP, you must provide the actual track address of the track containing
the block to be processed. You must also provide either the block identification or
the key of the block, and specify which of these is to be used to locate the block. If
a block is located by identification, both the key and data portions of the block
may be read or updated. If a block is located by key, only the data portion can be
processed.

For additional control over I/0 operations, you may write appendages that must be
entered into the LPA library. Descriptions of these routines and their coding
specifications are included under Chapter 2, *‘Executing Your Own Channel
Programs (EXCP)” on page 63.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 99

XDAP Requirements

When using the XDAP macro instruction, you must, somewhere in your program, -
code a DCB macro instruction that produces a data control block (DCB) for the
data set to be read or updated. You must also code an OPEN macro instruction
that initializes the data control block and produces a data extent block (DEB). The
OPEN macro instruction must be executed before any XDAP macro instructions
are executed.

When the XDAP macro instruction is assembled, a control block and executable
code are generated. This control block may be logically divided into three sections:

« An event control block (ECB) that is supplied with a completion code each
time the direct access channel program is terminated.

o An input/output block (IOB) that contains information about the direct access
channel program.

o A direct access channel program that consists of three or four channel
command words (CCWs). The type of channel program generated depends on
specifications in the parameters of the XDAP macro instruction. When
executed, it locates a block by either its actual address or its key and reads,
updates, or verifies the block.

When the channel program has terminated, a completion code is placed into the

event control block. After issuing XDAP, you should therefore issue a WAIT

macro instruction, specifying the address of the event control block, to regain :
control when the direct access program has terminated. If volume switching is S
necessary, you must issue an EOV macro instruction. When processing of the data

set has been completed, you must issue a CLOSE macro instruction to restore the

data control block.

Macro Specifications for Use with XDAP

When you are using the XDAP macro instruction, you must also code DCB,
OPEN, CLOSE, WAIT, and, in some cases, the EOV macro instructions. The
parameters of the XDAP macro instruction are listed and described here. For the
other required macro instructions, special requirements or options are explained,
but you should see ‘“Macro Specifications for Use with EXCP” on page 73 for
listings of their parameters.

Defining a Data Control Block (DCB)

You must issue a DCB macro instruction for each data set to be read, updated, or
verified by the direct access channel program. To learn which macro instruction
parameters to code, see “Defining Data Control Blocks for EXCP (DCB)” on
page 73.

100 MVS/XA System—Data Administration

Initializing a Data Control Block (OPEN)

The OPEN macro instruction initializes one or more data control blocks so that
their associated data sets can be processed. You must issue OPEN for all data
control blocks that are to be used by the direct access program. Some of the
procedures performed when OPEN is executed are:

o Construction of data extent block (DEB)

« Transfer of information from DD statements and data set labels to the data
control block

o Verification or creation of standard labels
« Loading of programmer-written appendage routines

The two parameters of the OPEN macro instruction are the address(es) of the data
control block(s) to be initialized and the intended method of 1/0 processing of the
data set. The method of processing may be specified as INPUT, OUTPUT, or
EXTEND; however, if nothing is specified, INPUT is assumed. The parameters
and different forms of the OPEN macro instruction are described in Data
Administration: Macro Instruction Reference.

Executing Direct Access Programs (XDAP)

The XDAP macro instruction produces the XDAP control block (that is, the ECB,
IOB, and channel program) and executes the direct access channel program. The
format of the XDAP macro instruction is:

[symbol] XDAP ecb-symbol

»bpe

ydcb-addr

,area-addr

,length-value

,[(key-addr, keylength-value)]
yblkref-addr

,Isector-addr]

LMF={E | L}]

ech-symbol—symbol or (2-12)
the symbolic name to be assigned to the XDAP event control block.
Registers can be used only with MF=E.

type—iRI | RK | WI| WK | VI | VK}
the type of I/0 operation intended for the data set and the method by which
blocks of the data set are to be located. One of the combinations shown
must be coded in this field.

The codes and their meanings are:

R Read a block.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 101

w Update a block.

\'% Verify that the device is able to read the contents of a block,
but do not transfer data.

I Locate a block by identification. (The key portion, if present,
and the data portion of the block are read, updated, or verified.)

K Locate a block by key. (Only the data portion of the block is
read, updated, or verified.) If you code this value, you must
code the 'key-addr,keylength-value' operands.

dch-addr—A-type address or (2-12)
the address of the data control block for the data set. If this data control
block is also being used by a sequential access method (BSAM, BPAM,
QSAM), you must reassemble the XDAP macro instruction. Otherwise,
sequential access method appendages will be called at the conclusion of the
XDAP channel program.

area-addr—A-type address or (2-12)
the address of an input or output area for a block of the data set.

length-value—absexp or (2-12)
the number of bytes to be transferred to or from the input or output area. If
blocks are to be located by identification and the data set contains keys, the
value must include the length of the key. The maximum number of bytes
transferred is 32767.

key-addr—RX-type address or (2-12)
when blocks are to be located by key, the address of a virtual storage field
that contains the key of the block to be read, updated, or verified.

keylength-value—absexp or (2-12)
when blocks are to be located by key, the length of the key. The maximum
length is 255 bytes.

blkref-addr—RX-type address or (2-12)
the address of a field in virtual storage containing the actual track address of
the track containing the block to be located. The actual address of a block is
in the form MBBCCHHR, where M indicates which extent entry in the data
extent block is associated with the direct access program; BB is not used, but
must be zero; CC indicates the cylinder address; HH indicates the actual
track address; and R indicates the block identification. R is not used when
blocks are to be located by key. (For more detailed information, see
“Converting a Relative Track Address to an Actual Track Address” on
page 106.)

sector-addr—RX-type address or (2-12)
the address of a 1-byte field containing a sector value. The sector-address
parameter is used for rotational position sensing (RPS) devices only. The
parameter is optional, but its use will improve channel performance. When
the parameter is coded, a set-sector CCW (using the sector value indicated
by the data address field) precedes the search-ID-equal command in the
channel program. The sector-address parameter is ignored if the type
parameter is coded as RK, WK, or VK. If a sector address is specified in the

102 MVS/XA System—Data Administration

execute form of the macro, then a sector address, not necessarily the same,
must be specified in the list form. The sector address in the executable form
will be used.

Note: No validity check is made on either the address or the sector value
when the XDAP macro is issued. However, a unit check/command reject
interruption will occur during channel-program execution if the sector value
is invalid for the device or if the sector-addr operand is used when accessing
a device without RPS. (For more detailed information, see “Obtaining
Sector Number of a Block on a Device with the RPS Feature” on page 108.)

MF

you may use the L-form of the XDAP macro instruction for a macro
expansion consisting of only a parameter list, or the E-form for a macro
expansion consisting of only executable instructions.

MF=E
The first operand (ecb-symbol) is required and may be coded as a symbol or
supplied in registers 2 through 12. The type, dcb-addr, area-addr, and
length-value operands may be supplied in either the L- or E-form. The
blkref-addr operand may be supplied in the E-form or moved into the
IOBSEEK field of the IOB by you. The sector-addr is optional; it may be
coded either in both the L- and E-form or in neither.

MF=L
The first two operands (ecb-symbol and type) are required and must be
coded as symbols. If you choose to code length-value or keylength-value,
they must be absolute expressions. Other operands, if coded, must be
A-type addresses. (blkref-addr is ignored if coded.)

Note: The XDAP macro builds a channel program containing A-type addresses.
These addresses refer to storage within the L-form of the macro. If you copy the
L-form of the macro to a workarea so that the program may be reentrant, the
E-form of the XDAP macro does not update the A-type addresses. This results in
an invalid channel program.

The dcb-addr, area-addr, blkref-addr, and sector-value operands may be coded as
RX-type addresses or supplied in registers 2 through 12. The length-value and
keylength-value operands can be specified as absolute expressions or decimal
integers or supplied in registers 2 through 12.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 103

End of Volume (EOV)

The EOV macro instruction identifies end-of-volume and end-of-data-set s
conditions. For an end-of-volume condition, EOV causes switching of volumes

and verification or creation of standard labels. For an end-of-data-set condition,

EOV causes your end-of-data-set routine to be entered. When using XDAP, you

issue EOV if switching of direct access volumes is necessary or if secondary

allocation is to be performed for a direct access data set opened for output.

For details about the parameters of the EOV macro instruction, see “End of
Volume (EOV)” on page 81.

Restoring a Data Control Block (CLOSE)

The CLOSE macro instruction restores one or more data control blocks so that
processing of their associated data sets can be terminated. You must issue CLOSE
for all data sets that were used by the direct access channel program. Some of the
procedures performed when CLOSE is executed are:

o Release of data extent block (DEB)

« Removal of information transferred to data control block fields when OPEN
was executed

e Verification or creation of standard labels
« Release of programmer-written appendage routines

The CLOSE macro instruction must identify the address of at least one data
control block to be restored, and may specify other parameters. The parameters
and different forms of the CLOSE macro instruction are described in Data
Administration: Macro Instruction Reference.

Control Blocks Used with XDAP

The three control blocks generated during execution of the XDAP macro
instruction are described here.

Event Control Block (ECB)

The event control block (ECB) begins on a fullword boundary and occupies the
first 4 bytes of the XDAP control block. Each time the direct access channel
program terminates, the I/O supervisor places a completion code containing status
information into the event control block (Figure 23 on page 105). Before
examining this information, you must wait for the completion of the channel
program by issuing a WAIT macro instruction that specifies the address of the
event control block.

104 MVS/XA System—Data Administration

Input/Output Block (IOB)

(The input/output block (IOB) is 40 bytes in length and immediately follows the
event control block. ‘“Control Block Fields” on page 88 contains a diagram of the
input/output block (Figure 23 on page 105). You may want to examine the
IOBSENSO, IOBSENS1, and IOBCSW fields if the ECB is posted with X'41°.

WAIT bit COMPLETE bit Completion code

bit
0 1 2 31
Wait bit
A one bit in this position indicates that the direct access channel program has not
been completed.
Complete bit
A one bit in this position indicates that the channel program has been completed;
if it has not been completed, a zero bit is in this position.
Completion code
This code, including the wait and complete bits, may be one of the following U4-byte
hexadecimal expressions:
CODE MEANING
7F000000 Direct access program has terminated without error.
(41000000 Direct access program has terminated with permanent error.

42000000 Direct access program has terminated because a direct access extent
address has been violated.

4F000000 Error recovery routines have been entered because of direct access error
but are unable to read home address or record 0.

Figure 23. Event Control Block (ECB) after Posting of Completion Code (XDAP)

Direct Access Channel Program

The direct access channel program is 24 bytes in length (except when set sector is
used for RPS devices) and immediately follows the input/output block. Depending
on the type of I/O operation specified in the XDAP macro instruction, one of four
channel programs may be generated. The three channel command words for each
of the four possible channel programs are shown in Figure 24 on page 106.

When a sector address is specified with an RI, VI, or WI operation, the channel

program is 32 bytes in length. Each of these channel programs in Figure 24 on
page 106 would be, in this case, preceded by a set sector command.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 105

Converting a Relative Track Address to an Actual Track Address

To issue XDAP, you must provide the actual track address of the track containing
the block to be processed. If you know only the relative track address, you can
convert it to the actual address by using a resident system routine. The entry point
to this conversion routine is labeled IECPCNVT. The address of the entry point
(CVTPCNVT) is in the communication vector table (CVT). The address of the
CVT is in location 16.

Type of I/0 Operation CcCcw Command Code
Read by identification 1 Search ID Equal
Transfer in Channel
Verify by identification’ 3 Read Key and Data
Read by key 1 Search Key Equal
2 Transfer in Channel
Verify by key1 3 Read Data
Write by identification 1 Search ID Equal
2 Transfer in Channel
3 Write Key and Data
Write by key 1 Search Key Equal
2 Transfer in Channel
3 Write Data

1 For verifying operations, the third CCW is flagged to

suppress the transfer of information to virtual storage.

Figure 24. The XDAP Channel Programs

The conversion routine does all its work in general registers. You must load
registers 0, 1, 2, 14, and 15 with input to the routine. Register usage is as follows:

Register Use

0 Must be loaded with a 4-byte value of the form TTRN, where TT is
the track number relative to the beginning of the data set, R is the the
block identification on that track, and N is the concatenation number
of a BPAM data set. (0 indicates the first data set in the
concatenation, an nonconcatenated BPAM data set, or a non-BPAM

data set.)

1 Must be loaded with the address of the data extent block (DEB) of the
data set.

2 Must be loaded with the address of an 8-byte area that is to receive

the actual address of the block to be processed. The converted
address is of the form MBBCCHHR, where M indicates which extent
entry in the data extent block is associated with the direct access
program (0 indicates the first extent, 1 indicates the second, and so
forth); BB is two bytes of zeros; CC is the cylinder address; HH is the
actual track address; and R is the block number.

106 MVS/XA System—Data Administration

\:&/ ra

A

J

3-8

9-13

14

15

Are not used by the conversion routine.
Are used by the conversion routine and are not restored.

Must be loaded with the address to which control is to be returned
after execution of the conversion routine.

Is used by the conversion routine as a base register and must be loaded
with the address where the conversion routine is to receive control.

Return Codes from the Conversion Routine

When control is returned to your program, register 15 will contain one of the
following return codes:

Code

0(X'00'")

4(X'04")

Meaning
Successful conversion.

The relative block address converts to an actual track address outside
the extents defined in the DEB.

Converting an Actual Track Address to a Relative Track Address

To get the relative track address when you know the actual track address, you can
use the conversion routine labeled IECPRLTV. The address of the entry point
(CVTPRLTV) is in the communication vector table (CVT). The address of the
CVT is in location 16.

The conversion routine does all its work in general registers. You must load
registers 1, 2, 14, and 15 with input to the routine. Register usage is as follows:

Register
0

1

3-8

9-13

Use
Will be loaded with the resulting TTRO to be passed back to the caller.

Must be loaded with the address of the data extent block (DEB) of the
data set.

Must be loaded with the address of an 8-byte area containing the
actual address to be converted to a TTR. The actual address is of the
form MBBCCHHR.

Are not used by the conversion routine.

Are used by the conversion routine and are not restored.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 107

14 Must be loaded with the address to which control is to be returned
after execution of the conversion routine.

15 Is used by the conversion routine as a base register and must be loaded
with the address where the conversion routine is to receive control.

Obtaining Sector Number of a Block on a Device with the RPS Feature

To obtain the performance improvement given by rotational position sensing, you
should specify the sector-addr parameter in the XDAP macro. For programs that
can be used with both RPS and non-RPS devices, the UCBRPS bit (bit 3 at an
offset of 17 bytes into the UCB) should be tested to determine whether the device
has rotational position sensing. If the UCBRPS bit is off, a channel program with a
“set sector” command must not be issued to the device.

The sector-addr parameter on the XDAP macro specifies the address of a 1-byte
field in your region. You must store the sector number of the block to be located
in this field. You can obtain the sector number of the block by using a resident
conversion routine, IECOSCR1. The address of this routine is in field CVTOSCR1
of the CVT, and the address of the CVT is in location 16. The routine should be
invoked via a BALR 14,15 instruction. If you are passing the track balance to the
routine, invoke the routine using a BAL 14,8(15). If you are computing the sector
value on modulo devices (3375 and 3380) with variable length records, you must
pass the track balance to the sector convert routine.

For RPS devices, the conversion routine does all its work in general registers. You
must load registers 0, 2, 14, and 15 with input to the routine. Register usage is as
follows:

108 MVS/XA System—Data Administration

PN
N

Register

Use

For fixed, standard blocks or fixed, unblocked records not in a
partitioned data set: Register 0 must be loaded with a 4-byte value in
the form XXKR, where XX is a 2-byte field containing the physical
block size, K is a 1-byte field containing the key length, and R is a
1-byte field containing the number of the record for which a sector
value is desired. The high-order bit of register 0 must be turned off
(set to 0) to indicate fixed-length records.

Passing the track balance: Register 0 must be loaded with the 4-byte
value of the track balance of the record preceding the required record.

For all other cases: Register 0 must be loaded with a 4-byte value in
the form BBIR, where BB is the total number of key and data bytes on
the track up to, but not including, the target record; I is a 1-byte key
indicator (1 for keyed records, 0 for records without keys); and R is a
1-byte field containing the number of the record for which a sector
value is desired. The high-order bit of register 0 must be turned on
(set to 1) to indicate variable-length records.

Not used by the sector-convert routine.

Must be loaded with a 4-byte field where the first byte is the UCB
device type code for the device (obtainable from UCB+19), and the
remaining three bytes are the address of a 1-byte area that is to
receive the sector value.

Not used.

Used by the convert routine and are not saved or restored.

Not used.

Must be loaded with the address in which control is to be returned
after execution of the sector conversion routine.

Used by the conversion routine as a base register and must be loaded
with the address of the entry point to the conversion routine.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 109

£

P

Chapter 4. Password Protecting Data Sets

The password protection described in this chapter does not apply to VSAM data
sets. Information about VSAM data set protection is in VSAM Administration:
Macro Instruction Reference and Access Method Services Reference. (For
information on RACEF and its relationship to password protection, see RACF
General Information.) To use the data set protection feature of the operating
system, you must create and maintain a PASSWORD data set consisting of records
that associate the names of the protected data sets with the password assigned to
each data set. There are four ways to maintain the PASSWORD data set:

¢ You can write your own routines.

e You can use the PROTECT macro instruction.

e You can use the utility control statements of the IEHPROGM utility program.
« If you have TSO, you can use the TSO PROTECT command.

This chapter discusses only the first two of the four ways: It provides technical
detail about the PASSWORD data set that is necessary for writing your own
routines, and it describes how to use the PROTECT macro instruction. (The last
two of the four ways are discussed in other publications, as indicated in the list of
publications below.)

Before using the information in this chapter, you should be familiar with
information in several related publications. The following publications are

recommended:

e Data Administration Guide contains a general description of the data set
protection feature.

o System Messages contains a description of the operator messages and replies
associated with the data set protection feature.

e JCL Reference contains a description of the data definition (DD) statement
parameter used to indicate that a data set is to be password protected.

o Utilities contains a description of how to maintain the PASSWORD data set
using the utility control statements of the IEHPROGM utility program.

e TSSO Command Language Reference describes the use of the TSO PROTECT
command.

Chapter 4. Password Protecting Data Sets 111

Providing Data Set Security

In addition to the usual label protection that prevents the opening of a data set
without the correct data set name, the operating system provides data set security
options that prevent unauthorized access to confidential data. Password protection
prevents access to data sets until a correct password is entered by the system
operator, or, for TSO, by a remote terminal operator.

The following are the types of access allowed to password-protected data sets:
« PWREAD/PWWRITE—A password is required for read or write.

+« PWREAD/NOWRITE—A password is required for read. Writing is not
allowed.

« NOPWREAD/PWWRITE—Reading is allowed without a password. A
password is required to write.

To prepare for use of the data set protection feature of the operating system, you
place a sequential data set, named PASSWORD, on the system residence volume.
This data set must contain at least one record for each data set placed under
protection. In turn, each record contains a data set name, a password for that data
set, a counter field, a protection mode indicator, and a field for recording any
information you desire to log. On the system residence volume, these records are
formatted as a “key area” (data set name and password) and a “‘data area”
(counter field, protection mode indicator, and logging field). The data set is
searched on the “key area.”

Note: The area allocated to the data set should not have been previously used for
a PASSWORD data set, as this may cause unpredictable results when adding
records to the data set.

You can write routines to create and maintain the PASSWORD data set. If you
use the PROTECT macro instruction to maintain the PASSWORD data set, see
“Maintaining the PASSWORD Data Set (PROTECT Macro)” on page 116. If
you use the IEHPROGM utility program to maintain the PASSWORD data set, see
Utilities. These routines may be placed in your own library or in the system’s
library (SYS1.LINKLIB). You may use a data management access method or
EXCP programming to read from and write to the PASSWORD data set.

If a data set is to be placed under protection, it must have a protection indicator set
in its label (format-1 DSCB or header 1 tape label). This is done by the operating
system when the data set is created, by the IEHPROGM utility program, or by the
PROTECT macro when creating or adding the control password. The protection
indicator is set in response to a value in the LABEL= operand of the DD statement
associated with the data set being placed under protection. JCL Reference describes
the LABEL operand.

Note: Data sets on magnetic tape are protected only when standard labels are
used.

Password-protected data sets can only be accessed by programs that can supply the
correct password. When the operating system receives a request to open a
protected data set, it first checks to see whether the data set has already been

112 MVS/XA System—Data Administration

opened for this job step. If so, only the access mode will be checked to determine
() - whether it is compatible with the protection mode under which it was previously
- opened. If the data set has not been previously opened by this job step or if the
access mode is not compatible with the protection mode under which it was
previously opened, a message is issued that asks for the password; the message
goes to the operator console. If the program requesting that the data set be opened
is running under TSO in the foreground, the message goes to the TSO terminal
operator. If you want the password supplied by another method in your
installation, you can modify the READPSWD source module or code a new routine
to replace READPSWD in SYS1.LPALIB.

PASSWORD Data Set Characteristics

The PASSWORD data set must reside on the same volume as your operating
system. The space you allocate to the PASSWORD data set must be contiguous,
that is, its DSCB must indicate only one extent. The amount of space you allocate
depends on the number of data sets your installation wants to protect. Each entry
in the PASSWORD data set requires 132 bytes of space. The organization of the
PASSWORD data set is physical-sequential; the record format is unblocked,
fixed-length records (RECFM=F). Each record that forms the data area is 80
bytes long (LRECL=80,BLKSIZE=80) and is preceded by a 52-byte key
(KEYLEN=52). The key area contains the fully qualified data set name of as
many as 44 bytes and a password of one to eight bytes, left justified with blanks
added to fill the areas. The password assigned may be from one to eight
alphameric characters in length.

(Note: For data sets on magnetic tape designed according to the specifications of
the International Organization for Standardization (ISO) 1001-1979, the
equivalent American National Standards Institute (ANSI) X3.27-1978, or the
Federal Information Processing Standards (FIPS) 79, do not include generation
and version numbers as part of generation data set names. The generation and
version numbers are not included as part of the names in the tape labels and are
ignored if included in the PASSWORD data set.

You can protect the PASSWORD data set itself by creating a password record for
it when your program initially builds the data set. Thereafter, the PASSWORD
data set cannot be opened (except by the operating system routines that scan the
data set) unless the operator enters the password.

Note: 1If a problem occurs on a password-protected system data set, maintenance
personnel must be provided with the password in order to access the data set and
resolve the problem.

Creating Protected Data Sets

A data definition (DD) statement parameter (LABEL=) may be used to indicate
that a data set is to be password protected. For data sets on DASD, an alternative
method is to use the PROTECT macro instruction for a previously allocated data
set. A data set may be created and the protection indicator set in its label without
entering a password record for it in the PASSWORD data set.

(Operating procedures at your installation must ensure that password records for all

data sets currently password-protected are entered in the PASSWORD data set.
Installations where independent computing systems share common DASD

Chapter 4. Password Protecting Data Sets 113

resources must ensure that PASSWORD data sets on all systems contain the
appropriate password records for any protected data set on shared DASD. A~

Under certain circumstances, the order in which data sets are allocated and
unallocated from multiple systems on shared DASD may result in loss of password
protection. For example, if an unprotected data set is allocated and opened by a
user on System A and then scratched by a different user on System B, the first user
is given a “window” to the unallocated (free) area. If any data set, protected or
unprotected, is allocated in that space by a user on either system during the time
the “window” is open, the new data set has no protection from the user with the
“window.”

While the allocation disposition is still NEW, a password-protected data set can be
used without supplying a password. However, once the data set is unallocated, any
subsequent attempt to open will result in termination of the program unless the
password record is available and the correct password is supplied. Note that, if the
protection mode is NOPWREAD and the request is to open the data set for input
or read backward, no password will be required.

Tape Volumes Containing More Than One Password-Protected Data Set

To password protect a data set on a tape volume containing other data sets, you
must password protect all the data sets on the volume. (Standard labels—SL, SUL,
AL, or AUL—are required. For definitions of these label types and the
protection-mode indicators that can be used, see Magnetic Tape Labels and File
Structure Administration.)

If you issue an OPEN macro instruction to create a data set following an existing,
password-protected data set, the password of the existing data set will be verified
during open processing for the new data set. The password supplied must be
associated with a PWWRITE protection-mode indicator.

Protection Feature Operating Characteristics

Termination of Processing

The topics that follow provide information concerning actions of the protection
feature in relation to termination of processing, volume switching, data set
concatenation, SCRATCH and RENAME functions, and counter maintenance.

Processing is terminated when:

1. The operator cannot supply the correct password for the protected data set
being opened after two tries.

2. A password record does not exist in the PASSWORD data set for the protected
data set being opened.

3. The protection-mode indicator in the password record and the method of I/O
processing specified in the Open routine do not agree, for example, OUTPUT
specified against a read-only protection-mode indicator.

4. There is a mismatch in data set names for a data set involved in a volume /
switching operation. This is discussed in the next paragraph. -

114 MVS/XA System—Data Administration

Volume Switching

Data Set Concatenation

The system ensures a continuation of password protection when volumes of a
multivolume data set are switched. It accepts a newly-mounted tape volume to be
used for input or a newly-mounted direct access volume, regardless of its use, if
these conditions are met:

o The data set name in the password record for the data set is the same as the
data set name in the JFCB. (This ensures that the problem program has not
changed the data set name in the JFCB since the data set was opened.)

o The protection-mode indicator in the password record is compatible with the
processing mode, and a valid password has been supplied.

The system accepts a newly-mounted tape volume to be used for output under any
of these conditions:

» The security indicator in the HDR1 label indicates password protection; the
data set name in the password record is the same as the data set name in the
JFCB; and the protection-mode indicator is compatible with the processing
mode. (If the data set name in the JFCB has been changed, a new password is
requested from the operator.)

s The security indicator in the HDR1 label does not indicate password
protection. (A new label will be written with the security indicator indicating
password protection.)

¢ Only a volume label exists. (A HDR1 label will be written with the security
indicator indicating password protection.)

A password is requested for every protected data set that is involved in a
concatenation of data sets, regardless of whether the other data sets involved are
protected or not.

SCRATCH and RENAME Functions

Counter Maintenance

To delete or rename a protected data set, it is necessary that the job step making
the request be able to supply the password. The system first checks to see if the
job step is currently authorized to write to the data set. If not, message IEC301A
is issued to request the password. The password provided must be associated with
a “WRITE"” protection-mode indicator.

The operating system increments the counter in the password record on each usage,
but no overflow indication will be given (overflow after 65535 openings). You
must provide a counter maintenance routine to check and, if necessary, reset this
counter.

Chapter 4. Password Protecting Data Sets 115

Maintaining the PASSWORD Data Set (PROTECT Macro)

To use the PROTECT macro instruction, your PASSWORD data set must be on
the system residence volume. The PROTECT macro can be used to:

e Add an entry to the PASSWORD data set.
« Replace an entry in the PASSWORD data set.
¢ Delete an entry from the PASSWORD data set.

» Provide a list of information about an entry in the PASSWORD data set; this
list will contain the security counter, access type, and the 77 bytes of security
information in the “data area” of the entry.

In addition, the PROTECT macro updates the DSCB of a protected direct access
data set to reflect its protection status; this feature eliminates the need for you to
use job control language when you protect a data set.

PASSWORD Data Set Characteristics and Record Format (With PROTECT macro)

When you use the PROTECT macro, the record format and characteristics of the
PASSWORD data set are no different from the record format and characteristics
that apply when you use your own routines to maintain it.

Number of Records for Each Protected Data Set

When you use the PROTECT macro, the PASSWORD data set must contain at
least one record for each protected data set. The password (the last 8 bytes of the
“key area’”) that you assign when you protect the data set for the first time is called
the control password. In addition, you may create as many secondary records for
the same protected data set as you need. The passwords assigned to these
additional records are called secondary passwords. This feature is helpful if you
want several users to have access to the same protected data set, but you also want
to control the way they can use it. For example: One user could be assigned a
password that allowed the data set to be read and written, and another user could
be assigned a password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection-mode indicator in the
format-1 DSCB in the protected data set only when you issue it for adding,
replacing, or deleting a control password.

Protection-Mode Indicator

You can set the protection-mode indicator (third data byte) in the password record
to one of four different values:

« X'00' to indicate that the password is a secondary password and the protected
data set is to be read only (PWREAD).

« X'80' to indicate that the password is the control password and the protected
data set is to be read only (PWREAD).

116 MVS/XA System—Data Administration

e X'01' to indicate that the password is a secondary password and the protected
data set is to be read and written (PWREAD/PWWRITE).

« X'81"' to indicate that the password is the control password and the protected
data set is to be read and written (PWREAD/PWWRITE).

Because of the sequence in which the protection status of a data set is checked, the
following defaults will occur:

If control password is: Secondary password must be:

1. PWREAD/PWWRITE or PWREAD/PWWRITE or
PWREAD/NOWRITE PWREAD/NOWRITE

2. NOPWREAD/PWWRITE NOPWREAD,/PWWRITE

If the control password is set to either of the settings in item 1 above, the
secondary password will be set to PWREAD/PWWRITE if you try to set it to
NOPWREAD/PWWRITE.

If the control password is changed from either of the settings in item 1 to the
setting in item 2 above, the secondary password will be automatically reset to
NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to either of the
settings in item 1 above, the secondary password is set by the system to
PWREAD/PWWRITE.

Because the DSCB of the protected data set is updated only when the control
password is changed, you may request protection attributes for secondary
passwords that conflict with the protection attributes of the control password.

PROTECT Macro Syntax

The format is:

[symbol] PROTECT | parameter list address

parameter list address—A-type address, (2-12), or (1)
indicates the location of the parameter list. The parameter list must be set up
before the PROTECT macro is issued. The address of the parameter list
may be passed in register 1, in any of registers 2 through 12, or as an A-type
address. The first byte of the parameter list must be used to identify the
function (add, replace, delete, or list) you want to perform. See Figure 25
on page 118 through Figure 28 on page 123 for the parameter lists and
codes used to identify the functions.

Note: The parameter lists and the areas addressed by the list must reside below 16
megabytes virtual.

Chapter 4. Password Protecting Data Sets 117

PROTECT Macro Parameter Lists

0 x'o1' 13 Control password pointer
1 00 00 00 16 Number of volumes
4 Data set name length 17 Volume list pointer
5 Data set name pointer 20 Protection code
8 00 21 New password pointer
9 00 00 00 24 String length
12 00 25 String pointer
Notes:
0XxX'o1'

Entry code indicating ADD function.

4 Data set name length.

5 Data set name pointer.

13 Control password pointer.

The control password is the password assigned when the data set was placed under protection for the
first time. The pointer can be 3 bytes of binary zeros if the new password is the control password.

16 Number of volumes.

If the data set is not cataloged and you want to have it flagged as protected, you must specify the
number of volumes in this field. A zero indicates that the catalog information should be used.

17 Volume list pointer.

If the data set is not cataloged and you want to have it flagged as protected, you provide the address of a
list of volume serial numbers in this field. Zeros indicate that the catalog information should be used.

20 Protection code.

A one-byte number indicating the type of protection: X'00' indicates default protection (for the ADD
function; the default protection is the type of protection specified in the control password record of the
data set); X'01' indicates that the data set is to be read and written; X'02' indicates that the data set is
to be read only; and X'03' indicates that the data set can be read without a password, but a password is
needed to write into it. The PROTECT macro will use the protection code value, specified in the
parameter list, to set the protection-mode indicator in the password record.

Figure 25 (Part 1 of 2). Parameter List for ADD Function

118 MVS/XA System—Data Administration

®

21 New password pointer.
If the data set is being placed under protection for the first time, the new password becomes the control
password. If you are adding a secondary entry, the new password is different from the control password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the optional
information field of the password record. If you don’t want to add information, set this field to zero.

25 String pointer.
The address of the character string that is going to be put in the optional information field. If you don’t
want to add additional information, set this field to zero.

Figure 25 (Part 2 of 2). Parameter List for ADD Function

Chapter 4. Password Protecting Data Sets 119

0 x'o02' 13 Control password pointer e
1 00 00 00 16 Number of volumes
4L Data set name length 17 Volume list pointer
5 Data set name pointer 20 Protection code
8 00 21 New password pointer
9 Current password pointer| 24 String length
12 00 25 String pointer
Notes:
0X'02'.

Entry code indicating REPLACE function.

4 Data set name length.

5 Data set name pointer.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Control password pointer.
The address of the password assigned to the data set when it was first placed under protection. The
pointer can be set to 3 bytes of binary zeros if the current password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you have to specify the
number of volumes in this field. A zero indicates that the catalog information should be used.

17 Volume list pointer.
If the data set is not cataloged and you want to have it flagged as protected, you have to provide the
address of a list of volume serial numbers in this field. If this field is zero, the catalog information will be
used.

20 Protection code.
A one-byte number indicating the type of protection: X'00' indicates that the protection is default
protection (for the REPLACE function the default protection is the protection specified in the current
password record of the data set); X'01' indicates that the data set is to be read and written; X'02'
indicates that the data set is to be read only; and X'03" indicates that the data set can be read without a
password, but a password is needed to write into the data set.

Figure 26 (Part 1 of 2). Parameter List for REPLACE Function

120 MVS/XA System—Data Administration

21 New password pointer.
The address of the password that you want to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in the optional information
field of the password record. Set this field to zero if you don’t want to add additional information.

25 String pointer.
The address of the character string that is going to be put in the optional information field of the password
record. Set the address to zero if you don’t want to add additional information.

Figure 26 (Part 2 of 2). Parameter List for REPLACE Function

Chapter 4. Password Protecting Data Sets 121

0 x'o3' 9 Current password pointer
1 00 00 00 12 00
4 Data set name length 13 Control password pointer
5 Data set name pointer 16 Number of volumes
8 00 17 Volume list pointer
Notes:
0 X03".

4 Data set name length.

5 Data set name pointer.

9 Current password pointer.

13 Control password pointer.

16 Number of volumes.

17 Volume list pointer.

Figure 27. Parameter List for DELETE Function

Entry code indicating DELETE function.

The address of the password that you want to delete. You can delete either a control entry or a
secondary entry.

The address of the password assigned to the data set when it was placed under protection for the first
time. The pointer can be 2 bytes of binary zeros if the current password is also the control password.

If the data set is not cataloged and you want to have it flagged as protected, you must specify the
number of volumes in this field. A zero indicates that the catalog information should be used.

If the data set is not cataloged and you want to have it flagged as protected, you must provide the

address of a list of volume serial numbers in this field. If this field is zero, the catalog information will be
used.

122 MVS/XA System—Data Administration

0 X'o4' 5 Data set name pointer

1 80-byte buffer pointer 8 00

4L Data set name length 9 Current password pointer
Notes:
0X'04'.

Entry code indicating LIST function.

1 80-byte buffer pointer.
The address of a buffer where the list of information can be returned to your program by the macro
instruction.

4 Data set name length.

5 Data set name pointer.

9 Current password pointer.
The address of the password of the record that you want listed.

Figure 28. Parameter List for LIST Function

Chapter 4. Password Protecting Data Sets 123

When the PROTECT macro finishes processing, register 15 contains one of the

Return Codes from the PROTECT Macro

following return codes:

Code Meaning

0(X'00") The updating of the PASSWORD data set was successfully
completed.

4(X'04") The PASSWORD of the data set name was already in the password
data set.

8(X'08') The password of the data set name was not in the PASSWORD
data set.

12(X'0C') A control password is required or the one supplied is incorrect.

16(X'10') The supplied parameter list was incomplete or incorrect.

20(X'14") There was an I/0 error in the PASSWORD data set.

24(X'18')1 The PASSWORD data set was full.

28(X'1C') The validity check of the buffer address failed.

32(X'20')2 The LOCATE macro failed. LOCATE’s return code is in register 1,
and the number of indexes searched is in register 0.

36(X'24')2 The OBTAIN macro failed. OBTAIN’s return code is in register 1.

40(X'28')2 The DSCB could not be updated.

44(X'2C') The PASSWORD data set does not exist.

48(X'30')2 Tape data set cannot be protected.

52(X'32')2 Data set in use.

56(X'38')2 The data set uses the virtual storage access method (VSAM).

Notes:

For this return code, a message is written to the console indicating that
the PASSWORD data set is full.

For this return code, the PASSWORD data set has been updated, but
the DSCB has not been flagged to indicate the protected status of the
data set.

o

MVS/XA System~Data Administration

Chapter 5. Exit Routines

The detailed information about installation-written exit modules has been moved to
Data Facility Product: Customization.

This chapter discussed how exit modules can:

o Take control before and after direct access device storage management
(DADSM) processing

« Take control during Open for a DCB

o Determine whether a missing data set control block (such as for a data set that
has been moved to another volume) can be restored to a volume

« Recover from errors that may occur during the opening, closing, or handling of
an end-of-volume condition for a data set associated with the user’s task

« Bypass, limit, or override system-calculated values that assist you in selecting
optimum DASD data set block size/ClI size.

Chapter 5. Exit Routines 125

N

S«

Chapter 6. System Macro Instructions

This chapter describes miscellaneous macro instructions that allow you to:

« Modify control blocks (RDJFCB macro)

e Obtain information from control blocks and system tables (DEVTYPE macro)

¢ Perform track capacity calculations (TRKCALC macro)
« Allocate a data set based on a partial DSCB (REALLOC macro)

o Load a message display on an IBM 3480 Magnetic Tape Subsystem
(MSGDISP macro)

Before reading this chapter, you should be familiar with the following publication:

o Assembler H Version 2 Application Programming: Guide contains the
(information necessary to code programs in the assembler language.

Introduction

The system macro instructions are described in these functional groupings:
« Mapping (IEFUCBOB, IEFJFCBN, and CVT)

« Obtaining device characteristics (DEVTYPE)

e Manipulating the JFCB (RDJFCB)

« Data security (DEBCHK)

« Manipulating queues (PURGE and RESTORE)

« Performing track capacity calculations (TRKCALC)

« Allocating a DASD data set (REALLOC)

« Releasing unused space from a DASD data set (PARTREL)

o Loading a message display on an IBM 3480 Magnetic Tape Subsystem
(- (MSGDISP)

Chapter 6. System Macro Instructions

127

Mapping System Data Areas

The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as DSECT
expansions that define the symbolic names of fields within the unit control block
(UCB), job file control block (JFCB), and communication vector table (CVT),
respectively.

The CVT, IEFUCBOB, and IEFJFCBN macro definitions are in a distribution
library named SYS1.AMODGEN. Before you can issue the macros, you must copy
them from SYS1.AMODGEN into SYS1.MACLIB (the IEBCOPY utility can be
used to copy the macros), or SYS1.AMODGEN may be concatenated to the macro
library before reference is made to SYS1.AMODGEN.

IEFUCBOB—Mapping the UCB

This macro instruction defines the symbolic names of the fields in the unit control
block (UCB). The macro does not include a DSECT statement. However, if you
specify PREFIX=YES, the DSECT statement is provided.

The format is:

[symbol] | IEFUCBOB | [LIST={NO | YES}]
l,PREFIX={NO | YES}]

LIST={NO | YES}

NO
specifies that only the UCB prolog is to be printed.

YES
specifies that the UCB prolog and the rest of the UCB are to be
printed.

PREFIX={NO | YES}

NO
specifies that no prefix is to be printed.
YES
specifies that the prefix and main body of the UCB are to be printed.
A DSECT statement is included if you specify PREFIX=YES.
IEFJFCBN—Mapping the JFCB

This macro instruction defines the symbolic names of the fields in the job file
control block (JFCB). The macro does not include a DSECT statement. If you
require one, code a DSECT statement before the macro statement.

128 MVS/XA System—Data Administration

£

The format is:

[symbol] | IEFJFCBN [LIST={NO | YES}]

LIST={NO | YES}

NO
specifies that only the JFCB prolog is to be printed.

YES
specifies that the JFCB prolog and the rest of the JFCB are to be
printed.

CVT—Mapping the CVT

This macro instruction defines the symbolic names of all fields in the
communication vector table (CVT).

The format is:

[symbol] CVT [DSECT={NO | YES}]
[,LLIST={NO | YES}]

DSECT={NO | YES}

{ No

YES
specifies that you want a DSECT.

specifies that you do not want a DSECT.

LIST={NO | YES}

NO
specifies that only the CVT prolog is to be printed.

YES
specifies that the CVT prolog and the rest of the CVT are to be
printed.

Obtaining I/0 Device Characteristics

Use the DEVTYPE macro instruction to request information relating to the
characteristics of an I/0 device, and to cause this information to be placed into a
specified area. (The results of a DEVTYPE macro instruction executed before a
checkpoint is taken should not be considered valid after a checkpoint/restart
occurs.) The IHADVA macro maps the data returned by the DEVTYPE macro.

(The topics that follow discuss the DEVTYPE macro, device characteristics, and
' particular output for particular devices.

Chapter 6. System Macro Instructions 129

DEVTYPE Macro Specification

AN

The format is: N -

[symbol] | DEVTYPE ddloc-addrx

,area-addrx
[LDEVTAB]
[,RPS]

For the UCBLIST function, the format is:

[symbol] | DEVTYPE (area-addrx,area-size)

SUCBLIST =(ucbl-addr,ucbl-num)

ddloc-addrx

the name of an 8-byte field that contains the symbolic name of the DD
statement to which the device is assigned. The name must be left justified in
the 8-byte field, and must be followed by blanks if the name is fewer than
eight characters. The doubleword need not be on a doubleword boundary.

area-addrx

the name of an area into which the device information is to be placed. If your
program does not specify the UCBLIST function, the area can be two, five,
or six fullwords long, depending on whether or not you specify the DEVTAB
and RPS operands. If your program specifies the UCBLIST function, the
area must be 6 fullwords long. The area must be on a fullword boundary.

area-size

the size of the area into which the device information is to be placed.

DEVTAB

This operand is only required for direct access devices. If DEVTAB is
specified, the following number of words of information is placed in your
area:

o For direct access devices: 5 words
« For non-direct access devices: 2 words
If you do not code DEVTAB, one word of information is placed in your area

if the reference is to a graphics or teleprocessing device; for any other type
of device, two words of information are placed in your area.

If RPS is specified, DEVTAB must also be specified. The RPS parameter
causes one additional full word of RPS information to be included with the
DEVTAB information.

UCBLIST

UCBLIST provides a list service in which the caller passes a list and count of o
the addresses of UCBs. The information returned is always given in 6-word A
entries (one entry per UCB address) regardless of the device type. The L

MVS/XA System—Data Administration

words that would contain information not applicable to the device for that
entry are not altered.

Note: Any reference for a DUMMY data set in the DEVTYPE macro instruction
will cause eight bytes of zeros to be placed in the output area. Any reference to a
SYSIN or SYSOUT data set causes X'00000102' to be placed in word 0 and
32760 (X'00007FF8') to be placed in word 1 in the output area. Any reference
to a file allocated to a TSO terminal causes X'00000101"' to be placed in word 0
and 32760 (X'00007FF8") to be placed in word 1 in the output area.

Device Characteristics Information

The following information is placed into your area as a result of issuing a
DEVTYPE macro:

Word 0
Describes the device as defined in the UCBTYP field of the UCB.

Word 1
Maximum block size. For direct access devices, this value is the smaller of
either the maximum size of a nonkeyed block or the maximum block size
allowed by the operating system; for magnetic tape devices, this value is the
maximum block size allowed by the operating system. For all other devices,
this value is the maximum block size accepted by the device.

If your program specifies either DEVTAB or UCBLIST, the next three fullwords
contain the following information about direct access devices:

Word 2

Bytes 0-1 The number of physical cylinders on the device, including
alternates.

Bytes 2-3 The number of tracks per cylinder.

Note: Before you use bytes 2 and 3, read the description of
word 4, byte 1, bit 0.

Word 3

Bytes 0-1 Maximum track length. Note that for the IBM 3375 and
3380 direct access devices, this value is not equal to the value
in word 1 (maximum block size) as it is for other IBM direct
access devices.

Note: Before using bytes 2 and 3, read the description of word 4.
Byte 2 Block overhead, keyed block—the number of bytes required
for gaps and check bits for each keyed block other than the

last block on a track.

Byte 3 Block overhead—the number of bytes required for gaps and
check bits for a keyed block that is the last block on a track.

Chapter 6. System Macro Instructions 131

Bytes 2-3

Word 4

Byte 0

Byte 1

Bytes 2-3

132 MVS/XA System—Data Administration

Block overhead—the number of bytes required for gaps and
check bits for any keyed block on a track including the last
block. Use of this form is indicated by a 1 in bit 4, byte 1 of
word 4.

Basic overhead—the number of bytes required for the count
field. Use of this form is indicated by a 1 in bit 3, byte 1 of
word 4.

Block overhead, block without key—the number of bytes to
be subtracted from word 3, bytes 2 or 3 or bytes 2 and 3, if a
block is not keyed.

If bit 3, byte 1 of word 4 is 1, this byte contains the modulo
factor for a modulo device.

Bit 0 If on, the number of cylinders, as indicated in
word 2, bytes 0 and 1 are invalid.

Bit 1 Reserved.

Bits 2-3 If on, indicates a 3380 is attached to a 3880
Model 13 or 23.

Bit 3 If on, indicates a modulo device (3375, 3380).
For information on how to calculate the
number of data bytes required for a data
block for a modulo device, see the device data
in Data Administration Guide.

Bit 4 If on, bytes 2 and 3 of word 3 contain a
halfword giving the block overhead for any
block on a track, including the last block.

Bits 5-6 Reserved.

Bit 7 If on, a tolerance factor must be applied to all
blocks except the last block on the track.

Tolerance factor—this factor is used to calculate the effective
length of a block. The calculation should be performed as
follows:

Step 1 add the block’s key length to the block’s data
length.
Step 2 test bit 7 of byte 1 of word 4. If bit 7 is 0,

perform step 3. If bit 7 is 1, multiply the sum
computed in step 1 by the tolerance factor.
Shift the result of the multiplication 9 bits to
the right.

o

Step 3 add the appropriate block overhead to the
value obtained above.

If bit 3, byte 1 of word 4 is 1, bytes 2 and 3 contain the
overhead for the data or key field.

If your program specifies DEVTAB and RPS, or specifies UCBLIST, the
next fullword contains the following information:

Word 5
Bytes 0-1 RO overhead for sector calculations
Byte 2 Number of sectors for the device
Byte 3 Number of data sectors for the device

Figure 29 on page 134 shows the output for each device type that results from
issuing the DEVTYPE macro.

Note: If your program specifies UCBLIST, the output consists of one 6-word
entry for every UCB address contained in the UCB list.

Return Codes from the DEVTYPE Macro

Control is returned to your program at the next executable instruction following the
DEVTYPE macro instruction. Register 15 contains a return code from the
DEVTYPE macro. The return codes and their meanings are as follows:

Code Meaning

00(X'00') Indicates that the information concerning the ddname you specified
has been successfully moved to your work area.

04(X'04') Indicates that the ddname you specified was not found.

Chapter 6. System Macro Instructions 133

Maximum

Record Size
IBM (Word 1, in DEVTAB (Words 2, 3, and RPS (Word 5,
Device'! 2 Decimal) 4, in Hexadecimal) in Hexadecimal)
2540 Reader 80 Not Applicable Not Applicable
2540 Reader w/CI 80 Not Applicable Not Applicable
2540 Punch 80 Not Applicable Not Applicable
2540 Punch w/CI 80 Not Applicable Not Applicable
2501 Reader 80 Not Applicable Not Applicable
2501 Reader w/ClI 80 Not Applicable Not Applicable
3890 Document 80 Not Applicable Not Applicable
Processor
3505 Reader 80 Not Applicable Not Applicable
3505 Reader w/CI 80 Not Applicable Not Applicable
3525 Punch 80 Not Applicable Not Applicable
3525 Punch w/CI 80 Not Applicable Not Applicable
1403 Printer 1202 Not Applicable Not Applicable
1403 w/UCS 1202 Not Applicable Not Applicable
3203 Model 5 Printer 132 Not Applicable Not Applicable
3211 Printer 1322 Not Applicable Not Applicable
3262 Model 5 Printer 132 Not Applicable Not Applicable
4245 Printer 132 Not Applicable Not Applicable
4248 Printer 1324 Not Applicable Not Applicable
3800 Printing Subsystem 1363 Not Applicable Not Applicable
3400 (9-track, p.e.) 32760 Not Applicable Not Applicable
3400 (9-track, d.d.) 32760 Not Applicable Not Applicable
3400 (7-track) 32760 Not Applicable Not Applicable
3480 (18-track) 32760 Not Applicable Not Applicable
2305 Model 2 14660 006000083A0A01215B080200 | 0140B4B1
Fixed-Head Storage
3330/3333 Disk Storage 13030 019B0013336DBFBF38000200 | 00ED807C
3330V MSS Virtual 13030 019B0013336DBFBF38000200 | 00ED807C
Volume

Figure 29 (Part 1 of 2). Output from DEVTYPE Macro

134 MVS/XA System—Data Administration

Notes to Figure 29:

1

Maximum

Record Size
IBM (Word 1, in DEVTAB (Words 2, 3, and RPS (Word 5,
Device! 2 Decimal) 4, in Hexadecimal) in Hexadecimal)
3330 Model 11 (or 3333 13030 032F0013336DBFBF38000200 | 00ED807C
Model 11) Disk Storage
3340 Disk Storage (35 8368 015D000C2157F2F24B000200 | 0125403D
megabytes)
3340/3344 Disk Storage 8368 0230001E4B36010B52080200 | 0125403D
(70 megabytes)
3350 Disk Storage 19069 0230001E4B36010B52080200 | 0185807B
3375 Disk Storage 32760 03BFO00C8CAO000E0201000BH 0340C4BB
3380 Models A04, AA4, 32760 0376000FBB6001002010010B | 04EODED6
and B04 Disk Storage
3380 Models A04, AA4, 32760 0376000FBB6001002030010B | 04EODED6
and B04 Disk Storage
(attached to a 3880
Model 13 or 23)
3380 Models AD4 and 32760 0376000FBB6001002010010B | 04EODED6
BD4 Disk Storage
3380 Models AE4 and 32760 06EBO00FBB6001002010010B | 04EODED6
BE4 Disk Storage
2250 Model 3 Display Not Applicable Not Applicable
Unit
1030,1050,83B3, Not Applicable | Not Applicable Not Applicable
TWX,2250,S360 .
115A,1130 Not Applicable | Not Applicable Not Applicable
2780 Not Applicable | Not Applicable Not Applicable
2740 Not Applicable | Not Applicable Not Applicable

Figure 29 (Part 2 of 2). Output from DEVTYPE Macro

Cl—card image feature; d.c.—data conversion; d.d.—dual density;
p.e.—phase encoding; UCS—universal character set; w/—with.

2 Although certain models can have a larger line size, the minimum line size is
assumed.

3° The IBM 3800 Printing Subsystem can print 136 characters per line at
10-pitch, 163 characters per line at 12-pitch, and 204 characters per line at
15-pitch. The machine default is 136 characters per line at 10-pitch.

4 The IBM 4248 Printer returns 132 characters even if the 168 Print Position
Feature is installed on the device.

135

Chapter 6. System Macro Instructions

DEVTYPE—List Form

The list form of the DEVTYPE macro is only valid with the UCBLIST function. It
is used to construct an empty parameter list. By specifying MF=L you construct a
parameter list, and you can subsequently supply the values by specifying the
execute form of the macro.

namel DEVTYPE ,(area-addrx,area-size)
,UCBLIST=YES
,MF=L

namel
label of the parameter list to be constructed. It must also be specified in the
corresponding MF=E form.

DEVTYPE—Execute Form

The execute form of the DEVTYPE macro is only valid with the UCBLIST
function. It can be used to modify a parameter list and call the DEVTYPE
function.

[namelI] | DEVTYPE ,(area-addrx,area-size)
J2UCBLIST = (ucbl-addrx,ucbl-num)
JMF=(E,namel)

namel
label of the parameter list constructed by the corresponding MF=L form.

Reading and Modifying a Job File Control Block

To accomplish the functions that are performed as a result of an OPEN macro
instruction, the open routine requires access to information that you have supplied
in a data definition (DD) statement. This information is stored by the system in a
job file control block (JFCB).

In certain applications, you may find it necessary to modify the contents of a JFCB
before issuing an OPEN macro instruction. For example, suppose you are adding
records to the end of a sequential data set. You might want to add a secondary
allocation quantity to allow the existing data set to be extended when the space
currently allocated is exhausted. To assist you, the system provides the RDJFCB
macro instruction. This macro instruction causes a specified JFCB to be moved
from the scheduler work area (SWA), where it is stored, to an area specified in an
exit list. The use of the RDJFCB macro instruction with an exit list is shown under
“Example” on page 138. When you subsequently issue the OPEN macro
instruction, you must indicate, by specifying the TYPE=J operand, that you want
to open the data set using the JFCB in the area you specified.

The RDJFCB macro also allows you to retrieve allocation information (all JFCBs

and all volume serial numbers) for the data sets in a concatenation. You may either
select data sets or, by default, retrieve the information for all data sets in the

136 MVS/XA System—Data Administration

concatenation. Figure 33 on page 146 illustrates how you can use RDJFCB to
retrieve this information.

Caution: If you set the bit JFCNWRIT in the field JFCBTSDM to 1 before you
issue the OPEN macro instruction, the JFCB is not written back to the SWA at the
conclusion of open processing. OPEN TYPE=J normally moves your program’s
modified copy of the JFCB to the scheduler work area (SWA), replacing the
system copy. To ensure that this move is done, your program must set bit zero (0)
of the JFCBMASK+4 field to 1. The JFCBMASK format is shown in the Internal
Data Areas section of Open/Close/EOV Logic. If the user JFCB, which the system
used to open the data set, is not written back to SWA (JFCNWRIT set on), then
errors may occur during EOV or close processing.

Some of the modifications that are commonly made to the JFCB include:

« Moving the creation and expiration date fields of the DSCB into the JFCB (see
“Using RDJFCB for MSS Virtual Volumes” on page 140).

« Moving the secondary allocation quantity from the DSCB into the JFCB (see
“Using RDJFCB for MSS Virtual Volumes’ on page 140).

« Moving the DCB fields from the DSCB into the JFCB.

¢ Adding volume serial numbers to the JFCB (see ‘“Using RDJFCB for MSS
Virtual Volumes™ on page 140 and “RDJFCB Security’ on page 140).

Volume serial numbers in excess of five are written to the JFCBX (extension)
located in the SWA. The JFCBX cannot be modified by user programs.

e Modifying the data set sequence number field in the JFCB.

e Modifying the number-of-volumes field in the JFCB (see *Using RDJFCB for
MSS Virtual Volumes™ on page 140).

e Setting bit JFCDQDSP in field JFCBFLG3 to invoke the tape volume DEQ at
demount facility (see **‘DEQ at Demount Facility for Tape Volumes™ on
page 147).

« Modifying the JFCRBIDO field in the JFCB to cause high-speed positioning to
a specific data block on a 3480 tape volume.

RDJFCB—Read a Job File Control Block

The RDJFCB macro instruction causes a job file control block (JFCB) to be
moved from the SWA (scheduler work area) into an area of your choice as
identified via the EXLST parameter of the DCB macro for each data control block
specified.

[symbol] RDJFCB | (dch-address
s[(options)),...)

Chapter 6. System Macro Instructions 137

dcb-address,{(options)]
(same as the dcb-address, option1, and option2 operands of the OPEN
macro instruction, as shown in Data Administration: Macro Instruction

Reference), except for the MODE operand, which is not valid with the
RDJFCB macro.

The option operands do not affect RDJFCB processing. You can, however,
specify them in the list form of the RDJFCB macro instruction and refer to
the generated parameter list with the execute form of the macro.

Example: In Figure 30, the macro instruction at EX1 creates a parameter list for
two data control blocks: INVEN and MASTER. In creating the list, both data
control blocks are assumed to be opened for input; option2 for both blocks is
assumed to be DISP. The macro instruction at EX2 moves the system-created
JFCBs for INVEN and MASTER from the SWA into the area you specified, thus
making the JFCBs available to your problem program for modification. The macro
instruction at EX3 modifies the parameter list entry for the data control block
named INVEN and indicates, through the TYPE=J operand, that the problem
program is supplying the JFCBs for system use.

EX1 RDJFCB (INVEN, ,MASTER) ,MF=L
EX2 RDJFCB MF=(E,EX1)
EX3 OPEN (, (RDBACK,LEAVE)),TYPE=J,MF=(E,EX1)
INVEN DCB EXLST=LSTA, ...
MASTER DCB EXLST=LSTB, ...
LSTA DS OF
DC X'07'
DC AL3 (JFCBAREA)
JFCBAREA DS OF, 176C

LSTB DS OF

Figure 30. Sample Code Using RDJFCB Macro

Multiple data control block addresses and associated options may be specified in
the RDJFCB macro instruction. This facility makes it possible to read several job
file control blocks in parallel.

138 MVS/XA System—Data Administration

An exit list address must be provided in each DCB specified by an RDJFCB macro
instruction. Each exit list must contain an active entry that specifies the virtual
storage address of the area into which a JFCB is to be placed.

| Two kinds of JFCB entries may appear in the exit list. Each is briefly explained in
| the following text. A full discussion of the exit list and its use is contained in Data
| Facility Product: Customization.

| Type 07 JFCB Exit List Entry

| The type 07 JFCB exit list entry allows a variety of functions to the user, as
| described in the following text.

| The format of the Type-07 JFCB exit list entry is as follows:

Types of Hexadecimal

Exit List Code (High- Contents of Exit List Entry

Entry Order Byte) (Low-Order Bytes)

Job file 07 Address of a 176-byte area to be provided
control if the RDJFCB or OPEN (TYPE=))
block macro instruction is used. This area must

begin on a fullword boundary and must be
located within the user’s region. Also,
users running in 3 1-bit addressing mode
must ensure that this area is located below
16 megabytes virtual.

The virtual storage area into which the JFCB is read must be at least 176 bytes
| long. Each exit list entry must be 4 bytes long. The system recognizes only the first
| occurrence of an exit list entry code. Indicate the end of the exit list by setting the
| high order bit in the entry code to 1.

The DCB may be either open or closed when this macro instruction is executed.

If the JFCB is read successfully for all DCBs in the parameter list, return code O is
placed in register 15. If the JFCB is not read for any of the DCBs because the
DDNAME is blank, or a DD statement is not provided, return code 4 is placed in
register 15.

Warning: The following errors cause the results indicated:

Error Result
A DD statement has not been Return code 4 is placed in register 15.
provided.

DDNAME field in DCB is blank. A write-to-programmer is issued, the
request for this DCB is ignored, and
return code 4 is placed in register 15.

Chapter 6. System Macro Instructions 139

140

Error

Result

A virtual storage address has not
been provided.

Abnormal termination of task.

If you want to open a VTOC data set to change its contents (that is, open it for
OUTPUT, OUTIN, INOUT, UPDAT, OUTINX, or EXTEND), your program
must be authorized under the Authorized Program Facility (APF). APF provides
security and integrity for your data sets and programs. Details on how you
authorize your program are provided in System Programming Library: Supervisor

Services and Macro Instructions.

If the RDJFCB routine fails while processing a DCB associated with your RDJFCB
request, your task is abnormally terminated. None of the options available through
the DCB ABEND exit, as described in Data Facility Product: Customization, are

available when a RDJFCB macro instruction is issued.

When using concatenated data sets, the RDJFCB routine modifies only the first

JFCB.

Using RDJFCB for MSS Virtual Volumes: Care must be taken in using RDJFCB if

the data set resides on MSS virtual volumes such that:

RDJFCB Security: The volume serial numbers specified in the user-supplied JFCB
will be compared with the volume serial numbers in the system JFCB located in the
SWA. Each different volume serial number will be enqueued exclusively. The
volumes will stay enqueued until the job step terminates, because the close routines
will not dequeue the volumes. If the job step already has the volume open, OPEN
TYPE=J will continue. If the volume is enqueued by another job step, a 413

The expiration date added does not conflict with other volumes within the

specified MSVGP.

The secondary allocation quantity should be in cylinder increments and be a
multiple or submultiple of the primary allocation quantity to avoid

fragmentation.

The number of volumes must not exceed the number available in the specified

MSVGP.

Any volume serial numbers added to the JFCB should exist in the MSVGP.

abend will occur with a return code of 04.

Some JFCB modifications can compromise the security of existing

password-protected data sets. The following modifications are specifically not
allowed, unless the program making the modifications is authorized or can supply

the password:

Changing the disposition of a password-protected data set from OLD or MOD

to NEW.

Changing the data set name of one or more of the volume serial numbers when

the disposition is NEW.

MVS/XA System—Data Administration

AN

\ &_,/'

« Changing the label processing specifications to bypass label processing.

Note: An authorized program is one that is either in supervisor state, executing in
one of the system protection keys (keys 0 through 7), or authorized under the
Authorized Program Facility.

RDJFCB Use by Authorized Programs: If you change the data set name in the
JFCB, you should do a system enqueue on the major name of “SYSDSN”’ for the
substituted data set name. To use the correct interface with other system functions
(for example, partial release), the ENQUEUE macro should include the TCB of
the initiator and the length of the data set name (with no trailing blanks). When
you complete processing of the data set, you should use the DEQ macro to release
the resources. If the substituted data set name is enqueued by another job step, a
913 abend occu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>