

--------- -------- - ---- - - ----------_.-

Order Number
GC26-4013-2

MVS/Extended Architecture
Data Administration Guide

Data Facility Product
5665-284

Licensed
Program

Version 1
Release 1.2

Third Edition (January 1987)

This edition replaces and makes obsolete the previous edition, GC26-4013-1.

This edition applies to Version 1 Release 1.2 of MVS/Extended Architecture Data
Facility Product, Licensed Program 5665-284, and to any subsequent releases until
otherwise indicated in new editions or tethnical newsletters.

The changes for this edition are summarized under "Summary of Changes" following
the preface. Specific changes are indicated by a vertical barto the left of the change.
These bars will be deleted at any subsequent publication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370,
30xx, and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally equivalent program
may be used instead.

Requests for IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality. If you request publications from the address
given below, your order will be delayed because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, P.o. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

1'0 Copyright International Business Machines Corporation 1982, 1984, 1987

c

j

I

Preface

Organization

This book is intended for system programmers who use the IBM data
management access methods-other than VSAM (virtual storage access
method)-to process data sets. This book does not cover such specialized
applications as time sharing option (TSO), graphics, teleprocessing, optical
character readers, optical reader - sorters, and magnetic character readers. These
specialized applications are described in separate publications listed in IBM
System/370 and 4300 Processors Bibliography, GC20-0001.

To learn about VSAM or to write programs that create and process VSAM data
sets, see:

• MVS/Extended Architecture Catalog Administration Guide, GC26-4041,
which describes how to create master and user catalogs

• MVS/Extended Architecture VSAM Administration Guide, GC26-4015,
which describes how to create VSAM data set,s

• MVS/Extended Architecture Integrated Catalog Administration: Access
Method Services Reference, GC26-4019, and MVS/Extended Architecture
VSAM Catalog Administration: Access Method Services Reference,
GC26-4075, which describe the access method services commands used to
manipulate VSAM data sets

• MVS/Extended Architecture VSAM Administration: Macro Instruction
Reference, GC26-4016, which describes how to code the macro instructions
required with VSAM data sets

This publication has 15 chapters and 4 appendixes:

• Chapter 1, "Introduction to Data Administration" on page 1, provides an
overview of data set processing, including a description of four different
access methods, and a discussion of data set identification.

• Chapter 2, "Data Set Storage" on page 5, discusses the characteristics of
data sets that are stored on direct access and magnetic tape devices.

• Chapter 3, "Record Formats" on page 13, discusses the considerations for
creating and processing records within the various kinds of record formats.

Preface 111

• Chapter 4, "Selecting an Access Method" on page 35, gives an overview of ,r\
basic and sequential access methods in data management, and compares the 1,_/
functions and performance of each.

• Chapter 5, "Specifying a Data Control Block and Initializing Data Sets" on
page 41, discusses how to specify a DCB and how to open and close data
sets. This chapter also discusses managing buffer pools .and handling data set
volumes.

• Chapter 6, "Accessing Records in Data Sets" on page 61, discusses how to
use GET and PUT or READ and WRITE macros to access data records.
This chapter also discusses analyzing input and output errors.

• Chapter 7, "DCB Exit Routines" on page 75, discusses user-written exit
routines and the parameter lists they use.

• Chapter 8, "Spooling and Scheduling Data Sets" on page 105, discusses how
to route data through the input/output streams of the job entry subsystem
(JES).

• Chapter 9, "Processing a Sequential Data Set" on page 109, discusses
managing sequential data sets and buffers.

• Chapter 10, "Processing a Partitioned Data Set" on page 131, discusses the
advantages and restrictions of partitioned data sets.

• Chapter 11, "Processing a Direct Data Set" on page 149, discusses the tasks
required to process BDAM data sets.

• Chapter 12, "Processing an Indexed Sequential Data Set" on page 159,
discusses the organization of and the access techniques for ISAM data sets.

• Chapter 13, "Generation Data Groups" on page 193, discusses the reasons
for using generation data groups and how to specify them.

• Chapter 14, "I/O Device Control Macros" on page 201, discusses the macro
instructions that control input and output devices.

• Chapter 15, "Protecting Data" on page 205, discusses password and
Resource Access Control Facility (RACF) protection of non-VSAM data
sets.

• Appendix A, "Direct Access Labels" on page 209, discusses the standard
label formats used on direct access volumes.

• Appendix B, "Control Characters" on page 213, discusses the use of an
optional control character to control card punches and printers.

iv MVSjXA Data Administration Guide

(

(

• Appendix C, "Allocating Space on Direct Access Volumes" on page 217,
discusses methods of estimating capacities and space requirements on direct
access devices.

• Appendix D, "ISO/ANSI/FIPS Record Control Word and Segment Control
Word" on page 223, discusses the translation of ISO/ANSI/FIPS record
control words and ISO/ANSI/FIPS segment control words.

Prerequisite Knowledge

To use this book efficiently, you should be familiar with:

• Assembler language

• Job control language

Required Publications

You should be familiar with the information presented in the following
publications:

• Assembler H Version 2 Application Programming: Guide, SC26-4036

• Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

• MVS/Extended Architecture JCL User's Guide, GC28-13S1

• MVS/Extended Architecture JCL Reference, GC28-13S2

Related Publications

Within the text, references are made to the publications listed below:

Short Title Publication Title Order Number

Assembler H V2 Assembler H Version 2 SC26-4036
Application Application Programming:
Programming: Guide
Guide

Assembler H V2 Assembler H Version 2 GC26-4037
Application Application Programming:
Programming: Language Reference
Language
Reference

Preface V

Short Title Publication Title Order Number

Data MVS/extended Architecture GC26-4014
Administration: Data Administration: Macro
Macro Instruction Instruction Reference
Reference

Debugging MVS/ Extended Architecture LC28-11641

Handbook Debugging Handbook, LC28-1165
Volumes I through 5 LC28-1166

LC28-1167
LC28-1168

Device Support Device Support F acUities User's GC35-0033
Facilities User's Guide and Reference
Guide and
Reference

IBM 3262 Model 5 IBM 3262 ModelS Printer GA24-3936
Printer Product Product Description
Description

IBM 3800 Printing IBM 3800 Printing Subsystem GC26-3846
Subsystem Programmer's Guide
Programmer's
Guide

IBM 3800 Printing IBM 3800 Printing Subsystem SH35-0061
Subsystem Models 3 and 8 Programmer's
Programmer's Guide
Guide

IBM 3890 IBM 3890 Document Processor GA24-3612
Document Machine and Programming
Processor Machine Description
and Programming
Description

IBM 4245 Printer IBM 4245 Printer Modell GA33-1541
Modell Component Description and
Component Operator's Guide
Description and
Operator's Guide

IBM 4248 Printer IBM 4248 Printer Modell GA24-3927
Modell Description
Description

Initialization and MVS/ Extended Architecture GC28-1149
Tuning System Programming Library:

Initialization and Tuning

JCL User's Guide MVS/Extended Architecture GC28-1351
JCL User's Guide

JCL Reference MVS/ Extended Architecture GC28-1352
JCL Reference

Note:

All five volumes may be ordered under one order number, LBOF-1015.

vi MVS,IXA Data Administration Guide

(Short Title Publication Title Order Number
Magnetic Tape MVS/Extended Architecture GC26-4145
Labels and File Magnetic Tape Labels and File
Structure Structure Administration
Administration

Open/Close/EOV MVS/Extended Architecture LY26-3892
Logic Open/Close/EO V Logic

OS/VS IBM 3886 OS/VS IBM 3886 Optical GC24-5101
Optical Character Character Reader Modell
Reader Model 1 Reference
Reference

OS/VS Mass OS/VS Mass Storage System GC35-0011
Storage System (MSS) Planning Guide
(MSS) Planning
Guide

OS/VS Mass OS/VS Mass Storage System GC35-0016
Storage System (MSS) Services: General
(MSS) Services: Information
General
Infonnation

OS/VS Mass OS/VS Mass Storage System SH35-0036
Storage System (MSS) Extensions Services:
(MSS) Extensions Reference
Services: Reference

Programming Programming Support for the GC21-5097
Support for the IBM 3505 Card Reader and
IBM 3505 Card the IBM 3525 Card Punch

(
Reader and the
IBM 3525 Card
Punch

RACF General Resource Access Control GC28-0722
Infonnation Facility (RA CF): General
Manual Information Manual

Service Aids MVS/Extended Architecture GC28-1159
System Programming Library:
Service Aids

Supervisor Services MVS/Extended Architecture GC28-1154
and Macro System Programming Library:
Instructions Supervisor Services and Macro

Instructions

System Codes MVS/Extended Architecture GC28-1157
Message Library: System
Codes

System - Data MVS/Extended Architecture GC26-4010
Administration System- Data Administration

System Generation MVS/Extended Architecture GC26-4009
'. Installation: System Generation

(-

Preface vii

Short Title Publication Title Order Number
System Macros and M VS / Extended Architecture GC28-11S0
Facilities System Programming Library: and

Macros and Facilities, Volumes GC28-liSI
I and 2

System Messages MVS / Extended Architecture GC28-1376
Message Library: System and
Messages, Volumes I and 2 GC28-1377

Utilities MVS / Extended Architecture GC26-4018
Data Administration: Utilities

4··"
~~p/

viii MVSjXA Data Administration Guide

(-

--- ------~~-

Summary of Changes

I Release 1.2 Library Update, January 1987

Service Changes

Infonnation has been added, corrected, or deleted to reflect technical service
changes.

Release 1.2, February 1984

New Device Support

This publication, fonnedy titled MVS/Extended Architecture Data Management
Services, is now titled MVS/Extended Architecture Data Administration Guide.
The publication has been reorganized for ease of use.

The IBM 3800 Printing Subsystem Model 3 is now supported in Model I
compatibility mode.

Modifications have been made to the SETPR T macro to support the IBM 4248,
3262 Model 5, and 4245 printers.

Note: The IBM 3262 Model 5 printer is afforded the same support as that
provided for the IBM 4248 printer. However, the use of an IBM 3262 Model 5
printer dictates that entries exist in the IBM 4248 printer UCS Image Table for
the IBM 3262 Model 5 printer band(s)jalias(es) used on the host system. These
image table entries must be generated by the user as part of the IBM 3262 Model
5 installation procedure.

Infonnation to support the IBM 3800 Printing Subsystem Model 3 in full
function and Model I compatibility mode has been added to the SYNAD
parameter of the DCB and SETPR T macros.

Summary of Changes ix

X MVS/XA Data Administration Guide

I
./

Contents

Chapter 1. Introduction to Data Administration 1
Overview of Data Set Processing 1
Identifying Data Sets .. 3

Chapter 2. Data Set Storage 5
Direct Access Volumes .. 5

Track Characteristics .. 6
Magnetic Tape Volumes 8
Cataloging Data Sets .. 9

Entering a Data Set Name in the Catalog 10

Chapter 3. Record Formats 13
Fixed-Length Records, Standard Format 14
Fixed-Length Records, ISO/ANSI/FIPS Tapes 15

V ariable-Length Records 17
Variable-Length Records-Format-V 18
ISO/ANSI/FIPS Variable-Length Records-Format D 23
ISO/ANSI/FIPS Variable-Length Spanned Records-Format-DS or

Format-DBS ... 24
Undefined-Length Records 27
Record Format-Device Type Considerations 28

Magnetic Tape ... 29
Card Reader and Punch 30
Printer -... 31
Direct Access Device 33

Chapter 4. Selecting an Access Method 35
Overview of Access Methods 35

Basic Direct Access Method (BDAM) 36
Basic Indexed Sequential Access Method (BISAM) 37
Basic Partitioned Access Method (BPAM) 37
Basic Sequential Access Method (BSAM) 38
Queued Indexed Sequential Access Method (QISAM) 38
Queued Sequential Access Method (QSAM) 39

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 41
Selecting Data Set Options 43

DCB Parameters 43
DD Statement Parameters 45

(- Changing the DCB .. 46
Opening and Closing a Data Set 47

Open/Close/EOV Errors 49
OPEN-Prepare a Data Set for Processing 51

Contents xi

CLOSE-Tenninate Processing of a Data Set 52 0
Volume Positioning ... 54 \",j

End-of-Volume Processing 55
Device Independence .. 58

Chapter 6. Accessing Records in Data Sets 61
Accessing Data with READ/WRITE 61

READ-Read a Block 62
WRITE-Write a Block 63
CHECK-Test Completion of Read or Write Operation 64
WAIT -Wait for Completion of a Read or Write Operation 64
Data Event Control Block (DECB) 65

Accessing Data with GET/PUT 65
GET-Retrieve a Record 65
PUT-Write a Record 66
PUTX-Write an Updated Record 66
Parallel Input Processing (QSAM Only) 66

Sharing Data Sets ... 69
Analyzing I/O Errors .. 72

SYNADAF-Perform SYNAD Analysis Function 72
SYNADRLS-Release SYNADAF Message and Save Areas 73
ATLAS-Perform Alternate Track Location Assignment 73

Chapter 7. DCB Exit Routines ..•..•.•......................... 75
End-of-Data-Set Exit Routine (EODAD) 76
Synchronous Error Routine Exit (SYNAD) 77
Exit List (EXLST) .. 80
Standard User Label Exit 82
User Totaling (BSAM and QSAM only) 86
Data Control Block Open Exit 88
Open/EOV Nonspecific Tape Volume Mount Exit 88

Convention for Saving and Restoring General Registers 90
Open/EOV Volume Security and Verification Exit 90

Convention for Saving and Restoring General Registers 93
QSAM Parallel Input Exit 93
JFCBE Exit :.................... 93
End-of-Volume Exit ... 94
Block Count Exit ... 94
Defer Nonstandard Input Trailer Label Exit 95
FCB Image Exit .. 95
DCB Abend Exit ... 97

Recovery Requirements 101
Abend Installation Exit 103

Chapter 8. Spooling and Scheduling Data Sets 105

Chapter 9. Processing a Sequential Data Set 109
Creating a Sequential Data Set 109
Retrieving a Sequential Data Set 110
Modifying a Sequential Data Set 112

Updating a Sequential Data Set in Place 1121"
Extending a Sequential Data Set 113 ~j
Concatenating Sequential Data Sets 113

xii MVS/XA Data Administration Guide

(Processing with Chained Scheduling 115
Chained Scheduling Functions for DASD 116

Search Direct for Input Operations 117
Determining the Length of a Record on Input 117
Writing a Short Block When Using the BSAM WRITE Macro 119
Managing SAM Buffer Space 119

Buffer Pool Construction 120
Buffer Control .. 123
Buffering Techniques and GET/PUT Processing Modes 128

Chapter 10. Processing a Partitioned Data Set .•.................. 131
Partitioned Data Set Directory 132
Allocating Space for a Partitioned Data Set 135
Creating a Partitioned Data Set 136
Processing a Member of a Partitioned Data Set 139

BLDL-Construct a Directory Entry List 139
FIND-Position to a Member 139

Retrieving a Member of a Partitioned Data Set 141
Modifying a Partitioned Data Set 144

Updating a Member of a Partitioned Data Set 144
Processing a Partitioned Data Set Residing on MSS 146

Concatenating Partitioned Data Sets 146
Partitioned Concatenation 146

Reading a BPAM Directory Sequentially 147

(Chapter 11. Processing a Direct Data Set 149
Direct Data Set Organization 149
Creating a Direct Data Set 150
Referring to a Record in a Direct Data Set 152
Adding or Updating Records on a Direct Data Set 154
Sharing Direct Data Sets 157

Chapter 12. Processing an Indexed Sequential Data Set 159
Indexed Sequential Data Set Organization 159

Prime Area ... 160
Index Areas ... 161
Overflow Areas .. 163

Creating an Indexed Sequential Data Set 163
Allocating Space for an Indexed Sequential Data Set 166

Retrieving and Updating an Indexed Sequential Data Set 174
Sequential Retrieval and Update 174
Direct Retrieval and Update 176

Adding Records to an Indexed Sequential Data Set 182
Inserting New Records into an Existing Indexed Sequential Data Set ... 182
Adding New Records to the End of an Indexed Sequential Data Set ... 182
Maintaining an Indexed Sequential Data Set 183
Indexed Sequential Buffer and Work Area Requirements 186
Controlling an Indexed Sequential Data Set Device 189

Chapter 13. Generation Data Groups 193
Absolute Generation and Version Numbers 194
Relative Generation Number 194
Programming Considerations for Multiple Step Jobs 195

Contents xiii

Generation Data Group Naming for ISO/ANSI/FIPS Version 3 Labels .. .
Creating a New Generation

196 0
197 \.j

Allocating a Generation 197
Passing a Generation 198
Creating an ISAM Data Set as Part of a Generation Data Group 198

Retrieving a Generation 199
Building a Generation Data Group Index 199

Chapter 14. I/O Device Control Macros ••....................... 201
CNTRL-Control an I/O Device 201
PRTOV-Test for Printer Overflow 202
SETPR T -Printer Setup 202
BSP-Backspace a Magnetic Tape or Direct Access Volume 203
NOTE-Return the Relative Address of a Block 203
POINT-Position to a Block 204
SYNCDEV -Control Data Synchronization 204

Chapter 15. Protecting Data•....................... 205
Password Protection for Non-VSAM Data Sets 205
RACF Protection for Non-VSAM Data Sets 206

Appendix A. Direct Access Labels••... 209
Volume-Label Group 209

Initial Volume Label Format 210
Data Set Control Block (DSCB) 211
User Label Groups .. . 211

User Header and Trailer Label Format 212

Appendix B. Control Characters 213
Machine Code 213
Extended American National Standards Institute Code 215

Appendix C. Allocating Space on Direct Access Volumes 217
Estimating Space Requirements 218

Appendix D. ISO/ANSI/FIPS Record Control Word and Segment Control
Word•........................ 223

Translation of ISO/ANSI/PIPS Record Control Word 223
Translation of ISO/ANSI/FIPS Segment Control Word 224

Glossary of Terms and Abbreviations•.................. 225

Index ..•..•....... 229

xiv MVS;XA Data Administration Guide

Figures

1. Direct Access Volume Track Fonnats 7
2. Catalog Structure :.................................. 10
3. Fixed-Length Records 14
4. Fixed-Length Records for ISO/ANSI/FIPS Tapes 17
5. Nonspanned, Fonnat-V Records 18
6. Spanned Fonnat-VS Records (Sequential Access Method) 20
7. Segment Control Codes 21
8. Spanned Fonnat-V Records for BDAM Data Sets 22
9. Nonspanned Fonnat-D Records for ISO/ANSI/FIPS Tapes 24

10. Spanned Variable-Length (Fonnat-DS) Records for ISO/ANSI/FIPS
Tapes ... 26

11. Undefmed-Length Records 28
12. Tape Density (DEN) Values 30
13. Data Management Access Methods 35

(14. Sources and Sequence of Operations for Completing the Data Control
Block ... 42

15. Changing a Field in the Data Control Block 46
16. Opening Three Data Sets Simultaneously 52
17. Record Processed When LEAVE or REREAD Is Specified for CLOSE

TYPE=.T .. 53
18. Closing Three Data Sets Simultaneously 54
19. Parallel Processing of Three Data Sets 68
20. JCL, Macro Instructions, and Procedures Required to Share a Data Set

Using Multiple DCBs 70
21. Macro Instructions and Procedures Required to Share a Data Set Using

a Single DCB .. 71
22. Data Management Exit Routines 75
23. DCB Exit List Fonnat and Contents 80
24. Parameter List Passed to User Label Exit Routine 83
25. System Response to a User Label Exit Routine Return Code 84
26. IECOENTE Macro Parameter List 89
27. IECOEVSE Macro Parameter List 92
28. System Response to Block Count Exit Return Code 95
29. Defming an FCB Image for a 3211 96
30. Parameter List Passed to DCB Abend Exit Routine 98
31. Conditions for Which Recovery Can Be Attempted 99
32. Recovery Work Area 102
33. Creating a Sequential Data Set-Move Mode, Simple Buffering 110
34. Creating a Sequential Data Set-Locate Mode, Simple Buffering 111
35. Reissuing a READ or GET for Unlike Concatenated Data Sets 114
36. One Method of Detennining the Length of the Record When Using

BSAM to Read Undefined-Length Records 118
37. Constructing a Buffer Pool from a Static Storage Area 122

Figures XV

38. Constructing a Buffer Pool Using GETPOOL and FREEPOOL 123 (~
39. Simple Buffering with MACRF = GL and MACRF = PM 126 "-j
40. Simple Buffering with MACRF = GM and MACRF = PM 126
41. Simple Buffering with MACRF = GL and MACRF = PL 127
42. Simple Buffering with MACRF=GL and MACRF= PM-UPDAT

Mode•................................... 128
43. Buffering Technique and GET/PUT Processing Modes 128
44. A Partitioned Data Set 131
45. A Partitioned Data Set Directory Block 132
46. A Partitioned Data Set Directory Entry 133
47. Creating One Member of a Partitioned Data Set 136
48. Creating Members of a Partitioned Data Set Using STOW 138
49. BLDt List F()rmat 140
50. Retrieving One Member of a Partitioned Data Set 142
51. Retrieving Several Members and Subgroups of a Partitioned Data Set 143
52. Updating a Member of a Partitioned Data Set 145
53. Creating a Direct Data Set 152
54. Adding Records to a Direct Data Set 155
55. Updating a Direct Data Set 156
56. Indexed Sequential Data Set Organization 160
57. Fo~at of Track Index Entries 162
58. Creating an Indexed Sequential Data Set 165
59. Requests for Indexed Sequential Data Sets 168
60. Sequentially Updating an Indexed Sequential Data Set 175
61. Directly Updating an Indexed Sequential Data Set 178
62. Directly Updating an Indexed Sequential Data Set with

Variable-Length Records 181 J
63. Adding Records to an Indexed Sequential Data Set 184
64. Deleting Records from an Indexed Sequential Data Set 185
65. Direct Access Labeling 209
66. Initial Volume Label 210
67. User Header and Trailer Labels 211
68. Direct Access Storage Device Capacities 219
69. Direct Access Device Overhead Formulas 220
70. Translation of ISOjANSI/FIPS Record Control Word to DjDB

Record Descriptor Word 223
71. Translation of ISOjANSIjFIPS Segment Control Word to DSjDBS

Segment Descriptor Word 224

c
xvi MVSjXA Data Administration Guide

(

(

(

Chapter 1. Introduction to Data Administration

Data administration is the process of systematically and effectively organizing,
identifying, storing, cataloging, and retrieving all the information (including
programs) that your installation uses.

Data set storage control, along with an extensive catalog system, makes it
possible to retrieve data by symbolic name alone, without specifying device types
and volume serial numbers. In freeing computer personnel from maintaining
complicated volume serial number inventory lists of stored data and programs,
the catalog reduces manual intervention and the likelihood of human error.

A data set is a collection of logically related data records that are stored on a
volume and that may be classified according to installation needs. For example,
a sales department could classify its data by geographic area, by individual
salesperson, or by any other logical plan. A user can request data from a direct
access volume or a tape volume.

The cataloging system makes it possible to classify successive generations or
updates of related data. These generations can be given identical names and
subsequently be referred to relative to the current generation. The system
automatically maintains a list of the most recent generations.

Data administration provides:

• Allocation of space on direct access volumes.

• Automatic retrieval of cataloged data sets by name alone.

Overview of Data Set Processing

Input/output routines in the operating system schedule and control all data
transfer operations between virtual and auxiliary storage. These routines can:

• Read data

• Write data

• Translate data from ISCII/ASCII (International Standard Code for
Information Interchange and American National Standard Code for
Information Interchange) to EBCDIC (Extended Binary Coded Decimal
Interchange Code) and the reverse

Chapter 1. Introduction to Data Administration 1

• Block and unblock records

• Overlap reading, writing, and processing operations

• Read and verify volume and data set labels

• Write data set labels

• Position and reposition volumes automatically

• Detect I/O errors and correct them when possible

• Provide exits to user-written error and label routines

Data management programs also provide a variety of methods for gaining access
to a data set. These methods are based on data set organization and data access
technique.

You can organize your data sets in one of four ways:

• Sequential: Records are organized in physical rather than logical sequence.
Given one record, the location of the next record is determined by its
physical position in the data set. You must use the sequential data set
organization for all magnetic tape devices, but it is optional on direct access
devices. Punched cards and printed outpui must also be sequentially
organized.

• Indexed Sequential: Records are arranged in sequence, according to a key
that is a part of every record, on the tracks of a direct access volume. An
index or set of indexes maintained by the system gives the location of certain
principal records. This permits direct and sequential access to any record.

• Direct: Records within the data set, which must be on a direct access
volume, may be organized in any manner you choose. All space allocated to
the data set is available for data records. No space is required for indexes.
You specify addresses by which records are stored and retrieved directly.

• Partitioned: Independent groups of sequentially organized records, called
members, are in direct access storage. Each member has a simple name
stored in a directory that is part of the data set and contains the location of
the member's starting point. Partitioned data sets are generally used to store
programs. As a result, they are often called libraries.

Requests for input/output operations on data sets through macro instructions use
two techniques: the technique for queued access and the technique for basic
access. Each technique is identified according to its treatment of buffering and
synchronization of input and output with processing. The combination of an
access technique and a given data set organization is called an access method. In
choosing an access method for a data set, therefore, you must consider not only
its organization, but also what you need to specify through macros. Also, you
may choose a data organization according to the access techniques and processing (f"
capabilities available. Itj

2 MVSjXA Data Administration Guide

(

The code generated by the macros for both techniques is optionally reenterable,
depending on the form in which parameters are expressed.

Besides the access methods provided by the operating system, an elementary
access technique called execute channel program (EXCP) is also provided. To
use this technique, you must establish your own system for organizing, storing,
and retrieving data. The primary advantage of EXCP is the complete flexibility it
allows you in using the computer directly.

An important feature of data administration is that much of the detailed
information needed to store and retrieve data, such as device type, buffer
processing technique, and length of output records, need not be supplied until the
job is ready to be executed. This device independence permits changes to those
specifications to be made without changes in the program. Therefore, you may
design and test a program without knowing the exact input/output devices that
will be used when it is executed.

Device independence is a feature of both the queued and basic access techniques
for processing sequential data sets. To some extent, you can determine the
degree of device independence. Many useful device-dependent features are
available as part of certain macro instructions; achieving device independence
requires some selectivity in their use.

Identifying Data Sets

Any information that is a named, organized collection of logically related records
can be classified as a data set. The information is not restricted to a specific type,
purpose, or storage medium. A data set may be, for example, a source program,
a library of macros, or a me of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed on
auxiliary storage, you (or the operating system) must give the data set a name.
The data set name identifies a group of records as a data set. All data sets
recognized by name (referred to without volume identification) and all data sets
residing on a given volume must be distinguished from one another by unique
names. To help in this, the system provides a means of qualifying data set
names.

A data set name is one simple name or a series of simple names joined together
so that each represents a level of qualification. For example, the data set name
DEPT58.SMITH.DATA3 is composed of three simple names. Proceeding from
the left, each simple name is a category within which the next simple name is a
subcategory. The ftrst name is called the high-level qualifier, the last is the
low-level qualifier.

Each simple name consists of from 1 to 8 alphameric characters, the ftrst of
which must be alphabetic. The special character period (.) separates simple
names from each other. Including all simple names and periods, the length of the
data set name must not exceed 44 characters. Thus, a maximum of 22 simple
names can make up a data set name.

Chapter 1. Introduction to Data Administration 3

To permit different executions of a program to process different data sets without 0 .. j

program reassembly, the data set is not referred to by name in the processing "- ./
program. When the program is executed, the data set name and other pertinent
information (such as unit type and volume serial number) are specified in a job
control statement called the data definition (~O) statement. To gain access to
the data set during processing, reference is made to a data control block (OCB)
associated with the name of the DO statement. Space for a data control block
that specifies the particular data set to be used is reserved by a OCB macro when
your program is assembled.

\~ ... /

4 MVSjXA Data Administration Guide

(

(

Chapter 2. Data Set Storage

The operating system provides a variety of devices for collecting, storing, and
distributing data. Despite the variety, the devices have many common
characteristics. The generic term volume is used to refer to a standard unit of
auxiliary storage. A volume may be a reel of magnetic tape, a disk pack, or a
drum.

Each data set stored on a volume has its name, location, organization, and other
control information stored in the data set label or volume table of contents (for
direct access volumes only). Thus, when the name of the data set and the
volume where it is stored are made known to the operating system, a complete
description of the data set, including its location on the volume, can be retrieved.
Then, the data itself can be retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic tape and direct access
volumes, and the data sets they contain. Magnetic tape volumes can have
standard or nonstandard labels, or they can be unlabeled. Direct access volumes
must use standard labels. Standard labels include a volume label, a data set label
for each data set, and optional user labels.

Keeping track of the volume where a particular data set resides can be a burden
and a source of error. To alleviate this problem, the system provides for
automatic cataloging of data sets. The system can retrieve a cataloged data set if
given only the name of the data set.

By use of the catalog, collections of data sets related by a common external name
and the time sequence in which they were cataloged (their generation) can be
identified; they are called generation data groups. For example, a: data set name
LAB.PAYROLL(O) refers to the most recent data set of the group;
LAB.PAYROLL(-l) refers to the second most recent data set; and so forth. The
same data set names can be used repeatedly with no need to keep track of the
volume serial numbers used. For more information, see "Relative Generation
Number" on page 194.

Direct Access Volumes

Regardless of organization, data sets created using the operating system can be
stored on a direct access volume. Each block of data has a distinct location and a
unique address, making it possible to fmd any record without extensive searching.
Thus, records can be stored and retrieved either directly or sequentially.

Chapter 2. Data Set Storage 5

Track Characteristics

Track Format

Direct access volumes are used to store executable programs, including the
operating system itself. Direct access storage (sometimes called DASD storage) is
also used for data and for temporary working storage. One direct access storage
volume may be used for many different data sets, and space on it may be
reallocated and reused. A volume table of contents (VTOC) is used to account
for each data set and available space on the volume.

Each direct access volume is identified by a volume label that is stored at track 0
of cylinder O. You may specify as many as seven additional labels, located
following the standard volume label, for further identification.

The VTOC is a data set consisting of data set control blocks (DSCBs) that
describe the contents of the direct access volume. The VTOC can contain seven
kinds of DSCBs, each with a different purpose and a different format number.
The forrnat 0 DSCB describes an unused (available) record in the VTOC.
System-Data Administration describes forrnat 1 through format 6 DSCBs and
their purposes. System-Data Administration also describes the structure of the
VTOC.

Each direct access volume is initialized by a utility program before being used on
the system. The initialization program generates the volume label and builds the
table of contents. For additional information on direct access labels, see
Appendix A, "Direct Access Labels" on page 209.

When a data set is to be stored on a direct access volume, you must supply the
operating system with the amount of space to be allocated to the data set,
expressed in blocks, tracks, or cylinders. Space allocation can be independent of
device type if the request is expressed in blocks. If the request is made in tracks
or cylinders, you must be aware of such device considerations as cylinder capacity
and track size.

Although direct access. devices differ in physical appearance, capacity, and speed,
they are similar in data recording, data checking, data format, and programming.
The recording surface of each volume is divided into many concentric tracks.
The number of tracks and their capacity vary with the device. Each device has
some type of access mechanism, containing read/write heads that transfer data as
the recording surface rotates past them.

Information is recorded on all direct access volumes in a standard forrnat.
Besides device data, each track contains a track descriptor record (capacity record
or record 0) and data records.

Figure I shows that there are two possible data record formats-count data and
count key data-only one of which can be used for a particular data set.

6 MVSjXA Data Administration Guide

()
I

I

I
I

(

(-

I Count I B
Track Descriptor

Record (RO)

I Count I B
Track Descriptor

Record (RO)

~--~--~---~ ---

Count-Data Format

I Count I B 00 [count I B
Data Record (R 1) Data Record (Rn)

Count-Key-Data Format

8BB DO I Count I B [~ata I
Data Record (R 1) Data Record (Rn)

Figure l. Direct Access Volume Track Formats

Track Overflow

Besides device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (0 if no keys are
used), and its data length.

If the records are written with keys, the key area (1 to 255 bytes) contains a
record key that specifies the data record by part number, account number,
sequence number, or some other identifier. In some cases, records are written
with keys so that they can be located quickly.

If the record overflow feature is available for the direct access device being used,
you can reduce the amount of unused space on the volume by specifying the
track overflow option in the DCB parameter of the DD statement, or the DCB
macro associated with the data set. If the overflow option is used, a block that
does not fit on the track is partially written on that track and continued on the
next track. (The track where the record is continued must be physically next and
must be part of the same extent as the track that holds the first part of the
record.)

Each segment (the portion written on one track) of an overflow block has a
count area. The data length field in the count area specifies the length of that
segment only. If the block is written with a key, there is only one key area for
the block. It is written with the first segment. If the track overflow option is not
used, blocks are not split between tracks.

Actual and Relative Addressing

Two types of addresses can be used to store and retrieve data on a direct access
volume: actual addresses and relative addresses. The only advantage of using
actual addresses is the elimination of time required to convert from relative to
actual addresses and vice versa. When sequentially processing a mUltiple volume
data set, you can refer only to records of the current volume.

Chapter 2. Data Set Storage 7

------------ ---- - --------------------

Actual Addresses: When the system returns the actual address of a record on a
direct access volume to your program, it is in the form MBBCCHHR, where:

M
is a I-byte binary number specifying the relative location of an entry in a
data extent block (DEB). The DEB is created by the system when the data
set is opened. Each extent entry describes a set of consecutive tracks
allocated for the data set.

BBCCHH

R

is three 2-byte binary numbers specifying the cell (bin), cylinder, and head
number for the record (its track address). The cylinder and head numbers
are recorded in the count area for each record.

is a I-byte binary number specifying the relative block number on the track.
The block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be treated as
unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to
records in a direct access data set: relative block addresses and relative track
addresses.

The relative block address is a 3-byte binary number that shows the position of
the block relative to the fITst block of the data set. Allocation of noncontiguous
sets of blocks does not affect the number. The ftrst block of a data set always
has a relative block address of O.

The relative track address has the form TTR, where:

IT

R

is a 2-byte binary number specifying the position of the track relative to the
fIrst track allocated for the data set. The TT for the frrst track is O.
Allocation of noncontiguous sets of tracks does not affect the number.

is a I-byte binary number specifying the number of the block relative to the
fITst block on the track TT. The R value for the ftrst block of data on a
track is 1.

Magnetic Tape Volumes

Because data sets on magnetic tape devices must be organized sequentially, the
operating system does not require space allocation procedures comparable to that
for direct access devices. When a new data set is to be placed on a magnetic tape
volume, you must specify the data set sequence number if it is not the ftrst data
set on the reel. The operating system positions a volume with IBM standard C-'\-}'
labels, ISO/ANSI/FIPS labels, or no labels so that the data set can be read or
written. If the data set has nonstandard labels, you must provide for volume

8 MVSjXA Data Administration Guide

(-

(

positioning in your nonstandard label processing routines. All data sets stored on
a given magnetic tape volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you have not
specified a volume serial number, the system assigns a serial number to that
volume and to any additional volumes required for the data set. Each such
volume is assigned a serial number of the form Lxxxyy, where xxx is the data set
sequence number, and yy is the volume sequence number for the data set. If you
specify volume serial numbers for unlabeled volumes where a data set is to be
stored, the system assigns volume serial numbers to any additional volumes
required. If data sets residing on unlabeled volumes are to be cataloged or
passed, you should specify the volume serial numbers for the volumes required.
This ensures that data sets residing on different volumes are not cataloged or
passed under identical volume serial numbers. Retrieving such data sets can give
unpredictable errors.

Each data set and data set label group must be followed by a tapemark.
Tapemarks cannot exist within a data set. When the operating system creates a
tape with standard labels or no labels, all tapemarks are automatically written.
Two tapemarks follow the last trailer label group on a standard-label volume.
On an unlabeled volume, the two tapemarks appear after the last data set.

When the operating system creates data sets with nonstandard labels, no
tapemarks are written. If you want the operating system to retrieve a data set,
you must supply the tapemarks in your routine that creates the nonstandard-label
volume. Otherwise, tapemarks are not required after nonstandard labels, because
positioning of the tape volumes must be handled by installation routines.

For more information about magnetic tape volume labels, see Magnetic Tape
Labels and File Structure.

The data on magnetic tape volumes can be in either EBCDIC or ISCII/ASCII.
ISCII/ASCII is a 7-bit code consisting of 128 characters. It permits data on
magnetic tape to be transferred from one computer to another, even though the
two computers may be products of different manufacturers.

Data management support of ISCII/ ASCII and of the International Organization
for Standardization (ISO), American National Standards Institute (ANSI), and
Federal Information Processing Standard (FIPS) tape labels is such that data
management can translate records' on input tapes in ISCII/ASCII into EBCDIC
for internal processing and translate the EBCDIC into ISCII/ASCII for output.
Records on such input tapes may be sorted into ISCII/ASCII collating sequence.

Chapter 2. Data Set Storage 9

Cataloging Data Sets

The operating system has a catalog structure consisting of a master catalog, user
catalogs, and, optionally, OS CVOLs. Figure 2 shows the catalog structure.

Master Catalog

USERID ~
~SYSCTLG.V1111111

UCAT
userCatal~ Control Volume

I D,,, Sot UCA T.B ~ I D",Set ~ Data Set A USERID.B

J

~ ~ ..--'" ,.-- ~
Data Set A

Data Set Data Set
UCAT-B USERID.B

I 111111 is the volume serial of the OS CVOL.

Figure 2. Catalog Structure

There is one master catalog on each system. It is required and contains entries
for system data sets. It is also the VSAM or integrated catalog facility master
catalog and does not have to be on the system residence volume. The master
catalog contains a pointer to each user catalog. Both VSAM and non-VSAM
data sets can be cataloged in a user catalog.

Non-VSAM data sets can be cataloged on OS CVOLs (SYSCTLG data sets).
The master catalog contains a pointer to each OS CVOL. Data sets can be
cataloged, uncataloged, or recataloged. (For more information on using OS
CVOLs, see Catalog Administration Guide.) If a data set is not cataloged in the
master catalog, the trrst name of a qualified data set name indicates the user
catalog or OS CVOL in which it is cataloged. A user catalog can also be
connected to the system as a job catalog or a step catalog.

Permanent Mass Storage System (MSS) data sets should be cataloged to allow
efficient use of the mass storage volume control (MSVC) functions. For
information on MSVC, see OS/VS Mass Storage System (MSS) Services:
General Information.

10 MVS/XA Data Administration Guide

(i. "'. J

c

(

Entering a Data Set N arne in the Catalog

The data set name of a non-VSAM data set can be entered in a master or user
catalog through (1) job control language (DISP parameter), (2) access method
services (DEFINE command), or (3) catalog management macro instructions
(CATALOG and CAMLST). A non-VSAM data set name can be entered in an
OS CVOL through JCL or the catalog management macros. VSAM data sets
can only be cataloged by using access method services.

Access method services is also used to establish aliases for data set names and to
connect user catalogs and OS CVOLs to the master catalog. For information on
how to use the access method services commands, see Access Method Services
Reference. For information on how to use the catalog management macro
instructions, see Catalog Administration Guide and System Data Administration.

Data set names cannot be cataloged in an OS CVOL if a name is already
cataloged whose levels match the highest or higher levels of the specified name.
For example, the qualified name A.B.C.D cannot be cataloged if the name A.B
or A.B.C is already cataloged, but the name A.B.C.D can be cataloged if AB.C
or A.B.C.E is cataloged. This restriction is not true for data sets cataloged in an
integrated catalog facility or VSAM catalog.

Chapter 2. Data Set Storage 11

f\
\.)

~J

(

(

Chapter 3. Record Formats

The record is the basic unit of information used by a processing program and can
be anything from a single character to a mass of information collected by a
particular business transaction, or measurements recorded at a given point in an
experiment. A collection of logically related records makes up a data set. Most
data processing consists of reading, manipulating, and writing individual records.

Blocking is the process of grouping records before they are written on a volume.
A block consists of one or more logical records written between consecutive
interrecord gaps (lRGs). Blocking conserves storage space on a volume by
reducing the number of IRGs in the data set and increases processing efficiency
by reducing the number of input/output operations required to process the data
set.

Records are stored in one offour formats: fixed-length (format-F), variable-length
for data in EBCDIC (format-V) or for data to be translated to or from
ISCII/ASCII (format-D), or undefmed-Iength (format-U).

Before selecting a record format, you should consider:

• The data type (for example, EBCDIC) your program will receive and the
type of output it will produce

• The input/output devices that will contain the data set

• The access method you will use to read and write the records

You identify your record format selection in the data control block using the
options in the DCB macro, the DO statement, or the data set labeL

ISO/ANSI/FIPS tape records are written in format-F, format-D, format-S or
format-U with the restrictions noted under "Fixed-Length Records,
ISO/ANSI/FIPS Tapes" on page 15, "ISO/ANSI/FlPS Variable-Length
Records-Format 0" on page 23, and "Undefmed-Length Records" on page 27.

Note: Data can only be in format-U for ISO/ANSI Version 1 tapes (ISO
1001-1969 and ANSI X3.27-1969).

When data management reads records from ISO/ANSI/FIPS tapes, it translates
the records into EBCDIC. When data management writes records onto
ISO/ANSI/FIPS tapes, it translates the records into ISCII/ASCII characters.
Because you use input records after they are translated and because output
records are translated when you ask data management to write them, you work
only with EBCDIC.

Chapter 3. Record Formats 13

Fixed-Length Records

--------- -----

Note: Translation routines supplied by the system will convert to ASCII 7-bit (~.
code, as explained in Magnetic Tape Labels and File Structure. When the "J
character to be translated contains a bit in the high order position, the 7-bit
translation does not produce an equivalent character. Instead, it produces a
substitute character to note the loss in translation. This means, for example, that
random binary data (such as a dump) cannot be recorded in ISO/ANSI/FIPS
7-bit code.

The size of fixed-length (format-F) records, shown in Figure 3, is constant for all
records in the data set. The number of records within a block is constant for
every block in the data set, unless the data set contains truncated (short) blocks.
If the data set contains unblocked format-F records, one record constitutes one
block.

The system automatically performs physical length checking (except for card
readers) on blocked or unblocked format-F records. Allowances are made for
truncated blocks.

Format-F records are shown in Figure 3. The optional control character (a),
used for stacker selection or carriage control, may be included in each record to
be printed or punched.

Blocked
Records

Unblocked
Records

,

Record A

Block
,----A---.

I "'"rnA I

Block
A

Record B Record C

, , , , , ,

, ,

.............
.....

Block

'"
Record D Record E

....
....

, Record ...

, c -=::;:::==::::"===== ::,

Block -------...
I "',,'d B I

~ ,

a Data

,LOptional Control I

\ Character - 1 Byte I
\ I

\ " \ I
\ I

1 "'ro,d C r
Figure 3. Fixed-Length Records

,

Record F

Block
~

I ",ro'd D I

Fixed-Length Records, Standard Format

During creation of a sequential data set (to be processed by BSAM or QSAM)
with fixed-length records, the RECFM subparameter of the DCB macro
instruction may specify a standard format (RECFM = FS or FBS). A
standard-format data set must conform to the following specifications:

14 MVSjXA Data Administration Guide

()

(--

(:

• All records in the data set are format-F records.

• No block except the last block is truncated. (With BSAM, you must ensure
that this specification is met.)

• Every track except the last contains the same number of blocks.

• Every track except the last is filled to capacity as determined by the track
capacity formula established for the device. (These formulas are presented in
Appendix C, "Allocating Space on Direct Access Volumes" on page 217.)

• The data set organization is physical sequential. A member of a partitioned
data set cannot be specified.

A sequential data set with fixed-length records having a standard format can be
read more efficiently than a data set that doesn't specify a standard format. This
efficiency is possible because the system is able to determine the address of each
record to be read, because each track contains the same number of blocks.

You should never extend a standard-format data set (by coding DISP= MOD) if
the last block is truncated, because the extension will cause the data set to
contain a truncated block that isn't the last block. Reading an extended data set
with this condition will result in a premature end of data condition when the
truncated block is read, giving the appearance that the blocks following this
truncated block do not exist. This type of data set on magnetic tape should not
be read Qackward, because the data set would begin with a truncated block.
Consequently, you probably won't want to use this type of data set with
magnetic tape. If you use one of the basic access techniques with this type of
data set,_ you should not use the track overflow feature.

Standard format should not be used to read records from a data set that was
created using a RECFM other than standard, because other record formats may
not create the precise format required by standard.

If at any time the characteristics of your data set are altered from the
specifications described above, the data set should no longer be processed with
the standard format specification.

Fixed-Length Records, ISO/ANSI/FIPS Tapes

For ISO/ANSI/FIPS tapes, format-F records are the same as described above,
with three exceptions:

•

•

Control characters, if present, must be ISO/ANSI/FIPS control characters .
For more information about control characters, see Appendix B, "Control
Characters" on page 213.

Record blocks can contain block prefixes .

The block prefix can vary from 0 to 99 bytes, but the length must be
constant for the data set being processed. For blocked records, the block
prefix precedes the first logical record. For unblocked records, the block
prefix precedes each logical record.

Chapter 3. Record Formats 15

Using QSAM and BSAM to read records with block prefixes requires that 0
you specify the BUFOFF operand in the DCB. When using QSAM, you do
not have access to the block prefix on input. When using BSAM, you must
account for the block prefix on both input and output. When using either
QSAM or BSAM, you must account for the length of the block prefix in the
BLKSIZE and BUFL operands of the DCB.

When using QSAM to output DB or DBS records and BUFOFF = 0 is
specified, the value of the BUFL operand, if specified, must be increased by
4. If BUFL is not specified, then the BLKSIZE operand must be increased
by 4. This allows for a 4-byte QSAM internal processing area to be included
when the system acquires the buffers. These 4 bytes will not become part of
the user's block.

When you use BSAM on output records, the operating system does not
recognize a block prefix. Therefore, if you want a block prefix, it must be
part of your record. Note that you cannot include block prefixes in QSAM
output records.

The block prefix, as for all the data records for ISO/ANSI/FIPS tapes, can
only contain EBCDIC characters that correspond to the 128, seven-bit
ASCII characters. Thus, you must avoid using data types such as binary,
packed decimal, and floating point that cannot always be translated into
ISCII/ASCIl. (See the Note in Chapter 3, "Record Formats" on page 13.)

Figure 4 on page 17 shows the format of fixed-length records for
ISO/ANSI/FIPS tapes and where control characters and block prefixes are
positioned if they exist.

• The GET routine tests each record (except the first) for all circumflex
characters (X'SE'). If a record completely filled with circumflex characters is
detected, the end-of-block (EOB) routine is called to get the next block. A
fixed-length record must not consist of only circumflex characters. This
restriction is necessary because circumflex characters are used to pad out a
block of records when fewer than the maximum number of records are
included in a block, and the block is not truncated.

16 MVSjXA Data Administration Guide

(

(

Blocked
Records

r

Optional
Block
Prefix

Block ,

Record A Record B

"

----------- -~--------------~

\ (

Optional
Record C Block Record D

Prefix

" -..... " -.....-
" -" -....... " Record -....._

" r:::::;:==:::::"===="~ ,,~

a Data

. LOptional Control /
\ Character-1 Byte /

\ /

Block ,
\

Record E Record F

Block Block

r:====~======~\ r~----~'L-----~
\ / Block

~(===;;::::' ===i
Optional

Block
Prefix

Optional
Block
Prefix

Optional
Block Record B
Prefix

Optional
Unblocked Block Record A
Records Prefix

Record C Record D

Figure 4. Fixed-Length Records for ISO/ANSI/FIPS Tapes

V ariable-Length Records

The variable-length record formats are format-V and format-D. They can also be
spanned (format-VS or -DS), blocked (format-VB or -DB), or both (format-VBS
and -DBS). Format-D, -DS, and -DBS records are used for ISO/ANSI/PIPS
tape data sets. Figure 5 on page 18 shows blocked and unblocked
variable-length (format-V) records without spanning.

Chapter 3. Record Formats 17

Block

BOW
.A

~
,

Blocked Records LL 00 Record A Record B Record C LL 00 Record 0 Record E Record F

L::: Reserved - 2 Bytes --- ~ ---\ ---Block Len th-g \ LL - __

~----------~~~--~------~-~-V ~~,
2 Bytes

.A.

Record LL 00 a

: 1 ~ Optional Control Character /
Reserved - 2 Bytes /
Record Len th -
2 Bytes

Block Block
" L I I\,

BQW Record

Unblocked Records LL 00 Record B LL 00 Record 0

Reserved·2 Bytes
---- Block Length· 2 Bytes

Figure 5. Nonspanned, Format-V Records

Variable-Length Records-Format-V

Format V provides for variable-length records and variable-length record
segments, each of which describes its own characteristics, and for variable-length
blocks of such records or record segments. Except when variable-length track
overflow records are specified for volumes on devices with the rotational position
sensing feature, the control program performs length checking of the block and
uses the record or segment length information in blocking and unblocking. The
ftrst 4 bytes of each record, record segment, or block make up a descriptor word
containing control information. You must allow for these additional 4 bytes in
both your input and output buffers.

Block Descriptor Word: A variable-length block consists of a block descriptor
word (BDW) followed by one or more logical records or record segments. The
block descriptor word is a 4-byte fteld that describes the block. The first 2 bytes
specify the block length LL-4 bytes for the BDW plus the total length of all
records or segments within the block. This length can be from 8 to 32760 bytes
or, when you are using WRITE with tape, from 18 to 32760. The third and
fourth bytes are reserved for possible future system use and must be O. If the
system does your blocking-that is, when you use the queued access
technique-the operating system automatically provides the BDW when it writes
the data set. If you do your own blocking-that is, when you use the basic access
technique-you must supply the BDW.

18 MVS;XA Data Administration Guide

o

(

Record Descriptor Word: A variable-length logical record consists of a record
descriptor word (RDW) followed by the data. The record descriptor word is a
4-byte field describing the record. The first 2 bytes contain the length LL of the
logical record (including the 4-byte RDW). The length can be from 4 to 32756.
All bits of the third and fourth bytes must be 0, because other values are used for
spanned records. For output, you must provide the RDW except in data mode
for spanned records (described under "Buffer Control" on page 123). For output
in data mode, you must provide the total data length in the physical record length
field (DCBPRECL) of the DCB. For input, the operating system provides the
RDW except in data mode. In data mode, the system passes the record length to
your program in the logical record length field (DCBLRECL) of the DCB. The
optional control character (a) maibe specified as the fifth byte of each record
and must be followed by at least one byte of data (the length in the RDW, in this
case, would be 6). The first byte of data is a table reference character if
OPTCD = J has been specified. The RDW, the optional control character, and
the optional table reference character are not punched or printed.

Spanned Form at-VS Records (Sequential Access Method)

Figure 6 on page 20 shows how the spanning feature of the queued and basic
sequential access methods lets you create and process variable-length logical
records that are larger than one physical block and/or to pack blocks with
variable-length records by splitting the records into segments so that they can be
written into more than one block.

When spanning is specified for blocked records, the system tries to fill all blocks.
For unblocked records, a record larger than block size is split and written in two
or more blocks, each block containing only one record or record segment. Thus
the block size may be set to the one that is best for a given device or processing
situation. It is not restricted by the maximum record length of a data set. A
record may, therefore, span several blocks, and may even span volumes. Note
that a logical record spanning three or more volumes cannot be processed in
update mode (described under "Buffer Control" on page 123) by QSAM. For
blocked records, a block can contain a combination of records and record
segments, but not multiple segments of the same record. When records are added
to or deleted from a data set, or when the data set is processed again with
different block size or record size parameters, the record segmenting will change.

Chapter 3. Record Formats 19

Block
BOW ~----~'-----~

I' ~L '\

LL
Last

Segment
of Logical
Record A

I
Reserved ·1

2 Bytes 1
1

Block Length· I
2 Bytes :

1

First Segment
of Logical
Record B

LL
A

, ,
" "

LL I ntermediate Segment
of Logical Record B

\
\

\
\ , , \ LL

LL
Last Segment First Segment

of Logical of Logical
Record B Record C

,
1 ,
I ,

I "

\
\

I "
I LL',

\
\
\

I~ __ ~~_--'
I' SOW Data '\ ~ \ ~ I'

SOW Data v SOW Data

Inter-
mediate

a Segment
First
Segment LL
of Logical
Record --L.......,L..... __ --l

of Logical
Record

Optional Control
Character
Reserved· 1 Byte
Segment Control Code·
1 Byte (See Figure 5)

~---Segment Length. 2 bytes

LL

L-

P-

Last
Segment
of Logical L L
Record

Segment Control
Code

LL

egment Control
Code

(~-----------------------~

Logical Record
(In User's Work Area)

ROW Data Portion of Logical Record B
A

Data Portion Data Portion Data Portion
LL a of : of of Last

First Segment! I ntermediate Segment Segment

L!:optional Control Character
Reserved·2 Bytes
Record Length· 2 Bytes

Figure 6. Spanned Format-VS Records (Sequential Access Method)

Considerations for Processing Spanned Record Data Sets

When spanned records span volumes, reading errors may occur when using
QSAM if a volume that begins with a middle or last segment is mounted ftrst or
if an FEOV macro instruction is issued followed by another GET. QSAM
cannot begin reading from the middle of the record. The errors include duplicate
records, program checks in the user's program, and invalid input from the
spanned record data set.

When QSAM opens a spanned record data set in UPDA T mode, it uses logical
record interface (LRI) to assemble all segments of the spanned record into a
single, logical input record and to disassemble a single logical record into multiple
segments for output data blocks, A record area must be provided by using the
BUILDRCD macro instruction or by specifying BFTEK = A in the DCB.

Note: When you specify BFTEK = A, the Open routine provides a record area
equal to-the LRECL specifIcation, which should be the maximum length in
bytes. (An LRECL= 0 is invalid.)

If you issue the FEOV macro when reading a data set that spans volumes, or if a
spanned multivolume data set is opened to other than the ftrst volume, make sure
that each volume begins with the ftrst (or only) segment of a logical record.
Input routines cannot begin reading in the middle of a logical record.

20 MVS/XA Data Administration Guide

/

(

(

(-

Segment Descriptor Word: Each record segment consists of a segment descriptor
word (SDW) followed by the data. The segment descriptor word, similar to the
record descriptor word, is a 4-byte field that describes the segment. The first 2
bytes contain the length LL of the segment, including the 4-byte SDW. The
length can be from 5 to 32756 bytes or, when you are using WRITE with tape,
from 18 to 32756 bytes. The third byte of the SDW contains the segment control
code that specifies the relative position of the segment in the logical record. The
segment control code is in the rightmost 2 bits of the byte. The segment control
codes are shown in Figure 7. The remaining bits of the third byte and all of the
fourth byte are reserved for possible future system use and must be o.

Binary
Code Relative Position of Segment

00 Complete logical record

o I First segment of a multisegment record

10 Last segment of a multisegment record

11 Segment of a multisegment record other than the first or last segment

Figure 7. Segment Control Codes

The SDW for the first segment replaces the RDW for the record after the record
has been segmented. You or the operating system can build the SDW, depending
on which access method is used. In the basic sequential access method, you
must create and interpret the spanned records yourself. In the queued sequential
access method move mode, complete logical records, including the RDW, are
processed in your work area. GET consolidates segments into logical records and
creates the RDW. PUT forms segments as required and creates the SDW for
each segment. Data mode is similar to move mode, but allows reference only to
the data portion of the logical record (that is, to one segment) in your work area.
The logical record length is passed to you through the DCBLRECL field of the
data control block. In locate mode, both GET and PUT process one segment at
a time. However, in locate mode, if you provide your own record area using the
BUILDRCD macro or if you ask the system to provide a record area by
specifying BFTEK=A, then GET, PUT, and PUTX process one logical record
at a time. (BFTEK = A or the BUILDRCD macro cannot be specified when
logical records exceed 32760 bytes. To process logical records that exceed 32760
bytes, you must use locate mode and specify LRECL = X in your DCB macro.)

A logical record spanning three or more volumes cannot be processed when the
data set is opened for update.

When unit record devices are used with spanned records, the system assumes that
unblocked records are being processed and the block size must be equivalent to
the length of one print line or one card. Records that span blocks are written
one segment at a time.

Note: Spanned variable-length records cannot be specified for a SYSIN data set.

Chapter 3. Record Formats 21

Null Segments

A I in bit position 0 of the SDW indicates a null segment. A null segment
means that there are no more segments in the block. Bits I to 7 of the SDW and
the remainder of the block must be binary zeros. A null segment is not an
end-of-Iogical-record delimiter. (You do not have to be concerned about null
segments unless you have created a data set using null segments.)

Spanned V ariable-Length Records (Basic Direct Access Method)

Track 1

The spanning feature of the basic direct access method (BDAM) lets you create
and process variable-length unblocked logical records that span tracks. The
feature also lets you pack tracks with variable-length records by splitting the
records into segments. Figure 8 shows how these segments can then be written
onto more than one track.

Track 2 Track 3
,-----~

Block
BOW ~----- ----~ / l~- '\

--" --.,

First Segment last Segrrent
II of logical II

Record A

I ntermediate Segment of
logical Record A

II of logical
Record A

. 81. \ lL = maXimum,
L..---L_-!-I -----,

Re erved "
2 Bytes \

\

, " ,

block size \ \
for track \ \

\ \
\ \

Block length"
2 Bytes

\ " " \
\ ,
\ ll" \ II \
:----- _-----'-',

(SOW Data

r:==;:::;:~=:::::===i I ntermediat
Segment

'r-sDW ----"-D-a-t-a~~
e A-

First
Segment
of Logical II
Record

of Logical
Record II

last
Segment
of logica
Record

Logical Record
(I n User"s Work
Areal

Block Length"
2 Bytes

L-. Segment Control
Code

Reserved" 1 Byte
Segment Control Code"
1 Byte (See Figure 5)

L-___ Segment length - 2 Bytes

L .. l

BOW Data Portion of Logical Record A

Data Portion Data Portion :Data Portion
of , of : of Last ,

I

First Segment i Intermediate SegrYlent ,
Segment I

-'

I \
I \
I \

: \
I
I

I Ll \
I~ __ ~ _-~~
/" SOW Data'

I lL

.A-

Ls ment Co eg
Code

Reserved"
2 Bytes

t Note: Not All Segment and Block Combinations are Re presented

Figure 8. Spanned Format-V Records for BDAM Data Sets

ntrol

When you specify spanned, unblocked record format for the basic direct access
method and when a complete logical record cannot fit on the track, the system
tries to fill the track with a record segment. Thus the maximum record length of
a data set is not restricted by track capacity. Furthermore, segmenting records

22 MVSjXA Data Administration Guide

\ j
\;. -/

allows a record to span several tracks, with each segment of the record on a
different track. However, because the system does not allow a record to span
volumes, all segments of a logical record in a direct data set are on the same
volume.

ISO/ANSI/FIPS Variable-Length Records-Format D

For ISO/ANSI/FIPS tapes, nonspanned variable-length records are format-D
records. ISO/ANSI/FIPS records are the same as format-V records, with the
following eJl,ceptions:

• Block preflX-A record block can contain a block prefix. To specify a block
prefix, code the BUFOFF operand in the DCB macro. The block prefix can
vary in length from 0 to 99 bytes but its length must remain constant for all
records in the data set being processed. For blocked records, the block prefix
precedes the RDW for first or only logical record in each block. For
unblocked records, the block prefix precedes the RDW for each lQgical
record.

To specify that the block prefix is to be treated as a BDW by data
management for format-D or -DS records on output, code BUFOFF = Las
a DCB operand. Your block prefix must be 4 bytes long, and it must
contain the length of the block, including the block prefix. The maximum
length of a format-D or -DS, BUFOFF = L block is 9999, because the length
(stated in binary by the user) is translated to a 4-byte ASCII character
decimal field on the ISO/ANSI/FIPS tape when the block is written. It is
converted back to a 2-byte length field in binary followed by two bytes of
zeros when the block is read. If you use QSAM to write records, data
management fills in the block prefix for you. If you use BSAM to write
records, you must fill in the block prefix yourself. If you are using chained
scheduling to read blocked DB or DBS records, you cannot code
BUFOFF = absolute expression in the DCB. Instead, BUFOFF = L is
required, because the access method needs binary RDW s and valid block
lengths to unblock the records.

When you use QSAM, you cannot read the block prefix into your record
area on input. When using BSAM, you must account for the block prefix on
both input and output. When using either QSAM or BSAM, you must
account for the length of the block prefix in the BLKSIZE and BUFL
operands.

When you use BSAM on output records, the operating system does not
recognize the block prefix. Therefore, if you want a block prefix, it must be
part of your record.

The block prefix can only contain EBCDIC characters that correspond to the
128, seven-bit ASCII characters. Thus, you must avoid using data types, such
as binary, packed decimal, and floating point, that cannot always be
translated into ISCII/ASCII. (See the Note in Chapter 3, "Record
Formats" on page 13.) For DB and DBS records, the only time the block
prefix can contain binary data is when you have coded BUFOFF = L, which
tells data management that the prefix is a BDW. Unlike the block prefix, the
RDW must always be in binary.

Chapter 3. Record Formats 23

Blocked
Records

I

pPtional
Block Record A
Prefix

• Block size-Version 3 tapes have a maximum block size of 2048. This limit
may be overridden by a label validation installation exit.

If you create variable-length blocks that are shorter than 18 bytes, data
management pads each one to 18 bytes when the blocks are written onto an
ISO/ANSI/FIPS tape. The padding character used is the ISCII/ASCII
circumflex character.

• Control characters-Control characters, if present, must be ISO/ANSI control
characters. For more information about control characters, see
Appendix B, "Control Characters" on page 213.

Figure 9 shows the format of nonspanned variable-length records for
ISO/ANSI/FIPS tapes, where the record descriptor word (RDW) is located, and
where block prefixes and control characters must be placed when they are used.

Block Block
~ , I

~

OPtional
Record B Record C Block Record D Record E

Prefix -\ ---
\ LL-_
Tr----------------~4~------------~-=-.~,

-
r

RDW
4 v

LL a

Data
A

/ OPtional Control Character _ -
/ -/ Reserved· 2 Bytes _ -

/ L..----Record Length - _ - -
// 2 Bytes _-/ _

/ ---

,

,
Record F

~--~~/----------~~,-
Optional

, Block
4

Optional

, ,
Optional

Block
Prefix

,
Unblocked Block
Records

Record C Block Record D
Prefix

Record E
Prefix

Note: Block prefixes on output records must be 4-bytes long.

Figure 9. Nonspanned Format-D Records for ISO/ANSI/FIPS Tapes

ISO/ANSI/FIPS Variable-Length Spanned Records-Fonnat-DS or Fonnat-DBS

For ISO/ANSI/FIPS tapes, variable-length spanned records must be specified in
the DCB RECFM parameter as DCB RECFM== DS or DBS. Format-DS and
-DBS records are similar to format-VS or -VBS records with the following
exceptions:

• Segment descriptor word (SDW)-There is an additional byte preceding each
SDW for DS/DBS records. This additional byte is required for conversion of (... - .~. '
the sDw from IBM to ISO/ANSI/FIPS format, because the ISO/ANSI ,/
SDW (called a segment control word) is five bytes long. Otherwise, the SDW

24 MVSjXA Data Administration Guide

(

•

•

for DS/DBS records is the same as the SDW for VS/yBS records. The
SDW LL count excludes the additional byte. (See "Processing Considerations
for DS and DBS Records" on page 25.)

Extended logical record interface (XLRI)-DS/DBS records may be
processed using XLRI. (See "Processing Considerations for DS and DBS
Records.")

The exceptions previously noted ("ISO/ANSI/FIPS Variable-Length
Records-Format D" on page 23) for format-D records still apply.

Figure 10 on page 26 shows what spanned variable-length records for
ISO/ANSI/FIPS tapes look like when you are using IBM access methods. The
figure shows the segment descriptor word (SDW), where the record descriptor
word (RDW) is located, and where block prefixes must be placed when they are
used. If you are not using IBM access methods, see
Appendix D, "ISO/ANSI/FIPS Record Control Word and Segment Control
Word" on page 223, for a description of ISO/ANSI/FIPS record control words
and segment control words.

Processing Considerations for DS and DBS Records

When using QSAM, the same application used to process VS/VBS tape flies can
be used to process DS/DBS tape flies. However, you must ensure that
ISO/ANSI/FIPS requirements such as block size limitation, tape device, and
restriction to EBCDIC characters that correspond to the 128, seven-bit ASCII
characters are met. The SCW/SDW conversion and buffer positioning is handled
by the GET/PUT routines.

When using BSAM to process a DS/DBS tape flie, you must allow for an
additional byte at the beginning of each SDW. The SDW LL must exclude the
additional byte. On input, you must ignore the unused byte preceding each SDW.
On output, you must allocate the additional byte for each SDW.

SDW Conversion: Sequential access method end-of-block (EO B) routines
perform conversion between ISO/ANSI/FIPS segment control word (SCW)
format and IBM segment descriptor word (SDW) format for both QSAM and
BSAM processing. On output, the binary SDW LL value (provided by you
when using BSAM and by the access method when using QSAM), is increased
by 1 for the extra byte and converted to four ISO/ANSI/FIPS numeric
characters. Because the binary SDW LL value will result in four numeric
characters, the binary value must not be greater than 9998. The fifth character is
used to designate which segment type (complete logical record, first segment, last
segment, or intermediate segment) is being processed.

On input, the four numeric characters designating the segment length are
converted to two binary SDW LL bytes and decreased by one for the unused
byte. The ISO/ANSI/FIPS segment control character maps to the DS/DBS
SDW control flags. This conversion leaves an unused byte at the beginning of
each SDW. It is set to X'OO'. For more detail on this process, see
Appendix D, "ISO/ANSI/FIPS Record Control Word and Segment Control
Word" on page 223.

Chapter 3. Record Formats 25

Block Block

Blocked
Records

OPtional Last Seg. First Seg. of OPtional
Block
Prefix

Intermediate Seg.
of Logical Record B

Optional

First Seg.
of Logical
Record B

Block
Prefix

of Log. Logical
Record A Record B

,

sow DATA

LL CO
Intermediate
Seg. of Logical
Record B

Reserved - 1 Byte

Segment Position
Indicator - 1 Byte

I
I

I

I

LL+1

sow

LL CO
"

DATA

I
I

j

Block
Prefix

Last Seg.
of Logical
Record B

~segmentP osition
Indicator

Segment

'----- Segment Length - 2 Bytes
'------ Field Expansion Byte

Length

ansion Field Exp
Byte

Logical
Record in LR I
Record Area

LL

ROW (Binary) Complete Logical Record Data

~~.----------~----------~
First Seg. Intermediate Last Seg.

LL 00 of Logical Segment of of Logical
Record B Logical Record B Record B

t L Reserved - 2 Bytes (~ust Be Zero)

Record Length - 2 Bytes

LLL

ROW (Binary) Complete Logical Record Data
...

.......-- .. -------------
XLRI Format
Logical Record
in XLRI
Record Area

0

t

First Seg. Intermediate Last Seg.
LLL of Logical Segment of of Logical

Record B Logical Record B Record B

L Record Length (3 Bytes) to 16776192

Reserved B te (Must Be Zero) y

Figure 10. Spanned Variable-Length (Format-DS) Records for ISO/ANSI/FIPS Tapes

26 MVS/XA Data Administration Guide

I
I
I ,.

Block

Last Seg. First Seg.
of Log. of Logical
Record B Record C

, ,
LL+1 , ,

sow DATA

" ...

LL C 0

L-segmentp osition
Indicator

Segment Length

p nsion Field Ex a
Byte

f~

~J

c

(-

~- - ---~---~~ ---------~~ ~---~-----~----

XLRI Mode: The extended logical record interface (XLRI) may be used with
DS/DBS flies to communicate LRECL values over 32760. (XLRI is supported
only in QSAM locate mode for ISO/ANSI/FIPS tapes.) XLRI should be used
for any case where the logical record will exceed 32760 bytes. Using the
LRECL= X for ISO/ANSI/FIPS causes an 013-DC abend.

To use XLRI, specify LRECL = OK or LRECL = nK in the DCB macro.
Specifying DCBLRECL with the K suffix sets the DCBBFTK bit that indicates
that LRECL is coded in K units and that the DCB is to be processed in XLRI
mode.

LRECL = OK in the DCB macro specifies that the LRECL value will come from
the flie label or JCL. When LRECL is from the label, the flie must be opened as
an input flie. The label (HDR2) value for LRECL will be converted to kilobytes
and rounded up when XLRI is in effect. When the ISO/ANSI/FIPS label value
for LRECL is 00000 to show that the maximum record length may be greater
than 99999, the LRECL=nK must be used in the JCL or in the DCB to specify
the maximum record length.

The LRECL from JCL can be expressed in absolute form or with the K
notation. Absolute values, permissible only from 5 to 32760, will be converted to
kilobytes by rounding up to an integral multiple of 1024 when the DCB is for
XLRI.

To show the record area size in the DO statement, code DCB = LRECL = nK.
The value nK may range from lK to 16383K (expressed in 1024-byte multiples).
However, depending on the buffer space available, the value you can specify in
most systems will be much smaller than 16383K bytes. This value is used to
determine the size of the record area required to contain the largest logical record
of the spanned format flie.

When using XLRI, the exact LRECL size is communicated in the three
low-order bytes of the RDW in the record area. This special RDW format exists
only in the record area to communicate the length of the logical record (including
the 4-byte ROW) to be written or read. (See the XLRI format of the RDW in
Figure 10 on page 26.) DCB LRECL shows the 1024-multiple size of the
record area (rounded up to the next nearest kilobyte). The normal DS/DBS
SOW format is used at all other times before conversion.

Undefined-Length Records

Format-U permits processing of records that do not conform to the F or V
format. Figure lion page 28 shows how each block is treated as a record;
therefore, any unblocking that is required must be performed by your program.
The optional control character may b-: used in the fIrst byte of each record.
Because the system does not do length checking on format-U records, your
program may be designed to read less than a complete block into virtual storage.

Chapter 3. Record Formats 27

-------_._ _---_ ...

, Record
A

a Data

\ t Optional Control /

Block
~

B
\ . Character· 1 Byte I

\ ,
, I
, Block I
\~ I R,oo" B I

Block
~

EJ
Figure 11. Undefined-Length Records

For format-U records, the user must specify the record length when issuing the
WRITE, PUT, or PUTX macro instruction. No length checking is performed
by the system, so no error indication will be given if the specified length does not
match the buffer size or physical record size.

In update mode, you must issue a GET or READ macro before you issue a
PUTX or WRITE macro to a data set on a direct access device. If you change
the record length when you issue the PUTX or WRITE macro, the record will
be padded with zeros or truncated to match the length of the record received
when the GET or READ macro was issued. No error indication will be given.

For Version 3 ISO/ANSI/FIPS tapes, format-U records are not supported. An
attempt to process a format-U record from a Version 3 tape will result in entering
the label validation installation exit.

ISO/ANSI Version 1 (ISO 1001-1969 and ANSI X3.27-1969) tapes containing
format-U records can be used for input only. These records are the same as the
format-U records described above, except the control characters must be
ISO/ANSI control characters, and block prefixes can be used.

Record Format-Device Type Considerations

Before executing your program, you must supply the operating system with the
record format (RECFM) and device-dependent information in a DCB macro
instruction, a DD statement, or a data set label. The DCB subparameters for the
DD statement differ slightly from those described here. A complete description
of the DO statement and a glossary of DCB subparameters are contained in JCL.

The record format (RECFM) parameter of the DCB macro specifies the
characteristics of the records in the data set as fixed-length (RECFM = F),
variable-length (RECFM = V or D), variable-spanned (RECFM = DS or -VS), or
undefined-length (RECFM = U). All record formats except U can be blocked.
Fixed-length blocked records (RECFM = FB) can be specified as standard
(RECFM = FBS), meaning that there are no truncated (short) blocks or unfilled ((.. J

tracks within the data set, with the possible exception of the last block or track. " ./

28 MVSjXA Data Administration Guide

(

(
Magnetic Tape

Data sets with a fixed-length, standard format are described under "Fixed-Length
Records, Standard Format" on page 14.

As an optional feature, a control character can be contained in each record. This
control character will be recognized and processed if the data set is printed or
punched. The control characters are transmitted on both tapes and direct access
volumes. The presence of a control character is indicated by M or A in the
RECFM field of the data control block. M denotes machine code; A denotes
American National Standards Institute (ANSI) code. If either M or A is
specified, the character must be present in every record; the printer space
(PRTSP) or stacker select (STACK) field of the DCB is ignored. The optional
control character must be in the first byte offormat-F and format-U records and
in the fifth byte offormat-V records and format-D records where BUFOFF= L.
Control character codes are listed in Appendix B, "Control Characters" on
page 213. The device-dependent (DEVO) parameter of the DCB macro specifies
the type of device where the data set's volume resides:

• T A magnetic tape
• PR printer
• PC card punch
• RD card reader
• OA direct access device or Mass Storage System (MSS) virtual volumes

Note: Because the OEVO option is required only for the DCB macro
expansion, you are guaranteed the maximum device flexibility by letting it default
to DEVO=OA.

Format-F, -V, -0, and -U records are acceptable for magnetic tape. Format-V
records are not acceptable on 7-track tape if the data conversion feature is not
available. ASCII records are not acceptable on 7-track tape.

When you create a tape data set with variable-length record format-V or -D, the
control program pads any data block shorter than 18 bytes. For format-V
records, it pads to the right with binary zeros so that the data block length equals
18 bytes. For format-D (ASCII) records, the padding consists of ASCII
circumflex characters, which are equivalent to X'SE's.

Note that there is no minimum requirement for block size. However, in
nonreturn-to-zero-inverted mode, if a data check occurs on a magnetic tape
device, any record shorter than 12 bytes in a read operation will be treated as a
noise record and lost. No check for noise will be made unless a data check
occurs.

Figure 12 on page 30 shows how the tape density (DEN) specifies the recording
density in bits per inch per track. When DEN is not specified, the highest density
capable by the unit will be used.

Chapter 3. Record Formats 29

Recording Density

DEN

I

7-Track Tape

556 (NRZI)
800 (NRZI)
N/A

9-Track Tape

N/A

18-Track Tape

N/A
N/A
N/A
N/A

2
3
4 N/A

800 (NRZI)!
1600 (PE)2
6250 (GCR)3

Notes:

NRZI is for nonretum-to-zero-inverted mode.

2 PE is for phase encoded mode.

GCR is for group coded recording mode.

Figure 12. Tape Density (DEN) Values

The track recording technique (TRTCH) for 7-track tape can be specified as:

C

E

T

Card Reader and Punch

Data conversion is to be used. Data conversion makes it possible to write
8 binary bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit byte are
recorded. The length field of format-V records contains binary data and is
not recorded correctly without data conversion.

Even parity is to be used; if E is omitted, odd parity is assumed.

BCDIC to EBCDIC translation is required.

Format-F and -U records are acceptable to both the reader and the punch;
format-V records are acceptable to the punch only. The device control character,
if specified in the RECFM parameter, is used to select the stacker; it is not
punched. The fITst 4 bytes (record descriptor word or segment descriptor word) of
format-V records or record segments are not punched. For format-V records, at
least 1 byte of data must follow the record or segment descriptor word or the
carriage control character.

Each punched card corresponds to one physical record. Therefore, you should
restrict the maximum record size to 80 (EBCDIC mode) or 160 (column binary
mode) data bytes. When mode (C) is used for the card punch, BLKSIZE must
be 160 unless you are using PUT. Then you can specify BLKSIZE as 160 or a
multiple of 160, and the system handles this as described under "PUT-Write a
Record" on page 66. You can specify the read/punch mode of operation

, '
\ ' '" ,/

(MODE) parameter as either card image (column binary) mode (C) or EBCDIC 0' ,'\

mode (E). If this information is omitted, E is assumed. The stacker selection '

30 MVSjXA Data Administration Guide

(

(

Printer

· .~-~-.-~--~~-~------------~

parameter (STACK) can be specified as either I or 2 to show which bin is to
receive the card. If it is not specified, I is assumed.

For all QSAM, RECFM = FB, card punch data sets, the block size in the DCB
will be adjusted by the system to equal the logical record length. This data set
will be treated as RECFM = F. If the system builds the buffers for this data set,
the buffer length will be determined by the BUFL parameter. If the BUFL
parameter was not specified, the adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length,
you must reset DCBBLKSI in the DCB and ensure that the buffers are large
enough to contain the largest block size expected. You may ensure the buffer
size by specifying the BUFL parameter before the ftrst time the data set is opened
or by issuing the FREEPOOL macro after each CLOSE macro so the system
will build a new buffer pool of the correct size each time the data set is opened.

Punch error correction on the IBM 2540 Card Read Punch is not performed.

The IBM 3525 Card Punch accepts only format-F records for print data sets and
for associated data sets. Other record formats are allowed for the read data set,
the punch data set, and the interpret punch data set. For more information on
programming for the 3525 Card Punch, see OS and OSjVS Programming Support
for the IBM 3505 Card Reader and IBM 3525 Card Punch.

With the IBM 3800 Printing Subsystem, the data in the record can contain two
optional bytes-the optional control character used for carriage control, followed
by an optional table reference character used for dynamically selecting a character
arrangement table during printing. These characters are discussed below.

Carriage Control Character

You may specify in the DD statement, the DCB macro, or the data set label that
an optional control character is part of each record in the data set. The i-byte
character is used to show a carriage control function when the data set is printed
or a stacker bin when the data set is ·punched. Although the character is a part of
the record in storage, it is never printed ot punched. Note that buffer areas must
be large enough to accommodate the character. If the immediate destination of
the record is a device, such as a disk, that does not recognize the control
character, the system assumes that the control character is the fIrst byte of the
data portion of the record. If the destination of the record is a printer or punch
and you have not indicated the presence of a control character, the system regards
the control character as the ftrst byte of data. A list of the control characters is in
Appendix B, "Control Characters" on page 213.

Chapter 3. Record Formats 31

~---------

3800 Table Reference Character

Record Formats

The 3800 table reference character is a numeric character (0, 1, 2, or 3)
corresponding to the order in which the character arrangement table names have
been specified with the CHARS keywor'd. It is used for selection of a character
arrangement table during printing. (For more information on the table reference
character, see IBM 3800 Printing Subsystem Programmer's Guide.)

A numeric table reference character (such as 0) selects from within the table that
font to which the character corresponds. The characters' number values represent
the order in which the font names have been specified with the CHARS
parameter. In addition to using table reference characters to correspond to font
names specified on the CHARS parameter, you can also code table reference
characters that correspond to font names specified in PAGEDEF control
structure. Valid table reference characters vary and range between 0 and 126.
Table reference characters with values greater than 126 default to a value of 0
(zero). For additional information, see IBM 3800 Printing Subsystem
Programmer's Guide.

Records offormat-F, -V, and -U are acceptable to the printer. The ftrst 4 bytes
(record descriptor word or segment descriptor word) of format-V records or
record segments are not printed. For format-V records, at least 1 byte of data
must follow the record or segment descriptor word or the carriage control
character. The carriage control character, if specified in the RECFM parameter, is
not printed. The system does not position the printer to channel 1 for the first
record unless specified by a carriage control character.

Because each line of print corresponds to one record, the record length should
not exceed the length of one line on the printer. For variable-length spanned
records, each line corresponds to one record segment, and block size should not
exceed the length of one line on the printer.

If carriage control characters are not specified, you can show printer spacing
(PR TSP) as 0, 1, 2, or 3. If it is not specified, I is assumed.

For all QSAM, RECFM = FB, printer data sets, the block size in the DCB will
be adjusted by the system to equal the logical record length. This data set will be
treated as RECFM = F. If the system builds the buffers for this data set, the
buffer length will be determined by the BUFL parameter. If the BUFL
parameter was not specified, the adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length,
you must reset DCBBLKSI in the DCB and ensure that the buffers are large
enough to contain the largest block size expected. You may ensure the buffer
size by specifying the BUFL parameter before the ftrst time the data set is opened
or by issuing the FREEPOOL macro after each CLOSE macro so the system
will build a new buffer pool of the correct size each time the data set is opened.

32 IYIVS/XA Data Administration Guide

c

o

Direct Access Device

Direct access devices accept records offormat-F, -V, or -U. If the records are to
be read or written with keys, the key length (KEYLEN) must be specified. In
addition, the operating system has a standard track format for all direct access
volumes. Each track contains data information and certain control information
such as:

• The address of the track

• The address of each record

• The length of each record

• Gaps between areas

A complete description of track format is contained in "Direct Access Volumes"
on page s.

Chapter 3. Record Formats 33

o

Chapter 4. Selecting an Access Method

The operating system allows you to concentrate most of your efforts on
processing the records read or written by the data management routines. To get
the records read and written, your main responsibility is to describe the data set
to be processed, the buffering techniques to be used, and the access method. An
access method has been defmed as the combination of data set organization and
the technique (queued or basic) used to gain access to the data.

Overview of Access Methods

Access methods are identified primarily by the data set organization to which
they apply. For instance, BDAM is the basic access method for direct
organization. Nevertheless, there are times when an access method identified
with one organization can be used to process a data set usually thought of as
organized in a different manner. Thus, a data set created by the basic access
method for sequential organization (BSAM) may be processed by the basic direct
access method (BDAM) and visa versa. If the queued access technique is used to
process a sequential data set, the access method is called the queued sequential
access method (QSAM).

Basic access methods are used for all data organizations, while queued access
methods apply only to sequential and indexed sequential data sets as shown in
Figure 13.

Data Set
Organization

Sequential
Partitioned
Indexed Sequential
Direct

Access Technique
Basic Queued

BSAM
BPAM
BISAM
BDAM

QSAM

QISAM

Figure 13. Data Management Access Methods

It is possible to control an I/O device directly while processing a data set with
any data organization without using a specific access method. The execute
channel program (EXCP) macro instruction uses the system programs that
provide for scheduling and queuing I/O requests, efficient use of channels and
devices, data protection, interruption procedures, error recognition, and retry.
Complete details about the EXCP macro are in System-Data Administration.

Chapter 4 .. Selecting an Access Method 35

Temporaly data sets can be handled by a function called virtual I/O (VIO). Data
sets for which VIO is specified are located in external page storage. However, to
the access methods (BDAM, BPAM, BSAM, QSAM, and EXCP), the data sets
appear to reside on a real direct access storage device. VIO provides these
advantages:

• Elimination of some of the usual I/O device allocation and data management
overhead for temporary data sets

• Generally more efficient use of direct access storage space

To use VIO, you must specify VIO = YES in the UNITNAME macro during
system generation, and you must specify a unitname (deftned in the
UNITNAME macro) on the DD statement for your data set. For additional
information on VIO, see Initialization and Tuning Guide. For information on the
UNITNAME macro, see System Generation Reference. For information on
changes to the DD statement, see JCL.

Basic Direct Access Method (BDAM)

Before you use the BDAM access method to process a data set, consider these
implications:

• You create a BDAM data set with the basic sequential access method
(BSAM). A special operand in the BSAM DCB macro (MACRF = WL)
shows that you want to create a BDAM data set.

• The problem program must synchronize all I/O operations with a CHECK
or a WAIT macro.

• The problem program must block and unblock its own input and output
records. (BDAM only reads and writes data blocks.)

• You can fmd data blocks within a data set with one of the following
addressing techniques:

Actual device addresses.

Relative track address technique. This locates a track on a direct access
device relative to the beginning of the data set.

Relative block address technique. This locates a fixed-length data block
relative to the beginning of the data set.

For more information about coding the DCB macro to process a BDAM data
set, see Data Administration: Macro Instruction Reference.

36 MVS/XA Data Administration Guide

o

,/ "

(' . Basic Indexed Sequential Access Method (BISAM)

(

Before you use the BISAM access method to process an ISAM data set, consider
these implications:

• BISAM accesses only ISAM data sets.

• BISAM cannot be used to create an indexed sequential access method
(ISAM) data set.

• BISAM directly retrieves logical records by key, updates blocks of records
in-place, and inserts new records in their correct key sequence.

• The problem program must synchronize all I/O operations with a CHECK
or a WAIT macro.

• Other DCB operands are available to reduce input/output operations by
defIning work areas that contain the highest level master index and the
records being processed.

For more information about coding the DCB macro to process a BISAM data
set, see Data Administration: Macro Instruction Reference.

Basic Partitioned Access Method (BPAM)

BPAM is a subset of BSAM, which processes only the directory of a partitioned
data set. BSAM processes the data set members.

Before you use the BPAM access method to process a data set, consider these
implications:

• One complete partitioned data set must be on one direct-access volume, but
you can concatenate multiple input data sets that are on the same or different
volumes.

• When you create a partitioned data set, you must specifY the SPACE
parameter on your fIrst (or only) DO statement for the data set. This
parameter defmes the size of the data set and its directory so that the system
can allocate data set space and pre-format the directory.

• You can use either the basic sequential access method (BSAM) or the
queued sequential access method (QSAM) to add or retrieve a BPAM data
set member without specifying the BLDL, FIND, or the STOW macro by
coding the DSORG = PS operand in the DCB macro. (Data set positioning
and directory maintenance are then handled by the OPEN and CLOSE
macros.) But, be advised that you are really processing the member as if it
were part of a sequential data set, so you are not using the complete
capabilities of BPAM.

• You can use the STOW macro to add, delete, change, or replace an element
name or alias in the directory.

Chapter 4. Selecting an Access Method 37

• You can process multiple data set members by passing a list of members to ('\
BLDL. Then you can use the FIND macro to position to a member before ~/
processing it.

For more information about coding the DCB macro to process a BPAM data
set, see Data Administration: Macro Instruction Reference.

Basic Sequential Access Method (BSAM)

Before you use the BSAM access method to process a data set, consider these
implications:

• The problem program must block and unblock its own input and output
records. (BSAM only reads and writes data blocks.)

• The problem program must manage its own input and output buffers. It
must give BSAM a buffer address with the READ macro, and it must fill its
own output buffer before issuing the WRITE macro.

• The problem program must synchronize its own I/O operations by issuing a
CHECK macro for each READ and WRITE macro issued.

• BSAM lets you process nonsequential blocks by repositioning with the
NOTE and POINT macros.

• You can read and write direct access device record keys with BSAM.

For more information about coding the DCB macro to process a BSAM data
set, see Data Administration: Macro Instruction Reference.

Queued Indexed Sequential Access Method (QISAM)

Before you use the QISAM access method to process an ISAM data set, consider
these implications:

• The characteristics of a QISAM data set are established when the data set is
created. You can't change them without reorganizing the data set. The
DCB operands that establish these characteristics are: BLKSIZE, CYLOFL,
KEYLEN, LRECL, NTM, OPTCD, RECFM, and RKP.

• A QISAM data set can consist of unblocked fixed-length records (F), blocked
fixed-length records (FB), unblocked variable-length records (V), or blocked
variable-length records (VB).

• QISAM can create an indexed sequential data set (QISAM, load mode), add
additional data records at the end of the existing data set (QISAM, resume
load mode), update a record in place, or retrieve records sequentially
(QISAM, scan mode).

• You can't use track overflow to create or extend an ISAM data set.

38 MVSjXA Data Administration Guide

(

(

• When you create an indexed sequential data set, you can allocate space for
the data set's prime area, overflow area, and its cylinder/master index(es) on
the same or separate volumes. For more information about space allocation,
see JCL.

• QISAM automatically generates a track index for each cylinder in the data set
and one cylinder index for the entire data set. Specify the DeB operands
NTM and OPTeD to show that the data set requires a master index(es).
Q ISAM creates and maintains as many as three levels of master indexes.

• You can purge records by specifying the OPTeD = L DeB option when you
create an ISAM data set. This option flags the records you want to purge
with a X'FF' in the ftrst data byte of a ftxed-Iength record or the ftfth byte of
a variable-length record. QISAM ignores these flagged records during
sequential retrieval.

• You can get reorganization statistics by specifying the OPTeD = R DeB
option when an ISAM data set is created. The problem program uses these
statistics to determine the status of the the data set's overflow areas.

• When you create an ISAM data set, you must write the records in ascending
key order.

For more information about coding the DeB macro to process a QISAM data
set, see Data Administration: Macro Instruction Reference.

Queued Sequential Access Method (QSAM)

Before you use the QSAM access method to process a data set, consider these
implications:

• You can use QSAM to process all record formats except blocks with keys.

• QSAM blocks and unblocks records for you automatically.

• QSAM manages all aspects of I/O buffering for you automatically. The
GET macro retrieves the next sequential logical record from the input buffer,
and the PUT macro places the next sequential logical record in the output
buffer.

• QSAM gives you three transmittal modes: move, locate, and data. These
modes give you greater flexibility managing buffers and moving data.

For more information about coding the DeB macro to process a QSAM data
set, see Data Administration: .Macro Instruction Reference.

Chapter 4. Selecting an Access Meth(,d 39

" \

(

Chapter 5. Specifying a Data Control Block and Initializing Data Sets

Before processing can begin, you must identify the characteristics of a data set,
the volume on which it resides, and its processing requirements. During
execution, this information is made available to the operating system in the data
control block (DCB). A DCB is required for each data set and is created in a
processing program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DCB
macro instruction, a data definition (DO) statement, and a data set label. In
addition, you can provide or change some of the information during execution by
storing the pertinent data in the appropriate field of the data control block. The
specifications needed for input/output operations are supplied during the
initialization procedures of the OPEN macro instruction. Therefore, the
pertinent data can be provided when your job is to be executed rather than when
you write your program (see Figure 14 on page 42).

When the OPEN macro instruction is executed, the OPEN routine:

• Completes the data control block

• Loads all necessary access method routines not already in virtual storage

• Initializes data sets by reading or writing labels and control information

• Builds the necessary system control blocks

Information from a DO statement is stored in the job ftle control block (JFCB)
by the operating system. When the job is to be executed, the lFCB is made
available to the open routine. The data control block is filled in with information
from the DCB macro instruction, the JFCB, or an existing data set label. If
more than one source specifies information for a particular field, only one source
is used. A DO statement takes precedence over a data set label, and a DCB
macro instruction over both. However, you can change most data control block
fields either before the data set is opened or when the operating system returns
control to your program (at the data control block open exit). Some fields can
be changed during processing.

Figure 14 on page 42 illustrates the process and the sequence of filling in the
data control block from various sources. The primary source is your program,
that is, the DCB macro instruction. In general, you should use only those DCB
parameters that are needed to ensure correct processing. The other parameters
can be filled in when your program is to be executed.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 41

DCB
Macro

DD
Statement

When a direct access data set is opened (or a magnetic tape with standard labeJs I~
is opened for INPUT, RDBACK, or INOUT), any field in the JFCB not ,~/

completed by a DD statement is filled in from the data set label (if one exists).
When opening a magnetic tape for output, the tape label is assumed not to exist
or to apply to the current data set unless you specify DISP = MOD and a volume
serial number in the volume parameter of the DD statement. Any field not
completed in the DCB is filled in from the JFCB. Fields in the DCB can then
be completed or changed by your own DCB exit routine. Then all DCB fields
are unconditionally merged into corresponding JFCB fields if your data set is
opened for output. This is done by specifying OUTPUT, OUTIN, EXTEND,
or OUTINX in the OPEN macro instruction. The DSORG field is not merged
unless this field contains zeros in the JFCB. If your data set is opened for input
(INPUT, INOUT, RDBACK, or UPDAT is specified in the OPEN macro
instruction), the DCB fields are not merged unless the corresponding JFCB fields
contain zeros.

Control
Block

Old
Data Set

Label

DCB
Exit

Routine

New
Data Set

Label

"\

Figure 14. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it
had before the data set was opened (the buffer pool is not freed). The open and
close routines also use the updated JFCB to write the data set labels for output
data sets. If the data set is not closed when your program terminates, the
operating system will close it automatically.

The Qperating system requires several types of processing information to ensure
proper control of your input/output operations. The forms of macros in the
program, buffering requirements, and the addresses of your special processing
routines must be specified during either the assembly or the execution of your
program. The DCB parameters specifying buffer requirements are discussed in
"Managing SAM Buffer Space" on page 119.

Because macros are expanded during the assembly of your program, you must
supply the macro forms that are to be used in processing each data set in the

42 MVSjXA Data Administration Guide

c

--------------------~- ~~~~,

associated DCB macro. You can supply buffering requirements and related
information in the DCB macro, the DD statement, or by storing the pertinent
data in the appropriate field of the data control block before the end of your
DCB exit routine. If the addresses of special processing routines (EODAD,
SYNAD, or user exits) are omitted from the DCB macro, you must complete
them in the DCB before they are required.

Note: A data set label to JFCB merge is not performed for concatenated data
sets at the end-of-volume time. If you want a merge, tum on the unlike attribute
bit (DCBOFPPC) in the DCB. This attribute forces the system through OPEN
for each data set in the concatenation, where a label to JFCB merge takes place.

Selecting Data Set Options

(DeB Parameters

For each data set you want to process, there must be a corresponding DCB and
D D statement. The characteristics of the data set and device-dependent
information can be supplied by either source. Also, the DD statement must
supply data set identification, device characteristics, space allocation requests, and
related information as specified in JCL. You establish the logical connection
between a DCB and a DD statement by specifying the name of the DD
statement in the DDNAME field of the DCB macro, or by completing the field
yourself before opening the data set.

Mter you have specified the data set characteristics in the DCB macro, you can
change them only by changing the DCB during execution. The fields of the
DCB discussed below are common to most data organizations and access
techniques. (For more information about the DCB fields, see Data
Administration: Macro Instruction Reference.)

Block Size (BLKSIZE): Specifies the maximum length, in bytes, of a data
block. If the records are of format F, the block size must be an integral multiple
of the record length, except for SYSOUT data sets. (See Chapter 8, "Spooling
and Scheduling Data Sets" on page 105.) If the records are offormat V, the
block size specified must be the maximum block size. If format-V records are
unblocked, the block size must be 4 bytes greater than the record length
(LRECL). When spanned variable-length records are specified, the block size is
independent of the record length. For ISO/ANSI/FIPS Version 3 records, the
maximum block size is 2048.

There is no minimum requirement for block size; however, if a data check occurs
on a magnetic tape device, any block shorter than 12 bytes in a read operation or
18 bytes in a write operation is treated as a noise record and lost. No check for '
noise is made unless a data check occurs. The maximum block size for an
ISO/ANSI/FIPS Version 3 tape is 2048 bytes. This limit may be overridden by a
label validation installation exit. (See Magnetic Tape Labels and File Structure.)

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 43

Data Set Organization (DSORG): Specifies the organization of the data set as
physical sequential (PS), indexed sequential (IS), partitioned (PO), or direct
(DA). If the data set is processed using absolute rather than relative addresses,
you must mark it as unmovable by adding a U to the DSORG parameter (for
example, by coding DSORG = PSU). You must specify the data set organization
in the DCB macro. When creating or processing an indexed sequential
organization data set or creating a direct data set, you must also specify DSORG
in the DD statement. When creating a direct data set, the DSORG in the DCB
macro must specify PS or PSU and the DD statement must specify DA or DAU.

Key Length (KEYLEN): Specifies the length (0 to 255) in bytes of an optional
key that precedes each block on a direct access device. The value of KEYLEN is
not included in BLKSIZE or LRECL but must be included in BUFL if buffer
length is specified. Thus, BUFL= KEYLEN + BLKSIZE.

Record Length (LRECL): Specifies the length, in bytes, of each record in the
data set. If the records are of variable length, the maximum record length must
be specified. For input, the field should be omitted for format-U records. For
the extended logical record interface for ISO/ANSI/PIPS variable spanned
records, LRECL must be specified as LRECL = OK or LRECL = nK.

Record Format (RECFM): Specifies the characteristics of the records in the data
set as fixed-length (F), variable-length (V), ISCII/ASCII variable-length (D), or
undefmed-Iength (U). Blocked records are specified as FB, VB, or DB. Spanned
records are specified as VS, VBS, DS, or DBS. (ISCII/ASCII records are
specified as DS or DBS.) You may also specify the records as fixed-length
standard by using FS or FBS. You can request track overflow for records other
than standard format by adding a T to the RECFM parameter (for example, by
coding FBT).

The type of print control can be specified to be in ANSI format-A or in machine
code format-M, as described in Appendix B, "Control Characters" on page 213.

Write Validity Check Option (OPTCD= W): You can specify the write validity
check option in either the DeB parameter of the DD statement or the DCB
macro. Mter a record is transferred from main to secondary storage, the system
reads the stored record (without data transfer) and, by testing for a data check
from the I/O device, verifies that the record was written correctly. Be aware that
the write validity check process requires an additional revolution of the device for
each record. If the system detects any errors, it starts its standard error recovery
procedure.

For buffered tape devices, the write validity check option delays the device end
interrupt until the data is physically on tape. When you use the
write-validity-check option, you get none of the performance benefits of
buffering.

44 MVSjXA Data Administration Guide

C"\
," :

(DD Statement Parameters

(

("""-

. -,/

Each of the data set description fields of the data control block, except as noted
for data set organization, can be specified when your job is to be executed. Also,
data set identification and disposition, and device characteristics, can be specified
at that time. The parameters of the DD statement discussed below are common
to most data set organizations and devices. (See JCL.)

Device Affinity (AFE): Requests that specified data sets be allocated to the same
device.

Data Control Block (DCB): Provides, through sub parameters, information to
be used to complete those fields of the data control block that were not specified
in the DeB macro. This patameter cannot be used to change data control block
fields that are specified in the user's program.

Data Definition Name (DDNAME): Is the name of the DD statement and
connects the DD statement to the data control block that specifies the same
DDNAME.

Data Set Disposition (DISP): Describes the status (OLD, NEW, KEEP, or
DELETE) of a data set and shows what is to be done with it at the end of the
job step.

Data Set Name (DSNAME): Specifies the name of a newly defmed data set, or
refers to a previously defmed data set.

Data Set Label (LABEL): Shows the type and contents of the tape label or
labels associated with the data set. The operating system verifies standard labels.
Standard labels include those specified in the DD statement as SL (standard
labels), SUL (standard user labels), AL (American National Standard labels), and
AUL (American National Standard user labels). Nonstandard labels (NSL) can
be specified only if your installation has incorporated into the operating system
routines to write and process nonstandard labels.

Space AUocation (SPACE): Designates the amount of space on a direct access
volume that should be allocated for the data set. Unused space can be released, if
requested, when your job is fmished.

Input/Output Device (UNIT): Specifies the number or type of I/O devices to be
allocated for use by the data set.

Volume Identification (VOLUME): Identifies the particular volume or volumes,
or the number of volumes, to be assigned to the data set, or the volumes on
which existing data sets reside.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 45

Changing the DCB

You can complete or change the DCB during execution of your program. You
can also determine data set characteristics from information supplied by the data
set labels. You can make changes or additions before you open a data set, after
you close it, during the DCB open exit routine, or while the data set is open.
Naturally, you must supply the information before it is needed.

Use the data control block DSECT (DCBD) macro to identify the DCB field
names symbolically. If you load a base register with the DCB address, you can
refer to any field symbolically. .

The DCBD macro generates a dummy control section (DSECT) named
IHADCB. Each field name symbol consists of DCB followed by the first 5
letters of the keyword operand for the DCB macro. For example, the symbolic
name of the block size operand field is DCBBLKSI. (For other DCB field
names, see Data Administration: Macro Instruction Reference.)

The attributes of each DCB field are defmed in the dummy control section. Use
the DCB macro's assembly listing to determine the length attribute and the
alignment of each DCB field.

You can code the DCBD macro once to describe all DCBs.

Changing an Address in the Data Control Block: Figure 15 shows you how to
change a field in the data control block.

EOFEXIT

INERROR

OUTERROR

TEXTDCB

OPEN (TEXTDCB,INOUT)

CLOSE
LA
USING
MVC
B
STM

STM

DCB

DCBD

(TEXTDCB,REREAD),TYPE=T
10,TEXTDCB
IHADCB,10
DCBSYNAD+1(3),=AL3(OUTERROR)
OUTPUT
14, 12,SYNADSA+12

14, 12,SYNADSA+12

DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE,
EODAD=EOFEXIT,SYNAD=INERROR

DSORG=PS .

Figure 15. Changing a Field in the Data Control Block

The data set defmed by the data control block TEXTDCB is opened for both
input and output. When the problem program no longer needs it for input, the
EODAD routine closes the data set temporarily to reposition the volume for
output. The EODAD routine then uses the dummy control section IHADCB to
change the error eJtit address (SYNAD) fromINERROR to OUTERROR.

The EOPAD routine loads the address TEXTDCB into register 10, the base
register for IHADCB. Then it moves the address OUTERROR into the

46 MVSjXA Data Administration Guide

/

C

(

(

DCBSYNAD field of the DCB. Even though DCBSYNAD is a fullword field
and contains important information in the high-order byte, change only the 3
low-order bytes in the field.

All unused address fields in the DCB, except DCBEXLST, are set to I when the
DCB macro is expanded. Many system routines interpret a value of I in an
address field as meaning no address was specified, so use it to dynamically reset
any field you don't need.

Opening and Closing a Data Set

Although your program has been assembled, the various data management
routines required for I/O operations are not a part of the object code. In other
words, your program is not completely assembled until the DCBs are initialized
for execution. You initialize by issuing the OPEN macro instruction to open a
data set. After all DCBs have been completed, the system ensures that all
required access method routines are loaded and ready for use and that all channel
programs and buffer areas are ready.

Access method routines are selected and loaded according to data control fields
that indicate:

• Data organization

• Buffering technique

• Access technique

• I/O unit characteristics

• Record format

This information is ·used by the system to allocate virtual storage space and load
the appropriate routines. These routines, the channel programs and buffer areas
created automatically by the system, remain in virtual storage until the close
routine signals that t~ey are no longer needed by the DCB that was using them.

When I/O operations for a data set are completed, you should issue a CLOSE
macro instruction to re~urn the DCB to its original status, handle volume
disposition; create data set labels, complete writing of queued output buffers, and
free virtual and auxiliary storage.

Managing Buffer Pools When Closing Data Sets

Mter closing the data set, you should issue a FREEPOOL macro instruction to
release the virtual storage used for the buffer pool. If you plan to process other
data sets, use FREEPOOL to regain the buffer pool storage space. If you expect
to reopen a data set using the same DCB, use FREEPOOL unless the buffer
pool created the first time the data set was opened will meet your needs when
you reopen the data set. (FREE-POOL is discussed in more detail in "Buffer
Pool Construction" on page 120.)

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 47

After the data set has been closed, the DCB can be used for another data set. If
you do not close the data set before a task terminates, the operating system closes
it automatically. If the. DCB is not available to the system at that time, the
operating system abnormally ends the task, and data results can be unpredictable.
Note, however, that the operating system cannot automatically close any open
data sets after the normal end of a program that was brought into virtual storage
by the loader. Therefore, loaded programs must include CLOSE macro
instructions for all open data sets.

Simultaneous Opening and Closing of Multiple Data Sets

An OPEN or CLOSE macro instruction can be used to begin or end processing
of more than one data set. Simultaneous opening or closing is faster than issuing
separate macroinstructions; however, additional storage space is required for each·
data set specified. The coding examples in Figure 16 on page 52 and Figure 18
on page 54 show the macro expansions for simultaneous open and close
operations.

Opening and Closing Data Sets Shared by More Than One Task

When more than one task is sharing a data set, the following restrictions must be
.recognized. Failure to adhere to these restrictions endangers the integrity of the
shared data set.

• All tasks sharing a DCB must be in the job step that opened the DCB (see
"Sharing Data Sets" on page 69).

• Each task sharing a DCB must ensure that all the input and output
operations it starts using a given DCB are complete, before the task
terminates. A CLOSE macro instruction issued for the DCB will ensure
termination of all input and output operations.

• A DCB can be closed only by the task that opened it.

Considerations for Allocating Direct Access Data Sets

When you allocate space for a new data set on a direct access volume, the tracks
contain unknown data. A program that tries to access data on these tracks before
known data is written on them may get unpredictable results, such as program
checks or 1/0 errors. The program may even appear to run correctly!

If you must access a newly allocated data set before you put known data into it,
use one of the following methods to make it appear empty:

1. At allocation time, specify a primary allocation value of zero; such as
SPACE = (TRK,(O, 10» or SPACE = (CYL,(O,50». This method prevents
processing certain labels if user labels are requested (LABEL = (,SUL».

2. After allocation time, run a program that opens the data set for output and
closes it without writing anything. This puts an end-of-ftle mark at the
beginning of the data set.

48 MVS;XA Data Administration Guide

(

(',

...

Considerations for Opening and Closing Data Sets

• Two or more DCBs should never be concurrently open for output to the
same data set, except with the basic indexed sequential access method
(BISAM).

• If, concurrently, one DCB is open for input or update, and one for output to
the same data set on a direct access device, the input or update DCB may be
unable to read what the output DCB wrote if the output DCB extended -the
~a~. r

• If you want to use the same DO statement for two or more DCBs, you
cannot specify parameters for fields in the fust DCB and then be assured of
obtaining the default parameters for the same fields in any other DCB using
the same DO statement. This is true for both input and output and is
especially important when you are using more than one access method. Any
action on one DCB that alters the JFCB affects the other DCBs and thus
can cause unpredictable results. Therefore, unless the parameters of all DeBs
using one DO statement are the same, you should use separate DO
statements.

• Associated data sets for the IBM 3525 Card Punch can be opened in any
order, but all data sets must be opened before any processing can begin.
Associated data sets can be closed in any order, but, after a data set has been
closed, I/O operations cannot be performed on any of the associated data
sets. See Programming Support for the IBM 3505 Card Reader and the IBM
3525 Card Punch for more information.

• The OPEN macro gets user control blocks and user storage in the protection
key that is specified in the TCB(TCBPKF). Therefore, any task that
processes the DCB (such as Open, Close, or EOV) must be in the same
protection key specified in the TCB, or must be in key o. Also, the Open
and Close must be done in the same key.

Note: If the Open is done while processing in key 0, then user storage
obtained by Open will be from subpool 252.

• Volume disposition specified in the OPEN or CLOSE macroinstruction can
be overridden, by the system if necessary. However, you need not be
concerned; the system automatically requests the mounting and demounting
of volumes, depending on the availability of devices at a particular time.
Additional information on volume disposition is provided in JCL.

Open/Close/EO V Errors

There are two classes of errors that can occur during open, close, and
end-of-volume processing: determinate and indeterminate errors. Determinate
errors are errors associated with a system completion code. For example, a
condition associated with the 213 completion code with a return code of 04 might
be detected during open processing, indicating that a format-l DSCB could not
be found for a data set being opened. Indeterminate errors are errors that cannot
be anticipated, such as program checks .

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 49

Installation exits

If a detenninate error occurs during the processing resulting from a concurrent ~-\
OPEN or CLOSE macro instruction, an attempt will be made to complete open ~_~/
or close processing of the DCJls that are not associated with the DCB in error.
Note that you can also choose to abnormally end the task immediately by coding
a DCB abend exit routine that shows the "immediate tennination" option (see
"DCB Abend Exit" on page 97). When all open or close processing is
completed, abnormal end processing is begun. Abnormal end involves forcing all
DCBs associated with a given OPEN or CLOSE macro to close status, thereby
freeing all storage devices and other system resources related to the DCBs.

If an indetenninate error (such as a program check) occurs during open, close, or
EOV processing, no attempt is made by the system control program to complete
concurrent open or close processing. The DCBs associated with the OPEN or
CLOSE macro are forced to close status if possible, and the resources related to
each DCB are freed.

To detennine the status of any DCB after an error, the OPEN (CLOSE) return
code in register 15 must be interrogated for the following values:

Return Code Meaning

00 (X'OO')
04 (X'04')

08 (X'OS')

12 (X'OC')

All entries in the parameter list opened successfully.
All entries in the parameter list have successfully
completed open, but one or more entries have a warning
message.
One or more entries in the parameter list were not
opened successfully. The entries with errors are restored
to their preopen status. .
One or more entries in the parameter list were not
opened successfully.

The entries with errors are not restored, .and cannot be reopened without
restoration.

During task tennination, the system issues a CLOSE macro for each data set that
is still open. If this is an abnormal tennination for QSAM, the close routines
that would normally fInish processing buffers are bypassed. Any outstanding I/O
requests are purged. Thus, your last data records may be lost for a QSAM
output data set.

It is a good procedure to close an ISAM data set before task tennination because,
if an I/O error is detected, the ISAM close routines cannot return the problem
program registers to the SYNAD routine, causing unpredictable results.

Four installation exit routines are provided for abnormal end with
ISO/ANSI/FIPS Version 3 tapes.

• The label validation exit is entered during open/EOV if an invalid label
condition is detected, and label validation has not been suppressed. Invalid
conditions include mcorrect alphameric fields, nonstandard values (for
example, RECFM = U, block size greater than 2048, or a zero generation
number), invalid label sequence, nonsy~etricallabels, invalid expiration
date sequence, and duplicate data set names.

50 MVS/XA Data Administration Guide

(• The validation suppression exit is entered during open/EOV if volume
security checking has been suppressed, if the volume label accessibility field
contains an ISCII/ASCII space character, or if RACF accepts a volume and
the accessibility field does not contain an uppercase A through Z.

• The volume access exit is entered'during open/EOV if a volume is not
RACF protected and the accessibility field in the volume label contains an
ISCII/ASCII uppercase A through Z.

• The me access exit is entered after positioning to a requested data set if the
accessibility field in the HDRllabel contains an ISCII/ASCII uppercase A
through Z.

For additional information about ISO/ANSI/FIPS Version 3 installation exits,
see Magnetic Tape Labels and File Structure.

OPEN-Prepare a Data Set for Processing

Processing Method

The OPEN macro instruction is used to complete a data control block for an
associated data set. The OPEN macro parameters identify the method of
processing and volume positioning in the event of an end-of-volume condition.

You can process a data set as either input or output. This is done by coding
INPUT, OUTPUT, or EXTEND as the processing method operand of the
OPEN macro. For BSAM, code INOUT, aUTIN, or OUTINX. If the data set
resides on a direct access volume, you can code UPDA T in the processing
method operand to show that records can be updated. By coding RDBACK in
this operand, you can specify that a magnetic tape volume containing format-F
or format-U records is to be read backward. (Variable-length records cannot be
read backward.) If the processing method operand is omitted from the OPEN
macro instruction, INPUT is assumed. The operand is ignored by the basic
indexed sequential access method (BISAM); it must be specified as OUTPUT or
EXTEND when you are using the queued indexed sequential access method
(QISAM) to create an indexed sequential data set. You can override the INOUT,
aUTIN, UPDAT, or OUTINX at execution time by using the LABEL
parameter of the DD statement, as discussed in JCL.

Note: Unless label validation has been suppressed, OPEN for MOD (OLD
OUTPUT/OUTIN), INOUT, EXTEND, or OUTINX cannot be processed for
ISO/ANSI/FIPS Version 3 tapes, because this kind of processing updates only
the closing label of the me, causing a label symmetry conflict. An unmatching
label should not frame the other end of the file.

SYSIN and SYSOUT data sets must be opened for INPUT and OUTPUT,
respectively. INOUT is treated as INPUT; aUTIN, EXTEND, or OUTINX is
treated as OUTPUT. UPDAT and RDBACK cannot be used.

In Figure 16 on page 52, the data sets associated with three DCBs are to be
opened simultaneously.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 51

OPEN

CNOP
BAL
DC
DC
DC
DC
DC
DC
SVC

(TEXTDCB"CONVDCB,(OUTPUT),PRINTDCB,

+
+
+
+
+
+
+
+
+

(OUTPUT))
0,4
1,*+16
AL1(0)
AL3(TEXTDCB)
AL1(1S)
AL3(CONVDCB)
AL1(143)
AL3(PRINTDCB)
19

Align list to fullword
Load reg1 w/list address
Option byte
DCB address
Option byte
DCB address
Option byte
DCB address
Issue open SVC

Figure 16. Opening Three Data Sets Simultaneously

Because no processing method operand is specified for TEXTDCB, the system
assumes INPUT. Both CONVDCB and PRINTDCB are opened for output.
No volume positioning options are specified; thus, the disposition indicated by
the DD statement DISP parameter is used.

At execution, the SVC 19 instruction passes control to the open routine, which
initializes the three DCBs and loads the appropriate access method routines.

CLOSE-Tenninate Processing of a Data Set

The CLOSE macro instruction is used to terminate processing of a data set and
release it from a DCB. The volume positioning (tapes only) that is to result from
closing the data set can also be specified. Volume positioning options are the
same as those that can be specified for end-of-volume conditions in the OPEN
macro instruction or the DD statement. An additional volume positioning
option, REWIND, is available and can be specified by the CLOSE macro
instruction for magnetic tape volumes. REWIND positions the tape at the load
point regardless of the direction of processing.

You can code CLOSE TYPE = T and perform some close functions for
sequential data sets on magnetic tape and direct access volumes processed with
BSAM. When you use TYPE = T, the DCB used to process the data set
maintains its open status. You don't have to issue another OPEN macro
instruction to continue processing the same data set. This option cannot be used
in a SYNAD routine.

The TYPE = T operand causes the system control program to process labels,
modify some of the fields in the system control blocks for that data set, and
reposition the volume (or current volume in the case of multivolume data sets) in
much the same way that the normal CLOSE macro does. When you code
TYPE = T, you can specify that the volume is either to be positioned at the end
of data (the LEAVE option) or to be repositioned at the beginning of data (the
REREAD option). Magnetic tape volumes are repositioned either immediately
before the first data record or immediately after the last data record; the presence
of tape labels has no effect on repositioning. Figure 17 on page 53, which
assumes a sample data set containing 1000 records, illustrates the relationship ('\
between each positioning option and the point where you resume processing the' ,,)
data set after issuing the temporary close.

52 MVSjXA Data Administration Guide

Begin
processing

7
Record

1
Record Record

2 3

If you CLOSE TYPE = T and specify

LEAVE

LEAVE (with tape data set open
for read backward)

REREAD

REREAD (with tape data set open

for read backward)

Record

999

Begin processing
tape data set
(open for read

baCkWard)~

Record

1000

After temporary close, you will
resume processing

Immediately after record 1000

Immediately before record 1

Immediately before record 1

Immediately after record 1000

Figure 17. Record Processed When LEAVE or REREAD Is Specified for CLOSE
TYPE=T

If you code the release (RLSE) operand on the DD statement for an output data
set, it is ignored by temporary close (CLOSE TYPE=T). However, if the last
operation was a write, then normal close (without TYPE = T) releases any
unused space.

Space is released on a track boundary if the extent containing the last record was
allocated in units of tracks or in units of average block lengths with ROUND not
specified. Space is released on a cylinder boundary if the extent containing the last
record was allocated in units of cylinders or in units of average block lengths with
ROUND specified. However, a cylinder boundary extent may be released on a
track boundary if:

• The DD statement used to access the data set contains a space parameter
specifying units of tracks or units of average hlock lengths with ROUND not
specified, or

• No space parameter is supplied in the DD statement and no secondary space
value has been saved in the format-l DSCB for the data set. (This may occur
if the release indicator is set in the JFCB through RDJFCB and OPEN
TYPE=J, or through the OPEN installation exit.) In this case, the
performance benefit of cylinder boundaries is lost.

For data sets processed with BSAM, you can use CLOSE TYPE = T with the
following restrictions:

• The DCB for the data set you are processing on a direct access device must
specify either DSORG= PS or DSORG= PSU for input processing, and

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 53

either DSORG= PS, DSORG= PSU, DSORG= PO, or DSORG= POU for C.· .•..
output processing. ~

• The DCB must not be open for input to a member of a partitioned data set.

• If you open a data set on a direct access device for output and issue CLOSE
TYPE = T, the volume will be repositioned only if the data set was created
with DSORG=PS, DSORG=PSU, DSORG=PO, or DSORG=POU
(you cannot specify the REREAD option if DSORG= PO or
DSORG = POU is specified). (This restriction prohibits the use of temporary
close following or during the building of a BDAM data set that is created by
specifying BSAM MACRF= WL.)

• If you open the data set for input and issue CLOSE TYPE = T with the
LEA VE option, the volume will be repositioned only if the data set specifies
DSORG=PS or DSORG=PO.

Note: When a data control block is shared among multiple tasks, only the task
that opened the data set can close it unless TYPE = T is specified.

Before issuing the CLOSE macro, a CHECK macro must be issued for all
DECBs that have outstanding I/O from WRITE macro instructions. When
CLOSE TYPE = T is specified, a CHECK macro must be issued for all DECBs
that have outstanding I/O from either WRITE or READ macro instructions.

In Figure 18, the data sets associated with three DCBs are to be closed
simultaneously.

+
+
+
+
+
+
+
+
+

.. CLOSE
. CNOP

BAL
DC
DC
DC
DC
DC
DC
SVC

(TEXTDCB"CONVDCB"PRINTDCB)
0,4 Align list to fu11word
1,*+16 Load reg1 w/1ist addr
AL1(0) Option byte
AL3(TEXTDCB) DCB address
AL1(0) Option byte
AL3(CONVDCB) DCB address
AL1(128) Option byte
AL3(PRINTDCB) DCB address
20 Issue close SVC

Figure 18. Closing Three Data Sets Simultaneously

Because no volume positioning operands are specified, the position indicated by
the DD statement DISP parameter is used.

Volume Positioning

At execution, the SVC 20 instruction passes control to the close routine, which
ends the processing of the three data sets and returns the three DCBs to their
original status.

54 MVSjXA Data Administration Guide

(

(

Releasing Data Sets and Volumes

You are offered the option of being able to release data sets and the volumes the
data sets reside on when your task is no longer using them. If you are not
sharing data sets, these data sets would otherwise remain unavailable for use by
other tasks until the job step that opened them is tenninated.

There are two ways to code the CLOSE macro instruction that can result in
releasing a data set and the volume on which it resides at the time the data set is
closed:

In conjunction with the FREE = CLOSE parameter of the DD statement, you
can code:

CLOSE
CLOSE

(DCB1,DISP) or
(DCB1,REWIND)

If you do not code FREE = CLOSE on the DD statement, you can code:

CLOSE (DCB1,FREE)

See JCL for information about how to use and code the FREE = CLOSE
parameter of the D D statement.

In either case, tape data sets and volumes are freed for use by another job step.
Data sets on direct access devices will be freed and the volumes on which they
reside will be freed if no other data sets on the volume are open. Additional
infomiation on volume disposition is provided in JCL.

Data sets being temporarily closed (using CLOSE TYPE = T) cannot be released
at the time the data set is closed. They will be released at the end of the job step.

For additional" information and coding restrictions on the CLOSE macro, see
Data Administration: Macro Instruction Reference.

End-of-Volume Processing

The access methods pass control to the data management end-of-volume routine
when any of the following conditions is detected:

• Tapemark (input tape volume).

• Filemark or end oflast extent (input direct access volume).

• End-of-data indicator (input device other than magnetic tape or direct access
volume). An example of this would be the last card read on a card reader.

• End of reel (output tape volume).

• End of extent (output direct access volume).

You may issue a force end-of-volume (FEOV) macro instruction before the
end-of-volume condition is detected.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 55

If the LABEL parameter of the associated D D statement shows standard labels,
the end-of-volume routine checks or creates standard trailer labels. If SUL or
AUL is specified, control is passed to the appropriate user label routine if it is
specified in your exit list. .

If multiple volume data sets are specified in your DD statement, automatic
volume switching is accomplished by the end-of-volume routine. When an
end-of-volume condition exists on an output data set, additional space is
allocated as indicated in your DD statement. If no more volumes are specified or
if more than specified are required, the storage is obtained from any available
volume on a device of the same type. If no such volume is available, your job is
terminated.

Volume Positioning for Tapes

When an end-of-volume condition is detected, the system positions the volume
according to the disposition specified in the DD statement unless the volume
disposition is specified in the OPEN macro instruction. Volume positioning
instructions for a sequential data set on magnetic tape can be specified as LEAVE
or REREAD.

LEAVE
positions a labeled tape to the point following the tapemark that follows the
data set trailer label group, and an unlabeled volume to the point following
the tapemark that follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preceding the fIrst block of the
data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preceding the first block of the
data set.

REREAD
positions a labeled tape to the point following the tapemark that follows the
data set trailer label group, and an unlabeled tape to the point following the
tapemark that follows the last block of the data set.

If, however, you want to position the current volume according to the option
specified in the DISP parameter of the DD statement, you code DISP in the
OPEN macro instruction.

DISP
specifies that a tape volume is to be disposed of in the manner implied by
the DD statement associated with the data set. Direct access volume
positioning and disposition are not affected by this parameter of the OPEN ;(-",
macro instruction. There are several dispositions that can be specified in \(../

56 MVSjXA Data Administration Guide

(--

(

~-~-.- ._._-_._--------------

the DISP parameter of the DD statement; DISP can be PASS, DELETE,
KEEP, CATLG, or UNCATLG.

The resultant action at the time an end-of-volume condition arises depends
on (1) how many tape units are allocated to the data set and (2) how many
volumes are specified for the data set in the DD statement. This is
determined by the UNIT and VOLUME parameters of the DD statement
associated with the data set. If the number of volumes is greater than the
number of units allocated, the current volume will be rewound and
unloaded. If the number of volumes is less than or equal to the number of
units, the current volume is merely rewound.

For magnetic tape volumes that are not being unloaded, positioning varies
according to the direction of the last input operation and the existence of
tape labels.

If the tape was last read forward:

LEAVE
positions a labeled tape to the point following the tapemark that follows the
data set trailer label group, and an unlabeled volume to the point following
the tapemark that follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preceding the fIrst block of the
data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label
group, and an unlabeled tape to the point preceding the fIrst block of the
data set.

REREAD

FEOV-Force End of Volume

positions a labeled tape to the point following the tapemark that follows the
data set trailer label group, and an unla"eled tape to the point following the
tapemark that follows the last block of the data set.

The FEOV macro instruction directs the operating system to start the
end-of-volume processing before the physical end of the current volume is
reached. If another volume has been specified for the data set, volume switching
takes place automatically. The volume ppsitioning options REWIND and
LEAVE are available.

If an FEOV macro is issued for a spann~d multivolume data set that is being read
using QSAM, errors may occur when the next GET macro is issued. These
errors are documented in "Spanned Format-VS Records (Sequential Access
Method)" on page 19.

Chapter 5. Specifying a Da~ Control Block and Initializing Data Sets 57
I

The FEOV macro instruction can only be used when you are using BSAM or
QSAM. FEOV is ignored if issued for a SYSIN or SYSOUT data set.

Device Independence

The ability to request input/output operations without regard for the physical
characteristics of the I/O devices makes it possible for you to write one program
that will fulfill a variety of needs. Device independence may be useful for:

• Accepting data from a number of recording devices, such as a disk pack, 7- or
9-track magnetic tape, or unit-record equipment. This situation could arise
when several types of data-acquisition devices are feeding a centralized
complex.

• Observing constraints imposed by the availability of input/output devices (for
example, when devices on order have not been installed).

• Assembling, testing, and debugging on one system configuration and
processing on a different configuration. For example, an IBM 3330 Disk
Storage drive can be used as a substitute for several magnetic tape units.

Device independence is not difficult to achieve, but requires some programming
considerations. See below.

Programming Considerations

Each of three data set organizations-partitioned, indexed sequential, and
direct-requires the use of a direct access device. Device independence is
meaningful, then, only for a sequentially organized data set, that is, a data set in
which one block of data follows another, thus allowing input or output to be on
a magnetic tape drive, a direct access device, a card read/punch, a printer, or a
spooled data set.

Your program will be device independent if you do two things:

• Omit all device-dependent macros and macro instruction parameters from
your program.

• Defer specifying any required device-dependent parameters until the program
is ready for execution. That is, supply the parameters on your data deftnition
(DD) statement or during the open exit routine.

In examining the following list of macros, consider only the logical layout of your
data record without regard for the type of device used. Also, consider that any
reference to a direct access volume is to be treated as a reference to magnetic
tape, that is, you must create a new data set rather than attempt to update.

OPEN
Specify INPUT, OUTPUT, INOUT, OUTIN, OUTINX, or EXTEND.
The parameters RDBACK and UPDAT are device dependent and cause an
abnormal termination if directed to a device of the wrong type.

58 MVS/XA Data Administration Guide

()

(

READ
Specify forward reading (SF) only.

WRITE
Specify forward writing (SF) only; use only to create new records or modify
existing records.

PUTX
Use only output mode.

NOTE/POINT

BSP

These macros are valid for both magnetic tape and direct access volumes.

This macro is valid for magnetic tape or direct access volumes. However,
its use would be an attempt to perform device-dependent action.

CNTRL/PRTOV
These macros are device dependent.

DCB Subparameters

MACRF
Specify R/W or G/P. Processing mode can also be indicated.

DEVD
Specify DA if any direct access device may be used. Magnetic tape and
unit-record equipment DCBs will fit in the area provided during assembly.
Specify unit-record devices only if you expect never to change to tape or
direct access devices.

KEYLEN
Can be specified on the DO statement if necessary.

RECFM, LRECL, "BLKSIZE
These can be specified in the DO statement. However, you must consider
maximum record size for specific devices, and track overflow cannot be
specified unless supported. Also, you must consider whether you expect to
process XLRI records.

DSORG
Specify sequential organization (PS or PSU) to get the full DCB
expansion.

OPTCD
This subparameter is device dependent; specify it in the DO statement.

SYNAD
Any device-dependent error checking is automatic. Generalize your routine
so that no device-dependent information is required.

Chapter 5. Specifying a Data Control Block and Initializing Data Sets 59

;1'\

'".J

\.
j

Chapter 6. Accessing Records in Data Sets

Accessing Data with READ/WRITE

The basic access technique provides the READ and WRITE macro instructions
for transmitting data between virtual and auxiliary storage. This technique is
used when you want to process records other than sequentially or when you do
not want some or all of the automatic functions performed by the queued access
technique. Although the system does not provide anticipatory buffering or
synchronized scheduling, macro instructions are provided to help you program
these operations.

The READ and WRITE macro instructions process blocks, not records. Thus,
blocking and unblocking of records are your responsibility. Buffers, allocated by
either you or the operating system, are filled or emptied individually each time a
READ or WRITE macro instruction is issued. Moreover, the READ and
WRITE macro instructions only start input/output operations. To ensure that
the operation is completed successfully, you must issue a CHECK macro
instruction to test the data event control block (DECB). (The only exception to
this is that, when the SYNAD or EODAD routine is entered, a CHECK macro
instruction should not be issued for outstanding READ or WRITE requests.)
The number of READ or WRITE macro instructions issued before a CHECK
macro instruction is used should not exceed the specified number of channel
programs (NCP).

Grouping Related Control Blocks in a Paging Environment

Related control blocks (the DCB and DECB) and data areas (buffers and key
areas) should be coded so they assemble in the same area of your program. This
will reduce the number of paging operations required to read from and write to
your data set.

Note: DCB, DECB, and buffers must reside below 16 megabytes.

Using Overlapped I/O with BSAM

When using BSAM with overlapped I/O (multiple I/O requests outstanding at
one time), more than one DECB must be used. A different DECB should be
specified for each channel program. For example, if you specify NCP = 3 in your
DCB for the data set and you are reading records from the data set, you should
code the following macros in your program:

Chapter 6. Accessing Records in Data Sets 61

READ-Read a Block

· READ DECBl, .. .
· READ DECB2, .. .
· READ DECB3, .. .
. CHECK DECBl
.CHECK DECB2
.CHECK DECB3

The READ macro retrieves a data block from an input data set and places it in a
designated area of virtual storage. To allow overlap of the input operation with
processing, the system returns control to your program before the read operation
is completed. The DECB created for the read operation must be tested for
successful completion before the record is processed or the DECB is reused.

If an indexed sequential data set is being read, the block is brought into virtual
storage and the address of the record is returned to you in the DECB.

When you use the READ macro for BSAM to read a direct data set with
spanned records and keys and you specify BFTEK = R in your DCB, the data
management routines displace record segments after the fIrst in a record by key
length. Thus, you can expect the block descriptor word and the segment
descriptor word at the same locations in your buffer or buffers, regardless of
whether you read the fIrst segment of a record, preceded in the buffer by its key,
or a subsequent segment that does not have a key. This procedure is called offset
reading.

You can specify variations of the READ macro according to the organization of
the data set being processed and the type of processing to be done by the system
as follows:

Sequential

SF Read the data set sequentially.

SB Read the data set backward (magnetic tape, format-F and format-U only).
When RECFM = FBS, data sets with the last block truncated cannot be
read backward.

Indexed Sequential

K Read the data set.

K U Read for update. ' The system maintains the device address of the record;
thus, when a WRITE macro returns the record, no index search is required.

Direct

D Use the direct access method.

I Locate the block using a block identifIcation.

62 MVSjXA Data Administration Guide

I/' ""\

(.. \, j

.. ~-~~ .. --. ------

K Locate the block using a key.

F Provide device position feedback.

X Maintain exclusive control of the block.

R Provide next address feedback.

U Next address can be a capacity record or logical record, whichever occurred
fIrst.

WRITE-Write a Block

The WRITE macro places a data block in an output data set from a designated
area of virtual storage. The WRITE macro can also be used to return an
updated record to a data set. To allow overlap of output operations with
processing, the system returns control to your program before the write operation
is completed. The DECB created for the write operation must be tested for
successful completion before the DECB can be reused. For ISCII/ASCII tape
data sets, do not issue more than one WRITE on the same record, because the
WRITE macro instruction causes the data in the record area to be translated
from EBCDIC to ISCII/ASCII.

As with the READ macro, you can specify variations of the WRITE macro
according to the organization of the data set and the type of processing to be
done by the system as follows:

Sequential

SF Write the data set sequentially.

Indexed Sequential

K Write a block containing an updated record, or replace a record with a
fixed, unblocked record having the same key. The record to be replaced
need not have been read into virtual storage.

KN Write a new record or change the length of a variable-length record.

Direct

SD Write a dummy fIxed-length record. (BDAM load mode)

SZ Write a capacity record (RO). The system supplies the data, writes the
capacity record, and advances to the next track. (BDAM load mode)

SFR Write the data set sequentially with next-address feedback. (BDAM load
mode variable spanned)

D Use the direct access method.

I Search argument identilles a block.

Chapter 6. Accessing Records in Data Sets 63

K Search argument is a key.

A Add a new block.

F Provide record location data (feedback).

X Release exclusive control.

CHECK-Test Completion of Read or Write Operation

When processing a data set, you can test for completion of a READ or WRITE
request by issuing a CHECK macro. The system tests for errors and exceptional
conditions in the data event control block (DECB). Successive CHECK macros
issued for the same data set must be issued in the same order as the associated
READ and WRITE macros.

The check routine passes control to the appropriate exit routines specified in the
DCB for error analysis (SYNAD) or, for sequential data sets, end-of-data
(BODAD). It also automatically starts the end-of-volume procedures (volume
switching or extending output data sets).

If you specify OPTCD = Q in the DCB, CHECK causes input data to be
translated from ISCII/ASCII to EBCDIC.

WAIT-Wait for Completion of a Read or Write Operation

When processing a data set, you can test for completion of any READ or
WRITE request by issuing a WAIT macro. The input/output operation is
synchronized with processing, but the DECB is not checked for errors or
exceptional conditions, nor are end-of-volume procedures initiated. Your
program must perform these operations.

For BDAM and BISAM, a WAIT macro must be issued for each READ or
WRITE macro if MACRF = C is not coded in the associated DCB. When
MACRF = C is coded, and always for BSAM and BPAM, a CHECK macro
must be issued for each READ or WRITE macro. Because the CHECK macro
incorporates the function of the WAIT macro, a WAIT is normally redundant
for those access methods. The ECBLIST form of the WAIT macro may be
useful, though, in selecting which of several outstanding events should be checked
frrst.

The WAIT macro can be used to await completion of multiple read and write
operations. Each operation must then be checked or tested separately. Example:
You have opened an input DCB for BSAM with NCP = 2, and an output DCB
for BISAM with NCP= I and without specifying MACRF=C. You have issued
two BSAM READ macros and one BISAM WRITE macro. You now issue the
WAIT macro with ECBLIST pointing to the BISAM DECB and the frrst
BSAM DECB. (Because BSAM requests are serialized, the frrst request must
execute before the second.) When you regain control, you will inspect the
DECBs to see which has completed (second bit on). If it was BISAM, you will
issue another WRITE macro. If it was BSAM, you will issue a CHECK macro

I
and then another READ macro.

64 MVS/XA Data Administration Guide

" '\ ,
\

"
/ ,--

(

Data Event Control Block (D ECB)

A data event control block is a 16- to 32-byte area reserved by each READ or
WRITE macro. It contains the ECB, control information, and pointers to
control blocks. The DCB is described in Appendix A of Data Administration:
Macro Instruction Reference.

The DECB is examined by the check routine when the I/O operation is
completed to determine if an uncorrectable error or exceptional condition exists.
If it does, control is passed to your SYNAD routine. If you have no SYNAD
routine, the task is abnormally terminated.

Accessing Data with GET/PUT

The queued access technique provides GET and PUT macros for transmitting
data within virtual storage. These macro instructions cause automatic blocking
and unblocking of the records stored and retrieved. Anticipatory (look-ahead)
buffering and synchronization (overlap) of input and output operations with
instruction stream processing are automatic features of the queued access method.

Because the operating system controls buffer processing, you can use as many
input/output (I/O) buffers as needed without reissuing GET or PUT macro
instructions to fill or empty buffers. Usually, more than one input block is in
storage at a time, so I/O operations do not delay record processing.

Because the operating system synchronizes input/output with processing, you
need not test for completion, errors, or exceptional conditions. Mter a GET or
PUT macro is issued, control is not returned to your program until an input area
is filled or an output area is available. Exits to error analysis (SYNAD) and
end-of-volume or end-of-data (EO DAD) routines are automatically taken when
necessary.

GET -Retrieve a Record

The GET macro is used to obtain a record from an input data set. It operates in
a logical sequential and device-independent manner. As required, the GET
macro schedules the filling of input buffers, unblocks records, and directs input
error recovery procedures. For sequential data sets, it also merges record
segments into logical records. Mter all records have been processed and the GET
macro detects an end-of-data indication, the system automatically checks labels
on sequential data sets and passes control to your end-of-data (EODAD) routine.
If an end-of-volume condition is detected for a sequential data set, the system
provides automatic volume switching if the data set extends across several
volumes or if concatenated data sets are being processed. If you specify
OPTCD = Q in the DCB, GET causes input data to be translated from
ISCII/ASCII to EBCDIC.

Chapter 6. Accessing Records in Data Sets 65

PUT-Write a Record

The PUT macro is used to write a record into an output data set .. Like the GET
macro, it operates in a logical sequential and device-independent manner. As
required, the PUT macro blocks records, schedules the emptying of output
buffers, and handles output error correction procedures. For sequential data sets,
it also starts automatic volume switching and label creation, and also segments
records for spanning. If you specify OPTCD = Q in the DCB, PUT causes
output to be translated from EBCDIC to ISCIIjASCII.

If the PUT macro is directed to a card punch or printer, the system automatically
adjusts the number of records or record segments per block of format-F or
format-V blocks to 1. Thus, you can specify a record length (LRECL) and block
size (BLKSIZE) to provide an optimum block size if the records are temporarily
placed on magnetic tape or a direct access volume.

For spanned variable-length records, the block size must be equivalent to the
length of one card or one print line. Record size may be greater than block size
in this case.

PUTX-Write an Updated Record

The PUTX macro is used to update a data set or to create an outPl.lt data set
using records from an input data set as a base. PUTX updates, replaces, or
inserts records from existing data sets but does not create records.

When you use the PUTX macro to update, each record is returned to the data
set referred to by a previous locate mode GET macro instruction. The buffer
containing the updated record is flagged and written back to the same location on
the direct access storage device where it was read. The block is not written until
a GET macro ip.struction is issued for the next buffer, except when a spanned
record is to be updated. In that case, the block is written with the next GET
macro.

When the PUTX macro is used to create an output data set, you can add new
records by using the PUT macro. As required, the PUTX macro blocks records,
schedules the writing of output buffers, and handles output error correction
procedures.

Parallel Input Processing (QSAM Only)

QSAM parallel input processing may be used to process two or more input data
sets concurrently, such as sorting or merging several data sets at the same time.
This eliminates the need for issuing a separate GET macro to each DCB
processed. The get routine for parallel input processing selects a DCB with a
ready record and then transfers control to the normal get routine. If there is no
DCB with a ready record, a multiple WAIT macro is issued.

Parallel input processing provides a logical input record from a queue of data sets

/' \
,j

with equal priority. The function supports QSAM with input processing, simple (-.'\
buffering, locate or move mode, and fixed-, variable-, or undefmed-Iength records. .j

66 MVS/XA Data Administration Guide

(

Spanned records, track-overflow records, dummy data sets, and SYSIN data sets
are not supported.

Parallel input processing can be interrupted at any time to retrieve records from a
specific data set, or to issue control instructions to a specific data set. When the
retrieval process has been completed, parallel input processing may be resumed.

Data sets can be added to or deleted from the data set queue at any time. It is
important to note, however, that, as each data set reaches an end-of-data
condition, the data set must be removed from the queue with the CLOSE macro
before a subsequent GET macro is issued for the queue; otherwise, the task may
be ended abnormally.

A request for parallel input processing is indicated by including the address of a
parallel data access block (PDAB) in the DCB exit list. For additional
information on the DCB exit list, see Chapter 7, "DCB Exit Routines" on
page 75.

With the use of the PDAB macro, you can create and format a work area that
identifies the maximum number of DCBs that can be processed at anyone time.
If you exceed the maximum number of entries indicated in the PDAB macro
when adding a DCB to the queue with the OPEN macro, the data set will not be
available for parallel input processing; however, it may be available for sequential
processmg.

When issuing a parallel GET macro, register 1 must always point to a PDAB.
You may load the register or let the GET macro do it for you. When control is
returned to you, register 1 contains the address of a logical record from one of the
data sets in the queue; registers 2 through 13 contain their original contents at the
time the GET macro was issued; registers 14, 15, and 0 are changed.

Through the PDAB, you can fmd the data set from which the record was
retrieved. A fullword address in the PDAB (PDADCBEP) points to the address
of the DCB. It should be noted that this pointer may be invalid from the time a
CLOSE macro is issued to the issuing of the next parallel GET macro.

In Figure 19 on page 68, not more than three data sets (MAXDCB = 3 in the
PDAB operand) will be open for parallel processing at a time. If data defmition
statements and data sets are supplied, DATASET1, DATASET2, and
DA T ASET3 will be opened for parallel input processing as specified in the input
processing OPEN macro. Other attributes of each data set are QSAM
(MACRF = G), simple buffering by default, locate or move mode (MACRF = L
or M), fixed-length records (RECFM = F), and exit list entry for a PDAB
(X'92'). Note that both locate and move modes may be used in the same data
set queue. The mapping macros, DCBD and PDABD, are used to reference the
DCBs and the PDAB respectively.

Chapter 6. Accessing Records in Data Sets 67

OPEN (DATASET1, (INPUT),DATASET2, (INPUT),DATASET3, X
(INPUT),DATASET4,(OUTPUT»

TM DATASET1+DCBQSWS-lHADCB,DCBPOPEN- Opened for
parallel processing

BZ SEQRTN Branch on no to
sequential routine

TM DATASET2+DCBQSWS-IHADCB,DCBPOPEN
BZ SEQRTN
TM DATASET3+DCBQSWS-lHADCB,DCBPOPEN
BZ SEQRTN

GETRTN GET DCBQUEUE,BUFFERAD,TYPE=P
LR 10,1 Save record pointer

Record updated in place

PUT DATASET4,(10)
B GETRTN

EODRTN EQU * Close DCB which just
reached EODAD

L 2,DCBQUEUE+PDADCBEP-lHAPDAB
CLOSE «2»
CLC ZEROS(2),DCBQUEUE+PDANODCB-IHAPDAB Any DCBs left?
BL GETRTN Branch if yes

DATASET I DCB DDNAME=DDNAME1,DSORG=PS,MACRF=GL,RECFM=FB, X
LRECL=80, EODAD=EODRTN, EXLST=SET3XLST

DATASET2 DCB DDNAME=DDNAME2,DSORG=PS,MACRF=GL,RECFM=FB, X
LRECL=80, EODAD=EODRTN, EXLST=SET3XLST

DATASET3 DCB DDNAME=DDNAME3,DSORG=PS,MACRF=GMC,RECFM=FB, X
LRECL=80,EODAD=EODRTN,EXLST=SET3XLST

DATASET4 DCB DDNAME=DDNAME4,DSORG=PS,MACRF=PM,RECFM=FB, X
LRECL=80

DCBQUEUE PDAB MAXDCB=3
SET3XLST DC OF'O',X'92' ,AL3(DCBQUEUE)
ZEROS DC X'OOOO'

DCBD DSORG=QS
PDABD

Note: The number of bytes required for PDAB is equal to 24 + 8n, where n is the value of the keyword,
MAXDCB.

Figure 19. Parallel Processing of Three Data Sets

Following the OPEN macro, tests are made to determine whether the DCBs were
opened for parallel processing. If not, the sequential processing routine is given
control.

When one or more data sets are opened for parallel processing, the get routine
retrieves a record, saves the pointer in register 10, processes the record, and writes
it to DATASET4. This process continues until an end-of-data condition is
detected on one of the input data sets; the end-of-data routine locates the
completed input data set and removes it from the queue with the CLOSE macro.
A test is then made to determine whether any data sets remain on the queue.
Processing continues in this manner until the queue is empty.

68 MVSjXA Data Administration Guide

(\
\,""~

,

(()
~

(Sharing Data Sets

There are two conditions under which a data set on a direct access device can be
shared by two or more tasks:

• Two or more DCBs are opened and used concurrently by the tasks to refer
to the same, shared data set (multiple DCBs).

• Only one DCB is opened and used concurrently by multiple tasks in a single
job step (a single, shared DCB).

Job contro11anguage (JCL) statements and macros are provided in the operating
system that help you ensure the integrity of the data sets you want to share
among the tasks that process them. Figure 20 on page 70 and Figure 21 on
page 71 show which JCL and macros you should use, depending on the access
method your task is using and mode of access (input, output, or update).

Figure 20 describes the macros, JCL, and processing procedures you should use
if more than one DCB has been opened to the shared data set. The DCBs can
be used by tasks in the same or different job steps.

Chapter 6. Accessing Records in Data Sets 69

\

MUl TIPlE DCBs

ACCESS METHOD
ACCESS MODE

BSAM,BPAM QSAM BDAM QISAM BISAM

Input DISP = SHR DISP = SHR DISP = SHR DISP = SHR DISP = SHR

No facility No facility DISP = SHR No facility DISP = SHR
Output and ENQ on

Data Set

DISP = SHR DISP = SHR DISP = SHR DISP = SHR DISP = SHR
user must and Guarantee BDAM will and ENQ on and ENQ on
ENQ on discrete ENQ on data set and data set and

Update block blocks block guarantee guarantee
discrete discrete
blocks blocks

DISP=SHR:
Each job step sharing an existing data set must code SHR as the subparameter of the DISP parameter
on the DD statement for the shared data set to allow the steps to execute concurrently. For additional
information about ensuring data set integrity, see JCL. If the tasks are in the same job step,
DISP = SHR is not required.

No facility:
There are no facilities in the operating system for sharing a data set under these conditions.

ENQ on data set:
Besides coding DISP = SHR on the DD statement for the data set that is to be shared, each task must
issue ENQ and DEQ macros naming the data set or block as the resource for which exclusive control
is required. The ENQ must be issued before the GET (READ); the DEQ macro should be issued
after the PUTX or CHECK macro that ends the operation. (For additional information on the use of
ENQ and DEQ macros, see Supervisor Services and Macro Instructions.)

Guarantee discrete blocks:
When you are using the access methods that provide blocking and unblocking of records (QSAM,
QISAM, and BISAM), it is necessary that every task updating the data set ensure that it is not
updating a block that contains a record being updated by any other task. There are no facilities in the
operating system for ensuring that discrete blocks are being processed by different tasks.

ENQ on block:
If you are updating a shared data set (specified by coding DISP=SHR on the DD statement) using
BSAM or BPAM, your task and all other tasks must serialize processing of each block of records by
issuing an ENQ macro before the READ macro and a DEQ macro after the CHECK macro that
follows the WRITE macro you issued to update the record. If you are using BDAM, it provides for
enqueuing on a block using the READ exclusive option that is requested by coding MACRF = X in
the DCB and an X in the type operand of the READ and WRITE macros. (For an example of the
use of the BDAM macros, see "Exclusive Control for Updating" on page 153.)

Figure 20. JCL, Macro Instructions, and Procedures Required to Share a Data Set Using Multiple DCBs

Figure 21 on page 71 describes the macros you can use to serialize processing of
a shared data set when a single DCB is being shared by several tasks in a job
step. The DISP = SHR specification on the DD statement is not required.

Data sets can also be shared both ways at the same time. More than one DCB
can be opened for a shared data set, while more than one task can be sharing one
of the DCBs. Under this condition, the serialization techniques specified for

70 MVSjXA Data Administration Guide

()

(

(- ..

-- -- ----~~~------------~---

indexed sequential and direct data sets in Figure 20 satisfy the requirement. For
sequential and partitioned data sets, the techniques specified in Figure 20 and
Figure 21 must be used.

More information on opening and closing data sets by more than one task is in
"Opening and Closing a Data Set" on page 47.

Shared Direct Access Storage Devices: At some installations, a direct access
storage device is shared by two or more independent computing systems. Tasks
executed on these systems can share data sets stored on the device. Careful
planning should be exercised in accessing a shared data set or the same storage
area on shared devices by multiple independent systems. Without proper
intersystem communication, data integrity could be endangered. For details, see
System Macros and Facilities.

A SINGLE SHARED DCB

ACCESS METHOD
ACCESS

MODE BSAM. QSAM BDAM QISAM BISAM
BPAM.
BDAM
Create

Input ENQ ENQ No action ENQ ENQ
required

Output ENQ ENQ No action ENQ and key ENQ
required sequence

Update ENQ ENQ No action ENQ ENQ

ENQ:
When a data set is being shared by two or more tasks in the same job step
(all that use the same DCB), each task processing the data set must issue an
ENQ macro instruction on a predefmed resource name before issuing the
macro or macros that begin the input/output operation. Each task must
also release exclusive control by issuing the DEQ macro at the next
sequential instruction following the input/output macro. If, however, you
are processing an indexed sequential data set sequentially using the SETL
and ESETL macros, you must issue the ENQ macro before the SETL
macro and the DEQ macro after the ESETL macro. Note also that if two
tasks are writing different members of a partitioned data set, each task
should issue the ENQ macro before the FIND macro and issue the DEQ
macro after the STOW macro that completes processing of the member.
Additional reference information on the ENQ and DEQ macros is
presented in Supervisor Services and Macro Instructions. For an example of
the use of ENQ and DEQ macros with BISAM, see Figure 53 on
page 152.

Figure 21 (Part 1 of 2). Macro Instructions and Procedures Required to Share a Data
Set Using a Single DeB

Chapter 6. Accessing Records in Data Sets 71

No action required:
See "Sharing Direct Data Sets" on page 157.

ENQ on block:
When updating a shared BDAM data set, every task must use the BDAM
exclusive control option that is requested by coding MACRF = X in the
DCB macro and an X in the type operand of the READ and WRITE
macro instructions. See "Exclusive Control for Updating" on page 153 for
an example of the use of BDAM macros. Note that all tasks sharing a data
set must share subpool 0 (see the ATTACH macro description in
Supervisor Services and Macro Instructions).

Key sequence:
Tasks sharing a QISAM load mode DCB must ensure that the records to
be written are presented in ascending key sequence; otherwise, a sequence
check will result in (I) control being passed to the SYNAD routine
identified by the DCB, or (2) if there is no SYNAD routine, termination of
the task.

Figure 21 (Part 2 of 2). Macro Instructions and Procedures Required to Share a Data
Set Using a Single DCB

Analyzing l/O Errors

The basic and queued access techniques both provide special macro instructions
for analyzing input/output errors. These macro instructions can be used in
SYNAD routines or in error analysis routines.

SYNADAF-Perfonn SYNAD Analysis Function

The SYNADAF macro analyzes the status, sense, and exceptional condition code
data that is available to your error analysis routine. It produces an error message
that your routine can write into any appropriate data set. The message is in the
form of an unblocked variable-length record, but you can write it as a
fixed-length record by omitting the block length and record length fields that
precede the message text.

The text of the message is 120 characters long, and begins with a field of either 36
or 42 blanks; you can use the blank field to add your own remarks to the
message. Following is a typical message with the blank field omitted:

,TESTJOBb,STEP2bbb,283,TA,MASTERbb,READb,DATA CHECKbbbbb,
0000015,BSAM

Note: In the above example, a b indicates a blank.

This message shows that a data check occurred during reading of the 15th block
of a data set. The data set was identified by a DD statement named MASTER,
and was on a magnetic tape volume on unit 283. The name of the job was
TESTJOB; the name ofthe job step ~as STEP2.

72 MVSjXA Data Administration Guide·

(--'"
.....)

I

(

(

-----~-----~----------

If the error analysis routine is entered because of an input error, the fIrst 6 bytes
of the message (bytes 8 to 13) contain binary information. If no data was
transmitted or if the access method is QISAM, the fIrst 6 bytes are blanks or
binary zeros. If the error did not prevent data transmission, the fIrst 6 bytes
contain the address of the input buffer and the number of bytes read. You can
use this information to process records from the block; for example, you might
print each record after printing the error message. Before printing the message,
however, you should replace this binary information with EBCDIC characters.

The SYNADAF macro provides its own save area and makes this area available
to' your error analysis routine. When used at the entry point of a SYNAD
routine, it fulfills the routine's responsibility for providing a save area.

SYNADRLS-Release SYNADAF Message and Save Areas

The SYNADRLS macro releases the message and save areas provided by the
SYNADAF macro. You must issue this macro instruction before returning from
the error analysis routine.

ATLAS-Perform Alternate Track Location Assignment

The ATLAS macro lets your program recover from permanent input/output
errors when processing a data set in direct access storage. After a data check, or
in certain missing-address-marker conditions, you can issue ATLAS to assign an
alternate track to replace the error track or transfer data from the error track to
the alternate track.

The use of this macro requires a knowledge of channel programming. A detailed
description of the macro instruction and its use is included in System-Data
Administration.

If you do not use the ATLAS macro, you can use the IEHATLAS utility
program or the Device Support Facilities program to do the same function. The
principal difference between ATLAS and the IEHA TLAS utility program is that
the latter provides error recovery only after your own program has been
completed. (For a detailed description of IEHATLAS, see Utilities.) The
INSPECT command for the Device Support Facilities program can assign
alternate tracks. (See Device Support Facilities User's Guide and Reference.)

Chapter 6. Accessing Records in Data Sets 73

c

(-,,-,
, I

j

(

Chapter 7. DCB Exit Routines

Exit Routine

End-of-data-set

Error analysis

Block count

DCB abend

DCB open

Defer input trailer
label

Defer nonstandard
input trailer label

End-of-volume

FCB image

I/O error
processing exit

The DCB macro can be used to identify the location of:

• A routine that performs end-of-data procedures

• A routine that supplements the operating system's error recovery routine

• A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro or you can complete the
DCB fields before opening the data set. Figure 22 summarizes the exits that you
can specify either explicitly in the DCB, or implicitly by specifying the address of
an exit list in the DCB.

Because OPEN/CLOSE/EOY enqueues on SYSZTIOT, functions that require
SYSZTIOT cannot be executed in the OPEN/CLOSE/EOY exit routines. Some
of these functions are LOCATE, OBTAIN, SCRATCH, and CATALOG.

When Available Where Specified

When no more sequential records or blocks EODAD operand
are available

After an uncorrectable input/output error SYNAD operand

After unequal block count comparison by EXLST operand and exit list
end-of-volume routine

When an abend condition occurs in OPEN, EXLST operand and exit list
CLOSE, or EOY routine

When opening a data set EXLST operand and exit list

When end-of-data is reached EXLST operand and exit list

When end-of-data is reached EXLST operand and exit list

When changing volumes EXLST operand and exit list

When opening a data set or issuing a EXLST operand and exit list
SETPRT macro

When an I/O error has occurred EXLST operand and exit list

Figure 22 (Part I of 2). Data Management Exit Routines

Chapter 7. DCB Exit Routines 75

Exit Routine When Available Where Specified

JFCB When opening a data set with OPEN EXLST operand and exit list
TYPE = J and RDJFCB

JFCBE When opening a data set for the 3800 EXLST operand and exit list

Nonspecific tape When a scratch tape is requested during EXLST operand and exit list
volume mount OPEN or EOV routines

QSAM parallel When opening a data set for QSAM EXLST operand and exit list
input processing

Standard user When opening, closing, or reaching the end of EXLST operand and exit list
label (physical a data set, and when changing volumes
sequential or
direct
organization)

User totaling area When an I/O operation is scheduled and user EXLST operand and exit list
totaling has been requested

Volume security / When a scratch tape is requested during EXLST operand and eX;it list
verification OPEN or EOV routines

Figure 22 (Part 2 of 2). Data Management Exit Routines

End-of-Data-Set Exit Routine (EODAD)

The EODAD parameter of the DCB macro specifies the address of your
end-of-data-set routine, which may perform any fmal processing on an input data
set. This routine is entered when an FEOV macro is issued or when a CHECK
or GET macro is issu~d and there are no more records or blocks to be retrieved.
(On a READ request, this routine is entered when you issue a CHECK macro to
check for completion of the read operation. For a BSAM data set that is opened
for UPDAT, this routine is entered at the end of each volume. (This allows you
to issue WRITE macros before an FEOV macro is issued.)

The EODAD routine is not a subroutine, but rather a continuation of the
routine that issued the CHECK, GET, or FEOV macro. Mter it is in your
EODAD routine, you can continue normal processing, such as repositioning and
resuming processing of the data set, closing the data set, or processing another
data set.

For BSAM, you must fIrst reposition the data set that reached end-of-data if you
want to issue a BSP, READ, or WRITE macro. You can reposition your data
set by issuing a CLOSE TYPE = T macro instruction. If a READ macro is
issued before the data set is repositioned, unpredictable results will occur.

For BPAM, you may reposition the data set by issuing a FIND or POINT
macro. (CLOSE TYPE=T with BPAM results in no operation performed.)

For QISAM, you can continue processing the input data set that reached
end-of-data by fIrst issuing an ESETL macro to end the sequential retrieval, then (; ',J
issuing a SETL macro to set the lower limit of sequential retrieval. You can then /
issue GET macros to the data set.

76 MVSjXA Data Administration Guide

(

(

-----"---" ------------

Your task will be abnonnally ended under either of the following conditions:

• No exit routine is provided.

• A GET macro is issued in the EODAD routine to the DCB that caused this
routine to be entered (unless the access method is QISAM).

When control is passed to the EO DAD routine, the registers contain the
following infonnation:

Register Contents

0-1 Reserved

2-13 Contents before execution of CHECK, GET, or FEOV macro
instruction

14 Address of the instruction after the last issued GET, CHECK, or
FEOVmacro

15 Reserved

Synchronous Error Routine Exit (SYNAD)

The SYNAD parameter of the DCB macro specifies the address of an error
routine that is to be given control when an input/output error occurs. This
routine can be used to analyze exceptional conditions or uncorrectable errors.
The block being read or written can be accepted or skipped, or processing can be
tenninated.

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by the operating system, try to correct the error before
returning control to your program. An uncorrectable error usually causes an
abnonnal termination of the task. However, if you specify in the DCB macro
the address of an error analysis routine (called a SYNAD routine), the routine is
given control if an uncorrectable error is detected.

You can write a SYNAD routine to determine the cause and type of error that
occurred by examining:

• The contents of the general registers

• The data event control block (discussed in "Accessing Data with
READ/WRITE" on page 61)

• The exceptional condition code

• The standard status and sense indicators

You can use the SYNADAF macro to perfonn this analysis automatically. This
macro produces an error message that can be printed by a later PUT or WRITE
macro.

Chapter 7. DCB Exit Routines 77

After completing the analysis, you can return control to the operating system or ("\
close the data set. If you close the data set, note that you may not use the 0
temporary close (CLOSE TYPE = T) option in the SYNAD routine. To
continue processing the same data set, you must fITst return control to the control
program by a RETURN macro. The control program then transfers control to
your processing program, subject to the conditions described below. Never
attempt to reread or rewrite the record, because the system has already attempted
to recover from the error.

When you are using GET and PUT to process a sequential data set, the
operating system provides three automatic error options (EROPT) to be used if
there is no SYNAD routine or if you want to return control to your program
from the SYNAD routine:

• ACC-accept the erroneous block

• SKP-skip the erroneous block

• ABE-abnormally terminate the task

These options are applicable only to data errors, because control errors result in
abnormal termination of the task. Data errors affect only the validity of a block
of data. Control errors affect information or operations necessary for continued
processing of the data set. These options are not applicable to output errors,
except output errors on the printer. If the EROPT and SYNAD fields are not
completed, ABE is assumed.

If a control error or a physical 1/0 error is encountered for a SYSIN or SYSOUT
dataset, the EROPT options will be ignored and the task will be abnormally
terminated.

You should not use the FEOV macro against the data set for which the SYNAD
routine was entered, within the SYNAD routine.

Because EROPT applies to a physical block of data, and not to a logical record,
use of SKP or ACC may result in incorrect assembly of spanned records.

When you use READ and WRITE macros, errors are detected when you issue a
CHECK macro. If you are processing a direct or sequential data set and you
return to the control program from your SYNAD routine, the operating system
assumes that you have accepted the bad record. If you are creating a direct data
set and you return to the control program from your SYNAD routine, your task
is abnormally terminated. In the case of processing a direct data set, the return
should be made to the control program via register 14 to make a control block
(the lOB) available for reuse in a later READ or WRITE macro.

For a description of the register contents on entry to your SYNAD routine, see
the tables in Data Administration: Macro Instruction Reference. The tables there
describe register contents for programs using QISAM, BISAM, BDAM, BPAM,
BSAM, and QSAM.

~'\
Your SYNAD routine can end by branching to another routine in your program, It.j
such as a routine that closes the data set. It can also end by returning control to

78 MVSj'XA Data Administration Guide

(""

the control program, which then returns control to the next sequential instruction
(after the macro) in your program. Control is not returned to the application if it
returns to the system after a control error or physical I/O error for a SYSIN or
SYSOUT data set. In this case, the task is abnormally terminated. If your
routine returns control, the conventions for saving and restoring register contents
are as follows:

• The SYNAD routine must preserve the contents of registers 13 and 14. If
required by the logic of your program, the routine must also preserve the
contents of registers 2 through 12. On return to your program, the contents
of registers 2 through 12 will be the same as on return to the control program
from the SYNAD routine.

• The SYNAD routine must not use the save area whose address is in register
13, because this area is used by the control program. If the routine saves and
restores register contents, it must provide its own save area.

• If the SYNAD routine calls another routine or issues supervisor or data
management macros, it must provide its own save area or issue a SYNADAF
macro. The SYNADAF macro provides a save area for its own use, and
then makes this area available to the SYNAD routine. Such a save area
must be removed from the save area chain by a SYNADRLS macro before
control is returned to the control program.

If the error analysis routine receives control from the close routine when indexed
sequential data sets are being created (the DCB is opened for QISAM load
mode), bit 3 of the IOBFLAGS field in the load mode buffer control table
(lOBBCT) is set to 1. The DCBWKPT6 field in the DCB contains an address
of a list of work area pointers (ISLVPTRS). The pointer to the 10BBCT is at
offset 8 in this list as shown in the following diagram:

DCB
Work Area
Pointers

l ... ______ lV : OSLVPTAS]

24·1 DC.WKPT. _ A]lO.BCT]

IOBBCT

IOBFLAGS

If the error analysis routine receives control from the CLOSE routine when
indexed sequential data sets are being processed using QISAM scan mode, bit 2
of the DCB field DCBEXCD2 is set to 1.

Chapter 7. DCB Exit Routines 79

Exit List (EXLST)

The EXLST parameter of the DCB macro specifies the address of a list that
contains the addresses of special processing routines, a forms control buffer
(FCB) image, or a user totaling area. An exit list must be created if user label,
data control block, end-of-volume, block count, JFCBE, or DCB abend exits are
used, or if a PDAB macro or FCB image is defmed in the processing program.

The exit list is built of 4-byte entries that must be aligned on fullword
boundaries. Each exit list entry is identified by a code in the high-order byte, and
the address of the routine, image, or area is specified in the 3 low-order bytes.
Codes and addresses for the exit list entries are shown in Figure 23.

Hex
Entry Type Code 3-Byte Address-Purpose

Inactive entry 00 Ignore the entry; it is not
active.

Input header label exit 01 Process a user input
header label.

Output header label exit 02 Create a user output
header label.

Input trailer label exit 03 Process a user input trailer
label.

Output trailer label exit 04 Create a user output
trailer label.

Data control block exit 05 Take a data control block
exit.

End-of-volume exit 06 Take an end-of-volume
exit.

JFCB exit 07 JFCB address for
RDJFCB and OPEN
TYPE=J SVCs.

08 Reserved.

09 Reserved.

User totaling area OA Address of beginning of
user's totaling area.

Block count exit OB Take a
block-count-unequal exit.

Defer input trailer label. OC Defer processing of a user
input trailer label from
end-of-data until closing.

Defer nonstandard input 00 Defer processing a
trailer label nonstandard input trailer

label on magnetic tape
unit from end-of-data
until closing (no exit
routine address).

Figure 23 (Part I of 2). DCB Exit List Format and Contents

80 MVSjXA Data Administration Guide

o

(

(

Hex
Entry Type Code 3-Byte Address-Purpose

OE-OF Reserved.

FCB image 10 Defme an FCB image.

DCB abend exit 11 Examine the abend
condition and select one
of several options.

QSAM parallel input 12 Address of the PDAB for
which this DCB is a
member.

13-14 Reserved.

JFCBE exit 15 Take an exit during
OPEN to allow user to
examine JCL= specified
setup requirements for a
3800 printer.

16 Reserved.

OPEN/EOV nonspecific 17 Option to specify a tape
tape volume mount volume serial number.

OPEN/EOV volume 18 Verify a tape volume and
security/verification some security checks.

19-7F Reserved.

Last entry 80 Treat this entry as the last
entry in the list. This
code can be specified with
any of the above but must
always be specified with
the last entry exit routine.

Figure 23 (Part 2 of 2). DCB Exit List Format and Contents

You can activate or deactivate any entry in the list by placing the required code
in the high-order byte. Care must be taken, however, not to destroy the last
entry indication. The operating system routines scan the list from top to bottom,
and the first active entry found with the proper code is. selected.

You can shorten the list during execution by setting the high-order bit to I, and
extend it by setting the high-order bit to O.

Chapter 7. DeB Exit Routines 81

When control is passed to an exit routine, the registers contain the following
infonnation:

Register Contents

o Variable; see exit routine description.

1 The 3 low-order bytes contain the address of the DCB currently being
processed, except when the user-label exits (X'OI' -X'04'), user totaling
exit (X'ON), DCB abend exit (X'II'), nonspecific tape volume mount
exit (X'I7'), or the tape volume security/verification exit (X'18') is
taken. when register 1 contains the address of a parameter list. The
contents of the parameter list are described in the explanation of each
exit routine.

2-13 Contents before execution of the macro.

14 Return address (must not be altered by the exit routine).

15 Address of exit routine entry point.

The conventions for saving and restoring register contents are as follows:

• The exit routine must preserve the contents of register 14. It need not
preserve the contents of other registers. The control program restores the
contents of registers 2 to 13 before returning control to your program.

• The exit routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the exit routine calls
another routine or issues supervisor or data management macros. it must
provide the address of a new save area in register 13.

• The DCBOFUEX bit in the DCBOFLGS is set to zero when a user exit is
taken. This restricts the use of certain macros (for example, CLOSE) in an
exit routine.

Standard User Label Exit

When you create a data set with physical sequential or direct organization, you
can provide routines to create your own data set labels. You can also provide
routines to verify these labels when you use the data set as input. Each label is
80 characters long, with the fIrst 4 characters UHLl,UHL2, ... ,UHL8 for a header
label or UTLl. UTL2 •...• UTL8 for a trailer label. User labels are not allowed on
indexed sequential data sets.

The physical location of the labels on the data set depends on the data set
organization. For direct (BDAM) data sets, user labels are placed on a separate
user label track in the fIrst volume. User label exits are taken only during
execution of the OPEN and CLOSE ro" utines. Thus you may create or examine

(, ~ ~,'\ as many as eight user header labels only during exe,cution of OPEN and as many /'
as eight trailer labels only during execution of CLOSE. Because the trailer labels

82 MVS/XA Data Administration Guide

(

(

are on the same track as the header labels, the fIrst volume of the data set must
be mounted when the data set is closed.

For physical sequential (BSAM or QSAM) data sets, you may create or examine
as many as eight header labels and eight trailer labels on each volume of the data
set. For ASCII tape data sets, you may create an unlimited number of user
header and trailer labels. The user label exits are taken during OPEN, close, and
end-of-volume processing.

To create or verify labels, you must specify the addresses of your label exit
routines in an exit list as shown in Figure 23 on page 80. Thus you may have
separate routines for creating or verifying header and trailer label groups. Care
must be taken if a magnetic tape is read backward, because the trailer label group
is processed as header labels and the header label group is processed as trailer
labels.

When your routine receives control, the contents of register 0 are unpredictable.
Register I contains the address of a parameter list. The contents of registers 2 to
13 are the same as when the macro instruction was issued. However, if your
program does not issue the CLOSE macro, or abnormally ends before issuing
CLOSE, the CLOSE macro will be issued by the control program, with
control-program information in these registers.

The parameter list pointed to by register I is a 16-byte area aligned on a fullword
boundary. Figure 24 shows the contents of the area.

o
Address of aD-byte label buffer area

4
Address of DeB being processed

a
Address of status information

12
Address of user total ing image area

Figure 24. Parameter List Passed to User Label Exit Routine

The fIrst address in the parameter list points to an 80-byte label buffer area. For
input, the control program reads a user label into this area before passing control
to the label routine. For output, the user label exit routine builds labels in this
area and returns to the control program, which writes the label. When an input
trailer label routine receives control, the EOF flag (high-order byte of the second
entry in the parameter list) is set as follows:

Bit 0 = 0: Entered at end-of-volume
Bit 0 = 1: Entered at end-of-file
Bits 1-7: Reserved

When a user label exit routine receives control after an uncorrectable 1/0 error
has occurred, the third entry of the parameter list contains the address of the
standard status information. The error flag (high-order byte of the third entry in
the parameter list) is set as follows:

Chapter 7. DCB Exit Routines 83

Bit 0 = 1: Uncorrectable I/O error
Bit 1 = 1: Error occurred during writing of updated label
Bits 2-7: Reserved

The fourth entry in the parameter list is the address of the user totaling image
area. This image area is the entry in the user totaling save area that corresponds
to the last record physically written on the volume. (The image area is discussed
further under "User Totaling (BSAM and QSAM only)" on page 86.)

Each routine must create or verify one label of a header or trailer label group,
place a return code in register 15, and return control to the operating system.
The operating system responds to the return code as shown in Figure 25.

You can create user labels only for data sets on magnetic tape volumes with IBM
standard labels or ISO/ANSI/FIPS labels and for data sets on direct access
volumes. When you specify both user labels and IBM standard labels in a DD
statement by specifying LABEL = (,SUL) and there is an active entry in the exit
list, a label exit is always taken. Thus, a label exit is taken even when an input
data set does not contain user labels, or when no user label track has been
allocated for writing labels on a direct access volume. In either case, the
appropriate exit routine is entered with the buffer area address parameter set to O.
On return from the exit routine, normal processitig is resumed; no return code is
necessary.

Routine Type

Input header or
trailer label

Output header or
trailer label

Return Code System Response

o (X'OO') Normal processing is resumed. If
there are any remaining labels in the
label group, they are ignored.

4 (X'04') The next user label is read into the
label buffer area and control is
returned to the exit routine. If there
are no more labels in the label
group, normal processing is resumed .

. 81 (X'08') The label is written from the label
buffer area and normal processing is
resumed.

121 (X'OC') The label is written from the label
area, the next label is read into the
label buffer area, and control is
returned to the label processing
routine. If there are no more labels,
processing is resumed.

o (X'OO') Normal processing is resumed; no
label is written from the label buffer

4 (X'04')
area.
User label is written from the label
buffer area. Normal processing is
resumed.

Figure 2S (Part I of 2). System Response to a User Label Exit Routine Return Code

84 MVSjXA Data Administration Guide

j

. ,
c·

'\ .

(

(-

Routine Type

.~~------- _._----~~-~~~~-~

Return Code System Response

8 (X'08') User label is written from the label
buffer area. If fewer than eight labels
have been created, control is
returned to the exit routine, which
then creates the next label. If eight
labels have been created, normal
processing is resumed.

Figure 25 (Part 2 of 2). System Response to a User Label Exit Routine Return Code

Note to Figure 25

Your input label routines can return these codes only when you are
processing a physical sequential data set opened for UPDA T or a direct data
set opened for OUTPUT or UPDAT. These return codes allow you to
verify the existing labels, update them if necessary, then request that the
system write the updated labels.

Label exits are not taken for system output (SYSOUT) data sets, or for data sets
on volumes that do not have standard labels. For other data sets, exits are taken
as follows:

• When an input data set is opened, the input header label exit 01 is taken. If
the data set is on tape being opened for RDBACK, user trailer labels will be
processed.

• When an output data set is opened, the output header label exit 02 is taken.
However, if the data set already exists and DISP = MOD is coded in the DD
statement, the input trailer label exit 03 is taken to process any existing trailer
labels. If the input trailer label exit 03 does not exist, then the deferred input
trailer label exit OC is taken if it exists; otherwise, no label exit is taken. For
tape, these trailer labels will be overwritten by the new output data or by
EOV or close processing when writing new standard trailer labels. For direct
access devices, these trailer labels will still exist unless rewritten by EOV or
close processing in an output trailer label exit.

• When an input data set reaches end-of-volume, the input trailer label exit 03
is taken. If the data set is on tape opened for RDBACK, header labels will
be processed. The input trailer label exit 03 is not taken if you issue an
FEOV macro. If a defer input trailer label exit OC is present, and an input
trailer label exit 03 is not present, the OC exit is taken. Mter switching
volumes, the input header label exit 0 I is taken. If the data set is on tape
opened for RDBACK, trailer labels will be processed.

• When an output data set reaches end-of-volume, the output trailer label exit
04 is taken. Mter switching volumes, output header label exit 02 is taken.

• When an input data set reaches end-of-data, the input trailer label exit 03 is
taken before the EODAD exit, unless the DCB exit list contains a defer input
trailer label exit oc.

Chapter 7. DeB Exit Routines 85

• When an input data set is closed, no exit is taken unless the data set was
previously read to end-of-data and the defer input trailer label exit OC is
present. If so, the defer input trailer label exit OC is taken to process trailer
labels, or if the tape is opened for RDBACK, header labels.

• When an output data set is closed, the output trailer label exit 04 is taken.

To process records in reverse order, a data set on magnetic tape can be read
backward. When you read backward, header label exits are taken to process
trailer labels, and trailer label exits are taken to process header labels. The system
presents labels from a label group in ascending order by label number, which is
the order in which the labels were created. If necessary, an exit routine can
determine label type (UHL or UTL) and number by examining the ftrst four
characters of each label. Tapes with IBM standard labels and direct access
devices can have as many as eight user labels. Tapes with ISO/ANSI/FIPS labels
can have an unlimited number of user labels.

If an uncorrectable error occurs during reading or writing of a user label, the
system passes control to the appropriate exit routine, with the third word of the
parameter list flagged and pointing to status information.

After an input error, the exit routine must return control with an appropriate
return code (0 or 4). No return code is required after an output error. If an
output error occurs while the system is opening a data set, the data set is not
opened (DCB is flagged) and control is returned to your program. If an output
error occurs at any other time, the system attempts to resume normal processing.

User Totaling (BSAM and QSAM only)

When creating or processing a data set with user labels, you may develop control
totals for each volume of the data set and store this information in your user
labels. For example, a control total that was accumulated as the data set was
created can be stored in your user label and later compared with a total
accumulated during processing of the volume. User totaling helps you by
synchronizing the control data you create with records physically written on a
volume. For an output data set without user labels, you can also develop a
control total that will be available to your end-of-volume routine.

To request user totaling, you must specify OPTCD = T in the DCB macro
instruction or in the DCB parameter of the DD statement. The area in which
you collect the control data (the user totaling area) must be identilled to the
control program by an entry of hexadecimal OA in the DCB exit list.
OPTCD = T cannot be specilled for SYSIN or SYSOUT data sets.

The user totaling area, an area in storage that you provide, must begin on a
half word boundary and be large enough to contain your accumulated data plus a
2-byte length fteld. The length fteld must be the ftrst 2 bytes of the area and
specify the length of the complete area. A data set for which you have specilled
user totaling (OPTCD = T) will not be opened if either the totaling area length or
the address in the exit list is 0, or if there is no X'OA' entry in the exit list.

86 MVSjXA Data Administration Guide

(-

(

The control program establishes a user totaling save area, where the control
program preserves an image of your totaling area, when an I/O operation is
scheduled. When the output user label exits are taken, the address of the save
area entry (user totaling image area) corresponding to the last record physically
written on a volume is passed to you in the fourth entry of the user label
parameter list. (This parameter list is described in "Standard User Label Exit" on
page 82.) When an end-of-volume exit is taken for an output data set and user
totaling has been specified, the address of the user totaling image area is in
register O.

When using user totaling for an output data set, that is, when creating the data
set, you must update your control data in your totaling area before issuing a
PUT or a WRITE macro. The control program places an image of your totaling
area in the user totaling save area when an I/O operation is scheduled. A pointer
to the save area entry (user totaling image area) corresponding to the last record
physically written on the volume, is passed to you in your label processing
routine. Thus you can include the control total in your user labels. When
subsequently using this data set for input, you can collect the same information
as you read each record and compare this total with the one previously stored in
the user trailer label. If you have stored the total from the preceding volume in
the user header label of the current volume, you can process each volume of a
multivolume dataset independently and still maintain this system of control.

When variable-length records are specified with the totaling function for user
labels, special considerations are necessary. Because the control program
determines whether a variable-length record will fit in a buffer after a PUT or a
WRITE has been issued, the total you have accumulated may include one more
record than is really written on the volume. For variable-length spanned records,
the accumulated total will include the control data from the volume-spanning
record although only a segment of the record is on that volume. However, when
you process such a data set, the volume-spanning record or the flIst record on the
next volume will not be available to you until after the volume switch and user
label processing are completed. Thus the totaling information in the user label
may not agree with that developed during processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a
data set, control data pertaining to each of the last two records and include both
totals in your user labels. Then the total related to the last complete record on
the volume and the volume-spanning record or the first record on the next
volume would be available to your user label routines. During subsequent
processing of the data set, your user label routines can determine if there is
agreement between the generated information and one of the two totals
previously saved.

When the totaling function for user labels is selected with DASD devices and
secondary space is specified, the total accumulated may be one less than the
actual written. .

Chapter 7. DCB Exit Routines 87

Data Control Block Open Exit

You can specify in an exit list the address of a routine that completes or modifies
a DCB and does any additional processing required before the data set is
completely open. The routine is entered during the opening process after the
JFCB has been used to supply information for the DCB. The routine can
determine data set characteristics by examining fields completed from the data set
labels. When your DCB exit routine receives control, the 3 low-order bytes of
register I will contain the address of the DCB currently being processed.

As with label processing routines, the contents of register 14 must be preserved
and restored if any macros are used in the routine. Control is returned to the
operating system by a RETURN macro; no return code is required.

This exit is mutually exclusive with the JFCBE exit. If you need both the
JFCBE and data control block OPEN exits, you must use the JFCBE exit to
pass control to your routines.

The DCB OPEN exit is intended for modifying or updating the DCB. System
functions should not be attempted in this exit prior to returning to OPEN
processing; in particular, dynamic allocation, OPEN, CLOSE, EOV, and
DADSM functions should not be invoked because of an existing OPEN enqueue
on the SYSZTIOT resources.

Open/EOV Nonspecific Tape Volume Mount Exit

This user exit gives you the option of identifying a specific tape volume to be
requested in place of a nonspecific (scratch) tape volume. A X'17' in the DCB
exit list (EXLST) activates this exit. (See "Exit List (EXLST)" on page 80 for
more information about EXLST.) This exit, which supports only IBM standard
labeled tapes, was designed to be used with the Open/EOV volume security and
verification user exit. . However, this exit can be used by itself.

Open or end-of-volume (EOV) calls this exit when either must issue mount
message IEC50lA or EIC50lE to request a scratch tape volume. Open issues the
mount message if you specify the DEFER parameter with the UNIT option, and
you either didn't specify a volume serial number in the DD statement or you
specified 'VOL = SER = SCR TCH '. EOV always calls this exit for a scratch
tape volume request.

This user exit gets control in the key and state of the program that issued the
OPEN or EOV, and no locks are held. Mter you are in control, you must
provide a return code in register 15.

88 MVS/XA Data Administration Guide

(, -"\',
,)

-,-/

(

(-

+ OENTID DS
+ OENTFLG DS
+ OENTOEOV EQU
+ OENTNTRY EQU
+ OENTOPTN DS
+ OENTMASK EQU
+ OENTRSVD DS
+ OENTDCBA DS
+ OENTVSRA DS
+ OENTJFCB DS
+ OENTLENG EQU
+ OENTREGS DS
+ OENTAREA EQU

Return Code Meaning

00 (X'OO')

04 (X'04')

Continue with the scratch tape request as if this exit had
not been called.
Replace the scratch tape request with a specific volume
serial number. Do this by loading the address of a
6-byte volume serial number into register o.

Note: A value other than 0 or 4 in register 15 is treated as a O.

If OPEN or EOV fmds that the volume pointed to by register 0 is being used
either by this or by another job (an active ENQ on this volume), it takes this exit
again and continues to do so until you either specify another volume serial
number or request a scratch volume. If the volume you specify is available but is
rejected by OPEN or EOV for some reason (I/O errors, expiration date,
password check, and so forth), this exit is not taken again.

When this exit gets control, register 1 points to the parameter list described by the
IECOENTE macro. Figure 26 shows this parameter list.

CL4 PLIST ID ('OENT')
FLAG BYTES
O=OPEN, l=EOV

X
X'80.'
X'Ol'
X
X'OF'
XL2
A
A
A
*-&L
6F
*-OENTE

O=lST ENTRY ,1=SUBSEQUENT ENTRY
OPEN OPTION (OUTPUT/INPUT/ ...)
TO MASK OFF UNNECESSARY BITS
RESERVED
ADDRESS OF USER DCB
ADDRESS OF VOLSER
ADDRESS OF O/C/E COPY OF JFCB
PLIST LENGTH
REGISTER SAVE AREA
MACRO LENGTH

Figure 26. IECOENTE Macro Parameter List

OENTOEOV
set to 0 if OPEN called this exit; set to 1 if EOV called this exit.

OENTNTRY
set to 1 if this is not the fIrst time this exit was called because the requested
tape volume is being used by this or any other job.

OENTOPTN
contains the OPEN options from the DCB parameter list (OUTPUT,
INPUT, OUTIN, INOUT, and so forth). For EOV processing, the
options byte in the DCB parameter list indicates how EOV is processing
this volume. For example, if you open a tape volume for INOUT and
EOV is called during an input operation on this tape volume, the DCB
parameter list and OENTOPTN are set to indicate INPUT.

Chapter 7. DeB Exit Routines 89

~-- ----- - -----.---~.-- ----

OENTVSRA
points to the last volume serial number you requested in this exit but was
in use either by this or another job. OENTVSRA is set to 0 the fIrst time
this exit is called.

OENTJFCB
points to the OPEN or EOV copy of the JFCB. The high order bit is
always on, indicating that this is the end of the parameter list.

OENTREGS
starts the register save area used by OPEN or EOV. Do not use this save
area in this user exit.

Convention for Saving and Restoring General Registers

\Vhen this user exit is entered, the general registers contain:

Register

o
1
2-13

14

15

Contents

Variable
Address of the parameter list for this exit
Contents of the registers before the OPEN or EOV was
issued
Return address (you must preserve the contents of this
register in this user exit)
Entry point address to this user exit

You do not have to preserve the contents of any register other than register 14.
The operating system restores the contents of registers 2 through 13 before it
returns to OPEN or EOV and before it returns control to the original calling
program.

Do not use the save area pointed to by register 13; the operating system uses it.
If you call another routine, or issue a supervisor or data management macro in
this user exit, you must pwvide the address of a new save area in register 13.

OpenjEOV Volume Security and Verification Exit

This user exit lets you verify that the volume that is currently mounted is the one
you want. You can also use it to bypass the OPEN or EOV expiration date,
password, and data set name security checks. A X'18' in the DCB exit list
(EXLST) activates this exit. (See "Exit List (EXLST)" on page 80 for more
information about EXLST.) This exit, which supports IBM standard label tapes,
was designed to be used with the OPEN/EOV nonspecmc tape volume mount
user exit. (See "Open/EOV Nonspecmc Tape Volume Mount Exit" on page 88
for more information about that user exit.) However, this exit can be used by
itself.

Note: This exit is available only for APF-authorized programs.

90 MVS/XA Data Administration Guide

()

(

This user exit gets control in the key and state of the program that issued the
OPEN or EOV request, and no locks are held. After you are in control, you
must provide a return code in register 15.

Return Code Meaning

00 (X'OO')

04 (X'04')

08 (X'08')

12 (X'OC')

16 (X'lO')

Use this tape volume. Return to OPEN or EOV as if
this exit had not been called.

Reject this volume and:

• Output

•

If the data set is the frrst data set on the volume,
request a scratch tape. This causes OPEN or
EOV to issue demount message IEC502E for
the rejected tape volume, and mount message
IEC501A for a scratch tape volume. If the
nonspecific tape volume mount exit is active, it
is called.

If the data set is other than the frrst one on the
volume, process this return code as if it were
return code 08.

Input

Treat this return code as if it were return code
08.

Abnormally terminate OPEN or EOV unconditionally;
no scratch tape request is issued.

Open abnormally terminates with a 913-34 abend code,
and EOV terminates with a 937-29 abend code.

Use this volume without checking the data set's
expiration date, but check its password and name. If the
expiration date of the current data set is in effect, the
new data set can still write over it.

Use this volume. A conflict with the password, label
expiration date, or data set name does not prevent the
new data set from writing over the current data set if it
is the frrst one on the volume. To write over other than
the frrst data set, the new data set must have the same
level of security protection as the current data set.

When this exit gets control, register 1 points to the parameter list described by the
IECOEVSE macro. The parameter list appears as:

Chapter 7. DeB Exit Routines 91

+ OEVSID DS
+ OEVSFLG DS
+ OEVSEOV EQU
+ OEVSFILE EQU

* + OEVSOPTN DS
+ OEVSMASK EQU
+ OEVSRSVD DS
+ OEVSDCBA DS
+ OEVSVSRA DS
+ OEVSHDRl DS
+ OEVSJFCB DS
+ OEVSLENG EQU
+ OEVSREGS DS
+ OEVSAREA EQU

CL4
X
X'80'
X'Ol'

X
X'OF'
XL2
A
A
A
A
*-&L
6F
*-OEVSE

In FIELD = OEVS
FLAGS BYTE
O=OPEN, l=EOV
O=lST FILE, l=SUBSEQ FILE
BITS 1 THROUGH 6 RESERVED
OPEN OPTION (OUTPUT/INPUT/ ...)
MASK
RESERVED
ADDRESS OF USER DCB
ADDRESS OF 6-BYTE VOLSER
ADDRESS OF HDR1/EOFl
ADDRESS OF O/C/E COpy OF JFCB
PLIST LENGTH
REGISTER SAVE AREA
MACRO LENGTH

Figure 27. IECOEVSE Macro Parameter List

OEVSFLG
a flag field containing two flags.

OEVSEOV is set to 0 if OPEN called this exit; set to I if EOV called this
exit.

OEVSFILE is set to 0 if the first data set on the volume is to be written;
set to I if this is not the first data set on the volume to be written. This bit
is always 0 for INPUT processing.

OEVSOPTN
a I-byte field containing the OPEN options from the DCB parameter list
(OUTPUT, INPUT, INOUT, and so forth). For EOV processing, this
byte indicates how EOV is processing this volume. For example, if you
opened a tape volume for OUTIN and EOV is called during an output
operation on the tape volume, the DCB parameter list and OEVSOPTN
are set to indicate OUTPUT.

OEVSVSRA
a pointer to the current volume serial number that OPEN or EOV is
processing.

OEVSHDRI
a pointer to a HDRI label, if one exists; or an EOF I label, if you are
creating other than the first data set on this volume.

OEVSJFCB
a pointer to the OPEN, CLOSE, or EOV copy of the JFCB. The
high-order bit is always on, indicating that this is the end of the parameter
list.

OEVSREGS
a register save area used by OPEN or EOV. Do not use this save area in
this user exit.

92 MVSjXA Data Administration Guide

".
) ,- -/

(

(

Convention for Saving and Restoring General Registers

When this user exit is entered, the general registers contain:

Register

o
1
2-13

14

15

Contents

Variable
Address of the parameter list for this exit.
Contents of the registers before the OPEN or EOV was
issued
Return address (you must preserve the contents of this
register in this user exit)
Entry point address to this user exit

You do not have to preserve the contents of any register other than register 14.
The operating system restores the contents of registers 2 through 13 before it
returns to OPEN or EOV and before it returns control to the original calling
program.

Do not use the save area pointed to by register 13; the operating system uses it.
If you call another routine or issue a supervisor or data management macro in
this user exit, you must provide the address of a new save area in register 13.

QSAM Parallel Input Exit

JFCBE Exit

A request for parallel input processing is indicated by including the address of a
parallel data access block (PDAB) in the DCB exit list. The address must be on
a fullword boundary with the ftrst byte of the entry containing X'12' or, if it is
the last entry, X'92'. For more information on parallel input processing, see
"Parallel Input Processing (QSAM Only)" on page 66.

lCL-specifted setup requirements for the IBM 3800 Printing Subsystem cause a
lFCB extension (lFCBE) to be created to reflect those speciftcations. A lFCBE
exists if BURST, MODIFY, CHARS, FLASH, or any copy group is coded on
the DD statement. The lFCBE exit can be used to examine or modify those
speciftcations in the lFCBE. The address of the routine should be placed in an
exit list. (The device allocated does not have to be a 3800.) This exit is taken
during OPEN processing and is mutually exclusive with the data control block
exit. If you need both the lFCBE and data control block exits, you must use the
lFCBE exit to pass control to your routines.

With a 3800, when you issue the SETPRT macro to a SYSOUT data set, the
lFCBE is further updated from the information in the SETPR T parameter list.

When control is passed to your exit routine, the contents of register 1 will be the
address of the DCB being processed.

The area pointed to by register 0 will also contain the 4-byte FCB identiftcation
that is obtained from the lFCB. The FCB identiftcation is placed in the 4 bytes

Chapter 7. DCB Exit Routines 93

following the 176-byte JFCBE. If the FCB operand was not coded on the DO
statement, this FCB field will be binary zeros.

If your copy of the JFCBE is modified during an exit routine, you should
indicate this fact by turning on bit JFCBEOPN (X'80' in JFCBFLAG) in the
JFCBE copy. On return to OPEN, this bit indicates whether the system copy is
to be updated. The 4-byte FCB identification in your area will be used to update
the JFCB regardless of the bit setting. Checkpoint/restart also interrogates this
bit to determine which version of the JFCBE will be used at restart time. If this
bit is not on, the JFCBE generated by the restart JCL will be used.

End-of-Volume Exit

Block Count Exit

You can specify in an exit list the address of a routine that is entered when
end-of-volume is reached in processing of a physical sequential data set.

When you concatenate data sets with unlike attributes, no EOY exits are taken.

When the end-of-volume routine is entered, register 0 contains 0 unless user
totaling was specified. If you specified user totaling in the DCB macro (by
coding OPTCD = T) or in the. DO statement for an output data set, register 0
contains the address of the user totaling image area. The routine is entered after
a new volume has been mounted and all necessary label processing has been
completed. If the volume is a reel of magnetic tape, the tape is positioned after
the tapemark that precedes the beginning of the data.

You can use the end-of-volume (EOY) exit routine to take a checkpoint by
issuing the CHKPT macro, which is discussed in Checkpoint/Restart. If a
checkpointed job step terminates abnormally, it can be restarted from the EOY
checkpoint. When the job step is restarted, the volume is mounted and
positioned as upon entry to the routine. Restart becomes impossible if changes
are made to the link pack area (LPA) library between the time the checkpoint is
taken and the time the job step is restarted. When the step is restarted, pointers
to end-of-volume modules must be the same as when the checkpoint was taken.

The end-of-volume exit routine returns control in the same manner as the data
control block exit routine. The contents of register 14 must be preserved and
restored if any macros are used in the routine. Control is returned to the
operating system by a RETURN macro; no return code is required.

You can specify in an exit list the address of a routine that will allow you to
abnormally terminate the task or continue processing when the end-of-volume
routine fmds an unequal block count condition. When you are using standard
labeled input tapes, the block count in the trailer label is compared by the
end-of-volume routine with the block count in the DCB. The count in the trailer
label reflects the number of blocks written when the data set was created. The
number of blocks read when the tape is used as input is contained in the
DCBBLKCT field of the DCB.

94 MVS/XA Data Administration Guide

()

-----------------~------

(

The routine is entered during end-of-volume processing. The trailer label block
count is passed in register o. You may gain access to the count field in the DCB
by using the address passed in register 1 plus the proper displacement, as
explained in Debugging Handbook. If the block count in the DCB differs from
that in the trailer label when no exit routine is provided, the task is abnormally
terminated. The routine must terminate with a RETURN macro and a return
code that indicates what action is to be taken by the operating system, as shown
in Figure 28. As with other exit routines, the contents of register 14 must be
saved and restored if any macros are used.

Return Code System Action

o (X'OO')

4 (X'04')

The task is to be abnormally terminated.

Normal processing is to be resumed.

Figure 28. System Response to Block Count Exit Return Code

Defer Nonstandard Input Trailer Label Exit

FeB Image Exit

In an exit list, you can specify a code that indicates that you want to defer
nonstandiUd input trailer label processing from end-of-data until the data set is
closed. The address portion of the entry is not used by the operating system.

An end-of-volume condition exists in several situations. Two examples are: (1)
when the system reads a ftlemarkor a tapemark at the end of a volume of a
multivolume data set but that volume is not the last, and (2) when the system
reads a ftlemark or a tapemark at the end of a data set. The first situation is
referred to here- as an end-of-volume condition, and the second as an end-of-data
condition, although it, too, can occur at the end of a volume.

For anend-of-volume (EOY) condition, the EOV routine passes control to your
nonstandard input trailer label rout~e, whether or not this exit code is specified.
For an end-of-data condition when this exit code is specified, the EOV routine
does not pass control to your nonstandard input trailer label routine. Instead, the
close routine passes control to your end-of-data routine.

You can specify in an exit list the address of a forms control buffer (FCB) image.
This FCB image can be loaded into the forms control buffer of the printer
control unit. The FCB controls the movement of forms in printers that do not
use a carriage control tape.

Multiple exit list entries in the exit list can defme FCBs. The OPEN and
SETPRT routines search the exit list for requested PCBs before searching
SYS I.IMAGELIB.

Chapter 7. DCB bit R()?1t;'1I"~ 9'5

EXLIST

FCBIMG

* 16 line

//ddname
/*

The fIrst 4 bytes of the FCB image contain the image identifier. To load the
FCB, this image identifier is specified in the FCB parameter of the DD
statement, by the SETPR T macro, or by the system operator in response to
message IEC127D or IEC129D.

For an IBM 3203 or 3211 Printer, the image identifier is followed by the FCB
image described in System-Data Administration. For a 3800 FCB image, see
IBM 3800 Printing Subsystem Programmers Guide.

You can use an exit list to defme an FCB image only when writing to an online
printer. Figure 29 illustrates one way the exit list can be used to defme an FCB
image.

DCB .. ,EXLST=EXLIST

DS
DC
DC
DC
DC
DC
DC
DC

character
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END
DD

OF
X'10'

~f~a~g~6~g?
CL4' IMGl'
x'oo'
ALl(67)
X'90'

positions to the
X'OO'
5X'00'
X'OI'
6X'00'
X'02'
5X'00'
X'03'
9X'00'
X'04'
19X'00'
X'05'
X'06'
X'07'
x'oa'
X'09'
X'OA'
X'OB'
X'OC'
8X'00'
X'10'

Flag code for FCB image
Address of FCB image
End of EXLST and a null entry
FCB identifier
FCB is not a default
Length of FCB .
Offset print line

right
Spacing is 6 lines per inch
Lines 2-6, no channel codes
Line 7, channel 1
Lines 8-13, no channel codes
Line (or Lines) 14, channel 2
Line (or Lines) 15-19, no channel
Line (or Lines) 20, channel 3
Line (or Lines) 21-29, no channel
Line (or Lines) 30, channel 4
Line (or Lines) 31-49, no channel
Line (or Lines) 50, channel 5
Line (or Lines) 51, channel 6
Line (or Lines) 52, channel 7
Line (or Lines) 53, channel 8
Line (or Lines) 54, channel 9
Line (or Lines) 55, channel 10
Line (or Lines) 56, channel 11
Line (or Lines) 57, channel 12
Line (or Lines) 58-65, no channel
End of FCB image

UNIT=3211,FCB=(IMGl,VERIFY)

codes

codes

codes

codes

Figure 29. Defining an FeB Image for a 3211

96 MVSjXA Data Administration Guide

()

(DCB Abend Exit

(

(-

The DCB abend exit is provided to give you some options regarding the action
you want the system to take when a condition arises that may result in abnormal
termination of your task. This exit can be taken any time an abend condition
arises during the process of opening, closing, or handling an end-of-volume
condition for a DCB associated with your task.

When an abend condition arises, a write-to-programmer message about the abend
is issued and your DCB abend exit is given control, provided there is an active
DCB abend exit routine address in the DCB being processed. If STOW called
the end-of-volume routines to get secondary space to write an end-of-fIle mark
for a partitioned data set, or if the DeB being processed is for an indexed
sequential data set, the DCB abend exit routine will not be given control if an
abend condition occurs. The contents of the registers when your exit routine is
entered are the same as for other DCB exit list routines, except that the 3
low-order bytes of register I contain the address of the parameter list described in
Figure 30 on page 98. Your abend exit routine can choose one of four options:

• To immediately terminate your task

• To delay the abend until all the DCBs in the same OPEN or CLOSE macro
are opened or closed

• To ignore the abend condition and continue processing without making
reference to the DCB on which the abend condition was encountered, or

• To try to recover from the error

Not all of these options are available for each abend condition. Your DCB
abend exit routine must determine which option is available by examining the
contents of the option mask byte (byte 3) of the parameter list. The address of
the parameter list is passed in register I. Figure 30 on page 98 shows the
contents of the parameter list and the possible settings of the option mask when
your routine receives control. (All information in the parameter list is in binary.)

Chapter 7. DeB Exit Routines 97

Displacement

o

4

8

12

Bit

0

1-3

4

5

6

7

Fullword Boundary

System Completion Code 1 I Return Code

DCB Address

Open/Close/End-of-Volume Work Area Address

00 Recovery Work Area Address

lin the first 12 bits.

Meaning

Reserved for System Use

Reserved for Future Use

OK to Recover

OK to Ignore

OK to Delay

Reserved for Future Use

Option Mask

Figure 30. Parameter List Passed to DeB Abend Exit Routine

When your DCB abend exit routine returns control to the system control
program (this can be done using the RETURN macro), the option mask byte
should contain the setting that specifies the action you want to take. These
actions and the corresponding settings of the option mask byte are:

Decimal
Value Action

o Abnonnally terminate the task immediately.

4 Ignore the abend condition.

8 Delay the abend until the other DCBs being processed concurrently
are opened or closed.

12 Make an attempt to recover.

98 MVS/XA Data Administration Guide

(-

(

(

----- - ----~--.-~~~~~--~--~-

You must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of the
parameter list) to detennine which options are available. If a bit is set to 1, the
corresponding option is available. Indicate your choice by inserting the
appropriate value in byte 3 of the parameter list, overlaying the bits you
inspected. If you use a value that specifies an option that is not available, the
abend is issued immediately.

If the contents of bits 4, 5, and 6 of the option mask are 0, you must not change
the option mask. This unchanged option mask will result in a request for an
irrunediate abend.

If bit 5 of the option mask is set to 1, you can ignore the abend by placing a
value of 4 in byte 3 of the parameter list. Processing on the current DCB stops.
If you subsequently attempt to use this DCB, the results are unpredictable. If
you ignore an error in end-of-volume, control is returned to your program at the
point that caused the end-of-volume condition (unless the end-of-volume routines
were called by the close routines). If the end-of-volume routines were called by
the close routines, an ABEND macro will be issued even though the ignore
option was selected.

If bit 6 of the option mask is set to 1, you can delay the abend by placing a value
of 8 in byte 3 of the parameter list. All other DCBs waiting for OPEN or
CLOSE processing will be processed before the abend is issued. For
end-of-volume, however, you can't delay the abend because the end-of-volume
routine never has more than one DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a value
of 12 in byte 3 of the parameter list and provide information for the recovery
attempt. Figure 31 lists the abend conditions for which recovery can be '
attempted. For abend conditions that can be ignored or delayed, see System
Messages.

System
Completion Return
Code Code Description of Error

117 X'38' An I/O error occurred during
execution of a read block 10
command issued to establish tape
position.

X'3C' DCB block count did not agree
with the calculated block count.

Figure 31 (Part I of 3). Conditions for Which Recovery Can Be Attempted

Chapter 7. DCB Exit Routines 99

System
Completion Return
Code Code Description of Error

137 X'OC' DCB block count did not agree
with the calculated block count.

An I/O error occurred while
X'18' positioning a magnetic tape data set

to the ftrst data record or during
execution of a read block ID
command issued to establish tape
position.

An I/O error occurred during
X'38' execution of a read block ID

command issued to establish· tape
position.

213 X'04' DSCB was not found on volume
specified.

214 X'OC' An I/O error occurred during
execution of a read block ID
command issued to establish tape
position.

X'lO' DCB block count did not agree
with the calculated block count.

237 X'04' Block count in DCB does not agree
with block count in trailer label.

413 X'18' Data set was opened for input and
no volume serial number was
specifted.

613 X'08' I/O error occurred during reading
of tape label.

X'OC' Invalid tape label was read.

X'lO' I/O error occurred during writing of
tape label.

X'14' I/O error occurred during writing of
tape label.

713 X'04' A data set on magnetic tape was
opened for INOUT, but the
volume contained a data set whose
expiration date had not been
reached and the operator denied
permission.

717 X'lO' I/O error occurred during reading
of trailer label 1 to update block
count in DCB.

Figure 31 (Part 2 of 3). Conditions for Which Recovery Can Be Attempted

100 MVSjXA Data Administration Guide

<:

(

System
Completion Return
Code Code Description of Error

813 X'04' Data set name on header label does
not match data set name on DO
statement.

Figure 31 (Part 3 of 3). Conditions for Which Recovery Can Be Attempted

Recovery Requirements

For the recovery attempt, you should supply a recovery work area (see Figure 32
on page 102) with a new volume serial number for each volume associated with
an error. If no new volumes are supplied, recovery will be attempted with the
existing volumes, but the likelihood of successful recovery is greatly reduced.

If you request recovery for system completion code 213, return code 04, you
must indicate in your job control language (JCL) that the volumes cannot be
shared by specifying unit affInity, deferred mounting, or more volumes than units
for the data set.

If you request recovery for system completion code 237, return code 04, you
don't need to supply new volumes or a work area. The condition that caused the
abend is the disagreement between the block count in the DCB and that in the
trailer label. To permit recovery, this disagreement is ignored.

If you request recovery for system completion code 717, return code 10, you
don't need to supply new volumes or a work area. The abend is caused by an
I/O error during updating of the DCB block count. To permit recovery, the
block count is not updated. Consequently, an abnormal termination with system
completion code 237, return code 04, may result when you try to read from the
tape after recovery. You may attempt recovery from the abend with system
completion code 237, return code 04, as explained in the preceding paragraph.

System completion codes and their associated return codes are described in
System Codes.

Chapter 7. DCB Exit Routines 101

Displacement

o

4

~.------ _._--_.- ~ ---"-- _.- _. __ ... _._.- - ... _-- .- ... _--------- -------

Halfword Boundary

Length of This Work Area

Bit

o

2-7

Meaning

Free This Work Area

Volume Serial Numbers Are
Provided

Reserved for Future Use

Option Byte Subpool Number

Number of
New Volumes I New Volume Serial Numbers (6 bytes each)

~------------~

.... 1.,.,

T T
Figure 32. Recovery Work Area

The work area that you supply for the recovery attempt must begin on a
halfword boundary and can contain the information described in Figure 32_
Place a pointer to the work area in the last 3 bytes of the parameter list pointed
to by register 1 and described in Figure 30 on page 98.

If you acquire the storage for the work area by using the GETMAIN macro, you
can request that it be freed by a FREEMAIN macro after all information has
been extracted from it. Set the high-order bit of the option byte in the work area
to 1 and place the number of the subpool from which the work area was
requested in byte 3 of the recovery work area.

Only one recovery attempt per data set is allowed during OPEN, CLOSE, or
end-of-volume processing. If a recovery attempt is unsuccessful, you may not
request another recovery. The second time through the exit routine you may
request only one of the other options (if allowed): Issue the abend immediately,
ignore the abend, or delay the abend. If at any time you select an option that is
not allowed, the abend is issued immediately.

Note that, if recovery is successful, you still receive an abend message on your
listing. This message refers to the abend that would have been issued if the
recovery had not been successful.

102 MVS/XA Data Administration Guide

.0
U

(-... ,,\

--)

(-- Abend Installation Exit

i (

The abend installation exit gives you an additional option for handling error
situations that result in an abend. This exit is taken any time an abend condition
occurs during the process of opening, closing, or handling an end-of-volume
condition for a DCB. An IBM-supplied installation exit will give you the option
to retry tape positioning when you receive a 613 system completion code, return
code 08 or ~C. (For additional information about the abend installation exit, see
System- Data Administration and OpenjClosejEOV Logic.)

Chapter 7. DeB Exit Routines 103

o

()

(

(

Chapter 8. Spooling and Scheduling Data Sets

The job entry subsystem (JES) is a system function that spools and schedules
input and output data streams.

Spooling includes two basic functions:

• Input ,streams are read from the input device and stored on an intermediate
storage device in a format convenient for later processing by the system and
by the user's program.

• Output streams are similarly stored on an .intermediate device until a
convenient time for printing or punching.

Scheduling provides the highest degree of system availability through the orderly
use of system resources that are the objects of contention.

With spooling, unit record devices are used at full rated speed if enough buffers
are available, and they are used only for the time needed to read, print, or punch
the data. Without spooling, the device is occupied for the entire time that a job
is doing other processing. Also, because data is stored instead of being
transmitted directly, output can be queued in any order and scheduled by class
and by priority within each class.

You enter data into the system input stream by preceding it with aDD'" or a
DD DATA JCL statement. This is a SYSIN data set.

Your output data can be printed or punched from a SYSO UT data set that is
referred to as the output stream. You code the SYSOUT keyword parameter in
your DD statement and designate the appropriate output class. For example,
SYSOUT = A requests output class A. The class-device relationship is
established for each installation, and a list of devices assigned to each output class
will enable you to select the appropriate one. For further information on SYSIN
and SYSOUT parameters, see JCL

SYSIN and SYSOUT must be either BSAM or QSAM data sets and you open
and close them in the same manner as any other data set processed on a unit
record device (except when mUltiple DeBs are used to write to the same output
class, the records are not interspersed.) The job entry subsystem (JES) allows
multiple opens to SYSOUT data sets. However, serialization of the data set is
the responsibility of the application or user. The DCB exit routine will be
entered in the usual manner if you specify it in an exit list.

When you use QSAM with fixed-length blocked records or BSAM, the DCB
block size parameter does not have to be a multiple of logical record length

Chapter 8. Spooling and Scheduling Data Sets 105

(LRECL) if the block size is specified through the SYSOUT DD statement. f'\
Under these conditions, if block size is greater than LRECL but not a multiple of ~j
LRECL, block size is reduced to the nearest lower multiple of LRECL when the
data set is opened. This feature allows a cataloged procedure to specify blocking
for SYSOUT data sets, even though your LRECL is not known to the system
until execution.

Therefore, the SYSOUT DD statement of the go step of a compile-load-go
procedure can specify block size without .block size being a multiple of LRECL.

Because a SYSOUT data set is written on a direct access device, you should omit
the DEVD operand in the DCB macro, or you should code DEVD = DA.
Because SYSIN and SYSOUT data sets are spooled on intermediate devices, you
should also avoid using device-dependent macros (such as FEOV,CNTRL,
PRTOV, BSP, or SETPRT) in processing these data sets. (See "Device
Independence" on page 58.) With a 3800, you can use SETPRT when
processing spooled data sets. For further information, refer to IBM 3800 Printing
Subsystem Programmer's Guide.

The job entry subsystem controls all blocking and deblocking of your data to
optimize system operation and ignores the number of channel programs (NCP)
you specify. The block size (BLKSIZE) and number of buffers (BUFNO)
specified in your program have no correlation with what is actually used by the
job entry subsystem. Therefore, you can select the blocking factor that .best fits
your application program with no effect on the spooling efficiency of the system.
For QSAM applications, move mode is as efficient as locate mode.

All record formats are allowed, except that spanned records (RECFM = VS or
VBS) cannot be specified for SYSIN. A record format of FIXED is supplied if it
is not specified for SYSIN.

The minimum record length for SYSIN is 80 bytes. For undefmed records, the
entire 80-byte image is treated as a record. Therefore, a read of less than 80 bytes
results in the transfer of the entire 80-byte image to the record area specified in
the READ macro. For fixed and variable length records, an abend results if the
LRECL is less than 80 bytes.

The logical record length value (JFCLRECL field in the JFCB) is filled in with
the logical record length value of the input data set. This value is increased by 4
if the record format is vanable (RECFM = V or VB). The logical record length
may be a size other than the size of the input device, if the SYSIN input stream
is supplied by an internal reader. The job entry subsystem will supply a value in
the JFCLRECL field of the JFCB if that field is found to be zero.

The block size value (JFCBLKSI field in the JFCB) is filled in with the block
size value of the input data set. This value is increased by 4 greater than the
value calculated for the logical record value (that is, input data set logical record
length + 4) if the record format is variable (RECFM = V or VB). The job entry
subsystem will supply a value in the JFCBLKSlfield of the JFCB if that field is
found to be O.

106 MVS;XA Data Administration Guide

j

.J

(

Your program is responsible for printing format, pagination, header control, and
stacker select. You can supply control characters for SYSOUT data sets in the
normal manner by specifying ANSI or machine characters in the DCB. Standard
controls are provided by default if they are not specified. The length of output
records must not exceed the allowable maximum length for the ultimate device.
Cards can be punched in EBCDIC mode only.

Your SYNAD routine will be entered if an error occurs during data transmission
to or from an intermediate storage device. Again, because the specific device is
indeterminate, your SYNAD routine code should be device independent.

Chapter 8. Spooling and Scheduling Data Sets 107

if',

"'.,/

(

,- ----~-,,--~-------~

Chapter 9. Processing a Sequential Data Set

Data sets residing on any volume other than direct access volumes must be
processed sequentially. In addition, a data set residing on a direct access volume,
regardless of organization, can be processed sequentially. This includes data sets
created using ISAM or a similar access method. Because the entire data set
(prime, index, and overflow areas) will be processed, care should be taken to
determine. the type of records being processed.

Either the queued or the basic access technique may be used to store and retrieve
the records of a sequential data set. For a non-DASD sequential data set, a
technique called chained scheduling can be used to accelerate the input/output
operations.

Creating a Sequential Data Set

As discussed earlier, a processing program should be developed using, as much as
possible, factors that are constant, with variable factors specified at execution.
For that reason, the following examples are generalized as much as possible.
They are neither exhaustive nor intended as complete examples. Rather, they are
presented as introductory sequences.

In creating a sequential data set on a magnetic tape or direct access device, you
must do the following:

• Code DSORG= PS or PSU in the DCB macro.

• Code a DD statement to describe the data set (see JCL).

• Process the data set with an OPEN macro (data set is opened for output or
OUTIN), a series of PUT or WRITE and CHECK macros, and then a
CLOSE macro.

Tape-to-Print, Move Mode-Simple Buffering: The example in Figure 33 on
page 110 shows that the GET -move and PUT -move require two movements of
the data records. If the record length (LRECL) does not change during
processing, only one move is necessary; you can process the record in the input
buffer segment. A GET -locate can be used to provide a pointer to the current
segment.

Chapter 9. Processing a Sequential Data Set 109

NEXTREC

TAPERROR

*

ENDJOB

OPEN
GET
AP
UNPK
PUT
B
SYNADAF
LA

ST
PUT
SYNADRLS
L
RETURN
CLOSE

COUNT DS
WORKAREA DS
NUMBER DC
SAVE 14 DS
INDATA DCB

(INDATA"OUTDATA,(OUTPUT))
INDATA,WORKAREA
NUMBER,:::;:P'l'
COUNT, NUMBER
OUTDATA,COUNT
NEXTREC
ACSMETH=QSAM
0,68(0,1)

14, SAVE 14
OUTDATA,(O)

14, SAVE 14

(INDATA"OUTDATA)

CL6
CL50
PL4'0'

Move mode

Record count adds 6
bytes to each record

Control program returns
message address in regis­
ter 1.
SYNAD routine prints part
of the message (beginning
with the unit number) as
a 56-byte fixed-length
record. It then returns
to the control program.

F
DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EROPT=ACC, C

OUTDATA DCB
SYNAD=TAPERROR,EODAD=ENDJOB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),EROPT=ACC

Figure 33. Creating a Sequential Data Set-Move Mode, Simple Buffering

"

Retrieving a Sequential Data Set

In retrieving a sequential data set on a magnetic tape or a direct access device,
you must do the following:

• Code DSORG= PS or PSU in the DCB macro.

• Tell the system where your data set is located (by coding a DD statement; see
JCL).

• Process the data set with an OPEN macro (data set is opened for input,
INOUT, RDBACK, or UPDAT), a series of GET or READ macros, and
then a CLOSE macro.

Tape-to-Print, Locate Mode-Simple Buffering: The example in Figure 34 on
page 111 is similar to that in Figure 33. However, because there is no change in
the record length, the records can be processed in the input buffer. Only one
move of each data record is required.

110 MVSjXA Data Administration Guide

(-
OPEN (INDATA"OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT»

NEXTREC GET INDATA Locate mode
LR 2,1 Save pointer
AP NUMBER,=P'I'
UNPK 0(6,2),NUMBER Process in input area
PUT OUTDATA Locate mode
MVC 0(50,1),0(2) Move record to output buffer
B NEXTREC

TAPERROR SYNADAF ACSMETH=QSAM Message address in register 1
ST 2, SAVE 2 Save register 2 contents
L 2,8(0,1) Load pointer to input buffer
MVC 8(70,1),50(1) Shift nonblank message fields
MVI 78(1),C ' Blank end of message
MVC 79(49,1),78(1)
ST 2,128(1) Save address for debugging
CH 0,=H'4' Test SYNADAF return code
BE MOVERCD Branch if data read
BL PRINTIT Branch if data not read
CLI 128(1),C'

,
See if data read anyway

BE PRINTIT Branch if definitely no data
MOVERCD MVC 78(50,1),0(2) Add input record to message
PRINTIT LA 0,4(1) Load address of message

LR 2,14 Save return address
PUT ERRORDCB,(O) Print message (move mode)
SYNADRLS Release message and save area
LR 14~2 Restore return address
L 2, SAVE 2 Restore register 2 contents
RETURN Return to control program

i (ENDJOB CLOSE (INDATA"OUTDATA"ERRORDCB)

NUMBER DC PL4'O'
INDATA DCB DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EROPT=ACC, C

SYNAD=TAPERROR,EODAD=ENDJOB
OUTDATA DCB DDNAME=OUTPUTDD, DSORG=PS,MACRF=(PL)
ERRORDCB DCB DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V, C

BLKSIZE=128.LRECL=124
SAVE2 DS F

Figure 34. Creating a Sequential Data Set-Locate Mode, Simple Buffering

Chapter 9. Processing a Sequential Data Set 111

Modifying a Sequential Data Set

You can modify a sequential data set in two ways:

• Changing the data in existing records (update in place)

• Adding new records to the end of a data set (extending the data set)

Updating a Sequential Data Set in Place

When you update in place, you read records, process them, and write them back
to their original positions without destroying the remaining records on the track.
The following rules apply:

• You must specify the update option (UPDAT) in the OPEN macro
instruction. To perform the update, you can use only the READ, WRITE,
CHECK, NOTE, POINT, GET, and PUTX macros.

• You cannot delete any record or change its length; you cannot add new
records.

• The data set must be on a direct access device.

A record must be retrieved by a READ or GET macro before it can be updated
by a WRITE or PUTX macro. A WRITE or PUTX macro does not need to be
issued after each READ or GET macro. The READ and WRITE macros must
be execute forms that refer to the same DECB; the DECB must be provided by
the list forms of the READ or WRITE macros. (The execute and list forms of
the READ and WRITE macros are described in Data Administration: Macro
Instruction Reference.)

Updating with Overlapped Operations

To overlap input/output and processor activity, you can start several read or
write operations before checking the Hrst for completion. You cannot overlap
read with write operations, however, as operations of one type must be checked
for completion before operations of the other type are started or resumed. Note
that each pending read or write operation requires a separate channel program
and a separate DECB. If a single DECB were used for successive read
operations, only the last record read could be updated.

In Figure 52 on page 145, overlap is achieved by having a read or write request
outstanding while each record is being processed. Note the use of the execute
and list forms of the READ and WRITE macros, identifted by the operands
MF:;::::E and MF=L.

112 MVS/XA Data Administration Guide

C)

/' " / '

(

(

~----~--~~~~~~~~~~~~~~-

Extending a Sequential Data Set

If you want to add records at the end of your data set, you must open the data
set for output with DISP= MOD specified in the DD statement or specify the
EXTEND option of the OPEN macro. You can then issue PUT or WRITE
macros to the data set.

Concatenating Sequential Data Sets

Concatenation is a method by which a collection of sequential data sets can be
treated by the application program as one data set. For example, two or more
sequential data sets can be automatically retrieved by the system and processed
successively as a single data set. It is important to consider the characteristics of
the individual data sets being concatenated. Data sets with like characteristics are
those that may be processed correctly using the same data control block (DCB),
input/output block (lOB), and channel program. Any variation (such as record
format, device, or option) makes them unlike.

Differing block sizes make data sets unlike unless the first block size in the
concatenation is greater than any block size following. However, the system will
automatically adjust buffers and channel programs for eligible data sets, if
necessary. The primary purpose of this service is to permit otherwise
homogeneous data sets to be concatenated in any order. Eligibility rules are:

• Data set resides on DASD
• RECFM cannot be U (RECFM can be F or V)
• Records are blocked
• LRECL is same for all data sets being concatenated
• Access method is QSAM
• OPEN got the buffer pool
• Block size was not coded in the DCB macro

Note: Block size can be coded in DD statements, via TSO ALLOCATE
commands, or in the data set label.

When sequential data sets are concatenated, the system is open to only one of the
data sets at a time. You must inform the system by modifying the DCBOFLGS
field of the DCB if unlike sequential data sets are concatenated (this is not
required for spool data sets, because EOV automatically treats them as unlike
data sets). The indication must be made before the end of the current data set is
reached, You must set bit 4 to 1 by using the instruction 01 DCBOFLGS, X'08'
a,s described in Chapter 5, "Specifying a Data Control Block and Initializing
Data Sets." If bit 4 of the DCBO FLGS field is 1, end-of-volume processing for
each data set will issue a close for the data set just read and an open for the next
concatenated data set. This opening and closing procedure updates the fields in
the DCB and, if necessary, builds a new lOB and a new channel program. If the
buffer pool was obtained automatically by the open routine, the procedure also
frees the buffer pool and obtains a new one for the next concatenated data set.
The procedure does not issue a freepool for the last concatenated data set.
Unless you have some way of determining the characteristics of the next data set
before it is opened, you should not reset the DCBOFLGS field to indicate like
attributes during processing. When you concatenate data sets with unlike
attributes, no EOV exits are taken.

Chapter 9. Processing a Sequential Data Set 113

Check

Process

-~------

When unlike sequential data sets are concatenated, the GET or READ macro 0
instruction that detected the end of data set'must be reissued. Figure 35 on V
page 114 illustrates a possible routine for determining when a GET or READ
must be reissued. Also, you should not issue multiple input requests (that is, a
series of READ or GET macros instructions) in your program. If you do, you
will have to arrange some way to determine which requests have been completed
and which must be reissued. These restrictions do not apply to like data sets,
because no OPEN or CLOSE operation is necessary between data sets.

On Set >-_____ ~ Reread Switch

Off

Set
Reread Switch

On

Check via Open·

Yes

DCBEXIT

"Returns are to control

program address in register 14

Set First­

Time-In

Switch Off

Set Bit 4
of OFLGS

to 1

Figure 35. Reissuing a READ or GET for Unlike Concatenated Data Sets

When the change from one data set to another is made, label exits are taken as
required; automatic volume switching is also performed for multiple volume data
sets. Your end-of-data-set (EO DAD) routine is not entered until the last data set
has been processed.

To save time when processing two consecutive sequential data sets on a single
tape volume, you specify LEAVE in your OPEN macro instruction.
Concatenated data sets cannot be read backward.

114 MVS/XA Data Administration Guide

(. l
j

('

.-~----~-~-~-----------------

Processing with Chained Scheduling

To accelerate the input/output operations required for a data set, the operating
system provides a technique called chained scheduling. When requested, the
system bypasses the normal I/O routines and dynamically chains several
input/output operations together. A series of separate read or write operations,
functioning with chained scheduling, is issued to the computing system as one
continuous operation. In a nonpageable (V = R) address space, the
program-controlled interruption (PCI) flag in the CCWs cause the PCI
appendage to get control and dynamically chain the next I/O request to the
currently executing channel program.

The I/O performance is improved by reduction in both the processor time and
the channel start/stop time required to transfer data within virtual storage. Some
factors that affect performance improvement are:

• Address space type (real or virtual)

• BUFNO for QSAM

• The number of overlapped requests for BSAM (NCP)

• Other activity on the processor and channel

Chained scheduling can be used only with simple buffering. Each data set for
which chained scheduling is specified must be assigned at least two and preferably
more buffers with QSAM, or must have a value of at least two and preferably
more for NCP with BSAM or BPAM.

The system will default to chained scheduling for nondirect access devices (other
than printers and format-U records on nondirect access devices), except for those
cases in which it is not allowed.

A request for exchange buffering in MVS/XA is not honored, but compatibly
defaults to move mode and therefore has no effect on either a request for chained
scheduling or a default to chained scheduling.

A request for chained scheduling will be ignored and normal scheduling used if
any of the following are encountered when the data set is opened:

• CNTRL macro to be used.

• Bypassing of embedded DOS checkpoint records on tape input.

• Spooled data sets (SYSIN or SYSOUT).

• NCP= lor BUFNO= I

• A print data set or any associated data set for the 3525 Card Punch. (For
more information about programming the 3525, see OS and OS/VS
Programming Support for the IBM 3505 Card Reader and IBM 3525 Card
Punch.)

Chapter 9. Processing a Sequential Data Set 115

The number of channel program segments that can be chained is limited to the r---'\
value specified in the NCP operand of BSAM DCBs, and to the value specified \',oj
in the BUFNO operand of QSAM DCBs.

When the data set is a printer, chained scheduling is not supported
(DCB = OPTCD = C) when channel 9 or channel 12 is in the carriage control
tape or FCB.

When chained scheduling is being used, the automatic skip feature of the
PRTOV macro for the printer will not function. Format control must be
achieved by ANSI or machine control characters. (Control characters are
discussed in more detail under "Carriage Control Character" on page 31, under
"Record Format-Device Type Considerations" on page 28, and under
Appendix B, "Control Characters" on page 213.) When you are using QSAM
under chained scheduling to read variable-length, blocked, ASCII tape records
(format-DB), you must code BUFOFF = L in the DCB for that data set.

Note also that, if you are using BSAM with the chained scheduling option to
read format-DB records and have coded a value for the BUFOFF operand other
than BUFOFF = L, the input buffers will be converted from ASCII to EBCDIC
as usual, but the record length returned to the DCBLRECL field will equal the
block size, not the actual length of the record read in; the record descriptor word
(RDW), if present, will not have been converted from ASCII to binary.

Chained scheduling is most valuable for programs that require extensive input
and output operations. Because a data set using chained scheduling may
monopolize available time on a channel ina V = R region, separate channels
should be assigned, if possible, when more than one data set is to be processed.

Note: Chained scheduling is not a DASD option; it is built into the access
method for DASD.

Chained Scheduling Functions for DASD

For direct access storage devices (DASD), chained scheduling is not supported.
(If the chained scheduling option is specified for DASD, it is ignored.) Instead,
the functions of chained scheduling are performed directly by the sequential
access method (either BSAM or QSAM).

In QSAM, the value of BUFNO determines how many channel programs or I/O
requests will be chained together before I/O is initiated. The default value of
BUFNO is 5; when five buffers are full (that is, five I/O requests have been
issued), QSAM reads or writes all five records in a single revolution of the disk.

In BSAM, the first READ or WRITE instruction initiates I/o'. Subsequent I/O
requests (without an associated CHECK or WAIT instruction) will be put in a
queue, and the channel program associated with the request will be chained to
the previous request in the queue. During channel end processing for the first
I/O request, the queue is checked for pending I/O requests and the next request
in the queue is started using the channel end appendage. The number of I/O
requests that may be chained together is limited to the number of requests that (f\
can be handled in one I/O event (and one revolution of the disk) before channel "'-.j
end processing is complete.

116 MVSjXA Data Administration Guide

(

(

Search Direct for Input Operations

To accelerate the input operations required for a data set on DASD, the
operating system uses a technique called search direct. Search direct reads in the
requested record and the count field of the next record. This allows the operation
to get the next record directly, along with the count field of the following record.

You may receive unpredictable results when your application has a dependency
that is incompatible with the use of search direct. For example, you may receive
unpredictable results when multiple DCBs are open for a ftle and one of the
applications is adding records.

Determining the Length of a Record on Input

When you read a sequential data set, you can determine the length of the record
in one of the following five ways, depending upon the record format of the data
set:

1. For fixed-length, unblocked records, the length of all records is the value in
the DCBBLKSI field of the DCB.

2. For variable-length records, the block descriptor word in the record contains
the length of the record.

3. For fixed-length blocked or undefmed-Iength records, the following method
can be used to calculate the block length. This method can be used with
BSAM, BDAM, or BPAM. (This method should not be used when reading
track overflow records or when using chained scheduling with format-U
records. In these cases, the length of a record carmot be determined.) After

. checking the DECB for the READ request but before issuing any subsequent
data management macros that specify the DCB for the READ request,
obtain the lOB address from the DECB. The lOB address can be loaded
from the location 16 bytes from the start of the DECB.

Obtain the residual count from the charmel status word (CSW) that has been
stored in the input/output block (lOB). The residual count is in the
half word , 14 bytes from the start of the lOB. For SYSIN or SYSOUT data
sets, the residual count can also be found in bytes 2 and 3 of the first word of
the DECB. Subtract this residual count from the number of data bytes
requested to be read by the READ macro instruction. If'S' was coded as
the length parameter of the READ macro, the number of bytes requested is
the value of DCBBLKSI at the time the READ was issued. If the length
was coded in the READ macro, this value is the number of data bytes and it
is contained in the halfword 6 bytes from the beginning of the DECB. The
result of the subtraction is the length of the block read. See Figure 36 on
page 118.

Chapter 9. Processing a Sequential Data Set 117

OPEN (DCB,(INPUT»
LA DCBR,DCB
USING IHADCB,DCBR

READ DECBl,SF,DCB,AREAl, 's'
READ DECB2,SF,DCB,AREA2,50

CHECK DECBl
LH WORKl,DCBBLKSI Block size at time of READ
L WORK2,DECB1+l6 lOB address
SH WORKl,14(WORK2) WORKl has block length

CHECK DECB2
LH WORKl,DECB2+6 Length requested
L WORK2,DECB2+16 lOB address
SH WORKl,l4(WORK2) WORKl has block length

MVC DCBBLKSI,LENGTH3 Length to be read
READ DECB3,SF,DCB,AREA3

CHECK DECB3
LH WORKl,LENGTH3 Block size at time of READ
L WORK2,DECB+l6 lOB address
SH WORK1,14(WORK2) WORKl has block length

DCB DCB ... RECFM=U,NCP=2, ...
DCBD

Figure 36. One Method of Determining the Length of the Record When Using BSAM to Read Undefined-Length
Records

4. When an undefmed-Iength record is read, the actual length of the record is
returned in the DCBLRECL field of the data control block. Because of this
use of DCBLRECL, the LRECL operand should be omitted. This method
can only be used with QSAM and BSAM.

5. The length to be read or written can be supplied dynamically in a
READ/WRITE macro using BSAM. This method cannot be used when
using chained scheduling on any nondirect access device.

118- MVSjXA Data Administration Guide

rr~
v

()

Writing a Short Block When Using the BSAM WRITE Macro

If you have fixed-blocked record fonnat, you can change the length of a block
when you are writing blocks for a sequential data set. The DCB block size field
(DCBBLKSI) can be changed to specify a block size that is shorter than what
was originally specified for the data set. 1he DCBBLKSI field must be changed
before issuing the WRITE macro instruction and must be a multiple of the
LRECL parameter in the DCB. Any subsequent WRITE macros issued will
write records with the new block length until the block size is changed again.
The DCB block size field should not be changed to specify a block size that is
greater than what was originally specified for the data set.

Managing SAM Buffer Space

The operating system provides several methods of buffer acquisition and control.
Each buffer (virtual storage area used for intermediate storage of input/output
data) usually corresponds in length to the size of a block in the data set being
processed. When you use the queued access technique, any reference to a buffer
actually refers to the next record (buffer segment).

You can assign more than one buffer to a data set by associating the buffer with
a buffer pool. A buffer pool must be constructed in a virtual storage area
allocated for a given number of buffers of a given length.

The number of buffers you assign to a data set should be a trade-off against the
frequency with which you refer to each buffer. A buffer that is not referred to for
a relatively long period of time may be paged out. If this were allowed to happen
to any considerable degree, it could decrease throughput.

Buffer segments and buffers within the buffer pool are controlled automatically
by the system when the queued access technique is used. However, you can tell
the system you are finished processing the data in a buffer by issuing a release
(RELSE) macro for input or a truncate (TRUNC) macro instruction for output.
The simple buffering technique can be used to process a sequential data set or an
indexed sequential data set.

If you use the basic access technique, you can use buffers as work areas rather
than as intermediate storage areas. You can control them directly, by using the
GETBUF and FREEBUF macros, or dynamically for BDAM and BISAM, by
requesting dynamic buffering in your DCB macro instruction and your READ or
WRITE macro. If you request dynamic buffering, the system will automatically
provide a buffer each time a READ macro is issued. That buffer will be freed
when you issue a WRITE or FREEDBUF macro instruction.

Chapter 9. Processing a Sequential Data Set 119

Buffer Pool Construction

Buffer pool construction can be accomplished in any of three ways:

• Statically, using the BUILD macro

• Explicitly, using the GETPOOL macro

• Automatically, by the system, when the data set is opened

If QSAM simple buffering is used, the buffers are automatically returned to the
pool when the data set is closed. If the buffer pool is constructed explicitly or
automatically, the virtual storage area must be returned to the system by the
FREEPOOL macro.

In many applications, fullword or doubleword alignment of a block within a
buffer is important. You can specify in the DCB that buffers are to start on
either a doubleword boundary or a fullword boundary that is not also a
doubleword boundary (by coding BF ALN = D or F). If doubleword alignment is
specified for format-V records, the ftfth byte of the fIrst record in the block is so
aligned. For that reason, fullword alignment must be requested to align the ftrst
byte of the variable-length record on a doubleword boundary. The. alignment of
the records following the ftrst in the block depends on the length of the previous
records.

Note that buffer alignment provides alignment only for the buffer. If records / '\
from ISCIIj ASCII magnetic tape are read and the records use the block preftx,
the boundary alignment of logical records within the buffer depends on the length
of the block preftx. If the length is 4, logical records are on fullword boundaries.
If the length is 8, logical records are on doubleword boundaries.

If the BUILD macro is used to construct the buffer pool, alignment depends on
the· alignment of the ftrst byte of the reserved storage area.

When you process multiple QISAM data sets, you can use a common buffer
pool. To do this,however, you must use the BUILD macro instruction to
reformat the buffer pool before opening each data set.

BUILD-Construct a Buffer Pool

When you know, before program assembly, both the number and the size of the
buffers required for a given data set, you can reserve an area of appropriate size to
be used as a buffer pool. Any type of area can be used-for example, a
predefmed storage area or an area of coding no longer needed.

A BUILD macro, issued during execution of your program, structures the
reserved storage area into a buffer pool. The address of the buffer pool must be
the same as that specified for the buffer pool control block (BUFCB) in your
DCB. The buffer pool control block is an 8-byte fteld preceding the buffers in
the buffer pool. The number (BUFNO) and length (BUFL) of the buffers must
also be specified. The length of BUFL must be at least the block size.

120 MVSjXA Data Administration Guide

(.\.' J

(

(

~~~~~~~~~~~~~~.-----~------

When the data set using the buffer pool is closed, you can reuse the area as 
required. You can also reissue the BUILD macro to reconstruct the area into a 
new buffer pool to be used by another data set. 

You can assign the buffer pool to two or more data sets that require buffers of 
the same length. To do this, you must construct an area large enough to 
accommodate the total number of buffers required at anyone time during 
execution. That is, if each of two data sets requires 5 buffers (BUFNO = 5), the 
BUILD macro should specify 10 buffers. The area must also be large enough to 
contain the 8-byte buffer pool control block. 

BUILDRCD-Build a Buffer Pool and a Record Area 

The BUILDRCD macro, like the BUILD macro, causes a buffer pool to be 
constructed in an area of virtual storage you provide; In addition, BUILDRCD 
makes it possible for you to access variable-length, spanned records as complete 
logical records, rather than as segments. 

You must be processing with QSAM in the locate mode and you must be 
processing either VS/VBS or DS/DBS records, if you want to access the 
variable-length, spanned records as logical records. If you issue the BUILDRCD 
macro before the data set is opened, or during your DCB exit routine, you 
automatically get logical records rather than segments of spanned records. 

Only one logical record storage area is built, no matter how many buffers are 
specified; therefore, you can't share the buffer pool with other data sets that may 
be open at the same time. 

GETPOOL-Get a Buffer Pool 

If a specified area is not reserved for use as a buffer pool, or if you want to defer 
specifying the number and length of the buffers until execution of your program, 
you should use the GETPOOL macro instruction. It enables you to vary the 
size and number of buffers according to the needs of the data set being processed. 

The GETPOOL macro causes the system to allocate a virtual storage area to a 
buffer pool. The system builds a buffer pool control block and stores its address 
in the data set's DCB. The GETPOOL macro should be issued either before 
opening of the data set or during your DCB's OPEN exit routine. 

When using GETPOOL with QSAM, specify a buffer length (BUFL) at least as 
large as the block size. 

Automatic Buffer Pool Construction 

If you have requested a buffer pool and have not used an appropriate macro by 
the end of your DCB exit routine, the system automatically allocates virtual 
storage space for a buffer pool. The buffer pool control block is also assigned 
and the pool is associated with a specific DCB. For BSAM, a buffer pool is 
requested by specifying BUFNO. For QSAM, BUFNO can be specified or 
allowed to default to 5. If you are using the basic access technique to process an 
indexed sequential or direct data set, you must indicate dynamic buffer control. 
Otherwise, the system does not construct the buffer pool automatically. 

Chapter 9. Processing a Sequential Data Set 121 



Because a buffer pool obtained automatically is not freed automatically when you 
issue a CLOSE macro, you should also issue a FREEPOOL or FREEMAIN 
macro (discussed in the next section). 

FREEPOOL-Free a Buffer Pool 

Constructing a Buffer Pool 

BUILD 
OPEN 

ENDJOB CLOSE 

RETURN 
INDCB DCB 
OUTDCB DCB 
CNOP 0,8 
INPOOL DS 

Any buffer pool assigned to a DCB either automatically by the OPEN macro 
(except when dynamic buffer control is used) or explicitly by the GETPOOL 
macro should be released before your program is terminated. The FREEPOOL 
macro should be issued to release the virtual storage area as soon as the buffers 
are no longer needed. When you are using the queued access technique, you 
must close the data set flISt. If you are not using the queued access technique, it 
is still advisable to close the data set flIst. 

If the OPEN macro was issued while running under a protect key of zero, a 
buffer pool that was obtained by OPEN should be released by issuing the 
FREEMAIN macro instead of the FREEPOOL macro. This is necessary 
because the buffer pool acquired under these conditions will be in storage 
assigned to subpool 252. 

Figure 37 and Figure 38 on page 123 illustrate several possible methods of 
constructing a buffer pool. They do not consider the method of processing or 
controlling the buffers in the pool. 

In Figure 37, a static storage area named INPOOL is allocated during program 
assembly. The BUILD macro, issued during execution, arranges the buffer pool 
into 10 buffers, each 52 bytes long. Five buffers are assigned to INDCB and 5 to 
OUTDCB, as specified in the DCB macro for each. The two data sets share the 
buffer pool because both specify INPOOL as the buffer pool control block. 
Notice that an additional 8 bytes have been allocated for the buffer pool to 
contain the buffer pool control block. The 4-byte chain pointer that occupies the 
flIst 4 bytes of the buffer is included in the buffer, so no allowance need be made 
for this field. ' 

Processing 
INPOOL,10,52 Structure a buffer pool 
(INDCB"OUTDCB,(OUTPUT)) 

(INDCB"OUTDCB) 
Processing 

Processing 
, Return to system control 

BUFNO=5,BUFCB=INPOOL,EODAD=ENDJOB,--­
BUFNO=5,BUFCB=INPOOL,---

Force boundary alignment 
CL528 Buffer pool 

Figure 37. Constructing a Buffer Pool from a Static Storage Area 

In Figure 38 on page 123, twobufler pools are constructed explicitly by the 
GETPOOL macros. Ten input buffers are provided, each 52 bytes long, to 
contain one fixed-length record; 5 output buffers are provided, each 112 bytes 

122 MVS/XA Data Administration Guide 



ENDJOB 

INDCB 
OUTDCB 

GETPOOL 
GETPOOL 
OPEN 

CLOSE 
FREE POOL 

long, to contain 2 blocked records plus an 8-byte count field (required by ISAM). 
Notice that both data sets are closed before the buffer pools are released by the 
FREEPOOL macros. The same procedure should be used if the buffer pools 
were constructed automatically by the OPEN macro. 

INDCB,lO,52 Construct a lO-buffer pool 
OUTDCB,5,ll2 Construct a 5-buffer pool 
(INDCB"OUTDCB,(OUTPUT» 

(INDCB"OUTDCB) 
INDCB 

OUTDCB 

Release buffer pools after all 
I/O is complete 

FREE POOL 

RETURN 
DCB 

Return to system control 
DSORG=PS,BFALN=F,LRECL=52,RECFM=F,EODAD=ENDJOB,--­
DSORG=IS,BFALN=D,LRECL=52,KEYLEN=lO,BLKSIZE=104, 

RKP=O,RECFM=FB,---
DCB C 

Figure 38. Constructing a Buffer Pool Using GETPOOL and FREEPOOL 

Buffer Control 

Your program can use any of four techniques to control the buffers used by your 
program. The advantages of each depend to a great extent upon the type of job 
you are doing. Simple buffering is provided for the queued access technique. 
The basic access technique provides for either direct or dynamic buffer control. 

Although only simple buffering can be used to process an indexed sequential data 
set, buffer segments and buffers within a buffer pool are controlled automatically 
by the operating system. 

In addition, the queued access technique provides three processing modes that 
determine the extent of data movement in virtual storage. Move, data, and locate 
mode processing can be specified for either the GET or PUT macro. (Substitute 
mode is no longer supported; the system defaults to move mode.) The 
movement of a record is determined as follows: 

• Move mode- The record is moved from a system input buffer to your work 
area, or from your work area to an output buffer. 

• Data mode (QSAM Jormat-V spanned records onlyJ- The same as the move 
mode, except that only the data portion of the record is moved. 

• Locate mode- The record is not moved. Instead, the address of the next 
input or output buffer is placed in register 1. For QSAM format-V spanned 
records, if you have specified logical records by specifying BFTEK = A or by 
issuing the BUILDRCD macro, the address returned in register I points to a 
record area where the spanned record is assembled or segmented. 

The PUT-locate routine uses the value in the DCBLRECL field to determine 
whether another record will fit into your buffer. Therefore, when you write a 

Chapter 9. Processing a Sequential Data Set 123 



Simple Buffering 

--------.,._ .. _._--- - ---------

short record, you can maximize the number of records per block by 
modifying the DCBLRECL field before you issue a PUT-locate to get a 
buffer segment for the short record. The processing sequence follows: .. 

1. Register I is returned to you with the address of the next buffer segment. 

2. Move the record into the output buffer segment. 

3. Put the length of the next (short) record into DCBLRECL. 

4. Issue PUT-locate. 

5. Move the short record into the buffer segment. 

• Substitute mode- Move mode is used when substitute mode is requested in 
MVS/XA. 

Two processing modes of the PUTX macro can be used in conjunction with a 
GET-locate macro. The update mode returns an updated record to the data set 
from which it was read; the output mode transfers an updated record to an 
output data set. There is no actual movement of data in virtual storage. The 
processing mode is specified by the operand of the PUTX macro, as explained in 
Data Administration: Macro Instruction Reference. 

If you use the basic access technique, you can control buffers in one of two ways: 

• Directly, using the GETBUF macro to retrieve a buffer constructed as 
described above. A buffer can then be returned to the pool by the 
FREEBUF macro. 

• Dynamically, by requesting a dynamic buffer in your READ or WRITE 
macro. This technique can be used only when you are using BISAM or 
BDAM. If you request dynamic buffering, the system automatically provides 
a buffer each time a READ macro is issued. The buffer is supplied from a 
buffer pool that is created by the system when the data set is opened. The 
buffer is released (returned to the pool) upon completion of a WRITE macro 
instruction when you are updating. If you do not update the record in the 
buffer and thus release the buffer without writing the record, the 
FREEDBUF macro may be used. If you are processing an indexed 
sequential data set, the buffer is automatically released upon the next issuance 
of the READ macro instruction if there has been no intervening WRITE or 
FREEDBUF macro. 

The term simple buffering refers to the relationship of segments within the buffer. 
All segments in a simple buffer are together in storage and are always associated 
with the same data set. When the buffer pool is constructed, the system creates a 
channel command word (CCW) for each buffer in the buffer pool. For this 
reason, each record must be physically moved from an input buffer segment to an 
output buffer segment. It can be processed within either segment or in a work 
area. 

o 

,) 

124 MVSjXA Data Administration Guide 

--_._-----_. 



( 

( 

If you use simple buffering, records of any format can be processed. New records 
can be inserted and old records deleted as required to create a new data set. A 
record can be moved and processed as follows: 

• Processed in an input buffer and then moved to an output buffer 
(GET-locate, PUT-move/PUTX-output) 

\ 

• Moved from an input buffer to an output buffer where it can be processed 
(GET-move, PUT-locate) 

• Moved from an input buffer to a work area where it can be processed and 
then moved to an output buffer (GET -move, PUT -move) 

• Processed in an input buffer and returned to the same data set (GET-locate, 
PUTX-update) 

The following examples illustrate the control of simple buffers and the processing 
modes that can be used. The buffer pools may have been constructed in any way 
previously described. 

Simple BufTering-GET-locate, PUT-move/PUTX-output: The GET macro (step 
A, Figure 39 on page 126) locates the next input record to be processed. Its 
address is returned in register 1 by the system. The address is passed to the PUT 
macro in register O. 

The PUT macro (step B, Figure 39) specifies the address of the record in register 
O. The system then moves the record to the next output buffer. 

Note: The PUTX-output macro can be used in place of the PUT-move macro. 
However, processing will be as described under "Exchange Buffering" (see 
PUT-substitute). 

Simple BufTering-GET-move, PUT-locate: The PUT macro locates the address 
of the next available output buffer. Its address is returned in register 1 and is 
passed to the GET macro in register O. 

The GET macro specifies the address of the output buffer into which the system 
moves the next input record. 

A filled output buffer is not written until the next PUT macro instruction is 
issued. 

Simple BufTering-GET-move, PUT-move: The GET macro (step A, Figure 40 
on page 126) specifies the address of a work area into which the system moves 
the next record from the input buffer. 

Chapter 9. Processing a Sequential Data Set 125 



A OUTPUT OUTPUT 

B 

Figure 39. Simple Buffering with MACRF=GL and MACRF=PM 

A I OUTPUT I OUTPUT I 

B 

Figure 40. Simple Buffering with MACRF = GM and MACRF = PM 

The PUT macro (step B, Figure 40) specifies the address of a work area from 
which the system moves the record into the next output buffer. 

126 MVS;XA Data Administration Guide 



( 

( 

Simple ButTering-GET-locate, PUT-locate: The GET macro (step A, 
Figure 41) locates the address of the next available input buffer. The address is 
returned in register 1. 

GET 

A OUTPUT OUTPUT 

PUT 

B 

/ 
IOUTpUT OUTPUT 

c 

Figure 41. Simple Buffering with MACRF=GL and MACRF=PL 

The PUT macro (step B, Figure 41) locates the address of the next available 
output buffer. Its address is returned in register 1. You must then move the 
record from the input buffer to the output buffer (step C, Figure 41). Processing 
can be done either before or after the move operation. 

A filled output buffer is not written until the next PUT macro instruction is 
issued. The CLOSE and FEOV macros write the last record of your data set by 
issuing TRUNC and PUT macro instructions. Be careful not to issue an extra 
PUT before issuing CLOSE or FEOV. Otherwise, when the CLOSE or FEOV 
macro tries to write your last record, the extra PUT will write a meaningless 
record or produce a sequence error. 

Simple BujJering-UPDAT Mode: When a data set is opened with UPDAT 
specified (Figure 42 on page 128), only GET-locate and PUTX-update are 
supported. The GET macro locates the next input record to be processed and its 
address is returned in register 1 by the system. The user may update the record 
and issue a PUTX macro that will cause the block to be written back in its 
original location in the data set after all the logical records in that block have 
been processed. 

Chapter 9. Processing a Sequential Data Set 127 



Exchange Buffering 

GET 

INPUT/ 
OUTPUT 

PUTX 

INPUT/ 
OUTPUT 

(No movement of data takes place) 

Figure 42. Simple ButTering with MACRF=GL and MACRF=PM-UPDAT Mode. 

Exchange buffering is not supported in MVS/XA. Its request is ignored by the 
system arid move mode is used instead. 

Buffering Techniques and GET/PUT Processing Modes 

As you can see from the previous examples, the most efficient code is achieved by 
use of automatic buffer pool construction, and GET-locate and PUTX-output 
with simple buffering. Figure 43 summarizes the combinations of buffering 
techniques and processing modes that can be used . 

<II 
• <11 <II ... ... ro :> 

ro <II g 0 g :> 
~ 0 ;:: 

Input ;:: ~ I-
:::::> ... :::::> :::::> 

Buffering: --. ::l Q. Q. "C 
Q. Q. ... 

Simple oj oj oj oj ~8~ ... ... 
:> :> ro ro ~ e ~ 0 0 () g 
E ~ 

0 0- 0 

~ ;:: ;:: lB. 
Actions l- I- .-1-

w w w w w 8':::::> 

~ <!) <!) <!) <!) <!) :::::. Q. 

Program must move X X 
record 

System moves record X X X 

System moves record X 
segment 

Work area required X 

PUTX - output can X 
be used 

Figure 43. ButTering Technique and GET/PUT Processing Modes 

128 MVS;XA Data Administration Guide 



( RELSE-Release an Input ButTer 

( 

( 

When using the queued access technique to process a sequential or an indexed 
sequential data set, you can direct the system to ignore the remaining records in 
the input buffer being processed. The next GET macro retrieves a record from 
another buffer. If format-V spanned records are being used, the next logical 
record obtained may begin on any segment in any subsequent block. 

If you are using move mode, the buffer is made available for refilling as soon as 
the RELSE macro is issued. When you are using locate mode, the system does 
not refill the buffer until the next GET macro is issued. If a PUTX macro has 
been used, the block is written before the buffer is refilled. 

TRUNC-Truncate an Output ButTer 

When using the queued access technique to process a sequential data set, you can 
direct the system to write a short block. The first record in the next buffer is the 
next record processed by a PUT-output or PUTX-output mode. 

If the locate mode is being used, the system assumes that a record has been 
placed in the buffer segment pointed to by the last PUT macro. 

The last block of a data set is truncated by the close routine. Note that a data set 
containing format- F records with truncated blocks cannot be read from direct 
access storage as efficiently as a standard format-F data set. 

GETBUF-Get a ButTer from a Pool 

The GETB UF macro can be used with the basic access technique to request a 
buffer from a buffer pool constructed by the BUILD, GETPOOL, or OPEN 
macro. The address of the buffer is returned by the system in a register you 
specify when you issue the macro. If no buffer is available, the register contains a 
o instead of an address. 

FREEBUF-Return a ButTer to a Pool 

The FREEBUF macro is used with the basic access technique to return a buffer 
to the buffer pool from which it was obtained by a GETBUF macro. Although 
the buffers need not be returned in the order in which they were obtained, they 
must be returned when they are no longer needed. 

FREEDBUF-Return a Dynamic ButTer to a Pool 

Any buffer obtained through the dynamic buffer option must be released before it 
can be used again. When you are processing a direct data set, if you do not 
update the block in the buffer and thus need to free the buffer instead of writing 
the block, you must use the FREEDBUF macro. If there is an uncorrectable 
input/output error, the control program releases the buffer. When you are 
processing an indexed sequential data set, if you do not update the block in the 
buffer or, if there is an uncorrectable input error, the control program releases the 
buffer when the next READ macro is issued on the same DEeB, unless you use 
the FRjDBUF macro. 

f ,-

Chapter 9. Processing a Sequential Data Set 129 



To effect the release, you must specify the address of the DECB that was used 
when the block was read using the dynamic buffering option and the address of 
the DCB associated with the data set being processed. 

130 MVS/XA Data Administration Guide 

c 

o 



( 

, ' 

--- ~~------~--

Chapter 10. Processing a Partitioned Data Set 

ory Direct 
Record 5 

C~ 

I 
I 
I 

A partitioned data set is stored only on a direct access device. It is divided into 
sequentially organized members, each composed of one or more records (see 
Figure 44). Each member has a unique name, 1 to 8 characters long, stored in a 
directory that is part of the data set. The records of a given member are written 
or retrieved sequentially. 

: ~ : I ~ 
Entry for I Entry for I Entry for I Entry for I I 
Member A I Member B Member C I Member K I 

!.'J~r. ~: 

~ :~~'. IH 

1~11 IJ!;.'~} 

i 
-I-

:K 

:~ 

-I-

Space from 
Deleted 
Member 

Available 
Area 

Figure 44. A Partitioned Data Set 

The main advantage of using a partitioned data set is that, without searching the 
entire data set, you can retrieve any individual member after the data set is 
opened. For example, in a program library that is always a partitioned data set, 
each member is a separate program or subroutine. The individual members can 
be added or deleted as required. When a member is deleted, the member name is 
removed from the directory, but the space used by the member cannot be reused 
until the data set is reorganized; that is, compressed using the IEBCOPY utility. 

The directory, a series of 256-byte records at the beginning of the data set, 
contains an entry for each member. Each directory entry contains the member 
name and the starting location of the member within the data set, as shown in 
Figure 44. In addition, you can specify as many as 62 bytes of information in 
the entry. The directory entries are arranged by name in alphameric collating 
sequence. 

Chapter 10. Processing a Partitioned Data Set 131 



The starting location of each member is recorded by the system as a relative track 
address (from the beginning of the data set) rather than as an absolute track 
address. Thus, an entire data set that has been compressed, can be moved 
without changing the relative track addresses in the directory. The data set can 
be considered as one continuous set of tracks regardless of where the space was 
actually allocated. 

If there is not sufficient space available in the directory for an additional entry, or 
not enough space available within the data set for an additional member, or no 
room on the volume for additional extents, no new members can be stored. A 
directory can not be extended and a partitioned data set may not cross a volume 
boundary. 

Partitioned Data Set Directory 

Count •. ::::::::::.:.:.:.:.:.:.:.:.:.:. 
1111111111111!111!11111111!11111 

Bytes 

Key 
Name of 
Last 
Entry in 
Block 

~ 
8 

The directory of a partitioned data set occupies the beginning of the area 
allocated to the data set on a direct access volume. It is searched and maintained 
by the BLDL, FIND, and STOW macros. The directory consists of member 
entries arranged in ascending order according to the binary value of the member 
name or alias. 

Member entries vary in length and are blocked into 256-byte blocks. Each block 
contains as many complete entries as will fit in a maximum of 254 bytes; any 
remaining bytes are left unused and are ignored. Each directory block contains a 
2-byte count field that specifies the number of active bytes in a block (including 
the count field). As shown in Figure 45, each block is preceded by a 
hardware-dermed key field containing the name of the last member entry in the 
block, that is, the member name with the highest binary value. 

Data 
Number of 
Bytes Used 
(Maximum 

256) 

Member 
Entry A 

Member 
Entry B 

Member 
Entry N 

~~~----------------------~vr----------------------~/ 
2 2~

Figure 45. A Partitioned Data Set Directory Block

Each member entry contains a member name or an alias. Each entry also
contains the relative track address of the member and a count field, as shown in
Figure 46 on page 133. In addition, it may contain a user data field. The last
entry in the last directory block has a name field of maximum binary value-all
l's.

132 MVS/XA Data Administration' Guide

()

(

(

(

Member
Name

8

Pointer to
First Record
of Member

TTR

Bits

Optional User Da
C

I TTRN I I TTRN TTRN

----~ ta

~~~,~--------------~y----v-----------

................... 0-31 halfwords 
.................. (Maximum 62 bytes) 

~ --
......... 

......... 
......... 

---1 If Number of Number of User 
Name is an User Data Data Halfwords 

Alias TTRNs 

a 1-2 3-7 

Figure 46. A Partitioned Data Set Directory Entry 

NAME 

TTR 

c 

specifies the member name or alias. It contains as many as 8 alphameric 
characters, left-justified, and padded with blanks if necessary. 

is a pointer to the fIrst block of the member. TT is the number of the 
track, relative to the beginning of the data set, and R is the number of the 
block, relative to the beginning of that track. 

Note: This pointer is created by adding 1 to the TTR for the last block of 
the previous member (which is an end-of-ftle mark). If track TT is full, the 
next block will begin at record 1 of track IT + I, and the pointer will be 
updated accordingly_ The control program fmds the block by searching in 
multitrack mode using TT(R-l) as a search argument. 

specifies the number of half words contained in the user data field_ It may 
also contain additional information about the user data field, as shown 
below: 

Bits 

o 

1-2 

o 1-2 3-7 

when set to 1, indicates that the NAME field contains an alias. 

specifies the number of pointers to locations within the member. 

The operating system supports a maximum of three pointers in the 
user data field. Additional pointers may be contained in a record 
referred to as a note list, discussed below. The pointers can be 
updated automatically if the data set is moved or copied by a utility 
program such as IEHMOVE. The data set must be marked 
unmovable under the following conditions: 

Chapter 10. Processing a Partitioned Data Set 133 



• More than three pointers are used in the user data field. 

• The pointers in the user data field or note list do not conform to 
the standard format. 

Note: A note list for a partitioned data set containing variable 
length records does not conform to standard format. 

• Variable-length records contain BDWs and RDWs that are 
treated as TTRXs by IEHMOVE. 

• The pointers are not placed first in the user data field. 

• Any direct access address (absolute or relative) is embedded in 
any data blocks or in another data set that refers to this data set. 

3-7 contains a binary value indicating the number of half words of user 
data. This number must include the space used by pointers in the 
user data field. 

You can use the user data field to provide variable data as input to the STOW 
macro. If pointers to locations within the member are provided, they must be 4 
bytes long and placed first in the user data field. The user data field format is as 
follows: 

User Data 

TTRN TTRN TTRN Optional 

TT is the relative track address of the note list or area to which you are pointing. 

R is the relative block number on that track. 

N is a binary value that indicates the number of additional pointers contained 
in a note list pointed to by the TTR. If the pointer is not to a note list, 
N=O. 

A note list consists of additional pointers to blocks within the same member of a 
partitioned data set. You can divide a member into subgroups and store a 
p.ointer to the beginning of each subgroup in the note list. The member may be 
a load module containing many control sections (CSECTs), each CSECT being a 
subgroup pointed to by an entry in the note list. You get the pointer to the 
beginning of the subgroup by using the NOTE macro after you write the first 
record of the subgroup. Remember that the pointer to the first record of the 
member is stored in the directory entry by the system. 

If the existence of a note list was indicated as shown above, the list can be 
updated automatically when the data set is moved or copied by a utility program 
such as IEHMOVE. Each 4-byte entry in the note list has the following format: 

TTRX 

134 MVSjXA Data Administration Guide 

o 



(-

(-

TT is the relative track address of the area to which you are pointing. 

R. is the relative block number on that track. 

X is available for any use. 

To place the note list in the partitioned data set, you must use the WRITE 
macro. Mter checking the write operation, use the NOTE macro to determine 
the address of the list and place that address in the user data field of the directory 
entry. 

Note: The linkage editor builds a note list for the load modules in overlay 
format. The addresses in the note list point to the overlay segments that-are read 
into the system separately. 

Allocating Space for a Partitioned Data Set 

What is the average size of the members to be stored on your direct access 
volume? How many members will fit on the volume? Will you need directory 
entries for the member names only or will aliases be used? How many? Will 
members be added or replaced frequently? All these questions must be answered 
if you are, to estimate your space requirements accurately and use the space 
efficiently. Note, too, that a partitioned data set cannot extend beyond one 
volume. 

If your data set will be large, or if you expect to update it extensively, it might be 
best to allocate a full volume. If it will be small or seldom subject to change, you 
should make your estimate as accurate as possible to avoid wasted space or 
wasted time used for re-creating the data set. 

If the average member length is close to or less than the track length or if the 
track length exceeds 32760 bytes, the most efficient use of the direct access 
storage space may be made with a block size of 1/3 or 1/2 the track length. For 
example, BLKSIZE == 23200 for a 3380 disk will yield two blocks per track. You 
might then ask for either 75 tracks, or 5 cylinders, thus allowing for 3480000 
bytes of data. 

Each member in a data set and each alias need one directory entry apiece. If you 
expect to have 10 members (10 directory entries) and an average of 3 aliases for 
each member (30 directory entries), allocate space for at least 40 directory entries. 

Assuming an average length of 70000 bytes for each member, you need space for 
at least 50 directory entries. If each member also has an average of three aliases, 
space for an additional 150 directory entries is required. 

Space for the directory is expressed in 256-byte blocks. Each block contains from 
3 to 21 entries, depending on the length of the user data field. If you expect 200 
directory entries, request at least 40 blocks. Any unused space on the last track 
of the directory is wasted unless there is enough space left to contain a block of 
the first member. 

Chapter 10. Processing a Partitioned Data Set 135 



Either of the following space specifications would cause the same size allocation 
for a 3380 disk: 

SPACE=(CYL,(5"lO» 

SPACE=(TRK,(75"lO» 

The following example would result in allocation of 100 tracks for data, plus 1 
track for directory space: 

SPACE=(23200,(lOO"lO» 

Although a secondary allocation increment has been omitted in these examples, it 
could have been supplied to provide for extension of the member area. The 
directory size, however, cannot be extended. 

Creating a Partitioned Data Set 

//PDSDD DD 

If you have no need to add entries to the directory, that is, the STOW macro will 
not be used, you can create a new data set and write the fIrst member as follows 
(see Figure 47): 

• Code DSORG= PS or DSORG= PSU in the DCB macro. 

• Indicate in the DD statement that the data is to be stored as a member of a 
new partitioned data set, that is, DSNAME=name (membemame) and 
DISP=NEW. 

• Request space for the member and the directory in the DD statement. 

• Process the member with an OPEN macro, a series of PUT or WRITE 
macros, and then a CLOSE macro instruction. A STOW macro is issued 
automatically when the data set is closed. 

As a result of these steps, the data set and its directory are created, the records of 
the member are written, and a 12-byte entry is made in the directory. 

---,DSNAME=MASTFlLE(MEMBERK),SPACE=(TRK,(lOO,5,7», 
DISP=(NEW,CATLG),DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)---

OPEN (OUTDCB,(OUTPUT» 

PUT OUTDCB,OUTAREA Write record to member 

CLOSE (OUTDCB) . Automatic STOW 

OUTAREA DS 
OUTDCB DCB 

CL80 Area to write from 
---,DSORG=PS,DDNAME=PDSDD,MACRF=PM 

Figure 47. Creating One Member of a Partitioned Data Set 

136 MVSjXA Data Administration Guide 



( 

To add additional members to the data set, follow the same procedure. However, 
a separate DD statement (with the space request omitted) is required for each 
member. The disposition should be specified as modify, DISP= MOD. The 
data set must be closed and reopened each time a new member is specified on the 
DD statement. 

To take full advantage of the STOW macro, and thus the BLDL and FIND 
macros, in future processing, you can provide additional information with each 
directory entry. You do this by using the basic partitioned access technique, 
which also allows you to process more than one member without closing and 
reopening the data set, as follows (see Figure 48 on page 138). 

• Request space in the DD statement for the entire data set and the directory. 

• Defme DSORG= PO or DSORG= POU in the DCB macro. 

• Use WRITE and CHECK to write and check the member records. 

• Use NOTE to note the location of any note list written within the member, 
if there is a note list, or to noie the location of subgroups if there are any. 

• When all the member records have been written, issue a STOW macro 
instruction to enter the member name, its location pointer, and any 
additional data in the directory. The STOW macro writes an end-of-ftle 
mark after the member. 

• Continue to write, check, note, and stow until all the members of the data set 
and the directory entries have been written. 

Chapter 10. Processing a Partitioned Data Set I 37 



I / /PDSDD DD ---,DSN=MASTFILE,DISP=MOD,SPACE=(TRK,(100,5,7)) 

OPEN (OUTDCB,(OUTPUT)) 
LA STOWREG,STOWLIST Load address of STOW list 

** WRITE MEMBER RECORDS AND NOTE LIST 

MEMBER WRITE DECBX,SF,OUTDCB,OUTAREA WRITE first record of member 
CHECK DECBX 
LA NOTEREG,NOTELIST Load address of NOTE list 

* WRITE DECBY,SF,OUTDCB,OUTAREA WRITE and CHECK next record 
CHECK DECBY 

* NOTE OUTDCB To divide the member into subgroups, 
ST R1,O(NOTEREG) NOTE the TTRN of the first record in 

* the subgroup, storing it in the 
* NOTE list. 

LA NOTEREG,4(NOTEREG) Increment to next NOTE list entry 

WRITE DECBZ,SF,OUTDCB,NOTELIST WRITE NOTE list record at the 
* end of the member 

CHECK DECBZ 
NOTE OUTDCB NOTE TTRN of NOTE list record 

Store TTRN in STOW list ST Rl,1.2(STOWREG) 
STOW OUTDCB,(STOWREG),A Enter the information in directory 

for this member after all records 
and NOTE lists are written. * 

* LA STOWREG,16(STOWREG) Increment to the next STOW list entry 

* 
Repeat from label "MEMBER" for each additional member 

* 
CLOSE (OUTDCB) (NO automatic STOW) 

OUTAREA DS 
OUTDCB DCB 
R1 EQU 
NOTE REG EQU 
NOTELIST DS 

DS 
DS 

STOWREG EQU 
STOWLIST DS 

DC 
DS 
DC 
DS 

CLBO Area to write from 
---,DSORG=PO,DDNAME=PDSDD,MACRF=W 
1 Register one, return register from NOTE 
4 Register to address NOTE list 
OF NOTE list 
F NOTE list entry (4 byte TTRN) 
19F one entry per subgroup 
5 Register to address STOW list 
OF List of member names for STOW 
CLB'MEMBERA' Name of member 
CL3 TTR of first record (created by STOW) 
X'23' C byte, 1 user TTRN, 4 bytes of user data 
CL4 TTRN of NOTE list 

one list entry per member (16 bytes each) 

Figure 48. Creating Members of a Partitioned Data Set Using STOW 

138 MVSjXA Data Administration Guide 

c·····.\ . , 



(-

! ( 

----------.----.--~~----- -----------

Processing a Member of a Partitioned Data Set 

Because a member of a partitioned data set is sequentially organized, it is 
processed in the same manner as a sequential data set. Either the basic or 
queued access technique can be used. However, you cannot alter the directory 
when using the queued technique. 

To locate a member or to process the directory, several macros are provided by 
the operating system. The BLDL macro can be used to read one or more 
directory entries into virtual storage; the FIND macro locates a member of the 
data set and positions the DCB for subsequent processing; the STOW macro 
adds, deletes, replaces, or changes a member name in the directory. To use these 
macros, you must specify DSORG= PO or POU in the DCB macro. Before 
issuing FIND, BLDL, or STOW macro, you must check all preceding 
input/output operations for completion. 

BLDL-Construct a Directory Entry List 

The BLDL macro reads one or more directory entries into virtual storage. The 
member names are placed in a BLDL list that is constructed before the BLDL 
macro is issued. For each member name in the list, the system supplies the 
address of the member and any additional information contained in the directory 
entry. Note that, if there is more than one member name in the list, the member 
names must be in collating sequence, regardless of whether the members are from 
the same library or from different libraries. 

You can optimize retrieval time by directing a subsequent FIND macro 
instruction to the BLDL list rather than to the directory to locate the member to 
be processed. 

The BLDL list, as shown in Figure 49 on page 140, must be preceded by a 
4-byte list description that indicates the number of entries in the list and the 
length of each entry (12 to 76 bytes). The ftrst 8 bytes of each entry contain the 
member name or alias. The next 6 bytes contain the TTR, K, Z, and C ftelds. 
If there is no user data entry, only the TTR and C ftelds are required. If 
additional information is to be supplied from the directory, as many as 62 bytes 
can be reserved. 

FIND-Position to a Member 

To determine the starting address of a specillc member, you must issue a FIND 
macro. The system places the correct address in the data control block so that a 
subsequent input or output operation begins processing at that point. 

There are two ways you can direct the system to the right member when you use 
the FIND macro. Specify the address of an area containing the name of the 
member or specify the address of the TTR fteld of the entry in a BLDL list you 
have created by using the BLDL macro. In the ftrst case, the system searches the 
directory of the data set for the relative track address; in the second case, no 
search is required, because the relative track address is in the BLDL list entry. 

Chapter 10. Processing a Partitioned Data Set 139 



List 
Description FFLL I 

Member 
Name (C) 

(Each entry starts on halfword boundary) 

Filled in by BLDL 
; " 

TTR K Z C 
(3) (1 ) (1 ) (1) 

~ 

, -, , 
User Data 

(C Halfwords) 

l) 
~ 

Programmer supplies: 
FF Number of member entries in list. 
LL Even number giving byte length of each entry (minimum of 12). 

Member name Eight bytes, left-justified. 

'~B.LDL supplies: 
\ TTR Member starting location. 
\ K If single data set = O. If concatenation = number. 

Not required if no user data. 
Z Source of directory entry. Private library = O. 

Link library = 1. Job or step library = 2. 
Not required if no user data. 

C Sanae C field from directory. Gives number of user data halfwords. 
User data As much as will fit in entry. 

Figure 49. BLDL List Format 

\ 

The system will also search a concatenated series of directories when (l) a DCB 
is supplied that is opened for a concatenated partitioned data set or (2) a DCB is 
not supplied, in which case either JOBLIB or STEPLIB (themselves perhaps 
concatenated) followed by LINKLIB is searched. 

If you want to process only one member, you can process it as a sequential data 
set (DSORG= PS) using either BSAM or QSAM. You indicate the name of the 
member you want to process and the name of the partitioned data set in the 
DSNAME parameter of the DO statement. When you open the data set, the 
system places the starting address in the data control block so that a subsequent 
GET or READ macro begins processing at that point. You cannot use the 
FIND, BLDL, or STOW macro when you are processing one member as a 
sequential data set. 

Because the DCBRELAD address in the data control block is updated when the 
FIND macro is used, you should not issue the FIND macro after WRITE and 
STOW processing without fIrst closing the data set and reopening it for INPUT 
processing. 

140 \ MVS/XA Data Administration Guide 
\ 
\ 

\ 

o 



( 
STOW-Update the Directory 

When you add more than one member to a partitioned data set, you must issue a 
STOW macro after writing each member so that an entry for each one will be 
added to the directory. To use the STOW macro, DSORG= PO or POU must 
be specified in the DCB macro. 

You can also use the STOW macro to delete, replace, or change a member name 
in the directory and store additional information with the directory entry. 
Because an alias can also be stored in the directory the same way, you should be 
consistent in altering all names associated with a given member. For example, if 
you replace a member, you must delete related alias entries or change them so 
that they point to the new member. An alias cannot be stored in the directory 
unless the member is present. 

If you add only one member to a partitioned data set and indicate the member 
name in the DSNAME parameter of the DD statement, it is not necessary for 
you to use BPAM and a STOW macro in your program. If you want to do so, 
you may use BPAM and STOW, or BSAM or QSAM. If you use a sequential 
access method, or if you use BPAM and issue a CLOSE macro without issuing a 
STOW macro, the system will issue a STOW macro instruction using the 
member name you have specified on the DD statement. When the system issues 
the STOW, the directory entry that is added is the minimum length (12 bytes). 
This automatic STOW macro will not be issued if the CLOSE macro is a 
TYPE = T or if the TCB indicates the task is being abnormally terminated when 
the DCB is being closed. The DISP parameter on the DD statement determines 
what directory action parameter will be chosen by the system for the STOW 
macro. 

If DISP = NEW or MOD was specified, a STOW macro with the add option will 
be issued. If the member name on the DD statement is not present in the data 
set directory, it will be added. If the member name is already present in the 
directory, the task will be abnormally terminated. 

If DISP = OLD was specified, a STOW macro with the replace option will be 
issued. The member name will be inserted into the directory, either as an 
addition, if the name is not already present, or as a replacement, if the name is 
present. 

Thus, with an existing data set, you should use DISP = OLD to force a member 
into the data set; you should use DISP= MOD to add members with protection 
against the accidental destruction of an existing member. 

Retrieving a Member of a Partitioned Data Set 

To retrieve a specific member from a partitioned data set, either the basic or the 
queued access technique can be used as follows (see Figure 50 on page 142): 

• Code DSORG=PS or DSORG=PSU in the DCB macro. 

Chapter 10. Processing a Partitioned Data Set 141 



• Indicate in the DD statement that the data is a member of an existing 
partitioned data set by coding DSNAME = name(membemame) and 
DISP=OLD. 

• Process the member with an OPEN macro, a series of GET and READ 
macros, and then a CLOSE macro instruction. 

//PDSDD DD ---,DSN=MASTFILE(MEMBERK),DISP=OLD 

INAREA 
INDCB 

OPEN (INDCB) 

GET INDCB,INAREA 

CLOSE (INDCB) 

Open for input, automatic FIND 

Read member record 

DS 
DCB 

CLBO Area to read into 
---,DSORG=PS,DDNAME=PDSDD,MACRF=GM 

Figure 50. Retrieving One Member of a Partitioned Data Set 

r. When your program is executed, the directory is searched automatically and the 
location of the member is placed in the DeB. 

To process several members without closing and reopening, or to take advantage 
of additional data in the directory, this technique should be used (see Figure 51): 

• Code DSORG= PO or POU in the DCB macro. 

• Indicate in the DD statement the data set name of the partitioned data set by 
coding DSNAME = name and DISP=OLD. 

• Issue the BLDL macro to get the list of member entries you need from the 
directory. 

• Use the FIND or POINT macro to prepare for reading the member records. 

• The records may be read from the beginning of the member, or a note list 
may be read fIrst, to obtain additional locations that point to subcategories 
within the member. 

• Read (and check) the records until all those required have been processed. 

• Point to additional categories, if required, and read the records. 

• Your end-of-data-set (EO DAD) routine receives control at the end of each 
member. At that time, you can process the next member or close the data 
set. 

• Repeat this procedure for each member to be retrieved. 

142 MVSjXA Data Administration Guide 

.t,: \ C· """ ::. ") 



(-

(-

(:' 

.. - --------~-- -.----- .. ~----

//PDSDD DD ---,DSN=MASTFILE,DISP=OLD 

OPEN (INDCB) Open for input, no automatic FINO 

LA BLDLREG,BLDLLIST Load address of BLDL list 
BLDL INDCB,BLDLLIST Build a list of selected member 

* names in virtual storage 
LA BLDLREG,4(BLDLREG) Point to the first entry 

Read the NOTE list 

MEMBER LA NOTEREG,NOTELIST Load address of NOTE list 
MVC TTRN(4), l4(BLDLREG) Move NOTE list TI'RN 

* to fullword boundary 
POINT INDCB,TI'RN Point to the NOTE list record 
READ DECBX,SF,INDCB,(NOTEREG) Read the NOTE list 
CHECK DECBX . 

Read data from a subgroup 

SUBGROUP POINT INDCB,(NOTEREG) Point to subgroup. 
READ DECBY,SF,INDCB,INAREA Read record in subgroup 
CHECK DECBY 
LA NOTEREG,4(NOTEREG) Increment to next subgroup TI'RN 

Repeat from label "SUBGROUP" for each additional subgroup 
Repeat from label "MEMBER" for each ~~itional ~ember 

CLOSE (INDCB) 

I NARE A DS 
INDCB DCB 
TTRN DS 
NOTEREG EQU 
NOTELIST DS 

DS 
DS 

BLDLREG EQU 
BLDLLIST DS 

DC 
DC 
DC 
DS 
DS 
DS 
DS 
DS 

CL80 
- - - , DSORG=PO , DDNAME=PDSDD ~- MACRF=R 
F TTRN of the NOTE list to point at 
4 Register to-address NOTE list entries 
OF NOTE list ' 
F NOTE list entry (4 byte TI'RN) 
19F one entry per subgroup 
5 Register to address BLDL list entries 
OF List of member names for BLDL 
H'lO' Number of entries (10 for example) 
H'18' Number of bytes per entry 
CL8'MEMBERA' Name of member . 
CL3 TTR of first record (cre4ted by BLDL) 
X K byte, concatenation number . 
X Z byte, location code 
X C byte, flag and user data length 
CL4 TTRN of NOTE list 

one list entry per member (18 bytes each) 

Figure 51. Retrieving Several Members and Subgroups of a Partitioned Data Set 

., 
" 

Chapter 10. Processing a Partitioned Data Set 143 



Modifying a Partitioned Data Set 

Updating a Member of a Partitioned Data Set 

Updating in Place 

A member of a partitioned data set can be updated in place, or it can be deleted 
and rewritten as a new member. 

When you update in place, you read records, process them, and write them back 
to their original positions without destroying the remaining records on the track. 
The following rules apply: 

• You must specify the update option (UPDAT) in the OPEN macro 
instruction. To perform the update, you can use only the READ, WRITE, 
CHECK, NOTE, POINT, FIND, and BLDL macros. 

• You cannot update concatenated partitioned data sets. 

• You cannot use chained scheduling. 

• You cannot delete any record or change its length; you cannot add new 
records. 

A record must be retrieved by a READ macro before it can be updated by a 
WRITE macro. Both macros must be execute forms that refer to the same 
DECB; the DECB must be provided by a list form. (The execute and list forms 
of the READ and WRITE macros are described in Data Administration: Macro 
Instruction Reference.) 

Updating with QSAM: You can update a member of a partitioned data set using 
the locate mode of QSAM (DCB specifies MACRF = PL) and using the PUTX 
macro. The DD statement must specify the dataset and member name in the 
DSNAME parameter. This method allows only the updating of the member 
specified in the DD statement. 

Updating with Over/appe(lOperations: To overlap input/output and processor 
activity, you can start several read or write operations before checking th~ flrst for 
completion. You cannot overlap read and write operations, however, as 
operations of one type must be checked for completion before operations of the 
other type are started or resumed. Note that each outstanding read or write 
operation requires a separate channel program and a separate DECB. If a single 
DECB were used for successive read operations, only the last record read could 
be updated. 

In Figure 52 on page 145, overlap is achieved by having a read or write request 
outstanding while ~ach record is being processed. Note the use of the execute 
and list forms of the READ and WRITE macros, identified by the operands 
MF=Eand MF=L. 

144 MVSjXA Data Administration Guide 



( 

( 

jjPDSDD DD 

UPDATDCB DCB 
READ 
READ 

AREAA DS 
AREAB DS 

OPEN 
LA 
LA 

READRECD READ 
NEXTRECD READ 

CHECK 

---~~----~-~-----------~ 

DSNAME=MASTFILE(MEMBERK),DISP=OLD,--­

DSORG=PS,DDNAME=PDSDD,MACRF=(R,W),NCP=2,EODAD=FINISH 
DECBA,SF,UPDATDCB,AREAA,MF=L Define DECBA 
DECBB, SF,UPDATDCB , AREAB , MF=L Define DECBB 

Define buffers 

(UPDATDCB,UPDAT) 
2,DECBA 
3,DECBB 
(2),SF,MF=E 
(3),SF,MF=E 
(2) 

Open for update 
Load DECB addresses 

Read a record 
Read the next record 
Check previous read operation 

(If update is required, branch to R2UPDATE) 

LR 
LR 
LR 
B 

4,3 
3,2 
2,4 
NEXTRECD 

If no update is required, 
switch DECB addresses in 
registers 2 and 3 
and loop 

In the following statements, 'R2' and 'R3' refer to the records that were read using the DECBs whose 
addresses are in registers 2 and 3, respectively. Either register may point to either DECBA or DECBB. 

R2UPDATE CALL 
CHECK 
WRITE 

UPDATE, « 2» 
(3) 
(2) , SF, MF=E _ 

Call routine to update R2 
Check read for next record 
(R3) Write updated R2 

(If R3 requires an update, branch to R3UPDATE) 

CHECK (2) If R3 requires no update, 
B READRECD check write for R2 and loop 

R3UPDATE CALL UPDATE, «3» Call routine to update R3 
WRITE (3),SF,MF=E Write updated R3 
CHECK (2) Check write for R2 
CHECK (3) Check write for R3 
B READRECD Loop 

FINISH CLOSE (UPDATDCB) End-of-Data exit routine 

Figure 52. Updating a Member of a Partitioned Data Set 

Rewriting a Member 

There is no actual update option that can be used to add or extend records in a 
partitioned data set. If you want to extend or add a record within a member, you 
must rewrite the complete member in another area of the data set. Because space 
is allocated when the data set is created, there is no need to request additional 
space. Note, however, that a partitioned data set must be contained on one 
volume. If sufficient space has not been allocated, the data set must be 
reorganized by the IEBCOPY utility program. 

When you rewrite the member, you must provide two DCBs, one for input and 
one for output. Both DCB macros can refer to the same data set, that is, only 
one DD statement is required. 

Chapter 10. Processing a Partitioned Data Set 145 



You can reflect the change in location of the member either automatically, by 
indicating a disposition of OLD, or by using the STOW macro. Although the 
old member is, in effect, deleted, its space cannot be reused until the data set is 
reorganized. 

If an out-of-space condition occurs when updating a PDS member, the error 
recovery procedure will STOW the PDS'member as 'TEMPNAME'. The 
original member will remain intact. 

Processing a Partitioned Data Set Residing onMSS 

If OPTCD = H is specified in the DCB subparameter of a DO statement, it 
specifies that, if a partitioned data set is being opened for input and resides on an 
MSS device, then at OPEN time the data set is staged to EOF on the virtual 
DASD device. If the option is not specified, only the directory is staged at 
OPEN time and cylinder faults'occur during processing. This option might be 
used with the IEBCOPY utility program opening the PDS to reorganize and 
compress the data space. This BPAM option, OPTCD= H, may only be coded 
on the DO statement. 

Concatenating Partitioned Data Sets 

Two or more partitioned data sets can be automatically retrieved by the system 
and processed successively as a single data set. This reading technique is known 
as concatenation. Data sets with like characteristics are those that may be 
processed correctly using the same data control block (DCB), input/output block 
(lOB), and channel program. An)' exception makes them unlike. 

Partitioned Concatenation 

When partitioned data sets are concatenated, the system treats the group as a 
single data set and only one data extent block (DEB) is constructed. The 
maximum number of partitioned data sets that can be concatenated is 123 extents 
(input data sets only). For example, 123 single extent data sets can be 
concatenated but 8 data sets each with 16 extents cannot be concatenated. 

Concatenated partitioned data sets are always treated as having like attributes and 
use the attributes of the first data set only. 

You process a concatenation of partitioned data sets the same way you process a 
single partitioned data set with one exception: you must use the FIND macro to 
begin processing a member; you cannot use the POINT (or NOTE) macro until 
after the FIND macro has been issued. Figure 51 on page 143 shows how to 
process a 'single partitioned data set using FIND. If two members of different 
data sets in the concatenation have the same name, the FIND macro determines 
the address of the first one in the concatenation. You would not be able to 
process the second one ip. the concatenation. The BLDL macro provides the 

/ "\ 
, 

j 

concatenation number of the data set to which the member belongs in the K field c" ",\ 
Qf the BLDL list. (See "BLDL-Construct a Directory Entry List" on . , 
page 139.) 

146 MVSjXA Data Administration Guide 



Reading a BP AM Directory Sequentially 

You can read a BPAM directory sequentially just by opening the data set to its 
beginning (without using positioning macros) and reading it. 

• The DD statement should identify the DSNAME without a member name. 
You should specify a disposition option of either OLD or SHR. 

• You can use either BSAM or QSAM with MACRF = R or G; 

• Specify BLKSIZE = 256 and RECFM = F. 

• You must test for the last directory entry (X'FFFFFFFF'). 

• If you also want to read the keys (the name of the last member in that 
block), use BSAM and specify KEYLEN = 8. 

Chapter 10. Processing a Partitioned Data Set 147 





( 

Chapter 11. Processing a Direct Data Set 

In a direct data set, there is a relationship between a control number or 
identification of each record and its location on the direct access volume. This 
relationship allows you to gain access to a record without an index search. You 
determine the actual organization of the data set. If the data set has been 
carefully organized, location of a particular record takes less time than with an 
indexed sequential data set. 

The DSO RG parameter of the DCB macro specifies the type of processing to be 
performed; DSORG in the DD statement specifies the organization of the data 
set when it is created. 

Although you can process a direct data set sequentially using either the queued 
access technique or the basic access technique, you cannot read record keys using 
the queued access technique. When you use the basic access technique, each unit 
of data transmitted between virtual storage and an I/O device is regarded by the 
system as a record. If, in fact, it is a block, you must perform any blocking or 
deblocking required. For that reason, the LRECL field is not used when 
processing a direct data set. Only BLKSIZE must be specified when you read, 
add, or update records on a direct data set. 

If dynamic buffering is specified for your direct data set, the system will provide a 
buffer for your records. If dynamic buffering is not specified, you must provide a 
buffer for the system to use. 

As indicated in the discussion of direct access devices, record keys are optional. If 
they are specified, they must be used for every record and must be of a fixed 
length. 

Direct Data Set Organization 

In developing the organization of your data set, you can use direct addressing. 
When direct addresses are used, the location of each record in the data set is 
known. 

If format-F records with keys are being written, the key of each record can be 
used to identify the record. For example, a data set with keys ranging from 0 to 
4999 should be allocated space for 5000 records. Each key relates directly to a 
location that you can refer to as a relative record number. Therefore, each record 
should be assigned a unique key. If identical keys are used, it is possible, during 
periods of high processor and channel activity, to skip the desired record and 
retrieve the next record on the track. The main disadvantage of this type of 

Chapter 11. Processing a Direct Data Set 149 



organization is that records may not exist for many of the keys even though space (.',' ~~. 
has been reserved for them. j 

Space could be allocated on the basis of the number of records in the data set 
rather than on the range of keys. This type of organization requires the use of a 
cross-reference table. When a record is written in the data set, you must note the 
physical location as a relative block number, an actual address, or as a relative 
track and record number. The addresses must then be stored in a table that is 
searched when a record is to be retrieved. Disadvantages are that 
cross-referencing can be used efficiently only with a small data set, storage is 
required for the table, and processing time is required for searching and updating 
the table. 

A more common, but somewhat complex, technique for organizing the data set 
involves the use of indirect addressing. In indirect addressing, the address of each 
record in the data set is determined by a mathematical manipulation of the key. 
This manipulation is referred to as randomizing or conversion. Because a 
number of randomizing procedures could be used, no attempt is made here to 
describe or explain those that might be most appropriate for your data set. 

Creating a Direct Data Set 

Mter the organization of a direct data set has been determined, the process of 
creating it is almost identical to that of creating a sequential data set. The BSAM 
DCB macro should be used with the WRITE macro instruction (the form used 
to create a direct data set). The following parameters must be specified in the 
DCB macro instruction: 

• DSORG= PS or PSU 

• DEVD = DA or omitted 

• MACRF=WL 

The DD statement must indicate direct access (DSORG = DA or DAU). If keys 
are used, a key length (KEYLEN) must also be specified. Record length 
(LRECL) need not be specified but may be used to provide compatibility with 
sequential access method processing of this data set. 

It is possible to create a direct data set using QSAM (no keys allowed) or BSAM 
(with or without keys and the DCB specifies MACRF = W). However, this 
method is not recommended because, when you access this direct data set, you 
cannot request a function that requires the information in the capacity record 
(RO) data field. For example, the following restrictions would apply: 

• Variable-length, undefmed-Iength, or variable-length spanned record 
processing is not allowed. 

• The WRITE add function with extended search for fixed-length records (with 
or without track overflow) is not allowed. 

150 MVS/XA Data Administration Guide 

,/ " \, 



( 

If a VIO data set is opened for processing with the extended search option, the 
DEBENDCC and DEBENDHH fields of the DEB will reflect the real address of 
the last record written during the BDAM create step. This prevents BDAM from 
searching unused tracks. The information needed to determine the data set size is 
written in the DSCB during the close of the DCB used in the create step. 
Therefore, if this data set is being created and processed by the same program, 
and the DCB used for creating the data set has not been closed before opening 
the DCB to be used for processing, the resultant beginning and ending CCHH 
will be equal. 

If a direct data set is created and updated or read within the same job step, and 
the 0 PTCD parameter is used in the creation, updating, or reading of the data 
set, different DCBs and DD statements should be used. 

If you are using direct addressing with keys, you can reserve space for future 
fOlmat-F records by writing a dummy record. To reserve or truncate a track for 
fonnat-V, format-V, or format-VS records, write a capacity record. The capacity 
record (RO) contains a 7-byte data field (CCHHRLL), where CCHHR is the ID 
of the last record on the track, and LL is the number of unused bytes on the 
track. If a WRITE SZ macro is issued for a track with no records, R is zero and 
LL is the entire length of the track. 

Format-F records are written sequentially as they are presented. When a track is 
filled, the system automatically writes the capacity record and advances to the 
next track. Because of the form in which relative track addresses are recorded, 
direct data sets whose records are to be identified by means other than actual 
address must be limited in size to no more than 65 536 tracks for the entire data 
set. 

Tape-to-Disk-Direct Data Set: In the example problem in Figure 53 on 
page 152, a tape containing 204-byte records arranged in key sequence is used to 
create a direct data set. A 4-byte binary key for each record ranges from 1000 to 
8999, so space for 8000 records is requested. 

Chapter 11. Processing a Direct Data Set 151 



------.-----~-------

IIDAOUTPUT DD 
II 

DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA, 
BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),---

C 

IITAPINPUT DD 

DIRECT 

NEXTREC 

COMPARE 

* 

DUMMY 

I NPUTEND 

ENDJOB 

DUMAREA 
DALOAD 

TAPEDCB 

START 

L 
OPEN 
LA 
GET 
LR 
C 

BNE 
WRITE 
CHECK 
AH 
B 
C 
BH 
WRITE 
CHECK 
AH 
BR 
LA 
BR 
CLOSE 

DS 
DCB 

DCB 

9,=F'1000' 
(DALOAD,(OUTPUT),TAPEDCB) 
10, COMPARE 
TAPEDCB 
2,1 
9,0(2) Compare key of input against 

control number 
DUMMY 
DECB1,SF,DALOAD,(2) Write data record 
DECB1 
9,=H'1' 
NEXTREC 
9,=F'8999' Have 8000 records been written? 
ENDJOB 
DECB2,SD,DALOAD,DUMAREA Write dummy 
DECB2 
9,=H'1' 
10 
10,DUMMY 
10 
(TAPEDCB"DALOAD) 

8F 
DSORG=PS,MACRF=(WL),DDNAME=DAOUTPUT, 
DEVD=DA,SYNAD=CHECKER,--­
EODAD=INPUTEND,MACRF=(GL), 

C 

Figure 53. Creating a Direct Data Set 

Referring to a Record in a Direct Data Set 

Mter you have determined how your data set is to be organized, you must 
consider how the individual records will be referred to when the data set is 
updated or new records are added. The record identification can be represented 
in any of the following forms: 

Relative Block Address: You specify the relative location of the record (block) 
within the data set as a 3-byte binary number. This type of reference can be used 
only with format-F records. The system computes the actual track and record 
number. The relative block address of the frrst block is o. 

Relative Track Address: You specify the relative track as a 2-byte binary 
number and the actual record number on that track as a.I-byte binary number. 
The relative track address of the frrst track is o. 

152 MVS/XA Data Administration Guide 



Relative. Track or Block Address and Actual Key: In addition to the relative 
track or block address, you specify the address of a virtual storage location 
containing the record key. The system computes the actual track address and 
searches for the record with the correct key. 

Actual Address: You supply the actual address in the standard 8-byte 
form-MBBCCHHR. Remember that the use of an actual address may force 
you to indicate that the data set is unmovable. 

Extended Search: You request that the system begin its search with a specified 
starting location and continue for a certain number of records or tracks. This 
same option can be used to request a search for unused space where a record can 
be added. 

To use the extended search option, you must indicate in the DCB (DCBLIMCT) 
the number of tracks (including the starting track) or records (including the 
starting record) that are to be searched. If you indicate a number of records, the 
system may actually examine more than this number. In searching a track, the 
system searches the whole track (starting with the flIst record); it therefore may 
examine records that precede the starting record or follow the ending record. 

If the DCB specifies a number equal to or greater than the number of tracks 
allocated to the data set or the number of records within the data set, the entire 
data set is searched in the attempt to satisfy your request. 

Exclusive Controlfor Updating: When more than one task is referring to the 
same data set, exclusive control of the block being updated is required to prevent 
simultaneous reference to the same record. Rather than issuing an ENQ macro 
each time you update a block, you can request exclusive control through the 
MACRF field of the DCB and the type operand of the READ macro. The 
coding example in Figure 55 on page 156 illustrates the use of exclusive control. 
Mter the READ macro is executed, your task has exclusive control of the block 
being updated. No other task in the system requesting access to the block is 
given access until the operation started by your WRITE macro is complete. If, 
however, the block is not to be written, you can release exclusive control using 
the RELEX macro. 

Feedback Option: . This option specifies that the system is to provide the address 
of the record requested by a.READ or WRITE macro. This address may be in 
the same form that was presented to the system in the READ or WRITE macro, 
or as an 8-byte actual address. This option can be specified in the OPTCD 
parameter of the DCB and in the READ or WRITE macro. If this option is 
omitted from the DCB but is requested in a READ or WRITE macro, an 8-byte 
actual address is returned to the user. 

The feedback option is automatically provided for a READ macro instruction 
requesting exclusive control for updating. This feedback will be in the form of an 
actual address (MBBCCHHR) unless feedback was specified in the OPTCD field 
of the DCB. In this case, feedback is returned in the format of the addressing 
scheme used in the problem program (an actual or a relative address). When a 
WRITE or RELEX macro is issued (which releases the exclusive control that 
was gotten for the READ request), the system will assume that the addressing 
scheme used for the WRITE or RELEX macro is in the same format as the 
addressing scheme used for feedback in the READ macro. 

Chapter 11. Processing a Direct Data Set 153 



Adding or Updating Records on a Direct Data Set 

The techniques for adding records to a direct data set depend on the format of 
the records and the organization used. 

Format-F With Keys: Adding a record amounts to essentially an update by 
record identification. The reference to the record can be made by either a relative 
block address or a relative track address. 

If you want to add a record passing a relative block address, the system converts 
the address to an actual track address. That track is searched for a dummy 
record, and if one is found the new record is written,in place of it. If there is no 
dummy record on the track, you are informed that the write operation did not 
take place. If you request the extended search option, the new record will be 
written in place of the flIst dummy record found within the search limits you 
specify. If none is found, you are notified that the write operation could not take 
place .. In the same way, a reference by relative track address causes the record to 
be written in place of a dummy record on the referenced track or the flIst within 
the search limits, if requested. If extended search is used, the search begins with 
the flIst record on the track. Without extended search, the search may start at 
any record on the track. Therefore, records that were added to a track are not 
necessarily located on the track in the same sequence they were written in. 

Format-F Without Keys: Here too, adding a record is really updating a dummy 

c 

record already in the data set. The main difference is that dummy records cannot / 
be written automatically when the data set is created. You will have to use your 
own method for flagging dummy records. The update form of the WRITE 
macro (MACRF = W) must be used rather than the add form (MACRF = W A). 

You will have to retrieve the record flIst (using a READ macro instruction), test 
for a dummy record, update, and write. 

Format-V or Format-U With Keys: The technique used to add records in this 
case depends on whether records are located by indirect addressing or a 
cross-reference table. If indirect addressing is used, you must at least initialize 
each track (write a capacity record) even if no data is actually written. That way 
the capacity record indicates how much space is available on the track. If a 
cross-reference table is used, you should exhaust the input and then initialize 
enough succeeding tracks to contain any additions that might be required. 

To add a new record, use a relative track address. The system examines the 
capacity record to see if there is room on the track. If there is, the new record is 
written. Under the extended search option, the record is written in the fIrst 
available area within the search limit. 

Format-V or Format-U Without Keys: Because a record of this type does not 
have a key, you can access the record only by its relative track or actual address 
(direct addressing only). When you add a record to this data set, you must retain 
the relative track or actual address data (for example, by updating your 
cross-reference table). The extended search option is not allowed because it ,( '\ 
requires keys. V 

154 MVSjXA Data Administration Guide 



( 

( 

//DIRADD DD 
//TAPEDD DD 

DIRECTAD START 

OPEN 
NEXTREC GET 

L 
SH 
ST 
WRITE 
WAIT 
CLC 
BE 

Tape-to-Disk Add-Direct Data Set: The example in Figure 54 on page 155 
involves adding records to the data set created in the last example. Notice that 
the write operation adds the key and the data record to the data set. If the 
existing record is not a dummy record, an indication is returned in the exception 
code of the DECB. For that reason, it is better to use the WAIT macro instead 
of the CHECK macro to test for errors or exceptional conditions. 

DSNAME=SLATE.INDEX.WORDS,---

(DIRECT, (OUTPUT),TAPEIN) 
TAPEIN,KEY 
4,KEY Set up relative record number 
4,=H'lOOO' 
4,REF 
DECB,DA,DIRECT,DATA, 's' ,KEY,REF+l 
ECB=DECB 
DECB+l(2),=X'OOOO' Check for any errors 
NEXTREC 

Check error bits and take required action 

DIRECT 

TAPE IN 
KEY 
DATA 
REF 

DCB DDNAME=DIRADD,DSORG=DA,RECFM=F,KEYLEN=4,BLKSIZE=200, 

DCB 
DS 
DS 
DS 

MACRF=(WA) 

F 
CL200 
F 

C 

Figure 54. Adding Records to a Direct Data Set 

Tape-to-Disk Update-Direct Data Set: The example in Figure 55 is similar to 
that in Figure 54, but involves updating rather than adding. There is no check 
for dummy records. The existing direct data set contains 25000 records whose 
5-byte keys range from 00001 to 25000. Each data record is 100 bytes long. The 
ftrst 30 characters are to be updated. Each input tape record consists of a 5-byte 
key and a 30-byte data area. Notice ,that only data is brought into virtual storage 
for updating. 

When you are updating variable-length records, you should use the same length 
to read and write a record. 

Chapter 11. Processing a Direct Data Set 155 



--------------_ .. __ .---------- -

//DIRECTDD DD 
//TAPINPUT DD 

DSNAME=SLATE.INDEX.WORDS,---

DIRUPDAT 

NEXTREC 

KEYFIELD 

KEY 
DATA 
REF 
DIRECT 

START 

OPEN 
GET 
PACK 
CVB 
SH 
ST 
READ 
CHECK 
L 
MVC 
ST 
WRITE 
CHECK 
B 

(DIRECT, (UPDAT),TAPEDCB) 
TAPEDCB,KEY 
KEY, KEY 
3,KEYFIELD 
3,=H' l' 
3 REF 
DECBRD,DIX,DIRECT,'S','S' ,0,REF+l 
DECBRD 
3,DECBRD+12 
0(30,3),DATA 
3,DECBWR+12 
DECBWR,DIX,DIRECT,'S','S' ,0,REF+l 
DECBWR 
NEXTREC 

DS OD 
DC XL3' 0' 
DS CLS 
DS CL30 
DS F 
DCB DSORG=DA,DDNAME=DIRECTDD,MACRF=(RISXC,WIC), 

OPTCD=RF,BUFNO=1,BUFL=100 
C 

TAPEDCB DCB 

Figure 55. Updating a Direct Data Set 

Consideration/or User Labels: User labels, if wanted, must be created when the 
data set is created. They may be updated, but not added or deleted, during 
processing of a direct data set. When creating a multivolume direct data set using 
BSAM, you should turn off the header exit entry after OPEN and turn on the 
trailer label exit entry just before issuing the CLOSE. This eliminates the 
end-of-volume exits. The fIrst volume, containing the user label track, must be 
mounted when the data set is closed. If you have requested exclusive control, 
OPEN and CLOSE will ENQ and DEQ to prevent simultaneous reference to 
user labels. 

Consideration/or using the 2305-2 Fixed Head Storage: When a data set on a 
2305-2 device is to be used by several tasks simultaneously, or when overlapping 
I/O (successive writes issued without an intervening CHECK or WAIT) is used, 
the following combination may produce overlaying of records: 

• WRITE-add processing 

• Fixed records with or without track overflow 

156 MVSjXA Data Administration Guide 

1'-\ 
\o...oJ 

/' " 



( 

(-

Sharing Direct Data Sets 

BDAM pennits several tasks to share the same DeB and several jobs to share 
the same data set. It synchronizes I/O requests at both levels by maintaining a 
read-exclusive list. 

When several tasks share the same DCB and each asks for exclusive control of 
the same block, BDAM issues a system ENQ for the block (or in some cases the 
whole track). It reads in the block and passes it to the ftrst caller while putting 
all subsequent requests for that block on a wait queue. When the fIrst task 
releases the block, BDAM moves it into the next caller's buffer and posts it 
complete. The block is passed to subsequent callers in the order the request was 
received. 

BDAM not only synchronizes the I/O requests, but also issues only one ENQ 
and one I/O request for several read requests for the same block. 

Note: Because BDAM processing is not sequential and I/O requests are not 
related, a caller can continue processing other blocks while waiting for exclusive 
control of the shared block. 

Because BDAM issues a system ENQ for each record held exclusively, it allows a 
data set to be shared between jobs, so long as all callers use BDAM. BDAM's 
commonly understood argument is what is enqueued on. 

BDAM supports multiple task users of a single DCB when working with existing 
data sets. When operating in load mode, however, only one task may use the 
DCB at a time. The following restrictions and comments apply when more than 
one task shares the same DCB, or when using multiple DCBs for the same data 
set. 

• Subpool 0 must be shared. 

• The user should ensure that a WAIT or CHECK macro has been issued for 
all outstanding BDAM requests before the task issuing the READ or 
WRITE macro terminates. In case of abnormal termination, this can be 
done through a ST AE/ST AI or EST AE exit. 

• FREEDBUF and/or RELEX macros should be issued to free any resources 
that could still be held by the terminating task. This can be done during or 
after task termination. 

Note: Open, close, and all I/O must be performed in the same key and state 
(problem state or supervisor state). 

Chapter 11. Processing a Direct Data Set 157 



.~-~ --_ ... ---.. 

o 



Chapter 12. Processing an Indexed Sequential Data Set 

The organization of an indexed sequential data set allows you a great deal of 
flexibility in the operations you can perlorm. The data set can be read or written 
sequentially, individual records can be processed in any order, records can be 
deleted, and new records can be added. 1be system automatically locates the 
proper position in the data set for new records and makes any necessary 
adjustments when records are deleted. 

The queued access technique must be used to create an indexed sequential data 
set. It can also be used to sequentially process or update the data set and to add 
records to the end of the data set. The basic access technique can be used to 
insert new records between records already in the data set and to update the data 
set directly. 

Indexed Sequential Data Set Organization 

The records in an indexed sequential data set are arranged according to collating 
sequence by a key field in. each record. Each block of records is preceded by a 
key field that corresponds to the key of the last record in the block. 

An indexed sequential data set resides on direct access storage devices and can 
occupy as many as three different areas: 

• Prime A rea-This area, also called the prime data area, contains data records 
and related track indexes. It exists for all indexed sequential data sets. 

• Overflow Area-This area contains records that overflow from the prime area 
when new data records are added. It is optional. 

• Index Area-This area contains master and cylinder indexes associated with 
the data set. It exists for a data set that has a prime area occupying more 
than one cylinder. 

The indexes of an indexed sequential data set are analogous to the card catalog in 
a library. For example, if you know the name of the book or the author, you 
can look in the card catalog and obtain a catalog number that will enable you to 
locate the book in the book fUes. You then go to the shelves and proceed 
through rows until you fmd the shelf containing the book. Usually each row 
contains a sign to indicate the beginning and ending numbers of all books in that 
particular row. Thus, as you proceed through the rows, you compare the catalog 
number obtained from the index with the numbers posted on each row. Upon 
locating the proper row, you search that row for the shelf that contains the book. 

Chapter 12. Processing an Indexed Sequential Data Set 159 



Prime Area 

Cylinder 1 

~ 100 100 200 

Data Data Data 
10 20 40 

Data Data Data 
150 175 190 

Then you look at the individual book numbers on that shelf until you fmd the 
particular book. 

ISAM uses the indexes in much the same way to locate records in an indexed 
sequential data set. 

As the records are written in the prime area of the data set, the system accounts 
for the records contained on each track in a track index area. Each entry in the 
track index identifies the key of the last record on each track. There is a track 
index for each cylinder in the data set. If more than one cylinder is used, the 
system develops a higher-level index called a cylinder index. Each entry in the 
cylinder index identifies the key of the last record in the cylinder. To increase the 
speed of searching the cylinder index, you can request that a master index be 
developed for a specified number of cylinders, as shown in Figure 56. 

Rather than reorganize the whole data set when records are added, yoti can 
request that space be allocated for additional records in an overflow area. 

Records are written in the prime area when the data set is created or updated. 
The last track of prime data is reserved for an end-of-ftle mark. The portion of 
Figure 56 labeled Cylinder 1 illustrates the initial structure of the prime area. 
Although the prime area can extend across several noncontiguous areas of the 
volume, all the records are written in key sequence. Each record must contain a 
key; the system automatically writes the key of the highest record before each 
block. 

Master Index 

I 450 I 900 2000 

Cylinder Index 

200 300 375 450 

500 600 700 900 

1000 1200 15~0 2000 

C- Cylinder 11 Cylinder 12 

200 Track 
1500 11500 ~ I 2000 1 2000 Index 

Data Prime 
100 Data 

Data Prime 
200 Data 

Overflow 

Figure 56. Indexed Sequential Data Set Organization 

160 MVSjXA Data Administration Guide 



( 

Index Areas 

Track Index 

When the ABSTR option of the SPACE parameter of the DD statement is used 
to generate a multivolume prime area, the VTOC of the second volume and on 
all succeeding volumes must be contained within cylinder 0 of the volume. 

The operating system generates track and cylinder indexes automatically. As 
many as three levels of master index are created if requested. 

This is the lowest level of index and is always present. There is one track index 
for each cylinder in the prime area; it is written on the ftrst track(s) of the cylinder 
that it indexes. 

The index consists of a series of paired entries, that is, of a normal entry and an 
overflow entry for each prime track. For ftxed-Iength records, each normal entry 
(and also DCBFIRSH) points to either record 0 or the ftrst prime record on a 
shared track (a track shared by index and data). For variable-length records, the 
normal entry contains the key of the highest record on the track and the address 
of the last record on the track. The overflow entry is originally the same as the 
normal entry. (This is why 100 appears twice on the track index for cylinder 1 in 
Figure 56.) The overflow entry is changed when records are added to the data 
set. Then the overflow entry contains the key of the highest overflow record and 
the address of the lowest overflow record logically associated with the track. 
Figure 57 on page 162 shows the format of a track index. 

If all the tracks allocated for the prime data area are not used, the index entries 
for the unused ones are flagged as inactive. The last entry of each track index is a 
dummy entry indicating the end of the index. When fixed-length record format 
has been specifted, the remainder of the last track of each cylinder used for a track 
index contains prime data records if there is room for them. 

Chapter 12. Processing an Indexed Sequential Data Set 161 



Normal/Overflow 
Pair 

Normal/Overflow 
Pa'i~ .' 

r~----------------~*----------------~"~--------------~~----------------~' 

r 

Key 1 

Normal 
Entry 

~ 

Data2 

" 

Overflow 
Entry 

... 

KeyJ Data4 
" 

Key 1 

Normal 
Entry 

~ 

\f 

Data2 

Overflow 
Entry 

... 

KeyJ Data4 

, 

~ 
1 Normal key = key of the highest record on the prime data track 

2Normal data = address of the prime data track 

JOverflow key = key of the highest overflow record logically associated with the prime data track 

40verflow data '" address of the lowest overflow record logically associated with the prime data track 

Notes: 

• If there are no overflow records, overflow key and data entries are the same as normal key and data entries . 
• This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries. 

Figure 57. Format of Track Index Entries 

Cylinder Index 

Master Index 

Each index entry has the same format as the others. It is an unblocked, 
fixed-length record consisting of a count, a key, and a data area. The length of 
the key corresponds to the length of the key area in the record to which it points. 
The data area is always 10 bytes long. It contains the full address of the track or 
record to which the index points, the level of the index, and the entry type. 

For every track index created, the system generates a cylinder index,entry. There 
is one cylinder index for a data set that points to a track index. Because there is 
one track index per cylinder, there is one cylinder index entry for each cylinder in 
the prime data area, except in the case of a I-cylinder prime area. As with track 
indexes, inactive entries are created for any unused cylinders in the prime data 
area. 

As an optional feature, the operating system creates, at your request, a master 
index. The presence of this index makes long, serial searches through a large, 
cylinder index unnecessary. 

You can specify the conditions under which you want a master index created. 
For example, if you have specified NTM = 3 and OPTCD = M in your DCB 
macro, a master index is created when the cylinder index exceeds 3 tracks. The 
master index consists of one entry for each track of cylinder index. If your data 
set is extremely large, a higher-level master index is created when the fIrst-level 
master index exceeds three tracks. This higher-level master index consists.of one 
entry for each track·ofthe fIrst-level master index. This procedure can be 
repeated for as many as three levels of master index. 

162 MVS/XA Data Administration Guide 

o 



Overflow Areas 

As records are added to an indexed sequential data set, space is required to 
contain those records that will not fit on the prime data track on which they 
belong. You can request that a number of tracks be set aside as a cylinder 
overflow area to contain overflows from prime tracks in each cylinder. An 
advantage of using cylinder overflow areas is a reduction of search time required 
to locate overflow records. A disadvantage is that there will be unused space if 
the additions are unevenly distributed throughout the data set. 

Instead of, or in addition to, cylinder overflow areas, you can request an 
independent overflow area. Overflow from anywhere in the prime data area is 
placed in a specified number of cylinders reserved solely for overflow records. An 
advantage of having an independent overflow area is a reduction in unused space 
reserved for overflow. A disadvantage is the increased search time required to 
locate overflow records in an independent area. 

If you request both cylinder overflow and independent overflow, the cylinder 
overflow area is used first. It is a good practice to request cylinder overflow areas 
large enough to contain a reasonable number of additional records and an 
independent overflow area to be used as the cylinder overflow areas are filled. 

Creating an Indexed Sequential Data Set 

You can create an indexed sequential data set in one step or in several steps. 
You can create the data set either by writing all records in a single step or by 
writing one group of records in one step and writing additional groups of records 
in subsequent steps. Writing records in subsequent steps is called resume loading. 
When using either one step or several steps, you must present the records for 
writing in ascending order by key. 

To create an indexed sequential data set by the one-step method, you should 
proceed as follows: 

• Code DSORG=IS or DSORG=ISU and MACRF=PM or MACRF=PL 
in the DCB macro. 

• Specify in the DD statement the DCB attributes DSORG = IS or 
DSORG= ISU, record length (LRECL), blocksize (BLKSIZE), record 
format (RECFM), key length (KEYLEN), relative key position (RKP), 
options required (OPTCD), cylinder overflow (CYLOFL), and the number 
of tracks for a master index (NTM). Specify space requirements with the 
SPACE parameter. To reuse previously allocated space, omit the SPACE 
parameter and code DISP = (OLD, KEEP). 

• Open the data set for output. 

• Use the PUT macro to place all the records or blocks on the direct access 
volume. 

• Close the data set. 

Chapter 12. Processing an Indexed Sequential Data Set 163 



The records that comprise a newly created data set must be presented for writing 
in ascending order by key . You can merge two or more input data sets. If you 
want a data set with no records (a null data set), you must write at least one 
record when you create the data set. You can subsequently delete this record to 
achieve the null data set. 

If an unload is done that deletes all existing records in an ISAM data set, at least 
one record must be written on the subsequent load. If no record is written, the 
data set will be unusable. 

If the records are blocked, you should not write a record with a hexadecimal 
value of FF and a key of hexadecimal value FF. This value is used for padding. 
If it occurs as the last record of a block, the record cannot be retrieved. If the 
record is moved to the overflow area, it is lost. 

When creating an indexed sequential data set, a procedure called loading, you can 
improve performance by using the full-track-index write option. You do this by 
specifying OPTCD = U in the DCB. This causes the operating system to 
accumulate track index entries in virtual storage. Note that the full-track-index 
write option can be used only for fixed-length records. 

If you do not specify full-track-index write, the operating system writes each 
normal overflow pair of entries for the track index after the associated prime data 
track has been written. If you do specify full-track-index write, the operating 
system accumulates track index entries in virtual storage until either (a) there are 
enough entries to fill a track or (b) end-of-data or end-of-cylinder is reached. 
Then the operating system writes these entries as a group, writing one group for 
each track of track index. This option requires allocation of more storage space 
(the space in which the track index entries are gathered), but the number of I/O 
operations required to write the index can be significantly decreased. 

When you specify the full-track-index write option, the track index entries are 
written as fixed-length unblocked records. If the area of virtual storage available 
is not large enough the entries are written as they are created, that is, in normal 
overflow pairs. 

After an indexed sequential data set has been created, its characteristics cannot be 
changed. However, for added flexibility, the system allows you to retrieve records 
by using either the queued access technique with simple buffering or the basic 
access technique with dynamic buffering. 

Tape-to-Disk-Indexed Sequential Data Set: The example in Figure 58 on 
page 165 shows the creation of an indexed sequential data set from an input tape 
containing 60-character records. The key by which the data set is organized is in 
positions 20 through 29. The output records will be an exact image of the input, 
except that the records will be blocked. One track per cylinder is to be reseJ:'Ved 
for cylinder overflow. Master indexes are to be built when the cylinder index 
exceeds 6 tracks. Reorganization information about the status of the cylinder 
overflow areas is to be maintained by the system. The delete option will be used 
during any future updating. 

164 MVSjXA Data Administration Guide 

I 

I 
I 

C· "' .. :~ I 



( 

IIINDEXDD DD 
II 

IIINPUTDD DD 

ISLOAD START 

DCBD 
ISLOAD CSECT 

OPEN 
NEXTREC GET 

LR 
PUT 
B 

CHECKERR L 
USING 
TM 
BO 
TM 
BO 
TM 
BO 

Rest of error checking 
Error routine 

DSNAME=SLATE.DICT(PRlME),DCB=(BLKSIZE=240,CYLOFL=1, 
DSORG=IS,OPTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19, 
KEYLEN=10),UNIT=33;\0,SPACE=(CYL,25"CONTIG),---

0 

DSORG=IS 

(IPDATA"ISDATA,(OUTPUT)) 
IPDATA 
0,1 
ISDATA,(O) 
NEXTREC 

3,=A(ISDATA) 
lHADCB,3 
DCBEXCD1,X' 04 t 
OPERR 
DCBEXCD1,X'20' 
NOSPACE 
DCBEXCD2,X'80' 
SEQCHK 

Locate mode 
Address of record in register 1 
Move mode 

Initialize base for errors 

Uncorrectable error 

Space not found 

Record out of sequence 

C 
C 

End ofjob routine (EODAD FOR IPDATA) 

IPDATA 
ISDATA 

DCB 
DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR 

Figure 58. Creating an Indexed Sequential Data Set 

To create an indexed sequential data set in more than one step, create the ftrst 
group of records using the one-step method described above. This ftrst section 
must contain at least one data record. The remaining records can then be added 
to the end of the data set in subsequent steps, using resume load. Each group to 
be added must contain records with successively higher keys. This method allows 
you to create the indexed sequential data set in several short time periods rather 
than in a single long one. 

This method also allows you to provide limited recovery from uncorrectable 
output errors. When an uncorrectable output error is detected, do not attempt to 
continue processing or to close the data set. If you have provided a SYNAD 
routine, it should issue the ABEND macro to terminate processing. If no 
SYNAD routine is provided, the control program will terminate your processing. 
If the error shows that space in which to add the record was not found, you must 
close the data set; issuing subsequent PUT macros can cause unpredictable 
results. You should begin recovery at the record following the end of the data as 
of the last successful close. The rerun time is limited to that necessary to add the 
new records, rather than to that necessary to re-create the whole data set. 

When you extend an indexed sequential data set with resume load, the 
disposition parameter of the DD statement must specify MOD. To ensure that 
the necessary control information is in the DSCB before attempting to add 
records, you should at least open and close the data set successfully on a version 

Chapter 12. Processing an Indexed Sequential Data Set 165 



of the system that includes resume load. This is necessary only if the data set was 
created on a previous version of the system. Records may be added to the data 
set by resume load until the space allocated for prime data in the ftrst step has 
been filled. 

During resume load on a data set with a partially filled track and/or a partially 
filled cylinder, the track index entry and/or the cylinder index entry is overlaid 
when the track or cylinder is filled. Resume load for variable-length records 
begins at the next sequential track of the prime data set. If resume load 
abnormally terminates after these index entries have been overlaid, a subsequent 
resume load will result in a sequence check when it adds a key that is higher than 
the highest at the last successful CLOSE but lower than the key in the overlaid 
index entry. When the SYNAD exit is taken for a sequence check, register 0 
contains the address of the high key of the data set. However, if the SYNAD exit 
is taken during CLOSE, register 0 will contain the lOB address. 

Allocating Space for an Indexed Sequential Data Set 

An indexed sequential data set has three areas: prime, index, and overflow. Space 
for these areas can be subdivided and allocated as follows: 

• Prime area-If you request a prime area only, the system automatically uses a 
portion of that space for indexes, taking one cylinder at a time as needed. 
Any unused space in the last cylinder used for index will be allocated as an 
independent overflow area. More than one volume can be used in most 
cases, but all volumes must be for devices of the same device type. '. __ 

• Index area-You can request that a separate area be allocated to contain your 
cylinder and master indexes. The index area must be contained within one 
volume, but this volume can be on a device of a different type than the one 
that contains the prime area volume. If a separate index area is requested, 
you cannot catalog the data set with a DD statement. 

If the total space occupied by the prime area and index area does not exceed 
one volume, you can request that the separate index area be embedded in the 
prime area (to reduce access arm movement) by indicating an index size in 
the SPACE parameter of the DD statement deftning the prime area. 

If you request space for prime and index areas only, the system automatically 
uses any space remaining on the last cylinder used for master and cylinder 
indexes for overflow, provided the index area is on a device of the same type 
as the prime area. 

• Overflow area-Although you can request an independent overflow area, it 
must be contained within one volume and must be of the same device type as 
the prime area. If no speciftc request for index area is made, then it will be 
allocated from the specifted independent overflow area. 

166 MVSjXA Data Administration Guide 

c 



To request that a designated number of tracks on each cylinder be used for 
cylinder overflow records, you must use the CYLO FL parameter of the DCB 
macro. The number of tracks that you can use on each cylinder equals the 
total number of tracks on the cylinder minus the number of tracks needed for 
track index and for prime data, that is: 

Overflow tracks = total tracks 
- (track index tracks + prime data tracks) 

Note that, when you create a I-cylinder data set, ISAM reserves 1 track on the 
cylinder for the end··of-me memark. You may not request an independent index 
for an ISAM data set that has only 1 cylinder of prime data. 

When you request space for an indexed sequential data set, the DD statement 
must follow a number of conventions, as shown below and summarized in 
Figure 59 on page 167. 

• Space can be requested only in cylinders, SPACE = (CYL,( ... )), or absolute 
tracks, SPACE = (ABSTR,( ... )). Ifthe absolute track technique is used, the 
designated tracks must make up a whole number of cylinders. 

• Data set organization (DSORG) must be specified as indexed sequential (IS 
or ISU) in both the DCB macro and the DCB parameter of the DD 
statement. 

• All required volumes must be mounted when the data set is opened; that is, 
volume mounting cannot be deferred. 

• If your prime area extends beyond one volume, you must indicate the 
number of units and volumes to be spanned; for example, 
UNIT = (3380,3),VOLUME = (",3). 

• You can catalog the data set using the DD statement parameter 
DISP = (,CATLG) only if the entire data set is defmed by one DD statement; 
that is, if you did not request a separate index or independent overflow area. 

As your data set is created, the operating system builds the track indexes in the 
prime data area. Unless you request a separate index area or an embedded index 
area, the cylinder and master indexes are built in the independent overflow area. 
If you did not request an independent .overflow area, the cylinder and master 
indexes are built in the prime area. 

If an error is encountered during allocation of a multivolume data set, the 
IEHPROGM utility program should be used to scratch the DSCBs of the data 
sets that were successfully allocated. The IEHLIST utility program can be used 
to determine whether or not part of the data set has been allocated. The 
IEHLIST utility program is also useful to determine whether space is available or 
whether identically named data sets exist before space allocation is attempted for 
indexed sequential data sets. These utility programs are described in Utilities. 

Chapter 12. Processing an Indexed Sequential Data Set 167 



Criteria 
Restrictions on 

1. Number 2. Types 3. Index Unit Types and 
ofDD ofDD Size Number of Units 
Statements Statements Coded? Requested Resulting Arrangement of Areas 

3 INDEX - None Separate index, prime, and overflow 
PRIME areas. 
OVFLOW 

2 INDEX - None Separate index aIld prime areas. Any 
PRIME partially used index cylinder is used for 

independent overflow if the index and. 
prime areas are on the same type of 
device. 

2 PRIME No None Prime area and overflow area with an 
OVFLOW index at its end. 

2 PRIME Yes The statement Prime area and embedded index, and 
OVFLOW defIning the overflow area. 

prime area 
cannot request 
more than one 
unit. 

1 PRIME No None Prime area with index at its end. Any 
partially used index cylinder is used for 
independent overflow. 

1 PRIME Yes Statement Prime area with embedded index area; 
cannot request independent overflow in remainder of 
more than one partially used index cylinder. 
unit. 

Figure 59. Requests for Indexed Sequential Data Sets 

Specifying a Prime Data Area 

To request that the system allocate space and subdivide it as required, you should 
code: 

Iiddname DD DSNAME=dsname,DCB=DSORG=IS, 
II SPACE=(CYL,quantity"CONTIG),UNIT=unitname, 
I I DISP=(,KEEP) , --- . 

You can accomplish the same type of allocation by qualifying your dsname with 
the element indication (PRIME). This element is assumed if omitted. It is 
required only if you request an independent index or overflow area. To request 
an embedded index area when an independent overflow area is specifted, you 
must indicate DSNAME = dsname (PRIME). To indicate the size of the 
embedded index, you specify SPACE = (CYL,(quantity"index size)). 

168 MVSjXA Data Administration Guide 

c 



( 

( 

Specifying a Separate Index Area 

To request a separate index area, other than an embedded area as described 
above, you must use a separate DD statement. The element name is specified as 
(INDEX). The space and unit designations are as required. Notice that only the 
first DD statement can have a data defmition name. The data set name (dsname) 
must be the same. 

Ilddname DD DSNAME=dsname(INDEX),--­
II DD DSNAME=dsname(PRlME),---

Specifying an Independent Overflow Area 

A request for an independent overflow area is essentially the same as for a 
separate index area. Only the element name, OVFLOW, is changed. If you do 
not request a separate index area, only two DD statements are required. 

Ilddname DD DSNAME=dsname(INDEX),---
II DD DSNAME=dsname(PRlME),---
II DD DSNAME=dsname(OVFLOW),---

Calculating Space Requirements for an Indexed Sequential Data Set 

To determine the number of cylinders required for an indexed sequential data set, 
you must consider the number of blocks that will fit on a cylinder, the number of 
blocks that will be processed, and the amount of space required for indexes and 
overflow areas. When you make the computations, consider how much 
additional space is required for device overhead. Figure 68 on page 219 and 
Figure 69 on page 220 show device capacities and overhead formulas. In the 
formulas that follow, the length of the last (or only) block, shown below as Bn, 
must include device overhead as given in Figure 69. 

Blocks = Track capacity I Length of blocks 

The following eight steps summarize calculation of space requirements for an 
indexed sequential data set. 

Note: Use modulo-32 arithmetic when calculating key length and data length 
terms in your equations. Compute these terms first, then round up to the nearest 
increment of 32 bytes before completing the equation. 

Step I: After you know how many records will fit on a track and the maximum 
number of records you expect to create, you can determine how many tracks you 
will need for your data. 

Number of 
tracks required 

= (Maximum number of blocks 
I Blocks per track) + 1 

ISAM load mode reserves the last prime data track for the me mark. 

Example: Assume that a 200000 record parts-of-speech dictionary is stored on an 
IBM 3380 Disk Storage as an indexed sequential data set. Each record in the 
dictionary has a 12-byte key (the word itself) and an 8-byte data area containing a 
parts-of-speech code and control information. Each block contains 50 records; 
LRECL= 20 and BLKSIZE= 1000. Using the formula from Figure 69 on 

Chapter 12. Processing an Indexed Sequential Data Set 169 



-------~-- ----- -----------------

page 220, we find that each track will contain 26 blocks or 1300 records. A total f '\ 
of 155 tracks will be required for the dictionary. ",-,j 

Blocks = 47968/(256+((12+267)/32)(32)+((1000+267)/32)(32)) 
= 47968/1824 = 26 

Records per track = (26 blocks)(50 records per block) = 1300 

Prime data 
tracks = (200000 records / 1300 records per track) + 1 = 155 
required 

Step 2: You will want to anticipate the number of tracks required for cylinder 
overflow areas. The computation is the same as for prime data tracks, but you 
must remember that overflow records are unblocked and a lO-byte link field is 
added. Remember also that, if you exceed the space allocated for any cylinder 
overflow area, an independent overflow area is required. Those records are not 
placed in another cylinder overflow area. 

Overflow records = Track capacity / Length of overflow records 
per track 

Example: Approximately 5000 overflow records are expected for the data set 
described in step 1. Because 55 overflow records will fit on a track, 91 overflow 
tracks are required. These are 91 overflow tracks for 155 prime data tracks, or 
approximately 1 overflow track for every 2 prime data tracks. Because the 3380 
disk pack has 15 tracks per cylinder, it would probably be best to allocate 5 
tracks per cylinder for overflow. 

Overflow = 47968/(256+((12+267)/32)(32)+((30+267)/32)(32)) 
records = 47968/864 
per track = 55 

Overflow = 5000 records / 55 records per track 
tracks = 91 
required 

Overflow tracks per cylinder = 5 

Step 3: You will have to set aside space in the prime area for track index entries. 
There will be two entries (normal and overflow) for each track on a cylinder that 
contains prime data records. The data field of each index entry is always lO bytes 
long. The key length corresponds to the key length for the prime data records. 
How many index entries will fit on a track? 

Index entries = Track capacity / Length of index entries 
per track 

Example: Again assuming a 3380 disk pack and records with 12-byte keys, we 
fmd that 59 index entries fit on a track. 

Index 
entries 
per track 

= 47968/(256+((12+267)/32)(32)+((10+267)/32)(32)) 
= 47968/832 
= 57 

170 MVSjXA Data Administration Guide 

C·,---,,· . I 



( 

( 

--------- ----------- -~-------

Step 4: Unused space on the last track of the track index is a function of the 
number of tracks required for track index entries, which in turn depends upon the 
number of tracks per cylinder and the number of track index entries per track. 
You can use any unused space for any prime data records that will fit. 

Unused 
space 

= (Number of index entries per track) 
- (2 (Number of tracks per cylinder 
- Number of overflow tracks per cylinder) 

(Number of bytes per index) 
+ 1) 

Note that, for variable-length records, or when a prime data record will not fit on 
the last track of the track index, the last track of the track index is not shared 
with prime data records. In this case, if the remainder of the division is less than 
or equal to 2, drop the remainder. In all other cases, round the quotient up to 
the next integer. 

Example: The 3380 disk pack has 15 tracks per cylinder. You can fit 57 track 
index entries into one track. Therefore, you need less than 1 track for each 
cylinder. 

Number of 
trk index = (2 (15 - 5) + 1) / (57 + 2) 
trks per = 21 / 59 
cylinder 

The space remaining on the track is 47968 - (21 (832)) = 30496 bytes. 

This is enough space for 16 blocks of prime data records. Because the normal 
number of blocks per track is 26, the blocks use 16/26ths of the track, and the 
effective number of track index tracks per cylinder is therefore 1 - 16/26 or 0.385. 

Note that space is required on the last track of the track index for a dummy entry 
to indicate the end of the track index. The dummy entry consists of an 8-byte 
count field, a key field the same size as the key field in the preceding entries, and 
a 10-byte data field. 

Step 5: Next you have to calculate the number of tracks available on each 
cylinder for prime data records. You cannot include tracks set aside for cylinder 
overflow records. 

Prime data 
tracks per 
cylinder 

= Tracks per cylinder 
- Overflow tracks per cylinder 
- Index tracks per cylinder 

Example: If you set aside 5 cylinder overflow tracks, and you need 0.385ths of a 
track for the track index, 9.615 tracks are available on each cylinder for prime 
data records. 

Prime data tracks = 15 - 5 - (0.385) = 9.615 
per cylinder 

Step 6: The number of cylinders required to allocate prime space is determined 
by the number of prime data tracks required divided by the number of prime data 
tracks available on each cylinder. This area includes space for the prime data 
records, track indexes, and cylinder overflow records. 

Chapter 12. Processing an Indexed Sequential Data Set 1 71 



Number of 
cylinders 
needed 

= Prime data tracks needed 
/ Prime data tracks per cylinder needed 

Example: You need ISS tracks for prime data records. You can use 9.615 tracks 
per cylinder. Therefore, you need 17 cylinders for your prime area and cylinder 
overflow areas. 

Number of = (155) / (9.615) = 16.121 (round up to 17) 
cylinders 
required 

Step 7: You will need space for a cylinder index and track indexes. There is a 
cylinder index entry for each track index (for each cylinder allocated for the data 
set). The size of each entry is the same as the size of the track index entries; 
therefore, the number of entries that will fit on a track is the same as the number 
of track index entries. Unused space on a cylinder index track is not shared. 

Number of tracks 
required for 

= (Track indexes + 1) 
/ (Index entries per track cylinder index) 

Example: You have 17 track indexes (from Step 6). Because 57 index entries fit 
on a track (from Step 3), you need 1 track for your cylinder index. The 
remaining space on the track is unused. 

Number of tracks required = (17 + 1) / 57 = 18 / 57 = 0.316 < 1 
for cylinder index 

Note that, every time a cylinder index crosses a cylinder boundary, ISAM writes 
a dummy index entry that lets ISAM chain the index levels together. The 
addition of dummy entries can increase the number of tracks required for a given 
index level. To determine how many dummy entries will be required, divide the 
total number of tracks required by the number of tracks on a cylinder. If the 
remainder is 0, subtract I from the quotient. If the corrected quotient is not 0, 
calculate the number of tracks these dummy entries require. Also consider any 
additional cylinder boundaries crossed by the addition of these tracks and by any 
track indexes starting and stopping within a cylinder. 

Step 8: If you have a data set large enough to require master indexes, you will 
want to calculate the space required according to the number of tracks for master 
indexes (NTM parameter) you specified in the DCB macro or the DD statement. 

If the cylinder index exceeds the NTM specification, an entry is made in the 
master index for each track of the cylinder index. If the master index itself 
exceeds the NTM specification, a second-level master index is started. As many 
as three levels of master indexes are created if required. 

The space requirements for the master index are computed in the same way as 
those for the cylinder index. 

Calculate the number of tracks for master indexes as follows: 

# Tracks for master indexes = 
(# Cylinder index tracks + 1) / Index entries per track 

172 MVSjXA Data Administration Guide 



( 

---- ---------~~-----------

If the number of cylinder indexes is greater than NTM, calculate the number of 
tracks for a first level master index as follows: 

# Tracks for first level master index = 
(Cylinder track indexes + 1) / Index entries per track 

If the number of first level master indexes is greater than NTM, calculate the 
number of tracks for a second level master index as follows: 

# Tracks for second level master index = 
(First level master index + 1) / Index entries per track 

If the number of second level master indexes is greater than NTM, calculate the 
number of tracks for a third level master index as follows: 

# Tracks for second level master index = 
(Second level master index + 1) / Index entries per track 

Example: Assume that your cylinder index will require 22 tracks. Because large 
keys are used, only 10 entries will fit on a track. Assuming that NTM was 
specilled as 2, 3 tracks will be reqj.lired for a master index, and two levels of 
master index will be created. 

Number of tracks required = (22 + 1) / 10 = 2.3 
for master indexes 

Note that, every time a master index crosses a cylinder boundary, ISAM writes a 
dummy index entry that lets ISAM chain the index levels together. The addition 
of dummy entries can increase the number of tracks required for a given index 
level. To determine how many dummy entries will be required, divide the total 
number of tracks required by the number of tracks on a cylinder. If the 
remainder is 0, subtract 1 from the quotient. If the corrected quotient is not 0, 
calculate the number of tracks these dummy entries require. Also consider any 
additional cylinder boundaries crossed by the addition of these tracks and by any 
track indexes starting and stopping within a cylinder. 

Summary: Indexed Sequential Space Requirement Calculations 

1. How many blocks will fit on a track? 

Blocks = Track capacity / Length of blocks 

2. How many overflow records will fit on a track? 

Overflow records = Track capacity 
/ Length of overflow records per track 

3. How many index entries will fit on a track? 

Index entries = Track capacity / Length of index entries 
per track 

4. How much space is left on the last track of the track index? 

Unused 
space 

= (Number of index entries per track) 
- (2 (Number of tracks per cylinder 
- Number of overflow tracks per cylinder) + 1) 

(Number of bytes per index) 

Chapter 12. Processing an Indexed Sequential Data Set 173 



5. How many tracks on each cylinder can you use for prime data records? 

Prime data 
tracks per 
cylinder 

= Tracks per cylinder 
- Overflow tracks per cylinder 
- Index tracks per cylinder 

6. How many cylinders do you need for the prime data area? 

Number of 
cylinders 
needed 

= Prime data tracks needed 
/ Prime data tracks per cylinder needed 

7. How many tracks do you need for the cylinder index? 

Number of tracks 
required for 
cylinder index 

= (Track indexes + 1) 
/ Index entries per track 

8. How many tracks do you need for master indexes? 

Number of tracks 
required for 
master indexes 

= (Number of cylinder index tracks + 1) 
/ Index entries per track 

Retrieving and Updating an Indexed Sequential Data Set 

Sequential Retrieval and Update 

To sequentially retrieve and update records in an indexed sequential data set: 

• Code DSORG= IS or DSORG= ISU to agree with what you specified when 
you created the data set, and MACRF = GL, MACRF = SK, or 
MACRF = PU in the DCB macro. 

• Code aDD statement for retrieving the data set. The data set characteristics 
and options are as defmed when the data set was created. 

• Open the data set. 

• Set the beginning of sequential retrieval (SETL). 

• Retrieve records and process as required, marking records for deletion as 
required. 

• Return records to the data set. 

• Use ESETL to end sequential retrieval as required and reset the starting 
point. 

• Close the data set to end all retrieval. 

174 MVS/XA Data Administration Guide 

rf",\ 
\ : 
~"/' 

c 



( 

( -" 

- -

//INDEXDD DD 

ISRETR START 
DCBD 

ISRETR CSECT 

NEXTREC 

TODAY 
KEYADDR 

LIMIT 

CHECKERR 

USING 
LA 
OPEN 
SETL 
TIME 
ST 
GET 
CLC 
BNL 
CP 
BNL 
MVI 

PUTX 
B 
DS 
DC 
DC 
DC 
DC' 

"'--- ----~---- -~~~----~----~~~~~~-

Sequential Updo.tes-Indexed Sequential Data Set: Assume that, using the data 
set created in the previous example, you are to retrieve all records whose keys 
begin with 915. Those records with a date (positions 13 through 16) before 
today's date are to be deleted. The date is in the standard form as returned by 
the system in response to the TIME macro instruction, that is, packed decimal. 
OOyyddds. Overflow records can be logically deleted even though they cannot be 
physically deleted from the data set. 

One way to solve this problem is shown in Figure 60. 

DSNAME=SLATE.DICT,--­

o 
DSORG=IS 

IHADCB,3 
3, ISDATA 
(ISDATA) 
ISDATA,KC,KEYADDR 

1, TODAY 
ISDATA 
19(10,1),LIMIT 
ENDJOB 
12(4,1);TODAY 
NEXTREC 
0(1) ,X'FF' 

ISDATA 
NEXTREC 
F 
C'91S' 
XL7'0' 
C'916' 
XL7'0' 

Set scan limit 
Today's date in register 1 

Locate mode 

Compare for old date 

Flag old record for 
deletion 

Return delete record 

Key prefix 
Key padding 

Test DCBEXCDl and DCBEXDE2 for error indication 

Error Routines 

ENDJOB 

ISDATA 

CLOSE 
;. .. 
DCB 

(ISDATA) 

DDNAME=INDEXDD,DSORG=IS,MACRF=(GL,SK,PU), 
SYNAD=CHECKRR 

C 

Figure 60. Sequentially Updating an Indexed Sequential Data Set 

Chapter 12. Processing an Indexed Sequential Data Set 1 7 5 



Direct Retrieval and Update 

By using the basic indexed sequential access method (BISAM) to process an 
indexed sequential data set, you can directly access the records in the data set for: 

• Direct retrieval of a record by its key 

• Direct update of a record 

• Direct insertion of new records 

Because the operations are direct, there can be no anticipatory buffering. 
However, if'S' is specified on the READ macro, the system provides dynamic 
buffering each time a read request is made. (See Figure 61 on page 178.) 

To ensure that the requested record is in virtual storage before you start 
processing, you must issue a WAIT or CHECK macro. If you issue a WAIT 
macro, you must test the exception code field of the DECB. If you issue a 
CHECK macro, the system tests the exception code field in the DECB. If an 
error analysis routine has not been specified and a CHECK is issued, and an 
error situation exists, the program is abnormally terminated with a system 
completion code of XX'O l' For both WAIT and CHECK, if you want to 
determine whether the record is an overflow record, you should test the exception 
code field of the DECB. 

Mter you test the exception code field of the DECB, you need not set it to O. If / " 
you have used a READ KU macro and if you plan to use the same DECB again '--./ 
to rewrite the updated record using a WRITE K macro, you should not set the 
field to O. If you do, your record may not be rewritten properly. 

To update existing records, you must use the READ KU and WRITE K 
combination. Because READ K U implies that the record will be rewritten in the 
data set, the system retains the DECB and the buffer used in the READ KU and 
uses them when the record is written. If you decide not to write the record, you 
should use the same DECB in another read or write macro or issue a 
FREEDBUF macro if dynamic buffering was used. If you issue several READ 
KU or WRITE K macros before checking the first one, you may destroy some of 
your updated records unless the records are from different blocks. 

When you are using scan mode with QISAM and you want to issue PUTX, issue 
an ENQ on the data set before processing it and a DEQ after processing is 
complete. ENQ must be issued before the SETL macro, and DEQ must be 
issued after the ESETL macro. When you are using BISAM to update the data 
set, do not modify any DCB fields or issue a DEQ until you have issued 
CHECK or WAIT. 

176 MVS/XA Data Administration Guide 



( 

( 

( 

Sharing a BISAM DCB between Related Tasks: If there is the possibility that 
your task and another task will be simultaneously accessing the same data set, or 
the same task has two or more DCBs opened for the same data set, you should 
use the DCB integrity feature. You specify the DCB integrity feature by coding 
DISP = SHR in your DD statement. In this way you ensure that the DCB fields 
are maintained for your program to process the data set correctly. If you do not 
use DISP = SHR and more than one DCB is open for updating the data set, the 
results are unpredictable. 

If you specify DISP = SHR, you must also issue an ENQ for the data set before 
each input/output request and a DEQ upon completion of the request. All users 
of the data set must use the same qname and mame operands for ENQ. For 
example, the users might use the data set name as the qname operand. (For 
more information about using ENQ and DEQ, see Supervisor Services and Macro 
Instructions.) 

For subtasking, I/O requests should be issued by the task that owns the DCB or 
a task that will remain active as long as the DCB is open. If the task that issued 
the I/O request terminates, the storage used by its data areas (such as lOBs) may 
be freed or queuing sWitches in the DCB work area may be left set on, causing 
another task issuing an I/O request to the DCB to program check or to enter the 
wait state. For example, if a subtask issues and completes a READ KU I/O 
request, the lOB created by the subtask is attached to the DCB update queue. If 
that subtask terminates, and subpool zero is not shared with the subtask owning 
the DCB, the lOB storage area is freed and the integrity of the ISAM update 
queue is destroyed. A request from another subtask, attempting to use that 
queue, may cause unpredictable abends. As another example, if a WRITE KEY 
NEW is in process when the subtask terminates, 
'WRITE-KEY-NEW-IN-PROCESS' bit is left set on. If another I/O request 

is issued to the DCB, the request is queued but cannot proceed. 

Direct Update with Exclusive Control-Indexed Sequential Data Set: In the 
example shown in Figure 61 on page 178, the previously described data set is to 
be updated directly with transaction records on tape. The input tape records are 
30 characters long, the key is in positions 1 through 10, and the update 
information is in positions 11 through 30. The update information replaces data 
in positions 31 through 50 of the indexed sequential data record. 

Chapter 12. Processing an Indexed Sequential Data Set 177 



-, ... -------~~-.-.-.---

//INDEXDD DD 
//TAPEDD DD 

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=l, ... ),---

ISUPDATE 

NEXTREC 

* 

RDCHECK 

* 

* 
* 

* 
WKNAREA 
* ISRECORD 
* 
* 

START 

GET 
ENQ 
READ 

WAIT 
TM 
BM 
L 

MVC 

WRITE 
WAIT 
TM 
BM 
DEQ 
B 
TM 
BZ 

o 
TPDATA,TPRECORD 
(RESOURCE,ELEMENT,E"SYSTEM) 
DECBRW,KU,,'S' ,MF=E Read into dynamically 

obtained buffer 
ECB=DECBRW 
DECBRW+24,X'FD' 
RDCHECK 
3.DECBRW+16 

ISUPDATE-ISRECORD 
(L'UPDATE.3).UPDATE 
DECBRW.K.MF=E 
ECB=DECBRW 
DECBRW+24.X'FD' 

Test for any condition 
but overflow 
Pick up pointer to 
record 
Update record 

Any errors? 
WRCHECK 
(RESOURCE,ELEMENT,.SYSTEM) 
NEXTREC 
DECBRW+24.X'SO' 
ERROR 

No record found 
If not. go to error 
routine 

FREEDBUF DECBRW.K.ISDATA Otherwise. free buffer 
Key placed in ISRECORD 
Updated information 
placed in ISRECORD 

MVC ISKEY.KEY 
MVC ISUPDATE.UPDATE 

WRITE 

WAIT 
TM 
BM 
DEQ 

B 
DS 

DS 

DS 

DECBRW.KN •• WKNAREA.'S' .MF;E Add record to data 
set 

ECB;DECBRW 
DECBRW+24.X'FD' Test for errors 
ERROR 
(RESOURCE.ELEMENT •• SYSTEM) Release exclusive 

control 
NEXTREC 
4F 

OCL50 

CL19 

BISAM WRITE KN work 
field 

50-byte record from 
ISDATA 

DCB First part of 
ISRECORD 

Figure 61 (Part 1 of 2). Directly Updating an Indexed Sequential Data Set 

178 \ MVSjXA D'ata Administration Guide 



( ISKEY DS 
DS 

ISUPDATE DS 

* ORG 
TPRECORD DS 
KEY DS 

* UPDATE DS 
RESOURCE DC 
ELEMENT DC 

READ 
ISDATA DCB 

TPDATA DCB 
INDEX DS 

Figure 61 (Part 2 of 2). 

CLIO Key field of ISRECORD 
CLI Part of ISRECORD 
CL20 Update area of ISRECORD 

ISUPDATE Overlay ISUPDATE with 
OCL30 TPRECORD 30-byte record 
CLIO from TPDATA DCB Key 

for locating 
CL20 ISDATA record update 
CL8'SLATE' information or new data 
C'DICT' 
DECBRW,KU,ISDATA,'S' ,'S' ,KEY,MF=L 
DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA), C 
MSHI=INDEX,SMSI=2000 

2000C 

Directly Updating an Indexed Sequential Data Set 

Exclusive control of the data set is requested, because more than one task may be 
referring to the data set at the same time. Notice that, to avoid tying up the data 
set until the update is completed, exclusive control is released after each block is 
written. 

Note the use of the FREEDBUF macro instruction in Figure 61. Usually, the 
FREEDBUF macro has two functions: 

• To indicate to the ISAM routines that a record that has been read for update 
will not be written back 

• To free a dynamically obtained buffer 

In Figure 61, because the read operation was unsuccessful, the FREEDBUF 
macro frees only the dynamically obtained buffer. 

The ftrst function of FREEDBUF allows you to read a record for update and 
then decide not to update it without performing a WRITE for update. You can 
use this function even when your READ macro does not specify dynamic 
buffering, provided that you have included S (for dynamic buffering) in the 
MACRF fteld of your READ DCB. 

You can effect an automatic FREEDBUF merely by reusing the DECB, that is, 
by issuing another READ or a WRITE KN to the same DECB. You should 
use this feature whenever possible, because it is more efficient than FREEDBUF. 
For example, in Figure 61, the FREEDBUF macro could be eliminated, because 
the WRITE KN addressed the same DECB as the READ KU. 

For an indexed sequential data set with variable-length records, you may make 
three types of updates by using the basic access technique. You may read a 
record and write it back with no change in its length, simply updating some part 
of the record. You do this with a READ KU followed by a WRITE K, the 
same way you update ftxed-length records. 

Chapter 12. Processing an Indexed Sequential Data Set 179 



--- ~~---~~~-~~~--~~--~-- -- -- ------------

Two other methods for updating variable-length records use the WRITE KN r~. 

macro and allow you to change the record length. In one method, a record read GJ 
for update (by a READ K U) may be updated in a manner that will change the 
record length and then be written back with its new length by a WRITE KN. In 
the second method, you may replace a record with another record having the 
same key and possibly a different length using the WRITE KN macro. To 
replace a record, it is not necessary to have ftrst read the record. 

In either method, when changing the record length, you must place the new 
length in the DECBLGTH fteld of the DECB before issuing the WRITE KN 
macro. If you use a WRITE KN macro to update a variahle-Iength record that 
has been marked for deletion, the ftrst bit (no record found) of the exceptional 
condition code field (DECBEXCl) of the DECB is set on. If this condition is 
found, the record must be written using a WRITE KN with nothing specmed in 
the DECBLGTH fteld. 

Do not try to use the DECBLGTH fteld to determine the length of a record read, 
because DECBLGTH is for use with writing records, not reading them. If you 
are reading ftxed-Iength records, the length of the record read is in DCBLRECL, 
and if you are reading variable-length records, the length is in the record 
descriptor word (ROW). 

Direct Update-Indexed Sequential Data Set with Variable-Length Records: In 
Figure 62, an indexed sequential data set with variable-length records is updated 
directly with transaction records on tape. The transaction records are of variable 
length and each contains a code identifying the type of transaction. Transaction 
code 1 indicates that an existing record is to be replaced by one with the same 
key; 2 indicates that the record is to be updated by appending additional 
information, thus changing the record length; 3 or greater indicates that the 
record is to be updated with no change to its length. For this example, the 
maximum record length of both data sets is 256 bytes. The key is in positions 6 
through 15 of the records in both data sets. The transaction code is in position 5 
of records on the transaction tape. The work area (REPLAREA) size is equal to 
the maximum record length plus 16 bytes. 

180 MVSjXA Data Administration Guide 

/ 

() 



( 

( 

//INDEXDD DD 
//TAPEDD DD 

ISUPDVLR START 

NEXTREC GET 
CLI 

* BL 
READ 
CHECK 
CLI 
BH 

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=l, ... ),---

o 
TPDATA,TRANAREA 
TRANCODE,2 

REPLACE 
DECBRW,KU,,'S' ,IS' ,MF=E 
DECBRW, DSORG=IS 
TRANCODE,2 
CHANGE 

Determine if replacement or 
other transaction 
Branch if replacement 
Read record for update 
Check exceptional conditions 
Determine if change or append 
Branch if change 

* CODE TO MOVE RECORD INTO REPLACEA+l6 AND APPEND DATA FROM TRANSACTION 
* RECORD 

* 
* 

CHANGE 

MVC DECBRW+6(2),REPLAREA+l6 Move new length from RDW 
into DECBLGTH (DECB+6) 

WRITE DECBRW,KN"REPLAREA,MF=E Rewrite record with 
changed length 

CHECK DECBRW,DSORG=IS 
B NEXTREC 

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD 

WRITE DECBRW,K,MF=E Rewrite record with no 
* change of length 

CHECK DECBRW, DSORG=IS 
B NEXTREC 

REPLACE MVC DECBRW+6(2),TRANAREA Move new length from RDW 
* into DECBLGTH (DECB+6) 

WRITE DECBRW,KN"TRANAREA-l6,MF=E Write transaction record 
* as replacement for record 
* with the same key 

CHECK DECBRW,DSORG=IS 
B NEXTREC 

CHECKERR SYNAD routine 

REPLAREA DS CL272 
TRANAREA DS CL4 
TRANCODE DS CLl 
KEY DS CLlO 
TRANDATA DS CL24l 

READ DECBRW,KU,ISDATA,'S' ,'S',KEY,MF=L 
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECKERR 
TPDATA DCB 

Figure 62. Directly Updating an Indexed Sequential Data Set with Variable-Length Records 

Chapter 12. Processing an Indexed Sequential Data Set 181 



Adding Records to an Indexed Sequential Data Set 

Either the queued access technique or the basic access technique may be used to 
add records to an indexed sequential data set. A record to be inserted between 
records already in the data set must be inserted by the basic access method using 
WRITE KN (key new). Records added to the end of a data set, that is, records 
with successively higher keys, may be added to the prime data area or the 
overflow area by the basic access method using WRITE KN, or they may be 
added to the prime data area by the queued access technique using the PUT 
macro. 

Inserting New Records into an Existing Indexed Sequential Data Set 

As you add records to an indexed sequential data set, the system inserts each 
record in its proper sequence according to the record key. The remaining records 
on the track are then moved up one position each. If the last record does not fit 
on the track, it is written in the first available location in the overflow area. A 
lO-byte link field is added to the record put in the overflow area to connect it 
logically to the correct track. The proper adjustments are made to the track 
index entries. This procedure is illustrated in Figure 63 on page 184. 

Subsequent additions are written either on the prime track or as part of the 
overflow chain from that track. If the addition belongs after the last prime record 
on a track but before a previous overflow record from that track, it is written in 
the first available location in the overflow area. Its link field contains the address / '\ 
of the next record in the chain. 

For BISAM, if you add a record that has the same key as a record in the data 
set, a "duplicate record" condition is indicated in the exception code. However, if 
you specified the delete option and the record in the data set is marked for 
deletion, the condition is not reported and the new record replaces the existing 
record. (For more information about exception codes, see Data Administration: 
Macro Instruction Reference.) 

Adding New Records to the End of an Indexed Sequential Data Set 

Records added to the end of a data set, that is, records with successively higher 
keys, may be added by the basic access method using WRITE KN (key new), or 
by the queued access method using the PUT macro instruction (resume load). In 
either case, records may be added to the prime data area. 

When you use the WRITE KN macro, the record being added is placed in the 
prime data area only if there is room for it on the prime data track containing the 
record with the highest key currently in the data set. If there is not sufficient 
room on -that track, the record is placed ill the overflow area and linked to that 
prime track even though additional prime data tracks originally allocated have not 
been filled. 

When you use the PUT macro (resume load), records are added to the prime 
data area until the space originally allocated is filled. Mter this allocated prime 
area is filled, you can add records to the data set using WRITE KN, in which 

182 MVS/XA Data Administration Guide 



( 

case they will be placed in the overflow area. Resume load is discussed in more 
detail under "Creating an Indexed Sequential Data Set" on page 163. 

In order to add records with successively higher keys using the PUT macro 
(resume load): 

• The key of any record to be added must be higher than the highest key 
currently in the data set. 

• The DD statement must specify DISP= MOD or the EXTEND option is 
specified in the OPEN macro. 

• The data set must have been successfully closed when it was created or when 
records were previously added using the PUT macro. 

You may continue to add fixed-length records in this manner until the original 
space allocated for prime data is exhausted. 

When you add records to an indexed sequential data set using the PUT macro 
(resume load), new entries are also made in the indexes. During resume load on 
a data set with a partially filled track and/or a partially filled cylinder, the track 
index entry and/or the cylinder index entry is overlaid when the track or cylinder 
is filled. If resume load abnormally terminates after these index entries have been 
overlaid, a subsequent resume load will get a sequence check when adding a key 
that is higher than the highest key at the last successful CLOSE but lower than 
the key in the overlaid index entry. When the SYNAD exit is taken for a 
sequence check, register 0 contains the address of the highest key of the data set. 

Maintaining an Indexed Sequential Data Set 

An indexed sequential data set must be reorganized occasionally for two reasons: 

• The overflow area will eventually be filled. 

• Additions increase the time required to locate records directly. 

The frequency of reorganization depends on the activity of the data set and on 
your timing and storage requirements. There are two ways you can accomplish 
reorganization: 

• You can reorganize the data set in two passes by writing it sequentially into 
another area of direct access storage or magnetic tape and then re-creating it 
in the original area. 

• You can reorganize the data set in one pass by writing it directly into another 
area of direct access storage. In this case, the area occupied by the original 
data set cannot be used by the reorganized data set. 

The operating system maintains statistics that are pertinent to reorganization. 
The statistics, written on the direct access volume and available in the DCB for 
checking, include the mimber of cylinder overflow areas, the number of unused 
tracks in the independent overflow area, and the number of references to overflow 

Chapter 12. Processing an Indexed Sequential Data Set 183 



Overflow Entry C_~ 
Initial Format 200 Track TrICk 

2 Index 

10 20 40 100 I Prime 
Data 

150 175 190 200 

I Overflow 

Add Records Track 
25 and 101 Index 

10 20 25 40 
Prime 
Data 

101 150 175 190 

100 
Track 

200 
Track 

Overflqw 1 2 

I Track 3 Track / 

Add Records 100 
I Record 3 Index 26 and 199 

10 20 25 26 
Prime 
Data 

101 150 175 190 I 

100 Track 200 Track 40 Track 3 
1 2 Record 1 Overflow 

Figure 63. Adding Records to an Indexed Sequential Data Set 

records other than the frrst. They appear in the RORGl, RORG2, and RORG3 
fields of the DeB. 

If you indicate when creating or updating the data set that you want to be able to 
flag records for deletion during updating, you can set the delete code (the frrst 
byte of a fixed-length record or the fifth byte of a variable-length record) to 
X ' FF " If a flagged record is forced off its prime track during a: subsequent 
update, it will not be rewritten in the overflow area, as shown in Figure 64 on 
page 185, unless it has the highest key on that cylinder. Similarly, when you 
process sequentially, flagged records are not retrieved for processing. During 
direct processing, flagged records are retrieved the same as any other records, and (" -"" 
you should check them for the delete code,' ~ 

184 MVSjXA Data Administration Guide 



(~ 

Fixed Length 

Variable 
Length 

Initial Format 

Record 100 is 
marked for deletion 
and record 25 is 
added to the 
data set 

Note that a WRITE KN (key new) to a data set containing variable-length 
records removes all the deleted records from that prime data track. 

Note that, to use the delete option, RKP must be greater than 0 for fixed-length 
records and greater than 4 for variable-length records. 

Key Data 

I 
Delete Code 

Key Data 

Delete Code 

10 20 40 100 

150 175 190 200 

40 Track 1 

10 20 25 40 

150 175 190 200 

Figure 64. Deleting Records from an Indexed Sequential Data Set 

Chapter 12. Processing an Indexed Sequential Data Set 185 



Indexed Sequential Buffer and Work Area Requirements 

The only case in which you will ever have to compute the buffer length (BUFL) 
requirements for your program occurs when you use the BUILD or GETPOOL 
macro to construct the buffer area. If you are creating an indexed sequential data 
set (using the PUT macro), each buffer must be 8 bytes longer than the block 
size to allow for the hardware count field, that is: 

Buffer length = 8 + Block size 

(8) Data 
(BlKSIZE) 

<--------~------------Buffe~r----------~-------> 

One exception to this formula arises when you are dealing with an unblocked 
format-F r¢cord whose key field precedes the data field; its relative key position is 
o (RKP = d). In that case, the key length must also be added, that is: 

Buffer length = 8 + Key length + Record length 

(8) Key 
(KEYLEN) 

Data 
ClRECl) 

<-----------------------Buffe~I-------------------> 

The buffer requirements for using the queued access technique to read or update 
(using the GET or PUTX macro) an indexed sequential data set are discussed 
below. 

For fixed-length unblocked records when both the key and data are to be read 
and for variable-length unblocked records, padding is added so that the data will 
be on a doubleword boundary, that is: 

Buffer length = Key length + Padding + 10 + Block size 

Key ISAM link Field Data 
( KEYLEN) Padding (10) (BlKSIZE) 

<----------------------Buffel~------------------> 

For fixed-length unblocked records when only data is to be read: 

Buffer length = 16 + lRECl 

Padding ISAM link Field 
(6) (10) 

Data 
ClRECl) 

< Buffe~I-------------------> 

186 MVSjXA Data Administration Guide 

(~ 

/ 



For fixed-length blocked records: 

Buffer length = 16 + Block size 

Padding ISAM Link Field 
(6) (10) 

Data 
(BLKSIZE) 

< Buffe'r---------------------> 

For variable-length blocked records, padding is 2 if the buffer starts on a fullword 
boundary that is not also a doubleword boundary or 6 if the buffer starts on a 
doubleword boundary, that is: 

Buffer length = 12 or 16 + Block size 

Padding ISAM Link Field 
(6) (10) 

Data 
(BLKSIZE) 

< Buffer---------------------> 

;' 

If you are using the input data set with fixed-length, unblocked records as a basis 
for creating a new data set, a work area is required. 

The size of the work area is given by: 

Work area = Key length + Record length 

Key Data 
CLRECl) 

<----------------------Work Area--------------------> 

If you are reading only the data portion of fixed-length unblocked records or 
variable-length records, the work area is the same size as the record, that is: 

Work area = Record length 

Data 
CLRECl) 

<------------~--------Work Area--------------------> 

When you use the basic access technique to update records in an indexed 
sequential data set, the key length field need not be considered in determining 
your buffer requirements. The area for fixed-length records must be: 

Buffer length = 16 + Block size 

Padding ISAM Link Field 
(6) (10) 

Data 
(BLKSIZE) 

< Buffer---------------------> 

Chapter 12. Processing an Indexed Sequential Data Set 187 



For variable-length records, padding is 2 if the buffer starts on a fullword 
boundary that is not also a doubleword boundary or 6 if a buffer starts on a 
doubleword boundary. Thus, the area must be: 

Buffer length = 12 or 16 + Blocksize 

Padding ISAM link Field Data 
(6) (10) (BlKSIZE) 

<----------------------Buffe~I-------------------> 

You can save processing time by adding fixed-length or variable-length records to 
a data set by using the MSW A parameter of the DCB macro to provide a special 
work area for the operating system. The size of the work area (SMSW parameter 
in the DCB) must be large enough to contain a full track of data, the count fields 
of each block, and the work space for inserting the new record. 

The size of the work area needed varies according to the record format and the 
device type. You can calculate it during execution using device-dependent 
information obtained with the DEVTYPE macro and data set information from 
the DSCB obtained with the OBTAIN macro. (The DEVTYPE and OBTAIN 
macros are discussed in System-Data Administration.) 

Note that you can use the DEVTYPE macro only if the index and prime areas 
are on devices of the same type or if the index area is on a device with a larger 
track capacity than that of the device containing the prime area. If you are not 
trying to maintain device independence, you may precalculate the size of the 
work area needed and specify it in the SMSW field of the DCB macro. The 
maximum value for SMSW is 65535. 

For calculating the size of the work area, see the storage device capacities shown 
in Figure 68 on page 219 and the device overhead formulas given in "Estimating 
Space Requirements" on page 218. 

For fixed-length blocked records, SMSW is calculated as follows: 

SMSW = (DS2HIRPR) (BLKSIZE + 8) + LRECL + KEYLEN 

The formula for fixed-length unblocked records is 

SMSW = (DS2HIRPR) (KEYLEN + LRECL + 8) + 2 

The value for DS2HIRPR is in the index (format-2) DSCB. Debugging 
Handbook shows the exact location of this field in the index DSCB. If you don't 
use the MSW A and SMSW parameters, the control program supplies a work area 
using the formula BLKSIZE + LRECL + KEYLEN. 

For variable-length records, SMSW may be calculated by one of two methods. 
The first method may lead to faster processing, although it may require more 
storage than the second method. 

The first method is as follows: 

SMSW = DS2HIRPR (BLKSIZE + 8) + LRECL + KEYLEN + 10 

188 MVSjXA Data Administration Guide 



(--

( 

The second method is as follows: 

SMSW = ( (Trk Cap - Bn + 1) / Block length) (BLKSIZE) 
+ 8 (DS2HIRPR) + LRECL + KEYLEN 
+ 10 + (REM - N - KEYLEN) 

In all the above fonnulas, the tenns BLKSIZE, LRECL, KEYLEN, and SMSW 
are the same as the parameters in the DCB macro (Trk Cap = track capacity). 
REM is the remainder of the division operation in the fonnula and N is the ftrst 
constant in the block length formulas described in Figure 69 on page 220. 
(REM-N-KEYLEN) is added only if it is positive. 

The second method yields a minimum value for SMSW. Therefore, the ftrst 
method is valid only if its application results in a value higher than the value that 
would be derived from the second method. If neither MSW A nor SMSW is 
specifted, the control program supplies the work area for variable-length records, 
using the second method to calculate the size. 

Another technique to increase the speed of processing is to provide space in 
virtual storage for the highest-level index. To specify the address of this area, use 
the MSHI operand of the DCB. When the address of this area is specifted, you 
must also specify its size, which you can do by using the SMSI operand of the 
DCB. The maximum value for SMSI is 65535. If you do not use this technique, 
the index on the volume must be searched. If the high-level index is greater than 
65535 bytes in length! your request for the high-level index in storage is ignored. 

The size of the storage area (SMSI parameter) varies. To allocate that space 
during execution, you can fmd the size of the high-level index in the 
DCBNCRHI field of the DCB during your DCB exit routine or after the data set 
is open. Use the DCBD macro to gain access to the DCBNCRHI field (see 
Chapter 5, "Specifying a Data Control Block and Initializing Data Sets" on 
page 41). You can also fmd the size of the high-level index in the DS2NOBYT 
field of the index (fonnat 2) DSCB, but you must use the utility program 
IEHLIST to print the infonnation in the DSCB. You can calculate the size of 
the storage area required for the high-level index by using the formula 

SMSI = (Number of Tracks in High-Level Index) 
(Number of Entries per Track) 
(Key Length + 10) 

The fonnula for calculating the number of tracks in the high-level index is in 
"Calculating Space Requirements for an Indexed Sequential Data Set" on 
page 169. When a data set is shared and has the DCB integrity feature 
(DISP= SHR), the high-level index in storage is not updated when DCB fields 
are changed. 

Controlling an Indexed Sequential Data Set Device 

An indexed sequential data set is processed sequentially or directly. Direct 
processing is accomplished by the basic access technique. Because you provide 
the key for the record you want read or written, all device control is handled 
automatically by the system. If you are processing the data set sequentially, using 
the queued access technique, the device is automatically positioned at the 
beginning of the data set. 

Chapter 12. Processing an Indexed Sequential Data Set 189 



In some cases, you may want to process only a section or several separate 
sections of the data set. You do this by using the SETL macro instruction, 
which directs the system to begin sequential retrieval at the record having a 
specific key. The processing of succeeding records is the same as for normal 
sequential processing, except that you must recognize when the last desired record 
has been processed. At this point, issue the ESETL macro to terminate 
sequential processing. You can then begin processing at another point in the 
data set. If you do not specify a SETL macro prior to retrieving the data, the 
system assumes default SETL values. (See the GET and SETL macros in Data 
Administration: Macro Instruction Reference.) 

SETL-Specify Start of Sequential Retrieval 

The SETL macro enables you to retrieve records starting at the beginning of an 
indexed sequential data set or at any point in the data set. Processing that is to 
start at a point other than the beginning can be requested in the form of a record 
key, a key class (key prefix), or an actual address of a prime data record. 

The key class concept is useful because you do not have to know the whole key 
of the first record to be processed. A key class comprises all the keys that begin 
with identical characters. The key class is defmed by specifying the desired 
characters of the key class at the address specified in the lower-limit operand of 
the SETL macro and setting the remaining characters to the right of the key class 
to binary zeros. 

To use actual addresses, you must keep a record of where the records were 
written when the data set was created. The device address of the block containing 
the record just processed by a PUT -move macro instruction is available in the 
8-byte data control block field DCBLPDA. For blocked records, the address is 
the same for each record in the block. 

Normally, when a data set is created with the delete option specified, deleted 
records cannot be retrieved using the QISAM retrieval mode. When the delete 
option is not specified in the DCB, the SETL macro options function as follows: 

SETL B 

SETLK 

SETL KH 

SETL KC 

SETL I 

Start at the first record in the data set. 

Start with the record having the specified key. 

Start with the record whose key is equal to or higher than the 
specified key. 

Start with the first record having a key that falls into the 
specified key class. 

Start with the record found at the specified direct access 
address in the prime area of the data set. 

Because the DCBOPTCD field in the DCB can be changed after the data set is 
created (by respecifying the OPTCD in the DCB or DD card), it is possible to 
retrieve deleted records. In this case, SETL functions as noted above. 

190 MVSjXA Data Administration Guide 



--------- ,--------, 

When the delete option is specified in the DCB, the SETL macro options 
function as follows: 

SETLB 

SETLK 

SETLKH 

SETLKC 

SETLI 

Start retrieval at the first undeleted record in the data set. 

Start retrieval at the record matching the specified key, if that 
record is not deleted. If the record is deleted, an NRF (no 
record found) indication is set in the DCBEXCD field of the 
DCB, and SYNAD is given control. 

Start with the first undeleted record whose key is equal to or 
higher than the specified key. 

Start with the first undeleted record having a key that falls 
into the specified key class or follows the specified key class. 

Start with the first undeleted record following the specified 
direct access address. 

With the delete option not specified, Q ISAM retrieves and handles records 
marked for deletion as nondeleted records. 

Note: Regardless of the SETL or delete option specified, the NRF condition 
will be posted in the DCBEXCD field of the DCB, and SYNAD is given control 
if the key or key class: 

• Is higher than any key or key class in the data set 

• Do\es not have a matching key or key class in the data set 

ESETL-End Sequential Retrieval " 

The ESETL macro directs the system to stop retrieving records from an indexed 
sequential data set. A new scan limit can then be set, or processing terminated. 
An end-of-data-sefindication automatically terminates retrieval. An ESETL 
macro must be executed before another SETL macro (described above) using the 
same DCB is executed. 

Note: If the previous SETL macro completed with an error, an ESETL macro 
should be executed before another SETL macro. 

Chapter 12. Processing an Indexed Sequential Data Set 191 



() 



( 

( 

(: 

Chapter 13. Generation Data Groups 

A generation data group is a group of related cataloged data sets. The way these 
data sets are cataloged is what makes them a generation data group. Within a 
generation data group, the generations can have like or unlike DeB attributes 
and data set organizations. If the attributes and organizations of all generations 
in a group are identical, the generations can be retrieved together as a single data 
set. Each data set within a generation data group is called a generation data set. 
Generation data sets are sometimes called generations. 

There are advantages to grouping related data sets. Because the catalog 
management routines can refer to the information in a special index-called a 
generation index-in the catalog: 

• All of the data sets in the group can be referred to by a common name. 

• The operating system is able to keep the generations in chronological order. 

• Outdated or obsolete generations can be automatically deleted by the 
operating system. 

The management of a generation data group depends upon the fact that 
generation data sets have sequentially ordered names-absolute and relative 
names-that represent their age. The absolute generation name is the 
representation used by the catalog management routines in the catalog. Older 
data sets have smaller absolute numbers. The relative name is a signed integer 
used to refer to the latest (0), the next to the latest (-1), and so forth, generation. 
The relative number can also be used to catalog a new generation (+ 1). 

A generation data group base is created in an integrated catalog facility or VSAM 
catalog before the generation data sets are cataloged. A generation data group is 
represented in the integrated catalog facility or VSAM catalog by a generation 
data group base entry. The access method services DEFINE command is used to 
create the generation data group base. See Access Method Services Reference for 
information on how to define and/or catalog generation data sets in an integrated 
catalog facility or VSAM catalog. See U tUities for information on how to derme 
and/or catalog generation data sets in an OS eVOL. 

Chapter 13. Generation Data Groups 193 



Absolute Generation and Version Numbers 

An absolute generation and version number is used to identify a specific 
generation of a generation data group. The generation and version numbers are 
in the form GxxxxVyy, where xxxx is an unsigned 4-digit decimal generation 
number (0001 through 9999) and yy is an unsigned 2-digit decimal version 
number (00 through 99). For example: 

• AB.C.GOOOIVOO is generation data set 1, version 0, in generation data group 
AB.C. 

• AB.C.G0009VOl is generation data set 9, version 1, in generation data group 
AB.C. 

The number of generations and versions is limited by the number of digits in the 
absolute generation name, that is, 9999 for generations and 100 for versions. 

The generation number is automatically maintained by the system. The number 
of generations kept depends on the size of the generation index. For example, if 
the size of the generation index allows ten entries, the ten latest generations may 
be maintained in the generation data group. 

The version number allows you to perform normal data set operations without 
disrupting the management of the generation data group. For example, if you 
want to update the second generation in a 3-generation group, replace generation 
2, version 0, with generation 2, version 1. Only one version is kept for each 
generation. 

A generation can be cataloged using either absolute or relative numbers. When a 
generation is cataloged, a generation and version number is placed as a low level 
entry in the generation data group. In order to catalog a version number other 
than VOO, you must use an absolute generation and version number. 

A new version of a specific generation can be cataloged automatically by 
specifying the old generation number along with a new version number. For 
example, if generation AB.C.G0005VOO is cataloged and you now create and 
catalog AB.C.GOOOSVOI, the new entry is cataloged in the location previously 
occupied by AB.C.G0005VOO. This process removes the old entry from the 
catalog but does not scratch the old version. To scratch the old version and 
make its space available for reallocation, a DD card, describing the data set to be 
deleted, with DISP = (OLD, DELETE) should be included at the time the data 
set is to be replaced by the new version. 

Relative Generation Number 

As an alternative to using absolute generation and version numbers when 
cataloging or referring to a generation, you can use a relative generation number. 

c 

To specify a relative number, use the generation data group name followed by a ( .. ""'\ ... d.""': 

negative integer, a positive integer, or a 0, enclosed in parentheses. For example, " ". 
AB.C(-l). AB.C( + I), or AB.C(O). 

194 MVSjXA Data Administration Guide 



( 

The value of the specified integer tells the operating system what generation 
number to assign to a new generation, or it tells the system the location of an 
entry representing a previously cataloged generation. 

When you use a relative generation number to catalog a generation, the operating 
system assigns an absolute generation number and a version number of VOO to 
represent that generation. The absolute generation number assigned depends on 
the number last assigned and the value of the relative generation number that you 
are now specifying. For example if, in a previous job generation, 
AB.C.GOOOSVOO was the last generation cataloged, and you specify AB.C( + 1), 
the generation now cataloged is assigned the number G0006VOO. Though any 
positive relative generation number can be used, a number greater than 1 may 
cause absolute generation numbers to be skipped. For example, if you have a 
single step job, and the generation being cataloged is a + 2, one generation 
number is skipped. However, in a multiple step job, one step may have a + 1 
and a second step a + 2, and no numbers are skipped in this case. 

Note: If you do not specify a volume in the JCL for a new generation data set, 
and the data set is not opened, that data set is not cataloged. 

Programming Considerations for Multiple Step Jobs 

One of the reasons for using generation data groups is to allow the system to 
maintain a given number of related cataloged data sets. If you attempt to delete 
or uncatalog any but the oldest of the data sets of a generation data group in a 
multiple step job, catalog management can lose orientation within the data group. 
This can cause the deletion, uncataloging, or retrieval of the wrong data set when 
referring to a specified generation. The rule is, if you delete a generation data set 
in a multiple step job, do not refer to any older generation in subsequent job 
steps. 

Also, it is recommended that, in a multiple step job, you catalog or uncatalog 
data sets using JCL instead of IEHPROGM or a user program. Because 
ALLOCATIONjUNALLOCATION monitors data sets during job execution 
and is not aware of the functions performed by these programs, data set 
orientation may be lost or conflicting functions may be performed in subsequent 
job steps. 

When you use a relative generation number to refer to a generation that was 
cataloged in a previous job, the relative number has the following meaning: 

• AB.C(O) refers to the latest existing cataloged entry. 

• AB.C(-l) refers to the next-to-the-latest entry, and so forth. 

When cataloging is requested via JCL, all actual cataloging occurs at step 
termination, but the relative generation number remains the same throughout the 
job. Because this is so: 

• A relative ll!lmber used in the JCL refers to the same generation throughout 
a job. 

Chapter 13. Generation Data Groups 195 



• A job step that tenninates abnonnally may be deferred for a later step restart. 
If the step cataloged a generation data set via JCL, you must change all 
relative generation numbers in the succeeding steps via JCL before 
resubmitting the job. 

For example, if the succeeding steps contained the relative generation numbers: 

• A.B.C( + I), that refers to the entry cataloged in the tenninated job step, or 

• A.B.C(O), that refers to the next to the latest entry, or 

• A.B.C(-I), that refers to the latest entry, prior to A.B.C(O), 

you must change them as follows before the step can be restarted: A.B.C(O), 
A.B.C(-I), A.B.C(-2), and so forth. 

Generation Data Group Naming for ISO/ANSI/FIPS Version 3 Labels 

In a Version 3 ISO/ANSIlFIPS label (LABEL = (,AL)), the generation number 
and version number are maintained separately from the me identifier. During 
label processing, the generation number and version number are removed from 
the generation data set name. The generation number is placed in the generation 
number field (me label 1 positions 36 through 39), and the version number is 
placed in its position on the same label (position 40 and 41). The me identifier 
portion of a Version 3 HDRl/EOFl/EOVllabel contains the generation data set 
name without the generation number and version number. 

For Version 3 labels, you must observe the following specifications created by the 
generation data group naming convention. 

• Data set names whose last 9 characters are of the fonn .GnnnnVnn (n is 0 
through 9) can only be used to specify GDG data sets. When a name ending 
in .GnnnnVnn is encountered, it is automatically processed as a GOG. The 
generation number Gnnnn and the version number Vnn are separated from 
the rest of the data set name and placed in the generation number and 
version number fields. 

• Tape data set names for GOO files are expanded from a maximum of 8 
user-specified characters to 17 user-specified characters. (The tape label me 
identifier field has space for 9 additional user-specified characters because the 
generation number and version number are no longer contained in this field.) 

• A generation number of all zeros is not valid, and will be treated as an error 
during label validation. The error appears as a "RANG" error in message 
IEC512I (IECIEUNK) during the label validation installation exit. 

• In an MVS system-created GOG name, the version number will always be o. 
(MVS will not increase the version number by 1 for subsequent versions.) 
To obtain a version number other than 0, you must explicitly specify the 
version number (for example, A.B.C.G0004V03) when the data set is created. 
You must also explicitly specify the version number to retrieve a GOG with 
a version number other than o. 

196 MVSjXA Data Administration Guide 

~\, ,,; 



( 

( 

• Because the generation number and version number are not contained on the 
identifier of HDR1, generations ofthe same GOG will have the same name. 
Therefore, an attempt to place more than one generation of a GOG on the 
same volume will result in an ISO/ANSI/PIPS standards violation in a 
system supporting Version 3, and MVS will enter the validation installation 
exit. 

Creating a New Generation 

To create a new generation data set, you must fIrst allocate space for the 
generation, then catalog the generation. 

Allocating a Generation 

To take full advantage of the facilities of the system, the allocation can be 
patterned after a previously allocated generation in the same group. This is 
accomplished by the specification of DCB attributes for the new generation as 
described below. 

If you are using absolute generation and version numbers, DCB attributes for a 
generation can be supplied directly in the DCB parameter of the DO statement 
defIning the generation to be created and cataloged. 

If you are using relative generation numbers to catalog generations, DCB 
attributes can be supplied either: (1) by creating a model DSCB on the volume 
on which the index resides (the volume containing the catalog) or (2) by referring 
to a cataloged data set for the use of its attributes. Attributes can be supplied 
before you catalog a generation, when you catalog it, or at both times, as follows: 

1. Create a model DSCB on the volume on which your index resides. You can 
provide initial DCB attributes when you create your model; however, you 
need not provide any attributes at this time. Because only the attributes in 
the data set label are used, the model data set should be allocated with 
SPACE = (TRK,O) to conserve direct access space. Initial or overriding 
attributes can be supplied when you create and catalog a generation. l To 
create a model DSCB, include the following DD statement in the job step 
that builds the index or in any other job step that precedes the step where 
you create and catalog your generation. 

Iiname DD DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,(O)), 
II UNIT=yyyy,VOLUME=SER=xxxxxx, 
II DCB=(applicable subparameters) 

Only one model DSCB is necessary for any number of generations. If you plan to 
use only one model, do not supply DCB attributes when you create the model. 
When you subsequently create and catalog a generation, include necessary DCB 
attributes in the DO statement referring to the generation. In this manner, any 
number of generation data groups can refer to the same model. Note that the 
catalog and model data set label are always located on a direct access volume, even 
for a magnetic tape generation data group. 

Chapter 13. Generation Data Groups 197 



Passing a Generation 

The DSNAME is the common name by which each generation is identified; 
xxxxxx is the serial number of the volume containing the catalog. If no DCB 
subparameters are wanted initially, you need not code the DCB parameter. 

2. You do not need to create a model DSCB if you can refer to a cataloged data 
set whose attributes are identical to those you desire or to an existing model 
DSCB for which you can supply overriding attributes. To refer to a 
cataloged data set for the use of its attributes, specify DCB = (dsname) on the 
DD statement that creates and catalogs your generation. To refer to an 
existing model, specify DCB = (modeldscbname, your attributes) on the DD 
statement that creates and catalogs your generation. 

A new generation may be passed when created. That generation may then be 
cataloged in a succeeding job step or deleted at the end of the job as in normal 
disposition processing when DISP = (,PASS) is specified on the DD statement. 

However, after a generation has been created with DISP= (NEW,PASS) specified 
on the DD statement, another new generation for that data group must not be 
cataloged until the pasSed version has been deleted or cataloged. To do so would 
cause the wrong generation to be used when referencing the passed generation 
data set. If that data set was later cataloged, a bad generation would be cataloged 
and a good one lost. 

For example, if AB.C( + 1) was created with DISP= (NEW,PASS) specified on', 
the DD statement, then AB.C.( + 2) must not be created with 
DISP = (NEW,CA TLG) until AB.C( + 1) has been cataloged or deleted. 

By using the proper JCL, the advantages to this support are: 

• JCL will not have to be changed in order to rerun the job. 

• The lowest generation version will not be deleted from the index until a valid 
version is cataloged. 

Creating an ISAM Data Set as Part of a Generation Data Group 

To create an indexed-sequential data set as part of a generation data group, you 
must: (1) create the indexed-sequential data set separately from the generation 
group and (2) use IEHPROGM to put the indexed-sequential data set into the 
generation group. 

In an integrated catalog facility and VSAM catalogs, use access method services 
commands to catalog the data set. In an OS CVOL, use the RENAME function 
to rename the data set. Then use the CA TLG function to catalog the data set. 
For instance, if MASTER is the name of the generation data group, and 
Ggggg Vvv is the absolute generation name, you would code the following: 

RENAME DSNAME=ISAM,VOL=3380=SCRTCH,NEWNAME=MASTER.GggggVvv 
CATLG DSNAME=MASTER.GggggVvv,VOL=3380=SCRTCH 

\ 

198 MVSjXA Data Administration Guide 



-------- --~~------

( . Retrieving a Generation 

(-

A generation may be retrieved through the use of job control language 
procedures. Any operation that can be applied to a nongeneration data set can 
be applied to a generation. For example, a generation can be updated and 
reentered in the catalog, or it can be copied, printed, punched, or used in the 
creation of new generation or nongeneration data sets. 

You can retrieve a generation by using either relative generation numbers or 
absolute generation and version numbers. 

Because two or more jobs can compete for the same resource, generation data 
groups should be updated with care, as follows: 

• No two jobs running concurrently should refer to the same generation data 
group. As a partial safeguard against this situation, use absolute generation 
and version numbers when cataloging or retrieving a generation in a 
multiprogramming environment. If you use relative numbers, a job running 
concurrently may update the generation data group index, perhaps cataloging 
a new generation which you will then retrieve in place of the one you 
wanted. 

• Even when using absolute generation and version numbers, a job running 
concurrently might catalog a new version of a generation or perhaps delete 
the generation you wanted to retrieve. For this reason, some degree of 
control should be maintained over the execution of job steps referring to 
generation data groups. 

Building a Generation Data Group Index 

. I 

A generation data group is managed via the information found in a generation 
index. (Note that an alias name cannot be assigned to the highest level of a 
generation index.) The BLDG function of IEHPROGM builds the index. The 
BLDG function also indicates how older or obsolete generations are to be 
handled when the index is full. For example, when the index is full, you may 
want to empty it, scratch existing generations, and begin cataloging a new series 
of generations. 

Mter the index is built, a generation can be cataloged by its generation data 
group name and either an absolute generation and version number or a relative 
generation number. 

Examples of how to build a generation data group index are found in Utilities, 
under IEHPROGM . 

Chapter 13. Generation Data Groups 199 





:( 

Chapter 14. 1/0 Device Control Macros 

The operating system provides you with several macros for controlling 
input/output devices. Each is, to varying degrees, device dependent. Therefore, 
you must exercise care if you want to achieve device independence. 

When you use the queued access technique, only unit record equipment can be 
controlled directly. When using the basic access technique, limited device 
independence can be achieved between magnetic tape and direct access devices. 
You must check all read or write operations before issuing a device control 
macro. 

CNTRL-Control an 1/0 Device 

The CNTRL macro performs these device-dependent control functions: 

• Card reader stacker selection (SS) 

• Printer line spacing (SP) 

• Printer carriage control (SK) 

• Magnetic tape backspace (BSR) over a specified number of blocks 

• Magnetic tape backspace (BSM) past a tapemark and forward space over the 
tapemark 

• Magnetic tape forward space (FSR) over a specified number of blocks 

• Magnetic tape forward space (FSM) past a tapemark and a backspace over 
the tapemark 

Backspacing moves the tape toward the load point; forward spacing moves the 
tape away from the load point. 

Note that the CNTRL macro cannot be used with an input data set containing 
variable-length records on the card reader. 

If you specify OPTCD = H in the DCB parameter field of the DD statement, you 
can use the CNTRL macro to position DOS tapes that contain embedded DOS 
checkpoint records. The CNTRL macro cannot be used to backspace DOS 
7-track tapes that are written in data convert mode and contain embedded 
checkpoint records. 

Chapter 14. I/O Device Control Macros 201 



PRTOV-Test for Printer Overflow 

The PRTOV macro tests for channel 9 or 12 of the printer carriage control tape 
or the forms control buffer (FCB). An overflow condition causes either an 
automatic skip to channel lor, if specified, transfer of control to your routine for 
overflow processing. If you specify an overflow exit routine, set DCBIFLGS to 
X' 00' before issuing another PRTOV. 

If the data set specified in the DCB is not for a printer, no action is taken. 

SETPRT-Printer Setup 

The SETPRT macro instruction is used to control how information is printed. 
It is used with the 3800 Printing Subsystem and with various other universal 
character set (UCS) printers. 

For the IBM 3800 Printing Subsystem, the SETPR T macro instruction is used to 
initially set or dynamically change the printer control information. For additional 
information on how to use the SETPR T macro with the 3800 printer, see IBM 
3800 Printing Subsystem Programmer's Guide. 

For printers that have a universal character set (UCS) buffer and optionally, a 
forms control buffer (FCB), the SETPRT macro instruction is used to specify the 
UCS and/or FCB images to be used. Note that universal character sets for the 
various printers are not compatible. The three formats of FCB images (the FCB 
image for the 3800 Printing Subsystem, the 4248 format FCB and the 3211 
format FCB) are incompatible. The 3211 format FCB is used by the 3203, 3211, 
4248, 3262 Model 5, and 4245 printers. 

IBM-supplied UCS images, UCS image tables, FCB images, and character 
arrangement table modules are included in the SYS I.1MAGELIB at system 
generation time. For 1403, 3203, 3211, 3262 Model 5, 4245, and 4248 printers, 
user-defmed character sets can be added to SYSl.IMAGELIB. For a description 
of how images are added to SYS l.IMAGELIB and how band names/aliases are 
added to image tables, see System-Data Administration. For the 3800, 
user-defmed character arrangement table modules, FCB modules, GRAPHIC 
modules, copy modification modules, and library character sets can be added to 
SYSI.lMAGELIB as described in Utilities. For information on building a 4248 
format FCB (which can also be used for the IBM 3262 Model 5 printer), see 
Utilities. 

The FCB contents can be selected from the system library (or an alternate library 
if you are using a 3800), or defmed in your program through the exit list of the 
DCB macro instruction, as discussed under "Exit List (EXLST)" on page 80. 

For a non-3800 printer, the specified UCS or FCB image should be found in one 
of the following: 

• SYS l.IMAGELIB 

• Image table (UCS Image only) 

• DCB exit list for an FCB 

202 MVS/XA Data Administration Guide 

( .. -" 
J 



( 

If the image is not found, the operator is asked to specify an alternate image 
name or cancel the request. 

For a printer that has no carriage control tape, you can use the SETPRT macro 
instruction to select the FCB, to request operator verification of the contents of 
the buffer, or to allow the operator to align the paper in the printer. 

BSP-Backspace a Magnetic Tape or Direct Access Volume 

The BSP macro backspaces one block on the magnetic tape or direct access 
volume being processed. The block can then be reread or rewritten. An attempt 
to rewrite the block destroys the contents of the remainder of the tape or track. 

The direction of movement is toward the load point or beginning of the extent. 
You may not use the BSP macro if the track overflow option was specified or if 
the CNT~L, NOTE, or POINT macro instruction is used. The BSP macro 
should be used only when other device control macros couid not be used for 
backspacing. 

Any attempt to backspace across a ftle mark will result in a return code of 
X ' 04' in register 15 and your tape or direct access volume will be positioned 
after the fue mark. This means you cannot issue a successful backspace 
command after your EODAD routine is entered unless you first reposition the 
tape or direct access volume into your data set. (CLOSE TYPE = T can position 
you at the end of your data set.) 

You can use the BSP macro to backspace DOS tapes containing embedded DOS 
checkpoint records. If you use this means of backspacing, you must test for and 
bypass the embedded checkpoint records. You cannot use the BSP macro for 
DOS 7-track tapes written in translate mode. 

NOTE-Return the Relative Address of a Block 

The NOTE macro requests the relative address of the block just read or written. 
In a multivolume data set, the address is relative to the beginning of the data set 
on the volume currently being processed. 

For magnetic tape, the address is in the form of a 4-byte relative block address. If 
TYPE = REL is specified or defaults, the address provided by the operating 
system is returned in register 1. If TYPE = ABS is specified, the physical block 
identifier of a data block on tape is returned in register O. The relative block 
address or the block identifier can later be used as a search argument for the 
POINT macro. 

For a direct access device, the address is in the form of a 4-byte relative track 
address. The address provided by the operating system is returned in register 1, 
and the amount of unused space available on the track of the direct access device 
is returned in register O. 

Chapter 14. 110 Device Control Macros 203 



POINT-Position to a Block 

The POINT macro causes repositioning of a magnetic tape or direct access 
volume to a specified block. The next read or write operation begins at this 
block. In a multivolume data set, you must ensure that the volume referred to is 
the volume currently being processed. For disk, if a write operation follows the 
POINT macro, all of the track following the write operation is erased, unless the 
data set is opened for UPDAT. POINT is not meant to be used before a 
WRITE macro when a data set is opened for UPDAT. If you specify 
o PTCD = H in the DCB parameter field of the DO statement, you can use the 
POINT macro to position DOS tapes that contain embedded checkpoint records. 
The POINT macro cannot be used to backspace DOS 7-track tapes that are 
written in data convert mode and contain embedded checkpoint records. 

If you specify TYPE = ABS, you can use the physical block identifier as a search 
argument to locate a data block on tape. The identifier may be provided fi:om 
the output of a prior execution of the NOTE macro. 

When using the POINT macro for a direct access device that is opened for 
OUTPUT, aUTIN, or INOUT, and the record format is not standard, the 
number of blocks per track may vary slightly. 

SYNCDEV-Control~Data Synchronization 

The SYNCDEV macro controls data synchronization for devices supporting 
buffered write mode. Data still in the buffer may not yet reside on the fmal 
recording medium. This is referred to as data that is not synchronized. You can 
either 

• Request information regarding synchronization. 

• Demand that synchronization occur based on a specified number of data 
blocks that are allowed to be buffered. If zero is specified, synchronization 
will always occur. 

When SYNCDEV completes successfully (return code 0), a value will be returned 
that indicates the number of data blocks remaining in the control unit buffer. 

204 MVSjXA Data Administration Guide 



( 

(-

----------

Chapter 15. Protecting Data 

Control of confidential data in a data set is provided through password 
protection. You can prevent unauthorized access to payroll data, sales forecast 
data, and all other data sets that require special security attention. An individual 
can use a security-protected data set only after supplying a predefined password. 

Password Protection for Non-VSAM Data Sets 

Password protection as described here applies to non-VSAM data sets only. For 
infonnation on password protection for VSAM data sets, see Access Method 
Services Reference. 

In addition to the usual label protection that prevents opening of a data set 
without the correct data set name, the operating system provides data set security 
options that prevent unauthorized access to confidential data. Two levels of 
protection options are available. You specify these options in the LABEL field 
of a DD statement with the parameter PASSWORD or NOPWREAD. 

• Password protection (specified by the PASSWORD parameter) makes a data 
set unavailable for all types of processing until a correct password is entered 
by the system operator, or for a TSO job by the TSO user. 

• No-password-read protection (specified by the NOPWREAD parameter) 
makes a data set available for input without a password, but requires that the 
password be entered for output or delete operations. 

If an incorrect password is entered twice when a job is being requested by the 
open or EOV routine, the job is terminated by the system. For a SCRATCH or 
RENAME request, a return code is given. 

You can request password protection when you create the data set, by using the 
LABEL field of the DD statement in your JCL. The system sets the data set 
security byte either in the standard header label I as shown in Magnetic Tape 
Labels and File Structure or in the identifier data set control block (DSCB) as 
shown in Debugging Handbook. After you have requested security protection for 
magnetic tapes, you cannot remove it with JCL unless you re-create the data set 
and scratch the protected data set. 

In addition to requesting password protection in your JCL, you must enter at 
least one record for each protected data set in a data set named PASSWORD, 
which must be created on the system-residence volume. You should also request 

Chapter 15. Protecting Data 205 



password protection for the PASSWORD data set itself to prevent both reading C' '.". 
and writing without knowledge of the password. 

For a ~ta set on a direct access device, you can place the data set under 
protection when you enter its password in the PASSWORD data set. You can 
use the PROTECT macro or the IEHPROGM utility program to add, change, 
or delete an entry in the PASSWORD data set; with either of these methods, the 
system updates the DSCB of the data set to reflect its protected status. This 
provision eliminates the need for you to use JCL whenever you add, change, or 
remove security protection for a data set on a direct access device. System-Data 
Administration describes how to maintain the PASSWORD data set, including 
the PROTECT macro instruction; Utilities describes the IEHPROGM utility 
program. 

RACF Protection for Non-VSAM Data Sets 

Resource Access Control Facility (RACF) protection as described here applies to 
non-VSAM data sets, tape data sets, and tape volumes. For information on 
RACF protection for VSAM data sets, see VSAM Administration Guide. For 
detailed information on RACF protection for data sets, see RA CF General 
Information Manual and RACF Security Administrator's Guide. 

RACF is an IBM licensed program that provides access control by identifying 
and verifying users and authorizing access to DASD 

You may defme a data set to RACF automatically or explicitly. The automatic 
defmition occurs when space is allocated for the DASD data set, if the user has 
the automatic data set protection attribute or if PROTECT = YES is coded on 
the DD statement. The explicit defmition of a data set to RACF is by use of the 
RACF command language. A tape volume is defmed to RACF explicitly by use 
of the RACF command language or automatically. All data sets on a tape 
volume are RACF protected if the volume is RACF protected. 

Five levels of access authority are possible in a RACF-defmed data set or tape 
volume. 

ALTER 
You have total control over the data set. If you defme the data set or tape 
volume to RACF, you have ALTER access authority. With ALTER 
authority, you can read and write the data set or tape volume, rename the 
data set, and scratch the data set, and you may authorize other users access 
to the tape volume or data set. 

CONTROL 
For non-VSAM data sets, CONTROL authority is equivalent to UPDATE 
authority. 

UPDATE 
You are authorized to open the data set or tape volume for 0 UTPUT and 
all other open options. 

206 MVSjXA Data Administration Guide 



i ( 

READ 
You are authorized to open the data set or tape volume for INPUT only. 

NONE 
You are not authorized to open the data set or tape volume. 

If a data set is dermed to RACF and is password protected, access to the data set 
is authorized only through RACF authorization checking. If a tape volume is 
dermed to RACF and the data set(s) on the tape volume is password protected, 
access to any of the data sets is authorized only through RACF authorization 
checking of the volume. Data set password protection is bypassed. 

To protect multivolume notl-VSAM DASD and tape data sets, you must defme 
each volume of the data set to RACF as part of the same volume set. When a 
RACF-protected data set is opened for output and extended to a new volume, 
the new volume is automatically dermed to RACF as part of the same volume 
set. When a multivolume physical-sequential data set is opened for output either 
each subsequent volume must be RACF protected as part of the same volume 
set, or the data set must not yet exist on the volume. multivolume tape data set 
is opened for output, either each s~bsequent volume must be RACF protected as 
part of the same volume set, or the tape volume must not yet be dermed to 
RACF. If the fIrst volume opened is not RACF protected, no subsequent 
volume may be RACF protected. If a multivolume data set is opened for input 
(or a nonphysical-sequential data set is opened for output), no such consistency 
check is performed when subsequent volumes are accessed. 

ISO/ANSI/FIPS Version 3 installation exits that execute under RACF will 
receive control during ANSI volume label processing. Control will go to the 
RACHECK preprocessing and postprocessing installation exits. The same 
IECIEPRM exit parameter list passed to ANSI installation exits will be passed 
to the RACF installation exits if the accessibility code is any alphabetic character 
from A through Z. For more information, see Magnetic Tape Labels and File 
Structure. 

Chapter 15. Protecting Data 207 





( 

Appendix A. Direct Access Labels 

Only standard label formats are used on direct access volumes. Volume, data set, 
and optional user labels are used (see Figure 65). In the case of direct access 
volumes, the data set label is the data set control block (DSCB). 

Cylinder 

Cylinder 0 
Tracks 

Track 0 

[ 

[ 

Figure 65. Direct Access Labeling 

Volume-Label Group 

IPL Records 

Volume Label 

Add;';on,' L,bel, \ 
(Optionall -

:--J 

VTOC DSCB 

Free Space DSCB 

DSCB 

DSCB 

-DCSB- l 

Unused Storage 
Area for Data Sets 

I 

... 

> VTOC 

The volume-label group immediately follows the first two initial program loading 
(IPL) records on track 0 of cylinder 0 of the volume. It consists of the initial 
volume label at record 3 plus a maximum of seven additional volume labels. The 
initial volume label identilles a volume and its owner, and is used to verify that 
the correct volume is mounted. It can also be used to prevent use of the volume 

Appendix A. Direct Access Labels 209 



by unauthorized programs. The additional labels can be processed by an 
installation routine that is incorporated into the system. 

The format of the direct access volume label group is shown in Figure 66. 

(As many as Seven Additional Volume Labels) 

Field 1 (3) 

2 (1) 

3 (6) 

4 (1) 

5 (5) 

6 (21) 

7 (15) 

8 (29) 

Figure 66. Initial Volume Label 

Initial Volume Label Fonnat 

80-Byte Physical Record 

Volume Label Identifier (VOL) 

Volume Label Number (1) 

Volume Serial Number 

Volume Security 

VTOC Pointer 

Reserved (Blank) 

Owner Identification 

Blank 

The 80-byte initial volume label is preceded by a 4-byte key containing VOLl. 

Volume Label Identifier (VOL): Field I identifies a volume label. 

Volume Label Number (I): Field 2 identifies the relative position of the volume 
label in a volume label group. It must be written as X'FI'. 

The operating system identifies an initial volume label when, in reading the initial 
record, it [mds that the fIrst 4 characters of the record are VOLI. 

Volume Serial Number: Field 3 contains a unique identification code assigned 
when the volume enters the system. You can place the code on the external 
surface of the volume for visual identification. The code is normally numeric 
(000001 through 999999), but may be any 1 to 6 alphameric or national (#, $, @) 
characters, or a hyphen (X'60'). If this fIeld is less than 6 characters, it is padded 
on the right with blanks. 

Volume Security: Field 4 is reserved for use by installations that want to provide 
security for volumes. Make this fIeld a X'CO' unless you have your own security r(-:'j 
processing routines. ~J 

210 MVSjXA Data Administration Guide 



(-

( 

c-

VTOC Pointer: Field 5 of direct access volume label I contains the address of 
the VTOC in the form of CCHHR. 

Reserved: Field 6 is reserved for possible future use. Leave it blank. 

Owner Name and Address Code: Field 7 contains a unique identification of the 
owner of the volume. 

All the bytes in Field 8 are left blank. 

Data Set Control Block (DSCB) 

The system automatically constructs a DSCB when space is requested for a data 
set on a direct access volume. Each data set on a direct access volume has one or 
more DSCBs to describe its characteristics. The DSCB appears in the VTOC 
and, in addition to space allocation and other control information, contains 
operating system data, device-dependent information, and data set characteristics. 
There are seven kinds of DSCBs, each with a different purpose and a different 
format number. For an explanation of Format-l through Format-6 DSCBs, see 
System-Data Administration. Format 0 DSCBs are used to indicate empty space 
in the VTOC. 

User Label Groups 

Field 1 

2 

3 

User header and trailer label groups can be included with data sets of physically 
sequential or direct organization. The labels in each group have the format 
shown in Figure 67. 

80-Byte Physical Record (Maximum of 8) 
~---------------, 

(3) 

(1) 

(76 ) 

label Identifier (UHl if Header, UTl if Trailer) 

label Number (1 - 8) 

User-Specified 

Figure 67. User Header and Trailer Labels 

Each group can include as many as eight labels, but the space required for both 
groups must not be more than I track on a direct access device. The current 
minimum track size allows a maximum of eight labels, including both header and 
trailer labels. Consequently, a program becomes device dependent (among direct 
access devices) when it creates more than eight labels. 

Appendix A. Direct Access Labels 211 



If user labels are specified in the DD statement (LABEL = SUL), an additional 
track is normally allocated when the data set is created. No additional track is 
allocated when specific tracks are requested (SPACE = (ABSTR, ... )), or when 
tracks allocated to another data set are requested (SUBALLOC = ... ). In either 
case, labels are written on the fIrst track that is allocated. 

User Header Label Group: The operating system writes these labels as directed 
by the processing program recording the data set. The fIrst 4 characters of the 
user header label must be UHLl, ... , UHL8; you can specify the remaining 76 
characters. When the data set is read, the operating system makes the user header 
labels available to the problem program for processing. 

User Trailer Label Group: These labels are recorded (and processed) as explained 
in the preceding text for user header labels, except that the fIrst 4 characters must 
be UTLl, ... ,UTL8. 

User Header and Trailer Label Fonnat 

Label Identifier: Field I indicates the kind of user header label. UHL indicates a 
user header label; UTL indicates a user trailer label. 

Label Number: Field 2 identifies the relative position (1 to 8) of the label within 
the user label group. 

User-Specified: Field 3 (76 bytes). 

212 MVSjXA Data Administration Guide 



( 

(-

Appendix B. Control Characters 

Machine Code 

As an optional feature, each logical record, in any record fonnat, may include a 
control character. This control character is recognized and processed if a data set 
is being written to a printer or punch. 

For fonnat-F and fonnat-U records, this character is the frrst byte of the logical 
record. 

For fonnat-V records, it must be the fIfth byte of the logical record, immediately 
following the record descriptor word. 

Two options are available. If either option is specified in the DCB, the character 
must appear in every record and other line spacing or stacker selection options 
also specified in the DCB are ignored. 

You can specify in the DCB that the machine code control character has been 
placed in each logical record. If the record is to be written, the appropriate byte 
must contain the command code bit configuration specifying both the write and 
the desired carriage or stacker select operation. 

The machine code control characters for a printer are: 

Print-Then 
Act 

X'OI' 

X'09' 

X'Il' 

X'19' 

X'89' 

X'91' 

X'99' 

Action 

Print only (no space) 

Space I line 

Space 2 lines 

Space 3 lines 

Skip to channel I 

Skip to channel 2 

Skip to channel 3 

Act Immediately 
without Printing 

X'OB' 

X'B' 

X'IB' 

X'8B' 

X'93' 

X'9B' 

Appendix B. Control Characters 213 



Print-Then Act Immediately 
Act Action without Printing 

X'AI' Skip to channel 4 X'A3' 

X'A9' Skip to channel 5 X'AB' 

X'BI' Skip to channel 6 X'B3' 

X'B9' Skip to channel 7 X'BB' 

X'Cl' Skip to channel 8 X'C3' 

X'C9' Skip to channel 9 X'CB' 

X'Dl' Skip to channel 10 X'D3' 

X'D9' Skip to channel 11 X'DB' 

X'El' Skip to channel 12 X'E3' 

The machine code control characters for a card read punch device are as follows: 

Control Code Action 

X'OI' Select stacker 1 

X'41' Select stacker 2 

X'SA'I Change from line 
mode to page mode 

X'81' Select stacker 3 

IThe 3800 Model 3 all-point-addressable mode uses this code to change from 
comparability to page mode. 

Other command codes for specific devices are contained in publications 
describing the control units and devices. 

214 MVS/XA Data Administration Guide 

~\ 

~) 

/ " 

","j 



( 

( 

Extended American National Standards Institute Code 

----~.-----

In place of machine code, you can specify control characters defmed by the 
American National Standards Institute (ANSI). Whenever IBM publications 
refer to ANSI control characters, they are coded as follows: 

Code Action before Printing a Line 

b Space one line (blank code) 

0 Space two lines 

Space three lines 

Suppress space 

Skip to channel 1 

2 Skip to channel 2 

3 Skip to channel 3 

4 Skip to channel 4 

S Skip to channel 5 

6 Skip to channel 6 

7 Skip to channel 7 

8 Skip to channel 8 

9 Skip to channel 9 

A Skip to channel 10 

B Skip to channel 11 

C Skip to channel 12 

Code Action after Punching a Card 

V Select punch pocket 1 

W Select punch pocket 2 

X'SA'! Change from line to page mode 

IThe 3800 Model 3 all-point-addressable mode uses this code 

These control characters include those defmed by ANSI FORTRAN. If any 
other character is specified, it is interpreted as 'b' or a V, depending on whether it 
is for a printer or a punch; no error indication is returned. 

Appendix B. Control Characters 215 



/ ", 
j 



Appendix C. Allocating Space on Direct Access Volumes 

When direct access storage space is required for a data set, you can specify the 
amount of space needed, the device type, and, optionally, the volume. The 
operating system selects the device and allocates the space accordingly. 

When the data set is to be stored on a direct access volume, you must supply, in 
the DD statement, control information designating the amount of space to be 
allocated and how it is to be allocated. 

The amount of space required can be specified in blocks, tracks, or cylinders. If 
you want to maintain device independence, specify your space requirements in 
blocks. If your request is in tracks or cylinders, you must be aware of such 
device considerations as cylinder and track capacity. 

Cylinder allocation allows faster input/output of sequential data sets than does 
track or block allocation unless your device supports Defme Extent or Locate 
Record. 

Allocation by Blocks: When the amount of space required is expressed in blocks, 
you must specify the number and average length of the blocks within the data set, 
as in this example: 

II DD SPACE=(300,(5000,100)), '" 

300 
5000 

100 

= average block length in bytes 
= primary quantity (number of blocks) 
= secondary quantity, to be allocated 

quantity is not enough (in blocks) 
if the primary 

From this information, the operating system estimates and allocates the number 
of tracks required. Space is always in complete tracks. You may also request 
that the space allocated for a specific number of blocks begin and end on cylinder 
boundaries. 

You must be certain that both the quantity and the increment are large enough 
to contain the largest block to be written. Otherwise, all the space requested is 
allocated but erased as the system tries to fmd a space large enough for the 
record. 

AOocation by Tracks or Cylinders: The amount of space required can be 
expressed in tracks or cylinders, as in these examples: 

II DD SPACE=(TRK,(lOO,5)), .. 
II DD SPACE=(CYL,(3,l)), ... 

Appendix C. Allocating Space on Direct Access Volumes 21 7 



Allocatio" by AbsolqteAddress: If the data set contains location-dependent 
infonnation ~ the fonn of an absolute track address (MBBCCHHR), space 
should be request~dabout the number of tracks and the beginning address, as in 
this example: . 

II DD SPACE=(ABSTR,(SOO,lS»,UNIT=3380, ... 

where 500 tracks are required, beginning at relative track 15, which is cylinder 1, 
track o. 

Allocation of Mass Storage System (MSS) VirtuoJ Volumes: When the data set 
is to be $tored on an MSS virtual volume, a volume group (MSVGP) parameter 
may be specified instead of using the SPACE para,meter on the DD card. Before 
the MSVGP parameter can be used, the volume group must be identified to MSS 
by the utility program IDCAMS. 

Allocation of MSS virtual volume space should be in multiples of cylinders, with 
secondary allocation a multiple of the primary to ensure maximum space usage 
and minimum fragmentation. 

Additional Space Allocation OptiOns: The DD statement provides you with 
much flexibility in specifying space requirements. The options are described in 
detail in JCL. 

Estimating Space Requirements 

To determine how much space your data set requires, you must consider these 
variables for the device type: 

• Track capacity 

• Tracks per cylinder 

• Cylinders per volume 

• Data length (block size) 

• Key length 

• D~Yice overhead 

Figure 68 on page 219 lists the physical characteristics of several direct access 
storage devices. 

218 MVS/XA Data Administration Guide 

/' "'\ 

c 



, (-

, ( 

I 
I 
I 

Maximum Number 
Volume Block size Tracks per of Total 

Device Type per Track! Cylinder Cylinders2 Capacityl,2 

2305-2 Disk 14660 8 96 11258880 

3330/33333 

(Modell) Disk 13030 19 404 100018280 

3330/3333 
(Modell!) Disk 13030 19 808 200036560 

3340/33444 Disk 8368 12 696 
(70 megabytes) 69889536 
348 
(35 megabytes) 34944768 

3350 Disk 19069 30 555 317498850 

3375 Disk 32760S 12 <)59 409868928 

3380 Disk 32760S 15 885 630243900 

3380 
(Models 
AD4 and BD4) Disk 32760S 15 885 630243900 

3380 
(Models 
AE4 and BE4) Disk 32760S 15 1770 1260487800 

Capacity indicated in bytes (when RO is used by the IBM programming system). 

2 Excluding alternate cylinders. 

The Mass Storage System (MSS) virtual volumes assume the characteristics of the 3330/3333, Modell. 

4 The 3344 is functionally equivalent to the 3340 Model 70. 

5 The largest record that can be written on a track is 35616 bytes for the 3375 and 47476 bytes for all 
3380 models. However, for these devices, the largest block size supported by the standard access 
methods is 32760 bytes. 

Figure 68. Direct Access Storage Device Capacities 

The term device overhead refers to the space required on each track for hardware 
data, that is, address markers, count areas, gaps between records, record 0, and so 
forth. Device overhead varies with each device and depends also on whether the 
blocks are written with keys. To compute the actual space required for each 
block, including device overhead, you can use the formulas in Figure 69 on 
page 220. Note that any fraction of a byte must be ignored in any operation of 
the calculation. For example, if the formula gives 15.644 bytes, you must allocate 
15 bytes. 

Appendix C. Allocating Space on Direct Access Volumes 219 



Note: You may choose to use the TRKCALC macro to perfonn track capacity ;' \ 
calculations. See System- Data Administration for further infonnation on i~: 
TRKCALC. 

Bytes Required by Each Data Block 1 

Track 
Device Capacity Blocks with Keys Blocks without Keys 

2305-2 148582 289+KL+DL 198+DL 

3330/33333 13165 191+KL+DL 135+DL 
(Model lor 
11) 

3340/3344 85352 242+KL+DL 167+DL 

3350 192542 267+ KL+ DL 185+DL 

3375 36000 224+ «KL+ 191)/32)(32) + 224+ «DL+ 191)/32)(32) 
«DL+ 191)/32)(32) 

3380 47968 256+ «KL+ 267)/32) 256+ «DL + 267)/32)(32) 
(all models) (32) + «DL + 267)/32)(32) 
( 

3380 Models 47968 256+ «KL+ 267)/32) 256+ «DL + 267)/32)(32) 
AD4and BD4 (32) + «DL + 267)/32)(32) 

3380 Models 47968 256 + «KL + 267)/32) 256+ «DL + 267)/32)(32) 
AE4 and BE4 (32) + «DL + 267)/32)(32) 

Figure 69. Direct Access Device Overhead Formulas 

Legend: 
D L is data length. 
KL is key length. 

Notes: 

2 

Use modulo-32 arithmetic when calculating key length and data length tenns 
in your equations. Compute these tenns ftrst, then round up to the nearest 
increment of 32 bytes before completing the equation. 

This value is different from the maximum block size per track because the 
fonnula for the last block on the track includes an overhead for this device. 

The.Mass Storage System (MSS) virtual volume'S assumes the characteristics 
of the 3330/3333, Model 1. 

The fonnulas can be combined in the following way: 

If you intend to specify your space requirements in tracks (TRK) or cylinders 
(CYL), your estimate should be made as shown above. If you request absolute 
tracks (ABSTR), remember that you cannot allocate track 0, cylinder O. The 

220 MVSjXA Data Administration Guide 

/ '\ 

"- --" 
I 



( 

amount of space required for the VToe will reduce the space available on the 
rest of the volume. 

If you specify your space requirements in average block length, the system 
performs the computations for you. 

Because a sequential data set and a direct data set are created in the same way, 
the estimate and specification of space requirements are identical. If you use the 
WRITE SZ macro, your secondary allocation for a direct data set should be at 
least 2 tracks. Space allocation for a partitioned data set requires that you also 
consider the space used for the directory. Similarly, allocation for an indexed 
sequential data set requires that you consider the space needed for the prime area, 
index areas, and overflow areas. 

Appendix C. Allocating Space on Direct Access Volumes 221 





Appendix D. ISO/ANSI/FIPS Record Control Word and Segment 
Control Word 

Translation of ISO / ANSI/FIPS Record Control Word 

D/DBRDW 

L 

L 

0 

0 

a 
LL 

Data 

The ISO/ANSI/FIPS record control word (RCW) is expressed in ISCII/ASCII 
characters and is 4 bytes long (see Figure 70). Note that the RCW is different 
from the code in the IBM record descriptor word (RDW). The RDW, expressed 
in binary, is the internal data management equivalent of the ISO/ANSI/FIPS 
RCW. . 

Output Translation 

Binarv Value 

OPtional Control 
Character nnnn 

Input Translation 

ISO/ANSI RCW 

n 

n 

n 

n 

a 

Data 

Length in 
ISCII/ASCII 
Numeric 
Characters 

Optional Control 
Character 

Figure 70. Translation of ISO{ANSI{FIPS Record Control Word to D/DB Record Descriptor Word 

Appendix D. ISO/ANSI/FIPS Record Control Word and Segment Control Word 223 



Translation of ISO I ANSI/FIPS Segment Control Word 

DS/DBSSDW 

Reserved 

L 

L 

C' 

0 

LL 

Data 

The ISO/ANSI/PIPS segment control word (SCW) is expressed in ISCII/ASCII 
characters and is 5 bytes in length. (See Figure 71.) Note that the SCW is 
different from the code in the IBM segment descriptor word (SDW). The SDW 
is the internal data management equivalent of the ISO/ANSI/FIPS SCW. Only 4 
bytes are used by data management, but the user buffer area must accommodate 
an extra byte to allow for translation from the ISO/ANSI/FIPS SCW. The SDW 
is expressed in binary. 

Output Translation 

} 8' .. ", V,," 

Segment Position 
Indicator 

LL+1 
nnnn 

Input Translation 

ISO/ANSI sew 

S2 

n 

n 

n 

n 

Data 

Spanning Indicator 

Length in 
ISCII/ASCII 
Numeric 
Characters 

1 C values for SDW (2 low order 
bits) . 

00 = only segment of record 
01 = ftrst segment of record 
11 = intermediate segment of record 
10 = last segment of record 

2 S values for SCW (ASCII characters) 

o = only segment of record 
1 = ftrst segment of record 
2 = intermediate segment of record 
3 = last segment of record 

Figure 71. Translation of ISO/ANSI/FIPS Segment Control Word to DS/DBS Segment Descriptor Word 

224 MVSjXA Data Administration Guide 

/ '\ 



( 

( 

Glossary of Terms and Abbreviations 

The following terms are defined as they are used in this 
book. If you do not find the term you are looking for, 
see the index or the IBM Vocabulary for Data 
Processing, Telecommunications, and Office Systems, 
GC20-1699. 

A. ANSI control code (value of RECFM) 

ABE. abnormal end (value of EROPT) 

ABEND. abnormal end (macro instruction) 

ABSTR. absolute track (value of SPACE) 

ACC. accept erroneous block (value of EROPT) 

AFF. affinity (channel separation parameter of DD 
statement or unit affinity value of UNIT) 

AL. American National Standard Labels 

ANSI. American National Standards Institute 

ASCII. American National Standard Code for 
Information Interchange 

AUL. American National Standard user labels (value 
of LABEL) 

B. blocked records (value of RECFM) 

BCDIC. binary coded decimal interchange code 

BDAM. basic direct access method 

BDW. block descriptor word 

BFALN. buffer alignment (operand of DCB) 

BFTEK. buffer technique (operand of DCB) 

BISAM. basic indexed sequential access method 

BLDL. build list (macro instruction) 

ULKSIZE. blocksize (operand of DCB) 

BP A.J'\1. basic partitioned access method 

BPI. bytes per inch 

BSAM. basic sequential access method 

BSM. backspace past tapemark and forward space 
over tapemark (operand of CNTRL) 

BSP. backspace one block (macro instruction) 

BSR. backspace over a specified number of blocks 
(records) (operand of CNTRL) 

BUFCB. buffer pool control block (operand of DCB) 

BUFL. buffer length (operand of DCB) 

BUF:,\O. buffer number (operand of DCB) 

BUFOFF. buffer offset (length of ASCII block prefix 
by which the buffer is offset; operand of DCB) 

CCW. channel command word 

CONTIG. contiguous space allocation (value of 
SPACE) 

CNTRL. control (macro instruction) 

CSW. channel status word 

CYLOFL. number of tracks for cylinder overflow 
records (operand of DCB) 

D. format-D (ISCII/ASCII variable-length) records 
(value of RECFM) 

DA. direct access (value of DEVD or DSORG) 

DAU. direct access unmovable data set (value of 
DSORG) 

DB. ISCII/ASCII variable-length, blocked records 
(value of RECFM) 

DBS. ISCII/ASCII variable-length, blocked spanned 
records (value of RECFM) 

DCB. data control block (control block name or macro 
instruction or parameter on DD statement) 

Glossary of Terms and Abbreviations 225 



DCBD. data control block dummy section (macro 
instruction) 

DD. data definition(statement) 

DEB. data extent block 

DECB. data event control block 

DEN. magnetic tape density (operand of DCB) 

DEVD. devi~e-dependent (operand of DCB) 

DISP. data set disposition (parameter of DO 
statement) 

DS. ISCII/ASCII variable-length. spanned records 
(value of RECFM) 

DSCB. data set control block 

DSORG. data set organization (operand of DCB) 

EBCDIC. extended binary-coded decimal interchange 
code 

EODAD. end-of-data set exit routine address (operand 
of DCB) 

EOF. end-of-file 

EOV. end-of-volume 

EROPT. error options (operand of DCB) 

ESETL. end sequential retrieval (QISAM macro 
instruction) 

EXCP. execute channel program (macro instruction) 

EXLST. exit list (operand of DCB) 

F •. fixed-length records (value of RECFM) 

FB. fixed-length. blocked records (value of RECFM) 

FBS. fixed-length. blocked. standard records (value of 
RECFM) 

FBT. fixed-length. blocked records with track overflow 
option (value of RECFM) 

FCB. forms control buffer 

FEOV. force end-of-volume (macro instruction) 

FIPS. Federal Information Processing Standard 

FS. fixed-length. standard records (value of RECFM) 

226 MVSjXA Data Administration Guide 

FSM. forward space past tapemark and backspace 
overtapemark (operand of CNTRL) 

FSR. forward space over a specified number of blocks 
(records) (operand of CNTRL) 

GCR. group coded recording(tape recording mode) 

GL. GET macro. locate mode (value of MACRF) 

GM. GET macro. move mode (value of MACRF) 

H. DOS tapes with embedded checkpoint records 
(parameter of OPT CD) 

HA. home address 

ICF catalog. integrated catalog facility catalog 

INOUT. input then output (operand of OPEN) 

1/0. input/output 

lOB. input/output block 

IPL. initial program load 

IRG. interrecord gap 

IS. indexed sequential (value of DSORG) 

ISAM. indexed sequential access method 

ISCII. International Standard Code for Information 
Interchange 

ISO. International Organization for Standardization 

ISU. indexed sequential unmovable (value of DSORG) 

JCL. job control language 

JFCB. job file control block 

JFCBE. job file control block extension for 3800 
printer 

K. 1024 

KEYLEN. key length (operand of DCB) 

LP A. link pack area 

LP ALiB. link pack area library 

LRECL. logical record length (operand of DCB) 

LRI. logical record interface 

M. machine control code (value of RECFM) 

/ " 



MACRF. macro instruction form (operand of DCB) 

MOD. modify data set (value of DlSP) 

MSHI. main storage for highest-level index (operand 
of DCB) 

MSS. Mass Storage System 

MSVC. Mass Storage Volume Control 

MSWA. main storage for work area (operand of DCB) 

NCP. number of channel programs (operand of DCB) 

NOPWREAO. no password required to read a data set 
(value of LABEL) 

NRZI. nonreturn-to-zero-inverted (tape recording 
mode) 

NSL. nonstandard label (value of LABEL) 

NTM. number of tracks in cylinder index for each 
entry in lowest level of master index (operand of DCB) 

OPTCO. optional services code (operand of DCB) 

OS CVOL. operating system control volume 

OS/VS. operating system/virtual storage 

OUTIN. output then input (operand of OPEN) 

PCI. program-controlled interruption 

POAB. parallel data access block 

POS. partitioned data set 

PE. phase encoding (tape recording mode) 

PL. PUT macro, locate mode (value of MACRF) 

PM. PUT macro, move mode (value of MACRF) 

PO. partitioned organization (value of DSORG) 

POU. partitioned organization unmovable (value of 
DSORG) 

PRTSP. printer line spacing (operand of DCB) 

PS. physical sequential (value of DSORG) 

PSU. physical sequential unmovable (value of 
DSORG) 

QISAM. queued indexed sequential access method 

QSAM. queued sequential access method 

RACF. Resource Access Control Facility 

ROBACK. read backward (operand of OPEN) 

ROW. record descriptor word 

RECFM. record format (operand of DCB) 

RKP. relative key position (operand of DCB) 

RLSE. release unused space (DO statement) 

RPS. rotational position sensing 

S. standard format records (value of RECFM) 

SOW. segment descriptor word 

SER. volume serial number (value of VOLUME) 

SETL. set lower limit of sequential retrieval (QISAM 
macro instruction) 

SF. sequential forward (operand of READ or WRITE) 

SK. skip to a printer channel (operand of CNTRL) 

SKP. skip erroneous block (value of EROPT) 

SL. IBM standard labels (value of LABEL) 

SMSI. size of main-storage area for highest-level index 
(operand of DCB) 

SMSW. size of main-storage work area (operand of 
DCB) 

SP. space lines on a printer (operand of CNTRL) 

SS. select stacker on card reader (operand of CNTRL) 

SUL. IBM standard and user labels (value of LABEL) 

SVc. supervisor call 

SVCLIB. supervisor call library 

SYNAO. synchronous error routine address (operand 
of DCB) 

SYSIN. system input stream 

SYSOUT. system output stream 

T. track overflow option (value of RECFM); 
user-totaling(value of OPTCD) 

TlOT. task I/O table 

TRC. table reference character 

Glossary of Terms and Abbreviations 227 



TRTCH. track recording technique (operand of DCB) 

U. undefined length records (value of RECFM) 

UCS. universal character set 

UHL. user header label 

UTL. user trailer label 

V. format-V (variable-length) records (value of 
RECFM) 

228 MVSjXA Data Administration Guide 

VB. variable-length, blocked records (value of 
RECFM) 

VBS. variable-length, blocked, spanned records (value 
ofRECFM) 

VS. variable-length. spanned records 

VSAM catalog. virtual storage access method catalog 

VTOC. volume table of contents 

XLRI. extended logical record interface 

c 



( Index 

abbreviations 225-228 
ABE error option 78 
abend exit 97-102 
abend installation exit 103 
abnormal termination 

abend installation exit 103 
during open, close, or EOV processing 50 

EST AE exit 157 
ST AE exit 157 
STAI exit 157 

ISO/ANSI/FIPS Version 3 tapes 50 
absolute actual address 

defined 7 
absolute generation name 193 
ACC error option 78 
access method services 

DEFINE command 10 
program use of 11 

access methods 
basic 61-73 
defined 2 
queued 2, 35-68 
selecting 35, 36 

access techniques 
basic 2,61-73 
queued 2, 35-68 

acronyms 225-228 
actual device addressing 

BDAM 36 
actual track address 

(MBBCCHHR) 
description 7 
use with direct data sets 153 
use with feedback option 153 

address, direct access storage device 
absolute actual 

description 7 
direct 149 
indirect 150 
relative 

description 7 
in directories 132-135 
use with direct data sets 152 

addressing, types of (BDAM) 36 
alias names in a directory 

effect of changing directory entry 141 
specifying 133 

alignment of buffers 120 
allocation, space 

See space allocation 
American National Standard Code for Information 

Interchange 
See ASCII block prefix 

American National Standard Institute 

See ANSI control characters 
American National Standard labels 9 
ANSI control characters 

described 215 
device type considerations 29 
used with chained scheduling 116 

anticipatory buffering 
omitted with basic access technique 61 
with queued access method 65 

ASCII format 
restriction for 7 -track tape 29 
translating data from 116 

associated data sets 
restriction with chained scheduling 115 

ATLAS macro 73 
automatic blocking/deblocking with queued access 

methods 65 
automatic cataloging of data sets 5 
automatic error options 

See EROPT 
automatic volume switching 57 

FEOV macro 57,65,114 
auxiliary storage 

See data set storage, direct access storage, magnetic 
tape volumes 

backspacing 
BSP macro 203 
CNTRL macro 201 

basic access method 
See also BDAM, BISAM, BPAM, and BSAM 
overlapped I/O 61 

basic access technique 
See also BDAM, BISAM, BPAM, and BSAM 
blocking 61 
deblocking 61 
definition of 61-73 
using BDW 18 

.. BCDIC translation to EBCDIC 30 
BDAM data set 

See also basic access method 
See also basic access technique 
access technique 149 
adding records 154-156 
CHECK macro 64 
creating 150 
dynamic buffering 124, 149 
exclusive control for updating 153 
extended search option 153 
feedback option 153 
organization 149 
processing 149-156 
READ macro 62, 63 

Index 229 



record format 154 
selecting an access method 35, 36 
sharing data set 70, 72 
spanned variable-length records 19-23 
SYNAD routine 78 
updating records 154-156 
user labels 81, 156 
WAIT macro 64 
when sharing a data set 70, 72 
WRITE macro 63 

BDW (block descriptor word) 18 
BFTEK operand (DCB macro) 

BFTEK=A 20,123 
BFTEK = R spanned records 62 

BISAM data set 
See also indexed sequential data set 
dynamic buffering 124 
retrieving 174-180 
sharing a DCB 71 
updating 174-181 
when sharing a data set 70, 71 

BLDL macro 
build list format 139 
coding example 143 
description 139 
set 142 

BLKSIZE operand (DCB macro) 
description 43 
effect of data check on 43 
for card reader and punch 30 
for writing a short block 119 
including block prefix 23 
requirement for direct data set 149 
specifying 59, 217 
when ignored 106, 135 

block count exit routine 94-95 
block descriptor word (BDW) 18 
block prefix (ISCII/ASCII) records 

buffer alignment 120 
block prefix (ISO/ANSI) records 

with format-D records 24 
with format-F records 17 

block prefix (ISO/ANSIjFIPS) records 
with format-D records 23 
with format-U records 27 

block prefix records 
with format-F records 13 

block size limitation 
ISO/ANSI spanned records 24 
ISO/ANSI Version 3 tapes 43 

block, data 13 
blocking 

automatic 65 
defined 13 
records 

BSAM 38 
QISAM 38 
QSAM 39 

with basic access technique 61 
with fixed-length records 14-17 
with spanned records 19 

230 MVSjXA Data Administration Guide 

with undefined-length records 27 
with variable-length records 17-19 

boundary alignment 
buffer 120 
data control block 46 

BPAM data set 
concatenation 113, 146 
creating 136-137 
defined 2,131-133 
EODAD routine 76 
processing 131-146 
restriction with 

chained scheduling 144 
DCB abend exit routine 97 
fixed-length records, standard format 15 

retrieving member 143 
space allocation for 135, 136 
updating member 144 
when sharing a data set 70, 71 

BSAM data set 
as SYSIN/SYSOUT data sets 105 
creating 109, 110 
creating a BDAM data set 1 SO 
EODAD routine 76 
extending 113 
how EODAD routine is entered 76 
overlap of I/O 61,62,115 
retrieving 110 
to update the directory 141 
updating 112 
user labels 83 
user totaling 86-87 
when sharing a data set 70, 71 
writing a short block 119 

BSP macro 
description 203 
restriction in EODAD routine 76 

BUFCB operand (DCB macro) 120 
buffer 

See also FREEBUF, FREEDBUF, GETBUF, 
RELSE 

acquisition and control 119 
alignment 120 
automatic for ISAM 

direct 119, 124 
dynamic 119,124 

control 123-130 
for basic access technique 119,121 
length 

BUFL operand 120, 186 
number (BUFNO operand of DCB macro) 115, 

120 
number (BUFNO operand) 121 
releasing 129 
segment 119, 123 
truncating 129 

buffer pool 
See also BUILD, GETPOOL, FREEPOOL 
automatic construction 120, 121 
building 120 

() 



( 

coding examples 122 
creating 121 
description 120 
explicit 120 
freeing 122-123 
getting a buffer from 129 
returning a buffer to 129 
returning a dynamic buffer to 129 
static 120 

buffering 
anticipatory 

for queued access method 65 
omitted for basic access technique 61 

direct control of 124 
dynamic 119 
exchange 128 
look-ahead 65 
problem program controlled 

BDAM 36 
BPAM 37 

simple 119,124-128 
BUFL operand (DCB macro) 

for card punch 31 
for constructing a buffer pool 120 
for printer ~2 
ISAM 186 

BUFNO operand (DCB macro) 
affecting chained scheduling 115 
affecting performance 115 
constructing a buffer pool 121 
when constructing a buffer pool 120 
when ignored 106 

BUFOFF oeerand (DCB macro) 
with format-DB records 116 
with QSAM or BSAM 16 
with variable-length records 23-24 

BUILD macro 
description 120 
with ISAM data set 186 

BUILDRCD macro 
description 121 
restriction 21 
usage 20,21 

CAMLST macro 10 
capacity for direct access 

cylinder 6, 221 
record 6, 150 
track 221 

card punch 
record format 30,31 

card reader 
record format with 30-31 
relationship with CNTRL macro 201 
restriction with CNTRL macro 201 

carriage control characters 

----~--.. ---

defined 31,213 
specification of in RECFM field 29 

CATALOG macro 10 
catalog, system 

entering a data set name 10 
OS CVOL 9,10 

cataloging data sets 
automatic 5 
defined 1 
for a generation data group 193-195 

CCW (channel command word) 
creation by OPEN 47 
PCI flag in ,lIS 
use in simple buffering 124 

chained scheduling 
BSAM 116 
DASD 116 
description 109, 115 
QSAM 116 
restriction with 

calculating record length 117 
CNt'RL macro 115 
DOS checkpoint records, embedded on 
tape 115 

format-D records 23 
partitioned data set 144 
SKP option 78 
spooled data sets 115 
3525 Card Punch 115 

changihg an address in the data control block 46,47 
changing the data control block 47 
channel,. command word (CCW) 

See CCW 
channel programs 

execute (EXCP) 3, 35 
number of (N CP) 62, 106, 115 

CHECK macro 
description 64 
to enter EODAD routine 76 
to update a partitioned data set 144 
to update a sequential data set 112 
use with BDAM 157 
use'with SYNAD routine 61,78 
~silJg; WAIT instead 

'See WAIT macro' .. 
when sharing a data set 70, 157 
with basic access technique 61 

check routine, examining DECB 64 
checkpoint/restart 

check of JFCBFLAG 94 
restriction for LPALIB 94 

CHKPT macro 
use inend-of-volume exit routine 94 

CLOSE macro 
description 52-55 
for multiple data sets 54 
for parallel input processing 67-68 
in EODAD routine 76 
restriction with SYNAD 52, 78 
temporary close option 52-5S 
TYPE = T 52-55 

Index 231 



volume positioning 47,52,56 
with partitioned data set 141-142 
with STOW macro 141 

closing a data set 52-55 
CNTRLmacro 

device dependence 201 
restrictions 

with BSP macro 203 
with chained scheduling 115 
with DOS checkpoint records 201 

concatenation 
data sets 

BPAM 37 
partitioned 146 
sequential 113 
unlike 113 

defined 113, 146 
control buffer 

See forms control buffer 
control characters 

See also CNTRL, PRTOV 
ANSI 23,29,116 
carriage 31,213,215 
code 213, 214 
explained 31 
format-D 23 
format-F 15 
format-U 27 
format-V 19 
ISOjANSIjFIPS 15 
machine 29, 116,213,214 
specifying 29,213 
with fixed-length records 15 
with undefined-length records 27 
with variable-length records 19 

control section, dummy (DSECT) 46 
count area 

count data format 8 
count key data format 6 
in device overhead 219 
ISAM index entry format 162 

cross reference table with direct data sets 150 
CSECT statement 

with DCBD macro 46 
cylinder 

allocation by 217 
capacity 6, 218 
index 

calculating space requirements for 166 
definition 160, 162 

overflow 
calculating space for 166, 170 
defined 163 
specifying size via CYLOFL parameter 167 

CYLOFL operand (DCB macro) 
allocating ISAM data set 167 
creating ISAM data set 163 

232 MVSjXA Data Administration Guide 

D-format records 
See format-D records 

data access techniques 
See access techniques 

data checks 
effect on BLKSIZE 43 

data control block 
See DCB 

data definition name (ddname) field (DO statement) 45 
data definition statement 

See DO statement 
data event control block 

See DECB 
data management 

introduction 1, 71, 72 
data mode processing 

relationship with buffers 123 
data set 

characteristics 1 
description 43 
disposition (DISP) operand 

description 45 
overridden by OPEN macro 56 

identification 3 
label (LABEL) field of DO statement 45 
like characteristics 113, 146 
name 3 
name (OS NAME) field 45 
organization 

DSORG operand (DCB macro) 44 
RECFM (record format) 13-28, 31 
routing through the input/output stream 105-107 
security 205, 206 
space allocation 

a direct data set 150 
estimation 218-221 
indexed sequential data sets 166-174 
partitioned data sets 135, 136 
specifying 217-218 

space allocation on direct access volumes 136 
storage 

direct access 5 
magnetic tape 8 

SYSIN 105-107 
SYSOUT 105-107 
unlike characteristics 113, 146 
unmovable 

resulting from use of MMBBCCHHR 8 
data set control block 

See DSCB 
DCB (data control block) 

abend exit 
description 97-99 
when available 75 
where specified 75 

attributes of, determining 41 
changing 47 

"r--", 

U 

0'\ 
, ""'". 



( 

( " . 

.. 

--- ---- --.--------

changing an address in 46, 47 
creation by DCB macro 4,41 
description 41-42 
dummy control section 46 
exit 

description 88 
when available 75 
when used by SYSINjSYSOUT 105 
where specified 75 

fields 43 
modifying 41,45 
operand of DD statement 45 
primary sources of information 41 
sequence of completion 42 
use 4 
when sharing a data set 69 

DCB abend exit 97-99 
DCB macro 

QISAM 38 
DCBBLKSI field in DCB 
DCBD macro 46 

restriction 46 
use 46 

DCBLPDA field of DCB 
DCBNCRHI field of DCB 
DCBPRECL field of DCB 
DCBSYNAD field of DCB 
DD statement 

fields 43 

32, 119 

190 
189 
19 
47 

relationship to DCB 41 
relationship to JFCB 41 
use of 4 

D D statement fields 45 
DDNAME operand 

See data definition name field 
deblocking, automatic 65 
DECB (data .event control block) 

description 65 
use of 112 

defer nonstandard input trailer label exit 95 
DEFINE command 10 
defining an FCB image 95,96 
delete option 

restriction when updating a sequential data set 112 
restriction with RKP 185 
use with SETL 191 

deleting 
indexed sequential data set records 184 
member name using STOW macro 141 

DEN (tape density) 29-30 
density, tape 29-30 
DEQ macro 70,71,177 
descriptor word 

See block descriptor word, record descriptor word, 
segment descriptor 

determinate errors 49 
DEVD operand (DCB macro) 

device-class independence considerations 59 
restriction with SYSOUT data sets 106 
specifying 29 
with BDAM 150 

with SYSOlJT data sets 106 
device control for sequential data sets 201-204 
device independence 58-59 
device type 

considerations for data format 
sequential organization 28, 33 

device-dependent macros 201 
DEVTYPE macro 188 
direct access device 

characteristics 44 
direct access storage devices 

See DASD 
direct access volume 

access mechanism 6 
description 5 
device characteristics 6-44 
labels 6 
RECFM (record format) 28,31 
record format 28-29, 33 
record format (RECFM) 5 
track addressing 7 
track format 6 
track overflow 7 
track, defined 6 
write validity check 44 

direct addressing 149 
direct data set 

See BDAM data set 
direct organization 

See BDAM data set 
directory 

See BPAM data set 
directory, partitioned data set 

creation 37 
DISP operand 

action of 57 
description 45, 56 . 
for extending sequential data set 113 
for indexed s.equential data set 183 
for partitioned data set 141 
for tape. 42, 85 
when DISP = SHR for sharing data sets 70, 177 
when passing a generation 198 
when updating the directory 141 

DOS (disk operating system) 
embedded checkpoint records 

restriction with BSP 203 
restriction with chained scheduling 115 
restriction with CNTRL 201 
restriction with POINT 204 

DSCB (data set control block) 
contents of 211 
data set label 209-212 
data set security byte 205 
described 6, 211 
index (format-2) DS2HTRPR field of 189 

DSECT statement 46 
DSNAME operand 

DD statement 45, 140~ 142 
DSORG operand (DCB macro) 

CLOSE TYPE=T 54 

Index 233 



described 44 
direct data set ISO 
indexed sequential data set 163 
partitioned data set 136, 140, 141 
sequential data set 109, 110 

dummy control section 
for DCB 46 

dummy data set 
restriction with parallel input processing 67 

dummy records 
with direct data set 151, 154 

dynamic buffering 
buffer control 121, 149 
for direct data set 149 
for ISAM data set 164, 176 
specifying 121 

EBCDIC (extended binary coded decimal interchange 
code) 

for magnetic tape volumes 9 
record format dependencies 13-31 
translation to and from ASCII 116 
translation to and from ISCII/ASCII 1,9,63,65, 

66 
embedded index area 166, 167 
end-of-block 

See EOB 
end-of-data indicator 55 
end-of-data routine 

See EODAD routine 
end -of-sequential retrieval 

See ESETL 
end-of-volume 

exit routine 94 
forcing 57, 58 
processing 55-58 
routines, relationship with DCB abend exit 97, 99 
when EODAD routine entered 76,77 

ENQ macro 
when sharing a data set 70, 71 

EOB (end-of-block) 
fixed-length records 16 

EODAD (end-of-data) routine 
changing address of in DCB 46-47 
specifications 76-77 
with basic access technique 61 
with BSP macro 203 
with concatenated data sets 114 
with GET macro 65 
with queued access technique 65 

EROPT (automatic error options) operand (DCB 
macro) 78 

234 MVSjXA Data Administration Guide 

/ 
I 

\ 
\ 

error 
analysis routine (SYNAD) 77-79 
determinate 49 
handling 72 
indeterminate 49 
options, automatic 78 
uncorrectable 77 

error routine 
See SYNAD routine 

ESETL (end-of-sequential retrieval) macro 
description 191 
in EODAD routine 76,77 
when sharing a data set 71 

EST AE exit, abnormal termination 157 
exceptional condition code 

See condition, exceptional 
exchange buffering 128 
exclusive control 

updating direct data sets 153 
when sharing direct data sets 71 

EXCP (execute channel program) 3 
EXCP macro 35 
execute channel program (EXCP) 3 
exit list 79-81 

list 81 
exit routine 

block count 94-95 
conventions 82 
DCB (data control block) 88 
DCB abend 97-102 
defer nonstandard input trailer label 95 
end-of-data 76-77 
end-of-volume 94 
FCB image 95 
identified by DCB 75 
JFCBE 93 
list 79 
QSAM parallel input 93 
register contents on entry 82 
standard user label 82-86 
synchronous error (SYNAD) 77-79 
user totaling ·86 

EXLST operand (DCB macro) 77, 79 
EXTEND operand (OPEN macro) 

device independence 58 
extending sequential data set 113 
indexed sequential data set 183 
QISAM use 51 
specifying 42 
use with SYSIN/SYSOUT 51 

extended binary coded decimal interchange code 
See EBCDIC 

extended logical record interface (XLRI) 27 
extended search option 

for direct data sets 153 

o 

Ii 
( 



( 

( 

F -format records 
See format-F records 

FCB (forms control buffer) 
image 

exit 95 
identification in JFCBE 93 
relationship with SETPRT 202 

FCB images 
formats of 202 

feedback 
option 153 
with BDAM READ macro 63 
with BDAM WRITE macro 64 

FEOV macro 
description 57, 58 
ignored for SYSIN/SYSOUT data sets 58 
restriction with spanned records 20, 57 
restriction with trailer label exit 85 
to enter EO DAD routine 76 

file access exit 51 
file mark, restriction 203 
FIND macro 

description 139-140 
in EODAD routine 76,77 
updating a partitioned data set 144 
when sharing a data set 71 

fixed-length records 
description 14-17 
with parallel input processing 66 

force end-of-volume 
See FEOV macro 

format-D records, restriction with chained 
scheduling 23 

format-F records 
description 13-17 
ISO/ANSI tapes 17 
ISO/ANSI/FIPS tapes 15 
standard format 14-15 
with card reader and punch 
with parallel input processing 

30-31 
66 

format-S records 
extended logical record interface 27 
segment descriptor word 24 

format-U records 
calculating record length 117 
description 27 
restriction for ISO/ANSI tapes 28 
with card reader and punch 30 
with parallel input processing 66 

format-V records 
block descriptor word 18 
description 18-23 
record descriptor word 19 
segment control codes 21 

segment descriptor word 21 
spanned 19 
with card punch 30-31 
with parallel input processing 66 

forms control buffer 
See FCB 

FREE operand 55 
FREEBUF macro 

description 129 
example 178 
for ISAM 176 
to control buffers 119 

FREEDBUF macro 
description 129 
when sharing data sets 157 

FREEPOOL macro 
when issued for card punch data set 31 
when issued for printer data set 32 
when used 122 

full-track-index write option 164 

generation data group 
absolute generation name 193 
building an index 199 
creating a new 197, 198 
defined 5, 193 
entering in the catalog 193, 194, 195 
naming conventions 

Version 3 labels 196 
relative generation name 193 
retrieving 199 

generation data set 193 
generation index 193 
generation number field 

Version 3 labels 196 
generation numbers 

relative 193, 197 
GET macro 

description 65 
in EODAD routine 76 
restriction with spanned records to enter EODAD 

routine 76 
updating a sequential data set 112 
when sharing a data set 70 
with format-U records 28 
with parallel input processing 66, 67 

GETBUF macro 
description 129 
to control buffers 119 

G ETPOOL macro 
with ISAM data set 186 

glossary 225-228 
grouping related control blocks 61 

Index 235 



-~------~ ----~ 

header label 
user 82,86,212 

IDCAMS program 218 
IEBCOPY program 145,146 
IECOENTE macro 

nonspecific tape volume mount exit 89 
IECOEVSE 
IEHATLAS program 73 
IEHLlST program 167, 189 
IEHMOVE program 133, 134 
IEHPROGM program 198 
IHADCB OSECT 

label 46 
independent overflow area 

description 163 
specifying 169 

indeterminate errors 49 
index 

area 
calculating space for 166-167 
creation of 159 

cylinder 
calculating space for 166 
overflow area 163 

master 
calculating space for 166 
using 160 

space allocation for 39 
track 

calculating space for 167 
track 160 

indexed sequential data set 
adding records 182-183 
areas 159-162,163,166-174,186-189 

allocating space for 166-174, 186-189 
index 161-162 
overflow 163 
prime 160 

buffer requirements 186 
creation 163-166 
deleting records 184 
device control 189-191 
full-track-index write option 164 
inserting new records 182 
new records at the end 182 
retrieving 174-177 

236 MVSjXA Data Administration Guide 

SYNAD routine 79 
updating 174-181 

indirect addressing 150 
INOUT operand (OPEN macro) 42,51,204 
INPUT operand (OPEN macro) 42,51 
input/output devices 

magnetic tape 29 
with sequential data sets 

card reader and punch 30,31 
direct access 33 
magnetic tape 30 
printer 32 

input/output errors 
recovering from 73 

installation exit 
ISO/ANSI/FIPS Version 3 tapes 50 
with RACF 207 

interrecord gaps (IRGs) 13 
lOB, relationship with SYNAD routine for BDAM 78 
IRG (interrecord gap) 13 
ISAM 

See indexed sequential data set, BISAM, QISAM 
ISCII/ASCII block prefix 

restriction 13, 15,23 
with format-O records 23 
with format-F records 13-16 
with format-U records 27 

ISCII/ASCII format 
translating data from 1, 13, 65 
translating data to 1, 13,63,66 

ISCII/ASCII tape 
buffer alignment 120 

ISO/ANSI tape 
Version 3 

block size limitation 43 
ISO/ANSI/FIPS control characters 

with format-D records 23 
with format-F ISO/ANSI/FIPS tape records 15 

ISO/ANSI/FIPS tape 
fixed-length records 15 
undefined-length records 27 
variable-length records 23 

JES Gob entry subsystem) 105-107 
JFCB Gob file control block) 41,49 
JFCBE Gob file control block extension) 

exit 93 
JFCBFLAG 94 
job file control block 41,49 
job file control block extension (JFCBE) 

exit 93 

If'\) 
V 



( 

( 

key 
class 190 
for direct access devices 7 
for indexed sequential data sets 159-162 
RKP (relative key position) for indexed sequential 

data set 163,185,186 
use of when adding records to indexed sequential 

data set 182 
use of when maintaining an indexed sequential data 

set 184 
use of when retrieving records from an indexed 

sequential data set 176-181 
KEYLEN operand (DCB macro) 

description 44 

KN 

for direct access device 33 
for direct data set 150 
specifying 59 

See WRITE with KN 
KU 

See READ with KU 

label exits 82-86 
LABEL parameter in DO statement 

description 45 
specifying password protection 205 
specifying standard labels 84 

label symmetry conflict 
ISO/ANSI Version 3 tapes 51 

label validation exit 50 
labels 

direct access 209 
data set control block 209-212 
format 209 
user label groups 211 
volume label group 209-211 

LEAVE option 
for close processing 52, 54 
for concatenated data sets 114 
for end-of-volume processing 56, 57 
for forced end-of-volume processing 57 

length checking 14 
link field 186, 187 
link pack area 

library 
restriction for checkpoint 94 

load mode 
BDAM 

when sharing data sets 157 
QISAM 38 

in SYNAD routine 79 
when sharing a DCB 72 

load module 
attribute assignment 

fields 41 
loading an indexed sequential data set 164 
locate mode 

defined for buffering 123 
example with simple buffering 126, 127, 128 
relationship with buffers 123 
to process records that exceed 32760 bytes 21 
to update a member with QSAM 144 
with GET macro 

creating a sequential data set, coding 
example III 

simple buffering 109, Ill, 125-128 
with parallel input processing 

example 68 
simple buffering 124-128 

logical record interface (LRI) 20 
look-ahead buffering 65 
LPALIB 

restriction for checkpoint 94 
LRECL operand (DCB macro) 

coding in K units 27 
described 44 
device dependence 59 
to process records that exceed 32760 bytes 21 
with BDAM 150 
with BSAM 119 
with ISAM 

buffer requirements 188 
data set creation 163 

with PUT macro 66 
with SYSOUT data set 105 

LRI (logical record interface) 
spanned records 20 

machine control characters 29, 116 
MACRF operand (DCB macro) 

device independence 59 
dynamic buffering 1 79 
for BDAM 150 
relationship with WAIT macro 64 
to update a member using QSAM 144 
when sharing a data set 70, 72 

magnetic tape volumes 
defined 8 
density 29-30 
labels 

American National Standard 9 
none 5 
nonstandard 5 
standard 5 
user 82-86 

organization 8 
positioning 

during close processing 52-55 

Index 237 



~--------~----

during end-of-volume processing 56, 57 
RECFM (record format) 8-28,29,31 
serial number 9 
tapemarks 9 

mass storage system 146 
master catalog 10 
master index 162 
MBBCCHHR 

See actual track address 
mode 

See also MACRF operand 
load (QISAM) 38 
resume load mode 38 
scan (QISAM) 38 

modes, processing 
See data mode, locate mode, move mode, substitute 

mode 
modifying the data control block 41,45 
move mode processing 

relationship with buffers 123 
use instead of exchange buffering 128 
with GET macro 

creating a sequential data set 109 
simple buffering 109, 125-128 

with parallel input processing 66 
with PUT macro 

creating a sequential data set 109 
simple buffering 109, 125-128 

MSS (Mass Storage System) 
staging 146 

MSVGP parameter on JCL statement 218 
MSW A operand (DCB macro) 188 
mUltiple data sets 

closing 48 
opening 48 
processing for Q ISAM .120 

multitasking mode, shatirtt i3a.a sets 48, 50, 72 
multivolume data set 

with NOTE macro 203 

names 
data set 3 
generation data group 5, 193, 194, 195 

N CP operand (DCB macro) 62, 106, 115 
nonsequential processing of sequential data 38 
nonspecific tape volume mount exit 88-90 

general register rules 90 
IECOENTE macro parameter list 89 
return codes 88 

how specified 89 
nonstandard tape labels 5, 8 
note list 134 
NOTE macro 

ABS parameter 203 
description 203 
restriction with 203 

238 MVSjXA Data Administration Guide 

BSP macro 203 
multivolume data sets 203 

updating a sequential data set 112 
use with partitioned data set updating 144 

NTM operand (DCB macro) 162 
null segment 22 

offset reading 62 
OMR 

See optical mark read 
OPEN macro 

considerations for 49, 50 
description 51-53 
for parallel input processing 67 
for simultaneous opening of multiple data sets 48 
for updating a sequential data set 112 
functions 42, 51-53 
used for more than one data set 48 
volume positioning for EOV 56 

OPEN/EOV volume security/verification exit 90-93 
general register rules 93 
IECOEVSE 91 
return codes 91 

how specified 91 
opening a data set 47-50 
OPTCD operand (DCB macro) 

device dependence 116 
request user totaling (0 PTCD = T) 86 
with BDAM 151 
with ISAM 164 
with ISCIIjASCII tapes (OPTCD = Q) 65, 66 

OPTCD=H 
embedded checkpoints, DOS tapes 

positioning DOS tapes 201 
MSS staging 146 

OPTCD=M (master index) 162 
OPTCD=T (user totaling) 86 
OS CVOL 9,10 
OUTIN operand (OPEN macro) 42,51,204 
OUTINX operand (OPEN macro) 42, 51, 58 
output mode, defined 124 
OUTPUT operand (OPEN macro) 42,51,204 

when using POINT macro 204 
output stream 105-107 
overflow 

area 159, 163 
chain 182 
cylinder 

See cylinder overflow 
independent area 163 
PRTOV macro 202 
records 163 
track 

description 7 
restriction on BSP macro 203 
restriction with parallel input processing 67 

(.~ .... .J 



( 

restriction with RPS feature 117 
overflow, track 

res tri cti ons 
ISAM 38 

overlap of input/output 
performance improvement 115 
with partitioned data sets 144 
with queued access method 65 
with sequential data sets 112 

padded record 24 
end-of-block condition 16" 

paging environment, related control block group 61 
parallel data access block (PDAB) 67,93 
parallel input processing 66-68, 93 
parameter list 

contents of 97 
use of by DCB abend exit routine 97-99 

partitioned data set 
See also BPAM data set 
general description '37 

PASSWORD data set 205 
password protection 205, 206 
PC (card punch) record format 30-31 
PCI flag 115 
PDAB (parallel data access block) 67, 93 
PDS ' 

See BP AM data set 
performance improvement 115 
POINT macro 

description 204 
in EODAD routine 76 
relationship to 

BSAM 38 
restriction with 

BSP macro 203 
multivolume data sets 204 

updating a partitioned data set 144 
updating a sequential data set 112 

prefix, block . 
See block prefix 

prefix, key 190 
prime data area 

description 159, 160 
space allocation for 166, 168 

printer 
overflow (PRTOV macro) 202 
record format with 32 

program, describing the processing 2-102 
PRTOVmacro 

description 202 
device dependent 59 
when macro will not function 202 

PUT macro 
description 66 
locate mode 123-128 

----.'----,--,----------, 

processing mode 123 
used to create a sequential data set, coding 

example llO 
with format-U records 28 
with indexed sequential data set 182-183 
with simple buffering 125-128 

PUTX macro 
description 66 
device independence 59 
UPDAT mode 127 
updating a sequential data set 112 
when sharing a data set 70 
with format-U records 28 
with simple buffering 125-128 

QISAM data set 
See also ISAM 
EODAD routine 76 
scan mode 176 
sharing 70,72 
SYNAD routine 77-79 
using common buffer pool 120 

QSAM (queued sequential access method) 
See also queued access technique 
creating a BDAM data set 150 
parallel input processing 66-68 
performance improvement 115 
restriction with spanned records 20 
spanned variable-length records 20 
SYSIN/SYSOUT data sets 105 
to update a directory 141 
to update a member 144 
user labels 83 
user totaling 86-87 
when sharing a data set 70, 71 
with card punch 31 
withprinter 32 

queued access method 
defin,ed 65 

queued access technique 
buffer control 119,123 
defined 35 
introduced 2 
processing modes 

See data mode processing 

RACF 
installation exit 207 
protection 206, 207 

RD (card reader) 30-31 
RDBACK operand (OPEN macro) 

Index 239 



-----------------

label exit routine 85 
opening magnetic tape volume 42 
restriction for variable-length records 51 
restriction wi.th SYSIN/SYSOUT data sets 51 

RDW (record descriptor word) 
data mode exception for spanned records 19 
extended logical record interface 27 
variable-length tecords format-D 23,24,25 
when replaced by segment descriptor word 21 

read backward 
SB operand of READ macro 62 

READ macro 
description 62 
device independence 59 
in SYNAD routine 78 
restriction in EODAD routine 76 
to enter EODAD routine 76 
to update existing records 176 
updating a partitioned data set 144 
updating a sequential data set 112 
when sharing a data set 70, 157 
with basic access method 62 
with format-U records 28 
with KU (key, update), in coding example 178 

RECFM (record format) 
f1Xed~length 17 
fixed~length for ISO/ANSI 17 
spanned variable-length 19 
undefined-length 27 
variable-length 17-24 

RECFM operand (DCB macro) 
description 44 
for sequential data sets 28 
selecting 14 
with card punch 30-31 
with card reader 30-31 
with control character 29 
with direct access storage device 33 
with magnetic tape 29-30 
with printer 32 
with sequential organization 28-29 

record blocking 
See blocking 

record descriptor word 
See RDW 

record format 
See RECFM 

record format (RECFM) 
fixed-length 14 
fixed-length for ISO/ANSI/FIPS 15 
fixed-length standard 14 

record length (LRECL) operand (DCB macro) 44,59 
relative addressing 

BDAM 36 
relative block address 

with direct data set 152 
with feedback option 153 

relative generation name 193-197 
relative key position (RKP) operand (DCB 

macro) 163, 185, 186 
relative track address 

240 MVSjXA Data Administration Guide 

defined 8 
with direct access 152 
with feedback option 153 

releasing data sets and volumes 55 
RELEX macro 

exclusive control 157 
when sharing data sets 157 

RELSE macro 
defined 129 
to terminate buffer processing 119 

reorganization of indexed sequential data set 183 
reorganization statistics (ISAM) 39 
REREAD option 56, 57 
restart end-of-volume exit routine 94 
restriction with 2540 
restrictions 

on ASCII records 
on 7 -track tape 29 

on chained scheduling with 
calculating record length 117 
CNTRL macro 115 
DOS checkpoint records 115 
format-D records 23 
partitioned data set 144 
SKP option 78 
spooled data sets 115 
track overflow 117 
3525 Card Punch 115 

on CNTRL macro 
with BSP macro 203 
with chained scheduling 115 
with DOS checkpoint records 201 

on DCB usage 48-49 
on DCBD macro usage 46 
on DOS checkpoint records 115,201-204 
on format-D records with chained scheduling 23 
on ISO/ANSI records 

block prefix 23 
on ISO/ANSI/FIPS records 

block prefix 15, 23 
on NOTE macro with 

BSP macro 203 
multivolume data sets 203 

on POINT macro with 
BSP macro 203 
multivolume data sets 204 

on reading concatenated data sets backward 114 
on user label exit routines 82-86 

resume load 38, 163, 166, 183 
retrieving a generation 199 
return codes 

with block count exit 94,95 
with user labels 84 

RETURN macro 
relationship in SYNAD routine 78 

REWIND option 
for CLOSE macro 52 
for FEOV macro 57 

RKP (relative key position) operand (DCB 
macro) 163, 185, 186 

c 
1 

I· 



( 

( -- --

---- - ------_. -----

RLSE parameter 
DO statement 53 

RORGl, RORG2, RORG3 fields of the DCB 184 
routing data sets through the input/output 

stream 105-107 
RPS (rotational position sensing) 

restriction with track overflow records 
variable-length records 18 
when calculating record length 117 

RO record 6, 150 

save area 
user totaling 87 

scan mode 38 
for QISAM 

issuing PUTX 176 
scheduling of input/output streams 105 
SOW (segment descriptor word) 

format~S records 24 
search option, extended 153 
secondary storage 

See data set storage, direct access storage, magnetic 
tape volumes 

security 205, 206 
segment 

buffer 119, 123 
control code 21 
descriptor word 

for spanned records 21 
indicating a null segment 22 

null 22 
segment descriptor word (SOW) 

format-S records 24 
selecting an access method 35, 36 
sequential data set 

See also BPAM, BSAM, and QSAM data sets 
creation 109, 110 
extending 113 
retrieving 110 
updating 112 

sequential organization 
defined 2 
device control 201-204 
device independence 58-59 

SETL macro 
in EODAD routine 76,77 
when sharing a data set 71 

SETPRT macro 
changing printer control information 202 
relationship with 3800 printing subsystem 202 

SETPRT routine 95 
sharing data sets 69-71 
simple buffering 

description 124-128 
with parallel input processing 66, fJ7 

SKP option 78 

SMSI operand (DCB macro) 189 
SMSW operand (DCB macro) 188 
space allocation 

BPAM data set 37 
estimating requirements 218-221 
for a direct data set 150 
for a partitioned data set 135, 136 
for an indexed sequential data set 166-174 
QISAM data set 39 
specifying 217-218 

spanned records 
basic direct access method 22 
considerations for 20 
logical record interface 20 
restriction with parallel input processing 67 
restriction with SYSIN data sets 21, 106 
sequential access method 19 
variable-length 19 

spooling of SYSIN and SYSOUT data sets 
how to 105-107 
restriction 115 

stacker selection 
control characters for 14, 31, 214 
STACK operand 31 
using CNTRL macro 201 

ST AE exit 157 
ST AI exit 157 
standard format for fixed-length records 14 
standard labels 

direct access volumes 6, 209 
magnetic tape volumes 5, 8 

statistics reorganization (ISAM) 39-
storage 

See direct access storage, magnetic tape volumes 
STOW macro . 

description 141 
restriction with DCB abend exit 97 
when sharing a data set 71 

subpool 0, when shared 157 
substitute mode 

defined for buffering 124 
switching, volume 

automatic 
restriction with concatenated data sets 114 
with end-of-volume 56 
with FEOV macro 57 
with GET macro _ 65 

initiated by CHECK 64 
SYNAD field, programming consideration 59 
SYNAD routine 

changing address in DCB 46 
description 77 -79 
macros used in 72,73 
programming consideration 59 
relationship with DECB 65 
relationship with SETL option 19.1.. . 
relationship with SYSIN/SYSOUT data sets 107 
temporary close restriction 52_ 
when adding records to ISAM data set i 83 
when sharing a data set 72 
with basic access technique 61 

Index 241 



~-- -----~ ----

with queued access technique 65 
SYNADAF macro 

description 72, 73 
examples III 
use in SYNAD routine 79 

SYNADRLS macro 
description 73 
examples III 
use in SYNAD routine 79 

SYNCDEV macro 204 
synchronous error routine exit 

See SYNAD routine 
SYSIN data set 

FEOV macro ignored for 58 
restriction with 

chained scheduling 115 
parallel input processing 67 
spanned variable-length records 21 
user totaling 86 

routing data through input stream 105-107 
SYSOUT data set 

FEOV macro ignored for 58 
restriction with 

chained scheduling 115 
label exits 85 
spanned variable-length records 21 
user totaling 86 ~ 

routing data through output stream 105-107 
system input stream 105-107 
system output stream 105-107 
system output writer 105-107 
SYSl.IMAGELlB 

adding band names/aliases 202 
character arrangement table modules 202 
FCB images 202 
UCS image tables 202 
UCS images 202 

SYSl.IMAGELlB data set 
search of 95 

table reference character 
See TRC 

table reference character (3800) 31,32 
tape 

See magnetic tape volumes, paper tape reader 
tapemarks 9 
temporary close 52-55 
totaling area, user totaling exit routine 86-87 
track 

addressing 7 
defined 6 
format 

count data format 6 
count key data format 6 

index 159-162, 166 
overflow option 

242 MVS,IXA Data Administration Guide 

description 7 
restriction of BSP macro 203 
restriction with BDAM 156 
restriction with parallel input processing 67 
restriction with RPS feature 117 
restriction with variable-length records 18 

track addressing, relative 
BDAM 36 

track overflow 
restrictions 

ISAM 38 
trailer labels 

user 82,86 
TRC (table reference character 3800) 19 
TRTCH operand (DCB macro) 30 
TRUNCmacro 

description 129 
to terminate buffer processing 119 

truncated blocks, format-F records 15 
truncated format-U record 28 
TIR 

See address, direct access storage device, relative 
TYPE = T operand 52-55 

U -format records 
See format-U records 

UCS (universal character set) image 
relationship with SETPRT 202 

UHL (user header label) 82-86 
unblocking records 

BPAM 37 
BSAM 38 
QISAM 38 
QSAM 39 

undefined length records 
Se.e fotmat-U records 

UNIT operand 
D D statement 45 

unlabeled magnetic tape 5-9 
UPDAT option 

See also update mode 
EODAD routine entered for BSAM 76 
opening a data set 42 
restriction with 

SYSINjSYSOUT data sets 51 
updating a sequential data set 112 
with spanned records 20 

update mode 
See also UPDAT option 
with format-U records 28 
with PUTX 124 
with simple buffering 127 

user catalog 10 
user header label (UHL) 82-86 
user label exit routine 

description 82-86 

-' 
i 



( 

---------

exit list entry 83 
restriction for data sets on volumes without standard 

labels 85 
restriction for SYSOUT data sets 85 
with read backward 83, 85 

user totaling exit routine 
description 86-87 
exit list entry 86 
how specified 86 
image area address 87 
relationship with end-of-volume exit 94 
restricted to BSAM, QSAM 86 
save area 87 
totaling area 86-87 
variable-length and spanned records 87 

user trailer label (UTL) 82-86 
utility programs 

IDCAMS 218 
IEBCOPY 146 
IEHATLAS 73 
IEHLlST 189 
IEHMOVE 134 
IEHPROGM 167,198 
initializing direct access volume 6 

UTL (user trailer label) 82-86 

V-format records 
See format-V records 

validation suppression exit 51 
variable-length record (format-D) 23-24 
variable-length record (format-S) 23-24 
variable-length record (format-V) 

description 18 
segments 18, 19 
spanned 

description 19-23 
restrictions with SYSIN and SYSOUT data 

sets 21 
special considerations, with user totaling 87 
with parallel input processing 66 

version increment of generation data group 194 
version number field 

Version 3 labeis 196 
VIO data set 36 
volume 

defined 5 
disposition 

See DISP operand 
identification operand (DD statement) 45 
index 

See index 
initializing 6 
labels 

See labels, direct ao::cess 
magnetic tape 

See magnetic tape volumes 
positioning 52-57 
switching 57,65,114 
table of contents 

See VTOC 
volume access exit 51 
VSAM catalog 

generation data group base created in 193 
VTOC (volume table of contents) 

description 5 
DSCB 211 
for ISAM data set 161 
pointer 211 

WAIT macro 
description 64 
example 178 
when sharing a data set 157 
with basic access method 

BDAM 64 
BISAM 64 

with basic access technique 
BDAM 155,157 

with QSAM parallel input processing 66 
WRITE macro 

add form 150, 156 
description 63 
for format-U records 28 
in EODAD routine 76 
in SYNAD routine 78 
programming consideration 59 
update form 154 
updating a concatenated partitioned data set 144 
updating a partitioned data set 144 
updating a sequential data set 112 
used with BDAM 150 
used with note list 135 
when sharing a data set 70, 157 
with basic access technique 61 
with K (key) 176, 179 
with KN (key, new) 180, 182, 185 
writing a short block 119 

write validity checking 44 

XLRI (extended logical record interface) 27 

Index 243 



I Numerics I 
1600 BPI 30 
2305-2 Fixed Head Storage 

programming considerations 156 
2540 Card Read Punch 

punch error correction 31 
3211 printer 

SETPRT macro 202 
3262 model 5 printer 

SETPRT macro 202 
3330 Disk Drive 

capacity 219 
overhead formula 220 

3333 Disk Storage 
capacity 219 
overhead formula 220 

3340 Disk Storage 
capacity 219 
overhead formula 220 

3350 Disk Storage 
capacity 219 

244 MVSjXA Data Administration Guide 

3375 Disk Storage 
capacity 219 
overhead formula 220 

3380 Disk Storage 
capacity 219 
overhead formula 

3380 Models AD4 and BD4 Disk Storage 
capacity 219 
overhead formula 220 

3380 Models AE4 and BE4 Disk Storage 
capacity 219 
overhead formula 220 

3525 Card Punch 
chained scheduling ignored 115 
record format 31 

3800 Printer 
JFCBE exit for 93 
table reference character 19, 32 

4245 printer 
SETPRT macro 202 

4248 printer 
SETPRT macro 202 

7-track tapes 30 
800 BPI 30 
9-track tapes 30 

c 

.. / 



( 

~g 
., 0 
E ..... 
0." 
"5 :E 
0''' .,-

'" 01., co .. 
• - 0 1:: .. o ., 
"'0. =ca "' .. E-al 
'OE 
~ E 
Ei5, 
o ... .. ., 
~.J:: "' .. ..cO 

(c.l .,.-- .. .cco o ., 
... .. 
0.., ., ... .. ~ 
~ .. 
~ ~ 
coo. '" ., u .. .. ~ ., ., - .. 0.", '" ., Qio: 

CI> .. o 
Z 

MVS/Extended Architecture 
Data Administration Guide 
GC26-4013-2 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM 
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter, 
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate 
without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate. 

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not 
stocked at the address printed on the reverse side. I nstead, you should direct any requests for copies of publications, or for 
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: _____________ _ 

Chapter/Section ________________________________________ _ 

Page No. _____________ _ 

Comments: 

If you want a reply, please complete the following information. 

Name _______________ ~ ______________ _ Phone No. ( __ ) ________ _ 

Company _________________________________________________________________ __ 

Address 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you mav mail directly to the address in the Edition Notice on the 
back of the title page.! 



Reader's Comment Form 

Fold and tape 

Fold and tape 

--..- ------ -------... -. ---- -- -------
"~-,-® 

Please do not staple 

BUSfNESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Please do not staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tape 

r 
\ "'"-, 

r{--'" ;0 



tole c:: .. 
II) 0 E ... 
D." 's:c: crO­
ll)-

~; 
.- 0 1::0-
~8. 
=is 
Ei 
iE o-E 
Es. 
2~ 
;'.1: 

(1 
II) .-

j5~ o II) .... 
D.II) 
II) .. .. ;, 
;, .. 
III II .... 
c::D. 
r! ~ 
'" ;, 

~il 
S.!! cnn. 

II> o z 

MVS/Extended Architecture 
Data Administration Guide 
GC26-4013-2 

-~~-----------:--

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM 
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter, 
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate 
without .incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate. 

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not 
stocked at the address printed on the reverse side. I nstead, you should direct any requests for copies of publications, or for 
essistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality. 

If you have applied any technical newsletters (TNLs) to this book, please list them here: _____________ _ 

Chapter/Section _______________________________________ _ 

Page No. _____________ _ 

Comments: 

If you want a reply, please complete the following information. 
Name _________________________ _ Phone No. ( __ ) ________ _ 

Company __________________________________________ __ 

Address 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the 
beck of the title page.) 



Reader's Comment Form 

Fold and tape Please do not staple 

BUSfNESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

I II II I 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

•••••••••• e ..................................................................................................................................... . 

Fold and tape Please do not staple Fold and tape 

--..-------- - ------- -. _ ... -- -- --------_-..._.-
(!) 

I 

I' 




