—
MVS/Extended Architecture Licensed
System-Data Adminis_trati.on Program

urer

AMODE
- ,FP 3"bit
- MVS/XA RM(
~ 24-bit

Order Number * Data Facility Product Version 1
GC26-4010-2 5665-284 Release 1.2

Order Number
GC26-4010-2

MVS/Extended Architecture
System-Data Administration

Data Facility Product
5665-284

Licensed
Program

Version 1
Release 1.2

Third Edition (January 1987)

This edition replaceé and makes obsolete the previous edition,
GC26-4010-1

This edition applies to Version 1 Release 1.2 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-284, -
and to any subsequent releases until otherwise indicated in new

editions or technical newsletters.

RN
k\//

The changes for this edition are summarized under "Summary of
Changes"™ following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent publication of the page affected.
Editgrial changes that have no technical significance are not
noted.

Changes are made periodically to_this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370, 30xx, and 4300

, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If vou request publications from the address given
below, your order will be delaved because publications are not
stocked there.

A form for readers' comments is provided at the back of this

publication. If the form has been removed, comments may be

addressed to IBM Corporation, P.0. Box 50020, Programming 4 \\
Publishing, San Jose, California, U.S.A. 95150. IBM may use or

distribute whatever information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982,
1984, 1987

C

This manual, formerly titled MVS/Extended Architecture Svstem
Programming Librarv: Data Managemept, is now titled MYS/Extended
b oy ST Nac 2 oS

This publication provides information for system programmers
about MVS/Extended Architecture Data Facility Product, and how
to modify and extend the data management capabilities of the
operating system.

This publication contains the following chapters and appendixes:

. Chapter 1, "Managing the Volume Table of Contents (VTOC)"Y on
page 1, defines and discusses the structure of the VTOC and
VTOC index, and the use of system macros to read a data set

control block, rename a data set, or delete a data set from
the VTOC.

. Chapter 2, "Executing Your Own Channel Programs (EXCP)"™ on
page 36, defines and discusses the use of the EXCP macro to
control the organization of data based on device
characteristics with your own channel programs.

. Chapter 3, "Reading from and Writing to Direct Access
Devices (XDAP)"™ on page 75, defines and discusses the use of
the XDAP macro to read, verify, and update blocks without
using an access method.

. Chapter 46, "Password Protecting Data Sets"™ on page 84,
defines and discusses system password protection and how to
create and maintain the PASSWORD data set.

. Chapter 5, "Exit Routines™ on page 96, defines and discusses
some of the IBM-supplied exits for installation-written
routines and authorized user programs.

. Chapter 6, "System Macro Instructions"™ on page 110, defines
and discusses the system macros used to refer to, validate,
and modify system data areas.

. Chapter 7, "Maintaining SYS1.IMAGELIB™ on page 156, defines
and discusses adding a UCS or FCB image to the system image
library, and maintaining the UCS image tables.)

. Chapter 8, "JES2 Support for the IBM 1403, 3203 Model 5, and
3211 Printers"™ on page 174, defines and discusses JES2
support for UCS alias names and the 3211 indexing feature.

. Chapter 9, "CATALOG, SCRATCH, and RENAME Dummy Modules™ on
page 176, defines and discusses the dummy modules for
CATALOG, SCRATCH, and RENAME, and how to replace thenm.

. Chapter 10, "Specifying Buffer Numbers for DASD Data Sets"™
on page 177, defines and discusses the performance
considerations when using the BUFNO keyword and.
subparameter.

o Appendix A, "CVAF - VTOC Access Macros"™ on page 178, defines
and discusses the format of the VTOC access macros:
CVAFDIR, CVAFDSM,

. Appendix B, "Examples of VTOC Access Macros™ on page 196,

defines and discusses examples of using the VTOC access
macros in your programs.

Preface iii

U Appendix C, "WTOC Index Error Message and Associated Codes"
on page 221, defines and discusses the error message and
{éskg)codes issued by the Common VTOC Access Facility

. Appendix D, "Example of an OPEN Installation Exit Module™ on
page 225, defines and discusses a sample program listing for
IFGOEXOB, the installation-written exit routine that takes
control during OPEN for a DCB.
PREREQUISITE KNOWLEDGE

In order to use this book efficiently, vou should be familiar
with the following topics:

. Assembler language
. Standard program linkage conventions
. The utility programs IEHLIST and IEHPROGM

. Data management access methods and macro instructions

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following publications:

¢ Assembler H Version 2 Application Programming: Language
Rgisnsngg GCZ6 -6037, and Assembler H Version 2 Application
,» GC26-4036, contain more information on
codlng in assembler language.

. / i i i
Supervisor Services and Macro Instructions, GC28- 1154»
contains a description of standard linkage conventions.

. MVS/Ext led Architect Data Administration: Utiliti
GC26-4018, describes how to use IEHLIST to maintain the
VTOC, and IEHPROGM to protect data sets.

U VS/
GC26-4013, and

»

’

s i » GC26-4014,
contain 1nformat10n on using access methods and macro
instructions to do input and output.

Specific prerequisite reading is listed at the beginning of some
chapters, as it relates to the particular topic.

RELATED PUBLICATIONS

Within the text, references are made to the publications listed
in the table below.

Short Title
(as it appears
in the text) Publication Title order Number
Access Method MVSsExtended Architecture GC26-4019
Services Reference Intearated Catalog
Administration: Access
Method Services Reference
MVS/Extended Architecture GC26-4075
VSAM Catalog
Administration: Access
Method Services Reference

iv MVS/XA System-Data Administration

Short Title
(as it appears
in the text)

Publication Title

order Number

Assembler H V2 Assembler H Version 2 SC26-4036
Application Application Proaramming:
Programming: Guide Guide
Assembler H V2 Assembler H Version 2 GC26-4037
Application Application Programming:
Programming: Language Reference
Language Reference
Catalog MVSzExtended Architecture GC26-64061
Administration Guide | Catalog Administration
Guide
Checkpoint/Restart MVS/Extended Architecture GC26-4012
User's Guide Checkpoint/Restart User's
Guide
Conversion Notebook MVS/Extended Architecture GC28-1143
Conversion Notebook
CVAF Diagnosis MVSs/Extended Architecture SY26-3929
Reference Common VTOC Access
Facilitv Diaanosis
Reference
DADSM and CVAF MVSs/Extended Architecture SY26-3896
Diagnosis Guide DADSM and Common VTOQC
Access Facility Diaanosis
Guide
DADSM Diagnosis MVS/Extended Architecture SY26-3904
Reference DADSM Diagnosis Reference
Data Administra{ion MVS/Extended Architecture GC26-4013
Guide Data Administration Guide
Data Administration: MVS/Extended Architecture GC26-4014
Macro Instruction Data Administration: Macro
Reference Instruction Reference
Debugging Handbook MVS/Extended Architecture LC28-11641
i ook, LC28-1165
Volumes 1 through 5 LC28-1166
LC28-1167
LC28-1168
Device Support Device Support Facilities GC35-0033
Facilities User's User's Guide and Reference
Guide and Reference
IBM System/370 XA IBM Svstem/370 Extended SA22-7085
Principles of Architecture Principles of
Operation Operation
IBM 2821 Control IBM 2821 Control Unit GA26-3312 .
Unit Component Component Description
Description
Note:

1

All five volumes may be ordered under one order number,

LBOF-1015.

Preface v

Short Title
(as it appears
in the text)

Publication Title

order Number

IBM 3203 Printer IBM 3203 Printer Component | GA33-1515
Component Description and Operator's
Description and Guide
Operator's Guide
IBM 3211 Printer, IBM 3211 Printer, 3216 GA26~-3543
3216 Interchangeable Interchanaeable Train
Train Cartridge, and Cartridge, and 3811
3811 Printer Control Printer Control Unit
Unit Component Component Description and
Description and Operator’s Guide
Operator's Guide
IBM 3800 Printing JIBM 3800 Printing GC26-3846
Subsystem Subsystem Programmer's
Programmer's Guide Guide
Initialization and MVYS/Extended Architecture GC28-1149
Tuning System Proaramming
Library: Initialization
and Tuning
JCL User's Guide MM§L£xiggdgd_Acgbiiasiun§ GC28-1351
JCL User's Guide
JCL Reference MVS/Extended Architecture GC28-1352
JClL Reference
Linkage Editor and MVS/Extended Architecture GC26-4011
Loader User's Guide Linkgsg_ﬁitnu;suungadsc
User's Guide
Service Aids MVS/Extended Architecture GC28-1159
Svstem Programming
Librarv: Service Aids
Supervisor Services MVS/Extended Architecture GC28-1154
and Macro System Programming
Instructions Library: Supervisor
Services and Macro
Instructions
System Logic Library S/ e LY28-1234
] : (Part 1)
, Parts 1 LY28-1235
and 2 (I0S) ' (Part 2)
System Macros and MVS/Extended Architecture GC28-1150
Facilities Svstem Progaramming GC28-1151
Librarv: Svsitem Macros and
ga&iliiissp Volumes 1 and
System Messages MVS/Extended Architecture GC28-1376
Message Librarv: System 6C28-1377
Messages, Volumes 1 and 2
System Modifications MVS/Extended Architecture GC28-1152
System Proaramming
Library: Svstem
Modifications

MVS/XA System-Data Administration

Short Title
(as it appears . . . order
in the text) Publication Title Numbenr
TS0 Command Language | MVS Extended Architecture GC28-0646
Reference JS0 Command Language
Reference (0S/VS2 TSO
Command Language
Reference, as updated by
Supplement SD23-0259 for
MVS/XA) A
TS0/E Command MVSzExtended Architecture SC28-1134
Language Reference IS0 Extensions TS0 Command
Language Reference
TSO/E Data Areas / LYB8-1119
ISO/E Data Areas (plus
Supplement LDB3-0276)
Utilities MVS/Extended Architecture GC26-4018
Data Administration:
tilities
VSAM Administration: MVS/Extended Architecture GC26-4016
Macro Instruction VSAM Administration: Macro
Reference Instruction Reference
NOTATIONAL CONVENTIONS

A uniform system of notation describes the format of data

management macro instructions.

This notation is not part of the

language; it simply provides a basis for describing the
structure of the commands.

The command format illustrations in this book use the following
conventions:

Brackets [1 indicate an optional parameter.

Braces { } indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

Items separated by a vertical bar (]) represent alternative

items.

No more than one of these items may be selected.

An ellipsis (...) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

Other punctuation (parentheses,
forth) must be entered as shown.

blank.

commas, spaces,

and so
A space is indicated by a

BOLDFACE type indicates the exact characters to be entered,

except as described in the bullets above.

Such

be entered exactly as illustrated.

by the user.
0

the parameter is omitted,

Parentheses (
specified.
the parentheses.

items nmust

type specifies fields to be supplied

type indicates a default option. If

the underscored value

is assumed.

) must enclose subfields if more than one is
If only one subfield is specified, you may omit

Preface vii

| ADDRESS AND REGISTER CONVENTIONS

The following describes the meaning of each notation used to A

viii

show how an operand can be coded:

0)

(1)

The operand can be any valid assembler-language symbol.

General register 0 can be used as an operand. When used as
an operand in a macro instruction, the register must be
specified as the decimal digit 0 enclosed in parentheses as
shown above.

General register 1 can be used as an operand. MWhen used as
an operand in a macro instruction, the register must be
specified as the decimal digit 1 enclosed in parentheses as
shown above. When you use register 1, the instruction that
loads it is not included in the macro expansion.

(2-12)

The operand specified can be any of the general registers 2
through 12. All registers as operands must be coded in
parentheses; for example, if register 3 is coded, it is
coded as (3). When one of the registers 2 through 12 is
used, it can be coded as a decimal digit, symbol (equated
to a decimal digit), or an expression that results in a
value of 2 through 12.

The operand can be specified as any valid
assembler-language RX-type address. The following shows
examples of each valid RX-type address:

Name Operation Operand

ALPHAl 1,39(4,10)
ALPHA2 REG1,39(4,TEN)
BETAl 2,ZETA(4)

BETA2 REG2,ZETA(REGS)
GAMMAL 2,ZETA

GAMMAZ2 REG2,ZETA
GAMMA3 2,=F'1000"
LAMBDA1l 3,20(,5)

Both ALPHA instructions specify explicit addresses; REGl
and TEN have been defined as absolute symbols. Both BETA
instructions specify implied addresses, and both use index
registers. Indexing is omitted from the GAMMA
instructions. GAMMAl and GAMMA2 specify implied addresses.
The second operand of GAMMA3 is a literal. LAMBDAl
specifies an explicit address with no indexing.

ol ol ol ol ol ol ol o

The operand can be specified as any address that can be
written as a valid assembler-language A-type address
constant. An A-type address constant can be written as an
absolute value, a relocatable symbol, or relocatable
expression. Operands that require an A-type address are
inserted into an A-type address constant during the macro
expansion process. For more details about A-type address
constants, see i i i
H

absexp

The operand can be an absolute value or expression. An
absolute expression can be an absolute term or an
arithmetic combination of absolute terms. An absolute term
can be a nonrelocatable symbol, a self-defining term, or -
the length attribute reference. For more details about)
absolute expressions, see Assembler H Version 2 Application

MVS/XA System-Data Administration

relexp

The operand can be a relocatable symbol or expression. A
relocatable symbol or expression is one whose value changes
by n if the program where it appears is relocated n bytes
away from its originally assigned area of storage. For
more details abogt relocatgble-symbols and.expressions, see

Reference.

Preface 1ix

| RELEASE 1.2 LIBRARY UPDATE. JANUARY 1987

| NEW PROGRAMMING SUPPORT

Support has been added for the conversion to IS0/ANSI/FIPS
Veriion 3 tape labels, a new function of the WTOR installation
exit.

Support has been added for 3480 block count checking, which
compares the 3480 block count with the block count maintained by
the system at end-of-volume.

Support has been added for the 3480 label processing PTF, which
improves 3680 performance.

| NEW DEVICE SUPPORT
Support has been added for the 3380 Mod AD4, BD4, AE4, and BE4.
Support has been added for the 3880 Model 21 and Model 23.

Support has been added for the 36480 Magnetic Tape Subsystem.

| SERVICE CHANGES -~

Information has been added, corrected, or deleted to reflect N
technical service changes.

RELEASE 1.2. FEBRUARY 1984

RESTRUCTURE AND UPDATING

This manual, formerly titled MVYS/Extended Architecture Svystem
Proaramming Librarv: Data Management, is now titled MVS/ZExtended
NIRRT e Paia fdadenent: =S

Except for the updates noted below, the text of this manual is
substantially the same as in Release 1.0. The following changes
have been made:

. The Preface has been rewritten for stylistic consistency
with the other MVS/XA documentation.

. The former Chapter 1, "Usiﬁg Catalog Management Macro
Instructions,™ has been moved to ind i
Guide, and succeeding chapters have been renumbered.

. The "old"™ Appendix C, "Return Codes from VTOC Access
Macros," has been combined with Appendix A, and the
"Overviews"™ of the VTOC Access Macros formerly in Chapter 2
are now included in Appendix A.

. Chapter 7, "Maintaining SYS1.IMAGELIB,"™ has been rewritten
for ease of use.

. References to other manuals have been updated to reflect
title changes for Release 1.2.

x MVS/XA System—-Data Administration

(

PROGRAMMING SUPPORT

. Service changes have been made throughout the manual, and
are indicated in the text by revision bars.

Descriptions of the following have been added:
U ISO/ANSI/FIPS GDG password protection
. The new DADSM macro REALLOC, and REALLOC return codes

Summary of Changes xi

Chapter 1. Managing the Voiume Table of Contents (VTOC)

The VTOC

Data Set éontrol Block (DSCB) Format Types) ..

Format-0 DSCB
Format-1 DSCB

Format-2 DSCB Z

Format-3 DSCB

Format-4 DSCB)
Format-5 DSCB .

Format-6 DSCB

.

Allocating and Releas;ng Space . . : : .

The VTOC Index

An Example of a VTOC and Its Index e e e e e e
The VTOC Index Entry Record (VIER) e e e e e
Contents of VIER Fields e e . .
Format of a VTOC Index Entry
WHhen a VIER Is Created AN
A Tree of Linked VIERs .
How to Find a Format-l DSCB
Special Cases in a DSCB Search .
The VTOC Pack Space Map (VPSM) . .

s e e o e o
« e o o

.
-

e e o o o o o
.

The VTOC Index Map (VIXM) C e e e e e e e e e e e
The VTOC Map of DSCBs (VMDS) e e e e e e e e e e e
Structure of an Indexed VTOC . e e e e e e e
Scratch/RenamesAllocate Restrlctlons e e e e e e

Initializing and Maintaining the VTOC e e e e e e e
Creating the VT0OC and VTOC Index e e e e e e e e e
Protecting the VT0OC and VTOC Index . e e

Resource Access Control Facility (RACF) .
Authorized Program Facility (APF) Requlrements
Password Protection

Copylng/Restorlng/In1t1311z1ng the VTOC
Operations on Volumes Containing a Nonlndexed VTOC
Operations on Volumes Containing an Indexed VTOC

Access the VTOC with DADSM Macros e e e e e e e
Reading a Control Block from the VTOC .

Reading a DSCB by

Return Codes from

Reading a DSCB by

CAMLST SEEK)
Deleting a Data Set
SCRATCH)

Return Codes from
Renaming a Data Set
RENAME) .

Return Codes from

Serialization and

Identifying the Volume e e e e e e e e e : :

Using Registers
Generating a CVPL
Buffer Lists

"RENAME R
Accessing the VTOC and its Index wlth CVAF Macros

Name (OBTAIN and CAMLST JEARCH)
OBTAIN .
Actual Dev1ce Address (OBTAIN and

"from the VTOC' (SCRATCH and CAMLST
"SCRATCH)

.

in the VTOC (RENAME and CAMLST ~

. . .

Updating e e e e e e e

e o e o o

(CVAF’ Parameter Llst) R

.

Accessing the DSCB Directly -,

Accessing DSNs or

DSCBs in Sequentlal Order . . :

Obtaining Information from the VTOC Index .

Diagnosing VTOC Errors . . e e e e
Actions Taken When an Error Occurs e e e e e e e
Recovering from System or User Errors e e e e e
GTF Trace e e e e e e

Listing a VTOC and VTOC Index . . .+ v v v v w v .
Chapter 2. Executing Your Own Channel Programs (EXCP)

Using EXCP in System and Problem Programs .

How the System Uses

How To Use EXCP in Problem Programs) : : : : : : :
31-Bit IDAW Programming Notes . e e e .
How EXCP Operates in a V=R Address Space e e e e .

EXCP Requirements .

EXCP

e o o o o

.

s e o o o o

e e 8 o s o o e o

Contents

Tt bt o et et ot e ot (ot et ot ot o ot ot ot fd et
NUVMIUIDD DD NWHWWWWNNFHFOOVOOOVOONNOANDLDDDWWWHN =

17

xiii

Channel Program e e e e e e e e e e e e e e e
Control Blocks . e e e e e e e e e e e e
Input/Qutput Block (IOB) e e e e e e e e e e e
Event Control Block (ECB) e e e e e e e e e e
Data Control Block (DCB) C e e e e e e e e e
Data Extent Block (DEB) e e e e e e e e e e e
How the Channel Program Executes e e e e e e e e e
Initiation of the Channel Program . .
Modification of a Channel Program durlng Execut:on
Completion of Execution
Interruption Handllng and Error Recovery Procedures
Appendages . e e e e e e e e e e e
Start-I1/0 (SIO) Appendage . .
Program-Controlled Interruptlon (PCI) Appendage .
End-of-Extent (EQOE) Appendage e e . . e
Channel-End (CHE) Appendage e e e e e e e e e
Abnormal-End (ABE) Appendage . . e e e e e
Making Your Appendages Part of the System e e e e
The Authorized Appendage List (IEAAPP0O) e e e e
Channel Programming Considerations e e e e e e
Macro Specifications for Use with EXCP PN
Defining Data Control Blocks for EXCP (DCB) . .
Foundation Block Parameters e e e e e e e e e
EXCP Interface Parameters .
Foundation Block Extension and Common Interface
Parameters e e e e e e e e e e
Dev1ce-Dependent Parameters e e e e e e e
DSORG Parameter of the DCBD Macro e e e e
Initializing Data Control Blocks (OPEN) e e e
Executing a Channel Program (EXCP)

Assigning an Alternate Track and Copylng Data from %ho)

Defective Track (ATLAS) e e e e e e e e e e e e
Using ATLAS e e e e e e e e e
Operation of the ATLAS Program . e e e e e
Return Codes from the ATLAS Program e e e e e

End of Volume (EQV) e e e e e
Restoring Data Control Blocks (CLOSE) e e e e e
Control Block Fields . . e e e e
Input/Qutput Block (IOB) Flelds e e e e e e e e
- Event Control Block (ECB) Fields e e e e e e e
Data Extent Block (DEB) Fields

Executing Fixed Channel Programs 1n'Rea1 Storage (EiCﬁVé).

Building the List of Data Areas to be Fixed ..
Page Fix (PGFX) and Start-I/0 (SIO0) Appendage .
Page~Fix List Processing e e e . .

Chapter 3. Reading from and Writing to Direct Access

Devlces (xDAp) * . L] Ll L] L] . . . L] * . L] L] L] . * L]

XDAP Requirements e e e e e e e

Macro Specifications for Use w1th XDAP e e e e e e
Defining a Data Control Block (DCB) e e e e e e
Initializing a Data Control Block (OPEN) c e e e
Executing Direct Access Programs (XDAP) e e e e s
End of Volume (EQOV) . . e e .
Restoring a Data Control Block (CLOSE) e e e

Control Blocks Used with XDAP . v e e e e e
Event Control Block (ECB) e e e e e e e e e e e
Input/Output Block (IOB) e e e e e e e e e e e e
Direct Access Channel Program

Converting a Relative Track Address to an Actual fréck)

Address . e e e e e
Return Codes from the Convers:on Rout;ne

Converting an Actual Track Address to a Relatlve Track)

Address
Obtaining Sector Number of a Block on a Dev1ce w1th the RPS
Feature . e e e e . . e e e .
Chapter 4. Password Protecting Data Sets e o o o o

Providing Data Set Security e e e e e e
PASSWORD Data Set Characterlst1cs e e e e e e
Creating Protected Data Sets . e e e e

Tape Volumes Containing More Than One
Password-Protected Data Set . o e e
Protection Feature Operating Character1st1cs e e

xiv MVS/XA System-Data Administration

g \‘
W) ,/‘

Termination of Processing e e e e e e e e e e e e
Volume Switching . e e e e e e e e e e
Data Set Concatenatlon . e e e e e e e
SCRATCH and RENAME Functlons e e e e e
Counter Maintenance
Maintaining the PASSWORD Data Set (PROTECT Macro)
PASSWORD Data Set Characteristics and Record Format (Nlth
PROTECT macro) .
Number of Records for Each Protected Data Set
Protection-Mode Indicator . e C e e e
PROTECT Macro Syntax . e e e e e
PROTECT Macro Parameter Lzsts . e e .
Return Codes from the PROTECT Macro

Chapter 5. Exit Routines . e e o
DADSM Preprocessing and Postprocess1ng Ex1t Rout;nes . .
The Exit Modules . . e e e e e e e e e e e e e e e
The Exit Environment . e e e e e e e e e e e e e e
When IGGPREOO Gets Control e e e e e e e e e e e e e
Rejecting a DADSM Request . e e e e e e e e e
Data that DADSM Passes to the Ex1ts e e e e e e e e
.Passing a Model Format-1 DSCB e e e e e e e e e e e
WHhen IGGPOSTO Gets Control e e e e e e e e e e e e e
System Control Blocks e e e e e e e e e e
Registers at Entry to DADSM Ex1ts e e e e e
Registers at Return from DADSM exits e e e e e
Return Codes from DADSM Exits e e e e e e e
DCB OPEN Installation Ex1t e e e e e e e e e e
The Exit Module .. e e e e e e e e e e e
The Exit Environment .
Open Processing Before the DCB OPEN Ex1t Gets Control
Open Processing After the DCB OPEN Exit Gets Control
Getting Control from Open e e .
Data that Open Passes to the Ex1t e e e e .
Defaulting the DCB Buffer Number e e e e e e e e e
Modifying the JFCB . . e e e e e e e e e e
Requesting Partial Release . e e e e e e e e
Updating the Secondary Space Data .
Registers at Entry to the DCB OPEN Exit
Registers at Return from the DCB OPEN Exit
Return Codes From the DCB OPEN Exit . .
Open/EQV Installation Exit for Format-1 DSCB Not Found .
Data That OPEN/EOV Passes to the Exit .
Registers at Entry to the Format-1 DSCB Not Found Ex1t
Rggliters at Return From the Format-1 DSCB Not Found
xi . .
Return Codes from the Format 1 DSCB Not Found Ex1t
Data Management Abend Installation Exit o . . .
Data that OPEN/EOV passes to the Exit .
Registers at Entry to the Data Management ABEND Ex1t .
Registers at Return from the Data Management ABEND Exit
Return Codes from the Data Management ABEND Exit .

Chapter 6. System Macro Instructmons e o o o o o o o o
Introduction . . . e e e e e e e e
Mapping System Data Areas
IEFUCBOB—Mapping the UCB
IEFJFCBN—Mapping the JFCB e e e e e e e e e e e
CVT—Mapping the CVT . . e e e e e e e e
Obtaining I/0 Device Characterlstlcs e e e e e e e
DEVTYPE Macro Specification . e
Device Characteristics Informatlon
Return Codes from the DEVTYPE macro e e e e
Reading and Modifying a Job File Control Block e e
RDJFCB—Read a Job File Control Block . e e e
DEQ at Demount Facility for Tape Volumes . .
05?23—1n1t1a11ze Data Control Block for Proce551ng the
High-Speed P051t10n1ng for the IBM 3480 Magnetlc Tape
Subsystenm .
Ensuring Data Secur:ty by Valldat1ng the Data Extent Block
DEBCHK—Macro Specification . C e e e e
Return Codes from the DEBCHK Macro e e e e e e e e
Purging and Restoring I/0 Requests e e e e e e e e e

ot ok ot et ot o ot et et
Pt o o et Bt pd d fd
SNUTWN N = = O

[y
N =
00

122

123
124
125
128
128

Contents xv

PURGE—Halt or Finish I/0-Request Processzng e e e e . 130
Return Codes from PURGE Macro e e e . e e e . 132
Modifying the I0B Chain . e e e e e e e . . 132
RESTORE—Reprocess 1/0 Requests . e e e e s . . 133
Performing Track Calculations e e e e e 133
TRKCALC—Standard Form e e e e e e e 134
TRKCALC—Execute Form e e e e e e e e e e e e e e e 137
TRKCALC—List Form e e e e e e e e e e e e e e e e e 138
TRKCALC—DSECT Only . e e e e e e e e e e e e e 138
Input Register Usage for All Forms of 'MF! e e e e e 138
Output from TRKCALC e e e e e e e e e e e e 138
Return Codes from TRKCALC e e e e . . . e . 139
TRKCALC Macro Examples e e e e e e e e e e e e e 139
Allocating a DASD Data Set e e e e e e e e e e e e e e 140
REALLOC—Execute Form e e e e e e e e e e e e e e e 140
REALLOC—DSECT Only e e et e e e e e e e e e e e s 142
REALLOC—List Form . e e e e e e e e e e e e e 142
Return Codes from REALLOC e e e e e e e e e e e 142
Message Displays on the IBM 3480 Magnetic Tape Subsystem 143
MSGDISP—Displaying a Mount Message . e s e e e e e 1644
MSGDISP—Displaying a Verify Message e e e e e e e e 146
MSGDISP—Displaying a Ready Message e e e e e e e e 147
MSGDISP—Displaying a Demount Message e e e e e e e 148
MSGDISP—Resetting the Message Display o . e e e e 151
MSGDISP—Providing the Full Range of Display Options . 152
Return Codes from MSGDISP e e e e e e e e e e e 154
Chapter 7. Maintaznlng SYS1.IMAGELIB e o o o s o s o o 156
UCS Images in SYS1.IMAGELIB . e e e e e e e e 157
Adding a UCS Image to the Image Lzbrary e e e e e e e 157
UCS Coding Examples e e e e e e e e e e e e 159
Verifying the UCS Image e e e 162
Adding a UCS Image Name/Alias to a UCS Image Table . e 162
UCS Image Table Structure e e e e e e 162
Adding/Modifying a UCS Image Table Entry e e e e e 166
Examples of Adding to the UCS Image Table 167
Example 1: Adding a New Band ID to the 4245 UCS Image
Table (UCS5) 167
Example 2: Addlng a New Default Entry to the 4248 UCS
Image Table (UCS6). e e . o o 168
Adding an FCB Image to the Image lerar e e e e e e e 169
Retrieving an FCB Image from SYSI1. IMAGELIB e e e e e e 173
Chapter 8. JES2 Support for the IBM 1403, 3203 Model 5,
and 3211 Prlnteps . L] L] o . L] . . * L] L] L] L] .o . L] L] * 174
UCS Alias Names e e e e e e e e e e e e e e 174
The 3211 Indexing Feature e e e e e e e e e e e e e e 174
IBM 3203 Model 5 Printer C e e e e e e e e e e e e . 175

Chapter 9. CATALOG, SCRATCH, and RENAME Dummy Modules . 176
Chapter 10. Specifying Buffer Numbers for DASD Data Sets 177

Performance Considerations . . e e e e e e e e e 177
Append:Lx A. CVAF - VTOC Access Macros e o o o o o o o o 178
CVAFDIR Macro . e e e e e e e e e e 178
Overview of the CVAFDIR Macro e e e e e e e e e e e 178
Syntax . . . 178
ACCESS: Read or Nrite a DSCB or VIR(S), or Release
Buffer Lists e e e e s e e e e 178
DSN: Specify the Name of the DSCB .. e e e e e e . 179
BUFLIST: Specify One or More Buffer Llsts v e e e e e 179
VERIFY: Verify that a DSCB is a Format-0 DSCB « e e 179
UCB|IDEB: Specify the VTOC to Be Accessed e e e e e 180
IOAREA: Keep or Free the I/0 Hork Area I T 180
MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers 181

IXRCDS: Retain VIERS in Virtual Storage e e e e e e 182

BRANCH: Specify the Entry to the Macro e e e e e e 183
MF: Specify the Form of the Macro e e e e e e e e e 183
Return Codes from the CVAFDIR Macro e e e e e e e e 183
CVAFDSM Macro . e e e e e e e e e 185
Overview of the CVAFDSM Macro e e e e e e e e e e e 185
Syntax . . . e e e e e e e e e e e e e e 185

xvi MVS/XA System-Data Administration

.
W/

£

ACCESS=MAPDATA: Request Information from the Index

Space Maps e e e e
MAP: Identify the Map to Be Accessed
EXTENTS: Ident1fy Where Extents from the VPSM
Returned

MAPRCDS: Keep or Free MAPRCDS Buffer Llst and Bufferé

UCB|DEB: Specify the VTOC to Be Accessed
COUNT: Obtain a Count of Unallocated DSCBs or

.

Are ’

VIRs

CTAREA: Supply a Field to Contain the Number of

Format-0 DSCBs e e e
IOAREA: Keep or Free the I/O Nork Area . .
BRANCH: Specify the Entry to the Macro N
MF: Specify the Form of the Macro e e e e
Return Codes from the CVAFDSM Macro e e e

CVAFSEQ Macro . e e e e e
Overview of the CVAFSEQ Macro e e e e e e
Syntax . e e e e e e e
ACCESS: Spec1fy Relationship between Supplied

Returned DSN . e
BUFLIST: Spec1fy One or More Buffer L1sts
DSN: Specify Access by DSN Order or by

Physical-Sequential Order . .
UCBIDEB: Specify the VTOC to Be Accessed

DSNONLY: Specify That Only the Data Set Name Be Read
ARG: Specify Where the Argument of the DSCB Is to Be

Returned
I0AREA: Keep or Free the I/O Nork Area . .
IXRCDS: Retain VIERs in Virtual Storage ..
BRANCH: Specify the Entry to the Macro .
MF: Specify the Form of the Macro e e e e
Return Codes from the CVAFSEQ Macro e e e
CVAFTST Macro e e e e e e e
Overview of the CVAFTST Macro e e e e e e
Syntax e e e e e e e
UCB: Specify the VTOC to Be Tested e e e
Return Codes from the CVAFTST Macro e e e

Appendix B. Examples of VTOC Access Macros .

.

e o & ¢ & o o

Example 1l: Using the CVAFDIR Macro with an Indexed or

Non-indexed VTOC

Example 2: Using the CVAFDIR Macro with an Indexed
Example 3: Using the CVAFSEQ Macro with an Indexed
Example 4: Using the CVAFSEQ Macro with a Nonindexed VTOC

Example 5: Using the CVAFTST and CVAFDSM Macros

Appendix C. VTOC Index Error Message and Associated Codes

Error Message e e e e e e e e e e e e e
Explanation e e e e e e e e e e e e e e e
System Action e e e e e e e e e e e e e
Programmer Response e e e e e e e e
Routing and Descriptor Codes e e e e e e

Codes Put in the CVSTAT Field e e e e e e

Appendix D. Example of an OPEN Installation Exit Module

Processing in IFGOEXO0B

Requesting Partial Release . e e e e e e e
Updating the Secondary Space Data e e e e e
Index o L2 L2 . . - . . . L] L] o - L] L] L]

.

vToc
vTOC

.

185
185

186
186
187
187

188
188
188
189
189
190
190
190

190
190

190
191
191

191
192
192
193
193
194
195
195
195
195
195

196

196
201
206
211
217

221
221
221
221
221
221
222

225
225
225
225

235

Contents xvii

xviii

QOWOONAINRNAWN M

e e o e o

. Format of the VTOC Index Entry Record iVIER)

Locating the Volume Table of Contents (VTOC) e .
Contents of VTOC—DSCBs Describing Data Sets e e
Relationship of a VTOC to Its Index .

Structure of Linked VIERs e e e e e e . .
An Index Map . e e e e e e e e e e .
Format of a VTOC Map e e .
Format of the CVAF Parameter L1st (CVPL) « e e

e e o o o

CVFCTN Field of CVPL - Contents and Definitions
Format of a Buffer List Header e e e e e e e
Format of a Buffer List Entry .
Entry Points, Returns, and Ava11able Nork Reg1sters
for Appendages .

Data Control Block (DCB) Format for EXCP (After OPEN)
Input/Output Block (I0OB) Format

Event Control Block (ECB) after Post1ng of Completlon
Code (EXCP) .

Event Control Block (ECB) after Post1ng of Completlon
Code (XDAP) . . e e e
The XDAP Channel Programs . e e e e e e e e
Parameter List for Add Funct1on e e e e e e e
Parameter List for REPLACE Function e e e e e e
Parameter List for DELETE Function e e e e e
Parameter List for LIST Function

Format of DADSM Preprocess:ng and Post proce551n9 Ex1t
Parameter List .
fg;gif)of DCB OPEN Installatlon Ex1t Parameter L1st
Output from DEVTYPE Macro . e v e e e e e e e
Sample Code Using RDJFCB Macro .
Macro Definition, JCL, and Ut111ty Statements for
Adding PURGE Macro to the System Macro Library . .
Macro Definition, JCL, and Utility Statements for
Adding RESTORE Macro to the System Macro Library

The PIRL and IOB Chain .

Sample Code to Add a 1403 ucs Image to SYSl IMAGELIB
Sample Code to Add a 3203 UCS Image to SYS1.IMAGELIB
Sample Code to Add a 3211 UCS Image to SYSl IMAGELIB
UCS Image Table Entry Format e e e e e e e
UCS5 Image Table Contents e e e e e e e e e e e e
UCS6 Image Table Contents . e e e e e e e
Sample of the Standard FCB Image STDl e e e e e e
Sample of the Standard FCB Image STD2

Sample Code to Assemble and Add an FCB Load Module to
SYS1.IMAGELIB .

MVS/XA System—-Data Administration

119
129

129
133
159
160
161
163
163
165
170
170

172

s
L

The direct access device storage management (DADSM) routines
control allocation of space on direct access volumes through the
volume table of contents (VTOC) of that volume, and through the
VTOC index if one exists. This chapter gives an overview of the
VTOC and the VTOC index and discusses how to use system macros
to access the VTOC and VTOC index.

The VTOC is a data set on a direct access volume that describes
the contents of that volume. It resides in a single extent
(that is, it is a continuous data set) anywhere on the volume
after cylinder 0, track 0. Its address is located in the
VOLVTOC field of the standard volume label (see Figure 1).

Standard Volume Label
J)
U

11(B)

VOLVTOC (10 bytes)

CCHHR of first

record in VTOC
R)Y

N (8 Y
N /
N /
/
/
/
/
/
Cylinder 0 \ /
Tra({ 0 /
N\
\ y 4
\
Record Record | Record
1 2 3
VTOC Data Set
(Can be located anywhere
Record Record | R on the volume after
A °°3°fd cylinder 0, track 0.)

~

Figure 1. Locating the Volume Table of Contents (VTOC)

Chapter 1. Managing the Volume Table of Contents (VTOC) 1

The VTOC is composed of 140-byte! data set control blocks

(DSCBs) that correspond either to a data set or VSAM data space .
currently residing on the volume, or to contiguous, unassigned AN
tracks on the volume. DSCBs for data sets or data spaces wg,j
describe their characteristics. DSCBs for contiguous,

unassigned tracks indicate their location.

DATA SET CONTROL BLOCK (DSCB) FORMAT TYPES

The VTOC has seven different kinds of DSCBs. This section lists
the different kinds of DSCBs, what they are used for, how many
exist on a volume, and how they are found.

The first record in every VTOC is the VTOC (format-4) DSCB that
describes (1) the device that the volume resides on, (2) the
attributes of the volume itself, and (3) the size and contents
of the VTOC data set itself.

The format-4 DSCB is followed by a free-space (format-5) DSCB
that, for a nonindexed VTOC, lists the extents on the volume
that have not been allocated to a data set or VSAM data space.
Each format-5 DSCB contains 26 extents. If there are more than
26 available extents on the volume, another format-5 DSCB will
be built for every 26 extents. The format-5 DSCBs are chained,
using the last field of each format-5 DSCB. An indexed VTOC
does not use format-5 DSCBs for describing free space; however,
one empty format-5 DSCB is provided to allow a basis for
converting back to a nonindexed VTOC.

The third and subsequent DSCBs in the VTOC do not have any
prescribed sequence.

A data set or VSAM data space is defined by one or more DSCBs in
the VTOC of each volume on which it resides. The number of
DSCBs needed to define a data set or VSAM data space is
determined by (1) the organization of the data set (ISAM data
sets need a format-2 DSCB to describe the index) and (2) the
number of extents the data set or VSAM data space occupies (a
format-3 DSCB is needed to describe the 4th through the 16th
extents; additional format-3 DSCBs may be required to describe
the extents for a VSAM data set cataloged in an integrated
catalog facility catalog). Figure 2 on page 5 shows the general
makeup of a VTOC and the DSCBs needed to define two types of
data sets (ISAM and non-ISAM).

e

N

Data set A (in Figure 2 on page 5) is an ISAM data set; three
DSCBs, a format-1l, format—-2, and format-3, are identified. Data
sets B, C, and D could be sequential, partitioned, or direct
data sets or they could be VSAM data spaces. Data set B has
more than three extents and therefore requires both a format-1
and a format—-3 DSCB.

Data sets C and D have three or fewer extents and need only a
format-1 DSCB. The format-6 DSCB, pointed to by the format-4
DSCB, is used to keep track of the extents allocated in order to
be shared by two or more data sets (split-cylinder data sets).
For example, if data sets C and D share an extent made up of one
or more cylinders, this extent would be described in the
format-6 DSCB. Note that split-cylinder data sets cannot be
allocated, but existing split-cylinder data sets can still be
processed.

'S
1 The 140-bytes are defined as a 449-byte key portion followed %gj/

by a 96-byte data portion. You may make references to the

logical 140-byte DSCB or to either of its parts.

2 MVS/XA System-Data Administration

Format-0 DSCB

Format-1 DSCB

Format-2 DSCB

Format-3 DSCB

NAME: Free VTOC Record

FUNCTION: Describes an unused record in the VTOC (contains 140
bytes of binary zeros). To delete a DSCB from the VTOC, a
format-0 DSCB is written over it.

HOW MANY: One for every unused 140-byte record on the VTOC.

The DS4DSREC field of the format-4 DSCB is a count of the number
of format-0 DSCBs on the VTOC. This field is not maintained for
an indexed VTOC.

HOW FOUND: Search on key equal to X'00' (sometimes X'00000000*)
for a nonindexed VTOC; for an indexed VTOC, the VTOC map of
DSCBs is used to find a format-0 DSCB.

NAME: Identifier

FUNCTION: Describes the first three extents of a data set or
VSAM data space.

HOW MANY: One for every data set or data space on the volume,
except the VTOC.

HOW FOUND: Search on key equal to the data set name. For an
%?ggxgddVTOC, a CCHHR pointer for each data set name is in the
index.

NAME: Index
FUNCTION: Describes the indexes of an ISAM data set.

HOW MANY: One for every ISAM data set (for a multivolume ISAM
data set, a format-2 DSCB exists only on the first volume).

HOW FOUND: Chained from a format-1 DSCB that represents the
data set.

NAME: Extension

FUNCTION: Describes the 4th through l6th extents of a data set
or VSAM data space. Data sets and VSAM data spaces are
restricted to 16 extents per volume. VSAM data sets cataloged
in an ICF catalog may be extended to a maximum of 123 extents,
in which case there may be as many as ten format-3 DSCBs.

HOW MANY: One for each data set or VSAM data space on the
volume that has more than three extents. There may be as many
as ten for a VSAM data set cataloged in an ICF catalog.

HOW FOUND: Chained from a format-2 or a format-1 DSCB that
represents the data set or VSAM data space. In the case of a
VSAM data set cataloged in an ICF catalog, the chain may be from
a preceding format-3 DSCB.

Chapter 1. Managing the Volume Table of Contents (VTOC) 3

Format-4 DSCB

£
NAME: VTOC [

FUNCTION: Describes the extent and contents of the VTOC and
provides volume and device characteristics. If the VTOC is
indexed, certain fields of this DSCB are not maintained by
DADSM. See "Structure of an Indexed VTOC.™

HOW MANY: One on each volume.

HOW FOUND: VOLVTOC field of the standard volume label contains
its address. It is always the first record in the VTOC.

Format-5 DSCB
NAME: Free Space

FUNCTION: On a nonindexed VTOC, describes the space on a volume
that has not been allocated to a data set or to a VSAM data
space (available space). For an indexed VTO0C, format-5 is =zero,
and the volume pack space map describes the available space.

HOW MANY: One for every 26 noncontiguous extents of available
space on the volume for a nonindexed VTO0C; for an indexed VTOC,
there is only one.

HOW FOUND: The first format-5 DSCB on the volume is always the
second DSCB of the VTOC. If there is more than one format-5
DSCB, it will be chained from the previous format-5 DSCB via the
DS5PTRDS field of each format-5 DSCB.

Format-6 DSCB .y

NAME: Shared Extent "

FUNCTION: Describes the extents shared by two or more data sets
(split-cylinder extents).

HOW MANY: One for every 26 split-cylinder extents on the VTOC.

HOW FOUND: The address of the first format-é6 DSCB is contained
in the DS4F6PTR field of the format-4¢ DSCB. If there is more
than one format-6 DSCB on the volume, it will be chained from
the previous format-6 DSCB via the DS6PTRDS field of the
format-6 DSCB.

ALLOCATING AND RELEASING SPACE

The DADSM allocate and extend routines assign tracks and
cvlinders on direct access volumes for new data sets and VSAM
data spaces. additional space for a data set or VSAM data space
that has already exceeded its original, primary allocation. The
DADSM scratch and partial release routines are used to release
space that is no longer needed on a direct access volume.

The DADSM routines allocate and release space by adding,
deleting, and modifying the DSCBs. HWhen space is needed on a
volume, the allocate routines search the appropriate DSCBs for
enough contiguous, available tracks to satisfy the request. If
there are not enough contiguous tracks, the request is filled,
using as many as five noncontiguous groups of free tracks. The
ipprﬁpriate DSCBs are modified to reflect the assignment of the
racks.

When space is released, the scratch routines free the DSCBs of
the deleted data set or data space. For a nonindexed VTOC, to
indicate that the tracks containing the affected data set or
data space can be reallocated, a free space (format-5) DSCB is
builtd(grdmodified if existent). For an indexed VTOC, the index
1s updated.

4 MVS/XA System-Data Administration

(Standard Volume Label
{ (

T 11(B)
VOLVTOC
(e field
IAR)
VTOC Data Set
o
¥ Data Set A Data Set B
Format4 DSCB | First F5 DSCB Format-1 DSCB %
Description of Description of Description of %
device, volume, 26 available the data set and /
and the VTOC extents its first 3 extent/i"é
extent [T J
\ (
JV Data Set C
Format-6 DSCB Ne_)it F5 RSCB 4Fom_13t-_3_ D_S_CB E@aﬁl_l_)S_(_?B /4
Description of Description of Description of Description of
as many as 26 as many as 26 the 4th - 16th data set C and
shared-cylinder available exents extents of its first 3 extents
extents datasetB_ 7/ /

(o Data Set D /c
f—
Format1DSCBZJ
Description of
the data set and
’ts first 3 extents/
(¢
717
DSCB for a non-ISAM
DSCB for an ISAM data set (Data Sets B, C, D)
data set (Data Set A) / or a VSAM data space

Note: Empty boxes in the VTOC data set represent free VTOC Records (Format-0 DSCBs)

Figure 2. Contents of VTOC—DSCBs Describing Data Sets

Chapter 1. Managing the Volume Table of Contents (VTOC)

The VTOC index is a physical-sequential data set, residing on
the same volume as the VTOC. It contains an index of data set
names of format-1 DSCBs in the VTOC and free space information.
The index is searched instead of the hardware keys.

The VTOC index is optional. You may build it when you
initialize the volume, or for an existing VTOC (with the volume

-online or offline). You may subsequently inactivate it (online

ordoffllne) so that the VTOC is processed without using the
index

Each VTOC index is formatted by Device Support Facilities with
physical blocks 2048 bytes in length. These physical blocks are
the VTOC index records (VIRs), the basic structural units of the
index. The kind of information they contain depends on the part
of the index they belong to.

Several different kinds of records, each built from one or more
VIRs, are in a VTOC index:

. The VTOC index entry record (VIER) that is used to access
format-1 DSCBs and the format-4 DSCB

U The VTOC pack space map (VPSM) that shows what space has
been allocated on a disk pack

o The VTOC index map (VIXM) that shows which VIRs have been
allocated in the VTOC index

U The VTOC map of DSCBs (VMDS) that shows which DSCBs have
been allocated in the VTOC

AN EXAMPLE OF A VTOC AND ITS INDEX

A format-1 DSCB in the VTOC contains the name and extent
information of the VTOC index. The name of the index must be
TSYS1.VTOCIX. xxxxxxxx', where "xxxxxxxx' can be anything valid
in a data set name and is generally the serial number of the
volume containing the VTOC and its index. The name must be
unique within the system to avoid ENQ contention. The
relationship of a VTOC to its index is shown in Figure 3. Each
of the components of the index is discussed separately in the
following sections.

VTOC VTOC Index
>
Format—4 DSCB VIXM
Format—5 DSCB VPSM
' VMDS
Other DSCBs

VIER
VIER

Format—1 DSCB for the VTOC
Index: SYS1.VTOCIX.nnn VIER

Other DSCBs

Figure 3.

Relationship of a VTOC to Its Index

6 MVS/XA System-Data Administration

AN
S

THE VTOC INDEX ENTRY RECORD (VIER)
VIERs have these characteristics:

. A VIER uses one VIR and contains variable-length index
entries. The number of VIERs in an index vary depending
upon the number of data sets on the volume.

. VIERs in a VTOC index may be on one or many levels. All
index entries in a VIER are at the same index level. VIERs
have a hierarchic relationship. Index entries in
higher-level VIERs point to lower-level VIERs. Index
entries in level-one VIERs (those at the lowest level) point
to format-1 DSCBs for data sets on the volume.

. A higher-level VIER is created when the fourth lower-level
VIER is created. MHWhen that new higher-level VIER is filled
with pointers to lower-level VIERs, a new VIER at the same
level is created. Again, when the fourth VIER at the same
level is created, a VIER at a still higher level is created,
adding another level to the index.
Contents of VIER Fields

Each VIER contains a header and sections (see Figure 4 on
page 8). The VIER header contains:

. A field identifying the VTOC index record as a VIER.

. The relative byte address (RBA) of the VIER.

. A pointer to a VIER at the same level (hence, a "horizontal"
pointer). The VIER pointed to contains index entries whose
keys are greater than any key in the pointing VIER.

. The level number (LVL) of this VIER.

. The number (SECNO) of sections (a VIER contains eight
sections).

. The length (SECL) of the sections (each section is 246 bytes
in length)

. The offsets to the first-used and the last-used sections.
. The G4-byte high key of the VIER.
Each section contains:

. An offset to the last entry in the section (or zero if the
section is empty)

. Index entries

Chapter 1. Managing the Volume Table of Contents (VT0OC) 7

O

0€00) EBCDIC Characters “"VIER™
G(06) RBA of This VIER
8(08) Horizontal Pointer
12(0C) 0ld Horizontal Pointer
16(10) LVL FLG1 Reserved Index
Header
20(14) PTRL SECNO SECL
26(18) Offset to First—Used Section
28(1C) Offset to Last—Used Section
32(20) Highest Key in This VIER —
76(4C) Section 1 —
. 8 Sections
. Containing
Index
Entries
Section 8 ——
Figure 4. Format of the VTOC Index Entry Record (VIER)

Format of a VTOC Index Entry

The format of an index entry is:

FLG KEYL Unused Record Pointer Key
Name offset Bytes Description
VXEFLG 00€¢00) 1 Flag byte
VXEKEYL 01C01) 1 Length of the VXEKEY field
VXEFC 02(02) 1 Unused
VXERPTR 03(03) % or 5 Record pointer :
VXEKEY 07¢07) 1 to 44 Name of a data set, if a
or level—one VIER; if not, the
03(08) high key in the header of a

lower—level VIER

Each index entry contains:
. A flag byte.

. A keylength field (containing a value of 1 to 44, depending
on the length of the data set name).

. A record pointer (VXERPTR) that is one of the following:

- In level-one VIERs, the 5-byte CCHHR of the format-l1l or
format-4 DSCB that represents the data set whose name is
the key in the entry

- In other VIERs, the 4-byte RBA of the lower-level VIER
whose high key is the key in the entry

8 MVS/XA System-Data Administration

(

¢ A key that, for level 1 VIERS, is the data set name, and for
level 2 or higher VIERs is the high key of a lower-level
VIER. Trailing blanks are suppressed in the VTOC index
entry.

When a VIER Is Created

The first level-one VIER is created when the VTOC index is

created. Subsequent VIERs are created when a data set name is
to be added to the VTOC index but the VIER where it should be
added is full. A new VIER is created in the following manner:

° A new VIER is allocated.

. Half of the sections from a full VIER (those containing the
highest keys) are moved into the new VIER, leaving each VIER
half empty.

. The new index entry is added to one of the two VIERs,
depending on its key. -

A Tree of Linked VIERs

Figure 5 on page 10 shows how VIERS are related to each other.
Note that the VIERs (which are simplified here—only the high
key is shown in the header) form a type of "tree structure."™

How to Find a Format-1 DSCB

In the search for the format-1 DSCB for a particular data set,
one path along the tree structure is followed.

As seen in Figure 4 on page 8, a field in the header of a VIER
contains the highest key of any index entry in that VIER.
Beginning with this field in the first high-level VIER, the
following search logic is used: Is the key of the data set (the
data set name) lower than or equal to the VIER's high key? 1If
neither, the test is again applied with the VIER having a
greater high key pointed to by the horizontal pointer. This
procedure continues until a VIER is found having a high key that
is greater than or equal to the key of the data set.

Comparisons are then made with the entries in the VIER's
sections. Eventually, an entry is found with a key greater than
or equal to the data set key. This entry points to a VIER at
the next-lower level.

The search proceeds to successively lower levels until an entry
in a level-two VIER is found whose key is greater than or equal
to the key of the data set. This entry points to a level-one
VIER that, in turn, contains an entry with a key that is equal
to the data set key and that points to the format-1l DSCB for the
desired data set.

Special Cases in a DSCB Search

If there is only one level in the VTO0OC index, the entries in the
VIERs all point to format-l DSCBs, so that only one level need
be searched.

If an update to the VTOC index requires a new VIER and the
update is interrupted (for example, because of an I/0 error or a
system failure), the entry in the level-n VIER may contain a key
that is greater than the high key in the lower-level VIER
pointed to by that entry. In this case, two VIERs at level n-1
may have to be searched. This situation is corrected when DADSM
next processes the volume.

Chapter 1. Managing the Volume Table of Contents (VTOC) 9

VIER VIER
High Key ———={ M32107.LIB 44X'FF’ & Level-2
VIERs
Entries —{ B41103.TEST — SYS1.MACLIB
M32107.LIB 44X'FF'
Y,
Y Y \
VIER VIER VIER 1 VIER
B41103.TEST M32107.LIB SYS1.MACLIB 44X'FF’ Level-1
? VIERs
44X'04’ SYS1.VTOCIX.A
A11307.CLIST 303'2%':3’['3 X.Y.2Z. Dummy Last
B0102.DATA : 44X'FF’ <€— Entry in
VTOC iIndex
' Format-1 DSCBs
in the VTOC {
.
#» Format-4 DSCB in the VTOC
Figure 5. Structure of Linked VIERs

THE VTOC PACK SPACE MAP (VPSM)

The VPSM accounts for space on a disk pack. It shows what space
on the volume has been allocated and what space remains free.

The map contains bit maps of the cylinders and tracks on the
volume. A value of one indicates that the cylinder or track has
been allocated; a value of zero, that it has not been allocated.
The bit representing a cylinder is set to zero if no tracks on
the cylinder have been allocated; it is set to one if any track
has been allocated. Tracks assigned as alternate tracks are
marked as allocated.

The VPSM replaces the chain of format-5 DSCBs, but one empty
format-5 DSCB is left in the VTOC to allow for conversion back
to a nonindexed VTOC, a process that requires reconstruction of
a format-5 DSCB chain.

The format of an index map (including the VPSM) is shown in
Figure 6 on page 11

®

10 MVS/XA System-Data Administration

00¢00) ID of This Map
04C04) RBA of This Map
08(038) Horizontal Pointer to Next VIR
12¢00 Sequence Number of First Entry
16(10) VRFDA VRFO
20(14) FLG1 LUF1 LUOF
. 26(18) Size of Large Unit Map
28(1C) SUF1 SUBIT SUOF
32(20) Size of Small Unit Map
36(24) Reserved VIR
40(28) RBA of First High—Level VIER
(vtocC kggﬁesggiz n:: Only)
Small Unit Map
VTOC Recording Facility Data
(VTOC Index Map Only)

Figure 6. An Index Map

THE VTOC INDEX MAP (VIXM)

The VIXM contains a bit map where each bit represents one VTOC
index record (VIR). The status of the bit indicates whether the
VIR is allocated (1) or unallocated (0).

An area of the VIXM is reserved for VTOC recording facility
(VRF) data. (This is the facility that allows detection of and
recovery from certain errors in an indexed VTO0C.)

A field in the first VIXM record points to the first high-level
VIER. Another field in the first VIXM record (VIR in Figure 7
on page 12) contains the number of VTOC index records that
contain all the space maps.

THE VTOC MAP OF DSCBS (VMDS)

The VMDS contains a bit map where each bit represents one DSCB
in the VT0C. The status of the bit indicates whether the DSCB
is allocated (1) or unallocated (0).

Chapter 1. Managing the Volume Table of Contents (VTOC) 11

Name offset Bytes Description
VIMAP 00(X'00") 2048 VTOC map
VIMH 00(X'00") (19 VTOC map header
VIMID 00(X'00") G Map ID in EBCDIC ('VPSM', 'VIXM',
or 'VMDS')
VIMRBA 04(X'06") 4 RBA of this map
VIMHZPTR 08(X'08") G Horizontal RBA pointer to next
VIR of this map
VIMORG 12(X'0C") G Sequence number of the first
entry in the map
VIMVRFDA 16(X'10") 2 Offset to current VRF data (if
VIMVRFSH=1) or offset where VRF
data may be written (if
VIMVRFSH=0), (first VIXM only)
VIMVRFO 18(X'12") 2 Offset to VRF area (first VIXM
VIR only)
VIMFLG1 20(X'14*) 1 Flag byte
VIMVRFSH 1... VRF data exists if 1
SXXX XXX Reserved
VIMLUF1 21(X'15") 1 Large unit flag byte
VIMLUOF 22(X'"16") 2 O0ffset into VIR of large unit map
(zero if none)
VIMLUSZ 26(X'18") 4 Size in bits of large unit map
VIMSUF1 28(X'1CY) 1 Small unit flag byte
VIMSUBIT 29(X'1D") 1 Number of small unit bits per
large unit (zero if none)
VIMSUOF 30(X'1E") 2 O0ffset into VIR of small unit map
VIMSUSZ 32(X'20") 4 Size in bits of small unit map
36(X'24") 3 Reserved
VIMVIR 39(X'27") 1 Number of map records (VIXM only)
VIMFHLV G0(X'28") G RBA of first high-level VIER
(VIXM only)
VIMLUMAP G6(X'2C") kk Large unit map (kk is VIMLUSZ/S,
rounded up)} N
VIMSUMAP mm nn Small unit map (mm is VIMSUOF, nn / \
is VIMSUSZ/8, rounded up) N
VIMVRF PP qaq VRF area (pp is VIMVRFO, qq is -

remainder of first VIXM)

Figure 7. Format of a VTOC Map

STRUCTURE OF AN INDEXED VTOC

An indexed VTOC is identical to a nonindexed VTOC, except that,
for an indexed VTOC, only a single format-5 DSCB exists and is
empty, and certain format-4 DSCB data (the number of format-0
DSCBs and the CCHHR of the highest format-1 DSCB) is not
maintained by DADSM. The DOS bit (bit 0 in field DS4VTOCI), set
to one in the format-6¢ DSCB, indicates that these fields (and
the format-5 DSCB) cannot be relied on. The index bit (bit 7 in
field DS4VTOCI) is set in the format-4¢ DSCB; it indicates that a
VTOC index exists.

SCRATCH/RENAME/ALLOCATE RESTRICTIONS

A VTOC index data set may not be scratched if the VTOC index is
active. Neither may a VTOC index data set be renamed if the
VTOC index is active, unless it is being renamed to another name
beginning with 'SYS1.VTOCIX.'. A data set may not be renamed to
a name beginning with 'SYS1.VTOCIX.' if there is already such a
data set on the volume. Only one data set whose name begins
with 'SYS1.VTOCIX.' may be allocated on a volume.

12 MVS/XA System—-Data Administration

(

«

INITIALIZING AND MAINTAINING THE VTOC

CREATING THE VTOC AND VTOC INDEX

To prepare a volume for use (to initialize it), the Device
Support Facilities utility is used. One of the things this
utility does is to build the VTOC. After initialization, this
VTOC will contain a format-46 DSCB and a format-5 DSCB. For a
nonindexed VT0C, the format-5 DSCB contains an extent entry for
all the free space on the volume; the initial number of extents
in the format-5 DSCB is one or two, depending on where the VTOC
is located on the volume. If the VTOC is located somewhere
other than at the beginning or end of the volume, two extent
entries are needed to describe the free space that precedes and
follows it. For an indexed VTOC, the format-5 DSCB contains a
zero.

A VTOC index can be created when a volume is initialized by
using the Device Support Facilities command INIT and specifying
the INDEX key word.

A nonindexed VTOC can be converted to an indexed VTOC by using
the command BUILDIX and specifying the IXVTOC keyword. The
reverse is also possible by using the BUILDIX command and
specifying the 0SVTOC keyword.

For Tore detailed information, see Device Support Facilities
User's Guide and Reference. -

PROTECTING THE VTOC AND VTOC INDEX

Resource Access Control Facility (RACF)

You can protect the VTOC and VTOC index by using the Resource
Access Control Facility (RACF). This is done by defining the
volume serial entity under the RACF class DASDVOL. A user must
be authorized to the DASDVOL/volume serial entity at the
following levels:

. At the UPDATE level, to open the VTOC for output processing

. At the UPDATE level, to open for output processing any data
set whose name begins with 'SYS1.VTOCIX.'

. At the ALTER level, to allocate, rename, or scratch any data
set whose name begins with 'SYS1.VTOCIX.'

. At the ALTER level, to rename a data set to any name that
begins with 'SYS1.VTOCIX.'

Neither the VTOC nor the VTOC index is protected from being
opened for input processing by the DASDVOL/volume serial entity.

Note that neither the VTO0C nor the VTOC index can be protected
through the RACF class DATASET.

Authorized Program Facility (APF) Requirements

A program must be authorized by the authorized program facility
(APF) to perform any of the following functions:

. Opening a VTOC for output processing

. Opening for output processing a data set whose name begins
with 'SYS1.VTOCIX.!

. Allocating, renaming, or scratching any data set whose name
begins with 'SYS1.VTOCIX.®

Chapter 1. Managing the Volume Table of Contents (VTOC) 13

[Renéming a data st to any name that begins with
*SYS1.VTOCIX.!

Password Protection

The VTOC index data set may be password protected. The

protection is the same as for any password-protected data set.
Password checking is bypassed if the volume in which the VTOC
index resides is protected by RACF through the DASDVOL class.

/ / G

OPERATIONS ON VOLUMES CONTAINING A NONINDEXED VTOC

* Restoring a Volume from a Dump Tape. There are no
operational requirements if you change the volume serial
number or do a partial restore that does not modify the
VTOC. If vou do a restore and change the VTOC size without
changing the volume serial number, the volume must be varied
offline after it is restored. You should not do a restore
on a volume with an indexed VTOC.

[Copvina a Volume. There are no operational requirements if
you change the volume serial number or do not modify the
VTOC of the receiving volume. If you do a copy and change
the VT0C size without changing the volume serial number, the
volume must be varied offline after it is copied. You
should not do a copy from a volume with an indexed VTOC.

OPERATIONS ON VOLUMES CONTAINING AN INDEXED VTOC

You should use Device Support Facilities to convert a VTOC to a
nonindexed format to update the volume. If you do not, take
note of the following information:

U Initializing a Volume. If vou do not change the volume
serial number, the volume should be varied offline before
starting the job.

¢ Restoring a Volume from a Dump Tape. There are no
operational requirements if you change the volume serial
number or do a partial restore that does not modify the VTOC
or VTOC index. If you do a restore and modify the VTOC or
VTOC index without changing the volume serial number, the
volume should be varied offline after it is restored.

[Copvinag a Volume. There are no operational requirements if
vou change the volume serial number of the receiving volume
or do a partial dump without modifying the VTOC or VTOC
index. If you modify the VTOC or VTOC index without
changing the volume serial number, the receiving volume
should be varied offline after it is copied.

. Shared DASD Considerations. In shared DASD environments,
whenever the VTOC index is modified or relocated or whenever
the volume is changed from indexed VTOC to 0S VTOC or from
0S VTOC to indexed VTOC, the device should be varied offline
‘to the sharing system or systems.

14 MVS/XA System~Data Administration

ACCESS THE VTOC WITH DADSM MACROS

You may use DADSM or CVAF to access the VT0C and its index. CVAF
access is described in "Accessing the VTOC and its Index with
CVAF Macros"™ on page 25. DADSM macros and associated tasks

include:
OBTAIN - Read a DSCB from a VTOC.
REALLOC - DASD space allocation.
RENAME - Rename a non-VSAM data set.
SCRATCH - Release all space and DSCBs for a non-VSAM data set.

The REALLOC macro is described in "Allocating a DASD Data Set"™
on page 140.

This section tells how to use the OBTAIN, SCRATCH, and RENAME
macro instructions. These macros are most commonly used by the
operating system and the data set utility programs (IEHMOVE,
IEBCOPY, and IEHPROGM), but you may use them in your own
routines. The functions you can perform with these macros are:

. Reading a data set control block from the VTOC—OBTAIN
) Deleting a data set—SCRATCH
. Changing the name of a data set—RENAME

You can read a data set control block (DSCB) into virtual
storage by using the OBTAIN and CAMLST macro instructions.
There are two ways to specify the DSCB that you want to read:
by using the name of the data set associated with the DSCB, or
by using the absolute track address of the DSCB. You must
provide a 140-byte data area in virtual storage, into which the
DSCB will be read. MWhen you specify the name of the data set,
an identifier (format-1l or format-4) DSCB is read into virtual
storage. To read a DSCB other than a format-l or a format-4
DSCB, you must specify an absolute track address (see "Example™
on page 18). (DSCB fo;mats and field descriptions are contained
in Debugging Handbook.

You can delete a non-VSAM data set by using the SCRATCH and
CAMLST macro instructions. This causes the DSCBs for the data
set to be deleted.

You can change a data set name by using the RENAME and CAMLST
macro instructions. This causes the data set name in the
format-1 DSCB for the data set to be replaced with the new name.

Accompanying the descriptions of the macro instructions are
coding examples, programming notes, and exception return code
descriptions.

Note: OBTAIN, SCRATCH, and RENAME macro instructions cannot be
used with a SYSIN or SYSOUT data set.

READING A CONTROL BLOCK FROM THE VTOC

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)

If vou specify a data set name using OBTAIN and the CAMLST
SEARCH option, the 96-byte data portion of the identifier
(format-1) DSCB and the absolute track address of' the DSCB are
read into virtual storage. The absolute track address is a
5-byte field in the form CCHHR. The absolute track address
field will contain zeros for VSAM and VIO data sets.

Because the VTOC does not contain a format-1 DSCB for a
suballocated VSAM data space, an OBTAIN request, which searches
the VTOC for such a data space's DSCB, fails. If the volume
contains VSAM data sets, the OBTAIN routine uses information

Chapter 1. Managing the Volume Table of Contents (VT0OC) 15

from the VSAM catalog to build a pseudo format-1 DSCB, setting
its CCHHR to zeros.

The format is:

[symboll OBTAIN listname-addrx
listname CAMLST SEARCH

) -
svol-relexp
swkarea-relexp

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SEARCH
this operand must be coded as shown.

specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long.

Note: A DSNAME of 44 bytes of X'04' (X'040404...049") can
be used to read a format-4 DSCB.

specifies the virtual storage location of the 6-byte volume
serial number on which the DSCB is located.

specifies the virtual storage location of a 1640-byte work
area that you must define.

Example: In the following example, the identifier (format-1)
DSCB for data set A.B.C is read into virtual storage using the
SEARCH option. The serial number of the volume containing the
DSCB is 770655.

OBTAIN DSCBABC READ DSCB FOR DATA

* SET A.B.C INTO DATA
* AREA NAMED WORKAREA
DSCBABC CAMLST SEARCH, DSABC VOLNUM, WORKAREA

DSABC DC CL44'A.B.C DATA SET NAME

VOLNUM DC CL6'770655' VOLUME SERIAL NUMBER
WORKAREA DS 140C 140-BYTE WORK AREA

Note: Check the return codes.

The OBTAIN macro instruction points to the CAMLST macro
instruction. SEARCH, the first operand of CAMLST, specifies
that a DSCB be read into virtual storage, using the data set
name you have supplied at the address indicated in the second
operand. DSABC, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed
the fully qualified name of the data set whose format-1 DSCB is
to be read. VOLNUM, the third operand, specifies the virtual
storage location of a 6~-byte area into which you have placed the
serial number of the volume containing the required DSCB.
WORKAREA, the fourth operand, specifies the virtual storage
loiatloz of a 140-byte work area into which the DSCB is to be
returne

Control will be returned to your program at the next executable
instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into your work area, register 15 will

16 MVS/XA System—-Data Administration

N

contaip zeros. Otherwise, register 15 will contain one ofﬁthe
following return codes. The return codes are shown in decimal,
with hexadecimal values in parentheses.

o Return Codes from OBTAIN

Code Meaning
G(X'06") The required volume was not mounted.

8(X*'08") The format-1 DSCB was not found in the VTOC of the
specified volume.

12¢(X'0C") A permanent I/0 error was encountered, or an invalid
format-1 DSCB was found when processing the
specified volume, or an unexpected error return code
was received from CVAF (Common VTOC Access
Facility).

16(X'10") Invalid work area pointer.

After execution of these macro instructions, the first 96 bytes
of the work area contain the data portion of the identifier
(format-1 or format-4) DSCB; the next 5 bytes contain the
absolute track address (CCHHR) of the D3CB. These 5 bytes will
contain zeros for VSAM or VIO data sets.

Reading a DSCB by Actual Device Address (OBTAIN and CAMLST SEEK)

You can read any DSCB from a VTOC using OBTAIN and the CAMLST

SEEK option. You specify the SEEK option by coding SEEK as the
first operand of the CAMLST macro and by providing the absolute
device address of the DSCB you want to read, unless the DSCB is
for a VIO data set. Only the SEARCH option can be used to read
the DSCB of a VIO data set.

The format is:

[symboll OBTAIN i
listname CAMLST SEEK

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SEEK

this operand must be coded as shown.

specifies the virtual storage location of the 5-byte
absolute device address (CCHHR) of a DSCB.

specifies the virtual storage location of the 6-byte volume
serial number on which the DSCB is located.

specifies the virtual storage location of a 140-byte work
area that you must define.

Chapter 1. Managing the Volume Table of Contents (VTOC) 17

| DELETING A DATA SET

Example: In the following example, the DSCB at actual-device
address X'00 00 00 01 07' is returned in the virtual storage
location READAREA, using the SEEK option. The DSCB resides on
the volume with the volume serial number 108745.

O

OBTAIN ACTADDR READ DSCB FROM
% LOCATION SHOWN IN CCHHR
% INTO STORAGE AT LOCATION
x NAMED READAREA
ACTADDR CAMLST SEEK, CCHHR, VOLSER, READAREA
CCHHR DC XL5'0000000107* ABSOLUTE TRACK ADDRESS
VOLSER DC CL6'108745° VOLUME SERIAL NUMBER
READAREA DS 140C 140-BYTE WORK AREA

Note: Check the return codes.

The OBTAIN macro points to the CAMLST macro. SEEK, the first
operand of CAMLST, specifies that a DSCB be read into virtual
storage. CCHHR, the second operand, specifies the storage
location that contains the 5-byte actual-device address of the
DSCB. VOLSER, the third operand, specifies the storage location
that contains the serial number of the volume where the DSCB
resides. The fourth operand, READAREA, specifies the storage
location to which the 140-byte DSCB is to be returned.

Control will be returned to your program at the next executable
instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into vour work area, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
following return codes. The return codes are shown in decimal,

with hexadecimal values in parentheses. TN
k_)/

Code Meaning

G(X704") The required volume was not mounted.

8(X'08") The format-1l DSCB was not found in the VTOC of the
specified volunme.

12(X'0C") A permanent I/0 error was encountered or an
unexpected error return code was received from CVAF.

16(X*10") Invalid work area pointer.
20(X'146") The SEEK option was specified and the absolute track

sgggess (CCHHR) is not within the boundaries of the

FROM THE VTOC (SCRATCH AND CAMLST SCRATCH)

You can use the SCRATCH and CAMLST macro instructions to delete
a non-VSAM data set. SCRATCH processing deletes the associated
data set control blocks (DSCBs) and makes the space occupied by
the data set available for reallocation. Be aware that this
process does not erase the data from the disk. Data sets that
contain sensitive data should be erased (overwritten with zeros)
before their space is made available.

“
If you want to scratch a data set being processed using virtual ({/
input/output (VI0), the data set must have been allocated for ‘

18 MVS/XA System-Data Administration

use by your job. Scratching VIO data sets not allocated to your
job is not allowed.

If the data set to be deleted is sharing one or more cylinders
with one or more data sets (a split-cylinder data set), the
space will not be made available for reallocation until all data
sets on the shared cylinders are deleted.

A data set cannot be deleted if the expiration date in the
identifier (format-1) DSCB has not passed, unless you choose to
ignore the expiration date. You specify that the expiration
date is to be ignored by using the OVRD option in the CAMLST
macro instruction.

For information on RACF-defined data sets, see RACF General
lnfgnmgi;gn_ﬂanggl. You may scratch a RACF-defined data set
(that is, the DSCB indicates RACF-defined) only if you have
alter access authority to either the data set/volume serial in
the DATASET class, or to the volume serial in the DASDVOL class
(if the volume is RACF-defined).

If a data set to be deleted is stored on more than one volunme,
either a device must be available for mounting the volumes or at
least one volume must be mounted. In addition, all other
required volumes must be serially mountable.

When deleting a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
12-byte entry consists of a G-byte device code, a 6-byte volume
serial number, and a 2-byte scratch status code that should be
initialized to zero. Device codes are presented in Debugging

in the description of UCBTYP.

If the space to be deleted is a VSAM data space, you must use
the DELETE command provided by access method services. For
complete information about the DELETE command, see

Volumes are processed in the order that they appear in the
volume list. The volume at the beginning of the list is
processed first. If a volume is not mounted, a message is
issued to the operator requesting that a volume be mounted. (A
volume mount message will not be issued for a mass storage
system (MSS) virtual volume; however, a status code will be
returned to your program.) This is only done if register 0 has
been loaded with the UCB associated with the device where
unmounted volumes are to be mounted. (The device must be
allocated to your job.) If vou do not load register 0 with a
UCB address, its contents must be zero, and at least one of the
volumes in the volume list must be mounted before the SCRATCH
macro instruction is issued.

If the requested volume cannot be mounted, the operator issues a
reply indicating that the request cannot be fulfilled. A status
code is then set in the last byte of the volume pointer (the
second byte of the scratch status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed.

The format is:

[svymboll SCRATCH i -
listname CAMLST SCRATCH

14

2> i
[,,OVRD]

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

Chapter 1. Managing the Volume Table of Contents (VTOC) 19

SCRATCH
this operand must be coded as shown.

specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long. The name must be defined by a C-type define
constant (DC) instruction.

specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

OVRD .
when coded as shown, specifies that the expiration date in
the DSCB should be ignored.

Example: In the following example, data set A.B.C is deleted
from two volumes. The expiration date in the identifier
(format-1) DSCB is ignored.

SR 0,0 SET REG 0 TO ZERO
SCRATCH DELABC DELETE DATA SET A.B.C
% FROM TWO VOLUMES,
% IGNORING EXPIRATION
* DATE IN THE DSCB
DELABC CAMLST SCRATCH DSABC,,VOLIST,’OVRD
DSABC DC CLG4'A DATA SET NAME
VOLIST DC Hr2?Y NUMBER OF VOLUMES
DC X'3030200E" 3380 DISK DEVICE CODE
DC cLé6'000017" VOLUME SERIAL NO.
DC H'O! SCRATCH STATUS CODE
DC X*3030200E" 3380 DISK DEVICE CODE
DC CL6'000018" VOLUME SERIAL NO.
DC H'O! SCRATCH STATUS CODE

Note: Check the return codes and SCRATCH status codes.

The SCRATCH macro instruction points to the CAMLST macro
instruction. SCRATCH, the first operand of CAMLST, specifies
that a data set be deleted. DSABC, the second operand,
specifies the virtual storage location of a G4-byte area where
vou have placed the fully qualified name of the data set to be
deleted. VOLIST, the fourth operand, specifies the virtual
storage location of the volume list you have built. OVRD, the
sixth operand, specifies that the expiration date in the DSCB of
the data set to be deleted be ignored.

When yvou attempt to delete a password-protected data set that is
not also RACF-protected, the operating system issues a message
(IEC301A) to ask the operator at the console or the terminal
operator of a remote console to enter the password. The data
set will be scratched only if the password supplied is
associated with a WRITE protection mode indicator. The
protection mode indicator is described in Chapter 5, “Password
Protecting Data Sets.”

Control is returned to your program at the next executable
instruction following the SCRATCH macro instruction. If the
data set has been successfully deleted, register 15 will contain
zeros, and the scratch status code in the volume list entry for
each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes that follow. To determine
whether the data set has been successfully deleted from each
volume on which it resides, vou must examine the scratch status
code, that is, the last byte of each entry in the volume list.

20 MVS/XA System-Data Administration

'

J

C
|

Return Codes from SCRATCH

Code
G(X'04")

8(X*08')

12(X'0C")

Meaning

No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set. The data set may be a VIO data set that
was not allocated during vour job. (This return
code is accompanied by a scratch status code of 5 in
each entry of the volume list.)

An unusual condition was encountered on one or more
volumes.

The volume list passed was invalid. The scratch
status code (the last byte of each volume list
entry) will not have been modified during scratch
processing.

After the SCRATCH macro instruction is executed, the last byte
of each 12-byte entry in the volume list indicates one of the
following conditions in binary codes:

Chapter 1. Managing the Volume Table of Contents (VT0C) 21

| RENAMING A DATA SET

Scratch
Status
Code Meaning

1] ~ All DSCBs for the data set have been deleted from
the VTOC on the volume pointed to.

1 The VTOC of this volume does not contain the
format-1 DSCB for the data set to be deleted.

2 The macro instruction failed when the correct
password was not supplied in the two attempts
allowed, or an attempt was made to scratch a VSAM
data space or data set cataloged in an ICF catalog.

3 The data set was not deleted from this volume
because either the OVRD option was not specified or
the retention cycle has not expired.

4 A permanent I/0 error was encountered, or an invalid
format-1 DSCB was found when processing this volume,
or an unexpected error return code was received from
CVAF.

5 It could not be verified that this volume was
mounted, and no device was available for mounting
this volume.

[The operator was unable to mount this volume. For
Mass Storage Systems (MSS), a volume mount failure
occurred. For a JES3-managed virtual volume, JES3
would not allow the volume to be mounted.

7 The specified data set could not be scratched
because it was being used.

8 The DSCB indicates the data set is defined to RACF,
but either the user is not authorized to access the
data set or the volume, or the data set is a VSAM
data space, or the data set is cataloged in an ICF
catalog, or the data set is not defined to RACF.

IN THE VTOC (RENAME AND CAMLST RENAME)

You rename a data set that is not cataloged in an ICF or VSAM
catalog by using the RENAME and CAMLST macro instructions.

These cause the data set name in all format-l DSCBs for the data
set to be replaced by the new name yvou supply. (VIO data sets
cannot be renamed.)

If a data set to be renamed is stored on more than one volume,
either a device must be available for mounting the volumes, or
at least one volume must be mounted. In addition, all other
volumes of the data set must be serially mountable.

For information on RACF-defined data sets, see
i . Only a user with alter access authority may
rename a RACF-defined data set.

When renaming a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
12-byte volume list entry consists of a G-byte device code, a
6-byte volume serial number, and a 2-byte rename status code
that should be initialized to zero. Device codes are presented
in Debugging Handbook. Volumes are processed in the order that

22 MVS/XA System—-Data Administration

/{\\“
A

C

they appear in the volume list. The first volume on the list is
processed first. If a volume is not mounted, a message is
issued to the operator requesting that the volume be mounted.

(A volume mount message will not be issued for an MSS volume;
however, a status code will be returned to your program.) This
is only done if you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with
the address of the UCB associated with the device to be used.
(The device must be allocated to your job.) If you do not load
register 0 with a UCB address, its contents must be zero, and at
least one of the volumes in the volume list must be mounted
before the RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list, a
reply is issued that the request cannot be fulfilled. A status
code is then set in the last byte of the volume list entry (the
second byte of the rename status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed or requested.

The format is:

[svmboll REMNAME i
listpname CAMLST RENAME

points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

RENAME
this operand must be coded as shown.

specifies the virtual storage location of a fully qualified
data set name to be replaced. The area that contains the
name must be 44 bytes long. The name must be defined by a
C-type define constant (DC) instruction.

specifies the virtual storage location of a fully qualified
data set name that is to be used as the new name. The area
that contains the name must be 4946 bytes long. The name
must be defined by a C-type Define Constant (DC)
instruction.

specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

Chapter 1. Managing the Volume Table of Contents (VTOC) 23

Example: In the following example, data set A.B.C is renamed
D.E.F. The data set resides on two volumes.

SR 0,0 SET REG 0 TO ZERO
RENAME DSABC CHANGE DATA SET
NAME A.B.C TO D.E.F

DSABC CAMLST RENAME, OLDNAME, NEWNAME, VOLIST

OLDNAME DC CLG4'A.B.C' OLD DATA SET NAME
NEWNAME DC - CL44'D.E.F’ NEW DATA SET NAME
VOLIST DC H'2! THO VOLUMES

DC X'3030200E" 3380 DISK DEVICE CODE

DC CL6'000017" VOLUME SERIAL NO.

DC H'O! RENAME STATUS CODE

DC X'3030200E" 3380 DISK DEVICE CODE

bDC CL6'000013" VOLUME SERIAL NO.

DC H'o' RENAME STATUS CODE

Note: Check the return codes and RENAME status codes.

The RENAME macro instruction points to the CAMLST macro
instruction. RENAME, the first operand of CAMLST, specifies
that a data set be renamed. OLDNAME, the second operand,
specifies the virtual storage location of a 44-byte area where
vou have placed the fully qualified name of the data set to be
renamed. NEWNAME, the third operand, specifies the virtual
storage location of a 44-byte area where you have placed the new
name of the data set. VOLIST, the fourth operand, specifies the
virtual storage location of the volume list you have built.

Control is returned to your program at the next executable
instruction following the RENAME macro instruction. If the data
set has been successfully renamed, register 15 will contain
Zeros, and the rename status code in the volume list entry for
each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes below. To determine whether the
data set has been successfully renamed on each volume where it
resides, you must examine the rename status code, the last byte
of each entry in the volume list.

Return Codes from RENAME

Code Meaning

G(X'04") No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set to be renamed. The data set may be a VIO
data set and cannot be renamed. (This return code
is accompanied by a rename status code of 5 in each
entry of the volume list.)

8(X'08") An unusual condition was encountered on one or more
volumes.

12(X*'0C") The volume list passed was invalid. The rename
status code, the last byte of each volume list
entry, will not have been modified during rename
processing.

2% MVS/XA System-Data Administration

O

VRN
S

After the RENAME macro instruction is executed, the last byte of
each 12-byte entry in the volume list indicates one of the
following conditions in binary code:

Rename

Status

Code Meaning

0 The format-1 DSCB for the data set has been renamed
in the VTOC on the volume pointed to.

1 : The VTOC of this volume does not contain the
format-1 DSCB for the data set to be renamed.

2 The macro instruction failed when the correct
password was not supplied in the two attempts
allowed, or the user tried to rename a VSAM data
space or VSAM data set cataloged in an ICF catalog.

3 A data set with the new name already exists on this
volume.

4 A permanent 1/0 error was encountered, or an invalid
format-1 DSCB was found when trying to rename the
data set on this volume, or an unexpected error
return code was received from CVAF.

5 It could not be verified that the volume was
mounted, and no device was available for mounting
the volume.

6 The operator was unable to mount this volume. For
Mass Storage Systems (MSS), a volume mount failure
occurred. For a JES3-managed virtual volume, JES3
would not allow the volume to be mounted.

7 The specified data set could not be renamed on this
volume because it was being used.

3 The data set is defined to RACF but either the user

is not authorized to alter the data set or the data
set is defined to RACF on multiple volumes.

When you attempt to rename a password-protected data set, the
operating system issues a message (IEC301A) to ask the operator
or remote console operator to verify the password. The data set
will be renamed only if the password supplied is associated with
a WRITE protection mode indicator. The protection mode
indicator is described in Chapter 4, "Password Protecting Data
Sets" on page 84.

ACCESSING THE VTOC AND ITS INDEX WITH CVAF MACROS

You may use CVAF or DADSM to access the VTOC or its index.
DADSM acggss is described in "Access the VT0C with DADSM Macros™
on page .

CVAF macros and associated tasks include:

CVAFDIR—Directly access DSCBs or VTOC index records.
CVAFDSM—O0btain volume free space information.
CVAFSEQ—Retrieval of the following:

- Data set names from an active VTOC index.

- DSCBs in physical-sequential order.

- DSCBs in data set name order (index required).
CVAFTST—Determine if a DASD volume has an active VTOC index.

Chapter 1. Managing the Volume Table of Contents (VTOC) 25

Appendix A, "CVAF - VTOC Access Macros™ on page 178 contains
detailed descriptions of these macros. Appendix B, "Examples of
VTOC Access Macros™ on page 196 contains examples of their use.

Serialization and Updating

CVAF requires that you provide all necessary system resource
serialization for vour request. You can ensure the integrity of
multiple data elements (sets of DSCBs and/or VIRs) returned by
CVAF only when you provide adequate resource serialization. This
exposure is compounded if multiple requests are required for the
compilation of a desired set of DSCBs and/or VIRS. You must
weigh possible system performance loss due to serialization
against the potential loss of data integrity.

Updates made without adequate serialization may compromise the
integrity of the volume's VTOC, the VTOC index, and/or any
associated data set.

CVAF honors requests to modify the volume's VT0C and/or index
for authorized programs only. CVAF assumes that an authorized
program holds an exclusive RESERVE (or ENQ) on the gname (major
name) of SYSVTOC, rname (minor name) of the volume's serial
number, with the scope of SYSTEMS.

The SYSVTOC qname does not serialize access to the format-l1l DSCB
for a data set. You may provide this serialization by
allocating the data set with disposition OLD, MOD, or NEHW (not
SHR). This causes the proper ENQ, ensuring that no other job
can update that data set's format-1 DSCB.

Identifying the Volume

Using Registers

If you are authorized, you may identify the volume to the
CVAFDIR, CVAFDSM, and CVAFSEQ macros by specifying the address
of its UCB. If vyou are not authorized, you must identify the
volume by specifvying the address of a SAM or EXCP DEB opened to
the volume's VTOC.

The DEB can be obtained by opening a DCB using the RDJFCB and
OPEN TYPE=J macros. The DCBs DDNAME is that of a DD statement
allocated to the unit whose VTOC is to be accessed. After

" issuing the RDJFCB macro, the JFCBDSNM field is overlaid with

the data set name of the format-4 DSCB: 44X'04'. The DCB is
opened for INPUT using OPEN TYPE=J. The DEB address is in DCB
field, DCBDEBA. The OPEN macro is described under the section
"OPEN—Initialize Data Control Block for Processing the JFCB™ on
page 122; the RDJFCB macro is described under "RDJFCB—Read a
Job File Control Block" on page 118.

If a CVAF macro call has specified IOAREA=KEEP, a subsequent
CVAF call using a different CVPL may omit the UCB and DEB
keywords and supply the IOAREA address from the other CVPL. You
can use the IOAREA keyword to do this.

The above does not apply to the CVAFTST macro. Only a UCB may
be sgppéied to identify the VTOC, and no authorization is
required.

Register 1 contains the address of the CVAF parameter list
(CVPL). Register 15 contains the return code when processing
for a function is complete.

26 MVS/XA System-Data Administration

O

£

‘\\/J

NS

(

Generating a CVPL (CVAF Parameter List)

The CVAFTST macro expands to provide its only parameter (UCB
address) in register 1, and calls the associated CVAF module.
All of the remaining CVAF macros use the CVPL to pass parameters
to CVAF. CVAF uses the CVPL to return information related to the
CVAF request.

CVAF generates a CVPL when you specify the CVAFDIR, CVAFDSM, or
CVAFSEQ macro with MF=L or MF=I as a subparameter. If you do
not specify the MF subparameter, MF=1 is the default. .The
CV1IVT bit indicates whether an indexed or nonindexed VTOC is
being accessed. The CVSTAT field contains feedback when an
error occurs. The address of the map records buffer list is
returned in the CVMRCDS field. The address of the VIER buffer
list is returned in the CVIRCDS field. The CVAF I/0 area
address is returned in the CVIOAR field.

You may use the CVPL generated by the MF=L or MF=I form of the
CVAFDIR, CVAFDSM, or CVAFSEQ macro (by using the MF=E keyword)
to execute a different function from the one specified by the
macro that originally generated the CVPL.

The ICVAFPL macro maps the CVPL. The format of the CVPL is

shown in Figure 8

.

Name Offset Bytes Description

CVPL

CVLBL 00(X'00") 4 EBCDIC ™CVPL"™

CVLTH 06(X*'06") 2

CVFCTN 06(X*06") 1 Function Byte (See Figure 9 on
page 28)

CVSTAT 07(X*'07"*) 1 Status Information

CVFL1 08(X'08°*) 1 First Flag Byte

CV1IVT 1.. . Indexed VTOC Accessed

CV1IOAR 1. .. IOAREA=KEEP

CV1PGM ..1. .. BRANCH=(YES, PGM)

CV1MRCDS P § . MAPRCDS=YES

CV1IRCDS .o .o IXRCDS=KEEP

CVIMAPIX PN . MAP=INDEX

CV1IMAPVT v . MAP=VTOC

CV1IMAPVL U | MAP=VOLUME

CVFL2 09(X'09") 1 Second Flag Byte

CV2HIVIE 1.. HIVIER=YES

CV2VRF i VRF data exists

CV2CNT .. 1. . COUNT=YES

CV2RCVR R | .. RECOVER=YES

CV2SRCH ceen . SEARCH=YES

CV2DSNLY e . DSNONLY=YES

CV2VER e . VERIFY=YES

CV2NLEVL R | New highest level VIER (output)

CVUCB 12(X*'0C") [UCB address

CVDSN 16(X*'10*") 4 Data set name address

CVBUFL 20(X'14") 4 Buffer list address

CVIRCDS 26(X'18") G Index VIRs buffer list address

CVMRCDS 28(X'1C") G Map VIRs buffer list address

CVIOAR 32(X*20") 4 I/0 area address

CVDEB 36(X'249") 4 DEB address

CVARG G0(X'28') [Argument address

CVSPACE G4(X*'2C") G SPACE parameter list address

CVEXTS G8(X'30") G Extent table address

CVBUFL2 52(X'34")) New VRF VIXM buffer list address

CVVRFDA 56(X'38"') G VRF data address

CVCTAR 60(X'3C") 4 Count area address

Figure 8. Format of the CVAF Parameter List (CVPL)

Chapter 1.

Managing the Volume Table of Contents (VTOC) 27

The possible contents of the CVFCTN field in the CVPL and their

meanings are as follows:

Buffer Lists

Name Description

CVDIRD X'01'-CVAFDIR ACCESS=READ
CVDIWR X'02'-CVAFDIR ACCESS=WRITE
CVDIRLS X'03'-CVAFDIR ACCESS=RLSE
CVSEQGT X'04'-CVAFSEQ ACCESS=GT
CVSEQGTE X'05'"-CVAFSEQ ACCESS=GTEQ
CVDMIXA X'06"-CVAFDSM ACCESS=IXADD
CVDMIXD X'07*~-CVAFDSM ACCESS=IXDLT
CVDMALC X'08'-CVAFDSM ACCESS=ALLOC
CVDMRLS X'09*'-CVAFDSM ACCESS=RLSE
CVDMMAP X'0A'-CVAFDSM ACCESS=MAPDATA
cvvoL X'0B'-CVAFVOL ACCESS=VIBBLD
CVVRFRD X*'0C'"-CVAFVRF ACCESS=READ
CVVRFHWR X'0D'-CVAFVRF ACCESS=HWRITE

Figure 9. CVFCTN Field of CVPL - Contents and Definitions

A buffer list consists of one or more chained control blocks,
each with a header and buffer list entries. The header
indicates whether the buffer list is for DSCBs or VTOC index
records. The entries point to and describe the buffers.

Buffer lists can be created in two ways:

. Directly, when you fill in the arguments and buffer
addresses of DSCBs or VIRs to be read or written

. Indirectly (by CVAF), when you code the IXRCDS=KEEP and/or
MAPRCDS=YES keywords

CVAF bufferAlists are mapped by the ICVAFBFL macro. Figure 10
on page 29 shows the format of a buffer list header. Figure 11
on page 30 shows the format of a buffer list entry.

BUFFER LIST HEADER: The buffer list header indicates whether
the buffer list describes buffers for DSCBs or for VTOC index
records. The DSCB bit must be set to one and the VIR bit to
zero in order for CVAF to process a request to read or write a
DSCB. CVAF requires that you provide buffer lists and buffers
in the caller's protect key. CVAF uses the protect key and
subpool fields in the buffer list header only if you code
ACCESS=RLSE.

Each buffer list header contains a count of the number of
entries in the buffer list that directly follows the header.

The forward chain address is used to chain buffer lists

together. DSCB buffer lists must not be chained to VIR buffer
i@sts, and VIR buffer lists must not be chained to DSCB buffer
ists.

28 MVS/XA System-Data Administration

O

N
\‘\ A’/"

The format of the buffer list header is shown in Figure 10.

Name Offset Bytes Description
BFLHDR 0(X*'00*) 8 Buffer list header
BFLHNOE 0(X'00") 1 Number of entries
BFLHFL 1(X'01") 1 Flag byte and key
BFLHKEY XXX Protect key of buffer list and
buffers
BFLHVIR eee 1., Buffer list entries describe VIRs
BFLHDSCB . .1. Buffer list entries describe
DSCBs
cees el XX Reserved
2(X'02") 1 Reserved
BFLHSP 3(X'03") 1 Identifies the subpool of buffer
list and buffers
BFLHFCHN G(X'04") G Forward chain address of next
buffer list
Figure 10. Format of a Buffer List Header

BUFFER LIST ENTRY: A buffer list contains one or more entries.
Each entry provides the buffer address, the length of the DSCB

or VIR buffer, the argument,

and an indication whether the

argument is an RBA, a TTR, or a CCHHR.

The fields and bit uses are listed below.

. For a VIR buffer,
RBA bit must be 1.

. For a DSCB buffer,

the TTR and CCHHR bits must be 0, and the

the RBA bit must be 0, and one of either

the TTR or CCHHR bits must be set to 1 (they must not both

be 1).

. The BFLEAUPD bit is an output indicator from CVAF that the
BFLEARG field of a VIR buffer list was updated.

. The BFLEMOD bit indicates that a VIR buffer was modified and
must be written; if no BFLEMOD blts are on in any of the
entries for a CVAFDIR ACCESS=WRITE, all buffers are written.

. The BFLESKIP bit is used to cause an entry to be ignored.

° The BFLEIOER bit is an output indicator from CVAF to
indicate an I/0 error occurred during reading or writing of

the DSCB or VIR.

. The BFLELTH field is the length of the buffer; for a DSCB
buffer, the length must be 96 or 140; for a VIR buffer, the
length must be the length of the buffer divided by 256.

. The BFLEARG field is the argument of the DSCB or VIR.
Specify the desired format of the 5-byte field by seﬁtmng

either the BFLECHR,

BFLETTR, or BFLERBA bit to 1.

respective BFLEARG values and formats are as follows:

— CCHHR=5 byte CCHHR

= TTR=0TTRO

- RBA=0ne byte of 0 followed by a 4-byte RBA

The optional and required values for BFLEARG are dependent upon
the variables associated with a given request. These are
described in the following topics.

Chapter 1. Managing the Volume Table of Contents (VTOC) 29

The format of the buffer list entry is shown in Figure 11.

Name offset Bytes Description
BFLE 0(X*'00°*) 12 Buffer list entry
BFLEFL 0(X'00") 1 Flag byte
BFLERBA l... ... Argument is RBA
BFLECHR d.. .. Argument is CCHHR
BFLETTR R N Argument is TTR
BFLEAUPD R CVAF updated argument field
BFLEMOD vees 1o Data in buffer has been modified
BFLESKIP R Skip this entry
BFLEIOER I I/0 error
ceee e Reserved
1(X'01*) 1 Reserved
BFLELTH 2(X102") 1 Length of VIR buffer divided by
256 or length of DSCB buffer
BFLEARG 3(X*03") 5 Argument of VIR or DSCB
BFLEATTR G(X'06") 3 TTR of DSCB
BFLEARBA G(X'04") G RBA of VIR
BFLEBUF 8(X'08") G Buffer address
Figure 1l1. Format of a Buffer List Entry

| Accessing the DSCB Directly

CVAFDIR may be used to read or write a DSCB. CVAFDIR may also
be used to read or write VTOC index records for indexed VTOCs.
MCVAFDIR Macro"™ on page 178 discusses detailed information about
the CVAFDIR VTOC access macro.

After a CVAFDIR call, the CVAF parameter list bit, CV1IVT, may
be tested to determine whether the VTOC is indexed or
nonindexed.

SPECIFYING A DATA SET NAME TO READ OR WRITE A DSCB: If you want
to read or write a single DSCB by specifying only the data set
name (that is, BFLEARG is zero), you must specify either
ACCESS=READ or ACCESS=WRITE.

N
)

Specify the address of the data set name in the DSN keyword,
then specify the address of the buffer list in the BUFLIST
keyword. Each of these areas and the associated buffers must be
in your protect key.

The buffer list must contain at least one buffer list entry with
the skip bit off and a pointer to a 96-byte buffer. You must
not provide 140-byte buffers. You may chain buffer lists
together, but CVAF uses only the first eligible entry.

For an indexed VTOC, the index will be searched for the data set
name and, if it is found, the DSCB argument obtained will be put
in the buffer list entry and used to read or write the DSCB. If
the data set name is not found in the index, a key search of the
VTOC will be performed.

For a nonindexed VTOC, a channel program will be used to do a
key search of the VTOC to locate the data set name and read or
write the DSCBs. If the data set name is found, the DSCB
argument will be put in the buffer list entry.

The DSCB argument returned in the buffer list entry will be in
;FfEigamat determined by the buffer list entry bits BFLECHR or

£
If the data set name is not found in the VTOC, register 15 will (;)/
cogtaig ? return code of 4, and CVSTAT will contain an error !
code o .

30 MVS/XA System-Data Administration

SPECIFYING THE DSCB LOCATION: If yvou want to read or write a
DSCB by specifying the DSCB's location (that is, BFLEARG), you
must specify either ACCESS=READ or ACCESS=WRITE.

Specify the address of the data set name in the DSN keyword,
then specify the address of the buffer list in the BUFLIST
keyword. Each of these areas and the associated buffer(s) must
be in your program's protect key.

The buffer list must have at least one buffer list entry with
the skip bit off and a pointer to a 96-byte or 140-byte buffer.
You may chain buffer lists together, but CVAF uses only the
first eligible entry.

If the buffer is for a 96-byte read or write, CVAF issues a
channel program to verify that the key in the DSCB is the same
as the 44-byte data set name you provide. CVAF does not execute
the read or write unless they match. If they do not match, CVAF
ignores the specified BFLEARG and reads or writes the DSCB
according to the rules given in "Specifying a Data Set Name to
Read or Write a DSCB"™ on page 30.

If the buffer is for a 140-byte read or write, CVAF issues a
channel program to read or write the DSCB at the location
specified in the buffer list entry. CVAF does not use the data
set name you specified. If vou speclfy VERIFY=YES, CVAF
verifies that the designated DSCB is a format 0 DSCB before
issuing the write channel program.

READING OR WRITING VTOC INDEX RECORDS: VIRs may be read or
written explicitly using the BUFLIST keyword or may be read
implicitly using the IXRCDS and MAPRCDS keywords. A buffer list
address may be supplied in the BUFLIST keyword tc read or write
one or more VIRs. The buffer list header must have the VIR bit
set to one and the DSCB bit set to zero. Each entry in the
buffer list (and subsequent buffer lists if more than one is
chained) is inspected. If the skip bit is set to zero, the RBA
bit is set to one (and the CCHHR and TTR bits are set to zero),
and the buffer address is nonzero, the entry will be processed.
The RBA in the argument field of the buffer list entry is used
to read or write a VIR using the buffer address. Read and write
requests will be in the order of entries in the buffer list.

Each of the storage areas you provide must be in your program's
protect key.

For a write request, the modification bit in the buffer list
entries is inspected. If the bit is not set in any entry, all
are written. The modification bit is set to zero for entries
whose VIR is written.

Map records and the first high-level VTOC index entry record may
be read by supplying the keywords MAPRCDS=YES and/or IXRCDS=KEEP
and, at the same time, not supplying an address in the CVAF
parameter list CVMRCDS/CVIRCDS fields.

READING MAP RECORDS AND VIERS: To read and retain in virtual
storage the VTOC index map records and first high-level VIER,
either ACCESS=READ or ACCESS=WRITE must be coded. Neither the
DSN field nor the BUFLIST field is required.

MAPRCDS=YES must be coded to read and retain map records. The
CVAF parameter list field CVMRCDS must be zero. CVAF will
obtain a buffer list with the number of entries and buffers
required to read all the map VIRs. The buffer list address will
be put in the CVMRCDS field by CVAF. :

IXRCDS=KEEP is coded in order to read and retain the first
high-level VIER and (if an index search is required) all VIERs
read. If the CVAF parameter list field CVIRCDS is zero, CVAF
will obtain a buffer list with entries and buffers and read the
first high-level VIER. The number of entries and number of
buffers are determined by CVAF. If CVIRCDS is not zero, only
VIERs required for an index search will be read.

Chapter 1. Managing the Volume Table of Contents (VTOC) 31

The integrity of the maps and VIER read can only be ensured if

vou are enqueued on the VTOC and, in the case of shared DASD, P

reserved to the unit. N
O

Map and VIER buffers obtained by CVAF (and retained) must be
released by a subsequent CVAF call.

RELEASING BUFFERS AND BUFFER LISTS OBTAINED BY CVAF: There are
three ways to release buffers and buffer lists obtained by CVAF.

U Code MAPRCDS=NO or MAPRCDS=(NQO,addr) for any specification
of ACCESS in order to free the MAP records buffer list.

. Code IXRCDS=NOKEEP or IXRCDS=(NOKEEP,addr) for any
specification of ACCESS in order to free the index records
buffer list.

. Code ACCESS=RLSE and supply a buffer list address through
the BUFLIST keyword for a subsequent CVAF call.

CVAF will free all eligible buffers and any buffer lists if they
become empty. Eligible buffers are those pointed to by buffer
list entries with the skip bit off. A buffer list will be freed
if no buffer list entry has the skip bit on. If buffer lists
are chained together, all buffer lists will be checked and freed
if appropriate.

You muét ensure that you do not request CVAF to release the same

befer list twice by supplying its address in more than one
place.

| Accessing DSNs or DSCBs in Sequential Order
Each CVAFSEQ call may request the return of one of the

following: N
. Ons format-1 or format-4 DSCB in indexed (data-set-name) N
order

. One or more DSCBs in physical-sequential order (but only one
DSCB can be requested by an unauthorized caller)

. The next data set name in the index

CVAF reads the DSCBs into buffers supplied through the BUFLIST
keyword. "CVAFSEQ Macro"™ on page 190 discusses detailed
information about the CVAFSEQ VTOC access macro.

The argument of each DSCB read is also supplied in the buffer
list. DSCBs of 96 bytes must be requested in the buffer list
for indexed access; 140 bytes is required for
physical-sequential access.

If indexed order is chosen, the VTOC index is used to return
each format-1 or format-4 DSCB whose name is in the index. An
option (DSNONLY=YES) allows only the data set names in the VTOC
index, but not the DSCBs, to be obtained. In this case, the
CCHHR of the DSCB is returned in the argument area supplied
through the ARG keyword. The DSN area supplied is updated at
eacz CVAFSEQ call to contain the data set name of each DSCB
read.

INITIATING INDEXED ACCESS (DSN ORDER): To initiate indexed
access (DSN order), either supply in the area coded through the
DSN keyword 44 bytes of binary zeros (to indicate the first data
set name in the index) or supply the data set name you want to
serve as the starting place for the index search.

The name returned in the DSN area will be the one equal to or N
greater than the DSN supplied, depending on the specification of @L
the ACCESS keyword. The DSN field is updated by CVAF e

32 MVS/XA System—-Data Administration

The ACCESS kevyword determines whether the search is for a DSN
greater than or equal to that supplied.

If DSNONLY=NO is coded, the DSCB and argument are returned to
vou, using the buffer list provided through the BUFLIST keyword.
The first entry in the buffer list with a skip bit of zero and a
nonzero buffer address is used. The argument value is supplied
if either the TTR or CCHHR bit is set in the buffer list entry.
The default is CCHHR. The DSCB size in the buffer list entry
must be 96 bytes for indexed access.

If DSNONLY=YES is coded, the CCHHR argument is supplied in the
ARG area.

Note that the data set name of the format—-4 DSCB is in the index
and that its name (4% bytes of X'04') may be returned to you.
The format—4 DSCB's name is likely to be the first data set name
in the VTOC index.

INITIATING PHYSICAL-SEQUENTIAL ACCESS: To initiate
physical-sequential access, the DSN keyword must be omitted or
DSN=0 must be coded. The argument field in the first buffer
list entry must be initialized to zero or to the argument of the
DSCB to begin the read. If the argument is zero, the argument
used will be the start of the VTOC.

The DSCB size must be set to 140 in buffer list entries.

The specification of ACCESS will determine whether the DSCB
whoie argument is supplied or the DSCB following it is to be
read.

For example, to read the first DSCB (the format-4 DSCB) in the
VTOC, the BFLEARG in the first buffer list entry may be set to
zero, and ACCESS=GTEQ coded in the CVAFSEQ macro. If ACCESS=GT
is subgequently coded, the second DSCB (the first format-5 DSCB)
is read.

If you are authorized, as many DSCBs as there are entries in the
buffer list will be read with a single CVAF call. Only one DSCB
will be read if you aren't authorized.

Only one buffer list is used; a second buffer list chained to
the first will not be inspected. All entries in the buffer list
will be used for authorized callers. The skip bit will not be
inspected. Each entry must have a buffer address, the length
field set to 140, and the TTR or CCHHR bit set (if neither bit
is set, the CCHHR bit will be set on). Only the first entry
will be used for unauthorized callers. The argument field of
each buffer list entry will be updated by CVAF with the argument
of the DSCB. The argument value is returned in either TTR or
CCHHR format, depending on whether the TTR or CCHHR bit is set
in the buffer list entry. The default is CCHHR.

Only the argument in the first entry is used to begin the
search. Arguments in subsequent entries are not inspected. If a
nonzero argument value is supplied in the first entry, there
must be a DSCB with that argument.

End-of-data is indicated with a return code of 4 in register 15
and CVSTAT set to X'20'. Each buffer list entry following the
last DSCB read has its argument field set to zero (this may be
the first entry if no DSCBs are read).

Note that all DSCBs, including format-0 DSCBs, are read. You
cannot be certain that you have read all format-1 through -6
DSCBs until the entire VTOC has been read. For a nonindexed
VTOC, the CCHHR of the last format-1l DSCB is contained in the
format-4% DSCB field DS4HPCHR; format-2 through -6 DSCBs may
reside beyond that location. For an indexed VTOC, the VMDS
contains information about which DSCBs are format-0 DSCBs.

Chapter 1. Managing the Volume Table of Contents (VTOC) 33

| Oobtaining

Information from the VTOC Index

ACCESS=MAPDATA is used to obtain information contained in the QZ:D
space maps. "CVAFDSM Macro"™ on page 185 discusses detailed \
information about the CVAFDSM VTOC access macro.

To count the number of unallocated VIRs in the VTOC index space
map (VIXM), COUNT=YES and MAP=INDEX are coded. The number of
unallocated VIRs is returned in the 4-byte area supplied through
the CTAREA keyword.

To count the number of format-0 DSCBs, COUNT=YES and MAP=VTOC
are coded. The number of format-0 DSCBs in the VTOC map of
DSCBs VMDS is returned in the 4-byte area supplied through the
CTAREA keyword.

To obtain one or more free space extents from the VTOC pack
space map (VPSM), COUNT=NO and MAP=VOLUME are coded. The
extents are returned in the area supplied through the EXTENTS
keyword. Each extent is returned in a 5-byte XXYYZ format, the
same as for a format-5 DSCB extent, where XX is the relative
track address (RTA) of the first track of the extent, YY is the
number of whole cylinders in the extent, and Z is the number of
additional tracks in the extent. The RTA supplied to CVAF in
the first (or only) extent will serve as a starting point for
the VPSM search; the extent returned will be the next free
extent with a higher starting RTA than the one supplied.

If all the unallocated extents in the VPSM are supplied before
filling in all the extents supplied, the remaining extents are
set to zero. Register 15 is set to 4 on return, with the CVSTAT
field in the CVPL set to X'20' to indicate the end of data.

| DIAGNOSING VTOC ERRORS

N
~_/

Actions Taken When an Error Occurs

These actions are taken if an error occurs:

. If an index structure error is detected, DADSM or CVAF will
cause the VT0C index to be disabled. The indexed VTOC bit
will be zeroed in the format-4 DSCB. A software error
record will be written to SYS1.LOGREC. A system dump is
taken. The VTOC will be converted to a nonindexed format at
the next DADSM allocate or extend call.

. If a program check, machine check, or other error occurs
while using a VT0C access macro, a SYS1.LOGREC message is
written, and a system dump is taken.

. An error code is put in the CVSTAT field of the CVPL. The
values and explanations of these error codes are listed in
Appendingi "VTOC Index Error Message and Associated Codes"
on page .

Recovering from System or User Errors

Neither the VTOC nor the VTOC index need be recovered from a
user error caused by an unauthorized user, because an
unauthorized user cannot modify a VTOC.

A system error will affect a VTOC and VTOC index, probably by
interrupting DADSM while it is updating, thus leaving the VTOC
and/or the VTOC index in a partially updated state. Both the
VTOC and the VTOC index are designed to cause DADSM to recover B
from such an interruption. @;”\

For a nonindexed VTOC (or a VTOC with an index that has been
disabled), a subsequent call to DADSM ALLOCATE or EXTEND will

34 MVS/XA System-Data Administration

cause VTOC convert routines to reestablish the free space
(format-5 DSCBs).

For an indexed VT0C, a subsequent call to any DADSM function

will cause the recovery of the previous interrupt (either by
backing out or completing the interrupted function).

GTF Trace
A trace function exists to trace all CVAF calls for VTOC index

output I/0, all VTOC output I/0, and all VTOC index and space
map modifications. For information on this function, see CVAF

LISTING A VTOC AND VTOC INDEX
A VTOC and VTOC index can be listed using the IEHLIST utility

program. Dump, formatted, or abridged listings can be obtained
by using the LISTVTOC command of IEHLIST.

Chapter 1. Managing the Volume Table of Contents (VTOC) 35

The execute-channel-program (EXCP) macro instruction provides
you with complete control of the data organization based on
device characteristics. This chapter contains a general
description of the function and application of the EXCP macro
instruction, accompanied by descriptions of specific control
blocks and macro instructions used with EXCP. Factors that
affect the operation of EXCP, such as device variations and
program modification, are also discussed.

Before reading this chapter, you should be familiar with system

functions and with the structure of control blocks, as well as

with the operational characteristics of the I/0 devices required
by yvour channel programs. Operational characteristics of

3pegific I/0 devices are described in IBM publications for each
evice.

You also need to understand the information in these
publications:

] Data Administration Guide contains,@he standard procedures
for 1/0 processing under the operating systenm.

contains the information necessary to code programs in the
assembler language.

* Data Administration: Macro Instruction Reference describes
the system macro instructions that can be used in programs
coded in the assembler language.

U Debuaging Handbook, Volumes 2 through 5, contain format and
f1eld descriptions of the system control blocks referred to
in this chapter.

. Copversion Notebook describes the factors to consider when
ﬁsgvixtlng from MVS/370 at the MVS/SP Version 1 level to
/

The execute-channel-program (EXCP) macro instruction causes a
supervisor-call interruption to pass control to the EXCP
processor. (I1/0 process is the name we will use for the EXCP
processor and the I/0 supervisor. For our purposes, it's
unnecessary to understand how input/output processing is divided
between the two.) EXCP also provides the I/0 supervisor with
control information regarding a channel program to be executed.
When an IBM access method i1s being used, an access method
routine is responsible for issuing EXCP. If you are not using
an IBM access method, you must issue EXCP in your program. (The
EXEP mairo)instruction cannot be used to process SYSIN or SYSOUT
ata sets.

You issue EXCP primarily for I/0 programming situations to which
the standard access methods do not apply. If vou are writing
vour own access method, you must include EXCP for I/0
operations. EXCP must be used for processing nonstandard
labels, including reading and writing labels and positioning
magnetic tape volumes.

To issue EXCP, you must provide a channel program (a list of
channel command words) and several control blocks in your
program area. The I/0 process then schedules I/0 requests for
the device you have specified, executes the specified I/0
commands, handles I/0 interruptions, directs error recovery
procedures, and posts the results of the 1/0 requests.

36 MVS/XA System-Data Administration

USING EXCP IN SYSTEM AND PROBLEM PROGRAMS

HOW THE SYSTEM USES

This section explains the procedures performed by the system and
the programmer when EXCP is issued by the routines of IBM access
methods. The additional procedures you must perform when
issuing EXCP yourself are then described by direct comparison.

EXCP

When using an IBM access method to perform I/0 operations, the
programmer is relieved of coding channel programs and
constructing the control blocks necessary for the execution of
channel programs. To permit I/0 operations to be handled by an
access method, the programmer need only issue the following
macro instructions:

° A DCB macro instruction that produces a data control block
(DCB) for the data set to be retrieved or stored

. An OPEN macro instruction that initializes the data control
blgck and produces a data extent block (DEB) for the data
se

. A macro instruction (for example, GET or WRITE) that
requests I/0 operations

Access method routines will then:

1. Create a channel program that contains channel commands for
the I/0 operations on the appropriate device

2. Construc{ an input/output block (I0B) that contains
information about the channel program

3. Construct an event control block (ECB) that is later posted
with a completion code each time the channel program
terminates

4. Issue an EXCP macro instruction to pass the address of the
I0OB to the routines that initiate and supervise the I1I/0
operations

The I/0 process consists of:

5. Constructing a request queue element (RQE) for scheduling
the request

6. If the requestor is in a V=V address space, fixing the
buffers so that they cannot be paged out and translating the
requestor's virtual channel program into a real channel
program

7. Issuing a start subchannel (SSCH) instruction to cause the
channel to execute the real channel program

8. Processing 1/0 interruptions and scheduling error recovery
procedures when necessary

9. Posting a completion code in the event control block after
the channel program has been executed

Note: If the requestor is an authorized program in a V=R
address space, a real channel program is provided; thus, item 6
is not performed.

The programmer is not concerned with these procedures and does
not know the status of 1I/0 operations until they are completed.
Device-dependent operations are limited to those provided by the
macro instructions of the particular access method selected.

Chapter 2. Executing Your Own Channel Programs (EXCP) 37

HOW TO USE EXCP IN PROBLEM PROGRAMS

To issue the EXCP macro instruction directly, you must follow
the procedures that the access methods would perform, as
summarized in items 1 through 4 of the preceding discussion. In
addition to constructing and opening the data control block with
the DCB and OPEN macro instructions, you must construct a
channel program, an input/output block, and an event control
block before vou can issue EXCP. The I/0 process generally
handles items 5 through 9.

After issuing EXCP, you should issue a WAIT macro instruction,
specifying the address of the event control block, to determine
whether the channel program has terminated. If volume switching
is necessary, you must issue an EOV macro instruction. When all
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

All external interfaces for EXCP are compatible between MVS/370
and MVS/XA, except for the restrictions noted below. These
restrictions relate only to the support of virtual and real
addresses above lé6-megabyte.

EXCP will be available to programs executing in either 26-bit or
31-bit addressing mode. However, in order to maintain the
required compatibility, the following restrictions apply:

. EXCP will only support a 24-bit virtual storage interface.
In addition, all areas related to I/0 operations (for
example, I/0 buffers, channel command words, I0Bs, DEBs,
appendages, and so forth), must remain 24-bit virtual
addressable. EXCP (channel command word translator) will
allow 24-bit virtual I/0 buffers to be fixed above
l6-megabyte real. When a channel command word (CCH)
references a real address above l6-megabyte, the CCH
translator will build an indirect addressing word (IDAW) for
that CCWH. Note that this is not supported for format-1l
CCUs. All virtual addresses must be below l6-megabyte. For
V=R users, CCHs and IDAWs must be below l6-megabyte real.

. Only format-0 CCHs are accepted as input.

. All user-specified appendage routines will be giveh control
in 24-bit addressing mode and must return in the same mode.

Note: Access methods run in 24-bit addressing mode. Users
running in 31-bit mode must interface to the access methods by
using a user-written routine that is resident below l6-megabyte
virtual (because the access methods will be able to return
control only to a 24-bit addressable location). All addresses,
buffers, parameters, control blocks, save areas and exit
addresses must be below lé-megabyte virtual. All access methods
(except VSAM), for example, GET or PUT, must be called in 24-bit
addressing mode.

31-BIT IDAW PROGRAMMING NOTES

A virtual channel program provided by the EXCP caller may have
one or more CCHs with the IDA flag set and the address portion
of these CCWs pointing to a single 4-byte IDAW. This EXCP
function is referred to as virtual IDANWs.

The 4-byte IDAW can contain a virtual address that ranges from 0
t o the maximum 31-bit address. Virtual IDAWs are supported
on all virtual CCHs except:

. Transfer in channel (TIC) commands.

38 MVS/XA System-Data Administration

O

N
/

TN
3

C

. All non data-transfer type commands: for example,
recalibrate, rewind, set space, fold, block data check, no
operation, control commands.

. Rezd, read backward, and sense commands, with the skip flag
set.

The same addressing restrictions apply to EXCPVR inputs with the
exception that 31-bit real data areas may be specified by the
user—-created CCHs through the use of IDAWs. All CCWs and IDAWs
must be below l6-megabyte real.

Only format-0 CCHs are accepted as input.

All other areas related to the EXCP/EXCPVR I/0 operation (for
example, CCHs, IDAWs, I0Bs, DEBs, DCBs, appendages, and so
forth) must remain 24-bit addressable.

Note, however, that the EXCP processor will allow both 24-bit ‘
and131—bit virtual I/0 buffers to be fixed above l6-megabyte
real.

HOW EXCP OPERATES IN A V=R ADDRESS SPACE

CHANNEL PROGRAM

User-constructed channel programs for 1/0 operations of an
authorized program in a V=R address space are not translated.
Because the address space is V=R, any CCHs created by the user
have correct real data addresses. (Translation would only
re-create the user's channel program, so the CCHs are used
directly.)

Modification of an active channel program by data read in or by
processor instructions is legitimate in a V=R address space, but
not in a V=V address space.

This section describes the channel program that you must provide
in order to issue EXCP. The control blocks that you must either
construct directly or cause to be constructed by use of macro
instructions are also described.

All areas related to the EXCP/EXCPVR 1I/0 operation (for example,
CCHs, IDAWs, I0Bs, DEBs, DCBs, appendages, and so forth) must
remain 24-bit addressable.

Note, however, that the EXCP processor will allow both 264-bit
and131—bit virtual I/0 buffers to be fixed above l6-megabyte
real.

The channel program supplied by vou and executed through EXCP is
composed of CCWs on doubleword boundaries. Each channel command
word specifies a command to be executed and, for commands
initiating data transfer, the area to or from which the data is
to be transferred.

Channel command word operation codes used with specific I/0
devices can be found in IBM publications for those devices. All
channel command word operation codes described in these
publications can be used. In addition, both data chaining and
command chaining may be used.

To specify either data chaining or command chaining, you must
set appropriate bits in the channel command word and indicate
the type of chaining in the input/output block. Both data and
command chaining should not be specified in the same channel
command word; if they are, data chaining takes precedence.

Chapter 2. Executing Your Own Channel Programs (EXCP) 39

EXCP does not support channel programs that modify themselves,
regardless of the method of modification: data chaining,
command chaining, or a program to do the modification. The
intended modification in virtual storage has no effect on the
running real-channel program (see "Modification of a Channel
Program during Execution" on page 62).

O

CONTROL BLOCKS

When using EXCP, you must be familiar with the function and
structure of the I0B, the ECB, the DCB, the DEB, and the IDAMNW.
IOB and ECB fields are illustrated under "Control Block Fields"™
on page 67. DCB fields are illustrated under "Macro
Specifications for Use with EXCP" on page 51. The handling of
IDAHs is described under "SI0 Appendage"™ on page 72.
Descriptions of these control blocks follow.

Input/output Block (IOB)

The input/output block is used for communication between the
problem program and the system. It provides the addresses of
other control blocks, and maintains information about the
channel program, such as the type of chaining and the progress
of I/0 operations. You must define the input/output block and
specify its address as the only parameter of the EXCP macro
instruction.

Event Control Block (ECB)

The event control block provides you with a completion code that
describes whether the channel program was completed with or

without error. A WAIT macro instruction, which can be used to
synchronize I/0 operations with the problem program, must o
identify the event control block. You must define the event N
control block and specify its address in the input/output block. \ J

Data Control Block (DCB)

The data control block prevides the system with information
about the characteristics and processing requirements of a data
set to be read or written by the channel program. A data
control block must be produced by a DCB macro instruction that
includes parameters for EXCP. If appendages are not being used,
a short DCB is constructed. Such a DCB does not support reduced
error recovery. You specify the address of the data control
block in the input/output block.

All DCBs must be located in storage that is not fetch-protected,
or, if the task is authorized, in storage that is in the key of
the task (TCB KEY).

Data Extent Block (DEB)

The data extent block contains one or more extent entries for

the associated data set and other control information. An :

extent defines all or part of the physical boundaries on an I/0

device occupied by, or reserved for, a particular data set.

Each extent entry contains the address of a unit control block

(UCB) that provides information about the type and location of

an I/0 device. More than one extent entry can contain the same

UCB address. For all I/0 devices supported by the operating

system, the data extent block is produced during execution of

the OPEN macro instruction for the data control block. The

system places the address of the data extent block into the data
control block. All DEBs must be located in storage that is not)
fetch-protected, or, if the task is authorized, in storage that ™
is in the key of the task (TCB key). Only authorized tasks w
(APF-authorized or TCB PKF=0-7) may build DEBs to be used for =
I/0 operations.

.40 MVS/XA System-Data Administration

C

HQWJHE_QHANNEL_EBD_QBAM._EXEME

This section explains how the system uses your channel program
and control blocks after vou issue EXCP.

INITIATION OF THE CHANNEL PROGRAM

By issuing EXCP, vou request the execution of the channel
program specified in the input/output block. The I/0 process
validates the request by checking certain fields of the control
blocks associated with this request. If the I/0 process detects
invalid information in a control block, it initiates abnormal
termination procedures.

The EXCP processor gets:

U ;?e :ddress of the data control block from the input/output
‘o¢

U l?e ﬁddress of the data extent block from the déta control
oc

. E?e ﬁddress of the unit control block from the data extent
oc

It places the I0B, TCB, DEB, and UCB addresses and other
information about the channel program into an area called a
request queue element (RQE). (Unless you are providing
appendage routines (described under "Appendages™ on page 63) you
should not be concerned with the contents of RQEs.)

If you have provided a start I7/0 (SI0) appendage, the EXCP
processor now passes control to it. The return address from the
SI0 appendage determines whether the EXCP processor must:

. Execute the I/0 operation normally, or
. Skip the I/0 operation.

For a description of the SI0 appendage and its linkage to the
EXCP processor, see "Appendages"™ on page 43.

If you are issuing EXCP from a V=V address space, the channel
program vou construct contains virtual addresses. Because
channel subsystems cannot use virtual addresses, the EXCP
processor must:

. Translate your virtual channel program into one that uses
only real addresses.

. Fix in real storage the pages used as 1/0 areas for the data
transfer operations specified in your channel program.

The EXCP processor builds the translated (real) channel program
in a portion of real storage.

For direct access devices, specify the seek address in the
input/output block. The I/0 supervisor constructs a command
chain to issue the seek and the set file mask specified in the
data extent block, and to pass control to your real channel
program.

If your channel program begins with a locate-record command, the
I/0 process builds a define-extent command and passes control to
vour real channel program. (You cannot issue the initial seek,
set file mask, or define extent. The file mask is set to
prohibit seek-cylinder commands, or, if space is allocated by
tracks, seek-head commands. If the data set is open for INPUT,
write commands are also prohibited.)

For a magnetic tape device, the I/0 supervisor constructs a
command chain to set the mode specified in the data extent block

Chapter 2. Executing Your Own Channel Programs (EXCP) 41

and passes control to your real channel program. (You cannot
set the mode yourself.)

If the I/0 device is other than a direct access device or a fﬁxj
magnetic tape device, the I/0 supervisor then places the L
starting CCH of the channel program into the operation request

block (ORB) and issues a start subchannel (SSCH) instruction.

MODIFICATION OF A CHANNEL PROGRAM DURING EXECUTION

Any problem program that modifies an active channel program with
processor instructions or with data read in by an I/0 operation
must be run in a V=R address space. It cannot run in a V=V
address space because of the channel program translation
performed by the I/0 supervisor. (In a V=V address space; an
attempt to modify an active channel program affects only the
virtual image of the channel program, not the real channel
program being executed by the channel subsystem.)

A program of this type can be changed to run in a V=V address
space by issuing another EXCP macro for the modified portion of
the channel program.

COMPLETION OF EXECUTION

The system considers the channel program completed when it
receives an indication of a channel-end condition in the
subchannel status word (SCSW). Unless a channel-end or
abnormal-end appendage directs otherwise, the request queue
element for the channel program is made available, and a
completion code is placed into the event control block. The
completion code indicates whether errors are associated with
channel end. If device end occurs simultaneously with channel
end, errors associated with device end (that is, unit exception
or unit check) are also accounted for.

// M

If device end occurs after channel end and if an error is
associated with device end, the completion code in the event
control block does not indicate the error. However, the status
of the unit and channel is saved by the I/0 supervisor for the
device, and the UCB is marked as intercepted. The input/output
block for the next request directed to the I/0 device is also
marked as intercepted. The error is assumed to be permanent,
and the completion code in the event control block for the
intercepted request indicates interception. The DCBIFLGS field
of the data control block is also flagged to indicate a
permanent error. Note that, if a write-tape-mark or
erase-long-gap CCH is the last or only CCH in your channel
program, the I/0 process will not attempt recovery procedures
for device end errors. In these circumstances, command chaining
a NOP CCH to your write—tape-mark or erase-long—gap CCH ensures
initiation of device-end error recovery procedures.

To be prepared for device-end errors, vou should be familiar
with device characteristics that can cause such errors. After
one of your channel programs has terminated, vou should not
release buffer space until you have determined that your next
request for the device has not been intercepted. You may
reissue an intercepted request.

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES

An I/0 interruption allows the processor to respond to signals
from an I/0 device that indicate either termination of a phase
of I/0 operations or external action on the device. A complete
explanation of I/0 interruptions is contained in /
inci ion. For descriptions of interruption by
specific devices, see the IBM publications for each device.

If error conditions are associated with an interruption, the I/0
supervisor schedules the appropriate device-dependent error

42 MVS/XA System-Data Administration

routine. The channel subsystem is then restarted with another
request that is not related to the channel program in error.
(The following paragraphs discuss "related"™ channel programs.)
If the error recovery procedures fail to correct the error, the
system places ones in the first two bit positions of the
DCBIFLGS field of the data control block. You are informed of
the error by an error code in the event control block.

If a channel program depends on the successful completion of a
previous channel program (as when one channel program retrieves
data to be used in building another), the previous channel
program is called a "related” request. Such a request must be
identified to the EXCP processor. To find out how to do this,
see "Input/Output Block (IOB) Fields"™ on page 67.

If a permanent error occurs in the channel program of a related
request, the EXCP processor removes the request queue elements
for all dependent channel programs from their queue and makes
them available.

The related request queue (RRQ) reflects the order in which
request queue elements are removed from their queue.

For all requests dependent on the channel program in error, the
system places completion codes into the event control blocks.
The DCBIFLGS field of the data control block is also flagged.
Any requests for a data control block with error flags are
posted complete without execution. To reissue requests
dependent on the channel program in error, yvou must reset the
first two bits of the DCBIFLGS field of the data control block
go gergs. You then reissue EXCP for each channel program
esired.

With the IBM 3800 Printing Subsystem, a cancel key or a
system-restart-requlred paper jam causes both a lost data
indicator to be set in DCBIFLGS and a lost page count and
channel page identifier to be stored in the UCB extension. (See

» ISO/E Data Areas, and
ubs v i)

An appendage is a programmer-written routine that provides
additional control over I/70 operations. By using appendages,
vou can examine the status of I/0 operations and determine the
actions to be taken for various conditions. An appendage may
receive control when one of the following occurs:

. EXCP SVC

. Program—-controlled interrupt

L End of extent

o Channel end

4 Abnormal end

Appendages get control in supervisor state, receiving the
following pointers from the EXCP processor:

. Register 1: Points to the request queue element for the
channel program.

. Register 2: Points to the input/output block (IOB).
. Register 3: Points to the data extent block (DEB).
U Register 4: Points to the data control block (DCB).

U Register 6: Points to the seek address if control is given
to an end-of-extent appendage.

Chapter 2. Executing Your Own Channel Programs (EXCP) 43

] Register 7: Points to the unit control block (UCB).

. Register 13: Points to a l6-word area you can use to save
input registers or data.

° Register 14: Points to the location in the EXCP processor
where control is to be returned after execution of an
appendage. When returning control to the EXCP processor,
vou may use displacements from the return address in
register 14. Allowable displacements are summarized in
Figure 12 and described later for each appendage.

. Register 15: Points to {he entry point of the appendage.

The processing done by appendages is subject to these
requirements and restrictions:

° Register 9, if used, must be set to binary zeros before
control is returned to the system. All other registers,
except those indicated in the descriptions of each
appendage, must be saved and restored if they are used.
Figure 12 summarizes register conventions.

° No SVC instructions or instructions that chénge the status
of the system (for example, WTO, LPSW, or any privileged
instructions) can be issued.

. Loops that test for the completion of I/0 operations must
not be used.

. Storage used by the I/0 supervisor or EXCP processor must
not be altered.

The types of appendages are described in the following sections,
with explanations of when they are created, how they return
control to the system, and which registers they may use without
saving and restoring their contents.

Note: All user-specified appendages will be given control in
2G-bit addressing mode and must return in the same mode.

"/

Entry
Appendage Point Returns Available Work Registersl
ECE Reg 15 Reg 16 + 0 Return
Reg 16 + 4 Skip Reg. 10, 11, 12, and 13
Reg 16 + 8 Try Again
SIO Reg 15 Reg 16 + 0 Normal Reg. 10, 11, and 13
Reg 16 + 4 Skip
PCI Reg 15 Reg 16 + 0 Normal Reg. 10, 11, 12, and 13
CHE Reg 15 Reg 16 + 0 Normal Reg. 10, 11, 12, and 13
Reg 14 + 4 Skip
Reg 16 + 8 Re-EXCP
Reg 14 + 12 By-Pass
ABE Reg 15 Reg 16 + 0 Normal
Reg 16 + 4 Skip Reg. 10, 11, 12, and 13
Reg 16 + 8 Re-EXCP
Reg 14 + 12 By-Pass

Figure 12. Entry Points, Returns, and Available Work Registers for Appendages

Note to Figure 12:

1 Certain register conventions for passing parameters from
appendages to the EXCP processor must be followed. These
conventions are described in the individual appendage
descriptions.

44 MVS/XA System-Data Administration

START-I/0 (SIO) APPENDAGE

Unless an error recovery procedure is in control, the EXCP
processor passes control to the SI0 appendage just before the
EXCP processor translates vour channel progran.

Optional return vectors give the 1/0 requestor the following
choices:

Reg. 14 + 0
Normal return. Normal channel program translation and
initiation of I/0

Reg. 14 + 4
Skip the I1/0 operation. The channel program is not posted
complete, but the request queue element is made available.
You may post the channel program as follows:

1. Save necessary registers.

2. Put the address of the post routine (found at CVTOPTO1
in the communications vector table) in register 15.

3. Place the ECB address from the I0B in register 1l1l.

Set the completion code in register 10. These are the
four bytes of an ECB.

5. Go to the post routine pointed to by the CVT, using
BALR 14, 15.

PROGRAM~CONTROLLED INTERRUPTION (PCI) APPENDAGE

This appendage is entered at least once if the channel finds one
or more PCI bits on in a channel program. It may be entered as
many times as the channel finds PCI bits on. Before the
appendage 1s entered, the contents of the subchannel status word
are placed in the "channel status word" field of the
input/output block.

A PCI appendage will be reentered if an error recovery procedure
is retrying a channel program in which a PCI bit is on. The I0B
error flag is set when the error recovery procedure is in
control (IOBFLAG1l = X'20'). (For special PCI conditions
encountered with command retry, see "Channel Programming
Considerations"™ on page 50.)

To post the channel program from a PCI appendage, the procedure
described for the start-I/0 appendage is used if the step is
running ADDRSPC=VIRT or an authorized program is running V=R.
If the step is running ADDRSPC=REAL and an authorized program
issued the EXCP request or if SVC 114(EXCPVR) was issued, the
PCI appendage uses real storage addresses, and the following
procedure is used to post the channel program from the PCI
appendage.

1. Put the completion code in register 10 and place X'80' in
%h: hig?-order byte to indicate the key is in register 0
step .

2. Put X'80' in the high-order byte of register 11 and the
address of the ECB in the low-order bytes.

3. Put X'80' in the high-order byte of register 12 and the
address of a BR 14 instruction in the low-order bytes. This
BR 14 must be in storage addressable from any address space
(for example, CVTBRET) and must be in storage addressable by
26 bits. Note that only registers 9 and 14 are restored
when you use this option.

Chapter 2. Executing Your Own Channel Programs (EXCP) 45

4. Put the address of the ASCB in register 13.

The next two paragréphs describe how to obtain the ASCB —
address and are followed by sample instructions to ﬁ(™
illustrate the procedure. Qk)y

Get the SRB address associated with the I1/0 operation from
the RQE field, RQESRB (the RQE address was in register 1
when the appendage was given control). Get the I0SB address
from SRBPARM. From that I0SB, get the identifier field,
IOSASID. Multiply IOSASID by 4.

Get the pointer to the ASVT (address space vector table)
found at CVTASVT. The address of the ASCB can be found in
the ASVT, using the field ASVTENTY-4 indexed by the value
calculated in the above paragraph.

USING RQE, 1

L Y, RQESRB
USING SRBSECT,Y
LH Y, SRBPARM
USING I0SB,Y

LH Y,I0SASID
SLA Y,2

L X,16
USING CVT, X

L X, CVTASVT

USING ASVT, X
L 13,ASVTENTY=-6G(Y)

Note: X and Y are work registers.
5. Put the requestor's key in register 0.

6. Put the address of the post routine (found at CVTOPTOl in
the communications vector table) in register 15.
SN
7. Go to the post routine using BALR 14,15. Upon return, only ‘)
registers 9 and 14 are valid. For more information on the N S

POST routlne; see

This procedure can be used even if the PCI appendage uses
v%rtual storage addresses, but performance may be slightly
slower.

To return control to the EXCP processor for normal interruption
processing, use the return address in register 14.

END-OF-EXTENT (EOE] APPENDAGE

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits
indicated in the data extent block.

If you use the return address in register 14 to return control
to the system, the abnormal-end appendage is entered. An
end-of-extent error code (X'42') is placed in the "ECB code™
Eégld of the input/output block for subsequent posting in the

You may use the following optional return addresses:

e Contents of register 16 plus 4: The channel progranm is
posted complete; its request element 1s returned to the
available queue.

. Contents of register 14 plus 8: The request is tried again.

You may use registers 10 fhrough 13 in an end-of-extent
appendage without saving and restoring their contents.

46 MVS/XA System—-Data Administration

Note: If an end-of-cvylinder or file-protect condition occurs,
the EXCP processor updates the seek address to the next higher
cylinder or track address and reexecutes the request. If the
new seek address is within the data set's extent, the request is
executed; if the new seek address is not within the data set's
extent, the end-of-extent appendage is entered. If you want to
try the request in the next extent, you must move the new seek
address to the location pointed to by register 6.

If a file protect is caused by a full seek (command code=07)
embedded within a channel program, the request is flagged as a
permanent error, and the abnormal end appendage is entered.

CHANNEL~-END (CHE) APPENDAGE

This appendage is entered when a channel end (CHE), unit
exception (UEX) with or without channel end or when channel end
with wrong-length record (WLR) occurs without any other
abnormal-end conditions.

If you use the return address in register 14 to return control
to the EXCP processor, the channel program is posted complete,
and its request element is made available. In the case of unit
exception or wrong-length record, the error recovery procedure
is performed before the channel program is posted complete, and
the IOBIOERR flag (X'04') in IOBFLAGl is set on. The CSW status
may be obtained from the IOBCSHW field.

If the appendage takes care of the wrong-length record or unit
exception or both, it may turn off the IOBIOERR flag in IOBFLAG1
and return normally. The event will then be posted as complete
(completion code X'7F' under normal conditions, taken from the
high-order byte of the IOBECBCC field). If the appendage
returns normally without resetting the IOBIOERR flag to zero,
the request will be routed to the associated device error
recovery procedure (ERP), and the abnormal-end appendage will
then be entered with the completion code in IOBECBCC set to
X'41' if the ERP could not correct the error. (See Step 1 of
"Abnormal-End (ABE) Appendage"™ on page 48.)

You may use the following optional return addresses:

. Contents of register 14 plus 6: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling
sequence described under the start-1/0 appendage. This is
especially useful if you want to post an ECB other than the
ECB in the input/output block.

U Contents of register 14 plus 8: The channel program is not
posted complete, and its request element is placed back on
the request queue so that the I/0 operation can be retried.
For correct reexecution of the channel program, you must
reinitialize the IOBFLAGl, IOBFLAG2, and IOBFLAG3 fields of
the input/output block and set the "Error Counts" field to
zero. As an added precaution, the IOBSENSO, IOBSENS1l, and
IOBCSHW fields should be cleared.

. Contents of register 16 plus 12: The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine. For information on the
exit effector, see System Macros and Facilities.

You may use registers 10 through 13 in a channel-end appendage
without saving and restoring their contents.

Chapter 2. Executing Your Own Channel Programs (EXCP) 47

ABNORMAL-END (ABE) APPENDAGE

This appendage may be entered on abnormal conditions, such as £
unit check, unit exception, wrong-length indication, program &k)
check, protection check, channel data check, channel control

check, interface control check, chaining check, out-of-extent

error, and intercept condition (that is, device end error). It

may also be entered when an EXCP is issued for a request queue

element that has already been purged.

1. When this appendage is entered because of a unit exception
or wrong-length record indication or both, IOBECBCC is set
to X'41'. For further information on these conditions, see
“Channel-End (CHE) Appendage™ on page 47.

N

3 PP S 3 PUURP R I
When the appendage is entered becauss of an ocut-ot-extent

error, the IOBECBCC is set to X'62'.

3. When this appendage is entered with IOBECBCC set to X'4B°‘,
it is because of:

a. The tape error recovery procedure (ERP) encountering an
unexpected load point, or

b. The tape error recovery procedure (ERP) finding zeros in
the command address field of the CSH.

4. MWhen the appendage is first entered because of an intercept
condition, the IOBECBCC is set to X'7E'. If it is then
determined that the error condition is permanent, the
appendage will be entered a second time with the IOBECBCC
set to X'44'. The intercept condition signals that an error
was detected at device end after channel end on the previous
request.

5. When the appendage is entered because of an EXCP being .
issued to an already purged request queue element, this 7N
request will enter the abnormal end appendage with the W/
IOBECBCC set to X'48'. This applies only to related o
requests.

6. If the appendage is entered with IOBECBCC set to X'7F', it
may be because of a unit check, program check, protection
check, channel data check, channel control check, interface
control check, or chaining check. If the IOBECBCC is X'7F°¢,
it is the first detection of an error in the associated
channiel program. If the IOBEX (X'04™) flag (bit 5 of the
IOBFLAGl) is on, the IOBECBCC field will contain a X'41°,
X427, X'48', X'6B', or X'4F' in hexadecimal, indicating a
permanent I/0 error.

To determine if an error is permanent, you should check the
IOBECBCC field of the IOB. To determine the type of error,
check the channel status word field and the sense information in
the I0B. However, when the IOBECBCC is X'62°, X'48', or X'4F',
these fields are not applicable. For X'644', the CSH is
apzlicable, but the sense is valid only if the unit check bit is
set.

If you use the return address in register 14 to return control
to the system, the channel program is posted complete, and its
request element is made available. You may use the following
optional return addresses:

. Contents of register 14 plus 6: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling
sequence described under the start-1/0 appendage.

. Contents of register 14 plus 8: The channel program is not ~
posted complete, and its request element is placed back on A
the request queue so that the request can be retried.

Reinitialize the IOBFLAGl, IOBFLAG2, and IOBFLAG3 fields of -
the input/output block and set the IOBERRCT field to zero.

68 MVS/XA System-Data Administration

As an added precaution, clear the IOBSENSO, IOBSENSl, and
IOBCSW fields.

. Contents of register 14 plus 12: The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine.)

You may use registers 10 through 13 in an abnormal-end appendage
without saving and restoring their contents.

MAKING YOUR APPENDAGES PART OF THE SYSTEM

Before your appendages can be executed, they must become members
of either the SYS1.LPALIB or SYS1.SVCLIB data set. There are
two ways to put appendages into SYS1.LPALIB or SYS1.SVCLIB:

They can be included at system generation using the DATASET
macro instruction (a full explanation appears in Installation
Svystem Generation), or they can be link-edited into SYS1.LPALIB
or SYS1.SVCLIB after the system has been generated. Each
appendage must have an 8-character member name, the first six
characters being IGG019 and the last two being anything in the
range from WA to Z9. Note, however, if your program runs in a
V=R address space and uses a PCI appendage, the PCI appendage
and any appendage that the PCI appendage refers to must be
placed in either SYS1.SVCLIB or the fixed link pack area (LPA).
For information on providing a list of programs to be fixed in
storage, see o) u .

THE AUTHORIZED APPENDAGE LIST (IEAAPP0O)

If an "unauthorized™ program opens a DCB to be used with an EXCP
macro instruction, the names of any appendages associated with
the DCB must be listed in the IEAAPP0O0 member of SYS1.PARMLIB.
(An "unauthorized" program is one that runs in a protection key
greater than 7 and has not been marked as authorized by the
Authorized Program Facility.)

If your appendages were put in SYS1.LPALIB or SYS1.SVCLIB at
system generation, their names are automatically put in
IEAAPPOO0. If your appendages were added to SYS1.LPALIB or
SYS1.SVCLIB after system generation, you can add IEAAPP00 to
SYS1.PARMLIB and put the names of the appendages in it in one
job step with the IEBUPDTE utility.

Here is an example of JCL statements and IEBUPDTE input that
will add IEAAPPOO to SYS1.PARMLIB and put the names of one EOE
appendage, two SI0 appendages, two CHE appendages, and one ABE
appendage in IEAAPP0O:

/7 JOB Y

7/ EXEC PGM=IEBUPDTE

/7/SYSPRINT DD SYSOUT=A

//3YSUT2 DD DSN=SYS1.PARMLIB,DISP=0LD
//SYSIN DD %

4 ADD NAME=IEAAPPOO,LIST=ALL
EOEAPP HA,

SIOAPP X1,X2,
CHEAPP 23,24,
ABEAPP Z2

/%

Note the following about the IEBUPDTE input:

. The type of appendage is identified by six characters that
begin in column 1. EOEAPP identifies an EOE appendage,
SIOAPP an SI0 appendage, CHEAPP a CHE appendage, and ABEAPP
an ABE appendage. (The PCI appendage identifier, PCIAPP, is
?ngggggns because the example adds no PCI appendage name to

Chapter 2. Executing Your Own Channel Programs (EXCP) 49

° Only the last two characters in an appendage's name are
specified, beginning in column 8.

° Each statement that identifies one or more appehdage names
ends in a comma, except the last statement.

You can also use IEBUPDTE to add appendage names later or to

delete appendage names. Here is an example of JCL statements

and IEBUPDTE input that adds the names of a PCI and an ABE

appendage to the IEAAPP0OO0 appendage list that was created in the

:;e:ef@ng example, and deletes the name of an SI0 appendage from
a ist:

7/ JOB. . .

7/ EXEC PGM=IEBUPDTE

//SYSPRINT DD SYSOUT=A

//5YSUT2 DD DSN=SYS1.PARMLIB,DISP=0LD
7/SYSIN DD %

4 REPL NAME=IEAPPO0O,LIST=ALL
PCIAPP Y1,

EOQEAPP WA,

SI0APP X1,X2,
CHEAPP 23,24,
ABEAPP 22,74
7%
Note the following about the IEBUPDTE input:
. The command to IEBUPDTE in this case is REPL (replace).

. All the appendage names that are to remain in IEAAPP0O are
repeated.

o IGG019Z4 is both a CHE and an ABE appendage.

CHANNEL PROGRAMMING CONSIDERATIONS

Command retry is a function of the channel supporting the IBM
2305-2, 3330/3333, 3340/3344, 3350, 3375, and 3380 direct access
devices. When the channel subsystem receives a retry request,
it repeats the execution of the CCW, requiring no additional
input/output interrupts. For example, a control unit may
initiate a retry procedure to recover from a transient error.

A command retry during the execution of a channel program may
cause any of the following conditions to be detected by the
initiating progran: v

L Modifying CCHs: A CCH used in a channel program must not be
modified before the CCH operation has been successfully
completed. MWithout the command retry function, a command
was fetched only once from storage by a channel. Therefore,
a program could determine through condition codes or program
controlled interruptions (PCI) that a CCH had been fetched
and accepted by the channel. This permitted the CCH to be
modified before reexecution. MWith the command retry
function, this cannot be done, because the channel will
fetch the CCW from storage again on a command retry
sequence. In the case of data chaining, the channel will
rﬁtry commands starting with the first CCHW in the data
chain.

° Program Controlled Interrupts (PCI): A CCW containing a PCI
flag may cause multiple program-controlled interrupts to
occur. This happens if the PCI-flagged CCH was retried
during a command retry procedure and if a PCI could be
generated each time the CCH is reexecuted.

. Residual Count: If a channel program is prematurely
terminated during the retry of a command, the residual count
in the channel status word (CSW) will not necessarily
indicate how much storage was used. For example, if the
control unit detects a "wrong-length record" error

50 MVS/XA System-Data Administration

N
N

AN

e

condition, an erroneous residual count is stored in the CSW
until the command retry is successful. When the retry is
successful, the residual in the CSH reflects the correct
length of the data transfer.

. Command Address: When data chaining with command retry, the
CSWH may not indicate how many CCHs have been executed at the
time of a PCI. For example:

CCW# cChannel Program

1 Read, data chain

2 Read, data chain

3 Read, data chain, PCI
G Read, command chain

In this example, assume that the control unit signals
command retry on Read #3 and the processor accepts the PCI
after the channel resets the command address to Read #1
because of command retry. The CSH stored for the PCI will
contain the command address of Read #1 when the channel has
actually progressed to Read #3.

U Testing Buffer Contents on Data Read: Any program that tests
a buffer to determine when a CCWH has been executed and
continues to execute based on this data may get incorrect
results if an error is detected and the CCH is retried.

MACRO SPECIFICATIONS FOR USE WITH EXCP

If you are using the EXCP macro instruction, you must also use
DCB, OPEN, CLOSE, and, in some cases, the EOV macro instruction.
The parameters of these macro instructions and the EXCP macro
instructions are explained here. A diagram of the data control
block is included with the description of the DCB macro
instruction.

DEFINING DATA CONTROL BLOCKS FOR EXCP (DCB)

The EXCP form of the DCB macro instruction produces a data
control block that can be used with the EXCP macro instruction.
You must issue a DCB macro instruction for each data set to be
processed by your channel programs. Notation conventions and
format illustrations of the DCB macro instruction aESBgiven in

Data Administration: Macro Instruction Reference.
parameters that apply to EXCP may be divided into four
categories, depending on the following portions of the data
control block that are generated when they are specified:

. Foundation block. This portion is required and is always 12
bytes in length. You must specify two of the parameters in
this category.

U EXCP interface. This portion is optional. If you specify
any parameter in this category, 20 bytes are generated.

[Foundation block extension and common interface. This
portion is optional and is always 20 bytes in length. 1If
this portion is generated, the device-dependent portion is
also generated.

. Device dependent. This portion is optional and is generated
only if the foundation block extension and common interface
portion is generated. Its size ranges from & to 20 bytes,
depending on specifications in the DEVD parameter. However,
if you do not specify the DEVD parameter (and the foundation
extension and common interface portion is generated), the
maximum 20 bytes for this portion are generated.

Some of the procedures performed by the system when the data

control block is opened and closed (such as writing file marks
for output data sets on direct access volumes) require

Chapter 2. Executing Your Own Channel Programs (EXCP) 51

information from optional data control block fields. You should

make sure that the data control block is large enough to provide

211hin:grmation necessary for the procedures you want the system
o handle.

Figure 13 on page 53 shows the relative position of each portion
of an opened data control block. The fields corresponding to
each parameter of the DCB macro instruction are also designated,
with the exception of DDNAME, which is not included in a data
control block that has been opened. The fields identified in
parentheses represent system information that is not associated
with parameters of the DCB macro instruction.

Sources of information for data control block fields other than
the DCB macro instruction are data def1n1t1on (DD) statements,
data set labels;: and data control block modiTication routines.
You may use any of these sources to specify DCB parameters.
However, if a particular portion of the data control block is
not generated by the DCB macro instruction, the system does not
accept information intended for that portion from any
alternative source.

You may provide symbolic names for the fields in one or more
EXCP DCBs by coding a DCBD macro to generate a dummy control
section (DSECT). To map the common interface, foundation block
extension, and foundation block, you code DSORG=XE. To map the
foundation block and EXCP interface, you code DSORG=XA. You may
code DSORG=(XA,XE) to map both. For further information, see
Data Administration: M Insi £ Ref)

Foundation Block Parameters

DDNAME=svmbol
The name of the data definition (DD) statement that
describes the data set to be processed. This parameter
must be given.

MACRF=(E)
The EXCP macro instruction is to be used in processing the
data set. This operand must be coded.

REPOS={Y [N}
Magnetic tape volumes: This parameter indicates to the
dynamic device reconfiguration (DDR) routine whether the
user is keeping an accurate block count. If the user is
keeping an accurate block count, the DDR routine can
attempt to swap the volume. (You must maintain the block
count in the DCBBLKCT field.>

Y—The user is keeping an accurate block count, and the DDR
routine can attempt to swap the volume.

N—The block count is unreliable, and the DDR routine
cannot and will not attempt to swap the volume.

If the operand is omitted, N is assumed.

EXCP Interface Parameters

EOEA=gvymbol
2-byte identification of an EOE appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

PCIA=symbol
2-byte identification of a PCI appendage that you have
entered into SYSl.LPALIB or SYS1.SVCLIB.

SI0A=gymbol
2-byte identification of a SI0 appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

52 MVS/XA System—-Data Administration

N

),

0 —
The device—dependent portion of the data control

_ block varies in length and format according to _

_ specifications in the DSORG and DEVD parameters. _ > Device
Illustrations of this portion for each device Dependent
type are included in the description of the DEVD
parameter. -

20 —_
BUFNO BUFCB
24 > Common
BUFL‘ DSORG Interface
28
I0OBAD -
32 BFTEK,
BFALN EODAD —] Foundation
> Block
Extension
36
RECFM EXLST -
40 —_—
(TIOT) MACRF
66 > Foundation
(IFLGS) (DEB Address) Block
48
(OFLGS) Reserved —
52 —
OPTCD Reserved
56
Reserved
60 > EXCP
EOEA PCIA Interface
66
SIOA CENDA
68 '
XENDA Reserved —

Figure 13. Data Control Block (DCB) Format for EXCP (After OPEN)

CENDA=gymbol
2-byte identification of a CHE appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

XENDA=svymbol
2-byte identification of an ABE appendage that you have
entered into SYS1.LPALIB or SYS1.SVCLIB.

OPTCD=Z
indicates that, for magnetic tape (input only), a reduced
error recovery procedure (5 reads only) will occur when a
data check is encountered. It should be specified only
when the tape is known to contain errors and t
application does not require that all records be processed.
Its proper use would include error frequency analysis in
the SYNAD routine. Specification of this parameter will
also cause generation of a foundation block extension.

Chapter 2. Executing Your Own Channel Programs (EXCP) 53

This parameter is ignored unless it was selected at system
generation.

IMSK=value
Any specification indicates that the system will not use
IBM-supplied error routines.

Foundation Block Extension and Common Interface Parameters
EXLST=address

the address of an exit list that you have written for
exception conditions. The format of this exit list is
given in Data Administration Guide.

EODAD=address
the address of vour end-of-data-set routine for input data
sets. If this routine is not available when it is
required, the task is abnormally terminated.

DSORG={PS|PO|DA|IS}
the data set organization (one of the following codes).
Each code indicates that the format of the device-dependent
portion of the data control block is to be similar to that
generated for a particular access method:

Code DCB Format for

PS QSAM or BSAM
PO BPAM

DA BDAM

IS QISAM or BISAM

For direct access devices, if you specify PS or PO, you
must maintain the following fields of the device-dependent
portion of the data control block so that the system can
write a file mark for output data sets:

. The track balance (DCBTRBAL) field that contains a
2-byte binary number that indicates the remaining
number of bytes on the current track. This number can
be obtained from the system track algorithm routine.

o The full disk address (DCBFDAD) field that indicates
the location of the current record. The address is in
the form MBBCCHHR.

These fields are written into the format-1 DSCB and are
used by Open routines for staging MSS data sets. Staging
is done only up through the last cvlinder specified by
these fields if the data set is reopened for OUTPUT, INOUT,
OUTIN, OUTINX, or EXTEND.

If vou specify PO for a direct access device, the DCBDIRCT
field will not be updated. Therefore, you should be
careful when using EXCP with the STOW macro.

IOBAD=address
the address of an input/output block (IO0OB). If a pointer
to the current I0OB is not required, you may use this field
for any purpose.

The following parameters are not used by the EXCP routines.
They provide additional information that the system will store
for later use by access methods that read or update the data

set.

RECFM=code
the record format of the data set. Record format codes are
given in i

Data Administration: Macro Instruction Reference.
When writing a data set to be read later, RECFM, LRECL, and
BLKSIZE should be specified to identify the data set
attributes. LRECL and BLKSIZE can only be specified in a

54 MVS/XA System-Data Administration

)

C

N
\] ”//f

DD statement, because these fields do not exist in a DCB
used by EXCP.

BFTEK={S|E}
the buffer technique, either simple or exchange.

BFALN={F|D}
the word boundary alignment of each buffer, either fullword
or doubleword.

BUFL=length
gg;é%ength in bytes of each buffer; the maximum length is

BUFNO=pumber
the number of buffers assigned to the associated data set;
the maximum number is 255.

BUFCB=
the address of a buffer pool control block, that is, the
8-byte field preceding the buffers in a buffer pool.

Device-Dependent Parameters

DEVD=code
the device in which the data set may reside. The codes are
listed in order of descending space requirements for the
data control block:

Code Device

DA Direct access
TA Magnetic tape
PR Printer

PC Card punch

RD Card reader

Note: For MSS virtual volumes, DA should be used.

If vou do not want to select a specific device until job setup
time, you should specify the device type requiring the largest
area; that is, DEVD=DA.

The following diagrams illustrate the device-dependent portion
of the data control block for each combination of device type
specified in the DEVD parameter and data set organization
specified in the DSORG parameter. Fields that correspond to
device-dependent parameters in addition to DEVD are indicated by
the parameter name. For special services, vou may have to
maintain the fields shown in parentheses. The special services
are explained in the note that follows the diagram.

Chapter 2. Executing Your Own Channel Programs (EXCP) 55

Device-dependent portion of data control block when DEVD=DA and
DSORG=PS:

5
Reserved DCBFDAD
8;;
3
DCBDVTBL
16 17 18
DCBKEYLE DCBDEVT DCBTRBAL

For output data sets, the system uses the contents of the full
disk address (DCBFDAD) field, plus one, to write a file mark
when the data control block is closed, provided the track
balance (DCBTRBAL) field indicates that space is available. If
DCBTRBAL is less than 8, the file mark is written on the next
sequential track. You must maintain the contents of these two
fields yvourself if the system is to write a file mark. OPEN
will initialize DCBDVTBL and DCBDEVT.

Device-dependent portion of data control block when DEVD=DA and
DSORG=DA:

18

6
DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

DCBBLKCT

17 18 19

16
DCBTRTCH Reserved DCBDEN Reserved

The system uses the contents of the block count (DCBBLKCT) field
to write the block count in trailer labels when the data control
block is closed or when the EOV macro instruction is issued.

You must maintain the contents of this field yourself if the
system is to have the correct block count. (Note: The 1I/0
supervisor increments this field by the contents of the IOBINCAM
field of the I0B at the completion of each I/0 request.)

When using EXCP to process a tape data set open at a checkpoint,
vyou must be careful to maintain the correct count; otherwise,
the system may position the data set incorrectly when restart
occurs. If REP0S=Y, the count must be maintained by you for
repositioning during dynamic device reconfiguration.

56 MVS/XA System-Data Administration

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

(' 16 18

DCBPRTSP Reserved

Device-dependent portion of data control block when DEVD=PC or
RD and DSORG=PS:

18
DCBMODE, DCBSTACK Reserved

The following DCB operands pertain to specific devices and may
be specified only when the DEVD parameter is specified.

KEYLEN=]lenath
for direct access devices, the length in bytes of the key
of a physical record, with a maximum value of 255. HWhen a
block is read or written, the number of bytes transmitted
is the key length plus the record length.

DEN=yvalue

forhmagnetic tape, the tape recording density in bits per
inch:

value | 7-Track Density | 9-Track Density

(1 556 -—=

2 800 800(NRZI)

3 -— 1600(PED

G ——— 6250(GCR)

NRZI—Non-return-to-zero change to ones recording
PE—phase encoded recording
GCR—group coded recording

If this parameter is omitted, the highest density available
on the device is assumed.

TRTCH=value

for 7-track magnetic tape, the tape recording technique:

Value Tape Recording Technique

C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is
assumed.)
T BCDIC to EBCDIC translation is required.
MODE=value

for a card reader or punch, the mode of operation. Either
C (column binary mode) or E (EBCDIC code) may be specified.

STACK=value
e for a card punch or card reader, the stacker bin to receive
(cards, either 1 or 2

Chapter 2. Executing Your Own Channel Programs (EXCP) 57

PRTSP=value

for a printer, thé line spacing, either 0, 1, 2, or 3.

DSORG Parameter of the DCBD Macro U

In addition to the operands described in

Data Ad istrati
for the DSORG parameter of the DCBD

macro, you may specify the following operands.
DSORG=

XA specifies a DCB with the EXCP interface section
(including appendage names)

Y X1 -

XE specifTies a DCB with the foundation block extension

INITIALIZING DATA CONTROL BLOCKS (OPEN)

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used
by your channel programs. (A dummy data set may not be opened
for EXCP.) Some of the procedures performed when OPEN is
executed are:

Reading in the JFCB (job file control block), unless the
TYPE=J option of the macro instruction was coded

Construction of the data extent block (DEB)

Transfer of information from the JFCB and data set labels to
the DCB

Verification or creation of standard labels N
Tape positioning ./

Loading of your appendage routines

The parameters of the OPEN macro instruction are:

[symboll | OPEN (dcb address

»L({options)lr...)

the address of the data control block to be initialized.
(More than one data control block may be specified.)

the intended method of 1/0 processing of the data set. You
may specify this parameter as either INPUT, RDBACK, OUTPUT,
or EXTEND. For magnetic tape, label processing for each of
these when OPEN is executed is as follows:

INPUT Header labels are verified.
RDBACK Trailer labels are verified.
QUTPUT Header labels are created.
EXTEND Header labels are created.

If this parameter is omitted, INPUT is assumed.
the volume disposition that is to be provided when volume

switching occurs. The operand values and meanings are as
follows:

-
REREAD Reposition the volume to process the data set ({j
again. :

58 MVS/XA System-Data Administration

LEAVE No additional positioning is performed at
end-of-volume processing.

DISP Specifies that a tape volume is to be disposed of
in the manner implied by the DD statement
associated with the data set. Direct access volume
positioning and disposition are not affected by
this parameter of the OPEN macro instruction.

There are several dispositions that can be
specified in the DISP parameter of the DD
statement:

DISP=PASS, DELETE, KEEP, CATLG, or UNCATLG. Only
DISP=PASS has significance at the time an
end-of-volume condition is encountered. The
end-of-volume condition may result from the
issuance of an FEOV macro instruction or may be the
result of reaching the end of a volume.

If DISP=PASS was coded in the DD statement, the
tape will be spaced forward to the logical end of
the data set on the current volume.

If a DISP option other than DISP=PASS is coded on
the DD statement, the action taken when an
end-of-volume condition occurs depends on (1) how
many tape units are allocated to the data set and
(2) how many volumes are specified for the data set
in the DD statement. This is determined by the
UNIT= and VOLUME= operands of the DD statement
associated with the data set. If the number of
volumes is greater than the number of units
allocated, the current volume will be rewound and
unloaded. If the number of volumes is less than or
equal to the number of units, the current volume is
merely rewound.

If you intend to process a multivolume direct data set, vou must
cause open routines to build a data extent block for each volume
and issue mount messages for them. This can be done by reading
in the JFCB with a RDJFCB macro instruction and opening each
volume of the data set. The following code illustrates the
procedure: '

Chapter 2. Executing Your Own Channel Programs (EXCP) 59

EXECUTING A CHANNEL

RDJFCB DCB1 READS IN THE JFCB
SR R3,R3 CLEARS REG 3; IT WILL
x HOLD COUNT OF VOLS TO
* BE_OPENED
IC R3, JFCBNVOL PUTS # OF VOLS
x IN REG 3
LA RG,DCB1 RG POINTS TO DCB FOR
% VOL TO BE OPENED
LA R5,1 PUTS SEQUENCE # OF
x FIRST VOL TO BE
x OPENED IN REG 5
LOOP EQU x
STH R5, JFCBVLSQ PUTS SEQ # OF VOL
x 70 BE OPENED WHERE
x OPEN RTNS LOOK
OPEN_((R4),0UTPUT),TYPE=J OPENS ONE VOL
% NOTE THAT THE TYPE=J OPTION OF THE MACRO MUST BE USED
LA RG,DCB2-DCB1(R4) INCREMENT REG 4 TO
x POINT TO THE DCB FOR
x THE NEXT VOL TO BE
x OPENED
LA R5,1(R5) INCREMENT TO SEQ # OF
x NEXT VOL TO BE OPENED
BCT R3,L0OP LOOP UNTIL ALL VOLS
x OPEN
JFCB DS CL176 JFCB READ IN HERE
ORG JFCB+70
JFCBVLSQ DS H SEQ # OF VOL TO BE
x OPENED
ORG JFCB+117
JFCBNVOL DS FL1 # OF VOLS IN DATA SET

ORG
¥ MAPPING MACRO IEFJFCBN MAY ALSO BE USED
DCB1 DCB DDNAME=SYSUT1,MACRF=(E), EXLST=EXITS, DSORG=PS
DCB2 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB3 DCB DDNAME=SYSUT1,MACRF=(E), EXLST=EXITS,DSORG=PS
DCB4 DCB DDNAME=3SYSUT1,MACRF=(E), EXLST=EXITS, DSORG=PS
DCB5 DCB DDNAME=SYSUT1,MACRF=(E), EXLST=EXITS, DSORG=PS
¥ THIS PROCEDURE WORKS FOR 5 VOLS OR LESS; THE JFCB
% EéTEE§%O¥ﬁ WHICH IDENTIFIES ADDITIONAL VOLS, CAN'T
*

EXITS DS OF

DC X'87',AL3(JFCB) 87 IDENTIFIES THIS AS
* THE EXIT LIST ENTRY
% THAT SHOWS WHERE JFCB
* WILL BE READ IN

Use of the RDJFCB macro instruction and the OPEN macro
instruction with the TYPE=J option is explained in detail under
"Reading and Modifying a Job File Control Block™ on page 117.

PROGRAM (EXCP)

The EXCP macro instruction requests the initiation of the I/0
operations of a channel program. You must issue EXCP whenever
vou want to execute one of your channel programs. The format of
the EXCP macro instruction is:

[symboll | EXCP iob-address

the address of the input/output block of the channel
program to be executed.

60 MVS/XA System-Data Administration

ASSIGNING AN ALTERNATE TRACK AND COPYING DATA FROM THE DEFECTIVE TRACK (ATLAS)

A program that uses the EXCP macro instruction for input and
output and that is APF authorized may, during the execution of
the program, use the ATLAS macro instruction to obtain an
alternate track and to copy a defective track onto the alternate
track. With the use of ATLAS, the program can recover from
permanent (hard) errors encountered in the execution of the
following types of I/0 commands:

J Search ID.

. Write. (The error condition must be confirmed during the
execution of the channel program by a CCH that checks the
data written.)

. Read count. Errors in the CCHHR part of the count area can
be recovered from, unless the record is the home address or
record zero. Errors in the KDD part of the count area
cannot be recovered from, unless the user has identified the
defective record.

Note: ATLAS may be used for all direct access devices with the
exception of MSS volumes (3330V).

Your DCB must include the DCBRECFM field, and the field must
show whether the data set is in the track overflow format. If
it is, recovery from errors in last records on tracks depends on
vour identifying the track overflow record segments.

Recovery takes the form of obtaining a good alternate track and
copving the defective track onto the good alternate one. Unless
a reexecution of the channel program by ATLAS can correct the
defect, the user should examine, and if necessary replace,
defective records in a subsequent job if the data set is to be
processed again.

The format is:

[svmbol]l ATLAS PARMADR={address}
[,CHANPRG={R def.|[NR}]
[,CNTPTR={PIF}]
[>WRITS={YES|NO}1

PARMADR
Address of a parameter address list of the following
format:
0
Address of I0OB for the channel program that
encountered the error
4
Address of count area field

The count area field contains the CCHHRKDD of a defective
record or the CCHH of a track that is to be copied.

address—A-tvpe address, (2-12), or (1)
CHANPRG={RINR}

specifies whether the channel program that encountered the
error can be executed again.

Chapter 2. Executing Your Own Channel Programs (EXCP) 61

Using ATLAS

R Channel program may be executed again by ATLAS.
Before permitting reexecution of the channel program
by ATLAS, you must reset the error indications of the
previous execution fields in the DCBIFLGS. (See the
example of the use of ATLAS below.)

NR Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR
specifies whether the count area field contains a full
count area (CCHHRKDD) or a partial count area (CCHH).

P Part of the count area (the CCHH address of the track

A
to be copied).

F Full count area (CCHHRKDD count of the record that was
found defective).

If this parameter is omitted, P is assumed.

WRITS
track overflow segment identification.

If vour data set is in the track overflow format, this
identification determines recovery from errors in last
records on tracks.

YES If this is the last record on the track, it is a
segmegt other than the last of a track overflow
record.

NO If this is the last record on the track, it is the
last or only segment of a track overflow record.

If this parameter is omitted, it is assumed that it cannot
be established whether<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>