

(

--------- -------- ----- -- -----_ .. ---_.-

Order Number
GC26-4010-2

MVS/Extended Architecture
System-Data Administration

Data Facility Product
5665-284

Licensed
Program

Version 1
Release 1.2

Third Edition (January 1987)

This edition replaces and makes obsolete the previous edition,
GC26-40l0-l.

This edition applies to Version 1 Release 1.2 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-284,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under ·Summary of
Changes" following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent publication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370t 30xXt and 4300
processors Bibliography, GC20-000l, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If you request publications from the address given
below, your order will be delayed because publications are not
stocked there.

A form for readers' comments is provided at the back of this
pUblication. If the form has been removed, comments may be
addressed to IBM. Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982,
1984, 1987

o

C)

o

PREFACE

ORGANIZATION

This manual, formerly titled MYS/Extended Architecture System
Programming Library: Data Management, is now titled MYS/Extended
Architectyre System-Data Administration.

This publication provides information for system programmers
about MVS/Extended Architecture Data Facility Product, and how
to modify and extend the data management capabilities of the
operating system.

This publication contains the following chapters and appendixes:

• Chapter 1, "Managing the Volume Table of Contents (VTOC)" on
page 1, defines and discusses the structure of the VTOC and
VTOC index, and the use of system macros to read a data set
control block, rename a data set, or delete a data set from
the VTOC.

• Chapter 2, "Executing Your Own Channel Programs (EXCP)" on
page 36, defines and discusses the use of the EXCP macro to
control the organization of data based on device
characteristics with your own channel programs.

• Chapter 3, "Reading from and Writing to Direct Access
Devices (XDAP)" on page 75, defines and discusses the use of
the XDAP macro to read, verify, and update blocks without
using an access method.

• Chapter 4, "Password Protecting Data Sets" on page 84,
defines and discusses system password protection and how to
create and maintain the PASSWORD data set.

• Chapter 5, "Exit Routines" on page 96, defines and discusses
some of the IBM-supplied exits for installation-written
routines and authorized user programs.

• Chapter 6, "System Macro Instructions" on page 110, defines
and discusses the system macros used to refer to, validate,
and modify system data areas.

• Chapter 7, "Maintaining SYSl.IMAGELIB" on page 156, defines
and discusses adding a UCS or FCB image to the system image
library, and maintaining the UCS image tables.

• Chapter 8, "JES2 Support for the IBM 1403, 3203 Model 5, and
3211 Printers" on page 174, defines and discusses JES2
support for UCS alias names and the 3211 indexing feature.

• Chapter 9, I'CATALOG, SCRATCH, and RENAME Dummy Modu1esn on
page 176, defines and discusses the dummy modules for
CATALOG, SCRATCH, and RENAME, and how to replace them.

• Chapter 10, nSpecifying Buffer Numbers for DASD Data Sets"
on page 177, defines and discusses the performance
considerations when using the BUFNO keyword and,
subparameter.

• Appendix A, nCVAF - VTOC Access Macros" on page 178, defines
and discusses the format of the VTOC access macros:

•
CVAFDIR, CVAFDSM,

Appendix B, "Examples of VTOC Access Macros" on page 196,
defines and discusses examples of using the VTOC access
macros in your programs.

Preface iii

• Appendix C, nVTOC Index Error Message and Associated Codesn
on page 221, defines and discusses the error message and
field codes issued by the Common VTOC Access Facility
(CVAF).

• Appendix D, "Example of an OPEN Installation Exit Module" on
page 225, defines and discusses a sample program listing for
IFGOEXOB, the installation-written exit routine that takes
control during OPEN for a DCB.

PREREQUISITE KNOWLEDGE

In order to use this book efficiently, you should be familiar
with the following topics: '

• Assembler language

• Standard program linkage conventions

• The utility programs IEHLIST and IEHPROGM

• Data management access methods and macro instructions

REQUIRED PUBLICATIONS

You should be familiar with the information presented in the
following publications:

RELATED PUBLICATIONS

• Assembler H Version 2 Application Programming: Language
Reference, GC26-4037, and Assembler H Version 2 Application
Programming: Gyide, GC26-4036, contain more information on
coding in assembler language.

• MVS/Extended Architecture System Programming Library:
Supervisor Services and Macro Instructions, GC28-ll54,
contains a description of standard linkage conventions.

• MVS/Extended Architecture Data Administration: Utilities,
GC26-40l8, describes how to use IEHLIST to maintain the
VTOC, and IEHPROGM to protect data sets.

• MVS/Extended Architecture Data Administration Guide,
GC26-40l3, and MVS/Extended Architecture Data
Administration: Macro Instruction Reference, GC26-40l4,
contain information on using access methods and macro
instructions to do input and output.

Specific prerequisite reading is listed at the beginning of some
chapters, as it relates to the particular topic.

Within the text, references are made to the publications listed
in the table below.

Short Title
(as it appears
in the text) Publication Title Order Number

Access Method MYS/!;lS;i;.Dd.d iksobU.soi;yril GC26-40l9
Services Reference IDi;~gr~i~d C~i~12g

Adm;i.Di5ir~i;i.QD : ASOSOl55
t1db2d S.ryisollii R.flr~DSOil

MYS/!;lS;i;~Ddild Arsobihsoi;urll GC26-4075
YSAt1 Ciilidgg
AdmiDiliii;r~i;i.2D: ASOSO~55
Mdbgd S~ryiSO.5 R.flriDSOIi

iv MVS/XA System-Data Administration

o

(
Short Title
(as it appears
in the text) Publication Title Order Number

Assembler H V2 A§§filmblfilr: H llfilr:§i!2C 2 SC26-4036
Application AeeliscSlii!2C er:!2S1r:SlmmiDSlI
Programming: Guide ~

Assembler H V2 A§~filmblfilr: H llfilr:§i!2C Z GC26-4037
Application Aeeli SCSlii r;m er:!2S1r:SlmmicSlI
Programmingl LSlCSlYSlSlfiI Bfilffilr:filcscfil
Language Reference

Catalog MllS/~xifilcdld Ar:scbiifilSCiyr:fiI GC26-404l
Administration Guide CSiiSi1 !2S1 Admi ci§ir:!di!2C

.fuI.id.I

Checkpoint/Restart MllS/~ximcdfild Ar:sobiiISCiyr:fiI GC26-40l2
User's Guide Cblscke!2ioi/BfiI§iSlr:i !.I§filr:'§

~

Conversion Notebook MllS/Exilcdmd Ar:scbiifilCiyr:1 GC28-1143
Clm~tlr:§i!2C H!2igb!2!2k

CVAF Diagnosis MllS/Exilcdld Ar:scbiilsciYr:m SY26-3929
Reference C!2mmsm llIDC Ascscl§§

Eil SC i l;i. b: DiSlSlO!2§i5
Blflr:lcscl

DADSM and CVAF Mll~/l;;xifilDdld Ar:scbHISOiYCI SY26-3896
Diagnosis Guide DADSM ilcd C!2mm!2D llIQC

Ascscl~§ Esu.ilH~ DiilSlC!2§i§
~

DADSM Diagnosis MllS/Eximcdld AtSCbi:hu;,iYtl SY26-3904
Reference DADSM Di&lSlC!2§i§ BlffiltfilCSCfil

Data Administration MllS/l;;xifilcdld AtscbiigsciYtfil GC26-40l3
Guide DEliil Admici§itSli;i!2C Qyidl

Data Administrationl MllS/Ex:tfilcdfild AtsobiifilSC:tYCI GC26-40l4
Macro Instruction Dab Admici§itS!ii!2c: MsSOCg
Reference IC5iCyscti!2C RfilffiltlDSCfil

Debugging Handbook MllS/Exifilcdld AtscbHICiYCfiI LC28-1164 1

DlbYSlSliCSI HSlCdbg!2~' LC28-116S
Volumes 1 through 5 LC28-1166

LC28-1167
LC28-1168

Device Support Dld'l SYee!2ti Eil sci li:ti I§ GC3S-0033
Facilities User's !.I§lt'§ QYidfil ilcd BfilffiltlC'1
Guide and Reference

IBM System/370 XA IBM S~ilm/~Zg ExilDdld SA22-708S
Principles of AtSCbi:tISCiytl ftiDsciell§ gf
Operation Deltil ii!20

IBM 2821 Control IBM Z8Z1 C!20itgl !.Ioii GA24-3312
Unit Component Cgme!2oloi DI§scti eii!2o

..
Description

Note:

1 All five volumes may be ordered under one order number,
LBOF-101S.

Preface v

Short Title
(as it appears
in the text) Publication Title Order Number C,,·

..

IBM 3203 Printer IBM ~t!I:I~ ~tio:t~t ~gmesm~o:t GA33-1S1S
Component D~~so I::i e:ti gD scd Qe~ti:tgt' :i
Description and ~
Operator's Guide

IBM 3211 Printer, UM ~Zll eI::iD:t~lH':l ~Z16 GA24-3S43
3216 Interchangeable Ic:t~t~biCg~ibh ltiili 0
Train Cartridge, and ~t:tl:idg~, sod ~all
3811 Printer Control ~I::iDhl: ~go:tl:gl Uci:t
Unit Component ~amesUUUl:t D~5~1::i e:ti gO iod
Description and Qe~ts:tgt2:i Qyid~
Operator's Guide

IBM 3800 Printing IBM ~al:ll:l etio:tiog GC26-3846
Subsystem Syb~~:i:t~m el:ggtSlmmf;}I:'5
Programmer's Guide ~

Initialization and M~S/~~:t~cd~d AI:,bi:tf;}~iytf;} GC28-1149
Tuning S~5hm ~I:ggr:immiog

Libtgl:~1 Ioi:tisli~i:tiQO
Slod lYoiog

JCL User's Guide MllS/~~:t.od~d AI:,biif;l,iyt. GC28-l3Sl
JCL !.!:i~1: '5 QYidf;}

JCL Reference MllS/ ~~:t~c!:hu;f AI:~b;i:l;~~iYI:~ GC28-l3S2
J~L B~f~I:f;}O'~

Linkage Editor and M~S/~~:t~Odf;}d Ar:~b;i:l;~SOiYI:~ GC26-4011.
loader User's Guide Li01s5lg~ t;;d:i.:tgr: Slod LgildElI:

!.!:iElI:':i QyiQf;lI

Service Aids M~S/~~:tElod~d AI:~bi:tf;ll~:tyI:EI GC28-11S9
S~:i:tElm etggl:ilmmiog
L;i. btill:~: Sf1Il:~i~EI Aid:i

Supervisor Services M~S/t;;~i~odf1!d AI:,bi:tf;}~:tyI:EI GC28-11S4
and Macro S~:i:tf;}m el:ggl:5Immicg
Instructions L i bl:5II:~: Syef;}t~i:igl:

S~I:~iSO~:i iOg f.1s~I:Q
I O:i:ttys;;:tiQO:i

System Logic library f.1llS/E~if;llogeg Al:sobi:tf1lsoiYI:EI lY28-l234
S~:iif;lm Lggis;; L;i. btil:~ : (Part 1)

~alym~ a gf 11, Parts 1 LY28-l23S
and 2 (lOS) (Part 2)

System Macros and f.1~S/~~:t~Ogf;}d AI:~b;i.:tEl~:tyr:EI GC28-11S0
Facilities S~:tf1lm ~tQgl:ilmm;i.og GC28-11Sl

Libr:5II:~: S~:i:t~m MsS;;l:g:iiOd
Ei ~i l;i.:ti EI:i, Volumes 1 and
2

System Messages M~S/~~:t~cd~d Ar:s;;bii~s;;:tyI:EI GC28-l376
MEI:l!:l!i9El Libl:it~1 S~:t~m GC28-l377
f.1f115:ii9f;ll:i, Volumes 1 and 2

System Modifications M~S/~~:t~odEld AI:,bi:t~~i!dI:EI GC28-11S2
S~:i:t.m el:ggtimmiDg
Libr:il:~: S~:ihm
Madi fi 'iU QO:l!

o
vi MVS/XA System-Data Administration

(~-
Short Title
(as· it appears Order
in the text) Publication Title Number

TSO Command Language M~S f2S;l~cd~d AI:~b;i.j;~!;<l!.ll:~ GC28-0646
Reference ISO CgmmslDd LiC9YSl9~

Rd~t:~c!;<1il! COS/VS2 TSO
Command Language
Reference, as updated by
Supplement SD23-0259 for
MVS/XA)

TSO/E Command M~S/E2S;l~cd~d AI:~bil~~i!.ll:~ SC28-1134
Language Reference ISO E2!::t~C:i~gC~ IS!:.! Cgmmilcd

LilD9YSl91il! B~f~t:~c!;<~

TSO/E Data Areas M~S/f2S;l~cd~d AI:~b;i.j;~!;<iYI:§ LYB8-1119
ISQ/I; DSlls AI:~il5 (plus
Supplement LDB3-0276)

Utilities M~S/E2!:i~Cd~d AI:!;<b~l~SOiYI:~ GC26-40l8
DiillSl Adm~ci~il:ili~gD:
UiHH~§:a

VSAM Administration: M~S/E2S;i~Dd~d AI:!;<b:i.i§soiYI:§ GC26-40l6
Macro Instruction ~S8M Admici:all:siioc 1 MSl!;<r:g
Reference I Clai·t:y!;<li QD R§f~r:~c!;<~

NOTATIONAL CONVENTIONS

A uniform system of notation describes the format of data
management macro instructions. This notation is not part of the
language; it simply provides a basis for describing the
structure of the commands.

The command format illustrations in this book use the following
conventions:

• Brackets E J indicate an optional parameter.

• Braces () indicate a choice of entry; unless a default is
indicated, you must choose one of the entries.

• Items separated by a vertical bar CI) represent alternative
items. No more than one of these items may be selected.

• An ellipsis C •••) indicates that multiple entries of the
type immediately preceding the ellipsis are allowed.

• Other punctuation (parentheses, commas, spaces, and so
forth) must be entered as shown. A space is indicated by a
blank.

• BOLDFACE type indicates the exact characters to be entered,
except as described in the bullets above. Such items must
be entered exactly as illustrated.

• Lower:cSl:i§ ucderscored type specifies fields to be supplied
by the user.·

• BOLDFACE UNDERSCORED type indicates a default option. If
the parameter is omitted, the underscored value is assumed.

• Parentheses () must enclose subfields if more than one is
specified. If only one subfield is specified, you may omit
the parentheses.

Preface vii

ADDRESS AND REGISTER CONVENTIONS

The following describes the meaning of each notation used to
show how an operand can be coded:

symbol

(.D.)

(1)

The operand can be any valid assembler-language symbol.

General register 0 can be used as an operand. When used as
an operand in a macro instruction. the register must be
specified as the decimal digit 0 enclosed in parentheses as
shown above.

General register 1 can be used as an operand. When used as
an operand in a macro instruction, the register must be
specified as the decimal digit 1 enclosed in parentheses as
shown above. When you use register 1. the instruction that
loads it is not included in the macro expansion.

(Z=.l..Z1
The operand specified can be any of the general registers 2
through 12. All registers as operands must be coded in
parentheses; for example. if register 3 is coded, it is
coded as (3). When one of the registers 2 through 12 is
used. it can be coded as a decimal digit, symbol (equated
to a decimal digit). or an expression that results in a
value of 2 through 12.

RX-Type Address
The operand can be specified as any valid
assembler-language RX-type address. The following shows
examples of each valid RX-type address:

Name Operation Operand

ALPHAI L 1.39(4,10)
ALPHA2 L REGl,39(4,TEN)
BETAl L 2.ZETA(4)
BETA2 L REG2.ZETA(REG4)
GAMMAl L 2.ZETA
GAMMA2 L REG2.ZETA
GAMMA3 L 2.=F'1000'
LAMBDAl L 3.20(.5)

Both ALPHA instructions specify explicit addresses; REGl
and TEN have been defined as absolute symbols. Both BETA
instructions specify implied addresses, and both use index
registers. Indexing is omitted from the GAMMA
instructions. GAMMAl and GAMMA2 specify implied addresses.
The second operand of GAMMA3 is a literal. LAMBDAl
specifies an explicit address with no indexing.

A-Type Address
The operand can be specified as any address that can be
written as a valid assembler-language A-type address
constant. An A-type address constant can be written as an
absolute value, a relocatable symbol. or relocatable
expression. Operands that require an A-type address are
inserted into an A-type address constant during the macro
expansion process. For more details about A-type address
constants, see Assembler H Version 2 Application
Programmingl Langyage Reference.

absexp
The operand can be an absolute value or expression. An
absolute expression can be an absolute term or an
arithmetic combination of absolute terms. An absolute term
can be a nonrelocatable symbol, a self-defining term, or
the length attribute reference. For more details about
absolute expressions, see Assembler H Version 2 Application
Programming: Langyage Reference.

viii MVS/XA System-Data Administration

/' '\
I ' "'J

o

relexp
The operand can be a relocatable symbol or expression. A
relocatable symbol or expression is one whose value changes
by n if the program where it appears is relocated n bytes
away from its originally assigned area of storage. For
more details about relocatable symbols and expressions, see
Assembler H Version 2 Application Programming: Language
Reference.

Preface ix

SUMMARY OF CHANGES

RELEASE 1.2 LIBRARY UPDATE, JANUARY 1987

I NEW PROGRAMMING SUPPORT

I NEW DEVICE SUPPORT

SERVICE CHANGES

Support has been added for the conversion to ISO/ANSI/FIPS
Version 3 tape labels, a new function of the'WTOR installation
exit.

Support has been added for 3480 block count checking, which
compares the 3480 block count with the block count maintained by
the system at end-of-volume.

Support has been added for the 3480 label processing PTF, which
improves 3480 performance.

Support has been added for the 3380 Mod AD4, BD4, AE4, and BE4.

Support has been added for the 3880 Model 21 and Model 23.

Support has been added for the 3480 Magnetic Tape Subsystem.

Information has been added, corrected, or deleted to reflect
technical service changes.

RELEASE 1.2, FEBRUARY 1984

RESTRUCTURE AND UPDATING

This manual, formerly titled MVS/Extended Architectyre System
Programming Library: Data Management, is now titled MVS/Extended
Architectyre System-Data Administration.

Except for the updates noted below, the text of this manual is
substantiallY the same as in Release 1.0. The following changes
have been made:

• The Preface has been rewritten for stylistic consistency
with the other MVS/XA documentation.

• The former Chapter 1, nUsing Catalog Management Macro
Instructions,n has been moved to Catalog Administration
~, and succeeding chapters have been renumbered.

• The noldn Appendix C, nReturn Codes from VTOC Access
Macros," has been combined with Appendix A, and the
"Overviews" of the VTOC Access Macros formerly 'in Chapter 2
are now included in Appendix A.

• Chapter 7, "Maintaining SYS1.IMAGELIB,n has been rewritten
for ease of use.

• References to other manuals have been updated to reflect
title changes for Release 1.2.

x MVS/XA System-Data Administration

,-----_._---_._--_. -.~- .. -.-----------------

C)

o

(
PROGRAMMING SUPPORT

• Service changes have been made throughout the manual, and
are indicated in the text by revision bars.

Descriptions of the following have been added:

• ISO/ANSI/FIPS GDG password protection

• The new DADSM macro REALLOC, and REALLOC return codes

Summary of Changes xi

----.-.-- --.--.. ---------

0'--' - ,

-"i
J

o

CONTENTS

Chapter 1. Managing the Volume Table of contents (VTOC)
The VTOC

Data Set Control Block (DSCB) Format Types
Format-O DSCB
Format-l DSCB
Format-2 DSCB
Format-3 DSCB
Format-4 DSCB
Format-5 DSCB
Format-6 DSCB

Allocating and Releasing Space
The VTOC Index

An Example of a VTOC and Its Index
The VTOC Index Entry Record (VIER)

Contents of VIER Fields
Format of a VTOC Index Entry
When a VIER Is Created
A Tree of linked VIERs
How to Find a Format-l DSCB
Special Cases in a DSCB Search

The VTOC Pack Space Map (VPSM)
The VTOC Index Map (VIXM)
The VTOC Map of DSCBs (VMDS)
Structure of an Indexed VTOC ...
Scratch/Rename/Allocate Restrictions

Initializing and Maintaining the VTOC ...•
Creating the VTOC and VTOC Index
Protecting the VTOC and VTOC Index

Resource Access Control Facility (RACF) ..
Authorized Program Facility (APF) Requirements
Password Protection

Copying/Restoring/Initializing the VTOC
Operations on Volumes Containing a Nonindexed VTOC
Operations on Volumes Containing an Indexed VTOC

Access the VTOC with DADSM Macros
Reading a Control Block from the VTOC

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)
Return Codes from OBTAIN
Reading a DSCB by Actual Device Address (OBTAIN and

CAMlST SEEK)
Deleting a Data Set from the VTOC (SCRATCH and CAMLST

SCRATCH)•........
Return Codes from SCRATCH

Renaming a Data Set in the VTOC (RENAME and CAMlST
RENAME)

Return Codes from RENAME
Accessing the VTOC and its Index with CVAF Macros

Serialization and Updating
Identifying the Volume
Using Registers ..••.........•
Generating a CVPl (CVAF Parameter List)
Buffer lists
Accessing the DSCB Directly
Accessing DSNs or DSCBs in Sequential Order
Obtaining Information from the VTOC Index

Diagnosing VTOC Errors
Actions Taken When an Error Occurs
Recovering from System or User Errors
GTF Trace

listing a VTOC and VTOC Index

Chapter 2. Executing Your Own Channel Programs (EXCP)
Using EXCP in System and Problem Programs

How the System Uses EXCP
How To Use EXCP in Problem Programs
31-Bit IDAW Programming Notes .
How EXCP Operates in a V=R Address Space

EXCP Requirements•..

•

1
1
2
3
3
3
3
4
4
4
4
6
6
7
7
8
9
9
9
9

10
11
11
12
12
13
13
13
13
13
14
14
14
14
15
15
15
17

17

18
21

22
24
25
26
26
26
27
28
30
32
34
34
34
34
35
35

36
37
37
38
38
39
39

Contents xiii

Channel Program .•...
Control Blocks

Input/Output Block (lOB)
Event Control Block (ECB)
Data Control Block (DCB)
Data Extent Block (DEB) .

How the Channel Program Executes
Initiation of the Channel Program•..
Modification of a Channel Program during Execution
Completion of Execution
Interruption Handling and Error Recovery Procedures

Appendages
Start-I/O (SIO) Appendage
Program-Controlled Interruption (PCI) Appendage
End-of-Extent (EOE) Appendage
Channel-End (CHE) Appendage•..•
Abnormal-End (ABE) Appendage

Making Your Appendages Part of the System
The Authorized Appendage List (IEAAPPOO)

Channel Programming Considerations
Macro Specifications for Use with EXCP ..

Defining Data Control Blocks for EXCP (DCB)
Foundation Block Parameters ..••.••
EXCP Interface Parameters
Foundation Block Extension and Common Interface
Parameters

Device-Dependent Parameters
DSORG Parameter of the DCBD Macro

Initializing Data Control Blocks (OPEN)
Executing a Channel Program (EXCP)
Assigning an Alternate Track and Copying Data from the

Defective Track (ATLAS)
Using ATLAS
Operation of the ATLAS Program
Return Codes from the ATLAS Program

End of Volume (EOV)
Restoring Data Control Blocks (CLOSE)

Control Block Fields•.
Input/Output Block (lOB) Fields
Event Control Block (ECB) Fields
Data Extent Block (DEB) Fields.• .•

Executing Fixed Channel Programs in Real Storage (EXCPVR)
Building the List of Data Areas to be Fixed
Page Fix (PGFX) and Start-I/O (SIO) Appendage

Page-Fix list Processing

Chapter 3. Reading from and Writing to Direct Access
Devices (XDAP) •••••••••••••••••

XDAP Requirements • . .
Macro Specifications for Use with XDAP

Defining a Data Control Block (DCB) .
Initializing a Data Control Block (OPEN)
Executing Direct Access Programs (XDAP)
End of Volume (EOV)
Restoring a Data Control Block (CLOSE)

Control Blocks Used with XDAP
Event Control Block (ECB)
Input/Output Block (lOB) .
Direct Access Channel Program

Converting a Relative Track Address to an Actual Track
Address•..

Return Codes from the Conversion Routine
Converting an Actual Track Address to a Relative Track

Address
Obtaining Sector Number of a Block on a Device with the RPS

Feature

Chapter 4. Password Protecting Data sets
Providing Data Set Security

PASSWORD Data Set Characteristics
Creating Protected Data Sets

Tape Volumes Containing More Than One
Password-Protected Data Set

Protection Feature Operating Characteristics

xiv MVS/XA System-Data Administration

. . .

39
40
40
40
40
40
41
41
42
42
42
43
45
45
46
47
48
49
49
50
51
51
52
52

54
55
58
58
60

61
62
63
63
65
66
67
67
69
70
70
71
72
72

7S
75
76
76
76
77
79
79
79
79
79
80

80
82

82

82

84
84
86
86

87
87

o

o

- .. (_.

('

Termination of Processing
Volume Switching
Data Set Concatenation .. .
SCRATCH and RENAME Functions
Counter Maintenance

Maintaining the PASSWORD Data Set (PROTECT Macro) ...
PASSWORD Data Set Characteristics and Record Format (With

PROTECT macro)
Number of Records for Each Protected Data Set
Protection-Mode Indicator

PROTECT Macro Syntax
PROTECT Macro Parameter Lists
Return Codes from the PROTECT Macro

Chapter 5. Exit Routines ••••••••••••
DADSM Preprocessing and Postprocessing Exit Routines

The Exit Modules
The Exit Environment
When IGGPREOO Gets Control
Rejecting a DADSM Request
Data that DADSM Passes to the Exits

. Passing a Model Format-l DSCB
When IGGPOSTO Gets Control•
System Control Blocks
Registers at Entry to DADSM Exits
Registers at Return from DADSM exits
Return Codes from DADSM Exits

DCB OPEN Installation Exit
The Exit Module
The Exit Environment
Open Processing Before the DCB OPEN Exit Gets Control
Open Processing After the DCB OPEN Exit Gets Control
Getting Control from Open
Data that Open Passes to the Exit
Defaulting the DCB Buffer Number
Modifying the JFCB

Requesting Partial Release
Updating the Secondary Space Data

Registers at Entry to the DCB OPEN Exit
Registers at Return from the DCB OPEN Exit
Return Codes From the DCB OPEN Exit

Open/EoV Installation Exit for Format-l DSCB Not Found
Data That OPEN/EOV Passes to the Exit. .
Registers at Entry to the Format-l DSCB Not Found Exit
Registers at Return From the Format-1 DSCB Not Found

Exit
Return Codes from the Format-1 DSCB Not Found Exit

Data Management Abend Installation Exit •.....
Data that OPEN/EOV passes to the Exit
Registers at Entry to the Data Management ABEND Exit
Registers at Return from the Data Management ABEND Exit
Return Codes from the Data Management ABEND Exit

Chapter 6. System Macro Instructions
Introduction
Mapping System Data Areas

IEFUCBOB--Mapping the UCB
IEFJFCBN--Mapping the JFCB
CVT--Mapping the CVT

Obtaining I/O Device Characteristics
DEVTYPE Macro Specification
Device Characteristics Information
Return Codes from the DEVTYPE macro

Reading and Modifying a Job File Control Block
RDJFCB--Read a Job File Control Block
DEQ at Demount Facility for Tape Volumes
OPEN--Initialize Data Control Block for Processing the

JFCB
High-Speed Positioning for the IBM 3480 Magnetic Tape

Subsystem
Ensuring Data Security by Validating the Data Extent Block

DEBCHK--Macro Specification .
Return Codes from the DEBCHK Macro

Purging and Restoring I/O Requests

87
87
88
88
88
88

88
89
89
90
91
95

96
96
96
96
97
97
98
99
99
99

100
100
100
100
101
101
101
101
102
102
103
103
104
104
104
105
105
105
106
106

106
107
107
108
109
109
109

110
110
110
111
111
111
112
112
113
115
117
118
121

122

123
124
125
128
128

Contents xv

PURGE--Halt or Finish I/O-Request Processing .•.•.
Return Codes from PURGE Macro • . •

Modifying the lOB Chain
RESTORE--Reprocess I/O Requests

Performing Track Calculations
TRKCALC--Standard Form
TRKCALC--Execute Form
TRKCALC-List Form
TRKCALC--DSECT Only. . . • • .
Input Register Usage for All Forms of 'MF'
Output from TRKCALC .
Return Codes from TRKCALC
TRKCALC Macro Examples . . • .

Allocating a DASD Data Set • • . .
REALLOC-Execute Form . . . • • •
REALLOC-DSECT Only ...•.. . • . •
REALLOC-List Form ..
Return Codes from REALLOC••....•..•

Message Displays on the IBM 3480 Magnetic Tape Subsystem
MSGDISP-Displaying a Mount Message•.
MSGDISP-Displaying a Verify Message•
MSGDISP-Displaying a Ready Message
MSGDISP-Displaying a Demount Message • . • .
MSGDISP-Resetting the Message Display
MSGDISP-Providing the Full Range of Display Options
Return Codes from MSGDISP••

Chapter 7. Maintaining SYS1.IMAGELIB • •
UCS Images in SYS1.IMAGELIB
Adding a UCS Image to the Image Library

UCS Coding Examples
Verifying the UCS Image.

Adding a UCS Image Name/Alias to a UCS Image Table
UCS Image Table Structure
Adding/Modifying a UCS Image Table Entry • . • .

Examples of Adding to the UCS Image Table
Example 1: Adding a New Band ID to the 4245 UCS Image
Table (UCS5)

Example 2: Adding a New Default Entry to the 4248 UCS
Image Table (UCS6).

Adding an FCB Image to the Image Library
Retrieving an FCB Image from SYS1.IMAGELIB

Chapter 8. JES2 Support ~or the IBM 1403, 3203 Model 5,
and 3211 Printers

UCS Alias Names
The 3211 Indexing Feature
IBM 3203 Model 5 Printer

Chapter 9. CATALOG, SCRATCH, and RENAME Dummy Modules

Chapter 10. Spec1~ying Bu~~er Numbers ~or DASD Data Sets
•

Performance Considerations •

Appendix A. CVAF - VTOC Access Macros . . .
CVAFDIR Macro

Overview of the CVAFDIR Macro
Syntax
ACCESS: Read or Write a DSCB or VIReS), or Release

Buffer Lists•
DSN: Specify the Name of the DSCB
BUFLIST: Specify One or More Buffer Lists .
VERIFY: Verify that a DSCB is a Format-O DSCB
UCBIDEB: Specify the VTOC to Be Accessed
IOAREA: Keep or Free the I/O Work Area ...••
MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
IXRCDS: Retain VIERS in Virtual Storage
BRANCH: Specify the Entry to the Macro
MF: Specify the Form of the Macro
Return Codes from the CVAFDIR Macro

CVAFDSM Macro
Overview of the CVAFDSM Macro
Syntax

xvi MVS/XA System-Data Admini~tration

130
132
132
133
133
134
137
138
138
138
138
139
139
140
140
142
142
142
143
144
146
147
148
151
152
154

156
157
157
159
162
162
162
166
167

167

168
169
173

174
174
174
175

176

177
177

178
178
178
178

178
179
179
179
180
180
181
182
183
183
183
185
185
185

o

o

(

('

. -~--

ACCESS=MAPDATA: Request Information from the Index
Space Maps••..•..•

MAP: Identify the Map to Be Accessed
EXTENTS: Identify Where Extents from the VPSM Are
Returned

MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
UCB/DEB: Specify the VTOC to Be Accessed .
COUNT: Obtain a Count of Unallocated DSCBs or VIRs
CTAREA: Supply a Field to Contain the Number of

Format-O DSCBs
IOAREA: Keep or Free the I/O Work Area
BRANCH: Specify the Entry to the Macro
MF: Specify the Form of the Macro
Return Codes from the CVAFDSM Macro

CVAFSEQ Macro
Overview of the CVAFSEQ Macro
Syntax•......
ACCESS: Specify Relationship between Supplied and

Returned DSN
BUFLIST: Specify One or More Buffer Lists
DSN: Specify Access by DSN Order or by
Physical-Sequential Order•

UCBIDEB: Specify the VTOC to Be Accessed
DSNONLY: Specify That Only the Data Set Name Be Read
ARG: Specify Where the Argument of the DSCB Is to Be

Returned•.
IOAREA: Keep or Free the I/O Work Area
IXRCDS: Retain VIERs in Virtual Storage
BRANCH: Specify the Entry to the Macro
MF: Specify the Form of the Macro
Return Codes from the CVAFSEQ Macro

CVAFTST Macro
Overview of the CVAFTST Macro
Syntax
UCB: Specify the VTOC to Be Tested
Return Codes from the CVAFTST Macro

Appendix B. Examples of VTOC Access Macros ••
Example 1: Using the CVAFDIR Macro with an Indexed or

Non-indexed VTDC
Example 2: Using the CVAFDIR Macro with an Indexed VTOC
Example 3: Using the CVAFSEQ Macro with an Indexed VTOC
Example 4: Using the CVAFSEQ Macro with a Nonindexed VTOC
Example 5: Using the CVAFTST and CVAFDSM Macros

Appendix C. VTOC Index Error Message and Associated
Error Message

Explanation
System Action
Programmer Response
Routing and Descriptor Codes

Codes Put in the CVSTAT Field

Codes

185
185

186
186
187
187

188
188
188
189
189
190
190
190

190
190

190
191
191

191
192
192
193
193
194
195
195
195
195
195

196

196
201
206
211
217

221
221
221
221
221
221
222

Appendix D. Example of an OPEN Installation Exit Module 225
Processing in IFGOEXOB 225
Requesting Partial Release 225
Updating the Secondary Space Data 225

Index 235

Contents xvii

FIGURES

1..
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

16.

17.
18.
19.
20.
21.
22.

23.

24.
25.
26.

27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

locating the Volume Table of Contents (VTOC)
Contents of VTOC--DSCBs Describing Data Sets
Relationship of a VTOC to Its Index
Format of the VTOC Index Entry Record (VIER)
Structure of Linked VIERs
An Index Map
Format of a VTOC Map•..•...
Format of the CVAF Parameter List (CVPL) .•
CVFCTN Field of CVPL - Contents and Definitions
Format of a Buffer List Header•..
Format of a Buffer List Entry
Entry Points, Returns, and Available Work Registers
for Appendages •.•....•........ •
Data Control Block (DCB) Format for EXCP (After OPEN)
Input/Output. Block (lOB) Format
Event Control Block (ECB) after Posting of Completion
Code (EXCP) .•.... . •
Event Control Block (ECB) after Posting of Completion
Code (XDAP) • . . .
The XDAP Channel Programs
Parameter List for Add Function
Parameter List for REPLACE Function
Parameter List for DELETE Function
Parameter List for LIST Function
Format of DADSM Preprocessing and Post-processing Exit
Parameter list• •
Format of DCB OPEN Installation Exit Parameter list
(OIEXL)
Output from DEVTYPE Macro•.•.
Sample Code Using RDJFCB Macro••.
Macro Definition, JCL, and Utility Statements for
Adding PURGE Macro to the System Macro Library
Macro Definition, JCl, and Utility Statements for
Adding RESTORE Macro to the System Macro Library
The PIRL and lOB Chain
Sample Code to Add a 1403 UCS Image to SYSl.IMAGElIB
Sample Code to Add a 3203 UCS Image to SYSl.IMAGElIB
Sample Code to Add a 3211 UCS Image to SYSl.IMAGElIB
UCS Image Table Entry Format
UCS5 Image Table Contents
UCS6 Image Table Contents
Sample of the Standard FCB Image STDI
Sample of the Standard FCB Image STD2
Sample Code to Assemble and Add an FCB Load Module to
SYS1. IMAGELIB

xviii MVS/XA SYstem-Data Administration

1
5
6
8

10
11
12
27
28
29
30

44
53
68

70

80
81
91
92
93
94

98

102
115
119

129

129
133
159
160
161
163
163
165
170
170

172

o

CHAPTER I. MANAGING THE VOLUME TABLE OF CONTENTS (VTOC)

THE VTOC

The direct access device storage management (DADSM) routines
control allocation of space on direct access volumes through the
volume table of contents (VTDC) of that volume, and through the
VTDC index if one exists. This chapter gives an overview of the
VTDC and the VTDC index and discusses how to use system macros
to access the VTDC and VTDC index.

The VTDC is a data set on a direct access volume that describes
the contents of that volume. It resides in a single extent
(that is, it is a continuous data set) anywhere on the volume
after cylinder 0, track O. Its address is located in the
VOLVTOC field of the standard volume label (see Figure 1).

Standard Volume Label

l1(B) J VOLVTOC (10 bytes)

~ _______________ C_C_H_H~R~O_f_fu_s_t ____ ~ ____ ~ . T record in VTOC

/

~----_-.1/

Record
3

/
/

/
/

/

/
/

/

}

VTOC Data Set
(Can be located anywhere
on the volume after
cylinder 0, track 0.)

Figure 1. Locating the Volume Table of Contents (VTOC)

Chapter 1. Managing the Volume Table of Contents (VTDC) 1

---------"-~----

The VTOC is composed of l40-byte 1 data set control blocks
(DSCBs) that correspond either to a data set or VSAM data space
currently residing on the volume, or to contiguous, unassigned
tracks on the volume. DSCBs for data sets or data spaces
describe their characteristics. DSCBs for contiguous,
unassigned tracks indicate their location.

DATA SET CONTROL BLOCK (DSCB) FORMAT TYPES

The VTOC has seven different kinds of DSCBs. This section lists
the different kinds of DSCBs, what they are used for, how many
exist on a volume, and how they are found.

The first record in every VTOC is the VTOC (format-4) DSCB that
describes (1) the device that the volume resides on, (2) the
attributes of the volume itself, and (3) the size and contents
of the VTOC data set itself.

The format-4 DSCB is followed by a free-space (format-S) DSCB
that, for a nonindexed VTOC, lists the extents on the volume
that have not been allocated to a data set or VSAM data space.
Each format-S DSCB contains 26 extents. If there are more than
26 available extents on the volume, another format-S DSCB will
be built for every 26 extents. The format-5 DSCBs are chained,
using the last field of each format-5 DSCB. An indexed VTOC
does not use format-5 DSCBs for describing free space; however,
one empty format-5 DSCB is provided to allow a basis for
converting back to a nonindexed VTOC.

The third and subsequent DSCBs in the VTaC do not have any
prescribed sequence.

A data set or VSAM data space is defined by one or more DSCBs in
the VTOC of each volume on which it resides. The number of
DSCBs needed to define a data set or VSAM data space is
determined by (1) the organization of the data set (ISAM data
sets need a format-2 DSCB to describe the index) and (2) the
number of extents the data set or VSAM data space occupies (a
format-3 DSCB is needed to describe the 4th through the 16th
extents; additional format-3 DSCBs may be required to describe
the extents for a VSAM data set cataloged in an integrated
catalog facility catalog). Figure 2 on page 5 shows the general
makeup of a VTDC and the DSCBs needed to define two types of
data sets (ISAM and non-ISAM).

Data set A (in Figure 2 on page 5) is an ISAM data set; three
DSCBs, a format-I, format-2, and format-3, are identified. Data
sets B, C, and D could be sequential, partitioned, or direct
data sets or they could be VSAM data spaces. Data set B has
more than three extents and therefore requires both a format-l
and a format-3 DSCB.

Data sets C and D have three or fewer extents and need only a
format-l DSCB. The format-6 DSCB, pointed to by the format-4
DSCB, is used to keep track of the extents allocated in order to
be shared by two or more data sets (split-cylinder data sets).
For example, if data sets C and D share an extent made UP of one
or more cylinders, this extent would be described in the
format-6 DSCB. Note that split-cylinder data sets cannot be
allocated, but existing split-cylinder data sets can still be
processed.

1 The l40-bytes are defined as a 44-byte key portion followed
by a 96-byte data portion. You may make references to the
logical l40-byte DSCB or to either of its parts.

2 MVS/XA System-Data Administration

o

Format-O DSCB

(

Format-l DSCB

Format-2 DSCB

Format-3 DSCB

(~-

NAME: Free VTDC Record

FUNCTION: Describes an unused record in the VTDC (contains 140
bytes of binary zeros). To delete a DSCB from the VTDC, a
format-O DSCB is written over it.

HOW MANY: Dne for every unused 140-byte record on the VTDC.
The DS4DSREC field of the format-4 DSCB is a count of the number
of format-O DSCBs on the VTDC. This field is not maintained for
an indexed VTDC.

HOW FOUND: Search on key equal to X'OO' (sometimes X'OOOOOOOO')
for a nonindexed VTDC; for an indexed VTDC, the VTDC map of
DSCBs is used to find a format-O DSCB.

NAME I Identifier

FUNCTION: Describes the first three extents of a data set or
VSAM data space.

HOW MANY: Dne for every data set or data space on the volume,
except the VTDC.

HO'" FOUND: Search on key equal to the data set name. For an
indexed VTDC, a CCHHR pointer for each data set name is in the
VTDC index.

NAME: Index

FUNCTION: Describes the indexes of an ISAM data set.

HOW MANY: Dne for every ISAM data set (for a multivolume ISAM
data set, a format-2 DSCB exists only on the first volume).

HOW FOUND, Chained from a format-l DSCB that represents the
data set.

NAME: Extension

FUNCTION: Describes the 4th through 16th extents of a data set
or VSAM data space. Data sets and VSAM data spaces are
restricted to 16 extents per volume. VSAM data sets cataloged
in an ICF catalog may be extended to a maximum of 123 extents,
in which case there may be as many as ten format-3 DSCBs.

HOW MANY, Dne for each data set or VSAM data space on the
volume that has more than three extents. There may be as many
as ten for a VSAM data set cataloged in an ICF catalog.

HOW FOUND: Chained from a format-2 or a format-l DSCB that
represents the data set or VSAM data space. In the case of a
VSAM data set cataloged in an ICF catalog, the chain may be from
a preceding format-3 DSCB.

Chapter 1. Managing the Volume Table of Contents (VTDC) 3

Format-It DSCB

Format-S DSCB

Format-6 DSCB

NAME I VTOC

FUNCTION: Describes the extent and contents of the VTOC and
provides volume and device characteristics. If the VTOC is
indexed, certain fields of this DSCB are not maintained by
DADSM. See "Structure of an Indexed VTOC."

HOW MANY: One on each volume.

HOW FOUND I VOLVTOC field of the standard volume label contains
its address. It is always the first record in the VTOC.

NAME I Free Space

FUNCTION: On a nonindexed VTOC, describes the space on a volume
that has not been allocated to a data set or to a VSAM data
space (available space). For an indexed VTOC, format-S is zero,
and the volume pack space map describes the available space.

HOW MANY: One for every 26 noncontiguous extents of available
space on the volume for a nonindexed VTOCi for an indexed VTOC,
there is only one.

HOW FOUND: The first format-5 DSCB on the volume is always the
second DSCB of the VTOC. If there is more than one format-S
DSCB, it will be chained from the previous format-S DSCB via the
DSSPTRDS field of each format-S DSCB.

NAME: Shared Extent

FUNCTION: Describes the extents shared by two or more data sets
(split-cylinder extents).

HOW MANY: One for every 26 split-cylinder extents on the VTOC.

HOW FOUND: The address of the first format-6 DSCB is contained
in the DS4F6PTR field of the format-4 DSCB. If there is more
than one format-6 DSCB on the volume, it will be chained from
the previous format-6 DSCB via the DS6PTRDS field of the
format-6 DSCB.

ALLOCATING AND RELEASING SPACE

The DADSM allocate and extend routines assign tracks and
cylinders on direct access volumes for new data sets and VSAM
data spaces. additional space for a data set or VSAM data space
that has already exceeded its original, primary allocation. The
DADSM scratch and partial release routines are used to release
space that is no longer needed on a direct access volume.

The DADSM routines allocate and release space by adding,
deleting, and modifying the DSCBs. When space is needed on a
volume, the allocate routines search the appropriate DSCBs for
enough contiguous, available tracks to satisfy the request. If
there are not enough contiguous tracks, the request is filled,
using as many as five noncontiguous groups of free tracks. The
appropriate DSCBs are modified to reflect the assignment of the
tracks.

When space is released, the scratch routines free the DSCBs of
the deleted data set or data space. For a nonindexed VTOC, to
indicate that the tracks containing the affected data set or
data space can be reallocated, a free space (format-S) DSCB is
built (or modified if existent). For an indexed VTOC, the index
is updated.

4 MVS/XA System-Data Administration

o

(Standard Volume Label

VOLVTOC C 11 (B)

field
\----L--r----'-----------'

VTOC Data Set

Format4 DSCB

Description of
26 available
extents

Description of
as many as 26
available exents

~ ________ ~~~ __ ~lr-__ ~~ __________ -' ,

DSCB for an ISAM
data set (Data Set A)

DSCB for a non-ISAM
data set (Data Sets B, C, D)
or a VSAM data space

Note: Empty boxes in the VTOC data set represent free VTOC Records (Format-O DSCBs)

Figure 2. Contents of VTOC--DSCBs Describing Data Sets

Chapter 1. Managing the Volume Table of Contents (VTOC) 5

IHE VIDC'INDEX

The VTOC index is a physical-sequential data set, residing on 0
the same volume as the VTOC. It contains an index of data set '
names of format-l DSCBs in the VTOC and free space information.
The index is searched instead of the hardware keys.

The VTOC index is optional. You may build it when you
initialize the volume, or for an existing VTOC (with the volume

,online or offline). You may subsequently inactivate it (online
or offline) so that the VTOC is processed without using the
index.

Each VTOC index is formatted by Device Support FaCilities with
physical blocks 2048 bytes in length. These physical blocks are
the VTOC index records (VIRs), the basic structural units of the
index. The kind of information they contain depends on the part
of the index th~y belong to.

Several different kinds of records, each built from one or more
VIRs, are in a VTOC index:

• The VTOC index entry record (VIER) that is used to access
format-l DSCBs and the format-4 DSCB

• The VTOC pack space map (VPSM) that shows what space has
been allocated on a disk pack

• The VTOC index map (VIXM) that shows which VIRs have been
allocated in the VTOC index

• The VTOC map of DSCBs (VMDS) that shows which DSCBs have
been allocated in the VTOC

AN EXAMPLE DF A VIOC AND ITS INDEX i--\
A format-l DSCB' in the VTOC contains the name and extent \.)
information of the VTOC index. The name of the index must be
'SYSl.VTOCIX.xxxxxxxx', where 'xxxxxxxx' can be anything valid
in a data set name and is generally the serial number of the
volume containing the VTOC and its index. The name must be
unique within the system to avoid ENQ contention. The
relationship of a VTOC to its index is shown in Figure 3. Each
of the components of the index is discussed separately in the
following sections.

VTOC VTOC Index
r--->

Format-4 DSCB VIXM

Format-S DSCB VPSM

VMDS
Other DSCBs

VIER

VIER
Format-l DSCB for the VTOC
Index: SYSl.VTOCIX.nnn VIER

Other DSCBs · · ·
Figure 3. Relationship of a VTOC to Its Index

6 MVS/XA System-Data Administration

o

(-
THE VTOC INDEX ENTRY RECORD (VIER)

VIERs have these characteristics:

• A VIER uses one VIR and contains variable-length index
entries. The number of VIERs in an index vary depending
upon the number of data sets on the volume.

• VIERs in a VTOC index may be on one or many levels. All
index entries in a VIER are at the same index level. VIERs
have a hierarchic relationship. Index entries in
higher-level VIERs point to lower-level VIERs. Index
entries in level-one VIERs (those at the lowest level) point
to format-l DSCBs for data sets on the volume.

• A higher-level VIER is created when the fourth lower-level
VIER is created. When that new higher-level VIER is filled
with pointers to lower-level VIERs. a new VIER at the same
level is created. Again. when the fourth VIER at the same
level is created. a VIER at a still higher level is created.
adding another level to the index.

Contents of VIER Fields

Each VIER contains a header and sections (see Figure 4 on
page 8). The VIER header contains:

• A field identifying the VTOC index record as a VIER.

• The relative byte address (RBA) of the VIER.

• A pointer to a VIER at the same level (hence. a "horizontal"
pointer). The VIER pointed to contains index entries whose
keys are greater than any key in the pointing VIER.

•
•

The level number (lVl) of this VIER.

The number (SECNO) of sections (a VIER contains eight
sections).

• The length (SECL) of the sections (each section is 246 bytes
in length).

• The offsets to the first-used and the last-used sections.

• The 44-byte high key of the VIER.

Each section contains:

• An offset to the last entry in the section (or zero if the
section is empty)

• Index entries

Chapter 1. Managing the Volume Table of Contents (VTOC) 7

0(00)

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(1C)

32(20)

76(4C)

EBCDIC Characters "VIER"

RBA of This VIER

Horizontal Pointer

Old Horizontal Pointer

LVL FLGI Reserved

PTRL SECNO SECL

Offset to First-Used Section

Offset to Last-Used Section

Highest Key in This VIER

Section I

· · ·
Section 8

]

Index
Header

8 Sections
Containing
Index
Entries

Figure 4. Format of the VTDC Index Entry Record (VIER)

Format of a VTOC Index Entry

The format of an index entry is:

FLG KEYl

Name Offset

VXEFLG 00(00)
VXEKEYL OH01)
VXEFC 02(02)
VXERPTR 03(03)
VXEKEY 07(07)

or
08(08)

Unused I
Bytes

1
1
I
4 or S
I to 44

Record Pointer

Description

Flag byte

Key

Length of the VXEKEY field
Unused
Record pointer
Name of a data set, if a
level-one VIER; if not, the
high key in the header of a
lower-level VIER

Each index entry contains:

• A flag byte.

• A keylength field (containing a value of 1 to 44, depending
on the length of the data set name).

• A record pointer (VXERPTR) that is one of the following:

In level-one VIERs, the S-byte CCHHR of the format-lor
format-4 DSCB that represents the data set whose name is
the key in the entry

In other VIERs, the 4-byte RBA of the lower-level VIER
whose high key is the key in the entry

8 MVSI'XA System-Data Administration

---- -------------------

o

(
•

When a VIER Is Created

A key that, for level 1 VIERS, is the data set name, and for
level 2 or higher VIERs is the high key of a lower-level
VIER. Trailing blanks" are suppressed in the VTDC index
entry.

The first level-one VIER is created when the VTDC index is
created. Subsequent VIERs are created when a data set name is
to be added to the VTDC index but the VIER where it should be
added is full. A new VIER is created in the following manner:

• A new VIER is allocated.

• Half of the sections from a full VIER (those containing the
highest keys) are moved into the new VIER, leaving each VIER
half empty.

• The new index entry is added to one of the two VIERs,
depending on its key.

A Tree of Linked VIERs

Figure 5 on page 10 shows how VIERS are related to each other.
Note that the VIERs (which are simplified here--only the high
key is shown in the header) form a type of "tree structure."

How to Find a Format-l DSCB

In the search for the format-l DSCB for a particular data set,
one path along the tree structure is followed.

As seen in Figure 4 on page 8, a field in the header of a VIER
contains the highest key of any index entry in that VIER.
Beginning with this field in the first high-level VIER, the
following search logic is used: Is the key of the data set (the
data set name) lower than or equal to the VIER's high key? If
neither, the test is again applied with the VIER having a
greater high key pointed to by the horizontal pointer. This
procedure continues until a VIER is found having a high key that
is greater than or equal to the key of the data set.
Comparisons are then made with the entries in the VIER's
sections. Eventually, an entry is found with a key greater than
or equal to the data set key. This entry points to a VIER at
the next-lower level.

The search proceeds to successively lower levels until an entry
in a level-two VIER is found whose key is greater than or equal
to the key of the data set. This entry points to a level-one
VIER that, in turn, contains an entry with a key that is equal
to the data set key and that points to the format-l DSCB for the
desired data set.

Special Cases in a DSCB Search

If there is only one level in the VTDC index, the entries in the
VIERs all point to format-l DSCBs, so that only one level need
be sea rched .

If an update to the VTDC index requires a new VIER and the
update is interrupted (for example, because of an I/O error or a
system failure), the entry in the level-n VIER may contain a key
that is greater than the high key in the lower-level "VIER
pointed to by that "entry. In this case, two VIERs at level n-l
may have to be searched. This situation is corrected when DADSM
next processes the volume.

Chapter 1. Managing the Volume Table of Contents (VTDC) 9

VIER

High Key M32107.LlB

Entries {- B41103.TEST
M32107.LlB r-

VIER VIER

--....
B41103.TEST M32107.LlB

44X'04'

~ A 11307.CLlST
C0102.ASM

B0102.DATA
M32107.LlB

I--

Format-l DSCBs
in the VTOC

Format-4 DSCB in the VTOC

VIER

44X'FF' Level:2
VIERs

r-- SYS1.MACLIB
44X'FF' -

VIER VIER -
SYS1.MACLI B 44X'FF'

~ SYS1.VTOCIX.A
~ f-- X.Y.Z.
~

44X'FF'

Level-l
VIERs

Dummy Last
Entry in
VTOC Index

Figure 5. Structure of Linked VIERs

THE VTOC PACK SPACE MAP (VPSM)

The VPSM accounts for space on a disk pack. It shows what space
on the volume has been allocated and what space remains free.

The map contains bit maps of the cylinders and tracks on the
volume. A value of one indicates that the cylinder or track has
been allocated; a value of zero, that it has not been allocated.
The bit representing a cylinder is set to zero if no tracks on
the cylinder have been allocated; it is set to one if any track
has been allocated. Tracks assigned as alternate tracks are
marked as allocated.

The VPSM replaces the chain of format-5 DSCBs, but one empty
format-5 DSCB is left in the VTOC to allow for conversion back
to a nonindexed VTOC, a process that requires reconstruction of
a format-5 DSCB chain.

The format of an index map (including the VPSM) is shown in
Figure 6 on page 11.

10 MVS/XA System-Data Administration

o

o

-------_._------------

(

-- .. --~---~~--- ~~-- -------

00(00) ID of This Map

04(04) RBA of This Map

08(08) Horizontal Pointer to Next VIR

l2(OC) Sequence Number of First Entry

16 ClO) VRFDA VRFD

20Cl4) FLGI I lUFl lUOF

24Cl8) Size of large Unit Map

28ClC) SUFI I SUBIT SUOF

32(20) Size of Small Unit Map

36(24) Reserved I VIR

40(28) RBA of First High-level VIER

large Unit Map
(VTOC Pack Space Map Only)

Small Unit Map

VTDC Recording Facility Data
(VTOC Index Map Only)

Figure 6. An Index Map

THE VTOC INDEX MAP (VIXMl

The VIXM contains a bit map where each bit represents one VTDC
index record (VIR). The status of the bit indicates whether the
VIR is allocated (1) or unallocated (0).

An area of the VIXM is reserved for VTOC recording facility
(VRF) data. (This is the facility that allows detection of and
recovery from certain errors in an indexed VTDC.)

A field in the first VIXM record points to the first high-level
VIER. Another field in the first VIXM record (VIR in Figure 7
on page 12) contains the number of VTOC index records that
contain all the space maps.

THE VTOC MAP OF DSCBS (VMDSl

The VMDS contains a bit map where each bit represents one DSCB
in the VTDC. The status of the bit indicates whether the DSCB
is allocated (1) or unallocated (0).

Chapter 1. Managing the Volume Table of Contents (VTaC) 11

Name

VIMAP
VIMH
VIMID

VIMRBA
VIMHZPTR

VIMORG

VIMVRFDA

VIMVRFO

VIMFlGl
VIMVRFSW

VIMlUFl
VIMlUOF

VIMlUSZ
VIMSUF1
VIMSUBIT

VIMSUOF
VIMSUSZ

VIMVIR
VIMFHlV

VIMlUMAP

VIMSUMAP

VIMVRF

- ._--- .. _-.- -- ~ .. ".-... ~----

O'f'fset

OO(X'OO')
OO(X'OO')
OO(X'OO')

04(X'04')
08(X'08')

1Z(X'OC')

16(X'10')

18(X'1Z')

ZOCX'14')
1.
.xxx xxxx
ZlCX'1S ')
ZZ(X'16 1)

24(X'18')
28(X'1C')
Z9CX'lD')

30(X'1E')
32(X'20')
36(X I24')
39(X'27')
40(X'28')

44(X'2CI)

mm

pp

Bytes

2048
44
4

4
4

4

2

2

I

1
2

4
1
1

2
4
3
I
4

kk

nn

qq

.--~---.~---~.----

Description

VTOC map
VTOC map header
Map ID in EBCDIC ('VPSM', 'VIXM',
or 'VMDSI)
RBA of this map
Horizontal RBA pointer to next
VIR of this map
Sequence number of the first
entry in the map
Offset to current VRF data (if
VIMVRFSW=1) or offset where VRF
data may be written (if
VIMVRFSW=O), (first VIXM only)
Offset to VRF area (first VIXM
VIR only)
Flag byte
VRF data exists if 1
Reserved
large unit flag byte
Offset into VIR ·of large unit map
(zero if none)
Size in bits of large unit map
Small unit flag byte
Number of small unit bits per
large unit (zero if none)
Offset into VIR of small unit map
Size in bits of small unit map
Reserved
Number of map records (VIXM only)
RBA of first high-level VIER
(VIXM only)
large unit map (kk is VIMlUSZ/8,
rounded up)
Small unit map (mm is VIMSUOF, nn
is VIMSUSZ/8, rounded up)
VRF area (pp is VIMVRFO, qq is
remainder of first VIXM)

Figure 7. Format of a VTOC Map

STRUCTURE OF AN INDEXED VTOC

An indexed VTOC is identical to a nonindexed VTOC, except that,
for an indexed VTOC, on1ya single format-S DSCB exists and is
empty, and certain format-4 DSCB data (the number of format-O
DSCBs and the CCHHR of the highest format-1 DSCB) is not
maintained by DADSM. The DOS bit (bit 0 in field DS4VTOCI), set
to one in the format-4 DSCB, indicates that these fields (and
the format-S DSCB) cannot be relied on. The index bit (bit 7 in
fi&ld DS4VTOCI> is set in the format-4 DSCB; it indicates that a
VTOC index exists.

SCRATCH/RENAME/ALLOCATE RESTRICTIONS

A VTOC index data set may not be scratched if the VTOC index is
active. Neither maya VTOC index data set be renamed if the
VTOC index is active, unless it is being renamed to another name
beginning with 'SYS1.VTOCIX.'. A data set may not be renamed to
a name beginning with 'SYS1.VTOCIX.' if there is already such a
data set on the volume. Only one data set whose name begins
with 'SYS1.VTOCIX.' may be allocated on a volume.

12 MVS/XA System-Data Administration

~-----------~---.------------

o

'\
)

o

(

("'"" ""

J

INITIALIZING AND MAINTAINING THE VTOC

CREATING THE VTOC AND VTOC INDEX

To prepare a volume for use (to initialize it), the Device
Support Facilities utility is used. One of the things this
utility does is to build the VTaC. After initialization, this
VTOC will contain a format-4 DSCB and a format-S DSCB. For a
nonindexed VTaC, the format-S DSCB contains an extent entry for
all the free space on the volume; the initial number of extents
in the format-S DSCB is one or two, depending on where the VTaC
is located on the volume. If the VTaC is located somewhere
other than at the beginning or end of the volume, two extent
entries are needed to describe the free space that precedes and
follows it. For an indexed VTaC, the format-S DSCB contains a
zero.

A VTaC index can be created when a volume is initialized by
using the Device Support Facilities command INIT and specifying
the INDEX key word.

A nonindexed VTaC can be converted to an indexed VTOC by using
the command BUILDIX and specifying the IXVTaC keyword. The
reverse is also possible by using the BUILDIX command and
specifying the aSVTaC keyword.

For more detailed information, see Deyice Sypport Facilities
User's Gyide and Reference.

PROTECTING THE VTOC AND VTOe INDEX

Resource Access Control Facility (RACFl

You can protect the VTaC and VTaC index by using the Resource
Access Control Facility (RACF). This is done by defining the
volume serial entity under the RACF class DASDVOL. A user must
be authorized to the DASDVaL/volume serial entity at the
following levels:

• At the UPDATE level, to open the VTaC for output processing

• At the UPDATE level, to open for output processing any data
set whose name begins with 'SYSl.VTOCIX.'

• At the ALTER level, to allocate, rename, or scratch any data
set whose name begins with 'SYSl.VTOCIX.'

• At the ALTER level, to rename a data set to any name that
begins with 'SYSl.VTOCIX.'

Neither the VTOC nor the VTaC index is protected from being
opened for input processing by the DASDVOL/volume serial entity.

Note that neither the VTaC nor the VTOC index can be protected
through the RACF class DATASET.

Authorized Program Facility (APF) Requirements

A program must be authorized by the authorized program facility
(APF) to perform any of the following functions:

• Opening a VTOC for output processing

•

•

Open"ing for output processing a data set whose name begins
with 'SYSl.VTOCIX.'

Allocating, renaming, or scratching any data set whose name
begins with 'SYSl.VTOCIX.'

Chapter 1. Managing the Volume Table of Contents (VTOC) 13

Password Protection

• Renaming a data set to any name that begins with
I SYSl . VIaCIX. I

Ihe VIaC index data set may be password protected. I~e
protection is the same as for any password-protected data set.
Password checking is bypassed if the volume in which the VIaC
index resides is protected by RACF through the DASDVaL class.

COPYING/RESTORING/INITIALIZING THE VTOC

OPERATIONS ON VOLUMES CONTAINING A NON INDEXED VTOC

• Restoring a Volume from a Dump Tape. Ihere are no
operational requirements if you change the volume serial
number or do a partial restore that does not modify the
VTac. If you do a restore and change the VIaC size without
changing the volume serial number, the volume must be varied
offline after it is restored. You should not do a restore
on a volume with an indexed VIaC.

• Copying a Volume. Ihere are no operational requirements if
you change the volume serial number or do not modify the
VIaC of the receiving volume. If you do a copy and change
the VTaC size without changing the volume serial number, the
volume must be varied offline after it is copied. You
should not do a copy from a volume with an indexed VIaC.

OPERATIONS ON VOLUMES CONTAINING AN INDEXED VIOe

You should use Device Support Facilities to convert a VTaC to a
nonindexed format to update the volume. If you do not, take
note of the following information:

• Initializing a Volume. If you do not change the volume
serial number, the volume should be varied offline before
starting the job.

• R§storing a Volum§ from a Dump Iap§. Ihere are no
operational requirements if you change the volume serial
number or do a partial restore that does not modify the VIaC
or VIaC index. If you do a restore and modify the VIaC or
VIaC index without changing the volume serial number, the
volume should be varied offline after it is restored.

• Copying a Volume. There are no operational requirements if
you change the volume serial number of the receiving volume
or do a partial dump without modifying the VIaC or VIaC
index. If you modify the VIaC or VIOC index without
changing the volume serial number, the receiving volume
should be varied offline after it is copied.

• Shar§d DASD Consid§rations. In shared DASD environments,
whenever the VIaC index is modified or relocated or whenever
the volume is changed from indexed VIaC to as VTaC or from
as VIae to indexed VIaC, the device should be varied offline
to the sharing system or systems.

14 MVS/XA System-Data Administration

o

o

ACCESS THE VTOC WITH DADSM MACROS

You may use DADSM or CVAF to access the'VTOC and its index. CVAF
access is described in DAccessing the VTOC and its Index with
CVAF Macros" on page 25. DADSM macros and associated tasks
include:

OBTAIN - Read a DSCB from a VTOC.
REALLOC - DASD space allocation.
RENAME - Rename a non-V SAM data set.
SCRATCH - Release all space and DSCBs for a non-VSAM data set.

The REALLOC macro is described in DAllocating a DASD Data SetD
on page 140.

This section tells how to use the OBTAIN, SCRATCH, and RENAME
macro instructions. These macros are most commonly used by the
operating system and the data set utility programs (IEHMOVE,
IEBCOPY, and IEHPROGM), but you may use them in your own
routines. The functions you can perform with these macros arel

• 'Reading a data set control block from the VTOC-OBTAIN

• Deleting a data set-SCRATCH

• Changing the name of a data set-RENAME

You can read a data set control block (DSCB) into virtual
storage by using the OBTAIN and CAMLST macro instructions.
There are two ways to specify the DSCB that you want to readl
by using the name of the data set associated with the DSCB, or
by using the absolute track address of the DSCB. You must
provide a l40-byte data area in virtual storage, into which the
DSCB will be read. When you specify the name of the data set,
an identifier (format-lor format-4) DSCB is read into virtual
storage. To read a DSCB other than a format-lor a format-4
DSCB, you must specify an absolute track address (see "Examplen
on page 18). (DSCB formats and field descriptions are contained
in Debygging Handbook.)

You can delete a non-VSAM data set by using the SCRATCH and
CAMLST macro'instructions. This causes the DSCBs for the data
set -1:0 be deleted.

You can change a data set name by using the RENAME and CAMLST
macro instructions. This causes the data set name in the
format-l DSCB for the data set to be replaced with the new name.

Accompanying the descriptions of the macro instructions are
coding examples, programming notes, and exception return code
descriptions.

Note: OBTAIN, SCRATCH, and RENAME macro instructions cannot be
used with a SYSIN or SYSOUT data set.

READING A CONTROL BLOCK FROM THE VTOC

Reading a DSCB by Name (OBTAIN and CAMLST SEARCH)

If you specify a data set name using OBTAIN and the CAMLST
SEARCH option, the 96-byte data portion of the identifier
(format-I) DSCB and the absolute track address of'the DSCB are
read into virtual storage. The absolute track address is a
5-byte field in the form CCHHR. The absolute track address
field will contain zeros for VSAM and VIO data sets.

Because the VTOC does not contain a format-l DSCB for a
suballocated VSAM data space, an OBTAIN request, which searches
the VTOC for such a data space's DSCB, fails. If the volume
contains VSAM data sets, the OBTAIN routine uses information

Chapter 1. Managing the Volume Table of Contents (VTaC) 15

_______ .. _______ • ______ .~" ..•.. ,.,,~ ', __ .e"·_·~~ ""'. ~ ______ ,

from the VSAM catalog to build a pseudo format-l DSCB, setting
its CCHHR to zeros.

The format iSI

hi~mbgl] OBTAIN listname-addrx
l:i5ic5lm~ CAMLST SEARCH

, d5came-relexp
,~ol-relexp
'l!:!1s5lr::!II5I-r::!IIbXp

lisicame-addrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

SEARCH
this operand must be coded as shown.

dSC5lm!ll-r::el exp
specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long.

Note: A DSNAME of 44 bytes of X'04' (X'040404 ... 04') can
be used to read a format-4 DSCB.

vgl-relexp
specifies the virtual storage location of the 6-byte volume
serial number on which the DSCB is located.

l!:!lsar::ea-r::elexp
specifies the virtual storage location of a 140-byte work
area that you must define.

Example: In the following example, the identifier (format-I)
DSCB for data set A.B.C is read into virtual storage using the
SEARCH option. The serial number of the volume containing the
DSCB is 770655.

3(

3(

DSCBABC
DSABC
VOLNUM
WORKAREA

OBTAIN·

CAMLST
DC
DC
DS

DSCBABC READ DSCB FOR DATA
SET A.B.C INTO DATA
AREA NAMED WORKAREA

SEARCH, DSABC,VOLNUM,WORKAREA
CL44'A.B.C' DATA SET NAME
CL6'770655' VOLUME SERIAL NUMBER
140C 140-BYTE WORK AREA

Note: Check the return codes.

The OBTAIN macro instruction points to the CAMLST macro
instruction. SEARCH, the first operand of CAMLST, specifies
that a DSCB be read into virtual storage, using the data set
name you have supplied at the address indicated in the second
operand. DSABC, the second operand, specifies the virtual
storage location of a 44-byte area into which you have placed
the fully qualified name of the data set whose format-l DSCB is
to be read. VOLNUM, the third operand, specifies the virtual
storage location of a 6-byte area into which you have placed the
serial number of the volume containing the required DSCB.
WORKAREA, the fourth operand, specifies the virtual storage
location of a 140-byte work area into which the DSCB is to be
returned.

o

Control will be returned to your program at the next executable 0
instruction following the OBTAIN macro instruction. If the DSCB ...
has been successfully read into your work area, register 15 will

16 MVS/XA System-Data Administration

(~/

contain zeros. Otherwise, register 15 will contain one of the
following return codes. The return codes are shown in decimal,
with hexadecimal values in parentheses.

Return Codes from OBTAIN

Code

4(X'04')

8(X'08')

Meaning

The required volume was not mounted.

The format-l DSCB was not found in the VTOC of the
specified volume.

12(X'OC') A permanent I/O error was encountered, or an invalid
format-l DSCB was found when processing the
specified volume, or an unexpected error return code
was received from CVAF (Common VTOC Access
Facility) .

16(X'lO') Invalid work area pointer.

After execution of these macro instructions, the first 96 bytes
of the work area contain the data portion of the identifier
(format-lor format-4) DSCB; the nex+' 5 bytes contain the
absolute track address (CCHHR) of the DSCB. These 5 bytes will
contain zeros for VSAM or VIO data sets.

Reading a DSCB by Actual Device Address (OBTAIN and CAMLST SEEK)

You can read any DSCB from a VTOC using OBTAIN and the CAMlST
SEEK option. You specify the SEEK option by coding SEEK as the
first operand of the CAMlST macro and by providing the absolute
device address of the DSCB you want to read, unless the DSCB is
for a VIO data set. Only the SEARCH option can be used to read
the DSCB of a VIO data set.

The format is:

E:ii:im!.u~ll OBTAIN listname-addrx
l;i:zj;Dam~ CAMLST SEEK

,cchhr-relexp
,vol-relexp
1~lsa!:~S!-rd~2!;p

li:zj;name-addr2!;

SEEK

points to the parameter list (labeled listname) set up by
the CAMlST macro instruction.

this operand must be coded as shown.

cchhr-rele2!;p
specifies the virtual storage location of the 5-byte
absolute device address (CCHHR) of a DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume
serial number on which the DSCB is located.

wka rea-reI e2!;p
specifies the virtual storage location of a 140-byte work
area that you must define.

Chapter 1. Managing the Volume Table of Contents (VTOC) 17

Example: In the following example, the DSCB at actual-device
address X'OO 00 00 01 07' is returned in the virtual storage
location READAREA, using the SEEK option. The DSCB resides on
the volume with the volume serial number 10874S.

ACTADDR
CCHHR
VOLSER
READAREA

OBTAIN

CAMLST
DC
DC
DS

ACTADDR READ DSCB FROM
LOCATION SHOWN IN CCHHR
INTO STORAGE AT LOCATION
NAMED READAREA

SEEK,CCHHR,VOLSER,READAREA
XLS'OOOOOOOl07' ABSOLUTE TRACK ADDRESS
CL6'10874S' VOLUME SERIAL NUMBER
140C 140-BYTE WORK AREA

Nat~: Check the return codes.

The OBTAIN macro points to the CAMLST macro. SEEK, the first
operand of CAMLST, specifies that a DSCB be read into virtual
storage. CCHHR, the second operand, specifies the storage
location that contains the S-byte actual-device address of the
DSCB. VOLSER, the third operand, specifies the storage location
that contains the serial number of the volume where the DSCB
resides. The fourth operand, READAREA, specifies the storage
location to which the 140-byte DSCB is to be returned~

Control will be returned to your program at the next executable
instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into your work area, register IS will
contain zeros. Otherwise, register IS will contain one of the
following return codes. The return codes are shown in decimal,

o

with hexadecimal values in parentheses. (\

I".)
Code

4(X'04')

8(X' 08')

12(X'OC')

16(X'10')

20(X'14')

Meaning

The required volume was not mounted.

The format-l DSCB was not found in the VTOC of the
specified volume.

A 'permanent I/O error was encountered or an
unexpected error return code was received from CVAF.

Invalid work area pointer.

The SEEK option was specified and the absolute track
address (CCHHR) is not within the boundaries of the
VTOC.

I DELETING A DATA SET FROM THE VTOC (SCRATCH AND CAMLST SCRATCH]

You can use the SCRATCH and CAMLST macro instructions to delete
a non-VSAM data set. SCRATCH processing deletes the associated
data set control blocks (DSCBs) and makes the space occupied by
the data set available for reallocation. Be aware that this
process does not erase the data from the disk. Data sets that
contain sensitive data should be erased (overwritten with zeros)
before their space is made available.

If you want to scratch a data set being processed using virtual O·-~
input/output (VIO), the data set must have been· allocated for

18 MVS/XA System-Data Administration

(

-~-~---------~~------ -- ----

use by your job. Scratching VIO data sets not allocated to your
job is not allowed.

If the data set to be deleted is sharing one or more cylinders
with one or more data sets (a split-cylinder data set), the
space will not be made available for reallocation until all data
sets on the shared cylinders are deleted.

A data set cannot be deleted if the expiration date in the
identifier (format-I) DSCB has not passed, unless you choose to
ignore the expiration date. You specify that the expiration
date is to be ignored by using the OVRD option in the CAMLST
macro instruction.

For information on RACF-defined data sets, see RACF General
Information Manyal. You may scratch a RACF-defined data set
(that is, the DSCB indicates RACF-defined) only if you have
alter access authority to either the data set/volume serial in
the DATASET class, or to the volume serial in the DASDVOL class
(if the volume is RACF-defined).

If a data set to be deleted is stored on more than one volume,
either a device must be available for mounting the volumes or at
least one volume must be mounted. In addition, all other
required volumes must be serially mountable.

When deleting a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
12-byte entry consists of a 4-byte device code, a 6-byte volume
serial number, and a 2-byte scratch status code that should be
initialized to zero. Device codes are presented in Debygging
Handbook in the description of UCBTYP.

If the space to be deleted is a VSAM data space, you must use
the DELETE command provided by access method services. For
complete information about the DELETE command, see Access Method
Services Reference.

Volumes are processed in the order that they appear in the
volume list. The volume at the beginning of the list is
processed first. If a volume is not mounted, a message is
issued to the operator requesting that a volume be mounted. (A
volume mount message will not be issued for a mass storage
system (MSS) virtual volume; however, a status code will be
returned to your program.) This is only done if register 0 has
been loaded with the UCB associated with the device where
unmounted volumes are to be mounted. (The device must be
allocated to your job.) If you do not load register 0 with a
UCB address, its contents must be zero, and at least one of the
volumes in the volume list must be mounted before the SCRATCH
macro instruction is issued.

If the requested volume cannot be mounted, the operator issues a
reply indicating that the request cannot be fulfilled. A status
code is then set in the last byte of the volume pointer (the
second byte of the scratch status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed.

The format is:

E/liv:mbgll SCRATCH li/litname-addrx
li/lij;oSlmil CAMLST SCRATCH

, d/lioamil-rdilxP
"vol lisj;-rdilxp
E"OVRDl

li/litoamil-Slddrx
points to the parameter list (labeled listname) set up by
the CAMLST macro instruction.

Chapter 1. Managing the Volume Table of Contents (VTOC) 19

----------------- --.-.. ---,~~=~=---~---

SCRATCH
this operand must be coded as shown.

dsname-relexp
specifies the virtual storage location of a fully quali"fied
data set name. The area that contains the name must be 44
bytes long. The name must be defined by a C-type define
constant (DC) instruction.

yol list-relexp

OVRD

specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

when coded as shown. specifies that the expiration date in
the DSCB should be ignored.

Example: In the following example. data set A.B.C is deleted
from two volumes. The expiration date in the identifier
(format-I) DSCB is ignored.

DEL ABC
DSABC
VOLIST

SR 0.0 SET REG 0 TO ZERO
DELETE DATA SET A.B.C
FROM TWO VOLUMES.

SCRATCH DEL ABC

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC

IGNORING EXPIRATION
DATE IN THE DSCB

SCRATCH.DSABC •• VOLIST •• OVRD
CL44'A.B.C' DATA SET NAME
H'2' NUMBER OF VOLUMES
X'3030200E' 3380 DISK DEVICE CODE
CL6'000017' VOLUME SERIAL NO.
H'O' SCRATCH STATUS CODE
X'3030200E' 3380 DISK DEVICE CODE
CL6'000018' VOLUME SERIAL NO.
H'O' SCRATCH STATUS CODE

Note: Check the return codes and SCRATCH status codes.

The SCRATCH macro instruction points to the CAMLST macro
instruction. SCRATCH. the first operand of CAMLST. specifies
that a data set be deleted. DSABC. the second operand.
specifies the virtual storage location of a 44-byte area where
you have placed the fully qualified name of the data set to be
deleted. VOLIST. the fourth operand. specifies the virtual
storage location of the volume list you have built. OVRD. the
sixth operand. specifies that the expiration date in the DSCB of
the data set to be deleted be ignored.

When you attempt to delete a password-protected data set that is
not also RACF-protected. the operating system issues a message
(IEC30lA) to ask the operator at the console or the terminal
operator of a remote console to enter the password. The data
set will be scratched only if the password supplied is
associated with a WRITE protection mode indicator. The
protection mode indicator is described in Chapter 5. npassword
Protecting Data Sets."

Control is returned to your program at the next executable
instruction following the SCRATCH macro instruction. If the
data set has been successfully deleted, register 15 will contain
zeros. and the scratch status code in the volume list entry for
each. volume will be set to zero. Otherwise. register 15 will
contain one of the return codes that follow. To determine
whether the data set has been successfully deleted from each
volume on which it resides, you must examine the scratch status
code. that is, the last byte of each entry in the volume list .

. 20 MVS/XA System-Data Administration

o

o

o

Return Cades from SCRATCH

(--.

(~

.-.----.-------------

Code

4(X'04')

S(X'OS')

12(X'OC')

Meaning

No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set. The data set may be a VIa data set that
was not allocated during your job. (This return
code is accompanied by a scratch status code of 5 in
each entry of the volume list.)

An unusual condition was encountered on one or more
volumes.

The volume list passed was invalid. The scratch
status code (the last byte of each volume list
entry) will not have been modified during scratch
processing.

After the SCRATCH macro instruction is executed, the last byte
of each 12-byte entry in the volume list indicates one of the
following conditions in binary codes:

Chapter 1. Managing the Volume Table of Contents (VTOC) 21

Scratch
Status
Code

o

I

2

3

4

5

6

7

8

Meaning

All DSCBs for the data set have been deleted from
the VTOC on the volume pointed to.

The VTOC of this volume does not contain the
format-l DSCB for the data set to be deleted.

The macro instruction failed when the correct
password was not supplied in the two attempts
allowed, or an attempt was made to scratch a VSAM
data space or data set cataloged in an ICF catalog.

The data set was not deleted from this volume
because either the OVRD option was not specified or
the retention cycle has not expired.

A permanent I/O error was encountered, or an invalid
format-l DSCB was found when processing this volume,
or an unexpected error return code was received from
CVAF.

It could not be verified that this volume was
mounted, and no device was available for mounting
this volume.

The operator was unable to mount this volume. For
Mass Storage Systems (MSS), a volume mount failure
occurred. For a JES3-managed virtual volume, JES3
would not allow the volume to be mounted.

The specified data set could not be scratched
because it was being used.

The DSCB indicates the data set is defined to RACF,
but either the user is not authorized to access the
data set or the volume, or the data set is a VSAM
data space, or the data set is cataloged in an ICF
catalog, or the data set is not defined to RACF.

I RENAMING A DATA SET IN THE VTOC (RENAME AND CAMLST RENAME)

You rename a data set that is not cataloged in an ICF or VSAM
catalog by using the RENAME and CAMLST macro instructions.
These cause the data set name in all format-l DSCBs for the data
set to be replaced by the new name you supply. (VIO data sets
cannot be renamed.)

If a data set to be renamed is stored on more than one volume,
either a device must be available for mounting the volumes, or
at least one volume must be mounted. In addition, all other
volumes of the data set must be serially mountable.

For information on RACF-defined data sets, see RACE General
Information Manyal. Only a user with alter access authority may
rename a RACF-defined data set.

When renaming a data set, you must build a volume list in
virtual storage. This volume list consists of an entry for each
volume on which the data set resides. The first two bytes of
the list indicate the number of entries in the list. Each
l2-byte volume list entry consists of a 4-byte device code, a
6-byte volume serial number, and a 2-byte rename status code
that should be initialized to zero. Device codes are presented
in Debygging Handbook. Volumes are processed in the order that

22 MVS/XA System-Data Administration

C1 I

- -. I
-- I

I

they appear in the volume list. The first volume on the list is
processed first. If a volume is not mounted, a message is
issued to the operator requesting that the volume be mounted.
(A volume mount message will not be issued for an MSS volume;
however. a status code will be returned to your program.) This
is only done if you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with
the address of the UCB associated with the device to be used.
(The device must be allocated to your job.) If you do not load
register 0 with a UCB address. its contents must be zero. and at
least one of the volumes in the volume list must be mounted­
before the RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list. a
reply is issued that the request cannot be fulfilled. A status
code is then set in the last byte of the volume list entry (the
second byte of the rename status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed or requested.

The format is:

E:I!~mbgll RENAME li:l!tname-addrx
l;i. :ilCiilmg CAMLST RENAME

, d:l!niilme-relexp
,Cgl!t came-relexp
'~Ql l;i.lii1-I:~ h2S;P

lislcame-addl:2S;
points to the parameter list (labeled listname) set up by
the CAMlST macro instruction.

RENAME
this operand must be coded as shown.

d:l!came-l:ele2S;p
specifies the virtual storage location of a fully qualified
data set name to be replaced. The area that contains the
name must be 44 bytes long. The name must be defined by a
C-type define constant (DC) instruction.

cgl!t namg-l:eh2S;p
specifies the virtual storage location of a fully qualified
data set name that is to be used as the new name. The area
that contains the name must be 44 bytes long. The name
must be defined by a C-type Define Constant (DC)
instruction.

~Ql li:l!t-I:elexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

Chapter 1. Managing the Volume Table of Contents (VTOC) 23

I
I

---------- ~--- .~-.--~.--- .. "-.. --~-----~-

Example I In the following example, data set A.B.C is renamed
D.E.F. The data set resides on two volumes.

DSABC
OLDNAME
NEWNAME
VOLIST

SR 0,0 SET REG 0 TO ZERO
CHANGE DATA SET
NAME A.B.C TO D.E.F

RENAME DSABC

CAMLST
DC
DC
DC
DC
DC
DC
DC
DC
DC

RENAME, OLDNAME, NEWNAME,VOLIST
CL44'A.B.C' OLD DATA SET NAME
CL44'D.E.F' NEW DATA SET NAME
H'2' TWO VOLUMES
X'3030200E' 3380 DISK DEVICE CODE
CL6'OOOOl7' VOLUME SERIAL NO.
H'O' RENAME STATUS CODE
X'3030200E' 3380 DISK DEVICE CODE
CL6'OOOOIS' VOLUME SERIAL NO.
H'O' RENAME STATUS CODE

Nate: Check the return codes and RENAME status codes.

The RENAME macro instruction points to the CAMLST macro
instruction. RENAME, the first operand of CAMLST, specifies
that a data set be renamed. OLDNAME, the second operand,
specifies the virtual storage location of a 44-byte area where
you have placed the fully qualified name of the data set to be
renamed. NEWNAME, the third operand, specifies the virtual
storage location of a 44-byte area where you have placed the new
name of the data set. VOLIST, the fourth operand, specifies the
virtual storage location of the volume list you have built.

o

Control is returned to your program at the next executable (-~
instruction following the RENAME macro instruction. If the data \
set has been successfully renamed, register 15 will contain . j
zeros, and the rename status code in the volume list entry for
each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes below. To determine whether the
data set has been successfully renamed on each volume where it
resides, you must examine the rename status code, the last byte
of each entry in the volume list.

Return Codes from RENAME

Code

4(X'04')

8(X'08')

12(X'OC')

Meaning

No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set to be renamed. The data set may be a VIO
data set and cannot be renamed. (This return code
is accompanied by a rename status code of 5 in each
entry of the volume list.)

An unusual condition was encountered on one or more
volumes.

The volume list passed was invalid. The rename
status code, the last byte of each volume list
entry, will not have been modified during rename
processing.

24 MVS/XA System-Data Administration

()

(,
After the RENAME macro instruction is executed, the last byte of
each 12-byte entry in the volume list indicates one of the
following conditions in binary codel

Rename
status
Code Meaning

o

1

2

3

4

5

6

7

8

The format-l DSCB for the data set has been renamed
in the VTOC on the volume pointed to.

The VTOC of this volume does not contain the
format-l DSCB for the data set to be renamed.

The macro instruction failed when the correct
password was not supplied in the two attempts
allowed, or the user tried to rename a VSAM data
space or VSAM data set cataloged in an ICF catalog.

A data set with the new name already exists on this
volume.

A permanent I/O error was encountered, or an invalid
format-l DSCB was found when trying to rename the
data set on this volume, or an unexpected error
return code was received from CVAF.

It could not be verified that the volume was
mounted, and no device was available for mounting
the volume.

The operator was unable to mount this volume. For
Mass Storage Systems (MSS), a volume mount failure
occurred. For a JESS-managed virtual volume, JESS
would not allow the volume to be mounted.

The specified data set could not be renamed on this
volume because it was being used.

The data set is defined to RACF but either the user
is not authorized to alter the data set or the data
set is defined to RACF on multiple volumes.

When you attempt to rename a password-protected data set, the
operating system issues a message (IEC301A) to ask the operator
or remote console operator to verify the password. The data set
will be renamed only if the password supplied is associated with
a WRITE protection mode ihdicator. The protection mode
indicator is described in Chapter 4, "Password Protecting Data
Sets" on page 84.

ACCESSING THE YTOC AND ITS INDEX WITH CYAE MACROS

You may use CVAF or DADS~1 to access the VTOC or its index.
DADSM access is described in "Access the VTOC with DADSM Macros"
on page 15.

CVAF macros and associated tasks include:

CVAFDIR--Directly access DSCBs or VTOC index records.
CVAFDSM--Obtain volume free space information.
CVAFSEQ--Retrieval of the following:

- Data set names from an active VTOC index.
- DSCBs in physical-sequential order.
- DSCBs in data set name order (index required).

CVAFTST--Determine if a DASD volume has an active VTOC index.

Chapter 1. Managing the Volume Table of Contents (VTOC) 25

---------------- -- --

Appendix A, "CVAF - VTOC Access Macros" on page 178 contains
detailed descriptions of these macros. Appendix B, "Examples of
VTOC Access Macros" on page 196 contains examples of their use.

Serialization and Updating

CVAF requires that you provide all necessary system resource
serialization for your request. You can ensure the integrity of
multiple data elements (sets of DSCBs and/or VIRs) returned by
CVAF only when you provide adequate resource serialization. This
exposure is compounded if multiple requests are required for the
compilation of a desired set of DSCBs and/or VIRS. You must
weigh possible system performance loss due to serialization
against the potential loss of data integrity.

Updates made without adequate serialization may compromise the
integrity of the volume's VTOC, the VTOC index, and/or any
associated data set.

CVAF honors requests to modify the volume's VTOC and/or index
for authorized programs only. CVAF assumes that an authorized
program holds an exclusive RESERVE (or ENQ) on the qname (major
name) of SYSVTOC, rname (minor name) of the volume's serial
number, with the scope of SYSTEMS.

The SYSVTOC qname does not serialize access to the format-1 DSCB
for a data set. You may provide this serialization by
allocating the data set with disposition OLD, MOD, or NEW (not
SHR). This causes the proper ENQ, ensuring that no other job
can update that data set's format-l DSCB.

Identifying the Volume

Using Registers

If you are authorized, you may identify the volume to the
CVAFDIR, CVAFDSM, and CVAFSEQ macros by specifying the address
of its UCB. If you are not authorized, you must identify the
volume by specifying the address of a SAM or EXCP DEB opened to
the volume's VTOC.

The DEB can be obtained by opening a DCB using the RDJFCB and
OPEN TYPE=J macros. The DCBs DDNAME is that of a DD statement
allocated to the unit whose VTOC is to be accessed. After
issuing the RDJFCB macro, the JFCBDSNM field is overlaid with
the data set name of the format-4 DSCB: 44X'04'. The DCB is
opened for INPUT using OPEN TYPE=J. The DEB address is in DCB
field, DCBDEBA. The OPEN macro is described under the section
"OPEN--Initialize Data Control Block for Processing the JFCB" on
page 122; the RDJFCB macro is described under "RDJFCB--Read a
Job File Control Block" on page 118.

If a CVAF macro call has specified IOAREA=KEEP, a subsequent
CVAF call using a different CVPL may omit the UCB and DEB
keywords and supply the IOAREA address from the other CVPL. You
can use the IOAREA keyword to do this.

The above does not apply to the CVAFTST macro. Only a UCB may
be supplied to identify the VTOC, and no authorization is
required.

Register 1 contains the address of the CVAF parameter list
(CVPL). Register 15 contains the return code when processing
for a function is complete.

26 MVS/XA System-Data Administration

0" . . .

CJ

o

()
. /

Generating a CVPL (CVAF Parameter List)

Na.me

CVPL
CVLBL
CVLTH
CVFCTN

CVSTAT
CVFLl
CVlIVT
CVlIOAR
CVlPGM
CVlMRCDS
CVlIRCDS
CVlMAPIX
CVlMAPVT
CVlMAPVL
CVFL2
CV2HIVIE
CV2VRF
CV2CNT
CV2RCVR
CV2SRCH
CV2DSNLY
CV2VER
CV2NLEVL
CVUCB
CVDSN
CVBUFL
CVIRCDS
CVMRCDS
CVIOAR
CVDEB
CVARG
CVSPACE
CVEXTS
CVBUFL2
CVVRFDA
CVCTAR

The CVAFTST macro expands to provide its only parameter (UCB
address) in register 1# and calls the associated CVAF module.
All of the remaining CVAF macros use the CVPL to pass parameters
to CVAF. CVAF uses the CVPL to return information related to the
CVAF request.

CVAF generates a CVPL when you specify the CVAFDIR# CVAFDSM# or
CVAFSEQ macro with MF=L or MF=I as a subparameter. If you do
not specify the MF subparameter, MF=I is the default .. The
CVlIVT bit indicates whether an indexed or nonindexed VTOC is
being accessed. The CVSTAT field contains feedback when an
error occurs. The address of the map records buffer list is
returned in the CVMRCDS field. The address of the VIER buffer
list is returned in the CVIRCDS field. The CVAF I/O area
address is returned in the CVIOAR field.

You may use the CVPL generated by the MF=L or MF=I form of the
CVAFDIR# CVAFDSM# or CVAFSEQ macro (by using the MF=E keyword)
to execute a different function from the one specified by the
macro that originally generated the CVPL.

The ICVAFPL macro maps the CVPL. The format of the CVPL is
shown in Figure S.

Offset

OO(X'OO')
04eX'04')
06(X'06')

07(X' 07')
OS(X'OS')

0geX'09')

l2eX'OC')
l6eX'10')
20eX'14')
24eX'18')
28eX'lC')
32(X'20')
36eX'24')
40eX'28')
44eX'2C')
48eX'30')
52eX'34')
56eX'38')
60(X'3C')

Bytes

4
2
1

1
1
1 ...
.1 ..
· .1.
... 1

1
1 ...
.1 ..
· .1.
· .. 1

4
4
4
4
4
4
4
4
4
4
4
4
4

1 ...
.1 ..
· .1.
... 1

1 ...
.1 ..
· .1.
· .. 1

Description

EBCDIC "CVPL"

Function Byte (See Figure 9 on
page 28)
Status Information
First Flag Byte
Indexed VTDC Accessed
IDAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX
MAP=VTDC
MAP=VOLUME
Second Flag Byte
HIVIER=YES
VRF data exists
COUNT=YES
RECDVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES
New highest level VIER eoutput)
UCB address
Data set name address
Buffer list address
Index VIRs buffer list address
Map VIRs buffer list address
I/O area address
DEB address
Argument address
SPACE parameter list address
Extent table address
New VRF VIXM buffer list address
VRF data address
Count area address

Figure 8. Format of the CVAF Parameter List eCVPL)

Chapter 1. Managing the Volume Table of Contents (VTDC) 27

Buffer Lists

The possible contents of the CVFCTN field in the CVPL and their
meanings are asfoilowsl

Name
CVDIRD
CVDIWR
CVDIRLS
CVSEQGT
CVSEQGTE
CVDMIXA
CVDMIXD
CVDMALC
CVDMRLS
CVDMMAP
CVVOL
CVVRFRD
CVVRFWR

Description

X'Ol'-CVAFDIR
X'02'-CVAFDIR
X'03'-CVAFDIR
X'04'-CVAFSEQ
X'OS'-CVAFSEQ
X'06'-CVAFDSM
X'07'-CVAFDSM
X'08'-CVAFDSM
X'09'-CVAFDSM
X'OA'-CVAFDSM
X'OB'-CVAFVOL
X'OC'-CVAFVRF
X'OD'-CVAFVRF

ACCESS=READ
ACCESS=WRITE
ACCESS=RLSE
ACCESS=GT
ACCESS=GTEQ
ACCESS=IXADD
ACCESS=IXDLT
ACCESS=ALLOC
ACCESS=RLSE
ACCESS=MAPDATA
ACCESS=VIBBLD
ACCESS=READ
ACCESS=WRITE

Figure 9. CVFCTN Field of CVPL - Contents and Definitions

A buffer list consists of one or more chained control blocks,
each with a header and buffer list entries. The header
indicates whether the buffer list is for DSCBs or VTaC index
records. The entries point to and describe the buffers.

Buffer lists can be created in two ways I

• Directly, when you fill in the arguments and buffer
addresses of DSCBs or VIRs to be read or written

• Indirectly (by CVAF), when you code the IXRCDS=KEEP and/or
MAPRCDS=YES keywords

CVAF buffer lists are mapped by the ICVAFBFL macro. Figure 10
on page 29 shows the format of a buffer list header. Figure 11
on page 30 shows the format of a buffer list entry.

BUFFER LIST HEADER I The buffer list header indicates whether
the buffer list describes buffers for DSCBs or for VTOC index
records. The DSCB bit must be set to one and the VIR bit to
zero in order for CVAF to process a request to read or write a
DSCB. CVAF requires that you provide buffer lists and buffers
in the caller's protect key. CVAF uses the protect key and
subpool fields in the buffer list header only if you code
ACCESS=RLSE.

Each buffer list header contains a count of the number of
entries in the buffer list that directly follows the header.

The forward chain address is used to chain buffer lists
together. DSCB buffer lists must not be chained to VIR buffer
lists, and VIR buffer lists must not be chained to DSCB buffer
lists.

28 MVS/XA System-Data Administration

o

C

(~ I

The format of the buffer list header is shown in Figure 10.

Name Offset Bytes Description

BFLHDR oeX'OO') 8 Buffer list header
BFLHNOE oeX'OO') 1 Number of entries
BFLHFL lCX'Ol') 1 Flag byte and key
BFLHKEY xxxx Protect key of buffer list and

buffers
BFLHVIR 1 ... Buffer list entries describe VIRs
BFLHDSCB .1 .. Buffer list entries describe

DSCBs
.. xx Reserved

2eX'02') 1 Reserved
BFLHSP 3eX'03') 1 Identifi~s the subpool of buffer

list and buffers
BFLHFCHN 4eX'04') 4 Forward chain address of next

buffer list

Figure 10. Format of a Buffer List Header

BUFFER LIST ENTRY: A buffer list contains one or more entries.
Each entry provides the buffer address, the length of the DSCB
or VIR buffer, the argument, and an indication whether the
argument is an RBA, a TTR, or a CCHHR.

The fields and bit uses are listed below.

•

•

•

•

For a VIR buffer, the TTR and CCHHR bits must be 0, and the
RBA bit must be 1.

For a DSCB buffer, the RBA bit must be 0, and one of either
the TTR or CCHHR bits must be set tol (they must not both
be 1).

The BFLEAUPD bit is an output indicator from CVAF that the
BFLEARG field of a VIR buffer list was updated.

The BFLEMOD bit indicates that a VIR buffer was modified and
must be written; if no BFLEMOD bits are on in any of the
entries for a CVAFDIR ACCESS=WRITE, all buffers are written.

• The BFLESKIP bit is used to cause an entry to be ignored.

• The BFLEIOER bit is an output indicator from CVAF to
indicate an I/O error occurred during reading or writing of
the DSCB or VIR.

• The BFLELTH field is the length of the buffer; for a DSCB
buffer, the length must be 96 or 140; for a VIR buffer, the
length must be the length of the buffer divided by 256.

• The BFLEARG field is the argument of the DSCB or VIR.
Specify the desired format of the 5-byte field by setting
either the BFLECHR, BFLETTR, or BFLERBA bit to 1. The
respective BFLEARG values and formats are as follows:

CCHHR=5 byte CCHHR

TTR=OTTRO

RBA=One byte of 0 followed by a 4-byte RBA

The optional and required values for BFLEARG are dependent upon
the variables associated with a given request. These are
described in the following topics.

Chapter 1. Managing the Volume Table of Contents (VTOC) 29

Name

BFLE
BFLEFL
BFLERBA
BFLECHR
BFLETTR
BFLEAUPD
BFLEMOD
BFLESKIP
BFLEIDER

BFLELTH

BFLEARG
BFLEATTR
BFLEARBA
BFLEBUF

The format of the buffer list entry is shown in Figure 11.

Offset

O(X'OO')
O(X'OO')

l(X'OI')
2(X'02')

3(X'03')
4(X'04')
4(X'04')
8(X'08')

Bytes

12
1
1 ..•
.1 ..
.. 1.
..• 1

1
1

5
3
4
4

....
1 ...
.1 ..
.. 1.
... x

Description

Buffer list entry
Flag byte
Argument is RBA
Argument is CCHHR
Argument is TTR
CVAF updated argument field
Data in buffer has been modified
Skip this entry
I/D error
Reserved
Reserved
Length of VIR buffer divided by
256 or length of DSCB buffer
Argument of VIR or DSCB
TTR of DSCB
RBA of VIR
Buffer address

Figure 11. Format of a Buffer List Entry

I Accessing the DSCB Directly

CVAFDIR may be used to read or write a DSCB. CVAFDIR may also
be used to read or write VTDC index records for indexed VTDCs.
"CVAFDIR Macro" on page 178 discusses detailed information about
the CVAFDIR VTDC access macro.

After a CVAFDIR call, the CVAF parameter list bit, CV1IVT, may
be tested to determine whether the VTDC is indexed or
nonindexed.

SPECIFYING A DATA SET NAME TO READ OR WRITE A DSCB: If you want
to read or write a single DSCB by specifying only the data set
name (that is, BFLEARG is zero), you must specify either
ACCESS=READ or ACCESS=WRITE.

Specify the address of the data set name in the DSN keyword,
then specify the address of the buffer list in the BUFLIST
keyword. Each of these areas and the associated buffers must be
in your protect key.

The buffer list must contain at least one buffer list entry with
the skip bit off and a pointer to a 96-byte buffer. You must
not provide 140-byte buffers. You may chain buffer lists
together, but CVAF uses only the first eligible entry.

For an indexed VTDC, the index will be searched for the data set
name and, if it is found, the DSCB argument obtained will be put
in the buffer list entry and used to read or write the DSCB. If
the data set name is not found in the index, a key search of the
VTOC will be performed.

For a nonindexed VTOC, a channel program will be used to do a
key search of the VTOC to locate the data set name and read or
write the DSCBs. If the data set name is found, the DSCB
argument will be put in the buffer list entry.

The DSCB argument returned in the buffer list entry will be in
the format determined by the buffer list entry bits BFLECHR or
BFLETTR.

o

If the data set name is not found in the VTOC, register 15 will 0
contain a return code of 4, and CVSTAT will contain an error
code of 1.

30 MVS/XA System-Data Administration

(~/

SPECIFYING THE DSCB LOCATION: If you want to read or write a
DSCB by specifying the DSCB's location (that is, BFLEARG), you
must specify either ACCESS=READ or ACCESS=WRITE.

Specify the address of the data set name in the DSN keyword,
then specify the address of the buffer list in the BUFlIST
keyword. Each of these areas and the associated buffer(s) must
be in your program's protect key.

The buffer list must have at least one buffer list entry with
the skip bit off and a pointer to a 96-byte or l40-byte buffer.
You may chain buffer lists together, but CVAF uses only the
first eligible entry.

If the buffer is for a 96-byte read or write, CVAF issues a
channel program to verify that the key in the DSCB is the same
as the 44-byte data set name you provide. CVAF does not execute
the read or write unless they match. If they do not match. CVAF
ignores the specified BFlEARG and reads or writes the DSCB
according to the rules given in "Specifying a Data Set Name to
Read or Write a DSCBn on page 30.

If the buffer is for a l40-byte read or write. CVAF issues a
channel program to read or write the DSCB at the location
specified in the buffer list entry. CVAFdoes not use the data
set name you specified. If you specify VERIFY=YES. CVAF
verifies that the designated DSCB is a format-O DSCB before
issuing the write channel program.

READING OR WRITING VTOC INDEX RECORDS: VIRs may be read or
written explicitly using the BUFlIST keyword or may be read
implicitly using the IXRCDS and MAPRCDS keywords. A buffer list
address may be supplied in the BUFLIST keyword to read or write
one or more VIRs. The buffer list header must have the VIR bit
set to one and the DSCB bit set to zero. Each entry in the
buffer list (and subsequent buffer lists if more than one is
chained) is inspected. If the skip bit is set to zero. the RBA
bit is set to one (and the ·CCHHR and TTR bits are set to zero).
and the buffer address is nonzero, the entry will be processed.
The RBA in the argument field of the buffer list entry is used
to read or write a VIR using the buffer address. Read and write
requests will be in the order of entries in the buffer list.

Each of the storage areas you provide must be in your program's
protect key. .

For a write request, the modification bit in the buffer list
entries is inspected. If the bit is not set in any entry, all
are written. The modification bit is set to zero for entries
whose VIR is written.

Map records and the first high-level VTOC index entry record may
be read by supplying the keywords MAPRCDS=YES and/or IXRCDS=KEEP
and, at the same time, not supplying an address in the CVAF
parameter list CVMRCDS/CVIRCDS fields.

READING MAP RECORDS AND VIERS: To read and retain in virtual
storage the VTOC index map records and first high-level VIER,
either ACCESS=READ or ACCESS=WRITE must be coded. Neither the
DSN field nor the BUFlIST field is required.

MAPRCDS=YES must be coded to read and retain map records. The
CVAF parameter list field CVMRCDS must be zero. CVAF will
obtain a buffer list with the number of entries and buffers
required to read all the map VIRs. The buffer list address will
be put in the CVMRCDS field by CVAF.

IXRCDS=KEEP is coded in order to read and retain the first
high-level VIER and (if an index search is required) all VIERs
read. If the CVAF parameter list field CVIRCDS is zero, CVAF
will obtain a buffer list with entries and buffers and read the
first high-level VIER. The number of entries and number of
buffers are determined by CVAF. If CVIRCDS is not zero, only
VIERs required for an index search will be read.

Chapter 1. Managing the Volume Table of Contents (VTOC) 31

The integrity of the maps and VIER read can only be ensured if
you are enqueued on the VTOe and, in the case of shared DASD,
reserved to the unit.

Map and VIER buffers obtained by CVAF (and retained) must be
released by a subsequent CVAF call.

RELEASING BUFFERS AND BUFFER LISTS OBTAINED BY CVAFI There are
three ways to release buffers and buffer lists obtained by CVAF.

• Code MAPRCDS=NO or MAPRCDS=(NO,addr) for any specification
of ACCESS in order to free the MAP records buffer list.

• Code IXRCDS=NOKEEP or IXRCDS=(NOKEEP,addr) for any
specification of ACCESS in order to free the index records
buffer list.

• Code ACCESS=RLSE and supply a buffer list address through
the BUFLIST keyword for a subsequent CVAF call.

CVAF will free all eligible buffers and any buffer lists if they
become empty. Eligible buffers are those pointed to by buffer
list entries with the skip bit off. A buffer list will be freed
if no buffer list entry has the skip bit on. If buffer lists
are chained together, all buffer lists will be checked and freed
if appropriate.

You must ensure that you do not request CVAF to release the same
buffer list twice by supplying its address in more than one
place.

Accessing DSNs or DSCBs in Sequential Order

Each CVAFSEQ call may request the return of one of the
following:

• One format-lor format-4 DSCB in indexed (data-set-name)
order

• One or more DSCBs in physical-sequential order (but only one
DSCB can be requested by an unauthorized caller)

• The next data set name in the index

CVAF reads the DSCBs into buffers supplied through the BUFLIST
keyword. nCVAFSEQ Macron on page 190 discusses detailed
information about the CVAFSEQ VTDC access macro.

The argument of each DSCB read is also supplied in the buffer
list. DSCBs of 96 bytes must be requested in the buffer list
for indexed access; 140 bytes is required for
physical-sequential access.

If indexed order is chosen, the VTDC index is used to return
each format-lor format-4 DSCB whose name is in the index. An
option (DSNDNLY=YES) allows only the data set names in the VTDC
index, but not the DSCBs, to be obtained. In this case, the
CCHHR of the DSCB is returned in the argument area supplied
through the ARG keyword. The DSN area supplied is updated at
each CVAFSEQ call to contain the data set name of each DSCB
read.

INITIATING INDEXED ACCESS (DSN ORDER): To initiate indexed
access (DSN order), either supply in the area coded through the
DSN keyword 44 bytes of binary zeros (to indicate the first data
set name in the index) or supply the data set name you want to
serve as the starting place for the index search.

o

The name returned in the DSN area will be the one equal to or ('\
greater than the DSN supplied, depending on the specification of . •
the ACCESS keyword. The DSN field is updated by CVAF. . .J

32 MVS/XA System-Data Administration

-.----- --.~----- -- -- -----------

._- ~-- ---------

The ACCESS keyword determines whether the search is for a DSN
greater than or equal to that supplied.

If DSNONLY=NO is coded. the DSCB and argument are returned to
you. using the buffer list provided through the BUFLIST keyword.
The first entry in the buffer list with a skip bit of zero and a
nonzero buffer address is used. The argument value is supplied
if either the TTR or CCHHR bit is set in the buffer list entry.
The default is CCHHR. The DSCB size in the buffer list entry
must be 96 bytes for indexed access.

If DSNONLY=YES is coded, the CCHHR argument is supplied in the
ARG area.

Note that the data set name of the format-4 DSCB is in the index
and that its name (44 bytes of X'04') may be returned to you.
The format-4 DSCB's name is likely to be the first data set name
in the VTOC index.

INITIATING PHYSICAL-SEQUENTIAL ACCESS: To initiate
physical-sequential access. the DSN keyword must be omitted or
DSN=O must be coded. The argument field in the first buffer
list entry must be initialized to zero or to the argument of the
DSCB to begin the read. If the argument is zero, the argument
used will be the start of the VTOC.

The DSCB size must be set to 140 in buffer list entries.

The specification of ACCESS will determine whether the DSCB
whose argument is supplied or the DSCB following it is to be
read.

For example. to read the first DSCB (the format-4 DSCB) in the
VTOC, the BFLEARG in the first buffer list entry may be set to
zero, and ACCESS=GTEQ coded in the CVAFSEQ macro. If ACCESS=GT
is subsequently coded, the second DSCB (the first format-5 DSCB)
is read. .

If you are authorized. as many DSCBs as there are entries in the
buffer list will be read with a single CVAF call. Only one DSCB
will be read if you aren't authorized.

Only one buffer list is used; a second buffer list chained to
the first will not be inspected. All entries in the buffer list
will be used for authorized callers. The skip bit will not be
inspected. Each entrY must have a buffer address. the length
field set to 140, and the TTR or CCHHR bit set (if neither bit
is set, the CCHHR bit will be set on). Only the first entry
will be used for unauthorized callers. The argument field of
each buffer list entry will be updated by CVAF with the argument
of the DSCB. The argument value is returned in either TTR or
CCHHR format, depending on whether the TTR or CCHHR bit is set
in the buffer list entry. The default is CCHHR.

Only the argument in the first entry is used to begin the
search. Arguments in subsequent entries are not inspected. If a
nonzero argument value is supplied in the first entry. there
must be a DSCB with that argument.

End-of-data is indicated with a return code of 4 in register 15
and CVSTAT set to X'20'. Each buffer list entry following the
last DSCB read has its argument field set to zero (this may be
the first entry if no DSCBs are read).

Note that all DSCBs, including format-O DSCBs, are read. You
cannot be certain that you have read all format-l through -6
DSCBs until the entire VTOC has been read. For a nonindexed
VTOC. the CCHHR of the last format-l DSCB is contained in the
format-4 DSCB field DS4HPCHR; format-2 through -6 DSCBs may
reside beyond that location. For an indexed VTOC, the VMDS
contains information about which DSCBs are format-O DSCBs.

Chapter 1. Managing the Volume Table of Contents (VTOC) 33

· __ .. _-----_. __ .. _- -~--...... _ _- .. _. -------

Obtaining Information from the VTOC Index

ACCESS=MAPDATA is used to obtain information contained in the
space maps. "CVAFDSM Macro" on page 185 discusses detailed
information about the CVAFDSM VTOC access macro.

To count the number of unallocated VIRs in the VTOC index space
map (VIXM), COUNT=YES and MAP=INDEX are coded. The number of
unallocated VIRs is returned in the 4-byte area supplied through
the CTAREA keyword.

To count the number of format-O DSCBs, COUNT=YES and MAP=VTOC
are coded. The number of format-O DSCBs in the VTOC map of
DSCBs VMDS is returned in the 4-byte area supplied through the
CTAREA keyword.

To obtain one or more free space extents from the VTOC pack
space map (VPSM), COUNT=NO and MAP=VOLUME are coded. The
extents are returned in the area supplied through the EXTENTS
keyword. Each extent is returned in as-byte XXYYZ format, the
same as for a format-S DSCB extent, where XX is the relative
track address (RTA) of the first track of the extent, YY is the
number of whole cylinders in the extent, and Z is the number of
additional tracks in the extent. The RTA supplied to CVAF in
the first (or only) extent will serve as a starting point for
the VPSM search; the extent returned will be the next free
extent with a higher starting RTA than the one supplied.

If all the unallocated extents in the VPSM are supplied before
filling in all the extents supplied, the remaining extents are
set to zero. Register 15 is set to 4 on return, with the CVSTAT
field in the CVPL set to X'20' to indicate the end of data.

I DIAGNOSING VTOC ERRORS

Actions Taken When an Error Occurs

These actions are taken if an error occurs:

• If an index structure error is detected, DADSM or CVAF will
cause the VTOC index to be disabled. The 1ndexed VTOC bit
will be zeroed in the format-4 DSCB. A software error
record will be written to SYSl.LOGREC. A system dump is
taken. The VTOC will be converted to a nonindexed format at
the next DADSM allocate or extend call.

• If a program check, machine check, or other error occurs
while using a VTOC access macro, a SYSl.LOGREC message is
written, and a system dump is taken.

• An er~or code is put in the CVSTAT field of the CVPL. The
values and explanations of these error codes are listed in
Appendix C, "VTOC Index Error Message and Associated Codes"
on page 221.

Recovering from System or User Errors

Neither the VTOC nor the VTOC index need be recovered from a
user error caused by an unauthorized user, because an
unauthorized user cannot modify a VTOC.

A system error will affect a VTOC and VTOC index, probably by
interrupting DADSM while it is updating, thus leaving the VTOC
and/or the VTOC index in a partially updated state. Both the
VTOC and the VTac index are designed to cause DADSM to recover
from such an interruption.

For a nonindexed VTOC (or a VTOC with an index that has been
disabled), a subsequent call to DADSM ALLOCATE or EXTEND will

34 MVS/XA System-Data Administration

o

()

(

GTF Trace

~-.~ ... ~ .. ~.~" ... " ... -.. -----~

cause VTOC convert routines to reestablish the free space
(format-5 DSCBs).

For an indexed VTOC, a subsequent call to any DADSM function
will cause the recovery of the previous interrupt (either by
backing out or completing the interrupted furiction).

A trace function exists to trace all CVAF calls for VTDC index
output I/O, all VTOC output I/O, and all VTDC index and space
map modifications. For information on this function, see ~
Diagnosis Reference.

LISTING A VTOC AND VTOC INDEX

A VTOC and VTOC index can be listed using the IEHLIST utility
program. Dump, formatted, or abridged listings can be obtained
by using the LISTVTOC command of IEHLIST.

Chapter 1. Managing the Volume Table of Contents (VTDC) 35

---~---.- --

CHAPTER 2. EXECUTING YOUR OWN CHANNEL pROGRAMS (EXCPl

The execute-channel-program (EXCP) macro instruction provides
you with complete control of the data organization based on
device characteristics. This chapter contains a general
description of the function and application of the EXCP macro
instruction, accompanied by descriptions of specific control
blocks and macro instructions used with EXCP. Factors that
affect the operation of EXCP, such as device variations and
program modification, are also discussed.

Before reading this chapter, you should be familiar with system
functions and with the structure of control blocks, as well as
with *he operational characteristics of the I/O devices required
by your channel programs. Operational characteristics of
specific I/O devices are described in IBM pUblications for each
device.

You also need to understand the information in these
publications: .

• Data Administration Gyide contains .the standard procedures
for I/O processing under the operating system.

• Assembler H Version 2 Application Programming: Gyide
contains the information necessary to code programs in the
assembler language.

• Data Administration: Macro Instruction Reference describes
the system macro instructions that can be used in programs
coded in the assembler language.

• ».ebugging Handbook, Volumes 2 through 5, contain format and
field descriptions of the system control blocks referred to
in this chapte.r.

• Conversion Notebook describes the factors to consider when
converting from MVS/370 at the MVS/SP Version 1 level to
MVS/XA.

The execute-channel-program (EXCP) macro instruction causes a
supervisor-call interruption to pass control to the EXCP
processor. (I/O process is the name we will use for the EXCP
processor and the I/O supervisor. For our purposes, it's
unnecessary to understand how input/output processing is divided
between the two.) EXCP also provides the I/O supervisor with
control information regarding a channel program to be executed.
When an IBM access method is being used, an access method
routine is responsible for issuing EXCP. If you are not using
an IBM access method, you must issue EXCP in your program. (The
EXCP macro instruction cannot be used to process SYSIN or SYSOUT
data sets.)

You issue EXCP primarily for I/O programming situations to which
the standard access methods do not apply. If you are writing
your own access method, you must include EXCP for I/O
operations. EXCP must be. used for processing nonstandard
labels, including reading and writing labels and positioning
magnetic tape volumes.

To issue EXCP, you must provide a channel program (a list of
channel command words) and several control blocks in your
program area. The I/O process then schedules I/O requests for
the device you have specified, executes the specified I/O
commands, handles I/O interruptions, directs error recovery
procedures, and posts the results of the I/O requests.

36 MVS/XA System-Data Administration

o

o

(-

(\

(\

. ,
,/

USING EXCP IN SYSTEM AND PROBLEM PROGRAMS

This section explains the procedures performed by the system and
the programmer when EXCP is issued by the routines of IBM access
methods. The additional procedures you must perform when
issuing EXCP yourself are then described by direct comparison.

HOW THE SYSTEM USES EXCP

When using an IBM access method to perform I/O operations, the
programmer is relieved of coding channel programs and
constructing the control blocks necessary for the execution of
channel programs. To permit I/O operations to be handled by an
access method, the programmer need only issue the following
macro instructions:

• A DCB macro instruction that produces a data control block
(DCB) for the data set to be retrieved or stored

• An OPEN macro instruction that initializes the data control
block and produces a data extent block (DEB) for the data
set

• A macro instruction (for example, GET or WRITE) that
requests I/O operations

Access method routines will then:

1. Create a channel program that contains channel commands for
the I/O operations on the appropriate device

2. Construct an input/output block (lOB) that contains
information about the channel program

3. Construct an event control block (ECB) that is later posted
with a completion code each time the channel program
terminates

4. Issue an EXCP macro instruction to pass the address of the
lOB to the routines that initiate and supervise the I/O
operations

The I/O process consists of:

5. Constructing a request queue element (RQE) for scheduling
the request

6. If the requestor is in a V=V address space, fixing the
buffers so that they cannot be paged out and translating the
requestor's virtual channel program into a real channel
program

7. Issuing a start subchannel (55CH) instruction to cause the
channel to execute the real channel program

8. Processing I/O interruptions and scheduling error recovery
procedures when necessary

9. Posting a completion code in the event control block after
the channel program has been executed

Note: If the requestor is an authorized program in a V=R
address space, a real channel program is provided; thus, item 6
is not performed.

The programmer is not concerned with these procedures and does
not know the status of I/O operations until they are completed.
Device-dependent operations are limited to those provided by the
macro instructions of the particular access method selected.

Chapter 2. Executing Your Own Channel Programs (EXCP) 37

-------~---------------------~---

HOW TO USE EXCP IN PROBLEM PROGRAMS

To issue the EXCP macro instruction directly, you must follow
the procedures that the access methods would perform, as
summarized in items 1 through 4 of the preceding discussion. In
addition to constructing and opening the data control block with
the DCB and OPEN macro instructions, you must construct a
channel program, an input/output block, and an event control
block before you can issue EXCP. The I/O process generally
handles items 5 through 9.

After issuing EXCP, you should issue a WAIT macro instruction,
specifying the address of the event control block, to determine
whether the channel program has terminated. If volume switching
is necessary, you must issue an EOV macro instruction. Hhen all
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

All external interfaces for EXCP are compatible between MVS/370
and MVS/XA, except for the restrictions noted below. These
restrictions relate only to the support of virtual and real
addresses above 16-megabyte.

EXCP will be available to programs executing in either 24-bit or
31-bit addressing mode. However, in order to maintain the
required compatibility, the following restrictions apply:

• EXCP will only support a 24-bit virtual storage interface.
In addition, all areas related to I/O operations (for
example, I/O buffers, channel command words, lOBs, DEBs,
appendages, and so forth), must remain 24-bit virtual
addressable. EXCP (channel command word translator) will
allow 24-bit virtual I/O buffers to be fixed above
l6-megabyte real. Hhen a channel command word (CCH)
references a real address above 16-megabyte, the CCH
translator will build an indirect addressing word (IDAH) for
that CCH. Note that this is not supported for format-l
CCHs. All virtual addresses must be below 16-megabyte. For
V=R users, CCHs and IDAHs must be below 16-megabyte real.

• Only format-O CCWs are accepted as input.

• All user-specified appendage routines will be given control
in 24-bit addressing mode and must return in the same mode.

Note: Access methods run in 24-bit addressing mode. Users
running in 31-bit mode must interface to the access methods by
using a user-written routine that is resident below 16-megabyte
virtual (because the access methods will be able to return
control only to a 24-bit addressable location). All addresses,
buffers, parameters, control blocks, save areas and exit
addresses must be below 16-megabyte virtual. All access methods
(except VSAM), for example, GET or PUT, must be called in 24-bit
addressing mode.

31-BIT IDAW PROGRAMMING ,NOTES

38

A virtual channel program provided by the EXCP caller may have
one or more CCWs with the IDA flag set and the address portion
of these CCHs pointing to a single 4-byte IDAH. This EXCP
function is referred to as virtual IDAHs.

The 4-byte IDAH can contain a virtual address that ranges from 0
t 0 the maximum 3l-bit address. Virtual IDAWs are supported
on all virtual CCHs except:

• Transfer in channel (TIC) commands.

MVS/XA System-Data Administration

-----------"-,-----

(\
)

C··'~ .' }

•

•

All non data-transfer type commands: for example,
recalibrate, rewind, set space, fold, block data check, no
operation, control commands.

Read, read backward, and sense commands, with the skip flag
set.

The same addressing restrictions apply to EXCPVR inputs with the
exception that 31-bit real data areas may be specified by the
user-created CCWs through the use of IDAWs. All CCWs and IDAWs
must be below 16-megabyte real.

Only format-O CCWs are accepted as input.

All other areas related to the EXCP/EXCPVR I/O operation (for
example, CCWs, IDAWs, lOBs, DEBs, DCBs, appendages, and so
forth) must remain 24-bit addressable.

Note, however, that the EXCP processor will allow both 24-bit
and 3l-bit virtual I/O buffers to be fixed above l6-megabyte
real.

HOW EXCP OPERATES IN A V=R ADDRESS SPACE

(" EXCP REQUIREMENTS

CHANNEL PROGRAM

User-constructed channel programs for I/O operations of an
authorized program in a V=R address space are not translated.
Because the address space is V=R, any CCWs created by the user
have correct real data addresses. (Translation would only
re-create the user's channel program, so the CCWs are used
directly.)

Modification of an active channel program by data read in or by
processor instructions is legitimate in a V=R address space, but
not in a V=V address space.

This section describes the channel program that you must provide
in order to issue EXCP. The control blocks that you must either
construct directly or cause to be constructed by use of macro
instructions are also described.

All areas related to the EXCP/EXCPVR I/O operation (for example,
CCWs, IDAWs, lOBs, DEBs, DCBs, appendages, and so forth) must
remain 24-bit addressable.

Note, however, that the EXCP processor will allow both 24-bit
and 3l-bit virtual I/O buffers to be fixed above l6-megabyte
real.

The channel program supplied by you and executed through EXCP is
composed of CCWs on doubleword boundaries. Each channel command
word specifies a command to be executed and, for commands
initiating data transfer, the area to or from which the data is
to be transferred.

Channel command word operation codes used with specific I/O
devices can be found in IBM publications for those devices. All
channel command word operation codes described in these
pUblications can be used. In addition, both data chaining and
command chaining may be used.

To specify either data chaining or command chaining, you must
set appropriate bits in the channel command word and indicate
the type of chaining in the input/output block. Both data and
command chaining should not be specified in the same channel
command word; if they are, data chaining takes precedence.

Chapter 2. Executing Your Own Channel Programs (EXCP) 39

I
i

I

CONTROL BLOCKS

EXCP does not support channel programs that modify themselves,
regardless of the method of modification: data chaining,
command chaining, or a program to do the modification. The
intended modification in virtual storage has no effect on the
running real-channel program (see "Modification of a Channel
Program during Execution" on page 42).

When using EXCP, you must be familiar with the function and
structure of the lOB, the ECB, the DCB, the DEB, and the IDAW.
lOB and ECB fields are illustrated under "Control Block FieldsR
on page 67. DCB fields are illustrated under RMacro
Specifications for Use with EXCP" on page 51. The handling of
IDAWs is described under "SID Appendage" on page 72.
Descriptions of these control blocks follow.

Input/Output Block (lOB)

The input/output block is used for communication between the
problem program and the system. It provides the addresses of
other control blocks, and maintains information about the
channel program, such as the type of chaining and the progress
of I/O operations. You must define the input/output block and
specify its address as the only parameter of the EXCP macro
instruction.

Event Control Block (ECB)

The event control block provides you with a completion code that
describes whether the channel program was completed with or
without error. A WAIT macro instruction, which can be used to
synchronize I/O operations with the problem program, must
identify the event control block. You must define the event
control block and specify its address in the input/output block.

Data Control Block (DCB)

The data control block provides the system with information
about the characteristics and processing requirements of a data
set to be read or written by the channel program. A data
control block must be produced by a DCB macro instruction that
includes parameters for EXCP. If appendages are not being used,
a short DCB is constructed. Such a DCB does not support reduced
error recovery. You specify the address of the data control
block in the input/output block.

All DCBs must be located in storage that is not fetch-protected,
or, if the task is authorized, in storage that is in the key of
the task (TCB KEY).

Data Extent Block (DEB)

The data extent block contains one or more extent entries for
the associated data set and other control information. An
extent defines all or part of the physical boundaries on an I/O
device occupied by, or reserved for, a particular data set.
Each extent entry contains the address of a unit control block
(UCB) that provides information about the type and location of
an I/O device. More than one extent entry can contain the same
UCB address. For all I/O devices supported by the operating
system, the data extent block is produced during execution of
the OPEN macro instruction for the data control block. The
system places the address of the data extent block into the data
control block. All DEBs must be located in storage that is not
fetch-protected, or, if the task is authorized, in storage that
is in the key of the task (TCB key). Only authorized tasks
(APF-authorized or TCB PKF=O-7) may build DEBs to be used for
I/O operations.

40 MVS/XA System-Data Administration

o

HOW THE CHANNEL pROGRAM EXECUTES

This section explains how the system uses your channel program
and control blocks after you issue EXCP.

INITIATION OF THE CHANNEL PROGRAM

By issuing EXCP. you request the execution of the channel
program specified in the input/output block. The I/O process
validates the request by checking certain fields of the control
blocks associated with this request. If the I/O process detects
invalid information in a control block. it initiates abnormal
termination procedures.

The EXCP processor gets:

• The address of the data control block from the input/output
block

• The address of the data extent block from the data control
block

• The address of the unit control block from the data extent
block

It places the lOB. TCB. DEB. and UCB addresses and other
information about the channel program into an area called a
request queue element (RQE). (Unless you are providing
appendage routines (described under "Appendages" on page 43) you
should not be concerned with the contents of RQEs.)

If you have provided a start I/O (SIO) appendage. the EXCP
processor now passes control to it. The return address from the
SIO appendage determines whether the EXCP processor must:

•
•

Execute the I/O operation normally. or

Skip the I/O operation.

For a description of the SIO appendage and its linkage to the
EXCP processor. see "Appendages" on page 43.

If you are issuing EXCP from a V=V address space. the channel
program you construct contains virtual addresses. Because
channel subsystems cannot use virtual addresses. the EXCP
processor must:

• Translate your virtual channel program into one that uses
only real addresses.

• Fix in real storage the pages used as I/O areas for the data
transfer operations specified in your channel program.

The EXCP processor builds the translated (real) channel program
in a portion of real storage.

For direct access devices, specify the seek address in the
input/output block. The I/O supervisor constructs a command
chain to issue the seek and the set file mask specified in the
data extent block. and to pass control to your real channel
program.

If your channel program begins with a locate-record command, the
I/O process builds a define-extent command and passes control to
your real channel program. (You cannot issue the initial seek.
set file mask. or define extent. The file mask is set to
prohibit seek-cylinder commands. or. if space is allocated by
tracks. seek-head commands. If the data set is open for INPUT,
write commands are also prohibited.)

For a magnetic tape device, the I/O supervisor constructs a
command chain to set the mode specified in the data extent block

Chapter 2. Executing Your Own Channel Programs (EXCP) 41

--- ----- ---------- .--~---- -.~--~----~--

and passes control to your real channel program. (You cannot
set the mode yourself.)

If the I/O device is other than a direct access device or a
magnetic tape device, the I/O supervisor then places the
starting CCW of the channel program into the operation request
block (ORB) and issues a start subchannel (SSCH) instruction.

MODIFICATION OF A CHANNEL PROGRAM DURING EXECUTION

Any problem program that modifies an active channel program with
processor instructions or with data read in by an I/O operation
must be run in a V=R address space. It cannot run in a V=V
address space because of the channel program translation
performed by the I/O supervi$Qr. (In a V=V address space; an
attempt to modify an active channel program affects only the
virtual image of the channel program, not the real channel
program being executed by the channel SUbsystem.)

A program of this type can be changed to run in a V=V address
space by issuing another EXCP macro for the modified portion of
the channel program.

COMPLETION OF EXECUTION

The system considers the channel program completed when it
receives an indication of a channel-end condition in the
subchannel status word (SCSW). Unless a channel-end or
abnormal-end appendage directs otherwise, the request queue
element for the channel program is made available, and a
completion code is placed into the event control block. The
completion code indicates whether errors are associated with
channel end. If device end occurs simultaneously with channel
end, errors associated with device end (that is, unit exception
or unit check) are also accounted for.

If device end occurs after channel end and if an error is
associated with device end, the completion code in the event
control block does not indicate the error. However, the status
of the unit and channel is saved by the I/O supervisor for the
device, and the UCB is marked as intercepted. The input/output
block for the next request directed to the I/O device is also
marked as intercepted. The error is assumed to be permanent,
and the completion code in the event control block for the
intercepted request indicates interception. The DCBIFLGS field
of the data control block is also flagged to indicate a
permanent error. Note that, if a write-tape-mark or
erase-long-gap CCW is the last or only CCW in your channel
program, the I/O process will not attempt recovery procedures
for device end errors. In these circumstances, command chaining
a NOP CCW to your write-tape-mark or erase-long-gap CCW ensures
initiation of device-end error recovery procedures.

To be prepared for device-end errors, you should be familiar
with device characteristics that can cause such errors. After
one of your channel programs has terminated, you should not
release buffer space until you have determined that your next
request for the device has not been intercepted. You may
reissue an intercepted request.

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES

An I/O interruption allows the processor to respond to signals
from an I/O device that indicate either termination of a phase
of I/O operations or external action on the device. A complete
explanation of I/O interruptions is contained in IBM System/3ZQ
XA Principles of Operation. For descriptions of interruption by
specific devices, see the IBM pUblications for each device.

If error conditions are associated with an interruption, the I/O
supervisor schedules the appropriate device-dependent error

42 MVS/XA System-Data Administration

o

--- -----------------------------._-----------------

('~:

AppENDAGES

e/

routine. The channel sUbsystem is then restarted with anoth.r
request that is not related to the channel program in error.
(The following paragraphs discuss "related" channel programs.)
If the error recovery procedures fail to correct the error, the
system places ones in the first two bit positions of the
DCBIFLGS field of the data control block. You are informed of
the error by an error code in the event control block.

If a channel program depends on the successful completion of a
previous channel program (as when one channel program retrieves
data to be used in building another), the previous channel
program is called a "related" request. Such a request must be
identified to the EXCP processor. To find out how to do this,
see "Input/Output Block (lOB) Fields" on page 67.

If a permanent error occurs in the channel program of a related
request, the EXCP processor removes the request queue elements
for all dependent channel programs from their queue and makes
them available.

The related request queue (RRQ) reflects the order in which
request queue elements are removed from their queue.

For all requests dependent on the channel program in error, the
system places completion codes into the event control blocks.
The DCBIFLGS field of the data control block is also flagged.
Any requests for a data control block with error flags are
posted complete without execution. To reissue requests
dependent on the channel program in error, you must reset the
first two bits of the DCBIFLGS field of the data control block
to zeros. You then reissue EXCP for each channel program
desired.

With the IBM 3800 Printing Subsystem, a cancel key or a
system-restart-required paper jam causes both a lost data
indicator to be set in DCBIFLGS and a lost page count and
channel page identifier to be stored in the UCB extension. (See
JES3 Data Areas, TSO/E Data Areas, and IBM 3800 Printing
Subsystem Programmer's Gyide.)

An appendage is a programmer-written routine that provides
additional control over I/O operations. By using appendages,
you can examine the status of I/O operations and determine the
actions to be taken for various conditions. An appendage may
receive control when one of the following occurs:

• EXCP SVC

• Program-controlled interrupt

• End of extent

• Channel end

• Abnormal end

Appendages get control in supervisor state, receiving the
following pointers from the EXCP processor:

• Register I: Points to the request queue element for the
channel program.

• Register 2: Points to the input/output block (lOB),

• Register 3: Points to the data extent block (DEB).

• Register 4: Points to the data control block (DCB).

• Register 6 I Points to the seek address if control is given
to an end-of-extent appendage.

Chapter 2. Executing Your Own Channel Programs (EXCP) 43

---~-------- ._-- .----.~ -_.- .- -.----------------~ -'~-~~~----------.-~---

Appendage

EOE

SIO

pcr

CHE

ABE

Entry
Point

Reg 15

Reg 15

Reg 15

Reg 15

Reg 15

• Register 7: Points to the unit control block (UCB).

•

•

Register 13: Points to a l6-word area you can use to save
input registers or data.

Register 14: Points to the location in the EXCP processor
where control is to be returned after execution of an
appendage. When returning control to the EXCP processor,
you may use displacements from the return address in
register 14. Allowable displacements are summarized in
Figure 12 and described later for each appendage.

• Register 15: Points to the entry point of the appendage.

The processing done by appendages is subject to these
requirements and restrictions:

• Register 9, if used, must be set to binary zeros before
control is returned to the system. All other registers,
except those indicated in the descriptions of each
appendage, must be saved and restored if they are used.
Figure 12 summarizes register conventions.

• No SVC instructions or instructions that change the status
of the system (for example, WTO, lPSW, or any privileged
instructions) can be issued.

• loops that test for the completion of I/O operations must
not be used.

• Storage used by the I/O supervisor or EXCP processor must
not be altered.

The types of appendages are described in the following sections,
with explanations of when they are created, how they return
control to the system, and which registers they may use without
saving and restoring their contents.

Note: All user-specified appendages will be given control in
24-bit addressing mode and must return in the same mode.

Returns

Reg 14 + 0
Reg 14 + 4
Reg 14 + 8

Reg 14 + 0
Reg 14 + 4

Reg 14 + 0

Reg 14 + 0
Reg 14 + 4
Reg 14 + 8
Reg 14 + 12

Reg 14 + 0
Reg 14 + 4
Reg 14 + 8
Reg 14 + 12

Return
Skip
Try Again

Normal
Skip

Normal

Normal
Skip
Re-EXCP
By-Pass

Normal
Skip
Re-EXCP
By-Pass

Available Work Registers1

Reg. 10, 11, 12, and 13

Reg. 10, 11, and 13

Reg. 10, 11, 12, and 13

Reg. 10, 11, 12, and 13

Reg. 10, II, 12, and 13

Figure 12. Entry Points, Returns, and Available Work Registers for Appendages

Note to Figure 12:
1 Certain register conventions for passing parameters from

appendages to the EXCP processor must be followed. These
conventions are described in the individual appendage
descriptions.

44 MVS/XA System-Data Administration

o

(~ ')

-----------------~-----------~---------

("-".'
.-

START-I/O (SIO) APPENDAGE

Unless an error recovery procedure is in control, the EXCP
processor passes control to the SID appendage just before the
EXCP processor translates your channel program.

Optional return vectors give the I/O requestor the following
choices:

Reg. 14 + 0
Normal return. Normal channel program translation and
initiation of I/O.

Reg. 14 + 4
Skip the I/O operation. The channel program is not posted
complete, but the request queue element is made available.
You may post the channel program as follows:

1. Save necessary registers.

2. Put the address of the post routine (found at CVTOPT01
in the communications vector table) in register 15.

3. Place the ECB address from the lOB in register 11.

4. Set the completion code in register 10. These are the
four bytes of an ECB.

5. Go to the post routine pointed to by the CVT, using
BALR 14, 15.

PROGRAM-CONTROLLED INTERRUPTION (PCI) APPENDAGE

This appendage is entered at least once if the channel finds one
or more PCI bits on in a channel prog~am. It may be entered as
many times as the channel finds PCI bits on. Before the
appendage is entered, the contents of the subchannel status word
are placed in the "channel status word" field of the
input/output block.

A PCI appendage will be reentered if an error recovery procedure
is retrying a channel program in which a PCI bit is on. The lOB
error flag is set when the error recovery procedure is in
control (IOBFLAG1 = X'20'). (For special PCI conditions
encountered with command retry, see "Channel Programming
Considerations" on page SO.)

To post the channel program from a PCI appendage, the procedure
described for the start-I/O appendage is used if the step is
running ADDRSPC=VIRT or an authorized program is running V=R.
If the step is running ADDRSPC=REAL and an authorized program
issued the EXCP request or if SVC 114(EXCPVR) was issued, the
PCI appendage uses real storage addresses, and the following
procedure is used to post the channel program from the PCI
appendage.

1. Put the completion code in register 10 and place X'80' in
the high-order byte to indicate the key is in register 0
(step 5).

2. Put X'80' in the high-order byte of register 11 and the
address of the ECB in the low-order bytes.

3. Put X'80' in the high-order byte of register 12 and the
address of a BR 14 instruction in the low-order bytes. This
BR 14 must be in storage addressable from any address space
(for example, CVTBRET) and must be in storage addressable by
24 bits. Note that only registers 9 and 14 are restored
when you use this option.

Chapter 2. Executing Your Own Channel Programs (EXCP) 45

4. Put·the address of the ASCB in register 13.

The next two paragraphs describe how to obtain the ASCB
address and are followed by sample instructions to
illustrate the procedure.

Get the SRB address associated with the I/O operation from
the RQE field, RQESRB (the RQE address was in register 1
when the appendage was given control). Get the IOSB address
from SRBPARM. From that IOSB, get the identifier field,
IOSASID. Multiply IOSASID by 4.

Get the pointer to the ASVT (address space vector table)
found at CVTASVT. The address of the ASCB can be found in
the ASVT, using the field ASVTENTY-4 indexed by the value
calculated in the above paragraph.

USING
L
USING
LH
USING
LH
SLA
L
USING
L
USING
L

RQE,l
Y,RQESRB
SRBSECT,Y
Y,SRBPARM
IOSB,Y
Y,IOSASID
y,2
X,16
CVT,X
X,CVTASVT
ASVT,X
13,ASVTENTY-4(Y)

Note: X and Yare work registers.

S. Put the requestor's key in register O.

6. Put the address of the post routine (found at CVTOPTOI in
the communications vector table) in register 15.

7. Go to the post routine using BALR 14,15. Upon return, only
registers 9 and 14 are valid. For more information on the
POST routine, see Sypervisor Services and Macro
Instructions.

This procedure can be used even if the PCI appendage uses
virtual storage addresses, but performance may be slightly
slower.

To return control to the EXCP processor for normal interruption
processing, use the return address in register 14.

END-OF-EXTENT (EOEl APPENDAGE

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits
indicated in the data extent block.

If you use the return address in register 14 to return
to the system, the abnormal-end appendage is entered.
end-of-extent error code (X'42') is placed in the "ECB
field of the input/output block for subsequent posting
ECB.

You may use the following optional return addresses:

control
An
codeR
in the

.~ Contents of register 14 plus 4: The channel program is
posted complete; its request element is returned to the
available queue.

• Contents of register 14 plus 8: The request is tried again.

You may use registers 10 through 13 in an end-of-extent
appendage without saving and restoring their contents.

46 MVS/XA System-Data Administration

o

o

(--'

(\

Note: If an end-of-cylinder or file-protect condition occurs,
the EXCP processor updates the seek address to the next higher
cylinder or track address and reexecutes the request. If the
new seek address is within the data set's extent, the request is
executed; if the new seek address is not within the data set's
extent, the end-of-extent appendage is entered. If you want to
try the request in the next extent, you must move the new seek
address to the location pointed to by register 6.

If a file protect is caused by a full seek (command code=07)
embedded within a channel program, the request is flagged as a
permanent error. and the abnormal end appendage is entered.

CHANNEL-END (CHEl APPENDAGE

This appendage is entered when a channel end (CHE), unit
exception (UEX) with or without channel end or when channel end
with wrong-length record (WLR) occurs without any other
abnormal-end conditions.

If you use the return address in register 14 to return control
to the EXCP processor. the channel program is posted complete.
and its request element is made available. In the case of unit
exception or wrong-length record. the error recovery procedure
is performed before the channel program is posted complete, and
the IOBIOERR flag (X'04') in IOBFLAGI is set on. The CSW status
may be obtained from the IOBCSW field.

If the appendage takes care of the wrong-length record or unit
exception or both. it may turn off the IOBIOERR flag in IOBFLAGl
and return normally. The event will then be posted as complete
(completion code X'7F' under normal conditions. taken from the
high-order byte of the IOBECBCC field). If the appendage
returns normally without resetting the IOBIOERR flag to zero,
the request will be routed to the associated device error
recovery procedure (ERP). and the abnormal-end appendage will
then be entered with the completion code in IOBECBCC set to
X'41' if the ERP could not correct the error. (See Step 1 of
"Abnormal-End (ABE) Appendage" on page 48.)

You may use the following optional return addresses:

• Contents of register 14 plus 4: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling
sequence described under the start-I/O appendage. This is
especially useful if you want to post an ECB other than the
ECB in the input/output block.

• Contents of register 14 plus 8: The channel program is not
posted complete. and its request element is placed back on
the request queue so that the I/O operation can be retried.
For correct reexecution of the channel program. you must
reinitialize the IOBFLAGI. IOBFLAG2. and IOBFLAG3 fields of
the input/output block and set the "Error Counts" field to
zero. As an added precaution, the IOBSENSO, IOBSENS1. and
IOBCSW fields should be cleared.

• Contents of register 14 plus 12: The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if. the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine. For information on the
exit effector. see System Macros and Facilities.

You may use registers 10 through 13 in a channel-end appendage
without saving and restoring their contents.

Chapter 2. Executing Your Own Channel Programs (EXCP) 47

_______________ A_ .. ____ •• ____ _

ABNORMAL-END (ABE) APPENDAGE

This appendage may be entered on abnormal conditions, such as
unit check, unit exception, wrong-length indication, program
check, protection check, channel data check, channel control
check, interface control check, chaining check, out-of-extent
error, and intercept condition (that is, device end error). It
may also be entered when an EXCP is issued for a request queue
element that has already been purged.

1. When this appendage is entered because of a unit exception
or wrong-length record indication or both, IOBECBCC is set
to X'4l'. For further information on these conditions, see
nChannel-End (CHE) .Appendagen on page 47.

2. WhAn +h~ ~nnAn~~~a ;r 6ft. __ A~ because of an uut=uf-extent
er;~r,-··th;·-IOBECBCC-is -~~~t' t~ X'42'.

3. When this appendage is entered with IOBECBCC set to X'4B',
it is because of:

a. The tape error recovery procedure (ERP) encountering an
unexpected load point, or

b. The tape error recovery procedure (ERP) finding zeros in
the command address field of the CSW.

4. When the appendage is first entered because of an intercept
condition, the IOBECBCC is set to X'7E'. If it is then
determined that the error condition is permanent, the
appendage will be entered a second time with the IOBECBCC
set to X'44'. The intercept condition signals that an error
was detected at device end after channel end on the previous
request.

S. When the appendage is entered because of an EXCP being
issued to an already purged request queue element, this
request will enter the abnormal end appendage with the
IOBECBCC set to X'48'. This applies only to related
requests.

6. If the appendage is entered with IOBECBCC set to X'7F', it
may be because of a unit check, program check, protection
check, channel data check, channel control check, interface
control check, or chaining check. If the IOBECBCC is X'7F',
it is the first detection of an error in the associated
channel program. If the IOBEX (X'04n) flag (bit 5 of the
IOBFLAG1) is on, the IOBECBCC field will contain a X'4l',
X'42', X'48', X'4B', or X'4F' in hexadecimal, indicating a
permanent I/O error.

To determine if an error is permanent, you should check the
IOBECBCC field of the lOB. To determine the type of error,
check the channel status word field and the sense information in
the lOB. However, when the IOBECBCC is X'42', X'48', or X'4F',
these fields are not applicable. For X'44', the CSW is
applicable, but the sense is valid only if the unit check bit is
set.

If you use the return address in register 14 to return control
to the system, the channel program is posted complete, and its
request element is made available. You may use the following
optional return addresses:

• Contents of register 14 plus 4: The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling
sequence described under the start-I/O appendage.

• Contents of register 14 plus 8: The channel program is not
posted complete, and its request element is placed back on
the request queue so that the request can be retried.
Reinitialize the IOBFLAG1, IOBFlAG2, and IOBFLAG3 fields of
the input/output block and set the IOBERRCT field to zero.

48 MVS/XA System-Data Administration

o

(\
\)

o

('-

(":
,/

•

As an added precaution. clear the IOBSENSO. IOBSENSI. and
IOBCSH fields.

Contents of register 14 plus 12: The channel program is not
posted complete. and its request element is not made
available. (This return must be used if. and only if. the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine.)

You may use registers 10 through 13 in an abnormal-end appendage
without saving and restoring their contents.

MAKING YOUR AppENDAGES PART OF THE SYSTEM

Before your appendages can be executed. they must become members
of either the SYSI.LPALIB or SYSl.SVCLIB data set. There are
two ways to put appendages into SYSl.LPALIB or SYSl.SVCLIB:
They can be included at system generation using the DATASET
macro instruction (a full explanation appears in Installatign
System Generation). or they can be link-edited into SYSl.LPALIB
or SYSl.SVCLIB after the system has been generated. Each
appendage must have an 8-character member name. the first six
characters being IGG019 and the last two being anything in the
range from HA to Z9. Note. however. if your program runs in a
V=R address space and uses a PCI appendage, the PCI appendage
and any appendage that the PCI appendage refers to must be
placed in either SYSl.SVCLIB or the fixed link pack area (LPA).
For information on providing a list of programs to be fixed in
storage. see Initialization and Tuning.

THE AUTHORIZED APPENDAGE LIST (IEAAPPOO)

If an "unauthorized" program opens a DCB to be used with an EXCP
macro instruction, the names of any appendages associated with
the DCB must be listed in the IEAAPPOO member of SYSl.PARMLIB.
(An "unauthorized" program is one that runs in a protection key
greater than 7 and has not been marked as authorized by the
Authorized Program Facility.)

If your appendages were put in SYSl.LPALIB or SYSl.SVCLIB at
system generation, their names are automatically put in
IEAAPPOO. If your appendages were added to SYSl.LPALIB or
SYSl.SVCLIB after system generation, you can add IEAAPPOO to
SYSl.PARMLIB and put the names of the appendages in it in one
job step with the IEBUPDTE utility.

Here is an example of JCL statements and IEBUPDTE input that
will add IEAAPPOO to SYSI.PARMLIB and put the names of one EOE
appendage, two SIO appendages, two CHE appendages, and one ABE
appendage in IEAAPPOO:

//
//
//SYSPRlNT
//SYSUT2
//SYSIN
./
EOEAPP HA,
SlOAPP Xl,X2,
CHEAPP Z3,Z4,
ABEAPP Z2
/3(

JOB
EXEC
DD
DD
DD
ADD

PGM=lEBUPDTE
SYSOUT=A
DSN=SYSl.PARMLIB,DISP=OLD
3(

NAME=IEAAPPOO,LIST=ALL

Note the following about the IEBUPDTE input:

• The type of appendage is identified by six characters that
begin in column 1. EOEAPP identifies an EOE appendage,
SIOAPP an SIO appendage, CHEAPP a CHE appendage, and ABEAPP
an ABE appendage. (The PCI appendage identifier, PCIAPP, is
not shown, because the example adds no PCl appendage name to
IEAAPPOO.)

Chapter 2. Executing Your Own Channel Programs (EXCP) 49

"~---- .. ~---~. -~-~-~--.--~------

• Only the last two characters in an appendage's name are
specified, beginning in column 8.

• Each statement that identifies one or more appendage names
ends in a comma, except the last statement.

You can also use IEBUPDTE to add appendage names later or to
delete appendage names. Here is an example of JCL statements
and IEBUPDTE input that adds the. names of a PCI.and an ABE
appendage to the IEAAPPOO appendage list that was created in the
preceding example, and deletes the name of an SID appendage from
that list:

//
//
//SYSPR!NT
//SYSUT2
//SYSIN
,/

PCIAPP Yl,
EOEAPP WA,
SIOAPP Xl,X2,
CHEAPP Z3,Z4,
ABEAPP Z2,Z4
/*

JOB.
EXEC
DD
DD
DD
REPL

PGM=IEBUPDTE
c:,vc:,nIlT-A
.J'.Juv.-""
DSN=SYS1.PARMLIB,DISP=OLD

* NAME=IEAPPOO,LIST=ALL

Note the following about the IEBUPDTE input:

• The command to IEBUPDTE in this case is REPL (replace).

• All the appendage names that are to remain in IEAAPPOO are
repeated.

• IGG019Z4 is both a CHE and an ABE appendage.

CHANNEL pROGRAMMING CONSIDERATIONS

Command retry is a function of the channel supporting the IBM
2305-2, 3330/3333, 3340/3344, 3350, 3375, and 3380 direct access
devices. When the channel subsystem receives a retry request,
it repeats the execution of the CCW, requiring no additional
input/output interrupts. For example, a control unit may
initiate a retry procedure to recover from a transient error.

A command retry during the execution of a channel program may
cause any of the following conditions to be detected by the
initiating program:

• Modifying CCWSI A CCW used in a channel program must not be
modified before the CCW operation has been successfullY
completed. Without the command retry function, a command
was fetched only once from storage by a channel. Therefore,
a program could determine through condition codes or program
controlled interruptions (PCl) that a CCW had been fetched
and accepted by the channel. This permitted the CCW to be
modified before reexecution. With the command retry
function, this cannot be done, because the channel will
fetch the CCW from storage again on a command retry
sequence. In the case of data chaining, the channel will
retry commands starting with the first CCW in the data
chain.

• Program Controlled Interrupts (PCI): A CCW containing a PCI
flag may cause multiple program-controlled interrupts to
occur. This happens if the PCI-flagged CCW was retried
dUring a command retry procedure and if a PCI could be
generated each time the CCW is reexecuted.

o

• Residual Count: If a channel program is prematurely
terminated during the retrY of a command, the residual count 0
in the channel status word (CSW) will not necessarily' .
indicate how much storage was used. For example, if the
control unit detects a "wrong-length record" error

SO MVS/XA System-Data Administration

-----------~"----

condition, an erroneous residual count is stored in the CSW
until the command retry is successful. When the retry is
successful, the residual in the CSW reflects the correct
length of the data transfer.

• Command Address: When data chaining with command retry, the
CSW may not indicate how many CCWs have been executed at the
time of a PCI. For example:

CCWI Channel Program

1 Read, data chain
2 Read, data chain
3 Read, data chain, pcr
4 Read, command chain

In this example, assume that the control unit signals
command retry on Read #3 and the processor accepts the pcr
after the channel resets the command address to Read #1
because of command retry. The CSW stored for the pcr will
contain the command address of Read 11 when the channel has
actually progressed to Read 13.

• Testing Buffer Contents on Data Read: Any program that tests
a buffer to determine when a CCW has been executed and
continues to execute based on this data may get incorrect
results if an error is detected and the CCW is retried.

MACRO SPECIFICATIONS FOR USE WITH EXCP

If you are using the EXCP macro instruction, you must also use
DCB, OPEN, CLOSE, and, in some cases, the EOV macro instruction.
The parameters of these macro instructions and the EXCP macro
instructions are explained here. A diagram of the data control
block is included with the description of the DCB macro
instruction.

DEFINING DATA CONTROL BLOCKS FOR EXCP (DCB)

The EXCP form of the DCB macro instruction produces a data
control block that can be used with the EXCP macro instruction.
You must issue a DCB macro instruction for each data set to be
processed by your channel programs. Notation conventions and
format illustrations of the DCB macro instruction are given in
Data Administration: Macro Instryction Reference. DCB
parameters that apply to EXCP may be divided into four
categories, depending on the following portions of the data
control block that are generated when they are specified:

• Foundation block. This portion is required and is always 12
bytes in length. You must specify two of the parameters in
this category.

• EXCP interface. This portion is optional. If you specify
any parameter in this category, 20 bytes are generated.

• Foundation block extension and common interface. This
portion is optional and is always 20 bytes in length. If
this portion is generated, the device-dependent portion is
also generated.

• Device dependent. This portion is optional and is generated
only if the foundation block extension and common interface
portion is generated. Its size ranges from 4 to 20 bytes,
depending on specifications in the DEVD parameter. However,
if you do not specify the DEVD parameter (and the foundation
extension and common interface portion is generated), the
maximum 20 bytes for this portion are generated.

Some of the procedures performed by the system when the data
control block is opened and closed (such as writing file marks
for output data sets on direct access volumes) require

Chapter 2. Executing Your Own Channel Programs (EXCP) 51

information from optional data control block fields. You should
make sure that the data control block is large enough to provide
all information necessary for the procedures you want the system
to handle.

Figure 13 on page 53 shows the relative position of each portion
of an opened data control block; The fields corresponding to
each parameter of the DCB macro instruction are also designated,
with the exception of DDNAME, which is not included in a data
control block that has been opened. The fields identified in
parentheses represent system information that is not associated
with parameters of the DCB macro instruction.

Sources of information for data control block fields other than
the DCB macro instruction are data definition (DD) statements,
data set labels: and data centrel block modificatiun routines.
You may use any of these sources to specify DCB parameters.
However, if a particular portion of the data control block is
not generated by the DCB macro instruction, the :systtiorn does not
accept information intended for that portion from any
alternative source.

You may provide symbolic names for the fields in one or more
EXCP DCBs by coding a DCBD macro to generate a dummy control
section (DSECT). To map the common interface, foundation block
extension, and foundation block, you code DSORG=XE. To map the
foundation block and EXCP interface, you code DSORG=XA. You may
code DSORG=(XA,XE) to map both. For further information, see
Data Administration: Macro Instryction Reference.

Foundation Block Parameters

DDNAME=symbol
The name of the data definition (DO) statement that
describes the data set to be processed. This parameter
must be given.

MACRF=(El
The EXCP macro instruction is to be used in processing the
data set. This operand must be coded.

REPOS={YIHl
Magnetic tape volumes: This parameter indicates to the
dynamic device reconfiguration (DDR) routine whether the
user is keeping an accurate block count. If the user is
keeping an accurate block count, the DDR routine can
attempt to swap the volume. (You must maintain the block
count in the DCBBLKCT field.)

Y--The user is keeping an accurate block count, and the DDR
routine can attempt to swap the volume.

N--The block count is unre1iab1e~ and the DDR routine
cannot and will not attempt to swap the volume.

If the operand is omitted, N is assumed.

EXCP Interface Parameters

EOEA=symbo1
2-byte identification of an EOE appendage that you have
entered into SYS1.LPALIB or SYSl.SVClIB.

PCIA=symbo1
2-byte identification of a PCI appendage that you have
entered into SYSl.LPALIB or SYS1.SVClIB.

SIOA=symbol
2-byte identification of a SIO appendage that you have
entered into SYSl.lPALIB or SYS1.SVCLIB.

S2 MVS/XA System-Data Administration

o

C)

(-)

/

o
The device-dependent portion of the data control
block varies in length and format according to
specifications in the DSORG and DEVD parameters.

_l
> Device

Dependent Illustrations of this portion for each device J type are included in the description of the DEVD
parameter.

20
BUFNO

24
BUFL ,

28
IOBAD

32 BFTEK,
BFALN

36
RECFM

40
(TIOT)

44
CIFLGS)

48
(OFLGS)

S2
OPTCD

S6
Reserved

60
EOEA

64
SIOA

68
XENDA

BUFCB

I DSORG

EODAD

EXLST

MACRF

(DEB Address)

Reserved

Reserved

PCIA

CENDA

Reserved

l
>

J
l

>

J
l

>

J

l
>

J

Common
Interface

Foundation
Block
Extension

Foundation
Block

EXCP
Interface

Figure 13. Data Control Block (DCB) Format for EXCP (After OPEN)

CENDA=symbol
2-byte identification of a CHE appendage that you have
entered into SYSl.LPALIB or SYSI.SVCLIB.

XENDA=symbol
2-byte identification of an ABE appendage that you have
entered into SYSl.LPALIB or SYSl.SVCLIB.

OPTCD=Z
indicates that, for magnetic tape (input only), a reduced
error recovery procedure (S reads only) will occur when a
data check is encountered. It should be specified only
when the tape is known to contain errors and the
application does n,ot require that all records be processed.
Its proper use would include error frequency analysis in
the SYNAD routine. Specification of this parameter will
also cause generation of a foundation block extension.

Chapter 2. Executing Your Own Channel Programs (EXCP) 53

-----------_ ..

This parameter is ignored unless it was selected at system
generation.

IMSK=~
Any specification indicates that the system will not use
IBM-supplied error routines.

Foundation Block Extension and Common Interface Parameters

EXLST=address
the address of an exit list that you have written for
exception conditions. The format of this exit list is
given in Data Administration Guide.

EonAn=;:u~rlr s
the address of your end-of-data-set routine for input data
sets. If this routine is not available when it is
required, the task is abnormally terminated.

DSORG=£PSIPOIDAIIS)
the data set organization (one of the following codes).
Each code indicates that the format of the device-dependent
portion of the data control block is to be similar to that
generated for a particular access method:

Code

PS
PO
DA
IS

DCB Format for

QSAM or BSAM
BPAM
BDAM
QISAM or BISAM

For direct access devices, if you specify PS or PO, you
must maintain the following fields of the device-dependent
portion of the data control block so that the system can
write a file mark for output data sets:

• The track balance (DCBTRBAL) field that contains a
2-byte binary number that indicates the remaining
number of bytes on the current track. This number can
be obtained from the system track algorithm routine.

• The full disk address (DCBFDAD) field that indicates
the location of the current record. The address is in
the form MBBCCHHR.

These fields are written into the format-l DSCB and are
used by Open routines for staging MSS data sets. Staging
is done only up through the last cylinder specified by
these fields if the data set is reopened for OUTPUT, INOUT,
OUTIN, OUTINX, or EXTEND.

If you specify PO for a direct access device, the DCBDIRCT
field will not be updated. Therefore, you should be
careful when using EXCP with the STOW macro.

IOBAD=address
the address of an input/output block (lOB). If a pointer
to the current lOB is not required, you may use this field
for any purpose.

The following parameters are not used by the EXCP routines.
They provide additional information that the system will store
for later use by access methods that read or update the data
set.

RECFM=~
the record format of the data set. Record format codes are
given in Data Administration: Macro Instryction Reference.
When writing a data set to be read later, RECFM, lRECL, and
BLKSIZE should be specified to identify the data set
attributes. LRECL ·and BLKSIZE can only be specified in a

S4 MVS/XA System-Data Administration

o

o

DD statement, because these fields do not exist in a DCB
used by EXCP.

BFTEK=(SIE}
the buffer technique, either simple or exchange.

BFALN=(FID)
the word boundary alignment of each buffer, either fullword
or doubleword.

BUFL=length
the length in bytes of each buffer; the maximum length is
32767.

BUFNO=nymber
the number of buffers assigned to the associated data set;
the maximum number is 255.

BUFCB=address
the address of a buffer pool control block, that is, the
8-byte field preceding the buffers in a buffer pool.

Device-Dependent Parameters

DEVD=~
the device in which the data set may reside. The codes are
listed in order of descending space requirements for the
data control block:

Code Device

DA Direct access
TA Magnetic tape
PR Printer
PC Card punch
RD Card reader

Note: For MSS virtual volumes, DA should be used.

If you do not want to select a specific device until job setup
time, you should specify the device type requiring the largest
area; that is, DEVD=DA.

The following diagrams illustrate the device-dependent portion
of the data control block for each combination of device type
specified in the DEVD parameter and data set organization
specified in the DSORG parameter. Fields that correspond to
device-dependent parameters in addition to DEVD are indicated by
the parameter name. For special services, you may have to
maintain the fields shown in parentheses. The special services
are explained in the note that follows the diagram.

Chapter 2. Executing Your Own Channel Programs (EXCP) 55

-I
Device-dependent portion of data control block when DEVD=DA and
DSORG=PS:

4 5
Reserved DCBFDAD

8

13
DCBDVTBL

16 17 18
DCBKEYLE DCBDEVT DCBTRBAL

For output data sets, the system uses the contents of the full
disk address (DCBFDAD) field, plus one, to write a file mark
when the data control block is closed, provided the track
balance (DCBTRBAL) field indicates that space is available. If
DCBTRBAL is less than 8, the file mark is written on the next
sequential track. You must maintain the contents of these two
fields yourself if the system is to write a file mark. OPEN
will initialize DCBDVTBL and DCBDEVT.

Device-dependent portion of data control block when DEVD=DA and
DSORG=DA:

16 18
DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

12
DCBBLKCT

~~BTRTCH I l7Reserved I 18 DCBDEN I 19Reserved

The system uses the contents of the block count (DCBBLKCT) field
to write the block count in trailer labels when the data control
block is closed or when the EOV macro instruction is issued.
You must maintain the contents of this field yourself if the
system is to have the correct block count. (Notsl The I/O
supervisor increments this field by the contents of the IOBINCAM
field of the lOB at the completion of each I/O request.)

When using EXCP to process a tape data set open at a'checkpoint,
you must be careful to maintain the correct count; otherwise,
the system may position the data set incorrectly when restart
occurs. If REPOS=Y, the count must be maintained by you for
repositioning during dynamic device reconfiguration.

56 MVS/XA System-Data Administration

--------------- ---

o

o

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

16 18
DCBPRTSP Reserved

Device-dependent portion of data control block when DEVD=PC or
RD and DSORG=PS:

16 18
DCBMODE,DCBSTACK Reserved

The following DCB operands pertain to specific devices and may
be specified only when the DEVD parameter is specified.

KEYLEN=length
for direct access devices, the length in bytes of the key
of a physical record, with a maximum value of 255. When a
block is read or written, the number of bytes transmitted
is the key length plus the record length.

DEN=~
for magnetic tape, the tape recording density in bits per
inch:

Value 7-Track Density 9-Track Density

1

2

3

4

556 ---
800 800(NRZI)

--- 1600(PE)

--- 6250(GCR)

NRZI--Non-return-to-zero change to ones recording
PE--phase encoded recording
GCR--group coded recording

If this parameter is omitted, the highest density available
on the device is assumed.

TRTCH=~
for 7-track magnetic tape, the tape recording technique:

Value Tape Recording Technique

C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is

assumed.) .
T BCDIC to EBCDIC translation is required.

MODE=WJa
for a card reader or punch, the mode of operation. Either
C (column binary mode) or E (EBCDIC code) may be specified.

STACK=~
for a card punch or card reader, the stacker bin to receive
cards, either 1 or 2.

Chapter 2. Executing Your Own Channel Programs (EXCP) 57

PRTSP=~
for a printer, the line spacing, either 0, 1, 2, or 3.

DSORG Parameter of the DeBD Macro

In addition to the operands described in Data Administration I
Macro Instryction Reference for the DSORG parameter of the DCBD
macro, you may specify the following operands.

DSORG=

XA specifies a DCB with the EXCP interface section
(including appendage names)

XE specifies a DCB with the foundation block extension

INITIALIZING DATA CONTROL BLOCKS (OPEN)

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used
by your channel programs. (A dummy data set may not be opened
for EXCP.) Some of the procedures performed when OPEN is
executed arel

• Reading in the JFCB (job file control block), unless the
TYPE=J option of the macro instruction was coded

• Construction of the data extent block (DEB)

• Transfer of information from the JFCB and data set labels to
the DCB

• Verification or creation of standard labels

• Tape positioning

• Loading of your appendage routines

The parameters of the OPEN macro instruction arel

I [symbol] I OPEN I (dc~ a~~~es~ ,[(options)], •••)

dcb address--A-type address or (2-12)
the address of the data control block to be initialized.
(More than one data control block may be specified.)

optionl
the intended method of I/O processing of the data set. You
may specify this parameter as either INPUT, RDBACK, OUTPUT,
or EXTEND. For magnetic tape, label processing for each of
these when OPEN is executed is as follows:

INPUT
RDBACK
OUTPUT
EXTEND

Header labels are verified.
Trailer labels are verified.
Header labels are created.
Header labels are created.

If this parameter is omitted, INPUT is assumed.

option2
the volume disposition that is to be provided when volume
switching occurs. The operand values and meanings are as
follows:

REREAD Reposition the volume to process the data set
again.

58 MVS/XA System-Data Administration

o

o

c····
,

~/

LEAVE

DISP

No additional positioning is performed at
end-of-volume processing.

Specifies that a tape volume is to be disposed of
in the manner implied by the DD statement
associated with the data set. Direct access volume
positioning and disposition are not affected by
this parameter of the OPEN macro instruction.
There are several dispositions that can be
specified in the DISP parameter of the DD
statement:

DISP=PASS, DELETE, KEEP, CATLG, or UNCATLG. Only
DISP=PASS has significance at the time an
end-of-volume condition is encountered. The
end-of-volume condition may result from the
issuance of an FEOV macro instruction or may be the
result of reaching the end of a volutne.

If DISP=PASS was coded in the DD statement, the
tape will be spaced forward to the logical end of
the data set on the current volume.

If a DISP option other than DISP=PASS is coded on
the DD statement, the action taken when an
end-of-volume condition occurs depends on (1) how
many tape units are allocated to the data set and
(2) how many volumes are specified for the data set
in the DD statement. This is determined by the
UNIT= and VOLUME= operands of the DD statement
associated with the data set. If the number of
volumes is greater than the number of units
allocated, the current volume will be rewound and
unloaded. If the number of volumes is less than or
equal to the number of units, the current volume is
merely rewound.

If you intend to process a multivolume direct data set, you must
cause open routines to build a data extent block for each volume
and issue mount messages for them. This can be done by reading
in the JFCB with a RDJFCB macro instruction and opening each
volume of the data set. The following code illustrates the
procedure:

Chapter 2. Executing Your Own Channel Programs (EXCP) S9

RDJFCB DCBl READS IN THE JFCB
SR R3,R3 CLEARS REG 3; IT WILL

* HOLD COUNT OF VOLS TO
* BE OPENED

IC R3,JFCBNVOL PUTS I OF VOLS
* IN REG 3

LA R4,DCBl R4 POINTS TO DCB FOR
* VOL TO BE OPENED

LA RS,l PUTS SEQUENCE # OF
* FIRST VOL TO BE
* OPENED IN REG S
LOOP EQU * STH RS,JFCBVLSQ PUTS SEQ I OF VOL
* TO BE OPENED WHERE
* OPEN RTNS LOOK.

OPEN «R4),OUTPUT),TYPE=J OPENS ONE VOL
* NOTE THAT THE TYPE=J OPTION OF THE MACRO MUST BE USED

LA
* * * LA
* BCT
*

JFCB DS
ORG

JFCBVLSQ DS
* ORG
JFCBNVOL DS

ORG

R4,DCB2-DCBl(R4)

RS, lCRS)

R3,LOOP

CL176
JFCB+70
H

JFCB+117
FLl

INCREMENT REG 4 TO
POINT TO THE DCB FOR
THE NEXT VOL TO BE
OPENED
INCREMENT TO SEQ I OF
NEXT VOL TO BE OPENED
LOOP UNTIL ALL VOLS
OPEN

JFCB READ IN HERE

SEQ I OF VOL TO BE
OPENED

I OF VOLS IN DATA SET

* MAPPING MACRO IEFJFCBN MAY ALSO BE USED
DCBl DCB DDNAME=SYSUTl,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB2 DCB DDNAME=SYSUTl,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB3 DCB DDNAME=SYSUTl,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB4 DCB DDNAME=SYSUTl~MACRF=(E),EXLST=EXITS,DSORG=PS
DCBS DCB DDNAME=SYSUTl,MACRF=(E),EXLST=EXITS,DSORG=PS * THIS PROCEDURE WORKS FOR S VOLS OR LESS; THE JFCB * EXTENSION, WHICH IDENTIFIES ADDITIONAL VOLS, CAN'T * BE READ IN
EXITS DS

* * *

DC
OF
X'87' ,AL3(JFCB) 87 IDENTIFIES THIS AS

THE EXIT LIST ENTRY
THAT SHOWS WHERE JFCB
WILL BE READ IN

Use of the RDJFCB macro instruction and the OPEN macro
instruction with the TYPE=J option is explained in detail under
DReading and Modifying a Job File Control Block" on page 117.

EXECUTING A CHANNEL PROGRAM (EXCP)

The EXCP macro instruction requests the initiation of the I/O
operations of a channel program. You must issue EXCP whenever
you want to execute one of your channel programs. The format of
the EXCP macro instruction is:

I [symbol] I EXCP I iob-address

iob-address==A-type address. (2-12). or (1)
the address of the input/output block of the channel
program to be executed.

60 MVS/XA System-Data Administration

0

o

(-
ASSIGNING AN ALTERNATE TRACK AND COPYING DATA FROM THE DEFECTIVE TRACK (ATLAS)

A program that uses the EXCP macro instruction for input and
output and that is APF authorized may, during the execution of
the program, use the ATLAS macro instruction to obtain an
alternate track and to copy a defective track onto the alternate
track. With the use of ATLAS, the program can recover from
permanent (hard) errors encountered in the execution of the
following types of I/O commands:

• Search ID.

• Write. (The error condition must be confirmed during the
execution of the channel program by a CCW that checks the
data wri tten.)

• Read count. Errors in the CCHHR part of the count area can
be recovered from, unless the record is the home address or
record zero. Errors in the KDD part of the count area
cannot be recovered from, unless the user has identified the
defective record.

Note: ATLAS may be used for all direct access devices with the
exception of MSS volumes (3330V).

Your DCB must include the DCBRECFM field, and the field must
show whether the data set is in the track overflow format. If
it is, recovery from errors in last records on tracks depends on
your identifying the track overflow record segments.

Recovery takes the form of obtaining a good alternate track and
copying the defective track onto the good alternate one. Unless
a reexecution of the channel program by ATLAS can correct the
defect, the user should examine, and if necessary replace,
defective records in a subsequent job if the data set is to be
processed again.

The format is:

E:i:imtuz1l ATLAS PARMADR={addre:i:il
E,CHANPRG={E def.INRlJ
[, CNTPTR={f I Fl J
[,WRITS={YESINOll

PARMADR

o

4

Address of a parameter address list of the following
format:

Address of lOB for the channel program that
encountered the error

Address of count area field

The count area field contains the CCHHRKDD of a defective
record or the CCHH of a track that is to be copied.

addre:is==A-t:ipe addres:i. (2-12). or (1)

CHANPRG={RINRl
specifies whether the channel program that encountered the
error can be executed again.

Chapter 2. Executing Your Own Channel Programs (EXCP) 61

Using ATLAS

R Channel program may be executed again by ATLAS.
Before permitting reexecution of the channel program
by ATLAS, you must reset the error indications of the
previous execution fields in the DCBlFLGS. (See the
example of the use of ATLAS below.)

NR Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR

WRITS

specifies whether the count area field contains a full
count area (CCHHRKDD) or a partial count area (CCHH).

P Part of the count area (the CCHH address of the track
to be copied).

F Full count area (CCHHRKDD count of the record that was
found defective).

If this parameter is omitted, P is assumed.

track overflow segment identification.

If your data set is in the track overflow format, this
identification determines recovery from errors in last
records on tracks.

YES If this is the last record on the track, it is a
segment other t~an the last of a track overflow
record.

NO If this is the last record on the track, it is the
last or only segment of a track overflow record.

If this parameter is omitted, it is assumed that it cannot
be established whether a last record is a segment of an
overflow record.

If a channel program encounters a unit check condition (shown in
the CSW) in its execution, the EXCP Processor program will
place the sense bytes in the lOB. ATLAS can be used to recover
from sense conditions shown by the following bit settings:

IOBSENSO

lOBSENSl

Data check

Permanent

Also, before using ATLAS, you must reset error indications as
follows:

Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track
and will attempt to copy the defective track onto the good
track, including all error conditions in either key or data
areas. The error conditions may be rectified by reexecuting the
channel program or through the use of the IEHATLAS utility
program in a subsequent step.

Example: The following illustrates the use of the ATLAS macro
instruction.

62 MVS/XA System-Data Administration

(' EXCP MYIOB
WAIT ECB=MYECB
TM MYECB,X'7F' TEST FOR I/O ERROR
BO NEXT NO, SUCCESSFUL, GO

3E ANOTHER ROUTINE
TM IOBCSW+3,X'02' UNIT CHECK
BZ OTHER NO, DO OTHER ERROR

3E PROCESSING
TM IOBSENSO,X'08' DATA CHECK
BNO OTHER NO, CAN'T HANDLE
TM IOBSENSI,X'80' PERMANENT
BNO OTHER NO, CAN'T HANDLE
NI DCBIFlGS,X'3F' RESET ERROR

INDICATORS
ATlAS PARMADR=THERE,CHANPRG=R

Operation of the ATLAS Program

The ATLAS program (SVC 86):

• Establishes the availability and address of the next
alternate track from the format-4 DSCB of the VTOC.

• Brings all count fields from the defective track into
storage to establish the description of the track.

TO

• Initializes the alternate track. (Writes the home address
and record zero.)

• Brings the key and data areas of each record into storage,
one at a time, and combines them with their new count area
to write the complete record onto the alternate track.

• When the copying is finished, chains the alternate to the
defective track and updates the VTOC.

Control is returned to your program at the next executable
instruction following the ATLAS macro instruction.

Return Codes from the ATLAS Program

The success of the ATLAS macro instruction can be determined by
examining the contents of register 15, which will contain one of
the return codes described below. If register 15 contains
decimal 0, 36, 40, or 44, the contents of register 0 may be
significant.

Chapter 2. Executing Your Own Channel Programs (EXCP) 63

Code

O(X'OO')

4(X'04')

lZ(X'OC')

16(X'10')

20(X'14')

24(X'18')

28(X'IC')

32(X'20')

36(X'24')

40(X'28')

Meaning

Successful completion. Key and data areas have been
copied from the defective track onto a good
alternate one. The only error encountered was in
the record identified by the user's CCHHRKDD value.

If the channel program is reexecutable, it has been
successfully reexecuted.

This device type does not have alternate tracks that
can be assigned by programming.

All altQrnata tracks for the device have been
assigned.

A request for storage (GETMAIN macro instruction)
could not be satisfied.

All attempts to initialize and transfer data to an
alternate track failed. The number of attempts made
is equal to lOY. of the assigned alternates for the
device.

The type of error shown by the sense byte cannot be
handled through the use of the ATLAS macro
instruction. The condition is other than a data
check (in the count or data areas) or a missing
address marker.

The format-4 DSCB of the VTDC cannot be read;
therefore alternate track information is not
available to ATLAS.

The record specified by the user was the format-4
DSCB, and it could not be read.

An error found in count area of last record on the
track cannot be handled because last-record-on-track
identification is not supplied.

An error was encountered when reading or writing the
home address record or record zero. No error
recovery has taken place.

If register 0 contains X'OI 00 00 00', the defect is
in record zero.

Successful completion. Key and data areas have been
copied from the defective track onto a good
alternate one. However, the alternate track may have
records with defective key or data areas. Register 0
identifies the first three found defective as
follows:

n R R R

n--The number of record numbers that follow (0, 1,
2, or 3),

R--The hexadecimal number of the record found
defective but copied anyWay.

If the channel program is reexecutable, it has been
successfully reexecuted.

64 MVS/XA System-Data Administration

o

END OF VOLUME (EOV)

Cade

44(X'2C')

48(30)

52(34)

56(38)

60(X'3C')

64(X'40')

Meaning

Errors encountered and no alternate track has been
assigned. The return parameter register (register 0)
will contain the R of a maximum of three error
records.

Error conditions that return this code are:

1. ATLAS received an error indication for a record
with a data length in the count field of zero.
Recovery was not possible because a distinction
cannot be made between an EOF record and an
invalid data length.

2. An error occurred while reading the count field
of a record, and the KDD (key length-data
length) was found to be defective.

3. More than three records on the specified track
contained errors in their count fields.

No errors found on the track, no alternate assigned.
ATLAS will not assign an alternate unless a track
has at least one defective record.

I/O error in reexecuting user's channel program. A
good alternate is chained to the defective track,
and data has been transferred. The user's control
blocks will give indication of the error condition
causing failure in reexecution of the channel
program.

The DCB reflects a track overflow data set, but the
UCB device type shows that the device does not
support track overflow.

The CCHH of the user-specified count area is not
within the extents of the data set.

The device is an MSS virtual device, which is not
supported.

The EOV macro instruction identifies end-of-volume and
end-of-data-set conditions. For an end-of-volume condition, EOV
causes switching of volumes and verification or creation of
standard labels. For an end-of-data-set condition, EOV causes
your end-of-data set routine to be entered. Before processing
trailer labels on a tape input data set, you must decrement the
DCBBLKCT field. You issue EOV if switching of magnetic tape or
direct access volumes is necessary, or if secondary allocation
is to be performed for a direct access data set opened for
output.

For magnetic tape, you must issue EOV when either a tapemark is
read or a reflective spot is written over. In these cases, bit
settings in the I-byte DCBOFLGS field of the data control block
determine the action to be taken when EOV is executed. Before
issuing EOV for magnetic tape, you must make sure that
appropriate bits are set in DCBOFLGS. Bit positions 2, 3, 6,
and 7 of DCBOFLGS are used only by the system; you are concerned
with bit positions 0, 1, 4, and 5. The use of these DCBOFLGS
bit positions is as followsl

Chapter 2. Executing Your Own Channel Programs (EXCP) 65

Bit 0

Bit I

Bit 4

Bit 5

-------- ---------

set to I indicates that a write command was executed and
that a tapemark is to be written.

indicates that a backward read was the last I/O operation.

indicates that data sets of unlike attributes are to be
concatenated.

indicates that a tapemark has been read.

If bits 0 and 5 of DCDOFLGS are both off when EOV is executed,
the tape is spaced past a tapemark, and standard labels, if
present, are verified on both the old and new volumes. The
direction of spacing depends on bit 1. If bit 1 is off, the
tape is spaced forward; if bit 1 is on, the tape is backspaced.

If bit 0 is on, but bit 5 is off, when EOV is executed, a
tapemark is written immediately following the last data record
of the data set. Standard labels, if specified, are created on
the old and the new volume.

After issuing EOV for sequentially organized output data sets on
direct access volumes, you can determine whether additional
space was obtained on the same or a different volume. You do
this by examining the data extent block (DEB) and the unit
control block (UCD). If neither the address of the UCB, as
shown in the DEB, nor the volume serial number, as shown in the
UCD, has changed, additional space was obtained on the same
volume. Otherwise, space was obtained on a different volume.

The only parameter of the EOV macro instruction is:

I [symboll I EOV I dcb address

dcb address--A-type address. (2-12), or (1)
the address of the data control block that is opened for
the data set. If this parameter is specified as (1),
register I must contain this address.

Note: To learn how the system disposes of a tape volume when an
EOV macro is issued, see the description of the DISP parameter
under "Initializing Data Control Blocks (OPEN)" on page 58.

RESTORING DATA CONTROL BLOCKS (CLOSE)

The CLOSE macro instruction restores one or more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data control blocks
that were used by your channel programs. Some of the procedures
performed when CLOSE is executed are:

• Release of data extent block (DEB)

• Removal of information transferred to data control block
fields when OPEN was executed

• Verification or creation of> standard labels

• Volume disposition

• Release of programmer-written appendage routines

When CLOSE is issued for data sets on magnetic tape volumes,
labels are processed according to bit settings in the DCBOFLGS
field of the data control block. Before issuing CLOSE for
magnetic tape, you must set the appropriate bits in DCBOFLGS.

66 MVS/XA System-Data Administration

o

o

('\

/

c

CONTROL BLOCK FIELDS

The DCBOFlGS bit positions that you are concerned with are
listed in the EOV macro instruction description.

For information about the forms of the CLOSE macro and their
parameters. see Data Administration: Macro Instryction
Reference.

The fields of the input/output block. event control block. and
data extent block are illustrated and explained here; the data
control block fields are described with the parameters of the
DCB macro instruction under nEXCP Requirementsn on page 39.

INPUT/OUTPUT BLOCK (lOB) FIELDS

The input/output block (lOB) is not automatically constructed by
a macro instruction; it must be defined as a series of constants
and must be on a fullword boundary. For unit-record and tape
devices. the lOB is 32 bytes in length. For direct access.
teleprocessing. and graphic devices. 8 additional bytes must be
provided. You may want to use the system mapping macro IEZIOB.
which expands into a DSECT. to help in constructing an lOB.

In Figure 14 the diagonally-ruled areas indicate fields in which
you must specify information. The other fields are used by the
system and must be defined as all zeros. You may not place
information into these fields. but you may examine them.

IOBFlAGl (1 byte)
You must set bit positions D. 1. and 6. One-bits in
positions 0 and 1 indicate data chaining and command
chaining. respectively. (If both data chaining and command
chaining are specified. the system does not use error
recovery routines except for the direct access devices.) A
one-bit in position 6 indicates that the channel program is
not a nrelated" request; that is, the channel program is
not related to any other channel program. If you intend to
issue an EXCP macro with a BSAM, QSAM, or BPAM data control
block. you may want to turn on bit 7 to prevent
access-method appendages from processing the I/O request.

IOBFlAG2 (1 byte)
If you set bit 6 in the IOBFlAGl field to zero. bits 2 and
3 in this field must then be set to:

• 00, if any channel program or appendage associated with
a related request might modify this lOB or channel
program.

• 01. if the conditions requiring a 00 setting don't
apply. but the CHE or ABE appendage might retry this
channel program if it completes normally or with the
unit-exception or wrong-length-record bits on in the
CSW.

• 10 in all other cases.

The three combinations of bits 2 and 3 represent the three
kinds of related requests. known as type 1 (00). type 2
(01). and type 3 (10). The type you use determines how
much the EXCP Processor can overlap the processing of
related requests. Type 3 allows the greatest overlap.
normally making it possible to quickly reuse a device after,
a channel-end interruption. (Related requests that were ~
executed on a pre-MVS system are executed as type-l
requests if not modified.)

IOBSENSO and IOBSENSI (2 bytes)
are placed into the input/output block by the EXCP
Processor when a unit check occurs. On occasion. the
system is unable to obtain any sense bytes because of unit

Chapter 2. Executing Your Own Channel Programs (EXCP) 67

0(0)/1 1/1 ////// IOBFLAGl /
////// /

4(4)
IOBECBCC

8(8)
IOBFLAG3

12(C)

16(10)
IOBSIOCC

20(14)
Reserved

24(18)
IOBRESTR

IOBFLAG2 IOBSENSO IOBSENSl

//////////////////////////////////////
/////////////// IOBECBPT /////////////
//////////////////////////////////////

IOBCSW

//////////////////////////////////////
/////////////// IOBSTART /////////////
//////////////////////////////////////

////////////////////////!/////////////
/////////////// IOBDCBPT /////////////
//////////////////////////////////////

IOBRESTR+l

i-

I
> All

Devices

28(lC) /////////////////////////
//////////// IOBINCAM ////////// IOBERRCT
//////////////////////////////// -
32(20) ////////// ...,
/// IOBSEEK // > Direct Access, Teleprocessing, and
/ (first byte, M) --l Graphic Devices

33(21) ///////////////////////////////

l //////////////////////////////////////
//////////////////////////////////////
/// IOBSEEK //// >

/////////////////////// (second through eighth bytes, //// J
Direct
Access
Storage
Devices
(DASD) /////////////////////// BBCCHHR) ////

/// 39(27)

Figure 14. Input/Output Block (lOB) Format

checks when sense commands are issued. In this case, the
system simulates sense bytes by moving X'lOFE' to IOBSENSO
and IOBSENS1.

10BECBCC (1 byte)
the first byte of the completion code for the channel
program. The system places this code in the high-order
byte of the event control block when the channel program is
posted complete. The completion codes and their meanings
are listed under "Event Control Block (ECB) FieldsD on
page 69. .

IOBECBPT (3 bytes)
the address of the 4-byte event control block you have
provided.

IOBFLAG3 (1 byte)
is used only by the system.

68 MVS/XA System-Data Administration

o

C)

o

(
IOBC5W (7 bytes)

the low-order seven bytes of the channel status word that
are placed into this field each time a channel-end or PCI
interruption occurs.

IOB5IOCC (1 byte)
in bits 0 and I, the instruction-length code; in bits 2 and
3, the start subchannel (55CH) condition code for the
instruction the system issues to start the channel program;
and, in bits 4 through 7, the program mask.

IOBSTART (3 bytes)
the starting address of the channel program to be executed.

Reserved (1 byte)
used only by the system.

IOBDCBPT (3 bytes)
the address of the data control block of the data set to be
read or written by the channel program.

IOBRESTR (1 byte)
used by the system for volume repositioning in error
recovery procedures.

IOBRESTR+l (3 bytes)
if a related channel program is permanently in error, used
by the system to chain together lOBs that represent
dependent channel programs. To learn more about the
conditions under which the chain is built, see
"Interruption Handling and Error Recovery Procedures" on
page 42.

IOBINCAM (2 bytes)
for magnetic tape, the amount by which the block count
(DCBBLKCT) field in the device-dependent portion of the
data control block is to be incremented. You may alter
these bytes at any time. For forward operations, these
bytes should contain a binary positive integer (usually
+1); for backward operations, they should contain a binary
negative integer. When these bytes are not used, all zeros
must be specified.

Reserved (2 bytes)
used only by the system.

IOBSEEK (first byte, M)
for direct access devices, the extent entry in the data
extent block that is associated with the channel program (0
indicates the first entrYi 1 indicates the second, and so
forth). For teleprocessing and graphic devices, it
contains the UCB index.

IOBSEEK (last 7 bytes, BBCCHHR)
for direct access devices, the seek address for your
channel program.

EVENT CONTROL BLOCK (ECB) FIELDS

You must define an event control block (ECB) as a 4-byte area on
a fullword boundary. When the channel program has been
completed, the input/output supervisor places a completion code
containing status information into the ECB (Figure 15 on
page 70). Before examining this information, you must test for
the setting of the "complete bit." If the complete bit is not
on, and your problem program cannot perform other useful
operations, you should issue a WAIT macro instruction that
specifies the event control block. Under no circumstances
should you construct a program loop that tests for the complete
bit.

Chapter 2. Executing Your Own Channel Programs (EXCP) 69

------------------_. - -----------------

WAIT bit=O COMPLETE bit=l Remainder of completion code

bit
o 1 2 31

Wait bit
A one bit in this position indicates that the WAIT macro instruction has been
issued, but the channel program has not been completed.

Complete bit
A ona bit in this position indicates that the channel program has been
completed; if it has not been completed, a zero bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the
following 4-byte hexadecimal expressions:

Code Meaning

7FOOOOOO The channel program has terminated without error.

41000000 The channel program has terminated with a permanent error.

42000000 The channel program has terminated because a direct access extent
address has been violated.

44000000 The channel program has been intercepted because of a permanent error
associated with a device end for the previous request. You may
reissue the EXCP macro instruction to restart the channel program.

48000000 The request queue element for a channel program has been made
available after it has been purged.

4BOOOOOO One of the following errors occurred during error recovery processing
for a tape device.

• The CSW command address in the lOB is zeros.

• An unexpected load point was encountered.

4FOOOOOO Error recovery routines have been entered because of direct access
error but are unable to read the home address or record O.

Figure 15. Event Control Block (ECB) after Posting of Completion Code (EXCP)

DATA EXTENT BLOCK (DEB) FIELDS

The data extent block (DEB) is constructed by the system when an
OPEN macro instruction is issued for the data control block.
You may not modify the fields of the DEB, but you may examine
them. The DEB format and field descriptions are contained in
Debygaing Handbook.

EXECUTING FIXED CHANNEL pROGRAMS IN REAL STORAGE (EXCPYRl

The EXCPVR macro instruction provides you with the same
functions as the EXCP macro instruction (that is, a
device-dependent means of performing input/output operations).

o

In addition, it allows your program to improve the efficiency of 0" '.-_\".

the I/O operations in a paging environment by translating its ,
own virtual channel programs to real channel programs.
Authorized programs are allowed to execute in a V=V area and
provide the EXCP processor with real channel programs. This

70 MVS/XA System-Data Administration

G

" ".~.~--~. ~ " .. --.---~~.

eliminates the translation of channel programs by the EXCP
processor. The program issuing the EXCPVR must remain in
authorized state until the completion of the channel programs.

Problem programs are authorized to use the EXCPVR macro
instruction under the authorized program facility (APF). A
description of how to authorize a program can be found in
Syperyisor Services and Macro Instryctions.

I [symbol] I EXCPVR I iob-address

iob-address--A-type address. (2-12). or (1)
the address of the input/output block of the channel
program to be executed.

To use EXCPVR, you must do all the things you would do to
execute an EXCP request; in addition you must:

1. Code PGFX=YES in the DCB associated with the EXCPVR requests
and provide a page-fix (PGFX) appendage by specifying
SIOA=symbol in the DCB.

2. Fix the data area that contains your channel program, the
data areas that are referred to by your channel program,
your PCI appendage (if your program can generate
program-controlled interrupts), and any area referred to by
your PCI appendage. To cause EXCP to fix these data areas,
you build a list that contains the addresses of these
virtual areas. You should build the list in your PGFX
appendage.

3. Determine whether the data areas in virtual storage
specified in the address fields of your CCWs cross page
boundaries, If they do, you must build an indirect data
address list (IDAL) and put the address of the IDAL in the
affected CCW.

4. Translate the addresses in your CCWs from virtual to real
addresses.

All other areas related to the EXCP/EXCPVR I/O operation (that
is, CCWs, IDAWs, lOBs, DEBs, DeBs, appendages, and so forth)
must remain 24-bit addressable. Note, however, that the EXCP
processor will allow both 24-bit and 3l-bit virtual I/O buffers
to be fixed above 16 megabytes real.

Items 3 and 4 must be done in your start-I/O (SID) appendage. A
description of the SIO appendage is presented under "Appendages"
on page 43.

BUILDING THE LIST OF DATA AREAS TO BE FIXED

The EXCP processor expects programs using the EXCPVR macro
instruction to pass a list of data areas to be fixed. This list
is to be built in the PGFX appendage, as described below.

The data areas you must fix in real storage (if not already
fixed in real storage) are:

1. The channel program. If the channel program is already in a
fixed subpool, it does not have to be fixed.

2. The data areas to which your channel program will be writing
and from which your channel program will be reading. If the
data areas are already in a fixed subpool, they do not have
to be fixed.

3. The PCI appendage, if used, and any areas referred to in the
PCI appendage.

4. Any system or user control blocks (and the DEB).

Chapter 2. Executing Your Own Channel Programs (EXCP) 71

You need not fix areas that have already been fixed, such as the
modules that reside in the fixed link pack area (LPA).

EXCPVR users can specify 31-bit real data areas by creating CCWs
through the use of IDAWs.

PAGE FIX (PGFX) AND START-I/O (SIO) APPENDAGE

This appendage comprises two essentially independent appendages.
The complete appendage can be viewed as are-enterable
subroutine having two entry points, one for the SID appendage
and one for the PGFX appendage.

The SID entry point is located at offset 0 in the subroutine;
any other location in the appendage may os branched to fiom this
entry point. The entry point of the PGFX appendage is at offset
+4 in the SID subroutine, which is set in register 15 as the
entry point of the PGFX appendage.

page Fix (PGFX) Appendage: The purpose of this appendage is to
list all the areas that must be fixed to prevent paging
exceptions during the execution of the current I/O request.
This appendage may be entered more than once. However, each
time it is entered, it must create the same list of areas to be
fixed. The appendage may use the l6-word save area pointed to
by register 13. Registers 10, 11, and 13 may be used as work
registers.

page-Fix List Processing

Each page-fix entry placed in the list by the appendage must
have the following doubleword format I

1011 31132 33

0 Starting virtual 0 Ending vidual
address of area address of area
to be fixed to be fixed + 1 - -

631

On return from your PGFX appendage to the EXCP processor (via
the return address provided in register 14), register 10 must
point to the first page-fix entry and register 11 must contain
the number of page-fix entries in the work area. The EXCP
processor then fixes the pages corresponding to the areas listed
by the PGFX appendage. The pages remain fixed until the
associated I/O request terminates.

If either the channel end appendage or the abnormal end
appendage returns via the return address in register 14 plus 8,
the PGFX appendage is not normally reentered. Instead, the SID
appendage is entered, and the page-fix list built by the PGFX
appendage is still active. However, the PGFX appendage is
entered after either the channel end appendage or the abnormal
end appendage returns via the return address in register 14 plus
8 when a PURGE macro has been issued (for instance, when a
storage swap has occurred). In this case, when I/O is restored,
the PGFX appendage is entered.

Note: The page-fix list must be in page-fixed storage.

S10 APPENDAGE: If you are using EXCPVR to execute your channel
program, you must translate the virtual addresses in the
operands of your channel program to real addresses. This should
be done in your SID appendage. If indirect data addressing is
required, the SID appendage should also build the indirect data
address lists (IDALs) and turn on the IDA indicators in the
associated CCWs.

72 MVS/XA System-Data Administration

---------------_.

o

,:,. I 0''\

Translating Virtual Addresses and Building the IDAL: You must
convert the virtual addresses in the channel program to real
addresses. You must also check the areas whose addresses appear
in bits 8 through 31 of your CCWs to determine whether the data
areas cross 2K-byte boundaries. If they do, you must provide an
entry in the IDAl for each 2K-byte boundary crossed. The
channel subsystem uses the IDAl to identify the address where it
will continue reading or writing when a 2K-byte boundary is
crossed during a read or write operation. The IDAl must contain
real addresses when it is processed by the channel.

In MVS/XA, the LRA instruction returns a 3l-bit real address
regardless of the addressing mode. You must be careful when you
construct the IDAW to ensure that the real storage obtained by
GETMAIN (or branch entry) is below 16 megabytes. Do your page
fixing before you issue the lRA. (See Superyisor Seryices and
Macro Instructions or System Macros and Facilities for
information on how to obtain real storage below 16 megabytes
real.)

CCW

o

Command
Code

7 8

Address of the
IDAl

31 32

'------->

//////////
//////////

Byte
Count

39 40

IDAl

47 48

0
First Indirect Data
Address Word

4
Second Indirect Data
Address Word

8
Subsequent Indirect
Data Address Word

Notes:

1. You must put one entry in the IDAl for each 2K-byte page
boundary your data area crosses.

2. If the CCW has an IDAl address rather than a data address,
bit 37 must be set to signal this to the channel.

3. The maximum number of entries needed in the IDAl is
determined from the count in the CCW as follows:

Number of IDAl entries=«CCW byte-count - 1)/2048) + 1.
(Round up division to next highest integer if remainder is
not zero.)

The number of IDAl entries required ultimately depends on the
number of 2K-byte boundaries crossed by the data. For example,
if your data is 800 bytes long and does not cross a 2K-byte page
boundary, no IDAl entries are required. If your data crosses a
4K-byte page boundary, then two IDAl entries are required. If
your data is 5000 bytes long, at least two IDAl entries are
required. If your data crosses two 4K-byte page boundaries,
four IDAl entries are required.

The first indirect address is the real address of the first byte
of the data area. The second and subsequent indirect addresses
are the real addresses of the second and subsequent 2K-byte
boundaries of the data area.

Chapter 2. Executing Your Own Channel Programs (EXCP) 73

For example, if the data area real address is X'707FF' and. the
byte count is X'l802', the IDAl would contain the following real
addresses (assuming the real addres~es are contiguous, which may
not always be the case):

707FF
70800
71000

If the data area real address is X'707FF' and the byte count is
X'800', the IDAl would contain the following addresses:

707FF
70800

74 MVS/XA System-Data Administration

--_ .. _ .. - -----

o

~ I .

~.)

I
I

(.

c

---~-~ ~. -~~ ..

CHAPTER 3. READING FROM AND WRITING TO DIRECT ACCESS DEVICES (XDApJ

XDAP REQUIREMENTS

Execute direct access program (XDAP) is a macro instruction that
you may use to read, verify, or update a block on a direct
access volume. This chapter explains what the XDAP macro
instruction does and how you can use it. The control block
generated when XDAP is issued and the macro instructions used
with XDAP are also discussed.

Because most of the specifications for XDAP are similar to those
for the execute channel program (EXCP) macro instruction, you
should be familiar with the "Executing Your Own Channel Programs
(EXCP)" chapter of this publication, and with the information
contained in Data Administration Guide that provides how-to
information for using the access method routines of the system
control program.

If you are not using the standard IBM data access methods, you
can, by issuing XDAP, generate the control information and
channel program necessary for reading or updating the records of
a data set. (However, XDAP cannot be used to read, verify, or
update a SYSIN or SYSOUT data set.)

You cannot use XDAP to add blocks to a data set, but you can use
it to change the keys of existing blocks. Any block
configuration and any data set organization can be read or
updated.

Although the use of XDAP requires less storage than do the
standard access methods, it does not provide many of the control
program services that are included in the access methods. For
example, when XDAP is issued, the system does not bl.ock or
unblock records and does not verify block length.

To issue XDAP, you must provide the actual track address of the
track containing the block to be processed. You must also
provide either the block identification or the key of the block,
and specify which of these is to be used to locate the block.
If a block is located by identification, both the key and data
portions of the block may be read or updated. If a block is
located by key, only the data portion can be processed.

For additional control over I/O operations, you may write
appendages that must be entered into the lPA library.
Descriptions of these routines and their coding specifications
are included under Chapter 2, "Executing Your Own Channel
Programs (EXCP)" on page 36.

When using the XDAP macro instruction, you must, somewhere in
your program, code a DCB macro instruction that produces a data
~ontrol block (DCB) for the data set to be read or updated. You
must also code an OPEN macro instruction that initializes the
data control block and produces a data extent block (DEB). The
OPEN macro instruction must be executed before any XDAP macro
instructions are executed.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 7S

When the XDAP macro instruction is assembled, a control block
and executable code are generated. This control block may be
logically divided into three sections:

• An event control block (ECB) that is supplied with a
completion code each time the direct access channel program
is terminated.

• An input/output block (lOB) that contains information about
the direct access channel program.

• A direct access channel program that consists of three or
four channel command words (CCWs). The type of channel
program generated depends on specifications in the
parameters of the XDAP macro instruction. When executed, it
locates a block by either its actual addrass or its key and
reads, updates, or verifies the block.

When the channel program has terminated, a completion code is
placed into the event control block. After issuing XDAP, you
should therefore issue a WAIT macro instruction, specifying the
address of the event control block. to regain control when the
direct access program has terminated. If volume switching is
necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

MACRO SPECIFICATIONS FOR USE WITH XDAP

When you are using the XDAP macro instruction, you must also
code DCB, OPEN, CLOSE, WAIT, and, in some cases, the EOV macro
instructions. The parameters of the XDAP macro instruction are
listed and described here. For the other required macro
instructions, special requirements or options are explained, but
you should see "Macro Specifications for Use with EXCP" on
page 51 for listings of their parameters.

DEFINING A DATA CONTROL BLOCK (DCB)

You must issue a DCB macro instruction for each data set to be
read, updated, or verified by the direct access channel program.
To learn which macro instruction parameters to code, see
"Defining Data Control Blocks for EXCP (DCB)" on page 51.

INITIALIZING A DATA CONTROL BLOCK (OPEN)

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used
by the direct access program. Some of the procedures performed
when OPEN is executed are:

• Construction of data extent block (DEB)

• Transfer of information from DD statements and data set
labels to the data control block

• Verification or creation of standard labels

• Loading of programmer-written appendage routines

The two parameters of the OPEN macro instruction are the
addressees) of the data control blockCs) to be initialized and
the intended method of I/O processing of the data set. The
method of processing may be specified as INPUT, OUTPUT, EXTEND;
however, if nothing is specified, INPUT is assumed.

76 MVS/XA System-Data Administration

o

o

C:~

c

I EXECUTING DIRECT ACCESS PROGRAMS (XDAP)

The XDAP macro instruction produces the XDAP control block (that
is, the ECB, lOB, and channel program) and executes the direct
access channel program. The format of the XDAP macro
instruction is:

[:i~ml;u~ll XDAP ecb-s~mbo1
p~
pdcb-addr
parea-addr
plength-ya1ye
p[(K~~-sggr2K~~lgCg!b-y.1y~)l
p bIKref-.dgr
p [:iector-adgrl
[p MF=(ElL) l

gcb-s~mbo1--:i~mbo1 or (2-12)
the symbolic name ,to be assigned to the XDAP event control
block. Registers can be used only with MF=E.

!~pe==(RIIRKIWIIWKIVIIVK)
the type of I/O operation intended for the data set and the
method by which blocks of the data set are to be located.
One of the combinations shown must be coded in this field.

The codes and their meanings are:

R Read a block.

W Update a block.

V Verify that the device is able to read the contents of
a block, but do not transfer data.

I Locate a block by identification. (The key portion, if
present, and the data portion of the block are read,
updated, or verified.)

K Locate a block by key. (Only the data portion of the
block is read, updated, or verified.) If you code this
value, you must code the 'key-addr,keylength-value'
operands.

dcb-.ddr==A-!~pe agdre:i:i or (2-12)
the address of the data control block for the data s.et. If
this data control block is also being used by a sequential
access method (BSAM, BPAM, QSAM), you must reassemble the
XDAP macro instruction. Otherwise, sequential access
method appendages will be called at the conclusion of the
XDAP channel program.

are.-agdr==A-t~pe .ddres:i or (2-12)
the address of an input or output area for a block of the
data set.

1ecg!b-y.1yg--.b:iexp or (2-12)
the number of bytes to be transferred to or from the input
or output area. If blocks are to be located by
identification and the data set contains keys, the value
must include the length of the key. The maximum number of
bytes transferred is 32767.

Ke~-.ggr==RX-!~pg .ddre:is or (2-12)
when blocks are to be located by key, the address of a
virtual storage field that contains the key of the block to
be read, updated, or verified.

Kg~lecg!b-y.1yg--ab:iexp or (2-12)
when blocks are to be located by key, the length of the
key, The maximum length is 255 bytes.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 77

blkref-addr==RX-type address or (2-12)
the address of a field in virtual storage containing the
actual track address of the track containing the block to
be located. The actual address of a block is in the form
MBBCCHHR, where M indicates which extent entry in the data
extent block is associated with the direct access program;
BB is not used, but must be zero; CC indicates the cylinder
address; HH indicates the actual track address; and R
indicates the block identification. R is not used when
blocks are to be located by key. (For more detailed
information, see "Converting a Relative Track Address to an
Actual Track Address" on page 80.)

secior-addr==RX-type address or (2-12)

MF=

MF=E

MF=L

the address of a I-byte field containing a sector value.
ThA ~A,..+n"'-:l"'rI ... aee "~ ... ~ ... a.~I1!1.'" .. eo- .I~A..J .f! __ ;"otaticnal
p~;iti~~-~e~;i~~-(RPS)-d;~i~e;-o~i;~ 'The parameter is
optional, but its use will improve channel performance.
When the parameter is coded, a set-sector CCW (using the
sector value indicated by the data address field) precedes
the search-ID-equal command in the channel program. The
sector-address parameter is ignored if the type parameter
is coded as RK, WK, or VK. If a sector address is
specified in the execute form of the macro, then a sector
address, not necessarily the same, must be specified in the
list form. The sector address in the executable form will
be used.

Nate: No validity check is made on either the address or
the sector value when the XDAP macro is issued. However, a
unit check/command reject interruption will occur during
channel-program execution if the sector value is invalid
for the device or if the sector-addr operand is used when
accessing a device without RPS. (For more detailed
information, see "Obtaining Sector Number of a Block on a
Device with the RPS Feature" on page 82.)

you may use the L-form of the XDAP macro instruction for a
macro expansion consisting of only a parameter list, or the
E-form for a macro expansion consisting of only executable
instructions.

The first operand eecb-symbol) is required and may be coded
as a symbol or supplied in registers 2 through 12. The
type, dcb-addr, area-addr, and length-value operands may be

-supplied in either the L- or E-form. The blkref-addr
operand may be supplied in the E-form or moved into the
IOBSEEK field of the lOB by you. The sector-addr is
optional; it may be coded either in both the L- and E-form
or in neither.

The first two oper~nds eecb-symbol and type) are required
and must be coded as symbols. If you choose to code
length-value or keylength-value, they must be absolute
expressions. Other operan'ds, if coded, must be A-type
addresses. (blkref-addr is ignored if coded.)

Note: The XDAP macro builds a channel program containing A-type
addresses. These addresses refer to storage within the L-form
of the macro. If you copy the L-form of the macro to a workarea
so that the program may be reentrant, the E-form of the XDAP
macro does not update the A-type addresses. This results in an
invalid channel program.

The dcb-addr, area-addr, blkref-addr, and sector-value operands
may be coded as RX-type addresses or supplied in registers 2
through 12. The length-value and keylength-value operands can
be specified as absolute expressions or decimal integers or
supplied in registers 2 through 12.

78 MVS/XA System-Data Administration

-~--~~- --~~---
-~~~~-~~~-- ------~-

o

(\
~.)

c

(--

G

END OF VOLUME (EOV)

The EOV macro instruction identifies end-of-volume and
end-of-data-set conditions. For an end-of-volume condition, EOV
causes switching of volumes and verification or creation of
standard labels. For an end-of-data-set condition, EOV causes
your end-of-data-set routine to be entered. When using XDAP,
you issue EOV if switching of direct access volumes is necessary
or if secondary allocation is to be performed for a direct
access data set opened for output.

The only parameter of the EOV macro instruction is the address
of the data control block of the data set.

RESTORING A DATA CONTROL BLOCK (CLOSE)

The CLOSE macro instruction restores one or more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data sets that were
used by the direct access channel program. Some of the
procedures performed when CLOSE is executed are:

• Release of data extent block (DEB)

• Removal of information transferred to data control block
fields when OPEN was executed

• Verification or creation of standard labels

• Release of programmer-written appendage routines

The CLOSE macro instruction must identify the address of at
least one data control block to be restored, and may specify
other options. To learn what these options are and how they are
specified, see Data Administration: Macro Instryction Reference.

CONTROL BLOCKS USED WITH XDAP

The three control blocks generated during execution of the XDAP
macro instruction are described here.

EVENT CONTROL BLOCK (ECB)

The event control block (ECB) begins on a fullword boundary and
occupies the first 4 bytes of the XDAP control block. Each time
the direct access channel program terminates, the I/O supervisor
places a completion code containing status information into the
event control block (Figure 16 on page 80). Before examining
this information, you must wait for the completion of the
channel program by issuing a WAIT macro instruction that
specifies the address of the event control block.

INPUT/OUTPUT BLOCK (lOB)

The input/output block (lOB) is 40 bytes in length and
immediately follows the event control block. "Control Block
Fields" on page 67 contains a diagram of the input/output block
(Figure 16 on page 80). You may want to examine the IOBSENSO,
IOBSENSl, and IOBCSW fields if the ECB is posted with X'4l'.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 79

i
-!

WAIT bit I COMPLETE bit Completion code

bit
o 1 2 31

Wait bit
A one bit in this position indicates that the direct access channel program has
not been completed.

Complete bit
A ens bit in this position indicates that the channel Program ha$ been
completed; if it has not been completed, a zero bit is in this position.

Completion code
This code, including the wait and complete bits, may be one of the following
4-byte hexadecimal expressions:

Code Meaning

7FOOOOOO Direct access program has terminated without error.

41000000 Direct access program has terminated with permanent error.

42000000 Direct access program has terminated because a direct access extent
address has been violated.

4FOOOOOO Error recovery routines have been entered because of direct access
error but are unable to read home address or record O.

Figure 16. Event Control Block (ECB) after Posting of Completion Code (XDAP)

DIRECT ACCESS CHANNEL PROGRAM

The direct access channel program is 24 bytes in length (except
when set sector is used for RPS devices) and immediately follows
the input/output block. Depending on the type of I/O operation
specified in the XDAP macro instruction, one of four channel
programs may be generated. The three channel command words for
each of the four possible channel programs are shown in
Figure 17 on page 81.

When a sector address is specified with an RI, VI, or WI
operation, the channel program is 32 bytes in length. Each of
these channel programs in Figure 17 on page 81 would be, in this
case, preceded by a set sector command.

CONVERTING A RELATIVE TRACK ADDRESS TO AN ACTUAL TRACK ADDRESS

To issue XDAP, you must provide the actual track address of the
track containing the block to be processed. If you know only
the relative track address, you can convert it to the actual
address by using a resident system routine. The entry point to
this conversion routine is labeled IECPCNVT. The address of the
entry point (CVTPCNVT) is in the communication vector table
(CVT). The address of the CVT is in location 16. (For the
displacements and descriptions of the CVT fields, see Debygging
Handbook.)

80 MVS/XA System-Data Administration

o

o

o.

Type of' I/O Operation CCW Command Code

Read by identification 1 Search ID Equal
2 Transfer in Channel

Verify by identificationl 3 Read Key and Data

Read by key 1 Search Key Equal
2 Transfer in Channel

Verify by keyl 3 Read Data

Write by identification 1 Search ID Equal
2 Transfer in Channel
3 Write Key and Data

Write by key 1 Search Key Equal
2 Transfer in Channel
3 Write Data

1 For verifying operations, the third CCW is flagged to
suppress the transfer of information to virtual storage.

Figure 17. The XDAP Channel Programs

The conversion routine does all its work in general registers.
You must load registers 0, 1, 2, 14, and 15 with input to the
routine. Register usage is as follows:

Register Use

o

1

2

3-8

9-13

14

15

Must be loaded with a 4-byte value of the form TTRN,
where TT is the track number relative to the beginning
of the data set, R is the the block identification on
that track, and N is the concatenation number of a
BPAM data set. (0 indicates the first data set in the
concatenation, an nonconcatenated BPAM data set, or a
non-BPAM data set.)

Must be loaded with the address of the data extent
block (DEB) of the data set.

Must be loaded with the address of an 8-byte area that
is to receive the actual address of the block to be
processed. The converted address is of the form
MBBCCHHR, where M indicates which extent entry in the
data extent block is associated with the direct access
program (0 indicates the first extent, 1 indicates the
second, and so forth)j BB is two bytes of zerOSj CC is
the cylinder address; HH is the actual track address;
and R is the block number.

Are not used by the conversion routine.

Are used by the conversion routine and are not
restored.

Must be loaded with the address where control is to be
returned after execution of the conversion routine.

Is used by the conversion routine as a base register
and must be loaded with the address where the
conversion routine is to receive control.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 81

RETURN CODES FROM THE CONVERSION ROUTINE

When control is returned to your program, register 15 will
contain one of the following return codes:

Code Meaning

O(X'OO') Successful conversion.

4(X'04') The relative block address converts to an actual track
address outside the extents defined in the DEB.

CONVERTING AN ACTUAL TRACK ADDRESS TO A RELATIVE TRACK ADDRESS

To get the relative track address when you know the actual track
address, you can use the conversion routine labeled IECPRLTV.
The address of the entry point (CVTPRLTV) is in the
communication vector table (CVT). The address of the CVT is in
location 16.

The conversion routine does all its work in general registers.
You must load registers 1, 2, 14, and 15 with input to the
routine. Register usage is as follows:

Register Use

o Will be loaded with the resulting TTRO to be passed
back to the caller.

1

2

3-8

9-13

14

IS

Must be loaded with the address of the data extent
block (DEB) of the data set.

"

Must be loaded with the address of an 8-byte area
containing the actual address to be converted to a
TTR. The actual address is of the form MBBCCHHR.

Are not used by the conversion routine.

Are used by the conversion routine and are not
restored.

Must be loaded with the address where control is to be
returned after execution of the conversion routine.

Is used by the conversion routine as a base register
and must be loaded with the address where the
conversion routine is to receive control.

I OBTAINING SECTOR NUMBER OF A BLOCK ON A DEVICE WITH THE RPS FEATURE

To obtain the performance improvement given by rotational
position sensing, you should specify the sector-addr parameter
in the XDAP macro. For programs that can be used with both RPS
and non-RPS devices, the UCBRPS bit (bit 3 at an offset of 17
bytes into the UCB) should be tested to determine whether the
device has rotational position sensing. If the UCBRPS bit is
off, a channel program with a nset sector" command must not be
issued to the device.

o

The sector-addr parameter on the XDAP macro specifies the
address of a I-byte field in your region. You must store the
sector number of the block to be located in this field. You can

bt " b b b "d t C,',',. o a1n the sector num er of the lock y using a reS1 en .,.
conversion routine, IECOSCRI. The address of this routine is in
field CVTOSCRl of the CVT, and the address of the CVT is in
location 16. The routine should be invoked via a BALR 14,15

82 MVS/XA System-Data Administration

,---~ ----------------~~--

(...

o

instruction. If you are passing the track balance to the
routine. invoke the routine using a BAl 14.8(15). If you are
computing the sector value on modulo devices (3375 and 3380)
with variable length records, you must pass the track balance to
the sector convert routine.

For RPS devices. the conversion routine does all its work in
general registers. You must load registers O. 2, 14, and 15
with input to the routine. Register usage is as follows:

Register

o

1

2

3-8

9-11

12,13

14

15

Use

For fixed, standard blocks or fixed, unblocked
records not in a partitioned data set: Register 0
must be loaded with a 4-byte value in the form XXKR,
where XX is a 2-byte field containing the physical
block size, K is a I-byte field containing the key
length, and R is a I-byte field containing the number
of the record for which a sector value is desired.
The high-order bit of register 0 must be turned off
(set to 0) to indicate fixed-length records.

Passing the track balance: Register 0 must be loaded
with the 4-byte value of the track balance of the
record preceding the required record.

For all other cases: Register 0 must be loaded with a
4-byte value in the form BBIR, where BB is the total
number of key and data bytes on the track up to, but
not including, the target record; I is a I-byte key
indicator (1 for keyed records. 0 for records without
keYS); and R is a I-byte field containing the number
of the record for which a sector value is desired.
The high-order bit of register 0 must be turned on
(set to 1) to indicate variable-length records.

Not used by the sector-convert routine.

Must be loaded with a 4-byte field where the first
byte is the UCB device type code for the device
(obtainable from UCB+19). and the remaining three
bytes are the address of a I-byte area that is to
receive the sector value.

Not used.

Used by the convert routine and are not saved or
restored.

Not used.

Must be loaded with the address in which control is
to be returned after execution of the sector
conversion routine.

Used by the conversion routine as a base register and
must be loaded with the address of the entry point to
the conversion routine.

Chapter 3. Reading from and Writing to Direct Access Devices (XDAP) 83

- -------------- ------ --------------------

CHAPTER 4. PASSWORD PROTECTING DATA SETS

The password protection described in this chapter does not apply
to VSAM data sets. Information about VSAM data set protection
is in VSAM Administration: Macro Instryction Reference and
Access Method Services Reference. Eor information on RACE and
its relationship to password protection, see RACE General
Information Manual. To use the data set protection feature of
the operating system, you must create and maintain a PASSWORD
data set consisting of records that associate the names of the
protected data sets with the password assigned to each data set.
The~a are fOUl ways to maintain the PASSWORD data set:

• You can write your own routines.

• You can use the PROTECT macro instruction.

• You can use the utility control statements of the IEHPROGM
utility program.

• If you have TSO, you can use the TSO PROTECT command.

This chapter discusses only the first two of the four ways: It
provides technical detail about the PASSWORD data set that is
necessary for writing your own routines, and it describes how to
use the PROTECT macro instruction. (The last two of the four
ways are discussed in other publications, as indicated in the
list of public~tions below.)

Before using the information in this chapter, you should be
familiar with information in several related publications. The
following publications are recommended:

• Data Administration Gyide contains a general description of
the data set protection feature.

• System Messages contains a description of the operator
messages and replies associated with the data set protection
feature.

• J&l contains a description of the data definition (DD)
statement parameter used to indicate that a data set is to
be password protected.

• DADSM and CVAE Diagnosis Gyide and DADSM Diagnosis Reference
contain

• Utilities contains a description of how to maintain the
PASSWORD data set using the utility control statements of
the IEHPROGM utility program.

• TSO Command Langyage Reference describes the use of the TSO
PROTECT command.

PROVIDING DATA SET SECURITY

In addition to the usual label protection that prevents the
opening of a data set without the correct data set name, the
operating system provides data set security options that prevent
unauthorized access to confidential data. Password protection
prevents access to data sets until a correct password is entered
by the system operator, or, for TSO, by a remote terminal
operator.

84 MVS/XA System-Data Administration

------- --------

o

c

_______ .· •• n

(/

o

--~-- ... ,._-_

The following are the types of access allowed to
password-protected data sets:

• PWREAD/PWWRITE--A password is required for read or write .

• PWREAD/NOWRITE--A password is required for read. Writing is
not allowed.

• NOPWREAD/PWWRITE--Reading is allowed without a password. A
password is required to write.

To prepare for use of the data set protection feature of the
operating system, you place a sequential data set, named
PASSWORD, on the system residence volume. This data set must
contain at least one record for each data set placed under
protection. In turn, each record contains a data set name, a
password for that data set, a counter field, a protection mode
indicator, and a field for recording any information you desire
to log. On the system residence volume, these records are
formatted as a "key area" (data set name and password) and a
ndata area" (counter field, protection mode indicator, and
logging field). The data set is searched on the "key area."

Nate: The area allocated to the data set should not have been
previously used for a PASSWORD data set, as this may cause
unpredictable results when adding records to the data set.

You can write routines to create and maintain the PASSWORD data
set. If you use the PROTECT macro instruction to maintain the
PASSWORD data set, see "Maintaining the PASSWORD Data Set
(PROTECT Macro)n on page 88. If you use the IEHPROGM utility
program to maintain the PASSWORD data set, see Utilities. These
routines may be placed in your own library or in the system's
library (SYSl.LINKLIB). You may use a data management access
method or EXCP programming to read from and write to the
PASSWORD data set.

If a data set is to be placed under protection, it must have a
protection indicator set in its label (format-l DSCB or header 1
tape label). This is done by the operating system when the data
set is created, by the IEHPROGM utility program, or by the
PROTECT macro when creating or adding the control password. The
protection indicator is set in response to a value in the LABEL=
operand of the DD statement associated with the data set being
placed under protection. The publication 1kL describes the
LABEL operand.

Nate: Data sets on magnetic tape are protected only when
standard labels are used.

Password-protected data sets can only be accessed by programs
that can supply the correct password. When the operating system
receives a request to open a protected data set, it first checks
to see whether the data set has already been opened for this job
step. If so, only the access mode will be checked to determine
whether it is compatible with the protection mode under which it
was previously opened. If the data set has not been previously
opened by this job step or if the access mode is not compatible
with the protection mode under which it was previously opened, a
message is issued that asks for the password; the message goes
to the operator console. If the program requesting that the data
set be opened is running under TSO in the foreground, the
message goes to the TSO terminal operator. If you want the
password supplied by another method in your installation, you
can modify the READPSWD source module or code a new routine to
replace READPSWD in SYSl.LPALIB.

Chapter 4. Password Protecting Data Sets 85

PASSWORD DATA SET CHARACTERISTICS

The PASSWORD data set must reside on the same volume as your
operating system. The space you allocate to the PASSWORD data
set must be contiguous, that is, its DSCB must indicate only one
extent. The amount of space you allocate depends on the number
of data sets your installation wants to protect. Each entry in
the PASSWORD data set requires 132 bytes of space. The
organization of the PASSWORD data set is physical-sequential;
the record format is unblocked, fixed-length records (RECFM=F).
Each record that forms the data area is 80 bytes long
(LRECL=80,BLKSIZE=80) and is preceded by a 52-byte key
(KEYLEN=52). The key area contains the fully qualified data set
name of as many as 44 bytes and a password of one to eight
bytes, left justified with blanks added to fill the areas. The
password assisned may be from one to eight alphameric characters
in length .. DADSM and CVAF Diagnosis Gyide and DADSM Diagnosis
Reference describe the PASSWORD data set record format.

Note: For data sets on magnetic tape designed according to the
specifications of the International Organization for
Standardization (ISO) 1001-1979, the equivalent American
National Standards Institute (ANSI) X3.27-1978, or the Federal
Information Processing Standards (FIPS) 79, do not include
generation and version numbers as part of generation data set
names. The generation and version numbers are not included as
part of the names in the tape labels and are ignored if included
in the PASSWORD data set.

You can protect the PASSWORD data set itself by creating a
password record for it when your program initially builds the
data set. Thereafter, the PASSWORD data set cannot be opened
(except by the operating system routines that scan the data set)
unless the operator enters the password.

Note: If a problem occurs on a password protected system data
set, maintenance personnel must be provided with the password in
order to access the data set and resolve the problem.

CREATING PROTECTED DATA SETS

A data definition (DD) statement parameter (LABEL=) may be used
to indicate that a data set is to be password protected. For
data sets on DASD, an alternative method is to use the PROTECT
macro instruction for a previously allocated data set. A data
set may be created and the protection indicator set in its label
without entering a password record for it in the PASSWORD data
set.

Operating procedures at your installation must ensure that
password records for all data sets currently password-protected
are entered in the PASSWORD data set. Installations where
independent computing systems share common DASD resources must
ensure that PASSWORD data sets on all systems contain the
appropriate password records for any protected data set on
shared DASD.

Under certain circumstances, the order in which data sets are
allocated and unallocated from multiple systems on shared DASD
may result in loss of password protection. For example, if an
unprotected data set is allocated and opened by a user on System
A and then scratched by a different user on System B, the first
user is given a "window" to the unallocated (free) area. If any
data set, protected or unprotected, is allocated in that space
by a user on either system during the time the "window" is open,
the new data set has no protection from the user with the
"window

While the allocation disposition is still NEW, a
password-protected data set can be used without supplying a
password. However, once the data set is unallocated, any
subsequent attempt to open will result in termination of the
program unless the password record is available and the correct

86 MVS/XA System-Data Administration

o

o
I,

()

password is supplied. Note that, if the protection mode is
NOPWREAD and the request is to open the data set for input or
read backward, no password will be required.

Tape Volumes containing More Than One Password-Protected Data Set

To password protect a data set on a tape volume containing other
data sets, you must password protect all the data sets on the
volume. (Standard labels--Sl, SUl, Al, or AUL--are required.
For definitions of these label types and the protection-mode
indicators that can be used, see Magnetic Tape Labels and File
Stryctyre.)

If you issue an OPEN macro instruction to create a data set
following an existing, password-protected data set, the password
of the existing data set will be verified during open processing
for the new data set. The password supplied must be associated
with a PWWRITE protection-mode indicator.

PROTECTION FEATURE OPERATING CHARACTERISTICS

The topics that follow provide information concerning actions of
the protection feature in relation to termination of processing,
volume switching, data set concatenation, SCRATCH and RENAME
functions, and counter maintenance.

Termination of Processing

Volume Switching

Processing is terminated when:

1. The operator cannot supply the correct password for the
protected data set being opened after two tries.

2. A password record does not exist in the PASSWORD data set
for the protected data set being opened.

3. The protection-mode indicator in the password record and the
method of I/O processing specified in the Open routine do
not agree, for example, OUTPUT specified against a read-only
protection-mode indicator.

4. There is a mismatch in data set names for a data set
involved in a volume switching operation. This is discussed
in the next paragraph.

The system ensures a continuation of password protection when
volumes of a multivolume data set are switched. It accepts a
newly-mounted tape volume to be used for input or a
newly-mounted direct access volume, regardless of its use, if
these conditions are met:

• The data set name in the password record for the data set is
the same as the data set name in the JFCB. (This ensures
that the problem program did not changed the data set name
in the JFCB since the data set was opened.)

• The protection-mode indicator in the password record is
compatible with the processing mode, and a valid password
has been supplied.

The system accepts a newly-mounted tape volume to be used for
output under any of these conditions:

• The security indicator in the HDRllabel indicates password
protection; the data set name in the password record is the
same as the data set name in the JFCB; and the
protection-mode indicator is compatible with the processing

Chapter 4. Password Protecting Data Sets 87

-j

•

mode. (If the data set name in the JFCB has been changed, a
new password is requested from the operator.)

The security indicator in the HDRl label does not indicate
password protection. (A new label will be written with the
securi ty indicator indicating password protectio.n.)

• Only a volume label exists. (A HDRl label will be written
with the security indicator indicating password protection.)

Data set Concatenation

A password is requested for every protected data set that is
involved in a concatenation of data sets, regardless of whether
ths othei data sets involved are protected or not.

SCRATCH and RENAME Functions

Counter Maintenance

To delete or rename a protected data set, it is necessary that
the job step making the request be able to supply the password.
The system first checks to see if the job step is currently
authorized to write to the data set. If not, message IEC30lA is
issued to request the password. The password provided must be
associated with a "WRITE" protection-mode indicator.

The operating system increments the counter in the password
record on each usage, but no overflow indication will be given
(overflow after 65535 openings). You must provide a counter
maintenance routine to check and, if necessary, reset this
counter. .

MAINTAINING THE PASSWORD DATA SET (PROTECT MACRO)

To use the PROTECT macro instruction, your PASSWORD data set
must be on the system residence volume. The PROTECT macro can
be used tOI

• Add an entry to the PASSWORD data set.

• Replace an entry in the PASSWORD data set.

• Delete an entry from the PASSWORD data set.

• Provide a list of information about an entry in the PASSWORD
data set; this list will contain the security counter,
access type, and the 77 bytes of security information in the
"data area" of the entry.

In addition, the PROTECT macro updates the DSCB of a protected
direct access data set to reflect its protection status; this
feature eliminates the need for you to use job control language
when you protect a data set.

PASSWORD DATA SET CHARACTERISTICS AND RECORD FORMAT (WITH PROTECT MACRO)

When you use the PROTECT macro, the record format and
characteristics of the PASSWORD data set are no different from
the record format and characteristics that apply when you use
your own routines to maintain it.

88 MVS/XA System-Data Administration

o

o

(~)

()

Number of Records for Each Protected Data set

When you use the PROTECT macro. the PASSWORD data set must
contain at least one record for each protected data set. The
password (the last 8 bytes of the "key area") that you assign
when you protect the data set for the first time is called the
control password. In addition, you may create as many secondary
records for the same protected data set as you need. The
passwords assigned to these additional records are called
secondary passwords. This feature is helpful if you want
several users to have access to the same protected data set. but
you also want to control the way they can use it. For example:
One user could be assigned a password that allowed the data set
to be read and written, and another user could be assigned a
password that allowed the data set to be read only.

Note: The PROTECT macro will update the protection-mode
indicator in the format-l DSCB in the protected data set only
when you issue it for adding, replacing, or deleting a control
password.

Protection-Mode Indicator

You can set the protection-mode indicator (third data byte) in
the password record to one of four different values:

• X'OO' to indicate that the password is a secondary password
and the protected data set is to be read only (PWREAD).

• X'SO' to indicate that the password is the control password
and the protected data set is to be read only (PWREAD).

• X'OI' to indicate that the password is a secondary password
and ~he protected data set is to be read and written
(PWREAD/PWWRITE).

• X'8l' to indicate that the password is the control password
and the protected data set is to be read and written
(PWREAD/PWWRITE).

Because of the sequence in which the protection status of a data
set is checked. the following defaults will occur:

If control password is:

1. PWREAD/PWWRITE or
PWREAD/NOWRITE

2. NOPWREAD/PWWRITE

Secondary password must be:

PWREAD/PWWRITE or
PWREAD/NOWRITE

NOPWREAD/PWWRITE

If the control password is set to either of the settings in item
1 above, the secondary password will be set to PWREAD/PWWRITE if
you try to set it to NOPWREAD/PWWRITE.

If the control password is changed from either of the settings
in item 1 to the setting in item 2 above, the secondary password
will be automatically reset to NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to
either of the settings in item 1 above, the secondary password
is set by the system to PWREAD/PWWRITE.

Because the DSCB of the protected data set is updated only when
the control password is changed, you may request protection
attributes for secondary passwords that conflict with the
protection attributes of the control password.

Chapter 4. Password Protecting Data Sets 89

I PROTECT MACRO SYNTAX

The format iSI

I [symbol] I PROTECT parameter list address I
parameter list address==A-type address. (2-12). or (1)

indicates the location of the parameter list. The
parameter list must be set up before the PROTECT macro is
issued. The address of the parameter list may be passed in
register 1, in any of the registers 2 through 12, or as an
A-type address. The first byte of the parameter list must
be used to identify the function (add, replace, delete, or
list) yau want to perform. See Figure is on page 9i
through Figure 21 on page 94 for the parameter lists and
codes used to identify the functions.

Note: The parameter lists and the areas addressed by the list
must reside below 16-megabyte virtual.

90 MVS/XA System-Data Administration

o

(\
\)

o

PROTECT MACRO PARAMETER LISTS

0 X'Ol' 13 Control password pointer

1 00 00 00 16 Number of volumes

4 Data set name length 17 Volume list pointer

5 Data set name pointer 20 Protection code

8 00 21 New password pointer

9 00 00 00 24 String length

12 00 25 String pointer

Nates:

o X'Ol' Entry code indicating ADD function.

4 Data set name length.

S Data set name pointer.

13 Control password pointer.
The control password is the password assigned when the data set was placed
under protection for the first time. The pointer can be 3 bytes of binary zeros
if the new password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected.
you must specify the number of volumes in this field. A zero indicates that the
catalog information should be used.

17 Volume list pointer.
If the data set is not cataloged and you want to have it flagged as protected.
you provide the address of a list of volume serial numbers in this field. Zeros
indicate that the catalog information should be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates default
protection (for the ADD function; the default protection is the type of
protection specified in the control password record of the data set); X'OI'
indicates that the data set is to be read and written; X'02' indicates that the
data set is to be read only; and X'03' indicates that the data set can be read
without a password. but a password is needed to write into it. The PROTECT
macro will use the protection code value. specified in the parameter list. to
set the protection-mode indicator in the password record.

21 New password pointer.
If the data set is being placed under protection for the first time. the new
password becomes the control password. If you are adding a secondary entry. the
new password is different from the control password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in
the optional information field of the password record. If you don't want to add
information. set this field to zero.

2S String pointer.
The address of the character string that is going to be put in the optional
information field. If you don't want to add additional information. set this
field to zero.

Figure 18. Parameter List for Add Function

Chapter 4. Password Protecting Data Sets 91

0 X'02' 13 Control password pointer

1 00 00 00 16 Number of volumes

4 Data set name length 17 Volume list pointer

5 Dab set name pointer 20 Protection code

8 00 21 New password pointer

9 Current password nn;n+c.,.. ~t;. C:.&._.: __ length .--_ .. --- --. <tJ"' II~

12 00 25 String pointer

Notes:

OX" 02' Entry code indicating REPLACE function.

4 Data set name length.

5 Data set name pointer.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Control password pointer.
The address of the password assigned to the data set when it was first placed
under protection. The pointer can be set to 3 bytes of binary zeros if the
current password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected,
you have to specify the number of volumes in this field. A zero indicates that
the catalog information should be used.

17 Volume list pointer.
If the data set is not cataloged and you want to have it flagged as protected,
you have to provide the address of a list of volume serial numbers in this
field. If this field is zero, the catalog information will be used.

20 Protection code.
A one-byte number indicating the type of protection: X'OO' indicates that the
protection is default protection (for the REPLACE function the default
protection is the protection specified in the current password record of the
data set); X'OI' indicates that the data set is to be read and written; X'02'
indicates that the data set is to be read only; and X'03' indicates that the
data set can be read without a password, but a password is needed to write into
the data set.

21 New password pointer.
The address of the password that you want to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) that you want to place in
the optional information field of the password record. Set this field to zero
if you don't want to add additional information.

25 String pointer.
The address of the character string that is going to be put in the optional
information field of the password record. Set the address to zero if you don't
want to add additional information.

Figure 19. Parameter List for REPLACE Function

92 MVS/XA System-Data Administration

o

o

('

(~!

0 X'03' 9 Current password pointer

1 00 00 00 12 00

4 Data set name length 13 Control password pointer

S Data set name pointer 16 Number of volumes

8 00 17 Volume list pointer

Notes:

o X'03' Entry code indicating DELETE function.

4 Data set name length.

5 Data set name pointer.

9 Current password pointer.
The address of the password that you want to delete. You can delete either a
control entry or a secondary entry.

13 Control password pointer.
The address of the password assigned to the data set when it was placed under
protection for the first time. The pointer can be 2 bytes of binary zeros if
the current password is also the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected,
you must specify the number of volumes in this field. A zero indicates that
the catalog information should be used.

17 Volume list pointer.
If the data set is not cataloged and you want to have it flagged as protected,
you must provide the address of a list of volume serial numbers in this field.
If this field is zero, the catalog information will be used.

Figure 20. Parameter List for DELETE Function

Chapter 4. Password Protecting Data Sets 93

---- -------_.,-- - .- ------.~ -- --.--.-.---~---

0 X'04' 5 Data set name pointer

1 80-byte buffer pointer S 00

It Data set name length 9 Current password pointer

Nates:

o X'04' Entry code indicating LIST function.

1 80-byte buffer pointer,
The address of a buffer whe~e ths list of informatign can be returned to your
program by the macro instruction.

4 Data set name length.

5 Data set name pointer.

9 Current password pointer.
The address of the password of the record that you want listed.

Figure 21. Parameter List for LIST Function

94 MVS/XA System-Data Administration

o

("

C-~)

./

RETURN CODES FROM THE PROTECT MACRO

When the PROTECT macro finishes processing, register 15 contains
one of the following return codes:

Code Meaning

O(X'OO') The PASSWORD data set was successfully updated.

4(X'04') The PASSWORD of the data set name was already in the
password data set.

S(X'OS') The password of the data set name was not in the
PASSWORD data set.

l2(X'OC') A control password is required or the one supplied
is incorrect.

l6(X'lO') The supplied parameter list was incomplete or
incorrect.

20(X'14') There was an I/O error in the PASSWORD data set.

24(X'lS')J The PASSWORD data set was full.

28(X'lC') The validity check of the buffer address failed.

32CX'20')2 The LOCATE macro failed. LOCATE's return code is in
register 1, and the number of indexes searched is in
register O.

36(X'24')2 The OBTAIN macro failed. OBTAIN's return code is in
register 1.

40(X'2S')2 The DSCB could not be updated.

44(X'2C') The PASSWORD data set does not exist.

4SCX'30')2 Tape data set cannot be protected.

52CX'32 1)2 Data set in use.

Notes:
:L

z

For this return code, a message is written to the
console indicating that the PASSWORD data set is full.

For this return code, the PASSWORD data set has been
updated, but the DSCB has not been flagged to indicate
the protected status of the data set.

Chapter 4. Password Protecting Data Sets 95

--- .. _-._._------

CHAPTER 5. EXIT ROUTINES

This chapter discusses how installation-written exit modules
can:

• Take control before and after direct access device storage
management CDADSM) processing

• Take control during Open for a DCB

• Determine whether a missing data set control block (such as
for 3 data sat that has been moved to another volumej can be
restored to a volume

• Recover from errors that may occur dUring the opening,
closing, or handling of an end-of-volume condition for a
data set associated with the user's task

Notes:

1. For information about other available installation-written
exits, see Data Administration Gyide.

2. For information on IBM-supplied exits for tapes with
International Organization for Standardization (ISO),
American National Standard Institute CANSI), or Federal
Information Processing Standards (FIPS) labels, see Magnetic
Tape Labels and File Stryctyre.

DADSM PREPROCESSING AND POSTPROCESSING EXIT ROUTINES

THE EXIT MODULES

There are exit routines to enable an installation-written module
to take control before and after DADSM processing. An exit
parameter list is used to communicate with DADSM. The format of
this parameter list is shown in Figure 22 on page 98.

All DADSM functions (allocate, extend, scratch, partial release,
and rename) have a common preprocessing exit routine and a
common postprocessing exit routine that the installation exit
routine can replace. These exit routines enable you to gain
control before and after DADSM processing. The preprocessing
exit routine module is IGGPREOO; the postprocessing exit routine
module is IGGPOSTO. Each is used by all the DADSM functions
listed above. The modules reside in SYSl.LPALIB. You can use
System Modification Program (SMP) to replace the IBM-supplied
exit routine modules with an installation exit routine you
write.

I THE EXIT ENVIRONMENT

The exit routines are given control in supervisor state and
protect key zero with no locks held. DADSM assumes that the
exits are AMODE=24 and RMODE=24. The exit routines must be
reentrant. DADSM or the program that invokes DADSM (by issuing
enqueue, reserve, and so forth) will have acquired the system
resources needed to serialize system functions. These enqueues
may prevent other system services from completing successfully.
In particular, exit routines must not issue dynamic allocation,
OPEN, CLOSE, EOV, LOCATE, and other DADSM functions because they
issue an enqueue on the SYSZTIOT r.esource. If the exit routines
require access to an installation data set, the control blocks
required to access that data set (DCB, DEB) should be built
during system initialization (IPL/NIP).

96 MVS/XA System-Data Administra.tion

o

o

(~)

()

The type and number of resources held byDADSM depend upon the
DADSM function and the exit taken. For example, on entry to the
installation preprocessing exit (IGGPREOO), DADSM holds an
enqueue on the VTOC and a reserve on the device for the subject
volume of a SCRATCH. RENAME, or partial release function. DADSM
releases these resources before the installation postprocessing
exit (IGGPOSTO) takes control.

You must anticipate system resource contention when services are
requested from an exit routine. For example, RACF services
issue an enqueue on the RACF data set or a reserve on that data
set's volume. This contention can cause system performance
problems or an interlock condition.

WHEN IGGPREOO GETS CONTROL

The preprocessing exit routine. IGGPREOO. is given control
before the first VTOC update and after the initial validity
check is successful. Input to IGGPREOO is a parameter list,
mapped by macro IECIEXPL, that contains addresses of input data
and a function code that identifies the DADSM function.
IGGPREOO is given control once for each volume in the volume
list supplied to scratch and rename. A field in the parameter
list. IEXRSVWD, may be used to pass data from the preprocessing
exit routine to the postprocessing exit routine.

A zero return code from IGGPREOO indicates the DADSM function
may proceed.

I REJECTING A DADSM REQUEST

A preprocessing exit routine may reject a DADSM request, in
which case an I/O error return code is generated for all
functions except allocate and extend. A return code of 4 or 8
from IGGPREOO to allocate will oause allocate to return X'B4' or
X'BO'. respectively, to its caller in register 15. Scheduler
allocation will treat a X'B4' as a conditional rejection of the
allocate request only for the volume being processed. If the
allocate request is not for a specific volume. another volume
may be chosen and the allocate function retried. Scheduler
allocation will treat a X'BO' return code from allocate as an
unconditional rejection of the allocate request. If the
allocate request is rejected, the p~eprocessing exit routine can
put a reason code in the parameter list field. IEXREASN. and the
code will be returned by allocate to its caller, together with
the X'BO' or X'B4' return code i~ register 15. The reason code
will appear in the JCL error message if the allocate request is
not retried. A nonzero return code from IGGPREOO to extend will
cause extend to return an error return code of X'FFFF FFEC' to
its caller. If the ~aller is end-of-volume, an E37-0C abend
will be issued.

Chapter 5. Exit Routines 97

DATA THAT DADSM PASSES TO THE EXITS

!~=ef98~t of the parameter list (lEPl) is shown in Figure 22 on ~

Name

lEXlD
lEXLENG
lEXFUNC
IEXALl
IEXEXT
IEXSCR
IEXPR
!EXREN
I EXEXTCD

IEXFlAG
IEXENQ
IEXVlO
IEXMF1

3(

IEXREASN
3(

IEXUCB

IEXPTR1

IEXPTR2

IEXDSN
I EXFMTl

IEXFMT2

IEXRSVOO

Offset

OO(X'OO')
04(X'04')
OS(X'OS')

06(X' 06')

07(X' 07')

08(X'08')

12(X'OC')

16(X'10')

20(14)

24(X'18')
28(X'lC')

32(X'20')

36(X'24')

Bytes

4
1
1

1

1
1 ...
.1 ..
.. 1.

... x xxxx
2
2
4

4

4

4
4

4

4

Description

EBCDIC 'IEPl'
length of parameter list
DADSM function codel
X' 01 '-Allocate
X'02'-Extend
X'03'-Scratch
X'04'-Partial release
X'OS'-Rename
Extend code
X'Ol' Extend data set on current volume
X'02' Extend an OS catalog on current volume
X'04' Extend data set on new volume
X'8l' Extend VSAM data space on current
volume
Flag byte
VTOC is enqueued upon entry
VIO data set
IEXFMTl points to DX1FMTID of a partial
format-l DSCB (partial DSCB passed as input
to allocate, and not JFCB is not available).
Reserved
Installation reject reason code
Reserved
Address of UCB. The UCB address is not
available to the pre-exit for VIO allocation.
Address of the following:

JFCB (allocate, extend, partial
release)
Scratch/rename input parameter list
(in user storage)

Address of the following:

DSAB list (ISAM allocate)
DEB (Extend on old volume)
DCB (partial release)
Current volume list entry
(scratch/rename)

Address of the data set name
Address of the 96-byte data portion of
format-l DSCB (pre exit for scratch; pre and
post exit for partial release and rename;
post exit for allocate). May be supplied by
pre exit of allocate, and extend on new
volume, to serve as a model if IEXMFl and
IEXVIO are zero.
Address of format-2 DSCB. (lSAM allocate
post exit.)
Reserved

Figure 22 (Part 1 of 2). Format of DADSM Preprocessing and Post-processing Exit
Parameter List

98 MVS/XA System-Data Administration

o

Description

Address of DADSM table (pre- and post-exit
for scratch and partial release; post-exit
for allocate and extend). For VIO allocate
post-exit, this is the address of DSlEXTI in
the virtual FMI DSCB.
DADSM completion code (post exit)
Reserved word for use by installation exit.
Some of the fields passed to the post-exit
(such as IEXUCB for VIO allocation) may be
successful.

Figure 22 (Part 2 of 2). Format of DADSM Preprocessing and Post-processing Exit
Parameter List

PASSING A MODEL FORMAT-l DSCB

The preprocessing exit for allocate and extend on a new volume
may return, in the parameter list field IEXFMTI, the address of
the data portion of a model format-l DSCB. starting with field
DSIFMTID. The DSCB will be moved to the allocate or extend work
area before building the format-l DSCB. The only fields that
may be nonzero in the area are the DSIREFD (the
data-Iast-referenced field) and fields currently unused.
Failure to zero out all fields. except for DSIREFD and all
currently unused fields in the model format-l DSCB, can result
in the abnormal termination of the task or lead to unpredictable
results. All other fields will be initialized by allocate or
extend.

IEXFMTI may not be supplied by IGGPREOO for a VIO allocate
request (indicated by flag. IEXVIO, set to one), or, if a
partial DSCB instead of a JFCB has been supplied to allocate
(indicated by flag, IEXMFI. set to one). In the latter case,
IEXFMTI is passed to IGGPREOO initialized to the address of the
DSlFMTID field of the partial format-l DSCB (supplied to
allocate by its caller) in the allocate work area, and DSIREFD
may be initialized by IGGPREOO. If extend was successful,
IEXFMTl is zeroed out prior to taking the post-exit, IGGPOSTO.

WHEN IGGPOSTO GETS CONTROL

The postprocessing exit module, IGGPOSTO, is given control after
a DADSM function has been completed or attempted. IGGPOSTO is
given control if IGGPREOO was given control, whether the DADSM
function was successful or not. IGGPOSTO is not given control
if IGGPREOO was not given control. or if the DADSM function
terminated abnormally. IGGPREOO may establish a recovery
routine, if required, to clean up system resources. The DADSM
recovery routine does not give IGGPOSTO control. Input to
IGGPOSTO is the same parameter list passed to IGGPREOO. No
return codes from IGGPOSTO are defined.

I SYSTEM CONTROL BLOCKS

The DADSM installation exit parameter list contains the address
of system control blocks. The mapping macros of those control
blocks are listed below, together with the name of the system
library on which they reside. One of the macros, ICVARXNT, is
only supplied with the optional material.

Chapter s. Exit Routines 99

There is no mapping macro for the SCRATCH/RENAME parameter list
or the associated volume list.

For extend and'partial release, the address of the JFCB passed
to the user exit points to a copy of the real JFCB. Updating
the copied JFCB will not result in a corresponding change to the
real JFCB.

During EXTEND of a VSAM data set, the exit is passed the address
of a dummy DEB. This DEB does not contain any EXTENT
information.

REGISTERS AT ENTRY TO DADSM EXITS

At entry to your exit routine, register contents are as follows:

Register
1
13
14
15

contents
Address of the exit parameter list
Address of an 18-word save area
Return address to DADSM
Address of your exit routine

REGISTERS AT RETURN FROM DADSM EXITS

When you return to DADSM, register contents must be as follows:

Register
0-14
15

I RETURN CODES FROM DADSM EXITS

contents
Same as on entry to your exit routine
A return code from IGGPREOO

No return codes are defined for IGGPOSTO. The IGGPREOO return
codes and their meanings are as follows:

Code Meaning

ooex'OO') Indicates that you want the DADSM request to be
processed

04eX'04') Indicates that no DADSM request for the current volume
is to be processed

08ex' 08') Indicates that you' do not want the DADSM request to be
processed

DCB OPEN INSTALLATION EXIT

There is an exit that enables an installation-written module to
take control during Open for a DeB. An exit parameter list is
used by open processing to communicate with the exit module.
The format of the parameter list is shown in Figure 23 on
page 102.

100 MVS/XA System-Data Administration

o

o

C-\)
./

THE EXIT MODULE

THE EXIT ENVIRONMENT

OPEN has an exit module that the installation can replace. This
module is IFGOEXOB that resides in load module IGCOOOII. The
load module resides in SYS1.LPALIB. You can use System
Modification Program (SMP) to replace the IBM-supplied exit
module with an installation exit you write.

IFGOEXOB is given control in supervisor state and protect key
zero with no locks held. System enqueues will have been issued
to serialize system functions. These enqueues may prevent other
system services from being invoked. In particular, dynamic
allocation, OPEN, CLOSE, EOV, and DADSM functions should not be
invoked because of an enqueue on the SYSZTIOT resource. If the
exit requires access to an installation data set, the control
blocks required to access that data set (DCB, OEB) should be
built during system initialization (IPL/NIP). RACF macros may
be invoked from the exit.

OPEN PROCESSING BEFORE THE DCB OPEN EXIT GETS CONTROL

The exit module, IFGOEXOB, is given control whenever OPEN
processes a DCB. The exit is taken after the following
functions have been performed for the DCB.

• DASD data sets

•

•

Volume mounted

Format-I, -2, and -3 DSCBs read

Forward merge from format-l DSCB to JFCB

Tape data sets

Volume mounted

Header labels verified

Forward merge from header labels to JFCB

All data sets

Forward merge from JFCB to DCB

User DCB OPEN installation exit (if any)

RACF or password verification processing

taken

OPEN PROCESSING AFTER THE DCB OPEN EXIT GETS CONTROL

The
the

•
•

•
•

•
•

following functions have not yet been performed at the time
exit is given control for the DCB.

Reverse merge from DCB to JFCB (not all fields are merged)

Reverse merge from JFCB to format-l DSCB for DASD data sets
(not all fields are merged)

Header labels written (for output tape data set)

Access-method-dependent processing (obtain buffers, GETMAIN,
and build lOBs and DEB)

Write JFCB

Write format-l DSCB

Chapter 5. Exit Routines 101

GETTING CONTROL FROM OPEN

The exit is given control for each DCB being opened, even when 0
two or more DCBs are being opened in parallel with one ...
invocation of OPEN.

The exit is given control from OPEN (SVC 19) and OPEN TYPE=J
(SVC 22). The exit is given control from end-of-volume (EOV;
SVC 55) and from force-end-of-volume (FEOVi SVC 31) when a
concatenation of two sequential data sets with unlike attributes
is being processed. In this case, EOV gives control to CLOSE,
which gives control to OPEN. The exit is not given control
from EOV when a concatenation of two sequential data sets with
like attributes is being processed. In this case, EOV does not
give control to CLOSE and OPEN. A request by the user program
for concatenation with unlike attributes is shown in the DCB by
flag DCBOFPPC (bit 4; mask X' 08 1) in field DCBOFLGS being set to
one.

DATA THAT OPEN PASSES TO THE EXIT

Name
OIEXL

OIEXOOPT
OIEXRSVD
OIEXOOUT
OIEXOOIN
OIEXOUPD
OIEXOINO

.OIEXORDB
OIEXOINP
OIEXUKEY

OIEXLTH
OIEXUDCB

OIEXPDCB

OIEXJFCB
OIEXDSCB

OIEXTIOT
OIEXUCB

The parameter list mapped by macro IECOIEXL is supplied to the
installation exit. It contains data and the addresses of
control blocks that may be of interest to the exit.

The format of the parameter list is shown in Figure 23 on
page 102.

Offset Bytes Description
00(00) 0 DCB Open installation exit

parameter list
00(00) 1 Open option (last 4 bits).

1111 X'FO' first 4 bits reserved.
1111 15 output
.111 7 outin
.1 .. 4 update
.. 11 3 inout
... 1 1 read backward

o input
OHOl) 1 User protect key. Key of user

DCB.
02(02) 2 Length of OIEXL
04(04) 4 Address of user DCB in user

protect key (OIEXUKEY)
08(08) 4 Address of protected copy of DCB

used by OPEN
12(OC) 4 Address of JFCB
16(10) 4 Address of data portion of

format-l DSCB
20(14) 4 Address of TIOT entry
24(18) 4 Address of UCB

Figure 23. Format of DCB OPEN Installation Exit Parameter List (OIEXL)

Note that two DCB addresses are supplied. OPEN maintains a
protected copy of your DCB. You can use OPEN's copy of the DCB
to test the DCB fields. If you modify your copy of the DCB,
OPEN updates its protected copy when it regains control from the
exit. The protect key of your DCB is supplied in the exit
parameter list. You must use this key to either get information
from or modify your DCB.

Be sure you determine the type of DCB and device passed to the
exit before testing access-method or device-dependent fields in
the DCB. The sample exit shown in Appendix D, "Example of an

()

OPEN Installation Exit Module" on page 225 gives an example of O. ~
isolating a QSAM DCB being ope~ed to a DASD or tape device.

The JFCB address supplied to the exit points to a copy of the
JFCB that is in the OPEN work area. There may be other JFCBs

102 MVS/XA System-Data Administration

(-\

('\

associated with the OPEN if ISAM or concatenated partitioned
data sets are being opened.

In the case of BDAM. ISAM. and concatenated partitioned data
sets, the UCB. whose address is supplied to the exit, may not be
the only UCB associated with the DCB being opened. The UCB
should not be modified.

The TIOT address supplied is of a TIOT entry (TIOENTRY label in
the IEFTIOTl macro). In the cases of ISAM and concatenated
partitioned data sets. other TIOT entries may be associated with
the DCB being opened. If concatenation of unlike attributes is
being processed, the TIOT entry may have a blank DDNAME field.

The format-l DSCB passed to the exit is in the OPEN work area.
The address is that of the field DSIFMTID. There may be
format-2 and -3 DSCBs associated with the format-l DSCB. There
may be other format-l through -3 DSCBs associated with the DCB
being opened in the cases of ISAM. BDAM, and concatenated
partitioned data sets. If the OPEN is to the VTOC. a format-4
DSCB address is passed to the exit; this can be determined by
testing field DSIFMTID for a value of X'F4', or the data set
name in the JFCBDSNM field of 44X'04'.

I DEFAUL~ING THE DCB BUFFER NUMBER

MODIFYING THE JFCB

If a value has not yet been supplied, the exit may be used to
supply an installation-determined value for DCBBUFNO (number of
buffers) for QSAM DCBs.

A sample exit program that does this is shown in
Appendix D, "Example of an OPEN Installation Exit ModuleR on
page 225.

You should not override a nonzero value in DCBBUFNO for QSAM
DCBs without knowing what dependency the user program has on
that value. When a buffer pool control block address is in the
DCB field DCBBUFCA, you cannot override DCBBUFNOi this indicates
that buffers have been acquired before OPEN. If no buffer pool
control block address exists, DCBBUFCA is set to one (not zero).

You should not override a zero value in DCBBUFNO for BSAM DCBs
when DCBBUFCA is set to one without knowing what dependency the
user program has on these values. If the user program does not
want OPEN to acquire buffer storage space. it indicates this by
setting DCBBUFNO to zero and DCBBUFCA to one. If the user
program wants OPEN to acquire buffer storage space, it can
override DCBBUFNO with a nonzero value. The user program is
then responsible for freeing that space after closing the DCB.

Whenever the JFCB is modified, code 4 should be returned to
OPEN. This will cause OPEN to rewrite the JFCB. The JFCB should
not be modified if the user program has set JFCNWRIT (bit 4) in
byte JFCBTSDM because it indicates the JFCB should not be
written.

A sample exit program that modifies the JFCB is shown in
Appendix D, RExample of an OPEN Installation Exit Module" on
page 225.

Chapter 5. Exit Routines 103

I

Requesting Partial Release

An example of modifying the JFCB in OPEN's work area to request
partial release is shown in Appendix D, "Example of an OPEN
Installation Exit Module" on page 225. It sets the following
bits to 1, indicating a partial release request: JFCRLSE (bits
o and 1; mask X'CO') in byte JFCBINDI. This should be done only
for DASD physical-sequential or partitioned data sets opened for
OUTPUT 'or OUTIN and processed by either (1) EXCP with a 5-word
device-dependent section present in the DCB, (2) BSAM, or (3)
QSAM.

Care should be taken in modifying the JFCB release bits. For
example, a data set that is opened for output many times,
writing varying amounts of data each time, may have to extend
after each OPEN, resulting in many small extents and, perhaps,
reaching the l6-extent limit. This could result in a B37 abend.

Care should also be taken in setting the JFCBSPAC bits to define
the space quantity units when the partial release flag,
JFCBRLSE, is also set on. A cylinder allocated extent may be
released on a track boundary when JFCBSPAC does not indicate
cylinder units or average block length units with ROUND
specified. This will cause the cylinder boundary extent to
become a track boundary extent, thereby losing the performance
advantage of cylinder boundary extents. Zeroing the release
indicator and increasing secondary allocation quantity (far
example, when the data set has extended a large number of times)
may prevent such a B37 abend. Setting the release indicator
could result in more space being made available to other users
sharing the volume.

Updating the Secondary Space Data

The JFCB may also be modified by updating the secondary space
data. Byte JFCBCTRI contains the space request type coded in
the DD statement or merged from the format-l DSCB. Field
JFCBSQTY contains the amount of secondary space (in either
tracks, cylinders, or average block units). Field JFCBPQTY
contains the amount of primary space (in either tracks,
cylinders, or average block units).

Setting the contiguous bit (JFCONTIG) to zero may prevent an
out-of-space abend where there is enough space, but not enough
contiguous space, to satisfy a request to extend the data set.

REGISTERS AT ENTRY TO THE DCB OPEN EXIT

At entry to the exit, register contents are as follows:

Register contents

1 Address of the DCB OPEN installation exit parameter
list

13 Address of an 18-word save area

14 Return address to OPEN

15 Address of the entry point to IFGOEXOB

104 MVS/XA System-Data Administration

o

o

(..
"\

-~~-- -----~ _ ----

REGISTERS AT RETURN FROM THE DCB OPEN EXIT

When you return to OPEN, register contents must be as follows:

Register contents

0-14 Same as on entry to the exit.

15 A return code from IFGOEXOB

RETURN CODES FROM THE DCB OPEN EXIT

The DCB OPEN exit must pass a return code back to OPEN in
register 15. The return codes and their meanings are as
follows:

Code Meaning

OO(X'OO') Indicates that the JFCB has not been modified

04(X'04') Indicates that the JFCB has been modified

OPEN/EOY INSTALLATION EXIT FOR FORMAT-l DSCB NOT FOUND

The function of the format-l DSCB-not-found installation exit in
OPEN and EOV is to determine whether a missing DSCB (such as a
data set that has been migrated to another volume) can be
restored to the volume. If your exit module restores the DSCB,
it indicates this when it returns control to the control
program. The exit module, IFGOEXOA, is giveri control whenever
OPEN or EOV fails to find a format-l DSCB on a volume. There is
an IBM-supplied exit module, IFGOEXOA, in SYSl.LPALIB. If you
want to use your own exit module, you must replace IFGOEXOA.
Your exit module must have an entry point name of IFGOEXOA. If
you do not write your own exit module, processing continues
normally because the IBM-supplied exit returns a zero return
code.

The exit is taken even under conditions under which abnormal
termination ordinarily would not occur. Two examples of these
conditions follow:

1. When you have specified DISP=MOD and error recovery
processing is taking place because the last volume specified
in the JFCB does not contain the DSCB, but an earlier volume
does. For this case, if your return code from IFGOEXOA is 0
or if your return code is 4 and the DSCB has not been
restored, OPEN and EOV search the other volumes for the DSCB
after the exit is taken.

2. Another condition occurs during EOV output when space has
not yet been allocated on the new volume. Space is
allocated after the exit is taken if your return code from
IFGOEXOA is 0 or if your return code is 4 and the DSCB has
not been restored.

When a DSCB is not found, IFGOEXOA is given control as follows:

• In system protect key 5 (data management key)

• In supervisor state

• The system resource represented by the SYSZTIOT major name
is enqueued for shared control. (This ENQ prevents the exit
from invoking system functions such as SCRATCH, RENAME,
dynamic allocation, or LOCATE.)

Chapter 5. Exit Routines 105

------------ -- -----_._------

DATA THAT OPEN/EOV PASSES TO THE EXIT

The parameter list pointed to by register 1 consists of two 0'-
fullwords. The first fullword contains the address of the UCB -
of the volume for which the format-l DSCB was not found. The
second fullword contains the address of the 44-byte data set
name, left justified, and padded with blanks. Bit zero of the
second fullword is set to one, indicating the last word in the
parameter list.

The data set name must not be modified by the exit. The
parameter list, save area, and data set name are in protect key
5 virtual storage, which is not fetch protected. IFGOEXOA must
be reenterable. All work areas obtained through GETMAIN must be
released through FREEMAIN.

REGISTERS AT ENTRY TO THE FORMAT-l DSCB NOT FOUND EXIT

At entry to your exit routine, register contents are as followsl

Register contents

o If X'OO', entry was from OPEN (single volume data
set). If X'OC', entry was from OPEN (multivolume data
set). If X'OF', entry was from EOV.

1 Address of the parameter list

2-12 Unpredictable

13 Address of an IS-word save area

14 Return address to OPEN/EOV

15 Address of entry point to IFGOEXOA

REGISTERS AT RETURN FROM THE FORMAT-l DSCB NOT FOUND EXIT

When you return to OPEN/EOV, register contents must be as
follows:

Register contents

2-12 Same as on entry to the exit

15 A return code from the exit

106 MVS/XA System-Data Administration

Cj

o

('
RETURN CODES FROM THE FORMAT-l DSCB NOT FOUND EXIT

The format-l DSCB not found exit must pass a return code back to
OPEN/EOV as follows:

Code Meaning

OO(X'OO') Processing continues normally.

This return code is given if the exit does not restore
the DSCB. The IBM-supplied exit module always gives
return code O.

04(X'04') The volume is searched one more time by OPEN or EOV
for the DSCB. This return code is given if IFGOEXOA
restores the DSCB to the volume. If the DSCB is again
not found. IFGOEXOA is not given control and
processing continues normally.

08(X'08') The task is abnormally terminated without attempting
to determine if DISP=MOD error recovery or allocation
on the new volume should occur. This return code is
given if IFGOEXOA encounters an error and you do not
want to continue processing.

You should have IFGOEXOA establish its own error recovery
environment (for example. through an ESTAE). intercept any
indeterminate errors. and return to the control program with
return code 8. Problem determination is the responsibility of
your exit module. A write-to-programmer (WTO with routing code
11) or a TPUT (if a TSO region) may be used to issue an
informative message.

During a parallel OPEN when two or more DCBs are being opened at
the same time and two of the DCBs are opening the same data set.
the DSCB may be missing. If IFGOEXOA is called for the first of
the two DCBs and restores the DSCB. the channel program
attempting to read the DSCB for the second DCB may have been
executed before the restoration of the DSCB was complete.
IFGOEXOA is then called for the second DCB. even though the DSCB
has already been restored. Return from IFGOEXOA with a return
code 4 is appropriate in this case.

IFGOEXOA is not given control when you are processing a VSAM
data set with an ACB; however. it is given control when you are
processing a VSAM data space with a DCB. IFGOEXOA is bypassed
if the format-4 DSCB is not found on a volume. even if the OPEN
is to the VTOC data set name (data set name of 44 bytes of
X'04' L

DATA MANAGEMENT ABEND INSTALLATION EXIT

The abend installation exit provides the ability to recover from
abnormal conditions that may occur during the opening. closing.
or handling of an end-of-volume condition for a non-VSAM data
set associated with the user's task.

When an abnormal condition occurs. control passes to the DCB
abend user exit routine if one is provided. and processing
continues as specified in the DCB abend user exit routine. (The
DCB abend user exit routine gives you some options regarding the
actions you want the system to take when a condition arises that
may result in abnormal termination of your task. For additional
information about the DCB abend user exit routine. see ~
Administration Gyide.) However. if the DCB abend user exit
routine is not specified. or if it specifies immediate abnormal
termination of the task. the system passes control to the abend
installation exit. If a DCB abend user exit routine is not

Chapter S. Exit Routines 107

---~-- ------- -----------------

provided, control immediately passes to the abend installation
exit.

IBM supplies an installation exit module, IFG0199I in
SYS1.lPAlIB, that handles abend situations caused by tape
positioning errors. IFG0199I allows you to retry tape
positioning when you receive a system completion code 613 with
return code OS or OC. To perform recovery actions for d~ta
management abend situations (other than those caused by tape
positioning errors), you can replace installation exit module
IFG0199I by modifying the source code supplied in SYS1.SAMPlIB.
IFG0199I receives control in protection key zero, supervisor
state. IFG0199I checks the system completion code and the
return code to determine whether the abend situation is the
result of a tape positioning error. If the system completiQn
code is other than 613 with return code OS or OC, control
returns to the calling module with return code 0, indicating
that the abend should continue. Otherwise, IFGOl99I checks the
counter in the 4-byte work area to determine whether one attempt
to reposition the tape has been made. If no attempt to
reposition the tape has been made, IFG0199I issues a return code
of 4, indicating that positioning should be retried. If one
attempt to reposition the tape has been made, IFG0199I issues
message IEC613A to the operator to determine whether to attempt
repositioning. If the operator specifies that tape positioning
is to be attempted again, a return code of 4 is set, indicating
that OPEN is to rewind the tape and attempt positioning. If the
operator specifies that tape positioning is not to be retried,
control is returned to the calling module with a 0 return code.

DATA THAT OPEN/EOV PASSES TO THE EXIT

The format of the parameter list (OAIXl) is shown in Figure 24.

+0(00)

+4(04)

+S(08)

+l2(OC)

+16(10)

+20(14)

+24(1S)

+2S(Ie)

Word Boundary

User Prot Key I Option Flags I Reserved I
Address of the protected copy of the DCB

Address of the user's DCB related to the

Address of the UCB related to the abend

Address of the JFCB related to the abend

Address of the TIOT related to the abend

Abend code - Example X'6130000C'

4-byte installation work area

1(01) Option flagsl

o indicates whether the DCB abend
user exit was taken

On exit was taken
Off exit was not taken

1 indicates whether to rewind the
tape volume

On rewind the tape volume
Off do not rewind the tape volume

lOS MVS/XA System-Data Administration

Reserved

abend

o

C~)

o

REGISTERS AT ENTRY TO THE DATA MANAGEMENT ABEND EXIT

At entry to the exit routine, register contents are as follows:

Register contents

1

13

14

15

Address of the parameter list (OAIXL)

Address of an l8-word save area

Return address to OPEN/EOV

Address of the entry point to IFG0199I

REGISTERS AT RETURN FROM THE DATA MANAGEMENT ABEND EXIT

When you return to OPEN/EOV, register contents must be as
follows:

Register contents

2-12 Same as on entry to the exit

15 A return code from the exit

I RETURN CODES FROM THE DATA MANAGEMENT ABEND EXIT

The data management ABEND exit must pass a return code back to
OPEN/EOV as follows:

Code Meaning

OO(X'OO') Continue with the abend in process.

04(X'04') If the bit 1 option flag is on, rewind the tape volume,
set the UCBFSCT and UCBFSEQ fields in the UCB to zero,
and retry the abend in process.

If the bit 1 option flag is off, retry the abend in
process.

For abend codes that the installation is allowed to retry, see
the DCB Abend Exit .section in Chapter 7 of the
Data Administration Gyide.

ModifYing the IBM-Supplied Installation Exit Module: Because
the IBM-supplied installation exit module handles only a
particular abend situation, you may want to modify the source
code of that module to perform corrective actions for other
abend situations.

You can obtain a copy of the source code from SYSl.SAMPLIB for
modification, using the editing function that is available to
you. After you have modified the source code, link-edit it into
SYSl.LPALIB. The source program is written in Assembler
language and uses only macros in SYSl.MACLIB. If you replace
the supplied installation module, the exit module that you
supply must have the entry point name IFG0199I and it must be
reenterable.

Chapter 5. Exit Routines 109

CHAPTER 6. SYSTEM MACRO INSTRUCTIONS

I INTRODUCTION

This chapter describes miscellaneous macro instructions that
allow you to:

• Modify control blocks (RDJFCB macro)

• Obtain information from control blocks and system tables
(DEVTYPE macro)

• Perform track capacity calculations (TRKCALC macro)

• Allocate a data set based on a partial DSCB (REALLOC macro)

• Load a message display on an IBM 3480 Magnetic Tape
Subsystem (MSGDISP macro)

Before reading this chapter, you should be familiar with the
following publications:

• Assembler H Version 2 Application Programming: Gyide
contains the information necessary to code programs in the
assembler language.

• Debygging Handbook contains format and field descriptions of
the data areas referred to in this chapter.

The system macro instructions are described in these fun~tional
groupings:

• Mapping (IEFUCBOB, IEFJFCBN, and CVT)

• Obtaining device characteristics (DEVTYPE)

• Manipulating the JFCB (RDJFCB)

• Data security (DEBCHK)

• Manipulating queues (PURGE and RESTORE)

• Performing track capacity calculations (TRKCALC)

• Allocating a DASD data set (REALLOC)

• Loading a message display on an IBM 3480 Magnetic Tape
Subsystem (MSGDISP)

MAppING SYSTEM DATA AREAS

The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as
DSECT expansions that define the symbolic names of fields within
the unit control block (UCB), job file control block (JFCB), and
communication vector table (CVT), respectively.

The CVT, IEFUCBOB, and IEFJFCBN macro definitions are in a
distribution library named SYS1.AMODGEN. Before you can issue
the macros, you must copy them from SYS1.AMODGEN into
SYS1.MACLIB (the IEBCOPY utility can be used to copy the
macros), or SYSl.AMODGEN may be concatenated to the macro
library before reference is made to SYS1.AMODGEN.

o

The fields in these blocks are shown and described in Debygging 0-
Handbook. _

110 MVS/XA System-Data Administration

---- -----
~--.. -----------

IEFUCBOB--MAPPING THE UCB

This macro instruction defines the symbolic names of the fields
in the unit control block (UCB). The macro does not include a
DSECT statement. However. if you specify PREFIX=YES. the DSECT
statement is provided.

The format is:

[symbol] IEFUCBOB [LIST=£HQIYES}]
[,PREFIX={HQIYES}]

LIST={N2IYES}

NO

YES

specifies that only the UCB prolog is to be printed.

specifies that the UCB prolog and the rest of the UCB
are to be printed.

PREFIX={HQ I YES}

NO

YES

specifies that no prefix is to be printed.

specifies that the prefix and main body of the UCB are
to be printed. A DSECT statement is included if YOU
specify PREFIX=YES.

IEFJFCBN--MAPPING THE JFCB

CVT--MAPPING THE CVT

This macro instruction defines the symbolic names of the fields
in the job file control block (JFCB). The macro does not
include a DSECT statement. If you require one. code a DSECT
statement before the macro statement.

The format is:

I [symbol] I IEFJFCBNI [LIST={HQIYES}]

LIST={tiQ I YES}

NO
specifies that only the JFCB prolog is to be printed.

YES
specifies that the JFCB prolog and the rest of the
JFCB are to be printed.

This macro instruction defines the symbolic names of all fields
in the communication vector table (CVT).

The format is:

[symbol] CVT [DSECT=£HQIYES}]
[,LIST=£HQIYES}]

Chapter' 6. System Macro Instructions III

DSECT=t,HgIVES)

NO
specifies that you do not want a DSECT.

YES
specifies that you want a DSECT.

LIST=t,HgI VES)

NO
specifies that only the CVT prolog is to be printed.

YES
specifies that the CVT prolog and the rest of the CVT
are to be printed.

OBTA!N!NG I/O DEVICE CHARACTERIST!CS

Use the DEVTYPE macro instruction to request information
relating to the characteristics of an I/O device, and to cause
this information to be placed into a specified area. (The
results of a DEVTYPE macro instruction executed before a
checkpoint is taken should not be considered valid after a
checkpoint/restart occurs.) The IHADVA macro maps the data
returned by the DEVTYPE macro.

The topics that follow discuss the DEVTYPE macro, device
characteristics, and particular output for particular devices.

DEVTVPE MACRO SPECIFICATION

The format is:

I [symbQ!I DEVTVPE

ddloc-addrx
the name of an 8-byte field that contains the symbolic name
of the DD statement to which the device is assigned. The
name must be left justified in the 8-byte field, and must
be followed by blanks if the name is less than eight
characters. The doubleword need not be on a doubleword
boundary.

area-addrx
the name of an area into which the device information is to
be placed. The area can be two, five, or six fullwords,
depending on whether or not the DEVTAB and RPS operands are
specified. The area must be on a fullword boundary.

DEVTAB
This operand is only required for direct access devices.
If DEVTAB is specified, the following number of words of
information is placed in your area:

• For direct access devices: 5 words

• For non-direct access devices: 2 words

If you do not code DEVTAB, one word of information is
placed in your area if the reference is to a graphics or
teleprocessing device; for any other type of device, two
words of information are placed in your area.

112 MVS/XA System-Data Administration

. --<--. ----------

(j

. \ O<··~·'

C~:

RPS
If RPS is specified, DEVTAB must also be specified. The
RPS parameter causes one additional full word of RPS
information to be included with the DEVTAB information.

Note: Any reference for a DUMMY data set in the DEVTYPE macro
instruction will cause eight bytes of zeros to be placed in the
output area. Any reference to a SYSIN or SYSOUT data set causes
X'00000102' to be placed in word 0 and 32760 (X'00007FF8') to be
placed in word 1 in the output area. Any reference to a file
allocated to a TSO terminal causes X'OOOOOlOl' to be placed in
word 0 and 32760 (X'00007FF8 1) to be placed in word 1 in the
output area.

I DEVICE CHARACTERISTICS INFORMATION

The following information is placed into your area as a result
of issuing a DEVTYPE macro:

Word 0
Describes the device as defined in the UCBTYP field of the
UCB. For a complete description of this field, refer to
Debygging Handbook.

Word 1
Maximum block size. For direct access devices, this value
is the smaller of either the maximum size of an nonkeyed
block or the maximum block size allowed by the operating
system; for magnetic tape devices, this value is the
maximum block size allowed by the operating system. For
all other devices, this value is the maximum block size
accepted by the device.

If DEVTAB is specified, the next three fullwords contain the
following information about direct access devices:

Word 2

Bytes 0-1

Bytes 2-3

Word 3

Bytes 0-1

The number of physical cylinders on the device,
including alternates.

The number of tracks per cylinder.

Note: Before you use bytes 2 and 3, read the
description of word 4, byte 1, bit o.

Maximum track length. Note that for the IBM
3375 and 3380 direct access devices, this value
is not equal to the value in word 1 (maximum
block size) as it is for other IBM direct
access devices.

Note: Before using bytes 2 and 3, read the description of word
4.

Byte 2

Byte 3

Bytes 2-3

Block overhead, keyed block--the number of
bytes required for gaps and check bits for each
keyed block other than the last block on a
track.

Block overhead--the number of bytes required
for gaps and check bits for a keyed block that
is the last block on a track.

Block overhead--the number of bytes required
for gaps and check bits for any keyed block on
a track including the last block. Use of this
form is indicated by a 1 in bit 4, byte 1 of
word 4.

Chapter 6. System Macro Instructions 113

----~~-~-------.- -.---~~-~~ -~ -----.-------- .

Word 4

Byte 0

Byte 1

Bytes 2-3

Basic overhead--the number of bytes required
for the count field. Use of this form is
indicated by a one in bit 3, byte 1 of word 4.

Block overhead, block without key--the number
of bytes to be subtracted from word 3, bytes 2
or 3 or bytes 2 and 3, if a block is not keyed.

If bit 3, byte 1 of word 4 is 1, this byte
contains the modulo factor for a modulo device.

Bit 0

Bit 1

Bits 2-3

Bit 3

Bit 4

Bits 5-6

Bit 7

If un, the number of cylinders, as
indicated in word 2, bytes 0 and 1
are invalid.

Reserved.

If on, indicates a 3380 is attached
to a 3880 Model 13 or 23.

If on, indicates a modulo device
(3375, 3380). To calculate the
number of data bytes required for a
data block for a modulo device, see
the device data in Qa!a
Administration Gyide.

If on, bytes 2 and 3 of word 3
contain a halfword giving the block
overhead for any block on a track,
including the last block.

Reserved.

If on, a tolerance factor must be
applied to all blocks except the
last block on the track.

Tolerance factor--this factor is used to
calculate the effective length of a block. The
calculation should be performed as follows:

Step 1

Step 2

Step 3

add the block's key length to the
block's data length.

test bit 7 of byte 1 of word 4. If
bit 7 is 0, perform step 3. If bit
7 is I, multiply the sum computed
in step 1 by the tolerance factor.
Shift the result of the
multiplication 9 bits to the right.

add the appropriate block overhead
to the value obtained above.

If bit 3, byte 1 of word 4 is 1, bytes 2 and 3
contain the overhead for the data or key field.

If DEVTAB and RPS are specified, the next fullword contains
the following information:

Word 5

Bytes 0-1

Byte 2

Byte 3

RO overhead for sector calculations

Number of sectors for the device

Number of data sectors for the device

114 MVS/XA System-Data Administration

o

o

c

Figure 24 shows the output for each device type that results
from issuing the DEVTYPE macro.

RETURN CODES FROM THE DEVTVPE MACRO

Device1 ,Z

2540 Reader

2540 Reader w/CI

2540 Punch

2540 Punch w/CI

2501 Reader

2501 Reader w/CI

3890 Document
Processor

3505 Reader

3505 Reader w/CI

3525 Punch

3525 Punch w/CI

1403 Printer

1403 w/UCS

Control is returned to your program at the next executable
instruction following the DEVTYPE macro instruction. Register
15 contains a return code from the DEVTYPE macro. The return
codes and their meanings are as followsl

Code Meaning

OO(X'OO') Indicates that the information concerning the ddname
you specified has been successfully moved to your work
area.

04(X'04') Indicates that the ddname you specified was not found.

Maximum
Record Size RPS (Word 5,
(Word 1, in DEVTAB (Words 2, 3, and in
Decimal) 4, in Hexadecimal) Hexadecimal)

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

80 Not Applicable Not Applicable

120 3 Not Applicable Not Applicable

120 3 Not Applicable Not Applicable

3203 Model 5 Printer 132 Not Applicable Not Applicable

3211 Printer 1323 Not Applicable Not Applicable

3262 Model 5 Printer 132 Not Applicable Not Applicable

4245 Printer 132 Not Applicable Not Applicable

4248 Printer 1324 Not Applicable Not Applicable

3800 Printing 136 5 Not Applicable Not Applicable
Subsystem

3400 (9-track, p.e.) 32760 Not Applicable Not Applicable

3400 (9-track, d.d.) 32760 Not Applicable Not Applicable

Figure 24 (Part 1 of 2). Output from DEVTYPE Macro

Chapter 6. System Macro Instructions lIS

Maximum
Record Size RPS (Word 5,
(Word 1, in DEVTAB (Words 2, 3, and in

Device1 ,Z Decimal) 4, in Hexadecimal) Hexadecimal)

3400 (7-track) 32760 Not Applicable Not Applicable

3480 (18-track) 32760 Not Applicable Not Applicable

2305 Model 2 14660 006000083AOA012l5B080200 0140B4B1
Fixed-Head Storage

3330/3333 Disk 13030 019BOO13336DBFBF38000200 OOED807C
Storage

3330V MSS Virtual 13030 019BOO13336DBFBF38000200 OOED807C
Volume

3330 Model 11 (or 13030 032FOO13336DBFBF38000200 00ED807C
3333 Model 11) Disk
Storage

3340 Disk Storage 8368 015DOOOC2157F2F24BOO0200 0125403D
(35 megabytes)

3340/3344 Disk 8368 0230001E4B36010B52080200 0125403D
Storage (70
megabytes)

3350 Disk Storage 19069 0230001E4B360l0B52080200 0185807B

3375 Disk Storage 32760 03BFOOOC8CAOOOE0201000BF 0340C4BB

3380 Models A04, 32760 0376000FBB6001002010010B 04EODED6
AA4, and B04 Disk
Storage

3380 Models A04, 32760 0376000FBB6001002030010B 04EODED6
AA4, and B04 Disk
Storage (attached to
a 3880 Model 13 or
23)

2250 Model 3 Display Not Applicable Not Applicable
Unit

Figure 24 (Part 2 of 2). Output from DEVTYPE Macro

Communication Equipment Record Size

1030,1050,83B3, Not Applicable
TWX,2250,S360

lISA, 1130 Not Applicable

2780 Not Applicable

2740 Not Applicable

Notes to Figure 24:

1

2

CI-card image feature; d.c.-data conversion; d.d.-dual
density; p.e.-phase encoding; UCS-universal character set;
w/-with.

Device codes are presented in Debygging Handbook.

116 MVS/XA System-Data Administration

o

(')
.. - /'

~ Although certain models can have a larger line size, the
minimum line size is assumed.

4 The IBM 4248 Printer returns 132 characters even if the 168
Print Position Feature is installed on the device.

S The IBM 3800 Printing Subsystem can print 136 characters per
line at 10-pitch, 163 characters per line at l2-pitch, and
204 characters per line at IS-pitch. The machine default is
136 characters per line at 10-pitch.

I READING AND MODIFYING A JOB FILE CONTROL BLOCK

To accomplish the functions that are performed as a result of an
OPEN macro instruction, the open routine requires access to
information that you have supplied in a data definition (DD)
statement. This information is stored by the system in a job
file control block (JFCB).

In certain applications, you may find it necessary to modify the
contents of a JFCB before issuing an OPEN macro instruction.
For example, suppose you are adding records to the end of a
sequential data set. You might want to add a secondary
allocation quantity to allow the existing data set to be
extended when the space currently allocated is exhausted. To
assist you, the system provides the RDJFCB macro instruction.
This macro instruction causes a specified JFCB to be moved from
the scheduler work area (SWA), where it is stored, to an area
specified in an exit list. (The use of the RDJFCB macro
instruction with an exit list is shown under "Example" on
page 118. The symbolic names and field descriptions of the JFCB
are contained in Debygging Handbook.) When you subsequently
issue the OPEN macro instruction, you must indicate, by
specifying the TYPE=J operand, that you want to open the data
set using the JFCB in the area you specified.

Caution: If you set the bit JFCNWRIT in the field JFCBTSDM to 1
before you issue the OPEN macro instruction, the JFCB is not
written back to the SWA at the conclusion of open processing.
OPEN TYPE=J normally moves your program's modified copy of the
JFCB to the SWA (Scheduler Work Area), replacing the system
copy. To ensure that this move is done, your program must set
bit zero (0) of the JFCBMASK+4 field to 1. The JFCBMASK format
is shown in the Internal Data Areas section of Open/Close/EOY
~. If the user JFCB, which the system used to open the data
set, is not written back to SWA (JFCNWRIT set on), then errors
may occur during EOV or close processing.

Some of the modifications that are commonly made to the JFCB
include:

• Moving the creation and expiration date fields of the DSCB
into the JFCB (see "Using RDJFCB for MSS Virtual Volumes"
below) .

• Moving the secondary allocation quantity from the DSCB into
the JFCB (see "Using RDJFCB for MSS Virtual Volumes" below).

• Moving the DCB fields from the DSCB into the JFCB.

• Adding volume serial numbers to the JFCB (see "Using RDJFCB
for MSS Virtual Volumes" and DRDJFCB SecurityD below).

Volume serial numbers in excess of five are written to the
JFCBX (extension) located in the SWA. The JFCBX cannot be
modified by user programs.

• Modifying the data set sequence number field in the JFCB.

• Modifying the number-of-volumes field in the JFCB (see
"Using RDJFCB for MSS Virtual VolumesD below).

Chapter 6. System Macro Instructions 117

•

•

Setting bit JFCDQDSP in field JFCBFlG3 to invoke the tape
volume DEQ at demount facility (see "DEQ at Demount Facility
for Tape Volumes," below).

Modifying the JFCRBIDO field in theJFCB to cause high-speed
positioning to a specific data block on a 3480 tape volume.

I RDJFCB--READ A JOB FILE CONTROL BLOCK

The RDJFCB macro instruction causes a job file control block
(JFCB) to be moved from the SWA (scheduler work area) into an
area of your choice as identified via the EXlST parameter of the
DCB macro for each data control block specified.

i i I [symbol] I RDJFCB

dcb-address,(options)
(same as the dcbaddress, optionl, and option2 operands of
the OPEN macro instruction, as shown in ~
Administration: Macro Instryction Reference).

Although the option operands are not meaningful during the
execution of the RDJFCB macro instruction, these operands
can appear in the list form of either the RDJFCB or OPEN
macro instruction to generate identical parameter lists,
which can be referred to with the execute form of either
macro instruction.

Example: In Figure 25 on page 119, the macro instruction at EXl
creates a parameter list for two data control blocks: INVEN and
MASTER. In creating the list, both data control blocks are
assumed to be opened for input; option2 for both blocks is
assumed to be DISP. The macro instruction at EX2 moves the
system-created JFCBs for INVEN and MASTER from the SWA into the
area you specified, thus making the JFCBs available to your
problem program for modification. The macro instruction at EX3
modifies the parameter list entry for the data control block
named INVEN and indicates, through the TYPE=J operand, that the
problem program is supplying the JFCBs for system use.

118 MVS/XA System-Data Administration

o

o

(

C'
-

C'·
."' ,)

- --~---------- ---~--. . -~------- -~--

EXl RDJFCB (INVEN"MASTER),MF=L

.
EX2 RDJFCB MF=(E,EXl)

.
EX3 OPEN (,(RDBACK,LEAVE)),TYPE=J,MF=(E,EXl)

INVEN DCB EXLST=LSTA, ...
MASTER DCB EXLST=LSTB, ...
LSTA DS OF

DC X' 07'
DC A13(JFCBAREA)

JFCBAREA DS OF,l76C

LSTB DS OF

Figure 25. Sample Code Using RDJFCB Macro

Multiple data control block addresses and associated options may
be specified in the RDJFCB macro instruction. This facility
makes it possible to read several job file control blocks in
parallel.

An exit list address must be provided in each data control block
specified by an RDJFCB macro instruction. Each exit list must
contain an active entry that specifies the virtual storage
address of the area into which a JFCB is to be placed. A full
discussion of the exit list and its use is contained in ~
Administration Guide. The format of the job file control block
exit list entry is as follows:

Types of
Exit List
Entry

Job file
control
block

Hexadecimal
Code (High­
Order Byte)

07

contents of Exit List Entry
(Low-Order Bytes)

Address of a 176-byte area to be
provided if the RDJFCB or OPEN
(TYPE=J) macro instruction is
used. This area must begin on a
fullword boundary and must be
located within the user's
region. Also, users running in
31-bit addressing mode must
ensure that this area is located
below 16-megabyte virtual.

The virtual storage area into which the JFCB is read must be at
least 176 bytes long.

The data control block may be open or closed when this macro
instruction is executed.

Chapter 6. System Macro Instructions 119

If the JFCB is read successfully for all DCBs in the parameter
list, a return code of 0 is placed in register 15. If the JFCB
is not read for any of the DCBs because the DDNAME is blank, or
a DD statement is not provided, a return code of 4 is placed in
register 15.

Warning: The following errors cause the results indicated:

Error Result

A DD statement has not been
provided.

DDNAME field in DCB is
blank.

A virtual storage address
has not been provided.

A return code of 4 is
placed in register 15.

A write-to-programmer is
issued. the request for
this DCB is ignored, and a
return code of 4 is placed
in register 15.

Abnormal termination of
task.

Note that, if you want to open a VTOC data set to change its
contents (that is, open it for OUTPUT. aUTIN. INOUT, UPDAT,
OUTINX, or EXTEND), your program must be authorized under the
Authorized Program Facility (APF). APF provides security and
integrity for your data sets and programs. Details on how you
authorize your program are provid~d in System Programming
library: Syperyisor Seryices and Macro Instructions.

If the RDJFCB routine fails while processing a DCB associated
with your RDJFCB request. your task is abnormally terminated.
None of the options available through the DCB ABEND exit, as
described in Data Administration Guide, is available when a
RDJFCB macro instruction is issued.

When using concatenated data sets, the RDJFCB routine modifies
only the first JFCB.

USING RDJFCB FOR MSS VIRTUAL VOLUMES: Care must be taken in
using RDJFCB if the data set resides on MSS virtual volumes such
that:

• The expiration date added does not conflict with other
volumes within the specified MSVGP.

• The secondary allocation quantity should be in cylinder
increments and be a multiple or submultiple of the primary
allocation quantity to avoid fragmentation.

• The number of volumes must not exceed the number available
in the specified MSVGP.

• Any volume serial numbers added to the JFCB should exist in
the MSVGP.

RDJFCB SECURITY, The volume serial numbers specified in the
user-supplied JFCB will be compared with the volume serial
numbers in the system JFCB located in the SWA. Each different
volume serial number will be enqueued exclusively. The volumes
will stay enqueued until the job step terminates. because the
close routines will not dequeue the volumes. If the job step
already has the volume open, OPEN TYPE=J will continue. If the
volume is enqueued by another job step. a 413 abend will occur
with a return code of 04.

Some JFCB modifications can compromise the security of existing
password-protected data sets. The following modifications are
specifically not allowed. unless the program making the
modifications is authorized or can supply the password:

120 MVS/XA System-Data Administration

o

o

-C·-.·

• Changing the disposition of a password-protected data set
from OLD or MOD to NEW.

• Changing the data set name of one or more of the volume
serial numbers when the disposition is NEW.

• Changing the label processing specifications to bypass label
processing.

Note: An authorized program is one that is either in supervisor
state, executing in one of the system protection keys (keys 0
through 7), or authorized under the Authorized Program Facility.

RDJFCB USE BY AUTHORIZED PROGRAMS: If you change the data set
name in the JFCB, you should do a system enqueue on the major
name of "SYSDSN" for the substituted data set name. To use the
correct interface with other system functions (for example,
partial release), the ENQUEUE macro should include the TCB of
the initiator and the length of the data set name (with no
trailing blanks). When you complete processing of the data set,
you should use the DEQ macro to release the resources.

DEQ AT DEMOUNT FACILITY FOR TAPE VOLUMES

This facility is intended to be used by long-running programs
that create an indefinitely long tape data set (such as a log
tape). Use of this facility by such a program permits the
processed volumes to be allocated to another job for processing
(such as data reduction). This processing is otherwise
prohibited unless the indefinitely long data set is closed and
dynamically unallocated.

You may invoke this facility only through the RDJFCB/OPEN TYPE=J
interface by setting bit JFCDQDSP (bit 0) in field JFCBFLG3
(offset 163 or X'A3') to 1. The volume serial of the tape is
dequeued when the volume is demounted by OPEN or EOV with
message IEC502E when all the following conditions are present:

• The tape volume is verified for use by OPEN or EDV.

• JFCDQDSP is set to 1.

• The program is APF authorized (protect key and
supervisor/problem state are not relevant).

• The tape volume is to be immediately processed for output.
That is, either OPEN verifies the volume and the OPEN option
is OUTPUT, OUTIN, or OUTINX; or EOV verifies the volume and
the DCB is opened for OUTPUT, DUTIN, INOUT, or EXTEND, and
the last operation against the data set was an output
operation CDCBOFLWR is set to 1).

Note that, in order for EOV to find JFCDQDSP set to 1, the
program must not inhibit the rewrite of the JFCB by setting bit
4 of JFCBTSDM to 1.

The tape volume is considered verified after file protect, label
type, and density conflicts have been resolved. The volume is
dequeued when demounted after this verification, even if further
into OPEN or EOV processing the volume is rejected because of
expiration date, security protection, checkpoint data set
protection, or an I/O error.

When the volume serial is dequeued, the volume becomes available
for allocation to another job. However, because the volume DEQ
is performed without unallocating the volume, care must be
exercised both by the authorized program and the installation to
prevent misuse of the DEQ at demount facility. A discussion of
such misuse follows.

1. The authorized program must not close and reopen the data
set using the tape volume DEQ at demount facility. If it
does, one of the following can occur:

Chapter 6. System Macro Instructions 121

~~---.-- .. _---_ ---------- -

a. The dequeued.volume may be mounted and in use by another
job. When the volume is requested for mounting, for the
authorized program, the operator is unable to satisfy
the mount. Therefore, the operator must either cancel
the requesting job, cancel the job using the volume,
wait for the requesting job to time out, or wait for the
job using the volume to terminate.

b. The dequeued volume may be allocated to another job but
not yet in use. The operator mounts the volume to
satisfy the mount request of the authorized job. When
the volume is requested for mounting by the other job,
the operator is unable to satisfy the mount request, and
is faced with the same choices as in a, above.

c. Th$ deqy@yed volume may not yet be allocated to another
job and the volume is mounted to satisfy the mount
request of the authorized job. Another job may allocate
the. volume and, when the volume is requested for
mounting, the situation is the same as in b, above.

It is the responsibility of the installation that permits a
program to run with APF authorization to ensure that it does
not close and reopen a data. set using the DEQ at demount
facility.

2. Care should be exercised when an authorized program uses the
DEQ at demount facility (data set 1) but processes another
tape data set (data set 2). Assume the same volume serial
numbers have been coded in the DD statements for data set 1
and data set 2. As the volumes of data set 1 are demounted,
they are dequeued even though those volumes may yet be
requested for data set 2. All the problems explained in a,
b, and c in 1, above, may occur as data set 2 and another
job contend for a dequeued volume.

This problem should not occur, given the intended use of the
DEQ at demount facility. That is, a long-running
application creating an indefinitely long tape data set.
This type of application is not normally invoked through
batch execution with user-written DD statements.

3. After a volume has been demounted and dequeued because of
the DEQ at demount facility, the volume is not automatically
rejected by the control program when mounted in response to
a specific or nonspecific mount request. Without the use of
the facility, the control program can recognize (by the ENQ)
that the volume is in use, and reject the volume.
Therefore, operations procedures, in effect to prevent
incorrect volumes from being mounted, should be reviewed in
the light of reduced control program protection from such
errors when the DEQ at demount facility is used.
Specifically, if a volume is remounted for an authorized
program and the volume had been used previously by that
authorized program, duplicate volume serial numbers will
exist in the JFCB, and the control program will be unable to
release the volume during EOV processing.

4. Checkpoint/restart considerations are discussed in
Checkpoint/Restart.

OPEN--INITIALIZE DATA CONTROL BLOCK FOR PROCESSING THE JFCB

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro

o

instruction, except for the TVPE=J option, is contained in Da1A
Administration: Macro Instruction Reference. The TVPE=J option, ,0-,-.'.>\'
because it is used in conjunction with modifying a JFCB, should
be used only by the system programmer or only under the system
programmer's supervision.

122 MVS/XA System-Data Administration

(j

. ~---"--------------'-'-----'-'---~

Esymbol] OPEN (dcb-addr,E(options)], •••)
E,TYPE=J]

TYPE=J
specifies that, for each data control block referred to,
you have supplied a job file control block (JFCB) to be
used during initialization. A JFCB is an internal
representation of information in a DD statement.

During initialization of a data control block, its
associated JFCB may be modified with information from the
data control block or an existing data set label or with
system control information.

The system always creates a job file control block for each
DD control statement. The job file control block is placed
in the SWA (scheduler work area). Its position, in
relation to other JFCBs created for the same job step, is
noted in a table in virtual storage.

When the TYPE=J operand is specified, you must also supply
a DD statement. However, the amount of information given in
the DD statement is at your discretion, because you can
modify many fields of the system-created job file control
block. If you specify DUMMY on your DD statement, the open
routine will ignore the JFCB DSNAME and open the data set
as dummy. (See Figure 2S on page 119 for a coding example
that modifies a system-created JFCB.)

Nate: The DD statement must specify at least I

• Device allocation (refer to 1kL for methods of preventing
share status)

• A ddname corresponding to the associated data control block
DCBDDNAM field

I HIGH~SPEED POSITIONING FOR THE IBM 3480 MAGNETIC TAPE SUBSYSTEM

Fast positioning for 3480 tape drives is available when opening
a tape data set on an IBM standard-labeled tape for EXTEND
(OUTINX, EXTEND, or DISP=MOD). To invoke high-speed positioning
your program must modify certain fields in the JFCB and use OPEN
TYPE=J to open the data set.

The following procedure should be used to modify the JFCBI

1. Issue RDJFCB to have the system move the JFCB into your work
area.

2. Set the JFCPOSID flag in the JFCBFlG3 flag byte to indicate
that you are providing a Block ID for a high-speed search.

3. Move the Block ID into the JFCRBIDO field of the JFCB.
(Specify the Block ID of the tape mark immediately following
the last block of user data in the data set being opened.)

4. Issue OPEN TYPE=J with the modified JFCB.

Once the tape is positioned, OPEN processes the trailer labels
for the data set being extended.

If you set the JFCPOSID flag off, OPEN positions the volume
normally, as though the high-speed positioning feature were not
active.

If yau set the JFCPOSID flag on, but do not provide a block ID
in the JFCRBIDO field, OPEN positions the volume normally. OPEN
then moves the block ID of the first header label record into
the JFCRBIDO field.

Chapter 6. System Macro Instructions 123

If you set the JFCPOSID flag on, but the block ID you provide in
the JFCRBIDO field does not exist on the tape, OPEN processing
fails. OPEN issues error message IEC147I to indicate this
condition.

If the JFCPOSID flag is on during CLOSE processing, CLOSE
inserts the block ID for the first header label record of the
next data set (which may not exist) into the JFCRBIDO field.
Therefore, if you deallocate the 3480 device and want to use the
current block ID for subsequent processing, you must save the
block ID before you CLOSE the data set.

Notes:

1. If you specify dynamic deallocation (with SVC 99, FREE=ClOSE
on the DD statement; or the FREE option on the CLOSE macro),
then the block ID for the next data set will not be
available to your program. This is because dynamic
deallocation frees the JFCB.

2. When using high-speed positioning, specify the data set
sequence number normally, either explicitly by
lABEl=(seqno,Sl) on the DD statement, or by default.

ENSURING DATA SECURITY BY VALIDATING THE DATA EXTENT BLOCK

Protecting one user's data from inadvertent or malicious access
by an unauthorized user depends on protection of the data extent
block (DEB). The DEB is a critical control block because it
contains information about the device a data set is mounted on,
and describes the location of data sets on direct access device
storage volumes. The DEB also contains the address of the
appendage vector table (AVT). Using the AVT, an unauthorized
user can modify the AVT to give control to a routine in
supervisor state to read from and write to data sets to which
access would otherwise be denied.

To guarantee protection of the
is provided. The DEBCHK macro
SYS1.MAClIB. The DEBCHK macro
of the system control program.

DEB, the DEBCHK macro instruction
instruction can be found in
is issued by several components

For example:

• The open access method executors issue the macro to add the
address of a DEB they have built to a list of valid
addresses called the DEB table. The DEB validity-checking
routine builds and maintains a DEB table for each job step.

• The EXCP processor uses the macro to verify that the DEB
passed with each EXCP request is in the DEB table.

• The close component issues the macro to remove a DEB from
the DEB table.

If you code a routine that builds a DEB, you must add the
address of the DEB yOU built to the DEB table. If you code a
routine that depends on the validity of a DEB that is passed to
your routine, you should verify that the DEB passed to your
routine has a valid entry in the DEB table and points to your
DCB or access method control block (ACB). Use the TVPE=ADD and
the TVPE=VERIFV operands of the macro, respectively.

To prevent an asynchronous routine from changing or deleting, or
assigning a new DEB to a DCB, you must hold the local lock. In
this case, you must use the branch entry to the DEBCHK verify
routine.

Additional details about the functions provided by the DEB
validity- checking routine and about the contents of the DEB
table are available in Open/Close/EOV logic.

The DEBCHK macro instruction provides four functions:

124 MVS/XA System-Data Administration

o

o

I.
I

(
• Adds the address of a DEB to the DEB table, which is located

in protected storage. The DEB table contains the address of
every user DEB associated with a given job step. Every
system control program component that builds a user DEB must
add the address of that DEB to a DEB table.

• Verifies that the DEB table associated with a given job step
contains the address of·a valid DEB and that the DEB points
to the DCB (or ACB). Any system control program component
or problem program can use this function to verify that a
DEB is valid.

• Deletes the address of a DEB from the DEB table. Any
program that deletes a user DEB must, before it deletes the
DEB, issue a DEBCHK macro with a TYPE=DELETE operand to
delete the address of the DEB from the DEB table. If the
DEB· validity-checking routine encounters an error while
deleting the address from the DEB table, the job step is
abnormally terminated.

• Deletes the address of a DEB from the DEB table in the same
way as the preceding function, except that, instead of
terminating the job step, this function merely returns an
error code in register IS. This function is provided to
prevent recurring abnormal termination. The format of the
DEBCHK and a description of the operands follow:

DEBCHK--MACRO SPECIFICATION

E:i~mbgl] DEBCHK cbaddr
E,TYPE=(VERIFYIADDrDELETEIPURGE1]
E,AM=(amt~pel(amaddr)I((~))J]
[,BRANCH={HQIYESJJ
[,TCBADDR=addressJ
E,KEYADDR=addressl
[,SAVREG=~J
[,MF=LJ

cbaddr

for BRANCH=NO
RX-type address, (2-12), or (1)

A control block address passed to the DEBCHK routine. This
operand is ignored if MF=L is coded. For verify, add, and
delete requests, cbaddr is the address of a DCB or ACB that
points to the DEB whose address is either verified to be in
the DEB table, added to the DEB table, or deleted from the
DEB table. For the purge function, cbaddr is the address
of the DEB whose pointer is to be purged from the table:
No reference is made to the DCB or ACB.

Note: A sPooled DCB's DEB does not point back to the DCB,
but to the sPGoled ACB; in this case, the DEBCHK should be
issued against the ACB.

for BRANCH=YES
The A-type address of a 4-byte field, or a register
(1) or (3-12), that points to the DCB or ACB
containing the DEB to be verified.

TYPE=(VERIFYIADDIDELETEIPURGEJ
indicates the function to be performed. If MF=L is coded,
TYPE is ignored. The functions are:

VERIFY
This function is assumed if the TYPE operand is not
coded. The control program checks the DEB table to
determine whether the DEB pointer is in the table at
the location indicated by the DEBTBLOF field of the
DEB. The DEB is also checked to verify that DEBDCBAD

Chapter 6. System Macro Instructions 125

AM

ADD

· ... --- .. ~. ----------

points to the DCB (or ACB) passed to DEBCHK. The
DEBAMTYP field in the DEB is compared to the AM
operand valuel if given. The two must be equal.
TYPE=VERIFY may be issued in either supervisor or
problem state.

The DEB and the DCB (or ACB) must point to each other
before the DEB address can be added to the DEB table.
Before the DEB pointer can be added to the tablel the
DEB itself must be queued on the current TCB DEB chain
(the TCBDEB field contains the address of the first
DEB in the chain). The DEB address is added to the
DEB table at some offset into the table. That offset
value is placed in the DEBTBLOF field of the DEBI and
the access method type is inserted into the DEBAMTYP
field of the DEB. A zero is placed in the DEBAMTYP
field if the AM operand is not coded. TVPE=ADD can be
issued only in supervisor state.

DELETE

PURGE

The DEB and the DCB (or ACB) must point to each other
before the DEB address can be deleted from the DEB
table. TVPE=DELETE can be issued only in supervisor
state.

The DEB pointer is removed from the DEB table without
checking the DCB (or ACB). TYPE=PURGE can be issued
only in supervisor state.

specifies an access method value. Each value corresponds
to a particular access method type (note that BPAM and SAM
have the same values):

Type

TCAMAP
SUBSYS
ISAM
BDAM
SAM
BPAM
TAM
GAM
TCAM
EXCP
VSAM
NONE

Value

(X'S4')
(X'SI')
(X'80')
(X'40')
(X'20')
(X'20')
(X'IO')
(X'08')
(X'04')
eX'02')
(X'OI')
(X'OO')

The operand can be coded in one of the following three
ways, only the first of which is valid for the list form
(MF=L) of the instruction.

amtype
refers to the access method: ISAM, BDAM, SAM, BPAM,
TAM (which refers to BTAM only), GAM, TCAM, EXCP, or
VSAM. TCAMAP identifies a TCAM application-program
DEB. SUBSVS identifies a subsystem of the operating
system, such as a job entry subsystem. NONE indicates
that no access method or subsystem is specified.

(amaddr)
is the RS-type address of the access method value.
This format may not be coded when MF=L is used.

((i1.IIlJ:.fit9))
is one of the general registers I through 14 that
contains the access method value in its low-order byte
(bit positions 24 through 31). The high-order bytes
are not inspected. This form may not be used when
MF=L is coded.

126 MVS/XA System-Data Administration

o

o

(
The use of amaddr and amreg should be restricted to those
cases where the access method value has been generated
previously by the MF=L form of DEBCHK. If MF=L is not
coded, the significance of the AM operand depends upon the
TYPE.

If TYPE is ADD and AM is specified, the access method value
is inserted in the DEBAMTYP field of the DEB, and all
subsequent DEBCHK macros referring to this DEB must either
specify the same AM or omit the operand. When the AM
operand is omitted for TYPE=ADD, a null value (0) is placed
in the DEB and all subsequent DEBCHK macros must omit the
AM operand.

If AM is specified when the TYPE is PURGE, DELETE, or
VERIFY, the access method value is compared to the value in
the DEBAMTYP field of the DEB. If AM is omitted, no
comparison is made.

BRANCH=£tm I YES)
specifies whether you want to use the branch entry to the
DEBCHK verify routines.

NO

YES

specifies branch entry is not to be used. The
operands SAVREG, TCBADDR, and KEYADDR are ignored.

specifies the branch entry is to be used. TYPE=VERIFY
must be implicitly or explicitly specified. The
operands TCBADDR and KEYADDR are required. AM and MF
are ignored. Notes for BRANCH=YES:

• Registers 1, 2, 10, 11, 14, and 15 must not be
used for SAVREG=.

•

•

Registers 1, 2, 10. 11, 14, 15, and the register
specified for SAVREG= must not be used for cbaddr.
TCBADDR=, or KEYADDR=.

The contents of registers 10,
unpredictable on completion.
specify SAVREG=, the contents
unpredictable.

11, and 14 are
Also, if you do not
of register 2 are

• At completion time, register 1 contains the
address of the DEB, and register 15 contains
either 0, 4, or 16 (see below for codes and their
meanings) .

TCBADDR=address--A-type address or (3-12)
specifies the location or register containing the address
of the TCB to be used by the DEBCHK verify routine. Use
this operand only when BRANCH=YES.

KEYADDR=address--A-type address/or (3-12)
specifies the location, or a register pointing to the
location of a field containing the key to be used when
accessing the DCB (or ACB). Use this operand only when
BRANCH=YES.

SAVREG=J:.§lg

MF=L

specifies the register in which register 2 is to be saved.
Use this operand only when BRANCH=YES.

indicates the list form of the DEBCHK macro instruction.
When MF=L is coded, a parameter list is built consisting ~f
the access method value that corresponds to the AM keyword.
This value may be referenced by name in another DEBCHK
macro by coding AM=(amaddr), or it may be inserted into the
low-order byte of a register before issuing another DEBCHK
macro by coding AM=((amreg)).

Chapter 6. System Macro Instructions 127

Return Codes ~rom the DEBCHK Macro

If the DEBCHK routine completes successfully, register 15 will
be set to 0 and register 1 will contain the address of the DEB
when control is returned to your program. Otherwise, register
15 will contain one of the following decimal codesl

Code Meaning

04(X'04') Either (a) the DEB table associated with the job step
does not exist; or (b) the DEBTBLOF field of the DEB
was set to zero or a negative number, or was larger
than the DEB table; or (c) register 1 did not contain
the same address as the DEB table entry.

08(X'OSI) An invalid TYPE ~Jas spscifiad. (The DEBCHK routine
was entered by a branch, not by the macro.)

l2(X'OC') Your program was not authorized and TYPE was not
VERIFY.

l6(X'lO') DEBDCBAD did not contain the address of the DCB (or
ACB) that was passed to the DEBCHK routine.

20(X'14') The AM value does not equal the value in the DEBAMTYP
field.

24(X'18') The DEB is not on the DEB chain and TYPE=ADD was
specified.

28(X'lC') TYPE=ADD was specified for a DEB that was already
entered in the DEB table.

32(X'20') The DEB table exceeded the maximum size (32760 bytes)
and TYPE=ADD.

eURGINGAND RESTORING I/O REQUESTS

The system's purge routines, guided by a parameter list you pass
them, perform either a halt or a quiesce operation. In a halt
operation, the purge routines stop the processing of specified
I/O requests that were initiated with an EXCP macro instruction.
In a quiesee operation, the purge routines:

• Allow the completion of I/O requests that were initiated
with an EXCP macro instruction and have been passed to the
I/O supervisor for execution

• Stop the processing of those requests that have not as yet
been passed to the I/O supervisor, but save the lOBs of the
requests so that they can be reprocessed (restored) later.

The system's restore routines make it possible to reprocess I/O
requests that are quiesced. (Note: Not covered here is the
purge and restore processing that takes in I/O requests not
initiated by an EXCP macro instruction. If you want to learn
the full scope of purge and restore processing, see the I/O
supervisor logic section of System logic library, Volume 8.)

You can give control to the purge and restore routines in one of
two ways: (1) by loading register I with the address of the
parameter list and issuing specific SVC instructions or (2) by
issuing the PURGE and RESTORE macro instructions. If your
installation requires the use of macro instructions, you must
add the macro definitions to the macro library (SYSI.MACLIB) or
place them in a partitioned data set and concatenate this data
set to the macro library. The macro definitions, JCl, and
utility statements needed to add the macros to your macro
library are presented in Figure 26 on page 129, and Figure 27 on
page 129. Whether you issue the macro instructions or the SVC
instructions, you must first build a parameter list. The SVC
instructions are SVC 16 for PURGE and SVC 17 for RESTORE.

128 MVS/XA System-Data Administration

.--_._-_._------------

o

C"~· " ,

PURGE Macro Definition

MACRO
&NAME PURGE &LIST

AIF (I &LIST' EQ I I) • E1
&NAME IHBINNRA &LIST LOAD REG 1

SVC 16
MEXIT

. E1 IHBERMAC 01.147 LIST ADDR MISSING
MEND

Control statements Required

JOB {parameter}
EXEC PGM=IEBUPDTE.PARM=NEW
DD SYSOUT=A

//jobname
//stepname
//SYSPRINT
//SYSUT2
//SYSIN

DD DSNAME=SYS1.MACLIB.DISP=OLD

./ ADD

./ ENDUP
/)(

DD)(
NAME=PURGE.LIST=ALL

PURGE macro definition

Fig"1re 26. Macro Definition. JCL. and Utility Statements for
Adding PURGE Macro to the System Macro Library

RESTORE Macro Definition

MACRO
&NAME RESTORE &LIST

AIF (I &LIST' EQ I I) • E1
&NAME IHBINNRA &LIST LOAD REG 1

SVC 17 ISSUE SVC FOR RESTORE
MEXIT

. E1 IHBERMAC 01.150 LIST ADDR MISSING
MEND

Control Statements Required

//jobname
//stepname
//SYSPRINT
//SYSUT2
//SYSIN
./ ADD

./ ENDUP
/)(

JOB {parameters}
EXEC PGM=IEBUPDTE,PARM=NEW
DD SYSOUT=A
DD DSNAME=SYS1.MACLIB,DISP=OLD
DD DATA
NAME=RESTORE,LIST=ALL

RESTORE macro definition

Figure 27. Macro Definition, JCL, and Utility Statements for
Adding RESTORE Macro to the System Macro Library

Chapter 6. System Macro Instructions 129

·~~~-"-.- .. -.'.----" --

PURGE--HALT OR FINISH I/O-REQUEST PROCESSING

The macro instruction used to call the purge routines is coded
as follows:

pa rameter-l ist

parameter list addresg--RX-type address, (2-12) or (1)
address of a parameter list, 12 or 16 bytes long, that you
have built on a fullword boundary in your storage. The
parameter list address can be specified as an RX-type
constant or in registers 2 through 12, or 1.

The format and contents of the parameter list are as follows:

Byte

o

4

5,6,7

8

contents

A byte in which you specify what the purge routines
will do. These are the bit settings and their
meanings:

1 ...

o •..

. 1 ..

.. 1.

... 1

Purge I/O requests to a single data set.

Either purge I/O requests associated with
a TCB or address space, or purge I/O
requests to more than one data set .

Post ECBs associated with purged I/O
requests.

Halt I/O-request processing. (Quiesce
I/O-request processing, if 0.)

Purg~ related requests only. (Valid only
if a data-set purge is requested.)

0... Reserved--must be zero .

. 1.. Do not purge the TCB request-block chain
of asynchronously scheduled processing .

.. 1. Purge I/O requests associated with a TCB .

... 1 This is a l6-byte parameter list.
Additional purge options are specified in
bytes 12 to IS. (If this bit is off, the
list is 12 bytes long, and the purge
routines do not put a return code in byte
4 of this list or in register IS.)

The address of a DEB if you're purging I/O requests to
a single data set. The address of the first DEB in a
chain of DEBs if you're purging I/O requests to more
than one data set. (The next-to-the-last word of each
DEB must point to the next DEB in the chain; the
second word of the last DEB must contain zeros.)

A byte of zeros. (If bit 7 of byte 0 is on, the purge
routines will put a code in this byte: X'7F' if the
purge operation is successful; X'40' if it is not
successful. If bit 7 of byte 0 is off, then X'7F'
appears in this byte.)

The address of the TCB associated with the I/O
requests you want purged (but only if you turned on
bit 6 of byte 0). May be zeros if the TCB is the one
you're running under.

Driver 10. (Default value of X'OO' implies that EXCP
is the owner.)

130 MVS/XA System-Data Administration

------------.. - .. ~-- .. ~~~~~-

o

o
I ,

"'-. j

" \ 0·\

12

13

14,15

The address of a word in your storage or the address
of the DEBUSPRG field (which is X'll' bytes more than
the DEB address in this parameter list). At whichever
address you specify, the purge routines store a
pointer to the purged I/O restore list, PIRL. In the
PIRL is a pointer to the first lOB in the chain of
lOBs. The location of the pointer and format of the
chain are shown in Figure 28 on page 133.

Note: This field is relevant for quiesce options
only.

A byte in which you can specify additional purge
options. These are the bit settings and their
meanings:

Note: The following applies only if bit 7 of byte 0
is set to one.

.. 1.

. .. 1

.... 1 ...

•••• • 0 ••

Purge I/O requests associated with an
address space. (You must be in supervisor
state.)

Check the validity of all the DEBs
associated with the purge operation if
this is a data-set purge. Validate this
parameter list, whatever the type of purge
operation, by ensuring that there are no
inconsistencies in the selection of purge
options. (If you are in problem state,
these actions are taken regardless of the
bit setting.)

Ensure that I/O requests will be
reprocessed (restored) under their
original TCB. (If zero, and this byte is
meaningful (bit 7 of byte 0 is on), the
I/O requests will be reprocessed under the
TCB of the program making the restore
request.)

Must be zero .

A byte of zeros.

The 2-byte ID of the address space associated with the
I/O requests you want purged. (Only meaningful if bit
2 of byte 12 is on.)

Control is returned to your program at the instruction following
the PURGE macro instruction.

Chapter 6. System Macro Instructions 131

Return Codes from PURGE Macro

If the purge operation was successful, register IS will contain
zeros. Otherwise, register IS will contain one of the following
return codes:

Code Meaning

04(X'04') Your request to purge I/O requests associated with a
given TeB was not honored because that TeB did not point
to the job step TCB, as it must when the requestor is in
problem state.

08(X' 08') Ei thar you iac;uestad cu. address-space purge opera't:10n,

o

but were not in supervisor state, or you requested a
data-set purge operation, but supplied no data-area address
in bytes 1, 2, and 3 of the purge parameter list.

20(X'14') Another purge request has preempted your request. You
may want to reissue your purge request in a time-controlled
loop.

Note: Register IS will contain zeros, regardless of the outcome
of the purge operation, if you set bit 7 in byte 0 of the
parameter list to zero.

MODIFYING THE lOB CHAIN

Note that, although it is not a recommended procedure, if you
want to change the order in which purged I/O requests are
restored or prevent a purged request from being restored, you
may change the sequence of lOBs in the lOB chain or remove an
lOB from the chain. The address of the lOB chain can be
obtained from the PIRl (see Figure 28). (The address of the
PIRl is at the location pointed to by bytes 9 through 11 of the
purge parameter list.)

132 MVS/XA System-Data Administration

o

o

c\

PIRl

PIRRSTR 20(X'14')

II Pointer to the first lOB. If 1s, I
no I/O request was quiesced.

~>IOB(l) (where 1 is first lOB in chain)

1
IOBRESTR 25(9)

II Pointer to the next lOB in the
chain.

~>IOB(n) (where n is last lOB in chain)

IOBRESTR 25(19)

Contains binary Is.

Figure 28. The PIRl and lOB Chain

RESTORE--REPROCESS I/O REQUESTS

The RESTORE macro is coded as follows:

I [symbol] I RESTORE I restore address

restore address--RX-type address, (2-12) or (1)
address you specified at byte 9 of the purge parameter
list.

PERFORMING TRACK CALCULATIONS

The TRKCAlC macro performs track capacity calculations. The
standard, list, execute, and DSECT forms of the macro are
described. Examples of the TRKCAlC macro follow the macro
descriptions. Using TRKCAlC, you may do the following:

•
•

•

Perform track capacity calculations

Determine the number of records of a given size that can be
written on a full track or on the remainder of a track

Perform track balance calculations as foliowsl

Determine whether a given record size can be written in
the space rema1n1ng on the track and return the new
track balance.

Chapter 6. System Macro Instructions 133

I
I

TRKCALC--STANDARD FORM

Determine the maximum size record that can be written on
the track if the given record does not fit.

Determine the track balance if the last physical record
is removed from the track.

The format of the TRKCALC macro is:

[symbol] TRKCALC FUNCTN={TRKBALITRKCAP)
(,DEVTAB=~I,UCB=~I,TVPE=~)
[, BALANCE=suld,I:l
t,REMOVE={VESIHQ)]
[,MAXSIZE={VESIHQ)]
(,RKDD=~I,R=~,K=~,DD=~)
t,REGSAVE={YESIHQ)]
[,M.E:.Il

FUNCTN={TRKBALITRKCAP)
specifies the function to be performed.

Note: You must specify one of the three keywords, DEVTAB,
UCB, or TYPE, to provide the macro a source for
information.

TRKBAL
if REMOVE=NO is specified, TRKBAL calculates whether
an additional record fits on the track and what the
new track balance would be if the record were added.
If REMOVE=YES is specified, TRKBAL calculates what the
track balance would be if a record were removed from
the track. The record to be added or removed from the
track is defined by the RKDD parameter, or by the R,
K, and DD parameters.

If R=l (or the R value in the RKDD parameter is 1) and
REMOVE=NO is specified, record 1 is added to an empty
track; if R=l and REMOVE=YES is specified, record 1 is
deleted from the track, leaving an empty track.

If R~l, the specified record is added to or removed
from the track. The input track balance may be
supplied through the BALANCE parameter; if it is not
supplied, it is assumed that the track contains
equal-sized records as specified in the RKDD parameter
(or in the R, K, and DD parameters).

When REMOVE=NO is specified. one of the following
occurs:

• If the record fits on the track, register 0
contains the new track balance.

• If the record does not fit on the track and
MAXSIZE=NO is specified, a "record does not fit"
return code is given in register 15.

• If the record does not fit and MAXSIZE=YES is
specified, one of the following happens:

The data length of the largest record that
fits in the remaining space is returned in
register O.

A code is returned that indicates no record
fits in the remaining space.

When REMOVE=YES is specified, one of the following
occurs:

134 MVS/XA System-Data Administration

o

o

()

• If R=l, register 0 contains the track capacity.

• If R~l, registers 0 contains the input track
balance (supplied through the BALANCE parameter)
incremented by the track balance used by the input
record. If the input balance is not supplied,
register 0 contains the track capacity left after
R-l records are written on the track.

TRKCAP
calculates, and returns in register 0, the number of
fixed-length records that may be written on a whole
track (R=l) or on a partially filled track (R~l). The
records are defined by the K and DD values of the RKDD
parameter, or by the K and DD parameters.

One of the following occurs:

• If R=l, the BALANCE parameter is ignored and the
calculation is made on an empty track.

• If R~l and the BALANCE parameter is omitted, the
calculation is made for a track that already
contains R-l records of the length defined by the
K and DD valup.s.

• If R~l and the BALANCE parameter is supplied, the
calculation is made for a track whose remaining
track balance is the value of the BALANCE
parameter.

DEVTAB=~RX-type address, (2-12), (0), (14)
addr specifies a word that contains the address of the
Device Characteristics Table Entry (DCTE). If you specify
a register, it contains the address of the DCTE, not the
address of a word containing the address of the DCTE. The
address of the DCTE can be found in the DCBDVTBA field of
an opened DCB.

UCB=~RX-type address, (2-12), (0), (14)
addr specifies the address of-a word that contains the
address of the UCB. If you specify a register, it contains
the address of the UCB, not the address of a word
containing the address of the UCB. You must ensure that
the UCB address is valid by verifying that byte 3 (UCB+2)
in the UCB contains X'FF'.

TYPE=~--RX-type address, (2-12), (0), (14)
you may specify the address of the UCB device type
(UCBTBYT4), or you may specify the I-byte UCB device type
in the low-order byte of a register.

BALANCE=suidJ:--RX-type address, (2-12), (0), (14)
you may specify either the address of a halfword containing
the current track balance, or you may specify the balance
in the low-order two bytes of a register. The value
supplied may be the value returned when you last issued
TRKCALC. If R=l, the balance is reset to track capacity by
TRKCALC, and your supplied value is ignored. This is an
input value and is not modified by the TRKCALC macro. The
resulting track balance is returned in register 0 and in
the TRKCALC parameter list field STARBAL.

REMOVE=(YESlliQ)
indicates if a record is to be deleted from the track.

YES
specifies that the record identified by the record
number (specified in the R keyWord) is being deleted
from the track. The track balance is incremented
instead of decremented.

Note: YES is valid only on a FUNCTN=TRKBAL call.

Chapter 6. System Macro Instructions 135

I

NO
specifies that a record is not to be deleted from the
track. NO is the default.

MAXSIZE=(YESIH2)

YES

NO

If the specified record does not fit, the largest
length of a record with the specified key length that
fits is returned (register 0).

Note: YES is valid only on a FUNCTN=TRKBAL call.

Maximum size is not returned. NO is the default.

RKDD=~RX-type address, (2-12), (0), (14)
addr specifies a word containing a record number (1 byte),
keylength (1 byte), and data length (2 bytes) (bytes 0, 1,
and 2 and 3, respectively) or a register containing the
record number, key length, and data length. R, K, and DD
may be specified by this keyword, or you may use the
following three keywords instead.

R=Addr--RX-type address, (2-12), (0), (14), or n
you may specify either the address of the record number, or
you may specify the record number using the low-order byte
of a register or immediate data (n). Specify a decimal
digit for n (immediate data).

K=~RX-type address, (2-12), (0), (14), or n
you may specify either the address of a field containing
the hexadecimal value of the record's key l~ngth, or you
may specify the record's key length using the low-order
byte of a register or immediate data Cn). Specify a
decimal digit for n (immediate data).

DD=addc--RX-type address, (2-12), (0), (14), or n
you may specify either the address of a field containing
the hexadecimal value of the record's data length, or you
may specify the record's data length using the low-order
two bytes of a register or immediate data (n). Specify a
decimal digit for n (immediate data).

REGSAVE=(YESIH2)

YES

NO

specifies registers 1 through 14 are saved and
restored in the caller-provided save area (pointed to
by register 13) across the TRKCALC call. Otherwise,
registers 1, 9, 10, 11, and 14 are modified.
Registers 0 and 15 are always modified by a TRKCALC
cal1 ..

specifies registers are not saved across a TRKCALC
call. NO is the default.

specifies storage definition for the TRKCALC parameter list
and parameter list initialization, using the given
keywords, then calling the TRKCALC function. MF=I is the
default.

136 MVS/XA System-Data Administration

o

(\
\)

c

(

o

TRKCALC--EXECUTE FORM

A remote parameter list is referred to and can be modified by
the execute form of the TRKCALC macro. The TRKCALC routine is
called. The description of the standard form of the macro
provides the explanation of the function of each operand.

[~~mQQll TRKCALC [FUNCTN={TRKBALITRKCAPl]
[{,DEVTAB={~I*ll
,UCB={~'.ll,TYPE={~I*ll]
[,BALANCE={~I*l]
[,REMOVE={YESINQl]
[,MAXSIZE={YESIHQll
[{,RKDD=~I,R=a4dc,K=~,DD=~ll
[,REGSAVE={YESIH2l1
,MF=(E,~l

FUNCTN={TRKBALI TRKCAPl
is coded as shown in the standard form. If this keyword is
omitted, any specification of REMOVE, MAXSIZE, LAST, and
the RX form of BALANCE is ignored. In addition, DEVTAB is
assumed if UCB is coded and a failure occurs, or if TYPE is
specified. When you use FUNCTN, one of the keyWords
(DEVTAB, UCB, or TYPE) must be specified to provide an
information source.

DEVTAB=~I*--RX-type address, (2-12), (0), (14)
is coded as shown in the standard form except for the *
subparameter. Specify an * when you have inserted the
address of the device characteristics table entry (DCTE) in
the parameter list.

UCB=aQgc'*--RX-type address, (2-12), (0), (14)
is coded as shown in the standard form except for the *
subparameter. Specify an * when you have inserted the
address of the UCB in the parameter list.

TYPE=~I*--RX-type address, (2-12), (0), (14)
is coded as shown in the standard form except for the *
subparameter. Specify an * when you have inserted the
address of the UCB type (UCBTYP) in the parameter list.

BALANCE=~I*--RX-type address, (2-12), (0,), (14)
is coded as shown in the standard form except for the *
subparameter. Specify an * when you have inserted the
balance in the parameter list.

REMOVE={YESIHQl
is coded as shown in the standard form.

MAXSIZE={YESIHQl
is coded as shown in the standard form.

RKDD=addr--RX-type address, (2-12), (0), (14)
is coded as shown in the standard form.

R=~RX-type address, (2-12), (0), (14) or n
is coded as shown in the standard form.

K=~RX-type address, (2-12), (0), (14), or n
is coded as shown in the standard form.

DD=addr--RX-type address, (2-12), (0), (14), or n
is coded as shown in the standard form.

REGSAVE={YESIH2l
is coded as shown in the standard form.

MF=(E,~)
This operand specifies that the execute form of the TRKCALC
macro instruction and an existing data management parameter
list are used.

Chapter 6. System Macro Instructions 137

TRKCALC--LIST FORM

TRKCALC--DSECT ONLY

E
Coded as shown.

a.d.d.!:-RX-type address, (0), (1), (2-12), or (14) 0
specifies an in-storage address of the parameter list.

The list form of the TRKCAlC macro constructs an empty, in-line
parameter list. By coding only MF=l, you construct a parameter
list, and the actual values can be supplied by the execute form
of the TRKCAlC macro. Any parameters other than MF=l are
ignored.

[symbol] TRKCALC MF=L

This call gives a symbolic expansion of the parameter list for
the TRKCAlC macro. No DSECT statement is generated. If a name
is specified on the macro call, it applies, after any necessary
boundary alignment, to the beginning of the list. The
macro-generated symbols all begin with "STAR".

[symbol] TRKCALC I MF=D

INPUT REGISTER USAGE FOR ALL FORMS OF 'MF'

OUTPUT FROM TRKCALC

Registers 0, 2 through 12, and 14 are available to provide input
for keywords.

Register 1 is used only to provide the address of the parameter
list for an MF=E call.

Register 13 may be used as input for keywords, if REGSAVE=YES is
not specified.

Register 15 is used as a work register to build the TRKCAlC
parameter list for the MF=E call; it is not available as an
input register.

FUNCTN=TRKBAL

Register 15=0
The record fits on the track. Register 0 and STARBAl
contain the new track balance.

Register 15=4
Record does not fit on the track. If MAXSIZE=YES is
specified, a partial record does not fit either.
Register 0 and STARBAl are set to zero.

Register 15=8
Record does not fit on the track. MAXSIZE=YES is
specified, and a partial record does fit. Register 0
and STARBAl are set to the maximum number of data
bytes that fit on the remainder of the track with the
specified keylength.

Nate: The keylength is excluded from the count of
maximum data bytes.

138 MVS/XA System-Data Administration

(~:

STARBAL
This is the track balance field of the TRKCALC
parameter list. This field is first set to the track
capacity if R=l, or to the supplied BALANCE value if
R~l, or to the calculated balance if R~l and BALANCE
are omitted. STARBAL is updated to the new track
balance if the record fits; otherwise, STARBAL is left
with the input track balance value.

FUNCTN=TRKCAP

Register 15=0
Register 0 contains the number of records that fit on
the track if R = 1, or the number of records that fit
on the remainder of the track if R ~ 1.

Register 15=4
No records of the length specified fit on a full track
(R = 1) or a partial track (R ~ 1). Register 0 is set
to zero.

STARBAL
This is the track balance field of the TRKCALC
parameter list. This field is first set to the track
capacity if R=l, or to the supplied BALANCE value if
R~l, or to the calculated balance if R~l and BALANCE
are omitted.

RETURN CODES FROM TRKCALC

The TRKCALC macro passes a return code in register 15. The
return codes and their meanings are as follows:

contents Meaning

OO(X'OO') Indicates that register 0 contains the new track
balance

04(X'04') Indicates that the record did not fit (register 0 = 0)

08(X'08') Indicates that the record did not fit (register 0
contains the maximum data length that does fit)

TRKCALC MACRO EXAMPLES

In this example, TRKCALC is coded to determine how many records
of a given size with 10-byte keys fit on a 3380 track. After
issuing the macro, the number of records is saved in NUMREC:

TRKCALC FUNCTN=TRKCAP,TYPE=UTYPE,R=l,K=lO,DD=DL,MF=(E,(I»

DL
UTYPE
NUMREC

ST

.
DC
DC
DS

0, NUMREC

H'xxxx'
X'OE'
F

SAVE NUMBER OF RECORDS

DATA LENGTH

MAX I OF RECORDS

In this example, TRKCALC is coded to determine whether another
record can fit on a track of a 3380, given a track balance.

TRKCALC FUNCTN=TRKBAL,TYPE=UTYPE,R=REC,K=KL,DD=DD,BALANCE=BAL,
MAXSIZE=YES,MF=(E,(I»

UTYPE
REC
KL
DD
BAL

DC
DC
DC
DC
DC

X'OE'
X'xx'
X'xx'
H'xxxx'
H'xxxx'

Chapter 6. System Macro Instructions 139

ALLOCATING A DASD DATA SET

The REALLOC macro builds a parameter list and issues SVC 32 to
allocate a new data set based on a partial DSCB that describes
the attributes of that data set. You can use the OBTAIN macro
to get the format-l DSCB of another data set and use it as a
model for the new data set's DSCB which REALLOC will construct
and write in the VTOC.

The maximum number of extents that may be allocated are
determined by the type of data set requested as defined by the
data set organization (DSIDSORG) bytes and the data set
indicator (DSIDSIND) byte in the partial DSCB. If the DSIDSORG
indicates a VSAM data set organization and DSIDSIND indicates
the data set is cataloged in an integrated catalog facility
(ICF) catalog, the maximum number of extents is 123. Otherwise,
the maximum number of extents is 16.

Note: User label data sets, ISAM data sets, and abs~lute track
allocated data sets are not supported by the REALLOC macro. If
a VSAM data set or data space is requested, REALLOC does not
interface with VSAM or intergrated catalog facility catalog
management.

The DS1SCALO field of the partial format-l DSCB has a high order
flag byte that describes the type of request and a 3-byte field
containing the secondary allocation quantity. The following
describes the flag byte:

contents Meaning

X'CO' Cylinder request

X'C8' Cylinder with CONTIG request

X'80' Track request

X'88' Track with CONTIG request

X'40' Average block length request

X'4l' Average block length with ROUND request

X'48' Average block length with CONTIG request

X'49' Average block length with CONTIG and ROUND request

Any settings other than the above are ignored.

The REALLOC macro may be coded in the execute, DSECT, and list
forms, but not the standard form. The calling program may be in
supervisor or problem program state, and may be running in any
key. The calling program must be APF authorized.

REALLOC--EXECUTE FORM

The format of- the REALLOC macro in execute form is:

[5~mtu21 REALLOC MF=(E,su:!d..r::)
,DSSIZE=~I(~)
,PDSCB=.iUidr:
,UCB=.iUidr:
[,MINAU=.iUidr:I(~)
[,PDSDIR=.iUidr:I(~)

MF=(E,suIdJ:)
specifies that the execute form of the macro and an
existing REALLOC parameter list are used.

140 MVS/XA System-Data Administration

o

o

o

...........•... --- .~---~'--"-'-'-~--'

(

c

~RX-type address, (0-12)

E

specifies an in-storage address of the REALLOC
parameter list.

Code as shown.

DSSIZE=~I(~)
specifies the size of the data set to be allocated in
tracks. If a cylinder request (X'CO' in the flag byte of
DSlSCALO) or average block with round request (X'4l') is
made, the number of tracks specified is rounded up to the
next full cylinder, if necessary.

You may not specify the DSSIZE in terms of average block
size, even though the original data set may have been
allocated with the number of average blocks (X'40').

~--RX-type address

(~)

specifies an in-storage address of a full word
containing the data set size.

specifies a register containing the size of the data
set. Valid registers are 0 and 2-12.

PDSCB=~RX-type address, (0), (2-12)
specifies the address of the partial DSCB. The partial
DSCB is comprised of the first 98 bytes of a format-l DSCB.
The first 44 bytes contains the data set name to be
allocated. The contents of the partial DSCB are used,
unchanged, in constructing the format-l DSCB. Only the
field DSlNOEPV (number of extents on the volume) of the
partial format-l DSCB is modified by allocation to reflect
the actual number of extents allocated.

UCB=~RX-type address. (0), (2-12)
specifies the address of the UCB of the volume where the
data set is to be allocated. The volume must be mounted
and you must ensure that it remains mounted.

M I NAU=ild..dJ: I (J:.!l9)
specifies the size of the minimum allocation unit in
tracks. All primary extents for this data set are in
multiples of this minimum allocation unit. This value does
not apply to subsequent extensions of the data set. If the
partial DSCB indicates the data set is to be alloc9ted in
cylinders (X'CO' or average block with round request
(X'4l'), this parameter is ignored.

~RX-type address

(~)

specifies an in-storage address of a full word
containing the minimum allocation unit.

specifies a register containing the minimum allocation
unit. Valid registers are 0 and 2-12.

PDSDIR=addcl(~)
specifies the number of 256 byte directory blocks for a
partitioned data set (PDS). This is a required keyword if
the DSlDSORG indicates a partitioned data set. Otherwise,
it is ignored.

~RX-type address

(.a::..e..g)

specifies an in-storage address of a full word
containing the number of 256 byte PDS directory
blocks.

specifies a register containing the number of 256 byte
PDS directory blocks. Valid registers are 0 and 2-12.

Chapter 6. System Macro Instructions 141

REALLOC--DSECT ONLY

REALLOC--LIST FORM

The DSECT form of REALLOC is specified as follows:

I[symbol I REALLOC I MF=D

An example of the DSECT form expansion is:

REALPL REALLOC MF=D
REAlPl DSECT
RAlPLID DS
RAlNGTH DS
RAERRCDE DS
'* RAlRSVD DS
RALDSSZ DS
RALMAU DS
RALPDSCB DS
RALUCB DS
RALDQTY DS
RALEND EQU
RAL ENGTH EQU

CL4
AL2
H

F
F
F
A
A
F

'* RAlEND-REALPL

DSECT FOR PARAMETER LIST
EBCDIC 'REAL' FOR REALLOC
LENGTH OF PARAMETER LIST
ERROR CODE RETURNED FROM
ALLOCATE CSVC 32)
RESERVED
DATA SET SIZE
MINIMUM ALLOCATION UNIT
PARTIAL DSCB POINTER
UCB POINTER
PDS DIRECTORY QUANTITY
END OF PARAMETER LIST
lENGTH OF PARAMETER LIST

The list form of the REALLOC macro is specified as follows:

[/iymg121 REALLOC MF=L
,DSSIZE=~I{~)
,PDSCB=~
,UCB=rui9l:
[,MINAU=~I{~)
[,PDSDIR=~I(~)

Refer to the execute form for an explanation of the parameters.

An example of the list form expansion is:

REALPL REALLOC MF=L
CNOP 0,4

REAlPl EQU '*
DC CL4'REAl'
DC AL2(32)
DC H'O'

DC F'O'
DC F'O'
DC F' 0'
DC ACO)
DC ACO)
DC F' 0'

RALOIE EQU '*

EBCDIC 'REAL' FOR REAlLOC
LENGTH OF PARAMETER LIST
ERROR CODE RETURNED FROM
ALLOCATE (SVC 32)
RESERVED
DATA SET SIZE
MINIMUM ALLOCATION UNIT
PARTIAL DSCB POINTER
UCB POINTER
PDS DIRECTORY QUANTITY
END OF PARAMETER LIST

RETURN CODES FROM REALLOC

Control returns to the instruction following the SVC 32
generated by the REALLOC macro. If the data set was successfully
allocated, register IS contains zeros. Otherwise, register IS
contains one of the following return codes2 :

2 This is a cumulative list of DADSM allocation return codes.
Some of these codes may not apply to the REALLOC macro.

142 MVS/XA System-Data Administration

o

o

. , C.''''.'

(-

C!

c

Cade

004(X'04,)

OOS(X'OS')

012(X' OC')

020(X'14')

02S(X'lC')

04S(X'30')

052(X'34')

056(X'3S')

072(X'4S')

ll6(X'74')

l20(X'7S')

l24(X'7C')

12S(X'SO')

14S(X'94')

152(X'9S')

156(X'9C')

l64(X'A4')

16S(X'AS')

172(X'AC')

176(X'BO')

lSO(X'B4')

Meaning

Data set name of request already exists on this
volume. Initial allocation not possible under
the name given.

No room available in the VTOC or VTOC index.

One of the following errors was encountered:

• Permanent I/O error

• Error returned by CVAF

Requested quantity not available.

ISAM DSORG is not supported.

Register 0 contains a reason code indicating one
of the following errors:

• Reason Code I - Invalid REALLOC parmlist ID.

• Reason Code 2 - Invalid REALLOC parmlist
length.

Invalid partial DSCB pointer.

Not enough space on volume for directory.

DOS VTOC cannot be converted to an OS VTOC.

User labels not supported.

DSSIZE=O and MINAU is greater than O.

DSSIZE is not a multiple of MINAU.

Directory space requested is larger than primary
space.

Overlapping extents in the VTOC.

Overlapping DOS split cylinder extents in the
VTOC.

DADSM allocation terminated due to possible VTOC
errors.

Allocation terminated due to DOS stacked pack
format.

RACF DEFINE failed, data set already defined.

User not authorized to RACF define data set.

Installation exit rejected this request with a
return code of S.

Installation exit rejected this request with a
return code of 4.

MESSAGE DISPLAYS ON THE IBM 3480 MAGNETIC TAPE SUBSYSTEM

The MSGDISP macro displays a message on the IBM 3480. With
MSGDISP, you can specify the message to be displayed and how to
display it (for example, steady or flashing). The six main
parameters of the macro and their functions are:

MOUNT Displays an "M" in position 1 of the display area
during a mount request until a volume is loaded and
made ready The "Mil is followed by the volume serial
number and label type.

Chapter 6. System Macro Instructions 143

.-----------------.~.-----~-.----.-.-~-~~-.-----

VERIFY Shows that a volume has been accepted by displaying
its serial number and label type in positions 2
through 8.

RDY Displays text in positions 2 through 7 while a data
set is open.

DEMOUNT Displays a volume disposition indicator in position 1
until a volume is demounted.

RESET Clears the display area.

GEN Provides the full range of display options, including
the option to alternate two messages.

All except the RDY parameter require that you be in supervisor
state, have a storage protect key of 0 through 7, or be
authorized by the authorized program facility.

The MSGDISP macro generates a parameter list as input to an SVC
routine.

MSGDISP may be coded in the standard, execute, and list forms.

The formats for specifying MSGDISP with the six main parameters,
and the return codes generated by MSGDISP, are given in the
sections that follow.

MSGDISP--DISPLAYING A MOUNT MESSAGE

The format for specifying MSGDISP with the MOUNT parameter iSI

[li~mbgll MSGDISP MOUNT

MOUNT

,UCB=ill.s.l
[,LABEL=['A' I'N' 1'~'I'X'lilSIdJ:ll
t,MF=[LI(E,~)ll
E,SER=['votser'lilSldJ:l] ,
[,TEST=Um YESl]
E,WAIT=[NOIYMl]

displays an nM" in position I of the display area during a
mount request. The "M" is followed by a volume serial
number and label type. The display flashes on and off
until a volume is loaded and ready. If the device is ready
at the time a mount request is issued, the nM" is not
displayed.

UCB=~--(2-l2)
specifies a register containing the UCB address for the
device.

LABEL=['A'I'N'I'~'I'X'IiLd.dJ:l
displays the label type of the mounted volume in position
8. If you specify an unknown label type other than a
blank, a "I" is displayed.

'A'

'N'

'~'

specifies ISO/ANSI/FIPS (AL) or ISO/ANSI/FIPS with
user labels (AUL). Specify in apostrophes.

specifies no labels (NL), LTM (DOS), or bypass label
processing (BLP). Specify in apostrophes.

specifies IBM Standard (SL) or IBM Standard with user
labels (SUL). Specify in apostrophes.

144 MVS/XA System-Data Administration

o

()

o

!

I

I'

,X,
specifies nonstandard labels (NSl). Specify in
apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing
an "A", "N", "SO, or "X" (see the following
explanations of these characters). For MF=L, you may
only specify an A-type address.

MF=(LI (EpiUkl..t:l)
specifies either the execute or the list form of MSGDISP.
If you do not specify this parameter, the standard form of
the macro is used.

L
specifies the list form of MSGDISP. This generates a
parameter list that can be used as input to the
execute form. The execute form can modify the
parameter list.

(Ep~l
specifies that the execute form of the macro and an
existing parameter list are used.

~--RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter
list.

SER=('yolser'I~)
specifies the serial number of the volume to be mounted.
The serial number is displayed in positions 2 through 7.
If you do not specify SER, the system supplies the volume
serial-number. If the serial number is not available, a
scratch volume is used, unless the volume use attribute
indicates a default of "PRIVAT".

'yolser'
specifies the volume serial number as a literal.
Specify in apostrophes.

add£--RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial
number. For MF=L, you may only specify an A-type
address.

TEST=um I YES)
specifies whether to test the UCB to determine if the
device is capable of displaying messages.

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call.

Note: TEST=YES requires you to include the UCB
mapping macro (IEFUCBOB) in the source code.

WAIT={NOIYU)
specifies when control is returned to you.

NO
specifies that control is to be returned before I/O is
complete. I/O return codes are not returned, and I/O
errors are recorded in the same manner as any
permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is
complete.

Chapter 6. System Macro Instructions 145

I MSGDISP--DISPLAYING A VERIFY MESSAGE

The format for specifying MSGDISP with the VERIFY parameter is:

E l2~m luz II MSGDISP VERIFY
~UCB=~
E~LABEL={'A'J'N'I'J·I'X'Ja.dsI!:)l
E~MF={LI(E~~)l
E~SER={'volser'la.dsI!:)l
[~TEST={HQIYES)J
E~WAIT={NOI~)l

VERIFY
displays the serial number and label type of a volume that
has been accepted in positions 2 through 8. Position 1
remains blank. The display lasts until the next display
request is executed.

UCB=~--(2-12)
specifies a register containing the UCB address for the
device.

LABEL=('A'J'N'J'J'I'X'la.dsI!:)
specifies label type of the mounted volume in position 8 of
the display. If an unknown label type other than a blank
is specified, a "T" is displayed.

'A'

'N'

'J'

'X,

specifies ISO/ANSI/FIPS (AL) or ISO/ANSI/FIPS with
user (AUL) labels. Specify in apostrophes.

specifies no labels (NL), LTM (DOS), or bypass label
processing (BLP). Specify in apostrophes.

specifies IBM Standard (SL) or IBM Standard with user
(SUL) labels. Specify in apostrophes.

specifies nonstandard (NSL) labels. Specify in
apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing
an "An, liN", "S", or nx" (see explanations below for
these characters). For MF=L, you may only specify an
A-type address.

MF=(L I (E~iUf.d.c)
specifies either the execute or list form of MSGDISP. If
you do not specify this parameter, the standard form of the
macro is used.

L
specifies the list form of MSGDISP. This generates a
parameter list that can be used as input to the
execute form. The execute form can modify the
parameter list.

(E~a.dsI!:)
specifies that the execute form of the macro and an
existing parameter list is to be used.

Addr--RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter
list.

SER={'voll2er'I~)
specifies the serial number of the volume that has been
verified. The serial number displays in positions 2
through 7. If you do not specify SER, the system supplies

146 MVS/XA System-Data Administration

o

o

o

o

the volume serial number. If the serial number is not
available, a scratch volume is used, unless the volume use
attribute indicates a default of npRIVATn.

'yolser'
specifies the volume serial number as a literal.
Specify in apostrophes.

addr--RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial
number. For MF=L, you may only specify an A-type
address.

TEST={NOIY,U)
specifies whether to test the UCB to determine if the
device is capable of displaying messages.

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call.

Note: TEST=YES requires you to include the UCB
mapping macro (IEFUCBOB) in the source code.

WAIT=(NO IYU)
specifies when control is to be returned to you.

NO
specifies that control is to be returned before I/O is
complete. I/O return codes are not returned, and I/O
errors are recorded in the same manner as any
permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is
complete.

I MSGDISP--DISPLAYING A READY MESSAGE

The format for specifying MSGDISP with the RDY parameter iSI

[lii~mtH~ll MSGDISP RDY

RDY

, DCB=a.d.dr:
[,MF={LI(E,~)l
[,TXT={'mliigJ;2S;j; 1a.d.sfJ:)1

displays the text supplied in the TXT parameter in
positions 2 through 7 while the data set is open. The
display is steady (not flashing) and is enclosed in .
parentheses. The display is also written to the tape pool
console (routing code 3, descriptor code 7).

DCB=a.d.dr:
specifies the address of a DCB opened to a data set on the
mounted volume. If multiple devices are allocated, the
message display is directed to the one containing the
volume currently in use.

Note: If multiple devices or multiple volumes are
allocated, you may update a message display after an
end-of-volume condition by using the EOV exit specified in
a DCB exit list. In the case of a concatenated data set
with unlike characteristics, the DCB OPEN exit may be used
to update the display.

addr--RX-type address, A-type address, or (2-12)
specifies an in-storage address of the opened DCB.
For MF=L, you may only specify an A-type address.

Chapter 6. -System Macro Instructions 147

MF=UI (E,ad.dJ::ll
specifies either the execute or list form of MSGDISP. If
this parameter is not specified, the standard form of the
macro is used.

L
specifies the list form of MSGDISP. This generates a
parameter list that can be used as input to the
execute form. The execute fOrm can modify the
parameter list.

(E,ad.dJ::l
specifies that the execute form of the macro and an
existing parameter list is to be used.

~RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter
list.

TXT=('msgtxt'l~l
specifies up to six characters to display in positions 2
through 7 of the display. If you do not specify TXT,
blanks are displayed.

'msgtxt'
specifies the text as a literal. Specify in
apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing
the text to be displayed. For MF=L, you may only
specify an A-type address.

I MSGDISP--DISPLAYING A DEMOUNT MESSAGE

The format for specifying MSGDISP with the DEMOUNT parameter iSI

[li~mbQll MSGDISP DEMOUNT
,UCB=iJ::.ggl
[,DISP=('D'I'K'I'R'Iad.dJ::l]
[,MF=(LI(E,~l)]
[,MLABEL={'A'I'N'I '~'I'X'liJ..dsi.I:}]
[,MSER=('~ollier-to-moynt'Iad.dJ::}]
[,SER={'~olser'Iad.dJ::}l
[, TEST=UiQ I YES} 1
t,WAIT=(NOIYial]

DEMOUNT
Displays a volume disposition indicator in position 1 until
the volume is demounted. Optionally, you may display the
serial number of the volume to be demounted at the same
time. The display flashes on and off. If a volume is not
mounted on the device when the display request is executed,
blanks are displayed.

The demount message may be displayed alternately (flashing)
with a mount message for the next volume by specifying the
MSER parameter.

UCB=~--(2-12)
specifies a register containing the UCB address for the
device.

DISP=('U'I'K'I'R'I~}
specifies the character to display in position 1,
representing the volume disposition.

lUI
Demount a public volume. Specify in apostrophes.

148 MVS/XA System-Data Administration

o

I

o

o

, K'

'R'

Nate: "D" also displays when you specify an invalid
character or when the volume use attribute is unknown
Cas in an automatic volume recognition (AVR) error
when reading a label).

Keep a private volume and return it to the library.
Specify in apostrophes.

Retain a private volume near the device for further
use. Specify in apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing
a "D", "K", or "R". For MF=L, you may only specify an
A-type address .

. MF={LI (E,~Jl
specifies either the execute or list form of MSGDISP. If
you do not specify this parameter, the standard form of the
macro is used.

L
specifies the list form of MSGDISP. This generates a
parameter list that can be used as input to the
execute form. The execute form can modify the
parameter list.

(E,ilSkl!:J
specifies that the execute form of the macro and an
existing parameter list is to be used.

ilSkl!:--RX-type address, (1), or (2-12)
specifies an in-storage address of the parameter
list.

MLABEL={'A'I'N'I',S'I'X'IiUf.skl
displays the label type of the volume to be loaded and made
ready following a demount, in position 8. If you specify
an unknown label type other than a blank, a "1" is
displayed. You may only specify this parameter if you also
specify the MSER parameter.

'A'

'N'

',S'

'X,

specifies ISO/ANSI/FIPS (AL) or ISO/ANSI/FIPS with
user CAUL) labels. Specify in apostrophes.

specifies no labels (NL), LTM (DOS), or bypass label
processing (BLP). Specify in apostrophes.

specifies IBM Standard (SL) or IBM Standard with user
(SUL) labels. Specify in apostrophes.

specifies nonstandard (NSL) labels. Specify in
apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing
an "A", "N", "sa, or "X" (see the following
explanations of these characters). For MF=L, you may
only specify an A-type address.

MSER={yolser-to-mount'liUf.skl
displays the mount message for the next volume alternately
(flashing) with the demount message. The display continues
until you demount the current volume. At that time, the
mount message will display (flashing) until you load the
volume and make the device ready. If no volume is mounted
at the time the demount and mount messages are executed,

Chapter 6. System Macro Instructions 149

ISO

~~-.. - ~----.---....... --.~ .. -

only the mount message will display (flashing) until the
volume is loaded and ready.

'yolser-to-mount'
specifies the volume serial number, as a literal, of
the volume to be mounted. Specify in apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial
number of the volume to be mounted. For MF=L, you may
only specify an A-type address.

SER={yolser'I~)
specifies the serial number of the volume to be demounted.
The serial number is displayed in positions 2 through 7.
If you do not specify SER, the system supplies the volume
serial number. If the serial number is not available, a
scratch volume is used, unless the volume use attribute
indicates a default of uPRIVATn.

'yolser'
specifies the volume serial number as a literal.
Specify in apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of the volume serial
number. This parameter is not valid for the MF=L
form. For MF=L, you may only specify an A-type
address.

TEST={HQIYES)
specifies whether to test the UCB to rletermine if the
device is capable of displaying messages.

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call.

Note: TEST=YES requires you to include the UCB
mapping macro (IEFUCBOB) in the source code.

WAIT={NOIYll)
specifies when control is to be returned to you.

NO
specifies that control is to be returned before I/O is
complete. I/O return codes are not returned, and I/O
errors are recorded in the same manner as any
permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is
complete.

MVS/XA System-Data Administration

---_. ---- ----------_._----------

o

o

o

(
I MSGDISP--RESETTING THE MESSAGE DISPLAY

The format for specifying MSGDISP with the RESET parameter is.

hi~ml;u~l] MSGDISP RESET
,{UCB=~I,UCBL=~)
[,MF={LI(E,~l)]
[,TEST={HQIYES)]
[,WAIT={NOI~)l

RESET
clears all existing data on the display. If you specify
WAIT=NO and the last service requested was a demount, the
display is not cleared.

After being cleared, the display will show the devicels
internal status message (for example, a message indicating
that the device is ready).

UCB=~--(2-l2)
specifies a register containing the UCB address for the
device.

UCBL=addr--RX-type address, A-type address, (0), or (2-12)
specifies the address of the list containing a maximum of
64 words. Each word in the list contains the address of a
UCB representing a device whose display is to be reset.
The end of the list is indicated by a III in the high-order
bit of the last address in the list. If an error is
encountered while processing the list, register 1 points to
the associated UCB when you regain control.

You cannot specify UCBL with TEST=YES and WAIT=NO.

MF=nl (E,add.t:l)
specifies either the execute or the list form of MSGDISP.
If you do not specify this parameter, the standard form of
the macro is used.

L
specifies the list form of MSGDISP. This generates a
parameter list that can be used as input to the
execute form. The execute form can modify the
parameter list.

(E,il.d.d.r:l
specifies that the execute form of the macro and an
existing parameter list is to be used.

~RX-type address, (1), or (2-12)
specifies the address of the parameter list.

TEST=UIJ:l1 YES)
specifies whether to test the UCB to determine if the
device is capable of displaying messages.

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call. You
cannot specify TEST=YES if you also specify the UCBL
parameter.

Note: TEST=YES requires you to include the UCB
mapping macro (IEFUCBOB) in the source code.

WAIT={NOIYH)
specifies when control is to be returned to you.

Chapter 6. System Macro Instructions 151

NO
specifies that control is to be returned before I/O is
complete. I/O return codes are not returned, and I/O 0
errors are recorded in the same manner as any ...• J
permanent error by the error recovery procedure. .~

You cannot specify WAIT=NO if you also specify the
UCBL parameter.

specifies that control is to be returned after I/O is
complete.

Nate: Demount messages can be reset only if WAIT=YES
is specified.

I MSGDISP--PROVIDING THE FULL RANGE OF DISPLAY OPTIONS

The format for specifying MSGDISP with the GEN parameter iSI

E :a:l£m tu~ Il MSGDISP GEN
,UCB=!.f:1tgl
[,FLASH=(STEADYISTEADY21~IBLINK2IALT1J
[,MF={LI(E,~)Jl
[,TEST=(HQIYES)l
[, TXT={ 'm:agtxt' I asklI:) l
[,TXT2={'altmsgtxt'laddcll
[,VOL={STATICIREMOVEIINSERTISWAPll
[,WAIT={NOI~Jl

GEN
specifies the full range of display options.

UCB=iLft9l--(2-l2) (~
speci fies a register containing the UCB address for the ""'--.j
device.

FLASH={STEADYISTEADY21~IBLINK2IALT)
specifies message display mode.

Nate: If you specify VOL=SWAP, messages will always be
displayed as if you had specified FLASH=ALT.

STEADY
specifies that the primary message (TXT) is to be
displayed without flashing.

STEADY2
specifies that the alternate message (TXT2) is to be
displayed without flashing.

WHK
specifies that the primary message (TXT) flashes on
and off at a rate of approximately two seconds on and
one-half second off.

BLINK2

ALT

specifies that the alternate message (TXT2) flashes on
and off at a rate of approximately two seconds on and
one-half second off.

specifies that the primary and alternate messages (TXT
and TXT2) flash on and off alternately at a rate of
approximately two seconds on and one-half second off.

MF=(LI(E,~) 0
speci fies either the execute or the list form of MSGDISP.
If you do not specify this parameter, the standard form of '
the macro is used.

152 MVS/XA System-Data Administration

(.-.".-

/

c:

L
specifies the list form of MSGDISP. This generates a
parameter list that can be used as input to the
execute form. The execute form can modify the
parameter list.

(E,il.d.d.J:J
specifies that the execute form of the macro and an
existing parameter list is to be used.

specifies an in-storage address of the parameter
list. Specify either an RX-type address or a
register in the range of 2 through 12.

TEST=um I YES)
specifies whether to test the UCB to determine if the
device is capable of displaying messages.

YES

specifies that the SVC routine will test the UCB.

specifies testing the UCB before the SVC call.

Note: TEST=YES requires you to include the UCB
mapping macro (IEFUCBOB) in the source code.

TXT=('msgtxt'I~)
specifies 8 characters to be shown in positions 1 through 8
of the display. If you do not specify TXT, blanks are
displayed.

'msgtxt'
specifies the 8 characters as literals. Specify in
apostrophes.

il.d.d.J:--RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing
the 8 characters. For MF=l, you may only specify an
A-type address.

TXT2=('altmsgtxt'I~)
specifies 8 alternate characters to display in positions 1
through 8 of the display. If you do not specify TXT2,
blanks are displayed.

'alt-msgtxt'
specifies the 8 characters as literals. Specify in
apostrophes.

~RX-type address, A-type address, or (2-12)
specifies an in-storage address of an area containing
the 8 characters. For MF=l, you may only specify an
A-type address.

VOL=(STATICIREMOVEIINSERTISWAP)
specifies message display mode, based on volume status.

STATIC
specifies that messages will display without regard to
volume status until the next message request is
executed, or until the next command initiates volume
movement.

REMOVE
specifies that messages will display until the current
volume is demounted. This parameter is ignored if a
volume is not mounted when the request is executed.

INSERT
specifies that messages will display until a volume is
present, the tape threaded, and the active/inactive
switch is in the active position. This parameter is

Chapter 6. System Macro Instructions 153

SWAP

ignored if a volume is loaded and ready when the
request is executed.

specifies that messages will always display as if
FLASH=ALT were specified. The data from TXT and TXT2
displays alternately (flashing) until the current
volume has been demounted. Then only TXT2 will
display (flashing) until a new volume is loaded and
ready. If no volume is mounted when this parameter is
specified, only TXT2 data will display (flashing)
until a new volume is loaded and ready.

WAIT=(NOIY,Ul
specifies when control is to be returned to you.

NO

I RETURN CODES FROM MSGDISP

specifies that control is to be returned before I/O is
complete. I/O return codes are not returned, and I/O
errors are recorded in the same manner as any
permanent error by the error recovery procedure.

specifies that control is to be returned after I/O is
complete.

When the system returns control to the problem program, the
low-order byte of register IS contains a return code. The
low-order byte of register 0 may contain a reason code as
follows:

Return
Code (15)

OO(X'OO')

04(X'04')

08(X'08')

08(X'08')

l2(X'OC')

Reason
Code (0)

OleX' 01')

02(X'02')

03(X'03')

04(X'04')

OS(X'OS')

06 (X' 06')

U(X'OB')

12(X' OC')

154 MVS/XA System-Data Administration

Meaning

Successful completion.

Device does not support MSGDISP.

Unauthorized request (failed TESTAUTH
for proper authority level) or invalid
input parameters (including DCB or
UCB) .

Invalid parameter.

Invalid DCB or DEBCHK error.

Environmental error.

Authorization violation.

Invalid UCB.

Invalid request.

Unsuccessful ESTAE macro call.

Unsuccessful GETMAIN request.

I/O error (I/O Supervisor posted the
request for an error).

Note: An I/O error occurs for load
display if the drive display has a
hardware failure.

o

o

(I

----------~ .. - -----.. -- ... _ .. _- _ ... __ _- .--~-- ~~.. .-.-- .. -- .. --.. ~~~~-------

If you get return code X'04' or X'OC' on a RESET UCBL operation,
register 1 points to the UCB associated with the error when you
regain control.

Chapter 6. System Macro Instructions 155

CHAPTER 7. MAINTAINING SYSl.IMAGELIB

This chapter describes how to maintain the System image library
(SYS1.IMAGELIB) UCS and FCB images for the IBM 1403, 3203, and
3211 Printers. It also describes how to maintain FCB images for
the IBM 4245 Printer, the UCS image table in SYS1.IMAGELIB for
the 3262 Model 5, 4245, and 4248 Printers, and how to retrieve
an FCB image from SYS1.IMAGELIB for modification.

The IEBIMAGE utility program is used to create and maintain
control modules for the IBM 3800 Printing Subsystem: character
arrangement table modules, graphic character modification
modules, copy modification modules, library character set
modules, and FCB modules.

IEBIMAGE can also be used to create and maintain FCB modules for
the 4248 Printer. FCB modules created for the 4248 can also be
used with the 3262 Model 5 Printer; however, the 3262 Model 5
does not support variable printer speeds or the horizontal copy
feature of the 4248. For more information about IEBIMAGE, see
Utilities.

To use the information presented in this chapter, you should be
familiar with the subjects of the following publications I

• Data Administration: Macro Instryction Reference describes
the SETPRT macro that can specify the UCS and/or FCB images
to be used.

• 1Cl describes the UCB and FCB parameters of the DD statement
that are processed at OPEN time.

• IBM 2821 Control Unit Component Description contains
information on creating a user-designed chain/train for the
1403 Printer.

• IBM 3203 Printer Component Description and Operator's Gyide
contains information on creating a user-designed train for
the 3203 Printer.

• IBM 3211 Printer. 3216 Interchangeable Train Cartridge. and
3811 Printer Control Unit Component Description and
Operator's Guide contains information on creating a
user-designed train for the 3211 Printer.

• System programming library: JES2 Initialization and Tuning
or Network Job Entry Facility for JES2 contains reference
information for JES2.

• JES3 Initialization and Tyning contains reference
information for JES3.

• The IBM 3262 Model 5, 4245 and 4248 Printers have UCS images
supplied in SYS1.IMAGELIB. The IBM-supplied image tables
are shown in Figure 29 on page 159 and Figure 32 on
page 163. For a list of all UCS images available, see:

IBM 3262 printer Model 5 product Description, containing
information on band IDs for the 3262 Model 5 Printer.

IBM 4245 printer Model 1 Component Description and
Operator's Guide, containing information on band IDs for
the 4245 Printer.

IBM 4248 Printer Description, containing information on
band IDs for the 4248 Printer.

The SPZAP service aid can be used to display and modify an
existing member of SYS1.IMAGELIB. Use of SPZAP on load modules
is described in SerVice Aids.

156 MVS/XA System-Data Administration

o

o

(
yes IMAGES IN SYS1.IMAGELIB

Most IBM standard character set images are included in
SYSl.IMAGELIB at system generation time, through the DATAMGT
macro and an IODEVICE macro for the specified printer. (For
details on the DATAMGT and IODEVICE macros, see System
Generation Reference.> The standard character set images for
the 1403, 3203, and 3211 Printers are shown below.

Printer Images

1403 or 3203 AN, HN, PCAN, PCHN, PN, QNC, QN, RN, SN,
TN, XN, YN

3211 All, GIl, Hll, Pll, T11

For the 3262 Model 5, 4245, and 4248 Printers, no UCS images are
supplied in SYSl.IMAGELIB. Instead, a new UCS image is loaded
into the buffer when the machine is powered on or the operator
mounts a new band. See "Adding a UCS Image Name/Alias to a UCS
Image Tablen on page 162 for information on how to access UCS
images that are not supplied in SYSl.IMAGELIB.

The 3262 Model 5, 4245 and 4248 Printers also load a default FCB
image when the machine is powered on. The default FCB for the
4248 is the last FCB loaded into the buffer. For the 4245, the
default FCB is an 11-inch form with 6 LPI and a Channel 1 on the
first print line. For the 3262 Model 5, the default FCB is an
II-inch form with 6 LPI, a Channell on the third print line,
and a Channel 12 on line 64.

The alias names are defined for most installation-standard print
chains/trains/bands installable on a given printer. Alias names
are included in SYSl.IMAOELIB (in the UCS image table> at system
generation time, with the real name of each image.

Some print chains/trains/bands, such as SN and OIl, do not have
alias names because there is no equivalent chain/train/band on
other printers. You can assign an alias for these
chains/trains/bands with the ALIAS statement of the linkage
editor. (For more information on the ALIAS statement, see
Linkage Editor and Loader.) For the 3262 Model 5, 4245 or 4248
Printer, you can also add an alias name by modifying an entry in
the UCS image table. See nAdding a UCS Image Name/Alias to a
UCS Image Table" on page 162.

If an alias name is supplied, it is used to schedule a printer
for SYSOUT data sets. If no alias is supplied, an
installation-defined SYSOUT class or a printer routing code
(specified with the DEST parameter of JCL) should be used to
assign the data set to the correct printer.

ADDING A yeS IMAGE TO THE IMAGE LIBRARY

Using the assembler and linkage editor, you may add a UCS image
to those that reside in SYSl.IMAOELIB. No executable code is
generated; the assembler prepares DCs, and the linkage editor
puts them into SYSl.IMAOELIB. The new UCS image must be
structured according to the following rules:

Chapter 7. Maintaining SYSl.IMAGELIB 157

------ - ------------

1. The member name must be S to 8 characters long; the first 4
characters must be the appropriate UCS prefix, as shown
below.

UCSI - 1403 Printer

UCS2 - 3211 Printer (or 3211 compatible printer)

UCS3 - 3203 Printer

These first four characters must be followed by a character
set code, one to four characters long. Any valid
combination of letters and numbers under assembler language
rules is acceptable. However, the single letters U or C
must not be used, because they are symbols for special
conditions recognized by the system. The assigned character
set code must be specified on the DD statement or SETPRT
macro to load the image into the UCS buffer.

You can supply an alias name for a new image with the ALIAS
statement of the linkage editor. (For more information on
the ALIAS statement, see Linkage Editor and loader.)

2. The first byte of the character set image load module
specifies whether the image is a default. (Default images
may be used by the system for jobs that do not request a
specific image.) Specify the following in the first byte:

For JES2:

X'80' indicates a default image.

X'40' indicates that the output is to be folded.

X'CO' indicates default image and folding.

X'OO' indicates that the image is not to be used as a
default.

For non-JES2:

X'80' indicates a default image.

X'OO' indicates that the image is not to be used as a
default.

3. The second byte of the load module indicates the number of
lines Cn) to be printed for image verification. See
"Verifying the UCS Image" on page 162 for more information
on image verification.

4. Each byte of the next n bytes indicates the number of
characters to be printed on each verification line. For the
3211 Printer, the maximum number of characters printed per
line is 48; the bytes of associative bits (see note S) are
not printed during verification.

S. The UCS image itself must follow the previously described
fields. The image must fill the number of bytes required by
the printer; see the table below for image lengths. Note
that, because of assembler language syntax, two apostrophes
or two ampersands must be coded to represent a single
apostrophe or a single ampersand, respectively, within a
character set image.

lS8 MVS/XA System-Data Administration

o

C)

()

-------------------~-------------------------------

('/
Printer Image Length

1403 240 bytes

3203 304 bytes (240 characters followed by 64
bytes of associative bits)

3211 512 bytes (432 characters followed by IS
bytes of X' 00 '. 64 bytes of associative
bits, and one reserved byte of X'OO')

Associative bits must be coded to prevent data checks when
adding a UCS image to SYS1.IMAGELIB. See the appropriate
printer manual for more information on coding associative
bits.

UCS CODING EXAMPLES

//ADDYN
.I.1STEP
.1.1
.I.1ASM.SYSIN
UCSIYN

THE

• Figure 29 contains an example of adding a 1403 UCS image.
YN. to SYS1.IMAGELIB or the image library. Notes follow
Figure 31 on page 161.

• Figure 30 on page 160 shows the code used to add a 3203 UCS
image, YN, to SYS1.IMAGELIB or the image library.

• Figure 31 on page 161 shows the code used to add a 3211 UCS
image, All, to SYS1.IMAGELIB or the image library.

JOB MSGLEVEL=l
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF'
DD *
CSECT
DC X'80' (THIS IS A DEFAULT IMAGE)
DC ALl(6) (NUMBER OF LINES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 1)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 2)
DC ALl(39) (39 CHARACTERS TO BE PRINTED ON LINE 3)
DC ALl(39) (39 CHARACTERS TO BE PRINTED ON LINE 4)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 5)
DC ALl(39) (39 CHARACTERS TO BE PRINTED ON LINE 6)

FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.I-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
DC C'l234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.I-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ*,.'
END

.1*

.I.1LKED.SYSLMOD DD

.1.1
DSNAME=SYS1.IMAGELIB(UCSIYN),DISP=OLD,
SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 29. Sample Code to Add a 1403 UCS Image to SYS1.IMAGELIB

Chapter 7. Maintaining SYSl.IMAGELIB 159

//ADYN3203
//STEP
//
//ASM.SYSIN
UCS3YN

JOB MSGLEVEL=l
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF'
DD •
CSECT
DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES TO BE PRINTED)
DC ALI(39) C39 CHARACTERS TO BE PRINTED ON LINE 1)
DC ALI(42) C42 CHARACTERS TO BE PRINTED ON LINE 2)
DC ALI(39) (39 CHARACTERS TO BE PRINTED ON LINE 3)
DC AL1(39) C39 CHARACTERS TO BE PRINTED ON LINE 4)
DC ALI(42) C42 CHARACTERS TO BE PRINTED ON LINE 5)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 6)

THE FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE

/.

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ.,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ.,.I-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ.,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ.,.'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ.,.t-$'
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZ.,.'

THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
UCSB BYTE POSITIONS 241-304

DCX'COIOIOIOIOIOIOIOIOI00040000000000010'
DC X'lOl010101010101000404000000040001010'
DC X'lOl0101010100040000000001DIOI01DIOI0'
DC X'lOl01010004000000DOO'
END

//LKED.SYSLMOD DD DSNAME=SYSl.IMAGELIBCUCS3YN),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 30. Sample Code to Add a 3203 UCS Image to SYSl.IMAGELIB

160 MVS/XA System-Data Administration

o

//ADDAll
//STEP
//
//ASM.SYSIN
UCS2All

JOB MSGLEVEL=1
EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD',

PARM.LKED='LIST,OL,REFR,RENT,XREF'
DD 3£
CSECT
DC X'80' (THIS IS A DEFAULT IMAGE)
DC AL1(9) (NUMBER OF LINES TO BE PRINTED)
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON
DC AL1(48) (48 CHARACTERS TO BE PRINTED ON

LINE 1)
LINE 2)
LINE 3)
LINE 4)
LINE 5)
LINE 6)
LINE 7)
LINE 8)
LINE 9)

3£
3£

THE FOLLOWING NINE LINES REPRESENT THE TRAIN IMAGE

/3£

NOTE 2 AMPERSANDS MUST BE CODED TO GET 1 IN ASSEMBLER SYNTAX
DC C'I<.+IHGFEDCBA3£$-RQPONMLKJY.,&&ZYXWVUTS/aI098765432'
DC C'1<.+IHGFEDCBA3£$-RQPONMLKJY.,&&ZYXWVUTS/aI098765432'
DC C'1<.+IHGFEDCBA3£$-RQPONMLKJY.,&&ZYXWVUTS/aI098765432'
DC C'I<.+IHGFEDCBA3£$-RQPONMLKJY.,&&ZYXWVUTS/aI098765432'
DC C'1<.+IHGFEDCBA3£$-RQPONMLKJY.,&&ZYXWVUTS/aI098765432'
DC C' I<.+IHGFEDCBA*$-RQPONMLKJy',&&ZYXWVUTS/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJy.,&&ZYXWVUTS/aI098765432'
DC C'I<.+IHGFEDCBA*$-RQPONMLKJY.,&&ZYXWVUTS/aI098765432'
DC C'1<.+IHGFEDCBA3£$-RQPONMLKJY.,&&ZYXWVUTS/aI098765432'
DC 15X'OO' (RESERVED FIELD, BYTES 433-447)

THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
UCSB BYTE POSITIONS 448-511

DC X'COIOIOIOIOI0I0I0I0I00040404240004010'
DC X'101010101010101000404041000040401010'
DC X'101010101010004040000000101010101010'
DC X'lOI01010004040444800'
DC X'OO' (RESERVED FIELD, BYTE 512)
END

//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS2Al1),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 31. Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB

Notes to Figure 29 an page 159, Figure 30 on page 160, and
Figure 31:

1. The RENT and REFR linkage editor attributes are used for
performance considerations in a paging environment. They
are required attributes.

2. For the 3203 and 3211 Printers, the 64 bytes of associative
bits must be coded to avoid data checks. To determine how
to code these bits for a particular image, see IBM 3203
Printer Component Description and Operator's Gyide or 11M
3211 Printer. 3216 Interchangeable Train Cartridge. and 3811
Printer Control Unit Component Description and Operator's
~.

3. Executing the ASMFCL procedure does not actually generate
executable code. The assembler/linkage editor is used to
place the UCS image into SYSl.IMAGELIB.

4. The SPACE parameter is overridden here because the ASMFCL
cataloged procedure has secondary allocation specified.
Elimination of the override causes the original secondary
allocation amount to be used.

Chapter 7. Maintaining SYSl.IMAGELIB 161

Verifying the UCS Image

For the 1403 (with the UCS feature). 3203. 3211. 3262. and 4245 0'"
Printers. the UCS image can be displayed on the printer for "
visual verification using either of the following parameters I

• In JCL: UCS={character set code"VERIFY)

• In the SETPRT macro: UCS=(character set code"V)

These parameters can also be used for the 4248 Printer.

Because the UCS image cannot be read directly from the 3262
Model 5 and 4248. only the header information on the
verification display will be printed out. The verification
display header appears in the format shown below.

UCS IMAGE VERIFICATION image id [,FOLD] [description]

image id
The 1- to 4-character name of the UCS image.

description
The descriptive information supplied for this UCS image in
the UCS image table.

The 4245 also. optionally, prints the image.

For more information about the UCS VERIFY parameters, see JkL
and Data Administration: Macro Instryction Reference.

I ADDING A UCS IMAGE NAME/ALIAS TO A UCS IMAGE TABLE

SYS1.IMAGELIB does not contain UCS images for the 3262 Model 5,
4245, or 4248 Printers. Instead. the image for each band is
stored in the printer. and automatically loaded into the UCS
buffer when the machine is powered on or a new band is
installed. Information about these images is recorded in the
IBM-supplied UCS image table, which resides in SYS1.IMAGELIB.

UCS Image Table Structure

SYSl.IMAGELIB contains one UCS image table for each type of
printer that supports image tables. The image table contains an
entry for most installation-standard IBM-supplied bands. For
the 4245, the table is called UCS5. For the 4248 and the 3262
Model 5, the table is called UCS6. A typical UCS image table
entry is shown in Figure 32 on page 163.

162 MVS/XA System-Data Administration

Byte O~I i ---.---5 ----,..i~'rr-r--[~'i,.---.l'[:: II ::J
I ~ "",,;,,,10 ' W Length of description data 1

...... -----~ Lengths of verification lines2
(V LENGTH); one byte per line

Figure 32.

...... -------~ Number of verification lines2

'------------~ Reserved (set to zero)

'----------------+ Description offset (set to zero if omitted)

'----------------~ Verification offset (set to zero if omitted)

Flag Byte: X'OO'= Non-default image
X'40'= Fold image
X'60'= Fold image/ Default
X'SO'= Default Image '--------------------+ UCSlmageName

-----------------------~ UCS Image Name or Alias (1-4 character
name, left-justified and padded to a
4-character length with blanks, if necessary)

Length of this entry

UCS Image Table Entry Format

Nates to Figure 32:

1. This field is optional.

2. This field is optional for the 4245 Printer. For the 4248,
this field does not apply and is set to X'OO'.

The contents of the UCS image table UCS5 (IGGUCS5 macro), for
the 4245 Printer, are shown in Figure 33.

, Name Alias Default Description

AN21 AN21 YES Default UCS image

AN21 AN NO 1403/3203 AN image

AN21 All NO 3211 All image

AN21 40E1 NO 4248 40EI image

HN21 HN21 NO Nondefault UCS image

HN21 HN NO 1403/3203 HN image

Figure 33 (Part 1 of 2). UCS5 Image Table Contents

Chapter 7. Maintaining SYS1.IMAGELIB 163

Name Alias Default Description

HN21 H11 NO 3211 Hll image o
HN21 4101 NO 4248 4101 image

PL21 PL21 NO Nondefault UCS image

PL21 PN NO 1403/3203 PN image

PL21 P11 NO 3211 P11 image

PL21 4121 NO 4248 4121 image

SN21 SN21 NO Nondefau1t UCS image

SN21 4201 NO 4248 4201 image

TN21 TN21 NO Nondefau1t UCS image

TN21 TN NO 1403/3203 TN image

TN21 T11 NO 3211 Tll image

TN21 4181 NO 4248 4181 image

GN21 GN21 NO Nondefau1t UCS image

GN21 G11 NO 3211 G11 image

GN21 41C1 NO 4248 41C1 image

RN21 . RN21 NO Nondefau1t UCS image

RN21 RN NO 1403/3203 RN image

KA21 KA21 NO Nondefau1t UCS image

KA21 4041 NO 4248 4041 image

KA22 KA22 NO Nondefault UCS image

FC21 FC21 NO Nondefault UCS image

FC21 4161 NO 4248 4161 image

Figure 33 (Part 2 of 2). UCS5 Image Table Contents

o
164 MVS/XA System-Data Administration

----~~ .. -----------------~- ---------------------

C-,· '.
/

The contents of the UCS image table UCS6 (IGGUCS6 macro), for
the 4248 Printer, are shown in Figure 34.

Name Alias Default Description

40El 40El YES Default UCS image

40E1 AN21 NO 4245 AN2l image

40E1 AN NO 1403/3203 AN image

40El All NO 3211 All image

4101 4101 NO Nondefault UCS image

4101 HN21 NO 4245 HN21 image

4101 HN NO 1403/3203 HN image

4101 H11 NO 3211 H11 image

41C1 41C1 NO Nondefault UCS image

41C1 GN2l NO 4245 GN2l image

4lC1 G11 NO 3211 G11 image

4121 4121 NO Nondefault UCS image

4121 Pl2l NO 4245 Pl21 image

4121 PN NO 1403/3203 PN image

4121 P11 NO 3211 P11 image

4181 4181 NO Nondefau1t UCS image

4181 TN2l NO 4245 TN2l image

4181 TN NO 1403/3203 TN image

4181 Tll NO 3211 Tll image

4061 4061 NO Nondefault UCS image

40Cl 40Cl NO Nondefau1t UCS image

4161 4161 NO Nondefau1t UCS image

4161 FC2l NO 4245 FC2l image

4201 4201 NO Nondefault UCS image

4201 SN2l NO 4245 SN21 image

4041 4041 NO Nondefault UCS image

4041 KA21 NO 4245 KA2l image

Figure 34. UCS6 Image Table Contents

Note: The image tables for the 4245 and 4248 Printers include
USA and Canada band IDs only. To support other national band
IDs, you must modify the UCS image table. See "Adding/Modifying
a UCS Image Table Entry" on page 166.

The 3262 Model 5 Printer uses the 4248 UCS image table, UCS6.
However, no 3262 Model 5 band names or aliases are provided by
IBM in UCS6. In order to use 3262 Model 5 UCS images, you must
add the names and aliases to UCS6 yourself. "Adding/Modifying a
UCS Image Table Entry" on page 166 describes how to add entries

Chapter 7. Maintaining SYS1.IMAGElIB 165

to the UCS image table. For a list of the bands available for
the 3262 Model 5, see IBM 3262 Printer Model 5 Prodyct
Descriptign.

Adding/Modifying a UCS Image Table Entry

If you plan to use a new UCS image name/alias with the 3262
Model 5, 4245, or 4248 Printer, you must add an entry for that
image name/alias to the appropriate UCS image table. Similarly,
if you want to select a new default image or change the
description on an old image, you must make the change in the
image table.

To build new UCS table entries, or to change the format of old
entries, use the following procedure:

1. Issue the IGGUCSIT macro, as described below, to build a new
UCS image table entry. A new entry is built even if it is
intended to replace an existing entry supplied by IBM.
Because the new entry is found first, the previous entry is
never found and thus is effectively replaced.

2. Include the UCS image table, source using the IGGUCSS or
IGGUCS6 macro, both of which are found in SYSl.MACLIB.

3. Reassemble the image table module (UCS5 or UCS6).

4. Link-edit the reassembled module into SYSl.IMAGELIB.

The IGGUCSIT macro instruction has the following format:

IGGUCSIT MF={.L.InIDSECTl
,NAME=image name
[,ALIAS=image alias]
[,DEFAULT={YESINQ)]
[,DESCR=gescripiionl
[,DEVICE={~14248)1
[,VLENGTH=(nl,nZ, ••• n)]

MF={.Lll.IIDSECTl
specifies the form of the macro instruction.

DSECT

produces a UCS image table entry based on the
information supplied in other IGGUCSIT parameters. If
LIST is selected or allowed to default, the NAME
parameter must also be coded.

produces a DSECT for a single UCS image table entry,
similar to the sample entry shown in Figure 32 on
page 163. If you code DSECT, all other parameters of
IGGUCSIT are ignored.

LIST is the default.

NAME=image name
specifies the 1 to 4 character UCS image name.

ALIAS=image alias
specifies a 1 to 4 character alias name for the UCS image.
If ALIAS is not specified, the image name coded in the NAME
parameter will be entered in the UCS image table.

DEFAULT={YESIN2)
indicates whether the new UCS image is to be used as a
default value.

YES
indicates that this UCS image is a default. Default
images are used by the system for jobs that do not
request a specific image.

166 MVS/XA System-Data Administration

o

o

-~-~----~~

(~\

indicates that this UCS image should not be used as a
default.

If the DEFAULT parameter is not specified, the new UCS
image is not used as a default.

DESCR=description
specifies descriptive information about the new UCS image.
description can be up to 32 EBCDIC or hexadecimal
characters long. You cannot use EBCDIC and hexadecimal
characters in combination.

Descriptive information is placed in the header line of the
verification display, following the real UCS image name.
If you omit the DESCR parameter", no description appears in
the display. For more information on the verification
display, see "Verifying the UCS Image" on page 162.

If VLENGTH is not specified for the 4245 Printer, the DESCR
parameter is ignored.

DEVICE=(~14248)
specifies the type of device for which an image table entry
is to be created.

If you specify MF=LIST on the first invocation of the
IGGUCSIT macro, DEVICE defaults to 4245. The default for
subsequent invocations is the printer type that you
specified (or the default) on the first invocation. Table
entries with different DEVICE specifications are not
allowed.

For the 3262 Model 5 Printer, DEVICE=4248 should be
specified in order to create the appropriate form of the
image table entry.

VLENGTH=(nl,nZ, ••• n)
specifies the length(s) of each line in the UCS
verification display. The length of each line must be
specified separately, even if all lines are of the same
length.

nl is the length of print line 1; nZ is the length of print
line 2; n is the length of the last print line. To display
the complete image, the sum of the verification line
lengths should equal 350.

For details on the verification report, see "Verifying the
UCS Image" on page 162.

The VLENGTH parameter is not valid for the 3262 Model 5 or
4248 Printer.

EXAMPLES OF ADDING TO THE UCS IMAGE TABLE

I Example 1: Adding a New Band ID to the 4245 UCS Image Table (UCS5)

In this example, the band name RPQl with description "RPQ BANDn
is added to UCS5. In the UCS verification display, 7 lines of
SO characters each are printed. Macro IGGUCSS causes the UCS
image table source (as distributed by IBM) to be included in the
table entry.

Chapter 7. Maintaining SYSl.IMAGELIB 167

//UCSS JOB
// EXEC ASMFCL,
// PARM.ASM='NODECK,LOAD',
// PARM.LKED='OL,RENT,REUS'
//SYSPRINT DD SYSQUT=A
//ASM.SYSIN DD *

TITLE 'UPDATED UCSS IMAGE TABLE'
UCSS CSECT

/*

IGGUCSIT NAME=RPQ1,
VLENGTH=(SO,SO,SO,SO,SO,50,50),
DESCR='RPQ BAND'

IGGUCS5
END

//LKED.SYSLMOD DD DSN=SYS1.IMAGELIB(UCSS),DISP=OLD,

72

x
X

// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Notes to Example 1:

1. The RENT and REUS linkage editor attributes are used for
performance considerations in a paging environment. They
are required attributes.

2. Executing the ASMFCL procedure does not actually generate
executable code. The assembler/linkage editor is used to
place the UCS image table entry into SYSI.IMAGELIB.

o

3. The SPACE parameter is overridden here because the ASMFCL
cataloged procedure has secondary allocation specified.
Elimination of the override causes the original secondary
allocation amount to be used. ~.

~j
I Example 2: Adding a New Default Entry to the 4248 UCS Image Table (UCS61.

In the following example, the band name 40El with description
"40El DEFAULT BAND" is added to UCS6 and defined as a default
band. An alias name, HN21, is also defined for band 40El.
Macro IGGUCS6 causes the UCS image table source (as distributed
by IBM) to be included in the table entry.

//UCS6 JOB
// EXEC ASMFCL,
// PARM.ASM='NODECK,LOAD',
// PARM.LKED='OL,RENT,REUS'
//SYSPRINT DD SYSOUT=A
//ASM.SYSIN DD *

TITLE 'UPDATED UCS6 IMAGE TABLE'
UCS6 CSECT

/*

IGGUCSIT NAME=40El,
DEVICE=4248,
ALIAS=HN21,
DEFAULT=YES,

IGGUCS6
END

DESCR='40El DEFAULT BAND'

//LKED.SYSLMOD DD DSN=SYS1.IMAGELIB(UCS6),DISP=OLD,

72

x
X
X
X

// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Note that this method creates a duplicate entry for 40El that
becomes the first entry in the table. Because the table is

168 MVS/XA System-Data Administration

o

searched sequentially, the new entry is always found before the
old entry, thus effectively replacing the old entry.

Notes to Example 2:

1. The RENT and REUS linkage editor attributes are used for
performance considerations in a paging environment. They
are required attributes.

2. Executing the ASMFCL procedure does not generate executable
code. The assembler/linkage editor places the UCS image
table entry into SYSI.IMAGELIB.

3. The SPACE parameter is overridden because the ASMFCL
cataloged procedure has secondary allocation specified.
Elimination of the override causes the original secondary
allocation amount to be used.

I ADDING AN FeB IMAGE TO THE IMAGE LIBRARY

Two standard FCB images, STDl and STD2, are included in
SYSl.IMAGELIB during system generation for the following
printers:

3203

3211

4245

3262 Model 5

4248

The 4248 and 3262 Model 5 Printers also accept FCBs that can be
used with the 3203, 3211, and 4245 Printers. (These are
referred to as 3211 format FCBs.)

STDI sets line spacing at 6 lines per inch for an 8-1/2 inch
form; STD2 is a default FCB image that sets line spacing at 6
lines per inch for an II-inch form. Channels for both images
are evenly spaced, with Channel 1 on the fourth line and Channel
9 on the last line. See Figure 35 on page 170 and Figure 36 on
page 170 for sample STDl and STD2 images.

The 3262 Model 5, the 4245, or the 4248 Printer loads a default
FCB image into the buffer when the machine is powered on. The
3262 Model 5 default FCB image is an II-inch form with 6 lines
per inch, a Channel 1 on the third print line, and a Channel 12
on line 64. The 4245 default FCB image is an II-inch form with
6 lines per inch and a Channel 1 on the first print line. The
4248 default FCB image is the last FCB image loaded.

You should use the IEBIMAGE utility to create and modify FCB
modules for the 3800 Printing Subsystem. You should also use it
to create and modify FCB images for the 3262 Model 5 or 4248
Printer (4248 format FCBs). For information on IEBIMAGE and the
format of the 4248 FCB image, see Utilities.

Chapter 7. Maintaining SYSl.IMAGELIB 169


~~~~~- ~----~---- ---------------

FCB2STDl CSECT 

0 DC X'80' DEFAULT 
DC All (48) FCB IMAGE LENGTH = 48 
DC X'OOOOOO' LINE 1, 2, 3 
DC X'Ol' LINE 4, CHANNEL 1 
DC X'OOOOOO' LINE 5, 6, 7 
DC X'02' LINE 8, CHANNEL 2 
DC X'OOOOOO' LINE 9, 10, 11 
DC X'03' LINE 12, CHANNEL 3 
DC X'OOOOOO' LINE 13, 14, 15 
DC X'04' LINE 16, CHANNEL 4 
DC X'OOOOOO' LINE 17, 18, 19 
DC X'05' LINE 20, CHANNEL 5 
DC X'OOOOOO' LINE 21, 22, 23 
DC X' 06' LINE 24, CHANNEL 6 
DC X'OOOOOO' LINE 25, 26, 27 
DC X' 07' LINE 28, CHANNEL 7 
DC X'OOOOOO' LINE 29, 30, 31 
DC X'08' LINE 32, CHANNEL 8 
DC X'OOOOOO' LINE 33, 34, 35 
DC X'OA' LINE 36, CHANNEL 10 
DC X'OOOOOO' LINE 37, 38, 39 
DC X'OB' LINE 40, CHANNEL 11 
DC X'OOOOOO' LINE 41, 42, 43 
DC X'OC' LINE 44, CHANNEL 12 
DC X'OOOOOO' LINE 45, 46, 47 
DC X'19' LINE 48, CHANNEL 9-END OF FCB IMAGE 
END 

Figure 35. Sample of the Standard FCB Image STDl 

~\ 
~j 

FCB2STD2 CSECT 
DC X'80' DEFAULT 
DC ALlC66 ) FCB IMAGE LENGTH = 66 
DC X'OOOOOO' LINE 1, 2, 3 
DC X'Ol' LINE 4, CHANNEL 1 
DC X'OOOOOOOOOO' LINE 5, 6, 7, 8, 9 
DC X'02' LINE 10, CHANNEL 2 
DC X'OOOOOOOOOO' LINE 11, 12, 13, 14, 15 
DC X'03' LINE 16, CHANNEL 3 
DC X'OOOOOOOOOO' LINE 17, 18, 19, 20, 21 
DC X'04' LINE 22, CHANNEL 4 
DC X'OOOOOOOOOO' LINE 23, 24, 25, 26, 27 
DC X'05' LINE 28, CHANNEL 5 
DC X'OOOOOOOOOO' LINE 29, 30, 31, 32, 33 
DC X'06' LINE 34, CHANNEL 6 
DC X'OOOOOOOOOO' LINE 35, 36, 37, 38, 39 
DC X'07' LINE 40, CHANNEL 7 
DC X'OOOOOOOOOO' LINE 41, 42, 43, 44, 45 
DC X' 08' LINE 46, CHANNEL 8 
DC X'OOOOOOOOOO' LINE 47, 48, 49, 50, 51 
DC X'OA' LINE 52, CHANNEL 10 
DC X'OOOOOOOOOO' LINE 53, 54, 55, 56, 57 
DC X'OB' LINE 58, CHANNEL 11 
DC X'OOOOOOOOOO' LINE 59, 60, 61, 62, 63 
DC X'OC' LINE 64, CHANNEL 12 
DC X'OO' LINE 65 
DC X'19' LINE 66, CHANNEL 9-END OF FCB IMAGE 
END 

Figure 36. Sample of the Standard FCB Image STD2 

0 
170 MVS/XA System-Data Administration 

-~~~~~~~~~~~~~~~-- -----~- ~~~~~~~~~~--~- ------



You may add a 3211 format FCB image to those that reside in 
SYSl.IMAGELIB. using the assembler and linkage editor. No 
executable code is generated; the assembler prepares DCs. and 
the linkage editor puts them into SYSl.IMAGELIB. The new FCB 
image must be structured according to the following rules: 

1. The member name may not exceed eight bytes. The first four 
characters of the name must be FCB2. The characters that 
follow identify the FCB image and are referred to as the 
"image identifier" (ID). Any combination of valid assembler 
language characters can be used. with the exception of a 
single "C" or "U". because these are used by the system to 
recognize special conditions. The image identifier must be 
specified in the FCB keyword of a DD statement or in the 
SETPRT macro to load the image into the FCB buffer. 

2. The first byte of the FCB load module specifies whether the 
image is a default. (Default images may be used by the 
system for jobs that do not request a specific image.) 
Specify the following in the first byte: 

X'80' indicates a default image 
X'OO' indicates a nondefault image 

3. The second byte of the load module indicates the number of 
bytes to be transferred to the control unit to load the FCB 
image. This count includes the byte. if used. for the print 
position indexing feature. 

4. The third byte of the load module (the first byte of the FCB 
image) is either the print position indexing byte. or the 
lines-per-inch byte. The print position indexing byte is 
optional and. when used. precedes -the lines-per-inch byte. 
The 4245 and 4248 Printers accept and discard the index byte 
if it is present. because neither printer supports the 
indexing feature. A description of the print position 
indexing feature and its use will be found in IBM 3211 
Printer. 3216 Interchangeable Train Cartridge. and 3811 
Printer Control Unit Component Description and Operator's 
~. 

The special index flag in the third byte contains X'80' plus 
a binary index value. from 1 to 32 (the default is 1). This 
index value sets the left margin: 1 indicates flush-left; 
any other value indicates a line indented that many spaces. 

The form image begins with the lines-per-inch (LPI) byte. 
The LPI byte defines the number of lines per inch (6 or 8) 
and also represents the first line of the page. It mayor 
may not also contain a channel identifier. 

Typically. the length of an FCB image is consistent with the 
length of the form it represents. For example. an 8-1/2 
inch form to be printed at 6 LPI has an FCB image that is 51 
bytes long (8-1/2 inches times 6 LPI). 

The LPI byte appears as follows: 

X'ln' sets 8 LPI 

X'On' sets 6 LPI 

5. All remaining bytes (lines) must contain X'On'. except the 
last byte. which must be XIln'. The letter n can be a 
hexadecimal value -from 1 to C. representing a channel (one 
to 12). or it can be O. which means no channel is indicated. 

In Figure 37 on page 172. an FCB load module is assembled and 
added to SYSl.IMAGELIB. The image defines a print density of 8 
lines per inch on an II-inch form. with a right shift of 15 line 
character positions (1-1/2 inches). 

Chapter 7. Maintaining SYS1.IMAGELIB 171 



-"-~ --~~-~~------------------------------

//ADDFCB JOB MSGLEVEL=l 
//STEP EXEC PROC=ASMFCL,PARM.ASM='NODECK,LOAD', 
// PARM.LKED='LIST,OL,REFR,RENT,XREF' 
//ASM.SYSIN DD * 
FCB2IDl CSECT 
*THIS EXAMPLE IS FOR A FORM LENGTH OF 11 INCHES WITH 8 LPI (88 LINES) 

DC X'80' THIS IS A DEFAULT IMAGE 
DC AL1(89) LENGTH OF FCB IMAGE AND INDEXING BYTE 
DC X'8F' OFFSET IS CHARACTERS TO THE RIGHT 
DC X'lO' 8 LINES PER INCH-NO CHANNEL FOR LINE 1 
DC XL4'0' 4 LINES NO CHANNEL 
DC X'Ol' CHANNEL 1 IN LINE 6 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'02' CHANNEL 2 IN LINE 13 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'03' CHANNEL 3 IN LINE 20 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'04' CHANNEL 4 IN LINE 27 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'OS' CHANNEL 5 IN LINE 34 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'06' CHANNEL 6 IN LINE 41 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'07' CHANNEL 7 IN LINE 48 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'08' CHANNEL 8 IN LINE 55 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'09' CHANNEL 9 IN LINE 62 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'OA' CHANNEL 10 IN LINE 69 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'OB' CHANNEL 11 IN LINE 76 
DC XL6'0' 6 LINES NO CHANNEL 
DC X'OC' CHANNEL 12 IN LINE 83 
DC XL4'O' 4 LINES NO CHANNEL 
DC X'lO' POSITION 88 LAST LINE IN IMAGE 
END 

/3E 
//LKED.SYSLMOD DD DSNAME=SYSl.IMAGELIB(FCB2IDl),DISP=OLD, 
// SPACE= (OVERRIDE SECONDARY ALLOCATION) 

Figure 37. Sample Code to Assemble and Add an FCB Load Module to SYSl.IMAGElIB 

Notes to Figure 37: 

1. The RENT and REFR linkage editor attributes are used for 
performance considerations in a paging environment. They 
are required attributes. 

2. Executing the ASMFCL procedure does not actually generate 
executable code. The assembler/linkage editor is used to 
place the FCB image into SYSl.IMAGELIB. 

3. The SPACE parameter is overridden here because the ASMFCL 
cataloged procedure has secondary allocation specified. 
Elimination of the override causes the original secondary 
allocation amount to be used. 

172 MVS/XA System-Data Administration 

o 

o 

-------~-- ---- -----------



(-
RETRIEVING AN FCB IMAGE FROM SYS1.IMAGELIB 

If you want to modify an FCB image in virtual storage before 
loading it into a forms control buffer, you can use this 
sequence of macro instructions to read the FCB image into 
virtual storage. 

1. An IMGLIB macro instruction, along with the OPEN parameter 

2. A BLDL macro instruction to determine whether the FCB image 
you want is in the image library 

3. A LOAD macro instruction to load the image into virtual 
storage 

After the image has been read in, you should issue the IMGLIB 
macro instruction with the CLOSE parameter and the address of 
the DCB that was built by the first IMGLIB macro. A SETPRT 
macro instruction can be used to load the forms control buffer 
with the modified image. Printers other than the 3800 will 
require the use of an FCB entry in an exit list, as described in 
Data Administration Gyide. 

The format of the BLDL and SETPRT macros is given in ~ 
Administration: Macro Instruction Reference; the format of the 
LOAD macro is given in Sypervisor Services and Macro 
Instryctions. 

The format of the IMGLIB macro is shown below: 

I [Symbolll IMGLIII (OPENICLOSE,~) 

OPEN 

CLOSE 

specifies that a DCB is to be built for SYS1.IMAGELIB and 
that SYS1.IMAGELIB is to be opened. The address of the DCB 
is returned in register 1. 

specifies that SYS1.IMAGELIB is to be closed. 

specifies the RX-type address of the word that points to 
the DCB. If coded in the form (~), the register in 
parentheses then contains the address of the DCB, not the 
address of the fullword. 

Return codes from the IMGLIB OPEN macro are shown belowl 

Return Code Meaning 

oeX'OO') Operation successful. 

4(X'04') Either the volume containing 
SYS1.IMAGELIB is not mounted or a 
required catalog volume is not mounted. 

8(X'08') Either SYS1.IMAGELIB does not exist on 
the volume to which the catalog points, 
or SYS1.IMAGELIB is not cataloged. 

l2(X'OC') An error occurred in reading the catalog 
or VTOC. 

BLDL and LOAD are the only macros that may refer to the DCB 
built by the IMGLIB macro. 

Chapter 7. Maintaining SYS1.IMAGELIB 173 



CHAPTER 8. JES2 SUPPORT FOR THE IBM 1403, 3203 MODEL 5, AND 3211 PRINTERS 

UCS ALIAS NAMES 

The system assigns an alias for each installation-standard print 
chain not actually defined on a given printer. This provides 
JES2 with flexibility in scheduling printers for SYSOUT data 
sets. For example, a request for the 1403 TN train would be 
assigned the TIl train if the data set were printed on a 3211. 
The assigned alias names that follow the naming conventions 
currently used in SYSl.IMAGELIB are: 

Image 

UeSlAN 
UeS1HN 
UeSlPN 
UeSlTN 
UeS2All 
UeS2Hll 
UeS2Pll 
UeS2Hl 

Alias 

UeSlAll 
UeSlHll 
UeSlPll 
UeSl HI 
ueS2AN 
UeS2HN 
UeS2PN,UeS2RN,UeS2QN 
UeS2TN 

The image and alias names are included in SYSl.IMAGELIB at 
system generation. 

Some trains, such as SN and GIl, do not have aliases because 
neither has an equivalent train on the other printer. An 
installation can assign an alias, if it so chooses. (For 
details about the ALIAS statement, see Linkage Editor and 
Loader.) If an alias is supplied, JES2 will use it. If an 
alias is not supplied, an installation-defined SYSOUT class or a 
printer routing code (specified via the DEST parameter) should 
be used to assign the data set to the correct printer. If a 
SYSOUT class or a printer routing code is not used and if JES2 
is directed to print a data set on a printer for which the 
proper image is not supplied, JES2 notifies the operator. The 
operator can then print the data set with a valid train or 
redirect the data set to the proper printer via the '$E' 
command. 

If an installation defines a new train, it can supply an alias 
name for that train, via the linkage editor ALIAS statement, 
when including the image in SYSl.IMAGELIB. 

THE 3211 INDEXING FEATURE 

JES2 supports the 3211 Indexing Feature in two ways I 

1. Specification of the INDEX parameter on the /~OUTPUT card. 

2. The extended FeB image: 

JES2supplies two special FCBs: FCB26 for 6 lines per inch 
and FCB28 for 8 lines per inch (specified as FCB=6 and 
FeB=8, respectively). These FCBs contain a channell 
indication in position I, a special index flag in the third 
byte, and the number of lines per inch in the fourth byte of 
the image. 

The special index flag in the third byte of FCB26 and FCB28 
contains X'80' plus a binary index value, in the range 1 to 
32 (default=l). The index value sets the left margin (1 
indicates flush-left position; other values cause 
indentation of the print line by N-l positions). 

174 MVS/XA System-Data Administration 

----------~-------. 

o 

() 



.~~~~~~--~-~~- .... -------.--~--

If any other FCB images are to be used by JES2, they must 
specify channel 1 in position 1; otherwise, JES2 incorrectly 
positions the forms in the printer. (STDl and STD2 do not 
specify channel 1 in position 1 and therefore must not be 
specified, unless altered, for JES2.) 

IBM 3203 MODEL 5 PRINTER 

If the third byte of any other FeB image contains a data 
character (specifying the number of lines per inch) other 
than X'80', JES2 uses that specification and supplies an 
index value of 1. 

The IBM 3203 Model 5 Printer is treated as a 3211 Printer by 
JES2, except that the 3203 Model 5 does not support the 3211 
indexing feature, and any indexing commands from JES2 are 
ignored by the 3203 ModelS. The 3203 ModelS uses 3211 FCB 
images and its own unique UCS images. UCS images are listed in 
Installation System Generation. 

Chapter 8. JES2 Support for the IBM 1403, 3203 ModelS,. and 3211 Printers 175 



I 
I 

CHAPTER 9. CATALOG, SCRATCH, AND RENAME DUMMY MODULES 

The load modules for CATALOG CSVC 26), SCRATCH CSVC 29), and 
RENAME CSVC 30) contain as their entry points the dummy modules 
IGG026DU, IGG029DU, and IGG030DU, respectively. These dummy 
modules immediately pass control to the first processing module 
for their respective SVCs without performing any processing 
themselves. The CATALOG dummy module IGG026DU receives control 
from SVC 26 and immediately passes control to module IGC0002F. 
The SCRATCH dummy module IGG029DU receives control from SVC 29 
and immediately passes control to module IGC0002I. The RENAME 
dummy module, IGG030DU, receives control from SVC 30 and 
immediately passes control to IGC00030. 

The load module for SCRATCHCSVC29) also contains the dummy 
module IGG029DM. The SCRATCH dummy module IGG029DM receives 
control from IGG0290D when an error return code of 4 or 8 is 
indicated, and immediately passes control to the location 
pointed to by register 14. 

If you require special processing either before or after SVC 26, 
29, or 30, you replace the appropriate dummy moduleCs) with your 
own moduleCs). Your replacement modules must follow all the 
characteristics and programming conventions for SVC routines. 
For information on characteristics of SVC routines, programming 
conventions for SVC routines, writing SVC routines, and 
inserting SVC routines, see Sypervisor Services and Macro 
Instryctions. Your modules may replace IGG026DU, IGG029DU, 
IGG029DM, and IGG030DU in SYSl.AOSDO prior to system generation, 
or you may replace the dummy modules in SYS1.LPALIB after system 
generation. Information on how to replace the dummy modules 
with your modules can be obtained from the appropriate link-edit 
step of the STAGE I system generation output. You may also 
obtain link-edit information from the STAGE I system generation 
macro SGIEC4DM in SYS1.AGENLIB. You may apply PTFs to CATALOG, 
SCRATCH, or RENAME with SMP without modifying your own versions 
of IGG026DU, IGG029DU, IGG029DM, and IGG030DU. 

The prolog of each of the dummy modules contains register 
conventions and other information about these modules. 

176 MVS/XA Svstem-Deta Administration 

o 

o 



(" 

(~/ 
.. , 

CHAPTER lO. SPECIFYING BUFFER NUMBERS FOR DASD DATA SETS 

The BUFNO keyword in the DCB macro and the BUFNO subparameter of 
the DCB keyword in the DD statement determine how many buffers 
are allocated when accessing a partitioned or sequential data 
set using QSAM. The NCP keyword in the DCB macro determines how 
many un-CHECKed READ or WRITE macro instructions are allowed 
when accessing a sequential or partitioned data set using BSAM; 
one buffer is used for each READ or WRITE macro instruction. 

The sequential access method can construct a channel program to 
transfer as many as 30 buffers or 240000 bytes of data, 
whichever is less. If BUFNO or NCP is less than 3D, no more 
than that number of buffers can be transferred with a single 
channel program. 

BUFNO is defaulted in OPEN to five if it is not specified for a 
QSAM DCB; NCP is defaulted to one in OPEN if it is not 
specified. The QSAM access method manages buffers. The user 
program must manage buffers when it uses BSAM. 

PERFORMANCE CONSIDERATIONS 

Buffer number and block size influence the rate at which data 
can be transferred and the operating system overhead per block. 
The use of more buffers reduces (per block transferred) the EXCP 
and lOS overhead and the time waiting for the DASD device to 
seek to the requested cylinder and rotate to the requested 
record (device latency time). However, if more buffers are 
allocated than a program can effectively process, the virtual 
pages containing those buffers will be paged out, effectively 
adding to the system overhead for the job. A large number of 
buffers also cause a large amount of real storage to be 
allocated to the job while the data is being transferred. 

A job in a low-performance group may get swapped out more 
frequently than a higher priority job. The number of buffers 
allocated for the job contributes to the number of pages that 
have to be swapped out. 

Programs that access data sets with small block size (for 
example, 80) can easily make effective use of 30 buffers, which 
fit in, at most, two 4096-byte pages. The advantage of 30 
buffers over the default of five buffers is great: one channel 
program versus six channel programs to transfer 30 blocks. 

At the other end of the spectrum, usage of data sets with large 
blocking factors such as full-track blocking on 3350 or 
half-track blocking on 3380 can still be effective when only 
three or four buffers, rather than five or more, are specified. 
The slightly lower DASD performance and small increase in EXCP 
and lOS instruction costs should be more than offset by a 
reduction in paging or swapping in a constrained environment. 

It can be seen that proper selection of buffer number can have a 
positive effect on the elapsed time of a job and the system 
overhead associated with the job. The DCB OPEN installation 
exit can use installation criteria for a default buffer number 
for QSAM DCBs (for a description of the OPEN installation exit, 
see "DCB OPEN Installation Exit" on page 100.) The NCP field of 
the DCB must be set by the program for BSAM DCBs. 

Chapter 10. Specifying Buffer Numbers for DASD Data Sets 177 



~~~-~~--~--- ~ -------~---~-~ ~ 

APPENDIX At CYAF - VTOC ACCESS MACROS

CYAFDIR MACRO.

OVERVIEW OF THE CVAFDIR MACRO

SYNTAX

For an indexed or nonindexed VTOC, the CVAFDIR macro may be used
to:

• Read or write a DSCB by specifying the name of the data set
it represents

• Read or write a DSCB by specifying its address

In addition, for an indexed VTOC, the macro may be used to:

• Read or write VTOC index records

• Read and retain in virtual storage the first high-level
VIER, and VIERs used during an index search.

• Read and retain in virtual storage the space map VIRs

• Free VIRs retained in virtual storage

Eh..WU.J CVAFDIR ACCESS:READIWRITEIRLSE
[,DSN=s.sklr.J
E,BUFLIST=i1SI5!r:J
E,VERIFV=VESIHQ]
[,UCB=~IDEB=~]
E,IOAREA=KEEPI(KEEP,s.sklr.lNOKEEPI

(NOKEEP,~l]
[,MAPRCDS=VESI(VES,~lIHQI

(NO, SLgd.J:l]
E,IXRCDS=KEEPI(KEEP,~lINOKEEPI

(NO KEEP, i1SI5!r: 1]
E,BRANCH=VES11N21 (VES,SUPll (VES,PGMl]
[,MF=lILI(E,~ll

lThe default is SUP if YES is coded.

ACCESS: READ OR WRITE A DSCB OR VIR(Sl, OR RELEASE BUFFER LISTS

When ACCESS is READ or WRITE, a single DSCB is accessed for an
indexed or nonindexed VTOC, or one or more VIRs are accessed for
an indexed VTOC.

ACCESS=READ
Specifies that a single DSCB or one or more VIRes) are to
be read into a buffer whose address is in a buffer list.

If the buffer list if for a DSCB, only one entry is used in
the buffer list. The first entry with the skip bit set to
zero and with a nonzero buffer address is used.

All VIRes) whose buffer list entry has the skip bit off
will be read into a buffer.

DSN and BUFLIST are required if ACCESS=READ for a DSCB
buffer list.

178 MVS/XA System-Data Administration

------~--------------

o

--.-~~~

(

(

"C._.

_."-

DSN:

ACCESS=WRITE
Specifies that a single DSCB or one or more VIRs are to be
written from bufferCs) whose address is in a buffer list.

WRITE is permitted with BRANCH=NO only if the caller is
authorized by APF.

DSN and BUFLIST are required if ACCESS=WRITE for a DSCB
buffer list.

If any buffer list entry has its modified bit set, only
those entries with the modified bit set will be written. If
no modify bits are on, all VIRs will be written.

ACCESS=RLSE
Applies only to VIR buffer lists. It requests the release
of one or more buffers in the VIR buffer list chain
identified in the HUFLIST keyWord, and the release of each
buffer list for which all buffers are released.

DSN and BUFLIST are not required if ACCESS=RLSE.

Only buffers in the buffer list with the skip bit set to
zero and with a nonzero buffer address are released. The
buffer list is not released if any entry has the skip bit
set to one.

For an indexed VTOC, if ACCESS=RLSE is coded, buffer lists
and buffers pointed to by the BUFLIST keyWord will be
released, along with buffer lists supplied in the CVAF
parameter list CVMRCDS and CVIRCDS fields. If the CVMRCDS
or the CVIRCDS buffers are supplied in the BUFLIST field,
either directly or indirectly through chaining, the keyWord
MAPRCDS=YES, IXRCDS=KEEP, or MAPRCDS=(ND,O),
IXRCDS=CNDKEEP,O) must be coded to prevent CVAF from
freeing the buffers more than once. If buffers are
released, the CVAF parameter list field pointing to the
buffer list will be updated.

SPECIFY THE NAME OF THE DSCB

DSN=.BddJ:
DSN specifies the address of a 44-byte data set name of the
DSCB to be accessed.

DSN is required if ACCESS=READ or WRITE and the request is
to read or write a DSCB. If a l40-byte DSCB is specified:

• CVAF validity checks the storage location, but ignores
the contents of the location.

• You must specify an argument that points to an extent
within the VTDC.

BUFLIST: SPECIFY ONE OR MORE BUFFER LISTS

BUF LI ST=su:ld..r::

VERIFY:

The BUFLIST keyWord contains the address of a buffer list
used to read or write a DSCB or VIRs.

VERIFY THAT A DSCB IS A FORMAT-O DSCB

VERI FY=YES
CVAF will verify that the DSCB is a format-O DSCB before
writing the DSCB. The first four bytes of the key will be
compared with binary zeros. If the key does not start with
four bytes of zeros, the DSCB will not be written and an
error code will be returned.

Appendix A. CVAF - VTDC Access Macros 179

-~- .. -------.--.-------~- '-

VERIFY=NO
CVAF will not test the key of the DSCB.

Note: VERIFY applies only when writing a l40-byte DSCB. VERIFY
is ignored when a VIR is written.

I UCBIDEB: SPECIFY THE VTOC TO BE ACCESSED

UCB=ir:.§.gl
Supplies the address of the UCB for the unit whose VTOC is
to be accessed. An unauthorized caller may not supply a
UCB to CVAF.

Note: Code the address of the UCB parameter as register
(2-12). Coding an RX-Type address here gives you
unpredictable results.

DEB=il.d.d.r:
Specifies the address of a DEB opened to the VTOC you want
to access. CVAF does not allow output requests to the VTOC
or VTOC index if you specify the DEB subparameter. If you
are not authorized, you cannot perform any asynchronous
activity (such as EXCP, CLOSE, EOV) against the data set
represented by the DEB because CVAF removes the DEB from
the DEB table for the duration of the CVAF call. If you
are not authorized (neither APF authorized nor in a system
key), you must specify a DEB address, not a UCB, to
CVAFDIR. See "Identifying the Volume" on page 26 for
further details.

If you supply a previously obtained CVAF I/O area through the
IOAREA keyword, you need not specify the UCB or DEB keyword.
Otherwise you must specify either the UCB or DEB keyword. If
you specify a UCB, the UCB address in the CVPL is overlaid by
the UCB address in the I/O area.

If you supply both the UCB and DEB addresses in the CVPL, CVAF
uses the DEB address and overlays the UCB address in the CVPL
with the UCB address in the DEB.

IOAREA: KEEP OR FREE THE I/O WORK AREA

IOAREA=KEEP
Specifies the CVAF I/O area associated with the CVAF
parameter list is to be kept upon completion of the CVAF
request. IOAREA=KEEP may be coded with BRANCH=NO only if
the caller is authorized (APF or system key).

If IOAREA=KEEP is coded, the caller must issue CVAF with
IOAREA=NOKEEP specified at some future time, whether or not
any further VTOC access is required: for example, the
recovery routine of the caller of CVAF.

Coding IOAREA=KEEP allows subsequent CVAF requests to be
more efficient, as certain initialization functions can be
bypassed. Neither DEB nor UCB need be specified when a
previously obtained CVAF I/O area is supplied; neither can
they be changed.

When IOAREA=KEEP is first issued, CVAF returns the CVAF I/O
area in the CVAF parameter list (CVIOAR). Subsequent calls
of CVAF may use that same parameter list, and CVAF will
obtain its I/O area from the CVIOAR.

When processing on the current volume is finished, release
all areas that were kept.

o

C)

IOAREA=(KEEP,~) C--~
Provides the address of a previously obtained I/O area. If j' . I

a different CVAF parameter list is used, the previously

180 MVS/XA System-Data Administration

--------- ----_ .. -----_._-----------------

(-
obtained I/O area may be passed to CVAF by coding its
address as the second parameter of the IOAREA keyWord.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the
CVAF request.

IOAREA=(NOKEEP,addc1
Causes a previously obtained work area to be freed upon
completion of the CVAF request.

MAPRCDS: KEEP OR FREE MAPRCDS BUFFER LIST AND BUFFERS

This keyWord applies to an indexed VTOC only and specifies the
disposition of the MAPRCDS buffer list and buffers.

MAPRCDS=YES
Specifies that the buffer list and buffers are to be
retained at the end of processing.

If no buffer list address is in the CVAF parameter list,
CVAF will read the MAP VIRs into buffers it obtains. The
buffer list that contains the address and RBAs of the VIRs
can be accessed after processing from the CVAF parameter
list field, CVMRCDS. The buffer list and VIR buffers are
in your protect key: subpool 0 if you are not authorized;
229 if you are.

When processing on the current volume is finished, release
all areas that were kept.

MAPRCDS=(YES,~)
If YES is coded and the buffer list address (CVMRCDS in
CVAF parameter list) is supplied, VIRs are not read.

The CVMRCDS buffer list used in CVAFDIR macro can be passed
to another CVAF macro call through the MAPRCDS keYword.

If MAPRCDS=YES is coded for a nonindexed VTOC, the function
is performed, but an error code will be returned.

MAPRCDS=NO
If MAPRCDS=NO is coded, all the buffers without the skip
bit on in the buffer list whose address is in the CVMRCDS
field of the CVPL will be freed. If all the buffers are
freed, the buffer list will also be freed.

MAPRCDS=(NO,addc)
Causes buffer lists and buffers previously obtained by CVAF
to be freed.

You must free buffer lists and buffers obtained by CVAF. This
can be done in one of three ways:

• By coding MAPRCDS=NO on the CVAFDIR macro that obtained the
buffers

• By coding MAPRCDS=NO on a subsequent CVAF macro

• By coding CVAFDIR ACCESS=RLSE and providing the address of
the buffer list in the BUFLIST keyWord

Nate: You must enqueue the VTDC and reserve the unit to
maintain the integrity of MAP records read.

Appendix A. CVAF - VTOC Acce.s Macro. 181

._----,-----

IXRCDS: RETAIN VIERS IN VIRTUAL STORAGE

This keyword applies to indexed VTOCs only.

IXRCDS=KEEP
Specifies that VIERs read into storage are to be kept in
virtual storage. The VIERs are retained even if processing
cannot complete successfully. The CVAF parameter list in
field CVIRCDS will have the address of a buffer list
containing the VIR buffer addresses and RBAs of the VIERs
read.

The index search function will dynamically update the
buffer list and, when necessary, obtain additional buffer
lists and chain them together.

If KEEP is specified and no buffer list is supplied to CVAF
in the CVPL, CVAF will obtain a buffer list and buffers and
read the first high-level VIER. The address of the buffer
list is placed in the CVMICDS field of the CVPl. The first
high-level VIER will be checked for the VXFHlV bit and to
see whether the VXVISE bit is off.

The buffer list and VIR buffers are in your protect key.
The subpool is 0 if you are not authorized; it is subpool
229 if you are.

If IXRCDS=KEEP is coded for a nonindexed VTOC, a request to
read or write a DSCB will be performed, but an error code
will be returned.

When processing on the current volume is finished, release
all areas that were kept.

IXRCDS=(KEEP,add£l

o

The index records buffer list address from one CVAF request
is being passed to this CVAF parameter list by specifying (~
its address as the second parameter in the IXRCDS keyword.",,-)

IXRCDS=NOKEEP
If NOKEEP is coded, the VIERs that are accessed (if any)
are not retained. Furthermore, the buffer list supplied in

.the CVIRCDS field in the CVAF parameter list is released,
as are all buffers found in the buffer list. If the skip
bit is set in any entry in the buffer list, the buffer and
buffer list will not be freed.

IXRCDS=(NOKEEP,~l
Specifies that previously accessed VIERs are not to be
retained.

You must free buffer lists and buffers obtained by CVAF. This
can be done in one of three ways:

• By coding IXRCDS=NOKEEP on the CVAFDIR macro that obtained
the buffers

• By coding IXRCDS=NOKEEP on a subsequent CVAF macro

• By coding CVAFDIR ACCESS=RlSE and providing the address of
the buffer list in the BUFlIST keyword

Note: You must enqueue the VTOC and reserve the unit to
maintain the integrity of the VIERs read.

o
182 MVS/XA System-Data Administration .

(
BRANCH: SPECIFY THE ENTRY TO THE MACRO

BRANCH=(YES,SUP)
Requests that the branch entry to eVAFDIR be used. You
must be in supervisor state. Protect key checking is
bypassed.

An 18-word save area must be supplied if BRANCH=YES is
coded. No lock may be held on entry to eVAF. SRB mode is
not allowed.

BRANCH=YES
Equivalent to BRANeH=(YES,SUP), because SUP is the default
when YES is coded. Protect key checking is bypassed.

BRANCH=(YES,PGM)
Requests the branch entry. You must be authorized by APF
and be in problem state. Protect key checking is bypassed.

BRANCH=NO
Requests the SVC entry. You must be authorized by APF if
any output operations are requested. Protect key checking
is performed.

MF: SPECIFY THE FORM OF THE MACRO

This keyword specifies whether the list, execute, or normal form
of the macro is requested.

MF=L

If I is coded or if neither L nor E is coded, the eVAF
parameter list is generated and CVAF is called. This is
the normal form of the macro.

L indicates the list form of the macro. A parameter list
is generated, but CVAF is not called.

MF=(E,il..dsk)
E indicates the execute form of the macro. The CVAF
parameter list whose address is in 'addr' can be modified
by this form of the macro.

RETURN CODES FROM THE CVAFDIR MACRO

Dn return from eVAF, register 1 contains the address of the eVPL
(CVAF parameter list), and register IS contains one of the
following return codes:

Code Meaning

OO(X'OO') The request was successful. However, if the CVAFDIR
request is to read or write a DSCB and a VTDC index
structure error is encountered, the CVSTAT field
indicates the structure error encountered. (CVSTAT
code descriptions are in Appendix C, "VTDe Index Error
Message and Associated Codes" on page 221.>

04(X'04') An error occurred. The CVSTAT field in the CVPL
contains an indication of the cause of the error.
(CVSTAT code descriptions are in Appendix e, "VTDe
Index Error Message and Associated Codes" on
page 221.)

08(X'08') Invalid VTDC index structure while processing a
request to read or write a VTDC index record. The
CVSTAT field in the CVPL contains an indication of the
cause of the error. (CVSTAT code descriptions are in
Appendix C, "VTDC Index Error Message and Associated
Codes" on page 221.)

Appendix A. CVAF - VTDe Access Macros 183

l2(X'OC') The CVAF parameter list is not in your protect key or
is invalid (the ID is invalid, or the length field is
incorrect, or the CVFCTN field is invalid). The CVPL 0
has not been modified.

l6CX'lO') An I/O error was encountered.

o
184 MVS/XA System-Data Administration

CYAFDSM MACRO

OVERVIEW OF THE CVAFDSM MACRO

SYNTAX

ACCESS=MAPDATA:

The eVAFDSM macro may be used for an indexed VTDe to:

• Dbtain one or more extents that describe unallocated space
on the volume

• Dbtain a count of free DSeBs on the VTDe

• Dbtain a count of free VTDe index records in the VTOe index.

[labd] CVAFDSM ACCESS=MAPDATA
,MAP=INDEXIVOLUMEIVTOC
[,EXTENTS=s..dd.!:]
[,MAPRCDS=VES11(VES,~)IN021

(NO, il.d..d.J:) 1
[,UCB=~IDEB=~]
[,COUNT=VESltiQ]
[,CTAREA=s..dd.!:l
[,IOAREA=KEEPI(KEEP,~)INOKEEPI

(NOKEEP,iUlsi .. r:l]
[,BRANCH=HQIVES31 (VES,SUP) I (VES,PGM)]
[,MF=AILI(E,~)]

1 Default if MF=I.

Z Default if MF=L or MF=(E,addr).

3 Default is SUP if YES is coded.

REQUEST INFORMATION FROM THE INDEX SPACE MAPS

ACCESS=MAPDATA
Obtains data from the index space maps. Three kinds of
data are available:

• The number of format-O DSeBs (the data is obtained from
the VTDe map of DSeBs)

• The number of unallocated VIRs in the index (the data
is obtained from the VTDe index map)

• The number (and location) of extents of unallocated
pack space (the data is obtained from the VTDe pack
space map)

MAP: IDENTIFV THE MAP TO BE ACCESSED

MAP=INDEX
Specifies that the VTOe index map (VIXM) is to be accessed
and a count of unallocated VIRs returned. eOUNT=YES must
also be coded.

MAP=VOLUME
Specifies that the VTDe pack space map (VPSM) is to be
accessed and information on unallocated extents of pack
space returned. EXTENTS=addr and eOUNT=NO must also be
coded.

MAP=VTOC
Specifies that the VTDe map of DSeBs (VMDS) is to be
accessed and a count of format-O DseBs returned. eOUNT=YES
must also be coded.

Appendix A. eVAF - VTDe Access Macros 185

~-------------.

EXTENTS: IDENTIFY WHERE EXTENTS FROM THE VPSM ARE RETURNED

EXTENTS=~ 0
If one or more extents from the VPSM are requested, EXTENTS L _ .
is the address of a I-byte count field containing the
number of S-byte extents that follow. In the first two
bytes of the first S-byte extent, you must supply the
relative track address (RTA) at which CVAF should start the
VPSM search. The first extent area is updated with
information on the next free extent found that has a higher
starting RTA than that supplied. Each subsequent extent
area is filled in with information on free space extents
(in ascending track address order).

Information on free extents has the format, XXYYZ, where:

• XX is the relative track address of the first track of
the extent.

• YY is the number of whole cylinders in the extent.

• Z is the number of additional tracks in the extent.

Only XX is supplied by the caller in the first extent area.
CVAF will start searching the VPSM at relative track
address XX.

If all the unallocated extents in the VPSM are provided
before filling in all the supplied extent areas, the
remaining extent areas are set to zero. Register 15 is set
to 4 on return, with the CVSTAT field in the CVPl set to
X'20' to indicate end of data.

MAPRCDS: KEEP OR FREE MAPRCDS BUFFER LIST AND BUFFERS

MAPRCDS=YES
Specifies that the buffer list and buffers are to be
retained at the end of the function.

If YES is specified and no buffer list is supplied through
the CVAF parameter list, CVAF will read the MAP VIRs into
buffers obtained by CVAF. The buffer list that contains
the address and RBAs of the VIRs can be accessed after the
CVAF call from the CVAF parameter list field, CVMRCDS. The
buffer list and VIR buffers are in the caller's protect
key: subpool 0 if the caller is not authorized; subpool 229
if the caller is authorized.

YES is the default if MF=I is specified or defaulted.

When processing on the current volume is finished, release
all areas that were kept.

MAPRCDS=(YES,~)
If YES is coded, but the buffer list address (CVMRCDS in
CVAF parameter list) is supplied, the VIRs are not read.

The CVMRCDS buffer list from one CVAF call can be passed to
another CVAF macro call through the MAPRCDS keyword.

MAPRCDS=NO
If MAPRCDS=NO is coded, the MAP records buffers and buffer
list will be freed upon completion of the CVAFDSM function.

NO is the default if MF=l is specified.

MAPRCDS=(NO,ad£c)
Causes buffer lists and buffers previously obtained by CVAF
to be freed.

186 MVS/XA System-Data Administration

---- ------------------~-------

("

, ,/

Buffer lists and buffers obtained by CVAF must be freed by the
caller. This can be done in one of three waysl

• By coding MAPRCDS=NO on the call that obtained the buffers •

• By coding MAPRCDS=NO on a subsequent CVAF call.

• By calling CVAFDIR ACCESS=RLSE and providing the buffer list
in the BUFLIST keyword.

If MF=(E,addr) is coded and MAPRCDS is not coded, the
parameter list value of MAPRCDS is not changed.

Note: You must enqueue the VTOC and reserve the unit to
maintain the integrity of the MAP records read.

I UCBIDEB: SPECIFY THE VTOC TO BE ACCESSED

UCB=1.J::Jtgl
Supplies the address of the UCB for the unit whose VTOC is
to be accessed. An unauthorized caller may not supply a
UCB to CVAF.

Note: Code the address of the UCB parameter only as
register (2-12). Coding an RX-Type address here gives you
unpredictable results.

DEB=a.d..d.I:
Specifies the address of a DEB opened to the VTOC you want
to access. CVAF does not allow output requests to the VTOC
or VTOC index if you specify the DEB subparameter. If you
are not authorized, you cannot perform any asynchronous
activity (such as EXCP, CLOSE, EOV) against the data set
represented by the DEB because CVAF removes the DEB from
the DEB table for the duration of the CVAF call. If you
are not authorized (neither APF authorized nor in a system
key), you must specify a DEB address, not a UCB, to
CVAFDSM. See "Identifying the Volume" on page 26 for
further details.

If you supply a previously obtained CVAF I/O area through the
IOAREA keyword, you need not specify the UCB or DEB keyword.
Otherwise you must specify either the UCB or DEB keyword. If
you specify a UCB, the UCB address in the CVPL is overlaid by
the UCB address in the I/O area.

If you supply both the UCB and DEB addresses in the CVPL, CVAF
uses the DEB address and overlays the UCB address in the CVPL
with the UCB address in the DEB.

COUNT: OBTAIN A COUNT OF UNALLOCATED DSCBS OR VIRS

COUNT=YES
Indicates that a count of unallocated DSCBs or VIRs in the
designated space map is requested. MAP=VTOC or MAP=INDEX
must be specified if COUNT=YES is coded.

COUNT=NO
Indicates that a count of unallocated DSCBs or VIRs is not
desired but, rather, information on free space on the pack
is desired. MAP=VOLUME must be coded if COUNT=NO is coded
or defaulted.

Appendix A. CVAF - VTOC Access Macros 187

------------'"

CTAREA: SUPPLY A FIELD TO CONTAIN THE NUMBER OF FORMAT-O DSCBS

CTAREA=~ 0
Gives the address of a 4-byte field to contain the number '
of format-O DSCBs when COUNT=YES, MAP=VTOC is specified; or " "
the number of unallocated VIRs in the VTaC index when
COUNT=YES, MAP=INDEX is specified. '

IOAREA: KEEP OR FREE THE I/O WORK AREA

IOAREA=KEEP
Specifies that the CVAF I/O area associated with the CVAF
parameter list is to be kept upon completion of the CVAF
request. IOAREA=KEEP may be coded with BRANCH=NO only if
the caller is authorized (APF or system key).

If IOAREA=KEEP is coded, the caller must issue CVAF with
IOAREA=NOKEEP specified at some future time, whether or not
any further VTOC access is required: for example, the
recovery routine of the caller of CVAF.

Coding IOAREA=KEEP allows subsequent CVAF requests to be
more efficient, as certain initialization functions can be
bypassed. Neither DEB nor UCB need be specified when a
previously obtained CVAF I/O area is supplied; neither can
they be changed.

When IOAREA=KEEP is first issued, CVAF returns the CVAF I/O
area in the CVAF parameter list (CVIOAR). Subsequent calls
of CVAF may use that same parameter list, and CVAF will
obtain its I/O area from the CVIOAR.

When processing on the current volume is finished, release
all areas that were kept.

IOAREA=(KEEP,~l
Provides the address of a previously obtained I/O area. If
a different CVAF parameter list is used, the previously
obtained CVAF I/O area may be passed to CVAF by coding its
address as the second parameter of the IOAREA keyword.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the
CVAF request.

IOAREA=(NOKEEP,~l
Causes a previously obtained work area to be freed upon
completion of the CVAF request.

BRANCH: SPECIFY THE ENTRY TO THE MACRO

BRANCH=(YES,SUP)
Requests that the branch entry to CVAFDIR be used. The
caller must be in supervisor state. Protect key checking
is bypassed.

An l8-word save area must be supplied if BRANCH=YES is
coded. No lock may be held on entry to CVAF. SRB mode is
not allowed.

BRANCH=YES
Is equivalent to BRANCH=(YES,SUP), because SUP is the
default when YES is coded. Protect key checking is
bypassed.

BRANCH=(YES,PGM)
Requests the branch entry. The caller must be APF
authorized and in problem state. Protect key checking is
bypassed.

188 MVS/XA System-Data Administration

:,1.) C-

c'

BRANCH=NO
Requests the SVC entry. The caller must be APF authorized
if any output operations are requested. Protect key
checking is performed.

MF: SPECIFY THE FORM OF THE MACRO

This keyword specifies whether the list, execute, or normal form
of the macro is requested.

If I is coded or if neither L nor E is coded, the CVAF
parameter list is generated, as is code, to call CVAF.
This is the n9rmal form of the macro.

L indicates the list form of the macro. A parameter list
is generated, but code to call CVAF is not generated.

MF=(E,ad.dJ:l
E indicates the execute form of the macro. The remote CVAF
parameter list supplied as 'addr' is used in, and can be
modified by, the execute form of the macro.

RETURN CODES FROM THE CVAFDSM MACRO

On return from CVAF, register i contains the address of the CVPL
(CVAF parameter list), and register 15 contains one of the
following return codesl

Code

0(00)

4(04)

8(08)

l2(OC)

16(10)

Meaning

The request was successful.

End of data (CVSTAT is set to decimal 32), or an error
was encountered. The CVSTAT field in the CVPL contains
an indication of the cause of the error. (CVSTAT code
descriptions are in Appendix C, "VTOC Index Error
Message and Associated Codes" on page 221)

Invalid VTOC index structure. CVSTAT
indication of the cause of the error.
descriptions are in Appendix C, "VTOC
Message and Associated Codes" on page

contains an
(CVSTAT code

Index Error
221)

The CVAF parameter list is not in your protect key or
is invalid (the ID is invalid, or the length field is
incorrect, or the CVFCTN field is invalid). The CVPL
has not been modified.

An I/O error was encountered.

Appendix A. CVAF - VTOC Access Macros 189

CYAFSEQ MACRO

OVERVIEW OF THE CVAFSEQ MACRO

SYNTAX

The CVAFSEQ macro may be used to:

• Read an indexed VTOC sequentiallY in data-set-name (DSN)
order

• Read an indexed VTOC or a nonindexed VTOC in
physical-sequential order

[.l.iWtl.J CVAFSEQ ACCESS=GTIGTEQ
[,BUFLIST=.stdslt:]
[,DSN=iid.dJ:l
[,UCB=1£gglIDEB=~]
[,DSNONLY=HQIYESl
[, ARG=a.d.d.r:l
[,IOAREA=KEEPI(KEEP,~)INOKEEPI

(NO KEEP, s..d.dJ:)]
[,IXRCDS=KEEPI(KEEP~)INOKEEPI

(NOKEEP,ad.d.r:)]
[,BRANCH=HQIYESl I (YES,SUPll (YES,PGM1]
[,MF=lILI(E,~)l

I If YES, default is SUP.

ACCESS: SPECIFY RELATIONSHIP BETWEEN SUPPLIED AND RETURNED DSN

ACCESS=GT
Specifies that the DSN or argument value is to be used to
return a DSCB whose DSN or argument is greater than that
supplied.

ACCESS=GTEQ
Specifies that the DSN or argument value is to be used to
return a DSCB whose DSN or argument is greater than or
equal to that supplied.

Note: A CVAF call specifying ACCESS=GTEQ should be
followed by an ACCESS=GT request, or the same DSCB or name
will be returned.

BUFLIST: SPECIFY ONE OR MORE BUFFER LISTS

BUFLIST=a.dd.r:
The BUFLIST keyword supplies the address of a buffer list
used to read or write DSCBs and VIRs.

I DSN: SPECIFY ACCESS BY DSN ORDER OR BY PHYSICAL-SEQUENTIAL ORDER

DSN=il.d.d.r.
Specifies that access of an indexed VTOC is by DSN order.
BUFLIST is required if DSNDNLY=NO is coded or defaulted.

DSN omitted
If you omi t the DSN keyword, acces's of an indexed or
nonindexed VTOC is by physical-sequential order. BUFLIST
is required.

o

Note: If the order is physical-sequential, you must initialize 0 -~
the argument field in the first buffer list entry to zero or to
the argument of the DSCB. If the argument is zero (BFLEARG=DO),
the read begins at the start of the VTDC. You must be authorized

190 MVS/XA System-Data Administration

I

(-~ I
-' I UCBIDEB:

DSNONLY:

(APF or system key) to read multiple DSCBs with the CVAFSEQ
macro. See nInitiating Physical-Sequential Accessn on page 33
for more information.

SPECIFY THE VTOC TO BE ACCESSED

UCB=1.r:.W.
Supplies the address of the UCB for the unit whose VTOC is
to be accessed. An unauthorized caller may not supply a
UCB to CVAF.

Note: Code the address of the UCB parameter only as
register (2-12). Coding an RX-Type address here gives you
unpredictable results.

DEB=ilShit:
Specifies the address of a DEB opened to the VTOC you want
to access. CVAF does not allow output requests to the VTDC
or VTOC index if you specify the DEB subparameter. If you
are not authorized. you cannot perform any asynchronous
activity (such as EXCP. CLOSE, EOV) against the data set
represented by the DEB because CVAF removes the DEB from
the DEB table for the duration of the CVAF call. If you
are not authorized (neither APF authorized nor in a system
key), you must specify a DEB address. not a UCB. to
CVAFSEQ.

If you supply a previously obtained CVAF I/O area through the
IOAREA keyword. you need not specify the UCB or DEB keyword.
Otherwise you must specify either the UCB or DEB keyword. If
you specify a UCB, the UCB address in the CVPL is overlaid by
the UCB address in the I/O area.

If you supply both the UCB and DEB addresses in the CVPL. CVAF
uses the DEB address and overlays the UCB address in the CVPL
with the UCB address in the DEB.

SPECIFY THAT ONLY THE DATA SET NAME BE READ

This keyword is applicable only to accessing an indexed VTOC in
DSN order.

DSNONLY=NO
Requests that the data set name be obtained from the VTOC
index and the DSCB be read into a buffer supplied through
the BUFLIST keyword. BUFLIST is required.

DSNONLY=YES
Requests that only the data set name be obtained from the
VTDC index. If the ARG keyword is coded, the argument of
the DSCB is returned.

ARG: SPECIFY WHERE THE ARGUMENT OF THE DSCB IS TO BE RETURNED

This keyword is applicable only to accessing an indexed VTOC in
DSN order with DSNONLY=YES coded.

ARG=a.d.dJ:
Provides the address of the S-byte area where the CCHHR of
each data set name in the VTDC index is returned when
DSNONLY=YES is coded.

Appendix A. CVAF - VTOC Access Macros 191

!OAREA: KEEP OR FREE THE I/O WORK AREA

!OAREA=KEEP 0
Specifies that the CVAF I/O area associated with the CVAF " _-.
parameter list is to be kept upon completion of the CVAF
request. IOAREA=KEEP may be coded with BRANCH=NO only if
the caller is authorized (APF, or system key).

If IOAREA=KEEP is coded, the caller must issue CVAF with
IOAREA=NOKEEP specified at some future time, whether or not
any further VTOC access is required: for example, the
recovery routine of the caller of CVAF.

Coding IOAREA=KEEP allows subsequent CVAF requests to be
more efficient, because certain initialization functions
can be bypassed. Neither DEB nor UCB need be specified
when a previously obtained CVAF I/O area is supplied;
neither can they be changed.

When IOAREA=KEEP is first issued, CVAF returns the CVAF I/O
area in the CVAF parameter list (CVIOAR). Subsequent calls
of CVAF may use that same parameter list, and CVAF.will
obtain its I/O area from the CVIOAR.

When processing on the current volume is finished, release
all areas that were kept.

!OAREA=(KEEP,~)
Provides the address of a previously obtained I/O area. If
a different CVAF parameter list is used, the previously
obtained CVAF I/O area may be passed to CVAF by coding its
address as the second parameter of the IOAREA keyword.

!OAREA=NOKEEP
Causes the work area to be freed upon completion of the
CVAF request.

IOAREA=(NOKEEP,sul..dJ:l C\!
Causes a previously obtained work area to be freed upon-/
completion of the CVAF request.

IXRCDS: RETA!N VIERS !N VIRTUAL STORAGE

This keyword applies to an indexed VTOC only.

!XRCDS=KEEP
Specifies that the VIERs read into storage during the CVAF
function are to be kept in virtual storage. The VIERs are
retained even if the index function is unsuccessful. The
VIERs are accessed from the CVAF parameter list (CVIRCDS).
CVIRCDS is the address of a buffer list containing the VIR
buffer addresses and RBAs of the VIERs read.

Index search function will dynamically update the buffer
list and, when necessary, obtain additional buffer lists
and chain them together.

If KEEP is specified and no buffer list is supplied to CVAF
in the CVPL, CVAF will obtain a buffer list and buffers and
read the first high-level VIER. The address of the buffer
list is placed in the CVIRCDS field of the CVPL. The first
high-level VIER will be checked for the VXFHLV bit and to
see if the VXVISE bit is off.

The buffer list and VIR buffers are in the caller's protect
key. The subpool is 0 if the caller is not authorized;
subpool 229 if the caller is authorized.

If IXRCDS=KEEP for an nonindexed VTOC, a request to read a
DSCB may be performed, but an error code will be returned.

When processing on the current volume is finished, release
all areas that were kept.

192 MVS/XA System-Data Administration

--------- --------------------------------_ .. _-----

o

c

IXRCDS=(KEEP,~)
The CVIRCDS from one CVAF call can be passed to another
CVAF parameter list by specifying the address as the second
parameter in the IXRCDS keyword.

IXRCDS=NOKEEP
If NOKEEP is coded, the VIERs that are accessed (if any)
are not retained. Furthermore, the buffer list supplied in
the CVIRCDS field in the CVAF parameter list is released,
as are all buffers found in the buffer list. If the skip
bit is set in any entry in the buffer list, the buffer and
buffer list will not be freed.

IXRCDS=(NOKEEP,~)
Specifies that previously accessed VIERs are not to be
retained.

You must free buffer lists and buffers obtained by CVAF. This
can be done in one of three ways:

• By coding IXRCDS=NOKEEP on the CVAFSEQ macro that obtained
the buffers

• By coding IXRCDS=NOKEEP on a subsequent CVAF macro

• By coding CVAFDIR ACCESS=RLSE and providing the address of
the buffer list in the BUFLIST keyword

Note: You must enqueue the VTOC and reserve the unit to
maintain the integrity of the VIERs read.

BRANCH: SPECIFY THE ENTRY TO THE MACRO

BRANCH=(YES,SUPl
Requests that the branch entry to CVAFDIR be used. The
caller must be in supervisor state. Protect key checking
is bypassed.

An l8-word save area must be supplied if BRANCH=YES is
coded. No lock may be held on entry to CVAF. SRB mode is
not allowed.

BRANCH=YES
Is equivalent to BRANCH=(YES,SUP), because SUP is the
default when YES is coded. Protect key checking is
bypassed.

BRANCH=(YES,PGM)
Requests the branch entry. The caller must be APF
authorized and in problem state. Protect key checking is
bypassed.

BRANCH=NO
Requests the SVC entry. The caller must be APF authorized
if any output operations are requested. Protect key
checking is performed.

MF: SPECIFY THE FORM OF THE MACRO

This keyword specifies whether the list, execute, or normal form
of the macro is requested.

MF=L

If I is coded, or neither l nor E is coded, the CVAF
parameter list is generated, as is code, t~ call CVAF.
This is the normal form of the macro.

l indicates the list form of the macro. A parameter list
is generated, but code to call CVAF is not generated.

Appendix A. CVAF - VTOC Access Macros 193

~~~~--------"-"-----"-"-----,-,---"---,------------------



MF=(E,il.d.d!:l 
E indicates the execute form of the macro. The remote CVAF 
parameter list supplied as 'addr' is used in and can be 
modified by the execute form of the macro. 

RETURN CODES FROM THE CVAFSEQ MACRO 

On return from CVAF, register 1 contains the address of the CVPL 
(CVAF parameter list), and register 15 contains one of the 
following return codesl 

Code Meaning 

OO(X'OO') The request was successful. 

04(X'04') End of data (CVSTAT is set to decimal 32), or an error 
was encountered. The CVSTAT field in the CVPL 
contains an indication of the cause of the error. 
Error descriptions are in Appendix C, "VTDC Index 
Error Message and Associated Codes" on page 221 

OS(X'OS') Invalid VTOC index structure. CVSTAT 
indication of the cause of the error. 
descriptions are in Appendix C, "VTDC 
Message and Associated Codes" on page 

contains an 
Error 

Index Erro ... 
221 

12(X'OC') The CVPL (CVAF pa ... ameter list) is not in you ... p ... otect 
key, 0 ... is invalid (the ID is invalid, 0 ... the length 
field is incor ... ect, 0 ... the CVFCTN field is invalid). 
The CVPL has not been modified. 

16(X'lO') An I/O e ...... or was encounte ... ed. 

194 MVS/XA System-Data Administ ... ation 

---_ .. -.------~ 

o 



CYAFTST MACRO, 

OVERVIEW OF THE CVAFTST MACRO 

SYNTAX 

The CVAFTST macro determines whether the system supports an 
indexed VTDC, and, if it does, whether the VTDC on the unit 
whose UCB is supplied is indexed or nonindexed. 

You will get a return code of 12 if CVAFTST cannot determine 
whether an indexed or nonindexed VTOC is on the unit's volume. 
You should not receive a return code of 12 from CVAFTST if you 
have opened a data set (including the VTOC) on the volume. 

You need no authorization to issue the CVAFTST macro. 

l[labAll I CVAFTST UCB=~ 

UCB: SPECIFY THE VTOC TO BE TESTED 

UCB=.tJ::ggl 
Supplies the address of the UCB for the volume whose VTOC 
is to be tested. 

Nate: Code the address of the UCB parameter only as 
register (2-12) Coding an RX-Type address here gives you 
unpredictable results. 

RETURN CODES FROM THE CVAFTST MACRO 

On return from CVAF. register 15 contains one of the following 
return codes: 

Code 

0(00) 

4(04) 

8(08) 

12(OC) 

16(10) 

Meaning 

The system does not support an indexed VTOC. The 
volume should be considered to have a nonindexed VTOC. 
The UCB was not inspected to determine its validity or 
status. 

The system supports an indexed VTOC, but the volume has 
a nonindexed VTOC. 

The system supports an indexed VTOC and the volume has 
an indexed VTDC. 

The system supports an indexed VTDC, but the volume is 
not mounted or the VIB is not initialized for it; thus, 
the status (indexed or nonindexed) of the VTDC cannot 
be determined. 

The system supports an indexed VTDC. but the unit is 
not a DASD or has a VIO UCB. or the UCB address is 
invalid. 

Appendix A. CVAF - VTOC Access Macros 195 



I APPENDIX It EXAMPLES OF VIOC ACCESS MACROS 

The examples that follow are partial assembler listings that 
include expansions of each VTOC access macro. The expansions 
are provided to show how the VTOC macros can be substituted for 
existing procedures. 

EXAMPLE 1: USING IHE CYAEDIR MACRO WIIH AN INDEXED OR NON-INDEXED YIOC 

This example uses the CVAFDIR macro to read a DSCB of a given 
data set name and determines whether the DSCB is for a 
partitioned data set. The address of the 44-byte data set name 
is supplied to the program in register 5 (labeled RDSN in the 
example). The address of a DEB open to the VTOC is supplied to 
the program in register 4 Clabeled RDEB in the example). 

The buffer list is in the program and is generated by the 
ICVAFBFL macro. The DSCB buffer is in the program and is 
generated by the IECSDSLl macro. 

EXAMPLEl CSECT 
STM l4,12,12CRSAVE) 
BALR 12,0 
USING *,12 
ST RSAVE,SAVEAREA+4 
LA RWORK,SAVEAREA 
ST RWORK,8(,RSAVE) 
LR RSAVE,RWORK 

************************************************************ 
* * REGISTERS 
* ************************************************************ 
REGI EQU 1 REGISTER 1 
RWORK EQU 3 WORK REGISTER 
RDEB EQU 4 DEB ADDRESS 
RDSN EQU 5 ADDRESS OF DATA SET NAME 
RSAVE EQU 13 SAVE AREA ADDRESS 
REGIS EQU 15 RETURN CODE REGISTER 15 
************************************************************ 
* * RETURN CODES 
* ************************************************************ 
PDSRTN EQU 0 DATA SET A PDS RETURN CODE 
NOTFND EQU 4 DATA SET NOT FOUND RETURN CODE 
NOTPDS EQU 8 DATA SET NOT A PDS RETURN CODE 
UNEXPECD EQU 12 UNEXPECTED ERROR RETURN CODE 
************************************************************ 
* * * * * * 

READ DSCB INTO DSIFMTID. 
DATA SET NAME ADDRESS SUPPLIED IN RDSN. 
ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB. 
DETERMINE IF DATA SET IS A PARTITIONED DATA SET. 
THIS PROGRAM IS NEITHER REENTRANT NOR REUSABLE. 

* ************************************************************ 
XC BUFLISTCBFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST 
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST 
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY 
LA RWORK,DSIFMTID ADDRESS OF DSCB BUFFER 

196 MVS/XA System-Data Administration 

o 

C·' -·" .. 'i - . 



ST RWORK,BFLEBUF PLACE IN BUFFER LIST 
01 BFLEFL,BFLECHR CCHHR OF DSCB RETURNED BY CVAF 
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN • 

SUPPLIED IN CVPL 
MVC DS1DSNAM,OCRDSN) MOVE IN DATA SET NAME TO WORKAREA 
CVAFDIR ACCESS=READ,DSN=DS1DSNAM,BUFLIST=BUFLIST,DEB=CRDEB) 

+ CNOP 0,4 
+ BAL 1,ICV1E LOAD CVPL LIST ADDRESS 
+ICV1S EQU • START OF CVPL 
+ DC CL4'CVPL' EBCDIC 'CVPL' 
+ DC AL2CICV1E-ICV1S) LENGTH OF CVPL 
+ DC XL1'01' FUNCTION CODE 
+ DC XL1'00' STATUS INFORMATION 
+ DC B'OOOOOOOO' FIRST FLAG BYTE 
+ DC »'00000000' SECOND FLAG BYTE 
+ DC H'O' RESERVED 
+ DC ACO) UCB ADDRESS 
+ DC ACDS1DSNAM) DATA SET NAME ADDRESS 
+ DC ACBUFLIST) BUFFER LIST ADDRESS 
+ DC ACO) INDEX VIR'S BUFFER LIST ADDRESS 
+ DC A(O) MAP VIR'S BUFFER LIST ADDRESS 
+ DC A(O) I/O AREA ADDRESS 
+ DC A(O) DEB ADDRESS 
+ DC A(O) ARGUMENT ADDRESS 
+ DC ACO) SPACE PARAMETER LIST ADDRESS 
+ DC A(O) EXTENT TABLE ADDRESS 
+ DC ACO) NEW VRF VIXM BUFFER LIST ADDR 
+ DC ACO) VRF DATA ADDRESS 
+ DC ACO) COUNT AREA ADDRESS 
+ICV1E EQU • END OF CVPl 
+ ST RDEB,36(,1) STORE DEB PTR IN PARM lIST 
+ SVC 139 

USING CVPL,REG1 ADDRESSABILITY TO CVPL 
lTR REG15,REG15 ANY ERROR 
BZ NOERROR BRANCH IF NOT ••••••••••••••••••••••••••••••••••••••••••••••• *.** ••••••••• 

• • DETERMINE WHAT ERROR IS 
* ••••••• * •••••••••••• * ••• *.*.* •• *.*.*.**.* •••• ** •• * •• * •••• *.* 

C REG15,ERROR4 IS RETURN CODE 4 
BNE OTHERERR BRANCH IF NOT 4 
ClI CVSTAT,STAT001 IS IT DATA SET NAME NOT FOUND! 
BNE OTHER ERR BRANCH IF NOT 
DROP REG1 ADDRESSABIlITY TO CVPl NOT NEEDED 

•••••••• *****.** •• ** ••• * •• ********.** •• * •• * •• *************** • • DATA SET NAME NOT FOUND • ** •••••••••• * •• *.* ••• *.*****.***.*.***.*.* •• ****.*.** •••••• * 
L RSAVE,4(,RSAVE) 
RETURN C14,12),RC=NOTFND SET UP DATA SET NOT FOUND ERROR 

+ LM 14,12,12(13) RESTORE THE REGISTERS 
+ LA 15,NOTFND(0,0) lOAD RETURN CODE 
+ DR 14 RETURN 

NOERROR EQU * DSCB READ 
MVC F1CCHHR,BFlEARG MOVE CCHHR OF FORMAT 1/4 DSCB TO * 

WORKAREA 
CLI DS1FMTID,C'4' IS DSCB A FORMAT 4 DSCB 
BE NOTF1 BRANCH IF YES. NOT A FORMAT 1 
TM DS1DSORG,DS1DSGPO IS FORMAT 1 DSCB FOR PARTITIONED 

DATA SET 
BO PDS BRANCH IF PDS 

NOTF1 EQU. DSCB IS NOT A PDS 
L RSAVE,4(,RSAVE) 
RETURN C14,12),RC=NOTPDS SET UP NOT PDS RETURN CODE 

+ lM 14,12,12(13) RESTORE THE REGISTERS 

Appendix B. Examples of VTDC Access Macros 197 



+ 
+ 

PDS 

lA 15,NOTPDSCO,O) 
BR 14 
EQU * 
l RSAVE,4C,RSAVE) 
RETURN (14,12),RC=PDSRTN 

+ lM 14,~2,12(13) 
+ lA 15,PDSRTN(O,O) 
+ BR 14 

+ 
+ 
+ 

OTHER ERR EQU * 
l RSAVE,4(,RSAVE) 
RETURN C14,12),RC=UNEXPECD 
lM 14.12,12(13) 
lA 15,UNEXPECDCO,O) 
BR 14 

lOAD RETURN CODE 
RETURN 

DATA SET IS PARTITIONED 

SET UP PDS RETURN CODE 
RESTORE THE REGISTERS 
lOAD RETURN CODE 
RETURN 

UNEXPECTED ERROR 

RESTORE THE REGISTERS 
lOAD RETURN CODE 
RETURN 

ERROR4 DC F'4' ERROR RETURN CODE 4 
BUFlIST ICVAFBFl DSECT=NO BUFFER lIST 

+*********************************************************************** 
+* BUFFER lIST HEADER 
+*********************************************************************** 
+BUFLIST DS 
+BFLHNOE DS 
+BFLHFL DS 
+ ORG 
+BFLHKEY DS 
+BFlHVIR EQU 
+BFlHDSCB EQU 
+ DS 
+BFLHSP DS 
+BFLHFCHN DS 
+* 
+BFLHlN EQU 

OF 
XLl 
XLl 
BFlHFL 
XLl 
X'OS' 
X'04' 
XLl 
XLl 
A 

*-BUFLIST 

BUFFER lIST HEADER 
NUMBER OF ENTRIES 
KEY AND FLAG BYTE 

PROTECT KEY (FIRST 4 BITS) 
BUF. lIST ENTRIES DESCRIBE VIRS 
BUF. lIST ENTRIES DESCRIBE DSCBS 
RESERVED 
SUBPOOL OF BUF. lIST/BUFFERS 
FORWARD CHAIN PTR TO NEXT BUF. 
LIST 
LENGTH OF BUFFER lIST HEADER 

+*********************************************************************** 
+* BUFFER lIST ENTRY 
+*********************************************************************** 
+BFLE 
+BFLEFL 
+BFLERBA 
+BFLECHR 
+BFlETTR 
+BFLEAUPD 
+BFLEMOD 
+BFLESKIP 
+BFLEIOER 
+ 
+BFLEl TH 
+* 
+BFLEARG 
+ 
+BFLEATTR 
+ 
+BFLEARBA 
+BFLEBUF 
+BFlElN 

+IECSDSLl 
+IECSDSF1 
+DSIDSNAM 
+DSIFMTID 
+DSIDSSN 
+DSIVOlSQ 
+DSICREDT 
+DSIEXPDT 
+DSINOEPV 
+DSINOBDB 
+* 

DS OF 
DS XLl 
EQU· X'SO' 
EQU X'40' 
EQU X'20' 
EQU X'10' 
EQU X'OS' 
EQU X'04' 
EQU X'02' 
DS XLl 
DS XLl 

DS Xl5 
ORG BFLEARG+l 
DS XU 
ORG BFLEARG+l 
DS Xl4 
DS A 
EQU *-BFLE 
I ECSDS Ll C 1) 

EQU * 
EQU IECSDSLl 
DS CL44 
DS CL1 
DS Cl6 
DS XL2 
DS XL3 
DS XL3 
DS XLl 
DS XLl 

BUFFER LIST ENTRY 
BUFFER lIST ENTRY FLAG 
ARGUMENT IS RBA 
ARGUMENT IS CCHHR 
ARGUMENT IS TTR 
CVAF UPDATED ARGUMENT FIELD 
DATA IN BUF. HAS BEEN MODIFIED 
SKIP THIS ENTRY 
I/O ERROR 
RESERVED 
lENGTH OF DSCB BUFFER OR 
LENGTH OF VIR DIVIDED BY 256 
ARGUMENT OF VIR OR DSCB (CCHHR) 

'TTR' OF ARGUMENT 

'RBA' OF ARGUMENT 
BUFFER ADDRESS 
LENGTH OF A BUFFER lIST ENTRY 

FORMAT 1 DSCB DATA SET NAME AND 
BUFFER 
FORMAT 1 DSCB 

DATA SET NAME 
FORMAT IDENTIFIER 
DATA SET SERIAL NUMBER 
VOLUME SEQUENCE NUMBER 
CREATION DATE 
EXPIRATION DATE 
NUMBER OF EXTENTS ON VOLUME 
NUMBER OF BYTES USED IN LAST 

DIRECTORY BLOCK 

198 MVS/XA System-Data Administration 

o 

o 



( ..•.. ) 

~./ 

+ DS 
+DSISYSCD DS 
+ DS 
+DSIDSORG DS 
HE 

XLI 
CLI3 
XL7 
XL2 

+DSIDSGIS 
+* 
+DSIDSGPS 
+* 
+DSIDSGDA 
+DSIDSGCX 
+* 
+* 
+DSIDSGPO 
+DSIDSGU 
+* 
+* 
+* 
+* 
+DSIDSGGS 
+DSIDSGTX 
+DSIDSGTQ 
+* 
+DSIACBM 
+DSIDSGTR 
+* 
+* 
+DSIRECFM 
+DSIOPTCD 
+DSIBLKL 
+DSlLRECL 
+DSIKEYL 

.+DSIRKP 
+DSIDSIND 
+DSISCALO 
+DSlLSTAR 
+DSlTRBAL 
+ 
+DSIEXTl 
+* 
+* 

EQU 

EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

X'80' 

X'40' 

X'20' 
X'IO' 
X' 08' 
X'04' 
X'02' 
X'OI' 

EQU X'80' 
EQU X'40' 
EQU X'20' 
EQU X'IO' 
EQU X'08' 
EQU X'04' 
EQU X'02' 
EQU X'OI' 
DS XLI 
DS XLI 
DS XL2. 
DS XL2 
DS XLI 
DS XL2 
DS XLI 
DS XL4 
DS XU 
DS XL2 
DS XL2 
DS XLIO 
FIRST BYTE 
SECOND BYTE 

FIRST BYTE OF 

SECOND BYTE 

+* 
+* 
+DSIEXT2 
+DSIEXT3 
+DSIPTRDS 
+DSIEND 

THIRD - SIXTH BYTES 
SEVENTH - TENTH BYTES 
DS XLIO 
DS XLI 0 
DS XL5 
EQU * 

RESERVED 
SYSTEM CODE 
RESERVED 
DATA SET ORGANIZATION 
DSIDSORG 
IS - INDEXED SEQUENTIAL 
ORGANIZATION 
PS - PHYSICAL SEQUENTIAL 
ORGANIZATION 
DA - DIRECT ORGANIZATION 
CX - BTAM OR QTAM LINE GROUP 
RESERVED 
RESERVED 
PO - PARTITIONED ORGANIZATION 
U - UNMOVABLE, THE DATA 
CONTAINS LOCATION DEPENDENT 
INFORMATION 

OF DSIDSORG 
GS - GRAPHICS ORGANIZATION 
TX - TCAM LINE GROUP 
TQ - TCAM MESSAGE QUEUE 
RESERVED 
ACCESS METHOD CONTROL BLOCK 
TR - TCAM 3705 
RESERVED 
RESERVED 
RECORD FORMAT 
OPTION CODE 
BLOCK LENGTH 
RECORD LENGTH 
KEY LENGTH 
RELATIVE KEY POSITION 
DATA SET INDICATORS 
SECONDARY ALLOCATION 

CilOlA 

CilOlA 

Cil01A 
CilOlA 
CilOlA 
Cil01A 
Cil01A 
Cil01A 

Cil01A 
Cil01A 
Cil01A 
CilOIA 
CilOIA 
CilOIA 
CilOIA 
Cil01A 

LAST USED TRACK AND BLOCK ON TRACK 
BYTES REMAINING ON LAST TRACK USED 
RESERVED 
FIRST EXTENT DESCRIPTION 
EXTENT TYPE INDICATOR 
EXTENT SEQUENCE NUMBER 
LOWER LIMIT 
UPPER LIMIT 
SECOND EXTENT DESCRIPTION 
THIRD EXTENT DESCRIPTION 
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB 

DSCBLTH 
FICCHHR 
SAVEAREA 
CVPL 

EQU *-IECSDSLI-L'DSIDSNAM·LENGTH OF DATA PORTION OF DSCB 
DS XL5 CCHHR OF DSCB 
DS 18F SAVE AREA 
ICVAFPL , CVPL MAPPING MACR·O 

+*********************************************************************** 
+* CVAF PARAMETER LIST 
+*********************************************************************** 
+CVPL 
+ 
+CVLBL 
+CVLTH 
+CVFCTN 
+CVDIRD 
+CVDIWR 
+CVDIRLS 
+CVSEQGT 
+CVSEQGTE 
+CVDMIXA 
+CVDMIXD 
+CVDMALC 
+CVDMRLS 
+CVDMMAP 
+CVVOL 

DSECT 
DS 
DS 
DS 
DS 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

OF 
CL4 
H 
XLI 
X'OI' 
X'OZ' 
X'03' 
X'04' 
X'OS' 
X' 06' 
X' 07' 
X'08' 
X'09' 
X'OA' 
X'OB' 

CVAF PARAMETER LIST 

EBCDIC 'CVPL' 
LENGTH OF CVPL 
FUNCTION BYTE 
CVAFDIR ACCESS=READ 
CVAFDIR ACCESS=WRITE 
CVAFDIR ACCESS=RLSE 
CVAFSEQ ACCESS=GT 
CVAFSEQ ACCESS=GTEQ 
CVAFDSM ACCESS=IXADD 
CVAFDSM ACCESS=IXDLT 
CVAFDSM ACCESS=ALLOC 
CVAFDSM ACCESS=RLSE 
CVAFDSM ACCESS=MAPDATA 
CVAFVOL ACCESS=VIBBLD 

Appendix B. Examples of VTOC Access Macros 199 



+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ 
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE 
+CVSTAT DS XLI STATUS INFORMATION (SEE LIST JE 

0 + BELOW) 
+CVFLI DS XLI FIRST FLAG BYTE 
+CVIIVT EQU X'80' INDEXED VTOC ACCESSED 
+CVlIOAR EQU X'40' IOAREA=KEEP 
+CVIPGM EQU X'20' BRANCH=(YES,PGM) 
+CVIMRCDS EQU X'lO' MAPRCDS=YES 
+CVlIRCDS EQU X' 08' IXRCDS=KEEP 
+CVIMA,PIX EQU X' 04' MAP=INDEX 
+CVIMAPVT EQU X'02' MAP=VTOC 
+CVIMAPVL EQU X'Ol' MAP=VOLUME 
+CVFL2 DS XLI SECOND FLAG BYTE 
+CV2HIVIE EQU X'80' HIVIER=YES 
+CV2VRF EQU X'40' VRF DATA EXISTS I +CV2CNT EQU X'20' COUNT=YES I 

+CV2RCVR EQU 'X'lO' RECOVER=YES I' +CV2SRCH EQU X'OS' SEARCH=YES 
+CV2DSNLY EQU X'04' DSNONLY=YES 
+CV2VER EQU X'02' VERIFY=YES 
+CV2NLEVL EQU X'Ol' OUTPUT-NEW HIGHEST LEVEL VIER 
+JE CREATED 
+ DS H RESERVED 
+CVUCB DS A UCB ADDRESS 
+CVDSN DS A DATA SET NAME ADDRESS 
+CVBUFL DS A BUFFER LIST ADDRESS 
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS 
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS 
+CVIOAR DS A I/O AREA ADDRESS 
+CVDEB DS A DEB ADDRESS 
+CVARG DS A ARGUMENT ADDRESS 
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS 
+CVEXTS DS A EXTENT TABLE ADDRESS 
+CVBUFL2 DS A NEW VRF VIXM BUFFER LIST ADDR 
+CVVRFDA DS A VRF DATA ADDRESS 
+CVCTAR DS A COUNT AREA ADDRESS ,0 +CVPLNGTH EQU JE-CVPL ,j 
+JE VALUES OF CVSTAT 
+JECTHIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN) 

END 

, I 0""'·' 
200 MVS/XA System-Data Administration 



c 

EXAMPLE 2: USING THE CYAFDIR MACRO WITH AN INDEXED YTOC 

This example uses the CVAFDIR macro to read one or more DSCBs on 
a VTOC. The UCB is supplied to the program in register 4 
(labeled RUCD). The TTR of each DSCB read is to be returned to 
the caller. This program must be APF authorized. 

The address of a parameter list is supplied to the program in 
register 5 (labeled RLIST). The parameter list contains one or 
more 3-word entries. The format of each 3-word entry is mapped 
by the LISTMAP DSECT. The first word contains the address of 
the data set name of the DSCD to be read. The second word 
contains the address of the 96-byte buffer into which the DSCB 
is to be read. The third word ~ontains the address of the 
3-byte TTR of the DSCB read. 

The CVPL is generated by a list form of the CVAFDIR macro at 
label CVPL. The BUFLIST, IXRCDS, 10AREA, and BRANCH keywords 
are coded on the list form of the macro. IXRCDS=KEEP and 
IOAREA=KEEP are coded to avoid overhead if two or more DSCBs are 
to be read. BRANCH=(YES,PGM) is coded in the list form of the 
CVAFDIR macro to cause the CVPL to have the CVIPGM bit set to 
onei this will indicate to CVAF that the caller is authorized by 
APF and not in supervisor state. The execute forms of the 
CVAFDIR macro then specify BRANCH=YES, and not BRANCH=(YES,PGM), 
because the CVIPGM bit is set in the list form of the macro. 

The CVAFDIR macro with ACCESS=RLSE is coded before the program 
exits in order to release the CVAF I/O area and the index 
records buffer list. BUFLIST=O is coded because no 
user-supplied buffer list is to be releasedi BUFLIST was coded 
on the list form of the CVAFDIR macro and, therefore, is in the 
CVBUFL field of the CVPL. This field must be set to zero for 
the release. 

EXAMPLE2 CSECT 
STM 14,12,12(13) 
BALR 12,0 
USING *,12 
ST 13,SAVEAREA+4 
LA RWORK,SAVEAREA 
ST RWORK,8(,13) 
LR 13,RWORK 

************************************************************ 
* * REGISTERS 

* ********************~*************************************** 
RWORK EQU 3 WORK REGISTER 
RUCB EQU 4 UCB ADDRESS SUPPLIED BY CALLER 
RLIST EQU 5 ADDRESS OF PARAMETER LIST 
RDSN EQU 6 ADDRESS OF DATA SET NAME 
RTTR EQU 7 ADDRESS OF TTR 
REGIS EQU 15 RETURN CODE REGISTER 15 
************************************************************ 
* * * * * * * * * 

READ DSCB OF DATA SET NAME SUPPLIED. RETURN TTR OF DSCB. 
UCB ADDRESS SUPPLIED IN RUCB. 
ADDRESS OF PARAMETER LIST IN RLIST. 

WORD 1 OF PARAMETER LIST = ADDRESS OF DATA SET NAME 
WORD 2 OF PARAMETER LIST = ADDRESS OF DSCB TO BE RETURNED 
WORD 3 OF PARAMETER LIST = ADDRESS OF TTR TO BE RETURNED 

WORDS 1-3 DUPLICATED WITH THE HIGH ORDER BIT OF 
WORD 3 SET TO ONE FOR LAST ENTRY. 

* ************************************************************ 
USING LISTMAP,RLIST ADDRESSABILITY TO PARMLIST 

Appendix B. Examples of VTOC Access Macros 201 



TOPLOOP EQU ~ LOOP FOR EACH DSCB 
XC BUFLISTCBFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST 
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST 
MVI BFLHNOE,l ONE BUFFER LIST ENTRY 
LA RWORK,LISTDSCB ADDRESS OF DSCB BUFFER 
ST RWORK,BFLEBUF PLACE IN BUFFER LIST 
01 BFLEFL,BFLETTR TTR OF DSCB RETURNED BY CVAF 
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN ~ 

SUPPLIED IN CVPL 
L RDSN,LISTDSN ADDRESS OF DATA SET NAME 
CVAFDIR DSN=CRDSN),UCB=(RUCB),MF=(E,CVPL),BRANCH=YES 

+ LA 1,CVPL LOAD PARAMETER REG 1 
+ ST RUCB,12(,1) STORE UCB PTR IN PARM lIST 
+ ST RDSN,16(,1) STORE DSN PTR IN PARM lIST 
+ L 15,16 lOAD THE CVT 
+ L 15,328C,15) LOAD VS1/VS2 COMMON EXTENSION2 
+ L 15,12(,15) LOAD THE CVT CVAF TABLE 
+ l 15,OC,15) lOAD THE CVAF ADDRESS 
+ BAlR 14,15 BRANCH AND lINK TO CVAF 

L RTTR,LISTTTR ADDRESS OF TTR TO BE RETURNED 
USING TTRMAP,RTTR MAP OF TTR 
lTR REG15,REG15 ANY ERROR 
BZ NOERROR BRANCH IF NOT 
XC TTR,TTR ZERO TTR INDICATING NO DSCB 
B RElOOP GET NEXT ENTRY 

NOERROR EQU ~ DSCB READ 
MVC TTR,BFlEARG RETURN TTR OF DSCB 

RElOOP EQU ~ GET NEXT ENTRY 
TM lASTlIST,LASTBIT IS IT LAST ENTRY IN LIST! 
LA RLIST,NEXTLIST GET NEXT ENTRY 
BZ TOPLOOP PROCESS NEXT LIST 
CVAFDIR ACCESS=RLSE, RELEASE CVAF OBTAINED AREAS ~ 

IOAREA=NOKEEP, RELEASE IOAREA ~ 
IXRCDS=NOKEEP, RELEASE VIER BUFFER LIST ~ 
BUFLIST=O, NO USER.BUFFER LIST SUPPLIED TO RlSE~ 
BRANCH=YES, BRANCH ENTER CVAF ~ 
MF=CE,CVPl) 

+ lA 1,CVPL LOAD PARAMETER REG 1 
+ MVI 6(1),X'03' SET FUNCTION CODE 
+ NI 8(1),B'10110111' RESET CVAF FLAGS OFF 
+ LA 15,0 GET BUFLIST ADDRESS AND 
+ ST 15,20C,1) STORE BUFLIST PTR IN PARM LIST 
+ L 15,16 LOAD THE CVT 
+ L 15,328C,15) LOAD VS1/VS2 COMMON EXTENSION2 
+ L 15,12(,15) LOAD THE CVT CVAF TABLE 
+ L 15,OC,15) LOAD THE CVAF ADDRESS 
+ BALR 14,15 BRANCH AND LINK TO CVAF 

L 13,SAVEAREA+4 
RETURN (14,12) 

+ LM 14,12,12(13) RESTORE THE REGISTERS 
+ BR 14 RETURN 

BUFLIST ICVAFBFL DSECT=NO BUFFER LIST 

+~~~~~~~~~~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+~ BUFFER LIST HEADER 
+~~~~~~~~~~~~~~~~*~~~~~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*~ 

+BUFLIST DS 
+BFlHNOE DS 
+BFLHFL DS 
+ ORG 
+BFlHKEY DS 
+BFLHVIR EQU 
+BFLHDSCB EQU 
+ DS 
+BFLHSP DS 
+BFlHFCHN DS 
+~ 

+BFLHLN EQU 

OF 
XLl 
XLl 
BFlHFL 
XU 
X'08' 
X'04' 
XLl 
XLl 
A 

~-BUFlIST 

202 MVS/XA System-Data Administration 

BUFFER LIST HEADER 
NUMBER OF ENTRIES 
KEY AND FLAG BYTE 

PROTECT KEY CFIRST 4 BITS) 
BUF. LIST ENTRIES DESCRIBE VIRS 
BUF. LIST ENTRIES DESCRIBE DSCBS 
RESERVED 
SUBPOOL OF BUF. LIST/BUFFERS 
FORWARD CHAIN PTR TO NEXT BUF. 
LIST . 
LENGTH OF BUFFER LIST HEADER 

o 

--------



(' 

" C.'" 

+*********************************************************************** 
+* BUFFER LIST ENTRY 
+*********************************************************************** 
+BFlE 
+BFlEFL 
+BFLERBA 
+BFLECHR 
+BFLETTR 
+BFlEAUPD 
+BFlEMOD 
+BFlESKIP 
+BFLEIOER 
+ 

DS 
DS 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
DS 
DS 

OF 
XLI 
XISO' 
X' 40 ' 
X' 20 ' 
X'IO I 
XI 08 I 
X' 04 1 

X' 02 1 

XLI 
XLI +BFlEL TH 

+* 
+BFlEARG 
+ 
+BFlEATTR 
+ 
+BFlEARBA 
+BFlEBUF 
+BFlELN 

DS 
ORG 
DS 
ORG 
DS 

XL5 
BFlEARG+I 
XL3 
BFlEARG+I 
XL4 

SAVEAREA 
LISTMAP 
LISTDSN 
LISTDSCB 

DS 
EQU 
DS 
DSECT 
DS 
DS 

A 
*-BFLE 
18F 

F 
F 

LISTTTR DS OF 

LASTlIST 
LASTBIT 

NEXTlIST 
DSCB 

DS 
EQU 
DS 
EQU 

X 
XISO' 
XU 

* DSECT 
IECSDSLI (1) 
EQU * +IECSDSll 

+IECSDSFI 
+DSIDSNAM 
+DSIFMTID 
+DSIDSSN 
+DSIVOLSQ 
+DSICREDT 
+DSIEXPDT 
+DSINOEPV 
+DSINOBDB 
+* 

EQU IECSDSll 
DS CL44 
DS Cll 
DS CL6 
DS XL2 
DS XU 
DS XU 
DS XLI 
DS XLI 

+ DS 
+DSISYSCD DS 
+ DS 
+DSIDSORG DS 
+* 
+DSIDSGIS EQU 
+* 
+DSIDSGPS EQU 
+* 
+DSIDSGDA EQU 
+DSIDSGCX EQU 
+* EQU 
+* EQU 
+DSIDSGPO EQU 
+DSIDSGU EQU 
+* 
+* 
+* 

XLI 
C1l3 
XL7 
XL2 

XISO' 

X' 40 ' 
XI 20 1 

X'IO' 
X' 08' 
X' 04 1 

X'02 1 

X'OI' 

FIRST 

BUFFER LIST ENTRY 
BUFFER LIST ENTRY FLAG 
ARGUMENT IS RBA 
ARGUMENT IS CCHHR 
ARGUMENT IS TTR 
CVAF UPDATED ARGUMENT FIELD 
DATA IN BUF. HAS BEEN MODIFIED 
SKIP THIS ENTRY 
I/O ERROR 
RESERVED 
LENGTH OF DSCB BUFFER OR 
LENGTH OF VIR DIVIDED BY 256 
ARGUMENT OF VIR OR DSCB (CCHHR) 

'TTR' OF ARGUMENT 

'RBA' OF ARGUMENT 
BUFFER ADDRESS 
LENGTH OF A BUFFER LIST ENTRY 

REGISTER SAVE AREA 

ADDRESS OF DATA SET NAME 
ADDRESS OF BUFFER FOR DSCB TO BE 
RETURNED 
ADDRESS OF TTR OF DSCB TO BE 
RETURNED 
FIRST BYTE 
LAST ENTRY IN LIST 
REMAINDER OF TTR ADDRESS 
NEXT LIST 

FORMAT 1 DSCB 

DATA SET NAME 
FORMAT IDENTIFIER 
DATA SET SERIAL NUMBER 
VOLUME SEQUENCE NUMBER 
CREATION DATE 
EXPIRATION DATE 
NUMBER OF EXTENTS ON VOLUME 
NUMBER OF BYTES USED IN LAST 

DIRECTORY BLOCK 
RESERVED 
SYSTEM CODE 
RESERVED 
DATA SET ORGANIZATION 

BYTE OF DSIDSORG 
IS - INDEXED SEQUENTIAL aOIA 
ORGANIZATION 
PS - PHYSICAL SEQUENTIAL aOlA 
ORGANIZATION 
DA - DIRECT ORGANIZATION aOIA 
CX - BTAM OR QTAM LINE GROUP aOIA 
RESERVED aOIA 
RESERVED aOIA 
PO - PARTITIONED ORGANIZATION aOIA 
U - UNMOVABLE, THE DATA aOIA 
CONTAINS LOCATION DEPENDENT 
INFORMATION 

Appendix B. Examples of VTOe Access Macros 203 



HE SECOND BYTE OF DSIDSORG 
+DSIDSGGS EQU X'80' 
+DSIDSGTX EQU X'40' 
+DSIDSGTQ EQU X'20' 
+* EQU X'lO' 
+DSIACBM EQU X'OS' 
+DSIDSGTR EQU X'04' 
+* EQU X'02' 
+* EQU X'Ol' 
+DSIRECFM DS XLI 
+DSIOPTCD DS XLI 
+DSIBLKL DS XL2 
+DSILRECL DS XL2 
+DSIKEYL DS XLI 
+DSIRKP DS XL2 
+DSIDSIND DS XLI 
+DSISCALO DS XL4 
+DSILSTAR DS XL3 
+DSITRBAL DS XL2 
+ DS XL2 
+DSIEXTI DS XLIO 
+* FIRST BYTE 
+* SECOND BYTE 
+* THIRD - SIXTH BYTES 
+* SEVENTH - TENTH BYTES 
+DSIEXT2 DS XLIO 
+DSIEXT3 DS XLIO 
+DSIPTRDS DS XL5 
+DSIEND EQU * 

GS - GRAPHICS ORGANIZATION 
TX - TCAM LINE GROUP 
TQ - TCAM MESSAGE QUEUE 
RESERVED 
ACCESS METHOD CONTROL BLOCK 
TR - TCAM 3705 
RESERVED 
RESERVED 
RECORD FORMAT 
OPTION CODE 
BLOCK LENGTH 
RECORD LENGTH 
KEY LENGTH 
RELATIVE KEY POSITION 
DATA SET INDICATORS 
SECONDARY ALLOCATION 

aOlA 
aOlA 
aOlA 
aOlA 
aOlA 
aOlA 
aOlA 
aOlA 

LAST USED TRACK AND BLOCK ON TRACK 
BYTES REMAINING ON LAST TRACK USED 
RESERVED 
FIRST EXTENT DESCRIPTION 
EXTENT TYPE INDICATOR 
EXTENT SEQUENCE NUMBER 
LOWER LIMIT 
UPPER LIMIT 
SECOND EXTENT DESCRIPTION 
THIRD EXTENT DESCRIPTION 
POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB 

DSCBLTH EQU *-DSCB-L'DSIDSNAM LENGTH OF DATA PORTION OF DSCB 
TTRMAP . DSECT 
TTR DS XU TTR TO BE RETURNED 
EXAMPlE2 CSECT 
CVPL CVAFDIR ACCESS=READ,BUFLIST=BUFLIST,MF=L, * 

IOAREA=KEEP, KEEP IOAREA TO AVOID OVERHEAD * 
IXRCDS=KEEP KEEP VIERS FOR 2ND AND SUBSEQUENT CALLS* 

+ 
+CVPL 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ICVSE 

CNOP 0,4 
EQU * 
DC CL4'CVPL' 
DC AL2CICV8E-CVPL) 
DC Xll' 01' 
DC Xll' 00' 
DC B'OlOOlOOO' 
DC B'OOOOOOOO' 
DC H'O' 
DC A(O) 
DC ACO) 
DC A(BUFlIST) 
DC A(O) 
DC ACO) 
DC A(O) 
DC A(O) 
DC A(·O) 
DC A(O) 
DC ACO) 
DC ACO) 
DC A(O) 
DC ACO) 
EQU * 
ORG CVPL 

CVPLMAP ICVAFPL DSECT=NO 

CALLED IN PROGRAM STATE BUT APF * 
AUTHORIZED SO UCB IS SUPPLIED 

EBCDIC 'CVPL' 
LENGTH OF CVPL 
FUNCTION CODE 
STATUS INFORMATION 
FIRST flAG BYTE 
SECOND flAG BYTE 
RESERVED 
UCB ADDRESS 
DATA SET NAME ADDRESS 
BUFFER LIST ADDRESS 
INDEX VIR'S BUFFER LIST ADDRESS 
MAP VIR'S BUFFER LIST ADDRESS 
I/O AREA ADDRESS 
DEB ADDRESS 
ARGUMENT ADDRESS 
SPACE PARAMETER LIST ADDRESS 
EXTENT TABLE ADDRESS 
NEW VRF VIXM BUFFER LIST ADDR 
VRF DATA ADDRESS 
COUNT AREA ADDRESS 
END OF CVPL 

OVERLAY CVPL WITH EXPANSION OF MAP 

+*********************************************************************** 
+* CVAF PARAMETER LIST 
+*********************************************************************** 

+CVPLMAP DS 
+CVLBL DS 
+CVLTH DS 

OF 
CL4 
H 

204 MVS/XA System-Data Administration 

CVAF PARAMETER LIST 
EBCDIC 'CVPL' 
LENGTH OF CVPL 

o 

C'" . , 



+CVFCTN DS XLl FUNCTION BYTE 
+CVDIRD EQU X'Ol' CVAFDIR ACCESS=READ 

(-- +CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE 
+CVDIRLS EQU X'03' CVAFDIR ACCESS=RLSE 
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT 
+CVSEQGTE EQU X'os' CVAFSEQ ACCESS=GTEQ 
+CVDMIXA EQU X' 06' CVAFDSM ACCESS=IXADD 
+CVDMIXD EQU X' 07' CVAFDSM ACCESS=IXDLT 
+CVDMALC EQU X'OS' CVAFDSM ACCESS=ALLOC 
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RLSE 
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA 
+CVVOL EQU X'OB' CVAFVOL ACCESS=VIBBLD 
+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ 
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE 
+CVSTAT DS XLI STATUS INFORMATION (SEE LIST JE 
+ BELOW) 
+CVFU DS XU FIRST FLAG BYTE 
+CVlIVT EQU X'SO' INDEXED VTOC ACCESSED 
+CVlIOAR EQU X'40' IOAREA=KEEP 
+CVIPGM EQU X'20' BRANCH=(YES,PGM) 
+CVIMRCDS EQU X'lO' MAPRCDS=YES 
+CVlIRCDS EQU X'OS' IXRCDS=KEEP 
+CVIMAPIX EQU X'04' MAP=INDEX 
+CVIMAPVT EQU X'02' MAP=VTOC 
+CVIMAPVL EQU X' 01' MAP=VOLUME 
+CVFl2 DS XU .sECOND FLAG BYTE 
+CV2HIVIE EQU X'SO' HIVIER=YES 
+CV2VRF EQU X'40' VRF DATA EXISTS 
+CV2CNT EQU X'ZO' COUNT=YES 
+CV2RCVR EQU X'IO' RECOVER=YES 
+CV2SRCH EQU X'OS' SEARCH=YES 
+CV2DSNLY EQU X'04' DSNONLY=YES 
+CV2VER EQU X'OZ' VERIFY=YES 
+CVZNLEVL EQU X'Ol' OUTPUT-NEW HIGHEST LEVEL VIER 
HE CREATED 
+ DS H RESERVED c"' +CVUCB DS A UCB ADDRESS 
+CVDSN DS A DATA SET NAME ADDRESS 
+CVBUFl DS A BUFFER LIST ADDRESS 
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS 
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS 
+CVIOAR DS A I/O AREA ADDRESS 
+CVDEB DS A DEB ADDRESS 
+CVARG DS A ARGUMENT ADDRESS 
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS 
+CVEXTS DS A EXTENT TABLE ADDRESS 
+CVBUFl2 DS A NEW VRF VIXM BUFFER LIST ADDR 
+CVVRFDA DS A VRF DATA ADDRESS 
+CVCTAR DS A COUNT AREA ADDRESS 
+CVPLNGTH EQU JE-CVPLMAP 

+JE VALUES OF CVSTAT 
+JECTHIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN) 

END 

( "'" 

j 

Appendix B. Examples of VTDC Access Macros 205 



EXAMPLE 3: USING THE CYAFSEQ MACRO WITH AN INDEXED VTOC 

Tdh1t·s exatmplhe usesd tthe CVtAFSEQ macro ~oth~ountth the numbdefr.ofdISbAM 0' ' .. a a se s w ose a a se names are W1 1n e range e 1ne y 
two supplied data set names. The addresses of the two data set 
names are supplied to the program in registers 6 and 7, labeled 
RDSNI and RDSN2, respectively. The address of a DEB open to the 
VTOC is supplied in register 4, labeled RDEB. 

The CVAF parameter list is expanded by a list form of the 
CVAFSEQ macro. ACCESS=GTEQ is specified on the list form of the 
macro and is, therefore, not coded in the first execution of the 
CVPL. Subsequent executions of the CVPL Cat label RELOOP) 
specify ACCESS=GT. 

End of data is tested by comparing the CVSTAT field to the value 
of STAT032, which is an equate in the ICVAFPL mapping macro. 

The count of ISAM DSCBs matching the data set name criterion is 
returned in register IS, unless an error is encountered, in 
which case a negative 1 is returned in register 15. 

EXAMPLE3 CSECT 
STM l4,12,12(13) 
BAlR 12,0 
USING *,12 
ST 13,SAVEAREA+4 
lA RWORK,SAVEAREA 
ST RWORK,8C,13) 
lR 13,RWORK 

************************************************************ 
* * REGISTERS 
* ************************************************************ 
REGI EQU 1 REGISTER 1 
RWORK EQU 3' WORK REGISTER 
RDEB EQU 4 DEB ADDRESS 
RDSNI EQU 6 ADDRESS OF DATA SET NAME 1 
RDSN2 EQU 7 ADDRESS OF DATA SET NAME 2 
REGIS EQU 15 RETURN CODE REGISTER 15 
************************************************************ 
* * COUNT THE NUMBER OF ISAM DATA SETS WHOSE DATA SET NAMES ARE 
* BETWEEN DSNI AND DSN2 INCLUSIVELY. 
* RDSNI CONTAINS ADDRESS OF DSNI. 
* RDSN2 CONTAINS ADDRESS OF DSN2. 
* ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB. 
* ************************************************************ 

XC BUFLISTCBFLHLN+BFLELN),BUFlIST ZERO BUFFER LIST 
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST 
MVI BFLHNOE,l ONE BUFFER LIST ENTRY 
LA RWORK,DSIFMTID ADDRESS OF DSCB BUFFER 
ST RWORK,BFLEBUF PLACE IN BUFFER LIST 
MVI BFLELTH,DSCBlTH DATA PORTION OF DSCB READ - DSN * 

SUPPLIED IN CVPL 
MVC DS1DSNAM,OCRDSNl) MOVE IN STARTING DATA SET NAME TO * 

WORKAREA 
XR RWORK,RWORK ZERO COUNT 
CVAFSEQ DEB=(RDEB), FIND FIRST DATA SET WHOSE DATA SET * 

BUFLIST=BUFLIST, NAME IS GREATER THAN OR EQUAL TO * 
MF=(E,CVPL) THAT OF DSN1 

+ LA 1,CVPL LOAD PARAMETER REG 1 
+ ST RDEB,36(,1) STORE DEB PTR IN PARM LIST 
+ SVC 139 

206 MVS/XA System-Data Administration 

c 



+ 
+ 
+ 

LOOP EQU ~ LOOP UNTIL END OF DATA OR DATA SET ~ 
NAME GREATER THAN DSN2 

USING CVPL,REGl ADDRESSABILITY TO CVPL 
LTR REGlS,REGlS ANY ERROR 
BZ TESTDSN BRANCH IF NOT-CHECK DSN LIMIT 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*~~*~~~*~~**~~~~~~*~*~ 
~

~ DETERMINE WHAT ERROR IS
* *~*~*~*~~**~**~*****~*****~~***************~**************** C REGlS,ERROR4 IS RETURN CODE 4

BNE OTHERERR BRANCH IF NOT 4
CLI CVSTAT,STAT032 IS IT END OF DATA!
BNE OTHERERR BRANCH IF NOT
DROP REGl ADDRESSABILITY TO CVPL NOT NEEDED

~**~**********~*~~*****~~**~**************~*~***~**~~*

* * ~ END OF DATA

~~****~********~~***~~~~~~*~~***~***~~~*~~~*~~~~~~~*~~
B RELEASE RELEASE CVAF RESOURCES AND RETURN

TESTDSN EQU ~ _ IS DATA SET NAME GREATER THAN DSN2

TESTIS

CKLAST

RELOOP

CLI DSlFMTID,C'l' IS THIS A FORMAT 1 DSCB!
BNE CKLAST BRANCH IF NO. CAN NOT BE ISAM.
CLC DS1DSNAM,0(RDSN2) HAS LIMIT BEEN REACHED!
BNH TESTIS BRANCH IF NO-TEST FOR ISAM
B RELEASE RELEASE CVAF RESOURCES AND RETURN
EQU ~ ONLY COUNT ISAM
TM DSIDSORG,DSIDSGIS IS DATA SET ISAM
BZ CKLAST BRANCH IF NO-DO NOT COUNT IT
LA RWORK,lC,RWORK) INCREMENT COUNT BY ONE
EQU * CHECK IF LAST DATA SET NAME CDSN2)
CLC DSIDSNAM,OCRDSN2) HAS LIMIT BEEN REACHED!
BNH RELOOP BRANCH IF NO-READ NEXT ONE
B RELEASE RELEASE CVAF RESOURCES AND RETURN
EQU * READ NEXT DSCB
CVAFSEQ ACCESS=GT,MF=CE,CVPL) GET DSCB WITH DATA SET NAME

LA I,CVPL
MVI 6(1),X'04'
SVC 139

GREATER THAN THE ONE LAST READ
LOAD PARAMETER REG 1

SET FUNCTION CODE

B LOOP CHECK RESULTS OF CVAFSEQ
OTHERERR EQU * UNEXPECTED ERROR
~~~~~~*~~*~*~*~******~*~*~~~*~~~~~~******~~*********~****~~~ 

* ~ UNEXPECTED ERROR PROCESSING 
* ~~~~~~~~~~*~*~~~***~***~***~~*~*~~~~~*~**~***~~~*~**~~~*~*** 

LA RWORK,ICO,O) ONE IN RWORK 
LNR RWORK,RWORK SET NEGATIVE COUNT INDICATING ERROR 

RELEASE CVAFDIR ACCESS=RLSE, RELEASE CVAF BUFFERS/IOAREA 
BUFLIST=O, DO NOT RELEASE USER BUFFER LIST 
IXRCDS=NOKEEP, RELEASE CVAF VIER BUFFERS 
MF=CE,CVPL) RELEASE CVAF I/O AREA 

+RElEASE 
+ 

EQU ~ 
LA 1,CVPL LOAD PARAMETER REG 1 

SET FUNCTION CODE + 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

ERROR4 
BUFLIST 

MVI 6(1),X'03' 
NI 8(1),B'11110111' 
LA 15,0 
ST lS,20C,1) 
SVC 139 
LR REG1S,RWORK 
L 13,SAVEAREA+4 
RETURN (14,12),RC=(lS) 
L 14,12(13,0) 
LM 0,12,20(13) 
BR 14 
DC F'4' 
ICVAFBFL DSECT=NO 

RESET CVAF FLAGS OFF 
GET BUFLIST ADDRESS AND 
STORE BUFLIST PTR IN PARM LIST 

CURRENT COUNT IS RETURN CODE 

RETURN CURRENT COUNT 
RESTORE REGISTER 14 
RESTORE THE REGISTERS 
RETURN 

ERROR RETURN CODE 4 
BUFFER LIST 

Appendix B. Examples of VTOe Access Macros 207 



-~---,----------

+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+~ BUFFER LIST HEADER 
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+BUFLIST DS OF BUFFER LIST HEADER 
+BFLHNOE DS XLl NUMBER OF ENTRIES 
+BFLHFL DS XLl KEY AND FLAG BYTE 
+ ORG BFLHFL 
+BFLHKEY DS XLl PROTECT KEY (FIRST 4 BITS) 
+BFLHVIR EQU X'08' BUF. LIST ENTRIES DESCRIBE VIRS 
+BFLHDSCB EQU X'04' BUF. LIST ENTRIES DESCRIBE DSCBS 
+ DS XLl RESERVED 
+BFLHSP DS XLl SUBPOOL OF BUF. LIST/BUFFERS 
+BFLHFCHN DS A FORWARD CHAIN PTR TO NEXT BUF. 
+~ LIST 
+BFLHLN EQU ~-BUFLIST LENGTH OF BUFFER LIST HEADER 

+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+~ BUFFER LIST ENTRY 
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*~~~~~~~*~~~~~~~~~~~~~~~~~~ 

+BFLE DS 
+BFLEFL DS 
+BFLERBA EQU 
+BFLECHR EQU 
+BFLETTR EQU 
+BFLEAUPDEQU 
+BFLEMOD EQU 
+BFLESKIP EQU 
+BFLEIOER EQU 
+ DS 
+BFLEL TH DS 
+~ 

OF 
XLl 
X'80' 
X'40' 
X'20' 
X'lO' 
X'08' 
X'04' 
X'02' 
Xll 
Xll 

+BFLEARG DS XL5 
+ ORG BFLEARG+l 
+BFLEATTR DS XL3 
+ ORG BFLEARG+l 
+BFLEARBA DS XL4 
+BFLEBUF DS A 
+BFLELN EQU ~-BFLE 

IECSDSll (1) 

~ +IECSDSLl EQU 
+IECSDSFl EQU 
+DSlDSNAM DS 
+DSIFMTID DS 
+DSIDSSN DS 
+DSlVOLSQ DS 
+DSlCREDT DS 
+DSIEXPDT DS 
+DSlNOEPV DS 
+DSlNOBDB DS 
+~ 

I ECSDSLl 
CL44 

+ DS 
+DSlSYSCD DS 
+ DS 
+DSlDSORG DS 
+~ 

+DSlDSGIS EQU 
+~ 

+DSlDSGPS EQU 
+~ 

+DSIDSGDA EQU 
+DSlDSGCX EQU 
+~ EQU 
+~ EQU 

Cll 
CL6 
XL2 
XL3 
XL3 
XLl 
Xll 

XLl 
CLl3 
XL7 
XL2 

X'80' 

X'40' 

X'20' 
X'lO' 
X'08' 
X'04' 

FIRST 

BUFFER LIST ENTRY 
BUFFER LIST ENTRY FLAG 
ARGUMENT IS RBA 
ARGUMENT IS CCHHR 
ARGUMENT IS TTR 
CVAF UPDATED ARGUMENT FIELD 
DATA IN BUF. HAS BEEN MODIFIED 
SKIP THIS ENTRY 
I/O ERROR 
RESERVED 
LENGTH OF DSCB BUFFER OR 
LENGTH OF VIR DIVIDED BY 256 
ARGUMENT OF VIR OR DSCB (CCHHR) 

'TTR' OF ARGUMENT 

'RBA' OF ARGUMENT 
BUFFER ADDRESS 
LENGTH OF A BUFFER LIST ENTRY 

FORMAT 1 DSCB DATA SET NAME AND ~ 
BUFFER 
FORMAT 1 DSCB 

DATA SET NAME 
FORMAT IDENTIFIER 
DATA SET SERIAL NUMBER 
VOLUME SEQUENCE NUMBER 
CREATION DATE 
EXPIRATION DATE 
NUMBER OF EXTENTS ON VOLUME 
NUMBER OF BYTES USED IN LAST 

DIRECTORY BLOCK 
RESERVED 
SYSTEM CODE 
RESERVED 
DATA SET ORGANIZATION 

BYTE OF DSlDSORG 
IS - INDEXED SEQUENTIAL ~OlA 
ORGANIZATION 
PS - PHYSICAL SEQUENTIAL aOlA 
ORGANIZATION 
DA - DIRECT ORGANIZATION ~OlA 
CX - BTAM OR QTAM LINE GROUP ~OlA 
RESERVED aOlA 
RESERVED aOlA 

208 MVS/XA System-Data Administration 

o 

(~, 
\ ' 

-''--.'/ 

C-.. '" , , 
. , 

--

._------ ,~-~~---



+DSlDSGPO EQU X'02' PO - PARTITIONED ORGANIZATION aOlA 
+DSlDSGU EQU X'Ol' U - UNMOVABLE, THE DATA aOlA 

( 
HE CONTAINS LOCATION DEPENDENT 
+31: INFORMATION 
+31: 
+31: SECOND BYTE OF DSIDSORG 
+DSlDSGGS EQU X'80' GS - GRAPHICS ORGANIZATION aOlA 
+DSlDSGTX EQU X'40' TX - TCAM LINE GROUP Ci)OlA 
+DSlDSGTQ EQU X'20' TQ - TCAM MESSAGE QUEUE aOlA 
+31: EQU X'lO' RESERVED aOlA 
+DSlACBM EQU X' 08' ACCESS METHOD CONTROL BLOCK aOlA 
+DSlDSGTR EQU X'04' TR - TCAM 370S aOlA 
+31: EQU X'02' RESERVED aOlA 
+31: EQU X'Ol' RESERVED aOlA 
+DSIRECFM DS Xll RECORD FORMAT 
+DSIOPTCD DS Xll OPTION CODE 
+DSIBLKL DS XL2 BLOCK LENGTH 
+DSllRECL DS XL2 RECORD LENGTH 
+DSlKEYl DS XU KEY LENGTH 
+DSlRKP DS XL2 RELATIVE KEY POSITION 
+DSIDSIND DS XLI DATA SET INDICATORS 
+DSISCALO DS XL4 SECONDARY ALLOCATION 
+DSllSTAR DS XL3 LAST USED TRACK AND BLOCK ON TRACK 
+DSlTRBAL DS XL2 BYTES REMAINING ON LAST TRACK USED 
+ DS XL2 RESERVED 
+DSlEXTl DS XUO FIRST EXTENT DESCRIPTION 
+31: FIRST BYTE EXTENT TYPE INDICATOR 
+31: SECOND BYTE EXTENT SEQUENCE NUMBER 
+31: THIRD - SI~TH BYTES LOWER LIMIT 
+31: SEVENTH - TENTH BYTES UPPER LIMIT 
+DSIEXT2 DS XUO SECOND EXTENT DESCRIPTION 
+DSIEXT3 DS XLIO THIRD EXTENT DESCRIPTION 
+DSIPTRDS DS XLS POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB 
+DSIEND EQU 31: 

DSCBLTH EQU 3I:-IECSDSLl-L'DSlDSNAM LENGTH OF DATA PORTION OF DSCB 
SAVEAREA DS l8F SAVE AREA 

(~' CVPL CVAFSEQ ACCESS=GTEQ, READ DSCB WITH DSN >= SUPPLIED DSN 31: 
IXRCDS=KEEP, KEEP VIERS IN STORAGE DURING CALLS 31: 
DSN=DSlDSNAM, SUPPLIED DATA SET NAME 31: 
BUFLIST=BUFLIST, 
MF=L 

+ CNOP 0,4 
+CVPL EQU 31: 
+ DC CL4'CVPL' EBCDIC 'CVPL' 
+ DC AL2CICVlOE-CVPL) LENGTH OF CVPL 
+ DC XU'OS' FUNCTION CODE 
+ DC Xll'OO' STATUS INFORMATION 
+ DC B'OOOOlOOO' FIRST flAG BYTE 
+ DC B'OOOOOOOO' SECOND flAG BYTE 
+ DC H'O' RESERVED 
+ DC ACO) UCB ADDRESS 
+ DC ACDSlDSNAM) DATA SET NAME ADDRESS 
+ DC ACO) BUFFER LIST ADDRESS 
+ DC ACO) INDEX VIR'S BUFFER LIST ADDRESS 
+ DC ACO) MAP VIR'S BUFFER LIST ADDRESS 
+ DC ACO) I/O AREA ADDRESS 
+ DC ACO) DEB ADDRESS 
+ DC ACO) ARGUMENT ADDRESS 
+ DC ACO) SPACE PARAMETER LIST ADDRESS 
+ DC ACO) EXTENT TABLE ADDRESS 
+ DC ACO) NEW VRF VIXM BUFFER LIST ADDR 
+ DC ACO) VRF DATA ADDRESS 
+ DC ACO) COUNT AREA ADDRESS 
+ICVIOE EQU 31: END OF CVPL 

ORG CVPL EXPAND MAP OVER LIST 

Appendix B. Examples of VTOC Access Macros 209 



-_. ~-~ ... -. --
----.--.~- .. _- ._- .. --~-- .. ---.-.-

i 

i 

CVPLMAP ICVAFPL DSECT=NO CVPL MAP 
+*********************************************************************** 
+* CVAF PARAMETER LIST 

0 +**********************************-**-*************-*****-************* 
+CVPLMAP DS OF CVAF PARAMETER LIST 
+CVLBL DS CL4 EBCDIC 'CVPL' 
+CVLTH DS H LENGTH OF CVPL 
+CVFCTN DS XLI FUNCTION BYTE 
+CVDIRD EQU X'OI' CVAFDIR ACCESS=READ 
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE 
+CVDIRLS EQU X'03' CVAFDIR ACCESS=RLSE 
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT 
+CVSEQGTE EQU, X'OS' CVAFSEQ ACCESS=GTEQ 
+CVDMIXA EQU X' 06' CVAFDSM ACCESS=IXADD 
+CVDMIXD EQU X' 07' CVAFDSM ACCESS=IXDLT 
+CVDMALC EQU X'OS' CVAFDSM ACCESS=ALLOC 
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RLSE 
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA 
+CVVOL EQU X'OB' CVAFVOL ACCESS=VIBBLD 
+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ 
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE 
+CVSTAT DS XLl STATUS INFORMATION (SEE LIST * + BELOW) 
+CVFLl DS XLI FIRST flAG BYTE 
+CVlIVT EQU X'SO' INDEXED VTOC ACCESSED 
+CVlIOAR EQU X'40' IOAREA=KEEP 
+CVIPGM EQU X'20' BRANCH=CYES,PGM) 
+CVIMRCDS EQU X'IO' MAPRCDS=YES 
+CVlIRCDS EQU X'OS' IXRCDS=KEEP 
+CVIMAPIX EQU X'04' MAP=INDEX 
+CVIMAPVT EQU, X'02' MAP=VTOC 
+CVIMAPVL EQU X'OI' MAP=VOLUME 
+CVFl2 DS XLl SECOND FLAG BYTE 
+CV2HIVIE EQU X'80' HIVIER=YES 
+CV2VRF EQU X'40' VRF DATA EXISTS 
+CV2CNT EQU X'20' COUNT=YES (~ +CV2RCVR EQU X'IO' RECOVER=YES 
+CV2SRCH EQU X'08' SEARCH=YES ",-,-,," 

+CV2DSNLY EQU X'04' DSNONLY=YES 
+CV2VER EQU X'02' VERIFY=YES 
+CV2NLEVL EQU X'OI' OUTPUT-NEW HIGHEST LEVEL VIER 
+* CREATED 
+ DS H RESERVED 
+CVUCB DS A UCB ADDRESS 
+CVDSN DS A DATA SET NAME ADDRESS 
+CVBUFL DS A BUFFER LIST ADDRESS 
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS 
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS 
+CVIOAR DS A I/O AREA ADDRESS 
+CVDEB DS A DEB ADDRESS 
+CVARG DS A ARGUMENT ADDRESS 
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS 
+CVEXTS DS A EXTENT TABLE ADDRESS 
+CVBUFL2 DS A NEW VRF VIXM BUFFER LIST ADDR 
+CVVRFDA DS A VRF DATA ADDRESS 
+CVCTAR DS A COUNT AREA ADDRESS 
+CVPLNGTH EQU *-CVPLMAP 

+* VALUES OF CVSTAT 
+*CTHIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN) 

END 

210 MVS/XA System-Data Administration 



(' ...• 

(' 

EXAMPLE 4: USING THE CYAFSEQ MACRO WITH A NONINDEXED VIOC 

EXAMPLE4 CSECT 

This example reads as many as five DSCBs in physical-sequential 
order. The address of the UCB is supplied to the program in 
register S (labeled RUCB). The address of a parameter list is 
supplied in register 4 (labeled RLIST). The first word of the 
parameter list contains the address of a S-byte field. On 
entry, this field is set to zero if no previous DSCBs have been 
read; otherwise, the field is set to the CCHHR of the last DSCB 
read. This S-byte field is supplied by the caller of this 
program and is not modified by this program. 

The remainder of the parameter list consists of one or more 
2-word entries, to a maximum of five 2-word entries. The first 
word of each entry contains the address of a l40-byte DSCB 
buffer. The second word contains the address of a S-byte field 
that is to contain the CCHHR of the DSCB. 

A buffer list with five buffer list entries is contained in the 
program. The ICVAFBFL macro generates the buffer list header and 
one buffer list entry. The remaining buffer list entries are 
generated following the ICVAFBFL macro. 

The CVAFSEQ macro is used once in the program to read as many 
DSCBs as there are 2-word entries in the parameter list. The 
buffer list header field BFLHNOE is initialized with the number 
of buffer list entries that CVAFSEQ is to process. The number 
matches the number of 2-word entries in the parameter list 
supplied to this program. 

After the CVAFSEQ call, the CCHHR for each DSCB read is moved 
from the buffer list entry field BFLEARG to the field whose 
address is supplied by the caller of the program. If the 
BFLEARG field is zero, the previous DSCB read was the last in 
the VTaC. 

The BFLEARG in the first buffer list entry is initialized with 
the CCHHR supplied by the caller: its address is the third word 
in the parameter list. This CCHHR serves as the starting place 
for the CVAFSEQ call. DSCBs with a CCHHR greater than the 
supplied CCHHR are read. 

This program must be APF authorized. 

STM 14,12,12(13) 
BALR 12,0 
USING ~,12 
ST l3,SAVEAREA+4 
LA RWORK,SAVEAREA 
ST RWaRK,8(,13) 
LR l3,RWORK 

~~~~~~~~~~~~~~~~~~~~~*~~~~~~~~~~~~~~~***~~~~~*~~~~~~*~*~~~~~ 
~

~ REGISTERS
* ~**~**~*~~~~~~~~**~*~~~******~~*~~~~**~~*~~*~*~*****~~~~~***
REGI EQU 1 REGISTER 1
RWaRK EQU 3 WORK REGISTER
RLIST EQU 4 ADDRESS OF PARM LIST
RUCB EQU S UCB ADDRESS
RCURRENT EQU 6 CURRENT ENTRY IN PARM LIST
RBLE EQU 7 CURRENT BUFFER LIST ENTRY
RCOUNT EQU 8 COUNT aF ENTRIES IN BUFFER LIST
REGIS EQU IS RETURN CODE REGISTER 15

Appendix B. Examples of VTaC Access Macros 211

**
* * * * * * * * * *

READ UP TO 5 DSCBS.
RUCB CONTAINS ADDRESS OF UCB.
RLIST CONTAINS ADDRESS OF PARAMETER LIST.

WORD 0 = ADDRESS OF CCHHR OF LAST DSCB READ. THIS DSCB IS
NOT TO BE READ

WORD 1 = ADDRESS OF DSCB BUFFER.
WORD 2 = ADDRESS OF CCHHR OF DSCB READ.

WORDI AND WORD2 REPEATED UP TO 4 TIMES.
HIGH ORDER BIT OF WORD 2 SET TO ONE FOR LAST ENTRY.

* **

BUFLOOP

USING LIST,RLIST ADDRESSABILITY TO PARM LIST
XC BFLHDRCBFLHLN+5*BFLELN),BFLHDR ZERO BUFFER LIST WITH

5 BUFFER LIST ENTRIES
01 BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST

FIRST DOUBLEWORD ENTRY IN PARM LIST
USING ON DOUBLEWORDS

LA RCURRENT,LISTPRMS
USING LISTPRMS,RCURRENT
LA RBLE,BFLE FIRST BUFFER LIST ENTRY
USING BFLE, RBLE
L RWORK,LISTSTRT ADDRESS OF STARTING CCHHR

MOVE STARTING CCHHR INTO FIRST
BUFFER LIST ENTRY

MVC BFLEARG,OCRWORK)

XR
EQU

LA
L
ST
MVI
TM
LA
LA
BZ
STC

RCOUNT,RCOUNT
*

ZERO COUNT
PUT BUFFER ADDRESSES IN BUFFER LIST *
ENTRIES

RCOUNT,lC,RCOUNT) INCREMENT COUNT
RWORK,LISTBUF ADDRESS OF DSCB BUFFER
RWORK,BFLEBUF-BFLE(,RBLE) PLACE IN BUFFER LIST
BFLELTH-BFLE(RBLE),DSCBLTH FULL DSCB READ
LISTLAST,LASTBIT IS IT LAST ENTRY IN LIST
RCURRENT,LISTNEXT INCREMENT TO NEXT ENTRY IN LIST
RBLE,BFLELN(,RBLE) INCREMENT TO NEXT BUFFER LIST ENTRY
BUFLOOP LOOP TO PUT NEXT BUFFER IN BFLE
RCOUNT,BFLHNOE SET NUMBER OF ENTRIES IN BUFFER

LIST HEADER
DROP RCURRENT,RBLE

**
* * READ UP TO 5 DSCBS WHOSE CCHHR IS GREATER THAN THE CCHHR IN * THE FIRST BUFFER LIST ENTRY
* ** CVAFSEQ UCB=(RUCB), CALL CVAF *

BRANCH=YES, BRANCH ENTER *
MF=(E,CVPU

+ LA 1,CVPL LOAD PARAMETER REG 1

+ ST RUCB,12(,1) STORE UCB PTR IN PARM LIST
+ L 15,16 LOAD THE CVT
+ L 15,328C,15) LOAD VS1/VS2 COMMON EXTENSION2
+ L 15,12(,15) LOAD THE CVAF TABLE ADDRESS
+ L 15,0(,15) LOAD THE CVAF ADDRESS
+ BALR 14,15 BRANCH AND LINK TO CVAF

USING CVPL,REGI ADDRESSABILITY TO CVPL
LTR REG15,REG15 ANY ERROR
BZ MOVECHR BRANCH IF MOVE IN CCHHRS

**
* * DETERMINE WHAT ERROR IS
* ** C REG15,ERROR4 IS RETURN CODE 4

BNE OTHERERR BRANCH IF NOT 4
CLI CVSTAT,STAT032 IS IT END OF DATA?
BNE OTHERERR BRANCH IF NOT
DROP REG1 ADDRESSABILITY TO CVPL NOT NEEDED

212 MVS/XA System-Data Administration

o

c

I

I

C

**
* * DETERMINE IF ANY DSCBS HAVE BEEN READ. BFLEARG IS NON-ZERO
* IN EACH BUFFER LIST ENTRY FOR WHICH A DSCB HAS BEEN READ
* **-*************** MOVECHR EQU * IS DATA SET NAME GREATER THAN DSN2

LA RCURRENT,LISTPRMS FIRST ENTRY IN PARM LIST
USING LISTPRMS,RCURRENT
LA RBLE,BFLE FIRST BUFFER LIST ENTRY
USING BFLE,RBLE

CHRLOOP EQU * MOVE CCHHR ARGUMENT TO CALLER AREA
L RWORK,LISTCHR ADDRESS OF CCHHR OF CALLER
XC OCL'BFLEARG,RWORK),OCRWORK) ZERO CALLER CCHHR AREA
NC BFLEARG,BFLEARG IS CCHHR ZERO
BZ EXIT BRANCH IF YES-NO MORE DSCBS
MVC OCL'BFLEARG,RWORK),BFLEARG MOVE CCHHR TO CALLER AREA
TM LISTLAST,LASTBIT LAST ENTRY IN PARM LIST!
BO EXIT BRANCH IF YES
LA RCURRENT,LISTNEXT NEXT ENTRY IN LIST
LA RBLE,BFLELNC,RBLE) NEXT BUFFER LIST ENTRY
B CHRLOOP TEST NEXT BFLE

EXIT EQU * RETURN TO CALLER
L 13,SAVEAREA+4
RETURN (14,12)

+ LM 14,12,12(13) RESTORE THE REGISTERS
+ BR 14 RETURN

OTHER ERR EQU *
* * * B EXIT
ERROR4 DC F'4'

ICVAFBFL DSECT=NO

ERROR PROCESSING

RETURN
RETURN CODE 4
BUFFER LIST WITH ONE BUFFER LIST
ENTRY

+***
+* BUFFER LIST HEADER
+***
+BFLHDR DS OF BUFFER LIST HEADER
+BFLHNOE DS XLl NUMBER OF ENTRIES
+BFLHFL DS XLl KEY AND FLAG BYTE
+ ORG BFLHFL
+BFLHKEY DS XLl PROTECT KEY CFIRST 4 BITS)
+BFLHVIR EQU X'08' BUF. LIST ENTRIES DESCRIBE VIRS
+BFLHDSCB EQU X'04' BUF. LIST ENTRIES DESCRIBE DSCBS
+ DS XLl RESERVED
+BFLHSP DS XLl SUBPOOL OF BUF. LIST/BUFFERS
+BFLHFCHN DS A FORWARD CHAIN PTR TO NEXT BUF.
+* LIST
+BFLHLN EQU *-BFLHDR LENGTH OF BUFFER LIST HEADER

+***
+* BUFFER LIST ENTRY
+***
+BFLE DS OF BUFFER LIST ENTRY
+BFLEFL DS XLl BUFFER LIST ENTRY FLAG
+BFLERBA EQU X'80' ARGUMENT IS RBA
+BFLECHR EQU X'40' ARGUMENT IS CCHHR
+BFLETTR EQU X'20' ARGUMENT IS TTR
+BFLEAUPD EQU X'10' CVAF UPDATED ARGUMENT FIELD
+BFLEMOD EQU X'08' DATA IN BUF. HAS BEEN MODIFIED
+BFLESKIP EQU X'04' SKIP THIS ENTRY
+BFLEIOER EQU X'02' I/O ERROR
+ DS XLl RESERVED
+BFLEL TH DS XU LENGTH OF DSCB BUFFER OR

Appendix B. Examples of VTOC Access Macros 213

HE
+BFLEARG
+
+BFLEATTR
+
+BFLEARBA
+BFLEBUF
+BFLELN

SAVEAREA
DSCB

+IECSDSLl
+IECSDSFI
+DSIDSNAM
+DSIFMTID
+DSIDSSN
+DSIVOLSQ
+DSICREDT
+DSIEXPDT
+DSINOEPV
+DSINOBDB
+*

DS XL5
ORG BFLEARG+l
DS XU
ORG BFLEARG+l
DS XL4
DS A
EQU *-BFLE
DS CL(4*BFLELN)
DS 18F
DSECT
IECSDSL1 (1)

EQU
EQU
DS
DS
DS
DS
DS
DS
DS
DS

* IECSDSLI
CL44
Cli
Cl6
Xl2
XU
XU
XLI
XLI

+ DS
+DSlSYSCD DS
+ DS
+DSIDSORG DS
+*

XU
CLlS
XL7
XL2

FIRST BYTE
+DSIDSGIS
+*
+DSIDSGPS
+*
+DSIDSGDA
+DSIDSGCX
+*
+*
+DSIDSGPO
+DSIDSGU
+*
+*
+*

EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU

X'80'

X'40'

X'20'
X'IO'
X' 08'
X'04'
X'02'
X'OI'

lENGTH OF VIR DIVIDED BY 256
ARGUMENT OF VIR OR DSCB (CCHHR)

'TTR' OF ARGUMENT

'RBA' OF ARGUMENT
BUFFER ADDRESS
LENGTH OF A BUFFER lIST

FOUR BUFFER LIST ENTRIES
SAVE AREA

ENTRY

FORMAT 1 DSCB DATASET NAME AND
DATA
FORMAT 1 DSCB

DATA SET NAME
FORMAT IDENTIFIER
DATA SET SERIAL NUMBER
VOLUME SEQUENCE NUMBER
CREATION DATE
EXPIRATION DATE
NUMBER OF EXTENTS ON VOLUME
NUMBER OF BYTES USED IN LAST

DIRECTORY BLOCK
RESERVED
SYSTEM CODE
RESERVED
DATA SET ORGANIZATION

OF DS1DSORG
IS - INDEXED SEQUENTIAL
ORGANIZATION
PS - PHYSICAL SEQUENTIAL
ORGANIZATION
DA - DIRECT ORGANIZATION
CX - BTAM OR QTAM LINE GROUP
RESERVED
RESERVED
PO - PARTITIONED ORGANIZATION
U - UNMOVABLE, THE DATA
CONTAINS LOCATION DEPENDENT
INFORMATION

~OlA

~OlA

~OlA
~OlA
~OlA
~01A
Q)OIA
~01A

+*
+DSIDSGGS
+DSIDSGTX
+DSIDSGTQ
+*
+DSIACBM
+DSIDSGTR
+*

SECOND BYTE OF DS1DSORG

+*
+DSIRECFM
+DSIOPTCD
+DSIBLKL
+DSlLRECL
+DSIKEYL
+DSIRKP
+DSIDSIND
+DSlSCALO
+DSlLSTAR
+DSITRBAL
+
+DSIEXTl
+*
+*
HE
+*
+DSIEXT2
+DSIEXTS

EQU X'80'
EQU X'40'
EQU X'20'
EQU X'IOI
EQU X'08'
EQU X'04'
EQU X'02'
EQU X'01'
DS XLI
DS XLI
DS XL2
DS XL2
DS XLI
DS Xl2
DS XLI
DS Xl4
DS XL3
DS XL2
DS Xl2
DS XLIO
FIRST BYTE
SECOND BYTE
THIRD - SIXTH BYTES
SEVENTH - TENTH BYTES
DS XLlO
DS XLIO

GS - GRAPHICS ORGANIZATION
TX - TCAM LINE GROUP
TQ - TCAM MESSAGE QUEUE
RESERVED
ACCESS METHOD CONTROL BLOCK
TR - TCAM 3705
RESERVED
RESERVED
RECORD FORMAT
OPTION CODE
BLOCK LENGTH
RECORD LENGTH
KEY LENGTH
RELATIVE KEY POSITION
DATA SET INDICATORS
SECONDARY ALLOCATION

~01A
~OIA
~OIA
~OlA
~01A
~01A
~OIA
~OlA

LAST USED TRACK AND BLOCK ON TRACK
BYTES REMAINING ON LAST TRACK USED
RESERVED
FIRST EXTENT DESCRIPTION
EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER
LOWER LIMIT
UPPER LIMIT
SECOND EXTENT DESCRIPTION
THIRD EXTENT DESCRIPTION

214 MVS/XA System-Data Administration

+DS1PTRDS DS XLS POSSIBLE PTR TO A FORMAT 2 OR 3 DSCB
+DS1END EQU *

(~
DSCBLTH EQU *-IECSDSLl LENGTH OF DSCB
LIST DSECT PARAMETER LIST
LISTSTRT DS F ADDRESS OF CCHHR TO START SEARCH
LISTPRMS EQU *
LISTBUF DS F BUFFER ADDRESS
LISTCHR DS OF ADDRESS OF CCHHR FIELD
LISTLAST DS X BYTE
LASTBIT EQU X'SO' LAST DOUBLE WORD

DS AL3 3 BYTE ADDRESS OF CCHHR
LISTNEXT EQU * NEXT DOUBLEWORD
EXAMPLE4 CSECT
**
*
* READ DSCBS WITH CCHHR GREATER THAN THE CCHHR IN THE FIRST
* BUFFER LIST ENTRY.
*
**
CVPL CVAFSEQ ACCESS=GT, *

BUFlIST=BFlHDR, ADDRESS OF BUFFER LIST *
MF=L

+ CNOP 0,4
+CVPL EQU * + DC CL4'CVPL' EBCDIC 'CVPL'
+' DC AL2CICV6E-CVPl) LENGTH OF CVPL
+ DC XU'04' FUNCTION CODE
+ DC XU'OO' STATUS INFORMATION
+ DC B'00100000' FIRST FLAG BYTE
+ DC B'OOOOOOOO' SECOND FLAG BYTE
+ DC H'O' RESERVED
+ DC ACO) UCB ADDRESS
+ DC ACO) DATA SET NAME ADDRESS
+ DC AC BFLHDR) BUFFER LIST ADDRESS
+ DC ACO) INDEX VIR'S BUFFER LIST ADDRESS
+ DC ACO) MAP VIR'S BUFFER LIST ADDRESS (-, + DC ACO) I/O AREA ADDRESS
+ DC ACO) DEB ADDRESS
+ DC ACO) ARGUMENT ADDRESS
+ DC ACO) SPACE PARAMETER LIST ADDRESS
+ DC ACO) EXTENT TABLE ADDRESS
+ DC ACO) NEW VRF VIXM BUFFER LIST ADDR
+ DC ACO) VRF DATA ADDRESS
+ DC ACO) COUNT AREA ADDRESS
+ICV6E EQU * END OF CVPL

ORG CVPL EXPAND MAP OVER LIST
CVPLMAP ICVAFPL DSECT=NO CVPL MAP

+***
+* CVAF PARAMETER LIST
+***
+CVPLMAP DS OF CVAF PARAMETER LIST
+CVLBL DS CL4 EBCDIC 'CVPL'
+CVLTH DS H LENGTH OF CVPL
+CVFCTN DS XU FUNCTION BYTE
+CVDIRD EQU X' 01' CVAFDIR ACCESS=READ
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE
+CVDIRLS EQU X'03' CVAFDIR ACCESS=RlSE
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT
+CVSEQGTE EQU X'OS' CVAFSEQ ACCESS=GTEQ
+CVDMIXA EQU X' 06' CVAFDSM ACCESS=IXADD
+CVDMIXD EQU X' 07' CVAFDSM ACCESS=IXDLT
+CVDMALC EQU XI OS' CVAFDSM ACCESS=ALLOC
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RlSE
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA
+CVVOL EQU X'OB' CVAFVOL ACCESS=VIBBLD
+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ

()

Appendix B. Examples of VTOC Access Macros 215

+CVVRFWR EQU
+CVSTAT DS
+
+CVFLI DS
+CVlIVT EQU
+CVlIOAR EQU
+CVIPGM EQU
+CVIMRCDS EQU
+CVlIRCDS EQU
+CVIMAPIX EQU
+CVIMAPVT EQU
+CVIMAPVL EQU
+CVFL2 DS
+CV2HIVIE EQU
+CV2VRF EQU
+CV2CNT EQU
+CV2RCVR EQU
+CV2SRCH EQU
+CV2DSNLY EQU
+CV2VER EQU
+CV2NLEVL EQU
HE
+ DS
+CVUCB DS
+CVDSN DS
+CVBUFL DS
+CVIRCDS DS
+CVMRCDS DS
+CVIOAR DS
+CVDEB DS
+CVARG DS
+CVSPACE DS
+CVEXTS DS
+CVBUFL2 DS
+CVVRFDA DS
+CVCTAR DS
+CVPLNGTH EQU

X'OD'
XLI

XLl
X'80'
X'40'
X'20'
X'IO'
X'08'
X'04'
X'02'
X'OI'
XLl
X'80'
X'40'
X'20'
X'IO'
X' 08'
X'04'
X'02'
X'Ol'

H
A
A
A
A
A
A
A
A
A
A
A'
A
A
K-CVPLMAP

+* VALUES OF CVSTAT

CVAFVRF ACCESS=WRITE
STATUS INFORMATION (SEE LIST K
BELOW)
FIRST FLAG BYTE
INDEXED VTOC ACCESSED
IOAREA=KEEP
BRANCH=(YES,PGM)
MAPRCDS=YES
IXRCDS=KEEP
MAP=INDEX
MAP=VTOC
MAP=VOLUME
SECOND FLAG BYTE
HIVIER=YES
VRF DATA EXISTS
COUNT=YES
RECOVER=YES
SEARCH=YES
DSNONLY=YES
VERIFY=YES
OUTPUT-NEW HIGHEST LEVEL VIER
CREATED
RESERVED
UCB ADDRESS
DATA SET NAME ADDRESS
BUFFER LIST ADDRESS
INDEX VIR'S BUFFER LIST ADDRESS
MAP VIR'S BUFFER LIST ADDRESS
I/O AREA ADDRESS
DEB ADDRESS
ARGUMENT ADDRESS
SPACE PARAMETER LIST ADDRESS
EXTENT TABLE ADDRESS
NEW VRF VIXM BUFFER LIST ADDR
VRF DATA ADDRESS
COUNT AREA ADDRESS

+K(THIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)
END

216 MVS/XA System-Data Administration

-----~----- --------

o

C'''''-
")

EXAMPLE 5: USING THE CYAFTST AND CYAFDSM MACROS

This example returns a format-S DSCB to the caller. The
format-S DSCB is constructed by this program if the volume
contains an indexed VTOC. The format-S DSCB is read by another
program, FSRTN (not described in the example), if the volume
contains a nonindexed VTOC.

The CVAFTST macro is used to determine if a nonindexed VTOC is
on the volume.

If the CVAFTST return code is neither 0 nor 4 (a nonindexed VTOC
is on the volume), the CVAFDSM macro is issued to obtain up to
27 extents from the VPSM in the VTOC index. The program does
not determine whether the CVAFTST return code is 8 (volume
contains indexed VTOC) or 12 (it cannot be determined what type
of VTOC is on the volume). In either case, the CVAFDSM macro is
issued. If the CVAFTST return code is 12, the CVAFDSM macro
call will cause CVAF to determine whether an indexed or a
nonindexed VTOC is on the volume, and the CVIIVT bit will be set
to one or zero, accordingly.

The extent table (at label EXTABL) is initialized to request 27
extents from the CVAFDSM macro, which is one more than the
number of extents that fit in a format-S DSCB. The format-S
DSCB is constructed from the first 26 extents returned from the
CVAFDSM call.

The first extent in the extent table is initialized from the
last extent in the format-S DSCB area supplied by the caller of
the program. If this is the first call, the program assumes
that the format-S area is initialized to zero. Thus, the first
extent in the extent table has a value of zero to serve as the
starting place for the extent search. If this is the second or
subsequent call, the last extent in the format-S area would be
the last extent obtained from the previous CVAFDSM call.

The format-S chain pointer field (DSSPTRDS) is set to a nonzero
value if CVAFDSM returned a 27th extent. In this case, the
program will be called again to obtain another format-S DSCB.

The program's return code is 0 if no errors were encountered and
4 if an error was encountered.

This program must be APF authorized.

EXAMPLES CSECT
STM 14,12,12(13)
BALR 12,0
USING *,12
ST l3,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,13)
LR 13,RWORK

**
* * REGISTERS
* **
RDEB EQU 3 DEB ADDRESS SUPPLIED BY CALLER
RUCB EQU 4 UCB ADDRESS SUPPLIED BY CALLER
RFS EQU 5 ADDRESS OF FORMAT 5 BUFFER SUPPLIED *

BY CALLER
RWORK EQU 6 WORK REGISTER
REGIS EQU 15 RETURN CODE REGISTER 15

* KFS EQU 26 NUMBER OF FORMAT 5 EXTENTS

Appendix B. Examples of VTOC Access Macros 217

+
+
+
+
+
+
+
+

------~ _-- _._ ..•. -

**
* * * * * * * * * *

READ FORMAT 5 DSCB OR BUILD A FORMAT 5 DSCB IF
AN INDEXED VTOC

UCB ADDRESS SUPPLIED IN RUCB.
RFS CONTAINS THE ADDRESS OF THE FORMAT 5 DSCB BUFFER. IT

CONTAINS THE LAST FORMAT 5 DSCB READ OR BUILT. THE FORMAT 5
BUFFER IS ZERO IF THIS IS THE FIRST CALL

IF THE FORMAT 5 DSCB BUFFER RETURNED TO THE CALLER HAS A
NONZERO VALUE IN DS5PTRDS, THIS ROUTINE WILL BE CALLED
AGAIN TO OBTAIN THE NEXT FORMAT 5 DSCB.

* ** USING IECSDSFS,RFS ADDRESSABILITY TO FORMAT S BUFFER
CVAFTST UCB=CRUCB) TEST VTOC
CNOP 0,4 START OF CVAFTST MACRO
LR 1,RUCB LOAD PARAMETER REG 1
L lS,16 LOAD THE CVT
L 15,328C,15) LOAD VSl/VS2 COMMON EXTENSION2
L lS,12C,IS) LOAD THE CVAF TABLE ADDRESS
LTR IS,IS TEST FOR ZERO VALUE
BZ ICV1E CVAF IS NOT ON THE SYSTEM
L 15,4C,IS) LOAD POINTER TO CVAF TEST E.P.

+
+ICV1E

BALR 14,1S BRANCH AND LINK TO CVAF TEST
EQU * END OF CVAFTST

+
+
+
+
+
+

LTR REG15,REGlS
BZ UNINDXD READ NEXT FORMAT S
C REGI5,NOTIXRC UNINDEXED VTOC?
BE UNINDXD READ NEXT FORMAT 5

**
* * ASSUME INDEXED VTOC UNLESS CVAFDSM CALL INDICATES UNINDEXED
* **

NOERROR

MVC EXTSCL'DS5AVEXT),DS5MAVET+L'DS5MAVET-L'DSSAVEXT MOVE THE *

CVAFDSM MF=CE,CVPL),
UCB=CRUCB),
DEB=CRDEB),

LA
L
L
L
L
BALR
TM
BZ
LTR
BZ

BRANCH=YES
1,CVPL
15,16
15,328C,15)
15,12C,15)
15,0(,15)
14,15

CVFL1,CVlIVT
UNINDXD
REG15,REG15
NOERROR
REG15,RC04
OTHERERR
CVSTAT,STAT032
OTHER ERR
* DS5KEYID, F5ID

LAST EXTENT FROM FORMAT 5 TO FIRST *
ENTRY IN THE EXTENT TABLE
GET 27 EXTENTS FROM CVPL *
RUCB ADDRESS REQUIRED *
RDEB ADDRESS REQUIRED BY *

UNAUTHORIZED PROGRAMS CALLING CVAF *
BRANCH ENTRY CALL *

LOAD PARAMETER REG 1
LOAD THE CVT
LOAD VS1/VS2 COMMON EXTENSION2
LOAD THE CVAF TABLE ADDRESS
LOAD THE CVAF ADDRESS
BRANCH AND LINK TO CVAF

IS THIS INDEXED VTOC
READ FORMAT 5 IF NOT
ANY ERROR

UNEXPECTED ERROR
END OF DATA
UNEXPECTED ERROR
BUILD FORMAT 5

C
BNE
CLI
BNE
EQU
MVC
MVC DS5AVEXTCL'DS5AVEXT+L'DS5EXTAV),EXTS MOVE IN EXTENTS

TO DS5FMTID
MVI DS5FMTID,C'5'
MVC DS5MAVET,EXTS+L'DS5AVEXT+L'DS5EXTAV MOVE REMAINING *

EXTENTS
XR REG15,REG15 RETURN CODE ZERO
XC DS5PTRDS,DS5PTRDS ZERO CHAIN POINTER
NC EXTS+L'EXTS-L'DS5AVEXTCL'DS5AVEXT),EXTS+L'EXTS-L'DS5AVEXT*

IS LASTC27TH) EXTENT FROM CVAF *
ZERO?

218 MVS/XA System-Data Administration

----------------_ ..

o

I
I

(•....
,

./

BZ RETURN BRANCH IF YES-LEAVE DSSPTRDS ZERO
MVI DSSPTRDS+L'DSSPTRDS-1,1 SET DSSPTRDS NONZERO TO SIMULATE *

THERE BEING ANOTHER FORMAT S
B RETURN

UNINDXD EQU *
LINK EP=FSRTN

+ CNOP 0,4

CALL ROUTINE TO READ NEXT FORMAT S
LINK TO FORMAT S ROUTINE. RETURN *
CODE PASSED BACK IN REG1S

+ BAL lS,*+20 LOAD SUP.PARAMLIST ADR
+ DC AC*+8) ADDR OF EP PARAMETER
+ DC ACO) DCB ADDRESS PARAMETER LCOA
+ DC CLS'FSRTN' EP PARAMETER
+ SVC 6 ISSUE LINK SVC

RETURN EQU * RETURN TO CALLER
L 13,SAVEAREA+4
RETURN C14,12),RC=C1S)

+ L 14,12(13,0) RESTORE REGISTER 14
+ LM 0,12,20(13) RESTORE THE REGISTERS
+ BR 14 RETURN

OTHERERR EQU * ERROR
L REG1S,RC04 ERROR RETURN CODE
B RETURN

DSCB DSECT
IECSDSll CS)

+IECSDSLS EQU * FORMAT S DSCB
+IECSDSFS EQU IECSDSLS
+DSSKEYID DS XL4 KEY IDENTIFIER
+DSSAVEXT DS XLS AVAILABLE EXTENT
+* BYTES 1 - 2 RELATIVE TRACK ADDRESS OF THE FIRST TRACK
+* IN THE EXTENT
+* BYTES 3 - 4 NUMBER OF UNUSED CYLINDERS IN THE EXTENT
+* BYTE S NUMBER OF ADDITIONAL UNUSED TRACKS
+DS5EXTAV DS XL3S SEVEN AVAILABLE EXTENTS
+DSSFMTID DS CL1 FORMAT IDENTIFIER
+DSSMAVET DS XL90 EIGHTEEN AVAILABLE EXTENTS
+DSSPTRDS DS XLS POINTER TO NEXT FORMAT S DSCB
+DSSEND EQU *

EXAMPLES CSECT
NOTIXRC DC F'4' CVAFTST RETURN CODE-UN INDEXED
RC04 DC F' 4' RETURN CODE 4
FSID DC XL4'OSOSOSOSOS' FORMAT S FIELD. DSSKEYID
SAVEAREA DS 18F REGISTER SAVE AREA
EXTA8L DS OCLC1+CKFS+1)*L'DSSAVEXT) EXTENT TABLE
EXTNO DC AL1(KFS+1) NUMBER OF EXTENTS IN TABLE
EXTS DS CLCCKFS+1)*L'DSSAVEXT) EXTENTS
CVPL CVAFDSM ACCESS=MAPDATA, *

COUNT=NO, DO NOT COUNT EXTENTS *
MAP=VOLUME, ACCESS VOLUME SPACE MAP *
EXTENTS=EXTABL, EXTENT TABLE ADDRESS *
MF=L LIST FORM OF MACRO

+ CNOP 0,4
+CVPL EQU *
+ DC CL4 I CVPL' EBCDIC 'CVPL'
+ DC AL2CICV9E-CVPL) LENGTH OF CVPL
+ DC Xl1 I OA' FUNCTION CODE
+ DC XL1'00' STATUS INFORMATION
+ DC 8'00100001' FIRST FLAG BYTE
+ DC B'OOOOOOOO' SECOND FLAG BYTE
+ DC H'O' RESERVED
+ DC ACO) UC8 ADDRESS
+ DC ACO) DATA SET NAME ADDRESS
+ DC ACO) BUFFER LIST ADDRESS
+ DC ACO) INDEX VIR'S BUFFER LIST ADDRESS
+ DC ACO) MAP VIR'S BUFFER LIST ADDRESS
+ DC ACO) I/O AREA ADDRESS
+ DC ACO) DEB ADDRESS

Appendix B. Examples of VTOC Access Macros 219

+ DC ACO) ARGUMENT ADDRESS
+ DC ACO) SPACE PARAMETER LIST ADDRESS
+ DC ACEXTABL) EXTENTS TABLE ADDRESS
+ DC ACO) NEW VRF VIXM BUFFER LIST ADDR
+ DC ACO) VRF DATA ADDRESS
+DC ACO) COUNT AREA ADDRESS
+ICV9E EQU * END OF CVPL

ORG CVPL OVERLAY CVPL WITH EXPANSION OF MAP
CVPLMAP ICVAFPL DSECT=NO

+***
+* CVAF PARAMETER LIST
+***
+CVPLMAP DS OF CVAF PARAMETER LIST
+CVLBL DS CL4 EBCDIC 'CVPL'
+CVLTH DS H LENGTH OF CVPL
+CVFCTN DS XLI FUNCTION BYTE
+CVDIRD EQU X'OI' CVAFDIR ACCESS=READ
+CVDIWR EQU X'02' CVAFDIR ACCESS=WRITE
+CVDIRLS EQU X'03' CVAFDIR ACCESS=RLSE
+CVSEQGT EQU X'04' CVAFSEQ ACCESS=GT
+CVSEQGTE EQU X'OS' CVAFSEQ ACCESS=GTEQ
+CVDMIXA EQU X'06' CVAFDSM ACCESS=IXADD
+CVDMIXD EQU X'07' CVAFDSM ACCESS=IXDLT
+CVDMALC EQU X'OS' CVAFDSM ACCESS=ALLOC
+CVDMRLS EQU X'09' CVAFDSM ACCESS=RLSE
+CVDMMAP EQU X'OA' CVAFDSM ACCESS=MAPDATA
+CVVOL EQU X'OB' CVAFVOL ACCESS=VIBBLD
+CVVRFRD EQU X'OC' CVAFVRF ACCESS=READ
+CVVRFWR EQU X'OD' CVAFVRF ACCESS=WRITE
+CVSTAT DS XLI STATUS INFORMATION CSEE LIST X
+ BELOW)
+CVFLI DS XLI FIRST FLAG BYTE
+CVIIVT EQU X'SO' INDEXED VTOC ACCESSED
+CVIIOAR EQU X'40' IOAREA=KEEP
+CVIPGM EQU X'20' BRANCH=CYES,PGM)
+CVIMRCDS EQU X'IO' MAPRCDS=YES
+CVIIRCDS EQU X'OS' IXRCDS=KEEP
+CVIMAPIX EQU X'04' MAP=INDEX
+CVIMAPVT EQU X'02' MAP=VTOC
+CVIMAPVL EQU X'OI' MAP=VOLUME
+CVFL2 DS XLI SECOND FLAG BYTE
+CV2HIVIE EQU X'SO' HIVIER=YES
+CV2VRF EQU X'40' VRF DATA EXISTS
+CV2CNT EQU X'20' COUNT=YES
+CV2RCVR EQU X'IO' RECOVER=YES
+CV2SRCH EQU X'08' SEARCH=YES
+CV2DSNLY EQU X'04' DSNONLY=YES
+CV2VER EQU X'02' VERIFY=YES
+CV2NLEVL EQU X'OI' OUTPUT-NEW HIGHEST LEVEL VIER
+* CREATED
+ DS H RESERVED
+CVUCB DS A UCB ADDRESS
+CVDSN DS A DATA SET NAME ADDRESS
+CVBUFL DS A BUFFER LIST ADDRESS
+CVIRCDS DS A INDEX VIR'S BUFFER LIST ADDRESS
+CVMRCDS DS A MAP VIR'S BUFFER LIST ADDRESS
+CVIOAR DS A I/O AREA ADDRESS
+CVDEB DS A DEB ADDRESS
+CVARG DS A ARGUMENT ADDRESS
+CVSPACE DS A SPACE PARAMETER LIST ADDRESS
+CVEXTS DS A EXTENT TABLE ADDRESS
+CVBUFL2 DS A NEW VRF VIXM BUFFER LIST ADDR
+CVVRFDA DS A VRF DATA ADDRESS
+CVCTAR DS A COUNT AREA ADDRESS
+CVPLNGTH EQU *-CVPLMAP
+* VALUES OF CVSTAT
+*CTHIS PART OF THE ICVAFPL MACRO EXPANSION IS NOT SHOWN)

END

220 MVS/XA System-Data Administration

.-----------~

o

()

APPENDIX C, YTOC INDEX ERROR MESSAGE AND ASSOCIATED CODES

ERROR MESSAGE

EXPLANATION

(., SYSTEM ACTION

PROGRAMMER RESPONSE

When CVAF finds an error in a VTaC index, it issues this
message:

IEC606I VTac INDEX DISABLED ON dev,volser,
code, [rba[,secno,offsetl]

In addition, CVAF puts a return code in the CVSTAT field of the
CVPL.

The Common VTaC Access Facility (CVAF) detected a VTaC index
error on the device 'dev' with volume serial number 'volser'.
'code' is a number that represents the kind of VTaC index error
encountered. 'rba' is the RBA of the VIR in the VTOC index that
contains a structure error indicated by 'code l • If the VIR is a
VIER, the section number in the VIER containing the VTOC index
entry is supplied in 'secno l , and the offset into the section of
that VTaC index entry is supplied in 'offset'.

The VTOC index is disabled by zeroing the index bit in the
format-4 DSCB and setting the bit in the first high-level VIER
that indicates invalid VTaC index structure. The VTaC will be
converted to nonindexed format when DADSM next allocates space
on the volume. A system dump is written to the SYSl.DUMP data
set, and an entry is made in the SYSl.LOGREC data set. The
message IEC604I (which indicates that the VTOC convert routines
have been used) will be issued later.

Examine the system dump and a print of the VTaC index, and use
the information in message IEC606I to determine the cause of the
VTDC index structure error.

ROUTING AND DESCRIPTOR CODES

The routing codes are 4 (direct access pool) and 10
(system/error maintenance), and the descriptor code is 4 (system
status) .

Appendix C. VTDC Index Error Message and Associated Codes 221

CODES PUT IN THE CYSTAT FIELD

Code

0(00)

1(01)

2(02)

4(04)

5(05)

6(06)

7(07)

8(08)

9(09)

10(OA)

1U08)

12(OC)

13(OD)

14(OE)

15(OF)

17(11)

19(13)

22(16)

23(17)

24(18)

Meaning

No error.

Data set name not found, or
VIER is empty.

Argument is outside VTOC
extents or RBA range of VTDC
index.

Invalid parameter supplied
(wrong key).

DSN keyword omitted.

Not authorized to perform this
function.

Buffer list omitted.

DEB invalid or omitted or not
open to VTDC.

IOAREA=KEEP and user not
authorized, or I/O area
supplied and user not
authorized

Function not supported on as
VTDC.

DSCB is not format-O DSCB and
VERIFY=YES.

MAPRCDS=YES and/or IXRCDS=KEEP
but VTOC is nonindexed.

IXRCDS=KEEP not specified for
CVAFDSM ACCESS=IXADD or IXDLT.

CTAREA keyword omitted.

UCB invalid, volume not
mounted; VIO unit, not DASD.

DSCB length invalid for the
function requested: 96 bytes
for CVAFDIR
ACCESS=WRITE,VERIFY=YESi 96
bytes for CVAFSEQ reading in
data-set-name sequence; 140
bytes for CVAFSEQ reading in
physical sequence.

UCB omitted and CVAF I/O area
not supplied.

Data set name already
supplied.

Invalid DSN supplied (44 X'FF'
is a reserved data set name) .

ARG keyword not supplied.

222 MVS/XA System-Data Administration

Code

25(19)

27(18)

28(1C)

29(1P)

30llE)

3U1F)

32(20)

33(21)

34(22)

42(2A)

43(8)

44(2C)

Meaning

Conflicting or incomplete
information specified in the
space table for a CVAFDSM
ACCESS=ALLOC, MAP=VOLUME
request.

VTOC index full. No free VIRs
available and a VIER split is
required:

Space keyword omitted (CVSPACE
field zero in CVPL).

o

CVAFDSM ACCESS=ALLOC: No I'
format 0 DSCB available !

(MAP=VTOC), or VTOC index full
(MAP=INDEX), or volume space
not available (MAP=VOLUME).

CVAFDSM ACCESS=ALLOC: CCHHR
(MAP=VTOC) orRBA MAP=INDEX or
volume space extent
(MAP=VOLUME) already
allocated.

CVAFDSM ACCESS=ALLOC or
ACCESS=MAPDATA: CCHHR
supplied outside VTOC extents
(MAP=VTOC), or RBA outside
VTOC index extents
(MAP=INDEX), or volume space
extent invalid or outside
volume (MAP=VOLUME). (\

\ I

End of data. CVAFDSM '-/
ACCESS=MAPDATA: no more free
extents in VPSM. CVAFSEQ: no
more names in index or DSCBs
in VTOC. For indexed access,
no DSN in VTOC index with
higher or higher-or-equal key
than that supplied. For
physical-sequential access, no
DSCB in the VTOC has a higher
argument than that supplied.
For a multiple DSCB request,
the last DSCB in the VTOC was
read and more DSCBs were
requested.

EXTENTS keyword omitted, or
supplied number of extents is
zero.

CVAFDSM ACCESS=RLSEl format 0
DSCB already free (MAP=VTOC),
or VIER already unallocated
(MAP=INDEX) or volume space
extent already unallocated
(MAP=VOLUME).

VRF data supplied for write
too long.

Buffer list is for VIRs, but a
DSCB buffer list is required.

No buffer list entry found. C·-~ . J

('

(~

Code

45(2D)

46(2E)

47(2F)

4S(30)

49(31)

50(32)

52(34)

53(35)

54(36)

55(37)

56(3S)

57(39)

5S(3A)

60(3C)

127(7F)

12S(SO)

129(S1)

130(S2)

Meaning

Invalid DSCB buffer length
(neither 96 nor 140) in buffer
list entry. or VIR buffer
length not equal to VIB VIR
size.

Neither TTR nor CCHHR bits set
in buffer list entry to be
used in writing or reading a
140-by1:e DSCB.

More than one of the TTR.
CCHHR. and RBA bits set in the
buffer list entry.

Both the DSCB and VIR bits set
in the buffer list header.

RBA bit set in a buffer list
entry for a DSCB buffer list.

TTR or CCHHR bit set in buffer
list entry but buffer list
header indicates buffer list
is for a VIR.

Combination of MAP and COUNT
not supported.

MAP omitted.

Buffer list for a VIR chained
to or from a buffer list for a
DSCB.

Unauthorized caller and VIB
not initialized.

MAPRCDS=YES not specified but
required.

Buffer list for a DSCB
supplied. but buffer list for
a VIR is required (in MAPRCDS
or IXRCDS buffer list address
in CVAF parameter list).

Neither the VIR nor DSCB bit
set in a buffer list header.

Invalid or conflicting setting
of allocate option byte in
space parameter

I/O error occurred.

Reserved.

The first high-level VIER as
indicated in the VIXM does not
have the flag bit set
indicating it is the first
high-level VIER.

A horizontal or vertical VIER
pointer is outside the RBA
range of the VTOC index.

A vertical VIER pointer points
to a VIR that is not a VIER
(invalid ID in header).

Code

132(S4)

133(S5)

134(S6)

135(S7)

136(SS)

137(S9)

13S(SA)

139(S8)

140(SC)

14llSD)

142(SE)

143(SF)

144(90)

Meaning

A level n vertical index entry
pointer points to a VIER that
is not at level n - 1.

Level n horizontal index entry
pointer points to VIER that is
not at level n.

Horizontal VIER/map pointer
points to a VIR that is not a
VIER/map (invalid ID in
header).

Horizontal map pointer points
to VIR that is not one of the
first n VTOC index records (n
is recorded in VIXM field
VIMRCDS). or the first record
in the VTOC index is not a
VIXM.

A 1eve1-l index entry contains
a CCHHR pointer that is
outside the VTOC extent.

The first high-level VIER. as
indicated in the VIB. does not
have the flag bit set
indicating it is the first
high-level VIER. (This error
is either recovered from by
updating the VIB from the
VIXM. or the error is changed
to 129.)

The RBA of the VTOC index VIR
does not match the RBA
recorded in the header of the
record.

The first record of a map
(VIXM. VPSM. or VMDS) is not
one of the first n VTOC index
records (n is recorded in the
VIXM field. VIMRCDS).

The data set name in a level n
+ 1 VIER entry is lower than
the high key of the level n
VIER that the level n + 1 VIER
entry points to.

First high-level VIER
structure error bit is on.

I/O error indicating the VTOC
index is not formatted
correctly.

Either the index bit is zero.
or the DOS bit is zero in the
format-4 DSCB of a VTOC
previously found to be an
indexed VTOC.

No SYS1.VTOCIX.nnn data set
name in a VTOC whose format-4
DSCB has the index bit on.
indicating the VTOC has an
index.

Appendix C. VTOC Index Error Message and Associated Codes 223

--- ---.-. --------------.--- .. - ------

Code

145(91)

146(92)

147(93)

148(94)

149(95)

150(96)

151(97)

152(98)

Meaning

The data set name in a level n
+ 1 VIER entry is higher than
the high key of the level n
VIER that the level n + 1 VIER
entry points to

Four or more high-level VIERs
were encountered.

Too many levels in the VTDC
index. The length of the
search list was exceeded.

VIER invalid, because offset
to last section is invalid.

VIER invalid, because offset
to last entry in a section is
invalid.

Media Manager initialization
failed.

Level-2 or higher VIER
contains fewer than two
entries.

REcaVER=YES specified, but the
static text module CICVIXSTO)
indicates recovery is not
permitted.

224 MVS/XA System-Data Administration

Code

153(99)

154(9A)

15S(9Bl

156(9C)

157(9Dl

lS8(9El

159(9Fl

Meaning

The format-4 DSCB on an
indexed VTaC is written with
either the index- or DOS-bit
zeroed on an indexed VTDC.

A space map extends over more
than 10 VTaC index records.

Data set name not found in
section with key greater than
or equal to the name being
searched for. The VIER
section containing the name is
invalid.

Invalid VIER horizontal
pointer. Horizontal pointer
of VIERl points to VIER2 whose
high key is lower than or
equal to the high key of
VIERl.

Could not find entry in
level-2 or higher VIER that
matches the high key of the
VIER.

Invalid section length or
invalid number of sections in
a VIER header.

The first high-level VIER
pointed to by the VIB has an
invalid ID in the header.

o

c

-------- -----

(

(

(

APPENDIX D, EXAMPLE OF AN OPEN INSTALLATION EXIT MODULE

PROCESSING IN IFGOEXOB

The following program listing is a sample of IFGOEXOB. The four
subroutines (BUFNO, SCREEN, RLSE, and SQTY) show examples of the
kind of processing that can be done in your installation's
version of IFGOEXOB.

The BUFNO subroutine defaults the number of buffers for QSAM
DCBs (DCBBUFNO) if the value is zero when the exit is given
control. The block size in the DCB (DCBBLKSI) is used, together
with a fixed amount of storage (64K bytes in the example) to
determine a buffer number. A buffer number is limited to a
fixed value (32 in the example). Storage quantity and maximum
buffer number are contained in two tables, DAMAX and TPMAX, that
are used for DASD devices and tape devices, respectively.
Storage quantity is expressed in units of 1024 (lK) bytes. The
values in the DAMAX and TPMAX tables can be altered by your
installation.

The SCREEN subroutine determines those cases in which the
succeeding subroutines, RLSE and SQTY, should be executed. DASD
sequential and partitioned data sets being processed by BSAM or
QSAM and opened for OUTPUT or OUTIN are selected. The VToe data
set and data sets starting with 'SYS1.' (system data sets) are
excluded. An installation may want to make further selection
tests.

REQUESTING PARTIAL RELEASE

The RLSE subroutine sets on the partial release indicators in
the JFCB if the number of extents in the data set is less than a
fixed value (8 in the example). It sets off the partial release
indicators in the JFCB if the number of extents in the data set
is equal or greater than a fixed value (8 in the example).
Partitioned data sets are not processed, because they may be
opened many times to write one new member for each OPEN/CLOSE.

UpDATING THE SECONDARY SPACE DATA

The SQTY subroutine provides a default secondary space quantity
if none is specified. The default is one half of the primary
space quantity if it is greater than one. If the primary
quantity is zero, secondary is set to a fixed default number of
tracks (5 in the example). If the primary quantity is one,
secondary is set to the same fixed default (5); note that, in
this case, the secondary quantity is in units of tracks,
cylinders, or average blocks, depending on the unit of the
primary quantity.

If the secondary space quantity is not zero, the SQTY subroutine
tests the number of extents in the data set. If the number of
extents is equal to or greater than a fixed value (10 in the
example), then the secondary quantity is increased by SOX if it
is greater than 1. It is set to a default quantity (5 in the
example) if the secondary quantity is one; note that, in this
case, the secondary quantity is in units of tracks, cylinders,
or average blocks, depending on that of the primary quantity.

Appendix D. Example of an OPEN Installation Exit Module 225

IFGOEXOB CSECT
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3(3(~~~~3(3(~~~~3(~~~~~~3(~~3(~3(~3(~ 

~ 

~ FUNCTION = 
~ FOUR SAMPLE ROUTINES ARE SUPPLIED. 

BUFNO - DEFAULT DCBBUFNO 
DCBBUFNO (NUMBER OF BUFFERS) IS DEFAULTED FOR 
OPENS TO PHYSICAL SEQUENTIAL AND PARTITIONED DATA SETS 
ON DASD AND TAPE USING QSAM, FOR WHICH DCBBUFNO IS ZERO. 
DCBBUFNO FOR SYSIN, SYSOUT, TERMINAL, AND DUMMY DATA SETS 
IS SET TO THE EQUATE, INOUTBNO, OR THE VALUE IN THE 
FULLWORD, INOUTBN. 

DCBBUFNO IS SET TO THE NUMBER OF DCBBLKSZ BUFFERS WHICH 
FIT IN A GIVEN AMOUNT OF STORAGE. THE AMOUNT OF STORAGE IS 
DEFINED BY THE EQUATES, DAMXK AND TPMXK (OR THE FULLWORDS 
AT LABELS, DAMAXK AND TPMAXK), FOR DASD AND 
TAPE, RESPECTIVELY. THE EQUATES DEFINE THE AMOUNT OF 
STORAGE FOR BUFFERS IN UNITS OF 1024 (IF DAMXK IS 32, THEN 
THE AMOUNT OF STORAGE IS 32K, OR 32768). 
DAMXK OR TPMXK TIMES 1024 IS DIVIDED BY DCBBLKSI TO 
DETERMINE THE NUMBER OF BUFFERS TO DEFAULT. 

THE EQUATES, DAMXBNO AND TPMXBNO, OR THE FULLWORDS 
AT LABELS, DAMAXBNO AND TPMAXBNO, 
DEFINE THE MAXIMUM NUMBER OF BUFFERS TO BE 
DEFAULTED FOR DASD AND TAPE IF THE CALCULATION, ABOVE, 
RESULTS IN A LARGER NUMBER. 

SCREEN - SCREEN OUT CASES FOR RLSE, SQTY 

~ 
3( 
3( 
3( 
~ 
3( 
~ 
3( 

3( 
~ 
3( 
3( 
3( 
3( 
3( 

3( 
3( 
3( 
~ 
3( 
3( 

3( 

3( 

3( 
3( 

3( 

3( 

3( 
3( 

3( 

~ 
~ 
~ 

~ 
~ 

~ 
~ 
~ 
~ 
~ 

~ 

~ 
~ 
3( 
~ 

~ 
~ 
~ 

~ 
~ 
~ 

~ 
~ 

~ 
~ 
~ 

~ 
~ 
~ 
~ 

~ 
~ 
~ 
~ 
~ 

~ 
~ 

~ 
~ 
~ 
~ 

~ 
~ 

~ 
~ 

~ 
~ 

~ 
~ 

~ 
~ 
~ 
~ 
~ 

~ 
~ 
~ 

~ 

~ 
~ 

RLSE - SET OR ZERO PARTIAL RELEASE 3( 

THIS ROUTINE SETS PARTIAL RELEASE FOR DASD PS (NOT PO) DATA 3( 

SETS BEING OPENED FOR OUTPUT OR OUTIN. 3( 

PARTIAL RELEASE IS SET ON IF THE NUMBER OF EXTENTS IS LESS 
THAN A QUANTITY DEFINED BY THE EQUATE, RLSE1, OR THE BYTE, 
EXTRLSEI. 

PARTIAL RELEASE IS SET OFF IF THE NUMBER OF EXTENTS IS NOT 
LESS THAN A QUANTITY DEFINED BY THE EQUATE, RLSEO, OR THE 
BYTE, EXTRLSEO. 

SQTY - SET OR UPDATE SECONDARY SPACE QUANTITY 
THIS ROUTINE UPDATES THE SECONDARY SPACE 
QUANTITY FOR DASD PS OR PO DATA SETS BEING 
OPENED FOR OUTPUT OR OUTIN. 

IF THE SECONDARY QUANTITY IS NOT ZERO, 
AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS 
AT LEAST EQUAL TO THE QUANTITY IN THE EQUATE, EXTSQT (OR 
THE BYTE AT LABEL, EXTSQTY), THEN: 
1. IF THE SECONDARY QUANTITY IS GREATER THAN ONE, 
SECONDARY QUANTITY IS INCREASED BY ONE HALF 
(50"). 
2 .IF THE SECONDARY QUANTITY IS ONE, 
SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULLWORD 
AT LABEL, SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL). 

IF THE SECONDARY QUANTITY IS NOT ZERO, 
AND IF THE NUMBER OF EXTENTS IN THE DATA SET IS 
LESS THAN THE QUANTITY IN THE EQUATE, EXTSQT (OR 
THE BYTE AT LABEL, EXTSQTY), SECONDARY QUANTITY 
IS LEFT UNCHANGED. 

226 MVS/XA System-Data Administration 

3( 

3( 

* * * ~ 
* * 3( 
~ 
3( 
3( 

3( 

3( 

3( 

~ 
3( 

3( 

3( 

3( 

3( 

3( 

3( 

~ 
3( 

~ 

~ 
~ 
3( 

3( 

o 



(\ 

3( 

3( 

3( 
3( 

3( 
3( 

3( 
3( 

3( 
3( 

3( 

IF SECONDARY QUANTITY IS ZERO, IT IS SET TO ONE HALF 3( 
OF PRIMARY QUANTITY IF PRIMARY IS NOT ZERO OR ONE. 3( 
IF PRIMARY QUANTITY IS ZERO, THE SPACE TYPE IS SET TO TRACKS,3( 
AND SECONDARY QUANTITY IS SET TO THE VALUE IN THE FULLWORD 3( 
AT LABEL SQTYDFLT (EQUAL TO THE EQUATE, SQTYDFL). 3( 
IF PRIMARY QUANTITY IS ONE, SECONDARY QUANTITY IS SET TO 3( 
VALUE IN THE FULLWORD AT LABEL SQTYDFLT (EQUAL TO THE 3( 
EQUATE, SQTYDFL). 3( 

3( 

3( NOTES = SEE BELOW 3( 

3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 
3( 

DEPENDENCIES = 
CLASS ONE CHARACTER CODE. THE EBCDIC CHARACTER CODE 
WAS USED FOR ASSEMBLY. THE MODULE MUST BE REASSEMBLED 
IF A DIFFERENT CHARACTER SET IS USED FOR EXECUTION. 

RESTRICTIONS = NONE 

REGISTER CONVENTIONS = 
Rl OIEXL ADDRESS 
R2 DCB ADDRESS 
R3 UCB ADDRESS 
R4 DCB BLOCK SIZE 
R5 ADDRESS OF TPMAX OR DAMAX TABLES 
R6 EVEN REGISTER OF EVEN/ODD PAIR 
R7 ODD REGISTER OF EVEN/ODD PAIR 
R8 TIOT ENTRY ADDRESS 
R8 JFCB ADDRESS 
RIO FORMAT 1 DSCB ADDRESS 
Rll SAVE RETURN CODE 
R13 SAVE AREA ADDRESS 
R14 RETURN ADDRESS 
R15 BASE REGISTER 

PATCH LABEL = PATCH 

3( MODULE TYPE = CONTROL (OPEN, CLOSE, EOV DATA MANAGEMENT) 
3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

3( 

PROCESSOR = ASSEMBLER XF 

MODULE SIZE = SEE EXTERNAL SYMBOL DICTIONARY 

ATTRIBUTES = REENTRANT, REFRESHABLE,READ-ONLY, ENABLED, 
PRIVILEGED, SUPERVISOR STATE, KEY ZERO, 
LINK PACK AREA RESIDENT/PAGEABLE 

3( ENTRY POINT = IFGOEXOB 
3( 
3( 
3( 
3( 
3( 
3( 
3( 

3( 
3( 

PURPOSE = SEE FUNCTION 

LINKAGE = 
FROM IFG0196L: 

BALR 14,15 

INPUT = STANDARD LINKAGE CONVENTIONS 

3( OUTPUT = 
3( 

DCBBUFNO DEFAULTED 
PARTIAL RELEASE SET OR RESET 
CONTIGUOUS FLAG SET TO ZERO 
SECONDARY SPACE REQUEST MODIFIED 

3( 

3( 

3( 

3( 

3( 

RETURN CODE IN REGISTER 15 
o IF JFCB NOT MODIFIED 
4 IF JFCB MODIFIED 

* * 3( 

3( 

3( 
3( 
3( 
3( 
3( 
3( 

Appendix D. Example of an OPEN Installation Exit Module 227 



~ ~ 

~ EXIT-NORMAL = ~ 
~ BR 14 ~ 

~ * 
~ EXIT-ERROR = * 
~ NONE * 
~ * 
~ EXTERNAL REFERENCES = SEE BELOW * 
~ * 
~ ROUTINES = NONE * 
~ * 
~ DATA AREAS = NONE * 
~ * 
~ CONTROL BLOCK = NONE ~ 
~ ~ 

~ TABLES = NONE * 
~ ~ 

~ MACROS = MODESET, IECOIEXL, DCBD, IEFUCBOB, IEFTIOT1, IEFJFCBN, ~ 
~ I ECSDSL 1 ~ 

~ * 
~~~~~~~~~~~~~~~~~~~~~~~*~~~~~*~~*~~~~~~~~~~~*~~~**~**~~~****~****~*~~~~ 
~**~*~***~*~~~~~**~~~~~*~~~~******~~~**~~~****~~*****~~**********~**~~*

* ~ REGISTER EQUATES
~

~~*~~~~~~~~~~~~~~~~~~****~~***~**~~*~~**~***~~~~*~~****~*~~~~~~*~~*~~**
R1 EQU 1 OIEXL PARAMETER LIST ADDRESS
RDCB EQU 2 DCB ADDRESS
RUCB EQU 3 UCB ADDRESS
RBKSIZ EQU 4 DCB BLOCK SIZE
RMAX EQU 5 ADDRESS OF TPMAX OR DAMAX
REVEN EQU 6 EVEN REGISTER OF EVEN/ODD PAIR
RODD EQU 7 ODD REGISTER OF EVEN/ODD PAIR. HAS

RTIOT EQU 8
RJFCB EQU 9
RDSCB EQU 10
RINCODE EQU 11
R12 EQU 12

DCBBUFNO DEFAULT
TIOT ENTRY ADDRESS
JFCB ADDRESS
FORMAT 1 DSCB ADDRESS
INTERNAL RETURN CODE

RSAVE EQU 13 SAVE AREA ADDRESS
RET EQU 14 RETURN ADDRESS
RCODE EQU 15 BASE REGISTER/RETURN CODE ON EXIT
~~~~~~*******~~~~~~~~~~*~~~~~~~*~~~*~****~***~~**~~~*******~*~~*~~*~*~~ 
~ 

* ~ RETURN CODE 

~~*~~~~~~~~*~~~*~*~~**~***~***~******~~***~~~*~*****~**************~*~* 
MODJFCB EQU 4 RETURN CODE IF JFCB MODIFIED 

USING IFGOEXOB,RCODE 
~********~**~****~~~*****~**~***********~****************~************* 
~ 
~ START OF SAMPLE PROGRAM 
* **~~~~******~*********~**********~~**********~***~*****************~*** 

+ 
AFTRID1 

+AFTRID1 
+ 

EXIT 

B AFTRID1 
DC C'IFGOEXOB JDM1137 &SYSDATE' 
DC C'IFGOEXOB JDM1137 05/01/81' 
SAVE (14,12) SAVE REGISTERS 
DS OH 
STM 14,12,12(13) 
XR RINCODE,RINCODE 
USING OIEXL,Rl 
BAL RET,BUFNO 
BAL RET, SCREEN 

BAL 
BAL 
EQU 

RET,RLSE 
RET,SQTY 
* 

SAVE REGISTERS 
ZERO RETURN CODE 
PARAMETER LIST 
DEFAULT BUFNO 
SCREEN OUT CASES WHERE RLSE, * 
AND SQTY SHOULD NOT BE CALLED 
SET PARTIAL RELEASE 
SET SECONDARY QUANTITY 
RETURN TO CALLER 

228 MVS/XA System-Data Administration 

o 

o 

----------- --------



(\ 

*********************************************************************** * RETURN TO CALLER 
*********************************************************************** LR RCODE,RINCODE 

RETURN (14,12),RC=(15) RESTORE REGISTER 
+ L 14,12(13,0) RESTORE REGISTER 14 
+ LM 0,12,20(13) RESTORE THE REGISTERS 
+ BR 14 RETURN 

BUFNO EQU * DEFAULT DCB BUFNO 
*********************************************************************** 
* * DEFINE DEFAULT VALUES * DAMXK = NUMBER OF K (1024) OF BUFFERS FOR DASD * TPMXK = NUMBER OF K (1024) OF BUFFERS FOR TAPE * DAMXBNO = MAXIMUM NUMBER OF BUFFERS FOR DASD * TPMXBNO = MAXIMUM NUMBER OF BUFFERS FOR TAPE * NOTE THAT DAMXBNO AND TPMXBNO MUST NOT BE GREATER THAN 255 
* *********************************************************************** DAMXK EQU 64 64K BUFFERS FOR DASD 
TPMXK EQU 64 64K BUFFERS FOR TAPE 
DAMXBNO EQU 32 32 BUFFERS MAXIMUM FOR DASD 
TPMXBNO EQU 32 32 BUFFERS MAXIMUM FOR TAPE 
INOUTBNO EQU 1 DCBBUFNO DEFAULT FOR SYSIN, SYSOUT, * 

AND DD DUMMY 
ONEK EQU 10 SHIFT ARGUMENT TO MULTIPLY BY 1024 

B AFTRID2 
DC CLS'BUFNO' BUFNO ROUTINE ID 

AFTRID2 BCR O,RET NOP RETURN 
L RDCB,OIEXPDCB PROTECTED COPY OF DCB 
USING DCBD,RDCB 

*********************************************************************** * DO NOT PROCESS EXCP, BSAM, DSORG NOT PS OR PO, * DCBBUFNO SPECIFIED 
*********************************************************************** TM DCBMACF1,DCBMRECP EXCP DCB! 

BO RETBUFNO RETURN IF EXCP 
TM DCBMACF1,DCBMRRD READ MACRO 
BO RETBUFNO RETURN IF READ-NOT QSAM 
TM DCBMACF2,DCBMRWRT WRITE MACRO 
BO RETBUFNO RETURN IF WRITE-NOT QSAM 
TM DCBDSRG1,DCBDSGPS+DCBDSGPO PS OR PO 
BZ RETBUFNO EXIT IF NOT PS OR PO 
CLI DCBBUFNO,O IS DCBBUFNO SPECIFIED 
BNE RETBUFNO RETURN IF DCBBUFNO SPECIFIED 

*********************************************************************** * DEFAULT DCBBUFNO TO 1 FOR SYSIN, SYSOUT, TERMINAL, DUMMY 
*********************************************************************** L RTIOT,OIEXTIOT TIOT ENTRY ADDRESS 

USING TIOENTRY,RTIOT 
L RODD,INOUTBN BUFNO DEFAULT FOR SYSIN/SYSOUT/ * 

DD DUMMY 
TM TIOELINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL 
BNZ STORE BRANCH IF SYSIN OR SYSOUT OR TERMINAL 
L RJFCB,OIEXJFCB JFCB ADDRESS 
USING INFMJFCB,RJFCB 
CLC JFCBDSNM(L'NULLFILE),NULLFILE DUMMY DATA SET 
BE STORE BRANCH IF DUMMY 

*********************************************************************** * EXIT IF NO UCB ADDRESS OR BLOCK SIZE NOT POSITIVE 
*********************************************************************** L RUCB,OIEXUCB UCB ADDRESS 

LTR RUCB,RUCB ANY UCB! 
BZ RETBUFNO EXIT IF NO UCB 
LH RBKSIZ,DCBBLKSI DCB BLOCK SIZE 
LTR RBKSIZ,RBKSIZ ANY BLOCK SIZE! 
BNP RETBUFNO RETURN IF NO BLOCK SIZE 

Appendix D. Example of an OPEN Installation Exit Module 229 



*********************************************************************** 
* GET TAPE OR DASD MAX TABLE 
*********************************************************************** USING UCBOB.RUCB 

TM UCBTBYT3.UCB3DACC DASD UCB! 
LA RMAX.DAMAX MAX TABLE FOR DASD 
BO CALC BRANCH IF DASD 
TM UCBTBYT3.UCB3TAPE TAPE UCB! 
LA RMAX.TPMAX MAX TABLE FOR TAPE 
BZ RETBUFNO RETURN IF NOT DASD OR TAPE 

CALC EQU * DEFAULT DCBBUFNO 
*********************************************************************** * CALCULATE DEFAULT BUFFER NUMBER 
*********************************************************************** USING MAX.RMAX 

XR REVEN.REVEN ZERO EVEN REG 
L RODD,MAXBUF MAXIMUM STORAGE FOR BUFFERS 
SLL RODD,ONEK SHIFT TO MULTIPLY BY 1024 
DR REVEN.RBKSIZ DIVIDE MAS BUFFER SPACE BY BKSI 
C RODD,MAXBNO ARE THERE TOO MANY BUFFERS! 
BNH STORE USE CALCULATION IF NOT TOO LARGE 
L RODD,MAXBNO USE MAXIMUM NUMBER OF BUFFERS 

STORE EQU * DEFAULT DCBBUFNO FOR USER/COPY DCB 
STC RODD,DCBBUFNO PUT IN PROTECTED COpy OF DCB . 
L RDCB, 01 EXUDCB USER DCB . 
XR REVEN,REVEN MODESET USES REG 6 = REVEN 
MODESET KEYADDR=OIEXUKEY,WORKREG=6 GET IN USER KEY 

+* /* MACDATE Y-3 77277 aZA26071*/ 
+* /* 
+ IC 6. 01 EXUKEY GET KEY FROM SAVE LOCATION 
+ SPKA O(6) SET PSW KEY 

STC RODD,DCBBUFNO PUT IN USER DCB 
MODESET EXTKEY=ZERO BACK TO KEY ZERO 

+* /* MACDATE Y-3 77277 aZA26071*/ 
+* /* 
+ SPKA OCO) SET PSW KEY 

RETBUFNO EQU * RETURN FROM BUFNO 
BR RET RETURN 

INOUTBN DC ACINOUTBNO) SYSIN/SYSOUT/DUMMY BUFNO DEFAULT 
*********************************************************************** 
* * MAX TABLE FOR TAPE 
* *********************************************************************** 

DS OF 
DC CL8'TPMAX' TPMAX ID 

TPMAX DS OF 
TPMAXK DC ACTPMXK) MAXIMUM SIZE FOR BUFFERS IN UNITS * 

OF 1024 
TPMAXBNO DC ACTPMXBNO) MAXIMUM NUMBER OF BUFFERS 
*********************************************************************** 
* * MAX TABLE FOR DASD 
* *********************************************************************** DS OF 

DC CL8'DAMAX' DAMAX ID 
DAMAX DS OF 
DAMAXK DC ACDAMXK) MAXIMUM SIZE FOR BUFFERS IN UNITS * 

OF 1024 
DAMAXBNO DC ACDAMXBNO) MAXIMUM NUMBER OF BUFFERS 

230 MVS/XA System-Data Administration 

--- ------.---

o 

I . 0'\· 



SCREEN EQU * SCREEN OUT CASES WHERE RLSE, * 
AND SQTY SHOULD NOT EXECUTE 

*********************************************************************** * DO NOT PROCESS IF * SYSIN/SYSOUT/TERMINAL * DD DUMMY * USER ASKS JFCB NOT BE RE-WRITTEN * SYSTEM DATA SET ('SYS1.XXX') * NON-DASD UCB * NOT A FORMAT 1 DSCB * EXCP DCB * DSORG IN DCB IS NEITHER PS NOR PO * DSORG IN DSCB IS NEITHER PS NOR PO * NEITHER PUT NOR WRITE MACRO CODED IN DCB * OPEN FOR OTHER THAN OUTPUT OR OUTIN 
*********************************************************************** B AFTRID3 

DC CL8'SCREENJ SCREEN ROUTINE ID 
AFTRID3 L RTIOT,OIEXTIOT TIOT ENTRY ADDRESS 

TM TIOELINK,TIOESSDS+TIOTTERM SYSIN/SYSOUT OR TERMINAL 
BNZ EXIT EXIT IF SYSIN OR SYSOUT OR TERMINAL 
L RJFCB,OIEXJFCB JFCB ADDRESS 
CLC JFCBDSNMCL'NULLFILE),NULLFILE DUMMY DATA SET 
BE EXIT EXIT IF DUMMY 
CLC SYS1,JFCBDSNM SYS1.XXX DATA SET 
BE EXIT EXIT IF SYSTEM DATA SET 
TM JFCBTSDM,JFCNWRIT DON'T MODIFY JFCB 
BO EXIT EXIT IF YES 
L RUCB,OIEXUCB UCB ADDRESS 
LTR RUCB,RUCD ANY UCD! 
BZ EXIT EXIT IF NO UCB 
TM UCDTBYT3,UCB3DACC DASD UCB! 
DNO EXIT EXIT IF NOT DASD 
L RDSCB,OIEXDSCB FORMAT 1 DSCB ADDRESS 
USING DSIFMTID,RDSCB 
CLI DSIFMTID,C'l' IS THIS A FORMAT 1 DSCB 
BNE EXIT EXIT IF NOT 
L RDCB,OIEXPDCB PROTECTED DCB ADDRESS 
TM DCBMACF1,DCBMRECP EXCP DCB! 
BO EXIT EXIT IF EXCP 
TM DCBDSRG1,DCBDSGPS+DCBDSGPO PS OR PO DCB 
BZ EXIT EXIT IF NOT PS OR PO 
NC DSIDSORG,DSIDSORG IS DSORG SPECIFIED 
BZ TSTMACRF TRUST DCB IF NOT SPECIFIED 
TM DSIDSORG,DSIDSGPS+DSIDSGPO IS DATA SET PS OR PO 
BZ EXIT EXIT IF NOT PS OR PO 

TSTMACRF EQU * TEST MACRF IN DCB 
TM DCBMACF2,DCBMRPUT PUT MACRO 
BO TSTOOPT TEST OPEN OPTION 
TM DCBMACF2,DCBMRWRT WRITE MACRO 
BZ EXIT EXIT IF NOT WRITE 

TSTOOPT EQU * TEST OPEN OPTION 
TM OIEXOOPT,OIEXOOUT OPEN FOR OUTPUT 
BO SCREENOK BRANCH IF YES 
TM OIEXOOPT,OIEXOOIN OPEN FOR OUTIN 
BNO EXIT EXIT IF NO 

SCREENOK EQU * 
BR RET RETURN TO CALL RLSE, SQTY 

Appendix D. Example of an OPEN Installation Exit Module 231 



RLSE EQU. . SET PARTIAL RELEASE 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • 

DEFINE DEFAULT VALUES 
RLSEO = NUMBER OF EXTENTS. IF THE DATA SET HAS THIS 

NUMBER OF EXTENTS OR MORE, THEN PARTIAL RELEASE 
WILL NOT BE ALLOWED. 

RLSEI = NUMBER OF EXTENTS. IF THE DATA SET HAS LESS THAN 
THIS NUMBER OF EXTENTS, PARTIAL RELEASE IS 
REQUIRED. 

NOTE THAT RLSEO MUST NOT BE GREATER THAN RLSEI 

SETTING RLSEO TO 17 OR GREATER WILL CAUSE THIS ROUTINE TO 
NEVER PREVENT A REQUEST FOR PARTIAL RELEASE 

SETTING RLSEI TO 0 WILL CAUSE THIS ROUTINE TO 
NEVER FORCE A REQUEST FOR PARTIAL RELEASE 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• RLSEO EQU 8 SET RELEASE BIT TO ZERO IF NUMBER OF • 

RLSEI EQU 

B 
DC 

AFTRID4 BCR 
L 
TM 
BO 
CLC 
BNL 
L 
01 
LA 
B 

TSTRLSE CLC 
BL 
NI 
LA 

RETRLSE EQU 
BR 
DC 
DS 

EXTRLSEI DC 

EXTRLSEO DC 

8 

AFTRID4 
CL8'RLSE' 
O,RET 
RDSCB,OIEXDSCB 
DSIDSORG,DSIDSGPO 
TSTRLSE 
DSINOEPV,EXTRLSEl 
TSTRLSE 
RJFCB,OIEXJFCB 
JFCBIND1,JFCRLSE 
RINCODE,MODJFCB 
RETRLSE 
DSINOEPV,EXTRLSEO 
RETRLSE 

EXTENTS EQUAL OR GREATER THAN THIS 
SET RELEASE BIT TO ONE IF NUMBER OF • 
EXTENTS LESS THAN THIS 

RLSE ROUTINE ID 
NOP RETURN 
FORMAT 1 DSCB ADDRESS 
IS DATA SET PARTITIONED 
DO NOT SET RELEASE FOR PARTITIONED 
FEW ENOUGH TO SET RELEASE 
BRANCH IF NOT 

SET RELEASE 
JFCB MODIFIED 
RETURN 
ENOUGH TO ZERO RELEASE 
BRANCH IF NO 

JFCBIND1,255-JFCRLSE ZERO RELEASE 
RINCODE,MODJFCB JFCB MODIFIED 
• RETURN FROM RLSE 
RET RETURN 
CL8'RLSECONS' RLSE CONSTANTS ID 
OH 
ALlCRLSE1) IF FEWER THAN THIS NUMBER OF EXTENTS,. 

PARTIAL RELEASE WILL BE SET 
ALlCRLSEO) IF THIS NUMBER OR MORE EXTENTS, • PARTIAL RELEASE WILL BE ZEROED 

232 MVS/XA System-Data Administration 

o 

(-\ 
I ,,-j 

o 



SQTY EQU 3E SET SECDNDARY QUANTITY 
3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E 

(-. 3E 
3E DEFINE DEFAULT VALUES 
3E SQTYDFL = DEFAULT SECDNDARY QUANTITY. THIS QUANTITY IS 
3E SET IF THE SECDNDARY QUANTITY IS ZERO. AND THE 
3E PRIMARY QUANTITY IS ZERO. DR DNE. IT IS USED 
3E IF SECDNDARY QUANTITY IS DNE, AND THE NUMBER o.F 
3E EXTENTS IS EQUAL DR GREATER TO. EXTSQT. 
3E EXTSQT = NUMBER DF EXTENTS. IF THE DATA SET HAS THIS MANY 
3E EXTENTS OR MORE, THEN INCREASE SECDNDARY QUANTITY. 
3E 
3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E3E 
SQTYDFL EQU 5 DEFAULT SECONDARY QUANTITY 
EXTSQT EQU 10 IF DATA SET HAS THIS MANY EXTENTS, 3E 

THEN INCREASE SECDNDARY QUANTITY 
B AFTRID6 
DC CL8'SQTY' SQTY ROUTINE ID 

AFTRID6 BCR O,RET NDP RETURN 
L RJFCB,aIEXJFCB JFCB ADDRESS 
NC JFCBSQTY,JFCBSQTY ANY SECDNDARY QUANTITY 
BZ TSTPRIM TEST PRIMARY IF NaT 
L RDSCB,DIEXDSCB FORMAT 1 DSCB ADDRESS 
CLC DS1No.EPV,EXTSQTY ENOUGH TO ADD TO. SECo.NDARY QTY 
BL RETSQTY BRANCH IF NDT 
XR RODD,RaDD 
ICM RODD,7,JFCBSQTY GET SECONDARY QUANTITY 
LR REVEN,RaDD SAVE IN REVEN 
SRL REVEN,l HALVE SECaNDARY QUANTITY 
LTR REVEN,REVEN IS SECDNDARY ONE 
BZ SETDFL T DEFAULT SECONDARY IF DNE 
AR RODD,REVEN 1507. OF SECONDARY 
B STSQTY 

TSTPRIM EQU * SECONDARY QUANTITY IS ZERO. 
NC JFCBPQTY,JFCBPQTY IS PRIMARY QUANTITY ZERO. 
BZ DFL TSQTY DEFAULT SECo.NDARY 

( '. XR Ro.DD,Ro.DD 
ICM RODD,7,JFCBPQTY 
SRL RODD,l HALVE PRIMARY 
LTR RaDD,Ro.DD IS PRIMARY aNE 
BNZ STSQTY BRANCH IF No.T 

SETDFL T EQU 3E USE QUANTITY IN SQTYDFLT 
L RODD,SQTYDFLT DEFAULT SECo.NDARY 
B STSQTY STo.RE SECONDARY 

DFL TSQTY EQU 3E PRIMARY AND SECDNDARY ZERO 
L RODD,SQTYDFLT GET DEFAULT SECONDARY 
TM JFCBCTRI,JFCBSPAC 
BNZ STSQTY 
CLI DSIEXTl,X'Ol' TRACK EXTENT 
BE DFLTTRK YES -- SET TRACKS 
CLI DS1EXTl,X'81' CYL EXTENT 
BNE R'ETSQTY NO. -- RETURN 
01 JFCBCTRI,JFCBCYL SET CYLINDER UNITS 
B STSQTY 

DFL TTRK EQU 3E SET TRACK UNITS 
0.1 JFCBCTRI,JFCBTRK MAKE TRACK REQUEST 

STSQTY EQU 3E STORE SECDNDARY QTY 
STCM RaDD,7,JFCBSQTY 
LA RINCODE,MDDJFCB JFCB MaDIFIED 

RETSQTY EQU 3E RETURN FROM SQTY 
BR RET RETURN 
DS OF 
DC CL8'SQTYCONS' SQTY ROUTINE CDNSTANTS ID 

SQTYDFLT DC ACSQTYDFU DEFAULT SECONDARY QUANTITY 
DC ALl( 0) NOTE ONE BYTE OF ZERO. BEFDRE EXTSQTY 

EXTSQTY DC ALl(EXTSQT> IF DATA SET HAS THIS MANY EXTENTS, 3E 
THEN ADD TO. SECDNDARY QUANTITY 

Appendix D. Example of an DPEN Installation Exit Module 233 



KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK 
K 
K CONSTANTS / PATCH AREA 
K 
KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK 
NULLFILE DC C'NULLFILE' DD DUMMY DATA SET NAME 
SYSI DC C'SYSl.' START OF SYSTEM DATA SET NAMES 

DS OF 
PATCH DC C'IFGOEXOB PATCH AREA' . 

DC XL50'OO' 
KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK 
K 
K MAX TABLE MAPPING DSECT (MAPS TPMAX OR DAMAX) 
K 
KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK 
MAX DSECT 
MAXBUF DS A MAXIMUM SIZE FOR BUFFERS 
MAXBNO DS A MAXIMUM NUMBER OF BUFFERS 
KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK*KKKKKK***K*KK*KKKK*K*KKKKKKKKKKK 
K 
K DCB OPEN INSTALLATION EXIT PARAMETER LIST 
K - THE IECOIEXL MACRO IS IN SYSl.MACLIB 
K 

K**KKK*K*K*K*********K************************************************* 
IECOIEXL 

**K**KKK THE MACRO EXPANSION IS NOT SHOWN 
*KK*KKKKKK*KKKKKKKKKKKKKKKKKK*KKKKKKK*KKKKK*KKKKKKKKKKK*K*KKK*K*KKKKKKK 
K 
K DCB - THE DCBD MACRO IS IN SYSl.MACLIB 
K 
KKKKKKKKKK*K******K**K****K***K*K**KK***KK*****K********K**K~*****K**** 

DCBD DSORG=PS,DEVD=DA 
****K*KK THE MACRO EXPANSION IS NOT SHOWN 
KK*KK*KKK*****KK**KKKK******K******K*K********K**KK**KK*K*K*****KK***KK 

* * UCB - THE IEFUCBOB MACRO IS IN SYSl.AMODGEN 
K 
KKKKKKKKKKKK**KK*KK*KKKKKKKKKK*KKK**KK*KK**K**KK****KK*K******K*K****K* 
UCB DSECT 

IEFUCBOB LIST=YES 
*KK*K*K* THE MACRO EXPANSION IS NOT SHOWN 
K**K**K****K***KK***KK***K****K****K**KKK********KK**K*KK***********KK* 

* K TIOT - THE IEFTIOTI MACRO IS IN SYSl.AMODGEN 
K 
KKKKK*KKK**KKK*K*K**KKK*KKK*K*K*KK*KKKKKKKKKKK**KKKK**K*KKKK*KKKKKK*KKK 
TIOT DSECT . 

IEFTIOTl 
*KK*K*K* THE MACRO EXPANSION IS NOT SHOWN 
K*KKKKKK*K***K***KKK*K*****KK*KKKK*KKK*KKKK*KKKKKKKK*KKKKKKKKKK*K***KKK 
K 
K JFCB - THE IEFJFCBN MACRO IS IN SYSl.AMODGEN 
* *KK*KKKKKK**KKK**KKKKKK*KKK*KKKKKK*KKKKKKKKKKK**K*KK*K**K*K*****KK**K** 
JFCB DSECT 

IEFJFCBN LIST=YES 
K***K*** THE MACRO EXPANSION IS NOT SHOWN 
K***K***KK**K***K*****K**********K*KK*KK**KKKK*KKK**KKKKKK**K*K*****K** 

* * FORMAT 1 DSCB - THE IECSDSLI MACRO IS IN SYSl.AMODGEN 
* *****KK***K****K******K*K*K**K*******KKKK**KKKKK******K***K**K*****K*K* 
FIDSCB DSECT 

IECSDSLl (1) 
***K*K** THE MACRO EXPANSION IS NOT SHOWN 

END 

234 MVS/XA System-Data Administration 

o 

("-~\ 
1,--,./ 



ABE appendage 48-49 
abnormal-end appendage 

See ABE appendage 
access method routines, functions 

performed in I/O operations 36 
accessing,VTOCs and VTOC indexes 25-34 
alias name 

of UCS images for JES2 174 
allocate routine 4 
altering DADSM processing 96-100 
alternate track 

assigning 61, 62 
AM operand 

in DEBCHK macro 126 
APF (authorized program facility) 13 
appendages 

abnormal-end (ABE) 48-49 
channel-end (CHE) 47 
end-of-extent (EOE) 46 
entry points 44 
listing in SYSl.PARMLIB 49 
naming convention 49 
page fix 72 
PCI 45 
programming restrictions 44 
register usage 44 
returns 44 
start-I/O (SIO) 45 

assigning alternate track 61-62 
associated programs 

DADSM 96 
IEHLIST 35 

ATLAS macro 
coding example 62 
how to use 62 
operations performed 63 
return codes 63 
specification 61-62 
with track overflow option 61 

authorized appendage list 49-50 

BALANCE operand (TRKCALC macro) 135, 
137, 139 

BFALN operand (DCB macro) 55 
BFTEK operand (DCB macro) 55 
bit maps 

of allocated cylinders and tracks 10 
of allocated DSCBs 11 
of allocated VIRs 11 

block ID 
setting in JFCB for high-speed 

positioning 123 
block. multiplexor programming notes 51 
BSAM (basic sequential access method) 

defaulting buffer number 103 
BUFCB operand (DCB macro) 55 
buffer 

releasing 32 
buffer lists 

format 
of entries 28-30 
of header 28 

function 28 
how created 28 
releasing 32 

BUFL operand (DCB macro) 55 
BUFNO 

defaulting in OPEN installation exit 
example (QSAM) 225 

BUFNO operand (DCB macro) 55 

catalogs 
dummy module 176 

CCW (channel command word) 41 
See also channel program 

CENDA operand (DCB macro) 53 
channel program 

appendages used with 43 
execution 41-42 
initiation 41-42 
related 43 
restrictions or modification 42 
translation, virtual addresses to 
real addresses 73-74 

channel-end appendage 
See CHE appendage 

CHE appendage 47 
checking the DEB 124-128 
checkpoint data set 

processed with EXCP macro 56 
CLOSE macro 

used with EXCP macro 66 
used with XDAP macro 79 

codes 
returned with error message 222-224 
routing and descriptor 221 

command retry 50 
communication vector table (CVT) mapping 

macro III 
completion codes 70, 80 

See also return codes 
following use of EXCP macro 70 
following use of XDAP macro 80 

control blocks 
DCB 40, 51 
DEB 40 
ECB 40, 69 
FCB 156 
general description 40 
lOB 40, 67-69 
PIRL 43, 131 

control password 89 
conversion 

actual track address to relative 
track address 82 

of sector value for RPS devices 82 
relative track address to actual 
track address 80 

copy operation 
requirements 14 

creating protected data sets 86 
CVAF 

Index 235 



serialization 26 
CVAF processing, of GTF trace 3S 
CVAF, volume identification to 26 
CVAFDIR macro 

examples 196-205 
how to use 30 
return codes 183 
syntax 178-183 
uses 178 

CVAFDSM macro 
example 217-220 
how to use 34 
return codes 189 
syntax 185-189 
uses 185 

CVAFSEQ macro 
examples 206-217 
how to use 32 
return codes 194 
syntax 190 
uses 190 

CVAFTST macro 
example 217-220 
return codes 195 
syntax 195 
uses 195 

CVFCTN field of CVPL 
contents 28 
definitions 28 

CVPL (CVAF parameter list) 
format 27 
function 27· 
when created 27 

CVSTAT codes 222 
CVT (communication vector table) mapping 

macro 111 

DADSM 
routines 1 

DADSM pre/postprocessing exits 96 
format-l DSCB passed by IGGPREOO 99 
parameter list (IEPL) 98 
register contents 100 
return codes f~om IGGPREOO 100 
system control block addresses 99 

DASD (direct access storage devices) 
reading and writing to 

XDAP macro 75-78 
data extent block (DEB) 

See DEB 
data management ABEND installation 
exit 107-109 

parameter list (OAIXL) 108 
register contents 109 
return codes 109 

data set control block (DSCB) 
See DSCB 

data set security 
See password protection 

DCB fields used with EXCP macro 51-58 
DCB OPEN exit 

return codes 105 
DCB OPEN installation exit 100-105 

example 
defaulting buffer number 

(QSAM) 225 

236 MVS/XA System-Data Administration 

requesting partial release 225 
updating secondary space data 225 

parameter list (OIEXL) 102 
register contents 104 
when executed 101-102 

DCBDIRCT field of DCB 54 
DCBFDAD field, maintaining 54 
DCBIFLGS field of DCB, permanent I/O 
error indicators 42 

DCBOFLGS field of DCB, meanings of bit 
settings 65-66 

DCBTRBAL field, maintaining 56 
DD operand (TRKCALC macro) 136, 137, 

139 
DDNAME operand (DCB macro) 52 
DDR (dynamic device reconfiguration), 
repositioning tape data sets 52 

DEB (data extent block) 
fields 70 
obtaining 26 
use with EXCP macro 40 
validating 124-128 

DEBCHK 
register contents 127 

DEBCHK macro 
functions of 124-128 
return codes 128 
specification 125-128 

defaulting buffer number, for BSAM 103 
defaulting buffer number, for QSAM 

in OPEN installation exit 
example 225 

defaulting the DCB buffer number 103 
defective track 

See assigning alternate track 
define extent command 41 
deleting a data set 

coding example 20 
macro instructions for 18 
when volume not mounted 19 

DEMOUNT parameter (MSGDISP macro) 148 
DEN operand (DCB macro) 57 
DEQ at demount facility 121 
DEVD operand (DCB macro) 55-57 
device characteristics 112-117 
device-dependent parameters in 

DCB 55-58 
DEVTAB operand (TRKCALC macro) 135, 137 
DEVTYPE macro 

for RPS devices 113 
output from 112-117 
return codes 115 
specification 112-113 

DSCB (data set control block) 
format-l not found 105 
general information 1 
reading from VTOC by actual device 
address 

coding example 18 
macro specifications 17 
return codes 18 

reading from VTOC by data set name 
coding example 16 
macro specifications 15 
return codes 17 

DSECT expansions 
See CVT, IEFJFCBN, IEFUCBOB, TRKCALC 

DSN order, initiating 32 
DSORG operand (DCB macro) 54, 56-57 

~~~~~~~~~ ------~ 

o

(fCB fields
with EXCP macro 69
with XDAP macro 79

end-of-extent appendage
See EOE (end-of-extent) appendage

end-of-volume
See EOV macro

EODAD operand (DCB macro) 54
EOE appendage 46
EOEA operand (DCB macro) 52
EOV macro

and Format-l DSCB not found 105
with EXCP macro 65-66
with XDAP macro 79

error handling 34
error messages

See messages. CVAF VTaC error
error recovery

from system or user errors 34
procedures 42

event control block (ECB) fields
with EXCP macro 69
with XDAP macro 79

examples
of CVAFDIR macro 196-205
of CVAFSEQ macro 206-217
of CVAFTST and CVAFDSM

macros 217-220
of OPEN installation exit module 225

EXCP macro
control blocks used with

DCB 51-58
DEB 70
ECB 69
lOB 67-69

in problem programs 38
in real storage 70
in system control programs 37
in V=R address space 39
macro specification 60
macros used with

ATlAS 61
CLOSE 66
EOV 65-66
OPEN 58-60

multivolume data set requirement 60
EXCPVR macro 70-71
executing channel program

in problem programs 38
in real storage 70
in system control programs 37

exit routine
See DADSM pre/postprocessing exits
See data management ABEND
installation exit

See DCB OPEN installation exit
See format-l DSCB

EXLST operand (DCB macro) 54
expiration date

overriding 20
EXTEND operand (OPEN macro) 58. 121
EXTEND operand (OPEN macro) The DADSM
extend routine obtains 4

FCB (forms control buffer) image
adding image to SYSl.IMAGELIB 156
adding to SYSl.IMAGELIB 169
JES2 Support 174
retrieving from SYSl.IMAGELIB 173
rules 156

fixing data areas with EXCPVR 71
format

of buffer list entry 29-30
of buffer list header 28
of CVPL (CVAF parameter list) 27
of DADSM pre/postprocessing exit

parameter list 98
of OIEXL (OPEN installation exit

parameter list) 102
of VIER 8
of VIER index
of VTOC maps

format 0-6 DSCB
format-l DSCB

entries
12
1

8

not found installation exit
(IFGOEXOA) 105-107

register contents 106
return codes 107

reading from VTOC 15
format-l DSCB not found exit

register contents 106
return codes 107

format-l DSCB not found installation
exit

parameter list 106
forms control buffer (FCB)

See FCB image
foundation block of DCB 52
FUNCTN operand (TRKCALC macro) 134-139

GEN parameter (MSGDISP macro) 152
GTF trace of CVAF processing

See CVPL (CVAF parameter list)

high-speed 3480 positioning 123

I/O appendages
See appendages

I/O devices
characteristics 112

IDAL (indirect address list) 74
IDAL (indirect data address list) 73
IDAW programming notes
IEAAPPOO. authorized appendage list 49
IEBUPDTE program

SYS1.PARMLIB 49-50
use in listing appendages in 49

Index 237

------ ~---~-

IECPCNVT (relative track address to
actual track address conversion
routine) 80

IECPRLTV (actual track address to
relative track address conversion
routine) 82

IECOSCRI (sector conversion routine) 83
IEFJFCBN macro III
IEFUCBOB macro 110
IEHATLAS program 62
IEPL (DADSM pre/postprocessing exit
parameter list) 98

IFGOEXOA program
See format-l DSCB

IFGOEXOB program
See DCB OPEN installation exit

IFG01991 program
See data management ABEND
installation exit

IGGPOSTO (DADSM postprocessing exit)
See DADSM pre/postprocessing exits

IGGPREOO (DADSM preprocessing exit)
See DADSM pre/postprocessing exits

IGGPREOO program
IGGUCSIT macro 166
IMSK operand (DCB macro) 54
indexed access, initiating 32
indexed VTOCs, compared to nonindexed

VTOCs 12
indexing feature for 3211 174
indirect address list (IDAL) 74
indirect data address list (IDAL) 73
initializing DASD volumes 1
interruption handling procedures 42
lOB chain modification 132
lOB fields

with EXCP macro 67-69
with XDAP macro 79

10BAD operand (DCB macro) 54
IOBSENS fields with ATLAS macro 62

JES2
Printer support 174, 175

JFCB (job file control block) Ill, 117,
118, 120, 122, 124

See also RDJFCB macro
macros used with

OPEN 122
RDJFCB 118-120

mapping macro III
modifying 103, 118-124
processlng 117-124

job file control block (JFCB)
See JFCB

K operand (TRKCALC macro) 136, 137, 139
KEYLEN operand (DCB macro) 57

238 MVS/XA System-Data Administration

LABEL operand (DD statement)
password protected data set 85, 86

library character set modules 156
LIST operand

CVT macro 111
lEFJFCBN macro III
IEFUCBOB macro III

locate record command 41

MACRFE=(E) operand (DCB macro) 52
macros, data management

See also CVAFDIR macro
See also CVAFDSM macro
See also CVAFSEQ macro
See also CVAFTST macro
ATLAS 61
CLOSE

used with EXCP macro 66
used with XDAP macro 79

CVAF (VTOC access)
syntax 195
uses 25

CVT 111
DCB 51, 58
DEBCHK 125-128
DEVTYPE 112-117
EOV

and Format-1 DSCB not found 105
used with EXCP macro 65-66
used with XDAP macro 79

EXCP 60
EXCPVR 70-71
IEFJFCBN 111
IEFUCBOB 110
MSGDISP 143-155
OBTAIN 15-18
OPEN

and Format-1 DSCB not found 105
for JFCB 120, 122
used with EXCP macro 58-60

PROTECT 88-95
PURGE 128-132
RDJFCB 117-120
REALLOC 140-142, 143
RENAME 22-25
RESTORE 128-129, 133
SCRATCH 18
TRKCALC 133-139
used with XDAP macro 75
XDAP 75-78

maintaining 95
See also PROTECT macro
PASSI~ORD data set 88-95
VTOC (volume table of
contents) 15-25

mapping macros
CVT III
IEFJFCBN 111
lEFUCBOB 110
TRKCALC 138

maps of allocated space
for cylinders and tracks 10
for DSCBs 11
for VIRs 11

o

(

MAXSIZE operand (TRKCALC macro) 136,
137

messages, CVAF VTOC error
associated codes

descriptor codes 221
return codes 222-224
routing codes 221

text and explanation 221
MF operand

DEBCHK macro 127
TRKCALC macro 136-137

MODE operand (DCB macro) 57
modifying

channel program during execution 42
lOB chain 132
JFCB

in OPEN installation exit 103,
118-124

MOUNT parameter (MSGDISP macro) 144
MSGDISP macro 143

displaying a Demount message 148
displaying a Mount message 144
displaying a Ready message 147
displaying a Verify message 146
Providing the Full Range of Display

Options 152
Resetting the Message Display 151
return codes 154

multivolume data set
processing with EXCP macro 59

name
VTOC index 6

nonindexed VTOCs, compared to
indexed 12

nonpageable address space. V=V 41
NOPWREAD protection-mode indicator 89
NOWRITE protection-mode indicator 89

OAIXL (data management ABEND
installation exit parameter list) 108

OBTAIN macro 15-17
obtaining a sector number (RPS
devices) 83

OIEXL (OPEN installation exit parameter
list) 102

OPEN installation exit
See DCB OPEN installation exit

OPEN macro
and DEQ at demount facility 121
and Format-l DSCB not found 105
getting control from 102
TYPE=J

example 59
invoking 121
specification 123

used with EXCP macro
dummy data set restriction 58
label processing 58
procedures performed 58
volume disposition 58

used with XDAP macro 76
open processing 100

after IFGOEXOB gets control 101

before IFGOEXOB gets control 101
opening a VTOC. restriction on changing
contents 119

OPENJ (OPEN. TYPE=J) 122
operational requirements 14
OPTCD=Z operand (DeB macro) 53
OUTINX operand (OPEN macro) 54, 121
output data set

maintaining DCBBLKCT field 52

page boundary 73
page fix

appendage 72
list 72

pageable address space, V=R 39
parameter list

See CVPL (CVAF parameter list)
See DADSM pre/postprocessing exits
See data management ABEND
installation exit

See DCB OPEN installation exit
See format-l DSCB not found
installation exit

partial release via JFCB
modification 104

in OPEN installation exit
example 225

password
See also PROTECT macro
control 89
counter maintenance 88
data set concatenation 88
parameter list 91

ADD a record 91
DELETE a record 93
LIST a record 94
REPLACE a record 92

protection mode indicator 89
record 86

protection mode indicator 86
secondary 89
standard label restriction 84
terminating protection 87
volume switching 87

PASSWORD data set
characteristics 86
creating 86

password protecting data sets 84-95
password protection

for VTOC indexes 14
PCI (program controlled interruption)

appendage 45
PCI operand (DCB macro) 52
PCIA operand (DCB macro) 52
pg=end.DADSM pre/postprocessing
exits 100

PGFX appendage 72
physical sequential access,
initiating 33

PIRL (purged I/O restore list)
use in restoring I/O requests 43.

131. 133
posting completion code in ECB

following use of EXCP macro 69
following use of XDAP macro 79

postprocessing
See DADSM

PREFIX operand (IEFUCBOB macro) III
preprocessing

Index 239

See DADSM
printer image

universal character set (UCS) 156
program controlled interruption (PCI)
appendage 45

programming notes 50
PROTECT macro

See also password
parameter list 93

ADD function 91
DELETE function 93
LIST function 94
REPLACE function 92

return codes 95
syntax 90
use with PASSWORD dataset 84-94

protecting a VTOC index
with passwords 13
with RACF 13

protection mode indicator 89
PRTSP operand (DCB macro) 58
PURGE macro

adding to macro library 128
definition 128
parameter list 130, 132
return codes 132
specification 130

purged I/O restore list 43, 130, 133
PWREAD protection-mode indicator 89
PWWRITE protection-mode indicator 89

QSAM (queued sequential access method)
defaulting buffer number 103

R operand CTRKCALC macro) 136, 137, 139
RACF (Resource Access Control Facility)

renaming a data set 22
scratching a data set 19
use with VTOCs and VTOC indexes 13

RDJFCD macro .
coding example 118
exit list entry for 119
invoking DEQ at demount 121
return codes 120
specification 118

RDY parameter (MSGDISP macro) 147
reading

data from index maps 31
DSCBs 30, 31, 32
VIR 30-31

reading and modifying a JFCB 117-120
READPSWD module 85
REALLOC macro 140-143

return codes 142
RECFM operand (DCB macro) 54
recovering from errors 34
recovering from permanent DASD I/O error

See ATLAS macro
register

conventions for appendages 43
usage by conversion routines 81, 82
usage by I/O supervisor 43

REGSAVE operand (TRKCALC macro) 136,
137

240 MVS/XA System-Data Administration

related channel program 43
related requests 43
REMOVE operand (TRKCALC macro) 135, 137
RENAME macro

dummy module 176
specification 22

renaming a data set
coding example 24
macro specification 22
with password protection 25

REPOS operand (DCB macro) 52
requesting partial release via JFCB
modification 104

requirements
for APF 13
for copy, restore, operations 14

RESET parameter (MSGDISP macro) 151
Resource Access Control Facility

See RACF (Resource Access Control
Facility)

restore chain modification 133
RESTORE macro

adding to macro library 128
definition 128
specification 133

restore operations, requirements 14
restoring lOBs 133
restrictions

when scratching, renaming,
allocating 12

return codes
ATLAS macro 63
CVAFDIR macro 183
CVAFDSM macro 189
CVAFSEQ macro 194
CVAFTST macro 195
DEBCHK macro 128
DEVTYPE macro 115
from DADSM exits 100
from DADSM pre/postprocessing
exits 100

from data management ABEND exit 109
from DCB OPEN exit 105
from format-l DSCB not found
exit 137

IECPCNVT 82
MSGDISP macro 154
OBTAIN macro 17
RDJFCB macro 120
REALLOC macro 142
TRKCALC macro 139
with error message 222-224

RKDD operand (TRKCALC macro) 136, 137
routine

See exit routine
RPS (rotational position sensing)

devices
used with XDAP macro 82

SCRATCH macro
coding example 20
general description 18

scratching a data set
when volume not mounted 19

secondary passwords 89
secondary space data, updating in OPEN
installation exit 104

example 225
sector, address in XDAP macro 78, 82

o

(
securing a VTOC

with passwords 13
securing a VTOC index

See also protecting a VTOC index
with RACF 13

seek 41
seria11zation, CVAF 26
SID appendage

description 45
for EXCPVR 72

SIOA operand (DCB macro) 52
space map

of allocated cylinders and tracks 10
of allocated DSCBs 10
of allocated VIRs 10

SSCH (start subchannel) instruction
description 45

STACK operand (DCB macro) 57
stand-alone seek 41
standard label restriction, password

data sets 84
start subchannel (SSCH) instruction

See SSCH
start-I/O appendage

description 45
for EXCPVR 72

system control blocks 99
mapping macros for

CVT 111
JFCB (IEFJFCBN) III
UCB (IEFUCBOB) III

system macro instructions 110
SYS1.IMAGELIB data set

adding a UCS image t6 157
maintaining 156
UCS images in 157

tape volumes
DEQ at demount facility 121

testing for a VTOC index 195
trace of CVAF processing 35
track

assigning alternate 61
calculating capacity 133-139

translation of channel program
by I/O supervisor

in V=R address space 72-73
in V=V address space 41
in your own program 72-73

TRKBAL operand (TRKCALC macro) 134,
137, 138

TRKCALC macro 133-139
return codes 139

TRKCAP operand (TRKCALC macro) 134, 139
TRTCH operand (DCB macro) 57
TYPE operand

DEBCHK macro 125
TRKCALC macro 135, 137, 139

UCB (unit control block)
mapping macro 113

UCB operand
TRKCALC macro 135, 137

UCS (universal character set) image
adding to SYS1.IMAGELIB 157
adding to the UCS image table 162
for JES2 174
verifying 162

UCS image table
adding aliases 162
adding image names 162
contents 163
entry format 162
modifying entries 166
structure 162

unit check with ATLAS macro 62
unit control block (UCB)

See UCB (unit control block)
getting information from

See DEVTYPE macro
universal character set (UCS)

See UCS (universal character set)
image

updating secondary space data in OPEN
installation exit 104

user exit routine
See exit rou{ine

V=R address space, EXCP operations
in 39

V=V address space 41
validating the DEB 124-128
VERIFY parameter (MSGDISP macro) 146
VIER (VTOC index entry record)

characteristics 7
contents 7
format 8
function 6
how chained together 10
when created 9

VIR (VTOC index record)
kinds 6
length 6

virtual IDAWs
VIXM (VTDC index map)

format 12
function . 11

VMDS (VTDC map of DSCBs)
format 12
function 11

volume
identification to CVAF 26

volume label 2
volume switching 59
volume table of contents

See VTDC (volume table of contents)
VPSM (VTOC pack space map)

format 12
function 10

VTOC (volume table of contents)
maintaining

description 1
index 15, 18
using OBTAIN macro 15-18

Index 241

using RENAME macro 22-25
using SCRATCH macro 18-22

VTOC access macros
See CVAFDIR macro
See CVAFDSM macro
See CVAFSEQ macro
See CVAFTST Macro

VTOC index
contents 6
how to list 35
how to protect 14
name 6
relationship to VTOC 6
structure 6
testing for 19.5

VTOC index entry record (VIER)
See VIER (VTOC index entry record)

VTOC index map (VIXM)
See VIXM (VTOC index map)

VTOC index record (VIR)
See VIR (VTOC index record)

VTOC map of DSCBs (VMDS)
See VMDS (VTOC map of DSCBs)

VTOC pack space map (VPSM)
See VPSM VTOC pack space map)

WAIT macro
used with EXCP macro 38

WRITE protection mode indicator 25
writing DSCBs 31
writing VIRs 31

242 MVS/XA System-Data Administration

XDAP channel program 80
XDAP macro

control blocks used with 75, 79
macros required with

CLOSE 79
EOV 79
OPEN 75-76

specification 77-78
XENDA operand (DCB macro) 53

Numerics

1403 Printer
JES2 Support 174

31-bit IDAW
3203 printer

JES2 175
output from DEVTYPE 115

3211 Printer
indexing feature 174
JES2 Support 174

3262 Model 5 Printer
default FCB image 157
UCS image table 162
UCS image table for 165

3480 tape drive
output from DEVTYPE macro 116

3800 printer
output from DEVTYPE macro 115

4245 printer
default FCB image 157
output from DEVTYPE macro 115
UCS image table 162

4248 Printer
default FCB image 157
UCS image table 162

o

, I ("'" .,)
.....,

,-----------,-----------

I

I

.,
o z

MVS/XA System-Data Administration
GC26-40 1 0-2

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TN LsI to this book, please list them here: _____________ _

Chapter/Section __ _

Page No. _____________ _

Comments:

If you want a reply, please complete the following information.

Name _________________________ _ Phone No. (__ 1 ________ _

Company ___ __

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.1

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

IIIII

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

..

Fold and tape Please do not staple Fold and tape

--...--------- - ------- -.. ---- -- _ ... ------_-...._,,-
<I>

----------- ---_.

o

iii o
Z

MVS/XA System-Data Administration
GC26-4010-2

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to' your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here: _____________ _

Chapter/Section __ ___

Page No. _____________ _

Comments:

If you want a reply, please complete the following information.

Name __________________________ _ Phone No. (__) ________ _

Company __ __

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an I BM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

..

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

I II II I NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

...

Fold and tape Please do not staple Fold and tape

--...------- - ------- -. ---- -- ------.---~-.,-
®

