
SH20-9145-0

Program Product IMS/VS Version 1 Primer

Program Number 5740-XX2

Release 1.5

This edition is a revised edition of the I~S/VS Primer World Trade
System Center Bulletin (5320-5767-2) dated September 1977.

This edition addresses I~S/VS Data Base Facilities and IMS/VS Data
Communication Facilities. This edition applies to IMS/VS Version 1
Release 1.5, program number 5740-XX2, under OS/VS1 or OS/VS2 Release 2
(MVS), using BTAM or VTAM and the IBM 3270 Information Display System.

Information in this publication is subject to significant change. Any
such changes will be published in new editions or technical n~wsletters.
Before using this publication, consult the latest I~n §I§1~!ll!Q
~ieiiQg£~Ea!. GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are
applicable and current.

Requests for copies of IBM publications should be made to the IBM branch
office that serves you.

Forms for readers' comments are provided at the back of this
publication. If the forms have been removed, comments may be addressed
to IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California 95150. All comments and suggestions become the property of
IBM.

© Copyright International Business Machines Corporation 1978

This publica tion is intended for first -t ime users of the Informa tion
Management System/Virtual Storage (I~S/VS). It provides system
analysts, data base specialists, system programmers, and application
programmers with the information nec~ssary for the design, installation
and operation cf their initial applications, using a subset of the data
base or data basE/data communication facilities of IMS/VS.

The IMS/VS Primer Function comprises five separately orderable
documents. One is this document (SH20-9145). The second is the I~~LY~
f~!!~~ ~g!E!~ ~i§~iD9~ (SH20-9149), containing a complete IMS/VS sample
application including generaticn input, source program examples, data
base sample data and executicn out~ut. ~he third is the I]~L!~ f~!m§£
~~~I~I I~~!iD~l ~E~IsI2I!§ §Yig~ _. ]lA~ (SH20-9146), containing a 
sample operating guide for the master terminal operator of IMS/VS using 
the Basic Telecommunication Access Method (ETAM). The fourth is the 
l~§L!~ E£i!~I ~s§I~I l§ImiDgl Q!~I~12I~§ ~y~~~ -- !!!~ (SH20-9147), 
containing a sam~le operating guide for the master terminal operator of 
IMS/VS using the Virtual Telecommunication Access Method (VTAM). The 
fifth is the !~§LY§ ~!im~I R~!21~ I~I!iD~l Q~~~sIQI~§ ~Yi[~ (SH20-9148), 
containing a sample operating guide for the IMS/VS end-user/terminal 
operator. The manuals are designed to be used together, i.e., the !MS/VS 
Primer and the Operating Guides extensively reference the samples in the 
IMS/VS Primer SamFle Listir.gs. 

The primary objective of the IMS/VS Primer Function is to provide the 
first-time user cf IMS/VS a single document containing all of the 
information the user would ordinarily need to: 

• Plan for IHS/VS use 

• Design Dl/I data bases 

• Design, writE, and test IHS/VS programs 

• Install the ISS/VS program Froduct (5740-XX2) 

• Operate IMS/VS 

• Maintain IMS/VS 

The only other I~S/VS publications the user of the subset would normally 
have to refer to arE the l~~LY~ ~~D~Ial IDIQIm~!1Qn ~!nY~l and the 
I~~L!~ ~~§§g~~§ ~Dg ~Qg~§ ~~~~t~n£~ ~~n~~l· 

Whil~ the IMS/VS Primer is oEsignEd for the new IHS/VS user, it is 
ap~licable to other customers, such as: 

• The currently installed lMS/VS user who has a continuing training 
requirement, and 

• The currently installed IMS/VS user who is implementing new 
applications for departments having no experience using IHS/VS. 

By using the apprcach sugg~sted in the IMS/VS Primer, users can avoid 
much of the complexity usually associated with IMS/VS. Many of the 
steps required to install I~S/VS can be shortened, simplified, and/cr 
accomplished in a mcre crd~rly manner. 

About This Manual iii 



The IM5/V5 Primer !! B2l intended to eliminate the need on the part of 
the user for carEful Flanning, close coordination, dnd guidance by 
experienced systems perscnnel, detailed study of the application 
requirements, rigorous program testing, proper operating procedures, 
etc. It l~ intEnded to be a learning guide, a source of field-proven 
techniques and advice, a tested sample system, a subset reference 
manual, and an operator's guide. By following this manual, users should 
progress quickly and ccnfidently through the steps required for 
implementation of a simple, initial IMS/VS application. 

~S2E!_2~_~b!_~~DY!! 

Each user has the responsibility to assess the applicability of the 
1M5/V5 Primer Functicn tc his requirements. If desired, users can ask 
for guidance and counsel from an IBM representative or system engineer. 
The assessment must be made with a full understanding of the scope and 
intention of the IeS/VS Primer Function. 

Only a subset of the full facilities of IMS/VS is addressed. Although 
the subset is rich in function, a custemer's application might require 
additional IMS/VS functions. 

If a user requires facilities not included in the subset, he should 
reconsider, if necessary, any recommendations given here. 

agID!!~ 2~ ~2D~§nl§ 

This manual is organized inte nine chaFt~rs. 

• Chapter 1, "Introduction." introduces the If!5/V5 data base and data 
base communication facilities and a sample application used 
throughout the manual. The chapter is divided into a DE facilities 
section and a DC facilities section. It also provides a brief 
overview of our IMS/VS subset. 

• Chapter 2, "Data Base Design," provid~s the data base specialist and 
system analyst with information and guidelines for data base design. 
This chapt~r is applicable to both the DB-only user and the DB/DC 
user. 

• Chapter 3, "Data Communication Design," contains a detailed 
description of the IMS/VS data communication facility. It provides 
guidelines for the design and implementation of data communication 
applications using these facilities. This chapter can be 
disr~9arded by the tf-only user. 

• ChaptEr 4, "Data Base Processing." guides the application programmer 
i~ the design. codi~g and testing of DL/I batch and If!S/V5 message 
proc@~sing programs. Only the first part of the chapter is 
applicablE to the DB-only user. 

• Chapter 5, "Data Base Reorganization/load Frocessing." describes 
when and how data bases should be reorganized. 

• Chapter 6, "Data BaSE Recovery," guides the data base specialist and 
operations staff in the ilplementaticn of data base recovery 
proced ures. 

• Chapter 1, "Installing IMS/VS," guides the system programmer througb 
the installaticn of a subset of IMS/VS data base and data baSE/data 
communication system. It also addresses the installaticn of IMS/VS 
in the Systems Netwcrk Architecture (SNA) environment. 

iv IMS/VS Primer 



• Chapter S, "Operations," contains guidelines for the design of 
operating procedures for the I"5/V5 online system. It shows how to 
adapt the sample master terminal and remote terminal operator guides 
to your own environment. This chapter can be disregarded by the 
DB-only user. 

• Chapter 9. "Optimization," describes how to monitor and optimize a 
running application. 

Every chapter except the seccnd, third and eighth is divided into two 
parts. The first part of each chapter deals with the data base 
management pcrtion of 1"5/V5. The second addresses 1MS/V5 data 
communication. For your convenience, the fcllowing table defines those 
parts of this manual of interest to each functional area in your 
organization. 

DATA 
CHAPTER MI\NAGEMENT DB/DC DATA BASE COMMUNICATION SYSTEM SYSTEM APPLICATION OPERATION 

ADMINISTRATOR SPECIALIST SPECIALIST ANALYST PROGRAMMER PROGRAMMER 

1. INTRODUCTION • ••• • •• ..1, ••• • •• •• 
2. DB DESIGN ••• * •• •• .* *. * * J. DC DESIGN 
4. DB PROCESSING •• ••• • •• •• •• • •• • 5, DB REORGANIZATION .- .- - _.- - --6. DB RECOVERY •• • •• •• • •• • •• 
7. INSTALLATION •• •• •• • •• •• 
8. OPERATION •• • .. • • •• ••• 
9. OPTIMIZATION •• • •• . .. ' • ••• • •• 
LEGEND: 

• Reader should be familiar with contents. 
• • Reader should know specific parts in detail. 

••• Reader should have complete detailed knowledge, 

Eefore using this manual, you should be familiar with the IB~ Cperating 
System for Virtual Storage (OS/VS1 or OS/VS2). This manual's design is 
such that the new IMS/V5 user will need to make few, if any, references 
to other IMS/VS publications, except for the ~!n!~!l Int2I~!!Qn ~!nygl 
~H20-1260) and ~!§§!g!~ !n~ £Qg~~ B!t!~!n£! ~!ng!l (5H20-9030). The 
more advanced us~., however, will find additional information in the 
listed associated publications. 

The reader should be familiar with the information presented in: !~aL!~ 
Ge~Ig! In!2I!s!i2D ~~~Y~l (GH20-1260) (especially Chapter 1, 
"Introduction to IMS/VS," and Chapter 4, "System Configuration"). 

About This Manual v 



The following I~S/VS Publications should be used if you have a nEed for 
more IMS/VS information beyond the scope of our subset: 

• !~~L!~_§I§~~!LAE£!i£~!i~~_~~§igD_§Big!, 5H20-9025 

• I~~L!~_!EE1!£~~iQn_f~Qg~~!!ing_l~~~~!~£~_tt~Dygl, 5H20-9026 

• 1~~L!~_~l§!!~_fIQ9Ig!!lDg_~st~I!D£!_~~nY~1, 5H20-9027 

• l~§L!~_Q]§IgIQI!§_R!t!Isn£!_~~D~~l, SH20-9028 

• 1~~L!~_~S11i11s§_R§~§I~n£!_~~~~~1, SH20-9029 

• I~§L!~_~Q~_~!!!!_~Q~!l~2!t!nYiiI fh!£~_!n_]~~g_L!D9Y!9!L!_~!29!!! 
R~~!~~n£~_~n2_f£~!~~i2]_~~]~~!L 5H20-9047 

• I~~LY§~~!Qq~s!_!Qqi~_~~nY~!L LY20-8069 

vi IMS/V5 Primer 



CHAPTER'. INT~CDUCTICN. 
What Is IPIS/VS? • • •• 
Why Data Bases? • .. • ••••• 
Our Sample Environment • 

Our Sample Company's Requirements •• 
The Phase , Environment •••• 

The PARTS Data BasE •••• 0 •• 

· . . 
· . 

!he PARts Inventory Reports. 
PurchasE Order Processing. • • 

· . . . . . 
The Phase 2 EnvironmEnt ••••• 

!he Customer Crders Data Base. Q 

Customer Order Processing. • 
The Phase ~ Environment •• 

The IMS/VS Data Ease System. 
System Definition •••• 
Data Lanquage/I Facility. 

DL/I ConcEpts. 0 • • • • 

Environm~nt Definitions •••••• 
Data Independence •••• 

· . . . 

· . . . 
Applicat ion Data Structure • • • • • • 
Hierarchical Data Structure. • • • • . . 

· . 

Basic Segment Types in a Hierarchical Data Structure • 
Sequence Fields and ACCESS Paths • 
Logical Relationships. u 

Secondary Indexing •• 
Data Base Definition •••• 

Data BaSE Description •• 
Program Specification Block. 

~pplication Program Interface •• 
Logging and Checkpoint/Restart Facility. 
Data Security •••••• n 

Utility Programs •• ~ •• 
IMS/VS Batch SystEm Flow • • 

Data Base Administrator .. 
. . . 

DEA Characteristics. • ••••• 

· . . . . . · . 

. .. · . . 
· . . 
· . . · . . 

Naming Conventions • •• • • · . . . . 
Naming Conventions for Entities ... 
Sample Job Names. • ••••• 

Sample Distribution and listings Q 

~he Project Approach • • • • .. • 
The Project Cycle • ••••••••••• 
Sample Project Plan for I~S/VS DE. • 

Gross PERT Chart ..... .. 
The IMS/VS Data Communication Feature. 

Scme Basic SNA concepts. • • Q · . ., 
Separation of Functions into Logical Layers •• 

Th~ Transmission Subsystem Layer 
'Ihe Function Management layer ..• 
The Application Layer •••• 

End Users, Nodes and Sessions. q 

VTAM Role in SNA • • • • • • • • • • ••• 
Starting and Stopping the Network •••••• 
Changing the Configuraticn Dynamically 
Allocation ••••••••••••••• 
I/O Process ing • io • • • .. • .. • • .. • • 

Reliability. Availability. S~rviceability •• 
Nep/VS and the 3705 Communications Controller ••• 

· . 
. . . 

Contents 

1. , 
1. 1 
,. 1 

'.2 
1. 3 
1.4 
1.4 
1. 4 
1.4 
1. 4 ,. " 
1.5 
1. 5 
'.5 
,. 5 
1. 5 
1.5 
1.6 
1.6 
1.6 
1. 7 
'.9 '.9 
,. 10 
, .. '2 
1. 13 
,. '3 
,. 13 
1. 14 
1. 1 " 
1. 14 
'.15 
,. 15 
,. 17 
,. '7 
1. '7 
,. 1 8 
1. 18 
1. 19 
1. 19 
,. '9 
1. 20 
, .20 
1. 24 
1.24 
1.25 
,. 25 
1.25 
1.25 
'.25 
1.26 
1. 26 
1.26 
1. 26 
'.26 
1. 26 
1.26 

vii 



I"S/VS Data Communicaticn Ccncepts • 
Physical 1erminals • • • • • • 

3270 Device Compatibility_ • 
Logical TErminals. 
Ma ste r Te rmina 1 • 
Input "essages • 
Output Messages. 
Message Format Service •• 
MessagE Queueing • 
Conversational Processing. 
Security • 
Terminal Command Language. • 
Transaction Response ~ode. • 

MessagE SChEduling • 
Logging and Checkpoint/Restart •• • 

Logging. 
Checkpoints. 
Festart. 

Utility Programs • 
IMS/VS Data Communicaticn System Flow. 

Batch Processing of Online Data Bases. 
Data Communication Administration. 

DCA Characteristics. 
Sample IMS/VS Project Flan •• 
I~S/VS Primer Functicn Subset Overvi~w • 

Data Base Subset •• 
Data Communication Subset. 

CHAPTER 2. tATA BASE DESIGN. 
About This Chapter • 
Sample Data Base Requirements. 

Phase 1 Sample R eguirements • 
PAR~S Data Ease Contents. 
Inventory Report Precessing. 
Purchase Order Processing. 

phase 2 Sample Requirements. 
Sample Data BasEs fer Phase 2. 
Sample Application for Fhase 2 • 

Phase 3 Sample Requirements. 
The DL/1 Data Ease Facili~y. 

Physical Data Ease and Storage Organizations • 
The DL/I tata Bas~ Record. 
Segment Format 
!he Concatenatp.d Key • 
Calls and Data Ease Positicning. 

Get Uni gue • 
Get Next • 
Hold Form of Get calls • 
Insert • 
Delete 
Replace. 
SSA. 

OS/VS Access Methods Used by DL/!. 
HDAM and HIDAM StoragE Crganizations • 

HDAM and HIDA~ Access Characteristics. 
HDAM • 
HIDAM. 

Inserts and Deletes in HDAK and HIDAM. 
Pointers in HDA~ and HIDAM • 

Physical Child/Physical ~win Pointers. 
SHISAM Storage Organi2ation. 
Functions and Use of GSAM. 

viii 

When to Use GSA!'! 
Supported rata Sets. 

IKS/VS Primer 

1.26 
• 1.26 

1.27 
1 .. 27 

• 1. 27 
1.27 

• 1.28 
1.28 
1.28 
1.29 
1.29 
1.29 

• 1.30 
1.30 

• 1.30 
1.31 
1.3' 
1. 31 
1.32 
1. 32 
1.34 
'.34 
1.34 
1.35 
1.35 
1.36 
1 .. 38 

2. 1 
2. 1 
2.2 
2.2 
2.2 
2.2 
2. 3 
2.3 
2.3 
2.4 
2.5 
2.5 
2.5 
2.6 
2.7 
2.8 
2.9 
2. 10 
2.10 
2. 10 
2.10 
2.10 
2. 10 
2.10 
2. 10 
2. 11 
2. 1 1 
2. 1 1 
2.12 
2. 13 
2.14 
2.14 
2. 15 
2.16 
2. 16 
2. 16 



D1/I Logical Relationships • .. 0 • .. 

Why Logical Relationships ••• . . . 
Building Logical Relationships .. .. .. • • 

Segment Types Involved in Logical RelationshiFs •• 
Logical Child Segment. • • ••• 
Logical Parent Segment.. .. • • • • q 

Physical Parent Segment ••••••••••••••• 
The Virtual Logical Child Segment •••••• 
!he Destination Farp.nt .. .. ••• 

logical and Physical Data Bases. 
lhe Concatenated Segment Q •• 

Logical Relationship Desigfl Eules •• 
. . 

Rules for Defining Logical,RelationshiFs in Physical 
Da ta Ba sese • .. .. • • .. 
Logical Child •• 
Logical Parent • • 
Physical Parent. • • If •• 

Rules for Defining Logical Data Bases. • • • • 
Processing Logically Related Segmentsq .. 

Deleting Logically Related Segments .. 0 

Logical Child. 
Logical Parent • .. • .. • ~ • .. • • • • • • • 
Physical Parent ••••••••••• 

Inserting Logically Related Segments • ~ 
Log i c a lIP h Y sic alP d r e n t. • • • • • • 
Logical Child •••••••••••• 

Replacing Logically Felated Segments • 
Logical RelaticnshiFs IIFlementation -!echnique in 

HDAM/HIDAM. .. • u • • • ... U • Q .. .. • • •• 

Pointers Used for Logical Relationships in HtAM/HIDAM 
Logical Parent Pointer (lP) •••••••• 
logical Child First 'Pointer (LCF). • .. • .. 
Logical Child Last Pcinter (LCL) 
Logical Twin Forward Fainter (LTF) •••• 
Logical Twin Backward Fointer (LTE) ... 
Ph ysi cal Parent Po in ter (PP) • • • • 

DL/l Sec onda ry I nde Xe s .. • • • Q • .. • • • 

When to Use Seccndary Indexes •••••• 
Segment 'IYFes Involved in Secondary Indexes •• 
Design Rules for Secondary Indexing. 
Implementation technique • • • 

Index Pointer Segment Format • 
Creating a Seccndary Ind€x • 0 

Data Ease Description Generation • 
DBDGEN Coding Conventions. • Q 

Easic £BDGEN Control Statement Format •• 
DBD Statement. 0 •• 

DA~ASE! Statement. 
SEGM Statement • 
F1:ELD Statemento 
LCHIL D St at ement 
DBDGEN Statement • • ••••••••• 
FINISH Statement 
END Statement. • • ••• 
Execution of DEDGEN (Jel) •• 
Examples of Physical DBDs. 0 

DBDGEN for GSAM ••••••• 
DBDGEN for Logical Relationships • 

. . . . . . 
Coding a logical Relaticnship in a Physical DBD •• 

Logical Child. • • • •••• ~ • • • • • • • 
Physical and Logical Farent.. • ••••• 

Exampl~s of Physical DBDs with Logical Relationships • 
Ceding a Logical DED • 

DED St atement. • • • 
DA~ASE! Statement. 

• • • · . . 
· . . 

· . . 

Con ten-+:s 

2. 17 
2. 17 
2.17 
2.17 
2. 18 
2.18 
2. 18 
2. 18 
2.'9 
2. '9 
2. 20 
2.21 

2.22 
2.22 
2. 22 
2.22 
2.22 
2.2~ 
2.24 
2. 24 
2.24 
2. 24 
2.24 
2.24 
2.24 
2.24 

2.24 
2.25 
2.25 
2.25 
2.25 
2. 2~ 
2.25 
2.25 
2.25 
2.26 
2. 26 
2.27 
2.28 
2. 28 
2.29 
2.29 
2.30 
2.3' 
2.31 
2.33 
2.35 
2.37 
2.38 
2. 39 
2.39 
2. 39 
2.39 
2.40 
2.42 
2.43 
2. 43 
2.44 
2.45 
2.46 
2.47 
2 .. ~7 
2.48 

ix 



SEGM statement • • • • .. .. • .. • • 
Cl3DGEN, FINISfJ and END statements •• 
Example of Logical DBDs .... 

tSDGENs for Secondary Indexes. • • .. 
Coding an Index Target Data Base • • • 

Coding the Index Target Segment. • 
SEGK statement ••• 

• • • • • • • • • • • 

. . . 
LCHILD Stat~ment • • • • • • • • 
XDPtD Statement. • • • • • • • • 

. . . . · . . . . . . 
Coding the Index Source Segment. 
SEGM sta tement • 
FIELD Statement .. 

Coding a Secondary Index DBD 
DBD Statement. • • 
DATASET Statement ••••• 
SEGM Statement •• 
lCHILD Statement .... 

. . 

· . . . . . . · . . . . 
· . . . . . . 

. . . . . . . . . . . . · . . 
FIELD statement. • • • • • ••••••• 

Program Specification l3lock Generation (PSBGEN) •••••• 
Easic PSB Coding • • • • • • • ••• 

PCB statement. • • • • • • • • • • • •••• 
GSAM. PCB • • • • • • • • • • ••• 
SENSEG Statement • • • • • • ••••••••• 
PSl3GEN Statement • • • • • ••• 
END Statement •• 
Sample Basic P SSs. • • ••• 

Execution of PSBGEN (JCt) •• 
Coding PSBs fer Lcgical Data Bases • 
Coding PSBs for Secondary Indexes ... 

The PCB Statement. .. • • • • 
The Data Base Design Process ... 

Concepts of Cata Ease Design 
Entities ..... 
Data Elements •• 
The Tra nsac tion. 
Access Paths •• 
The Transaction/Data Element Matrix •• 

· . . . 

· . . . 

The Data Ease Design Tasks • .. .. • • 
. . 

Gathering Requirements. • • • • • ••• 
Phase 1 Transaction/tata Element Matrix ••••• 
Phase 2 Transaction/Data Element Matrix •• 
Phase 3 Transaction/Data Element Matrix ... 

Design the Application Data Structure. 
Phase 1 Application Data Structure • 

Access Paths • • • • .. ... • .. • 
!he Root SegmEnt SE1PABT •••• 
The Stock Segment SE1PSlOK ••• 
The Purchase Crder Segment r SE1PPUR •• 

Phase 2 Applicaticn Data Structure • 

. . . 

Phase 3 Application Data Structure .......... . 
Design the Fhysical Data Structures. 

Phase 1 Physical Data Base Design. 
Selectinq Data Eas~ Crganization • 

When to Choose HDA[IJ. • • .. • 0 

· . . 
When to Choose H!DAM • • • ••••• 
When to Choose SHISAM •• 

Which OS/VS ACCESS ~ethod. 

. . . . 
Physical Segment Design. • · . . . 

Performance Aspects. • • •• • • • • .... 
Physical Data Base Structure fo= Phase . . 
Coding the Phase 1 FARTS OED, HD~M • 0 ••••• 

Considerations for Pcinter Selections. • • • • 
Selecting CI/Block si 'Zes. • • • • • • · . . . 
ANCH, REN, BYTES and SIZE Parameters for HDAM. 

Example r Our PARTS Data Base ••• · . . . 
x IMS/VS Primer 

. . 

2.q8 
2.tJ9 
2.49 
2.50 
2. 51 
2.51 
2.51 
2.51 
2.52 
2.53 
2.53 
2.53 
2.54 
2.5q 
2.5tJ 
2.5q 
2.55 
2.55 
2.57 
2.58 
2.58 
2.59 
2.59 
2.60 
2.61 
2.61 
2.62 
2.62 
2.63 
2.63 
2.6q 
2.64 
2.65 
2.65 
2.66 
2.66 
2.67 
2.68 
2.69 
2.70 
2.70 
2.70 
2.74 
2.74 
2.74 
2.75 
2.75 
2.75 
2.75 
2.76 
2.77 
2.78 
2.78 
2.79 
2.79 
2.80 
2.80 
2.80 
2.80 
2.81 
2.82 
2.82 
2.83 
2.84 
2.84 



Defining VSA~ Data Spaces ••••• 
OSA~ tata Set Allocatien • • • • • 
Phase 2 Physical Data Ease Design ••••• 
Phase 3 Physical Data Base Design. 

Design Evaluation ••••••••••• 

CHAP!ER 3. DATA CC~MUNICATICN DESIGN. 
The Phase 4 SamFle Requir€E€nt • 

Phase 4 Sample Data Eases. 
Phase 4 Batch Programs • • • Q 

Phase 4 Online Programs. 
IMS/VS Data Communication Facilities • 

The Message. • • • • • • • • • • • • 
Multiple and Single Segment Messages • 

IMS/VS Online Operation Cverview 0 • 

The CTL Region • • • • • 
The MPP Fegion Q • • • • • • • q 

!he EMP Region d • • • ~ • • q u 

· . I· . 

Relationship of DB/DC to DB System ••••••••••• 
The DL/I BegionG • • • 

. . . 
Terminal Input Data Processing • • • • • 

Input Message Types. • • • • • • • • • ••• 
Input Message Origin • • • • 
Terminal Input Destinaticn • 

Message Queueing Q •••••• 

Queue Size, Perfor!ance Consideration. 
Message Sc~eduling •••• 

Scheduling Conditions. u •• 

Scheduling a B~P • • • • • • 
Data Base Processing Intent. • ••• Q 

Application Program Processing • • • 
MPP Processing • 
Role of the FSE.. • • • • .. • 
DL/I Message Calls • • • • • 
Program Isolation and Dynamic Logging •• 
Application Prograro Abnermal Termination 

. . . 

Conversational Processing. • • ••• 
output Message Processing. • a 

Logging and CheckpOint/Restart 
Logging •• 
Checkpcinting. Q • 

Cold Start • • • • • 
Emergency Restart 
Normal Restart 0 •• 

Security • • • • • • • • ••• 
The Master Terminal. u • • .. • 

Using the CS/VS Console as a Master !erminal • 
3270 Remote Copy Function. • • 
~essage SwitchingQ •• v u • 0 

Message Format Service Overview •••••• 
MFS and the 3270 • • •• Q 0 • 

Relationship between MFS Centrel Blocks •• 
MFS Control Block Chaininq • • • • 
Linkage between DFLD and ~FLD. • • • • • 
Linkage between LPAGE and DPAGE •••• 
Optional Message Description Linkage ~ • 
3210 Device Considerations Relative to Control Block 

Linkage • • • • 0 • • • 

MFS Functions ••• Q • 'J • 0 ...... 

Input Message formatting ••••• 
Input Data Formatting Using MFS. 
Input Message Field Attribute Data . . . . 
IMS/VS Pass~ords • • • • • • • • • • • ••• 

· . . . 
· . 

Contents 

2.85 
2.85 
2.85 
2.86 
2.87 

3. 1 
3.1 
3. 1 
3.1 
3. 1 
3.2 
3.2 
3. 2 
3.3 
3.4 
3. 5 
3.5 
3.6 
3.6 
3.6 
3.7 
3.7 
3. 7 
3.7 
3.8 
3.8 
3.9 
3. 10 
3. '0 
3.10 
3. 10 
3 .. 1 1 
3.12 
3. 12 
3.'4 
3. 14 
3. 14 
3.15 
3. 15 
3.15 
3. '5 
3. 16 
3.16 
3. 16 
3.17 
3. 18 
3. 18 
3.18 
3. 18 
3.20 
3.20 
3.20 
3.22 
3.22 
3.23 

3. 24 
3.24 
3.24 
3.24 
3.25 
3.25 

xi 



Qutput Message Formatting. 
Output Data Formatting Using MFS • 
"ulti~le Segment Out~ut ~essages • 
Logical Paging of Cutput Messages. 
Operator Paging of Cutput Messag~s • 
Output Message Literal Fields. 
Output Device Field Attributes • 
Cursor Positioning. •• • 
System Message Field (3210 Display Devices). 
Printer Page Format CentIol •• 

MFS Formats Supplied by 1M5/VS • 
MFS Control Statements • 

Relations between Source Statements and Control Blocks. 
Naming COD,entions • 

Utility Syntax • 
MFS Definition Statements. 

MSG Statement. 
LPAGE Statement. 
PASSWCED Statement • 
5IG Statement ... 
DO Statement • 
HFLD Statement • 
EN DDO Statement. 
HSGEND Statement • 
FMT Statement. 
tEV Statement. 
DIV Statement. 
tPAGE Statement •• 
DO Sta temen t • 
DFLD Statement •• 
ENDDO Statement. 
FM!END Statement • 

Compilation Statements • 
TI~LE Statement. 
PBIN! Statementw 
SPACE Statement. 
EJEC! StatementQ 
EttD Statement. 
Sample Formats • 

MFS Control Blcck Generation • 
Step 1 • 

Preprocessor • 
Phase 1. 

Step 2 • 
Phase 2. 

Step 3 • 
Sample MFS Generation Job. 
MFS Library Maintenance. 

" 

FSEGEN for MPPs and BMPs • 
Additional PSB Coding Conventions. 
The Data Communicaticn PCB • 

The PCB Statement. 
~he Data Base PCE. 

Additional PrOCEssing Intent Options. 
Example of an Online FSE • • 

Application Control Blcck Generation (ACBGEN). 
JCL Requirements • 

Required Control Statements. 
ACBG!N Executicn • 

The Data Communication Design Process. 
concepts of Cnline Transaction Processing. 

Application Characteristics. 
Terminal User Characteristics. 
IMS/VS Characteristics • 

xii IMS/VS Primer 

, 

3.25 
3.25 
3.27 
3.27 
3.27 
3.28 
3.28 
3 .. 29 
3.29 
3.29 
3.29 
3.30 
3. 31 
3. 31 
3.32 
3.32 
3.32 
3.33 
3.34 
3 .. 34 
3. 34 
3.35 
3 .. 38 
3. 38 
3.38 
3. 39 
3.40 
3.40 
3.41 
3.42 
3.4U 
3.44 
3 .. 44 
3.4U 
3.45 
3.45 
3.45 
3.45 
3.46 
3 .• 47 
3.48 
3.48 
3.48 
3.48 
3 .. 48 
3.48 
3.49 
3 .. 49 
3.49 
3.49 
3.50 
3.50 
3.50 
3.51 
3.51 
3.52 
3.52 
3.52 
3.53 
3.53 
3.54 
3.54 
3.54 
3.54 



Transaction Response Time Considerations 
Choosinq th~ Right Characteristics • 

Online Program Design. 
Single Versus Multiple Passes. 
Cne Fass Update. 
Two Pass Update. 
Multi-Pass Update. 
Conversational Versus Ncn-Ccnversational 
General MPP Structure/Flow • 
Transaction/Program Grouping • • 

MessagE Format Service Design. 
Basic Screen Design. 
MFS Subset Restriction 0 

General Screen Layout Guidelines • 
Including the Transaction Code in the Format • 

Design of a SamFle Inquiry Transaction • 
Design of a Sample Update Transaction. 

Al t er nat iv e' Sing Ie Fass U pda tee 
Alternativ~ 2 -- Two Pass Update • 
Alternative 3 -- Multi-Fass Update. 
Which One to Choos€. • •••• 
Our Sample Conversational Program. 
Miscellaneous Design Ccnsiderationsq 

Online Data Base Design. 
Using Secondary Indexes. 
Preferable Data Ease Crganization. 
Online Limitation of SHISAM. 
Using an Intermediate tata Ease. 

CHAP~F.R 4. DATA EASE FRCCESSING ••• 
Structure of ThiE Chapter. 
Introduction to Data Ease Frocessing • 
Program St.ructure and Interface to DLII •.. 

langu~ge and Compilation 
Interface Components. 

Entry to Applicaticn Program • 
PCB-Mask. • 
Calls to DI/I. Q 

Function Argument. 
PCB-Name A'I'gum~nt. 

I/O Work Area Arqument • 
Segment Search Arguments • 

'Iermination. 

. . 

status Code Handling • • • 
SamFle Presentation of a Call.. • • 

Basic Data Base Processing. 
DL/I Positioning Concept • 
sample Environment. • a 

Fetrieving Segments. 
The Get Unique Call -- GU. 
The Get Next Call -- GN •• Q 

The Unqualified Get Next Call. 
!he Qualified Get ~ext Call. 
Get Hold Calls • 

Updati~g Segmentso 
Deleting Segments. 
Inserting Segm~nts 
Calls with Command Cedes •• 

D Command Code • 
N Ccmmano Code .. 
F Command Code • 
L Command Code • 
- Command Code •••• 

Data Bas~ Positioning After a DL/! Call •• 
Using Multiple FCrs for Cne rata Ease •• 

. . . . . 

Contents 

3.55 
3.55 
3.56 
3.56 
3.56 
3. S6 
3.57 
3.57 
3.57 
3.59 
3.59 
3.59 
3.60 
3.60 
3.60 
3.61 
3.6' 
3.62 
3.62 
3.62 
3.62 
3.63 
3.63 
3.63 
3.64 
3.64 
3.64 
3.64 

4.1 
4. 1 
4. 1 
4.2 
4.2 
4.2 
4.4 
4.5 
4.1 
4.8 
4.8 
4.8 
4.9 
4.11 
4. , , 
4. 12 
4.13 
4. '3 
4 .. '3 
4. '4 
4. 14 
4.15 
4. 16 
4.16 
4. '8 
4. 18 
4.19 
4.20 
4.21 
4.21 
4.23 
4.23 
4.23 
4.23 
4.23 
4.24 

xiii 



system service Calls • • • • 
The STAT Call. • • • • • • 

Processing GSA! Data Bases • • • • • 
Loading a Basic tata Ease •• 

. . . 
Sample Data Base Load Program. • • • • • • 

· . . 
. . . . 

· . . 
Loading a HID1M Data Base. • • • • • • • • • • • 

Sorting Segments in Hierarchical Sequence. • • • ••• 
Loading a HDAM Data Base • • • • • • • • • • •• • • 
Loading a SHISA~ Data Base .. • • • • • • • • • • 
Status Codes for Data Base Loading 

Status Code Error Routine •••••• 
Assembler Programming Consideration. • Q •• 

Using the SamplE Rcutines •••••••• 
JCL for Assembly and linkage Editing • 

Cobol Programming Considerations .. • .. 
JCL fOL Compile and Linkage Editing. 
JCL fcr Program Execution •••• 

PLII Programming Considerations. 
ether PL/I considerations. 
Using the SamplE Rcutines. • .. 

'. . . . 
· . . 

· . . 

· . . 

Link-Editing PLII Prcgrams for DL/I • •••••••••••• 
SamFle phase 1 Programs ......... . 

Processing with Lcgical RElationships ••• 
Accessing a Logical Child in a Physical DBD. • • • • 
ACCEssing Segments in a Logical OED. 

Retrieve Calls • • • •••••• 
Replace Calls. .. • • • • • • • • • 
Delete Calls .. 
Insert Calls • • • • • .. . . 

Loading Data Eases with lcgical Relationships. 
· . . 

Loading thE Phase 2 Data Bases. • ••••••••••• 
Sam~le Phase 2 Programs. • • • .. 

Processing with Seccndary Indexes •• 
Accessing Segments Via a Secondary Index • • • • • • • • 

Retrieving Segments. .. • ..... 
REplacing Segments 
Deleting Segments. • • • .... 
Inserting Segments .. • 

Sample phase 3 Programs. 
Secondary Index Creation ... 

Batch Checkpoint/Restart. 
Using the XRST and CH~F Calls. 

The Restart Call ••••••• 
The Checkpoint Call. • • • • 

Using GSAM with Checkpoint/Festart ....... 
Sequential Input FilES • • • • • • • • • • • • • 
Sequential Output Files. • • • • • 

· . . 
· . 

Sample Eatch Checkpoint/Restart Programs. . . . . 
Data Communication Apflicaticn Programming ••• 

Application Programming and MFS 
Applicaticn Prcgram TYFES ................ . 

General MPP Considerations • .. • . . . 
General BMP Considerations • • • 

Additional CHKP Status Code in a BMP • 
MPP Structure and IMS/VS Interface ...... 

DC PCBs ••••• 
I/O PCE •••• 
Al terna te PCE. 

The DC-PCB Ma sk. 
COBOL Example of a DC-PCB Mask 
PL/I Example of a DC-PCB Mask •• 

Entry to the MPP • • • .. • • • • 

xiv IMS/VS Prim€r 

· . . 

. . 

· . . 

4.24 
4 .. 25 
4.25 
4.26 
4.27 
4.28 
4.28 
4.29 
4.29 
4.29 
4.30 
4.31 
4. 31 
4.32 
4.32 
4.33 
4.33 
4.34 
4. 35 
4 .. 36 
4.36 
4.36 
4.37 
4.37 
4 .. 37 
4.37 
4.37 
4.38 
4.38 
4 .. 38 
4.39 
4.39 
4.39 
4. 39 
4.39 
4.40 
4.41 
4.41 
4.41 
4.41 
4.41 
4. 41 
4.42 
4.44 
4.45 
4.45 
4.45 
4.45 
4.46 
4.46 
4.46 
4.46 
4.47 
4.47 
4.47 
4 .. 48 
4.48 
4 .. 48 
4.49 
4.50 
4.50 
4.50 



The DC Calls • • • • • • ••• 
Get Calls (GU, GN) • • • • • 
I nse rt Call (1 SRT) 
change Call (CHNG) • 

Basic Message Formats. • • ••• . . . . 
Input Message Forma t • • • • • • ••• 
Output Message Format. • • • • • • • • • . . . . . . 

Fie Id Forma t • • • • • • • • 
Dynamic Attribute Modification and Cursor Control •••••• 
!'!ultiple Page Output Messages. • • ••• 

Wr it i n g a si m pIe M P P • • • • • • • • • • • • 
Sample COBOL Inquiry Program ••• 

COBOL Compile Options for MPPs • • 
Sample PL/I Inquiry Program. • • • •• 
Handling Error Status Codes. • • • •• • • • • • • • • • • 

Conversational Processing. • • • • • ••••• 
Retrieving the SPA and Terminal Input. • ••• 

Layout of SPA User Work Area •••••••• 
I npu t Me ssage Form at. • • • • • • • 

Data Base Processing in Conversational Mode ••• 
Inserting the SPA and Terminal Output •• 

Output Message Format. • • • • • • • 
Terminating the Conversation •••• 

Writing a Conversational MPP • • ••• 
Sample Conversational MPPs • • •• 

Testing Your MPP •••••••• 

. . 

CHAPTER 5. DATA BASE REORGANIZATION/LOAD PROCESSING •• 
About This Chapter • • • • • • • • • • • 
What is Reorganization • • • • • • • • ••• 
When to Reorganize. • • • • • • • • • ••• 

The Frequency of Reorganization. • • ••• 
Steps in Reorganization. • • • • • • • ••• 
Ov~rview of the Reorganization/Load Utilities •• 

Physical Reorganization Utility Programs 
The INDEX. Reorganization Utilities ••••• 
The HD Reorganization Utilities. • • • • • • 

Logical Relationship Resolution Utility Progr:tms • 
Data Base Prereorganization Utility. 
Data Base Prefix Resolution Utility ••••• 
Data Base Prefix Update Utility. • • • • • • 

INDEX Reorganization Unload Utility {DFSUFULO) 
JCt Statements • • • • • • 
Utility Control Statement ••• 
Return Codes • • • • • • • • • • • • • • • • • 
Output Messages and Statistics 
Example •••••••••••• 

INDEX Feorganiz ation Reload Utili ty (DF SUFRLO) 

. . 

JCL Statements • • • • • • • • • ••• . . . 
Return Codes • • • • • • ••• 
Output Messages and Statistics •• 

~xample ••••••••••• 
HD Reorganization Unload Utility (DFSURGUO). 

JCL Sta te ments • • • • • • • • 
Return Codes • • • • • • • • • 
Out put Me ssagp. sand St atisti cs 
Example •••••••••••••• 

HD Reorganization Reload Utility lDFSURGLO). 
JC L Sta te me n t s • • • • • • • • • • • • 
Ret urn Codes • • • • • • • • • 
Out put Message sand St atisti cs 
Example •••••••••••• 

Contents 

4.51 
4.52 
4.53 
4.54 
4.55 
4.55 
4.56 
4.57 
4.57 
4.58 
4.58 
4.60 
4.60 
4.62 
4.63 
4.63 
4.64 
4.65 
4.66 
4.66 
4.66 
4.66 
4.67 
4.68 
4.70 
4.70 

5. 1 
5.1 
5. 1 
5. 1 
5.2 
5.2 
5.2 
5.3 
5.3 
5.3 
5.3 
5.3 
5.3 
5.4 
5.4 
5.4 
5.5 
5.6 
5.6 
5.6 
5.6 
5.7 
5.8 
5.8 
5.8 
5.8 
5.9 
5.'0 
5. 10 
5.10 
5.10 
5. 1 , 
5.12 
5. 12 
5. 12 

xv 



Data Base Prereorganization Utility (DFSURPRO) 
JCL Statements • 
Utility Control Statements • 
Return Code s •• 
Output Messages. 

Data Base Prefix Resolution Utility (DFSURG10) 
Restrictions •• 
JCL Statements • 
Return Code s • • 
Output Messages and Statistics. 

Data Base Prefix Update Utility (DFSURGPO) 
JCt Statements. 
Ret urn Codes • 
Output Messages. 

Physica 1 Fe organiza tion. 
Reorganizing an INDEX Data Base. 
Reorganizing a HIDAM or HDAM Data Base • 
Indications that Databases May Need Reorganization .. 

OSAM Data Bases -- (HDAM only) 
VSAM Da ta Bases. 

Initial Data Base Load Processing. 
Loading Data Bases with Logical Relationships. 
Loading Data Bases with Secondary Indexes. 
Work Data Set Allocation 

Size of Workfile 1 • 
Reorganizing Data Bases with Logical Relationships/Secondary 
Indexes. 

Applying Structural Changes. 
Cha nging a Ph ysical DBD. 
Adding Logical Relationships/Secondary Indexes. 

Examples • 
Reorganizing in an Online Environment. 

CHAPTER 6. DATA BASE RECOVERY 
~hat is Recovery? 
Two Approaches •• 

Basic Recovery. 
DL/I R'?covery. 
Which One to Choose. 

The DL/I Logging Facility. 
The DL/! Recovery Utilities. 

Data Base Image Copy Utility (DFSUDMPO). 
J CL Statements • 
Utility Control Statement. 
Return Codes. 
Exa mple s • 

Data Base Change Accumulation Utility (DFSUCUMO) 
JCt Statements • 
Utility Control Statement. 
Return Codes • 
Exa mple • 

Data Base Fecovery Utility (DFSURDBO). 
J CL S tat em en t s • 
Utility Control Statement. 
Return Codes • 
Fxamples • 

Data Base Packout Utility (DFSBBOOO) 
J CL S tat em e n t s • 
Utility Control Statement. 
Ret urn Codes • 
Exa mple. 

System log ~ecovery Utility (DFSUtrRO) 
Step 1: DUP Mode. 
Step 2: REP Mode. 
JeL Statements. 

xvi IMS/VS Frimer 

5. 13 
5.13 
5. 14 
5. 15 
5. 15 
5. 15 
5. 15 
5. 16 
5. 18 
5.19 
5. 19 
5. 19 
5.20 
5. 20 
5.20 
5.20 
5. 21 
5.22 
5. 22 
5.22 
5.23 
5.23 
5.25 
5. 25 
5.25 

5. 26 
5.27 
5.27 
5.27 
5. 28 
5. 28 

6 .. 1 
6. 1 
6.2 
6.2 
6. 3 
6.4 
6.5 
6. 5 
6.7 
6.7 
6.8 
6.8 
6.9 
6.9 
6. '0 
6. 11 
6. 11 
6. 1 1 
6 .. , 2 
6. 12 
E. 13 
6.14 
6. 14 
6. 14 
6. 16 
6. 17 
6.17 
6. 17 
6. 18 
6. 18 
6. 19 
6. 19 



Utility Control Statements • 
Catalog Considerations • 
Examples .. • • • • • • • 

. . . . . . 
Basic Recovery Procedures. 

Examples • .. • • • .. • • • 
DL/I Recovery Procedures .. • .. • • .. • • • 

Assumptions and Restrictions • 
Possible Failures. • • • • • • 
Correcting the Cause of the Failure. 
Recovery Tasks • • .. • • .. .. • .. • • • • • • .. 

. . 
Image COPY/Log Administration ................. . 

Examples .................... . 
Frequency of Image Copies and Change Accumulations. 

F.etention Period of Image Copies and Log Data sets ••••• 
VSAM Cat alog Consideration • .. .. • .. .. • • • • • 
Data Base Recovery in an Online I'-'S/VS System •• 

System Log Terminator Utility (DFSFLOTO) 
J CL St at ements .. • • • • 
Examples •••••••••• 

Online Recovery Procedures • • • 
Assumptions and Restrictions •• 
Possib Ie Fai lure s.. • • • • .. • • • 
Correcting the Cause of the Failure. 
Fecovery Tasks •••••••••••••••• 
Log Tape Administration in an Online Environment .. 

Log Tape Data Set Names. • • • • • • • 
L og Ta pe Se ria I N u m be r s .. • • • • .. • .. • • • • 
Log Tape Con trol For ms .. • .. • • • • • • • • • 

Frequency of Image Copies and Change Accumulation. 
Retention Period of Online Log Tapes • • .... 

CHAPTER 7. INSTALLING IMS/VS. 
The Installation Process • • • • 

OS/VS1 Preparation ...... . 
OS/VS1 VSAM Considerations 
OS/VS1 VTAM Considerations (DC only) 
IMS/VS Supervisor Call Routine 
Optional Program Products. • • 

Installing a DB System or a DB/DC Sys~em • 
Installing IMS/VS-DB •••••••••• 

Creating the IMS/VS-DB Libraries ••••••• 
The IMS/VS-DB Distribution Libraries •• 
The IMS/VS-DB System Libraries ••• 
The IMS/VS-DB Application Libraries. 
The IMS/VS-DB Primer Function Sample Libraries. 

Restoring the IMS/VS-DB Distribution Libraries •••••• 
!MS/VS-DB Stage 1 System Definition ......... ' ••• 

Coding t he 1M S/VS- DB System Defini tion Mac rose • 
IMS/VS-DB Stage 2 System Definition •••• 
OS/VS1 Final Preparation ............ .. 

. .. 

Relink the OS/VS Nucleus with the I~S/VS Type 2 SVC ••••• 
Copy IMSRDR Procedure to SYS1.PFOCLIB. • ••• 

1M S/V S-DB lnst allation Jobs. • • • • • .. • • 
Installing IMS/VS DB/DC. • • • • • • • • • • 

Creating the IMS/VS Librariesv •••• 
The IMS/VS Distribution Libraries. 
The IMS/VS Sample Libraries ••••••••• 
The IMS/VS System Libraries ................. . 
The IMS/VS Application Libraries •••••• 
The IMS/VS Online Libraries and Data Sets •••••• 

Restoring the IMS/VS Distribution Libraries .... 
IMS/VS DB/DC Stage 1 Definition •••••••• 

System Environment Macro Statements ••••••••• 
Data Base and Application Macro Statements. 
Data Communications Macro Statements •••• 

Contents 

6. 19 
6.20 
6.20 
6.20 
6.21 
6.21 
6.21 
6.21 
6.22 
6.22 
6.23 
6.25 
6.25 
6.26 
6.26 
6.26 
6.27 
6.27 
6.28 
6.28 
6.28 
6.28 
6.29 
6.29 
6.31 
6. 31 
6.32 
6.32 
6.32 
6.32 

7 .. 1 
7. 1 
7.2 
7.3 
7.3 
7.3 
7.4 
7.4 
7 .. 4 
7.4 
7.4 
7.5 
'7.5 
7.5 
7.5 
7.5 
7.6 
7.8 
7 .. 8 
7. 8 
7.9 
7.9 
7. 1 1 
7 .. 1 1 
7. 1 1 
7 .. , 2 
7.12 
7. 12 
7.13 
7.13 
7 .. 13 
7.14 
7. 14 
7. '5 

xvii 



Resource Naming R ul9s •••••••••••• 
Coding the 1MS/VS System Definition Macros •• 

1M S CTFL [II acro. • 
I MSCTF Macro • • 
IMSGEN Macro •• 
MSGQUEUE Macro. 
SPAREA Macro •• 

. . 

BUFPOOL S Macro • • • • • • • 

. . . . . . 

DATABASE Macro • 
A PPLCTN Macro.. • 
TFANSACT Macro • 

. . . 
Coding the Data Communication Statements -- VTAM • 

COMM Statement ••••••• 
TYPE statement ••••••• 
TERMINAL Statement ••••• 
N AM E St atement • • • • • . . . 

Coding the Data Communication Statements -- BTAr! • 
COMM Macro •• 
LINEGRP Macro. • . . . . . 
L1 NE Macro • • • • • • • 
CTLUNIT Macro. • • •••••••• 
TEFMINAL Macro. • •••• 
NAME Macro. • •••••••••••• 

Structure of the Stage Input Deck. • •• 
IMS/VS Stage 2 System Definition •••••••••• 
as/vs 1 Final Preparation • • • • • • • • 

Copy IMSRDR and IMS Procedures to SYS1.PRaCLIB • 
Relink the OS/VS Nucleus •••••••• 
Customize IMS Control Region Procedure •• 

· . . 

· . . 
Update DFSVSMOO Member in IMSVS. PRaCLIB ••••••••••• 
Create DFSPIXOO Member in IMSVS.PROCLIB •• 
Update Initial System Security Tables. 
Update IMSMSG Procedure •• 
PL/I Optimizer Considerations. • 

Preparing VTAM • • • • • • • • • • • • • • • • • • 
Creating the VTAM Libraries •• 
Defining VTAM Start Options •• 

Def ini nq IM S/VS to VTA!'!. • • • 
Defining the local Network to VTAM 
Defining the Remote Network to VTAM •• 

Creating the VTAM Start Cataloged Procedure ••• 
Generating the Network Control Program (NCP) 

overview •••••••••••••••• 
Restoring the NCP Distribution Libraries 
Creating the NCP Data Sets ••••••• 
Defining the Remote Net work to VTAM. • • •• 
File NCP Source Deck into SYS1.VTAMLST • 
Stage 1 of NCP Generation. 
Stage 2 of NCP Generation •••••••••••• 

IMS/VS DB/DC Installation Jobs • • 
Executing the IMS/VS Primer Sample Jobs. 

Initializing the Sample Environment. 
Phas e 0 Jobs •• 
Phase 1 Job s 
Phase 2 Jobs 
Phase 3 Jobs 
phase 4 Job s • • 
Recommended Test Sequence •• 

RDAM Randomizinq Modules • 
General Randomizing Module. 
Writing a Randomizing Module 

Randomizing Module Interfaces. 

. . . 

A Simple Key-Sequential Randomizing Module 
DL/I Data Base Buffering Pacilities. 

Log Tape Write Ahead •••••• 

xviii IMS/VS Primer 

. . . . . . 
. . . . 
· . . 

· . . 
. . . . 

7. 16 
7.18 
7. 19 
7. 20 
7.21 
7.23 
7.23 
7.23 
7.24 
7.25 
7.26 
7.27 
7.27 
7.28 
7.29 
7.30 
7.31 
7.31 
7.31 
7.32 
7. 32 
7. 33 
7.35 
7. 35 
7.36 
7.36 
7.36 
7.37 
7. 37 
7. 37 
7.37 
7. 37 
7. 37 
7.37 
7.38 
7.38 
7.38 
7. 39 
7.39 
7.39 
7. 39 
7.39 
7.39 
7.40 
7.40 
7.40 
7.40 
7. 41 
7.41 
7.41 
7.48 
7.48 
7.49 
7.49 
7.52 
7.54 
7.55 
7.56 
7.57 
7.58 
7.58 
7.58 
7.59 
7.59 
7.60 



The DL/l Buffer Handler Pool • • • • 
The VSA M Buffe r Pool • • • • • • 
The OSA" Buffer Pool ••• _ •••• 
Defining the IMS/VS Data Base Buffer Subpools. • • • • • • • • 

VSAM Sub pool Definition Statements •• 
Guidelines for Selecting Number of Buffers 

Per VSA" Sub pool. • • • • • • • • • • • • • • • • • • 
OSAK Subpool Definition Statements. • • • • • ••• 

Guidelines for Selecting Number of Buffers Per OSAM 
Sub pool • • • • • • • • • • ••• 

Options Statement •••••• 
I"S/VS System Security Utility 

Executing the Security Utility • 
Security status Report 

Types of System Security. 
Command Security •••• 
Transaction and Terminal Security. 

lMS/VS catalogued Procedures 

. . . . 

ACBGEN Procedure • ••• • . . . 
DBDGEN Procedure • 
DL1BATCH Procedure 
1M S Proced ure. • • 
IMSBATCH Procedure 
IMSKSG Procedure • 
IMSRDR Procedure •• 
PSBGEN Procedure • • ••• 
SFCURITY Procedure •••••• • • • • •• 

. . . . 

MF SF VC Proced ure • • • • • • 
MFSUTL Procedure • • • • • • • • • 

Growing from DB to DB/DC • • • • • 
Installing IMS/VS under OS/VS2-MVS • • ••• 

~rhe lnst alla tion Jobs. • • • • • • • • • 
The Sample Jobs. • • • • • • • • • ••• 

Executing the Sample Jobs with OS/VS2-MVS. • • • • • 
Ma.i nte na nce Considera tion s • • • • • 

System Modification Program ~MP) ••••• 
Regression Testing of New 1MS/VS Releases. 

CH APTER 8. OPER ATION S • • • • • • • 
What's Needed to Operate Online 1MS/VS •••••• 

The Master Terminal operator function. 
The Network Control Function • • • • • 
The Application Supervisor Function •• 
The User Liaison Function. • • • • • • • • • • • 

The Master Terminal Operator •••••••••••• 
The Master Term~nal Operator's Guide ••••• 
Modifications to the Sample MTO Guide •• 

Functional Titles. • • ••• 
OS/VS1 Installations. 
MVS Installa tions. • • • ••••••• 
Subset Limitations ••••••••• 

• 4 

Forms a nd Tables • • • • • • • • • • • • • 
Restart and Pecovery JCt •••••••• 
Log Tape Administration. • •• 
Application Operating Procedures •• 

Testing the MTO Guide ••••••••••••• 
Ma inta ining the M TO Guide. • • • • 

Planning for IMS/VS Disk Restart 
. . . . 

User Liaison Group • • • • • • • • • • • • • • • • • • • 
Remote Terminal Operators •••••• 

Training Remote Terminal Operators. 
The RTO Guide. • • • • • • • • • • • •• 
Modifica ti on s to the Sam ple RT 0 Guide. • • • • • • • • 

Functional Titles. • • • • • • • • • • • • • 
Use of the Subset. • • • • • • • • • • • . . . 

. . 

. . . . 

. . . . 

contents 

7.60 
7.60 
7.6' 
7.61 
7.6' 

7.62 
7.62 

7.63 
7.63 
7.64 
7.64 
7.64 
7.65 
7.65 
7.65 
7.66 
7.67 
7.68 
7.68 
7.71 
7.74 
7.75 
7.76 
7.76 
7.77 
7.77 
7.78 
7.78 
7.78 
7.78 
7.80 
7.80 
7.80 
7.8' 
7.81 

8. 1 
8. 1 
8. 1 
8. 1 
8.2 
8.2 
8.2 
8.2 
8.3 
8.3 
8. 3 
8.3 
8.3 
8. 3 
8.3 
8.4 
8.4 
8.4 
8.'5 
B.6 
8.6 
8.6 
B.6 
8.7 
B.7 
8.7 
B.7 

xix 



Conversational Processing •••• 
Terminal Operating Procedures. • • • • 
Application Operating Procedures. 
Problem Reporting Procedures • 

. . . . . . . . · . . 
Maintaining the RTO Guide •••••••• 

VTAM and IMS/VS Operation. 

CHAPTER 9. OPTIMIZATION ••••• 
IMS/VS Batch Performance Monitoring. 
The DL/I Buffer Pool Statistics •• 

. . . 
The VSAM Buffer Pool statistics •••••••••• 
The OSAM Buffer Pool statistics. 

The IMS/VS DB Monitor ••••• 
Using the IMS/VS DB Monitor. 

Activation and Control •• 
DB Monitor Data Recording. 

. . . . . .. 
MODIF Y Command Errors. • • • • • • • 

DB Monitor Report Print Program, DFSUTR30 •• 
Definition of Terms used in the Reports ••• 

· . . 
. . . . 

H ow to Exec ute the DB Monitor Report Pr in t Pr ogram 
Statistics from the VSAM and OSAM Buffer Pools ••••••• 
Program I/O Report • • • • • • • • • • · . . 
DL/I Call Summary Report • • • • • 
VSAM Statistics Report. • • •••••••••••••• 
Monitor Overhead Report. • • • 

Data Base Design Optimization. 
Data Base Load Factors Per Transaction • 

Transaction Load Factor Units. 
. . . . 

Example. • • • • • • • • • • • • • • • 
Data Base Design Checklist ••••••• 

Optimization of Physical Implementation. 
Optimization of Application Programs ••• 
Optimization of the !MS/VS Online System •••••• 
Online Performance Monitoring ••• 
The Online Buffer Pool Statistics •••••• 

Messa ge Que ue Pool • • • • • • • • 
Message Format Pool. • • • • • • • 

Adjusting MFS Buffer Pool Specifications •••• 
Oat a Base Buffer Pools • • • • • 
DMBP Buffer Pool •• • •••• 

Adjusting the DMBP pool Size. 
PSBP Pool. • • ••• 
ClOP Buffer Pool 
Main Bu ffer Pool 
CWAP Buffer Pool • • 
PSBW Buffer Pool 
DBWP Pool. • • • 

Statistical Analysis Utility • 

. . . . 
. . . . . . 

. . 

Jet Considerations •••••••••••••••• 
Report Output and Interpretation ••••• 

Messages Queued but Not Sent (by destinatio~ ••••• 
Line and Terminal R aport •• • • • • • • · . . 
Messages Queued but not Sent (by transaction code) ••••• 
Transaction Report • • • ••• 
Transaction Response Report. 
Application Accounting Report. 

The DC Monitor • • • • • • • •• 

. . . . . . 
Using the DC Monitor •••••••••••••• 

Starting and Stopping the DC Monitor •••••••••••• 
DC Monitor Report Print Program DFSUTR20 •• 

How to Execute the DC Monitor Report Print Program. 
Statistics from Buffer Pools Report •••••••••••••• 

xx IMS/VS Primer 

8.1 
8.7 
8.1 
8.8 
8.8 
8.8 

9.1 
9. 1 
9. 1 
9. 2 
9.3 
9.3 
q.~ 

9. u 
9.5 
9.5 
9.5 
9.6 
9.7 
9.7 
9.7 
9.8 
9.9 
9.9 
9.10 
9. 10 
9. 10 
9. 11 
9. 1 1 
9.12 
9. 13 
9. 13 
9.1 U 
9. 1 U 
9. 16 
9. 16 
9. 17 
9. 11 
9. 18 
9.18 
9. 18 
9. 19 
9.19 
9. 19 
9.19 
9. 19 
9. 19 
9.20 
9. 20 
9.20 
9.20 
9.20 
9.20 
9.20 
9. 21 
9.21 
9. 21 
9.21 
9.22 
9.22 
9.23 



Using the VTA~ Storage Pool Trace ••••• 
Operating the !race ••••••••••• 
Optimizing VTAM Storage Peel Parameters •••• 

Storage Pool (SMS) Trac~ Description • 
Adjusting the VTAM Storage Pools •••••• 

tata Communication Design OFtisizaticn • • • 
Net~ork Fesponse Time Factors. • • • • • 
IMS/VS Response Time Factcrs • • • • • • 

Sample IMS/VS.Response !ime Estimate ••• 

APFENDIX A. IMS/VS STATUS CeDES QUICK FEFEFENCE • 

APPENDIX B. IMS/VS STATUS CODES AND POSSIELE CAUSES • 

. . . 
9.27 
9.27 
9.27 
9.27 
9.29 
9. 30 
9.30 
9.30 
9. 31 

A. 1 

B.' 
. . . . . . . . . . . . I. 1 

Contents xxi 



Fiqure 1- 1. Application Data Integration -- Data 
Base Concepts · · · .. · · · · · • · · · 1. 2 

Figure 1-2. Traditicnal Record Layout · · · · · · · 1.6 
Figure '-3. Bier ar chi c a1 Data Structure · · • • · • • • · · • 1.7 
Figure '-4. 'Ihe Parent/Child Felationship of DL/I · 1.7 
Figure '-5. The P.elaticn tetween Segment, Data Base Fecord 

and Data Base · · · .. · · · · · · · 1.8 
Figure 1-6. Segment Types and Their Rela tions in a 

flierarchical Data Structure · · · · · · 1. '0 
Figure , -7. Two Logically Related Data Bases, PARTS 

and ORDER S. · · · · · · · · · · · · · · 1. , , 
Figure '-8. The Logical tata Bases after Relating PARTS 

and CRDER tata Bases. · · · .. · · · · 1. 1 1 
Figure ,- 9. A Data Ease and Its Secondary Index · 1. 1 ~ 
Figure , -'0. I~S/VS Eatch processing Fegion Systc;m Flow. ,. 16 
Figure , -, , . Th€ Project Cycle · · · · · · · · · · · 1.19 
Figure ,- 12. II'IS/VS-rB Installat ion Plan FERT Chart. · · · · · 1. 21 
Figure '-13. Sam~le Gantt Chart. · · · · · · · · · · · · 1.22 
Figure 1-14. Ilfl s/VS in the SNA Environment · · · · · · · · · · 1. 2" 
Figure 1-15. II15/VS Data Ease/Data Communications System 

Flow. . · · · · · · · · · · · · · · · · · · 1.33 
Figure '-16. I!'JS/Vs-tB/tC Inst allat ion Plan PEnT Chart · · · · 1.35 

Figure 2-'. A Dl/I ta'ta Ease Eecord · · · · · · · · · · 2.6 
Figure 2-2. A DL/I tata Ease Fecord in Physical Storage 2.7 
Figure 2-3. Segment Format. · · · · · · · · · · · · 2.7 
Figure 2-U. Se,]men t Types Numbered in Hierarchical 

Seguence. · · · · · · · · · · · · · · · · · · · · 2.8 
Figure 2-5. Concatenated I<eys · · · · · · · · · · · · · 2.9 
Figure 2-6. HDAM Data Ease in Fhysical Storage. 2.12 
Figure 2-7. HIDAM nata Base in Physical Storage · · · · · · · 2. 13 
Figure 2-8. Direct Address Pointers in HtAI'! and BIDAI'! · 2. 15 
Figure 2-9. Segment Types Involved in Logical 

Rslationships · • · · · · · • · • • · · 2. 17 
Figure 2-'0. logical Child Segment Format. · · · · · · · · 2.18 
figure 2-11. Virtual Paired Bidirectiona 1 Logical 

Relationship. . . . . · · .. · · · 2. 19 
Figure 2-12 .. 'the Phase 2 Physical Data Bases · · .. · 2.19 
Figure 2- 13. Concatenated segment Format · · · · · · 2.20 
Pigure 2-14 .. Phase 2 toqical Data Bases. · · · · · · · · · 2.21 
Figur e 2-15. Using Multi~le Logical R~la tionshi ps. · 2.23 
Fiqure 2- 1 6. Replacing 'Fields in a Concatena't:ed Segment. 2.24 
Figure 2-'7 .. Segmert Typ:s Associated with a Secondary 

Index . · · · · · • · · · · · · · · · 2.27 
Pigure 2-' 8 .. Phase 3 Physical Data Bases · · · · · · · · 2.27 
Figure 2-19. Logical Record Format for the I ndex Pointer 

Segment · • • • • • • • · · • · · · • • · · · · · 2.28 
Figure 2 -2 0 .• Data Base tescriptio~ Generation ( DEDGEN) · · · · 2.29 
Figure 2-21. DEDGEN InFut Deck Structure · · · • • · · · · 2.30 
Figure 2-22 .. Phase 1 HDA~ PAPTS DBD, BE1PARTS. · · · .. · 2.41 
Figure 2-23. Sample tEDs for a HIDAM Data Base · · · · · 2.42 
Figure 2-2U. Phase 2 Ph ysical DBD S · · · · · · · · · 2.47 
Figure 2-25. Phase 2 Logical DEt for the PARTS Da't:a Base 2.49 
Figure 2-26. Phase 2 Logical DBD for the C(]STOME; CRDERS 

Data Base . . . . . . · . . . . · · · · · · · 2. 50 
Figure 2-27. DPD Stat~ments for Index Target. Segment · · 2.51 
Figure 2-28. tEt Statements for Index Source Sggm~nt · · · 2.53 
Figure 2-29. Phase 3 Physical DEDs · · · · · · · · · · · · 2.56 

Figures xxiii 



Pigure 2-30. Program SFecification Bleck Generation 
(P sa GEN) • · . · · · · • · • • • • · • • • · · -. • 2.51 

Figure 2 -31. PSEGEN Input Deck Structure .. .. · .. · · 2.57 
Figure 2-32. Sample PSBs for Phase 1 • • • • · · · · 2.62 
Figure 2-33. Sample PSE for Phase 2. • • · • • · · • · · 2.63 
Figure 2-34. Sallple phase 3 FSB. · .. · · 2 .. 6" 
Figure 2- 35. ConCEpts cf Data Elements • • • · • · · · · 2.65 
Figure 2-36. The 'Iransaction · · · · · · · · .. · 2.66 
Pigure 2-37. 'Ihe ~ransaction/Data Element PJa trix 2.67 
Figure 2-38. The Steps in Data Base Design · · · .. · · • · · · 2.68 
Figure 2-39. Transaction/Data Elemen t Matrix for Phase 1 · 2.71 
Figure 2-40. Transaction/Data Element Matrix for Phase 2 · • • 2.72 
Figure 2-41. Transaction/Data Element Matrix for Phase 3 · · • 2.73 
Figure 2-42. phase 1 Application Data Structure • .. 2.7" 
Figure 2-43. Phase 2 Application Data Structure. • · • · · · • 2.76 
Figure 2-44. Phase 3 Application Data Structure. · · · · 2 .. 77 
Figure 2-45. GrOuFing Data Elements into Ph ysical Segmen ts · · 2.78 
Figure 2-46. Physical Data Base Structure for Phase 1 PARTS 

Data Base · . · · · · · · · · · · · · · · · · · · 2.81 
Figure 2-47. Specification of Physical Segment Attributes. · · 2.82 
Figure 2·~8. Recommended CI/Blocksize Parameters · · · · 2.83 

Figure 3 -1. Transmission, Message and Segment Relations · · · 3 .. 3 
Figure 3- 2. A Message Segment · · · · · · · · · · · · · · · · 3.3 
Figure 3-3. The IMS/VS Begions and Their Control/Data Plow. · 3.4 
Figure 3-4. Input PJessages Processing · · · · · 3.6 
Figure 3- c: -. Message Queueing. · · 3.8 
Figure 3-6. Message Scheduling. · · · · .. • • • 3.9 
Figure 3-7. Basic MPP Flew. · · · · · · · · · · · 3.11 
Figure 3- e. IMS/VS Logging. · · · · · · · · • · · · · · · · · 3. 16 
Figure 3-9. 3270 Master Terminal Format · · · · · · · · 3.17 
Pigure 3- 10. Message Fcrmatti~g Using MFS. · 3.19 
Figure 3- 11. Overview of Message Format Service. · · · · 3.20 
Figure 3-12. Chained Centrol Slock Linkage .. · · 3.21 
Figure 3- 13. Linkage tetween ~essage Fields and Device 

Fields. . · .. · · · · · .. · · · .. · · 3.22 
Figure 3-14. LPAG! -- DPAGE linkage. · · · · · · · 3.22 
Figure 3-15. Optional Message Description Linkage. · 3.23 
Figure 3-16. MFS Input Formatting. · · · · · · 3.24 
Figure 3-17. MFS Output Formatting · · · · · · · · · 3.25 
Figure 3-'8. An output Message Definition with One LPAGE · 3.27 
Figure 3-19. An Output Message Definition with Mul tiple 

PagES . . . . . · · · · · · · · · · · · • 3.28 
Figure 3-20. Format language Statement Sample. · · .. · · 3.46 
Figure 3-2 ,. sample DisFlay Format · · · · · · · · · 3.47 
Figure 3-22. creation of MPS Control Elocks. · 3.47 
Figure 3-23. !xam~le cf an Online PSB. .. · · · 3.52 
Figure 3- 24. General p!pp Structure 3. nd Flow. • • • • • · · • • 3.58 

Figure 4-' • DL/I Interface with an Application Program. · 4.2 
Figure 4 -2. Structure of a Batch Application Program. · 4.4 
Figure 4- 3. Applicaticn PIogram Data Base PCE Mask. 4.5 
Figure 4-4. Testing Status Codes. · · · 4. 12 
Figure 4-5. Sample Call Presenta tion. · · · · · · · · · · 4.12 
Figure 4-6. The Phase 1 PAR'IS Data Base · · · • · • · 4. 13 
Figure 4 -7. Easic GU Call .. · · · · · · · 4.15 
Figure 4-8. Unqualified Get Next Call • 4.16 
Figure 4-9. Qualified Get Next Call · · 4. 1 '7 
Figure 4 -10. GN Call with Qualified SSA. · · · · · 4.'7 
Figure 4-11. Basic REPI Call. · · · · · · · · 4.19 
Figure 4-12. Basic OLE'! Call · · . . · · · • • • • • · · • 4.20 
Figure 4 -13. Easic IS~T Call · · · · · · · 4 .. 21 
Figure 4- '4. Sample Path Retrieve Call · · 4 .. 22 
Figure 4-15. Easic Data Ease Load Process. 4.27 

xxiv IMS/VS Primer 



Figure 4-16. Control Field for Sorting Segments into 
Hierarchical Sequence · · · · · · · 4.28 

Figure 4-17. CCECL Batch Frogram Structure · · 4.32 
Figure 4-' B. PIlI Batch Frogram Structure. · · 4.35 
Figure 4-19. GU' Call Using a Secondary Index · · · · · · · 4.40 
Figure 4-20 .. PCE Masks for a ~FF · · · · · · · 4.48 
Figure 4- 21. tayout of a DC-PCB Mask · · · · · 4.49 
Figure 4- 22. Single and {l!ulti-Segment Messaga:o. · · · • • • 4. 51 
Figure 4-23. Basic MFP Flow and Calls. · 4.59 
Figure 4-24. Conversational MPP Flow and Calls · 4.69 

Figure 5- 1. !NDEX Reorganization Unload Utility · · 5.4 
Pigure 5-2. INDEX Reorganization Reload Utility · 5.7 
figure 5- 3. Ht Reorgani2aticn Unload Utility. · 5. 9 
Figura 5-4. HD Reorganization Feload Utility. · 5. 11 
Figure 5-5. Data Base Frereorganization Utili ty 5.'3 
Figu~e 5-6. Data Base Prefix Resolution Utili ty · · · · · · · 5. 16 
Figure 5-7. Data Base Prefix Update Utility q · · · 5.19 
Figure 5-B. Initial Data Base load with Logica 1 

~elationships and/or Secondary Indexes. 5.24 

Figure 6-1. Corlcepts of tata Base Recovery. · 6.1 
Figure 6-2. Basic Data BaSE Recovery. · · · · 6.3 
Figure 6-3. 0111 Recovery · · · · · · · · 6.4 
Figure 6-4. Data Ease Eecovery Utilities. · · 6.6 
Figure 6-5. Data Base Illage Copy Utility. • · · 6.7 
Figure 6-6. Data Base Change Accumulation Utility · 6.9 
Figure 6-7. Data Ease Fgcovery Utility. · · .. · · · 6.12 
Figure 6-8. Conditions 'Ihat 'Iermina te the Data Ease 

Eackout Utility ••• · · .. · .. · · · · · · · 6. 15 
Figure 6-9. Data Set Requirements for the Data Ease 

Backout Utility · · · · · · · · · · · · 6. 16 
Figure 6-10 .. Closing the System Log with DF~ULTRO. · 6.18 
Figure 6- 1 1. Possible Failures during Data Base Processing · · 6.22 
Figure 6-12 .. Data Ease Recovery Actions. · · · · · · 6.23 
Figure 6-'3 •. Sample DIll log Tape Form · · · .. · · · · · 6.24 
Figure 6-14. Registration cf Image Copies and Change 

Accumulations .. .. . . · · · · · · · · .. · .. 6.25 
Figure 6-15. Running the System log 'Iermina tor Utility · 6.27 
Figure 6-16. possible Failures During an Online Session. 6.29 
figure 6-'7. tata Base Recovery Actions in a n Online 

Environment . · · · · · · · · • • • • 6.30 
Figure 6 -, 8 .. I~S/VS Cnline log Sheet · .. 6.33 

Figure 7-'. Installing I MS/VS . . · · · 7.2 
Figure 7- 2. 'Ihe PRIME Reader Procedure. 7.9 
Figure 7-3. Number of Macro Statements Per System 

Definition. . · · · · · · · · · · 7.'6 
Figul:e ,-4. IMS/VS Commana Keywords and 'Iheir Synony MS. 7. 17 
Figure 7-5. The PRIME Feader Frocedure .. · · · 7.42 
Figure 7-6. Sample IMS/VS-VTAM Network. · · · '1.44 

Figure 8- 1. Jobs Fequiring Jet Modification · · · · · · B.4 
Figure 8-2 .. Simulating Syst~m Failuras. · · · 8.5 

Figure 9-'. Transacticn lead Factor Units · · 9.10 
Figure 9- 2. Online Pool !~atistics Display Format · · · 9. 15 
Figure 9-3. Sample VTAP! '!'race Cutput. · · · .. · .. .. 9.28 

figures xxv 



I~S/VS is an IBM Frogram product developed to improve the computer 
user's ability to implement data base/data communication (DB/DC) 
applications. It relies on and extends the facilities and functions of 
Operating System/Virtual Storage (OS/VS) into the DB/DC environment. 
IHS/VS also makes these data base applications, to a large extent, 
hardware and software independent. 

1HS/VS may be installed in either ef two ways: 

• A data base management system for batch-only operations 

• A data base/data ccmmunication system fer concurrent online and 
batch operation 

This manual addresses a subset of both versions. It covers the 
installation and use of the data base system, the data base/data 
communication system, and the migration of the data base system to the 
data base/data communication system. 

!he data base management facility of IMS/VS is also referred to as the 
tata Language/I facility or DL/I. The functions supported by 01/1 are 
data base definition, creation, access and maintenance~ The data base 
capabilities of tL/1 can be used in either the IMS/VS data base system 
(IMS/VS DB), or the IMS/VS data base/data communication system (IMS/VS 
tB/DC). 

Traditionally,. data files were designed to serve individual 
applications, such as inventory control, payroll, accounts receivable, 
or purchasing. Each data file was specifically designed for its own 
application and stored separately on tape or on disk. Quite often, the 
data files of different applications contained common data elements~ 
This redundant data caused an extra problem for the user because it 
became very difficult to keep it consistent. 

Furthermore, the same data in different files often had different 
formats. !his variance in the format of common data meant that 
application programs WEre tailored to specific data organizations and 
even specific physical devices. When new applications, data management 
techniqUES, or devices were introduced, the application programs 
normally had to be changed. As a result w application programs vere 
often in an almost perpetual state of change adding appreciably to the 
overall cost of data processing. 

These undesirable attributes cf data files have been largely eliminated 
by the use of the "~~l~_~~~i." A ~~!~_~~~! is a collection of 
interrelated data elements processable by one or more applications. 

A data baSE provides fcr the integration. sharing, and control of common 
data. As an example, a manufacturing/distribution company may first 
integratE the data for an application dealing with parts control and 
purchase orders (Figure 1-1). Subsequently, application data for 
customer order processing and accounts receivable may be integrated. 
The data and the ~rograms of already implemented applications need not 
change when the data of subsequent applications is integrated. 

Introduction 1.1 



Figure 1-1. Application Data Integration -- Data Base Concepts 

A data base providEs flexibility of data organization. It allows the 
addition of data to an existing data base without modification of 
existing application programs. In Figure 1-1, the accounts receivable 
data may ce added, when it is ready to be integrated, to the parts and 
orders data base. This independence is achieved by avoiding the direct 
association between the application ~rogram and the physical storage of 
data. 

~hus, the advantages of a data base are: 

• Control of data redundancy and reduction of resulting duplicate 
maintenance. 

• Consistency through the use of the same data by all parts of the 
company. 

• Application program independence from physical storage organizations 
and access methods. 

• Reduction in overall application costs. 

• Data designs usable fer both batch and online processing. 

• A system-provided focal point for the control of data. 

IMS/VS is not itself an application. It is a framework within which to 
construct data base/data communication applications. To make this 
manual more usable, W~ will define a sample application. This sample 
will then be used throughout this manual as a base for all the examples. 
It will be used to guide you in a natural way throughout all the 
subsequent steps for a successful implementation of an application using 
IMS/VS. 

the sample application chosen is Parts Control and Order Processing. In 
even more general terms, it could be called "ITEM control and 
TRANSACTION processing," where the "I~EM" could be a part, an account, a 
citizen, or a policy. The "TEANSACTION" could be an order, an invoice, 
a customer inquiry, etc. The fact that we will use this particular 
application in the manual does not preclude the use of IMS/VS for other 

1.2 IMS/VS Primer 



applications. On the contrary, the basic data structure and proce~sing 
shown in this sample are easy to adjust to other applications. 

OUR SAMPLE COMPANY'S REQUIREMENtS 

The sample uses a fictitious company that offers a wide variety of 
building, construction, and engineering parts and materials. The parts 
and materials arE purchasEd frem lanufacturers and sold to customers. 
Most customer orders arrive by telephone. Due to the growth in numbers 
of orders aid varieties of items, an upgrade of the existing parts 
control aDd customer order applications was deemed necessary., It was 
decided to build a new system which integrated these applications. 

Some objectives for the new apflication system were: 

• Implement thE system in the following erder: 

1. Parts control with its associated purchase order processing 

2. Customer order processing 

• Provide central contrel of parts, purchase orders, and customer 
orders 

• Provide accurate status information on parts in stock, on order, and 
deli vered 

• Provide accurate entry of both purchase and customer orders, with 
respect to parts in stock. 

• Provide an interface with the existing accounts receivable 
application, which currently maintains the central customer file. 
This application and its files will net be converted at this stage. 

• Provide a base for the online processing of ord9rs and inquiries at 
a later stage. 

The implementation of the above system will be the common thread 
throughout the examples used in the manual. We will distinguish three 
majox irplementation phases: 

1. The Parts Control application, consisting of a central Parts data 
base and Inventory Report and Purchase Order programs. 

2. The Customer Order application which requires an additional Customer 
Crders data base, to be integrated with the existing Parts data 
base. A Custcmer Order program is added. 

3. Addition of requirements to the Purchase Order program. 

In the manual, the three steps above coincide with the three tasic 
functional expansions of a typical DL/I environment. We shall refer to 
those as Eh~§~§. 

Note: Phase 1 should be studied and exercised first. Phases 2 and 3 
are-somewhat independent. The actual data base design of your 
application could well be initiated on either the phase 2 or the phase 3 
functional level. 

For each level, we will consider: 

• Data base creatien 

• Data base prOCEssing 

In trod uction 1.3 



• Data base reorganization 

• Data tase recovery 

We will also considEr the ~igration as~ects of moving from one level to 
the next. 

THE PHASE 1 ENVIBONMEN~ 

phase 1 of our sample limits itself to the Parts Control application. 

lh~_~~I~§_Q~t~_~!2~ 

Informatien about parts is managed by the inventory control department. 
All data will bE stered in a Parts data base. 

It consists of cne record for each part. which the company stocks. 
Within the record we can identify: 

• Standard information for the part. 

• Stock infcrmaticn fer each part. 

• Purchase information for each part. 

!h!_~s~I§_ln!!n~2~I_R~fQI!§ 

The Parts Inventory ReFort Frogram Frovides infcrmation about stock 
delivery and crder position of each part the company stocks. 

~YI£h~§~_f~~!~_~IQ£~§§i~g 

!he Purchase Order program handles the purchase orders issued by the 
purchasing department. It checks the input, and prints, changes, and 
deletes orders. 

A more detailed description cf the phase 1 data base and application can 
be found in Chapter 2, "Data Base Design," under the topic: "Sample Data 
Base Requirements for phase 1." 

~HE PHASE 2 ENVIRON~ENT 

Phase 2 of our sample environment considers the addition of a Customer 
Orders data base and its associated order processing programs. 

!h!~~212!!I_QI~~I§_Qg!g_§g§! 

Information atout custemer crders is managed by the sales department. 
All order data will be stored in a customer Orders data baseu It 
consists of one record for each customer erder. Within the record we 
can identify: 

• Standard informatien for this order and customer. 

• Order detail information for each ordered part. 

• Shipment informaticn fer this order. 

1.4 IMS/VS Primer 



A link is required with the parts data base because it is necessary to 
know which parts are OD order by each customer and which customer 
ordered a given Fart. 

The Customer Orders program inserts, changes and deletes customer orders 
in the Customer Orders data base. It also checks and updates the part 
steck information before the order is accepted. This is planned for 
online processing in the sales department in the near future. 

This application also DEeds access to the already existing central 
customer file. ~his central customer file is a key sequenced data set 
(KSDS) under the Virtual Storage Access "ethod (VSA") of OS/VS. 

THE PHASE 3 ENVIRON8EN~ 

In phase 3 we consider a change in purchase order processing. The 
additional requirement is to provide direct access to individual 
purchase ordErs, both by part number and by purchase order number. 

I~!_l~~L!~_~!!A_£A~!_~l~l~~ 

The IMS/VS data base system contains three major components: 

• A system definition facility to allow tailoring of the system to a 
particular OS/VS environment. 

• The DL/I facility through which users meet the data requirements of 
their own apFlications. 

• Utility programs which assist in the recrganization and recovery of 
data bases, and monitcring cf data base usage. 

In the following we will introduce these components and their functions 
which are of interest to the first-time user. 

SYSTEM DEFINI!IC~ 

Eased on user specifications and type of operating system, IMS/VS system 
definiticn creates a library with DL/I processing modules, a procedure 
library and some modules for inclusion in the operating system. ie will 
cover this process in Chapter 1, "Installing IMS/VS." 

DATA LANGUAGE/I lACILl1Y 

DL/I allows application ~rcgrams tc be independent of access methods, 
physical storage organizations, and characteristics of the devices on 
which the application data is stored. ,his independence is provided by 
a common symbolic program linkage and by data baSE descriptions extErnal 
to the applicaticn programs. 1he section entitled "Data Base User 
Interface" defines this interface. 

The majority of the data utilized by any company has many 
interrelationships that can cause significant redundant storage of data 
when conventional organizations and access methods are used. The 
storage organizations and access methods of DL/I make it possible to 

Introduction 1.5 



integrate data and control the amount of data redundancy. Precessing of 
data in more than cne sequence can be achieved. All data need not be 
placed in a single common data base. tL/I allows you to physically 
store the data in more than one data base while maintaining centralized 
ccntrol over all the data. 

The concept of data sensitivity allows you to control the use of the 
data basE by each applicaticn ~rogram. Each program can be limited to 
(that is, be sensitive to) a predetermined subset of the data. This 
further enhances data independence. In addition, any application 
program can be restricted to making only specified types of data base 
requests against the data to which it is sensitive. 

Within the DL/I environment, the following definitions apply: 

• ~gg~~nt. A data element of defined length, containing one or more 
related data fields. It is the basic unit of data transfer between 
the application program and DL/I. 

• A Q1LI g~!~ Q~§~ I~~Q~g. A set of related segment occurrences of 
one or more segment types. Each segment type may have a unique 
format. 

• A ~tLl g~tg ~~§~a The Kajor unit of DL/I data storage. A set of 
data tase records stcred using one of the DL/I organizations and 
accessible by one or more of the Dl/I access methods. A data base 
is typically composed of one or more common OS/VS or virtual storage 
access method (VSAM) datasets. D1/I relates its data base records 
and data bases to a physical storage organization and aCCESS method. 

DL/I's data base concept allows user's data and programs to be 
independent of the access methods and storage organizations chosen by 
the data base designer. 

The application program interface to the data in the data base is a 
common symbolic language. In fact, the application program is unaware 
of the particular storage organization, storage device, and access 
method chosen for any data base. Nor is the program aware of any 
pointers ~hich might be used in the physical storage organization. 

Applicaticn prcgrams ~ritten to use DL/I deal with ~E£lig~!iQ~ ~~!g 
§!IY£!~~§§. This refers to the manner in which the application program 
"sees" the data. A DL/I application data structure consists of ene or 
mere hi§I~I£hi~~l ~~!g §!IY£~YI§§ programs written to process these data 
structures can be independent of the £hI§i~~l g~t~ 21IY~iYI~. £hI§i~s! 
refers to the manner in which the data is stored on a direct access 
storage device. A tL/I application program never deals directly with a 
physical data structure. 

!he traditional manner cf representing data can be seen in Figure 1-2. 

1.6 IMS/VS Primer 



[ PART r STOCK r ORDER o 
Figure 1-2. Traditional Record Layout 

This picture describes: 

1. The ~hysical structure of the record as it appears on tape or a 
direct access storage device. 

2. The logical structure fet the application. Notice there is no 
difference betwEEn the pbysical (as stored) and logical (as used) 
data structure. 

Each of the three divisions {PART. STOCK, CRDER) usually contains 
several data elements, or fields. For example, one of the data elements 
in SIOCK might be stock location. In addition, the record might 
actually contain multiFle S!OCK and ORDER divisions for a single FAET. 

This same record appears in Figure 1-3 as a DL/I logical data structure. 
The PAR!, SIOCK, and CFDER divisions are now considered §§gm§~~~ of 
data. Each segment is made up of several fields. Stock location is a 
field within the SIOCK segment. 

The logical data structure in Figure 1-3 is called a ni§!~!£nifgl gg~g 
§1IY£1YI~· 

PART 

I 
I I 

~ I ~ ~ ~ 

STOCK ORDER 

V V 

Figure 1-3. Hierarchical Data Structure 

lhe hierarchical data structure in Figure 1-3 describes the data as se~n 
by the applicaticn program. It dces not represent the physical storage 
of the data. The physical storage is of no concern to the application 
program. 

The basic building element of a hierarchical data structure is the 
E~~~n1/f~il~ I~!~!!9n§h!E between segments of data. See Figure 1-4u 

Introduction 1.7 



PARENT 

I 
./' /' 

CHILD 

V 

Figure 1-4. !he Parent/Child Relationship of Dl/l 

Each Q~~~~~§n~~ (or instance) of a B~I~Dl §~gID!n~ has associated with it 
0, 1, 2, or mere £££YI~sn£!~ of a £~!1g §!g!~n!. Each child segment 
occurrence has associated with it one occurrence of a parent segment. 

Sometimes it is necessary to distinguish between a ~~~m~~~ !IE~, that 
is, the kind of segment, and the ~~~~~D! ~££YIIen£~, that is, particular 
instance of its contents and location. 

As shown in Figure 1-3, a parent can have several child segment types. 
Also, a child segment can, at the same time, be a parent segment, that 
is, have children itself. !he segment with no parent segment, that is, 
the one at the top, is called the £Q2! §§g!!n~. 

All the parent/child occurrences, for a given root segment, are grouped 
together in a tL/I data tase record. !he collection of all these like 
data base records is a el/l data base. 

Figure 1-5 shows these relations between the segment, the data base 
record, and thE data base. 

LEVEL 1: PART 

I 
I 

L ./ 

LEVEL 2: STOCK 

i/ 

LEVEL 3: 

• 
• 
• 

/' 

" 

ROOT SE GMENT 
rence per 
ase 

.. one occur 
per data b 
record 

ORDER 

DETAIL 

./ 

l......-

" 

", 

DEPENDENT SEGMENTS 

.. 
O-n occurrences for 
each segment type 
per parent occurrence 

LEVEL 15: Up to 15 levels of dependent segments 

Figure 1-=. Relaticns between Segment, Data Base Record, 
and Data Ease 

1.8 IMS/VS Primer 



Only one segment can appear at the first level in the hierarchy, but 
multiple segments can appear at lever levels in the hierarchy. For 
example, multiple STOCR and CBDEB segments can exist for one PART 
segment. Since each dependent segment in the hierarchy has only one 
E~!~D!, or immediate superior segment, the hierarchical data structure 
is sometimes callEd a tree structure. Each branch of the tree is called 
a h!~~!~shi£!!~E!tb. i-hierarchIcal path to a segment contains all 
consecutive segments from the top of the structure down to that segment. 

In Figure 1-5. each PART SEgment with its dependent STOCK, ORDER, and 
DETAIL segments constitutes a g!1~ ~g§~ ~!£Q£~. ~he collection of all 
these records for all FARTs is called a gi1!_~!2~' that is, the PARTS 
data base. 

Through the concept of program §!]§i!ili!l, DL/I allows a program to be 
restricted to "seeing" only those segments of information that are 
relevant to the processing teing performed. For example, an inventory 
program could be written to see only the PART and STOCK segments of the 
data base record shown in Figure 1-5. The program need not be aware of 
the existence of the ORDER segment. 

DL/I allows a wide variety of data structures. ~he maximum number of 
different segment types is 255 Fer hierarchical data structure. A 
maximum of 15 segment levels can te defined in a hierarchical data 
structure. 1here is no restriction on the number of occurrenCES of each 
segment type, except as imposed by physical access method limits. 

~!2i£_~!g!!n!_lIE~§_!n_!_~i!~!~fbif~1_Q!!~_§~!~!Y~ 

Following is a detailed description of the several segment types and 
their interrelaticns vithin a hierarchical data structure. Figure 1-6 
should be referred to when reading this description. 

• The segment on top of the structure is the ~QQl §~g~§n!. Each root 
segment normally has a ~~I !i§!g which serves as the unique 
identifier of that root segment. and as such, of that particular 
data base record ,for examfle, the part number). 

• A g~E!ng~n1 §!9m!U! relies on some higher-level segment for its full 
meaning and identification. 

• A E~~~DI/£hil~ relationship exists between a segment and its 
immediate deFendents. 

• Different occurrences of a particular segment type under the same 
parent segment are !!l~ ~§9!!~!§. 

• Segment occurrences of different types under the same parent are 
§lBli]9 §~9!~D!§· 

~~gY~D£~_f!~l~§_!Bg_!~£~§§_i~!h§ 

To identify and to provide access to a particular data base record and 
its segments, DL/I uses §§gY!Df! !l!lg§- Each segment normally has one 
field denoted as the sequence field. The sequence fields in our subset 
should be unique in value for each occurrence of a segment type belew 
its parent occurrence. However, not every segment type need have a 
sequence field defined. Particularly important is the sequence field 
for the root segment, since it serves as the identification for the data 
base record. Normally, 01/1 provides a fast, direct g££~§§ E~!~ to the 
root segment of the data tase record based on this sequence field. This 
direct access is extended to lover level segments if the sequence fields 
of the segments along the hierarchical path are specified, too. 

Introduction 1.9 



!g!i: The sequence field is often referred to as the ~~I'i!l~, or 
simply, the kil. 

Figure 1-6 shows, as a dotted line, an example of an access path. It 
must always start with the root segment. This is the access path as 
used by DL/I. The application program, however, can directly request a 
particular DE!A1L segment of a given CBDER of a given PART in one single 
eL/1 request, ty specifying a sequence field value for each of the three 
segment levels. 

ROOTS, one per data 
base record 

ACCESS 
PATH for 
DETAIL132 

T 

• ....-----... 
• • 

PARTn 

LOGICAL 
DATA STRUCTURE 

\ , 
PART1 

.. 
PARENT of STOCK and 

............ --.1'--_..... ORDER segments 

~- -.Aii segm~ below 
, are DEPENDENTS 

ORDERn2 
............. ---------.. 

\ of PART1 ORDERn1 

\ , 
.------, "-', 

....-__ ...,._O_R .. D E R 13 
I 

STOCK12 .......... _ .... _-
STOCK11 

TWINS, children of the 
same parent and the 
same segment type. 

SIBLINGS, children of 
one parent but different 
segment types. 

\ 

ORDER11 

DETAIL111 

, DETAIL132 
, I 

...... / 
DETAIL131 '-\. 

CHILDREN of ORDER13 

DEPENDENTS OF PART1 

Figure 1-6. Segment Ty~es and Their Relations in a Hierarchical 
tata Structure. 

In addition to the basic D1/1 facilities discussed so far, DL/1 provides 
a facility to interrelate segments frcm different hierarchies. In dOing 
so, new hierarchical structures are defined which provide additional 
access capabilities to the segments involved. these segments can belong 
to the same data base or to different data bases. A new data base can 

1.10 1!S/VS Primer 



be defined called a 12si~~j 9!1! ~!s~. ~his lcgical data base allows 
presentation of a new hierarchical structure to the application program. 
Notice that althcugh the connected physical data tases could constitute 
a n~1!2I! ~AlA !!I~~!~li, the ap~lication data structure still consists 
cf .one or more hierarchical data structures. ~his again extends the 
data independence concept. 

7he basic mechanism used tc tuild a logical relation is to specify a 
dependent segment as a 12£j~~J ~bil~, by relating it to a second parent, 
the lSgi£!l l!~!Dl. 

In Figure 1-7, the logical child sEgment DEtAIL exists only once, yet 
participates in tvo hierarchical structures. It has a £hI§i£!l ~!~§n1, 
ORDER, and a !Qg!~g! E!~~nt. PART. The data in the logical child 
segment and in its dependents, if any, are called !~!!!§!£!!2n g!!!. 

PARTS DATA BASE 

PART 

STOCK 

ORDERS DATA BASE 

DETAIL LOGICALIIIIIIIIlII.... 
CHILD ...". 

of PART ~--------~ 

ORDER PHYSICAL 
PARENT 
of DETAIL 

SHIPMENT 

figure 1-1. Two Logically Related Data Bases, PARTS and ORDERS 

Ey defining two additional lcgical data bases, two new logical data 
structures shown in Figure 1-8 can be made available for application' 
rrogram ~rocessing, even within one single program. 

In troduc tion 1. 11 



ORDER PART 

1 

I I I I 
" ~ ", ", , ", ", " ", ", 

DETAIL PART SHIPMENT STOCK DETAIL ORDER 

./ !/ JII' 

I I 
~ I ./ " 

.., 

STOCK SHIPMENT 

--' 

A. New logical data structure ORDERPART B. New logical data structure PARTORDER 

Figure 1-8. !he Logical Data Bases After Relating PARTS 
and ORtER Data Bases. 

l......-

--' 

The DETAIL/PARl segment in Figure 1-8A, is a £Q~£~!~~~!~~ §j~!~nt. It 
consists of the logical child segment plus the logical parent segment. 
The DE1AIl/CRDER segment in Figure 1-8E is also a concatenatEd segment, 
but it consists of the lcgical child segment plus the physical parent 
segment. Logical children with the same logical parent are called 
l£gi£~l l!!n§, for example, all DETAIL segments for a given PART 
segment. As can be seen in Figure 1-7, the logical child has two access 
paths. One via its physical parent, the Rhl§i~s! s£~~§§ 2glh, and one 
via its lcgical parent, the !Qg!£~l ~££~§2 ~!th. Both access paths are 
maintained by DL/I and can be concurrently available to one program. 

Because the 01/1 logical relationship function may not be required for 
your first 1MS/VS applicaticn we viII deal vith it separately in this 
manual. 10 show the use of the DL/1 logical relationship functicn we 
will USE the phase 2 sample environment. 

Dt/! provides additional access flexibility with §~~~ng!II 1]~~~ ~!!g 
~g§!§. Each seccndary index rEFresents a different access path to the 
data base record other than via the root key. lhe additional access 
paths can result in faster retrieval of data. for example, the PART and 
CBDER segments in Figure 1-9 could be retrieved based on the order 
number in the CRDER segment, if an index were defined for that field. 
Cnce an index is defined, DL/1 viII automatically maintain the index if 
the data cn which the index relies changes, even if the program causing 
that change is not avare of the index. 

1.12 IMS/VS Primer 



ORDER:: SECONDARY 
PARTS DATA BASE INDEX DATA BASE 
~ -" • INDEX TARGET 

SEGMENT '" -" 

•
INDEX POINTER 
SEGMENT 
provides the means 
for the index access 

PART accessed via 
ORDER* the index -./ - ~ 

I ,,/ 

" " " " I I " " " ~ . '" ./ .6' .INDEX SOURCE SEGMEN 
contains the field on 

T 

STOCK ORDER which the index is 
established 

./ ./ 

Figure 1-9. A Data Base and Its Secondary Index. 

The segments involved in a secondary index are depicted in Figure 1-9: 

• The i~g§! §gy~~§ §jg!~D! contains the scurce field(s) on which the 
index is constructed, for example, ORDER#. 

• The inq~! £Qint~~ §~gm~n~ is the segment in the index data base that 
points to tbe index target segment. The index Fointer segments are 
ordered and accessed based on the field,s) contents of the index 
source segment, for example, the order number. This is the 
§~£~~g!;~ £~g~§§§iD9 §§9Y§~~~ of the i~gg!~~ PARTS data base. There 
is, in general, one index Fcinter segment for each index source 
segment, but multiple index pointer segments can point to the same 
index target segment. 

• The ing§! !s!£s! §!S!~~~ is the segment which becomes initially 
accessible via the secondary index. It is in the same hierarchical 
record as the index source segment and is pointed to by the index 
pointer segment in the index data base. Quite often, but not 
necessarily, it is the root segment. 

• The index source ano index target segment may be the same".cr the 
index source segment may be a dependent of the index target segment 
as shown in Figure 1-9. 

In our subset we will always choose the root segment as the target 
segment. With this apFroach, it is (for the application prog~am) as if 
the index search field replaces the original root keyfield. At the same 
time, however, the original structure is still available to the same 
application program. 

Eecause you might not need the seccndary index function of DL/I, we 
separate its discussion throughout the manual. ihe use of this function 
is shcwn in the Fhase 3 sample environment. 

DATA BASE DEFINIiICN 

The data base definiticn language of DL/I provides tvo levels of data 
base definitions. Both are generated and maintained independently of 
your application Frogram (s), thus providing the basis for data 
independence. 

Introduction 1. 13 



~he first level is the g2!2 B~§~ g~§£ri£11Qn (IBD). Each data base 
description is created frcm statementE vou provide. The statements 
define the hierarchical data structure and physical organization of the 
data base. ~hese statements are input to a DL/I utility Fregram. The 
output of the utility Frcgram is a data base description. It is stored 
in a OBD library. !his data base description provides 01/1 with the 
mapping from the apFlication data structure of the data base used in the 
applicaticn program to the Fbysical organization of the data used by the 
operating system data management access methods. The data structure can 
be remapped into a different physical crganization without program 
modification. ether application data can also be added to this da~a 
base and net reguir~ a change to the original application programs. ~he 
concept of the data base description reduces application Frogram 
maintenance caused ty changes in the data requirements of the 
aFFlication. !here are three types of rEDs: 

• ~he ebY§i~§l Q~~ ~rcvidEs the definition of a single hierarchical 
structure. It can be used, in this form, by application programs. 
If logical relationships Exist, the physical DBD contains a 
definition of those relationships with the other hierarchical 
structure. ihes€ relaticnEhiFs can be within the same rBr or with 
ancther DED. Multiple logical relationships can exist within a 
single physical OBD. 

• The lSgi£21 ~~Q provides the redefinition of two or more related 
hierarchical structures into a new hierarchical structure. These 
hierarchical structures can be from the same DBD or from different 
tEts. The logical DBD relies on the logical relationships which 
were defined in the physical DED(s). 

• The §§~Qng~£y i~g2! I~] allows definition of a secondary access path 
into a fhysical or lcgical DBD. 

The process of generating a DBD is referred to as ~~~~ Q2§~ g~§££i2!~Qn 
£~]~1s1i$] (DEDGEN). 

R£Qg£2m_~E§~!!i~2iig~_§1$£! 

!he second level of data base definition defines the application data 
structure for each af~licaticn ~rogram. 
A ff2gI~!_§E~£!f!£s!iQn_tlQ£~ (PSB) is created from statementE you 
Frcvide for each of your application programs. It defines the 
application data structure required by that application program. A PSB 
contains one or more ]Ig9Ig!_£Q~mYDi£~liQn_~*Q~~~ (PCBs), one for each 
hierarchical data structure the program intends to use. Each FCE 
defines the hierarchical (Eub) structure the program "sees" from the 
physical cr lcgical data tase. It specifies for each segment the kinds 
of access allowed by the program, that is, read only, update, insert, 
and/or delete. ~he PSE is created, like the OED, by a DL/I utility 
frogram. It is stored in a PSB library. !he process of generating a 
PSE is referred to as E£Qg£~m §E~f~ilf~!~Qn £!2f! g~]~Is!i2n (PSBGEN). 

APPlICA!ICN P~CGFAM IN~EFFACE 

IMS/VS provides a common data manipulation language, called the ~1LI 
!2ngy~g~ iD!~I~g~§, for the application frogram. Through this­
interface, the apflication program can request that DI/I: 

• Fe trie ve a uniq ue segment (GET UNTQ U E) 

• Retrieve the next sequential segment (GET NEX'!) 

1.14 IMS/VS Primer 



• Replace the data in an existing segment (REPLACE) 

• telete an existing segleDt (DELETE) 

• Insert a new segment lINSERt) 

Such a request is often referred to as a R~L! £~ll or ~!l!. 
may deal with one or more segments in a hierarchical path. 
retrieval is based upon either cr beth of the following: 

• Position in the data base, as set by previous calls 

A DI/I call 
Segment 

• Compariscns bet~een fields within the segments in the specified 
path, and values supplied with the DL/I call. 

The IMS/VS data manipulatien language can be used in COBOL, PL/I or 
Assembler language programs. ~he data manipulation language is 
independent of data base organization and access methods. Only a small 
interface module is link edited to your application program. 

LOGGING ANt CHECKPOIN~/RES1ARi FACIlI~Y 

DL/I Frovides a logging facility. If selected, images of data in the 
data base before and after modification are written to a system log data 
set. This log data set, tegether with a previously made image copy of 
the data base, can be used for data base reconstruction should an 
application or system failure occur. You _ay also include DIll 
checkpoint calls in your batch application programs. This enatles you 
to restart a job from the last checkpcint in the event of program or 
system failure. 

DATA SECURITY 

IKS/VS DB provides two mechanisms for data 
program specification tlock ~hich controls 
application Frog~am at the segment level. 
security provision, the library containing 
protected. 

security. The first is the 
the data base access of each 
For maximum benefit of this 
the PSEs should te password 

The second mechanism is the ~!ting§g 2~£Y~i~I 2~BE2~~ of IMS/VS which 
provides an interface between IMS/VS and the ~~2QYt~~ A~~~§§ ~2n~t21 
f~£!l!~l (RACF) Frogram product in the OS/VS2 MVS environment. This 
extended security support is not included in our subset. For more 
information you should refer to the l~~L!~ ~~n!~~l lD!9~!~!i9D ~!D~~l 
and the lH~L!~ ~I§~~!LiEElif~!if~ Q~§ig~ ~~i~~· 

UTILITY FBCGFAMS 

The IMS/VS DB system includes a comprehensive set of utilities. These 
utilities are used in our subset to: 

• Implement logical relatienshiFs and/or secondary indexes at initial 
load time of the data tase(s). 

• Recover data bases in the event of program or system failure. 

Introduction 1.15 



• ReorganizE data bases, if needed, to: 

optimize direct access storage. 
change the storage organization or access method. 
Chan9E lC9ical/Fbysical data structure. 

• Monitor the performance of programs to aid in optimization. 

IMS/VS BATCH SYSTEM FLOW 

the Data Language/I facility of IMS/VS is used in a catch-only data base 
environmEnt as shown in Figure 1-10. 

I .l 
OSNS 

0) I i' 
, IMS/VS Batch Control 

Program 

0. ~ ~0 
'Your Application Program 

-------
Language Interface . 

I 

I 
I Program Request Handler '----, 

® r- - ~ Call Analyzer ~- - , 

DL/I Action ---.. Logging 
Modules .....0lIl.- Facility 

~--~---.~~--~---I 

, VSAM 
Basic Access ,OSAM 

Method 
Modules 

Data Bases 

I , 
Batch Check­
point/Restart 

Figure 1-10. IMS/VS Batch Processing Region System Flow 

1.16 IMS/VS Primer 



The follewing notes relate te the circled numbers in Figure 1-10: 

1. ~he IMS/VS batch control program is invoked by as/vs task 
management. It supervises the loading of required IMS/VS modules 
and initializes the batch operating environment. 

2. It links to your batch application program, which has been 
link-edited with the language interface. 

3. When your application Frogram issues a DL/I call, control is passed 
via the langua9~ interface to the Fregram request handler. The 
program request handler provides preliminary checking of the call 
parameters, and passes centrel to the Dl~ call analyzer. 

4. Depending on the function requested, the DL/I call analyzer passes 
control to the appropriate call processor module. The DL/I action 
modules reqUEst services frem the as/vs data management access 
method modules and log their activity on the IMS/VS log. 

5. Optionally your program can request a checkpoint to Establish a 
restart point. Checkpcints are logged cn the IMS/VS log to enable 
restart if reguired. 

6. When your application fregram finishes processing, it returns 
control to the batch contrel pregram for termination processing. 

!2!~: In the IMS/VS DB system, a data base can be accessed. for update. 
by only cne application program (one partition/region) at a time. 

The centralization of data and control of access to this data is 
inherent to a data base management system. One of the advantages of 
this centralization is the availability of consistent data to more than 
one application. As a consequence this dictates a tighter control of 
that data and its usagE. Responsibility for an accurate implementation 
of control lies with the ~~!~ ~~§~ Administration (tEA) function. 
Because the actual iaplementation of the tEA function is largely 
dependent on a ccmpany's erganizaticn. we limit ourselves to a 
discussien of the characteristics of a DBA. Quite often, the DBA 
function at new IMS/VS installations is performed by an individual or 
group with experience in both application and system programming. 

rBA CHARACTERISTICS 

• !he DBA frovides standards for, and controls the administration of, 
the data baSES and their use. 

• The tEA provides guidancE, review, and approval of data base design. 

• The DBA determines the rules of access to the data bases and 
menitors their security. 

• !he tBA controls the data base integrity and availatility, 
monitoring thE neCEssary activities for reorgani2ation and 
back-up/recovery. 

• !he IEA is net responsitle fer the actual contents of the data 
bases. This is a res~ensibility of the user. Bot the DEA enforces 
~rocedures for accurate. complete, and timely updates of thE data 
bases. 

Introduction 1.11 



• The DEA approvEs tbe cperation of new programs with existing 
production data bases, based on results of testing with test data 
bases. 

• The DEA is resFonsible for the maintenance of current information 
about the data in the data base. Initially, this responsibility 
might be carriEd out using a manual approach. But it can be 
expected to grow to a scope and complexity sufficient to justify, or 
even necessitatE, tbe use cf a data dictionary program. 

NAMING CONVEN!IONS 

Good naming conventions are mandatory in a data processing Ercject, 
especially, in a .ulti-aE~lication environment. They are a Erereguisite 
for the evefitual ilplementaticn of a data directory, or dictionary, 
system. In the following section we will propose a naming ccnvention as 
an example, and we will use it in all the samples in this manual. You 
might ada~t this convention to your own specific environment. In deing 
so, you sboulo consider tbe fcllcwing guidelines: 

• Each entity should have a unique name. 

• Each name sbould ccntain an entity classification. 

• Each name sbould ccntain a system, application or project 
identification. 

• Each name should contain a version identification. 

All entity names to be used in our sample will be coded: tsv~mmmm 
where: 

t = type identifier: 
E is OED 
p is PSB and/cr Program 
S is Segment 
F is FiEld 
D is DDname 
T is transaction 

s = system, application or project identifier. In all 
samples the following are used: 

E is an example 
o is of general use 

v = versicn numter. In samples tbe following codes 
are used: 
o if of general use 
1 if used in phase 1 and later 
2 if used in phase 2 and later 
3 if used in phase 3 and later 

mmmmm = mnemonic (user's choice) 

Note: !he online I~S/VS system requires the program and PSB name to be 
~i;-same. TherEforE, the Frcgrams are renamed during linkage-editing on 
the sample jot. 

1. 18 IMS/VS Primer 



~!mRl§_~2~_!~~§§ 

The sample jots referenced in this manual and listed in the "I!5/V5 
Primer Sam~le Listings", have the following naming convention: 

• //SA~Plnn for thE IM5/Y5 1nstallation jobs, if OS/V51. 

• //SftVSInn for thE Ift5/VS installation jebs, if 05/VS2 (ftVS)q 

• //SlftPnnn for the sample application jebs. 

The samples referEncEd in this sanual are distributed as part of IM5/VS. 
After IMS/VS installation, as described in Chapter 1, "Installing 
IMS/VS," two samplE litrariEs are available: 

• IMSVS.PBlftE5RC, which ccntains all the sample ~IogIams, DEts, FSEs, 
data base in~ut data, etc. 

• IMSYS.PBIMEJCE, which contains all the sample jots to install IMS/V5 
and EXErcise thE sarflE FregIams and FIocedures. 

For your conVEniencE, both sample libraries are listed in the "Ir.S/VS 
Primer 5amFle Listings" publication, togethEr with selected sa.Fle job 
output. 

The implementation of Ift5/VS-based applications is most successfully 
done ~ith a Froject approach. With this approach, you assure that 
adequate planning is dene in a tilely manner, stating all the necessary 
steps for the design, test, and installation of the application. For 
more complEX applicaticns, a project team with a definition of the tasks 
and responsibilities of all parties involved is recommended. 

Like mest ether data processing projects, an I"S/VS project can 
generally be dividEd into the follcwing phases: preliminary 
investigation, planning, design and implementation, testing, and 
operation and maintEnance. Figure 1-11 sho~s the relative manpower 
requirements fer each of the phases. 

Introduction 1.19 



ADMINISTRATION AND MANAGEMENT 

Figure 1-". !he Project Cycle 

Following is a brief introduction to each of ths phases: 

Ih§_lg~~: Normally, a user requirement or a management decision is the 
initial starting point of the project. 

fI~l~!!n~~I_In~2§1~g~i!Qn: This phase concentrates on the definition of 
the obj€ctives. A feasibility study, with a preliminary cost/benefit 
analysis, is conducted. 

El~~~iDg: A project plan is established. A project team is formed, and 
the tasks and responsibilities of individuals and departments are 
defined. A budget is established for the project, and resources are 
allocat~d. ApFroval for the implementation is obtained. A change 
centrol procedure is implemented to control modifications during 
implementation. 

Qf§ign_~Dg_I~El~m~n!~i!Q~: The system is designed, and that design is 
reviewed. After design approval, detail designs are worked out and 
approved, coding is done, and a test plan is created. 

Test: Both unit tests and integrated system te~ts are performed. These 
are-followed by an acceptance test. 

QE!~~!iQn_!D~_Aj~n~!D!n£~: Production use of the syste& is started. Any 
further changes to the system are controlled via maintenance procedures. 

Another important aspect is project administration. The timely and 
accurate planning for and establishing of standards and guidelines is 
mandatory for an efficient project implementation and later maintenance. 
Most organizations already have standards which should be extended into 
the data tase environment. At a minimum, standards should be available 
for: 

• Naming of data base items such as DBDs, PSEs, segments, and fields. 

• Documentation of data sttuctur.es, programs, and procedures 
(production, reorganization, recovery). 

• Administration of data sets, data bases, back-up copies and leg 
tap€s and their inter~elationships. 

All of this should be under the control of a data base administration 
(D BA) fu nc ti on .. 

1.20 IMS/VS Primer 



The following sample project plan should be adapted to your specific 
environment. Typical additional activities might be data clean-up, and 
conversion of existing programs and data. 

§[2!§_flnl_~~!~1 

Figure 1-12 shows a gross PEBT chart for the implementation of an IMS/VS 
DB project. The necessary system-oriented activities. such as hardware 
and operating system installation, and system aaintenance, are not 
included since these are largely dependent upon the installation 
environment. 7he following descriptions apply to the activities shewn 
in thE PERT chart (Figure 1-12). 

• DillON 
.IIIIVIIW 

• 'MI'LIMINTATION • Ace."ANCE 
• R(VIIW • "IVIIW 

Figure 1-12. IMS/VS-DE Installation Plan PERT Chart. 

~§!!!_fl!Dn!nq_JQQQ=l~~l: The sample PERT chart is adapted to your 
project. Manpower and machine time estimates are compiled. External 
interfaces are defined. Elafsed time calculations are performed, and 
the chart is extended ~ith the proper timefram. The critical path is 
calculated. A g!~t!_~h~.! can be constructed shoving the duration and 
people involved for each activity. Figure 1-13 contains an example of 
such a Gantt chart. The Gantt chart should clearly state the actual 
days/months to bE spent by Each individual. 

§I~1!~_R!~igD_jJ~~=1~~: the overall system design is made. All 
components and ~heir interfaces. are defined. The user interface is 
detailed and reviewed for acceptance. 

~!Y!!2E!!~1_~!!n_J,QQ=~~~1: A detailed plan for the development of data 
bases and programs is devised. All single activities and their 
dependencies are determined. 

In trod uction 1.21 



~g~£!~!2n_JIQQ:~2Q:~2Q:IQ21: Together with the develop.ent plan, the 
education of all partiee involved should be arranged. 

ACTIVITY TIME 

EDUCATION 

IMSNS INTRODUCTION 8 ~ II 
IMSNS·DB FOR ~ ~ " 
FIRST-TIME USERS 

DEVELOPMENT 

SYSTEM DESIGN • DB GROSS DESIGN ,Effi 
DB DETAIL DESIGN ria (DBDs AND PSBsl 

PROGRAM DESIGN r/ / / / r/ 

~~~~~~~~~~, 
PGM CODE AND TEST ~~'''''\~''''~ ,~~~''''~~~''

INSTALLATION

INSTALL IMSNS·OB ~
RUN SAMPLE ~

SYSTEM TEST I ALL I
I:::::::J DATA BASE SPECIALIST

PRODUCTION 1 ~ SYSTEM ANALYST

ggtJ PROGRAMMER

E3 SYSTEM PROGRAMMER

11.1 OPERATIONS STAFF

Figure 1-13. Sample Gantt Chax:t.

Q!~!_~~§!_q'2§§_~!§~gB_J~QQ~~1Ql: An overall data base design,
specifying the logical data structures and the basic physical
im~lementation, is crEatEd.

~;2g;~I_Q!!ig~_j~Q~:~~~l: the individual programs are defined and their
input, processing, output and data base accesses are defined. Common
guidelines and routines are established. Often more than 50~ of the
data base processing programs are reports. Using COBOL or FIll report
writer features or a report writer/query language such as GIS/VS can
help to minimizE thE man~cwer required fer program design.

£2!!~~~_R!~!_J~QQ:~lQ:~Q2i~QQ=~~Q=66Ql: Both test data and live data
are collected, or procEdures/Ercgrams are established for the conversion
of existing data files.

E!£2!!;~_!~g_B!2;g2nil!ii2D_j~~~=!!~~22~=§2g=2~Ql: A timely plan for
recovering and reorganization can avoid later redesign and
reprogramming. these procedures, although rarely needed, are vital to
the data baSE integrity and availability. ~herefore a thorough test
plan must be made and carried out before production starts. The
production staff should be carefully trained in problem determination
and the secure aDd acc~rate execution of such procedures. An incomplete
treatment of this topic is the most common source of problems when
implementing a data tase lanage.ent system.

ID§!!11_I~aL!a_~]_~n~_~!n_~!!2!!_j~~~=!~~=2~~1: The system programmer
installs the IMS/VS data base system. The sample application provided
with the system is exercised to get practical experience with tbe
system. Conventions and procedures for system maintenance are
establishedu

~!1!_~!§~_~!!!!!_~!§igD_J~JQ=2QQ1:
data tase structurES are defined.
nBDs are coded and tested.

The detailed logical and pbysical
Access methods are selected, and the

E'29;~!_Qi!2il_~!§igD_j!~Q=ij~l: Detail flowcharts, decision tables,
pseudocode, or other design documents, are established for each
individual Frogram. The data base call sequences are defined in a
standard fashion.

I!§l_fl!n_j!~~=~~~l: A detail test plan is made. Procedures for unit
test and system test are established.

Q!~1~R_12!g_i~29~!~§_!ng_lQ!g_li§!_~!!!_£!§!§_j~,Q:2QQ=~QQ1: Load
program(s) are designed, coded, and tested with the test data, resulting
in test data bases for program and recovery/reorganization tests~

~~§ign_B!!i~~_J~QQ1: 1be tasie aim of the design review is to assure
that the specified reguirements are met. Major review topics are:

• Are the applications really what the users want?

• Is the perfcrmance expectation still valid?

• Are there any pitfalls in the data base and program design?

j~Qg~!!_!n2_£~~_~£gi~g_!B2_I!!!_j~1Q=§QQ=1~~1: Each individual program
is coded and tested, using the test data bases and the test procedurEs.

LO!g_~~!!~~_~~t~_~~§§§_J2~Q=lQQ1: The data bases are loaded with actual
datao This process at times eXFoses inconsistencies in data. You may
need to include extra time tc resolve these inconsistencies. Eack-up
copies are made immediately after initial load to provide a full back
base for system test.

~§i!~_Ii§l_jl]~=~~~l: Integrated tests are executed on the live data
bases. Reorgani2ation and back-up/recovery procedures are tested on
those data bases.

f2~£!i!Qq_!nB_~!i~~~~!n£!_J~QQ:2~~1: Production use of the system
starts. ~he established monitoring and maintenance ~rocedures arE
enfoIcEd. Feed-tack is given to develcpment for future projects. It is
strongly recommended that the test environment be maintained in addition
to the production environment. 7his will be of benefit for future
trouble shooting, application modification, and application extensions.

Introduction 1.23

The IMS/VS Data Communication feature provides a symbolic program
linkage between data communication terminals and the remainder of
IMS/VS. This is in addition to the previously discussed Data language/I
facility, which is an integral part 6f the full IKS/VS DB/DC system.

In our subset we will mainly consider the operation of I"S/VS-DC in the
§I~!'§.m§ B.!!!.2-'! A-'~l!ij;ifj;y,! (SNA) envirenment, utilizing the !i~1!!~!
~~1!~.2i!YDi~~1i2n AS~!§§ ~!j;!2g (VtAM) and the]!!~2~! ~2n!I2!
.f~Qg~~!L!!~lq~! §!2~~g! (NCP/VS). However, Chapter 7, "Installing
IMS/VS," also covers the use of the ~!§i~ I~!!~2!!Ynif!!i2~ !~f!§!
~!!b2g (ETA~)~ those net planning to use VTAM with IMS/VS should skip
to the section "IMS/VS tata Communicatioll Concepts."

We will similarly limit curselves to the following hardware components:

• 3105 Local Communicaticns Centroller.

• IBM 3210 Information Display System, local and/or remote (leased
lines only) ..

Figure 1-14 depicts the relatiens between these system components.

3720 INFORMATION
DISPLAY SYSTEM

CONTROL
UNIT

LINE

SDLC

or BSC

3705

8/370
NCPNS

CHANNEL

Figure 1-14. IKS/VS in the SNA Environment

SOME EASIC SNA CONCEPTS

S/370

OS/VS

VTAM IM8/V8

Systems Network Architecture was designed as an architectual base for
the developmEnt of a data ccmmunication network and its components, such
as:

• Terminal sUbsystems -- IBM 3270 Information Display System

• Line ~rotocols -- Synchronous Data Link Control (SDle)

• Ccmmunication controllers -- 3705

• Network ccntrel prcgrams -- NCP/VS

• Telecommunication access mEthods -- VTAM

SNA formally definES the functional responsibilities of communication
system components. In an SNA structure, all n2g~§ (linked elements)
adhere to thesE oEfiniticnsQ The scope of SNA definitions ranges from
bit-level message hEader formats to the ~rotocol of message sequences
and to the classification of network nodes according to function.

1.24 IMS/VS Primer

~!Eg~~~!Qn_Q!_!YD£~!Q~§_lD!f_~f9ifgl_~~1~~§

A key ccncept of EN) is the division of the communication syster
functions into a set of well-defined layers. The major functional
layers defined by 5NA are:

• Transmission subsyste~ layer
• Function management layer
• Application layer

5N! is structured into these layers for two basic reasons:

1. To permit changes to be made in one layer without affecting other
layers.

2. !o allow interacticns between functionally paired layers in
different units. This Fairing is required to support the
distribution function.

lh~_1~2n§!i§§iQ~_~YB§Y§!§!_!2I~: The transmission subsystem is
concerned with tbe rcuting and movement of data units between origins
and destinations. The transmissicn subsystem does not examine, use, or
change the ccntents of these data units. This separation, where the
routing of a data unit is independent of the contents of the data unit,
means that a change in the method of transmission between nodes requires
no change in the data unit itself. Therefore, the support provided by
the function management layer can be used across a variety of physical
connections.

Paths through the netwcrk may be shared by many applications. The paths
may consist of several physical components with interconnecting data
links. The transmission subsystem provides the control necessary to
manage these shaIed Iesources.

lh~_fYnf1~QB_~292S~!~~~_!~1§!: The application layer employs a SEt of
requests to invoke the services cf the function management (FM) layer.
The function management laYEr presents infcrmation from one application
layer tc ancther application layer. Separation of the function
management layer from the application layer and from the transmissi9n
subsystem layer allows device-specific transformations to be distributed
out of the main processor.

!h~_!f~li£~lisn_t~li': The application layer is ccncerned only with
application functions. This layer performs the user's application
processing and need not be involved in the protocol or procedures for
controlling a communicaticn line cr routing data units through the
network.

!Q1!: In 5NA terminolcgy, the whole ofIM5/V5 is called one application
programu 7his use should net be confused ~ith that pertaining to I"S/VS
application programs ~ritter. by the user.

End users are the ultisate scurces and destinations of information. End
users include Frcgrams (that is, IMS/V5) and operators (that is,
terminal users). The structure of 5NA allows end users to be
independent of, and unaffected by, the specific services and facilities
used for information exchangeq End users are represented by nodes. Sc
a 3270 display unit is a ncde. Sc is IM5/VS itself. Notice that a 3705
Communicaticns Ccntroller is also a node, an intermediate one. To allcw
information exchange between twc nodes, these two nodes must be engaged
in a ~i~§i2n. Sessions arE generally initiated (logon) and terminated
(logoff) by one cf the nodes.

Introduction 1.25

!l!~_~Q!~_!~_~~~

~he li~!~!! l~!~£Q!!~ni~~~!Qn A££§§§ ~~~~Qg (VTAM) is actually the
implementation of SNA in CS/VS_ VTAM manages the activities of a data
communication system. It allccates ~esou~ces and manages the flow of
data between the nodes in the system. To accomplish this, VTAM p~ovides
the following functions:

~1S~!i]g_!Dg_!!QRR!ng_!h~_~§~~Q~!: V!AM enables an installation to
define the data communication system and some of its characteristics.
Once the system is defined, VTA! can be started and the system
initialized. VTAM can alsc be used to shut down the system in an orderly
fashicn.

~B!nging_lh!_~2Bl!9YI~!i~~_~I~!!i£!111: VTAM enables the network
operator at an as/vs system console to monitor the use of the resources
within the data cem.unication system and to alter the network as
necessary.

Allocation: VTAM centrols the allocation of network resources. By ownIng-and controlling all ~esources, VTA! provides a focal peint within
the system for cont~olling the netwe~k.

IL~_lI~~!~§iDg: vrAM manages the transmission of data between
applicaticn F~cgrams (that is, IMS/VS) and terminals. It enables
applicaticn p~cgrams and terainals to communicate with each cthe~
independently of how the te~minals are connected to the central
precessing unit. V~AM also relies upon the distributed function
throughout thE netwerk (such as in ccmmunications controllers and
prcgrammable terminals) to reduce the processing requirements in the
central processing unit.

~~!i~~i!iIIL ~!~il~fi!iSI' ~~g §~!!i££!~~li!I (]!§): VTAM offers a
design and facilities that reduce the incidence of p~otlems in thE data
communication system, reduce the impact of errors that do occur, and
assist in maintaining the data communication system.

~~RL!~_gng_1h!_~lQ2_~~!!Y~i£g!i~~~_~g~lI~1!~!

~he Net~ork Control Frogram/VS a~tive in the 3705 Communicaticns
Controller, prcvides the following basic functions:

• Sending and receiving data to and from VTA! in the central
processing unit ,CPU) via a S/370 channel.

• Sending and ~eceivin9 data to and from te~minal control units via
communication lines. Beth binary synchronous communications (ESC)
and SDLC line disciplines can be used with the 3270 Infcrmation
Display System.

IMS/VS DATA COMMUNICA!ION CONCEPtS

!he fcllowing sections give an overview of the concepts and facilities
of our subset of the I~S/VS Data Communication feature.

Physical terminals are the hardware devices used to enter or reccrd
messages tein9 sent c~ received over ccmmunication lines. Within the
IMS/VS environment, physical terminals may be permanently attached to
leased communication lines c~ cFerate on a switched communication line
(remote attachment), or be attached directly to the CPU channel (local
attachment).

1.26 IKS/VS P~ime~

Although IMS/VS supports a vide variety of terminals and terminal
subsystems, in this manual we Mill only consider the IBM 3270
Information Display System (also referred to as 3270) attached lecally
or via leased linesq In addition, we viiI limit ourselves to the
following 3270 centrol units and their attached display and printer
statiens:

• 3271 Model 1,2, 11 or 12

• 3272 Model 1 er 2

• 327ij Model 1E or 1C (BSC line ~rotocol only)

• 3275 "odel 1 or 2

• 3276 Model 1, 2, 3, or q (ESC line protocol only)

]11~ ~~!i£! ~QmEs!!2!!i!1: The 3270 hardware provides for the display
of a small size screen forlat cn a larger size screen display unit. A
12x40 screen format for a 32;i/3215 Model 1 will be displayed in the top
left ~art of a 12x80 display unit (a 3276/3278 Model 1 or 11). A 24x80
screen format ,for a 3277/3275/3276/3278 Model 2), will be displayed in
the top part of a 32xSC display unit (3276/3278 Model 3) or a 43x80
display unit (a 3276/3278 !odel 4).

~Qg!£sl_1!~!!Bs!~

A lcgical terminal is a name that is related to a physical terminal,
that is, a no~e. One physical terminal can have one or more logical
terminals associated with it. The user of IMS/VS refers to the logical
terminal in the constructien and transmissien of messages. The user is
never concerned about such things as physical terminal addresses. If a
physical terminal becemes incperative, the logical terminal(s)
associated with tbat Fhysical terminal can be dynamically reassigned to
ancther physical terminal,'thereby reassigning output queues of messages
to another physical destination.

The master terminal is a legical terminal that acts as the operational
hub of IMS/VS. ~he master terminal operator has complete contrel of
IMS/VS communication facilities, message scheduling, and data base
operations. !his facility is used for checkpointing and restarting the
system, for continuous monitcring of the system, and for dynamically
altering the operation of the system. In case of master terminal
failure, the operating system conscle can be used as an alternate master
terminal. Since the master terminal is a logical terminal, it may be
dynamically reassigned to ancther ~hysical terminal. In our sutset, the
master terminal must be a ~~iO disFlay unit with a screen size of 24x80
(1920 characters) in combination with a 3270 printer.

IMS/VS ~rocesses three basic types of input messages. The first one to
eight characters cf the first aessage segment determine the message type
and identify the destination of the message text that follows.

• If the input message identifier is a transaction code, the message
is a transaction, and its destination is the application program
defined to process the transaction.

Introduction 1.27

• If the input message starts with the name of a logical terminal, the
destinaticn is a ter .. inal. This message type is known as a
terminal-te-terminal message switch.

• If the first character of the input message is a slash (/), the
message is an I~S/VS command. lhe command code immediately follows
the slash. IMS/VS commands are ~ntered by IMS/VS terminal operator
to direct IMS/VS to dis~lay or alter the status of one or more
IMS/VS system resources.

2Y!Ey!_~~§§~g~§

Output messagEs to IMS/VS terminals originate from applicaticn programs
in response te terminal input, from IMS/VS itself, or from other
terminals (message switches)Q An application program can send output
messages to legical terminals ether than the one generating the input
message.

IMS/VS provides a comprehensive editing facility for the IB~ 3270
Information Display System and ether terminals. It is called !j§§sg~
!g~~!~ §!IX!~§ (MFS).

MFS allows application frcgrams to deal with logical messages instead of
device-deFendent data, thus simplifying application development. The
presentation cf data on the device or operator input may be changed
without application program changes. Full paging capability is provided
for display devices, thus allcwing the application program to output a
large amount of data to be divided into multiple screens for display on
a terminal. ~be terminal operator can page through subsequent screens
within the message. At the end he can return to the first page cr skip
to the next output message. Input can be accepted from any screen if so
defined in MFS format definition statements.

The basic concept of MFS is that the applicaticn designer describes to
the IMS/VS MFS languagE utility:

• The input message format as it will appear from the device

• the input message format as it is to be presented to IMS/VS and the
application program

• The output message format that the program will present to IMS/VS

• ~he output message format as it is to appear on the device

Eased on atovE descripticns, IMS/VS formats the data coming from the
dEvice going to the applicaticn program, and vice versa.

All input and output messagES, except cOfmand input, are queued in main
storage, with direct-access storage backup as required. In this way,
messages can te received by the system although the resources necessary
to process them might not be immediately available. For improved
performance, long and shcrt messages are queued on separate
direct-access data sets. Space in a message queue data set is reused
when it is no longer required fer a previous message.

1.28 IMS/VS Primer

~2n!!I§!~i2n!!_f~2g!~§in~

Conversational processing lets the user retain aessage continuity from a
given terminal eVEn thcugh the prcgram that processes the conversation
is not retained in main storage throughout that conversation. Whenever
a transaction code is defined as ccnversaticnal, the application program
can interrelate messages from a given terminal using a §~'i1gaE!g !~~~
(SPA). A unique SPA is created for each physical terminal from ~bicb a
conversational transaction is enteIed.

Typical contents of the scratchpad area are data from the terminal and
frcm data bases to be saved tetveen interaction passes of the
conversation. OnE scratchFad area is used for each terminal operating
in conversational mode. lMS/VS automatically compresses and eXFands
scratchpad contents to reduce data movement and l/C requirements.

Any subseguent data entry from a terminal already operating in
conversational mode causes the message processing program processing the
transaction to reCEiVE both the ccntents of the scratch pad area and the
input terminal datau Each input message is considered as an individual
unit of work for the progral.

A terminal command is available to enable the terminal operator to end a
conversation ~rior to its normal completion. Commands to temporarily
suspend and save an incomplete conversation, and to resume that
conversation at a later time are also available to the terminal
operator.

I"S/V5 enforces SEveral types of user-defined security requirements. In
our subsets, two types of security verification may be designatEd:
terminal security and password security. ~erminal security ensures that
a transaction or command may be entered only from specific, designated
logical and/or pbysical terlinals. Password security ensures that a
transaction or a command message will not be processed unless a
user-defined password is appended to the transaction code or to the
command verb.

Security violaticns arE reccrded cn the IMS/VS master terminal and
system log after a specified threshold count. Access to IMS/VS data
bases by non-lMS/YS applications or operations must be secured ty tbe
user's own operational policy aDd ~rocedural controls. The ~!!~ng~g
!!Sg~i!I §YER2~! of I"S/YS provides an interface between I~S/VS and the
~§2~1£~ A££~§~ ~SD!'2l f!~ili!I (FAeF) program product 05/VS2 ~VS only
or a user written exit. ~his extended security support is not included
in our subset. Fo~ more information you should refer to the l~~L!~
g!n~I!! 1n!2~m~11Qn ~g~ggl and the I~~L!a ~l!!~~LAE]!i£!!iQn ~~§!gn
~g!g!4

!!~!i~!1_£2!~Dg_~!ng~!g~

The IMS/VS terminal command language is used by I~S/VS terminal
operators to disFlay and alter system resources. The major command
functions are descrited belcw. Most ccmmands can be specified to
operate on one or more occurrences of a particular resource type. Most
commands for dynamically interrogating or altering the processing
functions of IMS/VS are limited to the master terminal. The major
functions availatle to the .aster terminal operator through commands
are:

• Starting, stepping, or otherwise modifying the system functicns of
message receiving, gueui~g. scheduling, and sending_

Introduction 1.29

• Allowing the 1es/vS system to purge its message queues prior to
shutdown.

• Temporarily halting transaction processing. message processing,
program scheduling and execution, and data base usage.

• Starting and stc~ping message processing regions/partitions.

4 Initiating and ccntrolling 185/V5 checkpoints and restarts.

• Modifying logical terminal to physical terminal assignments.

• Displaying the status of various resources, such as transaction
types, programs, data bases, message queues, and communications
facilities.

• Displaying main storage buffer pool and control block pool
utilization.

The major functions available to the remcte terminal operator (nonmaster
terminal c~erators) thrcugh ccmmands are:

• Terminating. saving, or releasing a conversation.

• sending a message to a selected logical terminal.

• Formatting a 3270 display screen for data input.

• Displaying the identification of the master terminal.

Response mode is an option that causes interactions between the terminal
operator and the ap~licaticn ~rogram to be synchronized. When IMS/V5
receives an inEut transaction that causes response mode to be used,
IMS/V5 accepts no mere ccmmunication fro. that terminal until the
applicaticn Erogram response has been transmitted. This will be the
tYFical mcde of operation in our subset.

MESSAGE SCHEDULING

Separate operating system regions or Eartitions are used for message
precessing. These regions or partitions are initiated through the normal
operating system job management routines during IM5/V5 initialization or
by an IM5/V5 master terlinal ccmmand during IMS/VS execution.

All messages aCCEptable to thE system are predefined and verified
through a 1- tc 8-character code in the first segment of a message.
When a valid messagE is ccmEletely received and queued, its presence is
made kncwn to message scheduling. When the required resources for
message scheduling are available, processing is initiated.

LeGGING AND CHECRPC1NT/EES!ABT

This facility supports logging, checkpointing, shutting down, and
restarting IMS/VS Executions. the online checkpoint and restart
functions are dependent upon queuing all messages on direct-aCCESS
storage and rEcording of all messages and data base modifications on the
system log.

1.30 IMS/VS Frimer

In the IMS/VS DB/DC system, all message and data base modificaticns are
recorded on a central SystEI log data set. Ihis log data set is
compatible with the DL/I batch .log data sets. The data base changes of
both.types of log data SEts can be accumulated into one change
acc~mulation data set. This provides a consistent recovery mechanis~
for data bases used in online and batch operations. In our subset, this
log data set must be on a magnetic tape.

~~§~~f2!~!§

Periodic checkpoints of I~S/V~ are used to provide the ability to
restart after loss of main storage, direct access storage message
queues, or data bases. The master terminal operator can enter commands
to take a checkpoint ar.d IMS/VS·itself automatically takes a checkpoint
periodically. ~he following checkpoints are distinguished:

• System-scheduled ct.eck~cints based upon log activity.

• After a master terminal request fer orderly termination of the
system. Unprecessed input messages may be retained on direct access
storage queues or recorded on the IMS/VS system log for sutseguent
processing.

~~2t!~1§

IMS/VS can te stopped and restarted daily or at explicit intervals.
Restart reconstructs the system after a controlled stop, an emergency
stop, or a data tase destructicn. To start the IMS/VS system, the
operator instructs the operating system to start IMS/VS. Once the
IMS/VS contrel program is operative, one or more jots, which beceme
IMS/VS processin~ regicns/~artiticns, may be initiated. Remaining
regions or ~artitions are used for batch processing. Upon initiation of
the IMS/VS control pregram, a message is transmitted to the master
terminal requesting an indication of the type of restart for IMS/VS.
The operator's response causes ccntrol to pass to the restart f~cility,
which eptionally reads the old system log. 7his log contains input
messages receiv~d but not ~rccessed, or cutput messages generated tut
net transmitted, cn the previous execution of IMS/VS.

Any other information required to restart the system is also carried on
the log. MEssages on this log are put back into the same message qUEues
in which they were left at the ~revious system stop. After completion
of the restart processing, the master terminal operator may enter
commands to initiate communication line operation. message processing,
and data base use.

Bestart without a system lcg is equivalent to an initial start (cold
start) for all message tratsmissicn and processing.

When IMS/VS is restarted after an abend, the restart capabilities of
IMS/VS provide the following information to the master terminal:

• The name of the lessage Frccessin9 program that ~as executing in
each message processing address space at the time of abend.

• The input messages that caused the message processing programs to be
scheduled.

Introduction 1.31

Data base modifications are logged. This information is used at
restart. The data base modifications caused by programs in ~rocess at
time of failure are autc~atically backed out and the original input
messages are reprocessed in their entirety.

In addition to system restart, facilities are provided to reconstruct
data tasES using image CC~iES and the system log.

UTIL1TY PBOGBAMS

In additicn tc the utility programs available with DL/1, the 1MS/VS Data
communication feature prcvides several utility programs. The following
utility programs are intrcaucea in our subset:

• A~plication control block maintenance. Uses the output of program
specification block and data base description generations to CtEate
and maintain the ccntrol blccks in a form directly usable by the
IMS/VS online system.

• SEcurity maintenance. Creates ccntrol blocks that descrite the
terminal and transaction security requirements. IMS/VS uses a
scheme of ~asswords for terminal and transaction access.

• System log analysis. Eroduces statistical reports having usage of
message types and terminals.

• MFS language. Creates control blocks that describe message and
device formats for devices using message format service (MFS).

• A DC Monitor re~ort ~rogram which ~rovides information regarding the
performance of the system. ~his is based on the output collected by
an optionally activated monitor in IMS/VS.

• System log recovery and terminaticn ~rograms to recover or terminate
the systel leg in case of ~achine errors.

The following three kinds of regions, address spaces, or partitions
under OS/VS are distinguished in an IMS/V5-DB/DC system.

• The S2B~~Q~ (£11) !!~l~~ contains the IMS/VS control program. It
controls the terminals and data bases.

• The ~~§§s~s £'~S~§§1~9 f!29I!! (~~~) !~giQn hosts the application
~rograms fer messag~ driven processing of the data bases. The MPP
region is controlled by and relies upon the CTL region.

• The ~~~~h !§§§~S§ !!~~s§§iI9 (J~!) ~§9!~B contains an application
program for batch precessing of the data bases managed ty the CTL
region.

Once the IMS/VS control region or partition and one or more message
processing rE9ions er Fartitions have been initialized by the operating
system jot management facility, the follcwing system flow occurs. See
Figure 1-15.

1.32 IMS/VS Primer

CTL
REGION!

PARTITION

OSNS

IMSNS CONTROL MODULES

APPLICATION
PROGRAM

FOR
MESSAGE

PROCESSING

MPP
REGION!

PARTITION

DATA
BASES

APPLICATION
PROGRAM

FOR
BATCl-i

PROCESSING
OF

ONLINE
DATABASES

BMP
REGION!

PARTITION

Figure 1-15. IMS/VS Data Base/Data Communications System Flow

The following notES relate tc the circled numbers in Figure 1-15.

1. The data communication facility (event 1) requests restart
instructions from the master terminal. After the completion of
restart, the master terminal enables communication from all user
terminals (event 2).

2. When an input message or message segment is received (event 2), data
communication calls the common service (event 3), and the input
message is logged (event 4) and queued (event 5).

3. When there are input messaqes queued and waiting for processing, and
a message processing region or partition becomes available, control
is passed to scheduling to determine the application message
processing program to be scheduled. The application program is
loaded (if needed) into a region/partition and given control.

4. The application program subsequently makes requests for the input
message and/or data base reference (event 6). Control passes to
DL/I for either message reference (event 7) or data base reference
(event 8). The message reference is accomplished through common
sarv ice.

5. While the application Frogram is executing, modifications can be
made to the data base (event 8) and/or output messages may be queued
(events 5 and 7).

6. When the applicaticn program terminates or reque3ts another input
message, all its queued output messaqes are transmitted to ~he
designated output terminal (s) (events 3 and 2) in our subset.

Introduction 1. 33

BATCH PFOCESSING OF ONLINE DATA BASFS

Once the 1MS/VS control region or partition has been initiated by the
operating system, a e!~£h !!!§!g! processing (SMP) region or partition
can be initiated. ~he application program in the SMP region or
partition is scheduled by operating system job management. Its
execution, however, is controlled .by the IMS/VS control region. This
BMP region or partition may contain an application program for batch
processing of online data bases. DL/I is used for data base reference
and update (Figure 1-15). Any data reference is initiated by the batch
message processing ~rogram (event 9).

The data base admi~ist~ation function as introduced in the first part of
this chapter is extEnded and complemented with a data communication
administration function in the IMS/VS DB/DC environment.

DCA CHABACTEBISTICS

• DCA provides standards for and controls the administration of the
online system and its data base use.

• DCA provides standards and guidelines for message format service
usage and enforces the administration of device and message formats.

• DCA is responsible for the transaction and logical terminal security
control. Passwords should he regularly changed and the security
maintenance utility should be used in a controlled manner.

• DCA maintains the logical terminal, physical terminal, and mode or
physical line assignments. DCA interfaces with network control or
provides that function itself.

• DCA is the cen~ral contact function for a user liaison group or
implements that function itself.

The sample IMS/VS DB project plan as discussed earlier in this chapter
(see Figure 1-12) can easily be extended to the IMS/VS DBIDC
environment. Figure 1-16 shows a gross PERT chart for such a project.

1.34 IMS/VS Frimer

A DESIGN

II REVIEW
A ,WLEMENTATION A ACCEPTANCE II REVIEW II REVIEW

Figure 1-16. IKS/VS-DE/DC Installation Flan PERT Chart.

The following activitiEs should be extended or added to the DB-only
version.

!~~!~ll_!I!HL_li~f_!~g_l~aL!a_l~~Q~~~~l: ~he system programmer installs
VTAM, NCP (if remote network) and the IKS/VS DB/DC system.

Q£_2~~~~_Q~ign_l~QQ=~~Ql: The transacti~ns, programs, device and
message formats. and their interrelations are defined.

Q~!~il~r~_Q~~igD_~nd_~Qaing_j~~Q=~~Ql: The formats a~e developed in a
standard way. They are tested with their corresponding messag~
processing programsq

~g§lgn_nlQ_§~!g~_gng_~lQ_!~giDi~g_1~~~=lQQ1: The IMS/VS Primer Master
Terminal Operator's Guide should be adapted to your environment and used
in the training of the MTO.

Q~~.ig.D_~!Q_~.Yi~~_.~ng_.Y§~£_1£~!n!ng_j§2]::~~Ql: The IMS/VS Primer Remote
Terminal 0Ferator's Guide should be adapted to jour environment and used
in the training of the remote terminal operators. The end ~ser
departments should be educated in a timely manner in the use of an
cnline system.

The IMS/VS Primer Function is an implicit, open-ended subset of standard
IMS/VS functions. The subset selected is aimed at the first time IMS/VS
user, developing his first and simple IMS/VS application. Following is
a brief overview of the IMS/VS Primer Function subset.

This overview is mainly aim~d at the existing IMS/VS user. It should be
used to identify the usability and/or limitations of the Primer Function
in your environment.

Introduction 1.35

~!~! ~!§! ~!!~§!~

DL/1 Storage Crganizaticn and Access Methods:

• Only HDAM, HIDA!, SHISA~, and GSAM (ESAM)

• VSAM, OSAM, and ESAM (for GSAM)

• No ISAM or 05AM for HIDAM

• SinglE data SEt grcufs

• Single volume OSAM data set

• Nc variable length segments

• No sEgment compressicn

• No tL/I Exits, EXCEpt HDAM randomizing modules

• No hierarchic pointers

• Basic rules/recommendations for pointer selections

• SCAN=3 ,default) in tBD

• Only HIDAM frEe space distribution parameter (FBSPC)

• No BLOCK or RECORD parameter in DBD; mandatory SIZE parameter

• No 3850 sUfport

Logical Relationships:

• Only bi~dirEcticnal virtual pairing

• No uni-directional cr bi·directional physical pairing

• Mandatory RULES=VVV for logical child segment

• Mandatory BOlES=PlV for physical and logical parent sEgmEnt

• Mandatory fhysical stcragE cf logical parent concatenated key

• Mandatory sequence field in logical path to the logical child

• Basic rules/reccmmendations for pointer selection

Secondary Indexes:

• Root segment is always target segment (no inverted structures)

• No overflow da ta set IEStS); mandatory /51 field if non-uniquE keys
in index pcinter segment

• No shared indexes in a secondary index data base

Dill Call Functions:

• GO, GN, GEU, GEN, 15FT, BEEl, and tlET calls

• IBST and CHKP calls (cnly Extended checkpoint/restart function)

• No Boolean qualificaticn statements in segment search arguments

1.36 IMS/VS Primer

• D, N, F, Land - command codes (path call included)

• No multiple ~ositioning (multiple PCBs will be used)

Data Base Design:

• Simple data tase design technology based on the transaction/data
element matrix

• Basic rules/guidelines' for logical and physical design, including
organization, ~ccess method, and pointer attribute selection

tata Ease Reorganizaticn:

• All logical related data tases are reorganized at the same time
(data base scan utility not used)

• No utility ccntrol facility (UCF)

• Simple guidelines for Ecnitcring reorganizaticn requirements

• No partial reorganizaticn

Data Base Recovery:

• Recovery with and without DL/I log tape

• Mandatory log data set change accumulation

• Mandatory write abead lcg taFe

• Log tape recovery

• No utility ccntrol facility (UCF)

• Simple procedural guidance for data base error detection,
classificaticn, and reccvery

• Easic guidelines for imagE copy and log tape administration. and
data set retention periods

• No online image cOFY

Installation and Operation:

• Only OS/VS1 and OS/VS~ (MVS) support

• VSAM is mandatory

• ~he IMS/VS DE installaticD ~rocess is described separately from the
DE/te installaticn process

• No AeBLIB for data base only system

• Simple interpretation guidelines for tB Monitor output and data base
tuffer pool statistics

• Nc support for power warning feature

• SamFle application programs written in both ANS COEOL (compiler
used: as/vs CCEOI, 5740-CE1) and PL/I (optimi2er compiler used:
5734-PL3)

Introducticn 1.37

Cevice Support:

• IBM 3210 Information Display System, the following control units and
attached terminals, via ETA" or VTAM, locally or remotely attached:

3271 Model 1 , 2, 11 C1: 12

3212 Model 1 or 2

3214 C!odEl 1B or lC (B SC line protoc 01 on1 y)

3275 Model 1 or 2

3216 Model 1, 2, 3, or 4 (sse line protocol only)

01/1 Message Call Functions:

• GU, GN, ISEt, and eH~G calls

• XEST/CHKP call ccmhinaticn fcr BMPs

Message Format Service:

• Only message formatting option 2

• Dynamic cursor ~ositicning via attrihute byte only

• Single segment input

• No multi~le page input

• One output segment equals one logical page, equals one physical pagE

• Logical paging, no ~hysical Faging

• No device type mixing in MFS

• No program function keys (PFKs)

• No message field and SEgment edit routines

• Nc prompt facility

• No operatcr control tables

• No selector pen

• No operator identification card reader

~essage Processing:

• Only single segment input messages

• Multi segment output message

• Maximum length cutput segment of 1388

• Only response mode transactions

• Non recoverable inquiry only transactions

• Recoverable u~date transactions

1.38 IMS/VS Primer

• Conversational transactions, with fixed size main storage scratch
pad area (SPA) of 1300 tytes

Data Communications Design:

• Cencepts of cnline transaction design, based on application,
terminal user, and systel characteristics

• Basic MPP structure for simple inquiry, update and conversational
~rograms

• fasie 9uidelines fcr screen design

• On-line data case design ccnsiderations

Installation and Operation:

• Long message queue reco~d length of 1500 bytes

• Short message queue record length of 250 bytes

• Forced terminal and ~asswcrd security

• No exit routines in IMS/VS except HDAM randomizing modules

• Cne MPP and cne E!i region

• No message queUE access via BMF

• Mandatory IMS/VS shutdcwn for data base recovery or reorganization

• Sin91e mcde transaction scheduling

• Single transaction scheduling class and priority

• No ~rogram-to-FrogIam switching

• Sample set of V~Ar. level 2 definition statements

• Sample set of NCP/VS definition statements to be used with IMS/VS
and iTAM Level 2 sample definitions

• Single log ta~e only

• No online DUMFQ

• No disk logging and enhanced restart

• No autcmated operator interface support

• No resource access control facility (FAeF) support

• Mandatory hardcopy of all eligible master terminal commands and
responses

• Only IASSIGN. /EROADCAS~. /CHECKPOIN!, /CLSDS1 (VTAM only), IDEtUMi.
/DISPLAY, /EFES~AR~. IEXIT, IFCRMAT, IHCLD, IItLE lETAM only),
INRESTART, IOPNDSl ,V1AM cnly). /PSTOP, /PURGE, /RClSDST (VTAM
only), /RELEASE, /RSTART. ISTAE1, IS1CP, and I~RACI commands for the
Master Terminal O~eratcr

• Only IEXIT, /FORMA1, IEOLD. /RCLSDSt. and IRE LEASE commands for the
Remote Terminal Cperator

Introduction 1.39

As in almost any system implementation, the design is the mos~
challenging task te be perfcrmed. ~he best cptimi2ation or tuning
effort ~hich you can perform is a sound initial design. On the ether
hand, a designer is eftEn bcund te a time limit and does not know all
future Iequirementso To cope with these problems, a designer needs a
good plan and pre~er techniquEs.

The mcst crucial topic in the design of applications with data base
management system~ is the ~~!~ ~!§§ ~~~igD~ In this chapt~r WE viII
introduce data base design with DL/I4 We will also provide guidancE in
selecting these tL/1 functions Which will result in an open-ended
design. OUI majer objective is a good overall design resulting in good
overall performance rather than a design which maximizes the performance
ef a single application program.

Should you have a specific Ferformance objective for a particul~r
aPFlication, then you arc advised tc study Chapter 9, "Optimization," in
detail after r€ading this chapter, and teiore starting your actual data
base design.

This chaFter consists cf three ~arts.

1. IntIoduces the sample application in detail. It sets the
reguirements and the environment for the actual data vase desigI
process. It is meant tc giVE the backgrcund for the examples used
in the two fellowing pa~t5.

2. Introduces the functions of DL/1, available to the data tasE
designer. It alsc cc~tains the sp~cification of the DL/I data base
detinition language. This part will be the major referencE area
aftEr the initial study of this chapter.

3. Introduces the concepts, techniques, and quidelines for the
designing of data tasEs with Dl/I. It is aimed at those individuals
~hc aIe designing their first data bases with DL/I. As such, it is
more oriented towards lEarfJing than referencing.

Each cf the above three parts is constructed along the three phases of
data base im~lem€ntatjon:

• Phase 1: Basic data tases

• Phase 2: tata baSES with lC9ical'relationshi~s

• Phase 3: Data bases ~ith secondary indexes

With this gradual approach you should be atle to design sim~le data
structures wit~ a minilal alcunt cf effoLt and still be able, when the
need aris~s, tc exploit the full DL/I function. Once again, you should
realize that data base design is Det just a matter of creative
imagination Q Mest of it is systematic lator~ The intent of this
chapter is to hEl~ yeu vith this, by providing techniques for an
efficient accomplishment of this challenging task.

Data Base Design 2.1

PHASE 1 SAMFLE EEQOIREMENtS

E!~I~_~g!~_g!!!_~2n~sn~§

Following is a list of all the data elements te be stored in the FA~TS
data base together ~ith their system names. The system namE follcw the
naming convention descritEd in Chapter 1.

Name
FE1PGDSC
FE1PGSN!
FE1PGPNR
FE1FGCNT
FE lPGPRI
FE1PGDlf!
FE1PSLCC
FE 1PSCN 'I
FE1PSDA'I
lI1PSISS

FllPSREC

FE1PPOSU
FE1PFQCD
FE1PPQRI
FE1FFODT
FE1PPDDT
FE1PPONR
FE11?GNE~
FF lPGOL t
FE1PGEQV

~'§!~Ii.E!.iQ!}
Part name, full description
Patt name, short description
PaIt nUlber code
Unit of measure for quantities
Part tasf price
Unit dimensions
Steck physical location code
Stock physical count quantity (tally)
Date of last physic~l stock count
Total issued frcm steck in current
period
Total receipts to stock in current
period
Supplier's name
Quantity ordered
Quantity received
Purchase order date (MMtDYY)
Delivery date (MMtDYY)
Purchase crder number
New (superseding) part number
Old (superseded) part number
Equivalent part number

!n!~n!~~1_~~E2!!_f~Q~~§§!ng

1:~qg!h
50
13

8
e
8
8

12
6
6
6

6

20
6
6
6
6
8
e
8
8

Every week a report is made of all the parts in stock with a listing ef:

• part number

• Part name, short

• Part name, long (optional)

• Quantity in stock

• Quantity iSSOUEd frou: steck in current period

• Quantity received in current period

• Quantity cn crder

We will refer to this application function as transaction TE1INVFf. On
demand (averaging twice a day), the s~me information is ne€~ed fer
specific parts, ncrually 1 tc 10. This transaction, TE1INVCU should be
designed ~ith the idea that it will be done online at ~ latEr stage.

2.2 IMS/VS Frimer

!~~S~Ai!_QI~jI_~!2~!§§lDg

taily, an averagE of 1CO crdErs are processed, each containing an
averagE cf 2 parts anc a maximum of 6. The purchase order forms,
delivered by the purchasE dEpartment, are keypunched and sorted in
purchase order/part number sequence. This application is alse Flanned
to go online in thE Dear futurE, with videc terminals installed at th€
Furchase crder department.

Note: An order signal list could be produced in the same program which
generatEs thE weEkly Farts invEntcry repcrt but this will not bE
addressEd in our sample.

The functions performed by this application are:

• Entry of new orders, transaction TE1FCNEW.

• Chanqe of existing orders, transaction TE1pOCNG.

• Deletion of crders after dElivery, transaction TE1pODEL.

PHASE 2 SAMFIE FI~UIRElENTS

~~!]!~_Q~~~_~!§~s_;Q~_!h~§2_l

In the phase 2 environment we will add the Customer Order ProcEssin~
Application. This aFplicaticD requires infcrmaticn from the:

• Existing Parts data base

• Existing Central Customer file

• New Customer CrdErs data base

ThE data elEments required frcm each of these ara described below.

t!!!~_~!~!_]!~~!D!§: Primarily the same data elements as in phase 1 are
required, although some are not used in this application.

FE2pCNUM
FE2PCNAM
FE2FCADF
~E2PCC~Y
fE2Pcpct

Customer Number
Customer Name
Customer Address
customer City
Pcstal COdE

6
20
20
20

6

rata Base Design 2.3

IE20GRE!
FE2CGS~A
!E20GCNR
FE20GCDt
FE20GtD!
FE2CGDWK
FE20GSPC
FE20GORI
FE20CPNR
FE2CDQiY
FE20DPRI
FE20DTAX
FE20SNR
FE20~DAT
FE20SME~

FE20tEOR

Order Nuaber
Order Status Code
Custcmer Number
Crder Entered Date
Order Due Date for Delivery
Crder tue Week for Delivery
Special Delivery Instructions
Order Crigin Code
Part Number 1his Orderline
Part Quantity Ordered
Part Base Selling Price
Fart Sales Tax Category
Shi~ment Number
Shipment Date MMDDYY
ShiplEnt ~etbod
Baekerder Flag

6
2
6
6
6
2

20
2
8
6
8
1
8
6

~O
1

The sample applicaticn fer Phase 2 is £]§lQ~~; £fg~! g~Q£§2~ng. This
censists cf three basic transactions:

•

•
•

tE2CONEW
tase

TE2COCNG

!E2CCDEI

adds a new custcmer crder to the Customer Orders data

changes data in an existiny customer order

deletes a customer order from the data tase

The customer crder characteristics are:

• An average of :CC crders per day, maximum of '000

• Each crder contains a maximum of 8 crder lines, one ord~r line for
each Fart type ordered, an average of 3 order lines per crder.

• !he average delivery tir.e ef an order is two weeks.

• AftEr delivery, the erder is deleted from the data base.

• Access to the order infcrmation is required via both the order
number and the part number (the latter, for changing the crder
whenever cbanges te the status of a part occur).

Additionally, anoth~r aFplieatien requires access to the customer orders
for each Fart. So ~e must link the part and customer order information.
The customer name and address are alsc needed during customer order
processing. this information is maintained in the Accounts ReCeivable
application which will net be ccnv€rted at this time. This information
is stored in a V5AM RStS. The key of this KSDS is the customer number,
~hich will be stored in the Customer Order data base for reference.
1.his KSDS will be defined and accessed as a root only DI/! data tase.

The advantages to this approach are:

• !h@ current Ksrs is still av~ilable for the non-tL/I Acccunts
Beceivable applicaticn.

• The same KSDS can be processed as a Dl/I data base, thus allo~ing
the new customer application full tL/! functionQ

2.4 IMS/VS Primer

• This root only data base can easily be extended with addition~l
segments ~h~n the Accounts EEceivable application is converted to
DL/I. This conversion can be done with minimal impact on the
Ctstomer Order application.

PHASE 3 SA~FIE FECUIRE~ENTS

For the phase 3 sample aPFlication, ve incorporated one additional
requirement for the purchase CIder application. This requirement
Frcvides fa~t purchas~ o~der information for one or more purcha~~
orders, baseo on the purchase erder number. To implement this new
transaction, 7E~I(INC_ we will utilize the secondary index function of
tL/l.

This part of ChaFter 2 Frcvides an introduction to the DL/I functions
and their use. lt is the lain source of reference for the data base
designer and/Lr data base administrator. This part is subdivided into:

• A discussion cf the DIll data base organizations

• A pr~sentation of the DL/1 data base definition language

The first part, provides the insight into DL/1 necessary for the data
base designQ !he second part provides details for the implementatien of
the data tase(s). Each Fart has three sectiens. These sections cover
the follewing main data base facilities:

• Physical data bases and stcrage organizations

• Logical re!aticnshi~s

• Secondary indexes

PHYSICAL t~T~ BA~f AND S10RAGE ORGANIZA1IONS

~o sU~Fort a ~ide variety of data base requirements, DIll provides
several data base storage erganizations" However, your application
programs will te typically itde~E~dent of the ~articular organi2ation
chcsen fer a given data base.

In our subset, we viII limit ourselves to the following data base
storage organ~zaticns and their asscciated data base types.

Eierarchical tirect ACCESS MEthod HDAM

Hierarchical Index Direct Access Method HltA~

Sim~le Hie~archical Index Sequential Access Method SHISAM

Generalized sequential Access Method GSAM

The data base tYFe, its organi2aticn, and structure are defined in the
gg!~ Q~§2 1~§£~iE~~Qn IDEt). To use Q data base in an application
program, you must Frovide a !!~g!~! ~E~f~!i~~!i2~ ~12g! (PSE). 1h€ PSB
specifies the data base(s) to be used and the kind of usage required.
DBDs and PSEs are created during ~!1~ h~§§ g~~Ii~!iQn g~q~&s1;2q

Data Ease Design 2.5

(DBDGEN) and iI2gI!! §2!£iti£!i!QU ~lQ~! g~n!~!iiQn (PSBGEN),
respectively. ~his is discussed in detail later in this chapter.

Before discussing each of the above or9aniza~ions in detail, we will
first elaborate somE mere cn some basic tL/! co~cepts which were
introduc~d in Chapter 1.

Ih!_~~Ll_~~!!_~!§!_B§~~~g

As introduced in Chapter 1, a Dt/I data base record as shown in Figure
2-1 consists of one root segment and a number of dependent segments.
Each dependent segment can bave a variable number of occurrences below
its parent occurrence.

PARTn

I
I

I STOCKn3

I STOCKn2 I ORDERn2

STOCKn1 ~ ORDERn1 - ~

I
DETAlln11

Figure 2-1. ~ tL/I Data BaSE Record

In its most elementary ferm, this record could be stored in one or more
physical records. In principal, the SEgments would be stored in their
hierarchical SEquencE, as shc~n in Figure 2-2.

2.6 IMS/VS Frimer

RECORD
M-1

RECORD
M

PARTn

DL/I OAT A BASE

PARTn-1 I

RECORD
M+1 DETAILn11 ORDERn2 PARTn+1

Figure 2-2. A tt/l Data Base Reccrd in Physical Stora~

It should be noted that thE abcve figure is a sim~lification. In
reality DL/I uses more elaborate storage organizations to allow for
efficient replacement, insEIticn, and deletion of segment occurrences.
Generally available functions include, for example:

• Space re-use of deleted segments

• Chaining of segments tc te added later in the right hierarchical
sequence

• Direct or key-sequenced aCCESS for the root se9m~nt based on the
root segment sequence field '=key field).

This will be discussed in more detail for each of the data base
organizaticn methods.

A segment in a DIll data base record consists of a prefix ar.d a data
portion. ThE prefix ccntains ~he system oata used by DL/I and is not
presented to applj.cation programs. The data portion contains the user
data as seen by the applicaticD ~rc9ram. !he prefix of a segment
contains a segment code, a delete byte, and opti~nal pointErs.

-------~ ... ----- DATA __ I

Figure 2-3. S~9re€nt Fermat

FIXED LENGTH
USER DATA

Data Ease Design 2.7

The one-byte §~g!~n! £Qg! is used to identify the segment. It
first tyte of thE FtEfix. The sec~nd byte is the g~!~~~ ~l!~.
us~d to maintain the status of a segment within the data basE.

is the
It is

~S!~: SHISAM and GSAM dat~ bases can contain only one segment type.
These data base organizations do not contain segment prefixes.

Pointers a~e used in HDA~ and 8:DAM data bases for linking the SEgments
within one data basE reccrd in their hierarchical order. Pointers are
also used to link segments involved in logical relationships, and tc
implement index pcir.ting. the segment ty~es in each data base are coded
in hierarchical sequence from 1, the root segment, up to 255, as shewn
in Figure 2-4.

1

I
I I
2 5

1
I J

3 4

Figure 2-4. Segment Iypes Numbered in Hierarchical Sequence

Note that each occurrence in a data base of a given segment type
contains the same segment code. Each SEgment occurrence is normally
idEntified by its ccncatEDated key.

The SQn£!!§D~!~~ !§l of a segment consists of all keys from the root
down the hierarchical path to and including the key of the segment
itself, as shown in Figure 2-5.

2~8 IMS/VS Primer

CONCATENATED KEYS

PART

STOCK ORDER

KBL070100010 75456-01

SEQUENCE FIELD KEYS

DETAIL

03

01001020KBL070100010
'e ,

Figure 2-5. ConcatEnated Keys

A unique concatenated key is nct required for every seg~ent. However, a
unique key is required for the root segment, except for HDAM.

For a better understanding of each parti~ular data tase organizaticn, ~e
includ€ now a tasic descriftion cf the DL/I calls used to process
segments in a data base.

The segments in a D1/l data base ate processed through calls issued by
an applicaticn Frcgram. Calls aIe issued to ~et, insert, delete, or
r€~lace a segment or a path of segments. A call references a parameter
list which includ€s all data reguired by DL/l to complete the call.
Included in the list are a function code and, optionally, one or more
SSAs {segment search arguIEnts). The function code states the call to
be performed, and the SSAs definE the segments alonq the hierarchial
path dc~n te, and including, the segment to be processed. A call is
YngY~l~!i§~ yben no 5SA is includea with the call, and is ggs~!!!~g when
cne cr more SSAs are included. A brief description of the primary calls
used in rrecessing a data base and a brief description of SSAs fellows.
For more detailed informaticn. Iefer to Chapter 4. "Data Base
Processing. U

~h€ basic directicn of mOVElert in a DL/I data bas~ is "top to tcttcm,
left to ri9ht." Positicn in a data base is the segment or segments fronl
which the search for another segment starts. Normally DL/I retains
position at €ach level of the hierarchical path down to the last
retrieved segment.

Data Ease Desi9n 2.9

~~l_Yn!gy~: !he GU ~et unique) cali is used to retrieve a specific
segment or path of seglents frci a data base. At the same time it
establishes a positicn in a data base frem which additional segments can
be processed in a forward direction.

~!1_!§!!: ThE GN 19Et text) call is used to retrieve the next desired
segment or path of segments fIem a data hase. The get next call
normally moves forward in the hierarchy of a data base from the current
pesitionu It can be modified to start at an earlier position than
current positicn in thE data base through a command code, but its normal
fUDction is to move forward from a given segment to t~e next desired
segment in a ~ata tase.

fi~lg_I££!_2£_Q!~_~21!~: A GHU (get hold unique), or GHN (get hold
next). indicates the intent of the user to issue a subsequent delete or
replace callo A get hold call must be issued to retrieve the sE9ment
before issuin9 a delete cr replace call.

ID~!Il: !he ISRT (insert) call is used to insert a segment or a path of
segments into a data base. It is used to ini~ially load segments in
data bases, and ~o add segments in existing data bases.

!o control where cccurIEnces of a segment type are inserted into a data
base, the user norlally de~ines a unique sequence field in each segment.
When a unique sequence field is defined in a root segment tYPE, the
sequence field cf ~acb cccurrence of the root segment type must contain
a unique value. When defined for a dependent segment tYPE, the sequence
fiEld ot eqcb cecurrenCE under a given phYSical ~arent must contain a
unique value~ If no sequence field is defined, a new occurrence is
inserted aftEr th~ last Existing one.

~~l~!~: The tL£7 (oelete) call is used to delete a segment from a data
base. When a segment is deleted from a DL/I data base, its dependents,
if any, are also deletedu

~~E!~f~: The EEPL frEFlace) call is used to replace the data in the
data portion of a sEglEnt or path of segments in a data tasE. Sequence
fields c~nnot tE changed with a replace call.

~§! (~!g!~n! ~~~I£~ !~gy!~~~): An SSA specifies the conditions which a
segment must meet to satisfy the Gall. An S5! can contain three parts.
As a minimum~ it contains the name af the segment type. Optionally, an
5SA can also contain command codes and/or qualification statements.
Commands codes, when used, specify a functional variation of a call,
such as: retriEve last CCCUIIence of the segment under its parent.
Qualification statements identify, through field values, the seglent
occurrence of thE sFecified SEgment tYfe. A qualification statement
contain~ a fiEld name, relaticnal operator, and comparative value. When
cccurrences of the segment type are searched by DL/I, the sp~eitied
field is cempaIEd tc tbe cC~Farative value as the relational ope~atoI
specifies. If only the name of the s~gment type is specified, the first
~ncounterEd occurrence cf that type will satisfy the call.

For each data bas~ organization, DL/I uses ofte or more as/vs access
methods for thE actual stcrage and retrieYciI of the data bas~ re~ords.
Ccmmcnly used access methods are:

• The kEY sequencEd data set (KSDS) and entry sequenced data SEt
(EStS) of tbe virtual stcrage access method (VSA~) of CS/VS.

2. 10 I~S/VS Frimer

• Overflow sequential access method (OSA~). This is a special
physical aCCESS method supplied with Dl/I. As far as CS/VS is
concerned. an CSAM data set is described as a physical sequential
data set (nSORG=PS).

HDAM ANt HIDAM S!ORAGE ORGANIZA~IONS

Both of these data base organi~ations are ir.plemented with the
hierarchical direct methcd cf segment storage. In the hierarchical
direct method, the segrect eccurrences in a hierarchy are connected in
storage via fcur byte direct address poi~ters in the segment prefixes.
A description of thE types cf fcinters used in HDAM and HIDAM data bases
can be found at the end of this $ection.

H~!~_~D~_tlIQ!~_!~~~§§_fh~~s£!~~i§!!£§

~wc of the primary advantages of EtAM and EltAM data bases are sFace
reuse and the ability tc dirEctly access segments within the data base.

The s€gmcnt ~torage organizatien us~n for HDAM and HIDA~ data bases is
essentially the same. The primary difference, at the access method
level. tEtveen HtAM and EIDAM data bases is that aCC~S$ to ·occurrences
of the reat segment type is through a user,randomizing module fer an
BDAM data base, and through an index for a HIDAM data base. ·To a~cess a
given rcet in an HDAM data base. the randomizing modqle examines the key
of the root. and through hashing er some other arithmetic tecbniqUE,
computes the address of the rcet and passes it to DI/I. To acc~ss the
same rect in a H!tAM data base, an index must te s€arched by DL/I te
find the address of thE reet. When found. the root is accessed. By
using a randcmizing module to locate roots, the I/O operations required
to search the index are eliminated. Cn the other hand, sequential
processing of data baSE records is not necessarily in root key sequence,
~ith HDAM.

~~!~: ~Efer to Figure 2-6 fer the following disc~ssion. An HDAM data
base consists tasically cf cne Esrs or OSAM data set. To access the
data in an BtAM data tase, DL/I uses a randomizing module. The
randolizing module is used by Dl/l to compute the address for the roet
segment in the data base. This address consists of the £Qnf£2! !~!~£X~!
(el) , if VSA~, or 2!2£k, if CSA~. number, and an 2D£D2{ E2int number.
Anchcr point(s) ar~ located at the beginning of the CI/blocks. They are
used for the chaining of rect segments which randemize to that CI/block.
A general randcmi2ing module is supplied with the system. See the
section "HDAM Fandomizing !odules" in Chapter 7, which also contains
guidelines to helf yeu write yeur c~n randomizing module if requirad.

The ESDS or OSAM data set is divided into two ar~as:

• Th~ ~oot addIessable area. This is the first n control
intervals/blecks in the data set. You define n in your DDD.

• The overflew area is the remaining pertion of the data set.

The root addressable area is used as the prim~ry storag~ area for
segments in each data base record. The overflow area is used fer
overflow storage. Since data base records vary in length, a parameter
(in the DBD) is used to control the amount of space used for eacr data
ba~€ recor~ in the roct ~adressable area. This parameter, "bytes" in
the RMNAME= keyword, limits the number of segments of a data base record
that can be consecutively inserted into the root addressable arEa. When
consecutively inserting a rcet and its dependents, each segment is
stored iL the roct addressable area until the next segment to be storeo
will cause the tctal sface u~ed to exc~ed the specified number of bytes.

Data Base Design 2.11

The total space used for a segment is the combined lengths cf the prefix
and data porticns of the se9ment. When exceeded. that s~gment and all
remaining segments in the data base record are stored in the ovarflcw
area. It should be noted that the "bytes" value only controls segments
consecutively inserted in one data base record. Consecutive inserts are
inserts to one data baSE record without an intervening call to process a
segment in a different data base record.

HDAM

RANDOMIZING
MODULE

STOCK

LOGICAL DATA
STRUCTURE

ORDER

DETAIL

ESDS/OSAM DATA SET

Figure 2-E. EtAM Data Base in Physical Storage

ROOT
ADDRESSABLE

AREA

OVERFLOW
AREA

~l]A~: A HIDAM data baSE in auxiliary storage is actually comprised of
t~c data bases that aIe normally referred to collectively as a HIDAM
data base. ihen defining each through the tBtGEN utility, cn~ is
defined as the HIDAM ~rilary index data bas~ and the other is defined as
the main HIDAM data base. In the following discussion the tt;rm ftHIDAM
data baSE" r~fErs tc the ~ain HIDAM data base defined through DEIGEN.

ThE HIDAM primary index aata base is used to lccate the data base
reccrds stored in a HltAM data base. When a HIDAM data base is defined
through DfDGfN, a uniqUE sequence field must be defin~d for th~ root
segment type. The value of this sequence field is used ry DIll to
create an indEX SEgment fer each root segment. This index segment in
the HIDAM primary index data base contains, in its prefix, a pointer to
the root sEqment in the mai~ HIDAM data rase.

2 .. 12 IMS/VS Erimer

The HItAM primary index data base consists cf a KSDS; its only data (and
key) is the sequence fie11 of thg root segment. In our subset, the main
HIDA~ data base conEists of one EStS. The segwent storage or9anization
in this ESDS is ccrofa~atlE tc the ene in the HDAM ESDS. Figure 2-7
she~s the layout of the HID~~ data base.

HIDAM

I -PRIMARY~DEX DAT~BASE -,
,- --------1

KSDS

PART

#n

I
I
I
I
I

---r----~~- _.-J

ROOTKEY

STOCK

LOGICAL

DATA STRUCTURE

Fi9ur~ 2-7. HIrAM Data Base in Physical Stcrage

l~§~£!§_~ng_~~!~!~§_!~_fi~]!_~ng_~l~!~

ORDER

DETAIL

~he te~hni~ues used to insert or d€lete sEgments are the same fer beth
HDAM and HltA~ data bases. The techniques involve use of bit maps,
space available chains, and available length fields. These system
fields are used by DL/l te find sface when inserting a segment, or to
record free space ~hen a segment is deleted. Normally, the spac~ a
segment occupies is imuediately freed after the deletion of the segmentq
Yeu cnly need to be aware of these system-maintained fields when doing
CI/blocksizE calculaticns teeaus€ they are allocat~d within your
selected CI/blocKsize. We ~ill cover this wh~n providing guidelines for
such calculaticns late~ in tbi~ chaFter.

Alse, with HltAM, you can specify free space at data base load time
{initial lead or reload during reorganization). This is specifiEd in
the pEt for th~ I~DS. For the F~imary index K5DS. free space can be

Data Ease Design 2.13

assigned ~ith the VSA~ access ~ethod services rEFINE command. In
thEory, you can alsc s~Ecify free space in the DED for an HtAM data
base. 1his is, however, not recommended becaUSE it might ccnflict ~ith
the randomizing mcdule algorithm.

Fointers in HtAM and HIDAM
------~-------~-----------
To link each sEgmEnt in an HDAM or HIDAM data base to its related
segment, direct address pointers are used. The pointers arE four bytes
long, and are placed by 01/1 in the prefix of each segment stored in the
data base. A direct address pointer consists of the relative bytE
address of a segment frci the beginning cf a data set.

~Ql~: The following discussion of Fointers is included for those of you
whc are interested in the internal Dt/l storage organization. A
complste comprehEnsion is not required for basic data base de~ign,
bEcaUSE we will givE detail guidelines fer the necessary pointer
selection in the irplementation part.

ihe most common method is a combination of]hlSiS~1 £B!lgIE~y§!s~l !!l]
pointing_ Figure 2-8 shculd be referred to when reading the following
descri~ticn cf pOinters.

~~l§i£~!_£h!lgl!~Y§!£~l_I!in_iQint~~~: Every parent segment in the data
baSE has a pcinter tc the first cccurrence of each of its child sEgment
types. This is the ~h!§iS~l ££l!g (fiI§!)EQ!n!~~. Cptionally, per
child segment type, there is also a pointer to the last occurrence of
that chilo segment ty~e, thE fhl§!f~l fEilg l~§! £Ql~l~~. ~his physical
cQild last pointer will ir~~ov€ segment insert ~erformance of that child
if that segment has no sequence field defined. It also improves the
performance of a get call which, via a command code, explicitly r€guests
the last segment eccurrEr.CE.

Usually, every segment in a HIDAM or HDAM data base has a pointer in its
Frefix which Fcints to the next {based on sequence field) cccurrence of
this segment under the §E!~ ~~!§n!. (If it is the last occurrence under
the parent, this pointer is ze~o.) 7his pointer is named the Bhl§iS!l
~~in (~£f~~~~) E2in~~~· If it i~ the root segment, the physical twin
pointer points to tte next root if HID AN. In ECAM, the physical twin
pointer is used to chain the reot segment(s) of the anchor point. If
there is never more than one occurrence of a segment for a given parent,
then you should omit this ~cinter.

Optionally, you can alsc select a peinter in each segment prefix which
Feints tc the previous seqment occurrence under the same parEnt. This
is the BhI§!£g! l~ln E~~!~~!g f21~!~~. This pointer will improve d~lete
performance if the segment tc bE deleted is a logical child cr is
lccatEd via the physical child last pointer (that is, command code
last).

In addition, whEn p~ysical twin forward and b~ckward pointer~ are
specified for the rcct segment type of a HIDAM data base, they enable
seguential precessing across data ~ase records withou~ intervening
references to the HIDAM index. When only physical twin forward pointers
are specified for the root segment type of a HIDAM data base, seguential
processing across data tase r~cords requires intervening ref€r~nces to
the HIDAM index. In our su£set, we will always select pbysical twi~
forward and backward Feinters for the roet of a HIDA~ data base.

2.14 IMS/VS Frimer

STOCK"

legend:

PTF: Physical twin forward pointer
PTB: Physical twin backward pointer
PCF: Physical child first pointer
PCl: Physical child last pointer

Note that PTB and PC L are optional.

lOGICAL DATA
STRUCTURE

~~ ORDER12

I P I P
T CORDER"

IF I F

~. DETAILl12

ITIT DETAil",
I FI B LiU>, ____ _

Figure 2-8. Di~ect Address Fointers in EDAM and HIDAM

SEISAM S10BAGE CEGA~I2ATIC~

The data structure of a SHISA~ data base consists ef only Oile segme~t
tYfe, the root segment, with a unique sequence. field. E€:cause of this,
there is no segment prefix needed. The physical storagE organizaticn is
a single VSA~ KSDS ,Key Seguenced tata Set). This makes it possiblE tc
procEss a non tt/l KSVS as a DL/I data base with full DI/l function.
The main use of the SHlSA~ organization is as a migration teol te D1/1
for existing KSD3 or 151M files. It is net r~commended for new data
bases. (See also the phase 2 sample environeent earlier in this
chapter Q)

!Q!~: the logical record lengtb of the KSVS must be an even numler for
SHISAM.

Lata Base Design 2.15

FUNCTIONS AND OS! OF GSAH

An as/vs se~uential file can be defined to tL/I as a GSA~ data base.
However, the nermal concEFts of hierarchical structures do not apFly to
GS AM.

When using GSAM for sequential input and output files, DIll will centrol
the physical access and Fcsitien of those files. This is necessary for
th€ repositioning of such files in case cf program restart. When using
GSAM, Dl/1 will, at restart time, reposition the GSAM files in
synchronizaticn with the data base contents and your application
Frogram's workin~ storage. To control this, the application Frogram
should use the restart IXRSt) and checkpcint (CHKF) calls. these calls
will be discussed in Chapter 4, "Data Ease Processing."

Whenever you want your program to be restartable, you should use GSAM
for its sequential input and output files. There are two reasons why
you should want to do this. The first is to save time if a Frogram
rerun is required in case ef pregram or system failure. This is
normally enly done for long-running update programs (one or mere hours).
The other reason stems frem a Flanned online usage of the data bases.

Te be able to run a batch Frogram in parallel with the online system,
using the same data bases, that program must be executed as a batch
message processing ~MF) Frcgram. A BMF runs as a batch jot, but uses
the cnline centrol regicn of IM5/VS fer the access of DI/l data tases.
In that way, IMS/VS will provide complete data integrity acrcss the
batch and cnline use cf the data. to do so, however, the IfS/VS data
base/data communication system will isolate th~ data ~ase updat~s of a
particular program until ~rc9raro termination. By using the checkpoint
call, the batch program can free t~ose uFdated data base segments for
imlediate access b~ other batch and/or online programs.

GSkM supports data sets organized according to the follewing as/vs
access methods:

• Sequential Access Methos (~A~)

• Virtual Storage Access ~ethod (VSAM)

GSAM supports the Easic Sequential ACCeSS M~thoa (BSAM), on DASD, unit
record t and taFE devices and ESDS en DASD devices. In ou~ subsetr we
will cnly consider ESAf fixed and variable length record forr-ats.

lhe terms segment, segment type, hierarchical, parent, child, atc., are
not applicable to GSA~ data sets, ncr do the concepts of either key or
field apply.

~hen program restart is required, yeu sheuld not use temporary files,
that is, for SISIN/SYSOUT sFooling. !hey may be deleted by CS/VS after
fIcgram or system failure.

A GSAM data base may ~lsc ~e a data set ~reviously craated ty USE cf
OS/VS ESAM, or QSAM. Ccnversely, a GSAM data bas~ may be accessed later
by ether programs using these CS/VS access methods.

~. 16 1MS/VS Frimer

WHY tCGICAL EELA~IONSHIPS

We have sc far addressed only single hierarchical data structures.
Quite often, Especially with different aF~lications, several Dt/I data
bases are needed. In acditicn, there is often a reguirement to access
the same data in different hierarchical structures and different data
bases:--1hiz-can create-prctlems-cf:--- ----------
• Consistency -- if data is stcred more than once, ho~ to update all

cccurrences at the same time.

• Data Fedundancy -- if large data elements are stored many times,
this way consume excessive External stcrage.

• Access of Data -- if data is stored more than once, which access
path should be used to access the appropriate cOFY of the data.

The atove Frctlels car. te sclved by stcring the data only once and
Froviding a linkage mechanism tetween hierarchical structures. With
this linkage a ne~ access path is provided to data in data base A, based
on data in data base B, and, if desired, vice versa.

DL/I's logical relationships provide this function. The basic linkage
is always between t~o segments. However, the linkage can extend to
several data tases. On the ether hand. the resulting compound data
structure ~ill always be presented as a hierarchical structure to a
particular application. !he tasic mechanisn of the DL/l logical
relaticnshir is the connection of a segment to two parents in t~o
different hierarchical structures. Normally, any segment has only one
parent. By giving a segment two parents, that segment (and its
dependents) telong to t~c different hierarchical structures. This
enables the definition of a new hierarchical structure which ccntains
segments froro both related structures. Such a definition is called a
!Qgl~~l ~~1~ !~~~.

BUILDING lOGICAl BEIA1.ICNSHIES

The following segment types are needed tc establish a logical
relaticnshiF- All three must be present for any logical relaticnshiF.
You should refer to Figure 2-9 when reading the following discussion.

PHYSICAL DATA BASES LOGICAL DATA BASE

PHYSICAL"B G~LOGICAL
PARENT~ ~PARENT

ORDER. PART ORDER

t I "
~. LOGICAL CHILD

DETAIL PART L::J I·CONCATENATED
SEGMENT

~--------~--------~

Figure 2-9. segment Types Invclved in Lcgical Relationships

tata Base Desigl1 2. 17

1£gi~!1 ~hi!~_~~g!!D!: this segment has two parents. I iQgi£!! 2~~~n~
and a]hl§!£~l ~~~!n~. 1he logical child segment and its dependents. if
any. are accessable via toth parents. !he access path via its physical
parent is called E!!§!~2! ~££§~2 2~t~. The access path via its logical
parent is callEd thE !~~i~!l !£f~!§ ~!~h. Ey definition. a logical
child segment contains the concatenat~d key of the logical parent
fellc~ed cy user data. if any. !he remainder of the user data in the
logical child is called !B!~~§§£!i2n g!!~. It is present at the
intersection of the t~c ~arEnts. The l£g!£~! ~~f~n! £Q~£~!~~~!§2 !~I
{LPCK) is always presented together with the intersection data. whenever
the lcgical child is accessed via its physical path (see Figure 2-10).

r- - - - - -
1
I PREPIX ,
L- - - - - -

- --,
I I I
I LPCR I INtERSEctION DATA ,

" I
I ,
1<---------TC/IROM USER'S I/C AREA--------------->I

Figure 2-10. logical Child Segment Format

Whenever you insert a logical child segment in its physical data case.
yeu must present the IFeR. It identifies the logical parent.

12g!£~!_i~~§n~_§!9!i~!: This Eegm€nt mal reside in the same cr a
different data base as the lcgical child.

fhI§i£gl_is!!~!_~!9!!D!: This is the nCImal ~arent segment of the
1cgical child in its physical data base as defined earlier.

1he most common method for implementing logical relationsips retween
BCAM and EItA~ data tases is based on direct address pointers. which are
all 4-byte relative byte address pointers similar to other ~cintErs in
EDAM and BIDAK.

Ih!_!i'!~~1_L2gi£~!_£hi!A_~~g!§ni_j!~~1: To be able to define thE view
of the logical parent on its logical children and their occurrence
sequencing, DI/! introduces a special segment tyP€. It is ram Ed the
!i~!~2! 12gis~! f~i!~ and is defined as a dependent of the logical
parent segment. It does not exist in physical storage itself. Its only
role is tc provide a m~chanism to define the 1cgical parent's viE~ cf
the data in the 109ical child. It controls the access from the logical
parent to the logical child. It is used to define the sequ€ncing of the
logical child SEgment ~hEn that logical child segment is accessed via
its lcgical parent. Th@ virtual logical child is said tc te £~i!~~ with
the real logical child. See Figure 2-11.

2.18 IMS/VS Frimer

PHYSICAL DATA BASES

LP
ORDER PART

LCF I

r- L -,
DETAIL I DETAIL I

L __ --1 ~

/ /
REAL LOGICAL CHILD VIRTUAL LOGICAL CHILD

Key:

(Represents DETAIL when
accessed from PA RT)

PP-Physical parent pointer
LP- Logical parent pointer
LCF-Logical c~ild first pointer

LOGICAL DATA BASES

ORDER PART
~an d /or~

DETAIL I PART DETAIL I
I

~
I

CONCATENATED SEGMENTS

Figure 2-11. Virtual Paired Bidirectional logical Relationship

ORDER

When accessed, the virtual lcgical child cODtains the concatenated key
of the physical ~arent of the real logical child, plus the intersection
data of the real, lcgical child. So the virtual logical child tETAIl'
in Figure 2-11 contains the key of the OFDEE segment plus the user data
of the real DETAIl segle~t.

The Destination Ig~~n!: With bidirectional pairing, DL/I refers to the
parent-which-Is ether than the ene used to access the logical child as
the destination]!I§D!. As a censeguence, the logical child always
starts-1iith-'the g~§1in~:t!QD 12!~~!!1 £Qn~~I€ng!~~ lit! (DPCI<) .•

The EhY2if~1 ~!!~ ~!§j~ used te i~Flement a logical relationship must be
HDAM o~ HIDAM data bases. Figure 2-12 shows the physical data bases of
our Phase 2 sample environment. The order line segment in the Customer
Crders data basi is the legicnI child of the part s~gment in the Parts
data base. Notice that the virtual logical child is not shcwn, alttough
it will appear in the DBD as discussed later.

CUSTOMER
PART ORDER

LP

~ I LC I I
'/ I ~ " / , /'

./ ./ /' /' /' . /'

STOCK
PURCHASE DESCRIPTION ORDER SHIPMENT

ORDER LINE
l/ 1/ l/ 1/

Figure 2-12. Th~ Phase 2 Fhysical Data Eases

tata Base DesigI 2.19

A discussion cn ho~ this structure is derived can be found in the last
part of this chapter. A !Qgi£~!_gg1~_Bg§~ is a redefinition of one or
more physical data tasEs which ccntain lcgical relationships. It yields
a new hierarchical structure which is ceqposed of structures from both
related structures. The new structure can ce processed ty a~plication
programs as if it ~Ere ~hysically present. The logical data base can
only be defined if th~ proper logical relationships are defined in the
phy~ical data tasEs.

Ih!~~D£!l!n!l!g_~!g!~n~: All segments in the logical data base stem
frcm ene segment in one of the physical data bases. except when the
logical child is accessed. Whenever the logical child is aCCESSEd in a
logical data tasE, it is epticnallI £2D~~!~n!!~~ with the destination
~arent segment. See Figure 2-13. ~he destination parent is the parent
of the lCEILD ether than the ene frcm which you came.

r----·---~-----------, 1 LOGICAL CHILD 1 I
1-----------------------------1 tESTINAT!ON PARENT ,
I tPCK I IN'IERSEC'IION , ,
, I D~TA , I
\--~

Figure 2-13. Concatenated Segment Format

Notice that the concatenated segment is different for the two paths:

• When accessing th~ real logical child below its physical ~arEnt, the
concatenated s~gment will ccnsist cf:

1. The real logical child, which consists of:

a. !he concatenated key of the logical parent

t. thE data cf the real logical child segment, if any

2. Optionally. thE logical ~atent segment itself.

• When aCCEssing the virtual logical child below the logical parent of
the real logical child, the concatenated s~gment will ccnsist of:

1. !he virtual lcgical child, which consists of:

a. the concatenat€'"d key of the physical parent

b. the data of the real logical child segment, if any

2. Cptionally, the physical parent segment itself.

Mg!~: !he concatenat~d segment only exists in a logical data tase.

Because of the bidirectional virtual pairing, you can always define two
logical data bases with one logical r€lationship~

Figure 2-14 shows the twc lcgical data bases which can te defined using
the related p~ysical data bases of Figure 2-12.

2 .. 20 IM~/VS Erimer

LOGICAL PARTS

DATA BASE
PART

I
J 1 1 I

" I ./ ./' I " / ,
" ~ .L

STOCK
PURCHASE

DESCRIPTION
ORDER CUSTOMER

ORDER LINE ORDER
./

LOGICAL

CUSTOME

DATA

R ORDERS

BASE

I ,

STOCK

"

./

ORDER
LINE PART

"
,. -"

PURCHASE

ORDER
./ ./

./

I
-" ,

SHIPMENT

CUSTOMER

ORDER

1
I

-" " "
SHIPMENT

~ ,/

I
" -"

DESCRIPTION

./

Figure 2-14. Phase 2 Logical Data Bases

The atov€ logical data caSES will be used by our sample Fhase 2
applicatien Frograms.

"

./

"

./

The exact rules for defining and processing logical data bases will be
discussed in the £ollc~if;9 secticn.

LOGICAL RELAtIONSHIP f,ESIGN PULES

In constructing legical relationships with tl/I. two sets of rules lUSt
ce otservEOu One set fer cc~structing the physical data bases and the
second se~ for ccnstructing lcgical data bases. It should be clear that
a lcgical data bas~ can be defin~d only if the underlying physical data
bases are properly defined.

tata Base Design 2.21

If uecessary, multiFle lcgical data bases can be defined for a given set
cf logically related physical data bases. However, good practicE is to
generatE one logical data tase for each ~hysical root segment which
contains only the segmen~s needed in your applications.

," A logical child segment must have one and only one physical ~arEnt
sEgment an~ one and cnly one logical parent segment.

2. A logical child segment is defined as a physical child segment in
the physical da~a tase of its physical parent.

3. In its physical data baSE, a logical child segment cannot haVE
another logical child as its immediate dependent.

,~ A logical parent segm~nt can be defined at any level of a physical
data tas~ including thE rcct level.

2. A logical parent segment can have one or multiple logical child
segment types.

3.. A segment in a Fbysical ~ata base cannot be defined as both a
logical parent and 3 l09ical child.

4. A logical parent segm~nt can be defined in the Same Ot a different
physical data base as its logical child segment.

1. A physical parent sEgrEnt of a logical child cannot also be a
logical child. This is the same as rule 3 for the logical child.

Multiple lcgical relationships can be established within a single data
base or tetwEen two OI ICIe data bases, as long as the above rules are
obeyed.

~~!!~_~2~_~~'~EiB9_!29i~~!_f!l!_I!!!!

1. !he logical data base its~lf is always a single hierarchical
structure.

2. It must start ~ith tho. root of a physical data base and can contain
coly Eegments defined in physical data bases.

3q In following' a hieIaIchical path, no segments may te ski~ped.

4. The logical child plus the destination parent is always presented as
ene ccn~atenated s~gment.

5. ~he dependents of a concatenated segment are:

• !he dependEnts cf the logical child

• The lcgical or physical depen~ents of the destination parent

!he above dependents should not he int€rmixed, nor should their
relative order te changed. But you can start with either of them.

• !he physical parents up to the root of the destination parent
in dSEtination parent to root order

6. If Fhysical parents of a destination parent are included, then you
can alEo include their logical or physical depen~ents in their
normal order.

1. Any number of logical relationships can be used in a single
hierarchical path in the logical data base up to the maximum of 15
segment levels.

1. E~caUSE of th~ vi~tual lcgical child CCDcept, paths are
bidirectional and can be ~ntermixed and/or repeated in a single
logical data base.

2. All segments of related data bases are available as long as you
follow the above rules. The same physical segment type could appear
in several different Faths if needed.

Figure 2-15 shows some examples of logically related physical data bases
and their associated logical data bases. It illustrates most cf the
above rules. This ~xalple is net representative for a typical DIll
application: it merely shows the different possible combinations.

PHYSICAL DATA BASES

DBD1 DBD2 DBD3

POSSIBLE LOGICAL DATA BASES

Figure ~-15. Using Multiple Logical Relationships

tata Base Design 2.23

PBOCiSSING LOGICALLY RELATED SEGMEN1S

Q£1~!i~_lgg!£~11I_£!!2S~g_~!g~!n~~

~2siS31_~]11~: 7he l 0 9ica l child can h~ deleted via its physical parent
Fath or its logical parent path. If ~ logical child is deleted in
either way, trren all its dependents in the physical data basE arE
deleted. If a ccncatEnatEd se9ment is deleted in a logical data tase,
then cnly the logical child segment is deleted with its physical
children. The destination pa~~nt is not deleted. In our suts~t, the
logical child will be automatically deleted if eith~r its physical cr
logical parent is deleted.

~~g!£~!_f~I!n~: The logical parent can only be deleted via its physical
parent path. If the logical parent is deleted then all its children
will be deleted including logical children.

ih!§!s~!_i~~!~~: The physical Farent can cnly be deleted via its
physical Farent patt. If the physical FaLent is deleted, then all its
children are dEleted including logical children.

1Q£i£~lL£hI!lS~1_fg~~D!: EithEt patent type can only be inserted via
its physical ~arent path.

~~gi£~l_~hil~: The logical child can be inserted via either path, but
the destination patent must already exist.

Ef.E1.!£1:Dg_1:2g:i£~!!Y_11~!~~~g_.§~g!!~nt§.

After a get hold call of the ccncatena~ed segment, fields in toth the
lcgical child and the destination parent can be changed before the
replace call, except sEguenca fields, see Figure 2-16.

LOGICAL CHILD

DE~~~:~~ON SEQUENCE REMAINING

CONCATENATED IELD IINTERSECTION

KEY F DATA

THESE FIELDS CANNOT
BE CHANGED BY REPLACE

THESE FIELDS
MAY OVERLAP

DESTINATION PARENT

PARENT'S
REMAINING

KEY
PARENT'S

THESE FIELDS CAN
BE CHANGED BY REPLACE

Figure 2-16. Replacing Fields in a Concatenated Segment

LOGICAL R EL ATION SHIP S I ~PtEME NIJ:A IJ:ION 'tECH NI QUE

!he following pointers are used by DL/I, in our subset, to ig~lement
logical relationshifs. These fointers are maintained in the segment
prefix in the same vay as the previously discussed physical child and
physical twin Fointers. Again, a detailed comprebension of those
pointers is net required at the moment, as we will give detail~d
guidelines for their selection in the implementation part of this
chapter.

2.24 IMS/VS ~rimer

g£i]!~I§_2§~g_I2!_bQ9!~!1_R~!~~!QB~biE§ !B_H~!~LH!~A~

~2gi~Al_fsI~D~_g~1~1!!_j~fl: ~be lcgical parent pointer is within the
prefix cf the logical child segment and pOints to the logical parent
occurrence of that logical child. This ~ointer is always present and is
never ZEro. Each logical chilo ~~st have one and only one logical
parent just as it has only one physical parent.

~~gi£2!_fhi!2_!!~~~_fQ!B!§!_J!~!1: The logical child first pointer is
withir. the prefix of the logical parent and points to the first
occurrence of its logical child segment. If a segment has several
logical segment types, it contains one LCF pointer for each seglent
type. If a logical parent ~as no lcgical child occurrences. the
corresponding LCF pointer is zero. The logical child first pointer is
reguired.

~291£gJ_~bilg_~~§!_fQiD!~~_j1~~l: ~he logical child last pointer is
within the prefix of the logical parent and points to the last
occurr~nce of its logical childq There is one LeL for each defined
logical child segment type. 7he teL pointer is optional. Its only use
is to im~rove the performance of the logical child insert if nc sequence
field is defined for the lcgical chain. See "Role of the Virtual
Logical Child" eaIlier in this chapter.

LQgif~l_l~~~_!Q~~~!~_gfi£!§!_j!!!l: The lcgical t~in forward pcinter is
within the prefix of the lc~ical child segment and links all lcgical
child occurrences of a particular logical parent. This pointer is
Iequir~d if any logical parent occurrenCE bas more than one logical
child occurrence.

Logi£~l_l~iD_~g£t~~xg_fQin!~~_j~l~l: ~he loqical twin backward pointer
links lcgical t~ins but in the reverse order of the lTF. This pointer
serves a complementary performance role as the physical twin backward
pointer in deleting logical children. It shculd always be used
together with the LCL -- if there are multiple occurrences of a logical
child for any logical ~arent cccurrence.

ghl§i£~l_E~I~D!_£f~n!~I_jfRl: DL/I uses a physical parent pointer in
the ~refix of the logical child to locate that physical parent if the
acces, was via the logical parent. This PP pointer is repeated up
through the hierarchy tc the rcct. A physical parent pointer is also
Fresent in the lcgical parent if this is not a root segment. It then
points to the physical farent of the logical parent, etc. You never
need tc specify the inclusion of this pOinter ill the DED. Dl/1 will
include it automatically if needed.

The ~eccDdary indexing capability of DL/l allows additional aCCESS Faths
to a data tasE rEcord. SEccndaIY indexes Frcvide:

• A §~£~D£~!l ~I2£~§§!Bg §~gY!Q~§, enabling direct and/or sequential
Frocessing of data base records on non-root-key field values. The~e
search fields can be located in the root segment or a dependent
SEgment.

• Autcmatic updating of the secondary index is always done, even if
the frog ram causing the change is not sensitive to the seccndary
index.

tat a Base Design 2.25

WHEN TC USE SECCacA~Y lNtEXES

Seccndary indexes should be mainly used when frequent, direct access to
thE data base record is required en non-reot-key fields. It should be
realiz~d that a secondary index incurs additional system cost in CPU and
l/C timeo If the infoLmaticn cn which the secondary index is
established is cbanged, then Dt/I has to change the index entry.

Especially for batch processing, you should compar~ the costs of full or
partial data base scan plus a subsequent sort of the cut put VErsus the
cost of using seccndary irdexes. For cnline data base processing, the
chcice is easier. Terminal user's response requirements norrally dc not
allow for full data tasE scans.

SEGMENT TYPES INVOLVED IN SECONDARY INDEXES

!he segment types and associated terms involved in secondary indexes are
(see Figure 2-17):

• Secondary Index

A secondary index is cor.prised of an index ~ointer segment type
defined in a seco~dary index data base that provides an alternate
entry intc a data ta$e.

• Index Pointer Segment

A segment d€fined in a secondary index data base that ccntains the
data and pcinters us~d to index the "index target segment." It
controls the secondary processing sequence.

• Index !arget Segment

!hE segment that is Feinted to by an index pointer segment. In cur
subset, it will always te a root segment. In that case, it is as if
the search field "replaces" the original root segment sequence
field.

• Index Source Segment !ype

A segment that is th~ sourc~ from which a secondary index is
created.

• Seccndary Processing Seguenc~

2.26

lhe sequential order in which occurrences of an index target segment
type are access~d tbrcugh a seccndary index. It is the order of the
index Fointer segment.

IMS/VS rrimer

SECONDARY

PHYSICAL OR LOGICAL DATA BASE INDEX DATA BASE

A root
segment in
our
subset

Can lJe the
same segment
as index
target segment,
or as shown,
a dependent
of the index
target segment.

INDEX TARGET

SEGMENT

INDEX SOURCE

SEGMENT

The content of the specified
search field in each index
source segment is dl,.lplicated
in the respective index pointer
segment generated from each
index source segment.

Figure 2-17. segment 1ypes Asscciated with a Secondary Index

Although a sEconcary index can bE used in Frcgrams which use only
logical data bases, their implemEntation is strictly on the physical
data basE level. FigurE ~-1e sbo~s the physical data bases of our phase
3 samFle environment. The only difference from phase 2 is the PurchasE
Crder Numter sEccndary index data base. By utilizing this secondary
indEx data b~se, an application program can process the physical and/or
logical Farts data baSE directly ty purchase order numter.

PURCHASE CUSTOMER
ORDER .. PART po

ORDER NUMBER
LP

" ~LC " "-
"-

I " I 1 "-
~ ~ L" ",./ ./ ,,,, , ", L ",

STOCK PURCHASE DESCRIPTION ORDER SHIPMENT
ORDER LINE

~ ./ ./ l.....- ./

ligure 2-18. PhaSE ~ Physical Data Bases

DES1GN RULES FOR SECONDARY INDEXING

Several rules should be obse~ved when designing hasic secondary indexes:

1. !he index target segment should be a root segment in our sutset.

2. The index source segment and the index target segment must te
defined in thE samE physical DBD. They can be the same segment.

Data Ease Design 2.27

3. A logical child segment cannot be used as an index source sEgment.
HOWEVEr, a dependent cf a lcgical child can be used as an index
source segment.

~o A s€condary indEx can bE used with a logical DBD, but the index
targ~t sEgment should be the root segment. Nothing additional need
be specified in the logical DBD.

r~PLEMENtAIICN T!CHNICUI

In discussing seccndary indexes ~e have to distinguish between two
different data baSE types. 7he first is th~ !nq~!~q g~1s ~g§s. Th~s
data base contains the index source and index target segment~. It 1s ar.
EDAM or EIDAK data tase. The second is the ~~~SB~!fl !ng~! g~!! ~!§~,
This data base contains the ing~! R2i~l~! §~gm~n~§ which contain
Fcinters in their p~efix to the index target segments. An I~DEX data
base ~onsists of a single KSDS. Figure ~-19 shows the physical format
of the KStS logical record feL the INDEX data base.

.... SEGMENT = VSAM logical record -~·I
, ----PREFIX .~... DATA=KSDSKEY~

Direct

address

index
Search Subsequence

Delete
target

field field
flag

segment (Optional)
pointer

1 4 N 4

Figure 2-19. Logical Reccrd Fermat for the Index Pointer Segment

ln~~~_f~i~tj~_~§g~~n!_I~!!!l

ThE index pointEr SEgment cCDtains:

• Delete flag (1 byte) controls the delete status of the index pointer
segme nt.

• Point€r to the indEX taIget segment (ij bytes).

• Search field IN bytes) ccntains a duplication of one to five index
scutce segment fields which together define the secondary sequence.

• Subsequence field lij bytes), optional. It is required in our subset
if the SEarch fields ir. the index pcinter segments are non·uni~ue.
If specified, it contains th€ relative byte address of the index
source SEgment. It is never used to access the index source
segment. Its sole use is to provide a unique key for the KSDS
logical record. In the- DBDs, its field name must start with the
three characters.

2.28 IMS/VS Primer

CFFATING A SECONIARY INDEX

Secondary indexes are created with the standard DL/I data base
recrganization utilities, see Chapter 5. They can be created at initial
data base load time or later. Nc user programming is needed to creatp. a
secondary index. Also existing programs neEd not .be changEd unless they
want to use the seccndary indEx.

rATA EAS! tESCBIP~ION GENERA1ICN

Af~Er you finish the des~gn of your data bases you must specify them tc
DL/I. ~his sectien gives the guidelines for the use of the DL/I data
basE definition languagE: thE data base descripticn generation (DBDGEN).
Agair. this section is divided into three subjects in concurrence with
the thlce phases:

1. Easic DBDGEN for ~hysical data bases

2. [EDGEN for logical relaticnsbi~s

3. DBDGEN fOI secondary indexes

For each data base to be used with DL/I, a data base descrip~ion (DBD)
must te generated. A IBD ccrsists of a set of DL/I-supplied macro
instructions, coded by you to specify th~ data base characteristics you
need. The DED is procEssed by an OS/VS assembler and the generated load
~odule is ~tored by the linkage editor in the I!SVS.DBDLIB litrary for
subsEquent processing cf the data base. See Figure 2-20.

INPUT
DECK

IMSVS.MACLIB

IMSVS.DBDLIB

~I DBDGEN ~I > EJ
,.....---.---.,~

MACROS

Fi9ure 2-20. Cata BaSE DEscri~tion Generation (DBDGEN)

Figure 2-21 shows the sequence cf tbe ~acrc statements in the DBD input
deck. The DEtGEN is EXEcuted by invoking a JCl cataloged procedure
na~ed DBDGEN, which is available in IMSVS.EF~CLIE.

Data ~ase Desiqn 2.29

DBDGEN

Assembler
END Macro

Required: 1

Repeat for each segment
type in the data base.
The order is the heir­
archical sequence.
Maximum: 255

• • •
Required for index
and/or logical relationships.

Required:

Required: 1

~epeated for each defined
field for this segment.
Maximum: 255 per segment type.

lOOO per data base.

Figure 2-21. tBDGEN In~ut Deck Structure

tEtGEN CODING CONVENTIONS

DBDGEN statem~nts are Assembler language macro instructions and
therefore, are subject to the rules contained in the publication
~~L!~~]Q~L!~:!~L~l~ !§§s!fl§; 1~~3~~~~, GC33-4010.

In the generalized format shown in the following description~ of the
control state~ents. thesE syntax ccnventicns apply:

2.30

a. Words ~ritten in all capital letters must appear exactly as
wri t tflno

b. iords written ir. lcwercase letters are to be replaced by a
user-specified value. Valid user-specified values are numeric
values or one- to eight-character alphameric names.

c. 7be centrel card~ are free form. O~eration codes must tegin
after coluln CD~. Operands must fellc~ an operation code or
Frior operand. The first operand must be separated from the
operation code by at least one blank column. Each operand
should be separated from the previous operand by a ccmma.
Operands may te centinued on subsequent cards, but must start
in card column sixteen on th~ continuation card. A nonblank
character must he ceded in column 72 if a continuation card
follo~s.

r ,
, I
I I
I. ..

{ }
()
{ }

, ...

indicates cFticnal 0Ferands. The operand enclcsed in
the trackets (fer exam~le, [V1)) mayor may not be
present, depending on whether or not the asscciat€d
cpticn is desired. If more than one item is enclosed
in brackets one or none may be coded.

indicates that a choice of an op~rand parameter must
be mad~. OnE cf the operand parameters from the
vertical stack within braCES must be coded.

indicatES that IoOIe than one set of parameters may be
designated in the same operand.

IHS/VS Erimer

1!!!J:.l~:

,<- Column 1 1<- O~Erands - Column 16
1 1<- Cperation - Column 4 Column 72 ->1

/---------------_._--~
/ 1 I I

, IDEt INAME=BE1PABTS, • I
I I IAeCESS=HItAM I
I i I I

EASle tEtGEN ~ON1ROL 51A!EMEN7S FOR~A7S

This statement naSES tbe data base being described and specifies the
organization used. There is only one in the input to DBDGEN. The
format of thE DBt Eacrc instruction is:

/------ ------------------------------------_ .. _---------------,
/ I

I tEE INAME=dtnamE1
I I , I! SHI SA r!) , I IHVAr: r, CS AM])
: :,ACCESS= L !~!~
, 'HIVA~
I I INDEX
I ,
, I[,R"NAI1E= (lIod,anch,rbn.bytes)]
, I
I I { , PAS SliD ={ lE S}]
I 'l~
I ,

L--~

tat

identifies this statement as the DED control statement

NAME=dl:namE1

dtname1 is the namE of the DBD for this data base. This name can be
frem cne to eight alphameric characters. lhe first one should be an
alphabetic character. It should be unique for each DBD in your
installation's DL/l Et¥ircnIEnt.

ACCESS=

sFecifies the tl/I access method and the operating system access
mEthod to bE used fer this data base. the value of the operand has
the following meanings.

SH!SA~

specifiES a SEISAI1 data base with only a root segment with no
Frefix. It is a single VSAM KSDS.

Data Base Design 2.31

HtAK

HItA!

INtII

li2i.§:

specifies a HtA! data base. OSAM or VS!" can be sElEcted as
the eperating system access method. VSA! is thE dEfault.

specifies the HIDA! main data base. VSAM ESDS is used as the
cpErating system access method in our subset.

specifies the INtEl data base of a HIDA!! data base. iSAM KSDS
is uSEd as the c~erating system access method in our sutsetq

• Guidelines for selEcting the best access methods for a
particular data base are pr~vided under the topic "Selecting
tata Base Organizatien and as/vs Access Methods" later in this
chapter ..

• When iSAK is used, guidelines for the VSAM Access Method
Serviqes DEFINE command is produced in the DBDGEN output
listing. These guidelines should be taken into account when
defining the VSAM data set cluster.

FMNAKE=(mod,anch,rtn,tytES)

should bE specified cnly if ACCESS=(HDAM, •••)

DIed

anch

rbn

specifiES thE lcad lodule name ef the randomizing mcdule to be
u£ed for this data basE. For mere details on randomizing
modules see "HtA~ Iiandomizing Modules" in Chapt€r 7.

specifies the number of root anchor points desired in each
control interval or block in the root addressatle area et an
EDAM dat~ case. The default value of this parameter is one.
"anch" must be an unsigned decimal integer and must not exceed
255.

~hen a user randomizing routine produces an anchor feint r.umber
in EXCESS ef thE r.umber specified for this parameter, the
anchor point used is the highest numb6t' in the contrel interv~l
or block. When a randemizing routine ftoduces an anchor point
number of 2ero, tIll uses anchor point one in the central
interval eI cleck.

specifiES the laximum relative block number value that the user
~ishes to allcv a randomizing medule to produce for this data
base. !his yalue determines the number of control intervals or
blocks in the rcet ad~ressable area of an HtA~ data base.
"rhn" must be an unsigned decimal integer whose value dces not
exceed 224-1. If the randomizing module p-I.oduces an rbn
greater than this parameter, the highest control interval or
block in the reet addressable area is used by DL/I. If the
randomizing module produces a block number of zero, control
interval or bleck cne is used by DL/I.

2.32 IMS/VS Primer

bytes

specifies the maximum number of bytes of a data base record
that car, be sto~Ed inte the root addressable area in a series
of inserts unbroken by a call to another data case reco~d. If
this paramEte~ is cr.itted, no limit is Flaced On the maximum
number of bytes of a data base record that can be inserted into
this data basE's roct segment addressable are~. "bytes" must
be an unsigned decimal integer whose valUE dOES not ExceEd
224-1.

PASSW 1=Y IS

causes DIll (Fen to use th~ ~AME=operand for this DED as thE VSA~
password when opening any data set for this data base. This
paramEter is only valid fc~ DEDs that use VSAM as the Cperating
System access methed. ThE default is NO~

WhEn thE user dEfinEs the VSA~ data set(s) for this data base using thE
tEFINE statement of CS/VS Access MEthod Services, the control level
(CON!RCLPW) or master level (MASTEFPW) password must be the same as the
NAMI for this tED. All data SEts associated with this DBD must use the
same Fass~ord. For a description of the USE and format of Fasswcrds for
VSAM, SEe Q~L!~ Aff~~§ ~§l~~~ §!I!i£~~·

For the n~s/vs DB/DC (cnline) system, all VSAM CFENs will bypass
Fass~ord checking and thus avoid operator password promFting. For
the lMS/VS DE lbatch) system, VSAM password checking is performed.
In the batch environment, operator passworc prompting will occur if
PASS~D=NC is specified and the data set is passvord·~rotectEd with
passwords not egual tc DBDNAME.

The intended use of this facility is to allow you to prevent
accidental access of IlS/VS data bases ty non-lMS/~S programs.

£!l!E~~_E!~!!m~B!:

Thjs statement provides the link with the OS/VS data set and defines
additional physical data set attributes. !here is one for each DED.
The fermat of the DA~ASET macro instruction is:

/
1 ,
I
1
I ,
1
I ,
I
I , , ,
I
1 ,

/-_._----.--_._---, I ,
tDATASE! IDt1=ddn~me1

I
t ~314
, 2305
"tEVICF= ~31S
, 3330
, 334C
, 3350
t

I,. HODEL= { ~}
I , ,
I
I,SIZE=size
I

f , [• F Ii SF (= (f b f f , f s P f)
, I

L--~

Data Base Design 2.33

DA 'lA SE 'I

identifies this statement as the DATASET control statement.

tC1=ddname1

identifies the ddname used in the JCL to execute DL/I application
programs ,sing the data base. It should be unique throughout the
tL/I Environ.ent ef your installatien.

DEVICE=

specifies the device type used for storag~ of this data set.

MODEL=

specifies the model ef the above device type. The valid
cembinaticns arE:

For 2305: or 2 (2 is the default)

For 3330: , cr l' (1 is the default)

SIZE=

specifies control interval size for VSA~ data sets or blccksize for
OSAM data sets. Fcr VSA! data sets the size must be:

1. A multiple of 512 bytes

2. If largEr than E192, a multiple of 2048

3. Not larger than 3Ci2C

Fer C5AM data sets the sizE must be an even number, not Exceeding
32K bytes, and lust nct EXCEed the maximum non-keyed blocksize per
track ef the direct access storage dEvice used.

1. As part of the Cl/blocksize you specify, DL/I and VSAM allocate
spaCE for syster fields. 'lhese are:

•
•

•

Free space anchor point
Anchor points (HEAM only)

VSAM control fields (ESDS)

4 bytes
4 bytes for each anchor

point
7 bytes

2~ 'lhere is a ftEe space element of eight bytes for each free
spaCE of e bytes cr mere.

3. Guidelines for selecting CI/blocksize , the bytes, anch and rbn
paramEters atE ~rcvided later in this chapter.

2.34 IMS/VS Erimer

FRSPC=(fbff,f~pf)

specifies how free space is to be distributed in an HDA~ or BIDAM
data base. !be fbff is the free ~lock frequency factor, and it
sp~cifiEs that every nth centrol interval or block in this data set
will be left as free space during data base load or reorganizatien
(wherE ftff=n). 7he ra~9E of fbff includes all integer values from
o to 100 excluding fbff=1. 7he fspf is the free space percentagE
factorQ It ~pecifies the minimum percentage of each contrel
interval er tlcck that is tc be left as f~ee space in this data set.
!he range of fspf is from C to 99. !he default valu€ for ftff and
fspf is o.

1. 1f thE total of tbE pErCEntagE cf free space specified and any
segment si2e exce&d the control interval or block size, a warning
message is iSSUEd by tBDGEN that flags oversized segments. When
loading oversized segments, the "fspf" specification is iqnoIEd a.nd
one control interval eI kleck is used te load each oversized
seg ment ..

2. In gEneral, it is net advantagEOUS to USE the FRSPC=parametEI for
ECA~. In most caSES, yeu can betteI centrol the free space in HCAM
wi th the si ze of --the root addressable area (r tn in thE
EMNAME=parameter of thE DBD statement). This will be addressed
la te.r in thi s chapt€c under the- topic II resign the Physical Data
StructurES."

This statement is USEd cnCE for each segment to be defined in the DED.
Its basic format is:

/----------------------------.--------------------------------,
I , ,

I ,
I ,
I ,

I
I SEG r.
I ,
I
I
I ,
I

I
, NUH=segnaDlp. 1
I(,PAREN!=i (sEgname2 ['.§!~~J»)]
I tBlE
, , E lTES= bytes

: , F 'I R = {~ E}
I };T ,

L-~~-~-~~-~--·-----~-~~-~-~--~~--~------~-~·------------~--------~

SEGM

ider.tifies this statement as a SEGM contrni statement

NA f1E:zsegnaUle 1

specifiEs the namE ef thE sE9mEnt as used by DL/I and the
a~plication Frogral. It is ene to eight alphameric characters and
each segment name should be unique in the tL/I environment of your
installation.

Iata Base Design (2.35

PARER!=

specifies the name of the physical parent of this segment. This
keyword should tE emitted for the roct segment. The second
parameter controls the physical child pointer(s) in th@ Fhysical
parent of this segment.

SNGL specifies enly a physical child first pointer is used in this
segments parent.

DELE specifies koth a physical child first and physical child last
pointEr are used in this segment's parent.

Reccmmendation: DBL! shoula be specified if:

1Q Average twin chain is more than 3 to 5 and fre~uEnt
rEtriEVE lasts, and/or

~. segment has no sequenCE field and frequent inserts are
expected.

EY!ES=

PTB=

specifiES the lEngth cf the data portion of th~ segment in bytes.
~his length does not include the prefix, which is estatlished sclely
by eL/I. This length cannot exceed the maximum logical record
length or centrol interval/blcck size of the data set minus the
space occupied by system fields. SEe the SIZE parameter of tb~
DATASET statement. It should be an even Dumber.

controls the physical twin pointer options. Specify:

PtB=Nt (no twin pointer) if never more than one occurrence of this
segment under its FarEnt. No sequence field may be defined for
the segment if P~R=NT is specified.

PtR=tE (twin forward and backward pointers) if:

• No sequence field is defined and frequent inserts are
expected.

• Retrieve last plus subsequent delete is frequently used.

• The segment is a logical child. See phasE 2.

• It is the root segment of a HIDAM data base.

P!R=T (only twin ferward ~cinter) in all ether cases.

2.36 IftS/VS Primer

This statement is used once for each field to te defined in thE DBD.
The FIELt statements fcllr.w the SEGM statement of the segment in which
these fields belong. This statement is required for all sequence fields
and fields which are tc be used in SSAs. lhe basic format is:

/---, I , I I
I IFIELD lNA"E=(fldr.amel["S~EEQJ) I
I , I ,
, I I,EY!E5=bytes I

I ~ :::::::={;t}artPos !
, , I £ ,
I I I I
L--~

FIFlt

identifies this statement as a FIELD control statement.

NAME=

fldname1

SEQ

specifies the name cf thE field being defined within a segment
type. 1he name specified can be referred to by an application
program in a tL/I call SSA. Duplicate field names must not be
defined for the same segment type. fldname1 must be a one to
Eight character alphameric value.

the presence of the keyword SEQ as a parameter of this cperand
identifiEs this field as a sequence field in the segment tyP€.
FIELD statements ccntaining the keyword SEQ must be the first
FIELD statements following a SEGM statement in a DBD generation
input dECk. As a general rule, a segment can have only one
sequence field. If a sequence field is specified, then its
value must te uniqUE in cur subset for all segment occurrences
under a given parent.

A uniqUE sequence fiEld is optional for all dependent SEgment
types. It lust te frcvided for the root segment of SHISA~,
HIDAM, and primary HItAM INDEX data bases.

When no sequencE fiEld is defined fo~ a segment, new occurrences of
th~ S€9m€nt ~ill be inserted at the end cf the physical twin chain.
It is re~uired, in our subset, that all parent segme~ts which
participate in I09ical Ielaticnships have unique sequence fields
(except if P!E=N1 is specified). This includEs the physical and the
logical Farent and their FaIent segments up to their roots.

EYTES=

specifies th~ length of the field being defined in tytes. The
maximum allowed is 255.

Data Base Design 2.37

S'IAR'I=

specifies the starting ~csition of the field being defi~ed in terms
of bytes relative to the beginning of the segment. !axi.um allowed
value is 3C1~C. startpcs for the first byte of a segment is one.
Overla~ping fields are permitted.

!YEE=

specifiES the type ef data that is to be contained in this field.
The value of the parameter specified for this operand indicatEs that
cne of the following types of data viII be contained in this ~ield:

x = hExadecimal data

P = packEd deci.al data

C = alphameric data or a combination of types of data.

It should be noted that allOt/I calls perform field
comparisons on a kyte-by-byte binary basis. No check is made
ty Dt/1 to ensurE that the data contained within a field is of
the type specified by this operand, except when thE defined
field is ir.oexEd.

This statement is used cnee for each index or logical relation a segment
haF. It immediately follows the SEGM statement or FIELD statements of
the sEgmEnt involvEd. At this point we will only discuss i~~ use in
defining the primary index of a BIDftM data base. The basic fermat is:

I , ,
I
I
I
I

I
I tCHILD
I
I
I
I
I

I
INA!E= (segname,dtname) ,
I[, PT R= I i OX J ,
I(,I~DEX=fldnamE]
I

L--~

~he lCfI1D statement is coded both in the INDEX data basE and in the
HIDAM main data base. Pcr the INDEX data base, code:

NAME=(segr.ame,dbname)

segname is the name of the HIDAM root segment and dtnamE is the name
of the HItAM data tasE as ceded in the DBD statement.

INDEI=fldllame

fldname is the name of the sequence field of ~hE HIDA~ rcot segfent.

For the BIDA~ main data base, code:

NAME; (segname,ctnamE)

segname is the name cf the cnly segment in the primary INDEX data
base for this data bAse, and dtname is the name of that IND!X data
base.

2.38 IMS/VS ~rim€r

PTR=INDX

must be coded as show~. It ~rovides for the linkage with the INDEX
data base.

Qn!H~~!_~12~!!!!l1l~

This statement must bE included. It indicates the end of DED generation
control cards to define the DED. The format is:

1---,
I I , I

I IDEDGEN' I
I I I ,
L--~

This statement m~st be included. It sets a non-zero condition eede for
link-edit if therE arE DBDGEN Etrers. ~he for~t is:

/---,
I I I I

I ,F1N ISE I I , , , ,
L--~

This statEment must tE includEd. It indicates the end of the input
statements to th€ OS/VS assembler.

I-------------------~---, / I , I
, ,END I I
I I 1 I

DBDG'EN must be run as a normal operating system jot after IMS/VS System
definition. System definition causes the DBDGEN procedure to be placed
in the IMSVS.FROClIB library. To process a re~uest for a DBDGEN, the
DFt gEneration centrol carcrs must be created and appended to the
follc~iDg Jel t~hich invokes the DEDGEN prOCEdure):

//DEDGEN
1/
//C.SYSIN

1*

JCE r.SGIEVEl= 1
EXEC DEDGEN,"ER=
OD *
DED
DA~ AS ET
SEGM
FIELD DBD generation
LCEILD control cards
DEtGEN
FINISH
ENt

tata Base Design 2.39

where keyword operand ~BR=

is the name of the tED to te generated. This name should be tb.
sam~ as tt.E first r.alE SfEcified fc~ the NAME= keyword on the OED
statement. When a data base PCB (see PSBGEN later in this chapter)
~elates to this DED generation, this operand value must tE thE nale
used in the DBDNA~E= cfE~and on the data base PCB statement within a
PSE generation.

Note: If the defined tft is for the primary INDEX data base of an HIDA~
data hase, only one each of the SEGM, FIELD and LCBllD statements is
allowed.

Figure 2-22 shows a sample HDAM data baSE which uses OSA~. This is our
sample, E!1PARTS. included in l~SVS.PRIMESRC, Phase 1 PARTS data tase.
Job IISAMF110 in lMSVS.FFI~IJCE can be used for its DEDGEN.

Figure 2-23 shows the HIDAM version of the same PARTS data tase. As ca~
be seen, two tEts axe re9uixed, one for the index data base and one for
the main data base.

NotiCE that the HIDAM data cases use cnly VSAM. The tBDs of Figure 2-23
are not provided in IM5V5.PRIME5RC. Hc~ever, they can be easily
established if you were interested in using BltAM for the PARTS data
base.

2.40 IMS/VS Primer

PART

(SE1PART)

I I
J' " J' ~ "

, ..,.,

STOCK
PURCHASE

DESCRIPTION
(SE1PSTOK)

ORDER
(SE1PGDSC)

(SE1PPUR) l,," ./

DES~PIPT!O~ OF P~~TS DATAr~S~

FC~ PRH~E~ SA~Ii'LE POJECT FH!'~E

l,,"

DBD NAME=BEIPARTS,ACCESS=(HDAM,OSAM),
RMNAME=(DFSHDC40,4,80,500)

DATASET DDl=DElPARTS,DEVICE=3330,MODEL=1,SIZE=2048

SEGM
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIEL D
FIELD

SEGM
FIELD
FIELD
FI ELD
FIELD
FIELD

SEGM
FIELD
FI ELD
FIELD
FIELD
FIEL D
FIELD

PARTS- GENERAL INFORMATION (ROOT)

NAME=SEIPART,BYTES=80,PTR=T
START=Ol,BYTES=OB.TYPE=C,NAME=(FEIPGPNR.SEQ)
START=09,BYTES=13,TYPE=C,NAM~=(FEIFGSNM)

ST'RT=22,BYTES=OS,TYPE=C,NAME=(FEIPGNEW)
START=30,BYTES=OS,TYPE=C,NAME=(rEIPGOLD)
START=38,BYTES=08,TYPE=C,N~ME=(FEl?GEQV)

START=46,BYTES=08,TYPE=C,N~ME=(FEIPGUNT)

START=54,BVTES=08,TYPE=C,N~ME=(FEIPGPRI)

START=62,BYTES=08,TYPE=C,NAME=(FEIPGDIM)

PARTS- STOCK INrOR~ATICN

NAME=SEIPSTOK,BYTES=40,PARENT=CCSEIPART,SNGL»,PTR=T
START=Ol.BYTES=12.TYPt=C.NAME=(FEIPSLOC.SEQ)
START=13,BYTES=06,TVPE=C,NAr.E=(FEIPSDAT)
START=19,DYTES=06,TYPE=C,NAME=(FE1PSCNT)
START=2~,3YTES=06,TYPE=C,NAME=(FEIPSISS)
START=31,BVTES=06.TVPE=C,NAME=(FEIPS~EC)

PARTS- PURCHASE ORDER INFORMATION

NAME=SEIPPUR,BYTES=60,PARENT=«SE!P~RT,SNGL»,PTR=T

START·Ol.BYTES=OB.TYPE=C.NAME=(FEIPPONR,SEQ)
ST~~T=09,BVTES=06,TY?E=C,NAME=(FEIPPODT)

START=15,BVTES=20,TVPE=C,NAME=(FEIPPOSU)
START=35,BVTES=06.TVPE=C,NAME=(FEIPPQOO)
START=41,BYTES=06,TVPE=C,NAME=(FEIPPQRD)
START=47,BYTES=06,TVPE=C,NAME=(FEIPprOT)

PARTS- GENERAL DESCRIPTION

SEGM NAME=SEIPGDSC,BYTES=80,PARENT=CCSEIPART,SNGL»,PTR=NT
FIELD ST~RT=Ol,BYTES=50,TVPE=C,NAME=(FEIPGLNM)

DBDGEN
FINISH

EtW

Figure 2-22. Phase 1 EDA" PARTS DBD, BE'PA~TS

tata Base Design

DBD

HIDAM PARTS DBDs

HlDAM PRIMARY INlEX MTA BAIlE

I
I

PART Nl.M!ER
(SE1P1I'CQ

DESCRIPTION OF PRIMUY INDEX
INTO THE PARTS HIDAM DATABASE

NAME-BEIPINDX.ACCESS-(INDEX.VSAM)

DA lASET DOl-DE 1 P INDX. DEVICE - 3330. MODE L -1. S I ZE-2048

SEGM
LCH ILD
FIELD

DBDGEN
FINISH
END

NAME -SE 1 PINDX. BYTES-a
NAME- (SE IPART, BE lPUTS). INDEX- (FE 1 PGPNR)
NAME - (FE 1 INDX. SEQ). BYTES-8. STAAT-l

HDAM MAIN MTA BAIlE

PART
(SE1PAR1l

I
I I I

./ ./ ./ ./ ./'

STCX:K PURCHASE DESCRIPTlC»l
(SE1PS1OK1 CRleR (SE1PaJ61:1

(SE1PP1JR)
./ l/

DESCRIPTION OF PARTS DATABASE
FOR FRIMER SAMPLE FROJECT FHASE 1

DBD NAME .eE lPARTS. AcceSS=HI DAM

DA lASET DOl-DE 1 PARTS. DEV ICE- 3330. MODEL -I. SI ZE -2048

SEGM
LeHI LD
FIELD

DBDGEN
FINISH

END

PARTS- GENERAL INFORMAT I ON (ROOT)

NAME -SE 1 PART. BYTE S -80. PTA - TB
NAME'(SE 1 P INDX. BE 1 P INDX) • PTR - INDX
START=O 1. eYTE S=08. TYPE=C • NAME= (FE IPGPNR. SEQ)

Figure 2-23. Sample DBDs for a HIDAM Data Base

DBDGEN FOR GSAM

A GSAM DBD contains the following statements:

I
I
I ,
I
I ,
1
I

I ,
I
IDBD
IDA'IASET
I
I
IDBDGEN
IFINISH
I END ,

I ,
1 N A~E=dbname ,ACCE S s= (G SAM, BSA M)
,DD1=ddname,FECFM=recfm
H ,RECORD=lrecl]
'[,SIZE=blksize] , , , ,

NAME=dbna me

specifies thE name of this data base.

DD1=ddname

2.42

specifies the name of the DD statement used in the JCL when
accessing this data base.

IM~/VS Frimer

./

./

RECFM=recfm

specifies the format of the records in the dataset. The record
format is specified using the characters defined below:

F the records are ~f fixEd length.

FB thE records are of fixed length and are blocked.

v the lecords are of variable length.

VB the records are variable length and are blocked.

RECORD=lrecl

specifies the size of a 1cgical record for a fixed length record and
the maximum lcgical reccrd length fOl a variable length record.

SIZE=blksize

spe~ifies the blocksize of the GSAM dataset for fixed length reccrds
or the maximul tlccksize fCl variable length records.

The record and si2e parameters can also be specified via the Jel. Two
sample GSAM DBDs, BOOI~P01 and eOOOUT01 are included in IftSVS.PRIMESRC.
Their DBtGENs can te eXEcuted ~ith job IISAMP010 in IMSVS.PRIMEJOB.
Furthermore, these DBDs can be used by your own application programs if
the file attributes arE the samE.

IBnGEN FOB LOGICAL RELATIONSHIPS

To sUFPort the logical relationship function, DBDGEN is extended in two
ways:

• Additional contrel statements and parameters can be specified in the
physical DBD.

• A different type of DED is created for the definition ot the logical
da~a base. HcwEver, this is done with an extension of the existing
centrol statementsu

The DBDGEN process itself is unchanged.

~he following control statements are unchanged:

DBD
fIELD
DBDGEN
PIN1SH
END

!Q~~: Additional restrictions exist for the length of a sequence field
of a segment invclved in a logical relationship. See the section
"Restrictions" for the Data Ease Erefix Fesolution Utility in Chapter 5,
"Data Ease Reorganizaticn/Lcad Processing."

Data Base Design 2.43

The following statements arE extended:

SEG!!
lCHIlt

~~i~!l_~b!lg: lor each dEfined logical child, you need to code two
SEGM statements. Cne within its physical parent's DaD and one within
its lcgical parent's DBD. ~he format under the physical parent tED,
that is, fer the real logical child is:

I ,
I , , , ,
I
t ,
I ,

SEGM
I
I NAP.I=segname1
I,PAR'F.N'I=
I l{segname2, §]~1), (segname3,P,dtnale2»
, DBLE
, ,Bl1:ES=bytes

\ ,PTB= (LP ,{h} ~ {gBijl ,
I,B OLES=VVV ,

NAME=segname1

segname1 is the name of the logical child segment.

PABEN'l.::

segname2 is the name cf the physical Farent segment of this logical
child.

SN'GL and tELE have the same meaning as before.

segname3 is the name cf the lcgical Farent of this logical childu P
should ~e specified as shown in our subset, it defines the logical
Fa~en~ concatenated key to he stored with the SEgment in Fhysical
storage. dtname2 is the DBD name of the logical parent"s data base ..

E'Y'IES=bytes

PTE=

has the same meaning as before. Notice however that the lcgical
child always ccntains the logical parent's concatenat~d key in the
first n kytes, and its length must be included here.

LP must be specified as shown in our subset. !t provides
fer a Fcinter tc the lcgical parent in the prefix
of the lCHIlt.

'I the samE ccnsiderations as tefore afply.

TE it is highly ~eccmmended that you specify TE
if there are, on the average, more than 3 to 5 logical
child occurrences Eer physical parent.

tIT should te s~ecified if never more than one occurrence
of this segment per parent

2.44 !~S/VS Pr~mer

L1 if specified, only a logical twin forward pointEr
is used fCl the lcgical twin chain.

LTB if specified, both a logical twin forward and backward
pointer are used for the logical twin chain.
This should te sel~ctEd whenever there are, on the
average, more than 2 to 3 logical child occurrences
for a logical Farent.

BULES = VVV

should be specified as shown fcr our subset.

The fermat under the lcgical parent, that is, for the virtual logical
child is:

I--~--------------------,
I t I ,

1 ,SEGM J~lME=viltchild I
I ",PARENI=segname2 I
, , 1 ,SOOECE=I{segname3,D,dtname1» t
, 1 1,PT~=PAIRED 1
1 1 I I

t~9~ng:

NA~E=virtchild

virtchild is the name cf the virtual logical child. RememtEr that
the virtual logical child dces not actually exist. Its only purpose
is to defin~ the logical child as seen from the logical path. It
can be followed by a s~gU€nCE field which controls the sequence of
the logical child segmAnt when accessed via its logical path, that
is, the logical twin chain sE~uence.

PARENT=segname2

segname2 is the name of the logical parent. that is, the physical
parent of the virtual lcgical child.

SOUFCE=«segnam~~,t,d~namE1»

segname3 is the name of the real logical child and dbnamel is the
DBD name of the data base which contains that logical child. D
should bE specifiEd ir. cur sutset, it defines that both key and data
of the segment are accessitle by the PSE.

PTB=PAIRIt

Should be specified as shc~nQ It defines this segment as a virtual
logical child.

~hl~i£~1_ang_!2gi~gl_f!~~nt: eng additional paramet@r must ~E s~ecified
in the SEGM statement of both the physical ana the logical parent:

tata Base DESigr. 2.45

For each logical child segment type w an lCHltD statement must be added
immediately following the SEGM and/or FIELD statement of the lQ~j~~l
parent. Its tasic format is:

/ , ,
I , ,
I ,

/---, , I I
I L C F! IL DIN A l! E = (s e g n am e 1 , db na lie) I
If] I , I [, P'IR = {.§!Hi!:} I
, I tElE I
I , I
I I,PAIR=virtchild I
, I I

L--~

NAME=(sEgnamE1,dtnaIE)

segnamel i~ the segment name of the logical child in the DED whose
name is dbname.

P'IB= ~~~t
DELE

SNGL specifiEs that there viII be only a logical child first point~r
in the prefix of the logical parent. DEL! specifies that both a
logical child first and last pointer will appear in the logical
Farent ..

Recommendations:

Specify SNGL if a sequence fi€ld is defined for the virtual
logical child and command code L (retrieve last) is rarely or
neVEr used to access the logical child.

Specify DELE if nc sequence field is defined for the virtual
logical child and/or command code t is heavily used and there
are, on the average, mor~ than three occurrences of virtual
childrED within a lcgical parent.

PAIR=virtchild

virtchili specifies the name of the virtual logical child which must
te dEfined in the salE DaD (see previous SEGM statement).

Figure 2-24 shews the twc lcgically related physical DEDs of our Fhase 2
~amFle environment. Only those DBD statements are shown which are
essential to the logical relationship function. Compare these DEDs with
the ones cf Figure 2-22 and 2-23. The ~Ets of Figure 2-24 are also
included in I~SVS.PRI~ESRC. Their DEDGENs can be perfoLmed with jot
//SAMP210 in IM5VS.PRIMEJOE.

2.46 IMS/VS PrimEr

DBD=BE20RDER

CUSTOMER
ORDER

DBD=BE2PARTS

PART

(SE1PART) LOGICAL"
PARENT ___ - I~ (SE20RDER) "PHYSICAL

PARENT

r,,:-.L - ,.---
I (SE2PAROR) I

VIRTUAL"
LOGICAL CHILD L ___ J

DESCRIPTION OF PAI1TS OAT ABASE
FOR PRIMER SAMPLE PI/OJECT PHASE 2

DBD NAME=BE2PARTS. ACCESS= (HDAM. VSAM).
RMNAME=(DFSHDC40.4.80.500) •

OAT ASET DOl :DE~PARTS. DEVICE=3330. MODEL =1. SIZE=2048

PARTS- GENERAL INFORMATION (ROOT)

SEGM NAME=SEIPART. BYTES=80. PTR=T. RUlE5=Pl V

"lCHIlD NAtIE:! SE~OOETL.BE20110ER I.PAIP=SE2PAIIC;> .PTP=OBLE
FI El 0 SHPT=OI.B'fTES=08. TYPE =C .N.\tIE =! FE IPGn:;>. SEQ I .

"SEGM

FIELD

.
DBDGEN
FINISH
END

VIRTUAL lOGICAL CHILD
(CONNECTION FRCM CUS TOMER-ORDER 08)

NAME=SE2PAROR. PARENT =SE I PART. PTR=PAIR ED.
SOURCE = ((SE20DETl • D. BE~ORDER II
STA"T=Ol • E,YTES=06 .N',HE:(FE 200lalR .SEQ I
DEF INES SEQUENCE OF L l.. CH.lIII

Figure 2-2U. Phase ~ Physical DBDs

060

ORDER LINE

(SE20DETL) .. (REAL)
LOGICAL CHJLD

DESCRIPTION OF OIlDER DATABASE
FOR PRIMER S"HPLE PPOJECT PHASE 2

NA!1E =BE20RDEP.. ACCESS=HIDAM

DA lASET DDI =DE20RDER. DEVICE=3330 .MODEl =1. SIZE:2048

CUSTOMER-ORDER GENERAL INFORMAT ION

SEGM NAME=SEZOPOEII,BYTES=t>O .PTP=TB.IIULES=PLV
lCHIlD NAME=! SE20110PX.6E20~O"X) .PTI'1=1I:::IX

FIEl 0 STAP.T=Ol.BYTES=06, TYPE=C .NAME=! FE20GPEF • SEQ I ·

FI!lD

· •
D8DGEN
FINISH
END

CUSTOMER-ORDER DETAIL INFORMATION

NAME=SE20DETL. BYTES=30.
PARENT:((SE20RDER. DBl E l. (SEIPART ,P, 8E2PARTS».
PTR=(TB. L TB.lP) .RUlES=VIiV

STAIH= Oil .6YTES=03, T(P[:C .!lAME=! FEZOOLHP, SEQ I

A logical tBtw tasEO o~ existi~9 Fhysical DBDsw defines a new view of
logically related data bases. This view is alway& a hierarchical data
structure. Follcwing are the contrel statEments used and their formats:

/--~
I I , I

, ,tED I NAME=dtdname 1 wACCE 5S=lCGI CAL f
I I , I
L--__ ~

NA MF=dbd nil me 1

dbdname1 is the na~e of this lcgical DEt. It must te unique in yeur
i~stallation and the same name as specified in the MER operand of
DBDGEN ..

ACCESS=LOGICAL

defines this tEn as a logical DED

Da ta Base Design 2.41

/---~
/ I I I

, IDA'ASET fleGICAl ,
I , , r

l--.--------.~

~his statement must be coded as shown.

!he segments in a logical tED must be coded in hierarchical sequence
following the rules for defining logical data bases as presented earlier
in this chapter.

/----------~--, / I , ,
, fSEG~ INA~!=segname1 ,
I '1(,PARENt=segnams2] ,
, I , ,seUEC E= I (segname3, t, d tname 1) r
, I '(, ls€gna me4,n ,dbna me 2) j) ,
I , I I

NAME=segname1

segname1 is the name ef this segment.

PARENT=segname~

segname2 specifies the name of the parent of this segmsnt. segname2
must be defined previously in this DEt. This parameter should be
omitted fer the rcct segment.

SOURCE= ((segname 3, D ,dbname 1) [, (segname4, D ,dbna me2)])

!his parameter specifies the source(s) of the defined SEgment. The
long form is only applicable to concatenated segments.

Non-concatenated sesaents:

segname3 defines the sourc~ segment. !he source segment must
be defined in a physical DeD whose name is dtname1.

Concatenateo se~ments:

• segname3 defines the lcgical child as ~efined in the physical
DED. If the preceding parent segment is the physical par~nt,
then the name cf the lcgical child must be coded. !f the
preceding parent is the logical parent, then the name of the
virtual logical child must be ceded.

• dbname1 defines the physical DBD in which segname3 is defined.

• segnameq defines the destination parent.

• dbname2 defines the p~ysical tEt name of the destinatien
parent.

!Q~!: The destination parent (segname4) should be included in the
concatenated segment only if your application has a real need for it.
If it is not specified, tl/I does not DEEd to access the d~stination
parent except for insert and delete calls.

2.48 IMS/VS Primer


~~~§~~~_I!]!E~_!n4_£!~_§!!~!!!B~§_ 

!hese should be coded as before. 

Note that no lCHIID or flElt statements arE allowed in a logical DBD. 

E!~!El!-Qt-tQg~~~!_t~~§ 

Figure 2-25 !hows the logical tED for our Phase 2 P1BTS data basE, 
BE2LFART. 

PART 

(SE1PART) 

J 
I I I 1 

./ -"" L ./ ;- ./ ;- -' 

PURCHASE ORDER I CUSTOMER 
STOCK ORDER DESCRIPTION LINE ORDER 

(SE1PSTOK) (SE1PPUR) (SE1PGDSC; (SE20RDRS) 
./ '/ ./ I 

I 
/: ./ 

SHIPMENT 

(SE20SHIP) 
./ 

DATABASE DESCRIPTION OF THE COMBINED 
PARTS/ORDER DATABASE (LOGICAL) 

DBD NAME=BE2LPART,ACCESS=LOGICAL 
DATASET LOGICAL 

SEGM 
SEGM 

SEGM 

SEGM 

SEGM 

SEGM 

DBDGEN 
FINISH 
END 

NAME=SEIPART,SQURCE=CCSEIPART,D,BE2PARTS» 
NAME=SEIPSTOK,SOURCE=«SEIPSTOK,D,BE2PARTS», 
PARENT=SEIPART 
NAME=SEIPPUR,SOURCE=(CSEIPPUR,D,BE2PARTS», 
PARENT=SEIPART 
NAME=SEIPGDSC,SOURCE=«SEIPGDSC,D,BE2PARTS», 
PARENT=SEIPART 
NAME=SE20RDRS, 
SOURCE=(CSE2PAROR,D,BE2PARTS),CSE20RDER,D,BE20RDER», 
PARENT=SEIPART 
NAME=SE20SHIP,SOURCE=C(SE20SHIP,D,BE20RDER», 
PARENT=SE20RDRS 

Figure 2-25. Phase 2 logical tED for the PARTS tata Base 

;-

:/ 

* 
* 

* 

tata Base Design 2.49 



Figure 2-26 Ehc~s the logical DBD for Qur Phase 2 CUSTOMER CEtEBS data 
base, BE21CFDE. 

./ 

I 
-' 

STOCK 
(SE1PSTOK) 

CUSTOMER 
ORDER 

(SE2ORDER) 

I 
I 

~ /' ~ 

ORDER 
LINE PART SHIPMENT 

(SE2OtART) l/ (SE2OSHIP) 
~ 

./ , 

/ 

1 
~ ..- ~ 

PURCHASE 
ORDER DESCRIPTION 

(SE1PPUR) 
./ 

(SE1PGDSC) 
./ 

DATABASE DESCRIPTION OF THE COMBINED 
ORDER/PARTS DATABASE (LOGICAL) 

DBD NAME=BE2LORDR,ACCESS=LOGICAL 
DATASET LOGICAL 

SEGM 
SEGM 

SEGM 

SEGM 

SEGM 

SEGM 

DBDGEN 
FINISH 
END 

NAME=SE20RDER,SOURCE=«SE20RDER,D,BE20RDER» 
NAME=SE20PART, 
SOURCE=«SE20DETL,D,BE20RDER),(SEIPART,D,BE2PARTS», 
PARENT=SE20RDER 
NAME=SEIPSTOK,SOURCE=«SEIPSTOK,D,BE2PARTS», 
PARENT=SE20PART 
NAME=SEIPPUR,SOURCE=«SEIPPUR,D,BE2PARTS», 
PARENT=SE20PART 
NAME=SEIPGDSC,SOURCE=«SEIPGDSC,D,BE2PARTS», 
PARENT=SE20PART 
NAME=SE20SHIP,SOURCE=«SE20SHIP,D,BE20RDER», 
PARENT=SE20RDER 

* 
* 

* 
* 

* 
* 

Figure 2-26. Phase 2 Logical DBD for the CUSTOMER ORDERS Data Base 

The logical tEDs of Figure 2-25 and 2-26 are included in IMSVS.PRIMESRC. 
Their DEtGINs can te pErformed with job //SAMP210 in IMSVS.PRI~EJCE. 

To support the sEcondary indEX function, the DBDGEN process is extended. 
We differentiate between the index target DED and the index pointer DBr. 

2.50 IMS/VS Primer 



CODI~G AN INDE1 ~ARGI~ rATA EASE 

The control statements extended fCI the seccndary index function are: 

SIGH 
FIElD 
LCtllL D 

A new ccntIol statement is added: 

XDFlD 
The following control state.ents ara unchanged: 

DBD 
tA7ASE'I 
SEG~ 
tED(;EN 
F'I NI SH 
ENt 

SEGM NAME=". 

LCHILD NAME= , ,,' 

• • • 

Figure 2-27. DBt Stat€ments for Index Target Segment 

SEG~ 

is a star.aard SEGM state lent fer the root segment. It has no 
additional FaIameteI for sEcondary indexes. It is recognized as an 
index target segment because of the following LCEILt and XDFLD 
statements. 

/---------------------------~---------------------------------, 
/ I I I 

I 'l(HIlt INA~E=(se9name1,dbnamE),PTR=INIX I 
, t , , 

L--------------~-------------------------------------------------~ 

LC~ILt 

~his state~ent pro~ides the link to the index data tase. 

Data Base Design 2.51 



NAME=(segname1,dbname) 

segname1 is the Da~e cf the index ~cinter s~qment as defined in the 
INDEX data tase. dtnam€ is the name of the CEO for the I~DEX data 
base. 

P!B=INtx 

identifies the lCHIID statement as an index type. 

!Qj!: There are three types cf lCHIlD statements; one for the primary 
index of an HltA" data tase, one for the definition of a logical child 
under its logical parent, and one for the definition of the index target 
segment. All three ty~es eculd occur below tha root segment of a HIDAM 
data base. There could be multiple occurrences of LCHILO statements for 
both logical rElaticnshi~s and secondary indexes. The relative ordEr of 
the LeHIID statements should be as describ~d abcve. If mUltifle 
secondary indexes are tc te defined for cne segment, the XDFtD statement 
must immediately follow its corresponding LCH£L~ statement. 

1-------------------------------------------------------------, 
1 I I I 

, IXDFIC 'NA~E=fldname , 
I , 1 ,SEG~E~r=segname , 
I ",SRCH=list1 , 
, I IC.SUESEC=/SXname] I 
, I I I 
L~---~-~----~-~-------------~-.-----------~---------~_---~-------J 

XDFLD 

This statement defines the index source fields, that is, the f~elds 
used for the secondary index access. It defines the source data for 
the index search field in the INDEX data base. 

NAME=fldname 

specifies thE name cf the secondary index field. fldname ic a 
ncrwal field name which can be used in the SSA for the call which 
requEsts seccndary irdex access. It must te unique among all field 
names specified f~r the abcve index target segment. 

SEGMENT=segname 

specifies the index source ~egment for this SEcondary index 
rElationsbi~. seg~aae must be the name of a subseque~tly defined 
segment type, which is hierarchically below 'the index tar~et segment 
type or it can te the name of the index target segment type itself. 
lhe segment name specified must not te a logical child SEgment. If 
this operand fs omitted, the index target segment type is assumed to 
be the index source segment. 

SRCH=list1 

specifies which field cr fields cf the index source segment are to 
te used as the search field cf a seccndary index. list1 must be a 
list of one to five field names defined in the ind~x source sEg~ent 
type ty FlfLD statelEnts. Ii two or more names ar~ included. th~y 
must be separated by commas and enclosed in parenthes~s. The 
sequence of names in the list is the s9guenc~ in which the field 
values will be ccncatanated in the index pointer segment search 

2.52 IMS/VS FrLmer 



field. ~he sum of the lEDgths of the participating fields forms the 
length of this ItFlt as used in SSAs. 

SOB SEQ=! Sltnilme 

This parametEr must te ceded if duplicate index pointer segments may 
occur. /SXname must te the same as coded in the corre~ponding field 
statement of the index source segment. (See the next secticn, 
"Coding the lnd€x Source SEgment.") 

-------------------------------------------, 
/ f I J 

I tFIELD INAME=/SXname,... , 
---1-------------------1-------------------, I 

/ I I I , 
I ,FIELD ,NAME=... ,----~ 

--------------------------------------------, I 
/ I' I I 
, tSIGM ,tlAr-I=... 1----.1 
I I I 1 

Figure 2-2e. tEt Statements fer Index SCUIce Segment 

SEGM 

This is a standard SEGM statement with no additional parameters. It 
is reccgnized as an index source segment because it is defined in a 
preceding IDFID statement under the index target segment. It must 
no~ te a logical c~ild. 

/------------------------------------------------------------~ 
I I I , 

I IF1~LD ,NAME=/SXname,BYlES=4,START=1 , 
I I , I 
L-~~-----~----.~------~----~---~------------------------~-------~~ 

FIELD 

In addition tc the ncrlal FIELD statements for the segment, aCE 
extra FIELD statement can te added. Its name must start with /SX. 
'Ihi:.::; field is Ieq Ilired whenever duplicatE X nIL ns lRay occ~!:' in thE 
data tase. Althoo9h thE values of BYTES and START are disregarded, 
they must be coded. Ncte that the /SXname field is call~d a "system 
related field." It provides control information to DL/1 and it is 
completely transparEnt tc the application program. Example: In our 
purchase order, secondary index, there may well cccur. multiple index 
pointer segments with thE same furchase crder number (that is, for 
the different farts order~d in one purchase ord~r). Therefcre, this 
function is required in that data base, otherwise ~uplicftt~ KSDS 
keys ~ould ~ccur. 

tata Base Desi9r 2.53 



CODING A SECONDARY INDEX DBD 

!he following statements are us€d in a secondary index DBO~ 

I , 
I 
~ 

DEt 
DA'IASE'I 
S!Gf! 
LCHltD 
FIELD 
DBDGEN 
fINISH 
END 

J 
IDBD 
t , 

I 
, tiA!I=dtname1 
1 ,ACCESS= (INDEXr, DCSCCMP)) , 

L--------------------------.-------------------------------------~ 

NAHE=dbname1 

specifies the name cf the seccnda~y index data base. It should be 
the name specified ty the f!BR keywcrd of D8DGEN. 

ACCESS=(INDEX[,DCSC~ftPJ) 

INDEX identifies this as an index data base. DOSCOMP is an cptional 
parametEr and sbculd be specified if this data base was created with 
tOS D1/I. 

1------------·------------------------------------------------, 1 , , I 
I lDA!ASET IDD1=ddname1,DEV!CE=device,~CDEL=model , 
, I , .. SI7!=size , 
I I , , 

l-~----·-.-~-----~-~------~-------------·-~·--------~----.-------~ 

The values spEcifiEd for thE DD1, DEVICE and MODEL parameters are 
exactly the same as discussed under "Easic [BDGEN Control Stat~mEnts 
Formats. I' 

SIZE=si2e 

I , 
I 

specifies the control interval size of the KSDS for the INDEX data 
base. !his value must ccnf~rm to the rules specified under "Basic 
DEDGEN Control Statements Fcrmats." See also Selecting Cllblock 
sizes later in this chapter. 

I 
'SEG~ 
! 

I 
'NA~E=segnamel,EYTES;tytes , 

~----------------------------------------------------------------~ 

2.:4 I~S/VS PrimE~ 



Only one SEGM statement with its associated LCHILD and FIELD statemEnts 
is required for thE s€ccndaty itdex data ba£e. 

NAME=segname 1 

specifies the name of the segment being defined. Although net used 
ty applicaticn ~rogtalS in the subset, it should be unique among the 
segment names in your installation. 

BY'IES=bytes 

specifies the length cf the data pOItion of the index pointer 
s~gm€nt. If a /SXname field is defined in the SUESEQ parameter of 
the CCIt43SFonding XDFLD statement, then its length (4 bytes) must t:e 
included here. 

1----------------------------------------------------- -----~--, 
I It' 

I ILCHILt 'NAME=(Segn~me1,dbname) I 
I I , , ~ T 11= 5 t: GIl 
, I t,INDEX=fldname I 
, I I f 

NAME=(segname1,dtname) 

specifies the segmen~ name of the index target segment and the name 
of th~ DBD in which it is defined. 

PTR=SNGL 

specifiES that a ~-tytE direct byte address Fointer in the prefix of 
the index Fointer segment will be used. It will point to the index 
targEt SEgmEnt. 

INDEX=fldname 

specifies the fieldname of the indexed field. This fldname must be 
specified as the name cf an XDFlD below the index target SEgment. 

1----------------------------------------------------------.--, 
I I I I 

, 'FIELD INAME=(fldname1,SEC) I 
, I I .E~TES=tytes I 
I , t. S'IAR '1= t I 
I I , I 
l----- - .. ~- -_ ....... -_ .. _- --- -~ ...... -- .. _-- ~~-- ----- -- --- -~- -- .... -- --- .. ---- -- .. --~ 

Cnly CDe !lILt statement shculd bE coded for each SEGM statement. 

NAME= (fldname 1, SEQ) 

fldname1 is the name of this field. It is not used by the 
applic4tion progral it cur subset. However, it should be specifisd 
following thE rulES of ethEr fiEldnames. SEQ defines this as a 
urique sequence field and must be specified as shown in our SuDset. 

Data Ease Design 2.55 



BY1ES=bytes 

specifies the lEngth of the field. This is the length of the search 
fiEld as aEtinEa in the XDi'lD statement, pIllS four if t~e ISX fiEld 
is included. It also is the length of the key for the KSDS. In our 
subset, it is Equal tc the length of the preceding segment. 

The tBDGEN, FINISH and END statEm~nts shculd be coded as before. FigurE 
2-29 shovs the physical EABTS DED (EE3FABTS) and its associated PURCHASE 
C~DEB secondary index DEn {BE3PSID1) for ou~ Phase 3 sample environment" 
~hese DBDs, toge~her with the Phase 3 CCStOMER ORDERS tEt (BE3CFtEE) are 
included in I!SVS.EFI~!S~C. Their tEDGENs can te performed with job 
I/SAftP310 in IMSVS.PRI"EJOB. 

DBD=BE3PSID1 DBD=BE3PARTS 

INDEX 
POINTER 

SEGMENT 

SE3PSIDI SE1PART INDEX 
TARGET 
SEGMENT 

0110 

~­---

DESCRIPTION OF SECONDARY INDEX 

--_ L.. __ --.l 
--............ r- , 

--- ..... -_...&.._-... 
INDEX SE1PPUR 

SOURCE. 
SEGMENT r-.. ___ ..... 

INTO THE PARTS DATABASE DESCRIPTION OF PARTS DATABASE 
FOR PRIMER SAMPLE PROJECT PHASE 3 FOR PRIMER SAMPLE PROJECT PHASE 3 

NAME-BE3PSID1. ACCE S5=INDEX D8D 

DATASET 001 =DElPSI01. DEVICE=31JO .MODEL '1. SIZE=2048 

NAME=8E3PARTS. ACCESS= (HDAM. VSAMI. 
RMNAf1E' C DFSHDC40. 4.80.500 1 

..... SEGM 

.....,..lCHHD 
FIELD 

DBOGEH 
FINISH 
END 

HAME=SEJPSIDI. BYTES=12 
NAME' (SE1PART. 8E3PARTS 1 • INDEX= FElPS I Dl • PTR =SNGL 
NAfIIE& (FE 3PSXD1. SEQ) • BYTE S-12. START=Ol 

Figure 2-29. Ehase 3 Physical tEDs 

IMS/VS Primer 

DATASET D01=DE3PARTS. DEVICE=JJ30 .MODEL '1. SIZE=2048 

PARTS- GENERAL INFORrlATIOH (ROOT) 

SEGM NAME=SEIPART. BYTEs=ao. PTR=T. RULES=PLV 

FI ELO 5TART=0 1. eYTE S= 08. TYPE=C. NAME = C FE lPGPNR • SEQ) · • 
LCHILO 

• _LCHILD 

"XDFLD 

CONNECTION TO CUSTOMER-ORDER DB.: 
NAME' (S E20DETL. BE30ROER 1 • PA I R =S E2PAROR. PTR =OB L E 

CONNECTION WITH 2ND INDEX , 
NAME'! SE!PSI 01. BE3PSIDI ) • PTR'INDX 
NAME=FElPSI01. SEGMENT =SEIPPUR. SRCH=FEIPPONR. 
SUBSEQ=/SXPPUR 

PARTS- PURCHASE ORDER INFORMATION 

SEGM NAME'SEIPPUR. 8YTES=6 O. PAREHT=( (SEIPART. SHGLl). PTR=r 
FI!LD 5 TART=Ol • BYTES=08. TYPE =C. NAME = (FE lPPONR • SEQ) 

· 
"FIiLD START=01.BYTES=04. TYPE=C.NAME=/SXPPUR 

• OROGEN 
FINISH 
END 



For each program ~hich uses a rIll data baRe, a program specification 
block (PSE) is nEedEd. Although cnE PSB can serve different batch 
application progtams. it is reccmmended, for integrity vurposes, that 
each FIcgram have its c~n FSE. ~n the online IMS/VS system, a Separate 
PSB is required fcr each cnline program. Each PSE consists of cne or 
more program communication klccks (PCBs), CDe for each data base the 
Frcgram ~ses. 

!he PSE is generated, as shewn in FIgure 2-30, in a similar m~nnEr to 
the tEl using the OS/VS asse~bler and linkage editor. The generated 
lead mcdule is stored in I~SVS.FSElIB. 

INPUT 
DECK 

IMSVS. MACLIB 

MACROS 

~B~ 
~ ------. 

IMSVS. PSBLIB 

Figure 2-30. Program Specification Block Generation (PSBGEN) 

Figure 2-31 show~ the sequence of the macro statem~nts in the FSEGEN 
input deck. 

( END REQUIRED: 1 

PSBGEN ~ 

"-____ REQUIRED: 1 

SENSEG 

~ PCB 

/-----------
REQUIRED: ONE FOR 
EACH DATA BASE (DBD) 
THIS PROGRAM USES. • 

• 
• 

• • • 

"'-S--E-N~S""'E""'G""'" 

SENSEG 4--- REQUIRED: ONE FOR EACH 
SEGMENT IN THE DATA 

PCB ~ BASE THIS PROGRAM ACCESSES. 

Figure 2-31y PS~GEN Input Ieck Structure 

tata Base Desigr. 2.57 



The PSBGEN is executed by invoking a JeL cataloged procedure named 
FSBGEN, which is available in the IMSVS.EROCLIE~ 

1he coding CODvEDticns fc~ the ESB are exactly the same as fer the DBD. 

BASIC I?SB CGDING 

Following are the basic PSB control statement formats. 

!his statement is coded once for each data base the program intends to 
ase. The format is: 

/-------------------------------------------------------------, / I , , 
, ,PeE 17YPE=DB I 
1 , l,tEttiA!E=dbdname I 
I I , , 
1 , , {A }[PJ , 
I I I.PROCOP'I= [G][I](R]{D) (P] I 
I " L (S] I 
1 1 I I 
I I I ,~EYIE~=value I 
I I I I 
L----------------------------------------------------------------~ 
~.§.9.sJl.Q: 

TYPE==tE 

is a requited keyword parameter for all data base PCBs. 

DBDNA~E= 

specifies the name cf thE DBD which is accessed via this PCB. It 
can be a physical or logical DBD. 

FPCCCP'I== 

specifies thE ~IOCEssiDg c~tions on sensitive segments declar~d in 
this ~CB that may be used in an associated application ~~cgram. 
Specifying superflucus ~recessing options is undesirable from a data 
base security point of view and can result in unnecessary additional 
data tase ~~ocEssin9. T~is operand allcws a maximum of four 
characters. The letters in the operand have +.he following meanings: 

G - Get functicr.. 

I - Insert fUDeticn. 

B - Feplace function. 

D - Delete functionq 

Note: The fur.ctions ahove can be coded in any comtinatioD of 
~hr~E; if all feur ar-e required, code "A". 

A - All, includes the above four functions. 

P - Bequired if command code D (path call) is to DE used on get 
type calls Ot ins€tt calls. Determines maximum length of the 
I/O area. P cannot be coded with L. 

2.5S IMS/VS Primer 



L - Load function fer data base loading (exc~pt HIDAM). 

L5- Segments loaded in ascending sequence only (HIDA~, EtAM}u 
This load option is required for HIDAM. 

KE YLl!: N=va 1 ue 

is the value specified in bytes of the lcngest concatenated key for 
a hierarchical patb of sensitive segments used by the application 
~tcqIam in the hierarchical data structur~. 

~§!~_ff~: !he format fer the G5AM data base peE statement is: 

/ 
I , , , 

1-------------------------------------------------------------, , 
IPCE 
J 

I , 

I 
I I YPE=GS Al'l I ,tBD~AP.E=name, IROCOPT={G[ S l} 
I L( S] , 

l------~---------~--------------------~--~------~·-----~---------~ 

where: 

TYPE=GSAM 

is a required keyword parameter for all GSAM data base PCBs. 

DBDNAME=name 

is a required keywcrd ~ara~eter for the name that specifies the GSAM 
tEt to be used as the primary source of data set description. 
SENSEG statements must not follow this PCB statement. 

FROCOP'l= 

is a required paraleter fer the processing o~tions on the data set 
declare~ in this peE that can re used in an associated applicaticn 
program The operand is sFecifi~d u~ing the characters defined 
below: 

G - Get function 
L - Load functio~ 
S - Large scale seguential activity. If specified, GSAM will use 

multiple-tuffEringQ This is reccmmended for heavy sequential 
processing. 

!2!~: The GSA" FeE statements must follow the PCB statements with 
TYPE=TP or DB if any exist in the PSB generation. 7he convention is: 

7F P~Bs - first 
DE peEs - seccnd 
GSAM PCBs - last 

This statement is coded once for each segment the Frogram is sensitiVE 
to in the tEt defined in thE ~Ieceding PCB. The SENSEG statements 
should appear in the same hierarchical sequence as in the DBD. However 
only those s~gments shculd te included to which th~ program needs 
access. All segments should be specified in the hierarchical Fath to 
any required SEgmEnt. Ne SENSEG statement~ should be coded for a GSAM 
PCB. 7he basic format of the SENSEG statement is: 

Da ta Base Design 2.59 



/ 
I 
I , 
I , , , 

I-------------------------~-----------------------------------, 
I I 1 
ISENSEG 'NA~E=seqDame1 , 
I , ! 
I , ,FAFENT=segname2 L 
I I 

I, h,PROCOPT={(G][I]tR][D]} ~~l] 
I I 

l----------------------------------------------------------------~ 

NAME=segname1 

is the name of the sEgment ty~e as defined through a SEGM statement 
during DEt generaticD. The field is from 1 to B alphameric 
characters. 

PAREN't=segname2 

is the name of the seg!ent type that is the parent of the sEgment 
type WhOSE name is sFEcified in the NAME operand. If this SENSEG 
statement defines a root segment type, this operand must equal zero. 
For all d~p~DdEnt sEgment tYFes, this operand must specify the name 
of the dependent's parent~ 

PFOCCE'I= 

specifies thE processing cFtions allcwable on this sensitive segment 
by an as~ociated application program. This operand has the samE 
meaning as the PROCOP'I c~erand on the PCB sta~ement. If this 
PROeCE! oFerand is not specified, the PCE fRO COPT operand is used as 
default. If there is a difference in the processing options 
specified on the PCB and SENSEG statements, SENSEG FRCCCFT overrides 
the PCE FECCCFT. When loading a data base, you should s~Ecify ? 

PROCOPT only in the PCB statement. 

This statement specifies the end of the PSB and providss interface 
parameters for the application program. It is the la~t statement bEfore 
the ENC statEmEnt. 'the kasic fcr~at is: 

1-------------------------------------------------------------, 
/ I , 1 

I , '{COBOl} , 
, IPSEGEN 'IA~G~ FIll I 
I J I ,A S SE M , 
, 1 I ,C~EAT=YES I 
, I "PSENll'1E=psbname I 
I , I , Ie l! F C E ~= (45 1 , W TeE) ! 
I , , , L _____________________________________________________ -----------J 

LANG: 

specifies thE language in which the application program is written. 
It must be either CeEel. PlII, or ASSEM, with no trailing tlanks. 

CMJ:A'l=YES 

should be SElected, Exc~Ft fer initial load programs. It provides 
an extra dummy PCE in the PSB. !his benefits migratioL to online 
Frocessing at negligi~le cost. 

2.60 IM~/VS Primer 



FSENAME=~stnamE 

is the parameter keyword for the alphameric name of this FSE. The 
name valuE fer t~e PSi~A'E must be eight characters or less in 
length. This na;~ beccl€s the lead module name for the FSP. in the 
library IMSVS.PSELIB. This name must bE the same as the progral 
load module name i~ the Frcgram library. No special characters may 
be used in the name. It must be the namE in the MBR= operand of 
PSEGEN. 

Should be codad as shown to concur with the recovery procedures of 
our subset. ~henevEr a rea~ c~ write data base IIC error would 
cccur during batch processing, the CS/VS system consolE operator 
will be notifiec (lliessage DFSC451A) • 

The reply sheuld bE 'ABEND'; DL/I vill then abend with a U451 aD€nd 
cede. !he data set in error should thEn te recovered. See Chapter 
6, "Data Base Recovery," fer details. ~his pirameter can be omitted 
vhen initially loading the data basE. 

!2~!: Bsfore abovE rEFly is given, the operator should take proper 
actions to prevent the Execution of any other DL/I jobs against the 
affected data tasEs. See Cha~ter 6. "Data Base Fecovery," ~cr 
details. 

END Statement 
---~---------

!his statement is required at the end of the PSB deck. It indicates the 
end ot the input for the OS/VS asse~bler. 

/ 
t , I 

I END , 
§~!!l~_~!!i£_f~~~ 

, 
t , 

Figure 2-32 shows two PSBs fcr thE Phase 1 samEle environment. The top 
cne (PEl PARTS) is the FSE for loading the Phase 1 PARTS data baSE. This 
FSE can te generated with jch //SAMF100 in IMSVS.PRIMEJOB. The second 
one (FE1CPFUR) is the one for the purchase order program. It also 
contains GSAM PCEs and it can be generated with job /ISAMP101 (COBOL) or 
//SAMP1C2 (PL/I) in IMSVS.PRIMEJOB. 

tata Base Design 2~61 



* 
* 

* 

* 
* 
* 

* 
-If 

PCB 

PROGRAM SPECIFICATION FOR LOADING 
THE PHASE 1 PARTS DATABASE 

TVPE=DB,PROCOPT=L, 
oeoNAME=BElPARTS.KEYLEN=ZO 

SENSEG NAHE=SEIPART 
SWSEG NAHE=SElPSTOK,PAFI'ENT=SElPART 
SEHSEG NAHE=SElPPUR,Pf.RENT=SEIPART 
SENSEG NAHE=SEIPGDSC.PAPENT=SEIPART 
PSBGEN LAHG=ASSEH,PSBNAHE=PElPARTS 

EtlD 

PCB 

PROGRAM SPECIFICATIm~ FOR 
PURCHASE-ORDER UPDATING OF 
THE PHASE 1 PARTS OATABASE 

TYPE:DB,P~OCOPT:AP, 
DBOtlAH!::=BElPARTS.KEYLEN=20 

SENSEG NAHE=SEIPART,PROCOPT=GP 
SENSEG NAME=SEIPPUR,PROCOPT=AP,PARENT=SEIPART 

pce TYPE=GSAH,PROCOPT=G. 
DBDNAHE=BOOINPOl 

PCB TYPE=GS~.H. PPOCOPT=L, 
oeONAHE=600CUTOl 

PSBGEN LAtlG=COBOL ,CHPAT=YES ,PS6t~AHE=PElCPPU~, IOEROPN=( 451,WTOR) 
END 

Figure 2-32. SampiE PSBs for Phase 1 

EXECUTION or PSBGEN -- Jet 

PSEGEN is run as a norlal 0Fsrating System job after IMS/VS system 
definition. IMS/VS system definition causes the procedure named PSBGEN 
to £e placed in the IMSVS.PROClIB procedure library. The following JCL 
cards are used to invoke the PSBGEN procedure. 

//PSEG!N JOB MSGlEVE1:1 
II EXEC ESEGE~,MEB= 

//C.SYSIN DD • 

* 

PCE 
SEN SEG 
ESBGEN 
INt 

!hE ccntrel cards 
for ESE generation. 

where keyword cperand ~EF= 

is the name of the PSB tc be generated. This nam~ must re th~ same 
as the name specified cn the PSENAME= operand of the PSEGEN 
statement. 

CeDING PSEs FOR lOGICAL DA!A BASES 

When a physical DBD contains logical relationships, the PCB and the 
applicaticn prcgram can still refer tc the physical DBD. However, this 
shCuld te restricted tc initial data base lcad ~rograms. Pemember also, 
the logical child always contains the logical parentis concatenated key. 
This should nct be fcrgctten when inserting a logical child in a 
physi~al DBDQ You can never access a virtual logical child in a 
physical data base, since it dces not exist. 

2 .• 62 



To use a logical data base, the program needs a separate PCB. This PCE 
is coded in the same manner as a PCB for a physical DBD. The cnly 
difference is that it refers to the DBD name and SEG~ENT names of a 
logical DBD. You should only code SENSEG statements for the segments 
the program actually needs and the segments in the hierarchical path to 
thos,= segments. All of this is based on the logical DBD, so the 
hi~rar~hical pa~h may well include physical and logical paths. Figure 
2-33 shows the PSB for the Phase 2 processing program PE2CORDR, 
containing a PCB for beth the logical data bases in addition to a PCB 
for the SHISAM data base. ihis PSB is listed in IMSV5.PRIMESRC, its 
PSBGEN can be performed with job IISAMP201 (COBOL) or IISAMP202 (PL/I) 
in IMSVS.PRIMEJOB. 

* 
* 
* .. 
* 

* 
'* 
* 

* 
* 
* 

* 

PROGRAM SPECIFICATION BLOCK FOR PHASE 2 
ORDER UPDATE PPOGPAH PE2CORDR. 

CUSTOMER DATABASE VIEW 

PCB TYPE=DB,DBDNAHE=BE2PCUST,PROCOPT=G,KEYLEN=6 
Sn~SEG NAtlE=SE2PCUST 

ORDER DATABASE VIEW 

PCB TYPE=OB,D8DNAHE=BE2LO~OR,KEYLEN=14 

SHISEG RAHE=SE20PD[R, F'ROCOPT=AP' 
Sn~SEG NA~IE=SE 20PAIH ,PAREtlT=SE20PDER, PROCOPT=A 
SEHSEG NAHE=SE20SHIP,PARENT=SE20PDER,PROCOPT=GI 

PARTS DATABASE VIE~ 

PCB TYPE=DB, DBDtI,~HE =BE aPART, K E HEN= 20 
SENSEG NAHE=SEIPAPT,PPCCOPT=GPP 
SEt~SEG NAHE=SElPSTOK, P t.PEtH =SElPART ,PROCOPT=GR 

PSBGEN LANG=COBOL,CHPAT=YES,PSBNAHE=PE2CORDR,IOEROPN=(451,WTOPl 
HID 

Figure 2-33. Sample PSB for Phase 2 

CODING PSBs FOF SECCND~RY INDEXES 

To use a secondary index, an application program should use a PCB with 
the following additional parameter in the PCE statement. 

The PCB Statement --- --~ ---------
I---------------------------------------------~------- -------, 

/ , I I 
I IPCB I TYPE=DB,... ,PROCSEQ=inuxdbname 1 
I I , , 
L--~~~-~---~---~---~~-~----~-~.-~~-~------------------ -----------J 

PROCSEQ=indxdtname 

specifies the name of the secondary index used to process the data 
base named in the DBDNAME operand through a secondary processing 
sequence. The o~erand is invalid if PROCOPT=L or L5. 

1. The DBD specified in the PCB for the secondary processing sequence 
can be a logical DED. No provisions are necessary in the logical 
~BD, but its root segment must be the target segmGnt of the physical 
DED. 

Da ta Base Design 2 .. 63 



2_ If non-unjgue ind~x fields are used, you must specify of the ISX 
field in our sutset. As a ccnsequence, the sequence of root 
segments ~ith the same index field value, when sequentially 
retrieved via the seccndary index, will be unpredictable. ~is 
sequence ~ill also vary across reorganization of the tarqet data 
base .. 

Figure 2-34 shows the PSB feL the Phase 3 processing program, fE3CFFUE~ 
This PSB contains a FCE for the normal processing sequences and a peE 
for the secendary processing sequence. 

* 
* 
* 
'* 
* 

* 

* 
* 

'* 

PCB 

PROGPAM SPECIFICATION FOR 
PURCHASE-ORDER UPDATING OF 
THE PHASE 3 PARTS DATABASE 

PRIMARY INDEX VIEW OF DATABASES 
TYPE=DB,PROCOPT=AP, 
DBOtIAHE=8E3PARTS, KEYLEN=20 

SEtlSEG NAHE=SEIPART, PROCOPT=GP 
SENSEG NAHE=SEIPPUR,PROCOPT=AP,PARENT=SEIPART 

PCB 
SECmmARY WDEX VIEW OF DATABASES 

TYPE=DB,PROCOPT=GP,CBDNAHE=BE3PARTS,KEYLEN=16, 
PROCSEQ=BE3PSIDI 

SENSEG tIAHE=SEIPART 
SEHSEG NAtlE:SElPPU~, PARENT=SEIPART 

PCB TYPE=GSAM.PROCOPT=G. 
DBDtlAHE =60 0 HIPOI 

* 

* 

* 
PCB TYPE=GSAM.PROCOPT=l. * 

OBDNAHE=BOOCUTOI 
PS!':',GEN LMlS=C060L, CHPAT=YES, PSB~IAHE=PE 3CPPUR, IOEROP~l= (451, WTOR I 

Etm 

Figure 2-34. Sample Phase 3 PSE 

The ~recess of data base design in its simplest form can be desc~ibed 
as: !he structuring of the data elements for the various applications 
in such an order that: 

• Each data element is readily available by the va~ious applications. 
new and in the foreseeable future. 

• ~he data elements are efficiently stored on secondary storage. 

• Controlled access is enfcrced for those data elements with specific 
security requirements. 

In practice, one is often ferced to ccmfromise, based on available 
resources in r.anpewEr, bardware and soft~are. 

CCNCIP1S OF tAlA EASE DESIG~ 

EecausE data tase aesign is an area where there has been little formal 
standardization, there has been no consistent vocabulary for describing 
the concepts involved. ~his section presents the concepts and terms 
used in the following introductory data base design discussion. 

IM~/VS ~rimer 



A data case contains infor.aticn about entities. An ~n!i!I is something 
tha t: 

• Can te unlqnely idEntified. 

• We may now or in the future collect substantial information aboutQ 

In practice this definiticn is limited to the context of the 
applicaticns under consideration. Examples of entities are: ~arts, 
projects, orders, custcmers, trucks, etc. It should be clear that 
defining entities is a major step in the data base design procEss. The 
information we store in data bases about entities is described ty data 
elemeD'ts. 

~~!~_~!i!iD!§ 

A g!l! !!!!!~l is a unit of information that specifies a fact atout an 
entity. Fo~ example. suppose the entity is a part. Name=Washer, 
~olor=Green, and ieight=143 are three facts about that part~ Thus these 
are three data ElEmE~ts. A data element has a name and a value. A d~ta 
element D~!~ tells the kind of fact being recorded; the !!lY~ is the 
fact itself. In the atovE ExamFle, Name, Cclcr, and Weight ar€' data 
elellent names; Washer, GreEn «and 143 are values. A value must be 
asscciated ~ith' a name to have a meaning. 

An occurrenCE is the value cf a data element for a particular entity. 
Figure-2;3S-illustrates thE ccr.cepts of data element! and their 
occurrences in recording the facts about t~c entities, parts (Entity A) 
and crders (lntity E). 

r-----------------------------------------------------------, , !BIIII_1i __ £AR1~ , 
1---------------------------------------------------------~-1 
, DA1A EIE~EN~ I CCCUFFENCES I 

t---------------------------------------------------~-------1 , Name t Value I Value , 

1-------------------------------------------------·---------! , PaIt Number I 0200311C I 03003720 I 
1 Name 'ScrEw I Washer I 
, Unit Price ,S;.CC I $1.00 I 
I Unit Quantity 1 100 pieces , 100 pieces I 
1 Stock Quantity ,2CCO ,3000 1 
L-----------------------------------------------------------~ !EIJII_ll __ Q~~!li~ 

, DA'!A ELE~EN'I i CCCUFEENCES I 

,------------------------------------------------.----------1 I Name ~ Value Value I 
1-----------------------------------------------------------1 , Crder Number I ,gOFfe ,'90F60 , 
, Fart Nalile Screw ,~ol t I 
t Fart Number J C~CC311C 1 03003730 , 
I Quantity ,500 units 1 300 units I 
I Supplier Name I Allied Screw I Allied Screw I 
I C r de r Cod e I A ,X I 

L-----------------------------------------------------------~ 
Figure 2-35. Concepts ~f Data Elements 

L~ta Base Design 2.€5 



Quite often, data elements which add information to an entity arE called 
2!~~!~Y~~§. An attIibute is always de~endent on an ~ntity. It has no 
meaning by itself. Dep€r.ding on its usage, an entity can bE described 
by cne Single data Element cr mere. Ideally, an entity should be 
uniquely ,defined by one single data element, for example, the order 
number of an crdEr. Such a data element is called !h~ !~I of the 
entity. 7he key serves as the identification of a particular entity 
occurrence, and is a special attribute of the entity. Keys are not 
al~ays unique. In such cases, entities with equal key values are called 
§!n2BI!§- For instance, the full name of a person is generally not a 
uniquE identificaticn. In such cases we have to rely on other 
attributes such as full address. birthday or an arbitrary sequence 
number. A mote common method is to define a new attribute, wbich serves 
as the unique Key, fcr exam~le, employee number. 

lh!_lI~~§~s~i.Qn 

Data in itself is net t~e ultimate goal cf a data base management 
systemq It is the application function performed on the data which is 
important. !he test way to re~resent that function is the ~~!~§!f1~Qn, 
which is the smallest ap~lication unit representing a user interacting 
with the data base. For example, ong single order, one part inventcry 
status .. 

",,-
"""""" "'- -' 

USER 

INPUT • J?o ---. 0 

TRANSACTION PROGRAM l .A .... 
/ K ) 

_ OUTPUT -.---- I 
"( y 

-
"'" ~ 

Figure 2-36. !he !ransacticn 

Transaetion~ are precessed by aFplicaticn programs. In a batch system, 
large nu~ber5 of transactions are accumulated ~hat is, all c~de~s cf a 
day), then precessed against the data base with a single scheduling of 
the de£ired application program. Although transactions are always 
distinguishable, even in batch, some people prefer to talk about 
programs rather than transacticns. But, especially in a rBltC 
envircnment, a clear understanding of transactions is mandato~y for gcod 
design. The transacticn is in some way the individual usage of the 
application by a particular user. As such, it is the focal ~oint of the 
rE/tC system. 

In this chapter ~e ~ill utilize the transaction for the data base 
designQ A similar role is set aside for the transaction in ~rogram 
design by adding detailed inFut. processing and output descriptio~s to 
the data element usage. 

Each transaction bears in its input some kind of identification with 
respect to the entities used (for example. the pa~t number when 
accessing a Parts data base). These are referred to as the ~£~§§§ f!!h~ 
of that transaction. In general, transactions requi~e random access, 
although for Ferfe~[ancE reasons sequential access is sometimes usedQ 
This is pa~ticularly true if the transactions are batched and they are 

2.66 IMS/VS Primer 



numerous, relative to the data base siz~, or if information is need~d 
from most data raSE records. 

For efficient random access, each access path should utilize the 
entity's key. ~ith pr~per data base design, DL/I generally provides 
fast physical access VIa a key. Therefore, identification of the 
transaction access path is essential for a design to yield good 
performance. 

A convenient wa, to specify the transactions, the data element and their 
interaction is the !~g~s2~11£~/~2!~ ~l~!~~! !~!~!!, Figure 2-37. 

CUSTOMER 
ORDERS 

~ $: $: 
~ $: ~ $: ~ 

> $> 0 0 
I- ~ ~ & ~ & 
I- A.. 0 # 0 # ~ $ $ Z DATA 

Q,<::r ~ ~ w ELEMENTS ~ ~ 

PART NAME R R R R R 
I-

~ ® ® 0:: PART NUMBER R R R 
~ 
0.. 

STOCK LOCATION R R U U R R 

0:: 
w CUSTOMER NAME R 
:IE 

~ 0 CUSTOMER NUMBER 
I-
eI) 

::> 
U 

ORDER NUMBER 

0:: PART NUMBER U D 
wo:: 
:lEw CUSTOMER NUMBER R D 
00 
1-0:: PART QUANTITY U D ~o 
U ORDER NUMBER OJ []] ~ 

Legend: o DIRECT ACCESS PATH (KEY) 

o SEQUENTIAL ACCESS PATH 

Figure 2-37. The 'Iransaction/l>ata Element Matrix 

The transaction/data element matrix specifies, in its simpl~st form, the 
precessing intent of the application transactions against the data base 
elements: 

.. P,4?trie ve ; read only R 

• UFdate in place U 

• Add, insert I 

• telete D 

• All cf above A 

• Null. not sensi ti ve - or hlank 

{lata Ease Design 



The data elements wbich are dirEct access paths for a transacticn are 
denoted by a bexed latrix item. These should be keys. Sequential 
access is indicated by a circle around the matrix itemG 

!he Frccess of designing a data base (Figure 2-38) can te generally 
divided into the follcwi~g ~asks: 

• Gathering reqairemEtts 

• Designing applicat10n data structures 

• Designing physical data structures 

• tesign €valuaticn 

1-oI1 ... ..-.-----DESIGN PHASE-------I ... I 

AI' 

if 

GATHERING DESIGNING DESIGNING DESIGN 
PHYSICAL OPERATION& 

r. APPLICATION ~ ~ r. r. REQUIRE- DATA PHYSICAL 
EVALUATION IMPLEMENTA- EVALUATION 

MENTS STRUCTURES STRUCTURES TION MONITORING 

~/~ 
OATA ELEMENTS 

~ 
,,- ........ 

T "'- .... 
R f ... f ... f 
A 
N 
S 
A 

DBDLIB ~ f ... f 

I 

~ 
0 
N 
S 

'-- ~ 

,,- ........ 
~ ~ 

§ DATA 

BASE 

'- .-' 

t 'r 

Figure 2-38. lhe Steps in Data Base Design 

Usually the atove stEPS are reFeated until the design satisfies the 
requirements. After this design process, the actual developaent, 
implementdticn ,data caSE lead) and prcduction begins. During 
production, the system is subject to monitoring which can 9i98 feedback 
for the design phase. !bis will be di~cussed in Chapter 9, 
"C pti mi za tion ". 

2.68 I~S/VS Primer 



GA~HEFING BECUI~E~ENTS 

The first step of the data baSE de~iqn roses many questions: What do 
the aFflicaticnE needi ~hat inputs are required to drive them? What 
data outputs will they produce? Eow are the data elements related to 
one another? Which elements are identifiers and which elements 00 they 
identify? Hc~ frequently are they used? Have input sources been 
specified for all data elements? 

During the Frccess of gathering requirements, thase and related 
questions are anE~ered primarily during conversations tetween a oata 
base designer and an analYEt irem the deFa~tment that regup.sts an 
application. In some organizations, a set of forms appropriately filled 
in marks the end ot the requirEfents gathering step; in other 
organizations, less formality is involved. In any case, this fir~t steF 
in data base design ends when the design9r collects the data needs of 
the individu~l aPFlications that ~ill U~~ the data base being designed. 

The requirem~nts for a data base should contain: 

• The data being managed, that is, the entities and associated data 
elements 

• !he relations betwEen the en~ities and data elements as needed ty 
the various users 

• ~he functions being ~eriormed against the data, that is, ~he 
transactions 

• !he aCCESS path as required by the transactions 

The first step in gathering ~be requirementE is tc determine the 
entitieso ihis is not a trivial task, because the choice of €nt~ties is 
dependent on the envirenment. 

A data elemeDt which, initially, is considered an attribute, could 
beco~e an entity itself when n~v applications are added. For ir.stance, 
the data, element colcr is normally seen as an attribute. But in a paint 
factory frccess it might very well be an e~tity itself. It should b~ 
clear that the change cf a givEn data eler.ent from attribute to entity 
cculd have a significant impact on the data structur~. To avoid thiE as 
much as possible, one should be v~ry careful in the choice of entities. 

To Iegister the functicns ~erfc:~€d against the data elemen~s, first 
construct the ~~~n~~~!~Qn/gg!g ~!~~§n! !~!I~!. Optionally wh€n the 
matrix becomes tee lar9€, ene can ccnstruct a s~parate matrix fer each 
major apflication. dncther useful approach is to make a large drawing 
for display en the wall. This process is most effective if th€ mat~ix 
not only contains the ~pplica~ion~ of the immediate future, but also as 
much as fossible about future applications and data elements. 

Additional columns could be added for miscellaneous information such as: 

• Occ~rrence frequencies cf transactions and data elements 

• Size and format of data elements 

• Priorities and response/turnaround time criteria 

• Availability (how long can the function be suspended) 

• 5ec~rity (who may have access to the information mad€ available by 
this transaction) 

tata Base Design 2.69 



• I~put/output descri~tions per transaction, for application program 
design 

!he transaction/data ~lement matrix, tcgether with a detailed 
description of the data tase and its use, constitutes the requirements 
fOL the design step. For the detailed description of the data base, its 
segments and fields, a dccumentation scheme should be established. As a 
minimum, forms should be uS9d for a manual registration of the data 
tase, the segment layout, the fields and their attributes. It is very 
imfortant to register which program uses which data elements. The next 
step would be to use the Assembler DSECT, COBOL COPY, or PL/I %INCLUDE 
facility for centralized management of segment descriptions. 
Ultimately, a data dictionary system might be utilized. 

For each phase of cur sal~le environment, we can now construct a 
transaction/data element matrix. 

The phase 1 transactict/data element matrix is shown in Figure 2-39. It 
is clear the main entity is parts. Othar possible entities ceuld be 
purchase order, supflier and stock location. Ho~ever, we assume no need 
to gather mere informaticn cn these in our Phase 1 sample environment. 

Netice, the following information is added to the transaction data 
element matrix: 

• For each data element, we li~t its size and its occurrence per 
entity. C - 4 means that this data element occurs a minimum of zero 
times, and a maximum of four. 

• For each transacticn, w€ list its average frequency in weeks (W) or 
days (C). 

In tha phase 2 environment, we add the Customer Order Processing 
application. !bis extends the phase 1 transaction/data elament matrix of 
Figure 2-39 to the one shown in Figure 2-40. Essential here is that, 
besides adding new data elements for the customer order processin~. this 
ni~ applicaticn also requires the existing PARTS data elements. 

Also notice that the part number data element appears beneath bot~ the 
PARTS and the CUSTOMER ORDERS entities. !his constitutes the basic 
re~uirement fer a linkag~ or relation between these entities as ~e ~ill 

see lat er. 

In the phase ~ environment, we added the purchase order inquiry 
transacticn, lE3FQI~C. This transaction requires a direct and a 
sEquential access path tc the purchase crder information based on the 
purchase order number. This is because we want to be able to list an 
individual purchase erder, er a range 0= purchase orders in their order 
number seguenceo See Figure 2-41. In practice, this access Fath ceuld 
also be used fer the pUIchasE crder change (TE1FOCNG) and delete 
('IE 'PODEL) transactions. 

2.70 IMS/VS Primer 



PURCHASE 
ORDER 

§> ~ §> 
~ " ~ 

> ~" ~ 
t: d' § 
~ w ~ ~ Z N ~ ~ w iii 

50 FE1PGDSC R 

13 FE1PGSNM ® R R R 

8 FE1PGPNR R ~ ~ ~ [ill 
8 FE1PGUNT R R R R R 

8 FE1PGPRI R R R R R 

8 FE1PGDIM R R R R R 

1-6 12 FE1PSLOC R R 

1-6 6 FE1PSCNT R R 

en 1-6 6 
~ 

FE1PSDAT R R 

" 1-6 6 FE1PSISS R R 
<t 
Q. 

1-6 6 FE1PSREC R R U 

0-4 20 FE1PPOSU R R U D 

0-4 6 FE1PPQOD R R U D 

0-4 6 FE1PPQRD R R U D 

0-4 6 FE1PPODT R R U D 

0-4 6 FE1PPDDT R R U D 

0-4 8 FE1PPONP. R R R D 

8 FE1PGNEW R R 

8 FE1PGOLD R R 

8 FE1PGEQV R R 

Legend: DIRECT ACCESS PATH (KEY) 

o SEQUENTIAL ACCESS PATH 

Figure 2-39. 1ransaction/tata !lemant Matrix for Phase 1 

Da ta Ease Design 2.71 



PURCHASE CUSTOMER 
ORDER ORDER 

~ 
~ @ ~ ~ 

u ~ .... ~ ~ z $ ~ ~ ~" > w 
I- ~ 

o~ 0<.1 § C<.l 
~ 

~ 
:;) 

w ~ ~ ~ S u z ?l N ;....~ ;....~ ;....~ ,,~ w ~ 

0.3 50 R 

·13 FE1PGSNM ® R R R R R 

8 FE1PGPNR R 0 0 0 ~ [E) [E). 
8 FE1PGUNT R R R R R R R 

8 FE1PGPRI R R R R R R R 

8 FE1PGDIM R R R R R 

1-6 12 FE1PSlOC R R R R 

1-6 6 FE1PSCNT R R R R 

1-6 6 FE1PSDAT R R 
(I) 
I- 1-6 6 FE1PSISS R R U J c:c 
« 1-6 
Q. 

6 FE1PSREC R R U R A 

0-4 20 FE1PPOSU R R U 0 

0-4 6 FE1PPQOD R R U 0 

0-4 6 FE1PPQRD R R U 0 

0-4 6 FE1PPODT R R U 0 

0-4 6 FE1PPDDl R R U 0 

0-4 8 FE1PPONR R R R 0 

8 FE lPGNEW R R 

8 FE1PGOLD R R 

8 FE1PGEQV R R R R 

ex: 6 FE2PCNUM 

w 20 FE2PCNAM R R 
~ 
(,:) 20 FE2PCADR R R 
I-
(I) 

20 FE2PCCTY R R ::::> 
U 

6 FE2PCPCD R R 

6 FE20GREF QJ [E] @] 
2 FE20GSTA U 0 

6 FE20GODT U 0 

6 FE20GDDT U 0 

(I) 
c:c 2 FE20GDWK U 0 

UJ 0.1 20 FE20GSPC U 0 
Cl 
0::: 2 FE20GORI U 0 
0 
0::: '-8 6 FE20DQTV U 0 
w 
~ 1-8 8 FE20DPRI U 0 
0 
I- 1-8 FE20DTAX U 0 
(I) 

=' 0.1 8 FE20SNR U 0 
U 

0.1 6 FE20SDAT U 0 

0.1 20 FE20SMET U 0 

'-8 FE20DBOR U 0 

6 FE20GCNR R 0 

1-8 8 FE20DPNR U 0 

Legend: DD'RECT ACCESS PATH (KEY) 

OSEQUENTIAl ACCESS PATH 

Figur~ 2-~O. lransaction/Data Element Matr ix for Phase 2 

2.72 IMS/VS PrimEr 



PURCHASE CUSTOMER 
ORDER ORDER 

@ §J 
w ~ .... 
U 
Z ~ ~ ~ ~ > w 

~ a: eV § OV a: 0-
~ ::l w ~ ~ ~ ~ u Z g N ,,1<1 ,,1<1 ,,41 ,,1<1 
w iii 

0.3 50 FE1PGOSC R 

13 FE1PGSNM ® R R R R R R 

8 FE1PGPNR R ~ [E] [E] [E] R ~ [E] 
8 FE1PGUNT R R R R R R R 

8 FE1PGPRI R R R R R R R 

8 FE1PGOIM R R R R R 

1·6 12 FE1PSlOC R R R R 

1-6 6 FE1PSCNT R R R R 

en 1-6 6 FE1PSDAT R R 

~ 1-6 6 FE1PSISS R R U U cr: 
« 1-6 6 FE1PSREC R R U R R Q. 

0-4 20 FE1PPOSU R R U 0 R 

0-4 6 FE1PPQOD R R U D R 

0-4 6 FE1PPQRO R R U 0 R 

0-4 6 FE1PPODT R R U 0 R 

0-4 6 FE1PPDDT R R U 0 R 

0-4 8 FE1PPONR R R R 0 [§] 
8 FE1PGNEW R R 

8 FE1PGOLD R R 

8 FE1PGEQV R R R R 

cr: 6 FE2PCNUM ~ ~ 0 

w 20 FE2PCNAM R R 0 
~ 
0 20 FE2PCADR R R 0 
~ 
en 20 FE2PCCTY R R 0 ::> 
u 

6 FE2PCPCD R 0 

6 FE2PGREF 0 

2 FE20GSTA U 0 

6 FE20GODT U 0 

6 FE20GDDT U 0 

en 2 FE20GOWK U 0 
cr: 
w 0.1 
C 

20 FE20GSPC U 0 

cr: 2 FE20GORT U 0 
0 
cr: 6 FE200QTY U 0 
w 
~ 8 FE20DPRI U D 
0 1 FE20DTAX U 0 ~ 
en 
::> 0.1 8 FE20SNR U 0 
U 

0.1 6 FE20S0AT IJ 0 

0.1 20 FE20SMET U D 

1-8 1 FE200BOR U 0 

6 FE20GCNR R 0 

1-8 8 FE20DPNR I U D 

legend: o DIRECT ACCESS PATH (KEY) 

o SEQUENTIAL ACCESS PATH 

Figure 2-41. Transaction/tata Element "atr iJC tor Fhase 3 

Cata Base Design 2.73 



DESIGN THE AFPLICA~ION tA~A StRUCtURE 

~he data elements ca~ nov be arranged in an application data structure, 
which consists cf cne cr mcre hierarchical data structures. We always 
censtruct hierarchical data structures based on the transaction/data 
element matriI: that is, the way the application program views it • 

.§~g!~!!!_~!i2YRi!!g 

For each transaction, we start with the access path of that transaction 
to the entity, and censtruct a desired hierarchical view for that 
transaction. If more than one entity is accessed in one transaction, 
multiple hierarchical structures are required for that transaction. For 
each hierarchical structure, we try to group the needed data elements in 
the same type of segments. Each root segment of such a basic structure 
contains the key field which is used in the access path. If multiple 
key fields (fer exa~ple, ~art number and stock number) are used in one 
access path, these may become the sequence fields of a parent/child 
cembinaticn. 

!he first field in the rcct segment is the key: the sequence field. To 
the r~ot segment are added these data elements which are of a general 
nature, freguently used and/or compact, and occur once (or Kaximu~, 
perhaps 3 times) pEr Entity. 

Next WE group those data elements together in segments which belong 
lcgically to each other, based on their nature and use. Likely 
candidates for SEparate segments are those data elements which have 
multiple cccurrences for a given root. The final result of the legical 
structurE desisn step is a set ef hierarchical data structurES. !h~se 
represent the ¥ie~ of the data by the different application programs, 
the a~plication data structure. 

Based en the transaction/data element matrix of Figure 2-39 and above 
guidelines for desi~ning aFFlication data structures, we construct the 
fcllcwing strtcture for the phase 1 Parts data base (Figure 2-42}. 

PART 

(SE1PART) 

-I 
I I 

./ ./ /' 
, ./ 

PURCHASE 
STOCK 

ORDER 
(SE1PSTOK) (SE1PPUR) 

l/ V 

Figure 2-42. Phase 1 Application Data structure 

Sequential access is needed via the ~art short name, FE1PGSNP. and direct 
access is needed via the pa~t number FE1PGPNR. We can, however, Frocess 
the !E1INVRP transactien in Fart number sequence and then sort the 

2.74 IMS/VS ~rimer 



output in part short name sequence if needed. Direct ~ccess via part 
number is very important for later online processing. 

~b~ ~2Q! §~gm~n!. §I!fA~l 

The rootkey is the part numter lE1FGFNF field. The next step is to add 
the follcwin9 fiElds to the reet sEgment because they are of general use 
and cccur for each part only once: 

FE1PGFNE 
fE1PGSNM 
FE1PGNEli 
FE1 PGOL t 
FE 1PGEQV 
FE1PGUN'I 
FE1PGPRI 
FE1PGDIM 
FEl PGLNf. 

Part Number Code 
Part Descri~ticn - Short Name 
Ne~ (Superseding) Part No. 
Old ISuperseded) Part Ne. 
Equivalent part No. 
Unit of ~easure 
PriCE 
Dimensions 
Part Name (long Description) 

SEG ME NT LENG~H 

!t.§DB!j; 

g 
13 

8 
e 
8 
8 
8 
8 

~o 

1''9 
We define separatE se9ments for steck and purchase order data elements 
because each can have multiple occurrences for each part and they are 
used separately. 

Ib~_a~g~5_~~~~§D!,_~~jf~lQ~ 

This segment bas 1-6 cccurrEnCES fer each part: 

Name ---.,. 

fE1PSLOC 
FE1PSDA'I 
FE1PSCN'I 
FE1PSISS 
FE1fSREC 

FE1EPCNB 
lE1PPOtT 
FEliPCSU 
FE1PPQOI 
FE1PPQRD 
FE1FPDD'I 

Steck Physical location Code 
Stock Physical Count tate (MMDDYY) 
Steck Fhysical Count Quantity (TALLY) 
Steck 'Ictal Issues Current Period 
Stock Total Beceipts Curr~nt Period 

SEGl!EN'I LENGTH 

Furchase Crder Number 
PurchasE Order Date ~eDDYY 
Supplier's liame 
Quantity Ordered 
Quantity Received 
Delivery Date ~MDDYY 

SEGMENT LENGTH 

l~ng~h 

12 
6 
6 
6 
6 

36 

e 
6 

20 
6 
6 
6 

~2 

The above application data structure of the Phase 1 Parts data base, 
will be input for the ph}sical data base design in the next design step. 

ih!!!_~_AR]li~~liQn_~~!~_~!IYf!YI§ 

To support the PhaSE ~ transacticn/data ele.ent matrix of Figure 2-401 

we need two hierarchical structures in addition to the one shown in 
Figure 2-42. The result is shewn in Figure 2-4J~ The design of the 
segments in the new hierarchical structures is done similar to tt.e 
design of the PhaSE 1 Parts data structure. 

Data Base Design 2.75 



CUSTOMER 
ORDER 

r I 
./ .;- "" "" ./ 

, 
"" 

DETAIL SHIPMENT CUSTOMER 
ADDRESS 

1/ ~ l/ 

I 
./ , ./ 

STOCK 

~ 

PART 

I I 
"" 

, --' JIll' "" JIll' 
, 

"" 

STOCK PURCHASE CUSTOMER 
ORDER ORDER 

l./ ./ 

Figure 2-43. Phase 2 Applicaticn Data Structure 

The following consideraticns aFFly: 

• The hierarchical data structure PAR!S is extended with a CUSTCMER 
CEDER segment. This provides the customer crder per part relation. 

• Sev€ral s~9ments a~pEar in different structures. They also vary in 
their data element ccntent. !his is essentially data redundancy, 
which will be addressed in th~ physical design step. At this time, 
hpwever, WE are mainly interested in the data structure as needed by 
the transactions. 

EQ~§: In your situaticn, tbF.s~ structures could be far more ccm~lex. 
For instanCE, the CustCHEI da1a structure could have separate segments 
for accounts rEceivablf, lark~ting statistics, etc. The PAFTS structure 
cculd have a ccm~onent and assembly structure. This is not addressed in 
our samplE bat can te easily ilplemented with OL/I. 

!he essential additional requirement of Phase 3 (see its transactionl 
data el~mEnt matrix cn Figure 2-41) is the need for access to the part 

2.76 I~~/VS ;rimeI 



and purchase orde£ ~ata elements iia the purchase crder number. This is 
reflected j.n the Phase 3 application data, structure in Figure 2-44. 

CUSTOMER 
ORDER I CUSTOMER I 

I I 
/ :7 / / / , / 

DETAIL SHIPMENT CUSTOMER 
ADDRESS 

1/ ~ ~ 

I 
./ , / 

STOCK 

1/ 

; PART 

PURCHASE 
ORDER 

I J 1 
./ , 7'" ./ ./ ./ 

, 
./ -" • ~ 

STOCK PURCHASE CUSTOMER 
ORDER ORDER 

PART 

l/ ./ ~ 

Figure 2-44~ Phase 3 Application Data Structure 

DESIG~ !HE PHYSICAl DA!A STFUCTUEES 

In this step, the logical structures are matched against the functions 
and characteristics of DL/I. Physical data base structures are defined 
and sFecified in tEDGEN control statements. TLe tL/I storage 
organization and OS/VS aCCESS methcd are selected. Additional 
considerations may yield changes in the segment design. SEe 
Figure 2-45. . 

Data Base Design 2.77 



r------------------------------------------~----------------, , GBCOF IN CtiE SEGMENT <------> SEFAFATE SEGMENTS , 
,-----------------------------------------------------------, 

Few occurrences «~} 

Small 1<20 tytes) 

Higb use (every access 
to record) 

Bead-only 

GeneIal use 

only dependent upon a 
single data element 

Multiple occarrences (>10) 

La r 9 e (> '00 byte s) 

Lo~ use (once a month) 

Update, Insert, telete 

Secured use 

Dependent upon relation 
of data elements 

Fig~re 2-45. Grouping Data Elements into Physical Segments 

The numters shewn in Figure 2-~~ are not fixed. They merely provide a 
basis feI YOUI o~n estimates. Additional considerations: 

• Single versus aulti~le CCCUIrences. If a data element has a high 
numker of cccurIenCES, it is likely te be a segment itself, 
especially if it is large. If it is small and highly used, then all 
its occurrences could be stered in the same segment. However, the 
occurrence control ~ould then be the responsibility cf the 
applicatien program, as Dl/I itself dees net provide for multiple 
eccurrences of the name field in a segment. 

• A very large segment can haye a negative impact on DL/I's management 
of space on direct aCCESS aevices. So the basic rule is: "Try to 
keep them more or less the same size". 

• If a data element needs special security (that is, only ~articular 
applications may have access to it), it can be stored in a separate 
segment together with other data elements with the same security 
requirements. 

The final result of the physical structure design steps is the data base 
descriptions (DEDs) and program specification blocks (PSBs) for the data 
bases and their processing ftegrams. 

We ~ill now match our requirements as specified in the applicaticn data 
structure of Figure 2-42 and the transaction/data element matrix of 
Figure 2-39 with the available tt/I functions as presented earlier in 
this chapter. 'Ihe cutccme of this ma tching is the ph ysical data tase 
design reflected in the ten and the physical data set attritutes. 

Access methods can, in general, be changed during reorganization without 
affecting applicaticn ~Icgrams. Still, because the access method is one 
of the most critical performance factors, it should be carefully 
selected. First we will discuss selection of the DL/I access method, 
HDAM, HIDA~, Ot SHISI~. 

2.78 I~S/VS Primer 



!hiD_~f_~h2Q!!_tl~I~: EDAf is recognized in practice to te the mest 
efficient stv~ag~ c.rgarizatien cf tl/I. It should be your first choice, 
at least in th€ cnline envircr.ment. HDAM's pri~e advantages ar€: 

1. Fast direct acceBS (no index accesses) with few I/O operations 

2. Single data set and associated control blocks 

3. Small werking SEt io lair stcIage for tt/I 

4. Good phy~ical sequential access 

Disadvantages of HLA" arp.: 

1. You need a randomi2inq module. 

2. Sequp.ntial access in root key order is not possitle if th€ Fhysical 
sequence of data base records in stoIage is not the same as the root 
key s€quence. This is dependent on the randomizing module and root 
key characteristics. 

In many cases, the dis'advantages for HDAM dc not apply or can be 
circumvented. The effort needed to circumvent should be weigb€d against 
the savings in terms of main stcrage and CPU usage. There is DC doubt, 
however, that an applicaticn with enly HDAM data bases is the most 
comFact one. Scme possible solutions for the above EDAM disadvantages 
are: 

1. The IMS/VS system provides a general randomizing module, tF5HDC40, 
which can be used for any key range. Furthermore, the secticn "HDAM 
Bandomizing Modules" in Chapter 7, "Installing IMS/VS," will previde 
you ~ith guidelines on how to write your own ranaomizing medul~. 

2. If heavy sequential processing is required and a randomIzing module 
which maintains key seguEnce cannot be design~d, then sort 
techniques can be used: 

a. tf the progra~ is ncn-input driven, as is the case with many 
repcrt prograls, siD1~le Get Next Frccessing presents all the 
data base records in physical sequential order. The output 
could thEn b€ sorted in the desired order. Also, in many 
instances, only certain selected segments are required. 50 the 
output file cf the extract can be a fairly small file. 

b. If there are input transactions which would normally be sorted 
in root key sequence they should inst~ad be sorted in Fhysical 
sequence. This can te readily dcne with an E61 sort exit 
routine ~hich passes each root key to the randomizing module 
for address calculaticD and then sorts on the generated 
addresses plus root key instead of the root key itself. An 
example of such a reutine, DFSOASR1 is provided in 
IMSVS.PEI~ESIiC. 

3. A secondary index cculd te built with the root key as index search 
argument. The cost of this should be weighed against the cost of 
sorting as in 2 aboveo The secondary index provides full geIeric 
key SEarch ca~atility, hewsveI. 

We will select HtAM as the OL/I access method for our initial Farts data 
base, and vill use Technique E above in loading it. (Fer details see 
"Loading a BtAM tata Base" in Chapter 5.) 

~h§~_tQ_~hQQ§~_~l~A~: If ycu cannct use HDAM fot serue reason, then use 
HIDAM (see above discussion). 

Data Base Desigr 2.79 



Hh~~_~~_~h~g~!_~fiI~!~: ~his access method should only be used as a 
~igraticn tool. That is, if your organization currently has files based 
on ISAM or KSDS access methodsy It is not recommended for new da~a 
bases. With SEISAM, new Fregrams can use the DI/I interface with full 
recevexy function. Existing VSAM prograls can access the data tass as a 
regular KSDS and elder ISAM-basEd programs can use the ISAM-VSAM 
interface. 

We will utilize a SEISA! data base in eur phase 2 environment. 

~hi£h_9~L~§_!££~§§_~~~hQg 

Fer HDAM you could choose either ESDS or OSAM as the physical access 
method. There is net much difference as far as DL/I is concerned, 
although CSAM requirp.s less main storage for code and contrel blccks. 
In general you should select ESDS if your installation already uses VSAM 
er Flans to use it for other data bases. 

~he real benefits from CSA~ are gained when you hav~ an application 
which uses HtAM/OSAM s!fly~jl§lY. In ~ny Cdse, conversion from 
HDAM/CSA~ to HDAM/VSAM is relatively simple once you have gained 
experience with VSAM itself. 

For the phase 1 data base we w~ll select OSA~ as the physical aCCESS 
method. 

In the final steps ef segm€nt design we must leok at the physical 
parameters more closely: 

• !he segment lEn9th 

• The number cf cccurrEnCES F8r segre~nt Fer Farent 

• Location of segments in the hierarchy 

• Average data base record s~ze 

fsf{Q~m~nS~_~§E~~~§: The main ~easure of access performance is the 
number of I/C requests nE~~ssar1 to satisfy the calls an ap~lication 
Frogram issues. These are mainly dependent upon the physicaJ data base 
design and the data base tuffer pool size; th~ latter will be discussed 
in Chapter 9, "Optimizatien." Second, the number of required rIll calls 
shculd be ~eighted. 

Basic reccmmendations (EDAM and HID AM) : 

• 7ry te locate the segments most often used together with the roet 
segment into one centrol interval/bleck. The segments ar.e initially 
physically stored in hierarchical sequence so the most frequently 
used segments should be en the left of the structure (lOW segment 
codes). 

• ~ry to avoid long twin chains, that is, many occurrences of a 
particular segment under cne parent. Chain length should be 
estimated in terms of blOCKS needed to store such segments. For 
example, 100 segments ef 20 bytes (including prefix) cause lGSS 
performance problems th~n lC SEgments of 1500 bytes each if the 
block was 3000 bytes. See also the discussion of the "tytes" 
parameter under Basic Feccmmendaticns (HDAM) below. 

2080 IM~/VS trimer 



• Inserts after initial lead will first check the block of the 
hierarchically preceding segment for available space. If nc space 
is found,' nearby blocks in the buffer ~ool are examined. If still 
nc sFace is found, a ~i~ !~E B!2£! is used to search for space 
within !3 cylinders in cur SUbsEt. The bit map block contains one 
tit for each tlock in the data set. Eit map blocks are repeated 
each N blocks; N is nUlber of bits in a block. The bit is set to 
one if the corresponding hlock contains enough consecutive free 
space to hold the largest ~eg~ent (including prefix) of the DBt. If 
nc space is fcund, the segment is stored at the end of the data set 
for HIDA~ and in the overflow area for HDAM. 

Basic recommendation (HDA~): 

• During consecutive inserts (no intervening calls) of segments of a 
particular data base record, the bytES parameter in the RM~A~E 
keyword in the DBD statelent will limit the amoont of data stored in 
the· rcot addressablE area. If the limi t is reached (bytes incl udes 
prefix) consecutive inserts are placed in the overflow area. Using 
this parameter, especially doring initial load and reload, can 
benefit an equal distribution in the case of a large variation in 
data hase record size. See also, HDAM space calculation later in 
this chaFter. 

fhI§if!!_Q2!~_~~2~_~~fY£~Yf~_!£!_Iha§~_1 

Applying above guidelines to the phase 1 Parts data case giVES the final 
physical data baSE structuIE cf Figure 2-46. 

HDAM,OSAM 

SE1PART 10,000 
10,000 

80, 18,98 

FE1PGPNR 

I I , . ,. ./ ../ ,. / 

SE1PSTOK 40,000 SE1PPUR 2000 SE1PGDSC 3000 
0,6,20 0,1.,4 0,0.3,1 

40, 6, 46 60,6,66 80,2,82 
FE1PSLOC ./ FE1PPONR ./ 

Figure 2-46. physical Data BaSE Structure for phase 1 
PAR~S Data BaSE 

l/ 

As you will notice, we created a fourth segment, SE1PGDSC which contains 
the full EaIts descriptive name, FE1PGLNM, since: 

• ~his information is rarely needed, especially in the foresEEn onli~e 
procEssing 

• By bringing back the root segment from 148 b1t~s to 98 bytes 
(including prefix) we improve the s~gment insert processing cf th~ 
stock and eSfEcially the FUIchase order segment. This results 
because the f~ee space bit map is based on the largest physical 
segment size. 

Data Base Design 2.81 



Fu=thermore, we added a dummy field to the segments. This could be done 
in practicE if you EXPEct the segment to be expanded in the near future. 
At least you should make all segments an even number of bytes. 

We also added to the data base structu~e in Figure 2-46 the main 
physical segment attritutEs which are cf most importance for performance 
considerations. It is recomm@nded that you maintain such structural 
figures for your data tases. 1hey have ~roven to be very valuable for 
performance monitoring and design reviews. A description of those 
attritutes follows in Fiqure 2-4i. 

rrJ 

./ ./' 
SEGMENT NAME, OCCURRENCE 

FREQUENCIES (MIN, AVERAGE, MAX) 

LENGTH (DATA, PRE FIX, TOTAL) 

SEQUENCE FIELD NAME V 

1 
• Segment name, occurrence specifies the segment name and the total 

number of this segment occurrence in the data base. 

• Frequencies specifies the minimum, average and maximum number of 
occurrences for this segment per parent occurrence. 

• Length specifies the segment data length, the segment prefix length 
and the total (=sum of data + prefix) length of the segment. 

• Sequence field specifies the name of this segments sequence field, 
if any. 

Figure 2-~7. Specification of Physical Segment Attributes 

£Qg!~g_~h~_fh~§!_l_!A]!~_&]~~]~A] 

We can now code the DBt and discuss the final parameters such as pointer 
options and Cl/blocksizE t:arallleters. Some iteration with the preceding 
secticn is normally necessary because thE pointer options selectEd 
influencE the size cf thE segment prefix and, as such, can have an 
imt:act on physical segment design. The final DED of our Phase 1 Parts 
data ~asE is listed in Figure 2·22 earlier in this chapter under the 
topic "Basic tEDGIN". 

BecaUSE there is no use ex~ected of the physical child last pointer in 
any segment, code ~AEENT = CCsegname, SNGL)) in all dependents. Because 
of this (no deletes after retrieve last), only physical twin forward 
pointers are needed. Code P~R=~ in all segments. Because there is 
never more than one occurrence of the SE1PGDSC segment for any part, the 
physical twin forward FcintEI for this segment should be suppressed; 
c od·e P 'IE= N'I. 

2.82 IMS/VS Frimer 



~~1§£!ing_&IL]!2£!§!!~~ 

In choosing the Cl/blccksize the fellowing ccn~ideraticns apply: 

• Try to fit all highly Deeded segments of a data base record into one 
tor more consecutive) Cl/tlocks. 

• One tlocksize for all cata base OSAM data sets (if any) will limit 
the amount of sub~eols. However, usir.g a unique size for a highly 
used data base allows a dedicated subpool specification for that 
data tase. 

• Large blocksizes favor sequential processing and DASD space 
utilizatien. Cn the other hand, if you are primarily precessing 
directl1, you should determine the segments needed per data base 
racord ~er transaction. 

Easic recommendations fer the ~ractical .inimum CI/tlocksize for ESDS 
and OSAM data set~ are given fcr each device type in Figure 2-48. The 
underlined numbers would be a general "best fit" for as/VS1. the 
numbers tetwEen ~arEnthesis veuld be the general "best fit" for OS/VS2. 

r-----------------------------------------------------------, 
']~~i£~_Ilf~ I Q~A~_§12~~§i!~_QI_!~!~_~§Q~_~!§!~~ I 1 , (blocks/track) ~ 

1-----------------------------------------------------------1 
1 2314/231 S t 15::6 (~~~~) , 
, t ('4) (3) I 
t-----------------------------------------------------------1 
I 3330 I 15::6 ~~~.§ (U096) 1 
, 1 (7) (6) (3) 1 

t-----------------------------------------------------------, 
, 3340 I 1526 ~2§~ (4096) , 
1 '(~) (3) (2) t 
t-----------------------------------------------------------1 
, 3350 , (~Q2§J I 
I' 4 I 
1---- ------------------------------------------------------I , RR~~: OS/VS1 REccmlEndatien , 
I (nnnn): OS/VS2 Recommendation , 
I Blocksizes 1536 and 2560 are only applieatle to OSAM , 
1 , 

L---------------------------·---·-------~-------------------~ 
FigurE 2-48. F€cemlended CI/Elocksize Parameters 

Additienal considerations: 

• In caSE of lar9E data tasE recerds (greater than 500 bytes) and/or 
~Eavy ~equential precessing .and/or large data bases, you should 
censider increasing the sizes shown in figure 2-48, especially fer 
OS/VS1. 

• For OSA~, the blocksize is limited to the maximum non-keyed 
tlocksize of a track. 

POI KSDS, for INtEX data tas~s, you should select a control interval 
size of 2048 or 4096 for the data component and 1024 for thE index 
component. 

Data Base Design 2.83 



The following tasic guidElines apply tc above parameter~ for a HtAM data 
base: 

1. SIZE = 5) AVBI 

2. EYTES = SIZE 

3. RBN = ,.~~ J NBOO'IS X AVEL/SIZE 

q. ANCH = 1.25 J JFCCTS/FEN 

Where: 
----~ 

• AVEL is the average data tase record length, including segm~nt 
prefixes. 

• SIzt is the net CI/blocksize. Remember that DL/I will allocate some 
centrel fields \ithin your selected CI/block. These are~ 

Free space ancher ~cint: 4 bJtes 

For Each ancbcr pcint: 4 bytes (only in the root addressable 
area) 

"SAM control fields (ESDS): 7 kytes 

In additicn, thete will be a free space element of 8 bytes for each 
consecutive tree space of E bytes cr more in the CI/block. 

• BYTES is the maximum number of bytes of a single data base record, 
to be inserted by consecutive insert calls ag~inst the same PCB. 

• ANCH is the numker ef rcct anchor peints per CI/block (round to next 
highe r) • 

• RBN is the number of eI/blocks in the root addressatle area. 

Ideally, 4 to 5 data base records should fit in one CI/block. However, 
for very largE data basE records -- one average record per N CI/blocks 
-- you should consider a randomizing algorithm, which skips Every N 
CI/tlocks. The BY'IES FarametEr should then be no less than the average 
data base record size and the number of anchor points per CI/tlock 
should be onE. 

For our PARTS data tase, we calculate (assume 10,000 records): 

AVEL = 
(10,000X98+40,000146+2,000166+3,000X82)/10, 000 

= 320 tytEs 

The maximum data base record length is: 
Se+20t46+4X66+82 = 1364 bytes. 

And the minimum data baSE reco~d length is: 
98 bytes. 

2.84 IMS/VS Primer 



The data and prefix length of each segment can be found in the DBDGEN 
macrc expansion output listing_ !he field "SEG"EN~ LENGTH" contains the 
data length of the segment in bytes. The field "LENGTH OF SEGMEdT 
PREFIX" contaitis thE length in ~Jtes of the segment prefix. 

SIZE 5 X 320 = 1600, rcunded to 2048 

E!Y!ES = 2048 

Because our aaximom data base record size is 1364 bytes, this could be 
specified as the BY~ES limit. 

BBN = 1.25 X 10,COO X 3~C/~C4e = 1954 

For 3330, this vocld require 326 tracks or 18 cylinders. An initial 
space allocation of 20 cJlir.de~s ('O~ for the ovsrflow area) will ce 
appropr iat e. 

ANCH = 1.25 X 1C,OOO/19~q = 6 

We nov check our net CI/block size in the root addressable area, which 
is: 

2048 4 - 4 X 6 = ~c~c 

~his is large enough to hold, generally, more than five data baSE 
records. 

I!!ining_l~!~_~!!!_~~!~ 

VSAM data spacEs arE dEfinEd with its Access Method Services. Job 
/ISAMP270 in IMSVS.PBIP!EJOB shows hcw to do this for a HDAM IPABTS) data 
base and a HIDAP! (Customer Order) data base. Note that the DATA and 
INDEX components are separately named. 

WheneVEr defining a KStS, ycu should check the DBDGEN output listing., 
It gives the proFer access method service control statements for the 
definition of the KSDS (that is, the location of the key in the 'KSDS 
record) • 

!21i: Job IISAMP~7C dEfines the VSAM data sets in the VSA~ data space 
defined with job IISAKPOOi. 

OSAP! space can hE allocatEd via normal Jel as an OS/VS sequential data 
set. No DeB information should be provided in the JCL. OSAM space can 
be reused but only if the tlc~ksize (SIZE Farameter in DBt) has not tEEn 
changed, that is, the same as indicated in the DSCB on DASD. 

Job IISAMP170 in I~SiSdFBIr.!JCE, which loads the Pbase 1 PARTS data tase 
shows how to allccate the s~acE fel the OSAM d~tasp.t. 

ih~§~_~_R~I§i~~1_~!!s_~!§§_~§si3~ 

The Phase 2 application data structure in Figure 2-43 can be easily 
implemented with the use of the logical relationship function of DL/I. 
Merely define the crderline seglEnt as a logical child of the part 

Data Base Design 2.85 



segment as shcwn in Figure 2-43. In addition the following 
considerations aEFly: 

• The physical data base design for the Parts and Customer Crders data 
bases is dcne in much the same way as for phase 1. 

• ThE accESS methed fcr the CUSTOMER CEDER data base is HIDAM/VSAM. 
This is done tc'sbew an examEle of a HIDAM data base. 

• The access method for the PARTS data base is changed to HDAM/VSAM to 
provide a V3AM cnly environment. 

• As discussed prEviously, we viII use a separate SHISAM data base for 
the customer name and address instead of duplicating that data in 
the Customer Order data base. The key (customer number) of this 
SHISAM data baSE will be stered in the root segment of the Customer 
Order data base. 

Notes: 
-.--~ 

,. the real logical child can, in reality, be located either in thE 
Parts or the CustclEr CIders data base. Their is no difference for 
the application Ercgram as to where it is located (except for the 
initial lcad program~. Which implementation to choose is purely a 
performance matter. This viII be discussed in Chapter 9, 
"Optimization," under the topic "Optimizing Physical and logical 
7vin Cbains." 

2. Whenever the accounts receivable application is converted to DL/I, 
the SHISA~ data base could be converted to a ~ull HDA~ cr HltAM data 
baSE. Additional segments can then te added with minimal impact on 
the Existing DL/I a~~licaticn programs. Also, if necessary, a 
logical relationship could be implemented between this Customer data 
base and the CustcmEr Orders data base, much in the same way as 
between the Parts and the Customer Orders data case. 

Two sets cf tEDs arE DEEded for the phase 2 applications: 

• Physical tBDs with lcgical relationships, and 

• Logical tEts for the ap~lication ~rograms. 

The DBDGE~ process of these DBDs is described under the topic "DEDGEN 
for Logical Data Bases" earlier in this chapter. The physical DBDs for 
the Parts and Custcler Orders data b~ses are shewn in Figure 2-24. 

Due to expected high activity against the logical child s~gment all 
associated pointers are specified forward and backward~ This shculd he 
done in all cases where there is considerable activity expected with a 
logical child. 

!he corresponding lcgical Pa~ts DBD (EE2LPART) is listed in Figure 2-25. 
The logical customer Orders data base is listed in Figure 2-26. 

All above DBDs, together with the SHISAM DBD (BE2PCUST) are also 
included in IeSVS.PEI~ESEC. Their tBDGINs can .te executed with jcb 
IISAftP210 in IMSVS.PBIMEJOB. 

~h~j!_~ fh~ji£~l ~~l! ~!§! ~!§!gn 

In our Phase 3 sample data tasE design, we will use the secondary index 
fUDction cf Dt/I. 



Analvzing our Phase 3 requirements as reflected in its transaction/ data 
element matrix (Figure ~-4') and aFFlicaticn data structure {Figure 
2-44), we see the need for the access of the parts data via purchaSE 
order number. 

Actually, the best ~aJ, from a pure data base design point of view~ is 
to ilplement this via a logical relationship. This logical IelationshiF 
should then be established tetween a new Purchase Orders data base and 
the Parts data base. Eowever, we choose to use the secondary index 
function for this with the fcllcwing ccnsiderations: 

• ExemFlify the difference between the logical relationship and 
seccndary index functions. 

• Adding of the s~ccndary index to the PARTS data base has the least 
impact on the existing PhasE 1 and Phase 2 application programs. 

• If there is no expected €1tension of the purchase order application, 
it might also, in a real live situation, be the mo~t econoroical( 
solution. 

Furthermere, ~e ~ill select the parts segment as the index target 
segment. ~his is according to the limitations of our sutset as set 
before (that is, target=rect segment). In this way, the Phase ~ 
requirements can ce very easily implemented, especially by the 
application programs. 

Above discussions are reflected in our Phase 3 DBDS: 

• !he physical Farts data base EE3PAE~S 

• !he physical Customer Crders data base EE20RDER and its primary 
index BE30RtRX 

• The secondary index DBD BE~PSID1 

These DBDs are all included in IMSVS.PEIMESBC. Their DBDGENs can he 
performed with jct //SAMF310 in IMSV5.PRIMEJOB. The DEts for BE3PAR~S 
and EE3PSlt1 are shown in FigurE 2-29 under the topic "DEDGEN For 
Seccnda~y Indexes". 

~Q1~: !he phase 3 apFlicaticD program PE3CFPUR uses a PSB which 
references the Fhase 3 physical DEts. Ideally, this PSB should use a 
PhaSE 3 la9ical PARTS data basE BE3LPAR~. ~his DBD is much the same as 
for Phase 2. It is suggested that you exercise this change yourself. 

DESIGN EVALOA!ION 

Following th~ physical data hasE design, a design evaluation should be 
Ferformed. The t~o main questions for this evaluation are: 

• Does the data base design support the applications functional 
requirements? 

• Does the data base design provide for a satisfactory performance? 

The first question is not considered here, tecause it is toe aFFlicatien 
and installation dEpendent. the second question's answer is also 
largely installation dependent. Hcwever, Chapter 9. "Cptimization.~ 
Frovid~s yc~ ~ith a simple hand calculation technique to compare 
alternatiVE designs. In addition, a checklist is included which 
addresses the most important performance factors for Dt/1 data tases. 

Data Base Design 2.S7 



This chapter is complementary to the previous chapter on data base 
desigr. It provides the data communication designer and systp.m analyst 
with a detailed description of the IMS/VS data communication functicns, 
and guidelines on how to use these functions. 

The three main parts in this chapter are: 

• A description of a~ online application sample. The sample 
application is used to demcDstrate the general requirements of an 
online system_ ~he sample application is used also in the examples 
in the remainder of the chapter. 

• A more formal description cf the IMS/VS data communication 
fun~tions, including the specification of IMS/VS message format 
service usage. 

• An extension of the data base design process of the previous cha~ter 
into the data communlcaticn area. Besides consideratio,ns for online 
data base design, this part provides guidelines for online 
application program design and message format design. 

The basic requirement of phase 4 of our sample environment is to run the 
phase 3 (see Chapter 2) sample applications in an online environment. 

PHASE 4 SAMPLE DA!A BASES 

The phase 4 sample data base requirements aIe in general the same as for 
~hase 3. The only added requirement is that they should be accessible 
online. As we will see, this usually will not require any changE in the 
data base design. In the sample online system we will use the phase 3 
data bases. 

PHASE 4 BA!CH tRCGEAMS 

In phase 4 of our sample system, both the Inventory Report Processing 
apd the Purchase Order Processing vill remain batch applications. We 
will show in the sample system how the pre-phase 4 programs of tbese 
applications can be executed with the online data bases without any 
modifications to the programs. 

PHASE 4 ONLINE PROGRAMS 

!he essential re~uirement for phase 4 is to perform the Customer Order 
Processing as an cnline a~Flication, using IMS/VS data base/data 
communication facilities. All the transactions defined in phase 2 (see 
"Sample Application for Phase 2" in Chapter 2) should te availatle via 
the 3270 InforIDation Display System. In addition a simple online 
customer name and address inquiry application will be implemented. 

Data Communication Design 3.1 



I§~L!~_Q!I!_£Q§~Q~I~!!I£!_!!£111!1~2 

In the. following sections, we will discuss the I!S/VS data communication 
facilities within our subset. It is assumed that you have a clear 
understanding of the concepts and terminology as presented in Cha~ters 
and 2. 

To explain toe I65/V5 data communication facilities, we will follow a 
message through the system. 

~HE MESSAGE 

The goal of 165/VS is tc Ferfors online transaction processing. This 
consists of: 

1. Receiving a request for work to be done. The request is entered at 
a remote tErminal. It is usually made up of a transaction code 
which identifies to IMS/VS the kind of work to be done and some data 
which·is to be used in doing the work~ 

2. Initiating and controlling a specific program which will use the 
data in the request' to do the work the remcte operato~ asked to be 
dnne, and to prepare some data for the remote operator in resp~nse 
to the request for work (for example, acknowledgment of work done, 
answer to a guery, etc.). 

3~ Transmissicn of the data prepared by the program back to the 
terminal originally requesting the work. 

The above sequence is the sim~lest form of a ~~!n§!£~!2~. It involves 
two ~~§§§g~§: an input message from the remote operator requesting that 
work be done, and an output message to the remote operator containing 
results or acknowledgement of the work done. 

A !~§§!g!, in the most general sense, is a sequence of transmitted 
symbols~ In the context of IMS/VS, this is called a transmission. A 
transmission may have one or mere ~~§§!g!§, and a message may have one 
or more §~g!!nl§. A segment is defined by an end-of-segment (ECS) 
symbol. a message is defined by an end-of-message (ECM) symbol and a 
~ransmission is defined by an end-of-data {EOD) symbol. The valid 
combinations of the conditicns Lepresented by EOS, EC~, and ~CD are: 

lOS 
EOK 
rot 

EOS 
ECS/ECM 
EOS/EOM/EOD 

~he relations between transmission, message and segment is shewn in 
Figure 3-1. 

3.2 IMS/VS Primer 



8 e e e 8 
\0", 

'V' 
#, 

V" #~ 

SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT 

'= ,1\ va A ¢I va V-
MESSAGE MESSAGE MESSAGE 

" .I 
V" 

TRANSMISSION 

Figure 3-1. Tra nEmi ssion. Message, and segment Relations 

The character values or conditions that represent the end of segment 
and/or me~sage are dependent cn the terminal type. 

In cur subset, 321C terminals only, the physical terminal input will 
always be a single segment message and transmission. The EOS, EOM and 
Eor condition will all be set after the enter or program function key is 
~ressed and the data is transmitted. 

On the output side, a message can be divided into lulti~le SEgments. 
Also an applicaticn ~rogral caD send different messages to different 
terminals, that is, a message to a printer terminal and a message to the 
input display terminal. Each segment requires a separate insert call ty 
the afflicaticn ~rogram. 

The format of a message seg~ent as Fresented to or received from an 
application ~rogram is shown ir. Figure 3-2. 

2 

LL 

LL 

2 

zz 

total length of segment in bytes including 
the LL + 2Z fields. 

ZZ : IMS/VS syste~ fields 
DA'1A : application data 

Figure 3-2. A Message Segment. 

IMS/VS ONLINE OPIEATICN: CVE~VIEW 

As introduced in Chapter 1, IMS/VS online proc~~sing is done with three 
different types of regions, address spaces, or partitions under CS/VS: 

• ~he £2~!12! (£I1) ,~gi2n contains the IMS/VS centrol program. It 
controls the terminals and data bases. 

• !he !~§§~g~ E~2£~2§i~g (~!£) £~i2~ contains a user program fot 
message-driven processing of the data bases. The MPP region is 
ccntrolled tJ and telies uFcn the C~L tegion. The application 
Ftcgram ~hich execute in the MPF region is called a ~§§!g§ 
EI2£!§§in9 E~29I~! 2! ~f!. Different KPPs can be subsequently 
loadEd and activatEd in a single ~pp region. 

Data Communication Design 3.3 



• The ~!I~~ !§§~!£! ~~2~j§§~ng (§~R) .igi2n contains an application 
~IogIam fot batch process1ng of the data bases managed by the CTL 
r~gion. Application programs executing in a BMP region are called 
~!!~h ~§§§!S! RI~&!~§jD9 RIS9;~!§ Ot ~~f§· 

Figure 3-3 giVES an overview of these 3 region types and the control and 
data flow within them. 

CTL MPP BMP 

. f - - - - - - - - - - - - - - -- - -- • - - -OSIVS- - - -.- - - - - - - - • - - - - - - - - -1 
,...- t t , 

I CON!ROL I I CON;ROL I """ H CONTROL 
RESTART 
DATA SET t • t I 

..... -",,~ LOGGING 

SCHEDULING DL/I MESSAGE BATCH CHECKPi I : 
~~ RESTART I 

.. CHECK I APPLICATION APPLICATION - - - --
LOG LOG I PROGRAM PROGRAM 

TAPE BUFFERS 

/ /'00'":"" 
DB CHANGES- e-

DC MSG CALL 

".".. I 
PCB - I---¥ I - --- . DB § PROGRAM ~-----:- -----

- - DB CALL 
DYNAMII.. PCB r;. -+ LOG BUF ISOLATION I 

---~ 
- - DB CALL 

I - A 
/ , f-----------' 

'- --. 
DATA MFS QUEUE 

COMMUNICATION MANAGEMENT DBD 

- ·I.I.TRAN~~ 

~ 
GSAMCALL 

DC 

+ BUFFER 

MFS DB 
Pj)OL QPOOL POOL GSAM 

~ 

+ I 

i.. ~ ~ ... --'--

"""-"" - -
FORMAT MSG DATA OSIVS D LIBRARY QUEUE BASES FILES 

..... - - .... - , 

Figure 3-3. lbe IMS/VS Regions and Their Control/Data Flow. 

the CtL region is initiated through an OS/VS start command. The 
terminals, data bases, and the leg tape are all attached to this region. 
A type 2 supervisor call routine is used for switching control 
information, messagE and data base data to the MPP/BMP region and back. 

The CTL regi~n normally runs as a system task and uses CS/VS access 
methods fer terminal and data base access. 

Once the CtL rEgion is started, its general data flow is as follows. 
See F·igure 3- 3. 

1. The input data from the terminal is read by the data communication 
modules. After editing by message format service (HF51, this input 
data is put in the iD~ut queue (tRAN). which is sequenced by 
transactien code. 

2. ~he scheduling modules will start the processing of a transaction in 
an MPP if an HPP is free and other conditions are met. 

3.4 IMS/VS Frimer 



3. UFon Iequest from an MPP/BMP. the DL/I modules pass a message or 
data base segmgnt to or from the KPP/EKF. 

!Qi~: In "'5, the DL/I modules, control blocks, ~nd pools reside in 
the common storage area (CsA) and the CTL region is not needed for 
most tE processing. 

4. The message output from the MPP is put in the output message queue 
Il~F.RM), whi~h is sequenced by logical terminal name. 

S. The communication modulES retrieve the message from the output queue 
and send it to the output terminal. MFS is used to edit the screen 
and printer output. 

6. All changES tc the message queues and the data bases are recorded on 
the log tape. ~n aodition, checkpoints for system (emergency) 
restart and statistical information are logged. 

,. lhe physical logging modules run as a separate task and use 
Os/Vs ESTAE for maximum integrity. 

2. The checkpoint id~ntification and the log tape volume serial 
numbers are recorded in the restart data set. 

1. Program Isolation assures data base integrity when two or more 
"PPs/E~Ps update the same data base. It also backs out (undoes) 
dat~ base changes made by failing programs~ This is done by 
maintaining a short-terl, dynamic log of the old data base element 
images~ 

8. The control module provides multi-tasking for the abOVe activities. 
These separate functions, that is, input processing, queueing, ~FF 
processing, data base call processing, output processing, etc., can 
be executed asynchronously for multiple transactions. Ho~ever, they 
~ill be executed in sequence for a unique transaction occurrence. 
The OS/iS EVENT facility is used for 'the control of the 
multi-taskin9 and input/output operations. 

An MPP region is started with an IMs/VS co.mand. ~he CTL region in turn 
issues an Cs/Vs command to initiate a region via Cs/Vs job aanagement. 
Message prOCEssing applicaticD FIograms (MEFs) are loaded/activated in 
this region as required. ~hey are scheduled by the control region. If 
the application issues DL/I calls to access data bases or terminals, 
these calls are processed in cr under supervision of the control region. 
An MPP region must not use Cs/VS data sets because these cannot be 
repositioned during emergency restart. Also, OPEN/CLOSE processing of 
these data sets might cause (performance) problems. 

lh!_!!~.f_~!gi2n 

A BMP, region may contain an application program for processing against 
data baSES in the batch manner. The application Froqram in the batch 
regioJ] is sche'duled by CS/VS job management, but may utiliZE the DL/J: 
facility for data baSE reference. An application Frogram executed in 
the BMP region can access only IMS/Vs data bases that are defined in the 
IMS/VS control region. 

Data Communication Design 3.S 



BMPs can access OS/VS data sets. However, if the BMP uses the extended 
checkpoint/restart facility, thes~ dat~ sets should ce defined as GSAM 
data bases. 

RELATIONSHIP OF DB/DC 10 DB ~STE~ 

In general. all the DL/I data base facilties as presented in Cha~ter 2 
are ~vailatle in the IMS/VS DB/DC system. The only ex~eption is that 
GSAM data raSES (and qtber OS/VS files) cannot be used by a message 
processing prcgram (MPP). They can be used in a hatch message 
processing program ~~P), however. 

Even with an IMS/VS C!L reg10n and related MPF/BMP regions active, a 
batch-only DL/I region can be executed~ This tL/l regicn prcvides ~he 
same functions as the batch-only system. However, this Dl/1 region 
cannot have access to data bases cor.nected to the CTl region. It should 
tberefor~ only he used fcr batch processing when ~he CTL region is not 
activE, or for processing data bases that are not used by thp. online 
syste m. 

In our subs~t, ve viII assume that all batch processiBg while thE C~L 
region is active is done by BMPs. 

TEFMINAL INPU! tA!A PROCESSING 

Figure 3-4 shculd be referred to for the follo~ing discussicn. 

DATA COMMUNICATION MODULES 

RECEIVE 
QUEUE 
LOG 
DETERMINE DESTINATION 
FORMAT MESSAGE t--........... 

Figure 3-4. Input MessagE Processing 

TRANSACTION 
CODE 

LOGICAL 
TERMINAL 

/COMMAND 

When IMS/VS rEad~ data frcm a terminal via the telecommunication access 
method, it first checks the type of input data. 

3.6 IMS/VS Primer 



I~Ry!_§!§§!gi_~IB~§ 

As discu~~ed in Chapter 1, the three basic types of terminal input are: 

• A £2!!!Dg, which starts with a slash (I). 

• An i~RY! !~§§!g!, to be routed to an application program fer 
processing. The program destination is defined by the 1- to 8- byte 
11~~§~s!i2D S~g~ included as the first part of the input. 

• A !~§§!~~ §!i!~h, to be routed to ancthet terminal. The terminal 
destination is defined by the 1 to e byte .!2gi£!l: !~!:!~ng! !!.2!:E 
included as the first part of the input. 

I"S/VS maintains thE origin of an input-me~sage. inen a message is made 
available to an application proqram, this origin is ~lso mad€ available 
to that program, via its proqram communication block (PCB). This origin 
is the l~g!~!l !~~!~n!l n!!~ (lTERM), which is associated with tbe 
inputting physical terminal at·the time the input is received. 

If more than one lTERM is defined or assigned to a physical termi~al, 
they are .aintained in a historical chain; the oldest defined/assigned 
first. Any input from the pbysical terminal is considered to have 
originated at the first logical terminal of the chain. If, fer some 
reason (such as sEcurity or a sto~~ed L!EF"), the first logical terminal 
is net allowed to ~nter the message, all logical terminals on the input 
chain are interrogated in chait sequence fo~ their ability to enter the 
message. ~he first appropriate LTEEM found i~ used as message origin. 
If no LTE}(M can tE used, the' lIessage is rejected with an error message. 

The destination of the terminal input is d~pendent upon the typ~ of 
inFut .. 

An input command goes directly to the I!S/VS co.mand processol Ecdules. 
Both the messagE switch and the transaction input are stored in the 
message que.ues. 7he transaction input from the 3270 displays is first 
processed by !!!§~.9! ~2!!!~l !!1!.1:£! (r1FS), except when input is from a 
previously cleared or unformatted screen. 

Mrs provides an Extensive format service for both inpat and output 
messages. It is discussed in detail later in this chapter. 

Once the input i~ enqueued to its destination in the message queue, the 
input processin9 is coa~l~td. 

"ESSIG! QUEUEING 

All input and output messagEs in I"5/YS (except command input; are 
queued in message gueues. See Figure 3-5. 

With thi~ approach, in~ut ~rocessing, outp~t processing, command 
processing, and applicati"cn ~rcgram processing can, to a large extent, 
be performed asynchronously. This means, for example, that th~ input 
processing Of messa~e A can be done in parallel with the data base 
processing for message E and the output processing for lessage C. A, B, 
and C can be uifferent occurrences of the same ot different message 
types and/or transaction codes. 

Data Communicatiun Design 3.7 



QUEUE MANAGEMENT MODULES 

DATA 
COMMUNICATION 

Figure 3-5. Message Queueing. 

QPOOL 

TRANSACTION 
CODES 

LTERMS 

OSAM 
DATA SETS 

The message queues are sEquenced by destination. A destination can be: 

• A message processing program (MPY), that is, for transaction inFut. 
Ordering is by transaction code. 

• A logical terminal (LTEBK), that is, for a message switch, command 
responses, and output generated by application programs. 

~he message queues are maintained in main storage (QfOOl), with cverflow 
data sets cn direct access storage, the queue data sets. The queue 
blccks in main storage and on direct access storage are reusable. This 
helps to minimize the number of 110s op@.rations required during 
processing. 

Eecause we will consider only 327C terminals in a mostly interactive 
envircnment, message queueing will be primarily in main storage. 

Chapter 7 contain~ detailed guidelines for selecting messagE queue 
parameters such as tlcck sizes, QPCOl size, queue data set allocation, 
etc. 

Once an input message is available in the message queue, it is eligible 
for scheduling. Scheduling is the routing of a message in the input 
queue to its corresponding application program in the message frccessing 
partition/regicn. See Figure 3-6. 

3u8 IMS/VS Frimer 



IF: INPUT MESSAGE 
+ FREE MPP REGION 

~----~----------------~ 

+ AVAILABLE 
DATA BASE RESOURCES 

THEN: SCHEDULE MPP 

LINKAGE 
DEFINED 

AT SYSTEM 
GENERATION 

NOTE: MULTIPLE TRANS·CODES PER PROGRAM ARE POSSIBLE 

Figure 3-6. MessagE Scheduling. 

DBD 

DBD 

DBD 

The linkage t~tween an input message (defined by its transaction code) 
and an applicaticn program (defined by its name) is estatlished at 
systEm definition time. Multifle transacticn codes can be linked to a 
single applicatien program, but only one applicat{on program can bE 
linked to a transacticn cede. 

In o~r subset we will limit outselves to a simple, straightforward 
scheduling algorithm. In principle, it will be FIFO (first in, first 
out) scheduling with DC FaIticular priority mechanism. 

Note: This scheduling mechanism is a general "best-fit" for an initial 
IMsjvs installation. ~his will no~ prohibit the introduction of more 
sophisticated algorithms later. To do so would require changES cnly tc 
IHS/VS parameters and would te transparent tc the application programs. 

~£~~~yling_~2n£i!igD§ 

ThE following conditions must te met for a successful scheduling: 

1. An MPP region must be available. Actually, the termination of an 
MPP triggers the scheduling process. 

2. There must be a transaction input message in the queue. 

3. The transaction and its program are not in a stopped state. 

4. Enough tuffer pool stcIage is available to load the program 
sfecification block (PSB) and the referenced data base control 
blocks if not already in .ain storage. 

5. ~h€ data baSE prccessing intEnt does not conflict with an alrEady 
actiVE application ptogr~m (a BMP for instancp.). Processing intent 
is diecussed in more detail in the following section on data baSE 
procEssing intent. 

tata Communication Design 3.9 



If the first transaction code with ~ ready input message does not meet 
all the above conditions, the next available input transacticn is 
interrogated, and sc fcr~h. If no message can be scheduled, the 
scheduling process is stopped until another input messagE is enqueued. 
If the scheduling is successful, the I~S/VS routines in the dependent 
region load the corresponding MPP and pass control to it. 

A EMF is initiat.ed in an as/,s partiticn/region via regular CS/VS job 
management. However, during its initialization the IMS/VS schedul~r in 
the control region is invcked to assore the availability of the data 
base resources for the ~P.fq 

A factor that significantly influences the scheduling proc~ss is the 
intent of an apFlicaticn Frcgram toward the data bases it uses. Intent 
is determined by examining the intent list associated with the ESE to be 
scheduled. At initial selection, this Frocess involves bringing the 
intent list into thE centrcl region. ~he location of the intent list is 
maintained in the FSB directory. If the analysis of the intEnt list 
indicates a conflict in data base usage ~ith a currently active program 
in a MPP or B~P region, the scheduling process will select another 
tr~nsaction and try again. 

The data base intent of a program at scheduling time is determined via 
the PEOCCP!= ~arameters in the ESB. 

With the program isclaticn feature (see the next section), I~S/VS 
minimizes possitle conflicts during scheduling. 

A ccnflicting situatiJD during scheduling will only occur if a $egment 
type is decl::t red 1!!£!1.§~!~ .!!§~ (FROCOPT=E) by the program being 
scheduled and an ~IIeady active Fregram references the segment in its 
PSE (any PROCOPT) or ViCE VErsa. 

~Jg~Rl~: If a EMF is executing with a defined PROCOPT=E for the CUSTOMER 
CRDERS root segment (see Figure 2-12), then no MEP that references the 
same segment will be sch~duled_ That is, if the MPP to te scbeduled may 
reference the logical PARTS data base (Figure 2-14) and its ESB contains 
a SENSEG statement for the concatenated segment, it will not be 
scheduled befere the above mentioned BMP has ended. Note: A ESE that 
contains a peE for a SHISAM segment that has delete sensItivity will be 
scheduled exclusively. This is because the method used by IMS/VS to 
ensure program isolation cannot be used for SHISA~ deletes. Since there 
is no delete flag, a VSI~ erase must be d~ne to delete the segm~nt, and 
since IM~/VS uses relative byte addresses as th~ identification of a 
segmen~, there is no way to prevent anotber ussr from inserting a 
segment with the sare key Frier to the time the program which did the 
delete reaches a sync point. 

APPLICA1ICN EECGRAM PBCC!SSING 

Once an application progIam is scheduled in a dependent region, it is 
lcaded into that region by IMS/VS. 

~RLR;:2£!~.§ing 

After the load of the MPP, it is given control. The normal processing 
ste~s of an "fE are described belOW and in Figure 3-7. 

3. 10 I~S/VS Primer 



CTL MSG/BMP 

PROGRAM 

". 

DL/I 

DC .. GET MESSAGE ... .. 
PCB .. 

~ -
DB - .. ACCESS DB ,w PCB - .. 

-L- -'--

~ T , 
T R 
E A R N DBD ~ SEND REPLY 

i- T , 1 DB 
QPOOL 

POOL GO BACK 

,~ JI' 

, ..... fI"" ........ 
to... ~ ,...", -"" 

MSG DATA 
QUEUE BASES 

"- -' "- -' 

Figure 3-1. Easic MFP Flew 

1" Retrieve the input message via a DL/I message call. 

2" Check the input message for syntax errors. 

---

-

GU DC-PCB 
GN DC-PCB 

GU DB PCB 
ISRT DB PCB 

ISRT DC-PCB 

3. Process the input ~essage. £equesting necessary DL/I data base 
accesses. 

4u Send output to the originating and/or other (for example, printer) 
logical terminals via DL/I messagE calls. 

s. Petrieve the ~ex~ input message or terminate. 

The program specification tlcck (PSB) for an MFP or a E~F contains, 
besides data base PCBs, one or more PCB(s) for logical terminal linkage. 
The very first PCB always identifies the originating logical te~minal. 
This PCB must be referenced in the get nnigue and get next messagE 
calls. It must also be used when inserting output messages to that 
LTEBM. In additicn, one or more alternatE output PCBs can be defined. 
Their LTER!! destinations can be defined in the PCBs or set dynamically 
with change destination calls. 

Data Communication Design 3.11 



~~Ll_~~§2~g§_£2!!2 

~he same DL/I language interface which is used to~ the access of data 
bases is used to access the ~essage queues. 

The principal DL/l message call function codes are: 

• GU, get unique. This call must be used to retrieve the £ir~t, er 
only, segmEnt of the input message. 

• GN, get next. ~his call must be used to retrieve second and 
subsequent message segments. 

• ISR!, insert. ~his call must be used to inser~ ar. output m~scagE 
s€gment into tbe·out~ut messagE q~eue. 

Note: These output m~ssage(s) will not be sent until the MII 
terminates or requests another input message via a get unique. 

• CHNG~ change destination. This call can be used to S€t the output 
destinaticL for suhsequent insert calls. 

For a detailed description.of the DL/! message calls and guidelines for 
their use, see Chapter 4, "Data Ease Processing." 

fI2g'~!_!~Q!~!~Qn_~n~_Qln~!!£-1Qgg!ng 

When processing DL/I data base calls, the IMS/VS program isclaticn 
function will ensure data base integrity. 

With Frogram isolation, all activity (data base modifications and 
message creation) of an application program is isolated from any ether 
applicaticn program,s) running in the system until that application 
program commits, by reaching a ~Iu£hrQni!2ti2~ E2in1, that the data it 
has modified e~ created is valid. A synchronization point in our subset 
is established with a get uni~ue for a new input message and/or a 
checkpoint call (BMP only), cr program normal termination (GCEACK or 
EE'IURN) .. 

Program isolation allows two or ~ore application Frograms to 
concurrently execute with common data segment types even when Frocessing 
intent is segment u~date, add, or delete. 

This is done ty a dynamic er.queue/dequeue routine which enqueues the 
affected data base elements (segments, pointers, free spac~ elements, 
etc.) tetween synchronizaticn peints. 

At the same time, the dynamic leg modules log the prior data base record 
iaages bet~een those synchronization points. 

~his makes it possible te dynamically back out the effects of an 
application program that teIlinates abnormally, without affecting the 
integrity of the data bases controlled by IMS/VS. It does not affect 
the activity of other applicatien program(s) running concurrently in the 
system. 

With program isolation and dynamic backout, it is possible tc pcovide 
data base segment occurrence level contrel to application programs. A 
means is provided for r~solying possible deadlock situations in a manner 
transparent tc the applicaticn ~roqIam. 

3. 12 IMS/VS Primer 



~e example of a deadlock occurs in thE following sequence of events: 

1a Program A updates data tasE element x. 
2. Program E updates data baSE element Y. 

3. Prog~am A requests Y and aust wait for the synchronization point of 
program B. 

4q Program E in tarn ~eguests X and must wait for the synchronization 
Feint of prooral A. 

A deadlocK has now occurred: both programs are waiting for each other's 
synchronization point. The dynamic enqueue/dequeue routines of IMS/VS 
intercept possible deadlocks during enqueue processing (in above example 
during enqueue FIocessing of event 4). 

Upon detecting a dead1cck situation, one of the application Frog~ams 
involved in the deadlock is abnc~mally terlinated (pseudo abend). The 
activity of the terminated program viII be dynamically tacked out to a 
previous synchronization Feint. Its held resour~es are freed. ~his 
allows the othe~ program(s) to process to completi~n. The transaction 
tbat was being processed by the abnormal terminated program will be 
saved. The ~pplicaticb ~rogram is rescheduled if it was an "FF. For a 
BMP region, the job must be restarted. This prQcess is transpar~nt to 
application Frqg~ams and terminal 0Ferators. 

There arq two situations where th~ enqaeue/dequeue routines of program 
isolaticn are not used ir processing a data base call: 

1. If PROCOE~=GC tread only) is sFecified for the referenced segment(s) 
of the call. 

2. If PROCCPT=E (exclusive) is specified for the referenced segment(s) 
in the call. 

NotiCE that possitle ccnflicts with exclusive extent are resolved during 
sch~dulin9 time and as sucb cannot occur at call time. 

1. With th~ GO option, a program can retrieve data which has teen 
altered or modified ty anct~er program still active in another 
regicn, and data base chanqes made by that program are subject to 
teing tacked out. 

2. Exclus~ve intent may be required for long-running EMP progIams that 
do not issue checkpoint calls. Otherwise, an Excessively large 
enqueue/dequeue tatle in main storage may result. 

3. Even when PROCOP!=I is specified, dynamic logging will be done for 
data base changes. The ultimate way to limit the length of the 
dynamic log chain in a B~P is by using the XRST/CHKP calls. The 
chain is deleted at each CH~E call because it constitutes a 
syncbronizati~n peint. 

4. If, as can occu~ in our subset, one MPP and one ~ME g9t involved in 
a deadlock situation, the tEE vill be subj~ct to the atnorlal 
termination, tack cut a~d reschedule frccess. 

Data Communication Design 3.13 



Upon abnormal t~rminaticn of a message or batch-message precEssing 
applicatien prcgram for cther reasons than deadlock resolution, internal 
commands are issued to prevent rescheduling. These commands are the 
equivalent of a ISTOP ccmmand. they p~event continued use of the 
~rogram and the transaction cods in process at the time of atnor!al 
termination. the master teIminal opexater can restart either or hoth 
stopped Iesources. At the time abnormal termination oc~urs, a message 
is issued to the master terminal and to the input terminal that 
identifies the application program, transaction cod~, and input 
terminal. It also contains the system and user completion codes. In 
addition~ the first segment of the input transaction, in precess by the 
a?plica~ion at abnormal termination, is displayed on the master 
terminal. The data basE changes of a failing program are dynamically 
backed-out. Also, its output messagEs inserted in the messagE queue 
since the last syncbroni2aticn Faint are cancelled. 

~2n!!Iis!.i2l!s.!_fI£~!§§!].9 

~ transaction code can te defined as belonging to a conversational 
transaction during IMS/VS system definition. If so, an application 
program that processes that transaction, can interrelate messages from a 
given terminal. The vehicle to accomplish this is the §~~!!~}E!~ ~'!~ 
(SPA). A unique scratch~ad area is created for each physical terminal 
which starts a conversational transaction. Each time an input message 
is entered from a physical terminal in conversational mode, its SPA is 
presented to the ap~licaticn ~rcgram as the first message segment (the 
actual input being the second segment)Q Eefore terminating or 
retrieving another message (frcm another terminal), the program m~st 
return the SPA 'to the control region with a message ISRT call. The 
first time a SPA is presented to the application program when a 
conversational transaction is started from a terminal, IMS/VS will 
format the SPA ~ith binary zero's (X'OO'). If the program wishes to 
termi.nate the conversation, it can indicate this by inserting the SPA 
vith a blank transacticn code. 

OUTPUT MESSAGE PROCESSING 

As soon as an application reaches a synchronization ~oint, its output 
messages in the message queue become eligible for output processing. A 
synchronization point is reached whenever the application program 
terminates or requ~sts a new message/SPA from the input queue via a GU 
call. 

In general, output messages are processed by message format service 
before they are transmitted via the telecommunications access m~thodo 

Different outpot queues can exist for a given LTERM, dependin9 on the 
message origin. ~hey are, in transmissicn priority: 

1. Response messages, that is, messages generated as a direct response 
(same PCe) to an input message from this terminal. 

2. Command responses. 

3. Alternate outpot messa9.es, that is, messages generated via an 
alternate Fee. 

!2~§: The printi n9 of "DFS059 TERMINAL STARTED" messages on the 3~70 
printer terminals viII te sUFpressed in cur subset. This is done to 
Frotect preprinted forms. 

3.14 IMS/VS Primer 



LOGGING AND CHECRECIN7/RES1ABT 

To ensure the integrity of its data bases ~nd message processing, I~S/VS 
uses l09ging and ChEck~oint/restart. In case of system failure, either 
software or hard~are, IKS/VS can te restarted. this restart includes 
the repositioning of ~sers' terminals, transactions, and data tases~ 

During IMS/VS execution all information n~cessary to restart thE system 
in the event of harawaIe cr scftvare failure~ is recorded on a system 
log data set. !n our suhset, this log data set must be on a magnetic 
t ap..e unit. 

The following critical systEm infcrmation is recorded on the log tape 
(see Figure 3-8): 

• !he receipt of an input message in the input queue 

• Ibe start of an ~PE/Bef 

• The receipt of a mEssagE by tne MPP fer processing 

• Before and after images of data base updates by the MPP/BMI 

• !he insert of a message into the queue by the MPP 

• ~he terminaticn of an ~PF/EMF 

• The successful reCEipt of an output message by the terminal 

In addition to the abovp. togging, all previous data base record images 
~re written to a separate dynamic lqg. This log information is only 
used for dynamic tack-cut frccessing of a failing ~PP/B~P. As soon as 
the MPP/BMP reaches a synchronization point, the dynamic log infcrmaticn 
of this program is discarded. 

At regular intervals .during IMS/VS execution, checkpoints are written to 
the log tape. this is to limit the amount of reprocessing required in 
the case of Emergency restart. ! checkpoint is taken after a specified 
number of log records are written to the log tape or after a checkp~int 
command. A special CbEck~cint cc~mand is a1ailable to stop IMS/VS in an 
orderly ma nner. 

A special disk restart data set is used to record thE! checkpoint 
identification and log ta~E volume serial numbers. This restart data 
set (IMSVS.RDS) is used during restart for the selection of the correct 
restart checkpoint and restart log tape(s). 

Note: Although IMS/VS its~lf Frovides for full disk logging/restart 
vith the IMSVS.RDS data set, this function is not included in our 
subset. 

£21g .§!!~! 

An IMS/VS C~L region cold start is done at the first time you start the 
system. During cold start, we format (initialize) the message queue, 
dynamic log and restart data sets. 

Data Communication Dp.sign 3.15 



MSG PGM MSG 
0'0 START GU 

FigurE 3-S. IM5/VS Logging 

l!§Igjn~l_B~§!~~! 

'MPP' 'BMP' 

PERMANENT 

DB UPDATE 

OLD I NEW 

OLD OLD OLD OLD OLD 
SEG SEG SEG SEG SEG 

DYNAMIC LOG 

RETAINED UNTIL SYCHRONIZATION POINT 
USED FOR DYNAMIC BACKOUT IF PGM ABENDS 

MSG 
ISRT 

PGM 
END 

IMS 
CHKPT 

MSG 
DEQ'D 

In case of failure, IMS/VS is restarted ~ith the log tape active at the 
time of f~ilure. Festart processing will back-out the data base changes 
of incomplete MPPs and BMPs. ~he output messages inserted by these 
incompl~te MPFs ~ill be deleted. 

After back-out, the input messages are re-enqueued, the MPPs restarted 
and the pending output ~essa9Es are (re) transmitted. If a,Ep.F vas 
active at the time of failure, it must be resubmitted via as/vs job 
management. If the ~MP uses the XRS!/CHKP calls, it must be restarted 
frem its last successful checkpoint. In this way missing or 
inconsistent output is avoided. For more details, see Chapter 8, 
"0 pe ra ti 0 noS. tt 

Normal restart or warm start is done from a previous normal I~S/VS 
termination. the message queues are preserved in this vay. 

SECURITY 

In our subset we will only consider password and terminal security. For 
a description of these security provisions, see the "IMS/VS security 
~aintenance Utility" descripticn in Chapter 7, "Installing I~S/VS." 

IMS/VS itself has ~cre extensive security features for user signoD and 
support of user exits and the FACF program product (OS/V52 MVS only). 
for morE dEtails cn thesE additional security features, see the l~§L!§ 
g~n~~~l !g!Q~m~~iQ~ manual and the I]~L!§ ~~~~~~ AEB!i£~!!QU ~~§ig~ 
gg1:g~. 

3. 16 IHS/VS Primer 



The I~S/VS master terminal in our subset consists cf two components: 

• The primary components, d 327C Qisplay terminal of 1920 characters 
(24 lines by 80 columns). 

• The secondary comFcnent, a 3270 printer terminal. 

All mEssages are routed to tcth the primary and secondary components. 
Special MFS support is used for the master terminal. The display screen 
of the master terminal is di~ided into fOUI areas. See Figure 3-9. 

MESSAGE AREA (10 lines) 

~/////. BLANK ~////////////////////////////////////////////////~ 

COMMAND OUTPUT DISPLAY AREA (10 lines) 

21 
22 1'//// WARNING MESSAGE AREA (1 line),////////////////////// I' 
23 ////~USER INPUT AREA (2 lines) ;'//////////////////////. PASSWORD ~h 

24 

Figure 3-9. 3270 Master Terminal Format 

the message area is for I~S/VS command output (except /DISPLAY and 
/RtISFLAY), messagE switch cut~ut, application program output that uses 
a message output descriptor name beginning with DfSMO (see MFS), and 
lMS/VS system messages. 

The display area is for /DISPLAY and /RDISPlAY command output. 

The varning, message arEa is for the following warning messages: ~ASTEE 
LINES jilTING, MASTEB P.ESSAGE WIlTING, DISPLAY LINES WAITING, and USER 
~ESSAGE WAITING. to display these messages or lines, press PA1. An 
lMS/VS password may also be entered in this area after the "PASSiCFDn 
literal. 

The user input arEa is for CFEratcr input • 

.f~2g~!!!_!!!!!£~~2!!_!iI 11 or PA2 teguests the next output messaqe 'and 
proqram function key 12 requests the Copy function if it is a rEmote 
terminal. 

For more details on the use of the master terminal refer to Chapter 8, 
"Operations. II 

Data Communication Design 3.17 



IMS/VS alvays has a communication path vith the OS/VS system console. 
The vrite-to-o~erator liTO) and vrite-to-operator-vith-reply (WTCE) 
facilities are used for this. Whenever the l8S/1S CTL region is active, 
there is an outstanding message requesting reply on the OS/VS system 
console. This can be used to Enter commands for the CTl region. All 
functions available to the 1"S/V5 master terminal are available to the 
system console. The system console and ~aster terminal can be used 
concurrentlJ, to control the system. Usually, however, the system 
cohsolets primary Furpos, is as a backup to the master terminal. The 
system console is defined as leS/VS line number one during syst~m 
definition. 

327C RE80~E CCE! PONCT1Cti 

For remote 321' display terminals I~S/V5 provides a cupy function. By 
pressing PPK1~ (PA2 orr data entry keyboard), the operator can cause the 
contents of the screen to be copied to a printsr attached to the same 
control unit. Whicb printer is selected is determined by terminal 
status and system definition sequence. In general the first ready 
terminal on the cOlltrol unit is selected. This func~ion should only be 
used for occasional hard copies. For production applications it is 
generally tettEr to perform Frinting unde~ application program control. 

MESSAGE SWITCHING 

~he basic format of a messag~ switch is the destination ITER~ name 
followed by a tlanx and the lessage text. In our subset, using 3270s 
an~ messagE fermat service. ve viII include a sample message switch 
fcrmat. !he advantage of using the sample format, is that it 
automatically provides the originating L1ERM name and location. ~hE use 
of this format is discussed in detail in the I~§L!~ j~i!!~ ~!!2t~ 
li~!!~~l gE!I~!QI!§ ~y!gi· 

!hrough the ~essage Format Service (MrS), a comprehensive facility is 
pruvided for IMS/VS use~s of 3270 and other terminals/devices. MFS 
allows application ~rogrammers to deal with simple logical messagES 
instEad of device dependent data. This simplifies applicaticn 
development. 1h~ samE aFFlicaticn Frcgram may deal with different 
device types using a single set of editing logic while deviCE input and 
output ar~ varied tc suit a specific device. the presentation of data 
on the device or operator input may be changed without changing the 
application program. Full Faging capability is ~rovided for display 
devices. Ihis allo~s the application prograa to write a large amcunt of 
data that viII he divided into multiple screens for display on the 
terminal. The capability to page forward and backvard to differEnt 
s~rEens within thE lessage is provided for the terminal operator. 7he 
conceptual viev of tha formatting operations for messages ori9in~ting 
from or going to an MFS-suPForted device is shown in Figure 3-10. 

3.18 IMS/VS Frimer 



DEVICE 
INPUT 

MFS 
APPLICATION 
PROGRAM 

jNPUT 
MESSAGE 

OUTPUT 
MESSAGE 

Figure 3-10. Message Formatting Using MFS 

MFS has three major cOIoFcnents: 

• MFS language utility 

• MFE fool manager 

• Message editor 

MFS 

DEVICE 
OUTPUT ~~ 

The MFS languagE utility is EXEcuted offline to generate control blocks 
and place them in a fcr~at centrol block data set named IMSVS.fCFMAT. 
The centrol blocks de5cribe the message formatting that is to take place 
during message input or outFut cpErations. ~hey are generated according 
to a set of utility control statements. There are four types of for~at 
control blocks: 

'. Me.c;sage input descriptcr (MID) 

• Message output descriptor (~Ct) 

• Device input format (tIl) 

• DEvice output format lDCF) 

The MID and MOt tlocks relate to a~plication program input and output 
message segment formats, and the tIF and DOF blocks relate to terminal 
I/O formats. The MID and DIF blocks centrol the formatting of input 
messages. while the MCC and DC, blocks control output message 
formatting. 

1. The DIl and the DO! centrol blecks are generated as the result of 
the fermat (FM!) statement. 

2. 1he MIt and the MOt are generated as a r~sult of different ressag€ 
(MSG) statements. 

3. The initial formatting of a 321C display is done via the "/FCEMAT 
modname" command. Th1s will format the screen with the sFEcified 
MOD, as if a naIl message was sent. 

Figure 3-11 Frovides an overview of the ~FS operations. 

tata Communication Design 3.19 



PROVIDED 
BYMFS 
APPLICATION 
DESIGNER 

MESSAGE AND 

FORMAT 

CONTROL 

STATEMENTS 

OFFLINE 
EXECUTION 

MESSAGE/ 

FORMAT 

LANGUAGE 

UTILITY 

IMSVS. 
FORMAT 

r 

ONLINE 
EXECUTION 

~ 
MFS 

POOL MANAGER 

MFS 
MESSAGE 
EDITOR 

MESSAGE 
QUEUE 

MFS 
BUFFER 
POOL 

.. 

Figure 3-11. Cverview of !essage Format service 

MFS AND THE 3~7C 

MFS 
TERMINAL 

res/vs Message Format Sarvice (MFS), descrihed in the previous section, 
is always used tc format data transmitted between IMS/VS and thE devic3s 
of the 327C i·nformaticn display system. MFS provides a high level of 
device independence for the application programmers and a means for the 
application system designer to make full usa of the 3270 device 
capabilities in terminal operations. Although our sutset only censiders 
the 3270, its USE of ~FS is such that it is open-ended to the use of 
ether MFS supported terminals when required. See the !~§L!~ ~in!~3! 
!]fo!!~l!Sn ~~nY!! for a list of these terminals. 

RELATIONSHIP E!tWEEN "PS CON1RO~ BLOCKS 

Several levels of linkage exist between elS control blocks, as described 
in thE following secticDs. 

~l~_~QntIQ!_~!2~!_~!!!Di~~ 

Figure 3-12 shows the highest-level linkage, that of chained control 
tlocks. 

3.20 IriS/VS Primer 



... --
MESSAGE 
OUTPUT 

(MOD) 

[A 

" 0 ... -
MESSAGE 

INPUT 
(MID) 

fa 
" 

0 ,f 

... -
MESSAGE 
OUTPUT 
(MOD) 

rc 

1. This linkage must exist. 

DEVICE 
OUTPUT 

(OOF) 

DEVICE 
INPUT 
(DIF) 

DEVICE 
OUTPUT 

(OOF) 

rx 

Ix 

rv 

CREATED WITH 
ONE FMT NAME o 

2. If the linkage does not exist, device i~put data from 3270 devicEs 
is not procEssed by MFS. It is always used in our subset. 

3. This linkage is previded fer application program convenience. It 
~rcvides a Met name to te us~d by IMS/VS if the applicatien ~rogram 
does not provide a name via the format name option of the insert 
call. ~he default MOD. DFS!02, vill he used if none is specified at 
all, or if the input is a message switch to an MFS-supported 
terminal. 

4.. ~hE user-provided ~ames fer the DOl and DIl used in one output/input 
sequence are normally the same. The MFS language utility alters the 
internal name for the DIF to allow the MPS pool manager to 
distinguish betweED thE DOP and DIF. 

The direction of the linkage allows many massage descriptions to use 
the same device format if desired. One common device f.ormat can be 
used for several applicaticn programs whose output and input message 
fcrDat~, as seen at the application program interfacE, are qUitE 
different. 

Figure 3-12. Chained Control Block linkage 

pata Communication Design 3.21 



~!~!!g!_h!~!~~n_~f~~_~n~_]!!~ 

FiguE~ 3-13 sho~s the second level of linkage, that tetween message 
fields and devicE fi,elds. The arrows show the direction of reference in 
the MFS language utility ~ontrol statements, not the direction of data 
flow. 

Feferences to device fields by message fields need not be in any 
particular sequence. An MFID need not refer to any DFLD, in which case 
it simpl, defines sFace in the applicat~on program segment to be ignored 
if the MFlD is tor output, and padded if theMFLD is for input. Device 
fields n6ed net te ref~rEnced by message fields, in which cas€ th~y are 
established qn thE device, but no output data from the output message is 
transmitted to them_ ra.ic~ input data is ~gnored if the DFLD is nQt 
referEnced by an input MFtD. 

MESSAGE OUTPUT~--__ ... 
(MOD) 

DEVICE OUTPUT" 
(DOF) 

MFLb --~~------~~~ 
MFLD 
MFLD 
MFLD 

MESSAGE INPUT DEVICE INPUT 
(MID) (DIF) 

MFLD -~~----+--~ DFLD 
MFLD DFLD 
MFLD DFLD 
MFLD DFLD 

x 

Figur~ 3-13. Linkage between ~essage Fields and Device Fields 

1i~k~gs_!s!j!!n_tf!~~_!~g_~fA~~ 

Figure 3-14 shows a third level of linkage, one which exists between the 
LPAGE and the DFAGE. 

MESSAGE OUTPUT DEVICE OUTPUT 
(MOD) (OOF) 

LPAG E ---+--------+---~ DPAG E 

LPAGE, OPAGE 
LPAGE--~~~~--r-~ 

LPAGE DPAGE 

Figure 3-14. LPAG! -- DPAGE Linkage 

The LPAGE in the MOD must refer to a DPAGE in the Del. However, all 
DPAGEs need not be referred to from a given MOt. 

Because WE will always have sin91e segment input in our subset, the 
defined MFLDs in thE MID may r.efer to DFLDs in any DPAGE. Eut input 
data for any qiven input message from the device is limited tc fields 
defined in a single DPAGE. 

IMS/VS Primer 



Q21~Q~S!_rl~§§sq~_~~~£f~E!!Qn_1i!!!.!g~ 

Figure 3-15 shows a fourth level of linkage. It is optionally alailable 
to allow selEcticn of the MID tased on which MOD LPAGE is displayed when 
inFut data is received from the device. 

r-----------IMESSAGE OUTPUTt----.... ~ DEVICE OUTPUT 
'-',. (MOD)_ (DOF) 
\..:.J LPAGE 

~ ~LPAGE 
_--I LPAGE 

0~--........ A 

MESSAGE INPUT ~----~ 
(MID) 

MESSAGE INPUT 
(MID) 

MESSAGE INPUT 
('MIDl 

D 

DEVICE INPUT 
(DIF) 

Figure 3-15. OFtional ~ess~ge Description Linkage 

x 

x 

1. Th~ next ~ID name Frovided with the MSG statement is used if ~o ~ame 
is fIo,ided ~ith the current LFAGE. 

2v If a nExt ~Ir name is Frcvided with the curr£nt LPAGE, input will be 
PIoc€ssed using tbis nalE. 

3. FCI 327C devices, all MIDs must refer to the same DIF. This is the 
same user-prcvided name used to refer to the tOF when the MOD waE 
defined. 

Data Communication Desigr 3.23 



~~lQ_~~!!~~_£Qg§ig§~~~!£~§_~!l~!!!~_!g_£g~!!g!_]!2£!_~~n~~g~ 

Since out~ut to 3270 display devices establishes fields on the device 
using harcwarE capatilities, and fi€ld locations cannot be changed by 
the oFerator, special linkage restrictions exist. Because fcrmatted 
input can only occur fr~m a screen formatted by output, the IFAGE and 
Fh~sical Fage description used for formatting input is always the same 
as that used tc fOLaat the ~revious output. The Mrs language utility 
enforces thiE restriction by ensuring that the format name used for 
input editing is the sa~~ as the format name used for the previous 
output editing_ Furthermore, if the DIF corresponding to the previous 
DCF cannot te fetched during online processing, an error ~€~~a9~ is sent 
to the 327C display. 

The following secticns ccntain a description of the basic MFS functions~ 

INFUT MESSAGE FORMA1!ING 

All device input data received by IMS/VS is edited before being Fassed 
to an application program. 7he editing is performed by either IMS/VS 
basic edit or MFS~ This section describes the input "message editing 
performed by MFS. It tells hew the use of MFS is determined and how, 
when MFS is used, the desired message format is established based on the 
contents of twe MFS centrcl blccks -- the device input format {DIF) and 
the message inFct descriptor (MID) .. 

All 3270 devices included in an IMS/VS system use MFS. The 3270s always 
operate in fcrmattea recd€ eXCEpt when first po~ered "on, after the CLEAR 
key has been Fressed, or when the MOD used to process an outFut message 
does not name a MID to be used for the next input data.. While in 
unfermatted mode, you can still enter commands and transacticns, but 
they will Dot be formatted by ~FS. 

InFut data from terminals in formatted mode is formatted based on the 
contents of twc MFS cont~ol blocks, "the MID and the DIF. The ~ID 
defines how the data should be formatted for presentation to the 
application program ~Dd ~cints to the DIF associated with the input 
device. See Figure 3-16. 

DEVICE MFS PROGRAM 

DIF MID 

..--
OFL01 --- MFlO1 
OFL02 --- MFlO2 

OFL03 , , MFlO3 , ~ 

OFL04 -*- MFlO4 

OFL05 
,-" ' .. MFL05 

Figure 3-16. MFS Input Formatting 

3.24 IMS/VS Primer 



The MID contains a list of !~§§!g!_~~§£!jf~E! f!~lg§ (MFLDs) which 
define the layout of the in~ut segment as is to be seen by an 
apFlication Frogram. ~h€ DIF contains a list of ~~!i~~ ~~§~[~EIQr 
!i~lg§ (DFLDs) which define what data is to be expEcted from which part 
of the device (that is, the location on the screen). MFS maps the data 
of the DFIDs inte the corrasFonding MFLDs. The application Frogram is 
largely devic~ independent because different physical inputs can be 
mapped into the same input segment. 

MFLt statements are to define: 

• The device fiElds IDFLDs) defined in the DIY which contents will be 
included in the message presented to the application program. 

• Constants, defined as literals to be included in the messagE; a 
common use of literals is to s~ecify the transuction code. 

In additicn, the MFLD statemen~ defines: 

• lhe length of the field expected by th~ applicaticn program. 

• Left or right justific~tion and the fill character to be used for 
paddi~g the aata received frem the devic~. 

• A 'nodata' literal for the MFLD if th~ corresponding DFID does not 
contain any input data. 

It should bE noted that all message fields as defined ty MFLD statements 
will be Fresented to the aFFlicaticn program in our subset. 
Furthermcre, there will always be only one input message s~9m~nt, except 
for a conversational trdnsactieD, in which case the first segment 
presented to the ~rogrQ~ is ths SFA. The SPA is never processed by MFS, 
however. 

sometimes input messagES arE simFly ~pdated by an application program 
and returned to the device. In such a case, i~ may sim~lify message 
definition layouts in the MPP if the attribute data bytes are defined in 
the message input d~sc~iptor as well as in the message output 
descriptor. 

Non-literal input message £ield~ can be defined to allow for 2 bytes of 
attribute data. ihen a field is so defined, MFS will reserve the first 
2 byteS of the fiEld fer ~ttributE data to be filled in by the 
applicatic~ Frogram when p~epdring an output message. In this way, the 
same pro9ram area can be ccnveniently used fer both input and ou~put 
messages. When attribute s~ace is specified, the specified field length 
must include the 2 attribute bytes. 

If the input data is for a password protected transaction, a device 
field should be designated fer the password. The device field in which 
the operator keys in the password will not bt displayed on the scre~n. 

OUTPUl MESSAGE FCF~ATTING 

A~l output messagES fot 3270 dEvices are pr~essed by MrS in a way 
sililar tc input. 

Data Communication Desigr 3.25 



All MFS output fcrmatting is based on the contents of two MFS control 
blc~ks -- the m~ssage output descriptor (MOD) and the device cutput 
format ,OOF). See Figure 3-4

17. 'Ihe MCD d.efines output message content 
and c~tlonally, literal data to be considered part of the output 
message. Message fields (MFLDs) refer to device field locations via 
device field (DFID) definitions in the DCP. The DOF sp€cifies the use 
of hardware featurss,. device field locations and a"ttritutes, and 
constant da"ta considered part of the fermat. 

DEVICE MFS PROGRAM 

DOF MOD 

DPAGE -...- LPAGE 
SEG 

DFLD1 -- -- MFLD1 

DFLD2 -- -- MFLD2 

DFLD3 ' .... ,,~ MFLD3 

DFLD4 
".,,')1(, .... 

MFLD4 

DFLD5 

Figure 3-17. ~FS Cutput Formatting 

The laycut of the output message segment to be received by ~FS from the 
program is defined by a list of MFLDs in the MOD. The DOF in turn 
contains a list of tFLDs which define where the data is to be 
displayed/printed on the output device. MFS maps the data ef the MFLOs 
into the corresponding DFLDs. 

All fields in an ootput message segment must be defined by ~FlD 

statements. Fields can be truncated or omitted by two methods. The 
first method is to insert a short segment. The secene method is to 
Flace a NULL character (X'3F') in the field. Fields are scanned left 
(including the attribute bytes, if any) to right for a NULL character. 

The ~irst NULL character encountered terminates the field. If the first 
character of a field is a NULL character, no data is sent to the screen 
tor this field. !his means that if the field is protected and the same 
device format is used, the old data remains on the screen. To erase the 
old data of a ~rotected field the application program must send X'403Ft 
to that field. Positioning of all fields in the se9m~nt r~mains the 
same regardless of NULL characters. Truncated fields are padded wi~h a 
program tab charactEr in cur subset. Furthermore, we always specify 
erase-unFrotected-all in the display ae~ice format. This erases all old 
data in unprotected fields·cD the screen. 

1. Device control characters are invalid in output message fields und.er 
Mrs. The control characters HT, CR,LF, NL, and ES will be cbanged 
to null charact~rs (x·ee'). All other nongraphic characters are 
changed to blanks before transmission. Graphic characters are X'40' 
through X'fE'. 

2. With MFS, the same cutfut message can be mapped on different device 
types with one set of formats. This will not be covered in our 
subset. !he formatting discussed will cover one device type per 
device format, not a mixture. However, the mixture cap te 
im~lemEntEd lat~r ky. changing the formats. 

3.26 IMS/VS Primer 



In addition to MFlD data, constants can be mapped into DFLDs. TheSE 
constants are defined as literal~ in DFLD or MFLD statements. 

MFS allows mapping of cne 
onto a single or multiple 
ourselves to a one-to-one 
and logical output pages. 
output page lone screen). 

cr mere output segroen~ of the same message 
output screens. In our subset, we will li~~t 
relation~bip between output mebSag€ s~cm€nts 
Alsc, cne logical output page is one physical 

!ggi£~1_f~qinq_gt-~~~EY!_!~§§2g!§ 

Logical paging is the way cutput message segments are grouped for 
for~attiDg. ~hen logical paging is used; an output ~essag€ descriptor 
is defined with one er mere LPAGE statements. Each lPAGE statement 
relates a segment produced by an application program to a corresponding 
device page. 

Using logical paging, the simplest message definition consists of one 
LPAGE and one segment description. As shown in Figure 3-18, each 
segment produced ty thE applicaticn program is formatted in the same 
manner using the c~rresponding device page. 

MSG 
~~!l.Di!l.Q.D 

Device 
f.2.9~ __ 

LPAGE1-------------)DPAGE1 
SEG1 

Application 
fI2g1~J!_Q.Y!EY~ 

Segment 

or 

segment 1 
Segment , 
Segment 1 

Figure 3-18. !n Cutput Message Definition with one lPAGE 

With the definiticn sho~n in Figure 3-18, each output segment inserted 
by the MFF will be displayed with the same and only defined MO~/DOF 
comkination. 

If different fcrmats are required for different output segments, one 
LPAGE and SEG statement combination is required for each diffe~ent 
format. Each LPAGE car. link tc a different DPAGE if desired. (This 
would not b~ required if only defined constartts and MFLDs differ in the 
MOt. ) 

The selection of the LP1GE tc be used for fcrmatting is based on the 
value cf a special MFLt in the output segment. This value is set by the 
MPP. If the LPAGE to te USEd cannot be determined from the segment, the 
last defined LPAGE is used. See also the description of the C(Nt 
parameter of the lPAGE statement. Each LFAGE can refer to a 
corresponding DPAGE vith unique DFLDs for its own device layout. See 
Figure 3-19. 

Data Communication Design 3.27 



MSG 
~ef1:llili2.!! 

Device 
f!~! __ 

LPAGE1-------->tP~~!' 
SEGl 

Application 
!!I2gI~! _Q!lln!~ 

Segment 1* (tPAGEl condition specified) 

Figure 3-19. An O'utput f!2ssage Definition with Multiple PagEs 

If an outFut message contains multiple pages, the o~eratcr reguests the 
next one with the !1~9~~! s££§§§ !~I ! (PAl,. If PAt is pressed after 
the last page is received« IMS/VS will send a warning message in our 
subset. If PA1 is then pressed again, IMS/VS will send the first page 
of the current cutput messa~e again. 

T~e operator can al~ays request the next output message by pressing the 
PA2 key. Also, in our sutset, when the operator enters data, t~E 
current output ~essage is dequeued. 

Outpu~ messagE fields can te defined to contain literal data specified 
by the user during definition of the MOt. MFS will include the 
specified li'teral data in t~e cutput message before sending the message 
to the device. 

MF-S users may define their cwn literal field an~/or select a litera 1 
from a number cf literals Frovided by MFS. The MFS-provided literals 
are referred to as system literals and include various date formats, a 
time stamf, the output message sequence number, the logical terminal 
name, and the number of the lcgical page. 

Device field attributes are defined in DFLD statements. For 3270 
display devices, specific attrit~tes may be defined in the ATTF.= keyword 
of the tflt statement. If nct, default attributes will ~e assumed. The 
message field definition (MFLD) corresponding to th& device field (tFLt) 
may sFecify that the application program can dynamically modify the 
device field attritutes. 

When a field is so defined, the first 2 data bytes of the field are 
reserved for attribute data. Any error in the 2-tyte specificaticn 
caUSES the entire sFecification to be ignored, and the attributes 
defined or defaulted for the device field are used. 

Ngl~: ~he two attritute tytes should not be included in the length 
specification cf the device field (DFLD) in the DOF. 

The default attributes fcr ncn-literal 3270 display device fields are 
alFhabetic, nct-protected, normal display intensity, and not-modified. 
Literal device fields have forced attributes of protected and 
not-modified and default attributes of numeric and normal display 
intensity. Numeric protected fields provide an automatic skip function 
on display terminals. 

3.2E I~S/VS Primer 



The pcsitio~ing of the cursor on the 3210 display device is done in 
either of twc ways: 

1. The DP!GE statement defines the default cursor position. 

2. ~he program can dynamically set the cursor to the beginning of a 
field vid its attIitut€ by tea 

EI§!~!_~~~§gg~_~i~!~_J~~12_~i§£!!I_~§!i£&§) 

Output formats fer 3270 display devices may be defined to include a 
system message field. If sc defined, all I~S/VS messages except DFS057 
REQUES!ED FOEMAT SlOCK NC! AVAILAELE are sent to the system message 
field whenever tbE devicE is in formatted mode. Providing a system 
message field avoids the display cf an IM~/YS message elsewhere on the 
screen, thereby cverlaying thE screen data. 

When MFS sends a message tc the system message field, it activates the 
device alarm (if any) tut dces net reSf't modified data tags (MDTs) or 
move the cursor. Since an IMS/VS error message is an -immediate respcnse 
to lnput, MDTs remain as they were at entry and the operator merely has 
to correct the pcrtion of the input in error. 

In our subset we will always reserve the bottom line of the screen fer 
the system messagE field. This field can also be used to enter 
cewmands, for example, /FCE~~Tu 

~Ii~~~g_E!g~_IQI!~!_~QD~-~Q! 

The 327C printer devices are also supported via MFS. Three tasic 
options can be specified in the DEV statement (PAGE: operand) : 

• A defined fixed numbEr of lines should always be printed for each 
page (SPACE). This is the recommended option because it prEserves 
forms positicning. 

• Only lines containing data should be printed. Blank lines are 
deleted (FLCA'l). 

• All lines defined ty DFIDs shculd be printed, whether or not the 
DFLDs contain data (DEFN). 

MIS FCBMA~S SOPPLIED BY IMS/VS 

Several formats are included in the I~SVS.FCRMAT library during IMS/VS 
system definition. They are used mainly for the master terminal, and 
for systEm commands and mEssages. All these formats start with the 
characters DFS. Cne of the most interesting in our subset is the 
default output message format. This format is used fat broadcast 
messages from the master terminal and application program output 
messages with no ~OD name specified. It permits two segments of input, 
each teing a line on the screen. DFSDF2 is the fo~mat name, DFSM02 the 
MOD and DFSMI2 the ~ID name. 

When the master terminal format is used, any m~ssag~ whose KOD name 
begins with tFSMO (except DFSM03) is displayed in the message area. Any 
message whose MOD name is DFSDStC1 is displayed in the display area. 
Messages with other MOt names cause the warning message USER MESSAGE 
WAITING tC' bE displayed at the- lower portion of th~ di!=play screen. 

Data Communication Design 3.29 



This section describes the centrel statements used by the ~FS langttage 
utility. !here are two major categories of control statements: 

• Definition statements are used to defi~e message format$ and device 
formats. 

• Compiler statements are used to control the compilation an4 listings 
of the definition statements. 

!hE definition of messagE fcrmats and device formats is accosFlished 
wit~ sefarate hierarchical sets of definition statements. The statement 
set used to define message formats consists of the follcwing statem~nts: 

MSG 

lPAGE 

FASSiiCBD 

SEG 

MFLD 

MSGEND 

Identifies t~e beginning of a message 
definition. 

Identifies a related grouF of 
segment/field definitions. 

Identifies a field to te used as an 
IMS/VS password. 

Identifies a message segment. 

D~fines a messa~e field. IteratiVE 
processing of MFLD statements can be 
invoked by specifying DC and ~~DDC 
statements. !o accomplish interative 
processing, the DO statement is placed 
.before the MFLD statem~nt(~) and the 
ENDDO after the MFLD statemEnt(s). 
See following discussion on 
compilation statements. 

Identifies the end of. a messa9E 
def ini tion. 

The statement set used to define device formats consists of tbe 
following statements: 

FMT 

DEV 

DIV 

DPAGE 

3 .. 30 IMS/VS friml?r 

I1FID 

Identifies the beginning of a format 
definition. 

Identifies the device type and 
operational cptions. 

Identifies the format as inFut, 
output, or both. 

Identifies a group of device fields 
corresponding to an LPAGE group of 
message fields. 

Defines a device field. lterative 
processing of DFLD statements can be 
invoked by specifying DC and ENDDO 
statements. To accomplish iterative 
processing, the DO~statement is placed 
before the DfLD statement (s) and the 
ENDDC after th~ DFID statement(s). 
See the following discussien on 
compilation statements. 



!MTENt Identifies the end of a format 
definition. 

Compilation statements have va~iable fUDctions. The most common ones 
a~e: 

DO 

l:JECT 

!ND 

ENDDO 

PRIN! 

SPACE 

TITLE 

Eequests iterative proc~ssiug of ~Fln or DFlt 
defi~iticn statements. 

Ejects SYSPRINT listing to the next page. 

Defines the end of data for SYSIN proces~ing. 

!erminates iterative pcocsssing of P.Flt or tiLt 
definiticn statemer.ts. 

Ccntrcls SYSPRINT cptions. 

SkiFs lines on the SYSFBINT listing. 

Provides a title for the SYSPBINT listirg. 

Compilaticn statem€nts are to be inserted at logical points in t~e 
sequence of control state~ents. Fer example, TITLE could be placed 
first. and EJECT could be placed before ~acb MSG or FMT statement. 

BELA~ICNS BE1WEE~ SCUBeE STATEr.EN!S ANt CCN~FOL ELOCKS 

In general, the following relations ~xists tetween the MFS sourc~ 
statements and centrol blcck~: 

• One MSG statement and its associated LPAGE. SEG. and MFID stat~m~nts 
generate one ~I~ or ~Ct~ 

• Ons EM! statement and its asscciated DEV, CIV, DPAGE and DFLD 
statemEnts gEneratE onE DIF and/or DOF. For dis~lays, both the DIF 
and DCF are generat~d, tecause the output scre~n is used fer input 
too. 

In addition the MFS utilities vill establish the linkages between the 
MID, ~OD, DIP, and DOF. These are the result of the symtolic Iam~ 
linkages defined in the SOU~CE statemeDt~. 

Th€ names of format blocks must be unique. the MID and ~CD names, 
specified as the label of the ~SG statement must be 1 to 8 alpbanumeric 
characters. ~he tIF and DOF names 'are de~ived from the 1 to 6 
alphanumeric character label ~f the FM! statement. 

With reference to our naming convention in Chapter 1, we will use in the 
samples: 

• OE4aaa for the F~! (DIP/DOF) 

• OE4aaaln for tbe MID 

• OE4aaaOn for tile MOD. 

Data Communication DesigI 3.31 



wherE: 

aaa identifies the application 

n isa sequence number 

0'11LI1:Y SYNTAJ 

The ~PS languagE utility uses the syntax common to Assembl~r language. 
In additicn, it shoula te noted: 

• there is no limit to the number of continuation cards. 

• there is no limit to the total nuaber of characters in the operand 
field. Inci.idual cperand items cannot exceed 256 characters. 

• Literal length restrictions do Dot¥include leading, trailing, and 
imbe~ded second quote characters. 

• If a nonstandard cbaracter. such as a multipunch, is detected in a 
literal, a severity q warning message is issued. 

• Positional parameters. if specified, must precede keyword 
para mete rs. 

~FS DEFINItICN STAT!~ENTS 

Following is a detailed ~escription of Each of the MFS languagE 
definition statements. This description should be used as a reference 
when you are coding your own formats. You can skip this section at 
initial study. A coding sample is provided in Figure 3-21 at the End of 
this section. 

~~2 .§!!!!!~n~ 

~he ftSG statement initiates and names a message input or out~ut 
description. 

1-------------------------------------------------------------, 
/ I 

I label , 
, I 
1 t 

MSG 
I , 
1 ['IYPE={ll!f.Yl}] I 
1 OO~PO'I I , , 

1 I I ,SoR=(formatname,IGNORE),CPT=2 , 
I t· , f , , 1 [ ,NI7=msgdescriptionname] I 
, t 1--------------------------------------------1 , t I FOR MSG ~YPE~OO~POT ONLY I 
, I , , , , I ,PAGE=YES I , , , , 

lat4l 
a 1- to a-character alphameric name ~ust be specified. This label 
may be referred to in the Nxt operand of another message 
description. It is the name of the MID or MOD wbich are stored in 
the IKSVS.FORKA~ likrary. 

. 3.32 IMS/VS Frimer 



TYPE= 
defines this description as message INPUT or OUTPUX. Default value 
is INPUT. 

SOR= 
fcrmatname is the name of the FMT statement which, with thE DEV and 
D1LD statEments, defines the terminal data fields processed by this 
message description. IGNCEE should he specified as shown in our 
subset. 

CPT=2 
should be specified as shown in our subset. 

NX'!= 
specifies a mEssa~e descri~ticD to be used to map the next expected 
message as a result of processing a message using this lessag~ 
description. If llPE=INP07, NX!= specifies a message output 
d~scriptionu In that case, the HOD can be-overridden by thE 
applicaticn ~re9ral. If TYFE=OUTPUT, NIT= specifies a message input 
description. 

If TYFE=CUTPUT and the formatname specified in the SOR= operand 
contains forlats fer 3270 and/or 3270P device types, the 
msgdescription namE refErred tc by NX1=, (the message input 
description) must use the same formatname. This parameter should be 
('oded if TYP!=OOTPUT. 

PAGE=YES 
should be specified as shown in our subset fo= all output message 
descriptions. 

The LFAGE statement d~fines a 9rou~ of segments cemprl.el.ng a lo-gical 
page. 'the ~FAGE statement is optional and in our subset only apFlicable 
to output messages. 

/-------------------------------------------------.-----------, 
/ , , I 

I I LPAGE I SOR=dpagename I 
, I , I 
I I I [,COND=(mfldname,=,'value')] I 
I , 1 J 
, 1 I ( ,NX'I=msgdescriptionname] , 
I I I J 

SOp= 
specifies the namE of the DPAGE statement that defines the display 
fermat fer this logical page. 

ceND: 
this parameter controls the selection of the message output formats 
to be used for each logical page occurrEnce. Mfldname must te th~ 
name of an MFLD defined in this LPAGE. 'Ihe length of this P.F1D must 
be equal to the length of the value literal. This parameter wo~ks 
as follows: If the content of the mfldname is equal to the specified 
value, then this IFAGE and its associated segment, field, and forlat 
description are used for fcrmattin9 of the output message. A one 
character field with values A, E, C, ••• , etc., is recommended. 
ExamEle: CCNt=(FAGETYFE,=,'A'), where PAGETYPE is a defined MFLD cf 
one character in this IPAGE. If the conditional tests for all 
LPAG!s fail, the last defined LPAGE is used for focmatting of the 
foessage. 

tata Communication Desi9n 3.33 



NXT= 
specif1es the name of the mes~age d~scription to ce used to map the 
UE~t m~ssage if this logical paqe is proc~ssed. This name will 
override any NXi; name specified on the previous MSG statEment. 

~!E~~~B~ ~!~t~!~S~ 

!he PASSiCFn statement identifies a fiEld to be used as an I~S/VS 
passwo~d. When used, the PASSWORD statement an1 its associated MiLD must 
precede the first SIG statement in a MSG definition. The total password 
length may not exc€Ed e charactErs. !he first 8 charact~rs of da~a 
after editing will be used for the IMS/VS password. 

I 

/ 
I 

I , 
I FASS.eRD , 
I , 

flanks or comments 

!he SEG statement delineates message segments and is requirEd only if 
multisegmEnt IEssagE precessing ~s used by the application program. 
Output message segments p=ocessed by MFS cannot exceed the logical 
record length cf the lcnq message queue data set. This maximum is in 
cur SUbSEt 13e8 bytES. Only one segment should be d~fined for 
TIPE=INPUl MSGs, and each IFAGE statement. 

--------------------------------------------------------------, 
/ , ' J 

I t SEG I I 
, , , I 
L-------~----~~-----~~---~--·-~-----------~-----------~-.-~~-~~-~~ 

The DO statement caUSES reF~titive generation of MFtD statements te~veen 
the DC and ENDDC statem9nts. 

-------------~-------------------------~----------------------, 

I 
I , , , 

/ I , 
I 
I , 
I 

DO 
, , 
I , , , 

cOlln t 

r,S UI={ Q..1 }] L number 

count 

SOF: 

specifiES bow ~any times to generate the following ~FID 
statement(s). The maximum count that may be specified is 99. 

specifies tbE ~-di9it suffix to be a~pended to the eFl~ latel and 
dfldname of the first group of generated MFLD statements. Default 
value is 01. Mrs increases the sdffix by 1 on each subsequ€nt 
generation of statements. 

If the specified suffix exceeds 2 digits, MIS uses the rightmost 2 
digits. 

3.34 IMS/VS Primer 



If the specified count is such that the generated suffix eventually 
exceeds 2 digits, ~FS reduces the count to the largest legitimatE 
maximum valuE. Po~ ~xaIFlE, if count aguals a and SUF=95, invalid 
s~ffixes of 100.101, and 102 would re3ult. In this instance, MFS 
reduces the ccunt to 5, Frccesses the statement, and issues an error 
message. 

lhe MFLD statement defines a message field as it will be presented to an 
application Frogram as part of a message inFut segment or received from 
an application program as part of a message outpu~ segment. At least 
one MFLD statem€nt must be specified for each ~SG description. 

--------------------------------------------------------------, 
I I 

I( label] I 
I t 
, I 
, I 
I I 
I , 
I I 
I 1 
I I 
I , 
I t 
, f 

label 

1 
I 
1 
I , 

I I 
MfLt I ?OR ~SG TYPE=INPD! I 

I I 

" [{~i1~~;:~ ,}] 1 
I [ .(dfldllamta,'literal') , 
I , 
, [,LTH=nn] I 
I , 
J ( 

I rJUH
= {~}] I 

I J 
I , 
I [,ATTP.=5]~ } I 
,tYES 1 

t , 

[ {~.!.-~}] : ,FILL= NULL , 
C' c' , 

--------------------------------------------f 
! 

FOE ~SG TYFE=QUTPUT f 

[{
dfldname }] 
(dfldname,'literal') 
(dfldnam€,system-literal) 

( ,L'IH=nn) 

a 1- to e-charact~r alphameric name may be specified. This label is 
required if it is referred to in the CONt operand of the prEvious 
LfAGE statement. It may bE used sim~ly to uniquely identify this 
statement. If the MFlt is between the to and ERDDO statements, this 
label shculd tE rEstricted tc 6 characters or less. DC statement 
fIocessing appends a 2-digit suffix to the lab~l and prints the 
label as part of the g€DErated "FLO statement. 

Data Co •• unication Design 3.35 



dfldname specifies the device field name (defined via the DEVor DFlD 
statement) freK which inFut data i~ e~tracted or into which output data 
is placed. If t~js para~e~er is omitted when defining a m9ssage output 
descriptor, the data sUF~lied by the application ~rogram is not 
eisplayed nn th@ output device. If the repetitiie generaticn function 
of MPS is usea ,DO and ENDDO statements) , this dfldname should be 
restricted to 6 bytes maximum length. ihen each repetition cf the 
statement is gen~rated, a 2-character sequence number (01 to 99) is 
apF~nded to thE dfldname. I£ the dfldna~e specified here is greater 
than 6 bites and repetitive generation is used, the dtldnau~ is 
truncated at 6 characters and a 2-character sequence number is appended 
to form an 8-character name. No error message is ~rovided if this 
occurs. !his parameter ~ay be specified in one of the following 
forma ts: 

dfldnamE 
identifies the device field name from which input data is extracted 
or inte which cutput data is placed. 

'literal' 
may be specified if a literal value is to be inserted in an input 
message. 

(dfldnamE,'literal') 
If TYPE:OU1PUt, this describes th~ literal data to be placed in the 
named DPlt. When this form is specified, space for the literal must 
not be allocated in the output message segment supplied by the 
application program. Normally, such a literal should te definEd 
with a DFLD statement. SFecifying it in the Met allows differ~nt 
literal values (in differeni MODs) to be displayed with the same 
dEvice format. 

If TYPE=INPO~, this describes the literal data to be placea in the 
message field when no data for this field is received frcm the 
dEV iCE. 

In both cases, if the LTH: operand is specified, the length of the 
literal will be truncated or padded as necessary to the length of 
the LTM= specificaticn. If the literal length is less thari the 
defined field len9th, the literal is padded with tlanks if 
TYPE~OUTPO! and with tnE s~ecified fill characteI (FIIL=) if 
!YPE=INPO!. If no fill character is specified for input, thE 
literal is padded with hlanks (the default value). The literal 
length may not exceed 256 characters. 

(dfldname,system-literal) 
specifies, a r.amE fIC~ a list of system lit~~als. ~ system lite~al 
functions like a normal literal except that the literal value is 
created during forr.atting prior to transmission to the device. The 
L~H= and ATTB: operands may not be specified. Wh~n this form is 
specified, spaCE fcr tb~ literal must not Le allocated in the output 
messagE segment sUFplied by the application progra~. 

3.36 IMS/VS frimer 



The syste~ literals and their associated length and format are: 

, , 

SYSTEM 
L1 IJ:EBAL 
NAME 

I 
I PROtOCES LITERAL PF I 
I-----------------~-~---, 
I LENGTH I FORMAT I CC~MENTS 

---------9-+-----·---·-+-----------+-----------1 
I I 

I'INAME I 8 aaaaaaaa ,See note 1 
TIME I e HH:MM:SS I 
DA~E1 , 6 II.DDD ~ 
tATE2 I e MM/DD/YY I 
DA'IE3 , J3 D~/i-H1/YI , 
nATE4 I e YY/MPJ/DD I I 

LFAGENO I 4 nnnn ,See note 2 
I , 

L------------------------~----------------~-----~ 

1. Messages generat€d by the 1MS/V~ centrol region in response to 
terminal input (error messages, most command responses) will 
use DFSM01 ana haVE aD LTNAPJE of blanks. 

2. LPAGENO specifiEs that the current logical ~age number of the 
message be provided as a system literal. The literal ft:oduced 
will be a 4-digit numter with leading zero~ convert~d to 
blanks., 

L'INAtH is the logical terminal (LTEBl'1) Dame of the LTER~ for which 
this message i~ being fcrmatted. 

!B!~: In our subset, the first MFID in the MID must define the system 
message field used fer command input. this complies with our 1~~L!~ 
Prim~I ~~!Q!§ lsI~i~El QI!~~!2~!~ QYig~. the following ~FID(s) in the 
MID must define the transaction code. Ihis can be a literal, tFID(s), 
or a ccmbination. The total length in the MID must be 9 charactErs, 8 
for th~ transacticn code, and ene blank as delimit€~. If necessary, the 
transaction code must be padded with blanks_ 

ITH= 
s~~cifies the length ef thE field to be ~resented to an application 
prcgram on in~ut or received from an application progra~on cutput. 
Default or minimum valUE is 1 if it is not a literal. Maximum value 
is 8000. The maximum message length must not exceed 32767. In our 
subset, th9 laximum output segment length is 1388. 

JUS~= 

SF~cifiES that the inFut data field is to be left-justified (1) or 
right-justified IF) and right or left truncated as required, 
depending upen the ameunt cf data expecte~ by the device format 
d~scriptor. tefault value is L. R is recommended for numeric 
fields and L fer ether fields. 

ATTR= 
specifies whether IYES) or not (NO) the first 2 bytes of this field 
should te res'erved fer attribute da ta te be filled in by the 
application ~rogram (TYFE=CUTEUT). Default value is NO. Requests 
that can te EadE in thE field attribute data are described in 
Chapter 4 under the topic "Dynamic Attribute Modification and Cursor 
Control. II These twc tytEs must be included in the LTH= operand 
value. A~!E=lES is invalid if a literal value bas teen spEcified 
through the pesitienal ~aramEter in an cutput message. 

Data Communication Desigl 3.37 



FILL= 
specifi~s a charactar to be used to pad this field when the length 
of the data r6ceivEd f~c. the device is less than the length of this 
fi~ld. This character is also used to pad when no data is received 
for this field. This o~erand is only valid if T!FE=INPUT. Default 
value is tlank. 

C 'e' 

NUll 

character 'c' will be used to fill fields. Reccmm@nded: Zero 
for numEric fiElds that ar~ ~ight justified, and blank for all 
ethers. 

aust te specified in cur subset for the first MFLD, the system 
message field used for command input. ~his will ccmpletely 
suppress the field if no command input is received. 

~he ENDDO statement terminates the group of MiTt statements that are to 
te r~petively generated. The generated MFLD statements are printed 
immediately following the ENDDC statement. 

I 

I 
I 

, 
, ENDDO , Elanks or comments 

~~~-~~-----.~-.-~----~--.. -----~--~------------------------------~ 

the ~SGEN~ statement terminates a message input or output descripticn
and is re'1~ired as the last statement in the description.

,
I

I
,
I
I

I
MSGEN D I

1
Blanks or comments

L~------.--~----------~----~-------------------------------------J

This statement deli~eates atd names a device fc~mat which defines data
fc~roats as they are received fLJm or displayed on specific devices. A
device format is referred to by message descriptions to format input or
output messages for an application program.

I ,
I label I FM~ Blanks or comments

I I l---------------___________________________ ~---------------------~

label

3.38

a 1- to 6-character alphameric name must be specified. This name is
referred tc ty ttESsagE descriptions in the SO~= operand of MSG
sta te mant s.

IMS/VS Primer

!his n~mE bECCmeS Fart cf the member name used for the resulting
device cutput fOT-Kat and device input format blocks that are stored
in the IM5VS.FCEMAT litrary.

The DEV statement defines d~vice and data characteristics for a specific
device type. The tFLD statements following this DEV statement are
mapFed using these characteristics until the next DEVor FMTlND
statement is enccuntered. In cur subset, we viII not consider mixing of
device types, so cnly one DEV statement per PM! should be coded.

/
I
I ,
I ,
I
I
I , ,
I
I
I
I
I , ,
I
I

I
--.---------------------,

I
I
I ,
1 , ,
I
I
I
I
I
I ,
i ,
I , ,
I
I

DEV
1
I FOR 32,C DISPLAY5
I
I TYPE=32;C-An
I
I ,FEA!=IGNORE,DSCA=X'OOAO'
1
I [, SYSMSG=dfldlabel]
1

FCF 3270 ~FINTEFS

TY~E= (3270~, ~
1

,FEAT=IGl'CFE

L------------------- --~

TYPE=

specifies the 32;C display screen size or printer model.

Ba£ed on the display screen size or printer modal used, specify:

~J!:~=

327C-At
3270-A2
327C-A3
3210-A4
3210-A5
3270-A6

3270~, 1

321cP,2

for

12x80
~tlxEC
32][8-0
~3xeC

"2x40
ExLle

32 € ~- 1
3264-3 attached to a 3275-1
E ~ E E- 1

3284-2
32EQ-3 attached tc a 3275-2
328-6-2
32E1
3288
3~eS

Data Communication Design 3.39

EQ!~§:

,. !h@ IEM 3270 Information tisplay SY$tem provides a hardware
compatibility fer dis~layin9 a small sc~en size format on a large
screen display. A 24x80 screen format will be display~d en the top
part of a ;~x8C or ~2xEC display, whether or not that display
station was defined as a 24x80, a 32x80, or a 43x80 display type to
IMS/VS. Also, a 12xqO screen fermat will be displayed on the top
left part of a 12xeC display unit.

2. If yeu are an existing I~S/VS user, using TYPE=(3270,1) or
TYPE=(327C,2). you de net neEd to change your existing formats.
1hsy are still valid and are equally subject to note 1 a~ove.

FEA~=IGNO~E

should be specified as shown in oux subset.

DSCA=X'OOAC'
should be specified as shown in our subset. It forces the erase
unprotectEd all epticn.

SYSMSG=
specifies the label of the tFLD statement(s) that defines thE dEvice
fiEld in which IMS/VS system messages are to be displayed. A DFLD
with this label must te defined for each DPAGE. DFLDs fo~ SYSMS~
should norsal1y be at least 1TH=19 to prevent message truncation.
We will aliays reser1e the last line of each scraen for this
purpose. As we vill also use this field for command input, it
should net bE protected (see the DFLD statement).

PAGE=
number

tEEN

SPACE

FLOAT

definES the tUlter ef print lines on a printed page. This
value is used for validity checking. The number specified must
te greater than er equal to 1. Default value is 55.

specifies that lines are to be printed as defined ty DFLD
statEments (no lines are tQ be removed or added to the outpuT.
~age).

specifies that Each output page will ccntain the exact number
of lines specified in the 'number' parameter. This is the
recomlended o~tien.

specifies that lines with no data (all blank or NULL) after
formatting are te te dEleted, that is, vill not be printed.

~l! ~~!~s~!»!

The DIV statement definES dEvice formats within a device format
description. !he for.ats are identified as input, output, or toth input
and output. Only ene DIV statement per DEV is allowed.

,
I

/
/

---~--------------------------.---------------------.-~-.-----, ,
I , , tIV

, , , , !lPE={INOOt }
CUT PUT

3.40 IMS/VS Primer

TYPE:
in ou= subStt, I~Ot~ shculd be specified f~r display (DEY
lYPE=327C-An) and CUTfUT for printers (IEV TYP~=3270P).

The nFAGE statement defines a physical pagew This statement can bE
omitted if none ct the'~~ssage descri~tc:s referring to this d~vice
format (F~T) contain If AGE statements, and cursor position is urder
program control ..

--,
I j , I

/ [label]f [PAGE, [CtlFSOR=I(ll,cc»]
1 t I
L------~----------------~--.-----~--~-----~------~---------------~

label
a 1- to E-tyte alpt~meric name may be s~~cified. This name can be
c~itted if there are no message de~criptions for this device forrrat
that contain LPAGE SOB= rEferences. or if only one DPAGE statement
is defined feL the device.

CORseR=
specifies tb~ position cf the cursor cn the screen. The value 11
sFecifi~s line numb@r and cc specifiers column. Both 11 and cc must
te grEdtEr than cr egeal tc'. The default ll,cc value for
DEV=327·:-An is 1,~. Value 1, 1 i~ invalid for sC'r~ens.

!~~~: !ypically, the curser position would be controlled ty the
program via thE attritute byte in the reguired field. The cursor
pcsition via the DPAGE is used for initial formats, requested via
the /FCF~AT ccmmandn

The DC statement causes repetitive generation of tFLD statements between
the to and ENDDO state~ents. ihen DO is used, there ar~ restrictions in
the ~aming of DFIDs (refer to "DFlt Statement").

--,
/ , I I

I ,D 0 , c c un t I
t , I 1
, I I ,

: ; ,[- {li~e-increment}J :
, I 1 ,
, f t ,

~ : : [,SUF={~~mber}] ~
, ! , I

L--~

count
specifies how many times to generate the statement(s).

line-increment
spec1fies bow sucb to incrEase the line position after the first
cycle. 7he first cycle uses the 111 value specified in the POS=

Data Communication Design 3.41

sop=

keJwo~d of the DFLD· statement. Default value is 1. The column
pO$ition is D2~ incremented in this way.

specifies the ~-digit suffix tO',be appended to the dfldname of the
first generated DFlt statement_ Default value is 01. MFS
increments the suffix ty CDe on each subsequent DFLD statement
generation.

If the specified suffix esceeds 2 digits, ~FS uses thE rightlcst 2
digits.

If the specified count is such that the generated suffix eve~tua~ly
exceeds 2 digits1 !lS reduces the count to the large~t lEqitimatE
maxi.um value. Fct ExamplE, if count equals A and, SUF=9~. invalid
suffixes of 100, 10f, and 1C2 would result. In this instancE, MFS
rEdUCEs tbE ccu~t t~ 5, ~~ccesses the statement, and iSSUES an error
mE ssa~ge.

~!.J2 ~1.!1.i'!!J!!

The DFLD ~~atE.ent defines a field within a device format descriptor
which is ~ead ftom or written to the terminal. Only tho~e a~Eas which
are of interest to the aF~lication ~rogram should be defined~ Null
space in the format need not and should not be defin4d.

/ , 1
/ I P~B DEV TYPE=3270-An ,

t , ,
I label , tltD ('literal', J , , J , , FCS= (lll,ccc) I
! , , (, ITH=nnn] , , I ,

[.1 UR= ([{~!)] HN~~!~~}]
, , , {].QR!~} , , 1 PROT I , , , , I

[. { l!~~Et}])]
, , I ,

f t , , , I , , t------------------·-------------------------t
I I 1 ,
I I , FOR DEV !YPE=327CP , , , I ,
I , , ['literal',] , , I , I , I , POS=(lll.ccc) I , I 1 ,
I , , [,L'IH=nnn] I
I , I 1 L- ____________________________ - _______________________ -----------~

latel
a 1- to 8-character alphameric name may be specified. This labEl
(dfldname) can te Ieferred tc by a message descriptor in
transferring data to and from a terminal. If the repetitive
generation function of Mrs is used (DO and ENDDO statements). this
dfldname should be restricted to 6 characters maximul lEngth. When
each repetition of the state.ent is generated, a 2-character

3.42 IM~/VS Frimer

sequence.number (01-99) is appended to the dfldname. If the
dfldname specified here is ~reater than 6 characters and repetitive
generation is used, tbE dfldname is truncated to € characters, and a
2-character seguence ~umber is appended to form the 8-charaeter
name. No error message is provided if this occurs. The lacEl
should ce omitted fcr literals.

'literal'

LTH=

specifies a liter~l chaxacter string to be presented to the device.
!he literal: length cannot exceed 256 characters for 3270 dis~lay
devices and the liDS width -, fer 3270 printer devices.

For DEV TYPE=3~1C-An, literal fields will have the PBCT attribute
whether sFecified er not •. The NUM attribute will be assumeo if
ALPHA is not specified. 1 literal field cannot be referred to by a
message descriptor.

defines the first data pesitien of this field in terms of line (Ill)
and column (ccc). III and ccc mu&t be greater than or equal to ,.

For a 7YFE=3270-An dEvice, POS= (1,1) cannot be specified. Fields
cannot tE .defin~d such that they wrap from the bottom to the top of
the display screen.

A 3270 display scrEen cannot be copied when a field starting on line
1, column 2, bas beth alphabEtic and pretect attributes.

specifies the length of the field. ThE specified LTH= cannet exceed
the physical pagE SiZE ef thE dEvice.

!2!~: POS= and L1L= do not include the attribute character position
reserved for a 3:iO display device. The inclusion of this byte in the
design ef display formats is -necessary since it occupies the scrEen page
position preceding each dis~laYEd field even though it is not
necessaril~ accessible by an application program.

When defining DFIDs fo~ 3270 printers, a hardware AT~RIEUTE charactEI is
not used. Therefcre. fields may be defined with a juxtaposition that
does not alle~ for .the attribute character. However, the l~st column of
a print line cannot be used. It is reserved for carriage control
eFeratiens performed by IMS/VS.

ATTB=
defines the display attritute of this field. This parameter is only
applicable tc displays in our subset. Attribute keywords may be
specified in any crder and only those desired need be specifi~dft
The underlined keyweIds ~eed net be s~ecified since they are
defaults. Cnly one value in each vertical list may be specified.

specifies whether cr not the field should have the numeric
attribute. It is only relevant to input dat3. The Dumeric
attritute specifies that the numeric lock feature and/or
auto-skip features will be used. For a discussion of numetic
lock and auto-skip, rEfer to QR~I!~~~~§ ~B!g~ IQI !~~ J~l~
IB!~~!~!!~n ~l§£l~I ~l~!!~~, GA27-2742o

specifiES whether or net the field is protected from operator
modification. For literal fields, FROT is used and
speCification of NOPR07 is ignored.

Data Communication Design 3.43

!£~~
NODiSP
HI

specifies the field's display intensity as normal (NORM), high
intensity 181). cr ncndisplayable (NODtS~.

defines whether or not the field modified attribute sbould be
assumeo for this field. MOD causes the terminal to assume the
field has been modified by the operator even though ii was not.
This shoulo net be confused with the fROT attribute which
prevents operator modification. MeD is ignored for literal
fields.

1. In general, device fields which should not be changed by the
cperator should have the PRC~ attribute. This avoids
accidental change of suc~ a field by the operator. Remember,
the attritute tytes can be set by the MPP. Preper use of this
can significantly reduce the number of different fClmats
otherwise required tc meet application needs.

2. The recommend~d attribute specification for the system message
field (see DEV statement) is ATTR=HI. This will dis Flay these
critical messages with high intensity and allow this field to
be used for command input.

~.!H2Qf §!~.!~ID~n!

~he ENDDO statement terminates the group of DEtt stat~ments that are to
be repetitivEly genErat~d. ThE generated DFLD statements are printed
immediately fcllowing the !NnnC statement.

--, / , I ,
I ~ ENDDO , I

I I I ,

f~l~!Q §~s!~l!~!!~

~he FM7END statement t~rminates a devi(e format description and is
required as the last statement in the device format desctiption.

-~~--~~-~~---~~~--~-~~-~-.~-~--------~~--~-----~~----~~~---~--,
I t J

/ ,FM'!END I
, , I

COMPILATION S'!A'!IMEN~S

~he following compilation statements are the most frequently used ones
and are included ir the ~al~les.

The TITLE statement is used to specify the heading to appear on the
SYSPBINT listing.

3.44 I~S/VS Primer

---.--,
I I

I !I TIE 'cha racter sequ ens:;e ' ,
, I
L~--~~-----~~--~---~~------~---~~-~-_~ ______ ~- ______ ~ ____________ ~

'character sequence'
specifies the beading tc be printed on the output listing.

The PFINT statemEnt can he used to suppress the detailed output listing
of the ~FS language processor. It is recommended to include this
statement at the beginning.

----------------------------.------------.-----~---~-- --------, I ,
I PRIN! I NOGEN

, I L------____________ --____________________________________ . _______ ~

The SPACE statement s~EcifiES the number of lines to skip when output is
printedo The SPACE statement is printed before the skip occurs.

I ,
t ,

I I
SPACE , , ,

t

,
Dumber

L------------------_- __ . ____________________________ ~-----_______ ~

.1
number

specifies how lany lines tc ski~ after this statement is
encc~ntered. Default number is 1.

E~~~.'! E~g!§!!~nl

The EJEC! statement is used to eject a page in an output listing. !he
EJECT statement is printed tefcte the actual eject.

--, I , I ,
I I IJEC~ I ,

I I~ I I
L-----------------------------------~----------------------------~

The ENt statement must be used to define the end of the Mrs input
statements. It must be the last statement.

Data Communication Design 3.45

I

/
I

I ,
I

END

, ,
I

L--~.

Figure 3-20 shows the sample formats for the Customer Name Inquiry and
Address program. !he lines illustrate the symbolic linkages between the
differ~nt format blocks and fields. Figure 3-21 shows the screen layout
of this format as printed by the MFS language utility. The complete set
of these MFS ~ource statements is included as member DE4CNI01 in
I MSVS. PBI MESSe.

MOD

OE~CNIOl MGS TYPE=OUTPUT,
SOR= (OE~CN r. IGNORE) , -. -..: OE ~CN I

,--------- NXT=OE~CNIIl,
OPT=2

LPAGE SOR=A1200
SEG
MFLU CNUM,LTH=b
MFLD CNAM,LTH=20
MFLD CADR,LTH=20
MFLD CCTY,LTH=20
MFLD CPCD,LTH=b
MFLD ERROR,LTH=35
MSGEND

MID

A1200

CNUM

CNAt~

CADR

onCNI Il MSG TYPE=INPUT, •• ~ eCTY
SOR=(OE~CNI,IGNORE) ,
NXT=OE~CNIOl, • CPCD
OTP=2 ERROR

LPAGE SOR=A1200
SEG

TRANSACTION MFLD SYSMSG,LTH=7Q,FILL=NULL
------~ ... MFLD 'TE~CNINQ',LTH=Q

CODE MFLD CUSID,L TH=b ... _______ ~
MSGE'ND

CUSID
SYSMSG

DIF/DOF

FMT
DEV TYPE=3270-A2,

DSCA=X'OOAO' ,
SYSMSG=SYSMSG, ----------...,
FEAT=IG~IORE

DIV TYPE=INOUT
DPAGE CURSOR=«23,20l)
Dt=LD 'CUSTOMER INQUIRY', POS= (2, 2b)
DFLD 'NUMBER' ,POS=(~,211
DFLD POS=(~,33),LTH=b,ATTR=(HI,PROT,NUM)
DFLD 'NAME' ,POS=(b,211
DFLD POS=(b,33),LTH=20,ATTR=(HI,PROT,NUM)
DFLD 'ADDRESS',POS=(9,211
DFLD POS=(S,33),LTH=20,ATTR=(HI,PROT,NUM)
DFLD 'CITY',POS=(10,21)
DFLD POS=(lO,33),LTH=20,ATTR=(HI,PROT,NUM)
DFLD 'POSTAL CODE',POS=(12,211
DFLD POS=(~2,33),L~H=b,ATTR=(HI,PROT,NUM)
DFLD POS=(22,21',LTH=35,ATTR=(HI,PROT,NUM)
DFLD ' ENTER CUSTOMER NO t ,POS= (23,2)
DFLD POS= (23,20) ,L TH=b, ATTR=HI
DFLD POS=(2~,2),LTH=7Q,ATTR=(HI)~---~
FMTEND
END

Figure 3-20. format language Statement Sample

3.46 1M 5/VS PrimEr

ENTER CUSTOMER NO

CUST,OHER INQUIRY

NUMBER

NAME

ADDRESS

CITY

POSTAL CODE

." " "" .. " " " . " " " ...

" .. " .. """.,, " .. "." "." ... ,," "

""""",,""""""""""""" " """"""""" .F."""""""""

:::::::::::::::::::::::::::::::::: :

Figure 3-21. Sa mple Displa y .Form at

~fa_£g!I~~~_].Q~!_~!B~E!llQ!

Mrs control blccks are generated by executicn cf the MFS languagE
utility ~ro9ra.. This is a tvo-stage process. See Figure 3-22.

STEP 1 STEP 2 STEP 3

DFSUNUBO DFSUTSAO

PHASE 1
PROCESSOR

Figure 3-22. Creation of ~f5 Control flocks

COMPRESS
DATA SET

BUILD
INDEX

IMSVS.
FORMAT

Data Commu&ication DeSign 3.47

The MfS control blcek generatier. can be executed by an leS/YS supplied
catalcged- procedure: MFSUTL. lor a description of this precEdurE, see
Chapter 7, "Installing I~S/VS." Multiple formats can be generated with
one execution. In general yeu would precess a co.plete format set, i.e,
the related message and format descriptions, in one execution of MFSUTL.
Sample jot //SAMP42~ in IMSVS.PRIMEJOB shows the use of this procedure
for our sample applications. Three executions of MFSUTL are involved to
process the tbr,e salplE felmat sets.

STEP 1

The MFS languagE utility FrE~rccessor generates intermediate text blocks
(l!~s), based on the MFS language source statements. Definition~ of the

MFS language utility source in~ut are,contained in this chapter under
the tepic flMFS Control Statements." The primary function of the
preprocessor is tc Fet£el. syntax and relational validity checks on user
specifications and generate ITBs. The ITEs are tben processed by phase
1 of the utility to generate message (MSG) and format (FMT) dpscriptors.
An I!B generated for each ~SG and FMt source definition processed and is
stored i~ tbe bisterical leference libxary, IMSYS.REFERAL. An I~B for a
particular MSG or F!T ~escription can be re-used by the same or another
fermat set, once it has been successfully added to th~ IMSYS.REFERAL
data set. Each such deEeri~tion must start with a MSG or F~T statement
and end with a MSGEND or F~T!Jt statement.

~hg~!_l

!h@ p~eprocessor invokes phase 1 if the highest ~eturn cede gen~rated by
the preprocesscr is less than 16. Phase 1 places the newly constructed
descriFtors on ~he SEQEIKS data set. Each memcer processed bas a
control r~cord FlacEd on the SEQBLKS data set identifying the member.
its size, and thg date and time of creation. This control record is
followed by the ima~e of the descriptor as constructed by phase 1.
Alternatively, if an error is detected during descriptor buildi~g, an
error control reccrd is ~laeEd on the SECaLKS data set for the
descripticn in error, idEntifying the member in error, and the date and
time the error control record was created. In addition, phase 1 returns
a cemFletion code of 12 to CS/VS. If execution of step 2 is forced,
phase 2 will del~te descriFtcrs with build errors.

STEP 2

Fhase 2 receives centrel as a job step follcwing phase 1. After final
Frccessing, it will place the new descriptors into the IMSYS.FCB~AT
litra~y. phase 2 passes a ccmpletion code to JS/VS -for step 2 cased on
all the descriFtor maintenance to IMSVS.FCRMAT for a given execution of
the Mrs language utility.

S~EP 3

In our subset, ~e will always execute the MPS service utility after MFS
control block gene~ation. ~bis utility ~ill build a new index directory
block which will eliminate the need for directory search operations
during the IMS/VS cnline cperation.

3.48 IMS/VS Primer

SA~PLE MFS GENEBATION JOE

Job //SAMP425 in IMSVS.PRIMEJOB shows the JCt for the complete MFS
control block generation p~ocess. ~his job uses the MFSUTl and ~FSFVC
procedur~s which are placed in IMSVS.PBOCLlf during StagE 2 of IM5/VS
system definition. the outFut 9cne~ated by the sec~nd execution of the
MFSUTl Frocedure and the MFSiVC procedure are listed in Chapter 3 of the
l~~L!~ E~!!!. ~!!£l! ~i~!l~g§. !his is the output of the pro~essing of
the custcmer order entry formats.

Mrs LlfEARY MAIN~ENANC£

The lM~VS.FOE~AT and I~SVS.P!FEEAL libraries, are standard OS/VS
partitioned data sets. BackuF and restore operations can be done with
the proper 05/V5 utility (lEBCOPY). Heweve~, care must be taken that
both the IMSVS.FCBMAT and the I!SVS.REFERAL data sets a~e dumped and
restored s1_!h~_§sij_!iJ!.

PSBGEN FCR MiFs INt EMFs
.-----------~--~--------

As for each Dl/l batch program, a iSB is ceeded for each KPP or BMP. In
addition to data tase PCBs (see Chapter 2). a PSB fot 'a MPP/BMi contains
cne or more data comllunica-tion FCBs. 'the overall generation of the FSE
remains as descriced in Chapter 2. However, there are a few additicns
to the data tase PC~ statements, and a new statement for the data
communication PCE. In addition, you must perform an .!E.El.!£~~i.Qn .£gl!!~2.!
12!Q~t§ g!n!~!t~~Hl .'ACBGEN) fer all DBDs and PSBs to be 1l'Sed by the C'IL
region. ~his is d1scussed at the end of this section.

ADDI'IIONAL FSB CCtING CC~VEJTICtiS

In addition to the PSB ceding ccnventions stated in Chapter 2, the
follc~ing rules must te otserved.

• 'Ihe name of the PSE as specified in the PSENA"E= keyword of the
PSEGiN and tt.E MBR= key~crd in the PSBGEN procedure must be exactly
the samE as the progral lead module name in case of an MPP. This
name is defined during l~S/VS system definition, via the PSB= key~ord
of the APPLC!N statement.

• ThE order of the PCBs in tbe PSB must be:

1. Data com.unication PCBs,

2 Data base peEs,

3. GSAM PCEs (not allcwed for MPPs).

• One data communication PCB is always automatically ir-c1uded by
I~S/VS at the beginning of each pse of an KPP or BMP. This default
data communication PSB is used to insert eutput messages back to the
originating l'IEBM~

!2!!: Sy use of the C!~AT~YES keyword cn the ~atch PSBGEN
statement, we already IIcvided this PCB to the batch progra.. In
this way, a batch prog~a. caD be ron as a B"F without change. The
relative positions of the data base PCEs remain the samE.

Data Communication Design 3.49

!HE DA!A COM~UNICATICN FeE

Eesides the default data cClmunication PCB, which does not require a PCB
statement, additional PCBs can be coded. These FCBs are used to insert
cutput messages to ITFF~s other than the LTE~M which originatEd the
input message. A typical use cf an !!!!I~~!~ PCE is to send Qutput to a
3270 printer terminal.

!he destinaticn of the output lTERM can ce s~t in two ways:

• During PSBGEN ty s~ecifyin9 the LTERM name in an alternat€ PCB.

• Dynamically by the MPP durin9 ex~cution, by using a change call
against a modifiable alternate PCB.

!he method used depends on the FeE statement.

!his is the only statement required to generate an alternate PCB
(multiple occurrenCES are allcwed). Its format is:

, ,
I

/
I

I
I
I
I
I

PCB TYFE=TF,{LTERM=name}
MODIFY=YES

L--~

Where:

TYFE=TP

is required for all alternate PCEs.

L7ER~=name
MODIPY=!ES

specifies this is a modifiable alternate PCB (MODIFY=YES) or a
preset destination alternate pee, whers name specifies the output
LTERM. MOtIIY=YES is th~ basic recommendation.

~g~~: If MCCIFY=YES is specified, the MPP most specify a valid
alternate ootput lTEB~ with a change call before insertir.g any
message via this PCB.

THE tATA EASE P~B

~he data base PCE for an P.FF or EMP is basically the same as discussed
in Chapter 2. Two additicnal Frocessing intent options can t~ specified
with the PROcopt=keyword of the PCB and/or SEN5EG statement.

The FEOCOPT= keyword is extended with ~wo additional processing intent
cpticns, "0" and "En.

!heir meanings are:

C - Read only; DC dynaric E~~ueu~ is dene by program isolation for calls
against this data base. Can be specified with only the G intent
option, as GO or GQP. 'Ihis option is or.ly valid for the peE
statement.

E - Forces Exclusive use ef this data base cr segment by the MPP/BMP.
No other program which references this data base/segment will be
scheduled in parallel. No dynamic enqueue by program isolation is
done, tut dynamic logging e£ data base updates will be done. E can
be specifi~d with G. I, D, B, and A.

If the ICI 0Ftion (read-only) is used for a PCB, thE data that
is read should net be used as a basis for updating reccrds in
any data base. iith this eption, I~S/VS does not check thp.
ewnershiF of ~he segments returned. This means that the
read-only user might get a segment that had been updated by
another user. If the updating user should then abnormal
terminate, and te tacked out, the read-only user would have a
segment that did not (and never did) exist in the data base.
Therefore, the '0' eption user should not perform updates based
on data read with that option. An ABEND can occur vitb
FROCOPT=GC if ancther program updates peinters when this
program is fcllewing the pointe~s. Pointers are updated during
insert, delete and backout functions.

THE PSBGEN S~A!E~ENT

This is tasically the salE as fer a data base PCB. The IOEPOPN=
parameteI must te omittea,' the C~PA~=YES Farameter is ignored.

EXAMPLE CF AN ONL1NE PSB

Figure 3-23 shews aD Exam~le of a online PSB. This PSB, PE4CORDR is to
be used with the online custemer order MPP. Its PSBGEN can be performed
with job I/SA~P40' (COEel) or job IISAMP402 (PL/I) in If!SVS.PFIMEJOB.
You should ccmFare this PSB with the Phase 2 batch PSB, PE2CORDR, in
Chapter 2.

Data Coamunication Desi9D 3.51

* PROGRAM SPECIFICATION BLOCK FOR PHASE 4
* ORDER UPDATE PROGRAH PE4CORDR.

* * ALTERNATE MESSAGE OUTPUT TERMINAL

*
It

*
*

*
*
*

*
*
*

*
*
*

PCB TYPE=TP.MODIFY=YES

CUSTOMER DATABASE VIEW

PCB TYPE=DB,DBDNAME=BE2PCUST,PROCOPT=GO,KEYLEN=6
SEHSEG NAME=SE2PCUST

ORDER DATABASE VIEW·

PCB TYPE=DB .DBmIAME=BE4LORDR ,I<EYLEN=14
SENSEG NAHE=SE20RDER,PROCOPT=AP
SENSEG NAHE=SE20PART.PARENT=SE20RDER.PROCOPT=A
SENSEG NAHE=SE20SHIP.PARENT=SE20RDER,~ROCOPT=GI

PARTS DATABASE VIEW

PCB TYPE=DB,DBDNAHE=6E4LPART,KEYLEN=20
SENSEG NAHE=SE1PART.PROCOPT=GRP
SENSEG NAHE=SE1PSTOK.PAPENT=SE1PART,PROCOPT=GR

PSBGEN LANG=COBOL.CHPAT=YES,PSBNAHE=PE4CORDR
END

Figu~e 3-23. Example of an Cnline PSE.

Before PSEs and DBDs can be used by the CTL region, they must be
expanded to an intEInal contrel block format. This expans10n 1S done by
the Applicatien Control flock generation (ACBGEN) utility. The expanded
control blocks are aaintained in the IMSVS.ACBLIB. This is a standard
as/vs partitioned data set. !he OS/VS IEH~OVE and IEBCCPY utilities can
be used fer its maintenance.

Jct BEQOIFE"!!ftS

An ACEGEN prOCEdure is ~laced in IMSVS.FBOCLIB during 1"S/V5 system
definition. Job /ISAMPq2~ in IMSVS.PRIMEJOB shows how to use this
~rccedure.

B2~!: Multiple BUIlt statements can b~ coded for both DBDs and PSBs,
but thE ones fer DEEs must be first.

E!gg~~!q_~2Bt~2!_~!!l!!!D~§

!he utility centrol statements for this program are free-fori. A
statement is ceded as a card image and is contained in columns 1-71.
The control statement may optionally contain a name starting in
column 1. 1he operation field must be preceded by and followed by one
or more blanks. The opo.rand is composed of one or more P5B/DBD cames
and must be preceded by and followed by one or more blanks. Comaas,
~are~thesis, and blanks caft be used· only as delimiting characters.
Coaments may be written following the last operand of a ccnt~ol
statement, seFaratEd frcm the oFerand by one or more blanks. A control
statement may be continued by inserting a comma after the last operand
of the statemEnt, inserting a .non-blank character in column 72 and
continuing the statEment in column 16 of the next control statement.
Co~umns 1-15 of the continuation statement must be tlank.

3.52 IMS/VS Primer

In our subset, two control statements are required in the following
crder:

/ I
/ EUILt I DBD= 'dbdname •••••)

I I , EOILD I P S E= I {: s t n am e ,)
I I
L--~

DED=
must list all dbdnames cf data bases ysed by the online I~S/VS
system. Lo~ical tEDs and ~SA~ DBDs must not be listed.

PSB=
must list all pstnames cf ~PPs and BMPs; for example. those defined
in AFFLC~N statements during IMS/VS system definiticn. SEe Chapter
7.

~f~~!~_!!!~2~i2!!

Only one ACEGEN is required in case of multiple PSE/DBD changEs as lcng
as it is done aftEr the last PS3GEN/DBDGEN and before the CTl region is
started ..

~HE DAIA CC~MtNICAtICN IESIG~ ~E(CESS
----------.---------------------~----

This part of Chapter 3 is complementary to the section "!he Data Base
Design ProcEss" in ChaFtEr~. It is assumed that you have a clear
understanding cf Chapter 2 bEfore reading this part.

w. will distinguish tEtveen the fcllcving areas in the IMS/VS data
base/data communication design ~rccess:

• Program design

• Message format service design

• Data tasE design

The data basE design procEss is essentially the same as outlined in
Chapter 2. ~e will not repeat this, but merely provide additional
guidElines.

In the program design section, we vill concentrate on the design of
lessage Eroce~sing programs 'MI~s).

Th~ Mrs design will discuss thE 3270 screen layouts and operatcr
interaction.

Although we will cover each of the above areas in separate sections, it
should be realized that they are largely depEndent on each ether.
Therefore, an overall syste~ desigD must be performed initially and an
overall system rewiew must follow the desi9n phase of each section.

Data Communication Design 3.53

CONCEPTS OF ONLINE tRANSACTION PROCESSING

In an IMS/VS online environment, one can view a transaction from three
different points:

• The application, that is, its processinq characteristics and data
base accesses.

• the terminal user.

• The IMS/VS system.

Each of the above c~nstitutes a set of characteristics. A description
of each set will follow.

FrCID an application point of view, we can identify:

• tata collEction with nc ~revious data ba$e access). This is not a
typical IMS/VS application but can be part of an IMS/VS application
system.

• Inquiry (data hase retrieve-cnIy processing). Inquiry/re~ort
programs like G1S/VS shculd be considered fer this if inquiry is on
a more or less ad hoc basis.

• Update. 7his ncr_ally involves data base reference and the
sutseguent updating cf the data base. this ~s the environment of
most IHS/VS applications.

In a typical IMS/VS multi-a~plication environment, the above
characteristics are often ccmbined. Ho~ever, a single transaction
ncrmally has only one of the above characteristics.

Frcm the terminal user's point of view, we distinguish:

• Single-interaction transactions.

• Kulti-interacticn transactions.

The single interaction transaction does not im~ose any dependency
between an in~ut me~sage and its corresponding output, and th~ next
input message. the multi-interaction transaction constitutes a dialogue
bet~een the terminal and,the message processing program (s). Both the
terminal user and the message processing program rely on a previous
interaction for the intEr~retation/processin9 of a subsequent
interaction.

I~~Ll~_~h~~~g!~~i§~i£§

From the IMS/VS system point of view, we distinguish:

• Non-response traDsactions~

• Response transacticns.

• Conversational transacticns.

3.54 IMS/VS ~rimer

Note: These IMS/VS transaction characteristics a~e defined for each
transacticn during IMS/YS system definition.

With non~response tra~£actions, I~S/VS accepts multiple input mEssa9ES
(eech teing a transaction) frel a terminal without a need for the
terlinal to first accEFt the ccrr€sponding ~utput message, if any
These ncn-respons~ transactions will not te furthsr considered in our
sample.

With resFonse traDsactions, IMS/VS will not accept further transaction
inFut from the terminai before the corresponding outpnt messagE is sent
and interpreted ty the us~r.

For ccnversational transactions, which are always response transactions,
IMS/VS provides a unique scratch pad area (SPA) for each user tc store
vital information across successive input messages.

I[~n2!f~i2~_~~§E2~§!_lj!~_~f~~~~!l~!iQD§

In aedition to th~ abovE cba~acteristics, the transaction.~!§2Qn§~ ~im~
is often an important factor in the design of online systems. The
response time is the elaFsee time between the entering of an inpUt
message by the terminal operator and the receipt of the corresponding
output messaga at the terEir:al. Tvo main factors constitute in general
the response time:

1. The telecomlunication transmission time. which is dependent en such
factors as~

• Terminal a~d net~ork configuration

• Data communication access method and data communicaticn line
proceeure

• Amount of data transmitted, both input an~ output

• Data communication line utilization

2. ~he internal I~S/YS PlccEssing time, which is mainly determined by
the MPP s@rvicE tilE. ~h~ ~pp ~!I!i£~ ~l!~ is the elapsed time
required for the proceSSing-of the transaction in the MFP region.

Chapter 9, "Optimization," contains a basic assessmEnt of the atcve t~o
factors in tbe section enti~led NData Ccmmunication Design
Optimizaticn."

£h22~iB9_~h!_!!gh!_fh!!!~!!Xis!!~§

Each transaction in IMS/VS can and should bE categorized by one
characteristic ofeacb of thE prEyiously discussed 3 sets.

SCEe ccmbinations of characteristics are more likely to occur than
cthers, but all cf them are valid.

In general, it is the designer's ch~ice as to which comtination is
attributed to a given transacticn. Therefore, it is essential that this
selecticD of chalacteristics is a deliberate part of the design prOCESS,
rather than d~termined ~fter iDplementation.

Data Communication DeSign 3.55

Follo~ing are some examples, based on our sample:

1. Assume an inquiry for the customer name and address with the
customer number as inFut. !he most straightforward way to implement
this is clearly a non-conversational response-type transaction.

2. ~he entry of new customet orders could be done ty a single respcnse
transacticn. !he crder numher, custc~er number, detail information,
~art number, quantity, etc., could all be entered at the samE time.
!he order would be frccessed completely with one interaction. This
is most efficiEIt fer the system, but it may be cumbersome for the
terminal user because she or he has to rQ-enter the complete crder
in the cass of an errer.

Qcite often, diff~rent solutions are available for, a single application.
Which cne to choose should be based on a trade-off tetween syst~1 cest,
functions, and user convenience. The following sections will highlight
this fer the aiff~rent design areas.

CNII~E PECGBA~ CESIGN

This design a~ea is seccnd in im~ortance to data base design. We will
limit the discussion of this broad topic to the typical I~S/VS
environment. ie will first discuss a number of considerations so that
you become faliliar with them. Next, ~~ will discuss the aesign of the
two cnline sam~le programs. You will notice that some discussions are
quite arbitrary and may bave to be adjusted for your own environment.
Do remember, however, that our prime objective is to make yeu aware of
the factors which iDflueDcE these decisiens.

A transaction can be handled with one interaction or ~!§§, or with two
or more passes (a pass is one message in and onp. message out). Each
pass tears a certair. cost in line time and in I~S/VS and MPP ~rocessin9
time. So, in general, ycu should use as few passes as possible.
Whenever ~ossible you should use the current output screen to enter the
next input. ~bis is generally easy to accomplish for inquiry
transactions, where the lower part of the screen can be used for in~ut
and the upp~r ~art for cut~ut. (See "Basic Screen Design" later in this
chapter.) Por update t~ansactions, the choiee is more difficult. The
tasie alternatives arE:

£~!=f!!§_~~!~§: After input validation, the data base updates are all
performed in the same pass. This is the most afficient way'from the
system point of view. However, correcting errors after the update
confirmation is rEceived on the terminal requ~res additional passes or
re-entering of data. An evaluation of the expected error rat€ is
requi~ed.

!!~=f!§§_~Eg!!i: On the first pass, the input is validated, including
data base access. A status message is sent to the terminal. If the
terminal operator agrees, the data base viII be updated in th~ second
pass. ~ith this aFFroach, ~aking corrections is generally much simpler,
especially when a scratch pad area is used. However, the data base is
accessed tvice.

You should realize, that, except for the SPA, no correlation exists
between successive interactions from a terminal. So. the data base can
te updated by scmetcdy else alid the MPP may process a message for
ancther terminal between two successiVE passes.

3.56 I~S/VS PrimEr

~g!!i=E!§§_YEg~!~: In this case, each pass does a partial data tase
update. ~he status of thE aata base and screen is maintained in the
SPA. This approach should cr.ly bE taken fer complex transactions~ Also,
remember that the terminal operator experiences response times for each
interaction. You alsc must consider the imfQct on data base integrity.
IMS/VS will cnly back·out the data base changes of the ~urrent
interaction in thE caSE ef ~rcgra~ cr system failure.

1. JMS/VS emergency rEstart with a com~lete log tape will reposition
the conversation. The terminal operator can proceed from the peint
where be or she was at the time of failure.

2. When a cenversational application program terminates ~bnormally,
cnly the last int¥raction is tacked out.

~he application must rE~csition the conversation after correction.
for coanplex sitt1atiotl~, !MS/V5 provides an abnermal transaction exit
routine. This is not covered in ou~ subset.

Conversational transac~ions arE generally mere expensive in terms of
syste& cost than ncn-ccnversational ones. However, they 9ive tetter
terminal operator service. You should cnly use conversational
transactions ~hen you really need them. Also, with the ~roper use of
MFS, the terminal operatcr Frecedures sometime~ can be enhanced to
almcst the level cf conversational processing. This will te discussed
in the section atcut MFS Design •

.§§!ts;: al_!1RE_"§1:I.!H:1Y'~L!1~·!

Basically, the "PP processing can be divided into five phases. See
Figure 3-24 ..

Da~a Communication Design 3.57

INITIALIZE WORK!NG STORAGE

2 GU CALL FOR INPUT MESSAGE

3 INPUT VALIDATION

4 DATA BASE PROCESSING

5 ISRT OUTPUT MESSAGE

1. Initialization: The clearing of working storage, which may contain
data lEft-ovEr ty ,tbe ~rccessin9 of a message from another terminal.

2. Retrieval of the SPA (o~tienal) and the input message.

3. Input syntax check. All checks which can be done without accessing
the data base, including a consistency check with the status of the
conversation as maintained in the SFA.

4. Data base processing, preferably in one phase. This means that the
retriev~l cf a data base segment is immediately follcwed ty its
update. Ccm~aIE this tc an initial retrieve of all required
segments followed by a second retrieve and then update.

~. Output processing- The output message is built and inSErted
together with t~e SPA (cnly fer cenversational transactions).

!21!: After finishing the Frccessing of one input message, the program
shculd ge back to step 1 and request a new input messaqe. If there are
no more input messages, IP.S/VS will return a status code indicating
that. At that timE, thE MPP must return contrel to IMS/VS.

Figure 3-24. General MPP Structure and Flow

3.5S IMS/VS Primer

1!!n§!£1igDLE~2q~~!_~!99E!Dg

It is the designer's choice how much application function will tE
implemented by onE tra~sacticn ana/or program. The following
considerations a~ply:

• Inquiry-only transacticns should be separated from update
transaction~. Ihe~e shculd be normally implemented as
ncn-conversa tional t.ransactions. Also, they can be definea as
"non-rEcoveratle inquiry-cnly" (See Chapter 1. "Installing lES/VS,"
the ~RANSACT macro). If, in addition, the associated "PPs specify
PROCOP1=GC in all their data base FeEs, ~o dynamic enqueue and
lcgging will tE acne fer these transactions.

• Limited-function KPPs ate smaller and e~sier tc maintain. However.
a very large number of r.~is costs more in terms of 185/VS resources
(control blocks ano ~atb lengths).

• Transactions with a l«ng ~FP service tile (many data base accesses)
shculd be handled ty separate programs. Chapter 9, "Optimizaticn,"
contains a discussicn cf ftfP service time and its iaplicativns.

]g!~: IMS/VS provides a prcgram-tc-program message switch capability.
This is net Fart cf our subset. With this facility, you can split the
transaction frocessing in two lor more) phaSES. ~be first (forEground)
MFF dOES tbe checking and switcbes a message (and, oFtionally, the SFA)
to a {backgrcund) MFP in a lower priority partition whicb performs the
lengthy part of the transacticn processing. In this way the foreground
~FP is mcre readily availatle for serVicing ether terainals. Also, if
no immediate response is required from the background 8PP and the SPA is
not switched, the tErminal is mere readily available for entering
ancther t~ansactien.

MESSAGE FOR"A~ SIEVIC! tESIG~

Genera~ly, a screen can be divided into five areas, top to tottcm:

1. Primary cut put area, ccntains general, fixed infor.ation for the
current transaction. ~he fields in this area should generally te
I=rctected.

2. Detail inpnt/eutput area, used to enter and/or display the more
variable part of the transaction data. Accepted fields should be
protected (under program control): fields in error can be displayed
with high intensity and uDFrotected to allow for corrections.

3. MPP error message area. In general, cne line is sufficient. This
can be the same line as 5 telov.

4. Primary input, that is, re~uested acti~n and/or transaction code for
next input, and primary data base access information.

5. System message £i$ld, used by I~S/VS to display system messages ana
by the terminal operator to enter commands.

For readability, the atove areas sDould be separat&d by at least one
blank line. 'the ,tovE screen laycut is a genf?ra.l one, and should be
evaluated for eacb iDdividual application. It is recommended to develop
a general screen layout and set of formats to be used by incidental
programs and Frograms in their initial test.

Data Ccmaunication Design 3.59

This can significantly reduce the number of format blocks needed and
maintenance. In any case, installation standards should te defined for a
multi-application etvirctment.

~fa_§~~§§1_R§§!~1£1jQ~

Cur subset use of lMS/VS i~~oses the following major restrictions:

1. The maximum output length of a message segment is 1388 bytes; this
is related to our long message recor~ length of 1500 bytes.

2. A format is designated for cne screen size. This can be later
changed via additicnal MPS statements to support both screens and
other devices ~ith the same set of fermat blocks. A 1920 character
format can be displayed en the top part of a 2560 or 3~40 character
display, and a ~8C character format can be displayed on the ~op of a
960 character dlsplay~

3. A segment is one physical Fage, which is ene logical page.

~!n~'!1_~SI§!D_~!L2Y1_~~ig~1j~§~

The following ~erfcrmance guidelines sbould be cbserved wben making
screen layouts:

1. Avoid full-fermat c~Erations. IMS/VS knows what format is o~ the
scre~n. So, if the fermat fer the curr~nt output is the same as the
ene on the screen, I~S/YS need not retransmit all the literals and
unused fields.

2. Avoid unused fields, for ~xample, undefined areas on the screen.
Use the attribute byte 'non-displayed) of the next field as a
delimiter, or expand a literal with blanks. Each unused field
causes additional control characters (5) to be transmitted across
the line during a full-fermat operation.

!Ql~: This bas to be weighed against user convenience. For
example, cur sample customer name inquiry format does not have
consecutive fields but it is user convenient. Also, this
application rarely needs a new fermat so we are not so much
ccncerned ~ith unused fields.

!n£!ygiDg_~~~_l~!n§!£~!Qn_fQg!_!n_i~~_!or~!!

I~~/VS requires a transaction code as the first part of an infut
message. With MFS, this transaction code can be defined as a literal.
In deing so, the terminal operator always enters data on a preformatted
screen. The initial fermat is retrieved with the /FOE"AT command. To
allow fer multiple transaction codes on one format, part of the
transaction cede can bE defined as a literal in the !IO. The rest ef
the transactien code can thEn be entered via a OF1D. This method is
very ccnvenient for the terminal operator because the actual transaction
codes are not of his CClcern. An example of such a procedure is shown
in our sample customer order entry application.

3.60 IM~/VS Erimer

tESIGN OF A S~MPLE lNQOIRY ~FANSAC1ION

!he sample inguiry transaction we will cOfisider in the follcwing is the
customer name inquiry, TE4C~1~'. It iE a very simple transactien~
Upon entry of tb~ custcmer D»mtEr, the ~regtam should retrieve the
c~stomer name and address and display it. If the customer numbEI iE net
found in thE data base, an errer mEssage should be sent. The design
decisions are straightfor~ard:

• Non-conversational. TbEre is no need tc correlate two successive
interactions. In caSE cf error, just enter a ne~ customer number.

• The tranEaction can be defined as non-recoverable inquiry-only,
because Ipgging is not required. In case of system failure, the
lest input or outfut is net imfertant.

• One format can be used fer beth input and cutput. The output fields
are frotected. However, the customer number input field sheuld net
be protected, because it iE tc be us~d to enter another customer
number. !h~ transaction code is defined as a literal'in the ~ID,
thus avoiding the r.~ed fcr re-entering it each time that input is
submitted. S~itching tc a~other application can be easily dene by
requesting ancthe~ format via the system message field, the hottom
line in our Eubset.

~he formats ef this sal~lE arE included as member OE4CNI01 in
IMSVS.PR!~ESRC. ttey can te generated with jch I/SA~F425 in
IM5VS~PRIMEJCE. Th~ programs, F!4CNINC for COEOL and PE4PNINQ 'for
PL/I are provided in IMSVS.PPI~ESRC aLd can be compiled with jots
I/SAMP4U, and //SAM451 in IMSVS.PRIMEJOE, respectively. Th6 remotE
terminal operater instructiens can ~e feund in the I~~L!~ !IimjI
B!~~lj l~;~iD~l ~EjI!!Q!§ ~Yig§, Chapter 5.

tESlGN OF A SAMP1~ UPtAT! TFAtiSACTICN

The sample updatE transactien chosen fer this discussion is the entry of
ne~ c~stcmer o~ders, TI4CCtiEW. There are two categories of data to be
enterEd when adding a DEW custc.e~ crder to the data base:

• Header information, such as customer number and customer order
number.

• tetail information for Each erder lin~: The pa~t number, part
guantity, etc.

The da~a base processing of the program involves:

• Betrieval of the c~stomer name and address for terminal operator
~Erification and ~tintirg CD a packing slip (cptional).

• Insertion of the c~stomEr order root segment.

• For each order line, retrieval of the requested part se9.~nt and its
associate~ steck EE91Ert fc~ verificatien.

• Insertion of the order linE segment and update of the stock
information fer that ~art.

The output sent to the terminal is the order cOftfirmation and/or error
messages. ~be e~ro~ message can range from "customer unknown" te "net
enough pacts in stock". Alsc. ufon request, a packing slip is printed
on a 321C terminal printer.

Data communication Design 3.6'

~his t~ansaction can be implemented in ma~y ways. We will discuss first
the most distinctivE altErnative~ and then our choice.

A!~~~D!~i!.!_JL_'§il!.~il!:.f!.§~_.Y~.9!!~

With this alternativs, the header and all detail lines are ent~red at
the same time. If everything is correct, the program inserts the
compl~te custcmer crder and dis~lays it en the terminal. In case of
errcrs, the whole order must be re-entered if it is a non-ccnversational
transaction. If cc~versaticnal, the SPA can be used to store the
correct order items an9 the necessary data base status information, to
allcw fcr con1Enient terminal operator corrections.

!!!~~~~!i!~_~~_~!Q:!!§§_YEg!~~

With this alternative, the input and data base are checked in the first
pass; no data base updates are done. lhe order is stored in the SPA.
!he secbnd paEs is a confirmation of the terminal operator tr.at hE
accepts the prcpcsed data base updat~. Next, the ac~qal data base
update is done. Wikh this approach, most errors will be detected before
any data tase updatES are done. However, the number of aata base
accesses is higher than with alternative 1.

Also, all checking must be ~one again in the second phasE 1 becau~€ the
data tase contEnts lay have tEEn chan~~d in the meantime by another
transacticn.

With this alternativE, thE crder en~ry is done with multiple passes.
~he first pass checks and inserts the header information. Each
successive pass checks and inserts one order line. This is a rather
costly ap~roach. Also, it is generally cumbersome for th~ terminal
o~erator because he must wait for response after each order line is
entered. This apprcach !hould cnly be used for very complex
transactions ~ith significant operator "think-time". Remember, alsc,
that typically the errcr rate in pr~detormined transactiohs is quite low
«10J). SO the normal operator procedures should b~ as smoo~h as
possitle. On the other hand, the ~rrOt correction procedure could very
well limit itself tc one correction at a time, since the change on
multi~le errors is typically very lo~ «1~~.

]hi£h_Qn!_~f_~hQQ§~

It is clear that alternative 1 should b~ the first choice from a system
performanc& pcint of view. If the amount of data entered is
significant, an SPA can be used to avoid the re-entering of all input
data in case of errcrs. ~he correct part of the input could be kept in
the SFA and should be displayed on the screen with a protected field.
If there are errors, the field in error should be displayed with
high-intensity and the cursor should be positioned on the first field to
te corrected.

The basic principle behind this is:

"Dc as much as you can immediately."

In our sample customer crder entry program, we made a compromisEq We
seletted alternativE ~ tut Entering of the detail lines is in one pass.
One reason fer this is that we want to show a mere elaborate use of the
SPA. Remember that in a straightforward use of alternative 1, the SFA

3.62 IMS/VS Primer

is only used in case of errors. Another reason is that we want to be
able to enter the next crdEr using the same screen format as used for
the display cf the last crder. With the amcunt of data for the full
crder, this ~ould require in any case an extra operator action tc EraSE
all unprotected fields.

CUI_~l!El~_~~D!§I~~~i£~!l_fI~~~~~

This program, DFS4CNEW in I~SVS.FP.l~ESRC (renamed to PE4COP.DB during
linkage editing) has tiO basic passes:

1 •. The initial input i~ the customer number and the customer crder
number. The custcleL name is retrieved and stored in the StA. The
c~stomer order root segment is inserted and the output, including
customer ~amE and'address, is displayed.

2. The second input is all the orderlines. The crder lines are
processed completely (that is, checking, stock update and crder line
segment insert), one at a time.

In case of error, pass ~ i~ repeated until ali detail lines are
ccrrect. Already processed order linES arE maintained. The SPA is
used for Keeping track cf the status. In case the insert of an
order line fails, the, stock update is reversed. Remember, in case
of abend, IMS/VS will tackcut all data base changes of only the
£.Y!!~D! Fass.

Optionally, a packing slip is produced. The following MFS
considerations a~Fly:

• The same format is used for both passes, beth input and output, thus
avoiding full screen formatting.

• The screen layout is such that upon CC~Fletion of an order, the
heading data for the next CIder (custcmer number and customer order
f:umber) can be entered on the very same screen; the cursor is
already in place.

The following design censidEratioDs should alsc be noted:

• The ccnversation will te terminated (insert blank transaction code
in SPA) after each successful order entry_ This is transparEnt to
the terminal cperatcr, bEcause the output format is linked to a MID
which contains thE transacticn code, se the operator need not
re-enter it.

• Each output messagE shculd contain all the data (except the
Met-defined literals) tc be diEplayed. lou should never rely on
already existing data on the screen, because a clear or (re,start
operation may have destrcyed it.

ON1INI tATA EASE tES1GN

The tranEaction/data element apPIoach for data base design as introduced
in Chapter 2 is fully 'applicable to the IMS/YS online environment. lie
will not repeat it here tut will Extend it ~ith some additional
guidelines.

Data Communication Design 3.E3

Y§1~9_~~~~~g!ll_!ng~!2§

Using secondary indexing c~n significantly increase the accessibility of
cnline data bases. Therefore, a wider use of this facility is likely in
tb~ onlin~ data bas~ design. Hcwever, its use in our subset is limited
to the creation of additional non-root key access paths to the data base
record.

f~!£!~2B!§_~2!j_~2§§_Q~g!ni~!!isn

Even more than for tatcb cperations, the preferable data basE
organization for online data basE operations is HDAM. HIDA! should be
considered only if the or.line Frecessing requirement is low and the
requirement for key sequential batch precessing is high.

Remember that a secondary index can be used for incidental key
sequential access such as needed for generic search (search with a
partial key).

lill!!li2~ g~ ~gl!n! §~1§!~ y§!g~

IMS/VS vill schedule any aF~lication ~rc9rals with a delete or insert
(PRecOPT=I, D, or A), against a SHISAM data base with the exclusive
intent option. ~his im~lies. fer instance, that if a B!F is delete or
in~ert sensitive to a SEISAM data base, no ~pp will be scheduled th~t
references that SHI~AM data base in its ESB.

Usj]g_!~_1~S!1!!~i!!!_~!!!_~!~!

In some applications it may be necessary to use an ~~!iI!§gi!!~ data
base. Such a data base is used to store online transactions for later
batch processing. ThE trar.sacticn Frccessing is split in two Fhases:

1. The online part, in which the transaction is checked and verified
using the online data bases. Accepted transactions arE stored in an
intermediatE data tase.

2. The batch part, in which the transactions in the intermediate data
base are further processed via a batch program or BMP.

!he main reason for this apFreach is generally the access requirElents
tc non-tt/1 files. Rememter, GSAM is not available in MFP regions.

We recommend a simple structure for such an intermediate data ba~e. The
most straight£crward implementation would be a root-only HDAM data tase
with a simple numeric ~cct key, ranging between 1 and N (N=number of
maximum expected transactions). In this situation, a simple linear
randomizing mcdule such as samFle module DFSOALIN in I~5VS.FEIM!SRC can
be used. It would be more efficient to load the intermediate data base,
period~ally, with Hempty" se9ments~ A GHU + REPL call can then te used
instead of an ISRt call.

There is cne common problem with intermediate data bases and that is:
"How does the !PP know what the next-to-te-used-root-key is?" The
simplest solution is to have the latest used roct key value in the first
root segment of the data baSE. This valUE must then te updated by the
MPP at the end of transacticn p~ocessing, before a new GU to the message
queue.

3.64 I!~/VS Frimer

This chapter is divided intc twc major sections -- Data Ease Processing
and Data Ccmmunication Application Frogramming_ Eoth sections apply tc
the IMS/VS DE/DC user. If ycu are a DB-cnly user, however, you may skip
the seccnd secticn.

ihe section covering Data Ease Precessing is further divided into four
parts. The first part deals with a general introductien to 01/1 data
base Frocessinq. It defines the basic structure of a DL/1 application
program. The seccDd part intrcduces basic DL/I calls against a single
hierarchical data base structure. It therefore uses the phase 1 salple
environment. It also giVES guidelines and sam~les for Assembler, COEOL;
and Pl/I application programs. However, the visualization of each tl/l
call in particular is done following the CCEOL syntax. The third part
covers thE processing cf lcgical data bases which are implemented with
the DL/I lcgical relationships_function. The fourth part deals with the
use of secondary indexes.

In general, data case prccessing is tra~saction oriented. You should
refer tc "Concepts of Data Ease Design" in Chapter 2, "Data BaSE
Design," for a more detailed discussion of transactions and data bases~
Generally, an apFlication Frogram accesses one or more data baSE records
for each transaction it precesses. There are two basic types'of D1/!
apFlicaticn Frograms:

• ~he direct access progral

• The sequential access Frcgram

A direct access program accesses, for every input transaction, some
segments in one or more data base records. These accesses arE tased on
data baSE record ~nd sEgmett identification. This identification is
essentially deriVEd from thE transaction input. Normally.it is the
root-key value and additional (key) field values of dependent segments.
For more complex transacticns, segments cculd be accessed in several
Dtl1 data bases concurrently.

A sequential applicaticn prcgram accesses sequentially selected segments
cf all or a consEcutive sutset of a particular data base. The sequence
is usually determined by the key of the root-segment. A seguential
program can also access other data bases, but those accesses are direct,
unless the root-keys of both data bases are the same. Most sequential
application programs are report programs, which list some part of the
data case. For such prcgrams, yeu should censider PL/I, the report
feature of COBOL, or the more extended facilities of GIS/VS.

A tL/I applicaticn program Dermally processes only particular SEgments
of the tL/I data tasEs. 7he FCttion that a given Frcqram processes is
called an !EE!~~~!~2~ g!!! §1~Y~1Y~!. This application data structure
is defined in thE E~29I!! §E!filif!li~ B1S~! (PSE). There is eDe PSB
defined for each applicaticr. pregram. An application data structurE
always consists cf one or mere hierarchical data structures, each of
which is derived from a t1/1 physical or logical data base.

Data Ease Processing ~.1

lANGUAGE AND COMPILAtION

Applicaticn programs are written in one of three languages: PI/I, eCBOL,
or Assembler Language. The ~rogram is ccmpiled through the
u~er-selected language cClpiler and is placed in the appropriate program
library, after it is link-edited with the DL/I language interface
module. In our subset VE viII only consider ANS COBOL with the CS ANs
version 4 or the Os/VS cceCI compilers or the EL/l optimizer com~iler.

A DL/I batch application program executes in a manner si_ilar to any
other OS/VS jcb in a regicn/~artition. It executes, however, under the
control of tL/I. Tc perferm the data base accesses as required by the
apFlicaticn program, tIll uses its own processing modules which in turn
invoke OS/Vs servicEs. Alse DL/I relies on the defined DBD and ESE
control blocks to determine the data base organization and the program's
access characteristics. figure 4-1 presents an overview of tl/I and the
applicaticn Frcgram during execution.

OSNS C """""- C ,:)
-'

DATA
DB

SYSTEM
BASES LIBRARIES .. --- DL/I -

-..- MODULES -...... ~

E
~ """"-.. 1000.. -' -

/ / CONTROL

/ / BLOCK

/ / LIBRARIES ,.
/ / -...... -'

APPLICATION /
~

PROGRAM I ""'- -'
/ / APPLlCA-g .. TlON

-- PROGRAM PCB
LIBRARIES MASK

...... ~

Figure 4-1. tL/l Interface with an AF~lication Program

Before you execute an ap~licaticn program, a R'2g1~m ~E!~~!i~~~i2n ~12S!
£!~!;~!ig~ (PSEGEN) must te performed to create the E'29~!!
~R!gi!i£!li2n 212£! (PSB) for the progra.. The PSB contains one FeE for
each DL/I data base (logical or physical) the application program will
access. 1he PCBs specify which segments the program will USE and the
kind of access (retxieve, UFdate, insert, delete) the program is

4.2 IMS/VS Primer

authorized to. 1he PSEs are maintained in an 1MS/VS system litrary
(1MSVS.PSEt1E). The ccding and generation cf PSBs is described in

Chapter 2, "Data Ease tesign," of this manual.

During initialization, both the aF~licaticn program and its associated
FSB are loaded frem their res~ective libraries by the IMS/VS batch
system. The DL/1 modules, which reside together with the applicatien
program in one partiticn/regicn, interpret and execute data base CALL
requests issued ty the prcgram.

The a~plication Frogram interfaces with DL/I via the following program
elements:

• An INTBY statEment specifying the FCEs utilized by the program,

• A PCE-~ask which corres~onds te the information maintained in the
pre-ccnstructed PCE and which receives return informatien from DL/I,

• An I/O area for passing data segments to and from the data tases,

• Calls to tL/! spEcifyiI9 Frecessing functions,

• A termination.statement.

The PCB mask(s) and I/O areas are described in the program's data
declaration pcrtion. Frogram entry, calls to Dt/I, processing, and
program terminaticn are descrited in the ~rogram's procedural portion.
Calls to DL/I, precessing statements, and program termination may
reference PCE mask Is) arid/or I/O areas. In addition, Dl/I may reference
these data areas. Figure q-2 illustrates how these elements are
functionally structured in a ~rcgram and how they relate to DL/I. 1he
elements arE discussed in the text that follc~s.

Data Base Processing 4.3

APPLICATION PROGRAM COMPONENTS

PCB· MASK

RETURN
INFORMATION

from --- ..,
DL/I I

I
I

IO/AREA I
I

SEGMENT(s) - J to/from
i DATA BASE
I

..
PROGRAM ENTRY I - I ~GET INPUT RECORD (CARDS) .. CALLS TO DL/I DB FUNCTIONS - - - - , -

RETRIEVE I
INSERT I REPLACE
DELETE I

PROCESSING- - - -- ------~I
• • I •

---PUT OUTPUT RECORDS (PRINT) I
r--TERMINATION I

I

" " :
E C E
N A X
T L I DL/I
R L T
Y

Figure 4-2. Structure of a Batch Application Program

Referring to Figure 4-2, when the operating system gives control to the
tt/I control facility, thE Dt/1 control ~rogram in turn passes control
tc the ap~lication ~rogram (through the entry point as dEfined telow).
At entry, all the PCB-na"ES used by thE app1icaticn program are
specified. !he order of the PCE-names in the entry statement must bE the
samE as in the PSB for this apFlicaticn ~rogram. The sequence of PCEs
in the linkage section or declaration portion of the application ~rcgram
need not te the samE as the SEquence in the entry statement.

1. Batch DL/I pro9Ia~s cannot be passed parameter information via the
PARM field from the lXIC statement.

4.4 IMS/VS Primer

2. Programs that operate as as/vs subtasks of an application program
called ty IMS/VS must net issue DL/I calls. If they do, the results
will be unpredictable.

f£~=~s§!

A mask er skeleton data base FeE must be provided in the application
program. The pro9ram views a hierarchical data structure via this mask.
One PCB is required for each data structure. the details are shewn in
Figure 4-3.

As the PCB does not actually reside in the application program, care
lust be taken to define the FeE-mask as an Assembler dsect, a COBOL
linkage section entry, or a PL/I based variable.

The data base peE provides specific areas used by DL/I to inform the
apFlicaticn Frogram of the results of its calls4 At execution time, all
PCB entries are centrclled ty DL/I. Access to the PCB entries by the
application program is for read-only purposes.

APPLICATION PROGRAM

APPLICATION
DATA

STRUCTURE
/

/
",..,.

§---~B// PCB
MASK PCB

--- ~ \ I , \
I '\\

PART

I
I I

I \\ STOCK ORDER

I

I

+ (LINKAGE

\\
\~

'\
MASK WRITTEN IN COBOL SECTION) BY ES FUNCTION

r- - - - - - - - - - - -, t--_T _______ ---t

I 01 PCBNAME.

I
02 DBD-NAME PICTURE X(S).- - - S
02 SEG-LEVEL PICTURE XX, L ___ 2

I JUSTIFIED RIGHT,...
02 STATUS-CODE PICTURE XX.-- -2 I 02 PROC-OPTIONS PICTURE XXXX. __

I
02 RESERVE-DLI PICTURE S9(5)" ,.

COMPUTATIONAl:",

I 02 SEG-NAME-FB PICTURE X(S),_ I - 4
02 LENGTH-FB-KEY PICTURE S9(5) -... -1-S

I COMPUT ATI ON Ai:':'-
02 NUMB-SENS-SEGS PICTURE S9(5) -... I '- 4 I 02 KEY-FB-AREA PICTURE X(N).

I "

4

I

DATA BASE NAME
SEGMENT HIERARCHY

LEVEL INDICATOR
DUI R ESU L TS

STATUS CODE
DUI PROCESS'ING

OPTIONS
RESE'RVED FOR DUI
SEGMENT NAME

FEEDBACK AREA
LENGTH OF

FEEDBACK KEY
NUMBER OF SENSITIVE

SEGMENTS
KEY FEEDBACK AREA

Figure 4-3. Application Irogram Iata Ease ICB Mask

Data Base Processing 4.5

The following items com~rise a PCB for a hierarchical data structure
frem a data base.

1. Name of the FCE -- This is the name of the area which refers to the
entire structure cf PCB fields. It is used in program statements.
!his name is not a field in the PCE. It is the 01 level namE in the
eOEOL mask in Figure 4-3.

2. Name of Data Base -- This is the first field in the PCB and provides
the DED name from the library of data base descriptions associated
with a particular data base. It contains character data and is
eight bytes long.

3. Segment Eierarchy level Indicatcr -- tL/I uses this area to identify
the level Dumber cf the last segment encountered which satisfied a
level of the call. When a retrieve is successfully completed, the
level numter cf the retrieved segment is placed here. If the
retrieve is unsuccessful, the level number returned is that of the
last SEgment that satisfied the search criteria along the path from
the roct (the rcot segment level being '01') to the desired SEgment.
If thE call is cOI~letely unsatisfied, the level returned is '00'.
This fiele ccntains character data; it is two bytes long and is a
right-justified numeric value.

4. DIll Status Code -- A status code indicating the results cf the DL/I
call is placed in this field and remains he re un til another tL/I
call uses this FeB. This field contains two bytes of character
data. When a successful call is executed, DIll sets this field to
Qlanks cr to an informative status indication. DL/I status codes
are summarized for quick rEference in App~ndix A, and described in
detail in Appendix Eo

5. Dl/l ProcEssing Optier.s -- This area contains a character code which
tells DL/I the "precessing intent" of the ,program against this data
base (that is, the kinds of calls that may be used by the program
for processing data in this data base). This field is four bytes
lcng. It is left-justified. It does not change from call te call.
It gives the default value coded in the PCB FBOCOPT" parameter (see
Chapter 2), although this value may be different for each segment.
Dl/I will not allow the application to change this field, nor any
other field in the PCB.

6. Reserved Area for DL/I -- DL/I uses this area for its own internal
linkage related to an application program. This field is one
fullword (4 bytes), tinary.

7. Segment Name FEedback Area -- DLII fills this area with the name of
the last segment encountered which satisfied a level ot the call.
When a retrieve call is successful, the name of the retrieved
segment is placed here. If a retrieve is unsuccessful, the name
returned is that cf the last segment, along the path to the desired
segment, that satisfied the search criteria. This field contains
eight bytes of character data. !his field may be useful in GN
calls. If the status code is 'AI' (data management cpen errcr), the
tD name of the related data set is returned in this area.

8. Length of Key FEedtack Area -- !his entry specifies the current
active length of the key feedback area described belo .. lI. This field
is one fullword (4 bytes), binary.

9. Numter of Sensitive Segments -- This entry specifies the number of
segment types in the data base to which the application program is
sensitive. This would represent a count of the number of segments
in the logical data structure viewed through this fCB. This field
is cne fullword (4 bytes), binary.

4.6 IMS/VS Frlmer

10. Key Feedtack Area -- DL/1 Flac~s in this area the concatenated key
of the last segment encountered which satisfied a level of the call.
ihen a retrieVE is successful, the key of the requested segment and
the key field of each segment along the path to the requested
segment are ccncatenated and Flaced in this area. The key fields
are positioned from left to right, beginning with the root segment
key and follcving the hierarchical path. ihen a retrieve is
unsuccessful, the keys of all segments along the path to the
requested segment, for ~hich the search was successful, are placed
in this area. Segments without sequence fields are not represented
in this arEa.

Nete: This area is never cleared, so it should not be used after a
ccmpletely unsuccessful call. It vill contain information from a
previous call. See Figure 2-5 for an Explanation of concatenated
keys.

Actual processing of IMS/VS data bases is accomplished using a set of
inFut/cutput functional call requests.

A call request is compcsed cf a CAll statement with an argument list.
The argument list specifies the processing functicn to be performed, the
hierarchic path to the segment to be accessed, and the segment
occurrence of that segment. One segment or multiFle segments along th~
hierarchical path of segments may be operated upon with a single OL/1
call. However, a single call never viII return more than one cccurrence
of one segment type.

The arguments contained within any OL/I call request include:

• For FL/I, a field containing the number of call arguments in the
statement, Exludins itself

• The input/output, function to be performed

• The PCB namE

• ~he SEgment input/cut put vork area

• ThE identification of thE data segment(s) to be operated upon.

Follc~in9 is a sample cf a tasic CALL statement for COEel:

r-------------~---, I CALI 'CBltOlI' CSING function,FCE-name,I/OArea,SSA1, ••• ,SSAn. ,

functicn
identifies the OL/1 functicn tc be performed. This argument is the
name of a four-character field which describes the desired I/O
operation. The DL/I functions are described briefly below, and in
full detail later in this chapter.

PCB~name

is the name of a data tase Program Communication Block (~CE). See
the section ftECE-name Argument" belov.

l/OArea
is the namE of an I/O wcrk area. See the section "I/O Work Area
Argument" belcw.

Data Base Processing 4.7

SSA1 through SSAn
are the names cf SegKent Search Arguments, and these are optional.
~here can be a maximum of 1 5SA per level along the hierarchic Fath
being aCCESSEd. SEe thE section "Segment Search Arguments" telcv.

!!:!n£li2n_j~.9!UJsnl: !he I/O functions specified in the "function"
argument cf the CALL statement request data services of 01/1. The
functicns provide. a full data processing repertoire of retriEving,
updating, adding, and deleting data.

Following arE thE basic DL/1 call functions to request DL/1 data tase
service~

GE~ tNIQUE
GET NEX~

GE~ HelD UNIeU!
G:ET EOLD NEXT
INSEliI
DEL E'IE
REPLACE

• GU bb'
'G Nbb'
'GHU t·
'GH Nb'
• IS RT'
'OLE 'I '
'BEPL'

NQ~§: b stands for blank: each CALL function is always 4 characters.

~he above calls constitute four categories of segment access:

• RetriEVE a SEgmEnt: GU, GN, GHU, GHN

• Replace a segment: REPI

• Delete a segment: DLET

• Insert a segment: ISRT

In addition to the above data base calls, there are the §I§!§E §§I!j£~
calls. These arE used for requesting systems services such as
checkFoint/restart. All of the above calls and seme casic system service
calls will be discussed in detail in the followipg sections.

f~~':.QgE~_!~.9.YE~ltj;: "PCB-name" is the second (third in PI/I) argument in
the CALL statement. It is the name of the PCB within the PSB that
identifies for DL/I which specific hierarchical data structure the
applicaticn prcgram wishES tc Frocess.

!L9_i~~!_AI~~_!IgY!int: !he I/O work area name is the third (fourth· in
PL/I) argument in the CALL statement. 'the work area is an area in the
applicaticn program into which Dl/! puts a requested segment, or frcm
which DL/I takes a designatEd segment. If a ccmmon area is used to
process multiFle 01/1 calls, it must be as long as the longest path cf
segments to te prOCEssEd. The work area name pcints to the leftmost
byte of the area. Segment data is always left-justified within a work
area.

When inserting or rEtrieving a hierarchical path of segments with one
call, the I/O work area must be large enough to hold the longest
concatenation of segments to be retrieved or inserted.

~Qt~: It is a good practice to make the length of a general IOAREA
large enough to acccmmodate future segment extensions. An installation
standard could tE SEt fcr this.

4.8 IMS/VS Primer

~~g!~B1_~~~~~h_!,gg!~B!§: Por each segment accessed in a hierarchical
path, one 5SA can be FrovidEd. The purpose of the S5A is to idEntify ty
segment namE and. optienally, by a field value, the segment to be
accessed.

!he basic function of the SSA Fermits the aFplication program te apFly
three different kinds cf lcgic to a call:

• Narro~ the field of search to a particular segment type, or to a
particular segment-occurrence

• Request that either one segment or a Fath of segments be processed

• Alter DL/IIS position in the data base for a subsequent call

Segment Search Argument (S5A) names represent the fourth (fifth for
PL/I) through last arguments (55A1 through 5SAn) in the call statement.
There can be 0 or 1 5SA per level, and, since DL/I permits a maximum of
15 levels per data base, a call may contain from 0 to 15 55A names. In
our subset, an SSA consist of one, two or three elements: The SEgment
name, command code(s) and a qualification statement, as shown in the
following diagram:

r---, I SEGMENT I COMMAND I QUALIPICA!ION S!ATEMENT (OS) ,
1 NAME ,CODE 1--1
I , IBegin CSIField NamelE.O.' Value, End OS I
t---1 I e bytes , variable I " 8 I 2 I' - 2551 1 ,

where:

5EGMEN! NAME
The segment [aEe lust be eight bytes long, left-justified with
trailing blanks as required. This is the name of the SEgment
as defined in a phYSical and/or logical DBD referenced in the
PCB for this application program.

COMMANI COtES
The command cedes are optional. !hey provide functional
variations to be applied to the call for that SEgment type. An
asterisk 1*) follcwing the segment name indicates the presence
of one or more command codes. A blank or a left parenthesis is
the Ending delimiter 'fer command codes. Elank is used when no
qualification statement exists.

QOALIFICATICN STA!EMEN!
!he presence ef a qualification statement is indicated ty a
left parenthesis fcllcving the segment name or, if present,
command codesa The qualification statement consists of a field
name, a relaticnal-operator, and a comparative-value.

Begin Qualification Character
The left parenthesis, (, indicates the beginning of a
qualification statementu If the 5SA is unqualified, the
eight-bytE sE9ment name or, if used, the command codes, should
bE follo~ed tJ a klank.

Field Name
is the name of a field which aPFears in the description of the
specified segment type in the tEt. The name is up to eight
characters long, left-justified with trailing blanks as
required. The named field may be either the key field

tata Ease Processing 4.9

(preferably) cr ancthEr data field within a segment. The field
name is used for searching the data base, and must have beEn
definEd in thE Fhysical DBD.

EO = Relational 0Ferator
is a set of t-wo characters which express the manner in which
the contents cf the field, referred to by the field name, is to
be tEsted against the comparative-value.

fE!~2j;2I ~!!!!.!JJ~

b= or Ee mu-t be equal to

>= or GE must bE greater than or equal to

<= or LE must be less than or equal to

b> or GT must be greater than

b< or L'I must be less than

= or NE must be not equal to

Note: As used atove, the lowercase b represents a I:lank
charactEr.

Comparative-value
is the value against which the contents of the field, rEferred
to t1 the field nalE, is to be tested. The length of this
field must be equal to the length of the named field in thE
SEgment of the data base. That is, it includes leading or
trailing blanks (for alphameric) or ~eros (usually needed for
numeric fiElds) as required. A collating sequence, not an
arithmetic, compare is performed.

End Qualification Character
The right ~arenthesis, ")" , indicates the end of the
qualification statement.

Qualification

Just as calls are "qualified" by the presence of an 55A, 55As are
categorized as either "gualified" or "unqualified," depending on the
presence or absence of a qualification statement. Command codes may be
included in or omitted frem either qualified or unqualified S5As.

In its simplest form, the 55A is unqualified and consists only of the
nale cf a sFecific segment type as defined in the Data Base Description
(DBt). In this form, the 5Sl Frovides Dlll with enough information to
define the segment type desired by the call.

ExamplE: 5EGNA~Ett last character blank to unqualify

Qualified 55As (optional) contain a qualification statement composed of
three parts: A field name defined in the DED, a relational operator, and
a comparative valuEu 01/1 uses the information in the qualification
statement to test the value of the segment's key or data fields within
the data base, and thus to determine whether thE segment meEts the
user's specifications. UsiDg this approach, Dt/I performs the data base
segment searching. The program need process only those segmEnts which
precisely meet seme lcgical criteria.

Example: SEGNAMEb(lIELDXXX>=value)

4.10 lK5/VS Primer

The qualification statement test is terminated either when the test is
satisfied ty an cccurrence cf the sEgment type, or when it is determined
that the reguest cannot be satisfied.

Command Codes

Eoth unqualified and qualified SSAs may ccntain one or more optional
command codes ~hich specify functional variaticns applicable to the call
functicn or the segment qualification. The command codes are discussed
in detail later in this cha~ter.

General Characteristics of segment search arguments

• An 55A may ccnsist of the segment name only (unqualified). It may
optionally alsc include cnE or more ccmmand codes and a
qualification statement.

• S5As following the first 55A must prOCEEd down a hierarchical path.
Not all 55As in the hierarchical path nEed be specified. Tbat is,
there may be lissi~g levels in the path. DL/l will provide,
internally, S5As for missing levels according to the rules given
later in this chapter. However, it is strongly recommended to
always include SSAs for every segment level.

Examples of 55As viII be given with the sample calls at each DI/l call
discussion in the follcwifJg sectien.

At the end of precessing of the a~~lication program, control must be
returned to the DIll control program.

fQ~Qb ~!Ll

GOBACK. BE~OBN; BETUBN(14,12),FC=O

~~~~!~g: Since DIll links to your application program, return to DL/! 
causes storagE occupied by ycur pregram to be released. Therefore you 
should clOSE all non-DL/~ data sets for CCBCL and Assembler before 
return, to prevent abnormal termination during close processing by 
OS/VS. PL/l automatically causes all files to be closed upon return. 

STATUS CODE EANtLING 

After each DIll call, a tvo-byte status code is returned in the FeB 
which is USEd for that call. We distinguish between three categoriES cf 
status codes: 

• The blank status code, indicating a successful call 

• Exceptional conditions and warning status codes, that is, valid 
status codes from an ap~licaticn point of view 

• Error status codes, specifying an error condition in the application 
prcgxam and/ox tI/I4 

The grouping of status CCdES in the above categories is somewhat 
installation dependent. iE will, however, give a basic recommendation 
after each specific call function discussion. It is also recom~EndEd 
that you use a standard prOCEdure for status code checking and the 
handling of error status codes. The first two categories should bE 

Data Base Processing 4~ 11 



handled by the ap~licaticn ~regram after each single call. Figure 4-4 
gives an example. 

r------------------------------------------------------------------~ 
, CALL 'CBI!DII' USING •• ~. , 
, IF PCE-STATUS EQ 'GE' PERFORM PRIN!-NC!-FCUND. , 
, IF PCB-STA!US NE 'bb' FEEFOEM STA~US-EBROR. , 
, everything ekay, Freceed 0 • • • • , 

~-------------------------------------------------------------------~ 
Figure 4-4. !esting status Codes 

Notice that it is more convenient to directly test the regular 
exceptions in-line instead of branching to a status code check reutine. 
In this vay, yeu clearly see the processing of conditions that you wish 
to handle frcm an application point of view, leaving ~he real errer 
situations to a central status cede errer reutine. A detailed 
discussion of the error status codes and their handling will te 
presented later in this chaEter. 

SA~PLE PRESEN!A!ION OF A CALL 

DL/! calls will be introduced in the following sections. Fer each call 
we will give sam~les. These samples will be in a standard format as 
shown in Figure 4-~. 

r------------------------------------------------------------------~ , , 
I 77 GO-FUNC PICTURE XXXX VALUE 'GUbb'. , , , 
t 01 SSACC1-GU-SE'PAR~. I 
, 02 SSA001-EEGIN PICTURE I 
I 02 I 
I 02 , , , 
I 01 IOAEEA PICTURE J (256). , 
1 1 
t-------------------------------------------------------------------1 , , 
, CALL 'CBLTDLI' USING GU-FUNC,PCB-NA"E,ICAREA,SSA001-GU-SE1FAET. I , , 
t-------------------------------------------------------------------, , , 
, ~IA1~~_~Q~!~: I 
, 1 
I bb: successful call 1 
I --: exceptional tut cerrect condition , 
1 other: errer situaticn , 
1 I 

Figure 4-5. Sample Call Presentation 

All the calls in the samples are presented in COBOL format. The coding 
ef a call in FIll or Assembler vill be presented later. Each call 
example contains three secticns. The first secticn presents the 
essential elements of working storage as needed for the call. ThE 
second part, thE precEssing sectien, contains the call itself. Note 
that the PCB-NAME parameter should refer to the selected peE defined in 
the Linkage Section. Sometimes ve will add some processing function 

4.12 IMS/VS Primer 



descri~tion teforE and/or after the call, in order to show the call in 
its right context. the third section contains the status codes and 
their interpretation, which can be expected after the call. The last 
category of status code, labeled "other: error situation," would 
normally te handlEd ty a status code error routine. We ~ill discuss 
thcse error status codes with the ~resentaticn of such a routine later 
in this chapter. 

DL/l PCSITIONING CONCEPT 

To satify a call, DL/I relies on two sources of segment identification: 

• ~he established position in the data base as set by the previous 
call against the FCE 

• The segment sEarch arguments as prcvided with the call. 

The data base position is the knowledge of DL/I of the location of the 
last segment retrieved and all segments above it in the hierarchy. This 
position is maintained ty tL/I as an extension of, and reflected in, the 
PCB. When an ap~lication program has multiple PCBs for a single data 
base, these positions are laintained independently. For each fCB, the 
positicn is represented by the concatenated key of the hierarchical ~ath 
from the root SEgment dcwn tc the lcwest level segment accessed. It 
also includes the positions of non-keyed segments. 

If no current position exists in the data case, then the assumed current 
position is the start cf the data base. ~his is the first physical data 
base record in the data base. With HDAM this is not necessarily the 
root-segment with the lowest key value. 

SA~FLE ENVIRONMENT 

The ~hase 1 sample environment is used to exemplify the basic tIll calls 
presented in the following sections. The data base used is the PARTS 
data baSE as shown in Figure 4-6. 

r-- ----- --, 
I , 
I SF 1PAR'! , 
I , 
L---------.J 

r-----------~--,--------------, , , I 

r---------, I , 
ISE1PS!OK t 
I I 
L---------~ 

r---------, 
, I 
I SE lPPUR , 
I , 
L---------.J 

Figure 4-6. The Fhase 1 FP.ETS Data Base 

r---------, 
I I 
ISE1PGDSC I 
I I L- --------.J 

Dat a Ease Processing 4 .• 13 



The following Frograms are Eart of the I"S/VS Primer phase 1 sample 
apFlication and are included in IMSVS.PBIMESRC: 

• DFSOAIEl, a data base lcad program ~ritten in Assembler, 

• FE1CPINV Imember DfS1CINV in IMSVS.PRIMESRC), a COBOL program which 
gives a parts inventery report for some (transaction TE1INV,) or all 
,transactioti TE1INVfF) of the parts in the PARTS data base, 

• PE1CPPUR {memter DFS1CPUB in IKSVS.PBIMESRC), a COBOL program ~hich 
FrocEsses the purchase crders (transactions: TE1FONEW, TE1ECCNG, 
TE1PCDEL). This program utilizes GSAM and the batch 
checkpoint/restart functicn of DL/I. 

For more details on these programs, you are referred to "Phase 2 Sample 
Requirements" in Chapter 2, "Designing Data Bases." 

RE!RIEVING SEGMENTS 

There are t~o tasic functions in retrieving a segment: 

• RetrieVE a specific SEgment: GO 

• Retrieve the next segment in the hierarchy: GN 

The basic get unique (GO) call, function code 'GObb', retrieves one 
segment in a hierarchical path. The segment retrieved is identified by 
an S5A for each level in thE hierarchical path down to and including the 
re~uested segment. Each should contain at least the segment name. The 
5SA for the root-segment should provide the root-key value. Figure 4-7 
shows an example of thE get unique call. 

The main use of thE GU call is to positicn yourself to a data base 
reccrd and obtain (a path of) segment (s). Typically, the GU call is 
used only onCE for each data base record you wish to access. Additional 
segments ~ithin the data base record would then be retrieved by means of 
get next calls (See the following section.) The GU call can also bE 
used for retrieving a de~Endent segment, by adding additional SSAs to 
the call. For example, if you add a second SSA which specifies the 
stock lccation, you would retrieve a STeCK segment bElow the identified 
part. If the SSA did nct ~rcvide a stock location number, this would be 
the first S~OCK segment for this part. 

4. 14 IM5/VS Primer 



r---~~--~-~~-----~-----------------------------------------~--------, 

77 GO-FUNC PIC70EE Jill VAlUE IGObb l • 

01 SSA001-GU-~E1FAB~. 
02 SSAOC1-E~GIN PICTURE 1(15) VALUE ISE1PAETb (FE1PGFNBb=l. 
02 SSAOC1-FE1EGFNF PIC'IDEE 1(8). 
02 SSA001-ENt PIC'IURF X VALUE I) I. 

01 ICAEEA PIC'ItBE 1(256). 

MOVE FAR'I-NUMBEE 'IO SSA001-FE1fGFNR. 

CALI ICELTILII USING GO-FUNC,FCE-NAME,ICAFEA,SSA001-GU-SE1PART. 

bt: 
GE: 

other: 

requested PART sEglent has been mcved to IOAREA 
segment not foond; supplied part number not in data tase 
error situaticn 

Figure 4-7. Eiasic GO Call 

The get next (GN) call, functicn code 'GNbb', retrieves the next segment 
in the hierarchy as defined in the PCB. To determine this next segment, 
tt/1 relies on the previously Established pcsition. 

Data Base Processing 4.15 



r-------------------------------------------------------------------, t , 
, 77 GN-FUNC PICTDFE XXXX VAlUE ·GNbb·. 1 
1 , 
1 01 lOAFEA EIC!tEE 1(256). , , , 
,-------------------------------------------------------------------1 
I I 
, CALL 'CELTDLI' USING GN-FUNC,PCB-NA~E,ICAREA. I 
I I 
,--------------------------------~----------------------------------, , , 
, ~1A1Y~_CO]!~: , 
, cl 
, tb: if previous call retrieved a PART, then a STOCK sEgment , 
, ~ill te retrieved I 
, GK: a segment is returned in IeAFEA, but it is a different , 
, type at the ~!!§ level, fer instance, a PURCHASE , 
, ORtER segment aftEr the last stock segment I 
, GA: segment returned in IOAREl, but it is of a higher level I 
, than the last one, that is, a new PART segment , 
, GE: end ef data tase reached, no segment retrieved 1 
1 ether: errer situation I 
I I L _____________________________________________________ --------------~ 

Figure 4-8. Unqualified Get Next Call 

The abeve get next call with no SSAs at all will, if repeated, return 
the segments in the data tase in hierarchical sequence. Only those 
segments are returned to which the program is defined sensitive in its 
PCE. If this call was issued after the get unique call of Figure 4-7, 
then it weuld retrieve the first STeCK segment for this part (if ene 
existed). Subsequent calls wculd retrieve all other STOCK segments, 
EUECEASE ORDER, and DESCRIP~ION segments for this part. After this, the 
next Fart ~ould be retrieved and its dependent segments, etc., until the 
end of the data base is reached. Special status codes will be returned 
whenever a different segment type at the same level or a higher level is 
returned. No special status cede is returned when a different segment 
at a lower level is returned. You can check for reaching a lower level 
segment type in the segment level indicator in the PCB. Remember, only 
thdse segments to which the program is sensitive via its PCB are 
available to you. 

Altheugh the above unqualified GN call may be efficient, especially for 
report programs, you should use a qualified GN call whenever possible. 

lh! gY!!!'!~4 q~l !!!~ f!!!: This qualified GN call should at least 
identify the segment yeu want to retrieve. In doing so, you will 
achieve a greater independence toward possible data base structure 
changes in the future. If you supply only the segment name in tbe SSA, 
then you will retrieve all segments of that type from all data base 
records with subsequent get next calls (see Figure 4-9). 

4. 16 IMS/VS Primer 



, 
I 77 GN-FUNC PICiOEE XXXX VAlUE 'GNbb'. 
I 
,01 SSA002-GN-SE1FPUF PlCTUEE 1(9) VALUE 'SE1PPUBtt'. , 
I 01 IOABEA PIC!URE X(256). 
I , 
I------------------------~------------------------------------------1 
I I 
, CALL 'CELlILI' USING GN-FU~C,ECE-NAME,ICAEEA,SSA002-GN-SE1PPUR. , 
, I 
1-------------------------------------------------------------------1 , I 
, ~lA1~~_~Q~!~: , 
I , 
1 bb: next PURCHASE ORDER segment has been moved to IOAREA I 
I GB: end of data base reached, no more EUBCHASE ORtER segments , 
,other: error situatien , 
I I 
l------------------------------------------------------------------~ 
Figure 4-9. Qualified Get Next Call 

Repetition of the above GN call viII retrieve all subsequent FUFCHASE 
ORDER segments of the data base, until the end of the data base is 
reached. To limit this to a specific part, you could add a fully 
qualified 5SA for the FAPT segment. This vould be the same SSA as used 
in Figure 4-7. 

An example of a qualified get next call with a qualified SSA is shown in 
Figure 4-10. 'his fully qualified get next call should be primarily 
used. It always clearly identifies the hierarchical path and the 
segment yeu want to retrieve. 

r-------------------------------------------------------------------, 
77 GN-FUNC PlC1VRE J))) VALUE 'GNbb'q 

01 S5A001-GU-SE1FAR7. 
02 SSA001-BEGIN PIC!URE X,'S) VALUE 'SE1PARTb(FE1PGFNRb='. 
02 SSAOC1-FE1FGFNE PICTURE X(e). 
02 SSA001-END PlClURE X VALUE ') '. 

01 SSA002-GN-SE1PPUR PIClURE X(5) VAIOE 'SE1PPUEb'. 
01 leAREA PIC!VEE X~56). 

, 
I , 
I , 
I 
I, 
I 
J 1 

--------------------------------------------------------------~----, 
CALL 'CBLTDLI' USING GN-FUNC,FCE-NAME,IOAFEA,SSA001-GU-SE1PART, 

SSA002-GN-SE1FFUR. 

, 
I , , 

-------------------------------------------------------------------, 

bb: 
GE: 

ether: 

next PURCHASE ORDER segment is in lOAREA 
segment not found; no more purchase orders for this part, 
or part DumbEr in SSAC01 does not exist 
error situation 

Figure 4-10. GN Call ~ith Cualified 5SA 

I , 
1 
I , , , , 

Data Ease Processing 4. 17 



To change the contents of a segment in a data base through a replace or 
delete call, the program must first obtain the segment. It then changes 
the segment's contents and ~equ9sts DL/I to replace the segment in the 
data base or to delete it from the data base. 

This is done ty using the gEt hold calls. These function ccdes are like 
the standard get functicn, exce~t the letter 'H' immediately follows the 
letter 'G' in the code (that is, GHU, GHN). The get hold calls function 
exactly as the corrEspcnding gEt calls fer the user. For DL/I they 
indicate a possible subsequent replace or delete call. 

After Dl/I has provided the requested segment to the user, one or mcre 
fiElds, but not the seqUEncE fiEld, in the segment may be changed. 

After thE USEr has changEd the segment contents, he can call tIll to 
return the segment to, or delete it from the data base. If, after 
issuing a get hold call, the ~rogram determines that it is not necessary 
to change or delete the retrieved segment, the program may ~roceEd with 
other processing, and the "hold" will be released by the next Dl/I call 
against the same peE. 

UPDATING SEG!ENTS 

Segments can be updated by application programs and returned to 01/1 for 
restoring in the data tase, with the re~lace call, function code 'REPL'~ 
Two conditions must be met: 

• The segment must first ke retrieved with a get hold call, Gau o~ 
GHN; no intervening calls a~e allowed ~efe~encing the samE PCB. 

• The sequence field of the segment cannot be changed; this can only 
be done with combinations of delete and insert calls for the segment 
and all its dependents. 

Figure 4-1' shows an exal~le of a combination of a GHU and REPL call. 
Notice tbat the replace call must not specify a SSA for the segment to 
be replaced. If, after retrieving a segment with a get hold call, the 
program decidES not to updatE the segment, it need not issue a replace 
call. Instead the program can proceed as if it were a normal get call. 

Becaus~ there is only a very small performance difference bEtween the 
get· and the gEt holo call, you should use the get hold call whenever 
there is a reasonable chance (about 5~ or more) that you will changE the 
se9ment. 



77 GBO-FONC PICTURE XXXX VALOE IGHUb l • 

77 REPL-FONC FICTURE JXXX VALUE 'REPL'. 
01 SSA001-GU-SE1~ART. 

02 SSA001-BEGIN PICTURE 1(19) VILUE 'SE1PARTb(PE1PGPNRt:'. 
02 SSA001-FE1PGPNR PICTURE XIS). 
02 SSAOC1-ENt P~C1URE J VALUE I) '. 

0' SSA002-GN-SE1FPOE PICTURE X(9) VALUI ISE'PPDRtt'. 

01 10lREA PICTURE X(256). 

MOVE PART-NUMBER ~C SSA001-FE1FGFNB. 

CALL 'CBLTDLI' OSING GHU-fONC,PCB-NAME,IOAIEA,SSA001-GU-SE1PABT, 
SSI002-GN-SE1FFOE. 

The rEtrieVEd PORCHASE CBtER segment can now te changed by the 
program in thE 10l1EA. 

CALL 'CELTtLI' OSING REPL-FUNC,PCB-NAME,ICAREA. 

bb: segment is replaced with contents in IOAEEI 
other: error situation 

L-------------------------------------------------------------------~ 
FigurE 4-11. Basic EEFl Call 

DELETING SEGMENTS 

To delete the occurrence of a ~e9ment from a data base, the segment must 
first be obtained by issuing a get hold (GHt, GHN) call through tt/l. 
Once the segment has been acquired, the DLET call may be issued. 

No DL/I calls which USE the sale FCB must intervene between thE get hold 
call and the DLET call, or the DLE~ call is rejected. Quite often a 
Frograa lay want ·to process a segment prior to deleting it. This is. 
permitted as long as the Frocessing does nct involve a D1/1 call which 
refers to the same data base FCE used for the get hold/delete calls. 
However, othEr PCEs may tE IEfeIred to between the get hold and DLE! 
calls. 

DL/I is advised that a segment is to be deleted when the user issues a 
call that has thE function DLET. The deletion of a parent, in effect, 
deletes all the segment occurrences beneath that parent, whether or not 
the application Frogram is SEnsitive to those segments. If the segment 
being deleted is a root segment, that whole data base record is oeleted. 
The segment to £E delEted must still be in the IOAREA of the delete call 
(with which no 55A is used), and its sequence field must not have tEEn 
chan9Ed. figurE 4-12 9ives an exalFle of a DLET call. 

Data Base Processing 4. 19 



I 
17 GHU-FUNC PICXURE XXXX VALUE 'GHUt'. , 
11 tLET-FUNC PIC~ORE XXXX VALUE IDLE~'. , 
C1 SSA001-GU-SE1EART. I 

02 SSA001-BEGIN PIC'ItJBE X(19) VALUE 'SE1PARTb(FE1PGPNRb='. , 
02 S5AOO 1-FE 1EGENF EIC'IURE X (8) • 1 
02 SSA001-END fICTUFE X VALUE .) I. I 

01 SSA002-GN-SE1PPOR PIC'IURE X(9) VALtE 'SE1FPURbb'. , , 
01 lOAREA PIC'IURE X (~~E). , , 

,~-.-~.~~-.-~~--~~---.~-~----------------------------------------~--, 
, I 
t CALL 'CELTDLII OSING GHO-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1EAET, t 
'SSAOO~-GN-SE1PPUR. t 
I I 
, The retrieved PORCHASE ORDER segment can ncw be processed by t 
I the Frogram in the ICABEA I , , 
, CALL 'CBL'IDLI' OSING tlET-PUNC,fCB-NAME,IOAEEA. I , , 
,-----------~-------------------------------~-----------------------1 , , 
, ~IAIY~_~Q]I~-js!~j'_~~~I_~jlll: I 
, t 
I tt: requested purchasE crder segment is deleted from the data, 
1 basE; all its depEndents, if any, are deleted also. I 
I cther: error situation I , , 
L-------------------------------------------~-----------------------~ 
Figure 4-12. Easic DIET Call 

1NSER'IING SEG~EN'IS 

Adding new segment cccurrences to a data base is done with the insert 
call, function code 'ISR'l'. 

'lhe OL/1 insert call is used for two distinct purposes: It is used 
initially to lead the SEgments during creation of a data base. It is 
also used to add nEW eccurrEnces of an existing segment type into an 
established data base. The processing options field in the PCB 
indicates whether the data baSE is being added to or loaded. The format 
of the insert call is identical for either use. 

When loading or inserting, the last 55A must specify only thE name of 
the segment bEing inserted. It should specify only the segment name, 
not the sequence field. Thus an unqualified 5SA is always required. 

Up to the level to be inserted, the S5A evaluation and positicnin9 for 
an insert call is exactly the same as for a GU call. For the level to 
be inserted, the value of the sequence field in the segment in the user 
I/O area is USEd to estaklish the insert position. If no sequence field 
was defined, then the segment is inserted at the end of the physical 
twin chain. If multiple ncn-unique keys are allowed, then the segment 
is inserted after existing segments with the same key value. 

Figure 4-13 shows an example of an 15BT call. The status cedes in this 
examplE arE applicatle ctly tc non-initial load inserts. The status 
codes at initial load time will be discussed under the topic "Loading A 
Easic Data Ease" later in this chapter. 

4.20 IMS/VS Primer 



r-------------------------------------------------------------------, 
77 ISR~-FONC FIC~ORE XXXI VAlUE '15FT'. 
01 SSA001-GU-S!1PAR~. 

I , , , , , , 
02 SSA001-BEGIN FICTOE! X(19) VALUE 'SE1PABTb(FE1PGPNRt='. 
02 SSAOC 1-F! 1PGPNR PIC'IURE I Ie) • 
02 SSA001-END PICTURE X VAlUE ')'. 

01 S5A002-GN-SE1PPUR FleTCRE X(9) VALUE '5E1PPURtb'. 

01 leAREA FIC'IORE J(256). 
1 
I , 

----------------------------------------------~--------------------1 
I 

folOVE FAB'l-NUMBEB 'Ie S5A001-FE1PGFNR. , 
I 

~OVE PURCEASE-CEDER ~C lCAF!A. I 
t 

CALL 'CEL'1tLI' USING ISRT-FUNC,FCB-NAME,ICAREA,SSA001-GU-SE1PART, , 
SSAOC~-GN-SE1PPUR. , 

I 
1-------------------------------------------------------------------1 
I I 
I ~!!ly~_~OD~~: I 
, I 
I bb: new PURCHASE CEDEF sEgment is inserted in data base I 
1 II: SEgmEnt to insert alrEady exists in data base I 
, GE: segment not found; the requested part number (that is, , 
I a parent of the segment to be inserted) is not in the 1 
, data base 1 
,other: Error ccndition , 
I I 

Figure 4-13. Easic ISR'1 Call 

!21!: TherE is no need to check the existence of a segment in the data 
base with a preceding retrieve call. DL/I will do that at insert time, 
and will notify you with an II cr GE status code. Checking previous 
existence is cnly rele~ant if the segment has no sequence field4 

CALLS iI'IH CCMMANt CeDES 

Eoth unqualified and qualifiEd SSAs may contain one or Ilore optional. t 

com~and codes which specify functional variations applicable to either 
the call function or the segment qualification. Command codes in aD 5SA 
are always prefixed by an asterisk (*), which immediately follows the e 
byte segment name. Figure q-1~ illustrates this. Pollowing arE some 
important commane codes. 

The 't' commane COdE is tbe ene mcst widely used. It requests nlll to 
issue £~!h ~~!!§. A "path call" enables a hierarchical path of segments 
to be inSErted or retrieved with one call. (A "path" was defined 
earlier as the hierarchical seguence of segments, one per level, leading 
freE a segment at one level to a particular segment at a lower level.) 
The meaning of the 'D' cOBland code is as follows: 

Por retrieval calls, multiple segaents in a hierarchical path will 
be moved to the IIC area with a single call. ~he first through the 
last segment retrieved are cencatenated in the user's lIe area. 
Intermediate SSAs may be present with or without the 'D' cOlmand 

Data Ease Processing 4.21 



code. If without, thEse segments are not moved to the user's IIC 
area. The segment named in the PCB "segment name £eedtack area" is 
the lowest~level seg~Ent ~et~ieved. cr the last level satisfied in 
the call in case of a non~found condition. Higher-level segments 
associated witb SSAs having the 'D' command code will have teen 
plaCEd in the user's I/O area even in the not-found case. The 'D' 
is not necessary for the last SSA in the call, since the segment 
which satisfies the last level is always moved to the user's IIC 
area. A processing option of 'F' must be specified in the fSEGEN 
for any se~ment tY~E fc~ which a ccmmand code 'D' will te used. 

For insert calls, the 'D' ccmmand code designates the first segment 
type in the path to be inserted. The SSAs for lower-levEl sEgments 
in the path neEd net have the D ccmmand code set, that is, the t 
command code is propagated to all specified lower level segments. 

Figure 4-14 shows an example of a path call. 

r-------------------------------------------------------------------, 1 , 
, 77 GO-FUNe PICTUEE XXXX VALUE 'GUbb'. 1 , , 
t 01 SSAC04-GtD-SE1PART.. , 
, 02 SSA004-BEGIN PIC'IURE X(21) VALUE 'SE1PABTb*D(FE1PGFNFb='. , 
I 02 SSACC4-FE 1EGENIi FIC'IDBE X (8) • , 
, 02 SSA004-END FICTUFE X VALUE ')'. , , , 
1 01 SSA005-GN-SE1FGDSC FICTUEE X(9) VALUE ·SE1PGDSCt'. , , 

01 IOAFEA FIC'IUIiE 1(256). , 
1 

-------------------------------------------------------------------1 , 
CALL 'CEL'Itll' USING GU-FUNC,ECB-NAME,lCABEA, , 

SSA004-GUD-SE1PAR'I.SSAOC5-GN-SE1FGDSC. , 
! 

---------------~---------------------------------------------------1 

tt: 

GE: 

ether: 

both segments (PART and DESCEIPTION) have been placed 
in IOAREA 
segment not found; PAET segment may be retrieved in 
IOAREAi check sEgment name and level indicator in FCB. 
errCI: condition 

Figure 4-14. Sam~le Path Betrieve Call 

1 
I 
1 
1 
I , 
I , , 

The above exam~le sho~s a common usage of the path call. Although we 
don't know if the requested part has a separate DESCBIPTION segment 
(SE1PGtSC). we retrieve it at almost no additional cost if there is one. 

The ce~rect usage of path calls can have a significant performance 
advantage. You should use it whenever possible, even if the chance of 
the existence or thE nEed fc~ thE dependent segment(s) is relatively 
small. Fo~ instance, if you would need, in 10~ or more of the 
occurrences, the first de~Endent segment after you inspect the parent, 
then it is generally advantageous to use a path call to retriEVE them 
toth initially. 

4.22 IMS/VS Primer 



l!_~Q!!!.!!gn.9_~Q.9j 

When a replace call fellows a ~ath retrieve call, it is assumed that all 
seg~ents previously retrieved with the path call are being replaced. If 
any of the segments have nct been changed, and, therefore, need not be 
reFlaced, the 'N' command code may be set at those levels, telling Dl/I 
not to replace the segment at this level of the path. The status codes 
returned are the same as fer a regular re~lace call. 

This command code allows yeu tc back up to the first occurrence of a 
segsent under its parent. It has meaning only for a get next call. A 
get unique call always starts ~ith the first occurrence. Command code F 
is disregarded fcr the root segment. 

This cemmand code allows yeu to retrieve the last occurrence of a 
segment under its parent. This command cods should be used whenever 
applicable. 

=_~Q!Q!Q'!Jl.2_~2.9§ 

The hyphen is a null ccmmand cede. Its purpose is to simplify the 
maintenance of S~As using command codes. 

DA!A BASE POSITICNING AFTEF A tl/1 CAll 

As stated before, tbe data tase ~csition is used by DL/I to satisfy the 
next call against the PCB. !he segment level, segment name and the key 
feedback areas of the FeE are used to present the data tase positier. tc 
the application Frogral. 

The following basic rules apply: 

1. If a get call is ccmpletely satisfied, current position in the data 
base is reflected in the FCE key feedback area. 

2. A replace call does not change current position in the data base. 

3. Data base position after a successful insert call is immediately 
after the inserted segment. 

4. tata base position after return of an II status code is immediately 
prior to the duplicate segment. This pcsitioning allows the 
dUFlicate segment to be retrieved with a GN call. 

54 tata base position after a successful delete call is immediately 
after all depEndents cf the deleted seglent. If no dependents 
existed, data bas's position is immediately after the deleted 
segment. 

6. Data base position is unchanged by an unsuccessful delete call. 

1. After an (partial) unsuccessful retrieve call, the PCB reflects the 
lowest level segment which satisfied the call. The segment name or 
the key fEEO tack lED9tb shculd be used to determine the length of 
the relevant data in the key feedback area. Contents of the key 
feedback area beyoDd thE lEngth value must not be used, as the 
feedback area is never cleared out after previous calls. If the 

Data Ease Processing ".23 



level-one (root) 55A cannot be satisfied, the segment name is 
cleared to blank, and the level and key feedback length are set 
to O. 

In considering 'current position in the data base', it must be 
remembered that DL/l must first establish a starting position to be used 
in satisfying the call. !his starting position is the current position 
in the data base for get next calls, and is a unique position normally 
established by the root 55A for get unique calls. 

The following are clarifications of 'current position in the data base' 
for special situations: 

• If no current pcsiticn exists in the data tase, then the assumed 
current positicn is the staxt of the data base. 

• If the end of the data base is encountered, then the assumed current 
position to be used by the next call is the start 6£ the data base. 

• If a get unique call is unsatisfied at the xoot level, then the 
current position is such that the next segment retrieved would be 
the first Ioot segment ~ith a key value higher than the CDe of the 
unsuccessful call, EXcEFt when end of the data base was reached (see 
above) or for HDAM, where it would be the next segment in physical 
seqUEnce. 

You can always reestablish your data base positioning with a GU call 
specifying all the segment key values in the hierarchical path. It is 
recommended that you use a get unique call after each not found 
condition4 

USING MUL!IFLE FCEs FCF eNE DATA SASE 

Whenever there is a need to maintain two or more independent positions 
in one data base, you shculd use differert PCBs. This avoids the 
reissue of get unique calls to switch forward and backward from ODe data 
base record or hierarchical Fath to another. TheIe are no restrictions 
as to the call functions available in these multiple PCBs. Eowever, to 
avoid "position. confusion" in the application program, you should not 
apply changes via tliO peEs to the same hierarchical path. ; For 
simplicity reasons you should limit the updates to one PCB unless this 
would cause additional calls. 

SYSTEM SE~VICE CALLS 

Besides call functions for manipulating data base segments, tL/I 
provides special system service calls. The most common ones are: 

• STATISTICS lStA!) -- This call is used to obtain various statistics 
f Icm DL/l. 

• CHECKFCIN! (CH~~ -- CH~F informs tt/1 that the user has 
"checkpointed" his ~rc9ram and that it thus may be restarted at 
pcint. The current position is maintained in GSA! data bases. 
all other data bases, you must reposition yourself after each 
checkpoint call with a get unique call. 

this 
For 

• RESTART (XR5~) -- XRSt requests D1/1 to restore checkpointed user 
areas and reposition GSA! data bases for sequential precessing if a 
checkpoint ID fcr restarting has been supplied by the call or in the 
JCL. 

4.24 IMS/VS Primer 



the XESt and CHKF calls viII be discussed under the topic "Batch 
Checkpoint/Restart" later i~ this chapter. 

The STAT call retriEves the statistics information of the data base 
buffer Fool(s). A discussion of those pools and their statistics can be 
found in Chapter 5: "Optimizaticn." We will not include a detailed 
discussien of the S~A! call. Instead we provide a general subroutine, 
DFSOAst in I~SVS.FR1MESBC, which performs the STAT call, formats and 
prints the statistics. This subreutine can be called from any tL/I 
batch program. to obtain the print of the statistics you must include a 
SYSOUT card in the JCL with ddname of I/DCCS~A~. If you don't want the 
statistics, just leave out this tt statement. 

!he tasic format of the call statement to call this subroutine in COBOL 
is: 

r-------------------------------------------------------------------, I CALL 'DFSOAS~' (SING pcb-name. , 
L-----------------------------------------------------------.-------J 
pcb-na~e: can be any data tase PCB in yeur program. 

No status code checking should be done after return. Typically, the 
statistics viII te requested at the end of each batch program. 

PROCESSING GSAM DA7A EASES 

All accessing to GSAM data tases is done via OL/1 calls. A check is 
made by DL/I to determine whether a user request is for a GSA~ data 
base. If so, control is passed to GSAM, vhich viII te resident in the 
user region. If not, centrel is passed te DL/I, and standard 
hierarchical processing will result. 

Calls to be USEd for GSA! accEssing are: 

r-~--------~---·---------------~--------------------·------~-~~~~~~-, 
I CALL 'CBLTDLI' OSING call-func,pcb-name,ioarea. 

where: 

call-func 

is the name of the field vhich contains the call functicn: 

• OPEN 

• CLSE 

• GN 

• ISli'I 

Cpen GSA~ data base 

Clese GSA~ data base 

Retrieve next sequential record 

Insert a new logical record (at end of data 
base only) 

!he open and clesE call are optienal calls to be used to 
explicitly initiate or terminate data base operations. The 
data base will automatically be opened by the issuanCE ef the 
first processing call used and autcmatically closed at 
"end-of-data" or at program termination. 

Data Base Processing 4.25 



Eecords may net bE randomly added to GSA" data sets. ThE data 
set may be extended by cpening in the load mode, with tIS~=MCt, 
and using the IS~T function code. 

• pcb-name 
is the name of the GSAM PCB 

• ioarea 
is thE namE of the I/O area for GN/ISRT calls, or the optional 
address of the C~!~-option for an OPEN call. The OPEN cFtion 
is Either IMP, OOT, er, in the case of SYSOUT type data sets, 
OUTI or CUT! to include the standard print or punch control 
characters (A fer ASA, M for Machine). 

STATUS COtES: 

• bb: CR, proceed 

• GB: end of data (get next only) 

• other: error situation 

EECCRD FO~M17S: 

Records may be fixed or variable length, blocked or unblocked. Records 
Kust be unkeyed. 7he inclusion of carriage control characters may also 
be indicated in the Jet RECF! subparameter {for example, RECFM=FBA) for 
all record forlats. ThE record in the ICAREA includes a halfword record 
length for variable length records. 

Sample GSAM processing is shewn in programs PE1epPUR and PE3CPPUR 
(members tFSICPOR and DfS3CPOR, respectively) in IKSVS.PRIMESEC. 

The uee of GSI! data sets in a checkpointtrEstart environment is further 
discussed later in this chapter. 

LOADING A BASIC DATA BISE 

After generating tbE Fhysical DBD~ you can load your data base using a 
load program. Basically the load prograa reads a sequential file with 
the data base record contents; it builds the segments and inserts them 
in the data tase in hierarchical order. Quite eften the data to be 
stored in the data base already exists in one or more files, tut merge 
and sort operations lay te required to present the data in the correct 
seguence. Sometimes even clean-up and correction activities are 
required, especially when multiple files with redundant data are merged 
into one data base (see ligure 4-15). 

4.26 IMS/VS Frimer 



CLEAN-UP & 
FORMAT 

PROGRAM 

DB lOAD 
PROGRAM 

DATA BASE 

lOAD 
REPORT 

Figure 4-15. Basic Data Ease lead Frocess 

~!!El~_Q!t!_~!§!_!2!g_!~Qg;!! 

The samFle data base load program DFSOAtEL in IMSVS.PRIMEJOE may te USEd 
to load the samplE data basEs. It may also be used as a general data 
base lead program to load your own data basEs. Furthermore, you will 
find this program, dUE to its medular structure, easy to modify should 
you wish to do so. to use the program as it is, use the following 
guidElines: 

• The input data can te any OS/VS sequential file supported by QSAM. 
Each seg.ent must be stored in one record with the follewing format: 

positions 1 through 3: segaent code (see Figure 2-4), zoned 
dEciaal, 001 is thE rcct segment, raximum 255 

Data Ease Processing 4.21 



Positions 4 to N: not used by the load program; can be used to 
store additional sequence fields for sort purposes. N is 
defined for each segment in the contrel input. 

position N and beyond: the segment data in exactly the format 
you wish it stored in the data base. 

• ~he input contrel file eentains one card for each segment type to be 
loaded, ~ith the follcwing format: 

Positions 1-3: 

Posi tion 4: 

I=ositions 5-12: 

Position 13: 

Positions 14-1i: 

Positions 1e-2E: 

Fositions ~7-eC: 

segment code, 001-255 

blank or cOlBma 

segment name 

blank or cemma 

pesition of first byte of input data in the 
input record: default is 0004 (this is N as 
defined for input data above) 

blanks 

not used 

~Q!~: !his load program does not manipulate the actual data tase data: 
however, it dces previde the hecks to add such functions easily. The 
pregram listing sheuld te censulted for guidance. 

When loading a BIDAM data tase initially, you must specify ~BeCCET=LS in 
the PCB. Also, the data base records must be inserted in ascending root 
key sequence, and the segments must be inserted in their hierarchical 
seguence .. 

~Q~t~g9_§~9!~D~§_!n_b!§~~!£~!£~1_§~g~~~~§: If there is a need te sort on 
a segment level, you must provide the following sort control fields ~ith 
each segment (figure 4- 16) : 

Ree! 
KEY 

I lEVEL 2 I lEVEL 2 , lEVEL 3 I LEVEL 3 , 
I S!t:f!EN'I I I<EY I SEGMENT I KEY I 
I COtE, , CODE I I 

etc .• 

L-------------------------------------------------------------------~ 
Figure 4-16. Control Field fer Sorting Segments into Hierarchical 

Sequence 

,. 'Ihe level 2 segment code for the root segment should contain a lower 
value than etheI level 2 segment codes. 

2. For every level, the key field length should be equal to the largest 
segment key field on that level.. Shorter keys should te left 
adjusted and padded with lew value characters. 

3. Segments on the lowest level need not have a key field if no 
sequence field is defined; however, their sequence telow their 
parent might be different after the sort. If no sequence field is 

4.28 IMS/VS Primer 



available in the segment itself, you should provide one. This ceuld 
be a simple dEpEndEnt sEgmEnt counter provided by the "clean up and 
fermat" ~rogram in Pigure 4-15. 

44 1he abovE fiElds must tE fillEd in for every segment. So a levEl n 
segment has the sE~ment code of its superior segment at phase 2 
(that is, the phase 2 segment it is a dependent of) stored in the 
"phase 2 segment cede" centrol field, and so forth. 

5. When using the sample data base load program (DFSOADBI), the above 
sort control field, can be within the same input record as the 
segment itself. 

When leading the HIDA" data base, DL/I viII also load the primary index 
data base. lou .ust, however, provide a DD statement for the data space 
of this primary index with yeur jcb. Job IISA"P270 in IMSVS.PRI~EJCE 
can be used to load our sample phase 2 customer order BIDA~ data base. 

!2!!: When loading a HIDAP. data base, tL/I will automatically insert a 
high kEY IX'FF4 •• ') at the End ef the data basee This is for its chain 
maintenance, it is coa~letely transparent fer your program. But you 
shculd nct use this ke~ in your application. 

When initially loading a BtA~ data base, you should specify PROCOPT=L in 
the peE. There is no need for DL/I to insert the data base records in 
roct key order, but you must still insert the segments in their 
hierarchical order. Fer Ferfcrlance reasons it is advantageous to sort 
the data base records into physical sequence. The physical sequence 
should be the ascending sEguence of the bleck and root anchor point 
values as generated by ~he randomizing algorithms. This can tE achievEd 
by an E61 typE scrt exit rcutiDE, which gives each root key to the 
randomizing module for address conversion, and then directs SORT te sort 
on the generated address + reot key value. Such a general exit routine 
is Frcvided as samFle tFSOASR~ in I"SVS.PRI~ESRC. 

Job //SAMP170 in IMSVS.FFl~EJCE shows the Jet to load thE phasE 1 HDAM 
parts data tase. Module DPSOASRT is used, as an E61 sort exit routine, 
to sort the segments in the dEsired sequence, and program DFSOAIEI is 
used for the actual load. 

lQsgiDg_s_~HI~~~_~~!~_£!§~ 

Loading a SHISA~ data base is the same as loading a root only BIDAM data 
baSE. Just insert the roct segments in ascending key sequence. No 
sample is provided for this because the SHISAM data base was creatEd as 
a KStS. 

~t!t~§_~Q~§§_lQI_~!!!_~!§§_ts!~i~£ 

The following status codes can be expected ~hen loading basic data bases 
after the ISE~ call: 

bb: CK, segment is inserted in data base 

LE: the segmEnt yeu triEd to insert already exists in the data 
tasE 

Ie: key field of segment is out of sequence 

Data Base Erocessing 4.29 



LO: no parent has been inserted for this segment in the data 
tase. 

other: error situation 

S~AtOS COOE EEECR ECOTI~I 

There are essentially twe categories of error status codes: those caused 
by a~~lication ~rogram errors and those caused by system errors. 
Sometimes, however, a clear split cannot be made immediately. AFpendix 
E contains a listin9 of the status codes in both of these categories. 
together with an explanation and suggested actions. 

~his listing is not cOlplEte, but does contain all the status codes you 
should eXpEct using our subset of OL/I. You should refer to Appendix E 
of the "IMS/V5 Application Frogramming Eeference Kanual," if you should 
neEd a completE listing ef all ~ossible status codes. 

To aid the debugging of programs SSAs, a status code error routine 
should print critical system information like CALLID, lOAREI, PCB, etc. 
The sample Error status cedE routine, OF50AER, in IMSVS.PRlMISRC 
Frovides such services. To call this routine from your application 
program code (COBOL): 

r---------------------------------------------------------------------, ICALL 'OFSOllE' OSING pct-name,call-label,areal,options,area2,~.arEa9 I 

where: 

pcb-name 
name of PCB USEd fer the preceding DL/l call 

call-label 

4.30 

name of symbolic label identifier of the preceding DIll call. 
Eequired format: txxxxxxx, when using a DE PCB: Cxxxxxxx, when 
using a DC PCB. 

options 
address of a q byte option fiEld. 

tyte 1: 

byte ~,3,q: 

area 1, ••• area9 

C'l' Abncrmal termination after print; 
rEcommEnded for production. 

C'O' Return to caller after print. This enables 
multiple invocations for testing purposes. 
A final invocation is required. 

C'2' Final invocation to close print data SEt, 
progra. gets control back. 

C'3' Message DFS31251 will be issued. This is 
used by the sample programs for testing 
rEcovery ~rocedures. See the I~aL!a 
~!~§~g!§ ~D9 ~2g~§ B!I!I§D£! ]~nY!l for 
more details. 

reserved 

program arEas to be printed by DFSOAER. 
characters of each area will be printed. 
maximum of 9 areas should be specified. 

The first 76 
At least 1 and a 

I!S/VS Primer 



1. The status ccde error rcutine will retuLn to your program on 
request. ~his may be valuable in a test environment; however, for a 
producticn prcgLal the abncrmal termination option should be 
selected. 

2. For PL/I, you should aeclalE DFSOAEB to be an ENTRY with OPTIONS 
(ASSEMELER). Morecver, ycu should pass the actual PCE-name and not 
the pOinter variable on which the PCE is based, unlike calls to 
OL/I. 

For the programming details refEr tc the salple application programs in 
lfi1SVS.PRIMESRC. 

ASSEMBLER PRCGEA~~I~G CCNS]tEFATICNS 

When writing a tLII applicaticn prcgram in Assembler, the following 
shculd be cbserved (fOL an exampl~ see program DFSOAOEI in 
IMSVS.PRIMESRC). 

• You should supply an entry statement: 

EN'IRY DLI'IASM 

• At entry to your program, register 1 contains the address of a list 
of PCE addresses in standard CS/VS convention. The high order tyte 
of the last fullword ir. this address list is set to X'SO' to 
indicate end of list. You should not change this list but save 
these peE addresses fOl later reference. 

• Each call statement should be coded as follows: 

r~~-~-~-~------~-------~------~----------~--------~--------~--------, I C ALI A SM~III, (functicn, (pctreg) , ioarea, ssa 1, .••• _, ssan) , Vt 

L-------------------------------------------------------------------~ 
where: 

function is the name cf a field containing the ttlI call function 

pctrEg is the register ccntaining the PCB address 

ioarea is thE name of input/cutput area 

ssa1-ssan are the names of segment search arguments 

• After each call, you should check the status code as returned in the 
PCE. On Error conditicr.s ycu should invoke a status code error 
lcutine. 

• At the end of your program, ycu should always return to OL/I. You 
can set a return cede, tut if DL/I has encountered an error 
ccndition (for example, data base I/C error), your return code will 
he overriden ty DL/]'s. 

Y§ing 1Bs ~!!Rl! B~Y1j]!§ 
Several ASSEmbler routines are Frovided with the sample programs in 
IMSV5.PRIMESRC. ~ost of these can be used as they are, or with minor 
modifications depEnding on YCUl installation's standards. 

Data Base Processing 4.31 



The following gEne~al rcutines a~e available: 

• DFSOAER, a status code error routine, discu'ssed earlier in this 
chapter .. 

• DFSOAS!, a general data base buffer Fool statistics print routine; 
SEe thE discussion cf the S!A! call in this chapter. 

~~1_!QI_j§§§~£lI_~D~_1j~~s£i_~~iliD£ 

ThE Sample JeL for assEltly and linkage editing can be found in job 
//SAME034 in IMSVS.FRI!EJCB, which can bE used to assEmble and link-edit 
the samplE data basE lead EIcg~am. 

co EeL PROGRAMMING CONSIDERA~IONS 

~here are a fe~ considerations that apply when you are coding D1/! 
programs in CCBCL. Eefer to figure 4-17 for this discussion. the 
numters tetwEEn parEnthesis in the text belcw refer to the corresponding 
code lines in Figure 4-17. Specific parameter values and formats are 
explained elSEwhere threughcut this chapter. 

10 DIVISION. 

EHVIRONHENT DIVISION. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 GU-FUNC PIC XXXX VALUE 
77 G~~-FUNC PIC XXXX VALUE 
77 ERROPT PIC XXXX VALUE 

'GU , 
'GN 
'I 

77 DEPRIO PIC X(8) VALUE 'DEPPOR01'. 
01 IOAREA PIC X(256) VALUE SPACES. 
01 SSAOOI-GU-SEIPART. 

02 SSA001-BEGIN PIC X(19) VALUE 
02 SSAOOI-FElPGPNR PIC X{ 8). 
02 SSA001-ENO PIC X VALUE 

LINKAGE SECTION. 
01 D1PC. 

02 DIPCDBDN PIC X(8). 
02 DIPCLEVl PIC 99. 
02 01PCSTAT PIC XX. 
02 DIPCPROC PIC XXXX. 
02 OlPCRESV PIC S9(5) COHP. 
02 01PC5EGN PIC xes). 
02 DIPCKF6L PIC 59(5) CONP. 
02 01PCtl5SG PIC 59(5) COHP. 
02 01PCKFBA PIC X(20). 

PROCEDURE DIVISION. 
ENTRY 'DLITCBL' USING DIPC. 
CALL 'ILBOSPIO'. 

' )'. 

'SEIPART (FEIPGPNR 

CAll 'CBlTDl!' USING GU-FUNC, DIPC, IOAREA, 
55AOOI-GU-5EIPART. 

CALL 'CBlTDlI' USING GN-FUtlC, Dlpe, IOAREA. 
IF DIPCSTAT HOT = ' 

CAll 'OFSOAE~' USING DIPC, DERRID, IOA~EA, ERROPT, 
MOVE +4 TO RETURN-CODE. 

CALL OFSOAST USING D1PC. 

CALL 'ILBOSPIO'. 
G08ACK. 

-, 

Figure 4-17. COSOL Batch PIcgram Structure 

q.32 IMS/VS Frimer 

0000001 
OOOOOOZ 
0000003 
0000004 
0000005 
0000006 
0000007 
0000008 
0000009 
0000010 
0000011 
0000012 
0000013 
0000014 
0000015 
0000016 
0000017 
0000018 
0000019 
0000020 
0000021 
0000022 
0000023 
0000024 
0000025 
0000026 
0000027 
0000028 
0000029 
0000030 
00000:31 
0000032 
0000033 
0000034 
0000035 
0000036 
0000037 
0000038 
0000039 
0000040 
0000041 
0000042 
0000043 
0000044 



• The DL/I function codes (7), IOlREl (11), and Segment Search 
Arguments (12) should be defined in the Working-Storage Section of 
the tata tivision. Ty~ically. either the IOAEEA would be REDEFINED 
tc Frovide addressability tc the fields of each segment, or separate 
IOAEEAs ~ould be defined for each segment. 

• The progral Communicaticn Elecks (PCBs) should te defined in the 
LinkagE Secticn of tbe Data Division (18). ihen there are multiple 
database structures (thus multiple PCEs) in a program, there must be 
one PCB defined in the LinkagE Secticn for each PCB in the PSE. 
Ho~ever, these PCEs need not te in any specific erder. 

• An EN~RY statement (30) should be coded at the entry to your 
program. A parametEr of the USING clause should exist for each 
datatase structure (PCB) that is used in your ~rogram. The order of 
PCBs in this clause must be the same as specified in the Prcgram 
Specification Block IPSB) fer your prcgram. 

• Each DL/I CALL statement should be coded as in statement (33). The 
Farameters of the tIll call are explained elsewhere in this chaFter, 
and differ in number fer different functions. 

• The status code in the PCB should be checked after each call (37). 
The status-code error routine is discussed below (38). 

• At the end of processing, centrel must be returned to DL/I via a 
GCEACK statement (~4). If yeu wish, you may set the COECI 
'RETURN-CODE' (39). If tIll detects no errors, and thus does not 
set the return code, the COBOL 'RE~URN-CCDE' value viII be passed on 
to the next jeb step. 

• The Status-Cede Errcr Bcutine, DFSOAER (38) may be called if an 
unexpected status code is returned by ycur program. This routine is 
discussed earlier in this chapter. 

• ~he Euffer-Pool Statistics Print Eoutine, tFSOAST, (41) may te 
called from your FrcgtaR. Its usage is discussed in this chapter 
unde~ the STA! call. 

• ~he Symbolic-Debugging facility of COEOL can be used. A call tc 
COEOL module ILBOSPIO (~1) shculd be made immediately after entry to 
and before exit from your program. This facility is further 
described in the Programmers Guide for your COBOL program product. 

• The sample progra~s iD IMSVS.PRIMESRC use a form of structuring. 
This is not classical "structured programming", but the examples are 
modular and should be readily maintainable. 

Sam~le Jct fer compiling and link editing a COEOL program can te feund 
in jot IISAKP14C in IMSVS.PRIMEJOB. 

~~1_I~_R~2g!A!_11!~ysj~~ 

Job IISAMP171 in IM5VS.PRIMEJOB shovs the JCt for the Parts Inventory 
repert ~rogram. Job //SA~F173 shows the JeL for the Purchase Order 
program. 

Data Ease Processing 4.33 



PL/I PBOGEAHMING CCNSIDEEA~ICNS 

This section refers to Pigure 4-18. The numbers between parenthesis in 
the text refer to the ccrrEs~onding code lines in Figure 4-1e. 

When DL/I invokes your PL/~ ~ro9ra. it viII pass the addresses, in the 
form cf ~cinters, to each PCE required for execution. These ~ill be 
passed in the same sequence as specified in the PSB. To use the PCEs, 
you must code parameters in your PROCEDUEE statement, and declarE them 
to have the attribute POINTER. In the exam~le in Figure 4-1e, DC_P~R 
and DB_PTE are specified in the PROCEDURE statement (6) and declared 
POIN'lER variables 115 and 16). These pointer variables should te used 
in declaring tte PCEs as BASED structures (18 and 21), and in calling 
DL/1 (55). 

The format of the PI/I CAll statement to invoke DL/I (55) is: 

CALL PLITOII Iparmccunt,function,~cb-ptt,io-area,ssal, ••• ,ssan); 

where: 

~atmccunt is the number of arguments in this call following this 
argument. It must have the attritutes PIXED BINARY 
(31). See (38). 

function 

pcb-ptr 

io-area 

ssal, ..... 

is the DL/I function code. It must be a fixed length 
character string of length 4. 

is a pointer variable containing the address of the 
PCB. This is normally the name of one of the 
parameters passed to your program at invocation. 

is the storage in your program into/from ~hich OL/I 
is to stcre/fetch data. It can be a majoI structure, 
a connected array, a fixed-length character string 
(C HAR ( 10 C) ), an ad j llstab Ie c ha racte r string 
(CHAE(N», a pointer to any of these or a pointer to 
a minoI structure. It cannot be the name of a minor 
structure or a character string with the attribute 
VARYING. 

is one or more optional segment search arguments. 
Each 5SA argument mllst be one of the same PL/I forms 
allowed for io-areas, described above. See (47) in 
the example. 

Upon completicn of your ~rcgram, you should return either via a RETURN 
statement or ty executing the main procedure END statement. 

4.34 IMS/VS Primer 



1*-------------------------------------------------------------------*/0000001 
1* SAMPLE PL/I PROGRAM *10000002 
1*-------------------------------------------------------------------*/0000003 

PE2PORD: 
PROCEDURE (OC_PTR,DB_PTR) OPTIONS (MAIN); 

0000004 
0000005 
0000006 
0000007 

1* ...••. DECLARE POWTERS AUO PCBS .•..........•...•••.••.•.•••••.•• • */0000008 
0000009 

DECLARE 

PLITDLI ENTRY, 
DFSOAST WTRY OPTIONS (ASSEMBLER INTER), 
DfSOAER ENTRY OPTIONS (ASSEMBLER INTER), 
DC_P1R POINTER. 
DB_PTR POINTER, 

1 CIPC BASED (DC_PTRI, 
Z DUNHY CHAR (321. 

DIPC BASED (DB PTRI, 
2 DIPCD6DN CHAR (8), 
2 DIPCLEVL CHAR (ZI, 
2 DIPCSTAT CHAR (Z), 
Z DIPCPROC CHAR (4), 
Z DIPCRESV FIXED BINARY 
2 DIPCSEGN CHAP (8), 

(31) , 

2 DIPCKfBL FIXED BIUARY (311, 
2 DIPCNSSG FIXED BINARY (311, 
2 01PCKfBA CHAR (14); 

0000010 
0000011 

1* DL/I WILL BE CALLD*/OOOOOIZ 
1* STATISTICS PRINT */0000013 
1* STATUS CODE PRINT */0000014 
1* CMPAT IN PSB */0000015 
1* ORDER DB PCB */0000016 

1* NOT USED IN 
1* BATCH DllI 

0000017 
*/0000018 
*/0000019 

0000020 
1* PHASE Z ORDER DB */0000021 
1* OBO NAME */0000022 
1* SEGMENT LEVEL */0000023 
1* STATUS CODE */0000024 
1* PROCESSING OPTN */0000025 
1* RESERVED */0000026 
1* SEGHEUT NAME */0000027 
1* KEY FEEDBACK LNG*/0000028 
1* NO. OF SENSEGS */0000029 
1* KEY fEEDBACK */0000030 

0000031 
1* ...... DECLARE FUNCTION CODES, 1/0 AREA, CALL ARG LIST LENGTHS .••. */0000032 

DECLARE 

10_AREA CHAR (Z561, 
GU FUHC STATIC CHAR (4) INIT ('GU' I, 
FOUR STATIC FIXED BINARY (31) INIT (4), 
ERROPTI CHAR (4) INIT ('0' I STATIC, 
ERPOF'T2 CHAR (4) WIT ('2' I STATIC, 
DERRID CHAR (8) INIT ('DERROROl') STATIC; 

0000033 
0000034 
0000035 

1* 1/0 AREA */0000036 
1* CALL FUNCTION */0000037 
1* ARG LIST LEHGTH */0000038 
1* OPTN FOR DFSOAER */0000039 
1* FINAL OPTN-OfSOAER*/0000040 
1* 10 FOR DFSOAER */0000041 

000004Z 
1* ... ... DECLARE SEGMEUT SEARCH APGUMENT (SSA) - ORDER SEGMENT •...•. */0000043 

DECL.ARE 

SSA007_GU_SE20PDER, 
Z SSl007 BEGIN CHAR (19) IN!T ('SE20PDER(FEZOGREF ='), 
2 SSA007=FE20GPEF CHAR (6), 
Z SSAO07_EtlD CHAR (1) WIT (')'); 

0000044 
001)0045 
0000046 
0000047 
0000048 
0000049 
0000050 
0000051 

1*. . . . .. PROCESSING PORTION OF THE PROGRAM •.••••..•••••••••••••••••• */0000052 
0000053 

SSA007 FE20GREF = 'XXXXXX'j 1* SET SSA VALUE */0000054 
CALL PIITDLI (FOUR,GU FUNC,DB PTR,IO AREA, 1* THIS CALL WILL */0000055 

SSA007_GU_SE20ROER); 1* RETURN 'GE' STAT */0000056 
IF D1PCSTAT -=' 'THEIl 1* CALL ERROR PRWT */0000057 

CALL DFSOAER (D1PC,DERRID,IO AREA,ERROPT1); 0000058 
CALL DFSOAER (DIPC,DERRID,IO-AREA,ERROPTZ); 1* FINAL CALLTO ERR*/0000059 

- 0000060 
1* ...... BEFORE ENDIUG, LIST BUFFER POOL STATISTICS ••••.••.•.•..•••• */0000061 

CALL DFSOAST (D1PC); 
0000062 

1* CALL STATS PRINT */OC00063 
0000064 

1* . ...•. RETURN TO CALLER •••••.•••••••••••••••••••••••••••.•••••..•• */0000065 

END PEZPORD; 
0000066 
0000067 
0000068 

1*-------------------------------------------------------------------*/0000069 
1* END OF PLII SAMPLE PROGRAM *10000070 
1*----------------------------------------------------~--------------*/0000071 

Figure 4- 18 .. FLII Batch Frogram Structure 

Q!h~~_f~L!_~Qn§!q!~!!!Qn! 

• Programs that are CS/VS subtasks of an application program call~d ty 
IMS/VS must not issue DL/I calls. If they do, the results viII be 
unpredictable~ With FIll, whenever FLII multitasking is used, !!l 
tasks, EveD the aPFarent main task, operates as subtask to a hidden 
fL/I control task. PL/I tasking is therefore not allowed in an 
IMS/VS program. 

Data Ease Processing 4.35 



• Eecause the norlal rethcd of passing parameters to a main procedure 
is not available in IMS/VS, you must use the PLIXOPT facility te 
specify PL/I ru~-tile o~ticns. See the f~LI Q2!!m~Z~ng ~Q~2i!~~ 
RI~gIs~~!I!§ ~~igi, 5C33-C(C6, for details. 

• You should consider using the PL/I Fast path 
Initialization/Termination Cption in an IMS/VS DB/DC envircnment. 
Consult the a~FropriatE PL/I documentation for details. 

2§lag_lh§_~s!~ls_i2~!lD§~ 

The Status Code Errcr Print ~rogram (DFSOAER) may be called from ~L/I 
prcgrams as shcwn in (9). Similarly, the Statistics Print Frogram 
(tFSOAST) can te called. See (10). See "Status Code Error Routine" and 

"The STAT Call" discussions earlier in this chapter for a description of 
the formats for these calls. In both cases, no parmcount argument is 
allowed, as is required in the DL/I call. In addition, the name of the 
PCB must be passed rather than the name of the pointer variacle en which 
the PCE is based. tFSOAER and DFSOAST should be declared as ENTRY 
ccnstants with OPTIONS (ASSEMBLER). 

The DL/I language interface Frogram must be included at link-edit time. 
In additicn, the normal entry point for PL/I Optimizer prograls 
(PLIS7AR7) must be overridden, sFecifying PLICALLA. The sample job 

//SAMP254 linkage Editor stEF shows an examFle of the required linkage 
editcr control statements. They are: 

INCLUDE 

INCLUtE 

INCLUDE 

ENTRY 

NAME 

ddname(tFSOAEF) 

ddname(DFSOAS7) 

RESLIE(PLI~DLI) 

PLICALLA 

load-module-name(R) 

SC Error Print 

Statistics Print 

language Interface 

The above three INCLUDE statements can be omitted if the modules or 
aliases are members cf litraries which are concatenated as part of the 
ddname SYSlIB during link-editing. Beferences to them will te resolved 
via automatic litrary call. When link-editing FL/I-F programs, the load 
module EN!EY must be specified as either IHESAPE (OPT=O) or IHESAPD 
(OFT=1). 

SAM~LE PHISE 1 ~RCGFAMS 

Besides the saaple data tasE load program DFSOADBL, two batch programs 
both in CCBCL and PL/I are included in IMSYS.PRIMESRC. 

Program PE1CPINV (member tFS1CINV for COEOL, or DFS1P1NV for PI/I in 
IMSVS.PBIMESRC) is a read only ~arts inventery report program. This 
program can be compiled with job //SAMF140 (COBCL) or //SAM~150 (~L/I) 
in IHSV5.PBIMEJOE. Job //SAM~171 in IMSVS.PRIMEJOB can be used fer its 
execution. 

Program PE1CPPUR (member DFS1CPOR for COBCl, or DFS1PPUR for ~l/l in 
IMSVS.PBl~ESBC) is an update parts purchase order salple pregram. This 
program USES the batch checkpcint/restart facility of lMS/VS. The 
program can be compiled with job //SIMP141 (COEOL), or //SAMP151 (Pl/l). 
Jot //SAMP173 can bE used fer its execution, and job //SAMP178 for its 
restart. 

4.36 IMS/VS PrimEr 



For more details on these programs and their operation you should 
consult their listing. 

Notice that the data base update job~specify a log data set in the 
I/IEFBDER DD statement. For a discussion of the tL/I logging facility, 
refer to Chapter 6, "tata Base Recovery." 

Generally, there is no difference between the processing of physical 
data bases and logical data bases: all call functions are available for 
both. Some consideraticns de a~~ly. however, when accessing a logical 
child or a concatenated segment. For a definition of these terms see 
"DL/1 Logical Relationshi~s" in Chapter 2. 

ACCESSING A LOGICAL CEILD IN A PHYSICAL DED 

When accessing a logical child in a physical DBD, you should remember 
the layout of the logical childq It always consists of the logical 
parent concat~natEa key (that is, all the ccnsecutive keys from the root 
segment dcwn to and including the logical parent) plus the logical child 
itself: the intersecticn data (see Figure 2-10). ~his is especially 
important when inserting a logical child. You will also get an IX 
status code when you try tc insert a lcgical child and its logical 
parent does not exist (exce~t at initial load time). This will 
typically happen when JOu forget the LPCK in front of the LCHILD. 

!Q!~: In general, physical data bases should not be used when 
processing lcgical Ielaticnsbi~s. 

ACCESSING SEGMEN~S IN A lCGICAl DBD 

The following consideraticns aFply for each call function when accessing 
segments in lcgical DEts. 

These calls function as bEfcre with the same status codes. Remember, 
however, that the concatenated segment always consists of the logical 
child SEgment plus, optionally (dependent on the logical DBD), the 
destination parent sEg&ent (see Figure 2-13). 

In general, these calls function the same as before. When replacing a 
concatenated sE9ment ycu Kay replace both the logical child segment and 
the destination parent. Remember, however, that you never can changE a 
sequence fiEld. ~he fcllcving sequence fields can occur in a 
concatenated segment (see also Pigure 2-16): 

• Destination parent concatenated key 

• Real logical child sequence field, (that is, the sequence of the 
physical twin chain as defined for the real logical child). This 
field can (partially) overlap the logical parent concatenatEd key. 

• Virtual logical child sequence field, (that is, the sequence of the 
logical twin chain as defiDed for the virtual logical child). This 
field can (partially) overlap the physical parent concatenated key. 

• ~he key of the destination parent itself. 

Data Ease Processing 4.37 



If any of the above fields is changed during a replace operation, a DA 
status code ~ill be returned, and no data will be changed in the data 
hase. 

In general, these calls function the same as before. If, however, you 
delete a concatenatEd seglett ,either of the twc versions), only the 
lcgical child and its physical dependents (that is, the dependents of 
the real logical child) will tE deleted. The destination parent can be 
deleted cnly via its physical Fath. In ether vords: "The delete is not 
Frcpagated up~ards across a logical relation." You can delete only those 
dependents of concatenated segments which are real dependents of the 
lcgical child. Examples: 

• If in the logical DED of Figure 2-25, a PART segment was deleted, 
the associated S~OCK, PORCHASE ORDER, DESCRIPTION, and CRtER LINE 
segments are deleted, too. However, the associated CUSTOMER ORDER 
and SHIPM!N~ segments remain. 

• If in the logical taD of Figure 2-26, a COS~CMER CRDER segment was 
deleted, the associated CEtEE LINE and SHIPMENT segments are 
deleted, too. Eovever, the associated PAR~. STOCK, PURCHASE CEtER, 
and DESCRIE7ION segments remain. 

Notice, thE logical child (and its physical dependents) is always 
deleted ~hene,er onE of its Farents is deleted. 

B~l!: The above discussion of the DL/I calls is only applicable to our 
subset environment. This is explicitly related to the coding of the 
"ROLES:" parameter as specified in Chapter 2 under the topie "Coding A 
Logical RelaticnshiF II A Physical DBD." 

Whenever you inSErt a concatenated segment, the destination parent must 
already exist in the data base. You can provide the destination Farent 
together with thE legical child in the lCAREA, but it is not used. 
Besides the normal status codes, an IX status code is returned when the 
destination parent dces nct exist. 

LOAtING DATA EASES iITH ICGIeAI RELATICNSHIPS 

To estatlish the logical relationships during initial load of data bases 
with logical relationships, DL/I provides a set of utility Frograms. 
These arE necessary because the sequence in which the logical parent is 
loaded is normally not the same as the sequence in which the logical 
child is loaded. ~c CCFE with this, DL/I will automatically create a 
workfile ~henever you load a data base which contains a logical child 
and/or logical parent. ~his workfile contains the necessary information 
to update the pointers in the prefixes of the logically related 
segments. Before dcing so, the wOIkfile is sorted in physical data base 
seguence ~ith the EIi{!J ~i§Qlg~!Qn ~~ilitI (DFSURG10). This utility 
also checks for missing logical parents. Next, the segment prefixes are 
updated with the £~!'!! ~Eg!~! Y~!!i11 (DFSURGPO). After this, thE data 
base,s) are ready to use. The above data base load, prefix resolution 
and u~datE should tE preceded by the ~I!'!QIg~D!I~!!Qn Y!~!i!l 
(DFSURPRO). ~his utility generates a control data set to be used by 
data baSE load, DFSORG10 and DFSURGPO. A detailed discussion of this 
data base load prOCESS and thE associated utilities can be found in 
Chapter 5: "Data Ease Feorganization." 

4.38 IMS/VS Primer 



Both the phase 2 data bases EE2FAETS and E!20RtER (Figure 2-24) can be 
loaded with the sample data raSE load program DFSOADBL. Job I/SA!F270 
in IMSVS.PR1MEJOE shows the JCt for loading both data bases including 
all necessary D1/1 utilities. 

Notice, there is no difference (in comparison to Phase 1) in the PARTS 
data base apFlication (load) program. ~his is because its user data has 
not been changed. Also, remember, the virtual logical child dCES not 
actually exist and must not te loaded. However, the real logical child 
in the CUS~OMER CEDER data base must be loaded as it is defined in the 
physical BE20RDER data tasE (that is, including the logical parent's 
concatenated key.) 

1. You cannot use a logical tED when initially loading a data base 
(FROCOPT=L (5) in the PCB). 

2. The logical rElaticnsbiF in the PAR'S data base could also be 
imFlemented ~ith the aid of the DL/I reorganization utilities, thu~ 
avoiding a new initial lead of the PAR!~ data base. This will be 
discussed in detail in Chapter 5: "Data Ease Reorganization." 

SA~FLE PHASE 2 PROGRAMS 

Sample program PE~CORDR (melrer DFS2CORD for COBOL, or DFS2PCRD for 
PL/I) in IMSVS.PR1MESRC shows the processing of the Phase 2 logical data 
baSES as specifiEd in Figure 2-25 and Figure 2-26. This is the customer 
crder processing Frogram as defined in Chapters 1 and 2. Guidelines for 
its use are in the program listing. Tbe program can be compiled and 
link-edited with job //SAMP242 (COBOL) or //SAMP254 (PL/I) and executed 
with job //SAMP272 in IMSVSuFBIMEJCE. 

For a review of the terminology and functions of secondary indexes see 
"DL/! Secondary IndExes" in Cha~tEr 2~ !he sample environment to be 
used in this secticn is th~ pbase 3 environment as introduced in 
Chapters 1 and 2. In oiscus~ing the DL/I calls in the following 
sections, you shculd refer to the phase 3 sample tBts of Figure 2-29. 

As discussed before, tIll will always maintain the secondary index, 
whether or not tbE Fr09raa laking the change is using the index. As a 
consequence, DL/I must have access to the index data bases when 
processing the main data tase. Sc, the DD statements for the index data 
bases mu~t be sUPFlied in the JCl of every job which could chan~E the 
seconoary index. . 

ACCESSING SEGMEN~~ VIA A SECCNDARY INDEX 

The same calls arE used as tefere. However, the index search field, 
defined by an XDFLD statement in the DEt will be used in the SSA for the 
get unique of thE root segment. It defines the secondary processing 
sequence. (See Figure 2-34, second FeE). figure 4-19 shows an example. 

Data Base Processing 4.39 



After the successful completion of this get unique call, the PCB and 
ICABEA look thE samE as after the basic GU of Figure 4-7, except that 
the key feedback area now starts with the purchase order number. 

When using the secondary processing sequence, ccnsecutive get next calls 
for the PAETs segmEnt will ~resent only those parts with a FUBCHASE 
OEDEE segment, the sequence being the purchase order number. It is as 
if the purchase crder numteL has taken over the Lole of root-key from 
the Fart numbeL. As a consequence, the key feedback area in the FeE now 
contains the purchase order numcer instead of the part number. 
Bememter: ThE sequEncE cf the Earts ~ithin one sFecific order is 
undetermined. In addition, you should not use a get unique with the part 
number for accEssing the Earts segment with the secondary processing 
PCB. ~his would result in a full data base scan. 

If hoth the primary and thE sEccndary precessing sequence are DEeded in 
one program, yeu sheuld use two PCBs as in Figure 2-34. 

r-~----------------------------------------------------------------~ , I 
I 77 GU-FUNC PICTUEE XXXX VALUE 'GUbb ' • I 
, I 
I 01 SSA005-GU-SE 1PAR'I. , 
I 02 SSA005-EEGIN FICTOBE X(19) VALUE 'SE1PABTb(FE3PSID1t='. , 
I 02 SSA005-FE3PSID1 PICTUBE X(8). , 
, 02 SSACC~-END PIC'ItRE X VALUE ')'. I , , 
I 0 1 lOA REA PIC 1: UR E X (:2 5 E) • , , , 
,-------------------------------------------------------------------
I 
I MOVE PORDER-NUMBER 'IO SSACC~-FE3PSID1. , 
I CALL 'CELTDLI' USING GU-FUNC,PCB-NAME,IOAREA,SSA005-GU-SE1FABT. , 
,-----------------------------------------------------------------.-
I 
, §IJ T u ~_£Q]!"§:. 
I , , 
I 

tt: 
GE: 

, othEr: 
I 

requested PABT seglent has been moved to IOAREA 
segment net feund , requested purchase order number not in 
data base 
error situatien 

Figure 4-19. GO Call Using a Secondary Index 

To replace SEgments in the indexed data base a combination of get hold 
and replace calls can be used as before. Again, no sequence fields may 
be changed. !be indEX SEarch fields, ho~ever, can be changed. If an 
index search field is changed, tl/1 will automatically updatE the index 
data case via a ~EIEte eld and insert new pointer segment. 

]2S§: When using a sEccndary processing sequence, this could result in 
the later reaccessing of a data base record. 

4.40 IMS/VS Primer 



When using a seccndary processing sequence, you cannot delete the index 
target segment (that is, thE rcot segment). If you have a need to do 
so, you should use a separate PCE with a primary processing sequence. 

Again, when using a secondary processing sequence, you cannot insert the 
index target segment. In all ethel cases. the ISRT call will function 
as befole. 

SAMFLE PHASE 3 PEOGRAMS 

Program EE3CPPUB (member tFS3CFUB for CCECI. or DFS3PPUB for PIlI) in 
IMSVS.FRIMESBC, shows the USE of a secondary index for the purchase 
crder processing sample. ~his ~roglam processes transaction TE3FClNC as 
defined in ChaFter 2. For more details, see the program listing. ihis 
program can be compiled and link-edited with jeb IISAMP341 (COBOL) or 
IISAMP351 (PL/I) in IMSVS~PRIMEJOB. It can be executed with job 
IISAMP373. 

SECCNDARY INDEX CBEAilCN 

A secondary index can tE creatEd during initial lead of the indexed data 
base cr later. !he secondary index data base is created with the Dl/l 
reorganization utilities. No application program is required fer this 
creation. ChaptEr 5, "Recrga~ization," will cover this in detail. 

ThE batch ChEckpcint/restart facility of DL/l allcws long running 
~rograms to be restarted at an intermediate point in case of failure. 
At regular intervals ICHKP calls) during applicaticn program execution, 
DL/l saves, on its log tape, designated working storage areas in the 
user's program, the positien cf GSAM data bases, and the key feedback 
areas of non-GSAM data baSES. 

FOI each checkpoint, a checkpoint ID (message DFS681I) will be written 
to the OS/VS system console and to the jot system output. 

At restart, the rEstart ctEck~eint ID is su~plied in the PARM fiEld of 
the EXEC statement of the jot. DL/I will then reposition the GSA~ data 
baSES and restcre the designated program arEas. This is accom~lishEd 
with a special restart call (XRST) which must be the very first Dl/l 
call in the Frogram. At initial program execution, the XRST call 
identifiEs the pctential ~regra. areas to be checkpointed by later CHKP 
calls. 

USING THE XRST ANt CBKP CALLS 

To utilize the checkpoint/restart function of DL/l for batch programs, 
you should consider the following guidelines: 

1. All the data sets that the program uses must be tL/I data tases. 
GSAM should tE used for se~uential input and out~ut files, including 
SYSIN and SYSCO~. Any other file cannot be repositioned by DL/I and 
can result in du~licate cr lest output. 

Data Ease Processil1g 4.4.1 



2. The GSAM cutput data sets should use DISP=(NEW,KEEP,KEEP) for the 
initial run and DISP=(OLD,KEEP,KEEP) at restart (s). 

3. SYSOC~ should not be used directly. !he output should te written tc 
a GSAM filE las in 2) and be printed ~ith an additional jobstep. 
IEEG!NER can bE uSEd for this purpose. 

4. The first call issued to ttlI must be a XRST call. Its format ~ill 
be discussed later. 

5. The freqUEncy cf thE checkFoint call is your choice. A tasic 
recemmendation is one checkpoint for every 50 to 500 update 
transactions. It is good practice to program for an easy adjustlent 
of this freguency factcr. 

6. After each checkpoint call, you must reposition yourself in the 
non-GSA! data bases ty issuing a get unique call for each of these 
data bases. REFositicning of GSAM data bases is done by Dt/I, and 
yeu should proceed with a get next (input) or an insert (output) 
call. 

Upon receiving the restart call (XRST), DI/! checks whether a checkpoint 
ID has been sUFplied in the FAFM field of the EXEC card or in the 
vorkarea pointed to by the XBST call. If no 10 has been supplied, a 
flag is set to trigger stcring ef repositioning data and user arEas on 
subsequent CHKF calls (that is, Dt/I assumes that this is thE initial 
program execution, not a restart). 

If the ChEckFoint at which restart is to cccur has been supplied, the 
IMS/VS batch restart routine reads backwards on the log defined in the 
//IMStOGR DD card te lecatE the checkpoint records. User program areas 
are restored. 

The GSAM data bases active at the checkpoint are repositioned for 
sequential precessing. Key feedback infermatien is provided in the PCE 
for each data base active at the checkpoint. The user program must 
reposition itself on all ncn-GSAM data bases, just as it must do after 
taking a check~oint. 

!he format of the XEST call is: 

COECL: 

Fl/I: 

CALL 'CBITDlI' using call-func,IOPCE-name,I/O-area-len,work-area 
[,1st-area-len,1st-area •••• ,nth-area-len,nth-area]. 

CAll FLITDLI (parmcount.call-func,IOPCB-name.I/O-area-len,work-ar 
[,1st-area-len,1st-area,Q •• ,nth-area-len,nth-area]) ; 

ASSEMELEB: 

CALL ASMTDLI,(call-func,ICFCB-name,I/O-area-len,work-area 
(.'st-area-len,'st-area.~ •• ,nth-area-len,nth-area]) , 

whEre: 

parmcount 
is the name cf a binary fullwerd field containing the number of 
arguments follo~ing. El/I only. 

4.42 IftS/VS Frimer 



call-func 
is the name of a field which contains the call function 'XEST'. 

ICPCB-name 
is the name of the 1/0 PCB or the "dummy" 1/0 PCB supplied by 
the CMPJ~ option in PSEGIN (C1PCE in the sample progra~s). 

I/O-area-len 
is the namE of tbe length field of the largest I/O area used ty 
the user program; must be a fullvord. 

work-area 
is the name of a 12 byte vork area. This area should tE set to 
tlanks lX'40') befcre the call and tested on return. If the 
program is being started normally, the area viII be unchanged. 
If the ~rogram is being restarted from a checkpoint, tbe ID 
supplied ty the user in that CHKP call and restart JCI viII be 
placed in the first a bytes. If the user wishes to restart 
from a check~oint using a method other than I~S/VS Program 
Festart, he may use the lEST call to reposition GSA" data tases 
ty placing the check~cint ID in this area before issuing the 
call. ~his It is the a-byte left-aligned, user supplied ID. 

1st-area-len 
is the name of a field which contains the length of the first 
area to be restored: must be a fullvord. 

1st-area 
is the name of the first area to be restored 

nth-area-Ien 
is the name of a field which contains the length of the nth 
area to te restored (lax n=7); m~st be a fullvord. 

nth-area 

is the name of the nth area to be restored (max n=7). 

1. The number of areas specified on the XEST call must be egual to the 
maximum specified cn aflY CHKP call. 

2. The lengths of the areas specified on the XRS! call must equal to or 
larger than the lengths of the corresponding (in seguential crder) 
areas of any CHKP call. 

3. The XEST call is issued only once and it must be the first request 
.ade to DL/I. 

4. ~he only correct status code is bb; any other implies an error 
ccndition. 

s. All "area-len" fields in Pl/I must be defined as substructures. The 
name of the major structure should, however, te specified in the 
call. 

tl~!~!!: 

DCI 1 
2 

I/C-JEIJ.-II~, 
L N,a FIXED BIN(31) INI~(length): 

Data Ease Processirg 4.43 



When tl/l receives a CHKP call from a ~rogram which initially issued a 
XRS! call, the following actions are taken: 

• All data tasE tuffers mcdified by the program are written to DASD. 

• A log record is written with the checkpeint ID; message IFS6011 is 
written, sFecifying this ID to the OS/VS system console and job 
sysout. 

• The user-s~ecified areas (for exam~le, application variables and 
centrol tables) are recorded on the CL/I log tape. They should be 
specified in thE initial XEST call. 

• The fully-qualified key of the last segment processed by the program 
on each Dl/I data base is recorded on the Dl/l log tape. 

~he fermat of the CH~F call is: 

CCEOL: 

CALL 'CBLTDlI' using call-func,IOPCB-name,I/O-area-len,I/O-area 
[, lst-area-len,lst-area, ••• ,nth-area-len,nth-area]). 

Pl/I: 

CALL PLI'ItLI Iparlccunt,call-func,IOPCB-name,I/O-area-len,l/o-area 
[ , 1 s t - ar e a-I en, 1 s t -a rea, ••• , nth -a re a -1 en , nth" ar e a J) ; 

ASSEf1BlEB: 

CALL ASMTtLI, {call-func,IOPCB-name,I/O-area-len,I/O-area 
where: area-

parmccunt 
is the naKe ef a binary fu1lword field containing the number of 
arguments following; fIll only. 

call-func 
is the name of a field with the call function ·CHKP'. 

IOPCE-name 
is the name of the IIC FCB or dummy peE in batch. 

I/O-area-Ien 
is the name of the length field of the largest IIC area used by 
the application program; must be a fullword. 

I/C-area 
is the name of the I/O area. the I/O area must contain the 8 
byte checkpoint ID. This is used for operator or ~rogrammer 
communication and should consist of EBCDIC characters. In 
PIlI, this parameter should be specified as a pointer to a 
major structure, an array, or a character string. Eecommended 
format: 

~MMf1nnnn 

MMMM = q character program identification 

nnnn = 4 digit checkpoint sequence number, 
incremented at each CBKP call. 

4.44 IMS/VS Primer 



1st-area-len (optienal) 
is the name ef a field that contains the length of the first 
area to checkpoint; must be a fullword. 

1st-area (optional) 
is the name of the first area to checkpoint 

nth-area-Ien (optional) 
is the name of a field that contains the length of the nth area 
to checkpoint {,ax n=7); must be a fullword. 

nth-area (optional) 
is the name of the nth area to checkpoint (max n=7). 

1u !he cnly correct status code in batch is bb: any other specifies an 
error situaticn. 

2. Befere restarting a program after failure, you always must first 
correct the failure and recover your data basesu This is discussed 
in Chapter 6: "Data Base Recovery." 

3. Yeu must reestablish your position in all IMS/VS data bases (except 
GSAM) after return from the checkpoint (that is, issue a get 
unique) • 

4. All t'area-len" fields in PL/I must be defined as substructures, see 
the examFle under note 5 of the XRST call. 

:0 EecaUSE the log tate is read fcrward during restart, the checkpeiDt 
It must te unigue fer each checkpoint. 

USING GSAM WI!H CHECKPOIN~/RES~AR~ 

At restart time, GSAM ~ill repesition the sequential input file. For 
card inFut, SYSIN, the whole original input deck must be used. 

~!9Y~~li~1 QY1EY! fi!~§ 
At restart time, GSAM will resume writing to the output data set 
(DISP=OLD), tased on its outFut xecord count which was written on the 
Dt/1 leg tape. 

!2!~: Dl/I does net provide recovery of GSAM data setso 

SAMELE BATCH CHECKP01N~/RES!AR~ PBOGRAMS 

Pregram IE1CFPUR (member tFS1CFDE for COBOL of DPS1PPUR for PL/I) in 
IKSVS.PRIMESRC shews hew tc use the XRST and CHKP callso It also shows 
the use cf GSAM in this eDvirenment. Job I/SA~P'74 in IMSVS.FEI!EJCE 
can be used to eXEcute this program. Job //SAMP178, shows the restart 
of this program. for details en Exercising this program, see its 
Frogram listing in IMSVS.FEI~ESEC. 

Data Ease Processing 4.45 



]21g: Tc be ccmpatible with IMS/VS data communication operation, the 
first PCB in the PSE of a batch program is a dummy PCE. (C~fAT=YES in 
the PSBGEN statement). 

In the following sections, we extend th€ IMS/VS data base precessing 
into the online environment. !o process data bases online, ~~§§~g~ 
~~ll§ are added to the DL/I interface. Message calls are used to send 
~essages tc teIminals a[d te retrieve messages sent to I~S/VS from 
terminals. !he data base calls discussed in the first part ef tr.is 
chapter remain the same. 

APPLICATION PFOGRAMMING AND MF5 

In cur subset, we will exclusively use ID~§§g9~ !Q~~~S §§I!i£§~ (MFS) for 
the IBM 3270 Information Display System display anq printer t€rminals. 
Therefore it is reccm~Er.dEd that yeu ~re familiar with the sectien 
entitled "Message Fermat Service Overvie~" in Chapter 3 before using 
this sectiono 

APPLICA!ICN FFCGEAM TYPES 
-------------~-----------

As defined in Chapter 1, "Introduction," there are three types of IMS/VS 
progrAms: 

• The ~g!£h_f!2£~§§ing_f~Qg~~m (DII) for batch processing of data 
hases. This program type is solely discussed in the first part of 
this chapter. 

• The ~21£h_~§§§2S§_~;££§§§1]9_~fg9!~~ (BMP) for batch processing of 
online data bases. 

• The ~~~~~S§_g!£f§§§jDg_ff~g!~! (MPP) for processing transactions 
entereQ from terminals. 

~here is no difference in the program structure of a DLl and BMP 
program. In fact, the very same program can be executed as a DII or a 
BMP program if you follow the guidelines of ~he data base part of this 
chapter. 

~ENERAL MPP CONSIDERA!10NS 

All data base functions previously discussed are available in the MEP, 
except: 

• GSAM data tases and OS/VS files £~~Df! be used. 

• !he XES! call cannot be used in a MEE. 

• The CEKP call shculd net be used in MPPs in our subset. 

• The STAT call should not be used in a MPP. Its results rear no 
direct relationship to the data base accesses of the MPPQ 
lnformaticn cn these accesses are available via the DC ~onitor. See 
Chapter 9, "Optimization." 

4.46 lMS/VS Primer 



G£NiBAL BMP CCNSIDEBA!CNS 

Any tL/I batch program written according to the guidelines in the data 
base part of this chapter can be executed as a BMF. 

~he XRS! and CHKF calls and GSAM for Non-tL/I files are required if the 
program is to te restartable. This is especially important for update 
programs. The reason is that the IMS/VS prcgram isolation function will 
create an en~ueue element in main storage for every data base change. 
In addition, the old data base image will be saved on the dynamic log. 
Both the enqueue and the old data base image will be freed at the next 
§ln~hI2nl~s!~2~_!£ln1. As each CHKP call censtitutes a synchronization 
Foint, these rescurces are freed at each CHKP call. Our subset 
selection of the main storage pool for enqueue elements and the size of 
the dynamic leq is related te a CHKP frequency of ene for every 100 or 
less data base changes. 

In comparison to tbe IMS/lS-DB system, one additional status code should 
be eXFected after the CHKP call in a EMP: "XD"n 

~his XD status cede signals that the IMS/VS control region is shutting 
down. No more tL/1 calls are acce~ted by the CTL region from the EMf. 
The BMP should terminate as soon as possible. 

Wfien the IHS/VS tata Communication feature is used, applicatien programs 
can communicate with devices as ~ell as access data bases. The Frogram 
communicates logically ~ith a device through IMS/VS rather than directly 
to the device. !his is made possible by the IMS/VS concept of logical 
terminals. A logical termi~al is a name related to the actual device, 
the physical terminal. One physical terminal can have one or more 
associated logical terminal names. The lcgical terminal name or naroes 
for each pbysical terminal arE defined by the I~S/VS system programmer 
during I~S/VS system definition. 

~he logical terminal ccncept allows an application program to te 
independent of thE characteristics of a particular physical terminal. 

Generally, ycu need not be concerned with the actual location or address 
of the device. If a physical terminal becomes inoperative, its 
associated logical ter&inal(s) can be reassigned to another physical 
terminal, thereby causing output messages to be sent to another physical 
terminal. Also, each legical terlinal can have unique security checking 
asscciated .ith it. 

To an application program, therefore, a logical terminal can be vie~ed 
as just another sequential data i~~ut source or output destination. The 
applicaticn ~rogram interface to the logical terminal is through 
essentially the same call interface mechanism that was described for 
data base access. Access to a data base requires the use of a data base 
Program Communication Eloc~ (DB-PCB). Accordingly, communications ~ith 
a DC device requires the use of a data communication PCB (DC-PCB). 

MPPs normally reference both DE-FeEs and tC-PCEs, and must co~tain a 
mask to handle each PCB tYEe. Figure 4-20 ~hows that the MPP views 
terminals and data from a logical view point. Any changes to the 
physical terminal configuration cr to the actual data structures have a 
li~ilal effect on the application program. 

Data Ease Processing 4.47 



APPLICATION PROGRAM 

DC 
PCB 

MASK 

I 

-~ DC 
PCB 

- --

LOGICAL TERMINAL 

[ LDEP1DOl J 
.,.,-

,.... .,.,- APPLICATION DATA STRUCTURE 

DB 
PCB 

MASK 

PART 

, 

Figure 4-20. PCB Masks fcr a MPP 

I 

STOCK 

" " 

I 
I 

ORDER 

As for the batch system, kctb the DB PCBs and the DC PCEs are part of 
the ~rogram specification block (PSE). I PSB is required for each MPP 
and is created by the PSBGEN utility. See ChaFters 2 and 3. 

tC PCEs 

There are two types of DC PCBs -- the IIC PCB and the alternate FeB. An 
IIC PCB is always provided by I~S/VS to the application Frogram that 
executes in a tC envircnment. Alternate PCBs are optional and must be 
coded separately in the FSB. 

!he 1/0 PCB must be used by the ~pp to: 

• ottain an input message frcm a terminal. 

• Return a reply to the terminal that originated the input message. 
In our subset this will be required tefore new input is accEFted 
from the termillal IresFcnse mode). 

When IMS/VS receives an i~put message, it queues the message according 
tc transaction code and schedules the applicaticn pro9r~m that frccEsses 
that transaction. ~hen scheduling the program, I~S/VS passes to the 
program the address 

of its llC peE plus thE alternate PCB(s), if any, and the DB-PCB (s), if 
any, defined in its PSB. ~he IIO PCB contains the name of the logical 
terminal that entered the message (source) and can receive the reply 
(destination) • 

An alternate PCB must be used by the MPP to send an output message to a 
destination other than the terminal that originated the ir.put mEssage. 
An alternate PCB specifiES a lcgical terminal destination. The 

4.48 I~S/VS Frimer 



destinaticn can te specified during PSB generation or during program 
execution. 

!o be able to specify a destinaticn during program execution, the 
alternate PCE must be defined as mcdifiable during PSB generation. ~hen 
an apFlicaticn prcgram uses modifiable alternate PCEs, the program ~ust 
set the outpu~ mEssagE destiraticn before inserting the output message~ 

TH E DC-PCE M lISK 

70 EUFPort communication with IMS/VS, the MFF must contain a DC-FeE 
mask. As shown in Figure 4-21, a DC-peE mask distinguishes seven fiElds 
which are filled in by IMS/VS during each message call. These fields 
shculd nct be changed by the program; they are only for reference. 

LOGICAL TERMINAL NAME 
8 BYTES 

2 
RESERVED FOR IMS/VS 

2 BYTES 

3 
STATUS CODE 

2 BYTES 

4 CURRENT DATE 

X 4 BYTES X - -u. u. 
w w 
a: CURRENT TIME a: 
CL CL 

~ 4 BYTES ~ 
5 

:;:) :;:) 
CL CL 
2: 

INPUT MESSAGE SEQUENCE NUMBER 
2: -6 

4 BYTES 

MESSAGE OUTPUT DESCRIPTION 
7 NAME 

8 BYTES (I/O PCB ONLY) 

Figure 4-21. Layout of a DC-PCB Mask 

1. LOGICAL TERMINAL NAME -- !his field contains the name of the logical 
terminal that entered or will receive the message. The name is 1 to 
8 bytes long, left-justified, and padded with blanks. 

2. FESERVED AREJ. -- A 2-tyte area reserved for IMS/VS. 

3. S~A1US CODE -- A code showing the status of the result of a DC call 
is placed in this 2-tytE field. When a call is eXEcuted 
successfully, this fiEld is set to blanks. A non-blank status code 
is returned on an unsuccessful call. 

4 through 6. 

INFUT PREFIX -- Is availakle cnly for the I/O PCB. The length of 
the inFut Frefix is 12 bytes. 

4.- 4 tyte~ - Julian datE (YYtDD-packed 
decilal, right aligned) when 
the input message vas completely 
receivEd from the Fhysical terminal. 

Data Base Processing 4.49 



5. 4 bytes - 'rime (hH~~S5.5-packed decimal) 
when thE in~ut message was 
com~letEly received from the 
physical terminal. 

6. 4 bytES - 5eguellcE number (binary) of 
tbe input ~Essage. Fer terminal, 
since last IMS/VS start-up. 

74 MESSAGE Ot7PUT tESCFIFTICN ~AME -- Is available only for the I/O 
PCE. This fielc bas lEaning only when out~ut messages are sent to 
terminals that use the IMS/V5 Message Format Service (MFS). 

~hen IMS/VS sup~lies the first segment of an input message, it fills 
this fiEld with eithEr the name of a message output description 
(MOD) or blanks. The MCD name can be changed by using the output 

MOD name parameter ef the DC output call that contains the first 
segment of an output message. This will be discussed later in this 
chapter. 

The following Example is an I/O PCB mask for COEOl message processing 
program. !his mask would be found in the linkage section of the 
progra.~ A mask for an alternate PCB would be simil~r but without the 
IN-PREFIX and P.CD-NAME fields. 

tA'1A tIVISION. 

LINKAGE 5EtTION. 

01 Ie-FCE. 
02 l!EFP.-NAP.E FICTUFE X(8). 
02 tLI-RESERVE PIC!URE xx. 
02 StA'ICS-CCtE FICTUEE xx. 
02 IN-PREEIX. 

a 3 J tJ 1 I A t; - 0 AtE F I CT U E E 5 9 (7) 
03 7IME-Of-DAY PICTURE 59(7) 
03 MSG-C(UNT EICTURE 59(7) 

02 MOD-NAME PlcteR! x (S) • 

!1Ll_!!A!Rlj_~1_~_~~=f~~_~!~! 

COMPUTATIONAL-3. 
COMFtJTATIONAL-3. 
COMPUTATIONAL. 

The following is an example fer PL/I Optimizing Compiler message 
precessing prcgrams~ A mask tor an alternate PCB would be similar tut 
without the IN_PREfIX and KOO_NAME fields. 

DECLARE 1 la_PCB EASED (IO_PCBP!R). 
2 l~EB~_NA~E CEARACTEE (8), 
~ tLI_RESERVE CHARAC~ER (2), 
2 S~ATUS_CCDE CHABACTEB ,2), 
~ IN_PREPIX. 

3 JULIAN_DATE FIXEt tECIKAL (1), 
3 !IME OF DA! FIXED DECIMAL n). 
3 ~SG_~CUNT FIlEt EINARY (31), 

2 MOD_NAftE CHARAC'IER (8); 

INTE! TO 'IHE KPP 

The entry statement to a ~FF must naae the CC-PCBs and the tE-PCEs. The 
DC-PCBs must precede the DE-FeEs, and at least one DC-PCB must be 
specified to FrcvidE fer the 1/0 PCB. 

4.50 IKS/V5 Primer 



• The format for an (eECI program is: 

EN1:RY • tLITCEL' USING lC- tCB, ALT -PCB 1, ALT-PCBn, tB-PCB 1, DB-PCB D .• 

• The format fcr a PL/I cFtilizing cem~iler Frogram is: 

DLITPLl: PROCEtURE (10 PCBPTB,ALTl PCBPlR, ••• ALln PCBPTB, 
- If1_fCEPTP, ••• CEn_PCEPTR) OPTIONS (MAIN); 

Programs that are OS/VS subtasks cf an apFlicaticn program called by 
IMS/VS must not issue tL/I calls. If they do, the results will be 
unpredictable. With PL/I. whenever PL/I ~ultitasking is used, g!~ 
tasks, even the apparent main task, operate as ~uttasks to a hidden PL/I 
control task. PIlI multitaski~g is therefore not allowed in an IMS/VS 
progr am. 

THE tC CALLS 

In addition to the DB calls, an MPP uses DC calls fer the retrieval and 
inserticn of messages. These LC calls must reference a tC-PCB as 
discussed in the previcus sectien. lhey relate to messages. 

A message is cemFrised of on9 or more segments. 
messages: Message A is made up of Segment A1. 
segments E1, E2 and B~. 

Figure 4-22 shows two 
Message B is made uF of 

r------------, r------------, 
I SEGMEN'I A1, , SEG ~E N'I B 1 1 
L-----·-------~ 1------------1 

1 SEGMEN'I B2 , 

1------------1 
I SEG ME N 'I B 3 1 L---------- __ ~ 

figure 4-22. Single and ~ulti Segment ~essage 

In our subset, using 3270 terminals and MFS, an input message will 
always he a singlE seglent. ThE basic DC calls are: 

• GU (get uniqtJe): 

• GN (get next): 

• ISB'! (insErt): 

• CHNG (change destination) : 

to retrieve the first input message 
segment .. 

to retrieve the second input messagE 
SEgment, in our subset, only used for 
conversational programs. 

tc insert a message segment into thE 
output message queue. 

to set the lTERM destination of an 
alternate ~CE. 

ThE DC call format is slightly different frc~ DB calls because there is 
no hierarchical strtcture tlith which to be concerned,. SSAs (Segment 
Search Arguments) are not used for DC calls. 

Data Base Processing 4.51 



The format for a CCEet frogram is: 

r------------------------------------------------------, 1 CALL 'CELTtLI' OSING CALL-FONC. IO-PCB, ICABEA. I 
L------------------------------------------------------~ 

!he format for a PIlI program is: 

r------------------------------------------------------, 
, CALL PLITCLI IPARM_COUN'I,CALL_FUNC,IO.PCBFTR,IOABEA);, 

When a transaction or input message is available for processing, the 
associated aPFlication program is scheduled into a message Frocessing 
region. After being lcaded, the program shculd issue a get unique (GU) 
call te obtain the first segment of its input message. A sutsequent 
segment of that message is cbtained with a get next (GN) call. GO and 
GN calls cannet be made tc an alternate PCB. 

If the frogram is serially reusable or reenterable between GO calls, GU 
calls can be issued for subsequent input messa9Es until all messagEs are 
retrieved. If a prcgraK is net serially-reusable or reenterable between 
GO calls, the program must terminate after each GU call so that it will 
be reloaded and re-initialized. 

It is highly recommended that the MPPs be at least serially-reusable. 
We viII provide guidelines for this in the section "Easic MPP Flew" 
later on in tbis chapter. 

The get calls are used tc retrieve segments of an input message. For 
each get unique (GO) or get next (GN) call, one segment is returned to 
the application pregram~ IMS/VS returns the retrieved segment to a vork 
area defined in the application program. since the length of a message 
segment is variable, the work area must be large enough to ccntain the 
longest segment Expected ty thE ~rogram. 

In addition, the program should check the length field of the input 
message. 

The first segment of an infut message is obtained with a GU call against 
the I/O peE. In rEsponse te a GU call, IMS/VS returns the first message 
segment and fills in the following I/O PCB fields: 

• Source name (name of the logical terminal that originatec the 
mEssa9E). 

• Status code. 

• InFut prefix. 

• Message output description name (when present). 

!he format for a CeECl ~rcqram is: 

r------------------------------------------------------------, , CALL 'CELTtLI' OSING GE~-ONIQOE-FONC. IC-FCB, IeAR!A. I 



The fermat f~~ a PL/I ~~ogram is: 

r------------------------------------------------------------, , CALI FLI~DII (~IR~_CCUNT,GET_UNICUE_PUNC,IC_PCEPTR,IOAREA);' 

L-~~-~~~-~~-~~-~-~--~--~-------.-~---------------------------~ 

STATUS COtES: 

bb: 

QC: 

other: 

Call successful, message segment returned in IOAREA 

No more input messages for this transaction; the program must 
terminate 

Errer situation 

For programs that procEss Iultiple transaction codes, the tExt of the 
input messagE can te exami[ed tc determine the transaction code. 

The second segment of an input message is retrieved with a GN call. 

The fcrmat for a COBOL program is: 

r----------------------------------------------------------, I CAll 'CBl!DlI' OSING GET-NEXT-FUNC, Ie-FCE, IOAFEA. , 
L----------------------------------------------------------~ 

The fermat for a PL/I pregram is: 

, CALI PLI!DII (FAF~_CCONT,GET_NEXT_FUNC,IC_PCEPTR,IOAREA);' 

L----------------------------------------------------------~ 

STA~US CODES: 

bb: 

other: 

Call successful, message segment returned in IOAREA 

Error situaticn 

1. The get next call should cnly be used fer conversational 
transactions \ithin our subset. In that case, the GU call will 
retrieve the scratch pad area (SPA) and the GN call the actual input 
message segmentQ See the section on conversational programs later 
in this chapter. 

2. The Frog ram must check the status code after each call. The 
handling of error status calls is discussed later in this chaptEr. 

!B§!~!_£~!!_J!~~ll 

~he insert call is used to build output messages. To build an output 
message in rEply to the terrinal that originated the input message, 
output message segments must be inserted to the 1/0 PCB. Output message 
segments can alsc bE inserted tc alternate PCBs. If an alternate FeE 
bas been defined as modifiable, a change call must be used before the 

Data Base Processing 4.53 



first insert call a~ainst the alternate PCB. The change call sets the 
destination of the cutput message. 

The ISRT call format is similar to that for message get calls. 

~he fermat for a (eEel program is: 

, CALL 'CELTDLI' USlNG ISRT-FUNC, DC-peS, ICAREA, MCDNAME. 

The fermat for a PL/I program is: 

r--------------------------------------------------------------, I CALL PIIiDLI 'PARM_(eU~T,ISET_FUNC,DC_ECBPTR,IOAREA,MODNAHE): I 

S!AlUS COtES: 

bb: Call successful, message segment inserted 

ether: Error situation 

MCtNAME is the latel of ~n 8-byte field ccntaining the name cf the 
messagE output descriptien; the name must be left-justified and padded 
with blanks. 

This parameter should cnly be specifi€d at the in$ert call cf the first 
segment of a message. Altheugh the MOD NAME may be already defined in 
the message input description (MID) used for the input message, it is 
recommended that you always specify it on the ISRT call of the first 
message output segment. It can also be used for the alternate ECEs. 

~~!~: For a detailed discussion on MIDs and MODs and their linkages, 
r~fer to the sEcticn "~essage Format Service Overview" in Chapter 3, De 
te5ign. 

Output message segments cannot be distinguished as first and subsequent 
segments by the insert call. Any required distinction must te made by 
the program. All messa~e segments inserted to a given DC-PCE during the 
precessing of a single input message are treated ty IMS/VS as a single 
output messagE. 

At least one output message segment shculd be inserted to the IIC peE. 

If the MPP has DE-PCBs defined, one or more data base calls may be 
executed. !he normal sequence of operation is to ottain the input 
message, iSSUE data baSE calls based u~cn input message content, and 
create an output message based upon input message content and data 
ottained with oata tase calls. 

The change call is used tc set the destination of a modifiable alternate 
PCB to any valid logical terminal in the system. To use the changE 
call, the alternate PCB must have been defined as modifiable during PSE 
generation. ~he destination of the modifiable PCB must be set with the 
changE call E~jg~~ any segmEnts are inserted. 

4.54 IMS/VS Primer 



The new destination remains set until either the application program 
issues another CHNG. issues a GO, er terminates. At that time. I~S/VS 
~esets the destination to blanks. 

A change call for an alternate teE cannot be issued while that PCB is 
being used to fo~m a messa~e. lherefore, ~ultiple modifiable tCEs must 
be defined if messages are to be sent to several destinations while 
processing a single iDfut IEssage. 

The format for a COEOL call is: 

r------------------------------------------------------, , CALI 'CEltDlI' OSING CHNG-FU~C, AIT-FCE, tEst-NAME. , 

the format fer a tl/l call is: 

, CALL PLITDLI (~EREE,CF.NG_FUNC,AL!_PCBP1R,DES1_NA~E): I 
L------------------------------------------------------~ 

STA'IUS CODES: 

bb: Call succEssful, dEstination set 

etber: Error situation 

the destination name parameter (tEST_NAME) specifies the name ~f an 
8-byte fiEld containing thE tale of the logical terminal. The name may 
be 1- to 8-bytes long, uppercase EBCDIC, left-justified, and padded with 
blanks. 

The following message fcrKats are presented to or received by IP.S/VS 
~ith ~essage Fermat Service. For a detailed discussion of MFS, see 
ChaptEr 3. 

INFUt MESSAGE PCE!AT 

~FS edits input data from the terminal as defined in the device input 
format (DIF) and the corresponding message input description (MID). 

the format of the one input message segment is: 

r-------------------------------------------------~ I LL 1 ZZ 1 tRANCODE 1 tiP LDs , 

lL 

is a 2-byte binary field representing the total length of the 
messagE SEgment. including LL and ZZ. ~he LL value is provided by 
IMS/VS fer input messages. 

Data Base Processing 4.55 



When PLjI is used, the 11 field must be declared FIXED BINARY (31), 
a tinary fullwerd. ~he value centained in the 11 field is the 
actual ssgment length minus 2 bytes. For example, if th~ in~ut 
messagE sesment is ~C bytes, LL is equal to 18 and represents the 
sum of the lengths of II (U bytes minus 2 bytes), ZZ (2 tytes), 
'IEANCOtE t9 tytes), and l!FIDs {S bytes). 

ZZ is a 2-byte field reserved fer IMSI.VS. 

TFANCotE 

contains the transaction code as defined during IMS/VS system 
definitiono Ibis field is 9 bytes; the transaction code is padded 
with tlank~. lhe transaeticn code should be defined as a 9-tyt€ 
~FLD literal in the ~ID. 

MFIDs 

are the message fiElds as defined in the MID. 

1. When tbe MfLD ccntains an attribute byte (ATTB=YES), the first 
two bytes of this field are reserved for attribute data to be 
filled in ty the MPP. 

2. Follcwing our MIS guidelines, all MFLDs will appear in the 
message segment whether or not input data is received frem the 
terminal. Therefore the infut segment length is related to the 
transaction code. At least a check on max imum segftlent length 
should be done ty the MPP. 

CUlFO! MESSAGE FOB~AT 

MIS edits outfut segments created by an appl~cation program into a 
device-dependent format suitable for the device to which thE message is 
destined. Normally, the cutfut segments contain no device-related data. 
All device-dependent information is provided when the message format is 
defined to MFS. 

An cutput message consists of all segments presented to IMS/VS with an 
ISB! call between a GU call to the llC FCE and anoth€r GU call to the 
I/O PCB, or normal fregral termination. 

The laycut of the output segment is: 

r--------------------------------------------------, 
, It I Z 1 I Z2' f.Fl Ds I 
l--------------------------------------------------~ 

LL 

is a 2-byte binary field representing the total length of the 
message segmEnt, including LL, Z1, and Z2. The value of 11 equals 
the number of bytes in text (all MFLDs) plus 4. The application 
program must fill in this count. The segment must te less than 1388 
in our sutset. !be segment length may be less than the length 
defined to the ~FS language utility. 

When PL/I is used, the It field m~st be declared FIXED BINARY (31), 
a tinary fullword. !he value provided by the PIlI application 

~.56 IMS/VS Primer 



Z 1 

Z2 

program must represent the actual segment length minus 2 bytes. For 
example, if an cutFut IEssagE sEgment is 16 bytes, 11 is equal to 14 
and represents the sum of the l€ngth of LL (4 tytes minus 2 tytes, 
Z 1 (1 byte), Z2 (1 bytE), and TEXT t 10 byte s) • 

is a 1-byte field reserved for IMS/VS; it must contain tinary zeros. 

is a l-byte field, which always should be a blank (bit 1 on, X'40') 
in our subset, as ~e only allow for one segment per logical=pbysical 
Fage .. 

MFLOs 

are the message fields as defined in the message output descriptcr_ 

fi~!g_[Q~!s! 

All fields in outFut segments are defined as fixed length and fixed 
position. Fields can te tLuncated eL emitted by two methods: The first 
method is by inseLting the appropriate LL field, which truncates the 
SEgment. The second methcd is by Flacing a NULL character (X'3F') in 
the field. Fields are scannad left to right for a null character; tee 
first null encountered terlir.ates the field. 

]~l~: The above two methods will not clear the contents of protected 
fields en the SCLeen. !o ccmpletely clear such a field, a blank 
followed by a NUll character (X'403F') should be inserted in the first 
two positions of thE field, that is, immediately fcllowing the attribute 
bytes, if any. fositioning of all fields in the segment remains the 
same regardless ef null characters. Fields truncated or omitted are 
Fadded by MFS with a program tab character for display terminals, ar.d 
blanks for printer terlinals. 

~InA~i~_J~~~i~g!!_H2~ilisA!i~D_!~~_~Y'~£I_~fD!IQ! 

An option of MFS allows you tc dYDamically mcdify the attributes of a 
device field, although attribute byte characteristics are normally 
specified in the MOD. !his e~ticn teserves the first 2 data bltes of an 
outFut message field for attribute definition. You must add these 2 
bytes to the norlal field length. Any ertors detected in the 2-tyte 
specification caUSE the entiL€ request to be ignored and the attributes 
defined cn the apfropriate [Flt statement for the device format will be 
used. Any output field can have attribute bytes defined. 

The 2 attribute bytes are definEd as follews: 

o 0-1 Eoth tits arE CD, LEquests that 
the cursor be placed on the first position 
of this field cn the device. Only the 
first MILD with a cursor-positicning 
request in the P.CD is used to position 
the cursor. !hese bits must 
be 00 or 11. 

2-7 Must be off 

Data Ease processing 4.57 



~I~~ ~1~ 

o Must be on 

1 a) If en, these attribute specifications 
are to replace the attribute byte 
defined for the field. 

b) If eff, these attribute specifi­
cations are to be added to the 
attribute tyte defined for the field 
(legical OR o~eration) 

2 Protected 

3 Numeric 

4 High-intensity 

5 Nondis~layable 

6 tetectable (net included in subset) 

7 Premedified 

Bits 4, 5, and 6 are mutually exclusive. If more than one is set, bit 4 
takes precedence over bits 5 and 6; bit 5 takes precedence over tit 6. 
]Qt§: If a messagE field is te be emitted from the device output data, 
the attribute bytes preceding the NOLL character must be binary zeros, 
or the first attribute byte must be a NULL character itself. 

With ~FS, you can easily build a multiple page output message. After 
insertion of such a lessage, the terminal o~erator can view it, one page 
at a time. He also can go back to the beginning of the message if 
desired. 

In our su~set each SEgment is cne logical page (one IPAGE statement in 
the MeD) and is alsc one physical page (one DPAGE statement in the DOF) 
or one physical screen cr Frinter page. 

1f!~!_§§l~s!i~B: ~hen a messagE has multiple If AGEs, the value of a 
sFecial message segment field is used for the selection of the IEAGE 
which will be used for the formatting of that segment. For a detailed 
description SEE CbaFter 3, the COND= parameter of the LPAGE statement. 
If the condition value as specified by the program does not match any of 
the LPAGE defined values, the last defined LPAGE will be used. 

!]lIl~~_j_~l~fL!_~f~ 

The tasic flow of a MPP and the message calls used are shown in 
Figur~ 4-23 and described belove 

4.58 IMS/VS Primer 



2 

3 

4 

5 

6 

7 

r 
L 

START 

INITIALIZE WORKING STORAGE 

GU CALL FOR INPUT MESSAGE 

INPUT VALIDATION 

DATA BASE PROCESSING 

CHNG AND ISRT CALL FOR 
ALTERNATE LTERM OUTPUT 

ISRT RESPONSE MESSAGE 
TO ORIGINATING LTERM 

FigurE 4-23. Easic MPP Flew and Calls 

-, 
.J 

1. After gEtting control, the MPP must initialize its working storage, 
as this may contain leftover data from a previously Irocessed 
messagE (likely frem ancther terminal). This is also a requirement 
fcr reusability. 

2. ~he HFP retrieves the one input message segment with a GU call 
referencing tbe I/O-PCB. A hlank status code means the message is 
placed by IftS/VS in the ~SG-AFEA specified in the call. A QC status 
code means there are nc rcre messages in the input gueue. The ~ff 
must then return control to IMS/VS. Any other status co3e is an 
error condition and shculd be handled by an error code status 
routine. 

Data Base Processing 4.59 



3. ~he in~ut is validated. This should include: 

• Checking the length of input message 

• checking the fCLmat, value and consistency of input data fields 

This validation should te as completE as possible and be done before 
any data base access. 

4. ~he data tase ~Iccessing is ferfcrmed. For data base calls and 
status code handling SEE the data base calls at the first part of 
this cha Fter .. 

5. Optionally, a CENG call te the alternate I/O-PCE is used to set an 
alternate oestjnaticr.. this, f~r instance, is required to print 
eutput on a 3270 printer terminal. The change cali must not be u~ed 
against the I/O-PCE. All nen blank status codes should be handled 
by an error code status routine. 

~he CENG call is follewed by one OI more ISRT calls for message 
output segments to this alternate output terminal. 

!~l!: Only one CENG call is allowed per alternat~ PCB for each 
input message. 

6. ~he response output message is inserted to the originating L~ERM via 
the I/o-peE. One I5R! call is required for each output message 
segment. Any non-blank status code is an error condition. 

7~ The processing of the current input message is now completed. ~he 
program sheuld ~ew ge back tc the initialization of its working 
storage and the retrieval of the next input message (if any). 

~Q~~: !he first thing I!S/VS does after receiving the GU call is 
the synchrcnizaticn feint fIccessing of the previous input message. 
This includes the release of the data base change enqueue elements. 
As a ccnseguence, the data base positions of all DB PCBs are 
cleared. 50 after each message GO ycu should start with data base 
GUls) to access the data base segments as requested ty the new input 
message. Tbis new infut message is almost certainly from another 
user (l!EB~) .• 

Listed on the next twc ~ages is a samFle COBOL MPP, PE4CNINQ (memter 
DFS4CNAM in IMSYS.PBIMESRC). This program expects a terminal to input 
the customer's number. It will display the customer name and address. 
It uses the sample fcrmat~ listed in member OE4CNI01 in IMSV5.FBIMESRC. 
Job IISAMP441 can be used for its compilation. The same eCECl 
programming ccnsideraticDs used for the batch tL/I program aPFly. See 
COBOL Programming Considerations in the first part of this chapter. 

tue to the way I"5/V5 leads the MPP, only the fcllowing combinations of 
COBOL com~ile cptions should be used in our subset: 

• NORES,NCDY~AM,NCENDJCE 

• RIS,tYNAM,lNDJOE 

The first ccmbination is recommended, as the second combination must be 
changed when the IMS/YS Frcgram Frelcad option is used later. 

4 .. 60 IMS/VS frimer 



IDEmIFICATION DIVISION. 
P~OGPt.tl-ID. 'PE4CtlWQ'. 
DATA DIVISIO'~. 

000010 
000020 
000030 
000040 
000050 
000060 
000070 
000050 
000090 
000100 
000110 
000120 
000130 
000140 
000150 01 
000160 
000170 
000180 
000190 

WCPKW:;-STCRAGE SECTIOH. 
77 
77 
77 

77 

77 
77 
77 

000200 
000210 01 
000220 
000230 
0002'-10 
000250 
000260 
000270 
OOO::~,O 

oon<::o 
000300 
ooo:n 0 
000320 01 
000330 
000340 
000350 
0003:'0 
000370 
OC0380 
0003"0 
000400 01 
OOOUO 
000420 
000430 
000/;40 

GLJ PIC X( 4) VALUE 'GU' . 
IS!H PIC X(4) VALUE 'ISRT' . 
El~:I-S~ITCH PIC X VALUE '0' . 
8.3 tm-HCoE-ItIPUT VALUE '1' . 
NOT-FOUtlD-tlSG PIC X(35) VALUE 

'ItNAUD NU~~Bf.P - PLEASE RE-EtITER'. 
ERPOPT PIC X(4 ) VALUE ' 1 
H:JDll.HIE PIC X(8) VALUE 'OE 4CtnOl ' . 
B,~D-CALL PIC XI81 VALUE 'B)~D CALL'. 

WPUT-HESSAGE. 
04 FILLER PIC X141. 
04 TRAIlS-CODE PIC X191. 

FEOO::;Ctl~ PIC XI6 l. 
FILLER PIC X(60). 

OUT-tIESSAGE. 
02 OUT-LL PIC S9131 COMP VALUE 
02 OUT-ZZ PIC S9(31 emlP VALUE 
0: OUT-DETAILS. 

04 FE2PCtlUH PIC XI 6). 
04 FE2PCtL~H PIC X( 20 I. 
or. FE:PCAOR PIC XI 20 I. 
04 FE2PCCTY PIC >:1 20 I . 
0(+ FE2F'crCD PIC X(6J. 

02 OUT-F..PPOP PIC XI 35 ) . 

SE2PCUST. 
04 FE2F'OIUH PIC X(6) . 
O~ FEZPOU,H PIC XI 20). 
04 FE2PUDo PIC X(201. 
04 FE2rC':H PIC XIZOI. 
04 FE.:rcrCD PIC X161. 
04 fILLER PIC XI 40 I. 

CUSTO~fP-SSA. 

+111. 
+0. 

04 FILLEP PIC XI191 VALUE 'SE2PCUSTIFE2PCNUM 
04 SSI'.-O:UM PIC X( 6 I. 
0:' F ILLF.:P PIC X VALUE 'I'. 

000'~50 LINKAGE SECTICtl. 
000460~ PCB FOR H1PUT OUTPUT LOGICAL TERHINAL 
000470 01 CHC. 
000480 02 FILLEP PIC Xll0). 
000490 02 CIPCSTAT PIC X(2). 
000500* PCB FCP CUSTOMER DATABASE 
000510 01 DIPC. 
000520 02 FILLER 
000530 02 DIPCSTAT 
0005'+0 EJECT 
000550 
000560 PPOCEDURE DIVISION. 
000570 

PIC Xll01. 
PIC X( Z ) . 

000580 ENTRY 'DLITCBL' USING C1PC, D1PC. 

OOOO~OO 

0000300 
0000400 
0000500 
OOOO~,OO 

0000700 
0000[,00 
0000900 
0001000 
0001100 
0001200 
0001300 
00014(;0 
0001500 
0001600 
0001700 
00012.00 
0001<;GO 
000;:000 
00C2100 
000::::00 
0002300 
000,400 
01'0;:500 
000::600 
00027CO 
OOO:::COO 
eoo:'l~o 

00('3')00 
0003100 
000320') 
COO3:~O 

e003400 
00035CO 
000::600 
0003700 
00')3:)00 
0003<::00 
OOOt.ooo 
ooe '.100 
000(.2CO 

- 000(+300 
OOO.c; JO 
0,)0l,50:l 
00 C ';.;, C 0 
000(+700 
000 1 .. 800 
000(.'100 
0005000 
0005100 
0005200 
0005300 
0005:;00 
0005500 
0005600 
OenSiOO 
0005800 
00059:10 
0006000 

Data Ease Processir.g 4.61 



000590 
000600 
000610 

PE~FORH READ-MESSAGE. 

000620 PERFORM PROCESS-MESSAGES U}ITIL NO-MORE-INPUT. 
000630 
000640 GOBACK. 
COO~50 

0006~0 READ-MESSAGE. 
000670 CALL 'C6LTOLI' USING GU. CIPe. INPUT-MESSAGE. 
000680 IF ClPCSTAT = 'GC' 
000690 THW ttO'lE '1' TO EIID-S:.IITCH 
000700 ELSE IF CIPCSTAT tlOT = SPACES 
000710 TliEN C/,LL 'OFSO/,ER' USItlG 
o con 0 C 1 PC. BAD -CA L L. IIlPUT -MESSAGE. ERROPT. 
000730 
000740 PROCESS-MESSAGES. 
000750 HQVE FE'.ICGCllR TO SSA-CNUM. 
000760 PEHOPI1 PEAD-CUSTC~1H~-DB 
000770 IF DIPCSTAT = SPACES 
000780 THEil r.O'JE CORR SEZPCUST TO OUT-DETAILS 
000790 MOVE SPACES TO OUT-ERROR 
OOOuCO ELSE tl0VE t~QT-FOtJ~:o-tlS~ TO OUT-ERROR 
000810 MOVE SPACES TO OUT-DETAILS. 
000820 
000·330 
00~S40 

000850 
000060 
000870 
000e.':0 
00C890 
000900 
000910 

PERFORM ISRT-HESS~GE. 

PERFORM READ-MESSAGE. 

READ-CUSTOMER-DB. 
CALL 'CBLTOlI' USING GU. OlFC. SEZPCUST. CUSTOMER-SSA. 
IF DIPCSTAT = SPACES OR 'GE' 

THEU tlEXT SEtHEtlCE 
US: CALL 'DFSOAER' USING DIPC. BAD-CALL, 

000920 SE2PCUST, EPFOPT. 
000930 
000940 ISRT-MESSAGE. 
000950 CAll 'COLlDLI' USWG ISRT, CIPe. OUT-MESSAGE, HOONAHE. 
000960 IF CIPCSTAT NOT = SPACES 
000970 THEN CALL 'DFSOAER' USING ClPC. BAD-CALL, 
000980 OUT-MESSJ.GE. ERPOPT. 

SA~FLE PL/I INQUIRY MFF 

0006100 
0006~00 

0006300 
0006400 
0006500 
0006600 
0006700 
0006800 
0006900 
0007000 
0007100 
0001200 
0007300 
0007400 
0007500 
0007600 
00077CO 
0007800 
0007900 
0008000 
0008100 
0008:00 
0008300 
0008400 
0003500 
OC08600 
0008700 
0008800 
0~oe900 
0009000 
0009100 
0009200 
0009300 
0009400 
000<:;500 
0009600 
0009700 
0009800 
0009900 
0010000 

listed belov is a samFle Pl/I MPP, PE4FNINQ (member DFSqPNAM in 
IMSVS.PBIMESBC). ~his program expects a terminal to input the customer 
number. It viII display the customer name and address. It uses the 
sample formats cf mEmbEr OE4CNIC1 in IMSVS.PRIMESRC. Job //SAMi4S1 can 
be used fer its compilatioDft 

4 .. 62 IMS/VS Primer 



PE4NINQ: P~OCEDU~E (CIFC_FT~,DIFC_PT~) OPTIONS (MAIN); 

1* * * 0 E C L A RAT ION S * * *1 

OCL 1 CIPC BASED (CIPC PTR), 
2 FILL CHAR (10): 
, STAT CHA~ (2), 

1 DIPC BASED (DIPC_PTR) LIKE CIPC; 

DCL 1 INPUT_MESSAGE, 
2 FILLI CHA~ (6), 
2 TRANS CODE CHA~ (9), 
2 FEOOGCU~ CHA~ (6), 

2 FILL2 CHA~ (601, 

lOUT MESSAGE, 
2 O~T_LL INIT (111) FIXED BINARY (31), 
2 OUT_ZZ INIT (01 FIXED BWARY (15), 
2 OUT_DETAILS, 

3 FE2FCNUH CHAR (6), 
3 (FE'FCNA.H, 

FE,FCADR, 
FE,FCCTY) CHA~ (20), 

3 FE2PCFCO CHAR (6), 
OUT_ERROR CHA~ (35), 

SE2PCUST, 
2 CUST_DETAILS LIKE OUT_DETAILS, 
, FILL CHAR (40), 

CUSTCMER_SSA, 
2 FILLl CHIR (19) IN IT ('SE2PCUST(FE2PCNUH :'), 
2 SSA CNUH CHA~ (6), 
2 FILL2 CHAR (11 nUT (')'); 

DC L (( GU INIT (' GU' ) , 
ISRT !NIT (' IS~T' ), 
ERROPT HUT (' 1 ' )) CHAR (4), 

(t'O~tJAnE HaT (' OE4c~nOl • J • 
8AD_CALL UHT ('BAD C.ALL'») CHAR (8), 

!THREE INIT (31, 
fOUR INIT (4» FIXED BINARY (31)) STATIC. 

(ClPC_PTR,DIPC_PTR) POINTER. 
(PLITDLI, DFSOAER OPTIOtIS (ASSEMBLER J) EN1~Y j 

1* * * PRO C E S S M E S SAG E S * * *1 

CALL PLITDLI (THPEE.GU.CIPC PTP.INPUT MESSAGE); 
IF CIPC.STAT : 'QC' THEN RE~URN; -
IF C H'C . S TAT .. = ' , 

THW CALL DFSOAEP. (CIPC,BAD_CALL.WPUT_MESSAGE,ERROPTli 
SSA_CtlUH FEOOGCtlt;l; 

1* * * REA 0 C U S TOM E R D A TAB A S E * * *1 

CALL FLITDLI (FOUR,GU,DIPC PTR.SE2PCUST,CUSTOHER SSA); 
IF DlRC.STAT - 'THEIl DO; -

OUT DETAILS = CUST DETAILS; 
OUT=ERROR = ' 'i -
Elm; 

ELSE IF DIPC.STAT = 'GE' THEN DO; 
OUT ERROR: 'INVALID NUMBER - PLEASE RE-ENTE~'; 
OUT=DETAILS = ' '; 
Elm; 

ELSE CALL DFSOAER (DlPC,BAD_CALL.SE2PCUST,ERROPT)j 

1* * * 1 N S E ~ T MESS AGE * * *1 

CALL PLITDLI (FOUR,ISRT.CIPC_P1R,OUT_MESSAGE,MODNAME); 
IF CIFC.STAT .. : ' , 

THEN CALL DFSOAER (CIPC,BAD_CALL,OUT_MESSAGE.E~ROPTI; 

GO TO READ_MESSAGE; 

END PE4tUNQ; 

0000010 
0000020 
0000030 
0000040 
0000050 
0000060 
0000070 
0000050 
0000090 
0000100 
0000110 
0000120 
0000130 
0000140 
0000150 
0000160 
0000170 
0000150 
0000190 
0000200 
0000210 
0000220 
0000230 
0000240 
0000250 
0000260 
0000270 
0000280 
0000290 
0000300 
0000310 
0000320 
0000330 
0000340 
0000350 
0000360 
0000370 
00003M 
0000390 
0000400 
0000410 
0000420 
0000430 
0000440 
0000450 
0000460 
0000470 
0000480 
0000490 
0000500 
0000510 
0000520 
0000530 
0000540 
0000550 
0000560 
0000570 
0000560 
0000590 
0000600 
0000610 
0000620 
0000630 
0000640 
0000650 
0000660 
0000670 
0000680 
0000690 
0000700 
0000710 
0000720 
0000730 
0000740 
0000750 
0000760 

Data Ease Processing 4.63 



HA~DIING EFRCR stAteS CetES 

The handling ef errer status cedes in an ~PP is the same as previously 
discussed for a DL/1 batch program. the same status code error routine 
can be used. See the section "Status Code Error Routine" earlier in 
this chapter. 

For an introduction to ecnversational precessing, see Chapter 3, "Data 
Cemmunication Design," in the section entitled "Conversational 
procEssing." 

RETRIEVING THE SPA AND 1ERM1NAl INPUt 

When an MPP that precesses a conversational transaction code receiVES 
control, the GO call against the I/O PCE retrieves the scratch pad area 
(SPA). The sucsequent GN call will retrieve the actual input message. 
Data saved in the SFA can be in any form. The GU call for retrieving 
the SPA in COEOL is: 

,------------------------------------------------------, 
I CALL 'CBLtDlI' USING GU-FUNe,IC-PCB,SFA-ABEA. , 

In PL/I: 

r------------------------------------------------------, 
I CALL PLITtLI ItHREE,GO_FONC,IO_PCBP'IR,SPA_AREA): , 
l------------------------------------------------------J 

tb: SPA retriEVEd in werking stoIagE field SFA-ABEA. 

QC: No mere input transactions: return control to IMS/VS. 

ether: Error situation 

SCBATCHPAD AREA FOB~AT 

The SPA format is: 

LL I XXXX 'lEAl: CeDE U SEE WORK AEEA L---------------------------__________________________ -J 

where: 

LL 
is a halfword binary field containing the total numcer of 
characters in the SPA, including LL, XXXX, TRAN CeDE, and USER 
iOFK AREA. This field must not be modified by the user. 'Ihe 
size of all SPAs in cur subset is fixed at 1300 bytes. When 
PIlI is used, the 11 field must be declared FIXED BINARY (31), 
a binary fullwerd. The two extra bytes must not be included in 
the LL value. 



xxxx 

!EAN CODE 

is a 4-tyte area ~eserved for IMS/VS. XXXX must not be 
modified by the userQ 

is an 8-tyte field ccrtaining the trarsaction code that caused 
the progIam to be scheduled. The transaction code can te frem 
1 to 8 tytES, left-justified, ano Fadded with blanks. 

~Q!§: If the MPP processes both conversational and 
Den-conwersational transactions, the !RANCODE should be checked 
after the GU to d~termine if a GN is required. 

USER WOEK AREA 

This area is for retaining user informaticn (for example, 
intErmediate calculations, data retrieved from the data base, 
or previous input data) required by the MPP for processing of 
sutsequEnt inFut data frem the same terminal. This area is 
cleared to binary zeros on the initial entry of the 
convErsation. 

After the input scratchpad area and input message have been 
obtained, one or more data base calls may be made and one 
output mEssagE may te built. ~he applicaticn program may wish 
to Ietain data entered from the terminal or obtained from data 
tasEs. !his data is saved in the user work area portion of the 
scratchpadu 

In general, three ditferent categories of data can be stored in the SPA: 

• Conversaticn ccntrcl data, used to interrelate the successive input 
messages of a terfinal. 

• InFut data sawed from previous input messages, not yet stored in the 
data base. 

• tata tase information already IEtrieved in the processing of 
Frevious input frol the tEIminal. 

!he cenversational control data is used to keep track of the 
conversation. You should IeccId which inFut fields were in error, what 
the next expected input would te, etc. 

You must also saVE data base pcsition information (for example, root-key 
values) as IMS/VS vill have cleared the data base position during 
synchrcnization point processing. This will occur between terminal 
intEractions. 

InFut data must be saved in thE SPA if you don't vant to update the data 
base until all input is received and succEssfully processed. 

Saving data tase data in the SFA should only be done if doing sc would 
save IL/l data base calls during ~Iocessing of subsequent input messages 
of this terminal. 

Data Base Frocessing 4.65 



From a terminal operator's viewpoint, the format of the input data at 
the terminal is the sa~e as any nonccnversationaL transactionetype 
messageQ IMS/VS removes the transaction code from the message segment 
and places it in thE scratch pad area. lhe message segment is left 
justified to remove the transaction cods. It is retrieved ty the GN 
call issued after the GU call that retrieved the scratchpad. The layout 
of the input message segment data processed by MFS is as defined in the 
MIt. 

~~S~: If the transacticn cede is defined in the MID (as we do), IMS/VS 
w11l only remove this trar.saction code at the !j£§! pass. If the same 
MID is used for sutseguEnt FassEs the 9 byte TRANCODE field defined in 
the MID will be present. See sample program PE4CORDR (member DfS4CNEW 
for COBOL, or DFS4F~EW for FIll) in IMSVS.PRIMESRC for more details. 

DAlA BASE PROCESSING IN CCNVEESATIONAL MetE 

The actual DL/1 data baSE calls fcr a conversational program are exactly 
the same as before. 

Bemember, the !FF's data base position is cleared by 1HS/VS 
synchronizaticn peint Frceessing between successive terminal input 
messages (interactions). 

INSERlING ~HE SFA A~t TEE~l~AI CUTFUl 

If the application program modifies or initializes any SPA fields, it 
mus~ return the SPA to IMS/VS before issuing anether GU or terminating. 
A SPA is returned to I~S/VS by inserting it to the I/C PCB. 

lhe insert IISEt} call for ceECl is coded as follows: 

r------------------------------------------------------, 
I CALL 'CELTDLI' USING ISB~, IO-PCB, SPA-AREA. I 
l~--~~--~~----~-~----~-----~----------------~---~~~----~ 

cr, in FI/I: 

r------------------------------------------------------, , CALL PLITtLl (TEREE,IS~T_PUNC,IO_PCBP1B,SPA_ABFA); , 
L------------------------------------------------------~ 

bb: Call successful, SEA accepted ty IMS/VS. 

other: Error situatien. 

A response to thE cri9inating terminal is required to allow the 
ccnversation to continucQ The terminal operator is prevented frcm 
entering more data to te FrccEssed (except IMS/VS commands) until he has 
received this I~spcnse. 

!he output messa9E se9ment fermat fer a conversational application 
program is the same as fcr any nonccnversational output message. 

4.66 IMS/VS Frimer 



A conversation may tE tErminatEd by the ccn,ersaticnal ~rogram, terminal 
c~eratcr, master terminal operator, or IMS/VS. A conversational ~rcgram 
terminates a conversation ty: 

• Blanking the transaction code in the SPA and returning the SF! to 
IMS/VS through an ISET call. This terminates the conversation as 
soon as the terminal has rEceived the message response. This is the 
recommended frocedure. 

The terminal OpErator terlinatEs a conversation by: 

• Entering a IEII1 ccmmand frOm the terminal participating in the 
ccnversation. 

The mastEr tErminal operatcr tErminates a ccnversation ty: 

• Entering a IEXl' ccmmand which specifies the terminal in 
ccnversa tion. 

• Entering a 1~1AE~ lINE (no PTIE~ specified) for the line of a 
terminal in ccnversaticr.. 

IMS/VS terminates a conversation if, after a successful GU or insertion 
of the SEA, a conversational application program fails to insert a 
message. WhEn this situaticn cccurs, IMS/VS sends the message DFS32721 
NO RESPONSE, CONVEHSATION TER~INATED to the terminal, ends the 
conversation, an6 complEtES synchronizaticn point ~rocessing4 

When terminating the ccnversaticn, IMS/VS deletes the current SFA. If 
the next terminal input message is for a conversational transacti~n, a 
fresh SPA is made availatle tc the Frogram. It is recommended that you 
terminate the conversaticn at each legical end (for example, when an 
crder is stored in the data base) of an interactive session. This can 
best bE done by the ~PP. Because the transaction code is defined in the 
MID, no special terminal operator action is required to restart thE same 
conversation (for Examfle, Ent~y of next order). A transaction code 
Fassword is required for each first pass of the conversation if it is a 
password protEcted tratsacticn. 

1. You should im~lemEDt a standard subfuncticr. cede (for exam~lE, END) 
in a Fredefined input fermat field to allow the terminal operator to 
request the ~EE to terminate the conversation. 

2. A hElp function (fcr ExalFle, HELP) is recommended for complex 
con,ersations. The MPP could resend the latest message based on SFA 
ccntent together with advice about the next possible action. 

ROLES FeR iRI~ING CCNV!ESA!IC~Al IECGEAMS 

The following rulES shculd tE cbsErved when writing conversational 
Fro9rams within cur sutset. 

• ~he first 6 bytes of the SF) cannot be modified in any way ty the 
application Fro9ral. (IMS/VS uses these 6 bytes to identify the 
SPA. ) 

• ~c terminate a conversation, the transaction code (beginning in 
position 7) should te changEd tc blanks. 

Data Base Processing 4.67 



• If modified by an aFElicaticn program, the SPA must te returned to 
IMS/VS through an ISR~ call in order to make the updated SFA 
available during the next interaction of the conversaticn. 

• ~he SFA cannot te IEturned te IMS/VS more than once (that is, fer 
Every GU call fer tbe SPA, there is only one ISRT call for the SPA). 

• One and only one response output message must be inserted to the 
I/C-PCB for each S~AIr.SG input. This message can consist of as many 
segments as required. 

• Cenversational programs must be designed to handle the condition in 
which the fiIst GU call to the I/O-FCE produces no message to 
process. this cendition can occur if the oEerator cancels the 
ccnversation through an /EXIT command, prior to the program issuing 
a GU call, and this was tbe only message in the queue to be 
EIccessed. 

WRllING A CCNVEESA!ICNAI !FF 

ThE basic flow of a cenvErsaticnal MPP and the message calls used are 
shewn in Figure ~-~~ and described in the following. 

4.68 IMS/VS Primer 



START 

INTIALIZE WORKING STORAGE 

2 GU CALL FOR SPA 

3 GN CALL FOR INPUT MSG 

4 INPUT VALIDATION 

5 DATA BASE PROCESSING 

+ 
6 ISRT CALL FOR SPA 

t 
7 ISRT CALL(S) FOR OUTPUT MSG 

8 

Figure 4-24. Conversational MEE flew and Calls. 

ThE following notes relate tc the numbers in Figure 4.24: 

1. After receiving ccntrel, the MPP must initialize its vorking storage 
as this may contain leftover data from a previously processed 
messagE (likEly frcm accther terminal). 

2. The MPP retriEVEs thE SPA with a GU call, referencing the Ie-FeE. A 
blank status code means the SFA is placed by IRS/VS in the SPA-ABEA 
specified in thE call. A OC status code means, there are no more 
messages in the input queue. The !FF must then return control to 

Data Ease Processing 4.69 



IMS/VS. Any other status code is an error condition and should be 
handled by an error code status routine (see "handling Error Status 
Codes" earlier in this chaFter). 

3. The actual terminal input is retrieved by a GN call, referencing the 
same Ie-FeE. A blank status code means the one input messagE 
segment is placed by IMS/VS in the MSG-AREA specified in the call~ 
Any other status code is an error condition. 

4~ lhe input is validated. This should include: 

• Checking the Sf A fcr status cf conversation; what was the 
expected itput 

• Checking the length of input message 

• Checking the format, value and consistency of input field using 
conversaticn eentrel informaticn in the SPA. 

This validation should be as complete as possible and be done before 
any data base accesses. 

5. lhe data base processing is done as before. Data base elements and 
their updatE status required for subsequent input message processing 
can be sa~ed in the SFA. 

6. lhe updated SFA is returned to IMS/VS with a ISRT call. Only a 
blank status ccde is acceptable. If the SPA content is of no use in 
the processing of the next terminal input, the conversation should 
be terminated ty blanking the transaction code in the Sf A before the 
ISR! call. 

7. ~he response output message is inserted to the originating LlERM via 
the I/O-peE. One ISR~ call is required for each output message 
segment. Any non-blank status code is an error conditior. 

Eq lhe processing cf the current input message is now completed. 1he 
Frogram shculd ncw gc back to the initialization of its working 
storage and the retrieval of the next SPA + input message (if any). 

SA~FLE CCNVEBSAIICNAl P.~Is 

Two CCEOL and PL/I ccnvErsaticral MPPs are included in IMSVS.PRIMESRC: 

• PE4CORDR (member DF~qCNE. fOI COBOl and DFS4FNEW for FI/I), which 
frocesses transaction TE4COFtR for the insertion of new custcmer 
orders intc the data base. 

• PE4COCDEL for COBOL and DFS4PDEL fCI PL/I (member DFS4DEL), which 
Frccesses transactions lE4CODEL and ~E4CCCNG for the deletion and 
change, respectively, of customer orders in the data tase. 

You should study tbese FIcgrams, eSFecially the way they handle the 
inFut message, output messages, and the ~PA. 

Testing of a MPP can most efficiently be done in batch mode using a 
terminal simulatcr Frogram, such as the FDP, ~~!£h I~~minsl ~i!Yl~!~~ 
I!, 5196-PG1. 

Fcr mere information see SH20-1S44, "ETS II Program Descripticn And 
Cperation Manualu" 

4.70 IMS/VS Frimer 



This chapter consists cf thrEe farts: 

1. IntIcduces the function of data base reorganization in a DIll 
environment. It is a first-time in~roduction into the requirements 
for, and the ~Ioces~ ~f, data base recrganization. It gives an 
cvervie~ of the DIll u~ilities for ~eorgdnizaticn to be used in the 
sutset. 

2. Gives a for.mal description of the available DL/I utilities for data 
base reorgani2ation. As such, it is the main source of referencE 
for the actual use of the utilities. 

3. IntIoduces the use of the utilities for a particular environment. 
It froceeds along the three phases of our subset sample environment 
from the reoIganizaticn cf ene data base up to the transition of one 
Fhase into another~ Samples are provided for each function. It 
contains guidelines fcr the d~sign of yeur own reorganization 
Frcced~res. 

ReoIganization is the process o.f changing the physical storage and/or 
structure of a data base tc tetter achieve the applicatioL's pcriocmance 
requirements. ie distinguish tetween the following two types: 

• Physical reorganizaticr:, tc optimizg the physical storage of the 
data base. 

• Logical rgorganization, to optimize the data base structure. 

Physical reorganizaticn is ner~ally required by one of the following: 

• Degradation in proc~ssin9 program performance due to degraded data 
base storage, that is, the segments belonging to onE data tase 
r~cord are sterEd eVEr eXCEssive CI/blcCKS. This is normally shown 
by an increase in the number of physical 1IOs per transaction. 
Chapter 9, "Optimizatien," Frovides guidelines for monitoring this. 
Additionally, the VSAP. catalog contains the number of centrol 
interval Ie!) and ccntrcl area (CA) splits. This information can be 
printed ~ith access method ser~ices. 

• lack of free space in the data base, caused by (foreseen) largE 
quantities of s~gmEnt inSErts. Again, for VSAM, the catalog will 
previde information on this. For HDAM/CSAM the VTOC can be checked 
for the use of seccndaIY extents. Alse, for HDAM, an increase in 
the number of I/Os per transaction could indicate ap BAA (rc~t 
addres3able area) which is tee small. 

]E!~: Should an acnorlal termina~icn due tc lack of disk space occur 
during ncrlal Frccessing, ~he standard recovery procedures of Cha~~~r 6, 
"Data Base Recovery," should be used. The allocated space to the 
affected data base must cf CCUIse be increased. 

tata EaSe Eeorganiza~ion/Load Processing 5.1 



logical recrganization is normally caused bj design chanqes in the data 
base. In our subset we will address some changes under the topic 
"Applying Structural Changes" later in this cha~ter. 

THE fREQUENCY O! REORGANIZA~ION 

~he freguency cf reorgani2ing is largely dependent on the a~~licaticn 
environment. HCWEVEr beth VSAM and DL/I contain special facilities to 
minimize the nEed fer reorganization. If the initial allocation of 
sFace includes suffici~nt (distribut~d) free space, the need for 
physical reorganization weuld ncrmally be quite low (typically once or 
twice a year). 

~l~g§_I~_~~Q~~A~!~~IIQ] 

!here are three major LtEPS in reorganization: 

1. Unlcad the data tasE~. 

2. Delete the old space, redefine the new space, and optionally change 
DBD parameters (tEtG!~). 

3. Restore the data bases. 

Eecaus@ step 2 atevE deletes the existing data base, it is recommended 
that you make an image cc~y (SEe Chapter 6, "Data Base Recovery") just 
before you do ~he unload. Another method would be to rename the old 
data spacE and define ~ew data s~ace. !he old data space can then be 
deleted after reorgani2ation and subsequent imag~ copies arE made. 

You should also make image dumps of all your data bases immediately 
after the relcad and tefcre any a~plicaticn program is executed. 

The tL/I reorganizaticn utilities provide three basic functions: 

1. The reorganization of 0111 data bases. 

2. Establishing logical relationship connections when initially loading 
data tasES havjng lcgical relaticnships. 

3. Creation of secondary INDEX data base(s) when you load data bases or 
when ycu reorganize ~hem. 

!he seven basic utility ~ro9rams involved in data bas€ 
reorganizaticn/load ~rccEssin9 are: 

1. INDEX Beorgani2ation Unload (DF SUR OLO) 

2. INDEX Reorganization Peload (DFSU BELO) 

3 ... HD Beorganization {lnload (DFSU BGUO) 

4 .. flD Beorganizaticn EElcad (DiSU EGLO) 

5. Data EaSE Prerecrgari2aticn (DFSORPRO) 

6. Data EaSE Pr~fix R Esoluticn (DF SURG 1 C) 

7. tata Ease PrefiJ Update (DF SURGPO) 

5.2 IMS/VS Primer 



Of these utilities, the~e are two types: physical reorganizaticn 
utilities ano logical IelaticnsbiF resoluticn utilities. 

PHYSICAL REORGANIZA1ION U1ILI!~ PROGRA~S 

There are twc sets each ~f two physical reorganization utilities. 

Ih~_!BQ~!_~!2I~!n!!~!~Qn_~!~!!~!~§ 

The INDEX Reorganizaticn Unlcad utility (DFSURULO) and the corresponding 
INDEX Reload utility (IFSORRLO) can be used to: 

• ~ecrganize the primary index data base of a HIDAM data base. 

• Create a seccndary index data base. 

• Reorganize a secondary index data base. 

!he HD Reorganization Unload utility (DFSUBGUO) and the corrEspcnding 
Reload utility (r}SURGLO) can be used to: 

• Reorganize a EDAM, HIDAM, cr EHISAM data base. 

• Create ~ork data sets if the data base being relcaded includes 
logical Ielationships and/or secondary ind~xes. 

• The HI: utilities should be used for the unload/reload of a SHISAM 
data base only if this data base is to be converted to a HDAM or 
BItAM data tase. 

• Use of the HD Unload/Reload utilities in making structural changes 
to a data base is discussed later in this chapter under "Applying 
Structural Changes." 

LCGICAL RELATIONSEIP RIS01U110N U!ILI!Y PRCGRAMS 

The fcllewing three logical relationship resolution utilities ~rcgIams 
are required wben initial leading or reorganizing data tasEs with 
logical relationships: (1) Data Base PrerecIganizaticn, (2) Data Base 
Prefix Resolution, and (3) rata Base Prefix Update. 

This utility creates a control data s~t that is used by other utilities. 
This contIol data set is ~eeded when iuitially loading or reorganizing 
data base(s) with logical relationships and/or secondary index~s. 

~~!s_~~~§_iI~!i!_]~~Q!~!!Qn_TI!i!~tl 

This utility comtines and serts all work data sets generated by the ~D 
Reload utility o~ by the initial data base load process. This utility 
generates an output work data set that contains the prefix information 
needed to complete the loading and/or reorganization of data bases which 
contain logical relaticnshiFs. If secondary indexes are present, a 
s€parate output data SEt is alsc generated, used to build these indexes. 

Data Base Reorganization/Load Processing 5.3 



£~!~_~!§!_!~!'!!_QEg~~!_~~!li~I 

!his utility uses the output data set generated by the Data Base Prefix 
Resolution utility to u~datE the prefix of each segment whose prefix 
information is affected by a data base load and/or reorganization. 

A flow diagram of the INDEX ReoIganization Unload utility is shown in 
Figure 5·'. 

DBD 
LIBRARY 

VSAM 
KSDS 

INDEX REOR­
GANIZATION 

.....----~ UNLOAD 
DFSURULO 

INPUT 
CONTROL 

STATEMENTS 

OUTPUT MES­
SAGES AND 
STATISTICS 

Figure 5-1. INDEX Reorganizaticn Unload Utility 

Jet STATEMEN'IS 

~he INDEX Beorganization Unload utility is executed as a standard OS/VS 
jet. ihe follcwing Jet statements are required: 

EXEC 

IMS 
DD 

SY5PRIN'I 
CD 

SYSIN 
tD 

This statement must be in the form: 

PGM=DFSRRCOO,~AF.M='ULU,tFSURULO· 

tefines thE likrary containing the DBD that descrites 
the data base to te reorganized (that is, 
DSN=IMSVS.DBDLIB,DISP=SHR). ihis data set must reside on a 
direct access device. 

IefinES the cut~ut message and statistics data set. 

refines the input control statement data set. 

5.4 IMS/VS Frimer 



,samin 
DD 

dataout 
DD 

indeIw~k 
DD 

DFSVSAMP 
tt 

DefinES tbe ~SAM KSDS data set to be reorganized. 
The ddname must te the sa~e as the name in the DBD that 
descrites this data set. It lust also appear on the 
utility control statement in the SYS!N data set of this 
jet steF. 

Defines the reorganized output data set. It can be 
any nam~, but the name must appear in the associatEd 
utility ccntIcl statement. ~he data set must reside on 
eith~r tape or a direct access device. 

This sequential data set is tlccked to the tlocksize of 
the outFut device, uF to a maximum of 16~. Since the 
blocking factor is determined at execution time, standard 
labEls must te used on all output volumes. 

DeSCIibes the output data set (DFSURlDX) from the 
Prefix ~esolution program which contains secondary index 
infcImation. ihis statement is required if the utility 
contIol statement is type "I"; otherwise, it is optional. 
ThE ddname must be the same as the name starting in 
position 40 of the control statement. 

tesc~ites thE data set that contains the buffer 
informaticn rEquired by the DIll Buffer Handler. Thi£ Dr 
statement is required. (For additional informaticn, see 
."Defining the IMS/VS Data Base Buffer Subpools" in 
~hapter 1.) 

UTILITY CONTEOL S!A7EM!NT 

, 
, B , dbdname vsalin 
1 X ddnamE 
I 

datacut 
aanalE 

indexvrk [comments] 
ddname 

2 

4 

13 

22 

~his must be either 'F' or 'X'. An 'R' sbould tE coded if 
this is a S€~aIate reoIgani%aticn of an existing INDEX 
data base. An ·x· should be coded if this is the creaticn 
of an INDEX data base, that is. if the VSAM KSDS is 
"emfty." 

!his must bE a 1. There is nc default, and if this field 
is left tlank an eIror message is generat~d. 

This must be the name of the DBD that includes the KSDS to 
be reorganized. 

!his must bE thE ddname of the KSDS to be reorgani2ed. It 
must apPEar in the referenced DBD, and a corr~sponding DI 
statemsnt must have been provided. 

~his must bE the ddname of the output data set. A 
corresponding DD statement must have been provided. 

Data Ease ~eorganization/Load Processing 5.5 



50 

lhis lUSt te the ddname of the secondary index work eata 
set if ~his control stat~ment is type "XU. 

Comments can be ~laced in ~csitions 50 through eo. 

]21§: All other ~csitic[s must be blank. 

RE!UBN CODES 

This program returns cedes ~r€cedad (in the cas~ of ereors) by numbered 
messages to the SY£FRINT data set which more fully explain the results 
of program eXEcuticn. The return codes are as follows: 

o All requested c~erations have successfully completed. 

One or more o~erations have not successfully completed. 

8 Severe errors have occurred causing job termination. 

12 A combination of error codes 4 and 8 has occurred. 

06!PD! MESSAGES A~D STAT!S!lCS 

~he !NDEX Eeorganiza~ion Unload utility provides messages and statistics 
on data tass ccntent fcr each data set. In addition, it provides an 
audit trail capability. 

EXAMFIE 

A discussion cf the use cf t~is utility, together with an example, can 
be found under the topics "Reorganizing an INDEX D~ta Ease" and fllnitial 
Data Base Load Erocessing" later in this chapter. 

A flew diagram of the I~rEX ieorganization Reload utility is shown in 
Figure 5-2. 

5.6 IMS/VS Primer 



DBD 
LIBRARY 

INPUT 
CONTROL 

STATEMENTS 

Figure 5-2. 

INDEX REOR- RELOADED 
GANIZATION ~ __ ...... ~ 

~----------~ RELOAD ~ INDEX 
DFSURRLO ~~~~ 

OUTPUT MES­
SAGES AND 
STATISTICS 

IND!l Eeorganization Feload Utility 

Jet S'IAiEMEN'lS 

The INtEX Reogranizaticn Relcad utility is executed as a standard OS/V5 
job. A JOB statement (defined by the using installaticn). an EXEC 
statement, ~nd Dt statements that define inputs and outputs are 
required. 

EXEC 

IMS 
DC 

SYSPRIN'I 
tt 

DFSUIN01 
tD 

vsamout 
DD 

DFSVSAMF 
DD 

This statemeTlt must be in the form: 

PGM=tFSRRCCO,PARM~'ULV.DFSURRI0' 

Defines the litrary containing the tED which describes 
The data tase t~ing reorganized. This data set must 
reside on a direct accass d€vice. 

rEfinES the cut~ut mEssage and stati~tics data set. 

Defines the unloaJed input data set. This data SEt 
must be created by D1SUBULO. 

tefines the KSDS cut~ut data set to be reloaded. The 
ddname must be the same as the name in the DED that was 
referenced when this data set vas unloaded. 

tescribes thE data set that contains the tuffer 
informaticn required by the Dl/I Buffer Handler. This Dt 
statement is required.. (For addit ional informaticn, see 
"Defining thE IMS/VS Pata Base Buffer Subpools" in 
Chapter '. "Installing IM~/VS.") 

Data BasE Reorganizaticn/Load Processing 5.7 



Note: No SYSIN DD statement or utility control statements are required 
for-this utility_ 

EE~ORN COIES 

The following return codes are Flovided at program termination: 

~!!n!ng 

o All OFeraticns have successfully ccmpleted. 

4 ene or more warning messagES issued. 

8 ene or more operations haVE not completed succEssfully_ 

16 Severe errors have occurred causing program termination. 

OU~PU~ ME~SAGES ANC STATISTICS 

!h~ INDEX Reorganization Beload utility provides messages, statistics 
and an audit trail for thE data set being reloaded. 

EXAMPLE 

A disc~ssion of the use of this utility, together with an example can be 
found under tbe topics "Recrganizing an INDEX Data Ease" and "Initial 
tata Ease Loaa ProcEssing" later in this chapter. 

The Et Reorganizaticn Unlcad utility can be used to unload an HDAM, 
HIDAM, or SH!SAM data base to a QSAM formatted data set. There are no 
utility contrel statements for this utility. 

A flow diagram of the ED Reorganization Unload utility is shown in 
Figure 5-3. 

5.8 IMS/VS Frim~r 



DATA 
BASE 
DATA 
SET 

DATA 
BASE 
DATA 
SET 

DBD 
LIBRARY 

HD 
REORGANIZA· 

- - ... TION UNLOADt-----~ 
DFSURGUO 

OUTPUT MES­
SAGES AND 
STATISTICS 

Figure 5-3. fiD Reorganization Unload Otility 

JeL STATEMEN~S 

~he HD Reorganization Unload utility is executed as a standard CS/VS 
jot. ~he following Jel statEments are required. 

EXEC 

1115 
DD 

SYSPR1N'I 
tD 

DF5URGU1 
tD 

da ta base 
DD 

~his statement must te in the following form: 

PG~=DFSRFCOO.FA!~='UIU,DFSUEGOO,dbdname' 

where the FalaleteIs ULU and tFSURGUO describe the utility 
region, and dtdname is the na~e of the DED which describes 
the data base to te reorgani7ed. 

Defines the litraty (IMSVS.tEtLIB) containing the DBD 
which desclitEs tbe data base to be reorganized. This 
data set must reside on a direct access device. 

refines the less8gE and statistics output data SEt. 

Defines the sequential, variatle blockEd output data set. 
This DD statelent must be supplied. 
ThE data set can reside on either taFe or a direct aCCESS 
device. Since output is blocked to the maximum size the 
output dEvice can handle. up to SK, standard labels must 
be used on output volumes. Standard labels must tE used 
on cutput velumEs. 

Defines the data base data set to be reorganized. 
~he ddname must match thE ddname in the DED. 

Data Base Reorganizaticn/Load Processing 5.9 



DFSVSAMP 
DD 

FETURN CODES 

If this is a HIDAM data base, you must also includE a DD 
statement fer the primary index. That DO name must be the 
same as specified in the primary INtEX DBD. Ne 00 
statE Dents are required fOI any secondary indexes 
associated with this data base. JCL must be included for 
all lC9ically related data bases, even though thesE data 
bases are not unloaded. 

Ihis data set Gust reside en a direct access device. 

tescrices the data set that contains the buffer pool 
information required by th~ OL/I Buffer HandleI. This DD 
statefent is required. (Fer additional information, see 
"Defining the IMS/VS Data Ease Buffer subpools" in 
ChaptEr 7, "Installing IMS/VS.") 

!he following return codes are provided at program terminaticn: 

o 

4 

e 

12 

16 

tata base unload successful. 

Cne er morE warning messages issued. 

SeVEre errer bas cccurred. 

Multi~le warning and/or error messages issued. 

tata base unload not s~ccessful. 

OUTPUT MESSAGES AND S~A~ISTICS 

The HD Becrganization Unload ut~lity provides eut~ut messages and 
statistics. An exa~Fle cf the messages and statistics obtained from this 
utility, accompanied by eXFlanatory infcrmation, is provided in Chapter 
3 cf the I~~L1§ ~~!ID~~ ~2!E!! !i§i!llg§ manual. 

EXAMPLE 

A discussion of thE use cf this utility, together with an example, can 
be fcund under the topic "Reor9anizin9 a HDAM or HZDA~ Data Ease" later 
in this chapter. 

T~e HD Fecrganization Eeload utility can te used to: (a) relead an HDA~ 
or HIDAM data caSE frcm a data set created by the HD Unload utility, and 
(b) create work data sets (if the data base to be reloaded includes 
logical relationshi{s cr sEccndary indexes) which are to be used as 
input to the logical relationship resolution utilities. 

A flew diagram of the Ht Reorganization Feloan utility is shewn in 
Figure :-4. 

5.10 IMS/VS ~rimer 



DBD 
LIBRARY 

INPUT 
CONTROL 

STATMENTS 

/ 
/ 

/ 

/ 

/ 
/ 

HD 
REORGANIZA­
TION RELOAD 

DFSURGLO 

" / 

DATA 
BASE 
DATA 
SET 

DATA 
BASE 
DATA 
SET 

~--...-. ---1 
INDEX 
DATA 
SETS 

,-_ ...... 
Figure 5-4. HD Eeorganization Feload Utility 

Jel SlA'IEMEN'IS 

The Et Reorganization Reload qtility is executed as a standard OS/VS 
jeb. The follc~in9 JCL statements are required. 

EXEC 

DD 

SYSFIUN~ 

DD 

DFSU1NP! 
tD 

tFSORfliF1 
tD 

This statement must bE in the form: 

PG~=DPSBFCOO,FABl='UIU,DFSOBGlO,dbdname' 

where dbdname is the name of the DEt which includEs t~e 
data baSE tc te rElcaded. 

Describes the litrary containing the DED referencAd 
in the E~EC statement FAFM fiEld (nermally this is 
IMSVS.DBDLIB). ~bis data set must reside on a direct 
access device .. 

Defines the IESS8gE cutput data set. 

Describes the input data set £ontaining the data to 
tE rEloaded. This is the data set created by the ED 
Recrganizaticn Unload utility. 7he data set must reside 
either on tape or a direct access device. 

tescribes thE data set to be created during reload 
that will bE used as input by the Prefix Eesolution 
utility IDFSUEG10) to resolve logical or secondary index 
relationshiEs. ~his DD statement must always be present. 
It can specify Dt DUMMY if the data base is net involved 
in logical r~laticn~hips or secondary indexes. 

tata Ease Beorganization/Load Processing 5.11 



database 
ED 

DFSORCDS 
tt 

DFSVSAMP 
DD 

BElDiN cotES 

~be ~CB paramEters for the DD statement must include 
lRECL=300, REC1M=VE, and ELKSIzr; specified 1:0 1:e tl,E salt€ 
as that s~ecifi€d for the work data S€t of the user's 
initial load program. A full track blocksize or 8-16~ for 
taFe iE reccmmEnded. 

~hE data set must reside either on tape or a direct access 
device. 

tefinEs the data base data ~et to be reorgani,ed. 
One statement of this tYFe must be present for each data 
set that app~ars in the tnc which d~scribEs this aata 
tase. ~he ddname must match the ddname in the tEte 

If this is a ElDAM data tase, a DD statement must also be 
included for the KSDS of the primary index. This ddnaree 
is sFEcified in the DBD f cr the inde x da ta base. No tD 
statements are required for any secondary indexes 
associated witb this data base. 

lhis data set must reside on a direct access devic€. 

refines the control data set for this frogram. This 
data set Must be created by the Pre reorganization utility 
(tFSURPRO). ~his DD statement must be included if logical 
relationships exist. 

Ibis data set must reside cn either tape or a direct 
acces~ device. 

tescribes the data set that contains th~ buffer pool 
information required by the DL/I Euffer Handler. ~his DD 
staterent is required. (For additional information, see 
"Defining the lMS/VS Data Ease Buffer SuhFools" in 
Chapter 7, "Installing ItJS/VS. tI) 

The following return codes are Frovided at program termination: 

o Data tase relcad successful. 

16 Cata base reload unsuccessful. 

OUTPUT MESSAGES AND S~A!IS~ICS 

The HD Reorganization Reload utility provides output messages and 
statistics. An example of the messages and statistics ottained frcm this 
utility, is ~rovided in Cha~ter 3 of the !~~L!~ ~;~m!I ~~m~~! li§Iing§. 

EX AMPLE 

A discussion of the use of this utility, together with an example can be 
found undEr tte topic "Becrganizing a HDAM or BIDAM Data Base," later in 
t his chapter. 

5.12 IMS/VS Primer 



The tata EasE PrEreorganizaticn utility creates a control data set that 
is used by the ether logical relationship resolution utilities. This 
utility must be executed before you initially load or reorganize any 
data base which contains logical relationships and/or secondary indexes. 

The input to this utility is a data set which consists of the utility 
control statements that namE the data base Is) being loaded and/or 
reerganized. !he DEDs that are used for the data bases named on these 
statements must define each data base as it is to exist after the 
logical relationships and/or secondary indexes are established. These 
DEts must not be modified ~Dtilthe Prefix Update utility has been 
successfully executed. 

The output is a control data set that is used by the HD Recrganizatich 
Reload and by the tata BaSE Prefix Fescluticn utilities. It is also 
used during the initial load of data bases with logical relationshiFs 
and/or seconcary indexes. 

A flew diagram of the Data Base Prereorganization utility is shown in 
Figure 5-5. 

DBD 
LIBRARY 

DATA BASE 
PREREORGA­

NIZATION 
UTILITY 

DFSURPRO 

CONTROL 
DATA 
SET 

INPUT OUTPUT 
CONTROL MESSAGES 

STATEMENTS 

Figure 5-5. tata BaSE Prerecrganizaticn Utility 

JCL S'lA'lEMEN'lS 

The tata Base Prereorganizaticn utility is executed as a standard as/vs 
job. A JOB statement (defined by the using installation), an EXEC 
statement, and Dr statements that define inputs and outputs arE 
required. 

EX EC 

IHS 
CD 

This statement must be in the form: 

FGM=tFSRP.COC,PARM='ULU,DFSUBPRO' 

Defines the litrary containing the tBDs which describE 
thE data tasES Damed on the input control statements. 
This DD statement must always be included. The data set 
must reside cn a direct access device. 

Data BasE Reorgani7ation/load Processing 5. 13 



SY~!N 

DD 

SYSPRIN~ 

tt 

tFSUFCDS 
Dt 

Ihis data set viII contain input control state~ents. 
DCB paraleters SFEcified within this program are B!CFM=FE 
and IFECI=804 EIKSIZE must be provided on this DD 
statement. If BLKSIZE is nct specified, there is no 
default and the results are unpredictatle. 

tefine the ~essa~e output data set. 
7he DCB parameters specified within this program are 
RECF~:FE and IBECL=120. ELKSIZE must be provided cn this 
CD statement. If BLKSIZE is not specified, there is no 
default and the re~ults are unpredictatle. 

te£inEs the cutfut data set fer this program. This 
data set is the control data set used by subsequent 
utilities. This DD statem~nt must always be included. 

DCB paral€ters specified within this program are RECFM=FB 
and LRECl=1ECC. SLKSIZE must be provided on this tt 
statement. 

01ILI!Y CON~BCI STA~!~E~TS 

80 
r-~----~----~---~----·-~---~~~---------~--~-~--------- -------------, 
I 
, tEIl=database name1,database Dame2,4 •• , (comments] 

1his utility control statement names data bases to be !niI!sllY l~!g~g. 
One or more of these statements can be ~rovided. Each OED name must be 
left-justified to provide a total length of a characters. If the DED 
name is less than 8 characters, sufficient trailing tlank characters 
must be provided to make a tctal of 8 characters. A blank must follow 
the last entry on each statement. If a HIDAM data base is to be 
initially loaded, only its DBD name should be listed on a DEll control 
statement. Neither the HIDA~ primary index nor any secondary index DBD 
names should tE listed. 

~o , 
, DBR=database name1,database name2, ••• [comments] 
I l-- ___________________________________________________ -------------~ 

This utility centrol statement names data bases to be ~!Q~g!qil~g. Cne 
or mere of these statements can be provided. Each DBD name must be 
left-justified to provide a tctal length ef 8 characters. If the DBD 
name is less than e characters, sufficiett trailing blank characters 
must be Frcvided to make a total of 8 cha~acters. A t1ank must fellow 
the last entry on Each ~tatelent. 

If a HIDAM data base is to te reorganized, only its DeD name should be 
listed on a DEB control statement. (Neither the HIDAM primary indEX nor 
secondary indEX DBE DalES should be listed.) 

5.14 IMS/VS Erimer 



, 
, CPTICN~='NCPUNCt,STA!,SUP.r.) , 

80 

~------------------------------------------------------------------~ 

This utility contrel statEIEnt lust be coded as shewn above in our 
subset. It directs the prefix resolution utility to provide statistics 
on the number ef sEgments teing uFdated and the number of logical 
Farents without lcgical childrenu 

RE'IURN coors 

The following return codes are Frovided at Frogram t~rmination: 

o No errors detected. 

8 One or more error messages have been issued. 

CUTPUT M!SSAGES 

The outpu~ messages issued by this utility indicate the data bas. 
operations that must te ferfcrlEd ~rior· to execution of the Prefix 
Reseluticn and tha ~refix Update utilities. For instance: 

• Data cases listed aftEr the characters tEIL= in message DFSe611 must 
be initially lcadec. 

• Data bases listed after the characters DER= in message DFS8611 must 
be reorganized using- the Ht Eeorganization Unload/Reload a'tilities. 

• rata tas€s listed aft~r the characters tES= in message DFSe€21 ~ust 
be specified cn a tBR = ccnt Icl card, a nd the uti Ii ty III ust be 
re-executed. If this occurs, you may have omitted a data tass tc be 
reorganized. 

'the Data Base Prefix Eesolution utility accumulates the infcrmation 
generated on wor~ data sets during the lead and/or reorganization of one 
or more data bases. It produces an output data set that contains the 
prefix information needed to complete the logical relationships defined 
for the data base(s) and, optionally, an output data set containing 
information needed to lre)create secondary index data bases. There art 
no utility contrel statements for this utility. 

BES'IRIC'IICNS 

The Data Ease Prefix Resolution utility uses the OS/VS Sort/Merge 
Frograms. Since the maximum sort field permitted by Sort/Merge is 256 
characters, certain limits must te observed. The following restrictions 
apply in our subset: 

1. For any given logical parent/logical child pair, the sum of items a 
and b below must not exceed 200 characters (the balance of 56 
characters is used by IMS/VS for control purposes) : 

a. The length of the logical parent's concatenated key. 

Data BaSE ReorgaDization/load Processing 5. 15 



b. 1he length of the sequence fiEld of the logical child as seen 
ty its lcgical ~arEnt. 

2. The sum must be computed once for the logical parent and once for 
the lcgical child. These summations are treat~d separately. 

the Data EasE PrerEcrgarizatien utility ~erforms the above limit check 
fer lcgical parent/logical child combinations affected by an intended 
data base initial lead or reload. It should be noted that the limit 
check is a worst-case check. If the limit check fails for a logical 
parent/logical Child combina~ion, message DFS885 will te issued. Refer 
to the l~~l!~ ~§§§2S§§ 2~~ ~fg!§ g~!~I§]~~ ~~~B~l for an explanation of 
the message. 

A flow diagram of the Data Base Prefix Resolution utility is shown in 
Figure 5-E. 

CONTROL 
DATA 
SET 

DATA BASE 
PREFIX 

RESOLUTION 
UTILITY 

DFSURG10 

I \ 
~----

SORT 
WORK 

DATA SETS 

Figure 5-6. tata BaSE Prefix Resoluticn Utility 

Jet STATIMENTS 

!he Data Ease ~refix Resolution ut~lity is executed as a standard OS/VS 
jot~ A JOE statement ~defined by the using installation), an EXEC 
statement, and CD statE~ents that define inputs and outputs are 
required. 

EXEC 7his statement must he of the form: 

PG~=DFSUEG10,EABM='opticns' 

Since this ~rcgram invckes the operating system Sort, 
program efficiency can be improved ty incrEasing the 
~artiticn/regicn size. 



SYSPRINT 
DD 

SYSOG1 
tt 

SOR!LIB 
DD 

SOR~WKnn 

DD 

SOR!IN 
tD 

DFSVRWF2 
DD 

DPSUBWF3 
DD 

The PARM field can be used to specify options for the 
SCF!/MEF.GE program. A recommended option is 

PARM='SI2E=En' 

n is the estimated number of records to be sorted. 
Specification of this parameter improves significantly the 
SOR!/MERGE Ferformance. Guidelines for calculating the 
number of SCET/MEBGE input records are provided under the 
tOFic "~crk Data SEt Allccaticn" later in this chapter. 

Defines the IEssage output data set for this program. 

tCE para;EtEI~ sFecified within this program are RECFM=PB 
and LRECl=12C. BLKSIZE must be provided on the SYStEI~T 
DD statement and must be a multiple of 120. 

Defines the message output data set for Sort/MergE. 

Defines a data set containing load modules for the 
opErating system SOIt/Merge Frogram. This DD statement 
must always be included. 

iDe fines intErmEdiatE storagE data sets fOI tbe 
opErating system Sort/Merge Frogram. Fefer ~o the 
aFFropriate operating system Sort/Merge manual regarding 
specificaticn cf Dumber and size of intermediate storage 
data sets. These DD statement(s) must be includEd. 

Defines the in~ut data set for this program. This DD 
statement must always be included. It is referenced by 
the operating system Sort/Merge program and must ccnform 
to its Jet requirements. ~he data set(s) referenced by 
this DD statement must be the output vork data SEt(S) 
procuced during a data base initial load or reload 
operation; those vork data sets must be concatenated to 
form the SORtIN data set. 

DeE parameters specified within this program are EECF~=VE 
and LEEel=300. The ELKSIZE must be the same as that 
spEcified for the werk data sets (iF's) written daring 
initial data tase load, or data base reload. 

Defines an intermediate sort work data set. This DD 
statement must always be included. The data set can 
reside on a tape or direct access device. The size ~f the 
data set vill te ap~roximately the same as that of the 
input data set defined by the SORTIN DD statement. 

DeE paralete~s s~Ecified within this program are RECFM=VB 
and LRECl=~CO. BLKSIZE must be provided on this !t 
statement. If EIKSIZE is not specified, there is no 
default and the IEsults are unpredictable. 

The output data set defined by this statemant will 
be supplied as input to the Prefix Update utilitY4 This 
statement must always be includedQ The data set can 
rEside on ta~E OI direct access device. Its size will be 
appro2imatel, the same as that of the input data SEt 
defined ty thE SORTIN DD statement. 

tata EaSE BeorganizationlLoad Processing 5.'1 



DF~ORCD5 

Ct 

OFSURIDX 
OD 

EETUBN CODES 

DCB para.ete~s specified within this program are BECFM=VE 
and IE!CI=300. EIKSIZ! must be provided on the Dl50RWF3 
DD statement. If BLK5IZE is not specified, there is no 
default and the results are unpredictable. 

Defines the control data set for'this program. It 
.ust te thE cut~ut centrol data sets generated by the 
Prereor1anization utility. This DD statement must al~ays 
be included. 

Defines an output york data set which will be used if 
secondary indexes are present in the naDs bein~ 
reorganiz~d/lcaded. All notes on DFSURWF3, above, apply to 
this data set also. This data set must te USEO as inFut 
to the INDEX Unlcad program (DF5URUlv) for (re)creatinq 
secondary indexes. This DC statement is required only if 
seccndary indeXES are present. 

~he following return codes are provided at program terminaticn: 

o 

4 

8 

12 

16 

~~!B!ng 

No errors detected. 

Retnrned when either one or both of the follo~ing mEssages 
bav£ teen issued during ~rogram execution: 

tF5E1e, DFsee5 

Eeturned when one or morE of the following messages bas 
teen issued during ~rcgram execution: 

tF5e~~, DF5E55. OF5857, DF5876. DF5877. tF5879, 
t5F880, tPS881 

or if no data is written te the WF3 data set. 

Returned when either one or both of the messages listed 
und€r return code 4 ~~~ anyone or more of the ressages 
listed under return code 8 have been issued. 

Returned ty OS/VS Sort/Merge ~rogIam. This return code 
takes ~recedence over the above return codes. 

!Q~~: For return cedes larger than 16, the same meaning stated above 
for r~turn code 16 apFliEs. 

If either an e, 12, or 1E return code is returned by the Frefix 
Resolution utility (DF50FG10), the Prefix Update utility (DP5URGPO) 
should not be EXEcuted Sir:CE the input ~crk data set required by 
DF5URGPO will not have been generated by DFSURG10. The errors indicated 
by the diagnostic messages shculd be corrected, and the data basE 
operations should be redone before the Prefix Resclution utility is 
again attempted. Generally, execution is satisfactory if a return code 
of 4 is set. HoweVEr the SYSFRIN! list should be checked. Fefer to thE 
!~~~!~ H~~§~g~§ !ng ~Qg~§ ]~;~~~n£~ ~~nY~l for an explanation of the 
DFS878 and DFS885 cauticnary messages. 

5018 I~S/V5 ~rimer 



OUTFUT MESSAGES ANt S~A~IS~ICS 

If nc errors are detected by this program, statistics and a norlal 
program tErminaticn mEssage will be printed. 

The Data Base Prefix Update utility uses the output generated ty the 
Prefix Resolution utility tc uFdate the prefix of each segment WhOSE 
prefix infcrmation was affected by a data base load and/or 
reorganization. 

The output of the Prefix Resclution utility consists of ~ne or more 
upda te record.! tc ~e applied to each segment tha t contail1s logical 
relaticnship prefix information. The update records have teen sorted 
into data case ano se91ent ~bysical location order by the Prefix 
Resclution utility. 

A flow diagram of the Iata Ease Frefix Update utility is shewn in 
Figure 5-7. 

DBD 
LIBRARY 

DATA BASE 
PREFIX UP· 

DATE UTI L1TY 
DFSURGPO 

DATA 
BASES 
TO BE 

UPDATED 

OUTPUT 
MESSAGES 

Figure 5-7. Data Ease Prefix U~date Utility 

JCL S'IA~EMEN~S 

The Data Ease Prefix Update utility is executed as a standard OS/VS job. 
A JOB statement, an EXEC statement, and DD statements that define inputs 
and outputs are required. 

EXEC !his statement must te in the form: 

PG~=tfSRFCOO,FABM='ULU,DFSUEGFO' 

Data Base Reorganization/load Processing 5.19 



IMS 
tD 

SYSPRIN! 
DD 

DFSURiF3 
II 

database 
to 

tFSVSAMP 
DD 

BE!UEN cetEs 

Defines the library containing the DBDs which dEscribe 
the data tase(s) that were loadad and/or reorganized. 
Ihis ID statement must always be included. The data set 
must reside on a direct access device. 

tefines the eutput message data set. 

rCB ~arameters supplied by the ~regram are RECFM=FB and 
LR!CL=1~C. BLKSIZE must be specified on this II statement 
and must be a multiple of 120. If ELKSIZE is not 
specified, there is no default and the results are 
unpredictable. 

Defines the input work data set for this program. 
It must te thE cut~ut data set generated by the Frefix 
Eesolution utility. The data set can reside on a tape or 
direct access device. ~his DO statement must always be 
included. 

References the data base(s) that were initially leaded 
and/or reerganized. One DD statement must be present for 
each data set of a data base that has logical 
relationshiFs. !he ddname must match the DtNAP.E indicated 
in the DEt. If an HIDAM data base is operated upon with 
this utility, a DD statement must also be supplied for the 
KSDS of its primary index data base. 

This data set must reside on a direct access dEViCE. 

rescrites the data set that contains the buffer 
information required by the DL/I Buffer Handler. This DD 
statement is required. (Fer additional information, see 
"Defining the IMS/VS Data Ease E~ffer SutFcols" in Chapter 
7, "IDstalling I~S/VS.") 

The following return cedes are Frovided at program termination. 

o 

8 

Ne errers detected. 

Cne or more error messages issued. The messages contain 
details of the error(s) and are printed as part of the 
systEm outFut. 

OUTPUT MESSAGES 

If ne errers are detected by this program, the only output message 
issued will be a nermal ~rcgram termination message that indicatES the 
numtEr of r~cerds precEssF.d. 

BECFGANIZING AN INtEl DATA EASE 

!he steps to tE taken fer the physical reorgani2aticn of a primary or a 
secondary index data base are the same. 



a!~f_j1-_Y~l~!g_lh!_~!l!_]!§!_ 

Job IISAMP2e; in I"SVS.PRI~EJOB shows an example cf how to do this. 
!his jcb will unload the primary index of the sample CUSTOMER ORDER data 
basE. 

Using acc~ss method SErviCEs, the KSDS cluster must be deleted and 
redefined. ~nly the following physical attritutes can te changed befere 
the reload: 

• The amount of CASD spaCE: via access method services tlf1~1. 

• ~he C1 si~e: via the SIZE parameter in the CEt and access IEthcd 
services tIlINE. 

]Q1!: If the Cl SIZE is changed, a DBDGEN cf the altered data tase must 
be executed here. 

~!!E_]~ __ !!l£!g_lh!_~!!!_~!§!_ 

Job IISAMP28e in 1MSVS.PF1~EJOB shows an example. This job will reloaa 
thE primary index of the samplE Customer Order data basE. ThE jet alsc 
includes the necEssary aCCESS lethcd services delete and define 
commandsQ 

REORGANIZING A HtlM OE HItlr. tATA EASE 

The 3 basic steps in rEorganizing a HDA~ cr HIDAM data base are: 

~~!2_1i __ YB!9!9_!B§_~!!!_E!§!_ 

Job /ISAMP1S5 in I~SVS.PEIr.!JCE shows an example of bow to de this. 
This jot will unlcad the FhasE 1 Parts data base. BE1PAR~S. 

at!~-1l __ ~b!D~_g!I§is!l_f!I!!!l!!§_ 

The following physical parameters can be changed before the relcad: 

• the amount of DASC space: access method services or JCt. 

• The C1 size: SIZE pa~aEEtE~ in DBD and access aethod services 
DEFINE. 

• Size of the root addressable area and/or number of root anchcr 
points (HDAM cnly). 

~t~I_~l __ ~!ls~g_~!~_~!l!_l!§!-

Job I/SAMP1S6 in I!SVS.PRI!EJCE shows the reload of the phase 1 Parts 
data tasE. 

Note: In additi~n, several structural changes in the data base can be made. See "Applying Structural Changes" later in this chapter. 

Data BaSE Reorganization/Load Processing 5.21 



INDICA7IONS tHAt DATABASES f.AY NEED FECBGANIZATION 

To determine thE nEed fer data base reorganization, certain indicators 
sheuld be mcnitored. !hese indicators are different for CSA~ data tases 
and for VSAM data bases. 

In our sutset, HIDAM. SRISAM and INDEX data bases will always be VSAM. 
HDAM data caSES may be VSAM cr OSAM. As GSAM data bases are neve~ 
recrganized, .e are not concerned about them bere. 

For each access method lVSAP-, CSAM) there are two sources of information 
which can sigDal thE nEed tc reerganize: 

• The DASD voluma table ot contents or VSAM catalog data, which does 
not r~late to a specific execution of a job, and 

• 7he tuffer peol statistics that do relate to execution of a specifi~ 
jeb. 

Tha VTOC of the DASD velume on which an C~AM data base resides may te 
retrieved by the CS/VS utility IEHLIST, with a control record as in the 
following exam~le fcr the phase 1 PARTS data base: 

LISTVTOC fORMAt,VOl=~33C=IMSPRM,DSNAr.F=IMSfFIME.DElfARTS.[EASE 

A g~Q!~h in the number cf extents (the field identified by uNO EX!") may 
indicate that a reorganizaticn is needed. Ty~ically an OSAM data set 
has only one eJtent. the message about the number of empty cylinders 
and t~acks in this dataset is not necessarily accurate for a data base, 
so it should tE igncred. 

The buffer pool statistics Obtained by the use of sample routine tFSOAST 
and ~rinted on tt statement //tOOASTA, also provides indicatcrs if ~ell 
monitored. Chapter 9, "OFtilization," Frovides more guidelines for 
this. 

Statistical data about VSA~ clusters is maintained in the VSAM catalog 
and is availatle by runni~g VSAM's Access Method Services with a control 
card such as the following for the phase 2 Customer Orders data base: 

LIS7CAT CltSTER All Et\TEIES (Ir!S1:FIME.DE2PCDS'I.tDASE) 

The major indicatoIs can be found in the DATA portion of the cluster, 
under the STATISTICS heading. The RECCRDS DELETED and INSEETEt fields 
~ontain ceunts of this activity from the last creation (initial lead or 
reorganizaticn) of this data base. A large number, relative to data 
base size, in either or both fi~lds may indicate a need for 
reorganization. 

Mere impoItant are the SPLITS counts for CA and CI. Control Area «(A) 
splits indicate that significant space is being claimEd and that it is 
reorganizatien time. Ccntrel Interval (CI) s~lits indicate the same, 
but to a somewhat lesser extent. The NUHEER of EXTENTS should net grow. 
If they do, reor~anize. 

There is one ether field, a~plicable te both the DATA and INtEX portions 
of a cluster, that ~ill vary with the number of EXTENTS. This field, 
called TOTAL BYTES IN DA~ASEt, indicates the number of free bytes left 

5.22 IMS/VS Primer 



in the DA~A or INtEX portion~ As this freespace approaches ~ere, you 
are approaching the reguirelent fer a new extent and you should consider 
recrganizing. 

The buffer pool for VSAM is ergani~ed into subpools, with one sutFcel 
for each control interval si2e. In our exalples, Me have used 1024 byte 
and 2046 byte CI sizes, thus we have tvo subpools. These ver6 defined 
in each job by the /IDFSVSAMP DD statement. 

These statistics are ottained during the execution of a job by calling 
the sample routine DFSOAST, and are listed on the DOOAS~A DD statement. 
Two sets of statistics will be listed in our sample -- one for each 
subFoel. A detailed discussion of these statistics and their 
interpretation can be found in ChaFter 9, "Optimi2ation.~ 

In the HIDAM organizatien, the primary INDEX data base can be 
recrganized separately from the main HIDAM data base. (See jobs 
//SAMP281 and /ISA~p2ee in IMSVS.PRIMEJOB.) Because this is normally a 
small data space, you can do this weekly or even daily. 

The initial load of a Fbysical data base which dces not contain logical 
relaticnships cr secondary indexes is discussed ~n Chapter 4 under the 
topic "Loading a Data Base." Ncne ef the utilities of this chapter is 
required to lcad a single physical data base, which does not contain any 
logical relationships er secondary index~s. 

LOADING DA~A EASES iITE leGIe!l EEIATICNSEIPS 

Whenever you are leading cne ex merE data bases which contain logical 
xelaticnshi~s, yeu must use the logical relationship resolution 
utilities. 'his is necessary becaUSE, when loading a logical cbild 
segment, the logical parent sE9ment may net have been loaded, and vice 
versa. So 01/1 cannot make the pointer connection at that timE. 
Therefore, when loading a le9ical child er legical parent, DL/I will 
(automatically) "rite a control record to a workfile (DFSURWF1). This 
workfile is later sorted and used in a prefix update utility. Exactly 
which control records need te ce generated is established beforehand by 
the prereergani2ation ~tility. Figure 5-8 gives an overview of this 
process .. 

1. The job for loading the data base must contain DD statements with 
the ddnames of DFSOBWF1 and tlSUBCDS. The DFSURWFl DD statement 
descr.ibes a cata SEt wbich is automatically created by IMS as the 
result of the user's ISR1 calls to D1/I at initial load. The tCE 
paramet~rs fer this statement must include LRECL=300, RECFM=VB, and 
BLKSiZ-i specified to be the sall!e as that specified for any other 
WF1. A basic recommendation is full track blocksize or 8-16K for 
tape. 

2. When loading 2 or more logically related data bases, the DFSURWF1 
files must be concatenated. This concatenated data set (including 
all created Wl1's) must be spEcifed to the Prefix Resolution utility 
as input. 

3. 1he tFSURCtS DC statement must reference the control data set 
created by thE prerecr9ani2atien utility. 

Data Ease Reorganization/Load processing 5.23 



r CONTROL 
PREREORG -CARD - (DFSURPRO) 

...- _________ 1: 
I REPEAT FOR EACH DATA BASE 

I 
I 
I 
I 
I 
I 
I 
I 
I 

DATA 
BASE 

I , 

DFSURWFl 

L.---t-------
I 
I 
I 
I 
I 
I 
I 
I .--.-------

I ONLY IF LOGICAL -----

I 
RELATIONSHIPS PREFIX 

UPDATE 

I (DFSURGPO) 

I 
I 
I 
I 
I 
I 
I 

--

INDEX 
UNLOAD 

(DFSURULO) 

UNLOADED 
INDEX 
DATA 
BASE 

INDEX 
RELOAD 

(DFSURRLO) 

L _______________ ~L _________ J 

Figure 5-8. Initial Data Base load with Logical Relationships 
and/or Secondary Indexes 

Job IISAMF270 in IMSVS.FRIMEJCE can be used for loading the Level 2 
Parts and CustcEeI OrdeIE data bases. 

5.24 IMS/VS Primer 



LCAtING DJTA EASf~ ~I~E ~ECCNDARY INDEXES 

When initially leading a data tase with one or more secondary indexes, 
you must use the lcgical relatienship resolution utilities. ThE tasic 
proc~ss is the same as the ene fet loadin9 data bases with logical 
relatieDEhips (s~e Pigure 5-8). 

However, scme additions are required: 

1. The prefix reseluticn utility (DFSURG10) creates an index workfile. 
Its ddname is CFSCFIDX. 

2. The above workfile must be ,used as input for the index unload 
utility, DFSUEOlO. 

!Q~~: ~h~ unload must te dcne from a newly allccated, empty KSDS. 

3. The secondary index data base must t€ reloaded using the Index 
Reload utility. 

Job //SAMP37C in IM5VS.PRIMEJOB can b~ used for the initial load of the 
sarFle Fhase 3 data bases, including both logical relationships and 
secondary indexes. 

WOEK tATA SIT ALLOCATION 

The fellewing guidelines should be observed for a good performance of 
the data bas€ load process, eSfecially fer large data bases: 

1. For th~ initial data case load job, the input file. the data base 
data set, and the ~orkfile 1 should be on separa~e volumes. 

2q For the Frefix rescluticn: 

• Workfiles'.~, and 3 can be located at the same device since 
they dcnlt interfere with each other. But they should be 
separated frer the index workfil~ (tFSURltX) if one exists. 

• The SOR1/~ERGE wcrkfiles, SQRTWKnn, should be kept on a 
separate device from ~orkfiles " 2, and 3. The normal 
SCF1/~!FGE goidelines for the placement of SOR1WKnn afFly. 
Typically thrEe SORT/MERGE workfiles on separate direct access 
devices give good performance. 

3. Fer the prefix update execution, workfile 3 should te on a different 
volume from the data base data set(s). 

4. The location of the control d'ta set DFSURCDS is not important for 
performance; it is used only at the beginning of the utilities. 

The records. and their size, which will be written to vorkfile 1 by ttl! 
during initial load or reload are: 

~ype 00. Cne reccrd will be written for each logical parent occurrence. 
If the lcgical ~arEDt has multiple logical child segment types, 
the ~ecord is written once for each logical segment type. 

Data BaSE Reorganization/load Frocessing 5.25 



The size viII be 48 bytes + the length of the logical par@nt 
concatenated key if the data base is being initially loaded. 

Ty~e 10. One rEcord will be written fer each legical child occurrence. 
!he size will be 43 bytes plus the length ot the lcgical parent 
concatEnatEd key ,cnIy initial load) plus the length of the 
virtual child sequence field if one is defined! 

!ype 20. ene record will be wriXten for each logical child eccurrence 
which has a ttF ~cinter and nc virtual child sequence field 
defined. The si2~ is 43 bytes plus the length of the lcgical 
parent concatenated k~y if in initial load. 

TYf~ 30. One record ~ill te written for each logicAl child occur~ence 
which has a ITE pointer and no virtual child sequenc~ field 
defined. the size is 43 bytes flUS the length of the logical 
Farent concatenated key if initial load. 

Type 408 Cne record will te written for Each indeX source segment 
cccurrEnCE. 7ce size is 42 bytas, plus the length of the index 
search field(s), including the four bytes for the /SXname field 
if any. 1his is the enly record which viII te written to the 
index worle file. 

Note: The actual size of work file 1 can be found in the tape trailer 
label or the VIoe if it is on a direct access ievice. 

The following stEps shculd te €xEcut~d .hen reerganizing Qata bases vith 
logical relatien£hiFs and/or secondary in1exes: 

1. 

2 .. 

..... 

4. 

5. 

Start with the Frerecrganization utility, tfSORPRO. Specify all the 
related tED names in a DBR centrol statement(s). Howevar, no 
Frimary or secondary indax tED names should be specified. 

Unload all related EtAP./HIDAM data base(s), using the HD 
Reorganization Unlcad utility, DF£URGUO. This should be done at the 
same time, that is, no data base processing between the unload and 
the prefix update of all ccnnected data bases. The primary (HltA~) 
and secondary index data bases need not and should not te unloaded 
separatEly. 

Change any physical attributes as needed. Befer to the section 
"Reorganizing a HtAl or HltAM Data Ease" earlier in this cha~ter for 
thE allovEc changes. 

Belo~d the HDAM/HIDAM data base(s), using the HD reorganization 
reload utility, DFSUFGIO. Each reload of a data tase will create a 
DF5UBWFl worktil~. 

The other steps are exactly the same as for the initial load proces~ 
(see Figure 5-8), that is, prefix resolution, prefix update, index 
unload and index rElcad. 

!!2!~: When ul.loading the ~xisting secondary index data tase, it 
must be a newly defined "empty" KSDS. So you should first delete 
the KSDS and redefine its space ~~!2~! the execution of the index 
unload utility ,DFSURULO). 

5.26 IMS/VS PrimEr 



!he HD reorganization utilities can be used to ilplement many different 
design changEs to yeur data tases. !he most common changes are 
discussed in the follo~ing s~ctions. 

CHANGING A FH1SICAL rEI 

The following rules and restricticns sheuld b~ observed when applying 
structural changes to a physical data base: 

A. lhe HD unlcad utility must have been executed against the tED 
describing tbe CUIIent structure, and nc data base updates should 
have occurred since tr.€ unlcad. 

B. An existing segment type can te deleted from the DBD provided all 
occurrences of this segment were deleted prior to execution of the 
HI unload utility. 

C. New segment types can be added ~o the new DBD provided they do not 
change either the hierarchic relationship among Existing segment 
types or the concatenated keys cf lcgically related segments. (You 
cannot add a parent to existing ~egments.) 

D. Names of Existing seg~er.ts must not be changed during 
reorganizatien, that is, between unlead and reload. Segment names 
can be changed before or after the reorganization. 

E. Any field statement except the sequence field (key field) can be 
~har.ged, added, or deleted. However, Dl/l will not change any 
segment data except as in (F) telow. 

F. Existing segment lengths can be altered. If the segment is made 
smaller, tL/l simply truncates the s€gment. If the segment is 
extended, it will te filled with whatever exists in main storage 
beycnd the end of the SEgment. The user should replace this via ar. 
update progral. 

G. The access method may te changed. SHISA~/HIDAM may be changed to 
HDAMq HDAM can be changed to either indexed IEthod only if the 
randomizing module maintains root key sequence. 

AttING LOGICAL REIA!IONSHIPS/SECCNDARY INDEJES 

The fcllcwing rules and guidelines s~ould be observed when adding a 
logical relationship an~/cr a secondary index to an existing data tase: 

A. Eefore unlcacing tte data ba~e which certains the logical child, all 
the logical children must already exist in that data base. This 
segment, which at unload time is still a regular dependent segment, 
must start with the cctcatenated key of the "would be" logical 
parent. Femember, the Ht reorganization utilities process only the 
segment prefix, never the segment data. 

If a logically related data base is to be added, its initial load 
process will generate a ~FSUFWFl file. No additional unload/reload 
of that data tase is reQuired. 

B. The HD unload utility must have been executed against the DEn 
describing the current structure, and no data base updates stould 
have occurred since the unlcad. 

tata Ease Feorgani2ation/Load Processing 5.27 



c. !!l!~ the Ht unload. the DBD(s) are changed. And the 
prereorganization utility (DFSORPRO) must be run with the new DED(s) 
before the reload/initial load. This could also be done initially 
if thE new tBD(s) have different names. Notice, the BD unload 
utility dces not nEed the control data set created ty the 
prereorganiz8tien utility. 

D. Prefix resolution (DFSaBG1C), prefix update (DFSOBGPO). and index 
creation roptional: CFSOBUIO/DFSUBBLO) should then tE pErforKEd as 
in figure 5-8. 

l!sJ!.el!§ 

1. Job I/SAKP~89 in I"SlS.PRlftEJOB shows how to add a logical 
relationship to the ~arts data base together with the initial lead 
of thE rElated CusteEEr Orders data baseo 

2. Job I/SAMP~89 in IMS1S.PRIMEJOB shows hew to convert the phase 2 
Parts and Custoaer Crders data bases to their phase 3 vErsions by 
adding a sEccndary index t~ ~he Parts data base. Notice that no 
application program is required to add a secondary index. 

In our sutset, ve viII net consider the reorganization of a data base 
while it is allocated to the online IMS/VS control region. Ther~fore, 
the reorganizaticn {rocEdurEs in the IMS/VS-DB/DC environment arE 
exactly the same as for the IMS/1S-DB only envircnment. 

5.28 IKS/VS Primer 



Data tase recovery is, in its simplest form, the restoration of a data 
base after its (partial) destruction due to some failure. The preceding 
sentence defines the three basic elements in recovery: 

• ~he data base 

• The failure 

• The restcration 

~heir relationshi~ is: "The restoration eliminates the effect of the 
failure on the data tase." 

The basic principle of almost any data base recovery mechanism is 
maintaining duplicate data. Feriodically, a copy of the data in the 
data base is saved. ~his cCfY is normally referred to as a Q~~~=ge or 
i!~g! ~~Il. ~hese image copies normally reside on magnetic tapes. In 
additicn to this, the changes made to the data in the data base are 
saved, at least until the ne%t image copy. See Figure 6-1 for an 
overview. 

DATA BASE 

./" 
.,/ 

,/ 
,/ 

.,/ 

FAILURE • 

DATA BASE 

.. 
RECOVERY 

I 

+ 

ECK' 
Figure 6-1. concepts of Data Ease Recovery 

----.. 
TIME 

Data Base RecovEry 6.1 



The recovery process then includes the following four steps: 

14 Determine the cause of the failure. 

2. Correct the cause of the failure. 

3. Reconstruct the data tase using the image copy and the saved 
changes. 

4. Resume processing at the point of failure. 

Each of the above steps can cause, in practice, a variety of activities. 
!he intention cf this cha~ter is to provide you with guidelines for, and 
examples of, ~rocedures tc handle these activities. 

With tL/I, twc apprcaches are, in general, available to protect the 
ictegrity of your data bases: basic recovery and DL/I recovery. 

BASIC EECCVERl 

After each tack-u~ co~y is made, all input data to the data tase update 
prcgrams are saved until the next back-u~ copy is made. In case of 
failure, the data base is restored, using the back-up copy. Next, all 
update programs executed during that peried are re-executed, with 
exactly the same input data and in exactly the same sequence. The 
regenerated output replaces the criginal cutput. DL/I provides 
utilities to create the tack-up copy and to restore the data base. This 
approach is referred to in the following discussion as ~!§iS I~S~!!!I. 
See Figure 6-2. 

6.2 I85/V5 Primer 



PROGRAM 

\ 
\ 

\ / 
/ 

PROGRAM 

RESTORE 

RERUN 

Figure 6-2. Basic Data Ease Becovery 

DL/I EICOVIRY 

FAILURE 

DATA BASE .. 
TIME 

The second aFproach uses the tL/I log facility. During processing of 
the data baSES by applicaticn ~Iograms, all changes made to the data 
basE are automatically lOggEd CD the DL/I leg data set. A DL/I utility 
is ~rovided ~hich allo~s you to accumulate all changes made to the data 
base by all processing programs in a single £h!ng! !££Y;Yl!Si2U g~SA 
Hi- Only the last copy of a data base change is kept. in tl1is data set, 
thus reducing the volume of tape required. When a failure occurs, you 
restore the latest back-up copy of the data base, using a DL/1 utility, 
which at the same time mergES the change accumulation data set into the 
restored data base. ~his brings the data base up to the point of the 
failure. In addition, a se~aratE utility is available to 2!gl QYI 
(undo) the data base changes of a failing program. This approach is 
referred to in the following discussion as ~~l! I!~Q!~Il. See 
figure 6-3. 

Data Base Recovery 6.3 



FAILURE • I 
\ / 
\ / 

PROGRAM - - - - PROGRAM 

-- ---.. 
TIME 

RECOVERY 

Figure 6-3. DIll Eecovery 

WHICH ONE !O CHeeSE 

tL/l recovery bas several acvantages over the basic recovery: 

• No need to retain the in~ut data sets 

• No rerun cf update ~rccessing programs 

• Only the affected data sets need to be recovered 

• No time synchronization problems if the programs are date dependent 
or have been mooified in the interim 

• SimFler administration: only the back-up copies and log data sets 
are required 

• No duplicate output 

• lor the IMS/VS oata communication facility, a log data set for the 
cnline data bases is mandatory. There is normally no retained input 
from terminal transacticns. It is recommended that you establish 
Dt/l recovery procedures before going online. 

6.4 lMS/VS Frimer 



Eased on the abovE advantagEs, the ~ecemmendation is to implement DL/I 
recovery unless you have: 

• Only one or t~o data bases, and, 

• Low data tase update rate, and, 

• VEry frequent (daily) tack-ups, and, 

• No plans for enline precessing. 

Befere describing the two recovery approaches, we will first discuss the 
DL/! logging facility and associated recovery utilities. 

lH~_~*Ll_~~~21!~_fA~!!lIl 

The DL/! logging facility is the cornerstone of thE recovery utilities 
of tL/I. This facility, CfErating as an integral part of DL/I, 
autematically writes all before and after images of updated data base 
segments to a cEntral log data SEt. Each log data set, created with a 
DL/I batch program execution, is one sequential data set. It must 
reside on magnetic tape in cur subset. You must Epecify 
DISP=(,KEEP,KEEP) or DISP=(,CA1LG,CATLG) for the log data set, that is, 
DISP=MCD is not allowed. 

In our subset, we will assume the use of the log tape write ahEad 
function (specify: OP110NS LTiA=YES in the DFSVSAMF control data set). 
For mOIe details, see "Defining the IMS/VS Data Base Buffer Sutpools" in 
Chapter 7, "Installing IMS/VS." 

The log tape write ahead (L~iA) function will assure that no data base 
change will be written to physical data base storage before the 
correspondin9 log records are physically written to the log data set. 
With this prevision and the log close function of the log recovery 
utility, there is DO risk cf lest data base changes, even in the case of 
an abrupt system breakdown. 

A log data SEt is creatEd by adding a //IEFEDEF tt ••• statement to the 
JCl of the tatch eXEcutior. jet. 

1. A log data set is not created when a data base is initially loaded 
(that is, when the frecEssing option "L" or "LS" is selected in the 
PCB). 

2. IMS/VS uses thE OS/VS ESTAE facility to flush the log buffers and 
clcse the log data set in the event of an abnormal termination. In 
addition, for batch jobs only, the data base log buffers will te 
written to tASte 

I~!_~~Ll_~!~QI!BI_~11~111I~ 

DL/I provides four utilities fOI recovering a data base. The diagram in 
Figure 6-4 illustrates the relationship between these utilities. 

Data Base Recov€ry 6.5 



(IMAGE OF 
ALL DATA BASE 
CHANGES) 

PERIODIC 
CHANGE 
ACCUMULA-
TION 

CHANGE 
ACCUMULA­

TION 
UTILITY 

DL/I 
PROGRAM 

DATA 

BASE 
~ ______ ~IMAGECOPY 

UTILITY PERIODIC 
COPY 
CREATED 

RECOVERY 
UTILITY 

Figure 6-4. Iata BaSE REccvery Utilities 

A description of these utilities and their basic functions follows: 

1. Data Ease Image Copy utility for creation of image copies of data 
bases. 

2. Lata Ease ChangE Accululatien utility for accumulation of data base 
changes frem DL/1 log tapes since the last complete image copy. 

3. Data Base Eecovery utility for restoration of the data tasE, using a 
prior data base ilage co~y and the accumulated changes from DL/1 log 
tapes. 

4. Data Ease Backout utility for removal of changes made to data bases 
by a specific application program. 

A fifth utility program, the rL/I System Log Recovery Utility 
(CFSULTRO), is used to close the DL/I Log in the event of an operating 
system or hardware failure, thus enabling use of the log by the four 
principal prosrams ef the rEcovery systeK. 

For those data bases which consist of multiple data sets, r€covery is 
done ~y individual data set. To recover a complete data baSE com~osed 
of multiple data sets, data base recovery must be performed for each of 
its component data sets. 

6.6 IMS/VS Primer 



DATA BASE IMAGE CCFY U'IIIITY (tfSUt~FO) 

The Data Ease ImagE Co~y utility c~eates a copy of the data sets within 
the data bases. Is illustrated previously (see Figure 6-4), this output 
is used as input to the Data Base Recovery utility. 

Multiple data sets can be CCfied with one execution of the Image Copy 
utilitYq All data sets of a data base should be copied at the same time. 
In our sutset, we presume that all data base data sets are dumped at the 
same time, that is, no intervening data base processing-

A flow diagram of the Data Ease Image COFY utility is shown in 
Figure 6-5. 

DBD 
LIBRARY 

DATA BASE 
DATA 
SET 

/ 

/ 
/ 

/ 

I 

Figure 6-5. Data Base Image Copy Utility 

~~~_~!.'§!.§J!!§1l:t§ 

The Data Base Image Copy utility is executed as a standard CS/VS job.
The fcllcwing JCl statements are required:

EXEC

IMS
DD

SYSPRINT
tD

This statement must te in the following form:

PGP.=tISEECOO,tAE!='ULU,DFSUDMPO·

tefines the litrary containing the DBD that describes
the data base to be dumped. This is usually
DSNAME=I~SVS.DBDtIB.

Defines the output message data set.

Data Base Recovery 6.7

datain
tt

tefines the inFut data set to be dumped. The ddname
on this statement must be the same as the name in the
DED that describes this data set; the ddname must alsc
appear on the utility cont~ol statement. One DD statement
of this type must be present for each data set to ce
dumped. !be data set must reside on a direct access
volume.

dataout
tC

tefines the ilage copy out~ut data set. One DD
statement is required for each data set to be dumped.
!he ddname may be any 1- to a-character string, but the
ddname must a~~ear in the associated utility control
statement. The output device must be eith€r direct access
or ta~e. Standard labels must be used. LBECL and BLKSIZE
are calculated by the utility and should not be provided
in the Jet.

SYSIN
DD

tefines the inFut control statement data set.

One control statement is required for each data set to be dumped.

,
I Il EE1PAETS IE1PAFTS DFSUIUMF ,
~--J

lhis must be the characters '£1'.

4 ~his !ust te the name of the physical tED that includes
the dcname of the data set to be dum~ed.

13 Ihis must be the ddname of the input data set to be
dumped. It must appsar in the referenced DED, and a
ccrres~cnding DD statement must have been provided.

22 This must be the ddname of the output data set. A
corresponding It statement must have been provided.

]Q!i: All other fields lust be blank in cur subset.

The Data Ease Image Copy utility provides the following return codes:

o

4

8

16

Successful cClpletion of all operations.

Warning message issued.

Cne or more operations not successful.

Severe errors have caused the job to terminate
without cCI~leting all o~erations.

6.S IMS/VS trimer

These return codes can be tested by the COND= parameter on the EXEC
statement of a subsequent job step.

Job IISAMP180 in IMSVS.FEI~EJCE shows the JCL for the image copy jot of
the phase 1 Parts data case. Jct //SAMP380 shows the image copy of all
our sample phase 3 data bases.

DAtA BASE CHANGE ACCU!UlATIC~ UTIlITY (DFSUCUMO)

The function of the data base change accumulation utility is to create a
sequential data set that ccntains only that information from the log
ta~Es ~hich is necessary for recovery. This accumulation log data set
is to be used by the data base recovery utility. This accumulation is
done by sorting only the required log records (latest version) in
physical record within data set sequence. ~his provides efficient data
base recovery ~henever needed. The number of log tapes will be
significantly reduced. This utility invokes the Sort/!erge Program in
your CS/VS installation.

The cbange accumolatic[utility can be run independently of DL/l
application programs. The new output data set created by Change
Accumulaticn is used bj the data base recovery utility. Figure 6-6
depicts the sources of inFut tc the data base change accumulation
utility and the output created by this utility.

DBD
LIBRARY

NEW CHANGE
ACCUMU LATION

DATA SET

CHANGE 0 ACCUMULA·

~~TION---, .---.-.
.~TILlTV

Figure 6-6. Data Ease Change Accumulation Utility

The i~put to the data base change accumulation utility consists of:

1. All log tapes creatEd since either the last image copy utility
execution or the last execution of this utility.

Data Base Recovery 6.9

2. The previous change accululation data set. This would be the output
from the last executicn of this utility. The first change
accumulation run after a nEW image dump !g§1 D2! include any old
change accumulatio~ data set, that is, tkose created during the
previous ~eriod.

3. 7he DBD library which is normally called IMSVS.DBDLIB.

4n An optional control statEment (10).

Output from thE data base cbange accumulation utility consists of a new
changE accumulation data set. This is a sequential data set containing
the combined data tasE records for all data base data sets.

The data base changE accumulation utility is executed as a standard
OS/VS job. 1he following Jet statements are re9uired:

EXEC

SYSPRIN~

tD

IMS
ID

SYSOUt
ID

SCRTLIB
DD

SORTWKnn
DD

CFSUCUMN
DO

IFSUCUMO
DD

this statement must be in the following form:

PGM=DFSUCO~C

Defines the output messagE data set.

Defines the library containing the DBDs that describe
all data bases tc be accumulated4 This is usually
DSNAM!=IMSVS.DBDLIB.

Defines the output messagE data set for the Scrt/Merge
FIogram. The Sort/MergE Erogram specifies AP (all
messages tc printer).

Defines a data set containing load modules for the
execution cf Sort/~erge. This is usually
tSNAM!=SYS1.S0RTLIB.

these DD statements define the intermediate storage
data sets for the Sort/Merge program. The data sets
ncrmally reside en a direct access volume; ho~ever, tape
can be used. (For specification of number and size of
intermediate storage data sets, refer to the applicable
Sort/lerge manual.

refinES the r.EV accumulated change output data set.
the data set can ~eside cn a tape or a direct access
volume. The output is blocked to maximum device capacity,
up tc a laximum of 8K. Standard labels must be USed.

tefinEs the old accumulated change input data set that
is to be merged with the new accumulated change data set.
If no old changes are to be merged, the following ED
statement must be used:

IltFSOCU~O CD DUMMY,DCE=ELKSIZE=100

~his is requi~ed in the first change accumulation
execution after each new image dump of the data baSES.

~his data set can reside cn tape or a direct access
volume.

DFSULCG
DD

DefinES the lcg input data set containing the change
records to be accumulated. This data set can reside on
tapE or a direct aCCESS volume.

SYSIN
00

Defines the control statement data set.

An optional control statement can be used to describe additional tatle
requirements for this changE accumulation execution. If it is not
included, default values are assigned as described below.

1 31-33 80

r--, , ,
I It Max Seq Length I
I ,
L--~

1 Positions and 2 must contain the characters "10".

31 Positions 31-33 contain the maximum length root sequence
fiEld ccr.tained within the log records to be processed.
This value is used to pad the sequence field with tinary
ZEros for sorting purposes. If there are no VSAM KSDS
records to be processed, this value should be spEcified as
4. the length cf the Relative Bleck Number field. This
value must be in the range 1-236 and must be
left-justified or supplied with leading zeros. The
dsfault value for this entry is 10. In our sutset yeu
must specify the laximum root sequence field of any HIDAM
and/or SEISA~ data base.

!2t~: All other columns must te blank in our subset.

The data base change accumulation utility provides the follcwing return
COdES:

o

16

SUCCEssful corpletien.

Onsuccessful completion.

~hese return cedes can be t~sted by the CONt= parameter on the EXEC
statement of a sutseguent jct step.

!!~J!!Elj

Jobs IISA~P181 and //SAMP3e1 in IMSVS.PRI~EJOE show the JCl to
accumulate a log data set, with a previous accumulated log data set,
into a new accu.ulated leg data SEt.

Data EaSE Recovery 6.11

~Qli: The change accumulation utility can accept multiple lcg data sets.
as input. These log data sets must be specified as concatenated data
sets in the D~SOlCG Dr statement. The sequence of these data sets
should be in the ccrrect date and time sequence, that is, the oldest
first.

DA!A BASE FECCVEEY UTILITY (DFSUBDBO)

!hE data base recovery utility program will restore a physically damaged
data SEt which is part cf a DL/I data base. This utility does not
previde a means of recovery from application logic errors; it is the
user's responsibility to ensure the integrity of ~a~ q~~~ in the data
base.

The data base recovery utility achieves a high rate of throughput by
manipulating data sets individually in a physical sequential manner.
~he basic input consists of an image copy data set and, optionally, an
accumulated cbangE data set.

The data base recovery utility prcgram is executed in a DIll batch
region. Its flc~ diagram is shown in figure 6-7.

DBD
LIBRARY

OUTPUT
MESSAGES

Figure 6-7. tata Base Fecovery Utility

The data base recovery utility is executed as a standard OS/VS jot.
Cnly one data set recovery is allowed for each execution. The following
JCt statements are required: A JOB statement (defined by the using
installation), an EXEC statement, and DD statements that define inputs
and cutputs are required.

6.12 IMS/VS Frimer

IXle

IMS
DD

SY SPRI N'I
tD

tFSUr:UMf
DD

DF SUC UM
ID

DFSULOG
DD

dataset 1
DD

SYSIN
tD

This statelent must be i~ the following form:

fG~=DFSFFCOO,PARM='UDR,DFSURDBO,dbdname'

where dbdname is the name of the DED that includes
the data S€t tc te recovered.

Defines the library containin9 the DBD that describes
the data base data set to te recovered. This is usually
tSNAME=IMSVS.DBDLIB.

Defines the output message data set.
If tlocked it lust be a multiple of 121.

tefines the ilage copy input data set. It must be a
data set created by the Data Ease Image Copy utility. The
data set can reside on tape OI on a direct access volume.
Standard labels must be used.

Defines the accumulated change input data set. If no
accululatEd cbange input is supplied, this statement must
be coded DD tUMMY. This data set can reside on tape Or a
direct access volume. Standard labels must be used.

This statement should be coded as DD DUMMY in our
subset.

Defines the data set to be recovered. The ddname must
be the same as the ddname in the DBD that describes this
data set. It must also appear on the utility control
statement. 'Ihis data set must reside on a direct access
volume.

tefines the inFut centrol data set.

13 80

r--, I ,
I 5 BE1PARTS DE1PARTS , , ,
L--~

This must te the character '5'. The '5' defines this
statement as a data base recovery utility control
statement.

4 This must be the name of the DBD that describes the data
base containing the data set to be recovered. This name
must also appear in the PARM field of the EXEC statement.

13 This must be the ddname of the data set to be recovered.
It must be the same as the ddname in the DBD and dataset1
It statElent.

!gl~: All other positions must be blank in our subset.

Data Base Recovery 6. 13

The data tase recovery utility ~rovides the following return codes:

o

"
8

16

ReguEsteo reccvery successful.

Warning message issued

Serious error occurred, recovery terminated

catastrophic Errer occurred; recovery unsuccessful

These return codes can te tested by the COND: parameter on the EXEC
statement of a subsequent job step.

~!!!.El!§

~ob /IS1KE182 in IMSVS.FEIMEJOB gives the JCt to recover the phase 1
Parts data base. Job IISAKP383 gives the JCt to recover all the phase 3
data bases using a change accumulation log data set.

DATA BASE EACKOUT U11L111 (DFSBBOOO)

The data base backout utility removes changes in the data base wbicb
were made by a specific failing Frogra.. The following limitations
apply:

• The log data set of the failing program must be on magnetic tape;
the taFe is read backwardsq

• No other u~date programs should have been executed against thE same
data base(s) between thE time of the failure and the backout.

The Fregram operates as a normal DL/I batch job. It uses the PSE used
by the program whose effects are to be backed out. All data baSES
updated ty the Fregram lust be available to the bacxout utility.

A lcg tape is created during the backout process. This log tape,
preceded by the log tape produced for the failing job, must tE included
in the next changE accumulaticn run, as any other log tape. This tape
must not be used as input to any subsequent backout attempt.

]S1~: For a mc1tiple volume data set, the VOL parameter of the JCL
statement specifies the vclumes in ascending sequence.

Figure 6-E presents a summary of conditions that terminate the
frccessing of the data base backout utility.

IKS/VS Primer

r---, I Summary of ConditicDs Terminating the Processing of the ,
, tata Ease Backout Utility I
1---1 1 CHKF-ID specified. t CHKF-ID not specified. I
,---, 11. CHKP record requested. 11. First CHKE record encountered.. I
1---, 12. ~he Accounting record fc~ opening the log data set. 1
1---1 I*Note: 7he ordex of occurrence is referenced as from the end of I
Ithe Log tape toward the start of the Log tape. (Eead-backward I
Iprocessing-) 1

Figure 6-8. Conditions 7hat 7ermit.ate the Data Base Backout Utility

!i21!§l

• If checkpoint/restart is nct used, then backout always backs out all
the data base changes of the program.

• If checkpoint/restart is used (program uses IRST and CHKP calls),
then kackout will cnly dc tackout if the specified CHKP-ID is found
on the lcg tape during read forward. If no CHKP-ID is specified
then the last one on the leg taFe is used (the first one encountered
durin9 read back~ard).

• If, when using checkpoint/restart, you want to be able to completely
back out a jet (steps), yeu must issue a CHKP call immediately after
the XES! call, that is, before any real data base activity. The
CEKP-ID of this call can then be used for a full backout operation.

Figure 6-9 depicts the data set ~eguirement! for the data base backout
utility.

Data EaSE Recovery 6.15

DBD
LIBRARY

DATA
BASE

PSB
LIBRARY

DATA BASE t-.......;~I
BACKOUT

DATA
BASE

OUTPUT
MESSAGES

L _______ ...J

IMSLOGR

r------,
I INPUT I

CONTROL I STATEMENTS I
L ____ -.J

IEFRDER

Figure 6-9. tata SEt REquirements for the Data Base Backout Utility

~~1t ~1s1iljll~§

ThE data baSE tackout utility is executed as a standard DIll batch job.
!he follc~ing Jet statements are required:

EXEC

IMS
tt

I f1SLCGB
DO

!his statE lent must be in the follo~ing form:

PGM=tfSRRCOO,P1RM='DLI,DFSBBOOO,psbname'

whErE pstname is the name cf the PSE used by the program
to be backed out.

lou can alsc use the DLIEATeH procedure to eXEcute this
utility. SEe Chapter 1, "Installing IMS/VS," for
additional information on using the DL1BATCH procEdure.

ConcatEnatEs the IMSVS.PSELIE and IMSVS.DEOLIB
litrar iES.

Describes the input log file. It must be a tape file;
read-backwards is used.

IEFRDER DEscribEs thE system log tape created during tackout.
DD The data set usually resides OD tape. However, a dirEct

access volume can be used.

dataset Tbese arE thE data base tD statements required by thE
Dt PSB rEferEnced in the EXEC statement. This data set must

reside on a direct access volume. One DO statEment is
rEquired for each data set of the referenced data bases.

SYSIN
tt

tFSVSAl!P
DD

Beguired only if a CHKPT control statement is supplied.

IescrihEs the data set that contains the buffer
information required hy the DL/I buffer handler. ~his DD
statement is reguired if the data bases descrited by the
dataset It statements are YSAM data sets. For additional
information, SEe thE discussion on "Defining the IeS/VS
Data Base Buffer 5uhpools" in Chapter 7, "Installing
IrIS/YS."

Cne optional control statElent can be used if the ~rogram uses the rIll
batch checkFcint/restart facility.

7 eo

I
, CHKPT PPURC010
I
l----------~---~

7

~j_i5a:iEl~~tll

Positions 1-~ must he the characters 'CHKPT'. These
characters define the control statement.

~his is the a-character checkpoint II supplied to DL/I
with the 'CHKP' call. The ID is displayed as part of
message tF5681I at the time the 'CHKP' call is made.

If DO ID is SFECifiEd, the last checkpoint on thE log tape
will bE used.

~Q!~: All other ~ositions should contain tlanks •

.E!!l.YIll ~.2g!!§

The Data EasE Eackout utility ~rovides the following return codes:

o
4

8

12 and
above

Eackcut succEssful. (DPS39S.I)

PSE incorrect. (DPS3S6I)

Unahle to open data base. (DFS397I)

Severe error condition: processing terminated.

These return codes can be tested by the COND= parameter on the !XFoC
statement of a subsequent job step. Each return code, however, caUSES a
message to he printed.

Jobs //SAMP177 and //SAftP3eQ in IMSVS.PRIMEJOB show the JCl for the
backcut of the FE1CFPUE program executions for phase 1 and phaSE 3,
respectively.

Data Base Recovery 6.17

SYSTEM LOG RECOVERY U!ILI!Y (DFSOLTRO)

This utility can be used to clcse a log data set when DI/! or CS/VS
fails tc do so. ihis will typically be required after an OS/VS, ta~e
unit. CPU, or power failure. Note that when DL/I abends, the log data
set will usually be closed by CS/VS. The as/vs message IEF2851 (data
set KEPT) indicates that this has been done. Two steps are required to
clcse a log data set with DFSOL!RO. See Figure 6-10. Each step requires
a separate executicn cf tFSUITRO.

DFSULTRO

DUP MODE

DFSULTRO

REP MODE

Figure 6-10. Closing the System Log with DFSUL!RO

In the DUP mode, DFSUL!RC reads the log data set and copies it to a new
interim log data set. A listing is produced of the error hlccks. In
the situation cf the unclcsed lcg tape, only the first error block is
generally of interest. !he sequence number of this error block (A00001)
shculd be specified in the control statement of the second execution of
DFSULTBO.

1. If the log tape contains read errors before the end of the 1cg data
set, these would alsc be listed. In our subset we will not cover
the correction of these errors. In that case, we will disregard
that log tape data set aDd recover the data bases to the point of
the start of the failing program. Following that, a full rerun of
that program would ce required.

6.18 IHS/VS Erimer

2. fEcaUSE the DISUL~RO cnly checks the lcg record sequence number, old
data from a previous (log) data set viII be regarded as valid lcg
data. This old data will therefore be copied to the interim log
tape after signaling its initial sequence number break as an error
block. Witheut chEcking the actual contents (that is, timestamps)
iD the leg records YGU might not be able to distinguish this
situatien from rEad errers befere the end of the current data set as
discussed in note 1 above. To avoid this ambiguity you can use
"clean" ~hat is, no data at all) lcg tapes cr pre write the log
tapes with tape marks.

3. If the DUP mode of DFSOITRO did not find an error block at the end
of the current log data set, it will terminate normally, or abend.
In that case. the log tape produced by the DUP mode is a valid log
tape, and the REP mode is not necessary.

4. For more dEtails on the IMS/VS log records, you should refer to the
sections entitled "System log Records" in Chapter 2, "System
Maintenance/Tuning Facilities" of the 1~~L!~ ~l§!im E~Qg{~!m1ug
~!!!I!~~ ~!~~!!.

The REP mode of DFSOLTFO copies the correct hlocks from the interim log
data set, produced by the DUP medE execution, to a new log data set. At
the end it will close that log data set, omitting the block in error as
specified by thE contre} statEment.

//F!COYEF
IIS~EF
//SYSPEINT
//lEFBDEB
//N!WEDER

I/NEiFDEB2
//SYSIN

DUE Mode

JOE
EXEC
tt
nD
tI

Dr
tt

(ACC!GINFOBMA!ION)
PG~=tFSUlTEO
SYSOD!=A,DCB=(RECFM=FBA,lRECL=133)
UNIT=3400,VCl=SEB=lOG01,DSN=IMSLOG,DISP=OLD
UNIT=3400,VOl=5ER=NEWLCG,DSN=IMSLOG,
DISP=(NEi,KEEP),DCB=DSCBG=PS
DU~MY,DCE=EIKSIZE='460

*

The following control statEIEDt is required in our subset:

Beginning in
___ ~Qlgl~___ !Qlis!

DOP

5 ERRC=nnnnn

Indicates DDP mode.

Indicates the maximum number of input
l/C errors or sequence errors accEFtEd
tEfore job termination. nnnnn must be a
5-digit numeric with leading zeros.
BEcommEnded value: EBRC=00010.

Data Ease ReCOVEry 6. 19

REP Mode

The following control statement is required in our subset:

Beginning in
___ ~21g!a___ 19£J!1

REP

5 SEQ=!!X!X!

16 CLeSE

£~!~!2g_~QB§!g~~~1!2~§

Indicates ElP mode.

Indicates the identification number of
the block in error. The identification
consists of the letter "A" followed by a
5 digit integer, the error block sequence
number (A00001 for the first error block).
The number is provided in the listing
output of the DUP step.

Close the output tape right q~f~Ii this
error block.

In general, log recovery is only required in case of hardware or OS/VS
failure; that is, when the log tape is not closed. This normally
imFlies that the jobstep termination processing did not occur. As a
consequence the new leg data set vas not cataloged. Therefore we
catalog the recovered log tape in the second phase of the log recovery
process. However, this should be verified by comparing a list catalog
with the manual lcg tape registraticn by the operator. Under no
circumstance should the input tape for log recovery be used together
with the !"duplicate") output tape for backout and data base recovery
Frocessing. SFecial care must be used if multi-volume log data sets are
written and only the last vclume is used for log tape recovery.

~!~!E~~§

Jobs //SAMP190 and I/SA,.t191 in IMSVS.PRIMEJOB show the DUP and REP
modes. respectively. ef DFSULTRC.

The following guidelines shculd be observed when designing basic
recovery ~rocedures:

• ~he imagE copies of all data baSE data sets should be made at tbe
same time. No intervening (update) Frograms should be executed
against the data bases.

• A rigcrcus registration scheme should be established fer the image
copies and all Frogra. inFut and, optionally, output.

• All Frogram input should be saved until the next image copies are
made.

• In case correction cf the error requires program changes, the old
versions should te kept until the next image copies are made.
Other~ise reruns, if necessary, could produce different results.

6.20 IMS/VS Frimer

• The data tases must be restcred immediately after any failing update
job. The failure could be an applicaticn program, Dl/I, CS/VS, or
hardware error. Next, all data bases should be restored. Then, the
applicaticn ~rograas executed since that image copy was made should
te reexecuted in the original sequence.

!2!~: As stated in the first part of this chapter under "Which One 10
Cheese," you should realizE the limitations cf the above basic recovery
prccedures. In most cases the 01/1 recoveIY proc~dures as outlined in
the fcllewing secticn are far more cesirable.

EXA~PIES

Job //SAMP180 in IMSVS.PRIMEJOB can be used to make an image copy of the
FhaEE 1 PaIts data base. Job I/SAMP182 can be used to restore this data
base. Ihese jobs shew how the image copy and restore utilities are used
in a tasic recovery Envirctlent.

The following procedures can be used as a basis for the recovery
procedures at your own installation. It is strongly recommended that
you exercise and EnfoIce such FIccedures befere geing into a production
phase with YCUI data bases.

AS~UMFIICNS AND FES~EICTI(~S

1. Image copies of all data sets of all data bases are made at the same
time, that is, no intEIvEning data base processing.

!~li: The above restriction is based solely en the subset approach;
it is net a DL/I requirement.

2. Ne ether update program may have been executed after the failure
involving the data tase in error. If that should occur, you must
restore all affected data bases and rerun the programs in FIoper
sequence.

3. After each new image copy of your data bases, you must run the first
change accumulation with a dummy old change accumulation data set;
that is, nEver use a lcg tape cr change accumulation data set of the
previous period.

POSSIBLE FAILURES

The table in Figure 6-11 lists the most ccmmcn failures, together with
their symfto~s, which can occur in the batch processing of DI/I data
bases. For each failure, an error class is given. This error class
determines the requirEd reccvery actions. See Figure 6-12.

Data Base Recovery 6.21

FAILURE/~I!UA!ION DESCRIFTICN
I
ISYMPTCMS

I!EECFI
1 CLASS I

,~~~-~~~~-~--~~~~-~--~-----.~---------~-----~----------------- -----, ,
I 1. , ,
I
12. ,
I ,
I 3.
I
I
I
14.
I
I
I
15.
I
I ,
I
I
I

OPERA'IING ERRCt;
1.1 Jot cancellaticn
1.2 irong input cr wrong data base

APPLICATION PP.OGR1M ERBOR
2.1 Wrong logic/output
2.2 Abend

tL/I ERROR
3. 1 Abend
3.2 loo~ or wait state

CS/VS ERRCE
4.1 Abend
4.2 LooF or non-dispatchable

HARDiARE
5.1 Read I/O error on a data base

data set
5Q2 Write IIC error on a data base

data set
5.3 Power failure. machine check

I
I
I X22 ABEND
,INCONSISTENT RESULTS
I
I
,INCONSISTENT RESULTS
I USER ABEND
I
I
IDL/I ABEND
ICANCELLED (X22) ,
I
IRE-1FL
IRE-IPl
I
I
lAO status code +
IDl/I message DFS45'11
I ,
IDL/I message DFS45111
IRE-1PL I
I ,

1 ,
A ,
A I , ,
A I
A ,

I ,
A It
A , , ,
C ,
C ,

I ,
I

E I
I

B I
C t ,

~---~
Figure 6-11. Fossible Failures during Data BasE Processing

!2~~: Upon receipt of message DPS4S1A, the OS/VS system console
aperator sbould la) takE action to stor the execution of sutsequent DL/1
jebs and (t) reply "ABEND".

COEEECTING THE CAOSE OF tHE F1ILURE

!his activity is completely dependent on the type of failure. eften.
the action to te taken is befend the DL/1 environment, for examFle,
system/pover failure. If the error is il: DL/I, the !~U!~_~~§§9g~§_9'Qg
~2~~§_E!f!~!ng~_~!Q~!~ must ba consulted. If it is a severe error
condition, the IB! Field Engineering Program System Representative
should be notified. Appendix A in the 1~2L!~_~~§~!5~2_!~g_£29!§
~§ij~§Q~j_~!DY!l prcvides guidelines for doing this.

EECOVERY 'tASKS

The subsequent recevery tasks to be performed for each defined error
class (Figure 6-11) are listed in Figure 6-12.

6.22 1MS/VS Primer

RECOVERY TASKS

CHANGE RESUME PROCESSING
LOG CLOSE ACCUMULATION DB RECOVERY BACKOUT (APPLICATION

(DFSUL TRO) (DFSUCUMO) (DFSURDBO) (DFSBBOOO) PROGRAM)
ERROR
CLASS ALL ALWAYS NOTES

EXCLUDE INCLUDE ONLY DATA CURRENT
CURRENT CURRENT AFFECTED SETS LOG RESTART RERUN

LOG LOG DATA USED BY (must be
SETS PROGRAM a tape)

1. current log +
output log of

* *
back-out must both

A
be included in
next change
accumulation run

1. see A1
2. if program

B * * * * was successfully
completed, no
restart required

C * * * 1. see A1

1. the current,
bad, log must not

D * * *
be used in any
further back-out
or change
accumulation

SAMPLE 190 initial
JOB + 181,381 182,382 382+383 177,384 178 program

191 executions

Figure 6-12. Data Ease Recovery Actions

ThE data basE bacKout utility is net required for a retrieve-only
Frcgram. ~he additional error class "D" would occur if for any reason
the current 109 data set is unusable. !he current log data set is the
one heing created when the failure occurred.

PossitlE caUSES for this cculd be:

• Log data set close (DF5ULTRO) failed,

• Lost log data SEt dUE tc oFerational error,

• I/O errors on the log data set during change accumulation.

!he recovery tasks in Figure 6-12 must be executed in sequence frem left
to right. Ahenever an Errer cccurs during an A, E, or C error
correctien, yeu can fall tack u~cn the errel class D procedure.

If an error cccurs during the recovery of a class D error, you have to
fall hack to previous image copies and log change accumulation data
sets.

IMAGE COPY/LOG AtMINIS!RA!ION

A rigcrous administration of data tase image copies, log data sets, and
log accumulation data sets is a necessity for data base integrity. We
will now discuss an aOlinistraticn scheme fer this. In this scheme, WE
will use the generaticn data group facility of OS/VS. It would form the
basis of your own scheme, adaFted to your installation standards and
reC3uirements.

Data Base Recovery 6.23

At a minimum you should set up a manual registration scheme fer the leg
data sets, changE accumulations, and image dumps.

Two sets of fcrms could be used. One form, Figure 6-13, is used to
register all the DIll jobs which produce log data sets.

ItIll LOG TAP! POR! DATE: PERleD:

III PAILURE
I I I ,liST fEEtJlRKS INt
ITl!E I VOL Uft E (S) IJO E/S'I!P ICHECKPOINTID I ERROR DESCRIPTION , ,

I ,
I , , , , , , ,

L--~
Figure 6-13. Sample DL/I Log !ape Form

1. III DL/l jots should be listed, also the backout and recovery jobs.

2. If multiple log volumes are created in one job (step), they should
be listed in time sequence.

3. A new period starts after each image copy.

4. Optionally, the data set Ilalle of the log da ta set should be
registered. Normally this would always be the same or a generation
data group, in which caSE only the generaticn number would be
registered.

The SEcond form is used tc IEgister the image copy and change
accuaulation jobs durillg each period (Figure 6-14).

6.24 I"S/V5 Primer

IDl/I Change Accumulation Form DATE: ,PERIOD: I
1===1
I INFUT ,OUTPUT,
1---1
I I DED ,DATA SET ,DATA SETIVOLUME(S),

1 1--I
I I I I I ,
,1M AGE I I '"
, CCEY I , "I
I I I 'I' ===,

I CID ACCO!OIA~ICN I leG tATA SETS I NEW A~COMULATION I
1--I
IDA'lA SET 1VOLUME (5) IDA'll SE~I VOLUME (5), CA7A SETI VOLUME (5),

1--I I , , , , , ,
CIiANGE, , , 1 I , ,
ACCUM. , , , , , , ,

, , , I I I ,
I , , I , , ,
, , , , I I ,
1 , I , I , ,
I I I , , I I

Figure 6-14u Registration of Image Copies and Change Accumul~tiens

~2~~§:

1. Each period starts with an image copy of all data base data sets.

2n When generaticn data greuFs are used, only the generation number
~eed te registered.

3. The first change accumulation run after the image copy should not
have any old log tape or change accumulation tape as input (that is,
//DFSOCOMO tr DUMMY.DCB=BLKSIZE=100).

In our phase 3 sample jebs. we use generaticn data groups for the data
set image cOFies, the log data sets. and the accumulation data sets.

FREQUENCY OF IMAGE CCFIES ANt CHANGE ACCUMULATIONS

'lbe frequency of image copies is dependent on your installation
environment. It is a trade-eff betW€eD the necessary recovery costs in
case ef failure and the cost of taking the image copies.

'Ihe basic recemmendation for taking i~age copies is:

• Immediately after initial lead of the data bases.

• Immediately tefore data base reorganization, if the old space is
deleted during reorganization.

• Immediately after data base reorganization.

• Once each WEEk.

Data Base Recovery 6.25

The basic recommendaticn fer the change accumulation is once a day.
Another approach would be tc FEIform change accumulation as a second
step, centrolled via condition codes, in every tL/I update jeb.

n!!~D!i2n_i~~i2g_Q~_!!29!_£2~I_~ng_12g_~~!~_~!!§

~c protect yourself against unusable image copies, logs, and change
accumulation tafes, you siould retain those tapes for at least two or
three periods (a period is defined as the interval between two
subsequent i;age COEies). A suggested retention ~heme, assuming a one
week Feriod, ~euld be:

• Log tapes are retained tvo weeks or until the time the next image
copy is made.

• Change accumulation tapes are made at least daily. The last one of
the Feried is retained two extra periodsq

• Image copies are retained three periods.

VSAM CA!A1CG CCNSltEEATICNS
~-----~--------------------
It is strongly recommended that you use a separate VSAM user catalog for
your data tase data sets. ihen yeur installaticn grows, you should
consider a user catalog for each application or project.

In case of an error in the user catalog, you should first try to correct
the protlem with the OS/VS Access Method Services VERIFY function. If
this fails, the following procedure can be fOllowed (VSAM 2 only):

1. Perform Access ~ethod Services: ALTER BEMOVEVOLUMES

This will delete all the data spaces owned by the user catalog and
the user catale9 itself. Yeu should specify all the volumes owned
by that user catalog.

2. Perform Access ~ethod Services: DEFINE

A new user catalog and new data base data space.

3. DL/I

Recover ~ll the affEcted data base data sets.

!~~ning: The abOVE procedure completely erases (that is, overwrites
with binary zeros) all VSAM data space, including the user catalog on
the specified volumes. You should use this only if the VSAM USEr
catalog has tecome inaccessible. For more details see also Ferform
Access Method Services: "VSA! Volume Cleanup."

Additional factors should be considered when setting up recovery
procedures for data tases used by an online IMS/VS system.

As discussed in Chapter 3, "Data Communication Design," a dynamic log
data set is used by the online system for recording data base changes,
as well as the leg tape. Atending online programs are automatically
backed out by the online system using the dynamic log records. In
addition, if the system should fail while an application program is
active, any updates made by that program vill be automatically backEd
out when the system is restarted. In our subset, if the program vas a

6.26 IMS/VS Primer

BMP the updates are automatically tacked out to its most recent
checkpoint. Eecause of this automatic backout, the operator will
usually need to run the recovery utilities only when there bas teeD a
major system failure, generally one which entails a re-IFt of CS/VS, or
when there are I/C errors on a data base.

The recovery proeedures outlined later in this chapter make use of the
DL/I recovery procedurEs and utilities described earlier in this chapter
as vell as an additional log tape maintenance utiiity, the SystEm Log
Terminator utility_

SYSTEM LOG TEBMINA70B O~ILITY (DFSFtOTO)

At the time of a system failurE, the System Log Terminator utility can
bE ~sed to reCOVEr any log data that may have been lost as a result of
the failure. A storage dump t~ken at the time of failure is required.
This storage dUMF can te tbE SYS1.DUMP data set, or a stand-alone dump
outFut tapeo the log terminator program:

• LocatES the log work area, buffers, and control blocks in the
storage dump.

• positions the log tape and writes the remaining buffers.

• Cleses the log data set.

Detailed instructions on running the utility, and the possitlE Error
messages that may cccur are described in the !~~L]§ ~.~m§~ ~!§!~~
~!I!i~!l g£~~!lg~!~ ~~ii§-

Figure 6-15 shows the data set requirements for running the System Log
Terlinator utilit)_

DFSFLOTO

SYSTEM LOG
TERMINATOR

OUTPUT
MESSAGES

Figure 6-15. Running the System log Terminator Utility

~~!_.§!!j;!!!!nj;!

the System log Terminator utility is executed as a standard OS/VS jeb.
The following JCL stat~ments are required:

EXEC This statement must tE in the following form:
PG !'l=DF SF1C~O

SYSPRINT Defines the cutput messagE data set.
DD

Data Ease Recovery 6.2·7

LCGTAPE
DD

rUMF
DD

//TERKIN
IlstEP
//SYSPRINT
//LCGtAPE
//DUKP
II

Defines tbe log tapE tc be terminated. This data set
must have had a disposition of (NEW,KEEP) at execution
time.

Defines tbe SYS1.DUMP data set, or the stand-alone dump
data set. !he DCB information for this data set should be
obtained from the CS/VS system programmer in ycur
installaticn.

JOE (ACCTINGINFO)
EXEC PG~=DFSFICTO
DC 5Y5007=A
DD DSN=IMSICG,VCL=SER=LCG001,UNIT=3400-4,DISP=(,KEEP)
tt nSN=SlS'.DUMP,VOL=SER=SYSD~P,UNIT=3400-4,DISI=CLt.

lAEEl=(,~l) ,tCE=(EECFM=O,ElKSIZE=2056)

Job SAMP492 in IMSVS.PEI~EJCE also shows an example of the Jet for this
utility.

The following recovery prccedures can be used as a basis for the
reccvery procedures in your installation. It is strongly recommended
that you exercise aId enforce such procedures before going into a
prcQuction phase with your online system.

ASSUftP~ICNS AND EfS!RIC!ICNS

1. The same assumptions and restrictions described for the DL/I
recovery Frocedures earlier in this chapter apply here as well.

2. The reccveIY procedures outlined here for handling I/O errors on
data bases involve clcsing dcwn the online sy~tem, running batch
recovery procedures, and then restarting the online system.

]s!!: The above restriction is based solely on the subset approach.
It is not an IMS/VS requirement that the online system be closed
down to perform data base recovery.

3~ lhese procedures are desi9ned to be used in conjunction with the
l~~L!~_R~~!§;_~!§!!~_~!I!i~sl_QI!lS!~I!§_~y!g~. If you alter these
prccedures, you should ensure that the operating guide is changed
accordingly.

POSSIBLE FAILOEES

The table in Figure 6-16 lists the most common failures, t0gether with
their symptoms, which can cccur in the online system. For each failure
an error class is given. this error class determines the reguired
recovery procedures, which are outlined in Fi9ure 6-17.

6.28 I!S/V5 Erimer

1 FAIlORE/SI!~A!ICN tESCEITICl

1-------------------------------------I'.OPERA!ING ERBCE
, 1.1 Cancel IMS centrel region
I 1.2 Cancel B~P ,

2.APPlICA!ICN FECGB1~ EEECF
2.1 MPP AbEnd
2.2 EMf AbEnd

3.1"S/VS EBROR
~. 1 Abend
3.2 lOOP or wait statE

4.0S/VS ERBCR
4.1 Abend,loop or non-dis~atchable

(storage dump taken)
q.3 Abend,loop or nOD-disFatcbable

(NO storage dump taken)

5.HAEDWARE ERROR
5.1 Machine check, power failure
5.2 I/O Error on data basE
~.3 I/O Error on data base during

tackout

SY~FTOMS IIRRORI

-----------------------------1
1

122 cr 00020 abend ,E
122 of E~P , A

I
I

tFS555,tFS554,DFS980 I
DFS555,DF5554,DP5980 I A , ,
IMS Abend code , B
Cancelled (I ~2 or U0020), B , ,
Re-1Fl I C

t
Re-IFl , D , , ,
Be-lit , D
DFS451 , E

IDFSge1,DFS983 , F , ,
L~-~---~---------~------~----~---~------~~--~----------------------~~

!2!~: !he IMS/VS control region may be canceled, either by
aa CS/VS ~!n~~! ~2!!!D~ if it is running as a problem task,
or by an 05/15 !29!!I ~2!!!I~ if it is running as a system task.

Figure 6-16. Possible failures During An Online Session

CORRECTING ~HE CADSE OF THE fAllUEE

This activity is completely dEpEndent on the type of failure. The
action, tc be taken by the .aster terainal operator '"TO) is outlined in
the 1ftS/VS Priaer !~Os Guice.

RECOVERY 'llSI<S

The subsequent rEcovery tasks to be performed for each defined error
class are listed in figure 6-17. The tasks .ust be executed fIOI left
to right. They arE alsc described in flowchart fOIm in the 1"5/VS
Pri.eI ft~O's Guide.

Data Base ReCOVEry 6.29

RECOVERY TASKS

CHANGE DATABASE BATCH RESTART
ERROR SHUT CLOSE LOG TAPE ACCUMULA nON RECOVERY BACKOUT NOTES
CLASS DOWN

IMS INCLUDE ONLY INCLUDE
DFSFLOTO DFSULTRO CURRENT LOG AFFECTED OS CURRENT LOG IMS BMP

A * 1.

B I * * 2,3,4

C * * * 2,3,4

0 * * * 2,3,4

E * * * * * 2,3,4

F * * * * * * 2,3,4,5

Figure 6-17. tata Ease Eecovery Actions in an Online Envircnment

1. Any updates done by an !FF or EMF which has been cancelled, er has
atended, are automatically backed out by lMS/iS.

2. If a BMF or MPP is active at the time that the online system fails,
the updates done by that application program are automatically
tacked out during the elErgency restart of IMS/iS.

3. The BMP which was activE at the time of failure should be restarted
from its last checkpoint.

4. When the online system is restarted after a system failure, the
t~rminal users should check the status of the transactions they
entered immediately prior to the failure. Any special action they
should take is dccumented in the operating procedures for that
transaction in the l!S/VS Erimer F.emote Terminal Operator's Guide.

5. If during a system failure, the log buffer was lost (that is, log
tape recovery was required) the subsequent restart may cause input
messages to be lost (no data base updates done) or duplicate output
messages (messagE retransmitted during restart).

6. The progral named in the DFSS83 message must be specified in the JCt
for the backout utility.

It is important that these tasks be executed in the order shown. Fer
example, if the system failed while a BMP was active, the online system
must be restarted after the other indicated procedures have teen
followed. During restart, the BMP updates are backed out. Next the EMF
should be restarted. If the E~F uses extended checkpoint/restart (XRST
call), you must sUPEly the lcg tape with the BKP checkpoint (the input
log tape for the emergency restart) with the I~SLCGE DD statement to the
restart JCL. Since OS/VS2 (!VS) enqueues on the volume serial
information, you must first (MVS only) shut down the system in between.
!his lust be done before any batch update programs are scheduled against
the affected data tases. If desired, the system can be restarted, and
then closed dc~n as soon as the backout is complete.

!Qi~: 1here is an additional error situation which could occur if for
some reason it is necessary tc recover a data base, ~ng the log tape
from the most recent online session is unavailable. For example, there
could be an IIC error on the data base and the log tape from the last
session has been lost due tc an operational error.

In this case, all data sets used in that online session must be
recovered to the start of the online session during whic~ the error
occurred. All BKPs which UFdatE data bases, and which were run during
that session must be re-run, and the remote terminal operators lust
re-submit all update transacticns entered during that session. You can
limit the above tG a single application if the data tase in e~ror is
only used by that sin9le ap~licaticn. If so, you lust ensure that you
recover !l! data bases used by that application, and conversely that the
EKFs and updatE transacticts that are re-submitted affect only those
data basEs that are being recovered.

Although this situation should not occur frequently, if at all, as it is
a result of a cOlbination of errors, it is nevertheless possible, and
should be taken into acccunt when the application design is done. It
may ilFly that remote terminal operators must keep a hard-ccpy record cf
the input to critical update transactions.

LOG TAPf ADKINIS~Rl~ION lN AN ONLINE ENVIRONKENT

The lcg tape Frodtced bJ the online I"S/VS system is vital for data base
integrity. In addition it is also necessary for restarting thE online
system, and for Froviding statistics for monitoring the performance of
the system. We will now discuss an administration scheme for
controlling the log tapes used by the online system. Although this
methcd dces not use generation data groups, we will show how it
interfaCES with thE scteae fcr ccntrolling batch log tapes that was
described earlier in this chaFter.

~9_I!E!_~!1!_~!!_!!.j~

WhEn a EKP is rEstartE~, thE lcg taFe ccntaining the checkpoint from
which it is being restarted must be allocated via an III!SLOGR DD card
to the BKP partition. !o avoid allocation conflicts some special tape
handling techniques must be used. Although bypass label processing
could be used in the BKP JeL, we Iecommend that standard labels be used
fo~ all jobs, but that the data set names be greater than seventeen
characters. ~his will avoid CS/VS allocation conflicts.

The following JCl could bE used:

• Control Regicn JCt
IIIEFRDER tD DSN=CNlINE.IMS.VS.PBI!ER.LOG, •••

• EMP Restart JCt
IIIMSLOGB Dn DSN=RESTART.IMS.VS.PRIMER.LOG, ••••

This technigue cculd be extended further to other jobs which y~u .ay
wish to run on thE previous day's log tapes, while the online system is
active. For exa.~le:

• Log ~apE Statistics
IILOGIN ID DSN=S~l~S.IMS.VS.PRIMER.LOG, ••••

• Change Accumulaticn
Ilt!SOLCG tD DSN=ACCUM.IMS.VS.PBIMER.LOG, •••••

]21!: This tEchniqUE is tasEd cn the fact tbat CS/VS enqueues on the
full data ~et name in the DD card, but only the last seventeen
characters are actually recorded on the tape label.

Examples of thE USE of this ~aling cODvention are shown in jobs SA!PI40,
SA~F474, SAMP481 and SAMPqS~ in IMSVS.PRIKEJOB.

Data Base Recovery 6.31

!9g_1~R!_~~'!~1_IYI~!I§

To reduce the possibility of operator error. we suggest that a pool of
taFes be allocated for use as online log tapes, and that they be
sequentially numbered. fer examFle, LOG001, LOG002, LCG003,.. etc. By
using sequential numbering, and using the tapes in sequence, the restart
and change accumulaticn Frccedures are siaplified.

We also suggest that log taFEs be clearly marked as such with external
labels, possibly in a bright color. This is to minimize the possiblity
of an online log ta~e being accidentally unloaded while the online
system is active or being used by mistake as a scratch tape.

1wc forms are suggested. Cne is the IMS/VS Online log ·Sheet,
(Figure 6-18) which is discussed in merE detail in Chapter 2 of the
1~~L!~fI!~I_Hg§!§I_l§;!i»!1_Q]~I~12I!§_~g!~!. !he other is the Image
COFY and Change AccumulatioR Form (Figure 6-14) described earlier in
this chapter.

If you use generatien data groups for maintaining your batch log taFes,
twc change accumulation jebs could be used: one for the log tapes
~roduced by batch jobs, and one for those produced by the online system.
All log tapes, batch or online must all be used in the £2II!~~ ~im~
2Ig!I to Froduce the change accumulation data sets needed for data base
recoyery. Examples are shewn in jobs //SAMP381 and //SAHP481 in
I~SVS.PBIMEJOf.

FBEQUENCY OF IMAGE COPIES AND CHANGE ACCOMOLAtICNS

The remarks made earlier in this chapter under this heading a~ply
equally well to the online envirenment.

The basic recommendatien for change accumulatien of the online log tapes
is ence a day. Another approach could be to perform change accumulation
whenever the online system is terminated. However this apprcach could
delay the restarting ef the system, if the shutdown was un~cheduled.

!!~~n~i2D_~!~j2~_2!_Q~li~!_~S9_1!2~!

The remarks made earlier in this chapter relating to batch log data sets
apply equally to online log tapes4

6.32 IKS/VS Primer

IMS/VS ONLINE LOG SHEET

/NRE BUILDO

/ERE FORMAT ALL

CHKPT

SERIAL

LOG
BUFFER

DUMPO
/CHE

FREEZE

OTHER
(specify)

LAST
CHKPT·ID

TIME COMMENTS/INCIDENTS

Figure 6-18. I~S/VS Online log Sheet

SERIAL

DATE

START
TIME

STOP
TIME

MTO
NAME

LOG TAPES

CHANGE
ACCUM STATS

Data Base Recovery 6.33

This chapter contains detail~d information necessary to install and use
IMS/VS.

Three different software installations are distinguished:

• IMS/VS-DE installation

• IMS/VS-ETAM installaticn

• IMS/VS-VTAM installation

In addition to the installation of IMS/VS itself, the generation of VTAM
(level 2 only) and Nep/VS in our subset environment is also discussed.

Eefor~ reading this chapter, you should be familiar with as/vs and its
system generation, and the access methods used by IMS/VS. I8S/VS
operates under OS/VS1 or OS/VS2. Very little difference is experienced
by the IMS/VS user between OS/VS1 or OS/VS2. The application programs
are particularly unaware of the operating system being used. At this
point we ~ill consider only OS/VS1 in our discussion and exa~ples. At
the end of the chapter, additional considerations and guidelines are
presented for'the 05/VS2 (MV~ cnly) user.

The next section guides you through the installation process.

The installation process for IMS/VS in an SMA environment consists of
the fcllcwing steFs (see Figure 7-1).

1. OS/VS1 initial preparation.

2q Creation of the IMS/VS libraries.

3. Festoring the IMS/VS litraries.

4. IMS/VS Stage system definition.

5. I~S/VS stage 2 system definition.

6q OS/VS1 final preparation.

7. VlAM and NCP/VS generation.

Step 7 is not necessary for an IMS/VS-DB installation or a ETAM-only
installation.

Installing IMS/VS 1.1

,- -
~-,'

I ,\
I \ I
\ PTFTAPE(S) JI
, 1'

...... _,- "-

INPUT
CONTROL

STATEMENTS

OS/VS
INITIAL

PREPARATION

I

I ,
CREATE

IMSNS

RESTORE

01 STR I BUTI ON

LIBRARIES

I ,
IMSNS

DEFINITION
STAGE 1

,
IMSNS

DEFINITION

I ,
OSIVS
FINAL

PREPARATION

,
VTAM
+ NCP

GENERATION

....

Figure 1-1. Installing IMS/VS

OS/VS1 PREPARATION

--

..
~

",-

'" -'

OS/VS
LIBRARIES

......."

IMSNS

LIBRARIES

OS/VS

LIBRARIES

",- -~ ..-'

VTAM
AND
NCP

LIBRARIES

'- ~

Some OS/VS1 optional facilities are required to support IMS/VS.

7.2 IMS/VS Primer

9~LY~1_!§An_~Qn§!g~I2~i£n§

If VSAM is to be used for data bases, it must be included in O~/VS1
during system generaticn. Specify ACSMETH=(VSAM) in the OS/VS1 system
generation DATAMGT macro instruction.

VTAM is incorporated into the operating system during operating system
generation. In our subset, we will give an example of including VTAM in
your operating system for use with IMS/VS. Details for planning and
generating a complete OS/VS1 and VTAM appear in:

• Q~LY?_~I§!~m_~~n~~~~~Qn_Ini~2g~£ti2n, GC26-3790

4 Q§L!§j_~I§l~!_~~~~'~!is~_R§!~I~n£~, GC26-3791

• Q~L!~J_Il!n_~I2!~!_fI29I~!!!I~§_2Yi~~, GC27-6996

VTAM is specified for inclusion in the operating system by using the
ACSME'IH pa.rameter of the ~ATAMGT macro instruction: ACSMETH= (VTAM).
(The DATAMGT macro instruction is included in Stage 1 input to OS/VS1
system generation.)

VTAM should run in a low-numbered partition (for high prior1~y,
normally, PO). It should run at a higher priority than IMS/VS. The
partition's size is determined by the user's needs. Information for
estimating the size of the VTA~ virtual storage partition appears in the
as/vs Storage Estimates manual.

GTF: The 9tneralized trace facility (GTF) must be installed and active
to-use the VTAM trace facility as discussed in Chapter 9,
"Opt i miza ti on."

I~~LY~_~Y~~I!i§QI_~~l!_EQ~~in~

One type 2 user SVC is required to execute IMS/VS, tB or DB/DC. This
SVC must b€ defined in your OS/VS1 system during OS/VS1 system
generation. See "OS/VS1 Systems Generation," SVCTABLE macro instruction
for more details.

An example of the SVCTABLE macro in your OS/VS1 system generation
follcws:

SVCTABLE SVC-25~-E2-S0

Normally, the SVC routine itself is not incorporated during the OS/VS1
generation. Sc you must include a "dummy" load module in the RESMCDS
partitioned data set. This should be done prior to Stage 2 of the
as/VS1 system genEration.

The format of the module is:

IGCnnn CSECT
BR 1q
END

where nnn is the uniqUE SVC number. This effectively NOPs the SVC
number. The actual inclusion of the SVC routine in OS/VS1 will be done
after the IMS/VS Stage 2 generation.

Installing IMS/VS 7.3

Additional program products are desirable but not required, such as:

• PL/I optimizer compiler
• OS/VS COBOL
• Sort/Merge
• Assembler H

Note: A Sort/Merge function is required if using logical relationships
or-secondary indices, or the DL/1 log data set change accumulation
utility.

INSTALLING A DB SYSTEM OR A DB/DC SYSTEM

In the following sections, we will discuss the IMS/VS-DB and the
IMS/VS-DB/DC installation separately.

DB-only users should read the following section "Installing IHS/VS-DB"
and then turn to the section en~itled "Executing the Sample."

DB/DC users should turn now to the section entitled "Installing
IMS/VS-DB/DC."

After the initial preparation of the OS/VS1 system described in the
preceding section, the following steps should be performed.

CREATING THE IMS/VS-DB LIBRARIES

Operation of IMS/VS-DB requires three categories of libraries for
storing modules, programs and control blocks.

I~~_I~~lY~~Q~_Q!§~£!~~~!~~_~!E~~£!~§

The distribution tape from the IBM program library contains three
libraries.

• IMS.DBGENLIB contains the macros for the generation and execution of
IMS/VS-DB.

• IMS.DBLOAD contains the IMS/VS-DB load modules.

• IMS.DBSOURCE contains the source cod~ of the IMS/VS-DB modules.

You should pre-allocate space for these librarian on your IMS/VS system
pack and use IEBCOPY to restore them from the distribution tape.

1. The IMS.DBGENLIB (named IMSVS.GENLIB when restored) is used only
during IMS/VS sys~em definition, Stages 1 and 2. After this, it is
required only for system maintenance.

2. The IMS.DBLOAD (named IKSVS.LOAD when restored) and I~S.DBSOURCE
(named IMSVS.DBSOURCE when restor.ed), are us~d only during Stage 2
of IMS/VS system definition. After this, they are required only for
system maintenance.

7.4 IMS/VS Primer

For the execution of IMS/VS-DB, the following system libraries are
needed:

• lMSVS.KACLIB contains the macros for the generation of DBDs and
PSEs.

• l~SVS.RESLlB contains the lMS/VS-DB execution modules.

• IMSVS.PRCCLIE contains the IMS/VS-DE job control procedures.

The ~ACLIE, RESLlE, and PROCllB are established during lMS/VS-DB
generation.

The following application libraries are needed for the execution of
IMS/VS-DB application programs:

• !MSVS.DBDL!B contains the DBDs.

• IMSVS.PSELIB contains the PSBs.

• IMSVS.PGMLIS contains the application programs.

The DBDs and PSBs are stored as standard OS/VS load modules during DBD
and PSB generaticn, respectively. The application programs are stored
in the PGMLIE during link-editing.

!h~_l~~L!~=]~_~Il!~I_lYDf!i~D_~~!f!~_~ih~~Ii~§

The following sample libraries are created after restoring the !MS/VS-tE
distribution tape:

• IMSVS.PF.IMESFC contains the sample source statement for the Primer
function programs, DBD's, PSS's, data base data, etc.

• !MSVS.PR!MEJOB contains the JCt statements for the Primer function
sample jobs.

RESTORING THE lMS/VS-DB DISTB1BUTICN LIBFABIES

The IMS/VS-DB distribution tape contains three libraries which are
unloaded partitioned data sets in IEBCOPY format.

1. For the exact format you should check the distribution letter which
accompanies the tape.

2. Optionally, you will also receive a "PTF tape". This tape contains
updated members of the original libraries. This tape should be
restored first and merged with the original tape.

IMSjVS-DS STAGE 1 SYSTEM DEF1NITION

Three 1MS/VS system definition macros are used for the definition of an
I~S/VS-DE environment.

Installing I85/VS 1.5

The coding conventions for these macros are the same as for the coding
of as/vs Assembler language source statements. Processing of those
macros by the OS/VS Assembler or the OS/VS program product Assembler H
creates the input job stream for the execution of Stage 2. All the
macros needed for the Stage 1 assembly are provided in IKSVS.GENLIB.

The three system definition macros required for the batch system are
IMSCTRL, IMSCTF and IMSGEN. They should be coded in that order as
follows:

/--,
/ ,

/ , IMSCTRI SYSTEM=r{VS1V},BATCH,{6.0}) , I VS/2 3.7
1 , , I

tMcs=(nu.ber(,nUmber, •••)~ I 1
1 , , , , I (,DESC=number]
I ,

Opticnal operands:

SYSTEM= specifies the oS/VS version and release, and the type of IMS/VS
system to be generated. V51V with 6.0 specifies OS/VS1 Release 6.0.
VS/2 with 3.7 specifies 05/VS2 Release 3.7. BATCH specifies the
generation of an IMS/VS batch system.

~CS= specifies the vs routing code to be assigned to the IMS/VS system
console if multiple console support (MCS) is included in the
operating system. If MCS is not specified, no routing code is used.
For a list of valid routing and descriptor codes see, Q~L!§
~gE~I!i§2I ~~I!i~~§ gDg ~g£!2 In~!I]£l!Qn§, GC27-6979.

DESC= specifies· the message descriptor code to be assigned to the IMS/VS
system console messages if MCS support is included in the as/vs
generations. If DESC is not specified, no descriptor is assigned.

/ , , , ,

The MCS= and DESC= keywords should be defined as required for the
ROUTCCE and DESC keywords of the OS/VS WTO macro. See the ~~L!~
~!R~.!i§2I ~~I!i£~§ ~ng ~g~~~ In§t~y£tiQn§, GC27-6979 r for a
detailed description of the WTO macro keyword paramet9rs.

/---, ,
IIMSCTF , , ,

,
ISVCNO=(,type2) ,
, ,LOG=(SNGL,MONI!OR)
I

Optional operands:

SVCNO= Specifies the operating system type 2 SVC number reserved for use
hy IMS/VS. Values entered may range from 128 to 255. The SVC
number must be specified as the second parameter to be compatible

7.6 IMS/VS Primer

with earlier releases of I~S/VSi therefore, the parentheses and the
comma are required. The default is SVCNO= (, 254) •

LOG=(SNGL,"ONITOR)

Should be coded as shown in our subset. It provides for one log
data set per job (step) and the optional activation of the DB
Konitor.

1---.-------, 1 , f , , If! SGEN , Jet: ([{lMSGEN }] [,job accounting]
1 , I jobname , 1 , , 1 I , , ,

[, {pr09r~!~ername}] [, {olitpli~crass}] , , ,
I I I , , 1 , , , f , (job miscellaneous)]) , I , , I I , , , , , I rNODE=(l~~!~. l~~!~. l~~!~~ , 1 ! node1 node2 node3 , , 1 , I 1 [,OBJDSET= {il!~!~LQ~,z~~~! }] , I , name , , 1 , , , , , ,
1 I , [~US EFLlB= {!ll§!~~J!];~~!] }] , 1 1 name , I , , , ,

[.1511= {*2}] , t , , , , , I t
L--~

JeL=

jobname specifies a maximum of six alphameric characters to be used
as the first Forticn of the generated job names. The last two
characters of the job names are the internally generated,
sequentially incremented, numeric values representing the
relative position of each job in the Stage 2 stream. The
default is I~SG!N.

jobaccounting specifies job accounting data to be placed in the
Stage 2 JeL. The length of the accounting data may not exceed
SO byte s.

programmername specifies the programmer name to be placed in the
Stage 2 JeL. The default is IMS.

outputclass specifies the output class to be generated for the Stage
2 JCL. The default is A.

job miscellaneous specifies any addi tiona lparameters the user may
desire to have placed in the Stage 2 JOB statements. Length of
this parameter cannot exceed SO bytes. Recommended:
TYPRUN=HOLD.

Installing 1"5/V5 7.7

!~i~: If job accounting, programmer name or job miscellaneous
contains non-alphabetic characters then the parameter should be
enclosed in double quotes: " •••••• ,.

NODE=

nodel specifies the node to be assigned to all IMS/VS data set names
to be used and generated by IMS/VS system definition. The specified
node can consist of from 1 to 8 characters. The first character
must be a letter or a national character (l, $, .). The default
node generated is IMSVS.

node2 specifies the node to be assigned to the !MS/VS data set names
MACLIB, PROeLlB, MATRIX, JOBS, and RESLIB. This node overrides the
nodel assignment for these specific data sets.

node3 specifies the node to he assigned to the IMS/VS data set names
DBSOURCE, GENLlB, and LOAD. This node overrides the node'
assignments for these specific data sets.

OBJDSET=

specifies the name (maximum of 24 characters) of a cataloged
partitioned data set into which assembler object modules ~re placed
during Stage 2 of IMS/YS system definition. The default is
IMSYS.OBJDSET.

USERLIB=

ASM=

specifies the name (maximum of 24 characters) of a library for user
modules to be included in the system. This is not applicable to
IMS/VS-D8. However, to avoid JeL errors in Stage 2, you should
specify here the name of your RESLIB if it is not IMSVS.RESLIB.

specifies whether the as/vs Assembler (VS) or OS/VS program product
Assembler H (H) JeL is to be produced for the Stage 2 assembly
steps. The default is Vs.

The IMS/VS Stage 1 system definition is a standard CS/VS assembly. The
generated output is the Stage 2 job stream.

IMS/VS-DB STAGE 2 SYSTEM DEPINITION

This is the execution of the jobs generated by the Stage 1 system
definition.

OS/VSl FINAL PREPARATION

Some changes must be incorporated in OS/VS1 after the IMS/VS-DB Stage 2
system definition.

R~!~n! ih~ Qal!~ !g£i~~§ !!lh lh~ I~§~!§ II~~ ~ §!£

The OS/VS nucleus must be re-linked to include the Type 2 I~S/VS SVC
module. This module was placed in IMSVS.RESLIB during Stage 2 of the
IMS/VS system definition.

7.8 I~S/VS Primer

~Q2I_l~~S~~_f{2£!gg{~_~Q_~!~1~f~Q£!!~

To be able to use the IMS/VS supplied procedures in I"SVS.PROCLIB, the
I~SRDR procedure should be COpiEd from IMSVS.PROCLIB to SYS1.PRCCLIB, or
you should add IMSVS.PROCLIB to the IEFPDSI DD statement of your CS/VS
reader procedure.

This section presents all the jobs to install IMS/VS-DB. A listing of
these jobs is provided in Chapter 2 of the l~aL!a E'~~~' ~~2i~
Li.§li.Dg,§ .. All jobs for the installation are named "SAMFlnn", except the
jobs generated by the IMS/VS-DB stage 1.system definition. These are
named "SAMPGnn". Most jobs are re-executable to allow easy installation
of a new release of IMS/VS. All the referenced jobs are distributed
with the IMS/VS system. The first five jobs, SAMPI01, SAMPI02, SAMPI05,
SAMPI07, and SAMPIOB, must be initially punched because they format and
relcad the distribution libraries.

After the tape libraries are restored, all the sample jobs are contained
in I~SVS.PRIMEJOE. The source code for programs, PSBs, DBDs, etc. are
available in IMSVS.PBIMESRC.

!2I!: Unless otherwise stated, all these jobs should complete with a
return code cf zero for a Froper IMS/VS-DE installation.

SAMPI01: PR!PARE DISK VOIU~E

This job creates a SYSCTLG on the IMSPRM disk volume and constructs an
IMSVS CVOL pointer and index structure.

SAMPI02: ALLOeA!: DIS!RIBUTICN LIEFAF.IES

This job allocates space for the IMS/VS-DB distribution libraries and
the Primer function sample libraries.

SAMPlOS: FESTOR! PTF lIEFAFIES

This optional job restores the libraries frcm a PTF tape, if any. A PTF
taFe contains updated versions of IMS/VS modules. If a PTF tape is
available, it must be restored first.

SAMPI07: RESTORE IMS/VS-DE lIBRABIES

This job restores the libraries from the IMS/VS distribution tape.

SAMPI08: COpy PRIMER FU~CTION SAMPLE SOURCE AND JOBS

This job copies the Primer function sample source and JCL statements
from the distribution libraries to their execution libraries.

The reader procedure {PRIME) in Figure 7-2 can be placed in
SYS1.FROCLIB, to be used for reading in the sample jobs.

I/PRIME PROC JOB=TEMPNAME,DSN='IMSVS.PRIMEJOE'
/IIEFERCC EXEC FG~IEFVMA,

II PARK=~C06CC300005C11EOOC"AOO'
//IEFRDF.P. Dr. DSN==&DSN .. (EJOB) , DISP=SHR, DCE=BUFNO=1
/IIEFPtSI DD DSN=IMSVSaPROCLIB,DISP=SHR
1/ Dr DSN=SYS1.PROCLIB,DISP=SHR

Figure 7-2. The ~RIME Reader Frocedure

Installing IMS/VS 7.9

The start command to be used with this reader is for ~xampl~:

S PRI~E,JOB=SAMPI15

!2~~: The reader procedure of Figure 7-2' is for OS/VS1 Rel~ase 6. You
should verify its parameters with the standard reader procedures in your
SYS1.PROCLIB.

SAMPI15: ALLOCATE IMS/VS-DB APPLICATION LIBRARIES

This job allocates the IMS/VS-DB application libraries (DBDLIB, PSBLIB,
and PGMLIB).

SAMPI11: ALLOCATE I~S/VS-DB SYSTEM LIBRARIES

This job allocates the libraries fot the actual IMS/VS-DB system
definition (RESLIB, PROCLIB, OBJDSET, and MACLIB.)

SAMPI21: EXECUTE IMS/VS-DB SYSTEM DEFINITION STAGE 1

This is an assembly job which generates the IMS/VS-DB Stage 2 system
definition job stream. It needs only the macros in IMSVS.GENLIB. The
output it produces can be punched into cards or placed on a direct
access volume as a sequential data set or a member of a library. In our
sample environment, we 'will place the generated job stream in the
IMSVS.PRIMEJOB library, with a member name of STAGE2.

!2i~: This assembly requires a large virtual partition when using the
OS/VS system assembler. 2M bytes should be sufficient.

SAMPG1 THROUGH SAMPG6: STAGE 2 JOBS

These jobs perform the actual IMS/VS-DB system definition. They must be
executed in numerical sequence.

Notes:
--~--

1. These jobs are not listed in Chapter 2 of the

!~§~!§ f~!m~~ §2Y~~~ ~!2t~ng2. They are created as one member (STAGE2)
as a result of job SAMPI21.

2. Jobs SAMPG2, SAMPG3, and SAMPG5 need the OS/VS1 system generation
macro library SYS1.AMODGEN. This library should have a blocksize
not larger than SYS1.MACLIB, because it is concatenated in the
assembler SYSLIB DO statement. It must be cataloged.

3. Control blocks and source modules processed during the execution of
the Stage 2 job stream are assembled and link-edited into
IMSVS.OBJDSET. Because these modules are link-edited individually,
many will produce occurrences of the linkage editor message IEW0461
(unresolved external reference) and set condition code~. These
references are resolved later during the linkage ~ditor steps that
create the load modules in IMSVS.RESLIB.

4. Job SAMPG6 can have a return code of 4 and message IEW046I will be
issued for modules DFSIWAIT and DFSIOS40 when link-editing module
DFSVCOOO into IMSVS.RESLIB. This is a valid condition.

5. The Stage 2 jobs can be read in with the PRIME reader procedure of
Figure 1-2.

1.10 IMS/VS Primer

SAMPI25: RELINK OS/VS NUCLEUS WITH IMS SVC

This job relinks the OS/VS nucleus to include the IMS/VS Type 2 SVC
placed into IMSVS.RESLIB during Stage 2. Your OS/VS system programmer
should check the linkage edit control cards to ensure that they comply
with other installaticn requirements. Note that this job relinks the
nucleus under the name IEANUlog. When you re-IPL the system after
completing all the installation steps, you must specify this suffix (9)
to lead the alternate nucleus.

SAMPI35: RENAME tHE IMS CS/VS NUCLEUS TO MAIN NUCLEUS

After you have re-IPLed your system with the alternate nucleus linked in
SAMPI25, and tested it. you may wi~h to rename this nucleus to IEANUC01.
!his job will perform the rename, after saving your original nucleus
under the name IEANUCOF.

You should now turn to the section "EXECU'IING THE SAMPLE."

After the initial OS/VS preparation the following steps should be
performed.

CREA!ING lHE IMS/VS LIERARIES

Operation of IMS/VS requires feur categories of libraries for storing
modules. programs, and control blocks.

Two distribution tapes are supplied to install IMS/VS DB/DC. The DB
taFe contains the fallowing libraries:

• IMS.DBGFNLIB contains the macros for the generation and execution of
an IMS/VS-tE syste~.

• IMS.DBLOAD contains the IMS/VS-DB load modules.

• IMS.DBSQURCE contains the source code of the IMS/VS-DB modules.

The bC tape contains the following libraries:

• IMS.tCGENLIB contains the macros for the generation and execution of
IMS/VS-DC.

• IMS.DCLOAD contains the IMS/VS-DC load modules.

• IMS.DCSOORCE contains the source code of the IMS/VS-DC modules.

You should pre-allocate space for the following four IMS/VS distribution
Ii traries:

• I~SVS.GENLIE to contain DBGENLIB and DCGENLIB.

• IMSVS.LOAD to contain tBIOAt and DeLOAD.

• IMSVS.DBSOURCE to contain tBSCURCE.

• IMSVS.DCSOURCE to contain DCSCURCE.

The as/vs utility IEBCOPY is then used to restore and merge the tapes.

Installing IMS/VS 7."

H2t!: The aboye distribution libraries are needed only during IMS/VS
system definition and subsequent system maintenance. They are not used
during normal IMS/VS application processing.

Ih! ~~~L!~ ~!!2l! &~e~!~!!!

Two sample libraries are created after the reload of the distribution
tape(s) :

• IMSYS.PRIMESRC, contains all the sample sources used in this
publication.

• IMSVS.PRIMEJOB, contains all the sample jobs used in this
publication.

For the execution of IMS/VS, the following system librari~s are needed:

• IMSVS.MACLIB contains the macros for the generation of DBDs and
PSBs.

• IMSYS.RESLIB contains the IMS/VS execution modules.

• IMSVS.PROCLIB contains the IMS/VS job control procedures.

• IMSVS.MATRIX contains the security tables and matric~s.

• IMSVS.JOBS contains the Jet used to initiate the ~PP region.

The MleLIB, RESLIB, MATRIX, and PROCLIB are established during IMS/VS
generation. You should modify the JCt in the IMSVS.PROCLIB member named
IMSMSG as necessary to meet the requirements of your installation and
store it in IMSYS.JOBS.

The following application libraries are needed for the execution of
IMS/VS application programs:

• IMSVS.DBDLIB contains the DBDs.

• IMSYS.PSBLIB contains the PSBs.

• IMSYS.PGMLIB contains the application programs.

• IMSYS.ACBLIB contains the ACBs.

• IMSVS.PORMAT contains the flIFS control blocks.

• IMSVS.REFERAL contains intermediate text copies of rifFS control
blocks.

The DBDs and PSBs are stored as standard OS/YS load modules during DBD
and PSB generation, respectively. The application programs are stored
in the PGMLIB during link-editing. lCBLIB is built when the block
builder utility invoked by the ACBGEN procedure is used to build
application control blocks from your PSBs and DBDs. FORMAT and RE¥ERAL
are established by the ~FS utility.

The following data sets are essential for the execution of the online
system:

• IMSVS.QELKS contains mEssagE queue control blocks.

• IMSVS.SHMSG contains the short message queue.

• IMSVS.LGMSG contains the long message queue.

• IMSVS.RDS contains control records for IMS/VS restart.

• IMSVS.tELLCG contains werk records used for dynamic backout and
restart.

QBLKS, SHMSG, LGMSG, EDS and DBLLOG are built and maintained by the
online centrol program.

RESTORING THE IMS/VS DISTF.IEUTICN LIBRARIES

Each IMS/VS distribution taF€ contains three libraries which are
unleaded partitioned data sets in IEBCOPY format.

!~!~§:

1. For the exact format you should check the distribution letter which
accompanies the taFes.

2. Optionally, you will also receive two "PTF tapes." These tapes
contain updated members of the original libraries. These tapes
should be restored first and merg~d with the original tapes.

IMS/VS DB/DC STAGE 1 DEFINI~ION

IMS/VS system definition macros are used to describe the features and
options you require fot yeur system. These macros are provided in
IMSVS.GENLIE.

The coding conventions for these macros are the same as for the CS/VS
Assembler language. processing of th~se macros by the as/vs Assembler
or the OS/VS program product Assembler H creates the job stream for the
execution of Stage 2.

The macros can be divided into three categories:

• System Environment: To describe the basic control program options.

• Data Bas~ and Application: ~o describe your online data bases,
application trograms, and transactions.

• Data Communication: Te describe your data communications
configuration.

We will now discuss these macros by category. Full details of coding
the individual macros are given later in the chapter~

Installing IMS/VS 7.13

~I~~~m_~n!iI2n!~n~_~!~£2_~!!t!!!n~§

This category of macro statements describes the basic I"S/VS control
program options. You use them to describe such things as:

• Library and message queue data sets.

• Message processing region information.

• Number and size of message queue buffers.

• Sizes of various buffer pools and work areas.

• IMS/VS interface with the Operating System, for example SVC number.

• JOB and SYSOUT classes of the stage 2 job stream.

The macros included in this category are:

IMSCTRL Defines the basic control program options.

MSGQUEUE Defines the characteristics of the three us~r messag9 queue
data sets.

SPAREA Defines the maximum number and size of scratchpad areas for
conversational transactions to be maintained by IMS/VS.

BUFPOOLS Defines the, main storage buffer pool sizes for use by the

IMSCTP

IMSGEN

online control region.

Defines additional options and system parameters.

Defines the desired assembler and linkage editor data sets and
output options.

Q!i~_~!~!_!~~_!££l!£!t12n_~!£~2_~~!t~!~n!2

The macro statements in this category describe the data bases,
application programs, and transactions that will be processed by your
online system.

The macros included in this category are:

DATABASE Defines a data base that is to be used in the online sys~em.

APPLCTN Names the PSB of the application program that processes the
transaction codes specified by the TRANSACT macros that follow.

TRANSACT Names the transaction codes that are to be processed by the
application program described in the preceding APPLCTN macro.

You must specify the DBD name of each data base (except logical DBDs) to
be used by the online system with the DATABASE macro statement.

One APPLCTN macro statement should be provided for each message
processing program (MPP) that is to be used in the online system. The
APPLCTN statement is followed by one or more TRANSACT macro statements
defining the transactions processed by the MPP. You should also provid@
an APPLCTN statement for each batch program that is to run as a batch
messsage processing program (BMP). In our subset, APPLCTN macros that
define BMPs are not followed by TRANSACT macros.

1.14 IMS/VS Primer

R2!e: If a data base or batch program will never be used by the online
sy~tem, it is not necessary to define it in the Stage 1 definition.
However, you may include DATABASE, APPLCTN, and TRANSACT macro
statements for resources that are not currently available. For example,
you may define the statements for an application that is not yet
implemented. This will mean that programs fer the new application can be
run online as soon as they are ready, without having to re-do the system
definition. Warning messages fer these 'dummy' definitions will be
issued when the online control region is initiated.

These macro statements describe your IMS/VS data communication
facilities. They define such things as:

• General communications requirements

• Communication line groups, lines, and terminals (BTAM only)

• VlAM nodes (V'IA~ only)

• IMS/VS logical terminals associated with the nodes and terminals

Macros included in this catEgory are -- VTAM only:

COfilM

TYPF

Specifies general ccm!unicatiens reguirements that are not
associated with any particular terminal type. PreparE ene and
only one per IMS/VS system definition.

Describes a group of V'IAM nodes of the same terminal type.
Prepare one for each terminal type that is part of your IMS/VS
system.

TERMINAL Provides the characteristics of a terminal node of the type
specified in the preceding TYPE statement. Prepare one for
each terminal node.

NAME Provides logical terminal names of the node specified by the
preceding TERMINAl statement. Prepars at least one for each
terminal node.

Macros included in this category are -- B~AM only:

COMM Specifies general system attributes that are not associated
with any particular terminal.

LINEGBP Defines a group of lines of the same type over which the same
typ~ of terminal communicates.

LINE Provides the address and/or characteristics of one line in the
line grcup defined by the preceding LINEGFP statement.

CTLUNIT Provides terminal control unit address and attributes. Prepare
one for each control unit attached to the line specified by the
preceding LINE statement.

TEFMINAL Provides physical terminal data. Prepare one for each physical
terminal attached to the line specified by the preceding LINE
statement.

NAME Provides a logical terminal name for the physical terminal
specified by the preceding TERMINAL statement. Prepare at
least one for each physical terminal.

Installing IKS/VS 7.'5

~222~~£i_!~!~ng_R~!~§

These rules and restrictions apply to all of the IMS/VS macro
statements. Refer to them while naming your resources in each of the
macro definitions.

• Names cannot include a blank, comma, period, hyphen, or equal sign.

• All PSB names must begin with an alphabetic character (A thru Z, .,$
and ~.)

• Logical terminal names and transaction codes must begin with an
alphameric character LA thru Z, I, $, and ~, or 0 thru 9).

• IMS/VS null words cannot be used as a resource name: FOR, TO, ON,
AFTER, SECURITY and MODE. Also, resource names should not begin
with DFS or IWTOR.

• Each IMS/VS macro statement can appear in a system definition a
limited number of times. Figure 7-3 shows for our subset, the
maximum number of times for each stat9ment.

• IMS/VS command keywords and their synonyms cannot be used as
resource names. Figure 7-4 gives a list of command keywords and
synonyms.

r---------------------------------------, I MACRO STATEMENT IMAXIMUM OCCURRENCES,
1-------------------1-------------------1

IMSCTRL
I~SCTF

SPARE A
MSGQUEUE
BUFPOOLS
DATABASE
APPLCTN
TRANSACT
COMM
LINEGRP
LINE
CTLUNIT
TYPE
TERMINAL
NAME
IMSGEN

1
1
1
1 ,

5000
5000
5000

1
255

1000
1000
5000
5000
5000

1

L---------------------------------------J
Figure 7-3. Number of macro statements per system definition.

7.16 IHS/VS Primer

ABDUMP
ACTIVE
ALL
AREA
ASSIGNMENT
BALGRP
BUILDQ
CANCEL
CHECKPOINT
CLASS
CNS
COMP
COMPONENT
CONVERSATION
CPRI
DATABASE
DBD
DC
DONE
DUMPQ
FORMAT
FPPROG
FPREGION
FREEZE
ICOMPT
INPUT
KEY
LEVEL
LINE
LINK
LMCT
LOPEN
LPRI
LTERM
MODE
f'lODULE
MONITOR
MSDBLOAD
MSNAME
MSPLINK
NOBMP
NOCOMP
NODE
NOFEOV
NOPASSWORD
NOSHUT
NOTERMINAL
NOTRANCMDS
NOTRDY
NOUSER
NPRI
OPTION
OUTPUT
PARLIM
PASSWORD
PCH
PDS
PI
PLMCT

A

A5MT
BALG
BLDQ5,BLDQ,BUILDQ5

CHKPT,CHECKPT,CHKPOINT
CLS

COMPT
CONV

DATABA5E5,DB,DBS

DUMPQS
FMT

FPRGN

LINES

LCT

LTERMS

MON

NOPSWD
NOS
NOTERM,NOTER

PASSWORDS,PSWD,PSWDS

PLCT

Figure 7-4 (Part 1 of 2). IMS/VS Command Keywords and Their Synonyms

Installing ISS/VS 7.17

POOL
PRIORITY
PROGRAM
PRT
PSB
PTERM
PURGE
QUEUE
RDR
READY
REGION

RTCODE
SEGNO
SEGSIZE
SERIAL
SET
SHUTDOWN
SNAPQ
STATUS
SYSID
TDS
TERMINAL
TRANAUTH
TRANCMDS
TRANSACTION
UDS
USER
UVDL
VID
XKEY

PRTY
PROGRAMS,PROG,PROGS,PGM,PG~S

PTERMS

QUEUES,Q,QS

REGIONS,REG,REGS,MSGREG,MSGREGS,MSGREGION,
MSGREGIONS
RTC

SER,SERS,SERIALS

TERMINALS,TERM,TERMS,TER,TERS

TRANS,TRAN,TRANSACTIONS,TRANCODE,TRANCODES

Figure 7-4 (Part 2 of 2). IMS/VS Command Keywords and Their synonyms

This section contains the detailed coding instructions for
the individual macros.
The macros in the system environment category are discussed first,
followed by the data base and application macros, followed by
the data communication macros.

1.18 IMS/VS Primer

I rJ SC 'IPL Mac ro

This statement describEs the tasic I~S/VS centrol program options,
thE as/vs environment, and the type of IMS/VS system definition
to be performed.

/-----.---,
/

I , , , ,
1
I , ,
I , , , , ,

I' ,
I IMSC!FL 'SYSIE~=({VS1V},{ ALL },{6.0}) I
I I VS/2 NUCLEUS 3.7 ,
I' ,
1 1 ,MAXBEGN=(2,128K,A,A) ,
I' 1 , , [] ,
I , _' I H SID =i m sid 1

" 1 I' ,

I , [~' , "MCS=(numbcr(,number, •••]) ,

" , ,
(,DESC=number] , ,

L--~

Operands:

SYSTEM= Specifies the OS/VS system and release, and the type of IHS/VS
system to be generated. VS1V,6.0 specifies OS/VS1 Release 6.0,
VS/2,3.7 specifies as/VS2 Release 3.7.

'ALL' should be specified for the first system definition that
you dOQ this will generate a system definition for a complete
CE/tC system.

If you subsegu~ntly wish to change the specifications of your
system, for example by, adding data bases, application
programs, transactiens, or terminals, you should code the
sub-paramp.ter 'NUClEUS'. This will generate a system
definition for a new centro 1 pregram nucleus and control
blocks ..

HAXREGN= Specifies the maximum number of partiticns supported ty the
JMS/VS online contrel frogram at anyone time. The first
sub-parameter indicates the total number of MPP and BMP regions
that can be active. The second. third, and fourth
sub-parameters specify region size, job class, and job messagE
clqss. and are used fot generating the JCL for the message
regionQ In our subset the parameters should be coded as shown
to comply with our recommendation for one MPP region and one
Br1P region.

IMSID= May specify a ,- tc 4-character alphameric identifier for the
IMS/VS system. This identifier will be used as the IMS/VS
subsystem identifier: it must not conflict with any sut-system
identifiers defined te the V51 or !VS system, including other
Ir1S/VS systems, batch or online. The default is IMSA. This
identifier is also used to relate messages which are routed to
the as/vs system console to the corresponding IMS/VS system.

Installing IHS/VS 7. 19

Mes=

DESC=

Specifies the VS routing co1s to be assigned to the IMS/VS
system console if multipla console support (MCS) is included in
th~ operating system. If MCS is not specified, no routing code
is used. For a list of valid routing and descriptor codes see
g~L!§_§~E~&!!~Q~ ~~£!i£~2_~ng_~~~~2-In§1£~£~iQn~, GC27-6979.

Specifies the message descriptor code to be assigned to the
IMS/VS system console messagss if MCS support is included in
the as/vs generaticns. If DESC is not specified, no descriptor
is assigned.

The Mes= and tESC= keywcrds should be defined as required for the
ROUTCtE and DESC keywords of the OS/VS i10 macro. See
Q~LY~_§YE~I!i§2I_2~£!i£§~_~n4_~~££Q In~~IY£~iQn§, GC27-6979, for a
detailed description of the WTe macro keyword parameters.

IM5C!F Macro

This statement defines certain control program options and system
pa ra mete rs.

/---,
/ , , , , , , , , , ,

I ,
I ,

,
,IMSC'IF
! , , , , , , , ,
I ,
I ,

1
, SVCNO= (,type2)
I
I , , , , , , ,
I
I , ,

,CORE=(2,16,2,2)

{

3330,2CU8}
,rYICG= (3340,1540 ,4)

3350,2C48

{~~30} ,FDS= (3340 ,2048,2)
3350

.LOG=(SNGL.MONI'IOR)

Opticnal operands:

SVCNO=

CORE=

Specifies the operating system SVC number reserved for use by
the generated IMS/VS system. Values entered may range from 128
to 2~5. !he svc number must be specified as the second
parameter to be compatible with earlier releases of IMS/VS;
therefore, the parentheses and the comma are required. Default
is SVeNO=(,2~q).

Specifies the amount of dynamic storage used by the exclusive
control ENQUEUE/DEQUEUE routines. In our subset the parameters
should be coded as shown. This provides a minumum amount of
2K, which can be incremented by 2K to a maximum of 16K in
sub pool 2.

~Q!~: You may need to increase these values if you intend to
run EMPs with a high number of data base updates between
checkpoint calls.

7.20 IMS/VS Primer

tYLCG= SpecifiES the devicE type, buffer size, and number of tuffers
(4) to te used by the dynamic logging facility. In our subset;
if a 3350 device is used, code (3350,2048,4); if a 3340 device
is used, code 13~40.1540,4). if a 3330 device is used, code
(3330, 2C48. 4) •

RDS=

LOG=

Specifies the device tape, buffer size, and numbers of tuffers
to be used for the restart data set. In our subset, a buffer
size of 2048 and two buffers are recommended.

Specifies the type cf logging to be done. In our subset the
parameters should te coded as shewn. It provides for one log
data set per job (step) and the optional activation of the DC
Monitor.

I M SGE N Macro

This specifiF.s the JeL requirements and assembler and linkage editor
cptions for the Stage ~ job stream. It must be the last macro statement
in the input deck.

I---------------------------------~------------------- --------,
/ t ,

I , IMSGEN t JCl= ([f~!SGEN }] [,job accounting] , , , (Jobname
I , I

I

I , ,
I , ,

~{~~~ij~a~~~~iiii-U [. {outPu~class}] I I I
I , I
I I 1 , , I (,(job miscellaneous)]) , , I , I I , I , [, NODE = (Il1~!~, Ilt~l§, I~~!~] , I , node1 node2 node3 , I

[,OBJD SE T= I , 1 {1~~!~~Q£h1~~gI U
I , I name
I , , , I I , , , [, us EFLIB= {J~~Y§~lLt~§~l] }] I , , I name , I I

[, AS M= {~a}] I , , , I ,
I , I
~--~

JCt=

jcbname specifies a maximum of six alphameric characters ~o be used
as the first porticn of the generated job names. The last two
charactErs of the jcb names are the internally generated,
sequentially incremented, numeric values representing the
relative position of each job in the Stage 2 stream. The
eefault is IMSGEN.

job accounting specifies job accounting data to be placed in the
Stage 2 Jet. The length of the accounting data may not exceed
50 bytes.

Installing I~S/VS 7.21

programmername specifies the programmer name to be placed in the
Stage 2 JCt. The default is IMS.

outputclass specifies the output class to be generated for the stage
2 JeL. The default is A.

job miscellaneous specifies any additional parameters the user may
desire to have placed in the Stage 2 JOB statements. Length of
this parameter cannot exceed 50 bytes. Recommended:
TYPRUN=HOLD.

!~!!: If job accounting, programmer name or job miscellaneous
contains non-alphabetic characters then the parameter should be
enclosed in double quotes: " •••• ".

NODE=

nodel specifies the node to be assigned to all IMS/VS data set names
to be used and generated by IMS/VS system definition. The specified
node can consist of from , to 8 characters. The first character
must be a letter or a national character (J, $, f). The default
node generated is IMSVS.

node2 specifies the node to be assigned to the IMS/VS data set names
MACLIB, PRoeLIB, MATRIX, JOBS, and RESLIB. This node overrides the
node' assignment for these specific data sets.

node3 specifies the node to be assigned to the I~S/VS data set names
DBSQURCE, GENLIB, and LOAD. This node overrides the node'
assignments for these specific data sets.

OBJDSET=

specifies the name (maximum of 24 characters) of a cataloged
partitioned data set into which assembler object modules are placed
during Stage 2 of IMS/VS system definition. The default is
IMSVS.OBJDSET.

USERLIB=

ASM=

specified the name (maximum of 24 characters) of a library for user
modules to be included in the system. This is not applicable to our
subset. However, to avoid JCt errors in Stage 2, you should specify
here the name of your RESLIB if it is not IMSVS.RESLIB.

specifies whether the OS/VS Assembler (VS) or as/vs program product
Assembler H (H) JCt is to be produced for the Stage 2 assembly
steps. The default is VS.

7.22 IMS/VS Primer

MSGQUE UE Mac ro

This defines the characteristics of the three message queue data sets.

1--- -------~
/ I I ,

t '{3330}'{3330},{3330} I IMSGQUEUE , DSE~S=(334C , 3340 , 3340) I
, 3350 , 3350 , 3350 , , , ,

I 1 , R E C 1 N G= (2 50 , , 50 0) I , , ,
I , , EUFFEPS= (10, '500) ,
I , 1 L--- ___________________ ~

Operands:

DSE~S= Specifies the device types on which the three message queue
data s~ts ~ill reside. (IMSVS.QBLKS, IMSVS. SHMSG, and
IMSVS.LGMSG, respectively). The data sets need not all reside
on the samE device tYFe.

RECLNG= Specifies the logical record lengths for the short and long
message queue data sets, respectively. In our subset the
operand should be coded as shown. It provides for our longest
output message segment of 1388 bytes, control information and
spare space.

BUFFERS= Specifies the number of buffers allocated for message queue
management, and the block size used by the three message queue
data sets. In our subset the operand should be coded as shown.

SP~.FEA Macro

This macro defines the maximum number and size of the scratchpad areas
(SPAs) maintained by the system.

/--------_._--,
/ t , ,
, 1 SPAPEA ,COBE=(number,1300) I
1 1 I ,
L--~

CORE= Specifies the numter and size of the main storage SPAs. The
first sub-parameter, 'number', indicates the maximum number of
SPAs. This determines the number of conversations that can be
active at anyone time, and therefore the number of terminal
USErs who can be using conversational transactions at anyone
time. !he second sub-parameter indicates the maximum size of
the SPA. In our subset, it should be specified as shown.

EUFPOOLS Mac:ro

This macro specifies the default main storage buffer pool sizes. These
sizes can be overridden at execution time via the PARM field of the
IMS/VS control region trocedure.

Installing IMS/VS 7.23

1------- --, /, ,
, BUFPOOLS1 PSB=12000
, I
, I,PSBW=4000 , ,
, I,DMB=SOOO
, I
I I,DBASE=7000
J I
, I,GENERAL=12000
, I
1 1,FORMAT=1S000
I ,
I I,COMM=4000
t I
, I,FRE=40
I ,
L--------- --~

Operands:

PSB= Specifies the size of the PSB control block pool.

PSBW= Specifies the size of the PSB work area pool.

DMB= Specifies the size of the DMB control block pool.

DBASE= Specifies the size of the common data base buffer pool.
pool supplies buffers for all the data bases used in the
control region or partition.

GENERAL= Specifies the size of the general buffer pool used by th~
IMS/VS control program, for producing system messages in
response to communication activity.

FORMAT= Specifies the size of the message format block pool.

This
IMS/VS

COMM= Specifies any space to be added to the value calculated during
system definition for the communication line buffer pool.

FRE= Specifies the number of fetch request elements used for loading
MFS control blocks into the message format block pool.

!2t~: In our subset the operands should be coded as shown for the
initial installation of your system. However these operands can be
changed as your installation increases in size. Chapter 9,
"Optimization," discusses how the usage of these pools should be
monitored, and gives guidelines for optimizing their sizes. The values
shown here vill normally be sufficient for the first-time user.

DATABASE Macro

This macro is used to specify the data bases to be used by the online
system. One DATABASE macro must be coded for every SHISAM and HDAM data
base and two DATABASE macros should be coded for a HIDAK data base, one
for the index DBD and one for the HIDAM DBD. One DATABASE macro should
be included for each secondary index that refers to any data bases
defined in other DATABASE macros. The DATABASE macro should not be used
to describe logical DBDs.

7.24 IMS/VS Primer

/--,
I I I I
I 'DATABASE' (INDEX,] I
, I , I
I I , EESltINT ,
I I , I
I , 1 ,tED=dbdname ,
1 t , ,

L--~

Cperands:

INDEX Indicates that this is a DATABASE statement for a HIDAM index
or a seeendary index. It is a positional parameter.

FESIDENT Indicates that the centrol block created for this DATAEASE
statement should be made resident at system initialization
time. You sheuld select this performance option for all your
production data bases.

DED= Specifi~s the name ef a data base description block (DBD), as
created by the DBDGEN utility.

APFLCTN Macro

The APPLCTN macro is used to describe the application programs that are
to be run under the control of the online system. One APPLCTN macro
must bE specifed for Each program that is te run in either an ~FF or a
BMP regicn.

1--,
I , I , t APPLCIN , (RESICINT,] , I , , I t PSB=pstname , , I , I , 'PG~~YPE={ !p} , ! , BATCH , t I

Operands:

RESIDEN! Indicates that the FSB associated ~ith this application program
is to be made resident at system initialization time. This is
a positional parameter, which you should select for all your
producticn prcgrams. the referenced PSB most have been
processed by the ACEGEN utility before the program can be used
online. If this is net done a warning message will be issued
when the online systero is initiali2ed.

PSB= Specifies the name of the PSE associated with the application
program being describedu If PGMTYFE=TP, the PSB name must be
the same as the Fregrar name.

PGMTYPE= Specifies the application program characteristics. TF
indicates that the program being describ~d is to run in an MPP
region, and will be scheduled by the online system when there
are messages which it can process. EATCH indicates that the
program will run in a BMP region, and will be scheduled by the
operator.

Installing IMS/VS 7.25

B2S!: Although the lPPLC!N macro describes a program, the program name
itself is never explicitly defined. 'Ihis is because it can be
determined from the PSE name if PGMTYPE=TP, or from the PAR~ field in
the JeL for the BMP if PGMTYPE=BATCH. (See the IMSBATCH procedure
described later in this chapter.)

!RANSAC'! 1'lacro

The TRANSACT macro is used cne or more times with an APPLCTN macro.
Each one specifies a transaction code that can b~ processed by the
applicaticn program defined in the immediately preceding APPLCTN macro.

/-----------_._-_._--,
/ , , , ,
1
1 , , , ,
1 , , , , , ,

operands:

CODE=

r
ITRANSACT , , , , , ,
I ,
J ,
1 ,
I , , ,

I
, CCDE=transaction code ,
" MSGTYPE = (SNGLSEG ,RESPONSE)
I
"PROCLIM= (5,30) ,
I [,INQ OIa Y= { NO }]
1 (YES,NCFECOV)
1
" MODE= SNGL ,
" SEGSIZE= 1388 ,
"SEGNO=10
1
I(,SPA= (13CO,CORE,FIXED)] ,

Specifies the 1 to e character transaction code (alphameric).
!he code must begin with a letter or a number. Transaction
codes and LTERM nallIes must be unique. [See the NAME macro
later in this section.)

MSGTYPE= Specifies number of segments in the input message for this
transaction code, and whether it is a response-mode
transaction. In our subset the operand should be coded as
shown. This indicates that the input message contains only one
segment, and that it is a response-mode transaction.

PPOCLIM= Specifies the Dumber of m.ssages of this transaction code a
program can process in n single scheduling, a.nd thp. amount of
CPU time (in seconds) allowed to process each message. In our
subset the operand should be coded as shown. This means that
an application program could process up to five messages fer
the same transacticn code and would be allowed 30 seconds of
CPU time to process each message. After processing the fifth
message, the program would receive a 'QC' status code when it
issues a GU to the message queue. even if there were more
messages for that transaction code waiting to be processed.
This is to prevent one program from occupying the message
region for too long a period of time. The second sut-parameter
is to ensure that a Frogram that loops will be trapped aftEr it
has used 3C seccnds of CPU time and cancelled by the control
region.

7.26 IMS/VS Primer

INQUIRY= Specifies whether this is an inquiry transaction or not. If it
is an inquiry-only transaction you should specify
(YES,NORECOV). This means that the transaction will not be
recovered during an emergency restart, that is, it must be
re-entered after a restart. It also reduces the number of
records written to the log data set. The default is NO, that
is, an update transaction.

MODE= Specifies when data base buffers are to be written to direct
access. ~ODE=SNGL means that the buffers will be flushed upop­
each request by the application program for a new message, and
that only the last message processed by a program will be
re-processed during emergency restart. In our subset the
parameter should always be specified as shown.

SEGSIZE= Specifies the maximum size of an output segment inserted to the
message queue by a program. In our subset the parameter should
be specified as shown.

SEGNO=

SPA=

Specifies the maximum number of segments a program can insert
to the output message queue per input message.

Indicates whether this transaction is a conversational one, and
the size of the scratch pad area. If the transaction is not
conversational, this parameter must be omitted.

COMM Statement

The COMM statement is used to specify general communication attributes
that are not associated with any particular terminal type. COMM is
always required for terminal types supported by VTAM.

/--,
/
I
I
I
I ,
I

COMM RECANY=(number,size) ,
APPLID=IMS,
SECCNT=3, ,
OPTIONS=(FORPSW,FORCTERM,TIMESTAMP,FMTMAST) "
COPYLOG=ALL , ,

L--~

Operands:

RECANY= This parameter is required. It defines the VTAM RECEIVE ANY
buffers.

number

size

specifies the number of VTAM RECEIVE ANY buffers to be
present in the IMS/VS system. A value of eight is
normally sufficient for an entry installation.

specifies the ~iz~ of the largest RECEIVE ANY buffer.
This size must be large enough to handle the maximum input
that may be received from any VTAM-attached terminal. A
value of 4000 would generally accommodate a full screen
input from a 3278 Model 4 display terminal.

Installing IMS/VS 7.27

APPLID= Specifies the name through which VT1~ identifies the I~S/VS
system as a VTAM application program. This parameter should be
coded as shown and must be identical to the application name
coded on the APPL statement defining IMS/VS within the VTAM
application major node.

SECCNT= Specifies the maximum number of terminal and/or password
security violations that may occur per physical terminal before
the master terminal operator is notified. In oar subset the
parameter should be coded as shown.

OPTIONS= Specifies certain system options, and in our subset should be
coded as shown. This vill mean that terminal and password
security will always be used by the online system, that any
system message whose number lies in the range DFS001 to DPS300
will have the time it was generated inserted in the message,
and that IMS/vs-provided MFS support is to be used for the
master terminal.

CQPYLOG= Specifies hardcopy of all eligible commands and responses on
the secondary master terminal. All subset commands are eligible for
hardcopy.

TYPE Statement

The TYPE statement is used to define terminals attached to I~S/VS
through VTAM. It defines the beginning of a set of one or more
communication terminal and logical terminal description statements. All
terminals must be of the same type.

1---, 1 I I ,
, I TYPE 'UNITYPE=(3270[,LOC1L]), ,
I , , TYPE=3270-An,SIZE=(11,cc), ,
ttl FEAT=IGNORE, ,
, I , OPTIONS=TRANRESP, ,
I I t PTRSIZE=IGNORE ,
I I , ,

Operand:

UNITIPE= Specifies the terminal device type contained in this
communication description set. In our sample environment, just
code either (3270, LOCAL) for the locally or (3270) for the
remotely attached 3270 terminal groups.

In our subset, we limit ourselves to the following 3270 control
units and their attached display/printers.

• 3271 Model 1, 2, 1" or 12

• 3272 Model 1 or 2

• 3274 Model 1B or lC (BSC line protocol only)

• 3275 Model 1 or 2

• 3276 Model 1, 2, 3, or 4 (BSC line protocol only)

7.28 IMS/VS Primer

TYPE=

SIZE=

FEAT=

Specifies the display screen size type in our subset. It
should ccrres~ond with the SIZE= parameter as defined in the
following tahle:

.§£.I~~n_12il~ TYPE= ~IZ~= ---.,..-
12x 80 32i C-A 1 (12,80)
24][80 3210-A2 (24, 80)
32][80 3210-A3 (32,80)
43][80 321C-14 (43,80)
12x40 3210-A6 (12,40)
6%40 3270-15 (6,40)

Specifies the display screen size. See the preceding TYPE=
parametEr discussicn.

Specify as shewn in our subset. It causes 1"S/VS to ignore any
sFecial features of the display terminals.

OPTIONS= Specify as shcwn in our subset. It causes IMS/VS to place the
terminal in response Icde whenever the transaction is defined
as such.

PTRSIZE= Specify as shewn in our subset. It allows IMS/VS to te
independent of printer terminal printline width.

BQ!~: If UNITYPE=327C, the sequence of the ~ER"INAL statements defines
which printer terminal will be used for a remote copy operation
requested at a remote display terminal. When a copy function is
requested, IMS/VS selects a Frinter terminal only from the set defined
immediately after the definition of that display terminal. The printer
selection process starts with the first subsequent printer terminal
(mest be a remote), and stops at the next nen-printer terminal.

The Frinter selected must te ready, and not busy.

TEFMINAL Statement

This statement defines terminal node characteristics. The NAME
statements that follow a TER~I~Al statement supply the logical terminal
names that are associated with the node at system definition time.

/---,
/
I ,
1 , , , ,

I I ,
, TERMINAL , NAME=ncdename ,
'1(,UNI'!=32E4] ,
, I ,
, I ,

: : [, P. CD E
1
= {~}] : , , ,

L-~-~---~---~----~~--~------------~------~------------------~

Operands:

NAME= !he specified name lust be the VTAM node name defined during
VTAM/NCP generaticn.

It is through this name that IMS/VS addresses the VTA~ node
defined within VTAP./NCF. The name must be one of the node
names defined on a LOCAL. TERMINAL or to statement within the

Installing IMS/VS 1.29

UNIT=

MODEL=

VTAM 3270 local major node, the NCP major node ase group and
SDLC group definition, respectively.

Specify for 3270 printer terminals only in our subset. May be
specified as shown for any 3270 printer terminal type (that is,
3284,3286,3287, 3288, and 3289).

SpEcify for 3270 printer terminals only in our subset. MODEL='
app1i9s only to the 32eq/3286 printers. All other printers
should be specified with MODEL=2.

NA ME Sta temen t

This statement defines a logical terminal name (LTERM) associated with a
node. The presence of the keyword MASTER in the LTERM operand
designates this logical terminal name as the primary master terminal.
In our subset this must be a display t~rminal with a screen size of 1920
characters. The presence of the keyword SECONDARY in the LTERM operand
designates this logical terminal name a3 the secondary master terminal.
In our subset a secondary master terminal must always be specified and
it must be a 3270 printer.

/---------------.--------------.-------------------------~ I , , ,

I NAM! 1 {lterm-name} ,
, '(~TC,MA$TER) ,
, I (f~TCPFINT,SEeONDARY) 1

" ,
L---~

Operands:

lterm-name Specifies a ,- to 8-character name of a logical terminal to
te associated with the previously defined physical terminal.
~TOR is an invalid name because this is the default LTERM-name
for the system ccnsole. In our subset, the names MTC and
MTOPFINT are assumed for the primary and secondary master
terminals, respectively, and should be coded as shown on the
NAME statements following the TERMINAL statements for these
terminals.

!g!~: A naming convention should be established in your installation
for the names cf logical terminals. For example it may be useful if a
name indicates the department or person normally using that terminal.
If printer ~erminals are used, there should be some way of determining
in the MPP, the printer terminal that is associated with a group of
display terminals. In our example the first character 'L' designates an
ITERM name, the next four indicate the department name, the sixth
character indicates whether it is a display or printer terminal, and the
last two are used as a sequence number. ~hus a program receiving an
in~ut transaction from logical terminal LtEP1D01 can determine that the
associated printer in the same department is LDEP1P01, and can alter the
destination of an alternate PCB to that name with a CHNG call.

7.30 IMS/VS Primer

COMM Macro

This macro is used to sp9cify general communication requirements that
are not associated with any Farticular ter~inal type. In our subset it
is used to sFecify additional system options.

1--·-----------, / I I ,
, 'COMfit I SECCNT=::, ,
, , ICFTICNS= (FOBFSV,FORCTEBM,TIMESTAMP,FMTMAST),I
, I 'COPYLOG=~LL ,
, I , 1

Operands:

SECCNT= Specifies the maximum number of terminal and/or password
security viol~tions per physical terminal before the master
terminal operator is Dctified. In our subset the parameter
should be coded as shown.

OPTIONS= Specifies certain system options, and in our subset should be
coded as shown. ~his viII mean that terminal and password
security will always be used by the online system, that any
system message whose number lies in the range DFS001 to DFS300
will have the time it vas generated inserted in the message,
and that IMS/VS-pro~ided MFS support is to be used for the
master terminal.

COPYlOG= Specifies hard copy of all eligible commands and responses on
the secondary master terminal. All subset commands are
eligible for hardccpy.

LINEGFP Macro

This defines the beginning of a set of macros that describe one or more
lines of the same type to which are attached the same type of terminal.

/ , ,
I ,

Cperands:

!
ILINEGEF
I , ,

I
I tIN A Po E= d dna m e
I
I. UNI'IYPE= (327C(,LOCAL]) ,

DDNAME= Specifies a 1 to e character name that associates the generated
DCB for this line group with the tt statement generated by the
Stage 1 system definition in the JCL for the control region.
~he name must begin with an alphabetic character. The
following names cannot be used as L1NEGRP ddnames: DFSFESL1E,
DUMP. 1EFRDEE, IEFRDEE2, IMSACE, IftSDBL, 1MSD1LIB, 1MSLOG,
1MSLOGR, IMSLOGR~. IMSLOG2, IMSMON, 1ftSRDS, IftSSPA, 1!STPftT,
LGMSG, MSDBDOMP, MStEINIT, KSDBCP1, MSDBCP2, PRINTDD, PROCLIB,
MATRIX, JOBS, OB1KS, SHMSG and SYSODUMP.

Installing 1MS/V5 7.31

UNITYPE= Specifies the terminal device type attached to the lines in
this line group. In our subset only the terminal types shown
are considered. If UNITYPE=(3270,LOCAL) is coded, only one
LINE macro can be in the line group. UNITYPE=3270 indicates
remote 3270 terminals, and more than one LINE statement can be
included in the line group. In our subset, we limit ourselves
to the following 3270 control units and their attached
display/printers.

• 3271 Model 1, 2, 11, or 12

• 3272 Model 1 or 2

• 3274 Model 1B or 1C (SSC line protocol only)

• 3275 Model 1 or 2

• 3276 Modell, 2, 3, or 4 (Sse line protocol only)

LINE Macro

This macro describes the communication line itself. Each LINE macro
must be followed by at least one TERMINAL macro. Only one LINE
statement per line group is allowed if UNITYPE=(3270,LOCAL) was
specified on the LINEGRP macro statement. If there is more than one
terminal attached to the line, there should be multiple TERMINAL macros
following the LINE macro.

/._. __ ._---_._ ... _-_ ••....... _-_._---_._-_._--_._--------------,
/ I I ,
I , LINE I (ADDR= cuu]
I I ,
I I I(SUFSIZE=384]
, , J

L---.--------~

Operands:

ADDR= Specifies the address of the communication line as defined in
the transmission control unit. It must be of the form 'cuu'.
It is used only to generate the DD statements in the procedure
for the online control region that is generated by the Stage 1
definition. It must not be coded if UNITYPE=(3210,LOCAL) was
specified on the LINEGRP macro for this LINE.

SUFSIZE Specifies the maximum size of an input message on this line.
It is only required if this macro is defining a line containing
local 3270 display terminals. In our subset the basic
recommendation is 384.

CTl.UNIT Macro

This macro specifies the 3271 remote control unit characteristics. This
statement must not precede any 3275 terminal definition on that line.

7.32 IMS/VS Primer

1--,
1 , ,
I , ,

Operands:

ADDR=

MODEl=

, I ,
IC!LUNIT , AttE=hex byte , , , ,
, I ,!ODEl= {'} I
, I 2 ,
, I ,

Specifies the t~o-di9it hexadecimal polling address of the
321" the 321~ Model 'C, or the 3216 Model 1, 2, 3, or 4. The
address cf the centrol unit is assigned by the IBM customer
engineer upon installation. Note that the IBM customer
en9ineer assigns the selection address which must be converted
to the polling address for specification in this macrc.

SpecifiES the centrcl unit model number for a 3271. For a 3274
or 3216, you must specify MODEL=2.

TEBMINAL "acro

This macro defines physical and logical terminal characteristics. The
NAME macro statements that follow a TERMINAL macro statement supply the
I09ical terminal names that are associated ~ith the physical terminal at
system definition~

1--,
1
I , ,
~
I , , , ,
I , ,
I , ,
I ,
I ,
1
1 ,

I I

:~IRMINAL : AtDF={C~:}
I I xxxx
, I
, I {, T YP E = 3 2 i C - An, 5I ZE = (11, cc)) , ,
, , (,FEA~=IGNORE)
, I
, , [,OPTIONS='IRANRESP]
, I
I I
, 1 [,MSGtEl=SYSINFO]
I I
, I
, I (,UNIT=32S4)
, I
I , [,PTR SIZE=IGNORE] , , , ,
; : [, Mot!!= {~}] , ,

L--~

Operands:

ADDE= SpecifiES the physical terminal address.

For 327C local terminals this address is used when generating
the UNI'!= parameter on the DD card in the JeL for the control
region. It must te of the form 'cuu'.

tnstalling IMS/VS 7.33

Except for a 3275, the address must be specified as two
hexadecimal digits specifying the terminal address of that
terminal on its control unit.

For a 3275 the address must be specified as four hexadecimal
digits. The first two specify the control unit polling
address, while the last two specify the terminal address (for
example, ADDR=ijOijO).

Note that the IBM customer engineer assigns the selection
address when installing the 3275, and this address must be
converted to a polling addresss for specification in this
macro.

!Q!~: If 3275's are intermixed on the same line as 3270 control units,
their TERMINAL definition must preceed the eTLUNIT sta~ements within the
same LINE.

TYPE=

SIZE=

FEAT=

Specifies the display screen size type in our subset. It
should correspond with the SIZE= parameter as defined in the
following table:

~~.!~n_~i~~ I!g~= ~Ig~=

12x80 3270-A 1 (12,80)
24x80 3270-A2 (24,80)
32x80 3270-A3 (32,80)
43x80 3270-A4 (43,80)
12x40 3270-A6 (12,40)
6x40 3270-A 5 (6,40)

This parameter may be sp~cified for display terminals only.

Specifies the display screen size. See the preceding TYPE=
parameter discussion. May be specified for display t~rminals
only.

Specify as shown in our subset. It causes IMS/VS to ignore any
special features of the display terminals. May be specified
for display terminals only.

OPTIONS= Specify as shown in our subset. It causes !MS/VS to place the
terminal in response mode whenever the transaction is defined
as such. May be specified for display terminals only.

MSGDEL= Specifies which message types IMS/VS should discard for this
terminal. In our subset this parameter should be coded as
shown for printer terminals, and should be omitted for display
terminals. When coded as shown, this will specify that DFS059
TERMINAL STARTED messages will not be sent to this terminal.

UNIT= Specify only for 3270 printer terminals in our subset. May be
specified as shown for any 3270 printer terminal type (that is,
3284, 3286, 3287, 3288, and 32 89) •

MODEL= Specify only for 3270 printer terminals in our subset. MODEL=1
applies only to the 3284/3286 printers. All other printers
should be specified with MODEL=2.

PTRSIZE= Specify as shown in our subset. It allows IMS/VS to be
independent of printer terminal printline width. May be
specified for printer terminals only.

7.34 IMS/VS Primer

~Q!~: TERMINAL statements for local printer terminals may not ~e within
the same LINE statement as lccal display terminals, that is, they must
have their own LINEGRP and LINE statement.

NAME Macro

This macro defines a logical terminal name {L~EBM) associated with a
physical terminal. The presence of the keyword MASTER in the LTEP.M
operand designates this logical terminal name as the primary master
t~rminal. In our subset this must be a 3270 display terminal with a
screen si~e of 1920 characters. The presence of the keyword SECONDARY
in the LTERM oparand desiqnates this logical terminal name as the
secondary master terminal. In our subset a secondary master terminal
must always be specified and it must be a 3270 printer.

/--,
/
I , , ,

,
1 NAM E
I ,
I

,
, { 1 t er m- na me }
, (!'.TC,MASTER)
1 (M'IOPRIN!,SECONDARY)
! l----_-__ ~

Operands:

lterm-na me Specifies a 1- to 8-character name of a logical terminal
to be a8sociated with the previously defined physical
ter.minal. WTOR is an invalid name because this is the
default ITER~-name for the system console. In our subset,
the names MTO and MTOPPINT are assumed for the primary and
secondary master terminals, respectively, and should be
coded as shewn on the NAME statements following the
TEF~INAI statements for these terminals.

~~t~: A naming convention should be established in your installation
for the names of logical terminals. For example, it may be useful if
the name indicates the department or person normally using that
terminal. If printer terminals are used, there should be some way of
deter.mining in the MPP, the printer terminal that is associated with a
grouF of display terminals. In our example the first character 'L'
designates an LTERM name, the next four indicate the department name,
the sixth charact9r indicates ~hether it is a display or printer
terminal, and the last two are used as a sequence number. Thus a
program receiving an input transaction from logical terminal LDEF1DOl
can determine that the asscciated printer in the same department is
LDEP1P01, ana can alter the destination of an alternate PCE to that name
with a CHNG call.

STRUC~URE OF ~HE STAGE 1 INFUT DECK

The IMS/VS Stage 1 system definition is a standard OS/VS assembly. The
generated output is the Stage 2 job stream.

Installing IMS/VS 7.35

JOB (ACCTI NG) //STAGEl
//
//5YSLIB
//5Y5IN

EXEC assembler-procname,PARM=DECK
DD DSN=IM5VS.GENLIB,DISP=SHR
DD *
IMSCTRL

Stage macro statements

/*

IMSGEN
END

The sequence of macro statements in the input deck is as follows:

•

•

•

•

System Environment Macros

Data Base and Application
Macros

Data Communications ~acros

System Environment Macro

IMSCTRL must be the first, and th~
others may follow in any sequence,
except IMSGEN must be at the end of
the input-d~ck.

As many sets of DATABASE and
APPLCTN/TRANSACT statements as
required.

The COMM macro must be the first of
this category, followed by sets of
LINEGRP, LINE, CTLUNIT, TERMINAL, and
NAME statements if B~AM, or TYPE,
TERMINAL, and NAME statements if V~AM.

The IMSGEN statement must be the last
macro in the deck. It should be
followed by an Assembler END
statement.

Jobs //SAMPI22 and //SAMPI23 in IMSVS.PRIMEJOB show examples of IMS/VS
Stage 1 input decks for BTAM and VTAM systems, respectively.

IMS/VS STAGE 2 SYSTEM DEFINITION

This is the execution of the jobs generated by the Stage 1 system
definition.

OS/VS1 FINAL PREPARATION

Some changes must be incorporated in your OS/VS1 system after the IMS/VS
Stage 2 system definition.

~QEI_Itt~RRg_sn~_I~~_ftQ£~~~r~§_1Q_§I~1~fBQ~1I~

To be able to use the IMS/VS-supplied procedures in IMSVS.PROCLIB, the
IMSRDR procedure should be copied from IMSVS.PROCLIB to SYS1.PPOCLIB.
The IMS procedure should also be copied to SYS1.PROCLIB from
IMSYS.PROCLIB so that the online control program can be started from the
system console as a system task.

7.36 IMS/VS Primer

The OS/VS nucleus must be re-linked to include the Type 2 SVC module
that was Flaced in IMSVS.FISIIB by Stage 2.

~~§12~!!~_!~§_~2DlI21_]§giQn_f~2£~ggr~

In order to te atle to access yeur data bases via the online system you
must include DO cards for them in the IMS procedure. If you are using
VSAM data bases. you should also define which VSA~ buffer pool
specification and fixlist members in IMSVS.FROCLIE you wish to use.
This is done by specifiying the VSPEC and FIX parameters on the EXEC
statement.

~Bg~!~_Qf§Y§HQ~_Hgm~~I_in_Itt~~§~fRQ~1i~

To use LTWA and VSAe data tases online. you must update member t~SVSMOO
in IMSVS.PFOCIIE.

Create DFSFIXOO ~ember in I~SVS.FFCCLIB
----------------------~----------------

To assure a stable response time in an entry IMS/VS environment you
should fix in real storage some of the IMS/VS contr.ol blocks, buffer
pools, and nucleus. In our subset we include a basic recommendation fer
this fixlist fn eur sample jcb stream. Ihis is done by adding the
DFSFIXOO member to IMSVS.FRCCIJE.

Before you can start up the IMS/VS CTL regicn for the first time, you
must update the initial system security tables. See the IMS/VS Security
Maintenance Utility, later in this chapter.

Modify the JCt in the IMS~SG member of IMSVS.PBOCLIE to meet your
requirements and store it in IMSV5.JOBS. If you intend to use our
samFle status code error handling routine (DFSOAEF) you must include the
DD card for the Error listing in the IMSMSG procedure.

Special care in crganizing the Pl/I modules will help to decrease
response time for those I~S/VS MPPs which use the PL/I Optimizer. Some
organization suggestions fellcw:

• Use several different program libraries, one for each region,
putting only those modules required by the application in the
library. Include in that library all supporting modules (such as the
PL/I transient library modules).

• concatenate the PL/I library into the message region STEPLIB.

• Put the required supporting modules in the link pack area. This is
the recommended long-tera solution fer a virtual environment.

(Caution: Do not use the FIll Cptimizing Compiler for multi-tasking
during link-editing. De net use SYS1.PLITASK as a SYSLIB data set.)

Installing IMS/VS 7.37

After the OS/VS1 final preparation has been completed, you must re-IPL
the system so that the changes you have made become effective. !Q!!:
If you are not using VTAM with 1MS/V5, you can skip the following
sections on VTAM and NCP/VS installation.

PREPARING VTAM

In the following sections, we viII limit ourselves to a brief overview
of VTAM Level 2 preparation using sample jobs. This is not intended as
a replacement of the Q~L!§ !!!~ ~I§1~! f~Qg~~!!~£~§ ~gi~!. To verify
the exact level of iTAM or ACF/VTAM required to support your 3270
configuration, consult the i~~L!§ f~Qg~~m ni£!£!2£I which accompanies
your IM5/V5 distribution tape.

~£~!t!ng_th~_!!!~_~1br~~ie!

The operation of VTAM requires the following three libraries:

1. SYS1.VTAMLIB contains VTAM modules, tables and routines. This data
set is initially created during Os/is1 system generation, when
ACSMETH=(VTAM) is specified in the DATAMGMT macro instruction.

2. 5YS1.VTAMLST contains VTAM definition statements and start options.

3. SYS1.VTAMOBJ contains resource definition table (PDT) segments for
each activated major node.

The first time a major node is activated at VTAM initialization or with
the VARY command, the related definition statements in SYS1.VTAMLST are
processed into SYS1.iTAMOBJ. If a major node is redefined, the member
on SYS1.VTAMOBJ must be deleted prior to activating the changed major
node. In our subset, we will assure this by always deleting and
reallocating SYS1.VTAMOBJ before applying any changes to SYS1.VTAMLsT.

Start parameters establish conditions and facilities that are to be
effective when iTAM is started. They are entered into SYS1.VTAMLsT as
members of BO-character card-image records. These members are used by
VTAM to determine which major nodes to activate at start-up time, which
parameters to use concerning VTAM buffer sizes, etc.

There are five members in our SYS1.VTAMLST:

• ATCSTROO contains start parameters plus a pointer to ATCCONOO

• ATCCONOO, a list of major nodes (VTAM application programs, local
terminal sets, or NCPs) VTAM must activate when started. Each major
node is defined as a member and listed in ATCCONOO. Those in our
subset are:

APPNODEs, a list of VTAM application programs
L03270, a list of local 3210s to be controlled by VTAM
NCP, the NCP source statements (only if 370X is used).

l2~!: Member ATCSTROO specifies, in addition to general configuration
parameters, the number, size, and threshold values of the various VTAM
main storage pools. These values are based on our subset network.
Chapter 9, "Optimization," provides guidelines for the optimization (in
general, reduction) of these pools during initial operation. See the
section "Monitoring VTAM Pools" in Chapter 9.

7.38 IMS/VS Primer

Q~!i~!~g_!~§LY§_!Q_!IA~: At a minimum IMS/VS must be defined to VTAM as
an application minor nede. Additional applications can te defined
together with I~S/VS as one major node called APPNODES in our sample.

Note: The label on the APPL statement for IMS/VS must be the same as
that coded in the APPLID= parameter of the COMM macro statement within
IMS/VS System Definition. See the section entitled "Coding the Data
communication statements-V!AM" earlier in this chapter.

n~!i]iDg_!h!_~Q£~!_N!!lQ~t_!Q_ll!~: The local 3210 display stations
and/or printers are defined as minor nodes of the major node LC3210.
Each local display station or printer is defined by a separate LOCAL
statement as a minor node. ~hese lecal miner nodes are then grouped
into one local major node, 1(3210.

!Qt~: For a given terminal. the label on the LOCAL statement must be
the same as the node r.ame ccded in the NAME parameter of the TERMINAL
statement within I~S/VS Stage 1 system definition. See the section
entitled "Coding the rata Communication Statements -- VTAM" earlier in
this chapter.

]~!ining_lh§_B!!Ql§_!~!~QI!_!~_ll!~: ~he remote network itself is
defined in the net~o~k control program (NCP) in the 310X. To allow VTAM
access to this definition, the JCE source deck is filed in SYS'.VTAKLST
as member "NCP". This ~emter name must be defined as a major node to
VTAM.

~t~~!iDg_!h~_11A~_~lA~l_~!!!!2g!g_!~Q£!g~~!

VTAM is started ~y naming a cataloged procedure in the OS/VS S~ART
command. The procedure must te filed into SYS1.PRCCLIB by using
IEBUPD!E. ihen starting VTA!, the first parameter of the START cemmand
must be the assigned procedure Dame concatenated with .Pnn, where nn
specifies the numbered partitien in which V~AM is to run w normally FO.
For example, if the assigned procedure is NET and VTAM is to run in the
partition numbered 00, the start command is: S NE!.PO.

Note: Since other OS/iS ccmmands used to operate VTAM, for example, the
iiRY command, always refer to ~ET instead of the cataloged procedure
name, it is recommended that yeu name the procedure NET. This vill also
comfly with cur sample MTO guide.

GENERATING ~HE NE!iORR CCNTRC1 tECGRAM/VS (Nep/VS)

As for V~AM, ve will give cr:ly a brief overview and a simple example of
the NCP/VS generation. Since an NCP is largely hardware and application
dependent, you should refer to the I~~ 11Q~ !Ug ~1Q2 £QD~~Ql f~2g~~!
~!D~~g!iQn !]~ ~!ili!i~§ Guide and Eeference "anual, GC30-3008 for the
actual generation of your NCP.

No!~: An NeE is not required if only a local netvork is used.

A netwcrk control program must be generated for each communication
controller in the V!AM network. An NCP generated to control one
communication centroller will net werk preperly in another unless they
and their remcte terminal networks are identical. An NCP is defined in
the form of a source program consisting entirely of NCP generation macro
instructions. !he information coded in these macro instructions
includes characteristics ef the Iemote terminals and options that affect

Installing I~S/VS 7.39

the functions performed by the NCP. The resulting source program is
assembled and link-edited to produce two load modules which constitute
the NCP.

The following steps should be performed to create an NCP that is to run
with VTAM in our subset environment.

Prior to the NCP generation, the NCP support package for 05/'5, 5744-BA2
must be installed. The instructions in the Memorandum to Users describe
the installation procedures for the basic material. The important files
on the distribution tape for OS/'S1 are:

• An unloaded partitioned data set containing the Assembler, Loader,
Dump, Dynamic Dump and Initial Test (SYS1.SSPLIB in our
installation)

• An unloaded partitioned data set containing the Nep/vs Stage
System Generation macros which are required for NCP generation
(SYS\.GEN3705 in our installation)

• An unloaded partitioned data set containing the NCP/VS Stage 2
Generation macros (SYS1.~AC3705 in our installation)

• An unloaded partitioned data set containing the object modules
required for stage II NCP System Generation (SYS1.0BJ3705 in our
installation)

See the Memorandum to Users for a complete description of the
installation procedure.

The following libraries are required for the generation and execution of
the network control program:

• SYS1.NCPMODS is the NCP load module library. Its name must match
the QUALIFY= and LOADLIB= parameters of the NCP BUILD statement.

• SYS1.NCPDUMP will hold NCP dump records.

• SYS1.NCPOBJ will hold the NCP generation Stage 2 output as input to
the link-edit of the NCP.

The remote network is that part of the network which is maintained
through a 370X. To define the remote network to VTAM, the NCP source
deck is used. The information about NCP must be made available to VTAM.
This is accomplished by filing the NCP source program in SO-byte card
image form as a member of SYS1.VTAMLST.

Note: The name of the member must be the same as coded in the NEWNAME=
parameter of the BUILD statement (NCP source deck).

The NCP source deck, which constitutes the input for Stage 1 of NCP
generation, must be made available to VTAM.

7.40 IMS/VS Primer

The NCP is first stored in SYS1.VTAMLST under the member name "NCP".
This same member name, NCP, is defined as a major node to VTAM via
member A!CCONOO in SYS1.VTAP.lSTu

!2!~: !he comments in our sam~le NCP identify NCP parameters which are
likely to be different in yeur installation, and direct you to the
appropriate reference manual.

Stage 1 is an assembly job using the cemmunications controller
assembler, CWAXOC located in SYS1.SSPLIB. Its output is the Stage 2 job
st rea m.

Stage 2 uses the communications controller assembler to assemble the
control tables and program (cdules that require conditional assemblies,
and places the resultant object modules on SYS1.NCPOBJ. Stage 2 then
link-edits these modules and other preassembled modules (located on
SYS 1.0ru 3705) into SYS 1.NCPMODS. From this library the- VTAM-provided
loader leads the control program into the 370X.

This section presents all the jobs to install IMS/VS DB/DC including
VTAM and NCP/VS. A listing of these jobs is provided in Chapter 2 of
the !~illE R!i!~~ §!!E!~ !!§ting§· All jobs for the installaticn are
named "SA~Flnn," except the jobs generated by the Nep/VS and IMS/VS
Stage 1 system definition. ~hese are named "SAMPNnn" and "SAMFGnn",
respectively. Most jobs are re·executable to allow easy installation of
new releases of IMS/VS. !hese jobs can be executed from the
IMSVS.PPIMEJCB library, except the initial jobs: //SAMPI01, //SAMPI03,
IISA~PI04. /ISAMPI05, //SAMPI06, /ISAMPI07, IISAMPI08, and I/SAMPIO~.
The two latter ones create the sample IMSVS.PRIMEJOB and IMSVS.FElMFSRC
libraries. ~he source code for programs, PSEs, DEDs, etc., is available
in a library called IMSVS.PRIMESRC, after above mentioned initial jobs.

1. Unless otherwise stated, all these jobs should complete with a
return code of zero for a proper IMS/VS installation. General
exceptions are IEHPROGM and IEBUPDTE jobsteps, and the link editor
steps of the FL/I compilations.

2. Jobs SAMFI6n should not be executed if only a local network is to be
used.

3. Jobs SAMFI5n and SAMPlEn should not be executed if ETA~ is to be
used.

SAMPI01: PREPARE DISK VOLOME

This jcb CIeates a SYSCTLG on the IMSPRM disk volume and constructs an
IMSVS CVOL pcinter and index structure.

SAMPI03: AlLeCA!! DlS~FIBUTICN LIEEARIES

This jot allocates space fer thE IMS/VS distribution libraries.

Installing IMS/VS 7.41

SAMPI04: RESTORE LIBRARIES FROM DC PTP TAPE

This optional job restores the libraries from the DC PTF tape, if any.
A PTF tape contains updated versions of IMS/VS modules. If PTF tapes
are available, they must be restored first.

SAMPI05: RESTORE/MERGE LIBRARIES FROK DB PTF TAPE

This optional job restores the libraries from the DB PTP tape.

SAMPI06: RESTORE IMS/VS DC DISTRIBUTION LIBRARIES

This job restores the libraries from the IMS/VS DC distribution tape.

SAMPI07: RESTORE/MERGE IMS/VS DB DISTRIBUTION LIBRARIES

This job restores and merges the libraries from the IMS/VS DB
distribution tape.

SAMPl08: COpy PRIMER FUNCTION DB SAMPLE SOURCE AND JOBS

This job copies the Primer function DB sample source and JeL statements
from the distribution libraries to their execution libraries.

SAMPI09: COpy PRIMER FUNCTION DC SAMPLE SOURCE AND JOBS

This job copies the Primer function DC sample source and Jet statements
from the distribution libraries to their execution libraries.

The reader procedure [PRIME), in Figure 7-5, can be placed in
SYS1.PROCLIB, to be used for reading in the sample jobs.

//PRIME PRce JOB=TEMPNAME,DSN='IMSVS.PRIMEJOB'
//IEFPROC EXEC PGM=IEPVMA,
II PARM='00600300005011E00011AOO'
I/IEFRDER DO DSN=&DSN. (&JOB) ,DISP=SHR,DCB=BUFNO=l
IIIEFPDSI DD DSN=IMSVS.PROCLIB,DISP=SHR
II DD DSN=SYS1.PROCLIB,DISP=SHR

Figure 7-5. The PRIME Reader Procedure

The start command to be used with this reader is for example:

S PRIME,JOB=SAMPI15

H2ii: The reader procedure of Figure 7-5 is for OS/VS1 Release 6. You
should verify its parameters with the standard reader procedures in your
SYS1.PROCLIB.

SAMPI15: ALLOCATE IMS/VS APPLICATION LIBRARIES-DB

This job allocates the IMS/VS application libraries [DBDtI8, PSBLIB, and
PGMLIB). This job should be needed only the first time you install
IMS/VS.

SAMPI16: ALLOCATE IMS/VS-DC APPLICATION LIBRARIES

This job allocates the application libraries used by the online IMS/VS
control partition/region. This job should be needed only the first time
you install the IMS/VS DC feature.

7.U2 IMS/VS Primer

SAMP!17: ALLOCA!! IMS/VS SYS~EM LIERARIES

This job allocates the libraries for the IKS/VS system definition
(PROCLIE, MAeLIB, RESLIB, and OBJDSET) •

SAMPI1S: ALLOeA!! IM5/VS ONLINE DAlA SElS

this job allocates the IMS/VS system data sets used by the online system
(QBLKS, SHMSG, LGMSG, ~DS. f!ATRIX, JeBS, and DELLOG).

i!tu!ng: If you reallecate thE IMS/VS message queues and you decrease
the queue data set si2E, you must subsequently do a cold start of the
IMS/VS control rEgion. Fer a aescription of how to do a cold start, s€~
Chart F-1 in the I~§L!§ f~i!~t ~g~!~~ !~t~!n!! QE~~!tQ~~§ 2y!g! !l!~.

SAMPI23: EXECUTE IMS/VS SYSTEM DEFINIlICN SlAGE 1 -. VTAM

This is an assembly job which generates the IMS/VS Stage 2 system
definition job stream. It cnly needs the macros in IMSVS.GENLIB. !he
output it produces can be ~unched into cards or placed on a direct
access volume as a sequential data set or a member of a library. In our
sample environment, we will place the generated job stream in the
IMSVS.PRIMEJOE library, with a .ember name cf STAGE2.

!gl~: This assembly requires a large virtual partition, when using the
CS/VS system assembler. 2M bytes should be sufficient.

Figure 7-6 gives an overview of our sample terminal network as specified
in the IMS/VS Stage 1 input cf SAMPI23 and the associated VTAM and
NCP/VS jobs of the following sections.

Installing IMS/VS 7.43

IBM 3705

NCPIVS

MEMORY 144K
CHANNEL ADAPTER TYPE 2

COMMUNICATION SCANNER TYPE 2
SUBAREA = 2

LlNENCPO

SDLC 022 2400 BPS
LINE FDX

LEGEND

TYPE
NODE NAME

ADDRESS
LTERM NAME

LlNENCP5

Cl

IMS/VS PRIMER NETWORK

VTAM

Cl

Figure 7-6. Sample I~S/VS-VTAM Network

IMS
CTL

LOCAL 3270

OSIVS

IMS
MPP

3286
CHL00172

42E
MTOPRINT
LDEPOPOl

SAMPI22: EXECUTE I~S/VS SYSTEM DEFINITION STAGE 1 -- BTAM

IMS
BMP

This is the IMS/VS system definition Stage 1 job to be used instead of
the previous job if you are using BTAM instead of VTAM.

SAMPG1 THROUGH SAMPG19: STAGE 2 JOBS

These jobs perform the actual IMS/VS system definition. They should be
executed in numerical sequence.

!!2!~:

• These jobs are not listed in IMSVS.PRIMEJOB. They are created as
one member (STAGE2) as a result of job SAMPI22 or SAMPI23.

• Jobs SAMPG4 through SAMPG11 need the OS/VSl system generation macro
library SYS1.AMODGEN. This library should have a blocksize not
larger than SYS1.MACLIB, because it is concatenated in the assembler
SYSLIB DD statement of some Stage 2 jobs. It must be cataloged.

• Control blocks and source modules processed during the execution of
the Stage 2 job stream are assembled and link-edited into
IMSVS.OBJDSET. Because these modules are link-edited individually,
many vill produce occurrences of the linkage editor message IEW0461

1.44 IMS/VS Primer

(unresolved external reference) and set condition code q. When
these messages appear in listings. they should be considered norlal
for the following FESlIE modules:

tISNOF10 control tlccks module ,
DFSNOF30 control blocks module 1
DFSNEP10 control blocks module 2
tISN EP 30 control tlccks module 2
DFSICPLO features option list control blocks
tFSIELK 0 control blecks module 4

SAMPI24: COFY IMSEtB ANt IMS FROCEDUBES ~O SYS1.PEOCLIB

This jcb copies the IMSBDF procedure to SYS1.PROCLIB. The reader
procedure provides access to the message region procedure in I~SVS.JOBS.
You should adjust the parameters of the IMSBDB procedure to your
installation standards. The I~S procedure is renamed IMSCTL and is the
one used for executing the cnline control region.

SAMPI25: RELINK OS/VS NUCLEUS iI~H IMS SVC

This job relinks the as/vs nucleus to include the Type 2 SVC placed into
IMSVS.BESLIE during stage 2. Your OS/VS system programmer should check
the linkage edit centrcl catds to ensure that they comply with other
installation requirements. Note that this job relinks the nucleus under
the name IEANUC09. ~hen yeu re-IFI the system after completing all the
installation steps, you must specify this suffix to load the alternate
nuc Ie us.

SAMPI35: B!NAME IMS as/vs NUClEUS TC MAIN NUCLEUS

After you have re-IPLed ycur system with the alternate nucleus linked in
SAMPI25. and tested it. you may wish to rename this nucleus to IEANUC01.
This jot will perform the rename, after saving your original nucleus
under the name IEANUCOI.

SAMPI40: UPDATE IMSCTI FFCCEDUFE ~ITH SAMPLE tATAEASE JCL

This job updates IMSCTl procedure created in job SAMPI24 to include the
DD statements for the data tuses used by the sample programs. It also
overrides the EXEC statement parameters with our subset values.

SAMPI41: UPDA~E EUFFEF PCCI SFECIFICATION FOB THE ONLINE SYSTEM

This job updates member DFSVSMOO in IMSVS.PROCLIB, with buffer pool
specifications suitablE for running the sample programs.

SAMPI42: UFDATF IMS~SG FFCCEDUFE WITH USER CD CARt

This job updates IMSMSG procedure to include the DD card used by the
status code error bandling rcutine.

SAMP!43: CBEllT! fIXL 1ST CONTROL CABDS

This job creates the DFSFIXCC member in IMSVS.PROCIIE. This memter
contains control statements for fixing'parts of the IMS/VS centrol
region in real storage. ~hese specifications should be sufficient for an
entry system.

Note: No combination characters are allowed in the control cards of
IISAM1?I43.

Installing IMS/VS 7.45

SAMPI45: SYSTEK SECURITY TABLES -- VTA~

This job updates the initial system security tables. If necessary it
can be modified to accommodate your own security requirements. At least
you should change the password NONPRIKE to your own password to secure
the use of IKS/VS commands not included in our subset. This job !g~i be
executed prior to the initial start-up of the CTL region.

SAMPI44: SYSTEK SECURITY TABLES -- BTAK

This job is comparable to the previous one, SAMPI45, but it is suitable
for a BTAK version of the IMS/VS system. The difference is in the
logical terminal network and the command subset.

R2t~: After the as/vs final preparation has been completed, you must
re-IPL the system so that the changes you have made become effective.
This should be done after job SAKPI25 and before the initial start-up of
the CTL region.

SAMPI50: ALLOCATE SYS1.VTAKLST

This job allocates space for SYS1.VTAMLST.

SAMPI51: PROCEDURE FOR SYS1.VTAMOBJ

This job adds a cataloged procedure named SAMPIS1A to SYS1.PROCLIB.
This procedure will be usad to scratch and reallocate SYS1.VTAMOBJ in
every job which updates SYS1.VTAMLST. This ensures the synchronization
of these libraries.

SAMPI52: DEFINE IMS/VS TO VTAM

This job adds the definition of IMS/VS as VTAM application to
SYS1.VTAMLST via member APPNODES.

SAMPIS3: DEFINE LOCAL NETWORK TO VTAM

This job adds the definition of the local 3270 terminals to VTAM via
member L03270 in SYS1.VTAMLST. In the sample job, only three local 3277
Model 2 screens and two local 3286 Model 2 printers are defined. You
can add additional ones by repeating the LOCAL statement.

SAMPI54: FILE VTAM START PARAMETERS

This job adds the VTAM start parameters, member ATCSTPOO, and the major
node list, member ATCCONOO, to SYS1.VTAMLST.

liQ!~: If only a local network is used, you should delete the NCP node
name in the ATCCONOO list. And if only a remote network is used, you
should delete the L03270 node name in the ATCCONOO list.

SAMPI55: FILE VTAM START PROCEDURE

This job adds to SYS1.PROCLIB the procedure to be executed during VTAM
start-up.

li2t~: The NCPDUMP and NCPMODS DD statements are not required for a
local-only network.

SAMPIS6: STORE GTF PROCEDURE FOR VTAM TRACES

This job stores the GTF procedure for VTAM main storage pool traces into
SYS1.PROCLIB.

7.46 IMS/VS Primer

SAMPI60: ALLCCA!E NCF LIEEAEIES

This job (re)allccates the libraries for NCP generation and execution.
In addition the following NCP distribution libraries are required during
NCP generation and must be cataloged:

• SYS1.SSPIIB
• SYS1.GEN.37C5
• SYS1 .. MAC3705
• SY S 1 .0 EJ :3 7 0 5

SAMPI61: FILE NCF SOUECE t!CK

This job files the NCF source deck into SYS1.VTAMLST as member RCP.
This sample NCP roust be adapted to your installation environment ..

SAMFI62: LIST NCP JOBCARD MACRO

This job lists the macro JCECAED from the NCP generation Stage 1 macro
litrary SYS1 .. GEN3705. Stage 1 assembly provides job cards for the stage
2 NCP generation jot stream. YOU might have to change this macro
statement for two reasons:

1. special account informaticn needed in your OS/YS1 installaticn.

2. The contents of litrary SYS1.SSPLIB as distributed with the NCP
support package is not incorporated in SYS1.LINKIIB or concatenated
to it as suggested ..

SAMFI63: CHANGE JCBCAFD MACEC FOR Nep STAGE 2

ThiG job adds a JOB card tc the macro JCBCAED and changes the account
infcrmaticn. A JCBIIB DD statement can be added to refer to SYS1.SSPLIB
containing the communication ccntrcller assembler used for Stage 2
assemblies.

SAMPI64: NCF GENERATION. S'IAGE 1

This job is the Stage 1 of the NCf generation. It creates the Stage 2
job stream and puts it intc the partitioned data set IMSYS .. PRIMEJOB
under the name NCPSTG2.

Note: The MAXDATA=2468 value in the pceu macro of the NCP deck is based on-a screen size of 1920 characters. If your installation includes
larger screen sizes, you might need to increase this value.

SAMFN' lHRCUGH SAMFN'6: NeF STAGE 2 JOES

These jots perform the actual NCP generation.. They must be executed in
numerical seguence. Several NCP generation jobsteps may cause a
condition code of 4. Check the issued warning messages.

!2i~: These jobs are net listed in IMSVS.PBIMEJOB. They are created as
one member (NCPSTG2) as a result of job SAMPI64.

SAMPI65: CREATE LOGON MODE ~ABLE

A logon mode table is required for 32705 using SDLC. This table should
be constructed as shown in cur subset.

SAMPI66: CREATE LOGON TABLF

A VTAM logon table is required for 3270s using SDLC. This table should
be ccnstructed as shown in our subset in order to comply with our
operating procedures.

Installing IMS/VS 7.q7

This section presents the sample jobs which can be executed after the
installation of IMS/VS. These jobs are also included in IMSVS.PRIMEJOB,
and listed in Chapter 2 of the !~~l!~ f£i!~£ ~~mEl~ 1~2i~ng2 manual.
The relevant output listings of selected sample jobs are contained in
Chapter 3 of the !~2L!~ f£im~~ ~~!E!~ 1i§ting§ manual.

The following groups are distinguished:

• Initialization jobs for the creation of the sample environment,
phase o.

• Phase jobs, used in the Phase 1 environment.

• Phase 2 jobs, used in the Phase 2 environment.

• Phase 3 jobs" used in the Phase 3 environment.

• Phase 4 jobs, used in the Phase 4 environment.

We recommend that you exercise these jobs in this sequence.

We will nov briefly discuss the job in each of the above sections. A
more detailed discussion of the function of each job can be found in its
originating chapter.

1. The sample jobs are designed so that they can be re-executed in most
cases.

2. The jobs either contain all their input or refer to IMSVS.PRIMESRC
for some input.

3. Guidelines to exercise the sample batch application programs are
given in their source code.

4. The virtual storage requirement of each job (step) is less than 512K
bytes unless specified in the region parameter of the execute
statement. For more detailed information on IMS/VS storage
requirements see: !~2l!~ ~Y2t~! fi2g£~m!~a~ li~~~£~n£~ ~~rrY~l,
Chapter 5, "IMS/VS storage Estimates."

INITIALIZING THE SAMPLE ENVIRONMENT

The following jobs in IMSVS.PRIMEJOB can be used for the initialization
of the sample environment.

2!~~QQ2: li~~Q!~_~~!E!~_Y~!tl_22~[_~~1~!2g_~ng_~E~~~

This job can be used to remove all the VSAM data space for the sample.

~!~fQQ2: ~~~in~-Y~!~_2§~~_~~!sl2g

This job defines a VSAM user catalog (IMSPRIME) on volume IMSPRM" used
by the sample system.

~!tlfQQl: ~~~in~_!~!tt_Q~i~_~E~~~

This job defines the VSAM data space for the sample data bases.

1.48 IMS/VS Primer

§A~~Qg~: ~gi!2_§§n!I!!i2~_~!!~_~!~~R~

!his job builds the generation data groups and model DSCBs to tE used
for the imagE copy, monitor, and log data sets.

PHASE 0 JOES

The follcwing jobs assemble and link edit programs and DBDs of general
use:

• SAMP010 GSAM tBDs

• SAMF030 Linear randomizing module

• SAMF031 HDAM sort exit routine

• SAMP032 Sample status code error routine

• SAMP033 SamplE statistics print routine

• SAMP034 Sample data tase load program

!2!~!:

• Job SAMP010 uses the DEDGEN procedure in IMSYS.PBOCLIB. It must
therefore te read in with an aFFropriate reader such as IM5RDR or
PRIME. (See the previous section on installing 1MS/V5.) The same
is true for P5BGENs.

• Jobs SAMP030 through SA"P034 use the standard ASMFCl procedure in
SYS1.PROCLIB. Also, when later compiling a COBOL or PL/I program we
viII use the standard sUFplied Frocedures of the respective language
program Frod~ct.

• The linkage-edit phase cf jeb 5AMP033 viII give warning messages for
unresolved references. ~his is a valid but expected situation,
since this module will later be linked with the sample programs.

PHASE 1 JOBS

~A~!l~Q: f§~§~!_!Q~_~~~§§_1_Q~l~_~!!~_12~g

!his job generates the PSE which will be used to load the Phase 1 FARTS
data base.

~A~fJ]j: R~~~IH~_!2;_fh~~i_jA_~Q~Q1

This job generates the COEOL version of the PSBs which will be used in
cur phase 1 environment.

~!~EIQ~: E~~§E~§_!QI_EE!§§_1£_i!Ll

!his job generates the PIlI version of the PSBs which viII be used in
our phase 1 environment.

!21~: The load module names of the comparable COBOl and PL/I FSEs are
the same. The same is true for the load module names of the comparable
COBOL and Pl/I sample application programs. Therefore you cannot
intermix the COBOL and PL/I versions of the sample applications unless
you change these load module names and their execution jobs.

Installing IMS/VS 7.49

This job generates the PARTS OBO vhich vill be used in our Phase
environment.

SA~fl~Q: ~!2i!~!n~~~n~~~~it_f!~!§_In!~n!~£!_£Q~Q~_f~~g~!!

This job compiles and link-edits the parts inventory COBOL program,
PE1CPINV (member DPS1CINV in IMSVS.PRIMESRC). Notice tha~ in its
link-edit, the OL/I language interface module (DFSLIOOO, alias CBLTDLI)
is included. This is required for every COBOL application program.
Also an ENTRY statement of DLITCBL is required. In addition the sample
status code error routine (DPSOAER) and buffer pool statistics print
routine (DFSOAST) are included, since they are used in the sample
program.

~~fl~l: ~Qm£!!~_an~_~!nk~!~it_f~~£h!§!_Q~~!~_~Q~Q&_frQgr~!

This job compiles and link-edits the Parts Purchase Order COBOL program,
PE1CPPUR (member OFS1CPUR in IMSVS.PRIMESRC).

~!~fl~Q~ __ ~~!2!!!_~n~_~in~~~git_~~i§_In!2n!Q£I_f&L!_fr2gr!!

This job compiles and link-edits the Parts Inventory PL/I program
PE1PPINV (member DPS1PINV in IMSVS.PRIMESRC). Notice that in its
link-edit, the PL/I language interface module DFSLIOOO, alias PtITOLI)
is included with entry pOint PLICALLA. This is required for every PL/I
optimizer application program. In addition, the sample station code
error routine (DFSOAER) and buffer pool statistics print routine
(DFSOAST) are included, since they are used in the sample program. The
link-edit step may result in a condition code 4.

~!~f1211 __ ~2!£i!~_!n~_~iq~~!~!t_f~£~h!!!_Q£~!r_~&L!_f£2g~!!

This job compiles and link-edits the Parts Purchase Order PL/I program,
PE1PPPUR (member DFS1PPUR in IMSVS.PRIMESRC).

~~fl1Q: 12sg_~h~-fhs§~1_~!!!_~!2~

This job does the space (re)allocation for the phase 1 PARTS data base
and its initial load.

The sort E61 exit routine (DFSOASRT) is used to sort the input data file
in physical HOAM sequence. This sort is a performance option and is not
necessary for the load process itself.

The IMS/VS supplied OLIBATCH procedure is used in this and the other
01/I batch jobs. The application program to be executed is specified in
the PARM field, together with other param9ters. For a detailed
discussion of these parameters refer to the DLIBATCH procedure
discussion later in this chapter.

~!~fl11: ~!~£~!~f!£i!_rU!~~iQ~!_frQg~!!

This job executes the Parts Inventory program (PE1CPINV).

This is a read-only job, so no log tape is used.

!Qii: If you are using the PL/I version of th9 sample programs, the
PL/I transient modules are presumed to be available in one of the
libraries in the system linklist (LNKLSTOO) or the link pack area (this
is recommended). If not, you must add the PL/I transient library to the
JOB/STEPLIB of the IMS/VS execution job. This can best be done by
updating the appropriate IMS/VS procedure: DLIBATCH, IMSBATCH, and/or
IMSMSG.

1.50 IMS/VS Primer

§!~£Jl~: lJ~£Y!~_RYI~h~§~_~~g!~_F~2gt!!

This jot executes the Purchase Order program (PE1CPPUB). This program
uses the DL/I batch checkpoint/restart facility. The sequential input
(card) and output (print) files of this program are processed as GSA¥.
da ta bases.

This job is the same as the previcus, except that it issues message
DFS3125A, after ~hich it can be abnormally terminated (reply ABEND),
continued (reply CONT) or cancelled. lhis ~ill set an environment for
jobs SAMP177 and SAMP178. If cancelled, the GSAM print file can be
printed with a separate jet which censists of the LAST job step from
SAMP174. The corresponding restart job, SAMP178 will do this in its
first step.

~A~rl11: ~!!E!!_~!f!QY!_~Y~

This job backs out the data base changes of the failing SAMP174 job.
Eefore running this jcb you might wish to exercise log tape recovery,
jobs SAMP190 and SAMF191, and data base recovery, jobs SAMP1S1 and
SAMP182. (See Chapter 6, "Data Ease Recovery, II for more details.) In
any case, the back cut jeb lust use a log tape (must be a tape) created
by the failing job or the log tape recovery job (SAMP190 and SA~P191).
Never use a change accumulatien tape for back out.

MQi~: Message "tfS888, NO DAll BASE RECORDS FOUND FOR PSB=FEICFUR" may
eccur when backout is done from a (recovered) log tape after a
(simulated) system failure during execution of sample job //SAMF174.
This message occurs because the data base change records after the
PPUR0010 checkpoint were net yet written to the log tape. This is a
valid situation since these data base changes were also not yet written
to the data hasE itself.

This job restarts the Purchase Order program from its latest successful
check~oint (PPUR0010) as specified in the PARM field of the EXEC
statement.

Observe in sample output (see Chapter 3 of the I~§L!~ ~Ii!!; ~!!~l!
~~2!~n~§) that the checkpoint message output at restart (sample output
job //SAMP118, stepname LAST, ddname SYSUT2, page 006) is not exactly
the same as the old output of the abnormal terminated job (sample output
job //SAMP178, stepname OLDPRINT, ddname SYSUT2, page 006)~ The reason
is that the program prints out the textlines: "CKECKPOINT SUCCESSFULLY
TAKEN" and "PURCH.AMOUNT: after the actual checkpoint. During
restart the checkpoint itself is not repeated; the program gets control
after the XRST call and reads in the next input transaction.

~!~!J~~: I!!g~_~QEl_Q!_th!_fh~§§_l_U!i!_§!§!

This job creates an image copy (back up) of the Phase 1 PARTS data base.
In addition it executes a dummy batch and change accumulation jet. This
is to stress thE need for a new change accumulation period after an
imagE dump. If this was not done, the next change accumulation would
include the last accumulated leg tape of the previous period.

~!~!j~jl ~hsD3!_!~SY!Yl~!i~D_l~!_fh!§~ 1

This job performs the changE accumulation of the Phase 1 log data sets.
This job should be executed after each phaSE 1 job which creates a new
log data set, that is, after SAMP173, SAHP174, SAKP171, etc.

Installing IMS/VS 7.51

~Q1~: In a typical user situation, the DFSOLOG DD statement can
concatenate multiple subsequent log tapes since the previous data base
change accumulation execution.

~!~fl~~l ~~!2~~ fh~§~ 1 f!R!~ q~t! ~!§~

This job can be used to recover the phase 1 PARTS data base using the
image copy created by SAMP180 and the change accumulation data set
created by SAMPle1.

~!ttfl~~l ~~!~~~ f~~2~ 1 f!R!~ ~!t! ~!~2

This job unloads the phase 1 PARTS data base using the HD Reorganization
Unload Utility.

~!~fl~21 R~lQ~~ fh~§~ 1 f!RI~ Q~~~ ~!2~

This job reloads the Phase 1 PARTS data base using the output created by
SAMPleS.

These jobs can be used to recover an unclosed log tape. This can be
exercised by physically replacing the log tape with a scratch tape
before replying CONT on the WTOR of SAMP174. If no I/O errors occur
before the end of the current log data set, the error block ID for job
//SAMP191 is A00001, that is, the first (error) block after the current
log data set.. !~t~: If there is no data on the tape behind the current
log data set, that is, a clean tape was used, then no error block will
be listed. At termination (end of reel) the output log tape of
//SAMP190 will be properly closed by OS/VS. If so, job //SAMP191 need
not be executed, the output log tape of //SAMP190 can be used for
back-out and change accumulation processing.

PHASE 2 JOBS

The Phase 2 jobs are related to the logical relationship ffinction of
DL/I. They shOUld, therefore, only be exercised if you are planning to
use this function.

This job generates the PSBs vhich viII be used in the Phase 2 sample
environment.

This job generates the DBDs vhich viII be used in the Phase 2 sample
environment.

7.S2 IMS/VS Primer

The prefix resolution step may issue a warning message for the existence
of logical parents without legieal children, quite a natural fact. As a
result, the Etep ~ill terminate with a condition code of 4, a valid
situation.

~!~!~1~~ ~~f£~I~ ~~~12!~~ Q~g~~2 ftQgt~m

This jot executes the Custc«er Order Program. FE2CORDR (member IFS2CCBI
(COBCL) or DFS2PCRD (PL/I) in IMSVS.PRIMESRC). During the execution of
this job, the IB Moniter vill be activated. See Chapter 9,
"Optimization," for more details cn the DB Monitor operation and output.

This job generates the DB Mer.iter reports frem the output generated by
job SAMP272.

The Phase 2 data bases PAR1S and Customer Orders are unloaded as the
firEt Etep in their reorganization.

Using the output of SA~P285, the Fhase 2 data bases are reloaded as the
second step in their reorgar.izatien.

The prefix resolution Etep may issue a warning message for the existence
of logical ~arents without logical children, quite a natural fact. As a
result, the step will terminate with a condition code of 4, a valid
situatien.

~!~El§li Ynlg~q £hs§~ ~ E~im~~I lBg~! ~~1~]!2~

!his job can be used to unload the phase 2 primary INDEX data tas€ of
the HIDAM customer orders data baEe as the first step in its separate
reorganizatien.

~~~f£~~l ~!!922_ fb~§~_f !!l!~!I l~g~! ~!~~ ]!2~ 

Using the output of the previous job, the primary Index data baEe of the 
HItAM customer orders data tase is reloaded as the second step of its 
separate reoIganization. 

~!~~£E~l ~h~§~ 1 ~2 ih~§~ £ I~!n§iliQD 
This job can be used to create the Fhase 2 data bases using the Phase 1 
data base as input. The result will be the same as after job SAMF270. 

The prefix resolution step may issue a warning message for the existence 
cf legical parents without logical children, quite a natur~l fact. As a 
result, the step will terminate with a condition code of 4, a valid 
situation. 

Installing IMS/VS 7.53 



PHASE 3 JOBS 

This job compiles and link-edits the Phase 3 COBOL Purchase Order 
Program. This is an upgrade of the Phase 1 version to include secondary 
index processing. 

This job compiles and link-edits the Phase 3 PL/I version of the 
Purchase Order Program. 

The prefix resolution step may issue a warning message for the existence 
of logical parents without logical children, quite a natural fact. As a 
result, the step will terminate with a condition code of 4, a valid 
situation. 

This job creates image copies of all the Phase 3 data bases. In 
addition, it creates an initial dummy change accumulation data set to 
emphasize the importance of image copy/change accumulation 
synchronization. 

This job recovers the Phase 3 PARTS data base and its secondary index 
data base. It uses the PARTS image copy of SAMP380 and the change 
accumulation data set of SAMP3S1 or SAMP380. 

~!nEl~ll Re£~!~ fh!~ 1 £Y~!Q~~R QgQ~g Q!i! ~!2~ 

This job provides the same function as SAMP382 but for the CUSTOMER 
ORDERS data base and its primary index. 

~~~l~~l ~a£~Qgi ~h!2~ 1 f~~£h!2~ Q!g~~ ~~Qg!!! 

This job is analogous to SAMP177 of Phase 1.

7.54 IMS/VS Primer

This job can be used to create the Phase 3 data bases from the Phase 2
data bases. Notice that no user application programs are needed. The
result will be the same as after SAMP370.

The prefix resolution step may issue a warning message for the existence
of logical parents without logical children, quite a natural fact. As a
result, the step will terminate with a condition code of u, a valid
situation.

PHASE 4 JOBS

This job generates the COBOL version of the PSBs for the KPPs and BKPs
which will be used in our Phase 4 environment.

~!nf~Q~: fh~2~_~_f~LI_~~~~~li2

This job generates the PL/I versions of the PSBs for the MPPs and B"Ps
which will be used in our Phase 4 environment.

This job generates the DBDs which will be used in our Phas~ U
environment. Note that the logical DBDs used in Phase 4 could have been
introduced in Phase 3 (as suggested in Chapter 2).

This job builds the ACBs from the DBDs and PSBs which vill be used in
our Phase 4 environment. This must be done before the CTL region can be
started.

This job generates the MFS control blocks used for the message and
screen formats in our Phase 4 environment. When initially executed,
message DFS10141 may occur and the jobstep terminates with a condition
code of 4. This is a valid condition.

~!~~!~1: ~Q!2~!~~~~_~~~!=~~~i_£Q~Qb_£Y§12!~~_!!m2_In~!itI_~ff

§!~f!~~: £2!£~!i_~~~_~int=!~ii_£Q~Q~£Y2!2!~~_Q~~!~_!ng!!tI_~~~

§!nE~~~: £2m£~le_~n~_~~n~=ed~!_£Q~Q1-£!!!2!!£_Q~g!~_£~!!i!2n_~~~

§!nf~~~: £2!£i!~_~n~_~~n~=edii_£Q~Q~£!!!2!~~_2~~!~_~e~!!!_~~~

§!~~~al: £Qm£~!2-!n~_~in!~~~ii_f&l!~!!!2!!~_!!!!_Ing!!£I_~ff

~!~f~~~: £2!E~1~_!n~_~~~!~!~~!_E~L!_£Y2!2!!~_Q~~!~_In~!itI_~~E

§!~P42~: ~2!£~~_~n~_~~n~~~~~t_~~I_£g!i2m!~_Q£g~£_£t~!!!2n_~ff

§!~E!~~: £2!£!1~_!ng_~~n!=~~~t_f~L!_~!§t2!~~_Q~~~£_~e~!i~~~~

~~~~!11: t!!£Y1!-f~£I!_!n!~i~~I_~~~ 

This job executes the Phase 1 Parts Inventory program (PE1CPINV) as a 
BMP. 

Installing I"S/VS 7.55 



This job executes the Phase 3 Purchase Order program (PE3CPPUR) as a 
BMP. The input provided to the program will cause message DFS3125A to be 
issued so that the online operating procedures may be tested. See the 
~~L!~_~i§§!g§_!n£_~2g~§_~!!s~!n£~_~~n~l! for a detailed description of 
message DFS3125A. 

This job will restart the Purchase Order B~P if it has been cancelled by 
the operator, or has failed for seme other reason. Before execution you 
must verify that the checkpoint ID specified in the PARM field is the 
last one of the failing job. 

This job needs the log tape from the IMS/VS CTL region in its IMSLOGB dd 
statement, see Chapter 8, "Operations" and the IMS/VS Primer Master 
Terminal Operator's Guide for more details. 

~~E~~l: fh!§!_~_~h!~g~_!££gm~!~tiQU 

~~f~~Q_!n~~A~f~~l: t~g_1~]~_g~£2!~~I 

These jobs can be used to recover an unclosed log tape in the online 
environment. Chapter 8, "Operation," describes how these jobs can be 
tested. 

This job uses the System Log Terminator utility to close an unclosed log 
tape in the online environment. Chapter 8, "Operation," describes how 
this job should be tested. 

This job generates the DC Mcoitor reports from a DC Monitor data set 
produced during an online session. 

This job prints statistical re~orts from the log tape produced by the 
cnline system. 

RECOMMENDED !EST SEQUENCE 

The recommended sequence fer exercising the sample jobs is (numbers 
on 1 y) : 

1. Sample initialization and phase 0: 5,6,7, 9, 10, 31, 32, 33, 34. 

2. Phase 1 (COBOL): 100, 101, 110, 140, 141, 170, 180, 171, 173, 181, 
182, 170, 180, 174, 190, 191, 181, 177, 181, 178, 181, 182, 185, 
186. 

Phase 1 CPt/I): 100, 102, 1'0, 150, 151, 170, 180, 171, 173, 181, 
182,170,180,174,190,191,181,177,181,178,181,182,185, 
186. 

~2!~: For a successful exercise of the sample recovery jobs 174 and 
up, you must be familiar with the data base recovery utilities and 
procedures as presented in Chapter 6, "Data Base Recovery •. " 

7.56 IMS/VS Primer 



3. Phase 2 (COBOL): 200, 201, 210, 243, 270, 212, 293, 285, 286, 281, 
288, 289. 

Ph a s e 2 ( P L /I): 2 0 0 , 2 02 , 2 1 0, 2 5 4 , 210 , 27 2 , 2 9 3 , 2 8 5 , 2 86 , 2 B 7 , 
288, 289. 

4. Phase 3 (COBOL): 300, 301, 310, 341, 310, 380, 313, 381, 382, 383, 
384, 389. 

Ph a s e 3 (P L /I): 3 0 0, 3 ° 2 , 3 1 0, 3 5 1, 3 1 0 , 3 8 0, 37 3 , 3 8 " 3 82 , 38 3 • 

5. Phase 1+ (COBOL): 401, 410, 420, 425, 441, 442, 443, 444. 

Phase 4 (PL/I): 402, 410, 420, 425, 451, 452, 453, 454. After 
these jobs have been run, the online system may be started as 
described in the IMS/VS Primer Master Terminal Operator's Guide. 
The online MPPs can then be exercised using the operating 
instructions in the IMS/VS Primer Remote Terminal Operator's Guide. 
Jobs 411, 473, and 474 should be run while the online system is up. 
Jobs 481, 490, 491, and 492 should be run when the MTO Guide and 
data base recovery procedures are tested, as described in Chapter 8, 
"Operations." Jobs 494 and 495 should use the tapes produced by the 
online system. 

If you want to skip the Phase 1, Phase 2 and Phase 3 sample batch jobs 
and proceed directly to the sample online system, just exercise the 
following jobs (numbers only): 

• Sample initialization: 10, 30, 31, 32, 33, 34 

• Phase jobs: 140 (COBOL) or 150 (Pt/I). 

• Phase 3 jobs: 300, 310, 370, 301 and 341 (COBOL), or 302 and 351 
(PL/I) • 

• Then proceed with the Phase 4 jobs as described above. 

liQt~: The jobs are listed in job number sequence in Chapter 2 of the 
Itt~LY~ fri!~r ~~mE!~ 1i~ling2 manual. 

The HDAM access method requires a randomizing module for root segment 
retrieval and insertion. Each HDAM data base has only one randomizing 
module, but several data bases can share the same module. The module 
name and its parameters are specified in the DBD. 

The function of a randomizing module is to convert the root key of a 
data base record into an internal block and an anchor point address. 
This address is used by the HDAM access method for the storage and 
retrieval of data base records. 

The randomizing module is loaded by IMS/VS when the data base is opened. 
The normal OS/VS program load facilities are used; therefore, the module 
must reside in SYS1.LINKLIB or IMSVS.RESLIB if it is to be used by the 
online control region. If a randomizing module is used for more than 
one HDAM data base, that is, is a general randomizing rout~ne, it should 
be reenterable (RENT). 

Installing IMS/VS 7.57 



GENERAL R1NDO~IZING ~ODULE 

DL/1 supplies a general randomizing module which is suitable for most 
key ranges. This module, DFSHDC40, is used with all our sample HDAM 
data bases. 

You should write your own randomizing module only if you want to 
maintain rootkey sequence and your key range is suitable for that. 

Note: For more details on DFSHDC40 you should consult its source 
listing, which can be obtained from IMSVS.DBSOURCE. 

WRITING A RANDOMIZING MODULE 

When an application program issues a Get Unique, Get Next with 
Qualification, or Insert call which operates on a root segment of an 
HDAM data base, the user-supplied randomizing module is invoked. (See 
also Chapter 4, "Processing Data Bases," for more details on DL/I 
calls.) The root key value is supplied to the randomizing module for 
conversion to a relative block number and anchor point number within the 
data base. In addition to the field value parameter supplied by an 
application program, parameters from the DBD are available to the 
randomizing module in a CSECT named RDMVTAB. The address of this CSECT 
is passed to the module each time a conversion is requested. 

The following DSECT defines the format of this CSECT: 

DMBDACS 
DMBDANME 
DMBDAKL 
DMBDAEP 
DMBDASZE 
DMBDARAP 
DMBOABLK 
DMBOABYM 
DMBOABYC 
DMBDACP 

DSECT 
DS CLa 
DS OCL1 
DS A 
DS H 
OS H 
OS F 
DS F 
DS F 
DS F 

NAME OF ADDR ALGORITHM LOAD MODULE 
EXECUTABLE KEY LENGTH OF ROOT 
EP OF ADDR LOAD MODULE 
SIZE OF THIS CSECT 
NUMBER OF ROOT ANCHOR POINTS/BLOCK 
NUMBER OF HIGHEST BLOCK DIRECTLY ADDRSD 
~AX NUMBER OF BYTES BEFORE OFLOW TO 2NDARY 
CUR NUM OF BYTES INSERTED UNDER ROOT 
RESULT OF LAST ADDRESS CONVERSION 

Upon entry to any randomizing module, registers must be saved. Upon 
return to OL/I, registers must be restored. A save area address is 
provided in Register 13 upon entry for the purpose of saving the 
registers. 

The following registers, on entry to a randomizing module, have the 
indicated meanings: 

~~gning_Q~_~Qn!~n! 

o Data Management Block address (DMB). 

DMBDACS CSECT address. 

7 Partition Specification Table address (PST). 
The first a bytes can be used as working storage. 

9 Address of the first byte of the key field value 
supplied by an application program. 

1.58 IMS/VS Primer 



13 

14 

15 

Save area address. 1he first three ~ords in the 
save area must not be changed. 

R~turn to I~S/VS address. 

!ntry Pcint Address of randcmizing module. 

The result of a randomizing module conversion must be in the form BEEE 
where: 

EBE is a three-byte binary number of the block into which a root segment 
is to be inserted, cr frcm which it is to be retrieved. 

R is a one-byte binary number of the appropriate anchor point, within a 
relative block, within an CSA~ data set of the data base. 

This result must be placed in the CSECT addressed by register 1 in the 
four-byte field named D~BDACP. If the result exceeds the content of the 
field DMBDAB1K, the result is changed to the highest blcck and last 
anchor point of that hlcck. 

A SIMPLE KEY-SEQUEN1IAL RANDOMIZING ~ODULE 

This sim~le straightforward randomizing module does a linear conversion 
of the root key tc block, anchor point address. This routine (DFSOALIN 
in 1MSVS.PRI~ESRC), can be used for numeric key ranges with an even 
distributicn. 

The DL/1 buffering services are controlled by three pools of control 
blocks and tuffers: the CSA~ tuffer pool, the DL/I buffer handler pool, 
and the VSAM kuffer pool. 1bis section describes the structure, 
content, and use of these pools by DL/I. 

The Dt/1 buffering services are the interface between the DL/1 action 
modules (for example, Fetrieve, Delete, Insert) and the data management 
access methods (15AM and CSA~). Whenever an action module needs to 
inspect or changE data in a data base, buffering services are called to 
perform ~hatev6r physical reading or writing is required. A separate 
pool of buffers is allocated for each type of data base: VSAM and OSAM. 
Data bases that use the VSA~ access method share the use of buffers in 
the VSAM shared resource pool. Data bases that use the OSA~ access 
method share the use of buffers in the 05A~ buffer pool. 

The concept of the tuffer pool allows blocks of data to remain in main 
storage as long as possible, in order to avoid secondary storagE reads 
and writes. Data in the tuffer pool can be accessed and updated without 
causing I/O as long as there is no need to reuse the buffer space the 
data occupies. A use chain determines the crder in which the buffers 
are used. Empty buffers are placed at the bottom of the use chain and 
are always available for reuse. As buffers are accessed they are placed 
at the top of the use chain. When a retrieve request occurs, the tuffEr 
pool is searched using the use chain. to determine if the requested data 
is already in main storage. If the data is not found, the least 
recently used tuffer (bottcm of the use chain) is selected, the old data 
is ~ritten out if it bas been changed, and the requested data is read 
into the selected buffEr. 

If an I/O error occurs while attempting to write a buffer of data, the 
buffer is marked as a .permanent write error buffer and retained in the 

Installing IKS/VS 7.59 



pool. No error indication is returned to the application program that 
encountered the error, but an IIO error message is written to the I~S/VS 
master terminal operator and/or OS/VS console operator, and an error log 
record is recorded on the IMS/VS log data set. 

Whenever an I/O error occurs, the DL/I Data Base Recovery Utility 
program should be used to re-create the data base that was damaged. 

~ (See Chapter 6, "Data Base Recovery.") 

DL/I maintains statistics on buffer pool utilization and access method 
requests. Thase statistics can be used to determine the optimum buffer 
pool sizes for a job. The DL/I statistics call {STAT) can be used in an 
application program to obtain these statistics. See Chapter 4, "Data 
Base Processing," for a description of the STAT call and Chapter 9, 
"Optimization," for the interpretation of these statistics. 

LOG TAPE WRITE-AHEAD 

The log tape write-ah~ad option is provided to ensure that a data base 
log record for a data change is physically written to the log device 
before the changed data is physically written to the data base storage 
device. This ensures that any change made to a data base is physically 
recorded on the log tape before the data base is changed. This allows 
recovery, even in the case of loss of main storage contents due to power 
failure. 

The log tape write-ahead option is activated with the OPTIONS statement 
in the buffer pool initialization data set. See "Defining the I~S/VS 
Data Base Buffer Sub pools" later in this chapter. In our subset, we 
will always select this option. 

THE DL/I BUFFER HANDLER POOL 

The buffer pool is the focal point for recording buffering services 
activity. The pool prefix (BFSP) contains pointers to the other elements 
of the pool, indicator flags, and some statistics. If VSAM data bases 
are used, a sub pool statistics block (BFUS) exists for each VSA~ buffer 
subpool defined. The subpool statistics block contains statistics on 
buffering services and VSAM request activity relevant to the associated 
subpool. These statistics can be requested with the STAT call. (See 
Chapter 4, "Data Base Processing.") 

THE VSAM BUFFER POOL 

The VSAM shared resource pool is used to_buffer data for data bases that 
use VSAM. It is constructed by VSAM, as a shared resource pool, based 
on parameters provided by DL/! initialization. It contains buffers to 
be used for VSAM data sets (both index and data components) and the 
input/output control blocks necessary to perform VSAM requests. The 
buffers are combined in subpools. All buffers within a sub pool are of 
equal length. 

If VSAM is used, the m1n1mum number of sub pools is , and the maximum is 1'. The minimum number of buffers in a subpool is 3, the maximum is 
255. Buffer sizes range from 512 to 32768 bytes and must be a power of 
2. For DL/I, VSAM control interval sizes may range from 512 to 30720 
bytes and must be a multiple of 512 (or a multiple 2048 if greater than 
8192). If no VSAM data bases are used, no VSAM subpools are required. 

During DL/I data base open, a data set is assigned a specific buffer 
subpool based on the control interval (eI) size. The tI size must be 
equal to or less than the buffer size for the subpool assigned. The 

7.60 IMS/VS Primer 



data and index components of a KStS may be assigned to different 
subpools if their CI sizes are different, and corresponding sutFoolE 
exists. A single subpoel car. be defined with buffers large enough to 
contain the longest Cl, or several subpools can be defined which more 
nearly fit the different sized CIs by the Frograms. 

THI OSAM EU~FEF POOL 

the OSAM buffer Fool is used to tuffer data for data bases that use the 
OSAM access methed. !he Fcel consists of one or more user defined 
subpools, comparable tc the VSAM buffer pool. Each subpool consists of 
fixed-length buffers. When a data set is opened, it is assigned a 
buffer subpool which contains buffers at least as large as the data set 
block size. If the data set block size is smaller than the buffer size, 
a portion of the buffer sFace iE net used. If data base data sets 
contain many different block sizes, many subFools must be defined to 
Frovide the best use of buffers. This can, in turn, restrict tbe number 
of buffers available te any given data set. Another consideration is 
the deliberate separation of certain data bases to a specific subpool: 
a data tase with bigh activity may tend to monopolize a subpool. To 
avoid this, assign the data set a block size that causes it to be 
assigned a unique subFcol. 

rEFINING THE IMS/VS DA!A BASE BUFFER SUBPCCIS 

The size and stxtcture of the VSAM and OSA~ buffer pools and the IMS/VS 
buffer handler pool are determined by control statements processed 
during IMS/VS initializaticn. 

In an IMS/VS batch system the control statemer.ts are in a data set with 
ddrame DF5VSAf':Po 

In an online system, they are in a member of !MSVS.PPOCLIB called 
DFSVSMnn. (nn is a user-defined suffix which is also specified as a 
sub-Farameter in the FARM field when executing the online system.) Job 
IISAMFI41 shows how this rr-emter can be created using the OS/VS utility 
IEBGENEF" 

Three types of centrol statereents are allowed: the VSAM subpool 
definitien statements, the OSAM subpool definition statements, and the 
CP!ICN5 statement. The sutpool definition stat€ment is used tc define 
the size and nurrter of tuffers in a subpool. The OPTIONS statement 
allews the user to influence the performance facilities of the DL/I 
tuffering services. 

/--------------------------------------------------------------~ 
/ , 
~ size, number 1 , , 
L----------------------------------------------------------------~ 

Eize 

A 3- to 5-digit number specifying the buffer size for this subpool. 
'the permissible values are 512, 1024, 2C48, 4096, 8192, 122e8, 
'6384, 20480, 24576, 28672, and 32768. 

Installing I~S/VS 7.61 



number 

A 1- to 3-digit number (3 to 255) specifying the number of buffers 
in this subpool. If the number of buffers is less than the minimum 
required, it is increased to the minimu. and a warning message is 
issued. 

Buffer size can start in position 1 or beyond and is separated from the 
number of buffers by a comma. Each statement defines one subpool. A 
blank must follow the number of buffers. The remaining portion of the 
statement is ignored. 

If two or more subpool definition statements sp@cify the same buffer 
size, the numbers of buffers from the statements are summed, and a 
single subpool with the total number of buffers is built. 

2gi~!!!n2!-t2£_2!!~£!in~_R~!~~£_2~_~gI!~£~_E~£_!2!~_~g£EQQ!: Following 
is a basic guideline for the number of VSAM buffers p~r subpool in an 
entry environment. 

Number of buffers per VSAM subpool = 

3 

+ (number of ESDSs served from this subpool)*2 

+ number of KSDSs index components served from this subpool 

+ number of KSDS data components served from this subpool 

~~J!!E!~: 

A batch program which uses all the data sets of the phase 3 sample data 
bases should specify: 

1024,6 
2048,9 

In the online environment the number of buffers should be calculated as 
shown above, but based on the MPP and BMP with the larg~st buffer pool 
requirement. The buffer pool requirements of tne most demanding MPP 
should then be added to those of the most demanding BMP, and this total 
should be used as an initial estimate of the buffer pool requirements. 

H2!~: The number of subpool buffers can be easily adjusted during 
production. Chapt~r 9, "Optimization," contains guidelines for 
monitoring and adjusting this performance parameter. 

rOBF= (l,n,fl,f2) 

IOBF= is the required keyword for subpool definition. It must begin in 
the first position of the control statement. Only one subpool 
definition may appear on each control statement. 

1 
Specifies the length of the buffers in the subpool. This parameter 
is required. If it is invalid, the entire entry will be ignored. 
The parameter must be in the range 512-32000 bytes. The value that 
is specified is rounded up to the nearest power of 2, up to 4K. 
Thereafter, the value is rounded to a multiple of 2K. 

7.62 IMS/VS Primer 



n 

f1 

f2 

Specifies the number of buffers in the sub pool. This parameter is 
opticnal. If specified, it must be in the range 4-255. The default 
value is 4. If this Farameter is invalid, the remainder of the 
entry will be ignored, and defaults will apply for all remaining 
para meters. 

Specifies the buffer long-term-page-fixing option. This parameter 
is optional. If Y is specifi~d, all buffers and buffer prefixes 
associated with this sub~ccl will be long-term-page-fixed at 
initialization of the subpool. If N is specified, no buffers 
associated with this sut~ocl will be long-term-page-fixed at 
initia1i2ation of the subpool. The default is N. If this parameter 
is invalid, the remainder of the entry will be ignored, and defaults 
will apply for all remaining parameters. Y is recommended. 

Specifies the tuffer prefix long-term-page-fixing option. This 
parameter is optional. If Y is specified, all buffer prefixes 
associated with this subpool and the subpool header will te 
long-term-page-fixed at initialization cf the subpool. If N is 
specified, the subpool header and all tuffer prefixes associated 
with this subpool will net be long-term-page-fixed at initialization 
of the subpoel. The default is N. Y is recommended. 

~gig~lin~§_~QI_~~!~£!ing_]Ym~~£_Q!_]g!!!~§_E~I_Q~A~ EgfE921: Following 
is a basic guideline for the number of VSAM buffers per subpool in an 
entry environment. 

Number ef buffers per OSA~ subpool 

3 

+ (number of OSAM data sets served frem this subpool) *2 

In the online environment the number of buffers sheuld be calculated as 
shewn above, but based on the ~EE and EMF with the largest buffer pocl 
requirement. The tuffer peel reguirements ef the most demanding ~EF 
should then be added to those of the most demanding B~P, and this total 
should be used as an initial estimate of the buffer pool reguirements. 

]~l~: The OSA~ tuffer pool definition statements need not necessarily 
be specified for a DL/I batch job. If not specified, a minimum of 4 
buffers per subpcol will be allocated in our subset. 

!!~IDE!~: Jot IISA~F174 shews the use of the OSAH subpool definition 
statements together with the ITWA option. 

OP~IONS,L~~A=YES,VSAMFIX=(EFF,ICB) ,BHTBACE=O 
CPTICNS,INSER~=§~f'SEQ 

The word CP~IONS, starting in position 1 identifies the OPTIONS 
statement. The parameters can be s~ecified in any sequence and must be 
separated by commaso A blank must follow the last parameter. ~he 
remaining portion of the statement is ignored. An OPTIONS statement 
ca~not be continued on a sutsequent statement, but several CFTICNS 
statements may be provided. If an OPTIONS parameter appears more than 
once, its setting is dEtermined by the last cccurrence. 

Installing IMS/VS 7.63 



LTWA=YES 

Activates the log tap~ write-ahead function of DL/I. ~his should 
always be specified to concur with our subset recovery procedures. 

VSAMFIX=(BFR,IOB) 

This is a performance option. It normally should be selected. 

BHTRACE=O 

Suppresses the DL/I buffer handler trace, which is not part of our 
subset. 

INSERT=~!f'SEQ 

Specifies the insert mode that the buffer handler uses when 
inserting new KSDS logical records in a data base (SHISAM and 
INDEX). If a program inserts many new root segments in sequence by 
key, than specifying INSERT=SEQ causes the buffer handler to use 
VSAM sequential mode PUTs. VSAM leaves free space (if specified in 
the DEFINE) in CIs created for the new records that are inserted. 
(VSAM refers to this as "mass insert"). Specifying INSEFT=SKP, or 
omitting the parameter, causes the buffer handler to use VSAM skip 
sequential mode PUTs. SEQ should ba selected for initial load and 
mass insert jobs. It is automatically enforced in the 
reorganization reload utilities. INSERT=SEQ will be ignored in the 
online control region. 

The IMS/VS system security utility is used to define your terminal and 
password security. This utility must be initially executed after each 
Stage 2 of IMS/VS system definition, before the CTL region is started. 
It can be re-executed whenever you want to change your terminal/password 
security. The new security will become effective at the next start 
(cold or warm) of tha CTL region. 

EXECUTING THE SECURITY MAINTENANCE UTILITY 

During IMS/VS system definition, a procedure named SECURITY is placed in 
IMSVS.PROCLIB. With this procedure you can create your own transaction 
and terminal security matrices which are stored in the IMSVS.~ATRIX data 
set. Jobs //SAMPI44 and //SAMPI45 in IMSVS.PRIMEJOB show how to use the 
SECURITY procedure. 

HQ!~: Even if you don't intend to use the IMS/VS security facility, you 
must run job //SAMPI44 (BTAM) or //SAMPI45 (VTAM). If you fail to, you 
will be unable to start the CTL region because there would not be at 
least one password entry as required by our IMS/VS syst~m definition. 

Each execution of the security maintenance utility produces a printed 
analysis of the IMS/VS system for which security is being maintained. 
If errors are encountered in processing the program's input control 
statements, no security block update functions are performed. 

Instead, diagnostic error messages are produced for the entire input 
stream. 

7.64 IMS/VS Primer 



Note: The security status report should be properly maintained as it is 
vital to the security of the system. 

!he follcwing tYFes of security are distinguished in our subset: 

• Command security: Certain ccmmands are restricted to the master 
terminal. 

• Terminal security: certain transactions are restricted to selected 
logical terminals. 

• Transaction security: Certain transactions will be accepted only 
when the terminal operator also enters a defined password. 

COMMAND SECURITY 

18S/VS includes during system definition a default command security 
which we vill use. With this default command security, the following 
commands are restricted to the master terminal: /lSSIGN, /CHANGE, 
/CHICKP01N~, /CLStST, /COMPT, /DBDU~P, /DBRECOVERY, /DELETE, /DEQUEUE, 
/DISPtAY, IERESTART, IIDtE, /MONITOR, IMSASSIGN, /MSVERIFY, /NRESTABT, 
/OPNDST, IPSTOP, IPURGE, IFSTAFT, /SMCOPY, /START, ISTOP, and /TRACE. 
As ve will only use a subset of IMS/VS commands, it is recommended to 
protect the non-subset commands with a special password. This will 
prohibit the accidental use of those commands by an operator. The first 
part of the input of job //SAMFI44 and IISAMPI45 shows hov to do this. 
Tbe special password is defined by the statement: 

) ( PASSWORD NONPR IME 

The commands to be protectgd are specified via the immediately following 
COMMAND ••• statements. 

1. The commands are atbreviated to their first 3 characters, a standard 
I"S/VS feature. 

2. Obviously, you should change the password (NONPRIM~ to your own. 

TRANSACTION AND ~ERMINAI SECURITY 

A set of input centrol statements is required for each transaction code 
is to be assigned password and/or terminal security. 

In!!~A~l ~l!l~!~Dl: One TRA~SACT statement is required for each 
transaction code that requires security. Its format is: 

I , 
1 

) ( TRANSAC~ trancode 

Installing IftS/VS 7.65 



The ) ( must be coded in columns 1 and 2 and be followed by a blank. The 
TRANSACT operand must be followed by a blank and the transaction code 
[trancode). 

f!§§!QI~ ~!!I2!inI: This statement should be included only if you want 
the preceding transaction code to be protected by a password. Its 
format is: 

1-------------------------------------------------------------, 
1 ' I PASSWORD password , 

I I 

L-----------------------------------------------------~----------J 

~egen~: 

The PASSWORD operand must be preceded and followed by at least one 
blank. The specified password must be 1 to 8 alphanumeric characters. 

Ila~I!!~ ~t!1~!~nt: One TERMINAL statement is required for each logical 
terminal authorized to enter this transaction. If no TERMINAL statement 
follows a TRANSACT statement, then that transaction code is accepted 
from AnI terminal. The format of the TERMINAL statement is: 

1-------------------------------------------------------------, 1 , 
I TERMINAL lterm-name I , 
L----------------------------------------------------------------~ 

~~in£: 

The TERMINAL operand must be preceded and followed by at least one 
blank. The specified lterm-name must be defined during IMS/VS system 
definition via a NAME statement. 

ltt§L!a_£!!!~Q~l~_fRQ£~~Yg~~ 

Several procedures are placed in the IMSVS.PROCLIB by Stage 2 system 
definition. 

The following are applicable to our subset environment and are used in 
our sample jobs: 

• ACBGEN builds online control blocks from your DBDs and PSBs 

• DBDGEN generates data base definition control blocks (DBDs). 

7.66 IMS/VS Primer 



• DLIBATCH executes a batch DL/I program. 

• IMSBATCH executes a batch message processing program {Phase 4 
only). 

• IMS executes the online control program (Phase U only) 

• IMSMSG executes the online message processing programs (Phase U 
only) • 

• IMSRDR is the reader procedure for using IMSVS.PROCLIB 

• MPSEVC builds an index directory used by the online Mrs pool 
manager. 

• MFSUTL generates MFS control blocks (Phase 4 only) 

• PSBGEN generates program specification blocks (PSBs). 

• SECURITY generates the security blocks used by the online control 
program (Phase 4 only). 

In the following overview of these procedures, we will discuss the 
execution parameters only of interest to our subset. For those 
parameters not discussed, you should use their default values. 

ACBGEN PROCEDURE 

II PROC SOUT=A,COHP=,RGH=160K 
IIG EXEC PGM=OFSRRCOO,PARM='UPB,&COMP',REGION=&RGH 
IISYSPRIHT DO SYSOUT=&SOUT 
IISTEPLIB 00 DSN=IHSVS.RESLIB,DISP=SHR 
IIOFSRESLB DO oS~~=HlSVS.RESLIB,OISP=SHR 

II1MS 00 DSU=IHSVS.PSBLIB.DISP=SHR 
II 00 oS~l=1HSVS.O£'.OLIB,OISP=SHR 

IIIHSACB 00 oS~l=IHSVS.AC6LIB.01SP=OLO 
IISYSUT3 00 UHIT=SYSOA,SPACE=(BO,(lOO,lOO)) 
IISYSUT4 DO UNIT=SYSOA,SP~CE=(256,(100,10011,DCB=KEYLEN=a 
//COHPCTL DO DSN=IHSVS.P~OCLIB(OFSAC6CP),DISP=SHR 

EXEC Statement Parameters for AeBGEN 

SOUT= 

specifies the SYSOUT class. 

COMP= 

0000001 
0000002 
0000003 
0000004 
0000005 
00C0006 
0000001 
0000008 
0000009 
0000010 
0000011 

specifies the library compression option. Specify POSTCOMP for 
in-place compression after new members are added for best 
perforllance. 

RGN= 

Specifies the region size for MVS users. 

Installing IMS/VS 7.67 



DBDGEN PROCEDURE 

II PROC HBR=TEHPNAHE,SOUT=A 0000001 
IIC EXEC PGH=IFOXOO,REGION=256K,PARH='OBJ,NOOECK' 0000002 
IISYSLIB 00 DSN=IHSVS.HACLIB,DISP=SHR 0000003 
IISYSGO 00 UNIT=SYSOA,OISP=( ,PASS), 0000004 
II SPACE=!80.!100,100),RLSE), 0000005 
II DCB=(BLKSIZE=400,RECFH=FB,LRECL=80) 0000006 
IISYSPRIHT DO SYSOUT=&SOUT,OCB=BLKSIZE=1089, 0000007 
II SPACE=C121,(300,300I,RLSE"P.OUND) 0000008 
IISYSUTl DO UNIT=SYSDA,DISP=( ,DELETE), 0000009 
II SPACE=!1700,(100,50» 0000010 
IISYSUT2 DO UNIT=SYSDA,DISP=! ,DELETE), 0000011 
II SPACE=!1700,(100,50)1 0000012 
IISYSUT3 DO UNIT=(SYSOA,SEP=(SYSLIB,SYSUT1,SYSUT211, 0000013 
II SPACE=(1700,(100,SO» 000C014 
IlL EXEC PGH=OFSIU1KO, PAlm= I XREF, LIST' ,CONO=( 0, L T ,C) ,REGION=120K 0000015 
IISTEPLIB DO OSN=IHSVS.RESLIB,OISP=SHR 00COO16 
IIS),SLIH 00 DSN=*.C.SYSGO.DISP=(OLD,DELETEI 0000017 
IISYSPRINT DO SYSOUT=&SOUT,DCB=BLKSIZE=1089, 0000018 
II SPACE=!121,(90,90),RLSE) 0000019 
IISYSLHOD 00 DSN=IHSVS.OBDLI6(&H8R),OISP=SHR 0000020 
IISYSUTl DO UNIT=(SYSDA,SEP=!SYSLHOO,SYSLINII, 0000021 
II SPACE=(1024,(100,10I,RLSE),OISP=( ,DELETE) 0000022 

See the section entitled "Execution of DBDGEN [JeL) " in Chapt~r 2, "Data 
Base Design" for details on using this procedure. 

DLIBATCH PROCEDURE 

II PROC HBR=TEHPNAHE,SQUT=A.PSB=,BUF=7. 
II SPIE=O,TEST=0,EXCPVR=0,RST=0,LOGT=2400, 
II PRLO= ,SRCH=O ,CKPTIO= ,HO~l=U, LOGA=O, 
II FHTO=T,IHSID= 
IIG EXEC PGH=DFS;;'RCOO ,REGlm:=l92K, 
II PARH=(OLI,tM3R,&PSB,&BUF, 
II &SPIE&TEST&EXCFVR&RST,&PRLD, 
II &SRCH,&CKPTID,&HCN,&LOGA,&FHTO, 
II &HI5IO) 
IISTEPLIB DO DSN=IHSVS.RESLI6,OISP=SHR 
II DO OSN=IHSVS.PGHLIB.OISP=5HR 
IIOFSRESLB DO DSt~=If1SVS.RESLIB,OISP=SHR 
II1HS 00 OSIJ=1HSVS.PSBLIB,OISP=SHR 
II 00 OSN=IHSVS.OCDLIB,DISP=SHR 
IIPROCLIB 00 OSN=IHSVS.PPOCLIB,DISP=SHR 
IIIEFRDER DO OS~I=IHSLCG ,DISP=! , KEEP) , VOL=( , , ,99) ,UNIT=! &LOGT, ,DEFER I , 
II OCB= (RECFH=VB, BLKSIZE=1920, LRECL=1916 ,6~FtIO=2 I 
IISYSUDUHP 00 SYSCUT=&SQUT,OCB=(RECFH=FBA,LRECL=121,BLKSIZE=60S), 
II SPACE=!605,(500,500),RLSE"ROU~:::l) 
IIIHSUDUHP DO SYSCUT=&SOUT,DCB=(RECFH=FBA,LRECL=121,BLKSIZE=60S)( 
II SPACE=(60S'(SOO,SOO),RLSE"ROUHDl 
IIIHSMON DO DUMMY 

0000001 
0000002 
0000003 
0000004 
0000005 
0000006 
0000007 
oooeoes 
0000009 
0000010 
0000011 
0000012 
0000013 
0000014 
0000015 
0000016 
0000017 
0000018 
0000019 
0000020 
0000021 
0000022 

1. The BLKSIZE and LRECL values shown in the IEFRDER dd statement are 
the default values. If the DCB parameters are changed, log 
initialization calculates the smallest value necessary for logical 
record length. If the JCL logical record length value is larger 
than the calculated value, the JCL value is used; otherwise, log 
initialization uses the calculated value for logical record length 
and adds 4 for the block size. 

2. This statement describes the recording device to be used by the DB 
monitor. It is required only if KON=Y is specified in the PROC 
statement, and then only if a device other than the IKS/VS system 
log is to be used for monitor data. When a separate log device is 
used for DB monitor data, a //IMSMON DD statement must be included 
that specifies a sufficient BLKSIZE and LRECL (2048 and 2044 are 
suggested) .. 

3. You must add the DD statements for all the data bases the job step 
uses. 

7.68 IMS/VS Primer 



Q. A DFSVSAMP DD statem~nt must be added for the LTWA option and the 
OSAM and/or VSAM subpccl specifications. 

EXEC Statement Parameters for DLIEATCH 

MBR= 

specifies the applicaticn ~royram name. 

SOUT= 

specifies the class assigned to SYSOU! tD statements. 

PSB= 

is an optional parameter specifying a PSB name when the PSB name and 
a~plication ~rogram name are different~ 

BUF= 

specifies the data basE tuffer size. If not present, a default size 
of 7K will he used. Buffer size is specified in 1K multiples. 
Values may range from 1 through 999. Using IOBF= cards in the 
DFSVSAMP data set will cverride this parameter. 

SPIE= 

specifies the SPIF option: 0= allow user SPIE, if any, to remain in 
effect while ~rocessin9 the application program call. This option 
is recommended. 

1= negate the user's SPIE while processing the application program 
call. Negated SPIEs are reinstated before control is returned to 
the application program. 

!ES!= 

sPecifies whether (1) cr not (e) the addresses in the user's call 
list should he checked for validity. Zero (0) is the recommended 
valUE. 

EX CPV Ii= 

specifies whether FICP (C) or EXCPVR (1) is to be used for data sets 
processed by OSAM tOS/VS' only). One is the recommended value if 
the program accesses OSAM data bases, otherwise zero should be 
specified. 

must be zero (0) in cur subset. 

PRLt= 

should be omitted in our subset. 

SRCH= 

is the module search i~dicator for directed load: 
0= standard search. 

1= search JPA and IPA before JOELIB/STEFLIB (MVS only). 

Installing IMS/VS 7.69 



CKPTID= 

MON= 

specifies the checkpoint at which the program is to be restarted; 
specified as a 1-to a-character extended checkpoint ID. If no 
checkpoint exists, this parameter should be omitted. 

specifies whether (Y) or not (N) the DB monitor is to be active for 
this execution. See Chapter 9, "Optimization," for a description of 
the DB Monitor and its use. 

LOGA= 

specifies the use of BSAM (0) or OSAM (1) for the logging facility. 
1 is the recommended value. Ois the default. 

LOGT= 

specifies the tape device type where the log data set will be 
mounted. The default is device type 2400. 

IMSID= 

specifies a four character identifier that is a valid subsystem 
identifier to the operating system being used. This identifier will 
be used instead of the identifier specified at system generation of 
the IMS/VS system being executed. Multiple batch jobs with the same 
identifier are allowed to run concurrently. So you normally don't 
need to specify this parameter except when you want to separate a 
test and production version. 

7.70 IMS/VS Primer 



IMS PROCEDURE 

II PROC RGN=600K.SOUT=A,DPTY='C14.1S)', 
II DUMPDS=DUMMY,DV=.DU=, LOGT=2400, 
II CTL=CT,RGSUF=L.RES=.FRE=.QSUF=,DYBN=,PST=, 
II SAV=.EXVR=,PRF=,SRCH=.FBP=.PSB=.DMB=. 
II DBB=,TPDP=,WKAP=,PSBW=,CWAP=,DB~P=, 
II MFS=.SUF=.FIX=.PRLD=.VSPEC=OO.SOD=. 
II I08=,VAUT=,LOGA=0.FHTO=T. 
II AUTO=N.RDSN=2,TRN=N. 
II SGN=N,RCF=N,IMSID=IMSA,ISIS=O, 
II LOGD=O 
IIIEFPROC EXEC PGM=DFSRRCOO,REGION=&RGN,DPRTY=&DPTY, 
II PARM=(&CTL&RGSUF, 
II &RES,&FRE,&QBUF,&DYBN.&PST,&SAV, 
II &EXVR,&PRF,&SRCH,&FBP,&PSB,&DHS,&DBB, 
II &TPDP,&~KAP,&PS~W,&CWAP,&DB~P,&MFS, 
II &SUF,&FIX,&PRLD,&VSPEC,&SOD,&IOB, 
II &V/,UT" ••• , 
II &LOGA.&FMTO.&AUTO.&RDBN,&TRN.&SGN, 
II &RCF,&IMSID,&ISIS,,&LOGD) 
11* 
11* 
11* THE MEANING AND MAXIHUM SIZE OF EACH PARAHETER 
11* IS AS FOLLOWS: 
11* 
11******** CONTROL REGION SPECIFICATIONS ******** 
11* RGSUF X EXEC PARM DEFAULT BLOCK SUFFIX 
11* RES X BLOCK RESIDENT (N = NO. Y = YES) 
11* FRE XXX NUMBER OF FORMAT REQUEST ELEHENTS 
11* QSUF XXX I-MIBER OF MESSAGE QUEUE BUFFERS 
11* DYBN XXX NUt-loER OF DYNAMIC LOG BFFRS FOR PI 
11* PST XX ~~UHBER OF PST I S 
11* SAY XXX NUM9ER OF DYN~MIC SAVE AREA SETS 
11* EXVR X PAGEFIX DYN LOG AIm QH:>R BUFFER POOLS 
11* PRF X PREFETCH OPTION (Y = YES, N = NO) 
11* SRCH X MODULE SEARCH INDICATOR FOR DIRECTED 
11* o = STANDA~D SE~PCH 
11* 1 = SEARCH JPA AND LPA BEFORE PDS 
11* SOD X 1 CHARACTER SYSOUT CLASS 
11* lOB XXX NUHBER OF OSAH 1/0 REQUESTS 
11* VAUT X VTAM t.UTH PATH OPTIml Cl=YES. O=NO) 
11* LOGA X 0 BSAH FOR LOGGING (DEFAULT) 
11* 1 OSAM FOR LOGGWG 
11* FMTO X T FORMATTED DUMP WITH 
II+< STOPAGE IMAGE DELETIONS 
11* P = FULL FORMATTED DUI-IP 
11* N NO FORMATTED DUMP 
11* AUTO X Y AUTOHATIC RESTART DESIRED 
11* ~~ = ~c AUTOMATIC RESTART 
11* RDB~~ XXXXX NUMBER OF RESTART DATA SET BUFFERS 
11* TRN X TR~NSACTION AUTHORIZATION CHECKING 
11* F = FORCED. Y = YES. N = NO 
11* SGN X SIGNON AUTHORIZATION CHECKING 
11* F = FORCED. Y = YES, N = tlO 
11* RCF X RACF USED FOR TRANS. AND SIGNON 
11* Y = YES. N = NO 
11* IHSID XXXX IMS/VS SUBSYSTEM IDENTIFIER 
11* ISIS X 0 NO RESOURCE ACCESS SECU~ITY 
11* 1 RACF RESOURCE ACCESS SECURITY 
11* 2 = USER RESOURCE ACCESS SECURITY 
11* LOGO X 0 = NO LOG VOLUME DEQUEUE (DEFAULT) 
11* 1 = DEQUEUE LOG VOLS AT EOV (MVS) 

( l=YES. 

LOAD 

O=NO) 

0000001 
0000002 
0000003 
0000004 
0000005 
00000C6 
0000007 
0000008 
0000009 
0000010 
0000011 
0000012 
0000013 
0000014 
0000015 
0000016 
0000017 
0000018 
0000019 
0000020 
0000021 
0000022 
0000023 
0000024 
0000025 
0000C26 
0000027 
0000028 
0000029 
0000030 
0000031 
0000032 
0000033 
0000034 
0000035 
0000036 
0000037 
000C038 
0000039 
00000(10 
0000041 
0000042 
0000043 
00000t.4 
0000045 
0000C(+6 
OOOOC47 
0000048 
0000049 
0000050 
0000051 
0000052 
0000053 
0000054 
0000055 
0000056 
0000057 
0000058 
0000059 
0000060 
0000061 

Installing I~S/VS 



11* 
11******** STO~AGE 
11* 
11* FBP XXX 
11* PSB XXX 
11* OHB. XXX 
11* 08B XXX 
11* TPOP XXX 
11* ~KAP XXX 
11* PSSW XXX 
11* CWAP XXX 
11* OBWP XXX 
11* MFS XXX 
11* 

POOL SIZES IN lK BLOCKS 

MESSAGE BUFFER POOL 
PSB POOL 
OMS POOL 
DATA BASE BUFFER POOL 
TP DEVICE 1/0 POOL 
WORKING STORAGE BUFFER 
PSB ~ORK POOL 
SPA POOL 
DATABASE WO~K POOL 
MAXIMUM MFSTEST SPACE 

****** 

POOL 

0000062 
0000063 
0000064 
0000065 
0000066 
0000067 
0000068 
0000069 
0000070 
0000071 
0000072 
0000073 
0000074 
0000075 
0000076 11******** MEMBER SUFFIXES ********************** 

11* 0000077 
LAST CHARACTER OF CTL PROGRAM LOAD MODULE MEMBER NAHEOOOOOiS 11* SUF X 

11* FIX XX 2 CHARACTER FIX PROCEDURE MODULE SUFFIX 0000079 
11* PRLO XX 
11* YSPEC XX 

2 CHARACTER FROCLIB HE~aER SCFFIX FOR PRELOAD 0000080 
2 CHARACTER BUFFER POOL SPEC MODULE SUFFIX 0000081 

II*****~***************·************************* 
11* 
IIDFSPESLB 00 OSN=IMSVS.RESLIB,OISP=SHR 
IIF~GCLIB 00 DSN=IMSVS.PPOCLIB,DISP=SHR 
II!EFROER DO DS:l=U1SVS.IMSLOG,DISP=( ,KEEP), 
II VOL=C ",99).UHIT=C&LCGT"DEFER), 
I I OCB= (RECFH=V6, BLK S1 ZE=3992, L~ECL=3988. 6UF~lO=2 ) 
II1HSL03R 00 OSN=IMSVS.IMSLOG. 
II0ISP=(MOO,KEEP),UmT=AFF=IEFRDER 
IIIH~HJ~l 00 OSN=IMSVS.nIS~fO~l,OISP=( ,KEEP). 
II VOL=(,.,99I,UNIT=(&LCGT"DEFER;SEP=IEFROER) 
IIQSLKS 00 OS~;=IH5'.JS.Q6LKS,DISP=OLD 

IISHMSG 00 OSN=IHSV5.SHHSG,OISP=OLO 
I ILG~fSG 00 DSN=IMSV5 .lGHSG ,OISP=OLD 
IIIHSACB 00 DStl=H1SY5.ACBLIB,OISP=SHR 
IIWSDIlIB DO OSN=!HSV5.FORMAl.DISP=OLD 
IISYSUDUHP 00 SYSOUT=&SOUT. 
II DC8=(LPECL=125.RECFH=FBA,BLKSIZE=3129), 
II SPACE=t6050,3DO,.,ROUSO) 
IIIHSROS DO OSN=IMSVS.ROS,OISP=OLO 
II0U~lP DO &DUHFOS, 
II DISP=OLO,LA8EL=( ,NL)&DV&OU 
IIIMSUDU~iP 00 SYSOUT=t.SOUT, 
IIOC8=(LRECL=125.RECFH=FBA,BLKSIZE=3129). 
II SP~CE=(6050,300, •• ROUND) 
IIH.~TRIX 00 OS~l=!HSVS.tlATRIX,OISP=SHR 

IIFRINTOD 00 SYSOUT=&SOUT 
IIIMSDBL DO OSN=IMSVS.OBLLOG,OISP=SHR 
11* 
11* USER HUST SUPPLY THE 00 STATEHENTS 
11* FOR THE ON-LINE DATA 8~SES TO BE 
11* WSERTEO HERE FRIeR TO ATTEMPTING 
I I~ AN m~- LHiE SYSTEM EXECUTION USING 
11* THIS PROCEDURE. 

0000082 
0000083 
0000084 
0000085 
0000086 
0000087 
0000088 
0000059 
0000090 
0000091 
000009~ 
0000093 
0000C94 
0000095 
00000'76 
0000097 
0000098 
0000C99 
0000100 
0000101 
0000102 
0000103 
0000104 
OC00105 
0000106 
0000107 
0000108 
0000109 
0000110 
0000111 
0000112 
0000113 
0000114 
0000115 

1. The program name specified on the EXEC statement is DFSRRCOO for 
OS/VSl and DFSMVRCO for MVS. 

2. The BLKSIZE and LRECL valu~s shown in the IEFRDER dd statement are 
the default values. If the DCB parameters are changed, log 
initialization calculates the smallest value necessary for logical 
record length. If the JCL logical record length value is larger 
than the calculated value, the JCt value is used; otherwise log 
initialization uses the calculated value for logical record length 
and adds 4 for the block size. 

3. The DD statement called IMSMON describes the recording device to be 
used by the DC Monitor and is required only if you wish to invoke 
the monitor during an online session. 

4. The above listed IMS procedure is produced for the VTAM only system. 
The procedure for the BTAM only system is the same, but will contain 
DD statements for the communication lines. 

7.72 IMS/VS Primer 



5. In our suhset. you must add the DD statements for the data base data 
sets to be used by the control region to this procedure. See job 
IISAMPI4C in IMSVS.PRIMEJOB. 

EXEC Statement sutset Parameters for IMS Procedure 

RGN= 

SOUT= 

DPlY= 

CTL= 

VSPEC= 

FIX= 

VAU~= 

LOG!= 

specifies the si2e of the region in which the control program 
is to run, and has meaning only in an MVS system. 

specifies the class to be assigned to SYSOUT DD statements. 

specifies the OS/VS dispatching priority at which the IMS/VS 
centrol region should operate. See the as/vs JCL documentation 
for details of DPTY. !he IMS/VS ccntrol region must not be 
executed at priority zero, or be scheduled into an OS/VS1 
partition whose priority falls within JES1 DDG, or into an MVS 
region whose priority falls within a JES2 APG. A general rule 
to follcw is that the IMS control region dispatching priority 
must always bE higher than the dis~atching priority of an 
IMS/V~ dependent region. 

specifies whether IMS/VS should operate as a system task. 
Cll=C!l indicates that it should run as a system task; CTl=CTX 
indicates that it should run as a ~roblem program. C!L=CTL is 
recommended. 

specifies the two-digit suffix of the DFSVSMnn member of 
IMSVS.PPOC1IB that contains the VSA~ and OSAM tuffer pool 
specifications to tE used. 

specifies the two-digit suffix of the DFSFIXnn member of 
IM5VS.PROCLIB which centrols the fixing in real storage of 
selected Farts of the CTl region. 

specifies whether (1) cr not (0) IMS/VS is to use the VTAM 
authorized path facility. The recommended option is 1. 

specifies which lcgging facility, ESAM or OSAM, IMS/VS is to 
use. Specify 1 for OSAM, the recommended option. 

The other symbolic parameters need not be specified because thE default 
values calculated durin9 syster definition should be sufficient for our 
entry environment. 

LOGT= 

specifies the tape device type. ~he default is device type 
2400. 

Installin9 IMS/VS 7.73 



LooD= 

specifies whether (1) or not (0) IMS/VS output log volumes are 
to be degueued at EOV. This parameter is valid for MVS only. 
The recommended value is 1 especially if you consider restarts 
of BMP, which use the X~ST call. 

IMSBATCH PROCEDURE 

II PROC MBR=TEHPNt.ME,SOUT=A,OPT=N.SPIE=O.TEST='O. 
PSB=.PRLO=.STIHER=.CKPTIO=.IN=.OUT=,OIRCA=OOO. 
PAROLI=,CPUTIHE=,NBA=.06A=,IHSID=.AGN= 
PGH=OFSRP.COO,REGION=128K. 
PAP.H=(8HP,&H6Q,&PSB.&IN.&OUT, 
&OPT&SPIE&TEST&OIP.CA.&FRLO.&STIMER.&CKPTIO. 
&PAROLI.&CPUTJHE,&NBA.&OBA.&IHSID.&AGN) 
DSN=IHSVS.RESLIB.DISP=SHR 

0000001 
0000002 
0000003 
0000004 
OC00005 
0000006 
0000007 
0000008 
0000009 
0000010 
0000011 
0000012 

II 
II 
IIG EXEC 
II 
II 
II 
IISTEPLIB DO 
II DO 
IIFROCLIB DO 
IISYSUOUHP 00 
II 

DSN=IHSVS.PGHLIB.DISP=SHR 
OSN=IHSYS.PPOCLIB.OISP=SHR 
SYSOUT=&SOUT.DCS=(LRECL=121.RECFM=YBA,BLKSIZE=3129). 
SPACE=( 125 d 2500.100) ,R LSE •• ROUtlO ) 

Note: You must add a DO statement for the log tape containing the 
checkpoint data when you are restarting a BMP which uses the X~ST call. 
This 00 statement has the DDname IMSLOGR. 

EXEC Statement Parameters for IMSBATCH 

MBR= 

specifies the application program name. 

SOUT= 

PSB= 

specifies the class assigned to SYSOUT DD statements. 

is an optional parameter specifying a PSB name when the PSB name and 
application program name are different. The PSB name must be 
defined as PGMTYPE=BATCH with an APPLCTN macro in your IMS/VS system 
definition. 

SPIE= 

specifies the SPIE option: 0= allow use~ SPIE, if any, to remain in 
effect while processing the application program call. This option 
is recommended. 

1= negate the user's SPIE while processing the application program 
call. Negated SPIEs are reinstated before returning to the 
application program. 

TEST= 

1.74 

specifies whether (1) or not (0) the addresses in th~ user's call 
list should be checked for validity. Zero (0) is the recommended 
vallle. 

IMS/VS Primer 



PRlD= 

should be omitted in our subset. 

CKF!ID= 

specifies the check~oiDt at which the ~ro9ram is to be restarted, 
specified as a 1-to S-character extended checkpoint ID. If this is 
not a restart run, this parameter should be omitted. 

CPT= 

specifies the action to be taken if the batch message region starts 
and there is no centrel ~regram active. 

N ask operator for decision. !his is the default. 
W wait fer a centrol regionQ 
C cancel the batch message region automatically. 

N is the recommended value. 

IN= 

should be omitted in cur subset. 

CUT= 

should be omitted in our subset. 

DIBel= 

should hE omitted in eur subset .. 

IMSMSG PROCEDUR E 

IIHESSAGE JOB 1,IHS,HSGLEVEL=1,PRTY=11,CLASS=A,HSGCLASS=A,REGION=128K 
IIREGION EXEC PGH=OFSRRCOO,REGION=128K, 
II TIHE=1440,OPRTY=112,O), 
II PARM='HSG.0010000000CO' 
IISTEPLIB 00 OSN=IHSVS.RESLIB,OISP=SHR 
1/ 00 OSN=~HSVS.PGHLIB,OISP=SHR 

IIPROCLIB 00 OSN=IHSVS.PROCLIB,OISP=SHR 
IISYSUDUHP 00 SYSQUT=A,OCB=ILRECL=121,BLKSIZE=3129,RECFH=VBA), 
II SPACE=(125,(2500,100),RLSE"ROUNO) 

0000001 
0000002 
0000003 
OOOCOO~ 

0000005 
0000006 
OC00007 
0000008 
0000009 

This ~rocedure must be copied to IMSVS.JOES. See job //SAMPI42 in 
IMSVS. PBIMEJOE. 

Installing IMS/VS 7.75 



IMSRDR PROCEDUi E 

II 
IIIEFPROC 
II 

PROC MBR=IMSMSG 
EXEC PGH=IEFVHA. READER FIRST LOAD 

11* 
11* 
11* 

PARH='00100300005210EOOOIIAXX' DEFAULT OPTIONS 
BPPTTTTSSCCCRLAAAAEFHXX PARM FIELD 

B PROGRAM~IER NAHE AND ACCOUNT NUHSER NOT NEEDED 
PP PRIORITY=Ol 

1/* 
11* 

TTTTSS JOB StEP INTERVAL=30 HIUUTES 
CCC JOB STEP DEFAULT REGION=52K 

11* R DISPLAY AND EXECUTE COl1HAllDS=l 
11* L BYPASS LABEL=O 
11* AAAA COHHMlO AUTHORITY FOR HCS=EOOO 
11* - ALL COHHAtmS HUST BE AUTHORIZED 
11* E JCL MESSAGE LEVEL DEFAULT=l -ALL HESSAGES 
11* F ALLOC/TERH HESSAGE LEVEL DEFAULT=l -ALL HESSAGES 
11* H DEFAULT HSGCLASS=A 
11* 
11* 
11* 
IIIEFRDER 
IIIEFPOSI 
II 

XX PARTITION,ROR WILL HAVE DISPATCHING 
PRIORITY 1 LO~ER THAN PARTITION 
SPECIFIED. XX=SYSTEH TASK PRIORITY 

DO DSN=IHSVS.JOBS(&HBR).OISP=SHR,OCB=BUFNO=l 
DO DSN=IHSVS.P~OCLIB,DISP=SHR 
00 DSN=SYSl.PROCLIB,DISP=SHR 

This procedure must be copied to SYS1.PROCLIB. 
IMSVS. PRIMEJOB. 

PSBGEN PROCEDURE 

II PROC 
IIC EXEC 
IISYSLIB DO 
IISYSGO 00 
II 
II 
IISYSPRINT 00 
II 
IISYSUTl 0') 
II 
IISYSUT2 CO 
II 
IISYSUn 00 
II 
IlL EXEC 
IISTEPLIB DO 
IISYSLIN 00 
IISYSPRINT 00 
II 
IISYSLHOD 00 
IISYSUTl 00 
II 

HBR=TEHPNAHE,SOUT=A 
PGN=IFOXOO,REGION=200K.PARH='OBJ,NODECK' 
D$N=IHSVS.HACLIB,OISP=SHR 
UNIT=SYSDA,OISP=( ,PASS). 
SPACE=(80,(100,lOO),RLSE). 
DCB=(BLKSIZE=400,RECFH=FB,LRECL=80) 
SYSQUT=&~~UT,OC6=BLKSIZE=1089, 
SPACE=(121,(300,300).RLSE"ROUNO) 
UNIT=SYSOA,DISP=( .DELETE), 
SPACE=(l700.(100,50)) 
UNIT=S~SDA,DISP=( ,DELETE). 
SPACE=(l700,(100.50)) 

UNIT=(SYSOA,SEP=(SYSLIB.SYSUTl,SYSUT2)), 
SPACE=(1700,(100,50)) 

PGH=DFSILNKO,PARH='XREF,LIST',COND=(0,LT,C),REGION=120K 
OSN=IHSVS.RESLIB,OISP=SHR 
OSN=*.C.SYSGO,DISP=(OLO,OELETE) 
SYSOUT=&SOUT,DCB=BLKSIZE=l089, 
SPACE=(121,(90,90),RLSEI 
OSN=INSVS.PSBLIB(&MBR).OISP=SHR 
UNIT=(SYSDA,SEP=(SYSLHOO,SYSLIN)), 

SPACE= ( 1024, ( 100,10) ,RLSE ) ,DISP=( ,DELETE) 

7.76 IMS/VS Primer 

0000001 
0000002 
0000003 
0000004 
0000005 
0000006 
0000007 
0000008 
0000009 
0000010 
0000011 
0000012 
0000013 
0000014 
0000015 
0000016 
0000017 
0000018 
0000019 
0000020 
0000021 

See job //SAMPI24 in 

0000001 
0000002 
0000003 
0000004 
0000005 
0000006 
0000007 
0000008 
0000009 
0000010 
0000011 
0000012 
0000013 
0000014 
0000015 
0000016 
0000017 
0000018 
0000019 
0000020 
0000021 
0000022 



SECURITY PROCEDURE 

II PROC OPTH=UPOATE,IHS=' ,O',SOUT=A 
liS EXEC PGM=OFSISMPO,PARH='&OPTN.&IHS. ' 
IISTEPLIB 00 OSN=IHSVS.RESLIB.OISP=SHR 
IISYSPRWT 00 SYSOUT=SSOUT,DCB=IRECFH=VBA.BLKSIZE=129,LRECL=12S1 
IISYSPU~KH DO U~IIT=SYSDA, SPACE= (80. (800,400), , .RCUHO ) , 
II OC6=IRECFH=FB,LRECL=80,6LKSIZE=400), 
II OISP=(NEW,PASS) 
IISYSLIN 00 UNIT=SYSDA.SPACE=(TRK,(1,1»), 
II OCB=(PECFH=F,BLKSIZE=801, 
II OISP=( t~EI.I. PASS I 
IISYSUTl DO UNIT=SYSDA,oCB=(BLKSIZE=500.RECFH=FB). 
II SPACE= (100. (400.400), •• ROUtm) 
IISYSUT2 DO UNIT=(SYSDA,SEP=SYSUTl).oCB=*.S.SYSUT1. 
II SPACE=(100,(400,400)".ROUNO) 
IISYSIN DO OSN=ND.SYSIN.OD.LSTERISK 
IIC EXEC PGH=IFOXOO,PARH='OBJ,NODECK' ,CONo=(12,LT,S),REGION=128K 
IISYSF"RINT 00 SYSQUT=&SOUT,OC6=6LKSIZE=1089 
IISYSGO 00 U~IIT= (SYSOA, SEP=SYSPRINT ), OISP= ( ,PASS) , 
II SPACE=(80,(4CC.4001",ROUN~). 

II DCB=-.S.SYSPUNCH 
IISYSUTl 00 UtUT=SYSDA. SPACE= (Cn, (5.1) I 
IISYSUT2 00 UtHT=SYSOA. SPACE= (CYL. (5.1) I 
I/SYSUT3 DO Ut~IT= ( SYSDA. SEP= (SYSUTl. SYSUT2 II, 
/1 SPACE=(CYL.(5.1)1 
IISYSIN DO DStl=*. S. SYSPL't~CH. OISP= (OLD, DE LETE ) 
/IL EXEC PG~I=OFS!L~~KO, PARH=' LIST .llE ,OL' ,REGION=llOK ,CONO=( 4, LT ,5 I 
I/STEPLIB 00 05N=IHSVS.HATRIX.OISP=SHR 
IISYSPRINT DO SYSDUT=&SDUT,OCB=(RECFH=F6A,LRECL=1Z1,BLKSIZE=605) 
IISYSLMOD DO DSN=IHSVS.HATRIX,DISP=SHR 
/IH~PUT 00 DStl=*. C. S (SGO, Drsp= (OLD ,DELETE) 
//SYSUTl DO UNIT=(SYSDA,SEP=IHPUTI,SPACE=(CYL,(S,1)) 
/ISYSLIN DO DStl=*. S. Sl'SLIN, OISP= (OLD, DE LETE ) 

MFSRVC PROCEDURE 

II PROC DEVCHAR=O 
//NFSRVC EXEC PGH=oFSUTSAO,REGION=250K,PARH='DEVCHAR=&DEVCHAR' 
1/* 
//* PRINT FILES 
//* 
I/SYSPRINT DO SYSOUT=A 
//* OCB=(RECFN=VBA.LRECL=137) 
IISYSSNAP DO Sl'SOUT=A 
//* DCB=(RECFN=VBA.LRECL=125,BLKSrZE=1632) 
IISYSUoUHP DO SYSOUT=A 
11* 
//* REFERAL LIBRARY 
//* 
IIREFIN 
11* 

DO DSN=INSVS.REFERAL,DISP=OLD 

1/* ON-LINE FORHAT LIBRARY 
11* 
//FORHAT DO DSN=INSVS.FORHAT,DISP=OLO 
1/* 
11* 
/1* 
1/* 
1/* 
11* 
11* 
11* 
11* 

//SYSIN DO * HUST BE SUPPLIED BY 
USER WITH INPUT CONTROL CARD STREAM 

ALL DISP=OLD SPECIFIr.ATIOUS OF THIS 
PROCEDURE ARE REQUIRED ••..•.. 

0000001 
0000002 
0000003 
0000004 
0000005 
0000006 
0000007 
0000008 
0000009 
0000010 
0000011 
0000012 
0000013 
0000014 
0000015 
0000016 
0000017 
0000018 
0000019 
0000020 
0000021 
0000022 
0000023 
0000024 
0000025 
0000026 
0000027 
0000028 
0000029 
0000030 
0000031 
0000032 

0000001 
0000002 
0000003 
0000004 
0000005 
0000006 
0000007 
0000008 
0000009 
0000010 
0000011 
000001Z 
0000013 
0000014 
0000015 
0000016 
OCOC017 
0000018 
0000019 
0000020 
0000021 
0000022 
0000023 
0000024 
0000025 
0000026 
0000027 

Installing I~S/VS 7.'7'7 



MFSUTL PROCEDURE 

II PRoe RGN=360K,SOUT=A,SNOOE=IHSVS, 
II SCR=UOLIB .HBR=NOt1BR ,PXREF=NOXREF, 
II PCOHP=NOCOHP, PSUBS=tIOSUSS, POIAG=NODIAG, 
II COMPR=NOCCHFFE55.COHPR2=COHFRESS, 
II LN=55,SN=S,OEVCHAR=O 
1151 EXEC PGH=OFSUPAAO.REGION=aRGH, 
II PARH="PXREF,'PCOHP,&PSUBS,&FOIAG,&CO~PR, 
II LINECNT=&LN,STOFRC=&SH,OEVCHAR=&OEVCHAR' 
II*SYSLIB - USER OPTION 
IISYSIN 00 DSN=&SNOOE .. &SOR.(&MBR),OISP=SHR 
IIREFIN 00 OSN=IHSVS.REFERAL,OISP=OLO 
IIREFOUT 00 OSU=IHSVS.REFERAL,OISP=OLO 
IIREFRO DO OSN=IHSVS.REFERAL,OISP=OLO 
IISYSTEXT DO OSN=&&TXTPASS,UNIT=SYSOA, 
II SPACE=(CYL,(l,l»,OCB=8LKSIZE=eoo 
IISYSUT3 00 UNIT=SYSoA,SPACE=(CYL,(1.1» 
IISYSUT4 00 UNIT=SYSOA,SPACE=(CYL,(1,l)) 
110L!t~MY 00 OSH=IHSVS. PROCLIS( REFCPy) ,OISP=SHR 
IIUTPRINT 00 SYSOUT=&SOUT 
IISYSPRINT 00 SYSOUT=&SOUT,DCB=(RECFH=FBA.LPECL=133,BLKSIZE=1330) 
IISYSUOUH~ DO SYSOUT=&SOUT 
IISEQ6LKS 00 DSN=&&6LKS,oISP=(NEW,PASS), 
II UNIT=SYSOA,SPACE=(CYL,(l,l) 
1152 EXEC FGH=OFSUNUSO,REGION=gPGN, 
II PARH='&CCHPR2,OEVCHAR=&OEYCHAR', 
II cmI0=(S,LT,S1) 
IISEQSLKS 00 OSN=&gSLKS,OISP=(OLD,OELETE) 
IIUTPRINT 00 SYSOUT=&SOUT,oC6=(RECFH=F8A,LRECL=133,BLKSIZE=1330) 
IISYSUOUHP DO SYSOUT=&SOUT 
IIFORHAT 00 OSN=IHSVS.FCPHAT,OISP=OLO 
I10Ut:m DO OSN=IHSVS.PPOCLI6(FHTCPY),OISP=SHR 
IISYSFRINT 00 SYSOUT=&SOUT 
IISYSUn 00 UIIIT=SYSOA, SPACE=( cn, (1,11 ) 
IISYSUT4 00 UNIT=SYSOA,SPACE=(CYL,(l,l) 
11* 
11* 

0000001 
0000002 
0000003 
0000004 
0000005 
0000006 
0000007 
OOOOOOS 
0000009 
0000010 
0000011 
0000012 
0000013 
0000014 
0000015 
0000016 
0000017 
000001S 
0000019 
0000020 
0000021 
0000022 
0000023 
0000024 
0000025 
000C026 
0000027 
0000028 
0000029 
0000030 
0000031 
0000032 
0000033 
0000034 
0000026 
0000027 

Although this is not an IMS/VS req~irement we recommend that DB-only 
users wishing to upgrade to a DB/DC system re-do the ~ntir~ IMS/VS 
installation, following the steps outlined in the section "INSTALLING 
I~S/VS DB/DC." The only step that should be omitted is the allocation 
and construction of the application libraries DBDLIB, PSBLIB and PGMLIB. 
The sample job stream in IMSVS.PRIMEJOB is constructed in such a way 
that the scratching and allocatinq of these libraries is done in a 
separate job (SAMPI15) which can be omitted wh9n doing the inst~llation. 

The installation of IMS/VS under OS/VS2-MVS is much the same as 
described for OS/VS1 in the first part of this chapter. 

THE INSTALLATION JOBS 

The jobs necessary to install IMS/VS under OS/VS2 MVS are, in general, 
the same as for OS/VS1. The differences. are listed below and/or 
included in IMSVS.PRIMEJOB with a prefix of SMVS. 

The following exceptions/additions apply: 

1. The IMSCTRL macro of the Stag~ definition should specify: 

7.78 

SYSTEM=(VS/2,BATCH,3.7) for a DB installation (I/SAMP!2') 
or 
SYSTEM=(VS/2,ALL,3.7) for a DB/DC installation (//SAMPI22, 
//SAt1PI23) 

IMS/VS Primer 



2. Both VTA~ and the 1MS/VS online control region run as authorized 
subsystems under MVS. You must include the libraries from which 
IMS/VS, V1AM and NeF/VS are loaded and executed in the appropriate 
authorization tahles. Note that you should not concatenate 
1MSVS.RESLIB with unauthorized libraries such as PGMLIB on the 
STEPLIE or JOELIB DO statement of the IMS online control region 
~rocedure, as this will cause the joh step to become unauthorized. 
The Dt/I, MPP, and BMP regions do not require IMS/VS to run as an 
authorized subsystem. 

3. If you choosE to concatEnate IMSVS.RESLIE to SYS1.LINKLIB in 
LNKLSTOO, the node IMSVS may not be used as a CVOL pointer. If you 
wish to use it as a eVCI pointer you should consider renaming the 
RESLIE. In our exam~IE the equivalent cf job //SAMFI01 in the 
OS/VS1 installation, job //SMV5101 builds an IMSVS CVOI pointer 
using Access Method Services. This job requires selectable unit e 
(5U8) to be installed in yeur OS/VS2(MVS) system. If you don't ·have 
sue installed, you cannot build an index structure for node IMSVS in 
the CVOL on 1MSFRM. Instead you should catalog the IMSVS data sets 
in a VSAM catalog. 

4. The resource clean-up module DFSMRCtO must be link-edited into 
5YS1.LPALIB, and the IEAVTR~t CSECT of module IGC0001C in 
SYS1.LPALIB must tE updated. Jobs //SMVSI27 and I/SMVSI33 show an 
examFle of the JCl to do this. The actual CSECT offset is in 
general 00. For mcre details see "Clean-up Routines" in the "CS/VS2 
System Programming library: Supervisor." After this job has been 
executed the system must be re-IPLed with the CLPA option. 

5. The abend formatting module OF5AFMDO must be link-edited into 
SYS1.lPAIIE under the name IGC090SA. See job //5MV5127. 

6. If your MV5 system uses JES2, you must add IMSVS.PROCLIE to the 
concatenation f£r PROCOO in the JES2 reader procedure. A job for 
this update is not provided in our samFle jobs because of the 
critical nature of the JES2 procedure. A JCL error in this 
procedure leaves MVS without any readers. printers, or initiators. 
Another system must be used to correct the error. Therefore, it is 
recommended that this update be performed by the MV5 system 
programmer. 

Certain considerations are involved when concatenating the 
IMSVS.PRCCL1E to the FReCOO OD statement in the JES2 procedure: 

the volume with the named data set must be available at every 
1PL. 

the data set referenced first must have the largest block size 
or a 'DCE=BLKSIZE=' cverride parameter on the DD statement. 
Some procedures generated by IMS/VS system definition reference 
IMSV5.PFCCLIE members as input to the linkage editor, which 
might have a tlocksizE restriction in your installation. 

the named PROCLIB data set must be cataloged on the master 
catalog or must be referenced by the 'UNIT=' and 'VOL=SER=' 
keyword paramEt~rs in its DD statement. If cataloged in the 
master catalog, you cannot use the node name as a CVOL pointer. 

the most elegant solution is to copy the 1M5/V5 procedures to 
SY51.PROCL1B, or tc copy the I"SVS.PFOCLIE under a different 
name to one of the system resident volumes and catalog it in 
the master catalog. 

Installing I"5/V5 7.79 



1. The VTAM storage pool specification on //SAMPI54 should be adapted 
to your installation and VTA~ level. Notice that the recommended 
lOBUF and PPBUF buffersize of 336 must be the same as the UNITSZ= 
value on the HOST macro of the NCP (job //SAMPI61). 

8. The program name on the execution statement of the VTAM start 
procedure should be changed from ISTINA01 to ISTINMOl (job 
//SAMPIS5) • 

9. The program name on the execution statement of the GTF procedure 
should be changed from HHLGTF to AHLGTF (job //SAMPI56). 

10. The UNITSZ value on the HOST macro in job //SAMPI6' must be equal to 
the buffer size of the IOBUY and PPBUF storage pools in job 
//SAMPI54. See also note 1 above. 

1'. Whether or not the IMS/VS CTL region is executed as a system task or 
a problem task is dependent upon its starting as a system task via 
the OS/VS console or its starting as a problem task via JES. 

THE SAMPLE JOBS 

The sample job~ are the same as for OS/VS1. If you don't have SUS 
installed, you must build the generation data groups in the VSAM user 
catalog (job //SAMP009). In addition, all data set names of the 
generation data groups (log and image copy data sets) in the sample jobs 
should use the node IMSPRIME instead of IMSVS. This is due to the 
difference in the VSAM catalog mechanism for ganeration data groups for 
OS/VS1 and OS/VS2 without SU8. 

Executing of the OS/VS 2 MiS sample jobs can be best done by submitting 
them from IMSVS.PRIMEJOB. The following job can be used to read those 
jobs from their job library and submit them to an internal reader: 

//SUBMIT 
//SUEM1T 
/ISTEPl 
//SYSPRINT 
I/SYSIN 
/ISYSUT1 
//SYSUT2 
V 
//SUBMIT 

JOB 
PROe 
EXEC 
DD 
DD 
DD 
DD 
PEND 
EXEC. 

A,'IMS/VS-PRIMER' 
J08=TEMPNAME 
PGM=IEBGENER 
SYSOUT=A 
DUMMY 
DSN=IMSVS.PRIMEJOB(&JOB),DISP=SHR 
SYSQUT=(A,INTRDR) ,DCB=BLKSIZE=80 

SUBMIT,JOB=jobname 

To provide for th~ continuing exapansion of hardware and software 
functions, IBM provides at regular intervals new releases of IMS/VS. 
Befor~ using a new release and/or function, you might want to test them 
in your environment, but isolated from your existing (production) 
system. 

It is recommended ~hat you maintain separate production and test vdrsion 
of the following system libraries: LOAD, GENLIE, DBSOUPCE, OBJDSET, 
PROCLIB, MACLIB, MATRIX, JOBS, and RESLIB. From an application 
development point of view, you might want to maintain s~parat~ versions 
of DBDLIB, PSBLIB, FO~MAT, REFERAL, AND PGMLIB. 

7.80 I~S/VS Primer 



The OS/VS System Modification Program (SMP) is available to IMS/VS users 
as an option. SMP is a facility that allows you to apply program 
temporary fixes (PTFs) or user modifications either selectively or as a 
group to VS, or VS2 or the distribution libraries (DLIBs) associated 
with them. See the Q§L!2 2Y2t~m ~Qgifi£~iiQn f~2g~!m (~~f) ~I~i~m 
f~Qg~!mms~~§ ~Yi~~ for a detailed description of SMP. A sample SMP job 
stream is provided to demonstrate what must be done to maintain your 
IMS/VS libraries using SMP. 

This sample SMP job stream is on file 4 of your Data Base System tape. 
It may require minor changes depending on your system configuration. A 
detailed description of this job stream and its use is included in the 
f£Qg£~m ~~~~£!Q£Y which accompanies the IMS/VS distribution tape. 

When you are installinq a new IMS/VS release, it is recommend~d to 
perform some kind of regression test before you use this new IMS/VS 
release as you production system. The IMS/VS Primer function sample 
jobs, although not explicitly designed for this purpose, can be used as 
an initial test vehicle. When your installation grows, you might 
complement this with a subset of your production jobs and procedures. 

Quite often, initial test cases used during development are also very 
useful for regression testing. Therefore they should be maintained even 
after the application goes into production. 

Installing I"S/VS 1.81 



This chapter discusses the factcrs involved in operating I~S/VS online. 
It shculd be read in conjunction with the IMS/VS Primer operator's 
guides: 

These guides are examples cf a Master !erminal 0Ferator's guide (MTC 
guide) and a Remote Terminal Operator's guide CRTO guide) in either a 
VTAM or ETAM environment. 1be M~O Guide also has a detailed discussion 
of the IMS/VS (and V!APo) commands used in our subset. 

An online system Futs a greateI demand on an oFerations staff than a 
Fure batch system. ie have categorized the extra work into four grcups, 
called !YD~112D!' which are described below. Because each 
crganization's policies and structure will determine how the functions 
will be implemented, we have limited ourselves to a discussion cf the 
characteristics of each. Ecwever, it is im~ortant that these functions 
be recognized and the responsibilities assigned to specific individuals 
in the organizaticn. 

Two of these functions, the Master !erminal Operator and the User 
Liaiscn GrouF, are also discussed in greater detail later in this 
chapter. 

TEE MASTER TERMINAL OPERA!CR FONC!ION 

This fUDction has the responsibility for the operation of the IP.S/VS 
online system, including: 

• Starting and stoPFing thE system and its resources. 

• Displaying system informaticn. 

• Carrying out emergEncy reccvery procedures as outlined by tE and/or 
DC Administration. 

!HE NE!iCR~ CCN!ECI FU~C!IC~ 

This function has the respcDsibilty for the physical maintenance of the 
terminals and associated equipler-t in the netwcrk including: 

• Interfacing with the suppliers of the communication lines and any 
other equiplEnt in the netwcrk. 

• Co-ordinating the installaticn of new terminals and associated 
eguiFlent. 

operations 8.1 



!H! APPLICA!ICN SUPERVISCF FUNCTION 

This function has the res~onsibility fer maintenance of all programs and 
transactions in specific applications. Persons performing this function 
should have a detailed kncwledge of ap~lications, and ideally should be 
involved in the original design and analysis phases for them. This 
responsitility includes: 

4 Handling all ~ueries relating to that application which are routed 
to them by the ~aster Terminal Cperatoror the User Liaison group 
(see telow) • 

• Handling ~roblems such as an application program abend, or a request 
by a remote terminal operator for clarification of a user procedure. 

~HE OSEE lIAISeN FO~CTICN 

This function ~rovides the first pcint of contact for all remote 
terminal operators .ho experience problems with, or who have queries 
about, the online systemft As such, they: 

• Provide assistance in the analysis cf such problems, whether they 
are related to hardware, software, cr a specific application. 

• Route problems or queries which they cannot resolve to the 
a~propriate function: Network Control, Master Terminal O~erator, cr 
Applicaticn Su~erviscI. 

]Q!~: We recommend that the Master ~erminal Operator never be contacted 
directly by remote terminal operators, but that all queries be routed 
through the liaison function. 

As stated earlier, the person assigned to this function is responsible 
for the operation cf the cnline IMS/VS system. We recommend that, 
during anyone shift, one specific operator be designated as the MTO, 
and that he te the cnly ene whe uses the master terminal during that 
period. However you should ensure that more than one person in your 
installation is trained as an M~O te provide backup. 

It is impcrtant that the MTO be familiar with all the operating 
procedures he may be called upon to useu It is also important that 
formal reporting precedures are established, so that he can document any 
problems he encounters. Examples of forms to be used for this purpcse 
are shown in the sample M~O Guide. 

The interface between the M!O and the other functions in the 
crganization must be clearly defined. He should be given a list shewing 
whom he is to ccntact in DC Administraticn, Network Control, User 
Liaisen, and the Application Supervisor groupo 

~HE MAS~EB ~EEMINAI CFEFATCE'S GUIDE 

~his sample guide caD te used easily by an operator. It is also a 
learning tool. It includes only those ~Iocedures used by an ~TC, and 
does net cover Frocedures for error situations to be bandIed ty a 
support group such as DC Administration. The sample guide is designed 
in such a way that it can be easily maintained and extended with 
additional precedures as the network is increased and new applications 
are added. ~his document is not meant to replace the l~~L!~_~~§§gg§§ 
2n~_~Qg!§_~§!~~~£g~_~~]yg!, but it is to be used in conjunction with it. 

8.2 IMS/VS Primer 



MODIFICATIONS TO !HE SAMEtE MTO GUItE 

If you wish to use the sample guide in your installation you will nEed 
to make some modificaticns te tailer it to your own needs. 

The functions described abeve are referenced in the guide with the 
names: DC Administration, Application Supervisor, Network Control, and 
User Liaison. If you do net use these titles in your organization you 
should reFlace them with the appropriate titles. You should alsc file 
with the guidE a list cf the names and telephone numbers of the people 
respcnsible for each function. 

The sample guide is designed for use in an CS/VS1 installation. It 
assumes that yeu are running the IMS/VS centrol region in partition Fl. 
If this is not correct for your installation, you should modify Chart 
E-2, "Initializing the IMS/VS Centrol Eegion." 

~!§_In§~2!1~~~Qn§ 

If you use MlS'in your installation, you will have to modify the chart 
described atove in thE OS/VSl secticn, and also Chart E-7 (OS/VS 
abends). In addition, you have to use bypass label processing (ELF) in 
the IMSLCGE tt statement of the EME restart JCL (//SAMP474) if the EMP 
restart is across a Cll regien restart. !his is because 05/V52 MV5 
restores its volume serial enqueue on the input log tape in the CTl 
region. This can also he avcided by stopping and restarting the CTl 
regicn immediately after the emergency restart, and before the EMF 
restart .. 

!he M!C guide is designed upon the IM5/V5 Primer Function subset as 
defined in Chapter 1, "Intrcduction." As a result, certain IM5/VS 
functions are not included in our MlO guide. This is particularly true 
fer the enhar.ced disk restart. The rationale behind this is that we 
feel that you should first gain experience with leg tape restart before 
using disk r~start. However, once you are familiar with log tape 
restart, we encourage you tc switch to disk restart and adapt your MTC 
guide te that res~ect. 

The sample MTO Guide includes in Chapter 4 tables ~hich describe the 
net~ork in cur sam~le system, and details of the sample Froqra~s, 
transactions and data bases. !hese tables should be changed to reflect 
the configuration of your installation. 

In the sample M!C guide, the operator is told to run certain tatch 
recovery/restart jobs. Figure S-l shovs a table of these jobs, where 
they are referenced, and the corresponding sample jobs in 
IMSVS. PRIMFJOE. 

Operations B.3 



r------------------------------------------------------, , JCE t!SC~IPTION , CHABT I SlePt! , 
,~-~~~~~~~~.-~.~~~-~~.-~~-~----~----~---~--.~-------~-~, 
1 EMF Restart A-1,E-S SAMP474 
, System log ~erminator H-2 SAMP492 
f Log Tape Recovery -- Part 1 H-3 SAMP490 
, Leg Tape Recovery -- Part 2 H-3 SAMP491 
, Change Accumulation 1-1 SAMP481 
I tata Ease Recovery 1-1 SAMP382 
I Batch Backout 1-1 SAMP384 
L------------------------------------------------------~ 
fi9ure B-1. Jcts requirin9 Jet modification 

These charts should be updated to reflect the actual job names used in 
ycur installation, and sbculd include descriptions of any Jct changes 
the operator has to make before running them; for example, bow he 
specifies the log tape serial number. 

We recommend that all these jots be set up and tested before you go into 
production mode. This setup would include preparing restart JeL for ~11 
BMPs, and data base recevery jebs for !11 online data sets. 

~2g_1~~!_Ag!~n!~1~~!!2D 

The sample M!C guide assumes that the method of online lcg tape 
administration described in ChaFter 6: "Recovery," is used in the 
installation. If you use a different scheme, you should modify the 
guide accordingly. 

Chart J-1 of the sample guide is an index to operating procedures for 
applicaticn programs. lou should extend this section to include 
operating procedures for all applicatien programs. 

TESTING THE M!O GUIIE 

Once you have ~repared the eTC guide for your installation, all the 
operators who ~ill be ~aster terminal operators should be given an 
opportunity to faliliarize themselves with it. After that, all the 
Ftccedures in the guide should be thoroughly tested. Even if you use 
the sample guide, yeu sheuld catty out the tests, to ensure that the 
Frocedures ar~ accurate for your environment, and the operatcrs kncw how 
to use them. 

These tests shculd be carried out in a controlled fashion. rc 
Administration in conjunction with the Operations Department should 
prepare a detailed schedule, shewing what tests are to be done, how they 
are to be done, and what procedures in the guide they test. The tests 
should be designed in such a way that all, the operating procedures are 
checked out. All operators should have an op~ortunity to perform all 
tests. In crder to test some of the rEcovery procedures, certain types 
of system failures tave tc te simulated. Figure 8-2 shows a table of 
possible failures, and how they may be simulatEd. 

During the tests, the operators should write down which procedures they 
USE, any deviations tbEY were fcrced to make frcm the standard 
procedures, and any error messages they received that were not 
documented. AftEr the tests have been run, a meeting should be held to 

8.4 I8S/VS Frimer 



discuss the results. Any corrections should be made, and the Frocedures 
re-tested if necessary~ 

After the initial testing ef the guide, the recovery procedures should 
be re-tested en a regular basis, say once a month. This is to ensure 
that the operators remain familiar with the procedures, and that no 
changes need to tE madE. 

MAINTAINING THE K!O GOlDE 

It is vitally important to the successful running of the online system 
that the M!O guide be keFt up to date, and that any errors or oaissions 
in it are correctEd. 

AftEr the initial tests ha,e been completed, a procedure should be set 
up whereby an operator ~ho finds an error can document it to alErt DC 
Administration. !he pregrEss cf the errer correction should be followed 
up on a regular basis. 

As new applications, data bases, or terminals are added to the system, 
the configuration tables in the guide sheuld be updated. The procedures 
should be re-tested and the guide updated if necessary, after a new 
release of IMS/V5 or OS/VS is installed. 

r------------------------------------------------------------, 
SYS!E~ PAIIVEE SI~UIATED EY: 

1. EMF abended or 
cancelled in error 

2. CTL region abended or 
cancelled in error 

3. MfP abended 

4. ~pp looping er in 
wait state 

5. I/O error on log tape 

6. OS/VS error (loof or 
abend) 

7. Ha~dware error, no 
loss of main storage 

USE MIO command 
ISTOP REGION n ABDUMF 

USE OS/VS modify or cancel 
command 

Fun TE4CCNEW in test mode* 
rEply 'ABEND' to D1S3125A 
message 

RUD !E4CONEW in test mode* 
reply 'LCCF' to tFS3125A 
~Essage 

USE a log tape that has 
previously been mutilated 

Unplug/switch off as/iS system 
residence drive 

Unplug/Switch off OS/iS system 
residence drive 

80 Power failure, or Fress System Feset, and re-IPL 
hardware error with 
less of main storage 

l------------------------------------------------------------~ 

* Transaction TEUCONEW in the samFle system includes a testing 
cFtion which can be invoked by entering 'T' in the eNG-FUNe 
field. MessagE DFS~12~A will be issued by the MFP. See the 
IMS/VS Messages and Codes Feference Manual for more details 
on this message and its allcwed replies. 

Figure 8-2. Simulating System Failures. 

Operations 8.5 



E~!sniDg '2~ !~~Ll~ ~!§~ ~!§~!~! 

Once yeu are familiar with the I~S/VS log tape restart operation, you 
should consider iaplementin9 IMS/VS disk restart. The reason we did not 
include it in our subset is that even with disk restart, proper handling 
of log tapes and 109 ta~e restart is essential to a problem-free IMS/VS 
operation. the benefit of disk restart is that it reduces significantly 
restart time ano operatcr tape handling. For more information on disk 
restart, you should refer to the base IMS/VS publications. 

If you implement disk restart, you should at least: 

• Update your MlC procedures 

• IncreasE tbe spaCE allccaticn of the disk restart data set IMSY5.B[S 

Depending on the number of users of the system, and the organization, 
the user liaison group say consist of cnly one Ferson acting as a buffer 
bet~een the remote terminal operators and the MTO or it may consist of a 
number of people, who resolve most user queries themselves. 

People performin9 this function should have a good knowledge of terminal 
operating procedures, and a broad overview of all the applicaticns. 
They should normally be able te dia9nose a user's problem to the extent 
of knewing whether to route the/ query to the MTO, Network Centrol, cr 
the appropriatE Applicaticn SUFervisor. In a large installation, 
members of this group mi9ht bave their own terminals, and be authorized 
to use a subset of the master terminal commands, such as START, SlOP, 
£ISPLAY, and ASSIGN. 

The success of an online system depends largely on its acceptance by the 
users. 70 make it acceptable to these people, you must provide good 
training and documentaticn, sc that their interface to the system is as 
smcoth as possible. The term "Remote Terminal Operator" or "RTO" is 
used to describe users of the online system, who may be ope~atin9 lccal 
or remote terminals. ThE wcrd "remote" is used to distinguish them from 
the ~aster Terminal Operator. 

TRAINING EEM01E TIE~INAI CEIEATCES 

Generally, an RtO Guide, no latter how ccmprehensive, is not sufficient 
tc train Dew terminal operators who may not be familiar with computer 
concepts, and, in some cases, may not know the application either. We 
recommend that, as terminals are installed in de~artments for the first 
time, a training team be sent to provide initial user education. 

!his team shculd consist of a person, or persons, who can give an 
introductory talk en ccm~utels, who know how to operate the terminals, 
and who understand the applications and the transactions that will ce 
used in that department. 1his team should remain in close contact with 
these users until their initial problems have been overcome. 

A training program should also CE set up within the department, so that 
new users can te trainEe ty those already familiar with the system. 
This training Erogram should be formalized to ensure that the education 
is done thorou9hly. It may be possible to set up dummy data base 
records on which terminal operators can practise. If this is the case, 

8.6 IMS/VS Primer 



the procedures for them tc aCCESS these reccrds sheuld be documented in 
a training g~ide. 

THE BTO GUIIE 

This document sho~ld be supplied to all terminal users. The manual 
entitled ~~~L!~_f'i!!!_E!~~~!_!!~~i~!!_~E~~~!2~!§_§yig~ is a sa.ple of 
such a guide. ~he aim of this document is to provide a guide to using 
the online I~S/VS s~stE. fer a terminal user who is unfamiliar with 
computers. However. it is not intended to be a self-sufficient 
education document for such a user, although it could be used as part of 
a training Frogram. 

MODIFIC11IONS ~o ~HE SA~~lE FTC GUIDE 

If you wish to use this saD~le guide in your installation, you viII 
Frobably need to make some modifications to suit your environment. 

l~~~!j9~gl_Ii~1~~ 

The guidE refers to the function HOser Liaison" as the contact point for 
any freblems. If you de not use this title in your organizatien you 
should replace the references with the apFropriate name. 1 list of the 
names and telephcne numbers of people in the Oser Liais~n group should 
be filed with the guidee 

Y§~_Q!_i~~_~~~§~t 

The guide refers to the fact that a subset of IMS/VS is being used. It 
is assumed that the standards we have reccmmended for screen design have 
been adopted. If you do not follow these standards, the guide should be 
changed accordingly. 

If you do not USE convErsatienal transactions in ycur system, you may 
wish to delete the references in the sample guide. This includes the 
description of conversaticnal transactions in Chapter 1 and the 
operating proced~res for conversational processing in Chapter 3. 

I!.mln!1_Q~iI~1i~g_f~2~§gy.§§ 

In Chapter 2 of the salFle R~O guide, the operator is told to ask the 
sUFerviscr fer a copy of the IE! manual, ~E!~!~2~~§_gq~g!_~2'_1~H_i~1Q 
Int2!!!!i2n_~i!R~!1_~1§!!m§, GA21-2i42. You may wish tQ select froa 
this manual the apprepriate sections for the type of terminal and 
keyboard being used, and include them in the guide itself. 

!~£~i£~!iQn_~E~~~!ing_!'2~~gy~!~ 

ChaFter 5 of the guide describes the operating procedures for the sal:Fle 
programs. You should extend this section tc include the operating 
Frocedures fer the transactions used in your installation. We suggest 
that each terminal user be given cnly the procedures for the 
transactions that she/he is,autborized to use. If possible, you should 
include ~ith the operating procedures samples of the screen layouts. 
These can be proouced ty using the copy feature on a remote 3211 screen 

Operations E.1 



if you have one in your installation, or by using the output of the MFS 
generation. 

fIf~1~!_~§E2I!~ng_fI2£§gYI~§ 

In Chapter 4 of the sample BTC guide, the operator is told to ask the 
supervisor for a copy ef the IBM manual, i~~_J~1Q_!Q~_~~_f~Q~!~~ 
~~~~~!!Ug~!Qn_~gig§£ GA27-27S0, if the operator susp,cts that there is a 
hardware problem on the terminal. You may wish to select the
appropriate sections of this manual for the type of terminal in use, and
include them in the guide.

Chapter 4 alse descrites the procedure to be used if the user bas a
problem. GenErally they are told te ask the supervisor to contact the
user liaisen group if they cannot overcome the problem themselves.
Depending on ycur oIganization, you may ~ish to redefine the problem
reporting procedure. However where many users are physically lecated
close to each ether, one peIscn should be designated as the interface to
the user liaisen group. This is to avoid the possibility of all users
of the system trying to contact user liaison simultaneously after a
total system failure.

A supervisor requires additional information that is not in the sample
RTC guide. All superviscrs should be given operating instructions for
any additional equipment, such as datasets or modems. Depending on
their location, and the organization of the company, they may need to
kno~ how to call for IBM Custcmer Engineering support and any other
suppliers invelved in case of hardware errors.

MAIN!AINING !HE B!C GUltE

In order to achieve and maintain an acceptance of the online system by
the users, the R!O Guide must be accurate and up to date. This implies
that any errors in the guide reported by the users should be carEfully
investigated aDO corrected in gll ccpies of the guide. If a new release
of 185/VS is installed, the guide should be thoroughly checked,
especially the secticn en IHS/VS error messages.

V!AM AND IMS/VS CFEEATICN

In our subset we consider the VTAM operation as an integral part of the
IMS/VS cperations. This implies that the M~O is also responsible for
the V~AM cperation. This assumption might not be valid for your cv~
installation. Especially if multiple subsystems are using VTAM, you may
prefer to assign the V!AM operation to the CS/VS system console
operation or tc a s~ecial VTAM operaticn group. In that caSE, you
should adapt this c~aFter and the operating guides to your o~n
environment. In any case, proper communication procedures tetween VTAM
and IMS/VS operations must ce Established.

S.8 IMS/VS Frimer

In this chapter VE viII ~rEsent basic guidelines for the monitoring and
optimizing of leS/VS applications. The optimization we are concerned
about is the performance o~timization, that is, the optimal use of
ccmFuter resources.

This chapter consists cf tvc Farts. Part 1 deals ~ith the optimization
of IMS/VS batch applicatiens.Part 2 covers the optimization of the
cnline I!S/VS system.

There are numerous areas fer optiaization of batch applications using
185/VS. 1he most impo~tant areas are:

• Data case structurE, that is, data base design optimization.

• Physical data SEt attritutEs, that is, data set location and
internal storage utili2ation.

• Data base usage by the application programs, that is, DL/I call
seqUEnCES.

The first part of this chapter briefly addresses the above three areas.
But before dcing so, we ~ill take a closer look at the available tools
for performancE mcnitoriDq.

The ultimate measure of performance is cost. !his includes manpower and
system cost. ie will consider only the system cost. The most important
performance factors for DL/I aFFlications are the number of physical
IIOs and number of DL/I calls per transaction. tL/I provides t~o
facilities to mODitor theSE:

• The DL/I buffer pool statistics

• !he DB monitor

In accition, the stancard CS/VS facilities such as SMF, GTF, etc., are
eften very useful.

DL/I maintains statistics cr. the use of its VSl! and OSA~ buffer pools.
!hese statistics can be obtained by your application program via the
STAT call, as is aone ty sutrcutine DFSOAS! in I!SVS.PRlftESRC. This is
normally done at the end of each ttlI application program. Fer mOre
details on tPS01S7 and its use, see "The Stat Call" in Chapter 4~ For a
description of the VSAM and OSA8 buffer Fools, see "DL/I Data Ease
Buffering Facilities" in Chapter 7.

Optimization 9. 1

THE VSAM EOFFES POOl STATISTICS

For each VSAM subpocl. DFSOAST prints 4 lines: 3 heading lines and the
statistics. ihe format of the data is:

B 0 F FER H A ti D lEE S ~ A TIS TIC S
ESIZ NEUl RET REA RET REY ISBT ES IS RT KS BlB ALT EGWRT SYN PTS
Illink nnn. nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn nnnnnnn

V 5 A M S 'I A 'I I S '! I C S
GE'IS SCHEFR FCU!t EEADS USR WTS NUR WTS ERRORS

nnnnnnn nnnnnnn nnnnnnIl nnnIlnnn nnnnllnn nnnnnnn nn/nn

BSIZ =

NBUF =

RET REA =

RET KEY =
ISET ES =
ISR'! KS =
EFR ALT =
EGW BT =

SYN PTS =

GETS =

SCHEIB =
FOUND =
BEAtS =

USR WTS =
NUB W'IS =
ERRORS =

the size of the buffers in this sub pool.
In final total, this is the total size of all
sUl::~CClE.
the number of buffers in this subpool.
In final total this is the tctal number of buffers
in all sub pools.
the numter cf retrieve by RBA calls received by the
buffer handler
the numter cf retrieve by key calls received by the
buffer handler
the numl::er cf lcgical records inserted into ESDSs
the number of logical records inserted into KSDSs
the numl::er cf lC9ical records altered in this
subpool
the numter cf times the Background ~rite function was
invoked by the tuffer handler
the numter cf synchrcnizaticn calls received by the
buffer handler
thE numter cf VSAM GE'I calls issued by the
buffer handler
the numl::er cf VSAM SCHBFR calls issued by the
buffer handler
thE numter cf times VSAM found the control interval
requested already in the subpool
the numter of times VSAM read a control interval from
external storage
the numter cf VSAM writes initiated by IMS/VS
the number of VSAM writes initiated in order to make
space in the subpccl
the number of write error tuffers currently in the
sutpocl/the lar9Est number cf write errors in the
subpool during this execution

Following are guidelines to the interpretation of the most i«~ortant
fiElds:

• Normally. :C~ - 90' of the buffer handler requests (EET FEA + EET
KEY) would be satisfied from the pool (FOUND). This parameter can
be used to initially cptimize the ~col size.

• The number of 1105 (READS + USR W1S + NOR iiS) should be related to
the number cf t~ansactions processed by the job. An increase in
this during producticn could be a signal for reorganization.

• EERORS should be zero. If not, insure the data base is recovered.
See Chapter 6, "Data Ease Eecovery."

9.2 IMS/VS Primer

THE OSAM EUfFER POOL S1'11S'lCS

If an CS'~ data base used by the program, tiSOAST will also print the
OSA~ tuffer pool statisticso

The format of the data is as fcllows:

BLOCK FOUND READS
REO IN FOCl ISSOEt

BUFF OSAM BLOCKS NEW CHAIN
AITS WRITES WRITTEN BLOCKS WBI!ES

nnnnnnn nnnnnnn ~DnnD DnnnnDn nnnnnnn nnnnnnn nnnnn nnnnn

PURGE RE1EA SE BE 1 ISA~ lSI!!
EEC. FEe. EY KEY

WRITTEN LOGICAL
AS NEW Cll pr.,
nnnnnDD nnnnnnn nnDnnntl nnnnnnn nnnnn

GT NIT SETLS ERRORS
nnnnn nnnnn nn/nn

BLOCK REQ =
FCUND I~ FCCI =
BEADS ISSUED =
EUIl ALTS =
OSAM ~FI1ES =
BLOCKS WR~T!EN =
NEW BlCCKS =
CHAIN WRI1ES =
WRITTEN AS NEW =
lCGICAI Cll F~T =
FURGE REQ. =
RELEASE REQ. =
RET EY KEY =
ISAM G' NXT =
ISA~ SE1LS =

ERBORS =

number of block requests received
numter of times the block requested was
fcund in the buffer pool
number of eSAM reads issued
DUlter of buffers altered in the pool
number of CSAM writes issued
numter of blocks written from the pool
number of new blocks created in the pocl
number of chained CSAM writes issued
numter of blocks ~ritten on OSA!! chains
number of logical cylinder formats
nurter cf buffer purge requests
number of buffer release requests
nUlter of ISAM recoIds retrieved by key
number of IS1M get next calls received ty
the tuffer handler
number of ISAM SITLs issued by the tuffer
hanalEr
number of write error buffers currently
in the Fool/the largest Dumber of errors
in the pool during this execution

!2i§: Eecause I5AM is nEver used in our subset, its corresponding
statistics should all te zero.

Following are guidelines tc iDterFreting the most important fields:

• Normally, 5C~ - 901 of the blcck requests received (EICCR FEe) would
be served frem the pool (FCUND ~N FOOL)~ Also notice that, cn tbe
average, multiple tlcck IEquests are required for a single DL/I
call. This parameter can be used to optimize the buffer pool size
for the job.

• The number of OSAM reads !READ5 ISSUED) and 05AM WRlTES should be
related to the Dumker of transacticns Frocessed by the job. An
increase in these during production could be a signal "for
reorganizaticn.

• ERRORS should be zero. If not, insure that the data base is
recovered. See Chapter 6, "Data Base Recovery."

The IMS/VS DB monitor is a tool for collecting performance data to
investigate specific a~plicaticn designs. data base designs, and
rescurce allccations. It consists of a monitor module and a mcnitor
report print program. ihen activated, it analyzes and records the
internal activities of the IHS/VS-DB system. the monitor report print

Optimization 9.3

program is processed offline tc Froduce reports that summarize and
categorize, at various lEvels of detail, the information recorded by the
mcnitcI mcdule.

!he monitor module collects data from IMS/VS control blocks during
cFeration of the batch syste. (with minimum interference to the system)
and records the data either on an independent data set or on the IMS
log. The monitor remains resident in the partition/region, and is
activated and deactivated through the system console.

!he following are reccmmEndaticns for use of the DB monitor:

• collecting data -- the DB Monitor enables an IMS/VS user to collect
performance data to assist in ana112in9 an existing IP.S/VS batch
system. Eeports produced from profiles of a hatch execution
considered as ncrlal can be us~d as a profile and compared with
IeFoIts pIoduced during a batch execution with unusual performance
characteristics.

• Tuning system -- the DB Monitor can be used to quantify the effect
of actual changes to data base structures, program ct.aracteristics,
data set place.ent and Fool sizes.

• Testing a~plication -- in the final testing of new or revised
aFFlications, the tE ~onitor can be useful in validating the
internal operation of the programs and data bases. For example,
assume the prcgrammer thought a specific Dt/I call could be
satisfied with a single I/O retrieval, yet the 01/1 call report
indicated a large data base scan as shown by many IWAITs.
Investigaticn of such items could assist in determining whether a
new or revised application meets the performance objectives. Data
contained in the reports may also assist in defining the resources
required by an applicaticn Frogram.

OSING THE IMS/VS DB MONItOR

The DE monitor formats and records performance-related data during the
execution of the IHS/VS batch system. The DB monitor can be active
during the entire execution cf the IMS/VS batch job or it can be started
and stoFped from the system console. Typically, activating the DB
Monitor for 15 to ~c minutes is sufficient to collect representative
data.

!£!i!!!!2~_~~g_~2n!~Q!

Including the parameter P.CN=Y in the PAEM parameter of the JCt execute
statement in the tatch Erccedure makes the DB monitor active when batch
system execution begins.. (See "The DLIBATCH Procedure" in Chapter 7,
"Installing IMS/VS.")

"DF52216A MONI'IOR AC'IIVE, MODIFY 'IO S'ICP MCNITOE" prints on the system
console whenever the tE monitor is initialized or started. To stop and
restart the DB monitor, the system console operator can, at any time,
enter~

HCDIFY jotname,STCP (cr F jobname,STOP)

"DF522151 MONITOR INACtIVE, MODIFY TO STAET MONITOR" prints on the
system console ~hen the I~S/VS DB monitor receives and acts upon the
modify command.

To reactivate the DE monitor, the console operator enters:

MCOIFY jobname,STAET (or F jotname,START)

"OFS2216A KONI10R ACTIVE, ~CDIFY TC 5TCP MONITOR" prints on the console
and indicates that the modify ccmmand was accepted.

i~ ~2~!lQ~_]!1!_E!SQ~~jng

The data produced by the DB Icnitor is reccrded on either the I~5/V5
systeu lcg or on a separate DE .onitor log. The presence or absence of
a tt card named //IM5MON in the batch procedure determines which log is
used. If a //IMSMCN Dt card is included (and does not specify DUMMY),
it specifies a sE~arate DB .cDitcr log on which the DB monitor records
are to be written. If there is no /IIMSMCN DD card (or if the //IMSMCN
OD card specifies DUMMY), the DE monitor records are written on the
IM5/V5 system log.

When a separate IE monitor log is used, the system console operator may
want tc force an end-of-volume when stopping the monitcr from the
console. The modify ccmmand can be used tc accomplish this.

MODIFY jcbname,STOPEOV (or F jobname,STOPEOV)

If, fcr any reason, the tE monitor log data set specified on the
//IMSMON Dt card cannot be c{ened, the message "DF52217I UNABLE TC CFEN
MONLOG, MONITeR UNAVAIlAElE" is displayed on the system console. The
tatch execution ccntin~es, tut the DB monitcr is inactive.

If I/O errors are encountered on the DB monitor log device, the message
"OFS2219I IIC ERECE eN ~ONITCR lCG, MONITOE TERMINATID" is dis~layed on
the systEm consolE. The tatch executicn ccntinues, but the DB monitor
is inactiveo

Note: When STCFFCV is USEd, Execution of the batch region does not
continue until thE succeeding CS/VS mount message is satisfied.

~QQ!rX_~Q!!~Bg_~II2;§

If the jobname is entered incorrectly when entering the MODIFY command,
an OS mEssage infcrms the C{E4atcr cf the err04. If some other error is
made vhile ente4ing the modify command, the message "DF52218I MONITOR
MODIFY SPECIFICA110N INCORRECT" is displayed on the system console,
follcved by either tFS~215A or DFS2216A (described above).

DB MONITOR REPOR~ PRINT PROGRAM, OFSUTR30

The DB Mcnitc4 Refort Frint program (DFSUTR30) is an offline utility
that organiZES, formats and {rints performance related data collected by
the [f Monitor during EXEcutic~ cf a IMS/VS batch job. The reports
~4inted by this F40gram are:

• Statistics from the VSA! and CSAM Fools

• Program I/O

• DL/I Call Summary

• VSAM Statistics

• DE Mcnitor Overhead

Optimization 9.5

Note: 7he DlSOtB30 program is dependent upon the data records on the
data SEt ~roduced ty thE DE Monitor. Records of various events are
ex~ected in pairs -- a start-event record and an end-event record;
events are not counted and reported unless both are received.

Q!~i~!~!Q~_Q~_I~!!§_2§~g_!~_~~!_]~E2!t2

1he following arE eJplanations of key terms used in the .reports tc
descrite activities or sub tasks in the IMS/VS partition/region.

!LAPS!t TIME: 7ime reccrded by the time of day clock, from the start of
the activity or subtask until the end of the activity or suttaskq

IWAlt: A wait for an IIC or another resource which occurred during the
procEssing of a tL/l call.

IWAIT TI~E: Elapsed time, during which an IM5/VS subtask was inactive,
waiting for a resource or the completion of an EVEnt. An exception to
this definition occurs when thE IWAI7 time is related to VSAP. activity~
In this case, the I~AIT time is defined as the elapsed time tetween the
entry to and the exit frcm the VSAM routines. During this VSA~ time, an
llC access and wait mayor may not have occurred.

NO~ IWAl7 (ELAPSED TIME -- IWAlT TIME): Elapsed time minus all lWAlt
time identifiEd for the suttask or activity. It includes any time spent
by OS/VS, or by any other higher priority tasks running in the systems
when the IMS/V5 region was interrupted and dispatchable, and when the
subtask to which the CPU time refers had been eXEcuting at thE time cf
the interrupt. Note that this may approximate total CPU time if the
IM5/VS-DB region is the high priority task and if no low priority tasks
are causing interrupts.

CPUTIKE: Actual CPU time used by an application program.

SCHEDULE 70 157 DL/I CAll: Elapsed time accumulated for the follcwing
acticns to occur: the region to gain control after teing scheduled,
plus the program either tc te located in the region by contents
supervision of as/vs, or to be brought in by program load, plus the
program to issue the first DL/I call.

ELAPSED EXECU~lON tIME: Elapsed time from IMS/VS dispatch of the first
DIll call by a program until the IMS/VS termination ef that program.

MAXIMUM tIME: LongEst single time duration noted for an event.

TOTAL TIKE: Sum of all the time durations noted for a group of events.

MEAN TIME: Quotient of the tctal time (above) divided by the number of
cccurrences of a certain event.

ISR7 KStS: A count cf the roet segments inserted into a SHISAM data
base or index data tase. (~his count shculd not be confused with the
ISE~ totals in the tl/1 summary report.)

ISB7 ESDS: The number cf times the insertion of a root or dEpEndent
segment rEquired a new lcgical tecord fot the new segment (SHISAM,
HlDAM). (This count should not be confused with the ISRT totals in the
~L/I call summary report.)

]2!§: All the abOVE tises are 9iven in microseconds.

9.6 IKS/VS Primer

H~!_!~_~1~£!!~_!h!_~]_~2ni~2I_R!22~~_~tini_it29[!!

Job //SIMP293 in IMSVS.PRIMEJOB shcws the Jel to execute the tE P.onitor
Repcrt Print Program, tFSUTB30~ The ANALYSIS CD statement should
specify DUftMY,DCE=BLKSIZE=eC in our subset.

This job prints the monitor output collected during execution of the
customer order processing program with job //SAftP272.

The output, which is listed in Chapter 3 of thel~~L!~ f~i!~~ ~!!]1~
Li~1i~g~, will te referred tc in the follo~ing discussion of the various
generated reFcrts.

These summary reForts are fcrmattEd disFlays of the contents of selEcted
statistics of the eSAM buffer pool and VSAM buffer subpool(s) that were
collected for batch activity over the entire run of the DE ~onitor.

The Fccl ending valUES and the difference between starting and ending
values cannot be computed for these summary reports unless there arE
pool ending statistics on thE trace tape. The OSA~ buffer pool ending
values are recorded only if the DE monitor is endEd before the IMS/VS
batch jot is terlinated.

The following messagE is printEd if the summary reports are not printed:

NO DATA EASE EOFFER DATA 11 END 1I~E ON MCNI1CB lOG TAEE:
•••• DATA BASE EVilER ~CCI CA~CELLED ••••

The VSAM Euffer Sutpocl SUI~ary rEport is nct produced if the VSAM
facility is not invoked through the IMS/VS system definition or if the
ending values are not ~ritten on the trace tape. In either instancE,
the following infcrmaticn mEssage is printed:

NO VSAM EUFflR POOL !RACES ON ~ONI!OR leG TAFE:
••• *VSAM fUlFES FCCI FEFCBT CANCELLEt •• *.

For an example of these statistics, see the sample output (pages 1,2 and
3) cf job /ISAMP~S3 in ChaFter 3 of the !]lL]~ R;i!iI ~!~El~ li~!iag2.
For a descriFtion of these statistics, refer to the previous SEction
"DL/I fuffEr Fool Statistics."

This is a summary report of the total and mEan IWAIT intervals rEccrdEd
for I/O IWAITs causEd ty DL/I calls by the Frogram during the trace~

The data is arranged tJ PCB name, ddname, and module identification of
the ~cdule that liAITed. The data under the column heading "IWAITS"
indicates the nUKber cf times that DL/I calls for the associated PCE
were required to wait for IIC activity to complete. The data set for
which thE I/O tock plaCE is i~dicated by the ddname. Entries under the
heading "Module" are atbreviated identifications for IMS/VS-DE modules.
~he crcss-reference is:

DEE
DLE
VEH

FCB subtotals and a katch tctal arE provided.

DFSDEf.RO
DFSDDLEO
DPSDVSKO

Optimization 9.7

For an example of this report, see the sample output (page 4) of job
//SAMP293, in ChaptEr 3 cf the l~~L!~ Rri!!! ~!~R!! bi§li~g§.

~he two main effects to te noted from this report are:

• If the nu_ber of IWAITS Eer transaction increases, it may tE
necessary tc recrganizE the data set in question.

• If two or more data sets with high activity are on the same disk
drive, there may be a contention problem.

Q~L!_£~!!_~Ym!~~1_~~2Q~~

~his is a comEact till call summary report for the trace. All OL/I
calls issued ty the prcgram during the trace are arranged as follows:

• PCB name.

• Fer each FCE, the call function employed.

• For each call function, the segment accessed and its level number.

• For each SEgment, the rEturn cede cttained.

For each line in this reFcrt, the number of OL/I calls recorded, the
IWAITs per call, and both the average and maximum elapsed time and
Not-IWAlt times are given. A batch total of DL/I calls is EIovided at
the End of the rEpcrt.

Fer an example of this report, see the sample (page 5) output of job
IISAMP293 in Chapter 3 of the l~§l!§ R~il!~ ~~!El~ QY~EYI Li~!i»~§. the
column entries, from left to right, are:

•

•
•

•
•
•

•
•

•

PCB NAME

CALL FUNC.

LEV NO.

SEGMENt

STAT CODE

DL/I CALLS

IWAITS

IWAITS/CALL

ELAPSEt TIKE
or Not IWIIT

the 8-character FCE name.

the 4-character OLl1 call function.

1he data base level number reached in this call, or
blank¥

the 8-character segment name accessed by this call.

1hE status cede returned by this call.

1he number of calls neted having the unique
combination of the atove five attributes.

the ~omber of I/O WAITs observed for the calls.

Quotient of the above two items.

For an Explanation of these terms, see
"Definition of Terms Used in Reports" earlier in this
chaFtEr.

The main effects to be noted from this report are:

• If the number of IWAITs per CL/I call incrEases, this may signal thE
requirement for data base reorganization.

• 1 relatively high number of IWAI!S per DL/I call may indicate a
small data base CI/blocksize, or buffer pools that are too slall.

• Unnecessary calls issued by the application program can be traced by
checking the report with the Frogram specifications and detailed
flew ..

• Calls with very high liA1T ccunts may indicate insufficiently
qualified calls, which result in data base scans.

B£l~: Frequent IiAI~s with a very long elapsed time may be a result
of excessive paging or frequent de-activations. This should be
discussed with the CS/VS system programmer.

!~!~_~1!li§!i~~_!!E2I~

This report (page 6) Frovides statistics on a per call basis for changes
in up to 13 selected subpool statistics between the start and end of
VSAM activity. ~he statistics reForted are:

RET RBA

~E~ KEY

1SRT ES

ISR1 KS

BFR AL~

EKG ~'1S

SYN PTS

GE'IS

SCHBFR

lCUND

READS

USB iTS

NUB iTS

Number of retrieves by RBA calls received by the
buffer handler ..

Numcer cf retrieves by key calls received by the
tuffer bandler.

Number of logical records inserted into ESDSs.

Number of logical records inserted into KSDSs.

Number of logical records altered.

NumtEr. cf times backgrcund write function invoked.

Numter cf synchrcnization calls recei ved by the
buffer handler ..

Numter cf VSAM GET calls issued by the tuffer
handler.

Number of VSAM SCHFR calls issued by the buffer
handler ..

Numter of tiles VSAM found the control interval
requested vas already in the subpool.

Number of times VSAM read a control interval fro;
external stcrage.

Numter cf VSAM writes initiated by IMS/VS.

Numter of VSAM writes initiated in the subpool.

The report contains a set of the above statistics for each combination
of PCB, call function and ddname detected in the trace. An occurrence
count is printed. Each set cf statistics is a summation of the changes
in all subpocls divided by the number of occurrences. Summary lines
show totals for each PCB, fer each ddname under the PCE. and for the
cOII~lete trace.

~~ ~~~i!2~_Q!~Ih~~g_E~EQI!

~his report ,page 7) provides the total elapsed time during which the DB
Monitor vas active and thE tctal of the time intervals between entry to
and exit from the DE Monitor module. The report also includes the

Optimization 9.9

number of DE ~cDitcr reccrds that vere written and the average DB
Mcnitor time per entry.

Eecause the data base design optimization should be started before the
physical implementation, the previously discussed tools are not
applicatlEe Instead, we will introduce a simple paper and pencil
technique to evaluate alternate designs. This technique viII
concentrate on the number cf ~hysical I/Cs, and the number and
cOK~lexity of DL/I calls per transaction. This is because, as stated
before, these two facters are the most important performance factors for
data base processing.

DA~A BASE lOAt FACTCES FEB TEANSACTICN

For all transactions, data base load factors can be established. A
transaction lead factor reprEsents-the-CPU-pover needed for the
~rccessing of that farticular transaction. It is a relative factor, not
an absolute one. Its sole role is to provide a Bg~~ !2I fB!f~Ij§2D
tetveen alternative designs.

]Qt!: If morE accuratE pErformance prediction in the design phase is
reguired. then design tools such as DBEBC!OTYPE/VS should be considered.

I~A~§!f!1~n_~2ad_l!S~Sl_~~i!§

The tatle in Figure 9-1 gives basic estimates ef transaction load factor
units for DL/l calls or data base I/O.

,
CC~ECNENT I UNITS , , ,

1---,------------1 , , ,
, A G (J CALL 1 1. 1 1
, A GN CALL , .9! ,
, A R!PL CALL 1 .5 ,
, A I S E 'I C A l't , 1. 7 ,
, A DL! 'I C AtL , 1.8 ,
, BE'! B I EVE C FeN! S! G ~ E NT , .. 5 ,
I INSER~ OF ONE SEGMENT , 2.4 ,
1 REPlACE OF CNE SEG!ENT ,'.6,
I tELE~i OF ONE SEG!EN! I 2. 1 ,
I A DA~A BASE IIC ,5,
I , ,

Figure 9-1. 'transacticn Lead Factor Units

'the following consideraticns a~fly:

• A single IL/l call can incur multifle segment accesses, that is, to
fcllo~ a t~in chain.

• If HDA~, each access of a synonym on the anchor pcint chain is cne
. segment retrieve.

• If HIDAM, the access of the primary index data base should be
counted as one additional segment access.

9.10 IMS/VS Frimer

• For replacE, insert and delete each segment occurrence to be
~rocessed must be counted separately.

~!!!£1~

As an exam~le ve use the logical CUSTOMER OEDERS data base (Figure
2-26). A GU call, for instancE, to the third SE20PABT occurrence for a
given custcmer erder would cost:

Segment accesses:

I/Os:

Ynir.l.§

GU call 1.1
Eetrieve of index ~ointer segment .5
REtrieve of root segment .5
Betrieve of first, second + third CEt!E LIN!
SEgment 1.5
Retrieve of logical parent, FAET segment L2

KSDS index component
KStS data ccm~one~t
ESDS for root segment + dependents
ESts of logical parent

subtotal

subtotal

gross total

4. 1

5
5
5
2

20

AssumFtions:

1. !he OBtEE LINE seg.ents are in the same CI as their root.

24. 1

2. None of the requested CIs is in the buffer pool. Quite often thE
I/O for the index component is not necessary. Also, for the get
next call, lost retrieves are satisfied from the pool.

Cnce again, it shculd tE reali2Ed that the above method gives only a
rough estimate of the ccst cf a particular call. Its main use is to
evaluate Fossible alternative designs.

DATA BASE DESIGN CHECKlIST

The following checklist giVES an cverview cf the mcst important
considerations/guidelines for data base design optimization. These
considerations/guidelines are oriented to~ards performance. SometiDEs,
they will contradict aFFlicaticn requirements. In such cases, a
com~Icmise must be made based on a cost/function analysis.

• Use a structure no more complex than necessary.

• Keep freguently accessed segments near the top and to the left cf
the hierarchy.

• Avoid widely varying segment sizes for volatile segments in the same
data space.

Optimization 9.11

• Check the requirement fer any segment type whose relative frequency
under its parent is ene, or whose prefix length is greater than or
equal to its data length.

• Oversegmentaticn results in many Ot/I calls and longer
reorgani2ation times.

• Undersegmentation results in less security and less data
independence.

• Avoid movement cf data from one data base to another.

• Avoid secendary indExing on highly vela tile source segments.

• Use secondary indexing fer alternate entry, not sequential
processing.

• If logical relationshiFs exist, place the real logical cbild so that
the ~hysical path is the mcst active path~ Also consider placing
the real logical child on the longest twin chain.

• SequEncing of the legical twin chain is expensive on insert and
delete prccessir.g.

• Avoid long twin chains, particularly logical twin chains.

Eecause OL/I data tases are stered in CS/VS data sets and/or VSA~ data
spaces, the ncrmal performance guidelines for these apply. In addition,
the following consideratiens/guidelines should be observed.

• Keep segments tc he accessed in the same block as the entry segment.

• Use HDAM ~henever possible.

• Process HtAM data bases sequentially by inserting the randomizing
routine into a scrt Exit and sorting into a root anchor point
seguence.

• GN processing at the root level in HIAM proceeds in physical roct
anchor pcint sequence with synonyms maintained in logical key
sequence off their root anchor point.

• If root key sequencE is required in HtAM, consider a seccndary index
(for limited use) or a randomizing routine which assigns root anchor
pcint addresses in key sequence.

• !he expected lIes required to access a HDAM root with a general
randomizing module, is tetween 1.1 and 1.2 if the number of roots
per block is 5 or more and the block and the RAP densities are less
than eo,.

• Dc not specify twin tackward pointers for HDAM roots.

• Specify P!S=TE or none (~T) for the HIDA! root segment. GN
processing at the rcct level in HIDA" proceeds along the physical
twin chain if ~B has teED specified, or via the index if not. Note
that a GN root ~ith key qualification always proceeds via the index
if the call cannot te satisfied at the current position.

• Specify!E pointers cn segments to be deleted to improve delete
performance for long twin chains (that is, more than 3 to 5). This
is particularly impcrtant for the logical child segment.

9. 12 IMS/VS PrimEr

• Specify LCL in the logical parent and LTE in the logical child if,
on averagE. there arE lere than 2 logical children per logical
Farent.

• no not define a sequence field for the virtual logical child, unless
really needed.

• Check reFort from data base unload to identify long twin chains.

• For insert activity against a HIDAM data base, specify free space in
the tEte

4 The HIDAM primary index should be reorganized frequently to minimize
I/C and regain space from deleted entries.

• Leave sufficient free sFace for anticipated inserts prier tc
reorganization.

• Ht free space within the bleck should be large enough for the
largest segment tYFe.

• When defining KSDS data sets, select the IMBEt and replicate options
and provide freE sFace fcr insert activity.

• For initial load select speed option in VSIM define. Specify
IN5EE1=SEC in the IFSVSArF tt * data set for initial load or any
mass insert after initial lcad to maintain KSDS free space.

• To insure that KSDS index control intervals remain in main storage,
provide a unigue control interval size e1K is a good number) and
provide Enough buffers to hold all index set CIs plus at least one
sequence set eI for each KSDS. Eemember that sequence set and index
set CIs contend fer tuffers in the same shared resource subpool on a
demand basis.

• VSA~ buffer Fools andler centrol blocks can be page fixed in main
storage by sFEcifying YSAMFIX=(BFR,IOB) in DFSYSAMF data set.

In general, the r.umter and ce8Flexity of DL/I calls determine to a large
extent the performance of a Dill application program. The follewing
considerations/guidelines shculd be observed:

• Reduce the total number of calls to Dl/I by using path calls and
more fully qualified SSAs.

• Save data in virtual stcrage rather than reissue calls.

4 Do not issue a get call Frier to ISRT to check for prior existence.

• Use multiple PCBs when referencing data in two parts of the data
base or data base record.

• Sort batch transactiens to latch the physical order of the data
baSE.

The means to optimize an lMS/VS cnline system are essentially the same
as discussed for the batch-only system in the first part of this
chapter. The tvo key perfcrmance factors introduced in that part, the
number of DL/l data base calls and the number of physical llCs, retain

Optimi2ation 9. 13

their significance. They a~e ex~anded here to include OL/I message
calls and physical l/Os fer the data communication lines, the message
queues, and other data sets used by the online system~

~he online !~S/VS system contains several tools te monitor its
performance. ~hose used lest often are:

• The enline buffer pool statistics, which can be requested at regular
time intervals by the master terminal operator (MTO).

• ~he log data set statistical analysis utility.

• The DC monitor and its DC monitor re~ert print program.

In addition, the standard OS/VS facilities such as S~F, GTF, etc., are
cften very useful.

ltl~_Q~1I!~_~YI!~~_i~~~_§!~Il~~1~~

~he online buffer pool statistics provide information on thE usagE ef
the IMS/VS data and centrel blcck buffer ~ools. These statistics are
dis~layed as a result of the lOIS peOL ALL command on the master
terminal. See the M!O Guide fer more details cn how to use this
cemmand. All displayed counts are relative to the last (re)start of the
IMS/VS control regien; all ccunters are reset to zero during restart
~recessing. In general all counts should be related to the numeer cf
messages or transactiens Frecessed.

Nete: Performance interpretation, especially ef the number of physical
lies, should not be based on a short session. The number of I/Cs will
be relatively high during the beginning of a session because initially
all needed ccntrol blccks must be read in. It is therefore recommended
that you disregard the first half hour of a session.

!he following sectiens briefly discuss the statistics for each fcel and
give guidance for their initial interpretation. Figure 9-2 shows the
fermat of these statistics as they appear on the 3270 display screen.

5.14 IMS/VS Primer

HESSAGE QUEUE POOL: BFRS/SIZE 10/1500

ENQ 95 DEQ 90 CAN 55 WAIT 0 I/O 8 ERR a
MESSAGE FORMAT POOL: SIZE 20480 SPACE 17192

REQ1 193 I/O 13 DIR 5 WAIT 13 FREE 13184 ERR 0

DATA BASE BUFFER POOL: BSIZE 1024

RRBA o RKEY o BFALT o NREC a SYN PTS 11

NMBUFS 12 VRDS 6 FOUND 20 VWTS 0 ERRORS 00/00

DATA BASE BUFFER POOL: BSIZE 2043

RRBA 988 RKEY 8 BFALT 45 NREC 12 SYN PTS 11

NMBUFS 20 VRDS 171 FOUND 302 VWTS 13 ERRORS 00/00

DISPLAY LINES WAITING PASSWORD:

all

DATA BASE BUFFER POOL: BSIZE 53248

RRBA 988 RKEY 8 BFALT 45 NREC 12 SYN PTS 11

NMBUFS 32 VRDS 177 FOUND 322 VWTS 13 ERRORS 00/00

DMBP BUFFER POOL:

SIZE 8192 FREE 5936 HIGH 2256

PSBP BUFFER POOL:

SIZE 20480 FREE 9648 HIGH 10832

ClOP BUFFER POOL:

SIZE 40960 FREE 7568 HIGH 37440

MAIN BUFFER POOL:

DISPLAY LINES WAITING PASSWORD:

pool all

SIZE 12288 FREE 7768 HIGH 4616

CWAP BUFFER POOL:

SIZE 12288 FREE 12048 HIGH 2632

PSBW BUFFER POOL:

SIZE 4096 FREE 4096 HIGH 1;;76

DBWP BUFFE.R POOL:

SIZE 4096 FREE 4096 HIGH 280

78180/213051

PASSWORD:

Figure 9-2. Online Pool Statistics Display Pormat

OptiJlli2~tion 9.15

MESSAGE QUEOE ~OCL

ihe message queue pool statistics provide the numker of messages
received and sent. !he fcllewing parameters are displayed:

~f~~L~!~E: !he first value is the number of buffers. The second value
is the si2e of a single tuffer, as defined in the IMS/VS system
definition.

j!~: Is the numter ef messages enqueued in the input/output message
queue.

£~~: Is the number of messages dequeued from the message queue after
their processing or tratsttission to their destination.

CAN: Is the numter of messages cancelled. A message is cancelled if
rejected as an invalid transacticn or during processing of some
commands. ~his figure is typically very low.

~!11: Is the number of I/C waits issued. This figure should be low
«10% of ENC). If not, yeu may want to increase the numter of gueue
tuffers.

ILg: Is the number of physical IIOs against the message gueue data
sets. This figure should be typically less than or equal to the EN,
figure. If higher, you may want to increase the numter of gueue
tuffers.

1. The number of IIOs includes the IICs needed tc format/restore the
queues during I~S/VS (re) start.

2. the number of queue tuffers as defined at system definition can be
overridden via the QBDF= ~arameter of the I~S online procedure.

~]£: Is the number of I/O errors for the message queue data set. This
shculd be zere. If not, it is recommended to do an emergency restart
with BUILDC or a cold start as soon as possible.

MESSAGE FCEP.A~ ~CCI

The following parameters for the MFS buffer pool are displayed:

~l~j: Is the total size in bytes of the ~FS buffer pool.

~~A~j: Is the available space in the ~FS buffer pool. This is the SIZE
minus the space needed for the directory index, DeBs, pool control
blocks, and the fetch request elements (iREs). One iRE of 40 bytes is
required to store a MFS feraat block in the pool.

j]~J: Is the number of tleck requests frem the pool. Such requests are
lade for MIDs, Mots, DIFs, and DOFs needed by MFS processing.

IL£: Is the number of physical lIaS to the IMSYS.FORMAT data set. If
more than 50% of BE", you should consider increasing the MFS tuffer
pool size.

~I]: Is the number of directory I/O operations. This should be very
low in the salfle system because we vill make the directory index
resident during MFS processing. This is done with the MFS serviCE
utility. See "MiS CentIel Bleck Generatic~" in Chapter 3, "Data
Communication Design," and job IISAMP425, last step, in I~SVS.EEI~EJCE.

9.16 IMS/YS Prime~

JAIl: Is the number of immediate fetch I/Os for the IKSVS.FORMA! data
set. If more than 50~ cf i!~1, yeu sheuld:

1. Check if your MIDs refer to their corresponding MODs (NXT=parameter
in the MSG statement) ~henever possible.

2. Consider increasing the size of the MIS tuffer pool.

I!!!: Is the amcunt of free sFace in the Fccl. If this amount is
constantly above, say 2R, in your production system, you may want to
decrease the MIS tuffer pccl size. However, a constant high value may
also indicate too few fREs, which means the available space cannot be
used.

EBB: Is the number of I/O errors for the I!SVS.FCBMAT data set. This
shculd be zero. If not, you should restore the MFS library.

Note: Because the IKSVS.fCEr.AT and IMSVS.F!fERAL data sets are standard
as/is partitioned data sets, normal library back-up and restore
procedures can be used. Hcwever, they must be dumped and restored at
the same time. ~~c sample procedures, MFSEACK and MFSRIST, are provided
in IMSVS.PROCLIE.

Agjg§ling_~!~]Y11§I_f~~1_~f§~lilfg!i2~§

turing IMS/VS system defiliticn, we specified a MFS pool si2e of 18R and
a n~mber of PREs of 40. You can change these values in the IMS/VS
control region prccedure. SEe the IMS procedure in Chapter 7,
"Installing IMS/VS." ~he parameter FRE specifies the number of fetch
reguest elements. The parameter FBF specifies the number of 1K tlccks
in sutpool 0 to te allocated tc the MFS buffer pool.

tATA EASE EUiFER POOLS

Separate statistics are dis Flayed for:

• The OSAM buffer pool (not shown in Figure 9-2)

• Each VSAM subFool

• ~he combined VSAM pool, that is, the total of the VSAM subIccls

SI~~: Is the total pocl size in bytes for the OSAM buffer pool.

]j~j: Is the numter of internal DIll requests to the pool.

l]~~: Is the numtEr of atcve rEguests satisfied from the pool, plus
Dumber of new blccks created.

E~A~: Is the number of CSAr. reads.

~~!~: Should be zero, because we are not using ISAM.

~~!l~~: Is the number of CSA~ writes.

!~!£: Should be zero, because we are not using 15AM.

~£!!: Is the number of eSAp. logical cylinder formats.

f~BQ: Is the number of synchronization calls received.

~~BB£: Is the number of release ownership requests.

Optimi2ation 9.17

~R~2~~: Number of permanent errors (that is, blocks suhject to a write
error) now in the pool/total of these since last IMS/VS start-up. 1his
should tE zero. If nct, shut the system down as scon as possible and
recover the affected data base~

BEEA: Is the numtEr cf retrieve by EfA calls (direct retrieves)
received ty tbE tuffer bandler.

]K1X: Same as atovE fer rEtriEVE by key.

~lA1I: Is the numbEr cf logical records altered.

]]!~: Is thE number of lcgical records inserted into ESDS/~SDS.

SYN PTS: Is the numbEr cf synchronizaticn points that involved this
(subficol.

~~~Yf~: Is the total number of buffers in this (suh)Fool. 

yg~~: Is the number of VSA! reads. 

~~]]~: In the number of requests (EEEA+BKEY) satisfied from the pool. 

y~l~: lotal number of VSA~ writes. 

~B~£~~: Same as before. 

DMEP EUFFEE POOL 

!his pool contains the DP.Es, which are the expanded DB Os of thE data 
bases used by the centrel region. DMBs are loaded from the I~SVS.ACELIE 
during elL region initialization when defined as resident during IMS/VS 
systEm definiticn or duting data base cFen ~rocessing. Data tases are 
opened during the processing of the first DL/I call against a FCE which 
references the data baseq 

~l~j: Is the size in tytes of the pocl. 

f~~~: Is the available free space in the pool. 

HIGH: Is the maximum amount of space used in the pool sinCE the last 
C~l-rEgion start-up. 

!gjY2~!~g_!h!_~~]f_12g!_~i~~ 

The need to increaSE this pocl can best be interpreted from the tC 
Monitor report. See its description later in this chapter. If the HIGH 
value in your Froducticn system is constantly 2K or more below the SIZE 
value, consider decreasing the tMBP pool size. This pool size is 
specifiEd in 1K tlocks Ircunded to the OS/VS page size) in the DME 
Farameter of the IMS/VS control region ~rccedure. See the IP.S/VS 
~rocedure in Chapter 7, "Installing IMS/VS." 

PSBP BUFFEB FeCl 

This pool plays the same rolE fer the PSEs as the DMEP pool does for the 
DMBs. The same considerations regarding its size apply. However, 
because PSBs are typically between 2 and 8K you should te careful in 
adjusting the size downwards based on the difference between the SIZE 
and HIGH ,alues. For instance, if this difference is 4K, you might 
still be swapping twc 6K PSBs. 

9.18 IMS/VS Frimer 



~!~: The size of the PSBs is listed by the ACBGEN utility in message 
OFS940I. See the output of job //SAMP420 in Chapter 3 of the 1~2LI~ 
~!i!~! E!!!~~ !!§!~~g§ manual. 

!he OC Monitor REGION IWAIT report lists the number of PSB loads. the 
corresponding parameter in the IMS/VS control region procedure is PSE. 
See the IMS/VS procedure in Chapter 7. "Installing IMS/VS." 

ClOP EUFFER FOOL 

!his is the communication line buffer pool. The SIZE, fREE, and HIGH 
numters have the same leaning as for the tMEP pool. Also, the same 
consideraticns r€garding adjusting its size apply. The corresponding 
IMS/VS centrol region procedure parameter is TPDP. See the IMS/VS 
procedure in Chapter 7, "Installing IMS/VS." 

MAIN fUffER POOL 

This is the working storage pool. defined as WKA~ in the IMS/VS 
procedure. Menitoring and adjusting its size is as previously discussed 
for the IMEP. 

CWAP fUffER POOL 

this peol is used to buffer the SFAs of !f1i!~ conversations. 
Monitoring and adjusting its size is as previously discussed for the 
DMEP. Its size can be changed via the CWAP parameter in the IMS/VS 
precedure. 

~Q!~: the system definiticn value of the GENERAL parameter in the 
EUFPOOlS statement is used as the default value for both the MAIN and 
the CWAP tuffer pool. 

FSEW fUfFER POOL 

this pool is used mainly to process segments between the CTI and 
dependent regions. Mcnitcring and adjusting its size is as previously 
discussed for the tMEP. Its size can be changed via the PSEW parameter 
in the IMS procedure. 

OB~P EUFFER FCCI 

This pool is used for data tase OPEN/CLOSE processing. Monitoring and 
adjusting its si2e is as previously discussed for the DMEP. Its size 
can be changed via the DEWt parameter in the IMS procedure. 

The IMS/VS Statistical Analysis Utility provides statistical informaticn 
about online IMS/VS operaticn. Its information is obtained from the 
online IM5/VS log data set. The utility consists of three tasic 
modules, IFSISTSC, DFSlSt2C, and DFSIS~30, and two intermediate sort 
ste~s. A sample job stream is listed as jot I/SAMP495 in 
IMSVS.PRIM~OE. the saaple cut~ut is listed in Chapter 3 of the IH~Ll~ 
j~im~~ ~!~~li 1i§!i~~§ and is oiscussed later in this section. 

Optimization 9.19 



JCL CONSltERAtlONS 

~he following should be observed when using the Jet of //SA~E495. The 
numbers refer to the JCI statement numbers in the jot listing. 

8. ~he SORt/MERGE ~rc9ram is used in all three steps with an entry 
Feint of SOR~. 

12. lCGIJ defines the I!S/VS system log. Multiple voluses and data 
sets caD tE CCtcateDated if desired. 

14. 

32,50. 

50. 

The space parameter of this data set may need to be increased 
if the log data set reflects a large number of transacticns. 

the estimated r.umber of sort records in the SIZE parameter may 
need to te increased, depending cn the number of actual input 
log records. 

the lINECNT parameter can be used to adjust the numter cf print 
linEs per cutEut EagE. 

FEPORT OU7POT AND INtERPRETAtION 

Six types of reports are printed by the statistical analysis utility. 
Refer to the cutput cf jct /ISAMP495 as listed in Chapter 3 of the 
I~~L!~ R!i!!I ~!!R!! .~§I!ngi when reading the following sections. 

~!§§!g!§_gg~y!g_~Y~_!2~_~§~!_jBl_g!§!i~~!~2Bl 

1he number of net-yet-sent output messages per logical terminal (if 
known) is listed. 

~iD§_An~_1!!!j~Al_li!R2'! 

This report lists the message traffic received (R) or sent (S) by I~S/VS 
for each line, physical terminal, and logical terminal. An hourly 
distritution is giVEn. 

~!§§!g§§_gy~y!g_~!~_~g~_~!~~_jBl_!f!B§~£!i~D-f~g~l 

The number of not-yet-sent output messagES per transacticn code is 
listed. A transacticn ccde of IMSSYS is listed if the output vas 
generated by IMS/VS itself. 

lI~D§!~ti2n_~!~2I! 

This report lists the nUlter and distribution of messages per 
transacticn codeq 

This report lists the response distribution per transaction code. 7wo 
response times are measured. 1he first line is the response time from 
ccmplete receipt of the input message until the response mEssage to the 
terminal is completely received by the terminal. The second line is the 
response time from complete receipt of the input message until the 
sending of the respcnse lessage to the terminal is started. nl response 
means that n~ of the messages had a response time less than er equal to 
thE listEd nUlter. 

9.20 IftS/VS Frimer 



!2!!: The actual figures of the sample output in Chapter 3 of the 
!~~L!~ iii!!! ~!!R!! ti§!!gg! should not be used for performance 
analysis and prediction. 1his is because the sample output was 
collected during a test run under V!/370. 

!EE!i£!li2~_A~~2~n!igg_~!ES~~ 

This report lists for each program and transaction code the nurtEr of 
messagEs and the average flulbEr of DL/I calls pe.r message. The lice or 
BC" eolumD li~ts the number of times an application program terminated 
abnormally, or rEturned with ether than zerc in register 15. 

The two last columns list thE total and average CPO task time of thE ~FF 
region/Fartition. This includes the majority of the data base call 
processing. 

The IMS/VS DC Monitor formats and records Ferformance related data 
during the execution of the IMS/VS DB/DC system. 

The DC Monitor can be available but inactive and cause no increase in 
CPU utilization. Including a DD card, described below, in the procedure 
makes the DC Monitor available. ~he Monitor remains inactive, however, 
until started from the master terminal by a ITRACE command. 

The DC Monitcr reguirEs its cwr. recording data set. Therefore a DD card 
(DtNAME=IMSMON) must be inclUded in the IMS procedure to describe and 
specify the monitor log data set. If this card is not included, the 
Monitor will be unavailatle. 

USING THE DC MONI~OR 

It is, in general, not necessary to have the DC monitor active all day. 
A useful monitoring technique is to obtain "snapshots" on the KonitoI: 
log. Normally one to threE heurs c£ mcnitcring collects sufficient 
informaticn for an entry system. 

!LQ_E~~2~: If a permanent lIe error occurs on the tC Monitor lcg data 
set, the Moniter stops and the message "DFS2202 UNCORBECTABLE I/O ERROR 
eN IMSMON" is disFlayed at the laster terminal. In this situation the 
Menitor cannot be restart@d until IMS/VS is restarted, and the DC 
Monitor log data set is only clesed when IMS/VS is shut down. 

If the problEm that causeo the errer has not been corrected when IMS/VS 
is tc be restarted, a different volume and/or unit should be specified. 

~!!~~i~g_!ng_~lQRE!ng_!h~_!~_~Qni1Q~ 

Once the IMS/VS CTL region is started, the tC Monitor can be activated 
with the following command frc~ the master terminal: 

ITRACE SET ON MON1~OR All 

To stoF the ~cnitcr, enter: 

/~RACE SEl O~f MCNITeR III 

Optimizaticn 9.21 



DC MONITOR REPOR~ PRIN~ PROGRAM, DFSOtR20 

The DC Monitor Report Frint program (tF50TR20) is a batch program that 
takes the data collEcted ty the DC Monitcr (DP5MNTRO) and prints summary 
reports and distrituticn dis~lays of the data. The report formats, and 
the nature ef information in the reports are identical or similar te 
those printed by DF5UTR;C, the Monitor report program. The values shown 
in the report samples are not intended to reflect actual values that are 
received ty a user's executicn cf this utility. 

The following types of reports produced by DFSUTR20 are of interest to 
the first-time user: 

• System configuraticn (data about as/vs and IM5/VS systems used) 

4 Statistics frcm buffer ~ools (data collected at beginning and end of 
trace) 

• Region {data on timing, IWAITs, and tLIl calls presented ty regicn) 

Regicn Sumlary -Regicn IWAIT 

• Program (data on timing, I~AITs, DI/l calls, scheduling and 
degueueing that is presented by an application ~rogram) 

Frograms by Region -Program Summary -Program I/O 

• Communication ldata on communication subtask timing, IWAITs, 
tEansmitted and received blocKsizes, intersystem traffic and 
queueing) 

Communication Summary -Line Functions -Communication IWAIT 

• transaction queueing (data cn queue lengths and scheduling 
occurrenCES presented by transacticn type) 

• DL/I call summary (statistics on all DL/I calls issued by every 
program) 

• Run profile, an over-all ~icture of IMS/V5 ~erformancE during the DC 
mcnitcr traCE interval 

For a description of the terms used in the report, SEE "Definition ef 
Terms Osed in thE RE~crts" earlier in this chapter. 

!21~: The reports contain a rich variety of data, much of which can be 
intErpretEd only with detailed lMS/VS kncwledge. 

Therefore, we will cnly discuss those of immediate importance to the 
first-time user of our subset. 

H2!_!2_~~~£Y!~_~~~_~~_~Qn!tQ~_i§~2~t f~in1_~~Qg~gm 

Job I/SAMP4S4 in IMSVS.PRIMEJOB shows the·JeL to execute the tc Monitor 
EeEort Print Frogram, tf50TE30Q This job prints the monitor out~ut 
collected during the executicn of the IMS/VS CTt region. 

The output listed in Chapter 3 of the !~~L!~ ~~!m~~ ~gmE!! l!§!!ng§, 
will be referenced in the following discussion of the various gEnErated 
reports. 

If the tc Monitor does net collect certain ty~es of information usually 
found in a ~articular report, that report, or the section ef that report 
that would nor.ally contain the information, is not produced. For 

9.22 IM5/VS Primer 



example, if no checkpoints occur, only the headings for checkpcint are 
printed. 

]~!!: The page numbers listed in the heading of the following sections 
refer to the page numbers in the sample output of job //SA~P494 in 
Chapter 3 of the !§~ll~ j~!!!~ a~!£l! 1isti~g§. 

STA~ISTICS FRC~ EUfl!E ~CCLS E!POR~ 

These summar} te~orts are a formatted display of the contents of 
selected- items of the liessa9E queue, data base buffer pool, VSA" buffer 
~col and message format buffer pool that vere collected at the tEginning 
and end of trace. ~bEse rEFcrts are preceded by a system configuration 
report (Fage 1), which gives information about 05/V5 and IMS/VS systems 
used. 

Since the pool ending valUES and the difference between starting and 
ending values cannot be computed if no pool ending statistics arE 
written on the tracE tapE, this summary is ~roduced only if the ~onitor 
is ended before termination of the IMS/VS control region. 

In the case where only the ending values of one tuffer pool arE not 
written on the trace tape, the cerresponding summary report is not 
computed and the following infermation message is printed: 

NO QUEUE EUPiER POOL !RACES A! END !IME ON eONITOR leG TAP! 
•••• QUEUE "EUfPER FCCI F!FCFT CANCELLED •••• 

The VSAft tuffer ~oel summary report and/or the message format tuffer 
~eol report will not bE prcduced if the corresponding facility is not 
invoked through I~S/VS system definition. In this case, the following 
information messa9E is pri~ted: 

NO VSAM EUFPER POOl tRACES ON 80NItCR ICG !APE 
•••• VSAM EUFFEE PCCI EEFeBT CANCELLED •••• 

~~§§!9~_2Y!Y!_~22!~_R!g!_~ 

7he final number ef this report (CUCTIENT) is the most interesting. 
Generally, in an Entry 18S/VS system this number should be less than 1. 
If higher than 1.~, you should consider increasing the number of onlinE 
queue tuffers via the tBUF ~ara.eter in the IMS control region 
~rocedure. 

~!1!_1!~s_~Yii!I_J~Y~11S21~~_f!£!i_~~_~ !~g_2 

The statistics of thE data tase buffer (sub)~ools and their 
interFretation ar~ the same as discussed in the first part of this 
chapter for a batch a~~lication. 

~!§i~~§_!2.!~!_~Yli§._i921~_f!£J_~ 

The final number of this rE~ert (QU07IEN7) is the most interesting. 
Ideally, in an entry I!S/YS system, this number should tE less than 1. 
If higher than 4, yeu ~hould cCDsider increasing the size of the online 
MFS peol, via the FBP parameter in the IMS control region procedure. 

Optimization 9.23 



E!gi2»_~~!!~~l_~!BQ~~~_I~g!_l 

Region timing information is printed for every MPP/BMP activE during the 
trace. This summary reFctt distinguishes the following activities per 
region: 

• Scheduling and termination 

• Schedule tc first Ot/I call 

• Elapsed eXEcutien 

• 01./1 call 

• Idle for intent 

• Checkpoint 

• Region occupancy 

It should be noted that some of the values shown for region timing 
overlap in the timeframe of the trace period. Elapsed time for 
scheduling ana terminaticn are included in idle-for-intent time. The 
elapsed time for execution includes the elapsed time for OL/I calls. In 
general, the trace time Fericd is slightly greater than the sum of 
scheduling and termination, schedule to first DL/I call, elapsed 
execution time, and idlE-fer-intent time. Differences between this sum 
and the trace time can be attributed to transactions active at the 
startup and shutdown of the tracing, or idle regions at the start or end 
cf a trace. 

§£~!gg!ing ~n2 l!~!jD!li~~: lines under this heading, for each region, 
show the number of cccurrences of scheduling and termination in the 
region, and both the ela~sed execution time and not IWAIT time 
associated ~ith scheduling and termination. The total of all intervals, 
the maximum single intEIval, and the aean interval values are shown. 

The elapsed tilE duting which the scheduler is internally waiting is not 
included in the elaFsed time shown for scheduling and termination. 

!his line of the repert dces net include data for a message regien that 
was not scheduled tut was executing at the start of the trace. 

~A~g~l! !s li!~l ~~LI ~!!1: !he lines under this subheading show the 
elapsed time for the following to occur: the region to gain control 
after being scheduled; the program either to be located in the region or 
to be brought into the Iegicn; or the program to issue the first tL/I 
call requJ.ring dispatching of the 18S/VS Call Analyzer Module. 

~his section does not appear for a message region or a batch message 
region that was Dot SchEduled during the trace; it does not appear for 
cne that ~as scheduled but did not issue a DL/I call following the 
scheduling. ~he number cf program loads is one less than the number of 
schedulings, if the trace was ended after the scheduling tut before the 
first DL/1 call of the last scheduling_ 

~!!]!!g !l!£YllQn: Lines under this subheading give the number of 
executicns of ~ro9rams in each region and the elapsed time for each 
execution. 

The number of Executions lay be one less than the numker of schedulings 
and schedule to first DL/1 calls if the ~rogram that ~as scheduled had 
an outstanding DL/I call when the trace was ended. 

9.24 1M S/V S Pr iller 



~~L! ~!!A: lines under this subheading give the total numter of DL/I 
calls from each region during the trace, the total, mean and maximum 
elapsed execution time inter,als to complete those calls, and the total, 
mean and Eaximum non-IWAIT intervals used to complete those calls. The 
number of IWAITs per call is cc_puted and displayed for each region 
under the heading "IW!/CAllu" 

19!! !2~ ln~!~~: Lines under this subheading give the number of times a 
region vas in the idle state bEcause of an intent conflict. An intent 
conflict occurs during scheduling when the ~rogram to be scheduled needs 
data base resources held by another active program. See the section 
"Data Base Processing Intent" in Chapter 3, "Data Communication Design." 

Ch!~!I~ill: ~his line is ~rcduced if a checkpoint occurs during the 
trace. 

~he line gives the number of times checkpoint vas dispatched, the total 
elapsed time of the cbEck~cints, the mean elapsed time for a checkpoint, 
and the maximum of those elapsed times. 

~he line also gives the total non-IWAIT time for the checkpoints, the 
average non-lWAI~ time fer a check~cint, and the maximum of those 
nen-IWAI~ times. 

B!gi2~_~££~i~~~1 

Lines under this sub-heading indicate the percentage of time that the 
region vas occupied. ~his value is determined frem the formula: 

scheduling + termination +schedule to 1st 0111 call 
Regicn Occupancy= _~ ____ !_BI2gI!!_!!!E2!~_!_i~1!=!BI=i~l!~! _________ _ 

trace elapsed time 

The value of trace elapsed time is the difference between the time 
recorded for the first traced I!S/VS event and the last traced IMS/VS 
event. 

This report lists the cccurrences and duration of IWAITs for each 
dependent region during: 

• Scheduling and terminaticn Frecessing 

• DL/I call processing 

• Checkpoint prccessing 

~££Y!~I!~E~: Lists the number of IWAITs 

IQI!L~_~~!B&_~l!!~Y~: lists the total, mean and laximum elapSEd tile of 
IW~I~s. 

!~]~!lQ!: Lists the cause ef the IiAI!. PSB/D~B defines the FSE/tEt to 
be loaded, Dt definES the data set via its DDNA~E ~hich needed an l/C. 
If the number of FSE/D!E loads (IWAITs) is high, you might consider 
increasing the PSE and DMB Fcol sizes. 

~~Y.~: Defines the module involved in the IWAI~. BLB = block loader 
for PSBs, DMEs. VBH = VSAM tuffer handler. QMG = queue manager. 

Optimizaticn 9.25 



~his report lists an overviev of the most important factors for each 
MEP/EMP activE during the period of monitoring. The time figures are 
given in microseconds. The columns and their meaning are: 

IE!!~~~~Q: The number of input message dequeued after their successful 
procEssing by the ~rogral. 

]1Ll_~j11~: ~he total numbEr of both message and data base calls issued 
by the progra~. 

Q~L!_~!~~~llE!!: Same as atove, but per input message. 

!Lg_!~!!l~: 7he number of I/Os required by IMS/VS to process these OL/I 
calls. An average telow two is ~referable. Ho~ever, higher values 
cccur if the precEssing cf a call involves scans of long physical twin 
chains or insert/deletes of segments involved in logical relatienships 
and/or secondary indexes. 

I~AN_QE2QL~£~: ~he average number of input messages (same transaction 
code) processed in one scheduling of a MFP. this number in our subset 
is between 1 and 5. 

~f~_l!~~L~£~!!: The average CFU task time for the MPP/BMP region per 
schedule. lhis viII te typically very high for EMPs because the full 
Frocessing of a BMP censtitutes one scheduling. 

~1!R§~~_IIM~L~~~~~: The average program elapsed executing time per 
scheduling. ~his number is largely dependent of the processing 
performed by the program, especially its number of DL/I calls and 
associatEd I/Os. 1oeally, for a simFle application, it should CE below 
500 millisecondsQ 

~£~~~~_l~_laI_~~lL§~~~~: The average elapsed time 
scheduling of the MFP/E!F and its first tL/1 call. 
contributing facter in this is Frogram lead time. 
shculd be bet,een ~OO and sec milliseconds. Basic 
figurE are: 

between the 
Typically, the lajor 

Typically, this value 
steps to improve this 

• Maintain a compact Iccm~ressed) IMSVS.PGMLIE containing only the 
MEPs used by the online system. 

• Specify this 1MSVS.FGP.l~B as the first step/job litrary in tbE ~pp 
region JCL. 

• Use the COBOL options of NORES, NODYNAM and NCENDJCE. 

~~!~~1~_1~~~l11A!~: Same as EIAFSED TIME/SCHEt, but nov per 
transaction. If TRAN.tEQ./SCH. is 1, they are the same. 

~1L!_~!11_~~!!silL_fsg!§_jj~_~~ 

This report giVES a sUllary ef the number of OL/1 calls per ESB (that 
is, ~roglam), ~er segment returned, and the number of IWAITs for these 
calls. For a discussicn refer to the DL/1 Call Summary Report section 
of the DB Monitor in the first part of this chapter. 

9.26 1M5/VS Primer 



~ga f~2'~!~' f!g~ ~~ 

7his report gives a compact, over-all picture of IM5/VS performancE 
during the period of the DC meDitcr trace interval. The headings dnd 
ccntents of this Ieport are self-explanatory. Definitions of terms used 
are included in tbe discussicn cf previous reports. 

This section descri~es bow tc use the V~Ae storage pool trace to 
optimize the VTA~ main storage pool in your installation. 

~his V~AM trace facility is de~endent upon the OS/VS 

The V~Ae storage pool trace records the usage of all VTAM storagE pools. 
When totb G~F (USB trace epticn) and VTAM storage pool trace are active, 
the storage pool trace inferaatien is collected on every 1000th VTAM 
request tc obtain a storage pool element. 

~he V~AM storage pool trace collects the following infermation fer each 
of the VTAM storage peels: 

• Storage pool name 

• !he maximul number of elements allocatEd from ~he pool at anyone 
time since tt.e last trace Iecord was written 

• The maximum number of queued requests for buffers at anyone time 
since the last trace record vas written 

• Number of currentlY unallccated elements in the pool 

• Date and time, if !I~E=lES vas specified in the GTF START command 

OPEEATING THE TFACE 

!o be able to activate the VTAM storage pool trace, GTF must be started 
first. If you are usiIg cur sample cataloged procedure VTAMGTF as 
generated by job IISAMPI~E in IMSVS.PRIMEJCB, you should use the 
fcllcwing Erocedureo 

e)'ter: S V~AMG~F.F1 (This starts GTF) 

responsa: nn HH1100A SPECIFY TEACI OPTICNS 

enter: nn,~EACE=BNIO,USB 

response: mm HHL1~5 RESPECIFY 7RACE CP~ICN OR EEPIY U 

enter: 1m, U 

enter: F PO,!RACE,TYFE=S!S,It=VTAMBUF 

This starts the V~AM stcragE ~cel trace 

B2i!: In the above it is presumed that VTAM runs in PO and GTF in P'. 

Optimization 9.27 



~!S~E~ng_!h!_l~~~! 

enter: F PO,NCiEACE,TYEE=S!S,ID=VTAMEUP 

enter: P V!AMGiF.F1 

!~i~!igg tB! l~~f~ Qy!]y! 

Job /ISAME496 in I~S'S.EBIMEJCE can be used to print the VTAM trace 
output. 

OPTIMIZING VTAM STORAGE POOL PARAMETERS 

ViAM has eleven storage poo~s to control the buffering of data. VTAM 
dynamically allecates and deallocate~spaoe in these pools fer the VIAM 
control blocks, I/O tuffers, and channel programs that control the 
transmissicn of this data. 

~he basic procedure for tailoring the VTA! stora9E pool valUES is to 
initially operate VTAM using the worst-case storage pool values as 
described in CS/VS Storage Estimates. Then adjust the storagE pool 
values by using the VTAM steragE pool trace facility. To tailor the 
VTAM storage tools, determine the following values for each VTAM sterage 
pool: 

• bno, the maximum number of elements in the pool 

• bth, a threshold number of elements for a pool 

• bsz, the size ef each element (in bytes) in a pool (specify for 
IOED! and PPBO! cnly) 

The VTAM storage pocl ISMS) trace records infcrmation on the use and 
availability of YTAM's buffer pools. the trace records are written at 
regular intervals, after every 1,000 requests for buffers. Each set of 
records contains the maximul number ef buffers in use, the maximum 
numbex of requests for buffers queued, and the ~urrent number of 
availatle tuffers for each ef VT1M's eleven buffer pools. An example of 
VTAM storage tool trace output is shown in Figure 9-3. 

*** DATE DAY oeo YEAR 1978 TIHE 20.56.20.407148 
USRFO FFO VTAH BUFFERS HAXU HAXQ AVNO MAXU MAXQ AVNO MAXU MAXQ AVNO HAXU HAXQ AVNO 

10 0023 0000 0062 PP 0002 0000 002C LP OOOE 0000 0024 WP 0003 0000 0011 
NP 0007 0000 0025 LF 0008 0000 002A CR 0006 0000 0037 UE 0002 0000 002e 
SF 0001 0000 OOlA SP 0000 0000 0005 AP 0005 0000 0028 

TIHE 75380.399270 

Figure 9-3. Sample VTAe Trace Cutput 

POClID 

IdentifiES which buffEr ~ool the trace entry is for. Pool IDs are: 

10 Fixed I/O Fool (IOBU!) 

FP PagEable 1/0 peel (PPBOF) 

9.28 IMS/VS Frimer 



LP Large pageable pool ILPBOF) 

iP Working set pageatle ~ccl liPBOF) 

NP Ncnworking set pageatle ~ccl (NPBUF) 

LF large Fi~ed pool (llEOl) 

CR Copy RPl pool tCRFIEOl) 

UE CECB pool lOECEUl) 

SF Small fixed pool ISFBUl) 

SP Small pageable peol ISPBOr) 

AP ACE ~col (APEU!) 

HAXU 
Indicates the maximum number of buffers in the pool that were in use 
at anyone time in the last interval. A "AXO value of 0, however, 
does not mean that all tuffers in the pool were released, tut that 
there were no additional Ieguests for buffers during this interval. 

HAXe 

AVNO 

Indicates the maximum number of requests for buffers that were 
queued at anyone time since the last interval. 

Indicates the average numter of tuffers in the pool that were 
availatlE during the intErval. 

Eased on a VTAM trace output of several hours of regular production, use 
the fellcwing guidelines in adjusting the VTAM storage pool parameters 
as specified in jet //SAMPI~4. 

For every pool find the following values: 

• Average of all HAIUs related to pool 

• Average of all HAXes related to pool 

• Aver age of all AVNOs rElated tc pool 

• Highest MAXU related tc ~ocl 

• MAXQ related to highest MAXO 

• AVNC related to highest P.AXU 

Decrease bth and bno if: 

• highest MAXO is always at least 'O~ lewer than bth. 

Increase bth and tno if: 

• Average and/or highest HAXO value is larger than or equal to bth. 

• Average and/or highest P.AXU value is close to bth and average and/or 
highest AVNO is elCSE tc ZEIO. 

Optimizaticn 9.29 



Notes: 
--~~-

1. The increase sheuld te at least as high as the highest ~AXC value. 

2. The relatienshiF between tth ~hresho~ value) and bno ~umbEr of 
buffers inpool) is described in g~L!~ §I§1~! ~Igg~~!!iDS 11!~~~I 
(~!~l: ~~Q~g~! I§!i!~!!~, GC28-0604. 

The importance of a goed data base and program design for the 
perfermance of an IMS/VS online system is even more apparent than for a 
batch system. !he guidelines fer data base design and ~l/I call used by 
programs, as given in the first part of this chapter, still fully aFply. 

Another important factor of general interest in data communicaticn 
design is the transacticn response time. 

As discussed in the section "!ransaction Response Time Considerations" 
of Chapter 3, "Data Communication Design," the response time consists of 
two components: 

1. Network response time. 

20 IMS/VS response time. 

NETWORK RESPONSE TI"E FAC~OBS 

!he fcllcwing parameters influence the network response time: 

• Length of input data character stream 

• Length of cut put data stream 

• Line mode operation, that is, half or full duplex 

• Line speed and lir.e length 

• Modem turnaround time 

• Number of clusters and number of terminals per cluster 

• Communication controller delay time 

• Number of transacticns Fer terminal, arrival rate, and distributicn 

Eased on the atove factcrs, an assessment can be made for the network 
response time. 

IM5/V5 RESPONSE 7IME FACTCRS 

One of the most impcrtant factors which influence the performance of an 
cnline I"5/VS system is the ~ff 2i~!i£~ ~im~. 

The MPP service tjme is thE elafsed time between scheduling of the 
transaction and the completion of its processing by the MPPo 

9.30 IM5/V5 Primer 



~he basic components of the ~Ft service time are: 

1. Program loading of thE rtF. 

2. ~Etrieval of input lessagE and associated physical l/Cs. 

3. Data baSE calls ana asscciated l/Os. 

4. AF~licaticn ~Iogram processing time. 

5. Insert of output message into the message queue and its associated 
physicall/Os lif no frEE queue buffer is available). 

6. CS/VS paging during any ef the above activities. 

The twe mcst important components from the above list are usually the 
program load time and the data base calls with their associatEd l/Os. 
Typically, progral lcaa tilE is bEtween 200 and 500 milliseconds elapsed 
time, and a direct llC is between 30 and 50 milliseconds elapsEd timE, 
assuming 3330 disk drives. 

]QI§: IMS/VS provides fer ~Ielcading of selected application programs 
and FL/I modules. ~his preload option is not included in our subset, 
but you might consider its use as the next step on improving systems 
performance. More infcrlaticn cn the prelcad option is included in 
ChaFter 2 of the !~§L!§ In§t~!!!tiQn §~i~~ under the topics "Making 
High-Use Program ~odulES FEsident" and "Organizing PL/l Modules for Use 
with the PL/I OptimizEr." 

We vill nov discuss a very simFle IMS/VS response time estimation, caSEd 
solely on MPF service time considerations. 

• Lightly loaded system, that is, ample available CPU time for IMS/VS 
activitiES. 

• One MPP region. 

• All MFPs have roughly same service time. 

• MPP is loaded for each transaction; program load time is 300 
milliSEconds. 

• Average of 1C DL/l calls with average of 1 I/O per DI/l call of 40 
milliseconds average elapsed time. 

• ~hE messagE inter-arrival time is 2 seconds (one message every 2 
seconds) with an eXFcnEntial distribution. 

• Basic queueing theory is applicable. 

Optimization 9.31 



Eased on above assumpticns, the follewing parameters can be 
deriled/calculated: 

MPP Service ~ime: ~S: 300+10*40:700 milliseconds. 

Arrival Rate: A = 0.5 IEssagEs/second 

MPf Utilization: 0 = 1S*A=C.35 

MPP Wait Time: 7W = O*lS/(1-0)=380 milliseconds 

MPF Besponse lime: 1R = lS+7i=1.C8 seconds 

• The MPP wait tiae is the averagE time a message must wait in the 
queue before the !IP region can process it. 

• 1he MFP response time is the average interval response time of a 
transacticn, that is, tbe time bet~een the enqueue of the input 
message in the ~ueue and the enqueue of the output message in the 
queue. 

1. The formula for 1W nermaIIy applies enly for utilizations below 60~ 
(OSO.6). 

2. Many other factors can influence the total IMS/VS response time, 
such as: 

• Loading of DBDs, PSBs and MID/MeDs, DIF/DOFs. 

• Data base open processing (required after DBD (re)lcad). 

• CPO, channel, and disk drive utilizations. 

• tispatching pricrity of CTL and MPP regions. 

• Location of IMS/VS system data sets, noticeably the queue, 
fermat, and program litrary data sets. 

9.32 IMS/VS Primer 



DATA BASE CALLS MSG CALLS SYSTEM CALLS CALL STATUS 

~~~:US GU GN DLET ISRT ISRT CALL ERROR 1/0 OR 
GHU GHN REPL ILOADI (ADDI GU GN ISRT CHNG CHKP XRST COMPLETED IN CALL SYST ERROR

DESCR IPT ION

SEGMENT 1'0 AREA REOUIRED. NONE SPECIFIED IN CALL

~~-+~4-~+-__ +-~-4~-4 __ +~~-1~ __ +-__ -1 ____ ~------~----+--------+-H-IE-R-A-RC-H-IC_A_L_E_R_RO_R __ IN_S_SA_, __________________ ~
INVALID FUNCTION PARAMETER

IX

LB

LC

LD

LE

NE

NO

OC

00

OE

OF

OH

RX

Xl

XC

XD

CALL REOUIRES SSA, NONE PROVIDED

DATA MANAGEMENT OPEN ERROR

INVALID S5A OU,HIFICATION FORMAT

INVALID FIELD NAME IN CALL

CALL USiNG L T PCB IN BATCH PGM

CALL FUNCTION NOT COMPATIVLE WIPROCESSING
OPTION OR SGMT SENSITIVITY

-t-+ __ +-__ -+-____ +-_-+ ______ -4 ___ ~.-:..J _X ____ +I_fO_E_R_R_O_R_OSAM. BSAM. OR VSAM

X X MORE THAN 4 CALL PARAMETERS INVALiD FOR DC PCB

USER liO AREA TOO LONG

RESPONSE AL TERNATE PCB REFERENCED BY ISRT CALL

HAS MORE THAN ONE PHYSICAL TERMINAL ASSIGNED FOR
INPUT PURPOSES. NOTIFY MASTER TERMINAL

CALL ATTFMPTED WITH BCHAR LOGICAL TERMINAL

NAME NOT KNOWN TO SYSTEM

CHANGE ATTEMPTED WITH H;VALID PCB

INSERT ATTEMPTED TO A MOD TP PCB WITH NO DESTINATION

SET

FORMAT NAME SPECIFIED ON 2ND OR SUBSEOUENT MSG

ISRT CALL

OUTPUT SEGMENT SIZE LIMIT EXCEEDED ON ISRT CALL

NUMBER OF OUTPUT SEGMENTS INSERTED EXCEEDED THE

LIMIT BY ONE

SEGMENT KEY FIELD HAS BEEN CHANGED

NO PRECEDING SUCCESSFUL GET HOLD CALL

VIOLATED DELETE RULE

CROSSED HIERARCHICAL BOUNDARY INTO HIGHER
LEVEL {RETURNED ON UNOUALIFIED CALLS ONLYI

END O~ DATA SET. LAST SEGMENT REACHED

SEGMENT NOT FOUND

DIFFERENT SEGMENT TYPE AT SAME LEVEL RETURNED
IRETURNED ON UNOUALIFIED CALLS ONLY I

SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE

VIOLATED INSERT RULE

SEGME~IT TO INSERT ALREADY EXISTS IN DATA BASE

KEY FIELD OF SEGMENTS OUT OF SEOUENCE

NO PARENT FOR THIS SEGMENT HAS BEEN LOADED

SEOUE NCE OF SIBLING SEGMENTS NOT THF SAME AS
DBD SEOUENCE

DL I CALL ISSUED BY INDEX MAINTENANCE CANNOT FIND
SEGMENT

1'0 ERROR OSAM. BSAM OR VSAM

NO MORE SEGMENTS FOR THIS MESSAGE

GET NEXT REOUEST BEFORE GET UNIOUE

SEGMENT LESS THAN FIVE CHARACTERS ISEG LENGTH
IS MSG TEXT LENGTH PLUS FOUR CONTROL CHARACTERS I

TERMINAL SYMBOLIC ERROR. OUTPUT DESIGNATION UNKNOWN

TO IMSIVS ILOGICAL TERMINALS OR TRAN CODEI

VIOLATED REPLACE RULE

INVALID SPA

LENGTH OF SPA IS INCORRECT (USER MODIFIED FIRST

SIX BYTESI

PGM INSERTED MSG WITH II FLO BITS
SET RESERVED FOR SYSTEM USE

IMS IS TERMINATING FURTHER DLiI CALLS MUST NOT BE

~~X~X-+--+--+---+----4---4--+,~I~~---+,----~----~------+---~--------~:~i~~::~G::::~:::TURNED
bb X I Xl X X I GOOD NO STATUS CODE RETURNED, PROCEED

NOTE' bb Indicated blanks

I~S/VS Status Codes Quick ReferEnce 1.1

The following listing of IMS/VS status codes and possible causes is
divided intc two Earts. The first part lists the status codes which
are. in general, cause~ by applicaticn Frcgram errors. The second part
lists the status codes which are, in general, caused ~y system errors.

B2!~: A more detailed discussion of these and other status codes can be
found in ApFendix E of the l~~L!~ AE2!!£~1iQn f~Qq~gm!!nq E~t~;~n£§
~!~~!1·

the fcllowing status codes are the most common ones caused ty
application Fregram errcrs (errer in call) in our subset.

AE: Segment I/O area is Iequired but was net specified in the call.

AC: 55A(s) contains an error in hierarchical sequence.

Fossitle causes:

1. No segment name equal to that specified in 55A found within
sccFe of this PCE.

2. LevEl at which this 55A aEFears is out ef sequence with that
sFEcified by the PCB.

3. Twe segments of the same level are specified in the same call.

AD: An invalid function parameter was sUPFlied.

Possible causes:

1~ Invalid function string

2. A GU or GN vas requested for a terminal FeB other than the
I/C peE.

3. Invalid rEquest tYFe to a DC-PBe.

4. A call bas beEn iSSUEd tc the message queues ~ith a tE-FCE.

AH: No 55A(s) was specified in call. Call required at least one 55A,
and none was specified.

AJ: 5SA qualification format vas invalid.

Possible causes:

10 Invalid comland cedes.

2. Invalid relational oEerators.

3. Missing right parenthesis of Boolean connector.

IM5/V5 status Codes and Possible Causes E.l

4. DLE'! call has nul tiple 55 As or qualified 55As.

5 .. REPL call has qualified SS As.

6. ISB'! call has the last 5SA qualified.

7. A path insert call into an existing data base involves a
logical child segment.

AK: An invalid field name was supplied in the call.

Possible causes:

1. Unatle to find thE sFecified field name.

2. When accessin9 a lcgical child, a field name from the othe
(paired) logical child is used for the destination Farent
concatenated key Fcrtien.

AL: The call is usin9 a terminal PCB in a DL/1 program.

AM: Call function not ccmFatible with processing option, segment
sensitivity, or transaction-code definition.

Possitle causes:

1. Coamand cede D used fer path retrieval call without path
sensitivit'y

2. Processing opticn cf 1 and call function is not insert

3. OLE!, REPL, er ISRT call without corresponding segment
sen si ti vi ty

q. A DIE!, EEFl, or 1SBT call was issued by a program while a
transactien defined as inquiry was being processed.

A GEt call was attempted for a segment with REY sensitivity.
Correct the error by specifying DATA sensitivity.

5. !his status ccde cccurs for a checkpoint (not restart) call if
a G~A~/VSAM data set is opened for output.

6. An invalid request was included in a GSAM call.

7. Any call to a GSA! dummy data set is invalid.

AT: Errcr in call. The length of the user's I/O area data is greater
than the arEa reserved fer it in the control region. The length
of the area reserved was determined by the Ace utility program,
D1SOACBO, and printed as FaIt of its eutput.

Action: Correct the PSB cr the program (message segment length
iI;Ia) in errcr.

AY: Insert call igncred because the lcgical terminal referenced by the
response alternate PCB currently has more than one physical
terminal assigned to it for input purposes.

E.2 IMS/VS Primer

19112D: Ask the master terminal operator to determine (use
ItISPLA! ASSIGN!E~T ITEB! X) which physical terminals (2 or .ore)
refer to this logical terminal. Use the /ASSIGN command to
correct the problem.

11: 7he CHNG call ~as attempted with an eight-character logical
terminal name which .as uDkncwD to the system.

!£li~~: Correct program.

A2: The CENG call was attempted with an invalid PCE. It was either
net an alternatE PCB, was not defined as modifiable, or had a
message in EIocess but incomplete.

13: An INSERT call ~as attempted to a modifiable alternate PCE which
had no destination set.

j~1i2g: ISSUE a CENG call tc set the PCE destination, and reissue
the INSEF'I call.

AS An invalid call list was supplied. A fourth parameter (KOD name)
was suppliEd, tut thE function was not ISR'I for the first segment
cf an cutput message.

!£~iQn: Correct thE ISRT call and retry the application Frogram.

A6: Insert call ignored because output segment exceeded specified
limit.

!S!i~: Ccrrect the application program.

A7: Insert call ignered because number of output message segments
inserted excEEded SFECifiEd limit by one. If another attempt is
made to insert too many segments before the program issued another
GU, the program is atended.

!~ii~B: Correct the application program.

tA: A segment sequence field bas been changed; no action in data base.

DJ: No previous successful get hold call; no action in data tase.

DX: Violated delete rule: tried to delete across a logical
relationshiE. Check ROLES = parameter on DBD.

Gl: Call is completed.

IJll!M!!i2D: Crossed hierarchical boundary into higher level.
This status code is returned on unqualified calls only.

A~!1~n: User determined.

I~S/VS Status Codes and possitle Causes B.3

GB: Call is not comple~ed.

~!E!!n!~!Qn: This is the end of the data set; last segment is
reached. If GSA!, the data set will have been closed.

AS1i~D: User determined.

GE: Call is not ccmFIEted.

~~Bl!~!!i~~: Seglent bas not been found.

A£1!2n: User deterliDed.

GK: Call is completed.

~'ElsD~!i2R: Different segment type at same level returned. This
status code is returned on unqualified calls only.

A£!i~~: User determined.

II: Call is net ccmpleted.

!~El!D~!lg~: !he segment that the user tried to insert already
exists iB the data base.

Possible causes:

1. Segment with equal Fhysical t~in sequence field already exists
for parent.

2. Segment with equal logical twin sequence already exists for
parent.

3. Logical parent has logical child pointer, logical child dces
not ha¥e logical twin pointer, and segment being inserted is
second logical child for logical parent.

4. Segment type dces not have physical twin forward pcinter, and
segment being inserted is second segment of this type for
parent or is second HtAM root for one anchor pOint.

5. !he segment teiDg inserted is in an inverted structure; that
is, the iamediatE Earent of this segment in the logical
str~cture is actually its physical child in the physical
structure.

!£!i~~: User determined.

IX: Violated insert rule.

Possitle causes:

1. Insert of logical child and logical or physical parent does
not exist, or wrong rECK.

2. Insert of lcgical cr Fhysical Earent via its logical path.

3. ISR! rEquest after Frevious Open, Clese or I/C error status
code.

E.4 IMS/VS Primer

4. A GSAM ISF! call was issued after a previous AI or Ae status
code vas returned.

A~~iQn: Ccrrect ~rc9Iam.

LB: Call is not completed.

~!E!!D~~!2n: The segment user tried to load already exists in tbe
data tase.

fossitle causes are:

1. A segment with an equal physical-twin-seguence field already
exists for the parentQ

2Q A segment ty~e dces Dot have a physical-twin-forward pcint€r
(PTR=N1 in SIGM statement in DBD) and the segment being
inserted is either the second segment of this segment type fer
the parEnt cr the seccnd HDAM roct for cne anchor point.

3. An application program inserted a key of X'FF' •• FF' into a
SHISA~ or HIIA~ data base.

A~~!Q~: User determitEd.

LC: Call is net completed.

~!E!!~!~!Qn: Key field of segments is out of sequence.

!~!iQn: Check and correct.

LO: Call is not completed.

~!~l~D~~!Qn: No parent has heen loaded for this segment.

!~!!Qn: Check and correct.

LE: Call is not completed.

~!El~n!~!2n: Sequence of sibling sEgments is not the same as the
seque~ee iD the tED.

A~!iQn: Cbeck a~d ccrrect.

~~: Call is not completed.

~!il~n!!i2D: Index maintenance issued a DL/l call, and the
segment bas not teen fcu~d.

j~1i2D: User deterliDeo.

QC: 1here are no more input messages. If CHKP call, call was
successful.

A£5i~D: The program should terminate.

IMS/VS Status Codes and Possible Causes B.5

QD: ~here are no more segments for this message.

!£!!2S: As appropriate.

QE: A GET NEXt call vas issued before a GET UNIQUE.

!£!!gn: Check and correcto

QF: Length of segment is less than five characters. Allowable segment
length is length of message text plus four control characters.)

!~1iQn: Check ano cOlrec~

QH: The eutput designation, the L~BR", is unknown to IMS/VS.

!£l!Qn: Check ITEE~ name specification in PCB or CHNG call.

RX: Violated replace rule. Review the RULES= parameter in the tEDs.

!S!!2n: Correct program/DED~

13: Invalid SEA (user modified the first six bytes).

A£!!2n: Correct the program.

17: The length of the SPA is incorrect (user-modified first six
bytes).

j~1iQn: Correct the ~ro94am.

XC: Program has inserted a message which has some Zl field bits set
which are reserved for IMS/VS use.

Action: Correct the pregram to prevent it from setting those
bits:-

XD: IMS/VS is terminating by a CHECKPOINT FREEZE or DUMPQ. This code
is returned only frcm a CHKP call issued by a batch-message
application program. The checkpoint itself was successful.

A£~!2n: Any subsequent 01/1 call will result in an atend. !he
EMP should terminatE.

The fcllowing status codes represent the most common errors in our
sutset:

~I: I/O, system, er user Errer

~l~lsD!!iQn: Data management open error.

E.6 IMS/VS Primer

Possible causes:

1. Error in DD cards.

2. The data set was cpEDed for something other than load mode,
but it is not loaded.

3. Buffer too small to hold record read at opEn time. See
Chapter 7 tCI air.iluK but fer ~ocl size.

4. DD cards for logically related data bases not supplied.

s. For an CSA~ data set, the DSCEG field of the OSA~ DCB, DSCB,
or JFCE does nct specify FS or DAo

6. For an old O~A~ data set, the BOFI or BLKSIZE field in the
DSCE is zero.

7a ~he data set is being opened for load, and the procEssing
option for cnE o[lere segments iD other than L or LS.

8. The allocation of the OSAM data set is invalid: allocation is
Frobably ",,1) rather than (', 1), and this caUSES tke DSO~G
to bE PO.

9. Processing options is L, the OSA~ data set is old, and the
DSCE lFECl and/or El~SIZE does not match the tED LRECL and/or
ELKSIZ E.

10. Incorrect or missir.g informaticn Frevented computation of
blccksize or the determination of the logical record IEngth~

". A catalo9 was not available for accessing a VSle data tasE
that was rEquEsted.

12. OS/VS could not perform an OFEN, but the I/O request is valid.
Information is either missing, or data definition infermation
is inccrrect.

!£li2D: Check DD cards; ensure ddname is name specified on
DATASET card of IBD. Segment name area in PCB has ddname of data
set which could not be opened.

AO: ihere is a physical I/C error. When issued from GSA!, this status
COdE means that the error cccurred when:

1. A data set vas accessed, or

2Q ~he CLCSE StNAt routine was entered. The error occurred ~hen
the last tleck er reccrds vas written prior to closing of the
data set.

Action: tetermine whether the error eccurred during input or
output, and corrEct the ~rcblem. Recever the data set.

NO: IIC error

~!E!!g!!i2n: There was a BSA!, VSAM, or OSAM physical I/O error
daring a tIll call iSSUEd by indexing maintenance.

j~~iQD: Check and CCIIect (recover data base).

I~S/VS Status Codes and Possible Causes E.7

II After initializaticn, the XI status code indicates an IMS/VS
errcr--Frobably GSAM.

An XX status code fro. initialization itself (prior tc the first
DL/I call) may be either a system, IftS/YS, or user error.

1121!n!~!Qn: WbED thE XX status code is issued from
initialization, the cause may be:

• InsufficiEnt stcragE
• Invalid DED
• Invalid tlocksizE
• Inyalid option
• GSA~ error

jS1i2~: Any subsEquent GSAM call viII result in an abend. The
applicaticn should terminate.

s.e IMS/VS trimEr

abend formatting routine, link-edit 7.78
abnormal termination, recovery

aft er 3. 1 4, 6.2 " 6. 28
absence of segment types 2.6, 4.14
ACB (~~~ application control blocks)
ACB library, definition and

us e 0 f 3. 5 2 , 7 • 4 1
ACB maintenance utility program 3.52
ACBGEN

de sc r i pt ion 3 .5 2
procedur e 7.67

access authorization, data 1.14, 1.15
access methods

IMS/VS
GSA M 2.16
HDAM 2.11
HIDAM 2."
as AM 2. 10
overview 2.3
SHISAM 2.15

OS/VS
STAM 1.24
VSAM 1.6, 2.10
VTAr11.26

access paths
hierarchical data structure, in 1.9
logical relationships, with 1.10, 2.19
relationship to sequence
fields 1.9

secondary indexes, with 1.12, 2.26
access to data, limiting 1.14, 1.15
accessing multiple data bases in

one program 4.2
adding type 2 SVC routine 7.3, 7.8, 7.37
admin istr at ion

data base 1. 17
data communication '.34
image copies 6.23
log tapes 6.23, 6.3'
MFS 1.34

algorithms
message sc hed uli ng 3. 8
randomizing 2. 11, 7. 103

allocating and cataloging IMS/VS
d a t a set s 7 • 4 , 7 • 9, 7.4 1

alternate PCB, data'communication
defining 3.50
description 3.12, 3.14

anchor point area, HDAM data base 2."
A NS COBOL (§~§ CO BOL)
APPLCTN macro statement, IMS/VS system

de f i ni ti 0 n 7. 25
application control blocks IACBs)

creation and maintenance 3.52
proced ure 7.67

Application Control Block Generation
(ACBGEN)
description 3.52
procedur e 7.67

ipplication control block maintenance
utility 3.52

!l pplication data structure
concept 1.6
design process, use in 2.74
relationship to physical
data structure 2.77

application program
ba t:::h mess age

processing 1.34, 3.10, 4.47
ba tch processing 1.16
cbeckpoint/restart, use of 4.41
coding conventions

Assembl er 4. 31
COBOL 4. 32
PL/I 4.34

coding DL/I calls in 4.7
conversational 4.68
design for batch 4.2
design for online 3.56, 4.47
GSAM, use of 4.25, 4.45
IMS/VS interface 4.2, 4.47
interactive 3.54
loading data bases, for 4.26
message format service, use of 4.55
message processing 4.46
recovery after abend 6.21
termination 4.11

application program, batch
de sign con si der ations

Assembler considerations 4.31
checkpoint/restart 4.4'
COBOL considerations 4.32
COpy or INCLUDE, use of 2.69
DL/1 calls 4 .. 7
DL/I statistics, obtaining 4.25
GSAM, using 4.25, 4.45
perfor~ance considerations 9.32
PL/I considerations 4.34
status code error routine 4.30

application program, online
design considerations

batch message processing program
(BMP), use of 4.47

conversational processing 4.68
input calls, message 4.58
input/output interface 4.48
message processing program

(Mpp) 4.58
message format service,

use of 3.59
output calls, message 4.53
output to alternate
destinations 4.54

environment, IMS/VS 4.47
message segment

description 4.51
format 4.55

Index I.1

restart, program 3.15
testing, MPP 4.70

application programs, sample
batch

assembler load program 4.27
COBOL

checkpoint/restart,
using 4.45

logica 1 rela tionshi ps,
using 4.39

retrieve only 4.32
secondary indexe s,

using 4.41
PL/I

checkpoint/restart,
using 4.45

logical relationships,
using 4. 39

retrieve only 4.34
secondary indexes,

using 4. 41
error routine, status code 4.30
online

COBOL
checkpoint/restart

B MP' 4. 3 8, 1. 55
conversational MPP 4.70
inquiry MPP 4.60
retrieve only BMP 7.55

PL/I·
checkpoint/restart

B MP 4. 45 , 7. 55
conversational MPP 4.70
inquiry MPP 4.62
retrieve only BMP 7.55

randomizing routine, simple
linear 7.59

statistics print routine 4.25
assellbler language, conventions and use of

batch program structure
call formats (§!! individual calls)
guidelines 4. 31
IMS/VS interface 4~2

online program structure
call formats (see individual calls)
conversational-MPP 4.68
IMS/VS interface 4.47
inquiry MPP 4.58

attribute modification,
dynamic 4.57

attribute data
input message fields

ATTR= operand 3.35
description 3.25

output device fields
ATTR= operand (OFLO) 3.42
ATTR= operand (MFLO) 3.35
description 3~28
cursor position, use for 4.57

ATTR= operand
DFLD statement 3.42
MFLD statement 3.35

automatic page deletion 3.28

1.2 IKS/VS Primer

backout utility (~!! data base backout
utility)

backup, MFS library 3.49
backward pointers, use of 2.14
batch checkpoint/restart, DB/DC
system

batch message programs,
how to use with 4.41

overview 1.31
ba tch checkpoint/restart, DB
system

backout utility 6.14
batch programs,

how to use with 4.41
CHKP/XRST call, use of 4.41
description 4.41
generalized sequential access

method (G SAM), wi th 4.45
operating procedures 7.55, 8.5
overview 1.31

batch data base system
descr ipt ion 1.5
installation 7.4
sample execution 7.48
subset overview 1358

batch message processing program (BMP)
backout 3.12
checkpoint/restart, use of 3.15, 4.41
IMSBATCH procedure 1.14
overview 1.34, 3~ 10
scheduling 3.10

batch processing
backout 6.14
checkpoint/restart, use of 4.41
DLIBATCH procedure 1.68
overview 1.16
system flow 1. 16

BMP (i!! batch message program)
buffer pools, IMS/VS

data base
description 7.59
performan:e considerations 9.12
specification of 7.61
statistics 9.1, 9.1

online
description 1.23, 1.59
performance considerations 9. 14
specification of 7.23, 7.61
sta tistics 9. 14

buffer services, IMS/VS OL/I,
control statements for

OSA! buffer pool 7.62
VSAM buffer pool 1.61

BUPPOOLS macro statement, 1!S/VS system
definition 7.23

calls, OL/1 batch
checkpoint (CHKP) 4.44
comma nd codes, ulrecl 4.21
data base positioning
after 4.23

definition 1.14
delete tDLET) call 4.19
description, general 4.7

forward movement 4.13, 4. 15
function code 4.8
get calls

get next (G N) ". 15
get unique (GU) 4. 14
hoI d form s 4 • 18

insert calls (ISRT) 4.20
overview 2.9
qualified 4.16
replace (R EPt) 4.18
restart (IRST), e~tended 4.81
segment search argument (SSA)

characteristics of 4.1'
command codes for 4. 11
concept and function 4.9
qualification of 4.10
struc ture 4.9

calls, Dt/I online
change destination (CHNG) 4.54
message insert (ISRT) 4.53
message retr ieve (GU, GN) 4.52
scratch pad area (SPA) insert 4.66
scratch pad area (SPA) retrieve 4.66

calls, IMS/VS system service
chec kpoint (CH KP) 4.41
restart (IRST) 4.42
statistics (STAT) 4.25

cataloged procedures {§~~ IMS/VS
cataloged procedures)

change accumulation utility (~~~ data
base change accumulation util~ty)

chained control block linkage, MFS 3.20
chaining MIDs and MODs 3.20

N X T== 0 pe ra nd s 3 • 3 2, 3. 3 3
checkpoint call (§~Sl CHKP call)
checkpoint/restart

batch 4.41
description 3.15 , 4.41
extended 4.41
frequency of checkpoint 4.41
GSAM, with 4.45
introd uc tion

batch 1.15
online 1.31

online 3.15, 4.47
use of 4.41

CHKP call (data base) 4.44
CHNG call (data communication) 4.54
clear key, 3270, impact of 3.41
COBOL, conventions and use of

batch program structure
call formats (§~~ individual calls)
guidelines 4.32
IMS/VS interf ace 4.4- 4.11

online program structure
call formats (§!! individual calls)
qonversational MPP 4.68
guidelines 4.60,4.68
IMS/VS interface 4.50
inquiry MPP ~.60

COHM macro statement, IMS/VS system
defini tion

BTAM, when using 7.31
VTAM, when using 7.27

command language, IMS/VS terminal 1.29
command s, I MS/VS

description (§!i IMS/VS Primer
Master Terminal Operator's Guide)

protection against
una uthori zed us e 7.65

subset, Primer 1.38
:: ommunica tion s network

defining, IMS/VS 7.27, 7.31
defining, NCP/VS 7.38
defining, VTAM 7.38
introduction 1.24
Primer sample 7.44

compilation statements, MFS 3.44
concatenated keys 2.8
concatenated segments, logical
relationship 2.19, 2.24

configurations, sample network 7.44
contention for resources, message
scheduling effects of 3.9, 3.12

control block pools
definition 7.23
optimization 9.14

control blocks, HFS
(§~~ !l§2 DIF, DOF, MID, a nd MOD)
compilation 3.34
crea ti on 3. 34
linkages 3. 20
relationships between 3.20
summary 3.18

control region, IHS/VS
description 3.4
system flow 1.32
structure 3.4

con trol structure, DB s yst em 1. 16
conventions, naming 1. 18
conversational processing

defini tion 1.29
description 3. 14
design considerations 3.51, 3.63
interactive processing,
relation to, use for 3.56, 3.61

program structure for 4.64
scratch pad areas (SPAs),

use of 4.64
scratch pad area layout 4.65
system definition of 7.23, 7.26
termination, how 4.61

converting from batch to online 7.18
copy function, 3270 3.18, 7.30, 1.35
corequisite publications p.S
count parameter (DO statement)

DFtDs 3.41
MFtDs 3.34

crossing a logical relationship 2.21
CTtUNIT macro statement, IMS/VS system
defini tion 7.32

cursor attribute
C URSOR= operand (DPAGE st at ement) 3.41
cursor positioning

default 3.41
program, by 4.57

Index 1.3

data base (§~ ~!§2 data base design)
concepts 1.6-1.13
content

fields 2.7
pointers 2.14
segments 2.7
records 2.6
free space 2. 13, 2.33
anchor points 2~11, 2.31

defining 2.29
GSAM, using 2. 16
HOAM, using 2.11
HIDA" ,using 2.17
index, primary 2.17
index, secondary 2.25
introduction 1.1
logical (~! logical data base)
organization types 2.5
physical (§§! physical data base)
position after a call 4.23
sequence fields and access paths 1.9
simple HISAM. (SHISAM) 2.15
space allocation for 2.83-2.85

data base access methods
introduction 2.5, 2.10
performance considerations 2.80. 9.30
when used 2.78

data base administration 1.17
data base backout utility

(DFSBBOOO) 6.14
data base buffering

defining pool sizes 7.61
overview 7.61

data base change accumulation utility
(DFSUCUMO) 6.9

data base description block (DBO)
purpose of 1.14
requirements, definition of 2.29

Data Base Description Generation (DBDGEN)
definition of 1.14
execution of 2.29
procedure used for 7.68

data base design
checklist 9. 11
concepts and methodology 2.62
intermediate data base, of 3.64
introduction to 2.64
online considerations 3.63
optimization 9.12
performance checklist 9.11
structure rules

basic 1.7
logical relationship, with 1. 10
secondary indexing. with 1.12

structure changes. rules for 5.27
transaction/data element
matrix, use of 2.67

tuning 9.12
data base dump (see data base image

copy) ---
data base image copy 6.2, 6.7
data base image copy utility

(DFSUDMPO) 6.7
data base input/output interface
(§!~ Data Language/I (OL/I»

I.4 IMS/VS Primer

data base integrity 1.15. 1.30
data base load, initial

ba sic data b!. se 4. 26
logical related data bases 4.38, 5.23
secondary index data base 4.41, 5.25

data base logic!. 1 rela tionships
concepts 1.10
description 2.17
defining 2.43

data base logical relationship resolution
utility programs

initially loading a data base
containing logical
relationships 5.23

overview 5.13
pref ix reso lu ti on utili ty

tOFSU RG 10) 5. 15
prefix update utility

(DFSURGPO) 5.19
prereorganiz!.tion utility

(DFSU RPRO) 5. 13
reorganizing a data base containing
logical relationships 5.26

secondary ind.exes,
building 4.41,5.25,5.27

data base logging capability 1. 15, 1.30
(§!! !1§2 log, IMS/VS system)

data base monitor (§~~ DB Monitor)
data base organization, types of 2.5
data base prefix resolution utility

(OFSURG10) 5.15
data base prefix update utility

(OFSURGPO) 5.19
data base prereorganization utility

(OFSU RPRO) 5.13
data base processing intent, message

sched uling
conflicts, how resolved 3.12
scheduling, impact upon 3. 10

data base record 1.6, 2.6
data base recovery

basic 6.2
full OL/I 6.4
introduction 6.1
log tape. IMS/VS, significance 6.5
procedures for 6.20

data base recovery utility
(DFSU ROBO) 6.12

data base reorganization
flowchart 5.24
introduction 5.1
performance considerations 5.25
structural changes, making 5.27
symptoms for 5.22
utilities for 5.3

data base reorganization/load
processing
(~~§ data base reorganization)

data base secondary indexing
concept 1. 12
defining 2.50
description 2.25

data base structure rules
basic 1.7
logica 1 relationships 1.'0
secondary indexing 1. 12

data base system
access met hods 2.5
application program,
relation to 1.16, 4.'

con~rol sequence flow 1.16
facilities provide with 1.5
performance, monitoring 9.1
GSAM 2.16
HDAM 2.11
HIDAM 2. 11
installation of 7.10,7.138
logging 6.5
monitor, DE 9.3
operating environment, batch
scheduling 1. 16

OS/VS considerations 7.2, 7.78
OS AM 2.10
planning for installation 1.21
STAE/ESTAE, use of 6.5
system definition, IMS/VS 7.5
utility programs 1. 15

data base system flow 1. 16
data base/data communications (DB/DC)
system

introduction 1.26
facilities 3.6
relationship to DE system 3.6
system flow 1.32

dat a commun ication
ba sic concepts 1. 24
features, IMS/VS 1.26
system flow, IMS/VS 1.32
system network architecture,
basic concepts 1.24

data communication macro statements,
IMS/VS system definition

ETAM macro set
COMM 7.31
CTLUNIT 7.32
LINE 7.32
LI NEG RP 7.31
NAM E 7.35
TERMINAL 7.33

VTAM macro set
COMM 7.27
NAM E 7.30
T ERMI N A1 7.29
TYPE 7.28

data independence 1.6
Da ta La ng ua ge/I (DL/1)

call requests, functions performed
input/output class

data ba se 4 • 7
message 4.52

language interface 1. 14
dat a, limiting acc ess to 1.'4
data manipulation language 1.14
data security

bat ch 1.15
online 1. 29
extended 1.29

data sets, IMS/VS, allocating and
catalogging 7.9. 1.41

data spaces, defining VSAM, for
da ta bases 2. 8S

data structure, application 1.6, 2.74
aa ta structur es, IMS/VS '.7, 2.77
aa ta structure, changing the 5.27
data structure, secondary indexes 1.12
DATABASE macro statement, IMS/VS

system definition 7.24
DATASET statement

ba sic da ta base, for 2. 33
GSA! data base, for 2.42
logical data base, for 2.48
secondary index data base, for 2.54

DB moni tor
description 9.3
output interpretation and

sam ple 9. 7
report print program

(DFSUTR 30) 9.5
DB PCB

defining a 2.57
de scriptio n 1.14
prog rams view of 4.5

DBA (2!~ data base administration)
DBD (§!~ data base description block)
DED sta tement

basic data base, for 2.31
GSAM data base, for 2.42
logical data base, for 2.41
secondary index data base, for 2.54

DBDGEN statement 2.39, 2.42
(~~~ !l~Q data base description
genera.tion)

DC monitor
de sc ri ption 9.21
output interpretation and

sample 9.23
report print program

(DFSUTR 20) 9.22
DC PCB

defining a 3.49
de sc ri pti 0 n 3. 1 1
program view of 4.49

aefault attributes, MFS 3.35
defining IMS/VS batch system 1.5
defining IMS/VS online system 1.13
defining NCP/VS 7.39
defining physical data bases

ba sic 2.29
logical relationships, with 2.43
secondary indexes, with 2.50

defining VTAM 7.38
definition statements, MFS

device format
DEV 3.39
DFLD 3.42
DIV 3.40
DO 3.41
DPAGE 3.41
EN DDO 3.44
PMT 3. 38
PMTEND 3.44

Index 1.5

message forma t
DO 3.34
ENDDO 3.38
LPAGE 3.33
MFLD 3. 35
MSG 3.32
MSGEND 3.38
PASS WORD 3. 34
SEG 3.34

definition statements, IMS/VS
batch 7.5
online 7.13

delete call (§~~ DLET call)
dependent segments 1.7
destination parent 2.19
device field (DFLD statement) 3.42
device format selection, initial 3.18
device independence 1.26
device input for mat (DIF)

associated MFS functions 3.24
MFS statements used to create

DEV 3.39
DFLD 3. 42
DIV 3.40
DPAGE 3.41
FMT 3.38
FMTEND 3.44
summary 3.24

relationship to other MFS control
blocks 3.22

device output format (ooF)
associated MFS functions 3.25
MFS statements used to create

DEV 3.39
DFLD 3.42
DIV 3.40
DPAGE 3.41
FMT 3.38
FMTEND 3.44

relationship to other MFS control
blocks 3. 22

device page (DPAGE) 3.41
DEV statement 3.39
DFLD statement 3.45
DFS3125A, message

application program invoking
by an 4.30

used for testing recovery
procedures 8.5

DFSBBOOO utility program
DFSFLOTO utility program
DFSUCUMO utility program
DFSUDMPO utility program
DFSULT RO utili ty program
DFSURDBO utility program
DFSURG10 utility program
DFSURGLO utility program
DFSURGPO utility program
DFSURGUO utility program
DFSURPRO utility program
DFSURRLO utility program
DFSURULO utility program
DFSUTR20 utility program
DFSUTR30 utility program
DFSVSAMP data set 7.61

I.6 IMS/VS Primer

6.14
6.27
6.9
6.7
6. 18
6 .. 12
5 .. 15
5. 10
5.19
5.8
5.13
5.6
5.4
9 .. 22
9.5

DIF (~!! device input format)
direct access pointers

ba sic da ta ba S9 2. 14
logically related data base 2.25
secondary index data base 2.28

display area (3270 master terminal 3. 17
distributed free space, HDAM or HIDAM
data base 2.33, 2.84

distribution tapes, restoring the
IMS/VS 7.4
NCP/VS 7.40

DIV statement 3.40
DL/I (Data Language/I) 1.1, 1.5
Dt/I call (~~~ calls, Ot/I batch and
calls, DL/I online)

DL/I call functions, batch
checkpoint/restart calls 4.44
delete calls 4.19
get calls 4. 14
insert calls 4.20
replace calls 4.18

DL/I call functions, online
change destination 4.54
message insert call 4.53
message retrieve calls 4.52

OL/I data base (§.~~ data base)
DL/I interface 1.14
OL/I status codes

description (~~~ individual call)
detailed description of B. 1
handling by status code error
rout ine 4.11

quick reference table A.1
DLET (delete) call

basic 4.19
logical relationships, with 2.24, 4.38
secondary indexes, with 4.41

DO statement
DFLD s 3.41
MFLDs 3.34

DOF (§!~ device output forma t)
DPAGE (device page) 3.41
DSCA= operand (OEV statement) 3.39
dynamic attribute modification 4.57

EJECT statement 3.45
emergency restart

description 3.16
testing 8.5

END statement
data base descriptor block, in 2.39
forma t desc ri ptor block, in 3.45
program descriptor block, in 2.61

end-of-data (EOD) 3.2
end-of-message (EOM) 3.2
end-of-segment (EOS) 3.2
ENDDO st atement

DFLDs 3.44
MFLDs 3.38

entities, naming conventions for 1.18
en try point to 3. pplica tion
programs 4.4

erase all unprotected option (fIIFS) 3.39

examples (~!! samples, I~S/VS Primer,
and appli~ation programs, sample)

FEAT= operand (DEV statement) 3.39
feature, If!S/VS ·DC 1.24
fetch request element (FRE)

defining number of 7. 23
performance considerations 9. 16

fie ld format, 11 FS
input message 4.55
ouput message 4.57

field, key
description 1.9
relationship to access

pa th 1.9
FIELD st at ement

basic data base, for 2.37
secondary index data base, for ~55
index target data base, for 2.53
sequence field 2.37

file description, GSAM 2.42
fill characters, ~FS

input message fields 3.24, 3.35
output device fields 3.26

FILL= operand (MFLD statement) 3.35
FINISH statement 2.39
fixed pages, defining in IMS/VS
virtual control region 7.44

floating print lines 3.29
FLOAT parameter (DEY statement) 3.39
FMT st atement 3.38
F ~T EN D st a t em en t 3 • 44
forced attributes (literal device
fields) 3.42

forma t
.(§.~~ !l§'Q device input format,
device output format)

formatting 3270 messages 1.26
forma t, message

input 4.55
output 4.57

format set
definition 3. 18
If!S/VS provided format sets 3.29

forward pointer 2.14
forward recovery 6.21
forward writing of log tape 7.6 8
FRE (§~! fetch request element)
free space anchor point, OSA~ 2.33, 2.84
frequency of image copies and change
accumulations 6.25, 6.32

frequency of physical
reorganiza tions 5.22

Gantt chart, use of 1.21
generalized sequential access method

(.§§~ GSA M)
get ca lIs (da ta base)

GHN 4.18
GHU 4.18
GN 4.15
GU 4. 14

get calls (data communication)
GN 4.52
GU 4.52

GET BOLD NEXT (GHN) call 4.18
GET BOLD UNIQUE (GHU) call 4. 18
GET NEXT (GN) call

data base segment, for a 4.15
message segment, for a 4.52

GET UNIQUE (GU)
data base segment, for a 4.14
message segment, for a 4.52
SPA, for a 4.53

GSAM (generalized sequential
access method)

checkpoint/restart, with 4.45
DBD generation 2.42
de sc ri ption 2.16
how to use 4.25
PSB generation 2.59
restrictions, online use 4.46
SYSIN/SYSOUT, use for 4.25

Guides, IMS/VS Primer
Master Terminal Operator's 8.2
Remote Terminal Operator's 8.7

HD reorganization reload utility
(DFSURGLO) 5. 10

HD reorganization unload utility
(DFS URGUO) 5. 8

HDAM data base
DBD generation 2.29
de seri ption 2. 1 1
design considerations 1.10
loading 4.29
PSB generation 2.57
root addressable area, size of

formula 2.84
using 2.78

BIDA~ data base
DBD generation 2.29
description 2.11
design considerations 2.78
loading 4.28
PSB generation 2.57
space allocation 2.83
using 2.78

hierarchical data structure 1.7, 2.77
hierarchical sequence, sorting segments
in 4.28

H15AM, simple (§~~ 5H15AM database)

I/O PCB 4.48
I/O work area 4.8, 4.52
IGNORE parameter

DEV statement (FEAT=) 3.39
MSG statement (SOB=) 3.32

image copy utility (§§! data base image
copy utili ty)

IMS and IKSBDR procedures to SYS1.PROCLIB,
adding 7.36, 7.78
I~S/VS cataloged procedures 1.66

ACBGEN 7.67
DBDGEN 7.68

Index 1.7

D LIB A TC H 7. 68
IMS 7. 71
Il!S BATCH 7.74
IMSMSG 7.75
IMSRDR 7. 76
PSBGEN 7.76
SECURITY 7.77
MFSRVC 7 .. 77
MFSUTL 7.78

IMS/VS Data Ba se S yste m, installing
overview 7.4
tasks 7. 9

Il!S/VS data sets, allocation of
batch 7.4
online 7 .. 11

IMS/VS distribution tapes 7.4, 7.11
IMS/VS installation process

DB system 7.4
DB/DC system 7.11

IMS/VS interface to application
programs

batch 4. 2
online 4.47
overview 1.14

IMS/VS libra ries
DB system 7.4
DB/DC system 7.11

IMS/VS links to OS/VS, establishing
batch 7.2, 7.8, 7.78
online 7.2, 7.36, 7.78

IMS/VS system definition
(§~~ system definition)

IMSCTF macro statement, IMS/VS system
def in it io n 7.6, 7.20

IMSCTRL macro statement, IMS/VS system
definition 7.6, 7.19

IMSGEN macro statement, IMS/VS system
definition 7.7, 7.21

INCLUDE, use of 2.69
INDEX data base, primary 2.12, 2.40
INDEX data base, secondary 2.25, 2.54
inde x function, MP S, perf ormance
factors 9. 16

index pointer segment, secondary
define, how to 2.54
description 2.28

INDEX reorganization reload utility
(DFSORRLO) 5.6

INDEX reorganization unload utility
{DF SUR ULO) 5.4

indexes, secondary
concepts 1. 12
define, how to 2.50
description 2.25
rules for 1.12, 2.26
segment types use with

pointer segment, index 1.12
target segment, index 1.12
source seg me nt, inde x 1. 12

use, how to 2. 86
secondary processing sequence 1. 12

initial load program, sample 4.27
INOUT parameter

DIV statement (TYPE=) 3.40
input message formatting 3.24

I.a IMS/VS Primer

INPUT parameter
DIV statement (TYPE=) 3.40
MSG statement {TYPE~ 3.32

input/output call (§~ calls, DL/I batch
and calls, DL/I online)

inquiry only processing 3.12
inquiry only tra nsaction,
specifying on TRANSACT macro 7.26

insert tISRT) call
(~~~ I SR Teall)

installing
IMS/VS DB system 7.4
IMS/VS DB/DC system 7.11

integration, application data 1.1, 2.69
intent, data ba$e

conflic t, pote ntial
scheduling 3.9, 3.12

defined, how 3.10, 3.51
interface to application programs,

IMS/VS
batch 4.2
online 4.47

intermediate data base, using 3.64
intermediate text block (ITB) 3.47
IS RT call

basic 4.20
loading, for 4.29
logical relationships, with 2.24, 4.38
message segment, for a 4.53
secondary indexes, with ~.41

SPA, for a 4.66
ITB (intermediate text block) 3.47
iterative processing (MFLD/DFLO)

DO statement
DFLD 3.41
MFLD 3.34

ENDDO statement
DFLD 3.44
MFLD 3.38

JCL, sample
insta lla tion, for

batch 7.9
online 7.41

exercising, for 7.48
(§g~ s!§Q Chapter 2, Sample Job
Listing in the IMS/VS Primer
Sample Listings manual)

justification, ~FS field 3.24, 3.26
JUST= operand (MFLD statement) 3.35

key, data base root 1.9

L parameter (MFLD statement) 3.35
LCHILD sta teme nt

basic HIDAM data base, for 2.38
index target data base, for 2.51
logical related data base, for 2.45
primary index data base, for 2.38
secondary index data base, for 2.55

length
data base fields 2.37
device fields 3.26, 3.42
message fields 4.56
print lines, 3270 3. 29, 3.42

libraries, I115/VS l§~~ I11S/VS
libraries)

limiting access to data 1.14, 2.57, 3.49
line groups, terminal 7.31
LINE macro statement, I11S/VS system
definition 7.32

LINEGRP macro statement, I11S/VS
system definition 7.31

lines per printed page 3.29
link security (§~~ security

maintenance utilitn
linkages, MFS control block

chained 3.20
LPAGE/DPAGE 3.22
message descriptions 3.23
message fields and device fields 3.22

linking IMS/VS to OS/VS
I11S and IMSRDR procedures, making

accessible to CS/VS 1.9, 7.36, 7.78
link-editing modules into LPALIB

abend formatting routine 7.78
resource clean-up module 7.18

link-editing type 2 SVC in
as/vs nucleus 7.8, 7.37, 7.18

lit era 1 fie Id s
input message 3.24
output message 3.26
performance factors 3.60
system literals 3.35

literal length IMPS) 3.35
load, initial data base

basic data base, a
HDAM 4.29
HIDA11 4. 28
SHISAM 4.29
sort, use of 4.28

flowchart 4.26
logical relationships, a data
base with 4. 38

overview 4.26
planning for 1. 21
secondary indexes, a data base
base with 4.41

sample program and jobs 4.27
log, 1MS/V5 system

accounting, use for 9.20
administration of 6.31
modifications, recording data

base 6.5
power failure, closing after a 6.21
purpose of 3.15, 6.5
restart, for system 3.22
recove ry, use in 6.22
recovery of 6.18
retention periods for 6.26
serial numbers 6.32
statistics, retrieving from 9.19
termination of 6.27
write ahead option 7.60

log recovery utility program, system
(DFSULTRO) 6. 18

log tape, IMS/VS (~~ log, IMS/VS system)
log tape administration 6.31
log tape data set names 6.31
log tape retention periods 6.26
log tape write ahead 7.60
log terminator utility program, system

(DFSFLOTO) 6. 27
log ical chi ld

concept 1.10, 2.17
define, how to 2.44
deleting 2.24, 4.38
inserting 2.24, 4.38
rela tiOD ship to

physical parent 1.10, 2.17
logical parent 1.10, 2.17

use of 2.85
logical data base

concept 1.10,2.19
define, how to 2.47
relationship to physical
data base 1. 10

use of 2.85
logical data base reorganization

description 5.3, 5.26
flow chart 5.24
pe rf ormance consider at ions 5.25
restructure limitations 5.27
utilities for 5.2

logical page (LPAGE), MFS 3.33
logical paging, operator 3.27
logical parent

concept 1.10
define, how to 2.45
de Ie ting 4. 38
inserting 1.4.38
relationship to logical
chi Id 1. 10

replacing 4.31
logical parent pointer 2.25
logical relationships

building 2. 19
concepts and definition 1.10
description of 2.19
paths, access 1. 10
pointers used wi t.h 1. 10, 2.25
re structuring 5 .. 27
segment types in~,olved with 1.10
utilities used for 5.2

logical relationship resolution utility
programs

data base prefix resolution 5.15
data base prefix update 5.19
data base prereorganization 5.13

logical terminals
concept, definition of 1.27
relationship to physical

terminal 1.2'1
naming conventions for 1.30, 7.35

mc clearogical page) 3.33
LPAGE/DPAGE relationships 3.22
LTEFM (§!! !1§2 logical terminal)

access by application
prog ram 4.49

Index I.9

concept, IMS/VS 1.27
relationship to node,

physical terminal, and
end user 1.25

LTH= operand
DFLD statement 3.42
MFLD statement 3.35

LTNAME parameter (MFLD statement) 3.35

MAeLIB, required OS/VS option 7.10
macro statements, IMS/VS DB system
definition

I!!SCTF 7 .. 6
IMSCTRL 7.6
I MS GEN 7."
resource na ming rules 7 .. '6

macro statements, IMS/VS DB/DC system
definition

data base and application
APPLCTN 7.25
DATABASE 7.24
TRANSAcr 7.26

data communication-BTAM
COMK 7.31
C TL UN IT 7 .. 32
LINE 7.32
L1 NE G R P 7.3 1
NAME 7.35
T E R MIN AL 7. 33

data communication-VTAM
COMK 7.27
NAME 7.30
TERMINAL 7.29
TYPE 7.28

env ironme nt
BU FPOOLS 7. 23
IMSCTF 7 .. 20
IMSCTRL 7 .. 19
I MS GEN 7.21
MSGQUEUE 7 .. 23
SPAREA 7.23

resource na ming rules 7.16
macro statements, maximum occurrences

system definition 7. 16
masks, PCB

batch 4.5
online 4.49

master terminal
commands overview and operating

procedures (2~~ IMS/VS Primer
MTO's Guide)

descr iption 1. 27, 3. 17
devices used for 3 .. 17
format, screen 3. 17
operator 8.2
operator procedures, maintaining 8 .. 5
as/vs console, relationship to 3.18
system definition of 7.30, 7.35

message
definition 3.2
editing of 3.24, 3.26
types of 3.7

message area (3270 master terminal) 3.17
message field (MFLD) 3.35

1.10 IMS/VS Primer

messa ge forma t
input 3.7, 4.55
output 3.7,3.14,4 .. 56
performance factors 3 .. 60

message format service
control sta tements overview 3.30
description 3.18
design considerations 3.59
overview 3.18

message input descriptor (MID)
a ssoc ia ted MF S f unc tion s 3. 18
MFS statements used to create

DO 3 .. 34
ENDDO 3.38
LPAGE 3.33
MFLD 3.36
MSG 3.32
MSGEND 3.38
PASSWORD 3.34
SEG 3.34

rela tionshi p to other MFS con trol
blocks 3 .. 20

message input header 4.55
message output descriptor (MOD)

associated MFS functions 3 .. 18
MFS statements used to create

DO 3.34
ENDDO 3.38
LPAGE 3.33
MFLD 3.35
MS G 3.32
MSGEND 3.38
PASSWORD 3.34
SEG 3.34

relationship to other MFS control
blocks 3 .. 20

message output header 4.56
message prefix

input 4 .. 55
output 4.56
SPA 4.64

message processing region (MPP) 3.5
message queues

description 3.7
dat a sets 7. 13
recovery 3.15, 3.16

message scheduling 3.8
message segment

description 3 .. 2
format

input message 4.55
output message 4.56
scratch pad area (SPA) 4.64

Message/Format Language Utility Program
(§~~ MFS language utility program)

MFLD statement 3.35
MFS [2~~ message format servic~
MFS language utility program

control statements
compilation 3.44
definition 3.32
naming conventions 3.31
overview 3.30

example 3.42
e xecut ion 3.47

JCL 3.49
proced ures

MFSRVC 7.77
MFSUTL 1.78

syntax 3.31
MFS service utility program 3.49
MFSUTL procedure 7.78
MID (§!§ message input descriptor)
migration, DB to DB/DC 1.78
MaD (2~~ message output descriptor)
MOD parameter (DFLD statement) 3 .. 42
modifications, data base 109ging

of (§~ log, IMS/VS system)
monitor

tB system (~!§ DB Monitor,
IMS/VS)

DB/DC system (§~~ DC Monitor,
IMS/VS)

monitoring online performance 9.14
MSG statement, MFS 3 .. 32
MSGEND statement 3.38
MSGQUEUE macro statement, IMS/VS
system definition 1.23

multipage output message 3.27, 4.58
multiple message mode 3.1
multiple positioning in data

base 4.24
multipoint line, definition, IMS/VS 1.31
multisegment message 3.27, 4.58

NAME macro statement, IMS/VS system
definition 7.30, 7.35

names, logical terminal 1.30, 1.35
naming conventions

entities 1.18
formats, MFS 3.31
jobs, sample 1.19
log tape data set 6.31
logical terminals 7.30, 7.35

naming rules, IMS/VS system definition
resource 7.16

NCP/VS (Network Control Program/VS)
ge ne ra ti on 7. 39
introduction 1.24, 1.26

network (§§§ communications network)
Network control Program/VS (§~~ NCP/VS)
network design 3.38, 9.31
node, VTAM 1.25
NODISP parameter (DFLD statement) 3.42
non-upda te processing

batch 4.14
online 3.12,4.60,4.62

NOPFOT para mete r (DFLD sta temen t) 3.42
normal restart, IMS/VS 3.16
nue leus, as/vs,
linking 7.8, 1.37, 7.18

null characters (for MF~
COBOL, coding in 4.60
FL/I, coding in 4.62
use for 4.51

null fill
input message fields

description 3.24
FIL1= operand (MFLD) 3. 35

output device fields 3.26, 3.42
NULL parameter, MrS

MFLD statement (FILL=) 3.35
NIT= operand

LPAGE statement 3.33

online buffer pools, optimizing
optimizing 9.14, 9.23

operating system,
preparing for IMS/VS 7.2, 7.78

operator, IMS/VS master
terminal 1.27, 8.2

operator, remote terminal 8.6
opera tor logical paging 3.21
optimiz ation of

application programs 9.13
data communication design 9.30
IMS/VS online system 9.13
physical DB implementation 9. 12
VTAM storage pool parameters 9.21

organization of data, IMS/VS (~~
da ta base)

as/vs data files, use of
[~~~ GSAM)

as/vs libraries, cataloging for
IMS/VS system definition 1.4, 7.38

OS/VS links to 1MS/VS,
establishing 7.2, 7.78

as/vs programs used with IMS/VS 1.4
OS/VS supervisor call routine
required by IMS/VS 7.3

OS/VS system modification program
(SMP) 7 .. 81

OS/VS' consideration 7.2
OS/VS2(MVS) considerations 1.78
OSAM (overflow sequential access

method) 2. 10
output call, DL/I (§~~ calls,

DL/1 batch and calls, DL/I online)
output device field attributes 3.28
output limits, application program 7.26
ouput message default format 4.56
output message paging 3.27
output to alternate destination

al te rna te PCB 3.50
CHNG call, use of 4.54

overflow sequential access method
(OSAM) 2. 10

P A (program access) keys (3270)
PA 1 3.28
PA2 3.28
PA3 3.18

PAG E= ope rand
DEV statement 3.39
MSG statement 3.32

paging, operator logical paging 3.21
paging, output message 3.27

I ndex I. 11

password and/or terminal
security, IMS/VS

description 1.29, 7.64
definition utility 7.64
definition, MFS 3.34
PASSWORD statement, MFS 3.34
position in master terminal
format 3.17

PASSWORD statement, MFS 3.34
path calls 4.21
path, hierarchical '.9
PCB (program communicu tion block)

dafin ing
alternate destination 3.50
batch 2.58
online 3.50

application program use
alternate destination 4.48
batch 4.5
online 4.48

PCB statement
alternate destination 3.50
basic data ba_J, for 2.58
GSAM data base, for 2~95
logical data base, for 2.59
secondary index data base, for 2.62

PCB mask (data base) 4.5
PCB mask (data communication) 4.49
performance considerations
[§~~ Chapter 7, Optimization)

PERT chart, samFle
DB system, for 1.21
DB/DC system, for 1.35

PFK12 (program function key 12) for
3270 remote copy 3.18

phases, Primer sam~le
introduction 1.4
jobs

phase 0 7.49
phase 1 7.49
phase 2 7.52
phase 3 7.54
phase 4 7.551

P hysical child
concept 1. 7
define, how to 2.29
pointers use with 2.14

physical data base
concepts, definition 1.5
relationship to logical

da ta ba se 1 • , 0
define, how to 2.29
types, subset 2.5
rules for defining logical
relationships in 2.22

physical data base reorganization
(see data base reorganization)

physical data base recovery (§~~
data base recovery)

physical terminal 1.26
physical/logical terminal
relationship 1.27

I.12 IMS/VS Primer

physical parent
concept, definition 1.7
define, how to 2.29
pointers used with 2.14

physical twin
concept, definition 1.7
pointers used with 2.14

PL/I Optimizer, conventions and use of
ba tch program structure

call formats (§!! individual calls)
guidelines 4.34, 7.37
IMS/VS interface 4.4-4.11

CAUTION for multi-tasking during
link-editing 4.35, 7.37

online program structure
call formats (§~~ individual calls)
conversational MP'P 4.70
guidelines 4.60, 4.68
IMS/VS interface 4.50
inquiry MPP 4.62

pointers, data base
basic 2. 14
logical ~elationships, with 2.25
secondary indexing, with 2.28

pools, IMS/VS buffer (2~~
buffer pools, IMS/VS)

pools, VTAM storage (§~~ VTAM)
POS= operand [DFLD statement) 3.42
positioning, data base, after

D1/I call 4.23
prefix resolution utility (§~~ data base
prefix resolu ti on utili ty)

prefix, segment 3.2
prefix, SPA 4.64
prefix update utility (2~~ data base
prefix update utility)

preparing for IMS/VS use
NCP/VS 7.39
operating system 7.2, 7.78
VTAM 7.38

prereorganization utility (§~~ data base
prereorga niza ti on uti li ty)

prerequisite publications v
primary index (H I D AM) 2. 12
primary master t~tminal

description 3.17
specifying 7.30, 7.35

Primer function, IMS/VS
concept iii
overview and limitations,
subset 1.35

print lines/page (3270) 3.29
PRINT statement, MFS 3.45
printed page format control 3.29
problem reporting, IMS/VS online
system 8.8

procedures, IMS/VS cataloged
description 7.66
listings 7.67

procedures, data base
reco ver y 6.20

procedures, data base
r eorganizat ion 5.20

procedures, IMS/VS
operating 8.1

processing intent, application
pr 0 g ram 2 • 5 8, 3. 1 O. 3. 51

processing limits
message scheduling 3.8, 7.26
ouput messages, number and size

of 7.26
processing regions, types of 3.3
processing sequence, secondary 1.12
program access (PA) keys

PA' 3.28
PA2 3.28
PA3 3. 18

program communication block
(2~~ PCB)

progra m f unction key 12 (PFK 12) 3. 18
program isolation (PI) 3.12
program specification block

(see PSB)
Program Specification Block Generation

(PS BGEN)
ba tch 2.57
online 3.49
procedure, cataloged 7.76

programming languages
use with IMS/VS 4.2

programs, application (2~~
application programs)

project approach 1.19
project plan, sample

DB system, for 1.21
DB/DC system, for 1.35

PROT parameter (DFLD statement) 3.42
PSB (program specification block)

concept and definition 1.14
generation
bat ch 2.57
online 3.49

PSBGEN procedure 7.76
PSBGEN st at ement

basic data base, for 2.60
logical data base, for 2.62
secondary index data base, for 2.63

qualified SSAs 4.10
que ues, me ssage

allocation 7.13
description 3.7
recovery 3.15, 3.16

R parameter (MFLD statement) 3.35
randomizing algorithm

description 7.57
HDAM, use of 2.12, 2.79
how to write 7.58
IMS/VS-supplied module 7.58
sort exit, use in 4.29
simple sequential, a 7.59
specification in DBD 2.31

record, data base
definition of 2.6

recovery, data base (§~~ data base
recovery)

recovery utility (2~~ data base recovery
utili ty)

regions, types of 3.3
relationships

logical 1. 10
MF'S control blocks, between 3.20
parent/child 1.7

reorganization, data base (~~~
data base reorganization)

reorganization utilities 5.3
repetitive generation of

DFLDs/MFLDs 3.34, 3.41
BEPL call

ba sic 4.18
logical relationship,
with 2.24, 4.37

secondary indexes,
with 4.40

replace call (§~~ REPL call)
re qui re men ts, gathering dat a

base 2.69
resource clean-up module (DFSMRCLO),

IMS/VS, including in OS/VS2{MVS) 3.49
resource naming rules, IMS/VS system
defini tion 7.16

response alternate PCB 3.50, 4.35
response time

design considerations 3.55, 9.30
estimating, simple technique 9.31

restart, IMS/VS
emergency 3.16
normal 3. 16

retention periods, log tapes and
image copies 6.26

review, design 2.87
root segment 1.9, 2.6

sa mple application, IMS /V S 1.2
(~~~ gl§2 sa mples, I MS/V S Prime r)

samples, IMS/VS Primer
application environment 1.2
ba tch prog rams

Assembler 4.27
COBOL and PL/I

phase 1 4.32
phase 2 4.39
phase 3 4.41

data base
Parts 2.2
Customer Orders 2.3
C ustome r Nam e 2. 4

data base load procedures 5.23
data base recovery procedures 6.20
data base reorganization

procedures 5.26
DB system definition 7.5
DB/DC system definition 7.13
DBDs, basic 2.40
DBDs, logical relationships 2.46, 2.49
DBDs, secondary indexes 2.56
distribution 7.5, 7.12
formats, MFS 3.46

Index I. 13

jobs
phase 0 7.49
phase 1 7.49
phase 2 7.52
phase 3 7.54
phase 4 7.55

listings (§!! IMS/VS Primer
Sample Listings)

online programs 4.60, 4.70
overview 1.2
PSBs, basic 2.61
PSBs, logical relationships 2.62
PSBs, secondary indexes 2.63
PSBs, online 3.51
transaction/data element

lila trixes 2. 70
scheduling, IMS/VS message 3.8
scratch pad area {SPA)

description 3. 14, 4.64
definition 1.29
design considerations 3.57
defining at IMS/VS syste~
definition 7.23, 7.26

layout and use 4.65
screen formatting, 3270 display 3.18
secondary indexing 2.25
secondary master terminal, IMS/VS 3.17
security

establishing 7.64
overview 1.29
terminal commands, authorizing

use of 7.65
transactions, restricting entry
of 7.65

security maintenance utility,
ISS/VS 7.64

security violation attempts, recording
of 7. 27, 7.31

SEGM statement
basic data base, for 2.35
logical data base, for 2.48
logical relationship in physical

da ta base, for
real logical child, for 2.44
virtual logical child, for 2.45

secondary index data base, for 2.54
segment

data base 1.6
message 3.7

segment format
data base 2.7
message

input 3.7
output 3.14

scratch pad (SPA) 4.64
segmen t search arguments (SSAs)

characteristics 4.11
command codes for 4. 11
concept and function of 4.9
qualificaticn of 4.10
structure of 4.9

segments, data base
data portion 2.7
defining 2.35
def ini tion 1.6

1.14 IMS/VS Primer

fields 1.16
formats 2.7
length 2.7
prefix 2.7
relationship to data base

record 1.6
types

basic 1.9
logica 1 re la tion ships, with 1. 10
secondary indexing, with 1. 12

segments, sorting in hierarchical
sequence 4.28

SENSEG statement 2.59, 3.51
session, rela tionshi p to

end users and nodes 1.25
sequence fields and access paths 1.9
sequence, secondary processing 1. 12
S HIS AM data base

define, how to 2.29
description 2.15
using 2.85

sibling segments 1.9
simple HISAM data base (§~~ SHISAM data

base)
SMP (a~~ system modification program)
SNA (a~! system network architecture)
sort exit routine, E61

used during data base load 4.29
sort work files, allocating
during reorganization 5.25

sort/merge program required 7.4
sorting segments in hierarchical
sequence 4.28

SPA (§!~ scratch pad area)
space allocation

data base data sets, for 2.83
IMS/VS data sets, for 7.9, 7,.41

SPAREA macro statement, IMS/VS system
definition 7.23

SSA (§~~ segme nt sea rch arg umen ts)
Stage t, IMS/VS system definition

DB 7.5
DB/DC 7.13
ordering of input deck 7.35

Stage 2, IMS/VS system definition
DB 7.10
DB/DC 7.36, 7.44

STAT call 4.25
statistical analysis utility 9.'9
sta tistics

data base buffer pool
prod uced by DB Moni tor 9. 3
produced by STAT call 4.25, 9.1
prod uced by/DIS POOL

ALL command 9.14
DB monitor 9.4
DC monitor 9.21
log tape 9.19
online buffer pools 9. 14

status code, returned after OL/1
calls

use of, progralll 4.11
types 4.11
table of A.1

list of B.1
overview 4. 11

steps with IKS/VS installation
DB 7.4
tB/De 7.11

storage pool trace, VTAft 9.27
subpool definition statement, for

defining size and number of buffers
OSA ft 7.62
VSAft 7.61

subsequencu field, secondary
index 2.28

subset, IftS/VS Primer
concept 1.1.1.

overview and limitations 1.35
SUF= operand (DO statement)

DFLDs 3.41
MFLDs 3.34

sve, OS/VS
IftS/VS use of 7.3

SVCTABLE, required OS/VS option 7.3
syntax conventions

tBDs and PsBs, for 2.30
formats, for 3.31.
IMs/VS system defin~tion 7.5

sYSMsG= operand (tEV statement) 3.39
sYSPRINT listing control, MFS

EJECT statement 3.45
PRINT statement 3.45
SPACE statement 3.45
TITLE statement 3.447

system console, Os/VS, as
IMs/VS master terminal 3. 18

system definition
IMS/Vs

batch 7.5
online 7.13

NCP/VS 7.39
VTAM 7.38
OS/VS2 (MVs) considerations 7. 1
Stage 1 7.5, 7.13
Stage 2 7.10, 7.36, 7.44

system literals (MFLD statement) 3.35
syste m me ssage field (3 'Z1 0 display

devices)
description 3.29
SYSMSG= operand 3.39

system modification program (SMP),
OS/VS 7.81

system network architecture
ba sic concepts 1.24
relationship to IMS/VS '.24
VTAMs role in 1.26

system service calls (~~~ calls, IMS/VS
system service)

System/370 console, IMS/VS
provided support 3.18

tapes, 1Ms/VS distribution 7.4
telecommunication (§~~ communications

network)
terminal commands, authori~ing use
of 7.65

terminal configuration supported 1.26

TERMINAL macro statement, IMS/VS
system definition 7.29, 7.33

terminal, master (!!! master terminal)
terminal response mode 1.30
terminal security 1.29, 7.65
termi nals

defining
IMS/VS, to 7.30
Nep/VS, to 7.40
VTAM, to 7.38

logical 1.27
physical 1.26
relationship to VTAM node 1.25

terminating an application program 4.11
testing

batch programs 4.30
online programs 4.30, 4.70
MTO procedures 8.5

TI ME 'paramete r (MFLD st at em ent) 3.34
TITLE statement, MFS 3.44
training terminal operators 8.6
transaction

application program, relation
to 2.69

data elements, relationship
to 2.67

define, at system definition 7.26
defini tion 2.66
design considerations

batch 2 .. 67, 9.'0
online 3.54, 9.30

message, relationship to 3.2, 3.54
proce ssin 9 flow, messa ge 3.3

transaction codes, restricting entry
of 7.65

transaction/data element matrix
concepts and definition 2.67
gathering requirements 2.69
samples 2.70

truncation, MFS literal
filed 3.35

TYPE macro statement, IMs/VS
system definition 7.28

TYPE= operand
DEV statement 3.39
DIV statement 3.40
MsG statement 3 .. 32

use r input area, master t er minal 3. 17
user liason 8.6
utility programs, IMS/VS

data base loading, for 5.2
data base recovery, for 6.5
data base reorganization,
for 5.2

data base optimization 9.5, 9.22
log tape recovery 6.18
log tape statistics 9.19
log tape termination 6.27
DB Monitor report print 9.5
DC Monitor report print 9.22
overview

ba tch 1. 15
online 1.32

Index I. 15

view on data, program (§!! masks,
PCB)

virtual child
concept and definition 2.17
define, how to 2.45

virtual control region, IMS/VS,
defining fixed pages in 7.37

virtually paired bidirectional
logical relationship

discussion of 2.17
use of 2.85

VSAM (virtual storage access method)
catalog recovery
considerations 6.26

data space allocation, data
base 2.85
IMS/VS buffer pools 7.59
subpool definition, IMS/VS

buffer 7. 61
VTAM (virtual telecommunication access

method)
description 1. 26
installation 7.38
library creation 7.38
main storage pools

adjusting 9.29
definition 7.38
tracing 9.27

operation considerations 8.8
relationship to IMS/VS 1.24

I.16 IMS/VS Primer

start options 7.38
storage pool trace 9.27
system definition, related

IMS/VS macros 7.27

write ahead option, log tape 7.60
write-to -opera tor-wi th-reply (WT OR)

backup master terminal, as 3.18
message DFS3125A, used for
test 4.30, 8.5

IF ST ca 11
batch, for 4.42
BMP, for 4.47
GSAM considerations 4.45

3270 Information Display System
clear key, impact of 3.41
copy function

candidate printers 7.30, 7.35
invoking of 3.18

program access (PA) keys 3.18, 3.28
program funct ion keys 12

(PF K 1 2) 3 • 1 8
master terminal support 3. 17
message format service (MFS) 3.18

(I)

o
2

IMS/VS Version 1 Primer
SH20-9145 -0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system. to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _______ _

Previous TNL _______ _

Previous TNL _______ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9145-0

Reader's Comment Form

Fold and Tape ..

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

First Class Permit
Number 6090
San Jose, California

..
Fold and Tape

~ ®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U.S.A. 10591

I BM World Trade Europe/Middle East! Africa Corporation
360 Hamilton Avenue, White Plains, N.V., U.S.A. 10601

~
en -< en
< ('t) ..,
VI

c)'
::l

i:I ..,
3'
('t) ..,

en
:c
N
o
cO
iii
6

SH20-9145-0

-";" ®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U.S.A. 10591

I BM World Trade Europe/Middle East/ Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U.S.A. 10601

s:
en -< en
<
(1) ..,
(Il o·
::I

~
3
(1) ..,

CJ')

:c
N
o
cb -~
(J1

6

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	023
	024
	025
	1.01
	1.02
	1.03
	1.04
	1.05
	1.06
	1.07
	1.08
	1.09
	1.10
	1.11
	1.12
	1.13
	1.14
	1.15
	1.16
	1.17
	1.18
	1.19
	1.20
	1.21
	1.22
	1.23
	1.24
	1.25
	1.26
	1.27
	1.28
	1.29
	1.30
	1.31
	1.32
	1.33
	1.34
	1.35
	1.36
	1.37
	1.38
	1.39
	2.01
	2.02
	2.03
	2.04
	2.05
	2.06
	2.07
	2.08
	2.09
	2.10
	2.11
	2.12
	2.13
	2.14
	2.15
	2.16
	2.17
	2.18
	2.19
	2.20
	2.21
	2.22
	2.23
	2.24
	2.25
	2.26
	2.27
	2.28
	2.29
	2.30
	2.31
	2.32
	2.33
	2.34
	2.35
	2.36
	2.37
	2.38
	2.39
	2.40
	2.41
	2.42
	2.43
	2.44
	2.45
	2.46
	2.47
	2.48
	2.49
	2.50
	2.51
	2.52
	2.53
	2.54
	2.55
	2.56
	2.57
	2.58
	2.59
	2.60
	2.61
	2.62
	2.63
	2.64
	2.65
	2.66
	2.67
	2.68
	2.69
	2.70
	2.71
	2.72
	2.73
	2.74
	2.75
	2.76
	2.77
	2.78
	2.79
	2.80
	2.81
	2.82
	2.83
	2.84
	2.85
	2.86
	2.87
	3.01
	3.02
	3.03
	3.04
	3.05
	3.06
	3.07
	3.08
	3.09
	3.10
	3.11
	3.12
	3.13
	3.14
	3.15
	3.16
	3.17
	3.18
	3.19
	3.20
	3.21
	3.22
	3.23
	3.24
	3.25
	3.26
	3.27
	3.28
	3.29
	3.30
	3.31
	3.32
	3.33
	3.34
	3.35
	3.36
	3.37
	3.38
	3.39
	3.40
	3.41
	3.42
	3.43
	3.44
	3.45
	3.46
	3.47
	3.48
	3.49
	3.50
	3.51
	3.52
	3.53
	3.54
	3.55
	3.56
	3.57
	3.58
	3.59
	3.60
	3.61
	3.62
	3.63
	3.64
	4.01
	4.02
	4.03
	4.04
	4.05
	4.06
	4.07
	4.08
	4.09
	4.10
	4.11
	4.12
	4.13
	4.14
	4.15
	4.16
	4.17
	4.18
	4.19
	4.20
	4.21
	4.22
	4.23
	4.24
	4.25
	4.26
	4.27
	4.28
	4.29
	4.30
	4.31
	4.32
	4.33
	4.34
	4.35
	4.36
	4.37
	4.38
	4.39
	4.40
	4.41
	4.42
	4.43
	4.44
	4.45
	4.46
	4.47
	4.48
	4.49
	4.50
	4.51
	4.52
	4.53
	4.54
	4.55
	4.56
	4.57
	4.58
	4.59
	4.60
	4.61
	4.62
	4.63
	4.64
	4.65
	4.66
	4.67
	4.68
	4.69
	4.70
	5.01
	5.02
	5.03
	5.04
	5.05
	5.06
	5.07
	5.08
	5.09
	5.10
	5.11
	5.12
	5.13
	5.14
	5.15
	5.16
	5.17
	5.18
	5.19
	5.20
	5.21
	5.22
	5.23
	5.24
	5.25
	5.26
	5.27
	5.28
	6.01
	6.02
	6.03
	6.04
	6.05
	6.06
	6.07
	6.08
	6.09
	6.10
	6.11
	6.12
	6.13
	6.14
	6.15
	6.16
	6.17
	6.18
	6.19
	6.20
	6.21
	6.22
	6.23
	6.24
	6.25
	6.26
	6.27
	6.28
	6.29
	6.30
	6.31
	6.32
	6.33
	7.01
	7.02
	7.03
	7.04
	7.05
	7.06
	7.07
	7.08
	7.09
	7.10
	7.11
	7.12
	7.13
	7.14
	7.15
	7.16
	7.17
	7.18
	7.19
	7.20
	7.21
	7.22
	7.23
	7.24
	7.25
	7.26
	7.27
	7.28
	7.29
	7.30
	7.31
	7.32
	7.33
	7.34
	7.35
	7.36
	7.37
	7.38
	7.39
	7.40
	7.41
	7.42
	7.43
	7.44
	7.45
	7.46
	7.47
	7.48
	7.49
	7.50
	7.51
	7.52
	7.53
	7.54
	7.55
	7.56
	7.57
	7.58
	7.59
	7.60
	7.61
	7.62
	7.63
	7.64
	7.65
	7.66
	7.67
	7.68
	7.69
	7.70
	7.71
	7.72
	7.73
	7.74
	7.75
	7.76
	7.77
	7.78
	7.79
	7.80
	7.81
	8.01
	8.02
	8.03
	8.04
	8.05
	8.06
	8.07
	8.08
	9.01
	9.02
	9.03
	9.04
	9.05
	9.06
	9.07
	9.08
	9.09
	9.10
	9.11
	9.12
	9.13
	9.14
	9.15
	9.16
	9.17
	9.18
	9.19
	9.20
	9.21
	9.22
	9.23
	9.24
	9.25
	9.26
	9.27
	9.28
	9.29
	9.30
	9.31
	9.32
	A.01
	B.01
	B.02
	B.03
	B.04
	B.05
	B.06
	B.07
	B.08
	I.01
	I.02
	I.03
	I.04
	I.05
	I.06
	I.07
	I.08
	I.09
	I.10
	I.11
	I.12
	I.13
	I.14
	I.15
	I.16
	replyA
	replyB
	xBack

