SH20-9145-0

Program Product IMS/VS Version 1 Primer

Program Number 5740-XX2

Release 1.5

FIRST EDITION (SEPTEMBER 1978)

This edition is a revised edition of the IMS/VS Primer World Trade
System Center Bulletin (5320-5767-2) dated September 1977.

This edition addresses IMS/VS Data Base Facilities and IMS/VS Data
Communication Facilities. This edition applies to IMS/VS Version 1
Release 1.5, program number 5740-XX2, under 0S/VS!1 or 0S/VS2 Release 2
(MVS), using BTAM or VTAM and the IBM 3270 Information Display Systenm.

Information in this publication is subject to significant change. Any
such changes will be published in new editions or technical newsletters.
Before using this publication, consult the latest IBM System/370
Bibliogranhy, GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are
applicable and current.

Pequests for copies of IBM publications should be made to the IBM branch
office that serves you.

Forms for readers' comments are provided at the back of this
publication. If the forms have been removed, comments may be addressed
to IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California 95150. All comments and suggestions become the property of
IBM.

© Copyright International Business Machines Corporation 1978

This publication is intended for first-time users of the Information
Management System/Virtual Storage [(IMS/VS)., It provides systen
analysts, data base specialists, system programmers, and application
programmers with the information necessary for the design, installation
and operation cf their initial applications, using a subset of the data
base or data bases/data communication facilities of IMS/VS.

The IMS/VS Primer Function comprises five separately orderable
documents. One is this document ([SH20-9145). The second is the IMS/VS

Primer Sample Listings (SH20-9149), containing a complete IMS/VS sanmple
application including generaticn input, source program examples, data
base sample data and executicn outrut. The third is the IMS/VS Erimer
sample operating guide for the master terminal operator of IMS/VS using
the Basic Telecommunication BAccess Method (ETAM). The fourth is the
INS/VS Primer Master Iermipal Operator's Guide -- VIAM [SH20-9147),
containing a sample operating guide for the master terminal operator of
IMS/VS using the Virtual Telecommunication Access Method (VTAM). The
fifth is the IMS/VS Primer Remote Terminal Operator's Guide (SH20-9148),
containing a sample operating guide for the IMS/VS end-user/terminal
operator. The manuals are designed to be used together, i.e., the IMS/VS
Primer and the Operating Guides extensively reference the samples in the
IMS/VS Primer Sample Listirgs.

The primary objective of the IMS/VS Primer Function is to provide the
first-time user cf IMS/VS a single document containing all of the
information the user would ordinarily ne=d to:

. Plan for IMS/VS use

. Design D1/I data bases

. Design, write, and test IMS/VS programs

. Install the IMS/VS program product (5740-XX2)

° Operate IMS/VS

L] Maintain IMS/VS

The only other I¥S/VS publications the user of the subset would normally

IMS/VS Messages and Codes Reference Manual.

While the IMS/VS Primer is designed for the new IMS/VS user, it is
aprlicable tc other customers, such as:

° The currently installed IMS/VS user who has a continuing training
regquirement, and

. The currently installed IMS/VS user who is implementing new
applications for departments having no experience using IMS/VS.

By using the apprcach suggested in the IMS/VS Primer, users can avoid
much of the complexity usually associated with IMS/VS. Many of the
steps required to install IMS/VS can be shortened, simplified, and/cr
accomplished in a mcre crderly manner.

About This Manual iii

—— e

the user for careful planning, close coordination, and guidance by
experienced systems perscnnel, detailed study of the application
requirements, rigorous program testing, proper operating procedures,
etc. It is intended to be a learning guide, a source of field-proven
techniques and advice, a tested sample system, a subset reference
manual, and an operator's guide. By following this manual, users should
progress quickly and ccnfidently through the steps required for
implementation of a simple, injitial IMS/VS application.

——— e s e et e

Each user has the responsibility to assess the applicability of the
IMS/VS Primer Functicn tc his requirements. If desired, users can ask
for guidance and counsel from an IBM representative or system engineer.
The assessment must be made with a full understanding of the scope and
intention of the INS/VS Primer PFunction.

Only a subset of the full facilities of IMS/VS is addressed. Although
the subset is rich in function, a custcmer's application might require
additional IMS/VS functions.

If a user regquires facilities not included in the subset, he should
reconsider, if necessary, any recommendations given here.

Summary of Contents
This manual is organized intc nine chafpters.

. Chapter 1, "Introduction," introduces the IMS/VS data base and data
base communication facilities and a sample application used
throughout the manual. The chapter is divided into a DB facilities
section and a DC facilities section. It also provides a brief
overview of our IMS/VS subset.

. Chapter 2, “"Data Base Design," provides the data base specialist and
system analyst with information and guidelines for data base design.
This chapter is applicable to both the DB-only user and the DEB/IC
user.

. Chapter 3, "Data Communication Design," contains a detailed
description of the IMS/VS data communication facility. It provides
guidelines for the design and implementation of data communication
applications using these facilities. This chapter can be
disregardad by the LE-only user.

o Chapter 4, "Data Base Processing," guides the application programmer
in the design, codirg and testing of DL/I batch and IMS/VS message
processing programs. Only the first part of the chapter is
applicable to the DB-only user.

. Chapter 5, "Data Base Reorganization/load Erocessing," describes
when and how data bases should be reorganized.

. Chapter 6, "Data Base Recovery," guides the data base specialist and
operations staff in the inplementaticn of data base recovery
procedures.

. Chapter 7, "Installing IMS/VS," guides the system programmer through
the installaticn of a subset of IMS/VS data base and data base/data
ccmnmunication system. It also addresses the installaticn of IMS/VS
in the Systems Netwcrk Architecture (SNA) environment.

iv IMS/VS Primer

] Chapter 8, “"Operations," contains guidelines for the design of
operating procedures for the IMS/VS online system. It shows how to
adapt the sample master terminal and remote terminal operator guides
to your own environment. This chapter can be disregarded by the
DB-only user.

. Chapter 9, *Optimization," describes how to monitor and optimize a
running application.

Every chapter except the seccnd, third and eighth is divided into two
parts. The first part of each chapter deals with the data base
panagement pcrtion of IMS/VS. The second addresses IMS/VS data
communication. For your ccnvenience, the fcllowing table defines those
parts of this manual of interest to each functional area in your
organization.

DATA

CHAPTER MANAGEMENT DB/DC DATA BASE COMMUNICATION SYSTEM SYSTEM APPLICATION OPERATION
ADMINISTRATOR SPECIALIST SPECIALIST ANALYST PROGRAMMER PROGRAMMER
1. INTRODUCTION * *an *wn L XX’ "on e L2}
2. DB DESIGN wan “nw Y LX)} LX) L) »
3. DC DESIGN e -e LX XS X3 LX 3 » -
4. DB PROCESSING L2 XY X [X L X L2 X *
5. DB REORGANIZATION - " » L] - L2
6. DB RECOVERY .e “ans Lxs L] . (XX
7. INSTALLATION .e [X} (X LX) L X3
8. OPERATION (X3 3 » - LX) L2 X
9. OPTIMIZATION «n “ne Y Y3 L] L XX » (XY
LEGEND:
Reader should be familiar with contents.
« # Reader should know specitic parts in detail.
« # # Reader should have complete detailed knowiedge.
Prerequisites

Eefore using this manual, you should be familiar with the IBM Cperating
System for Virtual Storage (0S/VS1 or 0S/VS2). This manual's design is
such that the new IMNS/VS user will need to make few, if any, references
to other IMS/VS publications, except for the General Information Mapual
(GH20-1260) and Messages and Codes Reference Manual (SH20-9030). The

more advanced use., however, will find additional information in the
listed associated publications.

The reader should te familiar with the information presented in: IMS/VS

General Information Manual (GH20-1260) (especially Chapter 1,
"Introduction to IMS/VS," and Chapter 4, "System Configuration").

About This Manual v

Associated Puklicaticns

The following IMS/VS Publications should be used if you have a need for
more IMS/VS information beyond the scope of our subset:

. INS/VS_Svstem/Applicaticn_Design_Guide, SH20-902S5

%P7 AP\ PN 14 k-1 -84

22 P 3 -p NP

»
-
=
it
N
1<
]
|
1=
o
o
ltn
™
o
D
)
e
Al
=
»
".'.
n
1
I
<
[odd
0
1]
=]
n
]
]
-
1
Q
=
e
[l
o
-
0n
o
N
o
'
Vo]
o
5
w

DR S kL R 2 P PP - PR S 3 -4

L1 AP PP PP PS PP P

-2 PP PP P PP PP PP

=R ———d mm e mL S oS

LR AR D)

LY20-8050

el aes s dll SRl eSS

vi IMS/VS Primer

CONTENTS

- P— SN -3-

CHAPTER 1. INTRCLUCTICN v « ¢ o « o o« « = « o o o s « o =« o o = 1.1
What Is IHS/VS?. L] L - L] - . . L] . * - . . . * . L] . . L] L] ° L] L] 1. ‘
Why Data BaSES?e 4 « ¢ o o « « =« o« « o = @ « « a a a s s s o o o 1.1
Our Sample Environment « « o « ¢ ¢ o o 2 o o o o o o o a a = 2 @ 1.2
Our Sample Company's ReqUITremMeNtS.: « « o o o o o 2 o o o o o & 1.3
The Phase 1 Environment. « « « o 2« « v o = = « =« =« a 2 « a = 1.4
The PARTS Data BAS€s o o o o o o o o s « = o « o o o o s o o 1.4
The PARIS INventOrYy REPOTtSe « o o ¢ ¢ ¢ ¢ ¢ o s o o o o o o 1.4
Purchase Order ProcCessSinNge « « o « =« o 2 o o « s = o a =« o« 1.4
The Phase 2 ENVIIONBENte o « o o o o o o o o o s o o o o o o o 1.4
The Customer Crders Data BaS€. «w « v o « « v o o« « o = « o @ 1.4
Customer Order ProCessinges « o« o o o o « @ = s o s « s = o = 1.5
The Phase 3 Environment. o« « o o o o o o o o o o o o o o o o« 1.5
The IMS/VS Data EBase SYSteMs « « « = o o « o « v o s a o » = s @ 1.5
system Definition. - . - L] L] . L] L] L] L] L] - . . L] L] L] L] L] ° . L] 1. 5
Data Language/Y FAacility o o v « o o ¢ « e e o o s s o o a o & 1.5
DL/T CONCEPtSe o ¢ o « o« @ = = o o « o a o = s s o a s« o o = 1.5
Environment Definitions. « o o o o o ¢ o o o o o« o o o o o @ 1.6
Data INdependencee o« o « o o« o o o o « =« @ @ = « o o o« « « o 1.6
Application Tata StIUCLULE « ¢ o ¢ o o ¢ o ¢ ¢ o o s o o o« = 1.6
Hierarchical Lata SEtIUCtUI€. « o« o o o s o s o s o o o o o & 1.7
Basic Segment Types in a Hierarchical Data Structure . . . « 1.9
Sequence Fields and Access PathS o o ¢« o ¢« o o o« o 2 o o o & 1.9
Logical RelationshipSe v o o o o @ @ o @ = o o« « = « o « o « 1. 10
Secondary INdeEXINg « o o o =« o o o 2 = a © =« o = s o o o & 1.12
Data Base Definition - . L] L] . L] L] . . L] L] L] L] - . L] L] [] L] o L] ‘. ‘3
Data Base DesSCriptioNe o o 4w o o o o o o o w o o « « s o « o 1.13
Program Specification BloCk. o ¢ ¢ ¢ o o o o o ¢ ¢ o s o o o 1.13
Epplication Program Interfac®s « o« = o o o o o ¢ o 2 w o o« o = 1.14
Llogging and Checkpoint/Restart Facilit¥e « o« o ¢ o ¢ o o o o o« 1.14
Data SECULitYe « o a o o o o © o o o e o s o o s o s 2 o s« « o 1. 14
Utility PIrOQGLrAMS o o o o o « @ 2 o @« a s = @« 2 o o« s s o s s = 1.15
IHS/VS Batch system Flou * L] . L] L] L] L] L] L] . * L] . L] L] L] * L] L] " 15
Data Base RAMINisStratore « ¢ o« o o o o = v @« « « o @« « o o o« o = 1.17
DBA CharacteristiCsSe o« o o« ¢ o o o o a o = e v a o« o « a o a = 1.17
Naming CONVENtiONS o « o o o o o s © o o o o s o a o o o o o @ 1.17
Naming Conventions for Entities. « o ¢ o o v o o o o « o o « 1.18
Sample Job Names L] L] L] L] L] L] L] L] L] L] L] . L] L] L] L] L] . L] . . L] ‘. 18
Sample Distribution and Iistings o o o« o« « o « o o o o « o o « 1.19
The Project APPLCACR ¢ o o« o = o o « 2 o o 2 = = o = o« o =« o = = 1.19
The Project Cycle. . . . e o o e s e s s 83 8 a & e s s 8 e @ 1.19
Sample Project Flan for IHS/VS PBa o o o o o o o o o o o o o 1. 20
Gross PERT Chart & ¢ « o « o o o @ o « s « o o o« ®» o s « o = 1.20
The IMS/VS Tata Communication FeatUT@e o« 4 o o o ¢ o o o « o o o 1.24
Scme Basic SNA CONCEPtSe « « o o o @« o 6w o o % = o « o o« = o @ 1.24
Separation of Functions intec Logical LayersSe o« « « o o o o o 1.25
The Transmission Subsystem layer . o« « o o ¢ ¢ ¢ s o o o+ & 1.25
The Function Management IAYeIu « o o« = e v o « « « o « s @ 1.25
The Aprlication LAaYer. «o o « o « o o s s s o o« s o o o o o 1.25
Fnd Users, Nodes and SesSiONSe o« « « o o o v o « =« o« o « = 1.2°%
VTAM Role in SNA L] [] [] -* - L] L] L] * ° L] . - [] L] . - . L - . L] ‘.26
Starting and Stopping the NetwoTKke o « ¢ o o o o o o o o 1. 26
Changing the Configuraticn Dynamically « « « o o o o o o @ 1.26
Allocation . L] L] L] . L] L] L] L] L Ll . L] L] L] - L] L] L] L] . L] L] . 1- 26
I/0 ProcessSing « o« o« « o o <« o o = e ® s & s @ s ® o = 1.26
Reliability, Availability, Serv1ceab111ty. « e o e o s o s 1.26
NCP/VS and the 3705 Communications Controller. 1.26

Contents vii

IMS/VS Lata Communicaticn Ccncepts

Physical Terminals o« « o o ¢ ¢ o ¢ @
3270 Device Compatibility. « « . .
Logical TerminalsSe « o o s o o « o «
Master Terminale « o« ¢ o o s o ¢ o
INput MESSAQgeS o = « = o = = « « = =
Output MESSAGESe ¢« o o o o o o o o o
Message Format Service . . . « o« . .
Message Queueing « <« « o . o o o o
Conversational Processinge. « « o« «
Security e o o s s o o« o a
Terminal Command Language. e« s o o @
Transaction Response Modee « « o« o &
Message Scheduling « « « o « « o o o =
Logging and Checkpoint/Restart « « o« «
Logging. - - - - - L] L] - - - - - L] -
CheckpointsSe ¢« o o« o o o ¢ o ¢ o o
Restart. - - - - - - L] - . L] . - . -
Utility PrOgrams o« « o« « o o o « < =
IMS/VS Data Communicaticn System Flow. .
Batch Processing of Online Data Bases.
Data Communication Administration. . . .
DCA CharacteristiCS. L] L] . L] Ll L] L] L] L]
Sample IMS/VS Eroject Elanm « « « « o« « o
INS/VS Primer Functicn Subset Overview ,
Data Base Subset « o ¢ ¢« o ¢ s ° o o
Data Communicaticn Subset. &« ¢ o« « o«

CHAPTER 2. TATA BASE DESIGN . .
About This Chapter « « « « o « &
Sample Data Base Requirements. .
Phase 1 Sample Requirements. .
PARTS Data Ease Contents . .
Inventory Report Prccessing.
Purchase Order Processing. .
Phase 2 Sample Requirements. .
Sample Data Bases fcr Phase 2.
Sample Application for Fhase 2
Phase 3 Sample Requirements. . .
The DL/I Data Base Facility. . « o«
Physical Data Base and Storage Or
The DL/I rLata Base Record. . .
Segment FOIMAt « « o« « o o o &
The Concatenated Key « « <« « «
Calls and Pata Base Pcsiticning
Get Unigue o« « o o o o o o »
Get Next ¢ o « <« « &

ani

8 4 0 g 0 3 4 0 4 0 Ne e 8 4 8 g 4 8 4 b s,
¢ o 8 4 8 8 4 8 4 & T e 8 8 4 8 4 & b o4 2 8 o

Hold Form of Get Calls . . .
INSELL o « = s o« = = o = o =
Delete L] L] . L] L] L] L] - L] L] .
RPeplacee: « o« « o o o a o« o

SSAe ¢ o o o o o @
05/VS Access Methods Used by DL/T.
HDAM and HIDAM Storage Crganizations
HDAM and HIDAM Access Character1s*1c
HDAH - - L] - - - - - - - - - - L] .
HIDAM. . . . « ® % @ o =
Inserts and Deletes *n HDAH and HIDA
Pointers in HDAM and HIDAM « « & o

s 8 6 8 3 4 2 2 & 8 8 s N O 2 3 s b s s 2 2 0 3,

Physical Child/Physical Twin P01nters

SHISAM Storage Organization. « « « « o
Fanctions and Use of GSAMe o o o o« « &
When t0 Use GSAM ¢« « o o o o o o o
Supported TCata SetSe - =« o « o o« - «

viii IMS/VS Primer

a

S ®w 8 o 0 8 o 6 & o 8 o v (o 23 4 o &t & s 2 s 4 e

Se

i

4 e 5 @ & 8 ® 2 @ & 4 5 B s e 8 & 2 B s 2 a8 O s o st s 0 2 e s s

5 & o 3 o & 8 & & 4 6 & & b e 0 8 6 4 0 o b s 8 3 o

n

4 8 8 @ o & 0 85 & 6 & & 8 ® & L s 0 4 e 0 o * N e 2 3 o 2 & 0o s & 4 o o

e 8 8 5 & 8 2 B 2 e &6 4 g 8 & 8 4 6 2 s & 8 o 2 & &

s o s O e L I « & & 92 s o 8 ¢ o) ® 8 o o L] e 0 o o L] e o & s o o

4 8 & @ 8 ¢ O s e &6 4 e 2 6 s & ° 3 B C° 5 0 ° 4 B B 4 e 4 s & s o § o

¢ 8 & o 8 °* & o & » 2 o o s o . L .] e o o L] e 0 L) 3 & & 8 o ¢ o .

S 4 &6 6 o 8 & & 2 5 o 4 8 s & 6 3 & 2 s & 2 s 2 o

s o s ®& s a o o o 2 s & s @]] . s o o [] L]] s o] * o s & e o

8 & © 3 o 4 2 & 4 8 6 5 & 4 s 6 4 0 g 2 0 3 s b s

LI s O . e 2 s e 4 o ¢ & o s @ . s o s o o s o 0 * & 0 o« & 5 o LI] L]

8 & & & & 5 6 8 s o 0o 3 & 5 &6 o 3 o g & o 9 & 3 s s

2 6 o ® & g 8 ¢ & @ 2 0 » % O 3 b 3 & * 3 e 8 3 6 4 s &8 3 s s 3 & g3 & o

e & © s © o s o 3 & & § & 3, & o 3 &6 g & & 2 o s » s

a & 3 ® & 3 0 ¢ 8 & 3 & g & e 3 & 3 9 3 6 0 g 5 2 4 s 4 o o g o ;3 o »

e 8 & § & 34 & & §g 8 e 3 % 5 &6 s 3 & g &8 & 2 s a2 o

1.26
1. 26
1.27
1.27
1.27
1.27
1.28
1.28
1.28
1. 29
1.29
1.29
1. 30
1.30
1. 30
1.31
1.31
1. 31
1.32
1.32
1. 34
1.34
1.34
1.35
1.35

-
3.
w w
@ O

D OO AN UNNEWWWNONON a -

.
s
[~ N o)

NNNMMMNNNNNNMNMNNNNNNM
s o e o s o 8 &

- b -

(o N~ Ne)

2.10
2.10
2. 10
2.1
2. 11
2. 11
2.12
2. 13
2.14
2.14
2.15
2.16
2,16
2. 16

DL/I Logical RelationshipsS ¢« o« o o o« o = o = o « o o = a o« = « = 2.17
Why Logical RelationshipSes o+ o « o o o o o o « o o o o o o o o 2.17
Building lLogical Relationships « o« o« o = o o o = = o = = u o = 2.17

Segment Types Involved in Logical Relationshigps. o« « « <« < 2.17
Logical Child SegmenNte o « o o « o o o o o o o s o o o o o 2.18
Logical Parent Segment ¢« o o o 2 o © @ o o« 2 @ ® 2 a « a @ 2.18
PhYSical Parent SegUENte o ¢ o o o o ¢ ¢ s ¢ o ¢ ¢ o ¢ @ 2. 18
The Virtual Logical Child Segmente o o o ¢ o o o o ¢ o o o 2.18
The Destination FareNt « o« o o« o o« o « o = = s & a « o o = 2.19

Logical and Physical Data BASES. o o 2 o ¢ o « o s ¢ o o o 2.19
The Concatenated SegmMeNt o o o o o o s o o o o o o s o o 2. 20

Logical Relationship Design FuleS. o o v e o o o = « = o = « @ 2.21
Rules for Defining Logical Relationships in Physical
Datd BaS@Se o« « « ¢ « © 2 uw = = « v & = e« o s« a = = e « @« @ 2.22
Logical Childl . L] - L] - - . - L] . - - L] L] L] - e - L] L] - - 2-22
Logical PAareNt o« « o o o o« o o ¢ s o o s s ¢ o s e e o & 2,22
Physical Patent. - - - - - - o - - » - - -] . - - - - - - - 2-22
Rules for Defining Logical Data BasSeSe. +« o o« « o a o o o o & 2.22
Processing Logically Related SegmentsS. « « « < o « « « « « = 2.24

Deleting Logically Related SegmentsSe o o « « o « = o o o o = 2.24
Logical Child. L] L] . - L] - L] - L L] - . L] . L] . L] - ° L] . . 20 2“
LogiCal Parent - - - -« -] - - - - - - - . - - - - - - - - 2 2“
Physical Parent. « . e @ e s o s e 4 e s e s e e e e @ 2,24

Inserting Logically Related SegmentsS o« « « o o « o « o « o @ 2.24
Logical/Physical PAZ€Nt. o o o« o « « o s o« o o o « s o o 2.24
Loglcal Chlld. L] . L] - . . . L] L . . . L] . . L] . . . L] 2 2“

Replacing Logically Related Segments « e a s a = ® e s e a = 2.24

Logical Relationships Irrlementation Technique in
HDAM/HIDAM. @ ¢ ¢ ¢ v o © = u o o o = @ = s o o a @ = o o & = 2.24

Pointers Used for logical Relationships in HLAM/HIDAM . . . 2.2%
Logical Parent Pointer (IP). o« « « o o o o o a o o s o o« & 2.25
Logical Child First Fointer {LCF)e o o « uw o o o = @« « =« & 2.2°%
Logical Child Last Pcinter (LCL) o o o o ¢ o o o o o o o o 2.25%
Logical Twin Forward Fointer (LTF) o« o o o o 2 « o o a o &« 2.28
Logical Twin Backward Fointer [LTB)e <« o o« o o = o « o o« 2.28%
Physical Parent Pointer (PP) « « o o o o o o ¢ o s o o s o 2.25

DL/l cecondary Indexes % @ ® ® © @ ® ® e W™ ® B U @ W e W e & e e 2 2‘
When to Use Seccndary Indexes. . « ¢ o e o o o a % e s = = 2.26
Segment Types Involved in Secondary Inde X€Se o o o o o « s s @ 2.26
Design Rules for Secondary Indexinge « o o « « o o v o« o o o = 2.217
Implementation Technigue « o ¢ ¢ ¢ o ¢ o o @ ¢ o o o « o o o 2.28

Index Pointer Segment FOTMAL o o o o o o o o o o o o o o o o 2.28

Creating a Seccndary INGEX o« o « o o« o @« o o o o o = = « o o = 2.29

Data Ease Description Generation « « « o o o o o o o s o o o o = 2.29
DBDGEN Coding ConventionsSes « v o o o o = @ =« @ s u = o = « « @ 2.30
Pasic LCBDGEN Control Statement FOIMate o« o o o o o o o o o o &« 2.31

DBD statEment' - - - - - - - - L] L] . Ll - - L] L] - * L] Ll - L] L] 2. 3’
DATASET Statel€Nte o « o o © o © o » « o s @« s % = o o o o = 2.33
SEGN statement L] . . - L] - . . - L] L] - L] - L] o L] L] [] . L] L] - 2. 35

FTELD StatemenNtc o o« o « e o e 0 « o s © o« @« o o « = o « o = 2.37

LCHILD Statement « « o o s s o ¢ ¢« ¢ ¢ ¢ s o o ¢ o o o o s o 2.38

DBDGEN Statement - . L] . - - L] L] L] L] L] - L] L] . L] L] L] . L] - L] 2l 39

FINISH Statement o o o o o o o o« o o = = o @ o @« = s o =« = = 2.39

END Statement. L] . - . L] L] L . . . - - - . . L] - L] . L] . - 2. 39

Execution of DEDGEN (JCI). e % @ 2 ® ® ®% o ® = ®» ®© ® * ° = = 2.39

Fxamples Of Physical DBDSe o « o o o a o « a s « =« o s o o o 2.40
DBDGEN fOr GSBM. * L] - L] [] Ll . L] L] L) . * . L] . . . * L] ° L] . L] 2 uz
DBEDGEN for lLogical Relationships « v o« o o o o o o « o« = o o = 2.43

Coding a Logical Relaticnship in a Physical DBDe o o« ¢ o o o 2.43
Logical Child- - - - - - - - A - L] . L] . L] L] - L] . . . ° L] 2. uu
Physical and Logical FAre€nNta o o « = « o o o o o« o = « o« = 2.u5

Examples of Physical DBDs with logical Relationships 2. 486

Ccding a Logical DED o o o o e © o« « = o o o« s o s o o o « = 2.47
CBL Statemente « ¢ o o o o o o s o ¢ s o s o o o s o o s = 2.47
DA'IASB'I statement. . - - L] L] . . - - . - L] L . - . L] - L] L] 2! u8

Contents ix

SEGM Statement « « o« o« « o o < o

CBCGEN, FINISH and END Statements.

Example of Logical DBDS« « « «
LBDGENs for Secondary Indexes. «
Coding an Index Target Data Base .

Coding the Index Target Segment.

SEGM Statement « « o o o o o o

LCHILD Statement « o« o « o o o

XDFLD Statemente « o o o o o o

Coding the Index Scurce Segment.
SEGM Statement « . «

Access Paths ¢« o o « o o o

The Transaction/Data Element

The Data Base Design Tasks « . .
Gathering Requirements « « o « « o

n

FIELD Statement. « ¢« ¢ o o o o
Coding a Secondary Index DBD
DBD Statement. « « o <« o o o o o o
DATASET Statementes ¢« « o ¢« o o o »
SEGM Statement o« « o« ¢ o o o o o o
ICHILD Statement -« « « o o o o o o
FIELD statementl . L] L] L] L] L] L] L] .
Pregram Specification Block Generation
Basic PSB C0oding « o« o« ¢ o ¢« o o « =
PCB Statemente o« o« ¢ ¢ o ¢ o o o o
GSAM. PCE @« o o « o o = =+ o o o o =
SENSEG Statement « o o o ¢ o o o o
PSBGEN Statement « « « o o « o o« o
END statement‘ L] e - - - - - - - -
Sample Basic PSBSe o o o o o o o o
Execution of PSBGEN {JCI)e o « o o« «
Coding PSBs for Lcgical Data Bases .
Coding FSBs for Secondary Indexes. .
The PCB Statement. « -« o« « o o o« =
The Data Rase Design ProcCess . « o« o «
Concepts of Lata Pase lesign « « . .
Entities L] . . L . - L] . . L Ll . -
Data ElementSe ¢ o o o« o o o o o o
The TransactioNe « « « o o o « o «
Matri

8 o 8 8 o 3 4 ¢ 0 o b 2 4 0 2 B ., % s 0o o b s s 4 5 0 o b s 2 s
o
® 8 & & 8 0 s o 8 o % B 8 8 8 s NS B e e B & 8 8 6 2 g b b o &t s e

L
.
¢ e s

8 o 4 8 6 8 B 5 4 o e 2 e b 4 s 8 s 8 (NS s s s b

Phase 1 Transaction/fata Element Matrix.
Phase 2 Transaction/Da%ta Element Matrixe.
Phase 3 Transactions/Data Flement Matrix.
Design the Application Data Structure. .

Phase 1 Application Data Structure
Access Paths o« o ¢ o ¢ o o o o« &
The Root Segment SETEFART . « o« «
The Stock Segment SE1PSTOK « «

The Purchase Crder Segment, SE1PPUR

Phase 2 Applicaticn Data Structure
Phase 3 Application Tata Structure
Design the Thysical Data Structures.
Phase 1 Physical Data Base Design.
Selecting Data Pase Crganization .
When to Choose HDPAM, « + « « «
When to Choose HITAM . . .
When to Choose SHISAM. . .
Which 0S/VS Access Method. .
Physical Segment Design. . .
Performance Aspects. . . . o« .
Physical Data Base Structure for
Coding the Phase 1 EARTS DBL, HDAM

e}
-8
1)

8 o o 0 8 4 0 4 0+ o

s

.
.
.
]
-
L
-
.
.
.
.
-
e
o

Considerations for Pcinter Selections,

Selecting CI/Blocksizes. . . o« .

ANCH, RBN, BYTES and SIZE Parametets fo

Example, Our PARTS Data Base . .

X IMS/VS Primer

. L]

o M e & 8 2l o ¢ 02 » 3 B e 8 e 8 s 0 0 e o

8 o o &8 o o & o b s e

s o s o [. s 8 * o &] a e o s »] 4 & o & o [[L] . . L] s e 8 o] - Y L 1 e o o

o

e Iie ® 2 o 4 s s b e
¢ gxe & 4 * 2 e s 0

s & . L]] . e 0 L[] o & o .« o . . . [s o o & o : e & 3 . L]] * * 8 ” o s & o L] s o o e o] L[] . L I .

=

e 8 & & 3 &+ 3 e s s o

8 & & 8 & 3 o & 3§ & 3 s & &6 & o 2 & 3 b 2 & & s e o 3 6 4 s s

¢ & 8 e 6 0+ & s 6 & 4 e & e & 8 e ¢

4« & a2 & & 4 & & e © 8 o s 4 6 2 ¥ e

L s @ o 4§ o 8 & o 3 & . & o .] L L] * & e o 4 o 6 & o . LI] s ® o & o] . e o o] e o & o 9

e & 3 e 2 8 6 3 & 3 4 6 a2 8 0 4 ® & e O 2 » B 4 e 2 s 8

8 & o 8 3 4 e & & s 8 5 2 e & 3 & s s * s s e g

& 8 o & o uw 3 & o s s 3

. e o o 2 a2 @ & & 3 o . s & L[] L[] a L] LI) L ¥] . . e o s o 9 e ® & 5 o [] . * 8 . [] ¢ ® t o] L «6 *© o 3 . 2 o © 8 @ L . s o]

s o 8 o o 8] L) s o] s & & 3 o . s e o o] e o o o 4 e

e & ¢ & & 3 o 3 o &6 g © 3 4 & & s o

® ¢ o & § o g e 9 5 & 3 a2 ® 3 & 3 4 ° s & e g 3 & ° g e 3 ¢ % 2 3 &6 g v e 3 8 : 5 ® s e

» & 5 & & 3 © 3 o © 3 o 3 8 ¢ 3 8 e

@ s ® 8 g ® g & & 3 & 4 p & g 8 & & B a2 & 4 4 b § &6 s g o 3 & 3 v 4 s o 3 2 2 g v p o g

@ ® a4 ® 3 ¢ & 4 & & 3 & 3 2 3 2 v

L] s o & s ® o ® & 3 . [s ® I} o 8 a & 3 - e & o s & o s o s & o s ® 3 e o L] [} o & s e

2.48
2.49
2.49
2.50
2.51
2.51
2.51
2,51
2.52
2.53
2.53
2.53
2.54
2.54
2.54
2.54
2.55
2. 55
2.57
2. 58
2.58
2.59
2.59
2.60
2.61
2.61
2.62
2,62
2. 63
2.63
2,64
2. 64
2.65
2.65
2.66
2.66
2.67
2.68
2.69
2.70
2.70
2.70
2.74
2.74
2.74
2.75
2.75
2.75
2.75
2.76
2.77
2.78
2.78
2.79
2.79
2.80
2.80
2.80
2.80
2.81
2.82
2,82
2.83
2.84
2.84

Defining VSAM Data SPACESe o « o = « v = « « = s« o o o o = = 2.85
OSAM TCata S€t RlloCatich o « o o o o o o @ s o o o o o o o = 2.85
Phase 2 Physical Data PRase Designo e e ® o e e o o s e s e o 2.85
Phase 3 Physical Data Base DesSigN. v« « « o = o « a « « o o = 2.86
Design EvaluatioN. « « o o o o o o o o o o o o o o« o o o o o« « 2.87
CHAPTER 3. DATA CCHHUNICATICN D S GN. - o - - - - - - - - - L] - 3.1
The Phase U4 Samfle ReqUIreument &+ o ¢ o o o « o o o o o« o =« = o = 31
Phase U Sample Data BaS@Se o s o o o o o o o o o o o o o o s o 3.1
Phase 4 BatcCh FIOQralS « « = o « = s s« o © « « « o =« a s« « « = 3.1
Phase 4 Online ProgralSe « « s « o o o o @ ¢ s o o a o s ,06 s o 3.1
IMS/VS Data Communication Facilities o« o« o« o« o o o o o o a o o & 3.2
The MESSAGgE€e o o o =« o 2 » o o « o = o o o =« o = 3 s« «w o a o = 3.2
Multiple and Single Segment MeSSAgeS « o o « s s o o o o o & 3.2
IMS/VS Online Cperation CVSIVIEW o « « o « © o « o a @« « o o o 3.3
The CTL Region L] ° v 2 L] L] . L] L] L] L] L] - L] L] L] L] L] L] L] L] L] L] 3.“
The HPP Region © - - - - - - - w . L] L] L] . L] L] L] L] . . L] L] L] 3. 5
The BMP REQiCN u o o o o = o o o o o« 9 o o« s o 2 s @« « = o = 3.5
Relaticnship Oof DB/DC tO DE SYSteM o s o ¢ o o o o s o o s o o 3.6
The DL/I REgiONo ¢ o « % = o w © = o v « = = o o a o« « o 2 o 3.6
Terminal Input Data ProcCesSSinNg o « « o o o s s o o« o o o s o o 3.6
Input Message TYPESe o o « = s ¢ s @ o 5 o o » s s o o o s o 3.7
Input Message O0rigin « o o« o o o 2 o « o o = s « « s o s o @ 3.7
Terminal Input DestinaticCh o o « o o o o o o o « s » s o o @ 3.7
Message QUEUECING uw « « o o © =« o s ©» a v = s %= ® o o o =« s« s @ 3.7
Queue Size, Performance Consideration. « ¢ o« « ¢ « o « o o« « 3.8
Message Scheduling « o o« ¢ o o o o o o o s o s a o o o o o o o 3.8
Scheduling ConditiCNSe o « o o o o @ @ ©« o « o o « s o « o = 3.9
Scheduling @ BMP 4 4 ¢ o o ¢ o o s o o s s & o o o o o o o 3.10
Data Base Processing IntenNte o o o o o o « o « o s =« o = o @ 3.10
Application Prcgram FIOCESSiNg o « « o o « o ©« o w = v« o v = = 3.10
MPP Processing L] L] L] L] L] L) . - L] L] L] L] L] L] - L] L] L] L] L] L] L] L] 3. 10
Role Of the PSPu « o 2« ¢ = © o« @ 2 = = ® s © = o o v s =« o « 3. 11
DL/I Message CallsS « o o« o o o o o o o @« =« u =« v u =« = a o o 3.12
Program Isolation and Cynamic Logdginge « o o o ¢ ¢ o o ¢ o o 3.12
Applicaticn Prograr Abncrmal Termination ¢« « « o o o o o o« « 3.14
Conversational Prccessinge « o o ¢ o o s o ¢ s o o o o o o » 3. 14
Output Message Processinge « o « o o o « o o o « o « o s o o & 3. 14
Logging and Checkpoint/Restazt « o o o o« o « o o = © v = o o« @ 3.15
Loggi“gl . L] . L] L L] L] L] L] - - L] L] L] L] Ll e L] L] ° . L] 3.‘5
CheckpCintinge o « a o e « o o o = « o o« = = o v »n a « o s o 3.15
cold Start . L] L] * - . L] L] L] - . L] L] L] L] . . L] - L] - - - L] L] 3.15
Emergency ReStart o o o o o @ o o o o o ¢ o o o ¢ o o o o » 3. 16
NOrmal REStaArt o o« « = « o o @ % « = w @« « © = 4 o o « a = = 3.16
Security L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] . L] L . L] L] - L] L] L] L] 3.16
The Master Terminal. . e e @ ° u s s = @ e % e o @ @ « o o 3.17
Using the O0S/VS Console as a Master Terminal . ¢ &« « « o o « 3.18
3270 Remote COPY FUNCtiONe o « o o o o o » = o o o «w = =« o o 3.18
Message SWitchings o o v 4 @ o ¢ 4 ¢ 4 4 e e 9 o @ ° @ o @ « 3.18
Message Format Service OVEIVieW.: « o o ¢ o o o o o = o o o o o 3. 18
MFS and the 3270 @ &« o o o a o o o o o a = = = = a o« s =« « « = 3.20
Relationship ketween MFS Ccntrcl BloCKSe « ¢ o ¢ o o o o o o o &« 3.20
MFS Control Block Chaining « s o o o o o o ¢ o o o ¢ o ¢ o o s 3. 20
Linkage between DFLD @nd FFLDe o o o o o o o o« o o o s = o o « 3.22
Linkage between LPAGE and DPAGEe « « o o o s ¢ o o o o o o o & 3.22
Optional Message Description Linkage o « o o o « o o o o o o @ 3.23
3270 Device Considerations Relative to Control Block
Link@ge « o« e « o « « « o« » n» o s o s o s s 8 s a a ° s« = ¢ 3.24
MFS Functions. « . u @ s © e n e s e ® % e e s o % s s e = 3.24
Input Message Formattlng « o e e o & s o e 4 s ° 8 8 e s s e 3.24
Input Data Pormatting Using MFS. e o « @ ® 4 o = o s o @ o 3.24
Input Message Field Attribute Data « « ¢ ¢ o s o o o o ¢ « = 3.2%
IMS/VS PAaSSWOLAS & « « s o s o s 4 o o o o s o o ¢ s s o s o 3.25

Contents xi

Qutput Message Formatting. « « « o« o

Cutput Data Formatting Using MFS .
Multiple Segment Output Messages .
logical Paging of Cutput Messages.
Operator Paging of Cutput Messages
Output Message Literal Fields., . «
Output Device Field Attributes - e
cursor Positioning & .

System Message Field (3270 Dlsplay
Printer Page Format Ccntrol. . . .

MFS Formats Supplied by IMS/VS . . .
MFS Control Statements « « « o o« « o« @

Relations ketween Source

Utility Syntax

MFS Definition Statements. s s & s =
MSG Statement. « « « « o o 2 o o =
LPAGE statement‘ L] L] L] L] L] L] L] L] L]
PASSWCRD Statement « « « o « = « o
SEG Statemente « « o « o o o o« o
DO Statement « o o« ¢ o 2 @ o o o o
MFLD Statement « « o« ¢ o = « o« « »
ENDDO statement. L] L] L] L] L] L] L] L] L]
MSGEND Statement « o o« ¢ o o o o o
FHT statement. - - - - - - - - - -
CEV Statemente « ¢ ¢ o o o « o o =«
DIV Stateméente « o « o « « = « o o
CPAGE Statcmentes « o o « o o o o «
Do statement L[] L[] * L] L] - . L] L] - L]
DFLD Statement « « o« « o « o o o
ENDDO Statemente o« « ¢ o o ¢ o o o
FMTEND Statement ¢« o« « o« o o o o @

Compilation Statements . « . « . . .
TITLE Statemente « o ¢ ¢ ¢ o ¢ o @
PRINT Statement. « « o o o « = «
SPACE statement. L] L] * - L] . L] . L]
EJECT Statemente « o o « « o o <«
END Statemente o« o« ¢ o« o o« o o « o
Sample FOIMALS o« ¢« o o o o o o« o »

MFS Control Blcck Generation « « « « «

step ' L] L] * L] [] L] L]] L] L] L] L] L] - L]
PrepProcCessSOor « « ¢« « o s o o o s o
Phase 1. o ¢ o o o = o« « « = = « =

tep 2 L] L] L] L] L) L] L) - * L] L] L] - - L]
PhasSe 2. « « « o @« @ = o o a o «
step 3 L] - L] - L] - - L] L] L] L] -

Sample MFS Generatlon JOb. o ¢ ¢« o &

MFS Library Maintenance.

FSEGEN for MPPs and BMPS 4« « o o o o

Additional PSB Coding Conventions. .

The Data Communicaticn PCB . &« « «
The FCB Statement. « « ¢ o e ¢ o« o

The Data Base PCBe « « o « « « o = =«
Additional Processing Intent Optio

Example of an Online FSE & o « o « «

Application Control Blcck Generation {

JCL Requirements « « o« « o @ o o o «
Required Control Statements. . . .
ACBGEN EX€CUtiCN o « o « « o « o

The Data Communication Design Process.

Concepts of Cnline Tranmnsaction Proce
Application Characteristics. « . .
Terminal User Characteristics. . .
IMS/VS Characteristics « « « « o

xii

® @ @ s e

Naming Conventions . .

IMS/VS Erimer

o (=4

n

n.um.-uonoml.lo.n-n-un.oloo..aooaoduo

o § 3o 0 o 2 o o b+ o

8 o & o 2 8 o 8 o & 0 e s

1)

8 ¢ 4 QK e s o

o

-.l:’oﬂ.-ﬂ‘o

i

S & & & & 3 & 4 o e s

¢ & 8 & o 0 o ¢ C e 8 &6 0 8 0 & o+ 8 b ¢ bt 8 e b e

[0

o a (s ¢ ¢ ¢ & o s o

td

Q

o

e ¢ le 2 & ¢ & o » o

28 e 8 e 6 & & 5 B 8 & & 8 & e 2 & 2 s & 3 s & s s b s s

~—

3 e 8 & o 4 & & 5 & o 2 s 8 4 e 3 e b B s 0 & 6 4 & 0 8 8 0 @& & & o 6 e 4 b e & 0 5 s & 4 6 s 4 0

e 4 © & 4 8 a2 8 & 3 0@

a o 8 & &8 3 & 2 o & s e

e o & 5 o

e 6 & o & 8 8 s & & s &

s o @ » e ¢ 8 e s 8 @ a e L3 4 o . e & 4 o & ¢ o s o . e o

e o o 4 o

0 e & & o . LI » & o s o]] . e e 3 e = 8 e 8 o s e o [. s v e 4 o s ® &5 o o 3 o s & o L] L]

Statements and Control Block

$ & & 6 o & 4 & 4 3 5 8 & & s * 4 & B 4 B ¢ v e b 6 s 6 5 & o s 6 v 3 e B s 8 2 s O 3 o s & e 2

.
L
.
-
.
-
°
.
.
S
-

s o a e s & & 3 . o e [s o s« o 3 s o s 0o o s o (] s o s o a &] e 3

¢ & 4 8 8 3 4 & & b & 3 2 4 s 6 3 s 4 b e 3 &6 g 0 4 & » 3 s 3 o a 3 0

¢ & s e & 3 s s 8 s 4 e

¢ ® ¢ & e 8 3 ® 5 § & § &6 5 & O 3 6 4 4 € g & & p 6 , s 6 3 & 3 6 o 3 o

8 ® 3 o & 3 6 s & o 3 & 4 3 ® 3 & 3 & s & s g 6 3 2 &8 g & 3 o 3 s o

s ® & & & 4 o g o o 4 &

3.25
3.25
3.27
3.27
3.27
3.28
3.28
3.29
3.29
3.29
3.29
3.30
3.31
3. 3%
3.32
3.32
3.32
3.33
3.34
3.3
3.34
3.35
3.38
3. 38
3.38
3.39
3.40
3.40
3,41
3.42
3.4
3. 48
3.44
3.u40
3.45
3.45
3,45
3.45
3,46
3,47
3.48
3.48
3.48
3.48
3.48
3.48
3.49
3.49
3.49
3.49
3.50
3.50
3.50
3.51
3.51
3.52
3.52
3.52
3.53
3.53
3.504
3.54
3.54
3.54

Transaction Response Time Considerations . 3.55

Choosing the Right Characteristics « o« « o o o ¢ o « o o« o &« 3.55
Online Program DeSigNe o o « v « o o o o « o o = =« o o « « « = 3.56
Single Versus Multiple PasSeS. « o« o o o o o o o o o o o o 3.56
Cne Pass Update. - - - - - L] - - - - - - - - - - - - - - - - 3.56
TWO Pass UPdat€e o o o o o o = o o o« o s o o a s « a o o o o 3.56
Multi-Pacs Update. o o o o a o @ o < o =« a o s @ a o« o o « s 3.57
Conversational Versus Ncn-Ccnversational . « o o o « o o « « 3.57
General MPP StTUCEULE/FlOW o« o o o s o o« o e s s o o o o a o« 3.57
Transaction/Program GrouUpPing « « o« « <« o o u o = « o o« a « 3.59
Message Format S€rvice Desigh. « o ¢ ¢ o o o o o « a o o o o =« 3.59
Basic Screen PeSigNe o o o 4 o ¢« o ¢ o o o o o o s o o o o o 3.59
MFS Subset ReStriCtion o o o « « o « o @« o @ « = s o a o « 3.60
General Screen Layout Guidelines « ¢ « o ¢ ¢ o o ¢ o o o o o 3.60
Including the Transaction Code in the Format « « o« « « o« o o 3.60
Design of a Sample Inquiry Transaction « o« « « o ¢ o ¢ o o = = 3.61
Design of a Sample Update TransactioN. « « ¢« « ¢ « ¢« o « o o« o 3.61
Alternative 1 -- Single Fass Updatees o« o o « = « o « o o « = 3.62
Alternative Z -~ Two Pass Update « « « « o o « o o « « o o o 3.62
Alternative 3 -~ Multi-Fass Update « o =« o « « o 2« « « o « = 3.62
Which One t0 ChOOSEe o« ¢ o e « o o« o = o =« @« s = = o = =« « = 3.62
Our Sample Ccnversational PrograMe « o« « « o o ¢ o o o o o & 3.63
Miscellaneous Design CcnsiderationsSe o « o « « o « o « « « @ 3.63
Online Pata Base DeSigN.e o « o ¢ ¢ a « = o @« =« o » = 2 =« o a o 3.63
Using Secondary INd@XeSe « o« o o o o o o ¢ o s o o o s « o @ 3.64
Preferable Data Base CrganizatioN. « o« v o o o« a o = « = o o 3.64
Online Limitation €f SHISAM. o ¢ « ¢ o o o o s s s o s s o &« 3.64
Using an Intermediate Cata PaS€c « « o e « v « o « o o « o = 3.64
CHAPTER 4. DATA BASE ERCCESSING « a « « © o « = 2 o = « s = a = 4.1
Structure O0f This Chaptere « « o o « o ¢ o o« o ¢ ¢« o o o s o o o 4.1
Tntroduction to Data Pase ProcesSsSing o o« o = « o o a o o o o o 4.1
Program Structure and Interface to DL/T. v o o o o o « a @ a o » 4.2
Language and Compilation o o ¢ o o ¢ o ¢ o o s o o ¢ o s o o 4.2
Interface COMPONENES =« u o o © o o o % = o = a o o o o« = « & = 4.2
Entry to Applicaticn PICOralm « « « o o o o o o o o« o ¢ o o o 4.4
PCB'HaSk . - . . . - . L] Ll L] . L) L] L] L . . L] . . L] L] * . ° L] u.s
Calls tO DI/Jue o « o o o v s » o o @« =« « =2 @ o« = = = s = = = 4.7
FUNCtion AIQUEENt. « ¢ o « o o « s o a o o s s o s s o o 4.8
PCB-Na me Arg UMSNte o o o o o« = & o ® e o = ® u e uw e e o - “. 8
I/0 WOTKk Area ATQUMENE o o o 2 « o = @« = @ o o a o o o o @ 4.8
Segment Search Arquments ¢ © o 8 © 8 & s & 83 e * & e e e e 4.9
TerminationNe « o o« o o o = o o« % @ o o o s a2 s o s a = o o ® 4.11
Status Code Handling ¢ 8 ® e e ¢ e e ® 8 e @ e s e v e e e 3 @ 4,11
Sample FTresentation of a €Calle o ¢ 4 o o ¢ 4 o ¢ ¢ ¢ o o o o 4.12
Basic Data Base PIOCESSING o « o o « o « = o« =« a 2 o« =« o = o = 4.13
DL/I Positioning CONCEPY v o o o o « e o « o s o s s o« o o o & 4,13
Sample ENVILONMENT o o o o « o = s« o o « o o« o a = o @« « « = = 4.13
Petrieving SegmentSe o« o o o ¢ s @ o o o o 2 o o o o o o o o @ 4,14
The Get Unique Call == GUa ¢ ¢ ¢ 2 o o o = @« o« = © o @« o s 4,14
The GEt Next Call - GNc @ ®w ® ® ® © ® @& e ® e ®w ® e @ = a e u.15
The Unqualified Get NexXxt Calle o o« o o o« o ¢ o o o o o o o & 4. 16
The Qualified Get KeXt Calle 2 « o a o @ = o o = o « s o « 4.16
Get Hold Calls L] L] L] L] . L] [] * L] L] L] L] e L] . L] . L] L] * . L] L] u. 18
Updati}lg Seqments« e« © @ 0 e @ © & e @ o e e ° s & o ® e o & 4,18
Deleting SEOMENES. o o o e o < o o « @ = @ o o « o o a s « = o 4.19
Inserting Segm2ntsS o o« o o o o o o o s ¢ o 8 o ¢ 6 s 0 & & 0 » 4.20
Calls with Command CcdeS v o o o o o o = @ o a » a = « « = « = 4.21
D Command Code L] . . . L] . . . Ll L] - . - . - - . L] L] L) - L] L] u021
N Ccmmand COd2 4 o o 2 o « o« & @ o o « o« o o o = o « a « o 4.23
F Command Code - L] L] o L) . * L] - - - - - - - - - - - - - - - u.23
L Command Code L] . L] L] . L] L] L] L] L] L] * * L] L] . L] L] L 3 L] L] L] . u. 23
- Command Cod€ uw « o « o @« o = © s @ o o o = o o ® a » o o = 4.23
Data Base Positioning After a DL/T Call. v v ¢ « ¢ ¢ o o o o @ 4,23
Using Multiple BCEs for Cne Tata Bas€. « o2 o =« = o @« « « « « = 4,24

Contents xiii

System Service Calls . « « « &
The STAT Call. -« o« « « « & =«
Processing GSAM Data Bases . .
loading a Basic Lata PRase. . .
Sample Data Base Lcad Progranm.
Loading a HIDAM Data Base. . .
Sorting Segments in Hierarchica
Loading a HDAM Data Base . « « o
Loading a SHISAM Data Base . . .
Status Codes for Data Base lLoading
Status Code Error Routine. « « « + «
Assembler Programming Consideration.
Using the Sample Rcutines. « . . &
JCL for Assembly and linkage Editing
Cobol Programming Considerations . . .
JCL for Compile and Linkage Editing.
JCL fcr Program Execution.
PL/I Programming Considerations. . .
Cther PL/I Considerations.
Using the Sample Rcutines. . . .
Link-Editing PL/I Prcgrams for DL/I.
Sample Fhase 1 ProgramsS. « « « « o « o
Processing with Lcgical Relationships. .
Accessing a Logical Child in a Physical D
Accessing Segments in a logical DBD. . .
Retrieve Calls « « « & .
Replace Calls. v « o « o o o = « = o =

=

.lo.cco.tg‘.ll-lm.‘.lloo-.l.llllomljl...

=]

¢ o e & 8 g 2
lla.lo.n.rc.t|.l.lcuilocbllnluloonaaoouo

e 8 o 8 4 8 N1e &8 & » ¢
o

q

D

Delete Calls
Insert Calls . . . « o e o o

loading Data Eases wlth chlcal Relations
Loading the Phase 2 Data BasesS « « o« «
Sample Phase 2 ProgramsSe. « « « = = « =«
Processing with Seccndary Indexes. . o « o
Accessing Segments Via Secondary Index
Retrieving Segments. c e s o s e = =

Replacing Segments .

e ®w e e e @ e

i

[+

Deleting Segments. . « 4 e « o o o
Inserting Segments . « « o« ¢ ¢« ¢ o o .
Sample Phase 3 ProgramSe o o« o o o o o
Secondary Index Creation « - -
Batch Checkpoint/Restart « ¢« « o « « + & .
Using the XRST and CHKEF Calls. « « o« « .
The Restart Call ¢« « « « ¢ o = « o « . e
The Checkpoint Call, « ¢ « ¢ ¢ ¢ o o« « .
Using GSAM with Checkpoint/Restart . . « .
Sequential Input Files + ¢ « ¢« + o & . e
Sequential Qutput FileS. « o« « « « » . .
Sample Batch Checkpoint/Restart Programs . .
Data Communication Applicaticn Programming . .
Application Frogramming and MFS . . . - -

Applicaticn Prcgram TYEE€S. o« « o «
General MPP Considerations . . .
General BMP Considerations . . .

Additional CHKP Status Code in

MPP Structure and IMS/VS Interface

DC PCBS. - - - - - - -
I/O pCEc * e o o o o
Alternate PCEB. . . .

The DC-PCB Maske o« o «
COBOL Example of a DC-PCB ﬂask
PL/I Example of a DC-PCB Mask.

Entry to the MPP . « o« <« « .« . «

-

=
.

¢ ¢ 8 0 s e 0 e g

. . o

4 o 6 & & o 0 8 o 3 o s QN6 o ¢ s 8 e s ¥ .

8 4 8 a8 4 8 o4 e 4
8 o 8 8 & o & o e o

*« o o [] . e & o 9] . .

xiv IMS/VS Primer

o
.

n

. .] . . . a4 o o . LI e ¢ s o s o & o . [. s o L] s & 8 8 o 4 o [L] L s o 4 & o & 8 »] e 0 s o s o] s & . [e o .

. I . o o o L] s o] [} . LI) e 8 o e o L} L] e & 2 0 & & o B .] s o B .

3 & 8 & & 5 & 3 & B O 4 e & s S & O & s e 4 o ® 0 @ 5 B o & L & & S 8 3 O 5 5 s 6 s © 3 8 8 3 0»

e § & ¢ & ° g 3 5 8 & s » ° 3 & 2 8 * 3 & 2 * o 4 o

s ® 3 o @ s ® 5 3 & 4 & © 4 & 4 ® & 4 6 g & 2 4 o 3 s ® 3 e

e & 2 & s 4 & g & 8) & g & o 3 B 4 4 & 4 8 g & & g o

s & o 5 3] e 3 o o 8 & o g o L] e ©® o L]

s & 3 e 3 3 ® g & s 3 ® g ® B 3 8 g p e ¢ & g o o g o

e & g4 e , .

4,24
4.25
4.25
4,26
4.27
4,28
4.28
4,29
4,29
4.29
4,30
4.31
u'a’
4,32
4.32
4.33
4.33
4, 30
4,35
4.36
u. 36
4. 36
4.37
4,37
4.37
4,37
4.37
4.38
4,38
4.38
4.39
4. 39
4.39
4,39
4.39
4,40
4,41
4.41
.41
4.4
4,01
4ot
4.42
b4l
4.45
4.45
4,45
4.45
4,46
4. 46
4.U6
4,46
5,47
4.47
4,47
u.u8
4,48
4.48
4,49
4.50
4,50
4.50

The Dc Calls - u.s‘
Get CallS (GU' GN) . L] . L] L] LI] L] . . e e e e o . L] e e . L] u052
Insert Call (ISRT) - ® ® @ ® e ® e = e e o o e e o e e . . e u-53
Change Call [CHNG) « « « o o o o o o o o « « s © o o a o a o 4.54

Basic Message FOTMALS. o o o o o o« o ¢ o o o « s o s o o o o o & 4.55

Input Message FOIMAL ¢« o o v ¢ « ¢« ¢ o © o o« ¢ o« o o« « o « o @ 4.55

Output Message Format. L] L] L] . L] [] L] L[] L] L] L] L] L) . [] . [] L] L) L] u. 56
Field Format « . « « <. . « o o & e e & o 8 s 6 s 4 e e s o 4.57
Dynamic Attribute Modlflcatxon and Cursor Control. 4.57
Multiple Page Output MESSAgeS.e « o « o o o s o o « s o o o @ 4.58

Writing a Simple MPP & ¢ ¢ o« « o « o« o o o a a o o o o « a s « 4.58

Sample COBOL TInquiry PrOgram « « « o« o o o o o « o o % o o o « 4.60
COBOL Compile Options fOor MPPS « & ¢ ¢ « o « o ¢ o ¢ o o o & L.60

Sample PL/I InQuiry ProgramMe « o o « o o o o o o o « o o s o o b.62

Handling Error Status COdeS. « o o o o o o » o o o o o o s o o 4.63

Conversational ProcessSinge. « « « o « « o o« o o o s ¢ o « o o o« » 4.63

Retrieving the SPA and Terminal INpute « o o o o o o « = o « « u.6u
Layout Of SPA User WOork ATe€@ o« ¢ « o o ¢ o o o o ¢ o o o o o 4.65
Input Message FOIMAt « ¢ o ¢« « o e o © o« ¢ o « @ o« o o o o = 4.66

Data Base Processing in Conversational Mode. « « ¢ o o o « « & 4.66

Inserting the SPA and Terminal OutPute o « o o o o o o « o o & 4,66
Output Message FOrmate « o« o o o o o ¢ ¢ o = o o o o = o o = 4.66
Terminating the Conversatiol « o o o« o o + s o o o o « o o & 4.67

Writing a Conversational MPP . . & ¢ ¢ o « @« « o o o a o« o = o 4.68

Sample Conversational MPPS « « v ¢ o ¢ o o o @ o o o s s o « @ 4.70

Testing Your HPP . L] L] L] * L . . - L] . L) - L] L] * . L] L] L] L] L] L] L] u. 70

CHAPTER 5. DATA BASE REORGANIZATION/LOAD PROCESSING
About This Chapter . . . « « .« « .

L] L . L] . . Sl‘
e ® = % @ @« 8 ® © ® o & % a 5.1
what is Reorganization L] L] L] - L] - L] L] L] L] . L] L] L] L] . - 5. 1
When to Reorganize . v« ¢« v ¢ o o o o @ @ o o o @ o o @ o a o = @ 5.1
The Frequency of ReorganizatioNe « o o o o o o ¢ ¢ o o o o « = 5.2
Steps in ReorganizatioNe « o o o s o o o o o o s o s o o o o o @ 5.2
Overview of the Reorganization/Load Utilities. o« « o« ¢ o ¢ o« « . 5.2
Physical Reorganization Utility PIrOGLamsS o « o o« o o o o ¢ o &« 5.3
The INDEX. Reorganization Utilities o o o« o o o« ¢ o o « o o « 5.3
The HD Reorganization Utilities. « o ¢ o o o o o o « o o o = 5.3
Logical Relationship Resolution Utility Programs « « « « o & o 5.3
Data Base Prerzorganization Utilitye o« o o ¢ o o « o o o = « 5.3
Data Base Prefix Resolution Utility. ¢ « o o « ¢ « o s o o & 5.3
Data Base Prefix Upda*e UtilitVe « ¢ o o o« o o o ¢ o o« o o @ 5.4
INDEX Reorganization Unload Utility (DFSURULD) « o o« « o « o o« « 5.4
JCL StateMmentsS o « o ¢ o o o o« « o o« s s o o s o s o s o o o 5.4
Utility Control Statemente « o« e o o o o o o o s o o « s o o o 5.5
REtUIN COGES o o 4 o o @« o« o o o o o = o s o ©w = o« « « o = o = 5.6
Output Messages and StatisticsS o o o 2 o ¢ o o o o o o o o o « 5.6
FXAMPlee « ¢ e o « o o @ o o s « s o ® o o « o s = o s o o o 5.6
INDEX Reorganization Reload Utility ([DFSURRLO) & o o o o o o o « 5.6
JCL Statements - - - L) L] . . L] L] . L] . . L] L] L] L] . L] L] L] . L] L] 5.7
Return COAeS o« o o o ¢ o o @ o o o o« o o o s« s« o o @ s a o « @ 5.8
Output Messages and Statistics « ¢« o o o ¢ o o ¢« o o o o o o o 5.8
FXamMPlee o « o ¢ o o o o @ e ¢ o o s s & @ ® @ s+ e & @ @ 5.8
HD Reorganization Unload Utlllty (DFSURGUD) « o « o o o o o o o & 5.8
JCL Statemen+s - - - . . L] . L] L] L] L] L] L] - L] - L] . L] L] L] L] L] L] 5.9
REtUIN COABS 4 o o o« o o = = o o s s = s = a s = o « s o o o« = 5.10
O\ltpllt Messagp,s and Stat" Stics e & 8 & e 8 e 6 e & s e o s e o 5' 10
EXampPlée « o ¢« o o o o o « « “ o a o e e o % ¢ o s 8 w e ® 5.10
HD Reorganization Reload Utlllty [DFSURGLO) « ¢ ¢ o « o o o « o & 5.10
JCL Statements - - - - L] L] L] - L] L] . . L . L] . . . L] L] L] L] L] . 5. ‘1
Return COAeS ¢ o o c o o o« @ o =« o @« o o s o o s s o o o o o = 5.12
Output Messages and Statistics « o« o o s o o o ¢ o s o o o o o 5.12
EXQAMPlea « o « o s s o« o s © o o « = @ o o o o o s o =« « o « « 5.12

Contents Xv

Data Base Prereorganization Utility (DFSURPRO) .
JCL StatementsS « o « o o o = @« o« = o o« « o o
Utility Control Statements . . « .

REtUrN CO@S 4 v o v e o « o o o © o =« o « « = -
Output MessageSo L] . L] . L] L] L] - - - - - - - - . -
Data Base Prefix Resolution Utility (DFSURG10) . . .
ReStriCtions o o ¢ o o e « o o o o o = o o s o o =
JCL Statements « o« o o o o o o o o o a o o s o s o
RetUrn COdES v « ¢ o « o o = = ©« = o a s « s« = o =
Output Messages and Statistics « « o o o ¢ « « o« @
Data Base Prefix Update Utility (DPSURGPO) . « « .« &
JCL StateMeNtS « o = o o« @ @ o o @« o« &« o o o« o « o
Retlrn COAES o o « o o o« o« a o o« o o o v o o o o =
Output MEeSSAJeSe o o s o s o s o s o s s s o s o o
Physical Reorganization. « « « ¢ ¢ o o o« o ¢ o o « .
Reorganizing an INDEX Data Bas€. « o« o o o o o o &
Reorganizing a HIDAM or HDAM Data Base . . « o .
Indications that Databases May Need Reorganlzatlon
OSAM Data Bases =-- (HDAM only) « « o o o o o o &
VSAM Data BaSeSe « o o « o o o = o s @ o s s o o
Initial Data Base Load Processinge « o o s o o o o o
Loading Data Bases with Logical Relationships. . .
Loading Data Bases with Secondary Indexes. « . . .
Work Data Set Allocation « o o o « o o o o o o o @
Size of Workfile 1 . o o 4o ¢ ¢ o o o ¢ o o o o =
Reorganizing Data Bases with Logical Relationships/Se
ITNAEXES « o o o = o« « » @« « @ = @« o s o s o« o s = =
Applying Structural Changes. =« « o« o o« o o « « = «
Changing a Physical DBD. o o« o o o o o o ¢ o o o o
Adding Logical Relationships/Secondary Indexes . .
Examples * L] L] . * L] . * . ° Ll L] . . L]
Reorganizing in an Online Environment. . o« o o o « &

CHAPTER 6. DATA BASE RECOVERY
Fhat is Recovery?. . .
Two Approaches
Basic Recovery . .
DL/I RRCOVETYe ¢ o+ o
Which One to Choose. . .
The DL/I Logging Facility. .
The DL/Y Recovery Utilities.
Data Base Image Copy Utility
JCL Statements « « o s o o
Utility Control Statement.
Return Codes 4 o« o « o« «
ExamplesS « o ¢ o o o o o s
Data Base Change Accumulation U
JCL Statements o « « o o o o
Utility Control Statement. .
Return Codes ¢ « o« o o o « &
EXamPlee o« o ¢ o o o o o o o
Data Rase Pecovery Utility ([DFS
JCL Statements « « ¢ o o o
Utility Control Statement. .
Return Codes + o o « o« « = «
FXamplas o o o o o o o « o &
Data Base Rackout Utility (DFSB
D

. e s & o @

=]

Q-“u(fl"ob'ﬂcn'o"n‘
8 o e o ¢ o 8 0 4 0

e 4 & & & o o 4 s s s e

o
e 8 8 o Se ot e 8 8 4 8
~

e ' 0 4 __ e s ' 4 8 & 4

.

i

wn
o 4o ¢ 8 4 e o ¢ o 0 s 4 0
9
<

e & 8 o ()e® 2 5 s o s s t e s & o
L]

<

s & & & Re @
(=
~

@ e & o 4 IJe 8 s+ 4 8 8 o b s b 0 4 2

U.Ql
[os]

s 0 8 g Oe * s, e O
A

e« 8 ¢ o 0 4 & o+ 4

s 8 8 o
0
¢ s s 0
¢ & & 8 e & o

0

>
. =
]
[

JCL Statements .« « o o o o
Utility Control Statement.
Return Codes « « « « « « o
Examplee o« ¢ o o o o o o o
System Log Pecovery Utility (DF
Step 1: DUP Mode. « « o &
Step 2: REP Mode.
JCL Statements . ¢« « ¢« « o+ &

0

3
g
(=]
~

.
.
]
@ o o & & 8 e & s & 2 4 3 4 & 0 e Ne b s g 0 s o t e 8 0 4
<

n.m.li-m.'l-
¢ . te B 8 4 O V0,
.
.
¢ e 4 4 8
® o & e 8 4 & 2 o & s s
e o & e & 4 ¢ 4 s & s
8 & 8 @ & 8 & 8 o & s o
“ o 6 & & o & 4 8 s s .

xvi INS/VS Primer

o.l.!.Ol.'..l.llnl.ll..

2 & 8 4 e b e a4 8 2 ¢ s e 8 e s & a

6 & & & s & ¢ & & 8 s

e 6 & o 2 @ T8 s & e & 5 s s & s s * 3 & e 2 s 0 0 s 2

¢ e 4 & 4 & U s & s & * s & 2 o b

e 4 e 5 & © 4 & o a4 ®© § & o 3

» ® g & & & 8 @ 8 & 2 3 o g o

e & 3 & 3 s g8 6 s o s s s 4 s o

e ® g e 4 4 & 84 ® § 3 & & & 4 g & 42 & 4 s & 3 ° 2 3w g = &

e ® 4 & ® g o o & &

e ¢ g & o o

4 e 5 & e & B 3 g & ¢ & o 8§ & a4 & & 3

a4 & g & @ § * 3 =& 8 g & s 2 & 4 o 2 , ® e g ® 3 o e ®& a8 @ ® 3 @ 3 ® B3 g ® g e 8 g * & g % 4 g v 4 o

5. 13
5.13
50‘“
5. 15
5.15
5. 15
5.15
5. 16
5. 18
5.19
S. 19
5.19
5.20
5.20
5.20
5.20
5. 21
5.22
5.22
5.22
5.23
5.23
5.25
5.25
5.25

5.26
5.27

U‘
N
~

5 27

U‘U’!
L] -
NN
@ oo

- b d et @ DO DO I JUIUTIE WNDN = =

.
- d -
FEEWNON @220

" s e a2 o o

o e We il WNe W o) W's o W6 . We W0\ Wo W e e . e \W'e A 0e W o W e A Te W@ AN o W6
.

6.14

[
.

-
N

6.17
6.17
6. 17
6.18
6. 18
6.19
6.19

Utility Control Statements . o o o o o s o o o o o o o o o & 6.19
Catalog Considerations ¢« v« o o o o o o o « o o o o =« o o o« o 6.20
Examples . L] . - L] . - L] L] L] L] - . . - - L] L] . L] L] L] L] L] . L] 6- 20
Basic Recovery ProcedureS. « « o « o o o o o « s o o « o o o « = 6.20
EXQMPleS o ¢ o o o o o o o o o o o = = = o o o s o« e = o « o o 6.21
DL/I Recovery ProceduUTeS « « o o o o o = o s s s s s s o« o o o & 6.21
Assumptions and ResStrictions o« v o o e« « o« o ¢ o o« o « o o o 6.21
Possible Failures. . . L] . L] e L] L] L] - - - - - - - L] - - - - L] 6.21
Correcting the Cause 0f the FAilUT@. ¢ o « ¢ o o ¢ o o« o o o o 6.22
RecOVery TaskS e « o « o « o o s s @ = o« s s s « o s o o o o = 6.22
Image Copy/Log Administratione o« « o ¢ o « e o o « o o s o o @ 6.23
FXamplesS v« ¢ o« ¢ o ¢ o o « o « a o o « a a o« s a a « o s a = 6.25
Frequency of Image Copies and Change Accumulations . « 6.25
Retention Period of Image Copies and Log Data Sets . « « « 6.26
VSAM Catalog ConsideratioON « « « « 2 = o o o o o« = « a s « o = = 6.26
Data Base Recovery in an Online IMS/VS SYSt€Me o« o o o o s o o o 6.26
System Log Terminator Utility (DFSFLOTO) « v ¢ o o o o o « o o 6.27
JCL Statements o o o o o« e o = « o o @« = « « o « a« « « a a = 6.27
Examples L] . L] . L) L] L) . - L] . . L] L] L] . L) L] L] L] L] L] L] . L] L] 6 28
Online Recovery ProceduUreS « « o « o « o « = o« « s = a = a = o &= 6.28
Assumptions and Restrictions .« o ¢« ¢ o« o &+ o ¢ « o o o o o o €.28
Possible Failures. . . « . e « e e e e @ 8 e s o @ @ e « e 6.28
Correcting the Cause of the Fallure. e a o @ e o e s e o e s = 6.29
FeCOVeTrY TASKS o o s o o o o o o s s o s 5 o s o s o o o o o = 6.29
log Tape Administration in an Online Environment . « . . « < . 6.31
Log Tape Data Set NaMeSe o o o o ¢ o« a s o s o o o o o o o o 6.31

Log Tape Serial NumbersS. ¢ o o o ¢ o ¢ o o « o = o o o« « « @ 6,32

Log Tape Control Forms . . . e % = s s s % @ @ ® @ s s @« = 6.32
Frequency of Image Copies and Change Accumulation. « « « « + & 6.32
Retention Period of Online LOg TaPES ¢ o « « « o o o « o o @ 6.32

CHAPTER 7. INSTALLING IMS/VS. .
The Installation Process . « .«
0S/VS1 Preparation . « « .« .« .
0S/VS1 VSAM Considerations .
0S/VS1 VTRAM Considerations (DC
IMS/VS Supervisor Call FRoutine .
Optional Program Products. « « .
Installing a DB System or a DB/DC Sys
Installing IMS/VS=DB . ¢« ¢ ¢ o« o« « »
Creating the IMS/VS-DB Libraries . .
The IMS/VS-DB Distribution Libraries

The IMS/VS-DB System Libraries . . .

The IMS/VS-DR Application libraries.

The IMS/VS-DB Primer Function Sample Libraries
Restoring the IMS/VS-DB Distribution Libraries .
IMS/VS-DB Stage 1 System Definition. . « . . .«
Coding the IMS/VS-DB System Definition Macros.
IMS/VS-DB Stage 2 System Definition. . « ¢« « « &
0S/VS1 Final Preparation . . . « o o = o -
Relink the 0S/VS Nucleas wlth the IMS/VS Type 2 S
Copy IMSRDR Procedure to SYS1,PROCLIB. . .
IMS/VS-DB Installation Jobs. « « « « « « «
Installing IMS/VS DB/DCe o o o o o o o @
Creating the IMS/VS Libraries.
The IMS/VS Distribution Libraries. .

.
o

s 0 @ L] L] ry L]
e & 8 3 o o &
a8 & o & 8 o o
e & o & 8 & o
¢ e &
" s &
¢ 3 & []

nly
Y

)
.

.
-
.
.
em
L]
3

s o 8 8 o & e 8 » o & o
® e 8 8 & 0 & » 0 © 2 o ¥ & o 2 2 s

[¢]
.

The IMS/VS Sample Libraries.
The IMS/VS System libraries.
The IMS/VS Application Libraries . .« o

The IMS/VS Online Libraries and Data Sets.
Restoring the IMS/VS Distribution Libraries.
IMS/VS DB/DC Stage 1 DefinitionNe « « « o« « &

System Environment Macro Statements. . . .

Data Base and Application Macro Statements

Data Communications Macro Statements

-t D h D d ot D B P D DODOPOPAVVINUVINEEEEFTWWWN — —

NNGON GO NAdSN AN ON YN GINON N ONNON 9NN
VMEEFWWWNONN - - -

e & ¢ ® s s ° 3 & s &8 ® 4 8 & 8 e 3 ° & 3 ® 4 ¢ 8 g @
e & 3 & 3 a2 * g ®* s s & 3 o

@ o 5 o 8 4 s 8 & 2 4 2 s s B e s s e 0 s 3

5 & & e 6 8 8 & o
4 o 3 & 3 s o 8 o
. . e o .

¢ o ¢ & 8 8 o o o
& o 3 » & s = g &

Contents xvii

Resource Naming Rules. .
Coding the IMS/VS System
IMSCTRL Macro.
IMSCTF Macro .
IMSGEN Macro .
MSGQUEUE Macro
SPAREA Macro .
BOFPOOLS Macro
DATABASE Macro
APPLCTN Macro.
TRANSACT Macro
Coding the Data Com
COMM Statement .
TYPE Statsment .
TERMINAL Statemen
NAME Statement .
Coding the Data Com
COMM Macro . « .
LINEGRP Macro.
LINE Macro . .
CTLUNIT Macro.
TERMINAL Macro
NAME Macro . . «

uni

u

(¥

lc‘.'no‘o.(]o'co'-‘.

a

D
ati
ti

‘o‘o'ﬂo'ooSOOOQ'oio

a o & o
4 o & 8 o ¢ e (te o Fe & 8 o o

Structure of the Stage 1 Input

efinition Macros

1

1

'c-'-‘Oo‘o'On'.“o'o

=}

=]

D

IMS/VS Stage 2 System Definition

0S/VS1 Final Preparation . .

Copy IMSRDR and IMS Procedures to SYS1 PROC

Relink the 0S/VS Nucleus .

S

S

']

"-'co‘o'(’c'.ld‘o'.‘IQOO

=

ta
t
c

1]

®

.
.
.
L]
.
m
L]
m
.
.
.

e

e

8 8 & o & 0 ¢ & T e o 4 4 3 e s e & s s 2 o

Customize IMS Control Region Procedure
Update DPSVSMOO Member in IMSVS.PROCLIB.
Create DFSPIX00 Member in IMSVS.PROCLIB.
Tables.

Update Initial System Security

Update IMSMSG Proc=sdure. .

PL/I Optimizer Considerations.

Preparing VTAM . o« ¢ ¢ + o
Creating the VTAM Librarie
Defining VTAM Start Option

Defining IMS/VS to VTAM,

.
S
Se

Defining the local Network to VTAM
Defining the Remote Network to VTAH.

Creating the VTAM Start Cataloged Procedu

¢ 3 8 & o & b o % Ne 8 o 4 Ne & o o 8 o 8t o

t ¢ 86 o 0 ¢ o & o

(]
)

o]

.
.
L]
.
0
.
T

Generating the Network Control Program (NCP)

OVerView « o« « o« « o o o »

Restoring the NCP Distribution Libraries

Creating the NCP Data Sets

Defining the Remote Network to VTAM.
File NCP Source Deck into SYS1.VTAMLST

Stage 1 of NCP Generation.
Stage 2 of NCP Generation.
IMS/VS DB/DC Installation Jobs

Executing the IMS/VS Primer Sample Jobs.
Initializing the Sample Environment.

Phase 0 Jobs « « ¢ » &

Recommended Test Sequence.,
HDAM Randomizing Modules . .
General Randomizing Module .
Writing a Randomizing Module

Phase 1 JObS ¢ ¢« « e o o o o
Phase 2 Jobs o« ¢ o ¢ o « o«
Phase 3 JODS ¢« & o ¢« o o o @
Phase 4 Jobs « ¢« &« & ¢ « o+ .

Randomizing Module Interfaces.

A Simple Key-Sequential Randomizing M

»
.
-
.
-
.
L]
-
.

DL/I Data Base Buffering Pacilities.

Log Tape Write Ahead

xviii IMS/VS Primer

-

¢ o O o 8 o o 4 & bt 8 e

d

® s (50 o i & o ¢ o 6 & 8 b o o &

[

o o M & ¢ o & ¢ &6 8 & o o & ¢ ¢ ¢ o & o

8 @ ® 6 e & @ ® & & 0 o " s o 8 s s 0 g e s o

® 8 & & 8 & & 2 & 8 s 6 5 e & s & 3 & S 1 o s & 0) & & & o s e+ b s s 0 s s e s e e o+ e

-

L]

4 o o 4 5 4 e s 0 8 & e e s & s 8 & s 0 O & o 8 ° s 4 & s & & 8 0 s & b e & {FPs s e 3 e o 8 & & e & & ¢ 3 s 8 8 & o b e o s o

L

g

8 6 8 5 8 & 6 ° e ® & e * 2 & 6 ¢ & & & & & & & & B 4 e & & O 8 & B 46 % S & 6 4 ° 6 8 8 6 4 & 4 Re & & 8 e s 8 s & o s e o s o

® & a @& 8 ® & 3 8§ & & 8 3 & 3 3 S 4 ° 8 s & © & o 4 & 5 B 6 5 s & 2 4 s 2 o 4 2 6 2 s 4 & 0o s 2 o

@ e 85 8 & 8 © 6 3 ° o s 0 4 & 8 s O s o & 4 & 4 ® ° 4 G 4 s ° 4 ° & s ® o6 2 6 8 5 ° 4 & o s 0 3 s+ 5 4 ° 4 8 8 4 s 4 8 s 2 s o

s & a3 & 6 3 & s 4 & ¢ s & 3 o

® & 8 & 5§ ® @& 8 8 s 6 & ;3 e 8 8 ° a2 ° O 3 & 4 & &6 a2 S 9 4 s 4 % o s o & 3 & s s 5 4 v s s s

8 ® 8 o 6 , ® e o ® 53 6 ° § e 4 4 8 g 6 & g & 4 ° s 4 & 3 & & 4 ® & g 6 O 5 T 4 4 6 g * o s ° 4 4 s % 4 &8 © 3 ° 5 4 * 4 8 e 4 &

e & 3 s & g o 3 3 * ¢ o o g o

§ ® & ¢ e 4 & © g & & 5 & s e & g ® 3 3 O § @ & 4 & 6 3 & ¢ 4 © 5 ° 0 » &6 4 4 o

® 8 @ ® 4 & & 4 @ 4 & & g & § s © 4 6 & 4 o g ® o 3 s 3 g & 4 8 ° ;3 2 ® 3 o g 3 6 g & ° 5 ® ;3 g * 3 6 g 8 8 g3 e s a8 0 g ¢ s 4, o

7. 16
7.18
7.19
7.20
7.21
7.23
7.23
7.23
7.24
7.25
7.26
7.27
7.27
7.28
7.29
7. 30
7.31
7.31
7. 31
7.32
7.32
7.33
7.35
7.35
7.36
7.36
7. 36
7.37
7. 37
7.37
7.37
7.37
7.37
7.37
7. 38
7.38
7.38
7.39
7.39
7.39
7.39
7.39
7.39
7.40
7.40
7.40
7.40
7. 41
7.41
7.41
7.48
7.48
7.49
7.49
7.52
7.54
7.55
7.56
7,57
7.58
7.58
7.58
7.59
7.59
7.60

The DL/I Buffer Handler Pool ¢« « o « o
The VSAM Buffer Pool . . & v ¢ ¢ o o «
The OSAM Buffer Pool e e @

e o e o

Defining the IMS/VS Data Base Buffet Subpools.

VSAM Subpool Definition Statements .
Guidelines for Selecting Number of
Per VSAM Subpool.e ¢« ¢ o o & ¢ o o
OSAM Subpool Definition Statements .
Guidelines for Selecting Number of
SUbpool « o« ¢ e e ¢ . . @ . .

Options Statement. « « o o o o o o o
IMS/VS System Security Utility
Executing the Security Utility
Security Status Report . o o o o o =
Types of System Security « « « « « o o &
Command Security « « ¢« « o « o o o o «
Transaction and Terminal Security. . .
IMS/VS Catalogued Procedures « o« « « « «
ACBGEN Procedure o« o ¢ o o« o« o o o o o
DBDGEN Procedure « « o o o o o« « o s o
DLIBATCH ProcedUre® « o« « o« s o ¢ o o &
IMS ProcedUr@e o « « o o o o o o o o =
IMSBATCH ProcedUre « « « « = o o« « = =
IMSMSG Procedure « « « o o o o o o o o
IMSRDR Procedura « « « « « =« = =« « « @
PSBGEN Procedure « « o o o o ¢ « o o o
SECURITY Procedur® . + o« o o s o o o »
MFSRVC Procedure « ¢« o« « o « « « o« o «
MFSUTL Procedire « « s o o o s o o o o
Growing from DB t0 DB/DC ¢ v « s o o o &
Installing IMS/VS under 0S/VS2-MVS . . .
The Installation JobsS: « « o« ¢« o o« o« o
The Sample Jobs. - . .

Executing the Sample Jobs ulth 0S/VSs2

Maintenance Considerations « « « o o o &
System Modification Program (SMP). . .

Regression Testing of New IMS/VS Releases

CHAPTER B, OPERATIONS . « o o o » e
What's Needed to Operate Online IMS/VS .
The Master Terminal Operator Function.
The Network Control Function
The Application Supervisor Function.
The User Liaison Functiohe ¢ o « o «
The Master Terminal Operator « . « « «
The Master Terminal Operator's Guide
Modifications to the Sample MTO Guide
Functional Titles.
0S/VS1 Installations . . .
MVS Installations. « « « «
Subset Limitations
Forms and Tables . . «. . &
Restart and Pecovery JCL .
Log Tape Administration. .
ce

Application Operating Pro .
Testing the MTO Guide., . . -
Maintaining the MTO Guide. . .

Planning for IMS/VS Disk Rest N

User Liaison GIroUP « « o « o o & .
Remote Terminal OperatorSe. « « o« .
Training Remote Terminal Operators .
de

ed

=
e N e o M 4 & 4 4 & 4 o
H (]
e &« (*a a N e * o o * o

The RTO GUid€e e o ¢ o o s« s o o &«
Modifications to the Sample RTO Gui
Functional TitleSe « » o o o o o
Use of the Subset. « « ¢ o o o &

Buffers
Buffers

=

8 9 L% e ' & s & & 8 8 4 0 o 8 * o % s s s e 5 @

w0

¢ 2 o & o
S s o 0
¢ s o 0 o

8 o & 4 8 o ¢ & s s 8 g 3 4 0 0t s+ s e v o
e o % o 3 s 8 0 o & ¥ 4 8 4 ¢ 3 g b 4 e ¢t g
e o & 4 & 4 e Tt & & 4 & 3 & o 8 8 8 8 e 2
e » & 5 8 5 g 5 e & 8 3 2 B & & 3 ¢ o 8 s o t o 8 8 4

© 8 8 & 2 4 4 s o 0 s b 2 o 0t s e 8 s g3 s s bt e s o e v ge

8 8 8 e & & o & o 8 4 ¢ 2 6 8 6 o 8 & o & o

® 8 o 8 ¢ s 4 8 8 0 s 8 & & 2 6 4 0 & b e s 6 s s s s s e o

8 o & ¢ @

@ & 4 & & 8 s s ° s s s 2 e s s s s D .

. . e & 8 o 2

e & 8 & o 8 &5 8 e ¢ 0 & & & & 2 8 s s 2 0

¢ 6 4 * o s e 3 0 s s o s 0 v s g o

® & & & 3 o s 6 o & & 3

=

® 6 & & & & & & 6 ¢ & s B 8 o 5 & 3 o & 3 o s 6 e 3 0

® & o & ¢ » & 3 & s 3 & g & & s & 4 s e

® 4 & o 4 e 3 © & ¢ © § 3 & g ® & 4 @ 4 6 e g & 5 e ° 3

e 8 4 ® & 6 @ 8 S 3 6 e s & 8 g s g2 e & 3 ¢ ¢ o & 8
@ & & & 4 6 6 4 e 4 8 s 4 s 8 4 & g 2 2 s 6 2 s 8 b .

Contents

~NQ

L] . s & ©
@® ®
—

OO DODOPODODODODLDOODDODODD®ODOD®DD

NIdN VOO NEETFWWWWWWWRNRNNON - - o

xix

Conversational Processing. . . .
Terminal Operating Procedures. .
Application Operating Procedures
Problem Reporting Procedures . .
Haintaining the RTO Guideo ¢« o o o
VTAM and IMS/VS Operation. . « . . .

CHAPTER 9. OPTIMIZATION . o o o o &
IMS/VS Batch Performance Monitoring.
The DL/I Buffer Pool Statistics. . .
The VSAM Buffer Pool Statistics.
The OSAM Buffer Pool Statistics.
The IMS/VS DB MONitoOr: « « « o o
Using the IMS/VS DB Monitor. . .
Activation and Control

DB Monitor Data Recording. . .
MODIFY Command ErrOrS. « « « =

DB Monitor Report Print Program, DPSUTRBO.
Definition of Terms used in the Reports.
How to Execute the DB Monitor Report Print
Statistics from the VSAM and OSAM Buffer

Program I/0 REPOrt ¢« ¢ « o ¢ o o
DL/I Call Summary Report « « « « =
VSAM Statistics Report « « o« « « o«
Monitor Overhead RepOTt. « « o« o o
Data Base Design Optimization. . « . «
Data Base Load Factors Per Transactio

¢ 8 o 8 o

Transaction Load Factor Units. .
Example. « .« . e o o u
Data Base Design Chnckllst s 8 s s »
Optimization of Physical Implementation.
Optimization of Application Programs . .
Optimization of the INMS/VS Online Systenm
Online Performance Monitoring. « « « o -«
The Online Buffer Pool Statistics. . «
Message Queue POOLl ¢ « o o o o o « o o
Message Format Pool. « « o« o o & o«

Adjusting MFS Buffer Pool Spec1f1cat1

Data Base Buffer PoOls « « ¢ « o o« o
DMBP Buffer Pool 4 « o« ¢ o o o
Adjusting the DMBP Pool Size
PSBP Pool. L] L] L] L] L L] L]
CIOP Buffer Pool .
Main Buffer Pool .
CWAP Buffer Pool .
PSBW Buffer Pool .
DBHP POOl: o o ¢ o o o .
Statistical Analysis Ut111ty
JCL Considerations « « « « «
Report Output and Interpretation
Messages Queued but Not Sent {(by
Line and Terminal Report . . « &
Messages Queued but not Sent (by
Transaction Report « « « « « « «
Transaction Response Report. . »
Application Accounting Report. .
The DC MONitOL « ¢« « o o « « « o « =
Using the DC MONitOL o o« o o « s o o o
Starting and Stopping the DC Monitor

¢ ¢ 8 &
« o 8 8
" o o o

s e & & 8
¢ s o ¢ o 8 o o ¢+ o

e & 4 ¢ o fue & s o & 4 s o & ¢ o
o
s o 5 ¢ e Ule 8 2 s ¢ 2 ¢ o o & o

unl.lm-y.-o..-.n-.-.co.-.uc.c.c!.laoo

DC Monitor Report Print Program DFSUTR20
How to Execute the DC Monitor Report Prin

Statistics from Buffer Pools Report. .

xX IMS/VS Primer

.!col-lg-mca-al.l..u..mocola.latl.-o.a
o

-
.
-
.
L]
-
.
.,
.
.
-
.

Je & &4 & & ¢ & 0 & o o

=

Poo

8 (Tt e & ¢ 8 0 o 0 e e & o o 5 & 8 & o 4 © 8 o & & o 8 8 o & o

[o]
~

e INJe ¢ o 8 & s & e 3 e 8 e e & 6 & 5 6 s 8 & & e 8 4 s s e o e

"

e O e s+ o 3 0 o &

¢ & 3 o 8 0 o [O 4 e 2 8 e 8 s s s s
[V}

]
[+
¢ & 8 & 6 s & e 4 o & DZ e s e s 2 s s e s s .

® @ e 8 o 6 8 ¢ 5 & 0 & & & & & 8 o 3 4 o

Q
o

¢ Ml & s o ¢ 4 & 8 0, &8 ¢ o & 6 s 6 & 5 8 3 e 3 * s 0 o B 8 e bt e 6 B e s e 0 s s 0 'Y & & o 3 o & s o s o

@

¢ B e s & s 2 o 4 =S 8 & 4 ¢ & s & s s & s & s s 0 82 e s s o

a
o

4 & o 5 o

& ® 8 s ® § © o 4 o 8 3 s s & 5 s 8 4 s s 4 o 3 o o+ a2 s 4 2

s & @ ¢« & a3 o . s o & s o (] L) a o s o . o L] e ¢« & 3 o e ¢ & s & e s o .

e« ® & o o o

8 ® @ a2 8 4 & 0 ¢ & & g & 3 6 & a2 8 4 * » 4 e s o s 3 6 s & & s * .

€ ® 4§ 8 ® 4 ® 8 ¢ ° & 3 o s * e 4 ° 3 s 6 3 & 4 5 & 4 o s s & s 0 3 4 o 3 o 0+ g & 3 s 6 g o e s 4 3 8 & ;) s

e a3 & o e ® o 5 e 3

8 ® a4 © o s & 3 o

a8 & 4 5 & g O o 4 6 8 5 & 4 8 0 4 & 4 & 8 3 & g & e ;2 & 3 8 s v a2 4 s 3 & s ¢ o ,

.
D®O®ONNN

e o © .

.
-k 2 D ODIINONNUIUNE L WWN b =

DOUODOOVODWYVWODOVOLOVODYWYW O OOWPW @ ®ooPdm

9 23

Using the VTAM Storage POOl Trace. « « o« «
Operating the Trac€e « « o o « « o = = =
Optimizing VTAM Storage Pccl Parameters.

Storage PFool (SMS) Trace Description .
Adjusting the VIAM Storage Fools . .

fata Communication Design Optimizaticn .
Network Response Time FactorS. « « « =
IMS/VS Response Time FAacCtCIS o« « o o

Sample IMS/VS.Response Time Estimate .

[
-
L]
-
-
L]
-
.
.

e & & 8 8 o o b o

APPENDIX A. 1IMS/VS STATUS CCDES QUICK REFERENCE

e & 0o o 2 8 o s o

APPENDIX B. IMS/VS STATUS CCDES AND POSSIBELE CAUSES

I"DEXC . e e o o e & o . e « e ® o @ o o =

e & & & 3 o o p o

¢ o © 8 & o o g4 o
e & & B) e & ;3 o
® 3§ & © 3 o & 3 o
4 4 8 ° s e 0 4 o

Contents

xxi

Figure

Figure
Figure
Fiqure
Figure

Figure
Pigure
Figure

Figure
Figure
Figure
Figure
Piqure
Figure
Figure

Figure

Figure
Figure
Figqure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
FPigure
Figure

Fiqure
Figure

Figure
Figure
Figure
Figqure
Figure
Figure
Figure

Figure
Fiqure
Figure

1-6.

Application Data Integration -- Data
Base CONCepts « o = o a o o < o o o
Traditicnal Record Layout « <« « « « « o« « =
Hierarchical Data Structure . . . o o o
The Parent/Child Relationship of DL/I o« o o

- . e e

The Pelaticn tetween Segment, Data Base Reco

and Da ta Base - - - ° - - - - - - - - L] L) L]
Segment Types and Their Relations in a
Bierarchical Data StructuUre . o« « o« o o o &
Two Logically Related Data Bases, PARTS

and ORDERS. L] L] L] L] L] . L] - - . - - - - -
The logical Tata eases after Relating PARTS
d4nd CRDER Tata BaASESe « o = © o o o o « = «
A Data Base and Its Secondary IndeX « « « «
IMS/VS Eatch Processing Begion 5yst=m Flow.
The Project Cycle « « « . e o v = @
IMS/VS-IB Installation Plan FERT Chart. . .
Sample Gantt Chartes « o o o« o o o o o o « «
IMS/VS in the SNA Environment o o « o o « o
I¥S/VS Cata Ease/Data Communications System

FlOV. ® o e . e e e = . e e« e e ¢ o 8 e e

IMS/VS-TB/TC Installatlon Plan PEKT Chart .

A DL/I Lata Ease Record . . o
A DL/I rLata Ease Record in Physxcal Storage
Segment FOTmate o o o o o ® e ¢ o o &« o

Seqment Types Numbered in Hlerarchlcal
SEQUENCE. 4 s o o o o o s s o o s o o o
Concatenated KEys o« o ¢ o o ¢ o ¢ o s o
HDAM Data Base in Physical Storage. . .
HIDAM Tata Base in Physical Storage . .
Direct Address Pointers in HLCAM and HIDA
Segment Types Involved in Logical
Relationships « o o o ¢ ¢ ¢ o o ¢ o o &
logical Child Segment Formate « « « « «
Virtual Paired Bidirectional Logical
Relationship. . . e e © o o ® o o @
The Phase 2 Phyexcal Data Bases « .« o
Concatenated Segment Format « « o« o
Phase 2 Logical Data BaseSe « « « -
Using Multirle chlcal Relatlonshlps. .
Replacing Fields in a Concatenated Segment
Segmert Types Associated with a Secondary
Index.l'."...'.l.l.'...
Phase 3 Physical Data BaseS o« « o« o o « o «
Lcgical Reccrd Format for the Index Pointer
Segment « s ¢« o o o o« 2 5 5 o o s s e e s
Data Base Tescription Generation {DEDGEN)
DBDGEN Input Deck Structure « ¢« o« o« o o
Phase 1 HDAM PARTS DBD, BE1PARTS. « « . .
Sanple TEDs for a HIDAM Data Base . « o+
Phase Z Physical DBDS + . « & .« .
Phase 2 Logical DBL for the PARTS Da*a Base
Phase 2 Lcgical DBD for the CUSTOMER CRDERS
Datd BASE « o « 4 o o = o o 2 o « o« « « o o
DRD Statements for Index Targe:t Segment .
CBL Statements for Index Source Segment .
Phase 3 Physical DBDS « « o o o o o o o »

. Xe s o
3 e s 8 o

L]
.

e s 3 o

[
.
T

s & » & e & o

.

o 3 & 4 s o 4

Figures

-l D

xxiii

Figure

Figure
Figure
Figure
Figure
Figure

Figure 2

Figure
Figure
Figure
Figare
Figure
Figqure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figqure
Figure
Pigure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure

Xxiv

3-6.

u-15.

Prcgram Specification Blcck Generation
(PSBGEN) e o o e o s e o L]
ESEGEN Input Deck Structute .
Sample PSBs f¢r Phase 1 , & .
Sample PSE for Phase 2, . . o
Sample Phase 3 ESB. « o« « .
Concepts cf Data Elements . .
The Transaction -
The Transactions/Data Element Matrlx -
The Steps in Data Base Design . « « « .
Transaction/Data Element Matrix for Phase 1

2

3

o L L °

e & 8 o & 2 o
e & o o &
e s o &

o & & & &

e & o s & o 3

Transacticn/Data Element Matrix for Phase
Transaction/Lata Element Matrix for Phase
Phase 1 Aprlication Data Structure. . . .
Phase 2 Application Data Structure. . « «
Phase 3 Application Data Structur€e « « « «
Grouging Data Elements into Physical Segments
Physical Data Base Structure for Phase 1 PARTS
Data Base L] L] - - - . - - - L] - - - - - - - - -
Specification of Physical Segment Attributes. .
Recommended CI/Blocksize Parameters « « « « « .

s & 9 e o o o . o © 8 o o L]

® ¢ & g & & g & 2 i & a2 o o 5 ¢

Transmissicn, Message and Segment Relations . .
A Message Seglent o « 4 ¢ ¢ ¢ o o o o o o o o
The IMS/VS Regions and Their Control/Data Flow.
Input Messages Processing .
Message Cueueing. « « o« o &
Message Scheduling. .
Basic MPP FlCWe « o o o« o« o
IMS/VS Logginge o« o o o o o
3270 Master Terminal Format .
Message Fcrmatting Using MFS. .
Overview of Message Format Service
Chained Ccntrol BRlock Linkage . .
Linkage tetween Message Fields and D
Fields- - - - - - - - - - - - - - -
LPAGE ~- DPAGE 1inkage€. « o« o« « o «
Optional Message Description lLinkage.
MFS Input Formatting. « o« « o « o« « &
MFS Output Fcrmatting « ¢« o« o o o o o
An Output Message Definition with One
An Output Message Definition with Mul ti
pages L] * L] L] - L] - Ll L] L] L] * - L] . L
Format language Statement Sample.
Sample Display Format « « o« « o «
Creation of MFS Control Plocks. .
Example ¢f an Online PSB. . <« . .
General MPP Structure and Flow. .

® & o 3 3 o

8 & s o 8 o & o
s o 5 8 o g © o
s ¢ o 5 8 o *

v

Q

o 2 Mo o o 3 & 2 s o
Lo -]
(i]
e s ¢ o o
e o 3 & o &
e & 4 & g o

® 6 o & 8 & pePle 2 6 s 8 Mo 6 6 8 0 4 o o
® 8 & o 4 o p=we o ¢ 8 8 (D o s & s 2 * @

® & o & ¢ »
® 9 s ® 3 o

e & o & 3 o

DL/I Interface with an Application Progranm.
Structure of a Batch Application Progranm.
Applicaticn Program Data Base PCE Mask. .
Testing Status Codes. . « « -
Sample Call Presentation. . .
The Phase 1 PARTS Data Base .
Basic GU Call « « « o « = o o
Unqualified Get Next Call . .
Qualified Get Next Call . . .
GN Call with Qualified SSA. .

Basic REPL Call =« « o o « «
Basic DIET Call « ¢ « o o o
Basic ISRT Call . . . « . «
Sample Path Retrieve Call .
Basic Data Base lLoad Process

e w 4 & 3 8 ¢ » 0 8 @

o 6 2 @ 3 5 » s 3 e 8 @

® o ¢ o 8 5 6 o 4 &

e 8 4 &6 8 8 o o » o

e o 2 & & 8 & & s e ¢

e ¢ & & 8 s o & 0 * 3

® 8§ s e 3 & ° s o 3 s o ,
e & a4 ® 8 s & o 3 & 3 & o 3 =
® 83 8 & 5 o & 3 3 & 4 & o g

IMS/VS Primer

e 9§ & 4 © 6 3 & g s ® s 8 0 ¢ @

.] e o 3 * & 3 5 & g o @ ’ L]

2.57
2.57
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.71
2.72
2.73
2.74
2.76
2.77
2.78

2.81

SN
s o
@
w N

¢ o s o o 3

.
- DDA WW

N -

WWwwwwwww ww

4.27

Figure 4-16. Control Field for Sorting Segments into

Hierarchical SequUENce « « « ¢ « s o o « o ¢ o = 4.28
Pigure 4-17. CCECL Batch Erogram StruUCtUT€ « o « « o o « o o 4,32
Figure U4-18. P1/1 Batch Frcgram StruCtir€. . « o« o o o o o o » 4.35
Fidure 4-19, GU Call Using a Secondary IndeX « « o o o o s o o 4.40
Fiqure 4-20. PCE Masks £OTF @ MEF . o o o « o a s o « « o o« o o 4.48
Figure 4-21, Layout of a DC-PCB Mask « « « = o « s o s o = o « 4.u9
Figure U4-22, Single and Multi-Segment MeSSag%e « o« « o o o o o 4.51
Figure 4-23, Basic MFP Flow and Calls. . . . - s o e s ® a ® 4.59
Figure 4-24, Ccnversaticnal MPP Flow and Calls e e s o e o o o 4,69
Figure 5-1. INDEX Reorganization Unload Utility ¢ « o o o o .4
Figure 5-2. INDEX Reorganization Reload Utility . « « « « - .« 5.7
Figure 5-3. BT Reorganizaticn Unload Utilitye & =« o o o o o @ 5.9
Pigure 5-4. HD Reorganization Feload Utility. « o o o o o « @ S. 11
Figure 5-5. Data Bacse Prereorganization Utility 5.13
Figure 5-6. Data Base Prefix Resolution Utility o« ¢ o ¢ o o & 5. 16
Figure 5-7. Data Base Prefix Update Utility o - o o o o« o o « 5.19
Figqure 5-8. Initial Data Base Load with logical

Relationships and/or Secondary Indexes. « « « « . S.24
Fiqure 6-1. Concepts of Tata Base RECOVEILVe o« o « « o o o =« 6.1

. Fiqure 6-2. Basic Data Base RECCVEIYe ¢ o o o ¢ o o o « o« o = 6.3

Figure 6-3. DI/I Recovery e e @& ¢ & e 6 s ° e & s e e s e e+ o 6.“
Figure 6-U. Data Base Fecovery Utilities. o« o ¢ o« o o ¢« o - . 6.6
Figure 6-5. Data Base Image Copy Utility. . . « s o e o o o 6.7
Figure 6-6. Data Base Change Accumulation Ut111ty e o o 4 o & 6.9
Figure 6-7. Data Base Recovery Utility. . @ % o o s e o o e €6.12
Figure 6-8. Conditicns That Terminate the Data Base

Eackout Utility - - - - - - - - - - - - L] L] L] L] . 6. 15
Figure 6-9. Data Set Reguirements for the Data Ease

Backout Utility L] L] - * L] . L] L] L] - L] L] - L] L - L] 6‘ 16
Figure 6-10. Closing the System lLog with DFSULTRO. . . <« o« o o 6.18
Figqure 6-11. Pcssible Failures during Data Base Frocessing . . 6.22
Figure 6-12. Data Base Recovery ActionS. o« « « « ¢ o o o o o & 6,23
Figure 6-13, Sample DI/I 1cg Tape FOIM o« « « © o = o o o = o = 6.2U

Figure 6-14, Registration c¢f Image Copies and Change
ACCUBULAtIiONS o « o ¢ o « 2 = o o« @ o © o = =« « = 6.25

Figure 6-15, Running the System log Terminator Utility « « « & 6.27
Figure 6-16. Fossible Failures During an Online Session., . . . 6.29
Fiqure 6-17. Tata Base Reccvery Actions in an Online

Environment e e s a4 s s e e e e o o o 6430

Figure 6-18. I¥S/VS Cnline 1log Sheet e % e a n s 8 = e = s ® o 6.33

Fiqure 7-1. Installing IMS/VS @ ¢ o o« o o o « = u o s « v o = 7.2
Figure 7‘2- The PRIME Readet Procedure- e @ e e & ® 8 & ® s o 7-9
Figure 7-3. Number of Macro Statements Per Systenm

Definitione ¢« o o o o o & ¢ e o e e s 0 s 0w e e 7.16
Figure 7-4. IMS/VS Command Keywords and Their Synonyms. « . .« 7.17
Figure 7-5. The PRIME Reader PrccedUreu o « v o v« o o o = o o 7.42
Figure 7-60 Sample I"S/VS‘VTAH NetHOrk. @ ¢ @ o e & e & e o+ o -'n uy
Figqure 8-1. Jobs Requiring JCL Modification « « ¢« o o o o o & 8.4
Fiqure 8-2. Simulating System FAiluTeSe « « o o o o o = w « = 8.5
¥Fiqure 9-1. Transacticn Icad Factor UNits o « o v v o o o o = 9.10
Figure 9-2. Online Pocl Statistics Display Format « « . o « 9. 15
Figure 9-3. Sample VTAM Trace Cutpute « o o = o » o o o o o o 9.28

Figures Xxv

- e s e -

WHAT 1S IMS/VSZ

IMS/VS is an IBM program product developed to improve the computer
user's ability to implement data basesdata communication (DB/DC)
applications. It relies on and extends the facilities and functions of
Operating System/Virtual Storage (0S/VS) into the DB/DC environment.
IMS/VS also makes these data base applications, to a large extent,
hardware and software independent.

IMS/VS may be installed in either cf two ways:
. A data base management system for batch-only operations

J A data bases/data ccmmunicaticn system fcr concurrent online and
batch operation

This manual addresses a subset of both versions. It covers the
installation and use of the data base system, the data base/data
communication system, and the migration of the data base system to the
data bases/data communication systenm.

The data base management facility of IMS/VS is also referred to as the
Cata Language/I facility or DL/I. The functions supported by DL/I are
data base definition, creation, access and maintenance. The data base
capabilities of LL/I can be used in either the IMS/VS data base system
{IMS/VS DB), or the INS/VS data base/data communication system (IMS/VS
LB/DC).

WHY LATA _BASESZ?

Traditionally, data files were designed to serve individual
applications, such as inventory control, payroll, accounts receivable,
or purchasing. Each data file was specifically designed for its own
application and stored separately on tape or on disk. Quite often, the
data files of different applications contained common data elements.
This redundant data caused an extra problem for the user becaise it
became very difficult to keep it consistent.

Furthermore, the same data in different files often had different
formats. This variance in the format of common data meant that
application programs were tailored to specific data organizations and
even specific physical devices. When new applications, data management
techniques, or devices were introduced, the application programs
normally had to be changed. As a result, application programs were
often in an almost perpetual state of change adding appreciably to the
overall ccst of data processing.

These undesirable attributes cf data files have been largely eliminated
by the use of the "data base." A data_base is a collection of

interrelated data elements processable by one or more applications.

A data base provides fcr the integration, sharing, and control of common
data. As an example, a manufacturing/distribution company may first
integrate the data for an application dealing with parts control and
purchase orders (Figure 1-1). Subsequently, application data for
customer order processing and accounts receivable may be integrated.

The data and the fprograms of already implemented applications need not
change when the data of subsequent applications is integrated.

Introduction 1.1

3

CUSTOMER
DATA

Figure 1-1. Aapplication Data Integration -- Data Base Concepts

A data base provides flexibility of data organization. It allows the
addition of data to an existing data base without modification of
existing application programs. In Figure 1-1, the accounts receivable
data may ke added, when it is ready to be integrated, to the parts and
orders data base. This independence is achieved by avoiding the direct
association between the application program and the physical storage of
data.

Thus, the advantages of a data base are:

° Control of data redundancy and reduction of resulting duplicate
maintenance.

. Consistency through the use of the same data by all parts of the
companye.

. Applicaticn program independence from physical storage organizations
and access methods.

e Reduction in overall application costs.

. Data designs usable fcr both batch and online processing.

A system-provided focal point for the control of data.

IMS/VS is not itself an application. It is a framework within which to
construct data basesdata communication applications. To make this
manual more usable, we will define a samfple application., This sample
will then be used throughout this manual as a base for all the exanmples.
It will be used tc guide you in a natural way throughout all the
subsequent steps for a successful implementation of an application using
IMs/vs.

The sample application chosen is Parts Control and Order Processing. In
even more general terms, it could be called "ITEM control and
TRANSACTION processing," where the "ITEM" could be a part, an account, a
citizen, or a policy. The "TRANSACTION" could be an order, an invoice,
a customer inquiry, etc. The fact that we will use this particular
application in the manual does not preclude the use of IMS/VS for other

1.2 IMS/VS Primer

applications. On the contrary, the basic data structure and processing
shown in this sample are easy to adjust to other applications.

OUR SAMPLE COMPANY'S REQUIREMENIS

The sample uses a fictitious company that offers a wide variety of
building, construction, and engineering parts and materials. The parts
and materials are purchased frcm manufacturers and sold to customers.
Most customer crders arrive by telephone. Due to the growth in numbers
of orders and varieties of items, an upgrade of the existing parts
control and customer order arplications was deemed necessary.. It was
decided to build a new system which integrated these applicationmns.

Some objectives for the new ap;iication system were:

] Implement the system in the following crder:
1. Parts control with its associated purchase order processing
2. Customer order processing

. Provide central contrcl of parts, purchase orders, and customer
orders

. Provide accurate status inforwmation on parts in stock, on order, and
delivered

° Provide accurate entry cf both purchase and customer orders, with
respect to parts in stock.

. Provide an interface with the existing accounts receivable
application, which currently maintains the central customer file.
This application and its files will nct be converted at this stage.

. Provide a base for the online processing of orders and inquiries at
a later stage.

The implementation of the above system will be the common thread
throughout the examples used in the manual. We will distinguish three
ma jor isplementation phases:

1« The Parts Control application, consisting of a central Parts data
base and Inventory Rerort and Purchase Order fprograms.

2. The Customer Order application which requires an additional Customer
Crders data base, to be inteqrated with the existing Parts data
base. A Custcmer Order prcgram is added.

3. Addition of requirements to the Purchase Order prograum,

In the manual, the three steps above coincide with the three tasic
functional expansions of a typical DL/I environment. We shall refer to

Note: Phase 1 should be studied and exercised first. Phases 2 and 3
are somewhat independent. The actual data base design of your
application could well be initiated on either the phase 2 or the phase 3
functicnal level.

For each level, we will consider:

. Data base creaticn

. Data base processing

Introduction 1.3

] Data base reorganization

. Data Lase recovery

We will also consider the migration aspects of moving from one level to
the next.

THE PHASE 1 ENVIRONMENT

Phase 1 of our sample limits itself to the Parts Control application.

P3N R-F B2 29 Pt 2

Informaticn about parts is managed by the inventory control department.
A1l data will be stcred in a Parts data base.

It consists of cne record for each part which the company stocks.
Within the record we can identify:

L Standard information for the part.
o Stock infcrmaticn fcr each fpart.

. Purchase information for each part.

—_—===

The Parts Inventory Report program provides infcrmation about stock
delivery and crder position of each part the company stocks.

The Purchase Crder program handles the purchase orders issued by the
purchasing department. It checks the input, and prints, changes, and
deletes orders.

A more detailed description cf the phase 1 data base and application can

be found in Chapter 2, "Data Base Design," under the topic: "Sample Data
Base Requirements for Phase 1.

THE PHASE 2 ENVIRONMENT

Phase 2 of our sample envircnment considers the addition of a Customer
Orders data base and its associated order processing programs.

The Customer_Orders_Data_Base

Information aktout custcmer crders is managed by the sales department.
A1l order data will be stored in a Customer Orders data base. It
consists of one record for each customer crder. Within the record we
can identify:

. Standard informaticn for this order and customer.

° Crder detail information for each ordered part.

o Shipment informaticn fcr this order.

1.4 IMS/VS Primer

3 link is required with the parts data base because it is necessary to
know which parts are on order by each customer and which customer
ordered a given fart.

The Customer Orders program inserts, changes and deletes customer orders
in the Customer Orders data base. It alsc checks and updates the part
stcck information before the order is accepted. This is planned for
online processing in the sales department in the near future.

This application also needs access to the already existing central
customer file. This central customer file is a key sequenced data set
(KSDS) under the Virtual Storage Access Method (VSAM) of OS/vVs.

THE PHASE 3 ENVIRONMENT

In phase 3 we consider a change in purchase crder processing. The
additional requirement is to provide direct access to individual
purchase orders, koth by part number and by purchase order number.

The IMS/VS data base system contains three major components:

. A system defipition facility tc allow tailoring of the system to a
particular 0S/VS environment.

. The DL/I facility through which users meet the data requirements of
their own aprlications.

o Utility programs which assist in the recrganization and recovery of
data bases, and monitcring cf data base usage.

In the following we will introduce these components and their functions
which are of interest to the first-time user.

SYSTEM DEFINITICK

Based on user specifications and type of operating system, IMNS/VS systenm
definiticn creates a library with DL/I processing modules, a procedure
library and some modules for inclusion in the operating system. We will
cover this process in Chapter 7, "Installing IMS/VsS."

DATA LANGUAGE/I FACILITY

DL/1_Concepts

DL/I allows applicaticn prcgrams tc be independent of access methods,
physical storage organizations, and characteristics of the devices on
vhich the application data is stcred. This independence is provided by
a ccmpmon symbolic program linkage and by data base descriptions external
to the applicaticn programs. The section entitled "Data Base User
Interface" defines this interface.

The majority of the data utilized by any company has many
interrelationships that can cause significant redundant storage of data
when conventional organizations and access methods are used. The
storage organizations and access methods of DL/I make it possible to

Introduction 1.5

integrate data and control the amount of data redundancy. Prccessing of
data in more than cne sequence can be achieved. All data need not be
placed in a single common data base. <TLL/I allows you to physically
store the data in mcre than one data base while maintaining centralized
ccntrol over all the data.

The concept of data sensitivity allows you to control the use of the
data base by each applicaticn program. Each program can be limited to
(that is, be sensitive to) a predetermined subset of the data. This
further enhances data independence. In addition, any application
program can be restricted to making only specified types of data base
requests against the data to which it is sensitive.

Envircnment Definitions

- A8 3 Rl Y2 TP P

Within the DL/I environment, the following definitions apply:

o Segment. A data element of defined length, containing one or more

related data fields. It is the basic unit of data transfer between
the application program and DL/I.

o A DL/I data base record. A set of related segment occurrences of

one or more segment types. Each segment type may have a unique
format.

. A DL/I data base. The major unit of DL/I data storage. A set of
data tase reccrds stcred using one of the DL/I organizaticns and
accessitle by cne or more of the DL/I access methods. A data base
is typically composed of one or more common 0S/VS or virtual storage
access method (VSAM) datasets. DL/I relates its data base records
and data bases to a physical storage organization and access method.

PP~ PR3P P - -3)

DL/I's data base concept allows user's data and programs to Lte
independent of the access methods and storage organizations chosen by
the data base designer.

The application program interface to the data in the data base is a
common symbolic language. In fact, the application program is unaware
of the particular storage organization, storage device, and access
method chosen for any data base. Nor is the program aware of any
pointers which might be used in the physical storage organization.

- P A S D PP

Aprlicaticn prcgrams written to use DL/I deal with applicaticn data
structures. This refers to the manner in which the application program

“sees" the data. A DL/I application data structure consists cf cne or

structures can be independent of the physical data structure. Ehysical
refers to the manner in which the data is stored on a direct access
storage device. A [L/I application program never deals directly with a

rhysical data structure.

The traditional manner cf representing data can be seen in Figqure 1-2.

1.6 IMS/VS Primer

PART STOCK ORDER

Pigure 1-2. Traditional Reccrd Layout

This picture describes:

1. The ghysical structure of the record as it appears on tape or a
direct access storage device.

2. The logical structure fcr the application. Notice there is no
difference btetween the physical (as stored) and logical (as used)
data structure.

Fach of the three divisicns {PART, STOCK, CRDER) usually contains
several data elements, or fields. For examgle, one of the data elements
in STOCK might be stock location. In addition, the record might
actually contain multigple STOCK and ORDER divisions for a single FAET.

This same record appears in Fiqure 1-3 as a DL/I logical data structure.

data. Each segment is made up of several fields. Stock location is a
field within the STIOCK segment.

o
[Ln]
o
in
10
=
-
la
[
(]
[[="
1]
et
[}

The lcgical data structure in Fiqure 1-3 is called a hi
structure.

SEssNmses

PART

STOCK ORDER

Figure 1-3. Hierarchical Data Structure

Hierarchical lLata_Structure

The hierarchical data structure in Figure 1-3 describes the data as seen
by the applicaticn program. It dces not represent the physical storage
of the data. The physical storage is of no concern to the application
program.

The basic building element of a hierarchical data structure is the
"parent/child relationship between segments of data. See Figure 1-4.

Sl 22 2s 2SS S=SS=Sss

Introduction 1.7

PARENT

CHILD

Fiqure 1-4, The Parent/Child Relationship of DL/I

Each occurrence [cr instance) of a parent seqment has associated with it
0, 1, 2, or mcre cccurrences of a child segment. Each child segment

2222 3 P Pip

occurrence has asscciated with it one cccurrence of a parent segment.

Sometimes it is necessary to distinguish between a segment type, that
is, the kind of segment, and the segment occurrence, that is, particular
instance of its contents and location.

As shown in Figure 1-3, a parent can have several child segment types.

Alsc, a child segment can, at the same time, be a parent segment, that

is, have children itself. The segment with no parent segment, that is,
the one at the top, is called the root segment.

All the parent/child occurrences, for a given root segment, are grouped
together in a [L/I data Lkase record. The collection of all these like
data base records is a TPL/I data base.

Figure 1-5 shows these relations between the segment, the data base
record, and the data tase.

ROOT SEGMENT
. one occurrence per
LEVEL 1: PART per data base
record
< > DEPENDENT SEGMENTS
0-n ccecurrences for
LEVEL 2: STOCK ORDER each segment type
per parent occurrence
LEVEL 3: DETAIL
[]

LEVEL 15: Up to 15 levels of dependent segments

Figure 1-%5. Relaticns between Segment, Data Base Record,
and Data Base

1.8 IMS/VS Primer

Only one segment can appear at the first level in the hierarchy, but
multiple segments can appear at lcwver levels in the hierarchy. For
example, multiple STOCK and CRDER segments can exist for one PART
segment. Since each dependent segment in the hierarchy has only one

is sometimes called a tree structure. Fach branch of the tree is called

amle SemremS—a=o

a hierarchical path. A hierarchical path to a segment contains all

consecutive segments from the top of the structure down to that segment.

In Figure 1-S, each PART segment with its dependent STOCK, ORDER, and
DETAIL segments constitutes a data base record. The collection of all

restricted to "seeing" only those segments of information that are
relevant to the rrocessing teing performed. For example, an inventory
Fregram could be written to see only the PART and STOCK segments of the
data base record shown in Figure 1-5. The program need not be awvare of
the existence of the ORDER segment.

DL/I allows a wide variety of data structures. The maximum number of
different segment types is 255 per hierarchical data structure. 2
maximum of 1% segment levels can te defined in a hierarchical data
structure. There is no restriction on the number of occurrences of each
segment type, except as impcsed by physical access method limits.

Following is a detailed description of the several segment types and
their interrelaticns within a hierarchical data structure. Figure 1-6
should be referred to when reading this description.

] The segment cn top of the structure is the root segment. Fach root

identifier of that root segment, and as such, of that particular
data base reccrd (for examfple, the part number).

m—mb SRS Ens S sdoZa=

—em e/ EemmaE—s

immediate defpendents.

. Different occurrences of a particular segment type under the sanme

SE====l SEmde=So =

— A e e R e R e e e e e e R R R =

To identify and to provide access to a particular data base record and
its segments, DL/I uses seguence fields. Each segment normally has one
field denoted as the sequence field. The sequence fields in our subset
should be unigue in value for each occurrence of a segment type belcw
its parent occurrence. However, not every segment type need have a
sequence field defined. Particularly important is the sequence field
for the root segment, since it serves as the identification for the data
base record. Normally, DL/I provides a fast, direct access path to the
root segment of the data base record based on this sequence field. This
direct access is extended to lower level segments if the sequence fields
of the segments along the hierarchical path are specified, too.

Introduction 1.9

Note: The sequence field is often referred to as the keyfield, or

— -

simply, the key.

Fiqure 1-6 shows, as a dotted line, an example of an access path. It
must alvays start with the root segment. This is the access path as
used by DL/I. The application program, however, can directly request a
particular DETAIL segment of a given ORDER of a given PART in one single
LL/1 request, bty specifying a sequence field value for each of the three
segment levels.,

PART
ROOTS, one per data PART,
base record
[]
CCESS «
A
sTock | |oR
PATH for DER
DETAIL132 [|
! DETAIL
\ LOGICAL
X DATA STRUCTURE
PART
\ 1 PARENT of STOCK and
- ORDER segments
> r» ORDER
D i S — 2
N All segments below L "
b are DEPENDENTS
o)
f PART, ORDERp
\
\
\ o
\ ORDER13
L\ 4/ /
I STOCK12 ORDER12 [
- Y
STOCK11 ORDER11 \
\ I /? DETAIL{3)
A

ey
TWINS, children of the DETAIL13
same parent and the i
same segment type.

SIBLINGS, childyen of DETAIL711 CHILDREN of ORDER13
one parent but different
segment types. DEPENDENTS OF PART1

Fiqure 1-6. Segment Types and Their Relations in a Hierarchical
fTata Structure,

Logical Relationpshirs

In addition to the basic D1L/I facilities discussed so far, DL/I provides
a facility to interrelate segments frcm different hierarchies. 1In doing
so, new hierarchical structures are defined which provide additional
access capabilities to the segments involved. These segments can belong
to the same data base or to different data bases. A new data base can

1.10 IMS/VS Frimer

be defined called a logical data base. This lcgical data base allowus
presentation of a new hierarchical structure to the application program.
Notice that althcugh the connected physical data Ltases could constitute
a network data structure, the application data structure still consists
cf one or more hierarchical data structures. This again extends the
data independence concept.

The basic mechanism used tc tuild a logical relation is to specify a
dependent segment as a logical child, by relating it to a second parent,

the lcgical rarent. T

In Figure 1-7, the logical child segment DETAIL exists only once, yet
participates in two hierarchical structures. It has a physical parent,

ORDER, and a logical parent, PART. The data in the logical child
segnent and in its dependents, if any, are called intersection data.

PARTS DATA BASE ORDERS DATA BASE
PART LOGICAL ORDER PHYSICAL
. PARENT PARENT
of DETAIL of DETAIL

PHYSICAL CHILD
OF ORDER

STOCK LOGICAL DETAIL SHIPMENT

CHILD
of PART

Figure 1-7. Two Logically Related Data Bases, PARTS and ORDERS

Ey defining two additicnal lcgical data bases, two new logical data
structures shown in Figqure 1-€ can be made available for application
Frogram frocessing, even within one single program.

Introduction 1.1

ORDER PART

DETAIL PART SHIPMENT STOCK " DETAIL ORDER
STOCK : SHIPMENT
A. New logical data structure ORDERPART B. New logical data structure PARTORDER

Figure 1-8. The Logical Data Bases After Relating PARTS
and ORLER Data Bases.

The DETAIL/PART segment in Figure 1-8A4, is a concatenated seqment. It
consists of the logical child segment plus the logical parent segment.
The DETAII/CRDER segment in Figure 1-8F is also a concatenated segment,
but it consists of the lcgical child segment plus the physical parent
segment. Logical children with the same logical parent are called
lcgical twins, for example, all DETAIL segments for a given PART
segment. As can be seen in Figure 1-7, the logical child has two access
paths. One via its physical parent, the physical access path, and one
via its lcgical parent, the logical access path. Both access paths are
maintained by DL/I and can be concurrently available to cne program.

Because the DL/I logical relationship function may not be required for
your first IMS/VS applicaticn we will deal with it separately in this
manual. To show the use of the DL/I logical relationship functicn we

-~

will use the phase 2z sample environment.

2322 PP+ PSP P22

DL/I provides additional access flexibility with secondary index data
bases. Each seccndary index reprresents a different access path to the
data base record other than via the root key. The additional access
paths can result in faster retrieval of data. For example, the PART and
CEDER segments in Figure 1-9 could be retrieved based on the order
number in the CRDER segment, if an index were defined for that field.
Cnce an index is defined, DL/I will automatically maintain the index if
the data cn which the index relies changes, even if the program causing
that change is not aware of the index.

1.12 IMS/VS Primer

ORDER= SECONDARY

PARTS DATA BASE INDEX DATA BASE
| INDEX TARGET INDEX POINTER

SEGMENT SEGMENT
accessed via » provides the means
PART the index ORDER# for the index access

//'
,/
//
,
’

INDEX SOURCE SEGMENT
contains the field on

STOCK ORDER which the index is
established

Figure 1-9. 1A Data Base and Its Seccndary Index.

The segments involved in a seccndary index are depicted in Figure 1-9:

. The ipdex source segqment contains the scurce field(s) on which the

index is constructed, for example, ORDER#.

points to the index target segment. The index pointer segments are
ordered and accessed based on the field(s) contents of the index
source segment, for example, the order number. This is the
secondary processing seguepce cf the ipdexed PARTS data base. There
is, in general, one index pcinter segment for each index source
segment, but pultiple index pointer segments can point to the same

index target segment.

o The index target sequment is the segment which becomes initially
accessible via the secondary index. It is in the same hierarchical
record as the index source segment and is pointed to by the index
pointer segment in the index data base. Quite often, but not
necessarily, it is the root segment.

] The index source and index target segment may be the same, cr the
index source segment may be a dependent of the index target segment
as shown in Figure 1-9.

In our subset we will always choose the root segment as the target
segment. With this apgroach, it is (for the application program) as if
the index search field replaces the original root keyfield. At the same
time, however, the original structure is still available to the same
application grogranm.

Eecause you might not need the seccndary index function of DL/I, we
separate its discussion throughout the manual. The use of this function
is shcwn in the phase 3 sample environment.

DATA BASE DEFINITICN
The data base definiticn language of DL/I fprcvides two levels of data
base definitions. Both are generated and maintained independently of

your application grogram (s), thus providing the basis for data
independence.

Introduction 1. 13

P - P e Y T - T T

The first level is the data base description (LBC). ©Fach data base
description is created frcm statements vou provide. The statements
define the hierarchical data structure and physical organization of the
data base. These statements are input to a DL/T utility grcgram. The
output of the utility rprcgram is a data base description. It is stored
in a DBD library. 1This data base description provides DI/I with the
mapping from the aprlication data structure of the data base used in the
applicaticn prcgram to the physical organization of the data used by the
operating system data management access methods. The data structure can
ke remapped into a different physical crganization without program
mcdification. Cther application data can also ke added to this data
base and nct require a change to the original application programs. The
concept of the data base description reduces application rrogram
maintenance caused tky changes in the data requirements of the
arplicaticn. There are three types of LCEDs:

. The pkysical DEL rrcvides the definition of a single hierarchical
structure. It can te used, in this form, by application programs.
If logical relationships exist, the rhysical DBD contains a
definition of those relationships with the other hierarchical
structure. These relaticnships can be within the same T[BL or with
ancther DBD. Multiple logical relationships can exist within a
single physical DBD.

ical DBD provides the redefinition of two or more related
hierarchical structures into a new hierarchical structure. These
hierarchical structures can be from the same DBD or from different
CLBLs., The logical DBD relies on the logical relationships which

were defined in the physical DBD(s).

into a physical c¢cr lcgical DBD.

The process of generating a DBD is referred to as data base description

2Rl E S ES SERIsE=Ll=ss

-

Program_sSpecificaticn_Blcck

The second level of data base definition defines the application data
structure for each aprlicaticn rrogranm.

rrcvide for each of your application programs. It defines the
application data structure required by that application program. A PSB
contains one cr more prcgrag_communication blocks (PCBs), one for each
hierarchical data structure the program intends to use. Each ECE
defines the hierarchical (sub)structure the program "sees" from the
physical cr lcgical data tase. It specifies for each segment the kinds
of access allcwed by the program, that is, read only, update, insert,
and/or delete. The PSB is created, like the DED, by a DL/I utility
pregram., It is stored in a PSE library. The process of generating a
PSE is referred to as program specification block generation (PSEGEN).

APPLICATICN ESCGFAM INTEFFACE

1o
1=

IMS/VS provides a common data manipulation language, called the
languaqe interface, for the aprlication program. Through this

Frrdasdes SEc=Sssa==

interface, the application program can request that CI/I:

L

(1]

. Petrieve a unique s=gment (GET UNIQUE)

. Retrieve the next sequential segment (GET NEXT)

1.14 IMS/VS frimer

) Replace the data in an existing segment (REPLACE)
) Telete an existing segment {(DELETE)
] Insert a nevw segment (INSERT)

Such a request is often referred tc as a DL/I call or call. A DI/I call
may deal with one or more segments in a hierarchical path. Segment
retrieval is based upon either cr bcth of the following:

. Position in the data base, as set by previous calls

. Ccmpariscns between fields within the segments in the specified
path, and values supplied with the DL/I call.

The IMS/VS data manipulaticn lanquage can be used in COBOL, PL/I or
Assembler lanquage programs. The data manipulation language is
independent of data base organization and access methods. Only a small
interface module is link edited to your application grogram.

LOGGING ANLC CHECKPOINT/RESTART FACIIITY

DL/I provides a logging facility. If selected, images of data in the
data base before and after modification are written to a system log data
set. This log data set, tcgether with a previously made image copy of
the data base, can be used for data base reconstruction should an
application or system failure occur. You may also include DIL/I
checkpoint calls in your batch application programs. This enakles you
to restart a job from the last checkpcint in the event of program or
systen failure.

DATA SECURITY

IMS/VS DB provides two mechanisms for data security. The first is the

program specification klock which controls the data base access of each
applicaticn program at the segment level. For maximum benefit of this

security provision, the library containing the PSEs should ke password

protected.

The second mechanism is the extended security support of IMS/VS which

-

Pacility (RACF) program product in the 0S/VS2 MVS environment. This
extended security support is not included in our subset. For more
information you should refer to the IMS/VS General Information Mapual

and the IMS/VS System/Applicaticn Design Guide.

- - ——=

UTILITY ERCGEAMS

The IMS/VS DB system includes a comprehensive set of utilities. These
utilities are used in ocur subset to:

. Inplement logical relaticnships and/or secondary indexes at initial
load time of the data Lkase(s).

L] Recover data bases in the event of program or system failure.,

Introduction 1.15

. Reorganize data bases, if needed, to:

- Optimize direct access storage,
Change the storage organization or access method.
- Change lcgical/physical data structure.

. Mcnitor the performance of programs to aid in optimization.

INS/VS BATCH SYSTEM FLOW

The Data lLanguage/I facility of IMS/VS is used in a batch-only data

environment as shcwn in Figure 1-10.

0os/vs

A

IMS/VS Batch Control

Program

@,

1®

Your Abplication Program

o et e cm——— e cmme— m—

Language Interface

I

L_Program Request Handler

1®

— — —»{Call Analyzer | —""— —
DL/I Action [~ Logging Batch Check-
Modules | | Facility point/Restart
' A
Basi .vAccess VSAM
ic A
Method OSAM
Modules

!

1.16

Y
—

Data Bases

SN———”’

Figure 1-10.

IMS/VS Batch Processing Region System Flow

IME/VS Erimer

base

The follcwing notes relate tc the circled numbers in Figure 1-10:

1. The IMS/VS batch control program is invoked by 0S/VS task
management. It supervises the loading of required IMS/VS modules
and initializes the batch operating environment.

2. It links to your batch application program, which has been
link-edited with the language interface.

3. When your applicaticn grogram issues a DL/I call, control is passed
via the language interface to the prcgram request handler. The
program request handler provides preliminary checking of the call
parameters, and passes contrcl to the DL/I call analyzer.

4. Depending on the function requested, the DL/I call analyzer passes
control to the appropriate call processor module. The DL/I action
modules request services frcam the 0S/VS data management access
method modules and log their activity on the IMS/VS log.

5. Optionally ycur program can request a checkpoint to establish a
restart point. Checkpcints are logged cn the IMS/VS log to enable
restart if reguired.

6. When your application grcgram finishes rrocessing, it returns
control to the batch ccntrcl prcgram for termination processing.

Note: 1In the IMS/VS LB system, a data base can be accessed, for update,
by only cne application program (one partition/region) at a time.

DATA_EASE_ALCMINISIRATION

The centralization of data and control of access to this data is
inherent tc a data base management system. One of the advantages of
this centralization is the availability of consistent data to more than
one application. As a consequence this dictates a tighter control of
that data and its usage. Responsibility for an accurate implementation
cf control lies with the Data Ease Administration (LEA) function.
Because the actual implementation of the LCEA function is largely
dependent on a ccmpany's crganizaticn, ve limit ourselves to a
discussicn of the characteristics of a DBA. Quite often, the DBA
function at new IMS/VS installations is performed by an individual or
group with experience in both application and system programming.

LBA CHARACTERISTICS

° The DBA provides standards for, and controls the administration of,
the data bases and their use.

] The CBA provides guidance, review, and approval of data base design.

. The LBA determines the rules of access to the data bases and
mcnitors their security.

. The CBA controls the data base integrity and availakility,
monitoring the necessary activities for reorganization and
back-ugp/recovery.

o The [BA is nct responsiktle fcr the actual contents of the data
bases. This is a resrcnsibility of the user. Bat the DEA enforces
rrocedures for accurate, complete, and timely updates of the data
bases.

Introduction 1. 17

. The DBA approves the cperation of new programs with existing
production data bases, based on results of testing with test data
bases.

. The DBEA is responsible for the maintenance of current information
about the data in the data base. Initially, this responsibility
might be carried cut using a manual approach. But it can be
expected to grow to a scope and complexity sufficient to justify, or
even necessitate, the use c¢f a data dictionary program.

NAMING CONVENTIONS

Good naming conventions are mandatory in a data processing grcject,
especially, in a multi-aprlication environment. They are a prerequisite
for the eventual isplementaticr of a data directory, or dictionary,
system. In the following section we will propose a naming ccnvention as
an example, and we will use it in all the samples in this manual. You
might adapt this convention to your own specific environment., 1In dcing
so, you should consider the fcllcwing guidelines:

L Each entity should have a unique nanme.
. Each name should ccntain an entity classification.

L Each name should ccntain a system, application or project
identification.

e Each name should contain a version identification.

Al]l entity names to be used in our sample will be coded: tsvommom
where:

t

type identifier:

is DED

is PSB and/cr Prcgranm
is Segment

is Field

is DDname

is Transacticn

HOMmMwYom

n
1]

system, application or project identifier. 1In all
samples the following are used:

E is an example
0 is of general use

<
1]

versicn numker. In samples the following codes
are used:
0 if of general use
1 if used in phase 1 and later
2 if used in phase 2 and later
3 if used in phase 2 and later

mommm = mnemonic (user's choice)
Note: The online IMS/VS system requires the program and PSB name tc be

the same. Therefcre, the prcgrams are renamed during linkage-editing on
the sample jok.

1.18 IMS/VS Erimer

Sapple Job_Names

The sample jots referenced in this manual and listed in the "INMS/VS
Primer Samfple lListings", have the following naming convention:

. //SAMPInn for the INS/VS jinstallaticn jobs, if OS/vsi.
) //SMVSInn for the IMS/VS installation jcbs, if 0S/VS2 (MVS).
. //5AMPnnn for the sample application jobs.

SAMPLE DISTRIBUTION ANL LISTINGS

The samples referenced in this garual are distributed as part of IMS/VS.
After IMS/VS installation, as described in Chapter 7, "Installing
IMS/VS," two sample likraries are available:

L IMSVS.PRIMESRC, which ccntains all the sample programs, DBRLCs, ESEs,
data base input data, etc.

] IMSVS.ERIMEJCE, which contains all the sample jobs to install IMS/VS
and exercise the samgle prcgrams and procedures.

For your convenience, both sample libraries are listed in the "I¥FS/VS
Priwer Sample listings" publication, together with selected sample jcb
output.

The implementation of IMS/VS-based applications is most successfully
done with a project approach. With this approach, you assure that
adequate planning is dcne in a tisely manner, stating all the necessary
steps for the design, test, and installation of the application. For
more complex applicaticns, a project team with a definition of the tasks
and responsibilities of all parties involved is recommended.

P3PS D2 P P22+

Like mcst cther data processing projects, an IMS/VS project can
generally be divided into the follcwing phases: preliminary
investigation, planning, design and implementation, testing, and
operation and maintenance. Figure 1-11 shows the relative manpower
requirements fcr each of the phases.

Introduction 1.19

IMPLEMENTA -
TION

TECHNICAL SUPPORT

DOCUMENTATION

ADMINISTRATION AND MANAGEMENT

INVESTIGATION \ PLANNING

Figure 1-11. The Project Cycle

Following is a brief introduction to each of ths phases:

initial starting point of the project.

Preliminary_Investigation: This phase concentrates on the definition of

the objectives. 1A feasibility study, with a preliminary cost/benefit
analysis, is conducted.

Planning: A project plan is established. A project team is formed, and
the tasks and responsibilities of individuals and departments are
defined. A budget is established for the project, and resources are
allocated. Aprroval for the implementation is obtained. A change
cecntrol procedure is implemented to control modifications during

implementation.

2R - - > PRS2 > S PP > P2

reviewed., After design approval, detail designs are worked out and
approved, coding is done, and a test plan is created.

Test: Both unit tests and integrated system tests are performed. These
are followed by an acceptance test.

Operation_and_kaintepance: Prcduction use of the system is started. Any

—— et Rm e el RS S

further changes to the system are controlled via maintenance procedures.

Ancther important aspect is project administration. The timely and
accurate planning for and establishing of standards and guidelines is
mandatory for an efficient project implementation and later maintenance,
Most organizations already have standards which should be extended into
the data tase environment. At a minimum, standards should be available
for:

. Naming of date Lase items such as DBDs, PSBs, segments, and fields.

. Documentation of data structures, precgrams, and procedures
(production, reorganization, recovery).

. Administration of data sets, data bases, back-up copies and lcg
tapes and their interrelationships.,

A1l of this should be under the control of a data base administration
(DBA) function.

1.20 iMS/VS FPrimer

SAMFLE PROJECT PLAN FOE IMS/VS DB

The following sample project plan should be adapted to your specific
environment. Typical additional activities might be data clean-up, and
conversion of existing programs and data.

Pigure 1-12 shows a gross PERT chart for the implementation of an IMS/VS
DB project. The necessary system-oriented activities, such as hardware
and operating system installation, and system maintenance, are not
included since these are largely dependent upon the installation
environment. The folloving descriptions apply to the activities shcwn
in the PERT chart [Figure 1-12).

SYSTEM

g g *:

Figure 1-12. IMS/VS-DE Installation Plan PERT Chart.

System Planning_{000-100): The sample PERT chart is adapted to your
project. Manpower and machine time estimates are compiled. External
interfaces are defined, Elapsed time calculations are performed, and
the chart is extended with the proper timefram. The critical path is
calculated. A Gaptt_chart can be constructed showing the duration and
people involved for each activity. Figure 1-13 contains an example of
such a Gantt chart. The Gantt chart should clearly state the actual
days/months to be spent by each individuval.

System Design_(1C0-200): The overall system design is made. All
coppcnents and their interfaces are defined. The user interface is
detailed and reviewed for acceptance.

Development Plan_[200-300): A detailed plan for the development of data

bases and programs is devised. 21l single activities and their
dependencies are determined.

Introduction 1. 21

Education_[100-390-590-700): Together with the development plan, the

b33 3P 335 PRpN P 0 - SNPP T—p—3

education of all parties involved should be arranged.

ACTIVITY TIME

EDUCATION

IMS/VS INTRODUCTION

BN
[z
i |

IMS/VS-DB FOR
FIRST-TIME USERS

N
iNZ

DEVELOPMENT

SYSTEM DESIGN

DB GROSS DESIGN

DB DETAIL DESIGN
(DBDs AND PSBs)

PROGRAM DESIGN s
NN
PGM CODE AND TEST NS
INSTALLATION
INSTALL IMS/VS-DB E
RUN SAMPLE %
SYSTEM TEST ALL
DATA BASE SPECIALIST
U] svstem anaLyst PRODUCTION
PROGRAMMER

g SYSTEM PROGRAMMER

OPERATIONS STAFF

Figqure 1-13. Sample Gantt Chart.

Data_Base Gross_Design_{300-430): 2n overall data base design,

specifying the logical data structures and the basic physical
implementation, is created.

Program_Design_(30C-42C): The individual programs are defined and their
input, processing, cutput and data base accesses are defined. Common
guidelines and routines are established. Often more than 50% of the
data base processing programs are reports. Using COBOL or FLl/I report
writer features or a report writer/query language such as GIS/VS can
help to minimize the manpcwer required fcr program design.

1422 INS/VS Primer

Collect Data_ {300-410-500;300-360-660): Both test data and live data

are collected, or procedures/rrcgrams are established for the ccnversion
of existing data files.

Recovery and. Reorganization (300-440-550-650-700): A timely plan for
recovering and reorganization can avoid later redesign and
reprogranming. These procedures, although rarely needed, are vital to
the data base integrity and availability. Therefore a thorough test
plan must be made and carried out before production starts. The
production staff should be carefully trained in probleam determination
and the secure and accurate execution of such procedures. An incomplete
treatment of this topic is the most common source of problems when
implementing a data ktase managesent systemn.

Install INMS/VS DE_and Run_Sample (3€0-4C0-500): The system programmer
installs the IMS/VS data Lkase system. The sample application provided
with the system is exercised to get practical experience with the
system. Conventicns and prccedures for system maintenance are
established.

Data_Base_Detail Design_ (430-500): The detailed logical and physical

data tase structures are defined. Access methods are selected, and the
LBDs are coded and tested.

Program_Detail Design_(420-S51C): Detail flowcharts, decision tables,
pseudocode, or other design documents, are established for each
individual program. The data base call sequences are defined in a

standard fashion.

Test_Flan_(420-6CC): A detail test plan is made. Procedures for unit
test and system test are established.

Develor load Programs_and_Ioad Jest Data_ fFases_(420-500-600): Load

program(s) are designed, coded, and tested with the test data, resulting
in test data bases for program and recovery/reorganization tests.

Design_Review_500): The Ltasic aim of the design review is to assure

L Sd S mnRariaednaa

that the specified requirements are met. Major review topics are:
. Are the applications really what the users want?

. Is the perfcrmance expectation still valid?

o Are there any pitfalls in the data base and program design?

Program_and_EFSE_Ccding_and Test_ [510-600-700): Each individual program

is coded and tested, using the test data bases and the test fprocedures.

load_"Live" _ Data_Pases_[660-700): The data bases are loaded with actual
data. This process at times exposes inconsistencies in data. You may
need to include extra time tc resolve these inconsistencies. Eack-up
copies are made immediately after initial locad to provide a full back

base for system test.

System Test_ (7CC-€C0): Integrated tests are executed on the live data

bases. Reorganization and back-up/recovery procedures are tested on
those data bases.

Cperation_and_Maintepance_ J800-900): Prcduction use of the systenm
starts. The established monitoring and maintenance frocedures are
enforced. TFeed~ktack is given to develcpment for future projects. It is
strongly recoamended that the test environment be maintained in additicn
to the production envircnment. This will be of benefit for future

trcuble shooting, application modification, and application extenmnsions.

Introduction 1. 23

THE INS¢VS CATA CONMUNICATICN EEATURE

The INS/VS Data Communication feature provides a symbolic progranm
linkage between data communication terminals and the remainder of
IMS/VS. This is in addition to the previously discussed Data language/I
facility, which is an integral part 6f the full IMS/VS DB/DC systen.

In our subset we will mainly consider the operation of IMS/VS-DC in the
Systems Network Brchitecture (SNA) envircnment, utilizing the Virtual
Telecommunjcation Access Method (VIAM) and the Network Control

s e e o o = - L E S e emee e

Program/Virtual Stcrage (NCP/VS). However, Chapter 7, "Installing

2

IMS/VS,"™ also covers the use of the Basic Telecommunication Access
Method (ETAM). Those nct planning to use VTAM with IMS/VS should skip

to the section "INMS/VS Cata Coummunication Concepts."

We will similarly limit curselves to the following hardware components:
. 3705 Local Communicaticns Ccntroller.

. IBM 3270 Information Display System, local and/or remote (leased
lines only).

Figure 1-14 depicts the relaticns between these system components.

3720 INFORMATION

DISPLAY SYSTEM LINE 3705 §/370
0S/VS
DISPLAY
STATION 3
spLC
$/370 DATA
CONTROL NCPVS |——] vTAM IMS/VS BASE
UNIT CHANNEL
or BSC

Figure 1-14, IMS/VS in the SNA Environment

SOME EASIC SNA CONCEPTS

Systems Network Architecture was designed as an architectual base for
the development of a data ccmmunication network and its components, such
as:

. Terminal subsystems -- IBM 3270 Information Display Systenm

. Line protocols -- Synchronous Data Link Control (SDLC)

. Ccampunication controllers -- 3705

. Network ccntrcl grcgrams -- NCP/VS

. Telecommunication access methods -- VTAHN

SNA formally defines the functional responsibilities of communication
system components. In an SNA structure, all nodes (linked elements)
adhere to these definiticns. The scope of SNA definitions ranges from

bit-level mescsage header formats to the protocol of message sequences
and to the classification of network nodes according to function.

1. 24 IMS/VS Primer

—m e R R S e S e e A R A R S s —l S ldAn il =

A key ccncept of SNA is the division of the communication syster
functions into a set of well-defined layers. The major functional
layers defined by SNA are:

Transmission subsysterx layer
Function management layer
Application layer

SNA is structured into these layers for two basic reasons:

1. To permit changes to be made in one layer without affecting other
layers.

2, To allow interacticns between functionally paired layers in
different units. This rpairing is required toc support the
distribution function.

The Transmission sSubsystem_layer: The transmission subsystenm is
concerned with the rcuting and movement of data units ketween origins
and destinations. The transmissicn subsystem does not examine, use, or
change the ccntents of these data units. This separation, where the
routing of a data unit is independent of the contents of the data unit,
means that a change in the method of transmission between nodes requires
no change in the data unit itself. Therefore, the support provided by
the function management layer can be used across a variety of physical

connections.

Paths through the netwcrk may be shared by many applications. The paths
may consist of several physical components with interconnecting data
links. The transamission subksystem provides the control necessary to
manage these shared resources.

The Function_Management_layer: The application layer employs a set of
requests to invoke the services cf the function management ([FM) layer.
The function management layer presents infcrmation from one application
layer tc ancther application layer. Separation of the function
management layer from the application layer and from the transmission
subsysten layer allows device-specific transformations to be distrikuted

out of the main fprocessor.

The_Arplicaticn_Layer: The application layer is ccncerned only with
application functions. This layer performs the user's application
processing and need not be involved in the protocol or procedures for
controlling a communicaticn line cr routing data units through the
network.

Note: In SNA terminolcgy, the whcocle of IMS/VS is called one application
program. This use should nct be confused with that pertaining to IMS/VS
application programs writter by the user.

>332 P23

End users are the ultimate scurces and destinations of information. End
users include frcgrams (that is, IMS/VS) and operators (that is,
terminal users). The structure of SNA allows end users to be
independent cf, and unaffected by, the specific services and facilities
used for information exchange. End users are represented by nodes. Sc
a 3270 display unit is a ncde. Sc is IMS/VS itself. Notice that a 3705
Communicaticns Ccntroller is also a node, an intermediate one. To allcw
information exchange ketween twc nodes, these two nodes must be engaged
in a ggssion. Sessions are generally initiated (logon) and terminated
(locgoff) by cne cf the nodes.

Introduction 1. 25

_-EESans SeR Il SmssRoi s adaaSE wmmeee-

implementation of SNA in CS/VS. VTAM manages the activities of a data
communication system. It allccates resources and manages the flow of
data between the nodes in the system. To accomplish this, VTAM provides
the following functiocns:

€twork: VIAM enables an installation to

Starting_and_stopping_the_n
define the data communication system and some of its characteristics.
Once the system is defined, VTAM can be started and the systenm
initialized. VIAM can alsc be used to shut down the system in an orderly

fashicn.

Changing_the_configquraticn dymamically: VTAM enables the network
operator at amn 0S/VS system console to monitor the use of the resources
within the data ccmrunication system and to alter the network as

necessarye.

Allocation: VIAM ccntrols the allocation of network resources. By
owning and controlling all resources, VTAM provides a focal pcint within
the system for controclling the netwcrk.

I/C_rrocessing: VTIAM manages the transmission of data between
applicaticn prcgrams (that is, IMS/VS) and terminals., It enables
applicaticn prcgrams and terminals to communicate with each cther
independently of how the terminals are ccnnected to the central
Frccessing unit. VTIaM also relies upon the distributed function
throughout the netwcrk {such as in ccmmunications controllers and
Frcgrammable terminals) to reduce the processing requirements in the

central processing unit.

—_—_—mERasE=mR=X ,—_mamI o=

design and facilities that reduce the incidence of proktlems in the data
communication system, reduce the impact of errors that do occur, and
assist in maintaining the data communication system.

e e - - - -—-—-—

The Network Centrol Erogram/VS active in the 3705 Communicaticns
Controller, prcvides the following basic functions:

- Sending and receiving data to and from VTAM in the central
processing unit (CFU) via a S/370 channel.

. Sending and receiving data to and from terminal control units via
communication lines. Bcth binary synchronous communications (ESCQ)
and SDIC line disciplines can be used with the 3270 Infcrmation
Display System.

IMS/VS DATA COMMUNICATION CONCEPTS

The fcllowing sections give an overview of the concepts and facilities
of our subset of the IMS/VS Data Communication feature.

P23 FY - 23

FPhysical terminals are the hardware devices used to enter or reccrd
messages feing sent cr received over ccmmunication lines. Within the
IMS/VS environment, physical terminals may be permanently attached to
leased communicaticn lines cr cperate on a switched communication line
(remote attachment), or be attached directly to the CPU channel {local
attachnent).

1. 26 IMS/VS Primer

Although IMS/VS supports a wide variety of terminals and terminal
subsystems, in this manual we will only consider the IBM 3270
Information Display System (also referred to as 3270) attached lccally
or via leased lines. In additicn, we will limit ourselves to the
following 3270 ccntrol units apd their attached display and printer
staticns:

. 3271 Model 1, 2, 11 or 12

. 3272 Model 1 cr 2

. 3274 Model 1E or 1C (BSC line protoccl only)

. 3275 Mcdel 1 oxr 2

. 3276 Model 1, 2, 3, or 4 (ESC line protocol only)

3270 Device Compatibility: The 3270 hardware provides for the display
of a small size screen format cn a larger size screen display unit. A
12x40 screen format for a 3277/3275 Model 1 will be displayed in the top
left part of a 12x80 display unit (a 3276/3278 Model %1 or 11). A 24x80
screen format (for a 3277,/3275/3276/3278 Model 2), will be displayed in
the top part of a 32x8C display unit (3276,3278 Model 3) or a 43x80
display unit (a 3276,/3278 trodel 4).

A lcgical terminal is a name that is related to a physical terminal,
that is, a node. One rhysical terminal can have one or more logical
termipals associated with it. The user of IMS/VS refers to the logical
terminal in the comnstructicn and transmissicn of messages. The user is
never ccncerned about such things as physical terminal addresses. If a
physical terminal beccmes incperative, the logical terminal(s)
associated with that physical terminal can be dynamically reassigned to
ancther physical terminal, thereby reassigning output queues of messages
to another physical destipation.

The master terminal is a lcgical terminal that acts as the operatienal
hub of IMS/VS. 1The master terminal operator has complete ccntrcl of
IMS/VS communicaticn facilities, message scheduling, and data base
operations. This facility is used for checkpointing and restarting the
system, for continuous monitcring of the system, and for dynamically
altering the operation of the system. 1In case of master terminal
failure, the operating system conscle can be used as an alternate master
terminal. Since the master terminal is a logical terminal, it may be
dynamically reassigned to ancther physical terminal. 1In our sukset, the
master terminal must be a 2270 display unit with a screen size of 24x80
{1920 characters) in combination with a 3270 printer.

——_—msriadIs

IMS/VS fprocesses three basic types of input messages. The first cne to
eight characters cf the first message segment determine the message type
and identify the destination of the message text that follows.

. If the input message identifier is a transaction code, the message

is a transaction, and its destination is the application program
defined tc process the transaction.

Introduction 1. 27

. If the input message starts with the name of a logical terminal, the
destinaticn is a terwinal. This message type is known as a
terminal-tc-terminal message switch.

. If the first character of the input message is a slash {/), the
message is an IMS/VS command. The ccmmand code immediately follows
the slash. IMS/VS commands are entered by IMS/VS terminal operator
to direct IMS/VS to disrlay cr alter the status of one or more
IMS/VS system resources.

Qutput_Messages

Output messages to IMS/VS terminals originate from applicaticn programs
in response tc terminal input, from IMS/VS itself, or from other
terminals (message switches). An application program can send output
messages to lcgical terminals cther than the one generating the input
message.

-3

MFS allows applicaticn frcgrams tc deal with logical wmessages instead of
device-derendent data, thus simplifying application development., The
presentation cf data on the device cr operator input may be changed
without application program changes. Full paging capability is provided
for display devices, thus allcwing the application program to output a
large amount of data to be divided into multiple screens for display on
a terminal. The terminal operator can rage through subsequent screens
within the message. At the end he can return to the first page cr skip
to the next cutput message. Input can be accepted from any screen if so
defined in MFS format definition statements.

The basic concept of MFS is that the applicaticn designer describes to
the IMS/VS MFS language utility:

. The input message format as it will appear from the device

. The input message format as it is to be presented to IMS/VS and the
applicaticn prograrn

. The output message format that the program will present to IMS/VS
] The output message format as it is to appear on the device

Eased on atove descripticns, IMS/VS formats the data coming from the
device going to the applicaticn fprogram, and vice versa.

Message_Queuing

All input and cutput wmessages, except cormand input, are queued in main
storage, with direct-access storage backup as required. 1In this way,
messages can te received by the system although the resources necessary
to process them might not be immediately available. For imprcved
performance, lcng and shcrt messages are queued on separate
direct-access data sets. Space in a message queue data set is reused
when it is no longer required fcr a previcus message.

1.28 IMS/VS Primer

Conversational Processing
Ccnversational processing lets the user retain message continuity from a
given terminal even thcugh the prcgram that processes the conversation
is not retained in main storage throughout that conversation. Whenever
a transaction code is defined as ccnversaticnal, the application progranm
can interrelate messages from a given terminal using a scratchpad area
(SPA). A unique SPA is created for each physical terminal frowm which a
conversational tramnsaction is entered.

Typical contents of the scratchpad area are data from the terminal and
frce data bases to be saved ketween interaction passes of the
conversation. One scratchpad area is used for each terminal operating
in conversational mode. IMS/VS automatically compresses and exgpands
scratchpad contents to reduce data movement and I/C requirements.

Any subsequent data entry from a terminal already operating in
conversational mode causes the message processing program processing the
transaction to receive both the ccntents of the scratchpad area and the
input terminal data. EFach input message is considered as an individual
unit of work for the rrogrars.

A terminal compand is available to enable the terminal operator to end a
conversation prior to its normal completion. Commands to temporarily
suspend and save an incomplete ccnversaticn, and to resume that
conversation at a later time are also available to the terminal
operator.

Security

IMS/VS enforces several tyres cf user-defined security requirements. 1In
our subsets, two types of security verification may be designatea:
terminal security and password security. Terminal security ensures that
a transaction or command may be entered only from specific, designated
logical and/or physical tersinals. Passwvord security ensures that a
transaction or a command message will not be processed unless a
user~defined password is aprended to the transaction code or to the
compand verb.

Security violaticns are reccrded cn the IMS/VS master terminal and
system log after a specified threshold ccunt. Access to IMS/VS data
bases by non-IMNS/VS aprlications or operations must be secured ty the
user's own operational policy and procedural controls. The extended
security support of IMS/VS provides an interface between IMS/VS and the
Resource Access Centrol Facility (RACF) program product OS/VS2 KVS only

or a user written exit. This extended security support is not included
in our subset. For more information you should refer to the IMS/VS

e s s S e s e e s i i e T e

The IMS/VS terminal command language is used by INMS/VS terminal
operators to display and alter system resources. The major command
functions are descriked belcw. Mcst ccmmands can be specified to
operate on one or more occurrences of a particular resource type. MNost
commands for dynagically interrogating or altering the processing
functicns of IMS/VS are limited to the master terminal. The major
functions availatle to the master terminal cperator through commands
are:

L] Starting, stcpping, or cthervise modifying the system functicns cf
message receiving, queuing, scheduling, and sending.

Introduction 1. 29

U Allowing the IMS/VS system to purge its message queues prior to
shutdown.

. Temporarily halting transaction processing, message processing,
frogram scheduling and execution, and data base usage.

. Starting and stcpping message processing regions/partitions.
. Initiating and ccntrolling INMS/VS checkpoints and restarts.
) Modifying logical terminal to physical terminal assignments.

. Displaying the status of various resources, such as transaction
types, programs, data bases, message queues, and communications
facilities.

. Displaying main storage buffer pool and control block pool
utilizatiocn.

The major functions available tc the remcte terminal operator (nonmaster
terminal cfperators) thrcugh ccmmands are:

] Terminating, saving, or releasing a conversation.
o Sending a message to a selected logical terminal.
. Formatting a 3270 display screen for data input.

) Displaying the identificaticn of the master terminal.

Response mode is an option that causes interactions Letween the terminal
operator and the aprlicaticn program to be synchronized. When IMS/VS
receives an ingput transaction that causes response mode to be used,
IMS/VS accepts no mcre ccmmupication fros that terminal until the
applicaticn program response has been transmitted. This will be the
typical mcde of operation in our subset.

MESSAGE SCHEDULING

Separate operating system regions or partitions are used for message
prccessing. These regions or partitions are initiated through the normal
cperating system job management routines during IMS/VS initializaticn or
by an IMS/VS master ter®¥inal ccmmand during IMS/VS execution.

All messages acceptable tc the system are predefined and verified
thrcugh a 1- tc 8-character code in the first segment of a message.
When a valid message is ccmpletely received and queued, its presence is
made kncewn to message scheduling. When the required resources for
message scheduling are available, processing is initiated.

LCGGING AND CHECKPCINT/RESTART

This facility supports logging, checkpointing, shutting down, and
restarting IMS/VS executions. The online checkpoint and restart
functions are dependent upon queuing all messages on direct-access
storage and recording of all messages and data base modifications on the
system log.

1.30 IMS/VS Frimer

Logging

In the IMS/VS DB/IDC system, all message and data base modificaticns are
recorded on a central system log data set. This log data set is
compatible with the DL/I batch log data sets. The data base changes of
both types of log data sets can be accumulated into one change
accunmulation data set. This provides a consistent recovery mechanisrm
for data bases used in online and batch operations. 1In our subset, this
log data set must be on a magnetic tape.

Periodic checkpoints of INS/VS are used to provide the akility o
restart after loss of main storage, direct access storage message
queues, or data bases. The master terminal operator can enter coummands
to take a checkpoint ard IMS/VS-itself automatically takes a checkpoint
periodically. The following checkpoints are distinguished:

o System-scheduled clteckpcints based upcn log activity.

o After a master terminal request fcr orderly termination of the
system. Unprccessed input messages may be retained on direct access
storage gueues or recorded on the IMS/VS system log for sulsequent
processing.

Restarts

IMS/VS can ke stopped and restarted daily or at explicit intervals.
Restart reconstructs the system after a controlled stop, an emergency
stop, or a data Lase destructicn. To start the IMS/VS system, the
operator instructs the operating system to start IMS/VS. Once the
IMS/VS contrcl program is operative, one or more joks, which beccme
IMS/VS processing regicns/partiticns, may be initiated. Remaining
regions or partitions are used for batch processing. Upon initiation cof
the IMS/VS control prcgram, a message is transmitted to the master
terminal requesting an indication of the type of restart for IMS/VS.
The operator's response causes ccntrol to pass to the restart facility,
which cptionally reads the o0ld system log. This log contains input
messages received but not prccessed, or cutput messages gencrated Lut
nct transmitted, cn the previous execution of IMS/VS.

Any other information required to restart the system is also carried on
the log. Messages on this log are put back into the same message gueues
in which they were left at the rrevious system stop. After completion
of the restart processing, the master terminal operator may enter
conmands to initiate ccammunication line operation, message processing,
and data base use.

Restart without a system lcg is equivalent tc an initial start (cold
start) for all message trarsmissicn and processing.

When IMS/VS is restarted after an abend, the restart capabilities of
IMS/VS provide the following information to the master terminal:

] The name of the message prccessing program that was executing in
each message processing address space at the time of abend.

- The input messages that caused the message processing programs to be
scheduled.

Introducticn 1.31

Data base modifications are logged. This information is used at
restart. The data base modifications caused by programs in fprocess at
time of failure are autcratically backed out and the original input
messages are reprocessed in their entirety.

In addition tc system restart, facilities are provided to reconstruct
data Lkases using image ccries and the system lcg.

UTILITY PROGRAMS

In additicn tc the utility programs available with DL/I, the IMS/VS Data
Communication feature prcvides several utility programs. The following
utility programs are intrcduced in our subset:

. Applicaticn control klock maintenance. Uses the output of program
specification block and data base description generaticns tc create
and maintain the ccntrcl bleccks in a form directly usable by the
IMS/VS online systen.

. Security maintenance. Creates ccntrol blocks that descrite the
terminal and transaction security requirements. IMS/VS uses a
scheme of fpasswords for terminal and transaction access.

] System log analysis. Frcduces statistical reports having usage of
message types and tersinals.

. MFS language. Creates control blocks that describe message and
device formats for devices using message format service (MFS).

. A DC Monitor report program which provides information regarding the
performance of the system. This is based on the output collected by
an optionally activated monitor in IMS/VS.

. System log recovery and terminaticn programs to recover or terminate
the syster lcg in case cf machine errors.

The following three kinds of regions, address spaces, or partitions
under 0S/VS are distinguished in an IMS/VS-LCB/DC system.

) reqion contains the IMS/VS control program. It
minals and data bases.

o The contrel (CIL
controls the ter

¢ The message processing Program (MPE) region hosts the application

programs fcr message driven processing of the data bases. The MFEF
region is controlled by and relies upon the CTL region.

e The batch messace rrccessing (BMP) region contains an application

program for batch prccessing of the data bases managed Lty the CTL
region.

Once the IMS/VS control region or partition and one or more message
processing regions cr partitions have been initialized by the operating
system jok management facility, the follcwing system flow occurs. See
Figure 1-15.

1.32 IMS/VS Primer

MASTER
I TERMINAL [
D
C Ay SCHEDULING LANGUAGE/ [P o
TERMINALS [Yl
PROCESSING
?]

0s/vs

@ T T [C Iz

o APPLICATION
DATA MESSAGE DATA .

APPLICATION
pn%%o:‘m
CHECKPOINT RESTART BATCH [osns
PROCESSING | FILES
OF
. ONLINE
DATA BASES
: COMMON :
SERVICE
4k A
cTL MPP BMP
REGION/ REGION/ REGION/
PARTITION PARTITION PARTITION

SYST
LOG

Figure 1-15, IMS/VS Data Base/Data Communications System Flow

The following notés relate tc the circled numbers in Figure 1-15.

‘.

3.

4.

6.

The data communication facility (event 1) requests restart
instructions from the master terminal. After the completion of
restart, the master terminal enables communication from all user
terminals (event 2).

When an input message or message segment is received (event 2), data
communication calls the common service (event 3), and the input
message is logged (event 4) and queued (event 5).

When there are input messages queued and waiting for processing, and
a message processing region or partition becomes available, control
is passed to scheduling to determine the application message
processing program to be scheduled. The application program is
loaded (if needed) into a region/partition and given control.

The applicaticn program subsequently makes requests for the input
message and/or data base reference (event 6). Control passes to
DL/I for either message reference {[event 7) or data base reference
(event 8). The message reference is accomplished through common
service.

While the application program is executing, modifications can be
made to the data base (event 8) and/or output messages may be queued
(events 5 and 7).

When the applicaticn program terminates or requests another input

message, all its queued output messages are transmitted to the
designated ouvtput terminal(s) (events 3 and 2) in our subset.

Introduction 1. 33

BATCH PROCESSING OF ONLINE DATA BASES

Once the IMS/VS control region or partition has been initiated by the
operating system, a batch message processing (BMP) region or partition
can be initiated. The application program in the BMP region or
partition is scheduled by operating system job management. Its
execution, howvever, is controlled by the IMS/VS control region. This
BMP region or partition may contain an application program for batch
processing of online data bases. DL/I is us2d for data base reference
and update (Figure 1-15). Any data reference is initiated by the batch
message processing program (event 9).

The data base administration function as introduced in the first part of
this chapter is extended and complemented with a data cemmunication
administration function in the IMS/VS DB/DC environment,

DCA CHARACTERISTICS

. DCA provides standards for and controls the administration of the
online system and its data base use.

. DCA provides standards and qguidelines for message format service
usage and enforces the administration of device and message formats.

. DCA is responsible for the transaction and logical terminal security
control. Passwords should ke regularly changed and the security
maintenance utility should be used in a controlled manner.

. DCA maintains the logical terminal, physical terminal, and mode or
physical line assignments. DCA interfaces with network control or
provides that function itself.

. DCA is the central contact function for a user liaison group or
implements that function itself.

—— e 2 e s T e e s e e s s e e e e e > e B e e i o s

The sample IMS/VS DB project plan as discussed earlier in this chapter
{see Figure 1-12) can easily be extended to the IMS/VS DB/DC
environment. Figure 1-16 shows a gross PERT chart for such a project.

1.34 IMS/VS Erimer

COLLECT DATA
BASE DATA

OPERATION
MAINTENANCE

' DESIGN ' IMPLEMENTATION ' ACCEPTANCE
REVIEW REVIEW REVIEW

Figure 1-16. 1IMS/VS-DE/DC Installation Flan PERT Chart.

The following activities should be extended or added to the DB-only
version.

Install VTAM, NCP_and IMS/VS_(300-4C0): The system programmer installs

VTAM, NCP (if remote network) and the IMS/VS DB/DC system.

DC_Gross_Design_(300-420): The transactions, programs, device and
message formats, and their interrelations are defined.

Detail MFS Design_and_Coding_(420-520): The formats are developed in a
standard way. They are tested with their corresponding message
processing programs.

Lesign MTO_Guide_and MTIO Training [590-700): The IMS/VS Primer Master

Terminal Cperator's Guide should te adapted to your environment and used
in the training cf the MTO.

Design RTO Guide and_User_ Training_ (69C-800): The IMS/VS Primer Remote
Terminal Oferator's Guide should be adapted to your environment and used
in the training of the remote terminal operators. The end -user
departments shoulé ke educated in a tirely manner in the use of an

cnlipne systenm.

INS¢VS PRIMER FUNCIICN SUBSET CVERVIEW

The IMS/VS Primer Function is an implicit, open-ended subset of standard
IMS/VS functions. The subset selected is aimed at the first time IMS/VS
user, developing his first and simple IMS/VS application. Following is
a brief overview of the IMS/VS Primer Function subset.

This overview is mainly aimed at the existing IMS/VS user. It should be

used to identify the usability and/or limitations of the Primer Function
in your environment.

Introduction 1.35

————e-— Eafe Seeaa=

DL/I Storage Crganizaticn and Access Methods:

L Only HDAM, HIDAY, SHISAM, and GSAM (ESAMN)

. VSAM, OSAM, and BSAM (for GSAM)

. No IS2AM or OSAM for HIDAM

) Single data set grcugs

. Single volume OSAM data set

. Nc¢ variable length segments

. No segment compressicn

. No TL/I exits, e€xcept HDAM randomizing modules

. No hierarchic pointers

. Basic rules/recommendations for pointer selecticns

) SCAN=3 {default) in CBD

. Only HIDAM free space distribution parameter {FRSPC)

. No BLOCK cr RECORD parameter in DBD; mandatory SIZE parameter
. No 3850 sugport

Logical Relationshigs:

. Only bi-directicnal virtuval pairing

. No uni-directional c¢r bi-directional physical pairing

e Mandatory RULES=VVV for logical child segment

. Mandatory RULES=PLV for physical and logical parent segment

o Mandatory physical stcrage cf logical parent concatenated key
. Mandatory sequence field in logical path to the logical child
. Basic rules/reccmmendations for pointer selection

Seccndary Indexes:

. Root segment is always target segment (no inverted structures)

. No overflcw data set (ESLCS); mandatory /SX field if non-unigque keys
in index pcinter seqment

. No shared indexes in a secondary index data base

D1/I Call Functions:

o GU, GN, GHU, GEN, ISRT, KEEL, and LLET calls

] XRST and CHKP calls (cnly extended checkpoint/restart function)

\d No Boolean gualificaticn statements in segment search arguments

1.36 IMS/VS Primer

. D, N, F, L and - command codes (path call included)
. Nc multiple positioning (multiple PCBs will be used)
Data Base Design:

. Simple data tase desian technology based on the transaction/data
element wmatrix

. Basic rules/guidelines for logical and physical design, including
organization, access method, and pointer attribute selection

fata Base Reorganizaticn:

) 211 logical related data tases are reorganized at the same time
{data base scan utility not used)

) No utility ccntrol facility (UCF)

° Simple guidelines for smcnitcring reorganizaticn requirements
. No partial reorganizaticn

Data Base Recovery:

o Recovery with and without DL/I log tape

. Mandatory log data set change accumulation

o Mandatory write abead lcg tage

o log tape rLe€coOvery

. No utility ccntrol facility (UCF)

° Simple procedural guidance for data base error detection,
classificaticn, and reccvery

. Basic guidelines for image copy and log tape administration, and
data set retention periods

. No online image cofy

Installation and Operation:

. Only OS/Vs1 and O0S/Vsz (MVS) support
. VEAM is mandatory

. The IMS/VS DE installaticr fprocess is described separately from the
CB/LCC installaticn process

. No ACBLIB for data base only systenm

o Simple interpretation guidelines for LB Monitor output and data base
tuffer pool statistics

) Nc support for power warning feature
. Sample application programs written in both ANS COBOL (compiler

used: O0S/VS CCBCL, 5740-CEt) and PL/1 {cptimizer compiler used:
5734-PL3)

Introducticn 1. 37

Levice Support:

. IBM 3270 Information Display System, the following control units and
attached terminals, via ETAM or VTAM, locally or remotely attachead:

- 3271 Model YV, 2, 11 cr 12
- 3272 Model 1 cr 2
- 3274 Model 1B or 1C (BSC line protocol only)
- 3275 Model 1 or 2
- 3276 Model 1, 2, 3, or 4 (BSC line protocol only)
D1/1 Message Call Functions:
. GU, GN, ISKT, and CHXG calls
) XFST/CHKP call ccmbinaticn fcr BMPs
Message Format Service:
] Only message formatting option 2
. Cynamic curscr positicning via attribute byte only
. Single segmwent input
s No multiple page input
. One output segment equals one logical page, equals one physical fpage
o Logical paging, no physical fpaging
] No device type mixing in MFS
. No program function keys (PFKs)
. No message field and segment edit routines
. Nc prcmpt facility
. No cperatcr control tables
] No selectcr pen
. No operator identificaticn card reader
Message Processing:
. Cnly single segment input messages
. Multi segment cutput message
. Maximum length cutput segment of 1388
. Only respcnse mode transacticns
. Non recoverable inquiry cnly transactions

. Recoverable update transactions

1.38 IMS/VS Primer

. Conversational transactions, with fixed size main storage scratch
pad area (SPA) of 1300 tytes

Data Communicaticns Design:

L Ccncepts of cnline transaction design, based on application,
terminal user, and syster characteristics

. Basic MPP structure for simple inquiry, update and conversational
Frograns

) Basic guidelines fcr screen design

. On-line data tase design ccnsiderations

Installation and Operation:

. Long message queue record length of 1500 bytes

. Short message queue record length of 250 bytes

. VIAM or ETAM; no mixture

. Forced terminal and passwcrd security

L No exit routines in IMS/VS except HDAM randomizing modules
. Cne MPP and cne EFME region

. No message queue access via BME

. Mandatory IMS/VS shutdcwn for data base recovery or reorganization
e Single mcde transaction scheduling

] Single transaction scheduling class and priority
. No rrogram-to-grogram switching

o Sample set of VIAF lLevel 2 definition statements

. Sample set of NCP/VS definition statements to be used with IMS/VS
and VIAM Level 2 sample definitions

. Single log tage only

. No online DUMEQ

. No disk logging and enhanced restart

L No autcmated operator interface support

. No resource access control facility (RACF) support

e Mandatory hardcopy of all eligible master terminal commands and
responses

L] Only /ASSIGN, /BEROADCAST, /CHECKPOINT, /CLSDST (VTAM omnly), /DELUNME,

/DISPLAY, /EFESTART, /EXIT, /FCRMAT, /HCLD, /ILLE [ETAM only),
/NRESTART, /OPNDST (VTAM cnly), /PSTOP, /PURGE, /RCLSDST (VTAM

cnly), /RELEASE, /RSTART, /STAERKI, /STCF, and /TIRACE commands for the

Master Terminal Ofperatcr

. Only /EX1T, ,FORMAT, /HOLD, /RCLSDST, and /RELEASE commands for the

Remote Terminal Cperator

Introduction 1. 39

CHAPTER 2. [LATR EASE LESIGKX

- —— — ——mem memamm EAesl oo

As in almost any system implementation, the design is the most
challenging task tc bte perfcrmed. The best cptipmization or tuning
effort which you can perform is a sound initial design. On the cther
hand, a designer is cften bcund tc a time limit and does not know all
future requirements. To cope with these problems, a designer needs a
good plan and prcper techniques.

The mcst crucial topic in the design of applications with data base
management systems is the data base design. In this chapter we will
introduce data base design with DL/I. We will alsc provide guidance in
celecting thcse [L/I functions which will result in an open-ended
design. Our majcr objective is a good overall design resulting ir good
overall performance rather than a design which maximizes the performance
cf a single application progranm.

Should you have a specific performance objective for a particular
application, then ycu arc advised tc study Chapter 9, "Optimization," in
detail after reading this chapter, and Lbefore starting your actual data
tase design.

ABOUT_THIS_CHAPIZK

This chapter ccnsists cf three parts.

1. Introduces the sample application in detail. It sets the
requirements and the environment for the actual data base desigr
process. It is meant tc give the backgrcund for the examples used
in the two fcllowing parts.

2. Introduces the functions of DL/I, available to the data Ltase
designer. It alsc ccrtains the specification of the DL/I data lase
definition language. This part will be the major reference area
after the initial study of this charter.

3. Introduces the concepts, techniques, and quidelines for the
designing of data tases with DIsI., It is aimed at those individuals
whc are designing their first data bases with DL/I. As such, it is
more oriented towards learring than referencing.

Each cf the above three parts is constructed along the three phases of
data base implementation:

o Phase 1: Basic data Lkases
. Fhase 2: Tata bases with 1lcgical relaticnshigs
. Phase 3: Data bases with secondary indexes

With ¢this gradual approach you should be atle to design simple data
structures with a gpinisal amcunt cf effort and still be able, when the
need arises, tc exploit the full DL/I function. Once again, you should
realize that data base design is rct just a matter of creative
imagination. Mcst of it is systematic lator. The intent of this
chapter is to help ycu with this, by providing technigues for an
efficient accomplishment of this challenging task.

Data Base Design 2.1

Following is a list cf all the data elements tc be stored in the FAFTS
data base together with their system nanmes.

naming convention descrited in Chapter 1.

The system name fcllcw the

Name Description length
FE1EGDSC Part name, full description 50
FE1PGSN¥ Part name, short description 13
FEIPCGPNR Part nusber code 8
FE1EGUNT Unit of measure for quantities 8
FEIPGPRI Part tase fprice 8
FE1PGDIM Unit dimensions 8
FE1PSLCC Stcck physical locaticn code 12
FETPSCNT Stcck physical count quantity (tally) 6
FE1PSDAT Date of last physical stock court 6
FEIPSISS Total issued frcm stcck in current 6
period
FEVPSREC Total receirpts to steck in current 6
period
FE1PPOSU Saprlier's name 20
FE1PEQCD Quantity ordered 6
FE1PPQREL Quantity received 6
FE1EEODT Purchase order date (MMLDYY) 6
FE1PPDDT Delivery date ([MMLIYY) 6
FETPPONR Purchase crder number 8
FEV1EGNEW New [superseding) part numkter 8
FEIPGOLL 014 (superseded) part number 8
FETPGEQV Equivalent part number 8

3PS LB 5P PREI-N B3 P IS5 P32

Every week a report is made of all the parts in stock with a listing cf:
. Part number
’ Part name, short

. Part name, long (optional)

. Quantity in stock

. Quantity issuwed frcm stcck in current period

. Quantity received in current period

. Quantity cn crder

We will refer to this application function as transaction TEV1INVEEF. On
demand (averaging twice a day), the same information is nesded fecr

specific parts, ncramally 1 tc tC. 1This transaction, TE1INVCU should be
designed with the idea that it will be done online at a later stage.

2.2 INS/VS Fripmer

Eurchase_Order_Processing

Laily, an average of 100 crders are processed, each containing an
average cf 2 parts and a maximum of 6. The purchase order forunms,
delivered by the purchase derartment, are keypunched and sorted in
purchase crder/part number sequence. This application is alsc planned
to go online in the near future, with videc terminals installed at ths

purchase crder department.

Note: An order signal list could be produced in the same program which
generates the weekly rparts inventcry repcrt but this will not be

addressed in our sapmple.

The functions performed by this application are:

L Entry of new orders, transaction TE1ECNEW,

. Change of existing orders, transaction TE1POCNG.

o Deletinn of crders after delivery, transaction TE1PODEL.

PHASE 2 SAMELE FECUIREXENTS

335 S -PE— P >— P23 P23 T2 > T

In the phase 2 environment we will add the Customer Order Processing
Application. This applicaticn requires infcrmaticn from the:

. Existing Parts data base

. Existing Central Customer £file

o New Customer C{rders data base

The data elements required frcm each of these ars2 described below.

Farts_Data_Elements: Primarily the same data elements as in phase 1 are
required, although some are not used in this application.

Nape Lescription Length
FE2PCNUM Customer Number 6
FE2PCNAM Custcmer Nanme 20
FE2ECADE Customer Address 20
FE2PCCTY Custcmer City 20
FE2PCPCT Pcstal Code 6

Fata Base Design 2.3

P332 5P 3 P-4 NP5 OSSP PSSP F P22

Name Descrigption Length
FE20GREF Order Nusmber 6
FE2CGSTA Crder Status Code 2
FE20GCNR Custceer Number 6
FE20GCDT Crder Entered Date €
FE20CGLLCT Order Due Date for Delivery 6
FE2CGDHK Crder TCue Week for LCelivery 2
FE20GSPC Special Delivery Instructicns 20
FE20GCERI Order Crigin Code 2
FE20CPNR Part Nugber This Orderline 8
FE2CDQTY Part CQuantity Ordered 6
FE20DPRI Part Base Selling Price 8
FE20DTAX Fart Sales Tax Category 1
FE20SNR Shirment Number 8
FE2CSDAT Shipment Date MMDDYY 6
FE20SMET Shiprent Method <0
FE20LEOR Backcrder Flag 1

This

G e —S eamamadas Sl S=2

ccnesists c¢f three basic transactions:

. TE2CONEW =-- adds a new custcmer crder to the Customer Orders data
tase

. TE2COCNG ~-- changes data in an existingy customer order
. TE2CCDEL -- deletes a customer order from the data tase
The customer crder characteristics are:

. An averagé of ECC crders per day, maximum cf 1000

. Each crder contains a maximum of 8 crder lines, one order line for
each fpart type ordered, an average of 3 order lines per crder.

. The average delivery tice cf an crder is two weeks.
. Aftér delivery, the crder is deleted from the data base.

. Access to the order infcrmation is required via both the order
number and the part numker (the latter, for changing the crder
whenever changes tc the status of a part cccur).

Additionally, ancther arrlicaticn requires access to the customer orders
fcr each part. So we must link the part and customer order informaticn.
The customer namé and address are alsc needed during customer order
processing. This information is maintained in the Accounts Receivable
application which will nct te ccnverted at this time. This information
is stecred in a VSAM KSLS. The key of this KSDS is the custcmer nunmter,
which will be stored in the Customer Order data base for reference.

This KSDS will be defined and accessed as a root only DL/I data Lase.

The advantages to this approach are:

o The current KSLS is still available fcr the aon-LL/1 Acccunts
Feceivable applicaticn.

. The same KSDS can be processed as a DL/I data base, thus allowing
the new customer application full CL/I function.

2.4 IMS/VS frimer

" This root only data base can easily be extended with additionzl
segpents when the RAccounts Feceivatle application is converted to
DL/I. This conversicn can be done with minimal impact on the
Custcomer Order application.

PHASE 3 SAMFIE FECUIREMENTS

For the phase 3 samfple application, ¥we incorporated one additional
requirement for the purchase crder application. This requirement
prcvides fast purchase order information for one or more purchass
orders, based on the purchase crder number. To implement this new
transaction, TEIEFCINC, we will utilize the secondary index function of
LL/1.

THE _DL/I DATA_EASE_FACILITY

_—— e ——— e = -

This part of Chapter 2 prcvides an intrcduction to the DL/I functions
and their use. It is the main source of reference for the data tase
designer and/cr data base administrator. This part is subdivided into:
.) discussion cf the D1/T data tase organizationms

) A presentation of the LL/I1 data base definition language

The first part provides the insight into DL/I necessary for the data
base design. The secornd part provides details for the isplementaticn of
the data Lase(s). Each part has three secticns. These sections cover
the follcwing main data base facilities:

. Physical data bases and stcrage organizations

. Logical retaticnsthips

] Secondary indexes

FHYSICAL CATA BASE AND STORAGE ORGANIZATIIONS

To sufprort a wide variety of data base reguirements, DIL/I provides
several data base storage crganizations. However, your application
progrems will ke typically irdependent of the particular organization
chceer fcr a given data base.

In our subset, we will limit curselves to the following data base
storage organizaticns and their asscciated data base types.

Orgapizaticn Data_Ease Type
Bierarchical Tirect Access Method HDAM
Hierarckical Index Diresct Access Method HITAN

Sipple Hierarchical Index Seguential RAccess Method SHISAM
Generalized Sequential Access Method GSAM

The data base type, its organizaticn, and structure are defined in the
data base description (DEC). To use a data base in an applicaticn
program, you must provide a prcgram specification block (PSB). The PSE
specifies the data base(s) tc be used and the kind of usage required.
DBDs and PSBs are created during data base descrirtion genegatien

Data Fase Design 2.5

(DBDGEN) and program specification block generation (PSBGEN),

respectively. 1This is discussed in detail later in this chagpter.

Before discussing each of the above organizations in detail, we will
first elatorate some mcre cn some basic [L/I concepts which were
introduced in Chapter 1.

T ak n - a

As introduced in Chapter 1, a DL/I data base record as shown in Figure
2-1 consists of one root segment and a numker of dependent segments.
Each dependent segment can have a variable number of occurrences below
its parent occurrence.

PARTn

STOCKn2 I ORDERN2
STOCKn1 ORDERnN1
DETAILn11

Figure 2-1. A IL,/I Data Base Record

In its most elementary fcrm, this record could be stored in one or more
physical records. 1In principal, the segments would ke stored in their
hierarchical sequence, as shcwn in Figure 2-2.

2.6 IMS/VS Trimer

DL/I DATA BASE /

RECORD

o0 PARTN-1
RECORD

” PARTn | sTockn1| sTocknz| sTockn3 |orRDERN
RECORD - T

M+1 DETAILn11 | ORDERN2 PARTNn+1

N~ -

Figure 2-2., 1A LL/J Data Base Reccrd in Physical Storage

It should be noted that the abcve figure is a simplification. 1In
reality DL/I uses more elakorate storage organizations to allow for
efficient replacement, inserticn, and deleticn of segment occurrences.
Generally available functions include, for example:

. Space re~use cf deleted segments

. Chaining of segments tc ke added later in the right hierarchical
sequence

o Cirect or key-sequenced access for the root segment based on the
root segment sequence field ¢=key field).

This will be discussed in more detail for each of the data base
organizaticn methods.

P 2—9-3 -3 P2 3

A segment in a DI/I data tase record consists of a prefix ard a data
portion. The prefix ccntains the system data used by DL/I and is not
presented to application programs. The data portion contains the user
data as seen by the applicaticn prcgram. The prefix of a segment
contains a segment code, a delete kyte, and optional pointers.

|«——————PREFIX |- DATA ———]

)]
CC
SEGMENT | DELETE A FIXED LENGTH
copbe | Byte | POINTER AREA USER DATA
LC

Figure 2-3. S=zgrent Fcrmat

Data PRase Design 2.7

The one-byte segment code is used to identify the segment. It

first tyte of the prefix. The second byte is the delete Lbyte.
used to maintain the status c¢f a segment within the data base.

SHISAM and GSAM data bases can contain only one segment

Ncte:
These data base organizations do not contain segment prefixes.

Pointers are used in BLA¥ and HIDAM data bases for linking the

is the
It is

type.

segments

within one data base reccrd in their hierarchical order. Pointers are
also used to link segments involved in logical relationships, and tc

implement index pcirting. The segment types ir each data base

are coded

in hierarchical sequence from 1, the root segment, up to 255, as shcwn

in Figure 2-4.

Figure 2-4. Segment Iypes Numbered in Hierarchical Sequence

Note that each occurrence in a data base of a given segment type
contains the same segment code. Fach segment occurrence is normally

identified by its ccncatenated key.

The_Concatenated Key

The concatenated key of a segment consists of all keys from the root
dcwn the hierarchical path to and including the key of the segment

itself, as shown in Figure 2-5.

2.8 IMS/VS Primer

CONCATENATED KEYS

PART
/ 01001020
/
01001020
STOCK ORDER
KBL070100010 f—__:>75456-01
0100102075456-01
SEQUENCE FIELD KEYS
DETAIL
“‘j > 03
01001020KBL070100010 0100102075456-0103

Figure 2-5. Concatenated Keys

R unique concatenated key is nct required for every seguent. However, a
unique key is required for the root segment, except for HDAM.

For a better understanding of each particular data tase organizaticn, we
includs now a kasic descrirticn cf the DL/I calls used to process
segrents in a data base.

The segments in a DL/I data base agye processed through calls issued by
an aprlicaticn prcgraz. Calls are issuved tc yet, insert, delete, or
rerlace a segment or a path of segments. A call references a parameter
list which includes all data required by DL/I to complete the call.
Included in the list are a function code and, optionally, one or more
SSAs ({segment search arquments). The function code states the call to
te performed, ané the SSAs defipn¢ the segments along the hierarchial
path dcwn tc, and including, the segment to be processed. A call is
ungqualified vhen no SSA is included with the call, and is gualifisd when
cne cr more SSAs are included. A brief description of the primary calls
used in processing a data base and a brief description c¢f SSAs fcllows.
For more detailed informaticn, refer to Chapter 4, "Data Base
Processing."

The basic directicn of movemert in a DL/I data base is “tcp tc Lkcttcm,
left to right." Positicn in a data base is the segment or segments fromn
which the search for another segment starts. Norwmally DL/I retains
position at each level of the hierarchical path down to the last
retrieved segment.

Cata Base Design 2.9

Get_Urnique: The GU [get unique) call is used to retrieve a specific
segment or rath of segments frce a data base. At the same time it
establishes a positicn in a data base frcm which additional segments can
be preccessed in a forward direction.

Get _Next: The GN (get rext) call is used to retrieve the next desired
segment or rpath of segments frcm a data btase. The get next call
normally moves forward in the hierarchy of a data base from the current
pcsition. It can be modified to start at an earlier position than
current positicn in the data base through a command code, but its normal
furction is to move forward from a given segment to the next desired

segment in a Aata Lase.

Hold_Fcrm_of _Get Calls: 1A GHU (get hold unique), or GHN (get hold
next), indicates the intent of the user to issue a subsequent delete or
replace call. A get hold call must be issued to retrieve the segment

before issuing a delete cr rerplace call.,

Insert: The ISRT (insert) call is used to insert a segment or a path of

segments into a data base., It is used to initially load segments in
data bases, and o add segments in existing data bases.

To control where cccurrences of a segment type are inserted into a data
base, the user normally defines a unique seguence field in each segment.
When a unigue sequence field is defined in a root segment type, the
sequence field c¢f =ach cccurrence of the root segment type must contain
a unigque value. When defined for a dependent segment type, the sequence
field of each cccurrence under a given physical fparent must contain a
vrnigue value. If no sequence field is defined, a new occurrence is
inserted after the last existing one.

Delete: The LLET (delete) call is used to delete a segment from a data

base. When a segment is deleted from a DL/I data base, its dependents,
if any, are also deleted.

Replace: The FEPL {replace) call is used to replace the data in the

data portion of a secrent or path of segments in a data tase. Seguence
fields cannot ke changed with a rerlace call.

SSA (Seqment Search Argument): An SSA specifies the conditions which a
segment must meet to satisfy the call. An SSA can contain three parts.
As a minimum, it contains the name of the segment type. Optionally, an
SSA can also contain command codes and/or qualification statements,
Commands codes, when used, specify a functional variation of a call,
such as: retrieve last cccurrence of the segment under its parent.
Qualification statements identify, through field values, the segrent
occurrence of the specified segment tyge. A qualification statement
contains a field name, relaticnal operatcr, and comparative value. When
cccurrences of the segment type are searched by DL/I, the srecified
fi¢id is ccmpared tc the ccmparative value as the relatiocnal operator
specifies. If only the rame of the s2gment type is specified, the first
encountered occurrence cf that type will satisfy the call.

0S/V¥S_Access Methods Used by DI/I

For each data base organization, DL/I uses omz or more 0S/VS access
methods for the actual stcrage and retrieval of the data base records.
Ccemcnly used access methods are:

L The key sequenced data set (KSDS) and entry sequenced data set
{ESLS) of the virtual stcrage access method (VSAM) of CS/Vs.

2. 10 IMS/VS Erimer

o Cverflow sequential access method (OSAM). This is a special
physical access method supplied with DL,/I. As far as CS/VS is
ccncerned, an CSRM data set is described as a physical seguential
data set (DSORG=PS).

HDAM ANL HIDAM STORAGE ORGANIZATIONS

Both cf these data base organizations are irplemented with the
hierarchical direct methcd cf segment storage. 1In +he hierarchical
direct method, the segment cccurrences in a hierarchy are connected in
storage via fcur byte direct address pointers in the segment pre¢fixes.

A description of the types cf pcinters used in HDAM and HIDAM data bases
can be fcund at the end of this section.

. e e e o i o e e i o i o S o e e o e s o e A e S S e e o e .

Twc of the primary advantages of ELCAM and HILAM data bases are srace
reuse and the ability tc directly access segments within the data base.

The segment stcrage organriza+icn used for HDAM and HIDAM data bases is
essertially the same. The primary difference, at the access method
level, tetween HLAM and HIDAM data bases is that access to occurrances
of the rcot segment type is throuch a user randomizing module fcr an
HDAM data base, and through an irdex for a HIDAM data base. To access a
given rcct in an HDAM data base, the randomizing module examines the key
of the root, and through hashing cr some other arithmetic technique,
computes the address of the rcct and passes it to DI/I. To access the
same rcct in a HILAM data base, an index must te ssarched by DL/I tc
find the address of the rcct. #W#hen found, the root is accessed. By
using a randcmizing module to locate roots, the I/0 operations required
to search the index are eliminated. OCn the other hand, sequential
processing of data base records is not necessarily in root key sequence,
with HDAM.

BHDAM: Refer to Figure 2-6 fcr the following discussion. An HDAM data
tase consists tasically cf cne ESLCS or OSAM data set. To access the
data in an HCLAM data tase, DL/l uses a randomizing module. The .
randorizing module is used by DL/I to compute the address for the roct
segment in the data baee. This address con=ists of the control interval

-==L32= - 24

Ancher pCIPt(S) are located at the beglnnlng of the CI/blocks. They are
used for the chaining cf rcct segments which randcmize to that CI/block.
A general randcemizing module is supplied with the system. See the
secticn "HDAM Fandomizing Yodules" in Chapter 7, which also contains
guidelines to help ycu write ycur cwn randomizing module if requirad.

The ESDS or OSAM data set is divided intc two areas:

) The 100t addressable area. This is the first n control
intervals/blccks in the data set. You define n in your DBD.

. The overflcw area is the remaining pcrticn of the data set.

The root addressable area is used as the primary storage area for
segments in each data btase record. The overflow area is used fcr
overflow storage. Since data base records vary in length, a parameter
{in the DBD) is used to control the amount of space used for eact data
baze record in the roct addressable area. This parameter, “bytes" in
the EMNAME= keyword, limits the number of segments of a data base recorad
that can be ccnsecutively inserted into the root addressaktle area. When
consecutively inserting a rcct and its dependents, each segment is
stcred irn the roct addressable area until the next segment to be stcred
will cause the tctal space used to exceed the specified number of bytes.

Data Base Design 2. 11

The total space used for a segment is the combined lengths cf the prefix
and data porticns of the segment. When exceeded, that segment and all
remaining segments in the data base record are stored in the overflcw
area. It should be noted that the "bytes"™ value only controls segments
consecutively inserted in one data base record. Consecutive inserts are
inserts to one data base reccrd without an intervening call to process a
segment in a different data base record.

HDAM PART
ROOTKEY PART=

STOCK ORDER
LOGICAL DATA DETAIL
STRUCTURE

RANDOMIZING
MODULE

< ESDS/OSAM DATA SET>

' ROOT
> ADDRESSABLE
A7 A\ /\\\\ AREA

APl PART1 STOCK12 | STOCK13 | ORDERM

/
\

/‘\ | OVERFLOW
= AREA
STOCK14 DETAIL111 DETAIL112

SN— -~

Figure 2-€. HLAM Data Base in Physical Storage

J

HIDAM: A HIDAM data Lase in auxiliary storage is actually comprised of
twc data bases that are ncrmally referred to collectively as a HIDAM
data base. When defining each through the EBCGEN utility, cne is
defined as the HILCAM prigmary index data base and the other is defined as
the main HIDAM data base. 1In the following discussion the term "HIDAM

data base’” refers tc thes rain HIDAM data base defined through DELGEN.

The HIDAM primary index data base is used to lccate the data hase
reccrds stored in a HILCAM data btase. When a HIDAM data kase is defined
through TEDGEN, a unique sequence field must be defined for tha2 root
segment type. The value of this sequence field is used Lty DL/I to
create an index segment fcr each root segment. This index segment in
the HIDAM primary index data base contains, in its prefix, a poirnter to
the root segment in the main HIDAM data tass=.

2.12 IMS/VS Frimer

The HILCAM primary index data base consists cf a KSDS; its only data {and
key) is the sequence field of the root segment., In our subset, the main
HIDAM data base consists of one ESLS. The segment storage organizaticn
in this ESLS is ccmparakle tc the cne in the HDAM ESDS. Figure 2-7
shcws the layout of the HILAM data base.

I_____ —————— —| PART
PRIMARY INDEX DATA BASE ROOTKEY PART#

KSDS
| I l | STOCK ORDER
l
| (l:- PART Iél PART él PART|. .. |]
: Flosr F.l #2 i=J #n : LOGICAL DETAIL
DATA STRUCTURE
L [Tt 25‘ "

N parT1 | stocki1 | stockiz| - -

. /
sTocK21 | - - PARTN

Figure 2-7. HILA¥ Data Base in Physical Stcrage

P332~ P)P DR LT T IR R

The techniques used to insert or delete segments are the same fcr bcth
HDAM and HBIDAM data bases. The techniques involve use of bit maps,
space available chains, and availeble length fields. These systenm
fields are used kty DL/I tc find space when inserting a segment, or to
record free space when a segment is deleted. Normally, the space a
segment occupies is imnediately freed after the deletion of the segment.
Ycu cniy need to he aware of these systen-maintained fields when doing
Ci/blocksize calculaticns tecause they are allocated within your
selected CI/blocksize. We will cover this when providing guidelines for
such calculaticns later in this chagpter.

Alsc, with HILAM, you can specify free space at data base lcad time

{ini+ial lcad or reload during reorganization). This is specified in
the DEC for thz FsDS, For the primary index K3DS, free space can be

Data Base Design 2.13

assigned with the VSAM access method services TCEFINE command. In
theory, you can alsc specify free space in the DBD for an HLCAM data
base. This is, however, not recommended because it might ccnflict with
the randomizing mcdule algorithm.

To link each segment ir an HDAM or HIDAM data base to its related
segument, direct address pointers are used. The pointers are four bytes
long, and are placed by DL/I in the prefix of each segment stored in the
data base. A direct address pointer consists of the relative hyte
address of a segment frca the beginning cf a data set.

Note: The following discussion of pointers is included for those of you
whc are interested in the internal DL,/I storage organization. A
complete comprehension is not required for basic data Lkase design,
tecause we will give detail guidelines fcr the necessary rpointer
selecticn in the implementation part.

rointing. Fiqure 2-8 shculd be referred to when reading the fo
descripticn c# pointers.

LT 22 PP 1P CR-RoP A T

types. This is the physical child (first) pgister. Cptionally, per
child segment type, there is also a pointer to the last cccurrence of
that chilcé segment type, the physical child last pointer. This physical
child last pointer will irpzcve segment insert performance of that child
if that segment has no sequence field defined., It also improves the
perfcrmance of a get call wkich, via a commend code, explicitly requests
the last segment CcCCurrerce.

Usuvally, every segment in a HIDAM or HDAM data base has a pointer in its
prefix wvhich pcints to the next [based on sequence field) cccurrence of
this segment undér the sage parent. (If it is the last occurrence under

the parent, this pointer is zero.) This pointer is named the physical

_==a=

twin (fcrward) pecinter. If it is the root segment, the physical twin
pointer points tc thke next rcot if HIDAM. In HTUAM, the physical twin
pecinter is used to chain the rcot segment(s) of the anchor point. If
there is never more than one occurrence of a segment for a given parent,

then you should omit this pcinter.

Cptionally, ycu can alsc select a pcinter in each segment prefix which
pcints tc the previcus segment occurrence under the same parent. This
is the physical twin backward pointer. This pointer will improve delete
performance if the segment tc be deleted is a logical child cr is
lccated via the physical child last pointer (that is, command code
last).

In addition, when plysical twin forward and backward pointers are
spscified for the rcct segment type of a HIDAM data base, they enable
sequential prccessing across data tase records without intervening
references to the HIDAM index. When only physical twin forward pointers
are specified for the root segment type of a HIDAM data tase, sequential
processing across data kase reccrds requires intervening refer=ances to
the HIDAM index. In our sulkset, we will always select physical twin
forward and backward pcinters for the rcct of a HIDAM data base.

2.14 IMS/VS Frimer

rrrrrr
L
Ity | PART,
Ipigl | 11 PART
/L LLLL
r/ STOCK ORDER
r
P :'p p"B PY P LOGICAL DATA
iTiticicicic| parT, STRUCTURE DETAIL
IFIBIFIL F)L
L
r
b ORDER12
»rr r
{0% STOCK13 1PyP
'T c] ORDER1
STOCK12 FAF
15 |
; Tl sTockyq
\FIB “0% DETAILq12
| |(.°) r
P'p
1TV T| DETAIL{14
tF1B
Legend: L o

PTF: Physical twin forward pointer
PTB: Physical twin backward pointer
PCF: Physical child first pointer
PCL: Physical child last pointer

Note that PTB and PCL are optional.

Figure 2-8. Ditect Rddress Fointers in HDAM and HIDAM

SHISAM STCRAGE CTHEGANIZATICN

The data structure of a SHISAK¥ data base consists cf oniy oile segment
tyre, the root segment, with a unique sequence field. Because of this,
there is no segment prefix needed. The physical storage organizaticn is
a single VSAM KSDE [Key Sequenced Tata Set). This makes it possible tc
process a non LL/I KSLCS as a DL/I data base with full DI/I function.

The main use of the SHISAM organization is as a migration tcol tc DL/I
for existing KSD3 or ISAM files. It is nct recommended for new data

bases. (See also the phase 2 sample environment earlier in this
chapter.)

Note: 1The logical reccrd length c¢f the KSDS must be an even numkter for
SHISAM.

Lata Base Desigr 2«15

FUNCTIONS AND USE OF GSAM

An OSyVS sequential file can be defined to LL/I as a GSAM data tase.
However, the ncrmal concerts of hierarchical structures do nct apply to
GS M.

When using GSAMK for sequential input and output files, DL/I will ccrntrol
the physical access and pcsiticn of those files. This is necessary for
the repositioning cf such files in case cf program restart. When using
GSAM, DL/I will, at restart time, reposition the GSAM files in
synchronizaticn witk the data base contents and your application
prcgram's working. storage. To control this, the application fprograrm
should use the restart (XRST) and checkpcint (CHKF) calls. Thase calls
will be discussed in Chapter 4, "Data Ease Processing."

When_to Use GSaM

Whenever you want your program to be restartable, you should use GSAM
for its sequential input and cutput files. There are two reasons why
ycu should want to do this. The first is to save time if a frogranm
rerun is required in case cf prcgram cr system failure. This is
norgpally cnly done for long-running update programs (one or mcre hours).
The other reascn stems frcm a planned cnline usage of the data bases.

Tc be aktle to run a batch grogram in parallel with the online systen,
using the same data bases, that program must be executed as a batch
message processing [BME) prcgram. A BMP runs as a batch jok, but uses
the cnline ccntrol regicn of IMS/VS fcr the access of DI/I data tases.
In that way, INS/VS will provide complete data integrity acrcss the
batch and cnline use cf the data. To do so, however, the IM¥S,/VS data
basesdata communication system will isclate the data base updates of a
particular prcgram unrtil prcgram termiration. By using the checkpoint
call, the batch program can free those updated data base segments for
irrediate access by other batch and/or online progranms.

PP T - 2P 2

G

SAM supports data sets organized according to the follcwing 0S/VS
acc

€ess methcds:
. Sequential Access Methos (SAM)
. Virtual Storage MAccess MKethod (VSAM)

GSAM supports the Easic Sequential Access Methoda (BSAM), on DASD, urit
record, and tape devices and ESDS cn DASD devices. 1In our subset, we
will cnly consider ESAF fixed and variable length record forrats.

The terms segment, segment type, hierarchical, parent, child, stc., are
not applicable tc GSAM data sets, ncr do the concepts of either key or
f£ield aprly.

When program restart is required, ycu shculd not use temporary files,
that is, for SYSIN/SYSOUT spooling. They may be deleted by CS/VS after
frcgram or system failure.

A GSAM data base may alsc o€ a data set previously created ty use cf

0S/VS BSAM, or QSAM. Ccnversely, a GSAM data bas= may be accessed later
by cther programs using these CS/VS access methods.

z. 16 IMS/VS Erimer

P A SN D95+ P i § P T LT 1

WHY LCGICAL KRELATIONEHIPS

We have sc far addressed only single hierarchical data structures.
Quite often, especially with different applications, several DL,/I data
bases are needed. In acdditicn, there is often a requirement tc access

22— -2 P P-4 ——_

bases. 1This can create prcklems cf:

) Consistency -- if data is stcred more than once, how to update all
cccurrences at the same time.

. Data kedundancy -- if large data elements are stored many times,
this may consume excessive external stcrage.

. Access of Data -- if data is stored more than once, which access
path should be used to access the appropriate copy cf the data.

The akove prcklers can ke sclved by stcring the data only once and
providing a linkage mechanism tetween hierarchical structures. With
this linkage a new access path is provided to data in data kase A, based
on data in data tase B, and, if desired, vice versa.

DL/I's logical relationships provide this function. The basic linkage
is alwvays between two segments. However, tbe linkage can externd to
several data fases. On the cther hand, the resulting compound data
structure will alwvays be presented as a hierarchical structure to a
particular applicaticn. The tasic mechanisas of the DL/I logical
relaticnship is the connection of a segment to two parents in two
different hierarchical structures. Normally, any segment has only one
parent. By giving a segment two parents, that segment (ard its
dependents) telong tc twc different hierarchical structures. This
enables the definition of a new hierarchical structure which ccntains
segments from both related structures. Such a definition is called a
logical data Lass.

BUILDING IOGICALI FEIATICNSHIES

e R P2 2P BB R PS5 P P P-F P2 P NP P P 2

The following segment types areé needed tc establish a logical
relaticnship. All three must be present for any logical relaticnship.
You should refer to Figure 2-9 when reading the following discussion.

PHYSICAL DATA BASES LOGICAL DATA BASE
PHYSICAL LOGICAL
PARENT PARENT
ORDER |. PART ORDER
i f \i
CONCATENATED
‘ LOGICAL CHILD SEGMENT
DETAIL DETAIL PART

Figure 2-9. Segment Types Invclved in Lcgical Relationships

Lata Base Desigr 2. 17

Logical Child Segment: This segment has two parents. A logical parent

and a physical parent. The logical child segment and its dependents, if
any, are accessable via koth parents. The access path via its physical
parent is called physical access path. The access path via its logical
parent is called the lcgical access path. By definition, a logical
child segment contains the concatenated key of the logical parent
fcllcwed ky vser data, if any. The remainder of the user data in the
logical child is called intersection data. It is present at the
intersection cf the twc parents. The lcgical parent concatenated key

{LPCK) is always presented tcgether with the intersection data, whenever
+he lcgical child is accessed via its physical path (see Figqure 2-10).

® B @ @ W W W A e SR Y e NG CTONtN PO ENNCONE AT OB WED VW W DD DD W -

r

| !

| EREFIX | LPCK | INTERSECTION DATA |
|

t

Figure 2-10. 1logical Child Segment Format

Whenever you insert a logical child segment in its physical data tase,
ycu must present the IECK. It identifies the logical parent.

Logical FEarent_Segment: This segment may reside in the same cr a

different data base as the lcgical chiid.

Physical_Parent_Seqment: This is the ncrwal parent segment of the

—— o -

lcgical child in its physical data base as defined earlier.

The mcst common method for implementing logical reslationsips Letween
HCAM and BICAM data tases is based on direct address pointers, which are
all 4-byte relative byte address pointers similar to other pcinters in
HDAM and HITCAM.

The_Virtual Logical Child_Segment_ (VIC): To be able to define the view

of the lcgical parent on its logical children and their occurrence
sequencing, DL/I introduces a special segment type. It is ramed the

m—— m—ERa

parent segment, It does not exist in physical storage itself. 1Its only
role is tc provide a mechanism to define the lcgical parent's view cf
the data in the logical child. It controls the access from the logical
parent to the logical child. It is used to define the sequencing of the
logical child segment whern that logical child segment is accessed via
its lcgical parent. The virtual logical child is said tc ke paired with
the real logical child. See Figure 2-11.

2.18 IMS/VS Erimer

PHYSICAL DATA BASES

LP
ORDER PART
/fPP :
LCF
— L
l— 1
DETAIL | oetan |
L _

ORDER

LOGICAL DATA BASES

"N and/or —¥

PART

DETAIL

PART

DETAIL

| orDER

REAL LOGICAL CHILD VIRTUAL LOGICAL CHILD

Key:

PP—Physical parent pointer
L.P—Logical parent pointer
LCF—Logical child first pointer

Figure 2-~11,

{Represents DETAIL when
accessed from PART)

-~

CONCATENATED SEGMENTS

Virtual Paired Bidirectional Icgical ERelationship

When accessed, the virtual lcgical child contains the concatenated key
cf the physical parent of the real logical child, plus the intersection

data of the real,

lcgical child.

So the virtuwal 1lcgical child CETAIL!

in Figure 2-11 contains the key of the OKDER segment plus the user data
of the real DETAIl segmert.

The Destination

parent which is
the destination

parent.

Farent:

>3 P4

With bidirectional pairing, DL/I refers to the

cther than the cne used to access the logical c¢hild as

starts with the

destination parent concatenated key

_EEssos=S=Za

As a ccnsequence, the logical child always
(DPCK)-.

The physical data bases used tc implement a logical relationship must be
HDAM or HIDAM data bases.

our Phase 2 sample environment.

Figure 2-12 shows the physical data bases of
The order line segment in the Customer

Crders data base is the lcgical child of the part s2gment in the Farts

data base.

Notice that the virtual logical child is not shcwn, alttiough
it will appear in the DBD as discussed later.

CUSTOMER
PART ORDER
LP
LC
STOCK PURCHASE DESCRIPTION ORDER SHIPMENT
ORDER LINE
Figure 2-12, The Fhase 2 Ehysical Data Eases

Lata Base Desigr

2.19

A discussion cn how this structure is derived can be found in the last
part of this chapter. A logical_data base is a redefinition cf cne or
more physical data kases which ccntaip lcgical relationships. It yields
a new hierarchical structure which is ccaposed of structures from both
related structures. The new structure can ke processed ty argplication
programs as if it were physically present. The logical data base can
only be defined if the proper logical relationships are defined in the
phycical data Lases.

The Concatenated Segment: 2All segments in the logical data base stem
frcm cne segment in one of the physical data bases, except when the
logical child is accessed. Whenever the logical child is accessed in a
logical data tkase, it is cpticrally ccncatsnated with the destination

parent segment. See Figure z-13. The destination parent is the parent
of the ICHILD cther than the cne frcm which you came.

[Al
! LOGICAL CHILD | |
R i R et I CESTINATION PARENT]
! LPCK | INTERSECTION | I
! i DATA | |
[e PP R TR EE LR LR R iRl B R R i B R R P R R R ¥

Figure 2-13. Concatenated Segment Format

Notice that the concatenated segment is different for the two paths:

. When accessing the real logical child below its physical parent, the
ccncatenated segment will censist cf:

1. The real logical child, which consists of:

a. The concatenated key of the logical parent

k. The data cf the real lcgical child segment, if any
2. Optionally, the logical rarent segment itself.

- When accessing the virtual lcgical child below the logical parent of
the real logical child, the concatenated segment will ccnsist cof;

1e The wvirtual lcgical child, which consists of:
a. The ccncatenated key of the physical parent
b. The data of the real logical child segment, if any
2. Cptionally, the physical parent segment itself.
Note: The concatenated segment only cxists in a logical data Lase.
Because of the bidirectional virtual pairing, you can always define two
logical data bases with one logical relationship.

Figure 2-14 shows the twc lcgical data bases which can te defined using
the related physical data hases cf Fiqure 2-12.

2.20 IMS/VS Frimer

LOGICAL PARTS

DATA BASE
PART
PURCHASE
STOCK DESCRIPTION ORDER | CUSTOMER
ORDER LINE ORDER
SHIPMENT
LOGICAL
CUSTOMER ORDERS CUSTOMER
DATA BASE ORDER
ORDER
LINE PART SHIPMENT
PURCHASE
STOCK ORDER DESCRIPTION

Fiqure 2-14,

Phase 2 logical Data Bases

The akove logical data btases will be used by our samrle Fhase 2
applicaticn programs.

The exact rules for definirg ard processing logical data bases will be

discussed in the follcwirg secticr.

LOGICAL KELATIONSHIP TLESIGN RULES

In ccnstructing lcgical relationships with L[L/I, two sets of rules gmust
One set fcr ccnstructing the physical data bases ard the
It should be clear that

te oltserved.

second set for ccnstructing lcgical data bases.
a lcgical data base can be defined only if the underlying physical data
bases are properiy defined.

Tata Base Design

If uecessary, nultiple lecgical data bases can be defined for a given set
cf legically related physical data bases. However, good practice is te
generate cne logical data tase for each physical root segment which
contains cnly the segments needed in your applications.

PP e P B TP~ PP

P25 3B P-Sp 53

1. A logical child segment must have one and only one physical rarent
segment and one and cnly cne logical parent segment.

2. A lcgical child segment is defined as a physical child segment in
the physical da«a tase of its physical parent.

3. In its physical data base, a logical child segment cannot have
another lcgical child as its immediate dependent.

1. A logical parent segment can bte defined at any level of a physical
data tase including the rcct level.

2« A logical parent segment can have one or multiple logical child
segrant tyges.

3. A segment in a physical data base cannot be defined as both a
logical parent and a lcgical child.

4, & locgical parent segm=nt can be defined in the same or a different
physical data base as its logical child segment.

Fhysice]l Parent:

t. A physical parent segrent cf a logical child cannot also be a
logical child. This is the same as rule 3 for the logical chkild.

Multiple lcgical relationships can be established within a single data

base or Letween two or mcre data bases, as long as the above rules are
cbeyed.

-3 S -3 §- 3 LD S P2 PP 2 e TP

1= The lcgical data base itself is always a single hierarchical
structure.

2. It must start with the root of a physical data base and can contain
cnly segments defined in physical data Lases.

3. In following a hierarchical path, nc¢ segrents may ke skipped.

4, The logical child plus the destination parent is always presented as
cne ccncatenated segment.

5. 1The dependents cf a concatenated segment are:
. The dependents cf the 1lcgical child
. The 1lcgical or physical dependents of the Jdestination parent

The above dependents should not be intermixed, ncr skould their
relative crder te changed. But you can start with either of them.

- The physical parents up to the root of the destination parent
in destination parent *to root order

2,22 IMS/VS Frimer

6. If physical parents of a destination parent are included, then you
can also include their logical or physical dependents in their
ncrmal crder.

7. Any number of logical relationships can be used in a single
hisrarchical path in the logical data base up to the maximur of 15
segment levels.

Notes:

1« Eecause of the virtual lcgical child ccncept, paths are
bidirectional and can be intermixed and/or repeated in a single
logical data tase.

2. All segments of related data bases are available as long as you

follow the above rules. The same physical segment type could appear
in several different paths if needed.

Figure 2-15 shows some examples of logically related physical data tases
and their associated logical data bases. It illustrates most cf the
above rules. This example is nct representative for a typical Dl/1I
application; it merely shows the different possible comktinations,

PHYSICAL DATA BASES

Q

BD1 DBD2 DBD3

A E H
LP

I!LL

c]

C

LC
o]

POSSIBLE LOGICAL DATA BASES

DBD4 DBD5 DBD6

|A| A E

B|F B|F F
1 [

H

ofoliclic :

X

[o]
—J =]
5]
1]
iy
=

H

Figure 2-15. Using Multiple Logical Relationships

Lata Base Design 2.23

PROCESSING LOGICALLY RELATED SEGMENTS

2330 PRS- _P-P 2P P34 P>

Logical_Child: The 1lcgical child can be deleted via its physical parent
path ¢r its lcgical parent path., If a logical child is desleted in
either way, then all its dependents in the physical data Lase¢ are
deleted. If a ccncatenated segment is deleted in a logical data tase,
then cnly the logical child segment is deleted with its physical
children. The destination parent is nct deieted. In our sukset, the
logical child will ke automatically deleted if either its physical cr
lcgical parent is deleted.

logical_ Parent: The logical parent can only be deleted via its physical
rarent path, If the logical parent is deleted then all its children
will be deleted including logical children.

Ehysical_Farent: The physical parent can cnly te deleted via its

physical parent path. If the physical parent is deleted, then all its
children are deleted includéirg lcgical children.

Logical/Physical Parent: Either parent type can only be inserted via
its physical garent path.

Lcgical Child: The logical child can be inserted via either path, but
the destination parent must already exist.

Replacing logically Related Segments

_—— e m e m et adma=2R

Rfter a get hold call of the ccncatenated segment, fields in koth the
lcgical ckild and the destination parent can be changed kefcre the
replace call, except sequence fields, see Figure 2Z-16.

LOGICAL CHILD DESTINATION PARENT
DESTINATION REMAINING REMAININ
PARENT SEQUENCE ! inTERsEcTION | TARENT'S l PARENT’SG
CONCATENATED FIELD KEY
KEY I DATA I DATA
THESE FIELDS CANNOT THESE FIELDS THESE FIELDS CAN
BE CHANGED BY REPLACE MAY OVERLAP BE CHANGED BY REPLACE

Figure 2-16. Replacing Fields in a Concatenated Segment

LOGICAL RELATIONSHIPS IMPLEMENTATION TECHNICUE

The following pointers are used by DL/I, in our subset, to implement
logical relaticnshigs. These fpcinters are maintained in the segment
prefix in the same way as the previously discussed physical child and
physical ¢twin fpointers. again, a detailed comprehension of those
pointers is nct required at the moment, as we will give detailed
guidelines for their selection in the implementation part of this
chapter.

2.24 INS/VS Frimer

Logical Farent Pcinter_ JLP}: The lcgical parent pointer is within the
prefix cf the logical child segment and points to the logical parent
occurrence of that logical child. This pointer is always present amnd is
never zero. Each logical child nost have cne and only one logical
Farent just as it has only one physical parent.

logical Child First Pcinter JICF): The logical child first pointer is
withir the prefix of the logical parent and points to the first
occurrence of its logical child segment. If a segment has several
logical segment types, it contains one LCF pointer for each segrment
type. If a logical parent hkas no lcgical child occurrences, the
corresponding LCF pointer is zero. The logical child first pointer is
reguired.

Logical Child Last Pointer (LCL): The logical child last pointer is
within the prefix of the logical parent and points to the last
occurrence of its logical child. There is one LCL for each defined
logical child segment type€. The LCL pointer is cptional. 1Its only use
is to improve the performance of the logical child insert if nc seguence
field is defined for the lcgical chain. See "Role of the Virtual

Logical Child" earlier in this chapter.

Logical Iwipn_ Forward Pcinter [(ITF): The lcgical twin forward pcinter is
within the prefix of the icgical child segment and links all lcgical
child occurrences of a particular logical parent. This pointer is
required if any logical parent occurrence has more than one logical

child occurrence.

logical Twin_ Backward_Pointer_ (LIB): The logical twin backward pointer
links lcgical twins but in the reverse order of the LTF. This pointer
serves a conplementary performance role as the physical twin backward
pointer in deleting lcgical children. It shculd always be used --
together with the LCL -- if there are multiple occurrences of a logical

child for any logical rarent cccurrence.

Physical Parent_ Pcinter (PRP): DL/I uses a physical parent pointer in
the rrefix of the logical child to locate that physical parent if the
access was via the logical parent. This FP pointer is repeated up
through the hierarchy tc the rcct. 2 physical parent pointer is also
Fresent in the lcgical parent if this is not a root segment., It then
points to the physical parent of the logical parent, etc. You never
need tc specify the inclusion of this pointer in the DBD. DI/I will
include it automatically if needed.

The seccndary indexing capability of DL/T allows additional access paths
to a data tase record. Seccndary indexes prcvide:

e A secondary processing sequence, enabling direct and/or sequential
processing of data base records on non-root-key field values. These
search fields can be located in the root segment or a dependent

segment.
- Autcmatic updating of the secondary index is always done, even if

the program causing the change is not sensitive to the seccrdary
index.

Cata Base Design 2.25

WHEN TC USE SECCNLAFY INLCEXES

Seccndary indexes should be mainly used when frequent, direct access to
the data base reccrd is required cn non-rcot-key fields. It should be
realized that a seccndary index incurs additional system cost in CEU and
I/C time. If the inforsaticm cn which the secondary index is
established is changed, then DL/I has to change the index entry.

Esgecially for batch processing, you should compare the costs of full or
partial data base scan plus a subsequent sort of the cutput versus the
cost of using seccndary irdexes. For cnline data base processing, the
chcice is easier. Terminal user's response requirements norgsally dc¢ not
allow for full data tase scans.

SEGMENT TYPES INVOLVED IN SECONDARY INDEXES

The segment types and associated terms involved in secondary indexes are
{see Figure 2-17):

. Secondary Index
A seccndary index is ccrprised of an index pointer segment type
defined in a secondary index data rase that provides an alternate
entry intc a data tase.

. Index Pointer Segment
A segment defined in a secondary index data base that ccrtains the
data apnd pcinters used tc index the "index target segment." It
controls the secondary processing sequence,

. Index Target Segment
The segment that is gcinted to ty an index pointer segment. In cur
subset, it will always ke a root segment. In that case, it is as if
the search field "replaces" the original root segment segquence
field.

] Index Source Segment Type

A segment that is the source from which a seccndary index is
created.

. Seccndary Processing Seguence
The sequential order in which occurrences of an index tardet segment

type are accessed thrcugh a seccndary index. It is the order of the
index pointer segment.

2.26 IMS/VS Erimer

SECONDARY
PHYSICAL OR LOGICAL DATA BASE INDEX DATA BASE

-‘ \

A root N
segment in INDEX TARGET INDEX POINTER
our SEGMENT SEGMENT
subset

I

|

|

I
sCaamneb:e;t::em T 1 INDEX SOURCE The con.tent. of the §pecifie‘d
as index search field in each index
target segment, SEGMENT source segment is duplicated
32,2},:',‘,3‘;”,?{ in the respective index pointer
of the index segment generated from each
target segment. index source segment.

Figure 2-17. Segment Types Asscciated with a Secondary Index

Although a secondary index can be used in pregrams which use only
logical data bases, their implementation is strictly on the physical
data kase level, Figure 2<-1€ shows the physical data bases of our phase
3 samfple environment. The only difference from phase 2 is the Purchase
Crder Numler seccndary index data base. By utilizing this secondary
index data base, an application program can process the physical and/or
logical Farts data base directly ty purchase order numter.

PURCHASE
ORDER |— | PART CL(J)SRTI;)N:‘ER
NUMBER E
LP
\
\
N
\
AN
LC
STOCK PURCHASE DESCRIPTION ORDER | SHIPMENT
ORDER LINE -

Figure 2-18, Phase 3 Physical Data Bases

LCESIGN RULES FOR SECONDARY INDEXING

Several rules should be observed when designing basic secondary indexes:
1. The index target segment should be a root segment in our sutset.

2. The index source segment and the index target segment must ke

defined in thke same physical DBD. They can bes the same segment.

Data Ease Design 2627

3. A logical child segment cannot be used as an index scurce segment.
However, a dependent cf a lcgical child can be used as an index
source seqgment.

4, A secondary index can be used with a lcgical DBD, but the index
target segment should be the root segment. Nothing additional need
be specified in the logical LBD.

THEELEMENTATICK TECHNICUE

In discussing seccndary indexes xe have to distinguish Letween two
different data kase types. 7The first is the indexed data base. Thas
data base contains the index source and index target segments., It is arn
EDAM or EIDAM data tase. The second is the seccndary index data Lase,

This data base contains the index pointer segments which contain

pcinters in their prefix to the index target segments. Anr INDEX data
btase consists cf a single KSDS. Figure 2-19 shows the physical forrat
of the KSLS lcgical reccrd fcr the INDEX data base.

—— SEGMENT = VSAM logical record >
-¢—— PREFIX | DATA = KSDS KEY ———
Direct
address
index Search Subsequence
Delete target
flag field field
segment {Optionat)
pointer
1 4 N 4

figure 2-19. Logical Reccrd Fcrmat for the Index Pointer Segment

Index Pointer Segmepnt Fcrmat
The index pcinter segment ccntains:

. Delete flag (1 byte) controls the delete status of the index pointer
segment.

. Pointer to the index target segment (4 bytes).

. Search field (N bytes) ccntains a duplication of one to five index
scurce segment fields which together define the secondary sequence.

° Subsequence field {4 bytes), optional. It is reguired in our subset
if the search fields ir the index fpcinter segments are non-unifque.
If specified, it contains the relative byte address of the index
source segment. It is pever used to access the index source
segrent. Its scle use is to provide a unique key for the KSDS
lcgical record. In the DBDs, its field name must start with the
three characters.

2.28 IMS/VS Frimer

CEFATING A SECONILARY INDEX

Secondary indexes are created with the standard DL/I data base
recrganization utilities, see Chapter 5. They can be created at initial
data kase load time or later. ©Nc user prcgramming is needed to create a
secondary index. Also existing programs need not be changed unless they
want to use the seccndary index.

LCATA EASE CESCRIPTION GENERATICN

Af+er you finish the design of your data bases you must specify ther tc
DL,/I. 1This secticn givee the gquidelines for the use of the DL/I data
base definition lanquage: the data base descripticn generation {DBDGEN).
Agair this section is divided intoc three subjects in concurrence with
the thriee fphases:

1. Easic DBDGEN fcr rhysical data bases
2. TLEDGEN for logical relaticnshirs
3. DBDGEN for secondary indexes

For each data base to be used with DL/I, a data base description (DBD)
must ke generated. B IBD ccrsists of a set c¢f DL/I-supplied macro
instructions, coded by you tc specify the data base characteristics you
need. The DED is processed by an 0S/VS assembler and the generated load
rodule is stored by the linkage editor in the IMSVS.DBDLIB litrary for
subsequent processing cf the data base. See Figure 2-20.

IMSVS.MACLIB

<> IMSVS.DBDLIB
<>

DBD
DBDGEN

MACROS

=

f
INPUT I

DECK

DBD

.

Figure 2-20. TCata Base Descripticn Generation ([DBDGEN)

Figure 2-2%1 shows the sequerce cf the wmacrc statements in the DBD input
deck. The DELGEN is executed by invoking a JCIL cataloged procedure
nared DBDGEN, which is available in IMSVS<.EFOCLIE.

Data Base Design 2.29

Repeat for each segment .
type in the data base.
The order is the heir-
archical sequence.
Maximum: 255

DATASET

Assembler

FINISH END Macro
DBDGEN Required: 1
Required: 1

LCHILD Required for index
and/or logical relationships.
FIELD

FIELD

Repeated for each defined

field for this segment.

] Maximum: 255 per segment type.
Required: 1 1000 per data base.

Required: 1

Figure 2-21, T[CBDGEN Input Deck Structure

LECCEN CODING CONVENTIONS

DBDGEN statemants are Assembler language macro instructions and
therefore, are subject to the rules contained in the publicaticn

el maes SESSeas=

In the generalized format shown in the following descriptions of the
control statements, these syntax ccnventicns apply:

aA.

b.

2.30

Words written in all capital letters must appear exactly as
written.

Words written ir lcwercase letters are to be replated by a
user-specified value. Valid user-specified values are numeric
values ¢r one- to eight-character alphameric names.

Tte ccntrcl cards are free form. Operation codes must tegin
after cclumn cre. Operands wust fcllcw an operation code or
pricr operand. The first operand must be separated from the
operation code by at least one blank column. Fach operand
should be separated from the previous operand by a ccmma.
Operands may te ccntinued on subsequent cards, but must start
in card column sixteen on thes continuaticn card. A nonblank
character nmust be ccded in column 72 if a continuation card
follous.

r + 1indicates cpticnal orerands. The operand enclcsed ir

{ | the trackets (fcr examgle, { VL]) may or may not be

| | present, depending on whether or not the asscciated

Lt 4 cpticn is desired. If more than one item is enclosed
in bkrackets one or none may be coded.

{} indicates that a choice of an operand parameter must
{}) be vade. One cf the operand parameters from the
{)} vertical stack within btraces must be ccded.

s+« indicates that rore than one set of parameters may be
designated in the same operand.

INS/VS Erimer

Exapple:

|<- Column 1 |<= Ogperands - Column 16
1 |{<- Cperation - Column 4 Column 72 =>|

/ s e T L LT T R R Tesccscccecaca,
/ l | |
| {DEC { NAME=BE 1PARTS, * |
| | JACCESS=HILAM 1
| i |]
lecmevocecvcscnenccccenw . G G BT BB G ED D G DD WD D DD D DD D W W - - ¥]

This statement names the data base being described and specifies the
organization used. There is only one in the input to DBDGEN. The
format of the DBL macrc instruction is:

/ --- - oo
/ |
CEL {NAME=dtkname1
|
| SHISAM
1 (HDAY ¢« CSANY})
|sACCESS= YEAM
|
! HICAM
| INDEX

|[/RMNAME= (mod,anch,rbn,bytes)]
]
Il /PASSRD=({YES]]

X

b ot o e o on e — - - e - — ——— e o

- - - - - D W W W W W W T D WU W W D G D S A TR AP A W W WA WD W D W W W W YD W S

Smed -

identifies this statement as the DED control statement

NAME=dLnamel
dtnamel is the name of the DBD for this data base. This name can ke
frcm cne to eight alphameric characters. The first one should ke an
alphabetic character. It should be unique for each DBD in yocur
installation's DL/1 ervircnsent.

ACCESS=

specifies the TLL/1 access method and the operating system access
method tc be used fcr this data base. The value of the operand has
the follcwing meanings.

SHISAM

specifies a SHISAM data base with only a root segment with no
prefix. It ie a single VSAM KSDS.

Data Base Design 2.31

FMNA

2.32

HLAM

specifies a HLAM data base. OSAM or VSAM can ke selected as
the cperating system access method. VSAM is the default.

HICAM

specifies the HIDAY main data kase., VSAM ESDS is used as the
cperating system access method in our subset.

INCEX

specifies the INLEX data base of a HIDAM data Lase. VSAM KSDS
is used as the cperating system access method in our sutset.

. Guidelines for selecting the best access methods for a
particular data base are provided under the topic "Selecting
fata Base Organizaticn and 0S/VE Access Methods" later in this
chaptera

. When VSAM is used, guidelines for the VSAM Access Method

Serviges DEFINE command is produced in the DBDGEN output
listing. These guidelines should be taken into account when
defining the VSAM data set cluster.

ME={(mod,anch,rkn,tytes)
should be specified cnly if ACCESS= (HDAM,...)
mcd

specifies the 1lcad wodule name cf the randomizing mcdule to be
uced for this data base. For mcre details on randomizing
modules see "HLAM Fandomizing Modules™" in Chapter 7.

anch

specifies the number of root anchor points desired in each
control interval or block in the root addressatle area cf an
EDAM data Ltase. The default value of this parameter is one.
“anch" must be an unsigned decimal integer and must not exceed
255.

%hen a user randomizing routine produces an anchor gpcint rumber
in excess c¢f the rumber specified for this parameter, the
anchor point used is the highest number in the contrcl interval
or block. #When a randcmizing rcutine produces an anchor point
number of zero, T1/I uses anchor point one in the ccntrel
interval cr klcck.

rbn

specifies the maxipum relative bklock number value that the user
wishes tc allcw a randomizing mcdule to produce for this data
base. This value determines the number of control intervals or
tlocks in the rcct addressable area of an HLAM data bhase.

*rbn" must be an unsigned decimal integer whose value dces not
exceed z24-1, If the rardcmizing module produces an rbn
greater than this parameter, the highest control interval cr
tlock in the rcct addressable area is used by DL/I. 1If the
randomizing module produces a block numbter of zero, control
interval or tlcck cne is used by DL/I.

IMS/VS Primer

bytes

specifies the maximum number of bytes of a data base record
that car ke stored intc the root addressable area in a series
of inserts unbroken by a call to another data base record. If
this parameter is critted, no limit is placed on the maximum
nupber of bytes of a data base record that can be inserted into
this data base's rcct segment addressable area. "bytes" must
be an unsigned decimal integer whose value does not exceed
2!.-1.

PASSWI=YES

causes DI/I Cpen to use the NAME=operand for this DBD as the VSa¥
rassword vhen opening any data set for this data base. This
parameter is only valid fcr DBDs that use VSAM as the Cperating
System access methcd. The default is NC.

When the user defines the VSA¥ data set(s) for this data kase using the
TEFINE statement cf OS/VS Access Method Services, the control level
{CONTRCLPW) or master level (MASTEFPW) password must be the same as the
NAME for this TBD. A1l data sets associated with this DBD must use the
same password. TFor a description of the use and format of passwerds for
VSAM, see O5/VS Access Methcd Services.

For the IMS/VS DB/ILC (cnline) system, all VSAM CEENs will bypass
passwcrd checking and thus avoid operator password proapting. For
the IMS/VS LE (batch) system, VSAM password checking is performed.
Ir the batch environment, operator password prompting will occur if
FPASSWD=NC is specified and the data set is password-protected with
passvwords not equal tc DBDNAME.

The intended use of this facility is to allow you to prevent
accidental access of I¥S/VS data bases Ly non-IMS/VS progranms.

DAIASEI_cStatement:

This statement prcvides the link with the 0S/VS data set and defines
additional physical data set attributes. There is cne for each DBD.
The f£crmat of the CATASET macro instruction is:

|
IDATIRSET |DL1=ddnamel

2314
2305
+CEVICF=)2316
3330
334¢C
3350

1
,HODEL={ 2}
11

| ,SIZ2Fk=size
{
i [(/FRSEC= {fbff,Espf)]

[P o e - e T e n - s D s o o >
— T e e D s, P e, T oy T g o
— ey oy s e | oo

Data Ease Dlesign 2.33

DAIASE1T
identifies this statement as the DATASET control statement.

CL 1=ddname 1
identifies the ddname used in the JCL to execute DL/I application
programs ¥sing the data base. It should be unique throughout the
PL/I envircnment cf your imstallaticn.

DEVICE=

specifies the device type used for storage of this data set.

MODEL=

specifies the model cf the above device type. The valid
ccobinaticns are:

For 2305: 1 or 2 (2 is the default)
For 3330¢ 1 cr 11 {1 is the default)

SIZE=

specifies control interval size for VSAM data sets or blccksize for

0sSaM data sets. Fcr VSAM data sets the size nmust be:

1e A multiple of 512 bytes

24 If larger than €152, a multiple cf 2048

3. Not larger than 3(75zC

For CSAM data sets the size must be an even numker, nct exceeding

32K bkytes, and must nct exceed the maximum non-keyed blocksize per
track c¢f the direct access storage device used.

1. As part of the CI/blocksize you specify, DL/I and YSAM allccate

space for syster fields. These are:

. Free space anchor point 4 bvtes

. Anchor points (HLCAM only) 4 bytes for each anckor
point

- VSAM control fields (ESDS) 7 bytes

2. There is a free space element of eight bytes for each free
space of 8 bytes c1 mcre.

3. Guidelines for selecting CI/blocksize , the bytes, anch and rbn

parameters age prcvided later in this chapter.

2.34 IMS/VS Erimer

FRSPC=(fbff, fspf)

specifies how free space is to be distributed in an HDAM or HIDAM
data base. The fbff is the free block frequency factor, and it
specifies that every nth ccntrol interval or block in this data set
will be left as free space during data Lkase load or reoryanizaticn
{(vhere frff=n). 7The rarge of fbff includes all integer values from
0 to 100 excluding fbff=1, The fspf is the free space percentage
factor. It specifies the minimum percentage of each contrcl
interval cr tlcck that is tc ke left as free space in this data set.
The range of fspf is from C to 99. <7Tke default value for frff and
fspf is 0.

1« JIf the total of the percentage cf free space specified and any
segment size exceed the control interval or block size, a warning
message is issued by CBDGEN that flags oversized segments. When
loading oversized segments, the "fspf" specification is iqnored and
one control interval c¢r klcck is used tc load each oversized
segment.

2. In general, it is nct advantageous to use the FRSPC=parameter for
HCAM. In most cases, ycu cap better ccntrol the free space in HLAM
with the size of ‘the root addressable area (rtn in the
FEMNAME=parameter of the DBD statement). This will be addressed
later in this chapter under the topic "ILesign the Physical Data
Structures."

SEGM_Statement

This statement is used cnce for each segment to be defined in the LED.
Its basic format is:

/ --------------- Y DA W D D W WD W W D TS D D D WD R DR D R AD W AR R AR W W W W “
/ | | !
} | SEGM | NAME=csegnanme 1 |
{ | ![,PAREN1=((segnameZ[}ggg; 1)] |
!	CBLE	
i	,JEXTES=bytes	
		I
	¢ EIR=<TE	
	{ NT i	
{ | ! |
g U S g gy [N PE - ———--- o wd
legend:
SEGM

identifies this statement as a SEGM contrnl statement

NAME=segrnanmel

specifies the name cf the sequment as used by DL/I and the
arplicaticn progras. It is cne to eight alphameric characters and
each segment name should be unique in the [L/I environment c¢f yocur
installation.

Lata Base Design 2.35

PARENI=

specifies the name of the physical parent of this segment, This
keyvord should te cwmitted for the rcct segment. The second
parameter controls the physical child pointer(s) in the physical
parent of this seqgzernt.

SNGL specifies cnly a physical child first pointer is used in this
segments parent.

DELE specifies toth a physical child first and physical child last
pcinter are used ir this segment's parent.

Reccmmendation: DBLE should be specified if:

1. dverage twin chain is more tham 3 to 5 and freguent
retrieve lasts, and/or

s Segment has no sequence field and frequent inserts are
expected.

BEYTES=

specifies the length cf the data pcrtion of the segment ir bytes.
This length does not include the prefix, which is estatlished sclely
by CL/I. 1This length cannot exceed the maximum logical record
length or ccntrcl intervals/blcck size of the data set minus the
space occupied by system fields. See the SIZE parameter of the
DATASET statement. It shculd be an even number.

PTR=
contrcls the physical twin pointer options. Specify:
PIR=NT (no twin pointer) if never more than one cccurrence of this
segment under its parent. Nc sequence field may be defined for
the segment if PIR=NT is specified.

PIR=1TE (twin forward and backward pointers) if:

. No sequence field is defined and frequent inserts are
€xpected.

. Retrieve last plus subsequent delete is frequently used.

. The segment is a logical child. See phase 2.

o It is the root segment of a HIDAM data Lase.

PTR=T (only twin fcrward pcinter) in all cther cases.

2. 36 IMS/VS Primer

This statement is used once for each field to ke defined in the DBD.

2 -

The FIELT statements fcllaw the SEGM statement of the segment in which

these fields belcng.

This statement is required for all sequence fields

and fields whichb are tc be used in SSAs. The basic format is:
Y Attt ittt g
/ | 1 |
| |FIELD INAME= (fldrame1[,, SSEEQ])) |
| ! | !
| | |,BYTES=Lkytes {
| | | .START=startpos |
| | { X |
1 | { yTYFE=<F I
| 1] < |
| 1 { |
e L L L T L T X T R L L 4
Legend:
FIELL
identifies this statement as a FIELD control statement.
NAME=
fldnamel
specifies the name cf the field being defined within a segment
type. 1The name specified can be referred to bty an aprlication
program in a CL/I call SSA. Duplicate field names must not be
defined for the same segment type. fldnamel must ke a one to
eight character algbameric value.
SEQ
the presence of the keyword SEC as a parameter of this cperand
identifies this field as a sequence field in the segment tyre.
FIFLLD statements ccntaining the keyword SEQ must be the first
FIELD statements following a SEGM statement in a DBD generaticn
input deck. As a general rule, a segment can have only one
sequence field. 1If a sequence field is specified, then its
value must ke unique in cur subset for all segment occurrencss
under a given parent.
A unique sequence field is optional for all dependent segment
types. 1t must ke rrcvided for the root segment of SHISAMN,
HIDAM, and primary HICAM INDEX data bases.
When no sequence field is defined for a segment, new occurrences of
the segment will be inserted at the end cf the physical twin chain.
It is required, in our subset, that all parent segmerts which
participate in logical relaticnships have unigue sequence fields
lexcept if PIF=NT is specified). This includes the physical and the
logical parent and their parent segments up to their roots.
EYTES=

sprecifies the length of the field being defined in kytes. The

maximanm allowed is 255.

Data Base Design

2,37

STARTI=

specifies the starting pcsition of the field being defined in terms
cf bytes relative to the teginning of the segment. Maximum allcwed
value is 23(720. startpcs for the first byte of a segment is one.
Overlapping fields are permitted.

TYEE=

specifies the type cf data that is to be contained in this field,
The value of the parameter specified for this operand indicates that
cne of the following types of data will be contained in this field:

X hexadecimal data

P

packed decimal data
C = alphameric data or a combination of types of data.

It should be noted that all DL/I calls perform field
comparisons on a tyte-by-byte binary basis. No check is made
ty DL/I to ensure that the data contained within a field is of
the type specified by this operand, except when the defined
field is irdexed.

LCHILL_Statement

This statement is used cnce for each index or logical relation a segment
has. It immediately follows the SEGM statement or FIELD statements of
the segment involved. At this point we will only discuss its use in
defining the primary index of a HIDmM data base. The basic fcrmat is:

/----------.“---------‘ D AW A T D W DD D NS D D AL WD D D A A WD A D D D D D D WD R S W WS WD W

h |

/ | ! !
{ ICHILD | NAME= {segname, dbname) |
| {
I{ ,ETR=INCX] |
|

|

!

4

|
i{ ,INDEX=fldname]

The LCPILD statement is coded both in the INDEX data kase and in the
HICAM main data base. Fcr the INDEX data base, code:

NAME=(segrame,dbnanme)

segname is the name of the HIDAM root segment and dktname is the name
of the HILAM data kase as ccded in the DBD statement.

INDEX=fldrame

fldrame is the name of the sequence field of the HIDAM rcot segrent.
For the BIDAM pain data kase, code:
NAME= [segname,{tname)

segname is tbe name cf the cnly segment in the primary INDEX data

base for this data base, and dtname is the name of that INDEX data
hase.

2.38 IMS/VS Primer

PTR=INDX
must ke coded as shown. It provides for the linkage with the INDEX
data base.

DBDGEN_Statement

This statement must be included. It indicates the end of DED generation
contrel cards to define the CPD. The format is:

PSS-S RS- 22 T

This statement mctst be included. It sets a non-zero condition ccde for
link-edit if there are DBDGEN errcrs. The format is:

This statement must te included. It indicates the end of the input
statements to the 0S/VS assembler.

“
{
1 | END] 1
|
¥]

lercocwvoscvcancncaca= - - PR R R PR R E R PR PR PLEL LR L R P R LR - -

Execution_of DBDGEN_JJCI)
DBDGEN must be run as a normal operating system jot after IMS/VS Systern
definition. Systenm definition causes the DBDGEN procedurs to be placed
in the IMSVS.FROCLIB library. To process a request for a DBDGEN, the
CBL generation ccntrol cards must be created and appended to the
follcwing JCI {which invokes the DBDGEN procedure):

//DBDGEK JCE NMSGIEVEI=1
// EXEC DBDGEN,MBR=
//C«SYSIN DD *
DBD
CATASET
SEGM
FIELD DBD generation
LCEILD control cards
CELGEN
FINISH
ENT
/*

Cata Base Design 2.39

vhere keyword operand MBR=

is the name c¢f the CED to te generated. This name should bke theé
same as tlte first rawe sgecified fcr the NAME= keyword on the DBD
statement. When a data base PCB (see PSBGEN later in this chapter)
relates to this DBD generation, this operand value must te the narme
used in the DBDNAME= cperand on the data base PCB statement within a
PSE generatione.

Note: If the defined CEL is for the primary INDEX data base cf an HIDAM

data hase, only one each of the SEGM, FIELD and LCHILD statements is
allowed.

235 3PS PEE B0 B+ -3 PUP 521

Figure 2-22 shows a sample HDAM data base which uses O0SaM. This is ocur
sample, BEIPARTS, included in IMSVS.PRIMESRC, Phase 1 PARTS data Lase.
Job //SAME110 in IMSVS.EFIMEJCE can be used for its DEDGEN.

Figure 2-23 shows the HILCAM version of the same PARTS data Lase. As car
bte seen, two LCBLS are required, one for the index data base and one for
the main data base.

Notice that the HIDAM data Lases use cnly VSAM. The LBDs of Figure 2-23
are not provided in IMSVS.PRIMESRC. Hcowever, they cam be easily
established if you were interested in using HITCAM for the PARTS data
base.

2. 40 IMS/VS Primer

PART

(SE1PART)
PURCHASE
STOCK ORDER DESCRIPTION
(SE1PSTOK SE1PGDSC
) (SE1PPUR) ()
L] DESZPIPTIOM OF PADTS DATADASE
L] FCR PRIMER SAMPLE FROJECT FHASE]
* U
®
DBD NAME=BE1PARTS, ACCESS=(HDAM, 0SAM),
RMNAME=(DFSHDC40,4,80,500)
*
DATASET DD1=DEI1PARTS,DEVICE=3330,MODEL=1,SIZE=2048
*
% PARTS- GENERAL INFORMATION (ROOT)
7y S
SEGM NAME=SE1PART,BYTES=80,PTR=T
FIELD START=01,BYTES=08,TYPE=C,NAME=(FE1PGPNR,SEQ)
FIELD START=09,BYTES=13, TYPE=C,NAME=(FE1IFGSKM)}
FIELD START=22,BYTES=08, TYPE=C,NAME=(FEIPGNEN)
FIELD START=30,BYTES=08, TYPE=C,NAMES(FEIPGOLD)
FIELD START=38,BYTES=08, TYPE=C,NAME=(FE1PGEQV)
FIELD START=46,BYTES=08, TYPE=C,H ME=(FELIPCUNT)
FIELD START=54,BYTES=08,TYPE=C,NAME=(FE1PGPRI)
FIELD START=62,BYTES=08, TYPE=C,NAME=(FEL1PGDIM)
*
¥ PARTS- STOCK INFORMATICN
X | cdememcemmmcamemm e m—— e ————————————
SEGM NAME=SEL1PSTOK,BYTES=40,PARENT=C((SE1PART,SNGL)),PTR=T
FIELD START=01,BYTES=12,TYPE=C,NAME=(FEL1PSLOC,SEQ)
FIELD START=13,B8YTES=06,TYPE=C,NAME=(FEIPSDAT)
FIELD 3TART=19,BYTES=06,TYPE=C,NAME=(FELIPSCNT)
FIELD START=25,3YTES=06,TYPE=C,NAME=(FELPSISS)
FIELD START=31,BYTES=06, TYPE=C,NAME=(FEIPSREC)
*
¥ PARTS- PURCHASE ORDER INFORMATION
x eeemcmmme e mmmc e
SEGM NAME=SE1PPUR,BYTES=60,PARENT=((SELPART,SNGL)),PTR=T
FIELD START'01.BYTES=08,TYPE=C,NAME=(FE1PPONR,SEQ)
FIELD TART=09,BYTES=06,TYPE=C,NAME=(FE1PPODT)
FIELD START=15,BYTES=20,TYPE=C,NAME=(FE1PPOSY)
FIELD START=35,BYTES=06,TYPE=C,NAME=(FE1PPGOD)
FIELD START=41,BYTES=06,TYPE=C,NAME=(FEIPPQRD)
FIELD START=67,BYTES=06,TYPE=C,NAME=(FE1IPPLDT)
*
* PARTS~ GENERAL DESCRIPTION

SEGM NAME=SE1PGDSC,BYTES=80,PARENT=((SEIPART,SNGL)),PTR=NT
FIELD START=01,BYTES=50, TYPE=C,NAME=(FEIPGLNM)

DEDGEN

FINISH
END

Figure 2-22. Phase 1 EDAM PARTS DED, BE1PARTS

Cata Base Design 2. 41

»xxx

Figure 2-23.

HIDAM PARTS DBDs

HIDAM PRIMARY INDEX DATA BASE HIDAM MAIN DATA BASE
PART NUMBER PART
(SETPINDX) _| (sewaRm
l g
STOCK PURCHASE DESCRIPTION
{SEIPSTOK) ORDER PGDSC)
{SE1PPUR) (s
DESCRIPTION OF PRIMARY INDEX * OESCRIPTION OF PARTS DATABASE
INTO THE PARTS HIDAM DATABASE » FOR FRIMER SAMPLE FROJECT FHASE 1
............................. * jSoutininltive ———
»
[}:1°) NAME=BE1PINDX,ACCESSs (INDEX,VSAM) DBD NAMEaBELPARTS ,ACCESS=HIDAM

DATASET DDI1=DELPINDX,DEVICE=3330,MODEL=1,512E22048

SEGM NAMEaSEIPINDX,BYTES=8
LCHILD NAME=(SE1PART,BEIPARTS), INDEX=(FEIPGPNR)
FIELD NAME=(FE1INDX,SEQ),BYTES=8,START=]

DBDGEN
FINISH
END

DBDGEN FOR GSAHM

DATASET DD1=DELPARTS,DEVICE=3330,MODEL~1,S12E=2068

SEGM NAME=SELIPART,BYTES=80,PTR=TB
LCHILD NAMEs(SEIPINDX,BEIPINDX),PTR=INDX

PARTS- GENERAL INFORMATION (ROOT)

FIELD START=01,BYTES=08, TYPE=C . NAME=(FELPGPNR.SEQ)

DBDGEN
FINISH
END

Sample DBDs for a HIDAM Data Base

A GSAM DBD contains the following statements:

PR R LR T R T R R R il L L L T T R T

/
/

(P o D gy o v e

NAME

DD1=

2.42

|DBD |NAME=dbname,ACCESS= (GSAM,BSAMN)
{ DATASET 1(DD1=ddname,RECFM=recfnm

] I{ ,RECORD=1recl]

| I[{ ySIZE=blksize]

| DBDGEN |

| FINISH |

| END {

!]

=dbnane

specifies the name of this data base.

ddname

—— s it ey it s @

= - = = = - = = - = = - = = == = - . - . e--———- - ==l

specifies the name of the DD statement used in the JCL when

accessing this data base.

IMS/VS Frinmer

RECFM=recfm

specifies the format of the records in the dataset. The record
format is specified using the characters defined below:

F ~-- the records are c¢f fixed length.

FB -~ the records are of fixed length and are blocked.

V ~-- the records are of variable length.

VB -~ the records are variable length and are blocked.
RECORD=1lrecl

specifies the size of a lcgical record for a fixed length record and
the maximum lcgical reccrd length for a variable length record.

SIZE=blkesize

specifies the blecksize of the GSAM dataset for fixed length reccrds
or the maximuz tlccksize fcr variable length records.

The record and size parameters can also be specified via the JCL. Two
sawple GSAM DBDs, BOOINPO1 and BOOOUTO1 are included in IMSVS.PRIMESRC.
Their L[BLGENs can te executed with jcb //SAMPO10 in IMSVS.,PRIMEJOB.
Furthermore, these DBDs can be used by your own application programs if
the file attributes are the sanme.

LBDGEN FOR LOGICAL RELATIONSHIPS

To support the logical relationship function, DBDGEN is extended in two
ways:

. Additional control statements and parameters can be specified in the
rhysical DBD.

® A different type of DBL is created for the definition of the logical
data base. Hcwever, this is done with an extension of the existing
cecntrol statements.

The DBDGEN process itself is unchanged.

The following control statements are unchanged:

DBD
FIELD
DBDGEN
FINISH
END

Note: Additional restrictions exist for the length of a sequence field
of a segment invclved in a logical relationship. See the section
"Restrictions" for the Data Base Frefix Fesolution Utility in Chapter 5,

“pata Ease Reorganizaticn/Lcad Processing."™

Data Base Design 2.43

The following statepents are extended:

SEGHM
ICHIIC

Logical child: For each defined logical child, you need to code two
SEGM statements. Cne within its physical parent's DBD and cne within
its lcgical parent's DBD. The format under the physical parent LED,

that is, for the real logical child is:

AT e L L e e e T

1

| SEGHN NAF¥E=cegnanmel

| ¢yPARENT=

! {{segname2, SNGL), {segname3,P,dtname2))
| DBLE

+BYTES=bytes

T
.PTR= (LP, EB} , LT W
NT L1B

| RGLES=VVYV

— oy D Ty S D iy ey

/
|
|
!
|
|
|
|
!
1
|
!
L

| TSP S —)

NAME=segname
segname!1 is the name of the logical child segment.
PARENI=

segname2 is the pname cf the physical parent segment of this logical
child.

SNGL and CELE have the same meaning as before.

segnamel is the name cf the lcgical parent of this logical child. P
should be specified as shown in our subset, it defines the logical
patent concatenated key to be stored with the segment in physical
storage. dtname2 is the DBD name of the logical parent's data tase.

BYTES=bytes
has the same meaning as before. Notice however that the lcgical
child always ccntains the logical parent's concatenated key in the
first n tytes, and its length must be included here.
PTER=
LP must be specified as shown in our subset. It provides
fcr a pcinter tc the lcgical parent in the prefix
of the ICHIIC.
1 the same ccnsiderations as tefore arrply.
TEB it is highly reccmmended that you specify TR
if there are, on the average, more thanm 3 to 5 logical
child occurrences fer physicel parente.

NT should ke specified if never more than one occurrence
of this segment per parent

2.44 IMS/VS Praimer

L1 if specified, only a logical twin forward pointer
is used fcr the lcgical twin chain.

LTB if specified, both a logical twin forward and backward
pointer are used for the logical twin chain.
This should ke selected whenever there are, on the
average, more than 2 to 3 logical child occurrences
for a logical rparent.

RULES = VVV
should be specified as shcwn fer our subset.

The fcrmat under the lcgical paresat, that is, for the virtual logical
child is:

FALAEL R Rl D Rl R P b b T R R R R R R R

/ ! | |
! | SEGNM } NAME=virtchild |
! { | PARENI=segname? |
' | ! ¢SOUFCE= | {segname3,D,dktnanmel)) {
| | | ¢ PIR=PAIRED 1
| ! | |
[PR EEREEEEEE R LR ddd i B P S .MU D - .- - - - ¥ |
Llegend:

NAME=virtchild

virtchild is the name cf the virtual logical child. Remenmkier that
the virtual logical child dces not actually exist. Its only purpose
ie to define the lcgical child as seen from the logical path., It
can ke followed by a sequence field which controls the sequence of
the logical child segment when accessed via its logical path, that
is, the 1lcgical twin chain sequence.

PARENT=segnamez

segname2 is the pame of the logical parent, that is, the physical
parent of the virtual lcgical child.

SOURCE=((segname3,C,dkramel))

segnamel is the name of the real logical child and dbnametl is the
DBD name of the data btase which contains that logical child. D
should be specified in cur subset, it defines that both key and data
of the segment are accessitle by the PSE.

PTR=PAIRZEL

Should be specified as shcwn. It defipes this segment as a virtual
lcgical child.

Physical and_logical_ Farent: (ne additional parameter must ke specified

ESEaRmas

in the SEGM statement of both the physical and the logical parent:

SEGM NAVYE=ceeww oRULES=ELV

Lata Base Desigr 2.45

For each lcgical child segment type, an LCHILD statement must be added

Esd=Ze=

parent. Its tasic format is:

N
[)
]
[]
]
]
[]
]
]
[]
[]
]
[]
[]
]
]
]
)
[]
]
]
[]
]
]
]
]
]
]
]
[]
]
[}
]
[}
[]
[]
J
[)
]
[]
]
]
[]
(]
[}
]
[}
]
]
]
]
]
]
[)
]
]
]
]
¢
]
)
]

AN

1
{LCHILD |INAME= (segnamei,dbnane)
|

)

|

| !
! | |
| | | |¢PTR=)SNGL |
| | | [{BBLE}} |
| 1 ! |
| I |
| |
4

1,PAIR=virtchild

NAME=(segnamel,dknane)

segnamet is the segment name of the logical child in the CBL whose
napme is dbrame.

PTR= L

SNG
CBLE
SNGL specifies that there will be only a logical child first pointer
in the prefix of the logical parent. DEBELE specifies that both a

logical child first and last pointer will appear in the logical
Farent.

Recommendations:

Specify SNGL if a sequence field is defined for the virtaal
logical child and command code L (retrieve last) is rarely or
never used to access the logical child.

Specify DBLE if nc sequence field is defined for the virtual
lcgical child and/or command code I is heavily used and there
are, on the average, more than three occurrences of virtual
children withir a lcgical rarent.

PAIR=virtchild

virtchili specifies the name of the virtual logical child which nmust
ke defined in the sanme DBD (see previous SEGM statement).

Examples of Physical DBDs ¥ith Icgical Reiationships

Figure 2-2Z4 skcws the twc lcgically related physical TBDs of our Fhase 2
sample environment. Only those DBD statements are shown which are
essential to the lcgical relationship function. Ccmpare these LEDs with
the cnes cf Figure 2-22 and 2-23. The TCELs of Fiqure 2-24 are also
included in IMSVS.PRIMESRC. Their DBDGENs can be performed with jok
//SAMP210 in IMSVS.PRIMEJOB.

2.46 IMS/VS Primer

DBD=BE2PARTS DBD=BE20RDER
PART CUSTOMER
ORDER
LOGICAL (SETPART) PHYSICAL
PARENT (SE20RDER)
» PARENT
—J -
P_ —_—— ___i
-l e— [
r
ORDER LINE
| (SE2PAROR) |
VIRTUAL ‘ (SE20DETL) (REAL)
LOGICAL CHILD l = — 1 LOGICAL CHILD
] OESCRIPTION OF PARTS DATABASE 3 DESCRIPTION OF ORDER DATABASE
* FCR PRIMER SAMPLE PROJECT FHASE 2 L FOR PRIMER SAMPLE PROJECT PHASE 2
N *
L] *
DBD NAME=BE2PARTS,ACCESS=(HDAM, VSAM), * 8D NAME=BE20RDER, ACCESS=HIDAM
RMNAME=C(DFSHDC40,4%,80,500) »
* DATASET DD1=DE20RDER,DEVICE=3330,MODEL=1,51ZE=2048
DATASET DDISDE2PARTS,DEVICE=3330,MODEL=1,512E=2043 *
* L} CUSTOMER-ORDER GENERAL INFORMATION
* PARTS- GENERAL INFORMATIGN (ROOT) * --
* etttk it iab e e SEGM NAME=SE20PDER ,BYTES=60,PTR=TB,RULES=PLV
SEGM NAME=SE1PART,BYTES=80,PTR=T,RULES=PLY LCHILD NAME=(SE20RDRX,BE20RDRX),PTR=INIX
* "
LCHILD NAME=(SE2ODETL.BEZORDER },PAIR=SE2PARCP ,PTR=DBLE FIELD START=01,BYTES=06,TYPE=C,NAME=(FE20GPEF,SEQ)
FIELD STAPT=01,BYTES=08,TYPE=C . NAHE=(FELIPCFNR . SEQ) .
. .
L] L]
. []
[VIRTUAL LOGICAL CHILD 'Y
x (CONNECTION FRCM CUSTOMER-ORDER DB) x CUSTOMER-ORDER DETAIL INFORMATION
L T e e T T B e e . cemacas -
‘SEGH HAME=SE2PAROR,PARENT=SEIPART,PTR=PAIRED, L} .SESH NAME=SE20DETL,BYTES=30, ®
SOURCE=((SE20DETL,D,BE2ORDER)) PARENT=((SE20RDER,DBLE), (SE1IPART,P, BE2PARTS)), *
FIELD STAPT=01,BYTES=06,NAHE=(FE20DRNR,SEQ) PYR=(TB,LTB,LP),RULES=VVV
* DEFINES SEQUENCE OF LT.CHAIN FXELD START=09,BYTES=03,T(PE=C,HAME=(FEZODLMR,SEQ)
" . .
. .
. DBDGEN
DBDGEN FINISH
FINISH END
END

Figure 2-24, Phase z Physical DBDs

Coding A _logical LBD

2 logical LCBI, tased on existirg physical DBDs, defines a new view of
lcgically related data bases. This view is always a hierarchical data
structure. Fecllcwing are the ccntrcl statements used and their formats:

CBL Statement:

/-‘--- e il it bl e e il

/ | !
| |CED |NAME=dtdname1,ACCESS=LCGICRL

|
|
(| | i
[R R R e et el R el e e |
NAME=dbdnanme?
dtdnamel is the nare of this lcgical DEL. It must te unique in ycur
installaticn and the sarme name as specified in the MBR operand of
DBDGEN.
ACCESS=LOGICAL

defines this LBD as a logical DBD

Data Base Design 2.47

DATASET Statement:

| IDATASET (|ICGICAL !
! ! ! !

loeccrceconcacecewe . - = W = - - - - wecw—remew oo ned
This statement must be coded as shown.

The segments in a logical CEL must ke coded in hierarchical sequence
following the rules for defining logical data bases as presented earlier
in this chagter.

|
| SEGY | NAME=segname |
| I{ yPARENT=segname2] |
| | ,SCURCE={ (segname3,,dkname) |
| {, {segnameld,D,dbname2) j) {

|

1 oy

NAME=segnamel
segnamel is the name cf this segment.

PARENT=segnamez
segname?2 specifies the name of the parent of this segment. segname?2
nust be defined previously in this DEC. This parameter should be
omitted fcr the rcct segment.

SQURCE=((segname 3, D,dbname1)[, (segnamel,D,dbname2) J)

This parameter specifies the source(s) of the defined seqment. The
long form is only aprlicable to concatenated segments.

Non-concatenated secments:

segnamel defines the source segment. The source segment must
be defined in a physical DBD whose name is dtname1t.

Concatenated secments:

] segnamei defines the lcgical child as defined irn the physical
DBD. 1If the preceding parent segment is the physical fparent,
then the name cf the lcgical child must be coded. If the
preceding parent is the logical parent, then the name of the
virtual lcgical child must be ccded.

. dbnamet defines the physical DBD in whichk segname3 is defined.

. segnamely defines the destination parent.

. dbname2 defines the physical [EL name of the destinaticn
rarent.

Note: The destination parent (segnamed4) shouli be included in the
ccncatenated segment only if your application has a real need for it.
If it is not specified, LCl/I does not need to access the destination
parent except fcr insert and delete calls.

2. 48 IMS/VS Primer

DBDGEN, FINIS

- s o e o e 2 e e e s

These should be coded as before.

Note that no ILCHILD or ¥FIEIL statements are allowed in a logical DBD.

Exapple Of lcgical LBDs
Figure 2-25 chows the logical LBL for our Phase 2 PARTS data base,
BE2LPART.
PART
{SETPART)
PURCHASE ORDER CUSTOMER
STOCK ORDER DESCRIPTION LINE ORDER
(SE1PSTOK) (SE1PPUR) {SE1PGDSC) (SEZOFDRS)
SHIPMENT
(SE20SHIP)
DATABASE DESCRIPTION OF THE COMBINED
PARTS/ORDER DATABASE (LOGICAL)
DBD NAME=BE2LPART,ACCESS=L0OGICAL
DATASET LOGICAL
SEGM NAME=SE1PART,SOURCE=(¢(SE1PART,D,BE2PARTS))
SEGM NAME=SE1PSTOK,SOURCE=((SE1PSTOK,D,BE2PARTS)),
PARENT=SE1PART
SEGM NAME=SE1PPUR,SOURCE=((SE1PPUR,D,BE2PARTS)),
PARENT=SE1PART
SEGM NAME=SE1PGDSC,SOURCE=((SE1PGDSC,D,BE2PARTS)),

SEGM

SEGM

PARENT=SE1PART
NAME=SE20RDRS,

SOURCE=((SE2PAROR,D,BE2PARTS), (SE20RDER,D,BE20RDER)),

PARENT=SE1PART
NAME=SE20SHIP,SOURCE=((SE20SHIP,D,BE20RDER)),
PARENT=SE20RDRS

DBDGEN
FINISH

END

Figure 2-25.

Ehase

¢ logical LED for the PARTS Lata Base

Lata Base Design

2.49

Figure 2-26 shcus the logical DBD for our Phase 2 CUSTCMER CSCERS data
base, BE2ICRDF.

CUSTOMER
ORDER
(SE20RDER)
ORDER
LINE PART SHIPMENT
(SEZQPART) (SE20SHIP)
PURCHASE
STOCK ORDER DESCRIPTION
(SE1PSTOK) (SET1PPUR) (SE1PGDSC)

DATABASE DESCRIPTION OF THE COMBINED
ORDER/PARTS DATABASE (LOGICAL)

DBD NAME=BE2LORDR,ACCESS=LOGICAL
DATASET LOGICAL

SEGM NAME=SE2ORDER,SOURCE=((SE2ORDER,D,BE20RDER))

SEGM NAME=SE20PART, *
SOURCE=((SE2ODETL,D,BE20ORDER), (SELPART,D,BE2PARTS)),
PARENT=SE20RDER

*

SEGM NAME=SE1PSTOK,SOURCE=((SEL1PSTOK,D,BE2PARTS)), *
PARENT=SE20PART

SEGM NAME=SEl1PPUR,SOURCE=((SE1PPUR,D,BE2PARTS)), *
PARENT=SE20PART

SEGM NAME=SE1PGDSC,SOURCE=((SELIPGDSC,D,BE2PARTS)), *
PARENT=SE20PART

SEGM NAME=SE20SHIP,SOURCE=((SE20SHIP,D,BE20RDER)), *
PARENT=SE20RDER

DBDGEN

FINISH

END

Fiqure 2-26. Phase 2 Logical DBD for the CUSTOMER ORDERS Data Base

The logical CEBDs of Fiqure 2-25 and 2-26 are included in IMSVS.PRIMESRC.
Their DELGENs can te performed with job ,//SAMP210 in IMSVS.PRIMEJCE.

To support the secondary index function, the DBDGEN process is extended.
We differentiate between the index target DELC and the index pointer CBL.

2.50 IMS/VS Primer

CODING AN INDEX TARGET LATA EASE

The control statements extended fcr the seccndary index function are:

SEGM
FIEID
LCHILT

A new ccntrol statement is added:

IDFLID
The follcwing contrcl statements ar=2 unchanged:

DED
CRTASET
SEGY
CECGEN
FINISH
ENLC

PPt P PP P PP

(XDFLD| NAME=. ..

(LCHILD| NAME= . ..

r FIELD | NAME= . ..

(SEGM | NAME= . ..

Figure 2-27. DBL Statements for Index Target Segment

SEGK _Statement

P-4 P)-B 2 22224

is & starndard SEGM statement fcr the rcct segment. It has no
additional rarameter for secondary indexes. It is recognized as an

index target segment hecause of the following LCHILC and XDFLD
statements.

ettt bt it iatnidiededede bt 1
/ |]
| { ICHILC | NAME= (segnamel,dtname) , PTR=INLX }
| ! | !
Lo o n o o o o 0 0 " e T - W W W e W D R R A P S P W R S e e e » |
LCAILT

This statement provides the link to the index data tase.

Date Base Design 2.51

NAME= [segname?,dbname)

segnamel is the nare cf the index pcinter segment as defined in the
INDEX data tase. dtname is the name cf the [CBED for the IXDEX data
base.

PTE=INLCX
identifies the LCHILD statement as an index type.

Note: There are three types cf ICHILD statements; one for the primary
index of an HILCAM data tase, one for the definition of a logical child
under its logical parsnt, and one for the definition of the index target
segment. 2All three types cculd occur belcw ths root segment of a HIDAM
data base. There could ke multiple occurrences of LCHILD statements for
both logical relaticnships apnd secondary indexes. The relative order of
the LCHILLC statements should be as descrited abcve. If pultirle
secondary indexes are tc ke defined for cne segment, the XDFID statement
must immediately follow its corresponding LCHILLC statement.

LS B 2 PR 2222 >

1

/ | | |
| | XDFLT |NAVE=fldname 1
| | i ySEG¥EM=segnane |
i | | SRCH=1list |
| | I({ 4/SUBSEC=/SXname] |
| | | 1
| L T ceoececaceeee- P R R R D e et e e e o .- 4
XDFLD

This statement defines the index source fislds, that is, the figclds
used for the seccndary index access. It defines the source data for
the index search field in the INLCEX data base.

NAME=fldname

specifies the name cf the secondary index fis=ld. fldname is a
ncrwmal field name which can be used in the SSA for the call whbich
requests seccndary irdex access. It must ke unique ameng all field
names specified for the abcve index target segment.

SEGMENT=segname

specifies the ind2x source segment for this secondary indax
relationskip. <segrame must be the name of a subsequently defined
segment type, which is hierarchically below the index targjet segment
type or it can ke the name of the index target segment type itself.
The segment name specified must not ke a logical child seqment. If
this operand is cmitted, the index target segment type is assumed to
be the index source segmant.

SRCH=1list1

specifies which field cr fields cf the index source scgment are to
ke used as the search field cf a seccndary index. 1list?! must be a
1ist of one to five field names defined in the irndex source segment
type ky FIFLD statements. IL two or more pames are incluaded, they
must be separated by commas and enclosed in parentheses. The
sequence cf names in the list is the sequence in which the field
values will be concatemated in the index pointer segment search

2.52 IMS/VS Erimer

field. The sum of the lengths of the participating fields forms the
length of this XLPIC as used in SSis.

SUBSEC=/S¥name

This parameter must ke ccded if duplicate index pointer segments pmay
occur. /SXname must Lke the same as coded in the corresponding field
statement of the index source segment. (See the next secticn,
"Coding the Index Scurce Segment.")

Coding the Index_ Source_Secment

h |
/ { | |
{ {FIELD | NAME=/SXname, « .. {
el R mmmmm e eee s]
/ ! ! !
. 'EIELD 'NAME=III “""'J
---------------- A AL L I e Rt L L bl e b Y ‘
/ ! | ! |
f | SEGH [NAKE=... f---=d
! | ! !
levcornocvseccaccns ceccons L comcsceae- P X |

Fiqure 2-28. TBI Statements fcr Index Scurce Segment

This is @ standard SEGM statement with no additional parameters. It
is reccgnized as an index source segment because it iz defined in a
preceding XDFLD statewment under the index target segment. It must
not ke a logical ckild.

i 7902 B8 23 -t P 3

FIELD

In addition tc the ncrral FIELD statements for the segment, one
extra FIELLD statement can te added. 1Tts name wust start with /SX.
This field is required whenever duplicate XDFLDs may occuar in the
data kase. Although the values of BYTES and START are disregarded,
they must te coded. Ncte that the /SXname field is caliled a “systen
related field." It provides control information to DL/I and it is
completely transparent tc the application program. Example: 1In our
purchase order, secondary index, there may well cccur multiple index
pointer segments with the same purchase crder number (that is, for
the different parts ordered in one purchase order). Therefcre, this
function is required in that data base, otherwise Auplicate XSDS
keys wculd occur.

Lata Base Desigr 2.53

CCDING A SECONDARY INDEX DBD
The following statements are used in a secondary index DBED:

DET
DATASET
SEGHM
LCHILD
FIELL
DBDGEN
FINISH
END

DBD Statement

/o—-o‘-----‘-o—’--oc-q-’---—-------—-.--—-----—--—----------——-1

/ i ! |
| { DED |NaAME=dLname |
i H { /ACCESS= [INDEX{, DCSCCMP]) 1
| ! | !
[L P P P T P R R X v accacc e es e PR R R —eeceeceecesea- J

NAME=dbnamel

specifies the name cf the secondary index data base. It should be
the name specified ky the MBR keywcrd of DRDGEN.

ACCESS5= (INDEX{,DCSCGCME])
INDEX identifies this as an index data base. DOSCOMP is an c¢ptional

parameter and skculd be specified if this data base was created with
LO0S DL/I.

DATASET_Statement

/==mm==- seomeeseemsooocooocomoooooo- R SRt EEELERLERED v
/ ! ! l
| |CATASET |DD1=ddnamel,DEVICE=device,MCDEL=model |
| | |eSIZE=size |
l a ! |

J

e R N T P NS R P RN TN C N CEON® e O E RN ENREN T NN NR T E RN O NN AD P RD @ n®w WS »

The values specified for the DD1, DEVICE and MCDEL parameters are
exactly the same as discussed under "Easic CBDGEN Control Statements
Formats."

SIZE=size
specifies the control interval size of the KSDS for the INDEX data
base. This value pust ccnform to the rules specified under "Basic

CECGEN Control Statements Fcrmats.”" See also Selecting Cl/block
sizes later in this chapter. ‘

2. 54 IMS/VS Primer

Only one SEGM statement with its associated LCHILD and FIELD statements
is required for the seccndary irdex data base.

NAME=segname 1
specifies the name of the segment being defined. Although nct used
ky applicaticn programs in the subset, it should be unique among the
segment names in your installation.

BYTES=bytes
specifies the length cf the data portion of the index pointer
segment. If a sS¥name field is defined in the SUBSEQ parameter of

the ccrresponding XDFLC statement, then its length (4 bytes) must te
included here.

P22 S P > >2 P

V St S St aidiedetd e i bt id ==

/ | 1 {
| | LCHILL | NAME= (segnamel,dbname) |
| | | fETR=SKGL {
{ | |, INDEX=fldname 1
\ | { t
| R) PR LA PR T EEEREEEE LR LR T ELEEEE TR EE R R ot e o= -ewd

NAME= {(segnamel,dkname)

specifies the segment name of the index target segment and the name
of the DBD in which it is defined.

PTR=SNGL
specifies that a U-tyte direct byte address pointer in the prefix of
the index pointer segment will be used. It will point to the index
target segment.

INDEX=fldname

specifies the fieldname of the indexed field. This fldname must be
specified as the rame cf an XDFID belcw the index target segment.

20539 3553

i | |
|FIELD {NAME= (fldname1,SEC) |
{ | yBYTES=Lytes |
] s START=1 i
] |

Cnly cne FIFLL staterent shculd be coded for each SEGM statement.

NAME= (fldname 1, SEQ)
fldnamel is the name of this field. It is not used Ly the
application pregras ir cur subset. However, it should ke specifiasd

following the rules cf cther fieldnames. SEC defines this as a
urique sequence field and nmust be specified as shown in our subpset.

Data Base Design 2.55

BYIES=bytes

specifies the length of the field. : .
ficld as defined in the XDFID statement, plus four if the /SX field
is included. It also is the length of the key for the KSDS.

This

is the length of the search

subset, it is equal tc the length of the preceding segment.

The TBLGEN, FINISH and END statemants shculd be coded as before.
2-29 showse the physical EARTS DBC (BE3FARTS) angd its associated.PURCHASE
CRDER secondary index DBD (BE3PSID1) for outr Phase 3 sample environment.
These DBDs, togecher with the Phase 3 CUSTIOMER CRDERS L[BL (BE3CFLES) are

included in IMSVS.EFIMESEC. Their T[BDGENs can Le performed with dob

//SBMP310 in IMSVS.PRIMEJOB.

DBD=BE3PSID1 DBD=BE3PARTS
INDEX SE3PSIDI -1 SE1PART INDEX
POINTER TARGET
SEGMENT - SEGMENT
-
-
—— | e
-~ }— -{
— — —
- —
INDEX SE1PPUR
SOURCE
SEGMENT
* DESCRIPTION OF SECONDARY INDEX
* INTO THE PARTS DATABASE * DESCRIPTION OF PARTS DATABASE
» FOR PRIMER SAMPLE PROJECT PHASE 3 » FOR PRIMER SAMPLE PROJECT PHASE 3
* *
» L]
DD NAME=BEIPSIDL,ACCESS=INDEX DBD NAME=BEIPARTS,ACCESSS{HDAM,VSAM),
N RMNAME=(DFSHDC40.,4,80,500)
DATASET DD1=DE3PSID1,DEVICE=3330,MODEL=1,SIZE=2048 L]
» DATASET DD1=DE3PARTS,DEVICE=3330,MODEL=1,SIZE=2048
SEGM NAME=SE3PSID1,BYTES=12 *
LCHILD NAME=(SELIPARY,BE3PARTS), INDEX=FESPSIDI,PTR=SNGL * PARTS- GENERAL INFORMATION (ROOT)
FIELD NAME=(FE3IPSXD1,SEQ).BYTES=12,START=01 L et T
» SEGM NAME=SELPART,BYTES=80,PTR=T,RULESZPLY
DBDGEN *
:::ISM FIELD START=Q),BYTES=0B,TYPE=C,NAME=(FELPGPNR,SEQ)
[]
.
.
* CONNECTION TO CUSTOMER~ORDER DB.
LCHILD NAME=(SE20DETL,BE3QRDER),PAIR=SE2PAROR,PTRSDBLE

Figure 2-29. Fhase 3 Fhysical CBEDs

. 56 IMS/VS Primer

LCHILD
XDFLD

In our

Figure

CONNECTION WITH 2ND INDEX :
NAME=(SE3PSID1,BE3PSID1),PTRSINDX
NAME=FE3PSIDI, SEGMENT=SE1PPUR, SRCH=FE1PPONR,
SUBSEQ=/SXPPUR

PARTS~ PURCHASE ORDER INFORMATION

NAME=SE1PPUR, BYTES=60,PARENT=((SELPART,SNGL)),PTR=T
START=01.BYTES=08,TYPE=C . NAME=(FELPPONR,SEQ)

START=01,BYTES=04, TYPE=C,NAME=/SXPPUR

R amemsrs SR s e ST r e Ammme eamamEsaamma o e o i e

For each program which uses a [Ll/I data base, a program specification
block (PSB) is needed. Althcugh cne PSB can serve different batch
application programs, it is reccmmended, for integrity purposes, that
each prcgram have its cwn ESE, 3Ir the online IMS/VS system, a Separate
PSB is required fcr each crline program. Each PSE consists of cne or
more program ccmpunication tlccks (PCBs), cne for each data base the
frcgram uses.

The PSE is generated, as shcwn in Figure 2-30, in a similar mAanner to
the TCPBIL using the 0S/VS assenmblier and linkage editor. The generated
lcad mcdule is stored in IFSVS.PESELIB.

IMSVS. MACLIB

<> IMSVS. PSBLIB

MACROS

PSBGEN |] >

“

INPUT
DECK

PSB

Figure 2-30. Prcgram Specification Block Generation (PSBGEN)

Figure 2-31 showe the sequence of the macro statements in the ESBGEN
input deck.

END REQUIRED: 1

PSBGEN
REQUIRED: 1

SENSEG

PCB

REQUIRED: ONE FOR .
EACH DATA BASE (DBD) _°
THIS PROGRAM USES.

-
SENSEG I REQUIRED: ONE FOR EACH
SEGMENT IN THE DATA

ACCESSES.
PCB - _ BASE THIS PROGRAM

Pigure 2~-31. PSEGEN Input Leck Structure

Tata Base Desigr 2.87

The PSBGEN is executed by invoking a JCL cataloged procedure named
ESBGEN, which is availakle in the IMSVS.EFROCLIE.

The coding conventicns fcr the ESB are exactly the same as fcr the DBD.

BASIC ESB CCDING

Following are the Lkasic PSB control statement formats.

A BAmcmaw—aa-

This statement is coded once for each data tase the program intends to
use. The format is:

/ cooeaecevcenee L R R TR R R B R e i kY -
/ | | !
i {PCE |TYPE=DB |
		,CECXA¥E=dbdname
(
1	A (P])	
1		¢ PROCOPT={[G I RID) [P] i
		L [(s]
1		
] !	KEYIEN=value	
[e P R YL L E PR EEREEEE R LR E R Y bttt 4
Llegend:
TYPE=LE
is a required keyword parameter for all data base PCBs.
DBDNAME=
specifies the rame cf the DBD which is accessed via this PCB. It
can be a physical or logical DBD,
EFRCCCET=

specifies the rrocessing cptions on sensitive segments declared in
this FCB that may be used in an associated application prcgranm.
Specifying superflucus rrccessing options is uudesirable from a data
base security point of view and can result in unnecessary additional
data tase processing. This cperand allcws a maximum of four
characters. The letters in the operand have the following meanings:

G - Get furcticre.

I - Insert fuancticn.

R - Feplace function.

D - Celete function.

Note: The furcticns ahove can be coded in any comkination of
three; if all fcur are required, code "aA",

A - A11l, includes the above four functions.
P - Fequired if command code D (path call) is to be used cn get

type calls or irnsert calls. Determines maximum length of the
I/0 area. P cannot be coded with L.

2.58 IMS/VS Priamer

I. - Load functicn fcr data base icading {except HIDAM).

1LS- Segments loaded in ascending seguence only (HIDAM, HLAHM).
This locad option is regquired for HIDAM.

KEYLEN=value
is the value specified in bytes of the lcngest concatenated key for
a hierarchical patt of sensitive segments used by the application
Frcgram in the hierarchical data structure.

GSAM ECB: The format fcr the GSAM data base PCE statement is:

/ --------------------------- Teceeaceeeeeomone- - - .- - - LR B X R L X 1
/ ! i !
| | PCB ITYPE=GSAN |
1] |,DBDKA!E=name,EROCOPT={G[S)})
1 | | 1(s} |
! ! ! |
[. b kI R R e T SR meTewwEm e - .- P woemcemme e o -o- >
where:
TYPE=GSAM

is a required keyword parameter for all GSAM data Lase PCBs.
DBDNAME=pame
is a required keywcrd parameter for the name that specifies the GSAM
LBEL to be used as the primary scurce of data set description.
SENSEG statements must not follow this PCB statement.
EROCOPI=
is a required parageter fcr the prccessing ortions on the data set

declared in this FCE that can te used in an associated applicaticn
program The operand is specified using the characters defined

belcw:

G - Get function

1 - Load functior

S - large scale sequential activity. If specified, GSAM will use

multiple-tuffering. This is reccmmended for h2avy sequential
Frocessing.

Note: The GSAM EFCE statements must follow the PCB statements with
TYPE=TP or DB if any exist in the PSB generation., The convention is:

TE E~Bs - first
DE PLEs - seccend
GSAM PCBs - last

SENSEG_Statepmernt

This statement is coded once for each segment the program is sensitive
to in the LEL defined in the fpreceding PCB. The SENSEG statements
should aprear in the same hierarchical sequence as in the DBD. However
only those segments shculd te included to which the program needs
access. All segments should be specified in the hierarchical path to
any required segment. Nc SENSEG statements should be coded for a 6SAM
PCB. The basic format of the SENSEG statement is:

Data Base Design 2.59

NAME

PARE

ERCC

PSBG

]
)
(]
]
]
i
]
[]
[]
]
[]
[]
[]
(]
]
]
[}
[]
]
[}
(]
[]
¢
]
]
[}
]
]
[}
]
[]
[]
]
]
]
¢
]
'
(]
]
[]
]
[]
]
-

NArE-segnamel

+EAEENT=segname?

)
[,paocopx:{[c]{:](a][o]}

- D T e YD D D U U WA W D W WD U D A D WD P U W R D D L W W

- Dy S ey D e |
[.

-~

=segnane 1

is the name of the segment tyre as defined through a SEGM statement
during DBL generaticn. The field is frem 1 to 8 alphameric
characters.

NI=segname2

is the name of the segment type that is the parent of the segment
type whose name is specified in the NAME operand., If this SENSEG
statement defines a root segment type, this operand must equal zero.
For all Jdependent segument tyfpes, this operand must specify the name
of the derendent's parent.

CE1I=

specifies the fprocessing crptions allicwable on this sensitive segment
by an associated application program. This operand has the sane
meaning as the PROCOPT crerand on the PCB statement. If this
EROCCFT operand is not specified, the PCB FERCCCPT operand is used as
default. If there is a difference in the processing options
specified onr the PCB and SENSEG statements, SENSEG ERCCCET overrides
the ECB ERCCCFI. When loading a data base, you should specify a
FROCOPT only in the PCB statement.

EN_Statement

This
rpara
the

P o e - e . e

LANG

CHMERA

2.60

statement specifies the end of the PSB and provides interface
neters for the application program. It is the last statement before
ENL statement. The basic fcrmat is:

- - - B W = W Y D D W WD T W W W WU WD A W U W WD D w WA WU e ® -

COROL
LANG=<FL/I

ASSEM
+CMERT=YES
+PSBNAME=psbname
[4

ICERCEN= (451, HTCR)

— .y ™ s G oy SO
b oo o e e e, e o]

=

specifies the language in which the application program is written.
It must be either CCBCI, Fl/I, or ASSEM, with no trailing tlanks.

TI=YES
should bes selected, except fcr initial load programs. It provides

an extra dummy PCB in the PSB. This benefits migration to online
frocessing at negligitle cost.

IMS/VS Erimer

PSENAME=fsiname

is the parameter keyword for the alphameric name of this PSB., The
name value fcr the PSENAYNE must be eight characters or less in
lengthe This name beccres the lcad mcdule name for the PSP in the
library IMSVS.ESBLIB. This name must be the same as the prograr
load module name ir the prcqgram library. No special characters uay
be used in the name. It must be the name in the ¥BR= operand cf
PSEGEN.

IOEROEN=(451,WICE)

Shculd be cod=d as shown to concur with the recovery procedures of
our subset. Whenever a read cr write data base I/C error would
cccur during batch processing, the CS/VS system conscle operator
will be notified (message DFSC4513) .

The reply shculé be 'ABEND'; DL/I will then abend with a U451 abend
ccde. The data set in error should then Le recovered. See Chapter
6, "Lata Base Recovery," fcr details. This parameter can be omitted
when initially loading the data base.

Note: Before abcve reply is given, the operator should take rroger
actions toc prevent the execution of any cther DL/I jobs against the
affected data Lases. See Chapter 6, "Data Base Fecovery," for
details.

END_Statement

-2 2P+

This statement is required at the end of the PSB deck. It indicates the
end of the input for the 0S/VS assembler.

Sagrle_Basic_PSBs

Figure 2-32 shows two PSBs fcr the Phase | sample environment. The top
cne [PE1PRARTIS) ies the FSE for loading the Phase 1 PARTS data base. This
PSE can te generated with jcb //SAMF100 in IMSVS.PRIMEJOB. The second
one (FEEICPPUR) is the one for the purchase order program. It also
contains GSAM ECEs and it can ke generated with job //SAMP 101 (COBOL) or
//SAMP162 (PL/I) in IMEVS.PRIMEJOB.

Lata Base Design 2,61

PROGRAM SPECIFICATION FOR LOADING
* THE PHASE 1 PARTS DATABASE
PCB TYPE=DB,PROCOPT=L,

DBONAME=BE1PARTS,KEYLEN=20

x

SENSEG NAME=SE1PART

SENSEG NAME=SE1PSTOK,PARENT=SELPART
SEMSEG MAME=SE1PPUR,PARENT=SE1PART

SENSEG NAME=SE1PGDSC,PAPEMT=SE1PART
PSBGEN LANG=ASSEM,PSBNAME=PE1PARTS

END
* PROGRAM SPECIFICATION FOR
* PURCHASE-ORDER UPDATING OF
* THE PHASE 1 PARTS DATABASE

PCB TYPE=DB,PROCOPT=AP,
DBDHAME=BE1PARTS,KEYLEN=20

SENSEG NAME=SE1PART,FROCOPT=GP
SENSEG NAME=SE1PPUR,PROCOPT=AP,PARENT=SELPART

PCB TYPE=GSAM,PROCOPT=G,
DBDONAME=BOOINPOL
PCB TYPE=GSAM,PROCOPT=L,
DEONAMEZBOOCUTOL
PSBGEN LANG=COBOL,CHPAT=YES, PSBNAME=PE1CPPUR, IOEROPN=(451,HTOR)
END

Figure 2-32. Sample PSBs for Phase 1

EXECUTION OF PSBSEIW =-- JCL

PSEGEN is run as a rorral Operating System job after IMS/VS system
definitiorn. IMS/VS system definition causes the procedure named PSBGEN
to bte placed in the IMSVS.PROCIIB procedure library. The following JCL
cards are used to invoke the PSBGEN procedure.

//PSECGE JOE MSGLEVEL=
// EXEC FSEGEN,MER=
//C«SYSIN DD *

ECE

SENSEG The ccntrcl cards
ESBGEN for ESE generation.
ENC

*

where keyword cperand YEF=

is the name of the PSB tc be generated. This name must ke the same
as the name specified cn the PSBENAME= operand of the ESBGEN
statement.

CCDING PSEs FOR LOGICAL DATA BASES

When a physical DBD contains logical relationships, the PCB and the
applicaticn prcgram can still refer tc the physical DBD. However, this
shculd ke restricted tc initial data base lcad programs. PRemember also,
the logical child always contains the logical parent's concatenated key.
This should nct be fcrgctten when inserting a logical child in a
physical DBD. You can never access a virtual logical child in a
physical data base, since it dces not exist.

2.62 IMS/VS Frimer

To use a logical data base, the program needs a s2parate PCB., This PCE
is coded in the same manner as a PCB for a physical DBD. The cnly
difference is that it refers to the DBD name and SEG¥ENT names of a
logical DBD. You should only code SENSEG statements for the segments
the program actually needs and the segments in thz hierarchical path to
those segments. All of this is based on the logical DBD, so the
hierarchical path may well include physical and logical paths. Figure
2-33 shows the PSB for the Phase 2 processing program PE2CORDR,
containing a PCB for bcth the logical data bases in addition to a PCB
for the SHISAM data base. This PSB is listed in IMSVS.PRIMESRC, its
PSBGEN can be performed with job //SAMP201 (COBOL) or //SAMP202 (PL/I)
in IMSVS.PRIMEJOB.

PROGRAM SPECIFICATION BLOCK FOR PHASE 2

*
* ORDER UPDATE PFOGPAM PE2CORDR.
*
* CUSTOMER DATABASE VIEW
*
PCB TYPE=DB,DBDHAME=BE2PCUST, PROCOPT=G,KEYLEN=6
SENSEG NAME=SEZPCUST
*
* ORDER DATABASE VIEW
*
FCB TYPE=DB,DBDNAME=BEZLORDR,KEYLEN=14
SEHSEG NAME=SEZ2ORDER,FROCOPT=AP®
SENSEG MAME=SE20PART,PAPENT=SEZOFDER,PROCOPT=A
SENSEG NAME=SE20SHIP,PARENT=SE20RDER,PROCOPT=GI
*
* PARTS DATABASE VIEW

FCB TYPE=DB,DBDHAME=BE2LPART, ,KEYLEN=20
SENSEG NAME=SE1PART,PPCCOPT=GRP
SENSEG NAME=SE1PSTOK,FARENT=SE1PART,FROCOPT=GR

PSBGEN LANG=C080L,CMPAT=YES,PSBHAME=PE2CORDR, IOEROPN=(451,WTOR)
END

Figure 2-33. Sample PSB for Phase 2

CODING PSBs FOE SECCNDRRY INDEXES

To use a secondary irdex, an application program should use a PCB with
the following additional parameter in the PCE statement,

——— PP B TR

/----..—---——------,----‘---.------------—------4---------------

/ | | |
| |PCB | TYPE=DB,ess ,PROCSEQ=inaxdbname 1

| ! ! |

Llemccvmcenacncrancncwcoeneea- e yem——- Sy g '

PRCCSEQ=indxdknanme

specifies the name of the secondary index used to process the data
base named in the DBDNAME operand through a secondary processing
sequence. The operand is invalid if PROCOPT=L or LS.

AR 2

1. The DBD specified in the PCB for the secondary processing sequence
can be a logical DEE. No provisions are necessary in the logical
DBD, Lut its root segment must be the target segment of ¢he physical
DBD.

Data Base Design 2.€3

2. If non-unique index fields are used, you must specify of the /SX
field in cur sukset. As a ccnsequence, the sequence of root
segments with the same index field value, when sequentially
retrieved via the seccndary index, will be unpredictable. This
sequence will also vary across reorganization of the target data
kase.

Figure 2-34 shows the PSB fcr the Phase 3 processing program, EE3CEEUR.
This ESB ccntains a ECE for the normal processing sequences and a ECE
for the seccndary processing segquence,

* PROGPAM SPECIFICATION FOR
* PURCHASE-ORDER UPDATING OF
* THE PHASE 3 PARTS DATABASE
*
* PRIMARY INDEX VIEW OF DATABASES
PCB TYPE=DB,PROCOPT=AP, *
DBDHAME=BE3PARTS,KEYLEN=20
*
SENSEG NAME=SE1PART,PROCOPT=GP
SENSEG MAME=SE1PPUR,FROCOPT=AP,PARENT=SE1PART
*
* SECONDARY INDEX VIEW OF DATABASES

PCB TYPE=DB,PROCOPT=GP,CBOMAME=BE3PARTS,KEYLEN=16, *
PROCSEQ=BE3PSID1

SENSEG MHAME=SE1PART
SENSEG NAME=SE1PPUR,PARENT=SELPART

rCB TYPE=GSAM,PROCOPT=G, *
DBDHAME=BOOINFOL
PCB TYPE=GSAM,FRCCOPT=L, *

DBDHAME=BOOCUTOL
PRRGEN LANG=COROL,CMPAT=YES,PSBNAME=PE3CPPUR, IOEROPN=(451,HTOR)
END

e

Figure 2-34, <Sample Phase 3 PSB

THE DATA_EASE_LESIGN_PROCESS

The fprccess of data Lkase design in its simplest form can be described
as: The structuring of the data elements for the various agglications
in such an crder that:

. Each data element is readily available by the various applicaticns,
ncw and in the foreseeakle future.

. The data eclements are efficiently stored on secondary storage.

. Controlled access is enfcrced for those data elements with specific
security requirements.

In practice, one is often fcrced to ccmpromise, based on available
resources in ranpcwer, kardware and scftware.

CCNCEPTIS OF LATA BASE DESIGHK

Because data tase design is an area where thers has been little formal
standardization, there has been no consistent vocabulary for descriting
the concepts involved. This section presents the concepts and terms
used in the following introductory data kase design discussicn.

2.€4 IMS/VS Erimer

e o

A data Lkase contains informaticn about entities. An entity is something
that:

. Can te uniguely identified.
. We may now or in the future ccllect substantial information about,

In practice this definiticn is limited tc the context of the
applicaticns under consideration. Examples of entities are: pfarts,
projects, orders, custcmers, trucks, etc. It should be clear that
defining entities is a major step in the data base design process. The
information we store in data bases about entities is described Lty data
elements.

—emmmwamRZi o=

entity. For example, suppose the entity is a part. Name=Washer,
Color=Green, and keighkt=143 are three facts about that part. Thus these
are three data elements. A data element has a name and a value. A data
element pname tells the kind of fact being recorded; the value is the
fact itself. In the akove example, Name, Cclcr, and Weight are¢ data
element names; Washer, Green and 143 are values. A value must Le
asscciated with a name to have a meaning.

2233 3 p 3

Fiqure 235 illustrates the ccrcepts of data elements and their
cccurrences in recording the facts about twc entities, parts (Entity Aa)
and crders (Entity B).

[adinteteiaiiatiaiat et Sttt ettt b
| ENTITY Az _PARIS |
| ettt ittt it debeieeheiad it ==
| DATA ELEMENT i CCCUFERENCES |
{====e- se===- soee-- somsese- SeTSesssscccssccescocces- ahbh i |
| Name i Value { Value |
| ettt b E bbbt bt b b DDl il e LD e R !
{ Part Number l 0:00371C | 03003720 |
! Name | Screw | Washer |
{ Unit Price { $:.CC ! $1.00 |
j Unit Quantity) 100 pieces { 100 pieces |
| Stock Quantity | 2CCO | 3000 |

E o 5 ¥ P e

|----- -------- L R R emeccoavese L X Y '

| DATA ELEMENT i CCCUFSENCES |
bbbt S bbb it b it i Dbt Aty !
| Name ' Value ! Value |

----------------- 0----c¢--—----o--—---—-“-———----------—-—‘
| Crder Number | 190F€(| 190F60 {
| Part Name H Screw ! Bolt |
| FEart Number { c:CCc371cC i 03003730 |
{ Quantity | 500 units | 300 units |
| Supplier Name | Allied Screw | Allied Screw !
| ©Crder Code | A | X |
[R LR R Rt PR R L R Y kit 4

Figure 2-35. (Concepts of Data Elements

Lata Base Design 2.€5

Quite often, data elements which add information to an entity are called
attritutes. An attribute is always derendent on an entity. It has no
meaning by itself. Dererding on its usage, an entity can be described
by cne single data element cr mcre. Ideally, an entity should be
uniquely defined by one single data element, for example, the order
numker of an cirder. Such a data element is called the key of the
entity. The key serves as the identification of a particular entity
occurrence, and is a special attribute of the entity. Keys are not
always unigue. In such cases, entities with equal key values are called
synonyms. For instance, the full name of a person is generally not a
unique identificaticn. In such cases we have to rely on other
attributes such as full address, birthday or an arbitrary sequence
numsber. A more common method is to define a new attritute, which serves
as the unique key, fcr example, employee number.

The _Transaction

Data ip itself is nct the ultimate goal cf a data base management

system. It is the application function performed on the data which is
important. The Lest way tc rerresent that functicn is the transaction,
which is the smallest application unit representing a user interacting
with the data base. For example, one single order, one part inventcry

status.

/——\
N ——]
INPUT - To -
USER TRANSACTION| PROGRAM '/- <: :> il
OUTPUT - A1
- _—

N—
Figure 2-3€. 1The Transacticn

Transactions are prccessed by applicaticn programs. In a batch system,
large nuwmbers of transactions are accumulated (that is, all crders cf a
day), then prccessed against the data base with a single scheduling of
the desired application program. Although transactions are always
distinguishatle, even in batch, some people prefer tp talk atcut
programs rather thap trarsacticns. But, especially in a [B/IC
envircnment, a clear understanding of transactions is mandatory for gcod
design. The transacticn is in some way the individual usage of the
application by a particular user. As such, it is the focal pocint of the
LE/LC system.

In this chapter we will utilize the transaction for the data base
design. A similar role is set aside for the transaction in program
design by adding detailed input, prccessing and output descriptioas to
the data element usage.

Access Paths

Fach transaction bears in its input some kind of identificaticn with
respect to the entities used (for exasmple, the part number when
accessing a Parts data kase). These are referred to as the access fpaths
cf that transaction. 1In general, transactions require random access,
although for perfcrmance reasons sequential access is sometimes used.

This is particularly true if the transactions are batched and they are

2.€6 IMS/VS Primer

numerous, relative to the data base size, or if information is needed
from most data tase records.

For efficient random access, each access path should utilize the
entity's key. With proper data tase design, DL/I generally provides
fast physical access via a key. Therefore, identification of the
transaction access path is essential for a design to yield good
performance.

PARTS PURCHASE CUSTOMER
APPLICATION /' \VENTORY ORDERS ORDERS
A A & & <
s £ « & « § &
TRANSACTIONS Q S & & & & &
> & o Q Q o
- N S 3 o4 < o4 &
= AN N g N g &
< < g 4 nd
2 DATA
& ELEMENTS g I & F & g &
PART NAME () R R R R R
[
%:- PART NUMBER R [R] ® @® R R
STOCK LOCATION R R u U R R
o«
W CUSTOMER NAME R
5
= CUSTOMER NUMBER E]
3 ORDER NUMBER |
« PART NUMBER I U D
w
§§ CUSTOMER NUMBER i R D
55 PART QUANTITY | U D
]
© ORDER NUMBER 00 [[¢]

Legend: || DIRECT ACCESS PATH (KEY)
(O SEQUENTIAL ACCESS PATH

Figure 2-37. The Transaction/bata Element Matrix

The transactions/data element ratrix specifies, in its simplest form, the
prccessing intent of the application transactions against the data base
€lements:

. Petrieve; read only R

. Urdate in place U
) Add, insert I
. LCelete D
o All cf above A

. Null, not sensitive - or hlank

Pata Base Design 2,67

The data elements which are direct access paths for a transacticn are

dencted by a bcxed matrix item.

These should be keys.

access is indicated by a circle around the matrix item.

- e s e e — ot -

2D PPN 1P 04

Sequential

The prccess of designing a data base (Fiqure 2-38) can te generally
divided into the follcwing tasks:

. Gathering requiremerts

Designing application data structures

. Designing physical data structures

. Lesign evaluyaticn

| DESIGN PHASE >
GATHERING DESIGNING DESIGNING SIGN PHYSICAL OPERATION&
- APPLICATION DE :
REQUIRE- 3= " i a W0 9= PHYSICAL [o fion [P | IMPLEMENTA--3-| EVALUATION
MENTS STRUCTURES STRUCTURES TION MONITORING
DATA ELEMENTS
: L ——
N
S
¢ DBDLIB
g I
s
SN———
| DBDs :] DATA
BASE
N—

Figure 2-38.

T

'

The Steps irn Data Base Design

Usually the atove steps are repeated until the design satisfies the
After this design process, the actual developrent,

requirementse.
implementaticn

{data tase lcad) and prcduction begins.

During

production, the system is subject to monitoring which can give feedback

for the design phase.
“"Cptimization".

2.68

IMS/VS Primer

This will be discussed in Chapter 9,

GATHERING RECUIRKEKENTS

The first step of the data rase design roses many guestions: #hat do
the arprlicaticns need? What inputs are required to drive them? What
data cutputs will they produce? Fow are the data elements related to
one another? Which elements are identifiers and which elements do they
identify? How frequently are they used? Have input sources been
specified for all data elements?

During the fprccess of gathering requirements, these and related
questions are answered primarily during conversations Lketween a data
base designer and an analyst frcm the derartment that requests an
application. 1In some organizations, a set of forms appropriately filled
in marks the end cf the requirerents gathering step; in other
crganizations, less formality is involved. 1In any case, this first ster
in data base design ends when the designar collects the data needs of
the individua) applications that will us2 the data base being designed.

The requirements for a data rase should ccntain:

. The data being managed, that is, the entities and associated data
elements

. The relations tetween the entities and data elements as needed bty
the varicus users

- The functions being performed against the data, that is, the
transactions

. The access path as required by the transactions

The first step in gathering the requirements is tc determine the
entities. This is not a trivial task, because the choice of entities is
dependent on the envirconment,

A data elemept which, initially, is conrsidered an attribute, could
becore an entity itself when new applications are added. For irstance,
the data. element colcr is ncrmally seen as an attribute. But in a paint
factory fprccess it might very well be an entity itself, It should te
clear that the change ¢f a given data elerent from attribute to entity
cculd have a significant impact on the data structure. To avoid this as
much as possitkle, cne should be very careful in the choice of entities.

To register the functiens perfcrwed against the data elements, first
construct the transactions/data element matrix. Optionally when the

matrix becomes tcc large, cne can ccnstruct a separate matrix fcr each
majcr application. aAncther useful approach is to make a large drawing
for display cn the wall. This process is most effective if the matrix
not orly contains ths applica+ticns of the immediate future, but also as

much as fpossible about future applications and data elements.

Additional columns could ke added for miscellaneous information such as:
. Occurrence frequencies cf transactions and data elements

. Size and format of data elements

° Priorities and responsesturnaround time criteria

. availability (how long can the function be suspended)

° Security (who may have access to the information made available Ly
this transactiorn)

Lata Base Design 2.69

. Inputsoutput descriptions per transaction, for application program
design

The transactions/data <lement matrix, tcgether with a detailed
description of the data tase and its use, constitutes the requirements
for the design step. For the detailed description of the data base, its
segments and fields, a dccumentation scheme should be established. As a
minimum, forms should be used for a manual registration of the data
tase, the segment laycut, the fields and their attributes. It is very
important to register which program uses which data elements, The next
step would be to use the Assembler DSECT, COBOL COPY, or PL,/I ZINCLUDE
facility for centralized management of segment descriptions.

Ultimately, a data dictionary system might be utilized.

For each phase cf cur sargple environment, we can now construct a
transactionsdata €lement matrix.

=P P- PP P F - R -

The phase 1 transacticrydata element matrix is shown in Figure 2-39. It
is clear the main entity is parts. Othar possible entities cculd be
purchase order, supplier and stock locaticn. However, we assume no need
to gather mcre informaticn cn these in our Phase 1 sample environment.

Nctice, the following information is added to the transaction data
element matrix:

- For each data element, we list its size and its occurrence per
entity. C - 4 means that this data element occurs a minimum of zero
times, and a maximum of four.

) For each transacticn, we iist its average frequency in weeks (W) or
days (L) .

Ehase 2 TransactiongsData Etlement Matrix
In ths phase 2 environment, we add the Customer Order Processing
application. This extends the phase ' transaction/data element matrix of
Figure 2-39 to the one shown in Figure 2-40. Essential here is that,
besides addinc¢ new data elements for the customer order processing, this
new applicaticn alsc requires the existing PARTS data elements,

Also notice that the part number data element appears kencath both the
PARTS and the CUSTIOMER ORDERS entities. This constitutes the basic
requirement fcr a linkage or relation Lketween these entities as we will
see later.

In the phase : environment, we added the purchase order inquiry
transacticn, TE3FCINC. This transaction regquires a direct and a
sequential access peth tc the purchase crder information based on the
purchase corder number. This is because we want to be atle to list an
individual purchase crder, cr a range of purchase orders in their order
rumber sequence. See Figure 2-41. In practice, this access fpath cculd
also be used fcr the purchase crder change (TE1FOCNG) and delete
(IEYPCDEL) transactions.

2.70 IMS/VS Primer

APPLICATION /PARTS INv/ PURCHASE

ORDER

w FREQUENCY/ & Q @Q & §Q

S ~ v ~ ~ ~
> g TRANSACTIONS .\Qg Aob § 5(.’ Q«?’
E 2w S §/& & &
E 8 5 Bmeni\/& & Sk

03 50 FE1PGDSC R

1 13 FEwaswm | R) R R R

1 8 rfewaene | R O[R] | [R] [R] [R]

1 8 FEWPGUNT | R R 'R R R

1 8 FEIPGPRI R R R R R

1 8 FEIPGDIM R R R R R

16 12 FE1PSLOC R R

16 6 FE1PSCNT R R
© 16 FE1PSDAT R R
g 16 FE1PSISS R R
9 16 6 FEIPSREC R R U

04 20 FEIPPOSU R R I u D

04 6 FEPPQOD | R R I U D

04 6 FEWPPORD | R R I U D

04 6 FEIPPODT R R I U D

04 6 FEIPPDDT R R I U D

04 8 FEIPPONR R R I R D

1 8 FEWPGNEW | R R

1 8 FEWPGOLD | R R

1 8 FEWPGEQV | R R

Legend: | |DIRECT ACCESS PATH (KEY)
(O SEQUENTIAL ACCESS PATH

Figure 2-39. Transaction/lata Elemen%t Matrix for Phase 1

Data Pase Design 2.7

eicaton] TRy] PR] oo
§ FREQUENCY '§ (9 §§Q O,SQ '$Q° $§ <.§§ Q?QQ
> g TRANSACTIONS A‘1‘3‘ AQ? & 5 QQY & 5 0«7’
E 3w $ §/ &L L/ &8
|2 8 ¥ e\ & S Sk
03 50 FE1PGDSC R
1 13 rfeweswm | R) R R R R R
1 8 FEIPGPNR R [R] R R [R [r]
1 8 FE1PGUNT R R R R R R R
1 8 FEIPGPRI R R R R R R R
1 8 FE1PGDIM R R R R R
16 12 FEIPSLOC R R R A
16 6 FEIPSCNT R R R
16 6 FEIPSDAT R R
E 16 6 FEIPSISS R R U J
< 16 6 FEIPSREC R R u R R
04 20 FE1PPOSU R R I u D
04 6 FE1PPQOD R R] U D
04 6 FEIPPQRD R R I U D
0-4 6 FE1PPODT R R | u D
04 6 FEIPPDDT R R I u D
04 8 FEIPPONR R R I R)
1 8 FEIPGNEW | R R
1 8 FEIPGOLD R R
1 8 FEIPGEQV R R R R
e ' 6 FEZPCNUM @ [E
L§ 1 20 FE2PCNAM R R
g 1 20 FE2PCADR R R
B 1 20 FE2PCCTY R R
© 1 & FE2PCPCD R R
1 6 FE20GREF [I] E] (o]
1 2 FE20GSTA ! U D
1 6 FE20GODT | U D
1 6 FE20GDDT 1 u oo
@ 1 2 FE20GDWK ' U D
W 01 20 FE20GSPC 1 U D
g 1 2 FE20GORI | u D
5 1-8 6 FE20DQTY i V] D
S 18 8 FE20DPRI I U D
g 18 1 FE20DTAX ' U D
8 01 8 FE20SNR | u D
01 6 FE20SDAT] u oD
01 20 FE20SMET 1 U o
18 FE20DBOR I u D
1 6 FE20GCNR i R D
18 8 FE20DPNR | U D

Legend: []oiRecT Access PATH (KEY)
OSEQUENTIAL ACCESS PATH

Figure 2-40. 1Iransaction/Data Element Matrix for Phase 2

2,72

IMS/VS Primer

APPLICATION /PARTS INV PURCH/\SE AR

g FREQUENCY '\& ‘»O 'SQQ 'SQ ,SQQ
l>_- E TRANSACTIONS Aé AOO § é’ Q‘DI \eo § O()é(, o‘;/
E 3 ¥ oara NN £ & &L f§° CECES
& S 7 ELEMENTS & & SN SN

0.3 50 FEIPGDSC | R

1 13 Fewesnm | B R R R R R R

1 8 reeene | RO[R] | [R] [R] [R] R [r] [F]

1 8 FEIPGUNT R R R R R R R

1 8 FE1PGPRI R R R R R R R

1 8 FEIPGDIM R R R R R

16 12 FEWSLOC | R R R R

16 6 FEIPSCNT R R R
w 16 FEWSDAT | R R
£ 16 6 FEIPSISS R R u
< 16 6 FEWPSREC | R R u R

04 20 FE1PPOSU R R | u D R

04 6 FEIPPQOD R R ! u D R

04 6 FEIPPQRD R R | v D R

04 6 FE1PPODT R R ! v D R

04 6 FEWPDDT | R R I U D R

04 8 FE1PPONR R R 1 R D

1 8 FEIPGNEW| R R

1 8 FEWPGOLD [R R

1 8 FEWwGEQV | R R R R
« 1 6 FE2PCNUM [rR] [’] [o]
L 1 20 Fe2rCNAM R R D
S 1 20 FE2PCADR R R D
© 1 20 FE2PCCTY R R D
© 41 & Fe2pcPCD R R D

1 6 FE2PGREF 0] [l o

1 2 FE20GSTA L

1 6 FE20GODT .

1 6 FE20GDDT I
@ 1 2 FE206DWK ' u b
W 01 20 FE20GSPC I v b
S 1 2 FE20GORT I v b
€ 1 6 FE20DQTY v D
S 1 8 FE20DPRI i v D
© 1 1 Fe20DTAX v oD
§ 01 8 FE20SNR U R

01 6 FE20SDAT ' v 0

0.1 20 FE20SMET R

18 1 FE20DBOR ‘v D

1 6 FE20GCNR I R D

18 8 FE20DPNR ' v _ o

Legend: [_] DIRECT ACCESS PATH (KEY)
(O SEQUENTIAL ACCESS PATH

Figure 2-41. TransactionsCata Element Matrix for Phase 3

Cata Base Design 2.73

DESIGN THE AFPPLICATION LATA STRUCTURE

The data elements can now be arranged in an application data structure,
which consists cf cne cr mcre hierarchical data structures. He always
ccnstruct hierarchical data structures based on the transaction/data
elegent matrix; that is, the way the applicaticn program views it.

-k ol n b e

For each transaction, we start with the access path of that transaction
to the entity, and ccnstruct a desired hierarchical view for that
transaction. If more than one entity is accessed in one transaction,
multiple hierarchical structures are required for that transaction. For
each hierarchical structure, we try to group the needed data elements in
the same type cf segments. Each root segment of such a basic structure
contains the key field which is used in the access path. TIf multiple
key fields (fcr exacple, part nusber and stock number) are used in one
access path, these may become the sequence fields of a paremnt/child
ccebinaticn.

The first field in the rcct segment is the key; the sequence field. To
the root segment are added thcse data elements which are of a general
nature, freqguently used and/or compact, and occur once (or maximurm,
perhaps 3 times) per entity.

Next we group those data elements together in segments which Lkelong
lcgically to sach other, tased on their nature and use. Likely
candidates for separate segments are those data elements which have
multiple cccurrences for a given root. The final result of the lcgical
structure desicn step is a set cf hierarchical data structures. These
represent the view of the data by the different applicaticn rrogranms,
the application data structure.

Based cn the transaction/data element matrix of Figure 2-39 and atcve
guidelines for designing applicaticn data structures, we construct the
follcuing structure for the phase 1 Parts data base (Figure 2-42}.

PART
(SE1PART)

STOCK PURCHASE
ORDER
(SE1PSTOK) {SE1PPUR)

Figure 2-42, CFhase 1 Application Data Structure

Access Paths

Sequential access is needed via the part short rame, FE1PGSNF and direct
access is needed via the part number FEVPGPNR., We can, however, frocess
the TE1INVRP transacticn in part number sequence and then sort the

2.74 IMS/VS EFrimer

outrut in part shcrt name sequence if needed.

nunber is very important for later online processing.

The

rootkey is the part nuamker FE1EGENF field.

- _Raes=s=

Direct access via part

The next step is to add

the follcwing fields tc the rcct segment because they are of general use
cccur for sach part only once:

and

We define separate segments for stcck and purchase order

Nane

FE1EGPNE
FEIPGSNHM
FE1FGNEW
FEVFGOLTL
FE 1PGEQV
FEV1PGUNI
FE1PGPRI
FE1PGDIM
FE1EGLNE

Part Number Code

Part Descrigpticn - Shcrt Name

New (Superseding) Part No.

0l1ld (Superseded) Part Nc.

Equivalent part No.

Unit of Measure

Price

Dimensions

Part Name (long Description)
SEGMENT LENGTH

Wi 0 o ® m ®

—aln

-

data elements

because each can have multiple occurrences for each part and they are
used separately.

FE1PSLOC
FEV1PSDAT
FE1PSCNT
FE1PSISS
FE1ESEEC

> e > W o i e W > G e A e en VR

PEV1EPONFR
FE1PPOLT
FEV1EFCSU
FE1PPQOI
FE1PPQRD
FE1EFDD1

Description length
Stcck Physical location Code 12
Stock Fhysical Count Late (MMDIDYY) 6
Stcck Fhysical Count Quantity (TALLY) 6
Stcck Tctal Issues Current Period 6
Stock Total Receipts Current Period 6
SEGMENT LENGTH 36

Lescription Length
furchase Crder Number g
Purchase Order Date MMDDYY 6
Supplier's BKame 20
Quantity Ordered 6
Quantity Received 6
Delivery Date MMDDYY 6
- SEGMENT LENGTH €2

The above application data structure of the Phase 1 Parts data tase,
will be input for the physical data base design in the next design sterf.

P

To support the Phase Zz transacticnsdata element matrix of Figure 2-40,
we need two hierarchical structures in addition to the one shown in
Figure 2-42.
segnents in the new hierarchical structures is dore similar to tte
design of the Phase | Parts data structure.

The result is shcwn in Figure 2-43.

The design of the

Data Base Design

2.75

CUSTOMER

ORDER CUSTOMER
DETAIL SHIPMENT CUSTOMER
ADDRESS
STOCK
PART
PURCHASE CUSTOMER
STOCK ORDER ORDER

Figure 2-43. Phase 2 Aprlicaticn Data Structure

The following consideraticns apply:

. The hierarchical data structure PARIS is extended with a CUSTCMER
CEDER segment. This provides the customer crder per part relation.

. Several segments appear in different structures. They also vary in
their data element ccrtent. This is essentially data redundancy,
which will be addressed in the physical design step. At this tinme,
however, we are mainly interested in the data structure as needed by
the transactions.

Nore: In your situaticrn, thess structures could be far more ccmglex.
Foer instance, the Custcrer data structure could have separate segments
for accounts receivable, marketing statistics, =tc. The PFAFTS structure
cculd have a ccmponent and assembly structure. This is not addressed in
our sample but can tke easily iwvrlemented with DL/I.

Phase_ 3 Applicaticnp Data_ Structure
The essential additional requirement of Phase 3 (see iis transactiony
data elcment watrix cn Figure 2-41) is the need for access to the part

2.76 IMS/VS Frimer

and purchase order Catea elements via the purchase crder number.

This is

reflected in the Fhase 3 application data structure in Figure 2-L4.

TOMER
C%SRSQ" RE CUSTOMER
DETAIL SHIPMENT CUSTOMER
ADDRESS
STOCK
PART
PURCHASE
ORDER
PURCHASE CUSTOMER
STOCK HRCHAS JSTOM! PART

Figure 2-44.

Phase 3 2pplication Data Structure

DESIGN THE PHYSICAL DATA STRUCTURES

In this step, the logical structures are matched against the functions

and characteristics of DL/I.
and specified in CEDGEN control statements.
organization and 0S/VS access methcd are selected.
considerations may yield changes in the segment design.
Figure 2-L5. :

Physical data base structures are defined
The LL/I storage
Additional

See

Data Base Design 2.77

]
]
[}

F

S

B

R

G

0
s

(B s ey ey - — ey,

1]
]
]

Figu

The
basi

The
desc
base

We w
stru
Fiqu
this
desi

—_———

Acce
affe
of t
sele

GRCUEF IN CNE SEGMENT <e-==---<> SEFAFATE SECMENTS

[]
]
[]
t
[}
[}
[]
]
]
]
[]
]
]
[]
[]
]
]
[]
[]
]
]
]
]
]
[]
[}
[]
]
]
(]
[}
[]
]
]
]
]
[]
[}
[}
]
[}
]
]
]
]
(]
[}
[]
]
[]
[]
]
i
[}
]
]

ew occurrences ({<:3} Multiple occurrences (>10)

mall (<20 kytes) Large (>100 bytes)

igh use (every access
tc record)

Low use [(once a month)
ead-only UOpdate, Insert, TCelete
eneral use Secured use

nly dependent ugon a
ingle data element

Dependent upon relation
of data elements

] o o et it e > Y it i s
———— —— . — —— — o e e

]
]
]
]
]
[]
[}
]
]
[}
(]
'
]
[]
]
[]
]
[]
[]
[]
(]
[}
]
[}
]
[}
[]
[]
'
[]
1]
]
[]
[]
]
]
[]
[]
[}
]
]
)
[]
]
]
[}
[]
]
]
]
]
]
[
1
".

re 2-45. Grcuping Data Elements intc Physical Segments

numkters shcwn in Fiqgure Z-U4S are not fixed. They merely provide a
s fcr your cwn estimates. Additional considerations:

Singie versus gultiple cccurrences. If a data element has a high
nunter of cccurrences, it is likely tc be a segment itself,
especially if it is large. 1If it is small and highly used, then all
its occurrences could be stcred in the same segment. However, the
cccurrence control would then be the responsibility cf the
applicaticn program, as DL/I itself dces nct provide for multiple
cccurrences of the name field in a segment.

A very large segment can have a negative impact on DL/I's management
of space on direct access devices. So the basic rule is: "Try to
keep them more or less the same size".

If a data clement needs special security (that is, only fparticular
applicaticns may have access to it), it can be stored in a separate
segment together with other data elements with the same security
requirements.,

final result of the physical structure design steps is the data base
riptions (LCBDs) and program specification blocks (PSBs) for the data
s and their processing frcgraums.

PR -2 PR P— PP PP

ill now match our requirements as specified in the applicaticn data

cture of Figure 2-UZ and the transaction/data element matrix of

re 2-39 with the available TLL/I functions as presented earlier in
chapter. The cutccme cf this matching is the physical data tase

gn reflected in the L[ED and the physical data set attritutes.

-——— ,—hmde emtea SsRdoemSo=E=S2

ss methods can, in general, be changed during reorganization without
cting applicaticn prcgrass. Still, because the access method is one
he most critical performance factors, it should be carefully

cted. First we will discuss selection of the DL/I access method,

HDAYM, HIDAM, or SHISAM.

2. 78

IMS/VS Primer

When_tc Choose HLCAM: HDAY is recognized in practice to ke the mcst

efficient stovage crgarizaticn ¢€f CL/I. It should be your first choice,
at least inr the cnline epvircrment. HDAM's prime advantages are:

1. Fast direct access (no index accesses) with few I/0O operations
2. Single data set and associated control klocks

3. Small vorking set ir mair stcrage for TL/I

4, Good physical sequential access

Disadvantages of HILAM are:

t« You need a randomizing module.

2. Sequential access in root key order is not possitle if the physical
sequence of data base records in storage is not the same as the root
key sequence. This is dependent on the randomizing module and root
key characteristics.

In many cases, the disadvantages for HDAM dc not apply or can be
circumvented. The =ffort needed to circumvent should be weighed against
the savings in terms of wair stcrage and CPU usage. There is nc doubt,
however, that an applicaticn with cnly HDAM data bases is the most
compact one. Scme possible solutions for the above HDAM disadvantages
are:

1. The IMS/VS system provides a general randomizing module, CFSHDCU4O,
which can be used for any key range. Furthermore, the secticn "HDAM
Randomizing Modules" in Chapter 7, "Installing IMS/VS," will prcvide
you with guidelines on how to write your own randomizing mcdule.

2. If heavy sequential processing is required and a randomizing module
whick maintains key sequence cannot be designed, then sort
technigues can be used:

a. 1f the program is ncn-input drivem, as is the case with many
repcrt rrograsxs, siwmple Get Next frccessing presents all the
data base records in physical sequential crder. The output
could then be sorted ip the desired order. Also, in many
instances, only certain selected segments are required. So the
output file cf the extract can be a fairly small file.

b. If there are input transactions which would normally be sorted
in root key sequence they should instead be sorted in physical
sequence. This can ke readily dcne with an E61 sort exit
routine which passes each root key to the randomizing module
for address calculaticn and then scrts on the generated
addresses plus root key instead of the rocot key itself. An
example of such a rcutine, DFSOASRT is provided in
IMSVSE.EFRINMESFKC.

3. 1A secondary index cculd te built with the root key as inderx search
argument. The cost of this should be weighed against the cost of
sorting as in 2 abcve. The secondary index provides full gereric
key search capakility, hcwever.

We will select HLAM as the DL/I access methocd for our initial Farts data
base, and will use Technique E above in loading it. (Fcr details see
"Loading a BHLCAM Cata Base" in Chapter 5.)

When to Choose HILAM: If ycu cannct use HD3M for scme reason, then use

—— - - - - - - -—

HIDAM (see above discussiorn).

Data Base Desigr 2.79

When tc Chcose SHISAM: This access method should only be used as a
rigraticn tool. That is, if your organization currently has files based
on ISAM or KSDS access methods. It is not recommended for new data
bases. With SHISAM, new prcgrams can use the DI/I interface with full
reccvery function. Existing VSAM programs can access the data Lase as a
reqular KSDS and clder ISAM-based programs can use the ISAM-~VSAM
interface.

We will utilize a SEISAM data kase in cur phase 2 environment.

M3 A P3¢ RS RS S P I

Fcr HDAM you could choose either ESDS or OSAM as the physical access
method. There is nct much difference as far as PL/I is concerned,
although CSAM requires less main storage for code and contrcl blccks.

In general you should select ESDS if your installation already uses VSa¥
cr plans to use it for other data bases. '

The real benefits from CSA¥ are gained when you have an applicaticn
which uses HCAM/OSAM exclusively. In any case, conversion from

HDAM/CSAM to HDAM/VEAM is relatively simple once you have gained
experience with VsSaM itself.

Ffor the phase 1 data base we will select OSAM as the physical access
metncd.

P -2 5 PR3-~ 32— PRS-

In the final steps cf ssgmsnt design we must lcok at the physicail
parameters more closely:

. The segment length

- The number cf cccurrences per segment per garent
] Leccaticn of segments in the hierarchy

o Average data base record size

Performance_Aspects: The main measure of access performance is the
number of I/C requests necessary to satisfy the calls an aprplication

prcgram issues. Thcse are mainly dependent upon the physical data tase
design and the data base tuffer pool size; the latter will be discussed
in Chapter 9, “Optimizaticn." Second, the number of required rLl/I calls

shculd be weighted,
Basic reccmmendations (HLCAM and HIDAM) :

) Try tc locate the segments most often used together with the roct
segment into cne ccntrcl intervalsblcck. The segments are initially
physically stored in hierarchical sequence so the most frequently
used segments shculd be cn the left of the structure (low segment
codes) .

° Try to aveid long twin chains, that is, many occurrences of a
particular segment urder cne parent. Chain length should be
estimated in terms of blocks needed to store such segments. For
example, 100 segments cf 20 bytes (including prefix) cause lass
performance probtlems than 1C segments of 1500 bytes each if the
blcck was 3000 bytes. See also the discussion of the "kytes"
parameter under Basic Reccmmendaticns (HDAM) below.

2.80 IMS/VS Frimer

. Inserts after initial 1lcad will first check the block of the
hierarchically preceding segment for available space. If nc space
is found, nearby tlocks in the buffer pccl are examined. If still
within #3 cylinders in cur subset. The bit map block contains one
kit for each klock in the data set. Bit map blocks are repeated
each N blocks; N is nupber of bits in a block. The bit is set to
one if the corresponding block contains enough consecutive free
space to hold the largest segment {including prefix) of the DBL. 1If
nc srace is fcund, the segment is stored at the end of the data set
for HIDAM and in the overflow area for HDAM.

Basic recommendaticn (HDAM):

o During consecutive inserts {nc intervening calls) of segments of a
particular data base record, the bytes parameter in the RMMAME
keyword in the DBD statesent will limit the amount of data stored in
the rcot addressable area. If the limit is reached (bytes includes
prefix) consecutive inserts are placed in the overflow area. Using
this parameter, especially during initial load and reload, can
benefit an equal distribution in the case of a large variation in
data base reccrd size. See alsc, HDAM space calculation later in
this chafgter.

—— e e e e e e e —m 2=

Applying above guidelines to the phase 1 Parts data tase gives the final
physical data btase structure cf Figure 2-46.

HDAM, OSAM

SET1PART 10,000
10,000
80, 18, 98
FE1PGPNR

<
SE1PSTOK 40,000 SE1PPUR 2000 SE1PGDSC 3000
0, 6, 20 0,14 0,031
40, 6, 46 60, 6, 66 80, 2, 82
FE1PSLOC FE1PPONR

Figure 2-46. VYhysical Data Base Structure for Phase 1
PARIS Data Base

As you will notice, we created a fourth segment, SEV1PGDSC which contains
the full parts descriptive name, FE1PGLNM, since:

. This information is rarely needed, especially in the foreseen online
processing

- By bringing back the root segment from 148 bytes to 98 bytes
{including prefix) we improve the segment insert processing cf the
stock and esgecially the purchase crder segment. This results
because the free space bit map is based on the largest physical
segment size.

Data Base Design 2.81

Furthermore, we added a dummy field to the segments. This could be done
in practice if you expect the s=gment to be expanded in the near future,
At least you should make all segments an even number of bytes.

We alsc added to the data base structure in Figure 2-46 the wmain
physical segment attritutes which are ¢f most importance for performance
considerations. It is recommended that you maintain such structural
figures for your data kases. They have proven to be very valuable for
performance monitoring and design reviews. A description of those
attriktutes follcws in Fiqure 2-47.

:

SEGMENT NAME, OCCURRENCE

FREQUENCIES (MIN, AVERAGE, MAX)

LENGTH (DATA, PREFIX, TOTAL)

SEQUENCE FIELD NAME

4

. Segment name, occurrence specifies the segment name and the total
number of this segment occurrence in the data base.

Legend:

. Frequencies specifies the minimum, average and maximum number of
occurrences for this segment per parent occurrence.

. Length specifies the segment data length, the segment prefix length
and the total {=sum of data + prefix) length of the segment.

. Sequence field specifies the name of this segments segquence field,
if any. :

Figure 2-47., Specification of Physical Segment Attributes

PP~ PRS- PRS- 3P IR PRSP P S L T T R

We can now code the DBL and discuss the final parameters such as pointer
options and CI/blocksize parapeters. Some iteration with the preceding
secticn is normally necessary because the pointer options selected
influence the size cf the segment prefix and, as such, can have an
impact on physical segment design. The final DBD of our Phase 1 Parts
data base is listed in Figure 2-22 earlier in this chapter under the
topic "Basic LELGEN".

Corsiderations _for Pointer Selection

Because there is no use expected of the physical child last pointer in
any segment, code EARENT = ((segname, SNGL)) in all dependents. Because
of this [no deletes after retrieve last), only physical twin forward
pcinters are needed. Code PIR=T in all segments. Because there is
never more than one occurrence of the SE1PGDSC segment for any part, the
physical twin forward pcinter for this segment should be suppressed;
code PIR=NT.

2.82 INSAVS Erimer

In choosing the CIsblccksize the fcllowing ccnsideraticns apply:

. Try to fit all highly needed segments of a data base record into one
{for more concecutive) CI/Lklocks.

. One tlocksize for all data base OSAM data sets (if any) will limit
the amount of subpcols. Hcwever, using a unigque size for a highly
used data base allows a dedicated subpool specification for that
data tase.

. Large blccksizes favor sequential processing and DASC space
utilizaticn. Cn the other hand, if you are primarily prccessing
directly, you should determine the segments needed per data base
record per transaction.

Basic recommendations fcr the gractical minimum CI/tlocksize for ESDS
and OSAM data sets are given fcr each device type in Figure 2-48., The
underlined numbers would be a general "best fit" for 0S/VS1. the

aumbers tetween rarenthesis wculd be the geameral “best fit" for 0S/VS2.

- - - . P WD A D D TS P W D D D D P YD W W W U W YD R T W D R W -

r h
| Device Type | OSAM_Blocksize_or VEAM_ESDS_Clsize !
| | {blocks/track) {
|=o===- ittt S Sttt ittt |
| 231472318 | 1536 (2C48)]
! ! u) (3) |
| ittt i de i i ittt deide ittt St tuiuhdated |
| 3330 | 1526 2048 (8096) !
! | N {6) (3) :
| 3340 I 1536 2560 (4096) |
| | S (3) (2) |

... ‘
i 3350 ! {4026) !
| | 4 |
| it e ettt |
{ nDppn: O0S/VS1 Reccmmendaticn '
{ (nnnn): 0S/VSZ Recommendation |
| Blocksizes 1536 and 2560 are only applicakle to OSAM |
| |

Figure 2-48. Feccmmended CI/Blocksize Parameters

Additicnal considerations:

L] In case of large data tase reccrds (greater than 500 bytes) and/or
kLeavy sequential prccessing and/or large data bases, you should
ccnsider increasing the sizes shown in figure 2-48, especially fcr
os/vsi,

. For OSAM, the blocksize is limited to the maximum non-keyed
tlocksize of a track.

For KSDS, for INTEX data Lases, you should select a control interval
size of 2048 or 4096 for the data component and 1024 for the index
component.

Cata Base Design 2.83

ANGH, REN, EYTES apd SIZE Parameters for HDAM

The following Lkasic guidelires apply tc above parameters for a HLAM data
base:

1. ¢SIZE = 5 X AVEIL
2. EYTES = SIZE
3. RBN = 1,25 X NROOTIS X AVRL/SIZE

4. ANCH = 1.25 ¥ NFCCTS/FEN

Bhere:

AVEL is the average data Lkase record length, including segment
prefixes.

- SIZE is the net CI/blocksize. Remember that DL/I will allocate some
ccntrcl fields within your selected CI/block. These are:

- Free space anchcr pcint: 4 bytes

- For each anchcr pcint: 4 bytes (only in the roo*t addressatle
area)

- VSAM control fields (ESDS): 7 kLkytes

In additicn, there will be a free space element of 8 bytes for each
consecutive free space of € bytes cr more in the CI/block.

. BYTES is the mazximum numkber of bytes of a single data base record,
to be inserted by consecutive insert calls against the same PCB.

) ANCH is the numiter cf rcct anchor pcints per CIfbklock {round to next
higher).

. RBN is the number of CI/blocks in the root addressakle area.

Ideally, 4 to 5 data base records should fit in one CI/block. However,
for very large data base records -- cne average record per N CI/blocks
-~ you should consider a randomizing algoerithm, which skips every N
CI/klocks. The BYTES rarameter should then be no less than the average
data base record size and the number of anchor points per CI/tlock
should be one.

For our PARRTS data Lase, we calculate (assume 10,000 records):
AVRL =
{10,000X98+40,000X46+2,000X66+3,000x82) /10,000

= 320 tytes

The maximum data base reccrd length is:
SB+20X46+4X66+82 = 1364 bytes.

And the minimum data base record length is:
98 bytes.

Z.84 IMS/VS Primer

The data and prefix length of each segment can be found in the DBDGEN
macrc expansion output listing. The field "SEGMENT LENGTH" contains the
data length of the segment in bytes. The field "LENGTH OF SEGMENT
PREFIX" contains the length in bytes of the segment prefix.

SIZE : 5 X 320 = 1600, rcunded to 2048
EYTES = 2048

Because our maximum data base record size is 1364 bytes, this could be
specified as the BYTES limit.

RBN = 1,25 X 10,000 X 3zC/2C4¢ = 1954

Por 3330, this wovld require 326 tracks or 18 cylinders. An initial
space allocatiocn of 20 cylirders (10% for the overflow area) will ke
appropriate.

ANCH = 1,25 X 1C,000/1954 = 6

We now check cur net CI/block size in the root addressable area, which
is:

2048 - 4 -4 X6 = 2zCaiC

This is large enough to hold, generally, more than five data Lase
records.

e e e e e ———

VSAM data spaces are defined with its Access Method Services. Job
//SAMP270 in IMSVE.PRIMEJOB shows hcw to do this for a HDAM [PAEKTS) data
base and a HIDAM (Customer Order) data base. Note that the DATA and
INDEX components are separately named.

Whenever defining a KSLS, ycu should check the DBDGEN output listing..
It gives the proger access method service control statements for the
definition of the KSDS (that is, the location of the key in the ‘KSDS
record).

Note: Job //SAMPZ7C defines the VEAM data sets in the ¥SAM data space
definred with job ,/SANPOC7.

CSAM_Lata_sSet Allocaticn
OSAM space can be allocated via normal JCL as an 0S/VS sequential data
set. No DCB information should be provided in the JCL. OSAM space can
ke reused but only if the klccksize (SIZE parameter in DBC) has not keen
changed, that is, the same as indicated in the DSCB on DASD.

Job ,/SAMP170 in INSVS.ERIFPEJCE, which loads the Phase 1 PARTS data Lase
shows how to allccate the space fcr the OSAM dataset.

Phase 2 Physical Lata Base_Design

The Phase 2 application data structure in Figure 2-43 can be easily
implemented with the use of the logical relationship function of DL/I.
Merely define the crderline segment as a logical child of the part

Data Base Design 2.85

segment as shcwn in Figure 2-43. In addition the following
considerations afprply:

- The physical data base design for the Parts and Customer Crders data
bases is dcne in much the same way as for Phase 1.

o The access methcd fcr the CUSTOMER CRDER data base is HIDANM/VSAM.
This is done tc shcw an example of a HIDAM data base.

. The access nethod for the PARTS data base is changed to HDAM/VSAM to
provide a V3AM cnly environment.

o As discussed previcusly, we will use a separate SHISAM data base for
the customer name and address instead of duplicating that data in
the Customer Crder data base. The key (customer rnumber) cf this
SHISAM data base will bte stcred in the root segment of the Customer
Order data base.

1. The real logical child can, in reality, be located either in the
Parts or the Custcmer Crders data base. Their is no difference for
the application prcgram as toc where it is located (except for the
initial lcad program). Which implementation to choose is purely a
performance matter. This will be discussed in Chapter 9,
“"Optimization," under the topic "Optimizing Physical and Logical
Twin Chains."

2. Whenever the accounts receivable application is converted to DL/I,
the SHISAK data base could ke converted to a full HDAM cr HILAM data
base. Additional segments can then ke added with minimal impact on
the existing DL/I aprlicaticn programs. Also, if necessary, a
logical relationship could be implemented between this Customer data
base and the Custcmer Orders data base, much in the same way as
between the Parts and the Customer Orders data tase.

Two sets cf CEDs are needed for the phase 2 applications:
) Physical UBDs with lcgical relationships, and
o Logical LBLs for the application fprograasms.

The DBDGEN process of these DBDs is described under the topic YDEDGEN
for Logical Data Bases™ earlier in this chapter. The physical DBDs for
the Parts and Custcrer Orders data bases are shown in Figqure 2-24.

Due tc expected high activity agaimst tke logical child segment all
associated pcinters are specified forward and tackward. This shculd he
done in all cases where there is considerable activity expected with a
logical child.

The corresponding lcgical Parts DBD (BE2LPART) is listed in Figure 2-25.
The lcgical Customer Orders data base is listed in Figure 2-26.

A1l above DBDs, together with the SHISAM DBD (BE2PCUST) are also
included in IMSVS.PRIMESRC. Their CBDGENs can -te executed with job
//SAMP210 in IMSVS.PRIMEJOB.

Phase_3 Ehysical Data Ease Lesign

In our Phase ! sample data kase design, we will use the secondary index
function of DL/I.

2.86 IMS/VS Primer

Analvzing our Phase 3 reguirements as reflected in its transaction/ data
element matrix (Figure <-41) and apfplicaticn data structure ([Figure
2-44) , we cee the need for the access of the parts data via purchase
order nunmker.

Actually, the best way, from a pure data base design point of view, is
to ipplement this via a logical relationship. This logical relationship
should then be established Ltetween a new Purchase Orders data base and
the Parts data base. However, we choose to use the secondary index
function for this with the fcllcwing ccnsiderations:

) Exenplify the difference between the logical relationship and
seccndary index functions.

) 2dding of the seccndary index to the PARTS data base has the least
impact on the existing Phase 1 and Phase 2 application prograams.

. If there is no