
G

Ims/vs

DATA BAse

LOGIC & FLOW

Course materials

I L?~! ~L'~

L,/:;'o - ~o~l

VOh. lIt of J![

-_ ",,-._._.-

DATES OF COURSE:

INS~'R UCi'OR:

COURSE ABSTRACT:

COURSE OBJECTIVES:

c,

8 Half-Days, August 22 Thrn August 31,
1977

Bill Lockhart J15/F14 Santa Teresa Lab
Phone - xQ240

This lecture/workshop course is intendeo
to be an in-depth view of the internal
workings of an IMS/VS Ba tch system. In
the class you vill be provided with
several IMS/VS dumps where we will track
the basic DL/I calls through the Contro1
Block.s ana Modules of IMS/VS.

Upon comp1etion of this course, the
student should be able to:

* Load a given data base using any of the
IMS/VS data organizations and access
methods.

* utilize the DL/I Test Program
(DFSDDLTO) and the DL/I ca1ls necessa.ry
to minipulate logica1 and physica1 data
bases.

* Analyze the various types of' IMS/VS
storage dumps to determine both proper
and improper operation of a batch IHS/VS
system.

* List the steps required by DL/I modules
to process the basic DL/I calls.

* Match the DL/I modules with their
functions.

* Locate a g'iven root segment in the data
base buffer pool and all its dependents
for each of the DL/I data organizations.

* Indicate the source an.d purpose of any
DL/I control b1ock.

* Map ont a batch I!IS/VS storage dump
showi.ng the location and contents of the
major DL/I control b1ocks.

CO UBS E TOPICS:
DL/I General Call Flow
DL/I Control B10cks
Retrieve Ca1l Flow (GET type Calls)
Buffer Management
Load/Insert Ca11 Plow
Delete/Replace Call Flow
Data Base Traces

CLASS EXERCISES: Several storage dumps taken on '5TLMVS 1 t
(HVS Batch) will be used for analysis
during class.

MAlJ.'ERIALS: Student Guide (includes copies of all foi1s
used), Core Dumps, and Library copies of
IMS/VS Pubs.

Updated: 08/11/77

C~?rerequis i te Quiz For Course: IMS/VS D. B. LOGIC & FLOW

Name: Dept/Office: __________ __ Phone:

* * * INSTRUCTIONS: *
* 1. READ EACH QUESTION OVER AND PICK THE BEST ANSWER. EVEN" IF YOU *
* FEEL THE 'BEST' ANSWER IS NOT THERE, PICK THE 'NEXT BEST' AMONG *
* THE ANSWERS LISTED. *
* 2. WHEN YOU HAVE FINISHED THIS QUIZ MAIL IT TO: *
*
*

*
* ***

* ~OTES: *
* THIS QUIZ IS PRIMARILY A TOOL FOR YOU TO ASSURE YOURSELF THAT *
* YOU ARE PREPARED FOR THE COURSE. THIS PREPARATION CAN COME *
* FROM ANY COURSES AND/OR EXPERIENCE YOU HAVE HAD ON THE SUBJECT. *
* ANY QUESTION YOU HAVE DIFFICULTY WITH SHOULD POINT OUT TO YOU *
* AN AREA OF THE SUBJECT THAT YOU SHOULD REVIEW BEFORE COMING TO *
* CLASS. * * IF YOU HAVE DIFFICULTY WITH THE ~~JORITY OF QUESTIONS ON THE *
* QUIZ YOU SHOULD CONSIDER ENROLLING IN PREREQUISITE CLASS(ES} *
* AND TAKING THIS COURSE AT A LATER DATE. *

0***
Circle the correct answer(s) or fill in the blank area:

1. In IMS/VS terms, a Data Base is defined as a nonredundant
collection of interrelated data items processable by one or
more application program(s} .

True/False 'lAtA v

2. When loading a HISAM (ISAM/OSru~) Data Ease, each physical
data base record starts within an:

~ ISAM logical record
B. OSAM logical record
c. QSAM logical record
D. BSAM logical record

Use FIGURE 1 (attached) to answer questions 3-7.

3. The circled number 1 indicates a physical:

o
A. PARENT pointer
B. CHILD pointer
C. CHILD pointer, first & last
~ TWIN pointer
E. TWIN pointer, forward & backward

............ _ _------

(~\

4 • The circled number 2 indicates a physical:

A. PARENT pointer
B. CHILD pointer
C. CHILD pointer, first & last

® TWIN pointer
TWIN pointer, forward & backward

5. The circled number 3 indicates a physical:

A. PARENT pointer

~ CHILD pointer
first CHILD pointer, & last.

D. TWIN pointer
E. TWIN pointer, forward & backward

6. The circled number 4 indicates a physical:

~ PARENT pointer
CHILD pointer

0'
C. CHILD pointer, first & last
D. TWIN pointer
E. TWIN pointer, forward & backward

7. The circled number 5 indicates a physical:

A.
B.

PARENT pointer
CHILD pointer

~ CHILD pointer, first & last
TWIN pointer

E. TWIN pointer, forward & backward

8. There must be at least ""B (:::t) DATASET statement (s) for each physical
DBD generation.

A. ZERO
~) ONE
C. TWO
D. THREE
E. FOUR

9. The call interface between DL/I and an application program is
dependent on a particular storage organization and access method.

o True/False' F~\s£..

•... __ .. _._.-................ _---------------_._-_ _. __ .

10. GET calls mayor may not have SSAs ..

True/False Til L.t£"

11. DELETE and REPLACE calls may have qualified SSA's

True/False

12. Any logical data structure may be composed of one or more
physical data base records.

True/False

13. Symbolic pointers may NOT be used when the data base "pointed-to"
exists in HIDAM or RDAM.

14.

C·,

True/False

When direct address pointers are used to establish a logical
relationship, the pointers exist as part of the user data.

True/False

15. When symbolic pointers are used to establish a logical relationship,
the pointers exist as part of user data.

True/False

o·

· .
FIGURE 1

c

NAME

adams

EXPR.

SX27

o

-----"'--" .. ,,_., , ... , ...

SKILL

writer
Skill

jones

NA~'E

smith

EDUC. EXPR.
MBA

EDUC'BA

EDUC.AA

DATA BASE

STRUCTURE

P99

SKILL

NAHE

EXPR. EDUC.

-_ .. _.--_. -, - - ._- ---_ .. __ . __ ._ ... ", , ---_.,,,

c·

o

II II,' CliP II (J CIS 8 III (} III ~ I tJ II

s8

I
I
I

I I
J

I I
I \

"-

. os/vs

P2.'bCi2 AM

CON Tlt()l..lER..

. ApPLJC.A TJ ()~

PRC4lt.AM

- -. -,------.--.....--...

l~N~uA~e . I.viER.fAC£

'""--

[)ATA I [)ATA

lANGrUA~'; / I I BASe
Ilo ~ It~---1-,...,

I

------------_._. __ _ - .•

""C
l>
o
o

n n 0

DFSRRC~J'

DFSRRA.¢~

DFSRRA2,¢

OS/VS

REGION
CONTROLLER

PARM
ANALYSIS

STRING
ANALYSIS

~ ..
\0 .\-;

\~\~
~

DLI REGION INITIALIZATION
j{l ~~

, \CV< Al'.v"
~\t V'" ~~~J ~l-ed

//STEP EXEC PGM=DFSRRCp~,PARM='DLI,USRPGM,PSB,BUFI,

REG 1 Points To EXEC Card Parm List

LOAD: DFSPRPXt - Region Control Blocks

SECONDARY SCD - Current SVC Numbers

3td'~ _~i~~ YI/J~CIa4!J

Breakout And Decode Parm's From EXEC card

.. AT COMPLETION; XCTL To DFSPCC31 -BATCH PROGRAM CONTROLLER-

o

XCTL .. I. DFSPCq0' I
BATCH

PROGRA~1

CONTROLLER

DFSDLBLfj
BLOCK

BUILDER

o
DLI REGION INITIALIZATION (CONT)

- LOAD BATCH NUCLEUS
- MOVE SVC "NUMBERS INTO SCD
- OPEN DCBs FOR PSBLIB & DBDLIB
- CALL DFSDLBL%

- BUILD DL/I CONTROL BLOCKS BASED ON PSB NAME TAKEN
FROM EXEC CARD PARM FIELD.

- LOAD REGISTER 1 WITH PST ADDRESS
- CLOSE DCBsFOR PSBLIB & DBDLIB ? a"..l. \ -tt.c/:V

~"<i(l+~~~
~(I\.I,\l

n

o o ()
, • __ s

DLI REGION INITIALIZATION (CONT)

DFSPCC3?
BATCH

PROGRAM CONTROLLER
C

DFSDLN(tg'1
J

BATCH INITIALIZATION

1

~----~----'-------------------------'------~-----T-----------'-----------~~'--~------------------~-----r----~ 4

DFSIINW
SELECTIVE

MODULE
LOADER

. -LOAD REQUIRED DL/I MODULES.
-LOAD SYSTEM REQUIRED & USER

SPECIFIED MODULES.

4

1

DFSDBPI0
DB BUFFER

POOL
INITIALIZER
-GETMAIN FOR DB

BUFFER POOL.
-FORMAT POOL.

~

1

DFSDVBI DFSXLGI
VSAM BUFFR LOG

POOL INITIALIZER
INITIALIZER
-GETMAIN FOR BH -IF LOGGING~

POOL. LOG WORK AREA)
-CALL VSAM TO BUILD LOG BUFFERS; OPEN

SUBPOOLS BASED ON lOBs; FORMAT LOG;
DFSVSAMP DATA SET. PAGE FIX LOG; OPEN

LOG.

~1A+fV\ -J-lQMtt \ 01 -

o c-:
DLI REGION INITIALIZATION (caNT)

I

DFSPCC31-,
BAT C H PRO G RAM CON T R O,L L E R

- LOAD STAE EXIT ROUTINE (DFSFLOS~)

- LOAD REGISTER 1 WITH PCB LIST ADDRESS
LINK TO USER ApPLICATION PROGRAM

~

USER
APPLICATION

PROGRAr~

(END OF INITIALIZATION)

o

000

DFSRRCOO
..

DFSRRAOO

DFSRRA20

OS/VS

REGION
CONTROLLER

. PARM
ANALYSIS

STRING
ANALYSIS

DBB REGION INITIALIZATION'

//STEP EXEC PGM=DFSRRCQQ,PARM=9USRPGM,PSB,BUF'

REG 1 Points To EXEC Card Parm List

LOAD: DFSPRPXO - ,Region Control Blocks

SECONDARY SCD - Current SVC Numbers

Breakout And Decode Parm's From EXEC card

AT COMPLETION, XCTL To DFSPCC30 -BATCH PROGRAM CONTROLLER-

o o

DBB REGION INITIALIZATION (CONT)

XCTL -i DFSPCC30
BATCH - LOAD BATCH NUCLEUS

- MOVE SVC NUMBERS FROM SECONDARY SCD TO uREALu SCD

o

PROGRAf1
CONTROLLER - CA LL BLOCK LOAD ER (~lo(jC> l' ~~ ... iD LM ~t.\,J{ CA c"...,

sLo/l~ ~ _ Ac 1> L:J~) !'

DFSBBLDO
BLOCK

LOADER

(DFSDBLxO)

- OPEN DCB FOR ACBLIB

- LOAD DL/I CONTROL BLOCKS (PREBUILT BY ACBGEN)
- LOAD REGISTER 1 WITH PST ADDRESS
- CLOSE DCB FOR ACBLIB
- RETURN To DFSPCC30

(x = D.lP.lI.lR.lM)

PADC - 14· IBM

o o o
DBB REGION INITIALIZATION (caNT)

DFSPCC30
BATCH

PROGRAM CONTROLLER
4

DFSDLNOO 1
BATCH INITIALIZATION

..
DFS I I NlID

SELECTIVE
MODULE

LOADER
-LOAD REQUIRED DL/I MODULES.
-LOAD SYSTEM REQUIRED & USER

SPECIFIED MODULES.

DFSDBPIO
DB BUFFER

POOL
INITIALIZER
-GETt1A I N FOR DB

BUFFER POOL.
-FORMAT POOL.

DFSDVBIO
VSAM BUFFR

-POOL
INITIALIZER
-GETMAIN FOR BH

DFSXLGIO
LOG

INITIALIZER

-IF LOGGING"
POOL. LOG WORK AREA"

-CALL VSAM TO BUILD LOG BUFFERS; OPEN
SUBPOOLS BASED ON lOBs; FORMAT LOG;
DFSVSAMP DATA SET. PAGE FIX LOG; OPEN

LOG.

o n
DBB REGION INITIALIZATION (CONT)

DFSPCC301

BAT C H PRO G RAM CON T R 0 L L E R

- LOAD STAE EXIT ROUTINE (DFSFLOS0)
- LOAD REGISTER 1 WITH PCB LIST ADDRESS
LINK TO USER ApPLICATION PROGRAM

~

USER
APPLICATION

PROGR.~r~

(END OF INITIALIZATION)

o

C"
)

o

o

APPLICATION PROGRAM ISSUES A DL/I CALL

• USER PASSES A PARM LIST TO DL/I :

FUNCTION~PCB~I/O AREA~ SSA~(SSA)~ ... (SSA)

• DL/I CALL ANALYZER (DFSDLA00) GOES To WORK

• REGISTER 1 HAS THE ADDRESS OF THE PST
FIELD PSTIQPRM HAS THE ADDRESS OF THE CALL PARM LIST

• CALL ANALYZER DOES THE FOLLOWING:

JIO~ G..tM ~l,Juc.
- VALIDATE THE PCB ADDRESS & STORE IN PSTDBPC,DB /' --

STORE USERS I/O AREA ADDRESS IN PSTUSER ~

- VERIFY & ENCODE FUNCTION & STORE IN JCBPRESF
- VALIDATE FIELD NAME (IN,SSA)

- TEST FOR INVALID CALL (WITH OR WITHOUT SSA)
- TEST FOR PROCOPT VIOLATION

- DATA BASES OPEN? (CHECK JCBOPEN BIT)

No - CALL DL/I OPEN/CLOSE (Dr:s:DLOC0)

YES - CALL DL/I ACTION MODULE BASED ON FUNCTION
RETRIEVE - DFSDLR00
LOAD/ISRT - DFSDDLE0

DLET/REPL - DFSDLD00

-----,--_.,-,--

C)

c'

RETRIEVE

o

DFSDLAOO

CALL
Ar~ALYZER

DELETE !
R.EPLACE

LOAD /

INSERT
OPEN /

CLOSE

-

o

.6

o

o

'ttl(/, fI@13e @/JI(l~/tl@$<e

,'S.""
OpJ[·~_·lr, •. I~ A 'I.r~,~r.\.·Jl.E·- DL"!)/'f,(";) A 1"jf\Tf\ ('f-'r iv v ,) ;\\.,.!JJ ,', Ln I i' -..)_. G. r; (' 11 P . ~! f '1' ~'. ~ .. ~ j' (, (' D, ,., . (,J\...., J "\L-.L. 1.J J.) I !\"Ld

1)~

USE lf~S Ef'lU/DEO TO SER!J\LIZE OPLr·JS FCi(DCPy'hCB

- ~ OIN\~ {/VV1lv-r

~lotl" (IM/{.te)

GET STORfVJE FO!z BIS/\I·1 I ~ '.' 1,,1
J I ~

~Cc.~S>
M ~-ttLvt

I F HS/~r'1 US I NG BS!\i'L DO GETf'1A I N FOR BSAf'-1 BUFFER

SET J CBORGN TO I i-JD I C{.\TE OPEI",j/CLOSE ST !\TUS

?Il 'i-~ (hit r k.-t£ttt f1

W. kaus ~ C~ or
1) U»

._-----------------" ... _ " ... _ •. __ .• _ _----

."

,.. ,

c'

o

------------------~~ -- --------_._--_._-------_ .. -_ .. ,_.- -_.-_._-_._-------

RETRIEVE DFSDLR00

FUNCTIONS -

)(RECEIVES CONTROL FROM CALL ANALYZER

~ CALLS BUFFER HANDLER FOR PHYSICAL I/O

DEBLOCKS SEGMENTS FOR HS ORGANIZATION

Jl ESTABLISHES 'POSITION' IN THE DATA BASE

~ IF POSITION AVAILABLE FOR REQUESTED SEGr~ENT~

I~O BUFFER HANDLER CALL

UPDATES POSITION AND LENGTH IN DB CONTROL BLOCKS

PERFORMS POSITIONING FOR INSERTS

FOR 'PI' CALL ENQ-DEQ FOR POSITION AND ENQ TESTS

POSITION TO PHYSICAL. ROOT FOR HISAM~ HIDAM~ HDAM

FOR 'PI' WILL IWAIT TASK IF NECESSARY

---------_. __ .. _._-_ _._ , _-----

o

,0

RETRIEVE POSITION

SDBPOSP
PREVIOUS

HSA~1 :

HISAM:

SDBPOSC
CURRENT

NO POSITIONING USED

PREY - NOT USED

SDBPOSN
NEXT

CURR - RELATIVE RECORD NUMBER (RRN) OF LRECL
NEXT - OFFSET INTO LRECL FOR SEGMENT

HDAM/HIDAN:
. PREV - RELATIVE BYTE NUMBER (RBN) OF PRIOR (j)¥~~,,~

SEGMENT Oi~ CHA I N
s-<t« 1M C £..)

CURR - RBN OF CURRENTLY ESTABLISHED POSITION

NEXT - RBN OF NEXT SEGMENT ON CHAIN

--_._--_ .. _---_._---- -----_. __ __ .. _. __ .-_._. __ ._-_. -

------ -----

DFSDDLE,0

FUNCT I Of'J

- Rl:l-/f'\ I E\'E,_ pi ,\'-.) S 1" T I, Oi~'\ll ::-; r- (' 1", "Ll " r I,... r--I~' ''T"S [V'" r- ~ -,- DO (11 c L 'J rUi\ 1-\ "- J ;'{2)L-_I\! ' 'ALL':) \\iU ,j

IN HI SAf·1

o
H I SAn LOj~D

Ll I S jj 1~"f.1 D r: lr) [r f" .!fJT r,.l T 1 1\: S F RT r I L_ _, ~ ~. I , J. •• '- "_ \.

H I SArli fi'~ f11' T t'J SC Pl' I 'I \ U U J I ~" L I \

- H I SAf'~ REPLACE FO R VAR I ABLE LENGTH SEGf/IENTS

- HI) REPL/\CE FOR VARlf\BLE LEHCTH SEGf·1ENTS

o

-----------------_. ----

PERTINENT INFORMATION PASSED TO INSERT

• PARTITION SPECIFICATION TABLE (PST)

• PCB (FROM THE DL/I CALL)

• FIRST LEVEL TO BE INSERTED
.r~~t

• LOGICAL SEGMENT CONTROL BLOCK (SDB) <J) fgc. \'p-W1

'13 L.ocJC-

• PHYSICAL SEGMENT CONTROL BLOCK (PSDB)

• POINTERS TO ALL OTHER DB CONTROL BLOCKS

C

o

o

c~
0
('")

.......
~

\ CD
I
I

~

LEVEL T,~BLE

LEV LEV

CUR R E N T P 0 SIT ION

SDBSYM

SDBKEYFD

SDBPOSP

DBPCB
DBPCBDBD

f- -"C 0 N C I~ TEN ATE D KEY - - - - - - - -

o

De lete/Rep lace
I:..J'ON"ir5;s:em:,,"*'C¥~~~~ '1i u , .. !;tit

DFSDLDOO

D r- P l f\ (' F F IJ \1 Cl- I r ~ "; s·· r\ L. ,.t\ ,J •• , ,I,., I v' _

A [- r- I C' i ! l"\ ,., 1/ [. \ I r"! E 1 1')1"1 ',,... -,- /. I --;-:- ,""' ,... r-
.. -:.1\ ..)(.i,I:I\L" rl~!\~)i /~,-I":'}\!.:.l;

LI r:- C \\; C.)' r,' C: P I,' E P L .~\ C E' tl) U! ~:- \f '\ ()!1 t-"'I i n [\ I fI L... J , \ \ I,. \ l_ '- J .<.1 \ '-' I •

• I NTEF~F ACE VV 1 TH LO!\ DIl f\J S ERT I F V f.\i~ ! I\[} I.E LENGTH

• Ir~TERFACt \AJiTH ENQ/DEQ lFfROGRf.\M l.SC;LATtON lNEFFECT

DELETE FUNCTIONS &'Or. 'lW ____ • ________ _

• ENS Uf<E KEY FIELD r'~OT ALTER ED

• CHECKS FOR DELETE r~ ULE Vi OlAT! OrJ

~ A S ("\ f. N (" D ", -!- f.. B· S E 11 E (.... 0 n [zm. LA.) F\ i t-\ l\ _ \ -.\.1 i:\)

-HISArv'\- Or~LY iF LOGiCAL ~~ELJ\TIor'.JSHtP OR INDE)~[D
S E G [r. 1'T'" - , r I : I I - ,'~ " n --, ll' I
... _ tVltl\ I ~ i "'ll 1-' i cr</-\r\Ln 'j

-HD- AlvVAYS

1 NTERF!\CE VIJ'ITH INDEX tv\Al NTENANCE lr- INDEX .SOURCE SEGN~Ef\lT

INTERFACE VVITH SPACE N\ANAGE:v\ENT IF HD Or<G!\NIZf\TIOf\~

INTERFACE \N ITH ENQ/DEQ IF PROGRArv1 ISOLA TI ON l N EFFECT

------ ." ... _-------

------------_._-_• ---._---.. _--.-_.-_. __ .- ----

W@fi'U! A\lf@~§ Ys@tJ1 ~y
L~:~s-.i...~~·:~~.:.!.s.:~_:'i..-::._'·.;4_;:." ",;' :... -~ '.·-~~·~·.~:· ~~·:.~~.':".·r .. ·- .,' . _' "'r~' ;.: ~'~~.~.--::...,.:,. ~,: It-~:;'J

ID>e~~t~/~~~D(S£e@ ~ ~fLfW~J

C) USED DUR iNG DELETE SCAr·~

(j US ED D UR 1 NG 1 N DEX flLA i [~rrENAf'.jCE FOR REP[.l\ CF

() F! RST vVORI< AREA PO l!'JTED TO BY PSTDL.TvYA

C 0 WORK AREAS" CHA I NED TOGETHER

V$&MU \'MtYli'!% ~U'@@, ~~~@L~~r
L?:ii i ·75 .;;o?5>':~"«:Z ~;:e::,·2 .---:- F. ... ~ .. f2~.;;.~I0\.,,~ .:;s:::?:?}!!?:'~:.:- ".40~ • •• :.).;... ~!f7 .• -; ... _ : .. ""0

mP~S~b.~:f?)tQ)
";iii :?} >-. 2f ::=-;:::;;.,...;.-·1'

Cl OR CA SPLIT OCCURS

o

o

c

o

I N D E X ~ A I N TEN A N C E

DFSDXMTO

MAINTAINS PRIMARY IrmICj~OR HIDN1 DAT.A BASES

MAINTAINS SECONDARY INDEXES

MAKES INTERNAL DL/I C~LLS

ISRT/DLET/REPL INDEX SEGMENTS

ALL UPDATES ARE LOGGED

·V$AlNA Sim~le~klSlS.A~
1.t .*><.,:., . .,. . ". . '.. ..<0;:;4.":.--0> __ . " ;.

o e j ~t@;J Ie f» D@(C&
tz- a??·" ,,,.;;;;:;o:a, .. -~,~===nr= "'. ,· __ ·s;......:..,,:::t

DFSDLDVO

R~PLACE FuNCTlONS

., ENe LJQ:=- K EV F I FL n f\1··Jn'~ f'\ L'l';,,'P rp _ ...J I.... I, .. I ," . WI "'_ I \ 1... \ ,- ./

~ llr~ I J: I" Ie r) II L\ I · ... '- "L.\" ,./ \ ... •

LOG 0 I 0 '\'. I ~ >, 1'-\ ,,/
-) "", 1',ll' I 1-,1:-1.. 1, _ I .. I 'It" "- 110-_ ••

- REPLACE OLD VV \ TH i"JE\t.j

DELETE FUNCTlONS

• LOG OLD SEGfV\E~JT

;0
i .

._-_. __ _._._--

c\ HD SPACE i~,J.Np,GEf'1ENT BIT r'1AP

c.

iC'TJ
.. 1>

o
. (").

8 ALLOCATED EVERY 'N' BLOCKS

N=8CBLOCKSIZE-4-4(#RAP'S))

FILLS DATA STORAGE AREA OF FIRST BLOCK OF EACH SET
OF 'N' BLOCKS

o OnE BIT REPRESENTS ONE BLOCK

o B IT 'ON J AT I -AST O~'r '"'n ~,..r I f\ nrr
o

rlll""I'G" ~ !I~LD I -! Lt l'~t:. ~r',~l..C Lr.i\\Jc. chJu"n I U tlU I

LARGEST SEGMENT OF DATA SET GROUP

•

C
-·,

I

.. C)

HIERARCHICAL-DIRECT SPACE MANAGEMENT

BLOCK = 104 BYTES (DECIMAL)

• EMPTY

I FSEAP 1 RAP I FSE ·1

~ 08 10. 0 _ 0 160 I I D

88 BYT.ES OF
FREE SPACE.

• FILLED - 2 SEGMENTS PLUS 2 FREE AREAS (SMALL ONES)

FSEAP RAP SKILL FSE FREE NAME
3010 2044 SEGMENT 521 GElID SPACE SEGMENT

• DELETE NAME SEGMENT

·FSEAP RAP I SKILL FSE Ll8 BYTES OF
3010 2044 i SEGMENT OUl381ID FREE SPACE

FSE
001161ID

-------_ _-_ .. _ .. .

FREE
SPACE

c~ .

o

HIERARCHICAL-DIRECT SPACE MANAGE~ENT

BLOCK = 104 BYTES (DECIMAL)

• EMPTY

FSEAP RAP FSE ~8 BYTES OF

08\0 0 () 160 I I D FREE SPACE

2 2 4 ~ 2 4 96
B tes y

I FILLED - 2 SEGMENTS PLUS 2 FREE AREAS (SMALL ONES)

FSEAP RAP SKILL
3010 2044 SEGMENT

2 2 4 40

c DELETE NAME SEGMENT

FSEAP I RAP
3010 12044
2 2 4

SKILL
SEGMENT

40

FSE FREE NAME
52t GElID SPACE SEGMENT

20

I FSE 48 BYTES OF
lou 1381 ! D FREE SPACE

~2 2 4
56

Bytes

._--------- ._ .• -._-_ •.. -----_

\.,

I FSE FREE
1001161ID SPACE

~2 2 4

o

1.

).

II
- i I

r
V,

7,

8,

1111 <: r:r p (' i I (' f) , ·jT '))" ~
'.J \.J i. \ 1\ , .• 1; v \ J lJ \ J l,

'J 1,1

J i' ~
r .,.,..., n 1 .,-
.I. I,) 1) J

CLOSFST Il\/J~llL~pr ~ ~DArLr~, - I I .1!...1~I_. -.11., .• ' I

(-, \
_I.. .J

(3) r- r.:- r j; ~~ :.' -1-
0LUi IL:';.

i :' r\! f~-f·!!
I._L I \ 'v l I,

('I (,r""""I_ "",'.'1.'-, L.{',.\T".)LC 'r ~f" J "t ' I \ V ' ~.' r-' ! J' ,- !
J • _ J ,) " !'I .l : '\ U :_, ".'. I \ '-" L _ ,

(.l)

(2) ,.-. fr' i,f,r "..11'
"" • .. I I ~ t-. !

\"../ L_ ... : ,L- I' I

L.Ef': C:Tl·j

~~, !. ; ;~: i .. : . : .:

I' r·! \ I
I\!'; I 1) I (I (' i\' L,L .-'\...01\

(~ ~ [i : , [' t, ~ - - I ... !
'.JI.·j\j\L.h ILl

f1 • I \ / ':' I (l t' 1/ 1 r! p'j ,. , . 1\ r·, n:.1 J\; ~ 1 :):) \.1\ ,. j 1 J j') \ j • ." ,

L'I': ',',I t'~'r" :'1' - t-~- V r < T (~ ,
_ ., u J .1'. -'- ,>' I ,-)

L·:;

~.~;~ n
Jill:

,''; ~'T-
,.J 1 •. L

:.)' .~ t • ,:~

~··/\;'·~E

-r " ':'.: i'
~ ,\: \ t., ; \

(" I! ;" ;'\ r- I')

\ .. , 1 1_! J "'~) tr)

: .. r~ j'.
I :J' .. - •
• iI ,~

,"'F,:
• I"
\.. ~

f \'! :~. ~ }' ~:- L': \. r: ! f:- :,' ;'~"
l,· , L.t.! \, "_1 \ 1111 111._

: ~ T' , I 'i . :
j lAid j IlJjI

f\ [.i '.I ~ \ I I \1 C \II I r'J' Ii r.: f) c:
i' I: I ~_ , . .:.JL. \0

1\',;\/ 'lll'Cl' Tr'l l)I-r r\.~!i,f)· (I~J _1. 1\11 C\/L II"""~I'r::-l)S \,,'II-"'r- r~I\V·J\"U·~ SEGr .. ~rr"-'-ni'~ I rJ .. J ,,\ . \ .J. ! ill; Jd" '\ J. ~.ULI\ \'iJ-lL.:..J\t II;-vd 'I JfJ :. 'j):': i
LLNGTH EXISTS

9 I [;i"ll' BLOCK I N BUFFER POOL \'/ 1 TH I N Dl~ Ti; SET

10 I PJ~Y BLOC\('U·~ . E I T f'!/\P \/I TH 1 N D/\T j\ SET I

ICli£f')Z?t ~t- tvJ _ dorL .+0

SLh I ",-,t. "-s 'P".\'.{~~ __ ._--_. __ _

--------------- .. , _----_ ----_ - .. _ .. , _----_

---- -- --------------- -- --

D L / leo N T R 0 L B L 0 C K S

c'

G

-----""--"'--,-- ---"'--'-'--"- .,.

SOU R C E S

P S B D B D

PCB DBD
SEr~SEG DATASET

SEGM
FIELD
LCHILD
XDFLD

C'

()

_ .. _------_ ..
- ----------- --- --- --. - ----~-

o

DL/ I MAIN CON'TROL BLOCKS

'"j;MS)
J).l:::f1 TAB L E (:;: S'c 1>

OF COI\lTENTS
I

(
I

!
- J)fi1l3 (t r;1!'P) 1

PSB

- DATA BASE D,L\ TA BP\S E

"0 I .

!

PHy'SICAL
DESCRIPTION

r

tpSl

RESOURCES
. ALLOCATED TO
THE PARTITION

LOGICAL
OEseR IPTIO

BUFFER POOL·
CONTROL BLOCKS
TO MANAGE DATA

--_ _ -"- .. _-- .--_.

N

'I

>

.-
-.

-"-..
-.

\\ ' C
' -_ .. --.. -'-'-' . -" .. --
,/

- .. (- - -

I

I PSB GENERATED

.------r- ----.------.-----...------.

i
I
I
!

I . -- -" ,,'

C~
I·

- .
,

: ~'v

-SCD -

SCDDL IPS ..---..

SCDDLIPA I

- PST-

SDBXPANS

~~~ .. a...-___ .... 

I 
-SDBXP-

I 

C
i 

~ - ! 

- PDIR-

. PDIRADDR 

- PSB": 
(-PREFIX-) . 
- PSBDBOFF-----

.- PCB

--~ DBPCBJCB 

"'-._--
- - JCB-

. JCBl.EVTB 

..JCBSDBI 

----'11----- - --- -- DSG- . 

JCBAr~PA 

' .. FLO--

----,----_._-"----,, ..... 



r-
U 

~ " 

--- --- --------------------

+ 

DB D GENERATED BL@>CKS 

-SCD-
-DDIR-

DMB NTB 
-----..DMBAMPOF 

@ 

I---DMBPFPDR 
,iCA~BPFQI2!. _ 

}- -DCB/ACB-
r·· ~. · · · · · · · ... 

-DCB/ACB-

,-----""_.'----,,--'" ""'"------"" - ", .. ,.,,,,--



c' 

o 

J'c1' CALL TRACE TABLE 

* FlY E TWO~B\(:r-.E ENTR I ES . 

8'(TE ON I:: 

01-GU/GHU 
. 03-GN/GHN 

04-GNP/GHNP 

. 21-REPL 
22 .. DLET 
41-ISR1-

BYTE TWO 

RIGHT BYTE OF THE 

. STATUS CODE 

: -K·MOST RECENT ON RIGHT--

... 
~.' 

c , .. 
\ . 

-
,.' 

---_._._._--- -_ .. _-_ ............. . ... _--_ ... _-_ .. _. __ ....... __ . .. . . ... _ .... --... _---- ---



D L / I B L 0 C K S 

SCD 

'DDIR -.--- -. '" . PST .-. . PDIR 
. J 

\ 
. '" " .. " ....... "" ... - .... "', .-.-.... . 

.. .... . -, . .. ... - -- " . .., ,,'''., ". ~ ... . 

'-. 

Df1B -}7 PSB 
-, .............. -.. _. .. _ ......... "'- ... ' '----'~ 

\ 
.. ---- .. -.~- - _.-..... _- --.--- _.- .-~ - .... - --- ~.-

\ -. JCB 
- -- .. '_."-_ ... - . .. .. . , -- - _. ... .. -- ... - ...... ,,' "-' ." - "---"- .-.... ~ ... ---.. -.. -._._-" -.... '.-.... -----.,~ 

~ --~\--~-----r-----. \ 
\ . 

.-- - - .... - - - - - - r _. \1 . _. _ ............-.- I 
_._-_ .. - '-'" '" -- - -----_._- -_. - - - -- .. -- -.- \ 

------:- -\--·-I@------DSG---SDB-
,-~--' .. --.. - .... -- .. ------.-.. ----.-- ----., -._._.- -. 1---.-...... - ,. -'- .. - "'-;;f? ' . 

. ? -0---- .. --....... , --... ----- ........ --~~ ...... -, .. -- .'--~ .. -... ~. ,- .. ';.....-0-------.- .. -. '''--'''-' - . 

---_ .... __ .. _. - ._'-'''--- .--~~- .... '_ ........ _,'"_. ---_ .. _ ... '''''. -_... ,.--_ ... , , '-_._-.......... '- .. ' 

-------- .. .-. . .. ~-~ :"'''''~~ ;.;'\)~~. . -....... "-, --- ..... . '.,. ... . "- - ... _-- .. . 

.. _.--_..... '" . .-~~ ,- ... - .... "'- .. 

. LEV 
TABLE 

...-_.- ~'-.,..--"-

I 
FLO 

.,. ...... _ ..... - ------



o 

-PST
PSTUSER 
PSTPSB . 
PSTDBPCB· 
PSTSCDAD 

-SCD-

SCDDLIPS 
SCDDLIDM 
SCDDBFPL 

SDBSYM 
SDBHH 
SDBPSDB 
SDBDSGA 
SDBFCSDB 
SDBSISDB 

{SDBPOSP1 
SDBPOSC 
SDBPOSN 

SDBXPANS 

-SDBXP-

1.1.3 DB Ct I 

-PDIR-

-PSB-

t WORK 
AREAS 

-DBPCB-

DBPCBDBD 
DBPCBJCB 

-JCB-

JCBLEVTB 
JCBSDBl 
JCBSDBND 
·JCBHH 

-LEV-

LEVFLD 
LEVSDB 

, -HH-

• , 

I 

Blks 

'. 

-FLD-

---_ ........ _- ..... _ ... _--_._ .. ---_ ...... _-_ ....... __ .......... . 

-DDIR-

DDIRADDR 

-DMB-

D~IBLENTB 

DMBSECTB 
DMBAMPOP 

-AMP-

DMBPFPDH 
DHBPFODI1 

-PSDB-

/DMBFDBA 
DHBFSDB 

/DMBLST 

···SEC-

-FDB-



o 

c' 

c 

CPA C 

(DMBCPAC) 

"COMPRESSIONAL SEGMENT BLOCK" 

• A CSECT FOR EACH COMPRESSABLE SEGMENT 

• EACH Is EIGHT (8) WORDS LONG 

• PART OF" THE DMB 

• MAPS OUT COMPRESSION ROUTINE INFORMATION 

• ONE CPAC PER PSDB - IE; ONE PER PHYSICAL SEGM. 

r. 

... 
c 
a 

r 
c 

t 
C 



o D A C S 

(DMBDACS) 

• USED TN SUPPORT OF FAST PATH 

,', 

c 

"C" f' ' 

t. 
\ 

,---._--- ._----",,-_ .. 



c· X M P R M 

(DMBXMPRM) 

"INDEX MAINTENANCE PARAMETER LISTn 

• USED By INDEX MAINTENANCE~ITH SECONDARY INDEXING 

ANYTIME A SOURCE SEGMENT Is UPDATED . . 

• CONTAINS XDFLD AND OTHER INFORMATION ON THE 

SOURCE SEGMENT. 

.,', 

._ ....... _ .. - .. --_._----- .... _ ..... -----_ ........ -_.- ----_._._-_ .. _._.--_ .. _.---



.-_.------ ._--

c 
H H 

(HHSTRT) 

"HIERARCHIC HOLDER" 

• BUILT By RETRIEVE MODULE (DFSDLROO) 

I USED To HOLD POSITION INFO. HITHIN A DATA BASE 

• FIRST ONE POINTED To IN JCB (JCBHH +48) 

• ALL HHs ARE FOUR WORDS LONG & CHAINED TOGETHER 

• EACH SDB CONTAINS A RELATIVE NUMBER BF THE HHSTRT 
r-" 
~; FOR THAT SEGMENT (SDBHH + ¢E) 

• HHSTRT OF CURRENT SEGMENT POSITION HELD IN THE 

JCB (JCBACHH + 2D) 

o 

----- .. _----_ ........ . 



-PCBl-

I-Liv-I 

I-LEV-I 2· 

I-L~V- I 

C:. 
-PCB2-

[ -LEV~ [ 
1 . 

.. 

I ~L~V- [ 

0 
I_~L~V~ I 

S D BPS D B R E L A T ION S HIP 

-SDB- -DMB-

Y 
-SDB- -PSDB-

a • __ 

-- ... --
NAME SKILL 

--

-PSBD-
-SDB-

NAME 
EXPR -

-PSDB-

-SDB- EXPR -- .. ----,. 

SKILL 
-PSDB-

-SDB- EDUC 

NAME 

CALL: 
-SDB-

EDUC 1,(0: I 
'" 

KEvFDBK: I 

r 
( 

( 
(I . , , 



-- ---_._._._--_ ... _-

C) 

) 

C 
I .. 

-PCBl-

-LEV-
I 

I-L~V-I 

I-L~V- j. 

-PCB2-

.~.L.EV
LLJ 

o I ~L~V-_I u • 

S D B - P S D B 

-SDB-· 

NAME 

-SDB-

EXPR 

-SDB-
... 

SKILL 

-SDB-

. NAME 

-SDB-

R E L A T ION S H I P 

-DMB- .. 
IlL 

c. 

~ c: 

~j 
c i. 
c. 

-PSDB-
... --., 

SKILL 
---

-PSBD-

NAME 

-PSDB-

_~Xeg 

-PSDB-

CALL: GU SKILL (SKCLASS= PROG) 

PCB1 

L/O: \.-1 P_RO_G---r-,_ST_A_FF_P_RO_G_RAMM_E_R--,I 

.. 
KEVFDBK:· ,"--I P_R_OG_· ---_----a 

._-----_.- ------.... - ... _--_._-.. _-----



---------... ----------~ --- --

S D B P S D B R E L A T ION S HIP 

c' 
j ., 

i 

! 

, 
.. 

'" -

0-. 

-PCB1-

-LEV
I 

-PCB2-

I-LEV-I '1 

[ -LEV-I 
2 . 

I~~L~V-I 

NAME 

-SDB-

EXPR 

-SDB-
-.. - .,-"--"" 

SKILL 

-SDB-

NAME 
-_._---_. 

-SDB-
--- - . ... -.. 

£DUC 

-D~1B-

-PSDB-

-PSBD-

NAME 

-PSDB-

EXPR 

-PSDB-

.. ~DllC 

CALL: GN NAME 

PCB1 

\014430 1/0: JONES, 
- -_ . . - - , 

KEvFDBK: I PRO~ JONES 

JOHN PAULI 

... 
"" a 

r 
c , 
c 



i 
I 

L
r :.". 

" 

, 

C/. 

; 

.1, 

0 . . -

-PCBI-

-LEV
I 

-LEV-
2 

-LEV-
3 

-PCB2-

I-L~V~ I 

[ ~LEV-I 
2 . 

I=L~v-1 

S D B P S D B R E L A T I O'N S HIP 

-DMB-

SKILL 

-PSDB-

-PSBD-

EXPR 

-PSDB-

-SDB- EXPR ._-.---_ .. _ .. -." --.-. 
. - .. 

~. 

SKILL 
-PSDB-

-SDB- _~D_UC 

NAME 
------

CALL: GN EXPR 

-SDB- PCB1 
____ • ___ w ___ .-

_~DUC 110: I08C400-262 AL5 
t .. 

KEVFDBK: ./ PROG JONES AL5 

._-----_ ..• -'"'. 

._,J 

'" "' Cl 

r 
c 

c. 
C 
c 
c 



! 

c) 
., 
I 

i 
..... _0 •••• , 
i 

C' 
j, 
j' --

. -

, ' 

"'" "-.) 

-LEV
I 

-LEV
? 
"-

-LEV-
3 

-PCB2-

[~t~V~1 

I ~LEV-I . 2 ' 

I_~LEV-I 
3 

-

S D B - P S D B R E L A TID N S HIP 

-DMB-

SKILL 

-PSDB-

-PSBD-

EXPR 

-PSDB-

-SDB- EXPR ... - ... 
.~ .- .. -

'" 
SKILL 

-PSDB-

l' -SDB- _rn~,~ 

NAME 

CALL: GN EXPR 

-SDB- PCB1 
.------ --- -.--

I04Z400-367 ~DU~_ 1/0: CB4 
~ 

KEvFDBK: I PROG JONES CB4 ~ 

, .. ' 

0; 

r· 
<: 

( 

C 



-PCBI-

-LEV
I 

-LEV-
2 

P S D B 

SKILL 

EXPR 

R E L A T ION S HIP 

-DMB-

-PSBD-

C~~: ----------------------~ -PSDB-

-PCB2-

I-LEv-l· 'I 

I-LEv-1 2 - -

. I-LEV-I· c5 - 3- .. 

-SDB-

SKILL 

-SDB

NAME 

-SDB-

EXPR 

-PSDB-

CALL: GN EXPR 

PCB1 

liD: I07b300-470 PL3 .' ~. - , 
.. 

KEVFDBK: I PROG SMITH PL3 J 

-, . 
o 

r 
c 
(, , 



C~' S'D B P S D B R E L A T ION S H I P 

-DMB- ~ 
Co -PCBI- a 

r 
c 
( , 
• c 

I-LiV-1 
-SDB-

---0. .. .. 

. ----- -.... - - .... 

NAME 

I-LEV-I -PSBD-2 ' 
-SDB-

I-L~V- I 

NAME 
EXPR 

-PSDB-C' 
-PCB2- ,-SDB- EXPR 

; 

! . 

-PSDB-

-LEV~ .. -SDB- EDUC .. 
" 

1 
NAME 

I ~L~V-l CALL: GU SKILL (SKCLASS = PROG) 

-SDB- PCB2 

I PROG STAFF PROGRAMMER I I_=L~V- ·1 
_~DUC 110: 

~ 

~·O 
KEVFDBK: I PRO~ 

'-"._- ._--- '--"""'--'-"'" 



S D B - P S D B R E L A T ION S HIP 

-PCBl- -DMB-

I-Liv-I 
-SDB-

.. . ----::- .- -- .... 

I-LEV-I . 2 . -PSBD-
-SDB- _. 

-- - ,---.' 

I ~L~V- 1 

NAME 
EXPR . -

! 

C -PSDB-

I -P.CB2- -SDB- EXPR I 
. -Y"'·'··' . 

I 
1·-

-PSDB-

.. ~ -

_EDU_C _~,L~Vc: ·-SDB-r" . 
1 

------. 

GN NAME CALL: , ,,--____ r----
. 2 -SDB- PCB2 

.. 0 'I~L~V-~ I··.. . ... . rIQ:. 1014430 JONES, JOHN PAUL , 
.. 

KEVFDBK:' I PROG· JONES 

---'---'-- . __ . __ ...... _---_ .... ". 

,. 
IlL' 

0; 

r, 
c: 

( 

c 
~ 

c 



C\I 

C 

, 
. I 

i 

-PCBl-

I-LiV-1 

I-LEV-I 2 

I-LjV-1 

-PCB2-

-LEV-. .. 
, 1,' 

-LEV-
2 

. -LEV-· 

S D B 

_ 4. ____ • -- ... _ ..... __ • ._.. _. _ .. _ _ ' •• 

- P S D B R E L A T ION S HIP 

-DMB- '" ~ 
S 
r 
c 

( 

C . 
( 

-SDB-

-PSBD-
-SDB-

EXPR 

-PSDB-

. -SDB-
_~_~PB 

-PSDB-

CALL: GN EDUC 

-SDB- PCB2 

. I!O: I MICHIGAN --- 0664MBA· I 
KEVFDBK: I PROG JONES I1I~HIGAN I 



.I 

C: 

----------- -------_._-----

-PCB1-

S D BPS D B R E L A T ION S HIP 

-SDB-

SKILL 

-SDB

NAME 

-SDB-. 

_ED_we 

.~ 

-Df1B-

-y 
-PSDB-

....... - .'. --

SKILL 
--

-PSBD-

NAME 
-

-PSDB-

EXPR - .... --.-

-PSDB-

EDue 

CALL: GN SKILL 

PCB1 
STATUS CODE = I ~ E I 

1/0: 

, KEVFDBK: L-I --____ 1 

,------ --,"-,-,----,-, 

.I 
-i 
OJ 

~ c: 
I 

c.: 
c' 
·1 c. 



........ __ ._----_. __ •.. _ ..• --------

CiJ " :p 
o 
n 

PRE F I X POI N T E R S 

• SAMPLE' DATA BASE 

.... _._._._ ........ -



·_--_._---_ ....... _- ._ .. _-_._-.. _------

C"I 

c' 

0 

-110 

+20 

+7.8 

+34 

+3C 

S E G MEN T PRE F I X -

S E G ~1 E n TIN H D 

SDB "DEPT" 

SDB "NAME" SDB "LOCATION" 

SDBTARG -.l-( 
SDBPOSP < I . 

, 

s D P P 
l 
P 

C F T T P 

F 13 

L 

P 

. -

"ADDRESS" SDB 

'\ 
P P 
C C 

F F 

SDB "P~.YROLL/I 

/I 
DATAf 

-



C~? 
( 
i 
, 

I' 

IH 
ttl 
::! . 

. I 
(J) 

.-3 
't;-i 
! I c) 
I 
I 

b 
I·· 

I .• 
I 

I I , 

-JCB-

, .JCBSDBl 

-DSG-

-DSG- . 
DSGAMPA, 

DMB# DCB# 

LOCATING DATA IN BUFFERS 

(ISAMIOSAH) 

GIVEN: RELATIVE BYTE NUMBER 

AND DLII CONTROL BLOCKS. 

-SPB-. 

SDBDSGA 

" -AMP-

{ 

DMBPFPDR 
- OR . 

. .DMBPFODR 

-DCB-

RELATIVE BYTE NUMBER 
BLOCK SIZE = NUMBER PLUS REMAINDER 

DMBIi" DCB#J RELATIVE BLOCK#J OFFSET INTO BLOCK 

! : 1 I I .1 r I 'I I I i I ; ! ~ 
I' 

~\ 

...•....•.. _ ...... _._------------



----~---.-.-.------.~-.--. 
------ ~-~-------~ 

c' 

T~J~O Physical Data Bases 

PAYROLL DATA BASE 

,NAME 

ADDRESS PAYROLL 

1':.'-

SKILLS INVENTORY DATA BASE 

XSklLL 

EXPR 

SKI LL 

NAME 
(x NAMe) 

EDue 

---------.. '--~-.-'.' 



log ica I Data Base 1 

SKILL 

NAME 

C', 
" 

ADDRESS" PAYROLL EXPR EDUC 

, 

--------_ ....... _--_._-----



-----------~-----.-

ADDRESS 

............ : •• :'!: .. : ...... ' 

logical Data Base 2 
• i ;&#66'#': s,t·»=t""!$";rtR : " ....... /w·a 

NAME 

PAYROLL 

6;9 dS9 tr7!£iiiF'iEC" 

EXPR 

\ 

•. '1.
'1' 

SKl LL 

.-- -~----- -_. __ .. _----_. 

EDUC 



------------

C) 
SCD EXERCISE 

1. What is the address of the SCD? (PST+1 68)' B'J I 8'D 
--~---

2. What are the user specified IMSGEN parameters for: 
Type 1 SVC Number: t:l~ ;t,.<,l 
Type 2 SVC Number: F_ ~ 1.-).t.f 

Type 4 SVC Number: 12.3 ~ 1,.1' 

Channel End Appendage Suffix: ~"FI (::::- ~I) 

3. What is the IMS/VS 
for this system? 

Release & Modification Level number 
\,\,:7 

4. What is the entry point address of the following modules: 

DL/I Call Analyzer:~~ 1),s~o 
ISAM Simulator: ____ ~~~7~e~$~8 ____ ~~~jQ~{lo 
VSM1 Interface: e,~,,~o 

~~~~~ei~~:;~; ~; U ~tfJ~ 
DIet / Replace: D$o~1
ISAM/OSAM Buffer Handler: C Co G'bc)
Get/Free Space: el? &SQ
Index Maintenance: G,; Ao8

5. What is the address of the PSB Directory? (SCD+E8)
1,7°60

6. What is the address of PXPARMS? (SCD+148)

7. What is the address of the ISAM/OSAM Buffer Pool?
(SCD+2BC) E:~ooo

o

---------- ------ ._ _-_ .. _ -."

--------------------------_._--

Cl

,--.
~J

G

ISAM-OSAM DUMP PROJECT NUMBER ONE

1. What is the current or last used DB PCB address?
C5er:l±

2. How many data base calls have been issued for this
schedule of the program? ~

3. What are the contents of the current DBPCB?
DBDNAME : LOc;;...t-J~t:::
LEVEL: 0
PROCOPT: A P
STATUS CODE: Gr
NUMBER OF SENSEGS: b

. KEY FEEDBACK: A1)AwtJ', Jo4(AJ qvl rJV c,/ (~z- GY11:))

4~ What is the location of the JCB associated with this PCB?
C'S '} -A 't= ' ~tI\'

5. What were the prior 5 calls and(fhI~~ return codes?
0-0 I 6!u-~, G-N-tJ G:.I-~ ~ ~N-J> &\\11-1

6. Where do the SDB's and Level Tables start for this PCB?
lc.:vt;;'1.. 1"~Le- SfA-Q.-"t =- C~ ~c..(...

l -ll:: S\)~ ~-my -= Bt §8 e-

7. What is the lowest level segment which can be accessed by
this PCB? --2_(_

8. What is/the data base organization of the Root Segment?
_HD?\M, _V_HHII1DAM, _HSAM, _HI SAM , _SHISAM

9. What sensitivity (ISRT, DLET,
user have for the Root segment?

REPL, GET, etc.), does the

10. What is the location of the
segment? ' :\2Y'sqo

C :!:fl-D f (~~)

DCB to be used for the Root

11. What is the RbN (if HD), or RRN & Offset (if HISAM) , of
the location of the Root segment? '1..7 A-tf Which
is it, RbN or RRN? {Lb~

12. What is the location of the PSDB of the Root segment?
, ~~4(SJ

13. What is the total segment length (Prefix and Data), of
the root segment? (Hex or Decimal) X'~ -- Ijy
14. What pointers are present in the prefix of the Root
segment?

C,~

~~'1w~ ~ () p \ I'c \t
}:: F. F

"':::b Y~r S::;d "h,~WZlA ~ ((y. \(t(

-~-------- , .. "".,.----------

o

o

------------ _.-------

PAGE 2

~5. What are :he ISR1, D~ET & REPL Rules for the Root
se9 ment? ISRT: 4:q~c..p , %:-'&4., DLET: ta\\~, REPL: to"cJ
16. What is the name of the sequence field (key) of the Root
segment? Ful...-rJA'W\ __

17. Is this field unique or non-unique? V~l~~

18. Why does the instructor want to know all these things?
Can't he find them himself?

~.

-----_ _------_ ... _-------_._-_._-_._---

C

0

ISru...1/0SAM BUFFER POOL EXERCISE

-Use Dump Number 1-

Fill in the buffer pool map below for the buffers labeled
A,B,C, ... from Low to High storage. For each buffer fill in
the Address, the "use chain" pointer addresses, the Buffer
"ID" (Block#, DMB#, DeB#), and the buffer size in Hex. Mark
the End of the Buffer Pool by drawing a line under the last
buffer. Also mark each buffer as to being either Full or
Empty.

STORAGE ADDRESS
**

~~ooo * 'BFPL' *
* Most: E)\2.0g- Least: £A gc~ *
* *
* *

'A' ~bO(O * Next Lower: 6A8'('~ Higher: e gJO~ *
* Size: 1>\'Jo Block: y DMB: 3 DeB: .,......... *
* Full or Empty? E *

~b22..0
*. * 'B' * *
* Next Lower: Get \3tf~ Higher: -E A 2..0 <6' *
* Size: l g-,Efg- Block: 4- (DMB: 'tj. DeB: *
* Full or Empty? . E *
* * 'C' E~1og * --

*
* Next Lower: ~o7° Higher: efJ>c9" *
* Size: ll.CLf- Block: 1/ DMB: y DeB: *
* Ful! or Empty? r:: * * *

'D' e- ~1)C8 * *
* Next Lower: E87ro8 Higher: eZj <f 8 g * * Size: bco Block: -..3 DMB: V' DCB: *
* Full or Empty? p *

e~Lf 8 ~ * * IE' * * * Next Lower: qf'DC~ Higher: ~g'f~ *
* Si ze: G> Cc> Block: 'f DMB: 2- DeB: *
* Full or Empty? p *

tqs~~ * * IF' * * * Next Lower: ~V~f Higher: t:~ €2-o *
* Size: ~GO Block: ~ DMB: v DeB: l *
* Full or Empty? F *

~A-~g * * 'G I * * t=~ 2.2,.0 1>
~

* Next Lower: Higher: *
* Size: ~C& Block: ~ DMBfy 7 DeB: *
* Full or Empty? E *
* *

".'

:~

------,-----_._--_._,---

c

c.

c

Formatted Dump (Dump Number 2)

Using' the DL/I Test Program and a :formatted SNAP after a GET
call lh'e wil1 trace the floll for tllis call. The call was a
GU to Logical Data Base 1 for NAME nnder SKILL. with
unqualified 55A's. ---

NAl1E is a LC/LP concat,nation of XANAM.E and tlA11E in the
physical data bases. We begin when Call Analyzer (DLAO) get
control.

I. 'rh€~ Users CALL LIST is mov'ed to LIPARB5 and converted. to
the Implicit format.

Validate and store the PCB address
PSTDBFCB (+160) at t_~~_I. If
inv'alid, a Uq 76 abend is issued.

I C~IA-t_ t in
the PCB address is

Encode the function to X' £.Lt and store in JCBPRESF
(+7F) at t CS~ A3 I The address of JCB is in the

DHPCB at +10. 'AD' status code is issued if this is an
invalid :function. Move user's I/O area address to the
PSTUSBR (+BC) at ' Bko~L_·.

II. Find the snB for the name in the SSA. The first SDB is
at JCBSDB1 (+8) at t_.£.~f'J.._~t. Since this is :for the
SKI.LL segment we found the correct SDB at f ~ ~g~_t.
an ·AC· status code is issued if there is no SDB for the
segment name in the SSA.

Find the Level Table entry for this segment. Segment
leve1 is in the 5DBLEV (+8), and the start and end of
tIle Level Table is in the JCB at JCBLEVTB (+O) and
J"CBLEVND (+4). Level One entry is at '~~.!:l~I.
Store the address of the SDn at LEVNUSDB (+20) for level
one.

III. If there is an SSA (in our case there is), is th e
segment naxae fol~owed by a. blank, "CD or *. If it is a
n (" store the address of this left paren at LEVSSA
(*1C). LEVSSA. is at t_-f..~1L_,_'-

In. our ca.se there is no "field 1evel gua1ifica tion" in
the 55!, but if there was the FIELD name n,ust be
validated.

SDBI}SDB (+1C) points to the Physical Segment Description
in the DMB. Within the DMB there is a PSDB for each
ph:rsical seg·ment. DHBFDBA (+10) points to the FDB's

F'" ... ~C+~
pee,
3(0 -Mf""
(S~,,~ ')

c

PAGE 2

within this seglilent. The first FDB for the SKIL!:..
segment is at. ' ~~2~'6 ' Turn to the Field
Description Block in. the DSECTS an<l look at the FDBDCENF
(+A) flag. If a gua.lifie(l S5A attempted to search on a
field and no PDE \las found an tAK' status code vou1d be
returned a.t this time.

Looking at the DL/I call format, this is where we are:
FUNCT SEG (!!~ OP VALUE)

The next thing to check is the Q1:ERA~.
encoded a.nd checked against the valid ones.
OI?ERATOR gives us an _1)-~_ status code.

It must be
An invalid.

The method used to check for the field Yalu~ length is
to take the length f'roID the FDBFI.ENG (FDB+'Bt), add that
to the starting location of the !al.ug

anil compare for either a righ.t parena or boolean
operator. The field SKCLA55 in segm SKILL is how long?
The FDBFLENG is at 'Ji:2~_' and contains '-L·, so
at plus '_1._, into the ~lug there would be either a
') t or a boolean operator.

IV. I£ there is another SSA we repeat step III. When all
55A's are va1ida ted and decoded., CALL ANALYZER next
checks the Processing' Options for any "violation'. This
check takes on greater importance on an ISRT, REPL or
DLET! The test for these calls is made against field
SDBf.'3 (SDB+'A ') which is at ' __ Bl\-~4". 'and is '_Ei_'.
Ch.ecking in your DSEc'rs this PROCOPT is:

At
Call Analyzer is finished and
goes to the proper 2£tiQ!!'
Load./Isrt, Dlet/Repl)

depending on the function
module. (ie: Retrieve,

V. An.alyzer calls RE'l\RIEVE (DFSDLROO) since our function
ViiS 'GU·. Retrieve initializes l)ase regs for DBPCB,
JeB, SDB (root), LEV 'rAB and its Work Areas. (Rl was set
to the PST address by DLAO) The first check is for a
Qua.lif'ied or Unqualif'ie(l call (is there a Seg name?),
ours is Qualified.

Next check is whether or not eX'istillil position can be
used. Check the LEVF1 (LEV +'1') for nLEVEM:.PTyn(Bit 1)
on each level in the call. At this point in the
processing the LEVF1s were: LEV 01 = r 40 I; LEV 02 =
Iq.O'; LEV 03= 1'l1 1 • Theref'ore the --1:_ 1eve1(s) in our
call do NOT ha.ve existing (Previous) position.

Since LEV 0 1 position vas not lIusa.ble lt , DLRO clears the
top half of all level tables below the root. This means

c

c

t he ones at • CS' ~.J!l __ • ana t

DBPCB.

PAGE 3

~2,A~ CI _ t in our current

The org auiza t.ion of this DB must be esta blished •
SDBORGN (SDB+ 19') for the root is at , __ ~~(' • and. is
1 ~!L' • 'l'his means it is in '~_'.

Follow the SDBFCSDB (SDB+' 10 ') pointer to the !!M1E SDB
and since this is the "end" of the cal1, set on SDBEOC
(Bit to I in SDBI"6 w SDB+'D'). This "Retrieve Switch" is
going to be set again, so at the ~ of the call SDBF6
for NAME at I __ ~~ __ • is I _/QQ._,w. Prior to the value
you see in the dump it vas t80' for the SDBEOC flag.

V'I. Retr'ie.ve is going to the buffer handler next so it puts
an '08 1 in Reg 1, an '04' in the DSGINDA (DSG+'7'), and
calls the I/O Interface (part of DLROO called SETL).
SE'rL uses this info to call the buffer Handler with a
value of tFO' in PSTFNCTN (PS~l+' 16C'), and the address
o:f the PST in Reg 1. A value of "PO' is ca1led
PSi' 5',l,...1>~ • This means ttget the first LRECL by KEY in
HISAM", in our case, the first SKILL.

VII _ Buf£er Handler Router (DFSDVBHO), calls ISAM/OSAft
Ruffer Handler (DFSDBHOO), and decodes ·the PSTSTLBG to
mean "locate the LRECL with the lowest key in the data
base. tJ DBHOO calls ISAM SIMULATOR (Dr'SIS!!OO), which
uses SETL to locate the first ISAt-l LRECL in either BISA~l
or OlSAH. This is based on the DCBMACRF field ill the
"primed DCB for this DSG. The SDB (for SKILL) +'24 1

points to the DSG at I~~~~~' and the DSG +'0'
points to the AMP at • _J~.J2~ , The AMP + '18' points
to the ISAM DCB a t '--~!!.:1:t--'.

If: the ISA11. LRBt."L has an overflow pointer (P1), get this
LRECL via OSA 11. Wherever the lowest key is fou n.d (ISA M
or OSAt1}, the block is read into the Buffer Pool. The
fields filled in. now a.re:

PSTRTCDE (+' 16D ')
l's'rOFFS'l' (+' 16E-)
PSTDMBNI1 (+' 178 ')
PSTDCBNM (+'11At)
PSTBYTNM (*' 17C t)

PS'I'DATA (+' 180 t)

All of this is traced by· DFSDVBHO into the DSBC7
t BPSPTRAC', and control returns to Retrieve.

V III. Retrieve moves PSTBYTNH (+ I 11C I) int 0 SD Bl?OSC (+. 38 t)
and PSTOFPST (+'16E') into SDBPOSN (+' 3e ') for "current
position" and turns on Bit 1 in SDBF'6 ('+ ID') showing the

c

PAGE q.

SDB "posted" for SKILL. Retrieve next sets Bit 4 on in
all dependent SDBls to show "not posted". The level
ta.ble for this level (01), is plugg ed into JCBLEV1C
(+120 1). LEVTTR (+14 1) and LEVSEGOF (+'8') are plugg·ed
with the SDBPOSC and SSBPOSU data. to "saven position
i.nfo.

The key o£ this segment (in this case "ANALYST "), is
plugged into the PCB Key Feedback area (DBPCB+ 124 ') at

'-czr-'-L I •

TX.. The next SSA in our call is for "any" NAME under the
SKILL just located. This boils down to the "first" NAM.E
under t.he established SKILL of ItANALYST". 'I'he SOB for
~IA~lE is located by following the SDBFCSDB (SDB+ a 10 ') i.n
the SKILL segm. 'J'he NAftIE SDB is at r_~!:t-'.

Back in step V. retriev·e reset (cleared) the top half o£
the level tables of all dependents of SKILL. Therefore
level 02 cannot. have "position." to use.

The subroutine that is used here is called "Forward this
Level" and its purpose is to get a. segment at this 1evel
bil a "forward" search in the data base.

Our SSA for level 02 (NAME segm), is unqualified and any
NAME segment at this leve1 can be searched. This is
true because th.e LEVF2 flag (LEV+ t 2 I) , at '--E..S,1t7L I

is '-2L I, which is called LEVCc~"- (S<iCUc4 Wt~ tlw+~~ cz1 Ibr.. l£w~)

Now if retrieve gets the next NAME under the SKILL of
"ANALYST n we are in fat-city! Once this is done SDBF6
{ .. tn'} has SDBCHEOC set on (Bit 3) to show· this seglIl is
the ttchild" ena-of-chain. Th.is segm is in HISAK and is
invol v-ed with logical re1ationships so we must check the
Delete Flag to see if this segm is a vailab1e on this
"path". 'I'he DF is '00' so all is well.

The one we got was "JONES, JOHN PAUL "and it' 5 not
deleted so retrieve now posts its position in the SDB at
SDBPOSC (+'38') ·--tliP~ __ t (RUN) ana SDBPOSN (+c3C')
'_.!d!1JE_· (Offset). The RRN is • -1._' an.d Offset is
'-2 __ ' in the OSAM (overflow) data set.

SDB.F3 flag (+'I~I) for this LCbild has SDBSENK on (Bit
4), 50 this segm "fill !!Qt lle returned to the user even.
though this is the lowest 1eve1 in the call.

x. Check the SDB'I4FLG (+128 1) for N·AME segm. at t 6~grc __ ,.
T}~is value (101'), means the segment we have retrieved
points to a LParent and the LParent must be retrieved.
l>oes this seg·m (the LChild), have a. Direct Pointer to

c

XI.

PAGE 5

the LP? Check th.e DM BP'I'R (PSDB+ '7 ') at • -.J2.lf"?0_ I
'Which is t -2.L..'. Irhis means there is no LP pointer ill
the segment prefix. In fa.ct this means the entire
prefix is 2 bytes long so the Symbolic Pointer must be
used.

The SDB for our LChild segm is connected to its LParent
via the SDBTARG (",128') w-hich points to a Gen.erated (or
" o ut-of-line ft

) SDB at I JikiG- • It is easy to check
this SDn aga.inst an "in-linell one S1nce the first 8
bytes are zeroes. Check the SDBTFLG (+ '28 1) for this
SDB at '~J~_._'. (It tells 4 things about this
SDB.) This SDn points to the DSG (SDBDSGA + '2q·) at
, CS-'3~..L-· and the PSDB (SDBPSDB .. Il.e·) at
• _~Z'..1>'§ __ ' •

Checking DSGINDA (... 17 1), for the LParent at '~SA~_ I
we learn that this DSG is for a .HIDAM data hase.

This out-of-line SDB points to another SDB via t.he
SDBTARG (+t28 1) and this SDB at t __ ~~. has an
SDBORGN (+'9 ') of '~_' meaning it is f'or the Index
llata base.

Retrieve now has the SDB, DSG and tbe KEY of the "NA11E"
segm (LParent) we .ant, so it sets Rl = '16 1 and goes to
its I/O Interface (SETL).

~'he ca.ll to Buf.fer Handler is prepared by p1ugging' a
IF2' in PSTFNCTN (+'16C'), putting the address of the
"Key" in PS'fBITNM (+ '17C I) • and going after the HIDAH
Index.

Buffer Handler sea.rches the ISAM index <lata base to
locate our Key and returns with the RRN of the INDEX
segment in PSTBy'rNM (+'17C') which retrieve plugs in.to
SDBPOSC (+138 1) at ' ___ ~~~ ___ I. This RRN is ' __ A--' and
SDBPOSN has the OFFSET from PSTOFFST which is
, ___ ~ __ • In the prefix portion of this in~E

segment is the Rb:N of the LParent segment we want.

This RbN is next used by retrieve by moving it: to
PSTBYTNM (+'17C') and makin.g another ca11 to Buffer
Handler with a PS'.rF'Nc'rN of 'E2' (Byte Loca.te) • This time
we are going after the HIDAM DATA data base.

'110 locate a seg-ment in the HIDAM data. base lie must "back
up" the SDB' s from the INDEX on.e to t_he HIDAM one by
ta.king the SDBPARA (+ 120) in the INDEX SDSe SDB 's. at
, _J),L{6€'C • whi.ch contains I _~J.&:-__ f. Both of th.ese
are out-oi-line SDB's.

c.

c.

c·

PAGE 6

XII. Buffer Handler must do a convert of the RbN to ReI
BLOCK Number and Offset this time, but if all is well it
finds th.e segment. Bufr. Handler returns to retrieve
w'ith PSTDATA (+' 180 1) pointing to the segment in the
buffer pool. OSAfi was used. to read in the block tha t
contained this segment if the bl.ock was not in the
buffer pool.

XIII. Retri.eve now has the LParent segment an
of the position. The SDBPOSC and SDB
' __ ~~~1L._t and '_Mfe2L_' are 11 .
The LParent segment just retrieved starts
Check these values against the PSTSY~'NM
fields in the dump.

ooes a post
SN values at

and ~b"'.
at 'B9BC6·.

and PSTDA'rA

The key of this segment is found. by taking the SDBPSDB
(+' 1C ') pointer to the PSDB at t t5:D~_'. At '10'
into the PSDB is the pointer to the first FDB which is
at • __ C~£ __ t. Ch~ck each r'DB at FDBCENF (+'At) for
Bit 1 on. The FDB named _~tJ 1M. is the sequence
field for the N1UIE segment and it is t _~.?Lot byt.es long
a.nd starts in col. '_111_ Check this length against
SDBKEYLN (+'20') in the dump_

This key field must be extracted from the segment just
retrieved and plugged into the DB1?CBKFD, but where? At
this time Retrieve is working on the flout-of-line" SDB
for the LParent at • _-2~2.E.:..-_'. In this SDB SDBPARA
(+'20&) at '_';4~~ C-- 'has ' __ Ji~21_' which is the
address of the SDB for the LChild.. (NOTE: The ":in-1ine"
SDB's point to "out-of-line" SDB's via thier SDBTARG
field, and the first "out-of-line" SDB points "back" via
its SDBPA.RA field.) The SDBPARA (+'20') for this
segment at • __ ~if3.£'.I: __ ' has • _J_l{, %8'c.- __ ' \fhich points to
its parent. By following these two SDBPARA's we end up
at the root segment. Taking the SDBKEYLN (+20') at
, ~'igAc __ ' for SKILL which is ,~_. we have the
offset within DBPCBKF<D for this KEY we have retrieved.

Taking the SDBFCSDB (+'10') in the SKILL SDB we come
back to the SDa for NA(\lE at '_!?±f1.2L_'. In this SDB
at SDBKEYFD (+30 I) at '-~L-' is where retreive
plugs the address of the key offset. This address is
now used to move the Key of the segment just retrieved
into the DBPCDKFD.

XIV. This segment is the lowest level in the call and the
lIeal1 sensitivity" at SDBF3 (+ 'A ') is t.£.L', so this
segment will be returned to the user. The 1ength of the
prefix in DMBPRSZ (PSDB+ '8') at • --f~E'~' is t t'V1.!..
and the data length in DMBDL (PSDB+ IAt) at t ~~12EL-_'
is '. \~~o t. This data, length is plug ged into PSTSEGL

c

c

PAGE 7

(+tB8 1) and the prefix length is added to PSTDATA
("'180') and placed in PSTSEG (+B4 1) all by retrieve.

The address of the Level Ta.ble for this segm _ is
"posted" in the JCBLEV1C (... ·20·) at '--.0"g,{,q I and
Retrieve returns control to Call Analyzer.

xv. Analyzer plugs the Key Feedback length into DBPCBLKY
(+' 1C') and returns control to Program Req-uest Handler.

Program Request Handler moves the segment hased. on the
address ill PS'l'SEG (+'B41) to the add.ress in PS'IUSER
(+'BC t) using the length in PSTSEGL (+IBOI) and returns
control to the application program.

UPDATED: 12/20/76

c

I. Our task is to ISRT a new 'SKILL' segmen.t (in Logical
D.B. 2), which is a Logical Child 'XSKILL' in the NAME
data base (ISn~l via. the Physical Path) and a Logical
Parent 'SKILL' in the SKILL data base eISHT via the
Logical Ilath) •

The first call ill the dump is a qualified tGU r to the
NAME segment of BRUIN, FRED J. This call establishes
"position" in t.he data base so that the ISRT call. that.
follows places the SKILL of AR'ltIST under that particular
NAMF;. The GU call is snapped so that w·e can look at
some of the contro1 blocks & buffers "before'" t.he ISR T
call.

A t this time t.urn fOr\fard to the ISRT call (about 10
pages in the dump), and you can see the exact call as
issued by DL/I Test.

II. Flow is the same as :for a GET. Call. up through the Call
Analyzer. The call i.s decod.ed to be an Insert, and the·
PROCOPT is checked to be 'II by checking the SDB for the
segment being inserted. In th.is instance we must check
th.e SENSITIVI~'Y of the "SKILL" SDB. Scanning the
interpreted side ofmthe dump on page 129 we find the
value "SKILL". 'fhis is the the SDB which starts a.t
• _-12.a+lli __ ' • The SDBF3 (+' A') a.t t --fi..'1:9.(,~ _' has
t _:1£..._' _ No matter what other bits are on, if Bit 1
('40') is ON this segm.ent, is OK to insert vith th.is PCB.
Once we have passed this test, Analyzer gives control to
DFSDLROO - DL/I RETRIEVE.

III. Retrieve esta.blishes position in the HIDAM data base
for the ISHIi of. the XSF.ILL segrilenT. (th e Locica.l Child)_
• position' in this case re:fers to the Hierarchical
1ocation within this data base record where this
particular segment must go. In order to do this (and
fol1o~ the Retrieve flow), locate the PST at I __ ~~OO~_',
go .,..t 160' to t_~' (the DBPeB address) which is
• ~~~~ ___ t, nBPCB + '10' to the pointer to the JCB
which is at '...Q.2L~_t and plus 8 in the JCB to
'_C:SJ.A..~ • • lJ'his location contains • _j?~8'8c.. • which
is the address of the First snB in this PCB. The first
8 bytes of that SDB are t YA-~~..!._I which is the
na.me of the Root segment. This segment has position
which was established by the first 'GU' call and by
looking at SDBFOSC (.. 38 1) a.t '-i.1.crc:t_, it is
, 11-S-lf=- ' •

At SDBFCSDB (+ '1 0 t) , at '.:....-i'll &..i.c=:_' there is' 4- tj) •
(Half-Word) which is the "Offset" to the first ChildSriB
for this segment. At that offset is segment name:
__ .~1)~~. At SDBSISDB (+ '12') in this SDB

c

PAGE 2

I I>l{f~ t is t 1r. t That poi.nts to the first
Si.hling SD:.e for this segment which is
na.med: __ ~~_. The SDBSISDB in this segaent at
I ~v\4~' takes us to the "SKILL" SnB at
, 4~qJD~_'·

Retrieve uses the "current" position of the "NAME"
segment and by reading the prefix pointer in that
seg·ment 1:or the Physical Child "SKILL" gets the first
sE;gment to check for position. The key field of thi~';
"SKIlL" segment is read and compared to the Key of the
segment in the uzer's I/O area. In our example the
first "SKILL" in the data base record for BRUIN, FRED J.
is nnWl73" (Photomurals). The Key fields are compared by
retrieve and ARTIST comes before BH173. The "position"
(RbU) of BH 173 is placed in SDBPOSl'l of the "SKILL" SDB
at '_Jii6:Q __ '- 'I"his nbl-l i.s '_I'H~c __ ' Since th.ere
vas no SKILL 10weI:' than the one being inserted. Retrieve
plugs zeroes into SDBfOSP a.t· B~~1L __ t. The SDBFOSC
is !!.Qi filled in at this time. (The value J'ou see th.ere
is your dump was placed there latrer in this call flow.)
RHmember tha t this in not the actua1 "Physicaltt location
011 DASD where the new 'XSKILL' segment will be inserted.
Once this 'position' is found control passes back to
Call Analyzer uhich next passes control to Load/Insert
(DFSDDLEO).

IV'. Our se9ment ·to be inserted (SKILL). is a LC/LP
concatEnation. The SDIl'ltFLG field (SnB +28) • _~.!f_'lg-v_ •
has a valu.e of t _I?..L' which. means that this segment
'Points 'I'o A Logical Parent'. 'l~herefore LoadjInsert
must check for the Lparent. _ In our case the LP is in
the data. base, (SKILL of "ARTIST ft). The Insert Rules
are f.ound by ~ staI:ting at the SDB a nd. following the
SDBPSDB (+11C') pointers to the PSDB for each segment.
First is XSKILL and the field (DKBISRT) at PSDB +'C' is
' __ ~\(l1v_t which is • .2-2-.'. To get the LParent PSDB go
back to the SDn (LChild) and take the SDBTARG (... ·28·
actually +'29'!) to the out-of-line SDn at '~Je2..~_'.
The SDB points to its PSDB which is at • C5tFi:' Nov
go plus ·C' (DMBISRT) to • CSJ~oL t for the ISRT rules
field which is '~.I_ The Insert rule of Logical means
that if t:he LParent has been inserted in the data base
previous1y onl~l the LChild portion of the concat.£nated
segment will be inserted. However if· the LParen t did
not exist both the LChi1d and LParent will be i.nserted
into their physical data ba.ses_

Next check the file org-anization of i::hfl LChild. at
SDBOHGN ("9' ~i5b) '}. Ours is • ..flQ-.1 a nd that
means _ 'It'*, .. t+tl)~

Is this segment an Index SOUR.CE segment? (Secondary
Ina.exing) Check. PSDB +20 (DftlBPLAG) ·--12..rl~_· which has:

V •.

c

c.

PAGE 3

, _11_ • • A valu.e of: t 10' means t his segment is an INDEX
SOURCE; '04' means it is INDEX TARGE'l~. This means there
is no call to Index Maintenance for this ISRT.

Check t;,his segment f'or Fixed or Variable
DHBVLDFG (+18 '_~~') in the PSDB. Ours
which means ---~~.!t.--.

Length at
is: I_~_'

Based on the 'position' given to Loa(I/Insert by Ret rieve
now locates space for the "new" seg ment, '·XN AMEli by
placing an' 01' in PSTFfiCTN (+'16C'), (this is called
"get spacelt), and also putting the RbN or the parent
segment "NAME" in ISTBYTN'M (+ r 17C I) and calling fID Space
Management. This RbN of the parent segment came from
Retrieve when it established position for Load/Insert.

'Ihis is the criteria for a "get space" as used by llD
Space Mgmt:

Space in the same BLOCK; In a Block on the same DASD
TRACK; In a Block on the same CYLINDER; In a Block
within the SCAt! limits (Delta cylinders); ana if all
else fails, the end of the Data Set. HD Space
Management makes calls to the Buffer RandIer to find
the "l1ost Desirable Block" in the data set for this
"new" seglnent. In order to f'ollow the activity of
HD Space Mgrut. a Trace Table is provided. In your
PLM Vol 3 of 3 on Page 6.109 is a diagram showing
the locat.ion of the HDTR. In the dump the PST+ 1168 1

is at '_J?JuJ2 __ ' and the seD is ~t '--.!?jJJE-_'
and the HD'IR (SCD+t 160 1

) is • _~c.3~'. .:t~~ is
correct for Rel 1.1.3 even if your PLH says '164'.
'l!hat value was correct for Re1 1.1.2!! (The DSECT
description of HDTRX is also in your PLM '101 3 of 3
on Page 5.150) 'lthe HDTR+'q.' points to the "current"
ent,ry in t.he HD Sp r'lgmt trace at' Be .3.}"-o . • Turn
to Page 6.110 in the PLM (3 of ~ , for a "map" of
the dsects HDTRACE & HDTRX. The ··current'· entry has
a function code at t ___ ~;>~t of t -2.l_, which is a
"Get Space" reguest. At UDTRX+ t 10' at. I--.f?~~'
is' ''2..C~. which is the RbN of the "parent" segment
which is· the block where Load/Insert wants t.he "get
space" search to start. In this case the parent is
the NAME segment for Fred Bruin and the RbN was
supplied to Load-Isrt by Retrieve. This RbN is
passed to the Buf:fet: Handler by HD Sp M·9mt in order
to see if space is available in that block for the
"new" segment. If there is no space the criteria
mentioned above is used to find space in the data
set.

In the HD'J?RX at + '14 I is the RbN that l1D Sp tlgmt
passed back to Load-Isrt for the XSKILL segment to
be inserted. This is the value that Space Mgmt
placed in PS~'BY"rNM (+t17C t) when it vent back to

c

c.

PAGE tt.

Load-Isrt. At flDTRx: ·C' t_.6c.:~~c.- _' is '_ePr~L'
Wllich is the add.ress (in the buff:er pool), where
this RbN actually exists a.t thi.s t.ime. Th.is address
is returned to Load-Insert by Space Mgmt. in PSTDATA
(+'180'). At HDTRX+'S" J>C~S"L 'is '..£<2._' which
i-s the return code passed bacJt to Load-Insert in.
PSTHTCDE (+ '16D') •

Remember tha.t this dump was taken after the entire
call cOLlpleted and the PS'l' fields just mentioned
hav'e been changed several tim.es!!

VT. Space Management Returns to Load/Insert -
A. with the following info:

PSTBY'l'NM (+17C 'JJi.\~L I) - Rbtl location of where
to put the new segment being added. (Dual purpose
field comin.g-and-going!l

PSTDATA (+180 '--fl!e!.<6~ _') - Address where seg-mE'nt
oata for the New' LChild is located.

PSTRTCDE (+16D '-.-!?~ill_·) - Return cod.e (if '03'
the bit map must be updated) •

B _ The next opera tion is to build the complete segment,
both Pre£ix and Data portion ana move it to the buffer
poo1. The Data portion of the seg'ment comes from the
Users I/O Area PSTUSER ("Be I -J?~L .) , which at nthis"
time i.e; 'C2Fl0 r and not the address you see in the dump.
That. adllress has a. pointer whicb. has been updated to the
Llarent which comes la.ter in the call. fl.ow. The Prefix
is "carvedrt out with a segment code t.aken. from the PSDB
for the SKILL segment. Tha t PSDB is at • J.\f.\f.ri __ I and
the code is • -:#_ f. Th.e delete flag is plugged with a
00 byte and then the number of blank prefix-pointers is
esta.blished by reading/ _ the DMBP'ltR (PSDB+t 71) at
._~~'-tg~_1 which is t_~_. and the DMBPRSZ (PSDB+tS')
at '-A.lL~ __ 1 which is '_~_f. The DMBPRSZ tel.ls the
size of the prefix, and the DMBPTR tells what pointers
'Are present. The val.ues there mean that we have
l~~tclf". 1\vIlV ~,~-1tb!J~-' poin ters and the prefix is 10 (:: A,,~)
bytes long. The values JROVen into these prefix pointers
come from two locations. The Physica1 Twin Forward
pointer comes from the SDDPOStl field at • 2ltt(A~ t
Hn.ich is t_ll~c _ I. The Physica.l Parent pointer comes
from the parent an.d we follow the SDBPARA. (+. 20 ') at
, ~Ui.-· to t,he "NAriEu SDB and go to SDBPOSC at
, ~18 C/ • ana get '_U:...e-±- t ana plug that into the
pp pointer. ~rhis completes the bu.ild.ing of t'be segment.
Load-Insert updates the SDB current position ho1der
locat€-d at t ~4'tq~,. which has' -1:~_ t SDBPOSP
and SDBPOSN were fi11ed in by Retrieve. Load-Insert no\?
InOV"eS the new segment to the address in the buffer pool.

Map out th.e segment here:

L°'fl<b{ l3~c. \ Il-ct~ ArRTlS-r~~
~~) i)p P'f P1tt Pp VIJ\ Q?~)

1.. 1.. ~ 'f &

PAGE 5

If logging is being used (in this case I used a DD DUM11Y
for the log·),· the NEW segment insert.ed in the data base
w i.ll be logged out now.

If the return cede from Space Management, PSTRTCDE (+-16D
,~~_t) \las all. '03', a second call to DFSDHDSO
(Space t1anagement) is made to upiiate the Bitmap. The
value in the dump at HD'l'RX+ '8' at • _ (; c.:;~~_, is - ...Q.,O_t
so no call to HD Space Mgmt. with a Function Code of
'03' is made in t.n.is dump, but if an update was to be
Dade this is the time!

Since the Bitmap is i tsel f a IJlock in the da ta base,
t h.is change must be logged out.

'l~he Hier-Ho1der (liff) is updated nex.t. This shows any
s ubseguent user that thi.s new seglnent is really there!

v-rr. Our XSKILL segment is physically paired so DL/I must
ISR'l' the paired segment (XNAME) over in the SKILL data
base. We discovered this Physical. Pairing- when ·we looked
at; the PSDB+' 20' (DiiBFLAG) for the LChild segm.

Re-positioning oursel ves at the "SKII.L" SDB at
' __ .h..~L· lie find SDBTFLG (+-28 t) is t~L' and
SDBTAHG i.s ' ___ ~t.b?JL. '. 'llhe Gen 'a SDB pointed to at
this address has at SDBORGN (+'9 1) at , __ ~~t,lfF _' an
,~. meaning it is in HI>~~. SDBTPLG (+'28-) at
• _-.li!f.Ht:f~. is I _"3L' which means this SDB is Generateo.
and points to a LChild (ie: XSKILL). SDBTARG is
t _~ bc"e. • l-1hich points to another Gen'd SDB. In this
snn at SDBTFLG ' __ ,>jjy-±_. is '--Lt2- 1 which mea.ns this
sIte for Physical Pa.iring. 'l~he SDBPSDB (+clC') at
t _ B~to~ I has t _..c-,.?1)~ ____ 1 which is the PSDB for the
"F'aired" LChi1d.. flo",. that we have 10cated the SDB and
PSDE for the "Paired" Lchild. we can con.tinue \lith t.he
ISRT!

St:gment X.NAM E, t.he paired segment, is a HISAM Dependen t
so a different insert path is taken:

A .• DFSDDLEO first locates the point in the HISAM LRECL
con.taining the "previous" and "next" segments in
sequence so that we may insert the new segmen t. Next
it scans the LRECL to see i.f the new segment will fit.
If not it must get. a nelJ LRECL to hold the new
segment. The change to the old LR.ECL is to place a
(P2) Pointer to the new LRECL and. move the 'old' segm..
in the added LRECL after t,he' new' s egmen t • If there
is room in the existing LRECL all that is needed is to

c

c.

'shift· the old. segn~ents
(All this is being done in
no room in the tnew I LRECL
oif another new LRECL
'pushed-off' segments are
origin al LRECL) •

PAGE 6

and write the new one in.
the 13uffer!) If there is
for the £egment(s) pushed
is allocated and the
moved there (from the

In order to accomplish a11 this nlocationn , Load-Isrt
must. read the LParent segment (in ISAM), and follow
the data-base-record loooking for: the :first "XNAREIt
(ano. do a Key comparison) , or the end of
Data-Base-Hecord. 'I'he segments are identified by
segment codes and we find the SC for XNAME by starting
back at the Gen'd SDB for this Physical. Pairing a.t
I .. !?4-bcv I. The SDBPSDB (+'1C') at f ~~le-g_.' has
I --t-.!2J2.~' and that PSDB has a SC o:f • 02._'. So,
the "scan" will sta.rt. at the root. and look £or a SC of
'02', > '02', or end with a P4 poin ter (4 bytes of
zeroes) •

In this example there are no dependents of the SKILL
"ARTIST" so the F4 pointer is reached first. There is
no room in the LRECL in ISAM for any dependents so the
"position" :for our new "Paired" LChild is in a new
LRECL in OSAM.

B. 'rhis is a 900d time to map out the SKILL segment in
the Buffer Pool, so here we go! To locate a HISAK
root in the buffer pool we must know the DMB #, DCBt,
and BLOCKi. The first two are found in the DSG, so
it t S back to the snB for the LParen t at • ~!l.b3_~ t
again! ! The SDBDSG (+'24· ') at '--'L,&(;,o _. has
I c.?~t}t_ ' The DSGDMBNO (+'q' Half' Word) :is t ~.
a.nd th.e DSGDCBNO (+. 6' One Byte) is 1--1LI_ I, and v-hile
we're here the DSGAMPA (+'0· Full Nord) is
I CS~Ao' When a HISAftl root is retriev'ed the
IIKEY" is given to ISAli and the BLOCK is returned to u~
in the buffer pool. I will play ISAM and tell you the
BLOCK is 11:1. Also in the DSG at DSGBOFF (+'C t)

'_...Jj • is the offset 'W'ithin the B10ck for the
segment.. Now you have the BLOCKi, DBM# and DCBt· and
we are ready to jump into the Buffer Pool. (Ouch!)

C. Locate the seD at • f:,q \ 80 • and look at SCDDBPPL
(+'2BC') at ' __ ~~-=--vhIch is '_ ~aoo t and go
to that address. Now we are at the rBI/PL-. or the
Buffer Pool Prefix as is says in the DS ECTs.
Searching t.he pool for a segme:nt is done via the "Mest
recently used buffer" at BFPLFWDT (+'8 1) at
I fJeoo& _. which is' -lli£..L-.-I. NOll look at the
dsect "BF'FRDS fI for an in ai vi dual buf fer and com pare:
'llhe BLOCK at ""C' ' __ ~2..,1 with what we are
looking for ('00000001') ; The DMB at +'10'
t ~_ I with our DMD#; The DeB at +'12' with. our

1>.«£* -= 3
) t6.lt ::=,
I!>~c~.dc~ I

o f'F K-T :. 1')

c

c

PAGE 7

DCB. This is NOT the buffer we want, so take the
BPFRF~lD (+110') at I __ g~~p~.o __ ' which is ' 6~L_'
and. get the next buffer. Do the same comparison again
for BLOCKi (+'C') at '_~1?!:f __ ', DMB* (+'10') at
'_a~~L_t, and DeBit (+'121) at '_gtl]:f\- I This
time we have an equal compare on all items a~is is
the buffer we w·ant. According to the ~:he
Buffer Prefix is t 20 __ ' bytes long, so if we add the
of'fset (from the DSG) to the start of data we arrive
at the ISAM LB.ECL at 'E'~~Co' • The first thing
here is a Pl Pointer of '000000" showing there are no
roots ch.ained off- this one. Next at ' g8 ~<t.t __ t is
the SC ot • 01', delete flag of '00', a poi.nter of some
kind at • __ El~ __ ' with a value of '00000001' and
the start of data a.t 1--,I--~<6t:?bA ' To determine vhat
kind. of pointer that is we must go ba.ck to the PSDB
for the SKILL segment at • _<:z.c...r-L_I. D11BPTR (+'7 1)

at '_tLcE.E: __ 1 has '_fJ_' which m.eans this segment
has a. Counter. That counter in the prefix has a value
of t _.!- t meaning it has tha.t man.y Log ica1 Children
without direct pointers to them. Before leaving the
PSDB go to DMBDL (+'A') at I_~~" _' which is
I 6{1 I and get the data length.

D. Nov go to the buffer pool and acId t.he data length
to the start of the da ta and. there should be the
segment code of the next sequential segm. in this
data base record .• This is at ' ~8.~~j:_1 and it is one
byte of • ..e.~_'. A zero seg-ment code means this is th e
start of a P2 pointer ana. the next three hytes contain.
the RRf1 of the LRECL in OSlH1 where the next segment is
loca.ted. (If these three bytes were zeroes this would
be a P4 pointer an.d the data base record is ended. In
this example there HAS a P4 pointer there before the
ISR'f ca11, but now there is a. three-byte P2 with
'_2.P_. meaning the next seguentia 1 segment in this
data-ha.se-record is in .OSAM at the r ..:2.:3._'-rd LRECL
from the start of the data set.

~rh.is segm.ent is th.e "Paired" one Load-Insert ha.d to
put in the da.ta base since the User put in the XSKILL.
Let's go back to the Gen'd SDB for this "paired"
segment. at '_-2.i.~~_t and pi.ck up the SDBPSDB
(+f lei) at' _ag~~~ _" a.nd the SDBDSGA (+·24') at:
• tb'{<Pfo 1 • The DSG is the same one as for the Boot
(SKILLr-hut the DeB wi1l be for "overf1ovu instead of
"prime" • The PSDB at • ~.s:::~.L~ __ t is leve1 WO 21'

a.nd has a prefix size DMBPRSZ (-+ '8') of t _2::.-._ I and a
da.ta lengt.h Dl1BDL {+'A'} of ._~_. The DSG at
, c.r~d_· has the DHBt at +'4 1 which is '2_' and
t;he DCB since this is OSAM is '02' this tinle. We know
the RRN is • 33' but in order to know wh.ich Block it" s
in we go to the AMP via the DSGAMPA (+0) at
' __ CS~81f_I. DMBP:E~ODR (+'lC I) at ' __ CJ:CJ"C t points

'f,cxiJ.,
~J,\ .. 1F .:;3
';)~6'f). :,

-.. -=------J~ e (>If.:::-IDO

1>(£!-::; o-v

}~'O ~ 'S
f)llC -::. 'V

PA.GE 8

to the OSAl"1 DCB at CS'fl{-~ • 'rhe OSAM Block Si.ze
is at "'18' in the-nCBat-'. CS:fS'c _- w~~~~" is
'_J)f)Lt and the LRECL si.ze is +'52' at t--.f~L'
~hich is ~_~ __ ••

E. Doing some :fancy mat h 'W'e find the RRN we want is in
the second Block for the DMB and. DeB numbers already
esta.blished. Going back to the Buffer- Poo1, fo11ow the
"use chain II looking for our Block, D~iB & DCB match.
We left off at the buffer at '_C:<[1)(.R __ ' so take the
BFFHFWD ("'lS') at ' __ E"f1j)l;;-_Ef._' a.nd check the l}ext
buffer at I ~lQ-. __ '. Itts Block (+'C'J I_~'

\ D~lB (.. t 10 C) t _-1._' and DCB ("'12 t) '_2--'. Righ t
\ ~1S~ you are, and now add the prefx size to the start, of

\

the buffer. That is the start. of Dat a in this Block.
~ The ItXliAME" ~e are looking for is in the LRECL at
~p~~ "~', where the~e is a P3 pointer with all zeroes.

'three bytes into the LRf~CL is the segment code of
• JY t, delete byte next. is • -.£.£_', and. if. you wrote
it down the prefix lengt h (in the PS DB), was' 0 2' so
thatts all! 'I'he data is next for t2A I l>ytes and the
next byte is supposed to be a segment code. The SC
there at 'ff67B8' is t ~ • meaning this is a Pointer.
The next three bj'tes are all zeroes so this is a P4
pointer and the end of the da.ta base record has been
reached.

F. 'l'his is the segment inserte<1 by DL/I when the user
inserted the other "half" of the physica1 pair. l'i11
changes must be logg-ed and this is done nov.

Th.e SDB position Hold.ers and the BRts are updated to
shoy any changes.

Is this Segment a Secondar,' Inoex SOURCE segment? I£
so call Index: l'1aintenance (Df;SDXIiTO) now to keep the
secondary index in synch.

VIII. 'rhe Logical Parent segment {SKILL} will have to be
updated since lie added a new XSKILL segment which is
its Logical Chil.d. If this SKILL has a counter we
must add one to it and i£ it has a LCF pointer we must
fill it in with t.b.e RbN of this -new' XSKILL, but only
if the new seguient is the EtIRST logical child. If the
SKI.LL segment has a LCL pointer a.nd the new XSKILL is
last 011 the Logical Tliin. Cha.in (VirturaI. Pairing) , we
must fill in the LCL pointer with the RbN of the ne-w
segment.

Go back to the Buffer Po01 and see where the Counter
for the SKILL segment of 'lARTIST" has a value of:
, ___ , ___ • Th.is is the first and ouly XSKILL
pointing t.o t hi.s LParent and since it was jnst

C,

C

PAGE 9

inserted that value was plug-gee. i.n by Load-Insert a.t
this time in the call flow.

IX. The Physical Parent Segment 'NAME' needs updating_
Since its Lchi1d 'XNAHE t is in. HISAM a11 we can do is
add 1 to its counter. (No LC Pointer Possible into
HISAH) In the Buffer Pool the NAME of "BRUIN, FRED
J." is at I egc6J __ ' and the counter is at
, ___ c: g~~_ • • The count:er value is t .3 • in
the dump which means is was '_-Y-____ t before this
ISH'r call.

Log all}'" of the segn:ellts changel1. as a result of this
prefix updating' and we ca.n go back to the Call
Ana.lyzer (DFSDLAOO).

x _ Lets look in the buffer pool and. flap out some of the
segments inv'olvecl in this lillie ISRT. In case lOU

forgot, the DL/I Buffer Pool starts at' -EluO~_'.
The t lJAtlE t segment is located in the pool at
• t; 8c~g, '. 'I-he 'SKILL' segment is at t~Ebtf_·.
The tXSKILL I segment is at. ~~_4E<6 _ I. The 'XNAME'
segment is at I ~<01S~_t_

Map out !!AM~ f'or FRIDl RRO!!! here:

I 0\ (~loSb'u~ .. vl,.). ~~q)

C;v 1)F- C,(L. V'l"F PCF- fer- '"1>M-1\-
(~J2J) ~J.6S Vfr{~l.,L ~~\('l.

Map ou t SKIb1. for ARTIST here:

Ha.p out the XSKILL for llTI~ h.ere:

La" 'O~ \. (3j?c l1-c4 , .A-~ T l .s ..,- ¥, J; ~
S0 '9F 1TF ff 1> :A-'T..fc

T· .

PAGE 10

Ma.p out~ the XNAl'!E for lRE!2. BRUIN. here:

L 0)" 1 00 II

c
Updated: 02/07/77

(

c

This call eX'ercise consists of two st.eps. The first is a
dIet of a root segment. in the HISAM "Skill-Name" da ta base.
In your hanilouts this is k.nown as Logical Data Base 1. Step
two is a. dIet of a. LC/LP concatenated segment nSKILL" via
Logical Data Base 2. That is in ternlS of Physical data
bases, a dIet of the segment "XSKILL" in the HIDAM data
base. Snaps were taken after each call, so there is a
formatted dump o£ the DL/I control blocks & Buffers after
the GHU calls and· a full region dump arter each DLET call.

STEP Ol~E

I. Step one is to Delete the 'SKILL I segment with a key
value of PROG v'ill. the Logical Data Base ·SKILL-NAME'.
Tllis is a Delete via the physical. path. The Delete RULE
for this segment is Logical and SKILL is both a Pbysica1
and a Logical Parent, with its Lchild Ph.ysically Pa.ired.

II.

These facts (given to us by our friendly D.B .. A.), mean
that:

1. Either Physical Or Loq'ical Deletion can occur
first on the LP.

2. All Logical Children must. be tJarkeo. as Logically
deleted.

3. Al.l Physical Children must be marked as Physica.lly
deleted.

At the completion of the Delete ca.ll:
1. SKILL, XNAME, EXPR and EDUC will not be accessable

on the Physical path.
2. XSKILL will not he accessahle on the Logical Pa.th..

The actual CALL £1.ow starts with the IJtandat.ory • HOLD'
call. In this case it is a GHU to SKILL qualified on
SKCLASS of PROG. At the completion of this call the
Level Table for SKILL (Levell), has bit two on in the
field LEVFl (LEV +1) t-E~~~_' indicating that this
seg-me nt was ret.urned to the user with a HOLD
call: • _~~ t. If this was not done we wonla get a 'DJ"
status code on the DLET call.

Turn f:orward ill th.e dump to the DLE1.' call. First of
a 11 Dlete/Replace (DFSDLDO 0), checks the k.ey" fie Ie in
t he users I/O area against the key st ored ava.y in the
PCB. If' t.hese don It, equal the call is not completed and
a status code of 'DA I is issued.

'1'0 accomplish this we must locate the PST at DFSBNUCO

,/

L

C
'·

.-

IV.

PAGE 2

+ 18' on page 120 ill the dump at t _~l!>2 g , The
PS'fDDrCB (+' 160 1) at r_~ill __ ' has • C_~ '. NOli

go plus '24' to the DBPCBKPD field at '-g,-:7 c<$' 'which
has in it: _t.R-o-...G:.~~!r~ ______ • This is the key va.lue
as DL/I sees it from the GHU ca.ll. The field FS~~
(... ·BC I

) points to the Users I/O area at '~f?oe*t'"=' and F5flO
it contains the KEY in the first 8 bytes \I ich i.s
__ Jf&G:.Wb __ • The tw'O are equal so we donlt.
get a IDA' status code.

S
'i"he next .gUex-tion that Dlet/Replace mu~.t answer is do

we have Logica1 Relationships, SecoD(lary I cering, or is
this da.ta base lID? To answer these qu ions we must
start back at the "SKTLLn SDB. 'ro get there we take the
"current" DBPCB +'10' at '~~l:f---' to the JeD at
• _~f..~ 1,lf __ ' • In th e J CB at JCB SDS 1 (+ '8 ') at
t (!..£g'2-~ r is the pointer to the root SDB. This is
tIle "SKILL" SnB we want, so look. there at SDBDDIU
(+'14') at • _-..!t~8AD • which is t_-1JLfr7+ t.. This
aaaress is the DDIR entry for this SDB~ Each DMB
Directory entry (DDIR) is '28' byt.es long and the first
DDIR is pointed to by the SCDDLIr1 (+·F4·) at '~9274'
-which has "4A4.C' in the dump on page 123. The DDIU
pointed to by the "SKILL" SDB is the 2nd entry, right?
Looking at the DSEc'r for the DDIR's you see that the
DBDUAME is at + '8' and the pointer to the Di1B (DDIRADDR)
is at +'10'. In the DDIB we just found at +'10' is
t __ ~~l2 .. Ag • or the DI1B associated with "SKILL". Check
the DMB for Logicals and/or Second.ary In.dexing and/or lID
organization:

DMBORG (+A) at t 2.1:2--~L __ t checks for HD. It is
t_t2.L.- I DMBF'LAG (PSDB +20) at· _~l(>ta. I for
Logicals & S .I .It is I _~_. A nyt.h ing BUT • 00 I
in the DMBFLAG gives us a "YES" answer to the
question.

The answer to HD and S.I. is no, but the answer to
Log-ical.s is YES.

V. Basetl on that YES answer, DFSDLDSO bu ilds a D1ete Work
Area and engues the Root. The address of the work area
is in the PS'!' at offset '1F'C' • DLDSO locates the first
segment for XNAI~E EXPH & EDUC under this SKILL and saves
the Key of each segment. Unfortunately this £ield in
the .PS'l' (PS'I'DL'IWA) is reset before the end of the call
so in the deulp the field. is a.ll zeroes! '.

VI. DFSDLDO 0 does a 'down' scan next. Since this is a DLET
of an entire data base record in HISAH, this scan is
done beca.use of the Logica1 relationships involv·ed.
Duri.nq this 'scan' DLDOO uses the work area to build .

PAGE 3

iuforIliation needed to 0.0 an.y actual deleting in the Ilext
step.

VTI. now map out the D.B. Record for this deletion as this
'scant would do. x'or a. st.art, the SKILL segm. is in
Block 1, DriB #2, DCB # 1 in the buffer pool. That info
came from the DSG for the SKILL data base. Also in the
DSG at offset '0' is a pointer to the AMP. The DSG
starts at ' Gs-q p~ f • This 1\.!IJP in turn con tams
pointers to both D HiS for the ISAMjOSAM pa1r 1n use.
Th.e AMP is at 10 t;~~_,. Since you know wha.t SKILL
segnt. we are deletin.g you caD. scan the dump to find it.
The ItEFPL" starts on Pg134 (Th.at·s not really cheating
lid. say.) The root segm starts at '_g;~-Lt with a
segment cod.e of' 0 l' • a delete byt.e of • -1:!t... I and a
counter of' 3 '. Following this is the segment
data. 'I~he length. of data is found;in the PSDB, offset
• A.' (DHBDL), which is a.t ' t;~_. and is I S1L-' •
If (lata starts at ._~~¥, (following t.he counter) ,
adding the length should put us at tIle next segment in.
sequence. However the segment code at this adtlress is
• 00' which is the 'rlag-byte I portion of a HISAf1 P2
pointer. 'I'he next three bytes of the P2 pointer contain
the HRN in the OSAM (Over:flow) data set where our data
base record is conti.nued .•

If our ISAM. (Prime) data set was DMB #: 2, DCB :# 1 an.d we
are in the OSAM portion now, it w'i11 be DMB #2 and DCB
#2. ~l'he RRN value in the P2 pointer was '002E '. This
means our next segment is in Block 2, DMB 12, DCB 12 at
the start of the 13th LRECL right a.fter the P3 pointer.
('rhe P3 should have the high-order bit on to sign.ify
'riependents only' in this LRECL.)

That's great but how long are the LRECLs? Go back to
the AMP and look in offset 'lei for the pointer to the
Overflow DCB.This OSAM DCB starts at ·~iS1~ __ '. At
• 18 I into the DCB is the BLOCK size and at -asz. is the
LBECL size. 'Ithe LHECL size is I oobL·.
The Buffer Pool starts at '¢,6800' on page 13£1. in the
dump, and the first buffer on the "forllard" use chain is
a.t ""8' at I_~Q.[___ ' and is ,_~:t.~_~<2-._'. This ul!lOst
recently used n buffer is on page 136 and is for Block 1,
Df'lB 2, DeB 1. ~rhe next buffer on the "forward" chain is
at • ~(P%-~'. It is for Block' V' DMB' V •
and DCB- _', anti since it is not atnew t ' buf:f~rand
h.as no cha.nnel program, the d.ata starts +'20' at.
• ___ G'~iqo I. This is the correct one and.";: wi11 help
you locate the 13th (decimal) LRECL at '86D7C·. Look
there a.nd see if' this is a P3 pointer with the
high-oro.er bit on. Right after the P3 is . the segment
code for our next segment in the D.B. Record. It should

c>

PAGE 5

We return to DLDDO since XNAME is physically paired.
with XSKILL. 'I'he "rule" is that when we PD the XNAME we
must. LD its pair, XSKILL. This 'bl0CkS'~.the logical.
path from NAt1E. ~

IX. In orc.er to locate the correct XSKILL segm. our path is
to take the symbolic pointer in the first XNAME under
this SKILL and retrieve NAME. In the buffer you can see
that this is 'ADAMS, JOHN QUINCY " and !h.i~ ~
segment is in B10ck 2, DMB 3, DCB 1 at' ~I. GcfcFo
This is on page 137 in the dump. We DOV ned.d to skip
over th.e SC a.nd DF ana. get to the PhY'sical Child Fointer
for XSKILL. That is the 5th word past the Delete Flag
and is at' ~1JlQr __ ' with an RbN of '~I_ (This is
BIDAM so the DMB & Den are t.he same.) The UbN
conversion gives us Block,r, Offset t16E! Locate Block
s...- DfH; 3, i).ClJ 1 (page 139 in t he (Ius p), an a go .. ' lA t -

4.flto that bu;ffer (.s.:tartin.g----past-··t-he header), to
I t?tL@b • for the X:S KILL segm. The Sc is t _~' ,
the FTF ptr. is I 0 _ I, the PP ptr. is
t 322 e t and the da ta. is I PROG

DLDDO turns on bits 2 and 6 in the DF to show
'precessing hy Dlet.' and Logical Deletion. 'l'his change
is loggedr.-,., out and lie conti.nue. Refer to the value of
'22' at ·t£1E~'.

'The next step ill the d.elet.e process is t.o check for
additional XNAME segments in the 'deleted' D.B. Record.
Besides ADAMS we rou.nd JONES and SMITH in the· down'
scan.. The process is essentially the same for these two
as it was for AD1H1S. When the L.D. bit is turned on in
th.e Delete :Flag for XSKILL pointing to SKILL of PROG
under UAI1E or SMI'I'H this step of the process is
complete.

x. This change is l.ogged and no more segments a re to be
deleted. DLDOO now returns control to Ca11 Analyzer and
t.his call is done.

I. step two is to dele·te the same 'SKILL' segment via the
Logical Data Ba.se 'NAME-SKILL' • SKILL is a.
conca.tination of the LC ·XSKILL· and the LP 'SKILL'.
'I~his deletion is made via the Logica1 Path and results
i.n deleting th.e LC 'XSKILLI' under I NAM E' of ADAMS. The

c.,

PAGE: 6

delete rules are Logical for both the LC and LP.

In step one this XSKILL segment was marked as Logically
Deleted (LD hi ton). It. is physically paired wit.h. XfiAME
o.nd has no physical children. At the completion of this
DLE~: call:

XSKILL will not be accessable on the Pbysica1
Path.

II. Again the mandatory HOLD call is issued, t-his time
against the 'NAME-SKILL' log·ical data base. The level
table entry to check is Level 2 this time and LEVY1 at
' ______ ' has ' ____ ' A1l is well! Check page 4 in
this, the 3rd dump in this ca11 flow example!}

III _ Page forward to the DLET call uhere DLDOO checks the
DbPCbKFD (+24) J _______ ~ which has
t ___ . __________ . __ ' against the User's I/O Area
(pointed to by PSTUSER, ps'r-t.uC). The User's I/O area
(in DFSDDLTO), starts at • 'Where in the
DBPCljKFD is the "key" of the segment to check. this time?
Go ba.ck to the SDB for "SKILL" at '8ll 964t and look at
SDBKEYFD (+130') at ' __________ '. The address there is
the position within the key feed,back for Dlet/Repl to
compare. The length of the comparison is in the SDS at
SDBKBYLN (+'20' One Byte) at '84984' and is ' __ I If'
we compa.re these two values we find that we ditln·t
cnange any KEYS so all is well this time.

IV. Ixogical relationships, secondary indexing or HD is the
question again. This time the DriB fields at DMBOBG (+A)
• , has' I and DMBFLAG (PSDB +20 for

v.

X SKILL) at ' _______ ' has ' • ',I.'he answer is YES
to both Logica1s and HD this tIme; so DLDOO needs a work
area.

The scan t down' is ra.ther short t.his time because t.here
are only two segments involv·ed: NA~lE and XSKILL. HAf1F;
i::; in Block 2, nl-1B 2, DCB 1, at Offset • 8 1 :

, _. ______ ' Map out the segme.nt using the prefix
length from the PSDB +8 t _ ... which is t _'

and t;he Prefix pointer options at PSDB +1 which is
, I That means there is a. SC, DF, CTR, PTF, PC
(Address), PC (Payroll), and a PC (XSKILL).

NOT E :
(In order to see the segments just as the "down , ..
~can sees them we lUust turn back to the dunp taIteD.
after the GUU call. That is the GHU call made ilith
the PCB for Logical Data Base 2 with seglnents NAME

(----"',
'-----/

PAGE 7

and SKILL uith values of "ADANSI1 and "PROG n In
th.at snap-dump on page 9 in the buffer pool we can
find the "old" segment values just as D1et/Repl saW'
therti .)

The Counter value is '00000001' and the PC Ptr to XSKILL
i~: '0£86 I. Invoking the RbN conv'ersion routine 9'ives
us: XSKIl.L at Block 2, DMD 2, DeB 1, offset 'leE- into
t he buffer. The buffer starts at • E7BBO I so at + I 20 '
from there at 'B7BDO' is the start of "data". We must
add our offset, which was 'leE t to the start of ftdata"
which puts us at • __ 'in the "oldn dump on page
9. 'I'he SC is '04', DF is '22' (LD bit on), PT Ptr is
'00000000' and the pp Ptr is ·oooooCCOt. With no
Physical Children nor Twins the 'down' scan is complete.

VI. DLDDO does another 'up' scan and since this is HIDAI'l
the action is a little more involved. By setting Bit 5
on in the Dr'" of XSKILL this segrn. now becomes both
Logically' and Physically deleted and the space can be
freed-up_

VII. DLDAO calls DHDSO (RD Space Management), to free up the
space, re-adjust the FSE's and if necessary, update the
B1t Map. In order to see the results of this action
better I suggest that you compare the 'XSKILLa segment
,in the SNAP (dfter the GHU call), with the same segment
in the SNAP after the delete is completed. In the first
dump the segm. is at ,_~~ _____ e and the first FSE
(FSEAP) for this block points to an FSE at offset
'~Ot _ Turn forward to the 'after' situation and the
same r~SE (PSEAP) points to '_l..C~_, _ By adding this
offset to the FSEAP you get t _ e._~fS.E.k..-_· which is the
Seg Code location of our deleted segment. However, this
location is nov t.he start of a "freed.-up" area and
contains a new PSE. Check this out by comparing the
pointer to t.he next FSE and the length. of free space.
The offset to the next PSE is' --II! 0 _' (wha.t the 01i5
value was in the FSEAP), and the 1engt h is ~ -1.2:'_, (the
-free space including the FSE itself) _ FSE offset
pointers are always relative to the first FSE, known as
the FSEAP which is the start of the Block.

IX. Tf this free-space was large enough to change the
"status" of the block from "not enough space for the
largest segment in the Data Set Group", to "enough space
...... the Bit Map would be updated and the hit
corresponding to this block would be turned on. lI'bi.s
ti.me the space is too slilall to make a difference so no
call is made.

PAGE 8

1:. Delete is almost finished, but the uclown" scan showed
that XSKILLisphysically paired llith XNAME and vhenever
we EEYsica11y delete one member of a pair we must
!Qgically delete the other. Tha.t means we must locate
the XNArlE pointing to nADA~lS, JOHN QUINcyn and
Logically delete it. Just to ShOll yon my heart is in
the ri.ght place r'll tell you where the start of this
s7~ment is in the buffer pool! (Nice??) It is_ at
t~57Ft. The very next byte is the setjfiicB.t code and
sure enough the Logical delete bit is on hlUL the HISAI1
Segment delete bit is also on! In fact the va1ue there
is '_U-' ana. this segment will be physically removeil.
from the data base at reorganization time.

XI. If:' you remember there was more than just this one XNAM.E
under the SKILL of "PROG". In fact the names were JONES
& SI<II'J.'H, and these £egmen ts ha.ve Norrl been deleted in the
other data base. This points out the situation
D1et/Replace must check for before marking the SKILL
segment as deleted (Bit 1 on in ·the D.F.). Dlet/Replace
checks for more Xl'iAl"lE segments under the SKILL of "PROG"
an.d finds two. The D.P. for ea.ch of these has a value
of '24' vhich means they' have only been marked as "not
availa.ble" on the Phy-sical Path. Therefore no action i.s
taken on the D.P. for SKILL of "PROG".

That does NOT mea.n there is nothing to do on the SKILL
segment because we have physically de leted. one of its
Logical Children. That means we must decrement the
Counter by 1, and the segment is in the buffer pooI. at
'~'. The counter at '~~~~L--_I is ' __ ~ ___ I now
that the DLET ~s finished.

This same operation !llUst be done r'or the Root segaent &8130
NAl'lE for flADAliS, JOHN QUINCY" lfhicll starts at .~ in
t.he buffer pool. The counter va1ne at t ~Y • is
t 0 • w·hich means that there are no -iore l:O'gical
Children in tbe data base for this NAME seg-ment.

XII _ After the changes have been logged out delete has
"done i.ts thing" and control returns to DLAO o. Call
Analyzer again returns control to Program Request
Handler ",.hic returns control to the app1ication program.
In this case the Return Code was 'bb I and the DLETilent
OK!

PAGE 9

o

Upda.ted: 02/09/17

o

