
Systems

--_ .. - -

GC33-4024-1
File No. S370-21 (DOS/VS)

Guide to the
DOS/VS Assembler

Second Edition (September 1973)

This ~s a major revision of, and obsoletes GC33-4024-0. This
edition incorporates minor technical and editorial changes.
Changes to the text and to illustrations are indicated by a
vertical line to the left of the change.

This edition applies to version 5 of the Disk Operating
System, DOS/VS, and to all subsequent versions and releases
until otherwise indicated in new editions or Technical
Newsletters.

Changes are continually made to the information herein;
before using this publication in connection with the operation
of IBM systems, consult the latest IBM SystemLl60 and System/370
Bibliography, Order No. GA22-6822, for the editions that are
applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were obtained
from an IBM 1403 printer using a special print chain.

Request for copies of IBM publications should be made to
your IBM representative or to the branch office serving your
locality.

Forms are provided at the back of this publication for
reader's comments. If the forms have been removed, comments
may be addressed to IBM Nordic Laboratory, Programming
Publications, Box 962, S-181 09 Lidingo 9, Sweden. Comments
become the property of IBM.

Ccopyright International Business Machines Corporation 197~

2

This Manual ...

••• shows how to write job control language (JCL) statements needed to
assemble, link-edit, and execute a program written in the DOS/VS
assembler language •

••• shows how to maintain the macro and copy libraries •

••• shows how to de-edit and update macros •

••• shows how to interpret the listings projucej by the DOS/VS Assembler •

••• explains the files used by the DOS/VS Assembler •

••• explains the object-deck output •

••• explains all messages issued by the assembler and de-editor programs.

Audience For This Manual

• assembler language programmers

• system programmers responsible for JCL and the
maintenance of the DOS/VS system files

• FEs and CEs or system programmers who want to
de-edit and update macros, anj who want information
on how the assembler libraries are maintained.

Level of Knowledge Required For This Manual

• a basic understanding of the DOS/VS operating system
as described in Introduction to DOS/yS, Order No.
GC33-5370.

• a good understanding of the DOS/VS assembler language
as described in Q§LYS and DOSLVS Assembler Language,
Order No. GC33-4010.

Related Manuals

DOS/VS System Control Statements, Order No. GC33-5376.
IBM SystemL160 and 370 Bibliography, Order No. GA22-6822.
IBM System/370 Advanced Function Bibliography, Order No. GC20-1763.

3

Summary of Contents

The following descriptions summarize the contents of the major sections
of this manual.

SECTION TITLE

INTRODUCTION

HOW TO WRITE JOB
CONTROL LANGUAGE

MAINTAINING THE
MACRO AND COpy
LIBRARIES

DE-EDITING AND
UPDATING MACROS:
ESERV PROGRAM

INTERPRETING THE
ASSEMBLER LISTING

STORAGE REQUIREMENTS

CONFIGURATION
SPECIFICATIONS

FILES USED BY THE
ASSEMBLER

OBJECT DECK OUTPUT

DIAGNOSTIC AND
ERROR MESSAGES

GLOSSARY

4

DESCRIPTION

Shows the purpose of the assembler and
introduces the reader to the basic
concepts covere1 in this manual.

Shows how to prepare the basic job control
statements for assembling, link editing,
and executing a program written in the
assembler language.

Shows how to maintain macro and copy
libraries, that is, how to add, delete,
or update statements in macro definitions.
It also shows how to convert old macros to
edited format.

Shows when an1 how to use the de-editor
program and how to combine the function of
de-editing with that of updating.

Shows how to interpret the six parts of the
assembler listing produced by the assembler
program.

Gives the m1n1mum main storage requirements
and explains how to estimate auxiliary
storage requirements.

Lists the,required and optional hardware
for use with the DOS/VS Assembler.

Explains what each file contains and what
it is used for.

Gives format and contents of the cards that
make up the output deck produced by the
assembler.

Explains each message produced by the
assembler and by the de-editor (ESER~
program.

Contains definitions of all terms specific
to the assembler and not included in the
IBM Data Processing Glossary and OS/yS and
DOS/VS Assembler Language, Order No.
GC33-4010.

Contents

INTRODUCTION •
Purpose of the Assembler
Relationship of the Assembler to the Disk Operating System
Input ••••• • • • •
Output • • • • • • • • •

9
9
9
9
9

Compatibility • • • • • •
Concept of Edited Macros

• • • • 10

Edited Macros and DOS/360 Users • • • • • •

HOW TO WRITE JOB CONTROL L~NGUAGE ST~TEMENTS •
Purpose of This Section • • • • • • •
Assembiy •••••••• • • • •
Assembly and Link Editing • • • •
Execution • • • • • • • •
Assembler Options and JCL Summary • • • • •

10
10

11
11
11
13
17
19

MAINTAINING THE MACRO AND COpy LIBRARIES • 21
Introduction • • • • • • • • • 21
What Is the Macro Library? • • • • • • • 21
What Is the Copy Library? • • • • • • • • • • • • • • 21
Which Library to Use for Macro Definitions? • • 21
How to Maintain the Macro Library • • • • • • 23

Editing a Macro and ~dding It to the Macro Library • • 23
Deleting Macro from Macro Library • • • • • • • • • • • • 24
Updating Macro Definitions That Are on Macro 'Library • 24

Updating Macro Definitions on Macro Library: From a Source Deck 25
Updating Macro Definitions on Macro Library: From Copy Library • 25

How to Convert an Old Macro Library • • 26
How to Maintain the Copy Library • • • • • • • • • 27

Adding Macro Definitions • • • • • 27
Deleting Macro Definitions • • • • • • 27
Updating a Book • • • • • • • • • • • • • 27

How to Use Edited and Un-Edited Macro Definitions ••••• 28

DE-EDITING AND UPDATING MACROS: ESERV PROGRAM
Introduction • • • • • • • • • • • • • • • •
Input to the ESERV Program • • • •
Output from the ESERV Program • • • • • • •
Using ESERV to De-Edit and Update a Macro Definition ••••

Getting a Printout of the De-Edited Macro Definition •
Getting a Punched Deck of the De-Edited Macro Definition •
Getting a Printout and Punched Deck of the De-Edited Macro
Definition •

Verifying/Updating Statements from Printout of Source Macro
Definition •

Errors Detected During Update - Action Taken • • • • •
Examples of De-Editing With and Without Updating a Macro
Definition •

Sample Coding for De-Editing Without Updating a Macro
Definition • • • • • • •• • • • • • • • • • • • • •

Sample Coding for De-Editing and Updating a Macro
Definition • • • • • • • • • • • • • • • • •

Differences Between De-Edited and Source Macro Definitions

INTERPRETING THE ASSEMBLER LISTING • •
External Symbol Dictionary (ESD) ••••
Dummy Section Dictionary • • • •
Source and Object Program • • • • •

• 29
• 29
• 29
• 29
• 31
• 31
• 32

• 32

• 32
• 36

• 36

• 37

• 37
• 38

• 39
• 40
• 41
• 42

5

The Relocation Dictionary • •
The Cross-Reference Table • •
Diagnostics and Statistics

STORAGE REQUIREMENTS • • • • • • • • • • • •
Main and Auxiliary Storage Requirements •
Performance Considerations • • • • • • •

CONFIGURATION SPECIFICATIONS

FILES USED BY THE ASSEMBLER

OBJECT DECK OUTPUT • • • • •
ESD Card Format • • • •
TEXT (TXT) Card Format • • • • • •
RLD Card Format •
END Card Format •
REP Card Format •
EDECK Card Format •

DIAGNOSTIC AND ERROR MESSAGES
How to Use This Section •

The Message Itself •
Explanation • • • • •
Assembler Action • • •
Programmer Response
Operator Response

Assembler Messages IPK001-IPK250
ESERV Messages IPK301-IPK332

GLOSSARY •

INDEX

6

• 44
• 45
• 46

• 47
• 47
• 47

• 48

• 49

• 51
• 52
• 52
• 53
• 53
• 54
• 54

• 55
55
55
56
56
56
56
57

109

114

119

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Data Flow When ~ssembling • • • • • • • • •
Data Flow When ~ssembling and Link Editing
Assembler Options and JCL Summary • • • • •
Choosing a Library for Macro Definitions
Input to, and Output from the ESERV Program •
External Symbol Dictionary (ESD)
Dummy Section Dictionary
Source and Object Program • •
The Relocation Dictionary • • • • • •
The Cross-Reference Table • •
Diagnostics and Statistics ••••
Data Flow in Connection With Assembler Files

Figures

12
14
19

• 22
• 30
• 40
• 41
• 42
• 44
• 45
• 46
• 50

7

Introduction

This section describes the purpose of the DOS/VS Assembler, its
relationship to the operating system, and its input and output. It also
eKplains the concept of edited macros, a feature of the DOS/VS Assembler.

Purpose of the Assembler

The purpose of the assembler is to translate programs written in the
assembler language into object modules, that is, code suitable as input
to the linkage editor.

Relationship of the Assembler to the Disk Operating System

The assembler is supplied with the DOS/VS control program package. In
the same way as the linkage editor, it is executed under control of the
DOS/VS control program. For a complete description of the relationship
between a processing program and the various components of the control
program, refer to Introduction to DO~.

Input

As input the assembler accepts a program written in the assembler
language as defined in AS2~mblef-~anguage. This program is referred to
as a source module. Some statements in the source module ~acro or COpy
instructions) may cause additional input to be obtained from a macro
library.

Output

The output from the assembler can consist of an object module, edited
macros and program listing. (The concept of edited macros in the DOS/VS
Assembler is explained below.) The object module can either be punched
or included in a file residing on a direct-access device or a magnetic
tape. From that file the object module can be read into the computer
and processed by the linkage editor. The format of the object module is
described in the section "Object Deck Output".

The program listing lists all the statements in the module, both in
source and machine language format, and gives other important
information about the assembly (such as error messages). The listing is
described in detail in the section "Interpreting the Assembler Listi~g".

Introduction 9

Compatibility

The language supported by the DOS/VS Assembler is compatible with the
language supported by the OS Assembler D. All programs which assemble
error-free under Assembler 0 will also assemble error-free under the
DaS/VS Assembler. However, the resulting object code may in odd cases
be different because of the extended features of the language supported
by the DOS/VS Assembler (the extende1 attribute reference and SETC
facilities) •

Concept of Edited Macros

Edited macros are source macros that have been partially processed by
the assembler and stored in a new macro sublibrary within the source
statement library. These definitions, being e1ited, can be assembled
more quickly, thus reducing total processing time.

You can keep macro definitions in source format on the copy library
or in edited format on the macro library. Quite often, you will want to
change a macro definition; to add or delete a statement from it, for
instance. The coding you use to perform this maintenance work varies
according to which library you have used. The reason for this variation
in coding stems from the manner in which the assembler program handles
macros prior to placing them on the copy or macro library. See the
section "Maintaining the Macro and Copy Libraries" for a discussion of
the circumstances under which you might choose either the macro or the
copy library, or both, to contain your macro definitions.

Before placing a 'macro definition on the macro library, the assembler
first partially processes it. This processing is called eliting. In
the past, this time-consuming editing function was performed each time
you called a macro definition into your program. Now, under DOS/VS, it
is performed only once. Should, however, you want to add to or delete
from or somehow change a macro definition, you cannot use the edited
version of the macro definition that you have on the macro library.
Instead, you must change a copy of the non-edited (that is, source)
macro definition. If you do not have a non-edited copy of the macro
definition, then you can convert the edited macro back to its source
format. This conversion process is called de-editing and is described
in the section "De-Eaiting and Updating Macros: ESERV Program".

No editing step is involved when the assembler puts a macro
definition on the copy library. That is, a macro definition remains in
source format. You can use this copy of the macro definition when you
wish to do maintenance work on it. You can then edit it and place it on
the macro library, and also place the non-edited version of it back on
the copy library. Thus at anyone time you have a source and edited
version of the macro definition on the copy and macro library,
respectively.

Edited Macros and DOS/360 Users

All users who wish to use old macro libraries created by previous DOS
assemblers must convert these libraries of unedited macros to edited
format. An example of one method of this process is shown in the
subsection "How to Convert an Old Macro Library".

10

How to Write Job Control Language Statements

Purpose of This Section

This section shows by examples how to prepare job control language (JCL)
statements to assemble, link-edit, and execute a program written in
assembler language.

Foldout: Use the foldout at the end of this section as you read.
You will find on it a summary of the rules governing the writing of JCL
and linkage editor control statements, along with brief definitions of
the JCL and linkage editor statements used in the examples. For a full
coverage of JCL, consult the publication DOS/yS System Control
Statements.

Assembly

The following example shows the job control statements you need in order
to assemble a source module and produce an object module.

II JOB ANYNAME

II OPTION DECK,NOLINK

II EXEC ASSEMBLY

source module

1*

1&

Initiates the job ANYNAME.

Causes the object deck to be punched
on SYSPCH and not to be copied on
SYSLNK. Default values determined
when the system was generated are
used for the other options.

Causes the assembler to be loaded
from the core image library into
main storage, and to start executing.

The assembler source module.

Delimits the input to the assembler.

Delimits the job.

There are no II ASSGN statements in this example; therefore, the
assembler uses the standard assignments for the source statement
library, SYSIPT, and SYSPCH that were set up during system generation.
Figure 1 on the next page shows the 1ata flow of this example.

How to Write Job Control Language Statements 11

Source
Statement,
Library

ASSEMBLY

Figure 1. Data Flow When Assembling

Source
Module

SYSIPT

Object
Module

SYSPCH

A. The assembler reads the source module into main storage
for processing in the assembly step.

B. It also reads macro definitions and copy code sequences,
if any, from the source statement library, and

c. Punches the object deck on SYSPCH.

D. Prints the list on SYSLST.

12

Assembly and Link Editing

EXAMPLE 1

This example expands the previous example by adding to it a linkage
editor step.

The job first assembles the source module and then link-edits the
object module produced in the assembly step together with another pre­
viously assembled object module and catalogs the linkage editor output
in the core image library under the name EXAMPLE.

II JOB TWOMODS

I I OPT ION CATAL

PHASE EXAMPLE,S

II EXEC ASSEMBLY

source module

1*

INCLUDE

object module

II EXEC LNKEDT

1&

Initiates the job TWOMODS

Causes the assembler to store the
object module on SYSLNK and, later,
causes the linkage editor to catalog
the phase it produces in the core
image library. Default values
determined when the system was gen­
erated are used for the other options.

Provides the linkage editor with the
name of the phase (EXAMPLE) and the
main storage address (S) where it is
loaded (immediately after the
supervisor) •

Causes the assembler to be loaded into
main storage and to start executing.

The assembler source module.

Delimits the input to the assembler.

Causes the object deck that follows
in the input stream to be transferred
to SYSLNK and included in the linkage
editor input.

The object module to be included.

Causes the linkage editor to be loaded
into main storage and to start execu­
tion.

Delimits the job.

There are no II ASSGN statements in this example; therefore, the
assembler uses the standard assignments set up during system generation.

How to write Job Control Language Statements 13

I Figure 2 shows the data flow of this example.

;SYSLNK

Figure 2.

ASSEMBLY

LINKAGE EDITING

'\ Core' I mage
i, Library

Previously
Assembled
Object
Module

Data Flow When ~ssembling and Link Editing

A. The assembler reads the source mojule into main storage
for processing in the assembly step.

B. It also reads macro definitions and copy code sequences,
if any, from the source statement library, and

C. Copies the output from the assembler -- the object module
-- on SYSLNK.

D. Job control transfers the object deck in the input to
SYSLNK for processing by the linkage editor.

E. Linkage editor reads the object modules from SYSLNK into
main storage for processing.

F. The phase produced by the linkage editor is cataloged into
the core image library.

14

EXAMPLE 2

The following example illustrates another method for setting up a job
for assembly and link editing. In addition, the program is executed in
the same job.

In the example, three source modules (A) and one object module (B)
have been loaded on an unlabeled 9-track magnetic tape in a previous
job; an additional object module is on the relocatable library.

The contents of the tape are as follows:

ALPHA

1*
BRAVO

1*
CHARLIE

1*

CSECT

END

CSECT
(A)

END BRAVO

CSECT

END

(obj ect module) (B)

1*

1*
1&

(data for problem
program)

The coding is as follows (see next page):

How to Write Job Control Language Statements 15

16

1/ JOB FIVEMODS

1/ ASSGN SYSIPT,X'182'

1/ OPTION LINK,LIST,NODECK

PHASE EXAMPLE,S

/1 EXEC ASSEMBLY
II EXEC ASSEMBLY
II EXEC ASSEMBLY

INCLUDE

INCLUDE MOD24

ENTRY

1/ EXEC LNKEDT

1/ EXEC

1&

Assign to SYSIPT the tape mounted
on tape drive 182.

The object modules are to be link­
edited (LINK) directly. The out-
put will be on SYSLNK (LINK), the
source module listing will be on
SYSLST (LIST), and the assembler will
not put the object modules on SYSPCH
(NODECK) •

The phase name (EXAMPLE) and the
load address (S) of the phase.

The three source modules are assembled.

The object module on SYSIPT is to be
included in the linkage editor input.

The object module (MOD24) on the
relocatable library is to be included
in the linkage editor input.

As the operand of this ENTRY state­
ment is blank, the linkage editor
searches the modules in the input
and picks the first primary entry
point specified in an assembly END
statement. In this example, the
statement labeled BRAVO is chosen as
the entry point of the whole phase.

The program is link-edited.

The program is executed. The blank
operand causes the program which has
just been link-edited to be executed.

Execution

The following statements show how to execute the program that was
included in core image library in Example 1.

I I JOB EXECEXAM

II EXEC EXAMPLE

data

1*

1&

Initializes the job.

Causes problem program ~XAMPL~ to be
loaded into main storage and to start
executing.

Data for problem program, if any.

Delimits data.

Delimits the iob.

How to Write Job Control Language Statements 17

Assembler Options and JCL Summary

NOTE: The information given below is intended only as an aid to memory. A full discussion of job
control can be found in the publication System Control Statements.

JOB CONTROL STATEMENTS

The following rules apply when filling out control statements:

1. Two slashes (I I) identify the statement as a control statement. They must be in columns
1 and 2. At least one blank must follow the second slash. The end-of-job statement contains
1& in columns 1 and 2. The end-of-data statement contains 17(. in columns 1 and 2. The
comments statements contain an * in column 1, and a blank in column 2.

2. Operation. This describes the operation to be performed. It can be up to eight characters
long. At least one blank follows the last character.

3. Operand. Can be blank or contain three or more entries separated by commas.

I JOB Indicates the beginning of the control information for the job.

II ASSGN

II DLBL

II EXTENT

II TLBL

II OPTION

II EXEC

Obligatory first card.

Assigns physical 1/0 device addresses to data files.

Contains information the job control program needs to write and
check label information on a direct access device. Must be followed
by one or more EXTENT cards.

Defines each area (extent) of a direct access file.

As above, but for tape devices.

Specifies one or more JCL options. For details of options see inner
page of this foldout.

Indicates the end of job and linkage-editor controls cards for a job
step, and gives control to a processing program.

LINKAGE EDITOR CONTROL STATEMENTS

The rules listed above for JCL statements are similar to those for Linkage Editor control statements
except that the latter do not have slashes (II) preceding them: these statements begin after column
1, which must be a blank.

PHASE Indicates the beginning of a phase. The linkage editor can link-edit
several phases in one step, in which case a PHASE card must precede
the input for each phase.

INCLUDE Indicates that a module or some control sections (CSECT) from a
module located in the relocatable library or in SYSIPT are to be
included in the linkage editor input.

ENTRY Specifies the entry point of the first phase produced in a linkage
editor step.

Figure 3. Assembler Options and JCL Summary

How to Write Job Control Language Statements 19

o

o

,

o

OPTION

LlST*

NOLIST

LINK

NOLINK

CATAL

DECK*

NODECK

EDECK

NOEDECK

XREF*

NOXREF

ALIGN

NOALIGN

SYSPARM= string

DESCRIPTION

Causes the assembler to write the source module listing on the output
device assigned to SYSLST.

Suppresses the LIST option and overrides the ESD, rlLD and
XR E F options.

Causes the program being assembled to be link-edited in the same job.
This option (or the CATAL option - see below) must be used when
assembling, link-editing, and executing in the same job. LINK causes
the linkage editor to write its output (phases) temporarily on the core
image library. Use of this option decreases processing time. If CATAL
is specified, the LI N K option is automatically set.

Suppresses the LI N K option.

Causes the program being assembled to be link-edited in the job and
stored permanently in the core image library. LINK - see above­
performs the same function except that it stores the object module
temporarily on the core image library. Thus, CATAL or LINK must be
used when assembling, linkage editing, and executing in the same job.
Use of the CATAL option decreases processing time_

Causes the assembler to place the object modules on the output device
assigned to SYSPCH. Used when a back-up copy of the object code is
needed.

Suppresses the DECK option.

Causes the source macros in the program to be punched in edited format
on the output device assigned to SYSPCH. This option is used to punch
the macros for later cataloging into the macro library.

Suppresses the EDECK option.

Causes a cross-reference list to be printed on the output device assigned
to SYSLST. See section "Interpreting the Assembler Listing" for a
sample of the cross-reference list produced by this option. The
option is used primarily as a debugging tool.

Suppresses the XREF option.

Causes all data to be aligned on the proper boundary in the object
module; for example, an F-type constant is aligned on a fullword
boundary. In addition, the assembler checks storage addresses used in
machine instructions for alignment violations. Use of this option
decreases the execution time of the phase that results from assembling
and link-editing.

The assembler does not align data areas other than those specified in
CCW instructions, nor does it skip bytes to align constants on proper
boundaries. Alignment violations in machine instructions are not
diagnosed.

Specifies the value for assembler system variable symbol, &SYSPARM.

, * Unless otherwise specified, the LIST, DECK and XREF options are default options of the DOS/VS
system. Some of the other options listed above may have been made standard features at system
generation: you are advised therefore, to familiarize yourself with your system's standard assignments.

Maintaining the Macro and Copy Libraries

Introduction

The assembler uses two sublibraries of the source statement library; the
macro library (sublibrary E) and the copy library (sublibrary ~ •

What Is the Macro Library?

The macro library contains IBM-supplied system macro definitions and
user-written macro definitions in an edited (partially processed~
format. This library contains only edited macro definitions.

The assembler edits the macro definition you have included in a
source module and will produce an edited macro definition which it puts
on tape or disk when you specify the EOECK option in the OPTION
statement. This output may later be cataloged into the macro library.

What Is the Copy Library?

The copy library contains sequences of source code (books) which you can
insert into the source module by writing one or more COpy statements.
These books can contain any kind of source code, including source
(un-edited) macro definitions.

Which Library to Use for Macro Definitions?

• Often-used macro definitions go, in edited format, on the
macro library because you save assembly time by having
them there.

• Keep a backup copy of these macro definitions, in source
(un-edited) format, on the copy library, or in card format.

You will need this source copy when you wish to update
a macro definition you have on the macro library. That is,
you cannot update an edited macro. If you do not have a
backup source copy you must first de-edit the macro
definition on the macro library. See the section "De-Editing
and Updating Macros: ESERV program".

• While debugging, keep your macro definition on the copy
library. When free of errors, place it on the macro library.

Figure 4 summarizes this discussion and acts as a table of contents for
this section.

Maintaining the Macro and Copy Libraries 21

MAINTAINING THE COpy LIBRARY

See section "How
to Maintain the
Copy Library"

WHICH LIBRARY TO USE FOR MACROS

Include macro in
source program
or as separate
book in copy
library

Yes

Edit macro and
include in macro
library

End

To enter on copy library
see: "How to Maintain
the Copy Library"

No

No

End

Debug macro

To edit macro and include
on macro library see:
"Editing a Macro and
Adding it to Macro Library"

MAINTAINING THE MACRO LIBRARY

Yes

Update source
macro

See "De-editing and
Updating Macros:
ESERV Program"

CONVERTING OLD MACRO LIBRARY

Update source

macro

See "How to Convert
an Old Macro Library"

Figure 4. Choosing a Library for Macro Definitions

22

How to Maintain the Macro Library

EDITING A MACRO AND ADDING IT TO THE MACRO LIBRARY

The assembler reads in and assembles the source macro definition (s) from
either the copy library or from a source deck or tape assigned to
SYSIPT. If you specified EDECK in the OPTION statement the assembler
will direct the one or more resulting edited macro definitions to the
output device assigned to SYSPCH. Each edited macro will be preceded by
an assembler-supplied CATALS statement in which the level of the
assembler is printed immediately after the macro name.

Then from the resulting card deck, tape file, or disk file, you can
place the edited macro definitions into the macro library using the
MA.INT program.

EXAMPLE 1.

Editing a macro and, using tape as intermediate storage, adding it to
macro library.

II JOB
II ASSGN SYSPCH,X'180'

II OPTION EDECK,NODECK

II EXEC ASSEMBLY

(Macro definition to be
edited)

1*
II CLOSE SYSPCH,X'OOD'

II ASSGN SYSIPT,X'180'

II EXEC MAINT
1&

Assigns SYSPCH (output device for
edited macros) to tape, at unit
address 180.

The EDECK option has a macro deck
punched; the NODECK option suppresses
the punching of the object module.

The macro to be edited and placed on
library.

Writes tape mark, rewinds tape, and
unloads the reel.
Tape with macro edited deck used as
input.
Puts edited macro on macro library.

Maintaining the Macro and Copy Libraries 23

EXAMPLE 2.

Editing a macro and, using disk as intermediate storage, adding it to
the macro library.

1/ JOB PUNCH
II DLBL IJSYSPH,'PCHFILE',O

II EXTENT SYSPCH,111111",1300,500
II ASSGN SYSPCH,X'391'

II OPTION EDECK,NODECK
II EXEC ASSEMBLY

1*

(macro definition to
be edited)
END

CLOSE SYSPCH,X'OOD'
II DLBL IJSYSIN,'PCHFILE'
II EXTENT SYSIPT
ASSGN SYSIPT,X'391'
II EXEC MAINT
1&
CLOSE SYSIPT,X'OOC'

See the publication System
Control Statements for full
description of these statements.

Assigns SYSPCH (output device
for edited macros) to disk at
unit ad1ress 391.

Deleting Macro from Macro Library

II JOB
II EXEC MAINT

DELETS E.MAC1

1*
1&

MAINT program used to delete.
Deletes MACl (name of macro) from
the macro library (E).

Updating Macro Definitions That Are on Macro Library

You update a library macro definition by making changes in the source
macro definition (op cards, tape, etc.) or from the copy library, as
discussed bel~w. If you do not have the macro definition in source
format, you must use the ESERV program to de-edit your macro before
updating (discussed in the section nDe-Editing and Updating Macros:
ESERV program") •

24

UPDATING MACRO DEFINITIONS ON MACRO LIBRARY: FROM A SOURCE DECK

Update source deck by hand for this macro definition, then replace the
old macro with this updated source macro to the macro library using the
coding shown in the section "Editing a Macro and Adding It to the Macro
Library" •

UPDATING MACRO DEFINITIONS ON MACRO LIBRARY: FROM COpy LIBRARY

Update the source macro on the copy library. Then, assemble it and use
the EDECK option. Finally, replace the old macro with this updated
macro on the mac~o library using the MAl NT program, as follows:

II JOB UPDATMAC

II EXEC MAINT

UPDATE A.MAC1

) DEL 0011
) END
1*
II ASSGN SYSPCH,X'180'

II OPTION EDECK,NODECK

II EXEC ASSEMBLY
COpy MAC1
END

1*
II CLOSE SYSPCH,X'OOO'

II ASSGN SYSIPT,X'180'

II EXEC'MAINT
1&

Use MAINT to update source macro.

The macro to be updated is MAC1 and
is on the copy library (A).
A ")" in the first column identifies
these statements as update control
statements.

Deletes statements 0011

Assign tape 180 as intermediate
medium.
Edited macro punched on SYSPCH
(EDECK) •

Bring in MAC1 from copy library.

Writes tape mark, rewinds tape, and
unloads the reel.
Tape 180, with macro edited deck,
assigned as input.
Place edited macro on macro library.

Maintaining the Macro and Copy Libraries 25

How to Convert an Old Macro Library

All macro definitions on the macro library must be in edited format. To
convert a library of non-edited macros created by previous DOS
assemblies:

Edit s'ource copies of macro definitions that are on the
library in a regular assembly run, using the EDECK option
(defined in Figure 3) on the OPTION statement, to produce
an edited macro deck. These edited decks are then placed
on the macro library using the MAINT program.

The source macros can be either in the copy library or in source deck
format. The following code shows one method for converting an old macro
library to a library of edited macros.

1/ JOB EPUNCH

II ASSGN SYSPCH,X'180'

II DLBL IJSYSSL,'USERS PRY MACROS'

II EXTENT SYSSLB,xxxxxx

II ASSGN SYSSLB,X' 192'

/1 OPTION EDECK,NODECK

II EXEC ASSEMBLY
COpy MACl
COpy MAC2

END
/*
II CLOSE SYSPCH,X'OOD'

1&
I I JOB CATALOG
II ASSGN SYSSLB,X'193'
II DLBL IJSYSSL,'USERS PRY EDMACS'
II EXTENT SYSSLB,'xxxxxx'

II ASSGN SYSIPT,X'180'

II EXEC MAINT

/&

Name of job is EPUNCH.

Assigns this tape for edited
output.

File name of user's private
macro library is IJSYSSL.

Its volume serial number is from
one to six characters in length.

SYSSLB must be assigned if source
code is held in private source
statement library.
Only the edited macro deck will
be punched.

Bring in all macros that you wish
to include in the new macro
library.

Writes tape mark, rewinds tape, and
unloads the reel.

This job is named CATALOG.
And will be cataloged here
Under this name
With this serial number.

Assign tape containing edited
output as input.

Place edited macros on macro
library.

Not~: If a macro in the macro library contains copy code and the copy
code is updated, then the macro has to be re-edited to get the new
version of the copy code.

26

How to Maintain the Copy Library

The copy library is maintained in the same way as any source code
library in current DOS/VS using the MAINT program, as follows:

ADDING MACRO DEFINITIONS

II JOB COpy
II EXEC MAINT

CATALS A.MAC1
MACRO

1*
1&

MAC1

MEND

DELETING MACRO DEFINITIONS

II JOB DEL
II EXEC MAINT

DELETS A.MACl
1*
1&

UPDATING A BOOK

II JOB UPDATE
II EXEC MAINT

UPDATE A. MAC 1
) REP 0011

CLC FIELD1,BLANKS
) ADD 0060
PUNCH MVI SWITCH,SW1

B CHKOPND
) DEL 0601,0632
) END
1*
1&

MAINT used to update.
Catalogs macro MAC1 in copy library CA)

This macro is cataloged.

MAINT used to update.
Deletes macro MAC1 from copy library (At

MAINT used to update.
Updates macro MAC1 on copy library (A).
Replace statement 0011 with
This statement and '
Add after statement 0060
These statements.

Delete statements 0601 through 0632.

Another way to update a book in the copy library is to have it punched
update it manually, and then catalog it again in the copy library:

II JOB PUNCH
I I EXEC SSERV

PUNCH A.MAC1

Name of job is PUNCH
'Ini tiates execution of SSERV
(see publication System Control
Statements for details of the
SSERV program) •

Causes the book MAC1 to be punched
out on cards from the copy library
(A) •

Maintaining the Macro and Copy Libraries 27

Once the book has been updated you can use the coding shown
under "Adding Macro Definitions" above, to re-catalog into the copy
library.

How to Use Edited and Un-Edited Macro Definitions

1. If the macro is edited, you just write your macro
instruction:

MAC PARM1,PARM2

2. If the macro is not edited, that is, it is on the copy library,
you must bring the definition into your source module at the
beginning of the module in which it is called.

COpy MAC

MAC PARM1,PARM2

28

Must be ahead of all other statements
in the assembly.

De-E.diting and Updating Macros: ESERV Program

Introduction

Before you can put a macro definition on the macro library the assembler
has to edit it and, using the EDECK option, produce an edited macro
deck. The edited deck is placed on the macro library using the MAINT
program. An edited macro definition cannot be directly updated;
instead, the source macro definition, either in card format or on the
copy library, is updated. ~fter the changed macro definition has been
tested, debugged, and edited, it can be placed on the macro library.

If your source macro definition is not available, the de-editor
program, ESERV, can be used to de-edit the edited macro definition to
source format. Several macros can be handled at one time. The
de-editor program also combines the function of de-editing with that of
updating the source macro definition.

Input to the ESERV Program

• ESERV control statements on SYSIPT.

• Edited macro definitions in the macro library.

Output from the ESERV Program

• The selected macro definitions in source format (and
updated) on the device assigned to SYSPCH, and/or the
device assigned to SYSLST. To allow immediate
editing of the updated macro an END card can be
generated at the end of the update run. (See "Using
ESERV to De-Edit and Update a Macro Definition".)

• Update information (see following diagram for details) •

• Error Diagnostics (see "Diagnostic and Error Messages",
beginning at message IPK301) •

The following diagram graphically illustrates the input and output of
the, ESERV program. Included in the diagram is a list of the control
statements for the ESERV program, and some explanatory notes on the
update information.

De-Editing and Updating Macros: ESERV Program 29

w
o INPUT

/ 'L...-.---or---.....

/

•

/
/

/

/I EXEC ESERV

GENEND
GENCATALS
DSPLY

PUNCH

DSPCH

COL
VER
DEL
ADD
REP
RST
END

See the Section:
"Using ESERV to De-edit and Update a

Macro Definition"
As above
As above

"Getting a Printout of the De-edited
Macro Definition"

"Getting a Punched Deck of the De-
edited Macro Definition"

"Getting a Printout and Punched Deck
of the De-edited Macro Definition"

"Verifying/Updating Statements from
Printout of Source Macro Definitions"

Edited
Macros on
Source
Statement
Library

~~ '~:','~ ~t

Macro Source
Deck

SYSLST

I

+.

Error
Diagnostics

I
I

I
I

I
/

" "; See section "Diagnostic and
Error Messages" for details

/

of the ESERV error messages.

... -::'

Figure 5. Input to, and 9utput from the ESERV Program

OUTPUT

SYSPCH

Jj.!pdate Information

/1 There are seven control statements used to update the
de-edited source macro definitions:

COL: for specifying the cols. containing the sequence
numbers in the statements of a macro definition,
ADD: for adding source statements to a macro
definition,
VER: for verifying the contents of a specific source
statement of a macro definition,
DEL: for deleting source statements from a macro
definition,
REP: for replacing source statements in a macro
definition,
RST: for specifying a new number sequence,
END: for indicating the end of an update to a macro
definition.

Each update control statement is printed on SYSLST
(except for RST) followed by the affected source
statement. This printout is known as the update
survey. For ADD, the de-edited source record
preceding the records to be added is printed, followed
by the added records. For VER the character string
to be compared is printed, followed by the de-edited
source record to be verified. For DEL the de-edited
source records to be deleted are printed. For REP
the de-edited source records to be replaced are
printed, followed by the records to be inserted.

Using ESERV to De-Edit and Update a Macro Definition

To request the ESERV program, use the following EXEC control statement:

1/ EXEC ESERV

To allow you immediately to use the output from the ESERV program as
assembler input, you need an assembler END statement, plus a 1*
statement. You generate these by using the GENEND statement, the format
of which is:

Column 2--.
GENEND

GENEND, when present, must be the first statement after the II EXEC
ESERV statement.

To allow you immediately to use the output from the ESERV program as
SYSIPT for cataloging into the macro library you need an appropriate
CATALS statement before each macro in the run, and a 1* statement after
the last macro. You generate these by using the GENCATAL statement, the
format of which is:

Column 2--.
GENCATALS

GENCATALS, when present, must be the first statement after the II EXEC
ESERV statement. If neither GENEND or GENCATALS is used, GENCATALS is
assumed.

Before you can update your source macro definition, you need

(a) a printout of the source macro definition, or
(b) a source deck of the source macro definiton.

The following paragraphs show how you can get a printout of the source
macro definition, or a source deck of the source macro definition, or
both.

GETTING A PRINTOUT OF THE DE-EDITED MACRO DEFINITION

The DSPLY (display) control statement produces a printout of the
de-edited macro on the device assigned to SYSLST. DSPLY has the
following format:

Column 2--.

DSPLY sublib1.mac1,sublib2.mac2, •••

If the qualifier sublib is omitted the macro library (E) is assumed by
default. The mac in the operand field represents the name of the macro
definition in the sublibrary. If more than one macro definition is to
be displayed the entries must be separated by commas.

De-Editing and Updating Macros: ESERV Program 31

If update of the de-edited macro definition is desired the
appropriate control statements (see "Verifying/Updating Statements from
Printout of Source Macro Definition") follow this statement. However,
only the last macro can be updated.

GETTING A PUNCHED DECK OF THE DE-EDITED MACRO DEFINITION

Punch - PUNCH

The PUNCH function produces a de-edited deck on the device assigned to
SYSPCH. Th~ formats and their governing conditions are the same as for
the DSPLY function defined above.

GETTING A PRINTOUT AND PUNCHED DECK OF THE DE-EDITED MACRO DEFINITION

Di~ and Punch - DSPCH

The display-and-punch function combines the separate operations of the
display function and the punch function. The formats and their
governing conditions are the same as for the DSPLY function defined
above.

Verifying/Updating Statements from Printout of Source Macro Definition

You can use the control statements COL, VER, ADD, DEL, REP, RST, and END
with the ESERV program to verify and/or update properly identified
statements in an edited macro definition. Statements are identified by
the sequence number in the identification field. Statements without
sequence numbers are identified by their position relative to a previous
statement that has a sequence number.

The verifying and updating is performed on the last macro
specification in the preceding DSPLY, PUNCH, or DSPCH statement.

COL Statement

The COL statement is used to specify the columns containing the sequence
numbers in the statements of a macro definition. If present, this
statement must be the first control statement following the DSPLY, PUNCH
or DSPCH statement. The COL statement has the following format:

Column 11
) COL startcol, n

st~rtco! is a decimal number within the range 73-80, which identifies
the start column of the sequence number. ~ is a decimal number within
the range 1-8, specifying the number of columns used by the sequence
number.

If the COL statement is omitted, startcol receives a default value of
73 and ~ a value of 6.

32

VER Statement

The VER statement is used when the contents of a specified source
statement of a macro definition is to be verified. The format is:

Column 1l
) VER seqno+rel, I

segno+rel is used to identify the source statement which is to be
compared with the statement following the VER statement.
segno represents the sequence number of a source statement. It is a
decimal number of 1 to n digits in length, where n is the length of the
sequence field as specified in the COL statement.
reI is a decimal number of 1-4 digits in length. If omitted, reI
receives a default value of o.
l is a decimal number within the range 1-80. When omitted, l gets a
default value of 72. Only the first 1 characters are used in the
comparison. If the strings do not match, an error message is given.

ADD Statement

The ADD statement is used to add statements to a source macro
definition. The format is:

Column 11
) ADD seqno+rel

segno+rel is used to identify the source statement after which the new
statements following the ADD statement are to be inserted.
~~gno represents the sequence number of a source statement. It is a
decimal number of 1 to n digits in length, where n is the length of the
sequence field as specified in the COL statement.
rel is a decimal number of 1-4 digits in length. If omitted, reI
receives a default value of O.

The DEL statement is used to delete statements from a macro source
definition. The format is:

Column 11
) DEL seqno+rel,seqno+rel

~~gno+rel,segno+rel are used to identify the first and last source
statements of the section to be deleted. If second operand is omitted,
only the source statement identified by the first operand is deleted.
segno represents the sequence number of the source statement. It is a
decimal number of 1 to n digits in length where n is the length of the
sequence field as specified in the COL statement.
rel is a decimal number of 1-4 digits in length. If omitted, reI gets a
default value of O.

De-Editing and Updating Macros: ESERV Program 33

REP Statement

The REP statement is used to replace statements in a source macro
definition. The format is:

Column 11
) REP seqno+rel,seqno+rel

segno+rel,segno+rel are used to identify the first and last source
statements of the section which are to be replaced by the statements
following the REP statements. If the second operand is omitted, only the
source statement identified by the first operand is replaced.
segno represents the sequence number of a source statement. It is a
decimal number of 1-n digits, where n is the length of the sequence
field as specified in the COL statement.
rel is a decimal number of 1-4 digits in length. If omitted, reI
receives a default value of O.

In macro definitions containing copy code, the sequence numbers are
usually not in ascending order throughout the whole macro definition.
The RST (restart) statement is used to specify that a new sequence
number series starts in the next macro statement. The RST statement has
the following format:

Column 1~

) RST seqno+ re 1

segno+rel is used to identify the source statement after which the new
series starts. 2egno represents the last sequence number in the old
series. It is a decimal number of 1-n digits in length, where n is the
length of the sequence field as specified in the COL statement.
E~~ is a decimal number of 1-4 digits in length. If omitted, reI
receives a default value of O.

N~te: If an ADD, DEL, or REP operation has to be performed on the last
macro statement in the series, the first statement in the new series has
to be referenced in the RST statement. segno must still be the last
sequence number in the old series.

34

The following illustration shows the use of the RST statement:

Assume that you have the following macro:

MACRO
MAC 1

COpy

MEND

10
20
30
40
50
60
70
80

and assume that you have the following DSPLY output from the
above macro:

Statement

MAC 1

..
: ..
; ,
, ..
: .. ,
~

Seguence No.

10
20
30
40

!}
60
70
80

These statements were
inserted by the COpy
statement

If you wanted to delete statement 20 and statement 3, your coding
would be:

DEL 20
RST 40
DEL 3

If you wanted to delete statement 40 and statement 3 (see Note under
RRST Statement", above), your coding would be:

DEL 40
RST 40+1
DEL 3

The END statement is used to indicate the end of an update to a macro
definition. The format is:

Column 11
END

This statement is required for all updating; otherwise an error message
is given.

De-Editing and Updating Macros: ESERV Program 35

All update control statements must have a right parenthesis in column
1. At least one blank must separate the right parenthesis from the
operation field. At least one blank must separate the operation field
from the operand field.

The following rules apply to the relationship between operands.

1. Any segno+rel must specify a source statement after the
one addressed by the previous segno+rel.

2. Any ~gQQ must be greater than or equal to the last segno
in the previous control statement, or the segno of the
first operand in the same control statement.

An exception to rule 1 is:

Two consecutive segno+re! may be equal, (a) as the two
operands of a DEL or REP statement, (b) if a verified
source statement is referencej in the next control state­
ment which must be an ADD, DEL, REP, or RST statement.

An exception to rule 2 is:

The first ~~grrQ in the control statement following an
RST statement is independent of the segno in the RST card.

ERRORS DETECTED DURING UPDATE - ACTION TAKEN

If an error is detected during updating, a message is printed on the
update survey. The requested update action will not be performed. If
possible, updating will continue with the next update control card.
Otherwise, a termination message is given and only the remaining update
control cards are printed on the survey. De-editing of the macro will
always be completed. The job will be cancelled at the end of the ESERV
run; that is, remaining jobsteps to edit the macro and catalog the
edited macro definition again will not be executed.

Updating will continue with the next update control card for all
errors except when:

1. The COL statement has invalid operands.
2. COL statement is not the first update control statement.
3. The macro is completely de-edited without all update

control statements being completely processed.
4. An RST statement has an invalid operand.

Examples of De-Editing With and Without Updating a Macro Definition

The following two examples show the two different features of the ESERV
program: that of de-editing without updating an edited macro definition,
and that of de-editing and updating an edited macro definition.

36

SAMPLE CODING FOR DE-EDITING WITHOUT UPDATING A MACRO DEFINITION

/1 JOB NOUPDATE
II EXEC ESERV

PUNCH E.MAC1,MAC2

1*
1&

Name of job is NOUPDATE.
Causes ESERV to de-edit the macro
specified in the following PUNCH
statement.

Causes the macros MAC1 and MAC2 to
be punched out from the macro library
(E) •

You could use the above coding to produce a de-edited source macro
for possible future updates.

SAMPLE CODING FOR DE-EDITING AND UPDATING A MACRO DEFINITION

The procedure in the following example produces a de-edited, updated
macro definition in source format, and edits and places the updated
macro definition in the macro library, using the MAINT program.

// JOB UPDATE

/1 EXEC ESERV

GENEND

DSPCH E.MAC1

) COL 77,4
) VER 72+ 1,5

• PP9
) ADD 72+ 1

AIF (&PCH NE 1400) .D4
DEL 102,103

) REP 245
JOYCE CLC o (4,REGG) ,BLANKS
) END
1*
/1 PAUSE
/1 OPTION EDECK,NODECK
/1 EXEC ASSEMBLY

1*

(deck produced by ESERV
goes here)

// PAUSE
// EXEC MAINT

1&

(deck produced by
assembler goes here)

Causes ESERV to de-edit the macro
specified in the following DSPCH state­
ment.

Causes an END and /* statement to be
generated. These are necessary to allow
output from ESERV to be used immediately
as input to assembler program.

Causes the macro definition MAC1 to be
punched and printed from the macro
library (E).

For explanation see: "Verifying/
Updating Statements from Printout
of Source Macro Definition" •

Check list, move deck to reader.
Causes the assembler to produce an edited
deck (EDECK): no object module
will be produced (NODECK).

Move SYSPCH deck to reader.
Causes MAINT to put edited macro
definition on macro library.

De-Editing and Updating Macros: ESERV Program 37

No~g: If desired, tapes or disk extents may be used for input, output,
or intermediate work files. A DOS/VS cataloged procedure could be
written for installations using disk extents.

DiHerences Between De-Edited Macro Definitions
and Source Macro Definitions

• Remarks are lost in the statements which are not generated, for
example, prototype and declaration statements, AIF, AGO, etc.).

• Identification sequence field is lost in:

a) ANOP statements
b) Continuation cards to AIF, SET, and inner macro instruction
c) prototype and Declaration statements

• Identification-sequence field is changed for the MACRO statement.
Zeros are generated in columns 13-80 by the de-editor.

• All self-defining terms in conditional assembly expressions will be
de-edited as decimal; thus, a character self-defining term in a SETA
expression might be de-edited into, for example, 16382451 (8 positions) •
This might give a too long source statement. If this happens, a message
will be punched and no END statement generated.

• .X comments are lost.

• COpy statements are lost; instead the copied code is inserted.

• Local declarations and positional parameters in prototype statements
will be packed as efficiently as possible; for example,

LCLA &A 1
LCLA &A2

will be de-edited as:

LCLA &A 1 , &A2

• If two or more ANOPs occur adjacent to each other, only the one with
the shortest symbolic name will be kept, and that name will be used
in all references in the model statements.

• If two or more ANOPs have equally short names, the symbol which is
first defined will be kept.

• Superfluous ANOPs are lost.

• Superfluous parentheses and periods are lost (AlF, SETx).

• The original column pattern may be changed for statements which
are not generated.

• A dummy ANOP will always be generated for each sequence symbol
definition.

• If LCLX statements were interspersed with ordinary statements, their
comments will not be placed in the original place. Instead, they
will be placed following the last declaration.

Note: A de-edited macro will not be changed by being edited and then
being de-edited.

38

Interpreting the Assembler Listing

This section tells you how to interpret the printed listing produced
by the assembler. The listing is obtained only if the option LIST is in
effect. Part(s) of the listing can be suppressed by using other options.

The six parts of DOS/VS Assembler listing are:

• External Symbol Dictionary (ESD)
• Dummy Section Dictionary
• Source and Object program
• Relocation Dictionary (RLD)
• Symbol Cross Reference Table
• Diagnostics and Statistics

The function and purpose of each of them as well as the individual
details are explained in the following text and illustrations.

Interpreting the Assembler Listing 39

External Symbol Dictionary

o SYMBOL

• TYPE

The name of the symbol described by the entry.
(Only for types ER, LO, SO, and WX).
The various type designators are defined as:

itf; <:<',c:' ,,' ,", ,'" ',,~ '" 'i:: ~" ",:',>,' , , N ;,,' ,

~ The external symbol dictionary (ESO) section ~,:" m of the listing describes the contents of the ESO '.
k; records passed to the linkage editor in the
~~ object module produced by the assembler. It
!;:; describes all the control sections in the module
~!!~ and identifies the external symbol defined in

!
t" ~ 1

)# it.

~ This section helps you find references between :

o • ••

CM Common control section. A control section defined by
a COM statement.

ER

LO

PC

•

Strong external reference. The entry describes a symbol
that appears in the operand field of an EXTRN statement
or was defined as a V-type address constant.
External name. The entry describes a symbol that appears
in the operand field of an ENTRY statement.
Unnamed control section (private code). The entry
describes a control section that has not been assigned any
name. Unnamed control sections are generated as a
result of an unnamed START or CSECT statement or by
the omission of any of these statements at the beginning
of the program.

EXTERNAL SYMBOL OICTIONAPY

TyPE 10 AOOR LENGTH lO-IO

PC (PRIVATE) 01 000000 000gB8

;>~
:;,1 modules in a multi-module program. It may be

particularly helpful in debugging the execution
of large overlay programs constructed from
several modules, to check the ESO section of
the assembler listings.

The ESO section is described in detail. For a fullid
understanding of the terms and concepts used in ~4
the explanations of each head refer to OS/VS :
and OOS/VS Assembler Language. -- :: :

::'::21ZS;;:;:': ~:;;:;::;:::.:< ,': .. :,., ,.: ,.,," :: , . '.

• •

SO Named control section. The entry describes a control
section identified by a START or CSECT statement with
a label in the named field.

WX Weak external reference. The entry describes a symbol
appearing in the operand field of a WXTRN statement.

10 • The external symbol dictionary identification number
(ESOIO). The number is a unique two-digit hexadecimal
number identifying the entry. The number is used for
cross-reference between the relocation dictionary and the
external symbol dictionary. (Only for types CM, ER, SO,
WX, and PC.)

AOOR The address of the item. The place in the module where
the item described by the entry is defined. (Only for
types CM, LO, PC and SO.)

LENGTH The length, in bytes of the assembled control section.
(Only for entries of type CM, PC, and SO.)

LO-IO The ESOIO number assigned to the entry for the control
section in which this entry is defined (Only for entries of
type LO.)

Figure 6. External Symbol Dictionary (ESD)

40

Dummy Section Dictionary

I': "

'I , ,

!: , '

0 • • SYMBOL ID LENGTH

CCBADR FF 000048
CCWTCB FE 000070
CCWBLOCK FD 000048
VCCWADR FC 000009
'rICCCW FB 000008
SABADR FA 000005
PUBADR F9 000009
CHNTBL F8 000002

;'<,
;;1

~~~ 
['il 
(, < ",' 
,~ ""hd'~"""""""""~",':-"'","N' , ... l'. N ....... "" ... "~, ... '"v.-> .... , 

" 

SYMBOL 

LENGTH 

Name of the DSECT 

External symbol dictionary identification 
number (ESDID) of the DSECT. 

Length of the DSECT (in bytes). 

DUMMY SECTION DICTIONARY 

Figure 7. Dummy Section Dictionary 

Interpreting the Assembler Listing 41 



Source and Object Program 

The third section of the listing contains the source statements of the module, together with object code produced 
by the assembler for each of the source statements. The location counter values and the object code listed for each 
statement will help you locate any errors in a main storage dump. You also have the possibility to check that your 
macros have been expanded correctly. 

The source and machine language statements section is described in detail in the following figure. That figure 
discusses many language details that you may not be familiar with. For a complete understanding of all items in 
the figure, refer to the description of the individual instructions and features in OS/VS and DOS/VS Assembler 
Language. 

o PRnGRAM-l. • • e 
OOS/VS ASSEMBlFR V 03.2 00.00 12-01-18 lOC OBJF.CT CODE AOORI AOOR2 STMT SOURCE STATEMENT 

000000 000000650F ~ 
000008 
000000 000000 
000010 000000650FOO 
000018 
oorOlE 0000 
OOOO?O 000000650FOOOF 
00002A 
00007.F 00 
000010 000000650FOOOFOO 
000038 

LOC 

OBJECT CODE 

PROGRAM-1 

ADDR1 ADDR2 

STMT 

o 

• 
• • 

• 

'6 OCOS F'lOl',AC,X'F',B'lI0l' 01300000 
31+SY"lBl DC F'lOI' ,X'F' 00450000 
18+ OS F'lOl',X'F' 005"0000 

39+SVMB2 DC F'lOl',X'F',B'1101' 006'50000 
40+ OS F'lOl',X'F',B"IlOl' 00700000 

4l+SVMR3 I)C F'lOl' ,X'F' ,R'llOl' ,X'F' 0040;0000 
4?+ OS F'lOl',X'F',S'llOl',X'F' 000;1)0000 

43+SY~B4 OC F'lOl',X'F',A'llOl',X'F',A'llOl' 00650000 
44+ os F'lOl',X'F',B'llOl',X'F',A'llOl' 00700000 

Called the location counter value (address in hex notation) of the associated code. 
Exceptions are: for COM, CSECT, and DSECT statements, this field contains the 
beginning address of the control section. For a L TORG statement this field contains the 
location assigned to the literal pool. This field is blank for: ENTRY, EXTRN, WXTRN, 
END, ORG, EQU, and USING statements. 

The machine language code produced from the source statement on the same line. These 
entries are left-justified. They can be either machine instructions or assembled constants. 
Machine instructions are printed in full with a blank inserted after every four digits (two 
bytes). Assembled constants are printed in full only if PRINT DATA has been specified 
(see PRINT assembler instruction in OS/VS and DOS/VS Assembler Language.) 

The title defined in the operand field of the TITLE statement. 

The effective address (the result of adding together a base register and a displacement 
value) for: 

ADDR1 the first operand of an SI or SS type machine instruction. 
ADDR2 the second operand of an RX or SS type instruction, or third operand of an 
END, ORG, or EQU statement. For USING: the first operand value. 

Both address fields contain six digits: however, if the high order digit is zero, it is not 
printed . 

The source statement number. Used to cross-reference between this section and the 
diagnostics section. A plus sign after a number indicates that the instruction was 
generated from a macro instruction. 

SOURCE STATEMENT Columns 1-80 of the source statements. All source statements with the exception of G listing control statements (EJECT,PRINT, etc.) are printed. The following items apply 
to this column: 

• The listing control statement PRINT is not printed . 

• Macro definitions called from a source statement library are not listed. 

Figure 8. Source and Object program (Part 1 of 2) 

42 



• Statements generated as the result of a macro instruction, follow the macro instruction 
in the listing, They are identified by a plus sign (+) to the left of them. 

• Assembler or machine instructions that contain variable symbols, except in macro 
definitions, are listed twice, once as they appear in the input, and once with values 
substituted for the variable symbols. 

• An error indicator *** ERROR*** follows a statement in error. An error message 
in the diagnostic messages section explains the error. 

• MNOTE messages are listed in-line. An MNOTE indicator message appears in the 
diagnostic messages section of the listing unless the first operand of the MNOTE 
statement is an asterisk. 

• When an error is found in a source macro definition (a definition contained in the 
same source module), it is treated as any other assembler error: the error indicator 
is placed after the statement in error, and a diagnostic message appears in the 
diagnostic section of the listing. 

• When a macro is encountered during the expansion of a macro, the error indicator 
appears after the last statement generated before the error was encountered, and 
the associated diagnostic message is placed in the diagnostic section. 

• Literals that have not been assigned locations by means of L TORG statements are 
listed after the END statement. 

DOS/VS ASM V 03.2 0 Identification of the assembler variant used for this assembly. 

00.0072-01-18 • The time and date when the assembly is run. 

Figure 8. Source and Object program (Part 2 of 2) 

Interpreting the Assembler Listing 43 



Relocation Dictionary 

The rel6
h

cation dictionary (RLb) section of the 
listing describes the contents of the R LD 
records passed to the linkage editor in the object " 
module. The entries describe the address constants; ': 
in the module that are affected by the program " , 

$, < rv; 

o • • o 
ESOID FOR 
ADDR CON 

ESOID FOR TYPE LENGTH 
REF SYMROL 

01 +01 A 
01 +01 A 
01 +01 A 
01 +01 ". 
01 +01 A 

~#. 

't:~ relocation. The section helps you find the 
~:~l relocatable constants in your program. This is 
;;;1 especially useful if you are writing a self-
:::';1 relocating program. The R LD table can also be 
. >01 
Ir;j used to locate the V-type address'constants in 

4 
4 
4 
4 
4 

:;',:fthe program. You look up the name of the 
p~ constant in the ESD table and from there you get f' ~ 
~hhe ESDID. You can find its address in the ::! 
;:1 RLD table. (The V-type address constants h 

;" :; are not in the cross-reference table.) ~ ; 
y::~~'~~~V~VH',';,:<", ?<- y +" H ,::-:;::~~:?:,,:::~;;~,,~;::~::~,', vy'v ',",vv, ~ 

Figure 9. The Relocation Dictionary 

44 

o ESDID FOR ADDR CON 

The external symbol dictionary identification number (ESDID) 
assigned to the ESD entry for the control section in which 
the address constant appears . 

• ESDID FOR REF SYMBOL 

The external symbol dictionary identification number (ESDID) 
assigned to the ESD entry for the control section in which the 
referenced symbol is defined. 
+ sign: positive relocation 
-sign: negative relocation 

• AODRESS 

000108 
000120 
000140 
000148 
000168 

• TYPE 

R E lOC AT TON DIe T ION A R,Y 

The type of the address constant (A, Y, CCW, or 
V). 

o LENGTH The length of the address constant . 

• ADDRESS The address where the constant is stored, that is, 
the location counter value given to the definition 
of the constant. 



Cross-Reference Table 

The cross reference'section of the listing lists 
: the symbols used in the module, indicating 
where they are defined, and where they are 

'referenced. This is a useful tool in checking 
; 'the logic of the program; it helps you see if I ; your data references and branches are in order. 

I 
The cross-reference table is produced only if 

, the option XREF is in effect (see figure 3 
'~which lists and defines the options available). i' 

-+ 

• SYMROL 

CALC 
MERG 

SORT 
SVMRI 
SY""BIO 
SVMBII 
SVMB139 
SVMR140 
SVt.1S141 
SYMB142 

••• 8 
LEN 10 VALUE OFFN 

00004 01 0009B4 01163 
00004 01 0009RO 01162 

00004 01 0009AC 01161 
00004 01 000000 00037 
00004 01 OOOOCO 00055 
00004 01 OOOOEO 000~7 
00002 01 0003CO 00315 
00002 01 0003C4 00317 
00002 01 0003C8 00319 
OOOO? 01 0003CC 00321 

:',,AII symbols in the module, except those 
I :' 'appearing in the operand field of V-type 

I' :address constants are included. Thus, 
r symbols that are not listed in the source 
,',and machine language statements section 
" 'because of a PRINT OFF or PRINT NOGEN 
~,instruction will appear in the cross-reference r section. (For a description of V-type address 
f constant and the PRINT instruction refer to : " 

I
', 'OS!VS and DOS!VS Assembler Language.) : 
, ~The cross-reference section also lists undefined; ,'; 
)' and duplicate symbols for which error 
! indicators and diagnostics have been issued. 

I L,Foliowing the symbols, all ,1i~,~r~,I,~,,~~~, ,Ii,sted. 
~ ... ~ ':.. .,.... , ... ,y ,~ :;. '" 

• SYMBOL 

• LEN 

.VALUE 

The name of the symbol used in the module . 

The length (decimal notation), in bytes, of the 
field represented by the symbol. 

The external symbol dictionary identification 
number (ESDID) related to the symbol (e.g., 
the CSECT where it is defined). Blank for 
absolute equates. 

Either the address represented by the symbol, 
or the value to which the symbol is equated. 

CROSS-REFERENCF. 

G 
REFFRENCES 

0733 
0748 

0734 
0749 

8 DEFN 

0735 
0750 

G REFERENCES 

0736 
0751 

0737 
0752 

0738 0739 0740 

The statement number of the statement in 
which the symbol is defined. 

The statement numbers of the statements in 
which the symbol appears in the operand 
field. 

Figure 10. The Cross-Reference Table 

Interpreting the Assembler Listing 45 



Diagnostics and Statistics 

l~: 
;'4 
~;~ 

"The di~g'nostics a'nd st~i,~iics section h 

contains the diagnostic messages 
as a result of error conditions en­
countered in the program. All the 
messages, their contents, and 
explanations are contained in the section 
"Diagnostic and Error Messages". 

0 • • STMNT ERRO~ NOo ~ESSAGF 

7A IPK121 INVALID TYPE 
79 IPK123 INVALID TYPE 
AO IPK123 INVALID TYPE 
A1 IPK123 INVALID TYPE 
82 IPK123 INVALID TYPE 
83 IPK123 INVALID TYPE 
R4 IPKIt'3 INVAL In TYPE 
R5 TPK123 INVALID TYPE 
A6 IPK123 INVALID TYPE 
87 IPK123 INVALID TYPF 
~8 TPK121 INVALID TYPE 
89 IPK123 INVALID TYPE 
90 IPK12~ INVALID TYPE 
ql IPK123 INVALTI1 TYPE 

,f; If an MNOTE (see the description of the 
!,J" MNOTE statement in OS/VS and DOS/VS 
?;~ Assembler Language) message other than 

MNOTE with an asterisk in the operand 
(or without a severity code) is issued by a 
macro, the diagnostic message indicates 
where the MNOTE statement is found in 
the source and machine language state­
ments section of the listing. 

o STMNT 

• ERROR NO. 

The statement number of the statement flagged. 
For certain types of errors the statement number 
is not given. 

The message identifier. It consists of the three 
characters IPK and three numeric characters, giving 
a unique number to the message. 

DIAGNnSTICS AND STATISTICS 

SPECIFICATION, • 
SPECIFICATION, • 
SPECIFICATION, , 
SPECIFICATION, , 
SPECIFICATION, , 
SPECIFICATtON, • 
SPFCIFICATION, • 
SPECIFICATION, ' ' 

SPECIFICATION, • 
SPECIFICATION, , 
SPECIFICATION, • 
SPECIFICATION, • 
SPECIFICATION, • 
SPECIFICATION, • 

• MESSAGE 

5 
5 

- 3 
- 3 
- 3 
- '3 
- 3 

, x • F" 
t X' F" 
t X' F" 
,X'F" 
,X'F" 
t X' F ' • 
,X'F" 

The text of the message. Many messages include a 
segment of the statement in error in the message. 

Figure 11. Diagnostics and Statistics 

46 



Storage Requirements 

Main and Auxiliary Storage Requirements 

The DOS/VS Assembler requires a minimum of 20K bytes of main storage. 
Auxiliary storage requirements may be estimatej by the following formula: 

SYSOO 1: 
SYS002: 
SYS003: 

MAX (60xITXT + 60, SM + 60xLM) 
MAX(40xETXT, 60xITXT + 60xSM) 
60xOTXT if option NOXREF 
100xOTXT if option XREF 

MAX = Choose the greater of the two expressions separated 
by the conuna 

ITXT = Total number of statements on SYSIPT 

OTXT = Total number of statements on SYSLST (with PRINT GEN) 

SM = Number of source macro statements 

ETXT = (OTXT - number of comments - SM) 

LM = Number of statements in library macros used by the program 

The de-editor requires 26K bytes of main stora~e. SYSOOl and SYS002 are 
used. 

The edited macro library requires about 20% more storage than the 
corresponding library in blank-compressed source format. 

Performance Considerations 

The DOS/VS assembler dynamically allocates storage space for workareas 
and tables. Thus, within certain limits, the assembler will use as much 
as possible of the virtual partition. Since retrieval of data from 
workareas is often random, excessive paging will occur if the virtual 
partition is much larger than the Page Pool. With large assemblies, use 
the SIZE parameter in the EXEC job control statement to avoid excessive 
paging. 

You should also see the section ·Performance Considerations· in 
Introduction to DOS/yS. 

Storage Requirements 47 



Configuration Specifications 

The configuration required for the assembler in a DOSjVS system is: 

• A System/370 machine with the standard System/370 
instruction set. 

• At least 20K bytes of main storage allocated for the assembler. 

• DASD for SYSRES (system library) • 

• DASD for three workfiles (SYS001, SYS002, SYS003). 

• Card reader, tape or DASD for input (SYSIPT). 

The following devices are require~ only if the corresponding 
assembler option is used: 

• Card punch, tape or DASD for object code output and 
edited macro output (SYSPCH). 

• Printer, tape or DASD for listing output {SYSLS~. 

• DASD for object code link file output (SYSLNK). 

• DASD for private library (SYSSLB). 

Note: DASD is any direct-access device supported by DOSjVS. 

48 



Files Used by the Assembler 

Sy~gQg contains job control statements for the job control program. 

~~~!~ is a combination of SYSRDR an1 SYSIPT. Must be used if 
SYSRDR and SYSIPT input is on the same disk extent.

SY~IPT contains input for processing program (for example, source
code for the assembler). Normally the same device as SYSRDR.

~~~LST receives printed output, for example, the assembler listing. 

SYSOUT is a combination of SYSLST and SYSPCH. Must be permanent 
assignment (cannot be assigned by an II ASSGN statement) • 

SYSPCH receives punched output from language translators, for example, 
object decks from the assembler. It also receives edited 
macro deck produced by the assembler with the EDECK option. 

SY~LNK contains input for the linkage editor. Language translators 
write object modules on SYSLNK, if they are to be produced 
by the linkage editor in the same job. 

SY~LOG is used for communication between the system and the operator. 
A few assembler diagnostic messages may appear here. 

SysgOl, SYSOQlL~YS003 are programmer work files used by processing 
programs. The assembler uses them for 
intermediate storage during processing. 

SYSRES contains the Disk Operating System. The assembler and other 
processing programs are in the core image library, object modules 
in the relocatable library, and macro definitions in the source 
statement library. These libraries can be replaced by, or 
concatenated with, private libraries (SYSRLB, SYSCLB, and 
SYSSLB) • 

SYSSLB is a private source statement library. It is concatenated 
with the library on SYSRES. The assembler first searches the 
private library, if assigned, and then the SYSRES library 
for a macro not found in the source code. 

SYSCLB is a private core image library. Available only if specified 
when the system was generated. Must be a permanent assignment. 

The following figure shows the data flow in connection with assembler 
execution. 

Files Used by the Assember 49 



U1 
o ____ ~ Data Flow in connection 

V with Assembler Execution 

SYSRDR 

SYSSLB 

~ 

Macros, Copy ~ 
Code ~-

SYSRES 

Assembler, Macros 
etc. 

SYSIPT 

J 
I ASSEMBLER 

J 

Intermediate 
Data 

SYS001 

SYS002 

SYS003 

\ 

Figure 12. Data Flow in Connection With Assembler Files 

Commands 
and 

Messages 

SYSLST 

Object Module 

Assembler Listing 

SYSPCH 



Object Deck Output 

Listed below are the card groups that make up the object deck produced 
by the assembler. The groups are listed in the order in which they appear 
in the output deck. Also included in this section are descriptions of 
the REP and EDECK card formats. 

Note: No object deck will be produced when the option NODECK is used. 

Card Group 

Reproduced Cards 

External Symbol 
Dictionary (ESD) 

Problem program 

Relocation 
Dict ionary (RLD) 

END Card 

Obigct Deck Identification 

Remarks 

These reproduced cards result from 
REPRO or PUNCH instructions located 
before START. 

Contains all the symbol and storage 
assignments for an object module. For 
a detailed account of the ESD, see 
the publication System Control Statements. 

Consists of text (TXT) and reproduced 
cards. The reproduced cards result 
from REPRO or PUNCH instructions 
located after START. 

Produced if relocatable constants 
are present. 

Produced as the last card of the 
output deck. 

The 4-character assembly identification label punched into the name 
entry of the first TITLE card in the source program is punched into 
columns 73-76 of each record in the object deck (except in reproduced 
cards). If there is no label, these columns are left blank. 

Object Deck S~uencing Numbering 

An assembler-generated sequence number is punched into columns 77-80 of 
each card in the object deck (except in reproduced cards) • 

Object Deck Output 51 



ESD Card Format 

The format of the ESD card is as follows: 

1 
2-4 
5-10 
11-12 

13-14 
15-16 

17-64 

65-72 
73-76 
77-80 

Contents 

12-2-9 punch 
ESD 
Blank 
Variable fiel1 count - number 
of bytes of information in variable 
field (cols. 17-64) 
Blank 
ESDID of first SO, CM, PC, ER, or 
WX in variable field. 
Variable field. One to three 16-
byte items of the following format: 
8 bytes - Name, padded with blanks 
1 byte - ESD type code 
3 bytes ~ Address 
1 byte Blank 
3 bytes - length, ESDID or blank 
Blank 
Deck 10 (from first TITLE card) 
Card sequence number 

TEXT (TXT) Card Format 

The format of the TXT card is as follows: 

52 

1 
2-4 
5 
6-8 

9-10 
11-12 

13-14 
15-16 
17-72 
73-76 
77-80 

Contents 

12-2-9 punch 
TXT 
Blank 
Relative address of first 
byte in information field 
Blank 
Byte count--number of bytes 
in information field (cols 17-72) 
Blank 
ESDID 
56-byte information field 
Deck 10 (from first TITLE card) 
Card sequence number 



RLD Card Format 

The format of the RLD card is as follows: 

1 
2-4 
5-10 
11-12 

13-16 
17-72 

17-18 
19-20 
21 
22-24 
25-72 

73-76 
77-80 

Contents 

12-2-9 punch 
RLD 
Blank 
Data field count--number of 
bytes of information in data 
field (cols 17-72) 
Blank 
Data field: 

Relocation ESDID 
Position ESDID 
Flag byte 
Absolute address to be relocated 
Remaining RLD entries 

Deck ID (from first TITLE card) 
Card sequence number 

If the rightmost bit of the flag byte is set, the following RLD entry 
has the same Relocation ESDID and position ESDID, and this information 
will not be repeated; if the rightmost bit of the flag byte is not set, 
the next RLD entry has a different Relocation ESDID an1/or position 
ESDID, and both ESDIDs will be recorded. 

END Card Format 

The format of the END card is as follows: 

1 
2-4 
5 
6-8 

9-14 
15-16 
17-72 
73-76 
77-80 

Contents 

12-2-9 punch 
END 
Blank 
Entry address from operand of END 
card in source deck (blank if no operand) 
Blank 
ESDID of entry point (blank if no operand) 
Blank 
Deck ID (from first TITLE card) 
Card sequence number 

Object Deck Output 53 



REP Card Format 

If you wish to modify your program after it has been assembled you can 
do this by means of a REP card, which must be included in the object 
module which it modifies. The format of the REP card is as follows: 

2-4 
5-6 
7-12 

13 
14-16 

11-10 

11-72 
73-80 

12-2-9 punch 
Identifies this as a loader card 
REP - Replace text card 
Blank 
Assembled address of the first byte to be 
replaced (hexadecimal). Must be right­
justified with leading zeros if needed to 
fill the field. 
Blank 
External symbol i::ientification number- (ESDID) 
of the control section (SD) co~taining the 
text (hexadecimal). Must be right-justified 
with leading zeros if neede1 to fill the field. 
From 1 to 11 4-digit hexadecimal fields 
separated by commas, each receiving two bytes 
A blank indicates the end of information in 
this card. 
Blank 
Can be used for program identification 

EDECK Card Format 

The format of the EDECK card is as follows: 

54 

1 
2-69 
70-16 
77-80 

Contents 

Column pointer to first record 
Edited text 
Blank 
Sequence number 



Diagnostic and Error Messages 

This section lists all the diagnostic and error messages that can be 
issued by the assembler. The messages are listed sequentially. 

How to Use This Section 

If you have found an error message in the diagnostics section of your 
listing that you are not sure you understand fully, look up the entry 
for the message in this section. The entry for the message will give 
you the following items: 

• The message number and text of the message. 
• Explanation, telling you why the message was issued. 
• Assembler action, telling you how the assembler reacted 

to the error. 
• Programmer response to correct the error. 
• Operator response to correct the error (only for some 

messages) • 

The following explains in more detail the various items of each message 
entry in this section. 

THE MESSAGE ITSELF 

In the diagnostics section of the listing you will find the following 
items for each message: 

• Statement number, telling you which statement 
contained the error. 

• The message identification number. 
• The text of the message. 

STATEMENT NUMBER: For messages IPK230-IPK250 no statement number 
is given, either because the error cannot be associated with any 
specific statement, or because the assembler does not have access 
to the statement number when the error was found. 

MESSAGE NUMBER: The message identification number is a unique number 
consisting of the letters IPK followed by a three-digit number. 

TEXT: The text of the message tells you which error the assembler has 
encountered. In some messages a number denoted by an 'n' is inserted to 
identify a position in an operand field where an error occurs. In some 
messages a character string taken from the source statement is inserted 
in the message. Such a string is denoted as 'XXXXXXXX' in the message 
text. The string normally starts at the point where the assembler has 
discovered an error. However, it does not stop immediately after the 
operand or character in error has been listed. The character string 
normally ends with the first blank, or after eight characters have been 
listed. The explanation for each message is subdivided under the 
following four headings: 

Diagnostic and Error Messages 55 



EXPLANATION 

This item gives the probable cause of the message. An error message is 
usually issued at the point where the assembler can no longer make sense 
of the input, not necessarily at the point where the real error 
occurred. Thus if you want to code: 

DC C'HALLO' 

but instead code 

DC F'HALLO' 

the assembler will flag 'HALLO' as an invalid data field rather than F 
as an invalid type specification. 

ASSEMBLER ACTION 

This item tells you how the assembler reacts to the error, and what 
default actions are taken. 

PROGRAMMER RESPONSE 

This item tells you how to correct the statement in error. 

OPERATOR RESPONSE 

For messages that are printed on the operator's console, this item tells 
the operator how to correct certain errors. The operator will not 
change your source deck; however, he may change the partition size, and 
assign new devices etc. 

I Notg: Each assembler module will list a maximum of four errors per 
statement. 

56 



Assembler Messages IPKOOI-IPK250 

IPKOOl 

IPK002 

IPK003 

IPK004 

IPK005 

END STATEMENT IN MACRO OR COpy CODE 

E~planation: An END statement is found in a macro 
definition or in code that is inserte::i by means of 
the COpy instruction. 

Assembler Action: The statement is treated as comments. 

REQgrammer Response: Remove the END statement from the 
macro definition or the copy book. Make sure that an 
END statement is included at the end of your source 
module. 

ICTL NOT FIRST STATEMENT 

Explanation: The ICTL statement is used in a statement 
that is not the first statement in the source module. 

Assembler Action: The statement is processed as comments 

programmer Response: Remove the ICTL statement, or make 
it the first statement of the program. 

STATEMENT INCORRECTLY PLACED, MUST BE IN MACRO DEFINITION 

Explanation: A MEND, MEXIT, MNOTE, or internal macro 
comments (.*) statement appears in open code. These 
statements are allowed only in macro definitions. 

Assembler Action: The statement is processed as comments. 

programmer ResEQns~: Remove the statement, or put it in a 
macro definition. 

COMMENTS BETWEEN MACRO AND PROTOTYPE STATEMENTS 

ExE!anation: The macro header (MACRO) instruction is 
followed by a comments statement (.* or *). The macro 
header must be immediately followed by a macro prototype 
statement. 

Assembler Action: The comments statement is ignored. It 
is not generated when the macro is generated. 

Programmer Response: Put the comments statement after the 
prototype statement. 

STATEMENT INCORRECTLY PLACED 

ExE!anation: One of the following errors has occurred: 

• A macro header (MACRO) instruction appears too late in 
the program. It can only be used to identify the 
beginning of a macro definition, and the macro 
definitions must all be placed at the beginning of the 
source module. The only instructions that can precede 
them are: ICTL, ISEQ, EJECT, PRINT, TITLE, SPACE, and 
comments statements. 

Diagnostic and Error Messages 57 



IPK006 

IPK007 

IPK008 

IPK009 

58 

• A GBLx or LCLx instruction in the macro definition does 
not follow immediately after the macro prototype state­
ment. 

• A GBLx instruction is preceded by an LCLx instruction. 

• A GBLx or LCLx instruction in open code does not precede 
the first control section. 

Assembler Action: The statement is processed as comments. 

~~Qgrammer Response: Make sure your MACRO, GBLx, and LCLx, 
instructions are placed according to the rules given in 
the explanation. 

ILLEGAL NAME FIELD 

ExEianation: The name field is not a sequence symbol or 
blank, which is required by this instruction. 

Assembler Action: The name field is ignored. 

Programmer Response: Make sure the name field is either a 
sequence symbol or blank. 

SOURCE RECORD OUT OF SEQUENCE 

ExPlanation: The input sequence-checking specified by the 
ISEQ instruction has determined that this record is out of 
sequence. The sequence field of this record is not higher 
than the sequence field of the preceding record. 

Assembler Action: The statement is flagged and assembled. 
The sequence of the rest of the statement is checked 
relative to the sequence of the statements before this 
statement. 

~~Qgrammer Response: Put the record in the proper sequence. 

UNPAIRED APOSTROPHE 

ExPl~llation: An ending apostrophe is missing in this 
statement, or an illegal attribute reference is found 
in the statement. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Supply a terminating apostrophe or 
correct the attribute reference. An opening or ending 
apostrophe must be single, that is, it must not be 
immediately followed or preceded by another single 
apostrophe. Double apostrophes are used to specify the 
character in a quoted string (between the opening and 
terminating apostrophes) • 

TOO MANY CONTINUATION LINES 

ExPlanation: This statement occupies more than three records. 

Assembler Action: The excessive continuation lines are 
treated as comments. 



IPK010 

IPK011 

IPK012 

IPK013 

prQgrammer Response: Check for an unintentional continuation 
indicator'in the column after the end column (usually in 
column 72). Do not use more than two continuation lines for 
a statement. 

OP CODE MISSING 

~E!anatio~: The first or only record of a statement does 
not contain any operation code, followed by at least one 
blank. 

Assembler Action: The statement is processed as comments. 

prQgrammer Response: If this record is intended to be a 
comments statement, supply an asterisk in the begin column. 
If the record is intended to be an instruction, supply an 
opcode followed by at least 1 blank in the first record 
of the statement. 

INV~LID OP CODE 

ExElanation: The specified operation code does not consist 
of 1-8 alphameric characters, the first of which is 
alphabetic. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure the operation code is a valid 
ordinary symbol as described in the explanation. 

MEND NOT PRECEDED BY MACRO IN THIS COpy BOOK 

ExE!~natio~: In code inserted by means of the COpy instruc­
tion, a MEND instruction is encountered for which there is 
no corresponding MACRO instruction in this copy book. 

Assembler Action: The statement is processed as comments. 

£~Qgrammer Response: Make sure that a macro always starts 
and ends in the same copy book. If a MACRO statement is 
found in a" copy book, the corresponding MEND statement must 
also be in that copy book. 

CONTINUATION LINE MISSING 

Explanation: End of file was encountered when the assembler 
was trying to read an expected continuation line. 

Assembler Action: The statement is processed as if no 
continuation mark had been indicated in the continuation 
column. 

programmer Response: Add the missing continuation line (s) , 
or remove the erroneous continuation mark, whichever is 
applicable. 

Diagnostic and Error Messages 59 



IPK014 

IPK015 

IPK016 

IPK017 

IPK018 

60 

SYMBOLIC PARAMETER 'xxxxxxxx' TOO LONG 

Explanation: The specifie1 symbolic parameter in a macro 
prototype statement is too long. It must not consist of 
more than eight characters. The first eight characters of 
the invalid symbolic parameter are identified in the 
message. 

Assembler Action: The rest of the macro definition is 
checked for errors, but the macro is considered undefined. 

f~Qgrammer ResEonse: Make sure that all symbolic parameters 
consist of an ampersand followed by 1 to 7 alphameric 
characters, the first of which is alphabetic. 

SYMBOLIC PARAMETER 'xxxxxxxx' DOES NOT START WITH AMPERSAND 

Explanation: The specified symbolic parameter does not start 
with an'ampersand (&). 

Assembler Action: The rest of the macro definition is 
checked for errors, but the macro is considered undefined. 

Programmer Response: Make sure that all symbolic parameters 
consist of an ampersand followed by 1-7 alphameric 
characters, the first of which is alphabetic. 

SECOND CHARACTER OF SY~~OLIC PARAMETER 'xxxxxxxx' NOT A LETTER 

~~£!anation: The second character of the specified symbolic 
parameter is not alphabetic. 

Assembler Action: The rest of the macro definition is 
checked for errors, but the macro is considered undefined. 

f~Qgrammer Response: Make sure that all symbolic parameters 
consist of an ampersand followed by 1-7 alphameric 
characters, the first of which is alphabetic. 

SYMBOLIC PARAMETER 'xxxxxxxx' CONTAINS NON-ALPHAMERIC 
CHARACTER 

~Elanation: The specifie1 symbolic parameter contains an 
invalid character. Only alphameric characters (A through 
Z, 0 through @, #, $) are allowed in symbolic parameters. 

Assembler Action: The rest of the macro definition is checked 
for errors, but the macro is considered undefined. 

Programmer Response: Make sure that all symbolic parameters 
consist of an ampersand followed by 1-7 alphameric charac­
ters, the first of which is alphabetic. 

INVALID OPCODE IN PROTOTYPE STATEMENT 

Ex£!anation: The mnemonic operation code of a prototype 
statement is (a) not a valid symbol, (b) is the same as the 
opcode of another macro definition in the source program, 
(c) is the same as the opcode of a machine instruction or 
assembler instruction. 



IPK019 

IPK020 

IPK021 

Assembler Action: The macro definition will be checked for 
errors just as if the opcode was correct; but when the 
macro is called it is treated as undefined. 

PrQgrarnrner Response: Make sure that the prototype opcode 
consIsts of 1-8 alphameric characters starting with an 
alphabetic character, and that the prototype opcode is 
different from other prototype, machine, and assembler 
opcodes. 

KEYWORD OPERAND PRECEDES POSITIONAL OPERAND 'xxxxxxxx' 

Explanation: In a macro prototype statement or a macro 
definition a keyword operand has been placed before the 
positional operand identified in the message. All positional 
operands must appear before the keyword operands in the 
statement. If no operand is identified in the message a 
comma indicating an omitted positional operand has been 
found after the first keyword operand. 

Assembler Action: If the error is found in a prototype 
statement, all positional operands after the first keyword 
operand are considered undefined. The rest of the macro 
definition is then checked for errors, but the macro is 
considered undefined. Is the error is found in a macro 
instruction, the macro is not generated. 

~E2grammer Response: Make sure all positional operands in 
a macro prototype statement or macro instruction precede 
all keyword operands. 

TOO MANY LEVELS OF PARENTHESIS IN OPERAND 'xxxxxxxx' 

ExE!anation: The operand expression identified in the 
message contains more than five levels of parentheses. The 
text inserted in the message is limited to eight characters. 

Assembler Action: If the error is found in a prototype 
statement, the rest of the macro definition is checked for 
errors, but the macro is considered undefined. If the error 
is found in a macro instruction, the macro is not generated. 

prQgrammer Response: Change the expression to delete one or 
more levels of parentheses. 

UNPAIRED PARENTHESIS IN OPERAND 'xxxxxxxx' 

ExE!anation: The keyword parameter default value specified 
in a macro prototype or a macro instruction operand value 
contains an unpaired left or right parenthesis not surrounded 
by apostrophes. Only the first eight characters of the 
operand value are inserted in the message. 

~~sembler Action: If the error is found in a prototype 
statement, the rest of the macro definition is checked for 
errors, but the macro is considered undefined. If the error 
is found in a macro instruction, the macro is not generated. 

programmer Response: If you want to specify an unpaired 
parenthesis, make sure it appears with apostrophes. Otherwise 
make sure a left parenthesis is always followed by a right 
parenthesis with which it is paired. 

Diagnostic and Error Messages 61 



IPK022 

IPK023 

IPK024 

IPK025 

62 

INVALID SUBLIST 'xxxxxxxx' IN ALTERNATE STATEMENT FORMAT 

ExE!anation: The termination of a macro prototype or macro 
instruction sublist written in the alternate statement format 
for sublists is invalid, either because the closing right 
parenthesis is missing, or because something other than a 
comma or a blank follows the closing right parenthesis; 
only the first eight characters of the sublist are inserted 
in the message list. 

Assembler Action: If the error is found in a prototype state­
ment, the rest of the macro is checked for errors, but the 
macro is considered undefined. If the error occurs in a macro 
instruction, the macro is not generated. 

PrQgrammer Response: If a sublist is intended, make sure that 
the sublist is terminated by a right parenthesis followed by 
a comma or a blank. If a character string is intended, use 
the normal statement format instead. 

PARAMETER VALUE 'xxxxxxxx' EXCEEDS 255 CHARACTERS 

Explanation: The specified value is too long. The parameter 
value specified in a macro prototype statement (as a keyword 
parameter default value) or a macro instruction is limited 
to 255 characters. The text inserted in the message contains 
only the first eight characters. 

Assembler Action: If the error is found in a macro prototype 
statement, the rest of the macro definition is checked for 
errors, but the macro is considered undefined. If the error 
is found in macro instruction, the macro is not generated. 

programmer Response: Limit the length of the parameter to 
255 characters, or separate the value into two or more 
parameters. 

UNPAIRED APOSTROPHE 

Explanation: An unpaired apostrophe is found in a parameter 
value specified in a macro prototype statement (as a key­
word parameter default value) or a macro instruction. 
Single apostrophes in parameter values must be specified 
with double apostrophes appearing inside paired apostrophes, 
unless they are used to specify attribute references in 
arithmetic expressions. 

Assembler Action: If the error is found in a macro proto­
type statement, the rest of the macro is checked for errors, 
but the macro is considered undefined. If the error is 
found in a macro instruction, the macro is not generated. 

Programmer Response: Make sure all apostrophes are paired 
or double, or belong to attribute references. 

TOO MANY OPERANDS 

ExE!~io!1: Too many operands found in a macro prototype 
statement or a macro instruction or too many sub-operands 
in a sublist. The maximum number allowed is 200. 



IPK026 

IPK027 

IPK028 

Assembler Action: If the error is found in a macro proto­
type statement, the rest of the macro definition is checked 
for errors, but the macro is considered undefined. If the 
error is found in a macro instruction, the macro is not 
generated. Only the first eight characters of the default 
value are inserted in the message. 

prggrammer Response: Reduce the number of operands or 
include some of the operands in sublists or, if too many 
sub-operands, split the sublist into two or more. 

INVALID NAME FIELD 'xxxxxxxx' 

ExE!anation: The name field of a macro prototype statement or 
a macro instruction is invalid. The name field of a 
prototype statement must either be blank or contain a 
variable symbol specifying a name field parameter. The name 
field of a macro instruction must either be blank, or contain 
a sequence symbol, or a valid ordinary symbol, or one or 
more variable symbols that result in a valid ordinary symbol 
after substitution and concatenation. Only the first eight 
characters of the default value are inserted in the message. 

Assembler Action: If the error is found in a macro proto­
type statement, the rest of the macro definition is checked 
for errors, but the macro is considered undefined. If the 
error is found in a macro instruction, the macro is not 
generated. 

R~ggrammer Response: Supply a valid name field as described 
in the explanation. 

NON-BLANK CHARACTER FOUND BEFORE CONTINUE COLUMN 

~E!~~~tion: On a continuation record, that is, a record 
following after the first record of a statement occupying 
several records (lines), one or more characters have been 
encountered in the begin column or in the column between the 
begin column (usually column 1) and the continue column 
(usually column 16). These columns must be blank. 

Assembler Action: The characters appearing before the 
continue column are ignored. 

Programmer Response: If the record is intended as a con­
tinuation record, make sure the statement is continued in 
the correct column. If the record is not meant to be 
continue record, check for an unintentional continuation 
indicator in the preceding record (usually in column 72) • 

INVALID KEYWORD PARAMETER DEFAULT VALUE 'xxxxxxxx' 

ExE!anation: The default value specified for a keyword 
parameter in a macro prototype statement is invalid. The 
value must not contain variable symbols, and any ampersands 
must be double, that is, each sequence of consecutive 
ampersands must contain an even number of ampersands. Only 
the first eight characters of the default value are inserted 
in the message. 

Assembler Action: The rest of the macro definition is 
checked for errors, but the macro is considered undefined. 

Diagnostic and Error Messages 63 



IPK029 

IPK031 

IPK032 

IPK033 

64 

PrQgrammer Response: Delete variable symbols from the 
default value, make ampersands double. 

INVALID KEYWORD IN MACRO INSTRUCTION, 'xxxxxxxx' 

~~E!anation: A keyword of a macro instruction does not 
consist of a 1-7 alphameric characters, the first of which 
is alphabetic, or a macro instruction operand contains an 
equal sign outside quotes or parentheses. 

Assembler Action: The rest of the macro is checked for errors, 
but the macro is considered undefined. 

EEQgrammer ResEQns~: Make sure that all keywords consist 
of a letter followed by 0-6 alphameric characters. 

NAME FIELD NOT BLANK 

Explanation: The name field is not blank, which is required 
by this instruction. 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Remove the statement from the macro 
definition. Make sure all your macro definitions end with 
a MEND instruction. 

STATEMENT INCORRECTLY PLACED, MUST NOT BE IN MACRO 
DEFINITION 

Ex2!anation: A statement has been found in a macro 
definition which is not allowed to appear in a macro 
definition. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Remove the statement from the macro 
definition. Make sure all your macro definitions end with 
a MEND instruction. 

INVALID ISEQ OR ICTL OPER~ND 

ExE!anation: One of the following errors has occurred: 

• The operand field of an ISEQ instruction is invalid. It 
must either be a blank or consist of two decimal 
self-defining terms that do not fall between the begin 
and end columns, and the first value must not be greater 
than the second. 

• The operand field of the ICTL statement is invalid. It 
must consist of one to three decimal self-defining terms, 
the first of which must be in the range 1-40, the second 
in the range 41-80, and the third must be in the range 
2-40 and greater than the first. 

~~sembler Action: The statement is processed as comments. 

Programmer Response: Correct the operand field according 
to the rules given in the explanation. 



IPK034 

IPK035 

IPK036 

IPK037 

IPK038 

INVALID COpy OPERAND 

Exelanation: The operand of a COpy instruction is not an 
ordinary symbol. 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Supply a valid ordinary symbol that 
corresponds to the name of a book in the copy code library. 
Ordinary symbols consist of 1-8 alphameric characters, the 
first of which is alphabetic. 

TOO MANY COpy NEST LEVELS 

~~E!anatio~: More than three nesting levels of COpy 
instructions have been coded. Nesting occurs when a COpy 
instruction is coded in a book that is inserted by means of 
another COpy instruction. 

Assembler Action: The last COpy instruction is processed as 
comments. 

PrQgrammer Response: Reduce the number of nesting levels by 
including some of the COpy books physically in the source 
module. 

COpy BOOK NOT IN LIBRARY 

ExE!anation: The ordinary symbol specified in the operand of 
this COpy instruction is not the name of a copy book in a 
source statement library that is assigned to this job. 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Check that the operand is correct, 
assign the proper source statement library, or catalog the 
missing copy book. 

UNEXPECTED END-OF-FILE ON SYSSLB 

Explanatio~: End-of-file was encountered in the source state­
ment library before the ena of a book had been reached. 
Since the end-of-file indicator is normally found only at 
the end of the COpy code library, the message indicates that 
the source statement library has been destroyed. 

Assembler Action: processing of the copy book is terminated. 
If the error occurs inside a source macro definition, a MEND 
instruction is generated. 

Programmer Response: Re-construct the source statement 
library. 

MEND STATEMENT MISSING, HAS BEEN ADDED 

Explanation: End-of-file occurrea on SYSIPT during the 
processing of a macro definition, or a MEND instruction 
terminating a macro definition is missing. 

Assembler Action: A MEND and an END instruction are 
inserted. 

Diagnostic and Error Messages 65 



IPK039 

IPK040 

IPK041 

IPK042 

66 

Prggrammer Response: Insert the missing MEND instruction 
or check for an unintentional end-of-file indicator in 
the source module. 

END STATEMENT NOT IMMEDIATELY FOLLOWED BY END-OF-FILE 

ExEl~ation: The END statement identifying the end of the 
source module is not immediately followed by an end-of-data 
indicator statement (/*). 

Assembler Action: The records appearing between the END 
statement and the en:i-of-data indicator are not processed 
by the assembler. 

~~Qgrammer Response: Move the END statement, or make sure 
your JCL statements are properly placed. 

END STATEMENT MISSING, HAS BEEN ADDED 

~~E!anation: No END statement was found in the source 
module. 

Assembler Action: An END statement is inserted at the end 
of the input. 

Prggrammer Response: Supply an END statement at the end of 
your source module, or make sure that no end-of-data 
indicator (/*) has been placed inside your source module. 

MEND STATEMENT MISSING IN COpy BOOK, HAS BEEN ADDED 

~~planatiog: A source macro definition was coded in a copy 
book, but the macro trailer ~END) statement to indicate 
the end of the macro definition was not found in the copy 
book. The whole macro definition must be coded within one 
copy book. 

Assembler Action: A MEND instruction is inserted at the end 
of the copy book. 

~~ggrammer Response: Make sure that a macro always starts 
and ends in the same copy book. If a l1ACRO statement is 
found in a copy book, the corresponding MEND statement must 
also be in that copy book. 

STATEMENT COMPLEXITY EXCEEDED 

Explanation: A conditional assembly statement of a macro 
instruction operand has more than 50 variable symbols. Or 
the generated edited text string length of one statement 
which contains subscripted SETC variable symbols exceeds 
255 bytes. 

Programmer Response: Do not use more than 50 variable symbol 
references in the same statement, or in a macro instruction 
operand. In the latter case, rearrange the statement to 
contain fewer subscripted variable symbols. 

Programmer Response: Do not use more than 50 variable symbol 
references in the same statement or a macro instruction 
operand. 



IPK043 

IPK044 

IPK045 

IPK046 

OPERAND MISSING 

ExE!anation: This statement requires an operand, but none 
is found. 

Assembler Action: The statement is processed as comments. 

prQgrammer Response: Supply a valid operand. 

INVALID SYNTAX IN SET SYMBOL DECLARATION 'xxxxxxxx' 

~~~~gation: In a SET symbol declaration, a variable symbol 
is invalid, a comma separating two symbols is missing, or
a character other than a blank terminates the field. The
text inserted in the message gives eight characters, starting
with the character at which the error is found.

Assembler Action: The symbol in which the error is found and
the rest of the statements are ignored.

prQgrammer Response: Make sure the operand field contains
only valid variable symbols (possibly dimensioned) ,
separated by commas.

INVALID DIMENSION 'xxxxxxxx'

ExElanation: The dimension of a SET symbol is incorrectly
specified. The dimension specification must follow
immediately after the variable symbol and be an unsigned
decimal value in the range 1-255 enclosed in parentheses.

Assembler Action: The symbol with the invalid dimension
and the rest of the statements are ignored.

PrQgrammer Response: Correct the subscript according to the
rules given in the explanation.

DIMENSION TOO LARGE, 'xxxxxxxx'

ExElanation: A SET symbol declaration specifies a dimension
that is greater than 255. The string inserted in the
message contains up to eight characters, starting with the
dimension value.

Assembler Action: The symbol with the invalid dimension
is ignored.

prQgrammer Response: Break up the SET symbol array into
two or more arrays by using additional SET symbols.

Diagnostic and Error Messages 67

IPK047

IPK048

IPK049

68

VARIABLE SYMBOL DUPLICATES SYSTEM VARIABLE SYMBOL OR
PREVIOUS DEFINITION, 'xxxxxxxx'

~E!anation: The first or only variable symbol in the
specified string is either:

• a symbolic parameter, which is identical to a
system variable symbol or another symbolic parameter
specified in the same macro prototype statement; or

• a SET symbol, which is identical to a system variable
symbol, a symbolic parameter specified in the same
macro definition, or another SET symbol declared in
the same macro definition or open code.

Assembler Action: The flagged definition of the variable
symbol is ignored, as well as any further operands in the
statement. All references to the symbol are treated as
references to the first definition of the variable.

PrQgrammer Response: Make sure that all variable symbols
within a macro definition or open code are unique within
that scope. Do not define system variable symbols or
symbolic parameters or SET symbols. The system variable
symbols are:

&SYSECT
&SYSNDX

&SYSLIST
&SYSPARM

INVALID SYNTAX IN CONDITIONAL ASSEMBLY STATEMENT 'xxxxxxxx'

ExE!~ation: A conditional assembly statement or a state­
ment with variable symbol substitution contains a syntax
error, for example:

• Invalid or misplaced characters in an expression.

• The statement is terminated before its logical end.
This could be caused by an unintentional blank inside
an expression.

• The sequence symbol in an AGO or AIF operand does not
consist of a period, followed by a letter and 1-6
letters or digits; or both. The string in the message
contains up to eight characters starting where an error
is found.

Assembler Action: The statement is processed as comments.

Programmer Response: The first character of the string in
the message tells you where the syntax error was found.
Correct the error.

'xxxxxxxx' IS AN INVALID VARIABLE SYMBOL

Explanation: The specified variable symbol does not consist
of an ampersand followed by 1-7 alphameric characters the
first of which is alphabetic.

Assembler Action: The statement is processed as comments.

programmer Response: Supply a valid variable symbol.

IPK050

IPK051

IPK052

IPK053

IPK054

INVALID ATTRIBUTE REFERENCE 'xxxxxxxx'

~~E!~~atio~: The attribute reference is illegal for the
type of attribute in this context; for example:

• A reference inside a macro jefinition refers to an
ordinary symbol

• An attribute reference refers to a SET symbol

• A K or N attribute reference refers to an ordinary symbol.

Assembler Action: The statement is processed as comments.

PrQgrammer Response: Make sure the attribute reference is
correct, that this type or attribute can refer to this
type of symbol, that the reference is properly placed, etc.

INCORRECT VARIABLE SYMBOL IN NAME FIELD

Explanation:

• This symbol is declared to be of a type different from
the type specified by the operation code in this
statement; or

• a system variable symbol or symbolic parameter appears
in the name field of the SETx instruction.

Assembler Action: The statement is processed as comments.
}

PrQgrammer Response: Make sure the declaration is correct,
or change the operatidn code of this statement. Do not use
system variable symbols in the name field of SETx instructions.

NAME FIELD MISSING

Explanation: This statement requires a name field, but none
is found.

Assembler Action: The statement is processed as comments.

~EQgrammer Response: Supply the proper symbol in the name
field.

NAME FIELD NOT A SEQUENCE SYMBOL

Explanation: This statement requires a sequence symbol in
the name field, but no valid sequence symbol is found.

Assembler Action: The statement is processed as comments.

PrQgrarnrner Response: Supply a valid sequence symbol.

INVALID NAME FIELD, MUST NOT CONTAIN SEQUENCE SYMBOL OR
BLANK

ExE!anation: The name field of this statement does not
contain an ordinary symbol or one or more variable symbols
that result in a valid ordinary symbol.

Diagnostic and Error Messages 69

IPK055

IPK056

IPK057

IPK058

IPK059

70

Assembler Action: The statement is processed as comments.

~fQgrarnmer ResE2~: Supply a valid ordinary symbol, or
make sure that the result of variable symbol substitution
and concatenation is a valid ordinary symbol.

UNP~IRED LEFT P~RENTHESIS

Explanation: ~ left parenthesis in this statement does not
have a corresponding right parenthesis.

~~~mbler Action: The statement is processed as comments. 

Prggrarnmer Response: Supply the missing right parenthesis, 
or delete the superfluous left parenthesis. 

TOO M~NY LEVELS OF PARENTHESES 

Explanation: This expression has more than five levels of 
parentheses. 

Assembler Action: The statement is processed as comments. 

prggf~ Response: Reduce the number of levels of 
parentheses. Use additional SETA instructions, if 
necessary. 

COUNT OR NUMBER ATTRIBUTE IN OPEN CODE 

Explanation: A count (R') or number ~') attribute has been 
encountered in open code. These attributes can only appear 
in macro definitions. 

Assembler Action: The statement is processed as comments. 

Prggrammer Response: Do not use the count or number attribute 
in open code. 

INVALID SUBSTRING NOTATION 'xxxxxxxx' 

Exp!anation: The comma, or ending right parenthesis in a 
substring notation is missing. The string in the message 
consists of up to eight characters, starting where the error 
is found. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure the substring notation 
consists of two arithmetic expressions, separated by commas 
and enclosed in parentheses. 

ILLEGAL USE OF SYSTEM VARIABLE SYMBOL 

Explanation: The specified system variable symbol is illegal 
in this context. 

Assembler Action: The statement is processed as comments. 



IPK060 

IPK061 

IPK062 

prQgrammer Response: Make sure that &SYSLIST, and &SYSNDX 
are not used in open code. 

SINGLE TERM IN LOGICAL EXPRESSION NOT SETB 

Explanation: A single term in this logical expression is 
invalid. A logical term must be either an arithmetic relation, 
a character relation, or a SETB variable. Logical terms are 
combined into logical expressions by logical operators (AND, 
OR, and NOT) • 

Assembler Action: The statement is processed as comments. 

R~Qgrammer Response: Check the logical expression for omitted 
relational terms (EQ, LT, etc.) or mispunched characters or 
terms • 

INCOMPLETE LOGICAL EXPRESSION 'xxxxxxxx' 

~~P1anation: An expression in this statement ended pre­
maturely because of one of the following errors: 

• Unpair.ed parenthesis; or 

• Illegal character; or 

• Illegal operator; or 

• Operator not followed by a term 

Assembler Action: The statement is treated as comments. 

programmer Response: Correct the logical expression. 

INVALID SELF-DEFINING TERM, 'xxxxxxxx' 

ExE!anation: A self-defining term is incorrectly specified. 
It must be: 

• 1-8 decimal digits whose value is in the range 
0-16,777,215; or 

• 1-24 binary digits, enclosed by apostrophes and pre­
ceded by the character B; or 

• 1-6 hexadecimal digits enclosed by apostrophes and 
preceded by the character X; or 

• 1-3 characters, enclosed by apostrophes and preceded by 
the character C. The string in the message is up to 
eight characters starting with the invalid self-defining 
term. 

Assembler Action: The statement is processed as comments. 

prQgrammer Response: Correct the term according to the 
rules given in the explanation. 

Diagnostic and Error Messages 71 



IPK063 

IPK064 

IPK065 

IPK066 

IPK067 

72 

VALUE OF SELF-DEFINING TERM TOO LARGE, 'xxxxxxxx' 

ExE!anation: The value of a decimal self-defining term in 
this statement is not in the range 0-16,777,215. 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Specify a value in the range specified 
in the explanation: 

OPEN CODE ATTRIBUTE REFERENCE TO 'xxxxxxxx', WHICH IS NOT 
A VALID ORDIN~RY SYMBOL 

ExEl~natiQg: This attribute reference does not specify a 
valid ordinary symbol. Any attribute reference used outside 
macro definitions must specify an ordinary symbol. 

Assembler Action: The statement is processed as comments. 

PrQgrammer ResEQnse: Supply a valid ordinary symbol that 
is defined in the program. 

SET SYMBOL USE INCONSISTENT WITH ITS DECLARATION,'xxxxxxxx' 

~Elanation: Either the declaration specifies this symbol as 
dimensioned, but in this statement the symbol is used as 
undimensioned, or the declaration specifies this symbol as 
undimensioned, but in this statement the symbol is used as 
dimensioned. The string in the message consists of up to 
eight characters starting with the symbol in error. 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Make sure that your use of SET symbols 
is consistent with its declaration. 

PREVIOUSLY DEFINED SEQUENCE SYMBOL 

ExE1an~tion: The sequence symbol specified in the name field 
of this statement has already been defined within the macro 
definition or open code. 

~~semEler Actiog: The name field is ignored. 

PrQgrammer Response: Supply a sequence symbol that is unique 
within this macro definition or open code. 

UNPAIRED RIGHT PARENTHESIS 

Explanation: ~n expression in this statement contains a 
right parenthesis that is not matched by a preceding left 
parenthesis. 

Assembler Action: The statement is processed as comments. 

R~Qgrammer Response: Supply the missing left parenthesis, 
or delete the right parenthesis. 



IPK068 

IPK069 

IPK070 

IPK071 

VARIABLE SYMBOL UNDEFINED, 'xxxxxxxx' 

~~E!~natio~: The first or only variable symbol in the string 
inserted in the message has not been declared as a global or 
local SET symbol within this macro definition or open code, 
has not been defined as a symbolic parameter within this 
macro definition, and is not a valid system variable symbol. 

Assembler Action: The statement is processed as comments. 

~~Qgrammer Response: Define the symbol as a symbolic 
parameter or a SET symbol. Remember that any global 
variable symbols used in macro jefinitions must be declared 
within the definition. 

SOURCE MACRO PREVIOUSLY DEFINED 

ExE!anation: The operation code specified in the prototype 
statement is identical to the operation code of another 
source macro defined earlier in the program. 

Assembler Action: The flagged macro definition has been 
checked for errors. It cannot be generated. 

PrQgrammer Response: Supply a unique operation code for this 
definition. < 

UNDEFINED SEQUENCE SYMBOL 

Explanation: The sequence symbol used in this instruction 
is not defined within this macro definition or open code. 

Assembler Action: No conditional assembly branch is taken. 

Prggrammer Response: Define the symbol in the name field 
within the macro definition or open code (depending on 
where it is used), or use a sequence symbol that is already 
defined. 

ILLEGAL LENGTH ATTRIBUTE REFERENCE 

Explanation: 

• The symbol specified in a length attribute reference (L') 
is not the name of a valid machine instruction, control 
section definition, CCW instruction, DS instruction, or 
DC instruction. 

• The symbol specified in a lenqth attribute reference is 
the name of a DC or DS instruction containing variable 
symbols in the modifier field. 

Assembler Action: The length attribute reference is set to 
one. 

PrQgrammer Response: Make sure the length attribute ref­
erences a symbol for which length attribute references are 
valid. 

Diagnostic and Error Messages 73 



IPK072 

IPK073 

IPK074 

IPK075 

74 

ILLEGAL SCALE ATTRIBUTE REFERENCE 

~~E!anation: The symbol referenced by a scale attribute 
reference (S') is not found in the name field of a valid 
fixed-point, floating-point, or decimal DC or DS instruction. 

Assembler Action: The scale attribute reference is set to 
zero. 

~~Qgrammer Response: Make sure the scale attribute 
references a symbol for which scale attribute references 
are valid. 

ILLEGAL INTEGER ATTRIBUTE REFERENCE 

~~planatio~: The symbol referenced by an integer attribute 
reference (I') is not found in the name field of a valid 
fixed-point, floating-point, or decimal DC or DS instruction. 

Assembler Action: The integer attribute reference is set 
to zero. 

prQgrammer Response: Make sure the integer attribute 
references a symbol for which attribute references are 
valid. 

OVERFLOW DURING ADDITION IN ARITHMETIC EXPRESSION 

ExE!anation: During the evaluation of an arithmetic 
expression the addition of two terms produces a result 
that falls outside the range of -231 through 2 31 _1. 

Assembler Action: The result of the addition is set to 
zero. 

Progra~ ResEQnse: Make sure all the values in this 
expression are valid. Try to avoid overflow by adjusting the 
sequence in which the terms are placed in the expression. If 
necessary, separate the expression into two or more 
expressions (using SETA instructions), so that each of them 
is evaluated individually before they are combined. 

OVERFLOW DURING SUBTRACTION IN ARITHMETIC EXPRESSION 

ExE!anation: During the evaluation of an arithmetic 
expression, the subtraction of two terms produces a 
result that falls outside the range of -231 through 231 _1. 

Assembler Action: The result of the subtraction is set 
to zero. 

programmer Response: Make sure that all values in the 
expression are valid. Try to avoid overflow by adjust­
ing the sequence in which the terms are placed in the 
expression. If necessary, separate the expression into 
two or more expressions (using SETA instructions), so 
that each of them is evaluated separately before they 
are combined. 



IPK076 

IPK077 

IPK078 

IPK079 

IPK080 

OVERFLOW DURING MULTIPLICATION IN ARITHMETIC EXPRESSION 

Explanation: During the evaluation of an arithmetic 
expression the multiplication of two terms produces a 
result that falls outside the range of -231 through 
231 -1. 

Assembler Action: The result of the multiplication is 
set to zero. 

Programmer Response: Make sure all the values in the 
expression are valid. Try to avoid overflow by adjust­
ing the sequence in which the terms are placed in the 
expression. If necessary, separate the expression into 
two or more expressions (using SETA instructions), so 
that each of them is evaluated separately before they 
are combined. 

CHARACTER STRING USED IN ARITHMETIC EXPRESSION TOO LONG 

Explanation: The character string used as an arithmetic 
term is longer than eight characters. 

Assembler Action: The value of the SETC variable is 
replaced by zero in the arithmetic expression. 

Programmer REsponse: Make sure that any variable symbol 
used in arithmetic expressions have a value of 1-8 
characters. 

CHARACTER STRING USED IN ARITHMETIC EXPRESSION CONTAINS 
NON-DECIMAL CHARACTER 

ExE!anation: A non-decimal character is found in the value 
of a parameter or SETC symbol used in arithmetic term. 

Assembler Action: The value of the parameter or SETC 
variable is replaced by zero in the arithmetic expression. 

Programmer Response: Make sure that any parameter or SETC 
symbols used in arithmetic expressions have a value of 
1-8 decimal characters. 

NULL CHARACTER STRING USED IN ARITHMETIC EXPRESSION 

Explanation: The value of a SETC symbol used as an 
arithmetic term is a null string. 

Assembler Action: The value of the SETC symbols used in 
arithmetic expressions have a value of 1-8 decimal 
characters. 

Programmer Response: Make sure that any SETC symbols used in 
arithmetic expressions have a value of 1 - 8 decimal 
characters. 

PARAMETER SUBSCRIPT OUT OF RANGE 

Explanation: A symbolic parameter subscript value is outside 
the range 1-200. 

Diagnostic and Error Messages 75 



IPK081 

IPK082 

IPK083 

76 

Assembler Action: The reference is treated as a reference to 
an omitted operand; that is, the value of a null string is 
assigned to it. 

PrQgrammer Response: Supply a subscript value in the range 
1- 200. 

LENGTH OF CONCATENATED STRING EXCEEDS 255 CHARACTERS 

Explanation: During the concatenation of strings, an 
intermediate string exceeding 255 characters is generated. 

Assembler Action: The first 255 characters are used as the 
intermediate result. 

Programmer Response: Make sure that the total length of two 
strings concatenated with each other does not exceed 255 
characters. If needed, change the sequence of string 
evaluation, by performing substring operation before 
concatenation. 

SUBSCRIPT EXCEEDS DECLARED DIMENSION 

Explanation: An arithmetic expression used to specify the 
subscript of a SET symbol has a value that exceeds the value 
specified in the declaration of the symbol. 

Assembler Action: If the error is found in a conditional 
assembly statement, the statement is processed as comments. 
The error is found during substitution in one of the fields 
(name, operation, or operand) of a model statement. The whole 
field is replaced by a null value. If the error is found 
during substitution in a macro instructilon operand, the 
operand is set to null value, but any other operands in the 
operand field are generated. 

Programmer Response: Make sure the arithmetic expression has 
a value in the range of 1 through the declared dimension of 
the SET symbol. 

SUBSCRIPT ZERO OR NEGATIVE 

Explanation: An arithmetic expression used to specify the 
subscript of a SET symbol has a value that is zero or 
negative. 

Assembler Action: If the error is found in a conditional 
assembly statement, the statement is processed as comments. 
The error is found during substitution in one of the fields 
(name, operation, and operand) of a model statement, the 

whole field is replaced by a null value. If the error is 
found during substitution in a macro instruction operand, the 
operand is set to a null value, but any other operands in the 
operand field are generated. 

Proqrammer Response: Make sure that the arithmetic expression 
has a value in the range of 1 through the declared dimension 
of the SET symbol. 



IPK084 

IPK085 

IPK086 

IPK087 

IPK089 

ACTR LIMIT EXCEEDED 

Explanation: The number of AIF and AGO branches within the 
macro definition or open code exceeds the value specified in 
the ACTR instruction or the conditional assembly loop counter 
default value. 

Assembler Action: If a macro is being generated, its 
generation is terminated. If open code is being processed, 
all remainirtg statements are processed as comments. 

programmer Response: Correct the conditional assembly loop 
that caused the loop counter limit to be exceeded, or set the 
counter limit to be exceeded, or set the counter to a higher 
value. 

FIRST SUBSTRING EXPRESSION ZERO OR NEGATIVE 

Explanation: The arithmetic expression used to specify the 
starting character for a substring operation has a zero or 
negative value. 

Assembler Action: The result of the substring operation is a 
null string. 

programmer Response: Make sure the arithmetic expression used 
to specify the starting character of the substring has a 
positive value not exceeding the length of the character 
string. 

FIRST SUBSTRING EXPRESSION EXCEEDS STRING LENGTH 

Explanation: The arithmetic expression used to specify the 
starting character for a substring operation has a value 
greater than the length of the string. 

Assembler Action: The result of the substring operation is a 
null string. 

Programmer Response: Make sure the arithmetic expression used 
to specify the starting character of the substring has a 
positive value not exceeding the length of the character 
string. 

SECOND SUBSTRING EXPRESSION NEGATIVE 

Explanation: The arithmetic expression used to specify the 
length of a substring has a negative value. 

Assembler Action: The result of the substring operation is a 
null string. 

programmer Response: Make sure the arithmetic expression used 
to'specify length has a zero positive value, and that the 
specified length does not extend beyond the end of the 
character string. 

SETC OPERAND TOO LONG 

Explanation: The character string value in a SETC operand 
contains more than eight characters. 

Diagnostic and Error Messages 77 



IPK090 

IPK091 

IPK092 

IPK093 

78 

Assembler Action: Only the first eight characters are 
assigned to the SETC symbol. 

Programmer Response: Make sure that the value of the SETC 
expression contains no more than eight characters. 

SYSLIST SUBSCRIPT NEGATIVE 

Explanation: The arithmetic expression used to specify a 
&SYSLIST subscript has a negative value. 

Assembler Action: The reference is treated as a reference to 
an omitted operand; that is, the value of a null string is 
assigned to it. 

PrQqrammer Respo~: Supply a non-negative value in the 
&SYSLIST subscript. 

PARAMETER VALUE INVALID FOR LENGTH ATTRIBUTE REFERENCE 

ExE!anation: 

• A length attribute reference specifies a symbolic 
parameter whose value is not the name of a machine 
instruction, control section definition, CCW instruction, 
DS instruction, or DC instruction; or 

• A length attribute reference specifies a symbolic 
parameter whose value is the name of a DS or DC 
instruction containing variable symbols in the modifier 
field. 

Assembler Action: The length attribute reference is set to 
one. 

PrQqrammer Response: Make sure that the referenced macro 
instruction operand is a symbol for which length attribute 
references are valid, or delete the length attribute 
reference from the macro definition. 

PARAMETER VALUE INVALID FOR SCALE ATTRIBUTE REFERENCE 

Explanation: A scale attribute reference specifies a symbolic 
parameter whose value is not the name of a fixed-point, 
floating-point, or decimal DC or DS instruction. 

Assembler Action: The scale attribute reference is set to 
zero. 

Programmer Response: Make sure that the referenced macro 
instruction operand is a symbol for which scale attribute 
references are valid, or delete the scale attribute reference 
from the macro definition. 

PARAMETER VALUE INVALID FOR INTEGER ATTRIBUTE REFERENCE 

Explanation: An integer attribute reference specifies a 
symbolic parameter whose value is not the name of a 
fixed-point, floating-point, or decimal DC or DS instruction. 



IPK094 

IPK095 

IPK096 

IPK097 

Assembler Action: The integer attribute reference is set to 
zero. 

~EQgrammer Response: Make sure that the referenced macro 
instruction operand is a symbol for which integer attribute 
references are valid, or delete the integer attribute 
reference from the macro definition. 

PARAMETER VALUE INVALID IN ARITHMETIC EXPRESSION 

ExEbanation: The value of a symbolic parameter used in an 
arithmetic expression is not a valid self-defining term, or 
1-8 decimal characters created by variable symbol 
substitution in the macro instruction. 

Assembler Action: The symbolic parameter is replaced by the 
value of zero in the arithmetic expression. 

prQgrammer Response: Make sure the referenced macro 
instruction operand is a valid self-defining term or 1-8 
decimal characters created by substitution, or remove the 
symbolic parameter from the arithmetic expression in the 
macro definition. 

TOO MANY ERRORS IN THIS STATEMENT 

ExEbanation: During the processing of a conditional assembly 
statement or a statement with variable symbol substitution, 
more than five errors are detected. Messages are issued only 
for the first five errors. 

Assembler Action: If more errors are found, they will not be 
flagged. 

programmer Response: Correct the indicated errors, and check 
for further errors beyond the point indicated by the fifth 
error message. Any additional errors will be detected in the 
next assembly. 

GENERATED STATEMENT TOO LONG 

Explanation: The total length of the statement exceeds 248 
characters after generation. 

Assembler Action: The statement is processed as comments. If 
any part of the remarks field falls outside the space allowed 
for this statement, no part of the remarks field is listed. 

programmer Response: Make sure that the total length of a 
statement after generation does not exceed 248 characters. 

UNDEFINED OP CODE, OR MACRO NOT FOUND 

Explanation: The operation code of this statement does not 
correspond to any of the following: 

• A machine instruction operation code 
• An assembler instruction operation code 
• The operation code of a valid library macro or a 

valid source macro 

Diagnostic and Error Messages 79 



IPK098 

IPK099 

IPK100 

IPK10l 

80 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Change the operation code to a valid 
machine, assembler, or macro operation code, or correct the 
corresponding macro definition. If the error occurred for a 
library macro, make sure the correct source statement library 
is assigned. 

KEYWORD PARAMETER 'xxxxxxxx' DUPLICATED OR NOT DEFINED 

ExEl~atio~: A keyword parameter appears more than once in a 
macro instruction, or a keyword parameter appears in a macro 
instruction in whose definition it is not defined as a 
keyword parameter. The message will also be given if an 
equal sign not enclosed in a quoted string or within 
parentheses appears in a positional parameter. 

Assembler Action: If the keyword parameter is duplicated, the 
first parameter value is accepted. If the parameter is un­
defined, it is ignored. 

PrQgrarnmer Response: Delete the keyword from the macro 
instruction, define the parameter in the macro definition, or 
enclose the equal sign within apostrophes or parentheses. 

TOO MANY MACROS CALLED 

ExE!anation: The dictionary space available to the assembler 
is not large enough to generate all the different macros that 
are called in the source module. 

Assembler Action: The whole assembly is processed as comments. 

~£Qgrammer Response: Increase the size of the partition 
allocated to the assembly, or separate the module into smaller 
modules to be assembled separately. 

TOO MANY MACROS CALLED OR TOO MANY VARIABLE SYMBOLS 

ExE!anation: The dictionary space available to the assembler 
is not large enough to contain all the different macros, 
local variable symbols in open code, and global variable 
symbols that are used in this source module. 

Assernqler Action: The whole assembly is processed as comments. 

prog~ammer Response: Increase the size of the partition 
allocated to assembly, or separate the module into smaller 
source modules to be assembled separately, making sure that 
references to a variable symbol all remain in the same module. 

DICTIONARY SPACE FOR VARIABLE SYMBOLS EXHAUSTED 'xxxxxxxx' 

ExElanation: The dictionary space available to the assembler 
is not enough to contain all the different macros and global 
variable symbols of the entire assembly, plus all the local 
SET symbols and symbolic parameters used in the macro being 
generated. 

Assembler Action: The generation of the macro is terminated. 



IPK102 

IPK103 

IPK104 

IPK105 

PrQgrammer Response: Increase the size of the partition 
allocated to assembly, reduce the number of local variable 
symbols, or separate the module into smaller source modules 
to be assembled separately. 

SEQUENCE SYMBOL UNDEFINED 

ExE1anation: A sequence symbol used in the operand of an AGO 
or AIF instruction is not defined in the name field of an 
instruction in the same macro definition or open code. 

Assembler Action: The next sequential instruction is 
processed. 

Progra~er Response: Define the sequence symbol in the macro, 
or use a sequence symbol that is already defined. 

REFERENCE TO GLOBAL VARIABLE SYMBOL WITH INCONSISTENT 
DECLARATION OF TYPE OR DIMENSION 

Explanation: A global variable symbol is used whose 
declaration within this macro or open code is inconsistent 
with a previous declaration of the same global symbol. The 
inconsistency occurred either in the type or the dimension 
specification. 

Assembler Action: The statement is processed as comments. If 
any part of the remarks field falls outside the space allowed 
for this statement, no part of the remarks field is listed. 

fEogrammer Response: Make sure that all declarations of a 
global variable symbol are identical; for example, a global 
symbol cannot be declared as a SETB symbol in one macro and a 
SETA symbol in another; and it cannot be declared as 
dimensioned'in one macro and undimensioned in another, or as 
having a dimension of 50 in one macro and 85 in another. 

OP CODE 'xxxxxxxx' GENERATED 

ExE!anation: One of the following assembler operation codes 
has been created by substitution: COPY, END, ICTL, ISEQ, 
PRINT, REPRO, MACRO, MEND, MEXIT, ANOP, SETA, SETB, SETC, 
AIF, AIFB, AGO, AGOB, GBLA, GBLB, GBLC, LCLA, LCLB, and LCLC. 
These operation codes are not allowed to be generated. 

Assembler Action: The generated statement is processed as 
comments. 

Programmer Response: Make sure that none of the operation 
codes listed in the explanation is created by substitution. 

GENERATED OP CODE 'xxxxxxxx' UNDEFINED OR INVALID 

Explanation: The operation code created by substitution is 
not a valid machine or assembler instruction operation code 
(macro instructions are not allowed to be generated) • 

Assembler Action: The generated statement is processed as 
comments. 

Diagnostic and Error Messages 81 



IPK106 

IPK107 

IPK108 

IPK109 

82 

Programmer Response: Make sure that the generation in the 
operation field results in a valid operation code. 

GENERATED OP CODE IS BLANK 

g~plan~ti2g: The operation code created by substitution 
contains no characters or only blank characters. 

Assemble£_ActiQ~: The generated statement is processed as 
comments. 

~£Qgrammer Response: Make sure that substitution results in a 
valid machine or assembler operation code. 

l-1ACRO 'xxxxxxxx' NOT EXPANDABLE DUE TO ERROR IN DEFINITION 

Source Macro: The prototype statement of the macro 
definition contains errors. 

Library Macro: The library macro contains an error, 
defined by another error message (of the 
type that has no statement number) • 

Source Macro: Correct the prototype statement. 

Library Macro: Edit and catalog the macro again. 

MACRO 'xxxxxxxx' NOT EXPANDABLE DUE TO ERROR IN MACRO 
INSTRUCTION 

ExPlanation: An error has been found in a substitution 
expression in a macro instruction operand. 

Assembler Action: The statement is processed as comments. 

~~Qgrammer Response: Check the other error messages on this 
macro instruction and correct the error(s). 

INVALID OR ILLEGAL NAME FIELD 

Explanatiog: Either the name field is not blank and does not 
contain a valid ordinary symbol, that is, one to eight 
alphameric characters the first of which is alphabetic, or 
there is an ordinary symbol in a name field that should only 
contain a sequence symbol or blank (CNOP, ORG, END, USING, 
DROP) • 

Assembler Action: The name field is ignored. 

PrQgrammer Response: Supply a valid ordinary symbol, delete 
the characters from the name field, or, if you want to write 
a comments statement, supply an asterisk in the begin column, 
or remove entries in name field. 



IPKll0 

IPKll1 

IPKl12 

IPK113 

IPKl14 

NAME FIELD TOO LONG 

Explanation: The symbol in the name field exceeds eight 
characters. 

Assembler Action: The name field is ignored. 

PrQgramrner Response: Make sure the name field is blank or 
contains a valid ordinary symbol, that is, 1-8 alphameric 
characters the first of which is alphabetic. 

GENERATED SEQUENCE SYMBOL 

Explanation: A period is found in the name field of a 
genera~ed statement. 

Assembler Action: The name field is ignored. 

prQgramrner Response: Make sure the value generated in the 
name field is either a valid ordinary symbol or blank. 

INVALID CHARACTER IN CONSTANT, 'xxxxxxxx' 

Explanation: Subfield 4 (constant) of a DC or DS instruction, 
or literal contains characters that are invalid for the type 
of constant specified in subfield 2. 

Assembler Action: The DS or DC instruction is processed as 
comments, or the literal is ignored. 

programmer Response: Make sure the characters used to specify 
the value of the constant are valid for this type of constant. 
Either change the type or value specification. 

SYMBOL 'xxxxxxxx' TOO LONG 

Explanation: The specified symbol contains more than eight 
characters. Only the first eight characters of the symbol 
are identified in the message. 

Assembler Action: The operand is checked for further errors, 
but this operand and any further operands are ignored when 
the object code is generated. 

prQgrammer Response: Supply a valid symbol. 

RIGHT PARENTHESIS MISSING 'xxxxxxxx' 

Explanation: In the operand indicated in the message, a left 
parenthesis not matched by a right parenthesis has been 
found, or the parentheses have been incorrectly placed in the 
operand; for example, MVC (1,2) ,3(4) will cause this message 
to be issued. The first character in the string inserted in 
the message indicates where the right parenthesis was 
expected. If only a blank appears in the string the right 
parenthesis was expected at the end of the operand. 

Assembler Action: The operand and the rest of the operand 
field is ignored. 

Diagnostic and Error Messages 83 



IPK115 

IPK116 

IPK117 

IPK118 

84 

Programmer Response: Make sure the parentheses are paired and 
correctly placed. 

UNPAIRED APOSTROPHE 

~E1anation: No terminating apostrophe has been found to end 
the quoted string in this statement. 

Assembler Action: The statement is ignored. 

PrQgrarnmer Response: Supply the missing apostrophe. 

INVALID SELF-DEFINING TERM, 'xxxxxxxx' 

ExE!anation: The first or only self-defining term specified 
in the text inserted in the message contains invalid 
characters or a null value (for example,B'102',X"). 

Assembler Action: The operand in which the term appears is 
ignored. 

programmer Response: Supply a valid decimal, binary, 
hexadecimal, or character self-defining term. 

VALUE OF SELF-DEFINING TERM 'xxxxxxxx' TOO LARGE 

Explanation: The value of the specified self-defining term is 
either too long or too large. Valid rules are: 

• 1-8 decimal digits whose value is in the range 
0-16,777,215 or 

• 1-24 binary digits, enclosed by apostrophes an~ 
preceded by the character B; or 

• 1-6 hexadecimal digits enclosed by apostrophes and 
preceded by the character X; or 

• 1-3 characters, enclosed by apostrophes and preceded 
by the character C. 

Assembler Action: The operand in which the term appears is 
ignored. 

pr~rammer Response: Correct the term according to the rules 
given in the explanation. 

ILLEGAL ATTRIBUTE REFERENCE, 'xxxxxxxx' 

~xplanation: The length attribute reference does not specify 
a valid ordinary symbol or location counter reference (*). 
The first character of the inserted string indicates the 
point where the illegal attribute reference was found. 

Assembler Action: The operand is ignored. 

programmer Response: Supply a valid ordinary symbol or 
location counter reference. 



IPK119 

IPK120 

IPK121 

IPK122 

IPK123 

TOO MANY OPERATORS, 'xxxxxxxx' 

ExE!anation: More than 15 operators have been found in the 
operand specified by the message. The first character of the 
inserted string indicates the point where too many operators 
have been encountered. 

Assembler Action: The operand is ignored. 

£~Qgramrner Response: Limit the number of operators. If 
necessary, use EQU instructions to break up the expression 
into smaller expressions. 

TOO MANY LEVELS OF PARENTHESES, 'xxxxxxxx' 

Ex21anation: More than five levels of parentheses are used in 
an expression in the operand specified by the message. The 
first character in the string indicates the point where too 
many levels of parentheses have been encountered. 

Assembler Action: The operand is ignored. 

programmer Response: Limit the number of levels of 
parentheses. If necessary, use EQU instructions to break up 
the expression into smaller expressions, each of which is 
evaluated separately. 

ILLEGAL CHARACTER IN EXPRESSION, 'xxxxxxxx' 

Explanation: In an expression an invalid character has been 
found in or instead of a term. The first character of the 
text inserted in the message identifies the invalid character. 

Assembler Action: The operand in error and the rest of the 
statement are ignored. 

prQg~ammer Response: Supply a valid term. 

INVALID DELIMITER, 'xxxxxxxx' 

Explanation: An operand or sub-operand is not delimited by a 
comma, a left or right parenthesis, or a blank. The first 
character of the text inserted in the message identifies the 
invalid delimiter. 

Assembler Action: The operand in error and the rest of the 
statement are ignored. 

programmer Response: Make sure all the delimiters in the 
statement are correct. 

INVALID TYPE SPECIFICATION, 'xxxxxxxx' 

Explanation: The type specified-in subfield 2 of a DC or DS 
instruction or a literal is invalid or missing. The text 
inserted in the message consists of up to eight characters, 
starting at the point where a valid type specification is 
expected. 

Diagnostic and Error Messages 85 



IPK124 

IPK125 

IPK126 

IPK127 

86 

Assembler Action: For DC or DS instructions the statement is 
processed as comments. For constants in a literal, zeros are 
generated in the output module. 

Programmer Response: Supply a valid type specification (A, B, 
C, D, E, F, H, L, P, S, V, X, Y, or Z) • 

INVALID SYMBOL IN ENTRY, EXTRN, or WXTRN STATEMENT 

ExE!anation: An ENTRY, EXTRN, or WXTRN instruction contains 
an invalid symbol. The operand field of these statements 
must consist of one or more ordinary symbols, separated by 
commas. Any ordinary symbols defined by the ENTRY 
instruction must also appear in the name field of an 
instruction in this source module. 

Assembler Action: The operand in error and the rest of the 
statement are ignored. 

Programmer Response: Make sur~ that the operand field follows 
the rules given in the explanation. 

DATA ITEM TOO LONG, 'xxxxxxxx' 

~~E!anation: The constant value specified in subfield 4 of a 
P- or Z-type constant contains too many characters. A P-type 
constant is limited to 31 decimal characters, and a Z-type 
constant is limited to 16 decimal characters. The first 
character in the string indicates the point where the illegal 
constant value was found. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Delete the exponent modifier or change 
to type specification. 

EXPONENT MODIFIER USED ILLEGALLY, 'xxxxxxxx' 

Explanation: An exponent modifier is specified for a DC or DS 
instruction operand, or literal that is not a fixed-point, 
floating-point, or decimal constant. The character string 
inserted in the message consists of up to eight characters 
starting with the illegal exponent modifier. 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Delete the exponent modifier or change 
the type specification. 

SCALE MODIFIER USED ILLEGALLY, 'xxxxxxxx' 

Explanation: A scale modifier is specified for a DC or DS 
instruction operand or literal, which is not a fixed-point, 
floating-point, or decimal type constant. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Delete the scale modifier, or change the 
type specification. 



IPK128 

IPK129 

IPK130 

IPK131 

IPK132 

CONSTANT FIELD MISSING OR PRECEDED BY INVALID FIELD, 
'xxxxxxxx' 

ExQ1anation: In a DC instruction operand or literal, either 
illegal characters are found between the modifier and 
constant subfield, or the constant subfield does not contain 
any nominal value. The first character in the string 
indicates the point where the illegal constant value was 
found. 

Assembler Action: The statement is processed as comments. 
) 

Programmer Response: Delete the invalid characters, or supply 
a nominal value, or change the operation code to DS if you 
only want to specify a data area. 

INVALID DUPLICATION FACTOR OR MODIFIER, 'xxxxxxxx' 

ExE1anation: a syntax error was found in the duplication 
factor subfield (subfield 1) or the modifier subfield 
(subfield 3) of this DC or DS instruction operand or literal. 

The first character in the string indicates the point where 
the illegal constant value was found. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure the syntax in the expression 
is correct. 

S-TYPE CONSTANT IN LITERAL 

Explanation: An S-type constant is specified in a literal. 

Assembler Action: Zeros are generated in the output module. 

Programmer Response: Use a DC instruction to specify the 
S-type constant, and supply the name of the DC instruction in 
the operand field instead of the literal, or change the type 
of the constant in the literal. 

ILLEGAL USE OF LITERAL 

Explanation: A literal is used illegally. A literal can only 
be used as a relocatable operand in a machine instruction; 
and it cannot be used in an operand that represents the 
receiving field of an instruction or in a shift or I/O 
instruction. 

Assembler Action: Zeros are generated in the object module. 

Prggrammer Reseonse: Use a DC or DS instruction instead. 

LENGTH OR DUPLICATION FACTOR ZERO IN LITERAL 

Explanation: The length specified in the modifier field or 
the duplication field of this literal has a zero value. 
These fields must specify absolute values in literals. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure the value is greater than zero. 

Diagnostic and Error Messages 87 



IPK133 

IPK134 

IPK135 

IPK136 

IPK137 

88 

TOO MANY SYMBOLS IN STATEMENT 

Explanatiog: More than 50 symbols have been specified in an 
ENTRY, EXTRN, or WXTRN instruction. 

Assembler Action: The first 50 symbols are processed. 

Programmer Responsg: Place the excessive operands in 
additional ENTRY, EXTRN, or WXTRN instructions. 

STATEMENT COMPLEXITY EXCEEDED, 'xxxxxxxx' 

ExE!anation: 

• More than one operand has been specified in a DC or 
DS instruction; or 

• The constant subfield of a DC or DS operand or literal contains 
too many symbols or terms or both. The maximum 
number of symbols and terms that can be handled by the 
assembler is around 30. 
The first character in the string indicates the point 
where the illegal character was found. 

Assembler Action: The statement is processed as comments. 

f~Q9rammer Response: Make sure only one operand is coded, or 
break up the constant subfield into two or more statements. 

SYMBOL 'xxxxxxxx' PREVIOUSLY DEFINED 

ExE!anation: The ordinary symbol defined in this instruction 
either by appearing in the name field, or by appearing in the 
operand field of an EXTRN or WXTRN instruction, has already 
been defined within the source module. 

Assembler Action: The second definition is ignored. 

Programmer Response: Supply a name that does not conflict 
with any other symbols in the program. 

ARITHMETIC OVERFLOW (IN OPERAND n) 

Explanation: During the evaluation of an expression, a value 
has been reached which is outside of the range _23~ through 
23~-1. 

Assembler Action: The expression is ignored. 

PrQgrammer ResEonse: Rearrange the terms of expression to 
avoid overflow. If necessary, use EQU statements to separate 
the expression into smaller expressions that can be evaluated 
separately and then combined. 

EXPRESSION COMPLEXLY RELOCATABLE (IN OPERAND n) 

Explanation: A complexly relocatable expression is used in 
the operand field of an EQU, CNOP, or ORG instruction or in 
the modifier sub field of a DC or DS instruction operand. 

Assembler Action: The statement is processed as comments. 



IPK138 

IPK139 

IPK140 

IPK141 

IPK142 

programmer Response: Correct the expression so that it is 
simply relocatable (EQU, ORG) or absolute (EQU, CNOP, 
modifiers) • 

TOO FEW OPERANDS 

Explanation: This statement requires more operands than are 
supplied. 

Assembler Action: The statement is processed as comments. 

programmer Response: Supply the missing operand(s). 

INVALID DUPLICATION FACTOR (IN OPERAND n) 

Explanation: The duplication factor is relocatable or zero in 
a DC literal. 

Assembler Action: The statement is processed as comments. 

prQgrammer Response: Supply an absolute value (not zero if DC 
literal) • 

INVALID LENGTH MODIFIER (IN OPERAND n) 

Explanation: The length modifier is either too large, zero, 
or relocatable. The maximum value allowed for the length 
modifier varies with the type specified for this operand. 

Assembler Action: The statement is processed as comments. 

prQgrammer Response: Make sure the length modifier is an 
absolute value in the range allowed for this type of constant. 

INVALID SCALE MODIFIER (IN OPERAND n) 

Explanation: The expression used to specify the scale 
modifier is relocatable. 

Assembler·Action: Zeros are generated in the object module. 

Programmer Response: Make sure the scale modifier expression 
specifies an absolute value, and that any symbols used in it 
have been previously defined. 

INVALID EXPONENT MODIFIER (IN OPERAND n) 

Explanation: The expression used to specify the exponent 
modifier is relocatable. 

Assembler Action: Zeros are generated in the object module. 

programmer Response: Make sure the exponent modifier 
expression specifies an absolute value, and that any symbols 
used in it have been previously defined. 

Diagnostic and Error Messages 89 



IPK143 

IPK144 

IPK145 

IPK146 

IPK147 

90 

INVALID CNOP OPERAND 

ExE!anation: One or both of the operands in this CNOP 
instruction are invalid. Only the following combinations are 
allowed: 0 and 4, 2 and 4, 0 and 8, 2 and 8, 4 and 8, and 6 
and 8. 

Assembler Action: The statement is processed as comments. 

programmer Response: Supply one of the combinations listed in 
the explanation.' 

INVALID END OPERAND 

Explanation: The operand of the END instruction is invalid. 
It must be a simply relocatable expression whose value 
represents an address within an ordinary control section 
(that is, not a dummy or common control section) in this 
s~urce module, or an external reference 

Assembler Action: The operand field is ignored. 

Programmer Response: Supply a valid operand as 1escribed in 
the explanation. 

RELOCATABLE TERM IN DIVIDE OR MULTIPLY OPERATION (IN OPERAND 
n) 

ExE!anation: A relocatable term is used in a multiply or 
divide operation in an expression in this statement. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Use only absolute terms in divide or 
multiply operations. 

NAME MISSING 

Explanation: The name is missing in this EQU instruction. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Supply a valid name field. 

INVALID START STATEMENT 

Explanation: 

• The operand field is not blank or an absolute value; 
or 

• The START instruction does not identify the beginning 
of the first control section in this source module; 
it was preceded by another START instruction, a CSECT 
instruction, or a statement that causes an unnamed 
control section (private code) to be initiated. 

Assembler Action: The statement is processed as a CSECt 
statement. 



IPK148 

IPK149 

IPK150 

IPK151 

IPK152 

programmer Response: Make sure any operand specified is an 
absolute value, and that the START instruction initiates the 
first control section in the source module. 

ILLEGAL SYMBOL 'xxxxxxxx' IN ENTRY STATEMENT 

ExE!anation: The specifie1 symbol is not defined as a 
relocatable symbol within an ordinary control section (not a 
dummy or common control section), or is defined as an EXTRN 
symbol or has already appeared as an entry statement. 

Assembler Action: The symbol is ignored. 

PrQqrammer Response: Make sure the ENTRY operanj is a valid 
external name as defined in the explanation. 

SYMBOL 'xxxxxxxx' NOT PREVIOUSLY DEFINED 

ExE!anation: The specifie1 symbol appears in an EQU, ORG, or 
CNOP operand or in the mo1ifier subfield of a DC or DS 
instruction, but has not been defined prior to this use. 
These fields require that any symbols used in them are 
previously defined. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure the definition of this symbol 
preced~s this statement. 

VALUE OF ORG OPERAND LESS THAN CONTROL SECTION STARTING 
ADDRESS 

ExE!anation: The operand of an ORG instruction results in a 
value less than the starting address of the control se~tion. 

Assembler Action: The statement is processed as comments. 

programmer Response: Make sure the operand of the ORG 
instruction is a positive relocatable expression, greater 
than the starting address in the control section. 

LOCATION COUNTER OVERFLOW 

Explanation: The location counter value is greater or equal 
to X'FFFFFF'. 

Assembler Action: The location counter is carried in three 
bytes. When overflow occurs, the location counter will not 
be updated and every statement which causes overflow will be 
flagged. 

programmer Response: The probable cause of the error is a 
high ORG instruction value or a high START instruction value. 
Correct the value or split up the control section. 

ORG OPERAND VALUE NOT WITHIN THIS CONTROL SECTION 

Explanation: The operand of an ORG instruction is not a 
simply relocatable expression whose value falls within the 
current control section. 

Diagnostic and Error Messages 91 



IPK153 

IPK154 

IPK155 

IPK156 

92 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure the resulting value of the 
expression in the operand field falls within the control 
section where the ORG is coded. Any relocatable symbols 
defined in other control sections must be paired (that is, 
each such term must be matched by another term from the same 
control section with the opposite sign). 

ILLEGAL USE OF LOCATION COUNTER REFERENCE 

Explanation: A location counter reference (*) is used in the 
modifier subfield of a DC or DS instruction or literals or in 
the operand of a CNOP instruction. 

Assembler Action: The statement is processed as comments. 

PrQgrammer Response: Remove the invalid location counter 
reference. 

TOO MANY ENTRY SYMBOLS 

~~Elanation: The number of ENTRY operands specified in this 
source module exceeds 10. 

Assembler Action: ENTRY operands encountered in the rest of 
the assembly are ignored. 

R~Qgrammer Response: Reduce the number of ENTRY operands, or 
separate the module into two or more modules. 

TOO MANY EXTERNAL SYMBOLS 

Explanation: Too many entries have been made in the external 
symbol dictionary. Only 255 entries can be made for the 
following: control sections, dummy sections, common control 
sections, and external references (EXTRN, WXTRN, V-type 
constants). ENTRY operand are not counted towards this 
maximum, but the number of entry operands must not exceed 100. 

Assembler Action: No more symbols are entered in the external 
symbol dictionary. The rest of the source module is 
assembled as part of the control section currently being 
processed. 

Programmer Response: Reduce the number of ESD items, or 
separate the source module into two or more modules. 

SYMBOL 'xxxxxxxx' UNDEFINED 

Explanation: The specifiej symbol has not been defined within 
the module; that is, it has not appeared in the name field of 
an instruction or in the operand field of an EXTRN or WXTRN 
instruction. 

Assembler Action: Zeros are generated in the object module. 

Programmer Response: Make sure the symbol is defined, or use 
a symbol that has already been defined. 



IPK157 

IPK158 

IPK159 

IPK160 

IPK161 

ERROR IN DEFINITION OF LITERAL 

Explanation: ~n error has been 1etected in the definition of 
the literal. The error can be either duplication factor, 
length, scale, exponent, location couoter, or arithmetic 
overflow error, or a symbol not previously defined. 

Assembler Action: Zeros are generated in the object module. 

prggrammer Response: Correct the literal. 

'1'00 MANY OPER~NDS 

ExE!anation: Too many operands have been coded for this 
statement. 

Assembler Action: If the statement is an assembler 
instruction, the excessive operands are ignored. If the 
statement is d machine instruction, zeros are generated in 
the object module. 

prggrammer Response: Delete the excessive operands; make sure 
that the format of the operand fiel1 is correct. 

TOO FEW OPERANDS 

Explanation: This instruction requires more operands than are 
specified. 

Assembler Action: Zeros are generated in the object module. 

prggrammer Response: Supply the right number of operands; 
make sure that the format of the operand field is correct. 

COMPLEXLY RELOC~TABLE EXPRESSION IN CONSTANT n ,OPERAND m 

Explanation: A complexly relocatable expression has been used 
in an operand or S-type constant where a simply relocatable or 
absolute expression is required. 

Assembler Action: Zeros are generated in the object module. 

programmer Response: Supply a valid simply relocatable or 
absolute expression. 

OPERAND n NOT A CURRENT BASE REGISTER 

ExElanation: The register specified in the operand of this 
DROP instruction is not a current base register, 'either 
because it has not been specified as a base register by a 
previous USING instruction, or because it has been 
encountered in a previous DROP instruction. 

Assembler Action: The operand is ignored. 

programmer Response: Make sure the operand is currently being 
used as a base register. 

Diagnostic and Error Messages 93 



IPK162 

IPK163 

IPK164 

IPK165 

IPK166 

94 

INCONSISTENT VALUES IN OPERANDS 1 AND 2 

Explanation: The values in operands 1 and 2 of this USING 
instruction are inconsistent. If the second operand is 0, the 
first operand must not specify an absolute value other than O. 

Assembler Action: The second operand is ignored. 

Programmer Response: Change the first operand so that it 
specifies a relocatable value or the absolute value 0, or 
change the value of the second operand, so that it does not 
specify register o. 

ADDRESSABILITY ERROR IN CONSTANT m OPERAND n 

Explanation: An address specified in the operand of this 
statement is not covered by any base register, that is, it 
does not appear in the range of a USING instruction; that is, 
it does not appear in the range of a USING instruction. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

prQgrammer Response: Make sure the address of the symbol in 
the operand falls within the ranges of a address instruction; 
it must be within the first 4,095 bytes of the address 
specified in the USING instruction. 

REGISTER VALUE IN OPERAND n NOT 0 OR 4 

ExE!~ation: The indicated operand does not specify the right 
register value; the value must be either 0 or 4. 

Assembler ActiQ~: Zeros are generated instead of the 
instruction in the object module. 

prQgrammer Response: Supply the value 0 or 4. 

REGISTER VALUE IN OPERAND n NOT EVEN 

Explanation: The indicated operand does not specify an even 
register value. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

~rammer Response: Specify an even numbered register in the 
range 0-14, or for floating-point instructions, in the range 
0-6. 

REGISTER VALUE IN OPERAND n OUT OF RANGE 

ExE!anation: The register number specified in this operand is 
not in the range required by this instruction. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 



IPK167 

IPK168 

IPK169 

IPK170 

IPK171 

Programmer Response: Specify a value in the range 0-15, or 
for CLCL, MVCL, shift double instructions, and operand R1 of 
M, MR, D, and DR instructions, in the range 0-14, or, for 
floating-point instructions, in the range 0-6. 

REGISTER VALUE IN OPERAND n NOT ABSOLUTE 

ExE!anation: The register number specified in this operand is 
not an absolute value. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

programmer Response: Specify an absolute value. 

MASK VALUE IN OPERAND n OUT OF RANGE 

ExE!anation: The value specified as a mask in this operand is 
not in range 0-15. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

PrQgrammer Response: Specify a value in the range 0-15. 

MASK VALUE IN OPERAND n NOT ABSOLUTE 

Explanation: The value specified as a mask in this operand is 
relocatable. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

Programmer Response: Specify an absolute value in the range 
0-15. 

IMMEDIATE VALUE IN OPERAND n OUT OF RANGE 

Explanation: The value specified as an immediate value is 
negative or too high. For an SRP instruction the allowable 
range is 0-9, and, for other instructions the allowable range 
is 0-255. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

Programmer Response: Specify an absolute value in the range 
described in the explanation. 

IMMEDIATE VALUE IN OPERAND n NOT ABSOLUTE 

Explanation: The value specified as an immediate value is 
relocatable. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

Programmer Response: Supply an absolute value in the range 
0-9 (for SRP) or 0-255 (for other instructions) • 

Diagnostic and Error Messages 95 



IPK172 

IPK173 

IPK174 

IPK175 

IPK176 

96 

1 
CONSTANT! 

DISPLACEMENT VALUE IN OPERAND nOUT OF RANGE 

~~E1anation: The displacement value in the specified operand 
or S-type constant is not in the range 0-4095. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

PrQgrammer Response: Make sure the displacement is specified 
as an absolute value in the range 0-4,095. 

1 
CONSTANT! 

DISPLACEMENT VALUE IN OPERAND nNOT ABSOLUTE 

Explanation: The displacement value in the specified operand 
or S-type constant is relocatable. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

PrQgrammer Response: Make sure the displacement is specified 
as an absolute value in the range 0-4,095. 

INDEX REGISTER VALUE IN OPERAND n OUT OF RANGE 

Ex£!anation: The value specified in the index register 
subfield of this operand is not in the range 0-15. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

Programmer Response: Make sure the index register is specified 
as an absolute value in the range 0-15. 

INDEX REGISTER VALUE IN OPERAND n NOT ABSOLUTE 

Explanation: The value specified in the index register 
subfield of this operand is relocatable. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

Programmer Response: Make sure the index register is 
specified as an absolute value in the range 0-15. 

1 
CONSTANT! 

BASE REGISTER VALUE IN OPERAND nOUT OF RANGE 

Explanation: The value specified in the base register 
subfield of this operand or S-type constant is not in the 
range 0-15. 

Assembler Action: Zeros are generated instead of the 
instruction or constant in the object module. 

PrQgramrner Response: Make sure the base register is specified 
as an absolute value in the range 0-15. 



IPK111 

IPK118 

IPK119 

IPK180 

IPK181 

lCONSTANTt 
BASE REGISTER VALUE IN OPERAND ~nNOT ABSOLUTE 

ExE!anation: The value specified in the base register 
subfield of this operand or S-type constant is not absolute. 

Assembler Action: Zeros are generated instead of the 
instruction or constant in the object module. 

prQgrammer Response: Make sure the base register is specified 
as an absolute value in the range 0-15. 

LENGTH VALUE IN OPERAND n OUT OF RANGE 

Explanation: The value specified in the length subfield of 
this operand is negative or too high. In decimal arithmetic 
and the SRP instruction, it must be in the range 0-16, and 
for logical operations, it must be in the range 0-256. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

programmer Response: Make sure the length specification is an 
absolute value in the range 0-16 (in decimal arithmetic 
instructions and the SRP instruction) or 0-256 (for logical 
operations) • 

LENGTH VALUE IN OPERAND n NOT ABSOLUTE 

Explanation: The value specified in the length subfield of 
this operand is relocatable. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

programmer Response: Make sure the length specification is an 
absolute value in the range 0-16 (in decimal arithmetic 
instructions and the SRP instruction) or 0-256 (for logical 
operations) • 

lCONSTANTl 
INDEX REGISTER OR LENGTH VALUE SPECIFIED ILLEGALLY IN OPERAND ~n 

ExE!anation: An index register or length subfield has been 
specified in this operand, but the instruction does not allow 
any of these subfields to be specified. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

progra~ner Response: Delete the invalid subfield. 

REGISTER VALUE 0 USED IN OPERAND OTHER THAN THE SECOND 

Explanation: In this USING instruction, register 0 is 
specified in an operand that is not the second operand. If 
base register 0 is to be specified in a USING instruction, it 
must be specified as operand 2. 

Diagnostic and Error Messages 97 



IPK182 

IPK183 

IPK184 

IPK185 

98 

Assembler Action: The operand is ignored. 

Programmer Respons~: If you want to use register 0, make sure 
it is specified as the second operand. 

ALIGNMENT ERROR IN OPERAND n 

Explanation: This operand refers to a storage location that 
is not properly aligned. 

Assembler Action: Object code is generated. 

PrQgrammer Response: If the instruction flagged is not a 
system control instruction (SCI), the message is to be 
considered as a warning message only. In the case of an SCI 
the data area addressed by the instruction should be moved to 
a storage boundary required by the instruction. 

On some machines an ordinary instruction will execute more 
slowly if the data area referenced is'not aligned properly, 
even if alignment is not required for correct execution. In 
such cases it might be desirable to move the data area as 
described above. 

Refer to the publication; System/370 Principles of Operation, 
Order No. GA22-7000 for details on the boundary requirements 
of this instruction. 

SUBFIELD SPECIFIED ILLEGALLY IN OPERAND n 

Explanation: A subfield has been specified in this operand. 
However, the operand does not allow any subfields; it must 
consist of only one expression. 

Assembler Action: Zeros are generated instead of the 
instruction in the object module. 

EEQgramming Response: Make sure the operand follows the 
format required by this instruction. 

EXPONENT MODIFIER OUT OF RANGE IN CONSTANT n (OPERAND ~ 

Explanation: The value of the exponent modifier is too large 
or too small. The sum of the exponent modifier and the 
exponent specification in the constant must be in the range 
-85 - +75. 

Assembler Action: Zeros are generated in the object module. 

Programmer Response: Make sure the total value of the 
exponent in the constant subfield and the exponent modifier 
in the modifier subfield is in the range of -85 through +75. 

SCALE MODIFIER OUT OF RANGE IN CONSTANT n ~PERAND m) 

Explanation: The scale modifier is either too large or too 
small. For a fixed-point constant, the allowed range is -187 
through +346. For an E- or D-type constant, the allowed range 
is 0 through 14, and for an L-type constant, the allowed 
range is 0 through 28. 



IPK186 

IPK187 

IPK188 

IPK189 

IPK190 

Assembler Action: Zeros are generated in the object module. 

Prggrammer Response: Make sure the scale modifier value falls 
in the range described in the explanation. 

CHARACTERISTIC OUT OF RANGE IN CONSTANT n (OPERAND m) 

Expl~natiog: A converted floating-point constant is too large 
or too small for the field assigned to it. The allowable 
range is 7.2x1075 to S.3x10-77. 

Assembler Action: Zeros are generated in the object module. 

Programmer Response: Check the characteristic (exponent), 
exponent modifier, scale modifier, and mantissa (fraction) 
for validity. Remember that a floating-point constant is 
rounded, not truncated, after conversion. 

PRECISION LOST IN CONSTANT n (OPERAND m) 

ExE1anation: The mantissa (fraction) is lost during the 
construction of an L-, D-, or E-type constant, because the 
designated field is too small to contain any part of the 
mantissa after scaling. 

Assembler Action: The mantissa is set to zero. 

Programmer Response: Check the length, scale and exponent 
modifiers of the constant. 

INVALID SYNTAX IN DATA FIELD OF CONSTANT n (OPERAND m) 

Explanation: The syntax is invalid in the present constant 
subfield of this operand. For instance, an E is present to 
designate an exponent, but no exponent is found. 

Assembler Action: Zeros are generated in the source module. 

Programmer Response: Correct the syntax of the statement. 

DATA ITEM TOO LARGE IN CONSTANT n (OPERAND m) 

Explanation: The constant specified in the constant subfield 
of this DC or DS instruction operand or literal is too large 
for the data type or for the length specified explicitly in 
the length modifier. 

Assembler Action: The value is truncated on the left. 

Programmer Response: Change the type specification or the 
length modifier. 

LENGTH MODIFIER ILLEGAL WITH CONSTANT n (OPERAND m) 

Explanation: An A-, or y-type address constant has been 
specified with an explicit length which is correct for 
absolute, but not for relocatable expressions. 

Assembler Action: Zeros are generated in the object module. 

Diagnostic and Error Messages 99 



IPK191 

IPK192 

IPK193 

IPK194 

IPK195 

IPK196 

100 

programmer Response: Change length modifier to allow 
expression to be relocatable or make expression absolute. 

ILLEGAL EXPRESSION IN ADDRESS CONSTANT n (OPERAND m) 

Explanation: Only a simple expression is allowed in an 
address constant (no subfields) • 

Assembler Action: Zeros are generated in the object module. 

prQgrammer Response: Supply a simple expression. 

ILLEGAL EXPRESSION IN CCW OPERAND n 

~~Elanation: Only a simple expression is allowed as a CCW 
operand (no subfield allowed). 

Assembler Action: Zeros are generated in the object module. 

programmer Response: Supply a simple expression. 

OPERAND 3 INVALID 

Explanation: The last three bits in operand 3 of a CCW 
instruction are not specified as zeros. 

Assembler Action: The operand is accepted as it is specified. 

programmer Response: Supply an operand 3 value in which the 
last three bits are zeros. 

TOO FEW OPERANDS 

Explanation: Less than four operands found in a CCW 
instruction. 

Assembler Action: Zeros are generated in the object module. 

programmer Response: Supply the missing operand (s) • 

OPERAND n NOT ABSOLUTE 

Explanation: The value specified in operands 1, 3, or 4 not 
an absolute value. 

Assembler Action: Zeros are generated instead of the CCW in 
the object module. 

Proqrammer Response: Make sure the values of the expressions 
in operands 1, 3, and 4 are absolute. 

TOO MANY OPERANDS 

Explanation: More than four operands have been found in a CCW 
instruction. 

Assembler Action: Zeros are generated in the object module. 

Programmer Response: Delete the excessive operand(s). 



IPK197 

IPK198 

IPK199 

IPK200 

IPK201 

VALUE OF OPERAND n OUT OF RANGE 

Explanation: The value specified for the operand identified 
in the message is too high or negative. The value of operand 
1 must be in the range 0-255, the value of operand 3 must be 
in the range 0-248, and the value of operand 4 must be in the 
range 0-65,535. 

Assembler Action: Zeros are generated instead of the CCW in 
the object module. 

prggrammer Response: Make sure the operand specifies an 
absolute value in the range described in the explanation. 

SYMBOL IN CCW ADDRESS OPERAND DEFINED IN DUMMY SECTION 

Explanation: A symbol a in CCW address operand is defined in 
a dummy section. If a symbol in an expression in address 
operand is defined in a dummy section, the symbol must be 
paired with another symbol with the opposite sign defined in 
the same dummy section. 

Assembler Action: Zeros are generated in the object module. 

Prggrammer Response: Delete any symbols in a CCW address 
operand defined in dummy sections, or make sure they are 
paired with other symbols defined in the same dummy section. 

DUMMY SECTION SYMBOL USED ILLEGALLY IN CONSTANT n (OPERAND m) 

Explanation: A dummy section symbol appearing in the constant 
subfield of this address constant is defined in a dummy 
section. If a symbol in an expression in the constant 
subfield is defined in the dummy section, the symbol must be 
paired with another symbol with the opposite sign defined in 
the same dummy section. 

Assembler Action: Zeros are generated in the object module. 

Programmer Response: Delete any dummy section symbols, or 
make sure they are paired with other symbols defined in the 
same dummy·section. 

NAME FIELD TOO LONG 

Explanation: The length of the symbol in the name field 
exceeds eight characters. 

Assembler Action: The name field is ignored. 

programmer Response: Make sure the name field is not longer 
than eight characters. 

NAME FIELD NOT SEQUENCE SYMBOL OR BLANK 

Explanation: The name field contains something other than a 
valid sequence symbol or blank. The following instructions 
must have a blank or a sequence symbol in the name field: 
EJECT, PRINT, SPACE, MNOTE, PUNCH, REPRO, and TITLE (except 
the first TITLE statement in the module). 

Diagnostic and Error Messages 101 



IPK202 

IPK203 

IPK204 

IPK205 

IPK206 

102 

Assembler Action: The name fiel1 is ignored. 

Prggrammer Response: Supply a valid sequence symbol, or leave 
the name field blank. 

TITLE NAME TOO LONG 

Explanation: The name field of the first TITLE instruction in 
the program contains more than four characters that are used 
to specify a valid sequence symbol. 

Assembler Action: The name field is ignored. 

Prggrammer Response: Supply up to four alphameric characters 
in the name field, or leave the name field blank. 

TITLE NAME CONTAINS NON-ALPHAMERIC CHARACTER 

Explanation: A character that is not an alphameric character 
has been encountered in the name field of the first TITLE 
statement in the program. 

Assembler Action: The name field is ignored. 

Programmer Response: Supply one to four alphameric 
characters, or leave the name field blank. 

OPERAND MISSING 

Explanation: The operand field of a PRINT, PUNCH, or TITLE 
statement is blank. 

Assembler Action: The statement is processed as comments. 

Prggrammer Response: Supply a valid operand field. 

FIRST APOSTROPHE MISSING 

Explanation: The first apostrophe in the operand of an MNOTE, 
PUNCH, or TITLE instruction is missing. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure the operand is a character 
combination enclosed in apostrophes. 

SINGLE AMPERSAND IN OPERAND 

ExE!anation: A single ampersand which is not part of a 
variable symbol appears in the MNOTE, PUNCH, or TITLE operand. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure that an ampersand that is 
meant to be part of the operand rather than of a variable 
symbol in the operand is coded as a double ampersand. 



IPK207 

IPK208 

IPK209 

IPK211 

IPK212 

LAST APOSTROPHE MISSING 

ExElanation: The operand of an MNOTE, PUNCH, or TITLE 
instruction does not end with a single apostrophe. 

Assembler Action: The statement is processed as comments. 

PrQgrarnrner Response: Supply the closing apostrophe. 

TITLE OR PUNCH OPERAND TOO LONG 

Explanation: The operand of a TITLE or PUNCH instruction is 
too long. The maximum length of the TITLE operand is 100 
characters, excluding the enclosing apostrophes, and the 
maximum length of the PUNCH operand is 80 characters, 
excluding the enclosing apostrophes. 

Assembler Action: The statement is processed as comments. 

f~Qgrarnrner Response: Supply an operand which does not exceed 
the length described in the explanation. 

OPERAND FIELD ILLEGALLY TERMINATED 

ExElanation: The closing apostrophe of an MNOTE, PUNCH or 
TITLE operand is not immediately followed by a blank. This 
message can be caused by a single apostrophe coded or 
generated inside the enclosing apostrophes or by a missing 
blank between the operand field and the remarks field. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Make sure all apostrophes inside the 
enclosing apostrophes are coded as double apostrophes, or 
supply the missing blank between the operand and the remarks 
field. 

NON-DECIMAL CHARACTER IN OPERAND 

ExElanatio~: The operand of a SPACE instruction contains 
non-decimal characters or the severity code operand of an 
MNOTE instruction contains characters that are not decimal or 
an asterisk. 

Assembler Action: The statement is processed as comments. 

PrQgrarnrner Response: Supply a decimal value on an asterisk 
(for MNOTE only) • 

INVALID PRINT OPERAND 

ExE!anation: The operand of a PRINT instruction does not 
specify one or more of the following values: ON, OFF, GEN, 
NOGEN, DATA, NODATA. 

Assembler Action: The statement is processed as comments. 

Programmer Response: Supply from one to three operands that 
do not conflict with each other. The operands are listed in 
the explanation. 

Diagnostic and Error Messages 103 



IPK213 

IPK214 

IPK215 

IPK216 

IPK217 

IPK218 

104 

CONFLICTING PRINT OPERANDS 

Explanation: Conflicting operands have been specified in a 
PRINT statement. Only one value from each of the following 
three pairs can be specified: ON/OFF, GEN/NOGEN, and 
DATA/NODATA. 

Assembler Action: The statement is processed as comments. 

programmer Response: Delete conflicting values. 

'x' IS AN INVALID DELIMITER 

Explanation: An operand in a PRINT statement is not 
immediately followed by a comma or a blank. 

Assembler Action: The statement is processed as comments. 

programmer Response: Supply the correct delimiter. 

OPERAND FIELD INCOMPLETE 

Explanation: A PRINT instruction enjs with a comma followed 
by a blank, or an MNOTE instruction contains a severity code 
operand, but no message operand. 

Assembler Action: The statement is processed as comments. 

PrQqrammer Response: Delete the comma, or supply the 
additional operand. 

MNOTE GENERATED 

Explanation: An MNOTE statement specified with a severity 
code, or an explicitly omitted (by means of a comma) severity 
code has been encountered. 

Assembler Action: Processing continues. 

£~Qqrammer Response: Determine the cause of the message by 
referring to the source statements section of the listing. 
The MNOTE message will be written at the statement number 
supplied with the message. 

MNOTE SEVERITY VALUE TOO HIGH 

Explanation: The severity code specified in the first operand 
of an MNOTE instruction is greater than 255. 

Assembler Action: The statement is processed as comments. 

prQgrammer Response: Supply a severity code in the range 
0-255, or omit the first operand. 

NULL STRING IN PUNCH OPERAND 

Explanation: The operand field of a PUNCH statement contains 
only two apostrophes placed immediately after each other. 

Assembler Action: The statement is processed as comments. 



IPK230 

IPK231 

IPK232 

IPK233 

~~Qgrammer Response: Supply 1-80 characters inside the 
apostrophes. 

PERMANENT I/O ERROR ON SYSOOx 

Explanation: An unrecoverable I/O error occurred on the 
device to which this file is assigned. 

Assembler Action: The assembly is terminated. No listing is 
produced. 

~~Qgrammer ResE2~: Re-assernble the program. 

Qperator Response: Rerun the job using a different device for 
the file indicated in the message. 

INVALID DEVICE FOR SYSOOx 

ExE!anation: The device assigned for this file cannot be used 
as a work file by the assembler. 

ASsembler Action: The assembly is terminated. No listing is 
produced. 

~Eogrammer Response: If you have supplied an ASSGN state­
ment for this work file, correct the ASSGN statement so that 
it specifies a direct-access device that can be used by the 
assembler (see the section "Files Used by the Assembler H

). If 
you have not supplied any ASSGN statement, rerun the job, 
making sure that the workfiles are assigned to direct-access 
storage devices. 

Operator Response: Use the ASSGN command to assign the 
indicated file to a direct-access storage device, and rerun 
the job. 

SYSxxx NOT ASSIGNED 

ExElanation: This file is required by the assembler, either 
because it is a work file, or because it is required by an 
option specified in the OPTION statement, but the file is not 
assigned or the IGNORE option is specified for the file. The 
IGN option is valid only for SYSPCH and SYSLST. 

Assembler Action: The assembly is terminated. No listing is 
produced. 

prQgrammer Response: Rerun the job, making sure that the 
indicated file is assigned, or change the corresponding 
option on the OPTION statement. OR: Execute the LISTIO 
command and verify the assignments. Submit an ASSGN command 
for the file indicated in the message, and rerun the job. 

ASSEMBLER PARTITION TOO SMALLjDE-EDITOR PARTITION TOO SMALL 

Explanation: The number of bytes allocated for the assembler 
are not enough. The assembler must not be loaded into less 
than 20K bytes (26K for the de-editor). Note that in a 
foreground partition the assembler is always loaded 
immediately after the save area. 

Diagnostic and Error Messages 105 



IPK234 

IPK236 

IPK240 

106 

Assembler Action: The assembly is terminated. No listing is 
produced. 

Programmer Response: Specify a larger partition for the job 
and rerun it. 

QEerator Response: Use the ALLOC command to increase the size 
of the partition and rerun the job. 

END OF EXTENT FOR SYSOOx 

Explanation: The direct access storage extent assigned for 
this file is not large enough. Note that multiple extents 
are not used for an assembler work file. 

Assembler Action: The assembly is terminated. No listing is 
produced. 

~~Qgrammer Response: If you have supplied DLBL and EXTENT 
statements for the file in your job, increase the extent 
specified in the EXTENT statement and rerun the job. If not, 
check the LSERV output to make sure that the standard 
assignment for this file specifies an extent that is large 
enough. If you do not want to change the EXTENT size, 
separate the program into two or more source modules, and 
assemble each module separately. OR: If the standard 
assignment for the file indicated in the message we are used 
by this job, execute LSERV, and return the output to the 
programmer. 

ASSEMBLER CANNOT CONTINUE/DE-EDITOR CANNOT CONTINUE 

ExE!anation: 

• If this message is preceded by other messages the 
preceding message explains the reason why the assembler 
cannot continue. 

• If the message is not accompanied by other messages, 
an error in the logic of the assembler has been 
encountered. 

Assembler Action: Assembly is terminated. No listing is 
produced. If the message is caused by an error in the 
assembler, a main storage dump of the assembler area is given. 

Programmer Response: If the message is caused by another 
error message, perform the actions indicated in the 
description of that message. Otherwise, save your job stream, 
SYSLOG listing and SYSLST listing to aid in problem 
determination, before calling IBM. 

QEerator Response: If the message is preceded by another 
error message, ignore this message, and perform the actions 
indicated for this message. If this message appears alone, 
consider the preceding job as terminated. 

TOO MANY MACROS 

Explanation: The capacity of the assembler is exceeded. 

Assembler Action: All statements will be treated as comments. 



IPK241 

IPK242 

IPK243 

IPK244 

programmer Response: Separate the source module into smaller 
modules, and assemble each module separately. 

TOO MANY GLOBAL VARIABLE SYMBOLS 

Explanation: The partition allocated to the assembler is not 
large enough to process the source module because too many 
global symbols have been used. 

Assembler Action: All statements will be treated as comments. 

prggrammer Response: Increase the size of the partition, or 
reduce the number of global symbols by grouping them together 
in SET symbol arrays (subscripted SET symbols) • 

INCONSISTENT TYPE OF GLOBAL VARIABLE SYMBOL 'xxxxxxxx' IN 
'yyyyyyyy' 

EXElanation: The type of variable symbol specified in the 
declaration is inconsistent with the type specified in 
another macro or in open code. For example, if a global 
symbol is declared as a SETA symbol in one macro definition, 
it must be declared as a SETA symbol in all macro definitions 
where it is used. 

Assembler Action: All declarations inconsistent with the 
first declaration are considered invalid. The macro 
definitions are processed in the order in which they appear 
in the source, with all outer macros first, followed by the 
inner macros of the first level, inner macros of the second 
level, etc. Open code is processed last. 

programmer Response: Make sure all global declarations are 
consistent. 

INCONSISTENT DIMENSION OF GLOBAL VARIABLE SYMBOL 'xxxxxxxx' 
IN 'yyyyyyyy' 

Explanation: Either the dimensions specified in declarations 
of global variable symbols are different in different macros 
and/or open code, or a global symbol is declared as 
dimensional in one macro definition and undimensional in 
another. 

Assembler Action: All declarations inconsistent with the 
first declaration encountered are ignored. The macro 
definitions are processed in the order in which they appear 
in the source, with all outer macros first, followed by all 
inner macros of the first level, all inner macros of the 
second level, etc. Open code is processed last. 

programmer Response: Make sure all global declarations are 
consistent. 

SYSSLB RECORD 'nnn' IN MACRO 'xxxxxxxx' NOT IN SEQUENCE 

Explanation: This library macro definition was not in the 
proper order when it was cataloged; the specified record was 
out of sequence. 

Diagnostic and Error Messages 107 



IPK245 

IPK246 

IPK247 

IPK248 

IPK250 

108 

Assembler Action: The macro is not generated. 

Prggrammer Response: Catalog the macro definition again, 
making sure that all the records are in the right sequence. 

MACRO 'xxxxxxxx' CATALOGED UNDER DIFFERENT NAME 'yyyyyyyy' 

ExE!anation: This library macro definition was not cataloged 
under the right name; the name under which a macro is 
cataloged must always be identical to the operation code of 
the macro as it is specified in the macro prototype statement. 

Assembler Action: The macro is not generated. 

Programmer Response: Catalog the macro under its own name 
(operation code) , or change the operation code to match the 
book name. 

UNEXPECTED END-OF-FILE ON SYSSLB AT RECORD 'nnn' IN MACRO 
'xxxxxxxx' 

Explanation: End-of-file was encountered in the source 
statement library before the end of a book had been reached, 
or record length is greater than 80 bytes. Since the 
end-of-file indicator is normally only found at the end of the 
sublibrary, the message indicates that the source statement 
library has been destroyed. 

Assembler Action: The macro is not generated. 

Programmer Response: Re-construct the source statement 
library. 

UNEXPECTED END OF BOOK AT RECORD 'nnn' IN LIBRARY MACRO 
'xxxxxxxx' 

~E!anation: Some cards at the end of this definition were 
missing in this macro definition when it was cataloged. 

Assembler Action: The macro is not generated. 

programmer Response: Catalog a complete version of the macro 
definition. 

'xxxxxxxx' NOT AN EDITED MACRO 

Explanation: The macro library book that corresponds to the 
specified operations code is not recognized as an edited 
macro. 

Assembler Action: The macro is not generated. 

prggrammer Response: Catalog an edited version of the macro 
definition. 

ERRORS FOUND IN MACRO 'xxxxxxxx', EDECK NOT PUNCHED 

ExE!~ation: Since errors were found in this macro 
definition, no edited macro is punched, even though that is 
requested by means of the EDECK option. 



Assembler Action: The EDECK option is ignored for this macro; 
no edited version is punched. 

Prggrammer Response: Correct the errors in the macro 
definition and assemble again. 

ESERV Messages: IPK301-IPK332 

IPK301 

IPK302 

IPK303 

IPK304 

IPK305 

INVALID SELECT CARD 

ExElanation: 
1. The opcode in the macro select card is not recognized as 
any of DSPLY, DSPCH, or PUNCH or 
2. The operand field is filled up but the last operand 
contains only sublibrary name and no bookname. 

ESERV Action: Next macro select carj is read. 

Programmer Response: Correct opcode. 

xxxxxxxx NOT FOUND ON LIBRARY X 

ExElanation: The book referred to in the above message was 
not found in the library specified. 

ESERV Action: The next book is looked for. 

Prggrammer Response: Correct the name of book on library. 

INVALID MACRO HEADER 

Explanation: The first record of the selected book is not a 
header of an edited macro. The edited deck could be damaged, 
or the selected book is not in edited format. A copy book or 
a source macro definition could have been selected by mistake. 

ESERV Action: The next book to be selected in the ESERV run 
is looked for. 

Programmer Response: Check if an edited macro really is 
cataloged by that name. Was right sublibrary specified? If 
edited deck was damaged., see Note 1 at the back of this 
message section. 

TOO LONG BOOK NAME 

Explanation: A character string with more than 8 characters 
with no blank or comma is encountered in the operand field of 
a macro select card. 

ESERV Action: Next book is looked for. 

Programmer Response: Correct the name of the macro in the 
macro select card. 

SYSPCH NOT ASSIGNED 

Explanation: A macro select card with an opcode of DSPCH or 
PUNCH is encountered, but SYSPCH has not been assigned. 

Diagnostic and Error Messages 109 



IPK306 

IPK307 

IPK311 

IPK312 

IPK321 

110 

ESERV Action: PUNCH option is ignored and the de-editing 
continues in DSPLY mo~e. 

PrQgrammer Response: Assign SYSPCH. 

EDECK SERIOUSLY DAMAGED. DE-EDITING TERMINATED 

EXE!anatiQ~: The edited macro deck has been so seriously 
damaged that further de-e~iting is not meaningful. 

ESERV Action: Next macro to be de-edited is looked for. 

~~Qgrammer Response: See Note 1 at the back of this message 
section. 

NON-BLANK CHARACTER IN COL 72 

ExE!anation: This is a warning message. The ESERV program 
processes only columns 1-71 of the control records; however, 
column 72 will be printed as blank. 

ESERV Action: Execution continues. ESERV ignores column 72. 

prggrammer Response: None. 

CARD nnnn OUT OF ORDER 

ExE!anation: The cards in the EDECK are out of order; a card 
with lower sequence number than the preceding card has been 
encountered. 

ESERV Action: Misplaced card is ignored, next card is read, 
and de-editing continues. 

programmer Response: See Note 1 at the back of this message 
section. Possibly the COL statement is using the wrong fields. 

CARDS(S) MISSING, nnnn-nnnn 

Explanation: One or more cards are missing in the EDECK. 

ESERV Action: De-editing continues with the next card. 

prggrammer Response: See Note 1 at the back of this message 
section. 

SEQUENCE NUMBER BEYOND END OF MACRO 

Explanation: MEND statement has been de-edited while a macro 
definition statement corresponding to an operand in the pre­
ceding update control has not been found. This might depend 
on: 1. Referenced sequence number is not present in the macro 
definition. 2. The sequence field in the macro definition 
statement is not located in the columns specified in the COL 
statement. 

ESERV Action: The remaining update control cards are flushed 
till the) END. 



IPK322 

IPK323 

IPK324 

IPK325 

~fggrammer Response: Use the de-edited output of the macro 
definition to check the sequence field of the card. 

INV~LID UPDATE CONTROL CARD 

Explanation: A blank does not immediately follow the right 
parenthesis in column 1 of the card. 

ESERV Action: SYSIPT is flushed to the next update control 
card, and updating continues. 

Prggrammer Response: Correct or remove card in error. 

INVALID OPERATION IN UPDATE CONTROL CARD 

Explanation: The operation field of the control card contains 
something other than COL, VER, ADD, DEL, REP, RST, or END. 

ESERV Action: SYSIPT is flushed to the next update control 
card, and updating continues. 

Prggrammer Response: Correct or remove card in error. 

CONTROL CARD OUT OF SEQUENCE 

ExE!anation: 

1. The first operand of a VER, ADD, DEL, REP, or RST card is 
smaller than the last operand of the preceding control card 
or, 

2. The first operand of an ADD, DEL, REP, or RST card is 
equal to the last operand in the preceding control card which 
is not a VER statement, or 

3. Two consecutive VER cards have the same first operand. 

ESERV Action: SYSIPT is flushed to the next update control 
card and updating continues. 

Programmer Response: Put control cards in ascending order, or 
correct or remove card in error. 

MISMATCH IN SELECTED FIELD 

ExE!anation: Source card following VER cards does not match 
referenced statement in macro definiton. 

ESERV Action: SYSIPT is flushed to the next update control 
card. If this control card refers to the same macro 
statement, it is flagged as invalid. SYSIPT is flushed to 
the next control card· and updating continues. 

Programmer Response: Use the de-edited output of the macro 
definition to check if the version is the expected one. 

Diagnostic and Error Messages 111 



IPK326 

IPK327 

IPK328 

IPK329 

IPK330 

112 

INV~LID OPER~ND IN UPDATE CONTROL CARD 

1. ~n operand in the control card is invalid, or 

2. The second operand of a DEL or REP card is smaller than 
the first operand. 

ESERV Action: SYSIPT is flushed to the next update control 
card and updating continues. 

Programmer Response: Correct or remove card in error. 

END OF MACRO BEFORE END OF UPDATE CARDS 

ExE!~ation: Update control cards other than ) END remain 
when MEND statement has been de-edited/updated. 

ESERY Action: Remaining update control cards are flushed 
to ) END. 

£EQgramrner Response: Remove or re-position cards in error. 

UPDATE TERMINATED, SYSIPT READ TO ) END 

~~planation: Informative message that appears after messages 
IPK321, IPK327, and IPK330. 

ESERV Action: Not applicable. 

Programmer Response: Not applicable. 

UNEXPECTED EOF SYSIPT; END MISSING 

Expla~atio~: End of file was met before ) END card was read. 

ESERV Action: De-editing continues. 

Programmer Response: Insert missing) END card in update deck. 

INVALID COL STATEMENT 

ExE!anation: 
1. An operand of the COL card is invalid, or 

2. The COL statement is not the first update control 
statement. 

ESERV Action: Updating will not be performed. The remain­
ing update control cards are flushed till ) END. 

PrQgrammer Response: Correct the operand or put the COL 
statement first in the update deck. 



IPK331 

IPK332 

Note 1: 

SEQUENCE NUMBER IS TOO SMALL 

~E1anation: A sequence number in a macro definition state­
ment is found to be greater than a sequence number reference 
in the preceding update control card. This might depend on: 

1. Referenced sequence number is not present in the 
macro definition or 

2. The sequence number is not present in the macro 
definition or 

3. The sequence field in the macro statements are not 
located in the columns specified in the COL statement. 

ESERV Action: The requested update action is ignored or 
terminated. SYSIPT is flushed to the next update control 
card and updating continues. 

programmer Response: Use the de-edited output of the macro 
definition to check the sequence field of the statements. 

SECOND OPERAND FOUND BEFORE FIRST 

~~E1~atio~: There is no syntactical error in the control 
card. However, relative addressing has been used in such a 
way that the last macro statement to be deleted/replaced has 
been found before the first one. 

ESERV Action: The referenced macro statement is deleted/ 
replaced. -Updating continues. 

programmer Response: Correct the update control card. 

Any of the messages IPK303, IPK306, IPK311, and IPK312 could 
be given if the cards in the EDECK are out of order. Run the 
SSERV program with DSPCH option and HEX parameter to produce 
a printout and a punched deck of the edited macro. Put the 
cards in ascending order by sequence numbers. Catalog the 
EDECK and run ESERV again. Three things can happen: 

1. The macro is successfully de-edited. 

2. Message IPK312 is given because cards are still 
missing. Use the de-edited output and try to re­
construct the source macro definition, by comparing 
it with a listing of the source macro definition. 

3. Message IPK303 or IPK306 will occur. EDECK is 
heavily damaged that it cannot be used. 

The possibility of the ESERV program to process damaged 
EDECKs is restricted to the cases of missing cards and/or 
cards out of sequence. More serious types of destruction, 
like garbage punched in the edited text, will give 
unpredictable results from the de-editing. 

Diagnostic and Error Messages 113 



Glossary 

The following terms are defined as they are used in this manual. If you 
do not find the term you are looking for, refer to the Index or to the 
IBM Dat.5!_Pr.Q£~§.si!!9:~lossary, Order No. GC20-1699. 

• Definitions made by the American National Standards Institute (ANSI). 
Such definitions are marked by an (*). IBM is grateful to the American 
National Standards Institute (ANSI) for permission to reprint its 
definitions from the American National Standard Vocabulary for 
Information processing, which was prepared by Subcommittee X3KS on 
Terminology and Glossary of American Standards Committee X3. 

This glossary does not explain terms pertaining to the assembler 
language. Such terms are covered in the glossary of Assembler Language. 

*~§.sernble: to prepare a machine language program from a symbolic 
language program by substituting machine operation codes for symbolic 
operation codes and absolute or relocatable addresses for symbolic 
addresses. 

*~~~gmbler: A computer program that assembles. 

assembler instruction: An assembler language source statement that 
causes the assembler to perform a specific operation. Assembler 
instructions are not translated into machine instructions. 

assembler languag~: A source language. that includes symbolic machine 
language statements in which there is a one-to-one correspondence with 
the instruction formats anj data formats of the computer. The Assembler 
language also contains statements that represent assembler instructions 
and macro instructions. 

assembler option: A function of the assembler requested for a particular 
job step. 

bOQ~: A group of source statements written in the assembler language and 
resident on either the macro or copy library. 

*£~talog: To enter a phase, module, or book onto one of the system 
libraries. 

control program: A program that is designed to schedule and supervise 
the performance of data processing work by a computer system. 

copy-!!brary: One of the two sublibraries of the source statement 
library (the other being the macro library) used by the assembler, which 
contains sequences of source code (books) that can be inserted into a 
source module by means of COpy statements. 

de-editor prosram: A program used to convert an edited (partially 
processed) macro definition back to a format closely resembling source 
format. 

114 



*gi~gnQsti£: Pertaining to the detection and isolation of a malfunction 
or mistake. 

edited macro: Source macro definition that has been partially processed 
by the assembler. 

en~~-Eoint: A location in a module to which control can be passed from 
another module or from the control program. 

ES~: (See external symbol dictionary) • 

ESERV: See de-editor program: ESERV. 

exgcute_(EXECL-statement: ~ job control language statement that marks 
the beginning of a job step and identifies the program to be executed or 
the cataloged or in-stream procedure to be used. 

exter~l symbol dictionary (ESDL: Control information associated with an 
object or load module which identifies the external symbols in the 
module. 

fi1g: The major unit of data storage and retrieval in the operating 
system, consisting of a collection of data in one of several prescribed 
arrangements and described by control information to which the system 
has access. 

input stream: The sequence of job control statements and data submitted 
to an operating system on an input unit especially activated for this 
purpose by the operator. 

*1. A statement that specifies an operation and the values and 
locations of its operands. 

2. (See assembler instruction, machine instruction, and macro 
instructio~ • 

JCL: (See job control language). 

*iQE: A specified group of tasks prescribed as a unit of work for a 
computer. By extension, a job usually includes all necessary computer 
programs, linkages, files, and instructions to the operating system. 

job control language (JCL): A language used to code job control 
statements. 

*iob control statement: A statement in a job that is used in identifying 
the job or describing its requirements to the operating system. 

*1. The execution of a computer program explicitly identified by a 
job step co~trol statement. A job may specify that several job steps 
be executed. 

2. A unit of work associated with one processing program or one 
cataloged procedure-and related data. A job consists of one or more 
job steps. 

jQbname: The name assigned to the JOB statement; it identifies the job 
to the system. 

*~anqua~: A set of representations, conventions, and rules used to 
convey information. 

Glossary 115 



l~~g~~ge translator: A general term for any assembler, compiler, or 
other routine that accepts statements in one language and produces 
equivalent statements in another language. 

li~kage_edito~: A processing program that prepares the output of 
language translators for execution. It combines separately produced 
object or load modules; resolves symbolic cross references among them; 
replaces, deletes, and adds control sections; generates overlay 
structures on request; and produces executable code (a load module) that 
is ready to be fetched into main storage and executed. 

load module: The output of a single linkage editor execution. A load 
module is in a format suitable for loading into virtual storage for 
execution. 

location counter: A counter whose value indicates the assembled address 
of a machine instruction or a constant or the address of an area of 
reserved storage, relative to the beginning of the control section. 

*~~£hine inst~ction: An instruction that a machine can recognize and 
execute. 

*machine language: A language that is used directly by the machine. 

macro library: One of the two sublibraries of the source statement 
library (the other being the copy library) used by the assembler, which 
contains IBM-supplied system macro definitions and.user written macro 
definitions. In DOSjVS both types of definitions are in edited format. 

macro instruction (macro call): An assembler language statement that 
causes the assembler to process a predefined set of statements called a 
macro definition. 

~in storage: All program addressable storage from which instructions 
may be executed and from which data can be loaded directly into 
registers. 

module: (see load module, object module, anj source modules) • 

QQject module: The machine-language output of a single execution of an 
asselnbler or a compiler. An object module is used as input to the 
linkage editor or loader. 

*QQerating system: Software which controls the execution of computer 
programs and which may provide scheduling, debugging, input/output 
control, accounting, compilation, storage assignment, data management, 
and related services. 

QE£io~: (See assembler option) • 

116 

1. A general term for any program that is not a control program. 

2. Any program capable of operating in the problem program state. 
This includes IBM-distributed language translators, application 
programs, service programs, and user-written programs. 



program: 

1. A general term for any combination of statements that can be 
interpreted by a computer or language translator, and that serves to 
perform a specific function. 

1. To write a program. 

*relocation dictionary: The part of an object or load module that 
identifies all addresses that must be adjusted when a relocation occurs. 

source macro definition: A macro definition included in a source module. 
A-source macrO-definition can be entered into a program library; it then 
becomes a library macro definition. (See macro library, source library.) 

source statement: A statement written in symbols of a programming 
language. 

source statement library: A collection of books (source macro 
definitions) cataloged onto the system by the Librarian. The assembler 
uses two such collections of books, known as the copy library and macro 
library. 

statement: A meaningful expression or generalized instruction in a 
source language. 

1. In JeL, a symbol preceded by an ampersand that appears in a 
cataloged procedure. Values are assigned to symbolic parameters when 
the procedure in which they appear is callej. 

2. In assembler programming, a variable symbol declared in the 
prototype statement of a macro definition. 

~stem macro definition: Loosely, an IBM-supplied library macro 
definition which provides access to operating system facilities. 

Glossary 117 





ADD statement 30,33 
adding macro definitions 27 
assembler 

compatibility 10 
input 9 
options 19 
output 9 
purpose 9 
storage requirements 47 

assembler files, data flow of 50 
assembler listing, interpreting the 39 
assembler messages 57 
assembler options 19 
assembling 

data flow 12 
example 11 

assembling, link editing 
data flow 14 
example 13 

assembling, link editing and executing 
example 17 

assembly, example of 11 
assembly and link editing, examples of 13-16 
ASSGN statement 19 

CATAL statement 19 
COL statement 30,32 
configuration specifications 48 
copy library 

adding macros 27 
deleting macros 27 
maintaining 27,21 
updating 27 
what it is 21 

COpy statement 26 
core image library, executing jobs in 17 
cross-reference table 45 

Ii] 
DECK option 8 
de-edited macros 

getting a printout 31 
getting a printout and punched deck 32 
getting a punched deck 32 

de-edited and source macros, differences 
between 38 

de-editing and updating macros: 
ESERV program 29 

de-editing, concept of 10 

Index 

de-editing with updating 36 
de-editing without updating 36 
DEL statement 30,33 
DELETS statement 24 
diagnostics and error messages 55 
diagnostics and statistics 46 
DLBL statement 19 
DOS/360 users and edited macros 10 
DSPCH statement 32 
DSPLY statement 31 
dummy section dictionary 41 

EDECK 
card format 54 
option 19 

edited macros 
use of 28 
concept of 10 

edited macro library, storage 
requirements of 27 

edited macros and DOS/360 users 10 
editing a macro and adding it to 

macro library 23 
editing macro definitions 21 
END card 

definition 51 
format 53 

END statement 30,35 
ENTRY statement 18 
ESD (see external symbol dictionar~ 
ESERV 

control statements 32-35 
de-editing and updating macros with 
error diagnostics 29,109 
error message 109 
input 29 
introduction 29 
output 29-31 
summary of control statements 30 
when to use 24 

EXEC statement 19 
executing an assembler run 17 
EXTENT statement 19 
external symbol dictionary 

card format 52 
definition 51 
of the ~isting 40 

II 
files used by assembler 49 

29 

Index 119 



m 
GENEND statement 31 
GENCATALS statement 31 
getting a printout and punched deck of 
the de-edited macro definition 32 

getting a printout of the de-edited 
macro definition 31 

getting a punched deck of the de­
edited macro definition 32 

glossary 114 

m 

macro definitions 
back-up copies for 21 
editing and adding to macro library 23 
source copies of 21 
updating for copy library 25 
updating from source deck 25 
updating when on macro library 25 
which library to use for 21 

macro library 
converting an old library 26 
maintaining 21,23 
what it is 21 

MAINT program 23,23,26,29 
maintaining the macro and copy 
libraries 21 

how to convert an old macro library 26 m 
how to maintain the copy library 27 

o 
INCLUDE statement 19 
interpreting the assembler listing 39 

II 
JCL (see job control language) 
job control language, summary of rules 19 
job control statements 

II ASSIGN 19 
II DLBL 19 
II EXTENT 19 
II EXEC 19 
II OPTION 19 
II JOB 19 
II TLBL 19 

II 
LINK statement 19 
linkage editor control statements 

ENTRY 19 
INCLUDE 19 
PHASE 19 

link editing an assembler run 13 
link editing, example of 13 
LIST option 19 

120 

NOALIGN option 19 
NODECK option 19 
NOEDECK option 19 
NOLINK option 19 
NOLIS'l' option 19 
NOXREF option 19 

object deck 51 
identification 51 
numbering 51 
output 51 
sequencing 51 

object program 42 
OPTION statement 19 
options, list of 19 

performance considerations 47 
PHASE statement 19 
PUNCH statement 32 
problem program 51 

m 
relocation dictionary 

explanation of 44 
card format 51 

REP card format 54 
REP statement 30,34 
reproduced cards 51 
RLD (see relocation dictionary) 
RST statement 30,34 



SIZE parameter 47 
source and object program, 
explanation of listing 42 

storage requirements 47 
sublibrary E 21 
sublibrary A 21 
S~SCLB 49 
S~SIN 49 
S~SIPT 49 
S~SLNK 49 
S~SLOG 49 
SYSLST 49,19 
S~SOUT 49 
S~SPARM 19 
S~SPCH 49 
S~SRDR 49 
S~SRES 49 
S,{SSLB 48,49 
S~S001 49 
S~S002 49 
S~S003 49 

II 
TEXT card format 52 
TLBL statement 19 
TXT (see text card) 

I!I 
un-edited macro definitions, use of 28 
update information 31 
update survey 30,36 
updating 

errors detected during 36 
updating macro definitions 31 
updating statements in edited macros 32 
using ESERV to de-edit and update a 

macro definition 31 

v-type address constants 45 
VER statements 30,33 
verifying statements on edited macros 32 
verifying/updating statements from 

printout or source macro jefinitions 32 

work files 50 

XREF option 19 

Index 121 



GC33-4024-1 

Intematlonal BUllnell Machines Corporation 
Data Proceiling Dlvllion 
1133 Weltchelter Avenue, White Plalnl, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Natlonl Plaza, New York, New York 10017 
(Intematlonal) 



(') 
C 
-i 
» 
r o 
Z 
G) 

o 
o 
~ 
m 
o 
C 
Z 
m 

Guide to the DOS/VS 
Assembler 

Order No. GC33-4024-l 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such request, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Reply requested: Name: 

READER'S 
COMMENT 
FORM 

Yes 0 
No 0 

Job Title: _______________________ _ 

Address: ____________________ _ 
___________ Zip ____________ ___ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representatiye will be happy to forward your comments.) 



GC33-4024-1 

Your comments, please ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold Fold 

(") 
C 
-I 
o 
::0 

" o 
r 
o 
l> 
r o ....................................................................................................... z 

Fold 

Business Reply Mail 

No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department 813 L 
1133 Westchester Avenue 
White Plains, New York 10604 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

First Class 
Permit 40 
Armonk 
New York 

Fold 

G) 

r 
Z 
m 


