Systems

GC33-4024-1
File No. S370-21{DOS/VS)

Guide to the
DOS/VS Assembler



Second Edition (September 1973)

This is a major revision of, and obsoletes GC33-4024-0. This
edition incorporates minor technical and editorial changes.

Changes to the text and to illustrations are indicated by a

vertical line to the left of the change.

This edition applies to version 5 of the Disk Operating
System, DOS/VS, and to all subsequent versions and releases
until otherwise indicated in new editions or Technical
Newsletters.

Changes are continually made to the information herein;
before using this publication in connection with the operation
of 1IBM systems, consult the latest IBM System/360 and System/370
Bibliography, Order No. GA22-6822, for the editions that are
applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were obtained
from an IBM 1403 printer using a special print chain.

Request for copies of IBM publications should be made to
your IBM representative or to the branch office serving your
locality.

Forms are provided at the back of this publication for
reader's comments. If the forms have been removed, comments
may be addressed to 1IBM Nordic Laboratory, Programming
Publications, Box 962, S-181 09 Lidingo 9, Sweden. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1973



This Manual...

...shows how to write job control language (JCL) statements needed to
assemble, link-edit, and execute a program written in the DOS/VS
assembler language.

...shows how to maintain the macro and copy libraries.

...shows how to de-edit and update macros.

...shows how to interpret the listings produced by the DOS/VS Assembler.
...explains the files used by the DOS/VS Assembler.

...explains the object-deck output.

...explains all messages issued by the assembler and de-editor programs.

Budience For This Manual

L assembler language programmers

U system programmers responsible for JCL and the
maintenance of the DOS/VS system files

] FEs and CEs or system programmers who want to
de-edit and update macros, and who want information
on how the assembler libraries are maintained.

Level of Knowledge Required For This Manual

° a basic understanding of the DOS/VS operating system
as described in Introduction to DOS/VS, Order No.
GC33-5370.

. a good understanding of the DOS/VS assembler language
as described in 0S/VS and DOS/VS Assembler Language,
Order No. GC33-4010.

Related Manuals

DOS/VS System Control Statements, Order No. GC33-5376.
IBM System/360 and 370 Bibliography, Order No. GA22-6822.
IBM System/370 Advanced Function Bibliography, Order No. GC20-1763.




Summary of Contents

The following descriptions summarize the contents of the major sections

of this manual.

SECTION TITLE

INTRODUCTION

HOW TO WRITE JOB
CONTROL LANGUAGE

MAINTAINING THE
MACRO AND COPY
LIBRARIES

DE-EDITING AND
UPDATING MACROS:
ESERV PROGRAM

INTERPRETING THE
ASSEMBLER LISTING

STORAGE REQUIREMENTS

CONFIGURATION
SPECIFICATIONS

FILES USED BY THE
ASSEMBLER

OBJECT DECK OUTPUT

DIAGNOSTIC AND
ERROR MESSAGES

GLOSSARY

DESCRIPTION

Shows the purpose of the assembler and
introduces the reader to the basic
concepts covered in this manual.

Shows how to prepare the basic job control
statements for assembling, link editing,
and executing a program written in the
assembler language.

Shows how to maintain macro and copy
libraries, that is, how to add, delete,

or update statements in macro definitions.
It also shows how to convert old macros to
edited format.

Shows when and how to use the de-editor
program and how to combine the function of
de-editing with that of updating.

Shows how to interpret the six parts of the
assembler listing produced by the assembler
program.

Gives the minimum main storage requirements
and explains how to estimate auxiliary
storage requirements.

Lists the required and optional hardware
for use with the DOS/VS Assembler.

Explains what each file contains and what
it is used for.

Gives format and contents of the cards that
make up the output deck produced by the
assembler.

Explains each message produced by the
assembler and by the de-editor (ESERV)
program.

Contains definitions of all terms specific
to the assembler and not included in the
IBM Data Processing Glossary and 0S/VS and
DOS/VS Assembler Lanqguage, Order No.
GC33-4010.




Contents

INTRODUCTION + ¢ ¢ o o « o o o o o .
Purpose of the Assembler . . « o o
Relationship of the Assembler to the Disk Operating System

e e e e o o o « e o .
e e e e e e o e o o

Input e e e a e o o o o o & =
output . . . ¢ 4 4 4 e e e o .
Compatibility . . . . « o o =
Concept of Edited Macros .« .

Edited Macros and D0S/360 Users

-
- . -
o o e o o o e
- - -
- - -

HOW TO WRITE JOB CONTROL LANGUAGE STATEMENTS
Purpose of This Section . . . . . . .
ASSembly .« ¢ ¢ ¢ ¢ o o o o o o o o .
Assembly and Link Editing . . . . <« . .

.
.
.
.
.
LI S S
.
.

EXeCUtion « ¢« o o « o o o o « o « @
Assembler Options and JCL Summary .

e o o o o
.
L]
.
.
.

MAINTAINING THE MACRO AND COPY LIBRARIES . .
Introduction . . . ¢ ¢ ¢ ¢ @ ¢ ¢ ¢ @ o o o .
What Is the Macro Library? . . . . . . .
What Is the Copy Library? . « « « « « & .
Which Library to Use for Macro Def1n1t10ns° .
How to Maintain the Macro Library . . . -

Editing a Macro and Adding It to the Macro Library .
Deleting Macro from Macro Library . . . . . .

Updating Macro Definitions That Are on Macro Library . . .

.
.
.
.
L]

Updating Macro Definitions on Macro Library: From a Source

Updating Macro Definitions on Macro Library: From Copy Libr

How to Convert an 01d Macro lLibrary . . . . . .
How to Maintain the Copy Library . . . « . .
Adding Macro Definitions e o o o o o o o o @
Deleting Macro Definitions . . . . . . . . .
Updating a Book . . . e o o o o o o @
How to Use Edited and Un—Edited Macro Definitions

.

- e o o

. o
-

.
L] . . L] .
.

DE-EDITING AND UPDATING MACROS: ESERV PROGRAM . . . . . . . .
Introduction .« . . ¢ 4 i e 4 b e e e e e e o o e o o o o o
Input to the ESERV Program . « « « o o o o = o o o = o o =
Output from the ESERV Program . « . . e o e o o « . e e
Using ESERV to De-Edit and Update a Macro Deflnition « o .

Getting a Printout of the De-Edited Macro Definition
Getting a Punched Deck of the De-Edited Macro Definition

Getting a Printout and Punched Deck of the De-Edited Macr

Definition . . o o e o e o s e o s e o o
Verifying/Updating Statements from Printout of Source Macro
Definition o « o ¢ o« o o o o o o o o o o 2 o o o o o o o @

Errors Detected During Update - Action Taken . . . .« o
Examples of De-Editing With and Without Updating a Macro
Definition o« « ¢ ¢ ¢ ¢ ¢ ¢ o e o e o o o o .« . o o o
Sample Coding for De-Editing Without Updating a Macro
Definition . . o« . « - . « e e e
Sample Coding for De—Editing and Updating a Macro
Definition . . . . . . e o o o o c « o o =

Differences Between De-Edited and Source Macro Definitions

INTERPRETING THE ASSEMBLER LISTING .
External Symbol Dictionary (ESD)
Dummy Section Dictionary . . . .
Source and Object Program . . . .

s & o 2
. . s 0
s & o 0
. L] (] .
e o o 0
s o o o
L T S )
. ] . [
. L] L] L]
e o s s
. . . L]
e s s 0
e s 0

o

. L] . L] [] . L] [

L I 8 e L R T R B B B ]

o s o & & o & s o & & @



The Relocation Dictionary . « . « « . .
The Cross-Reference Table . . . . . . .
Diagnostics and Statistics . . . . . .

STORAGE REQUIREMENTS . ¢« ¢ o o o « o « o «
Main and Auxiliary Storage Requirements
Performance Considerations . . . . . .

CONFIGURATION SPECIFICATIONS o« « « o o « «
FILES USED BY THE ASSEMBLER . « . « « « «

OBJECT DECK OUTPUT . . . .« &« o « . «

ESD Card FOormat . « « « « o o o o o o @
TEXT (TXT) Card Format . « o« ¢ o o« « &
RLD Card Format « « o« « o o o o o« o o =
END Card Format . . ¢« ¢ o o o o « o o« @
REP Card Format e o o o a ® o @ s o @
EDECK Card Format e o e o o o o e s o =
DIAGNOSTIC AND ERROR MESSAGES . « o « o «
How to Use This Section . . . . . . . .
The Message Itself . . . . . « . . .
Explanation . . . ¢« ¢« ¢ ¢« ¢ ¢ « . .
Assembler Action . « « « ¢« ¢ o o o
Programmer REeSpPONSe . « « « « o« « «
Operator Response . . . e e e o
Assembler Messages IPK0O1- IPK250 - o .
ESERV Messages IPK301-IPK332 . . . ..

GLOSSARY . ¢ 2 ¢ o o o o o o o o o o o o

INDEX &« o o o o o o o o @« o o o o o o« o =

[] . [ . L]

. . . .

LI T Y |

¢ o & s 0 .

¢ s o

. L] . .

L] L] L] [ . L] . . .

e o e



Figure
Figure
Figure
Fiqgure
Figure
Figure
Figure
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

o s o o 0

oV EWN =

Data Flow When Assembling . . . .

Data Flow When Assembling and L1nk Edltlng

Assembler Options and JCL Summary .

Choosing a Library for Macro Definitions .

Input to, and Output from the ESERV
External Symbol Dictionary (ESD)
Dummy Section Dictionary

Source and Object Program
The Relocation Dictionary
The Cross-Reference Table
Diagnostics and Statistics

o

. [ . .

e s o o
¢ & a & 0 2

Program

" 6 s s 0
¢ o & s o

1

Data Flow in Connection With Assembler File

Figures

e o o 0 0
s & & o 0
L T T N )

“ s s e
-
(Y]

s s s e 0
.
.
£
=~






Introduction

This section describes the purpose of the DOS/VS Assembler, its
relationship to the operating system, and its input and output. It also
explains the concept of edited macros, a feature of the DOS/VS Assembler.

Purpose of the Assembler

The purpose of the assembler is to translate programs written in the
assembler language into object modules, that is, code suitable as input
to the linkage editor.

Relationship of the Assembler to the Disk Operating System

The assembler is supplied with the DOS/VS control program package. In
the same way as the linkage editor, it is executed under control of the
DOS/VS control program. For a complete description of the relationship
between a processing program and the various components of the control
program, refer to Introduction to DOS/VS.

Input

As input the assembler accepts a program written in the assembler
language as defined in Assembler Langqguage. This program is referred to
as a source module. Some statements in the source module (macro or COPY
instructions) may cause additional input to be obtained from a macro
library.

Output

The output from the assembler can consist of an object module, edited
macros and program listing. (The concept of edited macros in the DOS/VS
Assembler is explained below.) The object module can either be punched
or included in a file residing on a direct-access device or a magnetic
tape. From that file the object module can be read into the computer
and processed by the linkage editor. The format of the object module is
described in the section "Object Deck Output".

The program listing lists all the statements in the module, both in
source and machine language format, and gives other important
information about the assembly (such as error messages). The listing is
described in detail in the section "Interpreting the Assembler Listing".

Introduction 9



Compatibility

The language supported by the DOS/VS Assembler is compatible with the
language supported by the 0S Assembler D. All programs which assemble
error-free under Assembler D will also assemble error-free under the
DOS/VS Assembler. However, the resulting object code may in odd cases
be different because of the extended features of the language supported
by the DOS/VS Assembler (the extended attribute reference and SETC
facilities) .

Concept of Edited Macros

Edited macros are source macros that have been partially processed by
the assembler and stored in a new macro sublibrary within the source
statement library. These definitions, being edited, can be assembled
more quickly, thus reducing total processing time.

You can keep macro definitions in source format on the copy library
or in edited format on the macro library. Quite often, you will want to
change a macro definition; to add or delete a statement from it, for
instance. The coding you use to perform this maintenance work varies
according to which library you have used. The reason for this variation
in coding stems from the manner in which the assembler program handles
macros prior to placing them on the copy or macro library. See the
section "Maintaining the Macro and Copy Libraries®™ for a discussion of
the circumstances under which you might choose either the macro or the
copy library, or both, to contain your macro definitions.

Before placing a ‘macro definition on the macro library, the assembler
first partially processes it. This processing is called editing. 1In
the past, this time-consuming editing function was performed each time
you called a macro definition into your program. Now, under DOS/VS, it
is performed only once. Should, however, you want to add to or delete
from or somehow change a macro definition, you cannot use the edited
version of the macro definition that you have on the macro library.
Instead, you must change a copy of the non-edited (that is, source)
macro definition. If you do not have a non-edited copy of the macro
definition, then you can convert the edited macro back to its source
format. This conversion process is called de-editing and is described
in the section "De-Editing and Updating Macros: ESERV Program®”.

No editing step is involved when the assembler puts a macro
definition on the copy library. That is, a macro definition remains in
source format. You can use this copy of the macro definition when you
wish to do maintenance work on it. You can then edit it and place it on
the macro library, and also place the non-edited version of it back on
the copy library. Thus at any one time you have a source and edited
version of the macro definition on the copy and macro library,
respectively.

Edited Macros and DOS/360 Users

All users who wish to use 0ld macro libraries created by previous DOS
assemblers must convert these libraries of unedited macros to edited
format. An example of one method of this process is shown in the
subsection "How to Convert an 0l1d Macro Library".

10



How to Write Job Control Language Statements

Purpose of This Section

This section shows by examples how to prepare job control language (JCL)
statements to assemble, link-edit, and execute a program written in
assembler language.

Foldout: Use the foldout at the end of this section as you read.
You will find on it a summary of the rules governing the writing of JCL
and linkage editor control statements, along with brief definitions of
the JCL and linkage editor statements used in the examples. For a full
coverage of JCL, consult the publication DOS/VS System Control
Statements.

Assembly

The following example shows the job control statements you need in order
to assemble a source module and produce an object module.

// JOB ANYNAME Initiates the job ANYNAME.

// OPTION DECK,NOLINK Causes the object deck to be punched
on SYSPCH and not to be copied on
SYSLNK. Default values determined
when the system was generated are
used for the other options.

// EXEC ASSEMBLY Causes the assembler to be loaded
from the core image library into
main storage, and to start executing.

source module The assembler source module.
/* Delimits the input to the assembler.
/& Delimits the job.

There are no // ASSGN statements in this example; therefore, the
assembler uses the standard assignments for the source statement
library, SYSIPT, and SYSPCH that were set up during system generation.
Figure 1 on the next page shows the Jdata flow of this example.

How to Write Job Control Language Statements 11



v M e e swsay wenes e s L S e co s ST R

|

Source
Statement .
Library

Source
Module

(6]

{

SYSIPT

ASSEMBLY

Main Storage

Object
Module

SYSLST

SYSPCH

Figure 1. Data Flow When Assembling

Explanation:

A.

B.

C.

D.

12

The assembler reads the source module into main storage
for processing in the assembly step.

It also reads macro definitions and copy code sequences,
if any, from the source statement library, and

Punches the object deck on SYSPCH.

Prints the list on SYSLST.



Assembly and Link Editing

EXAMPLE 1

This example expands the previous example by adding to it a linkage

editor step.

The job first assembles the source module and then link-edits the
object module produced in the assembly step together with another pre-
viously assembled object module and catalogs the linkage editor output
in the core image library under the name EXAMPLE.

i

// JOB TWOMODS

// OPTION CATAL

PHASE EXAMPLE,S

// EXEC ASSEMBLY

source module
/*
INCLUDE

object module

// EXEC LNKEDT

/&

Initiates the job TWOMODS

Causes the assembler to store the
object module on SYSLNK and, later,
causes the linkage editor to catalog
the phase it produces in the core
image library. Default values
determined when the system was gen-
erated are used for the other options.

Provides the linkage editor with the
name of the phase (EXAMPLE) and the
main storage address (S) where it is
loaded (immediately after the
supervisor) .

Causes the assembler to be loaded into
main storage and to start executing.

The assembler source module.

Delimits the input to the assembler.
Causes the object deck that follows

in the input stream to be transferred
to SYSLNK and included in the linkage
editor input.

The object module to be included.
Causes the linkage editor to be loaded

into main storage and to start execu-
tion.

Delimits the job.

There are no // ASSGN statements in this example; therefore, the
assembler uses the standard assignments set up during system generation.

How to Write Job Control Language Statements

13



| Figure 2 shows the data flow of this example.

PR— £ S O 3 G S RO G 3w

-

SIS S 6 % A S P N A A € i\ A e s o s srvne i

a4

. §9hrcq Module* ‘

‘Source

.  Statement .
-Library

3

ASSEMBLY

Maip Storage |

Previously
Assembled
Object
Module

)

LINKAGE EDITING

[SYSLNK

-, Core Image

S R | Library \——)

Figure 2. Data Flow When Assembling and Link Editing
Explanation:
A. The assembler reads the source module into main storage

for processing in the assembly step.

B. It also reads macro definitions and copy code sequences,
if any, from the source statement library, and

C. Copies the output from the assembler -- the object module
== on SYSLNK.

D. Job control transfers the object deck in the input to
SYSLNK for processing by the linkage editor.

E. Linkage editor reads the object modules from SYSLNK into
main storage for processing.

F. The phase produced by the linkage editor is cataloged into
the core image library.

14



EXAMPLE 2

The following example illustrates another method for setting up a job

for assembly and link editing. 1In addition, the program is executed in

the same job.

In the example, three

source modules (A) and one object module (B)

have been loaded on an unlabeled 9-track magnetic tape in a previous
job; an additional object module is on the relocatable library.

The contents of the tape are as follows:

ALPHA CSECT
END
/*
BRAVO CSECT
END BRAVO
/*
CHARLIE CSECT
END
/*
(object module)
/*
(data for problem
program)
/*
/&

> (B)

(B)

The coding is as follows (see next page):

How to Write Job Control Language Statements

15



16

4
4

//

4
/7
4

//
4

/&

JOB FIVEMODS

ASSGN SYSIPT,X' 182"

OPTION LINK,LIST,NODECK

PHASE EXAMPLE,S

EXEC ASSEMBLY
EXEC ASSEMBLY
EXEC ASSEMBLY

INCLUDE

INCLUDE MOD24

ENTRY

EXEC LNKEDT

EXEC

Assign to SYSIPT the tape mounted
on tape drive 182.

The object modules are to be link-
edited (LINK) directly. The out-

put will be on SYSLNK (LINK), the
source module listing will be on
SYSLST (L1IST), and the assembler will
not put the object modules on SYSPCH
(NODECK) .

The phase name (EXAMPLE) and the
load address (S) of the phase.

The three source modules are assembled.

The object module on SYSIPT is to be
included in the linkage editor input.

The object module (MOD24) on the
relocatable library is to be included
in the linkage editor input.

As the operand of this ENTRY state-
ment is blank, the linkage editor
searches the modules in the input
and picks the first primary entry
point specified in an assembly END
statement. In this example, the
statement labeled BRAVO is chosen as
the entry point of the whole phase.

The program is link-edited.
The program is executed. The blank

operand causes the program which has
just been link-edited to be executed.



Execution

The following statements show how to execute the program that was
included in core image library in Example 1.

// JOB EXECEXAM

// EXEC EXAMPLE

data

/*
/&

Initializes the job.

Causes problem program (EXAMPLE) to be
loaded into main storage and to start
executing.

Data for problem program, if any.

Delimits data.

Delimits the job.

How to Write Job Control Language Statements

17






Assembler Options and JCL Summary

NOTE: The information given below is intended only as an aid to memory. A full discussion of job
| control can be found in the publication System Control Statements.

JOB CONTROL STATEMENTS

The following rules apply when filling out control statements:

1. Two slashes (//) identify the statement as a control statement. They must be in columns

1 and 2. At least one blank must follow the second slash. The end-of-job statement contains
/& in columns 1 and 2. The end-of-data statement contains /* in columns 1 and 2. The
comments statements contain an * in column 1, and a blank in column 2.

2. Operation. This describes the operation to be performed. It can be up to eight characters
long. At least one blank follows the last character.
| 3. Operand. Can be blank or contain three or more entries separated by commas.
%/ JOB Indicates the beginning of the control information for the job.

Obligatory first card.
/| ASSGN Assigns physical 1/O device addresses to data files.
// DLBL Contains information the job control program needs to write and

check label information on a direct access device. Must be followed
by one or more EXTENT cards.

// EXTENT Defines each area (extent) of a direct access file.
// TLBL As above, but for tape devices.
// OPTION Specifies one or more JCL options. For details of options see inner

page of this foldout.

// EXEC Indicates the end of job and linkage-editor controls cards for a job
step, and gives control to a processing program.

LINKAGE EDITOR CONTROL STATEMENTS

The rules listed above for JCL statements are similar to those for Linkage Editor control statements
except that the latter do not have slashes (//} preceding them: these statements begin after column
1, which must be a blank.

PHASE Indicates the beginning of a phase. The linkage editor can link-edit
several phases in one step, in which case a PHASE card must precede
the input for each phase.

INCLUDE Indicates that a module or some control sections (CSECT) from a
module located in the relocatable library or in SYSIPT are to be
included in the linkage editor input.

ENTRY Specifies the entry point of the first phase produced in a linkage

editor step.

Figure 3. Assembler Options and JCL Summary

How to Write Job Control Language Statements

19






OPTION

LIsT*
NOLIST

LINK

NOLINK

CATAL

DECK*®

NODECK

EDECK

NOEDECK

XREF *

NOXREF

ALIGN

NOALIGN

SYSPARM=string

DESCRIPTION

Causes the assembler to write the source module listing on the output
device assigned to SYSLST.

Suppresses the LIST option and overrides the ESD, RLD and
XREF options.

Causes the program being assembled to be link-edited in the same job.
This option (or the CATAL option - see below) must be used when
assembling, link-editing, and executing in the same job. LINK causes
the linkage editor to write its output (phases) temporarily on the core
image library. Use of this option decreases processing time. If CATAL
is specified, the LINK option is automatically set.

Suppresses the LINK option.

Causes the program being assembled to be link-edited in the job and
stored permanently in the core image library. LINK - see above -
performs the same function except that it stores the object module
temporarily on the core image library. Thus, CATAL or LINK must be
used when assembling, linkage editing, and executing in the same job.
Use of the CATAL option decreases processing time.

Causes the assembler to place the object modules on the output device
assigned to SYSPCH. Used when a back-up copy of the object code is
needed.

Suppresses the DECK option.

Causes the source macros in the program to be punched in edited format
on the output device assigned to SYSPCH. This option is used to punch
the macros for later cataloging into the macro library.

Suppresses the EDECK option.

Causes a cross-reference list to be printed on the output device assigned
to SYSLST. See section “Interpreting the Assembler Listing’’ for a
sample of the cross-reference list produced by this option. The

option is used primarily as a debugging tool.

Suppresses the XREF option.

Causes all data to be aligned on the proper boundary in the object
module; for example, an F-type constant is aligned on a fullword
boundary. In addition, the assembler checks storage addresses used in
machine instructions for alignment violations. Use of this option
decreases the execution time of the phase that results from assembling
and link-editing.

The assembler does not align data areas other than those specified in
CCW instructions, nor does it skip bytes to align constants on proper
boundaries. Alignment violations in machine instructions are not
diagnosed.

Specifies the value for assembler system variable symbol, &S YSPARM.

“* Unless otherwise specified, the LIST, DECK and XREF options are default options of the DOS/VS
system. Some of the other options listed above may have been made standard features at system
generation: you are advised therefore, to familiarize yourself with your system’s standard assignments.



()



Maintaining the Macro and Copy Libraries

Introduction

The assembler uses two sublibraries of the source statement library; the
macro library (sublibrary E) and the copy library (sublibrary B3).

What Is the Macro Library?

The macro library contains IBM-supplied system macro definitions and
user-written macro definitions in an edited (partially processed)
format. This library contains only edited macro definitions.

The assembler edits the macro definition you have included in a
source module and will produce an edited macro definition which it puats
on tape or disk when you specify the EDECK option in the OPTION
statement. This output may later be cataloged into the macro library.

What Is the Copy Library?

The copy library contains sequences of source code (books) which you can
insert into the source module by writing one or more COPY statements.
These books can contain any kind of source code, including source
(un-edited) macro definitions.

Which Library to Use for Macro Definitions?

e Often-used macro definitions go, in edited format, on the
macro library because you save assembly time by having
them there.

e Keep a backup copy of these macro definitions, in source
(un-edited) format, on the copy library, or in card format.
You will need this source copy when you wish to update
a macro definition you have on the macro library. That is,
you cannot update an edited macro. If you do not have a
backup source copy you must first de-edit the macro
definition on the macro library. See the section "De-Editing
and Updating Macros: ESERV Program".

e While debugging, keep your macro definition on the copy
library. When free of errors, place it on the macro library.

Figure 4 summarizes this discussion and acts as a table of contents for
this section.

Maintaining the Macro and Copy Libraries 21



WHICH LIBRARY TO USE FOR MACROS

MAINTAINING THE COPY LIBRARY

See section “"How
to Maintain the
Copy Library”

MAINTAINING THE MACRO LIBRARY

Include macro in
source program
or as separate
book in copy
library

Frequently used
macro ?

To enter on copy library
see: "How to Maintain
the Copy Library”

Do you have
source macro

See ""De-editing and
Updating Macros:
ESERV Program”

Update source
macro

Macro
debugged

Edit macro and
include in macro
library

End

4

Debug macro

To edit macro and include
on macro library see:

""Editing a Macro and
Adding it to Macro Library”

CONVERTING OLD MACRO LIBRARY

Update source
macro

Figure 4. Choosing a Library for Macro Definitions

22

See ""How to Convert
an Old Macro Library”



How to Maintain the Macro Library

EDITING A MACRO AND ADDING IT TO THE MACRO LIBRARY

The assembler reads in and assembles the source macro definition (s) from
either the copy library or from a source deck or tape assigned to
SYSIPT. 1If you specified EDECK in the OPTION statement the assembler
will direct the one or more resulting edited macro definitions to the
output device assigned to SYSPCH. Each edited macro will be preceded by
an assembler-supplied CATALS statement in which the level of the
assembler is printed immediately after the macro name.

Then from the resulting card deck, tape file, or disk file, you can
place the edited macro definitions into the macro library using the
MAINT program.

EXAMPLE 1.

Editing a macro and, using tape as intermediate storage, adding it to
macro library.

// JOB

// ASSGN SYSPCH,X'180° Assigns SYSPCH (output device for
edited macros) to tape, at unit
address 180.

// OPTION EDECK,NODECK The EDECK option has a macro deck
punched; the NODECK option suppresses

the punching of the object module.

// EXEC ASSEMBLY

(Macro definition to be
edited)

/*

// CLOSE SYSPCH,X'00D*

// ASSGN SYSIPT,X' 180"

// EXEC MAINT
/&

The macro to be edited and placed on
library.

Writes tape mark, rewinds tape, and
unloads the reel.

Tape with macro edited deck used as
input.

Puts edited macro on macro library.

Maintaining the Macro and Copy Libraries 23



EXAMPLE 2.

Editing a macro and, using disk as intermediate storage, aidlng it to
the macro library.

// JOB PUNCH See the publication System
// DLBL I1JSYSPH,'PCHFILE',0 Control Statements for full

description of these statements.

// EXTENT SYSPCH,111111,,,1300,500 Assigns SYSPCH (output device
// BSSGN SYSPCH,X'391* for edited macros) to disk at
unit address 391.

// OPTION EDECK,NODECK
// EXEC ASSEMBLY
(macro definition to
be edited)
END
/%
CLOSE SYSPCH,X'00D’
// DLBL IJSYSIN,'PCHFILE'
// EXTENT SYSIPT
ASSGN SYSIPT,X'391'
// EXEC MAINT
/&
CLOSE SYSIPT,X'00C*

Deleting Macro from Macro Library

// JOB
// EXEC MAINT MAINT program used to delete.
DELETS E.MAC1 Deletes MAC1 (name of macro) from
the macro library (E).
/*
/&

Updating Macro Definitions That Are on Macro Library

You update a library macro definition by making changes in the source
macro definition (on cards, tape, etc.) or from the copy library, as
discussed below. If you do not have the macro definition in source
format, you must use the ESERV program to de-edit your macro before
updating (discussed in the section "De-Editing and Updating Macros:
ESERV Program”) .

24



UPDATING MACRO DEFINITIONS ON MACRO LIBRARY: FROM A SOURCE DECK

Update source deck by hand for this macro definition, then replace the
0ld macro with this updated source macro to the macro library using the
coding shown in the section "Editing a Macro and Adding It to the Macro
Library".

UPDATING MACRO DEFINITIONS ON MACRO LIBRARY: FROM COPY LIBRARY

Update the source macro on the copy library. Then, assemble it and use
the EDECK option. Finally, replace the o0ld macro with this updated
macro on the macro library using the MAINT program, as follows:

// JOB UPDATMAC
// EXEC MAINT Use MAINT to update source macro.
UPDATE A.MAC1 The macro to be updated is MAC1 and
is on the copy library (@).

A ")" in the first column identifies
these statements as update control

statements.
) DEL 0011 Deletes statements 0011
)} END
/*
// ASSGN SYSPCH,X' 180" - Assign tape 180 as intermediate
medium.
// OPTION EDECK,NODECK Edited macro punched on SYSPCH
(EDECK) .
// EXEC ASSEMBLY
COPY MAC1 Bring in MAC1 from copy library.
END
/*
// CLOSE SYSPCH,X'00D! Writes tape mark, rewinds tape, and
unloads the reel.
// ASSGN SYSIPT,X'180' Tape 180, with macro edited deck,
assigned as input.
// EXEC MAINT Place edited macro on macro library.
/6

Maintaining the Macro and Copy Libraries 25



How to Convert an Old Macro Library

All macro definitions on the macro library must be in edited format. To
convert a library of non-edited macros created by previous DOS
assemblies:

Edit source copies of macro definitions that are on the
library in a regular assembly run, using the EDECK option
(defined in Figure 3) on the OPTION statement, to produce
an edited macro deck. These edited decks are then placed
on the macro library using the MAINT program.

The source macros can be either in the copy library or in source deck
format. The following code shows one method for converting an old macro
library to a library of edited macros.

// JOB EPUNCH Name of job is EPUNCH.
// ASSGN SYSPCH,X'180°' Assigns this tape for edited
output.

// DLBL IJSYSSL,'USERS PRV MACROS' File name of user's private
macro library is IJSYSSL.

// EXTENT SYSSLB,XXXXXX Its volume serial number is from
one to six characters in length.

// ASSGN SYSSLB,X' 192° SYSSLB must be assigned if source
code is held in private source
statement library.

// OPTION EDECK,NODECK Only the edited macro deck will
be punched.

// EXEC ASSEMBLY

CorY MAC1 Bring in all macros that you wish
COPY MAC2 to include in the new macro
8 library. -
END
/*
// CLOSE SYSPCH,X'00D' Writes tape mark, rewinds tape, and
unloads the reel.
/&
// JOB CATALOG This job is named CATALOG.
// BASSGN SYSSLB,X' 193! And will be cataloged here
// DLBL I1JSYSSL,'USERS PRV EDMACS' Under this name
// EXTENT SYSSLB, 'xxxxxx' With this serial number.
// ASSGN SYSIPT,X'180°* Assign tape containing edited
output as input.
// EXEC MAINT Place edited macros on macro
library.
/&

Note: If a macro in the macro library contains copy code and the copy
code is updated, then the macro has to be re-edited to get the new
version of the copy code.

26



How to Maintain the Copy Library

The copy library is maintained in the same way as any source code
library in current DOS/VS using the MAINT program, as follows:

ADDING MACRO DEFINITIONS

// JOB COPY

// EXEC MAINT MAINT used to update.
CATALS A.MAC1 Catalogs macro MAC1 in copy library (3)
MACRO
MACH This macro is cataloged.
MEND
/%
/&

DELETING MACRO DEFINITIONS

// JOB DEL -
// EXEC MAINT MAINT used to update.
DELETS A.MAC1 Deletes macro MAC1 from copy library (a)
/*
/&

UPDATING A BOOK

// JOB UPDATE

// EXEC MAINT MAINT used to update.
UPDATE A.MAC1 Updates macro MAC1 on copy library ().

) REP 0011 Replace statement 0011 with

CLC FIELD1,BLANKS This statement and '
)y ADD 0060 Add after statement 0060
PUNCH MVI SWITCH,SW1 These statements.

B CHKOPND

) DEL 0601,0632 Delete statements 0601 through 0632.
) END
/*
/&

Another way to update a book in the copy library is to have it punched
update it manually, and then catalog it again in the copy library:

// JOB PUNCH Name of job is PUNCH

// EXEC SSERV Initiates execution of SSERV
(see publication System Control
Statements for details of the
SSERV program) .

PUNCH A.MAC1 Causes the book MAC1 to be punched
out on cards from the copy library
@A) .

Maintaining the Macro and Copy Libraries 27



Once the book has been updated you can use the coding shown
under "Adding Macro Definitions" above, to re-catalog into the copy
library.

How to Use Edited and Un-Edited Macro Definitions

1. If the macro is edited, you just write your macro
instruction:

MAC PARM1,PARM2

2. If the macro is not edited, that is, it is on the copy library,
you must bring the definition into your source module at the
beginning of the module in which it is called.

COPY MAC Must be ahead of all other statements
. in the assembly.

MAC PARM1,PARM2

28



De-Editing and Updating Macros: ESERV Program

Introduction

Before you can put a macro definition on the macro library the assembler
has to edit it and, using the EDECK option, produce an edited macro
deck. The edited deck is placed on the macro library using the MAINT
program. An edited macro definition cannot be directly updated;
instead, the source macro definition, either in card format or on the
copy library, is updated. After the changed macro definition has been
tested, debugged, and edited, it can be placed on the macro library.

If your source macro definition is not available, the de-editor
program, ESERV, can be used to de-edit the edited macro definition to
source format. Several macros can be handled at one time. The
de-editor program also combines the function of de-editing with that of
updating the source macro definition.

Input to the ESERV Program

. ESERV control statements on SYSIPT.

] Edited macro definitions in the macro library.

Output from the ESERV Program

. The selected macro definitions in source format (and
updated) on the device assigned to SYSPCH, and/or the
device assigned to SYSLST. To allow immediate
editing of the updated macro an END card can be
generated at the end of the update run. (See "Using
ESERV to De-Edit and Update a Macro Definition™.)

o Update information (see following diagram for details).

] Error Diagnostics (see "Diagnostic and Error Messages",
beginning at message IPK301).

The following diagram graphically illustrates the input and output of
the. ESERV program. Included in the diagram is a list of the control
statements for the ESERV program, and some explanatory notes on the
update information.

De-Editing and Updating Macros: ESERV Program 29



0€

INPUT
SYSIPT
ESERV
Control
Statements
/
/
/
/
/
| 2 See the Section:

// EXEC ESERV  “Using ESERV to De-edit and Update a

Macro Definition’”

GENEND As above
GENCATALS As abhove
DSPLY ""Getting a Printout of the De-edited
Macro Definition””
PUNCH "Getting a Punched Deck of the De-
edited Macro Definition” ¢
DSPCH "Getting a Printout and Punched Deck ;
of the De-edited Macro Definition”
) coL
) VER
) DEL i
) ADD "Verifying/Updating Statements from
) REP Printout of Source Macro Definitions”
) RST
) END
<=
Edited
Macros on
Source
Statement
Library
~—

Macro Source
Deck

Error
Diagnostics

Update ¢
Information

!

!

|

|

|

|
. -
Workfiles .
SYS001/2 V.
See section ""Diagnostic and
Error Messages”” for details
of the ESERYV error messages.

/

OUTPUT

SYSPCH

ngdate Information

/ There are seven control statements used to update the
de-edited source macro definitions:

COL: for specifying the cols. containing the sequence
numbers in the statements of a macro definition,
ADD: for adding source statements to a macro
definition,

VER: for verifying the contents of a specific source
statement of a macro definition,

DEL: for deleting source statements from a macro
definition,

REP: for replacing source statements in a macro
definition,

RST: for specifying a new number sequence,

END: for indicating the end of an update to a macro
definition.

Each update control statement is printed on SYSLST
(except for RST) followed by the affected source
statement. This printout is known as the update
survey. For ADD, the de-edited source record
preceding the records to be added is printed, followed
by the added records. For VER the character string
to be compared is printed, followed by the de-edited
source record to be verified. For DEL the de-edited
source records to be deleted are printed. For REP
the de-edited source records to be replaced are
printed, followed by the records to be inserted.

Figure 5. 1Input to, and Output from the

ESERV Program




Using ESERV to De-Edit and Update a Macro Definition

To request the ESERV program, use the following EXEC control statement:
// EXEC ESERV

To allow you immediately to use the output from the ESERV program as
assembler input, you need an assembler END statement, plus a /*
statement. You generate these by using the GENEND statement, the format
of which is:

Column 2—yg
GENEND

GENEND, when present, must be the first statement after the // EXEC
ESERV statement.

To allow you immediately to use the output from the ESERV program as
SYSIPT for cataloging into the macro library you need an appropriate
CATALS statement before each macro in the run, and a /* statement after
the last macro. You generate these by using the GENCATAL statement, the
format of which is:

Column 2—y
GENCATALS

.

GENCATALS, when present, must be the first statement after the // EXEC
ESERV statement. If neither GENEND or GENCATALS is used, GENCATALS is
assumed.

Before you can update your source macro definition, you need

(a) a printout of the source macro definition, or
(b) a source deck of the source macro definiton.

The following paragraphs show how you can get a printout of the source

macro definition, or a source deck of the source macro definition, or
both.

GETTING A PRINTOUT OF THE DE-EDITED MACRO DEFINITION

DSPLY - Display

The DSPLY (display) control statement produces a printout of the
de-edited macro on the device assigned to SYSLST. DSPLY has the
following format:

Column 2—y

DSPLY sublibl.mac1,sublib2.mac2,...

If the qualifier sublib is omitted the macro library (E) is assumed by
default. The mac in the operand field represents the name of the macro
definition in the sublibrary. I1f more than one macro definition is to
be displayed the entries must be separated by commas.

De-Editing and Updating Macros: ESERV Program 31



If update of the de-edited macro definition is desired the
appropriate control statements (see "Verifying/Updating Statements from
Printout of Source Macro Definition") follow this statement. However,
only the last macro can be updated.

GETTING A PUNCHED DECK OF THE DE-EDITED MACRO DEFINITION

Punch - PUNCH

The PUNCH function produces a de-edited deck on the device assigned to
SYSPCH. The’ formats and their governing conditions are the same as for
the DSPLY function defined above.

GETTING A PRINTOUT AND PUNCHED DECK OF THE DE-EDITED MACRO DEFINITION

Display and Punch - DSPCH

The display-and-punch function combines the separate operations of the
display function and the punch function. The formats and their
governing conditions are the same as for the DSPLY function defined
above.

Veritying/Updating Statements from Printout of Source Macro Definition

You can use the control statements COL, VER, ADD, DEL, REP, RST, and END
with the ESERV program to verify and/or update properly identified
statements in an edited macro definition. Statements are identified by
the sequence number in the identification field. Statements without
sequence numbers are identified by their position relative to a previous
statement that has a sequence number.

The verifying and updating is performed on the last macro
specification in the preceding DSPLY, PUNCH, or DSPCH statement.

COL Statement

The COL statement is used to specify the columns containing the sequence
numbers in the statements of a macro definition. If present, this
statement must be the first control statement following the DSPLY, PUNCH
or DSPCH statement. The COL statement has the following format:

Column 1

) COL startcol,n

startcol is a decimal number within the range 73-80, which identifies
the start column of the sequence number. n is a decimal number within
the range 1-8, specifying the number of columns used by the sequence
number.

If the COL statement is omitted, startcol receives a default value of
73 and n a value of 6.

32



VER Statement

The VER statement is used when the contents of a specified source
statement of a macro definition is to be verified. The format is:

Column 11

) VER segnotrel,l

seqgno+rel is used to identify the source statement which is to be
compared with the statement following the VER statement.

seqno represents the sequence number of a source statement. It is a
decimal number of 1 to n digits in length, where n is the length of the
sequence field as specified in the COL statement.

rel is a decimal number of 1-4 digits in length. If omitted, rel
receives a default value of 0.

1 is a decimal number within the range 1-80. When omitted, 1 gets a
default value of 72. Only the first 1 characters are used in the
comparison. If the strings do not match, an error message is given.

ADD Statement

The ADD statement is used to add statements to a source macro
definition. The format is:

Column 11

) ADD seqgno+rel

seqno+rel is used to identify the source statement after which the new
statements following the ADD statement are to be inserted.

segno represents the sequence number of a source statement. It is a
decimal number of 1 to n digits in length, where n is the length of the
sequence field as specified in the COL statement.

rel is a decimal number of 1-4 digits in length. If omitted, rel
receives a default value of 0.

DEL Statement

The DEL statement is used to delete statements from a macro source
definition. The format is:

Column 11

) DEL segnot+rel,seqgnotrel

seqno+rel,seqnotrel are used to identify the first and last source
statements of the section to be deleted. If second operand is omitted,
only the source statement identified by the first operand is deleted.
seqno represents the sequence number of the source statement. It is a
decimal number of 1 to n digits in length where n is the length of the
sequence field as specified in the COL statement.

rel is a decimal number of 1-4 digits in length. If omitted, rel gets a
default value of 0.

De-Editing and Updating Macros: ESERV Program 33



REP Statement

The REP statement is used to replace statements in a source macro
definition. The format is:

Column 1

) REP segno+rel, segno+rel

seqno+rel,seqnot+rel are used to identify the first and last source
statements of the section which are to be replaced by the statements
following the REP statements. If the second operand is omitted, only the
source statement identified by the first operand is replaced.

seqgno represents the sequence number of a source statement. It is a
decimal number of 1-n digits, where n is the length of the sequence
field as specified in the COL statement.

rel is a decimal number of 1-4 digits in length. 1f omitted, rel
receives a default value of 0.

RST Statement

In macro definitions containing copy code, the sequence numbers are
usually not in ascending order throughout the whole macro definition.
The RST (restart) statement is used to specify that a new sequence
number series starts in the next macro statement. The RST statement has
the following format:

V

Column 1l

) RST segno+rel

seqno+rel is used to identify the source statement after which the new
series starts. segno represents the last sequence number in the old
series. It is a decimal number of 1-n digits in length, where n is the
length of the sequence field as specified in the COL statement.

rel is a decimal number of 1-4 digits in length. If omitted, rel
receives a default value of 0.

Note: If an ADD, DEL, or REP operation has to be performed on the last
macro statement in the series, the first statement in the new series has
to be referenced in the RST statement. seqno must still be the last
sequence number in the o0ld series.

34



The following illustration shows the use of the RST statement:

Assume that you have the following macro:

MACRO

MAC1
. 10
. 20
. 30
. 40

copy 50
. 60
. 70
. 80

MEND

and assume that you have the following DSPLY output from the
above macro: ‘

Statement Sequence No.

MACA1

inserted by the COPY

10

20

30

40

1

2

3 | These statements were
4

5 statement
6

60

70

80

e 4 5 2 & 5 T & » s 0 0

If you wanted to delete statement 20 and statement 3, your coding
would be:

) DEL 20
) RST 40
) DEL 3

If you wanted to delete statement 40 and statement 3 (see Note under
“"RST Statement", above), your coding would be:

) DEL 40

) RST 40+1
) DEL 3

END Statement

The END statement is used to indicate the end of an update to a macro
definition. The format is:

Column 11
) END
This statement is required for all updating; otherwise an error message

is given.

De-Editing and Updating Macros: ESERV Program 35



All update control statements must have a right parenthesis in column
1. At least one blank must separate the right parenthesis from the
operation field. At least one blank must separate the operation field
from the operand field.

The following rules apply to the relationship between operands.

1. Any seqnotrel must specify a source statement after the
one addressed by the previous segnotrel.

2. Any segno must be greater than or equal to the last segno
in the previous control statement, or the seqno of the
first operand in the same control statement.

An exception to rule 1 is:

Two consecutive seqno+rel may be equal, (a) as the two
operands of a DEL or REP statement, (b) if a verified
source statement is referenced in the next control state-
ment which must be an ADD, DEL, REP, or RST statement.

An exception to rule 2 is:

The first seqno in the control statement following an
RST statement is independent of the seqno in the RST card.

ERRORS DETECTED DURING UPDATE - ACTION TAKEN

If an error is detected during updating, a message is printed on the
update survey. The requested update action will not be performed. 1If
possible, updating will continue with the next update control card.
Otherwise, a termination message is given and only the remaining update
control cards are printed on the survey. De-editing of the macro will
always be completed. The job will be cancelled at the end of the ESERV
run; that is, remaining jobsteps to edit the macro and catalog the
edited macro definition again will not be executed.

Updating will continue with the next update control card for all
errors except when:

1. The COL statement has invalid operands.

2. COL statement is not the first update control statement.

3. The macro is completely de-edited without all update
control statements being completely processed.

4. An RST statement has an invalid operand.

Examples of De-Editing With and Without Updating a Macro Definition

The following two examples show the two different features of the ESERV
program: that of de-editing without updating an edited macro definition,
and that of de-editing and updating an edited macro definition.

36



SAMPLE CODING FOR DE-EDITING WITHOUT UPDATING A MACRO DEFINITION

// JOB NOUPDATE Name of job is NOUPDATE.

// EXEC ESERV Causes ESERV to de-edit the macro
specified in the following PUNCH
statement.

PUNCH E.MAC1,MAC2 Causes the macros MAC1 and MAC2 to
be punched out from the macro library
(E) .

/*

/&

You could use the above coding to produce a de-edited source macro

for possible future updates.

SAMPLE CODING FOR DE-EDITING AND UPDATING A MACRO DEFINITION

The procedure in the following

example produces a de-edited, updated

macro definition in source format, and edits and places the updated
macro definition in the macro library, using the MAINT program.

// JOB UPDATE

// EXEC ESERV

GENEND

DSPCH E.MAC1

) oL 77,4
) VER 72+1,5

.PP9
) ADD 72+1

AIF (EPCH NE 1400) .D4
) DEL 102,103
) REP 245
JOYCE CLC 0 (4,REGG) ,BLANKS
) END
/*
// PAUSE
// OPTION EDECK,NODECK
// EXEC ASSEMBLY

(deck produced by ESERV
goes here)

/*

// PAUSE

// EXEC MAINT

(deck produced by
assembler goes here)

/&

Causes ESERV to de-edit the macro
specified in the following DSPCH state-
ment.

Causes an END and /* statement to be
generated. These are necessary to allow
output from ESERV to be used immediately
as input to assembler program.

Causes the macro definition MAC1 to be
punched and printed from the macro
library (E).

For explanation see: "Verifying/
Updating Statements from Printout
of Source Macro Definition".

Check list, move deck to reader.

Causes the assembler to produce an edited
deck (EDECK): no object module

will be produced (NODECK) .

Move SYSPCH deck to reader.
Causes MAINT to put edited macro
definition on macro library.

De-Editing and Updating Macros: ESERV Program 37



Note: If desired, tapes or disk extents may be used for input, output,
or intermediate work files. A DOS/VS cataloged procedure could be
written for installations using disk extents.

Differences Between De-Edited Macro Definitions
and Source Macro Definitions

e Remarks are lost in the statements which are not generated, for
example, prototype and declaration statements, AIF, AGO, etc.).

e Identification sequence field is lost in:
a) ANOP statements
b) Continuation cards to AIF, SET, and inner macro instruction
c) Prototype and Declaration statements

e Identification-sequence field is changed for the MACRO statement.
Zeros are generated in columns 73-80 by the de-editor.

e All self-defining terms in conditional assembly expressions will be
de-edited as decimal; thus, a character self-defining term in a SETA
expression might be de-edited into, for example, 16382457 (8 positions).
This might give a too long source statement. If this happens, a message
will be punched and no END statement generated.

e .X comments are lost.

o COPY statements are lost; instead the copied code is inserted.

e Local declarations and positional parameters in prototype statements
will be packed as efficiently as possible; for example,

LCLA &A1l
LCLA §&a2

will be de-edited as:
LCLA &A1,8A2
e If two or more ANOPs occur adjacent to each other, only the one with
the shortest symbolic name will be kept, and that name will be used

in all references in the model statements.

e If two or more ANOPs have equally short names, the symbol which is
first defined will be kept.

e Superfluous ANOPs are lost.
e Superfluous parentheses and periods are lost (AIF, SETX).

e The original column pattern may be changed for statements which
are not generated.

e A dummy ANOP will always be generated for each sequence symbol
definition.

e If LCLX statements were interspersed with ordinary statements, their
comments will not be placed in the original place. Instead, they
will be placed following the last declaration.

Note: A de-edited macro will not be changed by being edited and then

being de-edited.

38



Interpreting the Assembler Listing

This section tells you how to interpret the printed listing produced
by the assembler. The listing is obtained only if the option LIST is in
effect. Part(s) of the listing can be suppressed by using other options.

The six parts of DOS/VS Assembler listing are:

External Symbol Dictionary (ESD)
Dummy Section Dictionary

Source and Object Program
Relocation Dictionary (RLD)
Symbol Cross Reference Table
Diagnostics and Statistics

The function and purpose of each of them as well as the individual
details are explained in the following text and illustrations.

Interpreting the Assembler Listing 39



External Symbol Dictionary

CcM
ER
The external symbol dlctlonary (ESD) sectlon ;
of the listing describes the contents of the ESD " LD
records passed to the linkage editor in the :
object module produced by the assembler. It PC

describes all the control sections in the module
and identifies the external symbol defined in
it.

i vy rage e s

This section helps you find references between

The name of the symbol described by the entry.
(Only for types ER, LD, SD, and WX).
The various type designators are defined as:

Common control section. A control section defined by

a COM statement.

Strong external reference. The entry describes a symbol
that appears in the operand field of an EXTRN statement
or was defined as a V-type address constant.

External name. The entry describes a symbol that appears
in the operand field of an ENTRY statement.

Unnamed control section (private code). The entry
describes a control section that has not been assigned any
name. Unnamed control sections are generated as a
result of an unnamed START or CSECT statement or by
the omission of any of these statements at the beginning
of the program.

EXTERNAL SYMROL DICTIONARY

%3 particularly helpful in debugging the execution N
of large overlay programs constructed from Ly
several modules, to check the ESD section of
the assembler listings. :

The ESD section is described in detail. For a ful
understanding of the terms and concepts used i m w3
the explanations of each head refer to OS/VS
and DOS/VS Assembler Languag

TR e e N ces 8
ot R a8 E R e Senddon

O .cnem
QO o0

Figure 6. External Symbol Dictionary (ESD)

40

SYMBNL TYPE ID ANDDR LENGTH LD-ID
PC (PRIVATE) 01 000000 00N9R8
@; modules in a multi-module program. It may be .~ SD Named control section. The entry describes a control

section identified by a START or CSECT statement with
a label in the named field.

Weak external reference. The entry describes a symbol
appearing in the operand field of a WXTRN statement.
The external symbol dictionary identification number
(ESDID). The number is a unique two-digit hexadecimal
number identifying the entry. The number is used for
cross-reference between the relocation dictionary and the
external symbol dictionary. (Only for types CM, ER, SD,
WX, and PC.)

The address of the item. The place in the module where
the item described by the entry is defined. (Only for
types CM, LD, PC and SD.)

The length, in bytes of the assembled control section.
(Only for entries of type CM, PC, and SD.)

The ESDID number assigned to the entry for the control
section in which this entry is defined (Only for entries of
type LD.)



Dummy Section Dictionary

R ———— p— e ey

The dummy section dlctlonary Ilsts all the DSECTs 3
m the program. :

- ., @) sYMBOL  Name of the DSECT

. 0 1D External symbol dictionary identification
? - number (ESDID) of the DSECT.

; o LENGTH Length of the DSECT (in bytes).

DUMMY SECTION DICTIONARY

SYMBOL LENGTH
CCBADR FF 000048
CCWTCB FE 000070
CCWBLOCK FD 000048
VCCWADR FC 000009
TICCCW FB 000008
SABADR FA 000005
PUBADR F9 000009
CHNTBL F8 000002

N s o s S 88 SN S B N AN BB ot o oo o a0 a0

Figure 7. Dummy Section Dictionary

Interpreting the Assembler Listing 41



Source and Object Program

The third section of the listing contains the source statements of the module, together with object code produced

by the assembler for each of the source statements. The location counter values and the object code listed for each
statement will help you locate any errors in a main storage dump. You also have the possibility to check that your
macros have been expanded correctly.

The source and machine language statements section is described in detail in the following figure. That figure

discusses many language details that you may not be familiar with. For a complete understanding of all items in

the figure, refer to the description of the individual instructions and features in OS/VS and DOS/VS Assembler

Language.

09 0 0 O

LOC O0OBJECT CODE ADDRY ADDR2 STMT SOURCE STATEMENT

DOS/VS ASSEMBLFR V 03,2 00.00 72-01-18

36 DCDS F*101%,RCyX'F*,B*1101" 01300000
000000 000000650F 37+SYMB1 DC FP101*yX'F* 00450000
000008 38+ DS FYI01t ,X*F?* 00500000
00000D 000000
000010 NOO000650FOD 39+SYMB2 ocC FU101,X*F?*,871101" 00650000
000018 40+ ns F*101*,X*F*,B*1101"* 00700000
00COlE 0000
000020 000000650F0ODOF 41+¢SYMR3 nc FP101' oy X F*oRYLI0L® yX*F? 00450000
000028 42+ ns FP101° ¢ X'F*4R"110L* X F"* 00500000
00002F 00
000030 000000650F0DOFON 43+SYMBS nC FP101',X*F*yR'110L°yX*F*yR*1101"* 00650000
000038 44+ os F'101'yX'F*yB*1101*,X*'F*,A*1101" 00700000
LOC Called the location counter value (address in hex notation) of the associated code.

OBJECT CODE

PROGRAM-1

ADDR1 ADDR2

Exceptions are: for COM, CSECT, and DSECT statements, this field contains the

beginning address of the control section. For a LTORG statement this field contains the
location assigned to the literal pool. This field is blank for: ENTRY, EXTRN, WXTRN,
END, ORG, EQU, and USING statements.

The machine language code produced from the source statement on the same line. These
entries are left-justified. They can be either machine instructions or assembled constants.
Machine instructions are printed in full with a blank inserted after every four digits (two
bytes). Assembled constants are printed in full only if PRINT DATA has been specified

(see PRINT assembler instruction in OS/VS and DOS/VS Assembler Language.)

e The title defined in the operand field of the TITLE statement.

value) for:

ADDR1 the first operand of an Sl or SS type machine instruction.

The effective address (the result of adding together a base register and a displacement

ADDR2 the second operand of an RX or SS type instruction, or third operand of an

END, ORG, or EQU statement. For USING: the first operand value.

Both address fields contain six digits: however, if the high order digit is zero, it is not

The source statement number. Used to cross-reference between this section and the

diagnostics section. A plus sign after a number indicates that the instruction was

generated from a macro instruction.

Columns 1-80 of the source statements. All source statements with the exception of

listing control statements (EJECT, PRINT, etc.)are printed. The following items apply

e The listing control statement PRINT is not printed.

® Macro definitions called from a source statement library are not listed.

printed.
STMT
SOURCE STATEMENT

to this column:
Figure 8.

42

Source and Object Program (Part 1 of 2)




e Statements generated as the result of a macro instruction, follow the macro instruction
in the listing, They are identified by a plus sign (+) to the left of them.

e Assembler or machine instructions that contain variable symbols, except in macro
definitions, are listed twice, once as they appear in the input, and once with values
substituted for the variable symbols.

o An error indicator ***ERROR:**x* follows a statement in error. An error message
in the diagnostic messages section explains the error.

® MNOTE messages are listed in-line. An MNOTE indicator message appears in the

diagnostic messages section of the listing unless the first operand of the MNOTE
statement is an asterisk.

o When an error is found in a source macro definition (a definition contained in the
same source module), it is treated as any other assembler error: the error indicator
is placed after the statement in error, and a diagnostic message appears in the
diagnostic section of the listing.

e When a macro is encountered during the expansion of a macro, the error indicator
appears after the last statement generated before the error was encountered, and
the associated diagnostic message is placed in the diagnostic section.

o Literals that have not been assigned locations by means of LTORG statements are
listed after the END statement.

DOS/VS ASM V 03.2 o Identification of the assembler variant used for this assembly.

00.00 72-01-18 0 The time and date when the assembly is run.

Figure 8. Source and Object Program (Part 2 of 2)

Interpreting the Assembler Listing 43



Relocation Dictionary

i % The relocation dictionary (RLD) section of the
{ listing describes the contents of the RLD i
‘~ . ; records passed to the linkage editor in the object :
15 module The entries describe the address constants{ :
1 in the module that are affected by the program ; .
\;% . i

@ =010 For ADDR con

The external symbol dictionary identification number (ESDID)
assigned to the ESD entry for the control section in which
the address constant appears.

0 ESDID FOR REF SYMBOL

The external symbol dictionary identification number (ESDID)
assigned to the ESD entry for the control section in which the
referenced symbol is defined.

+ sign: positive relocation

—sign: negative relocation

RELOCATION DICTIONARY

“{ relocation. The section helps you find the

‘5" :relocatable constants in your program. This is t
;1especially useful if you are writing a self- ;
érelocatmg program. The RLD table can also be
/*; used to locate the V-type address constants in

. the program. You look up the name of the ’
; ?;constant in the ESD table and from there you get ;"
i the ESDID. You can find its address in the %
M‘% RLD table. (The V-type address constants
iare not iin the crossreference table.)

Figure 9. The Relocation Dictionary

4y

ESDID FDR ESDID FOR TYPE LENGTH ADDRESS
ADDR CON REF SYMBROL
01 +01 A 4 000108
01 +01 A 4 000120
01l +01 A 4 000140
01 +01 A 4 000148
01 +01 A 4 000168
- b

ADDRESS

The type of the address constant (A, Y, CCW, or
V).

The length of the address constant.
The address where the constant is stored, that is,

the location counter value given to the definition
of the constant.



Cross-Reference Table

The cross reference section of the Iistihg lists

‘the symbols used in the module, indicating

where they are defined, and where they are

i ‘referenced. This is a useful tool in checking
“the logic of the program; it helps you see if
.your data references and branches are in order.

The cross-reference table is produced only if

_the option XREF is in effect (see figure 3
iwhich lists and defines the options available). -

The name of the symbol used in the module.

The length (decimal notation), in bytes, of the
field represented by the symbol.

The external symbol dictionary identification
number (ESDID) related to the symbol (e.g.,
the CSECT where it is defined). Blank for
absolute equates.

Either the address represented by the symbol,
or the value to which the symbol is equated.

SYMROL LEN VALUE DFFN
catc 00C04 01 0009B4& 01163
MERG 00004 01 0009R0 01162
SORT 00004 01 O0009AC 01161
SYMR1l 00004 01 000000 00037
SYMB10 00004 01 0000CO 00055
SyMpll 00004 01 OO0OOEO 00057
SYMBR139 (00002 01 0003CO 00315
SYMR140 00002 01 0003C4 00317
S¥YMgl41 00002 01 0003C8 00319
SYMB142 00002 01 0003CC 00321

CROSS—-REFERENCE

REFFRENCES
0733 0734 0735
0748 0749 0750

0736
0751

0737 0738
0752

0739 0740

S

Figure 10.

" and duplicate symbols for which error §

——

- All symbols in the module, except those
."appearing in the operand field of V-type
‘address constants are included. Thus,

. symbols that are not listed in the source
_.and machine language statements section
"'because of a PRINT OFF or PRINT NOGEN
: instruction will appear in the cross-reference

- section. (For a description of V-type address

constant and the PRINT instruction refer to

"'O8/VS and DOS/VS Assembler Language.) ‘
“The cross-reference section also lists undefined :

%

indicators and diagnostics have been issued.
Followmg the symbols all Ilterals are l|sted

H
o
:
$
3
;
3
H

ODEFN

@ rererences

The Cross—-Reference Table

The statement number of the statement in
which the symbol is defined.

The statement numbers of the statements in
which the symbol appears in the operand
field.

Interpreting the Assembler Listing 45



Diagnostics and Statistics

0 STMNT The statement number of the statement flagged.
ST T T T S T I L For certain types of errors the statement number
2. The diagnostics and statistics section 2 . . P
2] . . . ¥ is not given,
¥ contains the diagnostic messages i
o iti - “3 . . .
; asaresult of error conditions en 3 e ERROR NO.  The message identifier. It consists of the three
-+ gountered in the program. All the Vi

characters 1PK and three numeric characters, giving

messages, their contents, and a unique number to the message.

explanations are contained in the section i
"Diagnostic and Error Messages”.

T
R AP

i
DIAGNOSTICS AND STATISTICS
STMNT ERROR NDo MESSAGF
78 1PK123 INVALID TYPE SPECIFICATION, * -3
79 IPK123 INVALID TYPE SPECIFICATION, °* -3 ¢t
80 1PK123 INVALID TYPE SPECIFICATION, ! -3 ¢
81 [PK123 INVALID TYPE SPECIFICATION, ° -3
82 IPK123 INVALID TYPE SPECIFICATION, * -3 v
83 [PK123 INVALID TYPE SPECIFICATION, ' 5 .
84 IPK123 INVALID TYPE SPFCIFICATION, ? 5 '
5 1PK123 INVALID TYPE SPECIFICATION, ' s XTF 1
86 [PK123 INVALID TYPE SPECIFICATION, ¢ P XIF1Y
B7 1PK123 INVALID TYPF SPECIFICATION, * s XYFVY
B8 1PK123 INVALID TYYPE SPECIFICATION, * P X1F
89 IPK123 ITNVALID TYPE SPECIFICATION, * P XIF e
90 1PK123 INVALID TYPE SPECIFICATION, * P XVF 41
91 IPK123 INVALID TYPE SPECIFICATION, * s XIF Y
4]
>
2 s
. 1f an MNOTE (see the description of the ‘é; 0 MESSAGE The text of the message. Many messages include a
fg MNOTE statement in OS/VS and DOS/VS & segment of the statement in error in the message.

si Assembler Language) message other than i
<< MNOTE with an asterisk in the operand

(or without a severity code) is issued by a
macro, the diagnostic message indicates ¢
where the MNOTE statement is found in i
> the source and machine language state- i
ments section of the listing.

wu e s e, 0y

Figure 11. Diagnostics and Statistics

46



Storage Requirements

| Main and Auxiliary Storage Requirements

The DOS/VS Assembler requires a minimum of 20K bytes of main storage.
Auxilijary storage requirements may be estimated by the following formula:

SYS001: MAX (60XITXT + 60, SM + 60xLM)
SYS002: MAX (40XETXT, 60xITXT + 60xSM)
SYS003: 60XOTXT if option NOXREF

100xOTXT if option XREF

MAX = Choose the greater of the two expressions separated
by the comma

ITXT Total number of statements on SYSIPT

OTXT Total number of statements on SYSLST (with PRINT GEN)

SM = Number of source macro statements

ETXT (OTXT - number of comments - SM)

LM = Number of statements in library macros used by the program

The de-editor requires 26K bytes of main storage. SYS001 and SYS002 are
used.

The edited macro library requires about 20% more storage than the
corresponding library in blank-compressed source format.

Performance Considerations

The DOS/VS assembler dynamically allocates storage space for workareas
and tables. Thus, within certain limits, the assembler will use as much
as possible of the virtual partition. Since retrieval of data from
workareas is often random, excessive paging will occur if the virtual
partition is much larger than the Page Pool. With large assemblies, use
the SIZE parameter in the EXEC job control statement to avoid excessive

paging.

You should also see the section "Performance Considerations" in
Introduction to DOS/VS.

Storage Requirements 47



Configuration Specifications

The configuration required for the assembler in a DOS/VS system is:

Note:

48

A System/370 machine with the standard System/370
instruction set.

At least 20K bytes of main storage allocated for the assembler.
DASD for SYSRES (system library).
DASD for three workfiles (SYS001, SYS002, SyYs003).

Card reader, tape or DASD for input (SYSIPT).

The following devices are required only if the corresponding
assembler option is used:

Card punch, tape or DASD for object code output and
edited macro output (SYSPCH).

Printer, tape or DASD for listing output (SYSLST).
DASD for object code link file output (SYSLNK) .

DASD for private library (SYSSLB).

DASD is any direct-access device supported by DOS/VS.



SYSIPT

SYSLST

SYSOUT

SYSPCH

SYSLNK

SYSLOG

Files Used by the Assembler

contains job control statements for the job control program.

is a combination of SYSRDR and SYSIPT. Must be used if
SYSRDR and SYSIPT input is on the same disk extent.

contains input for processing program (for example, source
code for the assembler). Normally the same device as SYSRDR.

receives printed output, for example, the assembler listing.

is a combination of SYSLST and SYSPCH. Must be permanent
assignment (cannot be assigned by an // ASSGN statement) .

receives punched output from 1angﬁage translators, for example,
object decks from the assembler. It also receives edited
macro deck produced by the assembler with the EDECK option.

contains input for the linkage editor. Language translators
write object modules on SYSLNK, if they are to be produced
by the linkage editor in the same job.

is used for communication between the system and the operator.
A few assembler diagnostic messages may appear here.

SYS001, SYS002, SYysS003 are programmer work files used by processing

SYSRES

SYSSLB

SYSCLB

programs. The assembler uses them for
intermediate storage during processing.

contains the Disk Operating System. The assembler and other
processing programs are in the core image library, object modules
in the relocatable library, and macro definitions in the source
statement library. These libraries can be replaced by, or
concatenated with, private libraries (SYSRLB, SYSCLB, and
SYSSLB) .

is a private source statement library. It is concatenated
with the library on SYSRES. The assembler first searches the
private library, if assigned, and then the SYSRES library

for a macro not found in the source code.

is a private core image library. Available only if specified
when the system was generated. Must be a permanent assignment.

The following figure shows the data flow in connection with assembler
execution.

Files Used by the Assember 49



0S

: Data Flow in connection
with Assembler Execution

Job Control Statements

SYSRDR

T N\

-

SYSSLB

—

Assembler, Macros

etc.

Figure 12. Data Flow in Connection With Assembler Files

Macros, Copy /7

O/

SYSRES

Assembler Source Code

SYSIPT

~—

4

ASSEMBLER

S~———

Intermediate
Data

SYS001
~~———1 svso02

| SYso03

SYSLOG

e

Assembler Listing

( SYSLST

~

\ SYSPCH

N

L

Object Module
EDECK

SYSLNK
Commands
and
Messages
N~
Object Module



Object Deck Output

Listed below are the card groups that make up the object deck produced

by the assembler. The groups are listed in the order in which they appear
in the output deck. Also included in this section are descriptions of

the REP and EDECK card formats.

Note: No object deck will be produced when the option NODECK is used.

Card Group Remarks
Reproduced Cards These reproduced cards result from

REPRO or PUNCH instructions located
before START.

External Symbol Contains all the symbol and storage
Dictionary (ESD) assignments for an object module. For

a detailed account of the ESD, see

the publication System Control Statements.

Problem Program Consists of text (TXT) and reproduced
cards. The reproduced cards result
from REPRO or PUNCH instructions
located after START.

Relocation Produced if relocatable constants
Dictionary (RLD) are present.
END Card Produced as the last card of the

output deck.

Object Deck Identification

The U4-character assembly identification label punched into the name
entry of the first TITLE card in the source program is punched into
columns 73-76 of each record in the object deck (except in reproduced
cards) . If there is no label, these columns are left blank.

Object Deck Sequencing Numbering

An assembler-generated sequence number is punched into columns 77-80 of
each card in the object deck (except in reproduced cards).

Object Deck Output 51



ESD Card Format

The format of the ESD card is as follows:

Columns Contents

1 12-2-9 punch

2-4 ESD

5-10 Blank

11-12 Variable field count - number

of bytes of information in variable
field (cols. 17-64)

13-14 Blank

15-16 ESDID of first SD, CM, PC, ER, or
WX in variable field.

17-64 Variable field. One to three 16-

byte items of the following format:
8 bytes - Name, padded with blanks
1 byte - ESD type code

3 bytes ~ Address

1 byte Blank

3 bytes - length, ESDID or blank

65-72 Blank
73-76 Deck ID (from first TITLE caxrd)
77-80 Card sequence number

TEXT (TXT) Card Format

The format of the TXT card is as follows:

Columns Contents
1 12-2-9 punch
2-4 TXT
5 Blank
6-8 Relative address of first
byte in information field
9-10 Blank
11-12 Byte count--number of bytes
in information field (cols 17-72)
13-14 Blank
15-16 ESDID
17-72 56-byte information field
73-76 Deck ID (from first TITLE caxrd)
77-80 Card sequence number

52



RLD Card Format

The format of the RLD card is as follows:

Columns Contents

1 12-2-9 punch

2-4 RLD

5-10 Blank

11-12 Data field count--number of

bytes of information in data
field (cols 17-72)

13-16 Blank
17-72 Data field:
17-18 Relocation ESDID
19-20 Position ESD1D
21 Flag byte
22-24 Absolute address to be relocated
25-72 Remaining RLD entries
73-76 Deck 1D (from first TITLE card)
77-80 Card sequence number

If the rightmost bit of the flag byte is set, the following RLD entry
has the same Relocation ESDID and Position ESDID, and this information
will not be repeated; if the rightmost bit of the flag byte is not set,
the next RLD entry has a different Relocation ESDID and/or Position

ESDID, and both ESDIDs will be recorded.

END Card Format

The format of the END card is as follows:

Columns Contents
1 12-2-9 punch
2-4 END
5 Blank
6-8 Entry address from operand of END
card in source deck (blank if no operand)
9-14 Blank
15-16 ESDID of entry point (blank if no operand)
17-72 Blank
73-76 Deck ID (from first TITLE card)
77-80 Card sequence number

Object Deck Output 53



REP Card Format

If you wish to modify your program after it has been assembled you can
do this by means of a REP card, which must be included in the object
module which it modifies. The format of the REP card is as follows:

Columns Contents

1 12-2-9 punch
Identifies this as a loader card

2-4 REP - Replace text card
5~-6 Blank
7-12 Assembled address of the first byte to be

replaced (hexadecimal). Must be right-
justified with leading zeros if needed to
fill the field.

13 Blank

14-16 External symbol ijentification number: (ESDID)
of the control section (SD) containing the
text (hexadecimal). Must be right-justified
with leading zeros if needed to fill the field.

17-70 From 1 to 11 4-digit hexadecimal fields
separated by commas, each receiving two bytes
A blank indicates the end of information in
this card.

71-72 Blank

73-80 Can be used for program identification

EDECK Card Format

The format of the EDECK card is as follows:

Columns Contents

1 Column pointer to first record
2-69 Edited text

70-76 Blank

77-80 Sequence number

54



Diagnostic and Error Messages

This section lists all the diagnostic and error messages that can be
issued by the assembler. The messages are listed sequentially.

How to Use This Section

If you have found an error message in the diagnostics section of your
listing that you are not sure you understand fully, look up the entry
for the message in this section. The entry for the message will give
you the following items:

U The message number and text of the message.

. Explanation, telling you why the message was issued.

. Assembler action, telling you how the assembler reacted
to the error.

. Programmer response to correct the error.

] Operator response to correct the exror (only for some
messages) .

The following explains in more detail the various items of each message
entry in this section.

THE MESSAGE ITSELF

In the diagnostics section of the listing you will find the following
items for each message:

° Statement number, telling you which statement
contained the error.

e The message identification number.

. The text of the message.

STATEMENT NUMBER: For messages IPK230-IPK250 no statement number
is given, either because the error cannot be associated with any
specific statement, or because the assembler does not have access
to the statement number when the error was found.

MESSAGE NUMBER: The message identification number is a unique number
consisting of the letters 1IPK followed by a three-digit number.

TEXT: The text of the message tells you which error the assembler has
encountered. In some messages a number denoted by an *n' is inserted t
identify a position in an operand field where an error occurs. In some
messages a character string taken from the source statement is inserted
in the message. Such a string is denoted as 'XXXXXXXX' in the message
text. The string normally starts at the point where the assembler has
discovered an error. However, it does not stop immediately after the
operand or character in error has been listed. The character string
normally ends with the first blank, or after eight characters have been
listed. The explanation for each message is subdivided under the
following four headings:

Diagnostic and Error Messages

o

55



EXPLANATION

This item gives the probable cause of the message. An error message is
usually issued at the point where the assembler can no longer make sense
of the input, not necessarily at the point where the real error
occurred. Thus if you want to code:

DC C'HALLO'
but instead code

DC F'HALLO'

the assembler will flag *HALLO' as an invalid data field rather than F
as an invalid type specification.

ASSEMBELER ACTION

This item tells you how the assembler reacts to the error, and what
default actions are taken.

PROGRAMMER RESPONSE

This item tells you how to correct the statement in error.

OPERATOR RESPONSE

For messages that are printed on the operator's console, this item tells
the operator how to correct certain errors. The operator will not
change your source deck; however, he may change the partition size, and
assign new devices etc.

Note: Each assembler module will 1list a maximum of four errors per
statement.

56



Assembler Messages IPKOO1-IPK250

IPK0O1

IPK002

IPK0O03

IPKOOY

IPK0O5

END STATEMENT IN MACRO OR COPY CODE

Explanation: An END statement is found in a macro
definition or in code that is inserted by means of
the COPY instruction.

Assembler Action: The statement is treated as comments.

Programmer Response: Remove the END statement from the
macro definition or the copy book. Make sure that an
END statement is included at the end of your source
module.

ICTL NOT FIRST STATEMENT

Explanation: The ICTL statement is used in a statement
that is not the first statement in the source module.

Assembler Action: The statement is processed as comments

Programmer Response: Remove the ICTL statement, or make
it the first statement of the program.

STATEMENT INCORRECTLY PLACED, MUST BE IN MACRO DEFINITION
Explanation: A MEND, MEXIT, MNOTE, or internal macro
comments (.*) statement appears in open code. These
statements are allowed only in macro definitions.

Assembler Action: The statement is processed as comments.

Programmer Response: Remove the statement, or put it in a
macro definition.

COMMENTS BETWEEN MACRO AND PROTOTYPE STATEMENTS

Explanation: The macro header (MACRO) instruction is
followed by a comments statement (.* or *). The macro
header must be immediately followed by a macro prototype
statement.

Assembler Action: The comments statement is ignored. It
is not generated when the macro is generated.

Programmer Response: Put the comments statement after the
prototype statement.

STATEMENT INCORRECTLY PLACED
Explanation: One of the following exrors has occurred:

e A macro header (MACRO) instruction appears too late in
the program. It can only be used to identify the
beginning of a macro definition, and the macro
definitions must all be placed at the beginning of the
source module. The only instructions that can precede
them are: ICTL, 1ISEQ, EJECT, PRINT, TITLE, SPACE, and
comments statements.

Diagnostic and Error Messages

57



e A GBLx or LCLx instruction in the macro definition does
not follow immediately after the macro prototype state-
ment.

e A GBLx instruction is preceded by an LCLx instruction.

e A GBLx or LCLx instruction in open code does not precede
the first control section.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure your MACRO, GBLx, and LCLx,
instructions are placed according to the rules given in
the explanation.

IPK0O6 ILLEGAL NAME FIELD

Explanation: The name field is not a sequence symbol or
blank, which is required by this instruction.

Assembler Action: The name field is ignored.

Programmer Response: Make sure the name field is either a
sequence symbol or blank.

IPKO0O7 SOURCE RECORD OUT OF SEQUENCE

Explanation: The input sequence-checking specified by the
ISEQ instruction has determined that this record is out of
sequence. The sequence field of this record is not higher
than the sequence field of the preceding record.

Assembler Action: The statement is flagged and assembled.
The sequence of the rest of the statement is checked
relative to the sequence of the statements before this
statement.

Programmer Response: Put the record in the proper sequence.

IPK0O0S UNPAIRED APOSTROPHE
Explanation: An ending apostrophe is missing in this
statement, or an illegal attribute reference is found
in the statement.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a terminating apostrophe or
correct the attribute reference. An opening or ending
apostrophe must be single, that is, it must not be
immediately followed or preceded by another single
apostrophe. Double apostrophes are used to specify the
character in a quoted string (between the opening and
terminating apostrophes) .

/

IPKO009 TOO MANY CONTINUATION LINES
Explanation: This statement occupies more than three records.

Assembler Action: The excessive continuation lines are
treated as comments.

58



IPKO10

IPKO11

IPKO012

IPK013

Programmer Response: Check for an unintentional continuation
indicator in the column after the end column (usuwally in
column 72) . Do not use more than two continuation lines for
a statement.

OP CODE MISSING

Explanation: The first or only record of a statement does
not contain any operation code, followed by at least one
blank.

Assembler Action: The statement is processed as comments.

Programmer Response: If this record is intended to be a
comments statement, supply an asterisk in the begin column.
1f the record is intended to be an instruction, supply an
opcode followed by at least 1 blank in the first record

of the statement.

INVALID OP CODE

Explanation: The specified operation code does not consist
of 1-8 alphameric characters, the first of which is
alphabetic.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure the operation code is a valid
ordinary symbol as described in the explanation.

MEND NOT PRECEDED BY MACRO IN THIS COPY BOOK

Explanation: In code inserted by means of the COPY instruc-
tion, a MEND instruction is encountered for which there is
no corresponding MACRO instruction in this copy book.

Assembler Action: The statement is processed as comments.

Programmer Response: Make sure that a macro always starts
and ends in the same copy book. If a MACRO statement is
found in a copy book, the corresponding MEND statement must
also be in that copy book.

CONTINUATION LINE MISSING

Explanation: End of file was encountered when the assembler
was trying to read an expected continuation line.

Assemblexr Action: The statement is processed as if no
continuation mark had been indicated in the continuation
column.

Programmer Response: Add the missing continuation line (s),
or remove the erroneous continuation mark, whichever is
applicable.

Diagnostic and Error Messages

59



IPKO 14

IPKO015

IPK016

IPKO17

IPKO018

60

SYMBOLIC PARAMETER 'xxxxxxxx' TOO LONG

Explanation: The specified symbolic parameter in a macro
prototype statement is too long. It must not consist of
more than eight characters. The first eight characters of
the invalid symbolic parameter are identified in the
message.

Assembler Action: The rest of the macro definition is
checked for errors, but the macro is considered undefined.

Programmer Response: Make sure that all symbolic parameters
consist of an ampersand followed by 1 to 7 alphameric
characters, the first of which is alphabetic.

SYMBOLIC PARAMETER 'xxxxxxxx' DOES NOT START WITH AMPERSAND

Explanation: The specified symbolic parameter does not start
with an’ampersand (§) .

Assembler Action: The rest of the macro definition is
checked for errors, but the macro is considered undefined.

Programmer Response: Make sure that all symbolic parameters
consist of an ampersand followed by 1-7 alphameric
characters, the first of which is alphabetic.

SECOND CHARACTER OF SYMBOLIC PARAMETER ‘xxxxxxxx' NOT A LETTER

Explanation: The second character of the specified symbolic
parameter is not alphabetic.

Assembler Action: The rest of the macro definition is
checked for errors, but the macro is considered undefined.

Programmer Response: Make sure that all symbolic parameters
consist of an ampersand followed by 1-7 alphameric
characters, the first of which is alphabetic.

SYMBOLIC PARAMETER 'xxxxxxxx' CONTAINS NON-ALPHAMERIC
CHARACTER

Explanation: The specified symbolic parameter contains an
invalid character. Only alphameric characters (A through
Z, 0 through 3, #, $) are allowed in symbolic parameters.

Assembler Action: The rest of the macro definition is checked
for errors, but the macro is considered undefined.

Programmer Response: Make sure that all symbolic parameters
consist of an ampersand followed by 1-7 alphameric charac-
ters, the first of which is alphabetic.

INVALID OPCODE IN PROTOTYPE STATEMENT

Explanation: The mnemonic operation code of a prototype
statement is (a) not a valid symbol, (b) is the same as the
opcode of another macro definition in the source program,
(c}) is the same as the opcode of a machine instruction or
assembler instruction.



Assembler Action: The macro definition will be checked for
errors just as if the opcode was correct; but when the
macro is called it is treated as undefined.

Programmer Response: Make sure that the prototype opcode
consists of 1-8 alphameric characters starting with an
alphabetic character, and that the prototype opcode is
different from other prototype, machine, and assembler
opcodes.

IPKO19 KEYWORD OPERAND PRECEDES POSITIONAL OPERAND *XxXXXXXXX'

Explanation: In a macro prototype statement or a macro
definition a keyword operand has been placed before the
positional operand identified in the message. All positional
operands must appear before the keyword operands in the
statement. If no operand is identified in the message a
comma indicating an omitted positional operand has been

found after the first keyword operand.

Assembler Action: If the error is found in a prototype
statement, all positional operands after the first keyword
operand are considered undefined. The rest of the macro
definition is then checked for errors, but the macro is
considered undefined. 1Is the error is found in a macro
instruction, the macro is not generated.

Programmer Response: Make sure all positional operands in
a macro prototype statement or macro instruction precede
all keyword operands.

IPK020 TOO MANY LEVELS OF PARENTHESIS IN OPERAND °*xxxxxxxx'

Explanation: The operand expression identified in the
message contains more than five levels of parentheses. The
text inserted in the message is limited to eight characters.

Assembler Action: If the error is found in a prototype
statement, the rest of the macro definition is checked for
errors, but the macro is considered undefined. If the error
is found in a macro instruction, the macro is not generated.

Programmer Response: Change the expression to delete one or
more levels of parentheses.

IPKO021 UNPAIRED PARENTHESIS IN OPERAND "' XXXXXXXX'

Explanation: The keyword parameter default value specified

in a macro prototype or a macro instruction operand value
contains an unpaired left or right parenthesis not surrounded
by apostrophes. Only the first eight characters of the
operand value are inserted in the message.

Assembler Action: If the error is found in a prototype
statement, the rest of the macro definition is checked for
errors, but the macro is considered undefined. If the error
is found in a macro instruction, the macro is not generated.

Programmer Response: If you want to specify an unpaired
parenthesis, make sure it appears with apostrophes. Otherwise
make sure a left parenthesis is always followed by a right
parenthesis with which it is paired.

Diagnostic and Error Messages 61



IPK022

IPK023

IPKO24

IPK025S

62

INVALID SUBLIST ‘xxxxxxxx' IN ALTERNATE STATEMENT FORMAT

Explanation: The termination of a macro prototype or macro
instruction sublist written in the alternate statement format
for sublists is invalid, either because the closing right
parenthesis is missing, or because something other than a
comma or a blank follows the closing right parenthesis;

only the first eight characters of the sublist are inserted
in the message list.

Assembler Action: 1f the error is found in a prototype state-
ment, the rest of the macro is checked for errors, but the
macro is considered undefined. If the error occurs in a macro
instruction, the macro is not generated.

Programmer Response: If a sublist is intended, make sure that
the sublist is terminated by a right parenthesis followed by
a comma or a blank. I1f a character string is intended, use
the normal statement format instead.

PARAMETER VALUE ‘xxxxxxxx' EXCEEDS 255 CHARACTERS

Explanation: The specified wvalue is too long. The parameter
value specified in a macro prototype statement (as a keyword
parameter default value) or a macro instruction is limited
to 255 characters. The text inserted in the message contains
only the first eight characters.

Assembler Action: If the error is found in a macro prototype
statement, the rest of the macro definition is checked for
errors, but the macro is considered undefined. 1If the error
is found in macro instruction, the macro is not generated.

Programmer Response: Limit the length of the parameter to
255 characters, or separate the value into two or more
parameters.

UNPAIRED APOSTROPHE

Explanation: An unpaired apostrophe is found in a parameter
value specified in a macro prototype statement (as a key-
word parameter default value) or a macro instruction.

Single apostrophes in parameter values must be specified
with double apostrophes appearing inside paired apostrophes,
unless they are used to specify attribute references in
arithmetic expressions.

Assembler Action: If the error is found in a macro proto-
type statement, the rest of the macro is checked for errors,
but the macro is considered undefined. 1If the error is
found in a macro instruction, the macro is not generated.

Programmer Response: Make sure all apostrophes are paired
or double, or belong to attribute references.

TOO MANY OPERANDS

Explanation: Too many operands found in a macro prototype
statement or a macro instruction or too many sub-operands
in a sublist. The maximum number allowed is 200.



Assembler Action: If the exror is found in a macro proto-
type statement, the rest of the macro definition is checked
for errors, but the macro is considered undefined. 1If the
error is found in a macro instruction, the macro is not
generated. Only the first eight characters of the default
value are inserted in the message.

Programmer Response: Reduce the number of operands or
include some of the operands in sublists or, if too many
sub-operands, split the sublist into two or more.

I1IPK026 INVALID NAME FIELD ‘'xxxxxxxx'

Explanation: The name field of a macro prototype statement or
a macro instruction is invalid. The name field of a
prototype statement must either be blank or contain a
variable symbol specifying a name field parameter. The name
field of a macro instruction must either be blank, or contain
a sequence symbol, or a valid orxrdinary symbol, or one or
more variable symbols that result in a valid ordinary symbol
after substitution and concatenation. Only the first eight
characters of the default value are inserted in the message.

Assembler Action: If the error is found in a macro proto-
type statement, the rest of the macro definition is checked
for errors, but the macro is considered undefined. If the
error is found in a macro instruction, the macro is not
generated.

Programmer Response: Supply a valid name field as described
in the explanation.

IPK027 NON-BLANK CHARACTER FOUND BEFORE CONTINUE COLUMN

Explanation: On a continuation record, that is, a record
following after the first record of a statement occupying
several records (lines), one or more characters have been
encountered in the begin column or in the column between the
begin column (usually column 1) and the continue column
(usually column 16) . These columns must be blank.

Assembler Action: The characters appearing before the
continue column are ignored.

Programmer Response: If the record is intended as a con-
tinuation record, make sure the statement is continued in
the correct column. If the record is not meant to be
continue record, check for an unintentional continuation
indicator in the preceding record (usually in column 72).

IPK028 INVALID KEYWORD PARAMETER DEFAULT VALUE ‘xxxxxxxx'

Explanation: The default value specified for a keyword
parameter in a macro prototype statement is invalid. The
value must not contain variable symbols, and any ampersands
must be double, that is, each sequence of consecutive
ampersands must contain an even number of ampersands. Only
the first eight characters of the default value are inserted
in the message.

Assembler Action: The rest of the macro definition is
checked for errors, but the macro is considered undefined.

Diagnostic and Error Messages 63



Programmer Response: Delete variable symbols from the
default value, make ampersands double.

IPK029 INVALID KEYWORD IN MACRO INSTRUCTION, "xxxxxxxx'

Explanation: A keyword of a macro instruction does not
consist of a 1-7 alphameric characters, the first of which
is alphabetic, or a macro instruction operand contains an
equal sign outside quotes or parentheses.

Assembler Action: The rest of the macro is checked for errors,
but the macro is considered undefined.

Programmer Response: Make sure that all keywords consist
of a letter followed by 0-6 alphameric characters.

IPKO031 NAME FIELD NOT BLANK

Explanation: The name field is not blank, which is required
by this instruction.

Assembler Action: The statement is processed as comments.

Programmer Response: Remove the statement from the macro
definition. Make sure all your macro definitions end with
a MEND instruction.

IPK032 STATEMENT INCORRECTLY PLACED, MUST NOT BE IN MACRO
DEFINITION

Explanation: A statement has been found in a macro
definition which is not allowed to appear in a macro
definition.

Assembler Action: The statement is processed as comments.

Programmer Response: Remove the statement from the macro
definition. Make sure all your macro definitions end with
a MEND instruction. ‘

IPKO033 INVALID ISEQ OR ICTL OPERAND
Explanation: One of the following errors has occurred:

o The operand field of an ISEQ instruction is invalid. It
must either be a blank or consist of two decimal
self-defining terms that do not fall between the begin
and end columns, and the first value must not be greater
than the second.

o The operand field of the ICTL statement is invalid. It
must consist of one to three decimal self-defining terms,
the first of which must be in the range 1-40, the second
in the range 41-80, and the third must be in the range
2-40 and greater than the first.

Assembler Action: The statement is processed as comments.

Programmer Response: Correct the operand field according
to the rules given in the explanation.

64



IPKO34

IPKO035

IPKO036

IPK037

IPKO038

INVALID COPY OPERAND

Explanation: The operand of a COPY instruction is not an
ordinary symbol.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid ordinary symbol that
corresponds to the name of a book in the copy code library.
Ordinary symbols consist of 1-8 alphameric characters, the
first of which is alphabetic.

TOO MANY COPY NEST LEVELS

instructions have been coded. Nesting occurs when a COPY
instruction is coded in a book that is inserted by means of
another COPY instruction.

Assembler Action: The last COPY instruction is processed as
comments.

Programmer Response: Reduce the number of nesting levels by
including some of the COPY books physically in the source
module.

COPY BOOK NOT IN LIBRARY

Explanation: The ordinary symbol specified in the operand of
this COPY instruction is not the name of a copy book in a
source statement library that is assigned to this job.

Assembler Action: The statement is processed as comments.

Programmer Response: Check that the operand is correct,
assign the proper source statement library, or catalog the
missing copy book.

UNEXPECTED END-OF-FILE ON SYSSLB

Explanation: End-of-file was encountered in the source state-
ment library before the end of a book had been reached.

Since the end-of-file indicator is normally found only at

the end of the COPY code library, the message indicates that
the source statement library has been destroyed.

Assembler Action: Processing of the copy book is terminated.
If the error occurs inside a source macro definition, a MEND
instruction is generated.

Programmer Response: Re-construct the source statement
library.

MEND STATEMENT MISSING, HAS BEEN ADDED

Explanation: End-of-file occurred on SYSIPT during the
processing of a macro definition, or a MEND instruction
terminating a macro definition is missing.

Assembler Action: A MEND and an END instruction are
inserted.

Diagnostic and Error Messages 65



IPK039

IPKO40

IPKO41

IPKO42

66

Programmer Response: Insert the missing MEND instruction
or check for an unintentional end-of-file indicator in
the source module.

END STATEMENT NOT IMMEDIATELY FOLLOWED BY END-OF-FILE

Explanation: The END statement identifying the end of the
source module is not immediately followed by an end-of-data
indicator statement (/*).

Assembler Action: The records appearing between the END
statement and the end-of-3data indicator are not processed
by the assembler.

Programmer Response: Move the END statement, or make sure
your JCL statements are properly placed.

END STATEMENT MISSING, HAS BEEN ADDED

Explanation: No END statement was found in the source
module.

Assembler Action: An END statement is inserted at the end
of the input.

Programmer Response: Supply an END statement at the end of
your source module, or make sure that no end-of-data
indicator (/*) has been placed inside your source module.

MEND STATEMENT MISSING IN COPY BOOK, HAS BEEN ADDED

Explanation: A source macro definition was coded in a copy
book, but the macro trailer (MEND) statement to indicate
the end of the macro definition was not found in the copy
book. The whole macro definition must be coded within one
copy book.

Assembler Action: A MEND instruction is inserted at the end
of the copy book.

Programmer Response: Make sure that a macro always starts
and ends in the same copy book. If a MACRO statement is
found in a copy book, the corresponding MEND statement must
also be in that copy book.

STATEMENT COMPLEXITY EXCEEDED

Explanation: A conditional assembly statement of a macro

instruction operand has more than 50 variable symbols. Or
the generated edited text string length of one statement

which contains subscripted SETC variable symbols exceeds

255 bytes.

Programmer Response: Do not use more than 50 variable symbol
references in the same statement, or in a macro instruction
operand. In the latter case, rearrange the statement to
contain fewer subscripted variable symbols.

Programmer Response: Do not use more than 50 variable symbol
references in the same statement or a macro instruction
operand.




IPKOU3

IPKOU4Y

IPKOU5

IPKOU6

OPERAND MISSING

Explanation: This statement requires an operand, but none
is found.

Assembler Action: The statement is processed as comments.

Programmer Response: Supply a valid operand.

INVALID SYNTAX IN SET SYMBOL DECLARATION *xxxxxxxx'

Explanation: In a SET symbol Jeclaration, a variable symbol
is invalid, a comma separating two symbols is missing, or

a character other than a blank terminates the field. The
text inserted in the message gives eight characters, starting
with the character at which the error is found.

Assemblexr Action: The symbol in which the error is found and
the rest of the statements are ignored.

Programmer Response: Make sure the operand field contains
only valid variable symbols (possibly dimensioned),
separated by commas.

INVALID DIMENSION *xxxxxxxx"'

Explanation: The dimension of a SET symbol is incorrectly
specified. The dimension specification must follow

immediately after the variable symbol and be an unsigned
decimal value in the range 1-255 enclosed in parentheses.

Assembler Action: The symbol with the invalid dimension
and the rest of the statements are ignored.

Programmer Response: Correct the subscript according to the
rules given in the explanation.

DIMENSION TOO LARGE, 'xxxxxxxx'

Explanation: A SET symbol declaration specifies a dimension
that is greater than 255. The string inserted in the
message contains up to eight characters, starting with the
dimension value.

Assembler Action: The symbol with the invalid dimension
is ignored.

Programmer Response: Break up the SET symbol array into
two or more arrays by using additional SET symbols.

Diagnostic and Error Messages 67



IPKO47

IPKOU48

IPKO49

68

VARIABLE SYMBOL DUPLICATES SYSTEM VARIABLE SYMBOL OR
PREVIOUS DEFINITION, *=xXxxxxxxx'

Explanation: The first or only variable symbol in the
specified string is either:

. a symbolic parameter, which is identical to a
system variable symbol or another symbolic parameter
specified in the same macro prototype statement; or

o a SET symbol, which is identical to a system variable
symbol, a symbolic parameter specified in the same
macro definition, or another SET symbol declared in
the same macro definition or open code.

Assembler Action: The flagged definition of the variable
symbol is ignored, as well as any further operands in the
statement. All references to the symbol are treated as
references to the first definition of the variable.

Programmer Response: Make sure that all variable symbols
within a macro definition or open code are unique within
that scope. Do not define system variable symbols or
symbolic parameters or SET symbols. The system variable
symbols are:

ESYSECT ESYSLIST
ESYSNDX §SYSPARM

INVALID SYNTAX IN CONDITIONAL ASSEMBLY STATEMENT 'xXXXXXxx'

Explanation: A conditional assembly statement or a state-
ment with variable symbol substitution contains a syntax
error, for example:

o Invalid or misplaced characters in an expression.

. The statement is terminated before its logical end.
This could be caused by an unintentional blank inside
an expression.

. The sequence symbol in an AGO or AIF operand does not
consist of a period, follow