
-=-~-== :: :=:. == ---------,-

Customer
Information
Control System
CICS/CMS

Licensed Program
Release 1

Prog ram N umber
5668-795

CICS/CMS
User's Guide

SC33-0285-0

First Edition (June 1986)

This edition applies to Release 1 of the IBM program product Customer
Information Control System/Conversational Monitor System (CICS/CMS), program
number 5668-795_

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM systems or equipment, refer to
the latest IBM System/370, 30XX, and 4300 Processors Bibliography, GC20-0001, for
the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the addresses given below. Requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed either to:

International Business Machines Corporation, Department 6R1H,
180 Kost Road, Mechanicsburg, P A 17055, USA.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 95, Hursley Park, Winchester, Hampshire, England, S021 2JN

IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

No part of this book may be reproduced in any form or by any means, including
storing in a data processing machine, without permission in writing from IBM.

© Copyright International Business Machines Corporation 1985, 1986

-

Preface

What this book is about

This book tells you how to use CICS/CMS to develop CICS applications. As its
name implies, CICS/CMS runs under the Conversational Monitor System (CMS),
and can be used by both CICS/OS/VS and CICS/DOS/VS application programmers.

Who this book is for

This book is for anyone who wants to develop CICS applications using CICS/CMS,
and for those responsible for administering application developers' use of
CICS/CMS.

What you need to know to understand this book

This book is primarily intended for application programmers with some experience
of both CICS and CMS. However, if you have just a basic knowledge of CMS, you
should be able to use CICS/CMS, with this book and the CICS/ VS Application
Programming Primer, to learn about CICS application programming.

Those parts of the book written for system administrators, that is, those responsible
for installing and maintaining the CICS/CMS system, assume a much more detailed
knowledge of VM and CMS.

How to use this book

Part One of this book is designed to be read sequentially by those using CICS/CMS
for the first time. It provides enough information for you to start using CICS/CMS
without having to learn about its functions in detail. The rest of the book is
intended largely for reference. However, we've arranged the chapters so that they
describe CICS/CMS facilities in the order you're most likely to need to learn them,
so that you can read the whole book sequentially if you want.

Notes on terminology

CICS/VS

PC

COBOL

COBOL II

is used to mean both CICS/OS/VS and CICS/DOS/VS.

is used to mean a PC AT/370 or PC XT/370.

is used for the OS/VS COBOL Compiler, and the language it
supports.

is used for the VS COBOL II Compiler, and the language it
supports.

PL/I

EFH

is used for the OS/VS PL/I Optimizing Compiler, and the language
it supports.

is a prefix, used to denote elements that belong to CICS/CMS
(EXECs, utilities, and so on). It's the CICS/CMS equivalent of the
DFH prefix, that denotes CICS/VS elements.

Whenever we use the term "CICS", on its own, without appending" /VS" or
"/CMS", we are either talking about the part of CICS/CMS used in application
testing, or about CICS in general terms, as in "CICS application programmer."

Bibliography

This bibliography gives the titles and order numbers of other books that you will
find useful when using CICS/CMS.

We've listed the books in categories, as follows:

• CICS/CMS manuals

• CICS/VS manuals

• VM/SP manuals

• VM/PC manuals

• Other manuals.

CICS/CMS manuals

CICS/CMS Application Programmer's Reference Summary, SX33-6051

Provides a quick reference to the subset of the command level application
programming interface (API) that CICS/CMS supports.

CICS/CMS Messages and Codes, SC33-0409

Lists all the messages that CICS/CMS issues that are unique to CICS/CMS.
This may be of use to application programmers, but the majority of CICS/CMS
messages that you're likely to see while developing applications are
self-explanatory, so you shouldn't need it for constant reference. System
administrators, however, will need it as part of their basic set of CICS/CMS
documents to deal with problems referred to them by application programmers.

CICS/VS manuals

CICS/VS Application Programming Primer, SC33-0139

The best book for learning CICS application programming. You'll need it to
understand fully the sample application that comes with CICS/CMS.

Bibliography V

GIGS/VS Application Programmer's Reference Manual (Gommand Level), SC33-024I

The definitive description of CICS application programming. You'll need to use
this with the GIGS/GMS Application Programmer's Reference Summary,
SX33-6051 if you want to use only features that CICS/CMS supports.

GIGS/VS Application Programmer's Reference Summary, SX33-60I2

The CICS/VS equivalent of the CICS/CMS summary.

GIGS/OS/VS GIGS-Supplied Transactions, SC33-0240

Contains descriptions of all the CICS-supplied transactions, including the field
engineering transaction (CSFE), and the operator commands for BMS terminal
paging (CSPG transaction).

Note: IBM introduced this manual with CICS/OS/VS 1.7. Before then, the
same information was in the GIGS/VS Operator's Guide, SC33-0080.

GIGS/ VS Remote Server Diagnosis, LC33-0438

Presents an outline logic flow of the CEHS transaction (the remote server) that
is supplied as part of CICS/OS/VS VI R7, and that is also available on both
CICS/OS/VS VI R6.I and CICS/DOS/VS VI R6.

This book is primarily intended for system programmers interested in problems
with the CICS/CMS remote server at either end of the link.

GIGS/VS Resource Definition Guide, SC33-0I49

Includes descriptions of the TCT entries that relate to terminal control
parameters in the EFHSETP and EFHPROF EXECs.

GIGS/ VS Problem Determination Guide, SC33-0089

Gives detailed information on debugging CICS/VS programs.

GIGS/VS Data Areas, LY33-6035

Describes the CICS/VS data areas. You may need to refer to this manual
occasionally for help in understanding CICS/CMS messages and trace entries.

VM/SP manuals

VM/SP GMS Primer, SC24-5236

A useful starting point for anyone who is completely new to VM.

VM/SP GMS User:s Guide, SC19-621O

The basic reference book for using VM/SP.

VM/SP GMS Gommand and Macro Reference, SC19-6209

Essential for system administrators to help diagnose problems.

VI CICS/CMS User's Guide

J

VM/SP CP Command Reference for General Users, SC19-6211

Includes information on the CP debugging tools available with CICS/CMS.

VM/SP System Programmer's Guide, SC19-6203

Provides detailed information on CP and CMS, and tells you how to debug
VM/SP. This book is an essential part of a system administrator's set of
documentation.

VM/SP System Messages and Codes, SC19-6204

Lists all the CMS messages, many of which might appear while you're
developing applications using CICS/CMS.

VM/SP Installation Guide, SC24-5237

The system administrator's main source of information for CMS aspects of
installing and servicing CICS/CMS on VM/SP.

VM/SP Terminal Reference, GC19-6206

Includes information on the 3270 terminals that VM/SP supports.

VM/PC manuals

VM/PC User's Guide, SC26-0601

Contains basic instructions and reference information on how to use VMjPC.

VMjPC Systemj370 Language Supplement, SC26-4120

Contains information specific to programming under VM/PC.

Other manuals

CMS User's Guide for COBOL, SC28-6469

Contains information specific to writing OSjVS COBOL programs under CMS.

VS COBOL II Application Programming: Supplement for CMS User's, SC26-4214

Contains information specific to writing VS COBOL II programs under CMS.

OS/PLI Optimizing Compiler: CMS User's Guide, SC33-0037

Contains information specific to writing PL/I programs under CMS.

Bibliography Vll

Contents

Part one-First steps 1

Chapter 1. Introduction to CICS/CMS•.................. 3
Who is this book for? .. 3
What can you use CICS/CMS for? 4

Creating and editing programs 4
Translating and compiling programs 4
Testing a program ... 4
How to use data files .. 5
Defining programs to CICS/CMS 6
Help with your testing ... 6

What can't you use CICS/CMS for? 7

Chapter 2. Getting to know CICS/CMS ••••.••••..••••...•.•.••••. 9
Getting ready to use CICS/CMS 10

Getting ready to use CICS/CMS from a terminal 10
Getting ready to use CICS/CMS from a PC 11

Starting CICS/CMS .. 11
The sample application .. 12
Assembling a map .. 14
Translating and compiling a CICS program 16
Testi'ng a CICS program :..... 18
Testing the complete application 21

Updating tables .. 22
Setting up your data files .. 24
Testing a CICS transaction 25

Testing tools .. 26
The execution diagnostic facility 26
The command level interpreter 30
Browsing temporary storage 31
CICS/CMS escape functions 32

Part two-Before you start developing applications 35

Chapter 3. Installing CICS/CMS on a PC 37
Organizing your PC storage for CICS/CMS 37

The steps in organizing PC storage 38
Copying CICS/CMS to a PC 42
Changing CICS/CMS on a PC 46

Chapter 4. Setting up your CICS/CMS environment 47
Using EFHPROF to create your own environment 47

Chapter 5. How CICS/CMS handles CICS resources 51
Programs .. 51
Terminals .. 52

Contents IX

BMS .. 52
BMS paging .. 52

Terminal control ... 54
Batch data interchange .. 54

Interval control .. 54
Transient data .. 56

Intrapartition transient data 56
Overlength records ... 57
Read and write pointers 57

Extrapartition transient data 57
Defining extrapartition queues to CMS 58
Printing from extra partition queues 58
Example FILEDEF definitions for extrapartition queues 59

Remote transient data ... 59
Temporary storage ... 60
Local data files .. 60

How CICS/CMS supports VSAM files 60
The CICS/CMS keyed file format 61

Keyed file record structure 61
Deleting records from keyed files 62

The CICS/CMS nonkeyed file format 63
Differences between CICS/CMS and CICS/VS 63

How to interpret EIBRCODE in CICS/CMS 64
Remote resources .. 64

Defining remote resources in CICS/CMS tables 65
DL/I data bases .. 65
Remote VSAM files ... 65
Remote transient data queues 65 \
Remote temporary storage queues 65 ""'"

Using the SYSID option ... 66
Using interval control remotely 66

CICS/CMS tables .. 66
Fully defining CMS files as CICS/CMS tables 67
Partially defining CMS files as CICS/CMS tables 67

Defining CMS files as CICS/CMS tables on the EFH13 panels 68
Defining CMS files as CICS/CMS tables on an EFHll panel 68
Defining CMS files as CICS/CMS tables on the EFH121 panel 69

The general form of table entries 70
Program tables ;.................... 70

Filename field ... 71
Entry point field ... 71
Language field .. 72
Load method field .. 72
Transaction or PF key field 73

Transient data destination tables 73
Defining intrapartition destinations 74
Defining extrapartition destinations 75
Defining remote destinations 75

Temporary storage tables .. 76
File tables .. 77
PSB directories .. 78

Part three-Application development 81

Chapter 6. Creating and editing programs and maps 83 ..j
CICS/CMS support for high-level languages 84

General information on using high-level languages in CMS 84

X CICS/CMS User's Guide

Auxiliary directory errors 84
Using a mode 2 disk for the PL/I compiler 85

General information on using high-level languages with CICS/CMS 85
OS/VS COBOL information for CICS/CMS 86

Default COBOL compiler options 86
Sequencing COBOL programs 86

PL/I information for CICS/CMS 86
DefaultPL/I compiler options 86
Sequencing PL/I programs 86
SYSPRINT output ... 87
Handling program checks 87
PLIDUMP and REPORT output 88
Use of storage ... 88
CICS abends .. 88

COBOL II information for CICS/CMS 88
Default COBOL II compiler options 88
SYSPRINT output and DEBUG input/output 88
Improving performance .. 89

CICS/CMS support for the CICS/VS API 90
Naming your application files 91

Chapter 7. Preparing your application for testing .•............... 93
The CICS/CMS temporary disk (Z-disk) 93
Assembling maps ... 94

Output from assembling a map 94
File output ... 94
Screen output ... 95

Translating and compiling/assembling programs 95
Output from the translate phase 96

File output ... 96
Screen output ... 96

Output from the compilation phase 97
File output ... 97
Screen output ... 97

Translating programs without compilation/assembly 98
CICS/CMS macro libraries ... 99

Changing your user macro library 99
Adding members to a macro library 99
Replacing members in a macro library 100
Deleting members from a macro library 100
Compressing a macro library 100
Further information on macro libraries 101

Chapter 8. Preparing to test an application••••.•.•..•... 103
Updating CICS/CMS tables 103

Program table .. 104
Transient data destination table 104
Temporary storage table .. 104
File table ... 104
Tables for remote resources 105

Starting and using the remote server 105
Transferring to a remote CICS/VS system from a PC 105
Transferring to a remote CICS/VS system from a terminal 106
Starting the remote server 107
Stopping the remote server 109
Recovery of remote resources 109

Preparing local data files ... 109
Converting local CMS files to CICS/CMS non keyed files 110

Contents Xl

Converting local CMS files to CICS/CMS keyed files 110
EFH14 fields for defining the input file 111
EFH14 fields for defining the output files 111
EFH14 fields for defining records to convert 111
EFH14 field for requesting trace 112
Output from the EFHUCMS1 utility 113

General file conversion ... 113
CCU2 fields for defining the file to be converted 114
CCU2 field for defining the output file 115
CCU2 fields for defining records to be processed 115
Output from CCU2 .. 116
Using CCU2 to reorganize CICS/CMS keyed files 116

Safeguarding your data files 117
Reading data from your virtual reader 118
Changing your CICS/CMS environment within a session 119

General rules for using panels EFH121 and EFH1221 120
Scope of the changes ... 121
Scope of the language definition 121
Blank table names .. 121
Using panel EFH121 to define how program checks are handled 121
Changing terminal characteristics from panel EFH121 121
Changing the dynamic storage area size from panel EFH121 121
Cancelling changes made on panels EFH121 and EFH1221 122

Chapter 9. Testing an application ..•.•••.•.•...•.•••.•...•...• 123
The CICS environment ... 124

Using PA2 in the CICS environment 124
Resources lost at the end of a CICS test session 124
Returning to panel EFH12 at the end of a CICS test session 124

Testing tools ... 125
The execution diagnostic facility 125

CICS/CMS EDF features 125
Turning EDF on and off 125

The command level interpreter 126
The temporary storage browse facility 126
Using the CICS/CMS escape feature 127

Turning EDF on and off (PF9) 127
Executing CECI (PF4) 127
Executing CEBR (PF2) 128
Starting another VM session (PF8) 128
Using the CP/CMS command line 128
Testing an application's use of PAl and PA2 128
Running nested transactions 129

Testing CICS/VS features that CICS/CMS does not fully support 129

Chapter 10. Testing applications that print •.......•••.•........ 133
Testing applications that print on a 3270 printer terminal 134

CICS/CMS support for 3270 printer data streams 134
Testing SCS printer applications 135
EFHPROF definitions for printing 136

Defining the page and printer size 136
Defining the simulated printer 138

Running printer transactions 138
Starting printer transactions directly 139
Starting a printer transaction using interval control 139

Output from a 3270 printer transaction 140
General rules for 3270 printer transactions 140

Xll CICS/CMS User's Guide

Chapter 11. Making program corrections and retesting 141

Chapter 12. Shortcuts for experienced CICS/CMS users••.••. 143
Assembling BMS maps ... 143

Sample EFHMAPCR commands 144
Translating and compiling programs 144

Sample EFHTC commands 146
Translating programs .. 146
Converting CMS files to the CICS/CMS structure 146

Sample EFHUCMS1 commands 148
Preparing tables .. 149
Starting CICS/CMS ... 149

Chapter 13. Transferring tested applications to CICS/VS ...•..••..• 151
Transferring maps and programs to CICS/VS 151

Transferring programs and maps to a guest CICS/VS system 152
Transferring programs and maps to a remote CICS/VS system 153

Transferring macro library members to CICS/DOS/VS 153
Preparing macro library members for transfer 154

Transferring data files to CICS/VS 154

Part four-Diagnosing and solving problems 157

Chapter 14. How CICS/CMS reports problems .•..•.......•.....• 159
Messages you can receive when using CICS/CMS 159

Messages during a CICS test session 160
Messages outside the CICS test session 160

Messages from CMS ... 160
Messages from CICS/CMS EXECs 161
Messages from CICS/CMS utilities 161

Messages written to CMS files 161
Translator messages ... 161
Compiler/assembler messages 161

The CICS/CMS error handler display 161
Error handler display fields 162

"Program Name" line .. 162
"Message" line ... 162
CICS environment status line 163
Explanation lines ... 163
Function key meanings 164

Error handler displays for abends 165
Example error handler panels 165

Example information message 165
Example warning message 166
Example error message 166
Example abend message 167

The CICS/CMS error log ... 168
Restricting the life of the error log 169

Restricting the error log to a terminal session 169
Restricting the error log to a CICS/CMS session 169
Restricting the error log to a CICS test session 169

Chapter 15. Debugging tools•..••......•........ 171
General debugging tools .. 171

The CICS/CMS error handler 172
Program listings .. 172

Contents XUl

CICS/VS interactive tools 173
CICSjCMS trace facilities

Requesting trace through your EFHPROF EXEC file
173 j 175

Requesting trace through the EFH121 panel 175
Storage analysis tools 176

The EFHUMAP utility .. . 176
Example output from EFHUMAP 176
Description of EFHUMAP output 177
Requesting EFHUMAP output 177

The EFHUSTG log 177
Requesting EFHUSTG output 177
Controlling the number of entries in the EFHUSTG log 178
Example output from EFHUSTG 178
Description of EFHUSTG output 179

CPjCMS debugging tools 180
CMSDEBUG 181
PER .. . 181
CP debugging commands 182

Systems debugging tools 182
CP jCMS trace facilities 182

CP trace 183
SVC trace .. . 183

CPjCMS dump facilities 183
CICS/CMS terminal trace 184

Using the EFHTLOGT EXEC 185
Processing terminal trace logs from within XEDIT 187

Field engineering trace .. . 187
Storage freeze 188
Storage violation .. . 188
Global trap/trace exit 188
Where to find more information 189

Remote server trace ; 189

Chapter 16. How to diagnose common problems 191
Loops 191
Waits 192
Incorrect output 192

Check any messages that appeared 193
Check the instruction flow through your program 193
Check the data flow through your program 193

Abends .. . 194
Program checks 194

Debugging program checks with SPIE 194
How to use SPIE information 195

Debugging program checks without SPIE 196
Debugging program checks with CP 196
Program checks in the translator 196

Where to find more information 196

Chapter 17. What if you find an error in CICS/CMS? •••.•••.••••.. 199
Making sure you've found a CICS/CMS problem 199
What we need to know to help 200

The AP AR error description 200
Information needed to re-create the problem 201
Describing the circumstances leading to the problem 201

.J

XIV CICS/CMS User's Guide

Appendix A. System administration: installation, customization and
service ... 203

Installing CICS/CMS on a VM system 204
The contents of the distribution tape 204
Installing CICS/CMS .. 205
Checking for correct installation 206

Getting the remote server ready to use 209
Preparing CICS/VS for remote server use 209
Setting up the connection between CICS/CMS and CICS/VS 210

Remote server-local connection 210
Remote server-remote connection 210

Customizing CICS/CMS .. 211
Changing the EFHSETP EXEC 212
Changing CICS/CMS EXECs 213

Using the H Assembler under VM/SP 213
Changing the CICS/CMS-supplied macro libraries 213
Changing the default compiler options 213
Changing the default language from COBOL 214
Changing the PF key definitions 214

Ensuring application programmers have enough virtual storage 214
Applying service to CICS/CMS 214

Preventative service ... 215
Corrective service ... 215

Copying service files to your VM system 215
Rebuilding your CICSjCMS system 216
Incorporating service changes into your master CICSjCMS system 220

Appendix B. Differences between CICS/CMS and CICS/VS •••••..... 225
General points ... 225
File control .. 225
Terminal control .. 226
DL/I support ... 227
Temporary storage .. 227
Program control .. 227
Standard transactions .. 228
New system programmer commands in CICS/OS/VS 1.7 228

Appendix C. CICS/CMS panels ..•....•....•••••••••....••.••• 229
How CICSjCMS panels connect 229
The principal CICS/CMS panels 231

The program development selection panel (EFH1) 232
Panel display .. 232
Option descriptions .. 232
PF and P A key functions 233

The application objects listing panel (EFHll) 234
Panel display .. 234
PF and P A key functions 234

The execution panel (EFH12) 236
Panel display .. 236
Functions available ... 236
PF and P A key functions 237

The escape panel (EFH122) 239
Panel display .. 239
Functions available ... 239
PF and P A key functions 239

Contents xv

Appendix D. CICS/CMS parameters •..........••.........••... 241\
EFHSETPjEFHPROF parameters 241 ..."

General rules for CICSjCMS parameters 241
Debugging parameters ... 242
General parameters .. 242
Terminal control parameters 244
Parameters for program control 247
Parameters for the error handler log file 248
Parameters for terminal control trace 249
Parameters for destination control table 249
Intrapartition transient data parameters 249
Parameters for PSB directory 250
Parameters for temporary storage table 250
Parameters for file control table 250
Parameters for the CICSjCMS trace file 251
Other parameters ... 251

Appendix E. CICS/CMS trace entries .•••.••.....••...•........ 253
EFHMAIN entries .. 254
EFHTCAI entries ... 255
EFHTRANI entries .. 256
EFHPCP entries .. 256
EFHPCPI entry .. 258
EFHPCIER entry ... 258
EFHTCPI entry .. 258
EFHEJlR entries .. 258
EFHESCAP entry ... 259
EFHEDFX entries ... 259 '\
EFHTCS entry ... 259 ...",J
EFHTCR entry ... 260
EFHFCP entries .. 260
EFHTDINP entry ... 261
EFHTDEXP entry ... 261
EFHISP entries ... 262
EFHXVCOM entry .. 263
EFHCPIO entry .. 263
EFHICP entries .. 263
EFHSPP entries .. 264
EFHFCPT entries ... 264
EFHFCPI entry .. 265
EFHTSPI entry ... 265
EFHTDPI entry .. 266
EFHDLII entry ... 266
EFHFCP2 entries ... 266
EFHCCMS entries .. 268
EFHTCSP entry .. 268
EFHTCPW entry ... 268

Index •..........•........•.•..•......••..........••..... 269

XVI CICS/CMS User's Guide

Figures

1. CICS/CMS program development selection panel (EFH1) 12
2. CICS/CMS application objects panel (EFH11) 13
3. Screen output from a successful BMS map assembly 15
4. File output from a successful BMS map assembly 16
5. Screen output from a successful translate/compile 17
6. File output from a successful translate/compile 18
7. CICS/CMS execution panel (EFH12) 19
8. Sample application~initial selection menu 20
9. Error handler report of a missing program ,.................. 21

10. CICS/CMS application resource definition panel (EFH13) 22
11. CICS/CMS program table file list (EFH131) 23
12. Sample CICS/CMS program table 23
13. EDF display before executing a READ command 27
14. Error handler message for a nonexistent file 28
15. EDF display after executing a READ command ~ 28
16. Sample application error report 29
17. Error handler display for a user abend 29
18. Initial display from CECI 30
19. Sample CEBR display .. 31
20. CICS/CMS escape panel (EFH122) 32
21. A typical PC storage configuration for CICS/CMS 41
22. VM/PC session selection menu 43
23. CICS/CMS program development selection panel (EFH1) for PC users 44
24. Panel for copying CICS/CMS from the host to a PC/370 (EFH15) ·44
25. Sample EFHPROF EXEC 48
26. CICS/CMS message telling you how to display BMS pages 53
27. CICS/CMS display for an EXEC CICS START command 55
28. CICS/CMS display for a successful START command 55
29. CICS/CMS program table display 68
30. Changing a program table on the EFH121 panel 69
31. Sample program table .. 71
32. Sample transient data destination table 74
33. Sample temporary storage table 76
34. Sample file definition table 77
35. Sample PSB directory .. 78
36. Sample file list of application obj~cts 91
37. Output from a failing compilation 98
38. Remote session escape display 107
39. Remote server logo ... 108
40. Converting CMS files to keyed CICS/CMS files (panel EFH14) 110
41. Converting remote VSAM files to CICS/CMS files (panel CCU2) 114
42. CICS/CMS parameter definition panel (EFH121) 119
43. Changing CICSjCMS parameters from the escape panel 120
44. Message panel for a journal control request 130
45. General form of error handler display 162
46. Sample information message 165

Figures XVll

47. SSamPlle warning message 166, '\ \,
48. amp e error message 167 ..."
49. Sample abend error message 168
50. Sample CICSjCMS trace output 174
51. Sample EFHUMAP output 176
52. Error handler display for frozen EFHUSTG log 178
53. Sample EFHUSTG output 179
54. Sample output from terminal trace 184
55. The CICSjCMS service panel (EFHI5) 217
56. Service panel for CICS/CMS load modules (EFHI51) 219
57. The corrective service process 222
58. Pane1 flow diagram ... 230

J

XVlll CICS/CMS User's Guide

Questionnaire

(CICS/CMS Release 1)

CICS/CMS User's Guide

To help us produce books that meet your needs, please fill in this questionnaire. It would help us if
you provide your name and address in case we need to clarify any of the points you raise. Please
understand that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

1. Please rate the book on the points shown below

The book is:

accurate 2 3
readable 2 3

well laid out 2 3
well organized 2 3

easy to understand 2 3
adequately illustrated 2 3
has enough examples 2 3

And the book as a whole?

excellent 2 3

2. When using this book, did you find what you were looking for?

What were you looking for?

What led you to this book?

Did you come straight to this book?

4 5 inaccurate

4 5 unreadable

4 5 badly laid out

4 5 badly organized

4 5 incomprehensible

4 5 inadequately illustrated

4 5 has too few examples

4 5 poor

3. Which topics does the book handle well? 4. And which does it handle badly?

5. How could the book be improved?

6. How often do you use this book?

Less than once a month? 0 Monthly? 0 Weekly? 0 Daily? 0

7. What sort of work do you use GIGS for?

8. How long have you been using CIGS? __ years/months

9. Have you any other comments to make?

Thank you for your time and effort. No postage stamp necessary if mailed in the USA. (Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail directly to
either address in the Edition Notice on the back of the title page.)

SC33-0285-0

Questionnai re

Fold and tape

Fold and tepe

Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 6R1 H,
180 Kost Road,
Mechanicsburg, PA 17055, USA

Please Do Not Staple

1111

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold end tape

Name

==.::~® - --------- ~ --- Job Title. Company - -- ------- .. --
-~-,,- Address .. .

.. Zip

J

Part one-First steps

This Part of the book gives you:

• A general introduction to CICS/CMS

• An opportunity to see CICS/CMS in action.

Part one-First steps 1

J

Chapter 1. Introduction to CICS/CMS

Until now, developing CICS application programs has involved scheduling access
to a CICS/VS test system, preparing updates to tables and, sometimes, switching
between different systems to edit, translate, compile, and test CICS programs and
maps. Some of this work has also involved wrapping job control language (JCL)
statements round programs, and submitting them to batch queues.

CICS/CMS changes all that, by providing a CICS system specifically designed to let
you develop CICS applications interactively. In a single environment, you can
create, edit, translate, compile, and execute your programs, and use the diagnostic
facilities of both CICS and CMS to check them out. CICS/CMS will run on a wide
range of IBM machines, including the PC/370.

Who is this book for?

The main aim of this User's Guide is to tell application programmers all about
CICS/CMS. The you in the guide is therefore almost always an application
programmer. However, the guide also contains information needed by the person
responsible for administering a CICS/CMS system (that is, installing it, tailoring it
to local requirements, and providing assistance when the application programmers
need it). This person may be a system programmer, or a senior application
programmer. Throughout this guide, we call him or her the system
administrator. We make sure you know when we're talking to the system
administrator, rather than to the application programmers.

We should also say something about the level of experience you'll need to use this
guide.

As its name implies, CICS/CMS runs under the Conversational Monitor System
(CMS) within VM. To understand this guide, and use CICS/CMS, you'll need to
know something about CMS and, in particular, about the way it handles files.

System administrators will need to know a lot more than just "something." They'll
need to be experienced VM users, who are also familiar with CICS and, in
particular, with CICS application programming.

If you're using CICS/CMS on a PC/370, you'll need to know something about the
general operation of the PC and about its VM system, VM/PC.

You don't, however, have to be a CICS expert to understand this guide as an
application programmer. It tries to give an overview of every topic it raises and,
where appropriate, refers less experienced users to introductory information. You
couldn't learn to become a CICS programmer using just CICS/CMS and this guide.
But we think you'll find the guide useful if you're using CICS/CMS as part of your
CICS/VS education.

Chapter 1. Introduction to CICS/CMS 3

If you are the system administrator, you will need to have quite a bit of experience. "\,\.
of both CICS and CMS to use effectively those parts of the guide that are written .."
for you.

What can you use CICS/CMS for?

You can use CICS/CMS to develop CICS application programs easily. The rest of
this section will add a few details to that simple statement, but it's the most
accurate answer to the question above. Two aspects of CICS/CMS, in particular,
make for easy program development:

1. CICS/CMS gives you all the facilities you need in a single-user environment.

2. The CICS/CMS environment has been designed for one task: developing CICS
applications.

If we look briefly at the way that you go about developing applications using
CICS/CMS, you'll see how it makes your work easier.

Creating and editing programs

As soon as you've got CMS going, you can start CICS/CMS with a single command.
The first thing CICS/CMS does is display a menu on your screen. One of the
options on the menu lets you list all the files associated with your current
application development. The application files (programs, maps, data files, and SO\
on) are held on CMS disks; the disks you need can be set up in your profile when ..."
you start CMS.

Using a standard CMS editor, such as XEDIT, you can then go on to create a new
program, or edit an existing one.

Translating and compiling programs

CICS/CMS lets you assemble your maps, and translate and compile your programs,
without adding any JCL to your source, and without leaving CICS/CMS.

CICS/CMS writes the listings from the assemblies, translations, and compilations
to easily-identifiable files, and stores these on a temporary CMS disk. You can
check immediately for errors in any stage, make any necessary corrections, and try
again.

Testing a program

With CICS/CMS, you can go straight from a successful compilation to testing
under CICS, with no preparation at all. You don't have to link-edit your
programs. You don't have to move your programs, maps, or data to a CICS/VS
system; you've already got one. And you don't have to ask anyone to update tables
for you. If you need to define resources to CICS/CMS, you can do so yourself but,
as you'll see, you don't often need to do so. When you do, you just edit a CMS file.

You execute a CICS program by asking for the CICS/CMS execution panel,
entering the program name, and pressing the ENTER key. The word "program" is
important. You don't have to put together a complete application before you start

4 CICS/CMS User's Guide

testing. If (as is likely) your application consists of many different programs, you
can test each one individually before you put them all together and test the
complete application.

If the program asks for data that isn't there, or links to another program that you
haven't yet written, CICS/CMS will complain. In a preliminary test of this kind,
however, you probably want to test only the logic of the program and the
correctness of EXEC CICS commands. By using the execution diagnostic facility
(EDF), you can simulate the program's behavior in a working environment. You
can invoke EDF by pressing a single PF key before (or during) the execution of
your program.

At some stage, you will want to test your application in more realistic conditions.
At that point, you will have to do a few things before you execute the application.
Let's look at the preparation you'll need to do.

How to use data files

Most CICS programs use some form of data, usually VSAM files or DL/I data bases.
You can use either from CICS/CMS.

To make it as easy as possible for you to create and maintain local data files,
CICS/CMS uses special CMS files that simulate VSAM files. You don't have to
create these files from scratch; CICS/CMS provides utilities to convert existing
files to the form it requires. One of the utilities converts existing local CMS files
into CICS/CMS pseudo-VSAM files; the other is a more general utility for copying
and converting files. Its primary purpose is to convert VSAM files, stored on a
remote CICSjVS system, into CICS/CMS pseudo-VSAM files, and store those files
on a CMS disk of your choice. However, you can also use it the other way round;
to send data files, that you've created using CICS/CMS, to a remote CICSjVS
system as VSAM files.

Once you've set up these pseudo-VSAM files on a CMS disk, there's nothing else
you have to do before using them from your program. You don't need to create or
change a file control table to use local files.

CICS/CMS will also let you use data files stored on a remote CICSjVS system. If
you want to use DL/I data bases, you can't use local versions, because CMS does
not support DL/I. CICS/CMS uses a feature called the remote server to let you
test programs containing EXEC DL/I calls. The same feature lets you access
VSAM files on a remote CICS/VS system directly, rather than using local
pseudo-VSAM copies.

If your program requests a resource that you have defined as being remote, the
remote server passes that request to your defined remote CICS/VS system. There,
the remote server transaction, CEHS, executes the request and ensures that any
data or messages get back to the program that made the request.

Before you try to use DL/I data bases or remote VSAM files, you have to ensure
that your program can get at them. You can:

1. Define the resource as being remote, in a CICS/CMS table.

Whenever you need to define a resource in CICS/CMS, you change a CMS file
that contains simple definitions of the resource you want. We refer to these
files as tables, since they serve the same purpose as CICSjVS control tables. As
you'll see in Chapter 5, "How CICSjCMS handles CICS resources," CICSjCMS

Chapter 1. Introduction to CICS/CMS 5

table files are easy to understand and easy to use; Most importantly, they let
you control the resources your programs need, without consulting anyone else. ..J

2. Establish the link to the remote CICS/VS system, by connecting to that system
and running the remote server transaction, CEHS.

As well as DL/I data bases and VSAM files, you can also access remote temporary
storage and transient data queues, and use interval control remotely.

Defining programs to CICS/CMS

We mentioned earlier that you can test a single program without having to change
a program control table (PCT), or anything like it. However, to test a complete
application, consisting of several programs, perhaps associated with more than one
transaction ID, you will have to do a little preparation. CICS/CMS has to be told
what the associations between the programs and transactions are. You don't have
to write any macros or use resource definition online to do this, or ask anyone else
to do it for you. You just edit a CICS/CMS table file, containing program
definitions.

Help with your testing

CICS/CMS provides the usual aids for testing CICS programs, and introduces some
interesting new features of its own. The CICSjVS aids it provides are:

• The execution diagnostic facility (CEDF transaction) to step through the
program, command by command

• The command level interpreter (CECI transaction) to check CICS statement
syntax and/or execute CICS statements one-by-one conversationally

• The temporary storage browse facility (CEBR transaction) to check the
contents of temporary storage or transient data queues.

You can also use CP or CMS debugging aids, such as:

• CMS DEBUG to examine the contents of storage, registers, or the program
status word (PSW)

• CP PER to monitor events in your virtual machine as your program executes

• CP ADSTOP to suspend a program's execution at specified points

• CP STORE to change the contents of registers or storage locations.

Among the new facilities that CICS/CMS provides are:

• The EFHUMAP utility to display the addresses of CICS/CMS modules and
CICS control blocks

• The EFHUSTG utility to trace the use of storage by a CICS application
program.

You'll find information on these, and other CICS/CMS testing and debugging aids,
in Chapter 15, "Debugging tools."

6 CICS/CMS User's Guide

When things go wrong, you'll find that CICSjCMS presents error messages in a
way that is in keeping with its interactive approach. Each error message is shown
on a separate panel. The panel identifies the source of the error and gives a
description of the nature and, where possible, the likely cause of the error.
Usually, you should be able to diagnose errors without referring to a manual.

Perhaps the most useful testing feature of all, however, exploits the fact that
you've got both CICS and CMS available to you at the same time. While you've
got CICS running, you can bring up an escape panel, at any time that CICS is
waiting for you to enter something at your terminal.

The escape panel offers a variety of services, including access to the CICS/VS
testing aids, and access to the CMS subset. You can suspend a program in the
middle of a test, and do a variety of useful things. You can use CECI to check the
validity of a CICS statement, use CEBR to check that the program is writing to
temporary storage correctly, use commands in the CMS subset to inspect or even
edit files, and so on.

When you have finished doing what you want from the escape panel, you can press
a single key to return to the exact point from which you escaped.

What can't you use CICS/CMS for?

You can't use CICS/CMS to write or test applications written using the CICS/VS
macro level application programming interface (API). CICS/CMS only supports
programs written using the command level API.

Apart from that, you can use CICS/CMS to test most of the features of CICS that
you could test on a CICS/VS system. There are, however, a few limitations on
what CICS/CMS can do. Most of these are imposed by the nature of CICS/CMS; by
the fact that it is a single-user system.

For example, CICS/CMS supports only one interactive terminal. This means that it
cannot execute an EXEC CICS command such as ROUTE, which sends a message to
an identified terminal or terminals.

What does CICS/CMS do with such commands when it finds them in your
programs?

Usually, it displays a message telling you that you have used an unsupported
feature, assumes that the command has executed correctly, and passes on to the
next statement in the program. You can check the correctness of all such
commands using CEDF or CECI. However, you won't know for certain that they
are going to do what you expect until you move your application from CICS/CMS
to your CICS/VS test system.

These limitations are few and, generally, you can be pretty certain that a program
that works on CICS/CMS will work on CICS/VS. But we must emphasize that
CICS/CMS is a useful addition to, not a replacement for, your existing application
development setup.

A list of the main differences between the CICS that CICS/CMS supports, and the
CICS that CICS/VS supports, is given in Appendix B, "Differences Between
CICS/CMS and CICS/VS."

Chapter 1. Introduction to CICS/CMS 7

The other main restriction that CICS/CMS imposes is on the terminals you can use.
CICS/CMS only supports PC/370s, and the 3270 terminals that VM/SP supports. .~
You'll find a list of these in the VM/ SP Terminal Reference manual. "'fIll

Note also that, if you're using a PC, and you need to use the remote server to gain
access to resources on a remote CICS/VS system, your PC must have the 3278/3279
emulation adapter, not the 3277 emulation adapter.

8 CICS/CMS User's Guide

Chapter 2. Getting to know CICS/CMS

Before we start describing CICS/CMS in detail, we'll give you a chance to see it in
action, using the sample application from the GIGS/VS Application Programming
Primer.

We'll start by telling you how to get CICS/CMS going, then run you through the
steps of entering, translating, compiling, and testing a CICS program. We won't
give too much explanation. One of the first things you'll notice is that CICS/CMS
doesn't need much; it's very easy to use.

The main aim of this chapter is to give you a broad outline of what CICS/CMS can
do, before we start to fill in the details in "Part two-Before you start developing
applications. "

Notes

1. The sample application is written in OS/VS COBOL. If you don't have access
to the OS/VS COBOL compiler or its libraries, you won't be able to try most of
the functions described in this chapter. It's still worth reading it, however, to
get a general idea of the flow of application development using CICS/CMS.

In "Checking for correct installation" on page 206, we describe a set of EXEC
CICS commands for the system administrator to use to check for correct
installation of CICS/CMS. You'll probably find it instructive to go through
that set.

2. CICS/CMS lets you use program function (PF) keys for most of its operations.
The CICS/CMS panels only show definitions for PF keys 1 to 12. If you are
using a terminal with 24 PF keys, you can use PF keys 13 to 24 for the
operations defined for keys 1 to 12. For example, to get help on any panel, you
can press either PFI or PF13.

3. Throughout this chapter (indeed, throughout most of this guide), we assume the
following:

• That you're using CICS/CMS with the IBM-supplied settings for PF keys.
For example, on the CICS/CMS panels where you can invoke a CMS editor
using a PF key, we always assume that the key is PF6.

• That you're using the IBM-supplied filemode (Z) for the CICS/CMS
temporary disk. .,

If you notice any difference between what we describe in this chapter and what
happens when you try it, ask your system administrator whether he or she has
modified CICS/CMS.

Chapter 2. Getting to know CIGS/CMS 9

Getting ready to use CICS/CMS

Before you can start using CICS/CMS from either VM/SP or VM/PC, your system
administrator has to install it on the host VM/SP system. We tell the system
administrator how to do this in "Installing CICS/CMS on a VM system" on
page 204.

As soon as CICS/CMS is installed on the host VM system, host-connected terminal
users can start using it, as explained below.

PC users who want to use CICS/CMS locally, however, will need to copy the master
version, stored on the host system, to their hard disks. Chapter 3, "Installing
CICS/CMS on a PC" on page 37 tells you how to do this. Once you've installed
CICS/CMS on your PC, you can continue with this chapter, starting at "Getting
ready to use CICS/CMS from a PC" on page 11.

As explained there, however, this process can take a long time. If you want to get
on with this chapter immediately, and you're using a PC, you might like to connect
to your master version of CICS/CMS directly, using your PC in 3278/3279 emulation
mode.

Getting ready to use CICS/CMS from a terminal

There are six steps in getting ready to use CICS/CMS, as follows:

1. Switch your terminal on.

2. Log on to VM.

3. IPL CMS.

4. Link to the system disk where your system administrator has installed
CICS/CMS.

5. Link to the system disk containing the compilers and libraries for the
languages you want to use. You can leave out this step if they're on the same
disk as CICS/CMS.

6. Issue GLOBAL commands for the libraries that you need.

It's more than likely that your systems people have set up your logon process so
that steps 3, 4, 5, and 6 are done automatically. If not, you type:

IPL eMS

for the third step; appropriate CMS LINK and ACCESS commands for the fourth
and fifth steps; and GLOBAL commands for the sixth step. We can't tell you here
what the exact form of those commands will be, but someone at your site will tell
you.

Having taken those six steps, you're ready to get CICS/CMS going, as described in
"Starting CICS/CMS" on page 11.

10 CICS/CMS User's Guide

Getting ready to use CICS/CMS fr~m a PC

We're assuming here that you've already installed VMjPC, CICSjCMS, and the
compilers and libraries you need, on your hard disk. If you haven't, read
Chapter 3, "Installing CICSjCMS on a PC" on page 37, before continuing.

Getting ready to use CICSjCMS couldn't be simpler. Just follow these few steps:

1. Switch on your PC.

2. OnCe it has loaded DOS, type the date and time.

3. Type VMPC to start the version of VM that runs on PCs.

4. Select the local session (option 2) on the VMjPC session selection menu.

5. Log on to VMjPC, unless your VMjPC profile is set up to do so automatically.

6. Type:

IPL CMS

to start CMS. In fact, you might be able to leave this step out, if your VM
profile is set up to start CMS automatically.

You are now ready to start CICSjCMS, as explained in the next section.

Starting CICS/CMS

To get CICSjCMS running, on a PC or a host-connected terminal, type:

CICSCMS

CICSjCMS will display its initial panel on your screen, as shown in Figure 1.

Chapter 2. Getting to know CICS/CMS 11

EFHl CICS/CMS PROGRAM DEVELOPMENT SELECTION

Select one of the following:

1 List Application Files
2 Execute Program/Transaction
3 List Resource Tables
4 Convert CMS file to CICS/CMS file
5 Erase Temporary Files
6 Release CICS/CMS Nucleus Extensions
7 Apply Service

Selection ===) 1

For application filelist specify the optional list criteria required:

Criteria ===) ACCT* * *

(c) Copyright IBM Corp 1985

PFl=Help PF3=End PA2=Enter CMS Subset

Figure 1. CICS/CMS program development selection panel (EFHl)

Notes:

1. Figure 1 shows the options available to the terminal user. If you're a PC user,
your option 7 reads:

Download from Host

which is how you put your own copy of CICS/CMS on your hard disk.

2. As shown in Figure 1, option 7 for host-connected terminal users says Apply
Service. No application programmer ever needs to use this option. It's there
for the system administrator to make changes to the master copy of CICS/CMS,
as explained in "Applying service to CICS/CMS" on page 214.

The sample application

If you select option 1 on panel EFH1 (just press ENTER), you will get a new panel,
showing all the files associated by the Cr iter ia selected on EFH1. The
CICSjCMS system that we supply has the criteria preset to:

filename ACCT*

Selects all files with filenames beginning with ACCT.

file type *

Selects files of any filetype.

filemode *

Selects files on any of the disks to which you currently have access.

12 CICS/CMS User's Guide

J

Make sure that the Selection and Criteria lines are the same as shown in
Figure 1. Press ENTER, and you will see the display shown in Figure 2.

Note: The filemode of the files in Figure 2 will be the letter associated with
whatever disk your system administrator has set your CICS/CMS system disk to be.
In all the examples in this chapter, we assume that the CICS/CMS system disk is
the B-disk, but it may well be difterent in your installation.

EFHll FILELIST:ACCT* * * Line 1 of 10

Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time
ACCT03 COBOL B2 F 80 70 2 3/01/86 15:43:14
ACCT04 COBOL B2 F 80 144 3 3/01/86 15:43:14
ACCT02 COBOL B2 F 80 378 8 3/01/86 15:43:13
ACCT01 COBOL B2 F 80 371 8 3/01/86 15:43:12
ACCTSET ASSEMBLE B2 F 80 171 4 3/01/86 15:43:11
ACCTOO COBOL B2 F 80 17 1 3/01/86 15:43: 11
ACCTFIL EFHVDATA B2 F 383 2 1 3/01/86 15:43:09
ACCTIX EFHVDATA B2 F 63 2 1 3/01/86 15:43:09
ACCTIX EFHVINDX B2 F 504 2 1 3/01/86 15:43:09
ACCTFIL EFHVINDX B2 F 504 2 1 3/01/86 15:43:08

PF1~He1p 2~Refresh 3~End 4~A1l this Name 5~Trans1ate/Compi1e 6~Edit
PF7~Backward 8~Forward 9~Insta11 10~MAP-TEXT&ADS 11~Execute 12~

~~==>

Figure 2. CICS/CMS application objects panel (EFHll)

Those of you who have studied the CICSI VS Application Programming Primer will
recognize the filenames in Figure 2 immediately. They are the program, map, and
data files for the sample application in that book. If you don't know the Primer,
you might like to take a bit of time out to see what the application does. But you
don't need to. You'll catch on to the purpose of the application when you run it.

Looking at the panel, it's possible to work out what each file contains, from its
filetype. You've got five OS/VS COBOL programs (ACCTOO through ACCT04), a
set of BMS maps (ACCTSET), and two pairs of data files (ACCTFIL and ACCTIX).

There are three things worth noting about these application objects:

1. The program and map files are "raw", that is, we haven't translated and
compiled or assembled them. We'll ask you to do that in just a minute but,
before you move on to the next section, you might like to have a look at some
of the files using your editor. Just move the cursor to the file you want, and
press PF6.

Note: "Standard" CICS/CMS, as supplied by IBM, uses the CMS editor,
XEDIT. It's possible that your system administrator has changed this so that
you can use your preferred CMS editor.

2. The data files are CICS/CMS versions of VSAM key sequential data set (KSDS)
files. We'll have more to say about them in "Setting up your data files" on
page 24.

Chapter 2. Getting to know CICS/CMS 13

3. Those of you who are familiar with the Primer application will notice that two
copybook files, ACCTREC and ACIXREC, appear to be missing. Don't worry,
you don't have to enter them yourself. They're kept in a special macro library
file, EFHCSTD, and those sample application programs that need them will find
them without your doing anything.

We'll describe EFHCSTD, and other macro library files, in "CICS/CMS macro
libraries" on page 99, but you don't need to know anything more about them to
carryon to the next section.

Assembling a map

The first thing you need to do to test the sample application is to assemble the
maps.

Move the cursor alongside the file containing the maps (ACCTSET), and press
PFIO. This runs an EXEC, EFHMAPCR, which assembles the maps and produces:

• Your physical map, on the file ACCTSET TEXT, on your A-disk.

• Your symbolic map description (DSECT), as a member of the special macro
library file:

EFHCUSER MACLIB A

CICS/CMS creates this file the first time you assemble a map, as you'll see
when you assemble ACCTSET. It then adds all future DSECTs to that macro
library file.

As we'll see in "CICSjCMS macro libraries" on page 99, CICSjCMS uses
different macro libraries for the different programming languages it supports.

If you now move the cursor alongside file ACCTSET, and press PFIO, you'll see the
display shown in Figure 3.

14 CICS/CMS User's Guide

EFH9175I Formatting 5 cylinders of temporary 3350 disk (BLKSIZE 1024) on 199 ...

EFH91821 Map ACCTSET being assembled for Application Data Structure

ASSEMBLER (XF) DONE
NO STATEMENTS FLAGGED IN THIS ASSEMBLY
EFH9183I DSECT assembly rc = 0
EFH9184I ACCTSET added to EFHCUSER MACLIB A. Return code = O.

EFH9186I Map ACCTSET being assembled to produce Object Deck

ASSEMBLER (XF) DONE
NO STATEMENTS FLAGGED IN THIS ASSEMBLY
EFH9187I MAP assembly rc = O.
EFH9193I ACCTSET TEXT A now created.

Figure 3. Screen output from a successful BMS map assembly

MORE ...

You will usually see the first line of the display only when you first assemble,
translate, or compile in any CICS{CMS session. It's the result of CICS{CMS setting
up disk space on the CMS Z-disk to hold listings. If you're using a PC, and you've
set up your Z-disk as described in "Organizing your PC storage for CICS{CMS,"
you won't see the message at all.

Note also that the exact form of the message will depend on the type of disks your
installation uses. The example above came from using our installation setup; yours
may well be different.

The messages beginning EFH tell you about the progress of the assembly. In this
case, the assembly has worked, so all the messages end in "I"; they are for
information only. Messages EFH9183I and EFH9184I confirm that the DSECT has
been created successfully, and added to the macro library file for the COBOL maps.
Because this is the first assembly you've done, CICS{CMS will create that file.

Messages EFH91871 and EFH9193I confirm the successful creation of the map.

If there were any problems with any part of the assembly, CICSjCMS would tell
you in this display. You'll find more about this in "Assembling maps" on page 94.

Clear the screen, and CICSjCMS will redisplay panel EFHll, with the cursor still
alongside the map file. If you press PF4, CICSjCMS will display all files having
that name, as shown in Figure 4.

Chapter 2. Getting to know CICSjCMS 15

EFHll FILELIST:ACCTSET * * Line 1 of 4

Cmd Filename Fi1etype Fm Format Lrec1 Records Blocks Date Time
ACCTSET TEXT A1 F 80 41 1 3/03/86 8:59:58
ACCTSET ASMLIST2 Zl F 121 1521 180 3/03/86 8:59:57
ACCTSET ASMLIST1 Zl F 121 601 72 3/03/86 8:59:27
ACCTSET ASSEMBLE B2 F 80 171 4 3/01/86 15:43:11

PF1:Help 2:Refresh 3:End 4:All this Name 5:Translate/Compile 6:Edit
PF7:Backward 8:Forward 9:Install 10:MAP-TEXT&ADS 11:Execute 12:

::::)

Figure 4. File output from a successful BMS map assembly

The display is a version of panel EFHll, showing only those files with the name
you selected with the cursor. In Figure 4 you can see four such files: the
assembled TEXT file, containing the physical map, stored on your A-disk; the
listing files from the two stages of the assembly, stored on your temporary Z-disk;
and finally, the source BMS map file, stored on the CICS/CMS system disk.

You won't see your DSECT in this display; CICS/CMS has put it in the macro
library file, which isn't called ACCTSET. If you want to check the contents of
ACCTSET, move the cursor on EFHll to the command line (the line at the bottom
beginning ====». Type:

FILELIST EFHCUSER * A

and press ENTER. You'll then get a CMS file list showing only your EFHCUSER
macro library file. You can check your DSECT in that file, using your editor.
However, all you can do is look at the DSECT with a CMS editor; you can't change
it. We'll discuss how you change MACLIB type files in "Changing your user macro
library" on page 99.

Translating and compiling a CICS program

Function key PF5 on panel EFHll is set to Translate/Compile. To translate
and compile or assemble a CICS source program, move the cursor alongside the
filename of the file containing the program, and press PF5. This executes the
CICS/CMS EXEC, EFHTC.

To try it out, you first need to get back to the ACCT* form of EFHl1. Assuming
you are currently looking at the macro library file EFHCUSER with your editor,
you need to press PF3 once (to leave the editor), again (to return to the ACCTSET
form of EFHll), then again (to return to the EFHll you want).

16 CICS/CMS User's Guide

J

Once you've reached the correct panel, move the cursor to ACCTOO COBOL, the
first of the programs in the sample application, and press PF5. As soon as EFHTC
begins the translation, it starts to write messages to your terminal, as shown in
Figure 5.

EFH9166I Translating ACCTOO COBOL B2 ...
EFHCTRAN (NUM
EFH9167I No translator messages.

EFH9094I Invoking COBOL compiler to process translated O/P
COBOL TRANOUT (BATCH APOST LIB NOTRUNC

REL2.4 OS/VS COBOL IN PROGRESS
EFH9144I Compilation complete, return code= 0 . ACCTOO TEXT on A DISK.

MORE ...

Figure 5. Screen output from a successful translate/compile

As you can see from the EFH messages, the translator has no problems to report,
and the compilation return code is O. This tells you that both translation and
compilation have been successful.

Clear the screen, and you'll return to the EFHn panel from which you started the
translation/compilation. Press PF4, and you will get a list of all the files with the
name ACCTOO, as shown in Figure 6.

Chapter 2. Getting to know CICS/CMS 17

EFH11 FILELIST:ACCTOO * * Line 1 of 4

Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time
ACCTOO TEXT A1 F 80 46 1 3/03/86 9:01:56
ACCTOO COBLIST Z1 F 133 123 16 3/03/86 9:01:55
ACCTOO TRANLIST Z1 F 121 40 5 3/03/86 9:01:49
ACCTOO COBOL B2 F 80 17 1 3/01/86 15:43:11

PF1~Help 2~Refresh 3~End 4~All this Name 5~Translate/Compile 6~Edit
PF7~Backward 8~Forward 9~Install 10~MAP-TEXT&ADS 11~Execute 12~

~~~=> 

Figure 6. File output from a successful translate/compile 

There are three new files. The ones with the filetypes TRANLIST and COBLIST, 
on your Z-disk, contain your translator and compiler listings respectively. The one 
with the filetype TEXT, on your A-disk, contains the translated and compiled 
program, which is ready to run. 

The important phrase is "ready to run". You've created a program TEXT file, and 
assembled the set of maps that it needs, and that's all you need to do to get this 
particular program ready for testing on CICS/CMS. You don't have to move to 
another system; you can run CICS here. And you don't have to do anything to 
your CICS system to get the program running. Since all the resources it uses are 
local, and since you're going to run it as a program, rather than as a transaction, 
you don't have to update any tables to define the resources it uses. 

Testing a CICS program 

So far, you've assembled the set of maps for the sample application, and translated 
and compiled the first of the programs that make up the application. In a later 
section, we'll ask you to get the rest ready and test the complete application. 
There's no reason, however, why you shouldn't just test the program you've 
prepared. If there's something wrong with the program that drives the rest of the 
application, it would be a good idea to fix it before doing anything else. 

Ensure that you are looking at an EFHll panel, with the cursor beside the file 
ACCTOO TEXT (your translated and compiled program). Press PFll (Execute), 
and CICS/CMS will display its execution panel, EFH12, as shown in Figure 7 on 
page 19. 

18 CICS/CMS User's Guide 

J 

."" ..." 



EFH12 EXECUTE PROGRAM/TRANSACTION 

Type the name of the transaction or program and any optional parameters: 

Transaction ===> 
Program ===> ACCTOO 

Status: 

EDF is OFF 

PFl=Help 2=CEBR 3=End 4=CECI 
PF7=Set-parms 8=VM-Session 9=EDF ON 10= 
PA2=CMS Subset 

CP/CMS Command ===> 

Figure 7. CICSjCMS execution panel (EFH12) 

5= 
11= 

6=Start-Clear 
12=Terminate 

We won't look at the full range offacilities available from this panel now; we'll get 
round to them later. For the moment, you just want to run the program you've 
compiled. 

As you can see, in moving from panel EFHll to panel EFH12, CICS/CMS has 
carried along the name of your TEXT file, and placed it in the Program field on 
panel EFH12. To run the program, you just press ENTER. 

It is at this point that the CICS component of CICS/CMS is initialized: when you 
run a transaction or program from panel EFH12. Here, and throughout this guide, 
we refer to this part of CICS/CMS as the CICS environment. We call the time you 
spend in that environment, that is, the time from starting a transaction or program 
from panel EFH12, to returning to panel EFH12, a CICS test session. This helps 
to distinguish the testing part of application development from the CICSICMS 
session, which is everything that happens between entering the CICSCMS 
command, and returning to CMS. 

As you'll see in "The CICS environment" on page 124, there are some differences 
between what you can do in a CICS/CMS session and what you can do in the CICS 
environment within that session. 

As ACCTOO starts, CICS/CMS clears the execution panel (EFH12), and displays a 
screen showing the program name in the top left-hand corner. When this clears, 
you'll see the application's initial selection menu, as shown in Figure 8 on page 20. 

Chapter 2. Getting to know CICSjCMS 19 



ACCOUNT FILE: MENU 

TO SEARCH BY NAME, ENTER: 

SURNAME: FIRST NAME: 

FOR INDIVIDUAL RECORDS, ENTER: 

REQUEST TYPE: ACCOUNT: PRINTER: 

REQUEST TYPES: D DISPLAY A ; ADD x ; DELETE 
P ; PRINT M MODIFY 

THEN PRESS ENTER -OR- PRESS "CLEAR" TO EXIT 

Figure 8. Sample application-initial selection menu 

ONLY SURNAME 
REQUIRED. EITHER 
MAY BE PARTIAL. 

PRINTER REQUIRED 
ONLY FOR INT 
REQUESTS. 

Give it something to do. Try entering D (for Display) for the REQUEST TYPE, and 
any five-figure number for the ACCOUNT. 

Note: If you are running CICS/CMS as supplied by IBM, it will not convert 
anything you enter in the CICS environment from lowercase to uppercase. The 
sample application accepts requests in uppercase only, so that is how you must 
enter them. We tell you how to ask CICS/CMS to translate all your entries into 
uppercase in "Terminal control parameters" on page 244. 

When you've entered your request on the sample application menu, press ENTER. 
You'll get a new screen, containing nothing but the message: 

THE FOLLOWING NAMES ARE UNDEFINED: 
ACCTOI 

What has happened is this: 

• The first program, ACCTOO, has finished, setting a return transaction ID of 
AC01. 

• The program table supplied with CICS/CMS defines ACCTOI as being the 
program for ACOl, as shown in Figure 12 on page 23. 

• You haven't translated or compiled ACCT01 yet, so, when CICS asks CMS for a 
file called ACCTOI TEXT, CMS can't find it, and displays the message above. 

The CMS screen has MORE. .. in the bottom right-hand corner, so you need to 
press CLEAR to get the next display, which is a CICS/CMS error handler panel 
giving more information about the problem. This display is shown in Figure 9 on 
page 21. 

20 CICS/CMS User's Guide 



EFH125 ERROR HANDLER FUNCTIONS 

Program Name: Unknown 

Message EFH0450E has been generated 

After this screen the CICS environment will CONTINUE 

Module ACCTOI not successfully loaded. 
Return code from CMS for INCLUDE command ~ 4 
Perhaps ACCTOl TEXT does not exist or 

there are unresolved external references. 

Refer to LOAD MAP A. 

Press ENTER to Resume 

PF1~Help PF3~End PF5~Suppress-Msg 

PF9~Reset-Msgs PF12~Terminate PA2~Escape 

Figure 9. Error handler report of a missing program 

03/03/86 09:05:20 

Line Number: Unknown 

PF6~Redisplay-Screen 

We won't look at the form of the error handler display here, or describe the 
facilities available from its PF keys. We deal with it in "The CICS/CMS error 
handler display" on page 161. 

It's worth noting, however, how much help the error handler gives you. It suggests 
two possible reasons for the failure, one of which is: 

ACCTOI TEXT * does not exist 

If you now press PF12, CICS/CMS will take you back to the execution panel 
(EFH12). 

Testing the complete application 

Now you've seen how easy it is to test a CICS program using CICS/CMS, you can 
test the complete application. Before doing so, however, you need to translate and 
compile the four remaining programs (ACCTOI to ACCT04). 

Press PF3 on panel EFH12. This will return you to the ACCTOO form of panel 
EFHl1. Press PF3 again, and you will return to the ACCT* form of EFHl1. 

You then need to press PF5 against each application program name. You'll notice 
that CICS/CMS does not display a new list of files after each 
translation/compilation. If you want the file list to show the TEXT and listing 
files, you'll need to press PF2 (Refresh) after each operation. 

Once you've translated and compiled all the source programs, you're ready to test 
the complete sample application. Before you do so, however, let's look at what 
you'd have to do to prepare for a test if this were your own application. 

Chapter 2. Getting to know CICS/CMS 21 



Updating tables 

If you were developing your own application, it is at this point that you would need 
to update a table. You would need to add entries to the program table to associate 
programs with the transaction 1D(s). However, we have supplied a predefined 
program table for the sample application, so, here, you don't have to do anything. 
It's worth looking at the table, however, to see how easy it is to use and to change. 

If you've been translating and compiling the sample programs, as suggested above, 
you'll currently have some form of EFH11 panel on your screen. Press PF3 to 
return to panel EFHl. Now select option 3. C1CS/CMS will display a new panel, 
as shown in Figure 10. 

EFHl3 CICS/CMS APPLICATION RESOURCE DEFINITION 

select one of the following: 

PFl=Help 

1 List Program/Transaction tables 
2 List File Tables 
3 List Transient Data Queue tables 
4 List Remote Temporary Storage tables 
5 List PSB Directories 

Selection ===> 1 

PF3=End PA2=Enter CMS Subset 

Figure 10. CICSjCMS application resource definition panel (EFH13) 

Option 1 (the default) selects any program tables you have. Press ENTER, and 
you'll get a new display as shown in Figure 11 on page 23. 

22 CICSjCMS User's Guide 



EFH13l FILELIST:* EFHTPROG * 

Cmd Filename Filetype Fm Format Lrecl 
CICSCMS EFHTPROG B2 F 80 

Records 
24 

PFl=Help 2=Refresh 3=End 4=Sort(date) 
PF7=Backward 8=Forward 9=Install 10=Cursor 

====> 

Figure 11. CreS/CMS program table file list (EFH131) 

Line 1 of 1 

Blocks Date Time 
1 3/01/86 17:00:18 

5=Sort(size) 
11= 

6=Edit 
12= 

CICSjCMS tables are CMS files that you have defined as tables. Your system 
administrator will set up default definitions, but you can set up your own, as 
explained in Chapter 4, "Setting up your CICS/CMS environment" on page 47. 
Here, we are using the IBM-supplied defaults for a program table: a file with the 
filename CICSCMS and the filetype EFHTPROG. 

If you now press PF6, you can look at the CICS/CMS sample program table. It 
contains the table entries for the application programs, as shown in Figure 12. 

* ********************************************************************** 
* EXAMPLE OF A CICS/CMS PROGRAM TABLE * * ********************************************************************** 
* For full details please refer to CICS/CMS User Guide. 
* Comment lines commence asterisk space. 
* Program name is the name of a TEXT file. 
* Entry name is name of PROGRAM-ID(COBOL), external procedure (PL/I) or 
* CSECT (Assembler). This field may be omitted if same as program 

* name. 
* Language is ASSEMBLE, PLI, COBOL or COBOL2. 
* Load method is INCLUDE (default) or NUCXLOAD. 
* Data is column dependent as indicated by the following numbers. 
* 11 21 31 41 
* program entry language load transact 
* name name method or /PFnn 
ACCTOO ACCTOO COBOL INCLUDE ACCT 
ACCTOl ACCTOl COBOL INCLUDE ACOI 
ACCT02 ACCT02 COBOL INCLUDE AC02 
ACCT03 ACCT03 COBOL INCLUDE AC03 
* ACLG and ACOS are 3 alternative transaction-ids for ACCT03 

ACLG 
ACOS 

ACCT04 ACCT04 COBOL INCLUDE AC04 

Figure 12. Sample CICS/CMS program table 

Each program has a separate entry in the table. The fields in each entry must start 
in defined columns, as shown in Figure 12. They define, in turn: 

Chapter 2. Getting to know CICS/CMS 23 



• The program name (starting in column 1). 

• The program's entry point (starting in column 11). Here, the entry point is the 
same as the program name. 

• The language in which the program is written (starting in column 21). This is 
COBOL for the sample application programs. 

• The way that the program is loaded (starting in column 31). This is INCLUDE 
for all the sample application programs. 

• The transaction ID associated with the program (starting in column 41). 

Note how we have associated ACCT03 with its three transaction IDs, by listing 
those IDs in the transact column. 

If you need to change a particular entry, or add a new one, you just use your 
editor. 

Setting up your data files 

If you were developing an application that needed data files, you'd need to make 
the files available before testing it. 

We've made it easy for you here by providing the data files the sample application 
needs: ACCTFIL and ACCTIX. You may remember from Figure 2 on page 13 that 
these files in fact come as four files: two with the filetype EFHVDATA, and two 
with the filetype EFHVINDX. This is the way that CICS/CMS simulates key 
sequential data set (KSDS) VSAM files. It lets you use the EXEC CICS commands 
associated with CICS/VS file control on CMS files, without making any changes to 
those commands. 

How do you create such files? You'll be pleased to hear that you don't have to 
create them yourself, from scratch, using your editor. CICS/CMS provides two file 
utilities: one converts CMS files to CICS/CMS pseudo-VSAM files; the other, 
among other things, copies VSAM files from a remote CICS/VS system, converts 
them into pseudo-VSAM files, and saves the converted files on one of your CMS 
disks. 

If this were your own application, you'd almost certainly have to use one of the 
utilities at this point to prepare your data. Since we've done it for you, however, 
we needn't say anything more about data files at the moment. We describe the 
form of pseudo-VSAM files in detail in "How CICS/CMS supports VSAM files" on 
page 60, and the conversion utilities in "Converting local CMS files to CICS/CMS 
keyed files" on page no and "General file conversion" on page 113. 

There is one more thing that you might think you have to do at this stage; update 
the file control table (FCT). In fact, as we'll explain fully in "File tables," you only 
have to define files in a table if: 

• They are new files that you're going to create 

• They are files that you want to access on a remote CICSjVS system, without 
using the SYSID option on your EXEC CICS commands 

• You want to write information to an existing, variable-length file, and the 
information is longer than the file's current maximum record length. 

24 CICS/CMS User's Guide 



Because the files that this application uses are existing, fixed-length, local files, 
you don't have to define them in a table. There is one piece of file preparation you 
will have to do, just this once, before you test the complete sample application. At 
the moment, the sample data files are on your CICS/CMS system disk. While they 
are there, you can only read them; you can't write anything to them. Since we'll be 
asking you to add information to the files in some of the sections that follow, you'll 
need to copy them (using CMS's COPYFILE command) from the system disk to your 
A-disk before going on to the next section. 

To do this, you need to go through the following steps: 

1. Return to the ACCT* form of EFHll panel. Assuming you are still looking at 
the sample program table, you need to press PF3 once (to return to panel 
EFH131), again (to go to panel EFH13), then again (to go to panel EFHl). 
From there, you can press ENTER to display panel EFHl1. 

2. On panel EFHll, you need to copy four files: the two EFHVDATA type files, 
and the two EFHVINDX type files, with the names ACCTFIL and ACCTIX. 
Move the cursor down the column headed Cmd, until it is alongside the first of 
these files. Type the CMS command: 

COPYFILE / = = A 

This means "make a copy of the file indicated by the cursor, giving it the same 
filename and file type, but a filemode of A". Don't worry about the command 
overwriting the rest of the information in the line; it doesn't matter. Before 
you press ENTER, use your "carriage return" key to move the cursor alongside 
each of the other three files, and type an "equals" (=) beside each one. This 
tells CMS to repeat the COPYFILE command for each file. Press ENTER, and, 
when CMS indicates that the command is complete by displaying an asterisk (*) 
beside each filename, press PF2. This will refresh the display, and you'll see 
that you have copies of the four data files on your A-disk. 

Testing a CICS transaction 

Because the CICS/CMS program table for the sample application is predefined, and 
the data files prepared, you can test it as soon as you've assembled all the maps 
and translated/compiled the programs. 

To test the application, you need to display the execution panel (EFH12). 
Assuming you have just copied the data files, as described at the end of the 
previous section, you need to press PF3 to return to panel EFH1. On EFHl, select 
option 2 to display panel EFH12. On the line that says: 

Transaction ===> 

type the transaction ID for the application, ACCT. Press ENTER, and the 
application will run. 

If you're not familiar with the CICS/VS Application Programming Primer, you will 
probably never have seen the sample application in action before. It manages 
customer accounts for an imaginary store. Through a series of menus, its users can 
display, add, remove, and modify customer records. You might like to tryout some 
of these functions before moving on to the next section. 

Chapter 2. Getting to know CICS/CMS 25 



Notes: 

1. The sample data file we supply only contains a single record: account number 
11111. There's nothing to stop you adding a few yourself, however. 

2. When you've finished trying out the sample application, you'll need to get back 
to panel EFH12 before going on to the next section. There are three ways of 
doing this: 

a. If you press CLEAR or ENTER on one of the sample application's panels, 
~ou'll get a blank screen. To get back to EFH12, you enter: 

CCMS QUIT 

This is a CICSjCMS command that lets you go back to the execution panel 
at any time that CICS is waiting for a transaction ID. 

b. If your screen is displaying a CICSjCMS error handler panel (EFH125), you 
can press PF12 to get back to panel EFH12. 

c. If you press PA2 on any panel where CICS is waiting for you to enter 
something, you will display the CICSjCMS escape panel, EFH122. Pressing 
PF12 on that panel will return you to panel EFH12. 

Testing tools 

To help you test your applications, we've provided some of the interactive CICSjVS 
tools with CICSjCMS, and provided a feature, unique to CICSjCMS, that lets you 
take full advantage of having both CICS and CMS available at the same time. This 
section introduces some of the testing tools. 

The execution diagnostic facility 

The execution diagnostic facility (EDF) lets you monitor the execution of the 
EXEC CICS commands in your transactions, by running them under the control of 
another transaction, CEDF. As a transaction runs, CEDF interrupts its execution 
at defined points, and displays one of its panels on the terminal. The points at 
which you get this display include: 

• The start of the transaction 

• Before and after execution of each EXEC CICS command. 

To see how useful EDF can be when you use it with CICS/CMS, try running the 
sample application with EDF turned on, and simulate an error to see the results. 

Press PF9 on panel EFH12. You'll see that, in the panel's Status area, EDF 
changes from OFF to ON. At the same time, the definition of PF9 changes from EDF 
ON to EDF OFF. You can tell from this that PF9 is a switch. Whatever the current 
status of EDF is when you press PF9, it switches to the opposite. 

Now run the sample application by entering ACCT in the Transaction field, and 
pressing ENTER. Continue to press ENTER to step through the EDF displays 
until the initial transaction ends. You can then continue to the next transaction, 
under EDF's control, by changing NO to YES in the bottom right-hand corner of 

26 CICS/CMS User's Guide 

J 



the final EDF display for the first transaction, and pressing ENTER. The ACOI 
transaction will then start. 

Continue to press ENTER until you see the application menu. Enter D (for 
display) for the REQUEST TYPE, and some random 5-figure number (say, 79999) for 
the ACCOUNT. Carryon pressing ENTER until you get the EDF panel indicating 
that it is about to execute an EXEC CICS READ on the application file, as shown 
in Figure 13. 

TRANSACTION: ACOI PROGRAM: ACCTOI 
STATUS: ABOUT TO EXECUTE COMMAND 

TASK NUMBER: 0000008 DISPLAY: 00 

EXEC CICS READ 
DATASET (' ACCTFIL ') 
INTO (' ............................................................. ' ... ) 
LENGTH (383) 
RIDFLD ('79999 ') 

OFFSET:X'002064' LINE: 237 EIBFN=X'0602' 
RESPONSE: 

REPLY: 
ENTER: CONTINUE 
PFI : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED 
PF4 : SUPPRESS DISPLAYS PFS : WORKING STORAGE PF6 : USER DISPLAY 
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS 
PFlO: PREVIOUS DISPLAY PFll: UNDEFINED PF12: ABEND USER 

Figure 13. EDF display before executing a READ command 

Before you let the program continue, you've got a perfect opportunity to see what 
happens for a particular (and obvious) error: a missing file. You can see on the 
EDF display that the READ is to the file ACCTFIL. What would happen if that file 
didn't exist? One way of finding out is to change the name of the file on the EDF 
display to some unlikely name (try UNLIKELY). All you have to do is move the 
cursor to the file (DATASET) name and overtype it. 

Press ENTER twice and you will get a CICSjCMS error handler panel, warning you 
that the application is in trouble, as shown in Figure 14. 

Chapter 2. Getting to know CICS/CMS 27 



EFH125 ERROR HANDLER FUNCTIONS 03/03/86 09:10:03 

Program Name: ACCT01 Line Number: 

Message EFH0946E has been generated 

After this screen the CICS environment will CONTINUE 

A request has been received for file UNLIKELY which does not exist 
and which has not been defined as a new file. 
You must insert an entry in your file resource table for this file. 
The request is rejected with DSIDERR. 

Press ENTER to Resume 

241 

PF1=Help 
PF9=Reset-Msgs 

PF3=End PF5=Suppress-Msg PF6=Redisplay-Screen 
PF12=Terminate PA2=Escape 

Figure 14. Error handler message for a nonexistent file 

The message clearly states what is wrong, and what the results will be. If you 
press ENTER to resume the application, you will see how accurate its analysis is. 

The first thing you will see is the EDF panel reporting the results of executing the 
READ, as shown in Figure 15. 

TRANSACTION: AC01 PROGRAM: ACCT01 
STATUS: COMMAND EXECUTION COMPLETE 

TASK NUMBER: 0000008 DISPLAY: 00 

EXEC CICS READ 
DATASET ('UNLIKELY') 
INTO (' ............................................................. ' ... ) 
LENGTH (383) 
RIDFLD ('79999 ') 

OFFSET:X'002064' 
RESPONSE: DSIDERR 

LINE: 237 

ENTER: CONTINUE 
PF1 : UNDEFINED PF2 : 
PF4 : SUPPRESS DISPLAYS PF5 : 
PF7 : SCROLL BACK PF8 : 
PF10: PREVIOUS DISPLAY PFll: 

EIBFN=X'0602' 
EIBRESP=12 

SWITCH HEX/CHAR PF3 
WORKING STORAGE PF6 
SCROLL FORWARD PF9 

: 
: 
: 

UNDEFINED PF12: 

Figure 15. EDF display after executing a READ command 

REPLY: 

END EDF SESSION 
USER DISPLAY 
STOP CONDITIONS 
ABEND USER 

As the EFH125 panel warned, the command has failed with a DSIDERR error 
condition. If you continue to press ENTER, the application will link to ACCT04, 
its error message program, and you will eventually see an error panel as shown in 
Figure 16 on page 29. 

28 CICS/CMS User's Guide 

J 



ACCOUNT FILE: ERROR REPORT 

TRANSACTION ACOl HAS FAILED IN PROGRAM ACCTOl BECAUSE OF 

A PROGRAM OR FCT TABLE ERROR (INVALID FILE NAME). 

THE FILE IS: 

PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE 
OPERATIONS STAFF. 

THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF 
THE "ACCT" APPLICATION. 

Figure 16. Sample application error report 

If you continue to press ENTER, the application will event'lally abend, and you 
will see the error handler panel shown in Figure 17. 

EFH125 ERROR HANDLER FUNCTIONS 03/03/86 09:11:27 

Program Name: ACCT04 Line Number: 139 

Message EFH8698S has been generated 

After this screen the CICS environment will TERMINATE 

ABEND EACC - User abend. Please refer to application program. 
Request to abend task from DFHEIP. 

Press ENTER to Resume 

PF1=Help 
PF9=Reset-Msgs 

PF3=End PF5=Suppress-Msg 
PF12=Terrninate PA2=Escape 

Figure 17. Error handler display for a user abend 

PF6=Redisplay-Screen 

From here, you can press PF12 or ENTER to return to panel EFH12. As the 
message says, the problem is now so severe that your CICS test environment will 
have to terminate, returning you to panel EFH12, where you can sort out the 
problem before starting a new test. 

Using EDF, you have demonstrated that the execution path you defined to handle 
data set errors is working properly. If you were testing one of your own 
applications, you could use this technique to tryout every possible execution path 
in your program. You could use EDF to simulate all the most likely error 

Chapter 2. Getting to know CICS/CMS 29 



conditions to ensure that any HANDLE CONDITION commands in your program did 
what you wanted them to do. 

You can also use EDF the other way round, that is, to simulate correct execution 
when there are, in fact, errors. When you're testing a single program that forms 
part of a larger application, you will probably get errors because it tries to link to 
a program that you haven't yet written, or read a data file that you haven't yet 
created. If you run the program with EDF, you can change any error conditions, 
on the EDF panel, to NORMAL, testing the logic of the program in its working 
environment. 

The command level interpreter 

The command level interpreter is a transaction (CECI). It lets you execute 
individual EXEC CICS commands. You can use it for online help, to check the 
syntax of a command, or you can use it to change or inspect application objects 
without running a complete transaction. We'll show you an example of this in the 
next section. 

You can use CECI from the execution panel (EFH12), by pressing PF4. If you do 
that now, you will see the panel shown in Figure 18. 

STATUS: ENTER ONE OF THE FOLLOWING 

ABend ENDbr POSt SPOOLClose 
ADdress ENQ PURge SPOOLOpen 
ALlocate ENTer PUSh SPOOLRead 
ASKtime EXtract READ SPOOLWrite 
ASSign FOrmattime READNext START 
BIf FREE READPrev STARTBr 
BUild FREEMain READQ SUspend 
CAncel Getmain RECeive SYncpoint 
CONNect Handle RELease Trace 
CONVerse IGnore RESEtbr Unlock 
DELAy INquire RESYnc WAit 
DELETE ISsue RETRieve WRITE 
DELETEQ Journal RETUrn WRITEQ 
DEQ LInk REWrite Xctl 
DIsable LOad ROute 
DUmp POInt SENd 
ENAble POP SET 

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 9 

Figure 18. Initial display from CECI 

CECI lists all the EXEC CICS commands it knows, and invites you to enter one. 
You can enter a complete command, in which case, CECI will check the syntax and 
report any errors. Alternatively, you can enter just the statement keyword, in 
which case CECI will produce a further display, showing you the possible 
parameters. Note that, because CICS/CMS doesn't support the whole of the 
CICSjVS command level API, some of the commands that CECI lists won't work in 
the way you might expect. For a complete account of CICS/CMS support of the 
API, see the GIGS/GMS Application Programmer's Reference Summary. 

When you've finished with CECI, you press PF3. You'll then see a screen 
containing the lines: 

30 CICS/CMS User's Guide 



CECI command 
STATUS: SESSION ENDED 

where command is the last EXEC CICS command you entered. You can then 
backspace the cursor over CECI, and overtype either another transaction name (as 
shown in "Browsing temporary storage" below), or use the CICS/CMS command: 

CCMS QUIT 

to get back to the execution panel. 

Browsing temporary storage 

Another transaction supplied with CICS/CMS is CEBR, which lets you look at the 
contents of temporary storage queues. You can run CEBR from the execution 

. panel (EFH12) by pressing PF2. Showing you CEBR in action gives us a good 
opportunity to show you how versatile CICS/CMS can be, by combining the 
capabilities of CECI and CEBR. 

As we explained in the last section, you can use CECI to execute any EXEC CICS 
command, including the WRITEQ command to write information to a temporary 
storage queue. If you now start CECI (press PF4) and execute the command: 

WRITEQ TS QUEUE('DUMMY') FROM('THIS IS A TRYOUT') 

CICS/CMS will create a temporary storage queue (DUMMY) and write to it. You 
can then check that queue with CEBR. Press PF3 to stop CECI, and type: 

CEBR DUMMY 

over the CECI command line. You will then see the panel shown in Figure 19. 

CEBR TS QUEUE DUMMY RECORD 1 OF 1 COL 1 OF 
ENTER COMMAND ===> 

16 

************************** TOP OF QUEUE ******************************* 
00001 THIS IS A TRYOUT 

************************* BOTTOM OF QUEUE ***************************** 

PF1 : HELP 
PF4 : VIEW TOP 
PF7 : SCROLL BACK HALF 
PF10: SCROLL BACK FULL 

PF2 : SWITCH HEX/CHAR PF3: TERMINATE BROWSE 
PFS : VIEW BOTTOM PF6 : REPEAT LAST FIND 
PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED 
PF11: SCROLL FORWARD FULL PF12: UNDEFINED 

Figure 19. Sample CEBR display 

When you've finished with CEBR, press PF3, and you'll see a screen containing the 
message: 

Chapter 2. Getting to know CICS/CMS 31 



BROWSE HAS ENDED NORMALLY. READY FOR NEXT TRANSACTION: 

You can enter another transaction ID over this line, or use CCMS QUIT to get back 
to panel EFH12. 

CICS/CMS escape functions 

Suppose you want to check that the sample application is writing records correctly. 
The CICS/CMS escape panel lets you do this, and many other things, while an 
application is running. 

You can get CICS/CMS to display its escape panel (EFH122) at any time that CICS 
is waiting for you to enter something on your terminal. For example, you can 
escape from any CECI, CEBR, or EDF display, or from a display put up by your 
own application. To escape, you press P A2. 

Let's see this in action. 

First, make sure that EDF is off. If the status line on panel EFH12 says that it's 
on, press PF9. Then run the sample application by typing ACCT and pressing 
ENTER. When you see the application's first menu, select A (add) and enter a 
nonexistent account number. Fill in enough details on the Add panel that follows 
to get a new account number added to the file. When the application has accepted 
your addition, and returned to its first menu, press PA2. You will see the display 
shown in Figure 20. 

EFH122 ESCAPE FUNCTIONS 

Type the name of the transaction or program and any optional parameters: 

Transaction ===> 
Program ===> 

Status: 

EDF is OFF 

Nest level 

PFl=Help 2=CEBR 3=End 4=CECI 5=Appln-PAI 6=Appln-PA2 
PF7=Set-parms 8=VM-session 9=EDF ON lO=Reset-msgs 11= 12=Terminate 
PA2=CMS-subset 

CPjCMS Command ===> 

Figure 20. eIeS/eMS escape panel (EFH122) 

The escape panel looks very much like the execution panel, and offers much the 
same services, including: 

• Executing a program or transaction 

• Starting EDF, CECI, or CEBR 

• Executing a single CP or CMS command. 

32 CICS/CMS User's Guide 



The main differences between panel EFH122 and panel EFH12 are: 

• If you enter a command on the CP jCMS Command line on panel EFH122, it is 
executed within the CMS subset. This limits the commands you can enter; you 
can't, for example, use the CMS COPYFILE command. You'll find some 
examples of what you can do in the subset in "Using the CICS{CMS escape 
feature" on page 127. 

• You can't run the CICS{CMS EXECs EFHMAPCR and EFHTC from panel 
EFH122. 

• Because escaping suspends any transactions that are executing when you 
escape, anything you then do from panel EFH122 is nested within that 
transaction. CICS{CMS doesn't limit the number of times you can escape, so it 
helps you remember where you are by showing the Nest level in panel 
EFH122. It gives you a symbolic representation of the number of tasks and 
programs actually "in flight" when you escape. We'll explain this in more 
detail, and show you how to interpret the nest level, in "Using the CICS{CMS 
escape feature" on page 127. 

Note that, in the example we're looking at here, the nest level is blank. The 
application has finished adding a record, and is now waiting for your next 
request. It is between transactions in its pseudoconversation. There are 
therefore no transactions or programs in flight. 

The escape panel feature we want to use here is the CP jCMS command line. We 
want to list the application files, and then browse the data file to make sure that 
the application is adding records correctly. 

Move the cursor to the line that reads: 

CPjCMS Command ===> 

Type FILELIST, press ENTER, and you will get a list of all your files. Move the 
cursor alongside the file ACCTFIL EFHVDATA, and press PF6 to look at the file 
with your editor. You should be able to see, at the bottom of the file, the record 
that you just added. 

To return to your application, and continue its execution where you left off, press 
PF3 once (to leave the editor), then again (to leave the file list). This will bring 
you back to the escape panel. Pressing PF3 again will return you to your 
application. 

If you want to stop the application, and leave the CICS environment, press PF3 
twice to get back to panel EFH122, then press PF12 (Terminate). This returns you 
to panel EFH12. 

Chapter 2. Getting to know CICS/CMS 33 



What's next? 

The next part of the book describes aspects of using CICS/CMS that you need 
to know before you start using it to develop your applications. 

The information comes in three varieties: 

• Things you might need to do: installing CICS/CMS on a PC. 

• Things you might like to do: tailoring CICS/CMS to suit your own 
requirements. 

• Things you might need to know: the special ways in which CICS/CMS 
handles some CICSjVS resources, and the tables it uses to do so. 

34 CICS/CMS User's Guide 



Part two-Before you start developing applications 

This Part of the book tells you: 

• How to install CICSjCMS on a PC 

• How to tailor CICSjCMS to your requirements 

• How CICSjCMS handles CICS resources. 

Part two---Before you start developing applications 35 





Chapter 3. Installing CICS/CMS on a PC 

The word "installation" has two meanings when you're talking about CICS/CMS. 

Before any application programmers can use CICS/CMS, the system administrator 
has to install it on the host VM system. Because this chapter is for application 
programmers, we don't discuss this form of installation here. If you're a system 
administrator, trying to find out how to install CICS/CMS on your host system, 
please read "Installing CICS/CMS on a VM system" on page 204. 

The second meaning of "installation" for CICS/CMS is the process that PC users go 
through to copy CICS/CMS from the host system to their PCs. 

If you are a PC user, you will need to read this chapter to find out how to: 

• Set up your PC's fixed disk in preparation for installing CICS/CMS 

• Copy the master version of CICS/CMS from the host VM system to your fixed 
disk 

• Change your PC copy of CICS/CMS. 

Take note 

In " Getting ready to use CICS/CMS" on page 10, we suggested that you use 
your PC to get to know CICS/CMS by emulating a 3270 terminal and using the 
master version of CICS/CMS on your host VM system. If you have done so, 
you will have experienced the performance of CICS/CMS on a large, powerful 
machine. When you install CICS/CMS on your PC, and start to use it locally, 
you may at first find the performance disappointing in comparison, 
particularly for compilation. You wouldn't normally expect a PC to be able to 
rival the performance of a large mainframe. 

Organizing your PC storage for CICS/CMS 

Before you install CICSjCMS on your PC, you will need to change your VM/PC 
configuration file to set up the CMS minidisks you'll need to use CICSjCMS. This 
section tells you how to go about it, using the VMjPC configurator, VMPCCON. 
We've tried to give enough information for you to use VMPCCON without 
referring to any other documents. However, if this is the first time you've changed 
your configuration file, you'll probably need to refer to the VMjPC User's Guide 
for more information. We present the information as a series of steps, and advise 
that you follow them in the order given. 

Chapter 3. Installing CICS/CMS on a PC 37 



Notes 

1. A full CICS/CMS system, including the compiler(s) you need, needs more than 
the 10 megabytes of storage available on an XT/370. You can therefore use 
CICS/CMS on an XT/370 only if you have an expansion unit (a D drive), that 
brings your PC up to the 20 megabytes available on an AT/370. 

In the descriptions of the steps below, when we refer to C and D drives, we are 
giving recommendations to the XT/370 user. On an AT/370, all storage for 
CICS/CMS will usually be on the C drive. 

2. Under VM/PC 2.0, you have a PC-DOS session available on the VM/PC Session 
Selection menu. You must not use the VM/PC configurator in that session. 

3. In the configuration steps, we refer frequently to two different types of disk: 
the physical disk, attached to your PC, and the CMS virtual minidisks that 
you're defining. To avoid confusion, we always refer to the PC disk as the 
fixed disk, and to the CMS virtual disks as eMS disks, or just disks. 

The steps in organizing PC storage 

1. Enter the VMPCCON command from DOS. Enter your password and press 
ENTER. 

2. On the Function menu, press PF3. This will display the User Ell ~tion menu. 
Tab to the user ID you want to use for CICS/CMS, and press EN ER. You will 
get a panel for that user ID. Press PFI to display the User Environment panel. 
The Virtual Machine Storage Size line lets you define the amount of 
storage you'll have simulated in your virtual machine when you use VM/PC. 
We recommend that you set this to 2048K (2 megabytes) for CICS/CMS. 

The Environment to Auto IPL line below gives the name of the program to 
be loaded into your virtual machine when you log on to VM/PC. This should 
be CMS to ensure that you IPL CMS whenever you log on. 

3. Press PF5 to return to the User Selection menu. Then press PF2 to get a list of 
your CMS disks. 

In the remaining steps, you set up the CMS disks you need to use CICS/CMS. 
Whenever we recommend a size for a CMS disk, we always state that size in the 
units used by the PC: 512-byte blocks. 

4. Disk 100 is your VM/PC system disk. You shouldn't change it. 

5. Disk 101 is your CMS A-disk. You need to make this as large as possible, 
preferably 2000 blocks. To do this, you will need to change its drive ID to C, 
since, by default, VM/PC puts it on your A drive (your floppy disk), which 
allows a maximum of only 720 blocks. 

6. You now need to create some new CMS disks. Press PF5 on the disk list panel. 

a. Creating a temporary disk. 

First, you need to create a temporary disk, the Z-disk. In fact, CICS/CMS 
will format the Z-disk for you, but we recommend that you do it yourself, as 
explained here, for two reasons: 

38 CICS/CMS User's Guide 



1) If you don't create a Z-disk at this stage, giving it the space it needs, 
you may run out of storage space later. 

2) Unless you already have a Z-disk, CICS/CMS formats a new one, when 
needed, in each CICS/CMS session. This can take some time. 

Press ENTER, to create a new CMS disk. You need to define: 

• The disk address, which must be 199, because that's the address 
CICS/CMS assumes for the Z-disk. 

• The drive ID. We recommend you use the C drive. 

• The size of the disk. This depends on the size of your programs. We've 
found 2000 blocks adequate for most purposes. 

• The access mode of the disk. This must be W (write). 

b. Creating the CICS/CMS system disk. 

Now you need to set up the CMS disk onto which you'll load CICS/CMS. 
You need to define: 

• The address. This can be what you like (we usually use 200). 

• The drive ID. This is going to be a very large disk, so you should put it 
on the D drive on an XT /370. 

• The disk size. This must be at lea.: 5600 blocks. 

The reason we've included the phrase "at least" is to take account of 
any changes that your system administrator might have made. 5000 
blocks is the size we recommend for CICS/CMS as supplied by IBM. 
Your system administrator, however, may have changed CICS/CMS to 
suit your local requirements: for example, by adding some local macro 
libraries. 

Find out exactly how much space your local copy of CICS/CMS needs. 
Any space you can spare can be used to increase the size of your A-disk 
or your Z-disk. 

• The disk access mode. 

Initially, this must be W (write), so that you can copy CICS/CMS from 
your host VM system to your PC. Once you've installed CICS/CMS, 
however, you should make this R (read only), to safeguard your 
CICS/CMS system. If your system administrator changes the host VM 
system copy of CICS/CMS at any time, you'll need to copy the changes 
down to your PC. At that time, you'll need to change the mode, 
temporarily, to W (write). 

c. Creating a compiler disk. 

Finally, if you're going to compile your programs on your PC, you will need 
to set up a CMS disk for the compiler(s) you're going to use and their 
associated libraries. If you're going to compile your programs on the host 
VM/SP system, and run them using CICS/CMS on your PC, you need a 
CMS disk for the compiler libraries. For each one you need to define: 

Chapter 3. Installing CICS/CMS on a PC 39 



• The disk address. 

Note: Although you can use any disk address you like for a compiler 
under VM/PC, you must access the disk using the same mode as the 
CMS disk containing the compiler on your host VM system. For 
example, if you want to use the COBOL compiler, and the host VM 
system has it on the P-disk, you must access the compiler disk on your 
VM/PC system as the CMS P-disk. 

• The drive. If the compiler or compilers you are going to use take up a 
lot of space (see below), this will need to be your D drive on the XT/370. 

• The disk size. This depends on the compiler you're using. The 
minimum for the PL/I compiler and its libraries is 4100 blocks; the 
minimum for COBOL is 2000 blocks; the minimum for COBOL II is 4750 
blocks; the minimum for the H Assembler is 400 blocks. 

• The disk access mode. This should normally be R (read) to safeguard 
your compilers. 

Figure 21 overleaf shows a typical PC fixed disk configuration including 
CICS/CMS, for both an AT/370 and an XT/370. 

40 CICSjCMS User's Guide 



C drive 

CMS virtual minidisks DOS system 

D drive 

H-Assembler 

O.2M bytes 

O.2M bytes 

VM/PC system 

1.6M bytes 

,------, 
, Virtual storage I 
I I 
, 2.0M bytes I 
I I 
I I 
I I 
I ______ J 

Figure 21. A typical PC storage configuration for CICS(CMS 

Notes 

1. The total storage defined in the example is 14.1 megabytes, which will all be on 
the C drive on an AT/370. On an XT/370, 7.8 megabytes is defined on the C 
drive, and 6.3 megabytes on the D drive. 

2. The virtual machine storage size defined is shown in the example as 2.0 
. <1'ahvtes. which is what we recommend as adequate for most CICS/CMS 

';.!". You can, however, use VMPCCON to define as much virtual storage as 
you have left on the C drive after defining everything else, up to the maximum 
that VM/PC allows (8 megabytes on an AT/370; 4 megabytes on an XT/370). 
Whatever you specify must be a multiple of 4K bytes. 

Chapter 3. Installing CICS/CMS on a PC 41 



As you can see, you'll need to define a lot of storage before you start uSing. . . >~ .. ~. 
CICS/CMS to develop applications, particularly if you're using more than one ."", 
compiler. You might therefore like to consider tailoring DOS to give yourself some 
extra space. For example, standard DOS contains several modules for National 
Language Support (NLS). If you need nothing but your own language, you can 
save quite a bit of storage by removing the other language modules. Don't, 
however, start tailoring DOS unless you are very sure which modules you can 
safely remove. If you have any doubts at all, talk to your local PC expert. 

Before you install CICS/CMS on your PC, you need to format the CMS disks you've 
just created. 

Select your local session, and start CMS. If you've just created a new A-disk, 
you'll get'a message, before CMS starts, indicating that the A-disk has an invalid 
directory format. This is just an indication that you need to format the disk, 
and doesn't stop CMS from starting. You can then use CMS's FORMAT command to 
format each of your new disks. The general form of the command is: 

FORMAT diskno mode 

where diskno is the address of the disk you want to format, and mode is the mode 
of the disk. For example, to format your Z-disk, you'd enter: 

FORMAT 199 Z 

Having configured and formatted your CMS disks, you should add them to your 
PROFILE EXEC so that they'll be accessed automatically when you IPL CMS. 

Copying CICS/CMS to a PC 

CICS/CMS is stored on a CMS disk on the host system. The first time you want to 
use it locally at a PC, therefore, you have to copy it from that system to the CMS 
disk you've reserved for it on your PC's fixed disk. Note that we have stressed the 
word "first". Once you've got CICS/CMS stored on your fixed disk, you can invoke 
it by starting VM/PC and CMS, and following the process described in "Starting 
CICS/CMS" on page 11. The only time that you have to go through the process 
described here is the first time you ever use the product on a PC, or at any time 
that you need to restore the version on your fixed disk. 

Take Note 

This process can take a long time. Exactly how long depends mainly on 
whether the PC is attached to the host machine via a channel, (a local 
connection), or via a teleprocessing line (a remote connection). If you're 
using a remote connection, the speed at which you install CICS/CMS is 
further affected by the speed of the communication line. 

On a local connection (the fastest), installation should take about 45 minutes. 
However, if your connection is remote, over a low-speed line, it can take over 
2 hours. Before setting out to copy CICS/CMS to your PC, therefore, it's a 
good idea to find out how your PC is connected and make sure you've got 
something else to do while you're waiting. 

Switch on your PC and, after it has loaded DOS, enter the date and time. You then . " 
enter: ,..., 

VMPC 

42 CICS/CMS User's Guide 



to start the VM that runs on PCs. Press ENTER, and you will get a menu on your 
screen. The exact form of this menu is different for different releases of VM/PC. 
The example we show in Figure 22 on page 43 is produced by VM/PC 1.1. The 
options in which you are interested here are the host and local 3278/3277 sessions. 
On VM/PC 2.0, they are in the reverse order; the local session is option 1, and the 
host session is option 2. 

VM/PC Session Selection Menu 

Press the number of the session that you want or 
press Ctrl-Break for immediate exit to DOS. 

1 Host 3278/77 Session 

2 Local 3278/77 Session 

3 Host 3101 Session 

LA 

Figure 22. VM/PC session selection menu 

M Session Selection 

Select the option that gives you a host session (option 1 in Figure 22). Log on to 
your host system, and type: 

VMPCSERV 

to establish the link between host VM and your PC. You now need to get back to 
your PC (your local session). Press the "hot" key (Sys Req on the AT/370, Scroll 
Lock on the XT/370). This returns you to the Session Selection menu, and you 
select the option that gives you a local session (option 2 in Figure 22). 

Now start CMS on your PC. You can then link to the host system disk that 
contains the elements that make up CICS/CMS. Your system administrator will 
tell you what LINK and ACCESS commands you need to do this. Having executed 
them, you can type: 

CICSCMS 

You are now using the host system copy of CICS/CMS, using VMPCSERV as the 
link. This works, but is relatively slow. The sooner you copy CICS/CMS to your 
fixed disk, the sooner you can start using it the way it was meant to be used. 

CICS/CMS will display the menu shown in Figure 23 on your screen. 

Chapter 3. Installing CICS/C~1:S on a PC 43 



EFH1 CICS/CMS PROGRAM DEVELOPMENT SELECTION 

Select one of the following: 

1 List Application Files 
2 Execute Program/Transaction 
3 List Resource Tables 
4 Convert CMS file to CICS/CMS file 
5 Erase Temporary Files 
6 Release CICS/CMS Nucleus Extensions 
7 Download from Host 

Selection ===) I 

For application filelist specify the optional list criteria required: 

Criteria ===) ACCT* * * 

(c) Copyright IBM Corp 1985 

PF1=Help PF3=End PA2=Enter CMS Subset 

Figure 23. CICS/CMS program development selection panel (EFH1) for PC users 

Select 7 (Download from Host), and press ENTER. You will then get a new 
panel, as shown in Figure 24. 

EFH15 DOWNLOAD FROM HOST 

Select one of the following: 

PF1=Help 

1 
2 
3 
4 
5 
6 
7 
8 

Selection 

Download Run Time System 
Download Sample programs, tables and maps 
Download COBOL/COBOL2 Program Preparation Files 
Download ASSEMBLE Program Preparation Files 
Download PLI Program Preparation Files 
Download BMS Map Preparation Files 
Download All CICS/CMS Files 
Build CICS/CMS Relocatable Load Modules 

===) 

Input Filemode ===) 

Output Filemode ===) A Default - A 

PF3=End PA2=CMS Subset 

Figure 24. Panel for copying CICS/CMS from the host to a PC/370 (EFH15) 

To copy CICSjCMS from the host system to your fixed disk, you need to do three 
things: 

1. Give the output filemode: the letter that identifies the CMS disk on your PC 
that you have set up for your local CICSjCMS system. 

2. Give the input filemode: the letter that identifies the host system eMS disk on 
which your system administrator has set up the master CICSjCMS system. 

44 CICS/CMS User's Guide 



3. Select the option(s) you need to copy the CICS/CMS system to your fixed disk. 

The first six options in panel EFH15 give you the opportunity to copy different 
components of CICSjCMS, depending on what you need. Option 7 copies the 
complete host CICSjCMS system. There are two advantages in copying only those 
elements of CICSjCMS that you need, as follows: 

1. CICSjCMS will take up less space on your fixed disk, leaving you more space to 
give to, say, your A-disk. 

2. You'll speed up the process of copying CICSjCMS from the host system. 

What you get from each option is: 

Option 1 The parts of CICSjCMS needed just to execute transactions and 
programs. If you don't use option 7, you must always use at least this 
option. 

Option 2 The files and tables needed by the CICSjCMS sample application. 

Option 3 The parts of CICSjCMS that you need to develop COBOL or COBOL II 
programs. 

Option 4 The parts of CICSjCMS that you need to develop assembler programs. 

Option 5 The parts of CICS/CMS that you need to develop PL/I programs. 

Option 6 The parts of CICS/CMS that you need to develop BMS maps. 

After selecting each option you need, and pressing ENTER, you will have to wait 
while the parts of CICSjCMS you've selected are copied from the host to your fixed 
disk. Remember from our note earlier in the section: if you select option 7, the 
process will take at least 45 minutes, and may take much more, depending on how 
your PC is connected to the host system. For any of the "partial" options, 1 to 6, it 
will be much quicker. 

When it finishes copying each part of CICS/CMS you have selected, CICS/CMS will 
display the message: 

EFH9ll01 Download completed successfully 

When you've copied all the parts you need, you'll have to stop the link 
(VMPCSERV) between your PC and the host, and restart CICSjCMS. If you don't, 
all your CICSjCMS requests will continue to go to the host system. Use the hot 
key to return to the VMjPC session selection menu, and select the option that 
gives you a host session. Stop VMPCSERV by pressing PF3. Use the hot key once 
again, to return to the VMjPC session selection menu, and select the option that 
gives you a local session. Stop CICS/CMS, by pressing PF3 once (to take you back 
to panel EFHl), then again (to stop the CICS/CMS session and return you to CMS). 

You now have CICS/CMS stored on your fixed disk. If this is the first time you've 
used CICS/CMS, and you have an OS/VS COBOL compiler, you'll probably want to 
go through Chapter 2, "Getting to know CICS/CMS." Remember that you'll only 
be able to do the things that Chapter 2 describes if you've copied the sample files. 
You can copy them either explicitly (using option 2 on panel EFH15), or implicitly 
(using option 7). 

Chapter 3. Installing CICS/CMS on a PC 45 



Note: You're probably wondering what option 8 on panel EFH15 does. It's a 
special option, which helps the system administrator ensure that changes to the 
principal CICS/CMS modules can be passed on to PC users. Since it's not needed 
by application programmers, we don't describe its use until "Rebuilding your 
CICS/CMS system" on page 216. 

Changing CICS/CMS on a PC 

As we said earlier, once you've got CICS/CMS on your fixed disk, you should never 
need to install it again, unless some accident damages or erases that disk. There is 
one other occasion, however, when you might have to install part or (very rarely) 
all of CICS/CMS. 

From time to time, your system administrator will change the master copy of 
CICS/CMS to solve problems or include improvements. Anyone using VM/SP will 
automatically pick up the new copy of CICS/CMS from the system disk. PC users, 
however, will have to apply the changes to their fixed disk copy. 

When your system administrator has put up a new copy of CICS/CMS on the 
system disk, he or she will alert you that you need to copy those parts of 
CICS/CMS that have changed onto your PC's fixed disk, replacing the existing 
copies. You can do this using VMPCSERV. Your system administrator will tell 
you what files you need to copy. You can then connect to your host system with 
VMPCSERV, link to the updated CICS/CMS system disk, and copy the files you 
need to your local CMS A-disk. From there, you can use the files to replace those 
on your defined local CICS/CMS system disk. 

Note: "Incorporating service changes into your master CICS/CMS system" on 
page 220 tells system administrators what they need to do to prepare changed 
components of CICS/CMS so that their PC users can copy them. 

46 eIes/eMS User's Guide 

J 



Chapter 4. Setting up your CICS/CMS environment 

This chapter tells you how to tailor CICS/CMS to suit your requirements. 

There are three ways that you can define the environment in which CICS/CMS 
runs: 

1. As CICS/CMS starts, it executes an EXEC called EFHSETP. This EXEC 
contains statements that set defaults for various aspects of CICS/CMS: 
programming language used, size of data areas, names of tables, and so on. 

This establishes a general environment for application testing for everyone 
using that copy of CICS/CMS. Your system administrator will probably set it 
up to suit the most common requirements of your application programming 
team. 

2. You can change the attributes set by EFHSETP by creating a file called 
EFHPROF EXEC, usually on your CMS A-disk. From then on, whenever you 
start CICS/CMS, the EFHSETP EXEC uses the values specified in your 
EFHPROF to replace some or all of its values. 

IBM supplies a sample EFHPROF EXEC with CICS/CMS. The easiest way to 
create your own is to copy the sample EFHPROF to your A-disk, and change it 
to suit your requirements. 

3. Occasionally, you might want to change your own environment for testing a 
particular application, or even part of an application. CICS/CMS therefore 
offers an interactive means of making temporary changes to your environment. 
This is explained in "Changing your CICS/CMS environment within a session" 
on page 119. 

The next section tells you how to define your own environment, using the 
EFHPROF EXEC. 

Using EFHPROF to create your own environment 

EFHPROF must reside as a file of filetype EXEC on a CMS disk to which you 
currently have access (usually your A-disk). To help you get started, IBM supplies 
a sample EFHPROF. You should find it on your CICS/CMS system disk. 

EFHPROF contains two types of entries: 

1. CMS commands that change the CMS environment established by your 
PROFILE EXEC. Typically, you might include commands to clean up your 
CMS disks before running CICSjCMS, by erasing unwanted files such as old 
error or trace logs. 

2. Statements that change the definitions in EFHSETP. 

Chapter 4. Setting up your CICSjCMS environment 47 



These are commands that provide a new value for one of the predefined 
parameters in the EFHSETP EXEC. The full form of these commands is: 

GLOBALV SELECT EFHPARMS SETL 'keyword value' 

where keyword identifies the parameter you want to change, and value is 
what you want the parameter to be. 

Figure 25 shows the sample EFHPROF EXEC that IBM supplies as part of 
CICS/CMS. It shows examples of both types of entry, and a special entry that can 
save you some work. 

/* Set user parameters for CICSCMS. Sample only */ 
/* Following is an example */ 
SETPARM = 'GLOBALV SELECT EFHPARMS SETL' 
SETPARM 'TWASIZE 1024' 
SETPARM 'CICSDSA 160000' 
SETPARM 'TRACEFM Z' 
'GLOBAL TXTLIB PLILIB COBLIBVS EFHXLIB' 
'FILEDEF SYSPRINT TERM' 
FILEDEF EXTO DISK EXTOFILE TDQUEUE A '(' LRECL 1000 RECFM F 
FILEDEF EXTI DISK EXTIFILE TDQUEUE A '(' LRECL 1000 RECFM V 

Figure 25. Sample EFHPROF EXEC 

The first two lines in Figure 25 are comment lines; they begin with /*. Although 
comments in EFHPROF EXECs are generally optional, you must always include at 
least one comment as the first line in your EFHPROF. This is a general rule for 
all EXECs written using REXX, the System Product Interpreter. If you want to 
know more about the interpreter, look in the VM/ SP System Product Interpreter 
User's Guide. 

The meaning of each statement in Figure 25 is as follows: 

SETPARM = 'GLOBALV SELECT EFHPARMS SETL' 

This lets you avoid typing GLOBALV SELECT EFHPARMS SETL every time you 
want to change a parameter. It equates the full form of the command with the 
abbreviated form, SETPARM. Once you've established that, you can use 
SETPARM as the command to change parameters. 

We strongly recommend that you always start your EFHPROF EXEC with a 
command of this form. It will save you some work, and reduce the risk of 
typing errors. 

SETPARM 'TWASIZE 1024' 

Requests that the transaction work area (TWA) for any task be allocated as 
1024 bytes. 

SETPARM 'CICSDSA 160000' 

Requests that the dynamic storage area (DSA) for application tests be 160000 
bytes long. 

This overrides the IBM-supplied EFHSETP default of 256000 bytes. If you use 
CICS/CMS with the sample EFHSETP and the sample EFHPROF, you will 
always start your CICS test sessions with a DSA of 160000. If you want to 

48 CICS/CMS User's Guide 

J 



return to the EFHSETP default, you'll need to remove this statement from 
EFHPROF when you set it up on your A-disk. 

SETPARM 'TRACEFM Z' 

Specifies that any CICS/CMS trace output that you request will be written on 
the Z-disk (your temporary disk), rather than on your A-disk, as specified in the 
IBM-supplied EFHSETP. 

Putting trace output on your Z-disk is quite a good idea, because the output 
can become quite large, and may well fill your A-disk. However, you have to 
remember that the Z-disk is always a temporary disk on VM/SP. Unless you 
define it with VMPCCON (as we suggest in "The steps in organizing PC 
storage" on page 38), it is also temporary on VM/PC. If the Z-disk is 
temporary, you will lose it, and all its contents, every time you log off. If you 
want to keep all, or part, of your trace output, you'll have to copy it from the 
Z-disk to a permanent disk. 

You'll find a general description of the Z-disk in "The CICS/CMS temporary 
disk (Z-disk)" on page 93. 

'GLOBAL TXTLIB PLILIB COBLIBVS EFHXLIB' 

This statement identifies the text libraries to be used for CICS/CMS. In this 
example, we've identified the libraries for COBOL (COBLIBVS), PL/I (PLILIB), 
and CICS/CMS (EFHXLIB). 

You'll find more information on the GLOBAL TXTLIB command in "General 
information on using high-level languages with CICS/CMS" on page 85. 

'FILEDEF SYSPRINT TERM' 

The CMS FILEDEF command identifies files to CMS, and associates their 
filenames with CMS devices, or CMS files. Here, we're specifying that all PL/I 
output destined for SYSPRINT should go to the CMS device TERM (the user 
terminal). 

FILEDEF EXTO DISK EXTOFILE TDQUEUE A '(' LRECL 1000 RECFM F 
FILEDEF EXTI DISK EXTIFILE TDQUEUE A '(' LRECL 1000 RECFM V 

These two CMS FILEDEF commands associate the extrapartition data sets, 
EXTO and EXTI, with the CMS files EXTOFILE and EXTIFILE respectively. 
They also specify the format of information in those files. You have to provide 
a suitable FILEDEF command for every extrapartition data set you want to use, 
and EFHPROF is the logical place to put these commands. 

You'll find a complete description of how to set up extrapartition data sets in 
"Extrapartition transient data" on page 57. 

You can use SETP ARM commands to change almost any aspect of your CICS/CMS 
environment. The list of parameters that you can change is, however, a long one, 
and we don't want to break up the flow of the guide by including a lengthy 
reference section here. We have therefore put this list out of the way in 
Appendix D, "CICS/CMS parameters" on page 241. 

Chapter 4. Setting up your CICS/CMS environment 49 





Chapter 5. How CICS/CMS handles CICS resources 

The primary purpose of CICS/CMS is to give you what you need to develop and test 
CICS/VS applications interactively. To do this, CICS/CMS handles some of the 
main CICS/VS resources in ways that you may find unusual. 

This chapter describes those resources, paying special attention to ways that they 
. differ on CICS/CMS from the same resources on a CICS/VS system. The resources 

we describe here are: 

Progra.ms 

• Programs 

• Terminals 

• Interval control 

• Transient data 

• Temporary storage 

• Files 

All the descriptions apply to your use of local CICS/CMS resources. However, 
when your applications use the remote server to access resources on a remote 
CICS/VS system, their use of those resources is governed by the rules of the 
CICS/VS system. We deal with using remote resources in a separate part of this 
chapter, "Remote resources" on page 64. 

To create an executable program in CICS/CMS, you need to produce a file of 
filetype TEXT from your source program. The source program can be a COBOL, 
COBOL II, PL/I, or assembler program, and you can create the TEXT file using a 
single PF key, as shown in "Translating and compiling a CICS program" on 
page 16, and fully explained in "Translating and compiling/assembling programs" 
on page 95. 

You don't need to do anything else to run a single program. If you have written it 
in your default language, as defined in EFHSETP or EFHPROF, you can execute it 
immediately from the execution panel (EFH12). 

However, if you want to run a program in the normal CICS/VS way, via a 
transaction ID or PF key, or if you want to run a pseudoconversational 
transaction, you will need to create or update a CICS/CMS equivalent of the 
CICS/VS program control table (PCT). The form of this table, and its contents, are 
described in "Program tables" on page 70. 

Chapter 5. How CICSjCMS handles CICS resources 51 



Terminals 

BMS 

BMS paging 

CICS/CMS is a single-user system. It has no need for the complex facilities that 
CICS/VS uses to control networks of terminals. This has two basic effects on your 
use of terminals: 

1. There is no equivalent of the CICS/VS terminal control table (TCT) in 
CICS/CMS. 

If you want to take advantage of some special characteristics of your terminal, 
you can set the applicable parameters in your EFHPROF EXEC. The terminal 
parameters in EFHPROF are described in "Terminal control parameters" on 
page 244. 

2. There are some limitations on the way that CICS/CMS supports communication 
with terminals. For example, it supports only the 3270 terminals that VMfSP 
supports, and it doesn't support batch data interchange. 

CICS/CMS supports full function BMS, including paging, except in the following 
cases: 

1. Where a BMS function is designed specifically for a multi terminal 
environment; for example, routing. 

When an application requests such a function, CICSfCMS issues an appropriate 
CICS error condition. To see what will happen when you run the application 
on a CICSfVS system (that does support routing), you need to run the 
application with EDF, and set the condition to NORMAL on the appropriate 
EDF panel. "Testing CICS/VS features that CICS/CMS does not fully support" 
on page 129 tells you how to use EDF for this purpose. 

2. Where a BMS function is designed for anything but a 3270 terminal. 

What happens when an application tries to use a non-3270 function depends on 
the function. CICS/CMS will display one of its error handler panels, and you 
can decide what to do from the information in the panel. 

You will find full information on those BMS features that CICS/CMS supports in a 
restricted way in the CICS/CMS Application Programmer's Reference Summary. 

There is one area of BMS support where CICS/CMS is quite different from 
CICS/VS. Although CICS/CMS supports most of the features of BMS paging in 
CICSjVS, it supports them in its own way, as follows: 

• Since CICSjCMS has no system initialization table (SIT), you have no way of 
defining terminal paging commands. CICSjCMS does not therefore support 
single keystroke retrieval. The terminal paging commands it supports are those 
used in the examples in the CICS-Supplied Transactions manual (for CICS/VS 
1.7), or the CICS/VS Operator's Guide (for earlier CICSjVS releases), as follows: 

PI for page retrieval 

52 CICSjCMS User's Guide 



C/ for page chaining 

• When you've accumulated a number of BMS pages to display, you have to tell 
CICSjCMS explicitly that you want to display them. You do this by executing 
the CICSjCMS control transaction, CCMS, with the START option. This in turn 
executes the CICS/VS transaction CSPS, which CICSjCMS has scheduled to 
display your pages. 

When your application finishes building BMS pages, the CICSjCMS error 
handler displays a panel, like the example in Figure 26. 

EFH125 ERROR HANDLER FUNCTIONS 03/03/86 10:23:11 

Program Name: PAGEX Line Number: PAG00980 

Message EFH88111 has been generated 

After this screen the CICS environment will CONTINUE 

The Terminal Operator Paging Transaction CSPS has been scheduled ready for 
execution by 8MS, during processing of a SEND PAGE command. 
CCMS START must be issued to invoke CSPS to display the pages following 
completion of the current transaction. 

Press ENTER to Resume 

PF1=Help 
PF9=Reset-Msgs 

PF3=End PF5=Suppress-Msg 
PF12=Terminate PA2=Escape 

PF6=Redisplay-Screen 

Figure 26. CICS/CMS message telling you how to display BMS pages 

As the message suggests, you can continue until the app1ication ends. When it 
does, you can display all the pages that it has built by clearing the screen and 
issuing the command: 

CCMS START 

You can then use appropriate P I commands to browse through the pages. 
When you've finished browsing, and want to return to the execution panel 
(EFH12) to get on with something else, you once again clear the last screen, 
and enter: 

CCMS QUIT 

Warning: Don't return to the EFH12 panel before you display your BMS 
pages (using CCMS START). Every time you return to panel EFH12, CICSjCMS 
clears all scheduled transactions, including CSPS. 

Chapter 5. How CICS/CMS handles CICS resources 53 



Terminal control 

CICSjCMS supports only the 3270 terminals that VMjSP supports. (The VMjSP 
Terminal Reference manual tells you what these are.) Under CICSjCMS, your 
terminal acts as the virtual console. 

CICSjCMS also lets you test applications designed to print output on 3270 printer 
terminals. It doesn't support the terminals themselves; it emulates them using 
CMS files. See Chapter 10, "Testing applications that print" on page 133 for more 
information. 

Batch data interchange 

CICSjVS batch data interchange provides EXEC CICS ISSUE commands that let 
your applications communicate with the 6670 logical unit, and with the batch 
logical units of the 3770 and 3790 subsystems. 

CICSjCMS does not support these units, and does not therefore support batch data 
interchange. If you use any EXEC CICS ISSUE command, your program will abend 
with an AEY9 code, indicating that you have used a function that CICSjCMS does 
not support. 

Interval control 

You can use CICSjCMS to test an application that uses all the interval control 
commands defined in the GIGSj VS Application Programmer's Reference Manual. 
However, CICSjCMS doesn't execute some of the commands, and those it does, it 
treats in its own way, as follows: 

• It doesn't execute the EXEC CICS commands, POST, DELAY, or WAIT EVENT. 
It displays a message telling you that it doesn't support them, and, after you 
press ENTER, carries on with the next statement in the program. 

• It supports the EXEC CICS CANCEL command, but not in any of the uses that 
let you leave out the REQID option. 

• It supports the EXEC CICS START command, but ignores any values you give 
in the INTERVAL or TIME option. We describe below how this affects your use 
of interval control. 

The GIGS/eMS Application Programmer's Reference Summary tells you which 
options CICS/CMS supports on each of the commands. 

When an application issues an EXEC CICS START command with an INTERVAL or 
TIME option, CICS/CMS ignores any value in the option and assumes the default of 
O. In CICS/VS, this means "start the transaction immediately". CICS/CMS, 
however, flags the transaction named in the START command as being "ready for 
execution" (scheduled), and leaves it to you to start it, using the CICS/CMS 
control transaction, CCMS. 

To make this clearer, let's look at an example. Suppose you are using CICS/CMS 
to test an application that contains a program (called STARTER) that issues the 
command: 

EXEC CICS START TRANSID('TONY') INTERVAL (010000) 

54 CICS/CMS User's Guide 

J 



Under CICS/VS, that would start the TONY transaction in one hour's time. Under 
CICS/CMS, as soon as the command is executed, CICS/CMS displays the panel 
shown in Figure 27. 

EFH125 ERROR HANDLER FUNCTIONS 03/03/86 15:25:46 

Program Name: STARTER Line Number: STA00360 

Message EFH8803I has been generated 

After-this screen the CICS environment will CONTINUE 

An unsupported option has been specified on the START command_ 
It is ignored and INTERVAL(O) is forced. 
Unsupported option is : INTERVAL with non-zero value 

Press ENTER to Resume 

PF1=Help 
PF9=Reset-Msgs 

PF3=End PF5=Suppress-Msg 
PF12=Terminate PA2=Escape 

PF6=Redisplay-Screen 

Figure 27. CICS/CMS display for an EXEC CICS START command 

This message alerts you that CICS/CMS has set your INTERVAL option to o. If you 
press ENTER to resume the test, you'll get another panel, as shown in Figure 28. 

EFH125 ERROR HANDLER FUNCTIONS 03/03/86 15:25:52 

Program Name: STARTER Line Number: STA00360 

Message EFH88101 has been generated 

After this screen the CICS environment will CONTINUE 

The START command has successfully completed. 
The transaction TONY is now scheduled ready for execution. 
It may be invoked by issuing the CCMS START command. 

Press ENTER to Resume 

PF1=Help 
PF9=Reset-Msgs 

PF3=End PF5=Suppress-Msg 
PF12=Terminate PA2=Escape 

PF6=Redisplay-Screen 

Figure 28. CICS/CMS display for a successful START command 

As the message states, CICS/CMS has scheduled the transaction named in the 
START command and you can execute it at any time before the end of your CICS 
test session, by issuing the command: 

CCMS START 

Chapter 5. How CICS/CMS handles CICS resources 55 



We've stressed that you must do it before the end of your CICS test session 
because, every time you return to panel EFH12, CICS/CMS clears all scheduled 
transactions. You therefore have two choices of when to execute the scheduled 
transaction: 

1. You can wait until the application you're testing ends. You can then enter 
CCMS START as the next transaction ID. 

2. You can escape from the application (using PA2) at any time after CICSjCMS 
has scheduled the transaction. You can then issue CCMS START from the 
Tr ans act ion line on panel EFH122. When the scheduled transaction ends, 
you can return to panel EFH122, then press PF3 to return to your suspended 
application. 

You can't, however, use this technique if the scheduled transaction is the first 
in a pseudoconversation. When a transaction that you've started from the 
escape panel ends, your next keystroke takes you back to the escape panel. 
You wouldn't be able to run any of the other transactions in the 
pseudoconversation. 

You can also use interval control remotely from CICSjCMS, by running an 
application that starts a transaction defined as being on your remote CICSjVS 
system. We describe this in "Using interval control remotely" on page 66. 

Transient data 

CICSjCMS supports all three types of transient data: intrapartition, extrapartition 
and remote. 

Intrapartition transient data 

For each intra partition transient data destination that your applications use, 
CICS/CMS creates a separate CMS file with a predefined filename, filetype, 
filemode, and maximum record length. You can set the filetype and maximum 
record length for all your intrapartition destinations in your EFHPROF EXEC, as 
described below. You can set the filename, filetype, and filemode for individual 
destinations in the transient data destination table, as described in "Transient data 
destination tables" on page 73. If you don't define the filemode of an intrapartition 
destination file that you write to, CICSjCMS writes it on your A-disk. If you read 
from an intrapartition destination without defining a specific filemode for it in the 
transient data destination table, CICSjCMS will search through your attached 
CMS disks until it finds a file with the defined filename and filetype. 

The default maximum record length and filetype are defined in the IBM-supplied 
EFHSETP EXEC by the statements: 

SETPARM 'INTRAMRL 32763' 
SETPARM 'INTRAFT CICSTDI' 

These define the maximum record length (32763 bytes) and CMS filetype (CICSTDI) 
for all intrapartition queues. If you want to change either of these defaults, you 
can do so using a SETPARM command in your EFHPROF EXEC, as explained in 
"Using EFHPROF to create your own environment" on page 47. 

56 CICS/CMS User's Guide 



If you want to change the filename or filetype, or specify a particular filemode, for 
individual intrapartition queues, you will need to use a CrcS/CMS destination 
table. To find out how to do this, see "Transient data destination tables" on 
page 73. 

Over length records 

If you try to use records longer than your defined maximum record length for an 
intrapartition queue, you will raise an IOERR condition. To cater for this, you 
might consider including an EXEC CICS HANDLE CONDITION command in any 
applications that use intrapartition queues. 

Read and write pointers 

Whenever you read from an intrapartition queue, a read pointer is set to the next 
record. Whenever you write to an intrapartition queue, a write pointer is set to the 
point where the next record will be written. The interaction between CICS and 
CMS has the following effects on the positions of these pointers: 

• The write pointer. 

The write pointer will always be at the end of the CMS file associated with an 
intra partition destination. You cannot change this by closing the file, by 
stopping your CICS/CMS session, or even by logging off. The only way you can 
reset the write pointer is by erasing the CMS file itself, either with CMS's 
ERASE command, or with an EXEC CICS DELETEQ command on the 
intra partition destination. 

• The read pointer. 

If you issue a CMS FINIS command on the CMS file associated with an 
intrapartition destination, CICS/CMS resets the read pointer to the start of the 
file. 

If you return to the execution panel (EFH12), CICS/CMS resets the read 
pointers of all your current intrapartition destinations to the start of the CMS 
files associated with them. 

Entering the CMS subset from anywhere in CICS/CMS closes all your files, but 
does not reset any read pointers in intrapartition destinations. 

Extrapartition transient data 

Extrapartition transient data queues let you transfer sequential information 
between your applications and external sequential resources such as reader or tape 
files. 

Before you can use an extrapartition queue, you must define it in two ways: 

1. You must associate the queue name with a CMS virtual device using CMS's 
FILEDEF command. For input queues, you can define disk or tape files, or your 
virtual reader. For output queues, you can define disk or tape files, or your 
virtual printer or punch. 

For more information on this, see "Defining extrapartition queues to CMS" on 
page 58. 

Chapter 5. How CICS/CMS handles CICS resources 57 



2. You must define the queue in the CICS/CMS transient data destination table. 
The definition must include the queue name, and an E to show that it is 
extrapartition. You also have to specify 0 if it is an output queue. Unless told 
otherwise, CICS/CMS assumes that extrapartition destinations are input 
queues. 

You will find some sample definitions in Figure 32 on page 74. 

Defining extrapartition queues to eMS 

Before you can refer to any extrapartition queue in an application program, you 
must associate that queue with a CMS virtual device. 

For each extrapartition queue you want to use, you must execute a CMS FILEDEF 
command before you start a CICS test session. When you initialize CICS, by 
starting a transaction or program from panel EFH12, it opens all the files that it 
will use, including those associated with extrapartition queues. You can't use 
FILEDEF during a CICS test session, by executing it from the escape panel 
(EFH122), because the file that it associates with an extra partition queue will not 
be open. 

The FILEDEF command for each extrapartition queue specifies: 

• The 4-character name of the extrapartition queue. 

• The virtual device with which you want to associate that queue: TERMINAL, 
PRINTER, PUNCH, READER, DISK, DUMMY, GRAF, or TAPn (where n is the 
virtual tape drive number). 

Note: There are some special rules you need to know when using 
extrapartition queues to get input data for a program from your virtual reader. 
We describe these in "Reading data from your virtual reader" on page 118. 

• The filename, filetype, and filemode of the CMS file, if the device is DISK. 

• The record format: F for fixed, v for variable. 

Note: If you specify a format of v, you must give the file a maximum record 
length 4 bytes longer than you need. These 4 bytes contain control 
information. The second and third examples below show this rule in action. 

• The maximum length of record you will write to the chosen device. 

If your application tries to use records longer than this, it will raise a 
LENGERR condition. We recommend that you include an EXEC CICS HANDLE 
command in your application to deal with this condition. 

Printing from extrapartition queues 

To test an application that writes data to a transient data queue for printing on a 
system printer, you need to: 

1. Associate the queue with your virtual printer, or with a CMS file. You do this 
using the CMS FILEDEF command, as described above, associating the queue 
with the virtual device PRINTER (for the virtual printer) or DISK (for a CMS 
file). The third example in "Example FILEDEF definitions for extrapartition 
queues" on page 59 shows a FILEDEF command to associate an extrapartition 
queue with the virtual printer. 

58 CICS/CMS User's Guide 

J 



L 

2. Define the queue in your CICS/CMS destination table file as E (extra partition) 
and 0 (for output). 

CICS/CMS will send to the printer everything that you write to that queue in a 
CICS test session. This doesn't necessarily mean running a single program or 
transaction, since you might escape during the execution and run other 
transactions or programs from panel EFHl22. 

Note that, if you're using a PC with a local printer, VM/PC usually assumes that 
your local printer is your virtual printer. You can change this to a remote system 
printer, using the SPOOL command, as explained in the VM/PC User's Guide. 

Example FILEDEF definitions for extrapartition queues 

FILEDEF EXT1 DISK EXQIN FILE D (RECFM F LRECL 80 

This associates queue EXTl with the CMS file EXQIN, which is on your D-disk 
with a filetype of FILE. It contains fixed-length records, 80 bytes long. 

FILEDEF EXT2 DISK EXQOUT DATA A (RECFM V LRECL 136 

This associates queue EXT2 with the CMS file EXQOUT, residing on your 
A-disk with a filetype of DATA. Its records are variable in length, with a 
maximum data length of 132 bytes_ We've defined an extra 4 bytes for the 
control information needed for variable records. 

FILEDEF EXT3 PRINTER (RECFM V LRECL 136 

This associates queue EXT3 with the virtual printer. We advise a maximum 
data length of 132 (136 including the variable record control information), 
which suits most kinds of physical printer. 

Note: If you associate a queue with the reader, punch, or printer, make sure that 
you define the queue appropriately in the destination table. For example, suppose 
you used a FILEDEF to associate a queue with the virtual printer (as shown in the 
third example), and then defined that queue as being for input (I) in the destination 
table. As soon as you entered the CICS environment from panel EFH12, you would 
get error messages from both CMS and CICS/CMS. CICS/CMS would ignore the 
definition of that queue. Although you could continue your test session, you would 
not be able to use the queue until you corrected the destination table, and 
reentered the CICS environment. 

"Transient data destination tables" on page 73 tells you how to define 
extrapartition queues to CICS/CMS. You can find out more about the FILEDEF 
command in the CMS User's Guide. 

Remote transient data 

This is discussed in "Remote resources" on page 64. 

Chapter 5. How CICS/CMS handles CICS resources 59 



Temporary storage 

CICS/CMS supports all the temporary storage features of CICS/VS, except that all 
temporary storage is set up in main storage. If an application makes a temporary 
storage request with the AUXILIARY option, CICS/CMS assumes MAIN, and displays 
an error handler message. 

You don't usually need a temporary storage table to use temporary storage queues. 
The only time you need one is to define temporary storage queues on a remote 
CICS/VS system. 

For more information on using remote resources, see "Remote resources" on 
page 64. For more information on the CICS/CMS temporary storage table, see 
"Temporary storage tables" on page 76. 

Local data files 

Most CICS applications access data files at some point, using the CICS/VS file 
control application programming interface (API). The files are usually VSAM files 
or DL/I data base files. CICS/CMS has its own way of supporting the file control 
API, designed to make it as easy as possible for you to create and maintain data 
files. 

Note: The title of this section is local data files. If you want to use DL/I data 
bases, or CICS/VS VSAM files, you have to access them on a remote CICS/VS 
system, using the remote server. We tell you how to define remote files to 
CICS/CMS in "Remote resources" on page 64. 

How CICS/CMS supports VSAM files 

VSAM supports three types of files, as follows: 

• Key sequential data sets (KSDS), accessed by key 

• Relative record data sets (RRDS), accessed by relative record number 

• Entry sequential data sets (ESDS), accessed by relative byte address. 

CICS/CMS simulates support for all three types, to make it as easy as possible for 
you to use data with your test applications. 

To support KSDS, CICS/CMS uses the keyed format. Each keyed file consists of 
two files: one contains the data, the other is an index file for that data. 

To support both RRDS and ESDS, CICS/CMS uses a single file format, nonkeyed, 
accessed by relative record number. 

The only restrictions that CICSjCMS places on the maximum size of files, or of 
records within files, are those that CMS imposes, as follows: 

• You can store a file only if you've got room for it on the disk on which you're 
trying to put it. 

• The maximum record size for any local CICS/CMS data file is 32763 bytes. 

60 CICS/CMS User's Guide 



Note, however, that when you use a keyed file in a CICS test session, CICSjCMS 
loads the index into virtual storage. If you test applications that use very large 
keyed files, you may need a larger virtual machine than the recommended 2 
megabytes. 

You don't have to define files in a CICSjCMS file table if they are local files that 
already exist. You only have to define a data file in the CICSjCMS file table in the 
following situations: 

• When you want to use a data file on a remote CICSjVS system without using 
the SYSID option on EXEC CICS commands 

• When an application will create a new file 

• When you want to increase the maximum record length of an existing file 
containing variable length records. 

You can find out more about when to use file tables, and how to define files within 
them, in "File tables" on page 77. 

In the next sections we deal with each of the CICS/CMS data file types in turn, 
describing their exact format, and what you need to consider when using them. 

The CICS/CMS keyed file format 

CICS/CMS keyed files simulate VSAM KSDS support. Each CICS/CMS keyed file 
consists of two files: the index file and the data file. The filenames of these files 
must be the same. It's the filetype that distinguishes the index file from the data 
file. 

An index file has a filetype of EFHVINDX, and a data file has a filetype of 
EFHVDATA. Both files must reside on the same CMS disk. As in VSAM KSDS, 
all keys in one keyed file must be unique, and of the same length. 

To make it as easy as possible for you to use keyed files, CICS/CMS provides 
utilities to convert either local CMS files, or VSAM files on a remote CICS/VS 
system, into the two-file structure. These utilities are fully described in "Preparing 
local data files" on page 109. 

Keyed file record structure 

Records in an EFHVDATA file can be offixed or variable length. You can define 
the record type and length in a CICS/CMS file table. If you don't include a 
definition of a keyed file in a table, CICS/CMS uses the applicable CMS values. 

Records in an EFHVINDX file are a maximum of 512 bytes long. Each record 
contains one or more entries, depending on the length of the key. For example, if 
the keys are only 5 bytes long, the entry for each key will be 22 bytes long, with 2 
bytes of padding, as explained below. Each record on the index file will therefore 
contain 21 entries. 

Each entry in an index record is of fixed length, and contains: 

1. A forward pointer to the next key in the sequence (4 bytes long). 

2. A backward pointer to the previous key in the sequence (4 bytes long). 

Chapter 5. How CICS/CMS handles CICS resources 61 



3. The relative record number (RRN) of the associated record in the EFHVDATA 
file (4 bytes long). 

4. The length of the associated record in the EFHVDAT A file (4 bytes long). 

5. A flag to say whether the record in the EFHVDATA file is current or deleted. 
As we explain below, when you delete a record from the data file, CICSjCMS 
doesn't actually remove it. It changes this flag from X'OO' (current) to X'80' 
(deleted). This flag is 1 byte long. 

6. The fixed length key (between 1 and 255 bytes long). 

7. Padding, to ensure that the entry that follows this one starts on a word 
boundary. There can be up to 3 bytes of padding. 

The data and index files both start with a control record, as follows: 

• The first 16 bytes, in both files, contain the date and time when you created or 
last changed the file. These values must be identical in both files. If they get 
out of step, you'll get a message from CICSjCMS when you try to access data 
from the file, warning you that it can't use the file until you correct the control 
records. 

• In the index file, the rest of the record contains information that CICSjCMS 
needs to retrieve information from the data file. If this information is 
corrupted in any way, CICSjCMS won't be able to use the keyed file. 

In the data file, the rest of the record may contain some data, or nothing. In 
either case, the contents of the data file control record are unimportant to 
CICSjCMS, and you can ignore them. 

In view of the importance of the date and time parts of both control records, and of 
the "retrieval" information in the index file control record, we strongly advise that 
you don't try to change CICSjCMS keyed files directly, using an editor. 

If you ever need to re-create either of the control records, you should re-create both 
files, using the EFHUCMSI utility either on the original CMS file, or on your 
CICSjCMS EFHVDATA file. 

Deleting records from keyed files 

CICS/CMS handles EXEC CICS DELETE commands on keyed files in a different 
way from CICS/VS. It removes the pointer to the deleted record from the index file, 
but it doesn't remove the record from the data file. You may therefore find, if you 
look at a data file using your editor, that records that you have deleted appear to 
be still there. 

If you use a keyed file frequently, adding and deleting records, the data file can 
become quite large. "Using CCU2 to reorganize CICS/CMS keyed files" on 
page 116 tells you how to reorganise CICSjCMS keyed files to leave only active 
records, in ascending order of keys, in the data file. 

62 CICS/CMS User's Guide 

J 



The CICS/CMS nonkeyed file format 

CICSjCMS uses CMS files with a filetype of EFHVNONK to support both entry 
sequential data sets (ESDS) and relative record data sets (RRDS). 

Records in an ESDS file can be of fixed or variable length. Records in an RRDS 
file must be fixed. 

You can define whether a nonkeyed file is ESDS or RRDS, and specify the record 
type and length, in a CICSjCMS file table. If you don't include a definition of a 
nonkeyed file in a table, CICSjCMS uses the applicable CMS values for the record 
format. It determines whether the file is ESDS or RRDS from the way that you 
access it the first time you use it in a CICS test session. 

For example, if you run an application that accesses a nonkeyed file using the RRN 
option, and then escape, and run another application that accesses the same file, 
using the RBA option, the access in the second application will fail. However, if 
you let the first application finish, and return to panel EFH12 before running the 
second application, the access in the second application will work, because you are 
in a different CICS test session. 

Differences between CICS/CMS and CICS/VS 

There are a number of differences between the way that CICSjCMS supports 
nonkeyed files, and the way that CICSjVS supports the RRDS and ESDS files they 
represent, as follows: 

1. CICSjCMS supports the full file control API, with one exception. Under 
CICSjVS, you can use EXEC CICS DELETE commands to delete records from 
RRDS files, but not from ESDS files. Under CICSjCMS, you cannot use the 
DELETE command on any nonkeyed file. If you try to do so, you will raise an 
INVREQ condition, and get a message from CICSjCMS. 

2. Whether you specify RBA or RRN in a file control command, CICSjCMS treats 
the value you give in RIDFLD as a relative record number. This will not 
affect the way you use RBA records, unless your application tries to compute 
one RBA from another. 

3. CICSjCMS writes all records that you add to a nonkeyed file to the end of the 
file, and returns a new value to the application in RIDFLD. It ignores any 
value you give in the RIDFLD option of your EXEC CICS commands, so you will 
never get a DUPREC condition when you use nonkeyed files. This also means 
that you can't create nonkeyed files in random order, as you can RRDS files in 
CICSjVS. 

You can test for DUPREC on RRDS files, by running with EDF on, and 
changing the condition raised by the second write from NORMAL to DUPREC. 
You'll need to remember, however, that the application will actually have 
added the record to the file. 

4. You must use the EQUAL option on all EXEC CICS READ, STARTBR, and 
RESETBR commands that use RRDS files. If you leave it out, those commands 
will raise an INVREQ condition, and produce a CICSjCMS message. 

Chapter 5. How CICS/CMS handles CICS resources 63 



How to interpret EIBRCODE in CICS/CMS 

There is a difference between CICS/CMS and CICSjVS in the meaning of the 
EIBRCODE value for file control in the exec interface block. 

EIBRCODE is a 6-byte field. Byte 0 contains the condition code, and byte 1 
contains the VSAM return code. These are the same for CICS/CMS as for 
CICSjVS. However, In CICSjVS, when there's a problem with a VSAM file, byte 2 
of the EIBRCODE contains the VSAM error code. In CICS/CMS, because VSAM 
access is simulated using CMS file facilities, this error code is replaced by the 
return code from the CMS file command on which the problem arose. You'll need 
to look in the VM/SP CMS Command and Macro Reference manual to find out 
what these codes mean. You'll find more about how CICS/CMS uses EIBRCODE in 
the CICS/CMS Application Programmer's Reference Summary. 

Remote resources 

During a CICS/CMS session, you can use any of the local CICS/CMS resources 
described in the preceding sections. If you have access to a remote CICS/VS 
system, you can also use resources on that system, or on another CICS/VS system 
daisy chained to that system, through the remote server. 

The remote server runs on the remote CICS/VS system as a transaction (CEHS). It 
accepts requests for remote resources from your applications and passes them to 
the remote CICS/VS system to which you have access. 

Why would you want to use resources on a remote CICS/VS system? The main 
reasons are: 

• To test applications that use DL/I data bases. CMS doesn't support DL/I, so 
you must send all requests for DL/I data bases to a remote CICS/VS system. 

• To test applications that use resources in ways that you can't test locally using 
CICS/CMS. 

For example, you might want to test an application that computes one RBA 
from another when accessing ESDS files, or that accesses keyed files with 
alternate indexes, or that writes temporary storage files to auxiliary storage. 
When you use such resources remotely, the rules governing their access are 
those of CICS/VS, rather than those of CICS/CMS. 

• To test applications that use interval control to start transactions that aren't 
local to CIcs/eMS, but are stored on your remote CICS/VS system. 

Before you can use a remote resource from an application, there are two things you 
must do: 

1. You must tell CICS/CMS that the resource you want is on a defined remote 
CICS/VS system, rather than on your local CICS/CMS system. 

This is explained below. 

2. You must connect to the remote CICS/VS system, start the remote server 
transaction (CEHS), and return to your CICS/CMS system. 

64 CICS CMS User's Guide 



Since this is something you won't need to do until you run an application that 
needs a remote resource, we deal with it as part of the development process, in 
"Starting and using the remote server" on page 105. 

There are two ways of telling CICSjCMS that a resource is remote, as follows: 

1. You can define the resource as remote in one of the CICSjCMS tables. 

2. You can use the SYSID option on any EXEC CICS commands that refer to that 
resource. If you do this, you don't have to change any CICSjCMS tables. 
However, you'll have to change the application to remove the SYSID option 
when you transfer it to your CICSjVS system. 

Defining remote resources in CICS/CMS tables 

DL/I data bases 

The resources you can define as being remote are: 

• DLJI data bases 

• VSAM files 

• Transient data queues 

• Temporary storage queues. 

You have to define all DLjI program specification blocks (PSBs) that you want to 
access in a file called the PSB directory. Like all CICSjCMS tables, this is simply 
a CMS file with a particular filename and filetype, as defined in the EFHSETP 
EXEC or your own EFHPROF EXEC. 

We describe the PSB directory with the other CICSjCMS table descriptions, in 
"PSB directories" on page 78. 

Remote VSAM files 

If you want to use a VSAM file that resides on the remote CICSjVS system, you 
must define it as being of type R in a CICSjCMS file table. See "File tables" on 
page 77. 

Remote transient data queues 

If you want to use a remote transient data queue, you must define it as being of 
type R in a CICSjCMS transient data destination table. See "Transient data 
destination tables" on page 73. 

Remote temporary storage queues 

If you want to use a remote temporary storage queue, you must define it in a 
CICSjCMS temporary storage table. See "Temporary storage tables" on page 76. 

Chapter 5. How CICS/CMS handles CICS resources 65 



U sing the SYSID option 

There are two circumstances in which an application you're testing under 
CICS/CMS might have the SYSID option on EXEC CICS commands: 

1. Because you're using the SYSID to access resources remote from CICS/CMS 

2. Because the application will access resources remote from the CICS/VS system 
on which it runs when you put it into production. 

In general, we recommend that you don't use SYSID for the first circumstance. If 
you do, you'll have to change the application to remove the SYSID option before 
moving it into production. It's better to define the resources you want to use in the 
appropriate CICS/CMS table(s). However, if you want to use interval control 
remotely, you'll have to use SYSID. If you do, note that the remote system name 
you give must be the name by which CICS/CMS refers to your remote CICS/VS 
system. This name is defined in the REMSYSID parameter in EFHSETP. The 
IBM-supplied name is REMT. 

For the second circumstance, you have a choice. You can access the resources you 
need on the remote CICS/VS system, by giving the REMSYSID name in the SYSID 
option. Alternatively, you can set up the resources locally on CICS/CMS, and 
access them by giving your local system name in the SYSID option. This name is 
defined in the LOCSYSID parameter in EFHSETP. The IBM-supplied default is 
LOCL. 

U sing interval control remotely 

You can use the remote server to start a task, or cancel a previous interval control 
request, on the remote CICS/VS system. You don't need to change any CICS/CMS 
tables to do this. You simply include the SYSID option in your EXEC CICS START 
or CANCEL commands. The remote server will pass the request to the remote 
system. Note, however, that, when you transfer the tested application to your 
CICS/VS system, you'll have to remove the SYSID option. 

The remote system name which you give in the SYSID option must be the name by 
which CICS/CMS refers to your remote CICS/VS system. This name is defined in 
the REMSYSID parameter in EFHSETP. The IBM-supplied name is REMT. 

If the transaction you name in the command doesn't exist on the remote CICS/VS 
system, you'll get a message from CICS/CMS. Otherwise, you have no way of 
communicating with that transaction once you've issued the EXEC CICS START 
command. 

CICS/CMS tables 

In each of the earlier sections dealing with individual resource types, we mentioned 
briefly those occasions when you need to define the resource in a CICS/CMS table. 
There are five kinds of tables in CICS/CMS, as follows: 

• Program tables 

• Transient data destination tables 

• Temporary storage tables 

66 CICS/CMS User's Guide 

J 



• File tables 

• PSB directories. 

All CICS/CMS tables are CMS files containing resource definitions. When you 
need to define a resource of any kind to CICS/CMS, you create or update one of 
these files, using your editor. 

You also need to tell CICS/CMS which CMS files are the CICS/CMS tables. You 
do this using parameters in the EFHPROF EXEC that define the filename, filetype, 
and filemode of the CMS file for each kind of table. Appendix D, "CICS/CMS 
parameters" on page 241 describes all the parameters for defining tables. "Fully 
defining eMS files as CICSjCMS tables" and "Partially defining CMS files as 
CICSjCMS tables" describe the ways in which you can use these parameters. 

Fully defining CMS files as CICSjCMS tables 

If you want to use a particular CMS file as the default for a CICS/CMS table, you 
define the filename, filetype, and filemode of that file in your EFHPROF EXEC. 
For example, if you include the statements: 

SETPARM 'PROGFN APP1' 
SETPARM 'PROGFT PROGTAB' 
SETPARM 'PROGFM A' 

in your EFHPROF, you define your CICSjCMS program table as being the CMS 
file APP1 PROGTAB A. CICS/CMS will always use this file as your program table, 
unless you tell it otherwise using panel EFH121, as explained in "Defining CMS 
files as CICSjCMS tables on the EFH121 panel" on page 69. 

Partially defining CMS files as CICSjCMS tables 

You can specify only the file type of the file to be used as the default for a 
particular kind of CICSjCMS table, using a partial file definition in your 
EFHPROF EXEC. For example, if you include the statements: 

SETPARM 'PROGFN 
SETPARM 'PROGFT PROGTAB' 
SETPARM 'PROGFM *' 

in your EFHPROF, you define CICS/CMS program tables as having a default 
filetype of PROGT AB, and residing on any disk to which you currently have write 
access. 

By defining PROGFN as "period" (.), however, you set the default filename to null. 
This lets you set up different program tables for different applications, giving each 
a unique filename, and the filetype PROGTAB. Before you test any applications 
that need a program table, you'll need to tell CICS/CMS which CMS file to use as 
the table during that test. There are three ways of doing this: 

• Using PF9 on one of the EFH13 panels 

• Using PF9 on the EFHll panel 

• Using panel EFH121. 

Chapter 5. How CICS/CMS handles CICS resources 67 



Defining CMS files as CICS/CMS tables on the EFH13 panels 

Selecting option 3 on panel EFHl displays panel EFHI3, as shown in Figure 10 on 
page 22. From this panel, you can choose to list any of your table types. 

For example, suppose you've defined your program table as shown in "Partially 
defining CMS files as CICS/CMS tables" on page 67, and then set up three CMS 
files on your A-disk, with the filetype PROGTAB, and the filenames APPl, APP2, 
and APP3. If you select option 2 on panel EFHI3, CICS/CMS will display the 
following panel: 

EFH131 FILELIST:* PROGTAB * 

Cmd Filename Filetype Fm Format Lrecl 
APP2 PROGTAB A2 F 80 
APP3 PROGTAB A2 F 80 
APPl PROGTAB A2 F 80 

Records 
27 
22 
40 

PF1=Help 2=Refresh 3=End 4=Sort(date) 
PF7=Backward 8=Forward 9=Install 10=Cursor 

====> 

Figure 29. CICS/CMS program table display 

Line 1 of 3 

Blocks Date 
1 3/03/86 
1 3/03/86 
1 3/03/86 

5=Sort(size) 
11= 

Time 
9:50:05 
9:49:52 
9:46:28 

6=Edit 
12= 

Let's assume that, in this session, you want to test an application that uses 
programs defined in APP2 PROGTAB. You need to tell CrcS/CMS to use APP2 
PROGT AB for the session. 

You move the cursor beside APP2 PROGTAB, press PF9, and CICS/CMS "installs" 
that file as the program table for the rest of the CICS/CMS session, or until you 
change it (either by using PF9 again, or by using panel EFHI21, as described in 
"Defining CMS files as CICS/CMS tables on the EFH121 panel" on page 69). 

Defining CMS files as CICS/CMS tables on an EFHll panel 

You can use PF9 to install tables from panel EFHll in the same way as from an 
EFH13 panel. On EFHll, however, you have to be more careful. PF9 works only 
on files with the filetype that you've defined for a CICS/CMS table. On the 
"EFHI3n" panels this presents no difficulty, because they only list files that you've 
defined, either fully or partially, as containing tables. On an EFHll panel, 
however, you might press PF9 against a file of the wrong filetype. If you do, 
CICS/CMS will issue the message: 

EFH9090S type is not a valid filetype. 

where type is the filetype of the file for which you pressed PF9. 

68 CICS/CMS User's Guide 

J 



Defining CMS files as CICS/CMS tables on the EFH121 panel 

On panel EFH121, you can complete partial table definitions, or change full 
definitions. 

To see how, let's continue with the program table example from the point we left it 
in "Defining CMS files as CICSjCMS tables on the EFH13 panels" above. Suppose 
that, during the CICSjCMS session in which you're using the table APP2 
PROGTAB, you decide that you want to test an application that needs the 
definitions in APPI PROGTAB. You could return to panel EFHl, then go to panel 
EFH131 and use PF9 on panel EFH131, as described in "Defining CMS files as 
CICSjCMS tables on the EFH13 panels" on page 68. It's more convenient, 
however, to use panel EFH121, which lets you define the new program table 
without going back through earlier panels. 

Pressing PF7 on panel EFH12 will bring up a display looking something like the 
one shown in Figure 30. 

EFH12l 

Trace 
EFHUSTG table entries 
Trace table filemode 
Trap program checks 
DEBUG program 
Dynamic storage 
Language 
TWA size 
SYSID for remote system 

Names of resource tables: 
Program/Transaction 
File 
Transient Data 
Temporary Storage 
PSB Directory 

PARAMETER DEFINITION 

;;;) NO Yes,No 
;;;) 500 100-1000 
;;;) Z 2 characters 
;;;) YES Yes,No 
;;;) 1-8 characters 
;;;) 160000 50000-4000000 
;=;) COBOL COBOL, COBOL2, 
;;;) 1024 1024-32767 
;;;) REMT 4 characters 

Filename Filetype Filemode 
;;;) APP2 PROGTAB * 
;;;) 

;;;) 

;;;) 

;;;) 

EFHTFILE * 
EFHTTD * 
EFHTTS * 
EFHTPDIR * 

Keyword Value 
Additional Parameter ;;;) 

Figure 30. Changing a program table on the EFH121 panel 

ASSEMBLE or PLI 

You move the cursor to the line containing the program table definition, change 
APP 2 to APP 1, and press PF3 to return to panel EFH12. You can then start testing 
applications that use the definitions in APPI PROGTAB immediately. 

Any changes you make using panel EFH121 stay in effect for the rest of the 
CICSjCMS session, or until you make another change using either panel EFH121 
or the PF9 (Install) key. 

You'll find a complete description of everything you can use panel EFH121 for in 
"Changing your CICSjCMS environment within a session" on page 119. 

Chapter 5. How CICS/CMS handles CICS resources 69 



The general form of table entries 

Entries in CICS/CMS tables have strictly defined forms. In particular, the entries 
are column-dependent (that is, each field in each entry has to start in a defined 
column). The table descriptions that follow this general introduction tell you the 
forms the entries must take. 

To make it easier for you to specify entries correctly, CICS/CMS provides an 
XEDIT macro (EFHT ABH) that puts descriptions of the entries at the front of a 
table file, and sets tabs for the relevant column positions. 

For example, suppose your defined filetype for transient data tables is EFHTTD, 
and you are currently editing a file called APPI EFHTTD. If you enter the 
command EFHTABH from your XEDIT command line, you'll see the following lines 
appear at the start of your file: 

* CICS/CMS Table for Transient Data 

* 
* Column definitions 
* For intrapartition 
* 1-4 6 8-15 17-24 26-27 
* Local Intra File File File 
* name flag name type mode 
* For extrapartition 
* 1-4 6 8-15 
* Local Extra Input/ 

* name flag Output 
* For remote 
* 1-4 6 8-11 13-16 
* Local Intra LRECL Remote 

* name flag name 

* 6 8 13 17 26 

Notes 

1. EFHTABH is an XEDIT macro. If you are not using XEDIT as your editor, 
you can't use EFHTABH. 

2. You can tell that the lines that EFHT ABH inserts are comments, because they 
begin with an asterisk followed by a space. You can insert comments in all 
CICS/CMS tables in this way. 

The sections following describe the various types of CICS/CMS tables. 

Program tables 

There are three circumstances where you need to create or update a table of 
programs, as follows: 

• When you are creating a pseudoconversational application, consisting of more 
than one program, associated with one or more transaction IDs. Here, you 
have to provide program table entries that associate the programs with the 
applicable transaction IDs. 

• When you want to run a program written in a language other than your default 
language 

70 CICS/CMS User's Guide 

J 



Filename field 

• When your program name is different from the name of the eMS file that 
contains it. 

Here, you have to give the program's name in the program table. 

Figure 31 shows the general form of program table entries, by giving some 
examples. 

* CICS/CMS Program and Transaction table format 
* 
* 1) Associate PROG1 with the transaction, TRAN 

* 
PROG1 PROG1 COBOL INCLUDE TRAN 
* 
* 2) PROG2 is to be executed by pressing PF9. 
* It is stored in the file, PROGFILE. 

* 
PROGFILE PROG2 COBOL INCLUDE /PF09 

* 
* 3) PRPROG is a PL/I program, associated with two 
* transactions, RITE and BIGY. 
* 
PRPROG PRPROG PL/I INCLUDE RITE 

BIGY 

Figure 31. Sample program table 

Each program has a single entry in the file, consisting of up to five fields, as 
follows: 

1. Filename of the file containing the program 

2. Program entry point name 

3. Language in which the program is written 

4. Load method 

5. Transaction identifier or PF key 

The first field in each program table entry gives the filename of the CMS file 
containing the program. It must start in column 1. 

Entry point field 

The second field in each program table entry gives the program's entry point. This 
must start in column 11. 

You can leave this out if the name of the program is the same as the filename of 
the file that contains it. The program name is what you give in a PROC statement 
for PL/I, a PROGID statement for COBOL or COBOL II, or as the CSECT name for 
assembler. 

Example 2 in Figure 31 defines an entry point name different from the filename. 

Chapter 5. How CICS/CMS handles CICS resources 71 



Language field 

The third field in each program table entry defines the language in which you have 
written the source program. This must start in column 21. 

Valid entries are: 

PLI for PL/I 

COBOL for COBOL 

COBOL2 for COBOL II 

ASSEMBLE for assembler 

Load method field 

The fourth field in each program table entry defines the method by which the 
program is to be loaded into memory. This must start in column 31. 

If you leave the field blank, CICS/CMS assumes INCLUDE as the load method, 
which means that the named program will be loaded into the user memory. This is 
the way we recommend that all user programs should be loaded. You can find the 
address of a loaded program by finding the INCLUDE for it in the LOAD MAP file. 

The other choice is NUCXLOAD. This loads the program into the CMS nucleus, as 
a nucleus extension. This is the way that CICS/CMS loads its own modules. You 
can find the address of a nucleus extension with the NUCXMAP command. 

In general, we recommend that you don't use NUCXLOAD for anything but 
assembler programs (if at all), for the following reasons: 

1. If you want to load one of your COBOL, COBOL II, or PL/I programs with 
NUCXLOAD, you will have to link-edit the program with all the library 
routines it needs. This means creating new files containing the link-edited 
forms of the programs; these files will take up a lot of disk storage. 

2. Every time you load the program, you also load the library routines, using up a 
lot of virtual storage. 

3. When you end a CICS/CMS session, CICS/CMS doesn't release any nucleus 
extensions. This includes programs that you've loaded into the nucleus with 
NUCXLOAD. To release the storage those programs occupy, you have to use a 
NUCXDROP command for each one. 

If, after considering the points above, you still want to load your programs with 
NUCXLOAD, you'll need to read the information below to find out how to link-edit 
your programs. 

The way you link-edit depends on whether you're using VM/SP or VM/PC, and 
which version of VM/SP you're using, as follows: 

• On VM/SP Release 3, you copy the TEXT file containing your translated and 
compiled program to a new file (filetype TEXT), and add the following 
commands to the end of the file: 

72 CICS/CMS User's Guide 



INCLUDE EFHLIB(DFHEPI) 
ENTRY program 
NAME program(R) 

where program is your program name. 

You then put the new file in the load library, EFHPRIV LOADLIB, using the 
commands: 

FILEDEF EFHLIB DISK EFHXLIB TXTLIB * 
LKED fn (LIBE EFHPRIV 

where fn is the filename of the file you just created. 

• On VM/PC or VM/SP Release 4, you have to make a relocatable module from 
the file containing your translated and compiled program, using the commands: 

LOAD fn (RLDSAVE 
GENMOD fn 

where fn is the filename of your TEXT file. 

Transaction or PF key field 

The fifth field in each program table entry gives the transaction identifier or PF 
key that initiates the program. Transaction IDs must start in column 41; PF key 
definitions must start with a / in column 40, as shown below. 

If you want to associate a single program with more than one transaction ID, you 
can list the IDs against the program name, as shown in example 3 in Figure 31. 

Note: The program table is the only one in which you can do this. In all other 
tables, if you leave out a field in a definition, CICS/CMS applies some defined 
default. 

The form of the definition for a PF key is: 

/PFxx 

where xx is the PF key number. A typical PF key definition is shown in example 2 
in Figure 31. 

Transient data destination tables 

As explained earlier, you usually need to define transient data destinations in 
CICS/CMS only if they are extrapartition or remote. You create intrapartition 
destinations as CMS files, simply by referring to them in your applications. You 
define the default filetype of these files in your EFHPROF EXEC. The only time, 
therefore, that you need to include a table entry for an intra partition destination, 
is when: 

• You want to specify a particular filemode for the file 

• You want to specify a CMS filename different from the transient data 
destination name 

• You want to specify a filetype different from the default defined in EFHSETP 
or EFHPROF. 

Chapter 5. How CICSjCMS handles CICS resources 73 



You define a transient data destination with an entry in a transient data 
destination table. Like all CICS/CMS tables, this is a CMS file, with a defined 
structure, and a filetype defined in your EFHPROF EXEC, as explained in 
"CrCS/CMS tables" on page 66. You can therefore create and change it using your 
CMS editor. 

The sample table in Figure 32 shows typical entries for intrapartition, 
extrapartition, and remote transient data destinations. 

* CICS/CMS Sample TD Destination Table 
* 
* Define alternative file types and modes for 
* intrapartition destinations 
* 
INOI I INOI 
IN02 I IN02 

* 

IDFILE * 
Z 

* Define extrapartition destinations for 
* input (EXTI) and output (EXTO) 

* 
EXTI E I 
EXTO E 0 

* 
* Define remote destinations 

* 
RDSl R 0060 
RDS2 R 0080 LDS2 
* 
* End of TD Destinations 

Figure 32. Sample transient data destination table 

Defining intra partition destinations 

The general form of definition for intrapartition destinations is: 

1. The destination name, starting in column 1. 

2. The letter I, signifying an intrapartition destination. This must be in 
column 6. 

3. The filename of the file associated with the destination, starting in column 8. 

4. The filetype, starting in column 17. 

5. The filemode, starting in column 26. 

The first two entries in Figure 32 show the most usual reasons for defining 
intrapartition destinations in the table: to use a file type other than the default, or 
specify a particular filemode, for the CMS file associated with an intra partition 
destination. 

Using something other than the default filetype 

The first entry in Figure 32 is: 

INOl I INOl IDFILE * 

It shows you how to override the intrapartition destination filetype set up in the 
EFHSETP EXEC or your own EFHPROF EXEC, for a particular des~ination. 

74 CICS/CMS User's Guide 



It associates the destination INO! with a CMS file with the same filename, and a 
filetype of IDFILE. The * defines the filemode, telling CICSjCMS to search all 
disks in the defined CMS search order for the file. If you are reading from INOI, 
CICSjCMS will search only for a file of that filename and filetype. If it doesn't find 
one, it will give you an appropriate error message. If you are writing to INOI, 
CICSjCMS will first see if one already exists, and, if it doesn't, it will create a new 
one on your A·disk. 

U sing a specific filemode 

The second entry in Figure 32 on page 74 is: 

IN02 I IN02 z 

It defines the filemode (Z) for the destination IN02. 

Usually, when you refer to an intrapartition destination in a CICS program, 
CICSjCMS looks for a CMS file of the same name as the destination, and with the 
filetype that is specified in the EFHSETP or EFHPROF EXEC. It searches the 
CMS disks, in your specified search order, until it finds such a file. 

Suppose you have two files, both with the same filename and filetype, but on 
different disks (that is, with different filemodes). CICSjCMS will always use the 
one on the disk that is earlier in the search order, unless you tell it specifically to 
use the other one. 

The entry above shows you how to do this. It associates the destination IN02 with 
a CMS file with the same filename, and the default filetype (specified by leaving the 
field blank). However, it sets the filemode to Z. CICSjCMS will search the Z-disk, 
and only the Z-disk, for the file. 

Defining extrapartition destinations 

The form of definition for extrapartition data sets is: 

1. Name (EXTI and EXTO in Figure 32), starting in column 1. 

2. The letter E, defining the destination as extrapartition. This must be in column 
6. 

3. The letter I (for an input destination) or 0 (for an output destination). This 
must be in column 8. 

You don't define the format of extrapartition data sets in the destination table. 
You define it in the CMS FILEDEF commands that you need for all extrapartition 
data sets (see "Defining extra partition queues to CMS" on page 58). 

Defining remote destinations 

The form of definition for a remote destination is: 

1. Name (RDSI and RDS2 in Figure 32), starting in column 1. 

2. The letter R, indicating a remote destination. This must be in column 6. 

3. The maximum logical record length (60 and 80 bytes in Figure 32 on page 74), 
starting in column 8. 

Chapter 5. How CICS/CMS handles CICS resources 75 



4. The name by which the destination is known on the remote CICSjVS system, 
starting in column 13. In the definitions in Figure 32 on page 74, RDS2 is 
known as LDS2 on the remote system. Since we have given no remote 
destination name for RDS1, CICSjCMS will assume that RDS1 is the name by 
which it is known on the remote system. 

Temporary storage tables 

Like all other CICSjCMS tables, a temporary storage table is a CMS file with a 
defined filetype, as explained in "CICSjCMS tables" on page 66. You can create 
and change this file using your editor. 

The only time that you need to put an entry for a temporary storage queue in the 
table is when that queue is on your remote CICSjVS system. You don't need table 
entries for any local temporary storage queues. 

The form of the table entries can be seen in Figure 33. 

* ********************************************************************** 
* Example of a CICS/CMS temporary storage table 
* ********************************************************************** 
* Define remote temporary storage ID 
* Local name (1-8 characters) followed by remote name (1-8 characters) 
* Both must be the same length (CICS requirement) 
RLOCAL3 RREMID3 
LOCTSQ REMQID 

Figure 33. Sample temporary storage table ,.J 
The general form of a temporary storage table entry is: 

1. The name by which your temporary storage queue is known to your CICSjCMS 
system (RLOCAL3 and LOCTSQ in the example above). This name can be 
between 1 and 8 characters long, and must start in column 1. 

2. The name by which your temporary storage queue is known on the remote 
CICS/VS system (RREMID3 and REMQID in the example above). This name 
must start in column 10. 

If you include this, it must be the same length as the local name. If the name 
you specify is less than 8 characters long, you can use the name as a prefix. 
For example, the second definition in the sample temporary storage table 
defines the local queue name as LOCTSQ. If an application referred to a 
temporary storage queue called LOCTSQl, the queue that it would use would 
actually be the remote queue, REMQID1. 

If you leave the remote name out, CICSjCMS assumes that the queue is known 
to the remote system by the same name as it is known to the local system. 

76 CICS/CMS User's Guide 



File tables 

You can use files with CICS/CMS without doing anything to a table. The only 
circumstances where you have to change, or add to, a CICS/CMS file table are: 

• When you want to use a remote file, through the remote server 

• When an application creates a new file 

• When you want to increase the maximum record length of an existing file that 
contains variable-length records. 

To do this, you have to set up a CICS/CMS table containing definitions of the data 
files you need. This table itself is a CMS file with a defined filename, as explained 
in "CICS/CMS tables" on page 66. 

You can see what file table entries look like from the sample table in Figure 34. 

* A CICS/CMS sample file table 

* * A local keyed file, to be created on disk AI. It contains 
* fixed-length records, 80 bytes long. It has I-byte keys, 
* starting in the 10th byte (the offset is 9) 

* 
AKEYI L K F 80 Al 9 1 

* 
* A similar file, with 4-byte keys 

* 
AKEY2 L K F 80 Al 9 4 

* * Another, but with variable records, and 10-byte keys 
* which start in the first byte (the offset is 0) 

* 
AKEY3 L K V 80 Al 0 10 

* 
* An ESDS file containing variable-length records 

* 
ESDSFIL LEV 72 Al 

* * A pair of RRDS files, both containing fixed-length records, 
* 80 bytes long. The first will have a filemode of A4, 
* the second a filemode of Al 

* 
RRDSI L R F 80 A4 
RRDS2 L R F 80 Al 

* 
* The files for the primer application 

* 
ACCTFIL L K F 383 Al 0 5 
ACCTIX L K F 63 Al 0 17 

* 
* A remote ESDS file, known remotely as RIREM 

* 
RIFILE REF 75 RIREM 

* 
* A remote RRDS file, known remotely as R2XYZ 
* 
R2 R R F 50 R2XYZ 

* 
* A remote KSDS file, known remotely as R3MKW, with 2-byte keys 
* 
R3 R K F 80 R3MKW 2 

Figure 34. Sample file definition table 

Chapter 5. How CICS/CMS handles CICS resources 77 



The fields in a file table entry give: 

1. The filename by which the file is known to CICS/CMS. This field must start in 
column 1. 

2. Whether the file is local (L) or remote (R). This field must be in column 10. 

3. The structure of the file: KSDS (K), ESDS (E), or RRDS (R). This field must be 
in column 12. 

4. The format of the records: variable-length (V) or fixed-length (F). This field 
must be in column 14. All RRDS files must contain fixed-length records. 

5. The maximum record size, starting in column 16. 

6. For local files, the filemode of the file, that is, the CMS disk on which it's 
stored. 

For remote files, the name by which the file is known on the remote CICS/VS 
system. 

In both cases, the field must start in column 22. 

7. The offset of the key within each record. This field must start in column 25. It 
applies to local keyed files only. 

8. The length of the key, starting in column 31. 

PSB directories 

PSB directory entries define DL/I program specification blocks. Since you cannot 
use DL/I data bases locally, you must define every PSB you want to use in a PSB 
directory. The directory is a CMS file with a defined filetype, as explained in 
"CICS/CMS tables" on page 66. 

Each entry in a PSB directory has two fields: 

1. The name by which CICS/CMS will refer to the PSB locally 

2. The remote PSB name, starting in column 10. 

The example in Figure 35 shows a PSB directory containing three entries. 

* CICS/CMS Sample PSB Directory 
* 
* Define three PSBs, LOCI LOC2 and LOC3, known as 
* REMI REM2 and REM3 on the remote system 
* 
LOCI REMI 
LOC2 REM2 
LOC3 REM3 

* * End of PSB Directory 

Figure 35. Sample PSB directory 

78 CICS/CMS User's Guide 



What's next? 

In the next part of the book, we tell you how to develop applications using 
CICS/CMS: from creating programs and maps to shipping your tested 
applications to a CICS/VS system. 

Chapter 5. How CICS/CMS handles CICS resources 79 



J 



Part three-Application development 

This Part of the book describes: 

Each step of using CICS/CMS to develop an application, in detail. The topics 
covered are: 

• Creating source programs and maps 

• Assembling maps, and translating and compiling programs 

• Preparing your test environment 

• Testing applications 

• Testing printer applications 

• Correcting and retesting applications 

• Transferring tested applications to a CICS/VS system. 

There is also a chapter on shortcuts: ways in which more experienced 
CICS/CMS users can speed up their application development. 

Part three-Application development 81 



J 



Chapter 6. Creating and editing programs and maps 

You can create and edit source programs and BMS maps within CMS. This means 
that you don't have to start CICS/CMS to start developing an application. 

You store source programs and maps as CMS files on one of your CMS disks, 
usually the A-disk. It doesn't matter which of the CMS-supported editors you use 
·to create them. In this guide, we always refer to XEDIT, because that's the 
standard editor that both VM/SP and VM/PC support. 

Source program files must be unpacked, and must have a record length of 80 (if 
they contain fixed-length records), or a maximum record length of 130 (if they 
contain variable-length records). When CICS/CMS translates and compiles your 
source files, it checks to ensure that they obey these rules and, if they don't, 
displays a message and stops the operation. 

CICS/CMS distinguishes between the different types of source program files by 
their filetype, as follows: 

Source Language Filetype 

COBOL Anything beginning with the letters COB, other than 
COBOL2 

COBOL II Anything beginning with the letters COBOL2, or anything 
beginning with the letters COB, if you include COBOL2 as a 
translator option 

PL/I Anything beginning with the letters PLI 

H Assembler Anything beginning with the letters AS 

F Assembler ASSEMBLE 

If you are using the F Assembler, your BMS source maps must have a filetype of 
ASSEMBLE. If you are using the H Assembler, BMS source maps can have any 
filetype. 

Note: VM/PC only supports the H Assembler. By default, CICS/CMS under 
VM/SP uses the F Assembler. This doesn't, however, mean that you can't use the 
H Assembler on VM/SP. If that is the Assembler you normally use, your system 
administrator can set it up with a few small changes to some of the CICS/CMS 
EXECs, as explained in "Customizing CICS/CMS" on page 211. 

Chapter 6. Creating and editing programs and maps 83 



CICS/CMS support for high-level languages 

CICS/CMS supports programs written in the high-level languages of COBOL, 
COBOL IT, and PL/I. In general, the CMS guides for those languages give you the 
information you need to use them with CICS/CMS. The relevant guides are: 

COBOL 

COBOL II 

PL/I 

CMS User's Guide for COBOL 

VS COBOL II Application Programming: Supplement for CMS 
Users 

OS/PL/I Optimizing Compiler: CMS User's Guide 

For general guidance on using high-level languages with CICS/VS, see the 
CICS/VS Application Programmer's Reference Manual. The advice there applies to 
using the languages with CICS/CMS, unless we say something different in this 
book. 

The rest of this section on high-level languages gives specific rules governing your 
use of these languages with CICS/CMS, which you won't find in any of the 
publications mentioned above. It also gives guidelines on how to use the languages 
efficiently with CICS/CMS. 

General information on using high-level languages in eMS 

The information here applies generally to using high-level languages in CMS; it's 
not specific to CICS/CMS. 

A uxiliary directory errors 

If you're compiling a program locally on a PC, and you get the message: 

ERROR SETTING AUXILIARY DIRECTORY 

you've probably accessed the compiler on a disk of the wrong mode . 

. You must access your PC compiler disk using the same CMS mode as the host 
system disk containing that compiler. For example, if the COBOL compiler is on 
the P-disk on the host system, you must access your PC COBOL compiler disk as 
the P-disk. 

Similarly, on VM/SP, you must access your compiler disks using the same mode as 
the one on which the compilers were generated. If you don't, you'll get the CMS 
message: 

ERROR BUILDING AUXILIARY DIRECTORY 

and the CICS/CMS messages EFH9156I and EFH9147S. 

84 CICS/CMS User's Guide 



Using a mode 2 disk for the PL/I compiler 

If you are using PL/I, you must access the compiler disk as mode 2. For example, if 
your PL/I compiler and its associated libraries are on disk 196, with a mode of G, 
you must always access it using: 

ACCESS 196 GIG * * G2 

The reason for this is that the eMS loader expects certain PL/I libraries, 
particularly IBMBPGDA and IBMBSTV A, to be part of PLILIB TXTLIB, rather 
than individual TEXT type files. By restricting your access to PLILIB TXTLIB G2, 
you "hide" the individual TEXT files. 

If you don't access the compiler disk as a mode 2 disk, three things can happen: 

• The directory in your virtual machine might be too large, using up all your 
virtual storage. 

• The compiler will not use the auxiliary directory, which might affect run-time 
performance. 

• Some programs might not run. 

General information on using high-level languages with CICS/CMS 

The information here applies to using all high-level languages with CICS/CMS. 

For each language you use, you must execute a GLOBAL TXTLIB command before 
trying to execute any program. You can put the command in your CMS PROFILE 
EXEC (to affect a whole CMS session), or in your CICS/CMS EFHPROF EXEC (to 
affect just your CICS/CMS sessions). 

The GLOBAL TXTLIB command needed for each language is: 

COBOL GLOBAL TXTLIB COBLIBVS EFHXLIB 

COBOL II GLOBAL TXTLIB VSC29TXT VSC2LTXT EFHXLIB 

PL/I GLOBAL TXTLIB PLILIB EFHXLIB 

EFHXLIB is the CICS/CMS library, and is therefore needed in all GLOBAL TXTLIB 
commands. 

If you use more than one language, you can use a single GLOBAL TXTLIB command 
for all the libraries you need. For example, for PL/I and OS/VS COBOL, you would 
use: 

GLOBAL TXTLIB PLILIB COBLIBVS EFHXLIB 

Chapter 6. Creating and editing programs and maps 85 



OS/VS COBOL information for CICS/CMS 

Default COBOL compiler options 

Whatever your OS/VS COBOL system defaults, the CICS/CMS EXEC that compiles 
CICS programs (EFHTC) applies the following defaults: 

BAT,APO,LIB,NOTRU,NOCOU,NOEND,NOFLO,NODYN 
NOSTA,NOSYM,NOTEST,NORES,OSDECK 

You can override these options when you use EFHTC as a command, as described 
in "Translating and compiling programs" on page 144. 

Sequencing COBOL programs 

You'll find debugging easier if you add line numbers to (sequence) your COBOL 
programs. The line numbers will appear in the following types of messages: 

• Translator 

• Compiler 

• CICS/CMS error handler 

• EDF panel. 

You can then relate the messages to your source program without referring to 
translator or compiler listing files. 

To sequence a COBOL program, you put line numbers in columns 1 to 6 of the 
source program, using appropriate editor options. 

PL/I information for CICS/CMS 

The following guidelines apply if you write your CICS applications in PL/I. 

Default PL/I compiler options 

Whatever your PL/I system defaults, the CICS/CMS EXEC that compiles CICS 
programs (EFHTC) applies the following defaults: 

INCLUDE,NUMBER,GONUMBER,SEQUENCE(73,80),OSDECK 

You can override these options when you use EFHTC as a command, as described 
in "Translating and compiling programs" on page 144. 

Sequencing PL/I programs 

You'll find debugging easier if you add line numbers to (sequence) your PL/I 
programs. The line numbers will appear in the following types of messages: 

• Translator 

• Compiler 

• CICS/CMS error handler 

86 CICS/CMS User's Guide 



• PLjI library run-time 

• EDF panel. 

You can then relate the messages to your source program without referring to 
translator or compiler listing files. 

To sequence a PL/I program, do the following: 

1. Use SO-byte fixed-length records for the PL/I source file. 

2. Put sequence numbers in columns 73 to 80 of the source program using 
appropriate editor options. 

3. Use the SEQUENCE (73,80) translator option. This is a default in the 
IBM-supplied system. 

4. Use the NUMBER, GONUMBER, and SEQUENCE ( 73 , 8 0) compiler options. These 
are defaults in the IBM-supplied system. 

SYSPRINT output 

CICS/CMS doesn't use the CICS transient data destinations, CPLI and CPLD. 
Instead, it treats SYSPRINT output in the same way as CMS does. It sends the 
output to the "file" defined for SYSPRINT in a FILEDEF command. This "file" may 
be a CMS file, or the system printer, or even your screen. For example, if you 
include the command: 

FILEDEF SYSPRINT TERM 

in your EFHPROF EXEC, CICS/CMS will display all SYSPRINT output on your 
terminal screen. 

If you don't use SYSPRINT at all, you can improve performance by changing the 
default PL/I load library from EFHPLIXX to EFHPLIYY (the version without 
SYSPRINT support). 

For example, you could put the following statement in your EFHPROF EXEC: 

SETPARM 'PLILOAD EFHPLIYY' 

Handling program checks 

CICS/CMS has its own way of reporting program checks. If you set the SPIE 
option to YES in EFHPROF or EFHSETP, CICS/CMS uses its own specify program 
interruption exit (SPIE) routine when there's a program check. It constructs an 
error panel which gives you detailed information on the state of things at the time 
of the program check, to help you find the problem that caused it. This is fully 
explained in "Program checks" on page 194. 

If you want CICS/CMS to report program checks in this way, don't enable PL/I 
SPIE or STAE. They will override the CICS/CMS SPIE option. If you don't 
declare PLIXOPT in your programs, you will get NOSPIE and NOSTAE by default. 
If you do declare PLIXOPT, you'll need to include NOSPIE and NOSTAE among 
the options. 

If you execute a program with PL/I SPIE and STAE in effect, you'll find it more 
difficult to deal with program checks. If you get a program check in your 

Chapter 6. Creating and editing programs and maps 87 



application, or in a PL/I library, you will get a PL/I message in SYSPRINT. 
CICSiCMS will then pass control to any ON unit you've set up, just as if CICS'\ 
were not there. If you get a program check within CICS/CMS, register 12 will not ..", 
point to the PL/I task control area (TCA), and you won't be able to get any useful 
information. 

PLIDUMP and REPORT output 

Use of storage 

CICS abends 

CICSjCMS treats all PLIDUMP and REPORT output in the way defined for PLjI 
under CMS, rather than the way defined for PL/I under CICS/VS. It doesn't use 
the transient data destination, CPLI, but writes all PLIDUMP and REPORT output 
to the CMS file, PLIDUMP. It ignores any CICS PLIDUMP options. 

In CICS/VS, PL/I programs obtain their initial storage allocation (ISA), and any 
increments to the ISA, using CICS commands of the form: 

EXEC CICS GETMAIN LENGTH ... 

These storage allocations are restricted to 64K bytes or less. 

CICSjCMS does not have this restriction. For example, under CICS/CMS, a PLjI 
program could ask for an ISA of lOOK bytes, or allocate an AUTOMATIC array of 
200K bytes. 

You need to remember that, if you take advantage of this leniency, you might 
develop and test PL/I programs that run successfully on CICS/CMS, but that fail 
with storage violations on CICS/VS. 

CICS abends that PL/I issues under CICS/VS (APLC, APLG, and so on) cannot 
occur in CICSjCMS. 

COBOL II information for CICS/CMS 

The following guidelines apply if you write your CICS applications in COBOL II. 

Default COBOL II compiler options 

Whatever your COBOL II system defaults, the CICS/CMS EXEC that compiles 
CICS programs (EFHTC) applies the following defaults: 

APOST,LIB,NOTRUNC,SIZE MAX 

You can override these options when you use EFHTC as a command, as described 
in "Translating and compiling programs" on page 144. 

SYSPRINT output and DEBUG input/output 

CICS/CMS uses the same temporary storage queues for SYSPRINT output and 
DEBUG input/output as CICS/VS. You can therefore use CECI and CEBR to read, 
write, and check these queues, as explained in the CICS/VS Application 
Programmer's Reference Manual. 

88 CICS/CMS User's Guide 



Improving performance 

CICS/CMS supplies a module, EFHC02XX, as a member of its EFHXLIB TXTLIB. 
This module defines a set of library routines that CICS/CMS loads each time you 
run a COBOL II program. Any modules that are not a part of EFHC02XX are 
loaded dynamically during the program's execution using the command: 

EXEC CICS LOAD ... 

If your COBOL II programs always use particular IGZ modules that are not 
included in the default EFHC02XX module, you can decrease the number of EXEC 
CICS LOAD commands needed, and thus improve performance, by adding them to 
that module. 

Use the following procedure to set up your own version of the EFHC02XX module: 

1. Use CICS/CMS trace output to find out which IGZ modules your applications 
always (or very frequently) load. 

2. Create your own version of EFHC02XX on your A-disk. This must have a 
filetype of ASSEMBLE, and we strongly suggest you give it a name other than 
EFHC02XX, to avoid confusion. For example, you could call it MYC2LIB 
ASSEMBLE. 

The file consists of a CSECT statement, followed by a series of EXTRN 
statements, naming IGZ modules to be loaded. For example, it might look like 
this: 

MYC2LIB CSECT 
EXTRN IGZESNP 
EXTRN IGZEDBW 
EXTRN IGZCDIF 

END 

• 
• • 

You should include all the modules in the default EFHC02XX file, as well as 
the modules you want to add to the default set. At the end of this description, 
we list all the modules in the default EFHC02XX. 

3. Assemble your file to produce the TEXT file that you'll need when running 
CICS/CMS. 

4. Add a SETPARM statement to your EFHPROF EXEC to ensure that CICS/CMS 
uses your version of the COBOL II library routine file instead of EFHC02XX. 
For example, if your file is called MYC2LIB TEXT, you need the statement: 

SETPARM 'C02LOAD MYC2LIB' 

Modules in the default EFHC02XX file 

IGZESNP 
IGZELDL 
IGZEINI 
IGZEABX 
IGZCMST 
IGZERID 
IGZETRM 
IGZCFDP 

IGZEDBW 
IGZESPM 
IGZETID 
IGZETUN 
IGZCMSF 
IGZCRSU 
IGZCRCL 

IGZCDIF 
IGZCPAC 
IGZETSU 
IGZEMSG 
IGZEABN 
IGZCPRS 
IGZCPRC 

IGZCLDR 
IGZCPCC 
IGZETCL 
IGZCVLD 
IGZESAT 
IGZCLLM 
IGZTRCL 

Chapter 6. Creating and editing programs and maps 89 



CICS/CMS support for the CICS/VS API 

Appendix B, "Differences Between CICS/CMS and CICS/VS," gives a general 
account of features of CICS/VS that are either not supported by CICS/CMS, or 
supported in a different way. The CICS/CMS Application Programmer's Reference 
Summary provides a complete account of the application programming interface 
(API) supported. It tells you what EXEC CICS commands you can use, and how 
you can use them. There are, however, a few important points that are worth 
stating here. 

One of the biggest differences between CICS/VS and CICS/CMS is that CICS/CMS 
does not support applications written in macros; it supports only the command-level 
interface. 

Apart from this, the features of CICS/VS that CICS/CMS supports either 
differently, or not at all, fall into four general categories: 

1. Features related to devices that are neither supported nor simulated by 
CICS/CMS. An example of this is the EXEC CICS ISSUE command. 

2. Features related to SNA sessions, LU 6.2 devices, and other similar facilities. 
An example of this is the EXEC CICS CONNECT command. 

3. Features that are inappropriate to the single-user environment of CICS/CMS. 
BMS routing is an example. 

4. Features that are inappropriate to the interactive nature of CICS/CMS, and for 
which CICS/CMS provides something similar, but more appropriate. Dump 
facilities are a good example. 

If you include any of these features in your source programs, they will be 
translated and compiled correctly (if you've coded them correctly). But what 
happens when you execute the program? 

Usually, CICS/CMS ignores the unsupported feature, and passes on to the next 
program statement. If you're running the program using the execution diagnostic 
facility (EDF), you will see that the response code is NORMAL. 

Some features are diagnosed by the CICS/CMS error handler, which puts out an 
information or warning display. The POST and DELAY commands are handled in 
this way. The error handler display gives you the option of ignoring the message 
and carrying on, or stopping the program. 

The GIGS/GMS Application Programmer's Reference Summary tells you exactly 
how CICS/CMS handles all the CICS/VS API features it doesn't support. 

CICS/CMS provides EDF and CECI to help you check the syntax of your EXEC 
CICS commands. You can also use EDF to test alternative execution paths, even 
those that contain unsupported, or partially supported, features. 

In general terms, if your programs use CICS/VS features that CICS/CMS supports 
fully, you can be confident that they will run on a CICS/VS system, with the same 
results as on CICS/CMS. Programs that use CICS/VS features other than these 
will probably run on a CICS/VS system, but will certainly need further testing on a 
test CICS/VS system for assurance. 

90 CICSjCMS User's Guide 

J 



L 

Finally, remember that CICS/CMS is based on CICS/OS/VS Version 1 Release 7. If 
you are developing applications that will run on an earlier release of CICS/OS/VS 
than that, or on a CICS/DOS/VS system, you must ensure that you use only EXEC 
CICS commands that are part of that system. 

Naming your application files 

It's up to you how you name the files that make up your applications. Indeed, your 
installation may impose standards that restrict your choice in naming application 
files. 

What we describe in this section is simply a suggestion. It's a way of naming 
application objects that lets you see all the files and resources associated with the 
application, without seeing unrelated objects. It does so by exploiting the relative 
freedom that CICS/CMS gives you in naming application objects and resources. 

Suppose you are developing an application to manage a small library index. If you 
always use the letters LIB as the start of each object name, you'll be able to list 
them together, without listing any other objects. 

You can do this outside a CICS/CMS session, using a CMS FILELIST command 
with a filename parameter OfLIB*. 

Once you've started CICS/CMS, option 1 on panel EFHl gives you a list of your 
application objects (or files). It's really just the result of a CMS FILELIST 
command, and could just as well list files that had nothing to do with CICS/CMS. 
To ensure that you list only those files applicable to your current application 
development, you have to use the Cr iter ia line in panel EFHl. The kind of 
display you might get from CICS/CMS is shown in Figure 36. 

EFH11 FILELIST: LIB* * A1 Line 1 of 12 

Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time 
LIBOO COBOL A1 F 80 94 4 3/01/86 9:28:00 
LIB01 COBOL A1 F 80 88 4 3/06/86 8:42:00 
LIB02 COBOL A1 F 80 3 1 3/26/86 1:52:52 
LIBINIT ASSEMBLE A1 F 80 31 2 3/07/86 15:57:24 
LIBUPD ASSEMBLE Al F 80 12 1 3/07/86 12:21:00 
LIBERR ASSEMBLE Al F 80 57 3 3/08/86 9:54:00 
LIBFIL EFHVDATA Al F 80 148 6 3/27/86 9:00:00 
LIBFIL EFHVINDX A1 F 512 11 5 3/27/86 8:40:00 
LIB EFHTPROG Al F 80 1 1 3/30/86 9:39:37 

PFl=He1p 2=Refresh 3=End 4=All this name 5=Translate/Compile 6=Edit 
PF7=Backward 8=Forward 9=Install 10=MAP-TEXT&ADS 11=Execute 12= 
===> 

Figure 36. Sample file list of application objects 

As you can see, the "LIB" application consists of three COBOL source programs, 
three BMS maps, a CICS/CMS keyed pseudo-VSAM file (LIBFIL), and a program 
table (if EFHTPROG is the defined filetype for program tables). 

Chapter 6. Creating and editing programs and maps 91 



J 



Chapter 7. Preparing your application for testing 

This chapter tells you how to use options on the CICS/CMS EFHll panel to 
convert your source maps and programs into assembled maps and translated and 
compiled programs, ready for testing. 

However, you don't have to use panel EFHll, or even have CICS/CMS running to 
do any of this. Chapter 12, "Shortcuts for experienced CICSjCMS users" on 
page 143, tells you how to assemble, translate, and compile without using 
CICS/CMS panels. 

The CICS/CMS temporary disk (Z-disk) 

CICS/CMS uses the CMS Z-disk as a temporary disk to hold listing output from 
assemblies, translations, and compilations. You can set up the Z-disk in three 
ways: 

1. On a PC, you can define your Z-disk before running CICSjCMS, using the 
VM/PC configurator, as explained in "The steps in organizing PC storage" on 
page 38. 

2. If you're using VM/SP, or you haven't predefined your Z-disk on VM/PC, 
CICS/CMS will create a Z-disk for you the first time you use one of the 
CICS/CMS EXECs to assemble or translate and compile in any CMS session. It 
does this using its EFHTSPAC EXEC. 

3. You can run the EFHTSPAC EXEC yourself, as a command, from the CP jCMS 
Command line on panel EFH12. EFHTSP AC looks to see if you've got a Z-disk 
currently accessed. If you have, it does nothing; if you haven't, it defines one. 

If you're using VM/SP, you may like to consider including an EXEC EFHTSPAC 
command in your EFHPROF EXEC. This will ensure that, if necessary, 
CICS/CMS will set up a Z-disk whenever you start CICS/CMS. 

You can use the Z-disk for other CICS/CMS files, such as trace and error logs, by 
specifying Z as the filemode in the appropriate EFHSETP or EFHPROF 
parameters. 

You must always remember, however, that, unless you are using a predefined Z-disk 
on a PC, the Z-disk is a temporary disk, and you may have to take steps to 
safeguard its contents. The life of a Z-disk is as defined below: 

• The Z-disk survives between successive CICS/CMS sessions during a single 
eMS session. 

Chapter 7. Preparing your application for testing 93 



• If you re-IPL CMS during a terminal session, the Z-disk will still be there, but 
you'll have to reestablish access to it, using the CMS command: 

ACCESS 199 Z 

If you don't reestablish access to the Z-disk, and you run EFHTSPAC, you'll get 
a completely new Z-disk, and lose the contents of the previous one. 

• If you log off, you will lose the Z-disk. If you want to keep any of the files on a 
Z-disk between terminal sessions, you should copy them from the Z-disk to one 
of your permanent CMS disks before logging off. 

Assembling maps 

CICS/CMS provides an EXEC (EFHMAPCR) that creates both physical maps and 
symbolic description maps (DSECTs) from your BMS source files. The EXEC is 
associated with a PF key on panel EFHll, so you can assemble each source map 
with a single keystroke. 

You can use EFHMAPCR in two ways: 

1. Through the CICS/CMS application objects panel, EFHll, or; 

2. By executing the EXEC as a command. We describe this method in detail in 
"Assembling BMS maps" on page 143. 

To assemble a map from panel EFHll, using PF10, you first have to get CICS/CMS J 
running by entering: 

CICSCMS 

When it starts, CICS/CMS first displays panel EFH1. If you select option 1 on this 
panel, CICS/CMS displays panel EFHll, looking something like the one in 
Figure 36 on page 91. 

On this panel, PFlO is set to MAP-TEXT&ADS. It assembles your source map, and 
produces both the physical map and the DSECT. To assemble a map, therefore, you 
move the cursor alongside a file of filetype ASSEMBLE, containing BMS macros, 
and press PF10. 

Output from assembling a map 

File output 

The main output from assembling a map is your physical map and/or DSECT. The 
physical map is written to a file that has the same name as your source file, and a 
filetype of TEXT. The DSECT is added to your private macro library, a CMS file 
with the filetype MACLIB. The name of this library depends on the language you 
are using (that is, what you have coded in the LANG option of your DFHMSD 
macro). The possible names are: 

EFHCUSER 
EFHPUSER 
EFHAUSER 

COBOL or COBOL II 
PL/I 
Assembler 

94 CICS/CMS User's Guide 



Screen output 

If you don't already have a private macro library file when you assemble a map, 
CICSjCMS creates one, on your A-disk, and puts the DSECT for that map in it. 
From then on, every time you assemble a BMS map, the DSECT is added to the end 
of the library file. If you reassemble a map, CICS/CMS erases the existing DSECT, 
and adds the new one to the end of the library file. 

You will also get listing files for each stage of the assembly. EFHMAPCR writes 
these to the Z-disk. The files have the same filename as your source map file, and 
the following filetypes: 

ASMLIST1 
ASMLIST2 

for the DSECT listing 
for the physical map listing 

Screen output from the assembly is as follows: 

• If this is the first assembly, translation, or compilation in the current 
CICS/CMS session, and you haven't pre-defined a Z-disk, you'll get a message 
as CICS/CMS defines one. 

• While EFHMAPCR assembles the map, it will display messages as it starts and 
ends each stage. You will also get messages which look like this: 

EFH91831 DSECT assembly rc=n 
EFH91871 MAP assembly rc=n 

where n is the CMS return code. If this is anything but 0, you will get error 
messages from EFHMAPCR indicating what the problem is. 

You'll find an example of output from an assembly in Figure 3 on page 15. 

Translating and compiling/assembling programs 

Before you can test a program using CICS/CMS, you have to translate the EXEC 
CICS commands into equivalent statements in the language of your program, and 
then compile the program to produce an object program on a file of file type TEXT. 
CICS/CMS provides an EXEC (EFHTC) to translate and compile your source 
programs. 

EFHTC works in a similar way to EFHMAPCR, as described in "Assembling maps" 
on page 94: 

• The only input required by the EXEC is your source program. You don't have 
to add job control language (JCL), submit batch jobs, or change systems 
between creating the program file and translating and compiling the program. 

• You can use EFHTC either by pressing PF5 on panel EFHll, or by executing 
the EXEC as a command. We describe the latter in "Translating and compiling 
programs" on page 144. 

Note that, when you translate and compile using the PF key, you always get 
the same options on your translator and compiler commands. These default 
options are either those that IBM supplies with CICSjCMS, or those that your 
system administrator sets up when he or she tailors CICS/CMS to your 

Chapter 7. Preparing your application for testing 95 



installation's requirements. The IBM-supplied defaults are described in the 
following sections: 

COBOL "Default COBOL compiler options" on page 86 

PL/I "Default PL/I compiler options" on page 86 

COBOL II "Default COBOL II compiler options" on page 88. 

If you want to use anything other than these options, you have to execute the 
EXEC as explained in "Translating and compiling programs" on page 144; you 
can't change options when you use the PF key. 

If you look again at panel EFHll (Figure 2 on page 13), you will see that PF5 is 
set to Translate/Compile. To translate and compile one of your source program 
files, move the cursor alongside the filename of the file and press PF5. 

Note: CICS/CMS also provides an EXEC (EFHT) which translates programs 
without compiling them. For more information, see "Translating programs" on 
page 146. 

Output from the translate phase 

File output 

Screen output 

When it translates a program, EFHTC produces two output files, as follows: 

• A file containing the output from the translator, ready to be compiled. It has 
the filename TRANOUT, and the same filetype as your source file. If you are 
translating an assembler program, this file also contains any diagnostic 
messages. 

Note: The translator output file is filemode Z3. This means that, when EFHTC 
has finished reading it in the compilation phase, the file is erased. 

• A file containing the translator listing. It has the same filename as your source 
file, and a filetype of TRANLIST. If you are translating a COBOL, COBOL II, 
or PL/I program, this file also contains the diagnostic messages. The records in 
the file are of variable length, with a maximum size of 121. Messages, however, 
never go beyond column 80, to make it easier for you to read them on your 
screen. 

If you want to review translator diagnostic messages from an assembler 
program, look in the listing file from the assembly: a file with the filetype 
ASMLIST. 

Screen output from the translate phase depends on whether the translation works, 
as follows: 

• If the translation works, you will get two messages, as shown in the following 
output from a successful translation of the sample COBOL program, ACCTOO. 

EFH9I661 Translating ACCTOO COBOL 
EFH9I671 No Translator messages. 

Al 

96 CICS/CMS User's Guide 

J 



EFHTC will then go on and compile or assemble the TRANOUT file. 

• If there are errors in the translate phase, you will get messages alerting you to 
check the listing file, for example: 

EFH9I66I Translating ACCTOO COBOL Al 
EFH9170E Errors detected - see ACCTOO TRANLIST ZI 

EFHTC will then stop; it won't continue with the compilation or assembly. 

Output from the compilation phase 

File output 

Screen output 

If your program translates successfully, EFHTC compiles or assembles the 
TRANOUT file to produce your object program. It produces two files as a result: 

• The compiler or assembler listing file is written on your Z-disk. It has the same 
filename as your source file, and a filetype of COBLIST, PLILIST, or ASMLIST, 
depending on your source language. 

• The compiled or assembled program file is written on your A-disk. It has the 
same filename as your source file, and a filetype of TEXT. Note that whether 
the compilation is successful or not, EFHTC always erases the TRANOUT file. 

On your screen, you will get messages indicating whether the compilation has 
worked successfully, and error messages if it has not. Figure 5 on page 17 shows 
all the messages from a successful translation and compilation of the sample 
program, ACCTOO. 

Figure 37 on page 98 shows the kind of messages you can expect when things go 
wrong. We have "corrupted" the source of the sample program, ACCT01, so that it 
contains an illegal PIC definition. 

Chapter 7. Preparing your application for testing 97 



EFH9166I Translating ACCTOl COBOL A2 ... 
EFHCTRAN (NUM 
EFH9167I No translator messages. 

EFH9094I Invoking COBOL compiler to process translated O/P .... 
COBOL TRANOUT (BATCH APOST LIB NOTRUNC 

REL2.4 OS/VS COBOL IN PROGRESS 
*STATISTICS* SOURCE RECORDS 1057 DATA DIVISION STATEMENTS 669 

PROCEDURE DIVISION STATEMENTS 269 
*OPTIONS IN EFFECT* SIZE = 131072 BUF 12288 LINECNT = 57 SPACE1, FLA 
GW, SEQ, SOURCE 
*OPTIONS IN EFFECT* NODMAP, NOPMAP, NOCLIST, NOSUPMAP, NOXREF, NOSXREF, LO 
AD, NODECK, APOST, NOTRUNC, NOFLOW 
*OPTIONS IN EFFECT* TERM, NONUM, BATCH, NONAME, COMPILE=Ol, NOSTATE, NOR 
ESIDENT, NODYNAM, LIB, NOSYNTAX 
*OPTIONS IN EFFECT* NOOPTIMIZE, NOSYMDMP, NOTEST, VERB, ZWB, SYST, NO END 
JOB, NOLVL 
*OPTIONS IN EFFECT* NOLST , NOFDECK,NOCDECK, LCOL2, L132, DUMP , ADV , 
NOPRINT, 
*OPTIONS IN EFFECT* NOCOUNT, NOVBSUM, NOVBREF, LANGLVL(2) 

002 COMPILATION ERRORS.HIGHEST SEVERITY C 
CARD ERROR MESSAGE 

17 IKF2039I-C PICTURE CONFIGURATION ILLEGAL. PICTURE CHANGED TO 9 UNLES 
S USAGE IS 'DISPLAY-ST', 

THEN L(6)BDZ9BDZ9. 
17 IKF2156I-W PICTURE DOES NOT CONTAIN A SIGN. SIGN DROPPED FROM VALUE 

CLAUSE LITERAL. 

ERROR MESSAGES ISSUED. 
EFH9148E Compilation errors. COBOL return code= 8 see ACCT01 COBLIST Z 

MORE ... 

Figure 37. Output from a failing compilation 

Whenever it finds an error in the compilation, EFHTC starts by giving you 
statistics and telling you the compiler options that are in effect. It then gives the 
compiler error messages, as you would expect. Finally, it gives the CMS return 
code, and alerts you to look at the listing file on the temporary disk. 

Translating programs without compilation/assembly 

CICS/CMS provides an EXEC (EFHT) which will translate a program without 
compiling or assembling the resulting TRANOUT file. We describe this EXEC, and 
suggest when you might want to use it in "Translating programs" on page 146. 

98 CICS/CMS User's Guide 



CICS/CMS macro libraries 

When you compile a program, the compiler satisfies external references by 
searching libraries. Most CICS programs contain external references to CICS 
objects, such as copybooks and BMS DSECTs. CICS/CMS keeps these objects in 
three macro libraries, which are files with the filetype MACLIB. To satisfy 
external references in your program to CICS objects, EFHTC searches these 
libraries, in the order given below: 

1. EFHxUSER 

This file resides on your A-disk. It is your private library, containing your own 
copybooks and the DSECTs created from your source BMS map assemblies. 

2. EFHxSTD 

This file usually resides on the CICS/CMS system disk, It contains what 
CICS/CMS needs for the sample application. For example, the macro library, 
EFHCSTD, contains the copybooks for the sample application data files. Your 
system administrator may well use this library for CICS objects needed 
generally in your installation. 

3. EFHxMAC 

This file usually resides on the CICS/CMS system disk. It contains CICS 
requirements, such as the BMS attribute constants (copybook DFHBMSCA), 
and the standard attention identifier list (DFHAID). 

In each of the file names above, "x" will be replaced by a letter representing the 
language you are using, as follows: 

C COBOL or COBOL II 
P PL/I 
A Assembler 

Changing your user macro library 

We saw in "Output from assembling a map" on page 94 how you make additions or 
changes to the BMS DSECTs in your EFHxUSER macro libraries. But how do you 
add, change, or delete copybooks from those files? 

The CMS MACLIB command lets you manipulate macro library files. You can add 
members to, delete members from, or replace members within those files, as 
explained in the following sections. 

Adding members to a macro library 

First, you need to create a file containing the copybook statements that you want 
to add. This file must have a file type of COPY. If you want to put more than one 
set of copybook statements in a single COpy file, you must start each set with a 
line saying: 

*COpy xxxx 

where xxxx is the unique identifier for that set. 

Chapter 7. Preparing your application for testing 99 



You then use the MACLIB command with the ADD option to add the copybook 
statements to your CICS/CMS user library. For example, suppose you have a 
COpy file called FILES that you want to add to your COBOL user library. The 
structure of FILES COpy is: 

*COpy FILEl 
Copybook statements for FILEl 

*COpy FILE2 
Copybook statements for FILE2 

If you issue the command: 

MACLIB ADD EFHCUSER FILES 

you will add two new members to EFHCUSER: FILEI and FILE2. If you look at 
the macro library after the add, you'll find that the MACLIB command has added the 
new members after any existing members, and added their names to its directory, 
which is at the end of the library. 

Replacing members in a macro library 

The MACLIB replace (REP) function lets you add a new copybook set, with the same 
name as an existing copybook set, to a macro library. 

If you look at the macro library after the replace, you'll see that both copybook 
sets are there, with the new one at the end of the file. However, the MACLIB 
command has added a directory entry for the new one, and removed the directory 
entry for the previous one. If you want to remove the previous version from the 
library, you have to use the MACLIB compress function, as described below. 

For example, if you wanted to replace the FILEI copybook set, you'd create a file, 
FILEI COpy. You'd then use the command: 

MACLIB REP EFHCUSER FILEl 

Deleting members from a macro library 

The MACLIB delete (DEL) function removes the directory entry for a copybook set 
from a macro library. It doesn't delete the copybook set itself until you use the 
compress function, as described below. 

For example, if you wanted to delete the FILE2 copybook set, you'd use the 
command: 

MACLIB DEL EFHCUSER FILE2 

Compressing a macro library 

As we've seen, when you replace or delete library members, the members 
themselves stay in the library. It is only the directory that changes. After you've 
been using a library for some time, you'll probably find that it's taking up more 
disk space than necessary, due to the number of unwanted entries. 

The MACLIB compress (COMP) function physically removes all library members that 
have no directory e~tries. 

For example, to compress EFHCUSER, you'd use: 

MACLIB COMP EFHCUSER 

100 CICS/CMS User's Guide 

J 



L 
Further information on macro libraries 

If you want to find out more about the MACLIB command, look in the VM/SP eMS 
User's Guide. 

Chapter 7. Preparing your application for testing 101 



J 



Chapter 8. Preparing to test an application 

As we showed in "Testing a CICS program" on page 18, CICSjCMS lets you test 
single programs as soon as you have translated and compiled them. Usually, of 
course, individual programs will form only a part of a conversational or 
pseudoconversational transaction. However, being able to test the elements of an 
application individually should help you get your applications working sooner. 

Once you've got your complete application ready for testing, however, there are 
various things you may have to do to ensure that the application will work, and 
that it will work in conditions very similar to the conditions it will face when it's 
put into production. 

Before you test your application therefore, you may need to do some of the 
following: 

• Update CICSjCMS tables to define the resources your application needs 

• Start the remote server, if your application uses any resources on your remote 
CICSjVS system 

• Convert any local CMS files or remote VSAM files that your application needs 
to the format CICSjCMS requires 

• Set up the resources needed if your application uses extra partition transient 
data. 

• Make temporary changes to your CICSjCMS environment to run this particular 
test. 

The rest of this chapter tells you how to go about each of these preparation items. 

Updating CICS/CMS tables 

Chapter 5, "How CICSjCMS handles CICS resources" on page 51 gives you all the 
information you need on how to update tables. In this section, we'll just remind 
you about when you need to update tables. 

Chapter 8. Preparing to test an application 103 



Program table 

You will need to change the program table for your application if: 

• You need to associate programs with transaction IDs 

• You want to test a program with a name different from the filename of the file 
that contains it 

• The application programs are written in a language other than the default 
defined in EFHPROF or EFHSETP. 

"Program tables" on page 70 tells you how to change the program table. 

Transient data destination table 

You will need to change the transient data destination table for your application if: 

• You want to associate intrapartition data sets with CMS files that have a 
filetype different from that defined in the EFHSETP or EFHPROF EXEC (by 
default, CICSTDI). 

• You want to use extrapartition data sets. 

Remember that you must also execute a CMS FILEDEF command for each 
extrapartition data set, associating it with a CMS file, as described in "Defining 
extrapartition queues to CMS" on page 58. 

• You want to use remote transient data sets without adding the SYSID option to 
any EXEC CICS commands that refer to them. 

"Transient data destination tables" on page 73 tells you how to change the 
transient data destination table. 

Temporary storage table 

File table 

You will need to change the temporary storage table for your application only if 
you want to use remote temporary storage queues without adding the SYSID option 
to any EXEC CICS commands that refer to them. "Temporary storage tables" on 
page 76 tells you how to change this table. 

You will need to change the file table for your application if: 

• Your application is going to create any new CICS/CMS pseudo-VSAM files 

• You need to increase the maximum record length of any existing pseudo-VSAM 
files containing variable length records 

• Your application uses any remote VSAM files without including the SYSID 
option in any EXEC CICS commands that refer to them. 

"File tables" on page 77 tells you how to change the file table. 

104 CICS/CMS User's Guide 



L Tables for remote resources 

"Defining remote resources in CICSjCMS tables" on page 65 tells you how to 
prepare tables for all remote resources, particularly DLjI data bases. As explained 
there, changing a CICSjCMS table is only the first step in ensuring that your 
application can use remote resources. Before your application can access any 
remote resource, you need to start CEHS, the remote server transaction. CEHS 
runs on your remote CICSjVS system, and passes your application's remote 
resource requests to that system. This is described in the next section, "Starting 
and using the remote server." 

Starting and using the remote server 

To start the remote server, you access your remote CICSjVS system and enter the 
transaction ID CEHS. There is a difference between the transfer method for a 
PC/370 user and that for a host VM terminal user. 

Transferring to a remote CICS/VS system from a PC 

When you're using a PC under VMjPC, one of your keys acts as a "hot" key, 
letting you switch between two active sessions. One session is your local PC 
session; the other runs a terminal emulator. If your PC has a 3278/3279 emulation 
adapter, you can use the emulation session to connect to a remote CICS/VS system, 
and use the remote server. 

Note: If your PC only has a 3277 emulation adapter, you can use the emulation 
session to connect to a remote CICSjVS system, but you can't run the remote 
server. You cannot therefore run CICS/CMS applications that use resources on the 
remote CICSjVS system. 

The key that you use as the hot key depends on what kind of PC you are using. On 
the XTj370, it is the Scroll Lock key; on the ATj370 it is the Sys Req key. 

Assuming that you already have VMjPC and CMS running, and that your PC is 
connected to the host VM system, your procedure for transferring to the remote 
CICSjVS system is as follows: 

1. Press the hot key. You will get the VMjPC Session Selection menu shown in 
Figure 22 on page 43. 

2. Select option 1. This starts up your emulation session. Your PC becomes a 
3270-type terminal, connected to your VM host system. If you are currently 
logged-on to VM at the host, you must log off or disconnect, and clear the VM 
logo that will be displayed. 

3. If the CICSjVS system you want to use is running as a guest of the VM host 
system to which you're connected, you can DIAL to that system. 

If the CICSjVS system is remote from your host VM system, you'll have to 
DIAL a VM pass-through userid. Your system administrator will set this userid 
up as part of the installation process. From the pass-through machine, you can 
connect to the remote CICSjVS system. 

4. When you are connected to a CICSjVS system that is ready to receive 
transaction requests, you can start the remote server. 

Chapter 8. Preparing to test an application 105 



Note: Once you've gone through the procedure above, both your sessions are 
permanently available. Unless your remote system goes down, or you bring down 
VM/PC at your end, you will continue to be able to switch from one session to the 
other by pressing the hot key. 

Now read "Starting the remote server" on page 107. 

Transferring to a remote CICS/VS system from a terminal 

Unlike VM/PC, VM/SP has no hot key to start a second session. CICS/CMS 
therefore has its own way of simulating the VM/PC facility. 

First, you need to get CICS/CMS running (if you haven't already). Type: 

CICSCMS 

Select option 2 on panel EFHl to display panel EFH12. Both EFH12, and the 
escape panel (EFH122), have PFS defined as VM Session. Pressing this key 
automatically displays the logon panel for another VM session. What you do from 
there depends on where the CICS/VS system you want to use is, as follows: 

• If the remote CICS/VS system is running on an MVS or VSE system that is a 
guest of the same VM system you are using, you can DIAL to it. 

• If the remote CICS/VS system is running on an MVS or VSE system remote 
from your host VM system, you'll have to DIAL a VM pass-through userid. 
Your system administrator will set this use rid up as part of the installation 
process. From the pass-through machine, you can connect to the remote 
CICS/VS system. 

When you are connected to a CICS/VS system that is ready to receive transaction 
requests, you can start the remote server. 

Having once established this link, you can switch between CICS/CMS and your 
remote CICS system at will. Pressing PFS on the CICS/CMS panels EFH12 and 
EFH122 will switch you to the remote session. Pressing PA2 when you're 
connected to the remote session will display the remote session escape panel 
(EFH124) shown in Figure 3S. 

106 CICS/CMS User's Guide 



EFH124 REMOTE SESSION ESCAPE FUNCTIONS 

STATUS: 

Function Shipping is INACTIVE 

To continue, press ENTER 

PF1=Help 
PF8=Terminate-Session 

PF6=Pass-PA2-to-remote PF7=Suspend-Session 

Figure 38. Remote session escape display 

Pressing PF7 on this display will switch from your remote session to your 
CICS/CMS session. 

Notes 

1. You can stop and restart a CICS/CMS session without affecting your remote 
session. The remote session stops only when you: 

• Log off 

• Re-IPL CMS 

• Press PFS on the remote session escape panel (EFH124). 

2. When the CEHS transaction isn't running, you can still use PA2 on the remote 
system to display the remote system escape panel. However, you will see the 
INACTIVE message, as shown in Figure 3S. 

If you escape to EFH124 while the remote server is doing something, you will 
see an appropriate STATUS message. 

Starting the remote server 

If you're using VM/SP, we advise you to stop your terminal receiving messages 
before you start the remote server. If you receive a message while using the remote 
server, you can lose your connection to the remote CICS/VS system. To stop your 
terminal receiving messages, type the CMS command: 

SET MSG OFF 

Whether you're using a PC or a terminal, the next step is the same. On your 
remote CICS/VS system, enter the transaction ID: 

CEHS 

Chapter 8. Preparing to test an application 107 



The remote server transaction starts, and displays its logo, as shown in Figure 39 
on page 108. 

CCCCCCC EEEEEEEEE HH HH SSSSSSS 
CCCCCCCCC EEEEEEEEE HH HH SSSSSSSSS 
CC CC EE HH HH SS SS 
CC EE HH HH SS 
CC EEEEEE HHHHHHHHH SSSSSSSS 
CC EEEEEE HHHHHHHHH SSSSSSSS 
CC EE HH HH SS 
CC CC EE HH HH SS SS 
CCCCCCCCC EEEEEEEEE HH HH SSSSSSSSS 

CCCCCCC EEEEEEEEE HH HH SSSSSSS 

Status: STARTING 

Hit PF3 to Exit 

Figure 39. Remote server logo 

Once the remote server has established communications with CICS/CMS, it 
displays its logo again, with the Status field saying: 

Status: RUNNING 

You can now return to your CICS/CMS session. If you're using a PC, press your 
hot key; if you're using a terminal, press PA2, followed by PF7. 

Caution: Make sure that the CEHS logo is displaying a status of RUNNING before 
you return to CICS/CMS. If you return to CICS/CMS before the remote server is 
properly up and running, it won't accept requests from your applications. 

You are now ready to start running applications that use remote resources. 

You can verify, from your local CICS/CMS session, that the remote server is 
running, as follows: 

• If you are using a PC, you just look at the display's status line. While the 
remote server is running, there will be a minus sign ( - ) to the left of the 
session identifier. 

• If you are using a host-connected terminal, switch to the remote system, using 
PF8 on panel EFH12 or panel EFH122. Check that the CEHS logo panel still 
shows the status as RUNNING, and return to your CICSjCMS session with 
PA2/PF7. 

108 CICS/CMS User's Guide 

J 



L 

Stopping the remote server 

When you no longer need access to remote resources, you should stop the remote 
server to release the CICSjVS resources it has acquired. 

Switch from CICS/CMS to your remote CICS/VS session (using the hot key on the 
PC, or PF8 on panel EFH12 or panel EFH122 on a terminal). Press PF3. The 
remote server will shut down, redisplaying its logo with the following status field: 

Status: STOPPING 

The screen will then clear, and you will get the message: 

CEHS Terminated, clear screen and type next transaction identifier 

You can then return to your local CICSjCMS session, using your hot key on a PC, 
or P A2jPF7 on a terminal. 

If you have finished with the remote CICSjVS system, and you are using it from a 
terminal, you should drop the connection to the remote system. Press P A2 to 
display panel EFH124, then press PF8 to terminate the connection. 

Recovery of remote resources 

CICSjCMS doesn't support locally the CICSjVS recovery features, such as dynamic 
transaction backout (DTB) or syncpoints. However, when your applications are 
communicating with a remote CICSjVS system, using the remote server, they are 
using resources that may be shared by many others, and that therefore need 
protection. 

Whenever one of your transactions that is using remote resources ends abnormally, 
CICSjCMS ships a DTB function request, ensuring that any changes that the 
application made to remote resources are removed. The same applies if something 
happens that stops the link between CICS/CMS and the remote CICSjVS system, 
such as CICSjCMS itself failing. 

When a remote application ends normally, CICSjCMS ships a SYNCPOINT request 
on remote resources you have used, to ensure that changes are preserv.ed. This 
only applies to "first level" transactions, not to any transactions that you run from 
the escape panel, EFH122. 

Preparing local data files 

As explained in "How CICSjCMS supports VSAM files" on page 60, CICS/CMS lets 
you supply data locally to your applications by supporting special files which 
simulate VSAM files: 

• CMS files with a filetype of EFHVNONK simulate VSAM ESDS and RRDS 
files. 

• Pairs of CMS files with the same filename and with filetypes of EFHVDATA 
and EFHVINDX simulate VSAM KSDS files. 

The sections that follow tell you how to create both types of simulated VSAM file. 

Chapter 8. Preparing to test an application 109 



Converting local CMS files to CICS/CMS nonkeyed files 

CICS/CMS treats any CMS file with the filetype EFHVNONK as a pseudo-V SAM 
nonkeyed file. You can therefore create nonkeyed files using CMS facilities. 

For example, if you want to use the file APPLIC DATA A as a CICS/CMS 
nonkeyed file, you can execute a FILELIST command to list the file, then move the 
cursor alongside the filename, type: 

COPYFILE / = EFHVNONK = 

over the file ID, and press ENTER. 

You can also create nonkeyed CICS/CMS files from VSAM files stored on your 
remote CICS/VS system. We describe this in "General file conversion" on 
page 113. 

Converting local CMS files to CICS/CMS keyed files 

The utility to convert a sequential CMS file into the CICS/CMS two-file keyed 
structure is a CICS/CMS program called EFHUCMSl. You can run it either by 
selecting option 4 on panel EFH1, as explained below, or by using EFHUCMS 1 as a 
command, as explained in "Converting CMS files to the CICS/CMS structure" on 
page 146. 

Selecting option 4 on panel EFHl displays panel EFH14, as shown in Figure 40. 

EFH14 CONVERT CMS FILE TO CICS/CMS FILE 

Specify for the CMS file to be converted: 
Filename ===) 
Filetype ===) 
Filemode ===) * 
Key offset ===) 0 Offset of key within record 
Key length ===) 1-255 bytes 

Specify for the output files: 
Filename ===) 
Record length ===) 
Replace ===) No 

Default - Input Filename 
Maximum ever to be written to data file 
Yes,No 

Specify the records to be processed (default - entire file): 
Start record ===) 1 Record at which processing starts 
Number ===) Processed sequentially from start record 
OR Key range: from ===) 

to ===) 

Trace required ===) No Yes,No 

PF1=Help PF3=End PA2=Enter eMS Subset 

Figure 40. Converting CMS files to keyed CICS/CMS files (panel EFH14) 

The fields in the EFH14 panel are described below. 

110 CICS/CMS User's Guide 



EFH14 fields for defining the input file 

The first set of fields in panel EFH14 define the input file, as follows: 

• The filename, file type, and filemode of the CMS file to be converted. The only 
limitation on the size of this file is that it must not be so large that CICS/CMS 
cannot hold the complete index in virtual storage. 

• The offset of the key within each record of the input file. This is counted from 
byte 0 (the default), so if the key starts in the fourth byte, for example, you 
must specify an offset of 3. 

• The length of the key (between 1 and 255 bytes). 

EFH14 fields for defining the output files 

The second set of fields defines the output files, as follows: 

• The filename of the output files. EFHUCMSI will use this filename for both 
output files: the data file (which has a filetype of EFHVDATA), and the index 
file (which has a filetype of EFHVINDX). You can leave this out, and your two 
new files will have the same filename as the input file. 

• The maximum length of record that will ever be written to the data part of the 
keyed file (filetype EFHVDATA). If you leave this out, or specify some value 
less than the maximum record length of the input file, your maximum record 
length will be that of the current longest record. In fact, as we describe in 
"File tables" on page 77, you can increase this value later, using an entry in 
the file table. 

If you specify this option, and the source file contains fixed-length records, the 
utility ignores it. 

• A replace option, to specify what you want to happen if files already exist with 
the output filename, and a file type of EFHVDATA or EFHVINDX. 

If you specify yes for replace, any existing files with the output filename and a 
filetype ofEFHVDATA or EFHVINDX will be overwritten by the new files. 

If you specify no (the default), existing files will be protected, and the utility 
will stop with an appropriate message. 

EFH14 fields for defining records to convert 

The third set of fields defines the set of records from the input file that 
EFHUCMSI will convert. You can either: 

• Specify a number of records to convert, or 

• Specify a range of keys. EFHUCMSI will convert all records with keys lying 
within that range. 

You use the first two fields in the set to define a number of records to convert, as 
follows: 

• The number of the record at which to start the conversion. This gives you the 
chance to create pseudo-VSAM files that are subsets of existing CMS files. 

Chapter 8. Preparing to test an application 111 



If you leave the option alone, the conversion will start with the first record in 
the input file. 

• The number of input records from the source file to be converted. 

If you leave this out, conversion will start with the "start" record defined 
above, and continue to the end of the file. 

You use the last two fields in the set to define a key range. EFHUCMSI looks at 
the from and the to key that you specify to see which is the lowest key in EBCDIC 
terms. It then converts all records with keys that lie between the low key and the 
high key, inclusive. 

Both keys must be the same length. If they are shorter than the key length you 
specified, EFHUCMSI treats them as generic keys. 

EFH14 field for requesting trace 

The last field on panel EFH14 specifies whether you want a trace of the conversion. 
The default is to provide no trace. The trace records each step of the conversion: 
checking the files, copying each record, closing the files on completion. 

Note that, if you specify a range of keys to be processed, the keys that you entered 
will appear in the trace output in uppercase, no matter how you entered them, or 
how they appear in your input file. 

EFHUCMSI writes its trace output to your screen. If you want to keep a copy of 
the output, you will need to do the following: 

1. Display panel EFH14, and specify all the options you need, including yes for 
Trace required. 

2. Before pressing ENTER, press PA2 to enter the CMS subset, and type the CP 
command: 

SPOOL CONSOLE * START 

This tells CP to copy all your screen output to a file. 

3. Type RETURN to return to panel EFH14, and then press ENTER to run the 
utility. Trace output will appear on your screen, and CP will write it to a file. 

4. When the utility ends, press PA2 to enter the CMS subset, and type the CP 
command: 

SPOOL CONSOLE CLOSE STOP 

This closes the file CP has created, sends the file to your virtual reader, and 
stops CP from writing future screen output to a file. 

5. Type: 

RDRLIST 

to list the files in your virtual reader. You'll see a file with a filename and 
filetype of none. To read this file to your A-disk, you need to enter the 
RECEIVE command with appropriate filename and file type parameters. For 

112 CICS/CMS User's Guide 



example, to read the file onto your A-disk with a filename of TRACUCMS, and 
a file type of LOG, you type: 

RECEIVE / TRACUCMS LOG 

6. Press PF3 (to leave the reader list), then type RETURN to return to the panel 
EFH14 display. 

Output from the EFHUCMSI utility 

The principal output from the utility is the CICS/CMS keyed file, consisting of a 
pair of files, one of type EFHVDATA the other of type EFHVINDX, as described in 
"The CICS/CMS keyed file format" on page 61. These files will be written to the 
same CMS disk as the source file, if you have read/write (R/W) access to that disk. 
If not, they will be written to your A-disk. 

Even if you don't ask for trace, you will also get some screen output from the 
utility. If it is successful, you'll get a message confirming that it has created the 
new files. If anything goes wrong, you will get messages to help you find the 
problem. 

General file conversion 

The general file utility for converting and copying files is a CICS transaction 
(CCU2) within CICS/CMS. It has three functions, as follows: 

1. Loading a VSAM file from your remote CICS/VS system, using the remote 
server; converting that file into a CICS/CMS keyed or non-keyed file; and 
saving the resulting file(s) on the CMS disk specified for that filename in a 
CICS/CMS file table. 

2. Doing the opposite to the process above. Converting CICS/CMS files into 
VSAM files and sending the VSAM files to your remote CICSjVS system. 

Before you use this function of CCU2, you will not only have to ensure that the 
remote server is running, but also that you've prepared your remote CICS/VS 
system to receive the converted file(s). Any files you want to store on that 
system will need space set aside for them, and entries made in the system's file 
control table (FCT). 

3. Creating CICS/CMS files that are subsets of existing CICS/CMS files. Because 
this does not involve the remote CICSjVS system, it's the one function of the 
CCU2 utility for which you don't need the remote server. 

This section deals specifically with getting data files ready for testing an 
application. We will concentrate therefore on the first function, but we will also 
tell you how to use the utility for functions 2 and 3. 

Note: Apart from its general use in copying subsets of CICS/CMS files, function 3 
has a particular application in reorganizing CICS/CMS keyed files that have grown 
too large. We describe this separately, in "Using CCU2 to reorganize CICS/CMS 
keyed files" on page 116. 

For functions 1 and 2, the utility has to load a file from, or copy a file to, your 
remote CICS/VS system. You therefore have to start the remote server on that 
system before you can use this utility for either of its first two functions. We won't 

Chapter 8. Preparing to test an application 113 



tell you how to do this here; it's described in "Starting and using the remote 
server" on page 105. 

Once you've started the remote server, and returned to your CICSjCMS session, 
you can run CCU2. On panel EFH12, you enter CCU2 (the utility transaction ID) 
on the Transaction line. This will display the panel shown in Figure 41. 

CCU2 GENERAL FILE COPY UTILITY 

Specify for the file to be converted: 
Name ===) 
Access type ===) Key(default), REA or RRN. 
Key Length ===) 1-255 bytes, if access type is key. 

Specify for the output files: 
Filename ===) Different to input file name. 

Specify the records to be processed (default- entire file) 
Start value ===> REA or RRN value. Default = O. 
Number ===> Processed sequentially from start record. 
OR 
Key range: from ===> 

to ===> 

PF1=Help PF12=Quit PA2=Escape 

Figure 41. Converting remote VSAM files to CICS/CMS files (panel CCU2) 

The fields in the CCU2 panel are described below. 

CCU2 fields for defining the file to be converted 

The first set of fields defines the input file to CCU2, as follows: 

• The name of the file to be converted. 

When you're converting a remote VSAM file into a CICSjCMS file, you must 
define this file as remote in your current file table. 

For functions 2 and 3, this will be a local CICSjCMS file. 

• The type of access used for the input file (key, RBA or RRN). If you omit this 
option, CCU2 assumes key. 

If the input file is keyed, and contains fixed-length records, they must be at 
least 16 bytes long. All RRDS files contain fixed-length records. 

• The length of the key (if you've specified key as the type of access). This can 
be between 1 and 255. 

114 CICS/CMS User's Guide 



CCU2 field for defining the output file 

In the CCU2 field starting Filename, you must give the filename of the output file 
(or files if you've specified key). The output filename must not be the same as the 
name of the file to be converted. When you're converting files between CICS/CMS 
and VSAM format (functions 1 and 2), this might not be what you want. Normally, 
you'll probably want the file to have the same name on CICS/CMS as on CICS/VS. 
Otherwise, you'll have to change your application after testing it on CICS/CMS, 
before transferring it to CICS/VS. 

You can get round this by defining both files in the CICSjCMS file table, giving the 
remote file a dummy local name. For example, suppose you want to convert a 
remote file called MYDATA into a local CICS/CMS file with the same filename. In 
your file table, you can include the following definitions: 

DUMMY 
MY DATA 

R K V 80 
L K V 80 

MY DATA 
Al 0 

5 
5 

The first definition specifies that the remote file, MYDATA, is to be known by 
CICS/CMS locally as DUMMY. The second definition describes the local file, 
MYDATA. When you use CCU2 to create the local file MYDATA, you can then 
specify DUMMY as the input file, and MYDATA as the output file, thus getting 
round the filename restriction. 

You can use the same definitions for converting a CICSjCMS file into VSAM 
format, and copying that file to your remote CICSjVS system. In that case, 
however, MYDATA will be the input file to CCU2, and DUMMY the output file. 

For function 3, both the input and output files will be local CICS/CMS files. 

CCU2 fields for defining records to be processed 

The last set of fields defines the set of records from the input file that CCU2 will 
convert. You can either: 

• Specify a number of records to convert, or 

• Specify a range of keys. CCU2 will convert all records with keys lying within 
that range. 

You use the first two fields in the S-3t to define a number of records to convert, as 
follows: 

• The number of the record in the input file at which to start the conversion. 
You can use this option only for ESDS or RRDS files. If you leave it out, and 
don't specify a key range, the conversion will start with the first record in the 
input file. 

• The number of input records from the source file to be converted. 

If you leave this out, conversion will start with the "start" record defined 
above, and continue to the end of the file. 

If you use the last two fields in the set to define a key range, CCU2 will convert all 
records with keys within the range defined by the from key (the low key), and the 
to key (the high key), inclusive. The records in the input file don't have to be in 
ascending order, but they will be in the output file. If you specify a from key that 
is higher, in EBCDIC terms, than the to key, CCU2 will stop without converting 

Chapter 8. Preparing to test an application 115 



any records. Both keys must be the same length, and you must enter them in the 
case in which they appear in the input file. If the keys you enter are shorter than 
the key length you specified, CCU2 treats them as generic keys. 

Output from CCU2 

The output from CCU2 depends on what you have requested. For functions 1 and 
3, you will get either a single CICS/CMS file of filetype EFHVNONK, or the two 
files that make up a CICS/CMS keyed file, one of filetype EFHVDATA, the other of 
filetype EFHVINDX. 

For function 2, you will get a single VSAM file, which CCU2 creates on your 
remote CICS/VS system, using the remote server. 

You will also get a message telling you if the transaction has completed 
successfully, as follows: 

Utility complete. xxxx records have been processed. 
CLEAR screen and continue 

To get back to the execution panel, EFH12, you clear the screen and enter: 

CCMS QUIT 

Using CCU2 to reorganize CICS/CMS keyed files 

When you delete a record from a CICS/CMS keyed file, CICS/CMS doesn't remove 
the record from the data file (filetype EFHVDATA). Instead, it flags the record's 
entry in the index file (filetype EFHVINDX) to show that the record is no longer \ 
active. When you add a new record, CICS/CMS will overwrite a deleted record ...", 
whenever possible. However, it can only do so if the new record is exactly the 
same length as the inactive record. If a file contains fixed-length records, this will 
always be true. But, if a file contains variable-length records, new records will 
often not be the same length as existing inactive records. CICS/CMS will therefore 
add new records to the file without replacing any existing records. As time goes 
on, the number of inactive records may reach a level that interferes with your 
testing in the following ways: 

• Both the data and index files will occupy an unnecessarily large amount of disk 
storage. 

• The index file is loaded into storage when you access the file. You may 
therefore be forced to increase your dynamic storage area (CICSDSA 
parameter) just to accommodate the file. 

• It will take longer to retrieve data from the file, because CICS/CMS will have 
to read additional index entries unnecessarily. 

To avoid this, we recommend that, when necessary, you use CCU2 to reorganize 
variable-length CICS/CMS keyed files. The sequence below describes the process 
step-by-step, using example filenames of OLD FILE (for the file to be reorganized) 
and NEWFILE (for the reorganized file that CCU2 creates). 

1. Add an entry to your file table to define NEWFILE. Apart from the filename, 
all the other fields in the file table entry must match the OLDFILE's structure. 
See "File tables" on page 77 for a description of file table entries. 

116 CICS/CMS User's Guide 



2. Run CCU2, by entering CCU2 in the Transaction line of panel EFH12 and 
pressing ENTER. 

3. Specify OLDFILE in the Name field of panel CCU2. 

4. Specify NEWFILE in the Filename field of panel CCU2. 

5. Press ENTER to run CCU2. By leaving the Start value and Number fields 
blank, you tell CCU2 to start at the first record in OLD FILE and continue to 
the end of the file. CCU2 ignores all inactive records, and writes only the 
active records to NEWFILE. 

6. Once you've ensured that CCU2 has completed successfully, and checked 
NEWFILE EFHVDATA and NEWFILE EFHVINDX, erase OLD FILE 
EFHVDATA and OLD FILE EFHVINDX. You can then use the CMS RENAME 
command to rename the NEWFILE files to OLD FILE EFHVDATA and 
OLD FILE EFHVINDX. 

Safeguarding your data files 

Because it is a single-user application development system, CICS/CMS does not 
recover local resources when an application fails. This does not apply to remote 
resources; any data your application accesses via the remote server will have the 
same protection as any other resources on your remote CICS/VS system. 

If you are using local data files, therefore, you need to take steps yourself to ensure 
that, if you need to correct and rerun your application, you can return all data files 
to their original state. 

The easiest way of protecting local data files is to keep master versions of the files, 
and run your application against copies of these files. You can create these copies 
using the CMS COPYFILE command. If you need to rerun your application, you 
can then erase the copies that the first run used, and create new copies from the 
masters. 

The best way of doing this is probably to write a short EXEC that copies the master 
versions. It can be as simple as: 

/* REXX EXEC to reset ACCTFIL from master copy */ 
'COPYFILE ACCTFIL MASTDATA A = EFHVDATA A(REP' 
'COPYFILE ACCTFIL MASTINDX A = EFHVINDX A(REP' 
SAY 'ACCTFIL has been reset from master' 
EXIT 

The example above copies the EFHVDATA and EFHVINDX files for the sample 
application file ACCTFIL. We've given the original versions of the files the 
filetypes MASTDAT A and MASTINDX. Every time we want to restore ACCTFIL 
to its original state, we simply run the EXEC. 

Don't forget that, if your files are CICS/CMS keyed files, you will always need to 
copy both the EFHVDAT A and EFHVINDX files from your masters, as shown in 
the example EXEC above. 

Chapter 8. Preparing to test an application 117 



Reading data from your virtual reader 

There is an application of extrapartition data sets that you might find useful. It's 
best described by example. 

Suppose you are developing an application that reads an extrapartition data set 
created by another programmer outside CICS. One way of ensuring that your 
application can read that extrapartition data set is to ask the other programmer to 
send the data set to you. You can then read it into a file on your A-disk, and 
define that file as an input extrapartition data set. 

There may be occasions, however, when this is impractical. For example, if the 
data set is very large, you might not have room for it on your A-disk. 

You can get round this by associating the extrapartition queue with your virtual 
reader. You can then use the file the other programmer has sent directly. 

However, there are some special rules governing this, and you need to be aware of 
these before running any application that uses extrapartition queues in this way. 
The rules are: 

• The FILEDEF command must take the form: 

FILEDEF xxxx READER (RECFM F LRECL 80 

where xxxx is your extrapartition queue name. 

• The status of the reader file must be NOHOLD. You can set its status using 
the CP command: 

CHANGE RDR spoolid NOHOLD 

where spoolid is the VM spool ID of the reader file. 

• Your reader class must match the class of the file you are trying to read. You 
can use the CP QUERY command to find the reader class. 

• Your extrapartition queue file must be the first file in the reader. You can use 
the CP ORDER command to ensure that it is, as follows: 

ORDER RDR spoolidl spoolid2 ... 

The spoolids identify the files in your reader, in the order in which they will 
appear in the reader. spoolidl should therefore be your extrapartition queue 
file. 

• CMS will remove the file from your reader after you have read the last item 
from the extrapartition queue. You can avoid this by executing a CP SPOOL 
command with the HOLD option before you run the program that reads the file. 

• You should be careful if you set up the queue by creating a file with the CMS 
PUNCH command, and then transferring that file to your reader. By default, the 
PUNCH command adds a header record to the files it creates, which will confuse 
CICS/CMS when it tries to read the queue. If you want to create the file for 
your extrapartition queue in this way, you must always use the NOHEADER (or .. ~ 
NOH) option in the PUNCH command. ..", 

118 CICS/CMS User's Guide 



Changing your CICS/CMS environment within a session 

As explained in Chapter 4, "Setting up your CICSjCMS environment," the 
EFHSETP and EFHPROF EXECs define your CICSjCMS environment: the 
language you are using, your table names (if any), your TWA size, and so on. This 
environment (or profile) is set up every time you start CICSjCMS. 

If you want to change the environment in any way, you will have to do so before 
you run the application that requires the change. For example, one feature of the 
environment is the programming language you are using. If EFHSETP defines 
your default language as COBOL, and you've written a program in PLjI, you will 
have to tell CICSjCMS not to treat it as a COBOL program before you run it. You 
can do this either by defining the program as PLjI in a CICSjCMS program table, 
or by changing the default programming language to PLjI for a single CICSjCMS 
session. 

PF7 (Set parameters) on panel EFH12 gives you the chance to change your 
environment for a particular CICSjCMS session, without changing your EFHPROF 
EXEC or a program table. It displays your current values on the parameter 
definition panel (EFH121) shown in Figure 42. 

EFH121 

Trace 
EFHUSTG table entries 
Trace table filemode 
Trap program checks 
DEBUG program 
Dynamic storage 
Language 
TWA size 
SYSID for remote system 

Names of resource tables: 
Program/Transaction 
File 
Transient Data 
Temporary Storage 
PSB Directory 

PARAMETER DEFINITION 

===) NO Yes,No 
===) 500 100-1000 
===) Z 2 characters 
===) YES Yes,No 
===) 1-8 characters 
===) 160000 50000-4000000 
===) COBOL COBOL, COBOL2, 
===) 1024 1024-32767 
===) REMT 4 characters 

Filename Filetype Filemode 
===) CICSCMS EFHTPROG * 
===) 
===) 
===) 
===) 

EFHTFILE * 
EFHTTD * 
EFHTTS * 
EFHTPDIR * 

Keyword Value 
Additional Parameter ===) 

PF1=Help PF3=End PF12=Quit 

Figure 42. CICS/CMS parameter definition panel (EFH121) 

ASSEMBLE or PLI 

PA2=CMS Subset 

The seventh line of the panel defines the language. If you wanted to test a PLjI 
program that you hadn't defined in a CICSjCMS program table, you would change 
COBOL to PLI. 

You can change any of the parameters shown. Among other things, you can: 

• Change the filenames of resource tables to use different tables for different 
applications. 

• Turn on CICSjCMS trace for a particular session. 

• Use a debugging program of your choice. 

Chapter 8. Preparing to test an application 119 



• Change any of the CICS/CMS parameters not shown specifically in the panel, 
using the Additional Parameter line. If you type just the keyword, and 
press ENTER, CICS/CMS will display the current value. If you want to clear 
the existing value, put a period (.) in the Value field. 

The keywords for all CICS/CMS parameters, and the values you can set, are 
described in Appendix D, "CICS/CMS parameters" on page 241. You must 
always be careful to ensure that you know exactly which values are valid for a 
particular keyword. CICS/CMS does not check the validity of values when you 
enter them in the Additional Parameter line. You'll only find out you've 
made a mistake later, when you try to use the feature for which you set the 
parameter. 

You can display a similar panel (EFHI221) from the escape panel (EFHI22) as 
shown in Figure 43. 

EFH122l 

Trace 
Entries in EFHUSTG table 
Trace table filemode 
Trap program checks 
DEBUG program 
Dynamic storage 
Language 
TWA size 
SYSID for remote system 

Names of resource tables: 
Program/Transaction 
File 
Transient Data 
Temporary Storage 
PSB Directory 

Additional Parameter 

PARAMETER DEFINITION 

===) NO Yes,No 
500 100-1000 

: Z 2 characters 
YES Yes,No 

===) 1-8 characters 
160000 50000-4000000 

===) COBOL COBOL, COBOL2, ASSEMBLE or 
1024 1024-32767 
REMT 4 characters 

Filename Filetype Filemode 
CICSCMS EFHTPROG * 

EFHTFILE * 
EFHTTD * 
EFHTTS * 
EFHTPDIR * 

Name Value 
===> 

PLI 

PF1=Help PF3=End PF12=Quit PA2=CMS Subset 

Figure 43. Changing CICS/CMS parameters from the escape panel 

This panel displays the values of your main CICS/CMS parameters, but the only 
ones you can change are those flagged with arrows (===». 

You can, for example, turn on trace in the middle of testing an application (as 
described in "General debugging tools" on page 171). You cannot, however, 
change things like your table file IDs or your remote SYSID. All you can do is find 
out what the current values are, by entering the keyword (Name) in the 
Additional Parameter line, and pressing ENTER. 

General rules for using panels EFH121 and EFH1221 

There are some general rules and guidelines for using panels EFH121 and 
EFH1221, as explained in the following sections. 

120 CICS/CMS User's Guide 



Scope of the changes 

Changes you make using panels EFH121 and EFH1221 stay in effect throughout 
your CICS/CMS session. The parameters revert to their default settings only when 
you return to CMS or enter EFHSETP from the CP /CMS Command line of panel 
EFH12. 

Scope of the language definition 

The language you specify in EFH121 or EFH1221 applies only to programs that you 
haven't defined in the active CICS/CMS program table. 

Blank table names 

If all your resources are local, you probably won't have any tables for CICS/CMS 
files, transient data, or temporary storage. In this case, the resource table names 
'fields in panel EFH121 will be blank, as shown in both examples for every table 
except the program table. 

U sing panel EFH121 to define how program checks are handled 

If you specify yes for Trap program checks on panel EFH121, CICS/CMS will 
construct an error handler message for program checks, and then issue an ASRA 
abend. 

If you specify no, program checks will produce a CMS message. You can then 
proceed as you would for a program check in a CMS system that wasn't running 
CICS/CMS. You'll find a complete description of VM techniques for debugging 
program checks in the VM/SP System Programmer's Guide. 

You will find a description of how CICS/CMS handles program checks in "Program 
checks" on page 194. 

Changing terminal characteristics from panel EFH121 

Since you will not often want to change your terminal characteristics from those 
defined in the EFHSETP EXEC, or in your own EFHPROF EXEC, neither panel 
offers a direct way of changing them. You can, however, use the Additional 
Parameter line on panel EFH121 to do so. 

Changing the dynamic storage area size from panel EFH121 

Be careful when changing the size of the dynamic storage area (DSA) on panel 
EFH121. If you make it too large, you might not leave CICS/CMS enough room to 
load your programs. If you make it too small, you might not leave CICS enough 
room for its own working space. 

The default that IBM supplies in EFHSETP, 256000 bytes, will be enough if you are 
only using some of the CICS/CMS tables, and if they are relatively small. 
However, as your tables grow, so should your DSA. 

You will also need a larger DSA if you run pseudoconversational applications that 
use many temporary storage queues, because CICS/CMS holds all such queues in 
main storage. 

Chapter 8. Preparing to test an application 121 



Cancelling changes made on panels EFH121 and EFH1221 

Every time you press ENTER, CICSjCMS applies the changes you've made. When 
you've made all the changes you want, you can press PF3 to save the last set of 
changes and return, either to the execution panel (from EFH121), or to the point 
from which you escaped (from EFH1221). If you make several changes and, before 
you press ENTER, you realize that you've made a mistake and need to clear the 
changes, you can press CLEAR. The panel will refresh, showing the values that 
were in effect when you last pressed ENTER. 

To reset all the parameters you've changed during a CICSjCMS session and return 
to your default environment, you can run EFHSETP from the CP /CMS Command 
line of EFH12. When EFHSETP ends, it will execute EFHPROF. 

122 CICS/CMS User's Guide 



Chapter 9. Testing an application 

When you're ready to start testing your application, you need to display the 
CICS/CMS execution panel (EFH12). Enter CICSCMS to start CICS/CMS, if 
necessary, and select option 2 on the selection panel (EFH1). 

Panel EFH12 is as shown in Figure 7 on page 19. On the line that says: 

Transaction ===> 

type the transaction ID of the first transaction in your application, and press 
ENTER. 

If your transaction needs data passed with the transaction ID, there are two ways 
you can do it: 

1. If the transaction ID and all the data will fit on the Tr ans act ion line, you can 
enter it there. The transaction ID and the data are translated into uppercase. 
The maximum number of data characters you can enter in this way is 47. 

2. If you need to enter more data than will fit on the Transaction line, you can 
press PF6 on panel EFH12 to get a blank screen. You can then enter your 
transaction ID and data on that screen. The data will only be translated into 
uppercase if the UCTRAN parameter is set to YES in EFHSETP or EFHPROF. 

You also need to use PF6 to get a blank screen if you want to start a transaction 
with a PF key. CICS/CMS doesn't let you run "PF key" transactions from panel 
EFH12 itself, in case your PF key definition conflicts with any of its predefined PF 
key settings. 

If your application finishes successfully, CICS will wait for you to enter another 
transaction ID. If you want to return to the panel EFH12, you can: 

1. Type CCMS QUIT. 

2. Press P A2, to get to the escape panel (EFH122), then press PF12 to return to 
panel EFH12. 

3. Press ENTER, which will display an EFH125 error handler panel. Press PF12 
to return to panel EFH12. 

Chapter 9. Testing an application 123 



The CICS environment 

When you start a transaction or program from panel EFH12, CICS/CMS initializes 
CICS, and you enter the GIGS environment. You stay in that environment until 
you return to panel EFH12. The time you spend in the CICS environment is known 
as a GIGS test session. 

There are some important points to remember about what you can do in the CICS 
environment, as explained below. 

Using P A2 in the CICS environment 

While you are in the CICS environment, you can press PA2 at any time that CICS 
is waiting for input on the screen, and display the CICS/CMS escape panel, 
EFH122. You can therefore escape: 

• From your own transactions, when they are waiting for input 

• At the end of a transaction, when CICS is waiting for a new transaction ID 

• From any CEDF, CECI, or CEBR display. 

Pressing PA2 on the CICS/CMS panels outside the CICS environment puts you in 
the CMS subset. 

You'll find a complete description of the CICS/CMS escape feature in "Using the 
CICS/CMS escape feature" on page 127. 

Resources lost at the end of a CICS test session 

Whenever you end a CICS test session, and return to panel EFH12, you will lose: 

• All temporary storage queues 

• Any transactions that CICS/CMS has scheduled for execution using interval 
control, including the CSPS transaction for displaying BMS pages 

• The input positioning of transient data queues. 

Returning to panel EFH12 at the end of a CICS test session 

When a transaction, or the last transaction in a pseudoconversation, ends, the 
CICS environment expects you to enter either: 

1. Another transaction ID, or 

2. The CCMS QUIT command, to end the CICS test session and return to panel 
EFH12. 

If you forget that you're in the CICS environment at this point, and press ENTER 
or a PF key that you haven't associated with a transaction in your active program 
table, CICS/CMS will treat your entry as an attempt to execute an illegal 
transaction ID. It will display an appropriate error handler panel. On this panel 
(EFH125), you can press PF12 to return to panel EFH12. 

124 CICS/CMS User's Guide 



Testing tools 

CICS/CMS provides a wide range of tools that make it easy for you to test your 
applications. The main ones are the CICS/VS interactive tools: CEDF, CEBR and 
CECI. To let you take full advantage of having CICS and CMS running together, 
however, CICS/CMS has the escape feature. 

Whenever CICS is waiting for input, you can press PA2 to display the escape panel, 
EFH122. You can escape from one of your application's displays, or from a panel 
produced by one of the testing tools, such as EDF. Panel EFH122 offers similar 
facilities to those on the execution panel (EFH12). "Using the CICS/CMS escape 
feature" on page 127 suggests some ways of using this feature. 

The execution diagnostic facility 

CICS/CMS supports all the EDF functions described in the Application 
Programmer's Reference Manual. However, because CICS/CMS is a single-user 
system, you can't use EDF in "two-terminal" mode to use one interactive terminal 
to monitor a transaction running on another interactive terminal. You can only 
use EDF in two terminal mode to monitor a printer tra'1saction from your 
interactive terminal. 

CICS/CMS EDF features 

There are some things that you can do with EDF in CICS/CMS that you can't do in 
CICSjVS, as follows: . 

• Whenever an application abends, CICS/CMS starts EDF (if you haven't got it 
running already), so that the next screen displayed will be the standard EDF 
screen for reporting abends. It then displays an error handler panel (EFH125) 
giving a detailed description of the abend. 

• You can use the escape feature on any EDF display. Pressing PA2 displays 
panel EFH122, from which you can execute commands within the CMS subset, 
run CECI, and so on. 

• If you are using a PC, you can print any EDF screen on your PC printer, by 
pressing the Shift and PrtSc keys at the same time. 

Turning EDF on and off 

In the EFHSETP and EFHPROF EXECs, there is a parameter that defines the 
status of EDF at the start of every CICS test session. You can ask for EDF to be 
either on or off by default. 

When you display panel EFH12, its Status line will tell you whether EDF is on or 
off. You can change its status by pressing PF9. For example, if, when you display 
panel EFH12, the Status line says EDF is OFF, and you want EDF on for your 
application test, you press PF9. The Status line will change to EDF is ON, and 
the definition of PF9 on the display will change from EDF ON to EDF OFF. 

Once you've turned EDF on, it stays on until: 

• You turn it off by pressing PF9, on either panel EFH12 or the escape panel 
(EFH122) 

Chapter 9. Testing an application 125 



• You turn it off by pressing PF3 on any EDF panel which has PF3 defined as 
END EDF SESSION 

• You turn it off on the EDF display at the end of a transaction, by leaving the 
EDF status field as NO 

If you change the status of EDF by pressing PF9 on panel EFH122, or PF3 on an 
EDF display, you change it only for that CICS test session. When you return to 
panel EFH12 at the end of the test, you will find that EDF is still in the state it 
was in when you left panel EFH12 at the start of the test. 

You can turn EDF on while an application is running, by pressing PA2, and 
starting EDF from panel EFH122. 

The command level interpreter 

CICS/CMS supports the command level interpreter (CECI) fully. You can start it 
by pressing PF4 on either panel EFH12 or panel EFH122. Alternatively, you can 
press PF6 on panel EFH12, to get a blank screen, and type CECI. 

Note: The commands that you can execute using CECI are governed by the same 
rules that apply to all CICS/VS commands in CICS/CMS, as described in the 
GIGS/GMS Application Programmer's Reference Summary. However, you can use 
CECI in CICS/CMS to check the syntax of all the CICS/VS commands that it 
recognizes. 

Using CECI from panel EFH122 gives you a useful testing tool. For example, 
suppose you are running an application in which one transaction writes to a 
temporary storage queue, and a later transaction reads the data from that queue. 
If you are running the application with EDF on, and, for some reason, the first 
transaction fails to create the temporary storage queue correctly, you can press 
P A2, and display panel EFH122. 

From there, you can execute CECI, and create the temporary storage queue with 
EXEC CICS WRITEQ commands. When you've finished, you press PF3 once (to end 
CECI), again (to return to panel EFH122), and then again (to return to your 
application). 

You can then continue with your test, and check to see whether there are any 
problems in the second transaction, even though the first, on which the second 
depends, has failed. 

For a complete description of CECI, see the GIGS/VS Application Programmer's 
Reference Manual. 

The temporary storage browse facility 

You can use the interactive transaction CEBR to browse the contents of a named 
temporary storage queue. CEBR offers several facilities, including the ability to 
get data from, and write data to, transient data queues. 

One feature of CEBR that you might find useful is the GET subcommand. You can 
use it to create test temporary storage data. It retrieves data from a CMS file and 
adds it to a defined temporary storage queue. The CMS filename must be four 
characters long, because CEBR treats it as a transient data queue. Its filetype 
must be the one defined in the INTRAFT parameter in EFHSETP or EFHPROF. 

126 CICS/CMS User's Guide 

J 



CICS/CMS supports CEBR fully. You can execute it from the CICS/CMS panels 
EFH12 and EFH122 by pressing PF2. You can also use it from an EDF display, by 
pressing PF5 (to display working storage), then pressing PF2 on the working 
storage display. 

For a complete description of CEBR, see the CICS/VS Application Programmer's 
Reference Manual. 

Using the CICS/CMS escape feature 

The CICS/CMS escape feature lets you suspend the transaction you are running, 
perform some related (or unrelated) function, and return to the transaction, picking 
up exactly where you left off. 

You can escape to panel EFH122 at any time that CICS is waiting for input. You 
can therefore escape from one of your own transactions whenever it is waiting for 
input from the terminal, from CICS between transactions, or from any EDF, CECI 
or CEBR display. You escape by pressing PA2. This will display the panel shown 
in Figure 20 on page 32. 

Panel EFH122 offers the same sort of facilities as the execution panel, EFH12. The 
sections that follow describe these facilities and suggest ways of using them. 

Note that we only describe those uses of the escape feature most immediately 
concerned with testing applications. We describe some more in Chapter 14, "How 
CICS/CMS reports problems" on page 159. We don't want to imply, however, that 
these are the only uses to which you can put the feature. By providing access to 
the CMS subset, panel EFH122 gives you the freedom to switch between developing 
applications using CICS/CMS, and anything else you want to do, without having to 
stop your CICS test session. 

Turning EDF on and off (PF9) 

Suppose you are testing an application that consists of four pseudoconversational 
programs. You know from a previous run that there is a problem in the final 
program, and you want to run it with EDF. If you turn on EDF before running the 
application, you will spend some time pressing ENTER to step through a series of 
EDF screens that you don't need to see. 

Instead, you can start the application without EDF on.. When you reach a 
convenient point (such as when the third program displays a panel), press PA2. On 
panel EFH122, you press PF9, followed by PF3. Your application will continue its 
run, but it will now have EDF enabled. 

You can also use PF9 the other way round. You can start testing an application 
with EDF on, then escape to turn it off when you don't need it any more. 

Executing CECI (PF4) 

There are limitations to the usefulness of CECI in the escape environment. Its 
function as an online help facility for the syntax of EXEC CICS commands has 
little application when you're executing transactions or programs. However, you 
may find its "repair" capability useful to correct temporary storage queues, 
transient data queues, or even data files, while you are executing an application. 
We describe one possible use of CECI from the escape panel in "The command level 
interpreter" on page 126. 

Chapter 9. Testing an application 127 



Executing CEBR (PF2) 

Suppose that you are running a pseudoconversational transaction in which a 
program reads from a transient data queue created by a previous program. You 
can make sure that the previous program wrote to the queue correctly by pressing 
PA2 before the reading program starts. On panel EFHI22, you can then press PF2 
to start CEBR, and check the queue. If it seems to be correct, you then press PF3 
twice to get the transaction going again. If you find something wrong with the 
queue that makes you want to stop the run, you can press PFl2 on panel EFHI22. 
This will return you to panel EFHl2 without finishing the transaction. 

Starting another VM session (PF8) 

If you are using CICS/CMS under VM/SP, you can press PF8 on panel EFHl22 to 
start another VM session and log on to another VM userid. You'd usually use this 
to connect to your remote CICS/VS system and start the remote server. 

U sing the CP ICMS command line 

From the CP/CMS command line, you can enter any CP or CMS command that is 
valid within the CMS subset. For example, you can: 

• Use CMS FILELIST to check the existence of files, erase unwanted files to free 
disk space, and so on 

• Edit data files 

• Edit source program files 

• Use CP or CMS debugging facilities 

• Do things that may be quite unrelated to your application test, such as sending 
messages to other VM users. 

You can't use CMS commands that aren't valid in the CMS subset, such as 
COPYFILE. Nor can you run any CICS/CMS EXECs. You can, however, do so 
outside the CICS environment, from the CP/CMS command line on panel EFHI2. 

Testing an application's use of PAl and PA2 

Some applications ask their users to press either PAl or P A2 to request a 
particular function. You can't test the use of these PA keys directly using 
CICS/CMS, because both keys have defined functions. PAl takes you to CP; PA2 
takes you either to the CMS subset or, within a CICS test session, to panel 
EFH122. 

So that you can test applications that need the P A keys, we've provided PF5 and 
PF6 on panel EFH122. If you want to pass either PAl or P A2 to your application, 
without their being intercepted by CICS/CMS, you have to escape from your 
application (press PA2), and press PF5 (for PAl) or PF6 (for PA2). In these cases, 
you don't then have to press PF3 to get back to your application. Both PF5 and 
PF6 issue a PF3 implicitly. 

128 CICS/CMS User's Guide 



Running nested transactions 

From panel EFH122, you can execute a program or transaction by typing its name 
on the relevant input line, just as you can from the execution panel (EFH12). The 
one difference is that you can't start transactions by pressing PF6 to get a blank 
screen, as you can from panel EFH12. PF6 is reserved for passing PA2 to an 
application. 

Note also that you can't run pseudoconversational applications from panel 
EFH122. Whenever a transaction that you've started from the escape panel ends, 
your next keystroke returns you to the escape panel. 

The only real limit on the number of times you can escape and run transactions is 
the amount of virtual storage you have available. In theory, there's no reason why 
you shouldn't run an application, escape to use CECI, then escape from CECI to 
run a different application, then escape from that application to run CEBR, and so 
on. In practice, you'd quickly run out of virtual storage, and you'd get a 
"short· on-storage" message, after which CICS/CMS would stop. Anyway, nesting 
escapes is not something you're likely to want to do in the way described above, 
but it's quite easy to nest one or two escapes, and then forget where you are. 

The line on panel EFH122 beginning Nest level tells you where you are. Every 
time you start a new transaction, whether it's one of your own, or a CICS-supplied 
transaction such as CECI, CICS/CMS puts a slash V) in that line. Every time a 
transaction executes an EXEC CICS LINK to a program, CICS/CMS puts an 
asterisk (*) in that line. When a program ends, CICS/CMS removes its asterisk. 
When a transaction ends, CICS/CMS removes its slash, and the asterisks for any 
programs associated with the transaction. 

For example, suppose you start a transaction and then escape from the first 
program in the transaction and start CECI. If you then escape from CECI, you will 
see the following nest level indicator on the escape panel: 

/*/* 

The first /* is your transaction and program; the second /* is CECI, and its 
associated program. 

One important point to remember is the effect of PF12 when you press it on panel 
EFH122. PF12 always takes you back to the execution panel (EFH12), no matter 
how much nesting you've done. The same applies when a transaction abends. No 
matter how many times you may have escaped before starting that transaction, 
CICS/CMS always returns to panel EFH12. 

Testing CICS/VS features that CICS/CMS does not fully 
support 

In "CICS/CMS support for the CICS/VS API" on page 90, we listed some features of 
CICS/VS that CICS/CMS does not fully support. These are mainly features that 
have no sensible meaning in the CICS/CMS environment, such as those related to a 
multiuser environment, or those related to devices that CICS/CMS neither supports 
nor simulates. Generally, CICS/CMS takes no extreme actions when it finds these 
features in your applications. In most cases, it displays a message warning you 
that you've used a feature that CICS/CMS doesn't support, and continues with the 
test. 

Chapter 9. Testing an application 129 



The only way that you can properly test applications that use features that 
CICS/CMS doesn't support is to test them on a test CICS/VS system. However, you 
can use CICSjCMS to test the logic of applications containing unsupported 
features. The tool that lets you do this is EDF. 

Let's assume that you want to test a transaction that writes journal records to the 
system log. CICSjCMS does not support journal control, and will ignore all EXEC 
CICS JOURNAL commands. (That is, it won't execute them, but will carryon with 
the application as if they had worked.) It will alert you, however, by displaying 
warning messages like the one shown in Figure 44. 

EFH125 ERROR HANDLER FUNCTIONS 10/18/85 10:24:55 

Program Name: EMILY Line Number: EMIOOOIO 

Message EFH9400S has been generated 

After this screen the CICS environment will CONTINUE 

Journal Control is not supported by CICS/CMS. 

Request ignored, but subsequent execution may fail 

Press ENTER to Resume 

PFl=Help PF3=End PF5=Suppress-Msg PF6=Redisplay-Screen 
PF9=Reset-Msgs PF12=Terminate PA2=Escape 

Figure 44. Message panel for a journal control request 

If you were running the program EMILY with EDF turned on, the next thing you 
would see would be the usual EDF execution completion panel showing a 
NORMAL response. 

Whenever CICSjCMS treats a command in this way, the "normality" of the 
response is limited. CICSjCMS updates the EIBRCODE in the exec interface block 
(EIB) to show that the command has worked correctly but, because the command 
hasn't in fact done anything, CICSjCMS leaves all the other EIB fields just as they 
were before the command. This is why the error handler message warns you that, 
although it intends to carryon with your application, it can't guarantee its 
success. 

Whether the rest of the test works or not, the way that CICSjCMS treats commands 
it doesn't support leaves you with an apparent problem. How can you find out 
what will happen if a journal control command fails? How can you check the logic 
that you've put in your program with EXEC CICS HANDLE CONDITION commands 
to cater for anticipated errors? This is where EDF comes in. 

If you execute a transaction containing EXEC CICS JOURNAL commands, with EDF 
on, you will get EDF displays for each command. Eventually you will reach the 
point where a JOURNAL command has been executed, and you are looking at an 
EDF display showing a NORMAL response. By changing the response from 
NORMAL to one of the errors associated with the command, you can make sure 

130 CICS/CMS User's Guide 



that you test any HANDLE CONDITION commands you have specified for the 
command, and also find out what will happen for errors that your program doesn't 
handle. 

By trying every possible condition, using EDF, you should be able to test all the 
execution paths through your application. You cannot be 100% certain that your 
application will work in production, but you you will have have ensured that it 
"fits together" properly. You should be able to progress with confidence to testing 
it on a test CICS/VS system. 

Chapter 9. Testing an application 131 





Chapter to. Testing applications that print 

On a CICS/VS system, an application can produce printed output in two ways: 

1. It can write output to an extrapartition data set associated with a system 
printer. 

2. It can direct output to a 3270 printer terminal, using either: 

• Terminal control EXEC CICS SEND FROM commands to send 3270 printer 
data streams, or 

• BMS SEND MAP, TEXT and/or CONTROL commands to generate data to 
be printed by a printer transaction. 

In this case, you usually start the printer transaction using the interval control 
function EXEC CICS START. Alternatively, you can associate the printer 
terminal with an intrapartition queue in the destination control table (DCT), 
and specify that the printer transaction is to run when the number of records in 
the queue reaches a defined "trigger level". 

On a CICSICMS system, you can use the first CICSjVS method by defining a 
suitable transient data destination. You can associate this directly with your 
virtual printer, or direct the output to a CMS file so that you can check it 
interactively using your editor. This is described in "Printing from extrapartition 
queues" on page 58. 

CICS/CMS also lets you test applications that print output on 3270 printer 
terminals. This is described in "Testing applications that print on a 3270 printer 
terminal" on page 134. You can use CICS/CMS to test: 

• Printer transactions started by EXEC CICS START commands 

• Printer transactions that, on CICS/VS, will be triggered from a transient data 
queue. 

However, as explained in "Testing applications that print on a 3270 printer 
terminal" on page 134, you can only test the transactions themselves; you can't 
test the triggering mechanism. 

Note: CICS/CMS supports neither of the CICSjVS "immediate" print facilities: the 
ISSUE PRINT command and the local copy key. You can, however, get the effect 
of the local copy key if you're using a PC, by pressing the Shift and PrtScr keys to 
copy the current screen contents on your local printer. 

Chapter 10. Testing applications that print 133 



Testing applications that print on a 3270 printer terminal 

CICS/CMS lets you test applications that direct output to 3270 printer terminals by 
simulating those terminals. It does this by directing all such output to a CMS file 
that you define in your EFHPROF EXEC. This gives you the choice of printing the 
output using the CMS PRINT command, or inspecting the file using your editor. 

CICS/CMS lets you test applications that: 

• Generate 3270 data streams and direct them to the printer terminal using 
commands of the form: 

EXEC CICS SEND FROM (data-area) 

where data-area contains the 3270 printer data stream. 

• Use the BMS commands SEND MAP, SEND TEXT, and SEND CONTROL, with or 
without the NLEOM option, to generate and direct data to the printer terminal. 

You'll find detailed information on both these techniques in the CICS/VS 
Application Programmer's Reference Manual. 

There are limitations on what printer functions you can test in two areas, as 
follows: 

1. 3270 printer data streams 

2. SNA character string (SCS) printers. 

CICS/CMS support for 3270 printer data streams 

CICS/CMS supports the following 3270 format control orders: 

FF form feed 

CR carriage return 

EM end of message 

NL new line 

CICS/CMS does not support all the 3270 data stream orders. It supports the data 
stream orders ~hat apply to all 3270 devices: 

SBA set buffer address 

SF start field 

IC insert cursor 

PT program tab 

RA repeat to address 

EUA erase all unprotected to address 

134 CICS/CMS User's Guide 

;J 



It does not support data stream orders that require the structured field and 
attribute processing options to be installed in the printer control unit: 

SFE start field extended 

MFA modify field 

SA set attribute 

It does not support any of the SCS orders, such as vertical tabs. 

If CICS/CMS finds any unsupported orders in a 3270 data stream, it treats them as 
unprintable characters, so you won't be able to rely on the accuracy of the output. 

There is one further restriction on what you can put in a 3270 data stream. 3270 
printers support only I2-bit addresses with their printer control orders. To 
simulate 3270 printers as closely as possible, CICS/CMS treats any I4-bit or I6-bit 
addresses your applications use as I2-bit addresses, with unpredictable effects on 
the output. 

For the rules governing the creation of 3270 printer data streams, see the 3270 
Information Display Data Stream Programmer's Reference manual (GA23-0059). 

Testing SCS printer applications 

CICS/CMS doesn't fully support SNA Character String (SCS) printers. However, 
you can test applications destined to be run on SCS printers, as long as they 
conform to the restrictions described below. 

In CICS/VS, applications will work on both SCS and 3270 printers under the 
following conditions: 

• If an application generates its own 3270 data streams, the EXEC CICS SEND 
FROM commands must specify ERASE and HONEOM, and the data streams 
must not include SBA sequences. 

• If an application uses BMS, with the NLEOM option, it will produce the same 
results on both 3270 and SCS printers. 

• If an application uses BMS, without the NLEOM option, it will produce the 
same results on both 3270 and SCS printers, as long as: 

The map data fields don't contain NL or EM characters when the SEND 
commands include the L40, L64, or LBO options. 

There are no completely null lines when the SEND commands include the 
L40, L64, or LBO options. 

- The BMS page size matches the buffer capacity in rows of the length 
specified by either L40, L64, LBO, or HONE OM (printer width). 

You can therefore use CICSjCMS to test applications destined for SCS printers 
under the following conditions: 

• Applications generating 3270 data streams must have the ERASE and 
HONEOM options on the SEND commands, must avoid vertical and horizontal 
tabs, and must include an extra EM control at the end. For production use on 

Chapter 10. Testing applications that print 135 



an SCS printer, you could simply remove the last EM. CICS/VS will ignore the 
ERASE and HONE OM options. 

• Applications using BMS must always have the NLEOM option on the SEND 
commands. 

EFHPROF definitions for printing 

Before you can test printer applications, you need to tell CICS/CMS how and where 
you want the printed output to appear. You have to: 

1. Define the page and printer size. 

2. Define the simulated printer 

Defining the page and printer size 

In CICS/VS, you define a printer terminal using appropriate terminal control table 
(TCT) entries, or resource definition online (RDO) statements. In CICS/CMS, your 
system administrator will make similar definitions in EFHSETP EXEC, and you 
can make your own in EFHPROF EXEC. 

The parameters you can set are: 

PRTBMSHT /PRTBMSWD 

Together these parameters define the shape of the BMS page buffer. 
PRTBMSHT defines the number of lines in a BMS page; PRTBMSWD defines 
the number of characters in each line. They are equivalent to the CICS/VS 
TCT PGESIZE entry for the printer. 

BMS uses PRTBMSHT and PRTBMSWD to format its output. For NLEOM 
data streams, BMS inserts a new line (NL) order when a line reaches a width of 
PRTBMSWD characters. For non-NLEOM data streams, BMS uses 
PRTBMSWD as the page width when calculating buffer addresses. It calculates 
the buffer address of the nth line in the output using the formula: 

(n-l) * PRTBMSWD + 1 

The value you specify for PRTBMSWD depends on whether your printer 
transaction uses the NLEOM option, as follows: 

• For BMS output with the NLEOM option, the PRTBMSWD value should 
be less than or equal to the PRTFRMWD value (see below). 

If the PRTBMSWD value equals the PRTFRMWD value, BMS may insert 
the NL order in the data stream at the position represented by 
PRTFRMWD + 1. This produces an extra blank line in the output. This 
will only happen if your application writes a line that is exactly 
PRTFRMWD characters wide. 

If your application produces a map that is wider than PRTBMSWD or 
longer than PRTBMSHT, it will raise the INVMPSZ condition. 

Note: When you use BMS with the NLEOM option, the line length options 
(L40, L64, and L80) have no effect on the output. 

136 CICS/CMS User's Guide 

J 



• For BMS output without the NLEOM option, the value you give to 
PRTBMSWD depends on whether your application uses the "L" options 
(L40, L64, and L80) in its EXEC CICS SEND commands as follows: 

If the application specifies the line length using one of the "L" options, 
the PRTBMSWD value must be the same as the line width specified. 
The "L" options set up the write control character (WCC) to indicate a 
formatted output width of 40, 64, or 80. PRTBMSWD is used to 
calculate buffer addresses. If you set PRTBMSWD to anything other 
than the "L" value your application uses, your printer output will not 
format correctly. 

If the application doesn't use one of the "L" options to specify the line 
width, the PRTBMSWD value must be 40, 64, or 80, or the same value 
you give to PRTFRMWD. If you specify PRTBMSWD as 40, 64, or 80, 
your application will send a formatted data stream of the width 
selected. Otherwise, your application will send an unformatted data 
stream, so the buffer addresses that BMS calculates must correspond to 
those used by the printer. 

PRTFRMHT/PRTFRMWD 

Define the maximum number of lines on each printer page, and the maximum 
width of each line. These correspond to controls on a 3270 printer. 
PRTFRMHT defines the page size that will be used when an application issues 
a form feed (FF). If an application uses HONEOM, and doesn't contain NL 
controls, PRTFRMWD defines when to start new lines. If an application uses 
L40, L64, or L80, PRTFRMWD is ignored. 

PRTBUFF 

Defines the printer buffer size. 

Note: To ensure that that the CICS/CMS simulated printer file matches the 
printed output as closely as possible: 

• The values you specify for PRTFRMHT and PRTFRMWD should match the 
corresponding values you'd set on the printer terminal using switches. 

• The value you give PRTBUFF should match the printer terminal's hardware 
buffer size. 

The EFHSETP EXEC that IBM supplies sets the printer parameters as follows: 

SETPARM 'PRTBMSHT 24' 
SETPARM 'PRTBMSWD 80 
SETPARM 'PRTFRMHT 66' 
SETPARM 'PRTFRMWD 132' 
SETPARM 'PRTBUFF 1920' 

Chapter 10. Testing applications that print 137 



Defining the simulated printer 

CICS/CMS simulates the 3270 printer by writing output destined for the printer to 
a CMS file. You can define this file in your EFHPROF, and your system 
administrator can set a default in EFHSETP. The EFHSETP that IBM supplies 
contains the following definitions: 

SETPARM 'P3270FN CICSCMS' 
SETPARM 'P3270FT P3270' 
SETPARM 'P3270FM Al' 

If you use these definitions, all output that your applications write to a 3270 printer 
terminal will go to the file CICSCMS P3270 on your A-disk. 

You also need to name the printer terminal, that is, you need to provide a unique 
identification that will distinguish the simulated printer from your screen. There 
are two parameters for naming terminals in CICS/CMS: TERMID and TERMID2. 
TERMID names your interactive terminal; TERMID2 names the printer terminal. 
For example, the following EFHPROF statements give the interactive terminal the 
name L866, and the printer terminal the name PRNT: 

SETPARM 'TERMID L866' 
SETPARM 'TERMID2 PRNT' 

The EFHSETP statements that IBM supplies with CICS/CMS set TERMID to 
CONS, and TERMID2 to PRNT. 

You use the TERMID2 specification in the TERMID option of the EXEC CICS 
START command for the printer transaction, or as an option on the CCMS START .. '\ : 
command, as explained in "Running printer transactions" below. ...., 

Running printer transactions 

In CICS/VS, you usually start printer transactions in one of two ways: 

• By executing an interval control EXEC CICS START command that names a 
printer terminal in the TERMID option, or 

• By setting a trigger level on a transient data queue that starts a printer 
transaction once that queue contains a defined number of records. 

You can use CICS/CMS to test printer transactions that, in production, will start 
by either of these methods. You can: 

• Start the printer transaction directly, without running any transactions that 
start it. This is the only way of testing triggered transactions. 

• Start the printer transaction using interval control. This lets you test an 
application that contains an EXEC CICS START command for a printer 
transaction. 

Both methods use the CCMS START command to run the printer transaction. 

138 eIes/eMS User's Guide 



L 
Starting printer transactions directly 

To run a printer transaction that will be triggered when you run it on CICS/VS, or 
to run a printer transaction without running the transaction that starts it, you use 
a CCMS command of the general form: 

CCMS START termid transid 

where termid is the name defined for the printer terminal in TERMID2, and 
tr ans id is the transaction ID, defined in a CICS/CMS program table. For 
example, if you issued: 

CCMS START PRNT PICT 

CICS/CMS would execute the transaction PICT, on the terminal PRNT, defined as 
the simulated printer in EFHPROF. 

You can issue the CCMS command in all the ways that you can execute any 
transaction in CICS/CMS: 

• In the Transaction line of an EFH12 or EFH122 panel 

• On the blank screen produced when you press PF6 on panel EFH12 

• On the blank screen left after a transaction ends in a CICS test session. 

Starting a printer transaction using interval control 

As explained in "Interval control" on page 54, when you start a transaction using 
EXEC CICS START, CICS/CMS puts that transaction onto a queue. You can then 
execute the transaction when convenient, using the CICS/CMS control transaction 
CCMS START. You can use this technique to test printer transactions. 

First, you execute a transaction that issues an EXEC CICS START command with 
a TERMID option set to the name given for the simulated 3270 printer in the 
EFHPROF or EFHSETP TERMID2 parameter. This schedules the printer 
transaction. You then issue CCMS START and, assuming the printer transaction 
is the first in the queue of scheduled transactions, it will execute, writing its 
output to the CMS file defined in the P3270xx parameters. 

"Interval control" on page 54 gives a complete description of running transactions 
using interval controL 

The termid option on the CCMS START command gives you the opportunity to 
check your printer output on the screen, instead of writing it to your simulated 
printer. 

For example, suppose that, after running the transaction that schedules the printer 
transaction, you decide that you want to run the printer transaction, but display 
the output directly on your screen. You can use the termid option on CCMS 
ST ART to run the transaction on your virtual console. This lets you change the 
destination of the output without altering either your EFHPROF definitions or the 
transaction itself. For example, if your EFHPROF contains the definitions: 

SETPARM TERMID L866 
SETPARM TERMID2 PRNT 

and a transaction has scheduled the printer transaction with the command: 

Chapter 10. Testing applications that print 139 



EXEC CICS START TRANSID(PICT) TERMID(PRNT) 

you can direct its output to your screen by issuing: 

CCMS START L866 

Notes 

1. You can only use the termid option to switch between your interactive 
terminal and your printer terminal if your transaction uses BMS to create the 
output for printing. If the transaction generates its own 3270 data stream, it 
must also set the "print" bit in the write control character (WCC). You can't, 
therefore, run the transaction to produce screen output without changing the 
WCC. The only way round this is to include extra code in the transaction. 
You can use the command EXEC CICS ASSIGN TERMCODE to find the device 
type, and only set the WCC "print" bit on if the device is a printer. 

2. The form of CCMS described here, without the transid parameter will only 
work if you have already scheduled the printer transaction. If you want to run 
a printer transaction without scheduling it, you must use CCMS START with 
both the termid and tr ans id options, as described in "Starting printer 
transactions directly" on page 139. 

Output from a 3270 printer transaction 

When a printer transaction finishes, you have a CMS file that contains your 
printed output. As long as your transaction has created that output using only 
those methods that CICS/CMS supports, the file output should look the same as 
your printed output would look if you had run the transaction on a real printer. 
You can use the CMS PRINT command to copy it to your virtual printer. If you're 
using a PC, PRINT will usually print the output on your local printer, as explained 
in the VM/PC User's Guide. Alternatively, you can inspect the output with your 
editor. To make it as easy as possible for you to view it in this way, CICS/CMS 
uses blanks, rather than nulls, for spaces between items, blank lines, and so on, 
and replaces unprintable characters with a minus sign ( -). 

General rules for 3270 printer transactions 

1. A printer transaction must not try to get input from the terminal. CICS/CMS 
diagnoses any EXEC CICS RECENE commands in a printer transaction, and 
displays a warning message. This message won't stop the transaction, as you 
might be testing a transaction destined for an SCS printer, which can transmit 
input to an application. 

2. You can enable EDF for a printer transaction. As in CICS/VS, the EDF output 
will appear on your screen. 

3. CICS/CMS always appends printer transaction output to the CMS file you've 
defined for your simulated printer. Unless you arrange for that file to be empty 
before running each printer transaction, you should end each printer 
transaction with a FORMFEED. This will ensure that output from a 
subsequent printer transaction will start at the top of a simulated printer page. 

140 CICS/CMS User's Guide 



Chapter 11. Making program corrections and 
retesting 

Let's assume that you've run your application, and that it has failed. You now 
want to make any necessary corrections, and try again with the corrected version. 

At this stage, you may be looking at a CICS/CMS error handler panel (EFH125). 
Although you can escape from this panel, using PA2, you can't assemble maps, 
translate and compile programs, or re-create data files using the CICS/CMS file 
utilities, from panel EFH122. You'll need to press PF12 on the error handler panel, 
and return to the execution panel (EFH12). From there, you can press PF3 to get 
back, either to the panel EFH1, or to panel EFHll, or to CMS, depending on how 
you got to panel EFH12 in the first place. 

If you go back to panel EFH1, make sure that the Cr iter ia line contains 
sufficient information to give you a list of at least those files you want to change. 
Select option 1, and you will get panel EFHll. You can then use your editor to 
change those source programs and maps that need corrections. When you've made 
all the changes you want, you can reassemble your source maps (press PF10), and 
retranslate and recompile your source programs (press PF5). You don't have to 
erase the existing TEXT files before doing so. CICS/CMS automatically replaces 
any existing TEXT files when it creates new ones from source files with the same 
filename. 

Assuming all your assemblies, translations, and compilations are successful, you 
can go to panel EFH12 by first pressing PF3 on panel EFHll, then selecting option 
2 on panel EFHl. Before retesting your application, you may need to redo some of 
the preparation you did before the last test. 

You won't need to update any tables. Once you've defined the resources you need 
for an application, you don't need to change those definitions unless you change 
the name (or sometimes the form) of those resources. 

If your application uses remote resources, you will need to have the remote server 
running on your remote CICSjVS system. If you started the remote server for the 
last test, it will still be running, unless it failed or you stopped it yourself. If 
you're using a PC, you can check this simply by looking at the bottom right-hand 
corner of your screen. If you see a minus sign (-), the remote server is still 
running. If you're using a host-connected terminal, you will have to press PF8 on 
panel EFH12. If your remote system is still available, and the remote server is still 
running, you will see the remote server logo, with a status of RUNNING. 

If your application used any local data files, it may have changed them, or even 
corrupted them, in some way. Before retesting the application, you will need to 
restore them to their original state. If you have followed the suggestion in 
"Safeguarding your data files" on page 117, you can make new copies from your 
master files. If you haven't got master files, but you created your data files using 
either of the CICSjCMS conversion utilities, you can restore your files by running 

Chapter 11. Making program corrections and retesting 141 



the applicable utility, as described in "Converting local CMS files to CICS{CMS 
keyed files" on page 110 and "General file conversion" on page 113. 

If your application used an extrapartition queue associated with your virtual 
reader for input, and you didn't use the CP SPOOL command with the HOLD option 
before reading the queue, you will need to re-create the queue. 

Finally, if you had any problems that were so severe that you had to restart 
CICS{CMS or CMS, your CICS{CMS environment will have returned to the default 
set in EFHSETP and EFHPROF. If you made any temporary changes to your 
working environment using the parameter panel (EFH121), you will have to make 
them again. "Changing your CICS{CMS environment within a session" on 
page 119 tells you how to do this. 

142 CICS/CMS User's Guide 



Chapter 12. Shortcuts for experienced CICS/CMS 
users 

As you become familiar with CICSjCMS, you may find that having to go through 
the panels slows your work down. 

This chapter tells you how to use commands to run some of the CICSjCMS EXECs 
without using the panels. In most cases, you can use these commands: 

• From the CP jCMS command line of panel EFH12 

• From any CMS FILELIST display 

• As commands in CMS. 

You can't, however, use any of these commands from the CP jCMS Command line of 
the escape panel (EFH122), because you can't run CICSjCMS EXECs within the 
CMS subset. 

Assembling BMS maps 

The CICSjCMS EXEC that assembles BMS maps is called EFHMAPCR. You can 
assemble maps by entering the EFHMAPCR command alongside the name of a map 
file in any CMS FILELIST display, or by using it as a stand-alone command in 
CMS. The full form of the command is: 

EFHMAPCR fn ft fm (style 

or, from a file list: 

EFHMAPCR / (style 

where: 

f n is the filename of the file containing the source of your map. You 
must include this. 

ft is the filetype. If you omit this, EFHMAPCR assumes the filetype 
ASSEMBLE. If you are using the F Assembler (the default for VMjSP 
users), the file must be of filetype ASSEMBLE. If you are using the H 
Assembler (the only possibility for PC users), the filetype can be 
anything acceptable to the H Assembler, except ASMLISTI and 
ASMLIST2 (which EFHMAPCR uses for the listing files), and COpy 
(which EFHMAPCR uses when it adds the DSECT to the macro 
library). 

Chapter 12. Shortcuts for experienced CICS/CMS users 143 



fro is the filemode of the file. If you omit this, EFHMAPCR will search all 
the disks to which you currently have access, starting with your 
A-disk. 

When you use EFHMAPCR on a file list, fn ft fro are replaced by /, which tells 
EFHMAPCR to use the file over which you enter the command. 

style is the kind of output you want from the EXEC. You must separate this 
from the file identifier parameters with an open parenthesis. The style 
can be: 

-MAP to produce the physical map only 

DSECT to produce the DSECT only. 

If you omit the option, EFHMAPCR produces both. 

The output from EFHMAPCR is as defined in "Output from assembling a map" on 
page 94. 

Sample EFHMAPCR commands 

EFHMAPCR MYMAP 

This command assembles the file MYMAP ASSEMBLE, producing both the 
physical map and the DSECT. 

EFHMAPCR PCMAP ASHTYPE B (DSECT 

This command assembles the file PCMAP ASHTYPE, residing on the CMS 
B-disk, and produces only the DSECT. Note that the filetype ASHTYPE 
implies that EFHMAPCR will use the H assembler. If you tried to use this 
command on a VM/SP system running with the F assembler, it would fail. 

Translating and compiling programs 

The CICS/CMS EXEC that translates and compiles programs is called EFHTC. 
You can translate and compile by entering the EFHTC command alongside the name 
of a program file on any CMS FILELIST display, or by using it as a stand-alone 
command in CMS. 

Using EFHTC on a file list can be very useful when you want to translate and 
compile a number of programs using the same options. You simply enter your 
EFHTC command alongside the first program file in the list, then enter = beside 
those that follow it, then press ENTER. 

The full form of the EFHTC command is: 

EFHTC fn ft fro (toptions .•. !coptions ... 

or, from a file list: 

EFHTC / (toptions ... !coptions ..• 

where: 

144 CICS/CMS User's Guide 

J 



fn 

ft 

fm 

is the filename of the file containing the program to be translated 
and compiled. 

is the filetype. This can be: 

COBxxxxx for COBOL and COBOL II programs (see note below) 

PLIxxxxx for PL/I programs 

ASxxxxxx for assembler programs. 

If you leave it out, the EXEC assumes COBOL. 

Note: If your program is written in COBOL II, you can distinguish 
it from a COBOL program in one of two ways: 

• You can use a filetype of COBOL2, which is reserved for COBOL 
II programs. 

• You can use a file type starting with the letters COB, and specify 
COBOL2 as your first translator option. 

is the filemode of the file. If you leave it out, the EXEC searches 
the disks to which you currently have access, starting with your 
A-disk, until it finds the file. 

When you use EFHTC on a file list, fn ft fm are replaced by /, which tells 
EFHTC to use the file over which you enter the command. 

toptions 

copt ions 

are translator options. These are as described in the CICS/VS 
Application Programmer's Reference Manual. Note, however, that 
you must use the abbreviated forms of any options having more than 
8 characters. For example, you must specify as instead of 
OPSEQUENCE. 

You must separate the translator options from the file identifier 
options with an open parenthesis. 

are compiler options. They are separated from the translator 
options by an exclamation mark (!). You can leave blanks before 
and after the parenthesis, to make your command easier to read, but 
it's not necessary. To find out which compiler options you can use, 
you should look in the user manual for the language you are using. 

If you leave out either the translator or compiler options, you will get the default 
options set in the EFHTC EXEC. These are also what you get when you 
translate/compile on panel EFH11, using PF5. The default options will be either 
those that IBM supplies with CICS/CMS, or those that your system administrator 
has set up for your installation. "Customizing CICS/CMS" on page 211 tells 
system administrators how to change EFHTC. The IBM-supplied defaults are 
described in the following sections: 

COBOL "Default COBOL compiler options" on page 86 

PL/I "Default PL/I compiler options" on page 86 

COBOL II "Default COBOL II compiler options" on page 88. 

Chapter 12. Shortcuts for experienced CICS/CMS users 145 



The output from EFHTC is as defined in "Output from the translate phase," and 
"Output from the compilation phase" on page 97. 

Sample EFHTC commands 

EFHTC MYCOB 

This command translates and compiles the program source file, MYCOB. 
CICS/CMS compiles the program with the COBOL compiler, and uses the 
default translator and compiler options. 

EFHTC MYCOB2 COBFILE B (COBOL2 FLAG(W) ! BUF=8K 

This command translates the file MYCOB2 COBFILE, which resides on the 
CMS B-disk, using the translator options, COBOL2, to specify a COBOL II 
program, and FLAG (W), to get only warning and severe messages. The 
command then compiles the translated result, using the COBOL II compiler, 
with 8K buffers. 

Translating programs 

CICS/CMS also has an EXEC that just translates a program, without compiling it. 
The EXEC is called EFHT, and you can use it in the same way as EFHTC. The full 
form of the EFHT command is as defined for EFHTC earlier, but you cannot, of 
course, include any compiler options. The output from EFHT is as defined in '\ 
"Output from the translate phase" on page 96. ,..", 

Note: The principal output from EFHT is the file containing your translated 
program. This file has the same filename as your source program file, a filetype of 
TRANOUT, and a filemode of Z3. The result of the filemode is that, immediately 
after anything reads the file, it will be erased. To avoid this, you should use a 
CMS RENAME command to change the file mode to Zl before reading the file. 

You probably won't find any reason to use EFHT during CICS/CMS application 
development. There's little point in translating a program without compiling it. 
However, as we explain in "Transferring maps and programs to CICS/VS" on 
page 151, when you transfer programs from CICS/CMS to a CICS/DOS/VS system, 
you have to recompile them on that system, but you don't have to retranslate them. 
You could therefore run the source programs through EFHT, and transfer the 
translated programs to CICS/DOS/VS. 

Converting CMS files to the CICS/CMS structure 

There are two ways that you can use the file utility for converting CMS files, 
without using option 4 on panel EFHl. You can use both from the CP /CMS 
command line on panel EFH12, or from CMS. 

You can display panel EFH14 directly by typing: 

EFH14 

You can then enter all the parameters you need on the panel, as described in 
"Converting local CMS files to CICS/CMS keyed files" on page 110. When you've 

146 CICSjCMS User's Guide 



L 
finished the conversion and you press PF3, you will go back to where you came 
from: either panel EFH12 or eMS. 

You can execute the utility even more directly, avoiding the panel display, by 
entering the name of the program that the utility runs, followed by a list of the 
input parameters you require. If you're selecting records from the input file using 
a range of keys, you must include all the parameters. If you're selecting records by 
any other method, you can leave out the last two parameters. 

The command you need to issue is: 

EFHUCMSl params 

The params, in the order you must specify them, are: 

1. The input filename. 

2. The input filetype. 

3. The input filemode. 

4. The displacement of the key within each record in the input file. This is 
counted from byte zero; so, for example, if the key starts in the fourth byte, you 
must specify a displacement of 3. 

5. The length of the key. This must be between 1 and 255. 

6. The name of the output files. If you specify an asterisk (*), EFHUCMSI will 
give the output files the same name as the input file. 

7. The maximum length of records in the output files. If you specify a length that 
is less than the existing maximum length in the input file, CICS/CMS will 
ignore your specification, and use the input file's maximum record length. If 
you specify a record length for a file containing fixed-length records, 
EFHUCMSI will ignore the specification, and use the input file's record length. 

8. The number of records from the input file that you want EFHUCMSI to 
convert. 

If you specify 0, EFHUCMSI will convert all records, starting from the record 
number you give in parameter 9. 

If you specify asterisk (*), you must provide a range of keys identifying the 
records to be converted (parameters 12 and 13). 

9. The record at which you want EFHUCMSI to start converting. The utility will 
ignore this option unless you have also specified parameter 8 as a number, 
including o. 

10. Whether you want trace output. 

If you specify TR, in upper or lower case, the utility will write trace output for 
the conversion to your screen. If you specify anything else (for example, 
NOTR), you won't get trace output. 

11. Whether you want existing output files to be overwritten. 

Chapter 12. Shortcuts for experienced CICS/CMS users 147 



If you specify REP, and the utility finds that output files already exist with the ..,) .. :. 
same filename as your chosen output file, and a type of EFHVDATA or 
EFHVINDX, it will replace the existing files. If you specify anything else (for 
example, NOREP), and the conditions described above exist, the utility will stop, 
displaying an appropriate error message. 

You only need the last two parameters if you have specified that you are going to 
supply a key range (*) in parameter 8. 

12. First key value. This is a string of alphanumeric characters, enclosed in single 
quotes. If the key you want to specify contains a single quote, you must specify 
the quote as two single quotes. For example, if your key is JOHN'S, you must 
enter it in this command as 'JOHN' 'S' . 

If the value you give is shorter than your key length, EFHUCMS1 will treat it 
as a generic key. 

13. Second key value, for which the rules are the same as for the first key value. 

Both key values must be the same length, and you must specify them in the case in 
which they appear in the file. For example, if a key is key01 in the input file, and 
you specify KEY01 in the command, EFHUCMS1 will not find the key. 

EFHUCMS1 looks at both keys to find which is the lower in EBCDIC terms. It 
then converts all input file records with keys that lie between the low key and the 
high key value. The records in your output data file will always appear in 
ascending key order. 

You must include all options in the order given above, so it's probably better to run . . '\ 
EFHUCMS1 using the EFH14 panel. If you want to execute it as a command, the ..., 
best way is to write an EXEC, containing an EFHUCMS1 command that presets most 
of the parameters to the values you usually want, leaving only a few (such as the 
input filename), as variables. In this way, you can avoid having to remember the 
parameter order, and reduce the risk of error. 

Sample EFHUCMSt commands 

EFHUCMS1 FILE DATA * 3 8 * 80 0 1 TR NOREP 

This command converts the CMS file FILE DATA. EFHUCMS1 will search all 
currently accessed disks until it finds FILE DATA. The keys in FILE DATA 
start in the fourth byte of each record, and are 8 bytes long. The output from 
the conversion is a CICS/CMS pseudo-VSAM file, comprising two CMS files. 
These have the same filename as the input file, and filetypes of EFHVDATA 
and EFHVINDX. The maximum length of records in the output file is 80. 
EFHUCMS1 will convert all the records in FILE DATA, starting with the first. 
It will produce trace output. If either of the files FILE EFHVDATA or FILE 
EFHVINDX already exists, the utility will stop without creating the new files. 

EFHUCMSl OLDFILE DATA B 0 5 NEWFILE 132 * 0 NOTR REP 'KATE' 'DAVE' 

This command converts the CMS file OLDFILE DATA, residing on the CMS 
B-disk. The keys in OLD FILE DATA start in the first byte of every record, and 
are 5 bytes long. The output from the conversion is a CICS/CMS pseudo-VSAM 
file, comprising two CMS files: NEWFILE EFHVDAT A and NEWFILE 
EFHVINDX. The maximum length of records in the output data file is 132. 
The utility uses a generic key search to select records to convert. Because 

148 CICS/CMS User's Guide 



DAVE is lower (in EBCDIC terms) than KATE, EFHUCMSI will copy all 
records from the input file that have keys with values between DAVE and 
KATE. The utility won't produce trace output, and, if it finds existing files 
with the file IDs NEWFILE EFHVDATA or NEWFILE EFHVINDX, it will 
replace them with the output files it creates. 

Preparing tables 

CICS/CMS tables are CMS files. You can therefore create your tables using your 
editor, without displaying any CICS/CMS panels. You must remember, however, 
either to use the filename and file type set up in EFHSETP or EFHPROF, or to use 
the parameter panel (EFH121), or PF9 (Install) on an EFH13 or EFHll panel, 
before accessing a table from an executing application. "CICS/CMS tables" on 
page 66 tells you in detail how to define tables to CICS/CMS. 

Starting CICS/CMS 

If you've done all your preparation outside CICS/CMS, you won't need any of the 
options on CICS/CMS's initial panel (EFHl) except option 2, which takes you to 
the execution panel EFH12. You can avoid EFHl completely, and go straight to 
the execution panel, by typing: 

EFH12 

instead of CICSCMS to start CICS/CMS. You can then work completely from panel 
EFH12. However, if you do this, you have no way of getting to panel EFHl during 
the session. If you enter CICS/CMS using EFH12, pressing PF3 on panel EFH12 
takes you straight to CMS, rather than to panel EFHl. 

Chapter 12. Shortcuts for experienced CICSjCMS users 149 

.. 



",> 

..J 



Chapter 13. Transferring tested applications to 
CICS/VS 

Once you have tested an application as fully as you can on CICSjCMS, you need to 
try it on a test CICSjVS system before moving it into production. 

At this stage, you will have to do some of the things involved in the "traditional" 
method of developing CICS applications. You may have to ask a system 
programmer to update tables or resource definitions, and set up any test files you 
need. You may also have to check with other application programmers to make 
sure that your tests won't interfere with theirs. You can then transfer your 
application files to the test CICSjVS system and finish your testing. 

What do we mean in this context by "application files"? 

The three main kinds of files involved are: 

• The files containing your programs and maps 

• Any data files that you've created during the CICSjCMS tests, and that you 
want to continue to use on your CICSjVS system. 

• If you're transferring your application to a CICSjDOSjVS system, any DSECTs 
or copybooks that you've created for your application and that you've put in 
one of the CICSjCMS macro libraries (probably the EFHxUSER library) 

The rest of this chapter deals with each of these in turn. 

Transferring maps and programs to CICS/VS 

Before transferring any application programs or BMS maps, you need to decide 
what form of these objects you need to transfer. Do you need to transfer your 
source map and program files and go through the stages of assembly, translation 
and compilation all over again? 

The quick answer is "no, in most cases". 

The rules governing this depend on the kind of programs or maps you've created. 

For high level language programs, if you are moving the programs to a 
CICSjOSjVS system, you just have to transfer your TEXT files and link-edit them. 

However, the compilers that CICSjCMS uses for PLjI and COBOL are the OS/VS 
compilers. If you are transferring PLjI or COBOL programs to CICSjDOSjVS, 
therefore, you must transfer either the source programs, or the translated (but not 
compiled) forms of the programs. You then translate (if necessary), compile, and 

Chapter 13. Transferring tested applications to CICS/VS 151 



link-edit the programs on the CICSjDOSjVS system. VSE does not support COBOL 
II. 

To translate your source program files without compiling them, you run the 
CICSjCMS EFHT EXEC, as described in "Translating programs" on page 146. 

For assembler programs, you can transfer the TEXT files to any CICSjVS system. 

For BMS maps, if you are transferring the maps to a CICSjOSjVS 1.7 system, you 
can transfer the TEXT files. However, if you are transferring the maps to an 
earlier level of CICSjOSjVS or to a CICSjDOSjVS system, you must transfer the 
source maps, and reassemble them on your CICSjVS system. 

Note: The BMS DSECTs you create using CICSjCMS are not stored as separate 
files, but as members of the appropriate EFHxUSER macro library. For 
information on transferring them to a CICSjVS system, see "Transferring macro 
library members to CICSjDOSjVS" on page 153. 

For each file that you transfer to a CICSjVS system, you will need to wrap the file 
in appropriate JCL to tell the target system what to do with the file. For example, 
if you are transferring a COBOL program to CICSjDOSjVS running on a remote 
VSE system, you'll need JCL statements: 

• To identify it as a VSE job 

• To access the remote system libraries containing the compiler 

• To access the library to which the result is to be written. 

Your system administrator will probably supply standard files containing 
appropriate JCL. In the examples below, we assume that you keep your sample 
JCL files separate from your application object files, and transfer them to your 
remote system in a way that ensures that they arrive there as a single file. 

The way you transfer your files depends on where your CICSjVS system is running: 

1. As a guest of a VM machine in the same VM host system as you, or 

2. On a remote system. 

Transferring programs and maps to a guest CICSjVS system 

To transfer program and map files to a CICSjVS system running as a guest on your 
host VM system, you use the commands: 

SPOOL PUNCH TO userid CONT CLASS x 
PUNCH pjcl JCL A (NOH 
PUNCH fn ft A (NOH 
PUNCH sjcl JCL A (NOH 
SPOOL PUNCH CLOSE NOCONT OFF 

The first SPOOL command specifies that anything that you send to your virtual 
punch should be transferred to the virtual card reader of userid. Here, userid 
must be the VM ID of the virtual machine on which the CICSjVS system is 
running. The CONT option ensures that the separate JCL and application object 

J 

files will be punched as one. The CLASS option gives the class (x) of the reader for ~ 
the batch partition of the CICSjVS system. Your system administrator will tell you .., 
what to use for x. 

152 CICSjCMS User's Guide 



The PUNCH commands send the named files to the virtual punch. The first sends 
the JCL prefix file, pj cl; the second sends your application object file, fn ft; the 
third sends the JCL suffix file, sj cl. You must include NOH in each command to 
ensure that CMS doesn't put any header information on the files. 

The final SPOOL command closes the punch, which sends the files. NOCONT 
returns the virtual punch to non-continuous operation. 

Transferring programs and maps to a remote CICS/VS system 

To transfer your program and map files to a CICSjVS system running on a remote 
MVS or VSE system, you use similar commands to those described above. Instead 
of spooling your punch to the VM userid where CICS/VS is running, you spool it to 
the VM userid that controls the RSCS network. The network then transfers the 
files to the remote system you've identified with a CP TAG command. The following 
commands show this in action: 

TAG DEV PUNCH remsys 
SPOOL PUNCH TO rscsid CONT CLASS x 
PUNCH pjcl JCL A (NOH 
PUNCH fn ft A (NOH 
PUNCH sjcl JCL A (NOH 
SPOOL PUNCH CLOSE NOCONT OFF 

The TAG command specifies that punch files are to be transmitted to the remote 
system, remsys. Your system administrator will tell you what remote system ID to 
use. 

The SPOOL command directs punch files to the userid of the virtual machine 
controlling the RSCS network (rscsid). The CONT option ensures that the 
separate JCL and application object files will be punched as one. The CLASS 
option gives the class (x) of the reader for the batch partition of the CICSjVS 
system. Your system administrator will tell you what to use for rscsid and x. 

Finally, the PUNCH commands punch your file to the virtual punch, close the file, 
and then spool it to the virtual reader of the RSCS virtual machine. That machine 
then sends your file across the network to the remote system. 

Transferring macro library members to CICS/DOS/VS 

While developing applications using CICSjCMS, you'll probably create a number of 
macro library members. If you are transferring your application to a CICSjDOS/VS 
system, you will have to transfer the macro library members that your program(s) 
will need when you recompile. You may need to transfer: 

• The DSECTs for your BMS maps, which CICS/CMS writes to one of the 
EFHxUSER files, as explained in "CICSjCMS macro libraries" on page 99. 

• Copybooks containing common source code needed by applications, such as 
record definitions for data files. 

You can send members of MACLIB files to a CICS/VS system using the commands 
given in "Transferring programs and maps to a guest CICSjVS system" on page 152 
or "Transferring programs and maps to a remote CICSjVS system." However, you 
will need additional JCL to identify the macro library on the remote CICSjDOS/VS 
system. 

Chapter 13. Transferring tested applications to CICS/VS 153 



You will also have to do some work on your CICSjCMS system to prepare the 
macro library members for transfer. You need to: 

• Extract the individual members that you want to transfer from the macro 
libraries that contain them 

• Remove the final record (containing / /) that CMS adds to macro library 
members. 

The technique described below deals with both of these. 

Preparing macro library members for transfer 

1. From CMS, or the CP /CMS Command line of panel EFH12, type the command: 

MACLIST maclib 

where mac lib is the filename of the macro library containing the members(s) 
that you want to prepare. MACLIST produces a file list of the individual 
members of a macro library. For example, if you want to list the members of 
the user COBOL macro library, type: 

MACLIST EFHCUSER 

2. For each member that you want to transfer to CICSjDOSjVS, move the cursor 
alongside the member name, and invoke your editor. 

3. From the editor's command line, enter the command to save the library member 
that you're editing as a new file with a specified filename and filetype. For J" 
example, using XEDIT, you'd use the command: 

FILE filename filetype 

You can use anything you like for filename and filetype, except the 
filename of the macro library from which you're extracting members, and the 
file type MACLIB. 

4. Return to CMS (or the EFH12 panel) by pressing PF3 on the file list of macro 
library members. 

The result of this sequence, for each member for which you use it, is a file, on your 
A-disk, containing just the library member, without any control records. That's the 
file that you transfer to CICSjDOSjVS. 

Transferring data files to CICS/VS 

You can use the CICS/CMS general file transaction, CCU2, to convert CICSjCMS 
files to VSAM files, and to ship them to your CICSjVS system using the remote 
server. This is explained in "General file conversion" on page 113. 

Don't forget that you'll have to make sure that the files you want to ship are 
defined in the file control table (FCT) of your CICSjVS system. 

154 CICSjCMS User's Guide 



What's next? 

In the next part of the book, we describe the help that eIeS/eMS can give 
you in diagnosing and solving problems in your applications and in 
eIeS/eMS itself. We also give some suggestions on the best ways of taking 
advantage of this help. 

Chapter 13. Transferring tested applications to CICS/VS 155 





Part four-Diagnosing and solving problems 

This Part of the book describes: 

• The way CICS/CMS reports problems 

• The tools available to help you solve problems 

• The best ways of using the problem-solving tools 

• What to do if you have problems with CICS/CMS itself. 

Part four-Diagnosing and solving problems 157 





Chapter 14. How CICS/CMS reports problems 

In Chapter 9, "Testing an application," we told you how to execute your 
applications in CICSjCMS, and how to use CICS/VS tools to test different 
execution paths through those applications. 

In this part of the book, we deal more directly with what happens when problems 
arise, whether in your applications, in your use of CICSjCMS, or in CICSjCMS 
itself. 

This chapter describes, in general terms, the kinds of problems that can arise, and 
the way that CICSjCMS reports them, using its error handler. The next two 
chapters introduce the debugging aids available. We give a general guide to the 
main types of application problems, and suggest ways of dealing with each type, 
using the debugging aids. 

Most of this information should be useful both to application programmers with a 
problem in their program, and to systems people trying to help them. 

The final chapter, however, is aimed specifically at systems people. It tells them 
how to diagnose that a problem is being caused by CICSjCMS rather than by a user 
program, and what information they will need to gather to report the problem to 
IBM. 

Note: This part of the book is intended to make you familiar with the kind of 
problem reporting you can expect from CICSjCMS, and to introduce the facilities 
that can help you diagnose problems from those error reports. It is not a general 
guide to the process of problem diagnosis. There are many other books dealing 
with this subject, and you will find a list of some of them in "Where to find more 
information" on page 196. 

Messages you can receive when using CICS/CMS 

As we explained in "Testing a CICS program" on page 18, apart from the time you 
spend in CMS, a typical terminal session using CICSjCMS can be divided into two 
parts: 

1. The CICSjCMS session, which is everything you do between typing CICSCMS 
or EFH12 and returning to CMS 

2. The CICS test session, which is everything you do between leaving panel 
EFH12 to run a transaction or program, and returning to panel EFH12. 

Chapter 14. How CICSjCMS reports problems 159 



Messages during a CICS test session 

During a CICS test session, the CICS/CMS error handler displays nearly all the 
messages. These are mainly: 

• Warnings that you are using a CICS/CMS feature incorrectly 

• Information messages, or warnings that you are using CICS/VS features that 
CICS/CMS does not support 

• CICS/CMS versions of CICS/VS messages 

• Abend messages. 

The error handler displays these messages in a common form, as explained in "The 
CICS/CMS error handler display" on page 161. 

There are a few messages that can appear during a CICS test session that are not 
displayed by the error handler. These are: 

• Some CICS/VS messages associated with BMS paging and the field engineering 
transaction (CSFE). 

• Some remote server abend codes. 

Messages outside the CICS test session 

Outside the CICS test session, but within a CICS/CMS session, most messages are 
written straight to your terminal without the intervention of the error handler. 
These messages are mainly of the three following types: 

• Messages from CMS 

• Messages from CICS/CMS EXECs 

• Messages from CICS/CMS utilities 

Messages from CMS 

If a problem arises from CICS/CMS using a CMS facility, you will usually get at 
least two messages. The "standard" CMS message for reporting the problem, and a 
CICS/CMS message giving more detail. 

If you use a eMS command incorrectly, eMS will report the error itself. This 
applies whether you are using CMS "on its own", that is, while CICS/CMS is not 
running, or from within CICS/CMS, either by issuing single commands from the 
execution and escape panels, or by entering the CMS subset from those panels. 

In general, you'll probably find the CMS messages a useful addition to the 
CICS/CMS messages. However, if you find that you're getting the information you 
need from the CICS/CMS messages, and you want to reduce the amount of screen 
output, you can suppress the CMS messages by typing: 

SET EMSG OFF 

160 CICS/CMS User's Guide 

,.J .. 



Messages from CICS/CMS EXECs 

You may get messages from CICS/CMS EXECs warning you that you've used a 
feature incorrectly, reporting errors in executing an EXEC, and reporting on the 
progress of a running EXEC. 

Messages from CICS/CMS utilities 

You may get messages from the CICS/CMS utilities, EFHUCMS1, EFHUMAP, and 
EFHUSTG. 

Messages written to eMS files 

While using CICS/CMS, you will also get some messages that are written to CMS 
files. These are translator messages and compiler/assembler messages. 

Translator messages 

The CICS/CMS EFHTC and EFHT EXECs invoke the CICS/VS translator. The 
translator checks all your EXEC CICS commands for incorrect syntax. If it finds 
any errors, it gives a return code greater than 4, and EFHTC or EFHT displays a 
message at your terminal advising you to check the listing file. In the listing file, 
you will find self-explanatory translator messages describing the problem. 

For further information on the listing files for the translator, see "Output from the 
translate phase" on page 96. 

Compiler/assembler messages 

Whatever source language you use, the CICS/CMS EFHTC EXEC calls the 
appropriate compiler or assembler, which checks your program for syntax and 
potential execution errors. If there are any errors, EFHTC displays messages at 
your terminal, advising you to check the listing file. If you need more information 
about the error messages you find there, you will need to consult the reference 
manual for the compiler or assembler you are using. 

You'll find more about compilation error reports in "Output from the compilation 
phase" on page 97. 

The CICS/CMS error handler display 

All error handler displays have the general appearance shown in Figure 45 on 
page 162. 

Chapter 14. How CICS/CMS reports problems 161 



EFH125 ERROR HANDLER FUNCTIONS 03/04/86 10:33:14 

Program Name: name Line Number: nnnnnnnn 

Message EFHccnns has been generated 

After this screen the CICS environment will (CONTINUE/TERMINATE) 

Up to 8 lines of extra information. This will normally include 
further information about the error, suggestions about the 
cause of the error, references to further information and, 
if necessary, contents of applicable parts of storage, 
registers, and so on. 

Press ENTER to Resume 

PF1=Help PF3=End PF5=Suppress-Msg 
PF9=Reset-Msgs PF12=Terminate PA2=Escape 

Figure 45. General form of error handler display 

PF6=Redisplay-Screen 

Error handler display fields 

The fields in the EFH125 panel are described in the sections following. 

"Program Name" line 

"Message" line 

The line beginning Program Name gives the name of the application program, if 
any, that was executing, and the line within that program (nnnnnnnn) at which the 
message was generated. If you've sequenced your program, as we advise in the 
individual compiler sections in "CICS/CMS support for high-level languages" on 
page 84, you can check this line number in your source program. Otherwise, you 
can look it up in your translator listing. If no application program was executing, 
the Program Name could be the name of one of the CICS/CMS modules. If the 
message is displayed while CICS/CMS is starting, or just before a user program 
starts, this line will say Unknown for both the program name and line number. 

The line beginning Message gives the message code, and is the same format for all 
messages, as follows: 

EFH 

cc 

nn 

identifies the message as coming from CICS/CMS. 

identifies the CICS/CMS component that issued the message. For 
example, 09 identifies file Control, 10 identifies terminal Control. 

You'll find a complete list of all the cc codes, and the components they 
represent, in the CICS/CMS Messages and Codes manual. 

identifies the specific message code. 

162 eIes/eMS User's Guide 



s is a severity code, indicating the seriousness of any problem, as 
follows: 

I Information only. 

Messages with this code usually tell you that some function is in 
progress or has ended, or that CICS/CMS has ignored a CICS/VS 
feature that it doesn't support. They have no effect on 
execution. 

W Warning. 

Messages with this code warn you of something that could lead 
to an error, but will not usually interrupt execution. 

E Error. 

Messages with this code report an error that may lead to other 
errors. 

S Severe error. 

Messages with this code usually follow an abend. Something 
has happened that makes it impossible for the current 
transaction or program to continue. 

CICS environment status line 

Immediately after the Message line comes a single line telling you what will 
happen if you press ENTER to try to carryon. In most cases, this line will say: 

After this screen the CICS environment will CONTINUE 

This means that CICS/CMS will at least try to continue the CICS test session. 

For the most severe problems (usually those with a severity code of S), the line will 
say: 

After this screen the CICS environment will TERMINATE 

In this case, pressing ENTER will have the same effect as pressing PF12: you'll 
return to the execution panel (EFH12). 

Explanation lines 

After the CICS environment status line come the lines of explanation. In most 
cases, these will provide enough information for you to understand the message 
immediately, or to decide what other sources of information you will need. The 
display examples later in this section show the kind of information you can expect 
to find in these lines. 

Chapter 14. How CICS/CMS reports problems 163 



Function key meanings 

The final lines of the display tell you what the function keys do on an error 
handler display, as follows: 

ENTER 

PFI 

PF3 

PF5 

PF6 

PF9 

PF12 

PA2 

164 CICSjCMS User's Guide 

If the CICS environment status line says that the CICS environment 
will continue, pressing ENTER will let your application carryon. If it 
says that the CICS environment will terminate, pressing ENTER will 
take you back to panel EFH12. 

displays a help panel, giving you a brief description of panel EFH125, 
and of the functions of the PF and P A keys. 

is equivalent to pressing ENTER. 

lets you stop unwanted messages. 

As we said earlier, CICS/CMS will display messages when you use 
features supported by CICS/VS, but not by CICS/CMS. If your 
application includes a loop that contains an unsupported command, 
you will keep getting the same message, telling you that a statement at 
a particular line number in the program is using that unsupported 
feature. 

You can suppress this message by pressing PF5. This will suppress 
only message panels that are identical to the one on which it is 
pressed. Thus you can use PF5 to stop messages from a single program 
statement that is executed a number of times. However, you can't use 
it to stop messages from other statements using the same feature, 
because the message panels will include a different program line 
number. 

redisplays the last screen before the error handler panel. This will 
usually be the last screen that your application displayed, and can be 
useful in tracing when your application raised the condition that 
generated the error message. 

restarts the display of all the messages you've suppressed using PF5. 
You can do the same thing from the escape panel by pressing PFlO. 

gives an immediate return to panel EFH12. No matter what the CICS 
environment status line says, PF12 will always stop the current CICS 
test session. 

suspends the CICS test session, and displays the escape panel 
(EFH122). This can be particularly useful if the message suggests that 
your application is about to abend. Pressing PA2 lets you suspend the 
application, and use appropriate debugging tools to investigate the 
problem. 

For an assembler program, you might use CP or CMS debugging 
tools to check the contents of storage. 

For a COBOL II program, you might use CEBR to check the 
temporary storage queues that the COBOL IT debug facilities create. 

For a PL/I program, you might look at the PL/I diagnostic 
information. This is usually written to SYSPRINT, so you'd need to 



L 

define SYSPRINT as a CMS file, using a CMS FILEDEF command, if 
you wanted to check it in this way. 

For all programs, particularly COBOL programs, you'll probably get 
useful information by running the program again with trace on, and 
using the EFHUMAP command to find storage addresses relevant to your 
program, as described in "The EFHUMAP utility" on page 176. 

Error handler displays for abends 

The displays produced by the error handler for abends are identical in format to 
the message displays. The severity code will, of course, always be S, and the lines 
of additional information will always start with the abend code. 

Example error handler panels 

The next few pages contain some examples of CICS/CMS error handler panels. 

Example information message 

Figure 46 shows an information message, telling you that you've used the 
unsupported DELAY option in a PL/I program called EMILY. 

EFH125 ERROR HANDLER FUNCTIONS 03/04/86 08:44:30 

Program Name: EMILY Line Number: EMI00030 

Message EFH8808I has been generated 

After this screen the CICS environment will CONTINUE 

The requested Interval Control function (DELAY) is not supported by CICS/CMS. 

The request is ignored. 

Press ENTER to Resume 

PFl=Help PF3=End PF5=Suppress-Msg PF6=Redisplay-Screen 
PF9=Reset-Msgs PF12=Terminate PA2=Escape 

Figure 46. Sample information message 

The message severity is I (information only), and the explanatory lines of the 
message tell you that you've used an unsupported feature, and what that feature is 
(in this case, DELAY). The line number (EMI00030) is taken from columns 73 to 80 
of the source program; it's the sequence number. 

Chapter 14. How CICS/CMS reports problems 165 



Example warning message 

Figure 47 shows the warning message you would get if the control records of the 
files that made up a CICS/CMS keyed file got out of sequence. The program is a 
COBOL program. 

EFH125 ERROR HANDLER FUNCTIONS 03/04/86 08:47:33 

Program Name: ACCT02 Line Number: 310 

Message EFH0922W has been generated 

After this screen the CICS environment will CONTINUE 

The date and time stamps in the control records of the EFHVDATA and 
EFHVINDX files for ACCTIX do not match. 
The EFHVDATA date/time stamp is 02/04/8616:15:52 
The EFHVINDX date/time stamp is 03/04/8616:15:52 
You can correct this situation by editing either file from the ESCAPE panel. 
If you do not do so, the condition DSIDERR will be returned. 

Press ENTER to Resume 

PFl=Help PF3=End PF5=Suppress-Msg PF6=Redisplay-Screen 
PF9=Reset-Msgs PF12=Terminate PA2=Escape 

Figure 47. Sample warning message 

As the message says, the date and/or time in the control record of the ACCTIX 
EFHVDATA file does not match that in the ACCTIX EFHVINDX file. It shows 
you the date and time stamps so that you can see what the difference is. It also 
tells you what you can do to correct the error, and what will happen if you 
continue the application without correcting it. 

Note: Although you can follow the advice given in the message, and correct the 
file while your program is "in flight", we wouldn't recommend it. You shouldn't 
create or change CICS/CMS keyed files by any method other than the CICS/CMS 
file utilities, EFHUCMS1 and CCU2. 

Example error message 

Figure 48 on page 167 shows the error message displayed if a program's name 
doesn't match the filename of the CMS file containing it, or if its entry point is 
defined incorrectly in the program table. 

166 CICS/CMS User's Guide 



EFH125 ERROR HANDLER FUNCTIONS 03/04/86 08:56:04 

Program Name: Unknown Line Number: Unknown 

Message EFH0420E has been generated 

After this screen the CICS environment will CONTINUE 

The TEXT of the PL/I program JENNY has been successfully loaded 
but the address of the program cannot be determined. 

The Program Table indicates that the external procedure 
name is JENNY but this name is not present in the LOAD MAP 

Press ENTER to Resume 

PFl=Help PF3=End PF5=Suppress-Msg PF6=Redisplay-Screen 
PF9=Reset-Msgs PF12=Terminate PA2=Escape 

Figure 48. Sample error message 

Here, the Program Name is Unknown, because the problem arose before the 
application program JENNY had started. You can't deal with this problem within 
the CICS test session. You will need to stop the test session (by pressing PFI2), 
and make sure that the program name matches the filename, or edit your program 
table to give the program name in the entry field. You can then start the CICS test 
session again. 

Example abend message 

Figure 49 on page 168 was produced by an abend. The severity code is S, and the 
CICS test session will terminate. If you press ENTER to continue, you will go 
straight back to panel EFHI2. . 

Chapter 14. How CICS/CMS reports problems 167 



EFH125 ERROR HANDLER FUNCTIONS 03/04/86 10:45:41 

Program Name: NATALIE Line Number: NAT00050 

Message EFH8635S has been generated 

After this screen the CICS environment will TERMINATE 

ABEND AEIV - An exception condition has arisen for which no EXEC CICS HANDLE 
CONDITION command is active. 
Condition raised LENGERR 
Last executed command : READ 

Press ENTER to Resume 

PF1=Help PF3=End PF5=Suppress-Msg PF6=Redisplay-Screen 
PF9=Reset-Msgs PF12=Terminate PA2=Escape 

Figure 49. Sample abend error message 

As the message says, the line in the program NATALIE with the sequence number 
NAT00050 contains an EXEC CICS READ command. This has raised a LENGERR 
condition for which the program contains no EXEC CICS HANDLE CONDITION 
command. To solve this problem, you could either correct the EXEC CICS READ 
command to eliminate the condition, or include an EXEC CICS HANDLE 
CONDITION command, and some code, to handle the condition in the future. 

The CICS/CMS error log 

Every time that the error handler displays a message panel, it writes an entry to 
the CICSjCMS error log. This gives you a record of all the errors in a particular 
CICSjCMS session or CICS test session. 

CICSjCMS writes the error log to a file with a filename, filetype, and filemode 
defined either in the EFHSETP EXEC or in EFHPROF EXEC. For example, to ask 
CICSjCMS to write the error log to the file SESSION ERRLOG on your Z-disk, you 
could include the following statements in your EFHPROF EXEC: 

SETPARM 'LOGFN SESSION' 
SETPARM 'LOGFT ERRLOG' 
SETPARM 'LOGFM Z' 

You can change these definitions immediately before you start a CICS test session, 
by pressing PF7 on panel EFH12 and using the Additional Parameter line on 
panel EFH121. You can stop CICSjCMS writing the error log at all by specifying a 
period (. ) as the value for the "LOGxx" parameters. 

The error log contains the start and end time of each CICSjCMS session, and, in 
between, entries from the error handler. Those entries give you: 

• The program name and line number 

• The message number 

168 CICS/CMS User's Guide 



• The text of the message. 

If you run CICS/CMS using the defaults supplied by IBM, it will append the error 
log to a file called CICSCMS ERRORLOG on your A-disk. This file will contain 
the error messages from all your CICS/CMS sessions, unless you erase or edit it. 

Restricting the life of the error log 

You can make your error log less permanent. You can restrict its life to: 

• A terminal session 

• A CICS/CMS session 

• A CICS test session 

Restricting the error log to a terminal session 

If you are using CICS/CMS from a host-connected terminal, you can define the 
error log as being on your Z-disk, as we did in the example above. It will then be 
erased, along with everything else on the Z-disk, every time you log off. 

You can do the same thing on a PC, but only if you haven't set up your Z-disk 
using the VM/PC configurator (VMPCCON). Disks defined by VMPCCON are not 
erased. 

Restricting the error log to a CICS/CMS session 

You can erase the error log automatically, at the start of every CICS/CMS session, 
by including a CMS ERASE command for the log file in your EFHPROF EXEC. 
From then on, every time you enter the CICSCMS command, CICS/CMS will erase 
the error log. 

You can do the same thing explicitly, by selecting option 5 on panel EFHl each 
time you start a CICS/CMS session. This erases a number of CICS/CMS files, 
including the error log. 

Restricting the error log to a CICS test session 

You can erase the error log before beginning a CICS test session, by executing an 
appropriate CMS ERASE command from the CP /CMS Command line of panel EFH12. 

You can erase the error log in the middle of a CICS test session, by executing 
ERASE from the command line of the escape panel (EFH122). 

Chapter 14. How CICS/CMS reports problems 169 



J 



Chapter 15. Debugging tools 

How to use this chapter 

CICSjCMS provides a wide range of debugging tools, from the familiar 
CICSjVS interactive tools, such as EDF, designed to help identify application 
program problems, to special forms of trace, designed to help systems people 
track down problems in CICSjCMS itself. 

To help you find the information that you need on the debugging tools you're 
most likely to use, we've divided them into three categories, as follows: 

• General. 

These are the tools that can be used by anyone involved in CICS 
programming; they can help you diagnose most application programming 
problems. 

• Storage analysis. 

These are the extra tools you'll need when you can't identify a problem 
using the general tools. To use them, you'll need to know something 
about the structure of CICSjVS and its control blocks, and about 
programming in CMS. 

• Systems. 

These are the tools that systems people might need to investigate problems 
in CICSjCMS itself, or problems in application programs that appear to 
cause problems in CICSjCMS. 

You can use any of the tools available, if you think it will help you diagnose 
your problem. We'd advise, however, that you don't use the storage analysis 
or systems tools until you're sure you can't get what you want from the 
general tools. 

General debugging tools 

The general tools available with CICSjCMS are: 

• The CICSjCMS error handler 

• Program listings 

• CICSjVS interactive tools 

Chapter 15. Debugging tools 171 



• CICS/CMS trace. 

The CICS/CMS error handler 

Your primary source of help from CICS/CMS is the error handler. It should give 
you enough information to identify immediately what's causing a problem, or at 
least to decide what other sources of information you might need. 

"The CICS/CMS error handler display" on page 161 describes the error handler. 

Program listings 

For most application programming problems, you'll need to go back to your source 
program, and to the listings produced by your translations, compilations, and 
assemblies. 

Some of the CICS/CMS debugging tools refer to program line numbers. 

If you follow the recommendations about sequencing programs in the individual 
compiler descriptions in "CICS/CMS support for high-level languages" on page 84, 
you can relate the line numbers given in error message and EDF panels directly to 
your source program, without referring to listing files. 

If you haven't sequenced your programs, or the CICS debugging tool refers to an 
application program storage address, you'll need to relate the information to your 
listing files to narrow down your search for the root of a problem. In particular, 
you will need to compare the line number that the error handler panels give you 
with your translator listing, to find the point in your program from which the error 
message was generated. 

CIcs/eMS writes all your listings to files on the Z-disk. The file types of these files 
are: 

ASMLISTI 

ASMLIST2 

TRANLIST 

lanLIST 

The listing from creating a BMS DSECT. 

The listing from creating a physical map. 

The listing from a translation. This is useful for COBOL, COBOL 
II, and PL/I programs. For assembler programs, the listing is 
written to the translator output file, filetype TRANOUT. 
However, this file is erased during the assembly phase, so you'll 
need to look in the assembly listing file. 

The listing from a compilation or assembly, where Ian is COB (for 
COBOL or COBOL II), PLI (for PL/I), or ASM (for Assembler). 

You can look at the listings using your editor. Alternatively, if you're used to 
dealing with printed listings, you can use the CMS PRINT command to print the 
files containing the listings. 

172 CICS/CMS User's Guide 



CICS/VS interactive tools 

CICSjCMS supports the CICSjVS interactive tools: EDF, CECI, and CEBR. 
"Testing tools" on page 125 tells you how to use them with CICSjCMS and 
Chapter 16, "How to diagnose common problems" on page 191 describes situations 
in which you'll find them useful. 

CICS/CMS trace facilities 

CICSjCMS provides trace facilities similar to those in CICSjVS. However, 
CICSjCMS trace is tailored to suit the requirements of people who are developing 
applications interactively. 

All trace entries are written to a file, with a filename, filetype, and filemode defined 
in the EFHSETP EXEC, or in your EFHPROF EXEC. For example, if you want 
your trace written to the file MYTRAC TRACLOG on your Z-disk, you include the 
statements: 

SETPARM 'TRACEFN MYTRAC' 
SETPARM 'TRACEFT TRACLOG' 
SETPARM 'TRACEFM Z' 

in your EFHPROF EXEC. 

CICSjCMS trace entries are formatted in a way that makes them easy to read on a 
screen. They contain the same information as in CICSjVS trace, but with some 
additional annotation, as follows: 

• The function name and first option of every EXEC CICS command that an 
application issues. 

• The line number in your application at which each EXEC CICS command is 
issued. 

• The EIBRESP value for each EXEC CICS command executed. 

• The characters > > > before each EXEC CICS command to help you identify the 
point at which your application issues the command. 

• The characters < >, if an EXEC CICS command finishes with a return 
condition other than NORMAL. This makes it easy for you to scan the trace 
log for possible problems. 

• A symbolic representation of the current nesting level of your CICS test 
session, written at the end of each entry. A slash (j) represents the level of 
transaction; an asterisk (*) represents the level of program. For example, when 
you start to run a transaction, a single slash will appear at the end of each 
trace entry. As soon as the first program associated with the transaction 
starts, /* will appear at the end of each entry. If you then go to the escape 
panel (perhaps to start EDF from within your program), you will move to 
another level of nested transaction, and /* / will appear at the end of each 
entry. 

• Optionally, output from the EFHUSTG utility, which gives the addresses of 
modules currently in storage. This is a storage analysis utility, described in 
"The EFHUSTG log" on page 177. 

Chapter 15. Debugging tools 173 



Figure 50 shows a typical piece of trace output, part of the trace of an execution of 
the Primer's sample application. 

FCOO0500 TC 01000100 00092D34 50139D8C 
CC080200 TCAI CIC3CJEJ 00010001 ACCT 70136538 / 
EAOO0300 TMP 01000100 000910F5 5 ACCT 4013659A / 
EAOO0500 TMP 01000100 00092D34 400C1l78 / 
CCIA0200 PCP 82000101 00000000 b ACCTOO 70133EAC / 
F2820400 PC 00000000 00000000 ACCTOO 6013660E / 
FICC0400 STG 000007E8 0108F04C Y 0< 400BFC38 / 
C8000400 ++++ 00095000 8COO07F8 & 8 500BE512 / 
EAOO0300 TMP 01000300 000914D8 Q ACCTOO 4013442E / 
EAOO0500 TMP 01000300 00092CE4 U 400C1l78 / 
CCIB0200 PCP 00092CE4 00000000 U ACCTOO 701343EO / 
FICI0400 STG 00000068 0108F04C 0< 40136626 / 
C8000400 ++++ 00095800 81000070 a 500BE512 / 
FICA0400 STG 00200DE3 0108F04C T 0< 50136648 / 
C8000400 ++++ 00096000 8A040DE8 - y 500BE512 / 
FJll0300 IC 1l00C120 00000000 A 501J670C / 
F3000500 IC 00000000 00000000 40132CB4 / 
CCOA0200 TCAI CIC3C3E3 00010001 ACCT ACCTOO 7013674C / 
FICC0400 STG 00000510 0108F04C 0< 400BFC38 / 
C8000400 ++++ 00096DFO 8COO0518 500BE512 / 
CCIA0200 PCP 0100C120 00000000 ACCTOO 70133EAC / 
F2010400 PC 00000000 00000000 ACCTOO 5013678A / 
FICC0400 STG 00000400 0108F04C 0< 400BFC38 / 
C8000400 ++++ 00097JI0 8COO0408 500BE512 / 
EAOO0300 TMP 01000300 000970B8 ACCTOO 4013442E / 
EAOO0500 TMP 01000300 00092CE4 u 400C1l78 / 
CCIC0200 PCP 000201E8 00000001 Y ACCTOO 70134D74 / 
F1930400 STG 000905JA 0108F04C 0< 50134ED8 / 
C8000400 ++++ 00097800 9J090540 1 500BE512 / 
CC180200 PCP FD096EOO 04020532 > ACCTOO 70134616 /* 
EI000400 EI++ 00008160 00001804 a- 14 500207A4 /* 
»> 14 EXEC CICS SEND MAP 
F1400400 STG 000908CO 0108F04C 0< 500DOBIO /* 
C9000400 ---- 000908CO 850000E8 e Y 500BE54E /* 

Figure 50. Sample CICS/CMS trace output 

From the trace output you can see that, as the transaction ACCT starts, a single 
slash (j) appears at the end of the line. When program ACCTOO starts, an asterisk 
(*) appears beside it. The line immediately following the start of ACCTOO, with 
>>> at the front, shows the start of the first command, EXEC CICS SEND MAP. 
The 14 in the command line is the line number in the program which issued the 
command. 

Appendix E, "CICSjCMS trace entries" on page 253, describes the difference 
between the CICSjVS entries you'll find in a trace log, and the CICSjCMS entries. 
The appendix describes the CICSjCMS entries in detail. For more information on 
CICS/VS entries in trace output, and on interpreting trace output in general, look 
in the CICS/ VS Problem Determination Guide. 

There are two ways of asking CICSjCMS to produce trace output, as follows: 

• Through your EFHPROF EXEC file 

• Through the parameter definition panel (EFH121). 

174 CICS/CMS User's Guide 



Requesting trace through your EFHPROF EXEC file 

You can use your EFHPROF EXEC to ask for trace to be enabled by setting the 
TRACE parameter to YES, as follows: 

SETPARM 'TRACE YES' 

Trace will then be enabled for every CICS test session. Remember to clean up your 
trace log from time to time. The log can quickly use up your available disk space, 
so you should always get rid of unwanted trace, either by editing the log, or by 
erasing the entire file. You can erase the entire file automatically from EFHPROF 
by including a CMS ERASE command. 

Since the trace file can take up a lot of space, you might like to consider putting it 
on your Z-disk. You can request this in your EFHPROF EXEC, as follows: 

1. Use the TRACEFM parameter to define your trace log filemode as Z. 

2. Unless you are using VM/PC, and have set up your Z-disk using VMPCCON, 
edit into the EXEC the command: 

EXEC EFHTSPAC 

Whenever EFHPROF is executed, it will then run EFHTSPAC. If there isn't 
already a Z-disk, EFHTSPAC will set one up and format it. If there is one, it will 
do nothing. All trace output from then on will be written to the Z-disk. 

Requesting trace through the EFH121 panel 

If you want to be able to turn trace on only for selected CICS test sessions, set the 
TRACE parameter to NO in EFHPROF EXEC, as follows: 

SETPARM 'TRACE NO' 

You can then turn trace on for a particular test session by pressing PF7 on the 
execution panel (EFH12). This will display panel EFH121 (shown in "Changing 
your CICS/CMS environment within a session" on page 119). One of the lines on 
this panel looks like this: 

Trace ===) No Yes,No 

If you change the first No to yes, and press ENTER, you will turn trace on. You 
can then: 

1. Return to EFH12 by pressing PF3 

2. Erase any existing trace file from the CP /CMS Command line 

3. Run your application. 

When the application finishes, you can switch off trace from panel EFH121. You 
will then have a trace file that contains information only for that CICS test 
seSSIOn. 

The PF7 option is also available on the escape panel (EFH122). This means that 
you can display panel EFH1221, and turn trace on for part of a CICS test session. 
At some point before you want to start trace, when the application that you're 
testing is waiting for input, press PA2. This will display the escape panel. Press 
PF7 to display panel EFH1221. Turn trace on, by entering yes in the trace line. 

Chapter 15. Debugging tools 175 



Press PF3, and you will return to the escape panel. Pressing PF3 there returns 
control to your application, which will write trace entries from then on. 

Storage analysis tools 

The storage analysis tools available with CICSjCMS are: 

• EFHUMAP 

• EFHUSTG 

• CPjCMS debugging tools 

The EFHUMAP utility 

EFHUMAP is a CICSjCMS utility that provides the sort of information you would 
get in a dump from a CICSjVS system. It gives you the addresses of CICSjCMS 
modules and control blocks. EFHUMAP is most useful when you get an error or 
abend message from CICSjCMS, and you need to find out where in storage to start 
investigating the problem. You can use EFHUMAP to get the address of the 
control block or module from which you want to start your investigations, and then 
use CP commands, such as DISPLAY, to display or dump the relevant storage. 

Example output from EFHUMAP 

Figure 51 shows a short piece of EFHUMAP output, which we produced during an 
execution of the Primer's sample application. 

*DFHEDFDL 000F67A8 09/30 10.43 *PIDLVL*OllOI 
*DFHFEP 00102120 09/30 12.47 *PIDLVL*OllOI 
*DFHEDFCX 001037FO 09/30 10.39 *PIDLVL*OllOI 
*DFHEBF 001045D8 09/30 10.14 *PIDLVL*OllOI 
*DFHBFP 00104620 09/30 10.01 *PIDLVL*01101 
*DFHPHP 00105CA8 09/30 12.59 *PIDLVL*OllOI 
*DFHALP 001063EO 09/30 09.59 *PIDLVL*OllOI 

LOAD Module: 
DFHTRP 000095F4 

Addresses of component modules: 

Global control areas 
CSA 00008160 
CSAOPFL 0000D200 
PAM 0000C300 
EFHCOMMA 00008C68 

------------- Transaction CICS -----------------
TCA 0013B5D8 

Figure 51. Sample EFHUMAP output 

176 CICS/CMS User's Guide 

J 



Description of EFHUMAP output 

Most of the output from EFHUMAP gives the addresses where the modules that 
make up CICS/CMS are stored. In Figure 51, we have shown the last few lines of 
that part of the output. These are the lines starting *DFH. 

The lines following Global control areas give the addresses of CICS/CMS 
control blocks, such as the common system area (CSA). 

The last lines of EFHUMAP output relate to the areas associated with the current 
application. In the example above, there's only one: the address of the task 
control area (TCA) for the current CICS test session. 

Requesting EFHUMAP output 

You ask for EFHUMAP output by entering EFHUMAP as a command in the CP /CMS 
command line on panel EFH12 or panel EFH122. If you enter EFHUMAP on its own, 
you get a list of all CICS/CMS module and control block addresses. You can, 
however, limit the output to just those addresses in which you're interested, by 
providing an appropriate string as a parameter to EFHUMAP. For example: 

EFHUMAP *EFH 

will list the addresses of only the CICS/CMS (EFH) modules. 

EFHUMAP /* 

will list the addresses of only the current dynamic storage areas. 

EFHUMAP writes its output to two places: 

1. Your screen. This gives you the chance to find something out immediately. 

2. The file CICSCMS MAPLOG on your A-disk. This gives you a more permanent 
record of the information, which you can look at with your editor, or print if 
you want hard copy. 

You will get information on dynamic area addresses from EFHUMAP only if you 
use it within the CICS environment. If you run EFHUMAP after you have 
returned to the execution panel (EFH12), you will only get module addresses. 

The EFHUSTG log 

EFHUSTG is an addition to the CICS/CMS trace facilities. It's a way of finding 
out how an application is using storage. It does this by writing a log of storage 
allocated, with a reference to the line in the trace table that tells you what 
allocated that storage. Each time CICSjCMS allocates a piece of storage, it makes 
an entry in the storage log. When it frees that piece of storage, it deletes the entry. 

Requesting EFHUSTG output 

You can list the current contents of the EFHUSTG log by typing: 

EFHUSTG 

in the CP /CMS command line on panel EFH12 or panel EFH122. The storage log is 
then written to your trace log file. 

Chapter 15. Debugging tools 177 



Note: You must have trace running to use EFHUSTG. If you run an application 
without trace, CICSjCMS won't create the storage log. 

Controlling the number of entries in the EFHUSTG log 

You set the maximum number of entries to be put in the EFHUSTG log in the 
STGTABLE parameter in EFHSETP or EFHPROF, or from panel EFH121. If that 
number proves to be inadequate, you will get a message from CICSjCMS like the 
one in Figure 52. 

EFH125 ERROR HANDLER FUNCTIONS 

Program Name: Unknown 

Message EFH1484E has been generated 

After this screen the CICS environment will CONTINUE 

Insufficient storage to record more EFHUSTG data 
EFHUSTG utility output frozen for rest of run 

03/07/86 12:42:32 

Line Number: Unknown 

If more output required increase STGTABLE parameter and re-run 

Press ENTER to Resume 

PF1=Help 
PF9=Reset-Msgs 

PF3=End 
PF12=Quit 

PF5=Suppress-Msg 
PA2=Escape 

Figure 52. Error handler display for frozen EFHUSTG log 

PF6=Redisplay-Screen 

If you decide to continue with the run, you won't get any more output from any 
EFHUSTG commands that you issue. As the error handler message says, the 
EFHUSTG log is frozen at the point where it ran out of space. 

Example output from EFHUSTG 

Figure 53 on page 179 shows some EFHUSTG output, produced during execution 
of the Primer's sample application. 

178 CICSjCMS User's Guide 



CC390200 CCMS 00130DB8 02404040 RCV CONS 5013077A /* 
CC390200 CCMS 000A380C 6E404000 > RCV CONS S013077A /* 
FICC0400 STG 00000870 0108104C < 400C3178 /* 
C8000400 ++++ 000A6000 8COO0878 - 400C3178 /* 
CC240200 CCMS 00000000 00000000 EFHESCAP 601308E8 1* 

------ Outstanding allocated Storage ------

Address Record# Length Call addr 
Storage 00089850 00040 8C800518 400C3178 1* 
Storage 00088B10 00058 8C800108 600D4948 /* 
Storage 00086750 00049 93800050 500C5180 /* 
Storage 0009B800 00093 8C800518 400C3178 /* 
Storage 0009COOO 00067 93801340 5012DDB6 /* 
Storage 0009D800 00097 8C800518 400C3178 /* 
Storage 0009DD20 00101 8C800408 400C3178 /* 
Storage 0009E130 00110 8C800518 400C3178 /* 
Storage 0009E800 00128 8C800518 400C3178 /* 
Storage 00087070 00119 81800070 4012F4E4 /* 
Storage 0009FOOO 00121 8A800DE8 5012F506 /* 
Storage OOOAIEOO 00143 8C800518 400C3178 /* 
Storage 000A0200 00137 8C801BF8 600D4082 /* 
Storage 000A2800 00180 93800D90 400C15C4 /* 
Storage 000867AO 00169 98800020 400DA066 /* 
Storage 000A4800 00267 8C8007A8 400C15C4 /* 
Storage 00089580 00198 93800080 400C15C4 /* 
Storage 000894EO 00189 978000AO 400D8768 1* 
Storage 000A3800 00310 85800F18 S013077A 1* 
Storage 0009FDFO 00304 8C800408 400C3178 /* 
Storage 000A6000 00314 8C800878 400C3178 /* 
Storage 000A5800 00250 978007BO 400D8768 /* 
CC380200 CCMS 000A380B 00C2001D B SND CONS 50130938 /* 
CC390200 CCMS 0009FFFA 06404040 RCV CONS 50130938 /* 
CC390200 CCMS 000A380C 7D404040 , RCV CONS 50130938 /* 

Figure 53. Sample EFHUSTG output 

Description of EFHUSTG output 

You can find output from EFHUSTG in your trace log by looking for a line that 
says Outstanding allocated Storage. This denotes the start of the EFHUSTG 
output, which is written into the trace table at the point at which you issued the 
EFHUSTG command. In Figure 53 the line immediately above the EFHUSTG output 
contains EFHESCAP, indicating that the EFHUSTG command was executed from the 
escape panel. 

The entries in each line of EFHUSTG output are: 

1. The Address field. 

The address of the start of a storage allocation. 

2. The Record# field. 

The line number in the trace table that shows what it was that allocated the 
storage. If the trace log contains information from a previous CICS test 
session, or if you print the trace log file, you will need to refer to the trace log 
line numbers to relate the Record# field to a line in the trace log. These line 
numbers start in column 105 in the log (not shown in Figure 53). If the trace 
log contains information from your current test session only, and you're 
checking it with your editor, you should be able to use the editor's line 
numbers to interpret Record#. 

3. The Length field. 

Chapter 15. Debugging tools 179 



The first byte tells you the class of storage allocated. You can ignore the 
second byte. The last two bytes give you the size of the storage allocation. 

The possible values of the first byte, and the classes of storage they represent 
are as follows: 

I-byte code 

81 
83 
85 
8A 
8C 
8D 
8E 
8F 
93 
97 
98 
9B 

Storage class 

DCA 
ISC TIOA 
TIOA 
TCA 
User 
TRANSDATA 
TEMPSTRG 
File 
Shared 
TSMAIN 
TSTABLE 
JCA 

You can find out more about storage classes in the CICS/ VS Problem 
Determination Guide. 

4. The Call addr field. 

The last three bytes contain what is probably the most important information. 
They give you the address from which the call to storage control was made. 
You can use EFHUMAP, as described in "The EFHUMAP utility" on page 176, 
to associate this address with a CICS/CMS module. 

CP /CMS debugging tools 

The main strength of CICS/CMS as a debugging tool is the way that it lets you 
combine CICS/VS facilities with CP and CMS facilities to identify problems. 

Whenever you hit a problem that you can't solve using the CICSjVS tools, you can 
use the full range of CMS and CP debugging commands and techniques to examine 
your transaction closely while it is running. 

You can interrupt the execution to examine and change general registers, storage 
areas, or objects such as the program status word (PSW), and then continue 
execution. You can use trace facilities beyond those of CICS/CMS trace, so you 
can see where branches are being taken and when supervisor calls or I/O 
interruptions occur. By interrupting a test with the CICS/CMS escape facility, you 
can use these CMS and CP facilities exactly where and when they are needed. 

The principal debugging facilities available are: 

• DEBUG 

• PER 

• CP debugging commands. 

180 CICSjCMS User's Guide 



L eMS DEBUG 

PER 

When a transaction abends, you will get the CICS/CMS error handler display. 
Often, this will provide enough information for you to identify the cause of the 
abend without further information. Sometimes, however, you will need to inspect 
the transaction's storage areas and registers to help identify the problem. 

CMS DEBUG lets you look at selected storage areas, the contents of registers and 
the PSW. 

You can invoke DEBUG in one of the following ways: 

1. If you want to use DEBUG for all your programs, you can put: 

SETPARM 'USER DEBUG' 

in your EFHPROF EXEC. DEBUG will then be invoked: 

a. When CICS is initialized at the start of each CICS test session 

b. When an application program is loaded 

c. When a BMS map is first loaded. 

2. If you want to use DEBUG for a particular CICS/CMS session, you can set the 
line that says DEBUG program in panel EFH122 to DEBUG. DEBUG will be 
invoked at the times described above. 

3. If you want to use DEBUG to help diagnose the cause of a problem (such as an 
abend) when it occurs, you can press PA2 for the escape panel (EFH122) when 
you get the abend message. You then enter the DEBUG command on the panel's 
CP /CMS Command line to invoke DEBUG. 

4. If you are running with the CICS/CMS SPIE option turned off, you'll get a 
CMS message if a program check occurs. At that point, you can use the DEBUG 

command. 

Every time that DEBUG is invoked, you can use its subcommands to examine 
storage areas. If you use the DEBUG command after a program check (as described 
in 4 above), you can also inspect registers and the contents of the PSW. 

If you're testing a program that you know to have problems, you can ask for 
DEBUG using either of the first two methods above. You can then enter DEBUG 
subcommands before the program starts, to stop execution at specified instructions. 
When the program stops at the specified points, you can use DEBUG subcommands 
to examine storage areas. 

You'll find a general description of DEBUG in the eMS User's Guide, and detailed 
information on how to use it in the VMjSP System Programmer's Guide. 

PER is a CP command that lets you monitor what happens while you are running a 
program. You can monitor: 

• The execution of specific instructions 

• The execution of successful branch instructions 

Chapter 15. Debugging tools 181 



• The execution of all instructions that change the contents of specified registers 

• The execution of any instruction that changes a specified piece of virtual 
storage. 

You can find out more about PER, and see some examples of using it, in the CP 
Command Reference for General Users. 

CP debugging commands 

The CP DISPLAY command lets you check the contents of registers and individual 
storage locations. You can ask for EBCDIC translations of any display. 

Other CP debugging commands let you set an instruction address in your program 
at which it will stop (ADSTOP), and change the contents of registers or storage 
locations (STORE). 

You'll find examples of using these commands in the CMS User's Guide and in the 
CP Command Reference for General Users. 

Systems debugging tools 

The debugging tools that are available with CICS/CMS for systems people are: 

• CPjCMS trace facilities 

• CP jCMS dump facilities 

• CICSjCMS terminal trace 

• Field engineering trace 

• Remote server trace. 

CP jCMS trace facilities 

As we explained earlier, CICSjCMS trace is a good way of diagnosing errors in a 
transaction. Sometimes, however, CICSjCMS trace is not enough. You need to be 
able to check the activity of the program at a more detailed level. 

There are two forms of trace to help you do this: 

1. CP trace 

2. SVC trace. 

182 CICS/CMS User's Guide 



L 
CP trace 

svc trace 

The CP trace facilities trace the following: 

• Instructions 

• Branches 

• Interrupts (including program, external, I/O, and supervisor call (SVC) 
interrupts) 

• I/O and channel activity. 

Using options on the CP TRACE command, you can direct the trace output to a 
virtual printer (rather than to the screen), trace particular kinds of instruction, 
and trace without interrupting execution. Take care, however, when you use CP 
trace. It slows execution, and can produce a lot of output. It's best to use trace 
options to restrict the output to what interests you most. For example, you could 
trace branches only. 

You can use the TRACE command from the CP /CMS Command line of either panel 
EFH12 (to get trace for a complete CICS test session), or panel EFH122 (to get 
trace for part of a test session). 

You'll find guidelines for using CP trace in the CP Command Reference for General 
Users. 

The CMS SVCTRACE command provides detailed information about every supervisor 
call (SVC) executed, either by your program, or by CICS/CMS on behalf of your 
program. The information includes: 

• Register contents before and after the SVC 

• The name of the called routine and the location from where it was called 

• The contents of the parameter list passed to the SVC. 

You can use the SVCTRACE command from the CP /CMS Command line of either 
panel EFH12 (to get trace for a complete CICS test session), or panel EFH122 (to 
get trace for part of a test session). 

You'll find guidelines for using the SVCTRACE command in the eMS User's Guide. 

CP /CMS dump facilities 

Using a combination of CICS/CMS and CP/CMS facilities, you should be able to 
diagnose any problem interactively. As a last resort, you may want to dump all or 
part of your virtual memory. 

There are two ways of getting a dump: the CP DUMP command, and the DUMP 
subcommand of CMS DEBUG. Both enable you to dump all or part of your virtual 
storage. The CP DUMP command has the added facility of letting you ask for an 
EBCDIC translation of your hexadecimal dump. 

Chapter 15. Debugging tools 183 



You'll find descriptions of the CP DUMP command and the CMS DUMP subcommand 
of DEBUG in the CP Command Reference for General Users and the CMS Command 
and Macro Reference manual respectively. 

Note: You may also be able to use VMDUMP, as described in the VM/SP System 
Programmer's Guide. However, you can only do so if your VM system has the 
appropriate system extension installed. 

CICS/CMS terminal trace 

If there appears to be a problem in the way data is getting to and from a terminal 
or PC, you might find the CICS/CMS terminal trace feature useful. 

You turn it on by setting the TERMTRAC keyword to YES in EFHSETP or 
EFHPROF, as described in "Terminal control parameters" on page 244. This will 
give you trace information on the terminal data stream. 

The trace output is written to a CMS file, which you can define in EFHPROF or 
EFHSETP using the TCLOGFN, TCLOGFT, and TCLOGFM parameters. 

Figure 54 shows some typical terminal trace output. We produced it by running 
the sample application, and attempting to display two nonexistent records. 

******** CICS/CMS Terminal Control Log Started at 11:16:47 on 03/04/86 ********* 
CONS B 
CONS B E& 
CONS B 
CONS 

OACCOUNT FILE: MENU BT OTO SEARCH BY NAME, ENTER: C; OONLY SURNAM 

CONS '¢3 ¢ND ¢S79998 
CONS C ¢S ¢/ H K1NO RECORD OF THIS ACCOUNT NUMBER 
CONS B 
CONS 
CONS '¢3 ¢S79999 
CONS C ¢S ¢/ H K1NO RECORD OF THIS ACCOUNT NUMBER 

Figure 54. Sample output from terminal trace 

There are limitations on the usefulness of the terminal trace log in its "raw" form, 
as follows: 

• We've shown the sample output in EBCDIC, for simplicity. However, you can 
only see most of the data in a "raw" terminal trace log if you display it in 
hexadecimal mode. In XEDIT, you can display data in hexadecimal by issuing 
the HEXTYPE macro, or using the SET VERIFY ON HEX subcommand with 
suitable parameters to identify the columns you want to see in hexadecimal. 

• Records in the terminal trace log can be up to 1992 characters long. It's 
therefore impractical to try to print the log in its raw form. 

To help you get more out of the trace log, and, in particular, to enable you to print 
it, we've provided the EFHTLOGT EXEC, and the EFHTLOGX XEDIT macro, both 
of which translate the terminal trace log into a more useful form. 

184 CICSjCMS User's Guide 



L 
Using the EFHTLOGT EXEC 

The EFHTLOGT EXEC converts records from a terminal trace log and copies the 
converted records to a CMS file. It will give you EBCDIC translations of the 
hexadecimal records, and try to translate the terminal trace log data into BMS 
macros. 

You can execute EFHTLOGT from within a CICSjCMS session, on the CP /CMS 
command line of panels EFH12 and EFH122, or outside CICSjCMS as a CMS 
command. If you type just: 

EFHTLOGT 

EFHTLOGT will convert the whole of the file defined by the TCLOGFx parameters 
using the default options defined below. 

The complete form of the EFHTLOGT command is: 

EFHTLOGT fn ft fro ( options ! targets 

where: 

fn is the filename of the file to be processed. The default is CICSCMS. 

ft is the filetype of the file to be processed. The default is TERMLOG. 

fm is the filemode of the file to be processed. The default is *. 

Note: To use the full default fileid (CICSCMS TERMLOG *), simply invoke 
EFHTLOGT with no parameters before the bracket that separates the options. 

The options are as described below: 

Note: In the option descriptions, we've shown the minimum entry needed for each 
option in upper-case. 

Option 

Bms/NOBms 

File/Display 

Meaning 

If you specify BMS (or B), EFHTLOGT will try to translate the 
data into a set of BMS macro statements. This will be useful 
when you're trying to analyze a 3270 data stream involving 
BMS. 

If you omit the option, or specify NOBMS (or NOB), EFHTLOGT 
won't try to translate the data into BMS statements. 

Defines the destination of the EFHTLOGT output. If you omit 
the option, or specify File (or F), EFHTLOGT will write its 
output to a file, with the same filename and filemode as the 
input file, and with a filetype consisting of the filetype of the 
input file, prefixed with a $ (dollar sign). If, for example, you 
run EFHTLOGT using the default terminal trace log file, it will 
produce the output file, CICSCMS $TERMLOG AI. 

If you specify DISPLAY (or D), EFHTLOGT will write the 
output to your screen. 

Chapter 15. Debugging tools 185 



Innnn Gives the length of data that EFHTLOGT will process. The 
majority of records in terminal trace log output are up to 2000 
bytes long, so the default, 12048, will cope with the longest 
records. You'd only use this option, therefore, to limit the scope 
of EFHTLOGT. For example, you might specify 180, to process 
only those parts of the log file that you can see on a terminal 
screen. 

Split/NOSplit If you include the SPLIT option, EFHTLOGT will divide the 
results of the hexadecimal and character display so that 
character data will appear on a separate line from the 
hexadecimal (3270 controls) data. 

Onnn 

Lx 

Rx 

If you leave the option out, or specify NOSPLIT (or NOS), 
EFHTLOGT will put character and decimal data together in the 
output lines, separated by the characters defined by the Land R 
options (see below). 

Defines the length of data written to the output file. The 
default, 080, is most suitable when you use the DISPLAY option 
to write EFHTLOGT output to your screen. If you use the FILE 
option, you may want something different. For example, if you 
ask EFHTLOGT to write its output to a file that you intend to 
print, 0132 might be a suitable option. 

Defines the character that EFHTLOGT is to put on the left-hand 
side of hexadecimal data to separate it from the character data 
when you run with the NOSPLIT option. x can be any 
character except! (exclamation mark), and defaults to <. 

Defines the character that EFHTLOGT is to put on the 
right-hand side of hexadecimal data to separate it from the 
character data when you run with the NOSPLIT option. x can 
be any character except! (exclamation mark), and defaults to >. 

Note: The default options are set in a file called EFHTLOGX PROFILE. If you 
want to use defaults of your own choice, you must edit that file. 

The targets define the number of lines from the terminal trace log that you want 
EFHTLOGT to process, as described below. 

Note: You must separate the targets from the options with an exclamation 
mark (!). 

Target 

from 

186 CICS/CMS User's Guide 

Meaning 

identifies the first line to be processed. The default is the first line. 

The from value can be: 

• An absolute line number (:n). Conversion will start at the line 
number you give as n. 

• A relative line number ( + n). In this context, this is exactly the 
same as using :n. 

• A *, to process the file from the first line up to and including the 
line you specify in the to target. 



to identifies the number of lines, or the last line to be processed. 

The to value can be: 

• An absolute line number (:n). The line number you give will be the 
last converted. 

• A relative line number (+ n). Conversion will start at the line 
number you give for the from target, and continue through n lines. 

• A *, to process the file from the line you give in the from target 
through the rest of the file. 

If you use the to target, you must also use the from target. 

Processing terminal trace logs from within XEDIT 

You can use the EFHTLOGX XEDIT macro to interpret the CICSCMS terminal log 
file from within XEDIT. You type it on the XEDIT command line. 

The format of EFHTLOGX is: 

EFHTLOGX from to ( options 

where the target values (from and to), and the options are mostly the same as we 
described above for EFHTLOGT. However, EFHTLOGX uses the target values in a 
different way from EFHTLOGT. 

Once you've used the the XEDIT / line command to set the first line that you want 
to convert as the current line, you can use the following targets: 

• If you type EFHTLOGX with a single target value in the form : n, it will convert 
n records, starting with the current line. 

• If you type EFHTLOGX with a single target value in the form +n, it will convert 
all records from the current line up to and including the nth line. 

• If you type EFHTLOGX with no target values, it will convert the current line 
only. 

Note: When you use EFHTLOGX, it writes the output to your screen by default. If 
you want it to write to a file, you have to specify the FILE option. 

Field engineering trace 

The CSFE transaction provides trace information to help system programmers and 
IBM field engineers to diagnose both hardware and software problems. 

CICSjCMS runs with CSFE trace enabled, so that, any time that you want to 
produce information using its facilities, you can do so. There are three CSFE 
functions that apply to CICSjCMS, each requested through CSFE's DEBUG option: 

1. Storage freeze 

2. Storage violation 

Chapter 15. Debugging tools 187 



Storage freeze 

3. Global trap/trace exit. 

As a transaction runs, CICS/CMS allocates storage from various subpools. To 
make the best use of the storage available, it will reuse storage if it can. By 
requesting a storage freeze, you can stop CICS/CMS reusing storage. If your 
application abends, you'll then have a complete record, in the trace log, of all the 
storage the transaction used. You can then escape from the error handler abend 
panel, and use EFHUSTG from panel EFH122 to check the storage. All storage is 
freed at the end of the transaction, whether you've asked for storage freeze or not. 
You'll therefore always need to check the storage before returning to panel EFH12. 

Note: You request a storage freeze by using CSFE DEBUG with the STGFRZ=ON 
option. In CICS/VS, you can choose a particular transaction for which to freeze 
storage, using the TRANID option. CICS/CMS is a single-user, single-thread 
system, so this option is not relevant. However, CICS/CMS does not treat it as an 
error if you include it. As long as you specify a valid transaction ID, CICS/CMS 
simply ignores the option. 

Storage violation 

CICS/CMS chains together segments of unused storage in a free area queue 
element (FAQE) chain. By using CSFE DEBUG with the option, FAQE=ON, you can 
force CICS/CMS to scan the chains, and check the contents of storage accounting 
areas, every time that it enters the trace program. If it finds an error, it reports it. 

In CICS/VS, the storage violation trap produces a dump when it finds an error. In 
CICS/CMS, the error handler displays message EFH1587T. This gives you the 
chance to escape to panel EFH122, and check storage, before the CICS test session 
terminates. 

Global trap/trace exit 

The global trap/trace exit lets you activate a trap exit routine. In CICS/VS, you 
use CSFE DEBUG with the TRAP=ON option, which activates the module DFHTRAP. 

CICS/CMS introduces more flexibility, letting you set up a module of your own, as 
follows: 

1. Write a program to be your global trap/trace exit module. The CSECT or 
ENTRY name must match the module name. The CICS/VS Problem 
Determination Guide defines the form this program must take. 

2. Compile or assemble the program to produce a TEXT file. 

3. Specify the name of the TEXT file in the TRACTRAP parameter in EFHSETP 
or EFHPROF. 

4. Enable CICS/CMS trace. 

Note: You shouldn't try to use this exit except under the guidance of IBM support 
personnel. 

188 CICS/CMS User's Guide 



Where to fmd more information 

The CSFE transaction is fully described in the CICS/OS/VS CICS-Supplied 
Transactions manual. 

Remote server trace· 

You can trace the communication activity involved in using the remote server. 
This trace is intended mainly for IBM support personnel, and is unlikely to be very 
meaningful to someone who hasn't a comprehensive understanding of the material 
in the CICS/VS Remote Server Diagnosis manual. 

You ask for remote server trace output by setting CPIOTRAC to YES in EFHSETP 
or EFHPROF. CICS/CMS then writes the trace output to a special temporary 
storage queue, CPIOTRAC. There are two points to remember about this queue: 

1. Like all temporary storage queues in CICS/CMS, CPIOTRAC is erased at the 
end of each CICS test session. You must, therefore, always check it from the 
escape panel (EFH122), before ending the CICS test session by returning to 
panel EFH12. 

2. You can check the contents of CPIOTRAC using CEBR. However, much of the 
information in the trace is in hexadecimal, so you shoultl always press PF2 on 
the CEBR panel to switch to hexadecimal display. 

Chapter 15. Debugging tools 189 



J 



Chapter 16. How to diagnose common problems 

Loops 

Program execution problems are usually grouped into four general types: loops, 
waits, incorrect output, and abends. This section deals with each of these types in 
turn, giving some suggestions about how you can use the debugging aids we have 
been discussing to help you track down the cause of a particular problem. We also 
deal separately with program checks, though these are really just a type of abend. 

There are two kinds of loop: those involving calls to CMS and those that don't. In 
either case, once you suspect that your program is looping, you need to stop it. 

First, try pressing RESET, followed by PA2. If this displays panel EFH122, your 
application must have been waiting for you to enter something. From the escape 
panel (EFH122), you can try to find out what was happening. (For example, you 
could try turning on EDF, and continuing the test.) You can stop the test from 
panel EFH122, by pressing PF12 to return to panel EFH12. 

If PA2 doesn't display panel EFH122, try pressing RESET, followed by ENTER. 
One of two things will happen: 

1. VM READ will appear in the bottom right-hand corner of the screen. 

If you are running with TRAPEXT set to YES in EFHSETP (the default), you 
can get into the CMS subset, by entering: 

#CP EXTERNAL 33 

or by pressing PAl and entering: 

EXTERNAL 33 

EXTERNAL is a CP command that simulates an external interrupt to the virtual 
machine. The result of entering it in this situation, in this form, is to enter the 
CMS subset, from which you can use CMS debugging aids to get more 
information. You can then type RETURN, to return to CICS/CMS and stop the 
current CICS test session. 

2. Your keyboard will lock. 

In this case, your program is probably in a loop that doesn't contain any calls 
to CMS. You can't interrupt the virtual machine with the EXTERNAL command. 
Instead, you get into CP by pressing RESET, then press ENTER or PAL Once 
you're in CP, you'll see CP READ in the bottom right-hand corner of the screen. 
You can continue in one of two ways, as follows: 

Chapter 16. How to diagnose common problems 191 



Waits 

a. You can debug using CP commands such as DISPLAY PSW, DISPLAY G, 
and so on. When you've finished, you enter BEGIN. This returns you to the '1 
100 p. ltrrtt/I/I 

b. You can create an artificial program check, by entering the CP command: 

BEGIN 1 

CICS/CMS will handle the program check as described in "Program 
checks" on page 194. It will display an error handler panel, from which 
you can escape to panel EFHI22, and use CMS debugging functions and the 
CICS/CMS utilities EFHUMAP and EFHUSTG. When you've finished your 
investigations, you can return to the execution panel (EFHI2), by pressing 
PF12 on panel EFHI22. 

The first thing to do after you've stopped your looping application, and restarted 
CICS/CMS (if necessary), is to rerun the application with EDF turned on. 

You'll soon know if you have a loop containing EXEC CICS commands; you'll see 
several commands repeat themselves. Look in your source program for the last 
command in the loop, and you should find a statement that makes the program go 
back to the first command in the loop. You might find it helpful to change the 
source program(s), to include EXEC CICS RECEIVE commands near where you 
suspect the loop is starting. This will make the application stop at those points, 
letting you look at the values of suspect variables. You can easily remove the 
RECEIVE commands once you've identified the problem. 

If you have a loop containing no EXEC CICS commands, your program will 
"freeze" after a particular EXEC CICS command. You know that the loop must 
start after the last command that EDF displays, and end before your program 
reaches any other EXEC CICS command. This tells you where to start looking for 
the problem. If you can't find it simply by studying the source, you could try 
running the program again, and using CP/CMS instruction and branch traces to 
isolate the problem more exactly. 

You should not have any wait problems in CICS/CMS, since none of the typical 
causes of waits can arise. The EXEC CICS WAIT command is ignored by 
CICS/CMS, as are the ENQ and DEQ commands. Problems with lack of storage are 
dealt with immediately by CMS, and will stop CICS/CMS completely, rather than 
hold it up. The other main causes of waits in CICS/VS are connected with your 
task's interaction with other users' tasks. Because CICS/CMS is a single-user 
system, these cannot arise. 

J 

Incorrect output 

If your program is producing output that you don't expect, or that you know to be 
wrong, there are some things you can do to try to find out why. Under the next 
few headings you'll find some suggestions for things you can try. However, they 
are not intended to be a step-by-step process. Use whichever is most appropriate to 
the symptoms of your problem. 

192 CICS/CMS User's Guide 



Check any messages that appeared 

You should investigate all messages, including any that you don't believe are 
causing the problem. Check the error log, which will contain a record of all the 
messages that CICS/CMS issued while your program was running. 

All CICS/CMS messages are described in the CICS/CMS Messages and Codes 
manual. If you get a message that is not documented there, and that is not a VM 
message, you should talk to your systems people. This may indicate a problem in 
CICS/CMS itself, and they will want to investigate it. 

Check the instruction flow through your program 

First, use EDF to check that the logic path of EXEC CICS commands is what you 
expect. If your symptom was that the data written to a file was incorrect in some 
way, check the appropriate write commands. If you suspect the logic, but can find 
no problems with EDF, you will need to check the flow "below" the EXEC CICS 
level. The EFHUSTG command, used at appropriate points, might show problems 
in storage allocation. You could also use CP or CMS facilities, such as PER, to 
trap storage alterations. 

Check the data flow through your program 

If the symptom of your problem is bad or missing data, it could be that there's 
something wrong with the input data. Check all sources of input that your 
program uses. 

If the data coming into your program is what you expect, your program must be 
doing something wrong in manipulating that data. 

The problem could be happening when you read the data into the program. 
Compare each field of the record description in your program with the data in the 
file. 

If the data appears to be reaching the program correctly, you will need to check 
what happens to it as it goes through the program. If you run the program with 
EDF, it will stop at each EXEC CICS command. From the EDF panel, you can 
examine working storage, and check the value of suspect variables. You could also 
use the CICS/CMS escape feature. For example, from the escape panel (EFH122), 
you could use CECI to write the current value of a variable to temporary storage 
with an EXEC CICS WRITEQ TS command. You could then check the value with 
CEBR, before returning to your program. You should be able to get the addresses 
of variables you want to check. from your compiler listing. 

If the data appears to be valid throughout your program, the problem is likely to be 
in writing that data to the screen. The main source of all such problems is faulty 
definition, either of BMS or file structures. 

Look at a map or file structure in an appropriate listing file. Record the name, 
length and data type of suspect fields. Make sure that you have initialized all data 
structures to null values. (This is a common cause of problems.) 

Use EDF to check the contents of each field as your program writes it. Another 
common cause of problems is that you are accidentally using an old level of the 
map or file structure. Look at the FROM option in any relevant EXEC CIeS 
commands, and compare the value it contains with your map data structure. 

Chapter 16. How to diagnose common problems 193 



Abends 

As we explained earlier, CICS/CMS makes it as easy as possible for you to diagnose 
the causes of abends. The error handler distinguishes between each type of abend, 
and gives you a full screen display. This usually includes a description of the 
particular problem that CICS/CMS has found, together with suggestions about 
what the cause of the problem might be, and information about storage and register 
contents if they will be helpful in finding the problem. 

Once you've read and understood the message, possibly with the help of the 
CICS/CMS Messages and Codes manual, you may need to use EFHUMAP to find 
the address of the module or control block from which you want to start your 
investigations. 

If you aren't sure how the problem has arisen, try running the program again and 
using some of the debugging aids. 

You should certainly run the program with EDF, which will let you check the 
contents of working storage through your program. If you are familiar with trace 
output, you can turn trace on, and perhaps use EFHUSTG to put additional 
information into your trace log. You can escape at any stage and use CP/CMS 
aids, such as PER, to trap alterations in storage. 

Program checks 

Program checks are really a special type of abend, generated by CMS when it 
detects that your program has caused a machine interrupt. We need to consider 
them here because CICS/CMS has its own way of reporting them. 

Whenever you get a program check in CICS/VS, your program stops with an ASRA 
abend, and CICS/VS produces one or more storage dumps (transaction dumps, 
formatted dumps, snap dumps, or language dumps). Unless you know something 
about the internal structure of CICS/VS, it can be quite difficult to get the 
information you want from these dumps. 

CICS/CMS doesn't produce a dump in the event of a program check. All the CMS 
storage is available online, so you can look at it on your screen, using CMS 
facilities, as explained in Chapter 15, "Debugging tools" on page 171. If you need 
a printed copy of any of the storage, you can use the CP DUMP command. 

To help you get exactly the information you want after a program check, 
CICS/CMS provides a SPIE (specify program interruption exit) option. 

Debugging program checks with SPIE 

You can turn on the SPIE option by setting the SPIE parameter to YES in 
EFHSETP or EFHPROF, or by specifying Yes for Trap program checks in the 
parameter panel (EFH121). (The SPIE parameter is set to YES in the IBM-supplied 
EFHSETP.) 

With the SPIE option turned on, CICSjCMS does the following when a program 
check occurs: 

1. A SPIE routine constructs a message containing the following information: 

194 CICS/CMS User's Guide 



L a. The type of exception that has caused the program check (operation, 
execute, protection, and so on). 

b. The address and contents of the program status word (PSW) at the time of 
the check. 

c. The address and contents of register 14 at the time of the check. 

In the case of both the PSW and register 14, the address comes in one of two 
forms, depending on where the program check occurred, as follows: 

• If the program check was within an application program, the address is 
a single hexadecimal string giving the absolute address within the 
program. 

• If the program check was in CICS/CMS module code, the address is the 
absolute address, followed by the hexadecimal offset and name of the 
module involved. This information is important if you have to report a 
problem to IBM. 

d. The contents of the 16 general purpose registers at the time of the check. 

e. A storage address to help you diagnose the common error of branching to 
zero. This address is the instruction counter in the PSW if it is greater 
than X'5000'; otherwise, it is the address of register 14. 

f. 28 bytes of storage just before and just after the PSW or register 14 address. 

2. CICS/CMS then displays the message using the error handler, and writes its 
contents to the error log. 

3. CICS/CMS then issues the ASRA abend. It starts EDF, which displays its 
ASRA abend panel. 

4. CICS/CMS then returns to the execution panel (EFH12). 

How to use SPIE information 

The best way of using the SPIE information to find an application program problem 
is as follows: 

1. On the EFH125 panel, check the address of the PSW. If that address includes 
an offset and CICS/CMS module name, the program check is within CICS/CMS 
or a library. This may result from your program's last EXEC CICS command 
passing bad addresses. 

2. If the PSW address is in the form that indicates that the program check was 
within an application program, look in the LOAD MAP file to find the start 
address of your program. Subtract it from the abend (PSW) address. This gives 
you the offset of the statement that raised the program check. 

3. If necessary, recompile your program with an option that produces an object 
code listing for each statement. For example, you could use the PMAP option 
for a COBOL program, the MAP option for COBOL II, or the LIST option for 
PL/I. 

4. In the object listing, find the offset that matches the one you found in step 2. 
You've then isolated the "problem" statement. 

Chapter 16. How to diagnose common problems 195 



From both the error handler panel and the EDF panel, you can display the 
CICS/CMS escape panel, EFHI22. From there, you will find it useful to run 
EFHUMAP. This will tell you the location of all CICS/CMS modules in storage, 
and the addresses of control blocks such as the TCA and CSA. 

You could also use CMS and CP facilities to dump portions of storage, and to 
display registers. However, you must be aware that, by the time CICS/CMS has 
displayed both the error handler and abend panels, you have moved some way from 
the source of the original problem. PSW and register values displayed in this way 
are unlikely to be of much help in diagnosing the problem. 

Debugging program checks without SPIE 

If you get a program check, and you are not running with SPIE turned on, 
CICS/CMS itself will fail, and you will get a message from CMS. You can try 
entering the CMS DEBUG command immediately after the program check. In this 
case, the DEBUG subcommands might give you some useful information about the 
problem. Unfortunately, in this situation, you can only use the limited DEBUG 
facilities, and you can't use CMS commands or run utilities such as EFHUMAP. 

We therefore advise most strongly that, if a program fails with a program check, 
you always rerun it with SPIE active before you try to diagnose the problem. 

Debugging program checks with CP 

If you would prefer to use CP facilities to debug program checks, you can issue the .. '\ : 
CP command TRACE PROGRAM before starting the CICS test session. If a program ..." 
check occurs, you will then enter CP, and you can use facilities such as CP 
DISPLAY and DUMP to diagnose the problem. 

Program checks in the translator 

Program checks in the translator are handled in the same way as in CICS/OSjVS: 
you get a translator diagnostic and a return code of 16. 

Where to find more information 

If you're new to CICS programming, you'll probably want some information on the 
best approach to diagnosing and solving problems. The best place to start is the 
CICS/VS Application Programming Primer, which contains a general introduction 
to debugging, with examples using the sample application (the same application 
used in this guide). 

The main reference books you will need for debugging are: 

• The CICS/VS Application Programmer's Reference Manual (Command Level). 

This tells you about the error conditions that can result from all EXEC CICS 
commands, and describes the exec interface block (EIB). 

• The CICS/CMS Messages and Codes manual. 

196 CICS/CMS User's Guide 



This describes all the messages and abend codes that can come from CICS/CMS. 
Its main purpose is to give the extra information that systems people need when 
they are investigating problems that application programmers have not been 
able to solve themselves. 

Application programmers may find it useful for occasional reference, but should 
usually find enough information in the messages themselves to diagnose most 
application problems. 

You'll find a more detailed list of useful manuals for CICS/CMS in the bibliography 
at the front of this book. 

The thing to remember when you use any of the CICS/VS books, such as the 
CICS/VS Application Programming Primer and the CICS/VS Application 
Programmer's Reference Manual, is that some of the guidance they give is either 
irrelevant to CICS/CMS users, or needs to be interpreted for CICS/CMS to be 
useful. 

The main example of information irrelevant to CICS/CMS is anything concerned 
with the relationship between you and other users of the same CICS system. As a 
CICS/CMS user, you have your own CICS system, and you cannot be affected by, or 
affect, other users, unless the number of people using VM causes the real machine 
to become saturated. That is not a CICS/CMS problem anyway. 

You will have to modify the descriptions of techniques for getting debugging 
information. When the CICS/VS books describe ways of getting transaction dumps, 
storage contents, and so on, they are describing procedures that you, as a 
CICS/CMS user, don't need to use (and often can't use). 

As we explained earlier, apart from CICS/VS transactions, such as CEDF, your 
main debugging tools are CP and CMS facilities. Some of the information you will 
need for debugging, therefore, will not come from CICSjVS documentation at all, 
but from the VM/SP and VM/PC libraries. The CMS User's Guide is the best place 
to start. It gives a good introduction to the CP and CMS facilities available, and to 
the way they can be used together. You'll find more detailed information, and 
guidance on using the CP and CMS debugging tools, in the VM/SP System 
Programmer's Guide. 

There's a complete list of all useful documentation for CICS/CMS in the 
bibliography at the front of this book. 

Chapter 16. How to diagnose common problems 197 





Chapter 17. What if you find an error in CICSjCMS? 

If you think you have found an error in CICSjCMS, you first need to report it to 
the person at your installation who is responsible for reporting problems to IBM. 

They will then check that the problem really is in CICSjCMS, and, if so, report it 
to your IBM Support Center. They will need to complete an authorized program 
analysis report (APAR) and submit it to IBM, together with enough documentation 
to enable IBM to re-create the problem, confirm that it is a genuine problem with 
the product, and then, if necessary, provide a problem fix. 

This chapter tells you how to go about reporting errors in CICSjCMS. The first 
part applies to both the application programmers and the system person to whom 
they report the problem. It tells you how to make sure that you have a CICSjCMS 
problem rather than an application program problem. The second part is only for 
those responsible for reporting problems to IBM. It tells them what they need to 
include in the problem report to make it possible for IBM to diagnose and solve the 
problem. 

Remember 

IBM will only accept problem reports on problems found in CICSjCMS 
running under VMjSP. If you think you've found a CICSjCMS problem while 
using a PC, therefore, you must re-create the problem using CICSjCMS on 
your host VM system before reporting it to IBM. 

Making sure you've found a CICS/CMS problem 

Sometimes it's easy to spot a CICSjCMS problem, since CICSjCMS spots it for you, 
and uses the error handler to report it. If you ever get a CICSjCMS error panel 
containing the sentence: 

Please note this information 
and contact your support center. 

and you can find nothing wrong with an application program, you've probably got 
a CICSjCMS problem. 

CICSjCMS won't always be so helpful, however. Sometimes you will have to guess 
that you've found a CICSjCMS problem from the fact that something odd is 
happening (or maybe not happening), and you can't find a reasonable explanation 
for it in anything you're doing. 

The kind of odd occurrences you might look for are: 

Chapter 17. What if you find an error in CICS/CMS? 199 



• CICS/CMS reporting errors in your use of something you know you're not '~ 
using. For example, if you ran a transaction that consistently failed with an """ 
ABNC abend, indicating a problem with temporary storage, and you were sure 
that the transaction didn't use temporary storage, you could probably conclude 
that there was something wrong with CICS/CMS. 

• Messages that are not documented in the CICS/CMS Messages and Codes 
manual, and that are not CP or CMS messages. 

As we've seen, with very few exceptions, CICS/CMS displays its own messages, 
and also traps any CICS/VS messages or abend codes, and displays them using 
the error handler. If you ever see a CICS/VS message or abend code that is not 
described in the CICS/CMS Messages and Codes manual, you can be pretty 
certain that there is something wrong in CICS/CMS. 

What we need to know to help 

This section is for those responsible for reporting problems to IBM. It tells you 
what information IBM needs to diagnose and solve the problem. 

If the problem arose in the first place from running CICS/CMS on a PC, you first 
need to go through the process that led to the problem, using CICS/CMS on your 
host VM/SP system. 

To report a problem to IBM, via your IBM Support Center, you will need to provide 
the following: 

• The AP AR error description 

• Information needed to re-create the problem 

• A description of the circumstances leading to the problem 

The AP AR error description 

The AP AR error description provides an overview of the problem, and of the 
circumstances leading to it. It should include at least: 

• A brief description of the problem as it appears to you. 

• The general circumstances in which the problem occurs. For example, if you 
have a transaction that fails only when you run it with EDF, you should say so. 

• The contents of any messages displayed as part of the problem. Sometimes, the 
message itself will have told you to note some information and report it to IBM. 
In these cases, make sure you have all that information. 

• The name of the module in which the problem occurs. If CICS/CMS has 
displayed a message, or messages, as part of the problem's symptoms, you can 
find the module that issued the message from the CICS/CMS Messages and 
Codes manual. 

If you know the location in storage where the problem is occurring, you can 
use EFHUMAP to find the failing module. 

200 CICS/CMS User's Guide 

J 



• The version of CICS/VS running on your remote system (CICS/OS/VS Versions 
1.6.1 or 1.7; CICS/DOS/VS Version 1.6), if CICS/CMS was using any resources 
on that system. 

• The service level of the CICS/CMS system you are using. The output from 
EFHUMAP shows you the service level of each component of your CICS/CMS 
system. 

• A list of all the other information you are providing, and the form in which you 
are providing it. 

Information needed to re-create the problem 

Depending on the exact nature of the problem, this can include: 

• Source listings of all relevant programs. 

• Source listings of all relevant BMS map files. 

• Listings of the files containing any relevant CICS/CMS tables. For example, 
for a pseudoconversational program using remote VSAM files and remote 
temporary storage queues, you should provide your program, file, and 
temporary storage tables. 

• At least a description of the exact format and structure of all data files used, 
including any remote VSAM or DL/I files. If possible, it would be most helpful 
to have copies of the files themselves. When this is impossible, however, we 
need enough information to create files of exactly the same structure. 

• Printed copies of the CICS/CMS trace and terminal trace logs. Before printing 
the terminal trace log, you'll need to convert it using the EFHTLOGT EXEC, 
as explained in "Using the EFHTLOGT EXEC" on page 185. 

Describing the circumstances leading to the problem 

If the problem arose while you were executing a transaction, these are the 
questions you should ask yourself: 

• Does the transaction use any special local features, such as macro libraries, 
modified EXECs, and so on? 

If the transaction does use any local features, you will need to provide copies, 
listings or descriptions of them. 

• Did the problem arise while executing the transaction with EDF, without EDF, 
or in both circumstances? 

• Was the remote server transaction (CEHS) running when the problem arose? 
Was the user transaction actually using the remote server when the problem 
arose? 

• Which CICS/CMS parameters were set when the transaction ran. The 
parameters may have been set in EFHSETP EXEC, in the programmer's 
EFHPROF EXEC, or using either of the parameter panels, EFH121 or EFH1221. 

• Which version of which compiler did you use to create the TEXT file? 

Chapter 17. What if you find an error in CICSjCMS? 201 



If the problem arose in circumstances other than when you were executing a 
transaction, we need a description of those circumstances. Possibilities are: 

• While you were using one of the CICS-supplied transactions, CECI, CEDF, or 
CEBR, or the CICSjCMS file utility transaction, CCU2. 

If you were using CECI, did the problem arise from a particular command? 

If you were using CEBR, you should provide details of the queue you were 
using, its contents, and how you created it. 

• While you were using one of the CICSjCMS EXECs. 

Were you using an EXEC directly, by entering it as a command, or indirectly, 
via the panels? 

• While you were translating a program. 

What's next? 

This is the end of the book's main text. The rest of the book consists of 
appendixes, giving reference information on topics described in general terms 
in the main text, and some extra guidance that you may want to refer to from 
time to time. 

202 CICS/CMS User's Guide 

J 



Appendix A. System administration: installation, 
customization and service 

Take note 

As its title suggests, this appendix is for system administrators. 

We assume that those reading it are fully experienced in using VM, 
particularly in installing VM. It also assumes some experience in CICS/VS 
system programming. 

If you need to learn more about VM, it's best to start with the eMS Primer to 
get acquainted with using a VM/SP system. You'll find a list of suggested 
VM/SP books in "VM/SP manuals" on page vi. 

Before application programmers can use CreS/CMS (either from a CMS session at 
a terminal or from a PC), someone has to install the product onto the host VM 
system from the tapes on which IBM distributes it. 

Before making CICS/CMS available to the application programmers, there are some 
steps that can be taken to customize CICS/CMS to an installation's particular 
requirements. This customization can include changing the IBM-supplied EXECs 
that drive CreS/CMS, adding macro libraries, and so on. 

From time to time, IBM supplies fixes; that is, new versions of CICS/CMS modules 
or EXECs containing corrections or improvements to the original product. 
Someone has to apply these changes to the host copy of CICS/CMS. 

These activities (installation, customization, and service) are usually the 
responsibility of a system programmer (or possibly senior operator), who is the 
administrator of the CreS/CMS system for the installation. This appendix is 
therefore addressed to those system administrators. 

Once CICS/CMS is installed on the VM host system, application programmers who 
use the product from a terminal connected to the host system can start using it. 
They just link to the CMS disk on which it resides. Those who want to use 
CICS/CMS locally on a PC, however, have to download CICS/CMS from the host 
system onto their PC before they can use it. Since this is the job of the application 
programmer, not the system administrator, it is not described here, but in "Copying 
CICS/CMS to a PC" on page 42. 

However, if all or some of your application programmers are going to use PCs, you 
will want to ensure, as part of your installation process, that they will be able to 
copy the host CICS/CMS system to their PC fixed disks. Furthermore, when you 
come to apply service to the host CICS/CMS system, you may want to use a PC 
yourself to help your PC users copy the changed components of CICS/CMS down to 
their PC copies. 

Appendix A. System administration: installation, cllstomization and service 203 



For these reasons, we strongly recommend that, if anyone in your installation is 
!$oing to use CICS/CMS on a PC, you have access to a PC for system 
administr,ation use only. 

Installing CICS/CMS on a VM system 

Installing CICS/CMS on the host is straightforward. You use the VM/SP product 
installation tool, INSTFPP EXEC. This reduces installation to a simple, 
conversational procedure for copying the product from the distribution tape to a 
CMS disk on the host system. 

The contents of the distribution tape 

The tape on which CICS/CMS is distributed contains five logical files. The 
contents of each are described in the paragraphs that follow. 

Logical Tape File 1 contains two CMS files, as follows: 

1. 15668795 011005 

This file contains the product name, and its release and service levels. 

2. 15668795 EXEC 

This file is an EXEC (written in REXX), that is used by the installation tool, 
INSTFPP EXEC, to load the rest of the files from the distribution tape. You 
can find out more about this file in the VM/SP Installation Guide. 

When you execute this EXEC, it transfers the other logical files from the tape 
to a CMS disk. 

Logical Tape File 2 contains a single CMS file, 15668795 MEMO. This is the 
Memo to Users, which is printed automatically by INSTFPP. This memo contains 
information on: 

• Prerequisites you need to run CICS/CMS. 

• Where and how the installation EXEC loads CICS/CMS. 

• Step-by-step instructions for checking that CICS/CMS has installed correctly. 
We describe this procedure in "Checking for correct installation" on page 206. 

• A list of the errors that might occur during the installation. This includes all 
errors except those that relate only to the INSTFPP EXEC. For each possible 
error you will see the return code and the message produced, together with 
advice on what to do if either the installation or the verification don't work. 

• How service is supplied and applied. 

Logical Tape File 3 contains: 

• TEXT files for the elements that make up the CICS nucleus, the CICS 
translators, and the CICS command-level interpreter. These are used only 
when the system needs servicing. 

204 CICS/CMS User's Guide 



• TEXT files containing sample applications and CICS/CMS utility programs. 

All CICS/CMS TEXT files are CMS mode 5. 

Logical Tape File 4 contains a dummy file. 

Logical Tape File 5 contains the product files. These include: 

1. EXECs, all written in REXX, for executing the many elements of CICS/CMS, 
and the XEDIT files associated with those EXECs. 

2. Relocatable modules that make up the run-time CICS/CMS system. These are 
individual modules for the PC, but are collected into a LOADLIB file for 
VM/SP. In fact, you could do without these files, since you can re-create them 
at any time from their TEXT equivalents, using the CICS/CMS EFH15 panel. 
We have included them to make it easier for you to install CICS/CMS the first 
time. 

3. Non-relocatable load modules for the CICS command translator. 

4. The source of the sample application. 

All CICS/CMS files other than TEXT files are CMS mode 2 files. 

You'll find a complete list of the product files in the GIGS/GMS Program Directory 
that IBM supplies with your CICS/CMS tape. 

Installing CICS/CMS 

You install CICS/CMS in the same way that you install any other CMS product. 
Your basic reference for the installation is, therefore, the VM/SP Installation 
Guide. 

To install CICS/CMS on your host VM system, you run the INSTFPP EXEC. You 
must have this EXEC set up on the 191 CMS disk of the userid MAINT, and you 
must run it on that userid. 

Before you execute INSTFPP, make sure: 

• That you have read the GIGS/GMS Program Directory. It contains the latest 
information about CICS/CMS. 

• That you have mounted the IBM-supplied tape containing CICS/CMS on the 
correct tape drive. You must have it on one of the virtual addresses 181 to 184, 
allocated to the userid MAINT. 

• That you have set aside enough virtual storage for the installation. You'll need 
at least 12 megabytes. 

When you execute INSTFPP, it goes through the following eight steps to copy all 
the elements of CICS/CMS from the distribution tape to a CMS disk of your choice: 

1. It asks for the address of the tape drive on which you have mounted the 
installation tape. You must give it the real, not the virtual, address. 

2. It creates a temporary CMS C-disk. 

Appendix A. System administration: installation, customization and service 205 



3. It loads the first two tape files onto this disk. 

4. It prompts you to load CICS/CMS. 

5. It prints the Memo to Users. 

Make sure that you read the memo carefully before continuing with the 
installation. If there are any special instructions that could not be included in 
this guide, they will be in the memo. 

6. It executes the 15668795 EXEC. This EXEC asks you where you want 
CICS/CMS to be copied (that is, it asks for the filemode (letter) of the CMS disk 
you have chosen). Having established what you want, it loads CICS/CMS from 
the tape to your chosen CMS disk. 

7. It copies the Memo to Users from the temporary disk to the MAINT 319 disk. 

8. It checks the return codes, and writes the results of each stage of the 
installation to the file PROD LEVEL on the CICS/CMS system disk. This file 
records the results of every program product installation (successful or not). 

If anything goes wrong at any stage of the installation, don't try to restart the 
installation from the point at which it failed. You'll get a clear report of the 
problem. Correct it, and start the installation again from step 1. 

Checking for correct installation 

Once you've installed CICS/CMS on your chosen CMS disk, you need to check that 
it is working properly. You can do this by starting CICS/CMS, and trying the list \ 
of EXEC CICS commands given below, using CECI. Unless we specify otherwise in .."" 
the description, all commands should return a response of NORMAL. 

Notes: 

1. In the descriptions below, we assume a working knowledge of using CECI. If 
you're not sure of what to do at any point, look in the CICS/VS Application 
Programmer's Reference Manual for guidance. 

2. You must enter some of the commands or command options described below in 
uppercase. To avoid confusion, we recommend that you enter them all in 
uppercase, as shown. If you don't want to hold the shift key down for every 
command, you can get CICS/CMS to translate all your entries into uppercase 
by setting the UCTRAN parameter to YES, using PF7 on panel EFH12, and 
entering UCTRAN YES in the Additional Parameter line of panel EFH121. 
This is explained in more detail in "Changing your CICS/CMS environment 
within a session" on page 119. 

The installation verification process is as follows: 

1. IPL CMS, and type CICSCMS. 

2. On the first CICS/CMS panel, EFHl, select option 2 to display panel EFH12. 

3. On panel EFH12, press PF4 to run the command-level interpreter transaction 
(CECI). Once you have CECI running, you can test selected parts of 
CICS/CMS by executing EXEC CICS commands as follows: 

206 crCS/CMS User's Guide 



a. Test the CICS/CMS system. Execute: 

ASKTIME ABSTIME 

If you press PF4 to see the exec interface block (EIB), you should see the 
current time and data in the EIBTIME and EIBDATE fields. 

b. Test terminal control. Execute: 

SEND FROM(&DFHC) ERASE 

Execute: 

RECEIVE INTO 

The Into and LENgth fields in the command display should contain THIS 
IS A SAMPLE and 00016 respectively. 

c. Test basic mapping support (BMS). Execute: 

SEND TEXT FROM(&DFHC) FREEKB ERASE 

to display the contents of the CECI variable &DFHC, using BMS. The 
command should display a screen containing THIS IS A SAMPLE. 

d. Test file control. 

Browse the sample application file ACCTFIL. Before you can do so, you'll 
need to set up a new CECI variable, &A, using PF5. If you're not sure how 
to set up CECI variables, look in the CICSj VS Application Programmer's 
Reference Manual. 

Give &A a length of 5, and a value of 11111 (the key of the single record in 
the sample application file). Then execute the following series of browse 
commands: 

1) STARTBR DATASET (ACCTFIL) RIDFLD(&A) 

to start the browse. 

2) READNEXT DATASET (ACCTFIL) RIDFLD(&A) 

to read the first record in ACCTFIL. In the Into field you should see 
the contents of that record (the name "LOCKS GOLDIE" is probably its 
most notable element). 

3) READNEXT DATASET (ACCTFIL) RIDFLD(&A) 

to try to read the next record in ACCTFIL. ACCTFIL only contains a 
single record, so this command should give a response of ENDFILE. 

4) READPREV DATASET(ACCTFIL) RIDFLD(&A) 

to read the previous record in ACCTFIL. The Into field should again 
contain the "LOCKS GOLDIE" record. 

5) ENDBR DATASET(ACCTFIL) 

to end the browse. 

Appendix A. System administration: installation, cllstomization and service 207 



e. Test temporary storage. 

First, press PF5 to check the contents of the standard CECI variables: 
&DFHC, &DFHW, and &DFHR. Press ENTER, then execute the 
commands: 

WRITEQ TS Q(CECI) FROM(&DFHC) 
WRITEQ TS Q(CECI) FROM(&DFHW) 
WRITEQ TS Q(CECI) FROM(&DFHR) 

to write the contents of the CECI variables to the temporary storage queue, 
CECL 

Execute: 

READQ TS Q(CECI) ITEM(2) 

to read the second entry in the temporary storage queue CECL The INto 
field in the command display should contain the value of CECI variable 
&DFHW. 

Use the CICS/CMS escape feature to check the contents of the queue CECL 
Press PA2, and CICS/CMS should display panel EFH122. On that panel, 
press PF2 to run the temporary storage browse transaction, CEBR. On the 
ENTER COMMAND line in the CEBR panel, enter Q CECI, and press ENTER. 
The queue CECI should contain the values of &DFHC, &DFHW, and 
&DFHR, in that order. 

When you've finished browsing temporary storage, press PF3 once to end 
CEBR, again to return to the EFH122 panel, and again to return to CECL 
You should return to the panel from which you escaped. 

Execute: 

DELETEQ TS Q(CECI) 

to delete the temporary storage queue. Then escape to panel EFH122, as 
described above, to check that it has been deleted using CEBR, and return 
to CECL 

f. Test transient data. 

Execute the commands: 

WRITEQ TD Q(CECI) FROM(&DFHC) 
WRITEQ TD Q(CECI) FROM(&DFHW) 

to write the values of two of the CECI variables to the transient data queue 
CECI. Execute: 

READQ TD Q(CECI) 

to read the first record in CECL You should see the value of &DFHC in 
the INto field in the command display. 

Execute: 

DELETEQ TD Q(CECI) 

to delete the transient data queue. 

208 CICSjCMS User's Guide 



When you've finished the installation test, press PA2, to get to the escape panel 
(EFH122), then press PF12. This terminates the CICS test session, and returns you 
to panel EFHI2. 

That completes the installation test using CECI, but there are other things you 
might like to try. 

If you have a COBOL compiler available, you could run through the "getting to 
know" process in Chapter 2 of this book. 

If you're going to make CICSjCMS available to programmers using PCs, you need 
to make sure that they can copy the host CICSjCMS system down to their PCs. 
Using your own PC, follow the PC installation procedure described in "Copying 
CICSjCMS to a PC" on page 42. 

Clearly, these installation checks will not use every feature of CICSjCMS. 
However, they will exercise its most important features, and should assure you that 
the product is up and running. 

Getting the remote server ready to use 

If your application programmers are going to use resources on your test CICSjVS 
system, you will need to make sure that they can use the remote server. This is a 
two-stage operation: 

1. On the CICSjVS system that contains the remote server, make the necessary 
table entries. 

2. On your VM system, set up the connection between CICSjCMS and the 
CICSjVS system. 

Preparing CICS/VS for remote server use 

The remote server is a standard part of CICSjOSjVS Version 1.7. If you're using 
CICSjOSjVS Version 1.6.1, or CICSjDOSjVS Version 1.6, you have to apply the 
appropriate PTF to put the remote server on your system. 

In all cases, you have to define the remote server transaction, CEHS, to your 
CICSjVS system, as follows: 

• Using macros, you need to put an entry in the program control table (PCT) of 
the form: 

DFHPCT TYPE=ENTRY 
TRANSID=CEHS 
PROGRAM=DFHCHS 

and an entry in the processing program table (PPT) of the form: 

DFHPPT TYPE=ENTRY 
PROGRAM=DFHCHS 

• Using resource definition online (RDO), you need two definitions, of the 
general form: 

Appendix A. System administration: installation, cllstomization and service 209 



TRANSACTION(CEHS) GROUP(cicscms) PROGRAM (DFHCHS) 
PROGRAM(DFHCHS) GROUP(cicscms) LANGUAGE (ASSEMBLER) 

where cicscms is just a suggested group name. You can use what you like. 
Whatever you use, you must include this group in your GRPLIST list for 
system initialization, so that it's always installed when CICS/VS is active. If 
you don't want the remote server available all the time, you can install the 
group using CEDA INSTALL. 

If you want to restrict use of the remote server, you can use appropriate 
TRANSEC or RSL options in the resource definitions above to override the 
default values of 1 (TRANSEC) and 0 (RSL). 

For more information, see the CICS/VS Resource Definition (Online) manual. 

The remote server also needs the intersystem communication transformer module, 
DFHXFP. If your system initialization table (SIT) is not already set up to activate 
it, you will need to add one of the following entries to the SIT: 

XFP=YES For CICS/OS/VS 1.7 or CICS/DOS/VS 

XFP = 1$ For earlier releases of CICS/OS/VS. 

On your CICS/VS system you will also need a 3270 entry in your terminal control 
table (TCT) for each possible CICS/CMS connection. This entry will be the same 
for all types of link between CICS/CMS and CICS/VS. The VTAM list on the 
CICS/VS system must associate the network name (NETNAME in the TCT entry) 
with a particular device address (for example, OCl). If the CICS/VS system is 
running as a guest of a VM system, users of the remote server may need to know .'\ 
the device address. It's the address they specify on the DIAL command when they ...",# 
make the connection to the CICS/VS system. 

Setting up the connection between CICSjCMS and CICSjVS 

The CICS/VS system can be running either as a guest of the same VM system as 
CICS/CMS, or on a system remote to the VM system, via PVM. 

Remote server-local connection 

If the CICS/VS system is a guest running under the VM system on which you have 
installed CICS/CMS, you need only define sufficient ports in the VM directory of 
the guest CICS/VS system and configure it appropriately. You will then have to 
tell your CICS/CMS users how to DIAL to the CICS/VS guest. 

Remote server-remote connection 

If your CICS/VS system is running on a different machine from the one on which 
you are running CICS/CMS, you will have to use pass-through VM (PVM) to access 
the CICS/VS system. 

This section gives some general advice on using PVM, but for detailed guidance, 
you will need the VM/SP Pass-Through Virtual Machine Guide and Reference 
Manual, GC24-5206. 

PVM allows CICS/CMS to use its remote server on a remote machine as if it is 
running on a local machine. CICS/CMS users access the remote CICS/VS system 

210 CICS/CMS User's Guide 



by first dialling the PVM machine from the VM session that they can start using 
PF8 on panels EFH12 and EFH122. 

There is a restriction in CP that can affect your use of PVM. The connection from 
CICSjCMS to its remote server is through a virtual or logical terminal operated by 
CICSjCMS, not from a real terminal operated by a real keyboard. CP does not 
allow users to dial PVM if PVM is already operating a logical terminal on behalf of 
another user. If a PVM machine connects two VM systems, it's a two-way process. 
Your CICSjCMS users will be able to use it to get to the remote VM system where 
CICS/VS is running as a guest; users of the remote VM system will be able to use it 
to get to the VM system where CICSjCMS is running. Because of the CP 
restriction, if a user on the remote VMjSP system has dialled the PVM machine, 
the CICSjCMS users will be "locked out". If they try to dial the PVM machine, 
they will get one of the CP messages: 

DMKLOH206E CANNOT CONNECT TO HOST VIRTUAL MACHINE 

or: 

DMKDIA206E CANNOT CONNECT TO HOST VIRTUAL MACHINE 

They will not be able to use PVM from CICSjCMS until all the remote users 
terminate their VM sessions on the VM system running CICSjCMS. 

To avoid this CP restriction, we recommend that you set up two user IDs on the 
PVM machine. You reserve one of these (for example PVMl) for the exclusive use 
of those on the VM system running CICSjCMS. You reserve the other (for 
example, PVM2) for users of the remote VM system. You stop anyone using the 
CICSjCMS users' PVM user ID by installing an exit that prevents incoming calls. 
The exit is called DVMUEl, and you'll find a complete description of it in the 
VMjSP Pass-Through Virtual Machine Guide and Reference Manual, GC24-5206. 

Having set up two PVM user IDs as described above, you have a system in which 
CICS(CMS users can dial a PVM machine which cannot itself create logical 
devices. The users pass through the normal PVM machine to the system with 
which they need to communicate. External users can still call the VM system from 
remote systems as they could before you installed CICSjCMS. 

Customizing CICS/CMS 

Once you have installed CICSjCMS, and ensured that it is complete and ready to be 
used, you can change it to suit your installation's particular requirements, before 
making it available to your application programmers. 

This section gives some information on the parts of CICSjCMS you are most likely 
to want to customize. 

Whatever changes you make, you should be careful of the following: 

• If you change, or remove, any of the files associated with the sample GIGSj VS 
Application Programming Primer application, your programmers may be unable 
to use it with this guide as an aid to learning about CICSjCMS. 

• Make sure that you keep a master copy of the CICSjCMS system that IBM 
supplies, and a record of all the changes you've made. You'll need this when 
you get service changes from IBM to restore your changes to the changed 

Appendix A. System administration: installation, customization and service 211 



system. You'll also need to use the master copy of CICS/CMS to ensure that 
any apparent problems in CICS/CMS aren't the result of your customization. 

Changing the EFHSETP EXEC 

One part of CICS/CMS that you may want to change to suit your local 
requirements is the EFHSETP EXEC. 

EFHSETP contains several parameters, each of which defines some aspect of the 
CreS/CMS working environment. Every time an application programmer starts 
CICS/CMS, EFHSETP runs, setting up the environment for that session. 
Application programmers can change their environment using the EFHPROF 
EXEC, to create something tailored to their own requirements. However, you will 
most likely want to try to create something using EFHSETP that will suit most of 
your installation's application programming activity. 

The 'environment definitions (parameters) in the EFHSETP EXEC are the same as 
those in the EFHPROF EXEC that your application programmers use to set up 
their own development environment. For a complete description of the available 
parameters, see Appendix D, "CICS/CMS parameters" on page 241. 

By and large, it's probably best to use the defaults that IBM supplies wherever 
possible, and leave your application programmers to use their EFHPROF EXECs to 
tailor CICS/CMS to their individual requirements. However, there are a few 
parameters that you might want to change for all your programmers, as follows: 

• The UCTRAN parameter. 

This specifies whether user input is to be translated into uppercase. By default, J 
it is set to NO. However, if your programmers use COBOL, and will therefore 
use Chapter 2 of this guide to get to know CreS/CMS, they will all use the 
sample application. This expects user entries to be in uppercase, and will reject 
them if they are not. 

It will help your programmers, therefore, if you change EFHSETP to set 
UCTRAN equal to YES. 

• The CICSDSA parameter. 

The default that IBM supplies for the dynamic storage area (DSA) size is 
256000. You can make this more or less, depending on your requirements. The 
description of CreSDSA in "General parameters" on page 242 gives some 
general guidelines on recommended CICSDSA sizes. 

• The LANGUAGE parameter. 

You'll want to change the default language parameter, LANGUAGE, if your 
usual language for application programs is not COBOL. 

You may also want to change the parameters that define the default preload 
libraries for PL/I and COBOL II. For the reasons why you might change these, 
and the changes you can make, see "PL/I information for CICS/CMS" on 
page 86, and "COBOL II information for CICS/CMS" on page 88. 

212 CICS/CMS User's Guide 



L Changing CICS/CMS EXECs 

There are several reasons why you might want to change the IBM-supplied EXECs, 
and/or their associated XEDIT files. The sections following describe the most 
common reasons, telling you which EXECs or XEDIT files to change, and how to 
change them. 

Using the H Assembler under VM/SP 

By default, CICS/CMS running under VM/SP uses the F Assembler. If you want 
your VM/SP users to use the H Assembler, you will have to change all the EXECs 
that refer to it. 

The EXECs affected are EFHMAPCR and EFHTC. Both call a program called 
EFHUQVM to check whether the programmer is using a PC or a host-connected 
terminal. If the return code from EFHUQVM is 1, they assume that the 
programmer is using a PC, and set the assembler to HASM (the H Assembler). If 
the return code is 0, they assume that the programmer is using VM/SP and set the 
assembler to ASSEMBLE (the F Assembler). 

To ensure that all your programmers use the H Assembler, find the call to 
EFHUQVM in EFHMAPCR and EFHTC, and put a statement immediately after it 
that sets the return code to 1. 

Changing the CICS/CMS-supplied macro libraries 

CICS/CMS uses three sets of macro libraries, as described in "CICS/CMS macro 
libraries" on page 99. The EFHTC EXEC contains GLOBAL and FILEDEF 
commands that define those libraries and their search order, before it starts to 
compile a program. If you want to add libraries of your own, or change the names 
of the CICS/CMS macro libraries, you change the relevant commands in EFHTC. 

If you change the name of the EFHxUSER macro library, you'll also have to 
change the EFHMAPCR EXEC. EFHMAPCR writes user DSECTs to EFHxUSER, 
so, if you change the name of the user macro library, you will also have to change 
the statements in EFHMAPCR that refer to it. 

Changing the default compiler options 

When it invokes the high-level language compilers, the EFHTC EXEC uses a 
default set of options. The IBM-supplied defaults for these options are described in 
the following sections of this book: 

PL/I 

COBOL 

"Default PL/I compiler options" on page 86 

"Default COBOL compiler options" on page 86 

COBOL II "Default COBOL II compiler options" on page 88 

These defaults will override any options you specified when you generated your 
compilers. 

If you want your programmers to use different defaults, you must change the 
relevant compiler call in EFHTC. 

Appendix A. System administration: installation, customization and service 213 



Changing the default language from COBOL 

When application programmers run the EFHTC EXEC as a command, without 
specifying the filetype of the CMS file containing the program, EFHTC assumes 
that the program is written in COBOL. If your main compiler isn't COBOL, you 
can change EFHTC to invoke your chosen compiler by default. 

Changing the PF key definitions 

You can change the PF key definitions in XEDIT files to conform to your 
installation standards. For example, if you use a CMS editor other than XEDIT, 
you'll need to change the function definition for PF6 in the files EFHllPRO XEDIT 
and EFH13PRO XEDIT, both of filetype XEDIT. 

Ensuring application programmers have enough virtual storage 

You can help your application programmers to get the most out of CICS/CMS by 
taking steps to ensure that they have enough virtual storage. The things you can 
do are: 

• Set up the programmers' VM userids with at least 2 megabytes of virtual 
machine storage. CICS/CMS will run in 1.5 megabyte machines, but 
programmers will quickly run short of virtual storage if they take advantage of 
all the facilities available. 

• Ensure that your programmers only link to the virtual disks that they need 
when using CICS/CMS. 

• If all your programmers use CECI, you can avoid storage fragmentation by 
making sure that CECI is loaded immediately after the other CICS/CMS 
modules. You do this by adding the following commands to your EFHSETP 
EXEC: 

FILEDEF EFHLIB DISK EFHLIB LOADLIB DISK 
GLOBAL LOADLIB EFHLIB 
'NUCXLOAD DFHECID DFHECID EFHLIB ( SYSTEM' 

If the CECI module (DFHECID) is already loaded, CICS/CMS will ignore the 
NUCXLOAD, and give a return code of 1. 

Note: CICS/CMS does not support VM shared segmented storage. You can't 
therefore use this method of reducing individual programmers' virtual storage 
requirements. 

Applying service to CICS/CMS 

As they use a product, people find errors, or think of improvements, and report 
these to IBM. If we get to know about problems that are seriously affecting our 
users' ability to use a product properly, or if we want to introduce new features 
that will help them get the most out of a product, we provide service updates to 
that product. 

IBM supplies two types of service: preventative and corrective. The sections 
following tell you how to apply both types of service to your master CICS/CMS 
system on VM/SP. You don't apply service directly to programmers' CICS/CMS 

214 CICSjCMS User's Guide 



systems on PCs. You copy the changed parts of CICS/CMS from the master system 
to the PC systems. 

Preventative service 

Preventative service comes as part of the normal service procedure for VM. IBM 
supplies a VM Program Update Tape (PUT). You then apply this tape to your 
system using the VMSERV EXEC, as described in the VM/ SP Planning and System 
Generation Guide (SC19-620l). To ensure that any service on the VM PUT for 
CICS/CMS is applied, you will need to add a record for CICS/CMS to your VMPUT 
PRODUCTS file. The form of the record is: 

5668795 xxx NORESP 

where xxx is the virtual address of your CICS/CMS installation disk. NORESP is 
optional. Usually, when something goes wrong with part of the service process, 
you get a prompt, asking you what you want to do about it. If you want to run the 
VMSERV EXEC as a batch job, you'll need to suppress these prompts, which you 
do by including NORESP. 

Corrective service 

To correct a problem in CICS/CMS, IBM will send you a tape, containing a fix, 
which you will then have to apply to your master version of CICS/CMS. 

The form of the fix will usually be one or more CMS files, which you can use to 
replace the existing versions of those files on your master copy of CICS/CMS. 

Applying corrective service to CICS/CMS on your VM system is usually a 
three-stage operation: 

1. Copy the files to a CMS disk, as described in "Copying service files to your VM 
system"; 

2. Rebuild your CICS/CMS system, incorporating the replacement files, as 
explained in "Rebuilding your CICS/CMS system" on page 216. 

3. Make the new system available to your application programmers, as explained 
in "Incorporating service changes into your master CICS/CMS system" on 
page 220. 

Figure 57 on page 222 shows diagrammatically a typical application of corrective 
service, including the steps you need to take to ensure that all your application 
programmers gain access to the changed system, whether they are using CICS/CMS 
from VM/SP or VM/PC. 

The rest of this chapter describes each stage in that process in detail. 

Copying service files to your VM system 

The first step in applying corrective service to your CICS/CMS system is to copy 
the service files to a CMS disk. You must use a different disk from the one on 
which you have the CICS/CMS system, and you must make sure that its file mode is 
earlier in the CMS search order than the CICS/CMS system disk. For example, if 
your CICS/CMS system disk is the T-disk, you could have the replacement files on 
the R-disk. 

Appendix A. System administration: installation, customization and service 215 



You then link both disks from the userid you use for your system administration, 
and access them. 

Whether you then need to go on to the second stage, rebuilding your CICS/CMS 
system, depends on what kind of fixes you have, as follows: 

• If there are any files with a file type of TEXT among the fix files, you will have 
to rebuild CICS/CMS. TEXT files contain replacement CICS/CMS system 
modules, and you can only incorporate these by building them into your master 
copy, as described in "Rebuilding your CICS/CMS system" below. 

• If the replacement files do not contain any of filetype TEXT, you can just put 
them on a disk earlier in the CMS search order than your existing CICS/CMS 
system. 

If any of the replacement files are macros or copybooks you have to use the 
CMS MACLIB command, with the REPLACE option, to replace the existing 
versions in one of the macro libraries that CICS/CMS provides. "CICS/CMS 
macro libraries" On page 99 tells you how to do this. You can then put the new 
version of the macro library on the same disk as the rest of the service files. 
You can identify replacement macros or copybooks by their filetype, which will 
be either MACRO or COPY. 

Having put all your replacement files on an appropriate CMS disk, you can 
make the new system available to your application programmers, as described 
in "Incorporating service changes into your master CICS/CMS system" on 
page 220. 

Rebuilding your CICS/CMS system 

So that you can rebuild your CICS/CMS system quickly and easily, CICS/CMS 
includes an EXEC that does the rebuilding for you. It builds new load modules 
from the replacement TEXT files, and gives you the opportunity to save time by 
rebuilding only those parts of CICS/CMS affected by the changes. 

Start CICS/CMS, and ask for option 7 on the selection panel (EFHl). This 
produces the panel shown in Figure 55. 

216 CICS/CMS User's Guide 



EFH15 APPLY SERVICE 

Select one of the following: 

PFl;Help 

1 Build Relocatable CICS/CMS LOAD Modules 
2 Build CICS/CMS COBOL/COBOL2 Translator EFHCTRAN 
3 Build CICS/CMS Assembler Translator EFHATRAN 
4 Build CICS/CMS PL/I Translator EFHPTRAN 
5 Build CICS/CMS Utility Modules for Transient Area 
6 Build CICS/CMS Other Utilities 
7 Build CICS/CMS Run-time TXTLIB 
8 All of the above 

Selection ;;;) 

Input Filemode ;;;) * Default - * 

Output Filemode ;;;) A Default - A 

LOADLIB name ;;;) EFHPRIV Default - EFHPRIV (Option 8 only) 

PF3;End PA2;CMS Subset 

Figure 55. The CICS/CMS service panel (EFH15) 

The service EXEC divides CICSjCMS into seven distinct parts, enabling you to 
rebuild only those parts of CICS/CMS that have changed. If you know what you 
need to rebuild, you can take advantage of one of the first seven options. If you're 
not sure what you need to rebuild, you can soon find out. 

The CICS/CMS system contains a file called EFHBUILD CNTRL. Each entry in 
this file contains three fields, as follows: 

1. The right-hand field contains the name of an individual TEXT file. 

2. The middle field contains the type of the file. This can be: 

REL For a relocatable module 

NRM For a non-relocatable module 

TRN For a transient area module 

MEM For a member of the run-time TXT LIB 

LIB For the EFHXLIB library. 

Where there are a series of modules, all of the same type, only the first is 
identified by the type above. The rest are shown as a period (.) to indicate the 
same type. 

3. The left-hand field contains the name of the CICSjCMS component to which 
each TEXT file belongs. 

To find out which option of panel EFH15 you need to use: 

1. Find the TEXT filename in the right-hand column. 

2. Check the filetype: 

Appendix A. System administration: installation, customization and service 217 



• In nearly every case, if the file type is REL or NRM, the left-hand column 
tells you which component contains that module, and therefore which 
EFH15 (and possibly EFH151) option you need. The options involved are 1, 
2,3, and 4. 

There are two exceptions_ EFHBOOT and EFHUCMS1 are both of filetype 
NRM. These are the modules classed by CICS/CMS as "Other Utilities", 
and you build them with option 6. 

• If the filetype is TRN, the module is a transient area module, and you build 
it using option 5. 

• If the filetype is MEM, the module is a member of TXTLIB, and you build it 
using option 7. 

The most likely option you'll need on EFH15 is option 1. This lets you rebuild one 
or more of the relocatable load modules that are the heart of the CICS/CMS 
systt;!m. 

If you want option 1, you just enter 1 on the selection line, and press ENTER. You 
don't enter anything in any of the other fields on panel EFH15. 

If you want any other option, however, you may need to change one or more of the 
other fields on the panel, as follows: 

• Input Filemode 

This defines the mode of the disk on which you've stored the TEXT files that 
CICS/CMS will use for the rebuild. If you've taken the advice we gave earlier,\ 
you will have put these on a disk earlier in the search order than those on your .....I 
CICS/CMS system disk. If for some reason you haven't, you will need to 
change the default (*) to the letter identifying the disk on which you've put 
them. 

Note that, if you specify a particular disk, CICS/CMS will look for files to build 
on that disk only. You'll therefore have to ensure that all unchanged 
components of CICS/CMS are on that disk, as well as the new files. 

• Output Filemode 

By default, CICS/CMS puts the rebuilt modules on your CMS A-disk. This lets 
you check that the rebuild has worked successfully before replacing the 
changed modules on your CICS/CMS system disk. This option lets you put the 
rebuilt modules on a disk of your choice_ 

Note that, wherever you ask CICS/CMS to put the rebuilt modules, it will 
always write the SYSPRINT output from the rebuild to your A-disk. 

• LOADLIB name 

The four CICS/CMS load modules are built into a single LOADLIB type file_ 
By default, CICS/CMS calls this EFHPRIV. If you have changed this name on 
your system, you will need to change the default name on the panel to your 
own LOADLIB name. 

This option applies only to options 1 and 8 on panel EFH15. 

218 CICS/CMS User's Guide 



If you select option 1 on panel EFH15, CICS/CMS will display a new panel, as 
shown in Figure 56. 

EFH151 BUILD CICSjCMS RELOCATABLE LOAD MODULES 

Select one of the following: 

PF1=Help 

1 Build CICSjCMS Load module DFHECID 
2 Build CICSjCMS Load module EFHDFH 
3 Build CICSjCMS Load module EFHMOD 
4 Build CICSjCMS Load module DFHTRP 
5 All of the Above 

Selection ===) 

Input Filemode ===) * Default - * 

Output Filemode ===) A Default - A 

LOADLIB name ===) EFHPRIV Default - EFHPRIV 

PF3=End PA2=CMS Subset 

Figure 56. Service panel for CICS/CMS load modules (EFH151) 

EFH151 has the same "additional" lines as EFH15. If you want to change any of 
them, you should do so now, as explained on the previous page. 

Having established which of the modules you need to rebuild, using EFHBUILD 
CNTRL, you can then select the appropriate option, and press ENTER. CICS/CMS 
will then rebuild the selected module (or all the modules if you select option 5). 

The remaining options on panel EFH15 don't lead on to further panels. They 
rebuild the CICSjCMS modules shown in EFH15 immediately, as follows: 

• Option 2 builds EFHCTRAN, which contains the modules for the COBOL and 
COBOL2 translator. 

• Option 3 builds EFHATRAN, which contains the modules for the assembler 
translator. 

• Option 4 builds EFHPTRAN, which contains the modules for the PLjI 
translator. 

• Option 5 builds the two storage utilities, EFHUSTG and EFHUMAP, and the 
EFHUQVM utility, which CICS/CMS uses in various places to see whether the 
programmer is using CICSjCMS from a host-connected terminal or a PC. 

• Option 6 builds the EFHUCMSI utility (which converts local CMS files to the 
CICS/CMS format), and the EFHBOOT module (which "bootstraps" EFHMOD, 
and handles program checks). 

• Option 7 builds the CICSjCMS run-time text library, EFHXLIB TXTLIB. 

The final option, 8, builds a complete CICS/CMS system. The less you rebuild, the 
quicker you'll get it done. However, if you're at all unsure of what you need to 
rebuild, you should select option 8. 

Appendix A. System administration: installation, customization and service 219 



Whichever option you select, CICS/CMS rebuilds the parts requested, and stores 
them on the disk you've specified (by default, your A-disk). Before going any 
further, you should make sure that you've corrected the problem for which you 
received the fixes. Stop CICS/CMS, and then start it again. As long as the rebuilt 
modules are on a disk earlier in the CMS search sequence than your CICS/CMS 
system disk, CICS/CMS will use them instead of the versions on the system disk. 

To complete the service procedure, you need to update your CICS/CMS system 
using the new modules, as explained below. 

Incorporating service changes into your master CICS/CMS system 

The last stage of applying service to CICS/CMS is to update the master version of 
CICS/CMS on your VM system, and alert your application programmers to the 
change. 

If you have not had to rebuild any CICS/CMS modules to apply the service 
changes, all you need to do is replace the files on the CICS/CMS system disk with 
the new versions that you copied onto another CMS disk, as described in "Copying 
service files to your VM system" on page 215. If you have rebuilt some CICS/CMS 
modules, the new modules will be on your A-disk. Replace the existing CICS/CMS 
modules with these new versions. 

If you have rebuilt the entire CICS/CMS system (option 8 on panel EFH15), you 
will need to remove all existing CICS/CMS modules from the CICS/CMS system 
disk, and replace them with the new ones from your A-disk. 

Finally, you need to make sure that all your application programmers are using the 
new verSIOn. 

For those using CICS/CMS from host-connected terminals, you need to make sure 
that they know there's a new version of the system. They'll pick it up 
automatically from the system disk. 

Those using CICS/CMS from PCs, however, will need to change their version of the 
product on their local fixed disks. As long as the changed modules are not the 
ones in the LOADLIB file, it's easy for you to help them do this. Tell them which 
modules you have changed. They can then use VMPCSERV to connect to the host 
system, link to the disk where you've put the changed modules, and copy those 
modules down to their local disks. There they can use them to replace their 
existing copies of the modules. 

If the changed modules are part of the LOADLIB, however, your PC users will need 
more help. 

VM/PC does not support LOADLIB type files. When your PC users first install 
CICS/CMS on their local fixed disks, they automatically pick up the four separate 
modules from the system you've installed on the host. When you run the service 
EXEC, however, it doesn't rebuild those four modules; it rebuilds the LOADLIB 
file. The only way of changing the four CICS/CMS LOAD modules separately is 
through an option on the PC user's version of the EFH151 panel. 

The procedure you need to go through is as follows: 

1. Using your PC, connect to your host system using VMPCSERV, and start 
CICS/CMS. From the CICS/CMS selection panel (EFH1), select option 7 
(Download from Host). This process is fully described in the first few pages 
of "Copying CICS/CMS to a PC" on page 42. 

220 CICS/CMS User's Guide 



You will then see the panel shown in Figure 24 on page 44. 

2. Select option 8 (Build CICS/CMS Relocatable Load Modules). 

You will then get a panel similar to the one you get from selecting option 1 on 
panel EFH15 under VM/SP, as shown in Figure 56 on page 219. The only 
difference is that the LOADLIB line is missing; it has no meaning for a PC. The 
purpose of this panel when you're using a PC is to rebuild the CICS/CMS load 
modules and, instead of putting them into the LOADLIB file, to copy them 
down to the PC user's A-disk. You can rebuild only the module(s) needed, or 
all the modules. 

Note: This operation can take some time. It depends on how much you're 
rebuilding, and on how fast the connection is between the PC and your host 
VM system. For a complete rebuild, over a direct connection, it should take 
about 45 minutes. 

Once CICS/CMS has finished rebuilding the module(s), you'll get the message: 

EFH91101 Download completed successfully 

3. At this stage, you have the rebuilt modules on the PC'~ A-disk. To make them 
available to all your PC users, you need to put them up ')n your master 
CICS/CMS system on VM/SP. Use VMPCSERV again to copy the modules 
from your local PC A-disk, to your A-disk on the host. F.tOm there, you can use 
them to replace the existing copies of the modules on your CICS/CMS system 
disk. 

Once you've completed this procedure, you can make the changed load module(s) 
available to your PC users in the same way as any other changed modules. You 
tell the users which modules are affected, and let them use VMPCSERV to copy 
them down to their local fixed disks. 

Figure 57 on page 222 shows the complete corrective service process 
diagrammatically. The diagram shows what you'd need to do to incorporate service 
changes to the CICS/CMS relocatable load modules, EFHDFH and EFHMOD. 

Appendix A. System administration: installation, customization and service 221 



Host VM/SP System 

Q-disk 
,_/ 
Service 
text files 
for 
EFHDFH and 
EFHMOD 

-

A-disk 

,----1" 'Rebuilt / G) 
EFHPRIV 

~OADLI;y 

RebUITt 17\ 
EFHDFH and ~ 
EFHMOD 

-
Host-connected 
terminal f-~------_---..J 

@ 

\ 
PC/370 

R-disk 
'--- .../ 

All 
CICS/CMS 
TEXT files 

VM/PC System 

® 

Figure 57. The corrective service process 

@ 

i"-..A-diS~ 
-

Rebuilt 
EFHDFH and 
EFHMOD 
modules 

® 

The steps indicated by the numbers in thE;! diagram are as follows: 

-

T -disk 
'---_.../ 

CICS/CMS 
system disk 

® 

Your 
application 
programmers 

1. On VM/SP, use options 2 and 3 on panel EFH151 to rebuild the EFHPRIV 
LOADLIB module on the host system A-disk. 

2. . On VM/PC, start VMPCSERV to connect to the host VM system. 

3. On VM/PC, use options 2 and 3 on panel EFH151 to rebuild the EFHDFH and 
EFHMOD modules. 

222 CIGS/CMS User's Guide 

J 



L 

4. From VM/PC, copy the rebuilt modules from the PC's A-disk to the host VM 
system's A-disk. 

5. On VM/SP, copy the rebuilt EFHPRIV LOADLIB, EFHDFH, and EFHMOD 
modules from the host system A-disk to the CICS/CMS system disk, replacing 
any existing copies. 

6. Tell all application programmers using CICS/CMS under VM/SP that you've 
changed the CICS/CMS system. 

Tell all application programmers using CICS/CMS under VM/PC to replace the 
copies of EFHMOD and EFHDFH they currently have on their fixed disks with 
the new copies on the CICS/CMS system disk. 

Appendix A. System administration: installation, customization and service 223 



J 



Appendix B. Differences between CICS/CMS and 
CICS/VS 

CICS/CMS does not give you the whole of CICS, as you would expect to find it on 
an MVS or VSE system. This appendix gives a general account of the main 
differences you'll find between CICS/CMS and CICS/VS, and, where appropriate, 
the effect those differences have on application programming. 

Notes: 

1. The points made in this appendix about resources such as files don't apply if 
you use the remote server to access them on a remote CICS/VS system. 

2. This appendix does not tell you exactly what subset of the application 
programming interface (API) CICS/CMS supports. It highlights general areas, 
for example, interval control, or BMS routing, but does not give details of 
commands and command options supported. The CICS/CMS Application 
Programmer's Reference Summary gives you all the detailed information you 
need on the API. 

General points 

• CICS/CMS does not support applications using the macro-level application 
programming interface (API), or CALL level DL/I requests. 

• CICS/CMS does not support programs written in RPG II. 

• CICS/CMS does not support the recovery features of CICS/VS. There is no 
local support for journals, logging, dynamic back out, or automatic transaction 
restart. The only recovery is that provided by CMS. However, when a 
CICS/CMS application uses the remote server to access resources on a remote 
CICS/VS system, those resources have all the recovery and integrity protection 
you have defined for your CICS/VS system. 

File control 

• CICS/CMS does not support VSAM files locally. Instead, it uses CMS files as 
pseudo-V SAM files, letting you access data with the CICS/VS file control API. 

For further information, see "How CICS/CMS supports VSAM files" on 
page 60. 

Appendix B. Differences between CICS/CMS and CICS/VS 225 



• CICSjCMS does not support BDAM or ISAM files, either locally, or on a 
remote CICSjVS system. 

• CICSjCMS issues a diagnostic message if you access a file for both browse and 
update, but does not reject the request. 

• Other restrictions on local file use are as follows: 

- For CICSjCMS direct access storage, only extended disk format files, 
blocked at 512, 1K, 2K, or 4K bytes, are supported. CICSjCMS does not 
support the alternative, SOO-byte block, CMS disk format. 

CICSjCMS supports the RBA access method by treating the RBA value as 
an RRN value. CICSjCMS does not, therefore, support applications that 
rely on precise RBA values. 

CICSjCMS writes all new records to the end of relative record data sets 
(RRDS), and returns a new value in RIDFLD. This is the way that CICSjVS 
treats entry sequential data sets (ESDS). 

Under CICSjCMS, you must specify the EQUAL option on all READ, 
STARTBR, and RESETBR commands that use RRDS files. 

CICSjCMS supports the EXEC CICS DELETE command for keyed files only. 

CICSjCMS does not require the records in a data set named in an EXEC 
CICS WRITE MASS INSERT command to be in strict ascending order. 

You can only have one update outstanding on a file at anyone time. 
(CICSjVS allows multiple update requests on files if each request is issued 
by a different task.) 

CICSjCMS does not support alternate indexes for its pseudo-VSAM files. 

Terminal control 

• CICSjCMS supports only those 3270 terminals that VMjSP supports. These are 
defined in the VMjSP Terminal Reference manual. 

CICSjCMS testing is confined to the functions of 3270 screens and 3270 printer 
terminals. It doesn't support functions specific to other terminal types, such as 
batch data interchange terminals. 

• Since CICSjCMS supports only one interactive terminal, you can only run EDF 
in "two-terminal" mode to get EDF output on your terminal screen from a 
running printer transaction. 

• CICSjCMS does not support partitions. 

• Due to a CP restriction, you will get unpredictable results if you use successive 
EXEC CICS SEND FROM (text) commands, and: 

1. There are no other reads between commands 

2. The text does not contain any set buffer address orders 

226 CICS/CMS User's Guide 



3. You don't use the ERASE option. 

• CICS/CMS doesn't support BMS routing. 

DL/I support 

• CICS/CMS supports EXEC DL/I requests only; it does not support the CALL 
DL/I interface. 

• CICS/CMS does not support DL/I data bases locally. All EXEC DL/I requests 
must be shipped to a remote CICSjVS system through the remote server. 

For more information, see "Starting and using the remote server" on page 105. 

• CICSjCMS doesn't support the EXEC DL/I STAT command. 

Temporary storage 

All temporary storage in CICS/CMS is set up in CMS virtual storage. There is no 
equivalent of CICS/VS auxiliary temporary stora-ge. This means that all temporary 
storage queues you create in a CICS test session are erased when you end that 
session by returning to panel EFH12. 

Program control 

• Different application programs must have different external entry names. For 
COBOL programs, this means that programs that will run in the same 
CICS/CMS session must have different names (specified as PROGRAM- ID in the 
IDENTIFICATION DIVISION). 

• CICS/CMS does not support recursive COBOL programs. You can, however, 
execute programs recursively in all the other languages that CICS/CMS 
supports, including COBOL II. 

• In CICS/VS, if a program uses the EXEC CICS XCTL command to transfer 
control to another program, and that program doesn't exist, CICS/VS raises a 
PGMIDERR condition in the program that issues the XCTL. In the same 
situation, CICS/CMS displays an error handler panel, and raises the 
PGMIDERR condition in the outermost program in the transaction, if there is 
one. 

For example, if program A issues a LINK to program B, and program B issues 
an XCTL to a nonexistent program: 

CICS/VS raises the PGMIDERR condition in program B. 

CICS/CMS terminates program B, issues an error handler message, and 
raises the PGMIDERR condition in program A. 

If program A is the first level program in a transaction, and it issues an XCTL 
to a nonexistent program: 

Appendix B. Differences Between CICSjCMS and CICS/VS 227 



- CICS/VS raises PGMIDERR in program A. 

- CICS/CMS terminates program A, issues an error handler message, and 
waits for you to enter another transaction ID. 

Standard transactions 

• CICS/CMS does not support CECS (all its functions are available through 
CECI). 

• CICS/CMS does not support CEDA, CEMT, CEST, or CEOT. Either it does not 
recognize their functions, or it controls them by different methods. 

• CICS/CMS does not let you invoke master terminal (CEMT) functions from 
application programs. 

New system programmer commands in CICS/OS/VS 1.7 

CICS/OS/VS Version 1 Release 7 introduced the INQUIRE and SET commands of 
the command level application programming interface, together with the spool 
commands of the CICS/VS interface to the job entry subsystem (JES). CICS/CMS 
support for these new features is as follows: 

• You should use the INQUIRE and SET commands only in application programs 
destined for a CICS/OS/VS 1. 7 system. The CICS/CMS translator supports 
them,and you can check their syntax using CECI under CICS/CMS. However, 
the only option on either command that CICS/CMS supports in an executing 
program is DATASET. If an application issues an INQUIRE or SET command 
with any other option, CICS/CMS will either ignore the command and 
continue, diagnose the command and continue, or terminate the CICS test 
session. 

You'll find detailed information on using INQUIRE and SET in the CICS/OS/VS 
Customization Guide. 

• CICS/CMS does not support any of the spooler commands: SPOOLOPEN, 
SPOOLWRITE, and so on. 

228 CICS/CMS User's Guide 

J 



Appendix C. CICS/CMS panels 

This appendix gives reference information on the principal CICS/CMS panels. 

"How CICS/CMS panels connect" shows, in a diagram, the flow of control between 
the panels. 

"The principal CICS/CMS panels" on page 231 displays the principal CICS/CMS 
panels, tells you what the available options mean, and describes the functions of 
the PF and P A keys. Where a particular option or key function is explained in 
more detail in the main body of the manual, we refer you to the section containing 
that explanation. 

How CICS/CMS panels connect 

The diagram overleaf shows how the principal CICS/CMS panels connect with each 
other, and what path you have to follow to work your way through from one step 
in developing an application to any other step. 

Appendix C. CICS/CMS panels 229 



I I 
IOPTn; Opt on 

EFHll 

~
7 VM/SP: IPF8 

Remote 
EFH121 SeSjiOn 

PA2 

2 

I EF~1241 
PF7 

(EFH12) 

Figure 58. Panel flow diagram 

230 CICS/CMS User's Guide 

EFHl 

3 
I I I 

IOPTn ~ 
Opt~on 5 Opt~on 

EFH14 

X E CUT I 0 

,XITeo
; 

PA2 ErrorJAbend 

CCU2 

PA2 
(EFH122) 

pr 
~ 

PFl 
(EFH12) 

6 

VM/SP: 
VM/PC: 

1 
8 

J 



L 

The principal CICS/CMS panels 

The panels described in this section are: 

The program development selection panel (EFH1) 

The application objects listing panel (EFHll) 

The start execution panel (EFH12) 

The escape functions panel (EFH122) 

The purpose of describing these panels here is to give you a single reference source 
for each panel, and for the functions of its PF and PA keys. Most of this 
information is provided in the main body of the book, but not always in one place. 

Notes: 

1. The panel displays define only PF keys in the range PF1 to PF12. If you're 
using a PC or terminal with 24 PF keys, you can use PF keys 13 to 24 for the 
same functions as PF keys 1 to 12. 

2. None of the descriptions include the PAl key. Pressing PAl always takes you 
to the control program (CP). 

Appendix C. CICS/CMS panels 231 



The program development selection panel (EFHl) 

Panel display 

EFH1 CICS/CMS PROGRAM DEVELOPMENT SELECTION 

Select one of the following: 

1 List Application Files 
2 Execute Program/Transaction 
3 List Resource Tables 
4 Convert CMS file to CICS/CMS file 
5 Erase Temporary Files 
6 Release CICS/CMS Nucleus Extensions 
7 (Apply Service) (Download from Host) 

Selection ===) 1 

For application filelist specify the optional list criteria required: 

Criteria ===) ACCT* * * 

(c) Copyright IBM Corp 1985 

PF1=Help PF3=End PA2=Enter CMS Subset 

Option descriptions 

The list below describes the facilities available from the panel, by option number. 

1. Displays a new panel, EFHll, containing a list of application files. You specify 
the filename, filetype, and filemode of the file(s) that you want listed by 
changing the default options in the line beginning: 

Criteria ===> 

If you omit any of the criteria, CICSjCMS assumes *. Note that CICSjCMS 
remembers these criteria from one CICSjCMS session to the next. From this 
list (panel EFHll), you can assemble maps, and translate and compile source 
programs. 

For more information on EFHll, see Chapter 7, "Preparing your application 
for testing" on page 93, and "The application objects listing panel (EFHll)" on 
page 234. 

2. Displays another panel (EFH12), providing various facilities for executing a 
CICS program or transaction. 

For more information on EFH12, see Chapter 9, "Testing an application" on 
page 123, and "The execution panel (EFH12)" on page 236. 

3. Displays a panel (EFH13) that lets you list the CICS/CMS tables that you can 
currently access. 

232 CICSjCMS User's Guide 



For more information on EFH13, see "Updating tables" on page 22. 

4. Executes the CICS/CMS utility that converts local CMS files into keyed 
pseudo-VSAM files that you can use in CICS/CMS. 

For more information, see "Converting local CMS files to CICS/CMS keyed 
files" on page 110. 

5. Erases the trace table, the error log, the EFHUMAP log, the terminal trace log, 
and the load map. This can be useful for "cleaning up" during a test session. 
You may, for example, want to test a program with trace, print the trace for 
that test session, then erase the trace and start again. 

As described in Chapter 4, "Setting up your CICS/CMS environment" on 
page 47, you can use the EFHPROF EXEC to erase these features 
automatically at the start of every CICS/CMS session. 

6. Releases the extensions to the CMS nucleus that are retained between 
CICS/CMS sessions to improve performance. Unless you need the storage they 
occupy for some purpose unconnected with CICS/CMS, you should never use 
this option. If you do, there will be a delay the next time you execute a 
transaction. 

Note: This option will release only CICS/CMS modules loaded in the CMS 
nucleus. It won't release any application programs that you've loaded into the 
nucleus by specifying NUCXLOAD as their load method. The only way of 
releasing application programs loaded in the CMS nucleus is to re-IPL CMS, or 
to use the CMS NUCXDROP command to release programs by name. 

7. Offers different facilities, depending on the way that you are using CICS/CMS, 
as follows: 

• If you are using a terminal attached to a host VM system, this option says: 

Apply Service 

It is the way that the system administrator incorporates changes, supplied 
by IBM, into the master CICS/CMS copy on the host. 

• If you are using a PC, this option says: 

Download from Host 

This is the way that you copy CICS/CMS from the host to your fixed disk 
(see "Copying CICS/CMS to a PC" on page 42). 

PF and PA key functions 

Key Function 

PFI Displays a panel of information to help you use EFHl. 

PF3 Stops the CICS/CMS session, and returns you to CMS. 

PA2 Puts you into the CMS subset. To get back to EFHl from the subset, 
type RETURN. 

Appendix C. CICS/CMS panels 233 



The application objects listing panel (EFHll) 

Panel display 

EFHll FILELIST:ACCT* * * Line 1 of 10 

Cmd Filename Filetype Fm Format LRECL Records Blocks Date Time 
ACCT03 COBOL B2 F 80 70 2 03/07/85 10:56:51 
ACCT04 COBOL B2 F 80 144 3 03/07/85 10:56:51 
ACCT02 COBOL B2 F 80 378 8 03/07/85 10:56:50 
ACCTOO COBOL B2 F 80 17 1 03/07/85 10:56:49 
ACCT01 COBOL B2 F M 371 8 03/07/85 10:56:49 
ACCTSET MAP B2 F 80 171 4 03/07/85 10:56:48 
ACCTFIL EFHVDATA B2 F 383 14 2 03/07/85 10:56;48 
ACCTFIL EFHVINDX B2 F 512 2 1 03/07/85 10:56:47 
ACCTIX EFHVDATA B2 F 63 14 1 03/07/85 10:56;47 
ACCTIX EFHVINDX B2 F 512 2 1 03/07/85 10:56:47 

PF1;Help 2;Refresh 3;End 4;All this Name 5;Translate/Compile 6;Edit 
PF7;Backward 8;Forward 9;Install 10;MAP-TEXT&ADS 11;Execute 12; 
;;;;) 

Note: The files listed in the example above are those that make up the sample 
application. The actual files that you will see in an EFHll display will depend on 
the criteria you have set in the selection panel (EFHl). The files are sorted by 
date. 

PF and PA key functions 

Key Function 

PFI Displays a panel of information to help you use EFHll. 

PF2 Refreshes panel EFHll, to include all files that currently satisfy the 
criteria you set in panel EFHl. 

PF3 Returns you to the panel from which you entered this one. Usually, 
this returns you to panel EFHl. However, if you displayed the current 
panel by pressing PF4 on a previous EFHll panel, you will return to 
that version of EFHll. 

PF4 

234 CICSjCMS User's Guide 

Displays a new EFHll panel showing all files on all your 
currently-accessed disks with the same filename as the file the cursor 
was beside when you pressed PF4. The principal use of PF4 is to see 
the files created when you assemble a file containing maps, or 
translate and compile a source program file. 



PF5 

PF6 

PF7 

PF8 

PF9 

PFIO 

PFll 

Translates and compiles the source program file indicated by the 
cursor. 

For more information, see "Translating and compiling/assembling 
programs" on page 95. 

Executes your editor, so that you can review or change the file 
indicated by the cursor. 

Scrolls the screen display backward. 

Scrolls the screen display forward. 

Tells CICS/CMS that you want the file indicated by the cursor to be 
the table for a particular resource during this CICS/CMS session. 
CICS/CMS will know which kind of table it is by its filetype, which 
must be one of those defined in your installation EFHSETP EXEC, or 
your own EFHPROF EXEC. The filename can be anything you like. 

For more information on this method of defining tables to CICS/CMS, 
see "CICS/CMS tables" on page 66. 

Assembles the BMS map(s) in the file indicated by the cursor. The 
output from the assembly is: 

1. The symbolic map, which CICS/CMS writes to a file with the same 
filename as the source file, and with a filetype of TEXT 

2. The DSECT, which CICS/CMS adds to the appropriate EFHxUSER 
MACLIB file. 

For more information on this process, see "Assembling maps" on 
page 94. 

Displays the execution panel (EFH12), with the filename of the file 
indicated by the cursor in its Program line. You must therefore 
ensure that you have a file with that filename, and with a filetype of 
TEXT, containing a translated and compiled CICS program. 

The line immediately beneath the key definitions is the command line. From here 
you can execute any valid CMS command. 

Appendix C. CICS/CMS panels 235 



The execution panel (EFH12) 

Panel display 

EFH12 EXECUTE PROGRAM/TRANSACTION 

Type the name of the transaction or program and any optional parameters: 

Transaction ===> 
Program ===> 

Status: 

EDF is OFF 

PF1=Help 2=CEBR 3=End 4=CECI 
PF7=Set-parms 8=VM-Session 9=EDF ON 10= 
PA2=CMS Subset 

CP/CMS Command ===> 

5= 
11= 

6=Start-C1ear 
12=Terminate 

Functions available 

There are three function lines in this panel, as follows: 

Transaction 

Program 

236 CICS/CMS User's Guide 

To execute a transaction from this panel, type the 
transaction name on the line beginning: 

Transaction ===> 

and press ENTER. 

If the transaction has any parameters, you can give them 
after the transaction ID, just as in CICS/VS. However, the 
total input is limited to 52 characters. If you need more, 
press PF6 (see below) to start the transaction from a blank 
screen. 

To run a program from this panel, type the program name 
on the line beginning: 

Program ===> 

and press ENTER. 

The program name you give must be the filename of a file 
of filetype TEXT that you have previously created using 
the EFHTC EXEC. 



Note: You can't give parameters with the program name 
as you can with a transaction name. 

CP/CMS Command You can execute most valid CP or CMS commands from 
this panel, on the line beginning: 

PF and PA key functions 

CP/CMS Command ===> 

The only exceptions are #CP commands (which you can 
execute only when your terminal is in CP read mode) and 
the HX command. 

PFI Displays a help screen for this panel. 

PF2 Executes the CICS/VS transaction, CEBR, for browsing temporary 
storage. When you finish using CEBR, you press PF3 to display its 
termination screen. On the top line of that screen you can type the 
CICS/CMS command: 

CCMS QUIT 

to get back to EFH12. 

PF3 Quits EFH12, and returns you to: 

• Panel EFHl, if you started CICSjCMS with the CICSCMS command, 
and then displayed EFH12 by selecting option 2 on EFHl. 

• Panel EFHll, if you displayed panel EFH12 by putting the cursor 
on EFHll alongside a program file and pressing PFll (Execute). 

• CMS, if you started CICS/CMS with the EFH12 command, which 
bypasses EFHl and displays EFH12 immediately. 

PF4 Executes the CICS/VS transaction, CECI, for executing EXEC CICS 
commands interactively. When you finish using CECI, you press PF3 
to display its termination screen. On the top line of that screen, you 
type: 

CCMS QUIT 

to return to EFH12. 

PF6 This starts CICS and clears panel EFH12, giving you a clear screen. 
This gives you the chance to type a transaction ID, and any associated 
parameters, under the same conditions that a user might experience in 
CICS/VS. 

PF7 Displays panel EFH121, the parameter panel, which lets you change 
some of the parameters that define the CICS/CMS environment in 
which you are working. We describe this panel fully in "Changing 
your CICSjCMS environment within a session" on page 119. 

When you finish setting parameters on EFH121, you can return to 
EFH12 in one of two ways: 

Appendix C. CICS/CMS panels 237 



• By pressing PF3 to save your new parameter values and return to 
EFH12 

• By pressing PF12 to drop the changes you've made since you last 
pressed ENTER, and return to EFH12. 

PF8 This key applies to using CICS/CMS under VM/SP only. If you are 
using CICS/CMS under VM/PC, the PF key function definition will be 
blank instead of VM-Session. 

PF9 

PF12 

PA2 

238 CICS/CMS User's Guide 

PF8 displays the logo panel of another VM session. The main purpose 
of this key is to start the process that lets you connect to a remote 
CICS/VS system and run the remote server transaction (CEHS). 

You'll find a full account of this in "Transferring to a remote CICS/VS 
system from a terminal" on page 106. 

The switch key for the execution diagnostic facility (ED F). If the key 
definition says EDF ON when you press PF9, it switches EDF on, 
changes its own definition to EDF OFF, and changes the Status 
definition in the top part of the panel to EDF is ON. If you press PF9 
when the definition is EDF OFF it turns EDF off and reverses the 
status and PF key definitions. 

Does exactly the same as PF3. 

Switches you to the CMS subset, from which you can issue several 
CMS commands. To return to EFH12 from the CMS subset, type the 
command: 

RETURN 



The escape panel (EFH122) 

Panel display 

EFH122 ESCAPE FUNCTIONS 

Type the name of the transaction or program and any optional parameters: 

Transaction ===) 
Program ===) 

Status: 

EDF is OFF 

Nest level 

PFl=Help 2=CEBR 3=End 4=CECI 5=Appln-PAI 6=Appln-PA2 

PF7=Set-parms 8=VM-session 9=EDF ON 10=Reset-msgs 11= 
PA2=CMS-subset 

CP/CMS Command ===) 

12=Terminate 

Functions available 

The functions available from the escape panel are exactly the same as defined for 
panel EFH12. The difference is that, because you display the escape panel from 
within a running transaction, anything you do is nested at a certain level within 
your CICS/CMS session. This nest level is shown graphically in the Nest level 
field by a series of slashes U) and asterisks (*), as described in "Using the 
CICS/CMS escape feature" on page 127. 

You should also note that when you issue a CP or CMS command from panel 
EFH122, CICS/CMS executes that command in the CMS subset. This limits the 
number of commands you can issue to those described as valid for the CMS subset 
in the eMS User's Guide. Furthermore, because CICS/CMS doesn't let you run 
any of its EXECs within the CMS subset, you can't do so from the escape panel. 

PF and PA key functions 

PFI Displays a help panel for EFH122. 

PF2 Starts CEBR, as defined for EFH12. 

PF3 Quits the escape panel, and returns you to the CICS test session, at the 
point from which you escaped. 

PF4 Starts CECI, as defined for EFH12. 

Appendix C. CICS/CMS panels 239 



PF5 Passes the PAl key to an application that needs it. 

If you press PAl in CICSjCMS, it passes control to CPo If you have an 
application which needs you to enter PAl for it to continue, you need 
to find a way of bypassing CICSjCMS, and getting the PAl through to 
your application. You can do this by escaping from your transaction 
to EFH122 at the point where the transaction is waiting for PAL You 
can then press PF5 on EFH122. This passes PAl to the application, 
and resumes the application's execution immediately. 

PF6 Serves the same purpose as PF5, but for the PA2 key. Pressing PA2 in 
a CICS test session displays the escape panel, EFH122. If you want to 
pass a PA2 to your application, you press PF6 on that panel display. 

PF7 Displays panel EFH122l, which serves the same purpose as the 
parameter panel you get from EFH12 (EFH12l), but lets you change 
fewer parameters. 

PF8 

PF9 

PFIO 

PF12 

PA2 

240 CICS/CMS User's Guide 

For more information, see "Changing your CICSjCMS environment 
within a session" on page 119. 

Displays up a new VM logo, as described for EFH12. This function is 
only available in CICSjCMS under VMjSP. 

Switches EDF on and off, as described for EFH12. 

Restarts the display of all error handler messages you have previously 
suppressed. 

The CICSjCMS error handler panel (EFH125) has a PF key (PF5) that 
lets you stop an unwanted message. You usually need this when you 
have a loop in a program that repeatedly executes an EXEC CICS 
command that uses a CICSjVS feature that CICSjCMS does not 
support. You will get a series of identical messages. Pressing PF5 on 
one of the EFH125 panels containing the message will suppress all 
future occurrences. 

Quits EFH122, and returns you to the execution panel (EFH12). This 
is always true. It doesn't matter how many levels of nesting you've 
created to get to an escape panel. If you press PF12, it will drop all 
the levels and go back to EFH12. 

Enters the CMS subset, as described for EFH12. 



Appendix D. CICS/CMS parameters 

CICS/CMS provides two EXECs for setting up the parameters that define its 
working environment, as follows: 

• EFHSETP is part of the master CICS/CMS system. It lets the system 
administrator establish a default environment for all programmers using 
CICS/CMS. 

• EFHPROF resides on application programmers' A-disks. It lets them change 
some of the default settings established in EFHSETP, thereby creating their 
own working environment. 

The parameters that EFHSETP and EFHPROF use to set UP the CICS/CMS 
environment are identical. The "EFHSETPjEFHPROF parameters" section 
contains reference information for both application programmers and system 
administrators. 

EFHSETP/EFHPROF parameters 

We've divided the parameter descriptions into functional subsections. Each 
description gives the keyword, followed by a description of its function, including 
the range of values associated with it. 

The defaults mentioned in the descriptions are the values that IBM supplies in the 
copy of EFHSETP shipped with the product. 

Note: In the EFHSETP EXEC itself, there are some parameters that we don't 
describe here. These parameters are intended for CICSjCMS internal use only, and 
you should not change them in EFHSETP, or include them in an EFHPROF EXEC. 

General rules for CICS/CMS parameters 

There are three general types of parameters in CICSjCMS, as follows: 

Parameter Valid values 

Numeric A series of decimal digits, with or without a sign, and possibly with 
surrounding blanks. 

Boolean One of the values YES or NO, in uppercase or lowercase. CICSjCMS 
only reads the first character, so you can abbreviate them to Y and 
N. 

Appendix D. CICS/CMS parameters 241 



Character 

Debugging parameters 

Keyword 

USER 

TRACE 

EDF 

General parameters 

Keyword 

CWASIZE 

TWASIZE 

242 CICS/CMS User's Guide 

A series of letters and numbers, starting with a letter. Character 
values are usually limited to 8 characters. 

You can also give a character parameter a value of period (.), as 
shown in some of the individual parameter descriptions in this 
appendix. This is a general method in CICS/CMS of giving a 
character parameter a null or blank value. When you want to give 
such a parameter a value, you can do so within CICS/CMS, using 
the EFH121 panel, as described in "Changing your CICS/CMS 
environment within a session" on page 119. 

Description 

Specifies the debugging program you want to use. You 
can set this to DEBUG, which selects the CMS DEBUG 
program, or to the name of your own debugging program. 
(Default: no debugging program) 

The name of the debugging program you choose will 
appear in the DEBUG program line in panel EFH122. 
CICS/CMS will call the program each time a CICS test 
session starts, and each time a program is loaded within a 
CICS test session. 

Specifies whether trace output is required, as follows: 

YES 

NO 

Write trace entries to the file 
defined in the trace table 
definition parameters (see 
"Parameters for the CICS/CMS 
trace file" on page 251). 

Do not create a trace file. 
(Default) 

Specifies whether the execution diagnostic facility (ED F) 
is to be enabled or disabled by default when you display 
panel EFH12. 

YES Enable EDF 

NO Disable EDF (Default) 

Description 

An integer between 0 and 2048, defining the size of the 
CICS common work area (CW A) in bytes. (Default: 512) 

An integer between 1024 and 32767, defining the size of the 
CICS transaction work area (TWA) in bytes. (Default: 
1024) 



SPIE 

CICSDSA 

STGTABLE 

DATEFORM 

Specifies how program checks will be handled. 

YES 

NO 

CICS/CMS will report program 
checks using its error handler 
panel (EFH125). (Default) 

Program checks will be reported 
by a CMS message. 

You can find out more about the way that CICS/CMS 
handles program checks in "Program checks" on page 194. 

An integer between 50000 and 400000, defining the size of 
the CICS dynamic storage area (DSA). (Default: 256000) 

Note: You have to be careful with the value you give 
CICSDSA. It defines the size of your CICS working space. 
CICS/CMS uses it for I/O buffers, storage and terminal 
buffers, and so on. What is left after allocating the DSA is 
your CMS working storage, in which your programs will 
run. 

You may need to increase your DSA size if you use large 
temporary storage data sets, or large CICS/CMS keyed 
pseudo-VSAM files. Your DSA size can also depend on 
the size of your virtual machine. If you run in a virtual 
machine of over 2 megabytes, you may want to increase 
the DSA size. If you run in a virtual machine smaller 
than the 2 megabytes we advise as the minimum, you may 
need to reduce the DSA size to, say, 160000 bytes. 
However, if you make the DSA too large, you will not 
leave enough storage for your programs to run. On the 
other hand, if you make it too small, you will put 
CICS/CMS under stress. 

We recommend that you start with the default supplied by 
IBM. 

Specifies the maximum number of entries that CICS/CMS 
can write to the EFHUSTG log. (Default: 500) 

Each entry in the EFHUSTG log is 20 bytes long. If you 
set the STGTABLE value too high, you might run out of 
virtual storage. You should find 500 adequate for most 
purposes. 

You'll find a complete description of EFHUSTG, and the 
rules that govern its use, in "The EFHUSTG log" on 
page 177. 

A combination of the characters DD (day), MM (month), 
and YY (year), defining the form in which CICS will 
display the date in the DATE option of the EXEC CICS 
FORMATTIME command. It doesn't affect the form of the 
date in the exec interface block (EIB). (Default: 
DDMMYY) 

Appendix D. CICS/CMS parameters 243 



TRAPEXT 

CPIOTRAC 

Terminal control parameters 

Lets you handle external interrupts with the EXTERNAL 
33 command. (Default: YES) 

"Loops" on page 191 explains why you would need the 
EXTERNAL 33 command. 

If you specify YES, you will get trace output for the 
communication activity involved in using the remote 
server. 

Y ou'U find an introduction to remote server trace in 
"Remote server trace" on page 189. (Default: NO) 

Many of the parameters listed here apply to particular terminal types only. If you 
are an application programmer, using EFHPROF to set up your own terminal, and 
you are not sure whether your terminal supports a particular option, look in the 
user's guide for your terminal before using it. 

Most of these parameters serve the same purpose as the operands of the same name 
used to define terminal control table (TCT) entries in CICS/VS for VTAM 3270 
terminals. If you want to find out more about them, you can look in the VT AM 
3270 Devices section of the Terminal Control Table chapter of the CICS/ VS 
Resource Definition (Macro) book. 

There are two general points to note about the parameters for screens with special 
features: EXTDS, COLOR, PS, HILIGHT, and SET ATTR: 

1. The parameter has no effect if your application doesn't use the feature. That is 
why the default value for all these parameters is YES. 

2. If you change the value to NO, and your application uses the feature in a BMS 
map, BMS will ignore the feature in your map and DSECT, even if your screen 
supports it. 

Keyword 

SCRNHT 

SCRNWD 

Description 

The maximum number of lines on the screen. (Default: 24) 

This is the value returned by an EXEC CICS ASSIGN 
SCRNHT command. 

The maximum column width of the screen. (Default: 80) 

This is the value returned by an EXEC CICS ASSIGN 
SCRNWD command. 

Together, SCRNHT and SCRNWD define the physical limits of the screen you're 
using. They correspond to the CICSjVS TCT entries DEFSCRN and ALTSCREN. 
If your terminal doesn't support an alternate screen size, you should never change 
SCRNHT or SCRNWD. If your terminal does support an alternate sceen size, you 
may have to change the values, as explained in the description of ALTSCREN 
below. 

244 CICS/CMS User's Guide 



BMSHT 

BMSWD 

The maximum number of lines on a BMS page. (Default: 
24) 

The maximum number of characters in each line of a BMS 
page. (Default: 80) 

Together, these parameters correspond to the CICS/VS TCT entry PGESIZE. 

UCTRAN 

ALTSCREN 

EXTDS 

Specifies whether lowercase characters will be translated 
to uppercase on input. 

Note: This applies only to input handled by CICS 
terminal control. It has no effect on the input fields in 
CICSjCMS panels. Note also that transaction IDs that 
you enter on panels EFH12 and EFH122 are always 
converted into uppercase. 

YES 

NO 

Translate all user entries to 
uppercase. 

Do not translate user entries. 
(Default) 

Specifies whether the alternate screen size will be used. 
This parameter affects all input and output; it applies to 
CICS terminal control and to CICSjCMS panels. 

YES 

NO 

Use the alternate screen size. 

Use the terminal's default screen 
size. (Default) 

Note: If your terminal doesn't support an alternate screen 
size, you should never change ALTSCREN from NO. If 
your terminal does support an alternate screen size, and 
you want to use it in a particular CICSjCMS session, you 
must change three parameters: ALTSCREN, SCRNHT, and 
SCRNWD. You set ALTSCREN to YES, and SCRNHT 
and SCRNWD to the height and depth respectively of the 
alternate screen size. When you want to change back to 
your default screen size, you must remember to change not 
only the ALTSCREN parameter (to NO), but also the 
SCRNHT and SCRNWD parameters (to your default 
screen size). 

Specifies whether the screen supports any of the extended 
facilities. 

YES 

NO 

The screen can support one or 
more of the extended color 
(COLOR), character set (PS), and 
highlighting (HILIGHT) features. 
(Default) 

The screen supports no extended 
features. 

Appendix D. CICSjCMS parameters 245 



COLOR 

PS 

HI LIGHT 

SETATTR 

PRTBMSHT 

PRTBMSWD 

Specifies whether extra color facilities are available. 

YES 

NO 

The screen has the extended color 
feature, which lets you choose 
colors for each field or character. 
(Default) 

The screen has no extended color 
feature. 

Specifies whether extra character sets are available. 

YES 

NO 

The screen supports the 
programmed symbol facility. This 
lets you define up to six different 
character sets that your programs 
can use. (Default) 

The screen supports only the 
standard character set. 

Specifies whether extra highlighting is available. 

YES 

NO 

The screen supports the extended 
highlight facility. This lets you 
display fields or characters using 
reverse video, underlining, or 
blinking. (Default) 

The screen supports no highlight 
facilities except the bright 
feature. 

Specifies whether the screen supports the set attribute 
order. 

YES 

NO 

The screen supports the set 
attribute order. (Default) 

The screen does not support the 
set attribute order. 

Defines the number of lines in a BMS page for a printer 
terminal. (Default: 24) 

Defines the number of characters in each line of a BMS 
page for a printer terminal. (Default: 80) 

Together, these parameters define the shape of the BMS page buffer. They are 
equivalent to the TCT PGESIZE entry for the printer. For a detailed description of 
the rules governing the use of PRTBMSHT and PRTBMSWD, see "EFHPROF 
definitions for printing" on page 136. 

PRTFRMHT 

246 CICSjCMS User's Guide 

Defines the maximum number of lines on each printer 
page. (Default: 66) 



PRTFRMWD Defines the maximum width of lines on a printer page. 
(Default: 132) 

These parameters correspond to controls on a 3270 printer, and are fully described 
in "EFHPROF definitions for printing" on page 136. 

PRTBUFF 

TERMTRAC 

LOCSYSID 

REMSYSID 

Defines the printer buffer size. (Default: 1920) For a 
description of the rules governing its use, see "EFHPROF 
definitions for printing" on page 136. 

Specifies whether you want terminal trace. 

YES 

NO 

CICS/CMS will write trace 
entries for your terminal data 
stream to the file defined by the 
terminal control trace log 
parameters (see "Parameters for 
terminal control trace" on 
page 249). 

CICS/CMS will not create a 
terminal trace log. (Default) 

Y ou'U find a description of the terminal trace log in 
"CICS/CMS terminal trace" on page 184. 

The 4-character identification by which you refer to your 
local system. If an EXEC CICS command specifies this in 
the SYSID option, CICS/CMS will search only the local 
system for the requested resource. (Default: LOCL) 

The 4-character identification by which you refer to your 
remote CICS/VS system. (Default: REMT) 

If an application accesses remote resources using the 
SYSID option on EXEC CICS commands, the value given 
in SYSID must match the value in this parameter. If an 
application accesses resources defined as remote in a 
CICS/CMS table, the value of REMSYSID is irrelevant. 

For guidance on using LOCSYSID and REMSYSID, see "Using the SYSID option" 
on page 66. 

Parameters for program control 

Keyword 

LANGUAGE 

Description 

Defines the default language for your source programs. 
CICS/CMS will assume that a program is written in this 
language, unless you have specified otherwise in a 
CICS/CMS program table file (see "Program tables" on 
page 70). 

Valid values for LANGUAGE are COBOL, COBOL2, PLI, 
and ASSEMBLE. (Default: COBOL) 

Appendix D. CICS/CMS parameters 247 



LOADMETH 

PROGFN 

PROGFT 

PROGFM 

PLILOAD 

C02LOAD 

Defines the method by which programs will be loaded. 
CICS/CMS will assume this method for a program, unless 
you specify something different in a CICS/CMS program 
table file (see "Program tables" on page 70). 

Valid values for LOADMETH are: 

INCLUDE Load in the user area. (Default) 

NUCXLOAD Load in the nucleus extension. 

The CMS filename of the file to be used as the CICS/CMS 
program table. (Default: CICSCMS) 

The CMS filetype of the file to be used as the CICS/CMS 
program table. (Default: EFHTPROG) 

The CMS filemode of the file to be used as the CICS/CMS 
program table. The default, *, tells CICS/CMS to look for 
a file with the defined filename and file type on any 
currently accessed CMS disk, starting with the A-disk. 

Specifies the CMS filename of a library of PL/I routines 
that CICS/CMS loads each time you run a PL/I program. 
(Default: EFHPLIXX) 

For more information, see "PL/I information for 
CICS/CMS" on page 86. 

Specifies the CMS filename of a library of COBOL II 
routines that CICS/CMS loads each time you run a 
COBOL II program. (Default: EFHC02XX) 

For more information, see "COBOL II information for 
CICS/CMS" on page 88. 

Parameters for the error handler log file 

You'll find a description of the error handler log file in "The CICS/CMS error log" 
on page 168. 

Keyword 

LOGFN 

LOGFT 

LOGFM 

248 CICS/CMS User's Guide 

Description 

Filename of the CMS file to contain the error handler log. 
(Default: CICSCMS) 

Filetype of the CMS file to contain the error handler log. 
(Default: ERRORLOG) 

Filemode of the CMS file to contain the error handler log. 
(Default: AI) 



Parameters for terminal control trace 

You'll find a general description of terminal control trace in "CICS/CMS terminal 
trace" on page 184. 

Keyword 

TCLOGFN 

TCLOGFT 

TCLOGFM 

Description 

Filename of the CMS file to contain the terminal trace 
output. (Default: CICSCMS) 

Filetype of the CMS file to contain the terminal trace 
output. (Default: TERMLOG) 

Filemode of the CMS file to contain the terminal trace 
output. (Default: AI) 

Parameters for destination control table 

Keyword 

DCTFN 

DCTFT 

DCTFM 

Description 

The CMS filename of the file to be used as the CICS/CMS 
destination control table. The default, period (.), means 
that you start with no table filename defined. Before you 
can run applications that need to refer to the table, you 
must tell CICS/CMS which file to use, as described in 
"CICS/CMS tables" on page 66. 

The CMS filetype of files to be used as CICS/CMS 
destination control tables. (Default: EFHTTD) 

The CMS filemode of files to be used as CICS/CMS 
destination control tables. The default, *, tells CICS/CMS 
to look for a file of the defined filename and filetype on 
any currently accessed CMS disk, starting with the A-disk. 

Intrapartition transient data parameters 

You'll find a complete account of using these two parameters in "Intrapartition 
transient data" on page 56. 

Keyword 

INTRAMRL 

INTRAFT 

Description 

Defines the maximum record length of all intrapartition 
queues, in bytes. (Default: 32763) 

Defines the filetype of the CMS files used for 
intrapartition queues. (Default: CICSTDI) 

Appendix D. CICS/CMS parameters 249 



Parameters for PSB directory 

Keyword 

PDIRFN 

PDIRFT 

PDIRFM 

Description 

The CMS filename of the file to be used as the CICSjCMS 
PSB directory. The default, period (.), means that you 
start with no directory filename defined. Before you can 
run applications that need to refer to the directory, you 
must tell CICSjCMS which file to use, as described in 
"CICSjCMS tables" on page 66. 

The CMS file type of files to be used as CICS/CMS PSB 
directories. (Default: EFHTPDIR) 

The CMS filemode of files to be used as CICSjCMS PSB 
directories. The default, *, tells CICSjCMS to look for a 
file of the defined filename and filetype on any currently 
accessed CMS disk, starting with the A-disk. 

Parameters for temporary storage table 

Keyword 

TSTFN 

TSTFT 

TSTFM 

Parameters for file control table 

Keyword 

FCTFN 

FCTFT 

FCTFM 

250 CICS/CMS User's Guide 

Description 

The CMS filename of the file to be used as the CICS/CMS 
temporary storage table. The default, period (.), means 
that you start with no table filename defined. Before you 
can run applications that need to refer to the table, you 
must tell CICS/CMS which file to use, as described in 
"CICS/CMS tables" on page 66. 

The CMS file type of files to be used as CICS/CMS 
temporary storage tables. (Default: EFHTTS) 

The CMS filemode of files to be used as CICS/CMS 
temporary storage tables. The default, *, tells CICS/CMS 
to look for a file of the defined filename and filetype on 
any currently-accessed CMS disk, starting with the A-disk. 

Description 

The CMS filename of the file to be used as the CICS/CMS 
file table. The default, period (.), means that you start 
with no table filename defined. Before you can run 
applications that need to refer to the table, you must tell 
CICS/CMS which file to use, as described in "CICS/CMS 
tables" on page 66. 

The CMS filetype of files to be used as CICS/CMS file 
tables. (Default: EFHTFILE) 

The CMS filemode of files to be used as CICS/CMS file 
tables. The default, *, tells CICS/CMS to look for a file of 
the defined filename and filetype on any currently 
accessed CMS disk, starting with the A-disk. 



Parameters for the CICS/CMS trace file 

You'll find a detailed description of CICS/CMS trace in "CICS/CMS trace 
facilities" on page 173. 

Keyword 

TRACEFN 

TRACEFT 

TRACEFM 

Other parameters 

Keyword 

TRACT RAP 

LOADLIB 

Description 

Filename of the CMS file to contain the CICS/CMS trace 
output. (Default: CICSCMS) 

Filetype of the CMS file to contain the CICS/CMS trace 
output. (Default: TRACELOG) 

Filemode of the CMS file to contain the CICS/CMS trace 
output. (Default: AI) 

Description 

Names the user global trace/trap exit program. The 
default, period (.), specifies that there is no such program 
available. This is mainly intended for IBM support 
personnel, but is introduced in "Field engineering trace" 
on page 187. 

Specifies the name of the CICS/CMS load library. 
(Default: EFHLIB) 

Note: This parameter applies to VM/SP only. It has no 
meaning for PC users. 

"Rebuilding your CICS/CMS system" on page 216 tells 
you how CICS/CMS uses this library. 

Appendix D. CICS/CMS parameters 251 





L 

Appendix E. CICS/CMS trace entries 

If you look at a few lines of output from a CICS/CMS trace log, you'll see that the 
entries can be divided into two basic types: 

CCOA0200 TCA! C1C3C3E3 00010001 ACCT ACCTOO 7013674C / 
F1CC0400 STG 00000510 0108F04C 0< 400BFC38 / 
C8000400 ++++ 00096DFO 8COO0518 500BE512 / 
CC1A0200 PCP 0100C120 OOOOOOOC ACCTOO 70133EAC / 
F2010400 PC 00000000 00000000 ACCTOO 5013678A / 
F1CC0400 STG 00000400 0108F04C 0< 400BFC38 / 
C8000400 ++++ 00097310 8COO0408 500BE512 / 
EA000300 TMP 01000300 000970B8 ACCTOO 4013442E / 
EA000500 TMP 01000300 00092CE4 U 400C1178 / 
CC1C0200 PCP 000201E8 00000001 Y ACCTOO 70134D74 / 
F1930400 STG 0009053A 0108F04C 0< 50134ED8 / 
C8000400 ++++ 00097800 93090540 1 500BE512 / 
CC180200 PCP FD096EOO 04020532 > ACCTOO 70134616 /* 

The two types are: 

• Those beginning with Cc 

• All other entries. 

The entries beginning Cc are unique CICS/CMS entries, generated by its EFH 
modules. The purpose of this appendix is to give you enough information to 
interpret the CreS/CMS entries. If you want more general information about the 
contents of the CICS/CMS trace log, see "General debugging tools" on page 171. 

The "all other entries" are standard CICS/VS trace entries, issued by DFH 
modules. In other words, they convey the same information, about the same events, 
as they do on a CICSjVS system, and are fully described in the GIGS/VS Problem 
Determination Guide. The GIGS/DS/VS Program Debugging Reference Summary, 
SX33-6048 gives a quick reference to CICS/OSjVS trace entries. 

The relevant fields in each CICS/CMS entry are: 

1. The hexadecimal code of the entry. This is the byte immediately following the 
characters cc. 

2. A 3- or 4-character string identifying the CICS/eMS module that wrote the 
trace entry. This is the second stand-alone field in each trace entry. 

3. The contents of the first information field (field A). These are the 4 bytes 
immediately following the module identifier. 

Appendix E. CICS/CMS trace entries 253 



4. The contents of the second information field (field B). These are the 4 bytes 
following Field A. 

5. The contents of field A and field B, translated into EBCDIC. These are the 8 
bytes in the fifth stand-alone field in each trace entry. 

6. The name of the resource involved. This is the string that precedes the last 
hexadecimal field in each entry. 

7. The address of the code from where the trace entry was requested. This is the 
last hexadecimal field in each entry. 

The last characters in the display above (j and *) show the nesting level of 
transactions. For more information on this, see "Using the CICS/CMS escape 
feature" on page 127. 

Each trace entry also includes the date and time at which the entry was made, and 
the line number of the entry within the trace file. These are on the extreme 
right-hand side of the file, and are not shown in the sample trace output. 

In this appendix we concentrate on five of the fields. For example, in the first cc 
entry in the sample output above, the relevant fields are: 

Code OA 

Module TCAI (the CICS/CMS module that creates a new task control area) 

Field A CIC3C3E3 (EBCDIC translation ACCT) 

Field B 00010001 (EBCDIC translation unprintable) 

Resource ACCTOO 

The rest of this appendix describes these fields, in numeric (hexadecimal) order of 
the codes. In each case, we give the code, with an explanation of the event it 
represents, followed by descriptions of the contents of fields A and B and the 
resource field. The descriptions are subdivided to show which CICS/CMS modules 
generate which trace entries. 

EFHMAIN entries 

These entries are generated by CICSjCMS starting and ending transactions. 

00 Start of a transaction. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string Starts ... 

01 End of a transaction. 

Field A All zeroes. 

254 CICS/CMS User's Guide 



L 

Field B All zeroes. 

Resource The string Ends ••••. 

EFHTCAI entries 

These entries are generated by the CICS/CMS module that creates a new TCA. 

08 

09 

Increment the task level on entry to a new task. 

Field A The transaction ID. 

Field B The new task level (first 2 bytes), and old program level 
(second 2 bytes). 

Resource The name of the program to which a LINK is about to be 
made. 

Just before decrementing the the task level and returning to the caller. 

Field A The transaction ID. 

Field B The new task level (first 2 bytes), and old program level 
(second 2 bytes). 

Resource The name of the program to which control is about to 
return. 

OA About to execute the first program in a transaction. 

Field A The transaction ID. 

Field B The current task level (bytes 1 and 2) and program level 
(bytes 3 and 4). 

Resource The name of the program about to start. 

OB Return to the main program of a transaction. 

Field A The transaction ID. 

Field B Only the first byte is relevant. It's the program control 
request code (usually 01, for an EXEC CICS LINK). 

Resource The name of the main program. 

Appendix E. CICSjCMS Trace Entries 255 



EFHTRANI entries 

These entries are generated by transaction initialization. 

OE On entry to the module. 

Field A The transaction ID. 

Field B The first byte is the start code, indicating whether the 
transaction was started by a RETURN TRANSID, a CCMS 
START command, or by other terminal input. The 
remaining 3 bytes are not relevant. 

Resource The name of the program. 

OF Start a task. 

EFHPCP entries 

Field A The transaction ID. 

Field B A I-bit flag, indicating that the task is terminating if it is 
on. The rest of the field is not relevant_ 

Resource The name of the program. 

These entries are generated by the CICSjCMS program control program. 

18 

19 

256 CICS/CMS User's Guide 

Increment program level (as the result of a LINK)_ 

Field A 

Field B 

The current LIFO storage pointer (TCALCDSA). 

The first byte indicates the language of the program 
specified in the LINK, as follows: 

01 
03 
04 
05 

PLjI 
assembler 
COBOL 
COBOL II 

The remaining 3 bytes are not relevant. 

Resource The name of the program specified in the LINK. 

Decrease link level on a RETURN. 

Field A 

Field B 

The current program level. 

The first byte indicates the language of the program to 
which execution is returning, as follows: 

01 PLjI 

03 assembler 



04 COBOL 

05 COBOL II 

The remaining three bytes are not relevant. 

Resource The name of the program to which execution is returning. 

IA Start of PCP executable code. 

Field A The first 2 bytes are the program control request byte, 
indicating the type of request (LINK, XCTL, and so on). 
You'll find a description of this field in the CICS/VS 
Problem Determination Guide. The last 2 bytes are not 
relevant. 

Field B The address of the most recent entry in the PCP 
LINK/RETURN stack. 

Resource The name of the program in the request. 

IB On return from PCP to its caller. 

Field A The first byte is the program control return code. The 
other 3 bytes are not relevant. 

Field B The address of the current entry in the PCP 
LINK/RETURN stack. 

Resource The name of the program in the request. 

IC Loading a program with the INCLUDE command. 

Field A The address where the program is loaded, if field B is all 
zeroes. 

Field B The response code from the load. 

Resource The name of the loaded program. 

ID Loading a program with the NUCXLOAD command. 

Field A The address where the program is loaded, if field B is all 
zeroes. 

Field B The response code from the load. 

Resource The name of the loaded program. 

Appendix E. CICS/CMS Trace Entries 257 



EFHPCPI entry 

This entry is generated by program control initialization. 

IE On entry to the module. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string EFHPCPI 

EFHPCIER entry 

This entry is generated by the program control module that ensures that a failing 
INCLUDE command doesn't affect subsequent INCLUDEs. 

IF On entry to the module. 

EFHTCPI entry 

Field A All zeroes. 

Field B All zeroes. 

Resource Name of the module for which the attempt to load using 
INCLUDE has failed. 

This entry is generated by terminal control initialization. 

20 On entry to the module. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string EFHTCP I. 

EFHERR entries 

These entries are generated by the CICS/CMS error handler. 

21 The CICS test session is terminating after the message. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string TERMCALL. 

258 CICS/CMS User's Guide 

J 



22 A message has been displayed. 

Field A The address from where EFHERR was called. 

Field B All zeroes. 

Resource The number of the CICS/CMS message issued. 

EFHESCAP entry 

This entry is generated by the CICS/CMS module that displays the escape panel 
(EFH122). 

24 Escape panel was displayed. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string EFHESCAP. 

EFHEDFX entries 

This entry is generated by the CICS/CMS EDF program. 

28 On entry to EDF. 

EFHTCS entry 

Field A The contents of the EDF request byte, in hexadecimal. 
You can find out the meaning of this value from the 
description of the EISEDFRB field in the CICS/ VS Data 
Areas manual. 

Field B The address of the task control area (TCA). 

Resource The contents of the request byte, in EBCDIC. 

This entry is generated by the terminal control module used to send data to a 3270 
display acting as the virtual console. 

38 On entry to the module. 

Field A The address of the data sent to the terminal. 

Field B The first four characters of the terminal data. 

Resource The string SND, followed by the terminal rD. 

Appendix E. CICS/CMS Trace Entries 259 



EFHTCR entry 

This entry is generated by the terminal control module used to receive data from a 
3270-type display acting as the virtual console. 

39 On entry to the module 

Field A The address of the data received from the terminal. 

Field B The first 4 characters of the terminal data. 

Resource The string Rev, followed by the terminal ID. 

EFHFCP entries 

These entries are generated by the part of CICS/CMS file control that handles all 
non-browse requests. 

40 

41 

42 

43 

260 CICS/CMS User's Guide 

Read, or read for update, request. The request byte in the previous file 
control trace entry will tell you which of the two request types it is. 

Field A Address of read buffer area within either the VSW A or the 
FW A, depending on the request options used. 

Field B Number of the record being read. 

Resource The name of the file. 

Rewrite 

Field A Address of write buffer area within the FW A. 

Field B Number of record being updated. 

Resource The name of the file. 

Write an index record. 

Field A Address of write buffer area within the FW A. 

Field B The first byte is the request byte (write, rewrite, or delete). 
The other three bytes are irrelevant. 

Resource The name of the file. 

Write new record. 

Field A Address of write buffer area within the FW A. 

Field B Number of record being written. 

Resource The name of the file. 



44 

45 

Compare time stamps in EFHVDATA and EFHVINDX files of a 
CICS/CMS keyed file. 

Field A The first 4 bytes of the EFHVINDX file time stamp buffer 
contents. 

Field B The first 4 bytes of the EFHVDAT A file time stamp buffer 
contents. 

Resource The name of the file. 

Write a new time stamp. 

Field A The address of the time stamp to be written to the 
EFHVINDX file. 

Field B The address of the time stamp to be written to the 
EFHVDATA file. 

Resource The name of the file. 

EFHTDINP entry 

This entry is generated by the CICS/CMS module that processes requests for 
intrapartition transient data. 

48 Entry to EFHTDINP. 

Field A The intrapartition transient data destination ID. 

Field B Only the first byte is relevant. It's the type of transient 
data request issued. 

Resource The string EFHTDINP. 

EFHTDEXP entry 

This entry is generated by the CICS/CMS module that processes requests for 
extrapartition transient data. 

49 Entry to EFHTDEXP. 

Field A The extrapartition transient data destination ID. 

Field B Only the first byte is relevant. It's the type of transient 
data request issued. 

Resource The string EFHTDEXP. 

Appendix E. CICS/CMS Trace Entries 261 



EFHISP entries 

These entries are generated by the CICS/CMS module that handles communications 
between CICS/CMS and a remote CICS/VS system. 

50 

51 

52 

53 

54 

262 CICS/CMS User's Guide 

Entry to EFHISP. 

Field A The contents of ISCRQTR, which gives the type of request 
passed to EFHISP. This will normally be 4, for a converse 
request. 

Field B All zeroes. 

Resource The string EFHISPen. 

Return because the link specified in SYSrD does not exist. 

Field A The contents of TCATPLRC (that is, the return code from 
the terminal control locate function). 

Field B All zeroes. 

Resource The string EFHISPnl 

Return because the link is not a system entry. 

Field A The contents of TCTTETT (that is, the terminal type). 

Field B All zeroes. 

Resource The string EFHISPns. 

Return on no reply. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string EFHISPnr. 

Normal return. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string EFHISPrt. 



EFHXVCOM entry 

This entry is generated by the CICS/CMS module that transmits data between a PC 
or host-connected terminal and a CICS/VS system. 

55 On entry to the module. 

EFHCPIO entry 

Field A The first bit indicates whether the terminal is a PC (1) or 
a host-connected terminal (0). The rest of the field is 
irrelevant. 

Field B All zeroes. 

Resource The string EFHXVCOM. 

This entry is generated by the CICS/CMS module that emulates the CPIO 
component of VM/PC for the remote server. 

5A On entry to the module. 

EFHICP entries 

Field A The function. 

Only the first bit is relevant. This is 0 (if the logical 
device module (EFHLDSF) has called EFHCPIO for 
initialization or termination of the remote server), or 1 (if 
the communications module (EFHXVCOM) has called 
EFHCPIO to send something to the remote system). 

Field B All zeroes. 

Resource The string EFHCPIO. 

These entries are generated by the CICS/CMS interval control program. 

60 Start transaction. 

Field A The transaction ID. 

Field B The terminal ID. 

Resource The REQID. 

61 RETRIEVE/RETRY. 

Field A The transaction ID. 

Field B The terminal ID. 

Resource The REQID value in the interval control command issued. 

Appendix E. CICS/CMS Trace Entries 263 



62 

63 

EFHSPP entries 

Cancel START request (with data). 

Field A Transaction ID. 

Field B The address of the retrieve data element for this request 
(mapped by the control block, EFHICRDE). 

Resource The REQID value in the interval control command issued. 

Cancel START request (without data). 

Field A The transaction ID. 

Field B The terminal ID. 

Resource The REQID value in the interval control command issued. 

These entries are generated by the CICS/CMS sync point program. 

65 

66 

Spp entry. 

Field A The current task level (bytes 1 and 2), and program level 
(bytes 3 and 4). 

Field B The address of the current main task control area (TCA). 

Resource The string SPPENTRY. 

SPP exit. 

Field A The current task level (bytes 1 and 2), and program level 
(bytes 3 and 4). 

Field B The address of the current main task control area (TCA). 

Resource The string SPP EXIT. 

EFHFCPT entries 

These entries are generated by the CICS/CMS file control program termination 
module. 

68 Entry to file control task termination. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string FCPTENTR. 

264 CICS/CMS User's Guide 



69 Unlock data set (that is, the task is ending without issuing an 
UNLOCK, either explicitly or implicitly). 

Field A Address of the FCT entry. 

Field B Address of either the VSW A or the FW A active for the 
update request outstanding. Whether it's the VSWA or 
FW A depends on the request options used. 

Resource The data set name. 

6A Exit from file control task termination. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string FCPTEXIT. 

EFHFCPI entry 

This entry is generated by the CICS/CMS program that initializes file control. 

6C Entry to EFHFCPI. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string FCP INIT. 

EFHTSPI entry 

This entry is generated by the CICS/CMS program that initializes temporary 
storage. 

6D Entry to EFHTSPI. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string TS INIT. 

Appendix E. CICS/CMS Trace Entries 265 



EFHTDPI entry 

This entry is generated by the CICS/CMS program that initializes transient data. 

6E Entry to EFHTDPI. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string TDP INIT. 

EFHDLII entry 

This entry is generated by the CICS/CMS program that initializes the DL/I 
interface. 

6F Entry to EFHDLII. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string DLI INIT. 

EFHFCP2 entries 

These entries are generated by the CICS/CMS module that handles all file control 
browse requests. 

70 Entry to EFHFCP2. 

Field A The first byte is the request value; the other 3 bytes are 
not relevant. You'll find a description of this field in the 
CICS/VS Problem Determination Guide. 

Field B The address of the file control table entry (FCTE). 

Resource The string FCP2ENTR. 

71 An EXEC CICS READPREV on a nonkeyed file. 

Field A The address of the read buffer area within the FW A. 

Field B The number of the record being read. 

Resource The name of the file being browsed. 

72 An EXEC CICS READNEXT on a nonkeyed file. 

Field A The address of the read buffer area within the FW A. 

266 CICS/CMS User's Guide 

~ 



L 
73 

74 

75 

76 

77 

Field B The number of the record being read. 

Resource The name of the file being browsed. 

An EXEC CICS READPREV on a keyed file. 

Field A The address of the read buffer area within the FW A. 

Field B The number of the record being read from the 
EFHVDATA file. 

Resource The name of the file being browsed. 

An EXEC CICS READNEXT on a keyed file. 

Field A The address of the read buffer area within the FW A. 

Field B The number of the record being read from the 
EFHVDATA file. 

Resource The name of the file being browsed. 

An invalid record has been read in a READNEXT or READPREV on a 
keyed file. 

Field A The address of the read buffer area within the FWA. 

Field B The number of the invalid record. 

Resource The name of the file being browsed. 

The FW A and VSW A in use in a browse operation. 

Field A The address of the FW A. 

Field B The address of the VSW A. 

Resource The name of the file being browsed. 

Invalid browse request. 

Field A The first byte is the request value; the other 3 bytes are 
not relevant. You'll find a description of this field in the 
ClCS/ VS Problem Determination Guide. 

Field B The first byte is the request modifier; the other 3 bytes are 
not relevant. You'll find a description of this field in the 
ClCS/VS Problem Determination Guide. 

Resource The name of the file being browsed. 

Appendix E. CICS/CMS Trace Entries 267 



EFHCCMS entries 

These entries are generated by the CICS/CMS control transaction, CCMS. 

90 Entry to the module. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string CMND BEG. 

91 Exit from the module. 

Field A All zeroes. 

Field B All zeroes. 

Resource The string CMND END. 

EFHTCSP entry 

This entry is generated by the terminal control module that sends data to a 
terminal printer. 

9A Entry to the module. 

Field A The 3270 command issued. 

Field B All zeroes. 

Resource The string EFHTCSP. 

EFHTCPW entry 

This entry is generated by the terminal control printer support module for 
processing write control characters (WCCs). 

9C Entry to the module. 

Field A The WCC character. 

Field B All zeroes. 

Resource The string EFHTCPW. 

268 CICS/CMS User's Guide 



Index 

< 

* 

> 

I Special Characters I 

as a parameter value in EFHSETP and 
EFHPROF 242 

used to identify build files 217 
used to suppress error log 168 

to identify failed EXEC CICS commands in 
trace 173 

as nest level indicator in panel EFH122 129 
as nest level indicator in trace 173 

as nest level indicator in panel EFH122 129 
as nest level indicator in trace 173 

to identify EXEC CICS commands in trace 173 

used for unprintable characters 140 
used to indicate remote server is running 108, 

141 

abends 194 
CICSjVS abends for PL/I 88 
sample error handler panel for 167 

adding members to a macro library 99 
ALTSCREN parameter 245 
AP AR reports 200 
application program development 

correcting and retesting programs 141 
naming files for 91 
preparing applications 93 
shortcuts 143 
testing applications 123 
transferring applications to CICS/VS 151 

application testing 123 
applying service to CICS/CMS 214 
assembler 

assembling a program 95 
debugging programs from error handler 164 
error messages 161 
filetype of source program files 83 

assembling BMS maps 
display of files created by 15 
file output from 15, 94 
listing files produced by 95 
listings in debugging 172 
sample application maps 14 
sample EFHMAPCR commands 144 
screen output from 14, 95 
shortcuts in 143 
use of a PF key for 14 
use of the Z-disk 93 

using EFHMAPCR from a PF key 94 
valid filetypes for source map files 143 

auxiliary directory errors 84 

basic mapping support 
See BMS 

batch data interchange 54 
BMS 

assembling maps using a PF key 94 
CICS/CMS support for 52 
CSPS transaction 53 
defining the page buffer size 136 
displaying accumulated pages 53 
filetypes of source map files 143 
paging 52 
printer transactions 134 
routing 52 
terminal paging comm~nds 52 
terminal support 52 

BMSHT parameter 244 
BMSWD parameter 245 

C/ terminal paging command 52 
CC entries in trace 253 
CCMS control transaction 

"termid" option 139 
QUIT option to end CICS test session 26 
START option for displaying BMS pages 53 
START option for interval control 55 
START option used to run printer 

transactions 139 
used to test "trigger" printer transactions 139 
used with QUIT option to terminate CCU2 116 

CCU2 transaction 113 
defining records to be processed 115 
for transferring files to CICSjVS 154 
input file 114 
output file from 115 
output from 116 
reorganizing keyed files with 116 
sample panel 114 
specifying a key range 115 

CEBR 
See temporary storage browse 

CECI 
See command interpreter 

CEDF 
See execution diagnostic facility 

CEHS transaction 107 
changing tables 103 
changing the CICS/CMS environment 119 

Index 269 



CICS/CMS 
changing the environment 119 
changing the environment from the escape 

panel 120 
CICSCMS command 11 
creating keyed files 110 
creating keyed files from VSAM files 113 
creating non-keyed files 110 
customization 212 
differences from CICS/VS 225 
escape feature 32 
getting to know 9 
high-level language support 85 
introduction to facilities 4 
library (EFHXLIB) 85 
manuals to use with v 
parameters 241 
problem reporting 159 
reporting errors in 199 
sample application 12 
service 214 
setting up the environment 47 
shortcuts in starting 149 
shortcuts in using 143 
support for CICS/VS features 225 
support for high-level languages 84 
support for the CICS/VS API 90 
using COBOL II 88 
using OS/VS COBOL 86 
using PL/I 86 

CICS/CMS sample application 12 
assembling the maps 14 
copying data files from system disk 25 
data files for 24 
defining programs for 22 
execution 19 
files used in 13 
output from assembling maps 15 
resource definition for 22 
testing 21, 25 
testing a single program 18 
translating and compiling programs 16 
using CEBR with 31 
using CECI with 30 
using EDF with 26 
using the CICS/CMS escape feature 32 

CICS/VS 
differences from CICS/CMS 225 
environment 124 
manuals to use with CICS/CMS v 
support of features in CICS/CMS 225 
test session 124 
testing features not supported by 

CICS/CMS 129 
CICSDSA parameter 243 

in customization 212 
CMS 

commands used to transfer program files to 
CICS/VS 152 

converting files into CICS/CMS keyed files 110 
converting files into CICS/CMS nonkeyed 

files 110 
COPYFILE command used to safeguard data 

files 117 

270 CICS/CMS User's Guide 

DEBUG 181 
debugging tools 180 
DUMP subcommand in DEBUG 183 
ERASE command for error logs 169 
ERASE command used to erase trace log 175 
loading user programs into the nucleus 72 
manuals to use with CICS/CMS vi 
return codes in EIBRCODE 64 
subset used from panel EFH122 128 
support for high-level languages 84 
SVCTRACE 183 
trace 183 

COBOL 
changing from the default language 214 
debugging programs from the error 

handler 165 
default compiler options for 86 
filetype of source program files 83 
GLOBAL TXTLIB command for 85 
sequencing programs 86 
using with CICS/CMS 86 

COBOL II 
DEBUG input/output 88 
debugging programs from error handler 164 
default compiler options for 88 
EFHC02XX 89 
file type of source program files 83 
GLOBAL TXTLIB command for 85 
improving performance 89 
SYSPRINT output 88 
using with CIGS/CMS 88 

COLOR parameter 245 
command interpreter 

initial display 30 
starting from panel EFH122 127 
use of in testing 126 
used for installation verification 206 
using with the sample application 30 

compiling programs 
auxiliary directory errors 84 
error messages 161 
file output from 17, 97 
for the sample application 16 
listings in debugging 172 
programs 95 
sample EFHTC commands 146 
screen output from 17,97 
shortcuts in 144 
use of the Z-disk 93 
using a PF key 95 

compressing a macro library 100 
connecting to a remote CICS/VS system from a 

terminal 106 
connecting to remote CICS/VS system from a 

PC 105 
control program 

See CP 
control record in EFHVDATA and EFHVINDX 

files 62 
conversational monitor system 

See CMS 
converting 

CMS files to CICS/CMS keyed files 110 



CMS files to CICS/CMS nonkeyed files 110 
sample EFHUCMS1 commands 148 
shortcuts in 146 
VSAM files for use by CICS/CMS 113 
VSAM files to CICS/CMS keyed files 113 
VSAM files to CICS/CMS non-keyed files 113 

COPYFILE command for creating CreS/CMS 
nonkeyed files 110 

COPYFILE command for safeguarding data 
files 117 

copying CreS/CMS to a PC 42 
corrective service 215 
C02LOAD parameter 248 
CP 

ADSTOP command 182 
debugging commands 182 
DISPLAY command 182 
DUMP subcommand 183 
EXTERNAL command 191 
PER command 181 
STORE command 182 
trace 183 

CPIOTRAC 189 
CPIOTRAC parameter 189, 244 
CPLD 87 
CPLI 87 
CSFE 

See field engineering trace 
CSPS transaction 53 
customization 

changing the default compiler options 213 
changing the default language from 

COBOL 214 
changing the default macro libraries 213 
changing the PF keys definitions 214 
CICS/CMS environment 212 
EFHSETP EXEC 212 
using the H Assembler under VM/SP 213 

CW ASIZE parameter 242 

data files 24, 60 
DATEFORM parameter 243 
DCTFM parameter 249 
DCTFN parameter 249 
DCTFT parameter 249 
DEBUG 

CMS 181 
CMS program 242 
COBOL II 88 

debugging 
abends 194 
CEBR 173 
CECI 173 
COBOL II DEBUG input/output 88 
CP dumps 183 
CP/CMS tools 180 
CP/CMS trace 182 
EDF 173 
EFHUMAP utility 176 
EFHUSTG log 177 

error log 168 
errors in CICS/CMS 199 
field engineering trace 187 
incorrect output 192 
kinds of problem 159 
loops 191 
manuals for 196 
parameters in EFHPROF/EFHSETP 242 
program checks 194 
terminal trace 184 
tools 171 
trace 173 
waits 192 

defining extrapartition transient data 57 
defining libraries for high-level languages 85 
defining remote resources to CreS/CMS 65 
deleting members from a macro library 100 
deleting records from keyed files 62 
destination control table 73 

deciding whether you need to change the 104 
EFHPROF parameters for 249 
form of entry for a remote destination 75 
form of entry for an extrapartition queue 75 
form of entry for an intrapartition queue 74 
sample 74 

developing programs 
See application program development 

differences between CreS/CMS and cres/vs 225 
disconnecting from a remote CICS/VS system 109 
disks 

CMS disks for the PC 38 
temporary disk (Z-disk) 93 

displaying BMS pages 53 
DL/I 

defining as a remote resource 65 
EFHSETP parameters for the PSB 

directory 250 
PSB directories 78 

DSA 
See dynamic storage area 

DSECT 
See symbolic description maps (DSECTs) 

DUMP 183 
DUPREC condition on relative record datasets 63 
dynamic storage area 

changing from panel EFH121 121 
specifying size in EFHPROF 243 

dynamic transaction backout of remote 
resources 109 

EDF 
See execution diagnostic facility 

EDF parameter 242 
editing 

maps 83 
programs 83 

EFHBUILD CNTRL 217 
EFHC02XX module for COBOL II 89 
EFHMAPCR 

Index 271 



customizing to change the default macro 
libraries 213 

customizing to use the H Assembler under 
VM/SP 213 

file output from 94 
listing files produced by 95 
sample commands 144 
screen output from 95 
used as a command 143 
using from a PF key 94 
valid input filetypes for 143 

EFHPLIXX 87 
EFHPROF 

. as parameter value in 242 
comment lines needed in 48 
defining CICS/CMS tables in 67 
defining trace table in 175 
general use of 47 
GLOBALV commands in 48 
intrapartition transient data parameters 56 
introduction 47 
parameters 241 
parameters to define a simulated printer 138 
period as parameter value in 242 
printer definitions 136 
sample EXEC 48 
SETPARM entry in 48 
setting EDF default in 125 
TERMID/TERMID2 parameters for naming 

terminals 138 
types of entries in 47 

EFHSETP 
. as parameter value in 242 
customization 212 
intrapartition transient data parameters 56 
introduction 47 
parameters 241 
parameters to define a simulated printer 138 
period as parameter value in 242 
printer definitions 136 
setting EDF default in 125 
TERMID/TERMID2 parameters for naming 

terminals 138 
EFHT 146 
EFHTABH XEDIT macro 70 
EFHTC 

customizing to change the default compiler 
options 213 

customizing to change the default macro 
libraries 213 

file output from translate phase 96 
output from compile phase 97 
running from a PF key 95 
sample commands 146 
screen output from compile phase 97 
screen output from translate phase 96 
used as a command 144 

EFHTLOGT EXEC to convert the terminal trace 
log 185 

EFHTLOGX macro to convert the terminal trace log 
from within XEDIT 187 

EFHTSPAC 93,175 
EFHUCMS1 utility 110 

input file for 111 

272 CICS/CMS User's Guide 

output files from 111 
output from 113 
run from panel EFH14 110 
sample commands 148 
sample EFH14 panel 110 
specifying a key range 112 
specifying records to convert 111 
trace 112 
used as a command 146 

EFHUMAP 176 
description of output 177 
destination of output from 177 
executing 177 
options 177 
sample output from 176 

EFHUSTG 177 
error handler panel for frozen log 178 
executing 177 
maximum number of entries in 178 
output from 178 
size of table entries 243 
storage classes in output from 180 
used to check a CSFE storage freeze 188 

EFHVDATA files 61 
as output from EFHUCMS1 111 
control record in 62 
structure of 61 

EFHVINDX files 61 
as output from EFHUCMS1 111 
control record in 62 
entries in 61 
structure of 61 

EFHVNONK files 
See also nonkeyed files 
using COPYFILE to create 110 
using the CCU2 utility to create 113 

EFHXLIB 85 
EFHxMAC macro libraries 99 
EFHxSTD macro libraries 99 
EFHxUSER macro libraries 99 
EFHxUSER macro library for user DSECTs 14 
EFH1 

option descriptions 232 
PF and P A key functions 233 
reference information 232 
sample panel display 11 
sample panel for download to PC 43 

EFHl1 
display of files created by BMS map 

assembly 15 
panel display of file output from a 

translate/compile 17 
PF and P A key functions 234 
reference information 234 
sample panel display 13 
using PF9 to define tables 68 

EFH12 
as a shortcut into CICS/CMS 149 
function descriptions 236, 239 
PF and P A key functions 237 
reference information 236 
returning to after a CICS test session 124 
returning to from EFH125 164 

J 



sample panel display 18 
EFH121 

cancelling changes on 122 
panel for changing the CICS/CMS 

environment 119 
requesting trace from 175 
rules for using 120 
sample panel display 119 
using the panel to define tables 69 

EFH122 
PF and PA key descriptions 239 
reference information 239 
sample panel display 32 
using CECI from 126 

EFH1221 
cancelling changes on 122 
requesting trace from 175 
rules for using 120 
sample panel 120 
used to change the CICS/CMS 

environment 120 
EFH124 panel (remote server escape) 106 
EFH125 panel 

See error handler 
EFH13 

sample panel display 22 
using PF9 to define tables 68 

EFH14 panel 
See EFHUCMSI utility 

EFH15 
EFH151 panel 219 
panel for downloading to a PC 44 
using the EFHBUILD CNTRL file with 217 

EIBRCODE 64 
entry sequenced datasets 63 
error handler 

debugging programs from escape panel 164 
defining the error log 168 
display for BMS paging 53 
display reporting a missing program 20 
displaying previous screen 164 
erasing the error log 169 
error log 168 
error messages 163 
escaping from 164 
general form of display 161 
information only messages 163 
log file parameters in EFHSETP 248 
panel display for frozen EFHUSTG log 178 
panel for completed EXEC CICS START 55 
panel for EXEC CICS START command 55 
sample abend panel 167 
sample error panel 166 
sample information panel 165 
sample warning panel 166 
severe error messages 163 
stopping unwanted messages 164 
terminating CICS test session 164 
warning messages 163 

error log 168 

ERASE command for 169 
example EFHPROF definitions for 168 
restricting the life of the 169 
structure of 168 

escape feature 
changing the CICS/CMS environment 120 
CMS subset 128 
enabling trace using the 175 
from error handler panel 164 
in the CICS environment 124 
nest level indicator 129 
running nested transactions 129 
sample EFH122 display 32 
starting a VM session 128 
starting CEBR 128 
starting CECI 127 
starting EDF 127 
use of in testing 127 
use with the sample application 32 
used for interval control 56 
used from EDF 125 
using the command-level interpreter 

(CECI) 126 
escape panel 

See EFH122 
ESDS 63 
EXEC CICS DELETE command on keyed files 62 
executing 

applications 123 
CICS/CMS panel for 19 
printer transactions 138 
the sample application 18, 19 

execution diagnostic facility 
EDF display before a READ 27 
exec interface block in 130 
invoked for abends 125 
printing panels on a PC 125 
starting 125 
starting from panel EFH122 127 
stopping 125 
use of in testing 125 
use of in testing unsupported CICS/VS 

features 129 
used in debugging loops 192 
using escape feature with 125 
using with the sample application 26 

execution panel 
See EFH12 

EXTDS parameter 245 
EXTERNAL command 191 
extrapartition transient data 

CMS FILEDEF command for 57 
defining in a transient data table 75 
defining queues to CICSjCMS 58 
defining to CICSjCMS 57 
example FILEDEF commands for 59 
how to use 57 
printing from 58 
reading queues from the virtual reader 118 

Index 273 



FCTFM parameter 250 
FCTFN parameter 250 
FCTFT parameter 250 
field engineering trace 187 

global trapjtrace exit 188 
storage freeze 188 
storage violation 188 

file table 77 
deciding whether you need to change the 104 
EFHPROF parameters for 250 
sample 77 

FILEDEF command 
examples for extrapartition transient data 59 
for extrapartition transient data 57 
to associate an extra partition queue with the 

virtual reader 118 
files 

converting CMS to CICSjCMS keyed 110 
converting CMS to CICSjCMS nonkeyed 110 
converting VSAM to CICSjCMS keyed 113 
converting VSAM to CICSjCMS non-keyed 113 
data 60 
differences between CICSjCMS and 

CICSjVS 225 
EFHSETP parameters for file control table 250 
EFHVDATA filetype for keyed 61 
EFHVINDX filetype for keyed 61 
entry sequenced (ESDS) 63 
general file conversion 113 
key sequenced (KSDS) 61 
maximum size 60 
naming application 91 
nonkeyed 63 
preparing local 109 
record structure in nonkeyed 63 
relative record (RRDS) 63 
reorganizing keyed 116 
safeguarding 11 7 
shortcuts in converting CMS 146 
structure of source program 83 
tables 77 
transferring to CICS/VS 154 
use of VSAM files in CICS/CMS 60 
used by sample application 24 
utilities 110, 113 

function shipping 
See remote server 

general file copy utility 
See CCU2 transaction 

GLOBAL TXTLIB command for high-level 
languages 85 

GLOBAL V commands in the EFHPROF EXEC 48 

274 CICSjCMS User's Guide 

H Assembler 
BMS source map filetypes 143 
customizing CICSjCMS EXECs to use under 

VMjSP 213 
help on CICSjCMS panels 233, 234, 237, 239 
high-level language support 84 
HILIGHT parameter 246 
hot key for PC use of the remote server 105 

IBM Personal Computer 
See PCj370 

improving the performance of COBOL II 
programs 89 

incorrect output 192 
checking data flow 193 
checking instruction flow 193 
checking messages 193 

input 
from the virtual reader 118 

installation 
checking correctness of 206 
distribution tape for 204 
of CICSjCMS on a PC 37 
on a VM system 204 
procedure 205 
setting up the remote server 209 
verification process 206 

intersystem communication 
See remote resources 

interval control 54 
CCMS START command 55 
commands supported 54 
error handler panel for completed START 55 
error handler panel for EXEC CICS START 55 
scheduling transactions 55 
using remote 66 

INTRAFT parameter 56, 249 
INTRAMRL parameter 56, 249 
intrapartition transient data 

defining in a transient data table 74 
defining the eMS filetype for 56 
defining the maximum record length 56 
how to use 56 
IOERR condition 57 
overlength records in 57 
parameters in EFHPROFjEFHSETP 249 
read pointers for 57 
reasons for defining in a table 74 
using the CMS FINIS command for 57 
write pointers for 57 

ISSUE commands 54 



key sequenced files 61 
keyed files. 61 

creating from CMS files 110 
creating from VSAM files 113 
deleting records from 62 
EFHVDATA filetype for 61 
EFHVINDX filetype for 61 
reorganizing with CCU2 116 

KSDS files 61 

LANGUAGE parameter 247 
in customization 212 

loading CICS/CMS down to a PC 42 
loading user programs into the CMS nucleus 72 
LOAD LIB parameter 251 
LOADMETH parameter 247 
local data files 60 
LOCSYSID parameter 66,247 
LOGFM parameter 248 

example of 168 
LOG FN parameter 248 

example of 168 
LOGFT parameter 248 

example of 168 
loops 

diagnosing 191 
escaping from 192 
using EDF to debug 192 
using the EXTERNAL command to 

diagnose 191 

MACLIB command 99 
macro libraries 99 

adding members to 99 
changing macro libraries with MACLIB 99 
compressing 100 
customizing CICS/CMS to use different 213 
deleting members from 100 
EFHxSTD 99 
EFHxUSER 14, 99 
replacing members in 100 
search order for CICS/CMS 99 
symbolic description maps in 94 
transferring to CICS/VS 153 

maps 
assembling 94 
assembling the sample application 14 
CICS/CMS API restrictions 90 
creating 83 
editing 83 
file output from assembling 94 

filetype of source map files 83 
in EFHxUSER macro library 14 
transferring to CICS/VS 151 
using EFHMAPCR from a PF key 94 

maximum local data file size 60 
messages 

display from error handler 161 
error 163 
error log 168 
information only 163 
severe error 163 
warning 163 

minus sign ( - ) to indicate remote server is 
running 108, 141 

naming application files 91 
nest level indicator 129 
nested transactions 129 
nonkeyed files 63 

creating from CMS files 110 
creating from VSAM files 113 
record structure in 63 
writing records to 63 

NUCXLOAD 72 

organizing storage on a PC 37 
output 

from assembling maps 15, 94 
from compilation 17, 97 
from translation 17, 96 
incorrect 192 
on a 3270 printer terminal 134 
producing printed 133 

P / terminal paging command 52 
paging 52 

CICS/CMS support for 52 
CSPS transaction 53 
displaying accumulated pages 53 
error handler display for 53 
page chaining (CI) 52 
page retrieval (PI) 52 
single keystroke retrieval 52 
terminal paging commands 52 

panels 
See under panel names (for example, EFH13) 

parameters (CICS/CMS) 241 
. as value 242 
boolean 241 
character 241 

Index 275 



common work area size (CW ASIZE) 242 
communication activity trace (CPIOTRAC) 244 
date display form (DA TEFORM) 243 
debugging program (USER) 242 
destination control table 249 
dynamic storage area size (CICSDSA) 243 
EDF status 242 
EFHUSTG log size (STGTABLE) 243 
error handler log 248 
external interrupt handling (TRAPEXT) 243 
file control table 250 
general rules for 241 
global trace/trap exit program 

(TRACTRAP) 251 
in EFHPROF 241 
in EFHSETP 241 
intra partition transient data 249 
load library (LOAD LIB) 251 
numeric 241 
period as value 242 
printer terminal 136, 246 
program control 247 
PSB directory 250 
specify program interruption exit (SPIE) 242 
temporary storage table 250 
terminal 244 
terminal control trace 249 
trace file 251 
trace output (TRACE) 242 
transaction work area size (TW ASIZE) 242 

pass-through VM 
for remote connection to the remote server 210 
used from a PC to connect to remote 

CICSjVS 105 
used from VM/SP to connect to remote 

CICSjVS 106 
passing data with transaction IDs 123 
PAl key 

testing application use from the escape 
panel 128 

PA2 key 
in the CICS environment 124 
testing application use from the escape 

panel 128 
used on an EDF panel 125 
used on an error handler panel 164 
using from a CECI display 126 

PC/370 
- (minus sign) to indicate remote server is 
running 108, 141 

auxiliary directory errors 84 
changing CICS/CMS on 46 
configuration diagram 40 
copying changes in CICSjCMS to 220 
copying CICS/CMS to 42 
EFH15 panel for download 44 
hot key to transfer between active sessions 105 
installing CICS/CMS 37 
linking to the host VM system with 

VMPCSERV 43 
manuals to use with CICS/CMS vii 
organizing storage 37 
printing EDF displays 125 
sample EFH1 panel for download 43 

276 CICS/CMS User's Guide 

setting up CMS disks for 38 
storage required for CICSjCMS 38 
the VMjPC configura tor 37 
transferring to a remote CICSjVS system 

from 105 
using an XTj370 38 
using the host VM system from a 37 

PDIRFM parameter 250 
PDIRFN parameter 250 
PDIRFT parameter 250 
PER command 181 
period as parameter value in EFHSETP and 

EFHPROF 242 
PF keys 

assembling a BMS map with 14 
associating transactions with 73 
changing the default definitions 214 
for assembling maps 94 
for translating and compiling programs 16 
in panel EFH1 233 
in panel EFHll 234 
in panel EFH12 237 
in panel EFH122 239 
starting transactions with 123 

physical maps 
as output from an assembly 94 

PL/I 
CICSjVS abends 88 
debugging programs from the error 

handler 164 
default compiler options for 86 
filetype of source program files 83 
GLOBAL TXTLIB command for 85 
load library (EFHPLIXX) 87 
mode of CMS disk for the compiler 85 
PLIDUMP output 88 
program checks 87 
REPORT output 88 
sequencing programs 86 
SYSPRINT output 87 
use of storage 88 
using with CICSjCMS 86 

PLILOAD parameter 248 
preparing applications for testing 93 
preparing CMS disks for the PC 38 
preparing for an application test 103 
preparing local data files 109 
preventative service 215 
printing 

defining a simulated printer 138 
defining maximum number of lines per 

page 137 
defining the printer buffer size 137 
EFHSETP/EFHPROF definitions for 136 
features supported 134 
from extra partition queues 58 
on 3270 terminals 134 
page size 136 
printer size 136 
PRTBMSHT parameter 136 
PRTBMSWD parameter 136 
PRTBUFF parameter 137 
PRTFRMHT parameter 137 



PRTFRMWD parameter 137 
using "triggers" 139 
using BMS 134 
using SCS printers 135 
using terminal control 134 
with CICS/CMS 133 
3270 printer data streams 134 

PROGFM parameter 248 
PROG FN parameter 248 
PROGFT parameter 248 
program checks 194 

debugging with CP 196 
debugging without SPIE 196 
diagnosing 195 

• 

escaping from loops containing no CMS 
calls 192 

output from 194 
PL/I handling 87 
SPIE option 194 
translator 196 

program development 
See application program development 

program function keys 
See PF keys 

program table 70 
deciding whether you need to change the 104 
description of entries in 71 
EFHPROF parameters for 248 
entry point field 71 
filename field 71 
language field 72 
load method field 72 
PF key field 73 
sample 71 
sample table 23 
transaction field 73 

programs 
as a CICS/CMS resource 51 
assembling 95 
CICS/CMS API restrictions 90 
compiling 95 
correcting 141 
creating 83 
differences between CICS/CMS and 

CICS/VS 227 
editing 83 
file output from compiling 97 
file output from translating 96 
filetypes of source files 83 
loading user programs into the CMS 

nucleus 72 
NUCXLOAD 72 
parameters in EFHPROF/EFHSETP 247 
program checks 194 
retesting 141 
sample program table 23 
structure of source files 83 
tables 70 
testing the sample application 18 
transferring to CICS/VS 151 
translating 95 

PRTBMSHT parameter 136, 246 
PRTBMSWD parameter 136, 246 

PRTBUFF parameter 137,247 
PRTFRMHT parameter 137, 246 
PRTFRMWD parameter 137,246 
PS parameter 246 
PSB directory 78 

EFHPROF parameters for 250 
sample 78 

pseudo-VSAM files 
reorganizing keyed 116 

PVM 
See pass-through VM 

QUIT option on CCMS 26 
at end of CCU2 transaction 116 
at end of CEBR session 32 
at end of CECI session 31 

record structure in nonkeyed files 63 
recovery of remote resources 109 
relative record datasets 63 
remote resources 64 

defining DL/I PSBs 65 
defining DL/I PSBs in the PSB directory 78 
defining files in a table 78 
defining remote temporary storage 65 
defining remote transient data 65 
defining remote VSAM files 65 
defining temporary storage in a table 76 
defining to CICS/CMS 65 
defining transient data in a table 75 
dynamic transaction backout of 109 
interval control 66 
reasons for using 64 
recovery of 109 
syncpoints on 109 

remote server 
- (minus sign) on a PC to indicate 
availability 108, 141 

checking status of the 108 
defining remote resources to CICS/CMS 64 
disconnecting from a remote CICS/VS 

system 109 
dynamic transaction backout of resources 109 
escape panel (EFH124) 106 
making a local connection at installation 210 
making a remote connection at 

installation 210 
recovery of resources 109 
setting up the connection 209 
starting 107 
stopping the 109 
syncpoints on remote resources 109 
trace 189 
transferring to a remote CICS/VS system from a 

PC 105 

Index 277 



transferring to a remote CICS/VS system from a 
terminal 106 

use in converting remote VSAM files 113 
removing unwanted entries from a macro 

library 100 
REMSYSID parameter 66, 247 
reorganizing keyed files with CCU2 116 
replacing members in a macro library 100 
resource definition 

See tables 
resources 

CICS/VS resources in CICS/CMS 51 
defining remote 65 
local data files 60 
programs 51 
recovery of remote 109 
remote 64 
temporary storage 60 
terminals 52 
transient data 56 

retesting applications 141 
RRDS 63 

safeguarding files 117 
scheduled transactions 55 
SCRNHT parameter 244 
SCRNWD parameter 244 
SCS printers 135 
searching macro libraries during compilation 99 
service 

applying to CICSjCMS 214 
copying files 215 
corrective 215 
EFHBUILD CNTRL file 217 
incorporating changes into CICS/CMS 220 
preventative 215 
rebuilding the CICS/CMS system 216 

SET ATTR parameter 246 
SETPARM entry in EFHPROF 48 
SETPARM statement 

statements to define a simulated printer 138 
used to define error log 168 
used to define trace log file 173 
used to request trace 175 

setting up your CICS/CMS environment 47 
shared segmented storage 214 
shortcuts in CICS/CMS 143 
simulating a 3270 printer 138 
single keystroke retrieval 52 
SPIE 194 

parameter 243 
routine output 194 

START option on CCMS 
in interval control 55 
transaction option 139 
used to display BMS pages 53 
used to start printer transactions 139 
used to test "trigger" printer transactions 139 
used with "termid" option 139 

278 CICSjCMS User's Guide 

starting CICS/CMS 10, 11 
from a host-connected terminal 10 
from a PC 11 

starting the command-level interpreter (CECI) 126 
starting the execution diagnostic facility 125 
starting the remote server 107 
starting transactions from a blank screen 123 
STGT ABLE parameter 178, 243 
stopping the execution diagnostic facility 125 
stopping the remote server 109 
storage 

classes in EFHUSTG output 180 
minimum required for CICS/CMS on a PC 38 
minimum virtual size for VM/PC 214 
organizing on a PC 37 
shared segmented 214 

support for high-level languages 84 
SVCTRACE 183 
symbolic description maps (DSECTs) 

as output from an assembly 94 
stored in EFHxUSER macro library 94 

syncpoints on remote resources 109 
SYSID option 

used to access remote resources 66 
SYSPRINT output 

for COBOL II 88 
for PL/I 87 

tables 
CICS/CMS panel for 22 
defining sample application programs 22 
defining to CICS/CMS 67 
file 77 
for the sample application 22 
general form of entries in 70 
general information 66 
program 70 
PSB directories 78 
sample entry description for transient data 

table 70 
sample file table 77 
sample program table 71 
sample PSB directory 78 
sample temporary storage table 76 
shortcuts in preparing 149 
temporary storage 76 
transient data 73 
updating 103 
using EFHPROF to define 67 
using EFHT ABH in 70 
using panel EFH121 to define 69 
using PF9 on panels EFH13 and EFHll to 

define 68 
TCLOGFM parameter 184,249 
TCLOGFN parameter 184,249 
TCLOGFT parameter 184, 249 
temporary disk 

See Z-disk 
temporary storage 



AUXILIARY option 60 
CPIOTRAC 189 
defining remote 65 
EFHSETP parameters for temporary storage 

table 250 
how to use 60 
lost at end of CICS test session 124 
queue for remote server trace 189 
tables 76 

temporary storage browse 
in the sample application 31 
sample CEBR display 31 
starting from panel EFH122 128 
use of in testing 126 
used in installation verification 208 
used to check remote server trace 189 

temporary storage table 76 
deciding whether you need to change the 104 
EFHPROF parameters for 250 
sample 76 

TERMID parameter 
naming the interactive terminal 138 

TERMID2 parameter 
naming a printer terminal 138 

terminal trace log 
EFHTLOGT EXEC 185 
EFHTLOGX XEDIT macro 187 

terminals 
batch data interchange 54 
BMS support 52 
control 54 
differences between CICS/CMS and 

CICS/VS 226 
EFHSETP parameters for trace 249 
general information 52 
output on 3270 printer 134 
parameters in EFHPROF/EFHSETP 244 
supported by CICS/CMS 54 
trace 184 
transferring to a remote CICS/VS system 

from 106 
TERMTRAC parameter 184,247 
testing 

"trigger" printer transactions 139 
applications 123 
preparing applications for 93 
preparing for 103 
printer applications 133 
the sample application 18, 21, 25 
tools 125 
unsupported CICSjVS features 129 
using the escape panel 127 
with CEBR 126 
with CECI 126 
with EDF 125 

tools for testing 125 
trace 

CC entries 253 
CMS 183 
CP 183 
defining the trace file in EFHPROF 173 
description of entries in 253 
EFHCCMS 268 
EFHCPIO 263 

EFHDLII 266 
EFHEDFX 259 
EFHERR 258 
EFHESCAP 259 
EFHFCP 260 
EFHFCPI 265 
EFHFCPT 264 
EFHFCP2 266 
EFHICP 263 
EFHISP 262 
EFHMAIN 254 
EFHPCIER 258 
EFHPCP 256 
EFHPCPI 258 
EFHSETP parameters for the trace file 251 
EFHSPP 264 
EFHTCAI 255 
EFHTCPI 258 
EFHTCPW 268 
EFHTCR 260 
EFHTCS 259 
EFHTCSP 268 
EFHTDEXP 261 
EFHTDINP 261 
EFHTDPI 266 
EFHTRANI 256 
EFHTSPI 265 
EFHUMAP output in 176 
EFHUSTG output in 179 
EFHXVCOM 263 
erasing the trace log 175 
field engineering 187 
fields in 253 
nesting level indicator in 173 
output from terminal 184 
remote server 189 
requesting from panel EFH121 175 
requesting from panel EFH1221 175 
requesting through EFHPROF 175 
sample output from 174 
SVCTRACE 183 
terminal 184 
use of in debugging 173 

TRACE parameter 242 
example 175 

TRACEFM parameter 251 
example 173 
example of using the 175 

TRACEFN parameter 251 
example 173 

TRACEFT parameter 251 
example 173 

TRACTRAP parameter 188, 251 
transaction work area 

TW ASIZE parameter 242 
transactions 

associating with PF keys 73 
CSFE 187 
executing printer 138 
nesting from panel EFH122 129 
option on CCMS START command 139 
passing data with 123 
starting from a blank screen 123 
starting with a PF key 123 

Index 279 



testing printer 133 
transferring 

CMS commands for 152 
data files to CICS/VS 154 
macro libraries to CICSjVS 153 
tested programs and maps toCICS/VS 151 

transferring to a remote CICS/VS system from a 
PC 105 

transient data 
checking queues with CEBR from panel 

EFH122 128 
defining remote 65 
EFHSETP parameters for destination control 

table 249 
extrapartition 57 
general information 56 
intra partition 56 
tables 73 

translating programs 95 
error messages 161 
file output from 17,96 
for the sample application 16 
listings in debugging 172 
sample EFHTC commands 146 
screen output from 17, 96 
shortcuts in 144 
use of the Z-disk 93 
using a PF key 95 

TRAPEXT parameter 243 
using EXTERNAL to diagnose loops 191 

TSTFM parameter 250 
TSTFN parameter 250 
TSTFT parameter 250 
TWA 

See transaction work area 
TW ASIZE parameter 242 

UCTRAN parameter 245 
in customization 212 
used to help in installation verification 206 

updating CICS/CMS tables 103 
USER parameter 242 

280 CICS/CMS User's Guide 

virtual storage access method 
See VSAM 

VM/PC 
minimum virtual machine size 214 
sample session selection menu 43 
using VMPCSERV to link to the host VM 

system 43 
VM/PC configurator 37 
VMPCCON 37 
VSAM 

CICS/CMS support for 60 
CICS/CMS support for entry sequenced 

datasets 63 
CICS/CMS support for key sequenced files 61 
CICS/CMS support for relative record 

datasets 63 
converting files for use by CICS/CMS 113 
defining remote VSAM files 65 
maximum file size 60 
reorganizing keyed files with CCU2 116 
significance of EIBRCODE in 64 

waits 192 

XEDIT macro for table files (EFHT ABH) 70 

Z-disk 93 
EFHTSPAC 93 
used to hold trace log 175 

Numerics I 
3270 data streams supported 134 



Gi o 
z 

Customer Information Control System/ 
Conversational Monitor System 
(CICS/CMS) 
Release 1 
User's Guide 

Order No. SC33-0285-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and 
action, if any, are deemed appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your 
IBM representative or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ... 

If you want an acknowledgement, give your name and address below. 

Name ............................................................ . 

Job Title ........................... Company ...................... . 

Address ........................................................... . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zip ....... . 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



SC33-0285-0 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAil 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 6R1 H, 
1 80 Kost Road, 
Mechanicsburg, PA 17055, USA 

Fold and tape Please Do Not Staple 

==.= .::® - - --. ..... ----. ---- - - ------------- -,-

Fold and tape 

NO POSTAGE 

NECESSARY 

IF MAILED 

IN THE 

UNITED STATES 

Fold and tape 



~ z 

Customer Information Control System/ 
Conversational Monitor System 
(CICS/CMS) 
Release 1 
User's Guide 

Order No. SC33-0285-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and 
action, if any, are deemed appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your 
IBM representative or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ... 

If you want an acknowledgement, give your name and address below. 

Name ............................................................ . 

Job Title ........................... Company ...................... . 

Address ........................................................... . 

. . . . . . . . . . . .. . . . . . . . . . . . . . , ........................... Zip ....... . 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



• 

SC33-0285-0 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 6R1 H, 
180 Kost Road, 
Mechanicsburg, PA 17055, USA 

Fold and tape Please Do Not Staple 

==.= .::® - --------. ---- - - ---------
-~-,-

Fold and tape 

NO POSTAGE 

NECESSARY 

IF MAILED 

IN THE 

UNITED STATES 

Fold and tape 










