
Systems Reference Library

IBM System/360 Operating System:

Time Sharing Option

Command Language Reference

OS Release 21

This reference publication describes the TSO
command language that a terminal user may use to
request the services of TSO.

The nIntroductionn describes what the command
language is. The section entitled nWhat You
Must Know to Code the Commandsn contains general
information necessary for the use of every
command.

The section entitled nThe Commands n contains
a description of each command, its operands and
its subcommands. Examples are included.

nCommand Procedure Statements n describes the
statements designed for use in command
procedures.

File No. 8360-36
Order No. GC28-6732-3 OS

Fourth Edition (July, 1972)

This is a reprint of GC28-6732-3 incorporating changes
released in the following Technical Newsletters:

GN28-2521 (dated April 15, 1972)
GN28-2531 (dated May 15, 1972)

This edition applies to release 21 as updated by component
release 360S-0S-586, of IBM System/360 Operating System,
and to all subsequent releases until otherwise indicated in
new editions or Technical Newsletters. Changes are con
tinually made to the information herein~ before using this
publication in connection with the operation of IBM Systems,
consult the latest IBM System/360 and System/370 Bibliography,
Order No. GA22-6822, and the current SRL Newsletter, Order No.
GN20-0360, for the editions that are appl~cable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Publications Development,
Department D5B, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1971,1972

This publication describes the commands and
operands of the TSO Command Language. It
is intended for use at a terminal. The
level of knowledge required for this
publication depends upon the command being
used. Most commands require little
knowledge of TSO and of the Operating
System; however, some commands require a
greater knowledge of the system. As a
general rule, the description of each
command requires an understanding of those
elements being manipulated by the command.

The prerequisite publication, IBM
system/360 Operating System: Time Sharing
Option, Terminal User's Guide, GC28-6763
describes what commands are used to perform
the following functions:

• Start and end a terminal session.
• Enter and manipulate data.
• Program at the terminal.
• Test a program.
• Write and use Command Procedures.
• Control a system with TSO.

Once a user is familiar with the
Terminal User's Guide, he or she can use
this publication to code the TSO Commands.

The publication, IBM System/360
Operating System: Time Sharing Option,
Terminals, GC28-6762 describes how to use
the terminals supported by TSO.

Preface

The major divisions in this book are:

• Introduction
• What You Must Know to Code the Commands
• The Commands
• Command Procedure Statements
• Index

The Introduction describes what the
command language is. The section entitled
"Wha't You Must Know to Code the Commands"
contains general information necessary for
the use of every command.

The section entitled "The Commands"
contains a description of each command, its
operands and its subcommands. Examples are
included.

The commands are presented in
alphabetical order. Subcommands are
presented in alphabetical order following
the command to which they apply. A
boldface heading on each page identifies
the information contained on the page. The
boldface headings and alphabetical
organization allow you to locate particular
commands as you would locate a subject in a
dictionary or encyclopedia. The larger
boldface headings identify the first pages
of the descriptions of commands.

"Command Procedure Statements" describes
the statements designed for use in command
procedures.

The "Index" contains the location (page
number> where terms and subjects are
discussed in the text.

4 TSO Command Language Reference (Release 21)

SUMMARY OF AMENDMENTS FOR GC28-6732-2
AS UPDATED BY GN28-2521 COMPONENT
RELEASE 360S-0S-586 • • • • • •• .. •• 8

SUMMARY OF AMENDMENTS FOR GC28-6732-2
OS RELEASE 21 • • • • • • •• • • • •• 9

SUMMARY OF AMENDMENTS FOR GC28-6732-1
OS RELEASE 20.6 AS UPDATED BY GN28-2503 10

SUMMARY OF AMENDMENTS FOR GC28-6732-1
OS RELEASE 20.1 AS UPDATED BY GN28-2480 10

INTRODUCTION • • • • • .. • • 12

WHAT YOU MUST KNOW TO CODE
The syntax of a Command

positional Operands

THE COMMANDS 15

Keyword Operands •• •
Abbreviating Keyword Operands
Delimiters • • • '. .. • • • •
syntax Notation Conventions
Subcommands • • • • • •

How to Enter a Command • • • • •
Data Set Naming Conventions

Data Set Names in General
TSO Data Set Names '.. • •
How to Enter Data Set Names
specifying Data set Passwords

System-Provided Aids • • • • • •
The Attention Interruption •
The HELP Command
Message Types '. • ' ••

THE COMMANDS • . . .
ACCOUNT COMMAND

Subcommands of ACCOUNT

ADD SUBCOMMAND OF ACCOUNT

CHANGE SUBCOMMAND OF ACCOUNT

DELETE SUBCOMMAND OF ACCOUNT.

END SUBCOMMAND OF ACCOUNT

HELP SUBCOMMAND OF ACCOUNT

LIST SUBCOMMAND OF ACCOUNT.

LISTIDS SUBCOMMAND OF ACCOUNT

ALLOCATE COMMAND • . . .• . . .

• • 15
• • 15
• • 16

• • • 16
• • 16
• • 17
• • 18
• • 19
• • 19
• • 20
• • 20
• • 21

23
• • 24
• • 24
• • 24
• • 25

· · 27

· · 29

· · 29

32

37

40

· · 44

45

· · 47

· · 49

· · 51

Contents

ATTRIB COMMAND • • • 54

CALL COMMAND • '. • • 55

CANCEL COMMAND • • 57

DELETE COMMAND. 59

EDIT COMMAND •
Modes of Operation •

Input Mode • • •

• • • • • '. • • • • 61
• • • • • • 67

• • 67
Edit Mode • • • • • 69
Changing From One Mode
Data Set Disposition.

to Another • 71

Tabulation Characters
• • 71
• • 71
• • 72
•• 72

Executing User Written Programs
Terminating the Edit Command •
Subcommands for Edit • • • • • 74

BOTTOM SUBCOMMAND OF EDIT

CHANGE SUBCOMMAND OF EDIT
Quoted String Notation
combinations of Operands • •
Examples Using Quoted strings

DELETE SUBCOMMAND OF EDIT

DOWN SUBCOMMAND OF EDIT

END SUBCOMMAND OF EDIT • •

FIND SUBCOMMAND OF EDIT

HELP SUBCOMMAND OF EDIT

INPUT SUBCOMMAND OF EDIT

INSERT SUBCOMMAND OF EDIT

• • • 75

• 76
• • 77

• 77
• • • 80

• • 81

• • • • 83

• • • • 84

• • 85

• • 87

• • 89

• • 91

INSERT/REPLACE/DELETE FUNCTION OF EDIT • 93

LIST SUBCOMMAND OF EDIT • • • • 95

PROFILE SUBCOMMAND OF EDIT • • • • • 97

RENUM SUBCOMMAND OF EDIT • • 99

RUN SUBCOMMAND OF EDIT • • • .101

SAVE SUBCOMMAND OF EDIT • .104

SCAN SUBCOMMAND OF EDIT .105

Contents 5

TABSET SUBCOMMAND OF EDIT • .107

TOP SUBCOMMAND OF EDIT • .109

UP SUBCOMMAND OF EDIT • .110

VERIFY SUBCOMMAND OF EDIT • .111

EXEC COMMAND • • .113

FREE COMMAND • • • .115

HELP COMMAND • • • .117

LINK COMMAND • • • • .121

LISTALC COMMAND • .129

LISTBC COMMAND • • .131

LIST CAT COMMAND • .133

LISTDS COMMAND • .137

LOADGO COMMAND • .139

LOGOFF COMMAND. • .143

LOGON COMMAND • .145

OPERATOR COMMAND. • • • .• • .147
The OPERATOR Command • • • • .147

Format • • • • • • • .148
syntax • • • • • • • • • • • • .148

CANCEL SUBCOMMAND OF OPERATOR • .150

DISPLAY SUBCOMMAND OF OPERATOR • • .152

END SUBCOMMAND OF OPERATOR • • .155

HELP SUBCOMMAND OF OPERATOR • .156

MODIFY SUBCOMMAND OF OPERATOR • .158

MONITOR SUBCOMMAND OF OPERATOR • • .160

SEND SUBCOMMAND OF OPERATOR • .162

STOPMN SUBCOMMAND OF OPERATOR • .165

OUTPUT COMMAND • • • • .167

CONTINUE SUBCOMMAND OF OUTPUT • .171

END SUBCOMMAND OF OUTPUT • • .173

HELP SUBCOMMAND OF OUTPUT • .174

SAVE SUBCOMMAND OF OUTPUT • .176

6 TSO Command Language Reference (Release 21)

PROFILE COMMAND

PROTECT COMMAND
Passwords
Types of Access
Password Data Set

RENAME COMMAND •

RUN COMMAND

SEND COMMAND •

STATUS COMMAND •

SUBMIT COMMAND •

TERMINAL COMMAND •

TEST COMMAND..

• •• 177

• •• 181
.181

•••• 181
.183

• .185

• .187

.191

•••• 193

.195

• .197

• •• 201

ASSIGNMENT OF VALUES FUNCTION OF TEST .205

AT SUBCOMMAND OF TEST

CALL SUBCOMMAND OF TEST

COPY SUBCOMMAND OF TEST

DELETE SUBCOMMAND OF TEST

DROP SUBCOMMAND OF TEST

END SUBCOMMAND OF TEST • •

EQUATE SUBCOMMAND OF TEST

FREEMAIN SUBCOMMAND OF TEST

GETMAIN SUBCOMMAND OF TEST •

GO SUBCOMMAND OF TEST . . .
HELP SUBCOMMAND OF TEST

LIST SUBCOMMAND OF TEST

LISTDCB SUBCOMMAND OF TEST.

LISTDEB SUBCOMMAND OF TEST.

LISTMAP SUBCOMMAND OF TEST •

LISTPSW SUBCOMMAND OF TEST

LISTTCB SUBCOMMAND OF TEST

LOAD SUBCOMMAND OF TEST

OFF SUBCOMMAND OF TEST • •

·

·
·
·

• •• 207

• .210

• .212

• .215

• .216

• •• 217

• .218

• .220

• .221

• .222

.223

.225

• .229

• •• 231

• •• 232

• .233

• •• 234

• •• 236

• .237

QUALIFY SUBCOMMAND OF TEST •

RUN SUBCOMMAND OF TEST •

WHERE SUBCOMMAND OF TEST .. •

T!ME COMMAND • •

... 238

• .240

•• 241

... 243

COMMAND PROCEDURE STATEMENTS • .. 245

END STATEMENT OF COMMAND PROCEDURES ... 246

PROC STATEMENT OF COMMAND PROCEDURES •• 247

WHEN STATEMENT OF COMMAND PROCEDURES ... 249

APPENDIX A: PROGRAM PRODUCT
INFORMATION •••••• 251

Figure 1. Entering Commands From a
Terminal 11
Figure 2. Functions of the TSO
Commands and Subcommands (Part 1 of 2) 13
Figure 3. Descriptive Qualifiers ... 21
Figure 4. Descriptive Qualifiers
Supplied by Default • • • • • • • • 23
Figure 5. Organization of the UADS
Data Set ••••••••••••••• 30
Figure 6. The Simplest Structure
That an Entry in the UADS Can Have • • • 31
Figure 7. A Complex Structure For an
Entry in the UADS • • • • • • • • • • • 31

APPENDIX B: ADDRESSES FOR SUB COMMANDS
OF TEST .255

APPENDIX C: PROGRAM PRODUCT COMMANDS .259
ASM Command •••• • .. 259
CALC Command 259
COBOL Command •• 259
CONVERT Command •• 259
COpy Command • • • • • 260
FORMAT Subcommand of EDIT •• 260
MERGE Subcommand of EDIT •• 261
FORMAT Command.. • .261
FORT Command. • .261
LIST Command .. • .262
MERGE Command ••• 262

GLOSSARY •• 263

INDEX ••• 265

Figures

Figure 8. Default Values for LINE
and BLOCK Operands 66
Figure 9.. Values of the Line pointer
Referred to by an Asterisk (*) • 70
Figure 10. Subcommands Used With the
Edit Command • 74
Figure 11. Default Tab Settings .107
Figure 12. Information Available
Through the HELP Command ••••••• 119
Figure 13. Relationships Between the
TSO OPERATOR Subcommands and the MVT
(non-TSO) Operator Commands (Part 1 of
2) • • .. • • • • • • • • • • • • • • 148

Contents 7

8 TSO Command Language Reference (Release 21)

DYNAMIC SPECIFICATION OF DATA SET
ATTRIBUTES (DCB Parameters)

as

• A new command, ATTRIB, was added,. By
using this command r, a TSO user can
build and store a list of data set
attributes. These attributes can
subsequently be assigned to a data set
allocated dynamically •

• A new operand, USING
(attribute-list-name), was added to the
ALLOCATE command.

Summary of Amendments
for GC28-6732-2

Updated by GN28-2521 and GN28-2531
Component Release 3605-05-586

• A new operand, ATTRLIST
(attribute-list-names), was added to
the FREE command.

• Changes were made to the introductory
information and index where applicable.

MISCE.LLANEOUS CHANGES
• Typographical and syntatical errors are

corrected in the ATTRIB and FREE
commands.

Summary of Amendments 8.1

8.2 TSO Command Language Reference (Release 21)

STATUS DISPLAY
The SQA operand has been added to the
DISPLAY subcommand of OPERATOR.

QUOTED STRING NOTATION
The ability to use single quotes as
delimiters for a character string has
been added to the CHANGE and FIND
subcommands of EDIT.

TECHNICAL CORRECTIONS
Technical corrections have been made
throughout this publication, as
indicated by a vertical line to the
left of each change. Editorial
corrections and clarifications have
been made as required.

GLOSSARY
Terms that were duplicated in the IBM
Data Processing Glossary, GC20-1699,
have been removed.

Summary of Amendments
for GC28-6732-2

OS Release 21

WHAT YOU MUST KNOW TO CODE THE COMMANDS
Removed the list of TSO informational
messages. They are documented in the
publication: IBM System/360 Operating
system: Messages and Codes. GC28-6631.

PROGRAM PRODUCT COMMANDS
Moved the Program Product Commands into
Appendix C. Added references to new
Program Product Publications to
Appendix A.

Summary of Amendments 9

Summary of Amendments
for GC28-6732-1
as Updated by GN28-2503
OS Release 20.6

MODIFY SUBCOMMAND OF OPERATOR
The keyword descriptions have been
clarified.

Summary of Amendments
for GC28-6732-1
as Updated by GN28-2480
OS Release 20.1

MESSAGES
Messages added and changed

FORT DATA SET TYPE KEYWORD
Keyword deleted

CTLX KEYWORD FOR PROFILE COMMAND AND
SUBCOMMAND

Keyword added

EQUATE KEYWORD FOR GETMAIN SUBCOMMAND
Keyword added

COpy SUBCOMMAND FOR TEST COMMAND
subcommand added

10 TSO Command Language Reference (Release 21)

You request work by typing
commands at your terminal.
The commands are entered
into the system when
you press the carrier
return key.

Figure 1. Entering Commands From a Terminal

IBM
SYSTEM/360

responds to your
in a conversational

prompting you for
ed input and sending

t back to your terminal.

11

Introduction

TSO is the Time Sharing Option of the System/360 Operating System. TSO
allows you and a number of other users to use the facilities of the
system concurrently and in a conversational manner. You can communicate
with the system by typing requests for work (commands) on a terminal
which may be located far away from the system installation. The system
responds to your requests by performing the work and sending messages
back to your terminal. The messages tell you such things as what the
status of the system is with regard to your work and what input is
needed to allow the work to be done.

A command, then, is a request for work. By using different commands,
you can have different kinds of work performed. You can store data in
the system, change the data, and retrieve it at your convenience. You
can create programs, test them, have them executed, and obtain the
results at your terminal. The commands make the full capability of the
system available at your terminal.

When you use a command to request work, the command establishes the
scope of the work to the system. To provide flexibility and greater
ease of use" the scope of some commands' work encompasses several
operations that are identified separately. After entering the command,
you may specify one of the separately identified operations by typing a
subcommand. A subcommand, like a command, is a request for work;
however, the work requested by a subcommand is a particular operation
within the scope of work established by a command.

The commands and subcommands recognized by TSO form the TSO command
languagem The command language is designed to be easy to use. The
command names and subcommand names are typically familiar English words,
usually verbs, that describe the work to be done. The number of command
names and subcommand names that you must learn has been kept to a
minimum. The information that you must provide is defined by operands
(words or numbers that accompany the command names and subcommand
names). Most of the operands have default values that are used by the
system if you choose to omit the operand from the command or subcommand.
In addition., you can abbreviate many of the command names, subcommand
names and operands. Together, the defaults and abbreviations decrease
the amount of typing required.

This reference manual describes what each command can do and how to
enter, or type in, a command at your terminal. Figure 2 shows you the
kinds of work you can accomplish by using the command language, and
identifies most of the commands and subcommands that you can use to
request each kind of work. A complete list of the commands,
subcommands, and their abbreviations is located on the divider page that
precedes the descriptions of the commands. The rules for abbreviating
operands are in the section, "What You Must Know to Code the Commands."

Additional commands and subcommands are available for a license fee
as optional Program Products,. Appendix A contains information on the
Program Products, along with references to related publications.
Appendix C lists the Program Product commands and subcommands.

12 TSO Command Language Reference (Release 21)

Introduction

Figure 2. Functions of the TSO Commands and Subcommands (Part 1 of 2)

FUNCTION

CONTROL
YOUR
TERMINAL
SESSION

ENTER,
MODIFY,
STORE,
AND
RETRIEVE
DATA

identify yourself to the system •.•••...••
define your operational characteristics .•

display messages (notices and mail) ..•.••
send messages ••.•.••••.•••.•.••.•••.•.•••
obtain help from the system .••••..•••••••

end your terminal session ..•••••.••.••..•
display session time used ••• ~ ••••••••••••

create a data set ••.•.•••••.•••••••••••••
enter data into a data sett .••.•..•.•••••

change data in a data set~ .•.•..•..••.••.
place data into columns •.•.••••••..••

change position of current line •.........

display referenced lines •. ~
renumber lines of data ..••........•••....
check the syntax of input statements
delete lines of data from a data set+
delete an entire data set•....•
allocate a data set ..•.....•......•....•.
specify attributes for a data set
free an allocated data set or attributes.
copy a data set •.......•.....•..•.•..•.•.
format a data set•......•.•.••..•.

merge two data sets ..•..•.....•..•.......

list the contents of a data set

list the names of allocated data sets
list the names of cataloged data sets ..•.
list information about your data sets
store a data set•...•............
rename a data set ..•.....•..•..........•.
establish passwords for a data set
end the EDIT functions••....•...

COMMAND

LOGON
TERMINAL
PROFILE
EDIT ..•.••
LISTBC
SEND
HELP
OPERATOR •.
ACCOUNT .••
EDIT ••••••
OUTPUT .•..
TEST•
LOGOFF
TIME

EDIT
EDIT ••.•••
EDIT •.•.•.
EDIT ..••••
EDIT••
EDIT
EDIT
EDIT •.....
EDIT ..•••.
EDIT
EDIT .•....
EDIT
EDIT
EDIT
DELETE
ALLOCATE
ATTRIB
FREE
COPy*
FORMAT *
EDIT•
MERGE*
EDIT ...•.•
LIST*
EDIT
LISTALC
LISTCAT
LISTDS
EDIT•
RENAME
PROTECT
EDIT

* optional Program Products, available for a license fee

SUBCOMMAND

PROFILE

HELP
HELP
HELP
HELP
HELP

INPUT
INSERT
CHANGE
TABSET
UP
DOWN
TOP
BOTTOM
FIND
VERIFY
RENUM
SCAN
DELETE

FORMAT *

MERGE*

LIST

SAVE

END

tInsert/replace/delete function of EDIT can be used for single line
operations.

Figure 2. Functions of the TSO Commands and Subcommands (Part 1 of 2)

13

Introduction

Figure 2. Functions of the TSO Commands and Subcommands (Part 2 of 2)

FUNCTION

DEVELOP
PROGRAMS
AND
PROCESS
DATA

TEST
AND
DEBUG A
PROGRAM

CON'l'ROL
THE
SYSTE:r-l

COMMAND SUBCOMMAND

create a program; enter it in a data set. EDIT
convert PL/l,BASIC, and FORTRAN
statements•...••.........•..•• CONVERT

compile and execute a program•.... RUN
EDIT RUN

invoke a standard compiler•........ CALL
invoke the assembler prompter•..•. ASM*
invoke the COBOL prompter•.•. COBOL*
invoke the FORTRAN prompter FORT*
linkage edit a compiled program .•......•. LINK
load and execute a load module ..•......•• CALL

LOADGO
load and execute an object module•. LOADGO
submit a job for batch processing SUBMIT
cancel a batch job....................... CANCEL
display the status of a batch job STATUS

OUTPUT
execute a procedure consisting of

commands. . . • • • EXEC

initiate testing•.....•....•....• TEST
load a load module for execution ...•....• TEST ..•..• LOAD
set.breakpoints for inspection •.......••• TEST •..... AT
remove breakpoints •...................... TEST •.•••. OFF
establish base location for addresses •... TEST ..•.•• QUALIFY
display absolute addresses•....... TEST WHERE
add symbols to symbol table•.. TEST ...•.. EQUATE
initialize registers and start execution. TEST CALL
copy data in main storage or in register
locations TEST .•.... COPY

start or restart program execution•. TEST GO
get additional main storage TEST GETMAIN
release main storage..................... TEST FREEMAIN
display contents of main storage TEST LIST
display contents of registers TEST LIST
display a Data Control Block TEST LISTDCB
display a Data Extent Block TEST LISTDEB
display a storage map.................... TEST...... LISTMAP
display the Program Status Word TEST•. LISTPSW
display a Task Control Block TEST LISTTCB
delete the program with no more testing .. TEST RUN
end testing.............................. TEST...... END
display CPU time TIME

modify TSO options OPERATOR .. MODIFY
display system status OPERATOR .. DISPLAY
cancel a terminal user OPERATOR .. CANCEL
monitor terminal and job activities OPERATOR .. MONITOR
send messages to users OPERATOR .. SEND
stop monitoring OPERATOR .. STOPMN
maintain the user attribute data set ACCOUNT .•.
add new user attributes ACCOUNT ... ADD
delete user attributes ACCOUNT ... DELETE
change user attributes ACCOUNT ... CHANGE
display user attributes ACCOUNT ... LIST
list user identifications ACCOUNT ... LISTIDS

r---.---~----------~------------
* optional Program Products, available for a license fee.

Figure 2. Functions of the TSO Commands and Subcommands (Part 2 of 2)

14 TSO Command Language Reference (Release 21)

What You Must Know To Code The Commands

To use the TSO command language you should know:

• The syntax of a command.

• The way to enter a command.

• The data set naming conventions.

In addition, you should be aware of the aids available to you:

• The attention interruption.

• The HELP command.

• The messages that you receive from the system.

Note: In this manual, all references to terminal keyboards and keys
apply specifically to the IBM 2741 Communications Terminal. For
information concerning the use of other terminals refer to IBM
System/360 Operating System: Time Sharinq Option, TerminalS;
GC28-6762-0. Terminals which are equivalent to those explicitly
supported may also function satisfactorily. The customer is responsible
for establishing equivalency. IBM assumes no responsibility for the
impact that any changes to the IBM-suppliE~d products or programs may
have on such terminals.

THE SYNTAX OF A COMMAND

A command consists of a command name followed. usually, by one or more
operands. A command name is typically a familiar English word, usually
a verb, that describes the function of the command. For instance, the
RENAME command changes the name of a data set. Operands provide the
specific information required for the command to perform the requested
operation. For instance. operands for the RENAME command identify the
data set to be renamed and specify the new name:

RENAME NEWBUY INSTOCK

// ~
command name operand operand

(old data-set-name) (new name for data set)

Two types of operands are used with the commands: positional and
keyword. Positional operands follow the command name and precede
keywords.

Positional Operands

Positional
prescribed
integers.
positional
positional

operands are values that follow the command name in a
sequence. The value may be one or more names, symbols, or
In the command descriptions within this manual. the
operands are shown in lower case characters. A typical
operand is:

data-set-name

15

What You Must Know to Code the Commands

You must replace "data-set-name" with an actual data set name when you
enter the command.

When you want to enter a positional operand that is a list of several
names or values, the list must be enclosed within parentheses. The
names or values must not include unmatched right parentheses.

Keyword Operands

Keywords are specific names or symbols that have a particular meaning to
the system. You can include keywords in any order following the
positional operands. In the command descriptions within this book,
keywords are shown in upper case characters. A typical keyword is:

TEXT

In some cases you may specify values with a keyword. l'he value is
entered within parentheses following the keyword. The way a typical
keyword with a value appears in this book is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that
you want to appear in a line and substitute that number for the
"integer" when you enter the operand:

LINESIZECSO)

Abbreviating Keyword Operands

You must enter keywords spelled exactly as they are shown or you may use
an acceptable abbreviation. You may abbreviate any keyword by entering
only the significant characters; that is, you must type as much of t.he
keyword as is necessary to distinguish it from the other keywords of the
command or subcommand. For instance, the LISTBC command has four
keywords:

MAIL
NOMAIL

NOTICES
NONOTICES

The abbreviations are:

M for MAIL Calso MA and MAl)
NOM for NOMAIL Calso NOMA and NOMAI)
NOT for NOTICES Calso NOTI, NOTIC, and NOTICE)
NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC, and NONOTICE)

Delimiters

When you type a command, you should separate the command name from the
first operand by one or more blanks. You should separate operands by
one or more blanks or a comma. For instance, you can type the LISTBC
command like this:

LISTBC NOMAIL NONOTICES

or like this:

LISTBC NOMAIL,NONOTICES

or like this: LISTBC NOMAIL NOTICES

16 TSO Command Language Reference (Release 21)

What You Must Know to Code the Commands

Enter a blank by pressing the space bar at the bottom of your terminal
keyboard. You can also use the TAB key to enter one or more blanks.

Note: A keyword with a value is a single operand and must not contain
delimiters; for instance, do not separate the keyword from the
parentheses that enclose the value.

Syntax Notation Conventions

The notation used to define the command syntax and format in this
publication is described in the following paragraphs.

1. The set of symbols listed below is used to define the format but
you should never type them in the actual statement.

hyphen
underscore
braces {}
brackets []
ellipsis

The special uses of these symbols are explained in paragraphs 5-9.

2. You should type upper-case letters and words, numbers, and the set
of symbols listed below in an actual command exactly as shown in
the statement definition.

apostrophe
asterisk
comma
equal sign
parentheses
period

* ,
=
()

3. Lower-case letters, words, and symbols appearing in a command
definition represent variables for which you should substitute
specific information in the actual command.

Example: If name appears in a command definition, you should
substitute a specific value (for example, ALPHA) for the variable
when you enter the command.

4. Stacked items represent alternatives. You should select only one
such alternative.

Example: The representation

A
B
C

indicates that either A or B or C is to be selected.

5. Hyphens join lower-case letters, words, and symbols to form a
single variable.

Example: If member-name appears in a command definition, you
should substitute a specific value (for example, BETA) for the
variable in the actual command.

17

What You Must Know to Code the Commands

6. An underscore indicates a default option. If you select an
underscored alternative, you need not type it when you enter the
command.

Example: The representation

A
B
C

indicates that you are to select either A or B or C; however, if
you select B, you need not type it, because it is the default
opt:ion.

7. Braces -group related items., such as alternatives.

Example: The representation

indicates that you must choose one of the items enclosed within the
braces. If you select A, the result is ALPHA=CA,D).

8. Brackets also group related items; however, everything within the
brackets is optional and may be omitted.

Example: The representation

ALPHA={i].Dl
indicates that you may choose one of the items enclosed within the
brackets or that you may omit all of the items within the brackets.
If you select B, the result can be either ALPHA=(,D) or
ALPHA=(B,D).

9. An ellipsis indicates that the preceding item or group of items can
be repeated more than once in succession.

Example:

ALPHA [, BETA •••]

indicates that ALPHA can appear alone or can be followed by ,BETA
any number of times in succession.

Subcommands

The work done by some of the commands is divided into individual
operations. Each operation is defined and requested by a subcommand.
To request one of the individual operations, you must first enter the
command. You can then enter a subcommand to specify the particular
operation that you want performed. You can continue entering
subcommands until you enter the END subcommand.

~rhe commands that have subcommands are ACCOUNT, CALC (a Program
Product), EDIT, OPERATOR, OUTPUT and TEST. When you enter the ACCOUNT
command you can then enter the subcommands for ACCOUNT. Likewise, when

18 TSO Command Language Reference (Release 21)

What You Must Know to Code the Commands

you enter the CALC, EDIT, OPERATOR, OUTPUT, or TEST commands you can
enter appropriate subcommands.

The syntax of a subcommand is the same as that of a command. A
subcommand consists of a subcommand name followed" usually, by one or
more operands. The discussions of operands and delimiters apply to
subcommands as well as commands.

HOW TO ENTER A COMMAND

A terminal session is designed to be an uncomplicated process: you
identify yourself to the system by entering the LOGON command and then
request work from the system by entering other commands. To enter a
command or subcommand:

1. Type the command or subcommand name and any operands that you
select ..

2. Press the carrier return key.

You can begin typing at any position on a line; you do not have to start
at the lefthand margin. You can type command names and operands in
either uppercase or lowercase characters. You may prefer to type your
input in lowercase characters so that you can distinguish your input
from the system's messages on your listing (the system prints in
uppercase characters).

You can continue a line by placing a hyphen at the end of the line
that is to be continued. For a discussion of data continuation under
EDIT, see the topic, Modes of Operation under the EDIT command.

You can define your own character-delet~ion and line-deletion
characters for correcting typing errors, or you can accept the
characters that the system uses by default (if you do not specify your
own). The default characters for the IBM 2741 Communications Terminal
are:

• The BACKSPACE key-to delete the preceding character on the line •
• The ATTN key-to delete the entire line (including continued lines).

For other defaults and for information concerning the use of other
terminals refer to IBM System/360 Operating System: Time Sharing
Option, Terminals, GC28-6762.

You may use the PROFILE command to define the keys that you want to
use as the character-deletion and line-deletion characters.

DATA SET NAMING CONVENTIONS

A data set is a collection of data. Each data set stored in the system
is identified by a unique data set name. The data set name allows the
data to be retrieved and helps protect the data from unauthorized use.

The data set naming conventions for TSO simplify the use of data set
names. When a data set name conforms to the conventions .• you can refer
to the data set by its fully qualified name or by an abbreviated version
of the name. The following paragraphs:

1. Describe data set names in general.
2. Define the names that conform to the naming conventions for TSO.

19

What You Must Know to Code the Commands

3. Tell you how to enter a complete data set name, and how to enter
the abbreviated version of a name that conforms to the TSO data set
naming conventions.

Data Set Names in General

A data set name consists of one or more fields. Each field consists of
one through eight alphameric characters and must begin with an
alphabetic (or national) character.

CAUTION: The National Characters are $, @, and # are accepted as the
first character in a data set name. The characters hyphen (-) and
ampersand-zero (12-0 punch) are not accepted in a data set name.

A simple data set name with only one field may be:

PARTS

A data set name that consists of more than one field is a "qualified"
data set name. The fields in a qualified data set name are separated by
periods. A qualified data set name may be:

PARTS.OBJ
or

PARTS. DATA

Partitioned Data Sets: A partitioned data set is simply a data set with
the data divided into one or more independent groups called members.
Each member is identified by a member name and can be referred to
separately. The member name is enclosed within parentheses and appended
to the end of the data set name:

PARTS.DATA(PART14)

L member name

TSO Data Set Names

A data set name must be qualified in order to conform to the TSO data
set naming conventions. The qualified name must consist of at least the
two required fields of the following three:
1. Your user identification (required).
2. A user-supplied name (optional for a partitioned data set).
3. A descriptive qualifier (required).

Normally all three names are used.

The total length of the data set name must not exceed 44 characters,
including periods. A typical TSO data set name is:

ENGBW. PARTS. DATA

identifica~ion qUalifier~ 1)
user suppll.ed name ---------~
descriptive qualifier----------------------~

The TSO data set naming conventions also apply to partitioned data sets.
A typical TSO name for a member of a partitioned data set is:

ENGBW.PARTS.DATA(PART14)

20 TSO Command Language Reference (Release 21)

What You Must Know to Code the Commands

Identification Qualifier: The identification qualifier is always the
leftmost qualifier of the full data set name. For TSO, this qualifier
is the user identification assigned to you by your installation.

User-supplied Name: You choose a name for the data sets that you want
to identify. It can be a simple name or several simple names separated
by periods.

Descriptive Qualifier: The descriptive qualifier is always the
rightmost qualifier of the full data set name. To conform to the data
set naming conventions, this qualifier must be one of the qualifiers
listed in Figure 30

r-----------------------T---,
IDescriptive Qualifier I Data Set Contents I
~-----------------------+--~

ASM Assembler (F) input
BASIC ITF:BASIC statements
CLIST TSO commands
CNTL JCL and SYSIN for SUBMIT command
COBOL American National Standard COBOL statements
DATA Uppercase text
FORT FORTRAN (Code and Go, E, G, Gl, H)

IPLI
LINKLIST
LIST
LOAD
LOADLIST
OBJ
OUTLIST
PLI

statements
ITF:PL/I statements
Output listing from linkage editor
Listings
Load module
Output listing from loader
Object module
Output listing from OUTPUT co~mand
PL/I (F) statements and PL/I Checkout and
Optimizing compiler statements.

STEX STATIC external data from ITF:PLI
TESTLIST Output listing from TEST command
TEXT I Uppercase and lowercase text _______________________ i ________________________ ~ _____________________ J

Figure 3. Descriptive Qualifiers

How to Enter Data Set Names

The data set naming conventions simplify the use of data set names. If
the data set name conforms to the conventions, you need specify only the
user-supplied name field (in most cases) when you refer to the data set.
The system will add the necessary qualifiers to the beginning and to the
end of the name that you specify. In some cases, however, the system
will prompt you for a descriptive qualifier. Until you learn to
anticipate these exceptions to the naming conventions, you may wish to
specify both the user-supplied name and the descriptive qualifier when
referring to a data set. When you are using the LINK command for
example" the system will add both the user identification and the
descriptive qualifier, allowing you to specify only the user-supplied
name. For instance, you may refer to the data set named
USERID.PARTS.OBJ by specifying only PARTS (when you are using LINK) or
by specifying PARTS.OBJ (when you are using other commands). You may
refer to a member of a partitioned data set USERID.PARTS.OBJ(PART14) by
specifying PARTS(PART14) when you are using LINK or by specifying
PARTS.OBJ(PART14) when you are using other commands.

21

What You Must Know to Code the Commands

When you specify an entire fully qualified data set name, as you must
do if the name does not conform to the TSO data set naming conventions,
you must enclose the entire name within apostrophes; as follows:

'JOED58.PROG.LIST' where JOED58 is not your user identification

or

'JOED58.PROG.FIRST' where FIRST is not a valid descriptive
qualifier.

The system will not append qualifiers to any name enclosed in
parentheses.

Defaults for Data Set Names: When you specify only the user-supplied
name, the system adds your user identification and, whenever possible, a
descriptive qualifier. The system attempts to derive the descriptive
qualifier from available information. For instance, if you specified
ASM as an operand for the EDIT command, the system will assign ASM as
the descriptive qualifier. If the information is insufficient, the
system will issue a message at your terminal requesting the required
information. If you specify the name of a partitioned data set and do
not include a required member name, the system will use TEMPNAME as the
default member name. (If you are creating a new member, the member name
will become TEMPNAME; if you are modifying an existing partitioned data
set, the system will search for a member named TEMPNAME.) The following
example illustrates the default names supplied by the system.

r-------·------------T-----------------------~--------------------------,

IIf you specify: IThe input data IThe output data set I
I I set name is: I name will be: I
~-------------------+------------------------+-------------------------~
EDIT PARTS ASM UID.PARTS.ASM UID.PARTS~ASM

LINK PARTS or
LINK (PARTS)
CALL PARTS

UID.PARTS.OBJ UID.PARTS~LOAD(TEMPNAME)
UID.PARTS.LOAD(TEMPNAME)

EDIT PARTS(JAN) ASM UID.PARTS.ASM(JAN)
LINK PARTS(JAN) or
LINK (PARTS(JAN»
CALL PARTS(JAN)

UID.PARTS.OBJ(JAN)
UID.PARTS.LOAD(JAN)

EDIT (PARTS) ASM UID. ASM (PARTS)
LINK «PARTS» UID.OBJ(PARTS)
CALL (PARTS) UID.LOAD(PARTS)

UID. PARTS.ASM (JAN)

UID.PARTS.LOAD(JAN)

UID.ASM(PARTS)
UID.LOAD(PARTS)

~-------------------~------------------------~-------------------------~
INote: In these examples, UID stands for your user identification. I
ITEMPNAME is the membername supplied by the system. I L __ J

Note: Member names must be enclosed in parentheses to distinguish them
from data set names. Figure 4 presents a list of command names and the
default descriptive qualifiers associated with each command.

22 TSO Command Language Reference (Release 21)

What You Must Know to Code the Commands

r----------T---,
I I DESCRIPTIVE QUALIFIERS I
I Command I Input Output Listing I
~----------+---~

ASM ASM OBJ LIST
CALC STEX STEX
CALL LOAD
COBOL COBOL
CONVERT IPLI

EXEC
FORMAT
FORT
LINK

LOADGO

OUTPUT
RUN

FORT
CLIST
TEXT
FORT
OBJ
LOAD
OBJ
LOAD

SUBMIT
I TEST

ASM
FORT
BASIC
COBOL
IPLI
CNTL
OBJ
LOAD I

OBJ
PLI
FORT

OBJ
LOAD

LIST

LIST
LIST
LINKLIST

LOADLIST

OUTLIST

TESTLIST
L __________ ~ ___ J

Figure 4. Descriptive Qualifiers Supplied by Default

Specifying Data Set Passwords

When referencing password protected data sets, you may specify the
password as part of the data set name (you will be prompted for it
otherwise). The password is separated from the data set name by a slash
(/) and optionally, by one or more standard delimeters (tab, blank, or
comma). See the discussion on "Password Data set" that appears under
the PROTECT command.

23

What You Must Know to Code the Commands

System-Provided Aids

Several aids are available for your use at the terminal:

• The attention interruption allows you to interrupt processing so
that you can enter a command.

• The HELP command provides you with information about the commands.

• The conversational messages guide you in your work at the terminal.

The Attention Interruption

The attention interruption allows you to interrupt processing at any
time so that you can enter a command or subcommand. For instance, if
you are executing a program and the program gets in a loop, you can use
the attention interruption to halt execution. As another example, when
you are having the data listed at your terminal and the data that you
need has been listed, you may use the attention interruption to stop the
listing operation instead of waiting until the entire data set has been
listed.

If, after causing an attention interruption, you want to continue
with the operation that you interrupted, you can do so by pressing the
return key before typing anything else; however, input data that was
being typed or output data that was being printed at the time of the
attention interruption may be lost. You can also request an attention
interruption while at the command level, enter the TIME command, and
then resume with the interrupted operation by pressing the return key.

If your terminal has an interruption facility, you can request an
attention interruption by pressing the appropriate key (the ATTN key on
IBM 2741 Communications Terminals>. Whether or not your terminal has a
key for attention interruptions, you can use the TERMINAL corrmmand to
specify particular operating conditions that the system is to interpret
as a request for an attention interruption. More specifically, you can
specify a sequence of characters that the system is to interpret as a
request for an attention interruption. In addition, you can request the
system to pause after a certain number of seconds of processing time has
elapsed or after a certain number of lines of output has been displayed
at your terminal. When the system pauses, you can enter the sequence of
characters that you define as a request for an attention interruption.

Not~: If you are using the attention key as a line-delete indicator,
pressing the attention key (after entering characters in a line, and
before pressing the carriage return,> will cause the line you entered to
be ignored by the system. Another depression of the attention key is
required to cause an interruption.

The HELP Command

The HELP command provides you with information about the use, function,
syntax, and operands of commands and subcommands. When you enter HELP,
the system displays at your terminal a list of commands and a brief
description of the function of each. By specifying a command name as an
operand for the HELP command, you can get a list of operands and a
description of the function and syntax of the command.

HELP is also a subcommand for all of the commands that have
subcommands. By specifying a subcommand name as an operand for the HELP

24 TSO Command Language Reference (Release 21)

What You Must Know to Code the Commands

subcommand, you can get a list of operands and a description of the
function and syntax of the subcommand.

Message Types

You receive three types of messages at your terminal:

Mode messages.
Prompting messages.
Informational messages.

A mode message tells you the system is ready to accept new input a
command, a subcommand, or data. When the system is waiting for you to
enter a command, the mode message displayed at your terminal is:

READY

other mode messages may be displayed, when appropriate" to tell you that
the system is waiting for you to enter a subcommand or data. In these
cases, the mode message is the name of the current command or
subcommand:

ACCOUNT
EDIT
INPUT
OPERATOR
OUTPUT
TEST
etc.

These mode messages are displayed when the mode changes.

A prompting message tells you that required information is missing
and that you must take an explicitly described action in response. For
instance, prompting messages prompt you to supply missing operands and
to correct operands that you specified incorrectly. A typical prompting
message is:

ENTER DATA SET NAME-

The system expects an immediate response to messages that end with a
hyphen. Use the PROMPT or NOPROMPT operand of the PROFILE command to
specify whether or not you want to receive prompting messages. You can
stop a prompting sequence by requesting an attention interruption.

An informational message tells you about the status of the system and
your terminal session. For instance, an informational message may tell
you when program execution has terminated, or how much time you have
used. Informational messages do not require a response.

In some cases, an informational message may serve as a mode message;
for instance, an informational message that tells of the completion of a
subcommand's operation also implies that you can enter another
subcommand.

Levels of Messages: Prompting messages and informational messages may
have additional messages associated with them. The additional messages
explain the initial message more fully.

Prompting messages may have any number of additional messages;
informational messages may have only one additional message. When an

25

What You Must Know to Code the Commands

additional informational message is available, the message at your
terminal will end with a plus sign (+); prompting messages do not end
with a plus sign, even though an additional message may be available.

The Question Mark: To receive an additional message, you must enter a
question mark (?) and a carrier return. When you enter a question
mark, it must be placed in the first position on the line. You can
continue entering question marks until no other message is available.
When no other message exists, the system will display:

NO INFORMATION AVAILABLE

For example, a listing at your terminal may look like:

INVALID LINE NUMBER ENCOUNTERED+
?
USE EDIT WITH NONUM OPERAND
?
NO INFORMATION AVAILABLE

26 TSO Command Language Reference (Release 21)

The Commands

This section contains descriptions of the TSO commands. The commands
are presented in alphabetical order. Subcommands are presented in
alphabetical order following the command to which they apply.

r---------------------------------------T---------------------------------------, I COMMAND (Abbreviation) I COMMAND (Abbreviation) I
I SUBCOMMAND (abbreviation) I SUBCOMMAND (Abbreviation) I
~---------------------------------------~.--~

ACCOUNT
ADD (A)
CHANGE (C)
DELETE (D)
END
HELP (H)

LIST (L).
LISTIDS (LISTI)

ALLOCATE (ALLOC)
*ASM

ATTRIB (ATTR)
* CALC

CALL
CANCEL

* COBOL (COB)
* CONVERT (CON)
* COpy

DELETE (D)
EDIT (E)

BOTTOM (B)
CHANGE (C)
DELETE (0)
DOWN
EDIT (E)
END
FIND (F)

*FORMAT (FORM)
HELP (H)
INPUT (I)
INSERT (IN)
Insert/Replace/Delete ()
LIST (L)

*MERGE (M)
PROFILE (PROF)
RENUM (REN)
RUN (R)
SAVE (S)
SCAN (SC)
TABSET (TAB)
TOP
UP
VERIFY (V)

EXEC (EX)
*FORMAT (FORM)
* FORT

FREE
HELP (H)
LINK

*LIST (L)
LISTALC (LISTA)
LISTBC (LISTB)
LISTCAT (LISTC)
LISTDS (LISTD)
LOADGO (LOAD) I

LOGOFF
LOGON

* MERGE
OPERATOR (OPER)

CANCEL (C)
DISPLAY (D)
END
HELP (H)
MODIFY (F)
MONITOR (MN)
SEND
STOPMN (PM)

OUTPUT (OUT)
CONTINUE (CONT)
END
HELP (H)
SAVE (S)

PROFILE (PROF)
PROTECT (PROT)
RENAME (REN)
RUN (R)
SEND (SE)
STATUS (ST)
SUBMIT (SUB)
TERMINAL (TERM)
TEST

Assignment of Values ()
AT
CALL
COpy (C)
DELETE (D)
DROP
END
EQUATE (EQ)
FREEMAIN (FREE)
GETMAIN (GET)
GO
HELP (H)
LIST (L)
LISTDCB
LISTDEB
LISTMAP
LISTPSW
LISTTCB
LOAD
OFF
QUALIFY (Q)
RUN (R)
WHERE (W)

TIME

r---------------------------------------~---------------------------------------~ I *Optional Program Product commands available for a license fee (Appendix C). I
1**For use in command procedures. I l ___ J

27

The Commands

28 TSO Command Language Reference (Release 21)

ACCOUNT Command

Use the ACCOUNT command and subcommands to create and to update the
entries in the User Attribute Data Set (UADS) and" simultaneously,.. the
Broadcast Data Set. (You can use this command only if your install~tion
has given you the authority to do so.) Basically., the UADS is a list of
terminal users who are authorized to use TSO. The UADS contains
information about each of the users. The information in the UADS is
used to regulate access to the system.

r--------------T---,
I COMMAND I OPERANDS I
.--------------t---~---~
I ACCOUNT I I L ______________ ~ ___ J

SUbcommands of ACCOUNT

You cannot accomplish any work with the ACCOUNT command until you use a
subcommand to define the operation that you want to perform. The
subcommands and the operations that they define are:

ADD

CHANGE

DELETE

END

HELP

LIST

LIST IDS

Add new entries to the UADS; add new data to existing
entries.

Change data in specific fields of UADS entries.

Delete entries or parts of entries from the UADS.

Terminate the ACCOUNT command.

Obtain help from the system.

Display the contents of an entry in the UADS.

Display the user identifications for all entries.

The subcommands cannot be used until you have entered the ACCOUNT
command. Each subcommand is discussed separately following the format
of the ACCOUNT command.

There is an entry in the UADS for each terminal user. Each entry
consists of the following information:

1. A user identification.

2. One or more passwords .. or a'single null field, associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a procedure that is invoked when the
user begins a terminal session by entering the LOGON command.

5. The region size requirements for each procedure.

6. The name of the group of devices that the user will be permitted to
use for a procedure. Data sets allocated via the catalog are an
exception. See the ALLOCATE command.

29

ACCOUNT Command

7. The authority to use or a restriction against using the ACCOUNT
command.

8. The authority to use or a restriction against using the OPERATOR
command.

9. The authority to use or restriction against using the SUBMIT,
STATUS" CANCEL, and OUTPUT commands.

10. Maximum region size allowed.

The organization of the information contained in the UADS.is shown in
Figure 5. Figure 6 shows the simplest structure that an entry in the
UADS can have, and Figure 7 shows a more complex structure.

UADS

Figure 5. Organization of the UADS Data Set

30 TSO Command Language Reference (Release 21)

VADS
data set

ACCOUNT Command

Figure 6. The Simplest Structure That an Entry in the UADS Can Have

VADS
data set

I
I user I identification

I
I

password password

I
I I

account account account
number number number

I I
J 1 I I

procedure procedure procedure procedure procedure
name name name name name

I I I I
other other other other other

attributes attributes attributes attributes attributes

Figure 7. A Complex Structure For an Entry in the UADS

31

ADD Subcommand of ACCOUNT

Use the ADD subcommand to create new user ids for prospective users of
TSO. As you create a new userid, a corresponding entry is created in
the User Attribute Data set (UADS) for that user (see Figures 5, 6. and
7). For each new userid that you create, the system builds a "typical"
user profile in the User Profile Table (UPT) for that user. This
"typical" user profile is discussed under the PROFILE command in this
publication.

You can also use ADD to add additional data to an existing entry in
the UADS. Do not use ADD to change any existing data in a UADS entry;
use the CHANGE subcommand instead.

When adding a new entry to the UADS, you can also select the
following options for the new user:

• The region size that he can request at LOGON
• The authority to use the ACCOUNT command.
• The authority to use the OPERATOR command.
• The authority to use the SUBMIT, STATUS, CANCEL, and OUTPUT

commands.

r-------·----T---,
ISUBCOMMAND I OPERANDS I
~-----------+---~

{~D} ({ ~ser- identi t y } [~assword [:ccount [prOCedUre]]J>

[DATA([[passwords]accounts]procedures)]

lSI ZE (integer)]

[UNIT(name)]

[
MAXSIZE(integer)]
NOLIM

[~gi~CT] [~~~~ER] [~~CL] L ______ . ____ .L ___ J

user identity

*

specifies a user identification that identifies the UADS entry.
The user identification is composed of 1-7 alphameric characters
that begin with an alphabetic or national character. The entry
that this field identifies may be:

• An existing entry to which new data is to be added •
• A new entry that is to be added to the UADS.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of ·the
subcommand. When you are creating a new entry, the asterisk
indicates a null field.

32 TSO Command Language Reference (Release 21)

ADD Subcommand of ACCOUNT

password
specifies a word that the user must enter before he can use the
system. The word must be composed of 1-8 alphameric characters.
The password helps indicate the structure in the UADS to which data
is being added, or, when you are adding an entire new entry, the
password is part of the data being added.

account
specifies an account number used for administrative purposes. The
account number helps indicate the structure in the UADS to which
data is being added, or, when you are adding an entire new entry,
the account number is part of the data being added.

For TSO, an account number must not exceed 40 characters, and must
not contain a blank, tab, quotation mark, apostrophe, comma,
semicolon, or line-control character. A right parenthesis is
permissible only when a left parenthesis precedes it somewhere in
the account number.

procedure
specifies the name of a procedure that is invoked when the user
enters the LOGON command. The procedure name is composed of 1-8
alphameric characters that begin with an alphabetic character. You
should not specify this field for the first positional operand
unless you are adding an entire new entry to the UADS.

DATA(passwords and/or accounts and/or procedures)
specifies that data is to be added to an existing entry. The data
to be added is enclosed within parentheses following the DATA
keyword. The system adds the data specified with this keyword to
the structure identified by the positional operand. The data is
added to the next lower level in the existing structure. The
complexity of the positional operand "user identity" determines how
many levels of structure exist.

passwords
specifies a password or a list of passwords to be added to the
existing entry at the location indicated by the positional operand.
When you specify a list of passwords, the list must be enclosed
within a separate set of parentheses embedded within the set of
parentheses required for the DATA keyword. Each password must be
composed of 1-8 alphameric characters.

accounts
specifies an account number or a list of account numbers to be
added to the existing entry. When you specify a list of account
numbers, the list must be enclosed within a separate set of
parentheses embedded within the set of parentheses required for the
DATA keyword. An account number must not exceed 40 characters and
must not contain a blank, tab, quotation mark~ semicolon, or line
control character; a right parenthesis is permissible only when a
left parenthesis balances it somewhere in the account number. No
more than 255 identical account numbers may exist under one user
entry.

procedures
specifies a procedure name or a list of procedure names to be added
to the existing entry. Each procedure name is composed of 1-8
alphameric characters that begin with an alphabetic character.
When you specify a list of procedure names, in addition to one or
more other fields, the list must be enclosed within a separate set

33

ADD Subcommand of ACCOUNT

of parentheses embedded within the set of parentheses required for
the DATA keyword. You should specify the region size requirements
for each procedure by using the SIZE keyword. No more than 255
identical procedure names may exist under one user entry.

SIZE (integer)
specifies the ml.nl.mum region size, in 1024 byte units, that the
user will have assigned to him if he does not specify a size
himself. The integer specified must not exceed 65,534. If you
omit the SIZE keyword or if you specify SIZE(O), the default value
is the minimum region size available.

UNIT (name)
specifies the name of the group of devices that the user
(identified by the positional operand) will use. Data sets
allocated via the catalog are an exception. See the ALLOCATE
conunand. You can specify a UNIT attribute for each unique
combination of password, account, and procedure in the entry.

MAXSIZE(integer)

NOLIM

ACCT

specifies the maximum region size, in 1024 byte units, that the
user (identified by the first operand) can request at LOGON. The
integer must not exceed 65,534. If you omit the MAXSIZE keyword or
if you specify MAXSIZECO), the default of NOLIM is assumed. Use
this operand only when you add a complete entry to the UADS.

If NOLIM is specified, no maximum region size limit is enforced.
This is the default when neither MAXSIZE nor NOLIM is specified.
Use this operand only when you add a complete entry to the UADS.

specifies that the user (identified by the first operand) can use
the ACCOUNT command, thereby controlling access to the time sharing
system. Use this operand only when you add a complete entry to the
UADS.

NOACCT

OPER

specifies that the user (identified by the first operand) cannot
use the ACCOUNT command. This is the default when neither ACCT nor
NOACCT is specified. Use this operand only when you add a complete
entry to the UADS.

specifies that the user (identified by the first operand) can use
the OPERATOR command. Use this operand only when you add a
complete entry to the UADS.

NOOPER

JCL

specifies that the user (identified by the first operand) cannot
use the OPERATOR command. This is the default when neither OPER
nor NOOPER is specified. Use this operand only when you add a
complete entry to the UADS.

specifies that the user (identified by the first operand) can use
the SUBMIT, STATUS. CANCEL, and OUTPUT commands. Use this operand
only when you add a complete entry to the UADS.

34 TSO Command Language Reference (Release 21)

ADD Subcommand of ACCOUNT

NOJCL
specifies that the user (identified by the first operand) cannot
use the SUBMIT, STATUS, CANCEL, and OUTPUT commands. This is the
default when neither JCL nor NOJCL is specified. Use this operand
only when you add a complete entry to the UADS.

Example 1

Operation: Add a new entry to the UADS.

Known: The user identification •••••••••••••••••••••••• o. KALTPT
The password ••••••••••••••••••••••••••••••••••••• XAYBZC
The account number ••••••••••••••••••••••••••••••• 32058
The procedure name ••••••••••••••••••••••••••••••• MYLOG
The user cannot use the ACCOUNT command.
The user cannot use the OPERATOR command.
The user can use the SUBMIT command.
The user's maximum allowable region size ••••••••• 153,600 bytes
The region size requirements for the procedure ••• 81,920 bytes
The name of the group of devices allowed ••••••••• SYSDA

r--,
IADD CKALTPT XAYBZC 32058 MYLOG) NOACCT NOOPER JCL - I
IMAXSIZE(150) SIZE(80) UNIT (SYSDA) I L __ J

Example 2

Operation: Add a new password, account number.,. and procedure name to an
existing entry in the UADS.;. Also include the region size
requirements for the prooedure.

Known: The user identification for the entry ••• , ••.••••••• SLAT2
The new password •••••••••••••• ce·.· -•..•.•..••.•.•••••••.• MZ3TII
The new account number •••••••••.• ,.,., •.• ,., ~ •. 7116166
The new procedure name ••••••••••••••••••••••••••• AMABALA
The region size requirements for the procedure ••• 92,,160 bytes

r--,
IADD (SLAT2) DATA(MZ3TII 7116166 AMABALA) SIZE(90) I L __ J

Example 3

Operation: Continuing example 2, add a new account number, 288104, to
an existing entry in the UADS.

Known: The user identification for the entry •••••••••••• SLAT2
The password for the entry ••••••••••••••••••••••• MZ3TII
The new account number ••••••••••••••••••••••••••• 288104
The new procedure name ••••••••••••••••••••••••••• MYLOG
The region size requirements for the procedure ••• 116,736 bytes
The device group to be used •••••••••••••••••••••• SYSDA

r--,
IADD (SLAT2 MZ3TII) DATA(288104 MYLOG) SIZE(114) UNIT(SYSDA) I L __ J

35

ADD Subcommand of ACCOUNT

Example 4

Operation: Add a new procedure name, and the region size requirements
for it, to all entries in the UADS.

Known: The new procedure name MYLOG
The region size requirements for it •••••••••••••• 74,752 bytes

r--,
IADD (* * *> DATA (MYLOG) SIZE(73) I L ___ J

Example 5

Operation: Add a new account number and new procedure name to all
structures under an existing entry in the UADS.

Known: The user identification for the entry •••••••••••• WMROEL
The new account number ••••••••••••••••••••••••••• 5707471
The new procedure name ••••••••••••••••••••••••••• LOGPROC
The region size requirements ••••••••••••••••••••• 102,400 bytes

r--,
IADD (WMROEL *) DATA(5707471 LOGPROC) SIZE(100) I L _____________________ . ___ J

36 TSO Command Language Reference (Release 21)

CHANGE Subcommand of ACCOUNT

Use the CHANGE subcommand to change existing fields of data within
entries in the UADS. '

r-----------T---,
I SUBCOMMAND I OPERAND I
.-----------+---~
{~HANGE} ({~Ser-identitY}[~assword [:ccount [~rocedure]]])

[

DATA(luser-identitY2 >]
password2
account2
procedure2

[SIZE (integer>]

[UNIT (name>]

[
MAXSIZE (integer>]
NOLIM

[~~i~CT] [~~~~ER] [~~CL] L __________ ~ ___ --_________ _

user-identity
specifies the existing user identification that identifies the UADS
entry that is to be changed.

* specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password
specifies an existing password that a user must enter before he can
use the system. The password helps locate the data being changed,
and, when you are changing a password, identifies the password
being changed. A password must consist of from 1 to 8 alphameric
characters.

account
specifies an existing account number. The account number helps
locate the data being changed, and, when you are changing an
account number, identifies the account number being changed.

procedure
specifies an existing name of a procedure. The procedure name,
when specified, is the data being changed.

DATA(user identity2 and/or password2 and/or account2 and/or procedure2>
specifies the replacement data. The data enclosed within
parentheses following the DATA keyword is used by the system to
replace the data identified by the last field of the first operand.

37

CHANGE Subcommand of ACCOUNT

user identity2
specifies a user identification to replace the existing user
identity. The user identification is composed of 1-7 alphameric
characters that begin with an alphabetic or national character.

password 2
specifies a password to replace the existing password. The
password must be composed of 1-8 alphameric characters.

account 2
specifies an account number to replace the existing account number.
The account number is composed of 1-40 characters and must not
contain a blank, tab, quotation mark, semicolon, apostrophe, comma,
or line control character. A right parenthesis is permissible only
when a left parenthesis balances it somewhere in the account
number.

procedure 2
specifies a procedure name to replace the existing procedure name.
The procedure name is composed of 1-8 alphameric characters and
must begin with an alphabetic character.

SIZ.E (integer)
specifies the region size, in 1024 byte units, that is specified on
the JCL EXEC statement of the procedure whose name is being added
to the UADS. The integer must not exceed 65,534. If you specify
SIZE(O) r the minimum region size is assumed.

UNIT (name)
specifies the name of the group of devices that the user
(identified by the first operand) will use. Data sets allocated
via the catalog are an exception. See the ALLOCATE command.

MAXSIZE(integer)
specifies the maximum region size. in 1024 byte units., that the
user may request at LOGON. The integer must not exceed 65.,534. If
you specify MAXSIZE(O), the default of NOLIM is assumed.

NOLIM

ACC'T

specifies that the user is not restricted to a maximum region size.

specifies that the user can use the ACCOUNT command thereby
controlling access to the time sharing system.

NOACCT
specifies that the user cannot use the ACCOUNT command.

OPER
specifies that the user can use the OPERATOR command.

NOOPER

JCL

specifies that the user cannot use the OPERATOR command.

specifies that the user can use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

NOJCL
specifies that the user cannot use the SUBMIT, STATUS, CANCEL, and
OUTPUT commands.

38 TSO Command Language Reference (Release 21)

CHANGE Subcommand of ACCOUNT

Example 1

Operation: Change an account number for an entry in the UADS and
authorize the user to issue the ACCOUNT and OPERATOR
commands.

Known: The user identification for the entry ••••••••••••• TOC23
The password.. AOX3P
The old account number •••••••••••••••••••••••••••• 2E29705
The new account number •••••••••••••••••••••••••••• 2E26705

r--,
ICHANGE (TOC23 AOX3P 2E29705) DATA(2E26705) ACCT OPER I L _______________ ~ __ J

Example 2

Operation: Authorize all users to issue the SUBMIT command.

r--,
ICHANGE (*) JCL I L __ J

The asterisk in the first positional operand position specifies that all
user identities are considered valid for the operation of this
subcommand.

Example 3

Operation: Change the user identification for an entry in the UADS.

Known: The existing user identification •••••••••••••••••• SWECORP
The new user identification ••••••••••••••••••••••• SWECPOl

r--,
ICHANGE (SWECORP) DATA(SWECP01) I L __ J

Example 4

Operation: Change the name of a procedure for an entry that consists of
a user identification, a procedure name, and attributes (no
password or account number).

Known: The user identification •••••••••• o •••••••••••••••• WSNCD
The old procedure name ••••••••••• o ••••••••••••••• ~ TTURM
The new procedure name ••••• ~ ••••• o •••••••••••••••• TML

r---,
ICHANGE (WSNCD * * TTURM) DATA(TML) I L __ • ______________________________ J

39

DELETE Subcommand of ACCOUNT

Use the DELETE subcommand to delete data from the User Attribute Data
Set (UADS>. Each terminal user has an entry in the UADS. Each entry
con-tains several i terns of data. The data that you want to delete may be
a part of an existing entry, or it may be an entire existing entry.

r------------T---.-,
ISUBCOMMAND I OPERANDS I
f------------t---f I gELETE} I I{ ~ser-identitY} [~assword [:ccount J]> I
I I I
I I [DATA(Ipasswords I>] I I I accounts I
I I procedures I L ___________ .L ___ J

user-identity

*

specifies a user identification which identifies the UADS entry
that is to be deleted. The user identification is composed of 1-7
alphameric characters that begin with an alphabetic or national
character.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password
specifies a word that a user must enter before he can use the
system. The word must be composed of 1-8 alphameric characters.
The password helps indicate the particular existing structure from
which data is being deleted, or, when you are deleting a password,
the password is the data being deleted.

account
specifies an account number used for administrative purposes. 'The
account number helps indicate the structure from which data is
being deleted, or, when you are deleting an account number, the
account number is the data being deleted.

For TSO, an account number must not exceed 40 characters, and must
not contain a blank, tab, quotation mark, semicolon, apostrophe,
comma, or line control character. A right parenthesis is
permissible only when a left parenthesis precedes it somewhere in
the account number.

DATA(passwords or accounts or procedures)
specifies the data that is to be deleted from an existing entry.
The data to be deleted is enclosed within parentheses following the
DATA keyword.

passwords
specifies a password or a list of passwords to be deleted from the
existing entry at the location indicated by the first positional
operand. Each password must be composed of 1-8 alphameric
characters.

40 TSO Command Language Reference (Release 21)

DELETE Subcommand of ACCOUNT

accounts
specifies an account number or a list of account numbers to be
deleted from the existing entry. An account number must not exceed
40 characters, and must not contain a· blank, tab, quotation mark,
apostrophe" comma" semicolon, or line control character. A right
parenthesis is permissible only when a left parenthesis balances it
somewhere in the account number.

procedures
specifies a procedure name or a list of procedure names to be
deleted from the existing entry. Each procedure name is composed
of 1-8 alphameric characters and must begin with an alphabetic
character.

The Contents of an Entry in the UADS: Each entry in the UADS consists
of the following information:

(These five items that follow correspond to the fields of the first
positional operand and the DATA keyword for this subcommand. These
items are the only items that you can delete separately. To delete
items 6-9, you must delete the entire entry.)

1. A user identification.

2. One or more passwords, or a single null field, associated with the
user identification.

3. One or more account numbers, or a single null field, associated
with each password.

4. One or more procedure names associated with each account number.
Each procedure name identifies a procedure that is invoked when the
user begins a terminal session by entering the LOGON command.

5. The region size requirements for each procedure.

(These last four items can be deleted only when the entire entry is
deleted.)

6. The name of the group of devices that the user will be permitted to
use. Data sets allocated via the catalog are an exception. See
the ALLOCATE command.

7. The authority to use, or a restriction against using, the ACCOUNT
command.

8. The authority to use, or a restriction against using, the OPERATOR
command:.

9. The authority to use, or a restriction against using, the SUBMIT,
STATUS, CANCEL, and OUTPUT,commands.

Deleting an Entire Entry: To delete an entire entry from the UADS, you
only need to know the user identification for the entry. You must
specify the user identification as the first and only field of the first
positional operand.

41

DELETE Subcommand of ACCOUNT

Deleting Data from an Existing Entry: To use the DELETE subcommand to
delete data from an existing entry, you must identify:

a. The location within the entry.
b. The data that you want to delete.

Operation: Delete an entire entry from the UADS.

Known: The user identification for the entry ••••••••••••• VASHTAR

r--,
IDELETE (VASHTAR) I L __ J

Example 2

Operation: Delete a procedure name from an entry in the UADS having the
following index structure.

SCHRDNY

Known: The user identification SCHRDNY
The password ••••••••••••••••••••••••••••••••••••• " EGCLON
The account number 3707656
The procedure name to be deleted ••••••••••••••••• " LOGB

r---------'--'---,
IDELETE (SCHRDNY EGCLON 3707656) DATA(LOGB) I L __ J

42 TSO Command Language Reference (Release 21)

DELETE Subcommand of ACCOUNT

The resultant ind.ex structure is:

Example 3

Operation: Delete an account number from an entry in the UADS having
the following index structure.

Known: The user identification ••••••••••••••••••••••••••• ALPHA2
The password •••••••••••••••••••••••••••••••••••••• DRAHCIR
The account number to be deleted •••••••••••••••••• 32757

r--,
IDELETE (ALPHA2 DRAHCIR) DATA (32757) I L __ J

The resultant index structure is:

43

END Subcommand of ACCOUNT

Use the END subcommand to terminate operation of the ACCOUNT command.
After entering the END subcommand, you may enter new commands.

r-----------T--,
ISUBCOMMAND I OPERANDS I
j-----------+--~
I END I I L __________ ~ ___ J

44 TSO Command Language Reference (Release 21)

HELP Subcommand of ACCOUNT

Use the HELP subcommand to find out how to use ACCOUNT and the ACCOUNT
subcommands. When you enter the HELP subcommand, the system responds by
printing out explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the function, syntax, and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

r-----------T---,
ISUBCOMMAND I OPERANDS I
~-----------+---~-------f
I {HELP} I [SUbcommand-name [FUNCTION J] I I H I SYNI'AX I
I I OPERANDSClist-of-operands) I
I I ALL I L __________ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of ACCOUNT
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDSClist-of-operands)
specifies that you want an explanation of the operand applicable to
the referenced subcommand.

ALL

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function. the syntax,
and the operands of the subcommand that you specified. This is the
default if no operand is specified.

45

HELP Subcommand of ACCOUNT

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r--,
I HELP I L __ J

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name •• ~ ADD

r---------------------·---,
IH ADD I L _____________________ . _______________________________ --_________________ J

Example 3

Operation~ Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand name... LIST

r--,
Ih list operands I L __ J

46 TSO Command Language Reference (Release 21)

LIST Subcommand of ACCOUNT

Use the LIST subcommand to display entries in the User Attribute Data
Set (UADS) or to display fields of data from within particular entries.

r-----------T---,
ISUBCOMMAND I OPERANDS I
~-----------+---f I {~IST} I ({~ser-identitY}[;assword [:ccount [;rocedure]]]> I
L __________ ~ ___ J

user-identity

*

specifies a user identification that identifies the UADS entry.
The user identification is composed of 1-7 alphameric characters
that begin with an alphabetic or national character.

specifies that all fields corresponding to the position of the
asterisk are to be considered valid for the operation of the
subcommand.

password
specifies a word that a user must enter before he can use the
system~ The word must be composed of 1-8 alphameric characters.
The password helps indicate the structure to be displayed.

account
specifies an account number used for administrative purposes. The
account number helps indicate the structure to be displayed. For
TSO. an account number must not exceed 40 characters. and must not
contain a blank, tab, quotation mark" apostrophe, comma, semicolon,
or line control character. A right parenthesis is permissable only
when a left parenthesis precedes it somewhere in the account
number.

procedure
specifies the name of a procedure that is invoked when the user
enters the LOGON command. The procedure name helps indicate the
particular structure to be displayed. The procedure name is
composed of 1-8 alphameric characters and must begin with an
alphabetic character.

47

LIST Subcommand of ACCOUNT

Example 1

Operation: List the contents of the UADS.

r---.-,
ILIST (*> I l ___ . __ ._J

Operation: List all of a particular entry in the UADS.

Known: The user identification ••••••••••••••••••••••••••• JOTSOP

r---·---,
ILIST (JOTSOP) I l ___ . _______________ J

Example 3

Operation: List all of the account numbers under a specific password
for a particular entry.

Known: The user identifcation •• o ••••••••••••••••••••••••• EVOTS
Th.e password •••••••••••••••••••••••••• 0 • • • .. • • • • • •• ROOLF

r--,
ILIST (EVOTS ROOLF *) I l ___ J

48 TSO Command Language Reference (Release 21)

LlSTIDS Subcommand of ACCOUNT

Use the LIST IDS subcommand to have a list of the user identifications in
the User Attribute Data Set (UADS) displayed at your terminal.

r-----------T---,
ISUBCOMMAND I OPERANDS I
!-----------+---~
I {LISTIDS} I I
I LISTI I I L __________ ~ ___ J

Example 1

Operation: List all user identifications in the UADS.

r--,
I LISTIDS I L __ J

49

LlSTIDS Subcommand of ACCOUNT

50 TSO Command Language Reference (Release 21)

Page of GC28-6732-2, Revised April 15, 1972, By TNL: GN28-2521

ALLOCATE Command

Use the ALLOCATE command to allocate, dynamically, the data sets
required by a program that you intend to execute.

r--------------T---,
I COMMAND I OPERANDS I
t--------------+---~

ALLOCATE t lDATASET({* }> [FILE(naroe>]1
ALLOC data-set-name

FILE (name> [DATASET({* }>]
data-set-name

~~: J MOD
NEW
SYSOU

[VOLUf.'lE (serial>]

~PACE(quantity [increment] > BLOCK(block-length~

[DIR (integer >]

fuSING(attribute-list-name~ L ______________ i ___ J

DATASET(data-set-name, data-set-name/password, or *>
specifies the name of the data set that is to be allocated. The
data set name must include the descriptive (rightmost) qualifier
and may contain a member name in parentheses. (See the data set
naming conventions.>

If you specify a password, you will not be prompted for it when you
open the data set. Any other user, however, must supply the
password in order to refer to the data set.

You may substitute an asterisk (*> for the data set name to
indicate that you want to have your terminal allocated for input
and output. If you use an asterisk (*>, only the FILE operand is
recognized by the system. All other operands are ignored.

In general, you may specify either or both the DATASET and FILE
keywords; however, the data set name must be specified if the
status of the data set is OLD or SHR, or if it is MOD and the data
set currently exists. You will be prompted to supply the name of a
MOD data set if you omit the SPACE operand, indicating that the
data set currently exists. The SPACE operand must be specified
when the data set is NEW.

The system generates names for SYSOUT data sets; therefore, you
should not specify a data set name when you allocate a SYSOUT data
set. If you do, the system ignores it.

51

ALLOCATE Command

FILE (name)

OLD

SHR

MOD

NEW

specifies the name to be associated with the data set. It may
contain no more than eight characters. (This name corresponds to
the Data Definition (DO) name in OS/360 Job Control Language and
must match the DO name in the Data Control Block (DCB) that is
associated with the data set.) For PL/I, this name is the file
name in a DECLARE stat~ment and has the form "DCL filename FILE";
for instance, DCL MASTER FILE. For COBOL, this name is the
external-name used in the ASSIGN TO clause. For FORTRAN, this name
is the data set reference number that identifies a data set and has
the form "FTxxFYYYi" for instance, FT06F002.

If you omit this operand, the system assigns an available file name
(ddname) from a data definition statement in the procedure that is
invoked when you enter the LOGON command.

indicates that the data set currently exists and that you require
exclusive use of the data set. The data set should be cataloged.
If it is not, you must specify the VOLUME operand. OLD data sets
are retained by the system when you free them from allocation.

indicates that the data set currently exists but that you do not
require exclusive use of the data set. Other tasks may use it
concurrently. SHR data sets are retained by the system when you
free them.

indicates that you want to append data to the end of the data set.
If the data set is actually new1 you must also specify the SPACE
operand. MOD data sets are retained by the system when you free
them if you specify a data set name; they are deleted if you do not
specify a data set name.

indicates that the data set does not exist and that it is to be
created. You must specify the SPACE and BLOCK operands for NEW
data sets. For new partitioned data sets you must also specify the
DIR operand. NEW data sets are kept and cataloged if you specify a
data set name. They are deleted if you do not specify a data set
name.

SYSOUT
indicates that the data set is to be a system output data set.
output data will be initially written on a direct access device and
later transcribed from the direct access device to the final output
device. The final output device may be a unit record device (such
as a printer or a terminal) or a magnetic tape device. The output
class to which this data set is assigned is that of the message
class. (See also the publication IBM System/360 Operating System,
supervisor and Data Management Services, GC28-6646.) After
transcription by an output writer. SYSOUT data sets are deleted.
You may specify space values with the SPACE operand; if you do not,
default space values are provided by the system.

Note: If you do not specify OLD. SHR, MOD. NEW. or SYSOUT. the
system assigns a default value depending on the BLOCK, SPACE, and
DIR operands. If you specify the BLOCK and SPACE operands (for a
sequential data set), or the BLOCK, SPACE and DIR operands (for a
partitioned data set), the status defaults to NEW; otherwise, it
defaults to OLD.

To change the output class refer to the FREE command and to the
OUTPUT command.

52 TSO Command Language Reference (Release 21)

ALLOCATE Command

VOLUME (serial)
specifies the serial number of the direct access volume on which a
new data set is to reside or on which an old data set is located.
If a volume is specified with an old data set" the data set must be
on the volume or no allocation will take place. If you do not
specify a serial number, new data sets are allocated to any
eligible direct access volume, as determined by the UNIT
information in your user entry in the UADS. If you do specify a
volume serial number, eligibility is still determined by the UNIT
information.

BLOCK (block-length)
specifies the average block length (in bytes) of the records that
are to be written to the data set. The BLOCK operand is required
for new data sets. You must specify the SPACE operand when you
specify this operand. You may also specify BLOCK for SYSOUT data
sets if the default values are not acceptable.

Note: The value supplied for BLOCK also becomes the value for
BLKSIZE and is recorded in the DSCB for the data set unless you
specify the USING operand. When you specify the USING operand, the
BLKSIZE is taken from the attribute list.

SPACE (quantity, increment)
specifies the amount of space to be reserved for the new data set.
The amount of space is determined by multiplying the "block length"
(specified by the BLOCK(block-length) keyword) by the "quantity"
value of the SPACE(quantity,increment) keyword. SPACE is required
for new data sets and may be specified for SYSOUT data sets. You
must specify the BLOCK operand when you specify this operand.

quantity
specifies the primary number of blocks to be allocated for the data
set.

increment
specifies a secondary number of blocks to be allocated for the data
set each time the previously allocated space has been exhausted. A
maximum of 15 secondary blocks may be allocated.

DIR(integer)
specifies the number of 256 byte records that are to be allocated
for the directory of a new partitioned data set. This operand must
be specified if you are allocating a new partitioned data set. You
must also specify the BLOCK and SPACE operands.

USING (attribute-list-name)
specifies the name of a list of attributes that you want to have
assigned to the data set that you are allocating. The attributes
in the list correspond to. and will be used for, data control block
(OCB) parameters. (Note to user's familiar with conventional batch
processing: these DCB parameters are the same as those normally
specified by JCL and data management macro instructions.)

An attribute list must be stored in the system before you use this
operand. You can build and name an attribute list by using the
ATTRIB command. The name that you specify for the list when you
use the ATTRIB command is the name that you must specify for this
USING(attribute-list-name) operand.

53

Page of GC28-6732-2, Revised April 15, 1972, By TNL: GN28-2521

ALLOCATE Command

Example 1

Operation: Allocate an existing cataloged data set containing input
data for a program. The data set name conforms to the data
set naming conventions, and you need exclusive use of the
data.

Known: The name of the data set ••••••••.•••••••••••• REB35. INPUT. DATA

r---------·---,
IALLOCATE DATASETCINPUT.DATA) OLD I L ___ . ___ J

Example 2

Operation: Allocate a new data set to contain the output from a
program.

Known: The name that you want to give the data set. REB35.0UTPUT.DATA
The block length............................. 1056 bytes
The number of blocks expected to be used.... 50
DCB parameters are in an attribute list named ATTR.

r--,
IALLOCATE DATASET(OUTPUT.DATA) NEW SPACEC50,10) BLOCK(1056) USING (ATTR)I L-___ J

Example 3

Operation: Allocate your terminal as a temporary input data set.

r-----·---.-----------.---,
IALLOCATE DATASET(*) FlLE(FT01F001) I L-__ . ___ J

Operation: Allocate an existing data set that is not cataloged and
whose name does not conform to the data set naming
conventions.

Known: The data set name ••••••••••••••••••••••••••.• SYS1. PTIMAC.AM
The volume serial number •••••••••••••••••••• B99RS2
The DD name................................. SYSL,IB

r--,
lalloc datasetC'sysl.ptimac.am') file(syslib) volume(b99rs2) shr I L-___ J

Example 5

Operation: Allocate a new partitioned data set.

Known: The data set name ••••••••••••••••••••••••••• JOHNS.OVERHEAD.TEXT
The block length •••••••••••••••••••••••••••• 256 bytes
The number of blocks •••••••••••••••••••••••• 500
The number of directory records ••••••••••••• 50

r----------·--,
IALLOC DATASET(OVERHEAD.TEXT) NEW BLOCK(256) SPACE(500) DIR(50) I
L-___ . __ J

54 TSO Command Language Reference (Release 21)

ATTRIB Command

Use the ATTRIB command to build a list of attributes for data sets that
you intend to allocate dynamically. During the remainder of your
terminal session you can have the system refer to this list for data set
attributes when you enter the ALLOCATE command. The ALLOCATE command
will convert the attributes into DCB parameters for data sets being
allocated.

Note: Before using this command, you should be familiar with DCB
parameters as discussed in Job Control Language and Data Management
Services •

• ---------7---,
I COMMAND I OPERAND I
~----------+--~

{
ATTRIB} attr-list-name [BLKSIZE(block-size)]
ATTR

[BUFL(buffer-length)]

[BUFNO(number-of-buffers)]

[KEYLEN (key-length)]

[LRECL({iogiCal-recOrd-length})]

[NCP(number-of-channel-programs)]

rINPUT]
LOUTPUT

[
EXP DT (y ear-day)]
RETPD(number-of-days)

[OPTCD(C,T. Wand/or Q)]

[EROPr<{!EH

[RECFM(A,B,F,M,S,T,U, and/or V)] L __________ ~ _____________________________ • _____________________________ _

attr-list-name
specifies the name for the attribute list. This name can be
specified later as a parameter of the ALLOCATE command. The name
must consist of one through eight alphameric and/or national
characters. must begin with an alphabetic or national character.
and must be different from all other attr-list-names and ddnames
that are in existence for your terminal session.

54.1

ATTRIB Command

BLKSIZE(block-size)
specifies the blocksize for the data sets. The block size must be
a decimal number and must not e~ceed 32,760 bytes.

The block size that you specify must be consistent with the
requirements of the RECFM operand. If you specify:

• RECFM(F), then the block size must be equal to or greater than
the logical record length.

• RECFM(F B), then the block size must be an integral multiple of
the logical record length.

• RECFM(V), then the block size must be equal to or greater than
the largest block in the data set. (Note: For unblocked
variable-length records, the size of the largest block must allow
space for the 4-byte block descriptor word in addition to the
largest logical record length. The logical record length must
allow space for a 4-byte record descriptor word. (See the
publication IBM System/360 Operating system: Data Management
Services, GC26-3746, for additional information.

• RECFM(V B), then the block size must be equal to or greater than
the largest block in the data set. (Note: For blocked variable
length records., the size of the largest block must allow space
for the 4-byte block descriptor word in addition to the sum of
the logical record lengths that will go into the block. Each
logical record length must allow space for a 4-byte record
descriptor word,.. since the number of logical records can vary,
you must estimate the optimum block size Cand the·average number
of records for each block) based on your knowledge of the
application that requires the I/O. (See the Data Management
services, publication for additional information.)

BUFL(buffer-length)
specifies the length, in bytes, of each buffer in the buffer pool.
substitute a decimal number for buffer-length. The number must not
exceed 32,760.

If you omit this operand and the system acquires buffers
automatically, the eLKSIZE and KEYLEN operands will be used to
supply the information needed to establish buffer length.

BUFNOCnumber-of-buffers)
specifies the number of buffers to be assigned for data control
blocks. Substitute a decimal number for number-of-buffers. The
number must never exceed 255, and you may be limited to a smaller
number of buffers depending on the limit established when the
operating system was generated. The following table shows the
condition that requires you to include this operand.

54.2 TSO Command Language Reference (Release 21)

ATTRIB Command

r----------~--------------------------T----------------------------, I When you use one of the following I I
I methods of obtaining the buffer pool .••• then: I
.-------------------------------------+----------------------------i I (1) BUILD macro instruction I (1) you must specify I
I 1 BUFNO. I
.-------------------------------------+----------------------------i I (2) GETPOOL macro instruction I (2) the system uses I
I I the number that you I
I I specify for GETPOOL. I
.-------------------------------------+----------------------------i I (3) Automatically with BPAM or BSAM I (3) you must specify I
I I BUFNO. I
.-------------------------------------+----------------------------i I (4) Automatically with QSAM I (4) you may omit BUFNO I
I I and accept two I
I I buffers. I L-____________________________________ ~ ____________________________ J

KEYLEN(key-length)
specifies the length" in bytes, of each of the keys used to locate
blocks of records in the data set when the data set resides on a
direct access device.

The key-length must not exceed 255 bytes. If an existing data set
has standard labels, you can omit this operand and let the system
retrieve the key length from the standard label. If a key length
is not supplied by any source before you issue an OPEN macro
instruction, a length of zero (no keys) is assumed.

LRECL(logical-record-length)
specifies the length, in bytes, of the largest logical record in
the data set. You must specify this operand for data sets that
consist of either fixed length or variable length records.

Omit this operand if the data set contains undefined-length
records.

The logical record length must be consistent with the requirements
of the RECFM operand and must not exceed the block size (BLKSIZE
operand) except for variable length spanned records. If you
specify:
• RECFM(V) or RECFM(V B) " then the logical record length is the sum

of the length of the actual data fields plus 4 bytes for a record
descriptor word.

• RECFM(F) or RECFM(F B), then the logical record length is the
length of the actual data fields.

• RECFM(U), then you should omit the LRECL operand.

Note: For variable length spanned records (V S or V B S) processed
by QSAM (locate mode) or BSAM, specify LRECL (X) when the logical
record exceeds 32756 bytes.

NCP(number-of-channel-programs)
specifies the maximum number of READ or WRITE macro instructions
allowed before a CHECK macro instruction is issued. The maximum
number must not exceed 99 and must be less than 99 if a lower limit
was established when the operating system was generated. If you
are using chained scheduling, you must specify an NCP value greater
than 1. If you omit the NCP operand, the default value is 1.

54.3

ATTRIB Command

INPUT
specifies that the data set will be used only as input to a
processing program.

OUTPUT
specifies that the data set will be used only to contain output
from a processing program.

EXPDT(year-day)
specifies the data set expiration date. You must specify the year
and day in the form "yyddd", where "yy" is a two digit decimal
number for the year and "ddd" is a three digit decimal number for
the day of the year. For example, January 1, 1974 is 74001 and
December 31" 1975 is 75365.

RETPD(number-of-days)
specifies the data set retention period in days. The value must be
a one through four digit decimal number.

BFALN ({~})

specifies the boundary alignment of each buffer as follows:
F each buffer starts on a full word boundary that is not a

doubleword boundary.
D each buffer starts on a doubleword boundary.

If you do not specify this operand and it is not available from any
other source, data management routines assign a doubleword
boundary.

OPTCD(C,T,Q and/or W)
specifies the following optional services that you want the system
to perform.
C You want to use chain scheduling.
T You want to use the user totaling facility.
W You want the system to perform a validity check when data is

written on a direct access device.
Q You want to translate a magnetic tape from ASCII to EBCDIC or

from EBCDIC to ASCII.

(You can request any or all of the services by combining the values
for this operand. You may combine the characters in any sequence,
being sure to separate them with blanks or commas).

EROPT ({ACC}>
SKP
ABE

specifies the option that you want executed if an error occurs when
a record is read or written. The options are:
ACC accept the block of records in which the error was found.
SKP skip the block of records in which the error was found.
ABE end the task abnormally.

BFTEK({!f
specifies the type of buffering that you want the system to use.
The types that you can specify are:

54.4 TSO Command Language Reference (Release 21)

ATTRIB Command

S simple buffering.
E exchange buffering.
A automatic record area buffering.
R record buffering.

RECFMCA,B,F"M,S,T,U, and/or V)
specifies the format and characteristics of the records in the data
set. The format and characteristics must be completely described
by one source only. If they are not available from any source, the
default will be an undefined length record.

Use the following values with the RECFM operand.

A indicates that the record contains ASA printer control
characters.

B indicates that the records are blocked.
F indicates that the records are of fixed length.
M indicates that the records contain machine code control

characters.
S indicates that" for fixed-length records, the records are

written as standard blocks (there must be no truncated blocks
or unfilled tracks except for the last block or track). For
variable length records, a record may span more than one
block. Exhange buffering -BFTEK(E)- must not be used.

T -- indicates that the records may be written onto overflow tracks
if required_ Exchange buffering -BFTEKCE)- or chained
scheduling -OPTCD(C)- cannot be used.

U indicates that the records .are of undefined length.
V indicates that the records are of variable length.

You may specify one or more values for this operand Cat least one
is required). See the' Job Control Language publication for a
rigorous discussion of all possible valid combinations of values.
The values must be separated by blanks or commas.

Example 1

Operation: Create a list of attributes to be assigned to a data set
when the data set is allocated.

Known: The following attributes correspond to the DCB parameters that
you want assigned to a data set.
Optional services: chain scheduling, user totaling.
Expiration date: Dec. 31, 1977.
Record format: variable length spanned records.
Error option: ABEND when READ or WRITE error occurs.
Buffering: simple buffering.
Boundary alignment: doubleword boundary.
Logical record length: records may be larger than 32,765 bytes.
The name for this attribute list is DCBPARMS.

r--,
IATTR DCBPARMS OPTCD(C T) EXPDT(77365) RECFMCV S) - I
IEROPTCABE) BFTEKCS) BFALN(D) LRECL(X) I L __ J

54.5

ATTRIB Command

Example ~

ope.ration: This example shows how to create an attribute list" how to
use the list when allocating two data sets, and how to
delete the list so that it cannot be used again.

Known: 'l'he name for the attribute list ••••• DSATTRS
The attributes •••••••••••••••••••••• EXPDTC9936S) BLKSIZE(24000)

BFTEKCA)
'l'he name for the first data set ••••• FORMAT.INPUT
The name of the second data set..... TRAJECT. INPUT

r--,
lattrib dsattrs expdtC9936S) blksize(24000) bftekCa) I
I I
I allocate datasetCformat.input) new blockCSO) space(l,l) - I
Ivolume(111111) usingCdsattrs) I
I I
lalloc daCtraject.input) old blCSO) volume (111111) usingCdsattrs) I
I I
Ifree attrlistCdsattrs) I L __ J

54.6 TSO Command Language Reference (Release 21)

CALL Command

Use the CALL command to load and execute a program that exists in
executable (load module) form. The program may be user-written, or it
may be a system module such as a compiler, sort, or utility program.

You must specify the name of the prograID (load module) to be
processed. It must be" a member of a partitioned data set.

You may specify a list of parameters to be passed to the specified
program. The system formats this data so that when the program receives
control, register one contains the address of a fullword. The three low
order bytes of this fullword contain the address of a halfword field.
This halfword field is the count of the number of bytes of information
contained in the parameter list. The parameters immediately follow the
halfword field.

If the program terminates abnormally, you are notified of the
condition and may enter a TEST command to examine the failing program.

r--------------T---,
I COMMAND I OPERANDS I
.--------------+---~
I CALL I data-set-name [' parameter-string'] I L ______________ ~ ___ J

data-set-name
specifies the name of the member of a partitioned data set that
contains the program to be executed. You must enclose the member
name within parentheses. When the name of the partitioned data set
conforms to the data set naming conventions, the system will add
the necessary qualifiers to make the name fully qualified. The
system will supply .LOAD as a default for the descriptive qualifier
and (TEMPNAME) as the default for a member name. If the name of
the partitioned data set does not conform to the data set naming
conventions, it must be included with the member name in the
foLlowing manner:

data-set-name(membername)

If you specify a fully qualified name, enclose it in apostrophes
(single quotes) in the following manner:

parameter string

'USERID.MYPROGS.LOADMOO(A) ,
'SYS1. LI NKLIB (IEUASM) ,

specifies up to 100 characters ot information that you want to pass
to the program as a parameter list. When passing parameters to a
program, you should use the standard linkage conventions.

55

CALL Command

Example 1

Operation: Execute a load module.

Known: The name of the load module BARB01. PEARL. LOAD (TEMPNAME)
Parameters •••••••••••••••••••••••••• 10,18,23

r---,
ICALL PEARL '10 18 23' I L __ . __ J

Example 2

Operation: Execute a load module.

Known: The name of the load module ••••••••• SHEP.MYLIB.LOAD(COS1)

r--,
ICALL MYLIB(COS1) I L __ J

Example 3

Operation: Execute a load module.

Known: The name of the load module ••••••••••••••••••• BCMD93.LOAD(SIN1)

r--,
ICALL (SIN1) I L __ , ________ J

56 TSO Command Language Reference (Release 21)

CANCEL Command

Use the CANCEL command to halt processing of conventional batch jobs
that you have submitted from your terminal. If several jobs have the
same jobname, the system cancels only the first one it finds with that
name. A message will be displayed at your terminal to advise you of the
action taken by the system. A message will also be displayed at the
system operator's console when a job is canceled.

Only authorized users can use this command (see the ACCOUNT command).
This command is generally used in conjunction with the SUBMIT, STATUS,
and OUTPUT commands.

r--------------T---,
I COMMAND I OPERANDS I
.--------------+---~
I CANCEL I (job-name-list) I L ______________ ~ ___ J

(job-name-list)
specifies the names of the jobs that you want to cancel. The name
of a job that you submit from your terminal should consist of your
user identification plus one or more alphameric characters up to a
maximum of eight characters. You can only cancel jobs that have a
userid that is identical to the one with which you logged on.

Note: When you specify a list of several job names, you must
separate the jobnames with standard delimiters and you must enclose
the entire list within parentheses.

Example 1

Operation: Cancel a conventional batch job.

Known: The name of the jobn •••••••••• D ••••••••••••••••••• JE024Al

r--,
ICANCEL JE024Al I L __ J

Example 2

Operation: Cancel several conventional bat.ch jobs.

Known: The names of the jobs ••••••••••••••••••••••••••••• D58BOBTA
D58BOBTB
D58BOBTC

r--,
ICANCEL (D58BOBTA D58BOBTB D58BOBTC> I L __ J

57

58

DELETE Command

Use the DELETE command to delete one or more data sets or one or more
members of a partitioned data set.

If the data set is cataloged, the system removes the catalog entry.
The catalog entry for a partitioned data set is removed only when the
entire partitioned data set is deleted. The system deletes a member of
a partitioned data set by removing the member name from the directory of
the partitioned data set.

Members of a partitioned data set and aliases for any members must
each be deleted explicitly. That is, when you delete a member, the
system does not remove any alias names of -the member; likewise, when you
delete an alias name, the member itself is not deleted.

After you delete a protected data set, you should use the PROTECT
command to update the password data set to reflect the change. This
will prevent your having insufficient space for future entries.

r--------------T---,
I COMMAND I OPERANDS I
.--------------+---~
I {DELETE} I (data-set-list> [PURGE] I
I D I NOPURGE I L ______________ ~ ___ J

data-set-list

PURGE

specifies the name of a data set or a member of a partitioned data
set, or a list of names of data sets and/or members (see data set
narning conventions>. If you specify a list, it must be enclosed
within parentheses.

If you want to delete several data sets having similar names, you
may insert an asterisk into the data set name at the point of
dissimilarity. That is, all data sets whose names match except at
the position where the asterisk is placed will be deleted.
However, you may use only one asterisk per data set narne# and you
must not place it in the first position.

For instance, suppose that you have several data sets named:

ROGERA.SotiRCE.PLI
ROGERA.SOURCE2.PLI
ROGERA.SOURCE2.TEXT
ROGERA.SOURCE2.DATA

If you specify:

DELETE SOURCE2.*

the only data set remaining will be

ROGERA.SOURCE.PLI

specifies that the data set is to be deleted even
date has not elapsed. This operand i.s ignored by
are deleting a member of a partitioned data set.
applies to all data sets specified in a list.

if its expiration
the system if you
The PURGE keyword

59

DELETE Command

NOPURGE
specifies that you want the system to check the expiration date for
the data set. Only if the expiration date has elapsed will the
data set be deleted. The NOPURGE keyword applies to all data sets
specified in a list. This is the default if neither PURGE nor
NOPURGE is specified.

Example 1

Operation: Delete a member of a partitioned data set.

Known: The data set name and member name ••••• BANOO. INCHEASE. FORT (HOOF)

r--,
IDELETE INCREASE.FORT(HOOF) I L __ J

Example 2

Operation: Delete several data sets.

Known: The name of the data sets ••••••••••••••••••• JWSD58.CMDS.TEXT
JWSD58.UTILS.OBJ
JWSD58.BUDGET.ASM

r--,
IDELETE (CMOS.TEXT UTILS.OBJ BUDGET.ASM) I L ___ J

Example 3

Operation: Delete a data set even if its expiration date has not
expired.

Known: The name of the data set •••••••••••••• REB1.SCHEDULE.OBJ

r--.----,
ID SCHEDULE.OBJ PURGE I L __ J

60 TSO Command Language Reference (Release 21)

EDIT Command

The EDIT command is the primary facility for entering data into the
system. Therefore, almost every application involves some use of EDIT.
With EDIT and its subcommands, you can create, modify, store, and
retrieve data sets with sequential or partitioned data set organization.
These data sets may contain:

• Source programs composed of programming language statements (PL/l,
COBOL" FORTRAN, etc.)

• Data used as input to a program.
• Text used for information storage and retrieval.
• Commands" subcommands, and/or data (Command Procedure).
• Job Control (JCL) statements for background jobs.

The EDIT command will only support data sets that have one of the
following record formats:

F - fixed length records
FB - fixed length" blocked records
V - variable length records
VB - variable length, blocked records

See Figure 8" note 4 for a complete list of the data set attributes
that are supported by EDIT.

r--------------T---,
I COMMAND I OPERANDS I
~--------------+---~
I {EDIT} I data-set-name[NEW]

E I OLD
I PLI [([integerl [integ er2]] [CHAR60] >]
I PLIF l 72 CHAR48
I ASM
I COBOL
I GOFORT f(FREE)]
I L(FIXED)
I FORTE

FORTG
FORTGI
FORTH
TEXT
DATA
CLIST
CNTL
BASIC
IPLI [CHAR 6 0]

LCHAR48

[
SCAN]
NOSCAN

[
NUM][(integer1
NONUM

[integer2])]

[BLOCK(integer)] [LINE(integer)]

ASIS [
CAPS]

______________ ~ ___ J

61

EDIT Command

data-set-name

PLI

PLIF

specifies the name of the data set that you want to create or edit.
(See data set naming conventions.)

Note: Any user-defined data set type (specified at system
generation) is also a valid data set type keyword and may have
subfield parameters defined by the user's installation (see Figure
8, note 4).

specifies that the data set identified by the first operand is for
PL/I statements. 'Iihe statements may be for the PL/I Optimizing
Compiler or the PL/I Checkout Compiler.

specifies that the data set specified by the first operand is for
statements for the PL/I (F) Compiler.

integer1 and integer2
the optional values contained within the parentheses are applicable
only when you request syntax checking. The integer1 and integer2
values define the column boundaries for your input statements. The
position of the first character of a line, as determined by the
left margin adj ustment on your terminal, is column 1. The value
for integer1 specifies the column where each input statement is to
begin. The statement can extend from the column specified by
integer1 up to and including the column specified as a value for
integer2. If you omit integer1 you must omit integer2, and the
default values are columns 2 and 72; however, you can o~it integer2
without omitting integer1.

CHAR48 or CHAR60
CHAR48 specifies that the PL/I source statements are written using
the character set that consists of 48 characters. CHAR60 specifies
that the source statements are written using the character set that
consists of 60 characters. If you omit both CHAR48 and CHAR60, the
default value is CHAR60.

IPLI (CHAR48 or CHAR60)

BASIC

ASM

COBOL

specifies that the data set identified by the first operand is for
PL/I statements that may be processed by the ITF:PLI Program
Product. CHAR48 or CHAR60 are used as described in the PLI operand
description.

specifies that the data set identified by the first operand is for
BASIC statements that may be processed by the ITF:BASIC Program
Product.

specifies that the data set identified by the first operand is for
assembler language statements.

specifies that the data set identified by the first operand is for
COBOL statements.

CLIST
specifies that the data set identified by the first operand is for
a command procedure and will contain TSO commands and subcommands
as statements or records in the data set.

62 TSO Command Language Reference (Release 21)

CNTL

TEXT

DATA

FORTE

FORTG

EDIT Command

specifies that the data set identified by the first operand is for
Job Control Language (JCL) statements and SYSIN data to be used
with the SUBMIT command.

specifies that the data set identified by the first operand is for
text that may consist of both uppercase and lowercase characters.

specifies that the data set identified by the first operand is for
data that may be subsequently retrieved or used as input data for
processing by an application program.

specifies that the data set identified by the first operand is for
FORTRAN (E) statements.

specifies that the data set identified by the first operand is for
FORTRAN (G) statements.

FORTGI

FORTH

specifies that the data set identified by the first operand is for
FORTRAN (Gi) statements. You may use FORT as an abbreviation for
this operand. This is the default value if no other FORTRAN
language level is specified with the FORT operand.

specifies that the data set identified by the first operand is for
FORTRAN (H) statements.

GOFORT(FREE or FIXED)
specifies that the data set identified by the first operand is for
statements that are suitable for processing by the Code and Go
FORTRAN Program Product.

FREE specifies that the statements are of variable lengths and do
not conform to set column requirements. This is the default value
if neither FREE nor FIXED is specified. FIXED specifies that
statements adhere to standard FORTRAN column requirements and are
80 bytes long.

Note: The ASM, BASIC, CLIST.. CNTL, COBOL .. DATA.. FORTE, FORTG, FORTGI,
FORTH, GO FORT.. IPLI, PLI and TEXT operands specify the type of data set
you want to edit or create. You must specify one of these whenever:

• The data-set-name operand does not follow data set naming
conventions (i.e., it is enclosed in quotes).

• The data-set-name operand is a member name only (i.e •. , it is
enclosed in parentheses).

• The data-set-name operand does not include a descriptive qualifier;
or the descriptive qualifier is such that EDIT cannot determine the
data set type. (See Figure 3 for a list of valid descriptive
qualifiers.)

The system prompts the user for data set type whenever the type cannot
be determined from the descriptive qualifier (as in the 3 cases above),
or whenever the user forgets to specify a descriptive qualifier on the
EDIT command.

63

EDIT Command

Note: When the descriptive qualifier FORT is entered wi-th no data set
type, the data set type default is GOFORT(FREE). If PLI is the
descriptive qualifier, the data set type default is PLI. To use data
set types GOFORT(FlXED), FORTGI" FORTG, FORTE, FORTH or PLIF, you must
enter the data set type keyword.

NEW

OLD

SCAN

specifies that the data set named by the first operand does not
exist. If an existing cataloged data set already has the data set
name that you specified, the system notifies you when you try to
save it; otherwise, the system allocates your data set when you
save it.

If you specify NEW without specifying a member name, the system
allocates a sequential data set for you when you save it. If you
specify NEW and include a member name the system allocates a
partitioned data set and creates the indicated member when you try
to save it.

specifies that the data set named on the EDIT command already
exists.. When you specify OLD and the system is unable to locate
the data set, you will be notified and you will have to reenter the
EDIT command ..

If you specify OLD without specifying a member name, the system
will assume that your data set is sequential: if the data set is
in fact a partitioned data set, the system will assume that the
member name is TEMPNAME. If you specify OLD and include a member
name, the system will notify you if your data set is not
partitioned.

If you do not specify OLD or NEW, the system uses a tentative
default of OLD. If the data set name or member name that you
specified, cannot be located, you will be prompted to enter NEW or
OLD. If you enter NEW, EDIT processing will continue. If you
enter OLD, the system will notify you why the data set or member
could not be located. You can then enter EDIT or another command.

specifies that each line of data you enter in Input mode is to be
checked statement by statement for proper syntax. If you specify
the BASIC or IPLI data set type keyword, all modifications made in
Edit mode and each line of data entered in Input mode will be
checked for proper syntax. Syntax checking is available only for
statements written in GOFORT, FORTE, FORTGI, FORTG, FORTH, BASIC,
IPLI~ PLI, or PLIF.

Note: User-defined data set types can also use this keyword if a
syntax checker name was specified at system generation time.

NO SCAN
specifies that syntax checking is not to be performed. This is the
default value if neither SCAN nor NOSCAN is specified.

64 TSO Command Language Reference (Release 21)

EDIT Command

NUM(integerl integer2)

NONUM

CAPS

ASIS

specifies that the lines of the data set records are numbered. You
may specify integerl and integer2 for ASM type data sets only.
Integerl specifies# in decimal# the starting column (73-80) of the
line number. Integer2 specifies, in decimal, the length (8 or
less) of the line number. Integerl plus integer2 cannot exceed 81.
If integerl and integer2 are not specified, the line numbers will
default according to the type of data set being created or edited
(see Table 4). NUM is the default value if you omit both NUM and

NONUM.

specifies that your data set records do not contain line numbers.
Do no~cify this keyword for the BASIC, IPLI, and GOFORT data
set types, since they must always have line numbers. The default
is NUM.

specifies that all input data is to be converted to uppercase
characters. If you omit both CAPS and ASIS, then CAPS is the
default except when the data set type is TEXT.

specifies that input is to retain the same form (upper and lower
case) as entered. ASIS is the default for TEXT only.

BLOCK (integer)
specifies the maximum length, in bytes, for blocks of records of a
new data set. Specify this operand only when creating a new data
set. You cannot change the block size of an existing data set. If
you omit this operand, it will default according to the type of
data set being created. Default block sizes are described in Table
4. If different defaults are established at system generation
(SYSGEN) time, Table 4 values may not, be applicable. The blocksize
(BLOCK) for data sets that contain fixed length records must be a
multiple of the record length (LINE); for variable length records,
the blocksize must be a multiple of the record length plus 4.

LINE (integer)
specifies the length of the records to be created for a new data
set. Specify this operand only when creating a new data set. The
new data set will 'be composed of fixed length records with a
logical record length equal to the specified integer. You cannot
change the logical record size of an existing data set. If you
specify this operand and the data set type is ASM, FORTE, FORTG,
FORTGI, FORTH, GOFORT(FlXED), COBOL or CNTL the integer must be 80.
If this operand is omitted, the line size defaults according to the
type of data set being created. Default line sizes for each data
set type may be found in Figure 8. This operand is used in
conjunction with the BLOCK operand.

65

EDIT Command

r---------T-----T----------------T----------------T-------------------T-----------------,
I DATA SET I DSORGI LRECL I BLOCK SIZE I LINE NUMBERS I I
ITYPE I ~---------------~----------------t-------------------+-----------------~
I I I LINE(n) (NoteD BLOCK(n) I NOM (n"m) I CAPS/ASIS I
I I .-------T--------T-------T--------t-------------------+-------T---------~
I I I I I I I I I CAPS I
I I Idefaultlspecif. Idefaultlspecif. Idefault (n,m) spec. I default I Required I
~---------+-----+-------t--------t-------+--------t-------------------+-------t---------~
IASM IPS/POI 80 =80 1680 l~defaultlLast 8 73~n~80 CAPS Yes
I BASIC IPS/POI 120 (Note 2) 1680 I~defaultl (Note 3) CAPS Yes
ICLIST IPS/POI 255 (Note 2) 1680 ,::;defaultl (Note 3) CAPS Yes
ICNTL IPS/POI 80 =80 1680 l~defaultlLast 8 CAPS Yes
I COBOL IPS/POI 80 =80 400 l~defaultlFirst 6 CAPS Yes
I DATA IPS/POI 80 ~255 1680 l~defaultlLast 8 CAPS No
I FORTE, I I I I
I FORTG, I I I I
I FORTGI, I I I I
I FORTH, I I I I
I GOFORT I I I I
I (FIXED) IPS/POI 80 =80 400 l::;defaultlLast 8 CAPS Yes
I GOFORT I I I I
I (FREE) IPS/POI 255 1680 ,::;defaultIFirst 8 CAPS No
I IPLI IPS/POI 120 (Note 2) 1680 I~defaultl (Note 3) CAPS Yes
I (or user supplied data set type -- See Note 4) I
IPLI IPS/POI 104 I ~100 I 500 ,::;default, (Note 3) CAPS No
IPLIF IPS/POI 80 I ::;100 I 400 l::;defaultlLast 8 CAPS Yes
I TEXT IPS/POI 255 I (Note 2)1 1680 I~defaultl (Note 3) ASIS No
t---------~-·----~------~--------~-------~--------~-------------------~------~---------~
I Note 1: I
I The default or maximum allowable block size may be specified at SYSGEN time. I
I Note 2: I
I Specifying a LINE value results in fixed length records with a LRECL equal to the I
I specified value. The specified value must always be equal to or less than the I
I default. If the LINE keyword is omitted, variable length records will be created. I
I Note,.-1: I
I The line numbers will be contained in the last eight bytes of all fixed length I
I records and in the first eight bytes of all variable length records. I
I Note 4: I

A user can have additional data set types recognized by the EDIT command processor. I
These user-defined data set types, along with any of the data set types shown above, I
can be defined at system generation time by using the EDIT macro. The EDIT macro I
causes a table of constants to be built which describes the data set attributes. Fori
more information on how to specify the EDIT macro at system generation time, refer to
the publication, IBM System/360 Operating System: System Generati9~, GC28-6554.

When a user wants to edit a data set type that he has defined himself, the data set
type is used as the descriptor (rightmost) qualifier. The user cannot override any
data set types that have been defined by IBM. The EDIT command processor will
support data sets that have the following attributes:

Data Set Organization
Record forrnats
Logical Record Size
Block Sizes-
Sequence Nos.-

Must be either sequential or partitioned
Fixed or Variable
Less than or equal to 255 characters
User specified -- must be less than or equal to track length
V type: First 8 characters
F type: Last 8 characters ___ J

Figure Default Values for LINE and BLOCK Operands

66 TSO Command Language Reference (Release 21)

EDIT Command

You can also use the EDIT command to:

• Compile, load, and execute a source program.

These operations are defined and controllE~d by using the EDIT operands
and subcommands.

Modes of Operation

The EDIT command has two modes of operation: input mode and edit mode.
You enter data into a data set when you are in input mode. You enter
subcomrnands and their operands when you are in edit mode.

You must specify a data set name when you enter the EDIT command. If
you specify the NEW keyword, the system places you in the Input mode.
If you do not specify the NEW keyword, you are placed in the Edit mode
if your specified data set is not empty; if the data set is empty, you
will be placed in Input mode.

You can limit access to your data set by specifying a password when
you use the EDIT command. To specify a password, enter a slash (/)
followed by the password of your choice after the data set name operand
of the EDIT command.

Input Mode

In input mode, you type a line of data and then enter it into the data
set by pre~sing your terminal's carrier return key. You can enter lines
of data as long as you are in input mode. One typed line of input
becomes one record in the data set.

CAUTION: If you enter a command or subcommand while you are in input
mode, the system will add it to the data set as input data. Enter a
null-line to return to EDIT mode before entering any subcommands.

Line Numbers: Unless you specify otherwise~ the system assigns a line
number to each line as it is entered. Line numbers make editing much
easier, since you can refer to each line by its own number.

Each line number consists of not more than eight digits, with the
significant digits justified on the right and preceded by zeros. Line
numbers are placed ~t the beginning of variable length records and at
the end of fixed length records (exception: line numbers for COBOL
fixed length records are placed in the first six positions at the
beginning of the record). When you are working with a data set that has
line numbers, you can have the new line number listed at the start of
each new input line. If you are creating a data set without line
numbers, you can request that a prompting character be displayed at the
terminal before each line is entered. Otherwise, none will be issued.

Record Format: Record formats and sizes may vary according to the type
of data set. In all cases, the length of your records must not exceed
255 characters, and the record format cannot be other than fixed (F) 0'
fixed blocked (FB), variable (V), or variable blocked (VB).

Note: Edit does not allow a user to edit data sets with record formats
of either FBA or FBM.

61

EDIT Command

All input records will be converted to upper case characters, except
when you specify the ASIS or TEXT operand. The TEXT operand also
specifies that character-deleting indicators will be recognized, but all
other characters will be added to the data set unchanged. More specific
considerations are:

All Assembler source data sets must consist of fixed length records
80 characters in length. These records mayor may not have line
numbers. If the records are line-numbered, the number can be
located anywhere within columns 73 to 80 of the stored record (the
printed line number always appears at the left margin).

IPLI and BASIC data sets may consist of either fixed length or
variable length records. All records must contain line numbers.
Fixed-length records may be specified up to 120 characters in
length. The default is variable-length records with the line
number contained in the first eight characters.

You can create a variety of FORTRAN data sets: FORTE; FORTG;
FORTGI; FORTH; and GOFORT. You can enter GOFORT input statements
in "free formn, that is, there are no specific columns into which
your data must go~ Free form FORTRAN data will be stored in
variable length records.

Syntax Checking: You can have each line of input checked for proper
syntax. The system will check the syntax of statements for data sets
having FORT, PLI, IPLI, and BASIC descriptive qualifiers. Input lines
will be collected within the system until a complete statement is
available for checking.

When an error is found during syntax checking, an appropriate error
message is issued and edit mode is entered. You can then take
corrective action, using the subcommands. When you wish to resume input
operations, press your terminal's carrier return key without typing any
input. Input mode is then entered and you can continue where you left
off. Whenever statements are being checked for syntax during input
mode. the system will prompt you for each line to be entered unless you
specify the NOPROMPT operand for the INPUT subcommand.

Continuation of a Line in Input Mode: In input mode there are three
independent situations that require you to indicate the continuation of
a line - by ending it with a hyphen - (i.e." a hyphen followed
immediately by a carriage return). The situations are:

1. The syntax checking facility is being used.
2. The data set type is GOFORT(FREE).
3. The data set type is CLIST (variable length records).

If none of these situations apply, avoid ending a line with a hyphen
(minus sig-n) since it will be removed by the system before storing the
line in your data set.

You must use the hyphen when the syntax checking facility is active
to indicate that the logical line to be syntax checked consists of
multiple input lines. The editor will then collect these lines
(removing the hyphens) and pass them as one logical line -to the syntax
scanner. However, each individual input line (with its hyphen removed)
is also stored separately in your data set.

68 TSO Command Language Reference (Release 21)

EDIT Command

You must use the hyphen to indicate logical line continuation in a
GO FORT (FREE) data set, whether or not syntax checking is active. since
the Code and Go Fortran Free-form input format requires a hyphen to
indicate continuation to its syntax checker and compiler. the hyphen is
not removed from the input line by EDIT, but becomes part of the stored
line in your data set.

The hyphen is also used to indicate logical line continuation in
command procedures (CLIST data sets). If the CLIST is in variable
length record format (the default), the hyphen is not removed by EDIT
but becomes part of the stored line in your data set and will be
recognized when executed by the EXEC command processor. If the CLIST is
in fixed length record format, a hyphen" placed eight character
positions before the end of the record and followed by a blank, will be
recognized as a continuation when executed by the EXEC command
processoro (This assumes that the line number field is defined to
occupy the.last eight positions of the stored record.) For example, if
the parameter LINE(SO) was specified on the EDIT command when defining
the CLIST data set,. the hyphen must be placed in data position 72 of the
input line followed immediately by a blank. (Location of a particular
input data column is described under the TABSET subcommand of EDIT.)

Note that these rules apply only when entering data in Input Mode.
When you use a subcommand (e.g., CHANGE, INSERT) to enter data, a hyphen
at the end of the line indicates subcommand continuation; the system
will append the continuation data to the subcommand.

To insert a line of data ending in a hyphen in situations where the
system would remove the hyphen (i. e .. , while in subcommand mode or in
input mode for other than CLIST or GOFORT data sets), enter a hyphen in
the next-to-Iast column, a blank in the last column, and an immediate
carriage return.

Edit Mode

You can enter subcommands to edit data sets when you are in Edit Mode.
You can edit data sets that have line numbers by referring to the number
of the line that you want to edit. This is called line~number editing.
You can also edit data by referring to specific items of text within the
lines. This is called context editing. A data set having no line
numbers may be edited only by context. Context editing is performed by
using subcommands that refer to the current line value or a character
combination, such as with the FIND or CHANGE subcommands. There is a
pointer within the system that points to a line within the data set.
Normally, this pointer points to the last line that you referred to.
You can use subcommands to change the pointer so that it points to any
line of data that you choose. You may then refer to the line that it
points to by specifying an asterisk <*) instead of a line number.
Figure 9 shows where the pointer points at completion of each
subcommand.

Note: A current-line pointer val ue of zero refers to the position
before the first record, if the data set does not contain a record zero.

When you edit data sets with line numbers, the line number field will
not be involved in any modifications made to the record except during
renumbering. Also l the only editing operations that will be performed
across record boundaries will be the CHANGE and FIND subcommands, when
the TEXT and NONUM operands have been specified for the EDIT command.
In CHANGE and FIND an editing operation will- be performed across only
one record boundary at a time.

69·

EDIT Command

r---------------------T--,
IEdit Subcommands IValue of the Pointer at Completion of subcommand I
t---------------------+--t

BOTTOM Last line (or zero for empty data sets)

CHANGE

DELETE

DOWN

END

FIND

FORMAT(a program
product)

HELP

INPUT

INSERT

Last line changed

Line preceding deleted line (or zero if the
first line of the data set has been deleted)

Line n relative lines below the last line
referred to, where n is the value of the ncountn
parameter, or bottom of the data set (or line
zero for empty data sets)

No change

Line containing specified string, if any; else,
no change

No change

No change

Last line entered

Last line entered

Insert/Replace/Delete Inserted line or replaced line or line preceding
the deleted line if any (or zero, if no
preceding line exists)

LIST Last line listed

IMERGE(a program Last line
I product)
I
I PROFILE
I
RENUM

RUN

SAVE

SCAN

TABSET

TOP

UP

No change

Same relative line

No change

No change

Last line scanned, if any

No change

Zero value

Line n relative lines above the last line
referred to, where n is the value of the "count"
parameter, (or line zero for empty data sets).

I VERIFY No change L _____________________ i ___ J

Figure 9. Values of the Line Pointer Referred to by an Asterisk (*)

70 TSO Command Language Reference (Release 21)

EDIT Command

Changing From One Mode to Another

If you specify an existing data set name as an operand for the EDIT
command, you begin processing in edit mode. If you specify a new data
set name or an old data set with no records. as an operand for the EDIT
command. you will begin processing in input mode. You will change from
edit mode to input mode when:

1. You press the carriage return key without typing anything first.

Note: If this is the first time during your current usage of EDIT that
Input mode is entered. input will begin at the line after the last line
of the data set (for data sets which are not empty) or at the first line
of the data set (for empty data sets). If this is not the first time
during your current usage of EDIT that Input mode is entered, input will
begin at the point_ following the data entered when last in input mode.

2. You enter the INPUT subcommand.

Note: If you use the INPUT subcommand without the R keyword and the
line is null (that is, it contains no data), input begins at the
specified line: if the specified line contains. data, input begins at the
first increment past that line. If you use the INPUT subcommand with
the R keyword, input begins at the specified line, replacing existing
data, if any.

3. You enter the INSERT subcommand with no operands.

You will switch from input mode to edit mode when:

1. You press the carriage return key without typing anything first.

2. You cause an attention interruption.

3. There is no more space for records to be inserted into the data set
and resequencing is not allowed.

4. When an error is discovered by the syntax checker.

Data set Disposition

The system assumes a disposition of (NEW,CATLG) for new data sets and
(OLD.KEEP) for existing data sets.

TABULATION CHARACTERS

When you enter the EDIT command into the system, the system establishes
a list of tab setting values for you, depending on the data set type.
These are logical tab setting values and mayor may not represent the
actual tab setting on your terminal. You can establish your own tab
settings for input by using the TABSET subcommand. A list of the
default tab setting values for each data set type is presented in the
TABSET subcommand description. The system will scan each input line for
tabulation characters (the characters produced by pressing the TAB key
on the terminal). The system will replace each tabulation character by
as many blanks as are necessary to position the next character at the
appropriate logical tab setting.

71

EDIT Command

When tab settings are not in use, each tabulation character
encountered in all input data will be replaced by a single blank. You
can also use the tabulation character to separate subcommands from their
operands.

EXECUTING USER WRITTEN PROGRAMS

You can compile and execute the source statements contained in certain
data set types by using the RUN subcommand. The RUN subcommand makes
use of optional Program Products; the specific requirements are
discussed in the description of the RUN subcommand.

TERMINATING THE EDIT COMMAND

You can terminate the EDIT operation at any time by switching to edit
mode (if you are not already in edit mode) and entering the END
subcommand. Before terminating the EDIT command, you should be sure to
store all data that you want to save. You can use the SAVE subcommand
for this purpose.

Operation: Create a data set to contain a COBOL program.

Known: The user-supplied name for the new data set. PARTS
The fully qualified name will be •••••••••••• BOBD58.PARTS.COBOL
Line numbers are to be assigned.

r--,
IEDIT PARTS NEW COBOL I L ___ . ___ J

Example 2

Operation: Create a data set to contain a program written in FORTRAN to
be processed by the FORTRAN (Gl) compiler.

Known: The user-supplied name for the new data set ••••• HYDRLICS
The fully qualified name will be •••••••••• DEPT90.HYDRLICS.FORT
The input statements are not to be numbered.
Syntax checking is desired.
Block size •••••••••••••••••••••••••••••••••••••• 400
Line length must be............................. 80
The data is to be changed to all upper case.

r--,
IEDIT HYDRLICS NEW FORTGI NONUM SCAN I L __ J

or
r--,
Ie hydrlics new fortgi scan nonum I L __ J

72 TSO Command Language Reference (Release 21)

EDIT Command

Example 3

Operation: Add data to an existing data set containing input data for a
program.

Known: The name of the data set •••••••••••••••••••• FHETD58.MANHRS.DATA
Block size ••••••••• 0 •••••••••••••••••••••••• 1680
Li ne Ie ngth. • • '. •• 8 0
Line numbers are desired.
The data is to be upper case.
Syntax checking is not applicable.

r--,
Ie rnanhrs.data I
L __ . ____________________ J

Example 4

Operation: Create a data set for a Command Procedure.

Known: The user supplied name for the data set ••••••••••••••••• CMDPROC

r---·-----------------------------,
IE CMDPROC NEW CLIST I L __ J

Example 5

Operation: Create a data set to contain a PLI PROGRAM.

Known: The user-supplied name for the data set ••••••••••• WEATHER
The column requirements for input records
left margin ••••••••••••••••••••••••••••••••••••••• Column 1
right margin •••••••••••••••••••••••••••••••••••••• Column 68
The allowed character set ••••••••••••••••••••••••• 48 characters
Line numbers are desired.
Each statement is to be checked for proper syntax.
The default BLOCK and LINE value are acceptable.

r--,
ledit weather new pli(l 68 char48) scan I L __ J

73

EDIT Command

SUBCOMMANDS FOR EDIT

Use the subcommands while in edit mode to edit and manipulate data. The
format of each subcommand is similar to the format of all the commands.
Each subcommand, therefore, is presented and explained in a manner
simi.lar to that for a command. Figure 10 contains a brief summary of
each subcommand's function.

r------------------------------T---------------------------------------,
BOTTOM Moves the pointer to the last line.
CHANGE Modifies text of a line, or range of

DELETE
OOWN

END
FIND
FORMAT (available as an

optional
Program Product)

HELP
INPUT

lines.
Removes records.
Moves the pointer toward the end of
the data.
Terminates the EDIT command.
Locates a character string.
Formats and lists data.

Explains available subcommands.
Prepares the system for data input.
Inserts records. INSERT

Insert/Replace/Delete
LIST

IMERGE (available as an

Inserts,replaces, or deletes a line.
Prints out specific lines of data.
Combines all or parts of data sets.

I optional
1 Program Product)
I PROFILE Specifies your selected 'delete'
I indicators.
IRENUM Numbers or renumbers lines of data.
I RUN Causes compilation and execution of
I data set.
I SAVE Retains the data set.
I SCAN Controls syntax checking.
I TAB,SET Sets the Tabs.
I TOP Sets the pointer to zero value.
IUP Moves the pointer toward the start of
I data set.
I VERIFY Causes current line to be listed
I whenever the current line pointer
I changes or the text of the current
I I line is modified. L ______________________________ L _______________________________________ J

Figure 10. SUbcommands Used With the Edit Command

74 TSO Command Language Reference (Release 21)

BOTTOM Subcommand of EDIT

Use the BOTTOM subcommand to change the current line pointer so that it
points to the last line of the data set being edited or so that it
contains a zero value, if the data set is empty. This subcommand may be
useful when subsequent subcommands such as INPUT or MERGE must begin at
the end of the data set.

r------------T---,
I SUBCOMMAND I OPERANDS I
.------------+---i
I {BOTTOM} I I
I B I I L ____________ ~ ___ ~_J

75

CHANGE Subcommand of EDIT

Use the CHANGE subcommand to modify a sequence of characters (a
character-string) in a line or in a range of lines. Either the first
occurrence or all occurrences of the sequence can be mod:ified.

r------------T---,
ISUBCOMMAND I OPERANDS I
~---.---------+---~
I {CHANGE} I [.!] I
I C I line-number-l [line-number-2] I
I I * [c oun t 1] I
I I I
I I {stringl [string2 [SpeCial-delimiter[ALL]]]} I
I I count2 I L ___________ L ___ J

line-number-l
specifies the number of a line you want to change. When used with
line-number-2, it specifies the first line of a range of lines.

line-number-2

*

specifies the last line of a range of lines that you want to
change. The specified lines are scanned for occurrences of the
sequence of characters specified for stringl. If you specify the
ALL operand, each occurrence of stringl in the range of lines is
replaced by the sequence of characters that you specify for
string2. If you do not specify the ALL operand" only the first
occurrence of stringl will be replaced by string2.

specifies that the line pointed to by the line pointer in the
system is to be used. If you do not specify a line number or an
asterisk, the current line will be the default value.

countl
specifies the number of lines that you want to change, starting at
the position indicated by the asterisk C*).

stringl
specifies a sequence of characters (a character string) that you
want to change. The sequence must be (1) enclosed IN'ithin single
quotes, or (2) preceded by an extra character which serves as a
special delimiter. The extra character may be any printable
character other than a single quote (apostrophe)" number" blank"
tab, comma, semicolon" parenthesis" or asterisk. The hyphen (-)
can be used but should be avoided due to possible confusion with
its use in continuation. The extra character must not appear in
the character string. Do not put a standard delimiter between the
extra character and the string of characters unless you intend for
the de limi ter to be treated as a character in the character string.

If stringl is specified and string2 is not, the specified
characters are displayed at your terminal up to (but not including)
the sequence of characters that you specified for stringl. You can
then edit the sequence of characters as you please.

76 TSO Command Language Reference (Release 21)

CHANGE Subcommand of EDIT

string2
specifies a sequence of characters that you want to use as a
replacement for string1. Like string1, string2 must be (1)
enclosed within single quotes, or (2) preceded by a special
delimiter. This delimeter must be the same as the extra character
used for string1.

ALL
specifies that every occurrence of string1 within the specified
line or range of lines will be replaced by string2. If this
operand is omitted, only the first occurrence of string1 will be
replaced with string2.

Note: If the special delimeter form is used, string2 must be
terminated by the delimeter before typing the ALL operand.

count 2
specifies a number of characters to be displayed at your terminal,
starting at the beginning of each specified line.

Quoted string Notation

As indicated above, instead of using special delimiters to indicate a
character string, you can use paired single quotes (apostrophes) to
accomplish the same function with the CHANGE subcommand. The use of
single quotes as delimiters for a character string is called
quoted-string notation. Following are the rules for quoted-string
notation for the string1 and string2 operands:

1. You cannot use both special-delimiter and quoted-string notation in
the same subcommand.

2. Each string must be enclosed within single quotes, e.g., 'This is
string1' 'This is string2.'

3. A single quote within a character string is represented by two
single quotes, e.g., 'pilgrim"s progress'.

4. A null string is represented by two single quotes" e.g., .,

You can specify quoted string notation in place of special
delimiter-notation to accomplish any of the functions of the CHANGE
subcommand as follows:

Function
Replace
Delete
Print up to
Place in
front of

*special Delimiter
Notation
+ab+cde+
+ab++
+ab

++cde+

Quoted String
Notation
lab' 'cde'
• ab' ,.
lab'

" 'cde'

* - using the + sign as the delimeter.

Note: It is recommended that you choose the form that best suits you
(either special delimeter or quoted string> and use it consistently. It
will expedite your use of this powerful subcommand.

Combinations of Operands

You can enter several different combinations of these operands. The
system interprets the operands that you enter according to the following
rules:

77

CHANGE Subcommand of EDIT

• When you enter a single number and no other operands, the system
assumes that you are accepting the default value of the asterisk (*)
and that the number is a value for the count2 operand.

• When you enter two numbers and no other operands, the system assumes
that they are line-number-l and count2 respectively.

• When you enter two operands and the first is a number and the second
begins with a character that is not a number, the system assumes
that they are line-nurnber-l and stringlo

• When you enter three operands and they are all numbers, the system
assumes that they are line-number-l~ line-nurnber-2 and count2.

• When you enter three operands and the first two are numbers but the
last begins with a character that is not a number, the system
assumes that they are line-number-l" line-number-2 and stringl.

Example 1

Operation: Change a sequence of characters in a particular line of a
line numbered data set.

Known: The line number •••••••••••••••••••••••• o •••••• a ••••••• 57
The old sequence of characters •••••••••••••••••••••••• parameter
The new sequence of characters •••••••••••••••••••••••• operand

r--,
ICHANGE 57 XparameterXoperand I L __ J

Example 2

Operation: Change a sequence of characters wherever it appears in
several lines of a line numbered data set.

Known: The starting line number ••••••••••••••••••••••••••••••••••• 24
The ending line number ••••••••••••••••••••• a ••• o ••••••••••• 82
The old sequence of characters ••••••••••••••••••••••••••••• i.e.
The new sequence of characters ••••••••••••••••••••••••••••• e.g.

r--,
Ichange 24 82 !i.e. !e. g. !all I L-___ J

The blanks following the string1 and string2 examples (i.e. and e.go)
are treated as characters.

Operation: Change part of a line in a line numbered data set.

Known: The line number.. 143
The number of characters in the line preceding the
characters to be changed ••••••••••••••••• a ••••••••••••••••• o 18

r--,
ICHANGE 143 18 I L __ J

78 TSO Command Language Reference (Release 21)

CHANGE Subcommand of EDIT

This form of the subcommand causes the first 18 characters of line
number 143 to be listed at your terminal. You complete the line by
typing the new information and enter the line by pressing the RETURN
key. All of your changes will be incorporated into the data set.

Example 4

Operation: Change part of a particular line of a line numbered data
set.

Known: The line number •••••••••••••••••••••••••••••••• 103
A string of characters to be changed ••••••••••• 315 h.p. at 2400

r--,
ICHANGE 103 M315 h.p. at 2400 I L ___ - ________________ J

This form of the subcommand causes line number 103 to be searched until
the characters "315 h.p. at 2400" are found. The line is displayed at
your terminal up to the string of characters. You can then complete the
line and enter the new version into the data set.

Example 5

Operation: Change the values in a table.

Known: The line number of the first line in the table •••••••••••••• 387
The line number of the last line in the table ••••••••••••••• 406
The number of the column containing the values •••••••••••••• 53

r--,
ICHANGE 387 406 52 I L __ J

Each line in the table is displayed at your terminal up to the column
containing the value. As each line is displayed, you can type in the
new value. The next line will not be displayed until you complete the
current line and enter it into the data set.

Example 6

Operation: Add a sequence of characters to the front of the line that
is currently referred to by the pointer within the system.

Known: The sequence of characters ••••••••••••••••••••• In the beginning

r--,
I CHANGE * /./In the beginning I L ___ . _____________________________ J

Example 7

operation: Delete a sequence of characters from a line-numbered data
set.

Known: The line number containing the string of characters ••••••••• 15
The sequence of characters to be deleted ••••••••••••••••• weekly

r-----------------------, r-------------------------------------,
ICHANGE 15 /WEEKLY// I or ICHANGE 15 IWEEKLY/ I L _______________________ J L _____________________________________ J

79

CHANGE Subcommand of EDIT

Examples Using Quoted Strings

Example 1A

operation: Change a sequence of characters in a particular line of a
line numbered data set.

Known: T'he Ii ne nUInber •• .,..................................... 57
The old sequence of characters •••••••••••••••••• <. • • •• parameter
The new sequence of characters •••••••••••••••••• < ••••• operand

r--------·--,
ICHANGE 57 'parameter' 'operand' I L __ J

Example 6A

Operation: Add a sequence of characters to the front of the line that
is currently referred to by the pointer within the system.

Known: The sequence of characters ••••••••••••••••••••• In the beginning

r---·-----·---,
ICHANGE * " 'In the beginning' I L __ J

Example 7A

Operation: Delete a sequence of characters from a line-numbered data
set.

Known: The line number containing the
string of characters ••••••••••••••••••••••••••••••••••••• 15
The sequence of characters
to be deleted •• weekly

r--.--------------,
ICHANGE 15 'weekly' " I L ___ , ___ J

80 TSO Command Language Reference (Release 21)

DELETE Subcommand of EDIT

Use the DELETE Subcommand to remove one or more records from the data
set being edited.

Upon completion of the delete operation, the current-line pointer
will point to the line that preceded the deleted line. If the first
line of the data has been deleted, the current line pointer will be set
to zero.

r------------T---,
ISUBCOMMAND I OPERANDS I
~------------+---~
I {DELETE} I [! ~ I I D I line-number-l [line-number-21 I
I I * [countl I L-___________ i ___ J

line-number-1
specifies the line to be deleted; or the first line of a range of
lines to be deleted.·

line-number-2
specifies the last line of a range of lines to be deleted.

*
specifies that the first line to be deleted is the line indicated
by the current line pointer in the system. This is the default if
no line is specified.

count
specifies the number of lines to be deleted, starting at the
location indicated by the preceding operand.

Example 1

Operation: Delete the line being referred to by the current-line
pointer.

r--,
IDELETE * I L __ J

or
r--,
I DELETE I L __ J

or
r--,
ID * I L __ J

or
r--,
ID I L __ J

or
r--,
1* I L __ J

81

DELETE Subcommand of EDIT

Any of the preceding command combinations or abbreviations will cause
the deletion of the line referred to currently. The las·t instance is
actually a use of the insert/replace/delete function, not the DELETE
subcommand.

Example 2

Operation: Delete a particular line from the data set.

Known: The li ne number •••• 0 •.• 04

r--,
IDELETE 4 I L __ J

Leading zeroes are not required.

Example 3

operation: Delete several consecutive lines from the data set.

Known: The number of the first line................................ 18
The number of the last line ••••••••••••••••••••••••••••••••• 36

r---.---------------,
IDELETE 18 36 I L __ J

Example 4

Operation: Delete several lines from a data set with no line numbers.
The current line pointer in the system points to the first
line to be deleted.

Known: The number of lines to be deleted ••••••••••••••••••••••••••• 18

r---.---------------,
IDELETE * 18 I L ___ . _______________ J

Example 5

Operation: Delete all the lines in a data set.

Known: The data set contains less than 100
lines and is not line-numbered.

r---.---------------,
I TOP I
I DELE'l'E * 100 I L __ • __ , _______________ J

82 TSO Command Language Reference (Release 21)

DOWN Subcommand of EDIT

Use the DOWN subcommand to change the current-line pointer so that it
points to a line that is closer to the end of the data set.

r------------T---,
I SUBCOMMAND I OPERANDS I
r------------+-----------------------------~-------------------------~
I DOWN I [count] I L-___________ i ___ J

count
specifies the number of lines toward the end of the data set that
you want to move the current-line pointer. If you omit this
operand, the default is one.

Example 1

Operation: Change the pointer so that it points to the next line.

r--,
I DOWN I L __ J

Example 2

Operation: Change the pointer so that you can refer to a line that is
located closer to the end of the data set than the line
currently pointed to.

Known: The number of lines from the present position to
the new posi tion. .. 18

r--,
IDOWN 18 I L __ J

83

END Subcommand of EDIT

Use the END subcommand to terminate operation of the EDIT command.
After entering the END subcommand, you may enter new commands. If you
have modified your data set and have not entered the SAVE subcommand,
the system will ask you if you want to save the modified data set. If
so, you can then enter the SAVE subcommand. If you do not want to save
the data set, re-enter the END subcommand.

r--------'----T---,
I SUBCOMMAND I OPERANDS I
f------------+---~
I END I I L ___________ i __ --___________ J

84 TSO Command Language Reference (Release 21)

FIND Subcommand of EDIT

Use the FIND subcommand to locate a specified sequence of characters.
The system begins the search at the line referred to by the current line
pointer in the system" and continues until the character string is found
or the end of the data set is reached.

r------------T---,
I SUBCOMMAND I OPERANDS I
t------------+----------------------------------~--------------------~
I {FIND} I string [position) I
I F I I L-___________ ~ ___ J

string
specifies the sequence of characters (the character string) that
you want to locate. This sequence of characters must be preceded
by an extra character that serves as a special delimiter. The
extra character may be any printable character other than a number,
apostrophe, semicolon, blank, tab, comma, parenthesis, or asterisk.
You must not use the extra character in the character string. Do
not put a delimiter between the extra character and the string of
characters.

Instead of using special delimiters to indicate a character string,
you can use paired single quotes (apostrophes) to accomplish the
same function with the FIND subcommand. The use of single quotes
as delimiters for a character string is called quoted-string
notation. Following are the rules for quoted-string notation for
the string operand:

1,. A string must be enclosed within single quotes, e.g., 'string
character' •

2. A single quote within a character string is represented by two
single quotes, e.g., • pilgrims' 's progress'.

3,. A null string is represented by two single quotes, e.g., ".

If you do not specify any operands, the operands you specified the
last time you used FIND during this current usage of EDIT are used.
The search for the specified string will begin at the line
following the current line. Successive use of the FIND subcommand
without operands allows you to search a data set, line by line.

position
specifies the column within each line
comparison for the string to be made.
starting column of the field to which
each line.

at which you want the
This operand specifies the

the string is compared in

If you want to consider a string starting in column 6, you must
specify the digit 6 for the posit~onal operand. When you use this
operand with the special delimiter form of notation for "string",
you must separate it from the string operand with the same special
delimiter as the one preceding the string operand.

85

FIND Subcommand of EDIT

Example 1

Operation: Locate a sequence of characters in a data set.

Known: The sequence of characters •••••••••••••••••• ELSE GO TO COUNTER

r--,
IFIND XELSE GO TO COUNTER I L __ J

Example 2

Operation: Locate a particular instruction in a data set containing an
assembler language program.

Known: The sequence of characters •••••••••••••••••••••• 8. LA
The instruction begins in column 10

3, BREAK

r--,
IFIND 'LA 3,BREAK' 10 I L __ J

86 TSO Command Language Reference (Release 21)

HELP Subcommand of EDIT

Use the HELP subcommand to find out how to use EDIT subcommands. When
you enter the HELP subcommand, the system responds by printing out
explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the function, syntax, and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function of
the HELP command; therefore. you may consult the discussion of the HELP
command if you desire more detailed information.

r------------T---,
ISUBCOMMAND I OPERANDS I
.------------+---~
I { HELP} I [Subcommand-name [FUNCTION J] I
I H I SYNTAX I
I I OPERANDS (list-of-operands) I
I I ALL I L-___________ ~ __ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of EDIT
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)

ALL

specifies that you want an explanation of the operands applicable
to the referenced subcommand. The list of operands specifies the
particular keywords that you want to have explained. If you do not
specify any keywords. all keywords and positional operands will be
included.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default if no operand is specified with the subcommand name.

87

HELP Subcommand of EDIT

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r-------·---.----,
I HELP I L __ J

Example 2

Operation: Obtain all available information about a part:icular
subcommand.

Known: The subcommand name ••••••••••• _ •••••••••••••••• Oti •••••••••• FIND

r---.----,
IH FIND I L __ J

Example 3

Operation: Have a description of each operand for a particular
subcommand displayed at your terminal.

Known: T:he subc ommand name •••••• 0 ••••••••• 0 _ •••••••••••••• _ • • • • • •• LIST

r---.---------------,
Ih list operands I L __ J

88 TSO Command Language Reference (Release 21)

INPUT Subcommand of EDIT

Use the INPUT subcommand to put the system in input mode so that you can
add or replace data in the data set being edited.

r------------T---,
ISUBCOMMAND I OPERANDS I
!------------+---f
I {INPUT} I [line-number [increment]] [RJ [PROMPT] I
I I I * !. NOPROMPT I L-___________ ~ ___ J

line-number
specifies the line number and location for the first new line of
input. If no operands are specified, input data will be added to
the end of the data set.

increment

*

R

I

specifies the amount that you want each succeeding line number to
be increasedD If you omit 'this operand, the default is the last
increment specified with the INPUT or RENUM subcommand. If neither
of these subcommands has been specified with an increment operand,
an increment of 10 will be used.

specifies that the next new line of input will either replace or
follow the line pointed to by the current-line pointer, depending
on whether you specify the.R or I operand. If an increment is
specified with this operand, it is ignored.

specifies that you want to replace existing lines of data and
insert new lines into the data set. This operand is ignored if you
fail to specify either a line number or an asterisk. If the
specified line already exists, the old line will be replaced by the
new line. If the specified line is vacant, the new line will be
inserted at that location.

specifies that you want to insert new lines into the data set
without altering existing lines of data. This operand is ignored
if you fail to specify either a line number or an asterisk.

PROMPT
specifies that you want the system to display either a line number
or, if the data set is not line-numbered, a prompting character
before each new input line. If you omit this operand, the default
is:

a. The value (either PROMPT or NOPROMPT) that was established the
last time you used input mode.

b. PROMPT, if this is the first use of input mode and the data set
has line numbers.

c. NOPROMPT, if this is the first use of input mode and the data
set does not have line numbers.

NOPROMPT
specifies that you do not want to be prompted.

89

INPUT Subcommand of EDIT

Example 1

Operation: Add and replace data in an old data set.

Known: The data set is to contain line numbers.
Prompting is desired.
The ability to replace lines is desired.
The first line number •• 2
The increment value for line numbers ••••••••••• ' •••• 0 • • • • • • • •• 2

r---.----------.----,
IINPUT 2 2 R PROMPT I L ___ J

The listing at your terminal will resemble the following sample listing
with your input in lower case and the computers response in upper case.

edit query cobol old

EDIT

input 2 2 r prompt

INPUT

00002 identification division
00004 prograrn-id.query
00006

Example 2

Operation: Insert data in an existing data set.

Known: The data set contains text for a report.
The data set does not have line numbers.
The ability to replace lines is not necessary.
The first input data is "New research and development activities
will" which is to be placed at the end of the data set.

r---·---.----,
I INPUT I L ___ . ____ J

The listing at your terminal will resemble the following sample listing:

edit forecast. text old text nonum asis
EDIT
input
INPUT
New :['esearch and development activities will

90 TSO Command Language Reference (Release 21)

INSERT Subcommand of EDIT

Use the INSERT subcommand to insert one or more new lines of data into
the data set. Input data is inserted following the location pointed to
by the line pointer in the system. (If no operands are specified, input
data will be placed in the data set line following the current line.)
You may change the position pointed to by the line pointer by using the
BOTTOM, DOWN" TOP, UP, FIND and LIST subcommands.

r------------T---,
I SUBCOMMANDS I OPERANDS I
~------------+---~
I {INSERT} I [insert-data] I
I IN I I L ___________ ~ ___ J

insert-data
specifies the complete sequence of characters that you wish to
insert into the data set at the location indicated by the line
pointer. When the first character of the inserted data is a tab,
no delimiter is required between the command and the data. Only a
single delimiter is recognized by the system. If you enter more
than one delimiter, all except the first are considered to be input
data.

Example 1

Operation: Insert a single line into a data set.

Known: The line to be inserted is:

"UCBFLG DS ALl CONTROL FLAGS"

The location for the insertion follows the 71st line in the data
set.

The current line pointer points to the 74th line in the data
set.

The user is operating in EDIT mode.

Before entering the INSER~ subcommand, the current line pointer must be
moved up 3 lines to the location where the new data will be inserted.

r--,
I UP 3 I L ___ . _____________________________ J

The INSERT subcommand is now entered.

r--,
I INSERT UCBFLG DS ALl CONTROL FLAGS I L ___ . _____________________________ J

The listing at your terminal will be similar to the following sample
listing.

up 3
insert ucbflg ds all control flags

91

INSERT Subcommand of EDIT

Example 2

Operation: Insert several lines into a data set.

Known: The data set contains line numbers.
The inserted lines are to follow line number 00280.
The current line pointer points to line number 00040.
The user is operating in EDIT mode.
The lines to be inserted are:
"J.W.HOUSE 13-244831 24.73"
"T.N.HOWARD 24-782095 3.05"
"B.H.IRELAND 04-007830 104.56"

Before entering the INSERT subcommand the current line pointer must be
moved down 24 lines to the location where the new data will be inserted.

r--,
IDOWN 24 I L __ J

The INSERT subcommand is now entered.

r---·---,
I INSERT I L __ . ____ J

The system will respond with

INPUT

The lines to be inserted are now entered.

J.W. House 13-244831 24.73
T.N. Howard 24-782095 3.05
B. H. Ireland 04-007830 104.56

The listing at your terminal will be similar to the following sample
listing:

down 24
insert
INPUT
00281 j.w.house 13-244831 24.73
0028.2 t.n.howard 24-782095 3.05
00283 b.h.ireland 04-007830 104.56

New line numbers are generated in sequence beginning with the numbe.r one
greater than the one pointed to by the current line pointer. When no
line can be inserted, you will be notified. No resequencing will be
done.

92 TSO Command Language Reference (Release 21)

Insert/Replace/Delete Function of EDIT

The INSERT/REPLACE/DELETE function lets you insert, replace, or delete a
line of data without specifying a subcommand name. To insert or replace
a line, all you need to do is indicate the location and the new data.
To delete a line, all you need to do is indicate the location. You can
indicate the location by specifying a line number or an asterisk. The
asterisk means that the location to be used is pointed to by the line
pointer within the system. You can change the line pointer by using the
UP, DOWN, TOP, BOTTOM, and FIND subcommands so that the proper line is
referred to.

r------------T----------------------------'---------------------------,
ISUBCOMMAND j OPERANDS I
f------------+---f
I I {line-number} [string] I
I I * I L ____________ ~ ___ J

line-number

*

specifies the number of the line you want to insert, replace, or
delete.

specifies that you want to replace or delete the line at the
location pointed to by the line pointer in the system. You can use
the TOP, BOTTOM, UP, DOWN, and FIND subcommands to change the line
pointer without modifying the data set you are editing.

string
specifies the sequence of characters that you want to either insert
into the data set or to replace an existing line. If this operand
is omitted and a line exists at the specified location, the
existing line is deleted. When the first character of "string" is
a tab, no delimiter is required between this operand and the
preceding operand. Only a single delimiter is recognized by the
system. If you enter more than one delimiter, all except the first
are considered to be input data.

How the System Interprets the Operands: When you specify only a line
number or an asterisk, the system deletes a line of data. When you
specify a line number or asterisk followed by a sequence of characters,
the system will replace the existing line with the specified sequence of
characters or, if there is no existing data at the location, the system
will insert the sequence of characters into the data set at the
specified location.

93

Insert/Replace/Delete Function of EDIT

Example 1

Operation: Insert a line into a data set.

Known: The number to be assigned to the new line ' 62
The data •••••• ' ••••••••••••• '. • • • • • • • •• II OPEN INPUT P ARTS- FILE"

r---'---,
I 62 OPEN INPUT PARTS-FILE 1 L __ , ______________ J

Example 2

Operation: Replace an existing line in a data set.

Known: The number of the line that is to be replaced 287
The replacement data •••••••••••••••• ~ •••••••• "GO TO HOURCOUNTi"

r--,
1 287 GO TO HOURCOUNTi I L _____________________ , __ • ____ J

Example 3

Operation:: Replace an existing line in a data set that does not have
line numbers.

Known: The line point,er in the system points to the line that is to be
replaced.
The replacement data is .••..••••••••.•• "58 PRINT USING 120,S"

r--,
I * 58 PRINT USING 120,S I L ___ J

Example 4

Operation: Delete an entire line.

Known: The number of the line ••••••••••••••••••••••• '. ' '. ' ••••• '. • •• 98
The current line pointer in the system points to line 98.

r---,
198 I L _______ , ___ J

or
r---,
1* I L ___ • ___ J

94 TSO Command Language Reference (Release 21)

LIST Subcommand of EDIT

Use the LIST subcommand to display one or more lines of your data set at
your terminal.

r------------T---,
ISUBCOMMAND I OPERANDS I
f------------t---i
I I LIST! I rline-number-l [line-nUmber-2J] I
I L I L * [count] I
I I I
I I [NUM] I
I . J LSNUM I L-___________ ~ ___ J

line-number-l
specifies the number of the line that you want to be displayed at
your te rmi nal.

line-number-2

*

count

specifies the number of the last line that you want displayed.
When you specify this operand, all the lines from line number 1
through line number 2 are displayed ..

specifies that the line referred to by the line pointer in the
system is to be displayed at your terminal. You can change the
line pointer by using the UP, DOWN, TOP, BOTTOM, and FIND
subcommands without modifying the data set you are editing.

specifies the number of lines that you want to have displayed,
starting at the location referred to by the line pointer.
Note: If you do not specify any operand with LIST, the entire data
set will be displayed.

NUM

SNUM

specifies that line numbers are to be displayed with the text.
This is the default value if both NUM and SNUM are omitted. If
your data set does not have line numbers, this operand will be
ignored by the system.

specifies that line numbers are to be suppressed, i.e., not printed
on the listing.

95

LIST Subcommand of EDIT

Example 1

Operation: List an entire data seta

r---,
ILIST I L __ J

Operation: List part of a data set that has line numbers ..

Known: The line number of the first line to be displayed 27
The line number of the last line to be displayed 44
Line numbers are to be included in the list.

r--,
ILIST 27 44 I L __ J

Example 3

Operation: List part of a data set that does not have line numbers.

Known: The line pointer in the system points to the first line to be
listed.
The section to be listed consists of 17 lines.

r--,
ILIST * 17 I L ___ . ____ J

96 TSO Command Language Reference (Release 21)

PROFILE Subcommand of EDIT

Use the PROFILE subcommand to specify the character-deletion and/or
line-deletion indicators that you want to use at your terminal.

Initially, a user profile is prepared for you when arrangements are
made for you to use the system. You change the characteristics of your
user profile by using the PROFILE subcommand with the appropriate
operands. Only the characteristics that you specify by operands will
change; other characteristics remain unchanged. You must specify at
least one operand or the subcommand will be ignored by the system. (See
the PROFILE command.)

r------------T---,
I SUBCOMMAND I OPERANDS I

t-l~;;;~~;T---t----[~~;(l-~h~~~~~~~T)-]--[-~~;;(-l~;~~------1>]-------------1
I PROF ~ I BS ~ character I
I I CTLX I
I I NOCHAR . NOLINE I
I I I
I I rPROMPT J rINTERCOM J I
I I L NOPROMPT LNOINTERCOM I
I I I
I I rPAUSE J r MSGID] I
I I LNOPAUSE LNOMSGID I L ____________ i ___ J

CHAR(BS or character)
specifies the character or terminal keyboard key that you want to
use at your terminal to delete a character from a line.

BS specifies that the backspace key is to be your
character-deletion indicator. (This is the initial value that is
in effect until changed specifically.)

Character specifies the particular character that you want to use
as your character-deletion indicator. You should not specify a
blank, comma, tab, asterisk, parenthesis, colon, apostrophe or any
of the characters in the subcommand name (profile) or in any of its
operands.

Note: Do not use an alphabetic character as either a character delete,
or a line delete, charactera If you do, you run the risk of not being
able to enter certain commands without accidentally deleting characters
or lines of data. For instance; if you specify R as a character delete
character, each time you tried to enter a PROFILE subcommand the R in
PROFILE would delete the P that precedes it. Thus it would be
impossible to enter the PROFILE subcommand as long as R was the
character delete control character.

NO CHAR
specifies that you do not want to use the character-deleting
indicator.

97

PROFILE Subcommand of EDIT

LINE (ATTN, character, or CTLX)
specifies the character or key that you want to use at your
terminal to delete an entire linea You should not specify a blank,
comma, tab, asterisk, parenthesis, colon, or apostrophe.

ATTN specifies that an attention interruption is to delete a line.
(This is the initial value that is in effect until changed
specifically.)

Character specifies the particular character or key that you want
to use as your line deletion indicator.

CTLX specifies that for a teletype terminal the X and CTRL keys are
to be interpreted as a line-deletion character.

NOLINE
specifies that you do not want to use the line-deletion indicator.

Example 1

Operation: Specify that the backspace key is used for deleting a
character and that the ATTN key is used for deleting a line.

r--,
IPROFILE CHAR (BS) LINE (ATTN) I L __ J

Example 2

Operation: specify that an exclamation mark is used for deleting a
character and that a pound sign is used for deleting a line.

r--,
IPR CHAR(!) LINE(#) I L __ J

98 TSO Command Language Reference (Release 21)

RENUM Subcommand of EDIT

Use the RENUM subcommand to:

• Assign a line number to each record of a data set that does not have
line numbers •

• Renumber each record in a data set that has line numbers.

New line numbers are placed in the last eight character positions of
fixed length records (except for COBOL), or in the first eight character
positions of variable length records. Line numbers for COBOL data sets
are placed in the first six positions. The default line number position
for ASM data sets is from column 73 through 80. However, by specifying
the NUM operand, you can position the line number anywhere within this
fieldD If variable length records were not numbered previously, the
records will be lengthened so that the eight-character fields can be
prefixed to each record. If the record cannot be extended eight
characters, you are notified. Any information in the last positions of
fixed length records (or the first 6 positions of COBOL data records) is
replaced by the line numbers.

In all cases the specified (or default) increment value becomes the
line increment for the data set.

r------------T---,
'SUBCOMMAND , OPERANDS ,
f------------+---1
, lRENUMl j [new-line-number [increment [old-line-number]]] I
I REN ~ I I L ____________ i ___ J

new line number
specifies the first line number to be assigned to the data set. If
this operand is omitted, the first line number will be 10.

increment
specifies the amount by which each succeeding line number is to be
incremented. (The default value is 10.) You cannot use this
operand unless you specify a new line number.

old-line-number
specifies the location within the data set where renumbering will
begin. If this operand is omitted, renumbering will start at the
beginning of the data set. You cannot use this operand unless you
specify a value for the increment operand or when you are initially
numbering a NONUM data set.

99

RENUM Subcommand of EDIT

Example 1

Operation: Renumber an entire data set.

r--,
IRENUM I L __ J

Example 2

Operation: Renumber part of a data set.

Known: The old line number •..••••••••••••••.•••...•••.•....••••••••• 17
The new line number~ ••••••••••••••••••••••••••••••••••••••• ~. 21
The increment... 1

r---·---,
IREN 21 1 17 I L __ J

Example 3

Operation: Renumber part of a data set from which lines have been
deleted.

Known: Before deletion of the lines, the data set contained lines 10,
20, 30, 40, and 50.
Lines 20 and 30 were deleted.
Lines 40 and 50 are to be renumbered with an increment of 10.

r---·---,
IREN 20 10 40 I L ___ . ___ J

Note: The lowest acceptable value for a new line number in this example
is 11.

100 TSO Command Language Reference (Release 21)

RUN Subcommand of EDIT

Use the RUN subcommand to compile, load, and execute the source
statements in the data set that you are editing. The RUN subcommand is
designed specifically for use with certain program products: it selects
and invokes the particular program product needed to process your source
statements. The following table shows which program product is selected
to process each type of source statement. (Appendix A contains
references to additional information about the program products.)

Note: Any data sets required by your problem program should be
allocated before you enter EDIT mode.

r----------------------------T---,
IIf your program or data set I Then the following Program Product is I
Icontains statements of this i needed: I
Itype (see EDIT): 1 I
~----------------------------+--~
IASM I TSO ASM Prompter I
~----------------------------+---~
I BASIC I ITF:BASIC I
I I (Shared Language Component and I
I I BASIC Processor) I
~----------------------------+---i
I COBOL I TSO COBOL Prompter and American I
I I National Standard COBOL Version 3 I
~----------------------------+---~
I FORTGI I TSO FORTRAN Prompter and FORTRAN IV(G1)I
~----------------------------+---~
I GO FORT I Code and Go FORTRAN I
~----------------------------+--~
I IPLI I ITF:PL/I I
I I (Shared Language Component and PL/II
I I Processor) I
~----------------------------+---~
IPLI I PL/I Checkout Compiler or I
I I PL/I Optimizing Compiler. I
~----------------------------L------------------------__________________ ~
Programs containing statements suitable for the following IBM-supplied
language processors can be compiled and executed by using the CALL
conunand.

ASM(F), PL/1(F), FORTRAN(E), (G) or (H)

You can use the CONVERT command to convert ITF:PL/I and Code and Go
FORTRAN statements to a form suitable for the PL/1 and FORTRAN
compilers, respectively.

When the descriptive qualifier for your data set name is • FORT, the
Code and Go Fortran compiler is invoked unless you specify another
compiler with the EDIT command.

Note: User-defined data set types can be executed under the RUN
Isubcommand of EDIT if a prompter name was specified at system
Igeneration time. The RUN conunand will not recognize these same data
Isets. L __ • ______________________________ J

101

RUN Subcommand of EDIT

r------------T---,
ISUBCOMMAND I OPERANDS I
.------------+---~
I JRUNl I ['parameters'] I
I 1 R ~ I I
I I rTEST] [CHECK] I
I I lNOTEST OPT I
I I I
I I [LMSGl I I I S~G I
I I I
I I r LPREC]. I
I I LSPREC I L ____________ ~ ___ J

'parameters'

TEST

specifies a string of up to 100 characters that is passed to the
program that is to be executed. You may specify this operand only
for programs which can accept parameters. Observe the standard
Operating system conventions as described in IBM System/360
Operating system Supervisor Services and Macro Instruct1ons,
GC28-6646.

specifies that testing will be performed during execution. This
operand is valid for ITF:PL/I and ITF:BASIC Program Product
programs only.

NOT EST

LMSG

SMSG

LPREC

SPREC

specifies that no testing will be doneo If you omit both TEST and
NOTEST, the default value is NOTEST.

specifies that you want to receive complete diagnostic messages.
This operand is valid for the optional ITF:PL/I, ITF:BASIC and Code
and Go FORTRAN Program Products only.

Note: The default value for the LMSG/S~G operand pair depends on
the Program Product being used, as follows:

Program Product
Code and Go
ITF:BASIC
ITF:PL/I

Default Operand
SMSG
LMSG
LMSG

specifies that you want to receive the short, concise diagnostic
messages.

specifies that you want long preC1S10n arithmetic calculations
(valid only for the ITF:BASIC Program Product).

specifies that you want short precision arithmetic calculations
(valid only for the ITF:BASIC Program Product). If you omit both
LPREC and SPREC, the default value is SPREC.

102 TSO Command Language Reference (Release 21)

CHECK

OPT

RUN Subcommand of EDIT

specifies the PL/I Checkout Compiler. This operand is valid for
the PL/I Program Product only. If you omit this operand, the OPT
operand is the default value.

specifies the PL/I Optimizing Compiler. This operand is valid for
the PL/I Program Product only. This is the default value if both
CHECK and OPT are omitted.

Example 1

Operation: Compile and execute the data being edited by the EDIT
command.

Known: The EDIT command is being used currently.
The data set contains statements prepared for the optional
ITF:BASIC Program Product compiler.
The system contains the optional ITF:BASIC
Program Product.
Default values for the RUN subcommand are suitable.

r--,
I RUN I L __________________________________ ~ ___________________________________ J

Example 2

Operation: Execute an assembler language program contained in the data
set referred to by the EDIT command.

Known: The parameters to be passed to the program are: '1024,PAYROLL'

r--,
IRUN '1024,PAYROLL' I L __ J

103

SAVE Subcommand of EDIT

Use the SAVE subcommand to have your data set retained as a permanent
data set. If you use SAVE without an operand, the updated version of
your data set replaces the original version. When you specify a new
data set name as an operand, both the original version and the updated
version of the data set are available for further use.

r-------------T--,
I SUBCOMMAND I OPERANDS I
~------------+--.-------------~
I 1 SAVE ~ I [data-set-name] I
IS) I I L ____________ ~ ___ J

data-set-name
specifies a data set name that will be assigned to your edited data
set. The new name may be different from the current name. (See
the data set naming conventions.) If this operand is omitted, the
name entered with the EDIT command will be used.

If you specify the name of an existing data set or a member of a
partitioned data set, that data set or member is replaced by the
edited data set. (Before replacement occurs, you will be given the
option of specifying a new data set name or member name.)

If you do not specify the name of an existing data set or
partitioned data set member, a new data set (the edited data set)
will be created with the name you specified. If you specified a
member name for a sequentially-organized data set, no replacement
of the data set will take place. If you do not specify a member
name for an existing partitioned data set, the edited data set is
assigned a member name of TEMPNAME.

Example 1

Operation: Save the data set that has just been edited by the EDIT
command.

Known: The system is in edit mode.
The user supplied name that you want to give the data set is
INDEX.

r--,
I SAVE INDEX I L __ J

104 TSO Command Language Reference (Release 21)

SCAN Subcommand of EDIT

Use the SCAN subcommand to request syntax checking services for
statements that will be processed by the PL/I(F), FORTRAN(E),
FORTRAN(G), or FORTRAN(H) compiler or by the Code and Go FORTRAN,
FORTRAN IV (GI), PL/I Checkout and Optimizing compiler, ITF:BASIC or
ITF:PL/I Program Products. You can have each statement checked as you
enter it in Input mode, or any or all existing statements checked. You
cannot check the syntax of statements that you are adding, replacing, or
modifying, via the CHANGE subcommand, the INSERT subcommand with the
insert-data operand, or the insert/replace/delete function unless the
statements are written in ITF:BASIC or ITF:PLI.

r------------T--,
ISUBCOMMAND I OPERANDS I
~------------+--~
I lSCANl I [line-number-l [line-nUmber-2l] I
I SC ~ I * [countl I
I I I
I I [ON] I
I I OFF I L ___________ ~ ___ J

line-number-l
specifies the number of a line to be checked for proper syntax.

line-number-2

*

count

ON

OFF

specifies that all lines between line number 1 and line number 2
are to be checked for proper syntax.

specifies that the line at the location indicated by the line
pointer in the system is to he checked for proper syntax. The line
pointer can be changed by the TOP, BOTTOM, UP, DOWN, and FIND
subcommands.

specifies the number of lines, beginning with the current line,
that you want checked for proper syntax.

specifies that each line is to be checked for proper syntax as it
is entered in Input mode.

specifies that each line is not to be checked as it is entered in
Input mode.

NOTE: If no operands are specified, all existing statements will be
checked for proper syntax.

105

SCAN Subcommand of EDIT

Example 1

Operation: Have each line of a FORTRAN program checked for proper
syntax as it is entered.

r--,
ISCAN ON I L __ J

Example 2

Operation: Have all the statements in a data set checked for proper
syntax.

r--,
I SCAN I L __ J

Example 3

Operation: Have several statements checked for proper syntax.

Known: The number of ·the first line to be checked 62
The number of the last line to be checked 69

r--,
ISCAN 62 69 I L __ J

Example 4

Operation: Check several statements for proper syntax.

Known: The line pointer points to the first line to be checked.
The number of lines to be checked 7

r--,
ISCAN * 7 I L ___ J

106 TSO Command Language Reference (Release 21)

TABSET Subcommand of EDIT

Use the TABSET subcommand to:

• Establish or change the logical tabulation settings •
• Void any existing tabulation settings.

The basic form of the subcommand causes each strike of the tab key to
be translated into blanks corresponding to the column requirements for
the data set type. For instance, if the name of the data set being
edited has FORT as a descriptive qualifier. the first tabulation setting
will be in column 7. The values in Figure 11 will be in effect when you
first enter the EDIT commando

r---T----------------------------,
IData Set Name Descriptive Qualifier IDefault Tab Settings Columns I
~---+----------------------------~
ASM 10 , 16 , 31, 72
BASIC (ITF:BASIC Program Product) 10,,20,30,40,50,60
CLIST 10,20,30,40,50,60
CNTL 10,20,30,40.50,60
COBOL 8,12,,72
DATA 10,20,30,40,50,60
FORT (FORTRAN(E), FORTRAN(G),

FORTRAN(H), compilers, FORTRAN IV (GI)
and Code and Go Fortran Program
Product data set types.)

IPLI(ITF:PL/I Program Product>
PLI (PLI(F), and PLI checkout and

optimizing compiler data set types).

7,72
5,10,15,20,25,30,35,40,45,50
5,10,15,20,25,30,35,40,45,50

TEXT 5,,10,15,20,30,40
I User-defined 10,20,30,40,50,60 L ___ ~ ____________________________ J

Figure 11. Default Tab settings

You may find it convenient to have the mechanical tab settings coincide
with the logical tab settings. This can be accomplished by realizing
that, except for line-numbered COBOL data sets, the logical tab columns
apply only to the data that you actually enter. Since a printed line
number prompt is not .logically part of the data you are entering, the
logical tab positions are calculated beginning at the next position
after the prompt. Thus, if you are receiving five-digit line number
prompts and have set a logical tab in column 10. the mechanical tab
should be set 15 columns to the right of the margin. If you are not
receiving line number prompts, the mechanical tab should be set 10
columns to the right of the margin.

In COBOL data sets the sequence number (line number) is considered to
be a logical (as well as physical) part of each record that you enter.
For instance, if you specify the NONUM operand on the EDIT command,
while editing a COBOL data set" the system assumes that column 1 is at
the left margin and that you are entering the required sequence numbers
in the first six columns; thus, logical tabs are calculated from the
left margin (column 1). In line-numbered COBOL data sets (the NONUM
operand was not specified), the column following a line number prompt is
considered to be column 7 of your data - the first 6 columns being
occupied by the system-supplied sequence numberCline number).

107

TABSET Subcommand of EDIT

r------------T---,
I SUBCOMMAND I OPERANDS I
f------------+---~
I lTABSETl I [ON [(integer-list) 1] I
I 'I'AB ~ I OFF I
I I IMAGE I L ____________ ~ ___ J

ON (integer-list)

OFF

specifies that tab settings are to be translated into blanks by the
system. If you specify ON without an integer list, the existing or
default tab settings are used. You can establish new values for
tab settings by specifying the numbers of the tab columns as values
for the integer list. A maximum of ten values is allowed. If you
omit both ON and OFF the default value is ON.

specifies that there is to be no translation of tabulation
characterse Each strike of the tab key will produce a single blank
in the data.

IMAGE
specifies that the next input line will define new tabulation
settings. The next line that you type should consist of "t"s,
indicating the column positions of the tab settings f and blanks or
any other characters except lit". 10 settings is the maximum number
of tabs allowableo Do not use the tab key to produce the new image
line. A good practice is to use a sequence of digits between the
"t"s so you can easily determine which columns the tabs are set to.
(See example 3.)

Example 1

Operation: Re-establish standard tab settings for your data set.

Known: Tab settings are not in effect.

r--'---------------,
I TAB I L __ J

Example 2

Operation: Establish tabs for columns 2" 18" and 72.

r--,
ITAB ON(2 18 72) I L __ J

Example 3

Operation: Establish tabs at every 10th column.

r--,
ITAB IMAGE I
1123456789t12345789t123... I L __ • _______________ J

108 TSO Command Language Reference (Release 21)

TOP Subcommand of EDIT

Use the TOP subcommand to change the line pointer in the system to zero.
That is, the pointer will point to the position preceding the first line
of an unnumbered data set or of a numbered data set which does not have
a line number of zero. The pointer will point to line number zero of a
data set that has one.

This subcommand is useful in setting the line pointer to the proper
position for subsequent subcommands that need to start their operations
at the beginning of the data set.

In the event that the data set is empty you will be notified but the
current line pointer still takes on a zero value.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I TOP I I L ____________ ~ ___ J

Example 1

Operation: Move the line pointer to the beginning of your data set.

Known: The data set is not line-numbered.

r---·-----------------------------,
Itop I
ILINE NUMBER '0' NOT FOUND I L ____________________________ ~ ____________ . _____________________________ J

109

UP Subcommand of EDIT

Use the UP subcommand to change the line pointer in the system so that
it points to a record nearer the beginning of your data set. If the use
of this subcommand causes the line pointer to point to the first record
of your data set, you will be notified.

r------------T--'-------------,
I SUBCOMMAND I OPERANDS I
t------------t---~
I UP I [count] I L ___________ .L __ , _____________ J

count
specifies the number of lines toward the beginning of the data set
that you want to move the current line pointer. If count is
omitted, the pointer will be moved only one line.

Example 1

Ope:ration: Change the pointer so that it refers to the preceding line.

r--,
IUP I L __ . ___ J

Example 2

Operation: Change the pointer so that it refers to a line located 17
lines before the location currently referred to.

r---.-----------.----,
IUP 17 I L __ J

110 TSO Command Language Reference (Release 21)

VERIFY Subcommand of EDIT

Use the VERIFY subcommand to display the line that is currently pointed
to by the line pointer in the system; whenever the current line pointer
has been moved, or whenever a line has been modified by use of the
CHANGE subcommand. Until you enter VERIFY, you will have no
verification of changes in the position of the current line pointer.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+--:.-f
I lVERIFY t I [ON J I
I V ~ I OFF I L ___________ ~ ___ J

ON
specifies that you want to have the line that is referred to by the
line pointer displayed at your terminal each time the line pointer
changes or each time the line is changed by the CHANGE subcommand.
This is the default if you omit both ON and OFF.

OFF
specifies that you want to discontinue this service.

Example 1

Operation: Have the line that is referred to by the line pointer
displayed at your terminal each time the line pointer
changes.

r--,
I VERIFY I L ___ . ____________________________ J

or
r---,
IVERIFY ON I L ___ . _____________________________ J

Example 2

Operation: Terminate the operations of the VERIFY subcommand.

r---·-----------------------------,
IVERIFY OFF I L __ J

111

VERIFY Subcommand of EDIT

112 TSO Command Language Reference (Release 21)

EXEC Command

Use the EXEC command to execute a command procedure (see section
entitled "Command Procedure Statements").

You can specify the EXEC command in two ways:

1. The explicit form, where you enter EXEC followed by the name of the
data set that contains the command procedure.

2. The implicit form, where you do not enter EXEC but only enter the
name of the member of the command procedure library (a partitioned
data set) that contains the command procedure.

Some of the commands in a command procedure may have symbolic values
for operands. When you specify the EXEC command, you may supply actual
values for the system to use in place of the symbolic values.

r--------------T---,
I COMMAND I OPERANDS I
f--------------+---~
I 1 EXECl I data-set-name ['value-list'] [NOLIST] I
I EX ~ I LIST I
f--------------+---~
I I procedure-name [value-list] I L-_____________ ~ __ J

data-set-name
specifies the name of the data set containing the command procedure
to be executed. If the descriptive qualifier for the data set is
not CLIST (as in BOB.FORTCOMP.CLIST) you must enclose the fully
qualified name within apostrophes. (See the data set naming
conventions.)

procedure-name
specifies a member of a command procedure library that is invoked
when you enter the LOGON command. The library must previously have
been defined in the SYSPROC DD statement of the logon procedure or
with the ALLOCATE comman~.

value-list
specifies the actual values that are to be substituted for the
symbolic values in the command procedure. The symbolic values are
defined by the operands of the PROC statement in the command
procedure. The actual values that are to replace the symbolic
values defined by positional operands in the PROC statement must be
in the same sequence as the positional operands. The actual values
that are to replace the symbolic values defined by keywords in the
PROC statement must follow the positional values, but may be in any
sequence. When you use the explicit form of the command. the value
list must be enclosed in apostrophes. If apostrophes appear within
the list. then you must provide two apostrophes in order to print
one.

NOLIST
specifies that the commands and subcommands will not be listed at
the terminal. The system assumes NOLIST for implicit and explicit
EXEC commands.

113

EXEC Command

LIST
specifies that commands and subcommands will be listed at the
terminal as they are executed. This operand is valid only for the
explicit form of EXEC.

Example 1

Operation: Execute a command procedure to invoke the PL/I compiler.

Known: The name of the data set that contains the command procedure is
RBJ2I.PLIR.CLIST.

The command procedure consists of:

PROC 1 NAME
ALLOCATE DATASET(&NAME •• PLI) FILE(SYSIN)
ALLOCATE DATASET(&NAME •• LIST) FILE(SYSPRINT) BLOCK(SO) SPACE(300,100)
ALLOCATE DATASET(&NAME •• OBJ) FILE(SYSLIN) BLOCK(SO) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
ALLOCATE FILE(SYSUT3) BLOCK (SO) SPACE (250.,100)
CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT'
FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)

The name of your program is 'EXP'.
You want to have the names of the commands in the command procedure
displayed at your terminal as they are executed.

r--------·--.---------------,
I EXEC PLIR 'EXP' LIST I L __ J

The listing at your terminal will be similar to:

exec plir 'exp' list

ALLOCATE DATASET(EXP.PLI) FILE(SYSIN)
ALLOCATE DATASET(EXP.LIST) FILE(SYSPRINT) BLOCK(SO) SPACE(300,100)
ALLOCATE DATASET(EXP.OBJ) FILE(SYSLIN) BLOCK(SO) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
ALLOCATE FILE(SYSUT3) BLOCK(SO) SPACE(250,100)
CALL 'SYS1.LINKLIB(IEMAA), 'LIST,ATR,XREF,STMT'
FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)
READY

Example 2

Operation: SUppose that the command procedure in Example 1 was stored
in a command procedure library. Execute the command
procedure using the implicit form of EXEC.

Known: The name of the member of the partitioned data set that contains
the command procedure is PLIR

r--------·---.---------------,
Iplir exp I L ________ . ___ J

114 TSO Command Language Reference (Release 21)

FREE Command

USe the FREE command to release ("de-allocate") previously allocated
data sets that you no longer need. You can also use this command to
change the output class of SYSOUT data sets and to delete attribute
lists.

The maximum number of data sets that may be allocated to you at any
one time depends on the number of Data Definition (DD) statements in the
procedure that is invoked when you LOGON. The allowable number must be
large enough to accomodate:

• Data sets allocated via the LOGON and ALLOCATE commands.
• Data sets allocated dynamically, and later freed automatically, by

the system' s command processors.

The data sets allocated by the LOGON and ALLOCATE commands are not freed
automatically. To avoid the possibility of reaching your limit and
being denied necessary resources, you should use the FREE command to
release these data sets when they are no longer needed.

When you free SYSOUT data sets, you may change their output class to
make them available for processing by an output writer.

When you enter the LOGOFF command, all data sets allocated to you and
attribute lists created during the terminal session are freed by the
system.

r---------v---, I COMMAND i OPERANDS I
~----------+-------------------------------.----------------------------i I FREE I DATASETClist-data-set-names) [FILE Clist-file-names)] I
I I [ATTRLISTClist-attr-list-names)] I
I I I
I I FILEClist-file-names) [DATASETClist-data-set-names)] I
I I [ATTRLIST Clist-a ttr-list-names)] I
I I I
I I ATTRLISTClist-a ttr-list-names) I
I I [DATASEl'Clist data-set-names)] [FILEClist-file-names)] I
I I I
I I [SYSOUTCclass)] I L __________ ~ ___ J

DATASETClist-of-data-set-names)
specifies one or more data set names that identify the data sets
that you want to free. The data set name must include the
descriptive Crightmost) qualifier and may contain a member name in
parentheses. CSee the data set naming conventions,.) If you omit
this operand, you must specify either the FILE or the ATTRLIST
operand.

FILEClist-of-file-names)
specifies one or more file names that identify the data sets to be
freed. If you. omit this operand, you must specify either the
DATASET or the ATTRLIST operand.

ATTRLIST(list-of-attrlist-names)
specifies the names of one or more attribute lists that you want to
delete. If you omit this operand, you must specify either the
DATASET or the FILE operand.

115

FREE Command

SYSOUT (c lass)
specifies an output class which is represented by a single
character. All of the system output (SYSOUT) data sets specified
in the DATASET and FILE operands will be assigned to this class and
placed in the output queue for processing by an output writer (see
IBM System/360 Operating System: Supervisor Services and Macro
Instructions, GC28-6646" and Data Management services, GC26-3746.
In order to free a file to SYSOUT, the file must have previously
been allocated to SYSOUT.

Example 1

operation: Free a data set by specifying its data set name.

Known: The data set name •••••••••••••••.•••••••••••••• TOC903.PROGA.LOAD

r---,
IFREE DATASET (PROGA. LOAD) I L __ J

Example 2

Operation: Free three data sets by specifying their data set names.

Known: The data set names •••••••••••••••••••••••••• LIRPA.PB99CY.ASM
LIRPA.FIRSTQTR.DATA
LIRPA. LOOF. MSG

r---,
IFREE DATASET(PB99CY.ASM,FIRSTQTR.DATA,'LIRPA.LCOF.MSG') I L __ J

Example 3

operation: Free five data sets by specifying data set names or data
definition names. Change the output class for any SYSOUT
data sets being freed.

Known: The name of a data set •••••••••••••••••••••••••• DNIW.HCRAM.FORT
The filenames (data definition names) of
4 data sets ••••.•••...•••.•••.•••.••••.•••..•.•• SYSUTl

SYSUT3
SYSIN
SYSPRINT

The new output class •••••••••••••••••••••••••••• B

r--,
IFREE DATASET(HCRAM.FORT) FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT) SYSOUT(B) I L __ . __ J

Operation: Delete two attribute lists.

Known: The names of the lists •••••••••••••••••••••••••• DCBPARMS
ATTRIBUT

r--,
IFREE ATTRLIST(DCBPARMS ATTRIBUT) I L ___ - ________________ J

116 TSO Command Language Reference (Release 21)

HELP Command

Use the HELP command to obtain information about the function, syntax,
and operands of commands and subcommands. This reference information is
contained within the system and is displayed at your terminal in
response to your request for helpQ

r--------------T--------------------------"-----------------------------,
I COMMAND I OPERANDS I
~--------------+---f
I 1 HELPt j [Subcommand-name [FUNCTION J] I
I H ~ I SYNTAX I
I j OPERANDS (list-of-operands) I
I I ALL I L ______________ ~ __________________________ • _____________________________ J

command-name
specifies the name of the command that you want to know more about.

FUNCTION
specifies that you want to know more about the purpose and
operation of the command.

SYNTAX
specifies that you want to know more about the syntax required to
use the command properly.

OPERANDS (list-of-operands)

ALL

specifies that you want to see explanations of the operands for the
command. When you specify the keyword OPERANDS and omit any
values, all operands will be described. You can specify particular
keyword operands that you want to have described by including them
as values within parenthesis following the keyword. If you specify
a list of more than one operand" the operands in the list must be
separated by commas or blanks.

specifies that you want to see all information available concerning
the command or subcommand. This is the default value if no other
KEYWORD operand is specified.

HELP Information: The scope of available information ranges from
general to specific. The HELP command with no operands produces a list
of valid commands and their basic functions. From the list you can
select the command most applicable to your needs. If you need more
information about the selected command, you may use the HELP command
again, specifying the selected command name as an operand. You will
then receive:

1. A brief description of the function of the command.

2. The format and syntax for the command.

3. A description of each operand.

You can obtain information about a command only when the system is ready
to accept a command.

117

HELP Command

If you do not want to have all of the detailed information, you may
request only the portion that you need.

The information about the commands is contained in a cataloged
partitioned data set named SYS1.HELP. Information for each command is
kept in a member of the partitioned data set. The HELP command causes
the system to select the appropriate member and display its contents at
your terminal.

Figure 12 shows the hierarchy of the sets of information available
with the HELP command. Figure 12 also shows the form of the command
necessary to produce any particular set.

Example 1

Operation: Obtain a list of all available commands.

r--,
I HELP I L ___ J

Example 2

Operation: Obtain all the information available for the ALLOCATE
command.

r--.---------------,
IHELP ALLOCATE I L __ J

Example 3

Operation: Have a description of the XREF, MAP~ COBLIB, and OVLY
operands for the LINK command displayed at your terminal.

r--, IH LINK OPERANDS(XREF,MAP,COBLIB,OVLY) I L __ J

Example L~

Operation: Have a description of the function and syntax of the LISTBC
command displayed at your terminal.

r--,
Ih listbc function syntax I L ___ J

118 TSO Command Language Reference (Release 21)

HELP Command

When the system is READY
to accept a command, you
may request:

LIST OF COMMANDS

COMMAND FUNCTION

COMMAND SYNTAX

OPERANDS

EACH OPERAND

When the system is ready to
accept a subcommand, you
may request:

LIST OF SUBCOMMANDS

SUBCOMMAND FUNCTION

SUBCOMMAND SYNTAX

LIST OF OPERANDS

10 EACH OPERAND

this form of the command• produces:
r

HELP

HELP

HELP

HELP

HELP

HELP

HELP
'-

r'HELP

HELP

HELP

HELP

HELP

HELP

HELP

Figure 12.

commandname

commandname ALL

commandname FUNCTION

commandname SYNTAX

commandname OPERANDS

G)

000
00®
0)

o
CD

commandname OPERANDS (list of keyword operands) (§)

subcommandname

subcommandname ALL

subcommandname FUNCTION

subcommandname SYNTAX

subcommandname OPERANDS

subcommandname OPERANDS (list of keyword
operands)

Information Available Through the HELP Command

CD
000
G)@G)

0)

o
®
@

119

120

LINK Command

Use the LINK command to invoke the linkage editor service program.
Basically, the linkage editor converts one or more object modules (the
output modules from compilers) into a load module that is suitable for
execution. In doing this, the linkage edi·tor changes all symbolic
addresses in the object modules into relative addresses. You can find a
complete description of the functions of the linkage editor in the
publication IBM System/360 Operating System: Linkage Editor and Loader,
GC28-6538.

The linkage editor provides a great deal of information to help you
test and debug a program. This information includes a cross-reference
table and a map of the module that identifies the location of control
sections, entry points" and addresses. You can have this information
listed at your terminal or saved in a data set on some device.

You can specify all the linkage editor options explicitly or you can
accept the default values. The default values are satisfactory for most
uses. By accepting the default values, you simplify the use of the LINK
command.

If the module that you want to process has a simple structure (that
is, it is self contained and does not pass control to other modules) and
you do not require the extensive listings produced by the linkage editor
and you do not want a load module, you may want to use the LOADGO
command as an alternative to the LINK command.

121

LINK Command

r------------T--,
I COMMAND I OPERANDS I
!------------~--f

LINK (data-set-list) I

[LOAD[(data-set-name)]]

[

PRINT({* }
data-set-name

NOPRINT

[LIB(data-set-list)]

[PLILIB]

[PLICMIXl

[PLIBASEl

[FORTLIB]

[COBLIB]

[~~J [:g~~ALJ [~~~iST] [~~ETJ [~~~ALJ
[~~~F] [:~~UsJ [~~:FRJ [;~~R] ~~~~LY]
[

RENT] [SIZE(integer1 integer2)] [NE]
NORENT NON~

[~~orJ [~~DC] [:~~~AR] [~~~ST] [~~~RM]
[DCBS(blocksize)]

I
I
I
I
I
I
I
I
I
1

L ___________ -L ___ . _______________ J

(data-set-list)
specifies the names of one or more data sets containing your object
modules and/or linkage editor control statements. (See the data
set naming conventions). The specified data sets will be
concatenated within the output load module in the sequence that
they are included in this operand. If there is only a single name
in the data-set-list, parentheses are not required unless the
single name is a member name of a partitioned data set; then, two
pairs of parentheses are required, as in:

LINK «PARTS»

You may substitute an asterisk (*) for a data set name to indicate
that you will enter control statements from your terminal. The
system will prompt you to enter the control statements. A null
line indicates the end of your control statements. The publication
IBM System/360 Operating System: Linkage Editor and Loader,
GC28-6538, contains a description of the control statements.

122 TSO Command Language Reference (Release 21)

LINK Command

LOAD (data-set-name>
specifies the name of the partitioned data set that will contain
the load module after processing by the linkage editor (see the
data set naming conventions>. If you omit this operand, the system
will generate a name according to the data set naming conventions.

PRINT(data-set-name or *>
specifies that linkage editor listings are to be produced and
placed in the specified data set. When you omit the data set name,
the data set that is generated is named according to the data set
naming conventions. You may substitute an asterisk (*> for the
data set name if you want to have thE~ listings displayed at your
terminal. This is the default value if you specify the LIST, MAP,
or XREF operand.

NOPRINT
specifies that no linkage editor listings are to be produced. This
operand causes the MAP, XREF, and LIST options to become invalid.
This is the default value if both PRINT and NOPRINT are omitted.
and you do not use the LIST, MAP, or XREF operand.

LIB (data-set-list>
specifies one or more names of library data sets to be searched by
the linkage editor to locate load modules referred to by the module
being processed (that is, to resolve external references>. (See
the data set naming conventions.> When you specify more than one
name, the names must be separated by a valid delimiter.

PLILIB
specifies that the partitioned data set named SYS1.PL1LIB is to be
searched by the linkage editor to locate load modules that are
referred to by the module being processed.

PLIBASE
specifies that the partitioned data set named SYS1.PLIBASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX
specifies that the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processeda

FORTLIB
specifies that the partitioned data set named SYS1.FORTLIB is to be
searched by the linkage editor to locate load modules referred to
by the module being processed.

COBLIB

MAP

NOMAP

specifies that the partitioned data set named SYS1.COBLIB is to be
searched by the linkage editor to locate load modules referred to
by the module being processed.

specifies that the PRINT data set is to contain a map of the output
module consisting of the control sections, the entry names, and
(for overlay structures> the segment number.

specifies that a map of the output module is not to be listed.
This is the default value if both MAP and NOMAP are omitted.

123

LINK Command

NCAL
specifies that the automatic library call mechanism is not to be
invoked to locate the modules that are referred to by the module
being processed when the object module refers to other load
modules.

NON CAL

LIS'!'

specifies that the modules referred to by the module being
processed are to be located by the automatic library call mechanism
when the object module refers to other load modules. This is the
default value if both NCAL and NONCAL are omitted.

specifies that a list of all linkage editor control statements is
to be placed in the PRINT data set.

NOLIST

LET

NOLET

XCAI,

specifies that a listing of linkage editor control statements is
not to be produced. This is the default value if both LIST and
NOLIST are omitted.

specifies that the output module is permitted to be marked as
executable even though a severity 2 error is found (a severity 2
error indicates that execution of the output module may be
impos sible) •

specifies that the output module be marked non-executable when a
severity 2 error is found. This is the default value if both LET
and NOLET are omitted.

specifies that the output module is permitted to be marked as
executable even though an exclusive call has been made between
segments of an overlay structure. Because the segment issuing an
exclusive call is overlaid, a return from the requested segment can
be made only by another exclusive call or a branch.

NOXCAL

XREl"

specifies that both valid and invalid exclusive calls will be
marked as errors. This is the default value if both XCAL and
NOXCAL are omitted.

specifies that a cross-reference table is to be placed on the PRINT
data set. The table includes the module map and a list of all
address constants referring to other control sections. Since the
XREF operand includes a module map, both XREF and MAP cannot be
specified for a particular LINK command.

NOXREF

REUS

specifies that a cross-reference listing is not to be produced.
This is the default value if both XREF and NOXREF are omitted.

specifies that the load module is to be marked serially reusable if
the input load module was reenterable or serially reusableo The
RENT and REUS operand are mutually exclusive. The HEUS operand
must not be specified if the OVLY or TEST operands are specified.

124 TSO Command Language Reference (Release 21)

LINK Command

NOREUS

REFR

specifies that the load module is not to be marked reusable. This
the default value if both REUS and NOREUS are omitted.

specifies that the load module is to be marked refreshable if the
input load module was refreshable and the OVLY operand was not
specified.

NOREFR

SCTR

specifies that the load module is not to be marked refreshable.
This is the default value if both REFR and NOREFR are omitted.

specifies that the load module created by the linkage editor can be
either scatter loaded or block loaded. If you specify SCTR, do not
specify OVLY.

NOSCTR

OVLY

specifies that scatter loading is no·t permitted. This is the
default value if both SCTR and NOSCTR are omitted.

specifies that the load module is an overlay structure and is
therefore suitable for block loading only. If you specify OVLY, do
not specify SCTR.

NOOVLY

RENT

specifies that the load module is not an overlay structure. This
is the default value if both OVLY and NOOVLY are omitted.

specifies that the load module is marked reenterable. provided the
input load module was reenterable and that the OVLY operand was not
specified.

NORENT
specifies that the load module is not marked reenterable. This is
the default value if both RENT and NORENT are omitted.

SIZE(integerl,integer2)

NE

NONE

specifies the amount of main storage to be used by the linkage
editor. The first integer (integer1) indicates the maximum
allowable number of bytes. Integer2 indicates the number of bytes
to be used as the load module buffer, which is the main storage
area used to contain input and output data. If this operand is
omitted, SIZE defaults to the size specified at system generation
(SYSGEN) •

specifies that the output load module cannot be processed again by
the linkage editor or loader. The linkage editor will not create
an external symbol dictionary. If you specify either MAP or XREF.
this operand is invalid.

specifies that the output load module can be processed again by the
linkage editor and loader and that an external symbol dictionary is
present. This is the defaul t value if both NE and NONE are
omitted.

125

LINK Command

OL

NOOL

DC

NODC

HIAR

specifies that the output load module can be brought into main
storage only by the LOAD macro instruction.

specifies that the load module is not restricted to the use of the
LOAD macro instruction for loading into main storage. This is the
default value if both OL and NOOL are omitted.

specifies that the output module can be reprocessed by the linkage
editor (E).

specifies that the load module cannot be reprocessed by the linkage
editor (E). This is the default value if both DC and NODC are
omitted.

specifies that the control sections within the output module are to
be marked for loading into either processor storage or IBM 2361
core storage. The linkage editor control statement HIARCHY assigns
the appropriate hierarchy to the control sections. When you
specify HIAR, the load module is marked suitable for scatter
loading.

NOHIAR

TEST

specifies that no hierarchy assignments are to be made to the
output load module. This is the default value if both HIAR and
NOHIAR are omitted.

specifies that the symbol tables created by the assembler and
contained in the input modules are to be placed into the output
module.

NOT EST

TERM

specifies that no symbol table is to be retained in the output load
module. This is the default value if both TEST and NOTEST are
omitted.

specifies that you want error messages directed to your terminal as
well as to the PRINT data set. This is the default value if both
TERM and NOTERM are omitted.

NOTERM
specifies that you want error messages directed only to the PRINT
data set and not to your terminal.

DCBS(blocksize)
specifies the blocksize of the records contained in the output load
module "blocksize" must be an integer.

126 TSO Command Language Reference (Release 21)

LINK Command

Example 1

Operation: Combine three object modules into a single load module.

Known: The names of the object modules in the sequence
that the modules must be in •••••••••••••••••• DEPT03.GSALESA.OBJ

DEPT03.GSALESB.OBJ
DEPT03.NSALES.OBJ

You want all of the linkage editor listings to be produced and
directed to your terminal.

The name for the output load module •••••• DEPT03.SALESRPT.LOADCTEMPNAME)

r--,
ILINK CGSALESA,GSALESB,NSALES) LOAD(SALESRPT) PRINT(*) I
IXREF LIST I L __ J

Example 2

Operation: Create a load module from an object module, an existing load
module, and a standard processor library.

Known: The name of the object module ••••••••••••••• XRDJA3.M33THRUS.OBJ

The name of the existing load module. XRDJA3.M33PAYLD.LOAD(MOD1)

The name of the standard processor library used for resolving
external references in the object module •••••••••••• SYS1.PLILIB

The name of the output load module ••• XRDJA3.M33PERFO.LOAD(MOD2)

r--,
Ilink (m33thrus,*) load(m33perfo(mod2» print(*) plilib map list I L-__ J

Choosing Id2 as a filename to be associated with the existing load
module, the listing at your terminal will be:

allocate dataset(m33payld.load) file(ld2)
link (m33thrus.*) load(m33perfo(mod2» print(*) plilib map list
IKJ76080A ENTER CONTROL STATEMENTS
include Id2 (modl)

(null line)
IKJ76111I END OF CONTROL STATEMENTS

127

128

LISTALC Command

Use the LISTALC command to obtain a list containing both the names of
the data sets allocated by you and the names of the data sets
temporarily allocated by previous TSO command processors. Also, this
command specifies the number of data sets that the system will allow to
be allocated to you dynamically. Included in the number of data sets
that the system will allow a user to allocate dynamically, are data sets
that had been previously allocated for temporary use by a command
processor.

r--------------T---,
I COMMAND I OPERANDS I
.--------------+---~
I lLISTALct I [STATUS] [HISTORY] [MEMBERS] [SYSNAMES] I
I LISTA ~ I I L ______________ ~ ___ J

STATUS
specifies that you want information about the status of each data
set. This operand provides you with:

HISTORY

• The data definition name (DDNAME) for the data set.
• The scheduled and conditional dispositions of the data set.

The keywords denoting the dispositions are CATLG. DELETE, KEEP
and UNCATLG. The scheduled disposition is the normal
disposition and precedes the conditional disposition when
listed. The conditional disposition takes effect if an
abnormal termination occurs. CATLG means that the data set is
retained and its name is in the system catalog. DELETE means
that references to the data set are to be removed from the
system and the space occupied by the data set is to be
released. KEEP means that the data set is to be retained.
UNCATLG means that the data set name is removed from the
catalog but the data set is retained.

specifies that you want to obtain information about the history of
each data set. This operand provides you with:

MEMBERS

• The creation date.
• The expiration date.

Note: All data sets created by dynamic allocation will have
creation and expiration dates of 00/00/00.

• An indication as to whether or not the data set has password
protection.

• The data set organization (DSORG). The listing will contain:

PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access
** for unspecified
?? for any other specification

specifies that you want to obtain the library member names of each
partitioned data set having your user's identification as the
leftmost qualifier of the data set name. Aliases will be included.

129

LlSTALC Command

SYSNAMES
specifies that you want to obtain the fully qualified names of data
sets having system-generated names.

Example 1

Operation: Obtain a list of the names of all the data sets allocated to
you.

r--------·--,
ILISTALC I L __ J

Example ~

Operation: Obtain a list of the names of all the data sets allocated to
you. At the same time obtain the creation date, the
expiration date, password protection, and data set
organization for each data set allocated to you.

r--·------·--.----,
ILISTA HISTORY I L __ . __ J

Example 3

Operation: Obtain all available information about the data sets
allocated to you.

r--,
Ilista members history status sysnames I L ___ ---------------__ J

The output at your terminal will be similar to the following listing:

listalc mem status sysnames history

'--DSORG--CREATED--EXPIRES---SECURITY---DDNAME---DISP

RRED95.ASM
PS 00/00/00 00/00/00 WRITE EDTDUMY1 KEEP

RRED95.EXAMPLE
PO 00/00/00 00/00/00 PROTECTED EDTDUMY2 KEEP,KEEP

'--MEMBERS-
MEMBER1
MEMBER 2

SYS70140.T174803.RVOOO.TSOSPEDT.ROOOOOOl

** 00/00/00 00/00/00 NONE SYSUT1

3 DATA SETS CAN BE ALLOCATED DYNAMICALLY
EDTDUMY3
SYSIN
SYSPRINT

READY

130 TSO Command Language Reference (Release 21)

DELETE

LISTBC Command

Use the LISTBC command to obtain a listing of the contents of the
SYS1.BRODCAST data set. The SYS1.BRODCAST data set contains messages of
general interest (NOTICES) that are sent from the system to all
terminals and messages directed to a particular user (MAIL). The system
deletes MAIL messages from the data set after they have been sent.
NOTICES must be deleted explicitly by the operator.

r--------------T---,
I COMMAND I OPERANDS I
~--------------+---i
I lLISTBC! I [MAIL J [NOTICES 1 I
I LISTB I'NOMAIL NONOTICESJ I L ______________ ~ ___ J

MAIL
specifies that you want to receive the messages from the broadcast
data set that are intended specifically for you. This is the
default value if both MAIL and NOMAIL are omitted.

NOMAIL
specifies that you do not want to receive messages intended
specifically for you.

NOTICES
specifies that you want to receive the messages from the broadcast
data set that are intended for all users. This is the default
value if both NOTICES and NONOTICES are omitted.

NONOTICES
specifies that you do not want to receive the messages that are
intended for all users.

Example 1

Operation: Specify that you want receive all messages.

r--,
ILISTBC I L __ • ______________________________ J

Example 2

Operation: specify that you want to receive only the messages intended
for all terminal users.

r--,
Ilistbc nomail I L __ • ____________ -------___________ J

131

132

LISTCAT 'Command

Use the LISTCAT command to obtain a list of the names of your cataloged
data sets.

The system catalog is a data set that contains the location of other
data sets. The catalog is organized into levels of indexes that connect
the data set names to corresponding locations (volumes and data set
sequence numbers)o Each qualifier in the data set name (see the data
set naming conventions) corresponds to one of the indexes in the
catalog. For instance, suppose that a data set named D58JCD.GSCORE.DATA
is cataloged. The catalog has a master index that contains D58JCD as an
entry. This entry includes the location of an index named D58JCD. The
index named D58JCD contains GSCORE as an entry that includes the
location of an index named GSCORE. The index named GSCORE contains DATA
as an entry that includes the location of the data set.

The LISTCAT command, when entered with no operands, produces a list
of all cataloged data sets that have your user identification as the
leftmost qualifier. You can request a partial, more specific list by
identifying the index level that you want to have listed. You can
specify any index level in the catalog.

r--------------T---,
I COMMAND I OPERANDS I
~--------------+---~
I 1 LISTCAT l I [HISTORY] [MEMBERS] [VOLUMES] [LEVEL (index)] I
I LISTC ~ I I L ______________ ~ ___ J

HISTORY
specifies that you want information about the history of each data
set. This operand provides you with:

MEMBERS

• The creation date.
• The expiration date.

Note: All data sets created by dynamic allocation will have
creation and expiration dates of 00/00/00.

• An indication as to whether or not the data set has password
protection.

• The data set organization (DSORG).

The listing will contain:

PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access

** for unspecified
?? for any other specification

specifies that you want a list of names for the members of each
partitioned data set. Alias names will be included.

VOLUMES
specifies that you want the volume identification (VOLID) for each
volume on which the data sets reside. A volume may be a reel of
tape, a disk pack. a bin in a data cell. or a drum.

133

LlSTCAT Command

LEVEL (index)
specifies that you want the names of only a portion of the
cataloged data sets. You indicate an index level by including one
or more data set name qualifiers for 'index'. All data sets at an
index level that is lower than the one that you indicate will be
listed. For instance. if you have an index structure such as:

and you specify LEVEL(BCCORP.PROGA), you will receive:

ASM (meaning BCCORP.PROGA.ASM)
OBJ (meaning BCCORP.PROGA.OBJ)
LOAD (meaning BCCORP.PROGA.LOAD)

The specified index must begin with the highest level of
qualification (for example, your user identification, or SYS1).
You may also include one asterisk in your specified index
qualification. The asterisk indicates that all qualifiers
corresponding to the position of the asterisk are to be considered
as if each was specified explicitly. The asterisk must not be
placed at the highest or lowest level.

Example 1

Operation: List the names of all of your cataloged data sets.

r--,
ILISTCAT I L __ , ____ J

Example 2

Operation: List the names of all of your cataloged data sets; include
their history and the volumes that they reside on.

r--,
ILISTCAT HISTORY VOLUMES I L __ J

The listing produced at your terminal will appear similar to the
following simulated listing.

READY

listcat history volumes

134 TSO Command Language Reference (Release 21)

LlSTCAT Command

--DSORG--CREATED---EXPIRES---SECURITY

CLIST.FLOWCHR'l'
PS 07/11/66 09/14/70 NONE

--VOLUMES-
D58LIB

XERPT.TEXT
PS 00/00/00 00/00/00 NONE

--VOLUMES-
D58LIB

READY

Example 3

Operation: List the names. history and volumes of a particular
selection of your cataloged data sets.

The names of your data sets •••••• ~ •••••••••••• RCHD58.FLOW1.FORT
RCHD58.FLOW2.FORT
RCHD58. FLOW3. FORT

r--,
ILISTCAT LEVEL(RCHD58.*.FORT) HISTORY VOLUMES I L ___ ------_________ . __ J

The listing produced at your terminal will appear similar to the
following simulated listing.

READY

listcat level(rchd58.*.fort) volumes history

--DSORG--CREATED---EXPIRES---SECURITY

RCHD58.FLOW1.FORT
PS 00/00/00 00/00/00 NONE

--VOLUMES-
D58CAT

RCHD58.FLOW2.FORT
PS 00/00/00 00/00/00 PROTECTED

--VOLUMES-
D58CAT

RCHD58.FLOW3.FORT
PS 00/00/00 00/00/00 WRITE

--VOLUMES-
D58CAT

READY

135

136

LISTDS Command

Use the LISTDS command to have the attributes of specific data sets
displayed at your terminal. You can obtain:

• The volume identification (VOLID) of the volume on which the data
set resides. A volume may be a disk pack" a bin in a data cell, or
a drum.

• The record format (RECFM). the logical record length (LRECL), and
the blocksize (BLKSIZE) of the data set.

• The data set organization (DSORG).

The data set organization is indicated as follows:

PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access
** for unspecified
?? for any other specification

• Directory information for members of partitioned data sets if you
specify the data set name in the form data set name(membername>.

• Creation date. expiration date, and security attributes

• File name and disposition.

• Data set control blocks (DSCB).

r--------------T---,
I COMMAND I OPERANDS I
.--------------+--~
I .1 LISTDSt I (data-set-list) [STATUS] [HISTORY] [MENBERS] [LABEL] I
I LISTD ~ I I L ______________ ~ ___ J

(data-set-list)
specifies one or more data set names (see the data set naming
conventions>. This operand identifies the data sets that you want
to know more about. Each data set specified must be currently
allocated or available from the catalog, and must reside on a
currently active volume.

STATUS
specifies that you want the following additional information:

• The data definition (DO) name DDNAME currently associated with
the data set.

• The currently scheduled data set disposition and the conditional
disposition. The keywords denoting the dispositions are CATLG.
DELETE" KEEP. and UNCATLG. The scheduled disposition is the
normal disposition and precedes the conditional disposition when
listed. The conditional disposition takes effect if an abnormal

137

LlSTDS Command

termination occurs. CATLG means that the data set is cataloged. DELETE
means that the data set is to be removed. KEEP means that the data set
is to be retained. UNCATLG means that the name is removed from the
catalog but the data set is retained.

HISTORY
specifies that you want to obtain the creation and expiration dates
for the specified data sets (all data set created by dynamic
allocation will have creation and expiration dates of 00/00/00>,
and to find out whether or not the data sets are password
protected.

MEMBERS

LABEL

specifies that you want a list of all the members of a partitioned
data set including any aliaseso

specifies that you want to have the entire data set control block
(DSCB) listed at your terminal. This operand is applicable only to
direct access data sets. The listing will be in hexadecimal
notat.ion.

Example 1

Operation: List the basic attributes of a particular data set.

Known: The data set name •••••••••••••••••••••••••••••••• RCHD95.CIR.OBJ

r--,
ILISTDS CIR I L ___ . ___ J

The listing produced at your terminal will be similar to the listing
shown below.

READY

listds cir

RCHD95.CIR.OBJ
--RECFM-LRECL-BLKSIZE-DSORG

FB 80 80 PS

--VOLUMES-
D95LIB

READY

Example 2

Operation: List the basic attributes and the DSCBs for a particular
data set.

Known: The data set name •••••••••••••••••• o ••••••• RCHD95.IKJEHDS1.LOAD

r--,
Ilistd ikjehdsl label I L __ J

138 TSO Command Language Reference (Release 21)

LOADGO Command

Use the LOADGO command to load a compiled or assembled program into main
storage and begin execution.

The LOADGO command will load object modules produced by a compiler or
assembler, and load modules produced by the linkage editor. (If you
want to load and execute a single load module. the CALL command is more
efficient.) The LOADGO command will also search a call library (SYSLIB)
or a resident link pack area., or both. to resolve external references.

The LOADGO command invokes the system loader to accomplish this
function. The loader combines basic editing and loading services of the
linkage editor and program fetch in one job step (see the publication
IBM System/360 Operating System: linkage Editor and Loader. GC28-6538).
Therefore, the load function is equivalent to the link edit and go
function.

The LOADGO command does not produce load modules for program
libraries. and it does not process linkage editor control statements
such as INCLUDE, NAME, OVERLAY. etc.

r---------T--,
I COMMAND I OPERANDS I
~---------+--~

1 LOADGO~ (data-set-list) ['parameters']
LOAD ~

[
PRINT (1* I)J NOPRINT data-set-name

[LIB(data-set-list)]

[PLILIB] [PLIBASE] [PLICMIX] [FORTLIB] [COBLIB]

[~~~RMJ [~~~ESJ [~~pJ [~~~~LLJ [~~ETJ
[SIZE(integer)]

[EP(entry-name)]

[NAME(program-name)] L _________ ~ __ J

(data-set-list)
specifies the names of one or more object modules and/or load
modules to be loaded and executed. The names may be data set
names, names of members of partitioned data sets, or both (see the
data set naming conventions). When you specify more than one name,
the names must be enclosed within parentheses and separated from
each other by a standard delimiter (blank or comma).

'parameters'
specifies any parameters that you want to pass to the program to be
executed.

139

LOADGO Command

PRINTCdata-set-name or *)
specifies the name of the data set that is to contain the listings
produced by the LOADGO command. If you omit the data set name, the
generated data set will be named according to the data set naming
conventions. You may substitute an asterisk C*) for the data set
name if you want to have the listings displayed at your terminal.
This is the default if you specify the MAP operand.

NOPRINT

TERM

specifies that no listings are to be produced. This operand
negates the MAP operand. This is the default value if both PRINT
and NOPRINT are omitted, and you do not use the MAP operand.

specifies that you want any error messages directed to your
terminal as well as the PRINT data set. This is the default value
if both TERM and NOTERM are omitted.

NOTERM
specifies that you want any error messages directed only to the
PRINT data set.

LIBCdata set list)
specifies the names of one or more library data sets that are to be
searched to find modules referred to by the module being processed
Cthat is, to resolve external references).

PLILIB
specifies that the partitioned data set named SYS1.PL1LIB is to be
searched to locate load modules referred to by the module being
processed.

PLIBASE
specifies that the partitioned data set named SYS1.PLIBASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX
specifies ,that the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

COBLIB
specifies that the partitioned data set named SYS1.COBLIB is to be
searched to locate load modules referred to by the module being
processed.

FORTLIB

RES

specifies that the partitioned data set named SYS1.FORTLIB is to be
searched to locate load modules referred t,o by the module being
processed.

specifies that the link pack area is to be searched for load
modules (referred to by the module being processed) before the
specified libraries are searched. This is the default value ,if
both RES and NORES are omitted. If you specify the NOCALL operand
the RES operand is invalid.

140 TSO Command Language Reference (Release 21)

NORES

MAP

NOMAP

CALL

LOADGO Command

specifies that the link pack area is not to be searched to locate
modules referred to by the module being processed.

specifies that a list of external names and their absolute storage
addresses are to be placed on the PRINT data set. This operand is
ignored when NOPRINT is specified.

specifies that external names and addresses are not to be contained
in the PRINT da~a set. This is the default value if both MAP and
NOMAP are omitted.

specifies tpat the data set specified in the LIB operand is to be
searched to locate load modules referred to by the module being
processed. This is the default value if both CALL and NOCALL are
omitted.

NO CALL

LET

NOLET

specifies that the data set specified by the LIB operand will not
be searched to locate modules that are referred to by the module
being processed. The RES operand is invalid when you specify this
operand.

specifies that execution is to be attempted even if a severity 2
error should occur. (A severity 2 error indicates that execution
may be impossible.)

specifies that execution is not to be attempted if a severity 2
error should occur. This is the default value if both LET and
NOLET are omitted.

SIZECinteger)
specifies the size, in bytes, of dynamic main storage that can be
used by the loader. If this operand is not specified, then the
size defaults to the size specified at System Generation (SYSGEN).

EPCentry-name)
specifies the external name for the entry point to the loaded
program. You must specify this operand if the entry point of the
loaded program is in a load module.

NAME (program-name)
specifies the name that you want assigned to the loaded program.

141

LOADGO Command

Example 1

Operation: Load and execute an object module.

Known: The name of the data set. D •••••••••••••••••••• SHEPD58.CSINE.OBJ

r--,
ILOADGO CSINE PRIN'I'(*) I L __ J

Example 2

Operation: Combine an object module and a load module, and then load
and execute them.

Known: The name of the data set
containing the object module •••••••••••• LARK.HINDSITE.OBJ
The name of the data set
containing the load module •••••••••••••• LARK. THERMOS. LOAD (COLD)

r--,
I LOAD (HINDSITE THERMOS(COLD» PRINT(*) LIBC'SYS1.S0RTLIB') I
INORES MAP SIZE(44K) EP(START23) NAME(THERMSIT) I L __ J

142 TSO Command Language Reference CRelease 21)

LOGOFF Command

Use the LOGOFF command to terminate your terminal session.

Before you enter the LOGOFF command, you should use the EDIT
command's SAVE subcommand to store the data sets that you want to save.
When you enter the LOGOFF command, the system frees all the data sets
allocated to you; data remaining in main storage will be lost.

Note: If you intend to enter the LOGON command immediately and continue
processing against a different account number you do not enter LOGOFF.
Instead, you can just enter the LOGON command as you would enter any
other command.

r--------------T---,
I COMMAND I OPERAND I
!--------------+--------------------------_._---------------------------~
I LOGOFF I I L ______________ ~ ___________________________ . ____________________________ J

Example 1

Operation: 'I'erminate your terminal session.

r--,
1 logoff I L __ J

143

144

LOGON Command

Use the LOGON command to initiate a terminal session. Before you can
use the LOGON command, your installation must provide you with certain
basic information.

• Your user identification (1-7 characters) and~ if required by your
installation, a password (1-8 alphameric characters).

• An account number (mayor may not be required for your
installation) •

• A procedure name (mayor may not be required for your installation).

You must supply this information to the system by using the LOGON
command and operands. The information that you enter is used by the
system to start and control your time sharing terminal session.

You can also use the operands to specify whether or not you want to
receive messages from the system or other users.

r--------------T---,
I COMMAND I OPERANDS I
!--------------+--------------------------_._---------------------------~

LOGON I user-identity [/password)
I
I
I
I
I
I
I
I
I
I

[ACCT (account))

[PROC(procedure»)

lSI ZE (integer»)

[NOTICES]
LNONOTICES

I fMAIL]
I LNOMAIL L _____________ ~ __ _

user-identity and password
specifies your user identification and, if required, a valid
password. You user identification must be separated from the
password by a slash (/) and, optionally, one or more standard
delimiters (tab, blank, or comma). Your identification and
password must match the identification contained in the system's
User Attribute Data Set (UADS). If you omit any part of this
operand, the system will prompt you to complete the operand.
(Printing is suppressed for some types of terminals when you
respond to a prompt for a password.)

ACCT(account)
specifies the account number required by your installation. If the
UADS contains only one account number for the password that you
specify, this operand is not required. If the account number is
required and you omit it, the system will prompt you for it.

For TSO, an account number must not exceed 40 characters, and must
not contain a blank, tab, quotation mark, apostrophe, semicolon,
comma, or line control character. Right parentheses are
permissible only when left parentheses balance them somewhere in
the account number.

145

LOGON Command

PROC(procedure-name)
specifies the name of a cataloged procedure containing the Job
Control Language (JCL) needed to initiate your session.

SIZE(integer)
specifies the size of the main storage region, in units of 1024
bytes, that you want allocated to your job. The UADS contains a
default value for your region size if you omit this operand. The
UADS also contains a value for the maximum region size that you
will be allowed. This operand will be rejected if you specify a
region size exceeding the maximum region size allowed by the UADS
(in this case, the UADS value MAXSIZE will be used).

NOTICES
specifies that messages intended for all terminal users are to be
listed at your terminal during LOGON processing. This is the
default value if both NOTICES and NONOTICES are omitted.

NONOTICES

MAIL

specifies that you do not want to receive the messages intended for
all users.

specifies that you want messages intended specifically for you to
be displayed at your terminal. This is the default value if both
~AIL and NOMAIL are omitted.

NOMAIL
specifies that you do not want to receive messages intended
specifically for you.

Example 1

Operation: Initiate a terminal session.

Known: Your user identification and password ••••••••••• AJKD58/23XA$MBT
Your installation does not require an account number or
procedure name for LOGON.

r--·---.---------------,
ILOGON AJKD58/23XA$MBT I L __ J

Example 2

Operation: Initiate a terminal session.

Known: Your user identification and password •••••••••••••• HEUS951/MO@
Your account number •••••••••••••••••••••••••••••••• 288104
The name of a cataloged procedure •••••••••••••••••• TS951
You do not want to receive messages.
Your main storage space requirement •••••••••••••••• 90K bytes

r--,
ILOGON HEUS951/MO@ ACCT(288104) PROC(TS951) SIZE(90)NONOTICES NOMAIL I L ______________________________________ . ______ . ____ . ________ .. _. ______________ J

146 TSO Command Language Reference (Release 21)

OPERATOR Command

Use the OPERATOR command (along with its subcommands) to regulate and
maintain TSO from a terminal.

The OPERATOR command is fully supported only for terminals which have
the transmit interruption capability, that is, this command is supported
only for those terminals for which the BREAK operand of the TERMINAL
command is valid.

This command may be used only by personnel who have been given the
authority to do so by the installation management. The authority to use
OPERATOR is normally given to personnel responsible for system
operation, and is recorded in the User Attribute Data Set (see the
ACCOUNT command).

r--------------T---,
I COMMAND I OPERANDS I
!--------------+---~
I 1 OPERATOR ~ I I
I OPER ~ I I L ______________ ~ ___ J

THE OPERA'1.'OR COMMAND

The OPERATOR command, through the use of its eight subcommands, allows
the terminal user to control TSO as follows:

Subcommand

CANCEL

DISPLAY

END

HELP

MODIFY

MQNI'I'OR

SEND

STOPMN

Function Performed

Cancel a terminal session or a background job submitted
through TSO.

Display the number of users in a region" the number of
batch jobs submitted via the SUBMIT command, the TSO job
messages that are awaiting a reply from the system
operator, and the number of active terminals.

Terminate operation of the OPERATOR command (thereby
removing the user's terminal from OPERATOR mode).

Get a list of the subcommands of the OPERATOR command,
along with the function, syntax, and operands of the
subcommands.

Modify TSO options that were specified when the system was
generated or when time-sharing was initiated.

Monitor both terminal and background job activities within
the systemo Informational messages will be displayed.

Send or receive a message to or from other terminal users.

Terminate the monitoring operations of the MONITOR
subcommand; the display of status information at the
user's terminal will be stopped.

147

OPERATOR Command

FORMAT

The OPERATOR command and its eight subcommands have a format that is
compatible with the MVT system operator commands of the System/360
Operating System. The similarities between the TSO OPERATOR commands
and the MVT system operator commands are shown in Figure 13. The MVT
commands are documented in: IBM System/360 Operating System:
Operator's Reference, GC28-6691.

SYNTAX

Wh~n using the OPERATOR subcommands the following should be noted:

• Blanks are the only valid characters allowed between a subcommand
and its operand.

• One comma is the only valid character allowed between operands.

• Operand leng~, including delimiters,. is limited to 124 characters.

TSO Command Language MVT Command Language (Without TSO)
r--'-------------------------------------T------------------------------,
I Terminal User OPERATOR I system Operator I
r----------T----------------------------t---------T--------------------~
I Subcommand I Operands I Command I Operands I
r----------+----------------------------t---------+--------------------~
I CANCEL I I CANCEL I I
I I jobname I I jobname I
I I DUMP I I DUMP I
I I ALL I I ALL I
I IIN=class I I IN=c lass I
I IOUT=class I IOUT=class I
I I unit-address I IUNITADDR I
I I identifier I I identifier I
I IU=userid I I I
r----------+----------------------------t---------+--------------------~
I DISPLAY I DISPLAY
I jobname I

A I
T I
N I
Q I
list I
R I
USER [=NMBR] I

Q=
N=

I
J
I
I
I

jobname
A
T
N
Q
list
R

U
C,K
CONSOLES
Q=
N=

~A I S~ __________ ~ ____________________________ ~ _________ ~ ____________________ J

Figure 13. Relationships Between the TSO OPERATOR Subcommands and the
MVT (non-TSO) Operator Commands (Part 1 of 2)

148 TSO Command Language Reference (Release 21)

OPERATOR Command

TSO Command Language MVT Command Language (Without TSO)
r---------------------------------------T------------------------------,
I Terminal User OPERATOR I System Operator I
t----------T----------------------------t---------T--------------------~
I Subcommand I Operands I Command I Operands I
t----------t----------------------------t---------t--------------------~

MODIFY I MODIFY
procedure. identification I procname.identifier
USERS=nmbr I
SUBMIT=Queuesize J

REGSIZE(n)=(nnnnnK,xxxxxK) I
DRIVER=(parameters) I
HOLD=(region-list) I
SMF= I

I CLASS=classnames
I PAUSE=FORMS
I PAUSE=DATASET
I JOBCLASS=jjj
I OUTCLASS=s
I 'job parameters'

r----------t----------------------------t-·--------t--------------------~
I MONITOR I . I MONITOR I I
I IA (same as DISPLAY A) I I I
I I SESS[,TJ I IT I
I I STATUS I I STATUS I
I I JOBNAMES[.T] I I JOBNAMES I
I I SPACE I I SPACE I
I I DSNAME I I DSNAME I
t----------+----------------------------t---------+--------------------~
I STOPMN I J STOPMN I I
I I I I procname. identifier I
I I JOBNAMES I I JOBNAMES I
I I SPACE I I SPACE I
I I DSNAME J I DSNAME I
I I STATUS I I STATUS I
I ISESS I I I
t----------+----------------------------t---------t--------------------~
I SEND I I None I I
I I 'text' I I I
I IUSER=(userid list) J I I
I I ALL I I I
I I NOW I I I
I I LOGON I I I
I lmessage number,DELETE I I I
I I me ssage number, LI ST I I I
I ILIST I I I
t----------t----------------------------t---------+--------------------~
I HELP I I None I I
I I subcommand-name I I I
I I FUNCTION I I I
I I SYNTAX I I I
I I OPERANDS I I I
I I ALL I I I
t----------t----------------------------t----------t--------------------t
I END I I None I I L __________ ~ ____________________________ ~ _________ ~ ____________________ J

Figure 13. Relationships Between the TSO OPERATOR Subcorr~ands and the
MVT (non-TSO) Operator Commands (Part 2 of 2)

149

CANCEL Subcommand of OPERATOR

Use the CANCEL subcommand to terminate the current activities of a
terminal user or a job submitted for conventional batch processing.
When you use the CANCEL command to terminate a terminal session,
accounting information will be presented to the user. The syntax for
this subcommand is the same as the syntax for the MVT operator commands.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---f
I 1 CANCEL ! J jobname [,DUMP[,ALLl] I
I C I ,IN[=classl I
I I ,OUT [=classl I
I I unit-address I
I I identifier I
I I U=user-identification[,DUMPl I L-___________ ~ ___ J

job name

DUMP

ALL

is the name of the job that you want to cancel.

specifies that an abnormal-end-of-job storage dump will be taken if
a step of the job is being executed when you enter the command.
The dump will be printed on the system output device.

specifies that all the input and output for the job is to be
canceled.

IN=class
specifies that the system is to search for the job on the input
queue indicated by "class". If you omit "class", all input queues
will be searched.

OUT=class
specifies that the system is to search for the job on the output
queue indicated by "class". If you omit "class", all output queues
will be searched.

Note: If neither the IN or OUT parameter is used the system will
search all the input queues and the hold queue for the job.

unit address
specifies the address of an I/O device. The system will stop the
output currently being written on the device.

identifier
specifies the identifier of a system task to be terminated during
allocation. You cannot cancel a system task that is not associated
with a unit (device).

This operand can be the identifier used in a START command issued
by the system's console operator or it can be a uni-t tyr;e (such as
1403 or 2311) associated with a unit address or a p:rocedure used in
a START command.

150 TSO Command Language Reference (Release 21)

CANCEL Subcommand of OPERATOR

U=user identification
specifies the user identification for a user whose terminal session
is to be terminated by the CANCEL command.

Note: Use the 'CANCEL U=userid' format for canceling time sharing
jobs only and the 'CANCEL jobname' format for canceling
conventional batch jobs only.

Example 1

Operation: Terminate a user's terminal session.

Known: The user's identification ••••••••••••••••••••••••••••••• RCHTD36

r---·-----------------------------,
IC U=RCHTD36 I L __ J

Example 2

Operation: Cancel a job that has been submitted from a terminal for
conventional batch processing and have a dump printed.

Known: The name of the job ••••••••••••••••••••••••••••••••••••• PAYROLL

r--,
Icancel payroll. dump I L __ J

Example 3

Operation: Cancel the output from a job that has been submitted from a
terminal for conventional batch processing.

Known: The name of the job... SUEG
The output class ' J

r--,
ICANCEL SUEG,OUT=J I L __ J

151

DISPLAY Subcommand of OPERATOR

Use the DISPLAY subcommand to obtain a listing of:

• The number of terminal users for each time sharing region.

• The number of conventional batch jobs awaiting execution that were
submi·tted from a terminal by the SUBMIT command.

• The messages from time sharing jobs that are awaiting replies from
an operator.

• The message indicating the status of the system queue area (SQA).

• The number of active terminals, the identification of each user, and
the time sharing region being used by each user. The operands
'jobname', 'A', 'N', 'QI. IT' and IR' are also operands of the
DISPLAY command of the System/360 Operating system. They are
described in detail in the pUblication IBM System/360 Operating
System: Operator's Reference, GC28-6691. The syntax for this
subcommand is the same as the syntax for the MVT operator commands.

r-------------T---,
I SUBCOMMAND I OPERANDS I
~------------+----------------.---------------------------------------~
I 1 DISPLAY! I jobname I
I D I A I
I I T I
I I N[=listl I
I I Q[=listl I
I I R I
I I SQA I
I I USER[=NMBRl I
I I T I L ____________ .L ___ J

jobname

A

specifies the name of the job for which the following status
information is to be displayed: job name: class: job priority:
type of queue the job is in (JOB Q, HOLD Q, SOUT Q (SYSOUT queue),
or BRDR): and the job's position in the queue.

The maximum length of a job name is eight characters. If your
jobname is JOBNAMES, STATUS, T. A, R, Q, N, SPACE, DSNAME, SESS,
USER, U, M, or CONSOLES it must be enclosed in parentheses.

specifies that you want the system to display information abou·t all
jobs and jobsteps that are recognized by the system as tasks (that
is, those jobs and job steps that have one or more task control
block (TCS» ..

The information displayed for jobs in background regions includes
the names of the job and job step associated with each task, the
number of subordinate tasks operating within the same region of
main storage, the beginning and end addresses of the region., and
the amount of supervisor queue space used for system control blocks
related to the main task. If rollout is included in the system,
the display will indicate whether the region is borrowed or rolled
out.

152 TSO Command Language Reference (Release 21)

N

Q

list

R

SQA

T

DISPLAY Subcommand of OPERATOR

The information displayed for time-sharing regions includes TIME
SHARING as the job name, the number of users for each region, the
region number, the beginning and end addresses of the region l and
the amount of local supervisor queue space used for system control
blocks by the user's tasks.

specifies that you want a list of job names on the input, hold,
output, BRDR, and ASB reader batching queues.

specifies that you want a list of the number of entries on the
input, hold, output, BRDR, and ASB reader batching queues.

specifies that you want information about specific queues. You can
specify up to four of the following queues:

• Specific input work queue name (job class A through 0).
• SOUT (system output queues collectively).
• HOLD (system hold queue).
• BRDR (background reader queue).

specifies that you want a listing of messages that are awaiting a
response from an operator.

specifies that you want information on the system queue area (SQA).
You will receive a message at your terminal indicating the low and
high boundaries of the SQA and the amount of free storage between
them.

specifies that you want the time of day and the date.

USER [=NMBRJ
indicates you want specific information about time sharing users.
If you do not specify =NMBR, the number of active terminals, the
identification of each user and the corresponding region number of
each user will be displayed at your terminal. If you do specify
=NMBR. only the number of active terminals will be displayed.

153

DISPLAY Subcommand of OPERATOR

Example 1

Operation: Have the number of time sharing regions and the number of
users for each region displayed at your terminal.

r---·---.----,
IDISPLAY A I L ___ J

Example 2

operation: Have the status of a particular job displayed at your
terminal.

Known: The name of the job is •••••••••••••••••••••••••• o •••••••• RBTATT

r--,
Idisplay rbtatt I L __ J

Example 3

Operation: Obtain the user identification for each active terminal
user.

r-------·--.----,
Id user I L __ J

154 TSO Command Language Reference (Release 21)

END Subcommand of OPERATOR

Use the END subcommand to terminate operation of the OPERATOR command.
After entering the END subcommand, you may enter new commands.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+----------------------------.---------------------------~
I END I I L ____________ ~ ___ J

155

HELP Subcommand of OPERATOR

Use the HELP subcommand to find out how to use OPERATOR and the OPERATOR
subcommands. When you enter the HELP subcommand" the system responds by
printing out explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the fucntion, syntax, and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

r-------------T---,
I SUBCOMMAND I OPERANDS I
~------------+--,--~

I lHELPI I [Subcommand-name [FUNCTION]] I I H I SYNTAX I
I I OPERANDSClist-of-operands) I
I I ALL I L ___________ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of OPERATOR
subcommands.

FUNCTION
specifies that you want a description of the referenced
SUbcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced SUbcommand.

OPERANDSClist of operands)

ALL

specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default value if no operands are specified.

156 TSO Command Language Reference (Release 21)

HELP Subcommand of OPERATOR

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r---,
I HELP I L __ J

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known_::; The· subcommand name.. MODIFY

r--,
IH MODIFY I l __ J

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand name ••••••••••••••••••••••••••••••••••••• DISPLAY

r--,
Ih DISPLAY operands I L ___ J

157

MODIFY Subcommand of OPERATOR

Use the MODIFY subcommand to modify the time sharing options that were
specified when the system was generated or when time shaI."ing was
initiatedo The syntax used for this subcommand is the same as the
syntax used for MVT operator commands.

r------------T---,
I SUBCOMMAND I OPERANDS I
t------------+--~
I 1 MODIFyl I [procedure. 1 identification I
I F ~ I I
I I [, USERS=number] I
I I [, SUBMIT= (queuesize)] I
I I [,REGSIZE(n)=(nnnnnK,xxxxxK) •••] I
I I L, DRIVER= (parameters)] I
I I [,HOLD= (region-list)] I
I I [, SMF= ([OFF] [, EXT= 1 YES l) 1] I
I I OPT= 1 NO ~ I
I I 2 I L ___ . _________ ~ ___ J

procedure
specifies the name of the time sharing procedure that you want to
modify. This name must be the same as the one that was used when
the procedure was started with a START command issued by the
console operator.

identification
specifies the identification of the system task used when the task
was defined by a START command issued by the console operator.

USERS=number
indicates the number of users allowed for time sharing. The
maximum number is determined at START time and cannot be exceeded
by the MODIFY command.

SUBMIT=Queuesize
indicates the maximum number of logical tracks to be used for the
queue for conventional batch jobs submitted by the SUBMIT command.

REGSIZE(n) = (nnnnnK, xxxxxK)
indicates the number and size of each time sharing region. I nil is
the region number (included on the informational messages from the
DISPLAY command). You specify the size of the region in the form
nnnnnK. If the size equals zero the region will be freed. You
specify the local supervisor queue area (LSQA) to be added to the
region in the form xxxxxK. The LSQA size must be smaller than the
region size, but greater than zero. "nnnnn" and "xxxxx" are the
number of contiguous 1024 byte areas you want. These numbers may
range from one to five digits, but the sum cannot exceed 16382.
The numbers should be specified as even numbers. (If you specify
an odd number, the system treats it as the next higher even
number). LSQA size must be smaller than the region size, but
greater than zero. Anytime you use the REGSIZE operand,' any users
of that region will be logged off.

158 TSO Command Language Reference (Release 21)

MODIFY Subcommand of OPERATOR

DRIVER=(parameters)
specifies a parameter list to be passed to the time sharing driver
(a component of TSO). For instance l BACKGROUND=value is the only
keyword that can be passed to the IBM supplied driver -- it
indicates the percentage of system resource time guaranteed for
conventional batch processing; however, different parameters may be
supplied for user-written drivers.

HOLD=(region-list)
specifies that the time-sharing regions specified in nregion-list n
are not to be allocated for any new users. If you specify more
than one region l then you must separate the regions specified with
commas. If you specify only one region, the parentheses are not
needed.

You may not specify HOLD and REGSIZE(n) for the same region in one
MODIFY command. If you do, the system will request that you: specify
the option you prefer, indicate that both keywords are to be ignored for
this region, or cancel the MODIFY command.

SMF=(OFF or OPT=l or OPT=2, EXT=YES or NO)
indicates which option of the system Management Function (SMF) is
to be used for time sharing operations. OFF indicates that SMF is
not to be used for time sharing operations. OPT=l or 2 indicates
an option of SMF that is to be used for time sharing operations.
EXT indicates that exits to the installation routines are active.

Note: If duplicate keywords are entered in a MODIFY command, the
riqht-most (last entered) keyword and parameters will determine
system action. (n) is part of the REGSIZE(n) keyword; therefore,
REGSIZE(l) and REGSIZE(2) are not considered duplicate keywords.

Example 1

Operation: Change the number of terminals allowed for time sharing
operations.

Known: The existing allowable number •••••••••••••••••••••••••••••••• 32
The new number... 26

r--,
IMODIFY TSO,USERS=26 I L __ J

Example 2

Operation: Change the maximum size of time sharing region number 3 from
70K to lOOK, with 10K reserved for local supervisor queue
area (LSQA).

r--,
If tso,regsize(3)=(100K,10K) I L __ J

Example 3

Operation: Change the guaranteed background percentage of time to 60%.

r--,
IF TSO,DRIVER=(BACKGROUND=60) I L __ J

159

MONITOR Subcommand of OPERATOR

Use the MONITOR subcommand to monitor terminal activities and job
activities within the system. Informational messages will be displayed.
The content of the messages will pertain to the type of information
indicated by the operand included with the MONITOR subcommand. The
system will continue to issue these informational messages until halted
by a STOPMN subcommand or until you terminate the OPERATOR command.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I 1 MONITOR l I A I
I MN ~ I SESS [, T1 I
I I ~~ I
I I JOBNAMES[,T1 I
j I SPACE I
I I OO~ I L ____________ ~ ___ J

A

SESS

T

specifies that you want the system to display information about all
of the jobs and jobsteps that are recognized by the system as
tasks. CUnder the TSO OPERATOR command function, the MONITOR A
subcommand produces the same results as the DISPLAY A subcommand.
Time-interval updating of the display is not supported under TSO.)

indicates that you are to be notified whenever any -terminal session
is initiated or terminated. The user's identification will be
displayed at your terminal. If the session terminates abnormally,
the user identification will appear in the diagnostic message; the
message "user LOGGED OFF" will not appear if the session was
canceled ..

If you specify the T operand~ the system displays the time of day
in addition to: the users identification. The format of the time
output is shown under the T operand description.

specifies that you want the time of day to be displayed in the
following format:

hh.mm.ss

The variables in this format are:

hh - Hours (00-23)

rom - Minutes (00-59)

ss - Seconds COO-59)

whenever one TSO user specifies this operand, all subsequent users
of the MONITOR command will also receive the time at their
terminals.

160 TSO Command Language Reference (Release 21)

MONITOR Subcommand of OPERATOR

STATUS
specifies that you want the data set names and volume serial
numbers of data sets with dispositions of KEEP, CATLG, or UNCATLG
to be displayed whenever the data sets are freed.

JOBNAMES
specifies that you want the name of each job to be displayed both
when the job starts and when it terminates, and that you want unit
record allocation to be displayed when the job step starts. If a
job terminates abnormally, the jobname will appear in the
diagnostic message; the message 'jobname ENDED' will not appear.

SPACE

If you specify the T operand with the JOBNAMES operand, the system
displays the time of the day in addition to the jobnames. The
format of the output is shown under the T operand description.

specifies that you want the system to display, in demount messages,
the available space on a direct access device.

DSNAME
specifies that you want the system to display~ within the mount and
K (keep> type demount messages, the name of the first non-temporary
data set allocated to the volume to which the messages refer.

Example 1

Operation: Have the system notify you whenever a terminal session
begins or ends.

r--,
IMONITOR SESS I L __ J

Example 2

Operation: Have displayed at your terminal the name of each job when
the job starts and when it terminates. Also have the time
displayed with the jobname.

r--,
IMN JOBNAMES,T I L __ J

161

SEND Subcommand of OPERATOR

Use the SEND subcommand to send a message to any or all terroinal users.
A message may be sent to one or more terminal users by ilrlicating the
user identification of each recipient, or to all terminal users by not
indicating specific user identifications. If the intended recipient is
not logged on, the message can be retained within the system and
presented automatically when the recipient logs on. You will be
notified when the recipient of an immediate message is not logged on:
the message will be deleted by the system.

Note: The maximum length of the SEND subcommand operands, including
delimiters, is 124 characters.

The syntax for this subcommand is the same as the syntax for MVT
operator commands.

r------------T---,
I SUBCOMMAND I OPERANDS 1
.------------+---~
1 jSEND! I 'text' j,USER=cuser-identification-list>![,NOW JII
I SE I ,ALL ,LOGON 1
I I message-numberj , DELETE! I
I I ,LIST 1
I I LIST I L _____________ .L __ J

'text'
specifies the message that you want to send. You must enclose the
text of the message within apostrophes (single quotes>. The
maximum length of a message is 115 characters including blankso
The message must be contained on one line (you cannot continue a
message on a second line). If you want a quotation mark printed in
the message, you must enter two quotation marks.

USER=(user ident~fication list)

ALL

NOH

LOGON

specifies the user indentification of one or more terminal users
who are to receive the message.

specifies that all terminal users are to receive the message.
Terminal users who are currently using the system will receive the
message immediately. This is the default value if both USER=(user
identification list) and ALL are omitted.

specifies that the message is to be sent immediately. If the
recipient is not logged on, you will be notified and the message
will be deleted. This is the default value if NOW and LOGON are
omitted.

specifies that the message is to be sent immediately if the
recipients are logged on and receiving messages. Otherwis~, the
message is to be retained in the SYS1.BRODCAST data set if:
a. You specify a user identification the message is retained in

the "mail" section of the SYS1.BRODCAST data set and deleted by
the system after it is sent to the intended usero

162 TSO Command Language Reference (Release 21)

SEND Subcommand of OPERATOR

b. You specify "ALL"~ the message will be stored in the "notices"
section of the SYS1uBRODCAST data set and retained there until
the operator deletes it.

message number, DELETE
specifies the number of a notice in the SYS1.BRODCAST data set that
you want to delete.

message number,LIST
specifies the number of a notice in the SYS1.BRODCAST data set that
you want to have displayed at your terminal. Anytime you specify a
message number without either the LIST or DELETE operand, the
system assumes the default value and deletes the message.

LIST
specifies that you want to receive a listing of all the SEND
notices retained in the system. The listing will be produced at
your terminal. Each message will be preceded by a system-assigned
number.

Example 1

Operation: send a message to all terminal users currently logged on.

Known: The message:
TSO TO SHUT DOWN AT 9:55 P.M. EST 9/14/70

r--,
ISEND 'TSO TO SHUT DOWN AT 9:55 P.M. EST 9/14/70',ALL I L __ J

Example 2

Operation: Send a message to two particular terminal users currently
logged on.

Known: The user identifications ••••••••• u ••••••••••••••••••••••• T24
OTO

The message:
YOUR ACCT NO. INVALID AFTER THIS SESSION

r--,
ISEND 'YOUR ACCT NO. INVALID AFTER THIS SESSION',USER=(T24,OTO) I L ___ J

163

SEND Subcommand of OPERATOR

Example 3

Operation: Delete a message.

Known: The me s sage nwnber... 8

r--.--------------,
ISEND 8 I L __ . ______________ J

Example 4

Operation: Have all messages displayed at your terminal.

r---.---,
ISEND LIS~' I L __ J

164 TSO Command Language Reference (Release 21)

STOPMN Subcommand of OPERATOR

Use the STOPMN subcommand to terminate the monitoring operations of the
MONI'l'OR subcommand. This subcommand will halt the display of status
information at your terminal.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I lSTOPMNl I JOBNAMES I
I PM ~ I SPACE I
I I OO~ I
I I SESS I
I I STATUS I L ____________ ~ ___ J

JOBNAMES
specifies that the operations provided by the JOBNAMES operand of
the MONITOR subcommand are to be stopped. (The system will stop
displaying the names of jobs as they start and end.)

SPACE
specifies that the operations provided by the SPACE operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the available space on direct access devices.)

DSNAME

SESS

specifies that the operations provided by the DSNAME operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the name of the first non-temporary data set allocated
to the volume to which the mount and K type demount messages
refer.)

specifies that the operations provided by the SESS operand of the
MONITOR subcommand are to be stopped. (The system will stop
notifying the operator whenever a terminal session is initiated or
terminated.)

STATUS
specifies that the operations provided by the STATUS operand of the
MONITOR subcommand are to be stopped. (The system will stop
displaying the names and volume serial numbers of data sets with
dispositions of KEEP, CATLG, or UNCATLG at job step end and job
end.)

165

STOPMN Subcommand of OPERATOR

Example 1

Operation: Stop the display of the names of jobs as they begin
execution and terminate.

r--,
ISTOPMN JOBNAMES I L __ J

Example 2

Operation: stop the display of available space on direct access
devices.

r--------------------------------------~-------------------------------,
Istopmn space I L __ J

166 TSO Command Language Reference (Release 21)

OUTPUT Command

Use the OUTPUT command to:

• Direct the output from a conventional batch job to your terminal.
The output includes the job's Job Control Language statements (JCL),
system messages, and system output (SYSOUT) data sets.

• Direct the output from a conventional batch job to a specific data
set.

• Change the output class for a conventional batch job.

• Delete the output (SYSOUT) data sets or the system messages for
conventional batch jobs.

r--------------T---,
I COMMAND I OPERANDS I
.--------------+---~
I 1 OUTPUT l I (job-name-list) I
lOUT f I [CLASS (class-name-list)] I

I I [~ J][J I
I I PRINT * NEXT PAUSE I
I I data-set-name HERE [NOPAUSE J I
I I NOPRINT [(class-name)] BEGIN I L ______________ ~ ___ J

(job-name-list)
specifies one or more names of jobs that have been submitted for
conventional batch processing. Each jobname must begin with your
user identification (see data set naming conventions) unless the
routine that scans and checks the user identification is replaced
by a user-written routine. The system will process the output from
the jobs identified by the job-name-list .•

CLASS (class-name-list)
specifies the names of the output classes to be searched for output
from the jobs identified in the jobname list.. If you do not
specify the name of an output class, the system's default class
will be searched for the jobs output. A class name is a single
character or digit (A-Z or 0-9). See the publication IBM
System/360 Operating System: supervisor Services and MaCro
Instructions, GC28-6646, for additional information.

PRINT(data-set-name or *)
is the name of the data set to which the output is to be directed.
You may substitute an asterisk for the data set name to indicate
that the output is to be directed to your terminal. If you omit
both the data set name and the asterisk, the default value is the
asterisk. Print is the default value if you omit both PRINT and
NOPRINT.

NOPRINT(class-name)
indicates that the output is to be removed from the class specified
in the CLASS operand, and placed in the class specified in NOPRINT.
If you specify NOPRINT without including a class name, the output
is deleted from the system.

167

OUTPUT Command

NEXT

HERE

BEGIN

Note: Do not specify the following characters as the character in
the class-name; the system will try to interpret them as a
class-name and thus cause you to lose your data.

comma
tab
blank space
asterisk
semicolon
slash
right parenthesis

indicates that output operations of a job that has been interrupted
are to be resumed with the next SYSOUT data set or group of system
messages.

indicates that output operations of a job that has been interrupted
are to be resumed at a point approximately ten lines before the
point of interruption (that iS I approximately ten lines will be
repeated). This is the default value if you omit HERE, BEGIN, and
NEXT.

indicates that output operations of a job that has been interrupted
are to be resumed from the beginning of the data set being
processed, or from the first message if a block of system messages
is being processed.

PAUSE
indicates that output operations are to pause after each SYSOUT
data set is listed to allow you to enter a SAVE or CONTINUE
subcommand. (A carrier return entered after the pause will cause
normal processing to continue.) This operand can be overridden by
the NOPAUSE operand of the CONTINUE subcommand.

NOPAUSE
indicates that output operations are not to be interrupted. This
operand can be overridden by the PAUSE operand of the CONTINUE
s ubc ommand.

Considerations: The OUTPUT command applies to all conventional batch
jobs whose job names begin with your user identification~ Access to
jobs whose job names do not begin with a valid user identification must
be provided by a user-written routine. The SUBMIT, STATUS, and CANCEL
commands also apply to conventional batch jobs. You must have special
permission to use these commands.

Not~: You can simplify the use of the OUTPUT command by including the
NOTIFY keyword for the SUBMIT command when you submit a job for
conventional batch processing. The system will notify you when the job
terminates, giving you an opportunity to use the OUTPUT command. SYSOUT
data sets should be assigned to SYSOUT classes that do not have
conventional output writers operating.

168 TSO Command Language Reference (Release 21)

OUTPUT Command

output Sequence: Output will be produced according to the sequence of
the classes that you specify for the CLASS operand. For example, assume
that you want to retrieve the output of the following jobs:

91435,MSGCLASS=X
PGM=IEBPTPCH

//JWSD581
//
//SYSPRINT
/ /SYSU'l'l
//
//SYSUT2
//SYSIN

JOB
EXEC
DD
DD

DD

SYSOUT=Y
DSNAME=PDS"UNIT=2311"VOL=SER=111112,LABEL=(,SUL),
DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=3625)
SYSOUT=Z

/*
//JWSD582
//
//SYSPRINT
//DD2
//SYSIN
//
/*

DD *
PRINT TY?ORG=PS"TOTCONV=XE
LABELS DATA=NO

JOB
EXEC
DD
DD
DD

SCRATCH

91435,MSGCLASS=X
PGM=IEHPROGM
SYSOUT=Y
UNIT=2311,VOL=SER=231100,DISP=OLD

* VTOC,VOL=2311=231100

To retrieve the output, you enter:

OUTPUT (JWSD581 JWSD5:82 > CLASS (X YZ>

Your output will be listed in the following order:

1. Output of class X (JCL and messages for both jobs).

2. Output of class Y (SYSPRINT data for job JWSD581 followed by
SYSPRINT data for job JWSD582).

3. Output of class Z (SYSUT2 data for job JWSD581).

Because of this, you should avoid unnecessary division of data sets
among classes. If a job uses several classes, you should retrieve the
output for that job alone rather than specifying a list of jobnames. By
retrieving the job alone. all its output will be together physically.

Subcommands: Subcommands for the OUTPUT command are: CONTINUE1 END,
and SAVE. When output has been interrupted, you can use the CONTINUE
subcommand to resume output operations.

Interruptions occur when:

• Processing of a sysout data set completes and the PAUSE operand was
specified with the OUTPUT command.

• Processing of a sysout data set terminates because of an error
condition.

• You press the attention key.

• The END subcommand is entered before completion of the job that is
being processed.

You can use the SAVE subcommand to rename and catalog a SYSOUT data set
for retrieval by a different method. Use the END subcommand to
terminate OUTPUT. The remaining portion of a job that has been
interrupted will be returned to the output queue.

169

OUTPUT Command

Example 1:

Operation: Direct the output from a conventional batch job to your
terminal.

Known: The name of the job •••••••••••••••••••••• SMITH2
The job is in the system output class •••• SYSOUT:=X
Output operations are to be resumed with the next SYSOUT data
set or group of system messages.
You want the system to pause after processing each block of
output dat.a.

r--,
IOUTPUT SMITH2 CLASS(X) PRINT(*) NEXT PAUSE I L-___ J

Example 2

Operation: Direct the output from two conventional batch jobs to a data
set so that it can be saved and processed at a later date.

Known: The names of the jobs ••••••••••••••••••••• JANA
JANB

The name for the output data set •••••••••• JAN.~JGPP.OUTLIST

r---,
IOUTPUT (JANA,JANB) CLASS (R,S,T) PRINT (AUGPP.OUTLIST) I L ___ J

Example 3

Operation: Change the output class.

Known: The name of the job ••••••••••••••••••••••• KEAN1
The existing output class ••••••••••••••••• SYSOUT=S
The new output class •••••••••••••••••••••• T

r--,
IOUTPUT KEAN1 CLASS(S) NOPRINT(T) I L __ J

Example 4

Operation: Delete the output instead of changing the class (see Example
3) •

r--,
lOUT KEAN1 CLASS(S) NOPRINT I L __ J

170 TSO Command Language Reference (Release 21)

CONTINUE Subcommand of OUTPUT

Use the CONTINUE subcommand to resume output operations that have been
interrupted.

Interruptions occur when:

• An output operation completes and the PAUSE operand was specified
with the OUTPUT command.

• An output operation terminates because of an error condition.
• You press the attention key.

If other TSO commands have been entered during the interruption, the
OUTPUT command must be reentered.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I CONTINUE I [NEXT] [PAUSE] I
I I HERE NOPAUSE I
I I BEGIN I L-___________ i ___ J

NEXT

HERE

BEGIN

PAUSE

specifies that output operations are to be resumed with the next
data set being processed or with the next message if a block' of
system messages is being processed. This is the default value if
NEXT, HERE,. and BEGIN are omitted.

indicates that output operations are to be resumed at a point
approximately ten lines before the point of interruption (that is,
approximately ten lines will be repeated).

indicates that output operations are to be resumed from the
beginning of the data set being processed or from the first message
if a block of system messages is being processed.

indicates that output operations are to pause after each data set
is processed to allow you to enter a SAVE subcommand. (A carrier
return entered after the pause will cause normal processing to
continue.) You can use this operand to override a previous NOPAUSE
condition for output.

NOPAUSE
indicates that output operations are not to be interrupted. You
can use this operand to override a previous PAUSE condition for
output.

171

CONTINUE Subcommand of OUTPUT

Example 1

Operation: Continue output operations with the next SYSOUT data set or
group of messages.

r--,
I CONTINUE I L __ J

Example 2

Operation: Start output operations over again.

r---.---------------,
ICONTINUE BEGIN I L __ J

172 TSO Command Language Reference (Release 21)

END Subcommand of OUTPUT

Use the END subcommand to terminate the operations of the OUTPUT
command.

r------------T---,
I SUBCOMMAND I OPERANDS I
f------------+---~
I END I I L-___________ ~ ___ J

173

HELP Subcommand of OUTPUT

Use the flliLP subcommand to find out how to use the OUTPUT subcommands.
When you enter the HELP subcommand, the system responds by printing out
explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the function, syntax, and operands of a specific

subcomma nd.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

r------------T--------------------------------------~----------------,
I SUBCOMMAND I OPERANDS I
t------------+--.-------------~
I 1 HELPl I [SUbCOmmand-name [FUNCTION]] I I H j SYNTAX I
I I OPERANDS (list-of-operands) I
I I ALL I L ___________ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarified. If you
omit this operand, the system will display a list of OUTPUT
subcornrnands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)

ALL

specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default value if no operands are specified.

174 TSO Command Language Reference (Release 21)

HELP Subcommand of OUTPUT

Example 1

Operation: Have a list of available subcommands displayed at your
terminal.

r--,
I HELP I L __ J

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name •• SAVE

r--,
IH SAVE I L __ J

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand name •••••••••••••••••••••••••••••••••••• CONTINUE

r--,
Ih continue operands I L __ J

175

SAVE Subcommand of OUTPUT

Use the SAVE subcommand to rename and catalog a SYSOUT data set for
retrieval by some method other than the OUTPUT command. To use SAVE.
you should have specified the PAUSE keyword on the OUTPUT con~and.

r------------T---,
I SUBCOMMAND I OPERANDS I
t------------+--~
I lSAVEl I data-set-name I
I S f I I L ___________ ~ ___ J

data-set-name
specifies the new data set name to be given to the SYSOUT data set
(see the data set naming conventions>. The renamed data set will
be cataloged by the new name.

Example 1

Operation: Save an output data set.

Known: The name of the data set •••••••••••••••••• ADT023.NEWOUT.OUTLIST

r--·---,
ISAVE NEWOUT I L __ . __ J

176 TSO Command Language Reference (Release 21>

P'ROFILE Command

Use the PROFILE command to establish your user profile; that is, to tell
the system how you want to use your terminal. You can:

• Define a character-deletion or line-deletion control character.

• Specify whether or not prompting is to occur.

• specify whether or not you will accept messages from other
terminals.

• Specify whether or not you want the opportunity to obtain additional
information about messages from a command procedure.

• Specify whether or not you want message numbers for diagnostic
messages that may be displayed at your terminal.

Initially, a user profile is prepared for you when arrangements are made
for you to use the system. The authorized system programmer uses the
ACCOUNT command to create your userid and'your user profile. Under the
ACCOUNT command, the system programmer is restricted to defining the
same user profile for every userid that he creates. This "typical" user
profile is defined when a User Profile Table (UPT) is initialized to
hexadecimal zeroes for any new userid. Thus, your initial user profile
is made up of the default values of the operands discussed under this
command. The system defaults provided for the character-delete and the
line-delete control characters depend upon what type of terminal is
involved:

TSO Terminal
Character-Delete Line-Delete
Control Character Control Character

r---------------------------------T------------------T------------------,
IIBM 2741 Communication Terminal IBS (backspace) IATTN (attention) 1
f---------------------------------f--------·---------f------------------~
IIBM 1052 Printer-Keyboard IBS (backspace) 1** 1
f---------------------------------f-----------------f------------------~
IIBM 2260 Display station I None I None 1
f---------------------------------f-----------------f------------------~
IIBM 2265 Display Station I None I None 1
f---------------------------------f--------·---------f------------------~
1 Teletype* Model 33 I ** 1** 1
f---------------------------------f-----------------f------------------~
ITeletype* Model 35 1** 1** 1
f---------------------------------i--------.---------i------------------~
1* Trademark of Teletype Corporation. 1
1** Refer to the publication. IBM System/360 Operating System: Time 1
1 Sharing Option, Terminals, GC28-6762. I L ___ J

CAUTION: Although highly unlikely, it is possible for the system
programmer who created your userid (and therefore your user profile) to
have then logged on under it and by using 1::he PROFILE command to have
created a unique user profile (different from the "typical" user profile
created under the ACCOUNT command) for YOUm In case of doubt, have the
system programmer use the LIST subcommand of ACCOUNT to list your
current user profile.

177

PROFILE Command

You change the characteristics of your user profile by using the
PROFILE command with the appropriate operands. Only the characteristics
that you specify explicitly by operands will change; other
characteristics remain unchanged. The new characteristics will remain
valid from session to session. You must specify at least one operand or
the system will ignore the command.

r--------------T---,
I COMMAND I OPERANDS I

r--l~~g~~~~1---i----[~~;({~~~;~~~}>-]--[-~~;~(1~~:ct::1>-]------------,
I I NOCHAR NOLINE I
I I I
I I [PROMPT J [I NTERCOM] I
I I NOPROMPT NOINTERCOM I
I I I
I I [PAUSE] [MSGID] I
I I NOPAUSE NOMSGID I L-_____________ ~ ___ J

CHAR (character)
specifies the character that you want to use to tell the system to
delete the previous character entered. You should not specify a
blank, tab, comma, asterisk, or parenthesis because these
characters are used to enter commands.

Note: Do not use an alphabetic character as either a character-delete
or a line-delete character. For if you do, you run the risk of not
being able to enter certain commands without accidentally deleting
characters or lines of data. For instance: if you specify R as a
character-delete character, each time you tried to enter a PROFILE
command the R in PROFILE would delete the P that precedes it. Thus it
would be impossible to enter the PROFILE command as long as R was the
character-delete control character.

CHAR (BS)

specifies that a backspace signals that the previous character
entered should be deleted. This is the default value set when your
user profile was created.

NO CHAR
specifies that no control character is to be used for character
deletion.

LINE (character)
specifies a control character that you want to use to tell the
system to delete the current line.

LINE (ATTN)
specifies that an attention interruption is to be interpreted as a
line-deletion control character. This is the default value set
when your user profile was created.

178 TSO Command Language Reference (Release 21)

PROFILE Command

LINE (CTLX)
specifies that the X and CTRL keys (depressed together) on a
teletype terminal are to be interpreted as a line-deletion control
character. This is the default value set when your user profile
was created, if you are operating a teletype terminal.

NOLINE
specifies that no line-deletion control character (including ATTN)
is recognized.

PROMPT
specifies that you want the system to prompt you for missing
information. This is the default value set when your user profile
was created.

NOPROMPT
specifies that no prompting is to occur.

INTERCOM
specifies that you are willing to receive messages from other
terminal users. This is the default value set when your user
profile was created.

NO INTERCOM
specifies that you do not want to receive messages from other
terminals.

PAUSE
specifies that you want the opportuni"ty to obtain additional
information when a message is issued at your terminal while a
command procedure (see the EXEC command) is executing. After a
message that has additional levels of information is issued, the
system will display the word PAUSE and wait for you to enter a
question mark (?) or a carrier return.

NOPAUSE

MSGID

specifies that you do not want prompting for a question mark or
carriage return. This is the default value set when your user
profile was created.

specifies that diagnostic messages are to include message
identifiers.

NOMSGID
specifies that diagnostic messages are not to include message
identifiers. This is the default value set when your user profile
was created.

179

PROFILE Command

Example 1

Operation: Establish a complete user profile

Known: The character that you want to use to tell the system to delete
the previous character •••••••••••••••••••••••••••••••••••• #.
The indicator that you want to use to tell the system to delete
the current line ...•... 11 •• ATTN.
You want to be prompted.
You do not want to receive messages from other terminals.
You want to be able to get second level messages while a command
procedure is executing.
You do not want diagnostic message identifiers.

r---.---------------,
IPROFILE CHAR(#) LINE(ATTN) PROMPT NOINTERCOM PAUSE NOMSGID I L __ J

Example 2

Operation: suppose that you have established the user profile in
Example 1. The terminal that you are using now does not
have a key to cause an attention interrupt. You want to
change the line delete control character from ATTN to @
without changing any other characteristics.

r--,
IPROF LINE(@) I L __ J

Example 3

Operation: Establish and use a line-deletion character and a
character-deletion character.

Known: The line-deletion character ••••••••••••••••••••••••••••••••••• &
The character-deletion character ••••••••••••••••••••••••••••••

r--~---------------------,
IPROFILE LINE(&) CHAR(!) I L __ J

Now~ if you type:

NOW IS THE TI&AC!BCG!.

and press the carrier return key" you will actually enter:

ABC.

180 TSO Command Language Reference (Release 21)

PROTECT Command

Use the PROTECT command to prevent unauthorized access to your data set.
This command establishes or changes:

• The passwords that must be specified to gain access to your data
set.

• The type of access allowed.

Data sets that have been allocated (either during a LOGON procedure or
via the ALLOCATE command) cannot be protected by specifying the PROTECT
command. To password-protect an allocated data set, you would have to
de-allocate it via the FREE command before you could protect it via the
PROTECT command.

Passwords

You may assign one or more passwords to a data set. Once assigned, the
password for a data set must be specified in order to access the data
set. A password consists of one through eight alphameric characters.
You are allowed two attempts to supply a correct password.

Types of Access

Four operands determine the type of access allowed for your data set.
They are, PWREAD, PWWRITE, NOPWREAD, NOWRITE.

Each operand, when used alone, defaults to one of the preceding types
of access. The default values for each operand used alone are:

OPERAND I DEFAULT VALUE
------------f----------------

I
PWREAD I PWREAD PWWRITE

I
NOPWREAD I NOPWREAD PWWRITE

I
PWWRITE I NOPWREAD PWWRITE

I
NOWRITE I PWREAD NOWRITE

A combination of NOPWREAD and NOWRITE is not supported and will default
to NOPWREAD and PWWRITE.

If you specify a password but do not specify a type of access, the
default is:

• NOPWREAD PWWRITE if the data set does not have any existing access
restrictions.

• The existing type of access if a type of access has already been
established.

When you specify the REPLACE function of the PROTECT command the default
type of access is that of the entry being replaced.

181

PROTECT Command

r--------------T---,
I COMMAND I OPERANDS I
1--------------+---~
I {PROTECT} I data-set-name I
I PROT I] I
I I [~~ir~~~;~~~~rd1 password2) I
I I DELETE (password1) I
I I LIST (passwordl) I
I I I
I I [PWREAD] [PWWRITEJ I
I I NOPWREAD NOWRITE I
I I I
I I [DATA('string')] I L __ . ___________ J. ___ . ____ J

data-set-name
specifies the name of the data set that will be subject to the
functions of this command (see the data set naming conventions).

ADD (password2)
specifies that a new password is to be required for access to the
named data set. This is the default value if ADD. REPLACE~ DELETE,
and LIST are omitted.

If the data set exists and is not already protected by a password,
its security counter will be set and the password being assigned
will be flagged as the control password for the data set. The
security counter is not affected when additional passwords are
entered.

REPLACE (password1, password2)
specifies that you want to replace an existing password, access
type. or optional security information. The first value
(password1) is the existing password; the second value (password2)
is the new password.

DELETE (password1)
specifies that you want to delete an existing password, access
type. or optional security information.

If the entry being removed is the control entry (see the discussion
following these operand descriptions), all other entries for the
data set will also be removed.

LIST (password1)
specifies that you want the security counter, the access type, and
any optional security information in the Password Data Set entry to
be displayed at your terminal.

password1
specifies the existing password that you want to replace, delete,
or have its security information listed.

password2
specifies the new password that you want to add or to replace an
existing password.

182 TSO Command Language Reference (Release 21)

PROTECT Command

PWREAD
specifies that the password must be given before the data set can
be read.

NOPWREAD
specifies that the data set can be read without using a password.

PWWRITE
specifies that the password must be given before the data set can
be written upon.

NOWRITE
specifies that the data set cannot be written upon.

DATA (• string •)
specifies optional security information to be retained in the
system. The value that you supply for 'string' specifies the
optional security information that is -to be included in the
Password Data Set entry (up to 77 bytes).

Password Data Set

Before you can use the PROTECT command, a Password Data Set must reside
on the system residence volume. The Password Data Set contains
passwords and security information for protected data sets. You can use
the PROTECT command to display this information about your data sets at
your terminal.

The Password Data Set contains a security counter for each protected
data set. This counter keeps a record of the number of times an entry
has been referred to. The counter is set to 'zero' at the time an entry
is placed into the data set, and is incremented each time the entry is
accessed.

Each password is stored as part of an entry in the Password Data Set.
The first entry in the Password Data Set for each protected data set is
called the control entry. The password from the control entry must be
specified for each access of the data set via the PROTECT command.r with
one exception: the LIST operand of the PROTECT command does not require
the password from the control entry.

If you omit a required password when using the PROTECT command, the
system will prompt you for it; and if your terminal is equipped with the
'print-inhibit' feature, ·the system will disengage the printing
mechanism at your terminal while you enter the password in response.
However, the 'print-inhibit' feature is not used if the promfting is for
a new password.

Example 1

Operation: Establish a password for a new data set.

Known: The name of the data set •••••••••••••••••••••• LEOBTG.SALES.DATA
The password •••••••••••••••••••••••••••••••••• L82GRIFN
The type of access allowed •••••••••••••••••••• PWREAD PWWRITE
The logon id was •••••••••••••••••••••••••••••• LEOBTG

r--,
IPROTECT SALES.DATA PwREAD ADD(L82GRIFN) I L __ . ____________________________ J

183

PROTECT Command

Example 2

Operation: Replace an existing password without changing the existing
access type.

Known: The name of the data set •••••• o ••••••••• TCOSALES.NETSALES.DATA
The existing password ••••••••••••••••••• MTG~AOP
The new password ••• G •••••••••••••••••••• PAO$TMG
The control password •••••••••••••••••••• ELHAVJ
The logon id was •••••••••••••••••••••••• TCOSALES

r--,
IPROT NETSALES.DATA/ELHAVJ REPLACE(MTG~AOP,PAO$TMG) I L __ J

Example 3

Operation: Delete one of several passwords.

Known: The name of the data set ••••••••••••••••••••• MTGGO.NETGROSS.ASM
The password................................. LEl'GO
The control password ••••••••••••••••••••••••• APPLE
The logon id was ••••••••••••••••••••••••••••• MTGGO

r--,
I PROT NETGROSS.ASM/APPLE DELETECLETGO) I L __ J

Example 4

Operation: Obtain a listing of the security information for a protected
data set.

Known: The name of the data set ••••••••••••••••••••• L'J:G24. BILLS. CNTRLA
The password required •••••••••••••••••••••••• D#JPJAM

r---.-----,
Iprotect 'ltg24.bills.cntrla' listCd#jpjam) I L ___ . _____ J

Example 5

Operation: Change the type of access allowed for a data set.

Known: The name of the data set ••••••••••••••••••• GJPD23A.PROJCTN.LOAD
'rhe new type of access ••••••••••••••••••••• NOPWREAD PWWRITE
The existing password •••••••••••••••••••••• DDAY6/6
The control password ••••••••••••••••••••• G. EEYORE
'rhe logon id was ••••••••••• D ••••••••••••••• GJPD23A

r--,
IPROTECT PROJCTN.LOAD/EEYORE REPLACECDDAY6/6.DDAY6/6}- I
INOPWREAD PWWRITE I L ___ ~ ____________ J

184 TSO Command Language Reference (Release 21)

RENAME Command

Use the RENAME command to:

• Change the name of a cataloged data set.
• Change the name of a member of a partitioned data set.
• Create an alias for a member of a partitioned data set.

r--------------T---------------------------·----------------------------,
I COMMAND J OPERANDS I
~--------------+---------------------------.----------------------------f
I {RENAME} laId-name new-name [ALIAS] I
I REN I I L _____________ ..L ___________________________ . ____________________________ J

old-name
specifies the name that you want to change.
specify may be the name of an existing data
existing member of a partitioned data set.
naming conventions.)

The name that you
set or the name of an
(See the data set

new-name

ALIAS

specifies the new name to be assigned to the existing data set or
member. If you are renaming or assigning an alias to a member, you
may supply only the member name and omit all other levels of
qualification. (See data set naming conventions).

specifies that the member name supplied for new name operand is to
become an alias for the member identified by the old name operand.

You can rename several data sets by substituting an asterisk for a
qualifier in the old name and new name operands. The system will change
all data set names that match the old name except for the qualifier
corresponding to the asterisk's position.

185

RENAME Command

Example 1

Operation: you have several data sets named:

USERID.MYDATA.DATA

USERID.YOURDATA.DATA

USERID.WORKDATA.DATA

that you want to rename:

USERID.MYDATA.TEXT

USERID.YOURDATA.TEXT

USERID.WORKDATA.TEXT

you must specify either:

r--,
IRENAME 'USERID.*.DATA','USERID.*.TEXT' I L __ . ________________ J

or
r--.----------------,
IRENAME *.DATA,*.TEXT I L __ J

Example 2

Operation: Assign an alias "SUZIE" to the partitioned data set member
named "ELIZBETH(LIZ)".

r--,
IREN 'ELIZBETH(LIZ) , (SUZIE) ALIAS I L __ J

186 TSO Command Language Reference (Release 21)

RUN Command

Use the RUN command to compile, load, and execute the source statements
in a data set. The RUN command is designed specifically for use with
certain program products; it selects and invokes the particular program
product needed to process the source statements in the data set that you
specify_ The following table shows which program product is selected to
process each type of source statement. (Appendix A contains references
to additional information about the program products.)

r-----------------------------T--,
IIf your program or data set I Then the following Program Product I
Icontains statements of this I is needed: I
Itype (see EDIT): I I
.-----------------------------+--~
IASM I TSO ASM Prompter I
.-----------------------------+--~
I BASIC I ITF:BASIC I
I I (Shared Language Component and I
I I BASIC Processor) I
.-----------------------------+--f
I COBOL I TSO COBOL Prompter and Arrerican I
I I National standard COBOL Version 3 I
I I Compiler I
.-----------------------------+--~
I FORT I TSO FORI'RAN Prompter and FORTRAN IV I
I I (GI) Compiler I
.-----------------------------+--~
I GO FOR T I Code and Go FORI'RAN I
.-----------------------------+--~
IIPLI I ITF:PL/l I
I I (Shared Language Component and PL/ll
I I Processor) I
.-----------------------------+-----------.----------~-----------------f
IPLI I PL/I Checkout Compiler or I
I I PL/I Optimizing Compiler I
.-----------------------------~--~
IPrograms containing statements suitable for the following IBM-suppliedl
Ilanguage processors can be compiled and executed by using the CALL I
Icommand: I
I I
I ASM(F).PL/l(F),FORTRAN(E),(G) or (H) I
I I
IYou can use the CONVERT command to convert ITF:PL/I and Code and Go I
IFORTRAN statements to a form suitable for the PL/l and FORTRAN I
Icompilers, respectively. I L __ J

The RUN command and the RUN subcommand of EDIT perform the same basic
function.

187

RUN Command

r--------------T---,
I COMMAND I OPERANDS I
~--------------+---,----t { :UN} : data- set-name [. parameters']

ASM
COBOL
FORT
IPLI [TEST] rLSMG]

NOTEST lSMSG

BASICr TEST] [LSMGJ [LPREC]
LNOTEST LSMSG SPREC

GOFORT [FIXED] [LSMG]
FREE SMSG

OPT
PLI[CHECK] ______________ ~ _______________ === _____________________________________ J

data-set-name 'parameters'

ASM

COBOL

FORT

IPLI

BASIC

specifies the name of the data set containing the source program.
(See the data set naming conventions.) A string of up to 100
characters can be passed to the program via the "parameters"
operand (valid only f~ data sets which accept parameters).

specifies -that the TSO Assembler Prompter Program Product and the
Assembler (F) compiler are to be invoked to process the source
program. If the rightmost qualifier of the data set name is ASM,
this operand is not required.

specifies that the TSO COBOL Prompter and the American National
standard COBOL Program Products are to be invoked to process the
source program. If the rightmost qualifier of the data set name is
COBOL, this operand is not required.

specifies that the TSO FORTRAN Prompter and the FORTRAN IV (GI)
Program Products are to be invoked to process the source program.
If the rightmost qualifier of the data set name is FORT, the Code
and Go Fortran compiler will be invoked unless you specify this
operand.

specifies that the ITF:PL/I Program Product is to be invoked to
process the source program. If the rightmost qualifier of the data
set name is IPLI. this operand is not required.

specifies that the ITF:BASIC Program Product is to be invoked to
process the source program. If the rightmost qualifier of the data
set name is BASIC, this operand is not required.

188 TSO Command Language Reference (Release 21)

RUN Command

GO FORT

TEST

specifies that the Code and Go Fortran Program Product is to be
invoked for interactive processing of the source program.

specifies that testing of the program is to be performed. This
operand is valid only for the ITF:PL/I and BASIC Program Product.

NOTEST

LMSG

SMSG

LPREC

SPREC

specifies that the TEST function is not desired. This is the
default value if both TEST and NOTEST are omitted.

specifies that the long form of the diagnostic messages are to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC,
and Code and Go FORTRAN Program Products only. The default value
for the LMSG/SMSG operand pair depends on the Program Product being
used, as follows:

Program Product
Code and Go
ITF:BASIC
ITF:PL/I

Default Operand
SMSG
LMSG
LMSG

specifies that the short form of the diagnostic messages is to be
provided. This operand is applicable to the ITF:PL/I, ITF:BASIC,
and Code and Go FORTRAN Program Products only.

specifies that long precision arithmetic calculations are required
by the program. This operand is valid only for the ITF:BASIC
Program Product.

specifies that short prec1s1on arithmetic calculations are adequate
for the program. This operand is valid only for the ITF:BASIC
Program Product. This is the default value if .both LPREC and SPREC
are omitted.

FIXED

FREE

PLI

CHECK

specifies the format of the source statements to be processed by
the Code and Go FORTRAN Program Product. Tlie statements must be in
standard format when this operand is specified. If you omit this
operand, the FREE operand is the default value.

specifies that the source program consists of free form statements
applicable only to the Code and Go FORTRAN Program Product.

specifies that the PL/I Program Product is to be invoked to process
the source program. If the rightmost qualifier of the data set
name is PLI, this operand is not required.

specifies the PL/I Checkout Compiler~ This operand is valid for
the PL/I Program Product only. If you omit this operand, the OPT
operand is the default value.

189

RUN Command

OPT
specifies the PL/I Optimizing Compiler. This operand is valid for
the PL/I Program Product only. This is the default value if both
CHECK and OPT are omitted.

Determining Compiler Type: The system uses two sources of information
to determine which compiler will be used. The first source of
information is the optional operand (ASM, COBOL~ FORT, IPLI, BASIC, or
GOFORT) that you may specify for the RUN command. If you omit this
ope:rand, the system checks the descriptive qualifier of t:he data set
name that is to be executed (see the data set naming conventions for a
list of descriptive qualifiers). If the system cannot determine the
compiler type from the descriptive qualifier, you will be prompted.

Example 1

Operation: Compile, load, and execute a source program composed of
BASIC statements.

Known: The name of the data set containing
the source program •••••••••••••••••••••••••• DDG39T.MANHRS.BASIC

r--,
IRUN MANHRS.BASIC I L ___ --_____________ J

Operation: Compile, load and execute a Code and Go FORTRAN source
program contained in a data set that does not conform to the
data set naming conventions.

Known: The data set name •••••••••••••••••••••••••••• TRAJECT.MISSILE
For FORTRAN statements that conform to the standard format.
Complete diagnostic messages are needed.
Parameters to be passed to the program are ••• 50 144 5000

r---·---,
IRUN 'TRAJECT.MISSILE' '50 144 5000· GOFORT FIXED LMSG I L __ J

190 TSO Command Language Reference (Release 21)

SEND Command

Use the SEND command to send a message to another terminal user or to
the system operator. A message may be sent to more than one terminal
user. If the intended recipient of a message is not logged on, the
message can be retained within the system and presented automatically
when he logs on. You will be notified when the recipient is not logged
on and the message is deferred.

This command should be used by terminal users; system operators
should use the SEND subcommand of the OPERATOR command.

r--------------T---,
I COMMAND I OPERAND I
.--------------+---~
I {SEND} J 'text' [USER(identificationS) [NOW]] I
I SE J LOGON I
I I OPERATOR [(integer)] I l ______________ ~ ___ J

'text'
specifies the message to be sent. You must enclose the text of the
message within apostrophes (single quotes). The message must not
exceed 115 characters including blanks. If no other operands are
used, the message goes to the console operator. If you want
apostrophes to be printed you must enter two in order to get one.

USER (identifications)

NOW

LOGON

specifies the user identification of one or more terminal users who
are to receive the message. A maximum of 20 identifications can be
used.

specifies that you want the message to be sent immediately. If the
recipient is not logged on, you will be notified and the message
will be deleted. This is the default value if both NOW and LOGON
are omitted.

specifies that you want the message retained in the SYS1.BRODCAST
data set if the recipient is not logged on or is not receiving
messages. When the recipient logs on, the message will be removed
from the data set and directed to his terminal. If the recipient
is currently using the system and receiving messages, the message
will be sent immediately.

OPERATOR (integer)
specifies that you want the message sent to the operator indicated
by the integer. If you omit the integer, the default is two (2):
that is, the message goes to the master console operator. This is
the default value if both USER (identifications) and OPERATOR are
omitted. The integer corresponds to routing codes for the WTO
macro as described in the publication, IBM System/360 Operating
System: Supervisor Services and Macro Instructions, GC28-6646.

191

SEND Command

Example 1

Operation: Send a message to the master console operator.

Known: The message:
WHAT IS THE WEEKEND SCHEDULE?

r--.----,
ISEND 'WHAT IS THE WEEKEND SCHEDULE?' I L __ . ____ J

Example 2

Operation: Send a message to two other terminal users.

Known: The message:
ACCOUNT NUMBER 401288 MUST NOT BE USED ANY MORE.
CHANGE TO ACCOUNT NUMBER 530266.
The user identification for the terminal users •• o ••••••• AMCORP6

AMCORP7

r--,
ISEND 'ACCOUNT NUMBER 401288 MUST NOT BE USED ANY- I
I MORE. CHANGE TO ACCOUNT NUMBER 530266. 1

- I
IUSER(AMCORP6,AMCORP7) NOW I L __ . ____ J

Example 3

Operation.: Send a message that is to be delivered to "JONES" when he
begins his terminal session or now if he is currently logged
on.

Known: The recipient's user identification ••••••••••••••••••••••• JONES
The message:
IS YOUR VERSION OF THE SIMULATOR READY?

r--,
ISEND lIS YOUR VERSION OF THE SIMULATOR READY?' USER (JONES) LOGON I L ___ J

192 TSO Command Language Reference (Release 21)

STATUS Command

Use the STATUS command to have the status of conventional batoh jobs
displayed at your terminal. You can obtain the status of all batch
jobs, of several specific batch jobs, or of a single batch job. The
information that you receive for each job will tell you whether it is
awaiting execution, is currently executing, or has completed execution.

This command may be used only by personnel who have been given the
authority to do so by the installation management.

r--------------T---,
1 COMMAND I OPERANDS 1
t--------------+--------------------------·-----------------------------~
1 {STATUS} ,I [(jobname-list)] 1
I ST I I l ______________ ~ ___ J

(jobname-list)
specifies the names of the conventional batch jobs that you want to
know the status of. If two or more jobs have the same jobname, the
system will only display the status of the first one encountered.
When more than one jobname is included in the list, the list must
be enclosed within parentheses.. If you do not specify any
jobnames, you will receive the status of all batch jobs in the
system whose jobnames begin with your userid.

Example 1

Operation: Have the status of two batch jobs displayed at your
terminal.

Known: The jobnames ••• ABJ325A2
ABJ325A3

r--,
I STATUS (ABJ 325A2, ABJ325A3) I l __ J

193

194

SUBMIT Command

Use the SUBMIT command to submit one or more batch jobs for conventional
processingo The SUBMIT conrrnand allows a foreground (TSO) user to submit
a job(s) for interpretation and execution in the background (MVT). Each
job(s) submitted must reside in either a sequential, direct-access data
set or in a member of a partitioned data set. Either of these data sets
can contain one or more jobs that can be executed via a single entry of
SUBMIT. Each job(s) must comprise an input job stream (JCL plus data).

Note: If either of the above types of data sets containing 2 or more
jobs is submitted for processing, the following applies:

• The SUBMIT command processor will build a job card for the first job
in the data set, if necessary, but will not build job cards for any
other jobs in the data set. Any job card you supply should have a
job name consisting of your userid and an identifying character.
For more information on how to submit a background job, refer to the
publication: IBM System/360 operating system: Time sharing Option,.
Terminal User's Guide, GC28-6763.

• If the SUBMIT Processor determines that a job cannot execute
properly, the remaining job(s) following it in the data set will not
be executed.

• Once the SUBMIT Processor submits a job for processing, errors
occurring in the execution of that job have no effect on the
submission of any remaining job(s) in that data set.

• Once SUBMIT has successfully submitted a job for conventional
background processing, the job's JCL will be interpreted by the TSO
Background Reader, using the MVT Initiator/Terminator as a standard
MVT job.

This command may be used only by personnel who have been given the
authority to do so by the installation management.

r--------------T--,
I COMMAND I OPERANDS I
~--------------+---~
I 1 SUBMIT l I (data-set-list) [NOTIFY] I
I SUB ~ I NONOTIFY I L ______________ ~ ___ J

(data-set-list)
specifies one or more data set names or names of members of
partitioned data sets (see the data set naming conventions) that
define an input stream (JCL plus data). If you specify more than
one data set name, enclose them in parentheses.

NOTIFY
specifies that you are to be notified when your job terminates in
the backgrounda If you have elected not to receive messages, the
message will be placed in the Broadcast data set. You must then
enter LISTBC to receive the message. You may obtain this message
by issuing LISTBC or LOGON. This is the default value if both
NOTIFY and NONOTIFY are omitted.

195

SUBMIT Command

NONOTIFY
specifies that no message will be placed in the broadcast data set.
This operand is only recognized when no job card has been provided
with the job that you are processing.

Example 1

Operation: submit two jobs for conventional batch processing.

Known: The names of the data sets that contain the jobs:

ABTJQ.STRESS.CNTL
ABTJQ.STRAIN.CNTL

You want to be notified as each job terminates.

r--,
ISUBMIT (STRESS STRAIN) I L __ J

196 TSO Command Language Reference (Release 21)

TERMINAL Command

Use the TERMINAL command to define the operating characteristics that
depend primarily upon the type of terminal that you are using. You can
specify the ways that you want to request an attention interruption and
you can identify hardware features and capabilities. The TERMINAL
command allows you to request an attention interruption whether or not
your terminal has a key for the purpose,.

The terminal characteristics that you have defined will remain in
effect until you enter the LOGOFF command. If you terminate a session
and begin a new one by entering a LOGON command (instead of a LOGOFF
command followed by a LOGON command), the terminal characteristics
defined in the earlier session will be in effect during the subsequent
session,.

Refer to IBM System/360 Operating system: Time Sharing Option,
Terminals" GC28-6762 for a description of the TERMINAL command's
characteristics as they apply to the various terminals available with
TSO and for an explanation of how to use the simulated attention
facility_

r--------------T---, I COMMAND I OPERANDS I
~--------------t---i
I I TERMINAL l I [LINES (integer)] [SECONDS (integer)] [INPUT (string>] I
I TERM ~ I NOLINES NOS ECONDS NOINPUT I
I I I
I I [BREAK] [TIMEOUT] [LINESIZE(integer)] I
I I NOBREAK NOTIMEOUT I
I I I
I I [CLEAR(string)] [SCRSIZE{rows,length)} I
I I NOCLEAR I L ______________ ~ ___ J

LINES (integer)
specifies an integer from 1 to 255 that indicates you want the
opportunity to request an attention interruption after that number
of lines of continuous output has been directed to your terminal.

NOLINES
specifies that output line count is not to be used for controlling
an attention interruption. This is the default condition.

SECONDS (integer>
specifies an integer from 10 to 2550 (in multiples of 10) to
indicate that you want the opportunity to request an attention
interruption after that number of seconds has elapsed during which
the terminal has been locked and inactive.. If you specify an
integer that is not a multiple of 10, it will be changed to the
next largest multiple of 10.

NOS ECONDS
specifies that elapsed time is not to be used for controlling an
attention interruption.. This is the default condition..

INPUT (string)
specifies the character string that, if entered as input, will
cause an attention interruption.. The string must be the only input
entered and cannot exceed four characters in length.

197

TERMINAL Command

NOINPUT
specifies that no character string will cause an attention
interruption. This is the default condition.

BREAK
specifies that your terminal keyboard will be unlocked to allow you
to enter input whenever you are not receiving output from the
system; the system can interrupt your input with high-priority
messageso Since use of BREAK with a terminal type which cannot
support it can result in loss of output or error, check with your
installation system manager before specifying this operand.

NOBREAK
specifies that your terminal keyboard will be unlocked only when
your program or a command you have used requests input.

Note: The default for the BREAK/NOBREAK operand is determined when your
ins'ta11ation defines the terminal features.

TIM:EOUT
specifies that your terminal's keyboard will lock up automatically
after approximately nine to 18 seconds of no input. (Applicable
only to the IBM 1052 Printer-Keyboard without the text timeout
suppression feature).

NOTIMEOUT
specifies that your terminal's keyboard will not lockup
automatically after approximately nine to 18 seconds of no input.
(Applicable only to the IBM 1052 Printer-Keyboard with the text
timeout suppression feature.)

Note: The default for the TlMEOUT/NOTIMEOUT operand is determined when
your installation defines the terminal features.

LINESIZE(integer)
specifies the length of the line (the number of characters) that
can be printed at your terminal. (Not applicable to the IBM 2260
and 2265 Display Stations.) Default values are as :fol10ws:

IBM 2741 Communication Terminal - 120 characters
IBM 1052 Printer-Keyboard - 120 characters
Teletype 33/35 -, 72 characters

The integer must not exceed 255.

CLEAR (string)
specifies a character string that, if entered as input, will cause
the screen of an IBM 2260 or IBM 2265 Display station to be erased.
The 'string' must be the only input entered and cannot exceed four
characters in length.

NOCLEAR
specifies that you do not want to use a sequence of characters to
erase the screen of an IBM 2260 or IBM 2265 Display Station. This
is the default condition.

SCRSIZE(rows,length)
specifies the screen dimensions of an IBM 2260 or IBM 2265 Display
Station.
'rows' specifies the maximum number of lines of data that can
appear on the screen.

198 TSO Command Language Reference (Release 21)

TERMINAL Command

'length' specifies the maximum number of characters in a line of
data displayed on the screen.
Valid screen sizes are:
rows, length
6,40
12,40
12,80
15,64

Note: The default values for the SCREEN operand are determined when
your installation defines the terminal features.

Example 1

Operation: Modify the characteristics of an IBM 2741 Communication
Terminal to allow operation in unlocked-keyboard mode.

Known: Your terminal supports the break facility. The installation has
defined a default of NOBREAK for your terminal.

r---·-----------------------------,
ITERMINAL BREAK I L ___ . _____________________________ J

Example 2

Operation: Modify the characteristics of an IBM 1052 Printer-Keyboard
whose attention key cannot be used to interrupt output and
whose output line size is greater than 80 characters.

Known: You want an opportunity to request an attention interruption
after ten consecutive lines of output.
You want to limit the output line length to 80 characters.

r---'-----------------------------,
ITERMINAL LINES(10) LINESIZE(80) I L ___ , _____________________________ J

Example 3

Operation: Establish the characteristics of an IBM 2260 Display station
to allow for 'attention interruption and screen erasure
requests.

Known: You want an opportunity to request an attention interruption if
neither input is requested nor output sent for one minute.
You want a $ to stand for an attention interruption request
during a regular input operation.
You want a % to stand for a screen erasure request.

r--,
ITERMINAL SECONDS(60) INPUT($) CLEAR(%) I L ___ J

199

200

TEST Command

Use the TEST command to "debug" a program, that is to test a program for
proper execution and to locate any programming errors. To use the TEST
command and subcommands, you should be familiar with the basic assembler
language and the addressing conventions described in Appendix B. For
best results, the program to be tested should be written in basic
assembler language. Also, in order to use the symbolic names feature of
TEST1 the program should have been assembled and link-edited with the
TEST operands. For more detail on how to specify the TEST operands,
refer to the ASM and/or to the LINK commands in this publication.

Uses of the TEST Command: Before execution begins you can:

• Supply initial values (test data) that you want to pass to the
program.

• Establish breakpoints (after instructions) where execution will be
interrupted so that you can examine interim results. (Breakpoints
should not be inserted into TSO service routines or into any of the
TEST load modules.)

You can then execute the program. When you use the TEST command to
load and execute a program, the program must be an object module or a
load module suitable for processing. If the program that you want to
test is already executing, you can begin testing by interrupting the
program with an attention interruption followed by the TEST command with
no operands. You can also begin testing after an abnormal ending
(ABEND) if the program is still in main storage.

Note: If you enter the TEST command without operands. you can test the
in-storage copy of your program. If you enter the TEST command with
operands, a fresh copy of your program will be brought in for you to
test.

Prior to and during execution you can:

• Display the contents of registers and main storage (as when
execution is interrupted at a breakpoint).

• Modify the contents of your registers and main storage.
• Display the Program status Word (PSW).
• List the contents of control blocks.
• "step through" sections of the program, checking each instruction

for proper execution.

Refer to Appendix B for the TEST command addressing conventions.

r--------------T---,
I COMMAND I OPERANDS I
.--------------+---~
I TEST I [program-name] [. parameters'] [LOAD] [cp] I
I I OBJECT NOCP I L ______________ ~ ___ J

201

TEST Command

program-name
specifies the name of the data set containing the program to be
testedD (See the data set naming conventions.) The program must
be in object module form or load module form.

parameters

LOAD

specifies a list of parameters to be passed to the named program.
The list must not exceed 100 characters including delimiters.

specifies that the named program is a load module that has been
processed by the linkage editor and is a member of a partitioned
data set. This is the default value if both LOAD and OBJECT are
omitted.

OBJECT

CP

NOCP

specifies that the named program is an object module that has not
been processed by the linkage editor. The program can be contained
in a sequential data set or a member of a partitioned data set.

specifies that the named program is a command processor.

specifies that the named program is not a command processor. This
is the default value if both CP and NOCP are omitted.

Subcommands: The subcommands of the TEST command are:

ASSIGNMENT OF VALUES()

AT

CALL

COpy

modifies values in main storage and in registers.

establishes breakpoints at specified locations.

initializes registers and initiates processing of the program at a
specified address.

moves data or addresses.

DELETE

DROP

END

deletes a load module.

removes symbols established by the EQUATE command from the symbol
table of the module being tested.

terminates all operations of the TEST command and the program being
tested.

EQUATE
adds a symbol to the symbol table and assigns attributes and a
location to that symbol.

FREEMAIN
frees a specified number of bytes of main storage.

202 TSO Command Language Reference (Release 21)

TEST Command

GETMAIN

GO

HELP

LIST

acquires a specified number of bytes of main storage for use by the
program being processed.

restarts the program at the point of interruption or at a specified
address.

lists the subcomrnands of TEST and explains their function, syntax,
and operands.

displays the contents of main storage area or registers.

LISTDEB
lists the contents of a Data Extent Block (DEB) (you must specify
the address of the DEB).

LISTDCB
lists the contents of a Data Control Block <DCB) (you must specify
the address of the DCB).

LISTMAP
displays a storage map.

LISTPSW
displays the Program Status Word (PSW).

LISTTCB

LOAD

OFF

lists the contents of the Task Control Block (TCB) (you may specify
the address of another TCB).

loads a program into main storage for execution.

removes breakpoints.

QUALIFY

RUN

WHERE

establishes the starting or base loca1:ion for relative addresses;
resolves identical external symbols within a load module.

terminates TEST and completes execution of the program.

displays the absolute address of a symbol or entrypoint or the
address of the next executable instruction.

203

TEST Command

Example 1

Operation: Enter TEST mode after experiencing either an abnormal
termination of your program or an interruption.

Known: Either you have received a message saying that your foreground
program has terminated abnormally, or, you have struck the
attention key while your program was executing. In either case,
you would like to begin "debugging" your program ..

r--,
I TEST I L ___ J

Example 2

Operation: Invoke a program for testing.

Known: The name of the data set that
contains the program ••••••••••••••••• ABSELF.PAYER.LOAD(THRUST)
The program is a load module and is not a command processor.
The parameters to be passed •••••••••• 2048,80

r-------·-·--,
ITEST PAYER(THRUST) '2048,80' I L __ • _______________ J

Example 3

Operation: Invoke a program for testing.

Known: The name of the data set that
contains the program ••••••••••••••••• ·DECKCO.PAYLOAD.OBJ
The program is an object module and is not a command processor.

r--,
ITEST PAYLOAD OBJECT I L ___ . _______________ J

Example 4

Operation: Test a command processor.

Known: The name of the data set containing
the command processor •••••••••••••••••• DCOOIL. C.MDS. LOAD (OUTPUT)

r--------·---.---------------,
ITEST CMDS(OUTPUT) CP I L __ . __ J

204 TSO Command Language Reference (Release 21)

Assignment of Values Function of TEST

When processing is halted at a breakpoint, you can modify values in main
storage and in registers. This function is implicit; that is, you do
not enter a subcommand name. The system performs the function in
response to operands that you enter.

r------------T---,
I SUBCOMMAND I OPERANDS I
!------------+---~
I ,address=data-type'value' I L ____________ i _____ ~ ___ J

address
specifies the location that you want to contain a new value. The
address may be a symbolic address, a relative address, an absolute
address, or a registero (See Appendix B for more information about
addresses.>

data-type 'value'
specifies the type of data and the value that you want to place in
the specified location. You indicate the type of data by one of
the following codes:

Code
C
X
B
H
F
E
D
L
P
Z
A
S
Y

Type of Data
Character
Hexadecimal
Binary

Maximum Length (Bytes)
one line of input1

Fixed point binary (halfword>
Fixed point binary (fullword)
Floating point (single precision)
Floating point (double precision)
Extended floating point
Packed decimal
Zoned decimal
Address constant
Address (base + displacement)
Address constant (halfword)

64
64

6
11

9
18
16
32
17
10

8
5

1Continued lines are permitted.

You include your data following the code. Your data must be
enclosed within apostrophes. Any single apostrophes within your
data must be coded as two single apostrophes. Character data will
be entered as is; all other data types will be translated into
upper case (if necessary). A list of data may be specified by
enclosing the list in parentheses. The data in the list will be
stored in contiguous storage beginning at the location specified by
the address operand.

205

Assignment of Values Function of TEST

Example 1

Operation: Insert a character string at a particular location in main
storage ..

Known: The address is a symbol ••••••••••••••••••••••••• INPOINT
The data.. JANUARY 1, 1970

r--.----,
IINPOINT=C'JANUARY 1, 1970' I L __ J

Example 2

Operation: Insert a binary number into a register.

Known: The number of the register •••••••••••••••••••••• Register 6
The data 0000 0001 0110 0011

r--,
16R=B'0000000101100011' I L __ J

206 TSO Command Language Reference (Release 21)

AT Subcommand of TEST

Use the AT subcommand to establish breakpoints before the command where
processing is to be temporarily halted so that you can examine the
results of execution up to the point of interruption.

r------------T---,
I SUBCOMMAND I OPERANDS I
f------------+---~
I AT I laddress[: address] ! [(list-of-subcommands)] I
I I (address-list) I
I I I
I I [COUNT (integer)] [NODEFER] [NOTIFY] I
I I DEFER NONOTIFY I L ___________ ~ ___ J

address
specifies a location that is to contain a breakpoint. The address
may be a symbolic address, a relative address, an absolute address,
or a general register containing an address. The address must be
on a halfword boundary and contain a valid op code. (see Appendix
B for more information about addresses.)

address:address
specifies a range of addresses that are to contain breakpoints.
Each address may be a symbolic address, a relative address, an
absolute address, or a general register containing an address.
Each address must be on a halfword boundary. A breakpoint will be
established at each instruction between the two addresses. (see
Appendix B for more information about addresses.)

address-list
specifies several addresses that are to contain breakpoints. Each
address may be a symbolic address, a relative address, an absolute
address, or a general register containing an address. The first
address must be on a halfword boundary. The list must be enclosed
within parentheses, and the addresses in the list must be separated
by standard delimiters (one or more blanks or a comma). A
breakpoint will be established at each address. (See Appendix B
for more information about addresses.)

list-of-subcommands
specifies one or more subcommands to be executed when the program
is interrupted at the indicated location. If you specify more than
one subcommand, the subcommands must be separated by semicolons
(for instance, LIS'I'TCB PRINT (TCBS) i LISTPSWi GO CALCULAT). The list
cannot be longer than 255 characters.

COUNT (integer)
specifies that processing will not be halted at the breakpoint
until it has been encountered a number of times. This operand is
directly applicable to program loop situations, where an
instruction is executed several times. The breakpoint will be
observed each time it has been encountered the number of times
specified for the 'integer' operand. The integer specified cannot
exceed 32,767.

207

AT Subcommand of TEST

DEFER
specifies that the breakpoint is to be established in a program
that is not yet in storage. The program to contain the breakpoint
will be brought in as a result of a LINK, LOAD, ATTACH, or XCTL
macro instruction by the program being tested. You must qualify
the address of the breakpoint <either LOADNAME.CSECTNAME.RELATIVE
or LOADNAME.CSECTNAME.SYMBOL) when you specify this operand. All
breakpoint addresses listed in an AT subcommand with the DEFER
operand must refer to the same load module.

NODEFER
specifies that the breakpoint is to be inserted into the program
now in main storage. This is the default value if both DEFER and
NODEFER are omitted.

NOTIFY
specifies that when it is encountered the breakpoint will be
identified at the terminal. This is the default value if both
NOTIFY and NONOTIFY are omitted.

NONOTIFY
specifies that when it is encountered the breakpoint will not be
identified at the terminal.

208 TSO Command Language Reference (Release 21)

AT Subcommand of TEST

Example 1

Operation: Establish breakpoints at each instruction in a section of
the program that is being tested.

Known: The addresses of the first and last instructions of
that section that is to be tested •••••••••••••••••••• LOOPA

EXITA
The subcommands to be executed are ••••••••••••••••• o. LISTPSW,GO

r--,
IAT LOOPA:EXITA (LISTPSW:GO) I L __ J

Example 2

Operation: Establish breakpoints at several locations in a program.

Known: The addresses for the breakpoints~ •••••••••••••••••••••••• +8A
LOOPB
EXITB

r--,
IAT (+8A LOOPB EXITB) I L __ J

Example 3

Operation: Establish a breakpoint at a location in a loop. The address
of the location is contained in register 15. You only want
to have an interruption every tenth cycle through the loop.

Known: The address for the breakpoint •••••••••••••••••••••••••••• 15R%

r--,
IAT 15R% COUNT(10) I L __ J

Example 4

Operation: Establish a breakpoint for a program other than the one
presently in main storage.

Known: The csect name ••••••••••••••••• o •••••••••••••••••••••••• YLREVEB
The name of the load module •••••••••••••••••••••••••••••••• KCIW
The symbolic address for the breakpoint •••••••••••••••••••• PROG

r--,
IAT KCIW.YLREVEB.PROG DEFER I L __ J

209

CALL Subcommand of TEST

Use the CALL subcommand to initiate processing at a specified address.
You can pass parameters to the program that is to be tested.

CAUTION: 'rhe contents of registers 1, 14, and 15 are changed by the use
of the CALL subcommand. To save the contents of these registers, use
the COpy subcommand of TEST (see examples 2 and 3 under the COpy
subcommand) D

r------------T---, I SUBCOMMAND I OPERANDS I
~------------+---~
I CALL I address I
I I I
I I [PARM(address-list)] I
I I I
I I [VL] I
I I I
I I [RETURN(address)] I L-___________ ~ ___ J

address
specifies the address where processing is to beginD The address
may be a symbolic address, a relative address, an absolute address,
or a register containing an address. Register 15 contains this
address when the program under test begins execution. (see
Appendix B for more information about addresses.)

PARM(address-list)

VL

specifies one or more addresses that point to data to be used by
the program being tested. The list of addresses will be expanded
to fullwords and placed into contiguous storage. Register 1 will
contain the address of the start of the list. If PARM is omitted,
register 1 will point to a full word that contains the address of a
halfword of zeroes.

specifies that the high order bit of the last fullword of the list
of addresses pointed to by general register one is to be set to
one.

RETURN (address)
specifies that register 14 is to contain the address that you
supply as the value for this keyword. After the program executes,
the system will return control to the point indicated by register
14. If RETURN is omitted, register 14 will contain the address of
a breakpoint instruction.

210 TSO Command Language Reference (Release 21)

CALL Subcommand of TEST

Example 1

Operation: Initiate execution of the program being tested at a
particular location.

Known: The starting address ••••••••••••••• '. •• • • • • • • • •• • • • • • • •• +OA
The addresses of data to be passed •••••••••••••••• '. • • •• CTCOUNTR

LOOPCNT
TAX

r--,
ICALL +OA PARM(CTCOUNTR LOOPCNT TAX) I L-___ 1

Example 2

Operation: Initiate execution at a particular location.

Known: The starting address ••••••••••••••• '.. • • • • • • • • • • • • • • • • • •• STARTBD
The addresses of data to be passed '. • • • • • • • •• BDFLAGS

PRFTTBL
COSTTBL
ERR EX IT

set the high order bit of the last address parameter to one so
that the program can tell the end of the list,.
After execution, control is to be returned to ••••••••••• +24A

r--,
ICALL STARTBD PARM(BDFLAGS PRFTTBL COSTTBL ERREXIT)- I
IVL RETURN(+24A) I L-___ J

211

Page of GC28-6732-2" Revised April 15, 1972, By TNL: GN28-2521

COPY Subcommand of TEST

Use the COpy subcommand to transfer data or addresses from one main
storage address to another, from one general register to another, from a
register to main storage, or from main storage to a register.

The COpy subcommand can be used to:
• Save or restore the contents of the general registers.
• Propagate the value of a byte throughout a field,.
• Move an entire data field from one location to another.

r------'------T---------------------------------------.---------------,
ISUBCOMMAND I OPERANDS I
f------·------+--i
I COpy j addressl address2 [LENGTH integer] POINTER I
I C I !! NOPOINT I L. ___________ i ___ J

addressl
specifies a location that cont.ains data to be copied. The address
may be a symbolic address, a relative address, an absolute address,
an indirect address, or a qualified address. (See Appendix B for
more information about address types.)

address2
specifies a location that will receive the data after it is copied.
The address may be a symbolic address', a relative address, an
absolute address, an indirect address, or a qualified address.
(see Appendix B for more information about address types.)

LENGTH (integer)
specifies the length, in decimal, of the field to be copied. If an
integer is not specified, LENGTH will default to 4 bytes. The
LENGTH keyword can also be entered in the shorter form, L(integer).

POINTER
specifies that addressl will be validity checked to see that it
does not exceed maximum core size and will then be treated as an
immediate operand (hexadecimal literal) with a maximum length of 4
bytes (that is, an address will be converted to its hexadecimal
equivalent) and will be transferred into the location specified by
address2. When using the POINTER keyword" do not specify a general
register as addressl. The POINTER keyword can also be entered in
the shorter form, P.

NOPOINT

Note:

specifies that addressl will be treated as an address. NOPOINT is
the default for POINTER.

1. The COpy subcommand treats the 16 general registers (RO-R1S) as
contiguous fields, that is, if you have specified that 8 bytes
be moved from RO to another location for example, COpy RO
80060. LENGTR(8), the COpy subcommand will move the 4 bytes of
:register 0 and the 4 bytes of register 1 to main storage
beginning at location 80060. When a register is specified as
addressl, the maximum length of data that will be transferred
is the total length of the general registers, or 64 bytes.

2. When the value of address2 is one greater than addressl,
propagation of the data in addressl will occur; when the value
of address2 is more than one greater than the value of
addressl, no propagation will occur.

212 TSO Command Language Reference (Release 21)

COpy Subcommand of TEST

Example 1

Operation: Transfer 2 full words of data from one main storage location
to another.

Known: The starting address of the data •••••••••••••••••••••••••• 80680
The starting address of where the data is to be ••••••••••• 80685

r--,
ICOPY 80680. 80685. LENGTH(8) I L __ J

Example 2

Operation: Copy the contents of one register into another register.

Known: The register which contains the data to be copied •••••••••••• 10
The register which will contain the data ••••••••••••••••••••• 5

r--,
ICOPY lOR 5R I L ______________;. __________________________ , _____________________________ J

Example 3

operation) Save the contents of the general registers.

Known: The first register to be saved •••••••••••••••••••••••••••• 0
The starting address of the save area ••••••••••••••••••••• A0200

r--,
IC OR A0200. L(64) I L ___ . _____________________________ J

Example 4

Operation: Propagate the value in the first byte of a buffer throughout
the buffer.

Known: The starting address of the buffer ••••••••••••• ft ••••••• 80680
The length of the buffer ••••••••••••••••••••••••••••••• 80 bytes

r---·-----------------------------,
IC 80680. 80681. L(79) I L __ J

Example 5

operation: Insert a hexadecimal value into the high-order byte of a
register.

Known: The desired value ••••••••••••••••• ~ ••••••••••••••••••••••• X'80'
The register ~ 1

r--,
ICOPY 80. lR L(l) POINTER I L ___ -------J

213

COPY Subcommand of TEST

Example 6

Operation: Insert the entry point of a routine into a storage loca-tion.

Known: The module name and the entry point name •••••••• IEFBR14.IEFBR14
The desired storage location •••••••••••••••••••• B0200

r--,
IC IEFBR14.IEFBR14 B0200 P I L ___ J

Example 7

Operation: Copy the contents of an area pointed to by a register into
another area.

Known: The register which points to the area that contains
the data to be moved •••••••••••••••••••••••••••• N ••••••• 14
The main storage location which is to contain the data •• 80680
The length of the data to be moved 8 bytes

r-------'--'----,
IC 14R% 80680. L(8) NOPOINT I L __ J

214 TSO Command Language Reference (Release 21)

DELETE Subcommand of TEST

Use the DELETE subcommand to delete a load module awaiting execution.

r------------T----------------------------·---------------------------,
I SUBCOMMAND I OPERAND I
!------------+----------------------------.--------------------------f
I lDELETEl I load-name I
I D ~ I I L ___________ .L ____________________________ . __________________________ J

load name
specifies the name of the load module to be deleted. The load name
is the name by which the program is known to the system when it is
in main storage. The name must not exceed eight characters.

Example 1

Operation: The program being tested has called a subroutine that is in
load module form. Before executing the subroutine, a
breakpoint is encountered. You do not want to execute the
subroutine because you intend to pass test data to the
program insteade You now want to delete the subroutine
since it will not be used.

Known: The name of the subroutine (load module} •••••••• TOTAL

r---~------------------,
IDELETE TOTAL I L __ J

or

r--,
ID TOTAL I L __ J

215

DROP Subcommand of TEST

Use the DROP subcommand to remove symbols from the symbol table of ,the
module being tested. You can only remove symbols that you established
with the EQUATE subcommand; you cannot remove symbols that were
established by the linkage editor.

r------------T---.------------,
I SUBCOMMAND I OPERAND I
j------------+---f
I DROP I (symbol-list) I L-___________ ~ ________ , ___ J

(symbol-list)
specifies one or more symbols that you want to remove from the
symbol table created by the EQUATE subcommand. When you specify
only one symbol, you do not have to enclose that symbol within
parentheses; however, if you specify more than one symbol you must
enclose them within parentheses. If you do not specify any
symbols" the entire table of symbols will be removed.

Example 1

Operation: Remove all symbols that you have established with the EQUATE
commando

r--,
I DROP I L __ J

Example .2

Operation: Remove several symbols from the symbol table.

Known: The names of the symbols ••••••••••••••••••••••••••••••• STARTADD
TOTAL
WRITESUM

r--,
I DROP (STARTADD TOTAL WRITESUM) I L __ J

216 TSO Command Language Reference (Release 21)

END Subcommand of TEST

Use the END subcommand to terminate all functions of the TEST command
and the pro~ram being tested.

r-------~---T---,
I SUBCOMMAND I OPERANDS I
j------------+---f
I ~D I I L-___________ ~ ___ J

217

EQUATE Subcommand of TEST

Use the EQUATE subcommand to add a symbol to the symbol table of the
module being tested. This subcommand allows you to establish a new
symbol that you can use to refer to an address or to override an
existing symbol to reflect a new address or new attributes. If no
symbol table exists, one is created and the specified name is added to
it. You can also modify the data attributes (type, length, and
mult.iplicity). The DROP subcommand removes symbols added by the EQUATE
subcommand. Symbols established via the EQUATE command are defined for
the duration of the TEST session, only.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---f
I 1 EQUATE l I symbol address data-type [LENGTH (integer)] I
I EQ ~ I [MULTIPLE (integer)] I L ___________ ~ __ --___________ J

symbol
specifies the symbol (name) that you want to have added to the
symbol table so that you can refer to an address symbolically. The
symbol must consist of one through eight alphameric characters, the
first of which is an alphabetic character.

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
that you specify will be equated to the symbol that you specify.
(See Appendix B for more information about addresses.)

data-type
specifies either the type of data that you want moved into the
location specified via the naddress n operand, or the
characteristics you wish to attribute to the data at the location
given by naddress." These mayor may not be the same as the
original characteristics. You indicate the type of data by one of
the following codes:

Code
C
X
B
I
H
F
E
D
L
P
Z
A
S
Y

Type of Data ;;;..;M;..;,.a=x=i=m.;.;.;u=m;.;;.;....;L=...;;.e~n~q'-"t=h::...-.(..;..;B;;..y t..;;...;;;.e..;;;;s..;...)
Character 256
Hexadecimal 256
Binary 256
Assembler instruction 256
Fixed point binary (halfword) 8
Fixed point binary (fullword) 8
Floating pOint (single precision) 8
Floating point (double precision) 8
Extended floating point 16
Packed decimal 16
Zoned decimal 16
Address constant 4
Address (base + displacement) 2
Address constant (halfword) 2

218 TSO Command Language Reference (Release 21)

EQUATE Subcommand of TEST

LENGTH (integer)
specifies the length of the data. The maximum value of the integer
is 256. If you do not specify the length, the following default
values will apply:

Type of Data
C,B,P,Z
H,S,Y
F,E,A,X
D
I
L

MULTIPLE (integer)

Default Length (Bytes)
1
2
4
8
variable
16

specifies a multiplicity factor. The mUltiplicity factor means
that one element of the data appears several times in succession;
the number of repetitions is indicated by the number specified for
"integer". The maximum value ,of the integer is 256.

Note: If you do not specify any keywords, the defaults are:

type - X
mUltiplicity - 1
length - 4

Example 1

Operation: Add a symbolic address to the symbol table of the module
that you are testing.

Known: The symbol.. EXITRTN
The address... TOTAL+ 4

r--,
IEQUATE EXITRTN TOTAL+4 I L ___ --_______________ J

Example 2

Operation: Change the address and attributes for an existing symbol.

Known: The symbol... CONSTANT
The new address •• ·•••••••••••••••••••••••••••••••••••••• 1FAAO.
The new attributes: type ••••••••••••••••••••••••••••••• C

length ••••••••••••••••••••••••••••• L(8)
multiplicity ••••••••••••••••••••••• M(2)

r--,
IEQ CONSTANT 1FAAO. C M(2) L(8) I L __ J

219

FREEMAIN Subcommand of TEST

Use the FREEMAIN subcommand to free a specified number of bytes of main
storage.

r-------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---f
I 1 FREEMAIN l I integer address [SP(integer)] I
I FREE ~ I Q. I L ___________ ~ ___ J

integer
specifies the number of bytes of main storage to be released.

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. This address
is the location of the space to be freed and must be a mUltiple of
8 bytes. (See Appendix B for more information about address.)

The LISTMAP subcommand may be used to help locate previously
acquired main storage.

SP(integer)
specifies the number of the subpool that contains the space to be
freed. If you omit this operand, the default value is subpool
zero. The integer must be in the range zero through 127.

Example 1

Operation: Free space in main storage that was acquired previously by a
GETMAIN subcommand or by a GETMAIN macro instruction in the
module being tested.

Known: The size of the space, in bytes •••••••••••••••••••••••••• 500
The absolute address of the space •••••••••••••••••••••••• 054A20
The number of the subpool that the
space was acquired from •••••••••••••••••••••••••••••••••• 3

r--,
I FREE 500 054A20. SP(3) I L ___ J

220 TSO Command Language Reference (Release 21)

GETMAIN Subcommand of TEST

Use the GETMAIN subcommand to obtain a specified number of bytes of main
storage ..

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---f
I lGETMAINl I integer [SP(integer)] [EQUATE(name)] I
I GET ~ I Q I L ___________ ~ ___ J

EQUATE (name)
specifies that the address of acquired storage is to be equated to
the symbol specified by "name".

integer
specifies the number of bytes of main storage to be obtained.

SP(integer)
specifies the number of a subpool that contains the bytes of main
storage that you want to obtain. If you omit this operand, the
default value is subpool zero. The integer must be in the range
zero through 127.

Example 1

Operation: Get 500 bytes of main storage from subpool 3 and equate
starting address to symbolic name AREA.

r--,
IGET 500 SP(3) EQUATE (AREA) I L __ J

221

GO Subcommand of TEST

Use the GO subcommand to start or restart program execution from a
particular address. If the program was interrupted for a breakpoint and
you want to continue from the breakpoint, there is no need to speci:fy
the address. However, you may start execution at any point by
specifying the address.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---i
I GO I [address] I L-___________ ~ ___ J

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Execution
will begin at the address that you specify. (See Appendix B for
more information about addresses.)

Example 1

Operation: Begin execution of a program at the point where the last
interruption occurred.

r--,
IGO I L ___ J

Example 2

Operation: Begin execution at a particular address.

Known: The addres$ •••••••••••••••••••••••••••••••••••••• ~ •••• CALCULAT

r--,
I GO CALCULAT I L __ J

222 TSO Command Language Reference (Release 21)

HELP Subcommand of TEST

Use the HELP subcommand to find out how to use the TEST'subcommands.
When you enter the HELP subcommand, the system responds by printing out
explanatory information at your terminal. You may request:

• A list of available subcommands •
• An explanation of the function, syntax, and operands of a specific

subcommand.

The HELP subcommand actually causes the system to execute a function
of the HELP command; therefore, you may consult the discussion of the
HELP command if you desire more detailed information.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I J HELP l I [Subcommand-name [FUNCTION ~] I
I 1H ~ I SYNTAX I
I I [OPERANDS [(list-of-operands)] I
I I [ALL] I L ____________ ~ ___ J

subcommand-name
specifies the subcommand that you want to have clarifi'ed. If you
omit this operand, the system will display a list of TEST
subcommands.

FUNCTION
specifies that you want a description of the referenced
subcommand's function.

SYNTAX
specifies that you want a definition of the proper syntax for the
referenced subcommand.

OPERANDS (list-of-operands)

ALL

specifies that you want an explanation of the operands applicable
to the referenced subcommand.

The list of operands specifies the particular keywords that you
want to have explained. If you do not specify any keywords, all of
the applicable keywords will be included. You must use one or more
blanks or a comma as a delimiter between the keywords in the list,.

specifies that you want a description of the function, the syntax,
and the operands of the subcommand that you specified. This is the
default value if no operands are specified .•

223

HELP Subcommand of TEST

Operation: Have a list of available subcommands displayed at your
terminal 0

r--,
I HELP I L __ J

Example 2

Operation: Obtain all available information about a particular
subcommand.

Known: The subcommand name ••••••••••••••••••••••••••••••••••••• QUALIFY

r--,
IH QUALIFY I L ___ , ____ , __ J

Example 3

Operation: Have a list of the operands for a particular subcommand
displayed at your terminal.

Known: The subcommand name •• LIST

r--,
Ih list operands I L __ J

224 TSO Command Language Reference (Release 21)

LIST Subcommand of TEST

Use the LIST subc.ommand to have the contents of a specified area of main
storage, or the contents of registers, displayed at your terminal or
placed into a data set.

r------------T---,
I SUBCOMMAND I OPERANDS I
f------------+---~
I lLIST~ IjaddreSS[:addreSs]l data-type [LENGTH(integer)] I
I L) I (address-list») [MULTIPLE(integer)] I
I I [PRINT (data-set-name)] I L ____________ ~ ___ J

address
specifies the location of data that you want displayed at your
terminal or placed into a data set. The address may be a symbolic
address, a relative address, an absolute address, or a general or
floating-point register. (See Appendix B for more information
about addresses.)

address:address
specifies that you want the data located between the specified
addresses displayed at your terminal or placed into a data set.
Each address may be a symbolic address, a relative address, an
absolute address, or a general or floating point register. (See
Appendix B for more information about addresses.)

(address-list)
specifies several addresses of data that you want displayed at your
terminal or placed into a data set. The data at each location will
be retrieved. Each address may be a symbolic address, a relative
address, an absolute address, or a general or floating-point
register. The list of addresses must be enclosed within
parentheses, and the addresses must be separated by standard
delimiters (one or more blanks or a comma). (See Appendix B for
more information about addresses.)

data-type
specifies the type of data that is in the specified location. You
indicate the type of data by one of t.he following codes:

Code
C
X
B
I
H
F
E
D
L
P
Z
A
S
Y

Type of Data ~M=a=x=i=mu~m=_=L~e~n~g~t~h=_~(~B~y~t~e~s~)
Character 256
Hexadecimal 256
Binary 256
Assembler instruction 256
Fixed point binary (halfword) 8
Fixed point binary (fullword) 8
Floating point (single precision) 8
Floating point (double precision) 8
Extended floating point 16
Packed decimal 16
Zoned decimal 16
Address constant 4
Address (base + displacement) 2
Address constant Chalfword) 2

225

LIST Subcommand of TEST

LENGTH (integer)
indicates the length, in bytes of the data that is to be listed.
The maximum value for the integer is 256. If you use a symbolic
address and do not specify length, the value for the length
parameter will be retrieved from the symbol table residing in the
user's region. Otherwise, the following default values will apply:

!ype of Data
C,B,P,Z
H.,S,Y
F,E,A,X
D
I
L

Default Length (Bytes)
1
2
4
8
variable
16

When the data type is I, either length or multiple may be
specified, but not both. If both are specified l the multiple
parameter is ignored but no error message is printed.

MULTIPLE (integer)
Used in conjunction with the length operand. Gives the user the
following options:

• The ability to format the data to be listed (see example 3,
below)

• A way of printing more than 256 bytes at a time. (The value
supplied for "integer" determines how many "lengths" or mUltiples
of data-type the user wants listed.) The value supplied for
integer cannot exceed 256.

For I type data, the value supplied for MUL'l'IPLE defines the number
of instructions to be listed. If you use a symbolic address and do
not specify MULTIPLE, the value for the MULTIPLE parameter will be
retrieved from the symbol table residing in the user's region.

PRINT (data-set-name)
specifies the name of a sequential data set to which the data is
directed (see data set naming conventions). If you omit this
operand, the data will go to your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and block size are treated as NEW
if being opened for the first time, otherwise, they are treated as
MOD data sets.

The LIST subcommands of TEST perform the following functions on
each data set they process.

r-----------------------T--------------------T--------------------,
IIf your record format I Fixed, Fixed I Variable or I
Iwas: I Blocked, or I Variable Blocked I
I I Undefined I I
~-----------------------+----------T---------+----------T---------~
IThen it is changed to I Recordsizel Blocksize IRecordsizelBlocksizel
Ivariable blocked with ~----------+---------+----------+---------~
Ithe following I 125 I 1629 I 125 I 129 I
I attributes I I I I I L _______________________ ~ __________ ~ _________ ~ ________ -_~ _________ J

Note: Record and block sizes greater than above will be unchanged.

226 TSO Command Language Reference (Release 21)

LIST Subcommand of TEST

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand or

2. A LIST subcommand is entered specifying a different PRINT data
set. In this case, the previous data set is closed and the
current one opened.

Example 1

Operation: List the contents of an area of main storage.

Known: The area to be displayed is between •••••••••••••••••••• COUNTERA
DTABLE

The attributes of the data ••••••••••••••••••••••••••••• C

The name for a data set to contain

L(130)
M(l)

the listed data... DCDUMP

r---~,
ILIST COUNTERA:DTABLE C L(130) M(l) PRINT(DCDUMP) I L __ J

Example 2

Operation: List the contents of main storage at several addresses

Known: The addresses .. TOTALl
TOTAL2
TOTAL 3
ALLTOTAL

The attributes of the data F
L (3)
M (3)

r--,
IL (TOTALl TOTAL2 TOTAL3 ALLTOTAL) F L(3) M(3) I L __ J

227

LIST Subcommand of TEST

Example 3

Operation: List the first six full words in the communications Vector
Table (CVT).

Known: The absolute address of the CVT •••••••••••••••• '. • • • • • • • • • •• 10.
The user is operating in TEST mode.
The attributes of the data ••••••••••••••••••••••••••••••••• X

Note: First use the QUALIFY subcommand of TEST to establish the
beginning of the CVT as a base location for displacement values.

L(4)
M(6)

r--.--------------,
IQUALIFY 10. I L __ J

TEST •• The system response

r--.--------------,
ILIST +0 L(4) M(6) I L ___ . ___ . ______________ J

The listing at your terminal will resemble the following sample listing:

+0 00000000
+4 00012A34
+8 00000B2C
+C 00000000
+10 OOlA0408
+14 00004430

228 TSO Command Language Reference (Release 21)

LlSTDCB Subcommand of TEST

Use the LISTDCB subcommand to list the contents of a data control block
(DCB) '. You must ,provide the address of the beginning of the DCB. The
forty-nine or fifty-two bytes of data following the address will be
formatted according to the names of the fields as presented in the
publication System/360 Operating System: system Control Blocks,
GC28-6628.

If you wish, you can have only selected fields displayed. The field
identification is based on the sequential access method DCB for direct
access. Fifty-two bytes of data are displayed if the data set is
closed; forty-nine bytes of data are displayed if the data set is
opened.

r------------T---,
I SUBCOMMAND I OPERANDS I
.------------+---~-----------~ I LISTDCB I address [FIELD(names)] [PRINT(data-set-name)] I L ____________ ~ ___ J

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The
specified address is the address of the DCB that you want
displayed. The address must be on a fullword boundary. (see
Appendix B for more information about addresses.)

FIELD (names)
specifies one or more names of the particular fields in the DCB
that you want to have displayed at your terminal. The segment name
will not be printed when you use this operand. If you omit this
operand" the entire DCB will be displayed.

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first 1:ime; otherwise they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one openedo

229

LISTDCB Subcommand of TEST

Example 1

Operation: List the RECFM field of a DCB for the program that is being
tested.

Known: The DCB begins at location................................. DCBIN

r--,
ILISTDCB DCBIN FIELD(DCBRECFM) I L __ -------------______________ J

Example 2

Operation: List on entire DCB.

Known: The absolute address of the DCB ••••••••••••••••••••••••••• 33B4

r--,
ILISTDCB 33B4. I L ___ . ___ - _________________ J

230 TSO Command Language Reference (Release 21)

LlSTDEB Subcommand of TEST

Use the LISTDEB subcommand to list the contents of a data extent block
(DEB). You must provide the address'of the DEB. The 32 bytes of data
following the address will be formatted according to the names of the
fields as presented in the publication System/360 operating System:
System Control Blocks~ GC28-6628.

In addition to the 32 byte basic section, you may receive up to 16
direct access device dependent sections of 16 bytes each until the full
length has been displayed. If you wish, you can have only selected
fields displayed.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+----------------------------.---------------------------~ I LISTDEB J address [FIELD(names)] [PRINT(data-set-name)] I L ____________ ~ ___ J

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
is the beginning of the DEB, and must be on a fullword boundary.
(See Appendix B for more information about addresses.)

FIELD (names)
specifies one or more names of the particular fields in the DEB
that you want to have displayed at your terminal. If you omit this
operand, the entire DEB will be listed.

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standa,rd record format and blocksize are treated as NEW if
they are being opened for the first time; otherwise they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2.. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: List the entire DEB for the DCB that is named DCBIN.

Known: The address of the DEB •••••••••••••••••••••••• ' •••••••• DCBIN+2C%

r--,
ILISTDEB DCBIN+2C% I L __ J

231

llSTMAP Subcommand of TEST

Use the LISTMAP subcommand to display a storage map at your terminal.
The map identifies the location and assignment of any storage assigned
to the program.

All storage assigned to the problem program and its subtasks as a
result of GETMAIN requests is located and identified by subpool (0-127).
All programs assigned to the problem program and its subtasks are
identified by name, size, location, and attribute. Storage assignment
and program assignment are displayed by task. When the assignments for
the problem program and all its subtasks tasks have been displayed, a
map of all unassigned storage within the region is displayed.

r------------T---, I SUBCOMMAND J OPERANDS I
~------------+---~
I LISTMAP I [PRINT Cda·ta-set-name)] I L _____________ ~ ___ ----------__ J

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first item; otherwise, they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: Display a map of main storage at your terminal.

r--,
I LISTMAP I L __ J

Example 2

Operation: Direct a map of main storage to a data set.

Known: The name for the data set •••••••••••••••••••• ACDQP.MAP .. TESTLIST

r--.----,
ILISTMAP PRINTCMAP) I L __ . ____ J

232 TSO Command Language Reference (Release 21)

LlSTPSW Subcommand of TEST

Use the LISTPSW subcommand to display a Program status Word (PSW) at
your terminal.

r------------T--,
I SUBCOMMAND , OPERANDS I
~------------+--~ I LISTPSW I [ADDR(address)] [PRINT(data-set-name)] I L ____________ ~ __ J

ADDR(address)
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Th.e address
identifies a particular PSW. If you do not specify an address, you
will receive the current PSW for the program that is executing.
(See Appendix B for more information about addresses.)

PRINT (data-set-name)
specifies the name of the sequential data set to which data is to
be directed (see data set naming conventions). If you omit this
operand, the data will be displayed at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being opened for the first time: otherwise, they are
treated as MOD data sets.

The specified data set is kept open until:

1. The TEST session is ended by a RUN or END subcommand, or

2.. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

Example 1

Operation: Display the current PSW at your terminal.

r--,
ILISTPSW I L __ J

Example 2

Operation: Copy the Input/Output old PSW onto a data set.

I Known: The address of the PSW (in hexadecimal) ••••• 38.
The name for the data set ••••••••••••••••••• SKJ23.PSWS.TESTLIST

r--,
ILISTPSW ADDR(38.) PRINT(PSWS) I L __ J

233

LlSTTCB Subcommand of TEST

Use the LISTTCB subcommand to display the contents of a task control
block (TCB). You may provide the address of the beginning of the TCB.
The data following the address will be formatted according to the names
of the fields as presented in the publication: System/360 operating
System: System Control Blocks, GC28-6628.

If you wish, you can have only selected fields displayed.

r------------T--.-------------,
I SUBCOMMAND I OPERANDS I
~------------+---~ I LISTTCB I [ADDR(address)] [FIELD(names)] [PRINT (data-set-name)] I L-___________ ~ __ J

ADDR(address)
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. The address
must be on a fullword boundary. The address identifies the
particular TCB that you want to display. If you omit an address,
the TCB for the current task is displayed. (See Appendix B for
more information about addresses.)

FIELD (names)
specifies one or more names of the particular fields in the TCB
that you want to have displayed. If you omit this operand, the
entire TCB will be displayed.

PRINTCdata-set-narne)
specifies the name of the sequential data set to which data is to
be directed. If you omit this operand, the data will be displayed
at your terminal.

The data format is blocked variable length records. Old data sets
with the standard record format and blocksize are treated as NEW if
they are being" opened for the first time; otherwise tr they are
treated as MOD data sets.

The specified data set is kept open until:

1,. The TEST session is ended by a RUN or END subcommand, or

2. A LIST subcommand is entered that specifies a different PRINT
data set. In this case, the former data set is closed and the
current one opened.

234 TSO Command Language Reference (Release 21)

LlSTTCB Subcommand of TEST

Example 1

Operation: Save a copy of the TCB for the current task on a data set.

Known: The name for the data set ••••••••••••••••••• GCAMP.TCBS.TESTLIST

r---·-----------------------------,
ILISTTCB PRINT(TCBS) I L __ J

Example 2

Operation: Save a copy of some fields of a task's control block that is
not active in a data set for future information.

Known: The symbolic address of the TCB •••••••••••••••• u ••••••••• MYTCB2
The fields that are being requested •••••••••••••••••••••• TCBTIO

TCBCMP
TCBGRS

The name for the data set •• ~ ••••••••••••••••••••• SCOTT.TESTLIST

r--,
ILISTTCB ADDR(MYTCB2) FIELD(TCBTIO,TCBCMP,TCBGRS)- I
IPRINT('SCOTT.TESTLIST') I L __ J

235

LOAD Subcommand of TEST

Use the LOAD subcommand to load a program into main storage for
execution.

r------------T---,
I SUBCOMMAND I OPERANDS I
~------------+---~
I LOAD I program-name I L ____________ ~ ___ J

program name
specifies the name of a member of a partitioned data set that
contains the load module to be tested. (See the data set naming
conventions.)

Example 1

Operation: Load a program named ATX03.LOAD(GSCORES)

r--,
I LOAD (GSCORES) I L ___ J

236 TSO Command Language Reference (Release 21)

OFF Subcommand of TEST

Use the OFF subcommand to remove breakpoints from a program • .
r------------t---,
I SUBCOMMAND I OPERAND I
~------------t---~
I OFF I [addreSS[: addreSS].] I
I I (address-list) I L ___________ J. ____________________________ . ___________________________ J

address
specifies the location of a breakpoint that you want to remove.
The address may be a symbolic address, a relative address, an
absolute address, or a general regist.er containing an address. The
address must be on a halfword boundary. (See Appendix B for more
information about addresses.)

address:address
specifies a range of addresses. Each address may be a symbolic
address, a relative address, an absolute address, or a general
register containing an addresso Each address must be on a halfword
boundary. All breakpoints in the range of addresses will be
removed. (See Appendix B for more information about addresses.)

(address-list)
specifies the location of several breakpoints that you want to
remove. Each address may be a symbolic address, a relative
address, an absolute address, or a general register containing an
address. Each address must be on a halfword boundary. (See
Appendix B for more information about addresses.)

Example 1

Operation: Remove all breakpoints in a section of the program.

Known: The beginning and ending addresses of the section ••••••••• LOOPC
EXITC

r--,
IOFF LOOPC:EXITC I L ___ . _____________________________ J

Example 2

Operation: Remove several breakpoints located at different positions.

Known: The addresses of the breakpoints •••••••••••••••••••••••• COUNTRA
COUNTRB
EXITA

r--,
IOFF (COUNTRA COUNTRB EXITA) I L __ J

Example 3

Operation: Remove all breakpoints in a program.

r--,
IOFF I L __ J

237

QUALIFY Subcommand of TEST

Use the QUALIFY subcommand to qualify symbolic and relative addresses;
that is, to establish the starting or base location to which
displacements are added so that an absolute address is obtained. The
QUALIFY subcommand allows you to specify uniquely which program and
which CSECT within that program you intend to test using symbolic and
relative addresses.

You can specify an address to be used as the base location for
subsequent relative addresses. Each time you use the QUALIFY
subcommand, previous qualifications are voided.

Symbols that were established by the EQUATE subcommand before you
enter QUALIFY are not affected by the QUALIFY subcommand~

r------------T--.--,
I SUBCOMMAND I OPERANDS I
f------------+--~
I 1 QUALIFY I I 1 address ! I
I Q '~I load-module-name[.entryname] [TCB(address)] I L ___________ J. __ . __ J

address

load
specifies an absolute, relative or symbolic address ..

specifies the name by which a load module is known. The load name
may be a member name of a partitioned data set or an alias.

load. entry
specifies the name by which a load module is known, and an external
name within the load module. This operand changes the base for
both symbolic and relative addresses. The two names are separated
by a period. The load module name may be a member name of a
partitioned data set or an alias. The entry name is the name that
is duplicated in another module of the load module •

• entry
specifies an external name within a previously specified load
module that you are now testing.

TCB(address)
specifies the address of a task control block (TCB)~ This operand
is necessary when programs of the same name are assigned to two or
more subtasks and you must establish uniquely which one is to be
qualified, or when the load module request block is not in the TCB
chain.

238 TSO Command Language Reference (Release 21)

QUALIFY Subcommand of TEST

Example 1

Operation: Establish a base location for relative addresses to a symbol
within the currently qualified program.

Known: The base address •• QSTART

r---·-----------------------------,
IQUALIFY QSTART I L ___ . _____________________________ J

Example 2

Operation: Change the base location for symbolic and relative addresses
to a different CSECT in the program..

Known: The moo ule name.. PRO F'ITS
The entry name (CSECT) •••••••••••••••••••••••••••••••••• SALES
The TCB address ••• +124%

r--,
IQUALIFY PROFITS. SALES TCB(+124%) I L ___ . ___________ ---_______________ J

Example 3

Operation: Change the base location for relative addresses to an
absolute address.

Known: The absolute address of the new base •••••••••••••••••••• SF820

r--,
IQUALIFY SF820. I L __ J

239

RUN Subcommand of TEST

Use the RUN subcommand to cause the program that is being tested to
execute to termination without recognizing any breakpoints. When you
specify this subcommand. TEST is terminated. When the program
completes, you can enter another command. Overlay programs are not
supported by the RUN subcommand. Use the GO subcommand to execute
overlay programs.

r------------T---,
I SUBCOMMAND I OPERANDS I
i------------t--·-------------f
I 1 RUN l I [address] I
I R ~ I I '--___________ ..L __ . _____________ J

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. Execution
will begin at the specified address. If you do not specify an
address, execution begins at the last point of interruption or from
the entry point if the RUN subcommand was not previously specified.
(see Appendix B for more information about addresses.)

Example 1

Operation: Execute the program to termination from the last point of
interruption.

r--·--,
IRUN I L __ J

Example 2

Operation: Execute a program to termination from a specific address.

Known: The address.. +A8

r---.---------------,
IRUN +AS I L ___ . _______________ J

240 TSO Command Language Reference (Release 21)

WHERE Subcommand of TEST

Use the WHERE subcommand to obtain the absolute address serving as the
starting or base location for the symbolic and relative addresses in the
program. Alternately, you can obtain the absolute address of an
entrypoint in a particular module or control section (CSECT). If you do
not specify any operands for the WHERE subcommand, you will receive the
address of the next executable instruction.

r------------T--------------------..... - i,;o·-----'-------------------------,
I SUBCOMMAND I " OPERANDS I
~------------t---f
I 1 WHERE til address l I
I W ~ I load-module-name[.entrynamel) I L ___________ .L _____________________________ , __________________________ J

address
specifies a symbolic address, a relative address, an absolute
address, or a general register containing an address. When you
specify an address as the operand for the WHERE subcommand" you
will receive the name of the load module containing the address.
(See Appendix B for more information about addresses.)

load-module-name.entry-name
specifies the name by which a load module is known, and an
externally referable name within the load module. The two names
are separated by a period. The load module name may be the name or
an alias of a member of a partitioned data set. The entry name is
the symbolic address of an entry point into the specified module.
The entry name may be omitted, in which case the first entry point
into the specified module will be supplied. When you specify this
operand for WHERE, you will receive the main storage address of the
load module.

Example 1

Operation: Obtain the absolute address of the module named CSTART.

r--,
IWHERE CSTART I L __ J

Example 2

Operation: Obtain the absolute address of the CSECT named JULY in the
module named NETSALES.

r---,
IWHERE NETSALES.JULY I L __ J

241

WHERE Subcommand of TEST

Example 3

Operation: Determine in which program an absolute address is located.

Known: The absolute address.. 3E2B8

r--,
IWHERE 3E2B8. I L ___ J

Note: You will also get the TCB address and the relative address.

Example 4

Operation: Determine the absolute address of the next executable
instruction.

r---.----------.-----,
I WHERE I L __ J

242 TSO Command Language Reference (Release 21)

TIME Command

Use the TIME command to find out how much execution time or how much
session time you have used during the current session.

Program execution time is displayed when you enter the TIME command.
(To enter the command while a program is executing, you must first cause
an attention interruption.) Program execution time is measured from the
time that the program last received input from your terminal. The TIME
command has no effect upon the executing programv

Your current session time is displayed in all other instances.

r--------------T---,
I COMMAND I OPERANDS I
~--------------+---f
I TIME I I L ______________ ~ ___ J

243

244

Command Procedure Statements

A command procedure is a prearranged sequence of TSO commands and,
optionally, subcommands and data. A command procedure is a convenient
method for executing a repeatedly-used sequence of commands. The
procedure is stored in either a data set that has CLIST as the
descriptive qualifier (see the EDIT command) or in a member of a command
procedure library (a pre-defined partitioned data set).

Ensure that your command specifications are complete as you will not
be prompted for information while your commands are executing in a
command procedure.

When using continuation characters in a command procedure, ensure
that they are placed in the last usable record positionv When using
fixed-record format, a series of delimiters can be used to pad a record
to the final position which contains the continuation character. See
the paragraph entitled "Continuation of a Line in Input Mode" that
appears under the EDIT command for more information on how to use the
continuation character on statements in command procedures.

The statements contained in this section are designed especially for
use in command procedures. They are:

• The END statement.

• The PRoe statement.

• The WHEN statement.

245

END Statement of Command Procedures

Use the END statement to end a command procedure. When t.he system
encounters an END statement in a command procedure* execution of the
command procedure is halted and the system becomes ready to accept
another command from the terminal.

r--------------T---,
I STATEMENT I OPERANDS I
i--------------t---f
I WD I I L _____________ ~ ___ J

246 TSO Command Language Reference (Release 21)

PROC Statement of Command Procedures

The PROC statement defines those operands in a command procedure that
are to be considered as symbolic values. The user of the command
procedure then supplies his own values as operands on the EXEC command.
(See the discussion on the "EXEC command" for more detail on how to
supply actual values for symbolic values in a command procedure.) For
more information on how to assign symbolic values, refer to the
publication; IBM System/360 Operating System: Time Sharing Option,
Terminal User's Guide, GC28-6763.

r--------------T---------------------------'----------------------------,
I STATEMENT I OPERANDS I
~--------------+---f
I PROC I number [positional-operands] [keywords] I L _____________ i ___ J

number
specifies the number of positional operands that follow. The
number must be a decimal digit. If none of the operands are
positional, you must specify a zero.

positional operands
specifies one or more positional operands.

keywords
specifies one or more keyword operands.

Example 1

Operation: Use a PROC statement to identify five symbolic operands in a
command procedure.

Known: Three positional operands to define ••••••••••••••••••••• &NAME
& NUMBER
&TIME

TWo keyword operands to define •••••••••••••••••••••••••• &XREF
& MAP

r--,
IPROC 3 NAME NUMBER TIME XREF MAP I L ___ ~ ________________________ J

247

PROC Statement of Command Procedures

Example 2

Operation: Use all three types of operands for a PROC statement.

Known: You are creating a command procedure that will use two existing
programs named USERJWS.LOAD(SALESRPT) and INVENTRY.A to produce
a sales report and to update the inventory. The name of the
command procedure is REPORTS. You want to use different data
sets as input to the procedure. The output of the first program
SALESRPT will be the input for INVENTRY. You want to be able to
have the output displayed at your terminal or directed to a data
set so that it can be retrieved at some later date. The
commands in the procedure are:

ALLOCATE DATASET(&LASTOUT.) NEW BLOCK(SO) SPACE(SOO 10)
ALLOCATE DATASET(&INPUT.) OLD
ALLOCATE DATASET(&OUTIN.) &NEW BLOCK(SO) SPACE(SOO 10)
CALL (SALESRPT) '&INPUT &OUTIN.'
WHEN SYSRC(GT 4) END
CALL 'INVENTRY.A' '&OUTIN &LASTOUT.'
END

The PROC statement that will precede the first ALLOCATE command is:

PROC 2 INPUT OUTIN LASTOUT(*) NEW

The EXEC command to execute this procedure and have the output displayed
at your terminal will be:

EXEC REPORTS 'FEBSALES FEBRUARY NEW'

when the input data set is named FEBSALES and you want t.O name the
output from the SALESRPT program FEBRUARY. If you want to direct the
output from the procedure to a data set named FEBRPT instead of to your
terminal. you would enter:

EXEC REPORTS 'FEBSALES FEBRUARY NEW LASTOUT(FEBRPT)'

In this case. the symbolic values in the command procedure will be
changed to:

ALLOCATE DATASET(FEBRPT) NEW BLOCK(SO) SPACE(SOO 10)
ALLOCATE DATASET(FEBSALES) OLD
ALLOCATE DATASET(FEBRUARY) NEW BLOCK(SO) SPACE(SOO 10)
CALL (SALESRPT) 'FEBSALES FEBRUARY'
WHEN SYSRC(GT 4) END
CALL 'INVENTRY.A' 'FEBRUARY FEBRPT'
END

248 TSO Command Language Reference (Release 21)

WHEN Statement of Command Procedures

Use the WHEN statement to test return codes from programs invoked via an
immediately preceding CALL or LOADGO command, and to take a prescribed
action if the return code meets a certain specified condition.

r--------------T---,
I STATEMENT I OPERAND I
~--------------+---f
I WHEN I [SYSRC(operator integer)] I
I I I
I I [END] I
I I command-name I L-_____________ ~ ___ J

SYSRC
specifies that the return code from the previous function (the
previous command in the command procedure) is to be tested
according to the values specified for operator and integer.

operator
specifies one of the following operators:

EQ or = means equal to
NE or ,= means not equal to
GT or > means greater than
LT or < means less than
GE or >= means greater than or equal to
NG or ,> means not greater than
LE or <= means less than or equal to
NL or ,< means not less than

integer

END

specifies the four digit constant that the return code is to be
compared to.

specifies that processing is to be terminated if the comparison is
true. This is the default if you do not specify a command.

command
specifies any command name and appropriate operands. The command
will be processed if the comparison is true.

249

250

Appendix A: Program Product Information

Certain functions referred to in this publication (see Appendix C) are
provided through IBM Program Products, which are available from IBM for
a license fee. The Program Products referred to in this publication,
along with additional references to related publications, are:

Interactive Terminal Facility (ITF): PL/I and BASIC - A problem
solving language processor. For more information, refer to:

• TSO Interactive Terminal Facility, PL/I and BASIC Design Objectives,
GC28-6822.

• TSO Interactive Terminal Facility, PL/I and BASIC Program Product
Specs, C28-6831.

• TSO Interactive Terminal Facility, PL/I Introduction, C28-6838.

• TSO Interactive Terminal Facility, PL/I Terminal User's Guide,
C28-6839.

• TSO Interactive Terminal Facility, BASIC Terminal User's Guide,
C28-6840.

Code and Go FORTRAN - A FORTRAN compiler designed for a very fast
compile-execute sequence. For more information, refer to:

• Code and Go FORTRAN Design Objectives# GC28-6823.

• Code and Go FORTRAN Processor " Installation Reference Manual,
C28-6859.

• Code and Go FORTRAN Terminal User's Guide, C28-6842.

• FORTRAN Program Products for OS and OS with TSO, General
Information, GC28-6824.

FORTRAN IV (G1) - A version of the FORTRAN (G) 'compiler modified for
the terminal environment. For more information, refer to:

• FORTRAN IV (G1) Processor Design Objectives, GC28-6845.

• FORTRAN IV (G1) Processor and TSO Prompter IRM, C28-6856.

• FORTRAN IV (G1) Compiler Logic, Y28-6856.

• FORTRAN Program Products for OS and OS with TSO, General
Information .. GC28-6824.

251

Appendix A: Program Product Information

TSO FORTRAN Prompter - An initialization routine to prompt the user
for options and to invoke the FORTRAN IV (Gl) Processor. For more
information, refer to:

• TSO FORTRAN Prompter Design Objectives. GC28-6843.

• TSO FORTRAN Prompter Program Product Specs, C28-6857.

• TSO FORTRAN Prompter Logic, Y28-6410.

• FORTRAN Program Products for OS and OS with TSO, General
Information, GC28-6824.

FORTRAN IV Library (Mod 1) - Execution-time routines for List directed
I/O and for PAUSE and STOP capability. available for either Code and
Go FORTRAN IV (Gi). For more information. refer to:

• FORTRAN IV Library (Mod 1) Design Objectives. GC28-6844.

• FORTRAN IV Library (Mod 1) Program Product Specs. C28-6850.

• FORTRAN IV Library (Mod 1) Logic. Y28-6408.

• FORTRAN IV Library (Mod 1) IRM, C28-6858.

• FORTRAN Program Products for OS and OS with TSO. General
Information. GC28-6824.

Full American National Standard COBOL Version 3 - A version of the
American National Standard (formerly USAS) COBOL compiler modified for
the terminal environment. For more information. refer to:

• Full ANS COBOL Version 3 Design Objectives. GC28-6406.

• Full ANS COBOL Compiler Library Version 3. Program Product Design
Objectives, C28-6436.

• Full ANS COBOL Version 3 IRM. C28-6432.

• Full ANS COBOL Version 3 General Information, C28-6407.

• Full ANS COBOL Version 3 OS Logic, Y28-6407.

• Full ANS COBOL Version 3 as Programming, C28-6437.

TSO COBOL Prompter - An initialization routine to prompt the user for
options and to invoke the Full ANS COBOL Version 3 Processor. For
more information, refer to:

• TSO COBOL Prompter Design Objectives. GC28-6404.

• TSO COBOL Prompter Logic. Y28-6406.

• TSO COBOL Prompter IRM, C28-6434.

• TSO COBOL Prompter Terminal User's Guide and Reference, C28-6433.

252 TSO Command Language Reference (Release 21)

Appendix A: Program Product Information

TSO Assembler Prompter - An initialization routine to prompt the user
for options and to invoke the Assembler (F). For more information,
refer to:

• TSO Assembler Prompter Design Objectives, GC26-3734.

• TSO Assembler Prompter Program Logic 1 Y26-3737.

• TSO Assembler Prompter User's Guide, C26-3740.

TSO Data Utili ties: COPY, FORMAT., LIST, MERGE - A set of commands
(and EDIT subcommands) to manipulate data sets and to format text.
For more information, refer to:

• TSO Data Utilities - COPY, FORMAT, LIST, MERGE Design Objectives,
GC28-6750.

• TSO Data Utilities: COpy, FORMAT I LIST, MERGE System Information,
C28-6767.

• TSO Data Utilities: COpy, FORMAT, LIST, MERGE User's Guide and
Reference, C28-6765.

253

254

Appendix B: Addressing Conventions Used With TEST

An address used as an operand for a subcommand of TEST may be a symbolic
address, a relative address, an absolute address, or a register which
may contain an address.

A symbolic address consists of one through eight alphameric
characters, the first of which is an alphabetic character. The symbolic
address must correspond to a symbol in the program that is being tested.
Symbols cannot be used if the program being tested is a member of a
partitioned data set that is part of a LINK library list unless the
partitioned data set is named SYS1.LINKLIB or is the first one in the
list, or unless the program is brought into main storage by TEST as an
operand of the TEST command or a subsequent load command. A relative
address is a hexadecimal number preceded by a plus sign (+). An
absolute address is a hexadecimal number followed by a period.

Address Modifiers: An expression consisting of one of the above address
types followed by a plus or a minus displacement value is also a valid
address. The plus or minus displacement value can be expressed in
either decimal or hexadecimal notation, as follows:

address +14n

address +14

specifies the location that is 14 bytes past that
designated by "address."

specifies the location that is 20 bytes past that
designated by "address."

Note: Decimal displacement (either plus or minus) is indicated by
the n following the numerical offset.

Qualified Addresses: You can qualify symbolic and relative addresses to
indicate that they apply to a particular control section (CSECT). To do
this, you precede the address by either the name of the load module and
the name of csect or just the name of csect. The qualified address must
be in the form:

.csectname.address

or

loadname.csectname.address

For instance, if the user. supplied name of the load module is OUTPUT,
the name of the csect is CTSTART, and the symbolic address is TAXRTN you
would specify:

.CTSTART.TAXRTN

or

QUTPUT.CTSTART.TAXRTN

If you do not include qualifiers, the syst.em assumes that the address
applies to the current control section.

General Registers: You can refer to a
or Assignment of Values subcommands by
followed by an R. The decimal integer
register and must be in the range zero
registers are hexadecimal characters.

general register using the LIST
specifying a decimal integer
indicates the number of the
through 15. The contents of the
Other references to the general

255

Appendix B: Addressing Conventions Used With TEST

registers imply indirect addressing. The term indirect general register
is used to refer to the general registers when they are used for
indirect addressing.

Floating-Point Registers: You can refer to a floating-point register
using the LIST or Assignment of Values subcommand by specifying a
decimal integer followed by an E or a D. An E indicates a
floating-point register with single precision. A D indicates a
floating-point register with double precision. The decimal integer
indicates the number of the register and must be a zero, two, four, or
six. You must not use floating-point registers for indirect addressing;
expressions composed of references to floating-point registers followed
by a plus or minus displacement value or a percent sign are invalid.

Indirect Addresses: An indirect address is an address of a location or
general register that contains another address. An indirect address
must be followed by a percent sign (the percent sign indicates that the
address is indirect). For instance, if you want to refer to some data
and the address of the data is located at address A, you can specify:

A%

Graphically, this expression indicates:

Location A

address B
B

You can indicate several levels of indirect addresses (256 levels are
permitted) by following the initial indirect address with a
corresponding number of percent signs. You can also include plus or
minus displacement values. For instance, you may specify:

SR%%+4%

Graphically, this expression indicates:

Register 5

00000A24
Location A24

000001C2 Location lC2

00000A40

+4 00000922 922

Restriction on Symbol Use: You can refer to external symbols in a Load
Module if::

• A composite external symbol dictionary (CESD), record exists.

• The TEST operand of the Link command was specified.

• The program was brought into main storage by the TEST command or one
of its subtasks.

256 TSO Command Language Reference (Release 21)

Appendix B: Addressing Conventions Used With TEST

You can refer to external symbols in ~ Object Module if there is
room in main storage for a CESD to be built.

You can refer to most internal symbols if you specify the TEST
operand when you assemble and link edit your program. Exceptions are:

• Names on equate statements.

• Names on ORG, LTORG, and CNOP statements.

• Symbols more than eight bytes long.

257

258

Appendix C: Program Product Commands

ASM Command

The ASM command is provided as part of the optional TSO ASM Prompter
program product which is available for a license fee. See Appendix A
for IBM Program Product information.

Use the ASM command to process data sets and produce object modules.
The prompter requests required information and enables you to correct
your errors at the terminal.

CALC Command

The CALC command is provided as part of the optional ITF:PL/I program
product which is available for a license fee. See Appendix A for IBM
Program Product informatione

Use the CALC command to execute ITF:PL.lI statements in desk
calculator mode; that is, to have statements interpreted and executed as
you enter them.

COBOL Command

The COBOL command is provided as part of the optional COBOL Prompter
program product which is available for a license fee. See Appendix A
for IBM Program Product information.

Use the COBOL command to compile American National Standard (ANS)
COBOL programs. This command reads and interprets statements for the
American National Standard COBOL version 3 compiler and prompts you for
any information that you have omitted or entered incorrectly. It also
allocates required data sets and passes parameters to the compiler.

CONVERT Command

The CONVERT command is provided as part of the optional ITF:PL/I and
BASIC program product or the Code and Go program product which is
available for a license fee. See Appendix A for IBM Program Product
information.

Use the CONVERT command to convert language statements contained in
data sets to a form suitable for a compiler other than the one for which
they were originally intended. The conversions that can be accomplished
with this command are:

259

Appendix C: Program Product Commands

FROM TO
------------------------------------T--------------------.---------------
sta tements sui table for the I sta tements suitable :E or the
TSO ITF:PLI compiler (a Program IPL/I (F) compiler
Product) I
------------------------------------+-----------------------------------
Free format statements suitable for I Fixed format statements sui-table
the Code and Go FORTRAN compiler Ifor the FORTRAN (Gl) compiler and
(a Program Product) lall the FORTRAN compilers provided

Iwith the Operating System
------------------------------------+-----------------------------------
Fixed format statements suitable forlFree format statements suitable
the FORTRAN (GI) compiler I for the Code and Go FORTRAN

Icompiler (a Program Product)
------------------------------------+-----------------------------------
statements in an ITF/OS collection IA form acceptable by TSO ____________________________________ i __________________________________ _

COPY Command

The COpy command is provided as part of the optional TSO Data Utilities:
COPY w FORMAT, LIST, MERGE program product which is available for a
license fee. See Appendix A for IBM Program Product information.

Use the COpy command to copy sequential or partitioned data sets.
You can also use this command to:

• Add members to or merge partitioned data sets.

• Resequence line numbers of copied records.

• Change the record length, the block size, and the record format when
copying into a sequential data set.

FORMAT Subcommand of EDIT

The FORMAT subcommand is provided as part of the optional TSO Data
utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee. Appendix A contains additional information about
program products.

Use the FORMAT subcommand to format textual output. This subcommand
provides the facilities to:

• Print a heading on each page.

• Center lines of text between margins.

• Control the amount of space for all four margins.

• Justify left and right margins of text.

• Number pages of output consecutively.

• Halt printing when desired.

260 TSO Command Language Reference (Release 21)

Appendix C: Program Product Commands

• Print multiple copies of selected pages.

• Control line and page length.

• Control paragraph indentation.

MERGE Subcommand of EDIT

The MERGE subcommand is provided as part of the optional TSO Data
Utilities: COPY, FORMAT. LIST, MERGE program product which is available
for a license feeo Appendix A contains additional information about
program products.

Use the MERGE subcommand to:

• Merge, into the data set being edited, all or part of itself.

• Merge, into the data set being edited, all or part of another data
set.

FORMAT Command

The FORMAT command is provided as part of the optional TSO Data
Utilities: COPY, FORMAT, LIST, MERGE program product which is available
for a license fee. See Appendix A for IBM Program Product information.

Use the FORMAT command to format textual output. This command
provides the facilities to:

• Print a heading on each page.
• Center lines of text between margins.
• Control the amount of space for all four margins.
• Justify left and right margins of text.
• Number pages of output consecutively.
• Halt printing when desired.
• Print multiple copies of selected pages.
• Control line and page length.
• Control paragraph indentation.
• Store a data set that has already been formatted.
• Print all or part of a sequential or partitioned data set.

FORT Command

The FORT command is provided as part of the optional FORTRAN Prompter
program product which is available for a license fee. See Appendix A
for IBM Program Product information.

Use the FORT command to compile a FORTRAN IV (Gi) program. You will
be prompted for any information that you have omitted or entered
incorrectly. It also allocates required data sets and passes parameters
to the FORTRAN IV (Gi) compiler.

261

Appendix C: Program Product Commands

LIST Command

The LIST command is provided as part of the optional TSO Data Utilities:
COPY. FORMAT, LIST. MERGE program product which is available for a
license fee. See Appendix A for IBM Program Product information.

Use the LIST command to display a sequential data set or a member of
a partitioned data set. You can arrange fields within records for
output; you can include or suppress record numbers; you can list all or
part of a particular line of data, and you can list a sil~le line of
data, a group of lines, or a whole data set.

MERGE Command

The MERGE command is provided as part of the optional TSO Data
Utilities: COpy, FORMAT, LIST, MERGE program product which is available
for a license fee. See Appendix A for IBM Program Product information.

Use the MERGE command to:

• MERGE a complete or part of a sequential or member of a partitioned
data set into a sequential or member of a partitioned data set.

• Copy a complete or part of a sequential or member of a partitioned
data set into a new or (pre-allocated) empty sequential data set.

• Copy a complete or part of a sequential or member of a partitioned
data set into a new member of an existing partitioned data set.

• Copy a complete or part of a sequential or member of a partitioned
data set into a new or (pre-allocated) empty partitioned data set.

262 TSO Command Language Reference (Release 21)

This abbreviated glossary is a supplement
to the publication: IBM Data Processing
Glossary, GC20-1699. The following entries
are definitions of terms used herein that
are not included in the IBM Data Processing
Glossary.

File name: A name of a collection of data
(the file name corresponds to the data
definition name).

LOGOFF: The TSO command that terminates a
user's terminal session.

LOGON: The TSO command that a user must
enter to initiate a terminal session.

LOGON procedure: A cataloged procedure
that is executed as a result of a user
entering the LOGON command.

Glossary

National characters: The characters #, $,
and Gl.

Storage dump: A recording of the contents
of main or auxiliary storage so that it can
be examined by a programmer or operator.
(See also "dump.")

User identification: A one-to-seven
character symbol identifying each TSO user.

User profile: A set of characteristics
that define a TSO user to the system. Each
user profile is kept in the user profile
table (UPT) which in turn is stored in the
user attribute data set (UADS).

Glossary 263

264

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating system: Systems
Reference Library Master Index, GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

A operand, DISPLAY subcommand 152
abbreviations, command names and subcommand

names 27
access (read/write 'protection) 181
ACCOUNT command 14,29

ADD subcommand 14,32
CHANGE subcommand 14,37
DELETE subcommand 14,40
END subcommand 14,44
HELP subcommand 13,45
LIST subcommand 14,47
LISTIDS subcommand 14,49

account mode 25
account numbers, syntax 32
ACCT operand, ADD subcommand 33
ADD subcommand 14,32
ADD operand (PROTECT) 182
address, indirect 255
address list operand, (TEST)

LIST subcommand 225
OFF subcommand 237

address operand, (TEST)
AT subcommand 207
FREEMAIN subcommand 220

address:address operand, AT subcommand 207
addresses, (TEST)

equating symbols to 255
establish base location 255

address list operand, AT subcommand 207
aids 24
alias, deletion of 185
alias operand (RENAME) 185
ALLOCATE command 51
allocation, data set 51,63
allocation, dynamic 51
ALL operand, SEND subcommand 162
ASIS operand (EDIT) 61,65
ASM (see descriptive qualifier)
ASM command 27,259
ASM operand,

EDIT 61
RUN 188

assembly, program 14,55
assignment of values function (TEST) 205
AT subcommand (TEST) 207

attention interruptions 24
attention key 24,177

Index

(see also PROFILE subcommand (EDIT);
TE.RMINAL command)

ATTN operand,
PROFILE 177
PROFILE subcommand (EDIT) 97

ATTRIB command 54.1
attributes of users (ACCOUNT) 29
attributes of users (PROFILE) 97,177
attributes of data sets (ATTRIB) 54.1
ATTRLIST operand (FREE) 116

BASIC (see descriptive qualifier)
BAS IC operand,

EDIT 61
RUN 187

batch processing 195
BEGIN operand (OUTPUT),

CONTINUE subcommand 171
OUTPUT 168

BFTEK operand (ATTRIB) 54.1
BLKSIZE operand (ATTRIB) 54.1
BLOCK(integer) operand,

EDIT 65
BLOCK(block length) operand,

ALLOCATE 53
EDIT 65

blocksize 66,54.1
BOTTOM subcommand (EDIT) 75
BREAK operand (TERMINAL) 198
breakpoints,

how to establish (TEST) 201,207
removal of (TEST) 201,237

broadcast data set 131,162
BS operand,

PROFILE 178
PROFILE subcommand

BFALN operand (ATTRIB)
BUFL operand (ATTRIB)
BUFNO operand (ATTRIB)

CALC command 27,259
CALL command 55

97
54.1

54.1
54.1

CALL subcommand (TEST) 210
CALL operand (LOADGO) 141
CANCEL command 57
CANCEL subcommand (OPERATOR) 150
cancellation,

batch job 57
terminal user 150

capabilities, Command Language 13
CAPS operand (EDIT) 65

Index 265

Page of GC28-6732-2, Revised April 15, 1972, By TNL: GN28-2521

Index

CHANGE subcommand (ACCOUNT) 37
CHANGE subcommand (EDIT) 76
change,

user attributes in UADS 37
modes (EDIT) 67,89
region size (OPERATOR) 158
registers and main storage 225

CHAR operand,
PROFILE 178
PROFILE subcommand (EDIT) 97

character-deletion characters 19,177
CLASS operand, CANCEL subcommand 150
CLASS(class name list) operand

(OUTPUT) 167
CLEAR operand (TERMINAL) 198
CLIST operand (EDIT) 62
CNTL operand (EDIT) 63
COBLIB operand (LINK) 123
COBOL command 14,259
COBOL operand,

EDIT 62
RUN 188

CODE and GO FORTRAN 251
columns, data 13,,107
Command Procedure 245

(see also EXEC command)
command procedure statements,

END 246'
PROC 247
WHEN 249

commands,
definition of 12
how to enter 19
list of 27

compilers, execution of,
program products 187,251
standard 55,187

compilers, how to use 55
CONTINUE subcommand (OUTPUT) 171
control blocks, display of (TEST),

Data Control Block 229
Data Extent Block 231
Program Status Word 233
Task Control Block 234

control fields, UADS 29
control, system 147
control, terminal session 13
conventions, naming, data set 19
conversion, data set (see CONVERT command)
CONVERT command 27,259
COpy command 27,260
COpy subcommand (TEST) 212
COUNT(integer) operand, AT subcommand 207
CP operand (TEST) 202
CPU, time used by 243
creating,

a data set 51,61
a command procedure 245
a program 61

current line pointer 69,70

DATA (password account, procedure) operand,
ADD subcommand 32

Data Control Block 229
I parameters 54,.1

data definition (DD) name,
how to display 129

(see also STATUS operand (LISTDS)
how to specify 52

(see also FILE operand (ALLOCATE)
number of, in LOGON procedure 115

data entry, storage modification 61,89
Data Extent Block 231.
DATA operand,

EDIT 63
PROTECT 183

data set,
access, read/write 181
allocation 51
attributes 54.1
blocksize 66
conversion (see CO~WERT command)
creation

BASIC 61,68
FORTRAN 61,68
PL/I 61,68
SYSOUT 51,61

default names 21,22
how to specify 21
naming conventions 19
organization 129,133

(see also LISTDS command)
record length 66
record format 66
storing of 104
type 63,66

data-set-list operand,
LINK 122
LISTDS 137
LOADGO 139
SUBMIT 195

data-set-name operand
(CALL) 55
SAVE subcommand 104

DATASET operand (ALLOCATE) 51
DC operand (LINK) 126
DCB 229
DCB parameters 54.1
DDNAME (see data definition (DD) name)
DEB 231
debugging (TEST) 201
DECLARE statement 52
defaults,

commands and subcommands 12
data set names 21g22
deletion characters 19

DEFER operand, AT subcommand 208
definitions, of terms 263
DELETE command 59
DELETE operand,

PROTECT 182
SEND subcommand (OPERATOR) 163

266 TSO Command Language Reference (Release 21)

Page of GC28-6732-2. Revised April 15. 1972. By TNL: GN28-2521

DELETE subcommand,
ACCOUNT 40
EDIT 81
TEST 215

deletion,
alias 185
character 97
data in the UADS 40
data set 59
data set member 59
lines of data 81
module under TEST 215
output data 167

delimiters 16
descriptive qualifier 20-23
DIR(integer) operand (ALLOCATE) 53
display,

CPU time 243
main storage 225
messages 131,145
registers 225
session time 243
storage map 232

DISPLAY subcommand (OPERATOR) 152
DOWN subcommand (EDIT) 83
DRIVER operand, MODIFY subcommand 158
DROP subcommand (TEST) 216
DSNAME operand,

MONITOR subcommand 160
STOPMN subcommand 165

DSORG (see data set, organization)
dump 232
DUMP operand, CANCEL subcommand 150
dynamic allocation 51

EDIT command, 61
BOTTOM subcommand 75
CHANGE subcommand 76
DELETE subcommand 81
DOWN subcommand 83
END subcommand 84
FIND subcommand 85
FORMAT subcommand 14,261
HELP subcommand 87
INPUT subcommand 89
INSERT subcommand 91
Insert/Replace/Delete function 93
LIST subcommand 95
MERGE 14,262
PROFILE subcommand 97
RENUM subcommand 99
RUN subcommand 101
SAVE subcommand 104
SCAN subcommand 105
TABSET subcommand 107
TOP subcommand 109
UP subcommand 110
VERIFY subcommand 111
subcommands 74

Index

edit mode 69
END statement (Command Procedures) 246
END subc omma nd,

ACCOUNT 44
EDIT 84
OPERATOR 155
OUTPUT 173'
TEST 217

EP(entry name) operand (LOADGO) 141
EQUATE operand, GETMAIN subcommand 221
EQUATE subcommand 218
EROPT operand (ATTRIB) 54.1
examples (see appropriate command or

subcommand)
EXEC command 113
execution, program

command procedure 113
load module 55,139
overlay 222
to stop TEST 240

EX PDT operand (ATTRIB) 54.1
EXT operand, MODIFY subcommand 159

feature, print-inhibit, for passwords 181
FIELD operand, LISTDCB subcommand 229
FILE operand (ALLOCATE) 52
FIND subcommand (EDIT) 85
FIXED operand,

CONVERT 27 ,259
RUN 189

FORMAT command 27,261
FORMAT subcommand (EDIT) 27,260
FORT command 261
FORT operand (RUN) 188
FORTx operand (EDIT) 61
FORTLIB operand (LINK) 123
FORTRAN 68,251
FREE command 115
FREE operand (RUN) 189
FREEMAIN subcommand (TEST) 220
functions, command'and subcommand 13

GETMAIN subcommand (TEST) 221
glossary 263
GO subcommand (TEST) 221
GOFORT operand (RUN) 189
group name, device 34,38

(see also UNIT(name) operand)

HELP command 117
HELP subcommand,

ACCOUNT 45
EDIT 87
OPERATOR 156
OUTPUT 174
TEST 223

HERE operand,
CONTINUE subcommand 171
OUTPUT 168

HIAR operand (LINK) 126

Index 267

Index

HISTORY operand (LISTALC) 129
hyphen,

as a continuation character 68,69
messages ending with 25

I operand, INPUT subcommand 89
identification, user 32,145
IDENTIFIER operand, CANCEL subcommand 150
identification qualifier 21
IMAGE operand., TAB SET subcommand 108
IN operand, CANCEL subcommand 150
increment operand, INPUT subcommand 89
indirect address 256
informational messages 25
INPUT('string') operand (TERMINAL) 197
INPUT operand (ATTRIB) 54.1
input mode 67., 89
INPUT subcommand (EDIT) 89
insert-data. operand, INSERT subcommand 91
INSERT subcommand (EDIT) 91
Insert/Replace/Delete function (EDIT) 93
integer operand, FREEMAIN subcommand 220
INTERCOM operand (PROFILE) 179
interruption, attention 24
IPLI operand (RUN) 188

JCL, conventional batch jobs 195
JCL operand (ACCOUNT),

ADD subcommand 34
CHANGE subcommand 38

job-name-list operand,
CANCEL 57
OUTPUT 167
STATUS 193

jobname operand,
CANCEL subcommand 150
DISPLAY subcommand 152

jobnames 195
JOBNAMES operand,

MONITOR subcommand 161
STOPMN subco~nand 165

KEYLEN operand, ATTRIB command 54.1

LABEL operand (LISTDS) 137
language processors,

how to compile and execute 101,187
how to load into main storage 139

LET operand,
LINK 124
LOADGO 141

LEVEL(index) operand (LISTCAT) 134
levels, message 25
LIB operand (LINK) 123
LINE(ATTN) operand (PROFILE) 178
LINE(character) operand (PROFILE) 178
LINE(integer) operand (EDIT) 65
line numbers, data set

assignment of 99
creation of 65

display of 95
system defaults 67
verification of 111

LINE operand,
EDIT 65
PROFILE subcommand 98

line pointer, current 70,75
line-delete characters 97,177
line deletetion 19
LINES(integer) operand (TERMINAL) 197
LlNESIZE(integer) operand (TERMINAL) 198
LINK command 121
Linkage Editor 121
LIST command 14,262
list of attributes 54.1
list-of-subcommands operand, AT

subcommand 207
LIST operand,

EXEC 114
PROTECT 182
SEND subcommand 163

LIST subcommand,
ACCOUNT 47
EDIT 95
.TEST 225

listing, output
data set contents 95
data set names 129,133
UADS data set 47,49

LISTALC command 129
LISTBC command 131
LISTCAT command 133
LISTDCB subcommand (TEST) 229
LISTDEB subcommand (TEST) 231
LISTDS command 137
LISTIDS subcommand (ACCOUNT) 49
LISTMAP subcommand (TEST) 232
LISTPSW subcommand (TEST) 233
LISTTCB subcommand (TEST) 234
LMSG operand,

RUN 189
RUN subcommand (EDIT) 102

load module,
link-edit of 121
load and execute 55,139
member of a partitioned data set 236

LOAD operand,
LINK 123
TEST 202

LOAD subcommand
LOADGO command
LOGOFF command
LOGON command
LOGON operand,

SEND 191

(TEST)
139
143

145

236

SEND subcommand (OPERATOR) 162
LOGON procedures 145
LPREC operand,

RUN 189
RUN subcommand (EDIT) 102

LRECL operand (ATTRIB) 54.1

268 TSO Command Language Reference (Release 21)

MAIL operand,
LISTBC 131
LOGON 146

MAP operand,
LINK 123
LOAD GO 141

MAXSIZE(integer) operand, ADD
subcommand 34

member names, partitioned data sets 20
MEMBERS operand (LISTALC) 129
MERGE command 14,262
MERGE subcommand (EDIT) 14,261
message levels 25 a

message number operand, SEND
subcommand 163

messages,
how to request 26
informational 25
mail 131,145
mode 25
notices 131,145
prompting 25
second-level 25,26
sending of 191

MOD operand (ALLOCATE) 52
mode, message 25
modes of operation (EDIT) 67
MODIFY subcommand (OPERATOR) 158
MONITOR subcommand (OPERATOR) 160
monitor, terminal and job activities 160
MSGID operand (PROFILE) 179
multiple jobs, submission of 195

N operand, DISPLAY subcommand 153
name qualifier, user supplied 20,21
NAME operand (LOADGO) 141
naming conventions, data set 19
NCAL operand (LINK) 124
NCP operand (ATTRIB) 54.1
NE operand (LINK) 125
new-line-number operand, RENUM

subcommand 99
new-name operand (RENAME) 185
NEW operand (ALLOCATE) 52
NEXT operand,

CONTINUE subcommand (OUTPUT) 171
OUTPUT 168

NO operand, MODIFY subcommand 158
NOACCT operand, ADD subcommand 34
NOBREAK operand (TERMINAL) 198
NOCALL operand (LOADGO) 141
NOCHAR operand,

PROFILE 178
PROFILE subcommand (EDIT) 97

NOCLEAR operand (TERMINAL) 198
NOCP operand (TEST) 202
NODC operand (LINK) 146
NODEFER operand, AT subcommand 208
NOHIAR operand (LINK) 126
NOINPUT operand (TERMINAL) 198
NOINTERCOM operand (PROFILE) 179

NOJCL operand, ADD subcommand 35
NOLET operand,

LINK 124
LOADGO 141

NOLIM operand, ADD subcommand 34
NOLINE operand.,

PROFILE 179
PROFILE subcommand 98

NOLlNES operand (TERMINAL) 197
NOLIST operand (EXEC) 113
NOMAIL operand,

LISTBC 131
LOGON 146

NOMAP operand,
LINK 123
LOADGO 141

NOMSGID operand (PROFILE) 179
NONCAL operand (LINK) 124
NONE operand (LINK) 125
NONOTICES operand,

LISTBC 131
LOGON 146

NONarIFY operand (SUBMIT) 196
NONUM operand (EDIT) 65
NOOL operand (LINK) 126
NOOPER operand, ADD subcommand 34
NOOVLY operand (LINK) 125
NOPAUSE operand,

CONTINUE subcommand 171
OUTPUT 168
PROFILE 179

NOPRINT operand,
LINK 123
OUTPUT 167

NOPROMPT operand,
INPUT subcommand 89
PROFILE 179

NOPURGE operand (DELETE) 60
NOREFR operand (LINK) 125
NORENT operand (LINK) 125
NO REUS operand (LINK) 125
NOSCAN operand (EDIT) 64
NOSCTR operand (LINK) 125
NOSECONDS operand (TERMINAL) 197
NOTEST operand,

LINK 126
RUN 189
RUN subcommand 102

NOTERM operand,
LINK 126
LOADGO 140

NOTICES operand,
LISTBC 131
LOGON 146

NOTIFY operand (SUBMIT) 195
NOT I ME OUT operand (TERMINAL) 198
NOW operand,

SEND 191
SEND subcommand 162

NOWRITE operand (PROTECT) 183
NOXCAL operand (LINK) 124

Index

Index 269

Page of GC28-6732-2, Revised April 15, 1972, By TNL: GN28-2521

Index

NOXREF operand (LINK) 124
NUM operand,

EDIT 65
LIST subcommand (EDIT) 95

object module,
debugging of 201
load into main storage 139

OBJECT operand (TEST) 202
OFF operand, TABSET subcommand 108
OFF subcommand (TEST) 237
OL operand (LINK) 126
old-line-number operand, RENUM

subcommand 99
old-name operand (RENAME) 185
OLD operand (ALLOCATE) 52
ON operand, TABSET subcommand 108
OPER operand, ADD subcommand 34
operands (see individual operand name)
operands, positional 15
operation, system 147
operational characteristics 197
OPERATOR command 147

CANCEL subcommand 150
DISPLAY subcommand 152
END subcommand 155
HELP subcommand 156
MODIFY subcommand 158
MONITOR subcommand 160
SEND subcommand 162
STOPMN subcommand 165

operator mode 25,147
OPT operand, MODIFY subcommand 159
OPTCD operand (ATTRIB) 54.1
OUT operand, CANCEL subcommand 150
OUTPUT command, 167

CONTINUE subcommand 171
END subcommand 173
HELP subcommand 174
SAVE subcommand 176

output, batch jobs 167
OUTPUT operand (ATTRIB) 54.1
OVLY operand (LINK) 125

parameter string operand (CALL) 55
parameters, passing of 55
parameters operand, RUN subcommand 102
PARM(address-list) operand, CALL

subcommand 210
partitioned data sets 20
password,

for a data set 181
for EDIT 67
for LOGON 145

password data set 183
password operand,

ADD subcommand 33
CHANGE subcommand 37

passwordl operand (PROTECT) 182
password2 operand (PROTECT) 182

PAUSE operand,
CONTINUE subcommand 171
OUTPUT 168
PROFILE 179

PL/I, testing facilities of 102 1 188
PLILIB operand (LINK) 123
positional operands 15
PRINT (data-set-name) operand, LISTDCB

subcommand 229
print-inhibit, for passwords 181
PRINT operand,

LINK 123
OUTPUT 167

PROC operand (LOGON) 145
PROC statement 247
procedure,

LOGON 145
names 33
resident in UADS 29,36

procedure operand, ADD subcommand 33
PROFILE command 177
PROFILE subcommand (EDIT) 97
program, user's,

load module 55,139
overlay 222
stop TEST 240

program products, additional
information 251

Program Status Word 233
PROMPT operand,

INPUT subc ommand 89
PROFILE 179

prompting messages 25
PROTECT command 181
protection, data set 181
PSW 233
purge, data set 59
PURGE operand (DELETE) 59
PWREAD operand (PROTECT) 181
PWWRITE operand (PROTECT) 181

Q operand, DISPLAY subcommand 152
qualifiers, descriptive 20-23
QUALIFY subcommand (TEST) 238

R operand,
DISPLAY subcommand 153
INPUT subcommand 89

RECFM operand (ATTRIB) 54.1
record format, data set 67,54.1
REFR operand (LINK) 125
region size,

for users 34
how to specify 158

register,
initialization under TEST 212
notation used with TEST 255

REGSIZE operand, MODIFY subcommand 158
relative address 255

270 TSO Command Language Reference (Release 21)

Page of GC28-6732-2, Revised April 15, 1972, By TNL: GN28-2521

releasing,
allocated data set 115
main storage 237

RENAME command 185
renaming, data set 185
RENT operand (LINK) 125
REPLACE operand (PROTECT) 182
RES operand (LOADGO) 140
restart, test program 222
RETPD operand, ATTRIB command 54.1
retrieval~ data 95
RETURN(address) operand~ CALL

subcommand 210
REUS operand (LINK) 124
RUN command 187
RUN subcommand"

EDIT 101
TEST 240

SAVE subcommand,.
EDIT 104
OUTPUT 176

SCAN operand (EDIT) 64
SCAN subcommand (EDIT) 105
scanning" syntax" language
statements 68,105

SCRSIZE operand (TERMINAL) 198.
SCTR operand (LINK) 125
SECONDS operand (TERMINAL) 197
SEND command 191
SEND subcommand 162
SESS operand,

MONITOR subcommand 160
STOPMN subcommand 165

session" user
control of 13
time used 243

SHR operand (ALLOCATE) 52
SIZE(integer) operand, ADD subcommand 34
SIZE operand (LINK) 125
SMF operand" MODIFY subcommand 159
SMSG operand,

RUN 189
RUN subcommand (EDIT) 102

SNUM operand" LIST subcommand (EDIT) 95
SP (integer) operand"

FREEMAIN subcommand 220
GETMAIN subcommand 221

SPACE(quantity, increment) operand
(ALLOCATE) 53

SPACE operand,
MONITOR subcommand 161
STOPMN subcommand 165

SPREC operand,
RUN 189
RUN subcqmmand (EDIT) 102

start,
execution of a test program 201
terminal session 145

STATUS command 193

STATUS operand"
LISTALC 129
LISTDS 137
MONITOR subcommand 161
STOPMN subcommand 165

STOPMN subcommand 165
storage map 232
STRING operand,

PROTECT 183
Insert/Replace/Delete function 93

structure, command 15
subcommand,

definition of 18
ADD (ACCOUNT) 32
Assignment of Values Function

(TEST) 205
AT (TEST) 207
BOTTOM (EDIT) 75
CALL (TEST) 210
CANCEL (OPERATOR) 150
CHANGE (ACCOUNT) 37
CHANGE (EDIT) 76
CONTINUE (OUTPUT) 171
COpy (TEST) 212
DELETE (ACCOUNT) 40
DELETE (EDIT) 81
DELETE (TEST) 215
DISPLAY (OPERATOR) 152
DOWN (EDIT) 83
DROP (TEST) 216
END (ACCOUNT) 44
END (EDIT) 84
END (OPERATOR) 155
END (OUTPUT) 173
END (TEST) 217
EQUATE (TEST) 218
FIND (EDIT) 85
FORMAT (EDIT) 14,259
FREEMAIN (TEST) 220
GETMAIN (TEST) 221
GO (TEST) 222
HELP (ACCOUNT) 45
HELP (EDIT) 87
HELP (OPERATOR) 156
HELP (OUTPUT) 174
HELP (TEST) 223
INPUT (EDIT) 89
INSERT (EDIT) 91
Insert/Replace/Delete Function

(EDIT) 93
LIST (ACCOUNT) 47
LIST (EDIT) 95
LIST (TEST) 225
LISTDCB (TEST) 229
LISTDEB (TEST) 231
LISTIDS (ACCOUNT) 49
LISTMAP (TEST) 232
LISTPSW (TEST) 233
LISTTCB (TEST) 234
LOAD (TEST) 236

Index

Index 271

Index

subcommand (continued)
MERGE (EDIT) 14,262
MODIFY (OPERATOR) 158
MONITOR (OPERATOR) 160
OFF (TEST) 237
PROFILE (EDIT) 97
QUALIFY (TEST) 238
RENUM (EDIT) 99
RUN (EDIT) 101
RUN (TEST) 240
SAVE (EDIT) 104
SAVE (OUTPUT) 176
SCAN (EDIT) 105
SEND (OPERATOR) 162
STOPMN (OPERATOR) 165
TABSET (EDIT) 107
TOP (EDIT) 109
UP (EDIT) 110
VERIFY (EDIT) 111
WHERE (TEST) 241

SUBMIT command 195
SUBMIT operand, MODIFY subcommand 158
symbol operand (EQUATE) 218
symbol-list operand" DROP subcommand 216
symbol table 218,,243
symbolic address 255
symbolic values y command procedures 247
symbols " equating addresses to

(TEST) 218,221
syntax, command language 15
syntax checking 68" 123

(see also SCAN operand (EDIT»
SYNTAX operand, HELP subcommand (see

subcommand, HELP)
SYSNAMES operand (LISTALC) 130
SYSOUT(class operand (FREE) 115
SYSOUT data set"

deleting 115,,167
type 52

SYSOUT operand (ALLOCATE) 52
SYSRC operand, WHEN statement 249
system,

control of 147
status of 195

SYS1,. BRODCAST (see broadcast data set)

T operand,
DISPLAY subcommand 153
MONITOR subcommand 160

tab settings 71,107
TABSET subcommand 107
tabulation characters 71
Task Control Block (TCB) 234
TERMINAL command 197
terminal session,

beginning 145
ending 143

TERM operand"
LINK 126
LOADGO 1.40

terminal characteristics 197
TEST command 201

Assignment of Values function 205
AT subcommand 207
CALL subcommand 210
COpy subcommand 212
DELETE subcommand 215
DROP subcommand 216
END subcommand 217
EQUATE subcommand 218
FREEMAIN subcommand 220
GETMAIN subcommand 221
GO subcommand 222
HELP subcommand 223
LIST subcommand 225
LISTDCB subcommand 229
LISTDEB subcommand 231
LISTMAP subcommand 232
LISTPSW subcommand 233
LISTTCB subcommand 234
LOAD subcommand 236
OFF subcommand 237
QUALIFY subcommand 238
RUN subcommand 240
WHERE s ubcomma nd 241

test mode 25,201
TEST operand,

LINK 126
RUN 189
RUN subcommand (EDIT) 102

TEXT operand"
SEND subcommand 162
EDIT 63

TIME command 243
TIMEOUT operand (TERMINAL) 198
TOP subcommand (EDIT) 109

U=user identification operand, CANCEL
subcommand 151

UADS 29,41
unit address operand. CANCEL subcommand

151
UNIT (name) operand (ACCOUNT) "

ADD subcommand 34
CHANGE subcommand 38

unit type 37
UP subcommand (EDIT) 110
user attribute data set 29,41
user identification 20,32
user identify operand, ADD subcommand 32
user profile 97,177
USER(user identification list) operand,

SEND subcommand 162
USER=NMBR operand, DISPLAY subcommand 153

I- USING operand (ALLOCATE) 53

272 TSO Command Language Reference (Release 21)

value-list operand (EXEC) 113
VERIFY subcommand (EDIT) 111
VL operand, CALL subcommand 210
volume allocation 53
VOLUME(serial) operand (ALLOCATE) 53
VOLUMES operand (LISTCAT) 133

WHEN statement 249
WHERE subcommand (TEST) 241

XCAL operand (LINK) 124
XREF operand (LINK) 124

YES operand, MODIFY subcommand 159

Index

Index 273

IBM System/360 Operating System:
Time Sharing Option
Command Language Reference GC 28-6732-3

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests. please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? ___ _
Number of latest Technical News1etter (if any) concerning this publication: ____________ _
Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. Elsewhere, an
IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

GC 28-6732-3

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

o
S
g
"11
o
ii
~
o
::s

OQ

r-
:i"
CD

I
Fold Fold

--------------------~

Business Reply Mail
No postage stamp necessary if mailed in the U.S,A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 058, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81
Poughkeepsie
New York

I
I
I
I

I
I
I
I
I
I
I
I
I

----------------~
Fold

lUID~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c
i.n

G)
(")

~
I

0-
"'-l
w
N
I

W

GC28-6732-3

lUIDOO
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

V1

~
CD
3 " W
0-
o
o
V1

-I
V1 o
()
o
3

~
:J
a..

b
:J

(Q
C
o

(Q
CD

;;t:I
CD

ro'
m
:J
()
CD

~
:J

CD
0..

G)
()
N
00
I

0-
'J
W
N
I

W

	001
	002
	003
	004
	005
	006
	007
	008.0
	008.1
	008.2
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054.0
	054.1
	054.2
	054.3
	054.4
	054.5
	054.6
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	replyA
	replyB
	xBack

