
Systems Reference Library

IBM System/360 Operating System:

Time Sharing Option Guide

OS Release 21

This publication describes the concepts, features and
implementation of TSO, a general purpose time-sharing facility
operating under the MVT configuration of the control program.
This manual is intended for those who design, generate, and
maintain a TSO installation. Topics discussed are:

• The capabilities and advantages of time sharing in general and
TSO in particular.

• The programming languages and system facilities available to
a TSO terminal user.

• The system configurations TSO requires.
• How to generate and maintain a TSO system.
• The program Products available with TSO.

Information in this publication for TSO with the Model 65
Multiprocessing (M65MP) configuration is for planning purposes
until that item is supported.

The prerequisite publication is:

IBM System/360 Operating System: MVT Guide, GC28-6720.

File No. S360-20
Order No. GC28-6698-5 OS

Sixth Edition (July, 1972)

This is a reprint of GC28-6698-4 incorporating changes released in the following
Technical Newsletter:

GN28-2519 (dated April 15, 1972)

This edition applies to release 21 as updated by component release 3608-0S-586, of IBM
System/360 Operating System, and to all subsequent releases until otherwi~e indicated in
new editions or Technical Newsletters. Changes are continually made to the information
herein; before using this publication in connection with the operation of IBM Systems,
consult the latest IBM System/360 and System/370 Bibliography, Order No. GA22-6822, and
the current SRL Newsletter; Order No. GN20-0360, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1969,1970,1971,1972

This publication describes the concepts, features
and implementation of TSO, a general purpose
time-sharing facility operating under the MVT
configuration of the control program. This manual
is intended for those who design, generate, and
maintain a TSO installation.

This publication discusses:

• The general capabilities and advantages of TSO.

• The command language, programming languages
and system facilities available to a TSO terminal
user.

• The system elements added to MVT for TSO.

• The generation and maintainance of a system
with TSO.

There are four appendixes:

• A list of the TSO commands by function.

Preface

• A list of the IBM Program Products available for
TSO users, and references to further
documentation for them.

• A list of the Time Sharing Driver Entry Codes.

• A list of terminal messages requiring installation
action.

There is a glossary of terms, a bibliography of
related reading, and an index.

The prerequisite publication is:

IBM System/360 Operating System: MVT Guide,
GC28-6720.

Note: For planning purposes, this manual includes
information for components and capabilities that
have been announced for availability after the
delivery date for the Time Sharing Option. See
your local IBM representative for the availability
date for:

• TSO with Model 65 Multiprocessing.

4 TSO Guide (Release 21)

Summary of Amendments 7

Introduction 9
Advantages of a Time Sharing System 10
Using a Terminal 11

Starting and Stopping a Terminal Session . 11
Working at the Terminal 12

System Configuration 13
Terminals 13
Transmission Control Unit 14
Swap Data Set Devices . . 14

The Relationship of TSO to the Operating System 15
Execution of Background Jobs from the Terminal 16
Foreground-Background Compatibility 16
Restrictions and Limitations . 16
System Control 17
Job Definition and Scheduling . . 17
Tuning the Time Sharing System 17

Monitoring System Use and Performance 18
System Security 19

User Verification. . 19
Program Protection . 20
Data Set Security. . 20
Authorizations . . . 20

Capabilities of the TSO Command Language 20
IBM Program Products 22

Problem-Solving 22
Programming 22
Text and Data Handling 23

Command Language Facilities
Conventions at the Terminal

Logging On .
Input Editing
Entry Modes .
The Attention Key
Data Set Naming Conventions.

Data Entry
Creating Data Sets . .
Entry Modes for EDIT
Input Mode
Edit Mode
Modifying Data Sets .

Data Set Management Commands
TSO Data Utilities

Text-Handling
Data Set Manipulation

Compiling and Executing Programs
Remote Job Entry ..
System Control . . .

User Authorization
System Operation
Command Procedures

Other Commands

Programming at The Terminal
COBOL

Entering the Source Program
Compiling a COBOL Program
Program Execution .
Interactive Programs
A COBOL Example

FORTRAN
Entering the Source Program

" 24
24
24
25
26
26
26
27
27
28
28
28
28
29
29
29
30
30
32
32
32
32
33
34

35
36
36
37
38
38
39
41
41

Contents

Compiling a FORTRAN Program 41
Testing FORTRAN Programs 42

PL/I 43
Entering a PL/I Program . 44
Compiling a PL/I Program 44
Program Execution . 44

Assembler Language. . 44
Assembling the Program 44

Test Mode. 45
Other Compilers 45

A Compiler Command Procedure 46
Nested Procedures 47

Problem Solving 49
ITF: BASIC 49
ITF: PL/I 51
Code and Go FORTRAN 52

System Summary. 55
The Time Sharing Driver 56
Control Routines 57

The Time Sharing Control Task 57
The Region Control Task . . . 59
LOGON/LOGOFF. 60
The Terminal Monitor Program 61
TEST. 62
Service Routines 63
Command Processors and User Programs. 64

TerminalI/O ' 65
The Message Control Program 65

Mixed Environment MCPs 65
Terminal Interfaces .'. . . 65
Multi-Terminal Message Processors 66

Overview and Storage Map 67
Time Sharing Algorithms 68

Time Slices 69
Major Time Slices 70
Minor Time Slices 72

System Implementation 75
Tailoring a Message Control Program 75

Mixed Environment MCPs 75
TSO-Only MCP 76
LINEGRP Macro Instruction 77
LISTT A Macro 81
TSOMCP Macro. 82

Writing Cataloged Procedures for TSO 86
Message Control Program. . 86
Time Sharing Control Task . 87
Background Reader (BRDR) 89
TSO Trace Writer 90
Logon Cataloged Procedure . 91

TSO System Parameters 92
The Time Sharing Control Task Parameters 92
Driver Parameters 93
Buffer Control Parameters 95
System Parameter Format . 96

Tuning a System With TSO 102
Using TSO Trace. 106

Writing Installation Exits for the SUBMIT Command. 108
Writing Installation Exits for the OUTPUT, STATUS,

and CANCEL Commands. . . . 110
Writing a LOGON Pre-Prompt Exit. 111

Contents 5

Storage Estimates
Main Storage Requirements

MVT Basic Fixed Requirement
Nucleus
Master Scheduler Region
Link Pack Area
System Queue Area . .

Message Control Program Requirement
Time Sharing Control Region Requirement
Dynamic Area Requirements
Foreground Region Requirement .

Auxiliary Storage Requirements
Swap Data Sets
System Libraries and Data Sets

Appendix A: TSO Commands
Data Management. .
Language Processors .
Program Control

Figures

Figure 1. Simple Identification Scheme
Figure 2. User Identification Hierarchy
Figure 3. Example of Data Set Naming Conventions
Figure 4. Program Control Commands
Figure 5. A Command Procedure .
Figure 6. Entering a COBOL Program
Figure 7. Compiling a COBOL program
Figure 8. Defining the Terminal as a File
Figure 9. Terminal Session Creating a COBOL

Program.
Figure 10. FORTRAN Syntax Checker Diagnostic
Figure 11. Sample of FORTRAN Compiler Output
Figure 12. A Command Procedure to Invoke the

PL/I (F) Compiler
Figure 13. Use of a Command Procedure.
Figure 14. Implicit use of Procedure
Figure 15. A Command Procedure to Invoke a User

Program.
Figure 16. A Command Procedure for a

Compile-Load-Go Sequence
Figure 17. Using a Compile-Load-Go Command

Procedure
Figure 18. ITF: BASIC Sample Session.
Figure 19. ITF: PL/I Sample Session .
Figure 20. Code and Go FORTRAN Sample Session
Figure 21. TSO Control Flow Diagram .
Figure 22. The Time Sharing Driver
Figure 23. The Time Sharing Control Task
Figure 24. The Region Control Task
Figure 25. The LOGON/LOGOFF Scheduler
Figure 26. LOGON Linkage.

6 TSO Guide (Release 21)

115
115
115
115
115
116
116
116
116
117
117
117
117
118

119
119
120
120

25
25
27
31
33
36
37
38

40
42
42

46
47
47

47

48

48
50
52
54
55
57
58
59
60
61

Remote Job Entry
System Control
Session Control .

Appendix B: Program Products.

Appendix C: Driver Entry Codes

Appendix D: Terminal Message Requiring Installation
Action

Appendix E: Glossary

Bibliography

Index

Figure 27. Terminal Monitor Program
Figure 28. Service and TEST Routine
Figure 29. TCAM Message Control Program
Figure 30. System Overview
Figure 31. Typical Main Storage Map
Figure 32. Queue Service Time
Figure 33. Minor Time Slice .
Figure 34. Job Stream to Tailor Mep
Figure 35. Sample MCP.
Figure 36. Sample MCP .
Figure 37. Sample MCP Start Procedures
Figure 38. Sample Cataloged Procedure to Start

Time Sharing Control Task
Figure 39. Sample Background Reader. (BRDR)

Procedure
Figure 40. Sample TSO Trace Start Procedure
Figure 41. Sample LOGON Cataloged Procedure
Figure 42. TSO System Parameter Syntax (Part I of 4)
Figure 43. Sample TSO System Parameters
Figure 44. Summary of Tuning Objectives for Various

Techniques
Figure 45. Sample Use of the UNITNAME Macro

Instruction .
Figure 46. SVC Modules useful for Residence in TSO
Figure 47. Sample Job System to Run TSO Trace

Data Set Processor
Figure 48. Format of the TS Trace Data Set
Figure 49. Portion of Sample PL/I Logon Pre-Prompt

Exit.
Figure 50. Swap Allocation Unit Sizes

121
121
121

122

124

128

140

148

149

61
63
66
67
68
69
70
77
85
85
87

88

90
90
92
97

101

102

103
105

106
107

114
117

Publications Change

Information describing job priorities, dispatching, and
classes, formerly in IBM System/360 Operating System:
Concepts and Facilities, GC28-6535, is now contained in
IBM System/360 Operating System: Introduction,
GC28-6534.

SV C Restrictions

Programming Change

SVC 93 (TGET /TPUT) can be used for certain
background purposes.

Dynamic Allocation

Programming Change

A dynamically allocated data set uses 50 tracks for a
primary allocation and 10 for secondary allocation.

Time Sharing Driver Parameters

Rewritten section

The description of the Time Sharing Driver start
parameters has been rewritten to show dependencies
between parameters.

TSC START PARAMETERS

Programming Change
Two new parameters, TSCREGSZ and DUMP have
been added. TSCREGSZ allows an installation
to specify a size for the TSC region. DUMP
reserves the swap data sets so they are not
initialized during a restart.

Summary of Amendments
for GC28-6698-4

as Updated by GN28-2519
Component Release 360S-0S-586

Dynamic Specification of DCB Parameters

The A TTRIB command, which provides the TSO user
with the capability for assigning data set attributes (DCB
parameters) dynamically from the terminal, has been
added.

Summary of Amendments
for GC28-6698-4

OS Release 21

Tuning the TSO system

New Section

A new section has been added to describe TSO tuning
techniques.

Bibliography

New Section

A discussion of related reading, formerly in the Preface,
has been moved to the Bibliography and rewritten.

Swap Data Sets

Clarification

Swap data sets must be allocated along cylinder
boundaries.

START COMMAND

Summary of Amendments
for GC28-6698-3

as Updated by GN28-2502
OS Release 20.6

Programming Chan~e
Most of the TS start parameters can be"
altered by the operator using the START
command.

MISCELLANEOUS CHANGES

Swap Data Sets
Swap data sets must begin on a cylinder
boundary. Parallel data sets must reside
on the same device types.

Summary of Amendments 7

Summary of Amendments
for GC28"6698-3
as Updated by GN28-2497
OS Release 20.1

Teletype ASR
Use of paper tape reader/punches attached to
Teletype ASR terminals are not supported.

Restrictions to Foreground Programs
Tape and mult1volume data sets are not
suppor-ted by most Command Processors and
cannot be dynamically allocated.

TSOMH Macro Instruction
The NOLOG operand has been removed.

2260, 2265
The SCRSIZE operand has changed to SCREEN.
The valid screen sizes are 12x80, 12x40, 6x40,
and 15K64.

DIAL Operand
DIAL-Y.ES is default for TERM=3335.

FEATURE Operand
Two defaults have changed.

Background Reader for SUBMIT Command
The output of the back round reader for the
SUBMIT command is placed on SYS1.SYSJOBQE.

ADDR ore rand
On y one station identification character can
be specified for each non-switched line with
a 1050 terminal attached to it.

OS PL/I Checkout comf5iler
The t1tles of pu llcations describing the
checkout compiler are added.

Swap Data Sets
IBM 23,,-rs not supported as a swap device.

Broadcast Data Set
The broadcast data set contains a list of
valid users and should not be password
protected.

EDIT Default Line Pointer
The default l1ne p01nter is positioned at
the last. line referenced.

FORTRAN
The EDIT FORT operand has no default.

Relative Line Number
The order of relative line numbers is
determined by the MCP start cataloged
procedure.

Defining a New UADS
The new UADS snould be defined with a file
name of SYSUADS and a data set name other
than SYS1.UADS.

Storafie Estimates
T e MCP storage requirements are increased.

Drive Entry Codes CLASS
CLASS refers ~ CODES parameter of the
TSO Trace Data Set Processor.

8 TSO Guide (Release 21)

Summary of Amendments
for GC28-6698-3
OS Release 20.1 (June)

TMP Stee Library
A d1scuss1on of the advantages of concate
nating Command Library to SYS1.LINKLIB, the
Linkage Library.

OS PL/I Checkout Compiler
A d1scussion of the uses and facilities of the
Checkout Compiler.

2260 2265
The macro in.structions for generating the MCP
have additional operands for 2260 and 2265
support.

Summary of Amendments
for GC28-6698-2
OS Release 20.1 (March)

System Implementation
A sect10n has been added describing the
techniques used in implementing a TSO system.
This section consists of discussions of:

Generating a Message Control Program
Writing Cataloged Procedures Used with TSO
Specifying TSO System Parameters
Tuning the Time Sharing Driver
Writing Installation Exits for:

The SUBMIT Command
The OUTPUT, STATUS, and CANCEL Commands
The LOGON Command

Storage Estimates
Most of the 1nforrnation in the Storage
Estimates section, including the sample TSO
configuration, has been deleted and moved to
the publication IBM System/J60 0terating
System: Storage E~t1mates, GC28- 551.

Driver Entry Codes
An append1x has been added containing the
format and meaning of the TSEVENT macro
instructions used to notify the Time Sharing
Driver of system events.

Terminal Messages ReSuirina Installation Action
An append1x has een a ded conta1n1ng messages
which when received at a terminal requires the
installation to take certain actions.

Message Control Program Assembly Error Messages
An append1x has been added contaln1ng the
text of error messages generated by the macro
instructions used to generate the Message
Control Program.

Introduction

The IBM System/360 Operating System Time Sharing Option (TSO) adds general purpose time
sharing to the facilities already available through the MVT configuration of the control program. As
a result, the system provides a number of new capabilities:

• It gives users access to the system through a command language which is entered at remote
terminals -- typewriter-like keyboard-printer or keyboard·-screen devices connected through
telephone or other communication lines to the computer.

• It gives those who may not be programmers the use of data entry, editing, and retrieval facilities.

• It makes the facilities of the operating system available to programmers at remote terminals to
develop, test, and execute programs conveniently, without the job turnaround delays typical of
batch processing. Both terminal-oriented and batch programs can be developed at terminals.

• It allows the management of an installation to dynamically control the use of the system's
resources from a terminal.

• It creates a time-sharing environment for terminal-oriented applications. Some applications, such
as problem-solving languages, terminal-oriented compilers, and text-editing facilities, are available
as IBM Program Products. Installations can add others suited to their particular needs.

A major consideration in the design of TSO is ease of use. The way ~n which a user
communicates with the system can be kept simple to encourage people who may not be
programmers to take advantage of the speed and versatility of a computing system to solve their
problems. There are four ways in which TSO achieves this goal:

• The physical medium is easy to use. Most users are already familiar with the conventional
typewriter keyboard. Information is easy to enter through the terminal's typewriter-like keyboard,
and no complex procedures are required to obtain output from the computer.

• The way in which a terminal user defines his work is uncomplicated. He enters commands which
resemble English language words to describe the general function he wants to accomplish. If the
user chooses, he can create his. own commands and command system.

• If a user doesn't know how to define his work to the system, he can type HELP and receive
information pertinent to the type of operation he is trying to perform. In cases, he doesn't need
to enter detailed parameters describing every aspect of the work he is doing; the system uses
default values that are appropriate for most jobs. If he fails to provide parameters the system
needs to do the work he requested, the system will ask him for the missing information, item by
item, by "prompting" him for it in a conversational way.

• The system keeps the terminal user aware of what is happening, so he knows what to do next.
He "converses" with the system on a step-by-step basis. The system lets him know when it is
ready to accept input from him, and it tells him immediately when there has been change in the
status of his program. If the user receives a message he doesn't understand, he can request more
information about the situation simply by typing a question mark. The messages he receives use
uncomplicated language to describe the situation. When the messages become familiar to him, he
may request the system to use the abbreviated messages that are available with some of the
programming languages.

Introduction 9

Advantages of a Time Sharing System

In a simple batch processing system, one job at a time has access to the resources of the system
(main storage, the central processing unit, and I/O equipment). A programmer's.job is loaded into
the computer and its operation is controlled by the system operator. The job acquires the resources
it needs as it runs to completion; resources the job doesn't need are unused. When the job is
finished, results are produced, a new job is loaded and executed, and the output for the completed
job (for example, a printout) is sent to the programmer. An inherent problem with this type of
processing is turnaround time, the elapsed time between the submission of a job to the computer
center for processing and the return of results to the programmer. Another problem is the inefficient
use of resources.

In a multiprogramming system (e.g., a system that operates under the control of the MVT
configuration of the System/360 Operating System), several jobs share the resources of the system
concurrently, so the use of resources is much more efficient. Although jobs are processed faster, the
operator at the system console still controls the system, and the programmer still must wait for
results to be returned to him.

A time sharing system reduces delays in receiving results. A larger number of jobs share the
resources of the system concurrently, and the execution of each job is controlled primarily by a
remote terminal user. Thus, time sharing can be defined as the shared, conversational, and
concurrent use of a computing system by a number of users at remote terminals.

The system resources shar~d by the time sharing jobs (foreground jobs) entered from the
terminals are also shared by batch jobs (background jobs) that are being processed at the same
time. Each foreground main storage region handles many active foreground jobs, although only one
job is actually in the region at any moment in time. A foreground job is assigned to a main storage
region and has access to the system's resources for a short period of time called a time slice. The
other foreground jobs assigned to that region are saved on auxiliary storage while the job being
executed in main storage receives a time slice.

At the end of the job's time slice, or if the job enters the wait state for terminal I/O, the main
storage image of the job (that is, programs, work areas, and associated control blocks) is stored on a
direct access device and another job is brought into the same region of main storage and given a
time slice. TSO schedules a similar time slice for each ready foreground job. The apportionment and
duration of time slices is disussed in detail in the "System Summary" section of this manual.

The process of copying job images back and forth between main and auxiliary storage is called
swapping. Writing an image to auxiliary storage is a swap out; reading one into main storage is a swap
in.

All foreground jobs are assigned the same priority. The order in which foreground and
background jobs are processed is determined by the operating system task dispatcher and the TSO
control routines. Job priorities, job classes, and the dispatching of tasks are discussed in IBM

I System/360 Operating System: Introduction, GC28-6534.

The apportionment of slices of processing time to foreground jobs is not apparent to a terminal
user. At the terminal, the response of the system to requests for action is fast enough so that he has
the impression that he is the sole user. As far as the user is concerned the distinctive feature of a
time-sharing system is the way in which it "converses" or interacts on a step-by-step basis with him
as he does his work. He is prompted for information the system needs to execute his job, he
receives immediate response to his requests for action, and he is notified immediately of errors the
system detects, so that he can take corrective action at once.

10 TSO Guide (Release 21)

In general then, a time-sharing system differs from a batch processing system in three ways:

1. A terminal user concurrently shares the resources of a computing system with other terminal
users.

2. A terminal user can enter his problem statements and other input into the system as he develops
them, and he receives immediate results. Thus the problem of turnaround time (the amount of
time between when he submits his job for processing and when he receives results) inherent with
batch job operations is greatly reduced.

3. A terminal user is constantly aware of the progress of his job. He requests results from the
system one step at a time, he is prompted for any additional information the system requires, he
receives immediate notification of the status of his work, and he is apprised of errors as soon as
the system detects them. The terminal user can change his problem statements or correct errors
immediately after entering each statement or at any time during the current terminal session.
Thus, he minimizes the need for reruns.

Using a Terminal

A terminal session is designed to be an uncomplicated process for a terminal user: he identifies
himself to the system and then issues commands to request work from the system. As the session
progresses, the user has a variety of aids available at the terminal which he can use if he encounters
any difficulties.

Commands specifically tailored to an installation's needs can be written and added to the
command language or used to replace IBM-supplied commands.

Starting and Stopping a Terminal Session

When the user has some work to perform with the system, he dials the system number if he has a
terminal on a switched line, or he turns the power on if he has a terminal on a non-switched line. A
switched line is one in which the connection between the computer and a terminal is established by
dialing the system's number from the terminal. A non-switched line is one with a connection
between the computer and a terminal. With an IBM 2741 terminal or an IBM 1050 terminal, the
system responds by unlocking the keyboard. In any case, the user identifies himself by entering
"LOGON" and one or more of the following fields:

• A user identification, for example, the user's name or initials, which the system will use to identify
his programs and data sets.

• A password, assigned by his installation, usually known only to the user and the system manager.

• An account number, which defines the account in which his system usage totals are to be
accumulated.

• A LOGON procedure name, which identifies a cataloged procedure that specifies what system
resources he will be using.

The user may omit the last three fields if the system manager has defined only one account number
and LOGON procedure for him and no password is used.

Introduction 11

The LOGON processor verifies that the user is an authorized TSO user, then checks the
password, if it is required, and account number in a record it keeps of user attributes, called the
User Attributes Data Set (UADS). From the attributes, the LOGON command operands, and a
LOGON cataloged procedure, the system builds a user profile, which is used to control the
processing of his job. The system assigns the user's job to a time-sharing (foreground) region of
main storage and allocates other resources, such as auxiliary storage space and user data sets
according to the LOGON procedure.

LOGON marks the start of a terminal session. When the user completes his work, he enters
"LOGOFF" to end the session. The system then updates his job's system use totals, releases resources
allocated to it, and releases the terminal from TSO. A session is also terminated any time the
terminal user enters LOGON to start a new session. In this case, the old session is terminated and a
new one is begun; the terminal is not released in the process.

Working at the Terminal

The user enters commands to define and execute his work at the terminal. He enters a command by
typing a command name, such as EDIT and possibly some additional operands. The system finds the
appropriate operands. The system finds the appropriate command processor--a load module in a
command library--and brings it into the foreground region assigned to the user for execution. For
example, in response to entering the EDIT command, the system brings in the EDIT command
processor, the data handling routine used to create and update data sets.

If a user does not enter all the operands associated with a particular command name, default
values are assumed where possible. If necessary operands are missing, the system prompts the user
for them with a message such as "ENTER DATA SET NAME." The user can reply with the missing
value, or enter a question mark for a further explanation of what the system needs. If the user
chooses, he can specify that prompting messages be suppressed.

A terminal user can also receive assistance through the HELP facility. He can request information
regarding the syntax, operands. or function of any command, subcommand, or operand. If he enters
HELP followed by a command name, he receives an explanation of the command and the operands
required with it. HELP followed by a subcommand name furnishes an explanation of the
subcommand if the user is working with the command at that time. Entering HELP by itself returns
a description of the command language, a list of the commands, and an explanation of how to use
HELP to obtain further information.

During a typical session, the user enters a series of commands to define and perform his work. If
the sequence is one that is used often, he can store the sequence in a data set and then execute the
sequence whenever he needs it by entering the EXEC commands.

The commands provided with the system handle data and program entry, program invocation in
either the foreground or the background, program testing, data management, and session and system
control. IBM Program Products are available to support problem solving, data manipulation, and text
formatting, to provide terminal-oriented language processors, and to make these processors more
convenient to use from the terminal.

12 TSO Guide (Release 21)

System Configuration

TSO is an extension of the MVT configuration of the control program on System/360 Models 50
through 195, or System/370 Models 145, 155, and 165. TSO also operates with the Model 65
Multiprocessing (M65MP) configuration. The minimum machine configuration for System/360
models must include 384K of main storage, the required I/O devices for MVT, plus at least one
each of the following:

• A terminal (IBM 1050, 2741, 2260 Local or Remote, 2265, or Teletype l Model 33 or 35 KSR
and ASR).

• A transmission control unit (IBM 2701, 2702, or 2703), unless all terminals are locally attached
2260 Display Stations.

• Sufficient direct access storage space (IBM 2301, 2311, 2303, 2305, 2314, or 3330) for
command libraries and system data sets.

• Sufficient direct access storage space for swap data sets.

In a System/360 with 384K of main storage, TSO is, in effect, a "dedicated" time sharing system.
In other words, with 384K the system can run as a time sharing system or as a batch job processing
system, but not both at the same time. To run both time sharing and batch jobs concurrently or to
execute on M65MP or System/370 models, at least 512K of main storage is required. At least 128K
of main storage is required for system generation.

Terminals

Some remote terminal suitable for interactive applications have keyboards for entering input data
and either typewriter-like printers or display screens. A remote terminal incorporates or is attached
to a control unit. The control unit is in turn connected to the system by either of two ways:

• Through a device such as a data set to a dialed (switched) line to the system.

• Through either a direct or a leased line to the system.

At the computer site the communication line connects to a Transmission Control Unit, which in
turn is attached to one of the computer system's multiplexor channels. The IBM 2260 Display
Station can be an exception to this general configuration. Its control unit, the IBM 2848 Display
Control, can be attached directly to a multiplexor or selector channel. This mode of operation is
called local attachment.

TSO uses the Telecommunications Access Method (TCAM) for terminal access. TSO provides
terminal handling programs for the following terminals:

• IBM 2741 Communication Terminal.

• IBM 1050 Printer-Keyboard.

• Teletype1 Model 33 and 35 KSR or ASR. (Paper tape is not supported with Teletype1.)

• IBM 2260 and 2265 Display Stations.

1Trademark of Teletype Corporation, Skokie, Illinois.

Introduction 13

The IBM 2741 Receive Interruption Feature and the Transmit Interruption Feature are
recommended for use with the 2741. These features are described in the publication IBM 2741
Communications Terminal. The Transmit Interrupt, Receive Interrupt, and Text-Timeout Suppression
features are recommended for use with the IBM 1050. 1050 multidrop is not supported. These
features are described in the publication IBM 1050 System Summary. Note that some of these
features are not available through the IBM 2701 Data Adapter Unit.2

Transmission Control Unit

TSO requires at least one of the following transmission control units to handle terminal
communications:

• IBM 2701 Data Adapter Unit.
• IBM 2702 Transmission Control.
• IBM 2703 Transmission Control.

The Terminal Interruption Features are recommended for use with the 2702 and 2703 transmission
control units and must be present if the terminals are to use the features. These units are described
in the following publications.

• IBM 2701 Data Adapter Unit, Component Description, GA22-6864.

• IBM System/360 Component Description, IBM 2702 Transmission Control, GA22-6846.

• IBM 2703 Transmission Control, Component Description, GA27-2703.

Swap Data Set Devices

The process of copying images back and forth between main and auxiliary storage is called swapping.
Writing an image to auxiliary storage is a swap out; reading one into main storage is a swap in. The
pre-formatted data sets into which jobs are written are called swap data sets. A swap data set is
divided into swap allocation units, each of which consists of a device-dependent number of 2048-byte
records. An integral number of swap allocation units, not necessarily contiguous, are assigned to
each job to contain the swapped out image of the job.

If there is more than one foreground region, they share the available swap data sets, but the cycle
of swapping for each region is essentially independent of other regions. However, the system avoids
queueing on swap data sets if possible.

TSO requires sufficient storage capacity on one or more of the following for swap data sets:

• IBM 2301 Drum Storage.
• IBM 2303 Drum Storage.
• IBM 2305 Fixed Head Storage, Model 1 or 2.
• IBM 2314 Direct Access Storage Facility.
• IBM 3330 Disk Storage Facility.

See the Storage Estimates section of this publication for information on swap data set sizes.

The record overflow feature is required for the devices used to store the swap data sets. One or
more data sets on any of the above devices can be used for swap data sets.

2Terminals which are equivalent to those explicitly supported may also function satisfactorily. The customer is
responsible for establishing equivalency. IBM assumes no responsibility for the impact that any changes to the
IBM-supplied products or programs may have on such terminals.

14 TSO Guide (Release 21)

The direct access storage space required for the swapped data may be divided among the devices
listed above in either of two ways. The user may specify that swapped data be distributed serially
among a hierarchy of data sets, or he may specify parallel distribution of data onto two or more
devices. With serial distribution, the first data set in the hierarchy is filled with swapped data, and
then the next data set in the hierarchy is used. For example, a drum, because of its higher access
speed, could be assigned as the first unit in the hierarchy, with a 2314 assigned to receive any
overflow of swapped data.

With the parallel distribution scheme, two or more devices are used concurrently to receive swap
data sets. Identical device types must be used with parallel swapping. The exact order in which data
sets are written on either of the devices is determined by the system, based on the I/O activity
taking place in the channel at the time of a swap out. For example, if the two data sets are on
devices on separate channels, swap performance improves substantially.

Before a terminal job can be swapped out of main storage, activity associated with the job must
be brought to an orderly halt. The halt must be performed in such a way that the job is not aware
of it, and information must be saved to restart the job when its next time slice is scheduled. The
orderly suspension of a job's activity before a swap out is called quiescing the job. Quiescing
includes the removal of the majority of the control blocks associated with the job from the system
queues so they can be written to the swap data set along with the contents of the main storage
region assigned to the job.

The Relationship of TSO to the Operating System

For the data processing center, TSO is compatible with operating system standard formats and
services, while providing the flexibility needed for various time sharing and terminal-based
applications.

TSO is not necessarily intended to be used as a dedicated time-sharing system, that is, a system
on which only time-sharing operations take place. TSO augments the facilities already available with
the operating system: batch processing, teleprocessing, and other data processing activities can take
place concurrently on the same system.

Once an installation has generated a system that includes TSO, time sharing operations can be
started and stopped at any time by the system console operator. The operator can specify how many
regions of main storage are to be assigned to time sharing users. Each region can serve many users,
whose programs are swapped back and forth between main and auxiliary storage. Time sharing, or
foreground operations, can take place concurrently with batch or background operations.
(Background jobs are not swapped.) If the user chooses, he can dedicate his system to time sharing
and run only foreground jobs .. If there are periods when TSO is not needed in the system, time
sharing operations can be stopped, and the system will then process background jobs in the usual
way with MVT and TCAM.

Terminal communications are handled by the Telecommunications Access Method (TCAM)
through an interface that allows the use of standard sequential access method I/O statements and
macro instructions.

All of the MVT facilities are available to a background job. Foreground jobs can use most of the
operating system access methods for data set access (e.g., BSAM, QSAM, BDAM etc.). All devices
available to these access methods are usable by foreground jobs. A detailed list of restrictions is in
the "Restrictions and Limitations" section of this manual.

Introduction 15

Execution of Background Jobs from the Terminal

In addition to the foreground execution of programs, TSO allows jobs to be submitted for execution
in the background, or batch, portion of the system. If his installation authorizes it, a user can submit
a background job at his terminal, be notified of the job's status, and then receive results of the job
at the terminal. If he chooses, he can specify that the output of his job be produced at the
computing center, rather than at the terminal.

Foreground-Background Compatibility

Because time sharing is carried out within the framework of MVT job and task management, the
foreground and background environments are compatible. TSO uses the same data formats,
programming conventions, and access methods as the rest of the operating system. The programming
languages and service programs available with TSO are compatible with their background
counterparts.

The TSO command language is also generally compatible with the Conversational Remote Job
Entry (CRJE) command language. Programs can be developed in the foreground and stored in
background libraries. These programs are compatible with other system programs. Most problem
programs can be executed in either the background or the foreground without revision or
recompilation.

Restrictions and Limitations

Certain facilities are unavailable to foreground jobs, although they remain available to background
jobs. These include:

• The BT AM and QT AM telecommunications access methods.

• The Graphics Access Method (GAM).

• The EXCP equivalents of the BT AM, QT AM, and GAM access methods.

• Main storage requests for hierarchy 1 (all foreground requests for main storage are allocated to
hierarchy 0).

• Use of Job Control Language in the foregn;mnd for other than single-step jobs (the TSO
command language is used to provide the equivalent of multi-step jobs).

• Checkpoint/Restart Facility (foreground requests for checkpoint are ignored).

• Rollout/Rollin Option.

• TESTRAN Facility.

• Multivolume and tape data sets are not supported by most Command Processors and cannot be
allocated dynamically.

SVC numbers 92 through 102 (decimal) are added to the system for TSO. The following SVCs
can be issued by problem programs in the foreground region:

• SVC 93--TGET /TPUT (execute terminal I/O).

• SVC 94--STCC (specify terminal control characteristics).

• SVC 95--TSEVENT (notify the supervisor of an event).

• SVC 96--STAX (specify a terminal attention exit).

16 T80 Guide (Release 21)

• SVC 97--Breakpoint (used by TEST command).

• SVC 98--PROTECT (protect a data set with a password).

• SVC 99--Dynamic Allocation (of a data set).

• SVC 100--Submit a job to the background.

• SVC 102--AQCTL -- used by TCAM to communicate with problem programs.

Of these, only SVC 98--PROTECT --can be issued by programs executing in the background.
SVCs 92 (TCB EXCP) and 101 (TCAM-TSO Communication) are used only by supervisor
programs.

Including TSO in a system adds no restrictions to programs executed in the background. For
example, other teleprocessing applications can be run simultaneously.

System Control

The management of an installation can shift most of the responsibility for controlling the time
sharing system from the operator at the system console to users at remote terminals, called control
terminals. A control terminal user can alter the system configuration to meet changing work loads.
For instance, he can assign an extra region during peak periods, and then release it to be used for
batch operations during slack periods. Such changes require no shutdown of TSO and are not
noticed by the users of other regions. Even the starting and stopping of TSO operations is
accomplished without shutting down the system or affecting background operations.

Job Definition and Scheduling

To the operating system, each terminal session from LOGON to LOGOFF is one terminal job,
corresponding to a single step batch job. The job control statements that define a terminal job are
stored in the LOGON procedure used to begin the session. The "EXEC" JCL statement in the
LOGON procedure identifies the program the user wants loaded into his region for execution. The
program may be the TSO-provided command language handler or an installation provided
application program.

An important feature of TSO is the dynamic allocation of data sets for time sharing users. A user
may defer definition of his data sets until he requires them. During LOGON processing, any data
sets named on Data Definition (DD) statements in the procedure are allocated to the terminal job.
Any data sets requiring volume mounting by the operator, must be defined here. The procedure also
includes dynamic DD statements (similar to a DD DUMMY), which reserve control block space for
data sets the user may allocate during the session. The dynamic allocation facility allows data sets to
be created, deleted, concatenated, or separated without previous allocation at the beginning of the
job step.

Tuning the Time Sharing System

In a time sharing system, execution time is divided among the active foreground jobs and
background jobs in brief time slices. A time slice must be long enough to perform a meaningful
amount of processing, but not so long that the time between successive slices prevents quick
response to conversational users. At the same· time, time slices cannot be so short and frequent that
system overhead for swapping and task switching becomes excessive. Balancing these factors
depends on the number and type of jobs the system is processing. A solution for one job mix is not
necessarily suitable for another job mix. The TSO time sharing algorithms -- the formulas used to
calculate the division of time among jobs -- are based on several variables, most of which can be
specified by the installation to tune the system for their particular workload. Some of the tuning

Introduction 17

variables such as the number of foreground regions and the maximum number of users, can be set
or modified by the system operator or a user at a control terminal whenever the system is running.
Others are specified as parameters in SYS l.P ARMLIB. These parameters are lUsed when the
operator starts the time sharing operations.

The time sharing algorithms are described in detail in the "System Summary" section of this
manual. They are implemented by a subroutine called Time Sharing Driver. The Driver makes
decisions about system functions such as swapping and task switching. An installation may
experiment with other time sharing algorithms by modifying or replacing the driver, and specifying
use of the new Driver in the SYS l.P ARMLIB parameters used when the operator starts time sharing
operations.

Execution time may also be affected by the choice of modules to be included in the Link Pack
Area (LP A) extension in the Time Sharing Control Task (TSC) region. The size of the LP A
extension and the amount of main storage dynamically allocated by the driver are major factors in
determining the size of the TSC region. The installation may let the TSC calculate its own region
size or may specify a TSC region size, either in SYS l.P ARMLIB or on the START command used
to start TSO, to compensate for additional main storage requirements created during tuning.

Monitoring System Use and Performance

By extending the services of the system to many concurrent users, TSO makes the operating system
more useful to more people. However, installation management's job of monitoring system use and
performance becomes more complex. Three tools are provided to help management maintain a clear
picture of what the system is doing.

System Management Facilities (SMF): The SMF Option can be used with TSO. Both the data
collection and dynamic control facilities are extended to the foreground environment.

With the data collection facility, records describing both the system environment and individual
user activity are written to the SMF data sets in a format similar to that used for background
records. The system environment data includes:

• Machine configuration.

• Resource status.

• Library management information.

This information is recorded whenever time-sharing operations are started, modified, or stopped by
an operator. The user data includes:

• I/O device use.

• Data set use.

• Main storage used.

• Time resident in main storage.

• Time actually spent executing.

The user data is recorded at LOGON and LOGOFF and during a terminal session whenever a user
changes the status of his data sets with the dynamic allocation facility. The information on the use
of data sets is particularly useful to the installation for controlling the use of secondary storage in
the time-sharing environment.

18 TSO Guide (Release 2 t)

The SMF dynamic control exits give the installation access to control program information at key
points during the processing of jobs, including foreground jobs. The step initiation and termination
exits are taken, if present, when a user begins or ends a terminal session. These routines can record
information and control processing for foreground jobs just as they do for background jobs. SMF is
discussed in detail in the publication IBM System/360 Operating System: System Management Facilities,
GC28-6712.

An additional installation exit, separate from the SMF dynamic control exits, is provided from the
routine handling user LOGON. This exit allows the installation to establish its own user verification
and control procedures, independent of those supplied with the system. The section of this
publication 'Writing a Logon Pre-prompt Installation Exit' describes the parameters passed and what
actions the exit may take.

MONITOR Command: The MONITOR command allows the operator to watch the changing
workload on the system over a period of time. In addition to the job initiation, data set, and volume
information formerly available with the DISPLAY command, he can request notification of
time-sharing users logging on and off the system. The DISPLAY command now gives the system
workload at a particular point in time, and has been extended to include information relative to the
time-sharing environment, such as the number of foreground regions and the number of active
terminals. Both MONITOR and DISPLAY, like other operator commands concerned with the
time-sharing operation, are available to a control user at a remote terminal as well as the system
operator at the console.

TSO Trace Program: The TSO Trace Writer Program provides a detailed history of what the system
does over a period of time. The Trace Program records a stream of information that all components
of the system are continuously passing to the Time Sharing Driver. The Driver uses this information
in its calculations of resource allocation. When the operator starts the Trace Program, it intercepts
these event signals and records then with a time stamp in a data set. Typical events recorded are
"job requesting terminal input" and "swap completed." The TSO Trace Data Set Processor can be
used at a later time to format and print out the information recorded by the Trace Program. The
Trace Data Set Processor can be requested to list only those events associated with a particular
component of the system, such as the dispatcher, or to list only those events associated with a
particular terminal or set of terminals. Using this information, system management can determine
how well the system is responding to the workload and make adjustments to the tuning variables if
necessary.

System Security

The need for adequate data and program protection is increased in the time-sharing environment,
where many persons are simultaneously using the system. The system itself must be protected
against unauthorized users. Each user's programs and data must be protected against accidental
destruction by other users. Confidential data must be safeguarded against unauthorized access.

User Verification

Any user starting a terminal session is required to supply a user identification recognized by the
system; that is, one that has been defined by the system administrator. The installation may also
require the user to supply a unique and confidential password with the LOGON command.

Further verification of a user's identity can be performed by the optional installation routine
called when a user logs on. This routine can request further information from the applicant and
deny him access to the system if he fails to provide it.

Introduction 19

Program Protection

Although a number of users may have jobs assigned to the same foreground main storage region,
only one user's job is present in the region at a particular time -- the other jobs are temporarily
stored in the swap data sets. No user can accidentally destroy or tamper with another user's job.
Like the background regions under MVT, the foreground regions have unique storage keys,
preventing a job from modifying any area of main storage outside its assigned region.

Data Set Security

Because any user can refer to any data set in the system catalog, the data set security facility of the
operating system is extended to allow individual users to protect their own data sets from
unauthorized reference. A user can assign one or more passwords to a data set. If anyone
subsequently attempts to open the data set, he is prompted for the password(s). If he fails to supply
the correct password in two attempts, his program is terminated.

The password assigned to a data set can be the one associated with the user for LOGON. In this
case, the user will not be prompted for the password when opening his own data set. Any other
user, however, must supply the correct password to refer to that data set.

Passwords can be assigned for two levels of protection:

• Modification protection. No password is required to open the data set for reading, but a password
must be supplied to write into the data set, or to delete it. This type of protection is required for
system libraries and data sets, to prevent accidental modification or to prevent a user from
assigning a password and locking out all other users. There is no performance degradation in
opening the data sets for reading.

• Read Protection. The password must be supplied to open the data set for reading.

Authorizations

Special authorizations in the User Attribute Data Set are required for the use of some TSO facilities.
Specific authorization is required for:

• Submission of jobs for execution in the background.
• Use of system operator commands from the terminal.
• Use of commands to modify the User Attribute Data Set itself.

The User Attributes Data Set should be password-protected, to prevent assignment of these
authorizations by anyone other than the system administrator or his designate.

Capabilities of the TSO Command Language

The TSO command language serves two separate, but related, purposes:

• It gives the terminal user a simple means to request the system to perform work.
• It gives system personnel a framework for applications.

Functions available through the commands supplied with the system include:

• Data set management.
• Program development.
• Program execution.
• System control.

20 TSO Guide (Release 21)

The following sections describe these capabilities and are followed by a description of the
applications available as IBM Program Products. Installation management has complete control over
which functions are available to each terminal user.

Data Set Management: The TSO command language includes commands to enter, store, edit, and
retrieve data sets consisting of text, data, or source programs. Essentially, the commands give the
terminal user the data set management functions of the operating system. Through the use of default
values and data set naming conventions, the commands can be simple enough for the
non-sophisticated user.

Data from the terminal goes into standard operating system sequential or partitioned data sets.
Conventions for immediate correction of keying errors are available for each terminal device type.
At a 2741 Communications Terminal, for instance, the user can just backspace over an error and
type in the correct characters.

At the user's option, the system will assign a number to each line of data as it is entered. Later,
the user can retrieve and edit the line by referring to this line number. The user can also retrieve a
line by specifying a string of characters contained in the line, and having the system scan the data
set for it.

Program Development: TSO offers convenient facilities for program development. The programmer
can use the data-handling facilities to create source programs and to have them syntax-checked
line-by-line as he enters them. Any operating system language processor can be invoked from the
terminal. Some language facilities and translators designed especially for the terminal environment
are discussed under "IBM Program Products."

Compiler diagnostic messages and listings can be directed to the terminal, allowing the
programmer to correct errors immediately and recompile the program. Once the program compiles
successfully, it can be tested conversationally. The programmer can start and stop execution from
the terminal, inspect and modify main storage and register contents, trace and control the program
flow.

Because of background-foreground compatibility, programs produced at the terminal can be
executed in either environment. Programs in the foreground can use the sequential access methods
(BSAM and QSAM) to direct 110 to the terminal. In the background, the same unmodified
programs can address a data set or unit record device.

Program Execution: Programs can be invoked at the terminal in several ways. Any load module can
be established as a command and executed simply by keying in the program name at the terminal.
Load modules not defined as commands can be invoked in the foreground with the CALL
command. If a program uses data sets, a command procedure can be used to allocate them. Entering
the one-word procedure name can allocate the data sets, invoke and start the program, and free the
data sets again on program termination. Whenever a program in the foreground terminates with an
error condition, the testing facilities can be used to determine the nature of the error.

The terminal user can also submit jobs to the background job stream. Commands similar to those
used for the Conversational Remote Job Entry (CRJE) facility are used to create job control
language describing the job, and to submit it to the batch job stream. The user can request
notification of job completion at his terminal, and can have job output directed either to his terminal
or to a device at the computer site.

Introduction 21

System Control: Certain users can be authorized to use commands for controlling system operation.
With the proper authorization, a user at a remote terminal can use standard operator commands
such as DISPLAY and MODIFY to control the time-sharing portion of the system.

A separate control facility (ACCOUNT) allows an authorized terminal user to establish and
maintain the profile of each system user. Using special commands from his terminal, he can define
or modify user passwords, account numbers, and procedure names, and control authorizations and
restrictions for each user.

IBM Program Products

The command language is designed so that new commands and applications can be easily integrated
into it. Applications available from IBM as Program Products look the same as other commands to
terminal users.

The IBM Program Products available for TSO systems are introduced briefly in the following
paragraphs. Each is discussed more fully in later chapters of this manual.

Problem Solving

Three language processors specially designed for mathematical problem solving by users who are not
necessarily professional programmers are available. Two are part of the Interactive Terminal Facility
(ITF). The third is Code and Go FORTRAN, which is discussed with the other FORTRAN
Program Products in the next section.

ITF: BASIC is a simple, algebra-like language easily learned by anyone familiar with mathematical
notation.

ITF: PL/I is a subset of full PL/I that provides a powerful conversational language that is easy to
learn and use. Because of its relationship to full PL/I, it is an excellent vehicle for teaching. ITF:
PL/I can be executed line-by-line as it is entered, or collected into procedures and subroutines for
later execution. Errors in either ITF: BASIC or ITF: PL/I can be detected as soon as the statement
is entered and can be corrected immediately.

Programming

Program Products to aid the users of several programming languages are available with TSO. There
are three types, of products:

• Compilers.
• Libraries to support the compilers and object programs.
• Prompters.

The compilers can be used in either background or foreground environments. In the foreground,
they provide diagnostics and listings formatted for the terminal. For instance, diagnostic messages
can optionally refer to source errors by the line number assigned by the EDIT command. With the
line number, the user can retrieve and correct the statement without having a complete listing
displayed at the terminal.

Prompters are initialization routines that allow the user to invoke a compiler with a single
command, such as FORT or RUN. The prompter handles all data set allocations and sets processor
options. If the user omits necessary information, such as the name of the source program to be
processed, the prompter requests the information with a terminal message.

22 TSO Guide (Release 21)

The following paragraphs introduce the Program Products available for each programming
language. The chapter "Programming at the Terminal" discusses these products in greater detail and
shows how other operating system processors can be used from the terminal.

FORTRAN: There are four Program Products for FORTRAN programmers: two language
processors, a library for use with either processor, and a prompter.

Code and Go FORTRAN is a quick-response, high-performance processor to meet the needs of
both the problem-solver, who writes, debugs, and executes relatively short conversational programs,
and the production programmer, who debugs components of a large program online before running
the program through a batch compiler. The Code and Go FORTRAN processor incorporates a
prompter routine.

FORTRAN IV (G1) is an extended version of FORTRAN IV (G). It provides the ability to store
permanent object programs, and produces source and object listings and storage maps. The TSO
FORTRAN Prompter Program Product is available to invoke this processor.

The FORTRAN IV Library (Mod 1) is an extension of the FORTRAN IV library for use with
either FORTRAN IV (G1) or Code and Go FORTRAN. It supports new features of these
processors, such as a list-directed input/output facility, ASCII data set conversion, and PAUSE and
STOP statements for the terminal.

COBOL: A language processor and prompter are available for COBOL programmers: the American
National Standard Full COBOL Version 3 compiler, and the TSO COBOL Prompter.

PL/I: Two language processors and two supporting libraries are available for PL/I programmers:
the PL/I Optimizing Compiler, the OS PL/I Checkout Compiler, and the PL/I Resident Library
and the PL/I Transient Library. The compilers incorporate a prompting routine.

Assembler Language: The TSO Assembler Prompter is available to invoke the Assembler (F). The
Assembler (F) is not a Program Product.

Text and Data Handling

The TSO Data Utilities: COPY, LIST, MERGE, FORMAT Program Product provides four
commands to manipulate data sets, and to format text for output either at the terminal or on a
high-speed printer.

Introduction 23

Command Language Facilities

TSO terminal users define their work in the TSO command language. A command can be thought of
as a request from the terminal user for the system to perform a particular function. This chapter
describes and gives examples of the facilities available through the command language. There are
commands for elementary functions such as entering, editing, and retrieving data; remote job entry;
mathematical calculation; and program development and testing in several programming languages.
These important functions are the base on which the installation's own terminal-oriented
applications and systems are developed.

To make the example more meaningful, some TSO conventions for command syntax, entry
format, data management, and terminal operation are presented first. Many of these conventions can
be redefined at the option of the installation, or in some cases, at the convenience of the individual
user.

Conventions at the Terminal

The command is the means by which work is defined at the terminal. The first word of a command
is always the command name. It is used by the system to select a command processor (a problem
program) from the system command library or a user command library. Any further information in
the input line, the command operands, is passed to the command processor in a parameter list.
Operands are separated, or deHmited, by either blank spaces or commas. A few commands require
that groups of related operands be enclosed in parentheses.

Most operands are optional. If an optional operand is not entered with the command, the system
assumes the default values and proceeds as if the user had entered that value. If the missing operand
is not one that can be defaulted, for instance, a data set name, the system prompts the user for it
with a message such as "ENTER DATA SET NAME". When all the operands have been either entered or
defaulted, the command processor proceeds to perform the desired function. Some of the command
processors, such as EDIT, accept, interpret, and perform subcommands, which follow the same
syntactic rules as the general commands.

Logging On

To establish a connection with the system, the user activates his terminal, dials the computer, if
necessary, and enters the LOGON command. He must always supply his user identification as an
operand of the LOGON command; if he does not supply it, a prompting message is issued. Up to
three additional levels of identification may be needed, depending on the accounting methods and
security procedures used by his installation.

The installation may require users to enter a password with the LOGON command. Each user can
have one or more passwords associated with his identification. At terminals equipped with the print
inhibit feature, the system is able to suppress printing of the password as it is keyed in.

Associated with each password are one or more account numbers, and with each account number,
one or more LOGON Procedure names. The LOGON Procedure contains the Job Control
Language statements defining the user's terminal job, just as cataloged procedures define
background jobs. For instance, the LOGON Procedure may allocate certain commonly used data
sets. Whenever there is only one account number or procedure name, the system selects it by
default, and the user is not required to enter it. Figure 1 shows a simple identification scheme, with
just one value for each of the possible levels of identification.

24 TSO Guide (Release 21)

CONRAD

JAY tEE
t

D76B
1-

B100K

User Identification

Password

Account Number

Logon Procedure Name

Figure 1. Simple Identification Scheme

To log on, the user defined in Figure 1 would enter:

LOGON CONRAD/JAYCEE

The system will assume "D76B" as the account number and "BIOOK" as the LOGON Procedure
name, since no others have been defined for this user.

A user who has several account numbers and LOGON Procedures can have a hierarchy of
identification values, like that shown in Figure 2. This user could still log on with the command
shown above, since "D76B" and "BIOOK" are the only account number and LOGON Procedure
name associated with the password "JAYCEE". However, to use the "XIOOK" LOGON Procedure,
this user's LOGON Procedure, this user's LOGON command would be:

LOGON CONRAD/JOE#1 ACCT(D58B) PROC{X100K)

Both the account number and the procedure name must be included, since a choice exists for both.
The information scheme for each user is defined and maintained in the User Attributes Data Set
with the ACCOUNT command, by the system manager or a user authorized to do so.

/CO~RAD~

JAYCEE JOE#1 JO~~2
1- t T

D76B D58B SYSTEM
~ t t

B100K X100K SYS200K

User Identification

Passwords

Account Numbers

Logon Procedures

Figure 2. User Identification Hierarchy

The system acknowledges that the LOGON has been accepted when it has checked the
identification supplied and has determined that the resources requested in the LOGON Procedure
are available, and the user can begin his work.

Input Editing

Some system editing is provided for every line of input from the terminal. Lowercase alphabetic
characters (from terminals that have them) are translated to uppercase, except for certain
text-handling applications. Each user can define his own character-delete and line-delete characters
for correcting any keying errors in input lines. There are default character-delete and line-delete
characters for the typewriter-like terminals (the cursor controls can be used on the 2260 and 2265
Display Stations). If a user defines the quotation mark as his character-delete character, and percent
sign as his line-delete character, then enters the line:

etoain%aBCc"deee""

it is received by the system as

ABCDE

Command Language Facilities 25

Users whose terminals have backspace and attention keys may define those keys as their
character-delete and line-delete characters.

Entry Modes

Immediately after LOGON, the system is ready to accept any command in the command libraries.
The terminal is said to be in command mode. Some commands place the terminal in other entry
modes: EDIT, for instance, has an input mode, that accepts successive lines of input for a data set;
and an edit mode, that accepts EDIT subcommands. Other commands, such as TEST, ACCOUNT,
OUTPUT, and OPERATOR also define special purpose modes.

The Attention Key

The attention key can be used to transfer from one mode to another, or to interrupt a program or
command processor during execution. Any command in process can be cancelled by hitting the
attention key and entering a new command. A user program can be interrupted with the attention
key to transfer to the test mode for debugging activity, then the program can be restarted.

Assembler language user programs can define attention exit routines with the ST AX macro
instruction. Control will be passed to such a routine when an attention is entered.

An important function of the attention feature is to prevent the user from being "locked out" of
the system while a long-running program executes, or while voluminous output is displayed at the
terminal. For terminals without attention keys, the attention feature can be simulated. The user can
specify a string of characters, such as "STP". that is to be interpreted as an attention. The system
can be instructed to interrupt any long-running program or terminal output periodically to accept
either the simulated attention character string, or a digit to specify the level of attention exit or a
null line to continue processing.

Data Set Naming Conventions

Unless requested not to, the system appends two qualifiers to a simple data set name specified by a
user: a descriptive qualifier and user identification qualifier. The user identification qualifier is the
same as the user identification specified with the LOGON command and is appended as the
left-most qualifier of data set names that follow the TSO naming conventions.

The descriptive qualifier is placed at the right of the user entered data set name. It tells the
system what kind of data is recorded in the data set and for what purposes it can used. For
instance, the qualifier for a data set containing COBOL source statements is COBOL; for a load
module, LOAD. Whenever possible, the system determines the appropriate descriptive qualifier from
the command referring to the data set, and the user need not enter it as part of the name. In some
cases, the user must supply it, as part of the data set name entered with the command, or in
response to a prompting message.

The user never needs to enter his identification qualifier; it is always known to the system. Figure
3 is an example of a series of commands to enter and compile a source program (using the TSO
FORTRAN Prompter and FORTRAN IV (G 1) Program Products); linkage edit the object program;
to display the compiler listing at the terminal; and finally, to delete all the data sets involved.

26 TSO Guide (Release 21)

Input Data Sets Command &. Operands Output Data Sets Comments

none edit prg1 new fort CONRAD.PR<:;1.FORT FORTRAN source
program.

CONRAD.PRG1.FORT fort prg1 print CONRAD.PRG1.0BJ Object program.
CONRAD.PRG1.LIST Compiler list-

ing.

CONRAD.PRG1.0BJ link prg1 CONRAD.PRG1.LOAD Load module, in
(TEMPNAME) a one-member

PDS.

CONRAD.PRG1.LIST list prg1.list Display at terminal Compiler
listing

CONRAD.PRG1.FORT delete prg1.* All the data
CONRAD. PRG 1 .OBJ sets are
CONRAD.PRG1.LIST deleted.
CONRAD.PRG1.LOAD

(TEMPNAME)

Figure 3. Example of Data Set Naming Conventions

In the EDIT, FORT, and LINK commands, the user supplied only the simple data set name,
"PRG 1 ". The system assigns the descriptive qualifiers implied by the commands and their operands.
With the LIST command, the user supplied the descriptive qualifier, since he might want have
wanted to display either CONRAD.PRG 1.FORT or CONRAD.PRG I.LIST. In the DELETE
command, the user entered an asterisk in the descriptive qualifier field, to tell the system to delete
any data sets with the identification qualifier CONRAD and the simple name PRG 1.

To refer to a data set that does not follow the naming conventions, or that has an identification
qualifier different from the one specified at LOGON, the user encloses the fully qualified data set
name in apostrophes. The system does not append any additional qualifiers in this case, and uses the
name "as is," except for translation to uppercase, to search the catalog. Using this technique, several
users may refer to a data set with the shared attribute at the same time.

Data Entry

The EDIT command is used to enter information into the system. Because almost every system
application will use some of the editing facilities, an overview of the command is presented here.
Later sections will demonstrate some of the particular uses of the command.

Creating Data Sets

The EDIT command processor creates or modifies data sets with sequential organization, including
members of partitioned data sets. The data sets contain only printable characters in EBCDIC
representation. A data set name is entered with the EDIT command. If the user specifies the data
set is old, EDIT opens it for modifications. If it is a new data set, EDIT invokes the dynamic
allocation routines to create it. The data set attributes, such as block size and record length, can be
specified by the user, or defaulted to standard values. For data sets containing source-language
programs, the standard attributes are determined by the compiler to be used.

One input line from the terminal normally becomes one record in the data set. Because of this
equivalency between records and lines at the terminal, data sets created by EDIT are called line data
sets. On request, EDIT prefixes a line number to each record of the data set as it is entered.

Command Language Facilities 27

Entry Modes for EDIT

Depending on the type of work the user is doing with his data set, he uses one of two entry modes
provided by EDIT (some other modes specifically for particular programming languages are
discussed later). The input mode allows rapid entry of successive lines of input for the data set. The
edit mode allows subcommands to be entered to modify, insert, or delete lines.

Input Mode

In input mode, the user enters successive lines of input. The lines are normally appended at the end
of the data set, although the user can request they be inserted at some other point. The only
subcommand recognized in the input mode is the null line (hitting the return key with no preceding
characters), which requests transfer to the edit mode.

Services available in the input mode include translation of lowercase letters to uppercase,
translation of tab characters to a series of blanks, and interpretation of the character-delete and
line-delete characters. If line numbers are being assigned to each line, the user may request each
new number be typed out by the system at the beginning of each input line. If line numbers are not
being assigned, the user can request prompting for each new line by an underscore. If no prompting
is requested, lines are entered one after another, with no intervening response from the system.
Programming language syntax checkers can be requested to process input lines as they are entered.

Edit Mode

In edit mode, the user enters sub commands to point to particular records of the data set, to modify
or renumber records, to add and delete records, to control editing of input, or to compile and
execute a program.

Whenever the terminal is in edit mode, the user is considered to be positioned at a particular
record, or line, of the data set. The EDIT command processor maintains a current line pointer to
keep track of the user's position. In general, the current line pointer, which can be referred to in
sub commands by an asterisk (*), is positioned at the last line referred to, entered, changed, or
printed. Using the subcommands provided, the user can move the current line pointer to any record
in the data set.

For line-numbered data sets, specifying a line number as an operand of a subcommand moves the
pointer to that record before the action requested by the subcommand is carried out. This method
of operation is called line number editin~.

Another method of repositioning the current line pointer is called context editing. A set of
subcommands is provided to reposition the current line pointer without reference to line numbers.
The user can move the pointer up or down a specified number of lines, or request the system to
find a line with a particular series of characters in it, and move the pointer to it.

Modifying Data Sets

The most common use of the EDIT command for existing data sets is the addition, deletion, or
modification of records. The INSERT and DELETE sub commands handle single or multiple record
insertions and deletions. The CHANGE subcommand allows the user to replace one character string
with another, not necessarily of the same length.

28 TSO Guide (Release 21)

Data Set Management Commands

To allow the user to manage his data stored on auxiliary storage devices, a set of data set utility
commands is included in the TSO command . language. All user data is kept in standard operating
system data set, and as a default, data sets used by foreground programs are entered in the system
catalog, reducing the amount of information the user must supply about the data set from the
terminal when he refers to it.

The LISTCAT and LISTDS commands retrieve information from the system catalog for the user.
He· can find out what data sets are currently allocated to him, and what the attributes of the data
sets are. The RENAME command can assign a new data set name to an existing data set, or add an
alias name to a partitioned data set member. The DELETE command removes a data set from the
catalog, and frees the auxiliary storage space it occupies.

The PROTECT command is the facility to assign password protection to data sets. Protection can
be assigned for read access and for write and delete access. Multiple passwords can be assigned to a
single data set.

The ALLOCATE and FREE commands invoke the dynamic data set allocation routines from the
terminal. A user who wants to run a program that requires one or more data sets not currently
allocated to his foreground job enters ALLOCATE commands to have the data sets assigned. The
FREE command is used to release the data sets assigned by ALLOCATE. The ALLOCATE
command can also be used to find data sets not in the system catalog, and to control the size of
new data sets and the volumes to which they are assigned.

The A TTRIB command can be used to build a list of data set attributes. These attributes are
specified by the· operands of the command. The operands are similar to the DCB parameters of the
JCL DD statement. The attributes in an attribute list can be assigned to data sets being allocated by
the ALLOCATE command.

TSO Data Utilities

The TSO Utilities Program Product is available to augment the data entry and data set management
commands by providing a text-formatting capability and data set utilities for terminal users. The
product provides four commands:

• FORMAT, to format textual information into pages.
• LIST, to display all or part of a data set at the terminal.
• COPY, to copy a data set.
• MERGE, to merge all or part of one data set into another.

The FORMAT and MERGE commands can also be used as subcommands of EDIT (EDIT
incorporates a less powerful listing capability). The COpy and MERGE commands can be used for
access to ASCII tape data sets. See the publication IBM System/360: Planning for the Use of
Information Interchange Standards, GC28-6756, for details.

Text-Handling

The EDIT, FORMAT, and LIST commands provide a facility for the entry, editing, storage, and
output of text. With the EDIT command, the terminal user creates a data set with the type qualifier
TEXT, and enters the materialline-by-line. If his terminal has both uppercase and lowercase letters,
the material will not be translated to uppercase letters, ,but will be saved just as entered. The user
can specify what tab settings he wants to use, and the system will convert tabs in the material into
strings of blanks of the proper length. The use of line numbers is optional.

Command Language Facilities 29

The user formats the data set by inserting format control records into it. A format control record
is entered as a separate line in the data set, starting with a period in the first position, followed by a
control word (or a two-character abbreviation). The EDIT processor does not interpret the controls;
they are retained in the data set for interpretation later by the FORMAT processor. The controls
allow the user to:

• Print a heading on each page.
• Center lines of text between margins.
• Control the amount of space for all four margins on the page.
• Control line spacing.
• Justify left and right margins of the text.
• Number pages of output consecutively.
• Halt printing when desired.
• Print multiple copies of selected pages.

The FORMAT processor scans the data set for the format controls and inserts blanks, carrier
return characters, headings, and page numbers as needed. At the user's option; the output can be
formatted for a terminal or saved in a data set for deferred printing, either on the terminal (with the
LIST command) or on a high-speed printer. Either an all-capitals or an uppercase and lowercase
print chain can be used on the printer.

Data Set Manipulation

The COPY, LIST, and MERGE commands allow the terminal user to move information between
data sets and to display sets at the terminal.

The COPY command will duplicate sequential or partitioned data sets or a member of a
partitioned data set. While doing so, it can resequence or change the record length, blocksize, or
record format as requested. The MERGE command will copy all or part of one data set or member
into another data set and will resequence the record numbers in the receiving data set if requested.
Both these data commands will process tape data sets in ASCII format. Tape devices must be
allocated to a user in his LOGON procedure.

The LIST command displays all or part of a data set at the terminal. The user can request that
fields within records be rearranged for output, and line numbers can be suppressed or included.

Compiling and Executing Programs

A variety of commands are provided to give the user control over program compilation and
execution. The form of the program determines command selection. For those language processors
that are supported by a prompter Program Product or that incorporate a prompter, the terminal user
requests a compilation of a source program with a single command. The prompter performs the
following functions:

• Requests any necessary operands with messages to the terminal.
• Sets other compiler options to default values suitable for the terminal environment.
• Dynamically allocates the data sets needed by the compiler.
• Invokes the compiler.

For instance, if an installation has the TSO COBOL Prompter and the American National
Standard Full COBOL Version 3 processor Program Products, the user can enter the COBOL
command to compile his program and produce an object module. The LOADGO command can then
be used to call the as Loader to bring the program into main storage for execution, or the LINK
command can be used to call the Linkage Editor to create a permanent load module.

30 TSO Guide (Release 21)

During program development, when a programmer is repeatedly compiling and testing a program,
he can use the RUN command to invoke it. RUN first calls the appropriate prompter and compiler,

I and then the OS Loader (except for the PL/I Checkout Compiler). It provides a compile-load-go
sequence with a single command. RUN can be used as a command, or as a subcommand of EDIT.
Figure 4 is a summary of the commands for executing programs. The chapter "Programming at the
Terminal" has examples of the use of these commands. You must use RUN with ITF: PL/I,
GOFORT, and ITF: BASIC.

Form of Form of OBJECT LOAD EXECUTING
input: output: MODULE MODULE PROGRAM

COBOL
SOURCE FORT· -- RUN
PROGRAM ASM

PLI

OBJECT -- LINK LOADGO
MODULE

LOAD -- -- CALL
MODULE

Figure 4. Program Control Commands

Any load module, including language processors for which there are no prompters, can be
invoked with the CALL command. For instance, the FORT command provided by the TSO
FORTRAN Prompter Program Product invokes the FORTRAN IV (Gl) compiler. If a programmer
wants to use the FORTRAN (H) processor for a particular compilation, he can enter the command:

CALL 'SYS1.LINKLIB(IEKAAOO)' 'MAP,OPT=1'

The compiler is loaded into the foreground region and given control. The options are passed to it as
though they had been specified in the PARM field of an EXEC statement in Job Control Language.
It is necessary for the user to allocate data sets for the compiler's use before entering the CALL
command. A series of ALLOCATE commands can be defined in a command procedure, so that
they need not be entered every time a compiler is used. An example of such a procedure is included
in the chapter "Programming at the Terminal."

The TEST command can also be used to invoke a user program, and to control its execution.
Before passing control to the program, TEST allows the user to establish initial values to be passed
to the program as test data, and to set up breakpoints where execution is to be interrupted for
displays and other debugging activity.

Breakpoints are established with the AT subcommand in test terminal mode. A T specifies a
symbolic or absolute address in the program where execution is to be interrupted. The action to be
taken at the point of interruption, such as listing or modifying storage and register contents, can be
specified in a pre-stored string of TEST sub commands , or entered through the terminal at the time
of interruption. Main storage· contents can be displayed at the terminal or stored in a data set for
deferred printing. TEST subcommands allow the programmer to load additional programs into
storage, to delete or replace programs in storage, to issue GETMAIN and FREEMAIN as
subcommands from the terminal, to define the location and attributes of symbols, and to start and
stop program execution.

Command Language Facilities 31

Remote Job Entry

The command language includes the SUBMIT, STATUS, OUTPUT and CANCEL commands to
handle submission of jobs for execution in the background. These commands have the same format
as the commands available with the Conversational Remote Job Entry (CRJE) facility of the
operating system.

To have a job executed in the background, the user places the job control statements defining the
job in a data set. By convention the jobname is the one-to-seven character user identification, plus a
single character to provide uniqueness. The user then enters a SUBMIT command, including the
name of the data set as an operand. SUBMIT will generate a standard jobname and a JOB
statement if one is not included in the job definition. One data set can contain more than one job
definition. Any time after entering the SUBMIT command, the user can inquire about the status of
the job. The STATUS command returns information such as whether the job is waiting for
resources, is executing, or is completed. The job can be terminated with the CANCEL command.

A new keyword has been defined for the JOB statement to allow automatic notification of the
user when the job is completed. By coding NOTIFY = with his user identification, the user requests
a message to his terminal when the job completes. The message is saved until he enters a LISTBC
command. The OUTPUT command allows the user to display job output (SYSOUT) at his terminal,
to save it in a data set, or to delete it.

System Control

Two facilities are provided for the installation manager or system programmer to control operation
of the system from his terminal. The ACCOUNT command adds, changes, or deletes entries in the
User Attributes Data Set, which is the list of all authorized users of the system, together with the
characteristics defining their profiles. The OPERATOR command places a terminal in a special
mode allowing entry of commands normally available only at the system console. Use of either of
these facilities requires special authorization. Users with such authorization are called control users.

User Authorization

When a control user enters an ACCOUNT command, his terminal is placed in account mode. With
subcommands, the control user defines each user to the system, specifying his identification,
passwords, account numbers, and LOGON Procedure names. This information is placed in the User
Attribute Data Set, along with indications of any special authorizations the user may have, such as
permission to use the ACCOUNT or Remote Job Entry facilities, and a limit on the region size he
may request. This information will be retrieved whenever the user lOgs on, to verify his authority to
use the system, and to define his foreground job.

System Operation

By entering the OPERATOR command, a control user has access to the system operator commands
MODIFY, DISPLAY, MONITOR, CANCEL, and STOPMN. The commands have the same format
and effect on the TSO system as if they were entered through the operator's console, as specified in
the publication IBM System/360 Operating System: Operator's Reference, GC28-6691.

32 TSO Guide (Release 21)

Command Procedures

A command procedure is a data set containing a list of TSO commands and subcommands. The data
set name is entered as an' operand of the EXEC command, and the commands are executed,
one-bY-Qne in the order in which they appear in the procedure. When one command or
subcommand is completed, the next is. read from the procedure and processed as though it had been
entered from the terminal. The commands can, be typed out at the terminal as they are executed, or
the user can suppress the listing with an operand of the EXEC command.

The EXEC command can also be invoked implicitly if the procedure is a member of the
command procedure library. The member name of the command procedure can be entered as a
command name. When the name is not found in the command libraries, the system assumes it is in
the command procedure library.

Operand Substitution: Symbolic operands, starting with an ampersand (&), can be placed in
commands and subcommands within command procedures. Values for these operands are supplied in
the EXEC command invoking the procedure. A procedure (PROC) statement at the beginning of
the procedure specifies how many positional operands will be supplied, and what keyword operands
may be present. Default values for symbolic operands can be specified in the PROC ,statement.

Conditional Statements: The WHEN statement tests the return code from any command or program
invoked during a procedure. A condition is stated with relational operators such as GT or L T
("greater than" or "less than"). If the condition is satisfied, the command in the WHEN statement
is executed. If it is not satisfied, the command following the WHEN statement is executed. The
command in the WHEN statement can itself be an EXEC command, invoking another command
procedure.

Figure 5 shows a command procedure with a symbolic operand and a. conditional execution
statement. The procedure has commands to linkage edit an object program (LINK), and bring it
into main storage for testing (TEST). The symbolic operand "PROGNAM" is defined in the
procedure statement beginning the procedure. If the member name of this procedure in the
procedure library is "LDTST", the command to invoke it is:

LDTST MYPROG

The commands in the procedure are then executed in order, with the substitution of "MYPROG"
for" & PROGNAM" wherever it appears. A period with the symbolic operand specifies
concatenation with the adjacent field. The value for" & PROGRAM." is concatenated to "OBJ" the
second ".", and the LINK command as executed is:

LINK MYPROG.OBJ TEST MAP XREF

The WHEN statement causes the return code from the linkage editor to be tested. If it is zero,
indicating no errors, execution proceeds with the TEST command. If the return code is greater than
zero, indicating linkage editing errors, the procedure is terminated, and the next command can be
entered from the terminal.

PROC
LINK
WHEN
TEST
END

1 PROGNAM
&PROGNAM .. OBJ TEST MAP XREF
SYSRC(GT 0) END
&PROGNAM .. ' LOAD (TEMP NAME)

Figure 5. A Command Procedure

Command Language Facilities 33

Other Commands

Several other commands are provided to allow the user to control the terminal environment and to
aid him in using the command system.

The TERMINAL and PROFILE commands are used to tailor the data entry conventions to the
terminal type and user's preference. TERMINAL allows him to specify the character string to be
used to simulate an attention interruption if his terminal does not have an attention key, and to
specify how often he is to be given an opportunity to simulate an interruption during long-running
execution or output sequences. The PROFILE command is used to specify the character-delete and
line-delete characters, and other user options such as whether he wants prompting messages
suppressed.

The HELP command provides the user with reference information on command and subcommand
syntax, function, and usage. For example, if a user has forgotten the function of the DELETE
command, he can enter:

HELP DELETE FUNCTION

The HELP command will return information explaining the function of the DELETE command:

THE DELETE COMMAND IS USED TO DELETE A SEQUENTIAL. DATA SET OR A MEMBER OF A
PARTITIONED DATA SET.

Requesting this information through the terminal is faster than searching for it in a printed manual.

The SEND command is used to send a message to the system operator or to another user. The
sender must know the user identifications of other users to whom he directs messages. Messages are
displayed immediately at the receiver's terminal unless the receiver has requested that messages be
suppressed or unless he is not logged on. Messages not sent immediately are saved, and are
transmitted if requested, when the addressee next logs on.

34 TSO Guide (Release 21)

Programming at the Terminal

The time sharing environment is especially well-suited to program development. The advantage of
programming at a time sharing terminal is the reduction of job turn-around delays. The programmer
can profitably devote himself to one project at a time -- he does not need other projects to work on
while waiting for results from a batch computing facility. TSO provides services for terminal users at
each step in program development: coding, compiling or assembling, testing, implementation,
documentation, and program maintenance.

Any compiler or assembler designed to run under the operating system can be invoked from a
TSO terminal. Compilers can be executed in the foreground, or, via the SUBMIT command, in the
background. Command language prompters are either incorporated in or separately available for
several of the language processors. The TSO prompters~ all IBM Program Products, provide specific
commands to invoke the associated processors, and perform the following functions:

• Requests the user to enter necessary information such as the name of his source program.

• Allocates data sets required by the processor and frees them on completion.

• Sets any compiler options specified by the user and sets default values for those options the user
omits.

Prompters are available for American National Standard COBOL Version 3, FORTRAN IV (Gl),
and Assembler (F). Prompters are incorporated in the PL/I Optimizing Compiler, the OS PL/I
Checkout Compiler, and the problem-solving language processors. Each of the processors accepts a
TERM option, a request for special formatting of diagnostic and listings for the terminal, and a
NUM option, to control the use of EDIT line numbers in error messages. Syntax checking of source
programs is provided for PL/I (F), FORTRAN IV levels (E), (Gl), (G), and (H), and the
problem-solving languages. The test mode gives the user real-time control over program execution
for debugging. Similar facilities for ITF: PL/I, ITF: BASIC, and Code and Go FORTRAN and the
PL/I Checkout Compiler are discussed in the next chapter, "Problem Solving."

Either the loader or the linkage editor can be invoked from the terminal. Users authorized to do
so can add load modules to the system command library, where they will be available as commands
to all system users. Any user can add programs to his own command library. Programs written in
any language can be defined as command processors, but only assembler language has the facilities
to make use of the command service routines such as input scanning and prompting.

Because of foreground-background compatibility, production programs that will eventually be run
in the background environment can be written and tested from the terminal. I/O that goes to the
terminal in the foreground can be re-directed to a sequential data set in the background. No
recompilation is necessary.

The following sections describe the special terminal support provided for COBOL, FORTRAN,
PL/I, and Assembler language programmers. Language processors for which no specific terminal
support is provided can also be invoked in the foreground. See "Other Compilers" in this chapter
for an example showing how to invoke the PL/I (F) compiler.

Programming at the Terminal 35

COBOL

TSO provides the COBOL programmer with facilities for entering, compiling, and testing programs
from his terminal. The programmer can use the COBOL command for compiling his program with
the following IBM Program Products:

• TSO COBOL Prompter .
• American National Standard COBOL Version 3 Compiler.

The user can also invoke the COBOL (E) compiler, either in the foreground or the background, but
only the American National Standard COBOL compiler provides listings and diagnostic messages
specifically formatted for a remote terminal environment. The full American National Standard
COBOL is provided, with the IBM extensions to the language as defined in the publication, IBM
System/360 Operating System: American National Standard COBOL, GC28-6396.

Entering the Source Program

The COBOL programmer uses the TSO EDIT command to create or modify his source program.
With the EDIT command, he enters operands to name the data set containing the program, and
identify it as an old program to be modified or a new program.

With the terminal in input mode, the user enters successive lines of the program. The system
accepts each line when he hits the return key of the terminal, and types out the line number of the
next line. This line number becomes the sequence field of the COBOL statement in columns 1-6,
and in addition.is used in place of the compiler-generated "card number" in program listings and
diagnostic messages. Automatic line numbering can be suppressed, if desired, by an operand of the
EDIT command.

After the line number is typed out, the terminal is logically positioned at the continuation column
(column 7) of the COBOL statement. The user can space or tab to Area A (column 8) or Area B
(column 12) of the statement. These logical tab settings are automatically set by the EDIT program
whenever a COBOL program is being processed. EDIT converts the tab characters to the necessary
number of blanks to format the statement correctly. The number of blanks generated is independent
of the physical tab settings at the terminal. The user can, if he wishes, override the standard settings
by specifying his own with an EDIT subcommand.

Figure 6 shows an EDIT command to create a new data set, and some lines from the user's
COBOL program as he enters them. The five-digit line numbers are generated by EDIT. A
high-order zero is appended to form the six-digit COBOL sequence field. In this example, the
backspace key is used as the character-delete character, and the attention key is the line-delete
character. In lines 00020 and 00050 the user backspaces over keying errors to correct them. Line
00070 is cancelled with the attention key and re-entered. The lowercase alphabetics are
automatically translated to uppercase by the EDIT processor.

edit query.cobol new
INPUT
00010 identification division.
00020 progrmm-id. query.
00030 remarks. sample inquiry program.
00040 environment division.
00050 configuratimn section.
00060 source-computer. ibm-360-i65.
00070 input-outpu!D
00070 object-computer. ibm-360-i65.
00080 input-output section.
00090

Figure 6. Entering a COBOL Program

36 TSO Guide (Release 21)

Compiling a COBOL Program

The American National Standard COBOL Compiler is invoked with the COBOL command. The
only required operand is the name of the data set containing the source program to be compiled.
However, any of the compiler options (except DECK) can be entered with the command as
operands. These options are documented in the publication IBM System/360 Operating System:
American National Standard COBOL Programmer;s Guide, GC28-6399.

Two compiler options are available: TERM and NOPRINT. The TERM option orders the
compiler to issue progress messages to the terminal as it processes the source program, for instance,
"ANS COBOL IN PROGRESS," and to issue diagnostic messages formatted for the terminal. An error
or warning message directed to the terminal includes the line number of the source statement in
error, and the compiler error message. Using edit mode subcommands, the programmer can retrieve
the statement by line number, and correct the error.

The PRINT /NOPRINT option, available only in the foreground, allows the programmer to
choose whether the program listing is to be placed in a data set, displayed at the terminal, or
suppressed. When developing a program from the terminal, it is not normally necessary to have the
complete listing generated and displayed, since the error and diagnostic messages are extracted and
displayed through the TERM option. NOPRINT is the default value, and suppresses the listing.
When source program errors have been corrected and the program is compiled a final time, the
programmer specifies PRINT to generate the listing, which may be displayed at the terminal, or
saved in a data set for deferred printing, either at the terminal or on a high-speed printer. The
contents of the listing are controlled by the other of the listing are controlled by the other options
such as SOURCE, PMAP, and XREF.

Figure 7 is an example of a COBOL compilation, correction of a source program error, and
re-compilation. The PRINT operand of the second COBOL command causes a listing to be
generated and saved in the data set QUERY. LIST.

cobol query
STATISTICS SOURCE RECORDS = 59 DATA DIVISION STATEMENTS 15

PROCEDURE DIVISION STATEMENTS = 18
OPTIONS IN EFFECT SIZE = 81920 BUF = 2768 LINECNT = 57
OPTIONS IN EFFECT SPACE1, FLAGW, NOSEQ, NOSOURCE, NODMAP
OPTIONS IN EFFECT NOPMAP, NOCLIST, NOSUPMAP, NOXREF, NOSXREF
OPTIONS IN EFFECT LOAD, NODECK, APOST, NOTRUNC, NOFLOW, TERM
OPTIONS IN EFFECT NUM, NOBATCH, NONAME, COMPILE=01, NOSTATE
001 COMPILATION ERRORS. HIGHEST SEVERITY E
000290 IKF3001I-E INV-KY-READ NOT DEFINED. STATEMENT DISCARDED.
READY

edit query.cobol
EDIT
list 290
000290 READ PARTS-FILE INVALID KEY GO TO INV-KY-READ.
change /ky/key/
save
SAVED
end
READY

cobol query source xref dmap pmap
ANS COBOL IN PROGRESS
READY

Figure 7. Compiling a COBOL program

Programming at the Terminal 37

Program Execution

The object program created by the COBOL compiler can be invoked with the LOADGO command,
which calls the Loader to bring the program into main storage and pass control to it. The user
enters ALLOCATE commands for any data sets needed by the program before invoking it.

The object program can also be defined as, or as part of, a load module with the LINK
command. As a load module, the program can be placed in a private or system program library. To
define the program QUERY as a command in a private command library
CONRAD.COMMANDS.LOAD, the LINK command is:

LINK QUERY.OBJ LOAD(COMMANDS(QUERY)) COBLIB

Once part of a command library, and once the private command library is concatenated to the
command library (and linkage library), the program is invoked simply by entering the program name
(or an alias) as a command. To invoke the program defined above, the user would type:

QUERY

The RUN subcommand of EDIT functions as a combination of the COBOL and LOADGO
commands. It is especially useful during the testing phase of program development, since it can be
used without leaving the edit mode. When a source program is complete, the user enters the RUN
command, invoking first the compiler, then his object program. Whenever he detects and error
requiring a change to the program, the programmer can immediately update his source program with
EDIT subcommands, and enter another RUN subcommand.

Interactive Programs

COBOL programs can be designed to interact with a terminal user simply by defining the terminal
as a file. Programs can read input lines from the terminal, act on the information, and respond.
Because the terminal is defined as a sequential utility file, the same program can be executed in the
background, reading and writing to sequential data sets or devices, without recompilation.

To define the terminal as a file, the user enters ALLOCATE commands for the external names
used in the name field of the ASSIGN clauses in the program. Figure 8 shows a FILE-CONTROL
statement in a COBOL program, and a corresponding ALLOCATE command that assigns the file
to the terminal at execution time.

The DATASET operand of the ALLOCATE command corresponds to the DSNAME field of a
DD statement. The * is a conventional symbol for the terminal. The FILE operand corresponds to a
DDNAME. In this example, any output written to ANSWER-FILE in the program will be displayed
at the terminal.

The same program could be executed in the background, with a DD statement directing the
output to the printer or data set.

SELECT ANSWER-FILE ASSIGN TO UT-S-DDOUT

/
allocate dataset (*) file (ddout)

Figure 8. Defining the Terminal as a File

38 TSO Guide (Release 21)

For programs containing ACCEPT and DISPLAY clauses, or which generate TRACE and
EXHIBIT output for debugging, the SYSIN and SYSOUT files can be defined as the terminal. The
ALLOCATE commands are:

ALLOCATE DATASET(*) FILE(SYSIN)

ALLOCATE DATA SET(*) FILE(SYSOUT)

DISPLAY output is sent to the terminal instead of system output. TRACE and EXHIBIT output is
also sent to the terminal.

A COBOL Example

Figure 9 is an example of a terminal session in which the user writes, compiles, and executes a
simple inquiry program in COBOL. The program uses a part number entered from the terminal to
select a record from an indexed file, and prints the information from the record out on the terminal.

At 1, the user enters an EDIT command to create a new data set that will contain the COBOL
source program. The EDIT processor recognizes the descriptive qualifier "COBOL" in the data set
name, and sets the record length and blocking factor to values acceptable to the ANS COBOL
compiler. The tabs in the data set are set to "columns" 7, 8, 12, and 72. Since it is a new data set,
the EDIT processor requests input (at 2), and types out the first line number ("00010" at 3). The
EDIT processor continues to generate line numbers until 5, where the user enters a null line to
request transfer to edit mode.

In the program itself, the user defines an indexed sequential file in the INPUT -OUTPUT section.
This data set is permanently allocated by a DD statement in the user's LOGON procedure. No files
need to be defined for the terminal in the LOGON procedure, since the ACCEPT and DISPLAY
statements can be directed to the terminal with ALLOCATE commands defining SYSIN and
SYSOUT.

At 7, the user saves a copy of his source program, and enters the END subcommand to terminate
the EDIT processor. The COBOL command at 10 invokes the ANS COBOL compiler to process
the source program.

At 13 and 14, the user assigns SYSIN and SYSOUT data sets to the terminal. This same COBOL
program could be executed in the background by including SYSIN and SYSOUT DD statements in
the Job Control Language.

The LOADGO command at 15 calls on the Loader to bring the object program into main storage
and pass control to it. The COBLIB operand specifies that the standard COBOL library is to be
used to resolve external references.

At 16, after his keyboard unlocks, the user enters a part number to test the program. The
program locates the corresponding record in the indexed file, and displays the information in it at
17. The user repeats the test at 19, but with a non-existent part number. At 22, the user invokes
the Linkage Editor to create a load module, and add it to his command library, a partitioned data
set concatenated to the system command library. Once the member is added to his command library,
the user can invoke the program by entering the program name as a command, as he does at 23.

Programming at the Terminal 39

1 edit query.cobol new
2 INPUT
3 00010 identification division.

00020 program-id. query.
00030 environment division.
00040 configuration section.
00050 source-computer. ibm-360-i65.
00060 object-computer. ibm-360-i65.
00070 input-output section.
00080 file-control.
00090 select parts-file assign to da-2314-i-ddparts
00100 access is random
00110 nominal key is key-in, record key is rec-key.
00120 data division.
00130 file section.
00140 fd parts-file
00150 block contains 5 records
00160 record contains 80 characters
00170 label records are standard.
00180 01 parts-record.
00190 02 delete-code picture x.
00200 02 rec-key picture 9(7).
00210 02 part-history picture x(72).
00220 working-storage section.
00230 77 key-in picture 9(7).
00240 procedure division.
00250 begin.
00260 open input parts-file.
00270 para-1.
00280 accept key-in.
00290 read parts-file invalid key go to inv-key-read.
00300 display rec-key, part-history.
00310 eojb.
00320 close parts-file. stop run.
00330 inv-key-read.
00340 display 'no record found'.

4 00350 go to eojb.
5 00360
6 EDIT
7 save

SAVED
8 end
9 READY

10 cobol query so x d pm
11 ANS COBOL IN PROGRESS
12 READY

13 alloc'ate dataset(*) file(sysin)
READY

14 alloc da(*) f(sysout)
READY

15 loadgo query coblib
16 6367220
17 6367220 SHIM CLIP 24 ON HAND

READY
10 ORDER POINT SUPPLIER 17688

18 loadgo query coblib
19 9999999
20 NO RECORD FOUND
21 READY
22 link query load(commands(query))

READY
23 query

3288540

coblib

3288540 PAWL SPRING (4-INCH) 13 DOZ ON HAND
READY

Figure 9. A Terminal Session Creating a COBOL Program

40 TSO Guide (Release 21)

7 ORDER POINT

Fortran

Two versions of FORTRAN IV with special support for the foreground environment are available as
Program Products to TSO users:

• Code and Go FORTRAN.

• FORTRAN IV (Gl).

Both processors can also be used in the background environment. Two additional Program Products
are available to complement the processors:

• FORTRAN IV Library (Mod I), for use with either processor to provide list-directed
input/output support, ASCII data set handling, and PAUSE and STOP output to the terminal.

• TSO FORTRAN Prompter, which allows the terminal user to invoke the FORTRAN IV (GO
processor with the FORT or RUN commands.

A FORTRAN programmer can also invoke the FORTRAN (E), (G), or (H) processors with the
CALL command, but not with the RUN or FORT commands. The user is responsible for allocating
the data sets needed by these compilers, and for specifying the compiler options. The prompter
performs these services for the FORTRAN IV (GO compiler, which also has output specially
formatted for the terminal.

Code and Go FORTRAN is optimized for a fast compile-and-execute sequence, carried out entirely
within main storage for small-to medium-sized programs. This makes it a useful tool for
problem-solvers. It accepts free-form source statements, and has simplified I/O statements for
addressing the terminal. However, no permanent object program is produced, and some execution
speed is sacrificed for fast compilation. Whenever the programmer need to link separately compiled
programs and subroutines, when he is working with very large programs, or when he wants to
produce an object program he can save, he will use the FORTRAN (GO compiler. He may develop
and test his program with Code and Go FORTRAN, and then compile it a last time with the FORT
command. The TSO CONVERT command will change free form source statements to fixed form or
vice versa. Code and Go FORTRAN is discussed in greater detail in the chapter "Problem Solving."

Entering the Source Program

The programmer uses the EDIT command to create a source program. An operand of the EDIT
command informs the syntax checker what FORTRAN compiler is going to be used. As the
program source statements are entered, the FORTRAN syntax checker processes each line,
interrupting the input sequence if it detects an error. Figure 10 shows a syntax checker diagnostic
response and the user action to correct the error. The first CHANGE subcommand inserts a left
parenthesis, the second, a right parenthesis.

Compiling a FORTRAN Program

When the programmer finishes entering the source program, he saves his data set with the SA VE
subcommand, and switches to command mode to enter the FORT command, or stays in edit mode
and uses the RUN subcommand. Operands of FORT allow him to specify various compiler options:
whether or not a listing is to be produced, the contents of the listing, where it is to be printed or
stored, whether or not an object program is to be produced, and whether diagnostics are to be sent
to the terminal. All operands except the input data set name can default to standard values.

Programming at the Terminal 41

00030 30 format (f10.3)
00040 12 read (2,30) a(i),i=1,5
) REQUIRED FOR IMPLIED DO
EDIT
change / a/ (a/
change /5/5)/
list *
00040 12 read (2,30) (A(I),I=1,5)

INPUT
do 50 i=1,5

Figure 10. FORTRAN Syntax Checker Diagnostic

As the compiler processes the program, it may find program organization errors· that were not
detected by the syntax checker on a statement-by-statement basis. Compiler diagnostic messages are
sent to to the terminal, along with the statement in error, and a pointer to the field in error, if
possible. Figure 11 is an example of compiler output to the terminal during a single compilation. The
number preceding the source statement is the line number assigned by EDIT when the source
program was entered. The line number allows the programmer to use the edit mode subcommands
to correct the statement quickly, without listing the entire program.

G1 COMPILER ENTERED
000170 30 FORMAT (16)

$
01) IGI006I DUPLICATE LABEL
SOURCE ANALYZED
PROGRAM NAME=MAIN
*001 DIAGNOSTICS GENERATED,

HIGHEST SEVERITY CODE IS 8
READY

Figure 11. Sample of FORTRAN Compiler Output

When the program compiles successfully, the programmer can print an error-free listing, and use
the LOADGO command to load his program for execution.

Testing FORTRAN Programs

The FORTRAN programmer has two testing facilities: The debug facility of the FORTRAN
language, and the TSO test mode.

The debug facility of FORTRAN (Gl) allows the programmer to monitor program execution
from his terminal. Output from the debug statements such as TRACE and DISPLAY is sent to the
terminal, unless directed elsewhere with the UNIT option of the DEBUG statement. DUMP and
PDUMP output also goes to the terminal. Execution of the program can be synchronized with the
terminal by inserting READ statements in the debug packets, forcing the program to wait for the
user to allow it to continue. Since FORTRAN debug statements are grouped together in the source
program, they can be easily deleted with EDIT subcommands when testing is completed.

The test mode is also available for FORTRAN programmers. Using an object program listing and
storage map produced by the compiler, the programmer can insert breakpoints to interrupt execution
of his program, list and modify variable values in main storage, and control program flow. Some
knowledge of System/360 instruction formats and hexadecimal notation is helpful in using test
mode.

42 TSO Guide (Release 21)

PL/I

The PL/I programmer can use the following language processors from the terminal:

• ITF: PL/I.

• PL/I Optimizing Compiler.

• PL/I (F) Compiler.

• PL/I Checkout Compiler.

The ITF: PL/I Program Product is a subset of PL/I designed for solving problems at the terminal.
It is provided by a compiler that offers two types of processing: a rapid compile-and-execute
sequence for small- to medium-sized programs, or line-by-line interpretation and execution of PL/I
statements as they are entered. ITF: PL/I does not produce a permanent object program. ITF: PL/I
is described in the chapter, "Problem Solving."

The PL/I Optimizing Compiler, an IBM Program Product, is a language processor for use in
either the background or the foreground environment. For the foreground environment, the compiler
incorporates a prompter, which allows the user to invoke it with the PLI or RUN commands.
Compiler options allow the user to request diagnositcs and listings formatted for the terminal, or to
request termination of compilation if syntax errors are found.

The PL/I programmer can also use the PL/I (F) compiler from the terminal, but no special
prompting or output format is available. The F-Ievel syntax checker can be used to scan source
statements as they are entered or to scan complete programs. The PL/I (F) compiler cannot be
invoked with the PLI or PLIC commands, but an example of a command procedure that uses the
CALL command for the PL/I (F) processor is given in the last section of this chapter.

The PL/I Optimizing Compiler implements a more comprehensive subset of PL/I than previous
compilers and offers a choice of fast compilation, optimization for spped of object program
execution, or optimization for minimum object program size. A subroutine library is required during
linkage editing of a compiler output module. A second library is required for execution of the object
program. Each library is available as an IBM Program Product:

• OS PL/I Resident Library.

• OS PL/I Transient Library.

The PL/I Checkout Compiler is a two-stage processing program which translates and interprets
(executes) PL/I programs. It can be used in either the batch or TSO environment of the IBM
System/360 Operating System.

Using the checkout compiler in a TSO environment will often enable you to check out a PL/I
program in one session at the terminal. Its conversational checkout features allow you to
communicate with the compiler during processing. The compiler prints messages and listings at the
terminal (as requested by the TERMINAL option) and you can respond with PL/I subcommands,
or PL/I statements for immediate execution. The subcommands allow you to change compiler
options, request more information, copy output files at the terminal, make temporary modifications
to the PL/I program (during interpretation only), and either continue or terminate processing. The
OS/360 PL/I Transient Library is required during execution.

You can also communicate with the PL/I program when it is being interpreted by using the
conversational I/O feature of PL/1.

Programming at the Terminal 43

Entering a PL/I Program

The programmer uses the EDIT command to create his source program and save it as a data set. He
can request EDIT to assign a line number to each line of his source program as he enters it. If line
numbers are assigned, he can request the PL/I Optimizing Compiler or the PL/I Checkout
Compiler to use them in diagnostic messages, instead of statement numbers. The programmer can
use the line number to retrieve the erroneous source statement, correct the error, and invoke
another compilation, all without having the complete listing displayed at the terminal.

Compiling a PL/I Program

To invoke a compiler, the programmer uses either the RUN command, the PLI or the PLIC
command. RUN can be used as a subcommand of EDIT, allowing the user to correct errors without
entering the EDIT command again. RUN causes a complete compile-load-go sequence but does not
produce a permanent object program. RUN is normally used during the initial compilations to check
for source language errors. When a program is debugged, the PLI command can be used to produce
an object program and a full listing. The object module can be loaded for execution or linkage
edited into a program library for use as a load module. Whether invoked by RUN, or PLI, the PL/I
Optimizing Compiler directs diagnostic messages to the terminal, in either a full or an abbreviated
format. During testing, the programmer can have traces and other output generated by PL/I
program checkout facilities displayed at the terminal. The PLIC command invokes the PL/I
Checkout Compiler.

Program Execution

Programs produced by the compiler can be executed in either the background or the foreground. In
the foreground I/O can be directed to the terminal by allocating a PL/I file, such as SYSIN or
SYSPRINT, to the terminal with the ALLOCATE command. In the background these same files can
be directed to data sets or unit record devices.

Assembler Language

Like programmers who use the higher level languages, the assembler language user enters his source
program statements with the EDIT command. Assembler (F) accepts free form input, but the tab
setting facilities of EDIT allow the user to create a formatted listing. On request, EDIT assigns line
numbers to the source statements, which are later referred to by diagnostic messages produced
during assembly. Line number or context editing is always available to correct errors, modify source
statements, or add comments.

Assembling the Program

When the programmer completes his source program and saves it, he invokes Assembler (F) with
the RUN or ASM commands. The use of these commands requires the TSO Assembler Prompter
Program Product. Operands of ASM give him control over the listing format, disposition of output,
and diagnostic messages.

Assembler diagnostic messages sent to the terminal include the statement in error, if possible;
both the EDIT -assigned line number and the assembler-assigned statement number; and an
explanation of the error. Usually, the user will not need to have the complete listing displayed in
order to obtain an error-free assembly. Using the line numbers in the diagnostic messages, the
programmer can quickly locate and fix source statements errors with the edit mode subcommands.

44 TSO Guide (Release 21)

Test Mode

When assembly completes without error, the programmer creates a load module with the LINK
command, and uses the TEST command to brfng it into storage. The TEST command processor uses
the symbol table produced by the assembler and linkage editor, which gives the address and
attributes of each symbolic name used in the source program. Before passing control to the program,
TEST allows the user to establish initial values to be passed to the program as test data, and to set
up breakpoints where execution is to be interrupted for displays, dumps, and other debugging
activity. The user can refer to points in the program by symbolic names, absolute relative or indirect
addresses.

To display storage and register contents, the programmer uses the LIST subcommand. specifying a
register range or address range, or a list of symbolic names. Special forms of the LIST subcommand
provide standard formats for control blocks such as the TCB, DEB, DCB, and PSW. LIST will also
provide a current map of user storage. List output can be directed to either the terminal or a data
set.

Other TEST subcommands allow the programmer to load additional programs into storage, to
delete or replace programs in storage, to issue GETMAIN and FREEMAIN as subcommands from
the terminal, to define the location and attributes of symbols not in the symbol table, and to start
and stop program execution.

Other Compilers

Any language processor designed to execute under the operating system can be invoked from a TSO
terminal. A compiler, like any other program in load module form, is invoked with the CALL
command. Options to invoked with the CALL command. Options to control the execution of IBM
compilers -- such as LOAD or NOXREF -- are entered with the CALL command, in the same form
as they would be specified in the P ARM field of an EXEC statement in a background job stream.

Before a language processor is invoked, the necessary input, output, and utility files must be
allocated under the names expected by the processor. For the compilers invoked directly by their
own commands (American National Standard COBOL, FORTRAN (Gl), PL/I Optimizing
Compiler PL/I Checkout Compiler and Assembler (F)), the necessary allocations are performed by
initialization prog.rams called before the compilers.

Since the ALLOCATE statements necessary for a particular compiler are always the same, it is
easiest to define them in a command procedure to be used for invoking that compiler. The function
of the command procedure is the same as the cataloged procedures used to invoke compilers in the
background: to save the user the trouble of entering a set of unchanging statements each time the
compiler is invoked. The command procedure developed in this section as an example is for the
PL/I (F) compiler. Similar procedures can be defined, either by individual users or by the
installation, for any processor.

Programming at the Terminal 45

A CompHer Command Procedure

Figure 12 shows a command procedure that could be used to invoke the PL/I (F) compiler. This
procedure would be created with the EDIT command as a command list (CLIST) data set, under an
appropriate member name, such as PLIF.

1 PROC 1 NAME
2 ALLOCATE DATASET(&NAME .. PLI) FILE(SYSIN)
3 ALLOCATE DATASET(&NAME .. LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,100)
4 ALLOCATE DATASET(&NAME .. OBJ)FILE(SYSLIN) BLOCK(80) SPACE(250,100)
5 ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
6 ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
7 CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
8 FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)

Figure 12. A Command Procedure to Invoke the PL/I (F) Compiler

At 1 in the sample procedure is a PROC statement, defining a single positional aprameter to be
supplied by the user when the procedure is invoked, in this case, the name of his program. Whatever
value the user specifies when calling the procedure will be filled into the following commands
wherever" & NAME" appears.

Records 2 through 6 perform the data set allocations required by the PL/I compiler. Record 2
allocates the input data set containing the source program. Although this data set is probably already
allocated, since the user has nost likely just created it with EDIT, this ALLOCATE command will
reallocate it with the DDNAME "SYSIN". This data set is always OLD, no BLOCK or SPACE
values have to be supplied. The data set name will be formed from the program name supplied by
the EXEC command, followed by the characters ".PLI". Two periods are necessary in the model
command, since the first one indicates the following characters are to be concatenated to the
supplied value. Records 3 and 4 similarly allocate and assign standard names to the data sets to hold
the program listing and the object program, Since these are new data sets, the BLOCK and SPACE
values must be supplied. Records 5 and 6 allocate the two utility, or temporary work, data sets the
compiler needs. No data set name is specified, so a system-generated name will be assigned to them,
and the data sets will automatically be deleted by a FREE command. All the other data sets will be
kept and cataloged. To use the same procedure again for the same program, the user should enter
DELETE commands for SYSIN and SYSPRINT.

Record 7 invokes the PL/I (F) compiler by its load module name, and passes to it the list of
options to control execution. When the compiler completes processing, the FREE command in
record 8 releases all the data sets except the object module.

Figure 13 shows how the procedure might be used from the terminal. At 1 is the EXEC
command invoking the procedure. The LIST keyword on the command specifies that each command
is to be printed out at the terminal as it is executed. Note that the name supplied with the EXEC
command has been filled in as part of the data set name field in the ALLOCATE commands. The
system continues to list commands through line 8, then notifies the user it is again ready to accept
commands from the terminal with the READY message in line 9. The user enters the LOAD GO
command to being his compiled object program into storage for execution.

46 TSO Guide (Release 21)

1 exec plif 'exp' list
2 ALLOCATE DATASET(EXP.PLI) FILE(SYSIN)
3 ALLOCATE DATASET(EXP.LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,100)
4 ALLOCATE DATASET(EXP.OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100)
5 ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
6 ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
7 CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
8 FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)
9 READY

10 allocate dataset(*) file(sysin)
11 READY

12 allocate dataset(*) file(sysout)
13 READY

14 loadgo exp.obj pl1lib

Figure 13. Use of a Command Procedure

If the procedure is a member of the command procedure library, the user can use the EXEC
command implicitly, as shown in Figure 14. When the system does not find "PLIF" defined in the
command library, it looks for the command procedure in the command procedure library. The
individual commands are not displayed at the terminal. When the procedure completes, the READY
message is displayed, and the user can load his program for execution.

plif exp
READY

Figure 14. Implicit use of Procedure

Nested Procedures

A command procedure can be made into a compile-load-go sequence -- the equivalent of the RUN
command -- by using the procedure nesting and conditional execution capabilities. For instance, in
Figure 13, note that the user enters two ALLOCATE commands, defining terminal input and output
for execution time, and a LOADGO command to invoke his program. Like the commands used to
invoke the compiler, these would normally be used every time the user wants to invoke his program,
and therefore can be reasonably placed in a command procedure. This second procedure can be it
from the compiler-invoking procedure, making it a compile-load-go procedure.

The procedure to load and execute the user program might be defined as shown in Figure 15,
under a suitable name such as LDGO. The FREE command in record 2 is the same as the one in
the PLIF procedure. It needs to be repeated here since it will not be executed in that procedure, as
explained below. Records 3 and 4 allocate the terminal for an SYSIN or SYSPRINT I/O statements
in the user program, and statement 5 is the LOAD GO command causing the program to be brought
into storage and given control.

1 PROC 1, NAM1
2 FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)
3 ALLOCATE DATASET(*) FILE(SYSIN)
4 ALLOCATE DATASET(*) FILE(SYSPRINT)
5 LOADGO &NAM1 .. OBJ PLILIB
6 END

Figure 15. A Command Procedure to Invoke a User Program

Programming at the Terminal 47

It would be possible to call this procedure from the PLIF procedure by inserting a record
containing:

EXEC LDGO '&NAME'

However, it would be preferable to call it only when the return code from the compiler indicates
successful execution is likely, that is, no serious errors were detected during compilation. To test the
compiler return code, the user inserts a WHEN statement:

WHEN SYSRC(LE 4) EXEC LDGO '&NAME'

The WHEN statement immediately follows the CALL command invoking the compiler (record 7 in
Figure 12). If the compiler return code is less than or equal to four ("LE 4"), minor errors, were
detected, the EXEC indicating that no errors, or only command is executed. If the return code is
greater than four, the EXEC command will be ignored, the FREE command is executed, and the
procedure ends. The terminal returns to command mode, and the user will probably use the LIST
command to display the compiler listing, determine the errors in the source program, correct them
with the EDIT command, and reinvoke the procedure for another compilation. Figure 16 shows the
modified FLIF command procedure. A DELETE command has been added for the object module,
since it is not executable. Figure 17 shows a use of the procedure for a successful compilation. The
LIST operand is specified to display each command as it is executed.

PROC 1,NAME
ALLOCATE DATASET(&NAME .. PLI) FILE(SYSIN)
ALLOCATE DATASET(&NAME .. LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,100)
ALLOCATE DATASET(&NAME .. OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
WHEN SYSRC(LE 4) EXEC LDGO '&NAME.'
FREE FILE(SYSUT1,SYSUT3)
DELETE &NAME .. OBJ
END

Figure 16. A Command Procedure for a Compile-load-Go Sequence

exec plif 'derv' list
ALLOCATE DATASET(DERV.PLI) FILE(SYSIN)
ALLOCATE DATASET(DERV.LIST) FILE(SYSPRINT) BLOCK(80) SPACE(300,100)
ALLOCATE DATASET(DERV.OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100)
ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60)
ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,100)
CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO'
WHEN SYSRC(LE 4) EXEC LDGO 'DERV'
FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT)
ALLOCATE DATASET(*) FILE(SYSIN)
ALLOCATE DATASET(*) FILE(SYSPRINT)
LOADGO DERV.OBJ.PLILIB

Figure 17. Using a Compile-load-Go Command Procedure

48 TSO Guide (Release 21)

Problem Solving

To meet the needs of users who may not be professional programmers, three problem-solving
languages are available as IBM Program Products with TSO: Interactive Terminal Facility (ITF):
BASIC, ITF: PL/I, and Code and Go FORTRAN. These languages are available as separate program
products. ITF: BASIC is a simple, algebra-like language that can be quickly learned, yet it has the
power to perform complex mathematical calculations. ITF: PL/I is a subset of the full PL/I
language. It is a more powerful language than BASIC for subroutine handling, but is simpler than
the full PL/I language, making it a good teaching tool. ITF: PL/I can be used in two ways:
statements can be interpreted and executed as they are entered (desk calculator mode); or they can
be collected into procedures for compilation and execution as programs or subroutines. Code and
Go FORTRAN provides the full FORTRAN IV language for terminal users. It has a very fast
compile-and-execute sequence, carried out entirely in main storage. Code and Go FORTRAN
accepts free-form source statements, and has simplified I/O statements for terminals.

All three languages have statement-by-statement syntax checking as the programs are keyed in,
and additional diagnostics are set to the terminal for errors detected during compilation and
execution phases. For the ITF: BASIC and PL/I languages, the test mode allows the user to
monitor program execution with breakpoints and traces, to inspect and reset the values of variables
and to modify main storage during execution. The debug facilities of FORTRAN (G) are included
in Code and Go FORTRAN.

Programs in any of the three languages are created, and can be n.~n, in edit mode. Whenever
necessary, the user can use EDIT to replace or modify source statements. For small to medium-sized
programs performance is better in edit mode than in command mode, since the source statements
and, in the case of Code and Go FORTRAN, the object program, can be kept in main storage and
do not have to be read in from auxiliary storage.

ITF: BASIC

The ITF: BASIC Program Product is based on the original BASIC language created for time sharing
use at Dartmouth College. With TSO, the BASIC user logs on to the system, then enters the EDIT
command. In the input mode he enters successive statements to define his problem. If the system
detects a syntax error, he is notified immediately so that he can correct the faulty statement before
continuing. The user can defer syntax checking until compilation. When all his statements have been
entered and syntax checked, the user issued the RUN subcommand to compile and execute the
program. An operand of the RUN subcommand specifies whether he wants to execute with short
precision (6 significant decimal digits) or long precision (15 digits). Programs and data can be saved
from one session to the next, or deleted after use.

BASIC statements are entered one to an input line, and can refer to other statements by the line
number assigned by EDIT. Variables always have one- or two-character names. Arithmetic
operators used in BASIC statements are +, -, /, * and ** (exponentiation).

BASIC includes statements for defining and handling one- and two-dimensional arrays. Array
references have the form A(i,j) where "A" is the array name, and "i" and "j" are variables or
constants referring to the row and column of an element. Elements can contain arithmetic or
character values.

Problem Solving 49

A special set of statements is included to handle matrices. A BASIC matrix is always a
two-dimensional array, and can contain only arithmetic values. Two matrices with the same
dimensions can be mUltiplied, added, or subtracted, and a matrix can be inverted or transposed with
built-in matrix functions.

Figure 18 shows a terminal session creating a BASIC program to calculate the infinite sum
00

L x-n
n=l
to the limit of machine precision. Statements 010 and 020 write messages to the terminal, describing
the input requested by statement 030. After initializing the variables, the user states the sum as in
BASIC format: 8 = 8+1/(X**N). Statement 070 increments N, and 080 is a check to see if the
precision limit has been reached. If it has, control branches to statement 100, to print the results at
the terminal. Note that statement 110 uses an "image" statement to format output, while statement
130 uses the default format.

During the execution of the program, the "?" requests the user to enter the input. When the
results are printed and the program terminates, the user is returned to edit mode where he saves the
program for use in later sessions.

edit rsumx basic
INPUT
010 print 'summing l/(x**n)'
020 print 'what x'
030 input x
040 let n=O
050 s=O
060 s=s+l/(x**n)
070 n=n+l
080 if s=s+l/(x**n) then 100
090 gQto 60
100 print 'number of terms:' I(n-l)
110 print using 120, s
120 'sum='##.#############
130 print 'last term=' , 1/(x**(n-1))
140 end
150
EDIT
run

SUMMING 1/(X**N)
WHAT X

? 1.065
NUMBER OF TERMS: 176
SUM= 16.3836700000000
LAST TERM= 1.S3643E-05

save
SAVED
end
READY

Figure 18. ITF: BASIC Sample Session

50 TSO Guide (Release 21)

ITF: PL/I

The ITF: PL/I Program Product is a subset of the full PL/I language, suited to problem-solving
because of its simplicity and ease of use. For example, there are no arithmetic conversion rules to
remember: all data is kept in decimal floating-point format. The language is compatible with PL/I as
provided by the PL/I (F) compiler, except that Interactive I)L/I does not require semicolons to
terminate statements, source language programs are stored with variable-length records, and some
arithmetic data formats that would default to fixed-point binary in full PL/I are floating-point
decimal in ITF: PL/1. A utility command, CONVERT, is provided to format ITF: PL/I source
programs for submission to a b~tch PL/I compiler, if the user wants to create an object program.

ITF: PL/I can be used-under either the EDIT or the CALC commands. Under EDIT, statements
are collected into a program. When the program is complete. the RUN subcommand is used to
compile and execute it. Under the CALC command, statements are interpreted and exec;uted as they
are entered. Statements are discarded as soon as they have been executed. Variables, however, are
all defined as "static externals" and kept in a table in main storage, where they can be refered to by
subsequent ITF: PL/I statements, or displayed at the terminal. The table of variables created during
a session using the CALC command can be saved in a data set for use in later sessions.

Variables included in ITF: PL/I are scalars of either single or double character and bit strings,
labels, externals, and entry and return parameters. Execution control statements include DO loops,
GOTO branch statements, and IF THEN ELSE conditionals. Procedures collected under the EDIT
command can be saved and invoked with the CALL statement, either from another procedure or
under the CALC command. Only list-directed and edit-directed stream I/O is provided, either to a
file or the terminal. An appropriate set of the PL/I built-in functions is included in ITF: PL/1.

Test Facility: When a user invokes an ITF: PL/I or BASIC procedure for execution, as an option he
can specify that the program is to be tested. In thiS case, the system allows the user to set
breakpoints in the program before it is started, and to set up program traces and displays of
variables. All output from the_ testing routines is displayed at the terminal. When the program is
interrupted by a breakpoint, or when the user hits the attention lrey, he can display and modify
variable values, modify test procedures, and then restart the program at the point of interruption.
The ITF testing subcommands are a subset of the TEST subcommands available for the
programming languages.

Syntax errors in an ITF: PL/I source statement are detected as soon as the statement is entered,
and the user is notified to correct the statement. The user can request deferrar of syntax checking to'
compile time. When operating under EDIT, some errors will only be detected at compile-execute
time. In this case, a message is sent to the terminal, and the user is returned to the edit mode to
correct the error in the source program.

Sample Session: Figure 19 shows a sample terminal session using ITF: PL/I to create a procedure
finding the largest common divisor of two positive numbers. "Max" and "min" in statements 50 and
60, and "floor" in statement 110 are built-in functions. Note that since no file is specified in the
PUT statements, the output is sent to the terminal. At statement 180, the user entered a null line,
indicating a switch from the input mode to edit mode. The SA VB subcommand stores the procedure
on auxiliary storage. The user then enters CALC to go to the desk calculator terminal mode, and
uses a CALL statement to invoke the procedure.

Problem Solving 51

edit div ipli
INPUT

div: procedure(x,y); 00010
00020
00030
00040
00050
00060
00070
00080
00090

/* this procedure is a subroutine that find the */
/* greatest common divisor of any positive x and */
/* y of six digits or less

00100
00110
00120
00130
00140

x 1 = max (x, y) ;
y1 = min(x,y);
if (x1 <= 0) I (y1 <= 0) then do;

put list
return;
end;

lab: rem = x1
if rem =
x1 = y1 ;
y1 = rem;

- (floor(x1/y1)*y1);
o then go to out;

go to lab;

('invalid values');

00150
00160
00170
00180

out: put list ('the
end

common divisor is:' ,y1);

EDIT
save
SAVED
end
READY

calc
CALC
call div(9,24)
THE COMMON DIVISOR IS: 3.00000E+00
end
READY

Figure 19. ITF: PL/I Sample Session

Code and Go FORTRAN

For the many problem-solvers who are familiar with the FORTRAN programming language, the
Code and Go FORTRAN Program Product is available for use from the terminal. The user creates
his program, and optionally has it syntax-checked, with the EDIT command. H~ uses the RUN
subcommand.to invoke the Code and Go FORTRAN compiler. The source program is converted to
an object program in main storage. As soon as the object program is complete, control is passed to
it. The compiler used for Code and Go FORTRAN bypasses certain object code optimization
processing for greater compilation speed.

The language includes all the features of FORTRAN IV as defined in the publication IBM
System/360: FORTRAN IV Language, GC28-6515. Two extensions to the language are included for
ease of use from the terminal: free-form source statements and list-directed I/O statements similar
to those provided by PL/1.

Free-Form Statements: Code and Go FORTRAN does not require statements to begin in column 7. If
a statement has a label, the statement can immediately follow the label. If it has no label, it can
start in column 1.

A utility command (CONVERT) is available to change free-form source statements to fixed
form, if a user wants to submit them to one of the batch FORTRAN compilers after developing and
testing them in free form. Code and Go FORTRAN will also accept the conventional fixed format.

52 TSO Guide (Release 21)

List-Directed I/O: The list directed I/O facility can be used for any I/O device, but was designed
especially for FORTRAN programs that read from and write to a remote terminal. List-directed I/O
statements are written with an asterisk (*) in the field normally used for the FORMAT statement
number. Thus, a READ statement to fill an array of five values might be coded:

20 READ (5, *) (A (I) , 1= 1 , 5)

When execution reaches statement 20 in the program, the line:

00020

?

is sent to the terminal. (This prompting message is suppressed at user request or if the device is not
a terminal.) The user can then enter a line such as:

30.7 42.85 12.3.29.1 88.43

to fill in the array. Input values can be separated by one or more blanks, or by a single comma.
Two commas in succession indicate a value is to be skipped. A slash is used to indicate that no
more values will be entered, and that any remaining variables in the list are not to be altered.
Successive occurrences of the same value can be entered in the form "k*constant", as in
NAMELIST input. Array A above could have been filled by the line:

5*30.7

Integer, real, literal, complex, and logical constants can be entered for list-directed READ
statements. Real constants can be entered in D, E, or unspecified format. List-directed WRITE
statements may not include literal constants, and real constants default to E format on output.

Sample Session: Figure 20 shows a portion of a terminal session in which a user writes a program in
Code and Go FORTRAN and executes it. With the EDIT command, he specifies he is creating a
new program named "VAL", written in Code and Go FORTRAN (GOFORT), and that he wants it
checked for syntax errors as he enters it. READ statement 5 allows the user to enter one of the
variables, and to specify how many values will be supplied for the array DELTA. Statement 10 then
reads the values for DELTA. The WRITE statement will display the answers from array F at the
terminal.

When the program is completely entered, the user shifts from input mode to edit mode by
entering a null line. The SAVE subcommand creates a copy of the program on auxiliary storage.
The RUN command invokes the CODE and Go FORTRAN compiler, which creates an object
program in main storage, calls the loader to resolve external references and bring in necessary
library programs, and start the program. Note that the ALOG subprogram is included in the
program. The complete FORTRAN subprogram library is available.

I When execution reaches statements 5 (00020) and 10 (00030), the user is prompted to supply
values, and as the program completes, the answers are transmitted to the terminal. After the
program terminates the user returns to the edit, mode, where he could modify the source program if
necessary. The saved copy of the program will be kept for the user on auxiliary storage, where it
will be available in subsequent sessions.

Problem Solving 53

READY
edit val
INPUT
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
EDIT
save
SAVED
run
? 00005
176.2 5
? 00010

new gofort scan

real*4 delta(10)/10*0.0/,f(9)/9*0.0/
5 read(5,*) curnt,n
10 read(5,*) (delta(i),i=1,n)
do 10 i=1,n
10 delta(i)=alog«curnt+delta(i)/curnt)
do 30 i=2,n
30 f(i-1)=delta(i)/delta(1)
n=n-1
write(6,*) (f(i),i=1,n)
end

10. , 17.1, 21.5, 37.4, 127.14
0.167791E 01 0.208565E 01 etc.
end
RE1~DY

Figure 20. Code and Go FORTRAN Sample Session

54 TSO Guide (Release 21)

System Summary

This chapter introduces the major control and service routines that have been added to the MVT
control program for time sharing. It identifies points where the installation can control system
execution, and where modules can be modified or replaced for specialized applications.

MVT Control Program

U U
8

Time Sharing Message Control

Control Task

{}

0
Region
Control Task

\J
LogorVLogoff

Terminal

0 I/O
Schedulers Requests

0
0

Terminal Monitor
Program

Command

0 Processors (CP)
User
Pro rams

Figure 21. TSO Control Flow Diagram

Figure 21 is a generalized diagram of the flow of control through the system, showing several
levels of control under the MVT control program. The portion of the system directly concerned with
time sharing can be divided into five levels:

1. At the highest level are the Time Sharing Control and the TCAM Message Control Program
tasks. The Time Sharing Control task handles system-wide functions such as the initialization
procedure required when the operator starts time sharing, and the swapping. of foreground jobs.
The Message Control Program is a part of the Telecommunications Access Method (TCAM) and
handles all 110 for remote terminals.

2. Below the Time Sharing Control task is the Region Control task for foreground regions. The
Region Control task supervises the quiescing and restoring of job activity before and after
swapping. Conceptually, there is one Region Control Task for each foreground region, however,

System Summary 55

since the Region Control Task is composed of reenterable code residing in the TSC region, only
one copy exists.

3. The LOGON/LOGOFF Scheduler is invoked by the Region Control task whenever a user wants
to log on or off the system. The LOGON routine identifies the user to the system, and defines
his foreground job using parameters in the LOGON procedure, user profile, and operands of the
LOGON command.

4. LOGON invokes a problem program specified by the user's LOGON procedure at the next level.
This is normally the TSO Terminal Monitor Program, which handles TSO and user-supplied
commands.

5. Command processors and other application programs execute at the lowest level of control.

These levels are conceptual only, and are not defined by priorities or locations in main storage.
Through the course of this chapter a more precise system flow diagram will be built. However, some
overall design features of the system are apparent from even the simplified picture in Figure 21:

• TSO is highly modular -- built up from small components with well-defined interfaces -- and
therefore flexible and adaptable to local needs. The Terminal Monitor Program and the Message
Control Program are designed to be modified or replaced by the installation for a specialized
application.

• Each level of control also provides an opportunity for the system to recover from failure. For
instance, abnormal termination of a command processor or other problem program is handled by
the Terminal Monitor Program. Only the user who invoked the failing program is affected -- and
he is given an opportunity to recover the program through the TEST facility. Users at other
terminals are completely protected.

The Time Sharing Driver

Before discussing the individual control routines in greater detail, one program must be added to the
cont.rol flow diagram. The Time Sharing Driver isolates in one component the decision-making
algorithms for the division of system resources among all the users of the system. By passing
parameters to the Driver with the ST ART command or from the system parameter library, the
installation controls the various scheduling algorithms to gain the desired performance for its job
mix. These Htuning" parameters and the algorithms are discussed in the last section of this chapter.

As shown in Figure 22, the Driver has a unique relationship to the other control routines. It
cannot be logically assigned to one of the control levels, but is used as a service program by all the
levels from the MVT supervisor down to the Terminal Monitor Program. The calling programs
inform the Driver of events throughout the system -- time slice end, user waiting for LOGON, job
waiting for input, etc. From this stream of information, the Driver maintains a current picture of the
system load and activity. Based on this picture, the Driver orders actions such as swapping, changes
in priority, and assignment of a user to a particular region.

The Driver component itself is completely insulated from the rest of the system by the Time
Sharing Interface Program, which accepts all calls to the Driver, then passes them through a
standard int.erface to the Driver itself. The Driver returns parameters to the Interface Program that
request various actions by the other control routines. Thus, an installation can modify or replace the
Driver -- effectively, provide its own system scheduler -- without modifying the system
implementation programs. The operator uses the ST ART command to specify which Driver -- the
standard one or an installation-written one -- is to. be used.

56 TSO Guide (Release 21)

(TMP)

Figure 22. The Time Sharing Driver

Control Routines

MVT Control Program

Time Sharing
Interface Program

(TSIP)

DRIVER

(MC?)

(PARAMETER LIST)

The following paragraphs discuss the functions of each of the TSO routines. Although the TCAM
Message Control Program logically shares the highest level of control with the Time Sharing Control
Task, it is discussed last.

The Time Sharing Control Task

The Time Sharing Control task, as shown in Figure 23 handles all functions affecting the entire time
sharing portion of the system. This includes responding to the START, MODIFY, and STOP
operator commands, and handling the swapping of foreground jobs into and out of main storage.

When the operator enters the START command for TSO, and initialization module of the TIme
Sharing Control is given control. The initialization module calculates the size of the Time Sharing
Control region that will be needed and obtains it from the main storage management routine of
MVT. In this region, the Time Sharing Control task builds the control blocks and buffers the system
will need, and invokes a Region Control task for each foreground region.

The installation may override the calculated TSC region size by specifying the size it wants in
SYSl.PARMLIB or on the START command. this may be necessary if an installation written
Driver has greater main storage requirements than the Driver supplied with TSO.

System Summary 57

Figure 23. The Time Sharing Control Task

While the time sharing system is operating, the major function of the Time Sharing Control task
is the swapping of foreground jobs into and out of main storage. Swapping is handled at this level
so it can be optimized on a system-wide basis when mUltiple foreground regions are active. A swap
out is scheduled whether a channel is free or not.

The Time Sharing Control task maintains an input queue and an output queue for swap requests
(one of each set if parallel swapping is being used). It builds a channel program for each swap
request. A program-controlled interruption (PCI) will occur near the end of each channel program.
When the interruption occurs, an exit routine selects the next channel program to execute. The exit
routine inserts a transfer to the next channel program at the end of the current channel program.
Thus as the number of requests increases, the swap process is carried out by a never-ending channel
program. Seek time is mitllmized by attempting to swap jobs out to the direct access area from
which the last job swapped in, or if this is not possible, by using the free space closest to the
current arm position.

In determining what portion of a foreground region to swap out, the Time Sharing Control task
uses a map of the foreground job created by the Region Control task. Each entry in the map
identifies the starting address and length of a section of the region that the job is using. The number
of entries in this map is the same for every job and is specified by the installation in the system
parameter library. If there are too few entries, ma~tive main storage must be included (and
swapped). A large number of entries cuts down on the amount of inactive storage that has to be
swapped, but' adds to processing overhead.

When the operator enters a STOP command to shut down the time sharing operation, the Time
Sharing Control task initiates a logoff for each active user. When all users are disconnected, the
Time Sharing Control task ensures that all the system resources that had been assigned to it are
retwned; the Time Sharing COntrol task then terminates, returning its main storage region to the
system.

If any users cannot be logged off, the Time Sharing Control task cannot terminate. The operator
is given the facility to "force" TSO to terminate even if it appears that normal STOP processing
cannot be completed. For further information on "forced" STOP, see message IKJ024D in IBM
System/360 Operating System: Messages and Codes, GC28-6631.

58 TSO Guide (Release 21)

The Region Control Task

A major function of the Region Control task is quiescing and restoring foreground job activity
before and after swapping. Conceptually, there is one Region Control task for each active
foreground region, invoked by the Time Sharing Control task although only one copy exists in the
TSC region. Figure 24 shows a single Region Control task under the Time Sharing Control task.

Before a foreground job can be swapped out of main storage, any activity associated with it must
be brought to an orderly halt, or set up to be handled by some supervisor routine that will be
remaining in main storage. This includes removing control blocks associated with the job from
system queues, or flagging them as inactive.

ATTACH

Region
Control
Task

Figure 24. The Region Control Task

Quiescing of I/O activity is initiated by the Region Control task (at the request of the Driver),
which issues the Purge Supervisor Call for each task associated with the foreground job. The Purge
routine removes I/O requests from the I/O Supervisor's queues of pending requests if they have riot
yet been initiated. If ~ request has been started, that is, if data transfer is already taking place, it is
allowed to complete before the job is marked ready for swapping. The control blocks associated
with unstarted requests are stored in the foreground region where they will be swapped out of main
storage along with the job.

I/O requests that address the terminal are an exception to the quiescing procedure because of
their long completion time. These requests are handled through the TSO interface with TCAM and
are buffered in supervisor main storage, not in the foreground region. Data can be written or read
to these buffers whether the job is present in its main storage region or not.

Many control blocks, like the I/O requests mentioned above, reside in the foreground region. For
background jobs, these control blocks would be created and maintained in the System Queue Area,
a section of main storage set aside for this purpose during nucleus initialization. Foreground regions,
however, each contain a Local System Queue Area to hold control blocks. As part of quiescing, the
Region Control task removes pointers to these control blocks from system queues. The blocks can
then be swapped out of main storage along with the foreground job. The only control blocks for
foreground jobs that are assigned in the System Queue Area (and remain in main storage) are
requests for timer interruptions, operator replies, and assignment of resources through ENQ.

When a job is swapped into main storage by the Time Sharing Control task, the Region Control
task receives control to restore the I/O requests it intercepted at swap out time, and to return the
control blocks associated with the job to the appropriate system queues.

System Summary 59

LOGON/LOGOFF

The LOGON/LOGOFF Scheduler routine performs the same functions for foreground jobs that the
reader/interpreter and initiator do for background jobs. When defining a foreground job, LOGON
uses many of the same programs as subroutines.

When LOGON is invoked by the Region Control task, as shown in Figure 25, it is swapped into
the foreground region. A copy of the LOGON/LOGOFF Scheduler for each foreground region is
kept in the swap data set, reducing the amount of initialization time needed. LOGON, and all
routines below it in the control flow diagram, execute from the foreground region, and are swapped
in and out of main storage. LOGON first validates the user's identification and password in the
User Attribute Data Set, and reads in the rest of the user profile. From the profile and any operands
entered with the LOGON command, LOGON builds, in main storage a JOB and an EXEC
statement that define the foreground job. The EXEC statement names the LOGON Procedure
specified by the user, and the procedure in turn specifies the name of the program to be invoked.
The procedure also contains DD statements for data sets the user always wants allocated to him,
and some special DD statements that save control block space for data sets he may allocate later,
dynamically.

Swapped Into Foreground
Region And Attached

Figure 25. The LOGON/LOGOFF Scheduler

The JOB and EXEC statements built by the LOGON routine are passed to the reader/interpreter
to define the resources required by the job, and then to the initiator for allocation of the resources
-- direct access storage space, main storage control blocks, etc., -- and invocation of the program.
Figure 26 shows the linkage scheme used during LOGON. Use of the system reader and initiator
ensures that foreground jobs are compatible with normal background jobs, appearing to the system
as a job consisting of a single step.

The LOGON/LOGOFF Scheduler executes in the user's foreground region. Assignment to that
region is provisional until LOGON determines the correct size for the user's needs. If a larger region
is appropriate, LOGON can, through the Region Control task and the Time Sharing Control task,
request that the Driver assign a different region. If a region switch is made, the job information
LOGON has already gathered is left in a supervisor buffer. The Driver, through the Time Sharing
Control task, causes LOGON to be invoked in the new region, where processing can proceed.

60 TSO Guide (Release 21)

Figure 26. LOGON Linkage

The LOGON routine is also brought into a region whenever a user enters a LOGOFF command,
or a second LOGON command, during a session. For logoff, the LOGON routine ensures that all
resources have been returned to the system, and calls the accounting routines to update the user's
statistics. A second LOGON command during a session also causes logoff processing, but it is
immediately followed by re-Iogon. The new LOGON may request a different LOGON procedure or
region size.

The Terminal Monitor Program

For users of the TSO command language, the program named in the EXEC statement of the
LOGON Procedure is the Terminal Monitor Program. Users of locally-provided command systems,
or terminal monitors "dedicated" to some local application, can specify these programs in the
LOGON Procedure. If necessary for security reasons, user access to particular applications can be
controlled through the profiles in the User Attributes Data Set.

The remainder of this discussion concerns only the IBM-supplied Terminal Monitor Program, as
shown in Figure 27. Installation-written monitors must perform similar functions, and can use some
or all of the service routines described below.

Attach From RCT

~
Logon/ XCTL
Logoff
Scheduler

(LOGON)

Program Named
In Logon ~ ...
Procedure

Figure 27. Terminal Monitor Program

MVT J ISh d I' R t' 0) C e u mg ou Ines

r-- - - - -
I
I Reader/

'"
I Interpreter

I
L -- - - - -

ATTACH

- -

XCTL

- -

- - --

~
Initiator/
Terminator

-- - -

--

-

l

I

~

System Summary 61

When the Terminal Monitor Program receives control from LOGON, it is passed a pointer to the
user profile. The profile contains information to control the environment of the current session -
the user identification to append to data set names, whether the user wants to be prompted for
command information, whether he wants numerical message identifiers included in messages to the
terminal.

During a session, the Terminal Monitor is called on to handle four conditions:

• A command processor or user program is completing, and a new command must be requested.
• A command processor or user program is terminating because of an error.
• The user hit the Attention key, interrupting the current program.
• A CANCEL operator command is forcing a LOGOFF for the user.

To invoke a command processor, the Terminal Monitor Program uses the command name to
search the command library or libraries for the processor load module. When it is found, an
ATT ACH macro instruction is used to invoke it. When the command processor completes, the
Terminal Monitor issues a DETACH for it, and writes a READY message to the terminal, indicating
another command may be entered.

When a command processor or a user program invoked by a command (CALL, RUN, etc.)
terminates because of an error, control is passed to a Terminal Monitor Program routine that
notifies the user of the error condition and allows him to enter a new command. If the new
command is TEST, abnormal termination processing (ABEND) is cancelled and control is passed to
the TEST processor so the user can examine the failing program and attempt to recover. If the new
command is not TEST, the failing program completes abnormal termination and the new command
is processed.

When a user hits the attention key, or when a attention interruption is simulated for terminals
without an attention key, the Terminal Monitor Program attention routine is given control, unless
the currently executing program (a command processor or user program) has specified an
attention-handling routine of its own. The Terminal Monitor Program attention routine gets a line
from the terminal. If it is a program status inquiry such as TIME, the Terminal Monitor Program
handles the inquiry and does not cancel the interrupted program. If a new command is entered, the
interrupted program is cancelled and the Terminal Monitor Program invokes the new command
processor. If the user enters a null line, the interrupted program is restarted at the point of
interruption although the current content of the buffers are lost.

When the operator or a control user enters the CANCEL command to force a user logoff, the
Terminal Monitor Program terminates any program the user may have running, and returns to the
LOGON routine for logoff processing and accounting.

TEST

The TEST processor is handled differently than other command processors, since it must be able to
control the execution of programs (including command processors) being tested. The TEST routine
executes at the same level as the Terminal Monitor Program -- receiving control via a LINK, rather
than a A TT ACH, macro instruction.

TEST reads successive sub commands from the terminal or a command procedure. Each
subcommand requests some action -- modification of the tested program's registers or storage areas,
insertion of breakpoints in the program, display of data. When the GO subcommand is encountered,
the t.ested program is allowed to execute to the next breakpoint (an inserted SVC instruction) or to
completion. When a breakpoint is encountered, TEST again receives control. It will then handle
subcommands specified previously by the user, new sub commands entered from the terminal~ or
both. Another GO subcommand will restart the tested program.

62 TSO Guide (Release 2 t)

Service Routines

The command processor service routines, as shown in Figure 28, are used by the Terminal Monitor
Program, TEST, and command processor. In general, they perform services that are useful to all
foreground. programs, and their availability as subroutines saves repetitive coding in all the command
processors. They can be called from programs written in Assembler language.

Command Analysis: Two routines are provided for analyzing input lines to the Terminal Monitor
Program and command processors. The Scan routine determines if an input line contains a
syntactically correct command name, and, if it does, returns it to the calling program. The Parse
routine continues the analysis of a command or subcommand by comparing the line to a parameter
supplied by the calling program describing the permissible operands and default values. The Parse
routine builds a new parameter list from this information, describing the options the user has
selected, and returns it to the calling program.

From logon

~ I
I lOAD- CAll

Or
Terminal

·1
Service LINK LINK
Routines "' Monitor

Program
(TMP)

I

Test

ATTACH I
I

ATTACH
(A Program To Be Tested)

'If +
Command
Processor
Or
User
Program

Figure 28. Service and TEST Routine

Terminal I/O: Four service routines are provided to handle command processor input and output for
the terminal. Command processors normally accept input lines containing subcommands and data
from the terminal, and send messages back to the terminal. However, a command processor may be
invoked from a command procedure, and in this case, the input to the command comes from an
in-storage list built by one EXEC command processor from the CLIST data set that contians the
procedure. To allow the command processors to be independent of the source of input, I/O is
handled through the Getline, Putline, and Putget service routines.

Getline, Putline, and Putget use a push-down list to keep track of the current input source.
Entries in the list represent a terminal, or an in-storage list. The in-storage list may be a command
procedure or data. A fourth service routine, Stack, i~ provided to manipulate this list as the input
source changes.

When a command processor calls Getline for a line of input, Getline checks the list of sources to
determine the current source and returns one record from that source. The caller need not know
whether the input came from the terminal or an in-storage buffer. Putline also checks the list of
input sources before sending output from the command processor. Some types of messages,
identified by a code in the message identifier, are suppressed if the current input source is not the

System Summary 63

terminal. For instance, it is not appropriate to issue a prompting message for command operand
information if a command procedure is in progress. A return code to the caller indicates whether the
message was issued or suppressed. Putget combines the function of Putline and Getline -- first
sending a message, then returning one record.

Dynamic Allocation: The Dynamic Allocation Interface routine handles data set allocation and
manipulation for command processors. Dynamic allocation uses control block space reserved by DD
DYNAM statements in the user's LOGON Procedure. These control blocks are used over and over
again when different data sets are needed, but at anyone time, a user can have only as many data
sets allocated as he has DD statements in his LOGON Procedure. Command processors call on
Dynamic Allocation to allocate data sets, to free data sets, to search the system catalog for a
particular data set or group of related data sets, and to concatenate or separate groups of data sets.

In TSO a problem may arise from the multiple use of a Job File Control Block (JFCB) for an
input data set. When the data set is opened, information supplied in the Data Set Control Block
(DSCB) and the JFCB is used to fill any zeroed fields in the Data Control Block (DCB). The
opening routines then do a reverse merge from the DCB back into the JFCB, this time filling any
zeroed fields in the JFCB. If the same data set is subsequently opened using another DCB, the
opening routines will retrieve information from the JFCB for fields not specified in the DSCB or on
the DD card. This information could be faulty and could cause a program failure. Deleting the data
set with the DELETE command and allocating it again with an ALLOCATE command will prevent
these kind of errors.

Command Processors and User Programs

Although command processors vary widely in function, they have some initialization features in
common. All call on the Parse routine to analyze the invoking command and prompt the user for
missing or invalid operands, and all use the Dynamic Allocation routine to determine if necessary
data sets are allocated and to allocate them if they are not.

At this point, some command processors call on standard system processors to carry out the
function desired. For instance, the TSO COBOL Prompter sets up a standard calling sequence
according to the options selected by the user, and transfers control to the American National
Standard COBOL compiler to compile the user's program. Except for the special formatting of
output and messages, the compiler operates exactly as it would in the background.

User-written command processors, and other programs that are not defined as command
processors, should avoid using the spe~ial Terminal Monitor Program-command processor interface if
they are to be compatible with the background environment. The CALL, LOADGO, and RUN
commands allow control information to be passed to background-compatible programs in exactly the
same format as information in the P ARM field of an EXEC statement. Data set allocation can be
handled by ALLOCATE commands in a command procedure used to invoke the program.

64 TSO Guide (Release 21)

Terminal I/O

The Telecommunications Access Method, or TCAM, handles all I/O between remote terminals and
jobs in the system. TCAM distinguishes between time sharing applications, with emphasis on direct
control of the calling terminal, and other teleprocessing applications, where emphasis may be on
queuing, formatting and routing of messages between remote terminals or between applications and
remote terminals.

The Message Control Program

The Message Control Program is the TCAM control routine. It contains definitions and descriptions
of the various terminals that can connect to the system, it has buffers for storing data going to and
coming from the terminals. It transfers data between its buffers and time sharing buffers.

Most of the Message Control Program is written using a special set of macro instructions that is
essentially a language suitable for defining the telecommunications network and specifying the
handling of messages on the network and in the system. Macro instructions to generate a Message
Control Program suitable for handling terminal I/O for time sharing are distributed with the TSO
package.

The Message Control Program executes as a problem program, in a main storage region with a
nonzero protection key. Normally, it has the highest priority of the problem programs in the system.
It must have a higher priority than the Time Sharing Control Task.

Mixed Environment MCPs

A TSO message control program can contain more than one message handler. A message handler is
a sequence of code that routes terminal I/O to the appropriate program or terminal. A mixed

I

environment Message Control Program contains the message handler for terminal I/O for TSO and
in addition one or more non-TSO message handlers.

In a mixed environment, the terminals used with TSO are allocated to the TSO message handler
and the terminals used for TCAM applications to the TCAM message handlers. This is done
through the macro instructions which define the message control program and through the
catalogued procedure that starts the message control program.

Terminal Interfaces

A variety of interfaces to Terminal services are provided in TSO. The one suitable for a particular
program depends on whether the program is defined as a command processor, and whether it must
also be able to execute in the background environment.

A supervisor can routine, reached through the TGET and TPUT macro instructions, provides a
direct route for program I/O to a remote terminal. TGET and TPUT transfer data between the
calling program and a set of buffers in the Time Sharing Control Task region, that are, in turn,
emptied and filled by TCAM. Through TGET and TPUT, the calling program can control deletion
or insertion of terminal control characters, and. whether an output transmission is to break in on any
input transmission in progress. A program using TGET and TPUT does not have to perform OPEN
or CLOSE processing, and need not provide a DCB for the terminal. However, these macro
instructions are available only to programs executing in the foreground.

Programs designed to be command processors can call on the Getline, Putline, and Putget service
routines used by the IBM-supplied command processors for I/O. As noted earlier, these service
routines have the capability to switch the input source from the terminal to a buffer in main storage,
and to suppress certain types of output if the terminal is not the current input source.

System Summary 65

The sequential access methods, BSAM (READ, WRITE, CHECK) and QSAM (GET, PUT),
have been extended to call on TCAM (TGET, TPUT) when called from foreground programs for
terminal I/O. This is the normal route for terminal I/O from programs that must be executable in
the background as well as the foreground, or whcih are coded in a higher level language, such as
FORTRAN or COBOL.

Programs using BSAM and QSAM to reach the terminal use the standard macro instructions or
I/O statements. When the program is executed, the DD statement or ALLOCATE command
defines whether the I/O is for a data set or the terminal. No recompilation is necessary to switch
from one to the other, only a change in the DD statement.

Getline, Putline, Putget and the sequential access methods all issue TGET or TPUT for the caller
when the I/O is for a terminal. Figure 29 shows this SVC routine handling calls from anywhere
within the TSO system and passing the requests to the TCAM Message Control Program.

Terminal I/o
Requests From
TSO Routines

or
User Programs

TSO Control

TPUT
TGET
SYC

Figure 29. TCAM Message Control Program

Multi-Terminal Message Processors

MYT Control Program

Operator
Start
Command

Message
Control
Program

(MCP)

I/O
Supervisor

To/From
Terminals

Independent of TSO, the Telecommunications Access Method includes facilities for routing messages
received from remote terminal to queues for an application program, and transmitting replies
generated by the applications program to queues for a terminal. In a system without TSO, such a
message processing program must reside in main storage in one of the problem program regions,
when it is to be available if one of the terminals in the telecommunication network sends a message
that requires processing. With the addition of TSO, a terminal user logged on to TSO can execute a
TCAM message processing program in a foreground region. He can do this by invoking it through
the TSO command language, or by specifying it instead of the TSO Terminal Monitor Program on
his LOGON procedure. The DD statements which define the process queues must be contained in
the LOGON procedure. The program will be swapped in whenever needed, but will not occupy
main storage space when it has no message to process. Unlike standard foreground jobs, which are
associated with a single terminal, these message processing programs can handle GET/READ,
PUT /WRITE TCAM oriented input/output from any terminal defined to the TCAM processing
queues, through the QNAMES operand of the statements on the LOGON procedure. In addition,
the standard TSO terminal interfaces, can be used to interact with the terminal executing the
Message Processing Program. For further information on message processing programs, see IBM
System/360, TeAM Programmer's Guide and Reference Manual, GC28-2024.

66 TSO Guide (Release 21)

Overview and Storage Map

Figure 30 is an overview of the complete time-sharing system as developed in the. pteceding
sections. The picture is simplified in that it shows only one task at each level of control; there is
actually one LOGON-Terminal Monitor Program for each user. Many of the programs themselves
are re-enterable, and can be placed in an extension to the link pack area (LP A) built when the
operator starts TSO.

Figure 30. System Overview

MVT Control Program

Time Sharing
Interface Prg Message

Control

Terminal
I/O

Figure 31 is a map of a typical main storage layout when TSO is operating. Almost all the
additional storage requirement for TSO control functions is included in the Time Sharing Control
Task region. This region is not assigned until the operator enters the START TS command, so the
presence of TSO in the system has no effect on MVT throughput when time sharing is not active.

System Summary 67

High
Main
Storage

Dynamic
Area

Low
Main
Storage

-----------------------,
System Queue Area

MVT Nucleus

Figure 31. Typical Main Storage Map

Time Sharing Algorithms

{

Link Pack Area
Key = 0 1-------:M...,..a-s-te-r-::S=-c7he-d7u";""le-r----------1

{
Message Control

KeyfO 1-___ P_ro_g_r __ am __ & __ Bu_ff_e_rs ________ --1

Key = 0

TS Control Region
• Time Sharing Control Task
• Region Control Tasks
• Driver
• Extended Link Pack Area
• Buffers

Foreground
Region

Loco I System
Queue Area

Background
Region

As noted earlier in this chapter, the Time Sharing Driver is responsible for dividing the system
resources -- most importantly, execution time -- among the various jobs in the system. So that this
may be done effectively, the Driver is given a constant stream of information about the status of
each job in the system -- whether it is ready to execute, whether it is waiting for I/O, whether it is
in main storage or has been swapped out.

·68 TSO Guide (Release 21)

In a time sharing system, execution time is divided among the active foreground jobs and
background jobs in brief time slices. A time slice must be long enou,gh to perform a meaningful
amount of processing, but not so long that the time between successive slices prevents quick
response to conversational users. At the same time, time slices cannot be so short and frequent that
system overhead for swapping and task switching becomes unreasonable.

Balancing these factors depends partly on the number and .type of jobs the system is processing:
a solution for one job mix is not necessarily suitable for another job mix. The Driver's time sharing
algorithms -- the formulas it uses to calculate the division of execution time among the jobs in the
system -- are based on several variables, many of which can be specified by the installation to tune
the system for the local job mix. These variables may specify the system configuration, such as the
number of foreground regions to be activated; they may request the Driver to use one of several
algorithms it has for a particular calculation; or they may specify constants used in the algorithms.
The variables are stored in a member of the system parameter library.

Time Slices

The Driver uses two important cycles in calculating time slices. One is the cycle of foreground jobs
assigned to a region being swapped into the region, then back out to the swap data set on auxiliary
storage. The average length of time to complete one cycle -- swapping each job assigned to the
region into it one time -- can be controlled by the installation for each foreground region. The
length of time each job gets to remain in main storage during a cycle is called the major time slice.
Figure 32 shows a cycle of major time slices and swapping of jobs between the main storage region
and a swap data set.

Swap Data Set

r-----
I
L ____ ---1

}

Foreground
Region

1--------1

Job A

Job D

Job C

Main Storage

CiS Dis
Major Major
Slice Slice

Elapsed

Figure 32. Queue Service Time

System Summary 69

The other cycle used by the Driver is the allocation of execution time to the jobs in main storage.
At a particular time there are likely to be several regions containing jobs ready to execute -- one or
more foreground regions containing jobs swapped in for major time slices,and some background
jobs in their own regions. The Driver divides the amount of time remaining until the next scheduled
swap out among the jobs than are ready to execute, resulting in a minor time slice {or each. For the
duration of its minor time slice, each job has the highest effective priority of the problem programs
(excluding TeAM). As in batch MVT, if the job cannot execute because it is waiting for I/O or
some system resources, another job runs until the higher-priority job is ready again.

Figure 33 shows the indirect relationship between major and minor time slices. A major slice is a
fraction of a cycle of swaps into a foreground region, and is the length of a job's stay in main
storage. The minor slice is a fraction of the time remaining before the next scheduled swap out for
any region (called the available execution time), and determines how long each job will remain at
the highest effective priority; that is, how much execution time the job is alloted.

Time-

Region 1
Queue Service
Time

if~ <~ 8#" '" ~~~: _: v ;;"r~~~~- 1

Region 2
Queue Service
Time

Time
I-- Slice --I

Region
2

.; ,. N 4 _ :+ ~ ~ I ~ j "'_ #!~

.~~ i -... c ~_--
-* i!4:f ~ -s;;,.."",,,,-.. ~;;~3 ."i

j--~ < i ¥~~~1-" ~

Region
3

Avoiloble Execution Time

Figure 33. Minor Time Slice

Job C
tv\ajor
Slice

Job F
tv\ajor
Slice

Job D
tv\ajor
Slice I JobC

~

Job N

Moin Storoge

I
Foreground
Region 1

Foreground
Region 2

Background
Region 3

Major and Minor time slices can be calculated using only t~e number of ready jobs, and the
available execution time. However the Driver algorithms have the capability to distinguish among
varying user needs to provide the best service to each foreground job. The following two sections
show how the tuning variables can be used to make the calculation of time slices most efficient for
varying job mixes.

Major Tune SHces

Swapping all the jobs into a foreground region from a queue of ready jobs assigned to that region is
called servicing the job. The length or time used to swap all ready jobs on one queue is called the
queue service time. The average queue service time for each queue of foreground jobs is an

70 TSO Guide (Release 21)

installation parameter, passed to the Driver. The specified queue service time is divided by the
number of ready foreground jobs on the queue, yielding a major time slice value for each job for
that service cycle. As the number of jobs assigned to that queue increases, the major time slice value
gets smaller. The time between services for each job remains fairly constant, which is important for
conversational users expecting quick responses.

A problem may arise when a large number of users are assigned to the queue. The division of
queue service time may result in a major time slice too short to perform any meaningful amount of
processing for the user, and the system will be spending all its time swapping. To avoid this
condition, the installation specifies a minimum major time slice for each queue. Each job is
guaranteed at least that amount of time in main storage on each cycle (provided it is ready to
execute). When the minimum slice is being used, the actual queue service time will exceed the
specified average queue service time.

Multiple Region Queues: To meet varying needs of users performing different kinds of processing, the
installation can establish multiple service queues for each foreground region. Queue service cycles
can be rotated equally among these queues, or priorities can be specified among them. Each queue
is assigned its own average queue service time. The installation can also specify that a queue is to be
given multiple cycles before the next queue is serviced, or that it is to be serviced until empty --
that is, until no jobs are left on the queue that are ready to run.

Assignment to queues can be based on the amount of main storage the job is using, or the degree
of interaction with the terminal, or both. The amount of main storage assigned to the job is called
swap load, since it is a measure of the amount of 110 necessary to swap the job in and out of
storage. A swap load limit can be specified for each queue. If a job's storage needs gro'Y beyond the
limit, it is assigned to a lower queue, with a higher limit. The lower queues can be set up to receive
fewer services, but longer major time slices at each service. Therefore the larger jobs will not have
to be swapped so often.

The degree of interaction with the terminal is measured by the amount of processing time used
by the job since its last request for 110 to the terminal. A terminal 110 request is called an
interaction, and the length of execution time between interactions is called interaction time or
occupancy. Very long interaction times indicate the user is not currently processing conversationally
-- perhaps he is compiling a program, or executing some long-running problem program. In this case,
his job does not require the quick response times provided by the higher region queues, and can be
moved to a lower queue where it will receive fewer, but longer, major time slices. Each queue can
be assigned an interactive time limit, to allow for this differentiation. The occupancy and swap load
limits for a given queue must be higher than the next lowest queue.

Either the swap load or the interaction time limits can be suppressed when the time sharing
operation is started for the day, but if both are suppressed, only one queue per foreground region is
maintained. The rotation of service cycles around the queues for a region can also be made
preemptive: any time a job on higher queue becomes ready to execute; for instance, if a terminal
110 request completes, the service cycle of any lower queue is interrupted to service the job on the
higher queue. This scheduling scheme tends to make responses to trivial terminal requests very fast,
while lengthening somewhat the response to requests requiring a lot of processing time.

Region Assignment: The last factor involved in calculating major time slices is choosing a foreground
region for the user logging on. The minimum region size needed by the user is stated in this
LOGON procedure, and only those foreground regions large enough are considered.

If a choice must be made among two or more regions, the system can try to balance the
workload by assigning the new user to the region with the fewest logged-on users. However, this
leaves open the possibility that a group of users all requiring a lot of execution time will be assigned
to one region, while another region has a preponderance of users processing conversationally.

System Summary 71

Neither group will receive the best service possible. To prevent this condition, the installation can
specify that an average region activity be maintained for each foreground region. The average region
activity is the number of jobs likely to be ready to execute (not waiting for terminal I/O, for
instance) at the beginning of the next cycle of major time slices. A new user is then assigned to the
region with the lowest region activity, which is not necessarily the region with the fewest logged-on
users.

The region activity estimate is based on the number of ready jobs on the region's queues during
recent major cycles. Values from more recent cycles are "weighted" in calculating the average. The
weighting factor, called the "region activity decay constant," is specified by the installation. Use of
decay constant prevents wild fluctuations in the region activity because of a few cycles, but allows
gradual change to reflect changing workload.

Major Slice Variables: To summarize, the system programmer can specify the following variables
affecting the major time slice calculation:

• The maximum number of users logged on.

• The number of foreground regions.

• The method for assigning users to regions.

• The number of service queues for each region.

For each region queue, the following variables can be specified:

• The average queue service time.

• The number of service cycles before advancing to the next queue.

• The minimum major time slice.

• The swap load limit.

• The interaction time limit.

Variables can be omitted or ignored, if the job mix and workload allow simplification of the
algorithm. In general, the more homogeneous the job mix, the more the algorithm can be simplified,
dividing time almost equally among the jobs. Remember that the major time slice determines only
how long a job remains in main storage, not how much execution time it receives. Calculation of the
minor time slice, which determines execution time, is discussed next.

Minor Time Slices

The minor time slice is the result of dividing the available execution time among the regions of main
storage containing either a ready foreground job or a ready background. Available execution time, in
this sense, is the period from the time of the calculation until the next scheduled swap out.
Whenever a major time slice expires, the calculation is repeated with the new number of ready
regions.

The minor time slice is not quite equivalent to a period of execution time -- a job may have to
wait for I/O or some resource during its minor time slice. In this case, control is given to another
region until the waiting job is ready again. If it does not become ready before its minor time slice
expires, it may wait until the next cycle of minor time slices before executing again.

All terminal jobs are assigned the same dispatching priority, so their Task Control Blocks (TCBs)
are grouped together on the queue of active TCBs maintained by the operating system task
supervisor. Because the dispatcher always searches this queue from the top when looking for the

72 TSO Guide (Release 21)

next task to receive control, there is an effective priority within the time-sharing TCB group based
on the order in which the TCBs are found. The TSO control routines adjust this order to effect the
dispatching of a task currently assigned a minor time slice. When the minor time slice of the top
foreground job expires, its TCBs are moved to the bottom of the group.

The installation can adjust or weight the fraction of available execution time assigned to each
ready region, or it can suppress division of the time altogether. The system operator, or a control
user, specifies how many regions are active, and how much execution time, if any, is to be
guaranteed to jobs running in the background regions. Three possible methods of calculating the
minor time slices, called simple, even, and weighted dispatching, are described in the following
paragraphs.

Simple Dispatching: In this case, the minor time slice is set equal to the available time, and assigned
to the TCB at the top of the time-sharing TCB group (which will always be the job swapped in
longest ago). Expressed as an algorithm:

MS = AT

where MS is the minor time slice and AT is the available execution time, or the time remaining
before the next scheduled swap out.

If the operator has requested a percentage of execution time for the background regions, available
time is reduced by that amount before the minor time slice is calculated. When the minor time slice
expires, in this case before time for a swap out, the remaining time is assigned to TCBs representing
jobs in the background regions, in whatever priority they may have. If no background percentage is
requested, any background jobs will receive only the execution time that the foreground jobs cannot
use.

Simple dispatching is always used whenever only one foreground region is present in the system.

Even Dispatching: When more than one foreground region is defined, the installation can specify even
dispatching of the foreground jobs. In this case, the available execution time is divided evenly among
the ready foreground regions.

The algorithm is:

AT
MS = N

where N is the number of foreground regions containing jobs ready to execute. As in simple
dispatching, available time is reduced before the calculation by any guaranteed background
percentage.

The first minor time slice is assigned to the foreground job at the top of the group of
time-sharing TCBs on the queue. When the minor slice expires, the TCBs associated with that job
are moved to the bottom of the time-sharing group, and the next foreground job receives a minor
time slice.

Weighted Dispatching: The third way the minor time slice cal~ulation can be performed is on a
weighted basis. This method allows the system to compensate for jobs that are likely to spend much
of their minor time slice in the wait state, usually because of pending I/O requests. (But not for
pending terminal I/O, since a job waiting for terminal I/O is not swapped in, and never becomes

.. eligible for a minor time slice.) Under weighted dispatching, the system keeps an estimated wait time
percentage for terminal job, based on averages of time spent waiting by each job during previous
major time slices. Jobs with a high estimated wait time percentage tend to be I/O-bound, and will
donate much of their time slices to jobs with TCBs on the queue below them. Jobs with low
estimated wait time percentages tend to be compute-bound, and will use most of their minor time

System Summary 73

slice themselves. It is often desirable to assign the I/O-bound job a weighted, or longer, minor time
slice to compensate for it "donation" of execution time to other jobs.

To weight the minor time slices, the system forms a sum of the estimated wait time percentage of
the jobs to be assigned minor slices in the current cycle. Each job is then given a fraction of the
available execution time equal to its fraction of the total estimated wait time percentages.

The algorithm is:

This job's EWT%
MS = --------------- x (AT)

Sum of EWT%s

where MS is the minor slice to be assigned to a terminal job, EWTO/o is the estimated wait time
percentage, and AT is the available execution time for this minor slice cycle, again adjusted for any
guaranteed background percentage.

As an example, consider a minor time slice calculation for two foreground regions, one containing
Job A, which is expected to wait 40 percent of it minor time slice; the other containing Job B,
which is expected to wait only 10 percent. The sum of the estimated wait time percentages is 50
percent. Job A gets 40/50, or 4/5, of the available execution time as its minor time slice. Job B is
assigned 10/50, or 1/5, of the available execution time. However, Job B will probably be able to
execute for about 40 percent of Job A's minor time slice too (while Job A is waiting for I/O), and
so will end up with under half the available execution time -- about what it would have been
assigned on an equal division. Job A, however, will be able to get its I/O started, wait for it to
complete, and still have some processing time left to handle the data or issue another I/O request.
On an equal division of available time, its minor time slice might have expired before its first I/O
request completed.

The estimation of wait time percentage is made by updating a running average of a job's wait
time percentages at the end of every major time slice. In making the average, a weighting factor is
used to emphasize recent usage over earlier usage. The weighting factor is called the wait time decay
constant. It's purpose and function is similar to the region activity decay constant, and it can also be
specified by the installation. Values appropriate for general job mixes are included in
SYS 1.P ARMLIB.

74 TSO Guide (Release 21)

System Implementation

This chapter is intended for the programiners and system analysts responsible for generating and
maintaining a system with TSO. (The discussions assume that the reader is familiar with the System
Summary chapter of this publication.) The discussions contain specific information needed to
maintain or generate a system with TSO.

For example, the discussion "Tailoring a Message Control Program" does not discuss the role a
message control program plays in a TSO configuration, but rather provides the syntax and meaning
of the macro instructions used to generate a message control program.

This chapter includes discussions of how to:

• Generate (or tailor) a Message Control Program.

• Write the cataloged procedures used by TSO.

• Specify TSO starting parameters.

• Tune the Time Sharing Driver and use TSO Trace.

• Write an installation exit for the SUBMIT command processor.

• Write an installation exit for the STA rus, OUTPUT, and CANCEL command processors.

• Write a LOGON Pre-prompt exit.

Tailoring a Message Control Program

A Message Control Program, (MCP), handles terminal I/O for TSO. An installation must tailor the
MCP to match its needs.

For further information about TCAM and Message Control Programs in general, see IBM
System/360 TCAM Programmer's Guide and Reference Manual, GC30-2024.

TSO includes a standard Message Control Program (MCP) to handle terminal I/O for those
installations that use TSO for all their TCAM applications. An installation tailors a Message Control
Program in three steps. First, three macro instructions must be assembled: LINEGRP, LISTT A, and
TSOMCP. The output of this assembly is a series of TCAM (Telecommuncations Access Method)
macro instructions which must, in turn be assembled. The output of ihis second assembly forms an
MCP that must then be linked edited into SYS 1.LINKLm.

Mixed Environment MCPs

If an installation requires a mixed environment Message Control Program, because of TCAM
applications programs, (message processing programs), it must generate an MCP using TCAM
macro instructions instead of the special TSO MCp· generating macro instructions. The TCAM
macro instructions are used to generate an MCP containing the TSO Message Handler, and any
other message handlers for particular terminal applications, and the necessary terminal I/O control
blocks.

The .comm:unications lines which are to be used with TSO must be dedicated to the TSO Message
Handler through the terminal 1/ b control blocks and the communications lines for TCAM
applications must be dedicated to their message handlers.

System Implementation 75

In addition to the standard TCAM macro instructions, the TSOMH macro instruction can be used
to form a TSO Message Handler.

The TSOMH macro instruction has one operand; CUTOFF which specifies a maximum message
length. The syntax of the TSOMH macro instruction is:

TSOMH
[
CUTOFF=integer]

300

CUTOFF=
specifies the maximum number of bytes before the remainder of an input message is lost to the
system. The value must be an integer between 150 and 65535; the default is 300.

TSO-Only MCP

The following is an explanation of each step of the generation of the MCP supplied with TSO:

Step 1 - Assembly of the one or more LINEGRP macro instructions each followed optionally by
one or more LISTTA macro instructions, all followed by the TSOMCP macro instruction.
The resultant output is a temporary data set containing assembler language source
statements -- TCAM macro instructions which constitute a Message Control Program,
that will be used as input to Step 2.

Step 2 - Assembly of the TCAM MCP macro instructions generated within Step 1. The output of
Step 2 is the MCP object module placed into a temporary data set.

Step 3 - Linkage Edit~ng of the object modules from Step 2 into SYS I.LINKLIB to create an
executable MCP load module.

Figure 34 shows the Job Control Language necessary to run these steps.

76 TSO Guide (Release 21)·

IIMCPGEN

IISTEP1

JOB

EXEC

IIASM.SYSPUNCH DD
II
IIASM.SYSIN

1*
IisTEP2

IIASM.SYSPUNCH
II
IIASM.SYSIN
II
IISTEP3

IISYSLMOD

IISYSPRINT

IISYSUT1

IISYSLIB

IISYSLIN
II

DD
LINEGRP
LISTTA
LINEGRP
TSOMCP
END

EXEC

DD

DD

EXEC

DD

DD

DD

DD

DD

Figure 34. Job Stream to Tailor MCP

LINEGRP Macro Instruction

Job card parameters

ASMFC

DSN=&&TCM,DISP=(,PASS),
UNIT=SYSDA,SPACE=(CYL,(1,1))

*

ASMFC,COND=(4,LT,STEP1.ASM)

DSN=&&OBJ,DISP=(,PASS),
UNIT=SYSDA,SPACE=(CYL,(1,1))

DSN=*.STEP1.ASM.SYSPUNCH,
DISP=(OLD,PASS)

PGM=LINK EDIT,COND=(4,LT,STEP2.ASM)

DSN=SYS1.LINKLIB(IEDQTCAM),DISP=SHR

SYSOUT=A

UNIT=SYSDA,SPACE=(1024,(50,20))

DSN=SYS1.TELCMLIB,DISP=SHR

DSN=*.STEP2.ASM.SYSPUNCH,
DISP=(OLD,PASS)

The LINEGRP macro is used to define a line group, a group of terminals with similar characteri'·tics:
for example, a group of IBM 2741 terminals. The operands of the LINEGRP macro instruction
specify:

• The types of terminals in the line group. (TERM)

• The ddname of the DD statements that define the communications lines as data sets.
(DDNAME)

• The number of lines, that is, physical device addresses in the line group. (LINENO)

• The number of TCAM basic units, per terminal buffer. (UNITNO)

• The translation tables to be used to translate from the terminal code to EBCDIC. (TRANTAB)

• The character string identifying the transmission code being used when dynamic translation is
required. (CODE)

• Whether switched or nonswitched lines are used in this line group. (DIAL)

• The polling interval for polled terminals in this line group. (INTVL)

System Implementation 77

• The special features the terminals in this line group have -- that is, Transmit or Receive
Interruption and for 1050, Text Timeout suppression. (FEATURE)

• The polling and addressing character of terminals in this line group, for 1050 and 2260/2265.
(ADDR)

• The screen sizes for IBM 2260 and 2265 Display Stations.

LINEGRP Macro Instruction Format

Name Operation Operand

(name)LINEGRP TERM=type
DDNAME=ddname
LINENO=number
[UNITNO=number]

TERM =

[TRANTAB=(table ,table ...)]
[CODE=(string ,string ...)]

[DIAL= {~6S}]
[INTVL=number]

[
FEATURE=(BREAK,) (ATTN,) (TOSUPPR n,

NOBREAK, NOATTN, J
[ADDR=character string]
[SCREEN=(integer, integer)]
[TERMNO=(integer, integer)]

Specifies the type of terminal making up this line group. Only one of the following can be
selected:

1050 -- defines a line group consisting of IBM 1050 Printer-Keyboards on either switched (dial)
or non-switched (direct) lines.

2741 -- defines a line group consisting of IBM 2741 Communications Terminals on either
switched or non-switched lines.

5041 -- defines a line group consisting of both IBM 2741s and IBM 1050s. The terminals in this
line group must be on switched (dial) lines.

3.335 -- defines a line group consisting of Teletype Model 33 or Model 35 terminal or both. The
terminals in this line group must be on switched (dial) lines.

226L-- defines a line group consisting of IBM 2260 Display Stations connected on a local line.
226R-- defines a line group consisting of IBM 2260 Display Stations, connected on a remote

line, and optionally IBM 2265 Display Stations.

DDNAME=
Specifies the ddnames of the DD statements that define, as a data set, the terminal lines in the
line group . These DD statements are found in the cataloged procedure that is used to start the
MCP.

LINENO=
Specifies the number of lines in this line group. The value must be an integer between 1 and 51.

UNITNO=
Specifies the number of basic units per buffer for terminals in this line group. A basic unit is used
by TCAM to construct I/O buffers. The default value is 1.

78 TSO Guide (Release 21)

TRANTAB=
Specifies the translation tables to be used for this line group. If this parameter is omitted, all of
the supplied translation tables that are valid for the terminal type specified by1;'ERM= will be
included except those marked with an asterisk.

TERM= TRANTAB= Common Name

1050 1050

2741 CR41 Correspondence
EB41 EBCDIC
BC41* BCD

5041 1050 BCD
BC41* BCD
EB41 EBCDIC
CR41 Correspondence

3335 TTYB TTY parity
TTYC* TTY non-parity

226L EBCD

226R 2260

2265 2265

*Not used as a default translation table.

Note: If mor~ than one table is specified explicitly or implied by default, the MCP will use the
CODE parameter to determine the proper translation table dynamically.

CODE=
Specifies the character string use to determine the terminal character set. Each time a terminal is
connected, the MCP translates the input line from that terminal using each of the translation
tables specified in the TRANT AB operand. The MCP compares the translated result with the
character string specified in the CODE= operand. When the MCP finds a match, it uses the
appropriate translation table for that terminal from then on.

The default is CODE=LOGON unless the TRANT AB operand specified both BC41 and EB41
(2741 BCD and 2741 EBCDIC). If both EBCDIC and BCD characters sets are present in the
line group, the default is CODE= "LOGON.

An installation can specify a maximum of four character strings other than LOGON, but each of
them must be eight or fewer characters.

DIAL =
Specifies whether the line group is a dial (switched) line group. If this parameter is omitted, YES
is assumed. DIAL=NO is required for TERM=226L, 226R, and 2265.

INTVL=
Specifies the poll delay intervals in seconds for polled lines. The value should be an integer
between 1 and 255. If this parameter is omitted, a value of two is assumed for polled lines. Zero
is assumed for 2741, 3335, and 226L terminal types.

System Implementation 79

FEATURE =
Specifies the special features that define this line group:

BREAK Specifies that terminals in this line group have the Transmit Interruption feature.

NOBREAK Specifies that terminals in this line group do not have the Transmit Interruption
feature. This operand should be specified when any of the terminals in the line
group do not have the feature.

ATTN Specifies terminals in this line group have the Attention feature (Received
Interruption.)

NOATTN Specifies that terminals in this line group do not have the Attention Feature.

TOSUPPR For 1050 terminals, this operand specifies that the optional Text Time-out
Suppression feature is present. This operand applies only to 1050 terminals and
should be specified only if all 1050 terminals in a 1050 or 5041 group have the
feature. When specified read inhibit rather than read commands will be used.

The following table describes the feautres which may specified for the 1050, 2741, 5041, 2260
and the 3335 (TWX); where:

D Default.
A l\ssumed.
I Invalid.
0 Optional.

Feature 1050 2741 5041 3335 2260

BREAK 0 D 0 A I
NOBREAK D 0 D I A
ATTN D D D A I
NOATTN 0 0 0 I A
TOSUPPR 0 A 0* A I

*TOSUPPR is optional for the 1050 terminals in a 5041 line group. It is
assumed for the 2741 terminals in the same 5041 line group.

ADDR=
Specifies the station identification character (1050) or the two byte control unit device address
(226R,2265) of the terminals in the line group. The character string should be the hexadecimal
equivalent of the appropriate transmission code.

Hexadecimal characters should be specified without framing characters. For example if the station
identification character is "A", the correct specification is ADDR=E2, the hexadecimal
equivalent of the 1050 transmission code for the character "A", not ADDR=C1, the hexadecimal
equivalent of the EBCDIC character "A". To find the hexadecimal equivalent of a given
character in a specific transmission code, consult the component description publication.

For the 1050, only the station identification character value need be specified; the component
selection character values will default to the common polling and addressing values for input and
output, respectively. 1050 multidrop is not supported.

80 TSO Guide (Release 21)

This parameter is not valid for TERM=2741 or TERM=3335.This parameter is required for
TERM= 1050 or 5041. For configurations in which the addressing characters vary among the
different terminals in the line group as in 2265, the addressing characters should be specified
using LISTTA macro instructions (see below) rather than the LINEGRP macro instruction.

SCREEN =
Specifies the screen dimensions of the display station(s) on the line. The first integer specifies the
number of rows on the screen. The second integer specifies the number of characters per row.
Standard IBM screen sizes are 12x80, 12x40, 6x40, and 15x64. Non-standard sizes will be
accepted but a warning will be given. The default for this parameter is 12x80.

TERMNO=
Specifies the number of terminals attached to each non-switched line, used with TERM=226R,
and 2265. Each subparameter specifies the number of terminals attached to the corresponding
relative line within the line group. The relative line numbers are determined by the order in which
lines in the line group are defined with DD statements in the cataloged procedure used to start
the MCP.

LISTT A Macro

The LISTT A macro instruction specifies variations in device address (ADDR) within a line group.
One or more LISTT A macro instructions can appear after each LINEGRP macro instruction. Each
LISTT A macro instruction modifies one line (RLN) within a line group.

LISTT A Macro Instruction Format

Name

name

RLN

Operation

LISTTA

Operand

RLN=integer
[,ADDR=(chars ,chars ...)]
[, SCREEN]

Specifies the relative line number within a line group to which the attributes specified in this
macro instruction apply. The relative line numbers are determined by the order in which lines in
the line group ate defined with DD statements in the cataloged procedure used to start the MCP.
For example, RLN = 1 refers to the line in the line group defined by the first DD statement in the
catalogued procedure.

ADDR=
Specifies the alphabetic station identification character (1050) or two byte control unit and device
address (2260) of the terminal(s) on this line. One cha:racter strinK must be specified for each
terminal on the line. Subparmneters must be specified in the order in which polling is to take
place. Each character string should be the hexadecimal equivalent of the appropriate transmission
code representation for the terminal involved. Hexadecimal characters should be specified without
framing characters.

Example: ADDR=(AOA1,AOA2) -- for a 2848 Model 2 with two IBM 2260 Display Stations
attached.

For a 1050, only the station identification character value need be specified. 1050 multidrop is
not supported.

System Implementation 81

SCREEN =
Specifies the screen dimensions of the display station(s) on the line. The first integer specifies the
number of rows on the screen. The second integer specifies the number of characters per row.
Standard mM screen size are 12x80, 12X40, 6x40, and 15x64 non standard sizes will be
accepted but a warning will be given. The default for this parameter is (12x80).

TSOMCP Macro

The TSOMCP macro instruction:

• Names the MCP, (provides the CSECT name).

• Defines the size of the TCAM basic units used to construct terminal I/O buffers.

• Specifies which TCAM trace tables will be provided.

• Specifies whether a cross-reference table will be included in the MCP.

• Specifies whether the operator can change parameters when he starts the MCP.

TSOMCP Macro Instruction Format

Name Operation Operand

name TSOMCP [UNITSIZ=number]
[TRACE=number]
[DTRACE=number]
[LUNITS=number]
[OLTEST=number]
[OPTIONS=(XREF,PROMPT)]

Note: All operands are optional.

name
Provides the CSECT label for the generated program. This field is required.

UNITSIZ=
Specifies the size of a TCAM basic unit and must be a value between 33 and 255 inclusive. If
omitted, the MCP uses a default value of 44. UNITSIZ should be a multiple of 8, plus 4 for
efficient main storage usage.

TRACE =
Specifies the number of TeAM I/O trace table entries in the Message Control Program. The
default value is zero. Maximum value is 65535. '

DTRACE=
Specifies the number of TCAM Dispatcher Trace Table entries in the Message Control Program.
The default value is zero. Maximum value is 65535.

82 TSO Guide (Release 2 t).

LNUNITS=
Specifies the number of TCAM basic units to be provided in the buffer pool for creating line
buffers for this MCP. A maximum of 65,535 may be specified. If this operand is omitted, the
system will calculate a default value using the following algorithm:

LNUNITS=
2 x (number of terminals) x (UNITNO value)

or
2.5 x (number of terminals) x UNITNO (for 2265/65)

where:

UNITNO (as specified in each LINEGRP macro) represents the number of units per buffer for
terminals defined in the associated line group. If UNITNO is omitted in the LINEGRP macro,
the default value (1) is used. This means that each buffer; will consist of one basic unit.

If both the LNUNITS and UNITNO keywords are defaulted, the buffer pool created will consist
of 2 buffers per terminal with each buffer being one basic unit in length. (PCI buffering is used
for both input and output.

OLTEST=
Specifies the number of 1024 byte blocks used for On-line Test procedures. The value must be
between 0 and 255. The default is 0, meaning On-line Test is not used. If online test is used, the
value must be from 10 to 255. For a system with 2260 or 2265 display stations the value must
be from 14 to 255.

OPTIONS

XREF

A cross-reference table including control blocks for each line will be included in the MCP.
If this option is omitted, the cross-reference table will be excluded.

PROMPT

If PROMPT is specified, the system operator will be asked to enter parameters when
TCAM is started. At that time he may enter and override some of the parameters specified
when the MCP was assembled. The following TCAM parameters are ones which an
installation may want to specify when it starts TCAM for TSO. The last parameter entered
must be a "U" to end the prompting process. See IBM System/360 Operating System: TeAM
Programmer's Guide and Reference, GC30-2024 for a description of the INTRO macro
instruction and the parameters which can be overridden.

KEYLEN = integer
K = integer

Specifies the size of the basic units, with which the terminal I/O buffers are constructed.
This corresponds to UNITSIZ= parameter.

LNUNITS = integer
B = integer

Specifies the number of basic units which are used to build buffers. It corresponds to
LNUNITS. The value must be between 0 and 65535.

System Implementation 83

STARTUP
=C

S

Specifies that a "cold" start is to be performed following a shutdown of the Message
Control Program or a system failure. It is required if OPTIONS = PROMPT was specified on
the TSOMCP macro instruction.

CROSSRF = integer
F = integer

Specifies the number of entries in the cross reference table, a debugging aid. If
OPTIONS=XREF is specified in the TSO MCP, one entry will be generated for each line.
If the operator specifies fewer entries than there are simultaneously open lines, lines opened
after the table is full will have no entries.

TRACE = integer
T = integer

Specifies the number of TCAM 110 trace entries to be allocated; corresponds to TRACE=
in the TSOMCP macro instruction.

DTRACE = integer
A = integer

Specifies the number of entries in the TCAM Dispatcher Trace Table, corresponds to
DTRACE= in the TSOMCP macro. The Dispatcher Trace Table is a debugging aid that
keeps a sequential record of TCAM subtasks activated by the TCAM dispatcher. One
four-word entry is created for each subtask activated. When the end of the table is reached,
the table is wrapped around; new entries overlay the oldest entries. Maximum to be
specified is 65535: If 0 is specified, the table is not generated.

OLTEST=number
o = number

Specifies the number of 1024 byte blocks to be used for On-line Test procedures. This
parameter corresponds to the OLTEST parameter of the TSOMCP macro instruction. The
default is 0, which indicates that On-line Test will not be used. If 0 is not specified the
value must be from 10 to 255. For a system with 2260 or 2265 display stations the value
must be from 14 to 255.

CIB = integer
C = integer

Specifies the maximum number of Command Input Blocks (CIB) that: can be used at any
one time in the TCAM subsystem, CIB's are the buffers used to contain operator control
messages entered at the system console. The maximum that can be specified is 255. If the
operand is omitted, "CIB=2" is assumed. At least two CIB's should be specified, since
ST ART uses one. If an attempt is made to enter an operator control message from the
system console, and the number of CIB's specified is already in use, the message is rejected
by TCAM.

84 TSO Guide (Release 21)

Figures 35 and 36 show the MCP macro specifications for two sample systems.

The first system has:

1. 10 lines for leased, (non-switched), 2741's; all are BCD terminals and use EBCDIC character set
only. All terminals in this line group have both Receive and Transmit Interrupt features.

2. 5 lines of teletype (which could be either 33 or 35).

3. The system operator will be prompted to enter TCAM parameters when he starts TCAM. At that
time he can override any of the parameters specified on the TSOMCP macro as well as TCAM
parameters. See the description of the TSOMCP macro instruction, for parameters pertinent to
TSO. (The operator will always have to reply "s=c,u'" STARTUP=COLD and a "u" to
terminate prompting.) A Dispatcher Subtask Trace Table, useful for debugging purposes, is to be
included in the MCP. It will contain 100 4 byte entries. (DTRACE= 100)

The sample system shown in Figure 36 has 10 dial lines, to be used by both 1050's and 2741's. The
station identification character for the 1050's is "A". Notice that it is specified in terminal
transmission code, (E2) not EBCDIC (Ct). Assume there are four types of terminals in the line
group.

A. Three 1050's, with Text Timeout Suppression feature and Receive and Transmit Interrupt
features.

B. One 1050, with Text Timeout Suppression feature.

C. Five 2741 's, with Correspondence Code, Receive and Transmit Interrupt features.

D. Two 2741 's, with EBCDIC code.

The default is ATTN and NOBREAK.

Users at terminals in groups A and C could use the TERMINAL command to request Transmit
Interrupt handling, (BREAK) or the installation could provide a special LOGON cataloged
procedure for these users containing a suitable interruption during output, or while the keyboard is
locked, or after a number of consecutive lines of output, when output is being sent. This also could
be specified in a LOGON procedure.

LINEGRP TERM=2741,DDNAME=LNGP 2741,LINENO=10,
TRANTAB=EB41,DIAL=NO

LINEGRP TERM=3335,DDNAME=LNGPTWX,LINENO=5
TSOMCP OPTIONS=PROMPT,DTRACE=100

Figure 35. Sample MCP

LINEGRP TERM=5041,DDNAME=DIAL5041,LINENO=10,ADDR=E2,
FEATURE=TOSUPPR

TSOMCP

Figure 36. Sample MCP

x

x

System Implementation 85

Writing Cataloged Procedures for TSO

Two categories of cataloged procedures are used by TSO. The first includes procedures invoked by
the system operator when he starts any of these four TSO tasks:

1. The Message Control Program (MCP).

2. The Time Sharing Control Task (TSO).

3. The Background Reader for the SUBMIT command (BRDR).

4. The TSO Trace Writer.

The second category consists of those procedures invoked each time a LOGON command is
entered at a terminal. The PROC operand of the. LOGON command specifies the name of the
cataloged procedure which:

1. Contains the JCL statements that define the data sets available to the terminal user.

2. Specifies the name of the Terminal Monitor Porgram (TMP) supplied with TSO or the
user-written substitute for the TMP.

Both categories of cataloged procedures must be members of SYS 1.PROCLIB or members of
partitioned data sets concatenated to SYS 1.PROCLIB.

Message Control Program

The cataloged procedure used to start the Message Control Program specifies through the PGM=
operand of the EXEC statement the MCP to be started. The MCP should be named IEDQTCAM.
This name allows the MCP to run in a region smaller than MINPART and ensure that the MCP can
not be canceled, that is the operator must halt it. Specify ROLL=(NO,NO) to preclude an attempt
to Rollout the MCP. Specify DPRTY=(15,15) to insure high priority. The MCP must run at a
higher priority than the TSC.

The cataloged procedure used to start the MCP also must define any terminals attached to the
system as data sets. This is done through the ddnames specified in the LINEGRP macro instructions
used in generating the MCP. Figure 37 shows two procedures that can be used to start the two
sample MCPs generated in Figure 35 and 36.

86 TSO Guide (Release 21)

IIMCP1 EXEC
IILNGP2741
II

PGM=IEDQTCAM,ROLL=(NO,NO),TIME=1440,DPRTY=(15,15),REGION=70K
DD UNIT=021 FIRST LINE GROUP DATA SET 2741
DD UNIT=022

II DD UNIT=023
II DD UNIT=024
II DD UNIT=025
II DD UNIT=026
II DD UNIT=027
II DD UNIT=028
II DD UNIT=029
II DD UNIT=02A
IILNGPTWX DD UNIT=02B SECOND LINE GROUP DATA SET TWX
II DD UNIT=02C
II DD UNIT=02D
II DD UNIT=02E
II DD UNIT=02F

IIMCP2 EXEC
IIDIAL5041
II

PGM=IEDQTCAM,ROLL=(NO,NO),TIME=1440,DPRTY=(15,15),REGION=66K
DD UNIT=021 LINE GROUP DATA SET
DD UNIT=022

II DD UNJT=023
II DD UNIT=024
II DD UNIT=025
II DD UNIT=026
II DD UNIT=027
II DD UNIT=028
II DD UNIT=029
II DD UNIT=02A

Figure 37. Sample MCP Start Procedures

Time Sharing Control Task

The cataloged procedure used to start the Time Sharing Control Task contains the Job Control
statements defining all the system resources the TSC r~quires. The procedure consists of an EXEC
statement and several Data Definition statements.

The EXEC statement of the cataloged procedure that sta11s the Time Sharing Control Task,
specifies:

• The TSC program name, which is IKJEATOO.

• The TSC region size. This size can be overridden (1) by the TSCREGSZ parameter of the TSO
start parameters in SYSl.PARMLffi, (2) by the operator on the START command, or (3) by the
TSC initialization routines if a larger region is required as in the case of an installation written
Driver.

• ROLL=(NO,NO) to preclude an attempt to Rollout the TSC region, if OPTIONS = ROLLOUT
has been specified during system generation.

• DPRTY= to set a priority for the TSC. It must be lower than the MCP.

Five data sets must -be defined.
;.

• SYSP ARM -- The library containing TSC initialization parameters. These parameters are
discussed under "TSO System Parameters".

• SYSUADS -- The User Attributes Data Set, this data set cannot be concatenated.

System Implementation 87

• SYSLBC -- The Broadcast data set which contains messages for users. In addition, the broadcast
data set contains a list of valid users, generated by the ACCOUNT command and its
subcommands.

• SYSW APOO -- The swap data sets.

• lEFPDSI -- The partitioned data set containing LOGON cataloged procedures. This data set may
be either SYS 1.PROCLIB or a partitioned data set dedicated to LOGON procedures. A dedicated
data set will speed up LOGON processing.

For each of these data set definitions, DISP=SHR should be specified.

If an installation uses the TSO dump, SYSTSDP, the TSO dump data set, usually a tape volume,
should be defined.

Figure 38 shows a sample cataloged procedure to start the TSC.

//IEFPROC
//SYSPARM
//SYSUADS
//SYSLBC
//SYSWAPOO
//SYSWAP01
//IEFPDSI

EXEC
DD
DD
DD
DD
DD
DD

PGM=IKJEATOO,ROLL=(NO,NO),DPRTY=(13,13)
DSN=SYS1.PARMLIB,DISP=SHR
DSN=SYS1.UADS,DISP=SHR
DSN=SYS1.BRODCAST DISP=SHR
DSN=SYS1.SWAP1,DISP=SHR
DSN=SYS1.SWAP2,DISP=SHR
DSN=SYS1.PROCLIB,DISP=SHR

Figure 38. Sample Cataloged Procedure to Start Time Sharing Control Task

The data definition ddname on the DD statement defining the SWAP data set specfies whether
serial or parallel swapping is to be used. The ddname is of the form:

SYSWAPln

where I indicates the level of the data set, i.e., 0 for prime, 1 for first overflow; and n is the data set
number at this level.

For example, if (,in installation has two data sets and wants to use.parallel swapping it would use
SYSW APOO and SYSW APO 1 as the ddnames.

If an installation wanted to use a IBM 2301 drum for a prime swap data set and a IBM 2314 as
overflow, the ddnames would be SYSWAPOO for the 2301 the prime data set, and SYSWAP10 for
the 2314, the first overflow data set.

If a system or TSO failure causes TSO to be restarted, you can use IMDPRDMP program to save
the swap data sets before attempting to restart TSO. When invoking IMDPRDMP, the DD
statements for the swap data sets should be the same as those in the TSO cataloged procedure; the
/ /PRINTER DD statement writes to tape with chained scheduling and a large blocking factor so
that the data sets are dumped quickly. The publication IBM System/360 Operation System: Service
Aids, GC28-6719 shows the procedures for analyzing system failures and how to use the
IMDPRDMP program to save the swap data sets.

Starting and Stopping Tsoi

When the operator starts TSO for the day, he must:

1. Issue a START command to start the Message Control Program. The operand of the START
command is the name of the cataloged procedure that provides the Job Control statements
necessary to execute the MCP. For example if the cataloged procedure used to start the MCP is
named TCAM, the operator will issue a START TCAM command.

88 TSO Guide (Release 2 t)

2. Issue a START command to start the Time Sharing Control Task (TSC). The operand of this
command names a cataloged procedure used to start the TSC. For example if the cataloged
procedure used to start the TSC is name TS, the operator would issue a ST ART TS command.

When the operator stops TSO for the day, he must:

1. Issue a STOP command to stop the Time Sharing Control Task. The operand of the STOP
command must be the same as the operand that was used to start the TSC.

2. Issue a HALT command to stop the Message Control Program. If the PGM= operand of the
EXEC statement in the cataloged procedure used to start the MCP is IEDQTCAM, then the
MCP cannot be cancelled with a CANCEL command. If the operator cancels the MCP, the TSC
must be stopped before the MCP is restarted. The MCP cannot be halted with a HALT
command unless TSO is stopped.

Defining a UADS using the TSC Procedure:

When a TSO system is first started after system generation, it is necessary to construct a UADS
using the ACCOUNT command. The distributed UADS contains one valid user: IBMUSER and this
user is authorized to use one procedure: IKJACCNT. The installation manager should use the
ALLOCATE command to define a new UADS with a file name of SYSUADS and a data set name
other than SYSl.UADS, specifying a volume serial number. The installation manager should then
define its UADS structure with a series of ACCOUNT command ADD subcommands. He should
then log off, stop the system, and change the SYSUADS DD statement in the TSC start procedure,
to point to the new UADS.

Note: The ACCOUNT command sub commands in addition to changing the UADS, also maintain a
list of valid userids in the Broadcast data set. This list is checked by the SEND command before any
messages are sent. If an installation generates a new TSO system and saves the old UADS, it must
also save the old Broadcast Data Set.

Background Reader (BRDR)

The cataloged procedure used to start the Background Reader (BRDR) contains Job Control
statements that:

• Specify the program name of the Background Reader.

• Pass the Background Reader standard Reader-Interpreter parameters.

• Define required data sets.

The Background Reader, (BRDR), runs as a system task. It is started by the operator. It
interprets Job Control Language passed by a terminal user with the SUBMIT command. If there is
no input for the BRDR, it will relinquish its region and wait for input. Output from the BRDR is
placed on SYS 1.SYSJOBQE and is queued for execution by a standard initiator. The cataloged
procedure that provides the Job Control Language to start the Background Reader is similar to
other reader procedures. The BRDR program name is IKJEFF40. Figure 39 shows an example of a
BRDR procedure. For further information on writing system reader/interpreter cataloged

I procedures, see IBM System/360 Operating System: MVT Guide, GC28-6720.

An installation exit can gain access to and modify or delete any JCL passed by the SUBMIT
command processor. The section, "Writing Installation Exits for the SUBMIT Command" describes
how to write this exit.

System Implementation 89

IIBRDR EXEC
II
II
IIIEFPDSI DD
II
II DD
II
II
II
IIIEFRDER DD

PGM=IKHEFF40,
REGION=70K,
PARM='READERPARM'
DSN=SYS1.PROCLIB,
DISP=SHR
UNIT=SYSDA,
SPACE= (80,(500,50),RLSE,CONTIG),
DCB=(BUFNO=2,LRECL=80,BLKSIZE=80,DSORG=PS,
RECFM=F,BUFL=80)
DUMMY

Figure 39. Sample Background Reader (BRDR) Procedure

TSO Trace Writer

X
X

X

X
X
X

Ths TSO Trace Writer collects Time Sharing Driver Entry Codes and writes them out to a data set.
The Trace Writer operates in its own partition and is started by the operator. A cataloged procedure
distributed with TSO defines the resources needed to run TSO Trace.

The cataloged procedure used to start the TSO Trace Writer:

• Specifies the program name of the TSO Trace facility.
• Passes to the Trace Writer a parameter which controls sampling rate.
• Defines the TSO Trace output data set.

Figure 40 shows the procedure. The sample procedure specifies that the Trace Writer output data
set is to be written to a 2400 tape unit. The output data set can also reside on disk. The user may
specify that chained scheduling be used if trace data set is on tape. If an installation specifies in the
DCB operand of the DD statement an NCP value, it must be at least three, that is,

DCB=(BLKSIZE=&BLKSIZE,NCP=3).

An installation should not include a SYSABEND or SYSUDUMP statement in the TSO TRACE
cataloged procedure.

IITXTRACE
II
II

PROC TRREGN=20K,
TRPARM=100,
VOLCNT=20,
BLKSIZE=2048

DEFAULTS: REGION SIZE=20K
ENTRY RATE=100 ENTRIES/SEC
VOLUME COUNT=20
BUFFER SIZE=2048 II

11*
11*
11*
11*

DESCRIPTION OF SYMBOLIC PARAMETERS ---
TRREGN - TRACE WRITER REGION SIZE
TRPARM - AN ESTIMATE OF THE RATE AT WHICH ENTRIES WILL BE MADE

INTO TRACE BUFFERS IN NUMBER OF ENTRIES PER SECONDS
11* VOLCNT - MAXIMUM NO. OF VOLUMES AVAILABLE FOR TRACE DATA SET

PER RUN. MAXIMUM VALUE ALLOWED IS 255. 11*
11* BLKSIZE- SIZE OF TRACE BUFFERS. MINIMUM SIZE ALLOWED BY TRACE

WRITER IS 128; MAXIMUM ALLOWED BY SYSTEM IS 32,760 11*
11*
IIIEFPROC
II
II
II
11*

EXEC PGM=IKJFATRC,
DPRTY=14,
REGION=&TRREGN.
PARM=&TRPARM

INVOKES INITIALIZATION MODULE
PRIORITY SHOULD AT LEAST BE HIGHER
THAN CPU-BOUND JOBS IN THE SYSTEM

IIIEFRDER DD DSNAME=TSTRACE,
UNIT=2400

NAME OF TRACE DATA SET
II
II
II
II

DATA SET CREATED ON 9-TRK TAPE(s)
DISP=(NEW,KEEP),
DCB=(BLKSIZE=&BLKSIZE),
VOLUME=(",&VOLCNT)

Figure 40. Sample TSO Trace Start Procedure

90 TSO Guide (Release 21)

Logon Cataloged Procedure

The LOGON cataloged procedure defines the system resources that the terminal user can use. The
LOGON cataloged procedure can be named in the PROC operand of the LOGON command,
supplied through a user exit from the LOGON processor. This procedure:

• Defines or allows for dynamic allocation of all data sets used by the terminal user .

• Specifies which program is to be invoked after LOGON, the TMP distributed with TSO or a user
written program.

The data sets defined can include the common system utility data sets, and data sets used by the
compilers such as SYSUTl, SYSUT2 or even the specialized data sets used by the Assembler or the
Linkage Editor.

In addition any data sets that will be allocated through the ALLOCATE command must have a
corresponding DD DYNAM statement. Any data sets needed by a processing program such as a
compiler or a system utility can be defined dynamically through the ALLOCATE command or
through Dynamic Allocation.

The Terminal Monitor Program distributed with TSO is named IKJEFTOI. If a user written TMP
is to be used for a particular procedure, then its module name should be substituted for IKJEFTOI
in the PGM=operand on the EXEC statement.

The P ARM operand on the EXEC statement is interpreted by the Terminal Monitor Program
(TMP) as the first line of input from the terminal.

ROLL=(NO,NO) should be specified to preclude rolling out the Time Sharing Region.

REGION = is ignored

The command library, SYSl.CMDLIB, contains the command processor load modules. An
installation can also load many of these modules into the TSO Link Pack Area. The command
library can be concatenated to SYSl.LINKLIB or defined in the LOGON procedure as a step
library.

Note: If the command library is defined in the LOGON procedure as a step library, the modules
in the TSO Link Pack Area will not be used. This will degrade performance.

To concatenate SYSl.CMDLIB to SYSl.LINKLIB, use the LNKLSTOO member of
I SYSl.PARMLIB. See IBM System/360 Operating System: MVT Guide, GC28-6720 for further

information about using LNKLSTOO.

Figure 41 shows an example of a LOGON procedure.

The sample LOGON procedure can be usef41 to a programmer using COBOL. Statement 1
specifies the TSO standard TMP for execution. Statement 2 defines the data set containing the
HELP command messages. Statement 3 defines a utility data set used by several command
processors while statement 4 defines the EDIT utility data set. Statements 5, 6, and 7 define utility
data sets used by the COBOL compiler. Statement 8 defines the COBOL subroutine library.
Statements 11 through 17 define data sets which can be allocated during the terminal session by the
user or a program he invokes, using the ALLOCATE command. Statement 18 defines SYSPROC,
an installation defined partitioned data set containing command procedures.

System Implementation 91

//COPROC
//SYSHELP
//SYSUTl
//SYSEDIT
//SYSUT2
//SYSUT3
//SYSUT4
//SYSLIB
//SYSIN
//SYSPRINT
//DD"l
//DD2
//DD3
//DD4
//DD5
//DD6
//DD7
//SYSPROC

EXEC PGM=IKJEFT01,ROLL=(NO,NO)
DD DSN=SYS1.HELP,DISP=SHR
DD DSN=&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(10,10))
DD DSN=&EDIT,UNIT=SYSDA,SPACE=(1688,(50,20))
DD DSN=&SYSUT2,UNIT=SYSDA,SPACE=(TRK,(10,5))
DD DSN=SYSUT3,UNIT=SYSDA,SPACE=(TRK,(10,5))
DD DSN=&SYSUT4,UNIT=SYSDA,SPACE=(TRK,(10,5))
DD DSN=SYS1.COBLIB,DISP=SHR
DD TERM=TS
DD TERM=TS
DD DYNAM
DD DYNAM
DD DYNAM
DD DYNAM
DD DYNAM
DD DYNAM
DD DYNAM
DD DSN=CMDPROC,DISP=SHR

Figure 41. Sample LOGON Cataloged Procedure

TSO System Parameters

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018

When the Time Sharing Control Task initializes the TSO system, it reads a series of parameters
from a member of the partitioned data set named on the SYSP AR~:l DD statement. The SYSP ARM
DD statement appears in the cataloged procedure used to start the TSC. The member name is
IKJPRMOO or a name supplied by the operator on the START command. There are three types of
parameters.

• TSC parameters.
• Time Sharing Driver parameters.
• Parameters dealing with the allocation of terminal buffers.

All of these parameters have an effect on the size of the TSC region. The publication IBM
System/360 Operating System: Storage Estimates, GC28-6551 gives formulas for assessing the effects
of these parameters on region size.

The Time Sharing Control Task Parameters

The TSC parameters:

• Define the number and size of the Time Sharing regions.
• Optionally specify a size for the TSC region.
• Specify the maximum number of users.
• Specify whether SMF is to be used.
• Specify which DRIVER to use.
• Limit the number of tracks the SUBMIT command can use to queue jobs.
• Define the module contents of the Time Sharing Link Pack Extension.

Notes:

• All parameters except LPA and DUMP/NODUMP may be overridden on the START command.
• USERS, SMF, REGSIZE(n), and SUBMIT may be changed by a MODIFY command.
• TERMAX, REGNMAX, and MAP must be specified either in SYSl.PARMLIB or on the

START command used to start TSO.

92 TSO Guide (Release 21)

The contents of the Time Sharing Link Pack Area, that part of the TSC region containing
reenterable modules common to different TSO applications has a direct effect on system response
and overhead. The following routines are used by different USers may times during an average
session and should reduce loading time if included.

• The I/O Service routines -- that is GETLINE, PUTLINE, PUTGET, and STACK.
• The TMP mainline routines.
• Command Scan -- a service routine used to check the syntax of commands.
• TIME -- a routine used to get the time of day.
• PARSE -- a routine that analyzes the syntax of commands.

In addition if EDIT is being used extensively, portions of the EDIT command processor should be
included.

• The Edit Mainline routines.
• INPUT subcommand processor.
• LIST subcommand processor.
• CHANGE subcommand processor.
• Implicit change processor, that is , the update function for portions individual lines.

Driver Parameters

The DRIVER parameters define dispatching and swap scheduling algorithms (1) for user jobs within
one time sharing region and (2) between two time sharing regions.

The DRIVER parameters dealing with activity within each region determine:

• The type of swap scheduling to be used, preemptive or round robin.

• The number of service queues in a region.

• The cutoff points for each queue in terms of swapload or main storage residence between
interactions (terminal 110 requests).

• The algorithms used to calculate time slices for each queue.

Certain parameters apply to service queues and require queues to be defined through the
SUBQUEUES parameter. These parameters usually are used in pairs, one parameter specifying that
a certain criterion is to be used in queue placement and the other specifying the value to be used.

For example, the SWAPLOAD/NOSWAPLOAD parameter specifies whether or not swap load
will be used as a criterion for determining which queue a user will be 'put in. If SW APLOAD has
been specified, the MAXSW AP parameter defines the maximum swap load for each queue.

These paired parameters dealing with service queues are:

SW APLOAD IMAXSW AP(n,m) = iii

AVGSERVICE/SERVICE(n,m) = iii

OCCUPANCY /MAXOCCUPANCY(n,m) = iii

Note: 'n', 'm', and 'iii' refer to region number, queue number and a value associated with the
parameter, such as k byte blocks for SWAPLOAD.

System Implementation 93

The DRIVER parameters dealing with activity between time sharing regions determine:

• Whether new users are to be assigned to a region based on region activity.

• What type of dispatching the Driver uses between multiple regions or between foreground and
background tasks.

There are three types of dispatching: (1) Simple, (2) Even, and (3) Weighted. The parameters
involved are PRIORITY, WAIT and BACKGROUND.

If an installation specifies NOPRIORITY and NOWAIT, then simple dispatching is used. The
formula used is:

MS = AT

where MS is the minor time slice and AT is the available execution time, or the time remaining
before the next scheduled swap out.

If an installation specifies PRIORITY and NOWAIT, then even dispatching is used. The formula
used is:

AT
MS = N

where N is the number of foreground regions containing jobs ready to execute. As in simple
dispatching.) available time is reduced before the calculation by any guaranteed background
percentage.

If an installation specifies PRIORITY and WAIT, then weighted dispatching is used. The formula
used is:

This job's EWT%
MS --------------- x (AT)

Sum of EWT%s

where MS is the minor slice to be assigned to a terminal job, EWT% is the estimated wait time
percentage, and AT is the available execution time for this minor slice cycle, again adjusted for any
guaranteed background percentage.

In a single region system, NOWAIT, NOACTIVITY, and NOPRIORITY should be specified.

The decay constants for the wait estimate (DECA YW AIT) and the activity estimate
(DECAYACT) are used to smooth out excessive variations in activity and I/O wait time. If set to
100, (that is, a decay constant of one since the value is in hundredths), will mean that the current
value has a weight equal to the total prior value. This will "smooth" out the effects of excessive
variations.

The expression used is:

old-value = (new-value ~ decay-constant) + old-value
(decay-constant + 1)

MINSLICE, the minimum amount of residence time (major time slice) given to a user program
on a given service queue, should be set to allow a useful amount of execution time. One way to
calculate MINSLICE is to divide the assumed average number of users for a normal load by the
acceptable response time.

94 TSO Guide (Release 21)

If AVGSERVICE has been specified, then the major time slice for users on a given queue is
calculated each time the queue is serviced. The value specified by SERVICE for that queue is
divided by the number of ready users and the result is compared to the MINSLICE value. The
higher of the two is used as the major time slice.

This means that with a normal number of users active, each user program will receive a major
time slice at least equal to the MINSLICE value, with a given average response. As the number of
users drops, the average response tiIl}.e will remain the same but each user program will receive a
longer time slice, based on the SERVICE value.

If PREEMPT is specified, CYCLES should be set to zero, since a higher priority queue will
preempt a lower priority queue.

The system operator is prompted for all necessary values that are not specified. For example if
OCCUP ANCY has been specified, but no MAXOCCUP ANCY values entered, the system operator
will have to supply values for each service queue in each region. At least one service queue must be
defined for each region, and a CYCLES value specified for all service queues defined to preclude
unnecessary prompting.

If a parameter is specified or entered incorrectly, the parameter is ignored, but no error message
is issued.

Buffer Control Parameters

TSO controls the allocation of terminal buffers in the TSC region. Buffer allocations are based on
initial parameters specified in SYS 1.P ARMLIB.

The BUFSIZE= parameter specifies the size in bytes of each TSO terminal buffer.

The BUFFERS= parameter specifies the total number of TSO buffers. The remaining parameters
deal with allocating the number of buffers per user when a given number of users is logged on.

TSO maintains a count of the number of allocated buffers per user, both for input and output.
When the number of buffers either for input or output rises to a given level, the user is prevented
from continuing until more buffers are available. If the specified maximum number of input buffers
are allocated, the keyboard is locked up. If the maximum number of output buffers are allocated,
the user's program is put into a wait. This level is determined by the OW AITHI value for output
and the INLOCKHI value for input.

When the number of logged on users changes by the percentage specified in the USRCHGE
parameter, and when the number of users falls below SLACK value, the number of buffers per user
is readjusted. The number of buffers for input and output are distributed in the same ratio as
specified by INLOCKHI and OW AITHI.

System Implementation 95

System Parameter Format

The format of the parameter records is:

b b parameter-ownerb keyword = value b ...

where b stands for one or more blanks.

The possible parameter-owners are:

• TS -- parameters for the Time Sharing Control Task.

• DRIVER -- parameters for the Time Sharing Driver .

• TIOC -- parameters controlling terminal buffer allocation.

Keywords cannot be continued but may be repeated. This has the effect of continuation, as repeated
keyword values are added on to those already specified. When two parameters conflict, the last
value is used. Figure 42 shows an example of system parameters for a single region model 50 and
for a double region model 65. Figure 43 shows the syntax and meaning of the start parameters.

96 TSO Guide (Release 21)

PARAMETER
OWNER

TS

TIOC

KEYWORD

TERMAX=nnnn

REGNMAX=nn

MAP=nnnn

USERS=nnnn

DSPCH=cccccc

LPA=(module list)

REGSIZE(n)=
(nnnnnK,xxxxxK)

SUBMIT=nnn

TSCREGSZ=nnnnnK

DUMP= DUMP
NODUMP

BUFSIZE=nn

BUFFERS=nn

OWAITHI=nn

INLOCKHI=nn

OWAITLO=nn

MEANING

Specifies maximum number of terminals the
installation wants to support. Must be less than
10000.

Specifies the maximum number of TSO user regions.
Must be between 1 and 14 inclusive.

Specifies the number of entries in the User Main
Storage Map for each user. Entry describes area to be
swapped. Used to reduce swapping of unused storage.

Specifies the initial maximum number of users the
system will allow to log on. Must be between 0 and
the value specified on TERMAX. If nnnn greater than
TERMAX, TERMAX value will be used. Defaults to
TERMAX.

Standard SMF foreground parameters, see Sy~em
Management Facilities, GC28-6 712.

Specifies first six characters of Time Sharing Driver.
Defines names of all four driver modules. Last two
characters must be 00 to 03. Defaults to IKJEAD, the
driver supplied with TSO.

List of modules to be included in Time Sharing Link
Pack Extension.

Specifies the time sharing region number and size of
that region. n is the region number and nnn~nK its
size. xxxxxK is size of Local System Queue Area
(LSQA). LSQA must be smaller than region size but
greater than zero. n must be between 1 and REGNMAX.
nnnnn and xxxxx are number 'of contiguous 1024 byte
areas wanted, should be even, and their sum may
range from 0 to 16382. Odd numbers specified will
be rounded up to next higher even number.

Specifies maximum number of tracks in SUBMIT command
job queue. Defaults to limit set at system generation.

Specifies amount of main storage to be allocated to
Time Sharing Control Task region. nnnnn is number of
contiguous 1024 byte areas desired, must be even, and
may not be more than 16382. An odd number will be
rounded up to next higher even number. If not
specified in either SYS1.PARMLIB or in START command,
Time Sharing Control Task will calculate its own
region size.

DUMP indicates that swap units are to be marked
reserved. Necessary if a SWAP dump to be taken.

Specifies size of terminal buffer. Default 44.

Total number of buffers.

Specifies the maximum number of allocated output
terminal buffers per user in order to put a user
program into output wait.

Specifies the maximum number of allocated input
terminal buffers per user in order to lock a users
keyboard.

Specifies the number of allocated output buffers to
bring a user out of output wait state. In other words
if OWAITLO=4, when 4 or less buffers remain allocated,
the user is brought out of output wait.

Figure 42. TSO System Parameter Syntax (Part I of 4)

System Implementation 97

PARAMETER
OWNER

PARAMETER

ACTIVITY

AVGSERVICE

BACKGROUND=nn

KEYWORD

INLOCKLO=nn

USERCHG=nn

RESVBUF=nn

SLACK=nn

CYCLES(n,m)=iiii

DECAYACT=nnnn

DECAYWAIT==nnnn

MEANING

Specifies the number of currently allocated input
buffers to unlock the terminal keyboard for input. In
other words, when the number of allocated input
buffers fail to or below the INLOCKLO value, the
users's keyboard is unlocked.

Specifies percentage of change in logged on users
needed to redistribute buffers and recalculate the
OWAITHI and INLOCKHI numbers during slack time.

Specifies the total number of terminal buffers that
must be free to avoid locking all terminals to prevent
input.

Specifies number of logged on users that constitute
slack time.

DRIVER PARAMETERS

EFFECT

Use average region activity in
selecting a region for a new user.
Single region systems should specify
NOACTIVITY.

Calculate major time slice for users
on a queue by dividing number of
ready users by value set in SERVICE.

The specified percentage of available
CPU time is guaranteed for background
(non-TSO) tasks.

The number of times an entire queue
will be serviced (ie. each ready
user swapped in before the next
lower queue is serviced.) If zero
is specified; the queue is serviced
until empty, (no ready users)
Cycles must be specified for each
region.

The specified exponential decay con
stant (in 1/100ths) will be used to
smooth average region activity.
Higher values make history more
important.

The specified exponential decay
constant (in 1/100ths) will be
used to smooth average I/O wait
time. Higher values make history
more important.

OPERAND

none

none

nn
percentage

n
region

m
service
queue

iii
cycles

nnn
exponential
decay constant
in 1/100ths.
Value of 100
makes history
as important
as current
value.

nnn
exponential
decay constant
in 1/100ths.
Value of 100
makes history
as important
as current
value.

Figure 42. TSO System Parameter Syntax (Part 2 of 4)

98 TSO Guide (Release 21)

PARAMETER

MAXSWAP(n,m)=iii

MAXOCCUPANCY(n,m)=iiii

MINSLICE(n,m)=iiii

NOACTIVITY

NOAVGSERVICE

NOBACKGROUND

NOOCCUPANCY

NOPREEMPT

NOPRIORITY

NOSWAPLOAD

NOWAIT

EFFECT

A user maximum swap load for queue
m in region n is iiii 1024 byte
blocks. A user exceeding this
swap load will be moved to
a lower priority queue.

Occupancy is the accumulated time
a user has resided in main storage
since the last terminal interaction.
If a user on queue n in region m,
accumulates more than iiii 1/100ths
of a second of occupancy, he will be
moved to a lower queue.

The minimum amount of core residency
allotted to a user on queue m in
region n is iiii (1/100ths) of a
second.

Region activity average will not
be used in assigning new users to
regions. NOACTIVITY should be
specified for single region
systems. Default of ACTIVITY.

AVGSERVICE calculations are not
performed. Default of AVGSERVICE.

Background tasks will not be
guaranteed a minimum amount of
execution time. Default of
BACKGROUND.

The length of time a user
program is resident will not
be used to position him on a
service queue. Default of
OCCUPANCY.

preemptive swap scheduling is
not used. Default of PREEMPT.

Minor time slices are not calculated
Default or PRIORITY.

Swap load (size of programs) will
not be criterion for service queue
placement. Default of SWAPLOAD.

I/O WAIT time estimate will not
be used in dispatching between
multiple regions. Causes even
dispatching between regions if
PRIORITY was specified, simple
dispatching if NOPRIORITY was
specified. Should be specified
for single region system. Default
of WAIT.

Figure 42. TSO System Parameter Syntax (Part 3 of 4)

OPERAND

n
region

m
service queue

iiii

n

m

1024 byte
blocks of
swap load.

region

service queue
iiii

n

1/100ths
seconds.

region
mmm

number of
service queues

none

none

none

none

none

none

none

none

System Implementation 99

PARAMETER

OCCUPANCY

PREEMPT

PRIORITY

SERVICE(n,m)=iiii

SUBQUEUES (n)=mmm

SWAP LOAD

WAIT

EFFECT

Residence times since last
terminal I/O interaction are
accumulated for current user
program to use for service
queue placement.

Preemptive swap scheduling is
used. Assumes multiple service
queues defined through SUBQUEUES
parameter. A user who comes ready
on a higher queue preempts a
resident user on a lower queue.
The preempted user is swapped out
after a minslice of the preemptor
has elapsed. The preemptors entire
queue is serviced.

If NO WAIT was specified, each
region receives an equal minor
time slice. If WAIT was specified,
regions receive minor time slices
based on I/O WAIT time.

The amount of time (iiii 1/100ths
of seconds) is divided by the
number of ready users in queue
m, region n. The result
is compared with MINSLICE, and the
larger is used as the major time
slice. This calculation is per
formed whenever a queue is to be
cycled, (all the ready users swapped
in) .

The number of service queues in
region In' is 'm'. Lower service
queue numbers have higher priority.
If only one service queue is
defined, then round robin swap
scheduling is used. At least one
service queue must be defined for
each region.

Swap load or size of program
in 1024 byte blocks, is used for
queue placement.

Causes I/O wait time estimate to
be calculated for region. Used
with weighted dispatching.

Figure 42. TSO System Parameter Syntax (Part 4 of 4),

1 ()() TSO Guide (Release 21)

OPERAND

none

none

none

n
version

m
queue

iiii
1/100ths
of seconds

n
region

mmm
service
queue

TS TERMAX=10 REGNMAX=l REGSIZE(1)=(100K,8K)
TS LPA=(IKJPTGT,IKJSCAN,IKJEF02,IKJEFT25)
TS LPA=(IKJPARS)
DRIVER AVGSERVICE PREEMPT SUBQUEUES(l)=3
DRIVER CYCLES(1,1)=0
DRIVER CYCLES(1,2)=0
DRIVER CYCLES(1,3)=0
DRIVER MAXOCCUPANCY(l,l)=750 MINSLICE(l,l)=150
DRIVER MAXOCCUPANCY(1,2)=1500 MINSLICE(1,2)=750
DRIVER MAXOCCUPANCY(1,3)=4500 MINSLICE(1,3)=4500
DRIVER SERVICE(l,l)=150
DRIVER SERVICE(1,2)=1500
DRIVER SERVICE(1,3)=6000
TIOC BUFSIZE=44
TIOC BUFFERS=80
TIOC OWAITHI=8
TIOC OWAITHI=4
TIOC INLOCKHI=4
TIOC INLOCKLO=2
TIOC SLACK=Ol
TIOC RESVBUF=10
TIOC USERCHG=99

TS TERMAX=60 REGNMAX=2 REGSIZE(1)=100K,8K) REGSIZE(2)=(100K,8K)
TS LPA=(IKJPTGT,IKJSCAN,IKJEFT02,IKJEFT25)
TS LPA=(IKJEBEM4,IKJEBELP,IKJEBELT,IKJEBECH,IKJEBELI)
TS LPA=(IKJPARS)
DRIVER WAIT
DRIVER ACTIVITY
DRIVER OCCUPANCY
DRIVER AVGSERVICE
DRIVER PREEMPT
DRIVER DECAYWAIT=100
DRIVER DECAYACT=100
DRIVER SUBQUEUES(l)=3 SUBQUEUES(2)=3
DRIVER CYCLES(1,1)=0 CYCLES(1,2)=0 CYCLES(1,3)=0
DRIVER CYCLES(2,1)=0 CYCLES(2,2)=0 CYCLES(2,3)=0
DRIVER MAXOCCUPANCY(l,l)=500 MINSLICE(1,1)=100
DRIVER MAXOCCUPANCY(1,2)=1000 MINSLICE(1,2)=500
DRIVER MAXOCCUPANCY(1,3)=3000 MINSLICE(1,3)=3000
DRIVER MAXOCCUPANCY(2,1)=500 MINSLICE(2,1)=100
DRIVER MAXOCCUPANCY(2,2)=1000 MINSLICE(2,2)=5000
DRIVER MAXOCCUPANCY(2,3)=3000 MINSLICE(2,3)=3000
DRIVER SERVICE(l,l)=1000
DRIVER SERVICE(1,2)=1000
DRIVER SERVICE(1,3)=6000
DRIVER SERVICE(2,1)=100
DRIVER SERVICE(2,2)=1000
DRIVER SERVICE(2,3)=6000
TIOC BUgSIZE=44
TIOC BUFFERS=300
TIOC OWAITHI=8
TIOC OWAITLO=4
TIOC INLOCKHI=4
TIOC INLOCKLO=2
TIOC SLACK=12
TIOC RESVBUF=60
TIOC USERCHG=Ol

Figure 43. Sample TSO System Parameters

System Implementation 101

Tuning a System With TSO

This section describes some techniques useful in improving the performance of a system with TSO.
Some of these techniques act directly upon the underlying MVT control program, but they all affect
TSO system performance. The specific objectives discussed are:

• Reducing I/O contention between foreground (TSO) and background tasks.

• Reducing time spent fetching modules.

• Reducing swap overhead that is, the amount of I/O performed copying foreground job images
between main and secondary storage.

• Reducing seek time between different libraries and different parts of the same library.

The techniques are discussed in terms of their objectives. Figure 44 summarizes the various
techniques in terms of the times at which they are used.

SYSGEN

Reducing UNITNAME
Foreground/ IOREQUE=PRIORITY
Background I/O
Contention

Reducing

SYSl.PARMLIB
Construction

Writing
Cataloge¢l
Procedures

UNIT

Writing
LOGON
Procedures
UADS Library
Building Positioning

U~IT

I Fetch Time
Operator Communications
Residence Options
Transient Area

BLOL (SVC)
BLDL (LINKLIB)
TSLPA

I

Reducing
Seek Time

Tuning the
Driver

LPA

TSO TRACE

Figure 44. Summary of Tuning Objectives for Various Techniques

Reducing I/O Contention Between Foreground and Background

ABSTR (JCL)
IEHDASDR(VTOC)
IEBCOPY
IEHMOVE

To reduce the I/O contention between foreground (TSO) tasks and background tasks:

1. During System Generation, use the UNITNAME macro instruction (1) to separate direct access
space into foreground (TSO) and background areas and (2) to define generic names, (unitnames),
for these spaces. (System Generation GC28-6554 discusses the UNITNAME macro instruction.)

In cataloged procedures for background use, define utility data sets with the UNIT parameter
specifying one of the background unitnames, (for example, SYSDA).

In cataloged procedures for foreground use, notably the LOGON procedures, define utility data
sets using a UNIT parameter specifying one of the foreground (TSO) unitnames, (for example,
SYSTS).

102 TSO Guide (Release 21)

Restrict placement of data sets allocated dynamically, (using the ALLOCATE command), by
specifying a foreground unitname in the UADS. Define a unit for dynamically allocated data sets
in the UADS with the ADD subcommand of the ACCOUNT command.

Be sure to give the PUBLIC attribute, in the PRESRES member of SYS 1.P ARMLIB, to at least
one of the Foreground Unitname volumes so that SYSOUT data sets will be dynamically
allocated on a specific unit. See MVT Guide, GC28-6720, for more information on the
PRESRES member of SYS 1.PARMLIB.

2. Specify priority scheduling on I/O for the direct access devices on which TSO data sets reside.
Since foreground jobs usually run at higher priority than background jobs, this should reduce the
time Foreground (TSO) jobs wait for background I/O requests. Use the 10REQUE operand of
the 10DEVICE macro instruction. For further information, see System Generation GC28-6554.

For an example of the use of UNITNAME, if your system has two 2314 Direct Access Storage
Facilites available, at addresses 130 through 137 and 230 through 237, you could define generic
names for scratch, utility, and spooling data sets by using the UNIT NAME macro instructions
specified in Figure 45.

UNITNAME UNIT=(130,4),(230,4),NAME=SYSDA

* BACKGROUND SCRATCH UNITNAME, NON-TSO

UNITNAME UNIT=(134,4),(234,4),NAME=SYSTS

* FOREGROUND TSO UNITNAME

Figure 45. Sample Use of the UNITNAME Macro Instruction

For the system in this example, if a data set is defined with a UNIT parameter specifying
SYSDA, it will reside on one of the 2314 packs at addresses 130 to 133 or 230 to 233. Data sets
defined with a UNIT parameter specifying SYSTS, will reside on one of the 2314 packs at addresses
134, 135, 136, 137, 234, 235, 236, 237, or 237.

There are advantages to using generic naming through the UNITNAME macro facility:

1. There is no arm contention between foreground and background utility data sets.

2. TSO utility data sets can be demounted easily when TSO is not active.

If the UADS specifies that new dynamically allocated data sets should reside on the units in the
foreground unitname group, then there will be no arm contention between these data sets and
background data sets.

Reducing Fetch Time

Reducing the time spent fetching modules· from libraries is one of the most important controllable
factors in system performance. For the purposes of this discussion, fetch time is defined as the time
span from the start of execution of a macro instruction which obtains a module from secondary
storage and optionally transfers control to the module to completion of this operation. Examples of
these types of macro instructions are LINK and LOAD.

System Implementation 103

Note: The following list of modules for residence and directory residence were selected based on a
count of modules fetched during TSO operation. The modules are included because they fulfill at
least one of the following criterion:

• High fetch count.

• Reduce seek time between one or more of the following - SVCLIB, VTOC, or CATALOG.

• Required for each line of terminal output.

• Required for each line of terminal I/O.

• Must be refreshed after SWAP-in of not resident.

• Part of Catalog sequence.

• BSAM CHECK routine for terminal I/O.

• High use count for resident access modules. (Increases swap load if not resident.)

If the referenced module is resident in the Link Pack Area, or the TSO Link Pack Area
Extension, then no I/O is involved in a fetch. If the module is not resident, but if there is a BLDL
entry for it, then a directory search is not required. If there is no BLDL entry, then I/O is required
for the BLDL (directory search) and for the actual loading of the module. An installation therefore
can influence fetch time through the following four options:

1. SVC module residence.

Figure 46 shows a list of SVC modules and their functions. For further information about loading
modules into the Link Pack Area, see MVT Guide, GC28-6720.

2. Resident directory entries (BLDL) for SVC library.

The following Dynamic Allocation modules should be included in the SVC BLDL list:

IGCOI09I, IGC02091, IGC03091, IGC07091, IGC0909I IGCI0091, IGCI1091, IGC12091,
IGC13091, IGC14091, IGC14091, IGC15091, IGC1609I, IGC17091, IGC26091, IGC27091,
IGC29091.

The following Catalog Modules should be included in the SVC BLDL list:

IGGOCLC2, IGGOCLC3, IGGOCLC7, IGGOCLF2.

3. Resident directory entries (BLDL) for Linkage library, and TSO Command library.

A LINKLIB BLDL entry in main storage occupies 56 bytes. Modules which have BLDL entries
have their fetch time significantly reduced. For this reason, it is recommended that the entire list
of modules in Storage Estimates, GC28-6551, listed under "Reentrant Load Modules that can be
made resident in the Time Sharing Link Pack Area," be included in the Linkage Library BLDL
list.

4. SVC transient area pairs.

In addition to defining module and directory (BLDL) residence, specifying during system
generation two SVC transient areas for each initiator (background region) or each foreground
region, decreases total time spent waiting for the loading of a non-resident SVC function.

104 TSO Guide (Release 21)

Module Name/Function

IGCOO02F SVC 26 CATALOG
ICGOO02H SVC 28 OPEN Extent Catalog
IGCOO03C SVC 33 I/O Halt
IGCOO06+ SVC 60 STAE
IGCOO09+ SVC 90 XQMNGR
IGCOO09C SVC 93 TGET/TPUT
IGCOO09F SVC 96 STAX
IGCOO09G SVC 97 TEST
IGCOO09I SVC 99 Dynamic Allocation
IGC2509I Dynamic Allocation Update DSE
IGC2509I Dynamic Allocation Initiation
IGGOCLC1 Catalog Locate
IGGOCLC6 Catalog Return
IGG09301 TPUT

Figure 46. SVC Modules useful for Res'idence in TSO

Reducing Swap Overhead

There are two ways to reduce swap load:

1. Use the MAP parameter of the TSC start parameters to reduce the amount of unused core
swapped. MAP=6 is a recommended value. For further information about the MAP parameter,
see "TSO System Parameters."

2. Any TSO modules resident in the TSLP A will not be swapped. This means that TSO modules
common to foreground jobs, such as the TMP, should be considered for residency.

Reducing Seek Time Between Different Libraries and Different Parts of the Same Library

You can reduce seek time and increase 110 overlap by properly placing system data sets on direct
access devices.

Use the IEBCOPY utility program to move system data sets. Use the IEHMOVE utility program 10
move the system catalog. Use the IEHDASDR utility to place the VTOC of a volume. For further
information about these utilities, see IBM System/360 Operating System; Utilities, GC28-6586.

Use the ABSTR operand of the SPACE parameter on dd statements to position data sets. In
arranging libraries on direct access devices, the following points should be kept in mind.

1. Every reference to the system catalog requires a reference to the VTOC, since the catalog must
be opened. If the system catalog and the VTOC share cylinders (split cylinders), then seek time
is reduced.

2. Unless the CATLG/UNCATLG modules (lGGOCLC2, IGGOCLC3, IGGOCLC7) are resident
in the Link Pack Area, they must be fetched during any catalog operation. If these modules are
not resident, it is useful to have the system catalog and SVCLIB adjacent on the storage device.

3. To allow for maximum overlap during fetch I/O, either CMDLIB or LINKLIB should reside on a
different volume than SVCLIB. Since CMDLIB and LINKIB should be concatenated, they also
should probably not reside on the same volume.

4. In general, heavily referenced data set~, like LINKLIB and SYSJOBQE should be in proximity
when they share a volume.

System Implementation 105

The following example shows the dd statements used to define system data sets. The space
parameters apply for 2314 volumes. It is assumed that the VTOC was placed on tracks 50 to 52 on
these 2314 packs. Cataloging of data sets should be done after this allocation has been run.

IIFORTLIB
II
II
IICMDLIB
II
II
IISYSCTLG
II
IlsVCLIB
II
II
IIPROCLIB
II
II
IIBRODCAsT
II
IIUADS
II
II
IILOGON
II
II
IIJOBQUE
II
IILINKLIB
II
II

Using TSO Trace

DD

DD

DD

DD

DD

DD

DD

DD
DD

DD

DD

DSN=SYS1.FORTLIB,SPACE=(ABSTR,(28,2,40)),UNIT=2314, X
VOL=SER=SYSRES,DISP=(NEW,KEEP), X
DCB=(RECFM=U,BLKSIZE=3625)
DSN=SYS1.CMDLIB,SPACE=(ABSTR,(20,30,30)),UNIT=2314, X
VOL=SER=SYSRES,DISP=(NEW,KEEP), X
DCB=(RECFM=U,BLKSIZE=3625)
DSN=SYS1.SYSCTLG,SPACE=(ABSTR,(7,53)),UNIT=2314, X
VOL=SER=SYSRES,DISP=(NEW,KEEP)
DSN=SYS1.SVCLIB,SPACE=(ABSTR,(80,60,75)),UNIT=2314, X
VOL=SER=SYSRES,DISP=(NEW,KEEP), X
DCB=(RECFM=U,BLKSIZE=1024,DSORG=POU)
DSN=SYS1.PROCLIB,SPACE=(ABSTR,(20,140,9)),UNIT=2314, X
VOL=SER=SYSRES,DISP=(NEW,KEEP), X
DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)
DSN=SYS1.BRODCAST,SPACE=(ABSTR,(20,30)),UNIT=2314, X
VOL=SER=SYSRS2,DISP=(NEW,KEEP)
DSN=SYS1.UADS,SPACE=(ABSTR,(20,53)),UNIT=2314, X
VOL=SER=SYSRS2,DISP=(NEW,KEEP), X
DCB=(DSORG=PD,RECFM=FB,BLKSIZE=800)
DSN=SYS1.LOGON,SPACE=(ABSTR,(7,73,5)),UNIT=2314, X
VOL=SER=SYSRS2,DISP=(NEW,KEE~), X
DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)
DSN=SYS1.SYSJOBQE,SPACE=(ABSTR,(60,80)"CONTIG), X
VOL=SER=SYSRS2,DISP=(NEW,KEEP),UNIT=2314
DSN=SYS1.LINKLIB,SPACE=(ABSTR,(75,140,100)), X
VOL=SER=SYSRS2,DISP=(NEW,KEEP),UNIT=2314, X
DCB=(RECFM=U,BLKSIZE=3625)

The TSO Trace Data Set Processor is a problem program that dumps the output data set from TSO
Trace and produces a formatted listing. Figure 47 shows the job control language required to run
the TSO Trace Data Set Processor. The example assumes that the TSO Trace Data set has been
written to a tape volume with a volume serial number of TTRACE. The listing shows the
parameters specified, and provides an explanation of each entry record as well as the contents of the
record in hexadecimal and EBCDIC: The contents of register 1 is listed in the third column of the
Trace Data Set Processor.

IITTRDUMP
IISTEP
IISYSPRINT
IITRACEDD

JOB , MSGLEVEL=1
EXEC PGM=IKJFATRP,PARM='CODES=STD'
DD SYSOUT=A
DD DSN=TSTRACE,VOL=SCR=TTRACE,UNIT=2400

Figure 47. Sample Job System to Run TSO Trace Data Set Processor

TSO TRACE is a started task which operates in its own region. All Driver Entry Codes are
recorded in buffers which are then written to a data set. This data set can be listed by the TSO
Trace Data Set Processor or can be analyzed by a user written program. The section of this
publication Writing Cataloged Procedures for TSO, discusses how to define the TS Trace data set and
specify parameters required by TSO Trace. Figure 48 shows the format of the TSO Trace data set.

106 TSO Guide (Release 21)

Entry
Type

'A'

'B'

'C'

'D'

'E'

'F'

'G'

When Produced

When. the trace writer is started

When the trace writer is stopped.

When information was lost (volume
switching, low sampling rate,
etc.

Normal entry (contains words
of the DPA).

Following a normal entry with
entry code 0 (TMP entry).

1-3

Following a normal entry with
entry code 25 (LOGON establishes
PSCB) .

Following a normal entry with
entry code 44 (FE Serviceability)

Figure 48. Format of the TS Trace Data Set

Word 1
Word 2
Word 3

Word· 1
Word 2
Word 3

Word 1
Word 2
Word 3

Word

Word 2

Word 3

Description of Contents

X'FFFFFFFD'
of 3-word entries per record
Time of Day in timer units

X'FFFFFFFE'
Date in packed decimal OOYYDDDS
Time of Day in timer units

X'FFFFFFFF'
Number of entries lost
Time of Day in timer units of
the first lost entry

Bytes 1-2 TJID or 0
Byte 3 Reserved (X' 00')
Byte 4 Entry code
Contents of register 1 on
entry to TSIP
Time of Day in timer units

Words 1-2 Command name
Word 3 Unpredicatable

Bytes 1-7 USERID
Bytes 8-12 Unpredictable

Diagnostic data (There will be2n+l
3-word groups of data available. The value
of n is contained in bits 5-7 of word 2
of the normal entry.

The TSEVENT macro instruction is issued by. system tasks to request services of the Driver or to
notify the Driver of specific events. The TSEVENT macro instruction specifies an event name that
is translated into a Driver Entry Code. Based on parameters specified to the Driver and on the
sequence of these codes, the Driver initiates various actions.

Appendix C lists all the possible event names, the codes they generate, their meanings, and which
task issues these codes. Associated with most TSEVENT macro calls is a TJID, which identifies the
user to the Driver. The TJID is assigned when the user logs on.

The PARM value on the EXEC statement specifies what entries will be listed. All "G" type
records will be listed regardless of the parameters. The individual keyword parameters should be
enclosed in apostrophes and separated by commas. The keyword parameters and their syntax are:

CODES
specifies which class of entry codes are to be included in the listing. The subparameters, S,T and
D represent 'System' codes, 'Terminal I/O' codes, and "Dispatcher" codes, respectively. The
listing, therefore, will contain only those entry codes belonging to the class, or classes, specified.
Appendix C lists the Entry Code classes. These subparameters may be written in any order, but
must not contain delimiters nor embedded blanks. If the CODES parameter is omitted, all
non-dispatcher entries will be listed, i.e., CODES=ST is the default option.

System Implementation] 07

TJID=XXX[- YYY]
specifies that only entries associated with the TJID specified by the number XXX are to be listed.
If YYY is also given, all entries associated with TJID's in the range XXX to YYY, inclusive, are
listed. If the value given for XXX is zero, all entries will be listed. (This -is also the default if the
'TJID' parameter is not specified.) Both numbers XXX and YYY must be specified as decimal
digits. The maximum length of each number is three digits.

CLOCK=XXXXXXXX[-YYYYYYYY]
indicates that no entry before time XXXXXXXX (relative to the starting time of the first entry)
is to be included in the listing. If - YYYYYYYY is specified no entry after that time is listed.
Both numbers must be specified as decimal digits and given the time in seconds. The maximum
length of each number is seven digits.

Writing Installation Exits for the Submit Command

A user exit from the SUBMIT command allows an installation to:

• Verify a jobname.
• Verify a userid.
• Send a message to the terminal and optionally request a reply.
• Cancel a SUBMIT request.

The TSO SUBMIT command allows a terminal user to initiate a background job. A description of
the syntax and use of the SUBMIT command is found in IBM System/360 Operating System: Time
Sharing Option, Command Language Reference, GC28-6732.

The SUBMIT command processor writes the contents of a user specified data set consisting of
Job Control Language statements, (JCL), and input data, onto a logical extension of
SYS I.SYSJOBQE. The size of this extension is limited at system generation time by the SUBMITQ
operand of the TSO OPTION macro. Size can be further limited by the SUBMIT parameter which
the Time Sharing Control Task reads from SYS1.PARMLIB when the operator issues a START TS
command.

Any authorized terminal user can submit a background job, but no jobs will be scheduled if the
operator has not issued a ST ART BRDR command.

An installation can control foreground initiated background jobs through an installation written
SUBMIT exit routine. Through the routine an installation can:

• Delete, modify, or insert statements.
• Request that a message be displayed at the terminal and optionally request a reply.

The routine must be linkage edited as an independent module, given the name IKJEFFI0, and
cataloged in SYS I.LINKLIB. The SUBMIT command processor invokes the user written exit when
the first JOB statement is read. Return codes in register 15 control subsequent . calls. The return
codes are:

° - continue -- that is process the current statement and read the next.
4 - reinvoke the exit for another statement -- that is process the current statement and invoke

the exit for the next statement.
8 - display a message at the terminal and invoke the exit.
12 - display a message at the terminal, obtain a response, and invoke the exit. (If the user has

specified NOPROMPT, this will cause the SUBMIT processor to abort.)
16- abort.

108 TSO Guide (Release 21)

Upon entry to the user written exit routine, register 1- contains the address of a list of six fullwords.

1 st word - address of the current statement.

If zero, entry is to get a statement (return code from previous call was 4). To delete the current
statement, zero out the first word.

2nd word - address of a message to be displayed on terminal.

If non-zero, return code from previous call was 8 or 12. The exit may free the buffer. If zero, no
message, the return code was 0, 4, or this is the first call.

3rd word - address of response.

If the exit return code from the previous call was 12, SUBMIT will free the buffer. The format of
both the message and the response is LLtest where LL is a two byte length field containing one
length of the text, maximum length 82 bytes.

4th word - address of USERID.

The USERID is 8 characters left justified padded with blanks.

5th word - address of control switches.

Byte 0 specifies under what conditions SUBMIT will call the exit.

Byte Bit Meaning

0 0 Call for JOB card
1 Exec
2 DD
3 Command
4 Null
5 Reserved
6 Reserved
7 Reserved

Byte 1 if non-zero contains the card column where the operand field begins. For example, if the
operand field begins in column 16, byte 1 contains hex 10.

Byte 2 specifies what the current statement is.

Byte Bit Meaning

2 0 JOB statement
1 EXEC
2 DD
3 command
4 null
5 operand to be continued
6 statement to be continued
7 statement continuation

If bit 5 is on, bit 6 must be on, but bit 6 can be on and bit 5 off.

Byte 3 is unused.

6th word - for exit's use.

The first time SUBMIT calls the exit, the 6th word is initialized to zeros. The eixt can use the
word for counters or switches. The value is not changed between calls.

System Implementation 109

Writing Installation Exits for the OUTPUT, STATUS, and CANCEL
Commands

An installation can write a user exit for the OUTPUT, CANCEL, and STATUS commands. The
exit routine is common to all three command processors and is named IKJEFF53. An TSO supplied
module performs jobname verification if a user exit is not supplied. The parameters and the return
codes have the same format and meaning for all three command processors. The user exit
determines which command processor is invoking it from a parameter. The parameters are passed
through a standard linkage with register one containing the address of a list of seven fullwords.

Word 1 -- contains the address of the jobname.

Word 2 -- contains the address of the length of the jobname.

Word 3 -- contains the address of the userid.

Word 4 -- contains the address of the length of the userid.

Word 5 -- contains the address of a message to be issued to the terminal user. The format of one
message is LLtext where LL is a two byte field containing the length of the entire
message, maximum length 82 bytes. If 0, the exit is being entered to create a message.

Word 6 -- contains the address of a response from the terminal user. The format of the response is
LLtext where LL is a two byte field containing the length of the entire message,
maximum length 82 bytes.

Word 7 -- contains the address of the command code.

Command codes are:

o = STATUS command.

4 = CANCEL command.

8 = OUTPUT command.

Return codes are passed in register 15 and are defined as:

o = Valid job name, get next job name and continue processing.

4 = Display message, get response, and call exit again. If the terminal use has specified
NOPROMPT on his LOGON or PROFILE command, the command will abort and a
message will be issued to the terminal.

8 = Display message and call exit again. "

12= Invalid jobname, cancel request for foreground initiated background service.

16= Abort (Same action for return code greater than 16.)

110 TSO Guide (Release 21)

Writing a Logon Pre-Prompt Exit

A user-written exit, cataloged in SYS 1.LINLIB can specifiy most of the values to be determined
from the LOGON command or from prompting by the LOGON command processor. These include:

• The userid.

• The password.

• An account character string -- that is the value specified in the ACCT operand.

• A procedure name -- that is the name of a cataloged procedure usually specified in the PROC
operand.

• A region size.

• A series of 80 byte card images of Job Control Language (JCL) to be used instead of the JOB
and EXEC statements normally constructed by the LOGON processor.

• Portions of the Protected Step Control Block.

• The contents of the User Profile Table.

• The contents of the Environment Control Table used by the LOGON Prompter.

In addition, the exit can:

• Read but not change the Event Control Block which will be posted if the exit terminates due to a
CANCEL request.

• Read but not change the completion code from the last step executed from the terminal logging
on.

The parameters passed are defined in the PL/I procedure in Figure 49. The variables declared as
either BIT or CHAR, VARYING are passed as String Dope Vectors. For a definition of String
Dope Vectors see IBM System/360 Operating System: PL/I-F Programmer's Guide, GC28-6594. The
exit may be written in any language but since parameters are passed as String Dope Vectors, they
can be manipulated directly in PL/l The exit must be Linkage Edited and cataloged in
SYS 1.LINKLIB with a entry point name which processes standard Operating System parameters and
the module must be named IKJEFLD.

The exit receives control as a problem program and can use the I/O service routines through
Assembler Language macro instruction (PUTLINE, GETLINE, PUTGET, STAX).

LOGON passes 16 parameters to the user exit. They are of three types:

1. Character String defined in PL/I as CHAR VARYING.

2. Bit Strings defined in PL/I as BIT VARYING.

3. Fullwords defined in PL/I as BINARY FIXED (31).

The parameters passed can be given any name in the user written exit procedure but their
meaning is determined by the order in which they appear. The following explanation of the
parameters uses the names defined in the PL/I procedure in Figure 49.

System Implementation 111

CONTROL SWITCHES -- a bit string that specifies what actions the exit has taken. The various
bit switches are:

UADS FAIL -- if this bit is equal to one, on entry to the pre-prompt exit, then there was an
unsuccessful ENQ on the UADS entry for the specified userid.

REGION FAIL -- if this bit is equal to one on entry to the pre-prompt exit, the region size
specified in the LOGON REGION operand was too large to be satisfied. The exit can specify
a different region size.

FAIL -- if this bit is equal to one on entry to the pre-prompt exit, the LOGON processor will
cancel the attempted log on. No message will be issued to the terminal user, so the pre-prompt
exit must issue any needed message.

DONT PROMPT -- if this bit is equal to one on return from the procedure, the LOGON
processor will not prompt the terminal user for any necessary LOGON operand values but will
use the values specified by the pre-prompt exit. These include:

• Userid.
• Password.
• Accounting string.
• Procedure name.
• Region size.

EXIT UADS -- if this bit equals one on return from the pre-prompt exit, the LOGON
processor will not reference the UADS but will take all character strings and bit strings from
the procedure. DON'T PROMPT must be set to one if this bit is set to one.

EXIT JCL -- if this bit is euqal to one on return from the pre-prompt exit, the pre-prompt exit
has supplied Job Control Language (JCL) that is to be used instead of the JOB and EXEC
statements constructed normally by the LOGON processor.

EXIT PSCB -- if this bit is equal to one on return from the pre-prompt exit, the LOGON
processor will use the PSCB accounting string returned by the user but will not write it to the
UADS at LOGOFF time.

EXIT ATTRI -- if this bit is equal to one on return from the pre-prompt exit, the LOGON
processor will use the PSCBATRI string provided by the exit and will not write it into the
UADS at LOGOFF time.

EXIT ATTR2 -- if this bit is equal to one on return from the pre-prompt exit, the LOGON
processor will use the PSCBATR2 string returned by the pre-prompt exit and will not write it
into the UADS at LOGOFF time.

EXIT GROUP -- if this bit is equal to one on return from the pre-prompt exit, the LOGON
processor will use the PSCBGPNM string returned by the exit procedure, but will not write it
to the UADS at LOGOFF time.

EXIT UPT -- if this bit is eequal to one on exit from th~ pre-prompt exit, the LOGON
processor will sue the UPT string returned by the exit procedure, but will not be written to the
UADS at LOGOFF time.

NO ENQ UADS -- if this bit equals one and the DONT PROMPT and EXIT UADS bits are
both one, the LOGON processor will not ENQ on the UADS entry for the specified user.

112 TSO Guide (Release 21)

If both DONT PROMPT and EXIT UADS are equal to one then:

• EXIT PSCB
• EXIT ATTRI
• EXIT ATTR2
• EXIT GROUP
• EXIT UPT

also must be equal to one.

TERMINAL INPUT LINE -- this parameter contains the first line entered from the terminal.

The values for the next five parameters must be specifed if the DONT PROMPT bit is set on one.

USERID -- used to return a userid to the LOGON processor.

PASSWORD -- used to return a password to the LOGON processor.

ACCOUNT -- used to return an accounting string to the LOGON processor.

PROCEDURE -- used to return the name of a cataloged procedure containing JCL to define the
resources needed by the terminal job.

REGION SIZE -- used to return to the LOGON processor a region size for the terminal job.

JCL -- used to provide Job Control statements that define terminal job resources instead the JOB
and EXEC statement constructed by the LOGON processor.

The next six parameters must have values specified by the pre-prompt exit if EXIT UADS is set on
one by the pre-prompt exit.

PSCB -- used by the exit procedure to set a value for the PSCB accounting string.

FIRST ATTRIBUTE -- used to return a value for the PSCBA TR 1 string.

SECOND ATTRIBUTE -- used to return a value for the PSCBATR2 string.

GENERIC GROUP -- used to return a value for the PSCBGPNM.

UPT -- used to return a value for the UPT.

ECT -- used to return a value for the Environment Control Table (ECT) used by the LOGON
prompter.

The last two parameters cannot be altered by the pre-prompt exit but may be read.

ECB -- the Event Control Block (ECB) for the exit procedure.

COMPLETION CODE -- this fullword contains the completion code for the last job step of the
last job executed from this terminal.

For the format of the Protected Step Control Block (PSCB), the User Profile Table (UPT), and the
Environment Control Table (ECT) see the publication IBM System/360 Operating System: System
Control Blocks.

System Implementation 113

USER EXIT:

DECLARE

PROCEDURE
(CONTROL_SWITCHES I
TERMINAL_INPUT_LINE,
USERID,
PASSWORD,
PASSWORD,
ACCOUNT,
PROCEDURE,
REGION SIZE,
JCL,
PSCB,
FIRST_ATTRIBUTES,
SECOND_ATTRIBUTE,
GENERIC_GROUP,
UPT,
ECT,
ECB,COMPLETION_CODE) ;

CONTROL SWITCHES BIT (*) VARYING,
UADS FALL BIT (1) DEFINED CONTROL SWITCHES POSITION (1),
REGION FAIL BIT (1) DEFINED CONTROL SWITCHES POSITION (2),
CANCEL BIT (1) DEFINED CONTROL SWITCHES POSITION (3),
DONT PROMPT BIT (1) DEFINED CONTROL SWITCHES POSITION (4),
EXIT UADS BIT (1) DEFINED CONTROL SWITCHES POSITION (5),
EXIT JCL BIT (1) DEFINED CONTROL SWITCHES POSITION (6),
EXIT PSCB BIT (1) DEFINED CONTROL SWITCHES POSITION (7),
EXIT ATTR1 BIT (1) DEFINED CONTROL SWITCHES POSITION (8),
EXIT ATTR2 BIT (1) DEFINED CONTROL SWITCHES POSITION (9),
EXIT GROUP BIT (1) DEFINed control SWITCHES POSITION (10),
EXIT_UPT BIT (1) DEFINED CONTROL_SWITCHES POSITION (11),
NO_ENQ_USERID BIT (1) DEFINED CONTROL_SWITCHES POSITION (12);

DECLARE TERMINAL INPUT_LINE CHAR (*) VARYING;
DECLARE USERID CHAR (*) VARYING;
DECLARE PASSWORD CHAR (*) VARYING;
DECLARE ACCOUNT CHAR (*) VARYING;
DECLARE PROCEDURE CHAR (*) VARYING;
DECLARE REGION SIZE BINARY FIXED (31);
DECLARE JCL CHAR (*) VARYING;
DECLARE PSCB BIT (*) VARYING;
DECLARE FIRST_ATTRIBUTE BIT (*) VARYING;
DECLARE SECOND_ATTRIBUTE BIT (*) VARYING;
DECLARE GENERIC_GROUP CHAR (*) VARYING;
DECLARE UPT BIT (*) VARYING;
DECLARE ECT BIT (*) VARYING;
DECLARE CP_ABEND BIT (1) DEFINED ECT POSITION (1);
DECLARE CP_RETURN-CODE BIT (24) DEFINED ECT POSITION (8);
DECLARE IO_WORD_AREA_ADDR BIT (32) DEFINED ECT

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

NOSEC LEVEL MSG - -
SEC LEVEL MSG ADDR - --
COMMAND NAME
SUBCOMMAND NAME
NO MAIL SWITCH - -
NO NOTICE SWITCH - -
ECB
COMPLETION CODE

POSITION (33);
BIT (1) DEFINED ECT POSITION (65);
BIT (24) DEFINED ECT POSITION (73);
CHAR (8) DEFINED ECT POSITION (97);
CHAR (8) DEFINED ECT POSITION (161);
BIT (1) DEFINED ECT POSITION (228);
BIT (1) DEFINED ECT POSITION (229);
BINARY FIXED (31);
BINARY FIXED (31);

Figure 49. Portion of Sample PL/I Logon Pre-Prompt Exit

114 TSO Guide (Release 2J)

Storage Estimates

The estimates included in this chapter are intended for planning purposes only. None of these
estimates have been verified; and they are subject to change. Verified estimates appear in the
publication IBM System/360 Operating System: Storage Estimates, GC28-6551

This chapter contains two sections: main storage requirements and auxiliary storage
considerations. All figures in this chapter are decimal, and "K" represents a factor of"1024.

Main Storage Requirements

The main storage requirement for TSO is divided into four major parts:

• An addition to the MVT basic fixed requirement.

• The TCAM Message Control Program requirement.

• The Time Sharing Control region requirement.

• The foreground regions in which user's programs are executed.

Only the first of these requirements has any effect on the batch environment if time sharing is not
active. Storage for the TCAM, Time Sharing Control, and foreground regions is obtained from the
dynamic area when the operator starts time-sharing operations. This storage is returned to the
dynamic area when time sharing is stopped, and is again available for batch processing.

MVT Basic Fixed Requirement

The main storage basic fixed requirement for an MVT system is for:

• The nucleus.

• The Master Scheduler Region.

• The Link Pack Area (LPA).

• The System Queue Area (SQA).

Storage for the basic fixed requirement is allocated by the Nucleus Initialization Program (NIP)
when the system is started and does not normally vary while the system is running.

Nucleus

Including TSO at system generation adds approximately 3K to the size of the resident MVT nucleus,
for a total requirement of about 45K. In addition, communication lines, like other 110 devices,
require 40 bytes each in the nucleus for control blocks.

Master Scheduler Region

The master scheduler region is increased by approximately 4K to handle new or extended operator
commands for the time-sharing environment, and for extended error recovery. The total requirement
is about 16K.

Storage Estimates 115

Link Pack Area

One small TSO module is added to the required MVT link pack area list of resident modules. The
minimum link pack area size remains 10K. If the standard MVT resident reenterable load module
and resident SVC lists are used at system generation, the LP A requirement is about 54K. If space is
available, an additional 16K of SVC modules for time sharing are appropriate for the resident list,
for a total LPA size of 70K.

Additional resident reenterable load modules for time sharing are placed in an extension to the
link pack area allocated in the Time Sharing Control region, and are resident only when time sharing
is active. The size of this extension, called the Time Sharing Link Pack Area (TSLP A), is discussed
with the Time Sharing Control Region requirement.

System Queue Area

During time-sharing operations, use of the system queue area is kept to a minimum by placing as
many control blocks as possible into a local system queue area (LSQA) defined in each foreground
region. Control blocks in the local SQA are swapped in and out of main storage along with the
foreground job they apply to.

Some control blocks associated with foreground jobs, such as queue elements for named data sets
and operator reply queue elements, must remain in main storage while the job is swapped out. Space
for these control blocks, and for all control blocks associated with the tasks supervising the
time-sharing operation must be allocated from the system queue area. These requirements must be
considered when setting SQA size at system generation or at nucleus initialization.

Message Control Program Requirement

The size of the TCAM Message Control Program region depends largely on what options are
selected and what hardware is present on the teleprocessing network. In addition to the minimum
requirement for the Message Control Program routines, there are requirements for each defined line
group, each additional terminal type, and for each permitted user. If teleprocessing applications
other than TSO are present, additional routines to handle different buffering and queuing techniques
will be needed.

In a system with TSO as the only teleprocessing application, with three terminal types and two
line groups, the Message Control Program requirement is expected to be about 52K plus 800 bytes
for each possible concurrent user. Although the Message Control Program executes in a problem
program region, the region may be smaller than the normal minimum problem program region size
(MINPART).

Time Sharing Control Region Requirement

The Time Sharing Control region must provide space for programs for the Time Sharing Control
Task, Region Control Tasks, several resident SVC routines, the time sharing extension to the link
pack area, and various control blocks. Some of the control blocks are repeated for each foreground
region, for each swap data set, or for each time sharing user. An initialization routine brought in
when the operator starts time sharing analyzes the time-sharing parameters supplied by the
installation, calculates the region size requirement, and obtains the region from the dynamic area.

Using a buffer length of 40 bytes, and assuming eight buffers per time-sharing user, a TSO
configuration with two IBM 2314 swap data sets, one foreground region, and 20 users would
require a time sharing control region of about 87K. A larger configuration, with two 2301 swap data

116 TSO Guide (Release 21)

sets and two 2314 swap data sets, four foreground regions, and 100 users would require about
117K for the time sharing control region.

Dynamic Area Requirements

The SEND operator command, like several others already in the MVT configuration, obtains and
uses an 12K operator command region from the dynamic area when the operator enters it. This area
is freed when processing of the command is completed.

When it is active, the time sharing trace facility requires a 20K region from the dynamic area.

Foreground Region Requirement

The foreground region contains the programs invoked by the terminal user. Space must be provided
in the foreground region for the local system queue area (LSQA) and for four main storage
subpools used for control blocks for the command system.

The subpools defined are:

• SubpooI0--4K.
• Subpool 1--4K.
• Subpool 78--2K.
• SubpooI251--2K.

The minimum foreground region size is 72K, and all IBM-supplied command processors except some
of the language processors can execute in this region.

Auxiliary Storage Requirements

The major additions to the system auxiliary storage requirements for TSO are for the swap data sets
and new or larger system libraries and data sets. The installation must also consider the direct access
storage needs of the individual terminal users, and make allowances for these in the size of the
system catalog and password data sets. In addition, data sets which are dynamically allocated, use
SPACE=(50,10,l..o) for size parameters.

Swap Data Sets

A swap data set is divided into swap allocation units, each of which consists of a device-dependent
number of 2K records. To avoid space fragmentation, space in the swap data set is always assigned
in integral swap allocation units. Figure 50 shows the sizes of allocation units for various swap
devices.

Allocation
Device Type Unit

2301 Drum Storage 1 track
2303 Drum Storage 4 tracks
2305-1 Fixed Head

Storage 4 tracks
2305-2 Fixed Head

Storage 4 tracks
2314 Direct Access

Storage 1/2 cylinder
3330 Disk Storage 3 tracks

Figure 50. Swap Allocation Unit Sizes

Size

18K
18K

44K

52K

64K
32K

Storage Estimates 117

For a system with one foreground region, the maximum necessary swap space can be calculated
by the algorithm:

Swap Space = (R/ A). (U+2)

where:

R is the size of the region.

A is the size of an allocation unit, as shown in Figure 50, (R/ A is rounded up to an integer).

U is the number of concurrent foreground jobs.

For instance, a system with one foreground region of 120K, an IBM 2314 swap device, and 30
possible users would have a maximum swap data set space requirement of:

(120/64).(30+2) = 2.32 = 64 allocation unit or 32 cylinders

In this case, the number of allocation units required to hold a complete foreground region is two,
and the number of users plus two is 32.

Swap data sets must be allocated by cylinder, even if the swap data set does not occupy a full
cylinder.

If TSO runs out of swap space, no message is issued, and the system may loop, so allow
sufficient space.

System Libraries and Data Sets

The additions to system' libraries for TSO are expected to be (with the increments expressed in 2311
tracks):

• SYS1.LINKLIB--30 tracks.

• SYSl.SVCLIB--20 tracks.

• SYS 1.MACLIB--60 tracks.

Two new libraries, SYS1.CMDLIB (command. library) and SYS1.HELPLIB (HELP data set), are
expected to be smaller than 220 IBM 2311 tracks each.

The size of the User Attribute Data Set, a partitioned data set with a member for each user
identification, depends on the number of password-identification-account number-procedure name
combinations defined for each user. A simple identification structure for a single user with a single
value at each level requires about 200 bytes of storage space.

Typical time-sharing usage also requires more space for the. system catalog and password data
sets than batch usage. All user data sets are cataloged as a default, and read-only password
protection is recommended at least for system data sets. This type of protection does not cause any
performance degradation when the data sets are accessed for reading.

118 TSO Guide (Release 21)

Appendix A: TSO Commands

The commands available to terminal users of the Time Sharing Option are listed below, grouped
according to function. Installations may give other names to these commands by assigning aliases to
the respective members in the system command library. No IBM-supplied command names include
numeral~, allowing installations to ensure uniqueness in locally named commands.

Data Management

ALLOCATE
define and allocate a new or old data set.

ATTRIB
build a list of attributes that can be assigned to data sets being. allocated.

CONVERT
convert source programs written in Code and Go FORTRAN or Interactive PL/I to standard
format FORTRAN or PL/I.

COpy
duplicate a sequential or partitioned data set, or a member of a partitioned data set, optionally
modifying such characteristics as blocking factor)

DELETE
delete and uncatalog one or more data sets or· members.

EDIT
invok~ the edit mode or input mode to modify or create a data set; provide an interface to the
language syntax checkers and processors.

FORMAT
format a data set for printing according to embedded controls'!

FREE
release a data set ·or an attribute list.

LIST
display at the terminal all or part of one or more data sets, optionally re-arranging information in
the records. l

LISTALC
display at the terminal the names and characteristics of currently active (allocated) data sets.

LISTBC
display at their terminal any system notices or messages from other users.

LISTCAT
display at the terminal the names and characteristics of a group of data sets indexed together in
the system catalog. .

LISTDS
display at the terminal the characteristics of one or more specified data sets.

MERGE
copy all or part of one data set or member into another.t

lIBM Program Products. See Appendix B.

Appendix A: TSO Commands 119

PROTECT
assign or modify password protection to a data set.

RENAME
change the name of a data set or member, or assign an alias to a member.

Language Processors

ASM
invoke the prompter forI the Assembler (F).

CALC
invoke the Interactive PL/I processor for desk calculator mode/ l

COBOL
invoke the American National Standard COBOL compiler. 1

FORT
invoke the FORTRAN (Gl) compiler)

RUN BASIC
invoke the ITF: BASIC compiler and execution control routines. 1

RUN GOFORT
invoke the Code and Go FORTRAN compiler and execution control routines. 1

RUN IPLI
invoke the ITF: PL/I compiler and execution control routines. 1

RUN PLI CHECK
invoke the PL/I Checkout Compiler. 1

RUN PLI OPT
invoke the PL/I Optimizing Compiler, the OS Loader, and give control to the resulting module.

PLI
invoke the PL/I Optimizing compiler. 1

PLIC
invoke the PL/I Checkout Compiler. 1

Program Control

CALL
invoke a specified program which exists in load module form.

LINK
invoke the Linkage Editor to create a load module from one or more object and load modules.

LOADGO
invoke the Loader to process a specified object module, bring it into storage, and give it control.

RUN
invoke a user program in source program form, first compiling it, then calling the Loader to bring
it into storage and give it control.

TEST
control the execution of a program, interrupting it at pre-specified points for debugging activity.

1IBM Program Products. See Appendix B.

120 TSO Gu ide (Release 21)

Remote Job Entry

Note: Use of these commands requires authorization in the user profile.

CANCEL
cancel a job previously submitted for background execution.

OUTPUT
direct SYSOUT data sets and system messages from submitted jobs to the terminal or a specified
data set.

STATUS
display information at the terminal on the status of a job previously submitted for background
execution.

SUBMIT
submit a data set containing job control language for one or more jobs for interpretation and
execution in the background.

System Control

Note: Use of these commands requires authorization in the user profile.

ACCOUNT
add or modify user profiles in the User Attribute Data Set.

OPERATOR
invoke the operator mode, allowing the user to enter system commands from his terminal.

Session Control

EXEC
invoke a command procedure.

HELP
display at the terminal information on command function and syntax.

LOGON
start a terminal session.

LOGOFF
end a terminal session.

PROFILE
specify special characters for line editing; lock out and accept messages from other users.

SEND·
direct a message to the system operator or to another user.

TERMINAL
specify the conditions under which an attention interruption is to be simulated, for terminals
without attention keys; and define other terminal-dependent characteristics.

TIME
display at the terminal the amount of time expended during the current session or the current
program.

Appendix A: TSO Commands 121

Appendix B: Program Products

The following is a list of the IBM Program Products available for use with TSO. Program Products
are available from IBM for a license fee. Program Product Design Objectives for each of the
Program Products are available from your local IBM representative.

• Interactive Terminal Facility (ITF): PL/I and BASIC.
A problem-solving language processor. See the following publications: IBM System/360 Operating
System Time Sharing Option: Interactive Terminal Facility: PL/I and BASIC Design Objectives,
GC28-6822. ITF: PL/I General Information, GC28-6827. ITF: BASIC General Information,
GC28-6828.

• Code and Go FORTRAN.
A FORTRAN compiler designed for a fast compile-execute sequence. See the publications: Code
and Go FORTRAN Design Objectives, GC28-6823. FORTRAN Program Products for OS and OS with
TSO, General Information, GC28-6824.

• FORTRAN IV (G1).
A version of FORTRAN IV providing specific support for the terminal environment. See the
publications: FORTRAN IV (GO Processor Design Objectives, GC28-684S. FORTRAN Program
Products for OS and OS with TSO, General Information, GC28-6824.

• TSO FORTRAN Prompter.
An initialization routine to prompt the user for options, and invoke the FORTRAN IV (G 1)
Processor. See the publications: TSO FORTRAN Prompter Design Objectives, GC28-6843.
FORTRAN Program Products for OS and OS with TSO, General Information, GC28-6824.

• FORTRAN IV Library (Mod 1).
Execution-time routines for list-directed I/O, PAUSE, and STOP capability, for use with either
Code and Go FORTRAN or FORTRAN IV (G1). See the publications: FORTRAN INV Library
(M:od 0 Design Objectives, GC28-6844. FORTRAN Program Products for OS and OS with TSO,
General Information, GC28-6824.

• American National Standard Full COBOL Version 3.
A version of the American National Standard COBOL compiler modified for the terminal
environment. See the publications: American National Standard (ANS) Full COBOL Compiler
Version 3 Design Objectives, GC28-6406.

• TSO COBOL Prompter.
An intialization routine to prompt the user for options, and invoke the American National
Standard I~ull COBOL Version 3 Compiler. See the publications: TSO COBOL Prompter Design
Objectives, GC28-6404.

• PL/I Optimizing Compiler.
A PL/I compiler designed for compilation of efficient object programs, incorporating a prompter
routine allowing invocation from the terminal. See the publications: PL/I Optimizing Compiler
Design Objective, GC33-0013. PL/I Optimizing Compiler, General Information, GC33-0001.

• PL/I Checkout Compiler.
A PL/I compiler designed to simplify the task of testing and debugging programs, incorporating a
prompter routine allowing invocation from the terminal. See the publications: PL/I Checkout
Compiler Design Objectives, GC33-0028. PL/I Checkout Compiler, General Information, GC33-0003.

122 TSO Guide (Release 21)

• OS PL/I Resident Library.
A subroutine library for use during the linkage editing of programs produced by the PL/I
Optimizing Compiler. See the publication: OS PL/I Resident Library Design Objectives,
GC33-0014.

• OS PL/I Transient Library.
A subroutine library for use during the execution of programs produced by the PL/I Optimizing
and Checkout Compilers. See the pUblication: OS PL/I Transient Library Design Objectives,
GC33-001S.

• TSO Assembler Prompter.
An initialization routine to prompt the user for options and invoke the Assembler (F). See the
publication: TSO Assembler Prompter Design Objectives, GC26-3734.

• TSO Data Utilities: COPY, FORMAT, LIST, MERGE.
A set of commands and EDIT sub commands to manipulate data sets and format text. See the
publication: TSO Data Utilities: CO'PY, FORMAT, LIST, MERGE Design Objectives, GC28-67S0.

Appendix B: Program Products 123

Appendix C: Driver Entry Codes

Entry Code Table (Part 1 of 4)

r-------------T--------------------T-----------------T---------------------.------,
I Event Name I I I Input I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
J-------------t---------------------t-------------------t-----------T----------------i
IPPMODE (0) IProblem Program (5) ICommand about to be I Address of 8-
I I I processed I character
I I I I command name.
I I I I
I I I I
I I I I Bit 0

I I I , 0 - Ended
I I I 1 - Beginning
I I I
ITSLICE (1) ITSC Timer Exit ITime slice has
I IRoutine (S) I expired
I I I
ITERMWAIT (2) ITGET/TPUT (T) IUser is waiting fori
I I Iterminal I/O. Swap
I I Ihim out ..
I I I
I I I

I I I
I I I
I I I
INIOWAIT (3:) IRegion Control Tasks (S) IAII user's tasks
I I lare in non-I/O
I I IWait.
I I I
I USERRDY (4) I DEQUEUE. Terminal ISwapped out user
I I Handler, TSLIH" wrOR Iready to run.
I I (S,T) I
I I I

IRUSRTRMW (5) IRegion Control Task (5) IRestored user is
I Istill in non-I/O

I I IWait.
I I I
I I Iswap him out.
I I I
IREQSTNC (6) IEnqueue (5) Iuser is setting
I I Imust complete for
I I lowned resources.
I I I
IRELMC (7) IDequeue (S) IUser is no longer

I I lin must complete
I status.

I I I
IDISPLAC (8) ITS Dispatcher (D) IA task switch has
I I Itaken place
I I Iresulting in a
I I Ibackground task
I I Ibeing dispatched.
I I I
IDISPSYS (9) ITS Dispatcher (D) IA task switch has
I I Itaken place
I I Iresulting in a
I I Isystem task being

o

TJID

TJID

TJID

TJID

NA

Bit 0

0: input
1: output

Bytes 3 and 4:
number of free
buffers~

NA

NA

NA

Estimated must
complete time.

l_. _______ L ____________________ ~is~~~~~~~:_. _______________________________ J

124 TSO Guide (Release 21)

Entry Code Table (Part 2 of 4)

r-------------T------------------------~-------------------T----------------------------,
I Event Name I I I Input I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
~-------------+------------------------+-------------------+----------~--------~-------i
DISPTS (10) ITS Dispatcher (D) IA task switch has TJID

I Itaken place
I Iresulting in a
I I new time-sharing
I Itask being
I I dispatched.
I I

DISPWAIT (11) ITS Dispatcher (D) IA task switch has
I Itaken place
I I resulting in a
I I system Wait,.
I I

IQSCEST (12) IRegion Control Task (S) IQuiesce is started TJID
I I I
IQSCECMP (13) IRegion Control Task (S) IQuiesce is complete TJID Number of
I I I FBQEs
I I I
ISWOUTST (14) ITime Sharing Control Iswap out Start TJID
I ITask (SWAP) (S) I
I I I
ISWOUTCMP (15) I Time Sharing Control Iswap out complete TJID
I ITask (SWAP) (S) I
I I I
SWINST (16) ITime Sharing Control Iswap in started TJID

ITask (SWAP) (S) I
I I

SWINCMP (17) ITime Sharing Control ISwap in complete TJID
Task (SWAP) (S) I

I
RSTORST (18) Region Control Task (S) IRestore is started TJID

I
RSTORCMP (19) Region Control Task (S) Restore is complete TJID

(20) Reserved

(21) Reserved

(22) Reserved

(23) Reserved

(24) I Reserved
I

LOGACCT (25) ILOGON (S) IPass Logon
I linformation for
I I,accounting purposes
I I

Address of
accounting
information

CHGTOD (26) ITimer SLIH (S) ITime of day must bel 0 TOD change inl
I I altered I 52 M value sec I
I I I Timer units I
I I I I
I I I Bit 0 I
I I I I
I I I 0 - positive I
I I I value I
I I I I
I I I 1 - negative I
I I I value I _____________ ~ ________________________ ~ ___________________ ~ ___________ ~ ________________ J

Appendix C: Driver Entry Codes 125

Entry Code Table (Part 3 of 4)

r------------~------------------------T-------------------T----------------------------,
I Event Name I I I Input I
I (Entxy Code) ICalling Routine (CLASS) (Reason for Entry IRegister 0 Register 1 I
.---.----------+-----------------------+------------------+----------~---------------__i
SPRGNSZ (27) ITimer Sharing Control ISpecify size region I 0 Region number

ITask. Region Control Ifor specific region
ITask (S) I

II I
(28) I Reserved I

I I
LOGOFF (29) lEnd of Task (S) ITJID is to

I Ibe released.
I I
I IRegion can
I I be released.
I I

LOGON (30) ILOGON (S) IHook us~r into
I I selected region
I I

REQRGNID (31) I Time sharing Control 10btain region ID
ITask. Logon (S) I appropriate to sizel
I I I
IRCT and I I

SWINERR (32) ITime sharing ISwap in failed I
IControl Task (SWAP) (S) I I
I I I
I I I
I I I
I I I
I I I
I I I SWOTERR (33) I Time Sharing Control Swap out failed. Nol
ITask (SWAP) (S) Iroom on SWAP data I
I Iset I
I I I

TGEl'PUT (34) TGET. TPUT (T) ITGET was satisfied; I

I I
I I
I I
I I
I I
I I
I I
I I

TPUT was satisfied I
I
I

~
I

IATTN (35) ITerminal Handler (T) Attention (not linel
I I Attention I delete) I
I I I I
I I I I
I I I I
I I I I
\IOERROR (36) ITerminal Handler IPermanent I/O Errorl
I I HANG UP(T) I Terminal I

TJID

'IJID

TJID

TJID

TJID

TJID

TJID

I I I disconnected I I

Required
region size

Region ID

Region size

Bit 0

0: LOGON
image

1: NOt LOGON
image

Bit 0:

o - TGET

1 - TPU'1'

For TGEl'.

Bit 1i

o - all data
transfered

1 - partial
transfer

Bytes 3 and 4 I
Characters
transferred

Sign bit:

o - No exit

1 - Exit

L ______________ ~ _____________________ L ___________________ ~ __________ ~ ________________ J

126 TSO Guide (Release 20

Entry Code Table (Part 4 of 4)

r-------------r------------------------j-------------------1----------------------------,
I Event Name I I I Input I
I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I
.-------------+------------------------+-------------------+-----------T----------------i
ITERMDSCN (37) I Terminal Handler IDisconnect terminal I TJID
I ILOGOFF (T) Ilogically from TSO I
I I I I
I I I I
I (38) I Reserved I I
I (39) I Reserved I I
I· I I
IRGNFAIL (40) ITime sharing Control IRegion failed I
I I Task Region Control I I
I ITask (S) I I
I I I I
IDONTSWAP (41)ITransient Area IDO not swap out I TJID
I I Handler (S) I user I
I I I I
IOKSWAP (42) I Transient Area IAllow swap out of I TJID
I IHandler (S) luser I
I I I I
IUPDATACC (43) I LOGOFF (S) IUpdate accounting I TJID
I I I informa tion f or I
I I I user logging off I
I I I I
IFEDIAG (44) Iserviceability (S) IFE diagnostics I o
I I Irecorded in TSO
I I TRACE data set
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
IENQWAIT (45) IEnqueue (S) User in enqueue
I I I~TI.~~h~o~. I

Region ID

Bit 0:
o

Bits 1-4:
Diagnostic
Identifier
Bits 5-7: n
when 2(n+1)
equals number
of entries
Bits 8-31:
address of
data t:.o be
recorded.

L-____________ ~ ________________________ ~ ___________ . ________ i-__________ ~ ________________ J

Note: On entry to the Time Sharing Driver, Register 0 contains either:

1) 0 - shown in one table as o.
2) A specific TJID - shown in one table as TJID.
3) The TJIO of the current tasks - shown in the table as blank.

CLASS refers to the TSO Trace Data Set Processor CODES pararr.eter.

Appendix C: Driver Entry Codes 127

Appendix D: Terminal Messages Requiring InstaUation Action

The following section contains those TSO terminal messages that are generated for the terminal user
but that require the operator to perform certain diagnostic measures before calling IBM for
programming support. The messages are not listed by message number but are listed alphabetically
according to message text; the additional messages associated with each initial message are listed
alphabetically under each message. The KEY indicate at the left of the message denotes the
appropriate operator response for the message he responses are listed in numeric order following the
list of messages.

128 TSO Guide (Release 21)

KEY MESSAGE
DATA SET dsname NOT ALLOCATED, DATA SET NOT ON VOLUME+

CATALOG INFORMATION INCORRECT

DATA SET dsname NOT ALLOCATED, SYSTEM OR INSTALLATION ERROR+
CATALOG ERROR CODE 14
CATALOG ERROR CODE lC
CATALOG I/O ERROR

20 ERROR IN CONCATENATING LIBRARY DATA SETS

9
10
16
20
20
20
12
20
20

5
5
5
6

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
17

INPUT
DADSM ERROR CODE 4704
DADSM ERROR CODE 4708
DADSM ERROR CODE '470C
DADSM ERROR CODE 4710
DADSM ERROR CODE 4718
DADSM ERROR CODE 4730
DADSM ERROR CODE 4734
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE

COMMAND SYSTEM ERROR+

004
008
104
108
10C;
208
268
304
308
30C
310
314
318
31 C
320
324
328
338
33C
340
344
350
358
40C
408
410
414
'418
420
424
504

20 DEVTYPE FAILED xx FOR DDNAME ddname
20 TIOT SEARCH FAILED FOR DDNAME ddname
10 OBTAIN ERROR CODE 8 FOR DATA SET dsname
12 OBTAIN ERROR CODE 12 FOR DATA SET dsname
16 BLDL I/O ERROR
21 OBTAIN ERROR CODE 12 FOR FORMAT 4 DSCB
20 PARSE ERROR CODE xx
20 DEFAULT ERROR CODE xx
20 SCAN ERROR CODE xx
20 DAIR ERROR CODE xx
20 PUTLINE ERROR CODE xx
20 GETLINE ERROR CODE xx
20 PUTGET ERROR CODE xx
20 STACK ERROR CODE xx

Appendix D: Terminal Messages Requiring Installation Action 129

6 OUTPUT QUEUE ERROR
20 SVC 98 RETURN CODE xx

DATA SET dsname NOT ALLOCATED+
8 INVALID UNIT IN USER ATTRIBUTE DATA SET

USER ATTRIBUTE DATA SET NOT USABLE+
22 CANNOT OPEN DATA SET
16 BLDL I/O ERROR
16 STOW I/O ERROR
14 I/O SYNAD ERROR synadinfo
16 BACKSPACE ERROR 4

DATA SET dsname NOT USABLE+
16 BLDL FAILED, PERMANENT I/O ERROR IN DIRECTORY
14 I/O SYNAD ERROR synadinfo
10 OBTAIN ERROR CODE 8
21 OBTAIN ERROR CODE 12
22 CANNOT OPEN DATA SET
16 BLDL I/O ERROR
20 XDAP WRITE FAILED IN TEN TRIES
15 OPEN ERROR CODE xxxx
15 ABEND CODE xxx
16 BLDL ERROR CODE xxx

6 JOB QUEUE I/O ERROR

CAN NOT COpy INTO DATA SET dsname+
14 I/O SYNAD ERROR synadinfo
16 STOW I/O ERROR

DATA SET dsname CANNOT BE RESOLVED, SYSTEM ERROR+
20 DEFAULT ERROR CODE xx

3 CATALOG ERROR CODE 14
4 CATALOG ERROR CODE 1C

ERROR WRITING DATA SET dsname, MEMBER AND ALL MEMBERS
FOLLOWING NOT COPIED+

14 I/O SY"NAD ERROR synadinfo

INPUT DIRECTORY ERROR, CANNOT COPY DATA SET dsname+
14 I/O SYNAD ERROR synadinfo

MEMBER member CANNOT BE COPIED+
14 I/O SYNAD ERROR synadinfo

UNABLE TO COMPLETE UPDATE OF OUTPUT DIRECTORY+
16 INPUT DIRECTORY ENTRY xxxx INCONSISTENCIES FOUND

UTILITY DATA SET
DATA SET dsname CANNOT BE RESOLVED, SYSTEM ERROR+

20 DAIR ERROR CODE xx
2 LOCATE ERROR CODE 1
4 LOCATE ERROR CODE 24

20 DEFAULT ERROR CODE xx

19 SYSTEM FAILED, ALL USERS TERMINATED

19 SYSTEM FAILURE, PLEASE LOGON AGAIN

UNABLE TO DELETE DATA SET dsname+
11 SCRATCH ERROR CODE 4
17 SCRATCH ERROR CODE 6
16 STOW ERROR CODE 16

130 TSO Guide (Release 21)

SYSTEM ERROR+

UTILITY DATA SET
20 DATA SET dsname NOT UNALLOCATED, DYANMIC ALLOCATION ERROR CODE xx
20 DATA SET dsname NOT UNALLOCATED, CATALOG ERROR CODE xx

function NOT AVAILABLE FOR language+
20 PROGRAM NO LONGER USABLE

FILE SYSPROC NOT USABLE+
22 CANNOT OPEN DATA SET
14 I/O SYNAD ERROR synadinfo
16 FIND ERROR

HELP DATA SET NOT USABLE+
22 CANNOT OPEN DATA SET
16 FIND I/O ERROR
14 I/O SYNAD ERROR synadinfo

CONTROL STATEMENT DATA SET NOT USABLE+
14 I/O SYNAD ERROR
22 OPEN ERROR

LIBRARY
20 ERROR IN CONCATENATING, INPUT DATA SETS

HISTORY NOT AVAILABLE+
2 LOCATE ERROR CODE 4
4 LOCATE ERROR CODE 24

21 I/O ERROR DURING OBTAIN, CODE 12
11 DATA SET NOT ON VOLUME

MEMBERS NOT AVAILABLE+
16 DIRECTORY STRUCTURE ERROR
16 I/O SYNAD ERROR DURING DIRECTORY SEARCH synadinfo

BROADCAST DATA SET NOT USABLE+
14 I/O SYNAD ERROR
22 CANNOT OPEN DATA SET

22 BROADCAST DATA SET NOT USABLE, CANNOT OPEN DATA SET

BROADCAST DATA SET NOT ALLOCATED, DATA SET NOT ON VOLUME+
CATALOG INFORMATION INCORRECT

14 BROADCAST DATA SET NOT USABLE, I/O SYNAD ERROR

2
3
4

20
20

5
5
5
6

20
7
8

20
20
20
20
20
20
20

BROADCAST DATA SET NOT
CATALOG ERROR CODE
CATALOG ERROR CODE
CATALOG ERROR CODE
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION
DYNAMIC ALLOCATION

ALLOCATED, SYSTEM ERROR+
4

14
1C
ERROR CODE 004
ERROR CODE 008
ERROR CODE 104
ERROR CODE 108
ERROR CODE· 10C
ERROR CODE 208
ERROR CODE 210
ERROR CODE 214
ERROR CODE 21C
ERROR CODE 268
ERROR CODE 308
ERROR CODE 30C
ERROR CODE 310
ERROR CODE 314
ERROR CODE 318
ERROR CODE 31C

Appendix D: Terminal Messages Requiring Installation Action 131

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

9
10
16
20
20
20
20
20
13

DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE
DYNAMIC ALLOCATION ERROR CODE

MEMBERS
HISTORY AND MEMBERS

320
324
328
338
33C
340
344
350
358
408
40C
410
414
418
420
424
504

4704
4708
470C
4710
4714
4718
4730
4734
4738

HISTORY NOT AVAILABLE+
21 I/O ERROR DURING OBTAIN, CODE 12

UNABLE TO LIST CATALOG+
4 I/O ERROR DURING LOCATE CODE 24
2 LOCATE ERROR CODE 4

DATA SET ATTRIBUTES NOT AVAILABLE+
21 OBTAIN ERROR CODE 12
10 OBTAIN ERROR CODE 8

DIRECTORY INFORMATION NOT AVAILABLE+
16 I/O ERROR DURING BLDL

COMPLETE VOLUME LIST NOT AVAILABLE+
6 JFCB EXTENSION NOT AVAILABLE
2 LOCATE ERROR CODE 4
4 LOCATE ERROR CODE 24

LABEL INFORMATION NOT AVAILABLE+
10 OBTAIN ERROR CODE 8
21 OBTAIN ERROR CODE 12

userid LOGGED OFF TSO AT hh: ON month day, year+
5 I/O ERROR ON JOB QUEUE

20 ALLOCATION UNSUCCESSFUL
21 OBTAIN ERROR
20 SYSTEM ERROR
20 STEPLIB DATA SET COULD NOT BE OPENED
20 JOBLIB DATA SET COULD NOT BE OPENED

6 NOT ENOUGH JOB QUEUE SPACE TO EXECUTE LOGON

20 ATTENTION IGNORED, SYSTEM ERROR, LOGON RESUMED

20 LOGON TERMINATED, SYSTEM ERROR

20 LOGON TERMINATED, routine ERROR xxx

132 TSO Guide (Release 21)

20 LOGON FAILED

20 ABEND WHILE PROCESSING BROADCAST MESSAGES, LOGON PROCEEDING

UNABLE TO RENAME DATA SET dsname+
10 RENAME ERROR CODE 4
10 RENAME ERROR CODE 8

2 CATALOG ERROR CODE 4
3 CATALOG ERROR CODE 16
4 CATALOG ERROR CODE 1C

16 STOW ERROR CODE xx
16 BLDL ERROR CODE xx

10 NOT ENOUGH DIRECT ACCESS SPACE TO CONTAIN ALL RECORDS+
15 SYSTEM ABEND CODE code

UNABLE TO PROTECT DATA SET+
23 I/O ERROR IN PASSWORD DATA SET

UNABLE TO MODIFY PROTECTION FLAGS OF DA'rA SET dsname+
21 I/O ERROR WHILE UPDATING SECURITY FLAGS

DATA SET RENAMED BUT dsname STILL CATALOGED+
2 CATALOG ERROR CODE 4
3 CATALOG ERROR CODE 16
4 CATALOG ERROR CODE 1C

24 NO SPACE IN DiRECTORY FOR ALIAS

UNABLE TO CATALOG, dsname+
2 CATALOG ERROR CODE 4
3 CATALOG ERROR CODE 16
4 CATALOG ERROR CODE 1C

INPUT DATA SET dsname NOT USABLE+
14 I/O SYNAD ERROR synadinfo
15 INPUT OPEN ERROR CODE xxx

OUTPUT DATA SET FOR JOB jobname NOT USABLE+
14 SYNAD ERROR synadinfo
15 OPEN ERROR CODE xxx
10 NOT ENOUGH DIRECT ACCESS SPACE

UNABLE TO QUALIFY dsname+
2 DEFAULT ERROR CODE xx LOCATE CODE 4
4 LOCATE CODE 24

20 DEFAULT ERROR CODE xx

PRINT DATA SET NOT USABLE+
20 PERMANENT I/O ERROR
22 CANNOT OPEN DATA SET

SYMBOL ADDRESS NOT AVAILABLE, SYSTEM ERROR+
14 I/O SYNAD ERROR synadinfo
22 CANNOT OPEN DATA SET, DDNAME ddname

command name ENDED DUE TO AN ERROR
SUBCOMMAND NAME

19 USER ABEND CODE IS code
19 COMPLETION CODE IS code
19 SYSTEM ABEND CODE IS code
19 LINK TO SUBCOMMAND FAILED
19 INSUFFICIENT STORAGE
19 SYSTEM CODE code INSUFFICIENT STORAGE
19 SYSTEM CODE code PERMANENT ERROR DURING BLDL
19 SYSTEM CODE code GETMAIN FAILURE
19 SYSTEM CODE code LINK FAILURE

Appendix 0: Terminal Messages Requiring Installation Action 133

19 SYSTEM CODE code ATTACH FAILURE
19 SYSTEM CODE code

20
20
20
20
20
20
20
20
20
20

subcomm FAILED+
ABEND CODE SYSTEM code
ABEND CODE SYSTEM code IC
INSTR IMAGE = image
LINK TO PARSE FAILED
LOAD FAILED
ATTACH FAILED
OPEN FAILED
LINK TO SYM FAILED
LINK TO DAIR FAILED
LINK TO SCAN FAILED
XCTL FAILED
LINK TO DEFAULT FAILED
GETMAIN ERROR CODE xxx

addr

subcommand FAILED, COMMAND SYSTEM ERROR+
20 PARSE ERROR CODE xx
20 DAIR ERROR CODE xx
20 GETLINE ERROR CODE xx
20 PUTLINE ERROR CODE xx
20 PUTGET ERROR CODE xx

UNABLE TO LOAD PROGRAM+
22 OPEN ERROR
16 BLDL ERROR CODE xx

Key Explanation

1. If the data set was deleted by a utility program that was also supposed to update the catalog,
but the catalog was not updated, do the following before calling IBM for programming
support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain of the catalog and a listing of the
volume table of contents (specifying the FORMAT option) of the associated volume, and
save the resulting output.

• Execute the IEHPROGRM system utility program to uncatalog the data set.

2. If the necessary control volume is mounted and the error persists, do the following before
calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYS1.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a printed copy of the catalog, and
save the resulting output.

134 TSO Guide (Release 21)

4. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYS 1.LINKLIB data set, the SYS 1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a printed copy of the catalog, and
save the resulting output.

5. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF of local fix, and save the resulting output. Execute the program against
the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IMCJQDMP system utility program to obtain a printed copy of the job queue,
and save the resulting output. IMCJQDMP - specify JOBNAME or TOTAL option.

6. If sufficient space exists in the SYSl.SYSJOBQE data set, do the following before calling IBM
for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IMCJQDMP service aid program to obtain a formatted copy of the contents of
the SYS 1.SYSJOBQE data set, and save the resulting output, specifying the total option.

• Execute the IMDSADMP service aid program, specifying the TYPE=HI option, to write the
contents of main storage to a tape volume. After restarting the system, execute the
IDMRDMP service aid program, specifying the GO statement, to print a main storage dump
for the dump ta'pe produced by the IMDSADMP service aid program. (If a tape is not
available, execute the IMDSADMP service aid program, specifying the TYPE=LO option,
to directly print a main storage dump.) Save the resulting dump output.

7. IF the devices of the type indicated in the User Attribute Data Set for use by this user are
actually online, do the following before calling IBM for programming- support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IMDSADMP service aid program, specifying the TYPE=HI option, to write the
contents of main storage to a tape volume. After restarting the system, execute the
IMDPRDMP service aid program, specifying the GO statement, to print a main storage
dump for the dump tape produced by the IMDSADMP service aid program. (If a tape is not
available, execute the IMDSADMP service aid program, specifying the TYPE=LO option,
to directly print a main storage dump.) Save the resulting dump output.

Appendix D: Terminal Messages Requiring Installation Action 135

• Have the person in the installation authorized to use the ACCOUNT command issue the
command with the LIST subcommand to list the attributes of the user having trouble.

8. If the device of the type indicated in the User Attribute Data Set for use by this user were
actually included in the system at system generation time, do the following before calling IBM
for programming support:

.. Retain the console sheet and instruct the terminal user to retain the terminal listing.

'J Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program against
the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

It Have the system generation output available from Stage I and Stage II.

.. Have the person in the installation authorized to use the ACCOUNT command issue the
command with the LIST subcommand to list the attributes of the user having trouble.

9. If no uncataloged data set has the same name as the new data set being created by the user,
do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

It Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

.. Execute the IEHLIST system utility program to obtain a list of the entire catalog and a list
of the volume table of ,contents (specifying the FORMAT option) of all online direct access
volumes, and save the resulting output.

10. If space exists in the volume table of contents of all online volumes, do the following before
calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save .the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYS1.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the volume table of
contents (specifying the FORMAT option) of all online direct access volumes.

11. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the volume table of
contents of the associated volume.

12. If there are no DOS volumes online, do the following before calling IBM for programming
support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

136 TSO Guide (Release 21)

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save. the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a list of the volume table of
contents (specifying the DUMP option) of alll online direct access volumes.

13. If the directory space requested is not larger than the first extent, do the following before
calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF of local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

14. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local· fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain printed copy of the catalog, and
save the resulting output.

15. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Consult the 'System Completion Codes' section of this publication for the associated error
code, and respond as indicated after the statement 'If the problem recurs, do the following
before calling IBM for programming support' in the Programmer Response for that code;
however, do not obtain a storage dump and do not specify MSGLEVEL=(1,l) in the JOB
statement, even if so requested.

16. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program a list of all members
with a PTF or local fix, and save the resulting output. Execute the program against the
SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a printed copy of the directory of
the data set.

17. If the required volume is mounted, do the following before calling IBM for programming
support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

Appendix D: Terminal Messages Requiring Installation Action 137

• Execute the IEHLIST system utility program to obtain a list of the catalog, and save the
resulting output.

• Execute the IMDSADMP service aid program, specifying the TYPE=HI option, to write
the contents of main storage to a tape volume. After restarting the system, execute the
IMDPRDMP service aid program, specifying the GO statement, to print a main storage
dump from the dump tape produced by the IMDSADMP service aid program. (If a tape is
not available, execute the IMDSADMP service aid program, specifying the TYPE=LO
option, to direclty print a main storage dump.) Save the resulting dump output.

18. Do the following before calling IBM for programming support:

• Execute the IMDPRDMP service aid program to print the TSO dump data set and the
SW AP data sets.

19. Do t.he following before calling IBM for programming support:

• Inform the user that if a subcommand was being processed, any further information must
be obtained from the user; that is, the user should:

1) Use the ALLOCATE command to allocate a SYSOUT data set with the FILE name
of SYSUDUMP.

2) Repeat the error situation.

3) Strike the 'return' key after receiving the message 'xxxxxx ENDED DUE TO
ERROR+'

4) Use the FREE command to free the FILE named SYSUDUMP.

5) Retain the terminal listing.

• Retain the SYSOUT listing containing the dump output.

20. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

21. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IEHDASDR system utility program to obtain a list of the volume table of
contents (VTOC) of the associated volume.

22. If the file is already allocated do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

138 TSO Guide (Release 21)

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of aU
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.~VCLIB data set, and the command library.

If the file is not allocated and you are currently logged on, use the ALLOCATE command to
allocate the data set.

23. Do the following before calling IBM for programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal listing.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYS 1.LINKLIB data sets, the SYS 1.SVCLIB data set, and the command
library.

• Execute the IEHDASDR system utility program to obtain a printed copy of the Master
Password Data Set.

24. If sufficient space exists in the directory do the following before calling IBM for
programming support:

• Retain the console sheet and instruct the terminal user to retain the terminal.

• Execute the LISTIDR function of the IBMLIST service aid program to obtain a list of all
members with a PTF or local fix, and save the resulting output. Execute the program
against the SYSl.LINKLIB data set, the SYSl.SVCLIB data set, and the command library.

• Execute the IEHLIST system utility program to obtain a printed copy of the directory of
the data set.

Appendix 0: Terminal Messages Requiring Installation Action 139

Appendix E: Glossary

The following terms are defined as they are used in
this manual. If you do not find the term you are
looking for, refer to the IBM Data Processing
Glossary, GC20-1699.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its
definitions from the American National Standard
Vocabulary for Information Processing, which was
prepared by Subcommittee X3K5 on Terminology
and Glossary of American National Standards
Committee X3.

ANSI definitions are preceded by an asterisk. The
symbol (SCI) at the beginning of a definition
indicates that it has been discussed and agreed
upon at meetings of the International Organization
for Standardization Technical Committee
97/Subcommittee 1, and has also been approved
by ANSI and included in the American National
Standard Vocabulary for Information Processing.

address stop. In systems with the time sharing
option (TSO), a capability to specify at the
system console an address which when fetched
causes a halt in processing.

attention exit routine. In systems with the time
sharing option (TSO),) a routine that receives
control when an attention interruption is
received by the system. It allows the user to stop
the current command or subcommand and issue
a new one.

attention interruption. An interruption of
instruction execution caused by a remote
terminal user hitting the attention key. See also
simulated attention.

attention key. A function key on remote
terminals that causes an interruption of
execution by the central processing unit.

attribute. A characteristic; for example, attributes
of data include record length, record format,
data set name, associated device type and
volume identification, use, and creation date.

140 TSO Guide (Release 21)

background. (1) In multiprogramming, the
environment in which low-priority programs are
executed. (2) In systems with the time sharing
option (TSO), the environment in which jobs
submitted through the SUBMIT command or
SYSIN are executed. One job step at a time is
assigned to a region of main storage, and
remains in main storage to completion. Contrast
with foreground.

background job. (1) A low-priority job, usually a
batched or non-interactive job. (2) In systems
with the time sharing option (TSO), a job
entered through the SUBMIT command or
through SYSIN.

background reader. A system task started by the
operator to process foreground-initiated
background jobs.

BASIC. An algebra-like language used for
problem solving by engineers, scientists and
others who may not be professional
programmers.

batch processing. (1) * Pertaining to the
technique of executing a set of computer
programs such that each is completed before the
next program of the set is started. (2) *
Pertaining to the sequential input of computer
programs or data. (3) * Loosely, the execution
of computer programs serially. (4) In systems
with the time sharing option (TSO), the
processing of one job step in a region, so called
because jobs are submitted in a group or batch.

break. (1) To interrupt the sending end and take
control of the circuit at the receiving end. (2)
See receive interruption.

* breakpoint. A place in a routine specified by an
instruction, instruction digit, or other condition,
where the routine may be interrupted by
external intervention or by a monitor routine.

* central processing unit. (SCt) A unit of a
computer that includes the circuits controlling
the interpretation and execution of instructions.
Synonymous with main frame. Abbreviated
CPU.

Code and Go FORTRAN. A version of
FORTRAN IV for rapid compilation and
execution of programs.

command. (1) * A control signal. (2) * Loosely,
an instruction in machine language. (3) * .
Loosely, a mathematical or logic operator. (4) In
systems with the time sharing option (TSO), a
request from a terminal for the execution of a
particular program, called a command processor.

* command language. A source language consisting
primarily of procedural operators, each capable
of invoking a function to be executed.

command library. In systems with the time
sharing option (TSO), a partitioned data set
consisting of command processor programs. A
user command library can be concatenated to
the system command library.

command mode. In systems with the time sharing
option (TSO), the entry mode immediately
following LOGON, or following completion of a
command processor. In command mode, the
system is ready to accept any command in the
command libraries.

command procedure. In systems with the time
sharing option (TSO), a data set or a member of
a partitioned data set containing TSO commands
to be performed sequentially by the EXEC
command.

command processor. In systems with the time
sharing option (TSO), a problem program
executed as a result of entering a command at
the terminal. Any problem program can be
defined as a command processor by assigning a
command name to the program and including
the program in a command library. Abbreviated
CPo

communication line. Any medium, such as a wire
or a telephone circuit, that connects a remote
terminal with a computer.

component. (1) In teleprocessing, one or more
input/ output devices attached to a single control
unit, and together making up one remote
terminal. (2) A point in a communications
system at which data can enter or leave; an
input/ output device. A component is always
attached to a terminal control unit.

context editing. In systems with the time sharing
option (TSO), a method of editing a line data
set without using line numbers. To refer to a
particular line, all or part of the contents of that
line are specified.

control terminal. In systems with the time sharing
option (TSO), any active terminal at which the
user is authorized to enter commands affecting
TSO operation.

conversational. Pertaining to a program or a
system that carries on a dialog with a remote
terminal user, alternately accepting input and
then responding to the input quickly enough for
the user to maintain his train of thought.

conversational remote job entry. An operating
system facility for entering job control language
statements from a remote terminal, and causing
the scheduling and execution of the jobs
described. The terminal user is prompted for
missing operands or. corrections. Abbreviated
CRJE.

CPo Command processor.

* CPU. Central processing unit.

CPU time. The amount of time devoted by the
central processing unit to the execution of
instructions.

CRJE. Conversational remote job entry.

current line pointer. In systems with the time
sharing option (TSO), a pointer that indicates
the line of a line data set with which the user is
currently working. A terminal user can refer to
the value of the current line pointer by entering
an asterisk with EDIT subcommands.

cursor. A movable spot of light on the cathode
ray tube of a console or display unit that
indicates where the next character will be
entered.

DAIR. Dynamic allocation interface routine.

data base. A collection of data fundamental to an
enterprise.

data set extension. In systems with the time
sharing option (TSO), a control block containing
control information for each of a terminal user's
data sets. Abbreviated DSE.

Appendix E: Glossary 141

DCA. Driver control area.

DCARE. Driver control area region extension.

* debug. To detect, locate, and remove mistakes
from a routine or malfunctions from a computer.
Synonymous with troubleshoot.

decay constant. In systems with the time sharing
option (TSO), a weighting factor used in
calculating the duration of a job's next time slice
based on its use of previous time slices. Recent
time slices are more heavily weighted than
earlier time slices.

dedication. Pertaining to the assignment of a
system resource -- an 110 device, a program, or
a whole system -- to one application or purpose.

default value. The choice among exclusive
alternatives made by the system when no explicit
choice is specified by the user.

delimiter. (1) * A flag that separates and
organizes items of data. Synonymous with
separator. (2) A character that groups or
separates words or values in a line of input.

dial-up terminal. A terminal on a switched line.

driver control area (DCA). A control block
representing the current state of the time-sharing
system, with a section for each time-sharing
region; maintained by the driver.

driver control area region extension (DCARE). A
section of the driver control area representing a
time-sharing region.

driver parameter area. A parameter list
containing information for the time sharing
driver.

DSE. Data set extension.

dynamic aUocation. Assignment of system
resources to a program at the time program is
executed rather than at the time it is loaded into
main storage.

dynamic aUocation interface routine. In systems
with the time sharing option (TSO), a service
routine that performs various data management
functions for command processors. Abbreviated
DAIR.

142 TSO Guide (Release 21)

edit mode. In systems with the time sharing
option (TSO), an entry mode under the EDIT
command that accepts successive subcommands
suitable for modifying an existing line data set.

foreground. (1) In multiprogramming, the
environment in which high-priority programs are
executed. (2) In systems with the time sharing
option (TSO), the environment in which
programs are swapped in and out of main
storage to allow CPU time to be shared among
terminal users. All command processor programs
execute in the foreground. Contrast with
background.

foreground-initiated background job. In systems
with the time sharing option (TSO), a job
submitted from a remote terminal for scheduling
and execution in the background.

foreground initiation. Under the Disk and Tape
Operating Systems (DOS and TOS), the
execution of system routines that process
operator commands to start a foreground
program.

function key. A terminal key, such as the
attention key, that causes the transmission of a
signal not associated with a printable character.
Detection of the signal usually causes the system
to perform some predefined function for the
user.

GETLINE. In systems with the time sharing
option (TSO), a service routine used by
command processors to obtain input.

input mode. In systems with the time sharing
option (TSO), an entry mode that accepts
succesive lines of input under the EDIT
command for a line data set. The lines are not
checked for the presence of subcommands.

input stack. In systems with the time sharing
option (TSO), a push-down list of sources of
input for GETLINE. Possible sources are the
terminal or an in-storage list.

interaction. In systems with the time sharing
option (TSO), a basic unit used to record system
activity, consisting of acceptance of a line of
terminal input, processing of the line, and a
response, if any. An interaction is recorded
when a user task starts its wait for a line of
terminal input.

interaction time. In systems with the time sharing
option (TSO), the time between requests for
successive lines of terminal input.

ITF: BASIC. A simple, algebra-like language
designed for ease of use at a terminal.

ITF: PL/1. A conversational subset of PL/I
designed for ease of use at the terminal.

job. (1) * A specified group of tasks prescribed
as a unit of work for a computer. By extension,
a job usually includes all necessary computer
programs, linkages, files, and instructions to the
operating system. (2) In System/360 operating
systems, a collection of related problem
programs, identified in the input stream by a
JOB statement followed by one or more EXEC
and DD statements. (3) In systems with the time
sharing option (TSO), the processing done on
behalf of one user from LOGON to LOGOFF;
one terminal session.

keyword. (1) One of the significant and
informative words in a title or document which
describe the content of that document. (2) A
symbol that identifies a parameter. (3) A part of
a command operand that consists of a specific
character string (such as DSNAME=).

line data set. In systems with the time sharing
option (TSO), a data set with logical records
that are printable lines.

line deletion character. In systems with the time
sharing option (TSO), a terminal character that
specifies that all characters are to be deleted
from a line of terminal input.

line number. In systems with the time sharing
option (TSO), a number associated with a line in
a line data set, which can be used to refer to the
line.

line number editing. In systems with the· time
sharing option (TSO), a mode of operation
under the EDIT command in which lines to be
modified are referred to by line number.

linkage editor. A processing program that
prepares the output of language translators for
execution. It combines separately produced
object or load modules; resolves symbolic cross
references among them; replaces, deletes, and
adds control sections, and generates overlay
structures on request; and produces executable
code (a load module) that is ready to be fetched
into main storage.

link library. A partitioned data set that is used in
fetching load modules referred to in execute
(EXEC) statements and in ATTACH, LINK,
LOAD, and transfer control (XCTL) macro
instructions.

link pack area. Under the MVT configuration of
the control program, an area of main storage
containing reenterable routines from system
libraries. Their presence in main storage saves
loading time when one is needed. Abbreviated
LPA.

link pack area extension. In systems with the
time sharing option (TSO), an extension of the
link pack area containing system routines used
only when TSO is operating. It is loaded when
TSO is started by the operator.

loader. (1) A processing program that combines
the basic editing and loading functions of linkage
editor and progam fetch in one job step. It
accepts object modules and load modules
created by the linkage editor and generates
executable code directly in main storage. The
loader does not produce load modules for
program libraries.

local system queue area. In'systems with the time
sharing option (TSO), a portion of the
foreground (swapped) region used for control
blocks that are to be swapped out along with a
terminal job. Abbreviated LSQA.

LPA. Link pack area.

LSQA. Local system queue area.

main storage. (1) * The general purpose storage
of a computer. Usually, main storage can be
accessed directly by the operating registers. (2)
All program addressable storage from which
instructions may be executed and from which
data can be loaded directly into registers.

main storage region. Under the MVT
configuration of the control program, a
subdivision of the dynamic area that is allocated
to a job step or a system task.

major time slice. In systems with the time sharing
option (TSO), the period of time for which a
terminal job is swapped into main storage.
Contrast with minor time slice.

master scheduler. A control program routine that
responds to operator commands and initiates the
requested actions.

MCP. Message control program.

Appendix E: Glossary 143

message. (1) * An arbitrary amount of
information whose beginning and end are
defined or implied. (2) In telecommunications, a
combination of characters and symbols
transmitted from one point to another on a
network.

message control program. A program that is used
to control the sending or reception of messages
to or from remote terminals.

message handler. In systems with the
telecommunications access method (TCAM), a
sequence of user-specified macro instructions
that examine and process control information in
message headers, and perform functions
necessary to prepare message segments for
forwarding to their destinations. One message
handler is required for each line group having
unique message handling requirements.

message switching. A telecommunications
application in which a message received by a
central system from one terminal is sent to one
or more other terminals.

minor time slice. In systems with the time sharing
option (TSO), the time during a major time slice
in which the tasks associated with a user have
the highest priority for execution. Contrast with
major time slice.

multiprogramming with a variable number of tasks.
The IBM System/3 60 Operating System control
program that supervises the execution of a
variable number of tasks in main storage, and
allocates system resources among them.
Abbreviated MVT.

MVT. Multiprogramming with a variable number of
tasks.

network. (1) In teleprocessing, a number of
communication lines connecting a computer with
remote terminals. (2) The interconnection of
electrical components.

non-switched line. A connection between a
remote terminal and a computer that does not
have to be established by dialing.

nucleus. That portion of a control program that
always remains in main storage.

* offline. Pertaining to equipment or devices not
under control of the central processing unit.

* online. (1) Pertaining to equipment or devices
under control of the central processing unit. (2)
Pertaining to a user's ability to interact with a
computer.

t 44 TSO Guide (Release 2 t)

operand. (1) * That which is operated upon. An
operand is usually identified by an address part
of an instruction. (2) Information entered with a
command name to define the data on which a
command processor operates and to control the
execution of the command processor.

parse. In systems with time sharing option
(TSO), to analyze the operands entered with a
command and build up a parameter list for the
command processor from the information.

password. In systems with the time sharing
option (TSO), a one- to eight-character symbol
that he may be required to supply at the time he
logs on the system. The password is confidential,
as opposed to the user identification. Users can
also assign passwords to data sets.

priority. A rank assigned to a task that
determines its precedence in receiving system
resources. See also dispatching priority, job
priority, time sharing priority.

problem program. Any program that is executed
when the central processing unit is in the
problem state; that is, any program that does
not contain privileged instructions. This includes
IBM -distributed programs, such as language
translators and service programs, as well as
programs written by a user.

processor. (1) * In hardware, a data processor.
(2) * In software, a computer program that
includes the compiling, assembling, translating,
and related functions for a specific programming
language. COBOL processor , FORTRAN
processor. (3) * Same as processing program.

prompting. In systems with the time sharing
option (TSO), a function that helps a terminal
user by requesting him to supply operands
necessary to continue processing.

ReT. Region control task.

read-only. A type of access to data that allows it
to be read but not modified.

real time. (1) * Pertaining to the actual time
during which a physical process transpires. (2) *
Pertaining to the performance of a computation
during the actual time that the related physical
process transpires in order that results of the
computation can be used in guiding the physical
process. (3) Pertaining to an application in
which response to input is fast enough to affect
subsequent input, such as a process control
system or a computer assisted instruction system.

receive interruption. The interruption of a
transmission to a terminal by a higher priority
transmission from the terminal. Synonymous
with break.

region. See main storage region, overlay region.

region control task. In systems with the time
sharing option (TSO), the control program
routine that handles quiesce/restore and
LOGON/LOGOFF. There is one region control
task for each active foreground region.
Abbreviated RCT.

remote job entry. Submission of JCL statements
and data from a remote terminal, causing the
jobs described to be scheduled and executed as
though encountered in the input stream.

remote terminal. An input/output control unit
and one or more input/output devices attached
to a system through a telecommunications
control unit.

response time. (1) The time between the
submission of a item of work to a computing
system and the return of results. (2) In systems
with the time sharing option (TSO), the time
between the end of a block of user input and
the display of the first character of system
response at the terminal.

reverse break. Same as transmit interruption.

self-defining delimiter. Any character appearing in
the first position of certain character strings in
the TSO command language. A repetition of the
character within the string is interpreted as a
delimiter.

separator. (1) In systems with the time sharing
option (TSO), a delimiter used to separate
mUltiple fields in an input line to the system. (2)
* Same as delimiter.

session. The period of time during which a user
engages in a dialog with a conversational time
sharing system; the elapsed time from when a
terminal user logs on the system until he logs off
the system.

simulated attention. In systems with the time
sharing option (TSO), a function that allows
terminals without attention keys to interrupt
processing. The terminal is queried periodically
for a specified character string. See also attention
interruption.

SMF. System management facilities.

ST AE (specify task asynchronous exit). A macro
instruction that specifies a routine to receive
control in the event of the issuing task's
abnormal termination.

STAI (subtask ABEND intercept). A keyword of
the ATTACH macro instruction that specifies a
routine to receive control after the abnormal
termination of a subtask.

swap. In systems with the time sharing option
(TSO), to write an image of a foreground job's
main storage region to auxiliary storage, and to
read another job's main storage image into the
region.

swap allocation unit. In systems with the time
sharing option (TSO), an arbitrary unit of
auxiliary storage space into which a swap data
set is divided, and by which it is allocated.

swap data set. In systems with the time sharing
option (TSO), a data set dedicated to the
swapping operation.

swap data set control block. In systems with the
time sharing option (TSO), a control block
describing a swap data set, containing a DCB, a
space queue, and device dependent control
information.

swap in. In systems with the time sharing option
(TSO), the process of reading an image of a
terminal job's main storage region from a swap
data set into the appropriate main storage
regions.

swap out. In systems with the time sharing
option (TSO), the process of writing an image
of a terminal job's main storage region from
main storage to a swap data set.

switched line. A communication line in which the
connection between the computer and a remote
station is established by dialing. Synonymous
with dial line.

syntax checker. A program that tests source
statements in a programming language for
violations of the syntax of that language.

system management facilities. An optional control
program feature of the IBM System/3.60
Operating System that provides the means for
gathering and recording information that can be
used to evaluate system usage. Abbreviated
SMF.

Appendix E: Glossary 145

system queue area. A main storage area reserved
for control blocks and tables maintained by the
IBM System/360 Operating System control
program. Abbreviated SQA.

system resource. Any facility of the computing
system that may be allocated to a task.

TeAM. Telecommunications access method.

telecommunications access method. A method
used to transfer data between main storage and
remote or local terminals. Application programs
use either GET and PUT or READ and WRITE
macro instructions to request the transfer of
data, which is performed by a message control
program. The message control program
synchronizes the transfer, thus eliminating delays
for terminal input I output operations.
Abbreviated TCAM.

telecommunications control unit. Same as
transmission control unit.

teleprocessing. The processing of data that is
received from or sent to remote locations by
way of telecommunication lines.

terminal. (1) * A point in a system or
communication network at which data can either
enter or leave. (2) Any device capable of
sending and receiving information over a
communication channel. See also remote terminal.

terminal 110 wait. The condition of a task that
cannot continue processing until a message is
received from a terminal; that is, until a TGET
is issued.

terminal job. In systems with the time sharing
option (TSO), a foreground job, a session from
LOGON to LOGOFF.

terminal job identification. In systems with the
time sharing option (TSO), a two-byte
identification assigned to each terminal job.
Abbreviated TJID.

terminal monitor program. In systems with the
time sharing option (TSO), a program that
accepts and interprets commands from the
terminal, and causes the appropriate command
processors to be scheduled and executed.
Abbreviated TMP.

terminal user. In systems with the time sharing
option (TSO), anyone with an entry in the user
attribute data set; anyone who is eligible to log
on.

146 TSO Guide (Release 21)

TGET. In systems with the time sharing option
(TSO), an 110 macro instruction issued by a
problem program to obtain a line of input from
the terminal.

time sharing. (1) * Pertaining to the interleaved
use of the time of a device. (2) A method of
using a computing system that allows a number
of users to execute programs concurrently and to
interact with the programs during execution.

time sharing control task. In systems with the
time sharing option (TSO), a system task that
handles system initialization, allocation of
time-shared regions. swapping, and general
control of the time-sharing operation.
Abbreviated TSC.

time sharing driver. In systems with the time
sharing option (TSO), an addition to the
dispatcher that determines which task is to
execute next.

time sharing interface area. In systems with the
time sharing option (TSO), a control block used
for communication between the driver and the
time sharing interface program:

time sharing interface program. In systems with
the time sharing option (TSO), a program that
handles all communication between the MVT
configuration of the control program and the
time sharing driver.

time sharing option. An option of the IBM
System/360 Operating System that provides
conversational time sharing from remote
terminals. Abbreviated TSO.

time sharing priority. In systems with the time
sharing option (TSO), a ranking within the
group of tasks associated with a single user, used
to determine their precedence in receiving
system resources.

time slice. (1) A uniform interval of time on the
central processing unit allocated for use in
performing a task. Once the interval has expired,
CPU time is allocated to another task; thus a
task cannot monopolize CPU time beyond a
fixed limit. (2) In systems with the time sharing
option (TSO), a segment of time allocated to a
terminal job. See also major time slice, minor time
slice.

TJID. Terminal job identification.

TMP. Terminal monitor program.

transmission code. A code for sending
information over communications lines.

transmission control unit. An input/output
control unit that addresses messages to. and
receives messages from a number of remote
terminals. Synonymous with telecommunications
control unit. Abbreviated TeU.

transmission interruption. The interruption of a
transmission from a terminal by a higher priority
transmission to the terminal. Synonymous with
reverse break. .

trivial response. In systems with the time sharing
option (TSO), a response from the system to a
request for processing that should require only
one time slice; for example, a syntax check of
one FORTRAN statement.

TSC. Time sharing control task.

TS dispatcher. In systems with the time sharing
option (TSO), a section of the time sharing
interface program executed as part of the
operating system dispatcher. It initiates work
requested by the driver.

TSO. Time sharing option.

TSO command language. The set of commands,
subcommands, and operands recognized under
the time sharing option (TSO).

tuning. In systems with the time sharing option
(TSO); the process of adjusting system control
variables, such as the percentage of time spent
on background execution and the number of
foreground users, to make the system divide its
resources most efficiently for the workload.

VADS. User attribute data set.

user. Anyone who requires the services of a
computing system. See also terminal user.

user attribute data set. In systems with the time
sharing option (TSO), a partitioned data set with
a member for each authorized user of TSO.
Each member contains the appropriate
passwords, user identifications, account numbers,
LOGON procedure names, and user
characteristics that define the user profile.
Abbreviated UADS.

VSERID. User identification.

user identification. In' systems with the time
sharing option (TSO), a one-to eight-character
symbol identifying each system user.
Abbreviated USERID.

user main storage map. In systems with the time
sharing option (TSO) ,. a map of the allocated
storage in a user's region, built by the region
control task, and used to determine how much
of the region needs to be swapped.

user profile table. A table of user attributes kept
for each active user, built from information in
the LOGON command, the UADS, and the
logon procedure.

verification ,mode. In systems with the time
sharing option (TSO), a mode of operation
under the EDIT command in which all
sub commands are acknowledged and any textual
changes are displayed as they are made.

Appendix E: Glossary 147

Bibliography

Readers interested in the implementation of the
system should be familiar with the information in:

IBM System/360 Operating System:

Introduction, GC28-6534

MVT Guide, GC28-6720.

Job Control Language Reference, GC28-6704

System Generation, GC28-6554.

Storage Estimates, GC28-6551.

TCAM Programming Guide and Reference Manual,
GC30··2024

The following publications provide information
specific to the Time Sharing Option:

IBM System/360 Operating System: Time Sharing
Option Guide to Writing a Terminal Monitor
Program or a Command Processor, GC28-6764
discusses those portions of TSO which
communicate directly with the terminal user and
can be replaced or modified by an installation.

Three publications provide information for terminal
users:

IBM System/360 Operating System: Time Sharing
Option Command Language Reference, GC28-6732
describes the syntax and facilities of the TSO
Command Language.

l(BM System/360 Operating System: Time Sharing
Option Termi.nal User's Guide, GC28-6763
provides general information about TSO for
TSO terminal users.

l(BM System/360 Operating System; Time Sharing
o.ption Terminals, GC28-6762 describes how to
lIse the terminals supported by TSO.

148 TSO Guide (Release 21)

For information about the internal logic of the
Time Sharing Option refer to:

IBM System/360 Operating System: Time Sharing
Option

Control Program, Program Logic Manual,
GY27-7199.

Terminal Monitor Program and Service Routines,
Program Logic Manual, GY28-6770.

For information about the internal logic of a
specific command or subcommand, see the
appropriate Command Processor Program Logic
Manual.

For more detail on specific components or subjects
discussed in this publication, the following
publications may be of interest.

For system operation and management:

IBM System/360 Operating System:

Operator's Reference, GC28-6691.

System Management Facilities, GC28-6712.

For I/O devices and control units:

IBM 2701 Data Adapter Unit, Component
Description, GA22-6864.

IBM Component Description, 2702 Transmission
Control, GA22-6846.

IBM 2703 Transmission Control, Component
Description, GA27-2703.

IBM 2741 Commu·nications Terminal, GA24-3415.

IBM 1050 System Summary, GA24-3471.

IBM Component Description, 2260 Display Station
-- 2848 Display Control, GA27 -2700.

Indexes to systems reference library manuals are
consolidated in the publication IBM System/360
Operating System: Systems Reference Library M~ster
Index, Order No. GC28-6644. For additional
information about any subject listed pelow, refer to
other publications listed for the same subject in the
Master Index.

Where more than one page reference is given, the
major reference is first.

*
as current line pointer
in data set names

Access methods
available in foreground 16.65-66
restrictions on 16
used with TCAM 66

ACCOUNT command
Broadcast data set. effect on 89
UNIT operand 102
usage 24
used in defining a UADS 89
used in defining TSO unit classes 102

Account number
definition 24
with LOGON 24
use in UADS structure 24

ACTIVITY operand of driver parameters 98
AD DR

operand of L1NEGRP macro instruction 77
synta1< 80.

Address stop
glossary 140

ALLOCATE command
compiler data sets 45
function 29

ANS COBOL compiler
define terminal as file 38
description 36-39
example 39
in terminal environment 39,23
NOPRINT option 37
TERM option 37

Apostrophes
for data set names 27

Arrays
in ITF: BASIC 49

Assembler(F) 44
Asterisk

as current line pointer 28
in data set names 27

Attention
(see also simulated attention interruption, attention
interruption)
glossary 140

Attention exit routine
description 26,62
glossary 140

Attention interruption
glossary 140

Attention key
for line-delete 25
glossary 140
handling 62
simulating 26

Attributes
glossary 140
of the data sets 26-27

Authorizations
for users 22,32

Auxiliary Storage Requirements 117-118
Available execution time

in minor time slice 72
Average queue service time 71
Average region activity' 72
AVGSERVICE operand of driver parameters 98

Background
definition 10
glossary 140

Background execution percentage
specifying 74,98

Background jobs
glossary 140
naming 33
submission for terminal 21.32

Background programs
deyeloping from terminal 21

Index

BACKGROUND operand of driver parameters 97
Background reader

glossary 140
installation exits to SUBMIT command 108
reader parame<ters 89
required data sets 89
sample cataloged procedure 89
specifying program 89

Backspace key
for character-delete 25

BASIC
example 50
glossary 140
use 22,49

Basic Telecommunications Access Method
restriction 16

Batch processing
and time sharing 9
description 9
glossary 140

BRDR (see Background Reader)
Break

glossary 140
Breakpoints

definition 31
establishing 62
glossary 140

BTAM
restriction 16

Buffer Control Parameters
operands 97
use 95

BUFFERS
operand of buffer control parameters 97

BUFSIZE
operand of buffer control parameters 97

CALC command 51
CALL command

function 31
to invoke compilers 45

CANCEL command 32
installa~ion exit (see OUTPUT command installation

exit)
CANCEL operator command

from terminal 32
use of 32

Index 149

Catalog
of data sets 29

Cataloged procedures (see Writing Cataloged Procedures
for TSO)

Central Processing Unit
glossary 140

Character-delete character
definition 25
specifying 26

Checker (see as PL/I Checkout Compiler)
Check point/Restart

restriction 16
CIB (see Command Input Block)
CLIST data set 63
CLOCK

operand of TSO trace data set processor 108
COBOL

see" ANS COBOL"
COBOL command 37
CODE

operand of LINEGRP macro instruction 77
syntax 79

Code and Go FORTRAN
example 54
glossary 141
use 52

CODES
operand of TSO trace data set processor 108

Commands
adding 22
format 24
glossary 141
listed 119-121
to define work 12

Command analysis 63
Command capabilities 20-22
Command Input Block 84
Command Language

glossary 141
Command library

glossary 141
use by Terminal Monitor Program 62

Command mode 26
glossary 141

Command name
definition 24
use 24

Command procedure
CLIST data set 63
examples 46,47
for compilers 47
function 33
glossary 141
handling 63
nested 47
when used 33,62

Command processor
cancelling 26
completion 62
definition 12
design 64
glossary 141
invocation 62
programming languages for 35

Communication line
glossary 141

Compatibility
background-foreground 16,22
with CRJE 16,22

Compone:nt
glossary 141

Compute-bound jobs 73
Concurrent processing 15
Conditional statements

example 47
in command procedures 33

Context editing 28
glossary 141

Control routines 57

150 TSO Guide (Release 21)

Control terminal
definition
glossary 141
use

Conversational
glossary 141

Conversational Remote Job Entry
glossary 141
TSO compatible with

CONVERT command
for FORTRAN
for PL/I

Copy command 29
CPU see Central processing unit
CRJE

see "Conversational Remote Job Entry"
CROSSREF

as operator entered parameter 84
Current line pointer

glossary 141
Cursor

glossary 141
CUTOFF

operand of TSOMH macro instruction 76
CYCLES

operand of driver parameters 98

DAIR see Dynamic Allocation Interface Routine
Data Base .

glossary 141
Data Definition statement

dynamic
in LOGON procedure

Data set extension
glossary 141

Data entry 27
Data set management commands 29
Data sets

allocation 17
creating 17
deleting 29
line 27
naming 27
renaming 29
retrieving 27
shared 27

Data set naming conventions 26
Data set protection

commands for 20
Data set security 20
Data utilities 29
DD statements

dynamic 17
in LOGON procedure 91

ddname
for Bro'adcast data set 88
for LOGON cataloged procedures 88
for swap data sets 88
for TSO dump 87
for UADS 87

Debugging
glossary 142
see also "testing programs"

Decay constants
glossary 142
region activity 72
wait time 72

DECAY ACT
operand of driver parameters 97

DECAYWAIT
operand of driver parameters 97

Dedication
glossary 142

Default values
glossary 142
in command procedures 33
in commands 24

Defining a UADS using the TSC procedure

Defining terminals as data sets
for MCP 77

Delimiter
glossary 142

Descriptive qualifier 26
Diagnostics

ANS COBOL compiler 37
Assembler 44
FORTRAN IV (Gt) compiler 42
FO R TRAN syntax checker 45
ITF: BASIC
tTF: PL/I
PL/I Optimizing Compiler 43

DIAL '
operand of LINEGRP macro instruction 77
syntax 79

Dispatcher 68
DISPLAY operator command

from terminal 32
Driver (see Time Sharing Driver)
Driver Control Area

glossary 142
Driver Control Region Extension

glossary 142
Driver entry codes

(see also TSO Trace Writer)
defined 124-128
syntax 124
used in measuring system performance 106

Driver Parameters
operands 98-99
use 93-94

DSPCH
operand of TSC parameters 97

DTRACE
as operand of TSOMCP macro instruction 82
as operator entered parameter 84

dump
TSO dump

ddname for 88
specifying in TSC start parameters 88

Dynamic allocation
commands for 29
DD statements 17
function 17
glossary 142
handling 63

Dynamic Allocation Interface Routine
glossary 142

Dynamic Area
main storage requirements 117

EDIT command
entry modes 28
for Assembler 44
for COBOL 36
for FORTRAN 41
for PL/I 44
function 27-28

Editing
by context 28
by line number 28

Edit mode
glossary 142

Entry modes
definition 26
for CALC 51
for EDIT 28
operator 26

Estimated Wait Time Percentage 73
Even dispatching 73
EXEC command 46,33
EXEC statement

used to specify background reader 89
used to specify message control program 86
used to specify terminal monitor program 91
used to specify time sharing control task 87
used to specify TSO trace writer 90

Foreground
glossary 142

Foreground initiated background job capability 32,21
glossary 142

Foreground region
assignment to 70
definition 10
main storage requirement 117
subpools in 117

Format control records
for TEXT data sets 17

Formatting text 17
Format Command 17
FORT command
FORTRAN

choice 22
list I/O 53

FORTRAN (E)
FORTRAN (Gl)

example 42
options 41
program entry 41
testing 42

FORTRAN (G) compiler 42
FORTRAN (H) 42
FREE command 27
Free-form source statements

in Code and Go FORTRAN 53
Function key

glossary 142

GAM
restriction on 16

Getline service routine
glossary 142

Graphics Access Method
restriction 16

Halt command (See Starting and Stopping TSO)
HELP command 34
HELP information 34,9
Hierarchy support

restriction on 16

IBMUSER 88
Identification qualifier 26
Identification scheme 24

examples 24
for LOGON 24

IESQTCAM (see MCP Start Procedure)
IEFPDSI 88
IKJACCNT 89
Implicit EXEC command

definition 46
example 47

Initiator
called by LOGON 60

INLOCKHI
operand of buffer control parameters 96

INLOCKLO
operand of buffer control parameters 96

Input editing
for terminals 25

Input mode
glossary 142

InpJJt stack
glossary 142

Installation exits
for CANCEL command 110
for OUTPUT command 110
for STATUS 'command 110
for SUBMIT command 108

Interaction time
definition 71
glossary 142
limit 71

Index 151

Interactive programs
in COBOL 38
in Code and Go FORTRAN 52
in ITF: BASIC 49
in ITF: PL/I 51
in PL/I 43

Interactive Terminal Facility
see "ITF:"

INTVL
operand of LINEGRP macro instruction 77
syntax 79

I/O-bound jobs
ITF:

BASIC 49
glossary 143
PL/I 45
glossary 143

Job glossary 143
Job Control Language

in LOGON procedure 60,91
Job definition

terminal jobs 17
Job scheduling

terminals jobs 17,60

Keyword
glossary 143

Language processors
ANS COBOL 22
Assembler 22
Code and Go FORTRAN
for program development 22
FORTRAN (GI) 22
invoked by CALL command
ITF: BASIC 22
ITF: PL/I 22
PL/I (F) 22
PL/I Optimizing Compiler 22

Line, communication
multi-drop 80,81
non-switched 11
switched 11

Line data set
glossary 143

Line-delete
character specifying 34

Line-delete character
definition 25
glossary 143
specifying 34

Line group
definition 77

Line numbering
for COBOL programs 36
for data sets 25
glossary 143

LINEGRP
macro instruction operands of 78
macro instruction used tailoring an MCP 77-81

LINENO
operand of LINEGRP macro instruction 77
syntax 78

LINK command
Link library

glossary 143
Link Pack Area 116

glossary 143
main storage requirement

Linkage editor
glossary 143

LINKLIB size
LIST command 29
List I/O

for Code and Go FORTRAN 52
LISTCA T command 17

152 TSO Guide (Release 21)

LISTDS command 17
LISST A macro instruction

operands of 81
used in tailoring an MCP 76

LNUNITS
as operator entered parameter 83

Loaderglossary 143
LOAD GO command

example 39
function 30

Local System Queue Area 143
LOGOFF command

to end terminal session 34
LOGON/LOGOFF Scheduler
LOGON cataloged procedure

defining data sets 91
naming a terminal monitor program 91
parameters on EXEC statement 91
restriction on rollout 91
sample 92
specifying dynamic allocation 99

LOGON command
entry format 24
example 24
for identification 25,56

LOGON pre-prompt
exit 111
exit sample 114

LOGON procedure
identifying 24
invoked by LOGON 60
job definition 60,56

LOGON procedure name
definition 11
in LOGON command 24

Long precision
in ITF: BASIC 49

LPA
operand of TSC parameters 97

Machine requirements 13
MACLIB size 18
Main Storage Hierarchy

restriction 16
glossary 143

Major time slice
calculation of 70
definition 70

MAP
operand of TSC parameters 97

Master Scheduler Region
main storage requirement 113

Matrices
in ITF: BASIC 49

MAXSWAP
operand of driver parameters 98

MAX OCCUPANCY
operand of driver parameters 98

MCP
CSECT name 86,82
region priority 86
start procedure 87

Message Control Program
defining for time sharing 75
for time sharing 75
glossary 144
main storage requirement 116
priority 86
tailoring 75

Messages
to users 34

Minimum configuration 13
Minimum major time slice

specifying 94
Minor time slice

calculation of 94
definition 73~ 74
glossary 144

MINSLICE
operand of driver parameters 98,94

Modification protection
for data sets 20

Modifying data sets 28
MODIFY operator command

from terminal 22
Modularity

of control program 55
MONITOR operator command

from terminal 22
Multidrop line 13,80-81
MUltiple region queues 71
Multiprogramming

description 10
glossary 143

Multistep jobs
restriction in foreground 16

Naming conventions
example 27
for data sets 26

Nested command procedures 47
Non-switched line

definition 11
glossary 144
use with terminal 11

NOTIFY = keyword
on JOB statement 32

Nucleus
glossary 144
main storage requirement 115

Null line
after attention 26

OCCUPANCY
operand of driver parameters 99

OLTEST
as operand of TSOMCP macro instruction 82
as operator entered parameter 83

On-line test procedure (see OL TEST)
Operand substitution

for command procedures 46
OPERATOR command 32
Options (see also Starting TSO)

as operand of TSOMCP macro instruction 82
use in starting M CP 82

OS PL/I Checkout Compiler
as Program Product 23
description of 42
prompter in 43
supported by TSO 43

Output
from background jobs 32

OUTPUT command 32
OUTPUT command installation exit

command codes 110
parameter format 110
return codes 110

Overview of system 67
OWAITHI

operand of buffer control parameters 97
OWAITLO

operand of buffer control parameters 97

Parallel swapping
definition 15
specifying 88

Passwords
definition 11
for data sets 20
glossary 144
with LOGON command 11,24

PL/I
choice of processors 23
for problem-solving 57
for programming 43

PL/I Checker (see OS PL/I Checkout Compiler)
PL/I (F) 22,43
PL/I Optimizing Compiler

options 43
program entry 44
program execution 44

Preemptive scheduling
definition 94

PREEMPT
operand of driver parameters 99

PRIORITY
operand of driver parameters 99

Problem-solving
Code and Go FORTRAN 52
comparison of languages 22
ITF: BASIC 49
ITF: PL/I 51

PROC statement
in command procedures 33

Procedure name
for LOGON 24

PROFILE command 34
Program development

assembler language 44
COBOL 36
commands for 22
FORTRAN 41
introduction 21
PL/I 43
testing 21

Program execution
commands for 17

Program Products
listed 122

Program protection 20
Prompter routine

definition 35
Prompting ,

for input lines 28
for operands 24
glossary 144
user replies to 24

PROTECT command 20
Protection

of data sets 20
of programs 26

Publications, recommended 148
PURGE SVC 59
PUTGET service routine 63
PUTLINE service routine 63

Question mark
reply to prompt 34

Queue service time
definition 70

Quiescing
control of 59
definition 59

Read protection
for data sets 20

Reader/Interpreter
called by LOGON 60

Record Overflow Feature
required for swapping 14'

Recovery management 56
Region control task

glossary 145
Region operand of EXEC statement

used to specify MCP region size 86
REGSIZE

operand of TSC parameters 97
Remote job entry

commands for 32
glossary 145

Index 153

Remote terminals
as COBOL files 38
definition 11
glossary 145

RENAME command 29
Required configuration 13
RESERVBUF

operand of buffer control parameters 97
Restrictions

background SVC use 16
BTAM 16
Checkpoint! restart 16
GAM 16
Hierarchy support 16
Multistep jobs 16
Rollout/rollin 16
TESTRAN 16

Rollout/Rollin
restriction in foreground 16

RUN command

Sample cataloged procedure
for logon 92
for starting an MCP 87
for starting background reader 90
for starting TSC 88
for starting TSO trace writer 90

Sample Mep cataloged procedures 87
Sample TSC cataloged procedure 88
Sample TSO system parameters 101
SCAN service routine 63
SEND command 34
Sequence field

in COBOL statements 36
Serial swapping

definition 15
specifying 88

SERVICE
operand of driver parameters 100

Service routines
Dynamic Allocation Interface 63
GETLINE 63
PARSE 63
PUTGET 63
PUTLINE 63
SCAN 63
STACK 63

Sharyd Language Component
see "ITF:"

Short precision
in ITF: BASIC 49

Simple dispatching 72
Simulated attention function

definition 26
glossary 145
handling 26

Size of SUBMIT job queue (see also SUBMIT operand of
driver parameters)

SLACK
operand of buffer control parameters 97

SLC
see "ITF:"

SMF
function 18
glossary] 45
operand of TSC parameters 97

Specifying a Time Sharing Driver 97
Specifying contents of TSO Link Pack Area 97
Specify Terminal Attention Exit (STAX)

background restriction on 17
Specify Terminal Control Character (STCC)

background restriction on 17
ST ACK service routine 63
ST AE macro instruction

glossary 145
ST AI keyword

glossary 145

154 TSO Guide (Release 21)

Starting and Stopping TSO
as operator entered parameter 88
halting the MCP 89
starting the MCP 88
starting the TSC 89
stopping the TSC 89

ST ATUS command
installation exits for 110
use of 32

ST AX macro instruction
background restriction on 16
use 63

STCC
background restriction on 16

STOP operator command
handling 58

Storage map 58
Subcommands

format of 24
in edit mode 26

SUBMIT
operand of TSC parameters 97

SUBMIT command
installation exit 108

buffer format 109
module name 108
parameter format 109
return codes 109

use of 32
SUBQUEUES

operand of driver parameters 100
SVC 93 (TGET/TPUT)

restriction on 16
SVC 54 (STCC)

restriction on 16
SVC 96 (STAX)

restriction on 16
use 63

SVCLIB size 118
Swap Data Set

ddname
specifying parallel swapping 88
specifying serial swapping 88

definition 14
devices 14
glossary ,145
size 117

Swap devices
allocation unit sizes 118
definition 145

Swap in 145
Swap out 145
Swap load

calculation of 71
SWAPLOAD

operand of driver parameters 100
Swapping

and major time slice 71
and quiesce/ restore 59
controlling 58
definition 10
parallel 15
separate channels for 15
serial 15

Switched line
definition 11
glossary 145
use with terminal 11

Symbolic operands
in command procedures 46-47,33

Syntax checking
for problem solving languages 22
FORTRAN 41
glossary 145
in input mode 28
PL/I 43

SYSP ARM (see also TSO System Parameters)
used in TSC start procedure 87

SYSUADS (see defimng a UADS)
SYSLBC 88

SYSSWAP 88
System

catalog 29
configuration 13
security 20

System implementation 75
System Management Facilities

function 18
glossary 145
specifying 18,97

System Queue Area
glossary 145
main storage requirement 116

SYSTSOP
SYSl.PROCLIB

used in starting TSO tasks 60

Tab settings
for COBOL programs 36

Tailoring a message control program
job steps involved 75
sample MCP specification 85
sample job stream 77

Task Control Blocks
on ready queue 68

TCAM
see "Telecommunications Access Method"

Telecommunications Access Method
function 65
glossary 146
main storage requirement 116
terminals supported 13
user interface 65

Teletypes
use with TSO 13

TERM
operand of LINEGRP macro instruction 77
syntax 79

TERMAX
operand of TSC parameters 97

TERMINAL command
Terminal conventions

discussion of 24
entry modes 26
input editing 25

Terminal I/O
service routines 63
TCAM function 65
user interface for 63

Terminal job
definition 17
glossary 146
LOGON procedure for 91

Terminal Messages Requiring Installing Action 128
Terminal Monitor Program

description 61
glossary 146

Terminal' session
started by LOGON 24

Terminals, remote
definition 9
description 11
execution of batch jobs from 32
glossary 146

TEST command'
function 62
to invoke a program 62,44

Testing programs
is assembler language 44
in FORTRAN 42
in ITF: BASIC 49
in ITF: PL/I 51
in PL/I 44

Test mode
definition 45
for assembler language 45
for FORTRAN 42
for ITF: BASIC 49
for ITF: PL/I 51

TEST processor 62
TESTRAN

restriction on 16
Text processing 29
TGET/TPUT

background restriction 16
glossary 146
use of Message Control Program 65

TIME command
handled by Terminal Monitor Program 61

Time sharing
control task cataloged procedure 87
definition 146
different than batch 9
starting and stopping 88-89

Time sharing algorithms
and tuning 17
definition 17
in Driver 17,70-73

Time Sharing Control Task
description 57
glossary 146

Time Sharing Control Region
main storage requirement 116
obtaining 57

Time Sharing Driver (see also Driver)
description 56
glossary 146
parameters for 98-100

Time Sharing Interface Program
description 56
glossary 146

Time Sharing Link Pack Area
main storage requirement 116

Time Sharing: Option
see "TSO'l',

Time slices
and tuning 93
calculation of 69-74
definition 17
glossary 146
major 70
minor 72

TIOC (see Buffer Control Parameters) 96
T1I0

operands of TSO trace data set processor 108
Transmission Control Units

attached to multiplexor 14
glossary 146
types 14

TRANTAB
operand of LINEGRP macro instruction 77
syntax 79

TRACE
as operand of TSOMCP macro instruction 82
as operator entered parameter 84

Trace Data Set Processor
listing if FE diagnostic 90
sample job stream 90

TSC parameters
operands 97
use 92

TSO
general description 9
glossary 146

TSO link pack area
LP A operand of TSC parameters 97
relation to operating system 67
specifying contents 97

TSO system parameters
buffer control parameters 95
driver parameters 93
format 96
TSC parameters 92-100

TSO Trace Writer (see also Trace Data Set Processor)
sample job stream 106
driver entry codes 124-127
output record format 107
operands on EXEC statement 107

Index 155

TSOMCP macro instruction
used in tailoring an M CP 75
syntax 76
operands of 76

Tuning
and the Driver
definition
glossary 147

Tuning the time sharing driver 102
Turnaround

definition 10
time for 10

UNIT operand of ACCOUNT subcommands 102
UNITNO

operand of LlNEGRP macro instruction 77
syntax 78

UNITSIZE
as operand of TSOMCP macro instruction 82
default values 82
syntax 82

Usage statistics
description 18

USAS COBOL
see "ANS COBOL"

User Attribute Data Set
authorizations in 20
definition 20
glossary 147
modifying
size 118
use by LOGON 60
use by Terminal Monitor Program 61

User. identification
definition 11
glossary 147
in LOGON command 11,24

User identification qualifier 26
User Main Storage Map

glossary 147
use 58

User profile
defining 24
glossary 147
modifying 24
use by Terminal Monitor Program 62

User verification
by LOGON 24

USERCHG
operand of buffer control parameters 97

156 TSO Guide (Release 21)

WAIT
operand of driver parameters 100

Wait time decay constant 73
Weighted dispatching 94
WHEN statement

example 46-47
in command procedures 33

Writing cataloged procedures for TSO
LOGON
start procedure for BRDR 89
start procedure for MCP 88
start procedure for TSC 88
start procedure for TSO trace 90

XREF
as operand of TSOMCP macro instruction 83
as operator entered parameter (see CROSSREF) 83

1050 Data Communication System
recommended feature 14
use with TSO 13

2260 Display Station 13
2265 Display Station 13
2301 Drum Storage

as swap device 14
2303 Drum Storage

as swap device 14
2305 Fixed Head Storage

as swap device 14
2314 Direct Access Storage Facility

as swap device 14
required features 14

2701 Data Adapter Unit 14
2702 Transmission Control

recommended features 14
use with TSO 14

2703 Transmission Control
recommended features 14

2741 Communication Terminal
recommended features 13

3330 Disk Storage Facility
as swap device 14

IBM System/360 Operating System:
Time Sharing Option Guide

GC28-6698-5

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests. please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? ___ _
Number of latest Technical News]etter (if ,any) concerning this pUblication: ____________ _
Please indicate in the space below if you wish a reply.

Thank. you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments.

READER'S
COMMENT
FORM

GC 28-6698-5

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

I
Fold Fold

- - - ----- - - - ---- - -----~

[
Business Reply Mail
No postage stamp necessary if mailed in the U.S,A.

--------'

Postage will be paid by:

.
International Business Machines Corporation
Department D58, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

I
I
I

Poughkeepsie I
New York

First Class
Permit 81

I
I
r
I
I
I
I
I
I

-----------------------~
Fold

ltIDlliI
$

International Business Mac:hlnes Corporation
Data Processing Division
1133 Westchester Avenue, White Plaln~, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

f~

~ o
o
VI
VI o
G> c

t

1-1 IhHttaetta Machines CorptlraUon
h. , arieien
USI W.atcll..rtu AveRu., White P1aln., Hsw York 10804
(U.S.A. -Ir)

II M __ • T CDI')tftl"ltttan

at Uattei Mtttn. Plaz., Mew Yerk, Haw York 10017
(ltttMtl.tteael]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	replyA
	replyB
	xBack

