
====:.=. -= - ------ - --- --- ----- ---- - - ----- ===-;:' - - -- ----..... - ----,,- Application Program

CALL/360 - OS

PL/I System Manual - Volume IV

Program Number 3S0A-CX-45X

The CALL/360-OS PL/I compiler (to be used with
the CALL/36o-0S system on an IBM System/360
Model 50 or higher) is described in the four
volumes of this publication. The publication
is addressed to system programmers and customer
engineers who require a detailed knowledge
of the compiler. It ,contains a general overview
of the compiler and detailed information on
the compiler and runtime routines and macros
that perform required functions. Additional
information required to understand CALL/360-
OS PL/I compiler operations is provided in
several appendices. The appendices appear
in this volume. They cover the following
subjects:

compiler conventions and data layout

Compiler tables and lists

Compiler support macros

Runtime support macros

Object code storage layout

Support services for language processors

CALL/36o-OS P.L/I compiler maintenance

Diagnostic messages

MaxiDIUIII size of source program

Reference listings

Form No. GY20-0570-l

Terminal Equivalence

Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to the IBM-supplied products or programs may have on such
terminals.

Second Edition (January 1971)

This edition, GY20-0570-1, is a major revision obsoleting GY20-0570-1.
It applies to version 1, Modification Level 1, of CALL/360-0S and to
all subsequent versions and modifications until otherwise indicated
in new editions or Technical Newsletters.

Technical changes to text are indicated by vertical lines in the left
margin. A revised illustration is indicated by the symbol • to the
left of the caption. Page numbers in reference lists in-Appendix J
have been changed to reflect accurately the pages in the manual where
the routines are discussed. Figure J-4. a module-module cross
reference, has been added to this appendix.

Changes are continually made to the information herein. Therefore,
before using this publication, consult the latest System/360 SRL
Newsletter (GN20-0360) for the editions that are applicable and current.

Copies of this and other IBM publications can be obtained through IBM
branch offices. A form has been provided at the back of this
publication for readers' comments. If the form has been removed,
address comments to: IBM corporation, Technical Publications
Department, 112 East Post Road. White Plains, New York 10601.

~ Copyright International Business Machines corporation 1970, 1971

CONTENTS

Appendix A - compiler Conventions and Data
Naming and Usage •

Registers.
Subroutines.
Register Save-Areas.
Compiler-Wide variables.
Compiler Tables and Lists.

Symbolic Organization.
Runtime Routine Structure.
compiler variables •

C-Area •
P-Area •
G-Area •

Appendix B Compiler Tables and Lists
General.

Dictionary Attribute List (A List)
Block Information Table (B Table).
Constant Table (C Table)
Line Number Table (D Table).
Dictionary Hash Table (B Table).
Initialization Table (I Table)
Dope Vector List (J List).
Library Load Table (L Table)
Symbolic Instruction Table (M Table)
Dictionary Name List (N List).
Operation Code Table (0 Table)
Program Structure Table (P Table).
Subscript Substitution Table (Q Table)
Register Table (R Table)
Temporary Storage Table (5 Table).
Token Table (T Table).
Expression Stack (V Table)
operator Stack (X Table)
Operand Stack (Y Table).
Triad Table (Z Table).
Dope Vector Table.
ENDFILE Table.
Entry Name Declaration List.
On-Unit Parameter List •
Routine Entry Name Processed Table •

Appendix C - Compiler Support Macros
Table Handling Macros.

Expandable Tables.
Lists.
Delete Entry Macro (DNODE)
Free Area Macro (FAREA).
Current Entry Locator Macro
Pointer to First Node Macro
Get Next Entry Macro (GNEXT)
Get Node Macro (GNODE)

(GCURR).
(GFRST).

Get Previous Entry Macro (GPREV)
Insert Entry Macro (INODE)
Establish Pointer ~acro (MNODE).

Other Macros •
Subroutine Call Macro (CALL)
SVC Interface Macro (CSVC)
DED Macro (OED).
Expression Processor Call Macro (EXPG)
Forward Internal Branch Macro (FIB).
Error Interface Macro (GENER).
Get Token Macro (GETKN).
Generate Triad Macro (GTRD).

Layout. 1
1
1
2
2
2
2
3
3
5
5
6
6

17
11
18
29
31
33
34
35
38
39
40
42
45
41
51
52
51
58
61
62
64
66
10
11
12
13
14

15
15
15
71
19
80
81
82
83
84
85
86
81
88
88
89
90
91
92
93
94
95

Symbo1ic Instruction Tab1e Macro (INST) ••••• 4

Adcon Generation Macro (RCON) •••••••••••
Reso1ve Forward Interna1 Branch Triad Macro (RFIB)
Skip Token Macro (SKPTK) • • • • • • •
Symbo1 Definition Macro (SYMDEF) •••• O'- ••
Ta11y Macro (TALLY) ••••••••••••••
Entokening and GENER Interface Macro (TGENER)O'

Appendix D' - Runtime support Macros. • • • .. •
General. __ ., • .. __ .. -- • • • • • .- •

Naminq Conventions- • • • "' • • •
Storage Requirement.s and Library Address Constants
Data Representation. • • • •

The Library WOrk Space • "' • • • •
Re1ocatab:1e WOrk Area (LWSP) • •
NoD,-Re1ocatab1e WOrk Area fLWS}O' • • • • • .• •
Registers and Offsets. • • • •• • • •

Library Support Macros • .. •
Ca11 Error Macro (CALLERR)
CALL/360-0S Macro (CALRTS)
Check FeB Macro (CKFCB). • • • • • • •
Address Constants Macro CIHEADC) • •• • • •

o • •• 9'6
91
98

• '. • • 99
• 100
• 161
o 102

• 103
• 163
• 1GIt
o lOll
o If}6
.. 101
• 101
• 109

.•••.•• 110
• • • • • • 111
• ~ _ • 112

• 113
• 11ft

o • 0 • 0 115
Branch Macro (IHEBRA). • • 0 0 • • • • • 0 • • • • • 116
BAA Extern Macro CIHEBXT). •
Ca11 Macro (IHECAL) ••• 0 •

Doub1e Cover Macro (IBEDCV) ••
Difference Macro (IHEDIF) ••
ERRCD Macro (IBEERRCD) • • • •
Initialize File contro1 Block Macro (IHEFCB)
Save FCB Pointers Macro (IHEFCIB).
Link Routine Macro (IHEFROM)
External Macro (IHEEXT)o ••
Header Macro (IHEHDR)o _ •••
I/O Interface Macro (IBEIOD) • 0 •••••••

Standard Offsets Macro (IHELBE) •••••••• 0 0

Library Macro (IHELIB) • • • 0 • • •

Library Work Space Macro CIHELWS).
MOPP Macro (IHEMOPP) • • • •
Name Macro (IBENAME) • • • •
Open Test Macro CIHEOPENT) ••• 0 0 • 0 0

Patch Macro CIBEPCH) 0

Return Macro (IBERET) ••
Restore Macro (IDERST) • •
Save Macro (IBESAV1. •
Sinq1e Cover Macro c:IBESCV) 0

SDR Macro (IBESDRI • ..
Symbol Macro C IBESDJ).
Trailer Macro f:IBETU)
Z-ap llfacro UBEZAP) •
Library Def.iuition Macro fld:Bm!lFJ.
Read Bi:sJt: Jlfacro fRDOOISK) •••••
Read Ta:m MacrO' (READ'fERM) • • • .. • •••
uni~orm Int.erface for SVC Macro (R'l'SSVC) • •
Set Disk Macro (SE''l'&:ISltJ' _ •
Set. Error Code Macro fS£'f'ERJ1C:CD). _
Set. File Controls Macro (SE'1TLCAJ.
Set. Dope Vect.or Macrc (SETSDV) 0

Appendix E - Ob-ject. Code Storatje Layout. ~.
Object Code. __ __- e- .. __ __ - ... _"

Symbol Table .. '. • • • • • • • • • _ .. ._
Object Code Address-Line Number Table. 0 •• 0 • 0

Stat.ic and Const.ants Storage • • •
Data Element Descript.or (DED) •••

The' P Byte • • • • • • • • • • • • • .: _ •
The Q Byte • • • • • • • • • .. • _ • • 0 • • 0 •

Format E1ement Descriptor (FED).
Dope Vectors • • • • • • • • 0 • •

• ••• 0 111
o •• 118

• 119
o 0 0 • 0 120

• • _ • 0 121
• • • 0 • 122

o 0 0 • • 123
o 12q
• 125
o 126
o 127
o 128
• 129
o 130

131
o 132
o 133

• • • • 1314-
o 135
• 136

131
• 13-8

• • • • • • __ .- 1.3-9
• 11l()

1 Ill.
• 111-2

1153
• • • o· • 1tt5'

Itl6
• Ilt7

Ilt8
.... 0 •• 11l-9-

• 150
• 151

• • 152
152

• • 152
.. 153
• 1514-
o 155

• •••• 0 155
• 156
o 156
• 156

string Dope Vector (SDV)
Array Dope Vector (ADV).
string Array Dope Vector (SADV).

Address Constant Area.
Multi-File Interface •

communications Area.
Static and Constants Area.

FCIB Offsets and FCIB·s for SYSIN and SYSPRINT •
FCIB·s for Disk Files.

Adcon Area (Fixed-Length Portion).
Common Data Specification Portion of FCB •

Block Adcon Area •
On-unit Adcon Area •
Library.
Static Array and String Storage.
Dynamic Storage Areas and ON-Conditions.
Examples •
Data Addressing.

Appendix F - Support Services for Language Processors.
compiler/Executive Interactions.

Storage Allocation •
Initial Register settings.
User Work Area •
User Terminal Table.
Addressing •
I/O Processing •

Terminal I/O •
Disk I/O •

Interrupt Handling •
Swap-Inhibited Situations.
End of Compilation •

Detailed Format Descriptions •
Communications Area.

•

UTT Data Available to Language Processor •
Data File Table.
output Buffer Format •
Format of Date Information •

Supervisor Call (SVC) Instruction.

Appendix G - CALL/360-0S PL/I compiler Maintenance •
Module Storage •
Update and Assembly.
Link Edit.
CALL/360-0S PL/I Member Names.

Compilation Member Names •
Runtime Member Names •

Appendix H - Diagnostic Messages •
Compilation Error Messages •
Execution Error Messages •

•

Appendix I - Maximum Size of Source Program.
Storage Required at Input of Program •
Storage Required to compile Program.
Storage Required to Execute Program.
Examples.

Example 1.
Example 2.
Example 3.

Appendix J - Reference Listings.
CALL/360-0S PL/I compiler Subroutines.
CALL/360-0S PL/I Runtime Library •
Macro-Macro Cross Reference.
Module-Macro Cross Reference •
Module-Module Cross Reference

156
157
159
159

• 162
162
162
162
163
164
165

• 161
168
110
110
110
113
116

118
119
179
119

• 180
• 181

181
181
181
182

• 183
183
184
184
184
186 . 181

• 189
• 190

190

194
194
194
195
196
196

• 196

198
198
202

206
206
206
206
201
201
208
208

209
209
215
221
228
2311

Fiqure B-1.
Figure B-2.
Figure B-3.
Figure B-4.

Figure B-5.
Figure B-6.

Figure B-7.
Figure B-8.
Figure B-9.
Figure B-I0.
Figure B-ll.

Figure D-l.
Figure D-2.
Figure D-3.

Figure E-l.
Figure E-2.
Figure E-3.
Figure E-4.
Figure E-5.
Figure E-6.
Figure E-7.
Figure E-8.
Figure E-9.
Figure E-I0.
Figure E-ll.
Figure E-12.
Figure E-13.
Figure E-14.

Figure E-15.

Figure E-16.

Figure E-17.

Figure E-18.

Figure E-19.

Figure E-20.
Figure E-21.

Figure E-22.
Figure E-23.

Figure E-24.
Figure E-25.
Figure E-26.

Figure F-l.
Figure F-2.

Figure J-l.
Figure J-2.
Figure J-3.
Figure J-4.

Dictionary Attribute Entry--First 13 Bytes. • • • 18
Dictionary Attribute Entry for Nonlabel Variable. 20
Dictionary Attribute Entry for Label Variable • 21
Dictionary Attribute Entry for Statement-Label
constant. . . . • 22
Dictionary Attribute Entry for Entry Name • • • • 23
Dictionary Attribute Entry for Built-In FUnction
Entry Name. • • • • • • • • • • • • • • • • • • 23
Dictionary Attribute Entry for Filename • • • • • 26
Dictionary Attribute Entry for a constant • • • 28
Operand Values for Symbolic Instruction Table • 41
Format of Register Table. • • • • • • • • • •• 53
Format of Token Table • • • • • • • • • • 58

CALL/360-0S PL/I Address constants Area •
CALL/360-0S PL/I Data Representation. • • • •
LIBDEF Calls. • • • • • ' ••

• 105
• 107

144

Symbol Table Entry. • • • • • • • 153
Object Code Address-Line Number Entry • • • 153
Static and Constants Area • • • • • • • 154
DED Formats • • • • • • • '. • • • • • 155
Definition of DED Flag Field (K8DDFF) • 155
SDV Format. • • • • • • 157
ADV Format. • • • • • • • • • • • • • • • 158
SADV Format • • • • • • • • • • • • • 159
Layout of Fixed-Length Portion of Adcon Area. • • 160
Communications Area • • • • _ _ • • • 162
FCIB Offsets and FCIB's for SYSIN and SYSPRINT •••• 163
FCIB Format for Disk Files. • • • • • • • • • • • 163
FCB Format in Fixed Adcon Area. • • • • •• • 164
Common Data Specification Portion of FCB for Data
Input and Non-Array Element Data Output • • • • • • • 165
Common Data Specification Portion of FCB for Array
Element Data Output • • • • • • .;.".. • • • • •• • • • 165
Common Data Specification Porti6n of FCB for
Initialize output with SKIP Option. • • • • • • • • • 166
Common Data Specification Portion of FCB for List
I/O • • • • • • • . • • . • • 166
Common Data Specification Portion of FCB for Non
Complex Edit I/O. • • • • • • • • • • • • • • • • • • 166
Common Data Specification Portion of FCB for
Complex Edit I/O. • • • • • • • • • • • • • • • • 167
Format of Block Adcon Area (BAA). • • • • • 168
Format of On-Unit Adcon Area (Except for ON
ENDFILE). • • • • • • • • • • • • • • • • • • • 169
Format of ON ENDFILE Adcon Area • • • • • • 170
Layout of DSA for Internal Procedure and Begin
Blocks. . • • '. . . • . 172
Layout of DSA for On-Units (Except ON ENDFILE) •••• 173
Layout of DSA for ON ENDFILE On-Units •••• 173
General Purpose Register Assignment. • •• 176

Format of CALL/360-0S Source Lines. •
Referencing Data File Tables. • •

Macro-Macro Cross Reference • • • ••
Compilation Module-Macro Cross Reference.
Runtime Module-Macro Cross Reference. • • • •
Compilation Module-Module Cross Reference _ •

•• 180
• 188

• • • • 227
• 229
• 231
• 235

APPENDIX A - COMPILER CONVENTIONS AND DATA LAYOUT

NAMING AND USAGE

The CALL/360-0S PL/I compiler is coded in OS/360 Level-F Assembler
Language. To help clarify the relocation properties of the coding
with respect to the special requirements of the CALL/360-0S operating
environment, and to help make the organization of the compiler more
apparent for maintenance purposes, certain symbolic naming conventions
and usages have been observed throughout the coding as described below.

REGISTERS

The CALL/360-0S environment requires programs operating within it to
be organized such that one group of registers can be relocated by the
base address of the compiler and another group by the base address
of the user's area, while a third group remains non-relocatable.

The nomenclature Gn has been used to indicate the non-relocatable
(general) registers; Pn, the registers addressing the user's (program)
area; and Cn, the registers addressing the compiler. General register
zero is exempt from relocation by the system, and so remains a G
register, even though its physical assignment places it in the P
register group. The registers thus available to the compiler are:

GO, G2, G3, G4, G5, G6, and G7 (machine registers 0 and 2 - 7)
Cl, C2, and C3 (registers 8 - 10)
PO, Pl, P2, P3, P4, and P5 (registers 11 - 1, excluding 0)

In addition to distinguishing the registers by relocation property,
certain compiler-wide register assignments are maintained.

Cl is used for subroutine linkages, both as entry point and return
register.

C3 is used by most subroutines as the principal code cover register.
A few large routines use C2 as a second cover register.

P2 permanently addresses the first 4096 bytes of the compiler's static
working storage. This is the area containing all register save-areas,
compiler-wide flags, switches, counters, etc., and adcons for all
subroutines. PO addresses the second 4096 bytes of this area.

Pl permanently addresses the base within the user's area at which
object code will be generated. Since the contents of the compiler's
working tables must be non-relocatable, wherever a true address would
normally be used as a pointer, a non-relocatable displacement relative
to the base contained in register Pl is used instead.

Registers PO, Pl, and P2 are never used for any other purpose by any
subroutine. Across subroutine calls, the called routine is responsible
for savinG all G- and c-registers except GO, and all P-registers except
P5. The floating-point registers are assigned mnemonics of Fl, F2,
F3, and F4; they are non-relocatable and, in view of the rarity of
their use, are considered volatile across subroutine calls.

1

SUBROUTINES

Subroutine entry points are named $xxxxx, where xxxxx is a mnemonically
suggestive symbol. The adcon which addresses the entry point is named
Qxxxxx. Each subroutine has been assigned a two-letter prefix for
use in creating local labels. Thus, the END Generator, for example,
uses a prefix of ED, the Instruction Assembler, VN, and so on. Labels
on instructions within the subroutine are constructed according to
the format ppnnn, where pp is the routine's two-letter prefix, and
nnn is a sequence number assigned as closely as possible in ascending
order throughout the routine.

Local working storage (used only by the routine in question) is
identified with symbols of the form ppxxxx, where pp again is the
routine's two-letter prefix, and xxxx is a mnemonic.

Note: The CALL/360-0S PL/I compile-time subroutine entry point names
follow the naming conventions stated above and applied in this
manual. However, there are some exceptions in the member names
assigned to certain routines when stored in CALL/360-0S PL/I
system libraries. For the reader's convenience, the exceptions
are noted in Figure J-4, which is a cross reference of
compilation module calls to other compilation modules.

REGISTER SAVE-AREAS

Each subroutine must have three register save-areas. Each class of
registers must be saved in storage which has the matching relocation
attribute. Register save-areas are named:

W$Cxx
W$Pxx
W$Gxx

where the C, P, and G indicate the relocation class, and xx is the
two-letter prefix used by the subroutine which saves the registers.

COMPILER-WIDE VARIABLES

Communication between subroutines sometimes involves the use of flags,
switches, counters, and other discrete variables which are independent
of the main data tables used by the compiler. These variables are
located in the compiler's fixed-size working storage area. This area
is permanently addressed by registers PO and P2 and is subdivided by
relocation property into three parts: a C-area, a P-area, and a G-area~
corresponding to the relocation properties of the general registers.
Within these three areas, symbolic names are used mnemonically, with
first characters of $ for ordinary variables and a for adcons.
(Register save-area names begin with W$: see above.) Except for the
register save-areas, each compiler-wide variable is individually
described under ·Compiler Variables.·

COMPILER TABLES AND LISTS

The principal data used during compilation are kept in tables and
lists. (See Appendix B.) To facilitate the naming of all pertinent
fields in these tables, the following symbolic conventions are used.

Most tables and lists are assigned single-letter prefixes, p.

2

Each field within such a table or list is named p$xxxx where xxxx is
from one to seven characters mnemonically suggestive of the field's
use.

Absolute values associated with a table or field are named paxxxx.

Logical masks used to extract data from a field are p#xxxx.

Thus, for example, the dictionary attribute list has a prefix of A~
the data definition information field in this list is named A$DEFi
the mask used to extract type information is named A#DEFS: and the.
value code used to identify a contextual declaration is named AaCTXT.

SYMBOLIC ORGANIZATION

The subroutines which comprise the compiler are individually assembled.
They are link-edited together to form two phases. The first phase
contains all routines necessary to support compilation and code
generation. The second phase contains the compiler routines necessary
to complete the initialization and initiation of the object code,
together with a control copy of all object-program library support
routines. The object-time library routines needed by a given
compilation are effectively wloadedw by the second phase of the
compiler. Communication of table structure and working storage layouts
for the compiler is achieved through use of the Symbol Definition macro
(SYMDEF), which is one of a set of assembler-language macros written
especially to support the CALL/360-0S PL/I compiler (see Appendix C).

RUNTIME ROUTINE STRUCTURE

Because of the nature of the Runtime Library Loader routine ($8RTLL),
all CALL/360-0S PL/I library runtime routines are structured according
to certain conventions. The basic layout of a routine is illustrated
below.

3

1 2 3 ,Byte
,---------------------------------,

Word 1 I LENG'l'H I EXT 1 ENT 1
1---------------------------------1 C(LENG'l'H) bytes
t of machine-language
1 code
I

· I
1---------------------------------I External Reference
I or Jump Table
I
I Length is C(EXT) I
I halfwords. I

· I I
1---------------------------------1
• Entry Point Table I
t t
I Length is C(ENT) I
t fullllOrds. I

· . t--------------------------___ .J

Values for Fields:

LENGTH

EXT

EN'!'

External
Reference or
Jump Table

Entry Point
Table

Size of the module, excluding the first word and
the two trailing tables.

Number of halfword entries in the external reference
(jump) table.

Number of fullword entries in the entry point table.

one entry is made to this table for each unique
external reference in the library runtime routine.
The entry contains the library load number of the
referenced routine. If more than one entry point of
a routine is referenced, a unique entry is made for
each entry point. (See "Library Search ($NLSIB)"
in Volume I for more information about library
load numbers.)

Each word of the entry point table has the following
format:

1 2 3 4 Byte
r-----------------------------------,

Word 1 I NUMB I DISP I

NUMB

DISP

L-----------------------------------J
Library load number for the entry point.

Displacement of that entry point from the
beginning of the object code for this library
runtime routine.

Values for these fields are usually generated by means of the Header
macro (IBEHDR) and Trailer macro (IHETLR). The external reference
and entry point tables are referenced when a library runtime routine
is loaded, but they are not actually loaded with the routine.

COMPILER VARIABLES

All compiler-wide variables other than r~gister save-areas are described
in this subsection. These variables are located in the C-area, P-area,
and G-area of the compiler's fixed-size working storage.

C-AREA

Variables in the C-area are relocated using the base address of the
compiler. They are as follows:

M$

0$

$XSAVE

$ BASE

Address of the symbolic instruction table (in module
$'l'CODE) •

Address of the operation code table (in module $TCODE).

Save-area for registers Cl and C2, used as required
by the compiler support macros and the expandable-table
support subroutines ($WBACK, $WSTEP, $WC'l'CT, $WEXP).

Address of first byte of current phase of compiler.

P-AREA

variables in the P-area are relocated using the base address of the
user"s (program) area. They are as follows:

$COMAD

$PSCRT

$SCNX

$TSA

W$PNS2

G-AREA

Contains address of communications area.

Pair of scratch words, used mainly by entokening phase
in forming offset within user area.

Scan-index, contains address of next character in source
program following last semicolon entokened.

Address of first word boundary within source program.
Used as starting address of dope vector list for
compilation wrap-up.

Used by $NCONS as save-area for register P5.

variables in the G-area are not relocatable. They are as follows:

$ACODE

$ASC

$ASCA

$AADCN

$DISPL

$CSS

$NIDSI

6

Pointer to next available byte in object code area.
High byte contains object code base identification (aACODE).

Offset to next available byte in static and constants
area. High byte contains static and constants base
identification (aASC). Initialized to allow beginning
of static and constants area to be free for use as DSA
of external procedure.

Offset to next available byte in static array and string
storage. High byte contains the base code for this area (aASCA).

Offset to next available byte in adcon storage. High
byte contains the base code for this area (aAADCN).
Initialized past preallocated part of adcon storage.

Contains displacement from variable tables address
(register Pi) to fixed tables address (register P2).
Used in creating p01nters to items in fixed tables area.

Compound Statement switch - indicates whether a unit
of a compound statement needs to be completed
immediately. This switch is checked just before
generating triads for each statement. SWitch has four settings:

aCSSOF
aCSSON
aCSSTN
aCSSES

No units to complete.
Must complete an on-unit.
Must complete a THEN-unit.
Must complete an ELSE-unit.

Identifier Search Indicator - used by Locate Variable
routine ($FVAR) to determine type of identifier desired.
Settings:

= 0
= 4
= 8
= 12
= 255

variable
Filename
Label constant or variable
Entry name
Return from $FVAR if file created.

$CHRFG

$CLBLS

$EOS

$CCF

$TAREA

$LLINE

$CLPTR

$ABTBL

Building Character String Switch - used by Increment
Scan Index routine ($ASIDX) to determine whether source
line being crossed is in middle of a character string.
settings:

= 0 Not in middle of string.
~ 0 In middle of string.

Label Switch - indicates whether a statement label needs
to be processed. settings:

= 0 No label on statement
= 1 statement label
= 2 Begin label
= 3 Entry label
= 4 Format label

End of Source switch - used by entokening phase to
determine whether all of the source program has
previously been used. Settings:

= 0 Not all used.
~ 0 All used.

Compilation Completed Flag - used by Increment Scan
Index routine ($ASIDX) to determine whether to generate
new line tokens when crossing line boundaries. Settings:

= 0 Compilation not completed; build
tokens.

~ 0 Compilation completed; do not build
tokens.

Translate Area - used by entokening phase to contain
translate and test tables.

Last Line - used by Controller ($CNT) and entokening
routines. contains new line token for last source line
for which a line number table entry was made.

Label Pointer - if $CLBLS ~ O. $CLPTR contains pOinter
to statement label token.

Attribute Table - used in declaration processing to
indicate attributes which the Attribute Node Creation
routine ($ANCRE) should use in creating an attribute
entry.

Each attribute table consists of an attribute bit string
and pointers for the various attributes. If an attribute
was specified without its list. a corresponding bit
is set in the attribute bit string. but the pOinter
for the attribute is zero.

The format of the attribute table is shown below.

1

$APARM

$APRMA

$BIOTY

$CBKNO

$CBKCT

8

1 2 3 4

r-------------------------------,
I I

Word 1 I Attribute Bit String I
I I
1-------------------------------1 , ,

2 t Pointer to Environment List I
I I
1-------------------------------1
I I

3 I Pointer to Returns List t
t J
f-------------------------------t
J I

II I Pointer to String Length List t
t I
1-------------------------------1

Byte

t •
5 I Pointer to Entry List ,

t I
1-------------------------------1
f I

6. (Pointer to Precision List t
r I
1-------------------------------1
I I

7 I Pointer to Dimension List t
I (
l-------------------------------J

Xdentifier a Parameter - used in declaration processing
to indicate whether Attribute Node Creation routine
($ANCREJ should allocat:e storage for identifier (see
also $APRMA). Settings:

= 0 Not paramet:er: allocate storage.
~ 0 Parameter: do not allocate storage.

Parameter Address - used in declaration processing to
contain the address of a parameter being declared (see
also $APARM).

X/O Type - used in X/O processing to indicate the type
of X/O beinq compiled. settings:

output Edit = AI
List = 8
Data = 12

Xnput Edit = 16
List = 20
Data = not set

Current Block Number - contains the identification
number of the block currently being compiled. The
identification number for the external procedure block
is 32 (X-20·), and other blocks are numbered ascendingly
as encountered.

Current Block Count - contains the count of the number
of blocks encountered in the source program plus 31.
Used to assiCjD identification numbers to new blocks.

$DCNME

$DSKIP

$DFILE

$DDATA

$OOBY

$DOLBS

$DORHS

$DOTO

$ EXPCT

$DOSWT

$FEDC

$ FED

$FEDNM

$FCB.

$FORAD

Declaration Name - during declaration processing,
contains a pointer to name entry for the identifier
being declared.

Skip Pointer - during I/O processing, contains pOinter
to the SKIP token, if present~ otherwise zero.

File Pointer - during I/O processing, contains pointer
to the FILE token, if present~ otherwise zero (location
is $DSKIP+4).

Data List Pointer - during I/O processing, contains
pointer to the LIST, D~A, or EDIT token, if present~
otherwise zero (location is $DFILE+4).

DO BY Clause - during loop processing, contains the
type (second byte), precision (third byte), and scale
(fourth byte) of BY clause expression. Second word
contains result of expression processor evaluation of
BY clause (unless constant provided, in which case a
constant token is present).

00 Left Hand Side - during loop processing, contains,
in same format as $OOBY, indication of iteration variable
for loop.

DO Right Hand Side - during loop processing, contains,
in same format as $DOBY, indication of initial setting
for loop interation variable.

DO TO Clause - during loop processing, contains, in
same format as $DOBY, indication of TO value for loop.

Expansion Count - during array expression expansions,
contains the number of DO-loops generated for the
expansion.

00 SWitch - indicates which of the TO and BY clauses
are present for the loop. Setting:

Bit 0: =
=

Bit 1: =
=

0
1
0
1

No TO clause ($DOTO not set.)
TO clause ($OOTO set.)
No BY clause ($OOBY not set.)
BY clause ($DOBY set.)

FED a Constant - indicates if a format element descriptor
(FED) being considered is all constant. Setting:

= 0 All constant.
~ 0 Not all constant.

FED - during Format Item routine ($PORI), contains
skeletal FED. Upon exit from $FORI, contains address
of FED •.

FED Number contains number of expressions in FED
currently being processed.

FCB - during GET and PUT processing, contains pointer
to attribute entry for the file.

Format Address during format processing, contains
the address of a pair of words in the adcon area used
by the format.

$PTR

$APARAM

$DIO

$DDC

$000

$DSP

$DBS

$ERROR

$FCBAD

aFBKNO

$GABK

$GABU

$HECVD

L$LIBX

$LIBBC

$LTEND

aLOAD

$MFCB

$MLWS

MTIO

$PARAM

GlPSIZE

$PSIZE

$TDUMP

$LNTA

$CAA

$AAA

10

Pointer to Token Table - used to communicate a token
table pointer between routines.

Previous parameter identification.

Not used.

Rot used.

Rot used.

Rot used.

Not used.

Parameter list for Error Message Editor ($XERR): first
word contains a pointer to error token, next three words
are optional pointers to token or N list entries, and
last two words contain a character string literal
parameter.

Fixed adcon address of FCB common area in a form for
code generation (OC000010).

Value for first block number.

Blank character. Must immediately precede $GABU. Used
to clear $GABU print area.

Print buffer for most messages from compiler to terminal.

Not used.

Displacement from the start of the adcon area to the
first available adcon following the fixed adcon area.

Base code for library, base code = aLIBBC.

Length, in bytes, of the library load table.

Displacement from start of fixed tables to library load
table.

Mask for FeB control bytes.

Displacement from code to address modifiable LWS.

Value of displacement from communications area to
terminal I/O buffer.

Address of parameter table shared by library routines
referenced by a fixed adcon.

Number of words in initially allocated library parameter
table.

Numher of words in current library parameter table.

Not used.

Displacement from code to line number table.

Displacement from code to static and constants area.

Displacement from code to adcon area.

$RTLA

$ LWSA

$SASA

$I/OBA

$DSAA

EP1

EP2

$VIN

$K1 to $K8

$CTON

$ EXPNS

$LASTL

$TSOFF

$ NPVF

$OBJLC

$NLINE

$NC1W

$NC2W

$NC4W

$ NCMSC

$ NCPXP

Displacement from code to library area.

Displacement from code to LWS area.

Displacement from code to static array and string storage
area.

Displacement from code to disk I/O buffer area.

Displacement from code to DSA area.

Number of bytes that must be between end of code and
variable tables at end of the entokening of a statement
in order not to cause request for more space.

Number of bytes that must be between end of code and
variable tables at beginning of code generation for
a statement in order not to cause request for more
space.

Not used.

Not used.

Count of current nesting of·· on-units.

Information passed from Expression Processor Controller
($NEXP) to Expander routine (see $EXPND). This is a
two-word entry. The first word contains the comma count
and the second, the attribute pointer.

Last line number for which a line number table (D table)
entry was made.

Pair of words used by the entokening phase to calculate
offset for new line tokens and offsets within line.

Complex Pseudo-Variable Flag - used by Expression
Processor Controller ($NEXP) during an assign to a
complex pseudo-variable. If the value is 12, the left
side of the assignment symbol is the complex pseudo
variable.

Equated to $ACODE, the location counter associated with
the code.

New Line Flag. If 1, a call to a library routine has
previously been encountered in the current source line.

Head of the chain of constant table entries whose length
is 4 bytes.

Head of the chain of constant table entries whose length
is 8 bytes.

Head of the chain of constant table entries whose length
is 16 bytes.

Head of the chain of constant table entries whose length
is not 4, 8, or 16 bytes.

Used by Expression Processor Controller as save-area
for arguments and right side of complex pseudo-variable.

11

$NDIG

$PTO

$PADD

, $PSGR.

f

t
$PREG

$PLNG

$NROPN

12

Used by Constant Conversion routine ($NCVT) to form
a floating-point value of a digit of a source constant.
The word is preset with an exponent of two and the value
zero.

Origin of the table of operands which are parameters
to the symbolic instruction passed by Triad Code
Generator ($TCODE) to the Instruction Assembler ($VINSA).
There are six entries in this data parameter table.
each.with the following format:

1 2 3 4 Byte
r-----------------------------------,

Word 1 I $PTKlIJ. I
1-----------------------------------1

2 f $PADD •

1-----------------------------------1
3- I $PSGR l$PREG I $PLRG I

L-----------------------------------s
'l'he operand token. The first byte is the type byte
and the other three bytes contain a quantity which is
dependent upon t~e type. These operand tokens are
identical to the operands of a triad.

Core address of the operand. The first byte indicates
the relocation base and the other three bytes tbe offset
to the operand within the data area.

contains five flags:

x • Oll WPSGR

X 110·

X 1201 .PRS

X '40' .PRAM

X 'SO'

If 1, the operand is positive in
core.

If 1, the operand- is address of
PCIS for TITLE move.

If 1, the operand is negative in
a register.

If 1, the operand is a parameter
of a subprogram.

If 1. the operand requires a dummy
argument.

Register address of the operand. Contains the pointer
to the register table entry which contains the operand.

If the operand is a string, this field contains the
length in bytes.

Operand area of the Expression Processor Controller
which contains the attributes and description of the
right operand. The format is:

$NROTM

$NROL

$NROPR

$NROSF

$NRTKN.
$NROPI.
$NRPTR

$NLOPN

$NRSLT

$NO

$NXOP

$NYOP

$ PRIOR

$NAARG

$NTCUR

$ NCCUR

1 2 3 4 Byte

r--------------------------------------, I 1 1 $NROL 1
Word 1 1 1 $NROTM 1- - - - - - - - - 1

and

1 1 1 $NROPR 1 $NROSF 1
1--------------------------------------1

2 1 $NRTRN t
1--------------------------------------1

3 1 $NROPI 1 $NRPTR 1
L--------------------------------------J
Right Operand Type Mask. The bits have the same meaning
as the dictionary attribute data description field.

Right pperand length if it is a string.

Right operand precision if its type is arithmetic.

Right operand scale factor if its type is arithmetic.

These fields are set from the operand stack and have
the same mea~ing.

Operand area of the Expression Processor Controller
which contains the attributes and description of the
left operand. The format is the same as for the right
operand. The fields are $NLOTM. $NLOL. $NLOPR. $NLOSF,
$NLTKN, $NLOPI. and $NLPTR.

Operand area of the Expression Processor Controller
which contains the attributes and description of the
result of an operation. The format is the same as for
the right operand. The fields are $NRTM, $NRL. $NRPR,
$NRSF, $NTKN. $NRPI, and $NPTR.

Maps an area with the same format as the right operand
area. The fields are $NOTM, $NOL. $NOPR. $NOSF, $NOTKN,
$NOPI, and $NOPTR.

An operand area with the same format as the right operand
area. Used in building triads which do not come directly
from the operator and operand tokens of the stacks.
The second and third words of this area are referenced
by the labels $NXTKN and $NXPTR.

An operand area with the same format as the right operand
area. Used in building triads which do not come directly
from the operator and operand tokens of the stacks.
The second and third words of this area are referenced
by the labels $NYTKN and $NYPTR~ the type mask is
referenced using the label $NYTM.

Contains the priority of the operator pending addition
to the operator stack.

contains the count of the number of arguments in an
argument list which are arrays.. Used in processing
calls to the array built-in function POLY.

The number of the last triad generated.

The number of the last triad for which code has been
generated.

1.3

$NBIF

$NFLAG

$NXFLG

$NEXP'l'

$TeD

$'l'CA

$UA

W$GTC2

$HEADS

A$BEAD

B$BEAD

N$HEAD

J$BEAD

$TAILS

14

Built-In Function Flag. If 0, function not bUilt-in7
if 1, built-in function and convert all arguments to
the result type; if 2, built-in function and arguments
require special conversion.

Fixed-Point Scale Flag. If 1, scale value to result
scale converting to result type.

communication Flag
purposes.

used by several routines for various

Indicates type of expression result required by a
statement processor. Has the same meaning as dictionary
attribute description field except that if the byte
is all ones, any type is satisfactory.

Used to dump the'fixed table area on entrance to Triad
Code Generator ($TCODE).-

Used to dump the fixed table area on each triad processed
by $TCODE.

Used to dump the fixed table area on each token processed
by $NEXP.

Save-area for the data parameter ($PTO) table in $TCODE
when dope vectors must be generated for strinq arguments
of built-in functions.

A table of pointers to the beginning-of-segment control
word o~ the first segment of each expandable table
maintained by the compiler. The individual table
pointers are as follows:

Node Code

04 -
16 -
14
06 -
OE -
13 -
07 -
18 -
09
08 -
19 -
01 -
02 -
03 -

- - C$HEAD
D$HEAD

- I$HEAD
B$HEAD

- - E$HEAD
- - L$HEAD

P$HEAD
Q$HEAD
S$HEAD
T$HEAD
V$HEAD
X$HEAD
Y$HEAD
Z$HEAD

Pointer to the beginning
list (A list> •

Pointer to the beginning
(H table).

Pointer to the beginning
(N list).

Constant table
Line number table
Initialization table
Block information table
Error message table
Library load table
Program structure table
SUbscript substitution table
Temporary storage table '
Token table
Expression stack
Operator stack
Operand stack
Triad table

of the dictionary attribute

of the dictionary hash table

of the dictionary name list

Pointer to the beginning of the supplementary
initialization list (J list).

A table of pointers to the end-of-segment control word
of the last currently active segment of each expandable

A$TAIL

H$TAIL

N$TAIL

J$TAIL

$ACTVS

$CURRS

SEGLST

FREPTR

R$TBL

R$FX

R$FL

R$AD

R$ND

R$SY

table maintained by the compiler. The individual table
pointers have names of the format P$TAIL, and match
the sequence given above for $HEADS.

Pointer to the last dictionary attribute node.

Pointer to the last dictionary hash table node (not
used).

Pointer to the last dictionary name list node.

Pointer to the last node in the supplementary initiali-
zation list.

A table of pointers to the currently available data
space position within each expandable table segment
maintained by the compiler. The individual pointers
have names of the format P$ACTV and match the sequence
given above for $HEADS.

A table of two-word pointers associated with each
expandable table in the compiler. These pointers support
the non-destructive GPREV macro and the GNEXT macro.
(See Appendix C.) The first word of the pair points
to the beginning-of-segment control word for the given
segment of the table currently being scanned. The
second word points to the end of the data space within
the given segment of the table currently being scanned.
Together, the pointers serve as limits in each direction
for the segment scanning macros. The individual pointers
have names of the form P$CURR and match the sequence
given above for $HEADS.

A pointer to the beginning-of-segment control word of
the first free expandable-table segment. If no segments
are free, SEGLST contains zero.

A pointer to the first available (unused) word in the
compiler's variable data space. Data space is always
acquired by decrementing FREPTR, since working storage
grows from higher-numbered storage locations toward
lower-numbered ones.

Pointer to the base of the register table (R table).

Pointer to the fixed-poi nt-register portion of the
register table.

Pointer to the floating-poi nt-register portion of the
register table.

Pointer to the adcon register portion of the register
table.

Pointer to the end of the linear portion of the register
table.

Pointer to the head of the register table synonym list.
This list contains unassigned synonym entries. Assigned
synonyms are detached from this list and attached to
the appropriate register table entry. Twenty synonym
entries are available. If all are in use, R$SY contains
zero.

15

$TEMPL

R$ARRC

$VSART

$VSCRT

$VLBLT

$VRAMT

$VRTYP

$VLPAK

$VLIRE

$SEVCO

$SEVCT

$VLS

$TEMPN

$TITLE

$FILEON

$NESTK

$DBUF

$LOAD

16

Temporary storage level count. 'Initially zero, it is
increased by one at the beginning of a DO-loop and is
decreased by one at the end.

Reference count for adoon register assignment. Initially
zero, it is increased by one each time an adcon register
is assigned. It effects a rotational assignment of
the available adcon registers.

Table of symbolic adcon register assignments used by
the Instruction Assembler routine ($VINSA).

Table of symbolic computational register assignments
used by $VINSA.

Table of local symbolic labels used by generated instruc
tion sequences used by $VINSA.

Flag for register assignment: 0 indicates single
register~ nonzero, double. Used in calling the
Computational Register Assignment routine ($VASGC).

Flag for register type assignment: a high-order bit
of 0 indicates a floating-point registerJ 1, a fixed
point register. Used in calling $VASGC.

DoUbleword-aligned work area. Used principally by Error
Message Editor C$XERR) for unpacking and conversion
operations.

Print-line work area. Used by $XERR to format output
lines.

Highest severity code encountered by $XERR during
processing of error messages. Initially zero.

Total number of error messages produced during
compilation. Initially zerQ.

Not used.

Level number to be assigned to temporary storage
associated with the saving of registers around a DO
loop. $TEMPN is set by the -begin DO- pseudo-operation
in Instruction Assembler ($VINSA) and used by the
Temporary Storage Management routine ($VGTMP).

Dummy title attribute entry (6 words long).

On-unit flag and FCIB pointer.

Address of top of expression stack.

Number of disk buffers needed.

Library load table.

APPENDIX B - COMPILER TABLES AND LISTS

GENERAL

with a few exceptions, fixed-size tables are either located within
the fixed area of working storage or assembled as part of a compiler
module. Some of the tables within the fixed area of working storage
are discussed under ·Compiler Variables" in Appendix A. Tables within
a compiler module are unmodifiable as well as fixed. The symbol table
that is within the Triad Code Generator routine ($TCODE) is discussed
in Appendix E.

Items within the variable portion of working storage, with a few
exceptions, are either expandable tables or lists. Lists (by
definition) have a variable number of entries. For a discussion of
expandable tables and lists, see "Table Handling Macros" in Appendix
C. Unless otherwise specified, the tables discussed below are located
in the variable portion of working storage.

17

TITLE: DICTIONARY ATTRIBUTE LIST (A LIST)

Purpose and Usage

The dictionary attribute entry is created for each definition of an
identifier in the source program. The attribute entry contains all
of the information needed by the compiler about the identifier.

usage Description

Each dictionary name entry points to a list (possibly null) of attribute
entries. Contained in this attribute list are all definitions of the
identifier made in blocks still in the process of translation. The
attribute entries are stored as a list, with the last entry pointing
to the name entry. If there is more than one attribute for an
identifier, the attribute entries are ordered inversely by block number.

Attribute entries are also created to describe the parameter
requirements for entry names. Each entry name attribute entry points
to a list of attribute· entries specifying parameter requirements.
An attribute entry for an entry name also contains a pointer to the
RETURNS attributes used when the entry name is referenced.

Each block information table (B table) entry for a procedure block
points to the RETURNS attributes for the block as defined in the
PROCEDURE statement.

Entry Description - General

There are five general types of attribute entries. Thirteen bytes
of each entry are standardized. Figure B-1 shows the first 13 bytes
of every attribute entry other than a constant or built-in function
name entry. (See succeeding discussion for details.)

1 2 3

r---, I Node Type 1 Pointer to Next Attribute I
Word 1 I A$NODE I A$NEXT I

I 48 I I
1-----------+---------------------------------------1
I Identifier I Block I Last Block I Definition I

2 I Type I Declared I Used I Information I
I A$TYPE 1 A$BDCL I A$LBLK I A$DEF I
1-----------+---------------------------------------1
I Address I I

3 I Base Code t Address Offset I
I A$BASE I A$DISP I
1-----------+---------------------------------------1
I Data I I

4 I Descriptor I
1 A$DD I I
1-----------+
1

Figure B-1. Dictionary Attribute Entry--First 13 Bytes

Byte

The first four bytes of this area contain the standard node type and
pointer to next attribute entry. The A$TYPE byte contains a code
indicating the type of identifier. The values of this code are:

A8STRG 4 Denotes character-string variable.
A8REAL 6 Denotes a real variable.
AiCPLX 7 Denotes a complex variable.
AaLBLV 8 Denotes a label variable.
AiLBLC 9 Denotes a statement-label constant.
A8ENTR 10 Denotes an ent~ name.
A8FILE 11 Denotes a filename.

The block number of the block in which the identifier was declared
is contained in A$BDCL. The A$LBLK byte contains the block number
of the last block in which the identifier was used.

Definition information is contained in A$DEF. The values assumed on
the bases of logical tests are given below.

r---, I Mask and Bit 1 Value 1 '=0' 1 =1 1
1--------------+-------+-------------+--------------1 1 A#PARM 1 0 Inot parameter 1 parameter 1
1--------------+-------+-------------+--------------1
1 A#SCOP 1 1 I internal Ititle move I
1 1 I 1 external scope ,-
1--------------+-------+-------------+--------------
1 A#TEMP I 2 Inot temporaryltemporary
1 I I I storage
1--------------+-------+-------------+--------------
I A#USED 1 3 I not used I used
I--------------+-------+-------------+------------~~
I A#SET 1 4 I not set 1 set
I I 5 1 static I automatic
1--------------+-------+-------------+--------------
1 1 6 1=00 tentativel=11 explicit
1 A#DEFS 1 1 (AWTENT) 1 (A#EXPL)
I I 7 1=10 implicit 1=01 contextual
1 I I (A#IMPL) I (A#CTXT)
l---J

A$BASE and A$DISP contain the address of the identifier. The first
byte of this word (A$BASE) contains a code describing the base address
to be used. and the last three bytes (A$DISP) contain the offset from
this base. The code numbers and the corresponding bases are as follows:

Code No. ~

4 Object
8 Static
A Array
C Adcon

The A$DD byte contains a data descriptor. This descriptor is defined
separately for each attribute entry type.

Nonlabel Variable Entry

Entries for nonlabel variables are either five or six words in length
depending on whether the variable is dimensioned. A$REG contains a
register number indicating whether the identifier is in a register
and. if so. which one. A$REGS contains the sign. A$DIMS contains
the number of dimensions. A$LNG has the length of a string. if known.
The precision and scale of arithmetic variables are in A$PREC and
A$SCAL.

If the identifier is dimensioned. a sixth word contains dimension bound
codes in A$DC and a pointer to the dope vector as contained in the

19

compiler" s static storage initialization list in A$DVP. Bit 0 of the
dimension code is 0 if all bounds of the array are constants and 1
if not. Bits 1 to 1 indicate whether both bounds for the first to
seventh dimensions. respectively. are constants. If the ith bit is
zero. then both bounds are constant for the ith dimension (1 SiS 1).

If the nonlabel variable is a parameter. the address field contains
the address of an adcon where the address of the variable or its dope
vector is stored. If the variable is not a parameter. then it contains
the address of the variable or its dope vector directly.

If the attribute entry is for an array. then A$DD contains a special
descriptor X'08' and the array element descriptor is placed in A$DDE.

Figure B-2 shows the layout of an attribute entry for a nonlabel
variable.

1 2 3

r---, I A$NODE 1 Pointer to Next Attribute 1
Word 1 I =Aa r A$NEXT 1

1-----------+---------------------------------------1
IIdentifier I Block l Last Block lDefinition I

2 I Type I Declared I Used I Information I
I A$TYPE I A$BDCL I A$LBLK I A$DEF I
1-----------+---------------------------------------1 I Address I Address Offset I

3 t Base Code 1 A$DISP f
I A$BASE 1 1
1-----------+---------------------------------------1 1 Data f 1 Register 1 Number of I

" I Descriptor I Register 1 Sign I Dimensions 1
I A$DD 1 A$REG I A$REGS I A$DIMS I
,-----------+-------------+-------------------------1 I 1 Array I Length 1
1 1 Element 1 A$LNG I

5 I Npt Used I Descriptor 1-------------------------1
1 I A$DDE I A$PREC 1 A$SCAL 1
1 I I Precision 1 Scale 1
1-----------+---------------------------------------1 I Dimension 1 Pointer to Dope Vector 1

6 1 Codes 1 A$DVP 1
1 A$DC , 1
L---J

Figure B-2. Dictionary Attribute Entry for Nonlabel Variable

Data Descriptor for Nonlabel Variable:

20

If string = '01000100' B.
If arithmetic:

bit 0 = 1 (Arithmetic)A#ARTH
1 = 1 (Variable)A#VRBL
2 = 0 (Non-error)A#ERR
3 = 0 Short} ,

= 1 Long A#LONG
" = 0 (Ordinary)AISPCL
5 = 0 (Non-String Type)A#STRG
6 =-0 Fixed}

= 1 Float AIFLT
1 = 0 Real }

= 1 Complex AICPLX

Byte

Label Variable Entry

Each label variable entry is either four or six words long depending
on whether it is dimensioned. The entry's structure is similar to
that of a nonlabel variable. A$DIMS contains the number of dimensions.
If the variable is an array, the sixth word contains dimension bound
codes and a pointer to the dope vector. Both of these are the same
as described for nonlabel variables.

If the label variable is a parameter, the address field contains the
address of an adcon where the address of the variable or its dope
vector is stored. If the variable is not a parameter, it contains
the address of the variable or its dope vector directly.

Figure B-3 shows the layout of an attribute entry for a label variable.

1 2 3 Byte
r---,
INode Type 1 Pointer to Next Attribute 1

Word 1 I A$NODE 1 A$NEXT 1
1 =Aa 1 t
1----------+----------------------------------1
I~dentifierl Block ILast Block IDefinition J

2 I Type I Declared I Used I Information 1
1 A$TYPE 1 A$BDCL 1 A$LBLK I A$DEF 1
1----------+----------------------------------1
I Address I I

3 I Base codel Address Offset ~
1 A$BASE 1 A$DISP I
1----------+----------------------------------1 t Data 1 Register 1 Regi ster 1 Number of I

4 I Descriptor I A$REG 1 Sign IDimensions 1
1 A$DD I 1 A$REGS 1 A$DIMS 1
1----------+----------+-----------------------1
, 1 Array 1 I

5 I Not Used I Element, Not Used 1
t 1 A$DDE I t
1----------+----------------------------------1
IDimension J ,

6 1 Codes, Pointer to Dope Vector ,
I A$DC 1 A$DVP I
l--_____ J

Figure B-3. Dictionary Attribute Entry for Label Variable

Data Descriptor for Label Variable = • 00001000" B.

statement-Label Constant Entry

Each statement-label constant entry is four words long. In addition
to the standard informatio~~ it contains a one-byte field A$LC
containing label codes. ~hese codes and the layout of the entry are
shown in Figure B-4.

21

1 2 3

r---, 1 Node Type 1 Pointer to Next Attribute I
Word 1 1 A$NODE 1 A$NEXT 1

1 =Aa I ,
1-----------+-----------------------------------1 1 Identifier 1 Block ILast Block ,Definition ,

2 I Type I Declared I Used I Information I
I A$TYPE I A$BDCL 'A$LBLK I A$DEF I
1-----------+-----------------------------------1
I Address I I

3 1 Base Code I Address Offset I
I A$BASE 1 A$DISP 1
1-----------+-----------------------------------1
I Data I Register 1 Register I Label ,

4 t Descriptor I A$REG I Sign 'Codes ,
1 A$DD I ,A$REGS I A$LC I
l---J

Byte

Figure B-4. Dictionary Attribute Entry for Statement-Label Constant

Label Codes:

Bit 0 & 1: = 00
= 01
= 11

statement label A#STMT
Begin label A#BEG
Format label A#FRMT

Data Descriptor for Statement-Label Constant = • 00001001" B.

The address word contains the address of the statement if the definition
is explicit or the address of last usage if the definition is tentative.

Entry Name Entry

Each attribute entry for an entry name is five words long. A$RETP
contains a pointer to an attribute node that contains the RETURNS
attributes of the entry name. These RETURNS attributes are those used
when the entry name is referenced and not those used inside the
procedure on the occurrence of a RETURN statement. (These attributes
are in the block information table.)

A#PRMS contains the number of parameters for the entry name and A$PRMP
contains a pointer to the attribute list for the parameters. This
list contains one entry for each parameter. If the data descriptor
in one of these attribute entries is zero. the attributes for the
associated parameter are unspecified.. If the attributes for the
parameters are not specified, the list is null.

If the entry name is itself a parameter, the address contains the
address of an adcon where the address of the block adcon area (BAA)
is stored. If the entry name is not a parameter. it contains the
address of the BAA.

The format for an entry name attribute node is given in Figure B-5.

22

1 2 3 4 Byte
r--, 1 Node Type 1 Pointer to Next Attribute 1

Word 1 1 A$NODE 1 A$NEXT 1
1 =M 1 1
1-----------+--------------------------------1 1 Identifier 1 Block ILast BlocklDefinition 1

2 1 Type 1 Declared 1 Used I Information
1 A$TYPE 1 A$BDCL 1 A$LBLK I A$DEF
1-----------+--------------------------------1 Address I

3 1 Base Code 1 Address Offset
1 A$BASE I A$DISP
1-----------+--------------------------------I Data 1 Pointer to RETURNS

4 I Descriptor 1 Attribute Code
1 A$DD I A$RETP
1-----------+--------------------------------I Number of 1

5 1 Parameters I Pointer to Parameters List
1 A$PRMS 1 A$PRMP
L-----~--------------------------------------J

Figure B-5. Dictionary Attribute Entry for Entry Name

Data Descriptor for Entry Name = '00001011' B.

If the entry name is a built-in function r the address base code is
zero and the rest of word 3 and words 4 and 5 contain information
describing the function.

Built-In Function Entry Name Entry

Each attribute entry for a built-in function is five words long. The
format of each entry is shown in Figure B-6.

1 2 3 4 Byte
r---, I Node 1 Pointer to Next Attribute 1

Word 1 1 Type 1 I
I---------~--+----------------------------------I
I Identifier I Block 1 Last Block IDefinition 1

2 I Type J Declared I Used 1 Information 1
1------------+---------+------------------------1 1 1 Choice 1 I

3 1 0 I Type I Built-In Number I
1------------+---------+------------------------1
I Data 1 Result I Result I In-Line 1

4 1 Descriptor 1 Type I Size I Number I
1------------+---------+------------+-----------1
I Number I Function I Argument I 1

5 1 of 1 Type I Conversion 1 Flags 1
1 Parameters I I Type I I
L---J

Figure B-6. Dictionary Attribute Entry for Built-In Function Entry Name

The first two words are identical in meaning to those of a non-built
in function entry name entry. other entries are initialized to the
values given below.

23

F LOAT

ST RING

A
G

RRAY
ENERIC

Entry Name

--~.

EXP
LOG
LOG I 0.
LOG2
ATAN
TAN
SIN
COS
TANH
ERF
SQRT
COSH
SINH
ATANH

CHAR
SUBSTR --- --

SUM
PROD
POLY
LBOUND
HBOUND
DIM

BICT
Choice
TYre

0.
0.
0.
0.

12
0.
0.
0.
0.
0
0
0
0
0

8
8

0
0
0
8
8
8

BIN BIRT_~_I BINO Built-In Result Result In-Lme
Number

"-: "'0 ~ EXSo.
LNSo. 0. 0.
LGSo. 0. 0. I

!
L2So. 0 0. I

ATSO 0. 0.
TNSO 0. 0.
SNSO 0. 0.
CSSo. 0. 0
THSO 0 0
EFSO 0 0
SQSO 0 0
C[-ISO 0 0
SHSO 0 0
AliSO r--~ 0 --

[6 I 20 4
C'SR' [6 ~20_ 72

~-------

SMSO 20 0
PDSO 20 0
YGSS 20 0

4 0 8
4 0. 12
4 0 16

I'RMS BIFT BIAC
BIFC

Number Functio Argument
F1a~< n Convert

Parameters Type (Hex) (Hex,
1--- --

I 0. 0.2 24
I 0. 0.2 24
I 0. 0.2 A4
[I 0 02 A4
I: 0 0.2 34

I I 0 0.2 24

: I 0 0.2 24
0. 02 24

I 0 02 24
I 0 02 A4
I 0 02 24
1 0 02 24
I 0 02 24
I 0 02 24 ---

I I [FF 30
2 -~ FF 3R

----~ --- -/--

1 2 FF 00
[2 FF 00
2 2 00 00
2 2 FF 00.
2 2 FF 00
2 2 FF 00 -

ISCEL-M
LA NEOUS DATE 8 c'DI:' 16 24 80. 0. I FF 00

TIME 8 C'TE' 16 28 84 0 1 FF 00 - ------ -- ------ ---- _._--- ---
A RITHMETIC
G ENERIC ABS 4 ABTO 0. 4 20. 1 0. 00 20

MAX 0 MXSO 0. 8 255 0 00 Ao.
MIN 0. MNSO 0 8 255 0 00 Ao.
MOD 8 0. 12 24 2 0 00 AO
SIGN 8 4 0 28 I 0. 00 Ao.
FLOOR 8 0. 16 32 I 0 00 AO
CEIL 8 0 16 36 I 0 00 AO
TRUNC 8 0. 16 40. I 0 00 AO
COMPLEX 8 12 8 48 2 0 FE 28
REAL 8

8 0. 56 il 0 o.lJ
21\

IMAG 8

~~-~ ~- -~ --- : - --~- -~: -

~~

CONJG 8 20

Choice ~ (A$BICT) indicates how to choose the specific routine entry
point for a call. This field has the following meanings and values:

o No in-line expansions: choose routine by highest argument type.
4 In-line expansions for real arguments; choose complex routine

by highest argument type.
8 All argument types expanded in-line.

12 Choose entry point by number of arguments and argument type
if arithmetic.

Built-In Number (A$BIN) is the library basic entry point number of
the function. All numbers of a built-in function are ordered so that
it is possible to compute the number associated with all entry points
of the function from the value of this field,. An entry point number
is selected on the basis of the attribute(s) of the argument{s). It
is used to create an entry in the library load table. The real, float,
single precision entry point is given if the routine is arithmetic.

Note: Entries for A$BIN are expressed as four-character names. This
appears to conflict with the "Built-In Number" classification.

24

In the Phase 1 Initia1izer ($CODNT), a group of four characters
is used as the 1ast part of a symb01 which is equated to the
bui1t-in number. The first two characters of the symb01 are
La. Thus, for EXP (the first bui1t-in function 1isted above),
the code to generate its bui1t-in number is:

DC AL2(LaEXSO)

Resu1t ~ (A$BIRT) indicates the means of determining the attributes
of the returns va1ue. This fie1d has the fo1lowing values and meanings:

0 Result is the highest type of the arguments.
4 Resu1t is a fixed integer.
8 Result is real and highest argument type.

12 Resu1t is comp1ex and highest argument type.
16 Resu1t is a character string.
20 Resu1t is float and highest argument type.

Result Size (A$BIRS) indicates the means of determining the prec1s10n
or length of the returns values. This field has the following values
and meanings:

o Length or prec1s10n is determined by argument.
4 Fixed complex precision is (MIN(9,p+1),q).
8 Fixed precision is (MIN(9,MAX(all p-q»+MAX(all q)},MAX(all q).

12 Fixed precision is (MIN(9,r-s+MAX(q,s)},MAX(q,s})
16 Fixed precision is (MIN(9,MAX(p-q+1,l}},O).
20 SUBSTR or CHAR length.
24 Length is 6.
28 Length is 9.

In-Line Number (A$BINO) is the number identifying the built-in function.
The in-line number of the pseudo-variable of the same name is obtained
by adding four to this number. This field has the following values
and meanings:

4 CHAR
8 LBOUND

12 HBOUND
16 DIM
20 ABS
24 MOD
28 SIGN
32 FLOOR
36 CEIL
40 TRUNC
44 CONJG
48 COMPLEX

(52).
56

(60)·
64

(68).
72

(76).

80
84

(88) •
(92) •

COMPLEX pseudo-variable
REAL
REAL pseudo-variable
I MAG
IMAG pseudo-variable
SUBSTR
SUBSTR pseudo-variable
DATE
TIME
Arithmetic to string conversion
String to arithmetic conversion

.Do not appear in an attribute entry but appear as triad operands.

Number of Parameters (A$PRMS) contains the number of parameters required
for a function reference. If an optional additional parameter is
possible, the count is for the minimum number of arguments. If the
number of arguments is variable (for example, MAX and MIN), this field
is set to its maximum va1ue.

Function ~ (A$BIFT) indicates the general classification of the
function. The field has the following values and meanings:

o Arithmetic
1 String
2 Array

25

Argument Conversion ~ (A$~C) indicates the conversion required
for the arguments. The field has the following values and meanings:

X'OO' Convert to highest argunent type.
X'02' Convert to highest argmtent type and float.
X'Ol' convert to highest argmtent type and convert to complex.
X'FE' Convert to highest argmtent type and convert to real.
X'FF' Do not convert arguments.

Flags Field (A$BIFG) contains a series of one-bit flags with the
followin9 meanings and settings:

AICMPX

AIARG
A#XARG
AIPSEO
A#AOK

Bit

o
1
2
3

" 5

If 1. complex arguments are not allowed.
If 1. add scaling information as an argument.
If 1. array argument causes array assign.
If 1. function may have optional extra argument.
If 1. name may be a pseudo-variable.
If 1. function name may be an argument.

Filename Entry

Each filename attribute entry is four words long. A$FC contains a
file code that specifies the attributes of tbe file.

If the filename is a parameter. the address field contains an address
of an adcon that contains the address of the file control interface
block (FCIB) for the file. If the filename is not a parameter. then
the third word contains the address of the FCIB in the static and
constants area.

Figure B-7 shows the format of an attribute entry for a filename.

1 2 3 .. Byte
r--, I Node Type 1 I

Word 1 I A$NODE I Pointer to Next Attribute I
I =A8 t A$NEXT 1
I-----------t----------------------------------I
I Identifier 1 Block ILast Block 1 Definition I

2 1 Type ,Declared I Us ed 1 Information 1
I A$TYPE 1 A$BDCL 1 A$LBLK 1 A$DEF 1
I-----------t----------------------------------(
I Address 1 1

3 I Base code I Address Offset 1
I A$BASE I A$DISP 1
I-----------t----------------------------------I
1 Data I I Fi Ie I I

.. I Descriptor I Not I . COdes 1 Not I
I A$DD I Used I A$FC 1 Used I
L---. __ J

Figure B-7. Dictionary Attribute Entry for Filename

26

File Codes:

bits 0 , 1 = 00
01
10
11

bit 2 =
3 =
II =
5 =
6 = 0

1
1 = 0

1

SYSIN
DISR INPUT
SYSPRINT
DISR OUTPUT

DISK INPUT
DISK OUTPUT
DISK ENVIRONMENT
NOT USED
EXTERNAL
INTERNAL
NON-PRINT

- PRINT

Data Descriptor for Filename = ~~0001100' B.

constant Attribute Entry

For each constant appearing in a source statement. a constant attribute
entry is created. This attribute entry contains all of the attributes
of the constant that can be implied'from its EBCDIC form. The constant
attribute entries look like normal attribute entries in order to
simplify later processing_ Constant attribute entries are stored in
the token table areas so their space can easily be released at the
end of usage.

Each constant attribute entry is six words long. The first five words
are exactly the same as for a normal attribute entry except that A$BDCL
and A$LBLK do not contain the block declared and used information.
If the converted constant has different attributes from the source
attributes (as in the case of compile-time conversions). the attributes
entries (A$DD. A$LNG. A$PREC. and A$SCAL) are modified accordingly.
However. a copy of the original attributes is retained in what is
normally the address word.

Since a constant is always undimensioned. the sixth word is used to
contain a pointer to the beginning of the source representation of
the constant and its length in bytes. if arithmetic4 If the constant
is a string. the length in the source is not given since it can be
longer than 255 characters (for example. if the string contains embedded
quotes. each of which must be represented by two single quotes).

Figure B·B shows the format of a constant attribute entry.

1 2 3 Byte
r---,
I Node Type I I

Word 1 I A$NODE I Not Used I
I =Aca , I
-----------f-------------------------------------I
Identifier I IDefinition I

2 Type I Not Used I Ihformation
A$TYPE I I A$DEF

-----------f-------------------------------------
I I Original A$LNG

Not I Original, - - - - - ~ - - - - - -
3 Used I A$DD 1 Original I Original

I I A$PREC A$SCAL
-----------f-------~---f-------------f-----------

Data I I I
4 Descriptor I Register 11 Not I Zero

A$DD I A$REG I Used I
I-----------------------f-------------------------
I I Length

5 I Not Used 1- - - - - - - - - - - - -
I I Precision I Scale
1---
I Length I

6 I of Source I Pointer to Source
I A$SRCL I A$SRCP
l---J

Figure B-B. Dictionary Attribute Entry for a Constant

Data Descriptor: Same as for nonlabel variables, except bit 1=0.

28

TITLE: BLOCK INFORMATION TABLE (B TABLE)

purpose and Usage

The block information table contains one entry for each unterminated
block. This table contains all block-related information.

Description

The block information table is maintained as an expandable table.
Each entry is eight words long.

The table contains one entry for each block still in the process of
compilation (including the external procedure). The table is treated
like a push-down list.

Entry Format

The layout of a block information table entry is shown below.

1 2 3
r---,·

Word 1 I Node Type 1 Pointer to RETURNS Attributes 1
I B$NODE I B$RETP 1
1-----------+-----------------------------------1
1 Block 1 Symbol 1 1 Number of 1

2 1 Number I Table 1 1 On-ENDFILEs 1 I B$BLNR 1 SWitch I 1 Received 1
I t B$STSW I 1 B$FILE 1
1--1 I Address of Adcon 1

3 1 covering Symbol Table 1
1 B$STA 1
1--1
1 Address of BAA I

4 1 B$BAA 1
1 I
1---1 1 Block I Amount of DSA Used I

5 I Number I B$DSAM J

6

7

8

1 1

Pointer to constant Table Entry
for DSA-Size

B$DSAS

Address of Last Prologue Link
B$LPLA

Address of Prologue Termination
B$PTA

Address of On-Unit Parameter List
9 B$ON

L--J
Values for Fields:

B$STSW Symbol Table Switch (Test with B#STSW.)
Bit 0: = 0 No symbol table needed.

= 1 Symbol table needed.

Byte

29

B$NODE For begin block, BBa = 8.
For procedure block, BPa = q.

The first word of each entry contains a node type and a pointer to
the RETURNS attribute node for the block if it is a procedure. These
RETURNS attributes are those declared in the PROCEDURE statement.
If the block is a begin block, the last three bytes of the first word
are null.

The second word contains the block number of the block and a switch
determining whether to produce a symbol table for the block at the
end of the block. A count is also kept of the number of ON ENDFILEs
encountered within the block. If a symbol table is to be produced,
the third word contains the address of an adcon that is to contain
the address of the symbol table.

The fourth word contains the address of the BAA for the block.

In the fifth word is a count of the number of bytes in the DSA that
are assigned. 'This count is from the beginning of the DSA and includes
all of the bookkeeping bytes. Tbe top byte of this word contains a
DSA address base code which is the block number.

The sixth word contains a pointer to a constant table entry that is
to be initialized to the size of the DSA,. This initialization is
performed at the end of the block after ,the size of the DSA is known.
(This size does not include any space for arrays or strings. Space
for these is obtained separately.)

Words seven and eight are concerned with the chain of prologue
instructions running through the block. The seventh word contains
the address of the last branch in the chain. This branch still needs
to be resolved. Tbe eighth word contains the address of the end of
prologue instructions. These instructions immediately precede the
first executable statement. At the end of the block the chain is
closed by resolving the last branch with the end of prologue address.

The ninth word contains an address for the on-unit parameter list.
Three words (two of which are subsequently used for the list) are
o~tained when first encountering an ON ENDFILE statement within the
block. Additional groups of three words are obtained for any other
ON ENDFILE statements in the block. (See -On-Unit Parameter List
in Appendix B.)

30

TITLE: CONSTANT TABLE (C TABLE)

purpose and Usage

The constant table contains an entry for each constant required in
the object program. The arithmetic and all alphameric constants less
than 16 bytes which do not contain primes, or are split between lines,
are entered in their converted binary representation. The alphameric
constants not converted are entered as pointers to their appearance
in the source code.

Description

The constant table is maintained as an expandable table. The entries
of the table are linked together according to length into four lists
for searching; 4 bytes, 8 bytes, 16 bytes, and all others. The heads
of these lists are pointed to from $NC1W, $NC2W, $NC4W, and $NCMSC,
respectively.

Entry Format

The format of an entry containing a converted constant is shown below.
(The value of C$LNK does not equal 1.)

1 2 3 Byte
,------------------------------------,

Word 1 JC$REG I C$ADDR I
1---------+--------------------------1

2 -I C$CNT I C$LNK I
t-------~-+--------------------------I

31 C$VAL1 ~
1-------------------------------------1

1& J C$VAL2 J

J- - - - - - - - - - - - - - - - - -
5 4 C$-VAL3 I

-1- - - - - - - - - - - - - - - - - - I

6 I C$VALI& J
t.- - - - - - - - - - - - - J

Values for Fields:

C$REG

C$ADDR

If nonzero, the register table entry which contains
the value of the constant.

The offset in static storage to the value of the
constant.

The number of bytes in the constant. C$CNT

C$LNK Pointer to the next constant table entry in its search
list if nonzero. If zero, the entry is the last element
of the list.

C$VAL1

C$VAL2

First four bytes of constant value.

Second four bytes of constant value if the value of
C$CNT is greater than 4.

31

C$VAL3

C$VAL4

Third four bytes of constant value if the value of C$CNT
is greater than 8.

Last four bytes of constant value if the value of C$CNT
is greater than 16.

The format of an entry containing'a pointer to an unconverted constant
is shown below. (The value 'of C$LNK equals 1.)

1 2 4 Byte
r--------------------------------------~----------~

Word 1 I C$REG I C$ADDR t
r-------------f--------------------~--------------'_

2 I C$CIIT' C$LHK I
1---1

3 t C$SP'.rR I
~-------------------~-----------------------------J

Values for Fields:

32

C$REG

C$ADD1il

C$CNT

C$LNK

C$SPl'R

Same as described above.

Same as described above.

Same as described above.

Always equal to one.

Pointer to the first byte of the constant in the source
program.

TITLE: LINE NUMBER TABLE (D TABLE)

Purpose and Usage

The line number table is the input list to the Line Number Table
Processor ($HLNTP) and is used to generate the line number table, which
relates the instruction addresses to the source line numbers.

Description

This expandable table contains one entry for each line in the source
program. Entries are ordered by line number and machine address.

Entry Format

Each entry contains the followi~g fields:

1. Pointer to the f~rst character (in the source program area)
of the line number.

2_ Object code address.

These entry fields are shown below:

1 2 3 Byte
r---------------------------------,
1 1 I 1 •

- Word 1 1 Pointer to First Character of I
1 Line Number (D$LNP) 1
I I I f 1
1---------------------------------1
1 I til

2 I Object Code Address (D$OCA) 1
I I I 1 J
l ________ -------------------------~

33

TITLE: DICTIONARY HASH TABLE (H TABLE)

Purpose and Usage

The dictionary hash table is the directory to the dictionary name lists
and is a fixed-length contiguous-entry table.

Note: In contrast to most tables in the variable area, this table
is not expandable.

Description

Each entry in the dictionary hash table is a fullword pointer to a
dictionary name list containing entries for all names that hash to
the same value. A hash table entry is located by assuming that the
first four characters of the name are an integer value and dividing
this value by the number of entries in the hash table. The remainder
thus obtained is then an index to the hash table entry.

Entry Format

The format of each entry in the dictionary hash table is shown below.

Pointer to a Dictionary Name List

I Word

TITLE: INITIALIZATION TABLE (I TABLE)

PUrpose and Usage

The initialization table is generated by various routines in the
compiler as the program is being compiled. This table gives the static
Constants-Adcon Loader routine ($BSCAL) the information for initializing
the static-constant and adcon areas.

Description

This is an expandable table having seven types of entries. The first
byte (I$NODE) is used to distinguish the entry type.

Entry FOrmat

1. Immediate value node

4 Byle

Word I ISNODE I$ASAD

2 I$DATA

where I$NODE is less than 20 and indicates the number of bytes
of data in I$DATA to go into constant storage. I$ASAD is the
offset into constant storage.

2. Adcon initialization node

1 2 3 Byte
r---, 1 1 1

Word 1 1 IAa 1 I $ASAD 1
1---1
1 1

2 1 I$DATA 1
1 1 L------------------------------------_____________ J

where I$ASAD is the offset in the adcon area to place the adcon
indicated by I$DATA. This word contains a one-byte base code
and three-byte displacement.

35

36

3. SDV initialization node

1 2 3

r--, 1 I 1
Word 1 I Isa I I $ASAD 1

1 1 I 1--1
1 I

2 I 1
I 1
1------- I$DATA -------1
I I
311

I 1
l-------------------------__ -----------------------J

Byte

where I$ASAD is off'set in constant storage for the string dope
vector. If the first word of I$DATA is nonzero, the offset
to static arrays storage needs to be added to the rightmost
three bytes of the first word.

q. ADV/SADV initialization node

2 3 4 Byte

Word I ID@ I$ASAD

2 I$DATA

3 Dope Vector

where I$ASAD is offset in constant storage for the dope vector.
I$DATA is the length of the dope vector in bytes. The dope
vector starts at I$DATA+q.

5. BAA initialization node

1 2 3 Byte
r--,
til

Word 1 1 IBa 1 I$ASAD 1
I I 1
1--1
I 1
211

1 I 1------- I$DATA ------1
I I

3 I I
I I L------------------------__________________________ J

where I$ASAD is offset in the adcon area for the block adcon
area. The first word of I$DATA contains the address of the
block"s entry point. The byte at I$DATA+q contains the number
of parameters for the block.

6. Special SDV entry

1 2 3 Byte
r---,
I I I

Word 1 I IDVI I I$ASAD I
I I I
1---1
I I

2 ~ I
I I 1----- I$~TA -----,
1 J

3 I 1
I I L---------__ J

where I$ASAD is offset in constant storage for tbe dope vector.
Tbe offset to static storage needs to be added to the rigbtmost
three bytes of the first word of I$DATA.

7. Discarded entry

2 3 4 Byte

Word t X' 28' Not Used

2 ISDATA

Not Used

This is a dope vector entry tbat bas been discarded and thus
needs no initialization. I$DA~ bas tbe number of bytes in
tbe dope vector.

37

TITLE: DOPE VECTOR LIST (J LIST)

Purpose and Usage

The dope vector list (also called supplementary initialization list)
is generated by the Attribute Node Creation subroutine ($ANCRE) for
skeletal dope vectors that are too large to fit into an initialization
table (1 table) segment. Compilation Wrap-Up Driver ($MCWU) places
the dope vector in static storage.

Description and Entry Format

The J list is stored as a true list~ that is, the first word of each
entry in the list points to the next entry. Except for the extra link
word, an~try looks exactly the same as an ADV/SADV initialization
node in the I table.

2 3 4 Byte

Word I JSNODE I JSNEXT

2 JSLOC (Same as ISASAD)

3 JSCNT (Same as ISOATA)

4 JSDATA (Dope Vector) -

38

TITLE: LIBRARY LOAD TABLE (L TABLE)

Purpose and Usage

The library load table is used to record which library runtime routines
will be needed durinq execution of a proqram. Entries are made in
this table by the Library Search routine ($NLSIB). At wrap-up time,
the Runtime Library Loader routine ($BRTLL) uses this table to determine
which runtime routines must be loaded.

Description

The'library load table is loaded into the fixed area of workinq storaqe.
At the start of compilation, this table is set to zeros. A number
which maps to a unique word in the library load table is associated
with each runtime library routine. If a particular library routine
is needed at object time, its word in the library load table is set
to point to a word in the 'adcon area. (See ·Phase 2 Initializer
($WCONT)· in Section 3, Volume I.) At runtime, this word in the adcon
area will contain the location of the library routine.

Entry Format

The format of each entry in the library load table is shown below.

1 2 3 Byte
r-------------------------------, Word 1 I Adcon Displacement or Zero I
L-------------------------------J

If nonzero, this word will contain a displacement from the start of
the adcon area. At runtime, the adcon location that is pointed to
will contain the location at which the library routine correspondinq
to this entry has been loaded.

If zero, either loadinq of the routine which corresponds to this entry
has not been requested or no routine corresponds to this entry. (There
are more words in the library load table than there are runtime library
routines.)

39

TITLE: SYMBOLIC INSTRUCTION TABLE (M TABLE)

Purpose and Usage

The symbolic instruction table is used by the Triad "Code Generator
($TCODE) to communicate with the Instruction Assembler ($VINSA). The
number of instructions and the origin of the instruction sequence in
the symbolic instruction table is selected by $TCODE and then processed
by $VINSA. This instruction sequence does not provide for covering
of operand addresses. Instructions to provide cover are generated
by $VINSA. The instruction sequence may contain loads of registers
which are discarded by $VINSA if the operand is already in an
appropriate register. The instruction may be modified by $VINSA to
select the instruction appropriate to the operand type (fixed, single
float, or double float) or to change from the RX to the RR form of
the instruction if the operand is in an appropriate register.

Description

The table is of fixed length and all entries contain preset values,
each representing a symbolic machine instruction or pseudo-instruction,
which are never modified by the compiler. The table is actually
assembled as part of the $TCODE module. The format of the symbolic
instruction table is as follows:

1 9 13 11 25 33 31 q9 56 Bit
r---,
I I I I I I I I I I
I INSTNO I TOPl I TOP2 I VOPl I VOP2 I TOP3 I TOPq I VOP3 I VOpq I
I I I I I I I I I I L--_____ ----------------J
Values for Fields:

INSTNO

TOPl
and
VOPl

TOP2
and
VOP2

TOP3
and
VOP3

TOPq
and
VOpq

Note:

1&0

Instruction Number. This value, when multiplied by 2,
is used to index into the operation code table (0 table) to
obtain the machine instruction code and the operation
characteristics mask.

The TOPl field value indicates the type of information
contained in the VOPl field. TOPl can assume any value from
o through 1. See Figure B-9 for corresponding value of
VOPl field.

The TOP2 field value indicates the type of information
contained in the VOP2 field. TOP2 can assume any value
from 0 through 1. See Figure B-9 for corresponding value
of VOP2 field.

The TOP3 field value indicates the type of information
contained in the VOP3 field. TOP3 can assume a value of
1, 2, or 3. See Figure B-9 for corresponding value of
VOP3 field.

The TOPq field value indicates the type of information
contained in the VOpq field. TOPIl can assume a value of
1, 2, or 3. See Figure B-9 for corresponding value of
VOpq field.

TOP3, TOPIl, VOP3, and VOPIl are present only for an instruction
whose operation code indicates indexing. VOP3 generates an Xl
field : VOPIl, a B2 field.

TOP VOP

o (NULL) Null operand. Bas no effect on assembled instruction.

1 (SCR) Symbolic computational register. Symbolic registers are
labeled 0, 2, 4, and 6. An odd number value indicates the low
order half of a symbolic register pair, if it is a double
register. The assigned register will be fixed or floating
point, depending upon the data requirements.

2 (SAR) Symbolic adcon register. Same meaning as above except
register assigned is a general adcon register.

3 (ABSR) Absolute register. Value is the displacement into the
register table for the entry associated with the absolute
register.

4 (PARM) Data parameter. Value of operand is 0, 12, 24, 36, 48, or 60,
indicating the relative distance into the data parameter
table ($PTO table) of the information pertaining to the
desired operand.

5 (REAL) Real address of data parameter. Value is as for type 4,
except reference applies to real part only.

6 (LMAG) Imaginary address of data parameter. Value is as for
type 4, except that addresses are to be adjusted for the
imaginary part of complex data,.

1 (SSTG) Scratch storage. Where 0 and 4 means entire value,
5 means real part, and 2 and 6 means imaginary part
first and second scratch work areas, respectively.
storage is reused on each call to $VINSA.

1 and
of the
Scratch

8 (CONS) Constant entry pointer. Relative address within the constant
entry portion of the operation code table which contains the
operand value.

9 (LIT) Literal value. The operand itself.

10 (LBL) Symbolic label. Symbolic labels are numbers 0,1,2, ••• ,9.
Only one instruction may branch to a symbolic label. An
instruction may have more than one symbolic label.

Figure B-9. Operand Values for Symbolic Instruction Table

111

TITLE: DICTIONARY NAME LIST (N LIST)

Purpose and Usage

The dictionary name lists constitute a central depository in the
compiler for each distinct identifier and a pointer to its associated
definition list. Combined with the dictionary hash table. these lists
provide the means through which an identifier or information about
the identifier may be referenced.

Description

The dictionary hash table is an ordered table of pointers to dictionary
name lists. Each dictionary name list in turn is composed of one entry
for each distinct identifier that hashes to the same value. This
includes identifiers in the source program as well as built-in function
names. syntactic keywords •. etc.

The list nodes are of standard list structure format: thus the first
word of each contains the node type and a pointer to the next node
of the list. Each list may contain two types of nodes. one type for
four-character identifiers and another for eight-character identifiers.
The name entries in each list are ordered in sorting order from low
to high with four-character identifiers preceding eight-character
identifiers.

Each node contains a keyword-type flag and a pointer to the definition
list of the identifier. Tbe keyword-type flag provides an indication
of whether the identifier is a potential keyword. and. if so. a unique
identification of the keyword. The dictionary name lists are
initialized with entries for all keywords. built-in function names.
etc.

The third and. where applicable. fourth words of each node contain
the identifier in EBCDIC. All identifiers are filled out with blanks
until they are either four or eight characters in length.

Entry Formats

The formats for entries in a dictionary name list are shown below.

r--------------------------------, 1 I Pointer to next 1
I OA r entry in list 1
1---------+----------------------1 I Keyword 1 Pointer to I
I Type 1 definition list 1
1--------------------------------1 1 Identifier 1
I (4 characters) I L-----------_____________________ J

r--------------------------------, 1 1 Pointer to next 1
1 OB 1 node in list I
1---------+----------------------1 1 Keyword 1 Pointer to 1
1 Type 1 definition list 1
1--------------------------------1
1 Identifier 1
1 (8 characters) I L---------------_________________ J

Values for N$KEY (Keyword Type):

NaNULL
NaDCL
NaFM'r
NaELSE
NaEND
NaPROC
NaBGN
NaIF
NaON
NaDO
NaRET
NaCALL
NaGET
NaGa
NaGO'l'O
NapOT
NaRVT
NasTOP
NaOPEN
NaCLOSE
NaSTMT

. Condition Keywords

NaERR
NaFOFL
NaoFL
NaUFL
NaZDIV
NaENDF

Filenames

NaINn
NaSYIN
NaANYF
NasyPT
NIOTFL

Options

NaTO
NaBY
NaMBLE
NaTBEN
NaOPTN I NaSYTM NaINTN
NaEXTN

FORMAT

NaR
Nac
NaF
NaE
NaA
Nax

I NaCOLM
NaSKIP

(Non I/O)

Specs

o NOT A KEYWORD
1 DECLARE (DCL)
2 FORMAT
3 ELSE
4 END
5 PROCEDURE (PROC)
6 BEGIN
1 IF
8 ON
900

10 RETURN
11 CALL
12 GET
13 GO
14 GO'l'O
15 PUT
16 REVERT
11 S'i'OP
18 OPEN
19 CLOSE
20 END OF STATEMENTS

22 ERROR
23 FIXEDOVERFLOW (FaFL)
24 OVERFLOW (OFL)
25 UNDERFLOW (UFL)
26 ZERO DIVIDE (ZDIV)
21 ENDFILE

29 INPUT FILE
30 SYSIN
31 ANY FILE
32 SYSPRINT
33 OUTPUT FILE

40 TO
U BY
42 WHILE
43 THEN
44 OPTIONS
45 SYSTEM
46 INTERNAL (INT)
41 EXTERNAL (EXT)

53 R
54 C
55 F
56 E
57 A
58 x
59 COLUMN (COL)
60 SKIP

44

GET/PUT Options (Plus SKIP)

N8EDIT
N8LIST
NIlDATA
NIlFILE

61 EDIT
62 LIST
63 DATA
64 FILE

Attributes (Plus FILE)

N8INPT
N80TPT
NIlPNT
NIlSTIC
NIlAUTO
NIlLBL
NIlENV
NIlRETS
Nil CHAR
NiilENTY
NIlFXD
NIlFLT
NIlCPLX
NIlREAL
NIlTITLE

65 INPUT
66 OUTPUT
67 PRINT
68 STATIC
69 AUTOMATIC (AUTO)
70 LABEL
71 ENVIRONMENT (ENV)
72 RETURNS
73 CHARACTER (CHAR)
74 ENTRY
75 FIXED
76 FLOAT
77 COMPLEX <CPLX)
78 REAL
79 TITLE

TITLE: OPERATION CODE TABLE (0 TABLE)

purpose and Usage

The operation code table is used by the Instruction Assembler ($VINSA)
to interpret the symbolic instruction table (M table).

Description

The table is of fixed length and all entries contain preset values
which are never modified by the compiler. The first part of the table
contains constant entries which are constant operands greater than
a byte in length. The second part of the table contains operation
entries, each representing a machine operation or pseudo-operation.
This table is actually assembled as part of the $TCODE module.

Entry Formats

The format of constant entries in the operation code table is detailed
below.

1 2 N+l Byte
r---,
1 f 1
I LENGTH t VALUE t
I I 1
L---J

Values for Fields:

LENG'rB NWDber of bytes, N, of VALUE.

VALUE The N bytes representing the binary value of the
constant.

The format of operation code entries in the table follows.

1 2 3 5 6 1 8 9 16 Byte
r---,
I 111 I 1 I
t M I R I S I x I EFF I OPCODE I
I I I I I I I L------------------------------------_________________ ----J

Values for Fields:

M If 1, the operation code modifier is to be added
to the OPCODE field. This adjusts the instruction
for fixed, single float, or double float.

R If 1, the OPCODE field is modified by -X'40' if
operand is in a register.

S If 1, the OPCODE field is a pseudo-operation number.

X If 1, the generated instruction is to be indexed
with an Xl and/or B2 field.

EFF Defines the effect of the operation on the register
where:

o = Loads the register positively with new value.
1 = Loads the register negatively with new value.
2 = Destroys the register value, result single register.

45

3 = Destroys the register value, result of
multiply.

4 = Destroys the register value, result of
5 = Stores the register value.
6 = Destroys all register synonyms.
7 = Has no effect on register value.
8 = Changes sign of register (inverts) •
9 = End of procedure.

OPCODE The value in this field is dependent on the
value in M, R, S, or X as described above.

a fixed

a fixed divide.

TITLE: PROGRAM STRUCTURE TABLE (P TABLE)

purpose and Usage

The program structure table describes the program structure statement
currently in effect. It contains one entry for each currently
unterminated BEGIN. PROCEDURE. IF. DO. or ON statement.

Description

The program structure table is an expandable table with six different
types of entry. Each entry is four wards long. The table is treated
like a push-down list.

Entry Formats

Two bytes of the first word of the entry and the last word of the entry
contain standard informatfon. The information contained in the rest
of the entry is dependent on the type of entry.

The first byte of the first word contains a node type. This describes
which of the six entry types is represented. The last byte of the
first word contains the value of the compound statement switch at the
time the entry was made.

The last word of the entry contains a pointer to the dictionary name
list (N list) entry for the label on the statement. If there was no
label or if the statement is an IF or ON statement. this pointer is
null.

Values for general fields:

P$TYPE:

P$CSS:

paNIDO
paIDO
paIF
paON
paBEG
paPROC

Values for $CSS

Noniterative DO
Iterative DO
IF statement
ON statement
BEGIN statement
PROCEDURE statement

Noniterative DO Statement Entry: The entry for a noniterative DO
contains no information other than the general information.

The format for a non iterative DO entry is shown below:

1 2 3 Byte
r---,

Word 1 1 Node Type 1 1 Saved CSS 1
1 P$TYPE I Not Used 1 P$CSS 1
1---1

2 I 1
I I
1------------------ Not USed ------------------1

3 I I
I 1
1---1

4 1 Pointer to Name Entry of Label I
1 P$LNEP 1
L---J

Noniterative DO Statement Entry

47

Iterative YQ statement Entry: An iterative DO entry is created for
a DO statement that contains a TO, BY, or WHILE clause. Besides the
general information, this entry contains a nonrepeating switch. This
switch, contained in bit 0 of the second byte of the first word, is
o if a branch to the increment and test instructions should be generated
at the end of the DO. If the bit is 1, branch instructions are not
to be generated. The second word of an entry contains the address
of the increment and test instructions_ The third word contains the
address of the forward internal branch to the end of the DO-loop.
This branch needs to be resolved at the end of the DO.

The format of an iterative DO entry is shown below:

1 2 3 Byte

r---, Word 1 I Node Type 1 Nonrepeatingl 1 Saved CSS 1
I P$'l'YPE I SWitch I Not Used I P$CSS I
t I . P$NRSW til
1---1

2 1 Address of Increment and Test Instructions 1
I P$ITA I
1---1

3 I Address of Branch to End of Loop Instructions I
I P$BELA I
1---1

" I Pointer to Name Entry of Label I
I P$LNEP I
l---~

Iterative DO Statement Entry

Values for Fields:

P$NRSW = 0 Generate branch back to DO.
= X· 80· Do not generate branch back to 00.

IF Statement Entry: An IF entry is created for an IF statement in the
source program. The second word of the entry contains the address
of the forward internal branch to the ELSE clause. The third word
contains the address of the forward internal branch to the end of the
IF statement. Both of these branches need to be resolved when the
branch point is reached.

The format of an IF entry is shown below:

1 2 3 Byte
r--,

word 1 I Node Type I I Saved CSS I
I P$'l'YPE 1 Not Us ed I P$CSS 1
1--1

2 1 Address of Branch to ELSE Clause I
I ~Q I
I--~-(

3 1 Address of Branch to End of IF 1
1 P$BEFA 1
1--1

" 1 1 1 llull 1 l------------------------__________________________ ~
IF Statement Entry

ON Statement Entry: An ON entry is created for an ON statement in the
source program. The second word contains the address of the forward
internal branch to the end of the on-unit. This branch needs to be

resolved at the end of the unit. The third word contains the address
of the on-unit adcon area in adcon storage~ This adcon area is very
similar to a BAA and contains information about the on-unit. (See
Appendix E.)

The format of an ON entry is shown below:

1 2 3 " Byte
r---, Word 1 1 Node Type 1 , Saved CSS 1
I P$TYPE 1 Not Used ,P$CSS 1
1---I 2 1 Address of Branch to End of On-Unit ,
I P$BEUA ,
1---I

3 1 Address ~f On-Unit Adcon Area I
I P$ADCA 1
I--------------~--I

" 1 1 1 Null 1
l---J

ON Statement Entry

BEGIN Statement Entry: A BEGIN en~ry is created for a BEGIN statement
in the source program. The second byte of the first word contains
the block number of the begin block. The second word contains a pointer
to the block information table (B table) entry for the begin block.

The format for a BEGIN entry is shown below:

1 2 3 " Byte
r---,

Word 1 1 Node Type 1 Block Number , 1 Saved CSS 1
1 P$TYPE I P$BLNR I NOt Used I P$CSS I
1---I 2 I Pointer to Block Information Table Entry I
I P$BITP I
1---I 3 1 Not Used 1
1 1
1---I " 1 Pointer to Name Entry of Label 1
1 P$LNEP 1 l--------------------------------------_______________ --J

BEGIN Statement Entry

PROCEDURE Statement Entry: A PROCEDURE entry is created for a PROCEDURE
statement in the source program. As for a BEGIN entry, the second '
byte of the first word contains the block number of the block and the
second word contains a pointer to the block information table (B table)
entry for the block. The third word of the entry contains the address
of the forward internal branch around the procedure block. This branch
needs to be resolved at the end of the block.

49

The format of a PROCEDURE entry is shown below:

1 2 3 Byte
r---,

Word 1 I Node Type 1 Block Number 1 1 Saved CSS 1
1 P$TYPE 1 P$BLNR 1 Not Used 1 P$CSS 1
1---I

2 1 Pointer to Block Information Table Entry 1
I P$BITP 1
1---I

3 I Address of Branch to End of Block 1
I P$BEBA 1
t---I 4 1 Pointer to Name Entry of Label 1
1 _ P$LNEP 1
L---J

PROCEDURE Statement Entry

50

TITLE: SUBSCRIPT SUBSTITUTION TABLE (Q TABLE)

purpose and usage

The subscript substitution table is used to create a token list for
the subscripts generated for an array expression.

Description and Entry Format

Every segment of this table. except the first. looks exactly like a
token table (T table) segment. The first segment contains all tokens;
no space is reserved at the beginning of this segment for line position.
The table is kept in this manner so that it can be processed using
the Get Token macro (GETKN) (see Appendix C).

The tokens placed in this table ,consist of a left parenthesis followed
by the subscript designato~ separated by commas and followed by a
right parenthesis.

51

TITLE: REGISTER TABLE (R TABLE)

Purpose and Usage

The register table is used by the Instruction Assembler routine ($VINSA)
to maintain the current status of all registers in the object program.

Description

This table is of fixed length and is divided into four parts: adcon
register table, fixed register table, floating-point register table,
and synonyms. The adcon section contains one entry for each of the
ten general registers assigned as nonpermanent address constant
registers. The fixed register section contains one entry for each
of the six general registers assigned as computational registers.
The floating-point register section contains one entry for each of
the four floating-point computational registers. The synonym section
contains 20 entries. ' ,

The general structure of the register table is shown in Figure B-10.

52

R$TBL
Points Here ~-f

+4~

.~ R$FX
Points Here

R$FL
Points Here

.~

+28

e,
t

~

Reg. No.,
Type, Usag
Assignmen
Flags

R$AD
Points Here

+(
~

\
+88

,(R$ND
Points Here

Operand
Type & Va lue

+112

DUMMY

4

5

2

3

0

I

4

6

0

2

6

7

8

9

\0

II

12

13

14

15

DUMMY

4

5

2

3

0

I

4

6

0

2

Fixed

Floating-Point

Adcon

Fixed

Floating-Point

+128

Relocation
Base & Offset

+168

Operand Sign &
Synonym Pointer

Reference
Count

+196

+212

R Table (I of 2)

I

I

1

(

)

I

Figure B-10. ~rmat of Register Table (Page 1 of 2)

6

7

8

9

10 Adcon

II

12

\3

14

15

DUMMY

4

5

2
Fixed

3

0

1

4

6
Floating-Point

0

2

6

7

8"

9

\0
Adcon

11

12

\3

14

15

53

+252

Result Type
& Last-Use
Count

+280

+296

DUMMY ,
4

5

2
Fixed

3

0)
1

4)
6

Floating-Point
0

2 1
Link

Value ~ RSSY Initially
Points Here

>

a
R Table (2 of 2)

S ynonym List
ntries (20) E

Figure B-10. Format of Register Table (page 2 of 2)

Entry Formats

The computational registers, both fixed and floating-point, have the
following format:

1 2 3 Byte
r---,

word 1 1 REG NO 1 REG TYPE 1 GLOB INn 1 USE IND 1
I 1 1 I 1
1--------------+----------------------------------1

2 I OP TYPE 1 OP VALUE 1
I I I
1--------------+----------------------------------1

3 I OP SIGN t NEXT SYN I
I' I
1--------------+----~-----------------------------1

4 I RESULT TYPE I LAST-USE 1
I" t
l---J

The adcon registers have the following entry format:

1 2 3 Byte

r--,
Word 1 I REG NO I REG TYPE I GLOB INn 1 1

I I I 1 I
I--------------+-----------------------------------J

2 I BASE I OFFSET 1
111
1--------------+-----------------------------------1 31 1 REF NO t
t I I
l--J

Values for Fields:

REG NO Absolute register number associated with entry.

REG
TYPE

GLOB
INn

USE
INn

OP
VALUE

OP
TYPE

OP
SIGN

NEXT
SYN

Type of register~ 0 = Adcon, 1 = Fixed computational,
2 = Floating-point computational

When ON, the following bits signify:

Bit 7: The register is globally assigned to
the indicated value.

Bit 6: The register is symbolically assigned to
the indicated value.

Bit 5: The register is inhibited from assignment.

If 0, assigned as a single register~ if 1, assigned
as left half of a double register~ if 2, assigned as
right half of a double register.

Dictionary attribute list pointer, constant
table pointer, etc.

Indicates the type of the op value field.

If 1, the operand has a prefix minus sign.

If nonzero, points to the first synonym entry which
applies to the register.

55

RESULT
TYPE

LAST
USE

BASE

OFFSET

REF NO

The bits have the following values and meanings when ON:

Bit 0 = Result of a fixed multiply
Bit 1 = Result of a fixed divide
Bit 3 = Double precision result
Bit 6 = Floating-point result
Bit 1 = complex result

Number of the triad after which the contents of
the register can be destroyed.

Relocation base of the adcon.

Relative address of adcon from base origin.

Binary number associated with the referencing of
the adcon register; the lower the value, the more
distant t;.he last reference is from the current
processing point.

Synonyms have the following format:

1 2 3 Byte

,------------~-----------------------------------,
Word 1 I I Pointer to Next Synonym I

I f I
I-----------+------------------~-----------------.

2 I Op Type I Op Value I
I I f
l--~

56

TITLE: TEMPORARY STORAGE TABLE (S TABLE)

Purpose and Usage

Each procedure block, format list, and on-unit has temporary storage
associated with it. Each level of temporary storage is identified
by an entry in the temporary storage table.

Description

The temporary storage table is maintained as an expandable table.
It contains one logical section for each unterminated procedure block,
on-unit, and format list. This table is referenced like a push-down
list.

Entry Format

Each entry in the table is three words long. The first word contains
the length in bytes of the temporary storage area, and the number of
the triad after which the area will be available for reuse (last-use
count). The second word contains the base code and displacement of
the storage location allocated to the temporary area. The third word
contains the DO level associated with the temporary area when it is
used in conjunction with register storage around DO-loops. An entry
of zero in the first word indicates the beginning of a logical section
of subsequent entries and separates the entries for one block from
those for the encompassing block.

The format of an entry in the temporary storage table is shown below.

1 2 3 4 Byte
r--l

Word 1 1 Length 1 Last-Use Count I
1--1 2 1 Allocated Base Code and Displacement f
1--1

3 1 Level I
L-----------,-----------------------------------J

57

TITLE: TOKEN TABLE (T TABLE)

purpose and Usage

The token table contains one entry for each token in a source statement.
The token table also contains an attribute entry for each occurrence
of a constant in the statement.

Description

The token table is maintained as an expandable table. The Entoken
routine ($ATKN) entokens one statement at a time and places it in the
token table. At the beginning of entokening, all areas in this table
except the first are released. Thus the space used for the token table
is statement-related.

A segment of the token table is 'subdivided as shown in Figure B-ll.

=1 Pointer to Last Segment

12 Words
(48 Bytes) -

Offset Within Line Indicator

T@BEG I Pointer to Top of Segment

)
Up to 48)
Tokens

~ (1 Word Each) <
T@END I Pointer to End of Segment

>
Constant Attribute) Entries
(possibly Empty)

Table I
Type Pointer to Next Segment

Figure B-ll. Format of Token Table

The offset bytes are used to indicate the character position on the
line where the corresponding token in the tokens area began. This
information is used only in producing error messages. The number of
bytes in the area is fixed: there are enough bytes for the maximum
number of tokens in the tokens area.

Entry Format

All token table entries are one word in size,. T$TYPE is used to
identify the type of token. The following types are used (not including
end-of-table type):

58

identifier
constant
non-parenthesis delimiter
right-parenthesis delimiter
left-parenthesis de1imiter
keyword
new line.

T$PTR of an identifier entry points to the dictionary name list (N
list) entry for the identifier. The format of an identifier entry
is:

r----------------------------------,
I T$TYPE I I
I = T8ID I T$P'l'R I
I 08 I I L--------------____________________ J

T$P'l'R of a constant entry points to a constant attribute (A list) entry.
The format of a constant entry is:

r----------------------------------,
I T$TYPE I I
I =T8CNSTI T$P'l'R I
I OC I I
L---------------------.------------J

T$PRTY of a non-parenthesis delimiter entry contains the priority of
the delimiter. The priority is a combination of a one-byte parenthesis
count followed by the absolute priority of the delimiter in one byte.
The format of a non-parenthesis delimiter entry is:

nTYPE I

= T(wDELM nDELM npluy
18 I

.. • ' ., •
,

Parcnthcsls Absolute
Level Precedence

In addition. the token for a right-parenthesis delimiter contains in
T$COM the count of the number of commas inside the parentheses pair
not included inside a contained parentheses pair. The format of a
right-parenthesis delimiter entry is:

r----------------------------------,
I T$TYPE I I I
I =T8RPR I T$COM I T$PRTY I
I 14 I I I
L----------------------------------J

T$PTR of a left-parenthesis delimiter entry contains a pointer to the
corresponding right-parenthesis entry. This pointer is always valid
since the Entoken routine ($ATKN) balances parentheses. The format
of a left-parenthesis delimiter entry is:

r----------------------------------, I T$TYPE I I
I =T8LPR I T$P'l'R I
I 10 I I
L-------------------------------~--J

If an identifier longer than eight characters appeared in the source
and was a legal keyword. then a keyword token is inserted in the token
table. T$:KEY of this entry contains the keyword type which is normally
contained in the dictionary name list (N list) entry. (See -Dictionary
Name List (N List)- for keyword codes.)

59

The format for a keyword entry is:

r----------------------------------,
I T$TYPE I I I
I =TiKEY I T$KEY I Not Used ,
I 04 I I I
l----------------------------------J

A new line entry signifies that a new line in the source program began
with the next token. T$PTR of the entry points to the beginning of
the line number in the source program. The format for a new line entry
is:

r----------------------------------,
I T$TYPE I I
I =TiNEW I T$PTR I
I 20 I I
l------------------------~--------J

If a new line begins in the middle of a character string, then the
character string constant tokens follow the new line token. Multiple
new line tokens in a row are reduced so that only the last one is
present in the token table.

T$PTR for a current end or beginning of table token points to the end
or beginning of the current area. The end of table token entry does
not necessarily appear at the physical end of an area. The format
for this entry is:

r----------------------------------,
I I I
I Token I Pointer to I
I Type I Next Area I
l----------------------------------J

60

TITLE: EXPRESSION STACK (V TABLE)

Purpose and Usage

The first entry of the expression stack table is created by one of
the statement processing routines to indicate the type of expression
to be processed. All remaining entries are added by the Expression
Processor Controller ($NEXP). Each time the start of a new expression
is detected (that is, a left parenthesis is encountered), the stack
is pushed down and an entry created for the new expression. Each time
the end of an expression is detected (that is, a right parenthesis
is encountered), the stack is popped up and the top entry removed.

Description

The expression stack is maintained as an expandable table and processed
as a push-down list.

Entry Format

The format of an entry in the expression stack is shown beiow.

1 2 3 4 Byte
r--,

Word 1 I V$TYPE I V$CCNT I V$ACNT I V$PTYP I
I I I I I
I------------------------------~-------------------I 1 1

2 I V$ATTE or V$CSDV 1
1--1
1 I

3 1 V$PRMP 1
L--J

Values for Fields:

V$TYPE

Value

o
4
8

12
16
20

V$CCNT

V$ACNT

V$PTYP

V$ATTE

V$CSDV

V$PRMP

The type of expression:

Symbolic ~

V8ARG
V8SUBL
V8ACRS
V8EXP
V8ASS
V8AASS

Meaning

Argument list
Subscript list
Array cross-section
Ordinary expression
Assignment statement
Array assignment statement

The comma count if a list is under process.

The * count if a cross-section is under process.

The type of the next outer expression.

Pointer to the array or entry name if a list is under
process.

Offset in static storage to the origin of the cross
section dope vector if an array cross-section is under
process.

Pointer to the dictionary attribute node of the next
parameter if the attributes of the arguments are
declared.

61

\

TITLE: OPERATOR STACK (X TABLE)

Purpose and Usage

The operator stack is created by the Expression Processor Controller
($NEXP) to hold operators which have not been processed to form triads.
One entry is active for each operator whose operands are still
indeterminate.

Description

The operator stack is maintained as an expandable table and processed
as a push-down list. Each operator and separator encountered in the
token table (T table) by the Expression Processor Controller is added
to the top of this stack. Before adding the new operator, all operators
at the top of the stack for whi~h the new operator determines operands
are processed and removed from the stack.

Entry Format

The format of an entry in the operator stack is shown below.

1 2 3 4 Byte
r--, 1 1 I X$PRTY 1

Word 1 1 I X$DELM 1- - - - -1- - - - -I
I 1 1 X$PRNL 1 X$PRCL 1
1------------t-----------------------------1
1 I 1

2 1 X$POI 1 X$TOKN I
1 I I
L--J

Values for Fields:

62

X$DELM:

28
32
36
40
44
48
52
56
60
6IJ
68
72
76
80
84
88

X$PRTY

X$PRNL

Delimiter type:

Symbolic Name

TacOM
T8ASGN
T8DIV
T8MIN
T8EXP
T8GT
T8G'l'E
T8LT
T8LTE
T8EQ
T8NE
T80R
TaAND
T8MPY
T8PLS
T8LEFT

Meaning

Comna
Assignment symbol
Divide
Infix minus
Exponentiation
Greater than
Greater than or equal
Less than
Less than or equal
Relational equal
Not equal
Log"ical OR
Logical AND
Multiply
Infix plus
Left parenthesis

The priority of the operator which consists of a
parenthesis level and a precedence number of the
operator.

The most significant part of the operator priority,
the level of nesting o£ parenthesis at which the operator
occurred.

X$PRCL

X$POI

X$TORN

The least significant part of the operator priority,
the precedence number assigned to the operator.

If bit 6 is 1, a prefix operator is applied to the
delimiter. If bit 7 is 1, an odd number of prefix minus
operators is applied to the delimiter.

Pointer to the token table entry which contains the
delimiter token.

63

TITLE: OPERAND STACl((Y TABLE)

purpose and Usage

The operand stack is created by the Expression Processor Controller
($NEXP) to hold operands which have not been processed to form triads.
One entry is active for each such operand.

Description

The operand stack is maintained as an expandable table and processed
as a push-down list. Each operand encountered in the token table (T
table) by the Expression Processor Controller is added to the top of
this stack. Whenever it is possible to combine an operator with its
two operands, the topmost entries of the stack representing the operands
are removed and replaced wi th a~ entry indicating the result of the
operation.

Entry Formats

An identifier or source constant has the following format:

1 2 3 Byte
r--,
I I I

WOrd 1 I ¥$OPT· I Y$OPV I
I---~--------*-------------------------------------I I I _ I

2 l Y$POI I Y$TOD I
L---_J

Values for Fields:

Y$OPT

Value

12

28

40

Y$OPV

Y$POI

Y$TOKN

The type of operand:

Hex Symbolic ~ Meaning

C T8CNST Pointer to attribute
node of a source constant

1C TaIDAT Pointer to attribute
node of an identifier

28 TapSEU Pointer to attribute
node of a pseudo-variable

Meaning dependent on value of Y$OPT.

If bit 0 is 1, the operand is parenthesized. If bit 6
is 1, a prefix operator is applied to the operand .•
If bit 7 is 1, an odd number of prefix minus operators
is applied to the operand.

Pointer to the token table entry which contains the
operand.

All other entries have the following format:

6"

1 2 3 4 Byte
r---, 1 1 I

Word 1 I Y$OPT I Y$OPV 1
I 1 I
1-----------+-----------------------------1 1 1 I Y$L I

2 1 Y$POI I Y$TM 1- - - - -1- - - - -I
1 I 1 Y$PR 1 Y$SF I
L----------------------------------~------J

Values for Fields:

Y$OPl'

Value

44

48

52

56

60

64

68

72

76

80

Y$OPV:

Y$POI:

Y$TM:

Y$L:

The type of operand:

2e

38

le

40

44

48

4e

50

SJIIIbolic ~

T8TRID

TIDATA

TILIB

TIERR

TlRADD

TIFADD

TlBADD

TIPADD

TIIBIF

TICON

Meaning

Pointer to triad table
(z table) entry

Immediate constant

Entry point number of
library routine

Error operand

Balfword address in
static storage

FUllwom address in
static storage

Byte address in static
storage

Immediate DED

In-line built-in fUnction
number

Pointer to constant table
(e table)

Meaning dependent on value of Y$OPT.

Same meaning as above.

Operand type mask. Bas same meaning as dictionary
attribute data description field:

Bit 0 If 1, operand is arithmetic.
Bit 1 If 1, operand is a variable.
Bit 2 If 1, operand is in error.
Bit 3 If 1, operand is double precision.
Bit 4 If 1, operand is of special type.
Bit 5 If 1, operand is a character string.
Bit 6 If 1, operand is floating-point.
Bit 7 If 1, operand is complex.

The length if operand is a string.

Y$PR:

Y$SF:

The precision of the operand if its type is arithmetic.

The scale factor of the operand if its type is arithmetic.

65

TITLE: TRIAD TABLE (Z TABLE)

Purpose and Usage

The triad table contains one entry for each triad (that is, operator
and two operands) generated by the statement processors and the
Expression Processor Controller ($NEXP). The triads are ordered such
that they appear in the triad table in object program execution order.
The triad entries are processed by the Triad Code Generator ($TCODE)
to produce machine-language instructions.

Table Description

The triad table is maintained as an expandable table and contains all
the triads required to represent a single source statement. Each entry
of the table is four words in length.

Entry Formats

The format of each triad before code is generated is:

1 2 3 Byte
r-------------~-----------------------------------~
lit I I

Word 1, Z$TOP IZ$LOS 1 Z$ROS I Z$TMSlC I
I----------t--------------------------------------I
I 1 1

2 I Z$LOPT I Z$LOP I
I----------t--------------------------------------I
fir

3 I Z$ROPT I Z$ROP I
I----------t--------------------------------------I I I - l

.. 1 Z$TSGN 1 Z$LUSE 1 l---------------------------------________________ J

Values for Fields:

66

Z$TOP

Value

o
4
8

12
16
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92

Indicates the specific operation to be performed on
the operands. The operators are:

o
4
8
C

10
1C
20
24
28
2C
30
34
38
3C
40
44
48
4C
50
54
58
5C

Symbolic Name

TaNULL
TaLAST
TaCALL
TaENDC
TacVT
TaCOM
TaASGN
TaDIV
TaMIN
TaLGE
TaGT
TaGTE
TaLT
TaLTE
TaEQ
TaNE
TaOR
TaAND
TaMPY
TaPLS
TaLEFT
TaTES'!'

Meaning

Null
End of triad table
Begin call
End call
Convert
Argument list (comma)
Assignment symbol
Divide
Minus
Unconditional branch
Greater than
Greater than or equal
Less than
~ss than or equal
Equal
Not equal
Logical OR
Logical AND
Multiply
Add
Subscript (left parenthesis)
Test compare

Value

96
100
104
108
112
116

120
124
128
132
136
140
144
148
152
156
160
164

168

172
176
180
184
188
192
196

Z$LOS

Z$ROS

Z$TMSK

Z$LOPT

Value

o
4
8

12
16
28
40

44
48
52
56

60
6"
68
6C
70
74

78
7C
80
84
88
8C
90
94
98
9C
AO
A4

A8

AC
BO
B4
B8
BC
CO
C4

Symbolic ~

TIDADD
TIBRA
TICOMB
TIBIB
TIFIB
IIRFIB

TISTA
TIALGN
TIENDB
TIPRLG
TILIBC
TISHTB
TIBAL
TIPEND
TIEDO
TIBGO
TlLOAD
TIDVM

TIDVA

TISPC
TISNC
TIHSA
TICDAD
TITM
TITITL
TIORI

Meaning

Define address
Branch to source label
Combine/resolve source label
Backward internal branch
Forward internal branch
Resolve forward internal
branch
store address
Align
End block
Prologue
Library call
Symbol table entry
Branch and Link
End prologue
End DO
Begin DO
Return
Multiply dope vector
elements
Store into dope vector
element
Scale complex positive
Scale complex negative

. Halfword subscript
Store code address
Test under mask
Title move (special)
OR immediate

If low-order bit is 1, sign of left operand is negative,.

If low-order bit is 1, sign of right operand is negative.

Operand type mask. Has same meaning as dictionary
attribute data description field.

Bit 0 If 1, operands are arithmetic.
Bit 1 If 1, operands are variables.
Bit 2 If 1, one of the operands was in error.
Bit 3 If 1, operands are double precision.
Bit 4 If 1, operands are of special type.
Bit 5 If 1, operands are character string.
Bit 6 If 1, operands are floating-point.
Bit 7 If 1, operands are complex.

Indicates type of value in left operand. The operand
types are:

Hex Symbolic Name

0 TlNULL
4 IACODE
8 IASC
C lAADCN

10
1C TIIDAT
28 TIPSEU

2C TITRID
30 TIDATA
34 TILIB
38 TIERR

Meaning

Null
Code address
Static address
Adcon address
Current DSA address
Identifier attribute pointer
Pseudo-variable attribute
pointer
Triad table pointer
Immediate constant
Library load table pointer
Error operand

67

t

Value

60
64
68
12
16

80
84
88

Z$LOP

Z$ROPT

Z$ROP

Z$TSGN

Z$LUSE

Hex

3C
40
44
48
4C

50
54
58

Symbolic ~

T8HADD
T8FADD
T8BADD
T8PADD
T8IBIF

T8CON
T8REG
T8ACSDV

Meaning

Halfword static address
Fullword static address
Byte static address
Immediate DED
In-line built-in function
number
constant table pointer
Register table pointer
Array cross-section dope
vector address

Left operand. Contents defined by Z$LOPT.

Indicates type of value in right operand. The operand
types are the same as for Z$LOP'l'.

Right operand. Contents defined by Z$ROP'l'.

If low-order bit is 1, sign of triad is negative.

The highest triad number which references this triad.

The format of each triad after code is generated is:

1 2 3 Byte

r--------------------------------,
word 1 I Z$TOP I Z$REG I Z$ROS I Z$TMSR I

1-------+------------------------1-
I I I

2 f Z$IBAS I Z$IOFF f
I I I
1--------------------------------1 I I ,

3 I Z$VBAS I Z$VOFF I
I I r
1--------------------------------1
f I I

4 I Z$VSGNI Z$LUSE I
I I f
l--------------------------------~

Values for Fields:

68

Z$'l'OP

Z$REG

Z$ROS

Z$TMSR

Z$IBAS

Z$IOFF

Same as before code generation.

If nonzero, the register table (R table) entry associated
with the register containing the value of the expression •.
This field is always zero if Z$TOP is the subscript
operator.

If nonzero, the register table entry associated with
the register containing the value of the offset to the
array etement referenced by the triad. This field is
always zero if Z$TOP is not the subscript operator.

Same as before code generation.

Relocation base associated with object code.

Offset within the code area to the first byte of code
which evaluates the expression. This instruction address
is not always set for a triad.

Z$VBAS

Z$VOFF

Z$VSGN

Z$LUSE

If nonzero. the triad value is in temporary storage
and contains the relocation base of that storage. If
equal to X'FF'. the expression is a subscripted
reference.

Offset within the data area to the value of the triad.

Sign flags for the value of the triad. If bit 2 is
1. the value is negative in the register. If bit 1
is 1. the value is negative in the temporary storage.

Same as before code generation.

69

TITLE: DOPE VECTOR TABLE

Purpose and Usage

The dope vector table provides the dope vector table pointers to dope
vectors of static arrays and strings so that the pointers in the dope
vectors may be initialized when static storage is allocated.

Description

The dope vector table is built over the source program in the user's
area as the I table and J list are processed during phase 2 of
compilation. Each entry in the table contains a pointer to the dope
vector (in the constants area) of an array/string in static storage.

Entry Format

The format of an entry in the dope vector table is:

Pointer(from PI) to the Dope Vector

.. ..
1 Word

Comments

The last entry in the table is all zeros.

70

TITLE: ENDFlLE TABLE

Purpose and Usage

An ENDFlLE table is constructed for each block in which one or more
ENDFlLE on-units is encountered. Area is reserved for this table in
the DSA for the block by the END Generator routine ($EDGN) when the
block is beinq ended. The table is initialized and updated by calls
to the lBEONREV routine at runtime.

Description

Each ENDFlLE on-unit encountered in a block requires eiqht bytes in
the DSA for the block to build an entry in the ENDFlLE table. The
number of entries in the table is carried in a pointer to the table.

Entry Format

The format of an entry in the ENDFlLE table is shown below~

1 2 3 Byte
r----------------------------------, Word 1 I Action t A(On-Unit Adcon) I
I Code I 1
1----------------------------------1
I 1

2 I A(PCIB) I
~------------______________________ J

Values for Fields:

Action Code If 0, an ON ENDFILE statement referencinq the file which
corresponds to this entry has not been executed in this
block. (See the CALL/360-0S PL/I Language Reference Manual
for action that will be performed if the ENDFILE condition
is raised.)

AWn-Unit
Mcon)

A(FCIB)

If 1, standard system action will be performed if the
ENDFlLE condition is raised.

If 3, user-specified action will be performed if the
ENDFILE condition is raised.

These bytes are meaninqful only for action code 3.
Then, they contain a pointer to the on-unit adcon area.

This word contains a pointer to the FCIB for the file.

11

TITLE: ENTRY NAME DECLARATION LIST

Purpose and Usage

An entry name declaration list is established whenever a variable that
is a nested entry name declaration is encountered. The list is
maintained by the Attribute Node Creation routine ($ANCRE) and allows
this routirie to be pseudo-recursive. It is necessary because entry
name declarations may have entry name declarations within them.

Description

An entry name declaration list is a push~down list. For convenience
in storage, this list is kept in the program structure table (P table).
The top node of the push-down list is kept in the local variable ANPDL.

Entry Format

The format of an entry name declaration list is shown below.

1 2 3 Byte

r---------------------------------------,
t 1

Word 1 I P$SEliIT t
I t
1---------------------------------------1 I . I

2 I P$ZPRM I
I I
1---------------------------------------1
I 1

3 1 P$ZETlt t
I I
1---------------------------------------1
I I I I

.. I P$ZNP I I P$ZSP I
I I t I L-----------.---------------------------J

Values for Fields:

72

P$SENT

P$ZPRM

P$ZETK

P$ZNP

P$ZSP

Pointer to the entry attribute node being processed

Pointer to last parameter attribute node processed

Pointer to current position in entokening of parameter
list

Number of parameters previously processed

State of processing (RErURNS attributes or parameter
list)

TITLE: ON-UNIT PARAMETER LIST

purpose and Usage

An on-unit parameter list is constructed for each ON ENDFILE statement
encountered in a program. It contains addressing information essential
to successful execution of the ON ENDFILE statement.

Description

An on-unit parameter list comprises two words of the static and
constants area. It is constructed by the ON Generator ($CON), which
stores the address of the list in the block information table (B table).
Code is generated to call entry-point IHEONUN of the On-ENDFILE and
REVERT Initiali·zer routine (!HEONREY) at runtime, passing to it the
location of this on-unit parameter list.

Entry Format

The format of an on-unit parameter list is shown below.

1 2 3 4 Byte
r---------------------------------, Word 1 I Action I Pointer to On-Unit I
I Code I Adcon Area I
1--------+------------------------1

2 1 Base I Displacement 1
I Code 1 I
L---------------------------------J

Values for Fields:

Action Code If 1, standard system action will be performed
if the ENDFILE condition is raised.

If 3, user-specified action will be performed
if the ENDFILE condition is raised.

Pointer to
On-Unit Adcon
Area

These bytes are meaningful only for action code 3.
Then, they contain a pointer to the on-unit adcon
area.

Base Code If OC, the remaining three bytes of this word
contain a displacement to a location in the
adcon area which contains the address of the
FCIB for this file.

If 08, the remaining three bytes of this word
contain a displacement to a location in the
static and constants area which contains the
address of the FCIB.

73

TITLE: ROUTINE ENTRY NAME PROCESSED TABLE

purpose and Usage

one entry is created in this table for each library runtime routine.
The entry corresponds to a fullword entry for the routine in the library
load table (L table). The routine entry name processed table is uSid
exclusively by the Runtime Library Loader ($BRTLL) to indicate that
a routine is being or has been loaded.

Description

The routine entry name processed table is located immediately following
the library load table in the fixed area of working storage.. At the
start of compilation. this table is set to zeros. It is N bytes in
length. where N is the number o~ entries in the library load table
(that is. the number of library runtime routines).

Entry Format

Each entry in the routine entry name processed table is one byte in
length. It contains a two-digit hexadecimal action code.

1 Byte
r--------,
I Action I
I Code I
L--------J

When Runtime Library Loader begins processing an entry in the library
load table. it sets the byte corresponding to this entry in the routine
entry name processed table to X'Ol'. Thus. if an entry in the routine
entry name processed table is X'Ol'. the routine identified by this
entry has been or is being loaded. If an entry contains zeros. no
action has been performed on the routine.

14

APPENDIX C - COMPILER SUPPORT MACROS

The compiler support macros were created solely for the CALL/360-0S
PL/I implementers; the CALL/360-0S PL/I user will never come in contact
with them.

There are two general categories of compiler support macros: -those
which are used in handling tables and the others. A general term
cannot be given to describe the overall function of the other macros;
stated simply, they support implementation of the CALL/360-0S PL/I
compiler.

The descriptions in this appendIx explain how to ~ the macros in
each category. They do not describe bow the macros perform their
fu~ctions. The macros in each category are described in alphabetic
order, according to their mnemonics. The following rules explain the
notation that is used.

1. Lowercase letters represent the name of a general class of
elements in the CALL/360-0S PL/I language from which a particular
entry must be selected by the user.

2. Uppercase letters and punctuation must appear as shown.

3. Braces { } are used to denote grouping. A vertical stacking
of possible entries indicates that a choice is to be made by
the user.

4. Square brackets (] denote options. Any entries enclosed in
brackets may be omitted.

TABLE HANDLING MACROS

EXPANDABLE TABLES

Expandable tables are linearly accessed stacks which are maintained
in fixed-size segments. Currently the size of a segment is defined
to be 64 words; this size has been chosen to allow the information
required for a given table in an average program to be contained in
a single segment without overflow. The format of an expandable table
segment is:

n ptrl

n ptr2

Beginning
of-segment
control word

Table entries

End-of-segment
control word

The first and last words of the segment are reserved for control
purposes. The value of n is the node code for the particular table;
ptr1 points to the end-of-segment control word of the preceding table

75

segment and is zero for the first segment in a table; ptr2 pOints to
the beginning-of-segment control word of the following table segment
and is zero for the last segment in a table.

Associated with each table is a set of variables. p$HEAD points to
the beginning-of-segment control word of the first segment of the
table. p$TAIL points to the end-of-segment control word of whichever
segment is currently the last segment of the table. p$ACTV points
to the first available (unused) word in the current table segment.
A two-word variable provides information on the table segment currently
accessed; p$CURR contains a pointer to the top of the segment currently
being accessed, and p$CURR+4 contains a pointer to the unused space
at the bottom of the currently accessed segment. Since the C table
and I table contain variable-length entries, the amount of unused space
at the bottom of a given segment is not calculable on the basis of
entry length. Accordingly, the. word immediately preceding the end
of-segment control word is reserved for a pointer to the unused space
in these two tables.

The macros to process entries in an expandable table are listed below;
each macro is described individually later in this section. Expansion
and contraction of table segments is automatically handled by the
macros and is transparent to the user.

• GCURR sets a pointer or register to the displacement of the current
table entry.

• GNODE uses p$ACTV to acquire space for a new table entry and sets
a pointer or register to the displacement of the new entry.
Subsequent use of GCURR will obtain a pointer to the new entry.
Table segments are automatically expanded, if required. If a new
segment is needed, an attempt is made to obtain it from the free
pool, that is, list of released segments pointed to by SEGLST of
the fixed area. If there are no entries in the list, space is
acquired from the area pointed to by FREPTR of the fixed area.

• GPREV uses p$ACTV and p$CURR to step backwards in the table and
set a pointer to the entry immediately preceding the entry that
was current. Subsequent use of GCORR will obtain a pointer to
the new entry. The space occupied by the old entry is released
(unless specifically inhibited) and is no longer available. Table
segments are automatically returned to the free pool, if required.

• GNEXT uses p$CURR to step forward in the table and set a pOinter
or register to the new entry. GNEXT can be meaningfully used only
after uses of GPREV which did not release the old table entries.
Both GPREV and GNEXT signal when-they have stepped past the
beginning or end of the table.

• MNODE initializes the p$CURR and p$CURR+4 pOinters so that GPREV
with SAVE option may subsequently be used.

• FAREA frees all segments of the table except the first and re
initializes the first segment for subsequent GNODEs.

• GFRST sets a pointer to the first node of a table and initializes
p$CURR and p$CURR+4. GNEXT can subsequently be used to step through
the table.

Four compiler support subroutines are used to support the expandable
table macros. $WEXP is used by GNODE to obtain a new segment. $WCTCT
is used by GPREV and FAREA to release unused segments to the pool of
unused segments. ($WEXP will attempt to obtain a new segment from
the pool, if one is available, before it obtains a new space.) $WSTEP

76

is used by GNEXT to step from one segment to the next (to set p$CURR).
$WBACK is used by GPREV (with SAVE option) to step from one segment
to the preceding segment. (See section 3, Volume I.)

LISTS

Lists may be single-ended or double-ended. A single-ended list has
a universal variable, p$BEAD, associated with it. New entries are
added to the head of the list. This kind of list has low overhead
in its use. When the list is read, however, entries are returned in
reverse order.

A double-ended list has two variables associated with it: p$BEAD and
p$TAIL. p$BEAD is set by the user to point to the first item in the
list and does not change thereafter. p$TAIL points to the end of the
list. New entries are added to the end of the list (with their pointer
field set to zero), and p$TAIL is updated with each addition. This
list has somewhat higher overhead, but the original order of the entries
is maintained.

A set of macros is available to process lists. Maintenance of linkages
and head and tail pointers is automatic. To minimize overhead in the
macros, the initial setting of p$BEAD in double-ended lists is done
by the user.

The macros to process entries in a list are noted below7 each macro
is described individually later in this subsection.

• GNODE acquires space for a list entry and chains the entry to the
head or tail of the list, as specified_ (Chaining may be inhibited
if desired.) A pointer is set to the new entry.

• GNEXT steps to the next entry in a list which has already been
formed, and either sets a pointer to the entry or Signals the end
of the list.

• DNODE deletes from a list the entry which follows a specified
entry. Space used by deleted nodes is not recovered.

• INODE inserts an entry which was not chained by GNODE into a list
at the BEAD, TAIL, or following a specified entry. DNODE and INODE
can be used jointly to reorder a list or transfer entries from
one list to another.

A single-letter symbolic prefix is associated with some fixed tables,
all expandable tables, and all lists used by the compiler. The
assembler-language labels for all fields within and values associated
with a given table or list consistently begin with the single-letter
prefix assigned to that table or list. The table-prefix letter codes
are as follows:

77

code - Meaning

A Dictionary attribute list
B Block information table
C Constant table
D Line number table
B Dictionary hash table
I Initialization table
J Supplementary initialization list (dope vector list)
L Library entry name table (library load table)
M Symbolic instruction table
N Dictionary name list
o Operati.on oode table
P Program structure table
Q Subscript SDbst.i tution tab1.e
R Register table ,
S Temporary storage table
~ Token table
V Expression stack
X Operator stack
y operand stack
Z Triad table

'l'he tables and lists noted above are di scussed in Appendix B of this
manual. other fixed tables. which are also used in CALL/366-0S PL/I,
are discussed in Appendix B or in other appendices that deal with
closely related .topics. These tables and the sections in this manual'
where they are discussed are noted below.

78

Attribute 'Table
Data Paruaet.er Tab1e (also

.called table of opeRIlCls
or $Pm table)

nope Vect:or Table
EllDnLE "fabl.e
EIltxy !Ia.8!e Declarat.ion Llst
on-UDit Par.aaeter List
Routine Entry IIa8Ie Pr0cesse4

TaMe
Syabol. Table

Appendix B
AppeDdlx B
Appendix B
Appendix B
AppeDd1x B

Appendix E

TITLE: DELETE ENTRY MACRO (DNODE)

purpose

The Delete Entry macro is used to delete an entry from a list.

[symbol] DNODE table-prefix

{ (register-name) } [{ (r7gister-name) }]
pointer-name 'po1nter-name

table-prefix:

register-name:

pointer-name:

A, N

G2, G3, Glf, G5

any fullword, covered pointer

The second operand points to the list entry which immediately precedes
the entry to be deleted. The third operand, if present, will be updated
with a pointer to the deleted entry.

Registers Used

G6, Gl, P", P5

Value Returned

Third operand updated to point to deleted entry, if specified.

79

TITLE: FREE AREA MACRO (FAREA)

purpose

The Free Area macro releases all space allocated to an expandable table
and reinitializes the table in preparation for a subsequent first
entry.

Call'

(symbol) FARD table-prefix

[, { (register-name) }} [.value}
pointer-name

table-prefix:

register-name:

pointer-name:

value:

GO. G2, G3, Gil

any fu11word covered pointer

an absolute expression with a value less than
256

All entries in the specified table are discarded and their space is
returned to the free pool. The initial segment of the table is retained
and reinitialized for subsequent use.

If a second operand is present. it will be set to a pointer to the
first node in the table, ana space will be reserved for that noae (as
in GRODE).

If a third operand is present, the specifiea value will be placed in
the first byte of the first: noae in tile table. and space will be
reserved for the node.

Registers Used

G5. G6. G7, PS, ct. C2

Value Returned

Second operana set to point to the first node of the reinitialized
table, when specified.

80

TITLE: CURRENT ENTRY LOCATOR MACRO (GCURR)

Purpose

The Current Entry Locator macro locates the current (most recently
constructed) entry in an expandable table.

[symbol] GCURR table-prefix

(register-name) }]
pointer-name

table-prefix:

register-name: GO, G2, G3, G4, G5, G6, G1

pointer-name: any fullword, covered pointer

The second operand is set to point to the current (last constructed)
or last unreleased entry in the table. If the second operand is .
omitted, the output pointer is placed in G1.

Registers Used

G1

Value Returned

Pointer to current table entry, in second operand, if register; in
second operand and G1, if pointer; in G1 if second operand is omitted ..

81

TITLE: POINTER TO FIRST NODE MACRO (GFRST)

purpose

The Pointer to First Node macro establishes a pointer to the first
node of a previously constructed expandable table.

Call

[symbol] GFRST table-prefix

(register-name) }
pointer-name •

table-prefix: any expandable-table prefix

register-name:

pointer-name: any fullword covered pointer

The second operand is set to point to the first node of the specif~ed
table. If the second operand is omitted, G7 is used.

Registers Used

G6, G7, if second operand is a pointer-name.

Value Returned

Pointer to first node of table, in second operand (and in G7 -if second
operand is a pointer-name).

82

TITLE: GET NEXT ENTRY MACRO (GNEXT)

purpose

The Get Next Entry macro steps to the next entry in a table or list
which has already been constructed.

[symbol] GNEXT table-prefix

[I (register-name-I) I] [I (r~gister-name-2) I]
'pointer-narne-I 'po1nter-narne-2

table-prefix:

register-names: G2. G3. G4

pointer-names: any fullword. covered pointer

Note: References to the I table are ei ther IA or IC. IA is used for
a two-word adcon entry; IC is used for all other entries.

For lists. the second operand is assumed to contain a pointer to a
given list entry. The macro updates the second" operand to point to
the immediately succeeding list entry and sets the condition code to
nonzero. If the end of the list is reached. the second operand and
condition code are set to zero. If the second operand is omitted.
the input pointer is assumed to be p$BEAD and the output pointer is
placed in G7.

For tables. the second operand is assumed to contain a pointer to a
given table entry. The macro updates the pointer to the next table
entry and sets the condition code to nonzero. If the end of the table
is reached. the second operand and condition code are set to zero.
The second operand may not be omitted for tables. The first call to
GNEXT should be preceded by calls to either KNODE (followed by GPREV)
or GFRST.

Table entries IC and C only. being of variable length. require the
length of the current node to be specified by a third operand. either
register or pointer. The third operand is not examined for any tables
except IC and C.

Registers Used

Values Returned

Pointer to next entry in second operand (G7. if defaulted for lists);
condition code set to zero at end of table or list; nonzero. otherwise.

83

TITLE: GET NODE.MACRO (GNODE)

purpose

The Get Node macro dynamically acquires working storage for the
construction of table or list entries. including automatic management
of expandable table segments and list linkages .•

Call

(symbol] GNODE table-prefix

(reg~ster-name-l)] [, TAIL] .) {HEAD}
length FREE

table-prefix:

register-name-1:

length: an absolute expression

(register-name-2)
pointer-name)]

register-name-2: G2. G3. G4. G7 (should not duplicate register
name-1)

pointer name: any fullword. covered pointer

Note: References to the I table are either IA or IC. IA is used for
a two-word adcon entry: IC is used for all other entries.

When the second operand is omitted. the standard length for each entry
is used. except for A. IC. C. and J. for which a length must be
specified.

Use of register-name-1 implies that the length of the table entry is
contained in the specified register. An explicit length operand
overrides the standard length for all tables.

For the token table (T table) only. each call to GNODE acquires a new
table segment and returns a pointer to the first usable word within
the new segment.

For lists. the node obtained is chained to whichever end of the list
is specified by the third operand. The operand FREE inhibits chaining.
If the third operand is omitted. HEAD is assumed. The third operand
is ignored for tables. -

The fourth operand optionally specifies where the value returned by
the macro will be placed. If the fourth operand is omitted. register
G7 is used.

Registers Used

G5. G6. G7. P5. C1. C2

Value Returned

Pointer to. the first word of the new entry in the fourth operand. if
the fourth operand is a register: in G7 and the fourth operand. if
the fourth operand is a pointer; and in G7 if the fourth operand is
omitted-

84

TITLE: GET PREVIOUS ENTRY MACRO (GPREV)

purpose

The Get Previous Entry macro obtains the previous entry in a table.

(symbol] GPREV table-prefix

{
(register-name> }

12ointer-name
[, {(r7gister-name>} SAVE

p01nter-name '
[,label]

table-prefix:

register-name: G2, G3, G4

pointer-name: any fullword, covered pointer

When the SAVE operand is not specified, the entry in the table which
was current when the macro was called is released to the free storage
pool, and its contents are not subsequently available. The preceding
entry is made the current entry.

If the second operand is omitted, the output pointer is placed in G1;
if a register or pointer name is given, the output pointer is placed
in the second operand.

If the SAVE operand is specified, storage is not released, and table
entries are subsequently available for later use. The register or
pointer named in the second operand must point to a desired table
entry: the macro updates the pointer or register to the table entry
preceding the one originally pointed to. Entries stepped over may
later be recovered using the GNEXT macro. If SAVE is specified, a
pointer or register must also be specified, and the pointer or register
must have been initialized prior to the first GPREV call by a call
f9r MNODE to mark the entry at which reversal begins.

If a label is specified as the fourth operand, control will be
transferred to that label when an attempt is made to back off the
beginning of the table.

Registers Used

G5, G6, G1, P5, C1, C2

Values Returned

Pointer to table entry in second operand, if register: in G1 and the
second operand, if pointer; in G1 if the second operand is omitted
(when not using SAVE option). If GPREV backs off the beginning of
the table, the second operand and the condition code are set to zero.
Otherwise the condition code is set to nonzero.

85

TITLE: INSERT ENTRY MACRO (INODE)

Purpose

The Insert Entry macro inserts an entry into a list.

[symbol] lNODE table-prefix.

! (register-name)
pointer-name

} {
(r7gister-name)

[pOl.nter-name
I HEAD

TAIL

table-prefix:

register-name: G2, G3. G4

pointer-name: any fullword. covered pointer

The second operand points to the entry to be inserted. The third
operand points to the list entry following which the new entry is to
be inserted. The third operand may also simply specify the BEAD or
TAIL of the list. If the third operand is omitted. TAIL is assumed.

If HEAD or TAIL is specified. p$HEAD or p$TAIL will be updated by the
macro. Otherwise the operands remain unchanged.

Registers Used

GS, 66, G7, P4,- P5

Value Returned

Updated p$BEAD or p$TAIL,if the third operand so specified. Otherwise.
none.

86

TITLE: ESTABLISH POINTER MACRO (MNODE)

Purpose

The Establish Pointer macro has two purposes:

1. To establish pointers for subsequent use of the GPREV macro
with SAVE option.

2. To reestablish pointers in p$CURR and p$CURR+4 which may have
been altered. GPREV with the SAVE option causes alteration
of the p$CURR pointer when a segment boundary is crossed. Thus
GPREV with SAVE option followed by GPREV without SAVE must have
an intervening MNODE macro to reestablish pointers to the segment
in effect before GPREV with SAVE was issued.

Note: Successive uses of the GPREV macro with SAVE option must not
be separated by an intervening MNODE macro.

[symbol] MNODE table-prefix,

{ (r7gister-name) I
po~nter-name

table-prefix:

register-name:

pointer-name:

G2, G3, G4

any fullword, covered pointer

MNODE places a pointer to the current node in the second operand and
establishes internal controls so that subsequent GPREV macros with
the SAVE option can step backwards in the table non-destructively.

Registers Used

G6, G7 (Second operand may specify G7.)

Value Returned

None

87

OTHER MACROS

compiler support macros that perform functions other than table handling
are described below.

TITLE: SUBROUTINE CALL MACRO (CALL)

Purpose

The Subroutine Call macro provides linkage between subroutines in the
CALL/360-0S PL/I compiler.

[symbol] CALL

[
adcon-name I
$adcon-name
@adcon-name

adcon-name: name assigned to the adcon for the entry
point of the desired subroutine

By convention, the names of all entry-point adcons in the compiler
begin with Q. Entry-point names themselves begin with $. The
Subroutine Call macro will accept a name with or without an a, or with
a $, and convert it to the proper form.

The coding used in the calling sequence is as follows:

L
BALR

Cl,adcon
Cl,Cl

Registers Used

Cl

Value Returned

None

88

TITLE: SVC INTERFACE MACRO (CSVC)

Purpose

The SVC Interface macro provides a uniform interface for SVC invocation
for compiler routines, reqardless of operatinq environment.

[symbol] CSVC svc-code-number

svc-code-number: operand number of the desired SVC

The macro qenerates a call upon an SVC interpreter subroutine. In
a simulated environment, the SVC is also simulated~ In the real
environment, a live SVC is qive~. By usinq an interface, the necessity
for two versions of compiler routines is avoided.

Registers Used

None

Value Returned

None

89

TITLE: DED MACRO (DED)

purpose

The DED macro changes a compiler data descriptor to a DED for the
library.

Call

[symbol] DED

{ (r7gister-name)) ,
pol.nter-name

register-name:

pointer-name:

any register (Only the high byte (bits 0-7)
changed.)

any covered byte pointer

The byte indicated or the high byte of the register indicated is changed
from a compiler data descriptor to a DED acceptable to the library,.

Registers Used

None

Value Returned

None

90

TITLE: EXPRESSION PROCESSOR CALL MACRO (EXPG)

Purpose

The Expression Processor Call macro generates a call to the Expression
Processor Controller ($NEXP).

(symbol) EXPG expression-type, result-type, label

expression-type: code for the type of expression:

V8EXP
V8ASS
V8AASS

expression
assignment
,array-assiqnment

result-type: data descriptor byte for the type of expression
desired

label: covered label

A call is generated to the Expression Processor Controller. If the
expression is an array expression, return is to the third operand.,
This macro establishes all information needed by the Expression
Processor Controller except the contents of $PTR.

Registers Used

GO, G5, G6, G7, P5, C1, C2

Value Returned

None

91

TITLE: FORWARD INTERNAL BRANCH MACRO (FIB)

Purpose

The Forward Internal Branch macro creates a forward internal branch
triad.

[symbol] FIB

{ (r~gister-name)} , branch-code
po~nter-name

register-name: G2, G3, GIJ(Contains an offset from Pl.)

pointer-name: any fu1lword pointer in fixed working storage

branch-code: value for branch code (Use as right-operand of GTRD
macro.)

The contents of the location indicated by the first operand are placed
in the left operand of the FIB triad. ~he location is filled with
a triad pointer pointing to the FIB triad. If the previous contents
of the second operand was a triad pointer, the indicated triad is
changed so that its last reference word also points to the new triad.
This macro calls the Get Next Triad Entry routine ($GTRIAD) to obtain
the next available space in the triad table (see Section 3, Volume
n.
The second operand is passed intact as an operand to the GTRD macro.

Registers Used

G5, G6, G7, P5, Cl, C2

Value Returned

None

92

TITLE: ERROR INTERFACE MACRO (GENER)

Purpose

The Error Interface macro provides an interface for error messages.

[symbol] GENER

message-number:

pointer:

parameter-list:

message-number, pointer [, (parameter-list)]

number assigned to the error message which is
to be printed

pointer to an entry in the token table indicating
the token at which the error was detected
(register notation or a name may be used)

one, two, or three operands. The operands must
be pointers to tokens, name list entries, or
attribute nodes (either register notation or
named) or a char.acter string of not more than
eight characters enclosed in quotes. Only one
string may be specified in the parameter list.

The macro prepares the interface with the Error Message Editor ($XERR)
by storing the specified pointers and/or string into the error
communication area, $ERROR. The pointer is used to obtain the .line
and column number of the statement in error. The parameter pointers
are used to insert variable data into the texts of .the error messages.

Registers Used

None

Value Returned

None

93

TITLE: GET TOKEN MACRO (GE'l'KN)

purpose

The Get Token macro updates a pointer to the next token in the token
table.

lsyJDbolJ GftD

((~qister-name)) :
pol.nter-name

. reg!.ster-DaDle: any G-register except GO

pointer-naaae: any covered, ful.lword pointer

The macro will update the first operanc1 to point to the toJi:en following
the one originally pointecl to by the first operand. Line-nt1lllber tokens
are ignored.

!eq:isters Used

pS (J;f pointer-naJDe _is used, G7.)

Value Ret1ttlled

Updated value in the first operand, pointing to the token follOWing
the input token.

9 ..

TITLE: GENERATE TRIAD MACRO (GTRD)

Purpose

The Generate Triad macro constructs portions of a triad, as specified.

[symbol] GTRD operator, left-operand [, right-operand]

operator: absolute expression less than 256, or a parenthesized
register-name (GO, G2, G3, or Gq)

left-operand: a self-defining-term, the name of a field, or a
parenthesized register-name (GO, G2, G3, or Gq)

right-operand: same as for left-operand

A call is made to the $GTRIAD routine to obtain the next available
space in the triad table. (See Section 3, Volume I.)

The macro fills in the operator byte and the left- and right-operand
words of the triad. Operand words must be preformatted (that is,
contain the type byte if required) before the macro is called.

Registers Used

G5, G6, G7, P5, Cl, C2

Values Returned

Pointer to the constructed triad in G7. Address of constructed triad
in P5.

95

TITLE: SYMBOLIC INS'rRUCTION TABLE MACRO (INST)

Purpose

The Symbolic Instruction Table macro allows a convenient notation for
the various components of an entry in the symbolic instruction table
(M table).

[symbol] INST operation,operand-l,operand-2[,operand-3,
operand-ql

operation: name of an instruction in the operation code
table (0 table)

operand: a macro-argument sub list of the form:

(type. value)

where ~ is a character string which, when prefixed
with the characters Ma, forms a symbol defined as
an absolute value; and value is a self-defining
term, or a symbol having an absolute value.

Operand-l represents the Rl field of the generated instruction~ operand-
2, the R2 or storage address field; operand-3, if present, the Xl
field; and operand-4, the Bl field.

If the operation is XFR, only operand-l is specified; it must be the
name of another instruction in the symbolic instruction table.

If a symbol is specified in the name field, it is defined as the
displacement between its location and the base of the symbolic
instruction table.

Registers Used

None

Value Returned

None

TITLE: ADCON GENERATION MACRO (RCON)

Purpose

The Adcon Generation macro generates adcons required for the compiler.

string-1 RCON 'Z,string-2

string-l: a set of characters which, when prefixed with a, forms
the name of the adcon to be used for calling a routine.

string-2: a set of characters which, when prefixed with $, forms
·the name of a routine's entry point.

$Z: the concatenation parameter defined by the SYMDEF macro
(described later in this subsection).

RCON is called by the SYMDEF macro. It generates adcons for compiler
routine entry-points. Depending upon the circumstances, these adcons
must be either relative to the base of phase 1, the base of phase 2,
or, for use in DSECT's, should merely be DS reservations.

If the SYMDEF symbol concatenation parameter ('Z) is not null and is
not the letter W, the resulting code is for use in the Phase 1
Initializer ($CCONT). ROON generates adcons relative to phase 1, in
the form:

A ($entry-$CCONT)

If the SYMDEF concatenation parameter is the character w, the resulting
code is for use in the Phase 2 Initializer ($WCONT). RCON generates
adcons relative to phase 2, in the form:

A ($entry-$WCONT)

If neither of these conditions is true, the resulting code is for use
in DSECT's, and RCON generates a DS statement for a fullword instead
of an adcon.

Registers Used

None

Value Returned

None

97

TITLE: RESOLVE FORWARD INTERNAL BRANCH TRIAD MACRO (RFIB)

Purpose

The Resolve Forward Internal Branch Triad macro creates a resolve
forward internal branch triad.

[symbol] RFIB pointer-name

pointer-name: either the name of a fullword covered pointer or
the location of a pointer, expressed as O(G-reg,
P-reg)

The contents of the pointer-n~e is placed in an RFIB triad. If the
contents of the pointer is a triad pointer, then the last usage word
of the indicated triad is changed to point to the RFIB triad. This
macro calls the $GTRIAD routine to obtain the next available space
in the triad table (see Section 3, Volume I).

Registers Used

G5, G6, G7, P5, Cl. C2

Value Returned

None

98

TITLE: SKIP TOKEN MACRO (SKPTK)

Purpose

The Skip Token macro updates a pointer to the next. token of the type
specified (at the same parenthesis level), or to the next semicolon,
whichever occurs first.

[symbol] SKPTK

[(r7gister-name)} [, (code-name-l, •.. ,code-name-n)]
pOl.nter-name

register-name: any G-register except GO

pointer-name: any covered, fullword pointer

code-name: one of the following:

AND
ASGN
CNST
COL
COM
DELM
DIV
EQ

EXP
GT
GTE
ID
KEY
LPR
LT
LTE

MIN
MPY
NE
NULL
OR
PLS
RPR
SMC

If the second operand is omitted, the macro searches for a semicolon.
If only one code-name is specified, parentheses may be omitted from
the second operand.

Registers Used

P5i if pointer-name is used, G7

Value Returned

Updated value in the first operand, pointing to a token which is either
one of the types specified by the second operand (at the same
parenthesis level), or a semicolon.

99

TITLE: SYMBOL DEFINITION MACRO (SYMDEF)

Purpose

The Symbol Definition macro defines field and register names, user's
area, and compiler working storage and provides USING statements as
appropriate.

Call

SYMDEF (table-prefix-l, •• _,table-prefix-n),char-l,char-2

table-prefix: A,B,C,D,B,I,J,L,M,N,O,P,Q,R,S,T,V,X,Y,Z

The presence of 'a given table-prefix in the first-operand list causes
the inclusion of the symbol definitions for that table or list in the
current assembly.

char-l: For the benefit of the Controller ($CNT), a non-null character
other than W in the second operand causes the compiler's working storage
(normally a DSECT) to be replicated as a CSECT (to facilitate
initialization) with all symbols prefixed by the character given as
the second operand. When char-l is null, symbol definitions for
compiler working storage are brought in as a DSECT, and USING statements
are given for P2 covering W$STRT and PO covering W$STRT + '092. If
char-l is W, only those adcons required to support the second phase
overlay portion of the compiler are assembled, relative to a base in
the Phase 2 Initializer ($WeONT). (See Section 3, Volume I.)

char-2: Any non-null value in the third operand causes the inclusion
of the symbol definitions in the $$USER area and $$UTT area, and a
USING statement for P1 covering $$USERS.

Registers Used

None

Value Returned

None

100

TITLE: TALLY MACRO (TALLY)

Purpose

The Tally macro tallys a counter, increases by a given amount, and
performs boundary alignment when requested.

[symbol] TALLY counter-name

value
[, I (register-name-l) } [, ! Lgi ster-name- 2))

field-'name

[, I (register-name-3) J] pointer-name

counter-name:

value:

register-name-1:

name of the counter (fullword) to be updated

a self-defininq-term representing the amount
b7 which the counter is to be increased

name of a G-reqister containing the amount by
which the counter is to be increased (GO, G2,
G3, G4, G5, G6)

field-name: name of a field (fullword) containing the amount
b7 which the counter is to be increased.

register-name-2:

register-name-3:

pointer-name:

name of a register containing a value of 1;
2, 4, or 8. These values represent the alignment
desired. The counter will be increased to the
next multiple of the alignment code, if required,
before the amount specified in the first operand
is added (GO, G2, G3, G4, G5, G6).

any G-register except G1: G1 may be used if
the second operand is omitted. The value of
the counter after alignment but before the
amount is added will be placed in the fourth
operand.

any fullword pointer. The value of the count,er
after alignment but before the amount is added
will be placed in the fourth operand.

If the second operand is omitted, the counter is aligned and updated
but not increased. If the third operand is omitted, the counter is
increased but not aligned. If the second and third operands are both
omitted, the counter is placed without change in the fourth operand
(which itself defaults under these conditions to G1).

Registers Used

None

Value Returned

None

101

TITLE: ENTOKENING AND GENER INTERFACE MACRO (TGENER)

Purpose

The Entokening and GENER Interface macro provides an interface between
the Entoken routine ($ATKN) and the GENER macro.

(symbolJ TGENER message-number.pointer.parameter-list

The parameters are those required for the Error Interface macro
(GENER). (see "Error Interface Macro (GENER)". above.)

During entokening. register G4 contaiDS a pointer relative to a 9i ven
token table segment. For the purposes of the GENER macro. thi.s pointer
must be rel.ative to 'the base of the \'ISert's data area. 'l'he TGENER macro
adjusts regi.ster G4 as required. calls the GEIlER macro. and then
restores register G4 to its original conditioa.

Registers USed

ame·

102

APPENDIX D - RUNTIME SUPPORT MACROS

All routines of the runtime support library conform to the standards
described in the following paragraphs.

GENERAL

The CALL/360-0S PL/I compiler library was developed using the OS/360
F-Compiler Library as a starting point (first version, Level-O).
Changes were made to the OS/360 F-Compaler Library design to satisfy
different requirements imposed by a different system (the time-sharing
system) or when significant improvement in execution performance could
be made.

The time-sharing considerations evolved around the following:

• Break-up of the F-Ievel work spaces and code modules into two
distinct parts: a) a relocatable part including only address
information, and b) a non-relocatable part including the body of
the code and all other data and information.

• Reassignment of general fixed-point registers in harmony with the
relocatable and non-relocatable classification of data.

• Removal of V-type address references embedded in the code.

• Removal of machine commands in which a general register is set
by the command itself, that is, the Edit and Mark instruction,
etc.

• Elimination and/or insertion of additional code and data as
required.

• Alteration of calling sequences as required.

• Conversion of F-Ievel fixed-point logic to CALL/360-0S fixed-point
specifications.

• Renaming of global symbols.

• Formatting of library modules to CALL/360-0S specifications.

The modules that constitute the library provide two basic fUnctions:

1. Interface Services. These modules serve as an interface between
compiled code and the facilities of the supervisor. They are
described in Volume II under "Library Interface Services" in
the section entitled "Runtime SUpport Summary".

2. computational Services. These modules perform computational
operations on data and shape it to the user's requirements.
They are described in Volume II under "Library Computational
Services."

The library is designed in a highly modular fashion. Modularity is
in terms of functions which can be meaningfully separated and are
contained within separate library modules.

103

NAMING CONVENTIONS

Module (routine) names are composed of a unique combination of three
characters that give a mnemonic identification of a module's function.
The module names are never employed within any system process1 however,
they are vital for documentation reference.

Entry names are four characters in length, the first three being those
of the module name, and the fourth identifying a specific entry point
to the module. All linkages to a library module must reference a
specific four-character entry-point name.

For purposes of identification, library module and entry names begin
with the letter-set prefix -IRE.-

Note: The CALL/36o-OS PL/I library routines follow the naming
conventions stated above and applied in this manual. However,
there are some exceptions in the member names assigned to certain
routines when stored in CALL/360-OS PL/I system libraries.
The member names are:

lOB, IOD, lOP, lOX, and LDO (referred to in documentation as
lHEIOB, lREIOD, IHEIOP, lREIOX, and lBELDO).

STORAGE REQUIREMENTS AND LIBRARY ADDRESS CONSTANTS

Library routines require working storage, for the following reasons:

1. During explicit communication between modules, the calling
module must provide a non-relocatable storage area commonly
called the static storage area (SSA) for the called module to
use.

2. Intermediate results must be stored.

3. During implicit communication between modules, there must be
a storage area containing common symbols.

The library work space fulfills these functions. It is allocated by
the compiler in the user's work area and sUbdivided into unique storage
areas, each of which is pointed to by an address constant in a fixed
location in the address constant area.

The work space is'divided into two major a:r::eas as follows:

1. Relocatable working area (LNSP) (contains relocatable information
that must be updated at every relocation of the program in core
storage) .

2. Non-relocatable work area (LNS) (contains non-relocatable data)

Each of the two major work areas is further allocated by the compiler
in the user's work areas and subdivided into unique storage areas,
each of which is pointed to by an address constant in a fixed location
in the adcon area. Comparable sUbdivisions of the major areas are
paired so that for a given activity both relocatable and non-relocatable
space will be available for storing of addresses and other data. Non
relocatable subareas will be identified by four-letter codes and
corresponding relocatable areas by the same four-letter codes with
the letter 'P' appended.

The library communications area is one of the unique area pairs
contained in the LWS ..

The library as a whole is highly structured. Each module in the library
has an associated level number that strictly determines which unique
pair of work spaces the module may use.

Level numbers are assigned by the following rules:

1. A module that calls no other module is assigned Level O.

2. A module that calls other modules is assigned a level number
one greater than the maximum level number of all the modules
it calls.

3. A module that calls another module but does not expect a return
is assigned the level number of the called module.

There are five unique area pair~ in the library work space (LWO/LWOP,
LW1/LWIP, LW2/LW2P, LW3/LW3P, and LN4ILW4P) which are used by library
modules for an SSA and an intermediate storage area. Modules assigned
Level Number 0 may use only LWO and LWOP, modules assigned Level Number
1 may use only LWl and LWlP, etc. In this way, it is assured that
a library module's SSA will not be destroyed during explicit
communication, if the caller expects a return.

Calling the execution error package (EXEP) is not considered SUfficient
to raise the level number of a library module, because EXEP has unique
storage areas of its own (called LWE and LWEP).

Figure D-l specifies the address constants in the address constants
area, which points to the base addresses of unique areas of the library
work space, and the functions of those areas.

Address Constant Function of Unique Area Pointed to

IHEQLWS
Pointer to major library work spaces IHEQLWSP

IHEQLCA Library communications areas (also known as library ,
IHEQLCAP common areas)

IHEQLWE
SSA and working storage for execution error package (EXEP)

IHEQLWEP

IHEQLSA
Reserved space not used at present IHEQLSAP

IHEQLWO
SSA and working storage for Level Number 0 library modules IHEQLWOP

IHEQLWI
SSA and worlc~g storage for Level Number I library modules IHEQLWIP

IHEQLW2
SSA and working storage for Level Number 2 library modules IHEQLW2P

IHEQLW3
SSA and working storage for Level Number 3 library modules IHEQLW3P

IHEQLW4
SSA and working storage for Level Number 4 libr~ry modules IHEQLW4P

Figure D-l. CALL/360-0S PL/I Address Constants Area

105

(See -The Library Work space-, below, for a complete description of
the library work space.)

DATA REPRESENTATION

By virtue of declared attributes, data may exist in the following forms
within a CALL/360-0S PL/I program:

1. Arithmetic data

a. Real fixed
b. Real float
c. complex fixed
d. complex float

2. Character-string data

3. statement-label data

The following representations are available internally to the IBM System/360:

1. Floating-point (long and short>

2. Binary fixed-point

3. Packed decimal

4. Character string

The relationships between the forms declared for a data item in the
CALL/360-0S PL/I program and the actual representation used internally
to the IBM System/360 are shown in Figure D-2.

106

CALL/360-0S IBM System/360 Forms-

PL/I Compiler Forms Binary Packed Short Float -LonsFlOlt- Character
FIxed-Point Decimal

In.-Point In..,oInt Strin.
(4 bytes) (9 bytes- (4 bytes) (I bytes) (Maximum 16 dlpts

plus sian) 256 bytes)

CALL/360'()S
PL/I Forms:

Internal:

Arithmetic:

Fixed-Point X

Floating.point X X

String:

Character X

External:

Arithmetic:

F-Format X

E-Format X

String:

A-Format X

Special Ubrary Intermediate
Forms:

Binary Intermediate X

Decimal Intermediate X

Figure D-2. CALL/360-0S PL/I Data Representation

Library support macros are concerned with the follOWing fUnctions:

1. Exchange information between the phase 2 compilation wrap-up
and runtime library modules.

2. Facilitate loading of library working storage covers.

3. Facilitate branching within the library.

q. Define DSECT's and constants universally applicable within the
library.

5. Ensure uniformity in the performance of certain special
functions. that is. calculate the difference between two
addresses. etc.

(See RLibrary Support MacrosR• below. for complete description of all
library support macros.)

THE LIBRARY WORK SPACE

RELOCATABLE WORK AREA (LWSP)

The DSECT name is IHELIBP and is described by the following table.
(The variable names are ordered within the DSECT as they appear in
the table.)

101

DSECT
variable

Name

WBRl

WBR2

WRCD

WFED

WFCB

WCNP

WCNl

WCN2

WTEMP

WJXIDVA

WJXILADD

ZLWEP

ZLSAP

ZLW1.P

ZLW2P

108

Hex
Off
Set

o

8

10

14

18

lC

20

28

38

40

48

98

B8

138

188

Area
Size

(Bytes)

4

4

8

4

8

8

8

80

80

8(t

80

80

Explanation

Second transfer vector. (Used by the
arithmetic conversion package (ACP).)

Third transfer vector. (Used by the
ACP.)

A(Target), A(Target DED). (Used by the
ACP.)

A(Target FED). Implicit parameter for F
or E-format output conversion. (Set by
f/E-format and string directors for use
by ACP.)

A(Source FED). Implicit parameter for F
or B-format input conversion. (Set by
F/E-format and string directors for use
by ACP.)

A(File Control Block). (Used by
C-format, F/E-format, and string
input/output directors.)

A(First and Last Address Pair). (Set by
the I/O directors.)

A(Start of Real Part of a C-Format Data
Item), A(End of Real Part of a C-Format
Data Item). (Used by the C-format
directors and the F/E-format input
director.)

A(Start of Imaginary Part of a Complex
Data Item), A(End of Imaginary Part of a
Complex Data Item). (Used by the
C-format directors and F/E-format
input director.)

Erasable storage. Not used across calls.

A(Array Dope Vector). (Used by the
interleaved array indexing routine.)

A(Last Array Element Returned). (Used by
the interleaved array indexing routin,e.)

Relocatable work space for the execution
error package. (Shared by the EXEP and
the C-format directors.)

Level-~ and level-~ routines scratch
space.

TeJIpOrary address storage for' library
legel-O modDles-.

Temporary address storage for library
level-l modules.

Temporary address storage for library
level-2 modules.

DSECT Hex Area
Variable Off- Size

Name Set (Bytes)

ZLW3P 1D8 80

ZLW4P 228 80

ZCNTP 278 variable

NON-RELOCATABLE WORK AREA (LWS)

Explanation

Temporary address storage for library
level-3 modules.

Temporary address storage for library
level-4 modules ..

Relocatable work size. (Used by the
compilation wrap-up modules of phase
2 and the load module of the runtime
library to reference the end of the
relocatable library work space.)

The DSECT name is IHEZLIB and is described by the following table. (The
variable names are ordered within the DSECT as they appear within the table.)

DSECT
Variable

Name

WINT

WSCF

WSDV

WCFD

WSWA

WSWB

WSWC

WBUFF

WCOUNTI

WLNEWDTH

Hex
Off
set

o

C

10

18

1C

1D

1E

1F

120

124

Area
Size

(Bytes)

9

8

1

1

1

256

4

4

Explanation

Packed decimal intermediate (PDI) or
floating-point intermediate (FLI) number
storage. (Used by ACP.'

Scale factor associated with the packed
decimal intermediate number. (Used by
the ACP.)

String Dope Vector (SDV). (Used by the
input/output conversion directors.)

Format Element Descriptor (FED). (Used
by eight 1-bit intermodular communication
switches.) (Bit-7 is the complex switch
set by the C-format director to control
processing of the complex components by
the F/E-format directors. Bit-5 is the
update switch set by the string directors
to control zeroing of and/or pointing to
the various components of the complex
item.)

Eight 1-bit intermodular communication
switches,.

Eight 1-bit general purpose switches.
(Used by I/O.)

Eight 1-bit intramodular switches. Not
used across calls.

Intermediate character storage. (Used by
the real output directors.)

Print file current line character count.
(Used by output directors.)

Print file line width. (Used by output
directors.)

109

DSECT
variable

Name

WTERBUFS

WDISBUFS

WTOTCBAR

WSPEC

I WCOUNTDK

WTOTCBDK

ZLWE

ZLSA

ZLWO

ZLWl

ZLW2

ZLW3

ZLWII

ZCNT

Hex
Off
Set

128

12C

130

1311

138

13C

1(10

lFO

2110

2FO

3AO

1150

500

5BO

Area
Size

(Bytes)

II

II

II

176

80

176

176

176

176

176

variable

REGJ:STERS AND OFFSETS

Explanation

Terminal buffer size. (Used by I/O
directors.)

Disk buffer size. (Used by I/O
directors.)

Current terminal buffer length. (Used by
I/O directors.)

Internal file current field counter.

Disk file current line length. (Used by
output directors.)

Current disk buffer length. (Used by.
I/O directors.)

Temporary non-address storage for the
execution error package. .

Not used.

Temporary non-address storage for library
level-O modules.

Temporary non-address storage for library
level-1 modules.

Temporary non-address storage for
library level-2 modules.

Temporary non-address storage for
library level-3 modules.

Temporary non-address storage for
library level-II modules.

Non-relocatable work space size. (Used
by the load modules.)

Assignments are defined in the following chart.

Save Registers

Offset Mnemonic Value ~ Definitions

OFPO PO 6 Cover first page of object code
OFPl P1 7 (Not specifically assigned)
OFP2 P2 8 (Not specifically assigned) J
OFP3 P3 9- Cover address constants
OFP4 PII 10 ~
OFP5 P5 11 j (Not specifically assigned)
OFP6 P6 12
OFP7 P7 13 Parameter register
OFP8 P8 111 Return register
OFP9 P9 15 Branch register

110

OFGO
OFGl
OFG2
OFG3
OFG4
OFG5

OFFl
OFF2
OFF3
OFF4

GO
Gl
G2
G3
G4
G5

Fixed ~ Registers

o
1
2
3
4
5

(Not specifically assigned)

Floating-Point Data Registers

Fl
F2
F3
F4

(Not specifically assigned)

Register P3 must contain cover address constants as indicated' at all
times. Register P6 is used to load covers required for saving register
constants at entry to any library routine; hence, its value is destroyed
- not preserved over a call. All other address and data registers
are preserved over a library call. Floating-point registers are not
saved over a library call.

LIBRARY SUPPORT MACROS

The library support macros were created solely for the CALL/360-0S
PL/I implementers; the CALL/360-0S PL/I user will never come in contact
with them.

The descriptions given below tell how to ~ each macro. They do not
tell how each macro performs its functions. The macros are described
in alphabetic order, according to their mnemonics. The following rules
explain the notation that is used.

1. Uppercase letters represent

a. entries that must appear exactly as shown (for example,
CALLERR or IHEBRA).

b. a general class of entries from which a particular entry
must be selected by the user as explained in text which
follows the notation. (For example, the parameter OFF shows
the place where the offset to the relocatable LWS must be
specified in the CALL/360-OS macro call.)

c. a combination of a and b r where the portion preceding an
equal sign is a keyword that must appear as shown and the
portion following the equal sign represents a general class
of entries from which the user must select a specific entry.
(For example, in BR=P9, BR is a keyword parameter and must
appear as shown: P9 represents a working register that must
be specified.)

2. Braces { } are used to denote grouping. A vertical stacking
of possible entries indicates that a choice is to be made by
the user.

3. Square brackets [] denote options. Any entries enclosed in
brackets may be omitted.

111

TITLE: CALL ERROR MACRO (CALLERR)

Purpose

The Call Error macro develops a call to the execution error package
(EXEP) which results in printing an error message and appropriate
transfer of control. The user specifies the general data register
to be loaded with the error code prior to execution of the Call macro
(IHECAL) transferring control to EXEP.

(label] CALLERR REG,INDEX~OFFSETwOFFSET1

The general data register specified parameter REG is loaded with
the er:r::or code set forth in parameter INDEX. The two parameters OFFSET
and OFFSETl serve the same function as the parameters defined for the
Call macro. In fact, the Call macro is invoked by the Call Error
macro.

Registers Used

One specified general data register

Pseudo registers P3, P6, pa, and P9, as follows:

112

P3 Adcon error register
P6 Scratch register restored from adcon area
pa Link register restored from adcon area
P9 Branch register restored from adcon area

TITLE: CALL/360-0S MACRO (CALRTS)

Purpose

The CALL/360-0S macro calls the CALL/360-OS system to request execution
of an SVC.

[label] CALRTS SVC1,OFF,OFFl

Parameter SVCl passes the value of the SVC call.

Parameter OFF is the offset to the relocatable LWS.

Parameter OFFl is the offset to the non-relocatable LWS.

This macro generates a call to the IBESVC routine.

The macro statement may be labeled.

Registers Used

None

113

TITLE: CHECK FCB MACRO (CKFCB)

purpose

The Check FeB macro tests the PCB. If a disk file. a check for empty
buffer is made. If empty. an SVC 2 is issued to read a record from
disk. The receiving buffer displacement is in register 2 (displacement
from communications area to the buffer area). Upon return. byte 13
of the file control interface block (FCIB) will be set with a code
as follows:

o = Read successful
1 = Unrecoverable I/O error
2 = End of data
l = Read not done because file type i~ output _

This macro updates buffer pointers and returns.

If a terminal file. a question mark is inserted in the output stream.
and the buffer pointer in the communications area is updated. Then
an SVC 2 is requested for input from the terminal unit.

~

CltFCB (This macro invokes the CALt./36o-OS macro (CALRTS).)

Registers Used

Preset registers:

Pseudo registers Pl. P6. P7. and P9

Non-preset registers:

1111

Pseudo registers: P2. PII. and G1
Absol ute general registers: 2.3

TITLE: ADDRESS CONSTANTS MACRO (IHEADC)

purpose

The Address Constants macro defines the displacement for each symbol
appearing in the address constant area (ADCON) beginning with the
alphameric characters -La-. This macro is invoked by the Symbol macro
(IHESYM), which defines all of the runtime entry names for which space
is to be reserved in ADCON and for which a corresponding -LaW symbol
is associated.

Call

IHEADC

Each parameter field contains one or more subfields, each of which
contains an entry-point name. The first three fields are reserved
for entry points to modules that are accessible directly through a
single reference to ADCON. The last two fields are reserved for ent~
points to modules requiring an indirect access through an appropriate
block adcon area. The ordering of the symbols within the subfields
is critical to modules that perform compilation wrap-up and load
fUnctions.

Registers Used

RODe

TITLE: BRANCH MACRO (IBEBRA)

PUrpose

The Branch macro saves the contents of a specified general register
over a generated Branch and Link instruction and/or assembles the
branch instruction using designated registers for branching and linking.

[label] IHEBRA LXR.BXR.LOC,P6=P6

Parameters LXR and BXR'are two general address registers deSignated
as link and branch registers, respectively. Keyword parameter P6
designates a general address register whose conte~ts are to be saved
over the branch. Parameter LOC,specifies a storage word for saving
register cOntent. '!'be defaul.t values are:

LXR=P8-
BXR=P9
P6 =P6

Parameter LOC in default results in generation of the Branch and Link
instruction only. caution should be exercised when placing USING ,
statements immediately behind Branch macro statements.

The macro statement may be labeled.

Registers Used

TWo or three user-designated general address registers

116

TITLE: BAA EXTERN MACRO (IBEBXT)

Purpose

The BAA Extern macro loads a specified general address register with
the address of an entry point for a module requiring access to a
special-function block address constant area.

[label] IBEBXT DISP.REG.BR=P9.P3=P3.LOC=#2

The first field value must be the relative entry number of the desired
entry-point symbol in the external symbol table of the Trailer macro
UBETLR) for the module in which the BAA Extern macro is embedded.
The second field is a general d~ta register assigned as a working
register. Both fields must be present. Keyword parameter BR specifies
a working register. while keyword parameter P3 specifies a general
address register containing the cover for ADCON. Keyword parameter
LOC points to the beginning of the external symbol table generated
by the Trailer macro. Default values are:

BR =P9
P3 =P3
LOC=#2 (Default value for keyword parameter NAM2 of the Trailer

macro)

The macro statement may be labeled.

Registers Used

Two specified general address registers
One specified general data register

•

117

TITLE: CALL MACRO tnlECAL)

purpose

The Call macro assembles instructions required to save pseudo register
P8 over the branch; loads pseudo register P9 with the branching address;
and restores pseudo registers P9 and P6 from specified addresses covered
by pseudo register P3 (the covering register in the adcon area).

(label] IHECAL VADD,OFFSET r OFFSE'l'l

All three parameter fields are displacements with respect to the adcon
area cover and must contain valid information prior to execution of
the macro.

The macro statement may be labeled.

Registers Used

Pseudo registers P3 r P6, P8, and P9, as follows:

118

P3 Adcon cover register
P6 Scratch register restored from adeon area
P8 Link register restored from adcon area
P9 Branch register restored from adcon area

TITLE: DOUBLE COVER MACRO (IBEDCV)

Purpose

The Double cover macro loads two adjacent general address registers
with the covers for the library non-re1ocatable and relocatable work
spaces, respectively.

[label] IBEDCV FIELD,REG

Parameter FIELD specifies the library level of the module (that is,
LWE, LWS, LWO. LWi, LW2, LW3, or LW4). Parameter REG designates the
register to contain the library non-relocatable work space cover.
The next higher-numbered register will contain the cover for the library
relocatable work space~

The macro statement may be labeled.

Registers Used

Two designated general address registers

119

TITLE: DIFFERENCE MACRO (IBEDIF)

purpose

The Difference macro calculates the difference between the contents
of two specified address registers. and stores the result into a
designated target.

[label] IBEDIF R1.R2. NR1. NR2.ARFA=WTEMP

Parameters Rl and R2 are two general address registers containing the
address for which the difference C(R1)-C(R2) is desired. (CeR1) denotes
contents of R1. etc.) NR1 and NR2 are two general data registers
assigned as working registers. ,The keyword parameter AREA pOints to
a two-word block of temporary storage. Parameters R1 and NR1 must
be specified. Default values for the other parameters are:

R2 =R1+1
NR2 =NR1+1
AREA=WTEMP (Doubleword erasable storage in LCA)

The macro statement may be labeled.

Registers Used

Two user-specified general address registers
Two user-specified general data registers

120

TITLE: ERRCD MACRO (IBEERRCD)

Purpose

The ERRCD macro has two functions:

1. Set the error code in LWE.

2. Set the error code in LWE, then branch to Error Routine
(IHEERR). (See -Section 5, Vo11X1le II.')

[label] IBEERRCD INDEX,PREG,ROUTNAM,FCIB

The first parameter provides the index of the error code. The second
parameter provides an address register which is used to cover LWE.
The third parameter is the last four characters of the desired entry
point name of IBEERR. The fourth parameter is the register containing
the FCB. It is changed to point to the FCIB for IHEERRB.

The macro statement may be labeled.

Registers Used

One user-designated general address register

P3 Adcon cover register
P8 Link register
P9 Branch register

121

TITLE: INITIALIZE FILE COlft'ROL BLOCK MACRO (IHEFCB)

Purpose

The Initialize File Control Block macro changes Pl from address of FCIB
to address of FCB, and moves buffer pointers from saved FCB to common
FCB.

U.ahelJ IBEPCD

Registers Used

G5 Address u£ FeB ot:.set.
P7 Address o£ !'CD- to address. of CuOWOD I'CB
P8. A4ikess: of saved ft:B:'

" Ikmk

122

TITLE: SAVE FCB POINTERS MACRO (IBEFCIB)

purpose

The Save FCB Pointers macro has two purposes:

1. Saves the disk buffer pointers from common FeB area.

2. Saves area for FeB if routine called from compiled code.

(label] IBEFeIB OFFSET1

OFFSETl is the relocatable library work space level used by this
routine.

Registers Used

P3 Adcon cover register
P8 Link address
P1 FeIB address
P5 Work
P6 Work

123

TITLE: LINK ROU'l'INE MACRO (IBEFROM)
I

Purpose

The Link Routine macro determines whether a call to a library routine
is from compiled code or from another library routine.

[label) IBEFROM EXIT

EXIT is the exit address if call is from another library routine.

Registers Used

P3 Adcon cover register.
P8 Link register

124

TITLE: EXTERNAL MACRO (IBEEXT)

Purpose

The External macro loads a designated general address register with
the address of an entry point through a single reference to the adcon
area.

(label] IBEEXT DISP.REGP.REGB

The first field must be the character following the -La- alphamerics
of an -La- symbol defined in the adcon area. The second field is the
general address register to be loaded. and the third parameter is the
general address register containing the adcon cover. Default values
are:

REGP=P9
REGB=P3

The macro statement may be labeled.

Registers Used

Two designated general address registers

125

TITLE: HEADER MACRO UHEBDR)

Purpose

The Header macro supplies the wrap-up loader with the following
information:

1. The size (in bytes) of the module

2. The number of external references by the module

3. The number of entry points

Call

[label] IHEBDR NAM1=ll,NAM2=12,NAM3=13,NAM4=14

The keyword parameter NAM1 is a symbol defined by the Header macro,
whereas keyword parameters NAM2, NAM3, and NAM4 are symbols defined .
in the Trailer macro (IHETLR) separating the code section, the external
reference section, and the entry-point section. These keyword
parameters must agree exactly in value with corresponding keyword
parameters of the Trailer macro. The default values are:

NAM1=11
NAM2=12
HAM3=13
NAM4=14

The formulas are:

Module size = NAM2-NAMl-4 (in bytes)
Number of external references = (NAM3-NAM2)/2
Number of entry points = (NAM4-NAM3)/4

The macro statement may be labeled.

Registers Used

None

126

TITLE: I/O INTERFACE MACRO (1HEIOD)

Purpose

The I/O Interface macro provides an interface between the I/O conversion
directors and the input routine lHEIOG and output routine lHEIOD.

The former interface loads a designated general data register with
the length-l of the string to be input and a general address register
with the A(FCB)J then it branches to the input routine IBEIOG, after
which, and upon return, an appropriate string dope vector is constructed.

The latter interface loads two general address registers with the
A(FCB) and A(SDV), respectively. Branching to the output routine
IHEIOD then proceeds as described above for input.,

[label] lHEIOD FCB=WFCB,SDV=WSDV,LWSP=LWEP,OP=IN,
P9=P9,P8=P8,P5=P5,PO=PO,G1=Gl,GO=GO,
PTEMP=WTEMP,P7=P7

The macro invokes the IBEEXT, lHEBRA, and IHEDIF macros. Xeyword
pointer parameters point as follows:

FCB
SDV
LWSP
PTEMP

points
points
points
points

to A(FCB)
to A(SDV)
to A(library relocatable work subarea)
to A(doubleword erasable area)

Xeyword parameter switch OP functions as follows:

OP = IN defines an input file
~P ~ IN defines an output file

Keyword parameter register assignments are:

assigned as linkage register
assigned as branch register

P8
P9
P7
P5
PO

assigned as parameter register for A(FCB)
assigned as parameter register for A(SDV)
preset to A (first page of

general addr registers

object code cover)
G1

GO

assigned as parameter register
for string length-1 and scratch
scratch

The default values are set as follows:

FCB
SDV
LWSP
PTEMP
P8
P9
P5
Gl
GO
P7

=WFCB
=WSDV
=LWEP
=W'l'EMP
=P8
=P9
=P5
=G1
=GO
=P7

Pointer in LCAP
Pointer in LCA
Library work area assigned
Scratch area in LCAP
Return pointer
Transfer pointer

The macro statement may be labeled.

Registers Used
Five user-designated general address registers
Two user-designated general data registers

} general data registers

to EXEP

127

TITLE: STANDARD OFFSETS MACRO (IBELBE)

Purpose

The Standard
library work
to symbols.
symbols.

Call

IBELBE

Offsets macro equates standard adcon area. relocatable
space. and non-relocatable library work space offsets
It also is used to redefine -La- symbols to ·V· type

Registers Used

None

128

TITLE: LIBRARY MACRO (IBELIB)

Purpose

The Library macro provides the definitions for the symbols and DSECT's
required by a majority of the library routines. The list includes
those symbols associated with pseudo registers, standard save-area
offsets, and -La- symbols necessary to program execution, together
with the DSECT"s which may contain them, and the error codes.

IHELIB

The Library macro invokes the Symbol macro (IBESY~) to define the -La
symbols (which in turn invokes the IBEADC macro) and the Library Work
Space macro (IBELWS) to define library work area DSECT's, pseudo
registers, and error codes.

Registers Used

None

129

TITLE: LIBRARY WORK SPACE MACRO (IHELWS)

Purpose

The Library Work space macro defines the library work space DSECT's
and associated symbols.

Call

IHELWS

The macro is invoked by the Library macro (IHELIB).

Registers Used

None

130

TITLE: MOPP MACRO CIHEMOPP)

Purpose

The MOPP macro defines the DSECT's describinq the block adcon area
(BAA) and dynamic storaqe area (DSA).

9!!
IBEMOPP

Registers Used

Bone

,

131

TITLE: NAME MACRO Cl:BEHAME)

purpose

The Name macro generates 80 bytes for absolute patching of compiled
code and places the literal constants generated-to-date immediately
ahead of the patch area. The patch area is word-aligned and filled
with zeros.

See also the Patch macro (IBEPCH).

Registers Used

None

132

TITLE: OPEN TEST MACRO (IBEOPENT)

Purpose

The Open Test macro tests file openings to determine whether they are
successful. If not, it determines why a file was not opened and gives
an appropriate error message.

llabeU IBEOPENT

Registers Used

P7 Address of PCIB

Errors Detected

NOT OPENED (124)
DOES NOT EXIST (126)
LOCJ(ED (127)
IN USE (128)
NOT A DATA FILE (130)

133

TITLE: PATCH MACRO (IBEPCBt

PUrpose

The Pat:.cll _cro qeaera't.es space for absolute patcJdDg of .odtIl.es.
The space geJMml't.ec1 is set to cbarac't.er pat't.ern DEAD.

134

TITLE: RETURN MACRO (IBERET)

Purpose

The Return macro restores the general registers (except symbolic
register P6 which is destroyed in the restoring process) and floating
point symbolic registers F3 and F4 from a designated standard save
area.

(label] IBERET OFFSET1.0FFSET2

The two parameter fields are offsets relative to the adcon cover
pointing to library work space addresses.

The macro statement may be labeled.

Regi.sters Used

Symbolic registers P3, P8, and P9, as follows:

P3 Adcon cover register
P8 Return linkage register
P9 Scratch register

135

TITLE: RESTORE MACRO (IBERS'l')

Purpose

The Restore macro restores all general registers to the values contained
in a designated save area according to the standard save-area offsets.
(It is assumed that the designated area was preset by the prior
execution of a Save macro.) The floating-point registers are not
restored.

General registers PO through P9 are restored from the relocatable
standard save area, while general data registers GO through G5 are
restored from the associated non-relocatable counterpart.

[label] IBERST FIELD,REG

The FIELD parameter value must be the last three alphamerics of a
library non-relocatable work subarea. The REG parameter value is a
general address register.

The macro statement may be labeled.

Registers Used

One user-designated general address register

136

TITLE: SAVE MACRO (IBESAV)

Purpose

The Save macro stores all general registers (except a designated general
address register which is destroyed in the saving process) into a
specified standard save area. The save area specified is normally
one of the library work subareas •. The general data registers are saved
in the non-relocatable part of the work space, and the general address
registers in the corresponding relocatable part. The floating-point
registers are not saved.

[label] IBESAV FIELD,REG

The FIELD parameter is a non-relocatable part of a library work spac~
(that is, LWO, LWl, etc.), and the REG parameter is a general address
register. Generally pseudo register P6 is selected.

The macro statement may be labeled.

Registers Used

One designated general address register

137

TITLE: SINGLE COVER MACRO (IHESCV)

purpose

The Single Cover macro loads a designated general address register
with the cover address of a specified library work space. Appropriate
USING statements are generated flagging the designated register as
a cover register to the compiler.

[label] IHESCV FIELD,REG

Parameter FIELD specifies the library level of the module (that is,
LWE, LWS, LWO, LWi, LW2, LW3, or LW4). Parameter ,REG designates the
register to contain the library.non-re1ocatable work space cover.

The macro statement may be labeled.

Registers Used

One user-designated general address register

138

TITLE: SDR MACRO (IBESDR)

Purpose

The SDR macro saves the contents of general registers (except symbolic
register P6 which is destroyed in the saving process) and the two
floating-point symbolic registers, F3 and F4.

(label] IBESDR D1,D2

Parameter D1 is a displacement in the adcon area pointing to the desired
relocatable LWS. Parameter D2 is a similar displacement pointing to
the desired non-relocatable LWS. (See ·Save Macro (IHESAV)·.)

The macro statement may be labeled.

Registers Used

Pseudo registers P3 and P6, as follows:

P3 is preset to A (adcon area)
P6 is a scratch register

139

TITLE: SYMBOL MACRO UBESYMl

Purpose

The Symbol macro provides the Address Constants macro (IBEADC) with
a list of entry-point names for which the Address Constants macro is
to reserve space in the adcon area and label said space by concatenating
the alphameric symbols -La- to the left of entry name.

MACRO
IBESYM

* INDIRECT ADCON ADDRESSING MACRO
* CALLS ADCON MAP MACRO IBEADCN

IHEADC (DDJA,DDOA,DDOB,DDOC,DDPD,IOAA,IOAT,IOBA,IOBC, *

MEND

IODP, IOGA, IOXA,IOXB,IOXC,LDIB,LDIC,LDOB,LDOC,DUMP,ERRA, *
ERRB,ERRC,ERNA,SADA,SADB,SADC,SADD,SAFC,DCNA,DIAA,DIAB, *
DIAZ,DIAY,DIBA,DIBZ,DIMA,DIMZ,DMAA,DNCA,VPFA,IOPB, *
ADMP), *
(DOAA, DOAB, DOAZ,DOAY, DOMA,DOMZ,DOBA,DOBB,DOBZ,DOBY, *
UPAA" UPAB, VCAA, VCSA,VCSB, VFAA, VFBA, VFCA, VFDA, VFEA, VPAA, *
VPBA,VPCA,VPEA,VTBA,ABTO,ABMO,ABGO,DZTO,DZMO,DZGO,MXSO, *
MXLO,MXFO,MNSO,MNLO,MNFO,XISI,XILI,XIFI), *
(XITI,XIMI,XIGI,XISF,XILF,MZGO,XITF"XIMF,MZTO,MZMO, *
PDSO,PDLO,PDFO,PDTO,PDMO,PDGO,SMSO,SMLO,SMFO,SMTO,SMMO, *
SMGO,YGSS,YGLS,YGFS,YGTS~YGMS,YGGS,YGSV,YGLV,YGFV,YGTV, *
YGMV,YGGV,JXIY,JXIA~CSCO,CSMF,CSS2,DIOA,VSCA,ERRR.GPUT, *
VPDA,SVCA,DDIB,ERRZ,SADE,RSET), PTR219 *
(OPEN,CLOS,ONUN,REVT,ERRN,ENDF), PTR219 *
(ATS1,ATL1,ATTO.ATMO,ATS2,ATL2 p ABSO,AHLO,AHTO,ABMO, *
EFSO, EFLO, EXSO,EXLO,EXTO v EXMO,LNSO,LNLO,LNTO. LNMO,L2S0, *
L2LO,LGSO,LGLO,SNSO,SNLO,SNTO,SNMO,CSSO,CSLO,CSTO,CSMO, *
SQSO,SQLO,SQTO,SQMO>, (TNSO,TNLO,TNTO,TNMO,THSO,TBLO, *
THTO,TBMO,CBSO,CBLO,CBTO,CHMO,SBSO,SBLO,SBTO,SaMO) *

The six parameter fields contain the last four characters of all of
the entry-point names to the runtime library. The first four fields
contain those entry points associated with modules accessible through
a single access via the generated points associated with modules
accessible through a single access via the generated uLaw symbol.
The last two fields contain the entry points associated with modules
accessible through a second access to the block adcon area assigned
for the function performed by the module.

Caution: The ordering of the above entry-point names is critical
with respect to compilation wrap-up and load operations.
Names in second, third, and fourth fields may be pushed
up into the next previous fields but the overall ordering
of names must not be altered. Each field can contain a
maximum of fifty-two entry names. The macro is invoked
by the Library macro (IHELIB).

Registers Used--

140

TITLE: TRAILER MACRO (IBETLR)

Purpose

The Trailer macro supplies the wrap-up loader with the following
information:

1. Defines three symbols which divide the module into three parts:
the body of code, the external reference section, and the entry
point section, such that the data required in the Header macro
(IBEHDR) can be calculated. (See "Runtime Routine structure-
in Appendix A.)

2. Generates a pointer in the external reference table which
identifies the external reference and provides a linkage if
the external reference points to an entry point associated with
one of the special functions requiring access to the block adcon
area for the functions (to access the entry-point address).

3. Generates a displacement in the entry point table which
identifies the entry point, and a displacement within the code
body from which the address of the entry point can be determined.

(label] lHETLR EXTRN,ENTRY,NAM1=I1,NAM2=I2,NAM3=I3,
NAMq=#q,FMT=OBH .

The parameter EXTRN contains one subfield per external symbol referenced
by the module. Similarly, the ENTRY parameter contains a subfield
for each entry point defined in the module. The keyword parameter
FMT identifies the form of the subfield entries. IF FMT=OBH, the
subfield values are the last four characters of the library external
or entry-point name. A slot has been provided for other subfield
formats as may be required. At present, ~OBH results in the output
of a message.

The keyword parameters NAM1, NAM2, NAM3, and NAMq are as described
for the Header macro and must be identical to respective field
definitions for the Header macro.

Default parameter values are:

NAM1=Il
NAM2=I2
NAM3=I3
NAMq=Iq
FMT =OBH

Registers Used

None

141

TITLE: ZAP MACRO (DIEZAP)

PUrpOse

The Zap macro defines symbols and DSECr's covering FeB's. symbol tables,
DED'S, the COIIIIIIUDications area. and user terminal tables ..

'rile macro is invoked by the Library Definition macro (LIBDEn.

Reqistu:S USed

IIOne

1~2

TITLE: LIBRARY DEFINITION MACRO (LIBDEF)

Purpose

The Library Definition macro provides all the symbol and DSECT
definitions as described for the Library macro plus other symbols and
DSECT's of special interest to the library interface modules. Among
these are:

1. Redefinitions of standard adcan-area offsets

2. Redefinitions of standard save-area offsets

3. Redefinitions of V/type symbols

4. Definition of DSECT·S covering FCB's

5. Definition of DSECT·s covering DED·s

6. Definition of DSECT·s covering symbol tables

1. Definition of DSECT·s covering communications areas

8. Definition of DSECT's covering user terminal tables

Call

LIBDEF

The macro invokes the following macros:

Library macro (IBELIB)
Standard Offsets macro (IBELBE)
Zap macro (IBEZAP)

Registers Used

No registers are used directly by LIBDEF. Its relationships to called
routines and required values are shown in Figure D-3.

LIBDEF

IHELIB

IHESYM

I Library Entry Points

... ---- IHEADC

Standard Save Area Offsets
General Register Assignment
Error Codes

IHELBE

tandard Adcon Area Offsets

LAdcon Area Definitions

Offsets for Relocatable Registers in LWS
Offsets for Non-Relocatable Registers in LWS

edefine V/Type Symbols to L@ Symbols

IHEZAP

FCBDEF DSECT
FCIBDEF DSECT
SYMTABLE DSECT
DED DSECT
COMMUN DSECT
UTI DSECT

Figure D-3. LIBDEF Calls

144

TITLE: READ DISK MACRO (READDISK)

Purpose

The Read Disk macro reads a record from disk.

Call

READDISK OFF1,OFF2

Parameters OFF1 and OFF2 are offsets to the LWS and LWSP area pointing
to the non-relocatable and relocatable standard save areas,
respectively. The macro invokes the ~LL/360-0S macro (CALRTS) and
the ERRCD macro (IHERRCD).

Registers Used

Preset pseudo registers:

P3 Adcon cover register
P6 LWS cover register

Scratch pseudo registers:

G2-G5 inclusive

145

TITLE: READ TERM MACRO (READTERM)

Purpose

The Read Term macro reads a new line from a terminal unit.

(label] READTERM

This macro invokes the CALL/360-0S macro (CALRTS). Prior to invoking
the CALL/360-0S macro, a question-mark character is placed in the
buffer with all buffer controls updated accordingly.

The macro statement may be labeled.

Registers Used

Preset pseudo registers:

146

P3 Adcon cover register
P2 A (terminal output control block)
P8 Local cover macro

TITLE: UNIFORM INTERFACE FOR SVC MACRO (RTSSVC)

Purpose

The Uniform Interface for SVC macro provides a uniform interface for
SVC invocation from object program routines, regardless of operating
environment.

Call

, [symbol] svc svc-code-number

svc-code-number: the operand number of the desired SVC

The macro generates a call upon an SVC interpreter subroutine. In
a simulated environment, the SVC is also simulated. In the real
environment, a live SVC is issued. By using an interface, the necessity
for having two versions of object-program library routines is avoided.

Registers Used

None

147

TITLE: SET DISK MACRO (SETDISK)

purpose

The Set Disk macro sets the first eight bytes of the input disk buffer
according to information contained in the FCB. If the file is an
external disk file. character line counter (WCOUNT1) and total buffer
character counter (WTOTCBAR) are reinitialized. A code flag (X'CO')
is set in the buffer area.

If the file is an internal disk file. the code flag (X'40') is set
in the buffer area and the PCB is updated.

~

SETDISK

Registers Used

Preset pseudo register:

P3 Adcon cover register

Symbolic registers:

1118

ADLCA Local cover register
ZERO General data register

TITLE: SET ERROR CODE MACRO (SETERRCD)

Purpose

The Set Error Code macro sets the error code in the library
communications area.

Call

SETERRCD INDEX,PREG

Parameter INDEX supplies the last two characters of the error code,
and parameter PREG is a scratch general address which can be used by
the macro.

Registers Used

Preset pseudo register P3 as adcon cover register
Symbolic general data register ZERO
A user-designated general address register

149

TITLE: SET FILE CONTROLS MACRO (SETFLCA)

Purpose

The Set File Controls macro loads two symbolic general data registers
(COUNT1,LNEWDTH) with the current line character count and line width,
respectively_

Ca11

SETFLCA

Registers Used

Preset pseudo register:

P3 Adcon cover register

Non-preset:

Pseudo register P4 as local cover register

Symbolic general data registers:

150

COUNT1
LNEWDTH

Current line character counter
Line width

TITLE: SET DOPE VECTOR MACRO (SETSDV)

Purpose

The Set Dope Vector macro sets the stream dope vector.

[label] SETSDV REG1,Gl,G2,OFFSETl,OFFSET2,COUNTl

Parameter register REGl supplies the starting address of the sources.
Parameter registers Gl and G2 are general-data scratch registers.
Parameters OFFSETl and OFFSET2 supply the offsets in the LWS and LWSP,
respectively, pointing to the non-relocatable and relocatable work
areas, respectively. Parameter register COUNTl supplies the source
stream length.

The macro statement may be labeled.

Registers Used

Preset pseudo registers:

PO Adcon cover register
P6 LWS cover register
P9 LWSP cover register

Symbolic general data register COUNTl

One user-designated general address register
Two user-designated general data registers

151

APPENDIX E - OBJECT CODE STORAGE LAYOUT

This appendix describes the layout of a CALL/360-0S PL/I object program.
Each object program consists of distinct sections. These sections,
in the order they appear in computer storage, are:

1. Communications area

2. Terminal I/O buffer

3. Object program

q. Line number table

5. Static and constants storage

6. Address constant area

1. CALL/360-0S PL/I library

8. Static array and string storage

9. Disk I/O buffers

10, Dynamic storage

Since the sizes of some sections are not determinable until after
compilation has been completed, each section must be addressed
separately by different base address constants. The addresses of
sections 3, 5, and 6 are always contained in fixed general purpose
registers except during execution of a routine from the library. The
addresses of all areas are contained in fixed locations in the address
constant (adcon) area.

The communications area, terminal I/O buffer, and disk I/O buffers
are discussed in Appendix F. All other sections are discussed below.

OBJECT CODE

The object code consists of the machine instructions constituting the
compiled program, symbol tables for data I/O, and the object code
address vs. line number table for runtime diagnostics.

SYMBOL TABLE

Each symbol table consists of entries for each variable to be written
or that can be read in an I/O operation. On input, one table contains
entries for all identifiers that can be read. An output operation
may use more than one symbol table. Each symbol entry in the symbol
table is five words long (fullword-aligned) and contains:

1. The name of the identifier.

2. The DED for the identifier.

3. The number of subscripts.

q. Bow to locate the identifier, if a scalar, or its dope vector,
if an array or a string.

152

The identifier or its dope vector is obtained by using two offsets.
The first offset (KiST01) indicates the displacement within the adcon
area to the base address. The second offset (KiST02) is the
displacement from the base address to the identifier or the dope vector.
Figure E-1 shows the format of a symbol table entry.

1 2 3
r--------------------------------------,
1 1

Word 1 1 Name 1
1----------- (in EBCDIC) -----------1
1 KiSTNM 1
211

1--------------------------------------1
I I Number of -I

3 1 DED 1 SUbscripts 1
I KiSTDD I KiSTSB 1
1--------------------------------------1
I Offset (1) 1

4 I KaST01 1
1--------------------------------------1
1 Offset (2) 1

5 I KaST02 1 L-----------___________________________ J

Figure E-1. symbol Table Entry

Byte

The end of a symbol table is indicated by a two-byte field that contains
zeros.

An end-of-table entry in the symbol table is only one word long
(halfword-aligned). It contains a pointer to the next segment of the
symbol table, if any.

OBJECT CODE ADDRESS-LINE NUMBER TABLE

The object code address vs. line number table is at the end of the
object code and is full word-aligned. There is one entry in the table
for each line in the source program on which a statement begins. Each
entry is two words long. The first word contains an object code pointer
and the second an integer line number in packed decimal. The
terminating entry in the table contains an object code pointer
consisting of the largest positive integer possible.

Thus, each statement of a CALL/360-0S PL/I source program and the
object code generated for that statement are correlated. This serves
as an important debugging aid. Figure E-2 shows the format of an entry
in the table.

1 2 3 Byte
r--------------------------------,
1 Object Code Pointer I

Word 1 I KaoLOP 1
1--------------------------------1 1 Line Number (Packed Decimal) 1

2 1 KaOLLN 1 L--------------------____________ J

Figure E-2. Object Code Address-Line Number Entry

153

STATIC AND CONSTANTS STORAGE

This area contains all of the static storage, dope vectors, and
constants used by the object program. Besides user-declared constants,
data element descriptors (DED) and format element descriptors (FED)
are included. This area actually consists of two subareas. The second
of these areas contains the storage for all static arrays and strings.
The first of these areas contains all other items. All automatic
variables declared in the external procedure are treated as static
variables.

The initial layout of the static and constants area is shown in Figure E-3.

lli!
0 Entry Must Be Zero

4 Offset to Block's BAA

8 Offset to End of DSA

C Offset to Start of Static Array and String Storage

10 Not Used

DSA for
External
Block

28 ERROR

2C FlXEDOVERFLOW

30 OVERFLOW

34 UNDERFLOW

38 ZERODIVIDE

3C __ ENDFILE :1
40 Not Used

AO Debug Print Buffer 2 (J 2O-character)

f- ---

11£ Debug Dump Save Area

-- ----- -----
IS8 Debug Print Buffer 1 (l3Z-character J

~--- --
fOC Not Used

lEO File Control Interface Block Offsets

----~l IF8 FCJB for SYSIN/SYSPRINT (See Figure E-ll.)
IFC Not Used

200 ----!!ee Static and Constants Area

Figure E-3. Static- and Constants Area

1511

Space for the six non-relocatable general purpose registers and the
four floating-point registers is reserved in fixed locations at the
beginning of this area. This space is used by the arithmetic interrupt
instructions in the communications area and on-unit prologues and
epilogues.

In order to make control of on-units in the external procedure the
same as those in internal procedures, the first few words of this area
are set up the same as the beginning of a dynamic storage area (DSA).
Thus, in effect, static and constants storage is the DSA for the
external procedure.

DATA ELEMENT DESCRIPTOR (DED)

This control block contains information derived from explicit and
implicit declaration of variables of type arithmetic and string. DED
formats are shown in Figure E-4, and the flag field of each DED is
further described in Figure E-5.

r--,
I I IDED Formats (in bytes) I
I Data Type I Representation 1-----------------------1
1 I 1 1 1 2 1 3 I
I--------------t-·-----------------t-------t-------t-------1
1 1 Fixed-point 1 Flags I P 1 Q I
1 Arithmetic 1 Floating-point 1 KiDDFFI KiDDP 1 KiDDQ 1
I--------------t-------------------t-------t---------·-----I
I 1 1 Flags I I
1 String I 1 KiDDFF 1 Length 1
l--J

Figure E-4. DED Formats

r---,
Bit 0 1 1 I 2 I 3 I 4 I 5 I 6 I 1 I

-------t-------t------t--------t-------t-------t-------t-------I
I I I Fixed 1 I I I I
I I I 0 I I I I I

0= string I 0 I 0 1--------1 1 I 1 I 0 I 0 ,
, , I Variable , I I , ,
I I I 1 I I 1 I I

-------t-------t------t--------t-------t-------t-------t-------I
I I I I I I , I
IInter- I 0 I Short I 1 I Decimal I Fixed IReal 1=0

1= Arith- I nal 1 I I 1 1 I I
metic I-------t------t--------t-------t-------t-------t-------I

I I 1 I I I II
IExter- 1 0 I Long I 1 IBinary I Float I Complex 1=1
I nal I I I I I 1 1 l-----__ ----------J

• Figure E-5. Definition of DED Flag Field (KiDDFF)

The P Byte

P is the declared or default prec1s1on of the datum. The maximum
values are 9 for fixed and 16 for float.

155

The Q Byte

Q is the declared or default scale factor of the datum, in excess-128
notation (that is, if the implied fractional point is between the last
and next-to-Iast digit, Q will have the value 129).

FORMAT ELEMENT DESCRIPTOR (FED)

This control block contains information derived from a format element
within a format list specification for edit-directed I/O. There are
four forms of the FED (all halfword-aligned):

1. Format Item E

1 2 3 Byte
r--------------------------------,
I WID 1 S I
I KaFEW I KaFED I KOlFES I
l--------------------------------J
W - width of data-field in characters
D - number of digits following decimal paint
S - number of significant digits to be placed in data-field

(ignored for input)

2. Format Item F

1 2 3
r---------------------------------,
I WID I P I
I KaFEW I KiFED I KiFEL I
l-------------------------------~-J

Wand D - (as for E-format)

Byte

P - scale factor in excess-128 notation

3. Format Items A and X

1 2 Byte
r-----------------,
I W I
I KiFEW I
l-----------------J
W - (as for E-format)

4. Printing Format Items SKIP and COLUMN

The FED's for these format items are halfword binary integers.

DOPE VECTORS

String Dope Vector (SDV)

This control block specifies storage requirements for character-string
data. An SDV consists of eight bytes (word-aligned), in the format
shown in Figure E-6.

156

1 2 3 Byte
r--, I 1 Byte Address of String (Offset> I

Word 1 I KaDVND=O I KaDWO 1
~--I

2 t £ I £ 1
KaDVIN J I I L------------------------________________________ J

Figure E-6. SDV Format

where 2 is the len<jth-1 of the striIl<J in bytes: a negative value
indicates the null string.

Array Dope Vector (ADV)

This control block contains information required in the derivation
of elemental addresses within an array data aggregate. The AnV has
three functions:

1. Given an array, to step through the array in row-major order.

2. Given the subscript values of an array element, to determine
the element address.

3. Given an element address, to determine its subscript values.

In a CALL/360-OS PL/I implementation, arrays are stored in row-major
order in storage. The elements of an array are normally in continuous
storage: if the array is a cross-section, its elements may be
discontiguous. such discontiguity, however, is transparent to
algorithms that employ an array dope vector.

The ADV contains (q+6n) bytes, where n is the number of dimensions of the
array. The ADV is word-aligned. Its format is shown in Figure E-7.

157

1 2 3 4 Byte

r---,
word 1 1 Number of 1 Virtual Origin 1

I Dimensions 1 K8DVVO 1
I K8DVND I 1

2 I 1
KiDVIN I Multiplier(l) Multiplier (2) 1

1 I I
1-------------------+-----------------------1

Word 3 1 I 1
1 • • • 1 • • • I 1 , 1
1-------------------+-----------------------1
1 I 1
1 • • • 1 Multiplier(n) t
1 1 1 1-------------------+-----------------------1
1 I I
1 Upper Bound(l) 1 LOwer Bound(l) 1
1 I 1
1-------------------+-----------------------1
1 1 I
1 • • • 1 • • • 1
1 1 1
1-------------------+-----------------------1
1 1 1
I . . . I . . . I
1 1 1
1-------------------+-----------------------1
1 1 1
1 Upper Bound(n) I Lower Bound(n) I
1 f I
l---J

Figure E-7. ADV Format

Definitions of ADV fields:

Virtual Origin - The byte address of the array element whose subscript
values are all zero. that is. X(O ••••• O); this element need not be
an actual member of the array. in which case the virtual origin will
address a location in storage outside the actual bounds of the array.
(This address is an offset.)

Multiplier - Multipliers are halfword binary integers which in the
standard ADV algorithm allow calculation of element addresses.

Upper Bound - Halfword binary integer specifying the maximum value
permitted for a subscript in the ith dimension. This value may be
negative.

Lower Bound - Halfword binary integer specifying the minimum value
permitted for a subscript in the ith dimension. This value may be
negative.

ADV Algorithm - Given subscript values for an n-dimensional array.
the address of any element relative to the program origin is computed
as:

158

Address = virtual origin + « ••• (Sl*M1 + S2)*M2 + •••) + Sn)*Mn

where

Si
Mi

Mn

=
=
=

value of the ith subscript
number of different values the subscript in the (i+1)th
dimension can assume., except for Mn
byte length of the element

string Array Dope Vector (SADV)

This control block contains information required to derive the address
of elemental strings. The SADV is identical to the basic ADV., with
the addition of a fullword to the end of the ADV which contains the
length of the string in both halfwords (length-1 bytes and., if negative.,
the null string). (See Figure E-8.)

1 2 3 Byte
r----------------------------------,

ADV

1 I 1----------------------------------1
I ~ 1 ~ 1
I I I
l----------------------------------J

Figure E-8. SADV Format

ADDRESS CONSTANT AREA

The address constant (adcon) area is used during execution of the
compiled object program to locate the data and library routines
necessary to support execution. A symbolic description of this area
is available to the compiler in the library load table (L table) so
that symbolic references may be made to the area during code generation
and compilation wrap-up.

The adcon area consists of a fixed-length portion and a variable-length
portion. The fixed-length portion of the area has the structure
illustrated in Figure E-9.

159

o Address of Communicat;ons
Area

Address of Line Number
4 Table

Address of Next Dynamic
Storage Area 8

Address of Last Byte in User's
Area 12

-16

70 Address of Code Pages

~ ,
I

A8 Address of Static/Constant
Storage Pages

Address of Relocatable
Library Communications Area AC

Address of Relocatable Save
Area for Execution Error Package

80 .

Address of Relocatable Save
84 Area for Standard Library Routines

Address of Relocatable Work
88 Area for Level- 0 Library

Routines

File Control Block
(FCB)

(See Figure Eo 13.)

16 Words; Successive Object Code Page
Addresses are Initialized in Consecutive
Forward Locations as Required; Static/
Constant Page Addresses are Initialized
in Consecutive Backward Locations as
Required

PiCjllre .9. Layout of Fixed-Length.. Portion of Adcon Area (Page 1 of 2·)

160

Address of Relocatable Work
BC Area for Level - I Ubrary

Routines

CO Address of Relocatable Work
Area for Level - 2 Ubrary

Routines

C4 Address of Relocatable Work
Area for Level - 3 library

Routines

C8 Address of Relocatable Work
Area for Level - 4 library

Routines

CC Address of Non-Relocatable
library -Communications Area

Address of Non-Relocatable
00 Save Area for Execution Error

Package

04 Address of Non-Relocatable
Save Area for Standard library

Routines

08
Address of Non-Relocatable
Work Area for Level - 0 Ubrary

Routines

DC
Address of Non-Relocatable
Work Area for Level - 1 library

Routines

EO Address of Non-Relocatable
Work Area for Level - 2 library

Routines

E4 Address of Non-Relocatable
Work Area for Level - 3 Library

Routines

E8
Address of Non-Relocatable
Work Area for Level - 4 Ubrary

Routines
EC Interrupt Save Area

-:/-
114 PSW Return Address

118 Object Code Statement Address

IIC

r:::~ 11
Address of Individual
library Subroutine
Entry Points
(129 Words)

32C L(a?ENOF

• Figure E-9. Layout of Fixed-Length Portion of Adcon Area
(Page 2 of 2)

1.01.

The variable-length portion contains adcons for a class of library
subroutines which require individual block adcon areas. The variable
length portion also contains library routine parameter lists and the
adcon portion of the library work space (LWS). Only adcons for those
routines actually required by the compilation are included in the
variable-length portion.

MULTI-FILE INTERFACE

The interface for terminal and disk files involves pointers in the
communications area, tables in the static and· constants area, file
control interface blocks (one per filename) located in the static and
constants area, and a file control block in the fixed-length portion
of the adcon area.

COMMUNICATIONS AREA

The communications area is used for communication with the Executive
during I/O operations. Its contents are shown below.

r---,
FILEPTR 11C 1 (File Table Offset From Commun) (1EO) I

L---~ r--------------------,
FILENBR 122 I File Index I (1,2,3, or 4)

L--------------------~

Figure E-10. Communications Area

STATIC AND CONSTANTS AREA

FCIB Offsets and FCIB's for SYSIN and SYSPRINT

Up to four disk files can be open at one time. The FCIB's for the
open disk files are pointed to by the first four words of the area
shown in Figure E-11. There are no pointers to the FCIB's for SYSIN
and SYSPRINT. Their origins are fixed as the first and second FCIB
pointer words. This overlay is feasible because only the locations
of the buffer pointer words of the FCIB's for SYSIN and SYSPRINT are
valid. These pointers are the last two words of the area and point
to displacements 2C and 34 of the adcon area. (See -Adcon Area (Fixed
Length Portion).-)

162

r---,
FILETABL lEO 1 A (PCIB Offset (From Commun» 1 •

1---1
lE4 1 A (PCIB Offset (From Commun» 1 ••

1---1
lE8 1 A (PCIB Offset (From Commun» I

1---1
lEC 1 A (PCIB Offset (From Commun» 1

1---1
1FO I End of Table (FFFF) 1

1---1
1 Unused I
I--------------------------~--------------I

lF8 1 00 A(SYSIN Buffer Pointer Pair) 2C I
1---1

lFC 1 81 A(SYSPRINT Buffer Pointer Pair) 34 I
L---J

• - Start of Dummy SYSIN FCIB
•• - Start of Dummy SYSPRINT FCIB

Figure E-11. FCIB Offsets and FCIB's for SYSIN and SYSPRINT

FCIB"s for Disk Files

An FCIB is built in the static and constants area for each ~ilename used.
This area is defined by FCIBDEF DSECT in the Zap macro (IHEZAP). The
format of each FCIB is shown in Figure E-12.

FCIBTITL

FCIBMODE

FCIBEXEC

FCIBNAME

FCIBFC
FCIBFCB

FCIBNBR

Hex

0

"
8

C

10

14

18

lC

r--,
1 I
1 TITLE 1
1 ~ 1 r----------I
1 1 1
1 10PEN/Mode 1
1 1 1
1-------------------------------1----------1
1 I/O Code 1 Record 1 Half-Tracks IMax. Half-I
1 1 Number 1 Allocated 1 Tracks 1
1 I I 1 Allowed 1
1--1
1 1
I FILENAME 1
1 t
1--1 1 File' 1 Offset from Adcon Area of I
1 Codes 1 Buffer Pointer Pair 1
1----------+-------------------------------1
1 -II
1 FILENBR 1 I
L--J

Figure E-12. FCIB Format for Disk Files

163

File codes:

Bits o and 1 = 00 SYSIN (terminal)
01 Disk input Declared
10 SYSPRINT (terminal) file types
11 Disk output

2 = 1 Disk input } Set by OPEN
3 = 1 Disk output statement
4 = 1 List or data I/O flag (disk environment in compiler)
5 = 0 Not busy

1 Busy
6 = 0 External format

1 Internal format
7 = 0 Non-print file

1 Print file

ADCON AREA (FIXED-LENGTH PORTION)

The FCB in this area contains a common data specification set up for the
currently active file and six pairs of buffer pointer words. It is
defined by the FCIBDEC DSECT in the Zap macro (IHEZAP) as shown in
Figure E-13.

10

14

18
IC
20

24

28
2C
30
34
38

3C

40

44

48
4C

50

S4

58

Codes

/
FILENBR
Codes

Cudes

Codes

Codes

Codes

Codes

I

~

I
1

1

I

1

1

I

Start of Buffer
Current Buffer Position

/
) .)

)

/
Address of FCIB
Start of Buffer
Current Buffer Position
Start of Buffer
Current Buffer Position
Start of Buffer
Current Buffer Position
Start of Buffer
Current Buffer Position

Start of Buffer
Current Buffer Position
Start of Buffer
Current Buffer Position

Figure E-13. FCB Format in Fixed Adcon Area

File Codes:

Bits 0 and 1 = 00
01
10
11

2 = 0
3 = 0

" = 1
5 = 0

1

SYSIN (terminal)
Input (disk)
SYSPRINT (terminal)
Output (disk)
Not used
Not used
List or data I/O flag
Not busy
Busy

Common Data
Specification

SYSIN

S.YSPRINT

Disk Input
or Output

6 = 0 External format
1 Internal format

7 = 0 Non-print file
1 Print file

Common Data Specification Portion of FCB

Issuance of a GET or PUT statement causes the common data specification
portion of the FCB (words 1 through 7) to be set. The buffer pointer
words (words 1 and 2 of the area) are obtained from either the pair
for SYSIN or SYSPRINT or a pair set up for an open disk file. The
location of the proper buffer pointer pair in the FCB is indicated
by a pointer in the FCIB of the file referenced in the GET or PUT
statement.

Byte 1 of word 7 is set with the file index also set in FILENBR of
the communications area. The remainder of word 7 contains the address
of the FCIB. The contents of words 3 through 6 depend on the type
of I/O being performed. Various possibilities are shown in Figures
E-14 through E-19.

1 2 3 4 Byte
r---------------------------------,

Word 3 1 1
1 1
1---- Not ---I

4 1 . 1
1 1
1---- Used --- 1

5 1 1
1 1 1------------------------------·--1

6 1 Address of Symbol Table I
1 KaFBST I
l---------------------------------J

Figure E-14. Common Data Specification Portion of FCB for Data Input
and Non-Array Element Data output

1 2 3 It

r---------------------------------,
Word 3 I Address of Element I

I KaFBEL 1
1---------------------------------1

It 1 1
1 I
1---- Not --- 1
511

I Used I
1---------------------------------1
I Address of Symbol Table 1

6 1 KaFBST 1 l _________________________________ J

Byte

Figure E-15. Common Data Specification Portion of FCB for Array Element
Data Output

165

1 2 3 4 Byte
r---------------------------------,

Word 3 I Address of Skip Value I
1 KaFBSK 1
1---------------------------------1

4 1 1
I I
1---- Not ---I

5 I I
1 I
1---- Used ---I

6 I I
1 1
L---------------------------------~

Figure E-16. Common Data Specification Portion of FCB for Initialize
Output with SKIP option

1 2 3 4 Byte
r---------------------------------,

Word 3 I Address of Element I
I KaFBEL I
1---------------------------------1

4 1 Address of DED 1
1 KaFBDD I
1---------------------------------1

5 I 1
f I
1---- NOt ---I

6 I Used I
I I
L---------------------------------~

Figure E-11. Common Data Specification Portion of FCB for List I/O

1 2 3 Byte
r---------------------------------,

Word 3 I Address of Element I
I JtaFBEL 1 1------------------------1

II) Address of DED I
I JtaFBDD I
1---------------------------------1

5 I Address of FED I
~ XaFBFE t 1--------------------------.

6 I Hot Used I
1 I
~---------------------------------~

Figure &-18. Common Data Specification Portion of FCB for Non~Complex
Edit X/C

166

1 2 3 4

r---------------------------------,
Word 31 Address of Element 1

4 K8FBEL I
1---------------------------------1

4 1 Address of DED 1
I K8FBDD I
I-----~---------------------------I
1 FED 1 I

5 I Type I Address of Real FED I
I K8FBFr I K8FBFE I
1-------+-------------------------1 I FED I Address of Complex FED I

6 I Type , K8FBIF I
IK8FBIT I I
L---------------------------------J

Byte

Figure E-19. Common Data Specification Portion of FCB for Complex
Edit I/O

BLOCK ADCON AREA

Each procedure and begin block in the program has a block adcon area
(BAA) in adcon storage. The BAA contains all the information needed
by the block. For a begin block, the area is four words long. For
a procedure block, it is six words plus one word for each parameter.
The format of the BAA for every block other than the external block
is given in Figure E-20.

The BAA for the external block is pointed to by the second word of the
static and constants area. The location pointed to is at displacement
A4 from the start of the fixed adcon area. (Refer to Figure E-9.)

167

r--1 Number of 1 Address of Block Entry Point
I Parameters I KiBAEP
I KiBANP 1 (Not Used for Begin Blocks>
1--

2 I Address qf Block·s DSA
I KiBADS
1--

3 I Address of Location Following DSA
I KiBAED
I---~--------

4 I Block's ~ilogue Address
I KiBAEL
1--

5 t Return Address l
I KiBARA I
1--1
I 1

KaBAPM---> • Address of Arguments as Stored by Code
Generated for CALL or Function Reference

1 I
1--1
I I
I Address of Return Variable (see note) I
l--~

Note: This field is significant only if the routine is referenced as
a function (rather than called). It is set up by code generated
for the function reference.

Figure E-20. Format of Block Adcon Area (BAA)

ON-UNIT ADCON AREA

The general format of an ON statement is:

option 1.
option 2.

ON-condition on-unit
ON-condition SYSTEM:

During compilation, space for an on-unit adcon area is allocated for
each ON statement of the form shown in option 1. The format of the
on-unit adcon area for allan-units except ON ENDFILE is illustrated
in Figure E-21.

168

r---,
Word 1 1 Address of on-Unit Entry Point 1

1 K8BAEP 1
1---1

2 1 Address of DSA 1
t K8BADS 1
1---1

3 1 Address of Following DSA I
I K8BAED I
1-- ~I

1.1 1 Not Used I
1 t
1---1

5 1 psw Save Word (Second WOrd of PSW) 1
1 U~~ 1
1---1

KIiiONSA---> •
6-15 • Relocatable Register Save Area

(Registers 6-15)
1---1

16-75 I Save Area for Relocatable Registers 1
1 from Levels 0, 1, and 2 Work Space 1
1 (240 bytes) 1
L---J

Figure E-21. Format of on-Unit Adcon Area (Except for ON ENDFILE)

Word 1 - the location of the code that will be performed if the
ON-condition is raised.

Word 2 - the address of the DSA (on-unit format) obtained when
the ON-condition is raised.

Word 3 - pointer to the word following the last word in the DSA
pointed to by word 2.

Word 4 - Not used.

Word 5 the second word of the psw, which is saved when the
ON-condition is raised.

Words 6 through 15 - If the ON-condition is raised, the
relocatable registers are saved in these locations.
The non-relocatable registers are saved in the DSA
pointed to by word 2.

Words 16 through 15 - If the ON-condition is raised,
relocatable sections of the level 0, level
2 save areas are moved to these locations.
relocatable save areas of these levels are
the DSA pointed to by word 2.

the
1.. and level

The non
moved to

The format of the on-unit adcon area for ON ENDFILE is illustrated
in Figure E-22.

169

ENDCON1

ENDCON2

ENDCON3

ENDCON4

ENDCON5

o

4

8

12

16

o

4

8

C

10

r--------------------------------------,
IAddress of On-unit Entry Point 1
1--------------------------------------1
I Address of DSA 1
1--------------------------------------1 1 Address of WOrd Following DSA 1
I--------~--~--------------------------I
INot Used

t--------------------------------------, I PSW Save WOrd (Second WOrd <>f PSW) I
l--------------------------------------J

Figure E-22. Format of ON ENDFILE Adcon Area

The ON ENDFILE adcon area has the same format as words 1 through 5
of the on-unit adcon area for other types of on-units. The contents
of these words have si~lar meanings.

LIBRARY

At the beginning of the library area is the non-adcon portion of the
library work space. Immediately following are all of the library
routines needed for the object program.

STATIC ARRAY AND STRING STORAGE

Space for arrays and strings declared in the external block is allocated
in this region. All items in this area are referenced by a dope vector
in the static and constants area.

DYNAMIC STORAGE AREAS AND ON-CONDITIONS

A DSA (block type) is obtained during the initialization process for
internal procedures and begin blocks. (The external procedure block
is assigned an area within the static and constants area which serves
the function of a DSA and is thus called the external block's DSA.)
In addition, a DSA (on-unit type) is obtained if an ON-condition covered
by an option-1 ON statement occurs (see ·On-Unit Adcon Area", above).
The space obtained for these DSA's is released when the block is exited
or when the code specified by the option-1 ON statement has been
executed.

CALL/360-0S PL/I ON-conditions are error, fixed-point overflow, other
overflow conditions, underflow, zerodivide, and end of file. Each
DSA for a procedure or begin block contains ERROR, FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, ZERODIVIDE, and ENDFILE words corresponding to
these conditions.

The format of each of the first five interrupt condition words is shown
below.

r--------------------------------,
I Action I Pointer to On-Unit I
I code I Adcon Area 1
L----------~---------------------J

110

The format of the ENDFILE word follows.

r--------------------------------,
I Number of I Pointer to I
I Entries I ENDFILE Table I
L--------------------------------J

The first byte of the ENDFILE word indicates the number of entries
in the ENDFILE table. (See Appendix B.)

There is an entry in the ENDFILE table for each unique file referenced
within a block containing an ON ENDFILE statement. The first word
of that entry and the DSA words for the interrupt conditions have the
same format. They are often called action words.

Part of the initialization for a block is to set up the ENDFILE table
and to set all action words to zero. Execution of any ON statement
causes the setting up of an action word. The meaning of the action
word is determined by the action code byte. Code values are explained
below.

o

1

3

Meaning

Either an ON statement for this condition or file has
not been executed in this block or a REVERT statement
was the last statement executed for this condition or
file. If the corresponding' ON-condition is raised,
the code byte of the corresponding word in the
immediately preceding DSA will be checked. If 1 or
3, the action indicated by this code will be performed.
Otherwise, the next preceding DSA will be checked.
This process will continue until either a code byte
equal to 1 or 3 is found or all preceding DSA's have
been searched. In the latter case, the standard system
action will then be performed.

This code value is set by the execution of an option-
2 ON statement or by execution of a REVERT statement
which resets conditions to those specified by a previous
ON SYSTEM statement. If the corresponding ON-condition
is raised, the standard system action will be performed.

When an option-iON statement or a REVERT statement
which resets conditions to those specified by a previous
option-iON statement is executed, the action-code byte
is set to 3. The last three bytes are set to point
to the on-unit adcon area for that statement. If the
corresponding ON-condition is r~ised, the action
specified by the ON statement will be performed after
an on-unit DSA is obtained. If the ON-condition was
not ON ENDFILE, registers will be saved in the on-unit
adcon area and DSA area. Levels 0, 1, and 2 work areas
will be moved to the adcon area and DSA area.

Figure E-23 illustrates the DSA for internal procedure and begin blocks.
The ENDFILE table is pointed to by the immediately preceding ENDFILE
word.

171

ENDDSA1

ENDDSA2

ENDDSA3

ENDDSA4

ENDDSA5

ENDDSA6

ENDDSA7

o

4

8

12

40

60

64

o

4

8

20

28

3C

40

r--------------------------, 1 Pointer to Previous DSA I
1--------------------------1 1 Pointer to BAA I
1--------------------------1
1 Unused 1
1--------------------------
1 Unused

1--------------------------1 ERROR

I-----------------~--------1 FIXEDOVERFLOW
1--------------------------
I OVERFLOW

1--------------------------I UNDERFLOW

1--------------------------I ZERODIVIDE
1--------------------------
I ENDFILE
1--------------------------1 1 ENDFILE TABLE I

1--------------------------1
• Automatic Arithmetic
• scalars, Strings, and
• Arrays
L--------------------------~

Figure E-23. Layout of DSA for Internal Procedure and Begin Blocks

ENDDSAl is a pointer to the previous DSA (which is either that of the
next outer block or that of an on-unit). ENDDSA2 is a pointer to the
block adcon area (BAA). Automatic arithmetic scalars, strings, and
arrays are set up at initialization time. (For a discussion of the
contents of ENDDSA5, ENDDSA6, and ENDDSA7, see preceding paragraphs.)

A portion of the static and constants area is called the DSA for the
external block. However, this storage area is not dynamic. It also
differs from other DSA's in that the ENDFILE table is not adjacent
to the ENDFILE word. The ENDFILE table is in the free static and
constants area of the static and constants area.

Figures E-24 and E-25 illustrate the DSA areas for on-units.

172

Dec Hex

0 0

4 4

8 8

32 20

40 28

60 3C

64 40

88 58

208 DO

328 148

r-----------------------------------, 1 Pointer to Previous DSA t
1-----------------------------------1 I Pointer to On-unit Adcon Area 1
1-----------------------------------1 I General Purpose Registers GO-G5 1
1-----------------------------------1 I Floating-Point Register F1 ,

set to All Zeros

-----------------------------~----~
Floating-Point Registers F2-F4

Level 0 Non-Relocatable Area
(first 120 bytes)

Level 1 Non-Relocatable Area
(first 120 bytes)

-----------------------------------1
Level 2 Non-Relocatable Area 1
(first 120 bytes) 1

l-----------------------------------J
Figure E-24. Layout of DSA for On-Units (Except ON ENDFILE)

Dec Hex

~r--------------------------------,
ENDDSA1 0 0 I Pointer to Previous DSA I

1--------------------------------1
ENDDSA2 4 4 1 Pointer to On-Unit Adcon Area f

1--------------------------------1
ENDDSA3 8 8 I Unused f

1--------------------------------~I
ENDDSA4 12 20 t Unused 1

1--------------------------------1
ENDDSA5 40 28 I I

I set to All Zeros I
ENDDSA6 60 3C t 1

l--------------------------------J
Figure E-25. Layout of DSA for ON ENDFILE On-Units

EXAMPLES

In summary, a few examples are given below.

Example 1: Assume that a call is made to internal procedure INT1 (a
portion of which is shown below).

100 INT1: PROCEDURE;

200 ON UNDERFLOW SYSTEM;

173

300 Z = 5+10**-QO/l0**-Q2;

900 END;

A DSA (block type) is initialized. Then, the following actions occur.

1. As part of INT1, the ON UNDERFLOW SYSTEM. statement is executed.
This causes the action-code byte of the UNDERFLOW word in the
DSA for the internal block (that is, for INT1) to be set to
one.

2. The code generated for the assignment statement causes an attempt
to divide 10**-QO by 10**-Q2. A machine interrupt occurs.

3. The Executive transfers control to the Error Routine (IBEERR)
via the code at ARINTRP of the communications area. IBEERR
determines that the interrupt is due to an underflow condition.

4. The action-code byte of the UNDERFLOW word in the DSA is examined
and found to be one. ~herefore, standard system action (printing
of the UNDERFLOW message) is performed.

5. Return is made to the point of interrupt.

Example 2: Assume that a call is made to internal procedure INT2 (a
portion of which is shown below).

100 INT2: PROCEDURE;

200 ·OPEN FILE(FIBL2} INPUT;

300 ON ENDFILE(FIBL2) X=2;

3i)(Y DO I = 1 to 10;
400 GET FILE(FIBL2) A,B,C;

860 END;
900 END;

A DSA (block type) is set up. Then, the .following actions occur.

1. As part of INT2, the ON ENDFILE(FIBL2) X=2; statement is
executed. This causes the action-code byte of the action word
of the ENDFILE table entry in the DSA that corresponds to FIBL2
to b~ set to 3. The remaining three bytes of the acti9ft word
are set to point to the on-unit adcon area for this st.at~ent
(wbi~.was allocated, when the statement was c9mPiled)~ Note
that' X=2 is not executed. '

2. Assume that FIHL2 contains only nine sets of items to be read
into A, B, and C. Then, the tenth execution of the GET statement
causes an attempt to read past the last data item on FIHL2.

3. The ENDFILE condition is recognized by the List- and Data
Directed Input routine (IHELDIB). It calls IHEERR.

174

4. IBEERR examines the action-code byte of the action word in the
ENDFILE table entry for FIBL2. since the byte contains a code
of 3, IBEERR performs the following actions.

a. Initializes the on-unit adcon area pointed to by the action
word.

b. Obtains main storage locations for an on-unit DSA.

c. Initializes the on-unit DSA.

d. Transfers control to the on-unit code pointed to by the
first word'of the adcon area. This code corresponds to
X=2 and causes X to be set to 2.

5. The on-unit code transfers control to entry-point IBEERRN of
Error Routine (IBEERR).

6. IBEERR releases the on-unit DSA area and transfers control to
the next statement in the internal block (that is, in INT2).

Example 3: Assume that a call is made to internal procedure INT3 (a
portion of which is shown below).

100 INT3: PROCEDURE~

200 ON UNDERFLOW BEGIN~
210 Z=O~
220 SWT2=5~
no END;
300 X=5~

400 R=F/Y~

900 END;

A DSA (block type) is set up. Then, the following actions occur.

1. As part of INT3, the ON UNDERFLOW BEGIN; statement is executed.
This causes the action-code byte of the UNDERFLOW word in the
DSA for internal procedure INT3 to be set to 3. The remaining
bytes of the UNDERFLOW word are set to point to the on-unit
adcon area (established for this statement at compile-time).

2. Control is transferred past the code generated for the begin
block (to statement 300).

3. A machine interrupt occurs while the expression R=F/Y is being
computed. control is passed to IBEERR.

4. IBEERR determines that the interrupt is due to an underflow
condition. Then it determines that the action-code byte of
the UNDERFLOW word is set to 3. As a result, IBEERR performs
the following actions.

a. Saves relocatable registers and second word of PSW in the
on-unit adcon area pointed to by the rightmost three bytes
of the UNDERFLOW word.

175

b. Moves levels 0 through 2 relocatable library work space
to on-unit adcon area.

c. Gets a DSA for the on-unit and saves non-relocatable
registers in this area.

d. Moves levels 0 through 2 non-relocatable library work space
to the DSA.

e. Transfers control to the code generated for the begin block
via the first word of the on-unit adcon area,.

5. The initialization code for the begin block causes another DSA
(block type) to be generated. In addition r the block may contain
option-iON statements (that iSr having specified on-units)
that cause action words to be set up for this DSA when the ON
statements are executed.

6. After the main code of the begin block has been executed r its
epilogue code is performed. The DSA for the begin block is
released.

7. Control is transferred to entry-point IHEERRR of Error Routine
(IHEERR) •

8. IHEERR performs the following actions.

a. Restores fixed and floating-point registers. Restores PSW.

b. Restores levels Or lr and 2 library work space.

c. Releases the DSA for the on-unit.

d. Causes control to be returned to the point of interrupt.

DATA ADDRESSING

All items in the object program can be addressed by a combination of
a base address and a displacement from that address. All necessary
base addresses are either in the adcon area or permanently assigned,
to relocatable registers. Thus r the base address can be easily obtained
and the displacement added to give the true address of the item.

The object program uses ten relocatable registers r six of which have
permanently assigned values. The other four (12 to is) are used for
obtaining necessary base addresses and for linkage. Figure E-26 shows
the contents of the general purpose registers.

Library
Designation

r--,
I GPR I O-S I Fixed-point arithmetic I GO to GS I
I I 6-8 , Code cover (first 12r288 bytes) I PO to P2 I
I I 9 , Adcon area cover I P3 I
I I 10 I Static and constants cover , pq I
I I 11 , Current DSA cover I PS I
, I 12 I Volatile I P6 I
I I 13 I Volatile and parameter list cover , P7 I
I I 14 I Volatile and return address , P8 I
I I 15 I Volatile and entry point address I P9 I l---------------------________________________________ ---------------J
Figure E-26. General Purpose Register Assignment

176

During subroutine linkage, the parameter
point register are used only if needed.
that general purpose registers 2 through
4 and 6 are the same upon return.

list register and the entry
Subroutine linkage assumes
11 and floating-p~int registers

111

APPENDIX F - SUPPORT SERVICES FOR LANGUAGE PROCESSORS

The CALL/360-OS PL/I compiler (language processor) runs in a simplified
time-sharing environment under the control of the CALL/360-0S Executive.
Facilities are simplified in keeping with the design objective of a
high-performance system. The CALL/36o-0S Executive analyzes and
responds to all terminal commands. It provides a line editor that
accepts source proqrams from a terminal and arranges this input for
compilation.

The interface between the CALL/360-0S Executive and its associated
processors and user programs is based on the following requirements:

• All processors and user programs are relocatable.

• All processors are reentrant.

• All jobs can be described for the present as the sequence:
compilation plus execution.

• At compilation time, two modules are in use by the terminal: the
processor and the user program area. The processor is considered
to have control.

• At execution time" only one module is in use by the terminal.:
the user program area. All runtime I/O routines, arithmetic
functions, etc., are attached to the proqram area as a runtime
package. The user program is considered to have control.

• Control may be taken away from the language processor or user
program at any time (with two exceptions--see below) and the user
program area written onto the disk.

• This_generally happens when a program uses its initial time quantum
(presently about three seconds). When it is time for the user
to -get another time slice.- the user area is read from the disk
into (probably) a differ~t 4r~ of core. This process is generally
referred to as_a-ti..lR~~t_ Swap.-

The interfa?e is deai.9n~ -~:,_~~ .. -_ mitU, __ . amount of interacti~D is
needed .. - '111.1.8 i~ a' 1\eC,e~:,~~ •• a-'tune-sharing system where
80-90 perc-ent of all jOfJjj' &re:,e~\16e4' in less than 900 milliseconds. .'
The interface consists pri.ari~y of two core communications regions.
The regions are the communications area of the user work area and the
user terminal table.

The CALL/36o-OS Executive dan be 'called only via the SVC instruction
in the communications area. To issue a ~uest to the Executive, a
language processor or runtifteprogram must load register 0 with a
request code and then execute the ave instruction to transfer control
to the Executive. , InCALL/360-OS PL/I, this is accomplished at compile 0

time by calling the SVC Director ($SVC); it is accomplished at runtime
by calling the Liht"axy SVC-Dilreot.or (mESVC). Either routine loads
register 0 with tbe par-.eter passed bf the calling instructions and
executes the svc. The code in-register 0 tells the CALL/360-0S
Executive what action to take. A language processor on this system
should not exceed 81,920 bytes (forty 2048-byte blocks) in order to
achieve effective utilization of memory.

~: In CALL/360-0S documentation, the request code loaded in register
o is usually referred to as an SVC code.

178

...... '.

COMPILER/EXECUTIVE INTERACTIONS

STORAGE ALLOCATION

To eliminate the necessity for elaborate and time-consuminq core
manaqement routines, when a user specifies that his proqram is to be
compiled and executed, the space necessary to accomplish this is
allocated in ~ne contiquous block. This block contains, at various
staqes in compilation and execution, the communications area, source
proqram, object proqram, compiler work space, disk and terminal I/O
buffers, etc. The Executive uses a unique core allocation alqorithm
for each processor in the system. This alqorithm must be expressed
in terms of constants and the following variables:

1. Number of bytes in the source proqram

2. Number of lines in the source proqram

The alqorithm should be such that compilation and execution of at least
90 percent of all proqrams using that processor can be accomplished
within the allocated space. The actual core area allocation is the
smallest number of 2048-byte blocks which completely contain the
computed number of bytes.

There is a 20~8-byte area at the very bottom of the user area that
the Executive uses for holdinq various pointers. This area is swapped
with the user proqram. Lanquaqe processors, however, are generally
unaware of its existence.

The allocated area may be arranqed by the processor in any way with
the followinq restrictions:

1. A communications area must exist at the bottom (that is, in
the lower-numbered locations) of every user area.

2. Before compilation, the source proqram will be placed by the
Executive at the top of the user area, at a location indicated
in the user terminal table.

If, during the course of compilation, it is determined that the amount
of core initially allocated is insufficient. the additional core
required is requested by the SVC in one of two modes. The first mode
is used when compilation has been completed. and the Executive need
only attach the extra core to the existing area and return control
to the requester. The second mode of the svc is used when compilation
is incomplete, and the amount of extra core required is indeterminate.
In this case, the Executive will add a percentaqe of the original
allocation to the area, set a bit in the OTT indicatinq that
reallocation has taken place, and restart the compilation from the
beqinninq.

INITIAL RE~ISTER SETTINGS

Before passing control to a processor. the Executive sets register
7 with the base of the processor, and register 12 with the base of
the user (program) area. Control is then passed to the first byte
of the processor.

179

USER WORK AREA

The Executive places the source program entered by the
end (higher-numbered locations) of the user work area.
contains line numbers and end-of-line indicators. The
source lines is depicted in Figure F-1.

count

1111
t

IIlj I
f-

count NL

Figure F-1. Format of CALL/360-0S Source Lines

user at the
This text

format of the

EOF ..
I I n
t
NL

Each line is started by a count byte. The count~is in binary. This
byte contains the number of bytes in the line including the count byte
itself. The next character after the count byte is a numeri~ character
which is the first character of the line number. The line number is
one to five numeric characters in length and is terminated by the first
nonnumeric character if the number is less 'than five digits. The last
character in the line is the new line (NL) character.

Source lines begin and end on byte boundaries. There are no spaces
or fills between lines. The last character of the source program is
an EOF character which i~ hex 01. The EOF character is in the position
occupied by what would be the count byte if there were another line.

The beginning (lower-numbered locations) of the user work area has
the user communications area. The communications area is used to pass
parameters between the compiler and the object program. Some of the
items contained in this communications area are:

1. Pointer to and length of address constant area:

a. For compiler·s address constants

b. For user·s address constants

2. Register relocation information:

a. Fpr registers containing compiler address constants

b. For registers containing user address constants

3. Interrupt control information

4. SWap flag

5. Terminal I/O buffer

6. - Pointer to next available byte in terminal I/O buffer

7. Terminal output inhibit flag

8. Pointer to user's OTT entry (set by the CALL/360-0S Executive)

A complete list of·the contents of the communications area is given
under ·Communications AreaW in this appendix.

180

USER TERMINAL TABLE

The user terminal table (OTT) is a table that is maintained by the
CALL/360-0S Executive in its own area. It is primarily for the use
of the Executive. However, it also contains information that is needed
by the compiler. It may be read, but not written, by the compiler.
Some of the items contained in the UTT are:

1. Length of user's work area

2. Location and length of source program

3. Information as to whether disk files have been attached

The contents of the UTT required by the compiler are listed under "OTT
Data Available to Language Processor" in this appendix.

The UTT is assembled as a DSECT macro and is available to all processor
writers. It will be supplied either on cards or through the macro
library.

ADDRESSING

All processors and user programs in the system must be interruptable
and relocatable at any time (with two exceptions which are described
below). When a processor or user program is relocated, the Executive
will update all 24-bit addresses referencing the relocated area before
returning control to the point of the interrupt. All updating will
be made by performing full word adds. To make this possible, the
location of these values must be specified in the communications area
of the user program. This is done by means of six words (CSPTR through
PSREG): three describing those values to be relocated with the
processor and three describing those to be relocated with the user
program. The first word in each set points to the beginning of the
contiguous block containing that type of saved value. The second word
indicates the extent of the block. The third word specifies the first
and last registers, in the order used in an LM instruction, containing
such values. The implications of this method are as follows:

1. All stored values referencing a processor or user program must
be kept in the specified contiguous locations, and these
locations must contain only this type of value.

2. All values referencing the processor and the user area which
are kept in registers must be kept in the registers specified
by CSREG and PSREG. The registers specified by CSREG and PSREG
must be in sequence and contain only this type of value.

Note: Register 0 is considered to contain absolute values and is never
updated.

I/O PROCESSING

There are two types of I/O processing done by a processor or user
program: terminal and disk.

Terminal I/O

The terminal I/O buffer (TMBUF) is at the end of the communications
area. This buffer is used for all input or output operations with
the terminal. Input from the terminal is requested by means of a call
to the Executive. The input is placed at the beginning of this buffer

181

and is terminated by a new line (NL) character. Only one line of input
at a time can be requested.

A word in the communications area (BUFPTR) indicates the next available
byte in the buffer when it is being used for output. As output is
placed in the buffer, this pointer is updated. The Executive empties
the buffer and resets the pointer to zero under the following
conditions:

1. When it is full. This is indicated by means of a call to the
Executive.

2. When input is requested.

3. When the program is swapped, except when the output inhibit
flag (OPFLG) is ON. This flag is set during the time interval
in the output routine when the output pointer does not correspond
with the actual contents of the buffer.

4. On final exit.

The output inhibit flag allows the compiler to defer output during
any time-slice interrupts. This is necessary when certain values,
such as the terminal buffer pointer, are being changed.

since the same buffer is used for input and output, it is not possible
to place output data in the buffer unless all the input has been
processed. The Executive assures that all output has been performed
before a line of input is requested. The compiler (actually, the run
time library) considers it an error if more input is provided than
is needed by the GET statement. If less data is provided than is
required to satisfy the GET, additional lines are requested, one at
a time, until the correct amount has been entered. To request input,
a "?" character is typed out on the terminal.

Note: The Executive places an end-of-file (X'Ol') character in the
byte indicated by the output pointer, so the last byte in the
buffer must always be left empty. An end-of-file character
placed in the buffer by the user program will be treated by
the Executive as an end-of-file. Other undefined characters
are reserved for use of the Executive terminal handling routines.
The presence of these characters in the terminal I/O buffer
may cause unpredictable results.

Disk I/O

The user is permitted up to four open disk files in his program. These
files may be in any combination of input or output modes. Files may
be closed and the same or new ones opened in either input or output
mode. Each active file has an I/O buffer of 3712 bytes assigned to
it. The first 3440 bytes are used as the I/O area to read and write
one half track of data. The number of half tracks of disk space
available per file is established by the user through the FILE command.

Disk input or output is accomplished by calling the Executive. The
Executive is in no way concerned with the internal format of the data
files. It performs the physical I/O in buffer-size blocks (3440 bytes)
in the user area. Data files can be "reset" by special use of the
SVC.

182

INTERRUPT HANDLING

During execution, a user can specify the actions to be performed if
end-of-file or arithmetic interrupt conditions occur by use of ON
statements. The runtime library determines the processing required
by ON-conditions.

The compiler can control which arithmetic interrupts are in effect
by use of the Set Program Mask (SPM) instruction. Upon entry to the
compiler, the contents of the program mask are indeterminate.

When an arithmetic interrupt occurs, it is processed by the Executive
as follows:

1. The program check old PSW is stored in an entry (PSW2SV) in
the communications area (to be used by the processor). The
PSW contents are updated when a program is swapped. The update
is performed on the language processor's base address if SVC
code 11 has not been given, and on the user program base address
if SVC code 11 has been given.

2. Control is transferred to a routine that alters the base register
and branches to the appropriate inte~rupt processing routine.
During compilation, the displacement of the interrupt routine
from the beginning of the compiler is found in location ARINTRP:
during execution, the interrupt routine itself begins at location
ARINTRP. When all processing for the interrupt is completed,
and execution is to continue with the instruction following
the interrupted instruction, the Executive is informed by the
use of SVC code 7 or 8. To resume processing at a different
point, the address portion of the saved PSW can be modified
by the processor prior to issuing the SVC.

3. The Executive saves the contents of all registers at interrupt
time in the user communications area. As indicated above,
requests to the Executive are issued by loading a request code
in register 0 and executing the SVC instruction in the
communications area. Thus, the call to the Executive (requesting
return to the interrupted code) causes execution of an SVC
instruction. Since the SVC is an interrupt itself, the register
save area contains the contents of the registers at the time
the SVC was given, not the contents of the registers at the
time of the arithmetic interrupt. Therefore, if registers are
to be preserved, the language processors must save and restore
all registers while processing an arithmetic interrupt.

An end-of-file condition is detected by a special return from the
Executive from a read request. When this situation occurs, the run
time library branches directly to the library end-of-file routine.

SWAP-INHIBITED SITUATIONS

During the process of compilation, the contents of the registers cannot
always correspond with the relocation specification in the
communications area. This situation normally occurs twice:

1. When the program is being initiated.

2. When the program area is being changed from its compile-time
configuration to its runtime configuration.

Each non-swap interval may have a maximum duration of 16 milliseconds.
In 1 above, no special action must be taken as swapping will not take
place during the first 16 milliseconds. In 2 above, the processor

183

and the program can be made non-swappable (non-relocatable) by setting
a word in the communications area to nonzero (SWPFLG). The swap flag
may be set only once during a compilation.

END OF COMPILATION

When compilation is completed successfully, the compiler mus~ perform
at least three functions before relinquishing control to the user
program. These functions are:

1. Determine whether there are one or more unused 2048-byte blocks
at the top of the program area that are not needed for data
files. If so, these must be returned by means of the SVC.

2. Adjust the processor and program relocation information to
reflect the new situation. While this is being done, the program
is made non-swappable.

3. Go to the Executive with an SVC code 11 to indicate that
compilation is complete (return is to the first byte of the
user's program (PRGBN)~ see SVC code 11 write-up).

When control is transferred to the user's program, the user program
must:

1. Indicate that the program is now swappable by setting SWPFLG
to zero.

2. Open ~ data files that can be opened at this time and specify
how much additional memory will be required. During compilation,
the language processor should keep track of the maximum number
of data files that can be open at anyone time and calculate
the additional core required to hold these files. In addition,
language processors should keep track of the files that are
to be opened during the execution of the program and do a
multiple OPEN at this time. The reason for combining these
functions is that every call for an OPEN will result in a swap
and every call for mOre memory will probably result in a swap.
Therefore, if all four data files are used, the Executive can
open all four files and obtain the additional memory required
with one swap instead of five.

DETlULED FORMAT DESCRIP'l'IONS

The communications area of the user work area and specific portions
of the uSer terminal table provide the basis for compiler/~xecutive
interactions. The formats of these areas and of data file tables
maintained for active data files are described below.

COMMUNICATIONS AREA

The names and sizes of various fields in the communications area, as
well as their starting locations, are given below.

Location
(Hex)

o

184

Name

PRGBN

Size In
Words

16

Description

Initial entry point of compiled
program.

Location
(Hex)

40

44

48

4C
50
54

58

5C

60

64

80

88

90

98

AO

A4

A8

AC

Name

CSPTR

CSLTH

CSREG

PSPTR
PSLTH
PSREG

BUFPTR

OPFLG

SWPFLG

ARINTRP

PSW1SV

PSW2SV

PSW3SV

PSW4SV

BASPROC

BASUSER

BUFLTB

UTTLOC

Size In
Words

1

1

1

1
1
1

1

1

1

7

2

2

2

2

1

1

1

1

Description

compiler save pointer. Contains
displacement from beginning of program
of start of block of values to be
updated when processor swapped (relo
cated) •

Compiler save length. Contains length
in bytes (must be multiple of four) of
area occupied by values to be updated
when processor swapped.

Compiler registers. First halfword
contains first register used for
values to be updated.when compiler
swapped, second halfword contains
last su~h register.

PSPTR through PSREG are used in the same
way as CSPTR through CSREG for values
to be updated when user program is
swapped.

Buffer pointer. Contains displace
ment from beginning of terminal I/O
buffer (TMBUF) to next available byte
to be used for output.

Output inhibit flag. Normally is o.
Set to 1 if output buffer should not
be emptied when program swapped.

SWap flag. Normally is o. Set to
1 at the time when a program cannot
be swapped.

Location to which control is trans
ferred on arithmetic interrupt.

Save area for PSW when program or
compiler swapped.

Save area for PSW when arithmetic
interrupt occurs (can be referenced
by program).

Same as PSW2SV, but used by the
Executive when swapping only.

Special PSW save area.

Processor base address at swap time.

User area base address at swap time.

Length of terminal I/O buffer.

Address of UTT (user terminal table>
of this user.

185

Location
(Hex)

EO

110

114

118

llC

120

122

123

12ft

le8

12C

12E

138

550

Name

SAVREG

DATE

PDMPBGN

PDMPEND

FlLEPTR

NOERMSG

FILENBR

FILE2~

SAVERO

STATTAB

SVCINST

USCCW

TMBUF

Size In
Words

24

1

1

1

1

1/2

1/4

1

1

1/2

2 1/2

262

Description

Locations in which registers are
saved when program is swapped.
Registers are saved in the order
fixed-point 1 through 0 then floating
point 0 through 6.

Address of the location where the
current date is maintained by the
Executive in the form YYMMDD (6 bytes).

Displacement to beginning of area
to be PDUMPed.

Displacement to'~cof area to be
PDUMPed (SVC code 13) or number of
lines to dump (SVC code 14).

Pointer (displacement) to a table
containing four logical records
concerning data files.

Number of error messages output to
terminal during compilation.

Logical file number (file reference
number) to be read/written.

NUmber of additional 204ft-byte blocks
of core required when an OPEN (SVC
code 21) is issued.

Language processor saves register 0
here prior to issuing an SVC. The
Executive restores register 0 from
here prior to returning control.

Pointer to the statistical table.

SVC instruction for execution by
language processors.

Locations reserved for additional
communications cells.

User program CCW· s (used by the
Executive) •

Any length Terminal I/O buffer
(between 256
and 5900 bytes ..
specified by BUFLTH)

UTT DATA AVAILABLE TO LANGUAGE PROCESSOR

Fields of the user terminal table which can be read (but not modified)
by the CALL/360-OS PL/I compiler are described below.

186

Function
How Long

(Bytes)
How

Adjusted

L#LANG

L#LADR

L#N2048

L#SOURC

L#SADDR

L#WIDTH

L#NLINE

L#FLG2

L#FILE1D
through
L#FILE4D

L#FILE1E
through
L#FILE4E

L#FILE1F
through
L#FILE4F

L#FILE1G
through
L#FILE4G

Language processor name
(coded value. O-N)

Address of this language
processor's entry in the
language processor table

Number of 2048-byte blocks
allocated

Length of source program
(in bytes)

Displacement from base of
program area to beginning
of source (in bytes)

Line width (in characters)

Number of lines of source
statements

Expanded user program
storage allocated (bit 6)

Set when Reg 2 on SVC code 6 = 0

1

1

2

1

2

1

Not set when Reg 2 on SVC code 6 * 0
Not set on initial entry (bit 6 can be
addressed symbolically as L#ESBIT)

Record number of data file
link that was just read/written

Number of data file links
in the file

Maximum number of permissible
data file links

File type and state

1 (ea.)

1 (ea.)

1 (ea.)

1 (ea.)

BB

WB

BB

HWB

WB

BB

BWB

BB

BB

BB

BB

BB

WB = word boundary BWB = halfword boundary BB = byte boundary

DATA FILE TABLE

Data file tables (16 bytes long each) are maintained by the language
processor and the Executive. Four of these tables may be active at
anyone time (although the design is such that the tables may be
expanded).

The table addresses (displacements) are in a table that in turn is
pointed to (displacement) by FILEPTR in the communications area. This
addressing hierarchy is illustrated schematically by Figure F-2.

187

Table of PCIB

r
#1-

Addresses

-I
PCIB

(Communications #2
Area)

H PCIB-
#3

IFF--- F3
... FCIB

#4

Figure F-2. Referencing Data File Tables

Notes:

1. The table of addresses must begin on a word boundary.

2. The table of addresses is terminated by a word of all l·s (binary
1111 = hexadecimal F).

3. The file tables must begin on word boundaries.

4. Entries in the table of addresses point to file tables in
ascending numerical order, that is, first address is logical
file #1, second address is logical file #2, etc.

5. If an entry in the table of addresses is 0, then the
corresponding file table does not exist.

The format of each data file table is detailed below.

Byte

0-10

11

188

Contents

Filename (left-justified with blank padding). If this
field is 0, then the file is not in use.

OPEN/mode flag
bit 7 - set by the
bit 6 - set by the

bit 5
(both bits

- set by the
opened

compiler if the file type is
compiler if the file type is
6 and 7 ON is legal)
Executive after the file has

input
output

been

bit 4
bit 3

- set by compiler before Executive opens the file
- set by the compiler after OPEN status has

been validated
bits 2-1 - not used at present
bit 0 - set by the Executive when the last link of the file

has been read/written

Byte

12

13

14

15

contents

OPEN/I/O return code

A. Set by the Executive after an OPEN as follows:

o = OPEN successfully done.
1 = OPEN not done because of an unrecoverable

I/O error.
2 = OPEN not done because file does not exist.
3 = OPEN not done because file is locked (this

code can only occur if bit 6 in byte 11 is ON).
4 = OPEN not done because file is already in use.
5 = Not used.
6 = Not used.
1 = OPEN not done because file is not a data file.
8 = Not used.
9 = Not used.

contents

B.

0 =
1 =
2 =

3 =
4 =

Set by the Executive after an I/O as follows:

READ/WRITE successfully done.
Unrecoverable I/O error.
READ/WRITE not done because user's data

'file space is exhausted.
READ/WRITE not done because file mode (input
or output) is incorrect.
WRITE not done because no room in save storage.

Note: Bit 0 will be set ON if the last link was just
read/written.

Record number of data file link that was just
read/written (same as L#FILEnD).

Number of data file links in the file (same as L#FILEnE).

Maximum number of permissible data file links (same as
L#FILEnF).

Before a language processor can open a file, the following actions
must be performed:

1. Set the filename in bytes 0 through 10.

2. Set bits 4 and 6 and/or 1 in OPEN/mode flag ON and bit 5 OFF.

Upon return from the OPEN, the language processor will find bit 5 in
the OPEN/mode byte set ON and a return code will be set in the OPEN/I/O
return code byte. Language processors should not alter bit 5 in the
OPEN/mode flag as this could cause erroneous opens to be performed.

OUTPUT BUFFER FORMAT

The output buffer (TMBUF) starts at a fixed increment from the beginning
of the user program (and communications) area, (location hex 550).
The Executive always supplies the EOF. When the Executive decides
that a time quantum is up, it places the EOF character at the end of
the present string of output (provided OPFLG is not set). An output
buffer pointer is maintained by the user program so that the Executive
knows where to place the EOF character. When control is returned after

189

an SVC code 1, 2, or a time quantum swap, when OPFLG is zero, the
Executive resets the pointer to zero.

FORMAT OF DATE INFORMATION

As noted under ·Communications Area-, the location of the area
containing the current date is stored in the communications area,
beginning in location hex 110. The format of the area containing the
date is:

YYMMDD

where:

YY is last two digits of the year (69, 70, 71, etc.)
MM is month (01-12)
DD is day (01-31)

SUPERVISOR CALL (SVC> INSTRUCTION

The use of an SVC is one way that language processors have of
communicating their needs to the Executive. In most cases, control
is returned to the instruction following the SVC. Because CALL/360-
OS uses so many SVC codes, the probability of conflict with other user
defined SVC's is very high. In order to minimize this conflict,
CALL/360-0S uses one SVC and passes a code in register 0 indicating
the kind of action required. Prior to loading register 0 with the
SVC code, the language processor saves register 0 in the communications
area at SAVERO. After the Executive gets control from the SVC, it
moves SAVERO into the proper place in SAVREG. The Executive then uses
SAVERO as a temporary working area. The SVC to be used is placed in
SVCINST by the Executive. A language processor simply executes this
location. In cases where parameters are passed back and forth (other
than the SVC code), they are usually passed in register_2.

SVC code 0 -- Final exit. Control is not returned. Any terminal
output that is in the output buffer is transmitted to the terminal.

SVC code 1 -- Output buffer full exit. Control is returned after the
output buffer has been transmitted to the terminal. The Executive
will place the EOF character in the buffer and reset the pointer to
zero.

SVC code 2 -- Input from terminal required. The job is swapped out
and placed in the new job queue. Control is returned after the output
buffer has been transmitted to the terminal and an input line has been
received from the terminal. It is required that the program RUN
routines place a'?' at the end of the output buffer to indicate to
the user that input is required. To ensure that this '?' is printed
on the terminal only when the terminal is ready to read data, the
Executive detects its presence, turns on the L#QMPT bit in the UTT,
and places an EOF in the last position of the output buffer. If only
a '?' is to be printed, L#EFBT is also turned on to eliminate the need
for further processing of the buffer by M#LISO. M#ISRD will finally
write the a?, on the terminal as part of the CCW chain which issues
the read to the terminal in preparation for receiving the data input.

The input line is placed at the beginning of the output buffer and
is terminated by a new line (NL) character. Only one input line at
a time is allowed. The input line must be used or removed before the
next input line is requested or the buffer used for output.

190

SVC code 3 -- Write to disk. Control is returned after the write has
been completed. The address to begin writing (displacement) is placed
in register 2 and the file reference number (1-4) to write is set in
FILENBR in the communications area. Upon return, the file's record
number will be incremented by one and the OPEN/I/O return code byte
in the appropriate data file table will be set with a code as follows:

0 = write successfully completed
1 = unrecoverable I/O error
2 = write not done because user has filled his

available space
3 = write not done because file type is input
4 = write not done because no room left in save

storage

In addition to this code, bit 0 of byte 11 will be turned ON if the
last permissible data file link was just written.

This SVC (and SVC code 4) operates in a special mode in order to
implement the RESET (data file pointer) function. If register 2 is
negative when the SVC (and SVC code 4) is issued, the Executive will
not perform any I/O but will simply reset the user's internal pOinters
to the initial value of the data file disk address, reset the
appropriate record number counter to zero, and return control to the
caller immediately.

SVC code 4 -- Read from disk. Control is returned after the read has
been completed. The address to begin reading into is in register 2
(displacement) and the file reference number (1-4) that is to be read
is placed in FILENBR in the communications area. Upon return, L#FILEnD
(n=1.2,3,or 4) and the appropriate counter in the user's data file
table will be incremented by one and the OPEN/I/O return code byte
in the appropriate data file table will be set with a code as follows:

0 =
1 =
2 =
3 =

read successfully done
unrecoverable I/O error
no more data
read not done because file type is output

In addition to this code, bit 0 of byte 11 will be turned ON if the
last data file link was just read.

See special case for RESET described in SVC code 3 write-up.

SVC code 5 -- Memory give-back. Control is returned immediately.
Register 2 contains the number of 2048-byte blocks that are being
handed back. The Executive assumes that the memory being given back
comes from the top (high address) of the user program area.

SVC code 6 -- Need more memory. This SVC operates in two modes. If
the amount of memory is known, the number of 2048-byte blocks needed
is specified in register 2. Under this condition, the Executive will
allocate the required number of blocks and return control to the
instruction following the SVC. The program will probably be swapped
while waiting for memory to ·free-up·, and will be located at a
different place in core when control is returned. The additional
allocated memory is adjoined to the end of the original program area.
When register 2 contains a nonzero value, the L#ESBIT bit of L#FLG2
in the UTT is not changed.

If the amount of additional memory is not known, register 2 is set
to O. In this event, the Executive will add an arbitrary amount of
core, set L#ESBIT in the OTT ON and restart the job.

191

The Executive will permit more than one request for more memory.
However, there will be an arbitrary upper limit (3-5) to the number
of times this will be permitted. If this limit is exceeded, the program
will be aborted. Optimally, processors should not seek additional
memory more than once because this activity degrades system performance.

A halfword (NOERMSG) is provided in the communications area for language
processors to save information pertaining to error messages output
during compilation. When more core is requested and the amount is
not known. the user should not see error messages repeated at his
console. To avoid reissuing compilation error messages when the program
is restarted, the Executive will save NOERMSG in the communications
area upon an SVC code 6 exit. It will restore this halfword when the
program is restarted. This halfword will be set to zero the first
time the user calls for a compi~ation.

SVC code 7 This SVC code is the same as SVC code 8.

SVC code 8 Exit from arithmetic interrupt routine. Control is
returned to the instruction following the instruction that caused the
interrupt unless the compiler has modified the address portion of
PSW2SV. In this case, control is returned to the specified location.
Boundary limits are checked and LMITPB is reset. PSW2SV is moved to
PSW1SV, and control is returned by a relinquish.

SVC code 9 -- This SVC code is presently unassigned.

SVC code 10 -- This SVC code is a combination of codes 3 and 22.
However, if the write is not successful, the close (code 22) is not
performed.

SVC code 11 -- Compilation complete. This is used by the Executive
to facilitate user program space management. It should be executed
when an object program is about to be entered from the compiler.
Return is to the first byte of the user program area (PRGBN) and is
immediate. No register modification is performed by th~ Executive
while processing the SVC. Thus, when the SVC is issued, all registers
must contain the values assumed by the object program.

SVC code 12 - This is a debugging feature. It will cause the user"s
area to be dumped onto the printer, provided the printer is not
presently being used for any other purpose (the printer I/O does not
queue). No return is made after this SVC. This SVC is allowed only
from the command console.

SVC code 13 Rot used.

SVC code 14 Not used.

SVC code 15 Not used.

SVC code 16 Not used.

SVC code 17 End of CALL/360-0S PL/I phase 1 compilation.

SVC code 18 Not used.

SVC code 19 Not used.

SVC code 20 Not used.

SVC code 21 OPEN data file(s) and request additional memory. This
SVC will cause each file whose OPEN/mode byte in the data file table
has been properly set (bit 6 and/or 7 ON, bit 4 ON, and bit 5 OFF)
to be opened and additional memory equal to the number of 2048-byte

192

blocks specified
the user's area.
was marked to be
before returning

in FILE2K in the communications
A return code will be provided

opened. FILE2K will be cleared
control to the user program.

area to be added onto
for each file that
by the Executive -

Logical file n can be closed and reopened under a different or the
same name. The act of reopening the file informs the Executive that
old file n is closed.

SVC code 22 -- Close data file n.

The logical file number (n) of the file to be closed must be contained
in the communications area. byte FILENBR. before issuing SVC 22.

Upon return. byte 12 of the appropriate data file table will be set
to 0 to indicate that the close was successfully done.

SVC code 23 -- Controlled abort. This SVC is issued when the compiler
detects a condition that ·should never happen· but did. An error code
(range 0-999) is placed in register 2. The Executive will print this
code on the communications console as a debugging aid for compiler
writers. Control will not be returned after this SVC.

193

APPENDIX G - CALL/360-0S PL/I COMPILER MAINTENANCE

MODULE STORAGE

The compiler source and object code is kept on disk files in
partitioned data sets. The names of the disk packs,
data set names, and their usage are:

DISK PACKS:

External Label

OSSPLI

DATA SETS:

RTS1. PLI. SOURCE
RTS1.PLI.OBJECT
RTS1.PLI.MACLIB

Internal Label

RTSLC2

Compiler source
Compiler object
Macro library

System

OS/RTS

UPDATE AND ASSEMBLY

//UPDTE
//
//SYSPRINT
//SYSUT1
//SYSUT2
//SYSIN
./

//A
//ASM
//SYSLIB
//SYSUT1
//SYSUT2
//SYSUT3
//SYSPRINT
//SYSPUNCH
//SYSIN
//SYSGO
/*

Notes:

JOB
EXEC
DD
DD
DD
DD
CHANGE

PLI,RTS,MSGLEVEL=l
PGM=IEBUPDTE
SYSOUT=A
DSNAME=RTS1.PLI.SOURCE,DISP--OLD
DSNAME=RTS1.PLI.SOURCE,DISP=OLD
*
NAME=member name

***********************************~***
* CARDS TO BE ADDED OR CHANGED *

JOB
EXEC
DD
DD
DD
DD
DD
DD
DD
DD

166,K,MSGLEVEL=1
PGM=IEUASM,REGION=50K,PARM=LOAD
DSNAME=RTS1.PLI.MACLIB,DISP=OLD
DISP=OLD,DSNAME=SYS1.UT1
DISP=OLD,DSNAME=SYS1.UT2
DISP=OLD,DSNAME=SYS1.UT3
SYSOUT=A
DUMMY
DSNAME=RTS1.PLI.SOURCE(member name),DISP=OLD
DSNAME=RTS1.PLI.OBJECT(member name),DISP=OLD

1. The member names in the CALL/360-0S PL/I source data set and
macro library are listed under ftCALL/360-0S PL/I Member Names·
below.

2. To update a member in the MACLIB, the JCL in the UPDATE step
must be changed from RTS1.PLI.SOURCE to RTS1.PLI.MACLIB.

194

3. For update, cards in the deck that have the same sequence numbers
as cards on the disk will replace the cards on the disk. Other
cards will be inserted into the proper place. The cards in
the deck must be in collating sequence.

4. Cards can be deleted from a member by placing the following
card (in collating sequence) in the change deck:

./ DELETE SEQ1=nnnnnnnn,SEQ2=nnnnnnnn

where SEQ1 is the first card to be deleted and SEQ2 is the last
card to be deleted.

5. An entire member from the data set can be replaced by using
the following card instead of the CHANGE card:

• / REPL NAME=member name

6. When needed, the NUMBER card may be used to renumber the updated
member. Place the NUMBER card after the CHANGE or REPL card •

• / NUMBER SEQ1=ALL,NEW1=100,INCR=100

1. The ADD card may be used to add a new member. The JCL cards
in the update procedure must be changed as follows:

// EXEC PGM=IEBUPDTE,PARM=NEW

Remove the SYSUT1 card and insert the following card.

./ ADD NAME=member name

LINK EDIT

A load module can be created and saved on disk so that it can be
executed. The link edit procedure is shown below for one phase of
the compiler.

//MERTON
//JOBLIB
//
//LJED
//SYSPRINT
//SYSLIN
//SYSLMOD
//
//SYSUT1
//
//SYSLIB
//
//SYSIN

JOB
DD

EXEC
DD
DD
DD

DO

DD

1600, 'MERTON L,880',MSGLEVEL=1
DSNAME=RTS.LOAD,DISP=(OLD,PASS),UNIT=2314,
VOLUME=SER=ATPD01
PGM=IEWL,PARM='XREF,LIST,LET,NCAL',REGION=96K
SYSOUT=A
DSNAME=SYSIN
DSNAME=RTS.LOAD(PB1),DISP=OLD,UNIT=2314,
SPACE=(1024,(200.21,1),VOLUME=SER=ATPD01

. UNIT=(SYSDA.SEP=(SYSLMOD,SYSLIN»,
SPACE=(1024.(200.20»
DSNAME=RTS1.PLI.OBJECT,DISP=OLD,UNIT=2314,
VOLUME=SER=RTSLC2

DD *
INCLUDE SYSLIB ($CCONT)

************************************ * INCLUDE CARD FOR EACH MEMBER *

Note: The load module for this link edit step will be stored in the
data set RTS.LOAD (PB1) on disk pack ATPD01. The load module
can be put on any disk pack under any data set name by changing
the SYSLMOD control card.

X

X

X

X

195

CALL/360-0S PL/I MEMBER NAMES

The member names in the CALL/360-0S PL/I source data set and macro library are
listed in two groups, ·compilation Member Names" and "Runtime Member Names."

COMPILATION MEMBER NAMES

The phase in which each routine is used is indicated by P1 for phase 1
(compilation phase), P2 for phase 2 (wrap-up phase), or P12 for both phases.

$ABAL
$ACGEN
$ANCRE
$APRC
$AREXP
$ASIDX
$ATKN
$BEGIN
$BGET
$BLPRC
$ BONSA
$BPUT
$BRNH
$ CALL
$CATEG
$CCONT
$CERR
$CIF
$CNT
$ CON
$CRVT
$CSTOP
$DCLGN
$DDS
$DEXP
$DIOS
$ DOCS
$ DOG

- Pi
- P1
- P1
- P1
- P1
- P12
- P12
- P1
- P1
- Pi
- P1
- P1
- P1
- Pi
- P1
- Pi
- P12
- P1
- Pi
- Pi
- P1
- P1
- P1
- P2
- P1
- P1
- P1
- P1

RUNTIME MEMBER NAMES

$DRET
$EDGN
$ENDES
$ENDON
$EXPND
$EYPND
$FIND
$FLG
$FMT
$FNB
$ FORI
$FPDL
$FSYM
$FVAR
$ GPUT
$GTRIAD
$HAINI
$HCTP
$HDVTP
$HLNTP
$HRTLL
$HSCAL
$HTCR
$MCWU
$NATTP
$NCALL
$NCONS

- Pi
- P1
- P1
- P1
- P1
- P1
- P12
- P1
- P1
- P12
- P1
- P1
- P1
- P1
- P12
- P1
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P1
- P1
- P1

$NCSDV
$NCVT
$NEXP
$NLSIB
$NMULT
$NOPCV
$NOPRT
$NPRE
$OPEN
$OPMZO
$SCDV
$SVC
$TCODE
$TOPR
$TRIAD
$VASGA
$VASGC
$VCLR
$VDSAC
$VGTMP
$VINSA
$WBACK
$WCONT
$WCTCT
$WEXP_
$WSTEP
$XERR

- P1
- P1
- P1
- P1
- P1
- P1
- P1
- P1
- P1
- P1
- P1
- P12
- P1
- P1
- P1
- Pi
- P1
- P1
- P1
- P1
- P1
- P1
- P2
- P12
- P12
- P12
- P1

The runtime routines are all loaded in phase 2. However, none are
executed until the runtime phase.

196

IHEABU - P2
IHEABW - P2
IHEABZ - P2
IHEATL - P2
I HEATS - P2
IHEATW - P2
IHEATZ - P2
IHECLOSE - P2
IHECSC - P2
IHECSM - P2
IHECSS - P2
IHEDCN - P2
IHEDDI - P2
IHEDDO - P2
IHEDDP - P2
IHEDIA - P2
IHEDIB - P2
IHEDIM - P2
IHEDIO - P2

IHEIOD
IHEIOG
IHEIOP
IHEIOX
IHEJXI
IHELDI
IHELDO
IHELNL
IHELNS
IHELNW
IHELNZ
IHEMXB
IHEMXL
IHEMXS
IHEMZU
IHEMZW
IHEMZZ
IHEONREV
IHEOPEN

- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2

IHESQW
IHESQZ
IHESVC
IHETHL
IHETHS
IHETNL
IHETNS
IHETNW
IHETNZ
IHEUPA
IHEVCA
IHEVCS
IHEVFA
IHEVFB
IHEVFC
IHEVFD
IHEVFE
IHEVPA
IHEVPB

- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2
- P2

IHEDMA - P2 IHEPDF - P2 IHEVPC - P2
IHEDNC - P2 IHEPDL - P2 IHEVPE - P2
IHEDOA - P2 IBEPDS - P2 IBEVSC - P2
IBEDOB - P2 IBEPDW - P2 IBEVTB - P2
IHEOOM - P2 IHEPDX - P2 IHEXIB - P2
IHEDUM - P2 IBEPDZ - P2 IBEXIL - P2
IBEDZW - P2 IBERSET - P2 IHEXIS - P2
IBEDZZ - P2 IBESAD - P2 IBEXIU - P2
IBEEFL - P2 IBESAF - P2 IHEXIW - P2
IHEEFS - P2 IBESHL - P2 IBEXIZ - P2
IHEERN - P2 IBESHS - P2 IBEXXL - P2
IHEERR - P2 IBESMF - P2 IHEXXS - P2
IHEEXL - P2 IBESMG - P2 IBEXXW - P2
IHEEXS - P2 IHESMH - P2 IHEXXZ - P2
IHEEXW - P2 IBESMX - P2 IBEYGF - P2
IHEEXZ - P2 IBESNL - P2 IBEYGL - P2
IHEGPUT - P2 lBESNS - P2 IHEYGS - P2
IHEHTL - P2 IBESNW - P2 IBEYGW - P2
IHEHTS - P2 lBESNZ -.P2 IHEYGX - P2
IHEIOA - P2 IBESQL - P2 IHEYGZ - P2
IHEIOB - P2 IHESQS - P2

191

APPENDIX B - DIAGNOSTIC MESSAGES

COMPILATION ERROR MESSAGES

Ident.
Code Error Message

1 PROCEDURE STATEMENT SUPPLIED

2

3

4

5

6

1

8

9

10

11

12

13

14

15

16

11

18

19

20

21

22

198

ILLEGAL ' , STATEMENT--NULL CLAUSE SUPPLIED

, NOT STATEMENT TYPE, IGNORED

NOT STATEMENT TYPE, ASSIGNMENT ASSUMED

EXTRA ")", IGNORED

, I I' NOT SUPPORTED--CHANGED TO 'I'

IDENTIFIER TRUNCATED TO 8 CHARS

EXPONENT MISSING

CONSTANT NOT SUPPORTED--DECIMAL USED

DELIMITER OR SEPARATOR MUST FOLLOW CONSTANT

BIT STRINGS NOT SUPPORTED--CBARACTER USED

" ___ " NOT SUPPORTED, BLANK ASSUMED

')' SUPPLIED BEFORE ';'

, ILLEGAL DEJ~IMITER--IGNORED

ILLEGAL ASSIGNMENT STATEMENT

ERROR AT '

'NOT ENTRY NAME

STRUCTURES NOT SUPPORTED--' ___ ' IGNORED

NO FORMAT ITEM FOR DATA

ILLEGAL USE OF ' , ATTRIBUTE

PREVIOUS DECLARATION OR USE OF •

ILLEGAL 'DO' INDEX

Calling Routines

$CNT

$CNT

$CNT

$CNT

$ATKN

$ATKN

$ATKN

$ATKN

$ATKN

$ATKN

$ATKN

$ATKN

$ATKN

.$ATKN

$ACGEN

$ABAL
$ANCRE
$APRC
$BEGIN
$BGET
$BONSA
$BPUT
$BRNB
$CALL
$CIF
$CON
$CRVT
$CLOSE

$CALL

$ DCLGN

$FLG

$ANCRE

$DCLGN

$DOG

$CSTOP
$DCLGN
$DCOS
$DDS
$DIOS
$DOG
$DRET
$EDGN
$FLG
$FMT
$FORI
$ACGEN
$OPEN

Ident.
Code Error Message

23 ARRAY EXPRESSION ILLEGAL

24 MAXIMUM NO. OF BLOCKS,EXCEEDED

25 ILLEGAL' WHILE' CLAUSE

26 DUPLICATE ' , CLAUSE

21 __ " AFTER 'END' ILLEGAL--IGNORED

28 UNDEFINED FORMAT

29 ILLEGAL USE OF ' __

30 UNLABELED FORMAT STATEMENT

31 FILE NAME NOT INPUT FILE

32 __ " WHERE '.' EXPECTED--SKIPPING TO '

33 ILLEGAL USE OF ' , IN DATA INPUT LIST

34 'SKIP' OPTION ILLEGAL HERE

35 ' NOT FILE NAME--IGNORED

36 'TO' MISSING AFTER 'GO'

31 ILLEGAL STATEMENT LABEL--STATEMENT IGNORED

38 ITERATIVE 'DO' REQUIRED

39 'THEN' CLAUSE MISSING--NULL ASSUMED

40 FILE NAME MISSING

41 ' NOT FILE NAME

42 'EOF" ON 'SYSIN' USELESS

43 ILLEGAL FILE DESIGNATION

44 UNRECOGNIZABLE ON-CONDITION

45 LABEL ILLEGAL HERE--IGNORED

46 LABEL MISSING

41 ILLEGAL RETURNS ATTRIBUTES-
DEFAULT RETURNS ATTRIBUTES USED

48 ILLEGAL OPTION ON EXTERNAL PROCEDURE STATEMENT

49 FILENAME NOT OUTPUT FILE

50 NON-PRINT FILE--'SKIP' OPTION ILLEGAL

Calling Routines

$AREXP $NOPRT

$CNT

$DOG

$000

$EDGN

$EDGN

$EDGN $NOPRT
$FLG $NEXP

$FMT

$BGET

$APRC

$BGET

$BGET

No longer used

$BRNH

$BRNH

$DOG

$CIF

$BONSA $OPEN
$CLOSE

$BONSA $CLOSE
$CALL $OPEN

No longer used

$BPUT $CLOSE
$BGET $OPEN

$BONSA

$CON

$APRC

$ANCRE $ APRC

$APRC

$BPUT

$BPUT

199

Ident.
Code Error Message

51 RETURN STATEMENT ILLEGAL IN ON-UNIT

52 RETURNS ATTRIBUTE ILLEGAL IN EXTERNAL
PROCEDURE--SKIPPING TO '.'

53 ILLEGAL RETURNS EXPRESSION

54 FILE NAME MISSING--'SYSIN' ASSUMED

55 ' NOT FILE NAME--ON-CONDITION IGNORED

56 MULTIPLE DECLARATION FOR ' ___ '--THIS
DECLARATION USED

57 USE OF '
USAGE

, HERE CONFLICTS WITH PREVIOUS

58 ILLEGAL LIST AFTER ATTRIBUTE " ___ " FOR

59

IDENTIFIER ' __ _

FOR IDENTIFIER " __ " ATTRIBUTE '
CONFLICTS WITH PREVIOUS ATTRIBUTES

60 LIST MISSING AFTER ATTRIBUTE " __

61 ' __ " ILLEGAL ATTRIBUTE--IGNORED

62 PRECISION ATTRIBUTE IS ILLEGALr-DEFAULT USED

63 ILLEGAL PARAMETER ATTRIBUTES FOR ' __

64 ILLEGAL SCALE FACTOR FOR ' '-IGNORED

65 NOT ALL DIMENSION EXPRESSIONS ARE CONSTANTS

·66 FOR STRING ' ___ '--LENGTB NOT A CONSTANT

67 " __ " BAS ILLEGAL LENGl'B--255 USED

68 __ " BAS ILLEGAL ,,., DIMENSION OR STRING
LENGTH

69 ATTRIBUTE FOR FILE' • CONFLICTS WITH
PREVIOUS DECLARATION OR USE

70 DUPLICATE ' ___ " DESIGNATION--LAST USED

71 LIST MISSING AFTER ' __

72 ' ILLEGAL OPTION--SKIPPING TO '

73 DATA AND FORMAT LIST MISSING

74 FORMAT LIST MISSING

75 ILLEGAL I/O EXPRESSION--SKIPPING TO '

76 ILLEGAL DATA OUTPUT ITEM

77 EXPRESSION ILLEGAL IN 'GET' DATA LIST

200

•

Calling Routines

$DRET

$DRET

No longer used

No longer used

No longer used

$APRC $BLPRC

$ANCRE $NPRE
$BLPRC $ OPEN
$CLOSE

$ABAL

$ABAL

$ABAL

No longer used

$ANCRE

$ANCRE

~ANCRE $ NOPRT

$ANCRE

$ANCRE

$ANCRE

$ANCRE

$ANCRE

$DOCS $DIOS

$BPUT $DIOS
$DOCS

No longer used

$DIOS

$DIOS

$DDS

$DDS

$DDS

Ident.
Code Error Message Calling Routines

78 ITERATION FACTOR NOT PARENTHESIZED

79 ' ILLEGAL FORMAT ITEM--SKIPPING TO ' __

$FLG

$FLG

80 I INCOMPLETE FORMAT ITEM--SKIPPING TO 1 __ 1 $FLG

81 ILLEGAL COMPLEX FORMAT ITEM--SKIPPING TO 1__ $FLG

82 __ I NOT FORMAT LABEL--SKIPPING TO 1 __ 1 $FLG

83 FORMAT ITEM HAS INCORRECT NO. OF FIELDS $ FORI

84 CONVERSION ERROR--SCALE FACTOR TOO LARGE $TCODE

85 PROGRAM INCOMPLETE--REQUIRED 'END' STATEMENTS $ASIDX
SUPPLIED

86 I WHERE OPERAND EXPECTED

87 I WHERE OPERATOR EXPECTED

88 ARGUMENT LIST MISSING FROM SUBPROGRAM CALL

89 ILLEGAL OPERAND FOR COMPARISON OPERATOR

90 BIT STRINGS NOT SUPPORTED FOR COMPARISON
OPERATORS

91 OPERAND OF ' __ " MUST BE BIT STRING

92 PREFIX OPERATORS NOT SUPPORTED FOR BIT STRINGS

93 ILLEGAL ASSIGNMENT

94

95

96

97

98

99

100

101

102

INCORRECT NO. OF ARGUMENTS IN SUBPROGRAM

INVALID ARGUMENT ATTRIBUTE IN SUBPROGRAM CALL

INCORRECT NO. OF SUBSCRIPTS FOR ARRAY

EMPTY DECLARATION--IGNORED

CONVERSION OF CONSTANT PRODUCES EXPONENT OUT
OF RANGE

CONSTANT VALUE OR PRECISION TOO LARGE

COMPILER ERROR

EOF MISSING

PROGRAM TOO LARGE

$NEXP

$NEXP

No longer used

$NOPRT

No longer used

$NOPRT

No longer used

$NOPRT

$NOPRT $NPRE

$NOPRT

$NEXP $NOPRT

No longer used

$NCV'1'

$NCV'1'

$NEXP $TCODE
$NOPRT

No longer used

No longer used

103 INCOMPLETE COMMENT OR CHARACTER STRING CONSTANT $ATKN $FNB

1-04 IMPROPER ARRAY BOUND

105 OPERAND INCOMPATIBLE WITH REQUIRED ATTRIBUTES

106 LINE NUMBER NOT FOLLOWED BY BLANK

$ANCRE

$NOPCV $NOPRT

$ASIDX $ATKN

201

Ident.
Code Error Message

107 SOURCE STMTS AFTER END OF PROGRAM IGNORED

108 SEVERE DIAGNOSTICS, EXECUTION PREVENTED

109 ILLEGAL STATEMENT

110 ILLEGAL TITLE DESIGNATION

111 , ILLEGAL OPERATOR

112 IMPROPER RELATIONAL EXPRESSION

113 SPACE FOR COMPILED CODE EXCEEDED

114 (iixxxxxx) PROGRAM ERROR - COMPILE TERMINATED

115 STRING TOO LONG -- FIRST 255 USED

EXECUTION ERROR MESSAGES

Ident.
Code Error Message

002 ERROR

024 PRINT OPTION FORMAT ITEM FOR NON-PRINT FILE

025 EXTRA INPUT DATA IGNORED

123 ILLEGAL FILENAME

124 NOT OPENED

125 UNRECOVERABLE I/O ERROR

126 DOES NOT EXIST

127 LOCKED

128 IN USE

129 PROTECTED

130 NOT A DATA FILE

131 A SHARED FILE

132 NOT INPUT TYPE

133 NOT OUTPUT TYPE

134 ILLEGAL ATTRIBUTES

135 EXCEEDS FOUR FILES OPEN

136 *DIRECTORY MISSING

140 END OF FILE ENCOUNTERED

200 X LT 0 IN SQRT(X)

202

Calling Routines

$EDGN

$EDGN

NO longer used

$CLOSE $ OPEN

$NEXP

$NEXP

$HAINI

$CERR

$ATKN

Calling Routines

No longer used

IHEIOX

IHEIOA I HEDDI

IHERSET IHECLOSE

I HEDDI IHERSET

IHEIOA IHEOPEN
IHEIOG

IHEOPEN

IHEOPEN

IHEOPEN

No longer used

IHEOPEN

No longer used

No longer used

No longer used

IHEOPEN

IHEDUM IHEOPEN

IHEOPEN IHECLOSE

IHEIOG IHELDI

IHESQL IHESQS

Ident.
Code Error Message Calling Routines

201 X GR 114.6 IN EXP(X) IBEEXL IHEEXS

202 X LT OR = 0 IN LOG{X) OR LOG2(X) OR LOG 10(X) IHELNL IBELNW
IHELNS IHELNZ

203 ABS(X) GE (2**50)*K IN SIN (X) OR COS(X) (K=PI) IBEEXZ IBESNZ
IHESNL

204 ABS(X) GE (2**50)*K IN TAN(X) (K=PI) IBETNL IHETNZ

205 X TOO NEAR SINGULARITY AND WILL GIVE OVERFLOW No longer used

206

201

208

209

210

X=Y=O IN ATAN(Y.X)

ABS(X) GT 114.6 IN SINH(X) OR COSH(X)

ABS(X) GE 1 IN ATANH(X)

X=O. Y LE 0 IN X**Y

X=O. Y NOT POSITIVE REAL IN X**Y

IBEATL IHEATS

No longer used

IBEHTL IHEHTS

IHEXIL IHEXIW
IHEXIS IHEXIZ

IHEXXW IHEXXZ

211 Z=+I OR -I IN ATAN(Z) OR Z=+l OR -1 IN ATANB(Z) IBEATW IHEATZ

212

213

300

ABS(X) GE (2**18)*K IN SIN(X) OR COS (X) (K=PI)

ABS(X) GE (2**18)*K IN TAN(X) (K=PI)

OVERFLOW

IHEEXW
IHESNS

IHETNS

IBEABZ
IHEDZW
IBEDZZ
IHEEXW
IHEEXZ
IBEMZW
IBEMZZ
IBEPDF
IBEPDL
IBEPDS
IHEPDW
IBEPDX
IBEPDZ
IBESBL
IBESHS
IBESMF
IHESMG
IBESMB
IHESMX

IHESNW

IHETNW

IBESNW
IBESNZ
IBESQW
IHESQZ
IHETNL
IBETNS
IHETNW
IHETNZ
IBEXIL
IHEXIS
IHEXIW
IBEXIZ
IHEYGF
IHEYGL
IHEYGS
IHEYG~

IHEYGX
IBEYGZ

301 INEXPLICABLE I/O ERROR IBEDUM
IHEIOD
IBELDI

IBECLOSE
IBERSET

320 FIXEDOVERFLOW

330 ZERODIVIDE

IBEABU
IBEABW

IBEDZW
IHEDZZ

IHEMZU

IBEMZU

203

Ident.
Code

340

500

600

601

602

604

605

606

601

100

101

102

Error Message

UNDERFLOW

SUBSCRIPr RANGE

CONVERSION

CONVERSION ERROR IN F-FORMAT

CONVERSION ERROR IN E-FORMAT

ERROR IN CONVERSION FROM CHARACTER STRING TO
ARITHMETIC

ERROR IN CONVERSION FROM ARITHMETIC TO
CHARACTER STRING

ERROR IN CONVERSION FROM FIXED TO FLOAT

ERROR IN CONVERSION FROM FLOAT TO FIXED

INCORRECT E(W,D,S) SPECIFICATION

F FORMAT W SPECIFICATION TOO SMALL

A FORMAT W UNSPECIFIED AND LIST ITEM NOT
TYPE STRING

704' A FORMAT W UNSPECIFIED ON INPUT

705 SUBSTRING NOT IN DATA AREA

706 MAXIMUM STRING LENGTH EXCEEDED

802 END OF OUTPUT FILE

803 IMPROPER NO. OF SUBSCRIPTS FOR DATA INPUT
VARIABLE

805 DATA NAME NOT FOUND IN SYMBOL TABLE

806 SUBSCRIPT NOT IN USER AREA

801 RECURSIVE BLOCK OR ON-UNIT

808 DATA I/O ON INTERNAL FILE

809 ILLEGAL LABEL VARIABLE GO TO

810 EDIT I/O ON INTERNAL FILE

204

Calling Routines

IHEDZW
IHEDZZ
IHEMZW
IHEMZZ
IHEPDF
IHEPDL
IHEPDS
IHEPDW
IHEPDX
IHEPDZ
IHESMF
IHESMG

IHEDDI

IHEVPE

IHESMH
IHESMX
IHEXIL
IHEXIS
IHEXIW
IHEXIZ
IHEYGF
IHEYGL
IHEYGS
IHEYGW
IHEYGX
IHEYGZ

No longer used

IHEVPC

IHELDI IHEDCN

IHELDI

IHELDI

IHELDI

No longer used

No longer used

IHEDOB

IHEDOB

IHELDO

IHEIOD

IHEIOD IHERSET

IHEDDI

IHEDDI

I HEDD I

IHESAD

IHEDDI

IHESAF

IHEDIO

Ident.
Code Error Message Calling Routines

811 DECLARED ENVIRONMENT NOT COMPATIBLE WITH INPUT IBEIOA
FILE

902 PROGRAM ERROR - EXECUTION TERMINATED IHEERR

205

APPENDIX I - MAXIMUM SIZE OF SOURCE PROGRAM

The maximum size of a CALL/360-0S PL/I source program is determined
by storage requirements at various stages of the compilation and
execution processes. The values stated in this appendix apply to
operation of the CALL/360-0S system on a System/360 computer having
S12K bytes of main storage. These values are subject to change and
should be regarded accordingly.

STORAGE REQUIRED AT INPUT OF PROGRAM

Maximum area allocated to hold source statements of a program to be
compiled under CALL/360-0S provides for 28,848 source characters or
800 source lines. The effective maximum is determined by whichever
limit is reached first. Either limit permits approximately 800
CALL/360-0S PL/I statements at 30 characters per statement.

STORAGE REQUIRED TO COMPILE PROGRAM

The size of this area is determined by six items. Three of them are
fixed in size and three are variable~ They are listed below.

Fixed

Communications area
Terminal I/O buffer
compiler fixed-size

working storage
TOTAL

Variable

1,360 bytes
3,000 bytes

14,960 bytes

19,320 bytes

Source program (28,848 byte max.)
Object program
Compiler variable-size working storage

The size of storage up to the maximum provided to the CALL/360-0S PL/I
compiler (112K bytes) is determined by the following formula:

Size of area = 39,000 + 4*(bytes of source program)

STORAGE REQUIRED TO EXECUTE PROGRAM

The size of this area is determined by eight items. Two of them are
fixed and six are variable. They are as listed below.

206

Fixed

Communications area
Terminal I/O buffer

TOTAL

1,360 bytes
3,000 bytes
4,360 bytes

Variable

Object program size }
Static and constants storage (62K byte max.)
Address constant area (1.6K byte min.)
Runtime library (7Kmin. , 60K max.)
Disk I/O buffers (multiples of 3,440 bytes) (max-. of 4)
Dynamic storage (array and string storage)

The maximum size of this area as allowed by the CALL/360-0S system
is 112K bytes.

EXAMPLES

Three.examples to illustrate storage requirements follow.

EXAMPLE 1

A source program containing 290 source statements requires main storaqe
locations as shown below.

1. Input storage used - 8116 bytes

2. Compiler area required

39,000 + 4(8176) = 71,704
= 73,728 bytes allocated

3. Execution area used -

Communications area = 1,360
Terminal I/O buffer = 3,000

area
Object program size = 15,056
Static and constants = 1,176

area
Address constant area = 1,752
Runtime library = 23,792
Disk I/O buffer area = 0
Dynamic storage = 0

TOTAL = 46,136 bytes

207

EXAMPLE 2

A program containing 15 source statements has the following requirements
for main storage.

1. Input storage used - 344 bytes

2. Compiler area required -

39,000 + 4(344) == 40,316
== 40,960 bytes allocated

3. Execution area used -

Communications area == 1,360
Terminal I/O buffer = 3,000

area
Object program size == 632
static and constants == 600

area
Address constant area == 1,180
Runtime library == 16,512
Disk I/O buffer area == 0
Dynamic storage == 0

TOTAL = 23,944 bytes

EXAMPLE 3

A program containing 434 source statements requires main storage as
follows.

1. Input storage used - 18,281 bytes

2. compiler area required -

39,000 + 4(18,281) = 112,148
== 112,640 bytes allocated

3. Execution area used

Communications area == 1,360
Terminal I/O buffer = 3,000

area
Object program size == 21,056
Static and constants = 3,124

area
Address constant area = 3,000
Runtime library = 26,516
Disk I/O buffer area == 0
Dynamic storage 0

TOTAL == 64,056 bytes

208

APPENDIX J - REFERENCE LISTINGS

CALL/360-0S PL/I COMPILER SUBROUTINES

Under CALL/360-0S PL/I naming conventions, subroutines of the CALL/360-
OS PL/I compiler are named $xxxxx, where xxxxx is a mnemonically
suggestive symbol of functions performed. These subroutines are
discussed in functional groups in Section 3, Volume I, of this manual.
They are listed below in alphabetic order according to their mnemonics.
If more than one entry point exists for a routine, multiple entry
points are noted in the leftmost column. The next leftmost column
shows the mnemonic commonly used in general discussion of the routine
(for example, in this manual). A brief statement of function and the
chart number for each routine are provided.

~: The CALL/360-0S PL/I compiler subroutine names follow the naming
convention stated above. However, there are some exceptions

Entry
Name

$ABAL

$ACGEN

$ANCRE

$APRC

$APRC2

$AREXP

$AS1DX

$ATKN

in the member names assigned to certain routines when stored
in CALL/360-0S PL/I libraries. For the reader'S convenience,
the exceptions are noted in Figure J-4, which is a cross
reference of compilation module calls to other compilation
modules.

Routine
Name

$ABAL

$ACGEN

$ANCRE

$ APRC

$APRC

$AREXP

·$ASmX

$ATKN

Manual
Function Location

Prepare bit mask and list 1-135
of pointers for explicitly
declared attributes for an
identifier

Prepare an assignment 1-77
statement for analysis

~ranslate attribute table 1-138
($ABTBL) into di ctionary
attribute node

Analyze syntax~ create 1-78
parameter declarations,
and generate triads
for internal procedure

Analyze syntax1 create 1-78
~arameter declarations l

and generate triads for
-external procedure

Generate error message 1-419
for illegal array expres-
sion

Advance scan index to I-56
next character in source
stream

Create token table entries I-57
for syntactic units in
source stream

Chart

27

9

28

10

10

7-0

5

6

209

Entry
Name

$ATKN2

$BGET

$BEGIN

$BLPRC

$ BONSA

$BPUT

$BRNH

$BRNH2

$CALL

$CATEG

$CCONT

$CERR

$CIF

$CNT

$CON

$CRVT

$CSTOP

$DCLGN

210

Routine
Name

$ATKN

$BGET

$ BEGIN

$BLPRC

$BONSA

$BPUT

$BRNH

$BRNH

$CALL'

$CATEG

$CCONT

$CERR

$CIF

$CNT

$CON

$CRVT

$CSTOP

$DCLGN

Function

See above. Used for
initial entry only

Analyze a GET statement

Check syntax of BEGIN
statement and generate
part of prologue

Define the address of a
statement label or entry
name

Manual
Location

I-57

1-168

1-80

1-141

Check legality of ON- 1-81
condition and identify it

Analyze a PUT statement 1-170

Analyze a GO TO statement 1-82

Analyze a GOTO statement 1-82

Analyze the syntax of a 1-84
CALL statement

Determine whether next 1-39
statement in token table
is assignment statement

Initialize every area 1-40
required for compilation

Signal hardware interrupt 1-420
or unrecoverable error
caused by the compiler

Analyze the syntax of an 1-85
IF statement

Direct entokeninq of 1-42-
statements and deter.mine
which statement processor
is required

Analyze syntax of ON I-8n
statement aDd. generate
code to establish 08-
condition address

Analyze a REVERT statement 1-88

Analyze the syntax of a 1-89
STOP statement

Direct analysis and encod- 1-142
inq of attributes for
identifiers in a DCL
statement and construct
dictionary attribute list

Chart

6

33

11

29

12

34

13

13

14

1

3

71

15

2

16

17

18

30

Entry
Name

$DDS

$DEXP

$DIOS

$DOCS

$DOG

$DOG2

$DRET

$EDGN

$EDGN2

$ENDES

$ENDON

$EXPND

$ EYPND

$FIND

$FLG

$FMT

Routine
Name

$DDS

$DEXP

$DIOS

$ DOCS

$OOG

$DOG

$DRET

$EDGN

$EDGN

$ENDES

$ENDON

$ EXPND

$EYPND

$FIND

$FLG

$FMT

Function
Manual
Location

Direct generation of triads 1-172
required for a data list

Build the triads required 1-90
for an iterative DO-loop

Find file. skip, and data 1-174
specification pointers
of GET or PUT statement

Find file. title, and 1-175
input/output attribute
sections of OPEN or CLOSE
statement

Check syntax of and gen- 1-92
erate triads for 00 state-
ment and create entry for
program structure table

As above, except for DO 1-92
specification in I/O list

Analyze the syntax of a
RETURN statement

1-94

Generate triads and per- 1-95
form housekeeping for
closings associated with
END statement

As above, except only 1-95
closes END statement gener-
ated by $EYPND to complete
an iterative DO-loop

Perform processing required 1-97
at end of ELSE unit

Perform processing required 1-98
at end of on-unit

Determine dimensionality 1-99
of an array expression,
generate required DO state
ments, and build temporary
variables for indices

Generate END statements to 1-100
complete DO-loops of $EXPND

Search dictionary name 1-60
list for name entry for an
identifier; if none, create
one

Perform syntax analysis
and code generation for
a format list

Direct translation of a
FORMAT statement

1-176

1-179

Chart

35

19

36

37

20

20

21

22

22

23

24

25

26

7

38

39

211

Entry Routine Manual
Name Name FUnction Location Chart

$FNB $FNB Advance scan index to I-62 8
next nonblank character
in source stream

$FOR1 $ FORI Create FED for expres- I-180 40
sion in a format
speci.fication

$FORI2 $FORI As above, but for constant I-180 40
only

$ FPDL $FPDL Process format list for I-181 41
edit-directed I/O

$FSYM $FSYM Find definition for iden- I-144 31
tifier in higher-numbered
block

$FVAR $FVAR Fi.nd definition of vari- 1-145 32
able: if none, create one

$GPUT $GPUT Edit 120-character line 1-421 72
and place in terminal
buffer

$GTRIAD $GTRIAD Get next available triad I-422 73
from triad table

$BAINI $HAINI Convert adcons to true I-392 62
addresses and reset user
area relocation constants

$BCTP $BCTP Process constant table I-394 63

$BDVTP $BDVTP Set pointers of dope I-395 6fI
vectors of all static
arrays and strings

$BLNTP $BLNTP Process line number table I-396 65

$BRTLL $BRTLL Determine and load I-397 66
required library routines:
allocate fixed and address-
modifiable library work
space

$BSCAL $ HSCAL Process initialization I-399 67
table and dope vector list
to initialize constants
and adcon areas

$BTCR $HTCR Collapse C, D, and I 1-401 68
tables and J list during
wrap-up

$MCWU $MCWU Perform housekeeping to I-403 69
prepare code and start
execution

212

Entry
Name

$NATTP

$ NCALL

$NCONS

$ NCON

$ NCSDV

$NCVT

$NEXP

$NLSIB

$NMULT

$ NOPCV

$NOPRT

$ NPRE

$OPEN

$CLOSE

$OPMZO

Routine
Name

$NATTP

$NCALL

$NCONS

$ NCONS

$NCSDV

$NCVT

$NEXP

$NLSIB

$NMULT

$NOPCV

$NOPRT

$NPRE

$OPEN

$OPEN

$OPMZO

Manual
Function Location

Obtain attributes of argu- I-209
ment of CALL or function
reference

Generate triads to call a I-210
function or subprogram

Convert constant: search I-423
constant table for simi-
lar entry: if none. create
one

As above. except $NXFLG I-423
indicates the type of
conversion required

Process subscript list of
an array cross-section
and begin construction of
dope vector

I-212

Convert arithmetic source I-425
constant to arithmetic
target type

Control generation of I-214
triads to evaluate expres-
sions. assignment statement.
and CALL statement entry
name and argument list

Provide pointer to adcon I-426
for a library entry name

Generate triad to multiply I-21S
subscript value by dimen-
sion multiplier of current
array dimension

Convert operand to I-219
required type

Process all operators in
operator stack whose
priorities are greater
than or equal to the
current operator

Process top entry of
operand stack

Analyze an OPEN statement

Analyze a CLOSE statement

Determine the effective
signs of triad operands
and arrange them to opti
mize referencing

I-222

I-225

I-182

I-182

I-270

Chart

43

44

74

74

45

75

46

76

47

48

49

50

42

42

52

213

Entry Routine Manual
Name Name Function Location Chart

$SCDV $SCDV Construct initialization I-271 53
table entry for dope
vector

$SVC $SVC Interface with the I-452 82
CALL/360-0S system

$TCODE $TCODE Generate symbolic instruc- I-272 54
tions from entries in a
triad table

$TOPR $TOPR Process operands of I-279 55
current triad

$TRIAD $TRIAD Generate a single entry I-226 51
in triad table by refer-
ring to $NLOPN, $NROPN,
and top entry of operator
stack

$STRD $TRIAD Same as above but using I-226 51
contents of registers GO,
P3, and P4

$VASGA $VASGA Select a register for I-280 56
assignment from adcon
register portion of
register table

$VASGC $VASGC Select register or pair I-2S1 57
of registers for assign-
ment from computational
register portion of
register table

$VFREE $VASGC Determine whether a I-281 57
designated register
can be freed

$VRSYN $VASGC Remove synonyms from a I-281 57
designated register
table entry

I $VSAVE $VASGC store contents of desig- I-2S1 57
nated register into
temporary storage

$VCLR $VCLR Allocate space for and I-284 58
initialize register table

$VDSAC $VDSAC Convert compiler's repre- I-285 59
sentation of a storage
address to a machine
address

$VGTMP $VGTMP Allocate temporary storage I-288 60
in dynamic storage area
for a block

214

Entry
Name

$VINSA

$WBACK

$WCONT

$WCTCT

$WEXP

$WSTEP

$XERR

Routine
Name

$VINSA

$WBACK

$WCONT

$WCTCT

$WEXP

$WSTEP

$XERR

Manual
Function Location

Generate machine-language 1-290
instructions (object code)
from symbolic instructions
of $TCODE

step from one segment of 1-428
a table to the preceding
segment

Initiate second (wrap-up) 1-44
phase of the CALL/360-0S
PL/I compiler

Release segment of a table 1-428
to free pool

Add segment to a table 1-428
and adjust pointers to it

step from one segment of 1-428
a table to the preceding
segment

Construct, parameterize,
and print diagnostic
message

1-431

CALL/360-0S PL/I RUNTIME LIBRARY

Chart

61

11

4

18

19

80

81

Routines of the CALL/360-0S PL/I compiler library provide interface
and computational services. Under CALL/360-0S PL/I naming conventions,
library module and entry names begin with the prefix wIHEw. Module
(routine) names are composed of these three letters and three additional
unique letters that identify the specific routines. An additional
unique letter is appended to identify an entry point in the module.

The CALL/360-0S PL/I runtime library routines are discussed in
functional groupings, corresponding to recognized packages of the
library, in Section 5, Volumes II and III, of this manual. They are
listed below in alphabetic order according to their mnemonics. A brief
summary of the function of each routine is provided.

Note: The CALL/360-0S PL/I library runtime routines follow the naming
conventions stated above and applied in this manual. However,
there are some exceptions in the member names assigned to certain
routines when stored in CALL/360-0S PL/I system libraries.
For the reader's convenience, those exceptions are noted below:

lOB, 100, lOP, lOX, and LDO (which are referred to in
documentation as IHEIOB, IHEIOD, lHEIOP, lHEIOX, and IBELDO).

215

Routine
Name

IHEABU

IHEABW

IHEABZ

IHEATL

I HEATS

IHEATW

IHEATZ

IHECLOSE

IHECSC

IHECSM

IHECSS

IHEDCN

IHEDDI

216

Function

Binary Fixed Complex ABS -
Calculate ABS(z) = SQRT(x**2 + y**2)
where z = x + yI and x and yare
binary fixed real numbers.

Package

AFUNC

Short Float Complex ABS - AFUNC
Calculate ABS(z) = SQRT(x**2 + y**2)
where z = x + yI and x and yare
short floating-point real numbers.

Long Float Complex ABS - AFUNC
Calculate ABS(z) = SQRT(x**2 + y**2)
where z = x + yI and x and yare
long floating-point real numbers.

Long Float Real Arctan - MFUNC
Calculate arctan(x) or arctan(y/x)
where x is a long floating-point
real number expressed in radians.

Short Float Real Arctan - MFUNC
Calculate arctan(x) or arctan(y/x)
where x is a short floating-point
real number expressed in radians.

Short Float Complex Arctan/Hyperbolic MFUNC
Arctan - Calculate arctan(z) or hyper-
bolic arctan(z) where z is a short
floating-point complex expression.

Long Float Complex Arctan/Hyperbolic MFUNC
Arctan - Calculate arctan(z) or hyper-
bolic arctan(z) where z is a long
floating-point complex expression.

Close IOMP
Close a disk file.

Character String Compare SIMP
Compare two character strings and
return condition code.

Character String Assignment - SIMP
Assign a character string to a
fixed-length target.

Character String SUBSTR SIMP
Produce an SDV describing the SUBSTR
pseudo-variable and function of a
character string.

Character String to Arithmetic - TCP
Convert a fixed-length character
string containing arithmetic constant
or complex expression to an arithmetic
target with specified scale, mode, and
precision.

Data-Directed Input - IOMP
Handle data-directed input operations.

Manual
Location

11-118

11-120

11-122

111-9

111-5

111-16

III-19

11-40

II-1.11

11-113

II-115

11-88

II-41

Routine
Name

IHEDDO

lBEDDP

IHEDIA

IHEDIB

IHEDIM

IHEDIO

IHEDMA

IHEDNC

IHEDOA

IHEDOB

IHEDOM

IHEDUM

IHEDZW

Function

Data-Directed Output -
Handle data-directed output, per
forming any necessary conversion
operations.

Perform Calculation of the Subscript
Values for an Array Element -
Calculate subscript values for an
array element using FeB and ADV.

package

IOMP

10MP

F/E Format Input Director - TCP
Convert F/E-format external data
to an internal data type.

A-Format Input Director - TCP
Convert A-format external data to
an internal data type during ed~t I/O.

C-Format Input Director - TCP
Convert C-format external data to
an internal C-format representation
during edit I/O.

Edit I/O Director 10MP
Interpret format code and direct
control to required library routine.

Arithmetic Conversion Director - TCP
Set up intermodular flow required to
convert data from one arithmetic data
type to another.

Arithmetic to Character String - TCP
Convert an arithmetic source with
specified scale, mode, and precision
to a character string.

F/E-Format Output Director - TCP
Convert an internal data representa-
tion to an external F/E-format
during edit I/O.

A-Format output Director TCP
Convert an internal data representa-
tion to an external A-format during
edit I/O.

C-Format Output Director - TCP
Convert an internal data representa-
tion to an external C-format during
edit I/O.

Program Termination - HIP
Terminate current program, closing
all disk files.

Short Float Complex Division - AFUNC
Calculate zl/z2 in floating-point
when zl=a+bl and z2=c+dl, and a,b,c,
and d are short floating-point real
numbers.

Manual
Location

11-43

11-45

11-16

11-18

11-80

11-41

11-96

11-90

11-82

11-84

11-86

11-63

11-130

211

Routine Manual
Name Function Package Location

1HEDZZ Long Float Complex Division - AFUNC 11-132
Calculate zl/z2 in floating-point
when zl=a+b1 and z2=c+dI, and a,b,c,
and d are long floating-point real
numbers.

1HEEFL Long Float Real Error Function - MFUNC 111-25
Compute the error function of x or
the complement of this function,
where x is a long floating-point
real expression.

IHEEFS Short Float Real Error Function - MFUNC 111-22
Compute the error function of x or
the complement of this function,
where x is a short floating-point
real expression.

1HEERN Table of Error Messages and HIP 11-64
Indicators - Provide action codes
of execution errors and runtime
error messages.

1HEERR Error Routine - HIP 11-65
Identify error condition and deter-
mine required action.

1HEEXL Long Float Real EXP - MFUNC 111-30
Compute e**x where x is a long
floating-point real expression.

1REEXS Short Float Real EXP - MFUNC 111-28
Compute e**x where x is a short
floating-point real expression.

IREEXW Short Float Complex EXP - MFUNC 111-32
compute e**x where x is a short
floating-point complex expression.

1HEEXZ Long Float ComplexEXP - MFUNC III-3q
Compute e**x where x is a long
floating-point complex expression.

IHEGPUT Output Director - MOPP 11-70
Place 120-character line in terminal
I/O buffer.

IHEHTL Long Float Real Hyperbolic Arctan - MFUNC 111-14
Calculate hyperbolic arctan(x)
where x is a long floating-point
real expression.

IHEHTS Short Float Real Hyperbolic Arctan - MFUNC 111-12
Calculate hyperbolic arctan(x)
where x is a short floating-point
real expression.

IHE10A List- or Edit-Directed GET Initiation IOMP 11-48
and Termination - Initiate or termi-
nate list- or edit-directed GET
statement.

218

Routine
Name

IHEIOB

IHEIOD

IHEIOG

IHEIOP

IHEIOX

IHEJXI

IHELDI

IHELDO

IHELNL

IHELNS

lHELNW

IHELNZ

IHEMXB

Function

output Initialization with or without
Skipping - Initialize POT statement
with or without SKIP opti~

output Data to the Buffer Area and
communication with CALL/36o-0S -
Place converted data in buffer and
request an SVC to Executive when
buffer is filled.

Get Data Field from Input Buffer -
Collect data from an input buffer.

Package

IOMP

IOMP

IOMP

Perform SKIP(w) Function for SYSPRINT - IOMP
Perform the SKIP function for output
print file.

Edited Horizontal Control Fbrmat
Item - On input, space over next
w characters. On output, for control
format item, insert w blanks; for
COLUMN(w), insert blanks up to
w-th character.

Interleaved Array Indexer -
Provide the byte address of the next
element of an array.

List- and Data-Directed Input -
Scan one item or the constant part
of an assignment and assign it to
internal variable.

List-Directed output -
Handle list-directed output.

Long Float Real Log -
Calculate log (x) to the base e,
base 2, or base 10 where x is a
long floating-point real expression.

Short Float Real Log -
Calculate log(x) to the base e,
base 2, or base 10 where x is a
short floating-point real expression.

Short Float complex Log -
Calculate the principal value of
the natural'log of z where z is
a short floating-point comp!ex
expression.

Long Float Complex Log -
Calculate the principal value of
the natural log of z where z is a
long floating-point complex
expression.

Real Binary Fixed MAX/MIN -
Find the maximum or minimum of a
group of real fixed-point binary
numbers.

IOMP

AMP

IOMP

IOMP

MFUNC

MFUNC

MFUNC

MFUNC

AFUNC

Manual
Location

11-49

II-50

II-52

II-53

II-54

111-89

II-56

II-58

111-39

111-36

111-42

111-44

11-124

219

Routine
Name

IHEMXL

IHEMXS

IHEMZU

IHEMZW

IHEMZZ

IHEONREV

IHEOPEN

IHEPDF

IHEPDL

IHEPDS

IHEPDW

220

Function Package

Real Long Float MAX/MIN - AFUNC
Find the maximum or minimum of a
group of long floating-point real
numbers.

Real Short Float MAX/MIN - AFUNC
Find the maximum or minimum of a
group of short floating-point real
numbers.

Binary Fixed Complex Mult/Div - AFUNC
Calculate zl*z2 or zl/z2, where
zl and z2 are fixed-point binary
complex numbers.

Short Float complex Mult - AFUNC
Calculate zl*z2 in floating-point,
when zl=a+bI and z2=c+dI and a,b,c,
and d are short floating-point real
numbers.

Long Float Complex Mult - AFUNC
Calculate zl*z2 in floating-point,
when zl=a+bI and z2=c+dI and a,b,c,
and d are long floating-point real
numbers.

On-ENDFILE and REVERT Initializer - HIP
Initialize the on-ENDFILE condition
unit to the current unit.

Open IOMP
Open a disk file.

PROD-Interleaved Real Fixed Array - AMP
Equate a long or short floating-
point real target to the product of
all elements of an interleaved array
of fixed-point real expressions.

PROD-Interleaved Real Long Float AMP
Array - Equate a long floating-point
real target to the product of all
elements of an interleaved array of
long floating-point real expressions.

PROD-Interleaved Real Short Float AMP
Array - Equate a short floating-point
real target to the product of all
elements of an interleaved array of
short floating-point real expressions.

PROD-Interleaved Complex Short Float AMP
Array - Equate a short floating-point
complex target to the product of all
elements of an interleaved array of
short floating-point complex expres-
sions.

Manual
Location

II-128

II-126

II-134

II-136

II-131

II-68

II-59

III-91

III-95

III-93

III-99

Routine
Name

IHEPDX

IHEPDZ

IHERSET

lHESAD

lHESAF

lHESHL

IHESHS

IHESMF

IHESMG

IHESMB

Function Package

PROD-Interleaved complex Fixed Array - AMP
Equate a long or short floating-point
complex target to the product of all
elements of an interleaved array of
fixed-point complex expressions.

PROD-Interleaved complex Lang Float AMP
Array - Equate a long floating-point
complex target to the product of all
elements of an interleaved array of
long floating-point complex
expressions.

Reset Disk Files - IOMP
For output, write current half-track
and reset disk and current buffer
pointers1 for input, reset disk and
current buffer pointers.

Initial Prologue, Expand DSA, End MOPP
Prologue, Object Program Initiation -
Provide DSA for block, obtain auto-
matic storage for declared elements,
and determine space required for'
object program.

GO TO Interpreter - MOPP
Update current DSA address if neces-
sary and free chain elements up to
the DSA to which the specified
label belongs.

Long Float Real Hyperbolic Sin/cos - MFUNC
Calculate hyperbolic sin (x) or hyper-
bolic cos(x), where x is a long
floating-point real expression.

Short Float Real Hyperbolic Sin/Cos - MFUNC
Calculate hyperbolic sin (x) or hyper-
bolic cos (x), where x is a short
floating-point real expression.

SUM-Interleaved Real Fixed Array - AMP
Equate a long or short floating-point
real target to the sum of all elements
of an interleaved array of fixed-point
real expressions.

SUM-Interleaved Real/complex Short AMP
Float Array - Equate a short floating
point real or complex target to the
sum of all elements of an interleaved
array of short floating-point real
or complex expressions, respectively.

SUM-Interleaved Real/complex Long AMP
Float Array - Equate a long floating-
point real or complex target to the
sum of all elements of an interleaved
array of long floating-point real or
complex expressions respectively.

Manual
Location

:111-91

III-l0l

1I-60

1I-11

1I-13

III-54

III-52

III-l03

III-l05

III-l01

221

Routine
Name

IHESMX

IHESNL

IHESNS

IBESNW

IHRSNZ

IHESQL

IHESQS

IBESQW

IHESQZ

IHESVC

IBETBL

IHETHS

222

Function Package

SUM-Interleaved complex Fixed Array - AMP
Equate a long or short floating-point
complex target.to the sum of all ele-
ments of an interleaved array of
fixed-point complex expressions.

Long Float Real Sin/Cos - MFUNC
compute sin (x) or cos (x) where x
is a long floating-point real
expression in radians •.

Short Float Real Sin/Cos - MFUNC
Compute sin (x) or cos (x) where x
is a short floating-point real
expression in radians.

Short Float complex Sin/Cos - MFUNC
Calculate hyperbolic sine, hyperbolic
cosine, sine, or cosine of an argu-
ment z, where z is a short floating-
point complex expression.

Long Float Complex sin/Cos - MFUNC
Calculate hyperbolic sine, hyperbolic
cosine, sine, or cosine of an argu-
ment z, where z is a long floating-
point complex expression.

Long Float Real SQRT - MFUNC
Compute SQRT(x) where x is a long
floating-point real expression.

Short Float Real SQRT - MFUNC
compute SQRT(x) where x is a short
floating-point real expression.

Short Float Complex SQRT - MFUNC
compute the principal value of the
square root of z where z is a short
floating-point complex expression.

Long Float Complex SQRT - MFUNC
comput~ the principal value of the
square root of z where z is a long
floating-point complex expression.

Library SVC Director - MOPP
Interface with the CALL/36o-0S system.

Long Float Real Hyperbolic Tan - MFUNC
Calculate hyperbolic tan (x) where x
is a long floating-point real
expression.

Short Float Real Hyperbolic Tan - MFUNC
Calculate hyperbolic tan (x) where x
is a short floating-point real
expression.

Manual
Location

111-109

111-49

111-46

III-51

111-60

111-66

111-63

111-68

111-10

11-14

111-80

111-18

Routine
Name

IHETNL

IHETNS

IHETNW

IHETNZ

IHEUPA

IHEVCA

IHEVCS

IHEVFA

IHEVFB

IHEVFC

IHEVFD

IHEVFE

Function Package

Long Float Real Tan - MFUNC
Calculate tan (x) where x is a long
floating-point real number expressed
in radians.

Short Float Real Tan - MFUNC
Calculate tan (x) where x is a short
floating-point real number expressed
in radians.

Short Float Complex Tan/Hyperbolic MFUNC
Tan - Calculate tan(z) or hyperbolic
tan(z), where z is a short floating-
point complex expression.

Long Float Complex Tan/Hyperbolic MFUNC
Tan - Calculate tan(z) or hyperbolic
tan(z) where z is a long floating-
point complex expression.

Zero Real or Imaginary Part - TCP
Zero real part of complex arithmetic
data and move pointer from real to
imaginary part or zero imaginary part
and/or get address of imaginary part.

Data Analysis Routine - TCP
Create a DED to describe the scale,
mode, and precision of a character
representation of an arithmetic value.

Complex External to string Director - TCP
Direct conversion of character repre
sentation of complex data to internal
string data.

Float Intermediate to Packed Decimal TCP
Intermediate - Direct conversion of
floating-point intermediate to packed
decimal intermediate.

Float Intermediate to Fixed Binary - TCP
Direct conversion of floating-point
intermediate number to fixed-point
binary.

Float Intermediate to Float Short or TCP
Long - Move a floating-point inter-
mediate number into a floating-point
short or long target data item.

Fixed Binary to Float Intermediate - TCP
Direct conversion of a fixed-point
binary source to a floating-point
intermediate number.

Float Source to Float Intermediate TCP
Move a short or long floating-point
binary number into LCA to make it
available for use as a floating-point
intermediate number.

Manual
Location

111-15

111-12

III-S2

III-SLJ

11-92

11-109

II-93

11-99

11-100

11-101

11-102

II-l03

223

Routine
Name

IHEVPA

IBEVPB

IBEVPC

IBEVPE

IBEVSC

IBEVTB

IHEXIB

IBEXIL

IHEXIS

IBEXIU

IHEXIW

224

Function Package

Packed Decimal Intermediate to Float .TCP
Intermediate - convert a packed
decimal intermediate number to a long
floating-point intermediate number
and store in LCA.

Packed Decimal Intermediate to TCP
F-Format - convert a packed decimal
intermediate number to an F-format
character string and store in
target-string data item.

Packed Decimal Intermediate to TCP
E-Format - convert a packed decimal
intermediate number to an E-format
character string and store in
target-string data item.

string with Format to Packed Decimal TCP
Intermediate - convert a character
string paired with an F/E-format
element to packed decimal inter-
mediate and store in LCA.

Character String to Character String - TCP
Assign a fixed- or variable-length
character string to a fixed- or
variable-length character string.

Table of Powers of Ten -
Table of long-precision floating
point numbers representing powers of
ten from 1 to 10.

Real Fixed Binary Integer EXP -
Calculate x**n, where x is a real
fixed-point binary number and n is
a positive integer.

Real Long Float Integer EXP -
Calculate x**n, where x is a long
floating-point real number and n is
an integer between -2**31 and
2**31 - 1.

Real Short Float Integer EXP -
Calculate x**n, where x is a short
floating-point real number and n is
an integer between -2**31 and
2**31 1.

Z**N, Z Fixed Binary Complex -
Calculate z**n, where z is a complex
fixed-point binary number and n is a
positive integer less than 2.*31.

Z**N, Z Short Float Complex -
Calculate z.*n, where z is a short
floating-point complex number and n
is an integer between -2.*31 and
2*.31 - 1.

TCP

AFUNC

AFUNC

AFUNC

AFUNC

AFUNC

Manual
Location

11-104

11-105

11-106

11-101

11-95

11-108

11-138

11-142

II-140

11-144

11-146

Routine
Name

IBEXIZ

IBEXXL

IBEXXS

IBEXXW

IBEXXZ

IHEYGF

IBEYGL

IBEYGS

Function

Z**N, Z Long'Float Complex
Calculate z**n, where z is a long
floating-point complex number and
n is an integer between -2*.31
and 2**31 - 1.

Lon~ Float Real General EXP -
Calculate x**y, where x and yare
long floating-point real numbers.

Short Float Real General EXP -
Calculate x**y, where x and yare
short floating-point real numbers.

Short Float complex General EXP -
Calculate z1**z2 where z1 and z2
are short floating-point complex
numbers.

Long Float complex General EXP -
Calculate z1.*z2 where z1 and z2
are long floating-point complex
numbers.

POLYCA,X) CA and X Real Fixed) -
For vector X, calculate:

1\ - In

A(m) + L A(m + j) '"

j = 1

j - 1

II X(P + i)
i=O

For scalar X, calculate:

n- m

L A(m + j)",X**j

j = 0

POLYCA,X) CA and X Real Long
Float) - For vector X, calculate:

n-m

A(m) + L
j = 1

j - 1

A(m + j) '" II X(P + i)

i= 0

For scalar X, calculate:

n - m

L A(m + j)",X**j

j = 0

POLYCA,X) (A and X Real Short
Float) - For vector X, calculate:

n - m

A(m) + L
j = 1

j - 1

A(m + j) '" II X(p + i)

i = 0

Package

AFUNC

AFUNC

AFUNC

AFUNC

AFUNC

AMP

AMP

AMP

Manual
Location

II-1"8

II-152

II-150

II-15"

II-156

III-111

III-117

III-11"

225

Routine
Name

IHEYGW

IHEYGX

IHEYGZ

226

Function

For scalar X, calculate:

n - m

L A(m + j}I,X""I'j

j = 0

POLYCA,X) (A and X complex Short
Float) - For vector X, calculate:

j - 1 n - m

A(m) + L
j = 1

A(m + j) * II X(P + i)
i = 0

For scalar X, calculate:

n - m

2: A(m + j)*X**j

j = 0

POLY (A, X) (A and X Complex Fixed) -
For vector X, calculate:

j - I n - m

A(m) + 2:
j = 1

A(m + j) * II X(P + i)

i = 0

For scalar X, calculate:
n - m

L A(m + j)*X"j

j = 0

POLY (A, X) (A and X Complex Long
Float) - For vector X, calculate:

n-m j-l

A(m) + L A(m + j)* IT X(P + i)

j=1 i=O

For scalar X, calculate:

n -m

2: A(m + j)*X"j

j=O

Package

AMP

AMP

AMP

Manual
Location

III-123

III-120

III-126

MACRO-MACRO CROSS REFERENCE

CALL/360-0S PL/I compiler support macros are described in Appendix
C of this manual. Runtime support macros are discussed in Appendix
D. Some of the macros in each group call other macros to perform
required functions. Fiqure J-l provides a crass reference between
a macro and other macros called by that macro. (Refer to the named
appendices for details.>

CALL
GALLERR
CALR'IS
CKFCB
CSVC
DED
DNDUE
~XPG

FAREA
FIB
GCURR
GENER
GlnKN
GFRST
GNEXT.
GNODE
GPREV
GTRD
11lEAlJC
IHEBRA
IHEBXT
IHECAL
THEDCV
lHEllIF
lHEERRCD
IHEEXT
l HEFC II
IHEFGIII
IHEFROfl
IHEHDR
IHEIOU
[HELBE
THELIB
IHEfItlPP
lHElJAHb
I HEOP/:N r
11II'PCH
/HEI'RV
lllERET
I Hl.IlST
llll'SAV
l H I.~CV
1 II I';SDIt
llll·.SY.'1
I Hl'TI.H
lHl.t:AI'
1 N<lDI';
TNSl
LlBIlI,F
HNODI
PCON
REAUIlI SK
ItEADTER~1

RFl B'
RTSSVC
SETDISK
SErERRCD
SEn'l.CA
SETSDV
SKPTK
SY'I11E~'

1 ALLY
TI: eN ER

Called Macros

• • • •

• • • •
•
• • • •

•

• • •
• •

• •
•

•

• ••
• • • •

• • • •
~~~~~H~HH~HHHHH~~~~nn 

~n=============~~~n» ooO~~~~~~~~~~M~~~~~C~~ 
~ZN~~~~~~~~~n~>a~M~~~ 
< >~nCH~n~~H>~a Z~~~ 
n ~~<~=~=~~~~>n ~ 

n ., 

CALL 
CALLERR 
CALRTS 
GKFCB 
CSVC 
DEli 
DNOIlE 
EXPG 
FAREA 
FIll 
GCURR 
GENER 
GETKN 
GFRST 
GNEXT 
GNODE 
GPREV 
GrRlJ 
1l!EAllC 
I1mBRA 
II!EBXT 
IHEGAL 
IIIEllCV 
lllEDTF 
IIlEERRCll 
IHEEXT 
1lIEFCB 
IHEFCID n 
IHEFRO}! /lJ 
IHEHUR I-' .... 
lHHOD ... 

::l 
IllELKE IQ 
Iln;UB :.: 
IHEMOPP /lJ 
IllENA'IE n 

11 
I II!:OP !:N'f 0 

IHEPCIl OJ 

IH!:PRV 
IHERET 
[HERST 
IIIESAV 
IHESCV 
[ III;SIlR 
IHESY}! 
fHr.fLR 
IHEZAP 
I~{)IlE 

INS 1 
Ll BIl!:F 
H:-lnDF 
RCO~ 

REAlllllSK 
REAIlTl;R~1 

RFIB 
RISSVC 
SETDISK 
St:TERRCIl 
St:TFLCA 
St:rSllV 
SKPTK 
SY'IDU' 
rALLY 
TGENEI, 

Fiqure J-l. Macro-Macro Cross Reference 

227 



MODULE-MACRO CROSS REFERENCE 

CALL/360-0S PL/I compiler modules are discussed in detail in Section 
3 of this manual. Runtime library modules are described in Section 
5. Many of these modules call CALL/360-0S PL/I macros to perform 
required functions. Figure J-2 provides a cross reference between 
a compiler module and macros called by that module. Figure J-3 provides 
a cross reference between a runtime library module and macros called 
by that module. (Refer to the named sections for details.) 

228 



CALL 
CALLERR 
CALR'lS 
CKFCB 
CSVC 
OED 
DNOIlI: 
EXPG 
FAREA 
FIB 
(;CIIRR 
GUl:R 
GI:TKN 
GFRST 
GNU,'! 
(;NOIlE 
GPREV 
G'IIW 
IHEAIlC 
I III'. BRA 
IHEBX'l' 
IHI:CAL 
IIiEIlCV 
lHLllT F 
IHEERRCIJ 
IHEEXT 
IHEFCB 
lllEFCIB 
IHEFROM 
IIIEHIlR 
IHEIOD 
IHELBE 
I H ELI B 
IHEMOPP 
IHENAME 
IHEO~&NT 

IHEPCH 
IHEPRV 
IBERET 
IHERST 
IHESAV 
Illr:SCV 
1 HliSIJR 
IBESH! 
IHETLR 
IHEZAP 
INODE 
INST 
L 1 Bill: F 
MNOIJL 
RCON 
READDlSK 
READ'J'ERN 
RFlB 
R'l'SSVC 
SETDISK 
SETERRCD 
SErFLCA 
SI,'J'SDV 
SKPTK 
SYNDEF 
TALLY 
'J'G ENER 

I. 

I. 

I. :. I. 
I. 

Figure J-2. 

Calling Modules 

I. I. I. 1.1. CAI.I. 
tALLERR 
CALRTS 
CKFCIl 
CSVC 
IlEIl 
J)NOIJE 
EXPG ,. I. FARhA 
~. I B 

I. GCURR 
I. I. GENER 

Ie I. GI,TKN 
GFRST 
GNEXT 

I. I. • GNODE 
I. GPREV 
I. I. I. G'!'RIl 

IHEADC 
IHEBRA 
IIlEllXT 
IHECAL 
IHEDCV 
lIU:DIF 
IIlEERRCD 
IIIEEXT 
IHEFCB 
IHEFCIB 

Cl 
IIlEFROM " IHEHDR .... .... 
IHEIOD " "-IHELBE 
IIIHIB ~ 

" IHEMOPP " ... 
IHENAMB 0 

IBEUPEN'!' 
.. 

I. I. I- I. I. I. I· IIIEPCH 
IHEPRV 
IHERET 
THERST 
lHESAV 
IHESCV 
IIIJ:SIlR 
IHESYH 
IHETLR 
IHEZAP 
INOIlE 
INS'f 
LIBIJLF 
M)lOIJE 
RCO~ 

REAIlD[SK 
REAIlTJ:R'1 

Itlle RFIB 
R l'S sve 
SE'fIlISK 
SETCRRCIl 
S J:'l'FI.l'A 
S E'I S IlV 
SKPH 

Ie SY'!Ill' F 
TALLY 
TGE)JI'I; 

Compilation Module-Macro Cross Reference (Page 1 of 2) 

229 



CALL 
CALLERR 
CALRTS 
CKFCB 

CSVC 
IlEIl 
IJ;-J Oil E 

EXPG 
FAREA 
FTIl 
GeliHR 
GE~EH 

G E fKN 
(;FRST 
GNEX'!' 
eNODI, 
GPREI' 
G'!'RIJ 
I fI E,\ IlC 

IfiEBRA 
lHEIlX'!' 
IHECAL 
I HE IleV 
lllEIl IF 
IIlEERRCIl 
IHEEXT 
IHEFCB 
IHEFCIIl 
IHEFROM 
IBEllllR 
IfiEIOIl 
[HELBE 
TBELTB 
IBEHOPI' 
IHENAME 
IHEOPENT 
I HI"'CH 
THEPRV 
lllERET 
IHEHST 
11l1:SAV 
III ES CV 
IIIESIJR 
lllESYH 
IIII:,],LH 
IHEZAP 
[NOllE 
INS'!' 
L r Bill:!' 
MN<l1J1. 
RCON 
RI':Allill SI; 
RCAIJ'J ER,'I 
RFl P, 

IHSSVC 
SETDJSJ\ 
SETERRCD 
SEI'FLCA 
SETSDV 
SKPTI( 
SY:-!D!: F 
I'ALLY 
T(; I:NER 

Calling Modules 

• • • • • ••• •• ••• • • •• • • • 
" 

=< x 
-< • • • • • x • • • • 
=< x • • • -< • • • • • • •• •• •• • • • • • • • • • • • • • • • • • • • • • •• •• •• • ••• • • • • • • 

•• •• •• •• •• ••• •• •• • •• • • • • ••• •• 

• • 
••• • • 

• 

• • •• •• •• •• • • •• •• • • •• • • •• • •• • • •• •• •• •• • • •• • • • • • • • • 
~~~mm~~~0~mm00m~mmm0m~0mm~mmmmm0mmmrmv~mm 

>'! :::: -"..:: ~.:: ;..::: ... -.: <: ..-:: .-::: .-::: <:: ~ 1-:1 ~ 1-:1 Vl Vl Q 0 ~: :c.; ~ ~ :.::: :..:: ' ... ~ :.< '....:; ~ :...:; :.:: ;:;:: ::t: ::r:: ::r: ::r:: ~ ~ c;") r.-J ITj

M~Mnn~H~on»~on<n~~~oo~rmnnnn~n~~~~on>H~<
~HM~O.~~~r~~H~Ono~~~~~~~x<mo>~~nn~~CHH~~>
~M~n~nm~>~~0~~C cN~~~n~H~H~~r~n~>~~~~~HH~
~ HH~>~n n~c ~ 0 HCH~ <~~~ rr~~ H>

c

CALL
CALLERR
CALRTS
CKFCB
CSVC
OED
DNODE
EXPG
FAREA
FIB
GCURR
GENER
GETKN
GFRST
GNEXT
GNODE
GPREV
GTRD
IHEADC
IHEBRA
IHEBXT
IHECAL
IHEDCV
IHEDIF
IHEERRCD
IHEEXT
IHEFCB
IHEFCIB n
IHEFROH ~

IHEHDR "" "" [HEIOD ro
"-

IHELBE
IHELIB ~

IHEMOPP " ...
IHENAHE 0

'" IHEOPEN'!'
IHEPCH
IHEPRV
THE RET
IHERST
IHESAV
IHESCV
IHESDR
IHESYH
IHETLR
IHEZAP
INODE
INST
LIBDEF
HNODE
RCON
READDISK
READTER'I
RFIB
RTSSVC
SETDISK
SETERRCfJ
SETFLCA
SETSDV
SKPTK
SY:1DEF
TALLY
TGENER

Figure J-2. Compilation Module-Macro Cross Reference (page 2 of 2)

230

CALL
CALLERR
CALRTS
CKFCB
CSVC
DEll
DNOD,~

EXPG
FAREA
na
CCURR
GENER
GETKN
GFRST
GNEX'f
GNODE
GPRJ:V
GTIUl
I tit: A DC
1 HEIIRA
IHEBXT
IHECAL
IHEDCV
IH;:U1F
IH,:ERRCD
IIIEEXT
[HEFCS
IIiEFCIK
IHEFROM
IHEHDR
IHEIOD
IHELBE
IHELIB
IHEMOPP
IHENAME
[HEOPENT
IH;:PCH
THEI'RV
[HERE'!'
I HERS '!'
IlIESAV
IHESCV
I Hr:SlJR
IHESYM
IHE'fI.H
IHEZAP
INODE
INS'!'
LIBDI':F
MNOIJE
RCON
READ DISK
READ'l'ERM
RFIB
RTSSVC
SE1'DISK
SE'rERRCD
S IlTFI.C:A
SnSDV
SKPTK
SYMDEF
TALLY
TGENER

Ie

Figure J-3.

Calling Module.

Ie

Ie Ie

CALf.
CALLERR
CALR1'S
CKFcn
CSVC
DEll
DNODE
EXPG
FAREA
FIB
GCURR
GENER
GETKN
GFRS'I'
GNEX1'
GNODE
GPREV
GTRD
IHEADC
1HEBRA
IHEBXT
IHECAL
IREDCV
IHEDIF
IHEERRCD
IHEEXT
IHEFCB
IREFCIB
IHEFROM
IHEHDR
IHEIOD
IHELBE
IHELIB
IHEMOPP
IHENAME
1HEOPENT
1HEPeH
IHEPRV
IHERET
IUERST
IUESAV
IHESCV
IHESDR
IHESYM
IHETLR
IHEZAP
INODE
INST
LI BOEF
MNODE
ReON
READDISK
READ1'ERM
RFIB
RTSSVC
SETDISK
SETERRCD
SETFLCA
SETSDV
SKPTK
sniDEr
TALLY
TGENER

Runtime Module-Macro Cross Reference (page 1 of 3)

231

CALL
CALLERR
CALR'IS
CKFCB
CSVC
DED
DNIlDb
I.'\PG
,'AREA
nil
(:CllR~

GENLR
GETKN
eFRST
GNLXf
r.NOIH.
GPRI:V
C'I RiJ
IIIEAIJC
IHERRA
IIIEIlXT
I IlI:CAL
TIlI:DCV
I II ,; Ilf F
[III'ERRCIJ
IJlEEXT
[HE,'CIl
IIlEFCII!
IHEFRllM
(IlEIlDR
IIiEIOD
IHELBE
IIlELIR
IHEMOI'I'
IHENMII':
IHEOPENT
IHEPCII
I 1l,;PRV
[fIERln
IIII:J{S T
[IlESAV
III ,:SCV
1111'S IlR
IIlESYM
JIIETLR
IIII:ZAP
I NOll,;
INS'!'
L J 11111' I'
H~~I)DJ

RCtl:-J
RE.\IlDI SK
RI;AI>TER~I

RF! II
RTSSVC
SE'!'OISK
S 1,:n:RRCD
Sl',rFLCA
ShTSDV
SKI'TK
SY'IDEF
rAl.l.Y
TGI:NER

Calling Modules

;::;

2
~
~

Ie

~

~~~H~HHHHHHHHHHHHHHHHHHHHHHHHHHHHH_HHHH_ 

m~~~m~=~~~~=~=~~~~mm~~~=~mm~z~=~z==mmx~~ 
M~M~~~~M~~~~~~MMMMMMMMM~MMMMMMMMMMMMMMMM 
~~.w~.w~w.~~w~~~~~~~oO~~K~~~~~~~~~~~~~H~ 
~~HH~~~~~m~~>.ooCOOC~~NNNMMM~WAWOOMO~OOC 
t-' N :c Vl t"" }< ::c C"l '"'1 IJl r"' I-r:I tJ trJ N t>< :i! c.n t .. 'Tl M :;c1 N :E: c: (Il t .. t» N .. ~ en r- C H H :.< ." C1 t::1 tG 

I-i ~[TJ 
<: 

CALI. 
CALLERR 
CAI.RTS 
CKFCI! 
CSVC 
DI:I> 
DNOl>h 
EXPC; 
FAREA 
FTB 
GCURR 
GENER 
GWfKN 
G~'RST 

GN"XT 
GNOIJE 
GPREV 
GTRIl 
IHEAIJC 
IHEBRA 
IIlEBX'l' 
IHECAL 
[HEDCV 
IHEIJIF 
IHEERRCD 
IHEEXT 
IHEFCB 
IHFFCIB ('l 

lllEFROM ~ 

TH~;HDR 
i-" 
..... 

[HEIOD ro 
"-

[1IE1. BE :;: 
THELIB ~ 

IHEMOPP n ... 
IHENAME 0 

IHEOPENT 
m 

IIlEPCIl 
IHEI'RV 
[HERET 
[HERST 
[HESAV 
IHESCV 
I HESDR 
IHt:SYM 
Iur.rLR 
IHEZAP 
INOIlE 
INST 
I.! BDI.F 
HNODJ: 
RCON 
REAllDISK 
RI:Alll'I:R'1 
RFIB 
KISSVC 
SETIJISK 
Sl.l'I:RRCI) 
SE'l'FI.CA 
SU'SIlV 
SKPI'K 
SY'IIlJ:F 
rALI.Y 
TGEliEK 

Figure J-3. Runtime Module-Macro Cross Reference (Page 2 of 3) 

232 



CALL 
CALLERR 
CALRl'S 
CKFCB 
CSVC 
OED 
DNODE 
EXPG 
FAREA 
FIB 
GCURR 
GENER 
GETKN 
GFRST 
GNEXT 
GNODE 
GPREV 
GIRD 
IHEADe 
IHEBRA 
IHEBXT 
IHECAL 
IHEDCV 
IHEDIF 
IBEERRCD 
IBEEXT 
IBEFCB 
IHEFCIB 
IBEFROM 
IHEHDR 
IHEIOD 
IHELBE 
IHELIB 
lHEMUPP 
IHENAME 
IHEOPENT 
IHEPCH 
IHEPRV 
IHERET 
IHERST 
IHESAV 
lHESCV 
lHESDR 
IHESYM 
lHElLR 
IHEZAP 
INODE 
INST 
LlBDEF 
MNODE 
IICON 
READDISK 
READTERM 
RFIB 
Rl'SSVC 
SETDISK 
SETERRCD 
SETFLCA 
SETSDV 
SKPTK 
SYMDEF 
TALLY 
TGENER 

• 
•• •• 
• 

•• •• 
•• •• 

•• •• •• ... 
•• • 0 

•• •• 

Figure J-3. 

Calling Modules 

CALI. 
CALLERR· 
CALRTS 
CKFCB 
CSVC 
OED 
DNODE 
EXPG 
FAREA 
FIB 
GCURR 
GENER 
GETKN 
GFRST 
GNEXT 
GNODE 
GPREV 
GTRD 
IHEADC 

• • • • • •• •• IHEBRA 

•• •• • •• •• IHEBXT 
IHECAL 

•• •• •• • •• •• •• •• • •• IHEDCV 

•• IHE;DIF 

•• •• •• •• •• • • • • IHEERRCD 

• ••• •• • • • •• • •• IHEEXT 
IHEFCB 
IHEFCIB 
IHEFROM n 

II> •• •• •• •• ••• •• •• ••• •• •• •• • • •• •• • • •• IHEHDR .... .... 
IHEIOD II> 

IHELBE '" •• •• •• • • •• • • •• •• • • •• • • •• • • • • •• •• •• •• IHELIB :.: 
I\> 

IHEMOPP n 

IHENAME 
01 
0 

IHEOPENT .. 
IHEPCH 
IHEPRV 
IHERET 

•• •• •• •• ~ . •• • •• •• •• •• •• • •• • •• IHERST 

•• •• •• •• •• •• • •• •• •• ••• • •• IHESAV 

••• IHESCV 
IHESDR 
IHESYM 

•• •• •• •• •• • • •• • • •• •• •• • • •• • • • • •• •• •• IHETLR 

• IHEZAP 
INODE 
INST 
LIBDEF 
MNODE 
RCON 
READDISK 
READTERM 
RFIB 

•• •• •• •• •• •• •• •• •• •• •• • • •• •• • •• • •• RTSSVC 
SETDISK 
SETERRCD 
SETFLCA 
SETSDV 
SKPTK 
SYMDEF 
TALLY 
TGENER 

Runtilne .. Module-Macro Cross Reference (paqe 3. of 3) 

233 



MODULE-MODULE CROSS REFERENCE 

CALL/360-0S PL/I compiler modules are discussed in detail in Section 
3 of this manual. For each module, other routines called by the module 
are listed under WRoutines Calledw • This interrelationship of modules 
is summarized in Figure J-'. 
In Figure J-4, names are given exactly as they appear in program coding. 
That is, names which do not follow the prescribed naming conventions 
(begin with $) are i'dentified. 

234 



Figure J-4. Compilation Module-Module Cross Reference (Page 1 of 6) 

235 



Figure J-4. Compilation Module-Module Cross Reference (page 2 of 6) 

236 



Figure J-4. Compilation Module-Module Cross Reference (Page 3 of 6) 

237 



Figure J-4. Compilation Module-Module Cross Reference (Page 4 of 6) 

238 







READER'S COMMENT FORM 

CALL/360-QS PL/I GY20-0570-1 

Systems Manual 

Please comment on the usefulness and readability of this publication, suggest additions and 
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of mM. If you wish a reply, be sure to include your name and address. 

COMMENTS 

fold fold 

fold fold 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 
FOLD ON TWO LINES, STAPLE AND MAIL. 



GY20-0570-1 

YOUR COMMENTS PLEASE ••• 

Your comments on the other side of this form will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material. 

Please note that requests for copies of publications and for assistance in utilizing your IBM 

system should be directed to your IBM representative or the IBM branch office serving your 
locality. 

fold fold 
......................................................................................................................... 

Attention: Technical Publications 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ••. 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS, N. Y. 

....................................................................................................................... : 

fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.IOSOI 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International) 

fold 

o » 
r 
r 

§ 
~ 
"11 
r ..... 

!R 
~ 
CD 
3 ... 



GV20-0570-1 ' 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, New York 10601 
(USA only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(tntemationaI) 


