Application Program

CALL/360-0S
PL/I System Manual — Volume IV

Program Number 360A-CX-45X

The CALL/360-0S PL/I compiler (to be used with
the CALL/360-0S system on an IBM System/360
Model 50 or higher) is described in the four
volumes of this publication. The publication
is addressed to system programmers and customer
engineers who require a detailed knowledge

of the compiler. It contains a general overview
of the compiler and detailed information on

the compiler and runtime routines and macros
that perform required functions. Additional
information required to understand CALL/360-

0S PL/I compiler operations is provided in
several appendices. The appendices appear

in this volume. They cover the following
subjects:

Compiler conventions and data layout
Compiler tables and lists

Compiler support macros

Runtime support macros

Object code storage layout

Support services for language processors
CALL/360-0S PL/I compiler maintenance
Diagnostic messages

Maximum size of source program

Reference listings

Form No. GY20-0570-1

Terminal Equivalence

Terminals which are equivalent to those explicitly supported may also
function satisfactorily. The customer is responsible for establishing
equivalency. IBM assumes no responsibility for the impact that any
changes to the IBM-supplied products or programs may have on such
terminals.

Second Edition (January 1971)

This edition, GY20-0570-1, is a major revision obsoleting GY20-0570-1.
It applies to Version 1, Modification Level 1, of CALL/360-0S and to
all subsequent versions and modifications until otherwise indicated
in new editions or Technical Newsletters.

Technical changes to text are indicated by vertical lines in the left
margin. A revised illustration is indicated by the symbol e to the
left of the caption. Page numbers in reference lists in ‘Appendix J
have been changed to reflect accurately the pages in the manual where
the routines are discussed. Figure J-4, a module-module cross
reference, has been added to this appendix.

Changes are continually made to the information herein. Therefore,
before using this publication, consult the latest System/360 SRL
Newsletter (GN20-0360) for the editions that are applicable and current.

Copies of this and other IBM publications can be obtained through IBM
branch offices. A form has been provided at the back of this
publication for readers' comments. If the form has been removed,
address comments to: IBM Corporation, Technical Publications
Department, 112 East Post Road, White Plains, New York 10601.

() Copyright International Business Machines Corporation 1970, 1971

CONTENTS

Appendix A - Compiler Conventions and Data
Naming and USage . « « « o « =« @ o « o « =
Registers. ¢ « o« ¢ o o o o o @ = o « = «
SUbroutinesS. « « « ¢ o o o o o o « o o
Register SAVe~Areas. . « « « « « « « « w
Compiler-Wide Variables. .
Compiler Tables and Lists.
Symbolic Organization. . . « « <« ¢« « ¢ o o
Runtime Routine Structure. . .
Compiler Variables .
C-Area . « « o« « «
P-Area « « « <« < =«
G-Area . . « « o

e e e e

. ¢ .
* 0 . .
.
.
. . . .

Appendix B - Compiler Tables and Lists . .

General. . . . « ¢ « o & - e o o o o e
Dictionary Attribute Llst (A List) . . .
Block Information Table (B Table). . . .
Constant Table (C Table)
Line Number Table (D Table).
Dictionary Hash Table (H Table).
Initialization Table (I Table)
Dope Vector List (J List).
Library Load Table (L Table)
Symbolic Instruction Table (M Table) .
Dictionary Name List (N List).
Operation Code Table (O Table)
Program Structure Table (P Table). . .
Subscript Substitution Table (Q Table)
Register Table (R Table)
Temporary Storage Table (S Table). . . .
Token Table (T Table). . . .
Expression Stack (V Table) .
Operator Stack (X Table) . .
Operand Stack (Y Table). . .
Triad Table (Z Table). . . .
Dope Vector Table. « <« « o« ¢ o « ¢ o o« @
ENDFILE Table. «
Entry Name Declaration List.
On-Unit Parameter List
Routine Entry Name Processed Table . . .

. L] L] . .
.
.
.

[] s 0 . L]
.

Appendix C - Compiler Support Macros . . .
Table Handling MacroS. . « « « « « o « « =
Expandable Tables. . . . <« . < . « « . .
Lists. « .« <« « . . . e« o o o o o o
Delete Entry Macro (DNODE) e o = o o + o
Free Area Macro (FAREA). . . . - .
Current Entry Locator Macro (GCURR). - .
Pointer to First Node Macro (GFRST). . .
Get Next Entry Macro (GNEXT)
Get Node Macro (GNODE) . . . e e e
Get Previous Entry Macro (GPREV) « e o =
Insert Entry Macro (INODE)
Establish Pointer Macro (MNODE).
Other Macros e o v o o o
Subroutine Call Macro (CALL) e o e o o
SVC Interface Macro (CSVC) « « .
DED MacroO (DED). o « « « o « « = . o
Expression Processor Call Macro (EXPG)
Forward Internal Branch Macro (FIB). .
Error Interface Macro (GENER).
Get Token Macro (GETKN).
Generate Triad Macro (GTRD). «

o & o o o

Layout.

e e e e

. . . . s o
.
.
L]

.
¢ s .

* o 8 0
s ¢ o o o
L] . . .
e & o 0

é

¢ 0 . . . ¢ o . . [} .

. . . .

@ & 0 ¢ 0o o ¢ 0o o s

s 0 8 L]

e ¢ o b

.

.

o & & s 0 0

e 0 0§ e

e s o o o

6 o o 8 8

s o o o

e 8 8 0 ¢ o 0 4 o

. ¢ 0 . . o o . . .

.

L] e o LI

.

.

. s 0 . . . s o 8 .

OOV UVNWWNNNN

Symbolic Instruction Table Macro (INST).

Adcon Generation Macro (RCON).

Resolve Forward Internal Branch Trlad Macro (RFIB)
Skip Token Macro (SKPTK) . . ¢« « « &« & o & « &
Symbol Definition Macro (SYMDEF)

Tally Macro (TALLY).

Entokening and GENER Interface Macro (TGENER).

Appendix D — Runtime Support Macros.

General. « « o« « « o o «
Naming Conventions . . « « « «

-

Storage Requirements and Library

Data Representation.
The Library Work Space
Relocatable Work Area (LWSP) .

-

Non-Relocatable Work Area (IWS).

Registers and Offsets.
Library Support Macros . .
call Exrror Macro (CALLERR}
CALL/360-0S Macro (CALRTS)
Check FCB Macro (CKFCB). . . .

e e
- e
- e

Address Constants Macro (IHEADC)

Branch Macro (IBEBRA). . . .
BAA Extern Macro (IHEBXT). .
Call Macro (IHECAL).
Double Cover Macro (IHEDCV).
Difference Macro (IHEDIF). .
ERRCD Macro (IHEERRCD) . . .

o & s 0+ s

Initialize File Control Block Mac
Save FCB Pointers Macro (IHEFCI

Link Routine Macro (IHEFROM) .
"External Macro (IHEEXT). . . .
Header Macro (IHEHDR).
I/0 Interface Macro (IHEIOD) .
Standard Offsets Macro (IHELBE)
Library Macro (IHELIB)

Library Work Space Macro (IHELWS)

MOPP Macro (IHEMOPP)
Name Macro (IHENAME) . . .
Oopen Test Macro (IHEOPENT)
Patch Macro (IHEPCH) . . .
Return Macro (IHERET).
Restore Macro (IHERST)
Save Macro (IHESAV). .
Single Cover Macreo (IHESCV}
SDR Macro (IHESDRY

Symbol Macro (IHESYM). . .

Trailer Macro (IHETER) . .

Zap Macro (IHEZAPY

e e
e e
-« e

s 0 4 8 0 8 0 e

L T T T T TR S S S S |

Library Defimnition Macro (LIBDEF)

Read bisk Macro (READDISK) . .
Read Term Macro (READTERMY .

Uniform ¥nterface for SW Macro (RTSS

Set Disk Macro (SETDISKY . .

ac

® W o 0

B)

a8 8 8 ¢ ¢ o s s s

-

-

Set Error Code Macro (SETERRCD).
Set File Controls Macro (SETFLCA).
Set Dope Vector Macroa (SETSDV) . .

e o o

¢ o e

-
- e
- e
Ad
-
-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
ro
e o
- N
e e
e e
s e
e e
e o
. o
- e
- e
e e
- @
e e
e e
. e
- -
. e
- e
- e
- e
* =
o e
-
-
- -
-
-

ooonaoolaiacoooq&

-~

Appendix E — Object Code Storage Layout.

Object Code. « v« v ¢ o« « « o «
Symbol Table

e o o o e

- o o

-

-

Object Code Address~Line Number Table.

Static and Constants Storage . .
Data Element Descriptor (DED).
The P Byte « . v« « ¢« o « « «
The Q Byt€ « o« « o = o « «
Format Element Descriptor (FED)
Dope Vectors o« o« « o o« o o = «

-

¢ s 0 s

[2 I N N I]

e e
- e
- -

€ess
- e
e o

- -
e e
. -
- -
- .
o o
e« e
- e
. e
- e
-
e e
- e
e o
IHE
.« o
- e
« e
- e
e a
e e
. e
e e
- -
e
- e
« e
- e
e e
- e
- e
- e
- .
e e
- -
-«
- e
- e

vC}
- -
. =
- e
- -

LR R T N R S S)

s}

e e
e e
e e
e e e o =
¢ e e e o
e e o o o
Constants
e o s e =
e e e e =
« ® e e o
e @ e e o
e & @ e e
e e e e =
® e ¢ e e
e e e o =
o e e e e
e o e e o
e« e o o
« ®© e o o
« ® e e e
e ®© o e o
« e e e e
e« ® o o e
CB) . . .
e e e e o
e e - e« e
- e o e e
° e e o e
- e e e e
e © e * e
e e e e e
e o e - =
- e e o e
e« ® e e @
e e e e e
e ®© e e e
- o e e e
e ®o © e e
e« e e o e
¢« @ o @ e
e o e ° e
> ®e @ e e
*« & e o -
¢« @ o e e
e ®© ©o o e
e o ®o o e
« o o e e
* e o & e
¢ o & e «
e o e e
¢« o e o =
© o o © e
®e & e e e
e * e & e
e e & e o
e e e e o
e e e o o
e @ o e e
e e e e e
* @ e o =
e e o e e
e © e e

‘

LI S S S S Y Y T T T T R S N S N N Y Y SR T S S S T S SR S SN SN Y S SN N SN SN S S SR TR RN SR NN S TN S S 'Y

e 6 02 & s 0 s

e F 0 0o 0 o

S & & & 2 8 0 b 0 0 8 4 0+ 0 4 4 T 4 & 5 8 b 0 0 02 0 s 0 s s 0 N ed

e 8 & &6 o & 0 F s 0

e 8 0§ s

e & 0 & 8 & 8 0 02 0 8 0

o & 0 & 6 4+ & 8 & 8 i 6 0 0 8 0

2 9 5 & & 8 8 0 2 0 F 0 0 s 80

o 9 & @ 82 B d s a

@ o 6 8 d o

L I T T N D T R T T TR RN T N N T SR TN SR S SR I Y RN D D R TR Y T T DAY TR R Y SR R R Y R Y N R K T R N T R)

¢ 06 & & 0 5 s s 4 0

R

L] . & 0 . . L] . . [L] L) e & 0 . L] .

e o L] [] [] LI) [} . L]

T R I R

& 4 8 & 8 8 & 0 s 0 8 6 8 & 0§ 8 9 & b s i 9 8o

O & & & & & 8 o s @ 8 e 2 4 4 s 2o

¢ 5 0 & & o & s o o

LI] (] 8 L] [] L[] L] [] L] L) L I L] L[] L] [[

O R S S N S S SN N)

[. [] [] LN) e [] . @ LI | [) [] (] L] . [L] ¢ 0 . L] . .

e o . e & .

o o & s 8 4 4 8 0 9 0 0

e o o o s » a & 9

. ’ L] . e o e« o o 0 (] . e 3 a . . L]] s o 0

156

String Dope Vector (SDV)

Array Dope Vector (ADV). . . <« o ¢« o &« « o o« &
String Array Dope Vector (SADV). . . . « .« . .
Address Constant AY@A. . « « o« « o « o o = o o o o
Multi-File Interface . . « o « o o o o o o o' o o =
Ccommunications AYea. . « « « « « =« « = o o = o
Static and Constants Area. . . . « <« « ¢ o « «
FCIB Offsets and FCIB's for SYSIN and SYSPRINT
FCIB's for Disk Files. . . . ¢« « ¢ &« &« o o o .
Adcon Area (Fixed-Length Portion).
Common Data Specification Portion of FCB . . .
Block AACON AT€A « « « o o o = « = o o s o o o o o
On-Unit AACON AYEA . « « o o o o « = o = o o o o =
Library. « o« o ¢« o o o o o o o o o o o o o a o o o
Static Array and String Storage. . . . <« ¢ < < o .
Dynamic Storage Areas and ON-Conditions.
EXampPleS o ¢ o« o« o o o o o o o o a s o 2 o o o o
Data AAAresSSing. « « « o o o o o « o o o o o o o o

e o & 6 ¢ 0 & 6 b 2 06 & s 3 s s 0 0

Appendix F - Support Services for Language Processors.

Compiler/Executive Interactions. o e e e
Storage Allocation
Initial Register Settings.
User Work Area
User Terminal Table.
Addressing
I/0 Processing . . .

Terminal I/0 . . .
Disk I/0
Interrupt Handling . . .
Swap-Inhibited Situations.
End of Compilation

Detailed Format Descriptions
Communications Area.
UTT Data Available to Language
Data File Table.
Output Buffer Format
Format of Date Information . . .

Supervisor Call (SVC) Instruction.

. L] [] [® . . L[] (] L]

.
-
-
-
-
-
-
-
-
3
.
-
.
.

e & o o 8 o 2 o o o s

YOCessor

® & 0 8 2 0 s 8 0 s s 4 0 0 b
® 4 2 s ¢ 8 & 0 8 0 8 & 8 & 8 s 4 »
e 6 8 2 6 s & 0 0 s s 8 s 8 4

L R T T S Y Y Y Y Y Y S N R S Y

o s o 8 [N s o 0 s s s & 0 & b e s 8

-
-
-
- -

Appendix G - CALL/360-0S PL/I Compiler Maintenance
Module StOrage « « « o« « o « « o « @

Update and Assembly. . « « o« ¢ ¢ « o « o o o o o «
Link EQit. © ¢ ¢ ¢ o o o ¢ o o o o @« 4 o o o o o =
CALL/360-0S PL/I Member Name€S. . . « « « « o « « «
Compilation Member Name€sS . . « « « o« « « « o «
Runtime Member Names « « . .« .
Appendix H — Diagnostic Messages . . . « « « « « «

Compilation Error MesSsages . . . -« « o « « « « « «
Execution EXror MESSageS . « « « « « « « « « « o

Appendix I - Maximum Size of Source Program.

Storage Required at Input of Program
Storage Required to Compile Program.
Storage Required to Execute Program. . . . « . . .
EXQMPleS ¢« ¢ o« o ¢ o o e o e o o o o o o o o o « «

Example 1. . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o @

Example 2. o v ¢ ¢ ¢ o o o o e o o o o s o o o

Example 3. . ¢ ¢ o ¢ o« o o o o o o o s o « s o =
Appendix J - Reference Listings.
CALL/360-0S PL/I Compiler Subroutines.
CALL/360-0S PL/I Runtime Library . . . « « « « . .
Macro-Macro Cross Reference. «
Module-Macro Cross Reference « ¢« « « « . .
Module-Module Cross Reference «

] [] ¢ 0 . e L] [. ¢ 0 . ¢ . [] []

[] . 4 ¢ 0 . e« 0 .

¢ 4 o 0 8 s

.8 8 8 & @ & 5 & 2 8 8 8 0 8 s s 0

o o 3 6 8 o 5 8 0 0 8 0 & 2 @ 6 2 0 e 0

s o 8 8 8 8 @

. [] . LI .

s o o & o F & 0 0 8 4 & s 0 s 0 s

. [) L] o L]

. [] s 8 [a] . . . [.

O 8 8 8 8 8 & ¥ 6 B & 06 0 s 8 s @ s 0

. L] . [] [] L .

. . . 0 .« . . e o L[] é L] . ¢ o L] .

* 8 s 0 [. . L s . . . L[]

[L] . L] e« o O

L] . . s & s .

L[] . [[[. T 0 . L [] . .

¢ o L . s 0 . [s 0 L[] . s . . s &

e 6 o s o

® & 8 o 0 s s .

[] . s 8 .

156
157
159
159
162

162
162
163
164
165
167
168
170
170
170
173
176

178
179
179
179
180
181
181
181
181
182
183
183
184
184
184
186
187
189
190
190

194
194
194
195
196
196
196

198

© 198

202

206
206
206
206
207
207
208
208

209
209
215
227
228
234

FIGURES

Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure

E-19.

E-20.
E"21-

E-22.
E-23.

E-24,
E-25.
E-26.

F-1.
F-2.

J-1.
J-2.
J-3.
J-u.

Dictionary Attribute Entry--First 13 Bytes.
Dictionary Attribute Entry for Nonlabel Variable. .
Dictionary Attribute Entry for Label Variable . . .
Dictionary Attribute Entry for statement-Label

Constant - - - - - - - - - - - - - - - .. -
Dictionary Attrlbute Entry for Entry Name
Dictionary Attribute Entry for Built-In Function
Entry Name. . . . « s o e o o e o o o = »
Dictionary Attrlbute Entry for Filename
Dictionary Attribute Entry for a Constant . . .
Operand Values for Symbolic Instruction Table .
Format of Register Table. ¢« o « « « &
Format of Token Table . .« « ¢« ¢ ¢ ¢ ¢ ¢ @ o o «

.] . . . L]
» [] [. . .

CALL/360-0S PL/I Address Constants Area . . .
CALL/360-0S PL/I Data Representation. . « « « « <« &
LIBDEF CallS. « v ¢ ¢« o o« « o « o « s o o =

Symbol Table Entry. . . . o o o o
Object Code Address-Line Number Entry
Static and Constants Area
DED FOrmats « « ¢ « o ¢ e o @« © o o o
Definition of DED Flag Field (KaDDFF)
SDV FOrmat. « « « o o o o ¢ o o o o =
ADV FOrmat. « « o« o « o o o ¢ =« o o @
SADV Format e o o o
Layout of leed—Length Portlon of Adcon
communications AY€a . . « « « « o o o © © =
FCIB Offsets and FCIB's for SYSIN and SYSPRINT
FCIB Format for Disk Files. . .« . « ¢« ¢« « « .
FCB Format in Fixed Adcon Area.
Common Data Specification Portion of FCB for Data
Input and Non-Array Element Data Output
Common Data Specification Portion of FCB for Array
Element Data Output - o o o e =
Common Data Specification Portion of FCB for
Initialize Output with SKIP Option. o« o
Common Data Specification Portion of FCB for LlSt
I/70 ¢ ¢ o o o o o o o o o o o o o o @ . . .« .
Common Data Specification Portion of FCB for Non-
Complex Edit I/0. . . . ¢ o ¢« <« o « & . « o o o
Common Data Specification Portion of FCB for
Complex EAit I/0. . ¢ ¢ ¢ ¢ ¢« @ ¢ ¢ o o o o« o o « «
Format of Block Adcon Area (BAA). s e e
Format of On-Unit Adcon Area (Except for ON
ENDFILE). - e o o o o ® o o e o e ° a e o e °
Format of ON ENDFILE Adcon Area . . . « o o o o
Layout of DSA for Internal Procedure and Begin
Blocks. . . e e s e e w o @
Layout of DSA for On—Units (Except ON ENDFILE).
Layout of DSA for ON ENDFILE On-Units
General Purpose Register Assignment . . « . . .«

1 d
H
o
o

s o o &

Format of CALL/360-0S Source Lines. . « « « « «
Referencing Data File TableS. . ¢« ¢« = o o « « « « &

Macro-Macro Cross Reference
Compilation Module-Macro Cross Reference.
Runtime Module-Macro Cross Reference. . .
Compilation Module-Module Cross Reference

e & o & 2 2 s s e & o e e o o s o o

o o o

166
166

167
168

169
170

172
173
173
176

180
188

227
229

235

APPENDIX A - COMPILER CONVENTIONS AND DATA LAYOUT

NAMING AND USAGE

The CALL/360-0S PL/I compiler is coded in 0S/360 Level-F Assembler
Language. To help clarify the relocation properties of the coding
with respect to the special requirements of the CALL/360-0S operating
environment, and to help make the organization of the compiler more
apparent for maintenance purposes, certain symbolic naming conventions
and usages have been observed throughout the coding as described below.

REGISTERS

The CALL/360-0S environment requires programs operating within it to
be organized such that one group of registers can be relocated by the
base address of the compiler and another group by the base address

of the user's area, while a third group remains non-relocatable.

The nomenclature Gn has been used to indicate the non-relocatable
(general) registers; Pn, the registers addressing the user's (program)
area; and Cn, the registers addressing the compiler. General register
zero is exempt from relocation by the system, and so remains a G-
register, even though its physical assignment places it in the P-
register group. The registers thus available to the compiler are:

G0, G2, G3, G4, G5, G6, and G7 (machine registers 0 and 2 - 7)
c1l, c2, and C3 (registers 8 - 10)
PO, P1, P2, P3, P4, and P5 (registers 11 - 1, excluding 0)

In addition to distinguishing the registers by relocation property,
certain compiler-wide register assignments are maintained.

Cl is used for subroutine linkages, both as entry point and return
register.

C3 is used by most subroutines as the principal code cover register.
A few large routines use C2 as a second cover register.

P2 permanently addresses the first 4096 bytes of the compiler's static
working storage. This is the area containing all register save-areas,
compiler-wide flags, switches, counters, etc., and adcons for all
subroutines. PO addresses the second 4096 bytes of this area.

P1 permanently addresses the base within the user's area at which
object code will be generated. Since the contents of the compiler's
working tables must be non-relocatable, wherever a true address would
normally be used as a pointer, a non-relocatable displacement relative
to the base contained in register P1 is used instead.

Registers PO, P1l, and P2 are never used for any other purpose by any
subroutine. Across subroutine calls, the called routine is responsible
for savinG all G- and C-registers except GO, and all P-registers except
P5. The floating-point registers are assigned mnemonics of F1, F2,

F3, and F4; they are non-relocatable and, in view of the rarity of
their use, are considered volatile across subroutine calls.

SUBROUTINES

Subroutine entry points are named $xxxxx, where xxxxx is a mnemonically
suggestive symbol. The adcon which addresses the entry point is named
axxxxx. Each subroutine has been assigned a two-letter prefix for

use in creating local labels. Thus, the END Generator, for example,
uses a prefix of ED, the Instruction Assembler, VN, and so on. Labels
on instructions within the subroutine are constructed according to

the format ppnnn, where pp is the routine's two-letter prefix, and

nnn is a sequence number assigned as closely as possible in ascending
order throughout the routine.

Local working storage (used only by the routine in question) is
identified with symbols of the form ppxxxx, where pp again is the
routine's two-letter prefix, and xxxx is a mnemonic.

Note: The CALL/360-0S PL/I compile-time subroutine entry point names
follow the naming conventions stated above and applied in this
manual. However, there are some exceptions in the member names
assigned to certain routines when stored in CALL/360-0S PL/I
system libraries. For the reader's convenience, the exceptions
are noted in Figure J-4, which is a cross reference of
compilation module calls to other compilation modules.

REGISTER SAVE-AREAS

Each subroutine must have three register save-areas. Each class of
registers must be saved in storage which has the matching relocation
attribute. Register save-areas are named:

WSCxx
WSPxx
WSGxx

where the C, P, and G indicate the relocation class, and xx is the
two-letter prefix used by the subroutine which saves the registers.

COMPILER-WIDE VARIABLES

Communication between subroutines sometimes involves the use of flags,
switches, counters, and other discrete variables which are independent
of the main data tables used by the compiler. These variables are
located in the compiler's fixed-size working storage area. This area
is permanently addressed by registers PO and P2 and is subdivided by
relocation property into three parts: a C-area, a P-area, and a G-area,
corresponding to the relocation properties of the general registers.
Within these three areas, symbolic names are used mnemonically, with
first characters of § for ordinary variables and @ for adcons.
(Register save-area names begin with W$; see above.) Except for the
register save-areas, each compiler-wide variable is individually
described under "Compiler Variables.®"

COMPILER TABLES AND LISTS
The principal data used during compilation are kept in tables and
lists. (See Appendix B.) To facilitate the naming of all pertinent

fields in these tables, the following symbolic conventions are used.

Most tables and lists are assigned single-letter prefixes, p.

Each field within such a table or list is named p$xxxx where xxxx is
from one to seven characters mnemonically suggestive of the field's
use.

Absolute values associated with a table or field are named paxxxx.
Logical masks used to extract data from a field are p#xxxx.

Thus, for example, the dictionary attribute list has a prefix of A;
the data definition information field in this list is named ASDEF;

the mask used to extract type information is named A#DEFS; and the
value code used to identify a contextual declaration is named A@CTXT.

SYMBOLIC ORGANIZATION

The subroutines which comprise the compiler are individually assembled.
They are link-edited together to form two phases. The first phase
contains all routines necessary to support compilation and code-
generation. The second phase contains the compiler routines necessary
to complete the initialization and initiation of the object code,
together with a control copy of all object-program library support
routines. The object-time library routines needed by a given
compilation are effectively "loaded"” by the second phase of the
compiler. Communication of table structure and working storage layouts
for the compiler is achieved through use of the Symbol Definition macro
(SYMDEF), which is one of a set of assembler-language macros written
especially to support the CALL/360-0S PL/I compiler (see Appendix C).

RUNTIME ROUTINE STRUCTURE

Because of the nature of the Runtime Library Loader routine ($HRTLL),

all CALL/360-0S PL/I library runtime routines are structured according
to certain conventions. The basic layout of a routine is illustrated

below.

1 2 3 4 Byte

Word 1 LENGTH | EXT | ENT

C(LENGTH) bytes
of machine-language
code

External Reference
or Jump Table

Length is C(EXT)
halfwords.

Entry Point Table

Length is C(ENT)
fullwoxds.

20 0) mmemgmem e 0§) . — ——— 0§ o o o c— ———
B3 0 ¢ mm e EnEEas |)) R e et g §) e e m e amn wn ad

Values for Fields:

LENGTH Size of the module, excluding the first word and
the two trailing tables.

EXT Number of halfword entries in the external reference
(jump) table.

ENT Number of fullword entries in the entry point table.
External One entry is made to this table for each unique
Reference or external reference in the library runtime routine.
Jump Table The entry contains the library load number of the

referenced routine. If more than one entry point of
a routine is referenced, a unique entry is made for
each entry point. (See "Library Search ($NLSIB)"

in Volume I for more information about library

load numbers.)

Entry Point Each word of the entry point table has the following
Table format: i

1 2 3 4 Byte

r
Word 1 | NUMB I DISP |
e em — -]

NUMB - Library load number for the entry point.

DISP - Displacement of that entry point from the
beginning of the object code for this library
runtime routine.

Values for these fields are usually generated by means of the Header
macro (IHEHDR) and Trailer macro (IHETLR). The external reference
and entry point tables are referenced when a library runtime routine
is loaded, but they are not actually loaded with the routine.

COMPILER VARIABLES

All compiler-wide variables other than register save-areas are described
in this subsection. These variables are located in the C-area, P-area,
and G-area of the compiler's fixed-size working storage.

C-AREA

Variables in the C-area are relocated using the base address of the
compiler. They are as follows:

M$ Address of the symbolic instruction table (in module
$TCODE) .

(o1 Address of the operation code table (in module $TCODE).

$XSAVE Save—-area for registers C1l and C2, used as required

by the compiler support macros and the expandable-table
support subroutines ($WBACK, SWSTEP, SWCTCT, SWEXP).

$SBASE Address of first byte of current phase of compiler.

P-AREA

Variables in the P-area are relocated using the base address of the
user's (program) area. They are as follows:

$COMAD Contains address of communications area.

$PSCRT Pair of scratch words, used mainly by entokening phase
in forming offset within user area.

$SCNX Scan-index, contains address of next character in source
program following last semicolon entokened.

$TSA Address of first word boundary within source program.
Used as starting address of dope vector list for
compilation wrap-up.

W$PNS2 Used by SNCONS as save-area for register P5.

G-AREA
Variables in the G-area are not relocatable. They are as follows:

SACODE Pointer to next available byte in object code area.
High byte contains object code base identification (QACODE).

SASC Offset to next available byte in static and constants
area. High byte contains static and constants base
identification (aAsC). Initialized to allow beginning
of static and constants area to be free for use as DSA
of external procedure.

SASCA Offset to next available byte in static array and string
storage. High byte contains the base code for this area (3ASCA).

SAADCN Offset to next available byte in adcon storage. High
byte contains the base code for this area (aAADCN).
Initialized past preallocated part of adcon storage.

$DISPL Contains displacement from variable tables address
(register P1) to fixed tables address (register P2).
Used in creating pointers to items in fixed tables area.

3css Compound Statement Switch - indicates whether a unit
of a compound statement needs to be completed
immediately. This switch is checked just before
generating triads for each statement. Switch has four settings:

8CSSOF No units to complete.
8CSSON Must complete an on-unit.
aCSSTN Must complete a THEN-unit.
8CSSES Must complete an ELSE-unit.

SNIDSI Identifier Search Indicator - used by Locate Variable
routine ($FVAR) to determine type of identifier desired.
Settings:

=0 Variable

=4 Filename

= 8 Label constant or variable

= 12 Entry name

= 255 Return from $FVAR if file created.

$CHRFG

$CLBLS

$EOS

$CCF

STAREA

SLLINE

$CLPTR

$ABTBL

Building Character String Switch - used by Increment
Scan Index routine (SASIDX) to determine whether source
line being crossed is in middle of a character string.
Settings:

=0 Not in middle of string.
0 In middle of string.

Label Switch - indicates whether a statement label needs
to be processed. Settings:

=0 No label on statement
=1 Statement label

= 2 Begin label

=3 Entry label

=4

Format label

End of Source Switch - used by entokening phase to
determine whether all of the source program has
previously been used. Settings:

=0 Not all used.
0 All used.

Compilation Completed Flag - used by Increment Scan
Index routine ($ASIDX) to determine whether to generate
new line tokens when crossing line boundaries. Settings:

=0 Compilation not completed; build
tokens.

0 Compilation completed; do not build
tokens.

-

Translate Area - used by entokening phase to contain
translate and test tables.

Last Line - used by Controller ($CNT) and entokening
routines. Contains new line token for last source line
for which a 1line number table entry was made.

Label Pointer - if SCLBLS # 0, $CLPTR contains pointer
to statement label token.

Attribute Table - used in declaration processing to
indicate attributes which the Attribute Node Creation
routine ($ANCRE) should use in creating an attribute
entry.

Each attribute table consists of an attribute bit string
and pointers for the various attributes. If an attribute
was specified without its list, a corresponding bit

is set in the attribute bit string, but the pointer

for the attribute is zero.

The format of the attribute table is shown below.

[
N
w
&

3
()

— — w— -y

Word 1 Attribute Bit String
2 Pointer to Environment List
{ -
31 Pointer to Returns List

4 { Pointer to String Length List

-—
0 oy s . T D S D - - S S D A A W T — — — — — — g e &)

51 Pointer to Entry List
|
|
I
6 | Pointer to Precision List
[
{ -
7 | Pointer to Dimension List
|
t
SAPARM Identifier a Parameter - used in declaration processing

to indicate whether Attribute Node Creation routine
(SANCRE) should allocate storage for identifier (see
also SAPRMA). Settings:

=0 Not parameter; allocate storage.
0 Parameter; do not allocate storage.
SAPRMA Parameter Address - used in declaration processing to

contain the address of a parameter being declared (see
also SAPARM).

$BIOTY I/0 Type - used in I/0 processing to indicate the type
of I/0 being compiled. Settings:
Output Edit = 4
List = 8
Data = 12
Input Edit = 16
List = 20
Data = not set
$CBKNO Current Block Number - contains the identification

number of the block currently being compiled. The
identification number for the external procedure block
is 32 (X*20'), and other blocks are numbered ascendingly
as encountered.

$CBKCT Current Block Count - contains the count of the number
of blocks encountered in the source program plus 31.
Used to assign identification numbers to new blocks.

$DCNME Declaration Name - during declaration processing,
contains a pointer to name entry for the identifier
being declared.

$DSKIP Skip Pointer - during I/0 processing, contains pointer
to the SKIP token, if present; otherwise zero.

SDFILE File Pointer - during I/0 processing, contains pointer
to the FILE token, if present; otherwise zero (location
is 4DSKIP+4).

SDDATA Data List Pointer - during I/0 processing, contains
pointer to the LIST, DATA, or EDIT token, if present;
otherwise zero (location is S$DFILE+4).

$DOBY DO BY Clause - during loop processing, contains the
type (second byte), precision (third byte), and scale
(fourth byte) of BY clause expression. Second word
contains result of expression processor evaluation of
BY clause (unless constant provided, in which case a
constant token is present).

$DOLHS DO Left Hand Side - during loop processing, contains,
in same format as $DOBY, indication of iteration variable
for loop.

SDORHS DO Right Hand Side - during loop processing, contains,

in same format as $DOBY, indication of initial setting
for loop interation variable.

$DOTO DO TO Clause - during loop processing, contains, in
same format as $DOBY, indication of TO value for loop.

SEXPCT Expansion Count - during array expression expansions,
contains the number of DO-loops generated for the
expansion.

SDOSWT DO Switch - indicates which of the TO and BY clauses

are present for the loop. Setting:

Bit 0: =0 No TO clause ($DOTO not set.)
=1 TO clause ($DOTO set.)
Bit 1: =0 No BY clause (SDOBY not set.)
=1 BY clause (S$SDOBY set.)
$FEDC FED a Constant - indicates if a format element descriptor
(FED) being considered is all constant. Setting:
=0 All constant.
#0 Not all constant.
SFED FED - during Format Item routine ($FORI), contains
skeletal FED. Upon exit from $FORI, contains address
of FED. °
SFEDNM FED Number - contains number of expressions in FED

currently being processed.

$FCB . FCB - during GET and PUT processing, contains pointer
to attribute entry for the file.

$FORAD Format Address - during format processing, contains
the address of a pair of words in the adcon area used
by the format.

S$PTR

$APARAM

$DIO

$DDO
$DSP
$DBS

$ERROR

$FCBAD

8FBKNO

$GABK

$GABU
$HECVD

LSLIBX

SLIBBC
SLTEND

aLOAD

$MFCB
$MLWS

MTIO

SPARAM

aPSIZE

$PSIZE
$TDUMP
$LNTA
$CAA

SAAA

10

Pointer to Token Table - used to communicate a token
table pointer between routines.

Previous parameter identification.

Not used.

Not used.

Not used.

Not used.

Not used.

Parameter list for Error Message Editor ($XERR); first
word contains a pointer to error token, next three words
are optional pointers to token or N list entries, and
last two words contain a character string literal

parameter.

Fixed adcon address of FCB common area in a form for
code generation (0C000010).

Value for first block number.

Blank character. Must immediately precede $GABU. Used
to clear $GABU print area.

Print buffer for most messages from compiler to terminal.
Not used.

Displacement from the start of the adcon area to the
first available adcon following the fixed adcon area.

Base code for library, base code = QLIBBC.
Length, in bytes, of the library load table.

Displacement from start of fixed tables to library load
table.

Mask for FCB control bytes.
Displacement from code to address modifiable LWS.

Value of displacement from communications area to
terminal I/0 buffer.

Address of parameter table shared by library routines
referenced by a fixed adcon.

Number of words in initially allocated library parameter
table.

Number of words in current library parameter table.
Not used.

Displacement from code to line number table.
Displacement from code to static and constants area.

Displacement from code to adcon area.

SRTLA
SLWSA

$SASA

$I/0BA
$DSAA

EP1

EP2

SVIN
§K1 to $K8
$CTON

$EXPNS

SLASTL

STSOFF

SNPVF

$OBJLC

$NLINE

$NC1W

SNC2W

$NCUW

$NCMSC

$NCPXP

Displacement from code to library area.
Displacement from code to LWS area.

Displacement from code to static array and string storage
area.

Displacement from code to disk I/O buffer area.
Displacement from code to DSA area.

Number of bytes that must be between end of code and
variable tables at end of the entokening of a statement
in order not to cause request for more space.

Number of bytes that must be between end of code and
variable tables at beginning of code generation for
a statement in order not to cause request for more
space.

Not used.
Not used.
Count of current nesting of- on-units.

Information passed from Expression Processor Controller
(SNEXP) to Expander routine (see SEXPND). This is a
two-word entry. The first word contains the comma count
and the second, the attribute pointer.

Last line number for which a line number table (D table)
entry was made.

Pair of words used by the entokening phase to calculate
offset for new line tokens and offsets within line.

Complex Pseudo-Variable Flag - used by Expression
Processor Controller ($NEXP) during an assign to a
complex pseudo-variable. If the value is 12, the left
side of the assignment symbol is the complex pseudo-
variable.

Equated to $ACODE, the location counter associated with
the code.

New Line Flag. If 1, a call to a library routine has
previously been encountered in the current source line.

Head of the chain of constant table entries whose length
is 4 bytes.

Head of the chain of constant table entries whose length
is 8 bytes.

Head of the chain of constant table entries whose length
is 16 bytes.

Head of the chain of constant table entries whose length
is not 4, 8, or 16 bytes.

Used by Expression Processor Controller as save-area
for arqguments and right side of complex pseudo-variable.

11

$NDIG Used by Constant Conversion routine ($NCVT) to form
a floating-point value of a digit of a source constant.
The word is preset with an exponent of two and the value
zero.

$PTO Origin of the table of operands which are parameters
to the symbolic instruction passed by Triad Code
Generator ($TCODE) to the Instruction Assembler ($VINSA).
There are six entries in this data parameter table,
each with the following format:

1 2 3 4 Byte

r =1

Word 1 | $PTRN |
| |

24 SPADD }

I ---1

3 |$PSGN |SPREG | $PLNG |

L 3

SPTKN The operand token. The first byte is the type byte

and the other three bytes contain a quantity which is
dependent upon the type. These operand tokens are
identical to the operands of a triad.

SPADD Core address of the operand. The first byte indicates
the relocation base and the other three bytes the offset
to the operand within the data area.

| $PsGN Contains five flags:
X *01* ®#PSGN If 1, the operand is positive in
core.
X 10" If 1, the operand is address of

FCIB for TITLE move.

X "20° #PRS If 1, the operand is negative in
. g
a register.

X '40° #PRAM If 1, the operand is a parameter
of a subprogram.

X *80° If 1, the operand requires a dummy
argument.
SPREG Register address of the operand. Contains the pointer

to the register table entry which contains the operand.

SPLNG If the operand is a string, this field contains the
length in bytes.

$NROPN Operand area of the Expression Processor Controller

which contains the attributes and description of the
right operand. The format is:

12

Word 1

$NROTM

$NROL
$NROPR
$NROSF

SNRTKN,
$NROPI, and
$NRPTR

$NLOPN

SNRSLT

$NO

$NXOP

$NYOP

$PRIOR

SNAARG

$NTCUR

$NCCUR

r

| $NROL |
| | $NROTM |- - - = = = = = =

| | | $NROPR | $NROSF |
{ |
| $NRTKN |
| - -1
| $NROPI | $NRPTR |
L J

Right Operand Type Mask. The bits have the same meaning
as the dictionary attribute data description field.

Right operand length if it is a string.
Right operand precision if its type is arithmetic.
Right operand scale factor if its type is arithmetic.

These fields are set from the operand stack and have
the same meaning.

Operand area of the Expression Processor Controller
which contains the attributes and description of the
left operand. The format is the same as for the right
operand. The fields are $NLOTM, $NLOL, $NLOPR, $NLOSF,
$NLTKN, $NLOPI, and $NLPTR.

Operand area of the Expression Processor Controller
which contains the attributes and description of the
result of an operation. The format is the same as for
the right operand. The fields are S$NRTM, $NRL, $SNRPR,
$NRSF, $NTKN, $NRPI, and $NPTR.

Maps an area with the same format as the right operand
area. The fields are SNOTM, NOL, SNOPR, $NOSF, $NOTKN,
$NOPI, and $NOPTR.

An operand area with the same format as the right operand
area. Used in building triads which do not come directly
from the operator and operand tokens of the stacks.

The second and third words of this area are referenced
by the labels $NXTKN and SNXPTR.

An operand area with the same format as the right operand
area. Used in building triads which do not come directly
from the operator and operand tokens of the stacks.

The second and third words of this area are referenced

by the labels $NYTKN and S$NYPTR; the type mask is
referenced using the label $NYTM.

Contains the priority of the operator pending addition
to the operator stack.

Contains the count of the number of arguments in an
argument list which are arrays. Used in processing
calls to the array built-in function POLY.

The number of the last triad generated.

The number of the last triad for which code has been
generated.

13

$NBIF

$NFLAG

SNXFLG

SNEXPT

$TCD

$TCA

SEXA

W4GTC2

SHEADS

ASHEAD

HSHEAD

N$HEAD

J$HEAD

$TAILS

14

Built-In Function Flag. If 0, function not built-in;
if 1, built-in function and convert all arguments to
the result type; if 2, built-in function and arguments
require special conversion.

Fixed-Point Scale Flag. If 1, scale value to result
scale converting to result type.

Communication Flag - used by several routines for various
purposes.

Indicates type of expression result required by a
statement processor. Has the same meaning as dictionary
attribute description field except that if the byte

is all ones, any type is satisfactory.

Used to dump the fixed table area on entrance to Triad
Code Generator ($TCODE).

Used to dump the fixed table area on each triad processed
by $TCODE.

Used to dump the fixed table area on each token processed
by SNEXP.

Save-area for the data parameter ($PTO) table in $TCODE
when dope vectors must be generated for string arguments
of built-in functions.

A table of pointers to the beginning-of-segment control
word of the first segment of each expandable table
maintained by the compiler. The individual table
pointers are as follows:

Node Code
o4 - - - CSHEAD Constant table
16 - - - DSHEAD Line number table
i4 - - - ISHEAD Initialization table
06 - - - BSHEAD Block information table
OE - - - ESHEAD Error message table
13 - - - LSHEAD Library load table
07 - - - PSHEAD Program structure table
18 - - - QS$HEAD Subscript substitution table
09 - - - SSHEAD Temporary storage table
08 - - - TSHEAD Token table
19 - - - VSHEAD Expression stack
01 - - - X$HEAD Operator stack
02 - - - YSHEAD Operand stack
03 - - - ZS$HEAD Triad table

Pointer to the beginning of the dictionary attribute
list (A list).

Pointer to the beginning of the dictionary hash table
(H table).

Pointer to the beginning of the dictionary name list
(N list).

Pointer to the beginning of the supplementary
initialization list (J list).

A table of pointers to the end-of-segment control word
of the last currently active segment of each expandable

ASTAIL

H$TAIL

N$TAIL

JSTAIL

$ACTVS

$CURRS

SEGLST

FREPTR

RSTBL

R$FX
R$FL
R$AD
R$ND

R$SY

table maintained by the compiler. The individual table
pointers have names of the format P$TAIL, and match
the sequence given above for SHEADS.

Pointer to the last dictionary attribute node.

Pointer to the last dictionary hash table node (not
used).

Pointer to the last dictionary name list node.

Pointer to the last node in the supplementary initiali-
zation list.

A table of pointers to the currently available data
space position within each expandable table segment
maintained by the compiler. The individual pointers
have names of the format PS$SACTV and match the sequence
given above for $HEADS.

A table of two-word pointers associated with each
expandable table in the compiler. These pointers support
the non-destructive GPREV macro and the GNEXT macro.

(See Appendix C.) The first word of the pair points

to the beginning-of-segment control word for the given
segment of the table currently being scanned. The
second word points to the end of the data space within
the given segment of the table currently being scanned.
Together, the pointers serve as limits in each direction
for the segment scanning macros. The individual pointers
have names of the form PSCURR and match the sequence
given above for $SHEADS.

A pointer to the beginning-of-segment control word of
the first free expandable-table segment. If no segments
are free, SEGLST contains zero.

A pointer to the first available (unused) word in the
compiler's variable data space. Data space is always
acquired by decrementing FREPTR, since working storage
grows from higher-numbered storage locations toward
lower—-numbered ones.

Pointer to the base of the register table (R table).

Pointer to the fixed-point-register portion of the
register table.

Pointer to the floating-point-register portion of the
register table.

Pointer to the adcon register portion of the register
table.

Pointer to the end of the linear portion of the register
table.

Pointer to the head of the register table synonym list.
This list contains unassigned synonym entries. Assigned
synonyms are detached from this list and attached to

the appropriate register table entry. Twenty synonym
entries are available. If all are in use, R$SY contains
zero.

15

$TEMPL

R$ARRC

$VSART

$VSCRT

$VLBLT

SVRAMT

SVRTYP

SVLPAK

$VLINE

$SEVCO

$SEVCT

$VLS

$TEMPN

$TITLE
$FILEON
$NESTK
$DBUF

$LOAD

16

Temporary storage level count. Initially zero, it is
increased by one at the beginning of a DO-loop and is
decreased by one at the end.

Reference count for adcon register assignment. Initially
zero, it is increased by one each time an adcon register
is assigned. It effects a rotational assignment of

the available adcon registers.

Table of symbolic adcon register assignments used by
the Instruction Assembler routine ($VINSA).

Table of symbolic computational register assignments
used by $VINSA.

Table of local symbolic labels used by generated instruc-
tion sequences used by $VINSA.

Flag for register assignment: 0 indicates single
register; nonzero, double. Used in calling the
Computational Register Assignment routine ($VASGC).

Flag for register type assignment: a high-order bit

of 0 indicates a floating-point register; 1, a fixed-
point register. Used in calling $VASGC.
Doubleword-aligned work area. Used principally by Error
Message Editor (S$XERR) for unpacking and conversion
operations.

Print-line work area. Used by $XERR to format output
lines.

Highest severity code encountered by $XERR during
processing of error messages. Initially zero.

Total number of error messages produced during
compilation. Initially zero.

Not used.

Level number to be assigned to temporary storage
associated with the saving of registers around a DO~
loop. S$TEMPN is set by the "begin DO" pseudo-operation
in Instruction Assembler (S$VINSA) and used by the
Temporary Storage Management routine ($VGTMP).

Dummy title attribute entry (6 words long).

On-unit flag and FCIB pointer.

Address of top of expression stack.

Number of disk buffers needed.

Library load table.

APPENDIX B - COMPILER TABLES AND LISTS

GENERAL

With a few exceptions, fixed-size tables are either located within

the fixed area of working storage or assembled as part of a compiler
module. Some of the tables within the fixed area of working storage
are discussed under “"Compiler Variables" in Appendix A. Tables within
a compiler module are unmodifiable as well as fixed. The symbol table
that is within the Triad Code Generator routine ($TCODE) is discussed
in Appendix E.

Items within the variable portion of working storage, with a few
exceptions, are either expandable tables or lists. Lists (by
definition) have a variable number of entries. For a discussion of
expandable tables and lists, see "Table Handling Macros" in Appendix
C. Unless otherwise specified, the tables discussed below are located
in the variable portion of working storage.

17

TITLE: DICTIONARY ATTRIBUTE LIST (A LIST)

Purpose and Usage

The dictionary attribute entry is created for each definition of an
identifier in the source program. The attribute entry contains all
of the information needed by the compiler about the identifier.

Usage Description

Each dictionary name entry points to a list (possibly null) of attribute
entries. Contained in this attribute list are all definitions of the
identifier made in blocks still in the process of translation. The
attribute entries are stored as a list, with the last entry pointing

to the name entry. If there is more than one attribute for an
identifier, the attribute entries are ordered inversely by block number.

Attribute entries are also created to describe the parameter
requirements for entry names. Each entry name attribute entry points
to a list of attribute entries specifying parameter requirements.

An attribute entry for an entry name also contains a pointer to the
RETURNS attributes used when the entry name is referenced. -

Each block information table (B table) entry for a procedure block
points to the RETURNS attributes for the block as defined in the
PROCEDURE statement.

Entry Description - General

There are five general types of attribute entries. Thirteen bytes
of each entry are standardized. Figure B-1 shows the first 13 bytes
of every attribute entry other than a constant or built-in function
name entry. (See succeeding discussion for details.)

1 2 3 4 Byte
r 1
| Node Type | Pointer to Next Attribute |
Word 1 | ASNODE | ASNEXT |
| =Aa | |
| + - |
| Identifier| Block | Last Block | Definition |
2 | Type | Declared | Used | Information |
| ASTYPE | ASBDCL | ASLBLK i ASDEF I
| + - |
| Address | |
3 | Base Code | Address Offset i
| ASBASE | ASDISP |
| + |
| Data { |
4 | Descriptor|
| ASDD | |
|- +
|

- am wm e w e e e e em em W en e e e wm e wr wm e wm e e

Figure B-1. Dictionary Attribute Entry--First 13 Bytes

The first four bytes of this area contain the standard node type and
pointer to next attribute entry. The ASTYPE byte contains a code
indicating the type of identifier. The values of this code are:

AJSTRG 4 Denotes character-string variable.
AQREAL 6 Denotes a real variable.

AQCPLX 7 Denotes a complex variable.

AQLBLV 8 Denotes a label variable,

AQLBLC 9 Denotes a statement-label constant.
AQENTR 10 Denotes an entry name.

AJFILE 11 Denotes a filename.

The block number of the block in which the identifier was declared
is contained in ASBDCL. The ASLBLK byte contains the block number
of the last block in which the identifier was used.

Definition information is contained in ASDEF. The values assumed on
the bases of logical tests are given below.

e o -

p ‘ 1
| Mask and Bit | Value | =0 | =1 |
|- ¥ + T |
| A#PARM | 0 |not parameter|parameter |
| } T |
| A#SCOP | 1 {internal |title move |
| | | |external scope|
| s fommmmommmem - PR l
| A#TEMP | 2 |not temporary|temporary |
| | |storage i

+ + -4 |

A#USED | 3 |not used |used i

$ } B |

| A#SET | 4 |not set |set |
| 5 |static |automatic |

$. |

| | 6 |=00 tentative|=11 explicit |
| A#DEFS | { (A#TENT) | (AHEXPL) |
] 7 |=10 implicit |=01 contextual|

| l (A#IMPL) | (A#CTXT) |

L ————————————————— ¥

AS$BASE and ASDISP contain the address of the identifier. The first
byte of this word (A$BASE) contains a code describing the base address
to be used, and the last three bytes (ASDISP) contain the offset from
this base. The code numbers and the corresponding bases are as follows:

Code No. Base
4 Object
8 Static
A Array
C Adcon

The ASDD byte contains a data descriptor. This descriptor is defined
separately for each attribute entry type.

Nonlabel Variable Entry

Entries for nonlabel variables are either five or six words in length
depending on whether the variable is dimensioned. ASREG contains a
register number indicating whether the identifier is in a register
and, if so, which one. ASREGS contains the sign. A$DIMS contains
the number of dimensions. ASLNG has the length of a string, if known.
The precision and scale of arithmetic variables are in ASPREC and
AS$SCAL.

If the identifier is dimensioned, a sixth word contains dimension bound
codes in ASDC and a pointer to the dope vector as contained in the

19

compiler”s static storage initialization list in A$DVP. Bit 0 of the
dimension code is 0 if all bounds of the array are constants and 1
if not. Bits 1 to 7 indicate whether both bounds for the first to
seventh dimensions, respectively, are constants. If the ith bit is
zero, then both bounds are constant for the ith dimension (1 < i < 7).

If the nonlabel variable is a parameter, the address field contains

the address of an adcon where the address of the variable or its dope
vector is stored. If the variable is not a parameter, then it contains
the address of the variable or its dope vector directly.

If the attribute entry is for an array, then A$DD contains a special
descriptor X'08' and the array element descriptor is placed in A$DDE.

Figure B-2 shows the layout of an attribute entry for a nonlabel
variable.

1 2 3 4 Byte

r - -

| ASNODE | Pointer to Next Attribute |
Word 1 =Aa | ASNEXT |
} -- |

Identifier | Block | Last Block [Definition |

2 | Type | Declared | Used jInformation|
| AS$TYPE | A$BDCI. | ASLBLK | ASDEF |
4= - -

Address | Address Offset |

3 Base Code | ASDISP |
| ASBASE | |

| + |

| Data i | Register | Number of |

4 | Descriptor| Register | Sign |Dimensions |
| A$DD | ASREG i ASREGS | ASDIMS |

| -+ I |

| | Array | Length |

| | Element | ASLNG }

5 | Not Used | Descriptor |-—————=--——m—ceeem——————— 1
| | AS$DDE | ASPREC | ASSCAL |

| i | Precision | Scale |

: $ DI — [

| Dimension | Pointer to Dope Vector |

6 | Codes | ASDVP |
!. AS$DC | J|

Figure B-2. Dictionary Attribute Entry for Nonlabel Variable

Data Descriptor for Nonlabel Variable:

If string = '01000100°* B.
If arithmetic:

bit 0 (Arithmetic) A#ARTH
(Variable) A#VRBL
(Non—-error) A#ERR
Short
Long } AH#LONG
(Ordinary) A#SPCL
(Non-String Type)A#STRG
Fixed}
Float A#FLT
Real
Complex} AH#CPLX

WK
1]

~ aoaneE

L | T | I | A 1

ROoROOCOROORR

20 i

Label Variable Entry

Each label variable entry is either four or six words long depending
on whether it is dimensioned. The entry's structure is similar to

that of a nonlabel variable. ASDIMS contains the number of dimensions.

If the variable is an array, the sixth word contains dimension bound
codes and a pointer to the dope vector. Both of these are the same
as described for nonlabel variables.

If the label variable is a parameter, the address field contains the
address of an adcon where the address of the variable or its dope
vector is stored. If the variable is not a parameter, it contains
the address of the variable or its dope vector directly.

Figure B-3 shows the layout of an attribute entry for a label variable.

1 2 3 4 Byte

r - 1
|Node Type | Pointer to Next Attribute |
Word 1 | ASNODE | ASNEXT |
| =Aad { |

[4 e — |
|Identifier| Block |ILast Block |Definition |

2 | Type | Declared | Used | Information|
| ASTYPE | ASBDCL | ASLBLK | ASDEF |

| + - - |

| Address | |

3 | Base Code| Address Offset i
| ASBASE | ASDISP |

| + - - |

I Data | Register | Register | Number of |

4 |Descriptor| ASREG | Sign |Dimensions |
| ASDD | | ASREGS | ASDIMS |

| + - - - |

| | Array | |

5 | Not Used | Element | Not Used i
| | ASDDE | |
I-- + - --- |
|Dimension | |

6 | Codes | Pointer to Dope Vector |
i ASDC | ASDVP i

L — - ¥

Figure B-3. Dictionary Attribute Entry for Label Variable

Data Descriptor for Label Variable = '00001000* B.

Statement-Label Constant Entry

Each statement-label constant entry is four words long. In addition
to the standard information, it contains a one-byte field ASLC
containing label codes. These codes and the layout of the entry are
shown in Figure B-4.

21

1 2 3 4 Byte

-

{ Node Type | Pointer to Next Attribute |
Word 1 | ASNODE | ASNEXT 1
| =ha | |

| + |

| Identifier]| Block {Last Block |Definition |

2 | Type | Declared | Used |Information|
| ASTYPE | ASBDCL | ASLBLK | ASDEF |
=== |

; Address | |

3 | Base Code | Address Offset i
| ASBASE | ASDISP }

+ |

= Data | Register | Register | Label |

4 | Descriptor] ASREG | Sign | cCodes i
| ASDD | '] ASREGS | ASLc i

L 3

Figure B-4. Dictionary Attribute Entry for Statement-Label Constant

Label Codes:
Bit 0 & 1: 00 Statement label A#STMT

01 Begin label A#BEG

11 Format label A#FRMT

nwn

Data Descriptor for Statement-Label Constant = *00001001° B.

The address word contains the address of the statement if the definition
is explicit or the address of last usage if the definition is tentative.

Entry Name Entry

Each attribute entry for an entry name is five words long. ASRETP
contains a pointer to an attribute node that contains the RETURNS
attributes of the entry name. These RETURNS attributes are those used
when the entry name is referenced and not those used inside the
procedure on the occurrence of a RETURN statement. (These attributes
are in the block information table.)

A#PRMS contains the number of parameters for the entry name and A$PRMP
contains a pointer to the attribute list for the parameters. This
list contains one entry for each parameter. If the data descriptor

in one of these attribute entries is zero, the attributes for the
associated parameter are unspecified. If the attributes for the
parameters are not specified, the list is null.

If the entry name is itself a parameter, the address contains the
address of an adcon where the address of the block adcon area (BAA)
is stored. If the entry nawme is not a parameter, it contains the
address of the BAA.)

The format for an entry name attribute node is given in Figure B-5.

22

1 2 3 4 Byte
r - 1
| Node Type | Pointer to Next Attribute |
Word 1 | ASNODE | ASNEXT |
| =ha | |
+ |
Identifier| Block [|Last Block|Definition |
2 | Type | Declared] Used jInformation|
ASTYPE | ASBDCL | ASLBLK | ASDEF 1
+ |
| Address | |
3 Base Code | Address Of fset |
ASBASE | ASDISP |
[¥ -=====-]
| Data | Pointer to RETURNS |
4 | Descriptor| Attribute Code i
| AS$DD | " AS$RETP |
| + |
| Number of | |
5 | Parameters| Pointer to Parameters List |
| ASPRMS i AS$PRMP |
t - ——— ;|

Figure B-5. Dictionary Attribute Entry for Entry Name

Data Descriptor for Entry Name = '00001011*' B.

If the entry name is a built-in function, the address base code is

zero and the rest of word 3 and words 4 and 5 contain information
describing the function.

Built-In Function Entry Name Entry

Each attribute entry for a built-in function is five words long.

format of each entry is

shown in Figure B-6.

1 2 3 4
== - 1
| Node | Pointer to Next Attribute |
Word 1 | Type | |
| === === -=-1
| Identifier | Block | Last Block |Definition |
2 | Type | Declaredj] Used |Information|
l t oo |
| | Choice | |
3 0 | Type | Built-In Number |
| === oo oo oo omoeo o |
| Data | Result | Result | In-Line |
4 | Descriptor | Type | Size | Number |
I-- == -+ mmmmmmmom-
| Number | Function| Argument | l
5 | of | Type | Conversion | Flags |
| Parameters | | Type |

Byte

The

Figure B-6. Dictionary Attribute Entry for Built-In Function Entry Name

The first two words are identical in meaning to those of a non-built-

in function entry name entry.

values given below.

Other entries are initialized to the

23

BICT | BIN |BIRT | BIRS | BINO| prMs | BiFT |, PMAC | pipe
Entry Name |Choice |Built-In |Result Rgsult In-Line| Number | Function| '?,'::;:f:" Flags
Type Number | Type Size Number|Parameters] Type ‘(Hex) (Hex)
FLOAT
EXP 0 EXS0 0 0 1 0 02 24
LOG 0 LNSO 0 0 1 0 02 24
LOG10 0 LGSO 0o ! 0 1 0 02 A4
LOG2 0 L2S0 0 0 I 0 02 A4
ATAN 12 ATSO 0 0 1 0 02 34
TAN 0 TNSO 0 0 1 0 02 24
SIN 0 SNSO 0 0 I 0 02 24
COos 0 CSS0o 0 0 1 0 02 24
TANH 0 | THSO 0 0 1 0 02 24
ERF 0 EFSO 0 0 1 0 02 A4
SQRT 0 SQso 0 0 1 0 02 24
COSH 0 CHSO0 0 0 1 0 02 24
SINH 0 SHSO 0 0 I 0 02 24
ATANH 0 AHSO 0 0 1 0 02 24
STRING
CHAR 8 16 20 4 1 FF 30
B SUBSTR 8 | C'srR 16 20 721 2] 1 FF | 38
ARRAY
GENERIC SUM 0 SMSO 20 0 1 2 FF 00
PROD 0 PDSO 20 0 1 2 FF 00
POLY 0 YGSS 20 0 2 2 00 00
LBOUND 8 4 0 8 2 2 FF 00
HBOUND 8 4 0 12 2 2 FF 00
DIM 8 4 0 16 2 2| FF| o0
MISCEL-
LANEOUS DATE 8 C'pr’ 16 24 80 [¢] 1 FF 00
TIME 8 | C'TE 16 28 84| 0 1 FF | 00
ARITHMETIC
GENERIC ABS 4 ABTO 0 4 20 1 0 00 20
MAX 0 MXS0 0 8 255 0 00 A0
MIN 0 MNSO 0 8 255 0 00 A0
MOD 8 0 12 24 2 0 00 A0
SIGN 8 4 0 28 1 0 00 A0
FLOOR 8 0 16 32 1 0 00 A0
CEIL 8 0 16 36 1 0 00 A0
TRUNC 8 0 16 40 1 .0 00 AOD
COMPLEX 8 12 8 48 2 0 FE 28
REAL 8 8 0 56 1 0 01 28
IMAG 8 8 0 64 1 0 01 2R
CONJG 8 IMZ 0 44 1 -(l« 0l . 20]

Choice Type (ASBICT) indicates how to choose the specific routine entry
point for a call. This field has the following meanings and values:

0 No in-line expansions; choose routine by highest argument type.
4 In-line expansions for real arguments; choose complex routine
by highest argument type.
8 All argqument types expanded in-line.
12 cChoose entry point by number of arguments and argument type
if arithmetic.

Built-In Number (ASBIN) is the library basic entry point number of

the function. All numbers of a built-in function are ordered so that
it is possible to compute the number associated with all entry points
of the function from the value of this field. An entry point number
is selected on the basis of the attribute(s) of the argument(s). It
is used to create an entry in the library load table. The real, float,
single precision entry point is given if the routine is arithmetic.

Note: Entries for ASBIN are expressed as four-character names. This
appears to conflict with the "Built-In Number®™ classification.

24

In the Phase 1 Initializer ($CCONT), a group of four characters
is used as the last part of a symbol which is equated to the
built-in number. The first two characters of the symbol are
Lda. Thus, for EXP (the first built-in function listed above),
the code to generate its built-in number is:

DC AL2(LaEXS0)

Result Type (ASBIRT) indicates the means of determining the attributes
of the returns value. This field has the following values and meanings:

0 Result is the highest type of the arguments.
4 Result is a fixed integer.
8 Result is real and highest argument type.
12 Result is complex and highest argument type.
16 Result is a character string.
20 Result is float and highest argument type.

Result Size (ASBIRS) indicates the means of determining the precision
or length of the returns values. This field has the following values
and meanings:

0 Length or precision is determined by argument.
4 Fixed complex precision is (MIN(9,p+1),q).
8 Fixed precision is (MIN(9,MAX(all p-q))+MAX(all q)) ,MAX(all q).
12 Fixed precision is (MIN(9,r-s+MAX(q,s)),MAX(q,s))
16 Fixed precision is (MIN(9,MAX(p-gq+1,1)),0).
20 SUBSTR or CHAR length.
24 Length is 6.
28 Length is 9.

In-Line Number (A$BINO) is the number identifying the built-in function.
The in-line number of the pseudo-variable of the same name is obtained
by adding four to this number. This field has the following values

and meanings:

4 CHAR (52) * COMPLEX pseudo-variable
8 LBOUND 56 REAL
12 HBOUND (60) * REAL pseudo-variable
16 DIM 64 IMAG
20 ABS (68) * IMAG pseudo-variable
24 MOD 72 SUBSTR
28 SIGN (76) % SUBSTR pseudo-variable
32 FLOOR 80 DATE
36 CEIL 84 TIME
40 TRUNC (88) * Arithmetic to string conversion
44 CONJG (92) * String to arithmetic conversion

48 COMPLEX
*Do not appear in an attribute entry but appear as triad operands.

Number of Parameters (A$PRMS) contains the number of parameters required
for a function reference. If an optional additional parameter is
possible, the count is for the minimum number of arguments. If the
number of arguments is variable (for example, MAX and MIN), this field
is set to its maximum value.

Function Type (AS$BIFT) indicates the general classification of the
function. The field has the following values and meanings:

0 Arithmetic
1 String
2 Array

25

Arqument Conversion Type (A$BIAC) indicates the conversion required
for the arguments. The field has the following values and meanings:

xX*'o0"* Convert to highest argument type.

X*02" Convert to highest argument type and float.

X*01* convert to highest argument type and convert to complex.
X'FE" convert to highest argument type and convert to real.
X"FF* Do not convert arguments.

Flags Field (ASBIFG) contains a series of one-bit flags with the
following meanings and settings:

Bit
A#CMPX 0 If 1, complex arguments are not allowed.
1 If 1, add scaling information as an argument.
A#ARG 2 If 1, array arqument causes array assign.
A#XARG 3 If 1, function may have optional extra argument.
A#PSEU 4 If 1, name may be a pseudo-variable.
A#AOK 5 If 1, function name may be an argument.

Filename Entry

Each filename attribute entry is four words long. ASFC contains a
file code that specifies the attributes of the file.

If the filename is a parameter, the address field contains an address
of an adcon that contains the address of the file control interface
block (FCIB) for the file. If the filename is not a parameter, then
the third word contains the address of the FCIB in the static and
constants area.

Figure B-7 shows the format of an attribute entry for a filename.

1 2 3 4 Byte

r ST TTTT TS T 1

| Node Type | |
Word 1 | ASNODE | Pointer to Next Attribute |
| =AQ | ASNEXT |

| 1 =====-|

| Identifier| Block |Last Block | Definition |

2 | Type | Declaredj| Used | Information]
| ASTYPE | ASBDCL | ASLBLK | ASDEF |

l mmmmmmmmmmmmm e |

| Address | |

3 | Base Code | Address Offset |
| AS$BASE | ASDISP |

[== ---- |

| Data | | File | |

4 | Descriptorj| Not | "Codes | Not |
| ASDD | Used | ASFC | Used |

L —— ————l

Figure B-7. Dictionary Attribute Entry for Filename

26

File Codes:

bits 0 § 1

([
(=]
o

|

SYSIN

01 - DISK INPUT
10 - SYSPRINT

11 - DISK OUTPUT

DISK INPUT
DISK OUTPUT
DISK ENVIRONMENT
NOT USED

- EXTERNAL

~ INTERNAL

- NON-PRINT

- PRINT

N

N oonesEwN

1

Somo

Data Descriptor for Filename = '00001100°' B.

Constant Attribute Entry

For each constant appearing in a source statement, a constant attribute
entry is created. This attribute entry contains all of the attributes
of the constant that can be implied from its EBCDIC form. The constant
attribute entries look like normal attribute entries in order to
simplify later processing. Constant attribute entries are stored in
the token table areas so their space can easily be released at the

end of usage.

Each constant attribute entry is six words long. The first five words
are exactly the same as for a normal attribute entry except that A$BDCL
and ASLBLK do not contain the block declared and used information.

If the converted constant has different attributes from the source
attributes (as in the case of compile-time conversions), the attributes
entries (ASDD, ASLNG, ASPREC, and A$SCAL) are modified accordingly.
However, a copy of the original attributes is retained in what is
normally the address word.

Since a constant is always undimensioned, the sixth word is used to
contain a pointer to the beginning of the source representation of

the constant and its length in bytes, if arithmetic. TIf the constant

is a string, the length in the source is not given since it can be
longer than 255 characters (for example, if the string contains embedded
quotes, each of which must be represented by two single quotes).

Figure B-8 shows the format of a constant attribute entry.

1 2 3 4 Byte

r === 1

| Node Type | |
Word 1 | ASNODE | Not Used |
| =ACd | i

| + |

| Identifier| |Definition |

2 | Type] Not Used |Information|
| ASTYPE | | ASDEF |

| + |

| I i Original ASLNG |

| Not | Original | - = = = = = = = = = - - |
3] Used | ASDD | Original | Original |
| i | ASPREC ASSCAL |

| + == e |

| Dpata | [[

4§ | Descriptor| Register 1} Not | Zero |
| ASDD | ASREG | Used i |

| === |

i | Length |

5 | Not Used ---—-—-——-——-- - - |
i | Precision | Scale |

| T mmmmmemmmommoemooes |

| Length | |

6 | of Saurce | Pointer to Source i
| A$SrRCL | ASSRCP |

L -—— - 1

Figure B-8. Dictionary Attribute Entry for a Constant

Data Descriptor: Same as for nonlabel variables, except bit 1=0.

28

TITLE: BLOCK INFORMATION TABLE (B TABLE)

Purpose and Usage

The block information table contains one entry for each unterminated
block. This table contains all block-related information.

Description

The block information table is maintained as an expandable table.
Each entry is eight words long.

The table contains one entry for each block still in the process of

compilation (including the external procedure). The table is treated
like a push-down list.

Entry Format

The layout of a block information table entry is shown below.

1 2 3) Byte

r 1
Word 1 | Node Type | Pointer to RETURNS Attributes |
| BSNODE i BSRETP |

| + |

| Block | Symbol | | Number of |

2 | Number | Table | | On-ENDFILEs |
| BSBLNR | Switch | | Received |

| { BS$STSW i | BSFILE |

| |

| Address of Adcon |

3 | Covering Symbol Table |
| BSSTA |

| -=1

| Address of BAA |

4 | BSBAA |
| |

| - -1

| Block | Amount of DSA Used]

5 | Number | BSDSAM |
S— |

| Pointer to Constant Table Entry |

6 | for DSA-Size |
| B$DSAS |

| -—= |

| Address of Last Prologue Link |

7 | BSLPLA |
| |

| - -- ===

i Address of Prologue Termination |

8 | BSPTA |
| |

| Address of On-Unit Parameter List |

9 | B$ON |
| |

L _— -_ -1

Values for Fields:

B$STSW Symbol Table Switch (Test with B#STSW.)
Bit 0: = 0 No symbol table needed.
= 1 Symbol table needed.

BSNODE For begin block, BBa = 8.
For procedure block, BPa = 4.

The first word of each entry contains a node type and a pointer to
the RETURNS attribute node for the block if it is a procedure. These
RETURNS attributes are those declared in the PROCEDURE statement.

If the block is a begin block, the last three bytes of the first word
are null.

The second word contains the block number of the block and a switch
determining whether to produce a symbol table for the block at the
end of the block. A count is also kept of the number of ON ENDFILEs
encountered within the block. If a symbol table is to be produced,
the third word contains the address of an adcon that is to contain
the address of the symbol table.

The fourth word contains the address of the BAA for the block.

In the fifth word is a count of the number of bytes in the DSA that

are assigned. This count is from the beginning of the DSA and includes
all of the bookkeeping bytes. The top byte of this word contains a
DSA address base code which is the block number.

The sixth word contains a pointer to a constant table entry that is
to be initialized to the size of the DSA. This initialization is
performed at the end of the block after the size of the DSA is known.
(This size does not include any space for arrays or strings. Space
for these is obtained separately.)

Words seven and eight are concerned with the chain of prologue
instructions running through the block. The seventh word contains
the address of the last branch in the chain. This branch still needs
to be resolved. The eighth word contains the address of the end of
prologue instructions. These instructions immediately precede the
first executable statement. At the end of the block the chain is
closed by resolving the last branch with the end of prologue address.

The ninth word contains an address for the on-unit parameter 1list.
Three words (two of which are subsequently used for the list) are
obtained when first encountering an ON ENDFILE statement within the
block. Additional groups of three words are obtained for any other
ON ENDFILE statements in the block. (See "On-Unit Parameter List"
in Appendix B.)

30

TITLE: CONSTANT TABLE (C TABLE)

Purpose and Usage

The constant table contains an entry for each constant required in
the object program. The arithmetic and all alphameric constants less
than 16 bytes which do not contain primes, or are split between lines,
are entered in their converted binary representation. The alphameric
constants not converted are entered as pointers to their appearance
in the source code.

Description

The constant table is maintained as an expandable table. The entries
of the table are linked together according to length into four lists
for searching; U bytes, 8 bytes, 16 bytes, and all others. The heads
of these lists are pointed to from $NC1lW, $NC2W, S$NCuUwW, and $NCMSC,
respectively.

Entry Format

The format of an entry containing a converted constant is shown below.
(The value of C$LNK does not equal 1.)

1 2 3 4 Byte

r]
Word 1 | C$REG | C$ADDR |
I + |

2 | cscnr | CS$LNK |
| -+ l
3| C$VAL1 |
| 1
41 C$VAL2 |
I--=-=----==--==-===-=--- |
5 C$VAL3 |
I---=-=--=-=--===-=-=-=-=-=-- 1
6 | C$VALY |
L et J

Values for Fields:

CSREG If nonzero, the register table entry which contains
the value of the constant.

CSADDR The offset in static storage to the value of the
constant.

CSCNT The number of bytes in the constant.

CSLNK Pointer to the next constant table entry in its search

list if nonzero. If zero, the entry is the last element
of the list.

C$VAL1 First four bytes of constant value.

CS$VAL2 Second four bytes of constant value if the value of
CSCNT is greater than 4.

31

CS$VAL3

CS$VALY

Third four bytes of constant value if the value of CS$CNT
is greater than 8.

Last four bytes of constant value if the value of C$CNT
is greater than 16.

The format of an entry containing a pointer to an unconverted constant
is shown below. (The value of CSLNK equals 1.)

Word 1

Values for

32

C$REG
CSADDR
CSCNT
CSLNK

C$SPTR

1 2 3 4 Byte
- o ‘z
| C$CNT } C3LNK I
! csore ,5

Fields:
Same as described above.
Same as described above.
Same as described above.
Always equal to one.

Pointer to the first byte of the constant in the source
program. B

TITLE: LINE NUMBER TABLE (D TABLE)

Purpose and Usage

The line number table is the input list to the Line Number Table
Processor ($HLNTP) and is used to generate the line number table, which
relates the instruction addresses to the source line numbers.

Description

This expandable table contains one entry for each line in the source
program. Entries are ordered by line number and machine address.

Entry Format
Each entry contains the following fields:

1. Pointer to the first character (in the source program area)
of the line number.

2, Object code address.

These entry fields are shown below:

1 2 3 4 Byte

r 1

[I i

- Word 1 | Pointer to First Character of |
| Line Number (D$LNP) i

| | l i |

| |
1 | | |

2 | Object Code Address (DSOCA) |

[| [| !

33

TITLE: DICTIONARY HASH TABLE (H TABLE)

Purpose and Usage

The dictionary hash table is the directory to the dictionary name lists
and is a fixed-length contiguous-entry table.

Note: In contrast to most tables in the variable area, this table
is not expandable.

Description

Each entry in the dictionary hash table is a fullword pointer to a
dictionary name list containing entries for all names that hash to
the same value. A hash table entry is located by assuming that the
first four characters of the name are an integer value and dividing
this value by the number of entries in the hash table. The remainder
thus obtained is then an index to the hash table entry.

Entry Format

The format of each entry in the dictionary hash table is shown below.

Pointer to a Dictionary Nam¢ List
\C W)
v

1 Word

34

TITLE: INITIALIZATION TABLE (I TABLE)

Purpose and Usage

The initialization table is generated by various routines in the
compiler as the program is being compiled. This table gives the Static
constants—-Adcon Loader routine ($HSCAL) the information for initializing
the static-constant and adcon areas.

Description

This is an expandable table having seven types of entries. The first
byte (ISNODE) is used to distinguish the entry type.

Entry Format
1. Immediate value node

1 2 3 4 Byte

Word 1 ISNODE ISASAD

2 ISDATA

where I$NODE is less than 20 and indicates the number of bytes
of data in ISDATA to go into constant storage. IS$ASAD is the
offset into constant storage.

2. Adcon initialization node

1 2 3 4 Byte

Word 1 1A | I$ASAD

-—— o o -

IS$DATA

P |
[P |

where ISASAD is the offset in the adcon area to place the adcon
indicated by I$DATA. This word contains a one-byte base code
and three-byte displacement.

35

3. SDV initialization node

1 2 3 4 Byte

r 1

| | |
Word 1 | 1sa | ISASAD |
| | |

| |

| |
2 | |
| |

| === ISDATA | mm————— |

| |
3] |
| |

L 4

where I$ASAD is offset in constant storage for the string dope
vector. If the first word of ISDATA is nonzero, the offset

to static arrays storage needs to be added to the rightmost
three bytes of the first word.

4. ADV/SADV initialization node

1 2 3 4 Byte
Word 1| ID@ - ISASAD ’
2 ISDATA
3 Dope Vector

~__,,—_,/"""_____”,,_—-__,,

where I$ASAD is offset in constant storage for the dope vector.
ISDATA is the length of the dope vector in bytes. The dope
vector starts at ISDATA+4.

5. BAA initialization node

1 2 3 4 Byte

r - 1

| ‘ | |
Word 1 | IBa | I$ASAD |
| | |

| |

| |

2 | |
| l
j———- ISDATA = m————— 1

| |
31 |
| |

L 3

where ISASAD is offset in the adcon area for the block adcon
area. The first word of ISDATA contains the address of the
block's entry point. The byte at I$DATA+4 contains the number
of parameters for the block.

36

6. Special SDV entry
1 2 3 4 Byte

-

' |
Word 1 Dva | I$ASAD

—— I$DATA ——--

N
P s SR e S Guun SHE SN SRS s WSS weee
e o G i S i S c— d— . s o)

where ISASAD is offset in constant storage for the dope vector.
The offset to static storage needs to be added to the rightmost
three bytes of the first word of IS$DATA.

7. Discarded entry

1 2 3 4 Byte

Word 1 X’ 28’ Not Used

2 ISDATA

Not Used
This is a dope vector entry that has been discarded and thus

needs no initialization. IS$DATA has the number of bytes in
the dope vector.

TITLE: DOPE VECTOR LIST (J LIST)

Purpose and Usage

The dope vector list (also called supplementary initialization list)
is generated by the Attribute Node Creation subroutine ($ANCRE) for
skeletal dope vectors that are too large to fit into an initialization
table (I table) segment. Compilation Wrap-Up Driver ($MCWU) places
the dope vector in static storage.

Description and Entry Format

The J list is stored as a true list; that is, the first word of each
entry in the list points to the next entry. Except for the extra link
word, an entry looks exactly the same as an ADV/SADV initialization
node in the I table.

1 ' 2 ' 3 4 Byte
Word | | JSNODE JSNEXT '
2 JSLOC (Same as ISASAD)
3 JSCNT (Same as ISDATA)
4 JSDATA (Dope Vector)

38

TITLE: LIBRARY LOAD TABLE (L TABLE)

Purpose and Usage

The library load table is used to record which library runtime routines
will be needed during execution of a program. Entries are made in

this table by the Library Search routine ($NLSIB). At wrap-up time,

the Runtime Library Loader routine ($HRTLL) uses this table to determine
which runtime routines must be loaded.

Description

The library load table is loaded into the fixed area of working storage.
At the start of compilation, this table is set to zeros. A number
which maps to a unique word in the library load table is associated
with each runtime library routine. If a particular library routine

is needed at object time, its word in the library load table is set

to point to a word in the adcon area. (See "Phase 2 Initializer
(SWCONT) "™ in Section 3, Volume I.) At runtime, this word in the adcon
area will contain the location of the library routine. ‘

Entry Format
The format of each entry in the library load table is shown below.

1 2 3 4 Byte

r 1
Word 1 | Adcon Displacement or Zero |
L 3

If nonzero, this word will contain a displacement from the start of
the adcon area. At runtime, the adcon location that is pointed to
will contain the location at which the library routine corresponding
to this entry has been loaded.

If zero, either loading of the routine which corresponds to this entry
has not been requested or no routine corresponds to this entry. (There
are more words in the library load table than there are runtime library
routines.)

39

TITLE: SYMBOLIC INSTRUCTION TABLE (M TABLE)

Purpose and Usage

The symbolic instruction table is used by the Triad Code Generator
(3TCODE) to communicate with the Instruction Assembler ($VINSA). The
number of instructions and the origin of the instruction sequence in
the symbolic instruction table is selected by $TCODE and then processed
by $VINSA. This instruction sequence does not provide for covering
of operand addresses. Instructions to provide cover are generated

by $VINSA. The instruction sequence may contain loads of registers
which are discarded by $VINSA if the operand is already in an
appropriate register. The instruction may be modified by S$VINSA to
select the instruction appropriate to the operand type (fixed, single
float, or double float) or to change from the RX to the RR form of
the instruction if the operand is in an appropriate register.

Description

The table is of fixed length and all entries contain preset values,
each representing a symbolic machine instruction or pseudo-instruction,
which are never modified by the compiler. The table is actually
assembled as part of the $TCODE module. The format of the symbolic
instruction table is as follows: -

1 9 13 17 25 33 37 41 49 56 Bit

| | |
INSTNO |TOP1 |TOP2 | VOP1 | VOP2 |TOP3 |TOP4 | VOP3 | VOP4
| | | | | | | |

e s e

Values for Fields:

INSTNO Instruction Number. This value, when multiplied by 2,
is used to index into the operation code table (O table) to
obtain the machine instruction code and the operation
characteristics mask.

TOP1 The TOP1 field value indicates the type of information

and contained in the VOP1 field. TOPl1l can assume any value from

VOP1 0 through 7. See Figure B-9 for corresponding value of
VoP1l field.

TOP2 The TOP2 field value indicates the type of information

and contained in the VOP2 field. TOP2 can assume any value

VOP2 from 0 through 7. See Figure B-9 for corresponding value
of vVOP2 field.

TOP3 The TOP3 field value indicates the type of information

and contained in the VOP3 field. TOP3 can assume a value of

VoP3 1, 2, or 3. See Figure B-9 for corresponding value of
VOP3 field.

TOPY4 The TOP4 field value indicates the type of information

and contained in the VOP4 field. TOP4 can assume a value of

VOP4 1, 2, or 3. See Figure B-9 for corresponding value of

VOPY4 field.
Note: TOP3, TOP4, VOP3, and VOP4 are present only for an instruction

whose operation code indicates indexing. VOP3 generates an X1
field ; VvOP4, a B2 field.

40

vVoP

0 (NULL)

1 (SCR)

2 (SAR)

3 (ABSR)

4 (PARM)

5 (REAL)

6 (IMAG)

7 (SSTG)

8 (CONS)

9 (LIT)

10 (LBL)

Null operand. Has no effect on assembled instruction.

Symbolic computational register. Symbolic registers are
labeled 0, 2, 4, and 6. An odd number value indicates the low-
order half of a symbolic register pair, if it is a double
register. The assigned register will be fixed or floating-
point, depending upon the data requirements.

Symbolic adcon register. Same meaning as above except
register as31gned is a general adcon register.

Absolute register. Value is the displacement into the
register table for the entry associated with the absolute
register.

Data parameter. Value of operand is 0, 12, 24, 36, 48, or 60,
indicating the relative distance into the data parameter
table (SPTO table) of the information pertaining to the
desired operand.

Real address of data parameter. Value is as for type 4,
except reference applies to real part only.

Imaginary address of data parameter. Value is as for
type 4, except that addresses are to be adjusted for the
imaginary part of complex data.

Scratch storage. Where 0 and 4 means entire value, 1 and

5 means real part, and 2 and 6 means imaginary part of the
first and second scratch work areas, respectively. Scratch
storage is reused on each call to $VINSA.

Constant entry pointer. Relative address within the constant
entry portion of the operation code table which contains the
operand value.

Literal value. The operand itself.
Symbolic label. Symbolic labels are numbers 0,1,2,...,9.

Only one instruction may branch to a symbolic label. An
instruction may have more than one symbolic label.

Figure B-9.

Operand Values for Symbolic Instruction Table

81

TITLE: DICTIONARY NAME LIST (N LIST)

Purpose and Usage

The dictionary name lists constitute a central depository in the
compiler for each distinct identifier and a pointer to its associated
definition list. Combined with the dictionary hash table, these lists
provide the means through which an identifier or information about

the identifier may be referenced.

Description

The dictionary hash table is an ordered table of pointers to dictionary
name lists. Each dictionary name list in turn is composed of one entry
for each distinct identifier that hashes to the same value. This
includes identifiers in the source program as well as built-in function
names, syntactic keywords, etc.

The list nodes are of standard list structure format; thus the first
word of each contains the node type and a pointer to the next node

of the list. Each list may contain two types of nodes, one type for
four-character identifiers and another for eight-character identifiers.
The name entries in each list are ordered in sorting order from low

to high with four-character identifiers preceding eight-character
identifiers.

Each node contains a keyword-type flag and a pointer to the definition
list of the identifier. The keyword-type flag provides an indication
of whether the identifier is a potential keyword, and, if so, a unique
identification of the keyword. The dictionary name lists are
initialized with entries for all keywords, built-in function names,
etc.

The third and, where applicable, fourth words of each node contain
the identifier in EBCDIC. All identifiers are filled out with blanks
until they are either four or eight characters in length.

Entry Formats

The formats for entries in a dictionary name list are shown below.

r 2]
| | Pointer to next |
| OA | entry in list |
| + |
| Keyword | Pointer to |
i Type | definition list |
I |
| Identifier |
| (4 characters) |
L 1
T X 1
| | Pointer to next |
| OB | node in list |
| $ -—------ |
| Keyword | Pointer to |
| Type | definition list |
| i
| Identifier |
| (8 characters) |
[4

82

Values for NSKEY (Keyword Type):

NaNULL 0 NOT A KEYWORD
NaDCL 1 DECLARE (DCL)
NaFMT 2 FORMAT

NAELSE 3 ELSE

N@END 4 END

NaPROC 5 PROCEDURE (PROC)
NaBGN 6 BEGIN

NaIF 7 IF

NAoON 8 ON

NaDoO 9 DO

NaRET 10 RETURN
NaCALL 11 CALL

NaGET 12 GET

NaGco 13 GO

NaGOTO 14 GOTO

NaPUT 15 PUT

NaRVT 16 REVERT

NasSTOP 17 sToP

NAOPEN 18 OPEN

NaCLOSE 19 CLOSE

NasTMT 20 END OF STATEMENTS

. condition Keywords

N3ERR 22 ERROR

NaFOFL 23 FIXEDOVERFLOW (FOFL)
NaOFL 24 OVERFLOW (OFL)
NaUFL 25 UNDERFLOW (UFL)
N@ZDIV 26 ZERODIVIDE (ZDIV)
NAENDF 27 ENDFILE
Filenames

NQINFL 29 INPUT FILE
NaSYIN 30 SYSIN

NAANYF 31 ANY FILE

NaSYPT 32 SYSPRINT

NaOTFL 33 OUTPUT FILE

Options (Non I1/0)

NaToO 40 TO

NaBY 41 BY

NaWHLE 42 WHILE

NATHEN 43 THEN

NaOPTN 44 OPTIONS
NasSYTM 45 SYSTEM

NAINTN 46 INTERNAL (INT)
NIEXTN 47 EXTERNAL (EXT)

FORMAT Specs

NaR 53 R
Nac 54 C
NaF 55 F
NIE 56 E
NaA 57 A
Nax 58 X
NaCOLM 59 COLUMN (COL)

NaSKIP 60 SKIP

44

GET/PUT Options (Plus SKIP)

NaEDIT
NaLIST
NaDATA
NaFILE

61 EDIT
62 LIST
63 DATA
64 FILE

Attributes (Plus FILE)

NaINPT
NSOTPT
NaPNT
NaSTIC
NaAUTO
NaLBL
NaENV
NaRETS
NaCHAR
NAENTY
NaFXD
NaFLT
NaCPLX
NaREAL
NaTITLE

65 INPUT

66 OUTPUT

67 PRINT

68 STATIC

69 AUTOMATIC (AUTO)
70 LABEL

71 ENVIRONMENT (ENV)
72 RETURNS

73 CHARACTER (CHAR)
74 ENTRY

75 FIXED

76 FLOAT

77 COMPLEX (CPLX)
78 REAL

79 TITLE

TITLE: OPERATION CODE TABLE (O TABLE)

Purpose and Usage

The operation code table is used by the Instruction Assembler ($VINSA)
to interpret the symbolic instruction table (M table).

Description

The table is of fixed length and all entries contain preset values
which are never modified by the compiler. The first part of the table
contains constant entries which are constant operands greater than

a byte in length. The second part of the table contains operation
entries, each representing a machine operation or pseudo-operation.
This table is actually assembled as part of the $TCODE module.

Entry Formats

The format of constant entries in the operation code table is detailed
below.

1 2 N+1 Byte

i LENGTH VALUE

e s i e s

Values for Fields:
LENGTH Number of bytes, N, of VALUE.

VALUE The N bytes representing the binary value of the
constant.

The format of operation code entries in the table follows.

1 2 3 4 5 6 7 8 9 16 Byte

o o ices e oy

| [| | |
M |[R |Ss | x | EFF | OPCODE |
| | | l I

Values for Fields:

M If 1, the operation code modifier is to be added
to the OPCODE field. This adjusts the instruction
for fixed, single float, or double float.

R If 1, the OPCODE field is modified by -X'40" if
operand is in a register.

S If 1, the OPCODE field is a pseudo-operation number.

X If 1, the generated instruction is to be indexed
with an X1 and/or B2 field.

EFF Defines the effect of the operation on the register
where:
0 Loads the register positively with new value.

1
2

‘Loads the register negatively with new value.
Destroys the register value, result single register.

o

45

86

OPCODE

Destroys the register value, result of a fixed
multiply.

Destroys the register value, result of a fixed divide.
Stores the register value.

Destroys all register synonyms.

Has no effect on register value.

Changes sign of register (inverts).

End of procedure.

vLoNdones w

W wnuwn

The value in this field is dependent on the
value in M, R, S, or X as described above.

TITLE: PROGRAM STRUCTURE TABLE (P TABLE)

Purpose and Usage

The program structure table describes the program structure statement
currently in effect. It contains one entry for each currently
unterminated BEGIN, PROCEDURE, IF, DO, or ON statement.

Description

The program structure table is an expandable table with six different
types of entry. Each entry is four words long. The table is treated
like a push-down list.

Entry Formats

Two bytes of the first word of the entry and the last word of the entry
contain standard information. The information contained in the rest
of the entry is dependent on the type of entry.

The first byte of the first word contains a node type. This describes
which of the six entry types is represented. The last byte of the
first word contains the value of the compound statement switch at the
time the entry was made.

The last word of the entry contains a pointer to the dictionary name
list (N list) entry for the label on the statement. If there was no
label or if the statement is an IF or ON statement, this pointer is
null.

Values for general fields:

PSTYPE: PANIDO Noniterative DO
PaIDoO Iterative DO
PaIF IF statement
PaoON ON statement
PAaBEG BEGIN statement
PaPROC PROCEDURE statement
P$CSS: Values for $CsSs

Noniterative DO Statement Entry: The entry for a noniterative DO
contains no information other than the general information.

The format for a noniterative DO entry is shown below:

1 2 3 4 Byte

r - 1
Word 1 | Node Type | | saved Css |
| PSTYPE | Not Used | P$css |

| -— — |

2 | |
| |

| Not Used —— |
3| |
! |

4 | Pointer to Name Entry of Label |
| PSLNEP |

b e 3

Noniterative DO Statement Entry

47

Iterative DO Statement Entry: An iterative DO entry is created for

a DO statement that contains a TO, BY, or WHILE clause. Besides the
general information, this entry contains a nonrepeating switch. This
switch, contained in bit 0 of the second byte of the first word, is

0 if a branch to the increment and test instructions should be generated
at the end of the DO. If the bit is 1, branch instructions are not

to be generated. The second word of an entry contains the address

of the increment and test instructions. The third word contains the
address of the forward intermal branch to the end of the DO-loop.

This branch needs to be resolved at the end of the DO.

The format of an iterative DO entry is shown below:

1 2 3 4 Byte

r 1
Word 1 | Node Type | Nonrepeating| | Saved CSs |
| P$TYPE | Switch | Not Used| P$CSS |

} | '~ PSNRSW | | :
2| Address of Increment and Test Instructions |
| PSITA |

| |

3 | Address of Branch to End of Loop Instructions |
| PSBELA |

| |

4 | Pointer to Name Entry of Label I
| PSLNEP I

L 1

Iterative DO Statement Entry
Values for Fields:

0 Generate branch back to DO.
X*80' Do not generate branch back to DO.

P$NRSW

/]

IF statement Entry: An IF entry is created for an IF statement in the
source program. The second word of the entry contains the address

of the forward internal branch to the ELSE clause. The third word
contains the address of the forward internal branch to the end of the
IF statement. Both of these branches need to be resolved when the
branch point is reached.

The format of an IF entry is shown below:

1 2 3 4 Byte

r 1
Word 1 | Node Type | | saved Css |
| PSTYPE | Not Used | PSCSS |

| |

2 | Address of Branch to ELSE Clause |
I PSBECA |

| |
3| Address of Branch to End of IF |
| PSBEFA |

| |

4 | |
i Null |

L -4

IF Statement Entry

ON Statement Entry: An ON entry is created for an ON statement in the
source program. The second word contains the address of the forward
internal branch to the end of the on-unit. This branch needs to be

48

resolved at the end of the unit. The third word contains the address
of the on-unit adcon area in adcon storage. This adcon area is very
similar to a BAA and contains information about the on-unit. (See
Appendix E.)

The format of an ON entry is shown below:

1 2 3 4 Byte

r 1
Word 1 | Node Type | | sSaved CSs |
| PSTYPE | Not Used | P$CSS |

| |
2| Address of Branch to End of On-Unit |
| PSBEUA |

| |
3| Address of On-Unit Adcon Area |
| PSADCA |

| -— |

4 | |
| Null i

h 3

ON Statement Entry

BEGIN Statement Entry: A BEGIN entry is created for a BEGIN statement

in the source program. The second byte of the first word contains

the block number of the begin block. The second word contains a pointer
to the block information table (B table) entry for the begin block.

The format for a BEGIN entry is shown below:

1 2 3 4 Byte
r - 1
Word 1 | Node Type | Block Number | | saved Css |
| PSTYPE | PS$BLNR | Not Used | PSCSS |
|
2 Pointer to Block Information Table Entry |
l PSBITP |
—————— ---- |
3 Not Used |
{
4 Pointer to Name Entry of Label |
| P$SLNEP {
L —————— 4

BEGIN Statement Entry

PROCEDURE Statement Entry; A PROCEDURE entry is created for a PROCEDURE
statement in the source program. As for a BEGIN entry, the second

byte of the first word contains the block number of the block and the
second word contains a pointer to the block information table (B table)
entry for the block. The third word of the entry contains the address
of the forward internal branch around the procedure block. This branch
needs to be resolved at the end of the block.

49

The format

50

Word 1

of a PROCEDURE entry is shown below:

1 2 3 4
Node Type | Block Number | | saved CSs
PSTYPE | PSBLNR | Not Used | PSCSS

Pointer to Block Information Table Entry
PSBITP

o e S o I " — —— ST S o e

Address of Branch to End of Block
PSBEBA

Pointer to Name Entry of Label
PSLNEP

PROCEDURE Statement Entry

o e s e - . S — et a— c w—— a)

Byte

TITLE: SUBSCRIPT SUBSTITUTION TABLE (Q TABLE)

Purpose and_ Usage

The subscript substitution table is used to create a token list for
the subscripts generated for an array expression.

Description and Entry Format

Every segment of this table, except the first, looks exactly like a
token table (T table) segment. The first segment contains all tokens;
no space is reserved at the beginning of this segment for line position.
The table is kept in this manner so that it can be processed using

the Get Token macro (GETKN) (see Appendix C).

The tokens placed in this table consist of a left parenthesis followed
by the subscript designators separated by commas and followed by a
right parenthesis.

51

TITLE: REGISTER TABLE (R TABLE)

Purpose and Usage

The register table is used by the Instruction Assembler routine ($VINSA)
to maintain the current status of all registers in the object program.

Description

This table is of fixed length and is divided into four parts: adcon
register table, fixed register table, floating-point register table,
and synonyms. The adcon section contains one entry for each of the
ten general registers assigned as nonpermanent address constant
registers. The fixed register section contains one entry for each

of the six general registers assigned as computational registers.

The floating-point register section contains one entry for each of
the four floating-point computational registers. The synonym section
contains 20 entries. '

The general structure of the register table is shown in Figure B-10.

52

RSTBL DUMMY +128 6

Points Here
+4 4 7
R$FX 5 8
Points Here
2 . 9
Fixed
.3 Relocation 10 Adcon
0 Base & Offset 11
RSFL
Points Here 1 12
+28 4 13
6) 14
Floating-Point
Reg. No., 0 L5
Type, Usage, 2 +168 DUMMY
Assignment -
Flags +44 6 4
RSAD 7 5
Points Here 8 9
= Fixed
9 3
Operand Sign &
10 Synonym Pointer 0
Adcon
11) 1
12 +196 4
13 6 Floating-Point
14 0
15 2
DUMMY +212 6
+8 4
5 8
RSND
Points Here 2 9
3 Fixed
Reference 10 Adcon
Operand 0 Count 1
Type & Value
| 12
112 4 13
6 14
p Floating-Point

R Table (1 of 2)

Figure B-10. Format of Register Table (Page 1 of 2)

53

+252

Result Type
& Last-Use
Count

+280

+296

|

DUMMY
4
5
2
Fixed
3
0
1
4
6 . .
Floating-Point
0
2
Link R$8SY Initially
Value Points Here -

Synonym List
Entries (20)

—~—

R Table (2 of 2)

Figure B-10.

54

Format of Register Table (Page 2 of 2)

Entry Formats

The computational registers, both fixed and floating-point, have the
following format:

1 2 3 4 Byte

r 1
Word 1 | REG NO | REG TYPE | GLOB IND | USE IND |
| | l | |

| + - l

2 | OP TYPE | OP VALUE |
| | |

| + |

3 | OP SIGN | NEXT SYN |
| | |

| + |

4 | RESULT TYPE | LAST-USE |
| | |

L — 4

The adcon registers have the following entry format:

1 2 3 4 Byte
r - 1
Word 1 | REG NO { REG TYPE | GLOB IND | |
| | | | |
| + ' |
2 | BASE | OFFSET |
| 1 |
| + |
31 { REF NO |
| | |
H —— 4
Values for Fields:
REG NO Absolute register number -associated with entry.
REG Type of register; 0 = Adcon, 1 = Fixed computational,
TYPE 2 = Floating-point computational
GLOB When ON, the following bits signify:
IND
Bit 7: The register is globally assigned to
the indicated value.
Bit 6: The register is symbolically assigned to
the indicated value.
Bit 5: The register is inhibited from assignment.
USE If 0, assigned as a single register; if 1, assigned
IND as left half of a double register; if 2, assigned as
right half of a double register.
oP Dictionary attribute list pointer, constant
VALUE table pointer, etc.
oP Indicates the type of the op value field.
TYPE
oP If 1, the operand has a prefix minus sign.
SIGN
NEXT If nonzero, points to the first synonym entry which

SYN applies to the register.

RESULT
TYPE

LAST-

BASE
OFFSET

REF NO

The bits have the following values and meanings when ON:

Bit 0 = Result of a fixed multiply
Bit 1 = Result of a fixed divide
Bit 3 = Double precision result
Bit 6 = Floating-point result

Bit 7 = Complex result

Number of the triad after which the contents of
the register can be destroyed.

Relocation base of the adcon.

Relative address of adcon from base origin.
Binary number associated with the referencing of
the adcon register; the lower the value, the more

distant the last reference is from the current
processing point. :

Synonyms have the following format:

56

Word 1

N
U S Gvn S S wm—

1 2 3 4 Byte
I Pointer to Next Synonym }
{ |
+ I
Op Type | Op Value i
J i

TITLE: TEMPORARY STORAGE TABLE (S TABLE)

Purpose and Usage

Each procedure block, format list, and on-unit has temporary storage
associated with it. Each level of temporary storage is identified
by an entry in the temporary storage table.

Description

The temporary storage table is maintained as an expandable table.

It contains one logical section for each unterminated procedure block,
on-unit, and format list. This table is referenced like a push-down
list.

Entry Format

Each entry in the table is three words long. The first word contains
the length in bytes of the temporary storage area, and the number of
the triad after which the area will be available for reuse (last-use
count). The second word contains the base code and displacement of
the storage location allocated to the temporary area. The third word
contains the DO level associated with the temporary area when it is
used in conjunction with register storage around DO-loops. An entry
of zero in the first word indicates the beginning of a logical section
of subsequent entries and separates the entries for one block from
those for the encompassing block.

The format of an entry in the temporary storage table is shown below.

1 2 3 4 Byte
Word 1 f Length | Last-Use C;;;t }
2 : Allocated Base Code and Displacement =
3 = Level :
L _— —_— 3

57

TITLE: TOKEN TABLE (T TABLE)

Purpose and Usage

The token table contains one entry for each token in a source statement.
The token table also contains an attribute entry for each occurrence
of a constant in the statement.

Description

The token table is maintained as an expandable table. The Entoken
routine ($ATKN) entokens one statement at a time and places it in the
token table. At the beginning of entokening, all areas in this table
except the first are released. Thus the space used for the token table
is statement-related.

A segment of the token table is subdivided as shown in Figure B-11.

Table .
Type Pointer to Last Segment |
12 Words
(48 Bytes) "} Offset Bytes
Offset Within Line Indicator

T@BEG I Pointer to Top of Segment | “

Up to 48
Tokens
2 (1 Word Each) 2 p Tokens Area

T@END | Pointer to End of Segment |

Constant Attribute
Entries
(Possibly Empty)
Table .
Type Pointer to Next Segment

Figure B-11. Format of Token Table

The offset bytes are used to indicate the character position on the
line where the corresponding token in the tokens area began. This
information is used only in producing error messages. The number of
bytes in the area is fixed; there are enough bytes for the maximum
number of tokens in the tokens area.

Entry Format

All token table entries are one word in size. TS$TYPE is used to

identify the type of token. The following types are used (not including
end-of-table type):

identifier

constant

non-parenthesis delimiter
right-parenthesis delimiter
left-parenthesis delimiter
keyword

new line.

TS$PTR of an identifier entry points to the dictionary name list (N
list) entry for the identifier. The format of an identifier entry
is:

T$TYPE |
= TaID | T$PTR
08 |

= e s oy
[S ——

T$PTR of a constant entry points to a constant attribute (A list) entry.
The format of a constant entry is:

r 1
| TSTYPE | |
| =TacNsT| TS$PTR i
| oc | |
L- -—de J

TSPRTY of a non-parenthesis delimiter entry contains the priority of
the delimiter. The priority is a combination of a one-byte parenthesis
count followed by the absolute priority of the delimiter in one byte.
The format of a non-parenthesis delimiter entry is:

TSTYPE !
= T@DELM | TSDELM TSPRTY

18 [

1

[o\ J

v v
Parcnthesis Absolute
Level Precedence

In addition, the token for a right-parenthesis delimiter contains in
T$COM the count of the number of commas inside the parentheses pair
not included inside a contained parentheses pair. The format of a
right-parenthesis delimiter entry is:

T$TYPE {
=TaRPR | T$COM | T$PRTY
14 | |

P c——
bt e e e o

T$PTR of a left-parenthesis delimiter entry contains a pointer to the
corresponding right-parenthesis entry. This pointer is always valid
since the Entoken routine ($ATKN) balances parentheses. The format
of a left-parenthesis delimiter entry is:

TS$TYPE |
=TaLPR | T$PTR
10 |

o= o . e
b e ctn o o

If an identifier longer than eight characters appeared in the source
and was a legal keyword, then a keyword token is inserted in the token
table. TS$KEY of this entry contains the keyword type which is normally
contained in the dictionary name list (N list) entry. (See "Dictionary
Name List (N List)" for keyword codes.)

59

The format for a keyword entry is:

T$TYPE | |
=TaKEY | T$KEY | Not Used
ou i |

o e . s sy
[PSSR ——-)

A new line entry signifies that a new line in the source program began
with the next token. TS$PTR of the entry points to the beginning of

the line number in the source program. The format for a new line entry
is:

r
|
| =TaNEW | T$PTR
|
L

[ey |

If a new line begins in the middle of a character string, then the
character string constant tokens follow the new line token. Multiple
new line tokens in a row are reduced so that only the last one is
present in the token table.

TSPTR for a current end or beginning of table token points to the end
or beginning of the current area. The end of table token entry does

not necessarily appear at the physical end of an area. The format
for this entry is:

Token | Pointer to
Type I Next Area

o e mvnen)
[SPE PN

60

TITLE: EXPRESSION STACK (V TABLE)

Purpose_and Usage

The first entry of the expression stack table is created by one of

the statement processing routines to indicate the type of expression
to be processed. All remaining entries are added by the Expression
Processor Controller ($NEXP). Each time the start of a new expression
is detected (that is, a left parenthesis is encountered), the stack

is pushed down and an entry created for the new expression. Each time
the end of an expression is detected (that is, a right parenthesis

is encountered), the stack is popped up and the top entry removed.

Description

The expression stack is maintained as an expandable table and processed
as a push-down list.

Entry Format
The format of an entry in the expression stack is shown below.
1 2 3 4 Byte
r 1
Word 1 | VSTYPE | VSCCNT | VSACNT | V$PTYP |
| | | | |
| |
| |
2 | VSATTE or VSCSDV |
| |
| |
34 VSPRMP |
L -4
Values for Fields:
VSTYPE The type of expression:
Value Symbolic Name Meaning
0 VaARG Argument list
4 VaSUBL Subscript list
8 VaACRS Array cross-section
12 VaEXP Ordinary expression
16 VaAss Assignment statement
20 VaAASS Array assignment statement

VSCCNT The comma count if a list is under process.

VS$SACNT The * count if a cross-section is under process.

V$PTYP The type of the next outer expression.

VSATTE Pointer to the array or entry name if a list is under
process.

V$CSDV Offset in static storage to the origin of the cross-
section dope vector if an array cross-section is under
process.

V$PRMP Pointer to the dictionary attribute node of the next
parameter if the attributes of the arguments are
declared.

61

TITLE: OPERATOR STACK (X TABLE)

Purpose and Usage

The operator stack is created by the Expression Processor Controller
($NEXP) to hold operators which have not been processed to form triads.
One entry is active for each operator whose operands are still
indeterminate.

Description

The operator stack is maintained as an expandable table and processed

as a push-down list. Each operator and separator encountered in the
token table (T table) by the Expression Processor Controller is added

to the top of this stack. Before adding the new operator, all operators
at the top of the stack for which the new operator determines operands
are processed and removed from the stack.

Entry Format

The format of an entry in the operator stack is shown below.

1 2 3 4 Byte
r - -
| | X$PRTY |
Word 1 | | XSDEIM |- - - - =|- - - - - |
| | | XS$PRNL | X$SPRCL |
| + -1
| | |
2| X$POI i X$TOKN |
| l |
L -1
Values for Fields:
X$DELM: Delimiter type:
Value Symbolic Name Meaning
28 TacoM Comma
32 TAASGN Assignment symbol
36 TaDIV Divide
40 TaMIN Infix minus
4y TAEXP Exponentiation
48 TaGT Greater than
52 TAGTE Greater than or equal
56 TaLT Less than
60 TaLTE Less than or equal
64 TAEQ Relational equal
68 TaNE Not equal
72 TAOR Logical OR
76 TaAND Logical AND
80 TaMPY Multiply
8L TAPLS Infix plus
88 TAILEFT Left parenthesis
XSPRTY The priority of the operator which consists of a
parenthesis level and a precedence number of the
operator.
X$PRNL The most significant part of the operator priority,
the level of nesting of parenthesis at which the operator
occurred.

62

X$PRCL

X$POI

X$TOKN

The least significant part of the operator priority,
the precedence number assigned to the operator.

If bit 6 is 1, a prefix operator is applied to the
delimiter. If bit 7 is 1, an odd number of prefix minus
operators is applied to the delimiter.

Pointer to the token table entry which contains the
delimiter token.

63

TITLE: OPERAND STACK (Y TABLE)

Purpose and Usage

The operand stack is created by the Expression Processor Controller
($NEXP) to hold operands which have not been processed to form triads.
One entry is active for each such operand.

Description

The operand stack is maintained as an expandable table and processed

as a push-down list. Each operand encountered in the token table (T
table) by the Expression Processor Controller is added to the top of
this stack. Whenever it is possible to combine an operator with its
two operands, the topmost entries of the stack representing the operands
are removed and replaced with an entry indicating the result of the
operation.

Entry Formats

An identifier or source constant has the following format:

1 2 3 4 Byte
r 1
| | |
Word 1 | YS$SOPT { YSOPV |
| : + {
| | i |
2| YS$SPOI i YSTOKN |
L 3
Values for Fields:
YSOPT The type of operand:
Value Hex Symbolic Name Meaning
12 (o TACNST Pointer to attribute
node of a source constant
28 icC TAIDAT Pointer to attribute
’ node of an identifier
40 28 TAPSEU Pointer to attribute
node of a pseudo-variable
Y$SOPV Meaning dependent on value of YS$OPT.
Y$POI If bit 0 is 1, the operand is parenthesized. If bit 6

is 1, a prefix operator is applied to the operand.
If bit 7 is 1, an odd number of prefix minus operators
is applied to the operand.

YS$STOKN Pointer to the token table entry which contains the
operand.

All other entries have the following format:

64

Word 1

Values for
YS$OPT
value

L1

48
52

56
60

64

68

72
76

80

YSOPV:
YS$SPOI:

Y$TM:

YSL:
Y$PR:

Y4SF:

1 2 3 4 Byte

] | 1
| Y$oPT { Y$OPV 1
| | {
| + |
| | Y$L |
| Y$POI | ¥STM |- - - - - -----
! i] YSPR | Y$SF }
Fields:
The type of operand:
Hex Symbolic Name Meaning
2C : TaTRID Pointer to triad table
(Z table) entry
30 TaDATA Immediate constant
34 TaLIB Entry point number of
library routine
38 TA3ERR Error operand
3c TAHADD Halfword address in
static storage
40 TaFADD Fullword address in
static storage -
4y TaBADD Byte address in static
storage
48 TIPADD Immediate DED
4cC TIIBIF In-line built-in function
number
50 TacON Pointer to constant table
(C table)

Meaning dependent on value of Y$OPT.
Same meaning as above.

Operand type mask. Has same meaning as dictionary
attribute data description field:

Bit 0 If 1, operand is arithmetic.

Bit 1 If 1, operand is a variable.

Bit 2 If 1, operand is in error.

Bit 3 If 1, operand is double precision.
Bit 4 If 1, operand is of special type.
Bit 5 If 1, operand is a character string.
Bit 6 If 1, operand is floating-point.
Bit 7 If 1, operand is complex. :

The length if operand is a string.
The precision of the operand if its type is arithmetic.

The scale factor of the operand if its type is arithmetic.

65

TITLE: TRIAD TABLE (Z TABLE)

Purpose and Usage

The triad table contains one entry for each triad (that is, operator
and two operands) generated by the statement processors and the
Expression Processor Controller (SNEXP). The triads are ordered such
that they appear in the triad table in object program execution order.
The triad entries are processed by the Triad Code Generator ($TCODE)
to produce machine-language instructions.

Table Description

The triad table is maintained as an expandable table and contains all
the triads required to represent a single source statement. Each entry
of the table is four words in length.

Entry Formats

The format of each triad before code is generated is:

1 2 3 4 Byte
r == , !
| | | | |
Word 1 |} Z$TOP | ZS$L0S | Z3ROS | Z$TMSK 1
| +)
| 3 ' |
2 | 2z$%Lo0PT | Z$LOoP |
| + |
t | |
34 Z$ROPT | ZSROP 13
| + |
| | I
4 | 2$TSGN | Z$LUSE |
L 1
Values for Fields:
ZS$TOP Indicates the specific operation to be performed on
the operands. The operators are:
Value Hex Symbolic Name Meaning
0 0 TANULL Null
4 4 TAaLAST End of triad table
8 8 TaCALL Begin call
12 C TaENDC End call
16 10 TacvT Convert
28 ic TaCOM Argument list (comma)
32 20 TAASGN Assignment symbol
36 24 TaDIVv Divide
40 28 TAMIN Minus
4y 2C TALGE Unconditional branch
48 30 TaGT Greater than
52 34 TaGTE Greater than or equal
56 38 TILT Less than
60 3c TaLTE Less than or equal
64 40 TaEQ Equal
68 44 TaNE Not equal
72 48 TaoR Logical OR
76 4C TSAND Logical AND
80 50 TaMPY Multiply
84 54 TaPLS Add
88 58 TALEFT Subscript (left parenthesis)
92 5C TATEST Test compare

66

Value

196
Z$L0S
Z$ROS

Z$TMSK

Hex Symbolic Name

60 TaDADD
64 TaBRA
68 TacoOMB
6C TaBIB
70 TaFIB
74 IaRFIB
78 TasTA
7C TAALGN
80 TAENDB
84 T8PRLIG
88 TALIBC
8c TaSMTB
920 T@BAL
94 TAPEND
98 : TAEDO
9C TaBGO
A0 TALOAD
Ag TaDVM
A8 TaDVA
AC TasPC
BO TaSNC
B4 TAHSA
B8 TACDAD
BC TaTM
Cco TaTITL
(o) TAaORI

Meaning

Define address

Branch to source label
Combine/resolve source label
Backward internal branch
Forward internal branch
Resolve forward internal
branch

Store address

Align

End block

Prologue

Library call

Symbol table entry
Branch and Link

End prologue

End DO

Begin DO

Return

Multiply dope vector
elements

Store into dope vector
element .

Scale complex positive
Scale complex negative

" Halfword subscript

Store code address
Test under mask
Title move (special)
OR immediate

If low-order bit is 1, sign of left operand is negative.

If low-order bit is 1, sign of right operand is negative.

Operand type mask. Has same meaning as dictionary
attribute data description field.

double precision.

character string.

Bit 0 If 1, operands are arithmetic.

Bit 1 If 1, operands are variables.

Bit 2 If 1, one of the operands was in error.
Bit 3 If 1, operands are

Bit 4 If 1, operands are of special type.
Bit S If 1, operands are

Bit 6 If 1, operands are floating-point.

Bit 7 If 1, operands are complex.

Indicates type of value in
types are:

Hex Symbolic Name

0 TaNULL
4 @ACODE
8 @ASC

C @AADCN
10
1c TAIDAT
28 TAPSEU
2c TaTRID
30 TaDATA
34 TALIB
38 TAERR

left operand. The operand

Meaning

Null

Code address

Static address

Adcon address

Current DSA address
Identifier attribute pointer
Pseudo-variable attribute
pointer

Triad table pointer
Immediate constant

Library load table pointer
Error operand

67

ZSLOP

Z4$ROPT

Z$ROP
Z$TSGN

Z5LUSE

The format

word 1

Values for

68

Z$TOP

ZSREG

Z$ROS

Z$TMSK
Z3$IBAS

Z$IOFF

Hex Symbolic Name Meaning

3c TAHADD Halfword static address

40 TaFADD Fullword static address

44 Ta8BADD Byte static address

48 TaPADD Immediate DED

4c TaIBIF In-line built-in function
number

50 TaCON Constant table pointer

54 TaREG Register table pointer

58 TAACSDV Array cross-section dope

vector address
Left operand. Contents defined by Z$LOPT.

Indicates type of value in right operand. The operand
types are the same as for Z$LOPT.

Right opérand. contents defined by Z$ROPT.
If low-order bit is 1, sign of triad is negative.
The highest triad number which references this triad.

of each triad after code is generated is:

1 2 3 4 - Byte
g Z$TOP | Z$REG | Z$ROS | zsmsxtt
+ :
E i$IBES% ZSIOFF
B
: Z$VBAS= ZSVOFF F
L
; Z$VSGN| Z$LUSE i
t |
Fields:

Same as before code generation.

If nonzero, the register table (R table) entry associated
with the register containing the value of the expression..
This field is always zero if ZS$TOP is the subscript
operator.

If nonzero, the register table entry associated with
the register containing the value of the offset to the
array element referenced by the triad. This field is
always zero if ZSTOP is not the subscript operator.

Same as before code generation.
Relocation base associated with object code.
Offset within the code area to the first byte of code

which evaluates the expression. This instruction address
is not always set for a triad.

Z$VBAS

Z$VOFF

Z$VSGN

Z$LUSE

If nonzero, the triad value is in temporary storage
and contains the relocation base of that storage. If
equal to X'FF', the expression is a subscripted
reference.

Offset within the data area to the value of the triad.
Sign flags for the value of the triad. If bit 2 is
1, the value is negative in the register. If bit 7
is 1, the value is negative in the temporary storage.

Same as before code generation.

69

TITLE: DOPE VECTOR TABLE

Purpose and Usage

The dope vector table provides the dope vector table pointers to dope
vectors of static arrays and strings so that the pointers in the dope
vectors may be initialized when static storage is allocated.

Description

The dope vector table is built over the source program in the user's
area as the I table and J list are processed during phase 2 of

compilation. Each entry in the table contains a pointer to the dope
vector (in the constants area) of an array/string in static storage.

Entry Format

The format of an entry in the dope vector table is:

Pointer (from P1) to the Dope Vector

e

1 Word

Comments

The last entry in the table is all zeros.

70

TITLE: ENDFILE TABLE

Purpose and Usage

An ENDFILE table is constructed for each block in which one or more
ENDFILE on-units is encountered. Area is reserved for this table in
the DSA for the block by the END Generator routine ($EDGN) when the
block is being ended. The table is initialized and updated by calls
to the IHEONREV routine at runtime.

Description

Each ENDFILE on-unit encountered in a block requires eight bytes in
the DSA for the block to build an entry in the ENDFILE table. The
number of entries in the table is carried in a pointer to the table.

Entry Format

The format of an entry in the ENDFILE table is shown below.

1 2 3 4 Byte

r 1

Word 1 | Action | A(On-Unit Adcon) |
| Code | |

| |

| |

2 | A(FCIB) 1

1 ;|

Values for Fields:

Action Code If 0, an ON ENDFILE statement referencing the file which
corresponds to this entry has not been executed in this
block. (See the CALL/360-0S PL/I Language Reference Manual
for action that will be performed if the ENDFILE condition
is raised.)

If 1, standard system action will be performed if the
ENDFILE condition is raised.

If 3, user-specified action will be performed if the
ENDFILE condition is raised.

A(On-Unit These bytes are meaningful only for action code 3.
Adcon) Then, they contain a pointer to the on-unit adcon area.
A(FCIB) This word contains a pointer to the FCIB for the file.

71

TITLE: ENTRY NAME DECLARATION LIST

Purpose and Usage

An entry name declaration list is established whenever a variable that
is a nested entry name declaration is encountered. The list is
maintained by the Attribute Node Creation routine ($ANCRE) and allows
this routine to be pseudo-recursive. It is necessary because entry
name declarations may have entry name declarations within them.

Description

An entry name declaration list is a push-down list. For convenience
in storage, this list is kept in the program structure table (P table).
The top node of the push-down list is kept in the local variable ANPDL.

Entry Format

The format of an entry name declaration list is shown below.

1 2 3 4 Byte
r h]
| |
Word 1 | P$SENT |
|
!
2 PSZPRM |
|
| |
3 P$ZETK |
l
|]
| | |
4 P$ZNP | { P$ZSP |
|
1

|
L - —_—

Values for Fields:

PSSENT Pointer to the entry attribute node being processed
P$ZPRM Pointer to last parameter attribute node processed
PSZETK Pointer to current position in entokening of parameter
list
PSZNP Number of parameters previously processed
P$ZSP i@a:i of processing (RETURNS attributes or parameter
is

72

TITLE: ON-UNIT PARAMETER LIST

Purpose and Usage

An on-unit parameter list is constructed for each ON ENDFILE statement
encountered in a program. It contains addressing information essential
to successful execution of the ON ENDFILE statement.

Description

An on-unit parameter list comprises two words of the static and
constants area. It is constructed by the ON Generator ($CON), which
stores the address of the list in the block information table (B table).
Code is generated to call entry-point IHEONUN of the On-ENDFILE and
REVERT Initializer routine (IHEONREV) at runtime, passing to it the
location of this on-unit parameter list.

Entry Format

The format of an on-unit parameter list is shown below.

1 2 3 4 Byte
f - 1
Word 1 | Action | Pointer to On-Unit {
| Code | Adcon Area |
l + - |
2 | Base | Displacement {
| code | |
L — 4
Values for Fields:
Action Code If 1, standard system action will be performed
if the ENDFILE condition is raised.
If 3, user-specified action will be performed
if the ENDFILE condition is raised.
Pointer to These bytes are meaningful only for action code 3.
On-Unit Adcon Then, they contain a pointer to the on-unit adcon
Area area.
Base Code If 0C, the remaining three bytes of this word

contain a displacement to a location in the
adcon area which contains the address of the
FCIB for this file.

If 08, the remaining three bytes of this word
contain a displacement to a location in the
static and constants area which contains the
address of the FCIB.

73

TITLE: ROUTINE ENTRY NAME PROCESSED TABLE

Purpose and Usage

One entry is created in this table for each library runtime routine.

The entry corresponds to a fullword entry for the routine in the library
load table (L table). The routine entry name processed table is ussd
exclusively by the Runtime Library Loader (SHRTLL) to indicate that

a routine is being or has been loaded.

Description

The routine entry name processed table is located immediately following
the library load table in the fixed area of working storage. At the
start of compilation, this table is set to zeros. It is N bytes in
length, where N is the number of entries in the library load table
(that is, the number of library runtime routines).

Entry Format

Each entry in the routine entry name processed table is one byte in
length. It contains a two-digit hexadecimal action code.

1 Byte
A |
| Action |
| Code |

[e

When Runtime Library Loader begins processing an entry in the library
load table, it sets the byte corresponding to this entry in the routine
entry name processed table to X'01°'. Thus, if an entry in the routine
entry name processed table is X'01', the routine identified by this
entry has been or is being loaded. If an entry contains zeros, no
action has been performed on the routine.

T4

APPENDIX C - COMPILER SUPPORT MACROS

The compiler support macros were created solely for the CALL/360-0S
PL/I implementers; the CALL/360-0S PL/I user will never come in contact
with them.

There are two general categories of compiler support macros: -those
which are used in handling tables and the others. A general term
cannot be given to describe the overall function of the other macros;
stated simply, they support implementation of the CALL/360-0S PL/I
compiler.

The descriptions in this appendix explain how to use the macros in
each category. They do not describe how the macros perform their
functions. The macros in each category are described in alphabetic
order, according to their mnemonics. The following rules explain the
notation that is used.

1. Lowercase letters represent the name of a general class of
elements in the CALL/360-0S PL/I language from which a particular
entry must be selected by the user.

2. Uppercase letters and punctuation must appear as shown.

3. Braces { } are used to denote grouping. A vertical stacking
of possible entries indicates that a choice is to be made by
the user.

4. Square brackets [] denote options. Any entries enclosed in
brackets may be omitted.

TABLE HANDLING MACROS

EXPANDABLE TABLES

Expandable tables are linearly accessed stacks which are maintained
in fixed-size segments. Currently the size of a segment is defined
to be 64 words; this size has been chosen to allow the information
required for a given table in an average program to be contained in

a single segment without overflow. The format of an expandable table
segment is:

Beginning-
n ptrl of-segment
control word

n ptr2 End-of-segment
control word

The first and last words of the segment are reserved for control
purposes. The value of n is the node code for the particular table;
ptrl points to the end-of-segment control word of the preceding table

75

segment and is zero for the first segment in a table; ptr2 points to
the beginning-of-segment control word of the following table segment
and is zero for the last segment in a table.

Associated with each table is a set of variables. p$HEAD points to

the beginning-of-segment control word of the first segment of the
table. p$TAIL points to the end-of-segment control word of whichever
segment is currently the last segment of the table. pS$SACTV points

to the first available (unused) word in the current table segment.

A two-word variable provides information on the table segment currently
accessed; pSCURR contains a pointer to the top of the segment currently
being accessed, and p$CURR+4 contains a pointer to the unused space

at the bottom of the currently accessed segment. Since the C table

and I table contain variable-length entries, the amount of unused space
at the bottom of a given segment is not calculable on the basis of
entry length. Accordingly, the word immediately preceding the end-
of-segment control word is reserved for a pointer to the unused space
in these two tables.

The macros to process entries in an expandable table are listed below;
each macro is described individually later in this section. Expansion
and contraction of table segments is automatically handled by the
macros and is transparent to the user. ’

e GCURR sets a pointer or register to the displacement of the current
table entry.

e GNODE uses p$ACTV to acquire space for a new table entry and sets
a pointer or register to the displacement of the new entry.
Subsequent use of GCURR will obtain a pointer to the new entry.
Table segments are automatically expanded, if required. If a new
segment is needed, an attempt is made to obtain it from the free
pool, that is, list of released segments pointed to by SEGLST of
the fixed area. If there are no entries in the list, space is
acquired from the area pointed to by FREPTR of the fixed area.

e GPREV uses pSACTV and pSCURR to step backwards in the table and
set a pointer to the entry immediately preceding the entry that
was current. Subsequent use of GCURR will obtain a pointer to
the new entry. The space occupied by the o0ld entry is released
(unless specifically inhibited) and is no longer available. Table
segments are automatically returned to the free pool, if required.

e GNEXT uses p$CURR to step forward in the table and set a pointer
or register to the new entry. GNEXT can be meaningfully used only
after uses of GPREV which did not release the old table entries.
Both GPREV and GNEXT signal when they have stepped past the
beginning or end of the table.

e MNODE initializes the p$CURR and pSCURR+4 pointers so that GPREV
with SAVE option may subsequently be used.

e FAREA frees all segments of the table except the first and re-
initializes the first segment for subsequent GNODEs.

o GFRST sets a pointer to the first node of a table and initializes
PSCURR and pSCURR+4. GNEXT can subsequently be used to step through
the table.

Four compiler support subroutines are used to support the expandable-
table macros. $WEXP is used by GNODE to obtain a new segment. $WCTCT
is used by GPREV and FAREA to release unused segments to the pool of
unused segments. (SWEXP will attempt to obtain a new segment from
the pool, if one is available, before it obtains a new space.) $WSTEP

76

is used by GNEXT to step from one segment to the next (to set p$CURR).
$WBACK is used by GPREV (with SAVE option) to step from one segment
to the preceding segment. (See Section 3, Volume I.)

LISTS

Lists may be single-ended or double-ended. A single-ended list has
a universal variable, pS$HEAD, associated with it. New entries are
added to the head of the list. This kind of list has low overhead
in its use. When the list is read, however, entries are returned in
reverse order.

A double-ended list has two variables associated with it: pSHEAD and
PSTAIL. p$HEAD is set by the user to point to the first item in the
list and does not change thereafter. pS$TAIL points to the end of the
list. New entries are added to the end of the list (with their pointer
field set to zero), and pS$TAIL is updated with each addition. This
list has somewhat higher overhead, but the original order of the entries
is maintained.

A set of macros is available to process lists. Maintenance of linkages
and head and tail pointers is automatic. To minimize overhead in the
macros, the initial setting of p$HEAD in double-ended lists is done

by the user.

The macros to process entries in a list are noted below; each macro
is described individually later in this subsection.

e GNODE acquires space for a list entry and chains the entry to the
head or tail of the list, as specified. (Chaining may be inhibited
if desired.) A pointer is set to the new entry.

® GNEXT steps to the next entry in a list which has already been
formed, and either sets a pointer to the entry or signals the end
of the list.

e DNODE deletes from a list the entry which follows a specified
entry. Space used by deleted nodes is not recovered.

e INODE inserts an entry which was not chained by GNODE into a list
at the HEAD, TAIL, or following a specified entry. DNODE and INODE
can be used jointly to reorder a list or transfer entries from
one list to another.

A single-letter symbolic prefix is associated with some fixed tables,
all expandable tables, and all lists used by the compiler. The
assembler-lanquage labels for all fields within and values associated
with a given table or list consistently begin with the single-letter
prefix assigned to that table or list. The table-prefix letter codes
are as follows:

77

Code Meaning

Dictionary attribute list

Block information table

Constant table

Line number table

Dictionary hash table

Initialization table

Supplementary initialization list (dope vector list)
Library entry name table (library load table)
symbolic instruction table

Dictionary name list

Operation code table

Program structure table

Subscript substitution table

Register table ,

Temporary storage table

Token table

Expression stack

Operator stack

Operand stack

Triad table

NKMNIHNIOWOZRHUMHTUOD >

The tables and 1lists noted above are discussed in Appendix B of this
manual. Other fixed tables, which are also used in CALL/360-0S PL/I,
are discussed in Appendix B or in other appendices that deal with .
closely related topics. These tables and the sections in this manual
where they are discussed are noted below.

Table Explanation in Manual
Attribute Table Appendix A
Data Parameter Table f{also Appendix A

called table of operands
or $PTO table)

Dope Vector Table Appendix B

ENDFILE Table Appendix B

Entry Name Declaration List Appendix B

On-Unit Parameter List Appendix B

Routine Entry Name Processed Appendix B
Table

Symbol Table Appendix E

78

TITLE: DELETE ENTRY MACRO (DNODE)
Purpose
The Delete Entry macro is used to delete an entry from a list.
call
(symbol]l DNODE table-prefix

{(register-name) } [{ (register-name)]
pointer-name ! pointer-name

table-prefix: A, N
register-name: G2, G3, G4, G5
pointer—name: any fullword, covered pointer

The second operand points to the list entry which immediately precedes
the entry to be deleted. The third operand, if present, will be updated
with a pointer to the deleted entry.

Registers Used

G6, G7, P4, P5
Value Returned

Third operand updated to point to deleted entry, if specified.

79

TITLE: FREE AREA MACRO (FAREA)

Purpose

The Free Area macro releases all space allocated to an expandable table
and reinitializes the table in preparation for a subsequent first
entry.

Call
[symboll FAREA table-prefix

(register-name) }
['{ pointer-name] [,valuel

table-prefix: B,D.L.P,0Q,S,T,V,X,Y, 2

register-name: G0, G2, G3, G4

pointer-name: ény fullword covered pointer

value: an absolute expression with a value less than

256 i
All entries in the specified table are discarded and their space is
returned to the free pool. The initial segment of the table is retalned
and reinitialized for subsequent use.
If a second operand is present, it will be set to a pointer to the
first node in the table, and space will be reserved for that node (as
in GNODE).
If a third operand is present, the specified value will be placed in

the first byte of the first node in the table, and space will be
reserved for the node.

Registers Used
GS, G6, G7, PS5, C1, C2
Value Returned

Second operand set to point to the first node of the reinitialized
table, when specified. '

80

TITLE: CURRENT ENTRY LOCATOR MACRO (GCURR)

Purpose

The Current Entry Locator macro locates the current (most recently
constructed) entry in an expandable table.

Call
[symbol]l GCURR table-prefix

[{ (register-name) }]
! pointer-name

table-prefix: B,D,I.L,P.Q.S,V,X,Y.Z
register-name: G0, G2, G3, G4, G5, G6, G7
pointer—-name: any fullword, covered pointer

The second operand is set to point to the current (last constructed)
or last unreleased entry in the table. If the second operand is
omitted, the output pointer is placed in G7.

Registers Used
G7
Value Returned

Pointer to current table entry, in second operand, if register; in
second operand and G7, if pointer; in G7 if second operand is omitted.

81

TITLE: POINTER TO FIRST NODE MACRO (GFRST)

Purpose

The Pointer to First Node macro establishes a pointer to the first
node of a previously constructed expandable table.

Ccall
[symbol]l GFRST table-prefix
[{ (régister-name) }]‘
! pointer-name .
table-prefix: any expandable-table prefix
register-name: G2, G3, G4, G5, G7
pointer-name: any fullword covered pointer

The second operand is set to point to the first node of the specified
table. If the second operand is omitted, G7 is used.

Registers Used

G6, G7, if second operand is a pointer-name.

Value Returned

Pointer to first node of table, in second operand (and in G7 if second
operand is a pointer—name).

82

TITLE: GET NEXT ENTRY MACRO (GNEXT)

Purpose

The Get Next Entry macro steps to the next entry in a table or 1list
which has already been constructed.

Call
[symbol]l GNEXT table-prefix

(register-name-1)] (register-name-2)]
L, pointer-name-1 L pointer-name-2

table"Prefix: A,B,C.D,H,IA,IC,L,N,P,Q,S,V,X,Y,Z
register-names: G2, G3, Gi
pointer-names: any fullword, covered pointer

Note: References to the I table are either IA or IC. IA is used for
a two-word adcon entry; IC is used for all other entries.

For lists, the second operand is assumed to contain a pointer to a
given list entry. The macro updates the second operand to point to
the immediately succeeding list entry and sets the condition code to
nonzero. If the end of the list is reached, the second operand and
condition code are set to zero. If the second operand is omitted,
the input pointer is assumed to be pSHEAD and the output pointer is
placed in G7.

For tables, the second operand is assumed to contain a pointer to a
given table entry. The macro updates the pointer to the next table
entry and sets the condition code to nonzero. If the end of the table
is reached, the second operand and condition code are set to zero.

The second operand may not be omitted for tables. The first call to
GNEXT should be preceded by calls to either MNODE (followed by GPREV)
or GFRST.

Table entries IC and C only, being of variable length, require the
length of the current node to be specified by a third operand, either

register or pointer. The third operand is not examined for any tables
except IC and C.

Registers Used
G5, G6, G7, PS5, C1, C2

Values Returned

Pointer to next entry in second operand (G7, if defaulted for lists);
condition code set to zero at end of table or list; nonzero, otherwise.

83

TITLE: GET NODE.MACRO (GNODE)

Purpose

The Get Node macro dynamically acquires working storage for the
construction of table or list entries, including automatic management
of expandable table segments and list linkages.

Call

{symbol]l] GNODE table-prefix

[(register-name-1) 11 gi?g 11 (register-name-2)

' length ! FREE ! pointer-name R
table-prefix: A,B,C,D,H,IA,IC,J,L,N4,N8,P,0Q,S,T,V,X,Y,2Z
register-name-1: G2, G3, G4
length: an absolute expression
register—name-2: G2, G3, G4, G7 (should not duplicate registér-

name-1)
pointer name: any fullword, covered pointer

Note: References to the I table are either IA or IC. 1IA is used for
a two-word adcon entry; IC is used for all other entries.

When the second operand is omitted, the standard length for each entry
is used, except for A, IC, C, and J, for which a length must be
specified.

Use of register-name-1 implies that the length of the table entry is
contained in the specified register. An explicit length operand
overrides the standard length for all tables.

For the token table (T table) only, each call to GNODE acquires a new
table segment and returns a pointer to the first usable word within
the new segment.

For lists, the node obtained is chained to whichever end of the list
is specified by the third operand. The operand FREE inhibits chaining.
If the third operand is omitted, HEAD is assumed. The third operand
is ignored for tables. -

The fourth operand optionally specifies where the value returned by
the macro will be placed. If the fourth operand is omitted, register
G7 is used.

Registers Used

G5, G6, G7, P5, C1, C2

Value Returned

Pointer to the first word of the new entry in the fourth operand, if
the fourth operand is a register; in G7 and the fourth operand, if
the fourth operand is a pointer; and in G7 if the fourth operand is
omitted.

84

TITLE: GET PREVIOUS ENTRY MACRO (GPREV)

Purpose

The Get Previous Entry macro obtains the previous entry in a table.
call

{symbol]l GPREV table-prefix

(rggister—name)
AR ey R
pointer-name !
table-prefix: B,P.S,X,Y,%2,0,V,I,L,D
register—-name: G2, G3, G4
pointer-name: any fullword, covered pointer

When the SAVE operand is not specified, the entry in the table which
was current when the macro was called is released to the free storage
pool, and its contents are not subsequently available. The preceding
entry is made the current entry.

If the second operand is omitted, the output pointer is placed in G7;
if a register or pointer name is given, the output pointer is placed
in the second operand.

If the SAVE operand is specified, storage is not released, and table
entries are subsequently available for later use. The register or
pointer named in the second operand must point to a desired table
entry; the macro updates the pointer or register to the table entry
preceding the one originally pointed to. Entries stepped over may
later be recovered using the GNEXT macro. If SAVE is specified, a

pointer or register must also be specified, and the pointer or register

must have been initialized prior to the first GPREV call by a call
for MNODE to mark the entry at which reversal begins.

If a label is specified as the fourth operand, control will be
transferred to that label when an attempt is made to back off the
beginning of the table.

Registers Used

G5, G6, G7, P5, C1, C2

Values Returned

Pointer to table entry in second operand, if register; in G7 and the
second operand, if pointer; in G7 if the second operand is omitted
(when not using SAVE option). If GPREV backs off the beginning of
the table, the second operand and the condition code are set to zero.
Otherwise the condition code is set to nonzero.

85

TITLE: INSERT ENTRY MACRO (INODE)
Purpose
The Insert Entry macro inserts an entry into a list.

call

[symbol]l INODE table-prefix,

) 7 (register-name)
(register-name) [pointer-name
pointer-name ’ HEAD 1

TAIL
table-prefix: A,N
register-name: G2, G3, G4
pointer-name: any fullword, covered pointer

The second operand points to the entry to be inserted. The third
operand points to the list entry following which the new entry is to
be inserted. The third operand may also simply specify the HEAD or
TAIL of the list. If the third operand is omitted, TAIL is assumed.

If HEAD or TAIL is specified, p$HEAD or pS$TAIL will be updated by the
macro. Otherwise the operands remain unchanged.

Registers Used
G5, G6, G7, P4, PS
Value Returned

Updated pS$HEAD or p$TAIL, if the third operand so specified. Otherwise,
none. :) ‘

86

TITLE: ESTABLISH POINTER MACRO (MNODE)

Purpose

The Establish Pointer macro has two purposes:

1. To establish pointers for subsequent use of the GPREV macro
with SAVE option.

2. To reestablish pointers in p$CURR and p$CURR+4 which may have
been altered. GPREV with the SAVE option causes alteration
of the pSCURR pointer when a segment boundary is crossed. Thus
GPREV with SAVE option followed by GPREV without SAVE must have
an intervening MNODE macro to reestablish pointers to the segment
in effect before GPREV with SAVE was issued.

Note: Successive uses of the GPREV macro with SAVE option must not
be separated by an intervening MNODE macro.

[symbol] MNODE table-prefix,

(register-name)
pointer-name

table-prefix: B,P,S,X,Y,2,0,V,1I,L,D
register-name: G2, G3, G4
pointer—name: any fullword, covered pointer

MNODE places a pointer to the current node in the second operand and
establishes internal controls so that subsequent GPREV macros with
the SAVE option can step backwards in the table non-destructively.

Registers Used

G6, G7 (Second operand may specify G7.)

Value Returned

None

87

OTHER MACROS

Compiler support macros that perform functions other than table handling
are described below.

TITLE: SUBROUTINE CALL MACRO (CALL)

Purpose

The Subroutine Call macro provides linkage between subroutines in the
CALL/360-0S PL/I compiler.

Call

[symbol]l CALL

Sadcon-name

adcon-name
@adcon-name

adcon-name: name assigned to the adcon for the entry
point of the desired subroutine

By convention, the names of all entry-point adcons in the compiler
begin with 8. Entry-point names themselves begin with §. The
Subroutine Call macro will accept a name with or without an a, or with
a §, and convert it to the proper form.

The coding used in the calling sequence is as follows:

L C1,adcon
BALR ci,c1

Registers Used

Cc1

Value Returned

None

88

TITLE: SVC INTERFACE MACRO (CSVC)

Purpose

The SVC Interface macro provides a uniform interface for SVC invocation
for compiler routines, regardless of operating environment.

Call

[symbol]l CSVC svc-code-number

svc-code-number: operand number of the desired SVC
The macro generates a call upon an SVC interpreter subroutine. In
a simulated environment, the SVC is also simulated. In the real
environment, a live SVC is given. By using an interface, the necessity
for two versions of compiler routines is avoided.

Registers Used

None

Value Returned

None

89

TITLE: DED MACRO (DED)

Purpose

The DED macro changes a compiler data descriptor to a DED for the
library.

Ccall

[symbol]l DED

(register-name) |-
pointer-name

register-name: any register (Only the high byte (bits 0-7)
changed.)
pointer-name: any covered byte pointer

The byte indicated or the high byte of the register indicated is changed
from a compiler data descriptor to a DED acceptable to the library,

Registers Used

None

Value Returned

None

90

TITLE: EXPRESSION PROCESSOR CALL MACRO (EXPG)

Purpose

The Expression Processor Call macro generates a call to the Expression
Processor Controller (SNEXP).

call
[symbol] EXPG expression-type, result-type, label
expression—-type: code for the type of expression:
VaEXP expression

VaAss assignment
VAaAASS array-assignment

result-type: data descriptor byte for the type of expression
desired .
label: covered label

A call is generated to the Expression Processor Controller. If the
expression is an array expression, return is to the third operand..
This macro establishes all information needed by the Expression
Processor Controller except the contents of $PTR.

Registers Used
G0, G5, G6, G7, PS5, C1, C2
Value Returned

None

921

TITLE: FORWARD INTERNAL.BRANCH MACRO (FIB)

Purpose

The Forward Internal Branch macro creates a forward intermal branch
triad.

call
{symbol] FIB

[l Ep—

register-name: G2, G3, G4 (Contains an offset from P1l.)
pointer-name: any fullword pointer in fixed working storage

branch-code: value for branch code (Use as right-operand of GTRD
macro.) \

The contents of the location indicated by the first operand are placed
in the left operand of the FIB triad. The location is filled with

a triad pointer pointing to the FIB triad. If the previous contents
of the second operand was a triad pointer, the indicated triad is
changed so that its last reference word also points to the new triad.
This macro calls the Get Next Triad Entry routine ($GTRIAD) to obtain
the next available space in the triad table (see Section 3, Volume

I). ' '

The second operand is passed intact as an operand to the GTRD macro.

Registers Used

G5, G6, G7, P5, C1, C2

Value Returned

None

92

TITLE: ERROR INTERFACE MACRO (GENER)

Purpose

The Error Interface

Call
{symboll GENER

message-number:

pointer:

parameter—-list:

macro provides an interface for error messages.

message-number, pointer [, (parameter-1list)]

number assigned to the error message which is
to be printed

pointer to an entry in the token table indicating
the token at which the error was detected
(register notation or a name may be used)

one, two, or three operands. The operands must
be pointers to tokens, name list entries, or
attribute nodes (either register notation or
named) or a character string of not more than
eight characters enclosed in quotes. Only one
string may be specified in the parameter list.

The macro prepares the interface with the Error Message Editor ($XERR)
by storing the specified pointers and/or string into the error
communication area, $ERROR. The pointer is used to obtain the line
and column number of the statement in error. The parameter pointers
are used to insert variable data into the texts of the error messages.

Registers Used

None

Value Returned

None

93

TITLE: GET TOKEN MACRO (GETKN)

Purpose

The Get Token macro updates a pointer to the next token in the token
table.

Call
{symbol] GETKN

(register-name) | -
- pointer-name

- register-name: any G-register except GO
pointer-name: any covered, fullword pointer
The macro will update the first operand to point to the token following

the one originally pointed to by the first operand. Line-number tokens
are ignored. .

Reqgistexrs Used
PS5 (If pointer-name is used, G7.)
Value Returned

Updated value in the first operand, pointing to the token following
the input token.

94

TITLE: GENERATE TRIAD MACRO (GTRD)
Purpose
The Generate Triad macro constructs portions of a triad, as specified.
call
[symbol]l GTRD operator, left-operand [, right-operandl

operator: absolute expression less than 256, or a parenthesized
register-name (GO, G2, G3, or GH)

left-operand: a self-defining-term, the name of a field, or a
: parenthesized register-name (GO, G2, G3, or GH#)

right-operand: same as for 1eft—operand

A call is made to the $GTRIAD routine to obtain the next available
space in the triad table. (See Section 3, Volume I.)

The macro f£ills in the operator byte and the left- and right-operand

words of the triad. Operand words must be preformatted (that is,
contain the type byte if required) before the macro is called.

Registers Used
G5, G6, G7, P5, C1, C2

Values Returned

Pointer to the constructed triad in G7. Address of constructed triad
in PS.

95

TITLE: SYMBOLIC INSTRUCTION TABLE MACRO (INST)

Purpose

The Symbolic Instruction Table macro allows a convenient notation for
the various components of an entry in the symbolic instruction table
(M table).

Call
[symbol]l INST operation,operand-1,operand-2(,operand-3,
operand-4]
operation: name of an instruction in the operation code
‘ table (O table)
operand: a macro—arguﬁent sublist of the form:
(type, value)

where type is a character string which, when prefixed
with the characters M3, forms a symbol defined as

an absolute value; and value is a self-defining

term, or a symbol having an absolute value.

Operand-1 represents the Rl field of the generated instruction; operand-
2, the R2 or storage address field; operand-3, if present, the X1
field; and operand-4, the Bl field.

If the operation is XFR, only operand-1l is specified; it must be the
name of another instruction in the symbolic instruction table.

If a symbol is specified in the name field, it is defined as the
displacement between its location and the base of the symbolic
instruction table.

Registers Used

None

Value Returned

None

%6

TITLE: ADCON GENERATION MACRO (RCON)

Purpose

The Adcon Generation macro generates adcons required for the compiler.
Call
string-1 RCON §Z,string-2

string-1: a set of characters which, when prefixed with a, forms
the name of the adcon to be used for calling a routine.

string-2: a set of characters which, when prefixed with §, forms
the name of a routine's entry point.

$%: the concatenation parameter defined by the SYMDEF macro
(described later in this subsection).

RCON is called by the SYMDEF macro. It generates adcons for compiler
routine entry-points. Depending upon the circumstances, these adcons
must be either relative to the base of phase 1, the base of phase 2,
or, for use in DSECT's, should merely be DS reservations.

If the SYMDEF symbol concatenation parameter (§Z) is not null and is
not the letter W, the resulting code is for use in the Phase 1
Initializer ($CCONT). RCON generates adcons relative to phase 1, in
the form:

A($entry-$CCONT)
If the SYMDEF concatenation parameter is the character W, the resulting
code is for use in the Phase 2 Initializer ($WCONT). RCON generates
adcons relative to phase 2, in the form:

A($entry—-SWCONT)
If neither of these conditions is true, the resulting code is for use
in DSECT's, and RCON generates a DS statement for a fullword instead
of an adcon.

Registers Used

None

Value Returned

None

97

TITLE: RESOLVE FORWARD INTERNAL BRANCH TRIAD MACRO (RFIB)

Purpose

The Resolve Forward Internal Branch Triad macro creates a resolve
forward internal branch triad.

Call
[symbol]l RFIB pointer-name

pointer-name: either the name of a fullword covered pointer or
the location of a pointer, expressed as 0(G-regqg,
P-regq)

The contents of the pointer-name is placed in an RFIB triad. If the
contents of the pointer is a triad pointer, then the last usage word
of the indicated triad is changed to point to the RFIB triad. This
macro calls the $GTRIAD routine to obtain the next available space
in the triad table (see Section 3, Volume I).

Registers Used

G5, G6, G7, PS5, C1, C2
Value Returned

None

98

TITLE: SKIP TOKEN MACRO (SKPTK)

Purpose

The Skip Token macro updates a pointer to the next token of the type
specified (at the same parenthesis level), or to the next semicolon,

whichever occurs first.

Call

[symboll SKPTK

(register-name)] [, (code-name-1,...,code-name-n)]

pointer-name

register—-name:
pointer-name:

code-name:

any G-register except

any covered, fullword pointer

one of the following:

AND EXP
ASGN GT
CNST GTE
COL ID
COM KEY
DELM LPR
DIV LT
EQ LTE

MIN
MPY
NE
NULL
OR
PLS
RPR
SMC

If the second operand is omitted, the macro searches for a semicolon.
If only one code-name is specified, parentheses may be omitted from

the second operand.

Registers Used

P5; if pointer-name is used, G7

Value Returned

Updated value in the first operand, pointing to a token which is either
one of the types specified by the second operand (at the same
parenthesis level), or a semicolon.

99

TITLE: SYMBOL DEFINITION MACRO (SYMDEF)

Purpose

The Symbol Definition macro defines field and register names, user's
area, and compiler working storage and provides USING statements as
appropriate.

Call
SYMDEF (table-prefix-1,..,,table-prefix-n),char-1,char-2
table-prefix: A,B,C,D,H,I,J,L,M,N;0,P,Q,R,S,T,V,X,Y,Z

The presence of a given table-prefix in the first-operand list causes
the inclusion of the symbol definitions for that table or list in the
current assembly.

char-1: For the benefit of the Controller (S$CNT), a non-null character
other than W in the second operand causes the compiler's working storage
(normally a DSECT) to be replicated as a CSECT (to facilitate
initialization) with all symbols prefixed by the character given as

the second operand. When char-1 is null, symbol definitions for
compiler working storage are brought in as a DSECT, and USING statements
are given for P2 covering WSSTRT and PO covering W$STRT + #092. If
char-1 is W, only those adcons required to support the second phase
overlay portion of the compiler are assembled, relative to a base in
the Phase 2 Initializer (SWCONT). (See Section 3, Volume I.)

char-2: Any non-null value in the third operand causes the inclusion
of the symbol definitions in the $3USER area and $$UTT area, and a
USING statement for P1 covering $3USERS.

Registers Used

None

Value Returned

None

100

TITLE: TALLY MACRO (TALLY)

Purpose

The Tally macro tallys a counter, increases by a given amount, and
performs boundary alignment when requested.

call
[symbol]l TALLY counter-name
1
[value 1 2
[, (register-name-1) } 1 [, { 4]
| field-name J 8
(register-name-2)
(3
[(register-name-3)]
! pointer-name J
counter-name: name of the counter (fullword) to be updated
value: a self-defining-term representing the amount

by which the counter is to be increased

register—name-1: name of a G-register containing the amount by
which the counter is to be increased (G0, G2,
G3, G4, G5, G6)

field-name: name of a field (fullword) containing the amount
by which the counter is to be increased.

register—name-2: name of a register containing a value of 1,
2, 4, or 8. These values represent the alignment
desired. The counter will be increased to the
next multiple of the alignment code, if required,
before the amount specified in the first operand
is added (GO, G2, G3, G4, GS, G6).

register—-name-3: any G-register except G7; G7 may be used if
the second operand is omitted. The value of
the counter after alignment but before the
amount is added will be placed in the fourth
operand.

pointer-name: any fullword pointer. The value of the counter
after alignment but before the amount is added
will be placed in the fourth operand.

If the second operand is omitted, the counter is aligned and updated
but not increased. If the third operand is omitted, the counter is
increased but not aligned. If the second and third operands are both
omitted, the counter is placed without change in the fourth operand
(which itself defaults under these conditions to G7).

Registers Used

None

Value Returned

None

101

TITLE: ENTOKENING AND GENER INTERFACE MACRO (TGENER)

Pu sSe

The Entokening and GENER Interface macro provides an interface between
the Entoken routine ($ATKN) and the GENER macro.

Call
[symbol] TGENER message-number,pointer,parameter-list

The parameters are those required for the Error Interface macro
(GENER). (See "Error Interface Macro (GENER)", above.)

During entokening, register G4 contains a pointer relative to a given
token table segment. For the purposes of the GENER macro, this pointer
must be relative to the base of the user's data area. The TGENER macro

adjusts register G4 as required, calls the GENER macro, and then
restores register G& to its original condition.

Registers Used
None '

Value Returned

102

APPENDIX D - RUNTIME SUPPORT MACROS

All routines of the runtime support library conform to the standards
described in the following paragraphs.

GENERAL

The CALL/360-0S PL/I compiler library was developed using the 0S/360
F-Compiler Library as a starting point (first version, Level-0).
Changes were made to the 0S/360 F-Compiler Library design to satisfy
different requirements imposed by a different system (the time-sharing
system) or when significant improvement in execution performance could
be made.

The time-sharing considerations evolved around the following:

e Break-up of the F-level work spaces and code modules into two
distinct parts: a) a relocatable part including only address
information, and b) a non-relocatable part including the body of
the code and all other data and information.

e Reassignment of general fixed-point registers in harmony with the
relocatable and non-relocatable classification of data.

e Removal of V-type address references embedded in the code.

e Removal of machine commands in which a general register is set
by the command itself, that is, the Edit and Mark instruction,
etc.

e Elimination and/or insertion of additional code and data as
required.

e Alteration of calling sequences as required.

e Conversion of F-level fixed-point logic to CALL/360-0S fixed-point
specifications.

e Renaming of global symbols.
e Formatting of library modules to CALL/360-0S specifications.
The modules that constitute the library provide two basic functions:
1. Interface Services. These modules serve as an interface between
compiled code and the facilities of the supervisor. They are

described in Volume II under "Library Interface Services"™ in
the section entitled "Runtime Support Summary®.

2. Computational Services. These modules perform computational
operations on data and shape it to the user's requirements.
They are described in Volume II under "Library Computational
Services."

The library is designed in a highly modular fashion. Modularity is
in terms of functions which can be meaningfully separated and are
contained within separate library modules.

103

NAMING CONVENTIONS

Module (routine) names are composed of a unique combination of three
characters that give a mnemonic identification of a module's function.
The module names are never employed within any system process; however,
they are vital for documentation reference.

Entry names are four characters in length, the first three being those
of the module name, and the fourth identifying a specific entry point
to the module. All linkages to a library module must reference a
specific four-character entry-point name.

For purposes of identification, library module and entry names begin
with the letter-set prefix “IHE."

Note: The CALL/360-0S PL/I library routines follow the naming
conventions stated above and applied in this manual. However,
there are some exceptions in the member names assigned to certain
routines when stored in CALL/360-0S PL/I system libraries.

The member names are:

1I0B, IOD, IOP, 10X, and IDO (referred to in documentation as
IHEIOB, IHEIOD, IHEIOP, IHEIOX, and IHELDO).

STORAGE REQUIREMENTS AND LIBRARY ADDRESS CONSTANTS
Library routines require working storage, for the following reasons:

1. During explicit communication between modules, the calling
module must provide a non-relocatable storage area commonly
called the static storage area (SSA) for the called module to
use.

2. Intermediate results must be stored.

3. During implicit communication between modules, there must be
a storage area containing common symbols.

The library work space fulfills these functions. It is allocated by
the compiler in the user's work area and subdivided into unique storage
areas, each of which is pointed to by an address constant in a fixed
location in the address constant area.

The work space is divided into two major areas as follows:

1. Relocatable working area (IWSP) (contains relocatable information
that must be updated at every relocation of the program in core
storage)

2. Non-relocatable work area (IWS) (contains non-relocatable data)

Each of the two major work areas is further allocated by the compiler

in the user's work areas and subdivided into unique storage areas,

each of which is pointed to by an address constant in a fixed location
in the adcon area. Comparable subdivisions of the major areas are
paired so that for a given activity both relocatable and non-relocatable
space will be available for storing of addresses and other data. Non-
relocatable subareas will be identified by four-letter codes and
corresponding relocatable areas by the same four-letter codes with

the letter 'P* appended.

The library communications area is one of the unique area pairs
contained in the IWS.

104

The library as a whole is highly structured. Each module in the library
has an associated level number that strictly determines which unique
pair of work spaces the module may use.

Level numbers are assigned by the following rules:
1. A module that calls no other module is assigned Level 0.

2. A module that calls other modules is assigned a level number
one greater than the maximum level number of all the modules
it calls.

3. A module that calls another module but does not expect a return
is assigned the level number of the called module.

There are five unique area pairs in the library work space (LWO/LWOP,
LW1/LW1P, LW2/LW2P, LW3/LW3P, and IW4/LW4P) which are used by library
modules for an SSA and an intermediate storage area. Modules assigned
Level Number 0 may use only LWO0 and LWOP, modules assigned Level Number
1 may use only LWl and LWiP, etc. In this way, it is assured that

a library module's SSA will not be destroyed during explicit
communication, if the caller expects a return.

Calling the execution error package (EXEP) is not considered sufficient
to raise the level number of a library module, because EXEP has unique
storage areas of its own (called LWE and LWEP).

Figure D-1 specifies the address constants in the address constants
area, which points to the base addresses of unique areas of the library
work space, and the functions of those areas.

Address Constant Function of Unique Area Pointed to
:ﬁgtxgp Pointer to major library wo;k spaces
IHEQLCA Library communications areas (also known as library
IHEQLCAP common areas)
:gggtxgp SSA and working storage for execution error package (EXEP)
}HHEESSI/:P Reserved space not used at present
:ggglixgl’ SSA and working storage for Level Number 0 library modules
:g;igl]:“z} P SSA and working storage for Level Number 1 library modules
:gggt\‘zgp SSA and working storage for Level Number 2 library modules
:gggli‘wv;p SSA and working storage for Level Number 3 library modules
ig:gtxzp SSA and working storage for Level Number 4 library modules

Figure D-1. CALL/360-0S PL/I Address Constants Area

105

(See "The Library Work Space", below, for a complete description of
the library work space.)

DATA REPRESENTATION

By virtue of declared attributes, data may exist in the following forms
within a CALL/360-0S PL/I program:

1.

2.
3.

Arithmetic data

a. Real fixed

b. Real float

c. Complex fixed

d. Complex float
Character-string data

Statement-label data

The following representations are available internally to the IBM System/360:

a.

Floating-point (long and short)
Binary fixed-point
Packed decimal

Character string

The relationships between the forms declared for a data item in the
CALL/360-0S PL/I program and the actual representation used internally
to the IBM System/360 are shown in Figure D-2.

106

CALL/360-0S IBM System/360 Forms
Packed
. Binary Short Float-|Long Float- | Charact
PL/1 Compiler Forms Fixed-Point Pt eiriond ing.Point | ingPoint | String
(@ bytes) | T d"i sits (4 bytes) | (8 bytes) |(Maximum
plus sign) 256 bytes)

CALL/360-0S
PL/I Forms:

Internal:
Arithmetic:
Fixed-Point X
Floating-Point X X
String:
Character ' X
External:
Arithmetic:
F-Format
E-Format X
String:
A-Format X

>

Special Library Intermediate
Forms:

Binary Intermediate X

Decimal Intermediate X

Figure D-2. CALL/360-0S PL/I Data Representation

Library support macros are concerned with the following functions:

1. Exchange information between the phase 2 compilation wrap-up
and runtime library modules.

2. Facilitate loading of library working storage covers.
3. Facilitate branching within the library.

4. Define DSECT's and constants universally applicable within the
library.

5. Ensure uniformity in the performance of certain special
functions, that is, calculate the difference between two
addresses, etc.

(See "Library Support Macros®, below, for complete description of all
library support macros.)

THE LIBRARY WORK SPACE

RELOCATABLE WORK AREA (LWSP)
The DSECT name is IHELIBP and is described by the following table.

(The variable names are ordered within the DSECT as they appear in
the table.)

107

'DSECT Hex Area
Variable Off- Size
Name Set (Bytes) Explanation

WBR1 0 4 Second transfer vector. (Used by the
arithmetic conversion package (ACP).)

WBR2 4 4 Third transfer vector. (Used by the
ACP.) '

WRCD 8 8 A(Target), A(Target DED). (Used by the
ACP.)

WFDT 10 4 A(Target FED). Implicit parameter for F-
: or E-format output conversion. (Set by
F/E-format and string directors for use
by ACP.)

WFED 14 4 A(Source FED). Implicit parameter for F-
or E-format input conversion. (Set by
F/E-format and string directors for use
by ACP.)

WFCB 18 4 A(File control Block). (Used by
C-format, F/E-format, and string
input/output directors.)

WCNP ic 4 A(First and Last Address Pair). (Set by
the I/0 directors.)

WCN1 20 8 A(start of Real Part of a C-Format Data
Item), A(End of Real Part of a C-Format
Data Item). (Used by the C-format
directors and the F/E-format input
director.)

WCN2 28 8 A(start of Imaginary Part of a Complex
Data Item), A(End of Imaginary Part of a
Complex Data Item). (Used by the
C-format directors and F/E-format
input director.)

WTEMP 38 8 Erasable storage. Not used across calls.

WJIXIDVA 40 4 A(Array Dope Vector). (Used by the
interleaved array indexing routine.)

WJIXILADD 44 4 A(Last Array Element Returned). (Used by
the interleaved array indexing routine.)

ZLWEP 48 80 Relocatable work space for the execution
error package. (Shared by the EXEP and
the C-format directors.)

ZLSAP 98 80 Level-3 and level-4% routines scratch
' spacee.

ZLW0P ES8 80 Temporary address storage for library
level-0 modules.

ZLW1P 138 80 Temporary address storage for library
level-1 modules.

ZLW2P 188 80 Temporary address storage for library
level-2 modules.

108

DSECT Hex Area

Variable Off- Size
Name Set (Bytes) Explanation
ZLW3P ips8 80 Temporary address storage for library
level-3 modules.
ZLW4P 228 80 Temporary address storage for library
level-4 modules.
ZCNTP 278 variable Relocatable work size. (Used by the

compilation wrap-up modules of phase
2 and the load module of the runtime
library to reference the end of the
relocatable library work space.)

NON-RELOCATABLE WORK AREA (LWS)

The DSECT name is IHEZLIB and is described by the following table. (The
variable names are ordered within the DSECT as they appear within the table.)

DSECT Hex Area
Variable Oof f- Size
Name Set (Bytes) Explanation

WINT 0 9 Packed decimal intermediate (PDI) or
floating-point intermediate (FLI) number
storage. (Used by ACP.)

WSCF C 4 Scale factor associated with the packed
decimal intermediate number. (Used by
the ACP.)

WSDV 10 8 String Dope Vector (SDV). (Used by the
input/output conversion directors.)

WCFD 18 4 Format Element Descriptor (FED). (Used
by eight 1-bit intermodular communication
switches.) (Bit-7 is the complex switch
set by the C-format director to control
processing of the complex components by
the F/E-format directors. Bit-5 is the
update switch set by the string directors
to control zeroing of and/or pointing to
the various components of the complex
item.)

WSWA 1c 1 Eight 1-bit intermodular communication
switches.

WSWB 1D 1 Eight 1-bit general purpose switches.
(Used by I/0.)

WSWC 1E 1 Eight 1-bit intramodular switches. Not
used across calls.

WBUFF 1F 256 Intermediate character storage. (Used by
the real output directors.)

WCOUNTI 120 4 Print file current line character count.
(Used by output directors.)

WLNEWDTH 124 4 Print file line width. (Used by output
directors.)

109

DSECT Hex Area

Variable Ooff- Size
Name Set (Bytes) Explanation

WTERBUFS 128 4 Terminal buffer size. (Used by I/0
directors.)

WDISBUFS 12C 4 Disk buffer size. (Used by I/0
directors.) :

WTOTCHAR 130 4 Current terminal buffer length. (Used by
I/0 directors.)

WSPEC 134 4 Internal file current field counter.

WCOUNTDK 138 4 Disk file current line length. (Used by
output directors.)

WIOTCHDK 13C 4 Current disk buffer length. (Used by.
170 directors.)

ZLWE 140 176 Temporary non-address storage for the
execution error package.

ZLSA 1F0 80 Not used.

Z1LWO 240 176 Temporary non-address storage for library
level-0 modules. ‘

ZIW1 2F0 176 Temporary non-address storage for library
level-1 modules.

ZLW2 3A0 176 Temporary non-address storage for
library level-2 modules.

ZLW3 450 176 Temporary non-address storage for
library level-3 modules.

ZLWY 500 176 Temporary non—-address storage for
library level-4 modules.

ZCNT 5B0 variable Non-relocatable work space size. {(Used

by the load modules.)

REGISTERS AND OFFSETS

Assignments are defined in the following chart.

Save Reqgisters

Ooffset Mnemonic Value) Use Definitions

OFPO PO 6 cover first page of object code
OFP1 Pl 7 {Not specifically assigned)
OFP2 P2 8 (Not specifically assigned) J
OFP3 P3 9 Cover address constants

OFP4 - PO 10 l

QOFPS P5 11 (Not specifically assigned)
OFP6 P6 12§

OFP7 P7 13 Parameter register

OFP8 P8 iy Return register

OFP9 P 15 Branch register

110

Fixed Data Registers

OFGO GO 0
OFG1 G1 1
OFG2 G2 2
OFG3 G3 3 (Not specifically assigned)
OFGH G4 4
OFG5 G5 5

Floating-Point Data Registers

OFF1 F1 0 .

OFF2 F2 2

OFF3 F3 4 (Not specifically assigned)
OFF4 Fu 6

Register P3 must contain cover address constants as indicated at all
times. Register P6 is used to load covers required for saving register
constants at entry to any library routine; hence, its value is destroyed
- not preserved over a call. All other address and data registers

are preserved over a library call. Floating-point registers are not
saved over a library call.

LIBRARY SUPPORT MACROS

The library support macros were created solely for the CALL/360-0S
PL/I implementers; the CALL/360-0S PL/I user will never come in contact
with them.

The descriptions given below tell how to use each macro. They do not
tell how each macro performs its functions. The macros are described
in alphabetic order, according to their mnemonics. The following rules
explain the notation that is used.

1. Uppercase letters represent

a. entries that must appear exactly as shown (for example,
CALLERR or IHEBRA).

b. a general class of entries from which a particular entry
must be selected by the user as explained in text which
follows the notation. (For example, the parameter OFF shows
the place where the offset to the relocatable LWS must be
specified in the CALL/360-0S macro call.)

c. a combination of a and b, where the portion preceding an
equal sign is a keyword that must appear as shown and the
portion following the equal sign represents a general class
of entries from which the user must select a specific entry.
(For example, in BR=P9, BR is a keyword parameter and must
appear as shown; P9 represents a working register that must
be specified.)

2. Braces { } are used to denote grouping. A vertical stacking
of possible entries indicates that a choice is to be made by
the user.

3. Square brackets [1 denote options. Any entries enclosed in
brackets may be omitted.

111

TITLE: CALL ERROR MACRO (CALLERR)

Purpose

The Call Error macro develops a call to the execution error package
(EXEP) which results in printing an error message and appropriate
transfer of controcl. The user specifies the general data register
tc be loaded with the error code prior to execution of the Call macro
(IHECAL) transferxring control to EXEP.

Call
flabell] CALLERR REG,INDEX,OFFSET,OFFSET1

The general data register specified by parameter REG is loaded with

the error code set forth in parameter INDEX. The two parameters OFFSET
and OFFSET1 sexrve the same function as the parameters defined for the
Call macro. In fact, the Call macro is invoked by the Call Exrror
macro.

Registers Used

One specified general data register

Pseudo registers P3, P6, P8, and P9, as follows:
P3 Adcon error register
P6 Scratch register restored from adcon area

P8 Link register restored from adcon area
P9 Branch register restored from adcon area

112

TITLE: CALL/360-0S MACRO (CALRTS)

Pu Se

The CALL/360-0S macro calls the CALL/360-0S system to request execution
of an SVC.

call
[label]l] CALRTS SvVC1,0FF,OFF1
Parameter SVC1 passes the value of the SVC call.
Parameter OFF is the offset to the relocatable LWS,
Parameter OFF1 is the offset to the non-relocatable LWS.

This macro generates a call to the IHESVC routine.

The macro statement may be labeled.

Registers Used

None

113

TITLE: CHECK FCB MACRO (CKFCB)

Purpose

The Check FCB macro tests the FCB. If a disk file, a check for empty
buffer is made. If empty, an SVC 2 is issued to read a record from
disk. The receiving buffer displacement is in register 2 (displacement
from communications area to the buffer area). Upon return, byte 13

of the file control interface block (FCIB) will be set with a code

as follows:

Read successful

Unrecoverable 1I/0 error

End of data

Read not done because file type is output

WO
wwun

This macro updates buffer pointérs and returns.
If a terminal file, a question mark is inserted in the output stream.
and the buffer pointer in the communications area is updated. Then
an SVC 2 is requested for input from the terminal unit.

CKFCB (This mwacro invokes the CALL/360-0S macro (CALRTS).)
Registers Used
Preset registers:

Pseudo registers P3, P6, P7, and P9
Non-preset registers:

Pseudo registers: P2, P4, and G1
Absolute general registers: 2,3

114

TITLE: ADDRESS CONSTANTS MACRO (IHEADC)

Purpose

The Address Constants macro defines the displacement for each symbol
appearing in the address constant area (ADCON) beginning with the
alphameric characters "La". This macro is invoked by the Symbol macro
(IHESYM), which defines all of the runtime entry names for which space
is to be reserved in ADCON and for which a corresponding "L8" symbol
is associated.

Call
IHEADC LIB1,LIB2,LIB3,LIB4,LIBB1, LIBB2

Each parameter field contains one or more subfields, each of which
contains an entry-point name. The first three fields are reserved

for entry points to modules that are accessible directly through a
single reference to ADCON. The last two fields are reserved for entry
points to modules requiring an indirect access through an appropriate
block adcon area. The ordering of the symbols within the subfields

is critical to modules that perform compilation wrap-up and load
functions. ~

Registers Used

None

TITLE: BRANCH MACRO (IHEBRA)

Purpose

The Branch macro saves the contents of a specified general register
over a generated Branch and Link instruction and/or assembles the
branch instruction using designated registers for branching and linking.

Call
[labell IHEBRA LXR,BXR,LOC,P6=P6

Parameters LXR and BXR are two general address registers designated
as link and branch registers, respectively. Keyword parameter P6
designates a general address register whose contents are to be saved
over the branch. Parameter LOC specifies a storage word for saving
register content. The default values are:

LXR=P8

BXR=P9

P6 =P6
Parameter LOC in default results in generation of the Branch and Link
instruction only. Caution should be exercised when placing USING
statements immediately behind Branch macro statements.
The macro statement may be labeled.

Registers Used

Two or three user-designated general address registers

116

TITLE: BAA EXTERN MACRO (IHEBXT)

Purpose

The BAA Extern macro loads a specified general address register with
the address of an entry point for a module requiring access to a
special-function block address constant area.

Call
[labell IHEBXT DISP,REG,BR=P9,P3=P3,L0OC=#2

The first field value must be the relative entry number of the desired
entry-point symbol in the external symbol table of the Trailer macro
(IHETLR) for the module in which the BAA Extern macro is embedded.

The second field is a general data register assigned as a working
register. Both fields must be present. Keyword parameter BR specifies
a working register, while keyword parameter P3 specifies a general
address register containing the cover for ADCON. Keyword parameter
LOC points to the beginning of the external symbol table generated

by the Trailer macro. Default values are:

BR =P9

P3 =P3 .

LoCc=#2 (Default value for keyword parameter NAM2 of the Trailer
macro)

The macro statement may be labeled.

Registers Used

Two specified general address registers
One specified general data register

117

TITLE: CALL MACRO (IHECAL)

Purpose

The Call macro assembles instructions required to save pseudo register
P8 over the branch; loads pseudo register P9 with the branching address;
and restores pseudo registers P9 and P6 from specified addresses covered
by pseudo register P3 (the covering register in the adcon area).

call

[label]l IHECAL VADD,OFFSET,OFFSET1
All three parameter fields are displacements with respect to the adcon
area cover and must contain valid information prior to execution of
the macro.

The macro statement may be labeled.

Registers Used

Pseudo registers P3, P6, P8, and P9, as follows:

P3 Adcon cover register

P6 Scratch register restored from adcon area
P8 Link register restored from adcon area

P9 Branch register restored from adcon area

118

TITLE: DOUBLE COVER MACRO (IHEDCV)

Purpose

The Double Cover macro loads two adjacent general address registers
with the covers for the library non-relocatable and relocatable work

spaces, respectively.
call
[label]l] IHEDCV FIELD,REG
Parameter FIELD specifies the library level of the module (that is,
LWE, LWS, LWO, LW1, LW2, LW3, or LW4). Parameter REG designates the
register to contain the library non-relocatable work space cover.
The next higher-numbered register will contain the cover for the library
relocatable work space.
The macro statement may be labeled.

Registers Used

Two designated general address registers

119

TITLE: DIFFERENCE MACRO (IHEDIF)

Purpose

The Difference macro calculates the difference between the contents
of two specified address registers, and stores the result into a
designated target.

Call
(labell IHEDIF R1,R2,NR1,NR2,AREA=WTEMP

Parameters R1 and R2 are two general address registers containing the
address for which the difference C(R1)-C(R2) is desired. (C(R1) denotes
contents of R1, etc.) NR1 and NR2 are two general data registers
assigned as working registers. The keyword parameter AREA points to

a two-word block of temporary storage. Parameters R1 and NR1 must

be specified. Default values for the other parameters are:

R2 =R1+1

NR2 =NR1+1

AREA=WTEMP (Doubleword erasable storage in LCA)
The macro statement may be labeled.

Registers Used

Two user-specified general address registers
Two user-specified general data registers

120

TITLE: ERRCD MACRO (IHEERRCD)

Purpose

The ERRCD macro has two functions:
1. Set the error code in LWE.

2. Set the error code in LWE, then branch to Error Routine
(IHEERR). (See Section 5, Volume II.)

Call

[{label]l THEERRCD INDEX,PREG,ROUTNAM,FCIB

The first parameter provides the index of the error code. The second
parameter provides an address register which is used to cover IWE.

The third parameter is the last four characters of the desired entry
point name of IHEERR. The fourth parameter is the register containing
the FCB. It is changed to point to the FCIB for IHEERRB.

The macro statement may be labeled.

Registers Used

One user-designated general address register

P3 Adcon cover register
P8 Link register
P9 Branch register

121

TITLE: INITIALIZE FILE CONTROL BLOCK MACRO (IHEFCB)

Purpose

The Initialize File Control Block macro changes P7 from address of FCIB
to address of FCB, and moves buffer pointers from saved FCB to common
FCB.

Ccall

flabel} IHEFCB

Registers Used

G5 Address of FCB offset)
P7 Address of FCIB to address of common FCB
P8 Address of saved FCB

P9 Work

122

TITLE: SAVE FCB POINTERS MACRO (IHEFCIB)
Purpose
The Save FCB Pointers macro has two purposes:
1. Saves the disk buffer pointers from common FCB area.
2. Saves area for FCB if routine called from compiled code.
call
[label]l IHEFCIB OFFSET1

OFFSET1 is the relocatable library work space level used by this
routine. ,

Registers Used

P3 Adcon cover register
P8 Link address

P7 FCIB address

PS5 Work

P6 Work

123

TITLE: LINK ROUTINE MACRO (IHEFROM)

Purpose

The Link Routine macro determines whether a call to a library routine
is from compiled code or from another library routine.

Call
[{labell IHEFROM EXIT
EXIT is the exit address if call is from another library routine.

Registers Used

P3 Adcon cover register .
P8 Link register

124

TITLE: EXTERNAL MACRO (IHEEXT)

Purpose

The External macro loads a designated general address register with
the address of an entry point through a single reference to the adcon
area.

Call

[labell] IHEEXT DISP,REGP,REGB
The first field must be the character following the "La" alphamerics
of an "La" symbol defined in the adcon area. The second field is the
general address register to be loaded, and the third parameter is the
general address register containing the adcon cover. Default values
are:

REGP=P9
REGB=P3

The macro statement may be labeled.

Registers Used

Two designated general address registers

125

TITLE: HEADER MACRO (IHEHDR)

Purpose

The Header macro supplies the wrap-up loader with the following
information:

1. The size (in bytes) of the module
2. The number of external references by the module
3. The number of entry points
Ccall
{labell IHEHDR NAM1=#1,NAM2=#2,NAM3=#3, NAM4=#4
The keyword parameter NAM1 is a symbol defined by the Header macro,
whereas keyword parameters NAM2, NAM3, and NAM4 are symbols defined
in the Trailer macro (IHETLR) separating the code section, the external
reference section, and the entry-point section. These keyword
parameters must agree exactly in value with corresponding keyword
parameters of the Trailer macro. The default values are:
NAM1=#1
NAM2=#2
NAM3=#3
NAMU4=#U4
The formulas are:
Module size = NAM2-NAM1-4 (in bytes)
Number of external references = (NAM3-NAM2)/2
Number of entry points = (NAM4-NAM3)/4
The macro statement may be labeled.

Registers Used

None

126

TITLE:

Purpose
The I/0

I/0 INTERFACE MACRO (IHEIOD)

Interface macro provides an interface between the I/0 conversion

directors and the input routine IHEIOG and output routine IHEIOD.

The former interface loads a designated general data register with
the length-1 of the string to be input and a general address register

with th

e A(FCB); then it branches to the input routine IHEIOG, after

which, and upon return, an appropriate string dope vector is constructed.

The latter interface loads two general address registers with the

A(FCB)
IHEIOD

Call

and A(SDV), respectively. Branching to the output routine
then proceeds as described above for input.

[labell] IHEIOD FCB=WFCB,SDV=WSDV,LWSP=LWEP,OP=IN,

P9=pP9,P8=P8,P5=P5, PO=P0,G1=G1,G0=G0,
PTEMP=WTEMP, P7=P7

The macro invokes the IHEEXT, IHEBRA, and IHEDIF macros. Keyword

pointer

FCB
Sbv

parameters point as follows:

points to A(FCB)
points to A(SDV)

LWSP points to A(library relocatable work subarea)
PTEMP points to A(doubleword erasable area)

Keyword

OP =

parameter switch OP functions as follows:

= IN defines an input file

OP # IN defines an output file

Keyword

G1
GO
The def

FCB
Sbv

parameter register assignments are:

assigned as linkage register

assigned as branch register

assigned as parameter register for A(FCB)

assigned as parameter registexr for A(SDV) general addr registers
preset to A (first page of

object code cover)

assigned as parameter register }

for string length-1 and scratch general data registers
scratch

ault values are set as follows:

=WFCB Pointer in LCAP
=WSDV Pointer in LCA

LWSP =LWEP Library work area assigned to EXEP
PTEMP =WTEMP Scratch area in LCAP

P8
P9
P5
G1
GO
P7

=P8 Return pointer
=P9 Transfer pointer
=P5

=G1

=G0

=P7

The macro statement may be labeled.

Registers Used

Five user-designated general address registers
Two user-designated general data registers

127

TITLE: STANDARD OFFSETS MACRO (IHELBE)

Purpose

The Standard Offsets macro egquates standard adcon area, relocatable
library work space, and non-relocatable library work space offsets
to symbols. It also is used to redefine "La" symbols to "V" type
symbols.
call

IHELBE
Registers Used

None

128

TITLE: LIBRARY MACRO (IHELIB)

Purpose

The Library macro provides the definitions for the symbols and DSECT's
required by a majority of the library routines. The list includes
those symbols associated with pseudo registers, standard save-area
offsets, and "La" symbols necessary to program execution, together
with the DSECT's which may contain them, and the error codes.

Call

IHELIB
The Library macro invokes the Symbol macro (IHESYM) to define the "La"
symbols (which in turn invokes the IHEADC macro) and the Library Work
Space macro (IHELWS) to define library work area DSECT's, pseudo
registers, and error codes.

Registers Used

None

129

TITLE: LIBRARY WORK SPACE MACRO (IHELWS)

Purpose

The Library Work Space macro defines the library work space DSECT's
and associated symbols.

Call
IHELWS
The macro is invoked by the Library macro (IHELIB).

Registers Used

None

130

TITLE: MOPP MACRO (IHEMOPP)

Pur pose

The MOPP macro defines the DSECT's describing the block adcon area
(BAA) and dynamic storage area (DSA).

Call

THEMOPP

Registers Used

None

131

TITLE: NAME MACRO (IHENAME)

Purpose

The Name macro generates 80 bytes for absolute patching of compiled
code and places the literal constants generated-to-date immediately
ahead of the patch area. The patch area is word-aligned and filled
with zeros.

Call
IHENAME
See also the Patch macro (IHEPCH).

Registers Used

None

132

TITLE: OPEN TEST MACRO (IHEOPENT)

Purpose
The Open Test macro tests file openings to determine whether they are
successful. If not, it determines why a file was not opened and gives
an appropriate error message.
Call

{(label]l] IHEOPENT
Registers Used

P7 Address of FCIB

Errors Detected

NOT OPENED (124)
DOES NOT EXIST (126)
LOCKED (127)

IN USE (128)

NOT A DATA FILE (130)

133

TITLE: PATCH MACRO (IHEPCH)

Purpose

The Patch macro generates space for absolute patching of modules.
The space generated is set to character pattern DEAD.

call
tlabel) INERCH

Registers Used
None

138

TITLE: RETURN MACRO (IHERET)

Purpose

The Return macro restores the general registers (except symbolic
register P6 which is destroyed in the restoring process) and floating-
point symbolic registers F3 and F4 from a designated standard save
area.
Call

{label]l IHERET OFFSET1,0FFSET2

The two parameter fields are offsets relative to the adcon cover
pointing to library work space addresses.

The macro statement may be labeled.

Registers Used

Symbolic registers P3, P8, and P9, as follows:
P3 Adcon cover register

P8 Return linkage register
P9 Scratch register

135

TITLE: RESTORE MACRO (IHERST)

Purpose

The Restore macro restores all general registers to the values contained
in a designated save area according to the standard save-area offsets.
(It is assumed that the designated area was preset by the prior
execution of a Save macro.) The floating-point registers are not
restored.

General registers PO through P9 are restored from the relocatable
standard save area, while general data registers GO through G5 are
restored from the associated non-relocatable counterpart.
Call

[labell IHERST FIELD,REG
The FIELD parameter value must be the last three alphamerics of a
library non-relocatable work subarea. The REG parameter value is a
general address register.
The macro statement may be labeled.

Registers Used

One user-designated general address register

136

TITLE: SAVE MACRO (IHESAV)

Purpose

The Save macro stores all general registers (except a designated general
address register which is destroyed in the saving process) into a
specified standard save area. The save area specified is normally

one of the library work subareas. The general data registers are saved
in the non-relocatable part of the work space, and the general address
registers in the corresponding relocatable part. The floating-point
registers are not saved.

Call

[{labell IHESAV FIELD,REG
The FIELD parameter is a non-relocatable part of a library work space
(that is, LWO, LW1, etc.), and the REG parameter is a general address
register. Generally pseudo register P6 is selected.

The macro statement may be labeled.

Registers Used

One designated general address register

137

TITLE: SINGLE COVER MACRO (IHESCV)

Purpose

The Single Cover macro loads a designated general address register
with the cover address of a specified library work space. Appropriate
USING statements are generated flagging the designated register as
a cover register to the compiler.
Call

(label]l] IHESCV FIELD,REG
Parameter FIELD specifies the library level of the module (that is,
LWE, LWS, LW0, LWil, ILW2, LW3, or LW4). Parameter REG designates the
register to contain the library non-relocatable work space cover.
The macro statement may be labeled.

Registers Used

One user—-designated general address register

138

TITLE: SDR MACRO (IHESDR)

Purpose

The SDR macro saves the contents of general registers (except symbolic
register P6 which is destroyed in the saving process) and the two
floating-point symbolic registers, F3 and Fi.
Call

[labell IHESDR D1,D2
Parameter D1 is a displacement in the adcon area pointing to the desired
relocatable LWS. Parameter D2 is a similar displacement pointing to
the desired non-relocatable IWNS. (See "Save Macro (IHESAV)".)
The macro statement may be labeied.

Registers Used

Pseudo registers P3 and P6, as follows:

P3 is preset to A (adcon area)
P6 is a scratch register

139

TITLE: SYMBOL MACRO (IHESYM)

Purpose

The Symbol macro provides the Address Constants macro (IHEADC) with

a list of entry—p01nt names for which the Address Constants macro is

to reserve space in the adcon area and label said space by concatenating
the alphameric symbols "La" to the left of entry name.

Call

MACRO
IHESYM
* INDIRECT ADCON ADDRESSING MACRO
* CALLS ADCON MAP MACRO IHEADCN

IHEADC (DDJA ,DDOA ,DDOB , DDOC,DDPD IOAA,IOAT I0BA,IOBC, *
IODP,TOGA,IOXA, I0XB,I0XC,LDIB,LDIC,LDOB,LDOC,DUMP,ERRA, *
ERRB,ERRC,ERNA,SADA,SADB,SADC,SADD,SAFC,DCNA,DIAA,DIAB, *
DIAZ,DIAY,DIBA,DIBZ,DIMA,DIMZ,DMAA,DNCA,VPFA,IOPB, *
ADMP) , *
(DOAA ,DOAB,DOAZ ,DOAY, DOMA,DOMZ , DOBA, DOBB,DOBZ ,DOBY, *
UPAA,UPAB,VCAA,VCSA,VCSB,VFAA,VFBA,VFCA,VFDA,VFEA,VPAA, *
VPBA,VPCA,VPEA,VTBA,ABTO,ABMO,ABGO DZTO,DZMO,DZGO MXSO, *
MXLO, MXFO, MNSO,MNLO ,MNFO, XISI,XILI ,XIFI), *
(XITI, XIMI,XIGI,XISF,XILF,MZGO,XITF, XIMF,MZTO,MZMO, *
PDSO,PDLO,PDFO,PDTO,PDMO,PDGO,SMSO,SMLO,SMFO,SMTO,SMMO, *
SMGO,Y¥GSS,YGLS , YGFS,YGTS, YGMS , YGGS ,YGSV, YGLV,YGFV,YGTV, *
YGMV,YGGV,JXIY,JXIA,CSCO,CSMF,CSS2,DIOA,VSCA,ERRR,GPUT, *
VPDA,SVCA,DDIB,ERRZ,SADE,RSET), PTR219 *
(OPEN, CLOS, ONUN,REVT, ERRN,ENDF) , PTR219 *
(ATS1.ATL1, ATTO,ATMO, ATS2,ATL2,AHSO,AHLO,AHTO, AHMO, *
EFSO, EFLO,EXSO,EXLO,EXTO, EXMO ,LNSO, LNLO, LNTO, LNMO,L2SO, #*
L2L0,LGSO,I.GLO, SNSO,SNLO, SNTO , SNMO,CSS0O,CSLC,CSTO,CSMO, *
S$QS0,SQLO, SQT0,SQMO) , (TNSO,TNLO, TNTO, TNMO, TESO, THLO, *
THTO, THMO,CHSO,CHLO,CHTO, CHMO, SHSO, SHLO, SHT'O , SHMO) *

MEND

The six parameter fields contain the last four characters of all of
the entry-point names to the runtime library. The first four fields
contain those entry points associated with modules accessible through
a single access via the generated points associated with modules
accessible through a single access via the generated "La@" symbol.

The last two fields contain the entry points associated with modules
accessible through a second access to the block adcon area assigned
for the function performed by the module.

Caution: The ordering of the above entry-point names is critical
with respect to compilation wrap—up and load operations.
Names in second, third, and fourth fields may be pushed
up into the next previous fields but the overall ordering
of nawmes must not be altered. Each field can contain a
maximum of fifty-two entry names. The macro is invoked
by the Library macro (IHELIB).

Registers Used
None

140

TITLE: TRAILER MACRO (IHETLR)
Purpose

The Trailer macro supplies the wrap-up loader with the following
information:

1. Defines three symbols which divide the module into three parts:
the body of code, the external reference section, and the entry-
point section, such that the data required in the Header macro
(IHEHDR) can be calculated. (See "Runtime Routine Structure"
in Appendix A.) ‘

2. Generates a pointer in the external reference table which
identifies the external reference and provides a linkage if
the external reference points to an entry point associated with
one of the special functions requiring access to the block adcon
area for the functions (to access the entry-point address).

3. Generates a displacement in the entry point table which
identifies the entry point, and a displacement within the code
body from which the address of the entry point can be determined.

Call

[label]l] TIHETLR EXTRN,ENTRY,NAM1=#1,NAM2=#2,NAM3=4#3,
NAM4=#U4 , FMT=0BH '

The parameter EXTRN contains one subfield per external symbol referenced
by the module. Similarly, the ENTRY parameter contains a subfield

for each entry point defined in the module. The keyword parameter

FMT identifies the form of the subfield entries. IF FMT=0BH, the
subfield values are the last four characters of the library external

or entry-point name. A slot has been provided for other subfield
formats as may be required. At present, FMT#OBH results in the output
of a message.

The keyword parameters NAM1, NAM2, NAM3, and NAM4 are as described
for the Header macro and must be identical to respective field
definitions for the Header macro.

Default parameter values are:

NAM1=#1
NAM2=#2
NAM3=#3
NAMA4=#4
FMT =OBH

Registers Used

None

141

TITLE: ZAP MACRO (IHEZAP)

Purpose

The Zap macro defines symbols and DSECT's covering FCB's, symbol tables,
DED's, the communications area, and user terminal tables.

call
IHEZAP
The macro is invoked by the Library Definition macro (LIBDEF).

Registexrs Used
None

142

TITLE:

LIBRARY DEFINITION MACRO {(LIBDEF)

Purpose

The Library Definition macro provides all the symbol and DSECT
definitions as described for the Library macro plus other symbols and
DSECT's of special interest to the library interface modules. Among
these are:

1. Redefinitions
2. Redefinitions
3. Redefiniﬁions
4. Definition of
5. Definition of
6. Definition of
7. Definition of
8. Definition of
Call
LIBDEF

of standard adcon-area offsets

of standard save-area offsets

of V/type symbols

DSECT's
DSECT's
DSECT's
DSECT's

DSECT's

covering FCB's

covering DED's

covering symbol tables
covering communications areas

covering user terminal tables

The macro invokes the following macros:

Library macro (IHELIB)
Standard Offsets macro (IHELBE)
Zap macro (IHEZAP)

Registers Used

No registers are used directly by LIBDEF. Its relationships to called
routines and required values are shown in Figure D-3.

143

LIBDEF

—IHELIB

——IHESYM

Library Entry Points

IHEADC

—Adcon Area Definitions

—Standard Save Area Offsets
—General Register Assignment
b.Error Codes

——IHELBE

Standard Adcon Area Offsets

Offsets for Relocatable Registers in LWS

Offsets for Non-Relocatable Registers in LWS
edefine V/Type Symbols to L@ Symbols

L—— IHEZAP

— FCBDEF DSECT
—FCIBDEF DSECT
—SYMTABLE DSECT
—DED DSECT
—COMMUN DSECT
—UTT DSECT

Figure D-3. LIBDEF Calls

144

TITLE: READ DISK MACRO (READDISK)
Purpose
The Read Disk macro reads a record from disk.
Call

READDISK OFF1,0FF2
Parameters OFF1l and OFF2 are offsets to the LWS and LWSP area pointing
to the non-relocatable and relocatable standard save areas,
respectively. The macro invokes the CALL/360-0S macro (CALRTS) and
the ERRCD macro (IHERRCD).

Registers Used

Preset pseudo registers:

P3 Adcon cover register
P6 LWS cover register

Scratch pseudo registers:

G2-G5 inclusive

145

TITLE: READ TERM MACRO (READTERM)
Purpose
The Read Term macro reads a new line from a terminal unit.
Call
{labell READTERM
This macro invokes the CALL/360-0S macro (CALRTS). Prior to invoking
the CALL/360-0S macro, a question-mark character is placed in the
buffer with all buffer controls updated accordingly.

The macro statement may be labeled.

Registers Used

Preset pseudo registers:
P3 Adcon cover register

P2 A (terminal output control block)
P8 Local cover macro

146

TITLE: UNIFORM INTERFACE FOR SVC MACRO (RTSSVC)

Purpose

The Uniform Interface for SVC macro provides a uniform interface for
SVC invocation from object program routines, regardless of operating
environment.
Call

- [symbol] SVC svc-code-number

svc-code-number : the operand number of the desired SVC

The macro generates a call upon an SVC interpreter subroutine. 1In
a simulated environment, the SVC is also simulated. 1In the real

environment, a live SVC is issued. By using an interface, the necessity
for having two versions of object-program library routines is avoided.

Registers Used

None

147

TITLE: SET DISK MACRO (SETDISK)

Purpose

The Set Disk macro sets the first eight bytes of the input disk buffer
according to information contained in the FCB. If the file is an
external disk file, character line counter (WCOUNT1) and total buffer
character counter (WTOTCHAR) are reinitialized. A code flag (X*'C0')
is set in the buffer area.

If the file is an internal disk file, the code flag (X'40') is set
in the buffer area and the FCB is updated.

Call
SETDISK

Registers Used

Preset pseudo register:
P3 Adcon cover register
Symbolic registers:

ADLCA Local cover register
ZERO General data register

148

TITLE: SET ERROR CODE MACRO (SETERRCD)

Purpose

The Set Error Code macro sets the error code in the library
communications area.

call

SETERRCD INDEX,PREG °
Parameter INDEX supplies the last two characters of the error code,
and parameter PREG is a scratch general address which can be used by

the macro.

Registers Used

Preset pseudo register P3 as adcon cover register
Symbolic general data register ZERO
A user-designated general address register

149

TITLE: SET FILE CONTROLS MACRO (SETFLCA)

Purpose

The Set File Controls macro loads two symbolic general data registers
(COUNT1,LNEWDTH) with the current line character count and line width,
respectively.
Call

SETFLCA

Registers Used

Preset pseudo register:

P3 Adcon cover register
Non-preset:

Pseudo register P4 as local cover register
Symbolic general data registers:

COUNT1 Current line character counter
LNEWDTH Line width

150

TITLE: SET DOPE VECTOR MACRO (SETSDV)

Purpose
The Set Dope Vector macro sets the stream dope vector.
Call

{label]l SETSDV REG1,G1l,G2,0FFSET1,OFFSET2,COUNT1
Parameter register REG1 supplies the starting address of the sources.
Parameter registers Gl and G2 are general-data scratch registers.
Parameters OFFSET1 and OFFSET2 supply the offsets in the LWS and LWSP,
respectively, pointing to the non-relocatable and relocatable work

areas, respectively. Parameter register COUNT1 supplies the source
stream length.

The macro statement may be labeled.

Registers Used

Preset pseudo registers:
P0 Adcon cover register
P6 LWS cover register
P9 LWSP cover register
Symbolic general data register COUNT1

One user-designated general address register
Two user-designated general data registers

151

APPENDIX E - OBJECT CODE STORAGE LAYOUT

This appendix describes the layout of a CALL/360-0S PL/I object program.
Each object program consists of distinct sections. These sections,
in the order they appear in computer storage, are:
1. Communications area
2. Terminal I/O buffer
3. Object program
4, Line number table
5. Static and constants storage
6. Address constant area
7. CALL/360-0S PL/I library
8. Static array and string storage
9. Disk I/0 buffers
10, Dynamic storage
Since the sizes of some sections are not determinable until after
compilation has been completed, each section must be addressed
separately by different base address constants. The addresses of
sections 3, 5, and 6 are always contained in fixed general purpose
registers except during execution of a routine from the library. The
addresses of all areas are contained in fixed locations in the address
constant (adcon) area.
The communications area, terminal I/0 buffer, and disk I/0 buffers
are discussed in Appendix F. All other sections are discussed below.
OBJECT CODE
The object code consists of the machine instructions constituting the
compiled program, symbol tables for data I/0, and the object code
address vs. line number table for runtime diagnostics.
SYMBOL TABLE
Each symbol table consists of entries for each variable to be written
or that can be read in an I/0 operation. On input, one table contains
entries for all identifiers that can be read. An output operation

may use more than one symbol table. Each symbol entry in the symbol
table is five words long (fullword-aligned) and contains:

1. The name of the identifier.
2. The DED for the identifier.
3. The number of subscripts.

4. How to locate the identifier, if a scalar, or its dope vector,
if an array or a string.

152

The identifier or its dope vector is obtained by using two offsets.

The first offset (KaSTO1l) indicates the displacement within the adcon
area to the base address. The second offset (KaSTO2) is the
displacement from the base address to the identifier or the dope vector.
Figure E-1 shows the format of a symbol table entry.

1 2 3 L} Byte

r |

| |
Word 1 | Name |
|- (in EBCDIC) -———————=——- |

| KaSTNM |

2 | |
e |

| | Number of 1

3 | DED | Subscripts |
| K@sSTDD | KasTsB |

| S |

| Offset (1) |

4 | KasToOl |
[== oo e !

| Offset(2) |

5 | KasTO2 |
e e e e il

Figure E-1. Symbol Table Entry

The end of a symbol table is indicated by a two-byte field that contains
zeros.

An end-of-table entry in the symbol table is only one word long
(halfword-aligned). It contains a pointer to the next segment of the
symbol table, if any.

OBJECT CODE ADDRESS—-LINE NUMBER TABLE

The object code address vs. line number table is at the end of the
object code and is fullword-aligned. There is one entry in the table
for each line in the source program on which a statement begins. Each
entry is two words long. The first word contains an object code pointer
and the second an integer line number in packed decimal. The
terminating entry in the table contains an object code pointer
consisting of the largest positive integer possible.

Thus, each statement of a CALL/360-0S PL/I source program and the
object code generated for that statement are correlated. This serves
as an important debugging aid. Figure E-2 shows the format of an entry
in the table.

1 2 3 4 Byte

r T TS T T e 1

| Object Code Pointer |

Word 1 | KaoOLOP |
| -—=-===-|

| Line Number (Packed Decimal) |

2 | KaOLLN |

L —]

Figure E-2. Object Code Address-Line Number Entry

153

STATIC AND CONSTANTS STORAGE

This area contains all of the static storage, dope vectors, and
constants used by the object program. Besides user-declared constants,
data element descriptors (DED) and format element descriptors (FED)

are included. This area actually consists of two subareas. The second
of these areas contains the storage for all static arrays and strings.
The first of these areas contains all other items. All automatic
variables declared in the external procedure are treated as static
variables.

The initial layout of the static and constants area is shown in Figure E-3.

Hex
0 Entry Must Be Zero
4 Offset to Block’s BAA
8 Offset to End of DSA
C Offset to Start of Static Array and String Storage
10 Not Used
! il DSA for
N External
Block
28 ERROR
2C FIXEDOVERFLOW
30 OVERFLOW
34 UNDERFLOW
38 ZERODIVIDE
3C ENDFILE

40 f" Not Used
; H

A0 Debug Print Buffer 2 (120-character)

L
1€ Debug Dump Save Area

S

158 Debug Print Buffer 1 (132-character)
IDC | NotUsed
1E0 File Control Interface Block Offsets
i :
¢ '
1F8 FCIB for SYSIN/SYSPRINT 1 see Fi qure E11.)
1FC Not Used

200 | _ Free Static and Constants Area

Figure E-3. Static and Constants Area

154

Space for the six non-relocatable general purpose registers and the
four floating-point registers is reserved in fixed locations at the

beginning of this area.

epilogues.

In order to make control of on-units in the external procedure the
same as those in internal procedures, the first few words of this area

are set up the same as the beginning of a dynamic storage area (DSA).
Thus, in effect, static and constants storage is the DSA for the

external procedure.

DATA ELEMENT DESCRIPTOR (DED)

This control block contains information derived from explicit and

implicit declaration of variables of type arithmetic and string.

formats are shown in Figure E-4, and the flag field of each DED is

further described in Figure E-5.

e S o o S o —————————— —— T ————— — — . —— —— —— - - -

|
|DED Formats (in bytes) |

This space is used by the arithmetic interrupt
instructions in the communications area and on-unit prologues and

DED

| |

| Data Type | Representation |- |

| | rr 1P 2 1 3 |

|-- os-om-- -- $------—1]|

| | Fixed-point | Flags | P | Q |

| Arithmetic | Floating-point | KaDDFF| KaDDP | KaDDQ |

| 1 1 i |

| | | Flags | |

| sString | | KaDDFF | Length |

b e e e e ke e e - 4

Figure E-4. DED Formats
- 1
Bit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |

- $- ¥ e I a— === [

| | | | Fixed | | | | |

I | | | o | | | | |
0=|String | 0 | 0 |-——=---- | 1 | 1 | 0 | |

I | | |variable| | | | |

| | | | 1| | | | |

I A e S - - i sl

| | | | | | | | |

| | Inter- | 0 | short | 1 |Decimal| Fixed |Real |=0
1=|Arith- | nal | | | | | [|

[metic [-——-—-- e f-—-- = pm- L fomemmme [

| | | | | | | | |

| |Exter—- | 0 | Long | 1 |Binary | Float |Complex|=1

IL | nal | | | | | | J

e Figure E-5. Definition of DED Flag Field (KaDDFF)

The P Byte

P is the declared or default precision of the datum.

values are 9 for fixed and 16 for float.

The maximum

155

The O Byte

Q0 is the declared or default scale factor of the datum, in excess-128
notation (that is, if the implied fractional point is between the last
and next-to-last digit, Q will have the value 129).

FORMAT ELEMENT DESCRIPTOR (FED)
This control block contains information derived from a format element
within a format list specification for edit-directed 1I/0. There are

four forms of the FED (all halfword-aligned):

1. Format Item E

1 2 3 4 Byte
1
| W | D | s |
| KaFEW | KaFED | K@FES |
L -1

W - width of data-field in characters

D - number of digits following decimal point

S - number of significant digits to be placed in data-field
(ignored for input)

2. Format Item F

1 2 3 u Byte
1
| w | D | P |
| KaFEW | KaFED | KaFEL |
L —_— ———1

W and D - (as for E-format)
P - scale factor in excess—-128 notation

3. Format Items A and X

1 2 Byte

r

i W

| RaFEW
L

[p——}

W - (as for E-format)
L Printing Format Items SKIP and COLUMN

The FED's for these format items are halfword binary integers.

DOPE VECTORS

String Dope Vector (SDV)

This control block specifies storage requirements for character-string
data. An SDV consists of eight bytes (word-aligned), in the format
shown in Figure E-6.

156

1 2 3 4 Byte

| Byte Address of String (Offset)

Word KaDVND=0 | KabDvvo

1
2
KaDVIN

e |
o e s, e ciems e

Figure E-6. SDV Format

where £ is the length-1 of the string in bytes; a negative value
indicates the null string.

Array Dope Vector (ADV)

This control block contains information required in the derivation
of elemental addresses within an array data aggregate. The ADV has
three functions:

1. Given an array, to step through the array in row-major order.

2. Given the subscript values of an array element, to determine
the element address.

3. Given an element address, to determine its subscript values.

In a CALL/360-0S PL/I implementation, arrays are stored in row-major
order in storage. The elements of an array are normally in continuous
storage; if the array is a cross-section, its elements may be
discontiguous. Such discontiquity, however, is transparent to
algorithms that employ an array dope vector.

The ADV contains (4#+6n) bytes, where n is the number of dimensions of the
array. The ADV is word-aligned. Its format is shown in Figure E-7.

157

1 2 3 4 Byte

r 1
Word 1 | Number of | virtual Origin |
| Dimensions| KaDvvo 1
|__KaDVND__| |

2 | | |
KaDVIN | Multiplier(1) | Multiplier(2) |
I | I

| B |
Word 3 | | |
- I - - - - - - | - - - - - - |
- | | |
- ¥ -------]
| | |

| « « « « . e | Multiplier(n) i

| | |

| fmmm oo |

| | |

| Upper Bound(1) | Lower Bound(1) |

I | |

| 1 ---1

| | |

| - - « « o . | - - - - o . |

| | |

| ¥ - ---|

| | |

| -« a0 e . o e v e e |

I | |

| === ---1

| | |

| Upper Bound(n) | Lower Bound(n) |

| | |

S S S S S 4

Figure E-7. ADV Format

Definitions of ADV fields:

Virtual Origin - The byte address of the array element whose subscript
values are all zero, that is, X(0,...,0); this element need not be

an actual member of the array, in which case the virtual origin will
address a location in storage outside the actual bounds of the array.
(This address is an offset.)

Multiplier - Multipliers are halfword binary integers which in the
standard ADV algorithm allow calculation of element addresses.

Upper Bound - Halfword binary integer specifying the maximum value
permitted for a subscript in the ith dimension. This value may be
negative.

Lower Bound - Halfword binary integer specifying the minimum value
permitted for a subscript in the ith dimension. This value may be
negative.

ADV Algorithm - Given subscript values for an n-dimensional array,

the address of any element relative to the program origin is computed
as:

158

Address = virtual origin + ((...(S1*M1 + S2)*%M2 + ...) + Sn)*Mn

where
Si = value of the ith subscript
Mi = number of different values the subscript in the (i+1l)th
dimension can assume, except for Mn
Mn = byte length of the element

String Array Dope Vector (SADV)

This control block contains information required to derive the address
of elemental strings. The SADV is identical to the basic ADV, with

the addition of a fullword to the end of the ADV which contains the
length of the string in both halfwords (length-1 bytes and, if negative,
the null string). (See Figure E-8.)

1 2 3 4 Byte

ADV

S8 0 e e e o c——— -
00 0 e e e e - ——)

P — - a c——
=
=
=

L

Figure E-8. SADV Format

ADDRESS CONSTANT AREA

The address constant (adcon) area is used during execution of the
compiled object program to locate the data and library routines
necessary to support execution. A symbolic description of this area

is available to the compiler in the library load table (L table) so
that symbolic references may be made to the area during code generation
and compilation wrap-up.

The adcon area consists of a fixed-length portion and a variable-length

portion. The fixed-length portion of the area has the structure
illustrated in Figure E-9.

159

Address of Communications

Area
Address of Line Number
4 Table
Address of Next Dynamic
8 Storage Area

Address of Last Byte in User’s
12 Area

3
File Control Block
> (FCB)
(See Figure E-13.)
/_\—/ J
70 Address of|Code Pages |
v

16 Words; Successive Object Code Page

/__/ Addresses are Initialized in Consecutive
, Forward Locations as Required; Static/
/____/ Constant Page Addresses are Initialized

1 in Consecutive Backward Locations as
+ Required
Address of Static/Constant J
A8
Storage Pages
AC Address of Relocatable
’ Library Communications Area
BO - Address of Relocatable Save

Area for Execution Error Package

Address of Relocatable Save
B4 | Area for Standard Library Routines

Address of Relocatable Work
B8 Area for Level - 0 Library
Routines

Figure E-9. Layout of Fixed-Length Portion of Adcon Area (Page 1 of 2)

160

BC

Co

C4

c8

CC

DO

D4

D8

DC

EO

E4

E8

EC

114
118
11C

32C

Address of Relocatable Work
Area for Level - 1 Library
Routines

Address of Relocatable Work
Area for Level - 2 Library
Routines

Address of Relocatable Work
Area for Level - 3 Library
Routines

Address of Relocatable Work
Area for Level - 4 Library
Routines

Address of Non-Relocatable
Library Communications Area

Address of Non-Relocatable
Save Area for Execution Error
Package

Address of Non-Relocatable
Save Area for Standard Library
Routines

Address of Non-Relocatable
Work Area for Level - O Library
Routines

Address of Non-Relocatable
Work Area for Level - 1 Library
Routines

Address of Non-Relocatable
Work Area for Level - 2 Library
Routines

Address of Non-Relocatable
Work Area for Level - 3 Library
Routines

Address of Non-Relocatable
Work Area for Level - 4 Library
Routines

Interrupt Save Area

v

PSW Return Address

Object Code Statement Address

N

L@ENDF

Address of Individual
Library Subroutine
Entry Points

(129 Words)

e Figure E-9.

Layout of Fixed-Length Portion of Adcon Area

(Page 2 of 2)

161

The variable-length portion contains adcons for a class of library
subroutines which require individual block adcon areas. The variable-
length portion also contains library routine parameter lists and the
adcon portion of the library work space (LWS). Only adcons for those
routines actually required by the compilation are included in the
variable-length portion.

MULTI-FILE INTERFACE

The interface for terminal and disk files involves pointers in the
communications area, tables in the static and constants area, file
control interface blocks (one per filename) located in the static and
constants area, and a file control block in the fixed-length portion
of the adcon area.

COMMUNICATIONS AREA

The communications area is used for communication with the Executive
during I/0 operations. Its contents are shown below.

Hex

- -
(File Table Offset From Commun) (1E0) |
- 3

FILEPTR 11cC

- s |
File Index | 1,2,3, or 4)

FILENBR 122

Figure E-10. Communications Area

STATIC AND CONSTANTS AREA

FCIB Offsets and FCIB's for SYSIN and SYSPRINT

Up to four disk files can be open at one time. The FCIB's for the
open disk files are pointed to by the first four words of the area
shown in Figure E-11. There are no pointers to the FCIB's for SYSIN
and SYSPRINT. Their origins are fixed as the first and second FCIB
pointer words. This overlay is feasible because only the locations

of the buffer pointer words of the FCIB's for SYSIN and SYSPRINT are
valid. These pointers are the last two words of the area and point

to displacements 2C and 34 of the adcon area. (See "Adcon Area (Fixed-
Length Portion).")

162

Hex

1

A (FCIB Offset (From Commun)) |
== |
I

|

-

FILETABL 1E0

|
1E4 } A (FCIB Offset (From Commun)) **
1E8 = A (FCIB Offset (From Commun)) -—-l
1EC : A (FCIB Offset (From Commun)) :
1F0 = End of Ta;I; (FFFF) =

: Unused T :
1F8 } 00 A(SYSIN Buffer Pointer Pair) -;c.-:
1FC i- 81 A(SYSPRINT Buffer Pointer Pair) 34 J

* - Start of Dummy SYSIN FCIB
** — Start of Dummy SYSPRINT FCIB

Figure E-11. FCIB Offsets and FCIB's for SYSIN and SYSPRINT

FCIB's for Disk Files

An FCIB is built in the static and constants area for each filename used.
This area is defined by FCIBDEF DSECT in the Zap macro (IHEZAP). The
format of each FCIB is shown in Figure E-12.

Hex

r - 1

FCIBTITL 0 | |
| TITLE |

1 1

4 | o ——————— |

{ | |

| | OPEN/Mode |

8 | | |

FCIBMODE | -—- |
| I/0 Code |Record| Half-Tracks |Max. Half-|

FCIBEXEC C | |Number| Allocated | Tracks |
1 | i |Allowed |

| |

FCIBNAME 10 | |
| FILENAME |

| |

14 | -— --= |

| File | Offset from Adcon Area of |

| Codes | Buf fer Pointer Pair |

FCIBFC 18 | - - |
FCIBFCB | | 1
| FILENBR | |

L 1

FCIBNBR ic

Figure E-12. FCIB Format for Disk Files

163

File Codes:

Bits 0 and 1 = 00 SYSIN (terminal)

01 Disk input Declared

10 SYSPRINT (terminal) file types

11 Disk output

Disk input } Set by OPEN

Disk output statement
List or data I/0 flag (disk environment in compiler)
Not busy
Busy
External format
Internal format
Non-print file
Print file

~ o NEWwN

HOROROMMM

ADCON AREA (FIXED-LENGTH PORTION)

The FCB in this area contains a common data specification set up for the
currently active file and six pairs of buffer pointer words. It is
defined by the FCIBDEC DSECT in the Zap macro (IHEZAP) as shown in
Figure E-13.

Hex

10 Codes l Start of Buffer 3

14 - Current Buffer Position

:i}: é____ | Common Data

Specification

20 P i

24 /.

28 FILENBR Address of FCIB J

2¢ | Codes Start of Buffer l SYSIN

30 Current Buffer Position s

34 | Codes | Start of Buffer l YSP

38 Current Buffer Position SYSPRINT
3¢ | Codes | Start of Buffer . h

40 Current Buffer Position

44 | Codes I Start of Buffer

48 Current Buffer Position \ Disk Input
ac | Codes | Start of Buffer or Output
50 Current Buffer Position

s4 | Codes | Start of Buffer

58 Current Buffer Position y

Figure E-13. FCB Format in Fixed Adcon Area

File Codes:

SYSIN (terminal)
01 Input (disk)

10 SYSPRINT (terminal)
11 output (disk)

0 Not used

Bits 0 and 1

]
[~
o

0 Not used

1 List or data 1I/0 flag
0 Not busy

1 Busy

neEwN
Wnun

164

External format
Internal format
Non-print file
Print file

= oMo

Common Data Specification Portion of FCB

Issuance of a GET or PUT statement causes the common data specification
portion of the FCB (words 1 through 7) to be set.
words (words 1 and 2 of the area) are obtained from either the pair

for SYSIN or SYSPRINT or a pair set up for an open disk file.

The buffer pointer

The

location of the proper buffer pointer pair in the FCB is indicated
by a pointer in the FCIB of the file referenced in the GET or PUT

statement.

Byte 1 of word 7 is set with the file index also set in FILENBR of

the communications area.

of the FCIB.

of I/0 being performed.

The remainder of word 7 contains the address

The contents of words 3 through 6 depend on the type

E-14 through E-19.

KaFBST

1 2 3)
r - B
Word 3 | |
| |
|- Not -
4 | I
| |
|—— Used -1
5 1 |
| %
6 | Address of Symbol Table |
|
L

Figure E-14.

-1

Byte

Various possibilities are shown in Figures

Common Data Specification Portion of FCB for Data Input

and Non—-Array Element Data Output

1 2 3 4

r - 1
Word 3 | Address of Element |
| KaFBEL |

| - |
4| |
| |
|-——- Not -1

5 | |
| Used |

| |

| Address of Symbol Table |

6 | KaFBST |
L 3

Figure E-15.

Byte

Common Data Specification Portion of FCB for Array Element

Data Output

165

1 2 3 4 Byte

r 1
Word 3 | Address of sSkip Value {
| KaFBSK |

| |
4 | |
| l
|-——- Not -—=1

5 | |
| |
|- Used -

6 | |
| |

L 1

Figure E-16. Common Data Specification Portion of FCB for Initialize
Output with SKIP Option

1 2 3 4 Byte

r - 1
Word 3 | Address of Element |
| K@FBEL |

[- |

4 | Address of DED |
| KaFBDD |

1 - 1

5 | |
| |
|- Not -==1

6 | Used |
| |

L 1

Figure E-17. Common Data Specification Portion of FCB for List I/0

1 2 3 4 Byte

r 1
Word 3 | Address of Element |
| KaFBEL |

| |

4 | Address of DED i
| KaFBDD |

| -1
51 Address of FED i
i KaFBFE |

| |

6 | Not Used]
| |

v 3

Figure E-18. Common Data Specification Portion of FCB for Non-Complex
Edit 1/0)

166

LN

1 2 3 4 Byte

r 1
Word 3 | Address of Element |
| KaFBEL |

| |
4 | Address of DED |
| KaFBDD |

| - |
| FED | l
5 | Type | Address of Real FED |
| KaFBFT | KaFBFE |

| ¥ =-===-|
| FED | Address of Complex FED |

6 | Type | KaFBIF |
| KaFBIT | |

L -1

Figure E-19. Common Data Specification Portion of FCB for Complex
Edit I/0

BLOCK _ADCON AREA

Each procedure and begin block in the program has a block adcon area
(BAA) in adcon storage. The BAA contains all the information needed
by the block. For a begin block, the area is four words long. For
a procedure block, it is six words plus one word for each parameter.
The format of the BAA for every block other than the external block
is given in Figure E-20.

The BAA for the external block is pointed to by the second word of the

static and constants area. The location pointed to is at displacement
A4 from the start of the fixed adcon area. (Refer to Figure E-9.)

167

Generated for CALL or Function Reference

.
Word 1 | Number of | Address of Block Entry Point
| Parameters| KaBAEP ’
i KaBANP | (Not Used for Begin Blocks)
|
2 | Address of Block's DSA
Begin | KaBADS
Block | -
3] Address of Location Following DSA
i KaBAED
|
IR Block's Epilogue Address
[KaBAEL
|
5 { Return Address
i KaBARA
: - -—————
KaBAPM-——> . Address of Arguments as Stored by Code
|
|
|
|
L

Address of Return Variable (see note)

ot s s s G 8 0 8 cmen s ww—

Note: This field is significant only if the routine is referenced as

a function (rather than called). It is set up by code generated

for the function reference.

Figure E-20. Format of Block Adcon Area (BAA)

ON-UNIT ADCON AREA

The general format of an ON statement is:

option 1. ON-condition on-unit
option 2. ON-condition SYSTEM;

During compilation, space for an on-unit adcon area is allocated for
each ON statement of the form shown in option 1. The format of the
on-unit adcon area for all on-units except ON ENDFILE is illustrated
in Figure E-21.

168

from Levels 0, 1, and 2 Work Space
(240 bytes)

r 1

Word 1 | Address of On-Unit Entry Point |
| KaBAEP |

| |

2 | Address of DSA |

| KaBADS |

| |

3| Address of Following DSA |

i K@BAED |

| i

4 1 Not Used i

| |

5 | PSW Save Word (Second Word of PSW) |

1 KaONPS 1

| |
KaONSA---> . -
6-15 Relocatable Register Save Area -
(Registers 6-15) .

-— !

16-75 Save Area for Relocatable Registers |
|

|

1

o — e i w— & []

Figure E-21. Format of On-Unit Adcon Area (Except for ON ENDFILE)

Word 1 - the location of the code that will be performed if the
ON-condition is raised.

Word 2 - the address of the DSA (on-unit format) obtained when
the ON-condition is raised.

Word 3 - pointer to the word following the last word in the DSA
pointed to by word 2.

Word 4 - Not used.

Word 5 - the second word of the PSW, which is saved when the
ON-condition is raised.

Words 6 through 15 - If the ON-condition is raised, the
relocatable registers are saved in these locations.
The non-relocatable registers are saved in the DSA
pointed to by word 2.

Words 16 through 75 - If the ON-condition is raised, the

relocatable sections of the level 0, level 1, and level
2 save areas are moved to these locations. The non-
relocatable save areas of these levels are moved to
the DSA pointed to by word 2.

The format of the on-unit adcon area for ON ENDFILE is illustrated
in Figure E-22.

169

Dec Hex

ENDCON1 0 0 |Address of On-Unit Entry Point }
ENDCON2 4 4 ' !Addr;;; of DSA =
ENDCON3 8 8 {Address of Word Following DSA :
ENDCONY4 12 C =Not Used '
ENDCONS 16 10 iPsw Save Word (Second Word of PSW) j

Figure E-22. Format of ON ENDFILE Adcon Area

The ON ENDFILE adcon area has the same format as words 1 through 5
of the on-unit adcon area for other types of on-units. The contents
of these words have similar meanings.

LIBRARY
At the beginning of the library area is the non-adcon portion of the

library work space. Immediately following are all of the library
routines needed for the object program.

STATIC ARRAY AND STRING STORAGE

Space for arrays and strings declared in the external block is allocated
in this region. All items in this area are referenced by a dope vector
in the static and constants area.

DYNAMIC STORAGE AREAS AND ON-CONDITIONS

A DSA (block type) is obtained during the initialization process for
internal procedures and begin blocks. (The external procedure block

is assigned an area within the static and constants area which serves
the function of a DSA and is thus called the external block's DSA.)

In addition, a DSA (on-unit type) is obtained if an ON-condition covered
by an option-1 ON statement occurs (see "On-Unit Adcon Area", above).
The space obtained for these DSA's is released when the block is exited
or when the code specified by the option-1 ON statement has been
executed.

CALL/360-0S PL/I ON-conditions are error, fixed-point overflow, other
overflow conditions, underflow, zerodivide, and end of file. Each
DSA for a procedure or begin block contains ERROR, FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, ZERODIVIDE, and ENDFILE words corresponding to
these conditions.

The format of each of the first five interrupt condition words is shown
below.

1
| Action | Pointer to On-Unit |
| Code | Adcon Area |
L

——— . ———d

170

The format of the ENDFILE word follows.

Number of | Pointer to
Entries | ENDFILE Table

o oy
[

The first byte of the ENDFILE word indicates the number of entries
in the ENDFILE table. (See Appendix B.)

There is an entry in the ENDFILE table for each unique file referenced
within a block containing an ON ENDFILE statement. The first word

of that entry and the DSA words for the interrupt conditions have the
same format. They are often called action words.

Part of the initialization for a block is to set up the ENDFILE table
and to set all action words to zero. Execution of any ON statement
causes the setting up of an action word. The meaning of the action
word is determined by the action code byte. Code values are explained
below.

Code Meaning
0 Either an ON statement for this condition or file has

not been executed in this block or a REVERT statement
was the last statement executed for this condition or
file. If the corresponding ON-condition is raised,

the code byte of the corresponding word in the
immediately preceding DSA will be checked. If 1 or

3, the action indicated by this code will be performed.
Otherwise, the next preceding DSA will be checked.

This process will continue until either a code byte
equal to 1 or 3 is found or all preceding DSA's have
been searched. 1In the latter case, the standard system
action will then be performed.

1 This code value is set by the execution of an option-
2 ON statement or by execution of a REVERT statement
which resets conditions to those specified by a previous
ON SYSTEM statement. If the corresponding ON-condition
is raised, the standard system action will be performed.

3 When an option-1 ON statement or a REVERT statement
which resets conditions to those specified by a previous
option-1 ON statement is executed, the action-code byte
is set to 3. The last three bytes are set to point
to the on—-unit adcon area for that statement. If the
corresponding ON-condition is raised, the action
specified by the ON statement will be performed after
an on-unit DSA is obtained. If the ON-condition was
not ON ENDFILE, registers will be saved in the on-unit
adcon area and DSA area. Levels 0, 1, and 2 work areas
will be moved to the adcon area and DSA area.

Figure E-23 illustrates the DSA for internal procedure and begin blocks.

The ENDFILE table is pointed to by the immediately preceding ENDFILE
word.

171

Dec Hex

Automatic Arithmetic
Scalars, Strings, and
Arrays .

ENDDSA1l 0 0 {-;ointer to Previous DSA }
ENDDSA2 4 4 : Pointer to BAA :
ENDDSA3 8 8 ; Unused :
ENDDSAH4 12 20 { Unused =
i |

ENDDSAS 40 28 | ERROR i
: FIXEDOVERFLOW :

: OVERFLOW }

: UNDERFLOW }

{ ZERODIVIDE !

ENDDSA6 60 3c : ENDFILE :
ENDDSA7 6u 40 % ENDFILE TABLE :
i

1

=0 0 & oumy

Figure E-23. Layout of DSA for Internmal Procedure and Begin Blocks

ENDDSAl1 is a pointer to the previous DSA (which is either that of the
next outer block or that of an on-unit). ENDDSA2 is a pointer to the
block adcon area (BAA). Automatic arithwetic scalars, strings, and
arrays are set up at initialization time. (For a discussion of the
contents of ENDDSAS5, ENDDSA6, and ENDDSA7, see preceding paragraphs.)

A portion of the static and constants area is called the DSA for the
external block. However, this storage area is not dynamic. It also
differs from other DSA's in that the ENDFILE table is not adjacent
to the ENDFILE word. The ENDFILE table is in the free static and
constants area of the static and constants area.

Figures E-24 and E-25 illustrate the DSA areas for on-units.

172

32
40
60
64

88
208

328 1

Figure E-24

ENDDSA1
ENDbSAZ
ENDDSA3
ENDDSAU4
ENDDSAS

ENDDSA6
Figure E-25

EXAMPLES

20
28
3cC
40

58

DO

48

Hex

Layout

Dec Hex
0 0
4 4
8 8
12 20
40 28
60 3C

Pointer to Previous DSA i

—n

Pointer to On-Unit Adcon Area |

General Purpose Registers G0-G5S

Floating-Point Register F1

Set to All Zeros

Floating-Point Registers F2-F4

Level 0 Non-Relocatable Area
(first 120 bytes)

Level 1 Non-Relocatable Area
(first 120 bytes)

- -

Level 2 Non-Relocatable Area
(first 120 bytes)

[. S G ———— —— Gt — - R S S N —— ——

[o e st . i, s o, b i s, o ay

of DSA for On-Units (Except ON ENDFILE)

Pointer to Previous DSA
Pointer to On-Unit Adcon Area
Unused o
Onused

Set to All Zeros

Layout of DSA for ON ENDFILE On-Units

In summary, a few examples are given below.

Example 1: Assume that a call is made to internal procedure INT1 (a
portion of which is shown below).

100 INT1:

200 ON UNDERFLOW SYSTEM;

PROCEDURE;

173

300 Z = 5+10*%*-040/10*%%-U42;

A DSA (block type) is initialized. Then, the following actions occur.

1.

5.

As part of INT1, the ON UNDERFLOW SYSTEM; statement is executed.
This causes the action-code byte of the UNDERFLOW word in the
DSA for the intermnal block (that is, for INT1) to be set to
one.

The code generated for the assignment statement causes an attempt
to divide 10#*%-40 by 10%*-42. A machine interrupt occurs.

The Executive transfers control to the Error Routine (IHEERR)
via the code at ARINTRP of the communications area. IHEERR
determines that the interrupt is due to an underflow condition.

The action-code byte of the UNDERFLOW word in the DSA is examined
and found to be one. Therefore, standard system action (printing
of the UNDERFLOW message) is performed.

Return is made to the point of interrupt.

Example 2: Assume that a call is made to internal procedure INT2 (a
portion of which is shown below).

800 END
900 END

100 INT2: PROCEDURE;

-

200 -OPEN FILE(FIHL2) INPUT;

300 ON ENDFILE(FIHL2) X=2;

390 PO I =1 to 10;
400 GET

FILE(FIHL2) A,B,C;

)

. %

A DSA (block type) is set up. Then, the following actions occur.

1.

174

As part of INT2, the ON ENDFILE(FIHL2) X=2; statement is
executed. This causes the action-code byte of the action word
of the ENDFILE table entry in the DSA that corresponds to FIHL2
to be set to 3. The remaining three bytes of the action word
are set to point to the on-unit adcon area for this statement
(which was allocated when the statement was compiled). Note
that X=2 is not executed.

Assume that FIHL2 contains only nine sets of items to be read
into A, B, and C. Then, the tenth execution of the GET statement
causes an attempt to read past the last data item on FIHL2.

The ENDFILE condition is recognized by the List- and Data-
Directed Input routine (IHELDIB). It calls IHEERR.

4, IHEERR examines the action-code byte of the action word in the
ENDFILE table entry for FIHL2. Since the byte contains a code
of 3, IHEERR performs the following actions.

a. Initializes the on-unit adcon area pointed to by the action
word. '

b. Obtains main storage locations for an on-unit DSA.

c. Initializes the on-unit DSA.

d. Transfers control to the on-unit code pointed to by the
first word of the adcon area. This code corresponds to
X=2 and causes X to be set to 2.

5. The on-unit code transfers control to entry-point IHEERRN of
Error Routine (IHEERR).

6. IHEERR releases the on~unit DSA area and transfers control to
the next statement in the intermal block (that is, in INT2).

Example 3: Assume that a call is made to internal procedure INT3 (a
portion of which is shown below).

100 INT3: PROCEDURE;

200 ON UNDERFLOW BEGIN;

210 Z=0;
220 SWT2=5;
230 END;
300 X=5;

400 R=F/Y;
900 END;
A DSA (block type) is set up. Then, the following actions occur.

1. As part of INT3, the ON UNDERFLOW BEGIN; statement is executed.
This causes the action-code byte of the UNDERFLOW word in the
DSA for internal procedure INT3 to be set to 3. The remaining
bytes of the UNDERFLOW word are set to point to the on-unit
adcon area (established for this statement at compile-time).

2. Control is transferred past the code generated for the begin
block (to statement 300).

3. A machine interrupt occurs while the expression R=F/Y is being
computed. Control is passed to IHEERR.

4. IHEERR determines that the interrupt is due to an underflow
condition. Then it determines that the action-code byte of
the UNDERFLOW word is set to 3. As a result, IHEERR performs
the following actions.

a. Saves relocatable registers and second word of PSW in the

on—-unit adcon area pointed to by the rightmost three bytes
of the UNDERFLOW word.

175

b. Moves levels 0 through 2 relocatable library work space
to on-unit adcon area.

c. Gets a DSA for the on-unit and saves non-relocatable
registers in this area.

d. Moves levels 0 through 2 non-relocatable library work space
to the DSA.

e. Transfers control to the code generated for the begin block
via the first word of the on-unit adcon area.

5. The initialization code for the begin block causes another DSA
(block type) to be generated. In addition, the block may contain
option-1 ON statements (that is, having specified on-units)
that cause action words to be set up for this DSA when the ON
statements are executed.

6. After the main code of the begin block has been executed, its
epilogue code is performed. The DSA for the begin block is
released.

7. Control is transferred to entry-point IHEERRR of Error Routine
(IHEERR).)

8. IHEERR performs the following actions.
a. Restores fixed and floating-point registers. Restores PSW.
b. Restores levels 0, 1, and 2 library work space.
c. Releases the DSA for the on-unit.

d. Causes control to be returned to the point of interfupt.

DATA ADDRESSING

All items in the object program can be addressed by a combination of

a base address and a displacement from that address. All necessary
base addresses are either in the adcon area or permanently assigned .

to relocatable registers. Thus, the base address can be easily obtained
and the displacement added to give the true address of the item.

The object program uses ten relocatable registers, six of which have
permanently assigned values. The other four (12 to 15) are used for
obtaining necessary base addresses and for linkage. Figure E-26 shows
the contents of the general purpose registers.

Library
Designation
r 1
GPR	0-5	Fixed-point arithmetic	GO to G5
	6-8	Code cover (first 12,288 bytes)	PO to P2
	9	Adcon area cover	P3
] 10	Static and constants cover	P4	
	11	Current DSA cover	P5
	12	Volatile	P6
	13	Volatile and parameter list cover	P7
i	14	Volatile and return address	P8
	15	Volatile and entry point address	P9
lemeo— —————————— - - 1

Figure E-26. General Purpose Register Assignment

176

During subroutine linkage, the parameter list register and the entry
point register are used only if needed. Subroutine linkage assumes

that general purpose registers 2 through 11 and floating-point registers
4 and 6 are the same upon return.

177

APPENDIX F — SUPPORT SERVICES FOR LANGUAGE PROCESSORS

The CALL/360-0S PL/I compiler (language processor) runs in a simplified
time-sharing environment under the control of the CALL/360-0S Executive.
Facilities are simplified in keeping with the design objective of a
high-performance system. The CALL/360-0S Executive analyzes and
responds to all terminal commands. It provides a line editor that
accepts source programs from a terminal and arranges this input for
compilation.

The interface between the CALL/360-0S Executive and its associated
processors and user programs is based on the following requirements:

e All processors and user programs are relocatable.
e All processors are reentrant.

e All jobs can be described for the present as the sequence:
compilation plus execution.

e At compilation time, two modules are in use by the terminal: the
processor and the user program area. The processor is considered
to have control.

e At execution time, only one module is in use by the terminal:
the user program area. All runtime I/0 routines, arithmetic
functions, etc., are attached to the program area as a runtime
package. The user program is considered to have control.

e Control may be taken away from the language processor or user
program at any time (with two exceptions--see below) and the user
program area written onto the disk.

e This generally happens when a program uses its initial time quantum
(presently about three seconds). When it is time for the user
to "get another time slice," the user area is read from the disk
into (probably) a different area of core. This process is generally
referred to as af'txme~quagtam swap.

The interface is deaignqé no &a&: a miriimum amount of interaction is
needed. This is a n ary fﬁatuxe in a‘time-sharing system where
80-90 perceht of all jobs are & ed in less than 900 milliseconds.
The interface consists primarily of two core communications regions.
The regions are the communications area of the user work area and the
user terminal table.

The CALL/360-0S Executive can be called only via the SVC instruction
in the communications area. To issue a request to the Executive, a
language processor or runtime program must load register 0 with a
request code and then execute the SVC instruction to transfer control
to the Executive. In. CALL/360-0S PL/I, this is accomplished at compile .
time by calling the SVC Director ($SVC); it is accomplished at runtime
by calling the Library SVC BPirector (IHESVC). Either routine loads
register 0 with the parameter passed by the calling instructions and
executes the SVC. The code in register 0 tells the CALL/360-0S
Executive what action to take. A language processor on this system
should not exceed 81,920 bytes (forty 2048-byte blocks) in order to
achieve effective utilization of memory.

Note: 1In CALL/360-0S documentation, the request code loaded in register
0 is usually referred to as an SVC code.

178

COMPILER/EXECUTIVE INTERACTIONS

STORAGE ALLOCATION

To eliminate the necessity for elaborate and time-consuming core
management routines, when a user specifies that his program is to be
compiled and executed, the space necessary to accomplish this is
allocated in one contiguous block. This block contains, at various
stages in compilation and execution, the communications area, source
program, object program, compiler work space, disk and terminal I/0
buffers, etc. The Executive uses a unique core allocation algorithm
for each processor in the system. This algorithm must be expressed
in terms of constants and the following variables:

1. Number of bytes in the source program
2. Number of lines in the source program

The algorithm should be such that compilation and execution of . at least
90 percent of all programs using that processor can be accomplished
within the allocated space. The actual core area allocation is the
smallest number of 2048-byte blocks which completely contain the
computed number of bytes. '

There is a 2048-byte area at the very bottom of the user area that
the Executive uses for holding various pointers. This area is swapped
with the user program. Language processors, however, are generally
unaware of its existence.

The allocated area may be arranged by the processor in any way with
the following restrictions:

1. A communications area must exist at the bottom (that is, in
the lower-numbered locations) of every user area.

2. Before compilation, the source program will be placed by the
Executive at the top of the user area, at a location indicated
in the user terminal table.

If, during the course of compilation, it is determined that the amount
of core initially allocated is insufficient, the additional core
required is requested by the SVC in one of two modes. The first mode
is used when compilation has been completed, and the Executive need
only attach the extra core to the existing area and return control

to the requester. The second mode of the SVC is used when compilation
is incomplete, and the amount of extra core required is indeterminate.
In this case, the Executive will add a percentage of the original
allocation to the area, set a bit in the UTT indicating that
reallocation has taken place, and restart the compilation from the
beginning.

INITIAL REGISTER SETTINGS
Before passing control to a processor, the Executive sets register
7 with the base of the processor, and register 12 with the base of

the user (program) area. Control is then passed to the first byte
of the processor.

179

USER WORK AREA

The Executive places the source program entered by the user at the
end (higher-numbered locations) of the user work area. This text
contains line numbers and end-of-line indicators. The format of the
source lines is depicted in Figure F-1.

count EOF

v v

count NL NL

Figure F-1. Format of CALL/360-0S Source Lines

Each line is started by a count byte. The count is in binary. This
byte contains the number of bytes in the line including the count byte
itself. The next character after the count byte is a numeric character
which is the first character of the line number. The line number is
one to five numeric characters in length and is terminated by the first
nonnumeric character if the number is less than five digits. The last
character in the line is the new line (NL) character.
Source lines begin and end on byte boundaries. There are no spaces
or fills between lines. The last character of the source program is
an EOF character which is hex 01. The EOF character is in the position
occupied by what would be the count byte if there were another 1line.
The beginning (lower-numbered locations) of the user work area has
the user communications area. The communications area is used to pass
parameters between the compiler and the object program. Some of the
items contained in this communications area are:
1. Pointer to and length of address constant area:
a. For compiler®s address constants
b. For user's address constants
2. Register relocation information:
a. For‘registers containing compiler address constants
b. For registers containing user address constants
3. Interrupt control information
4. Swap flag
5. Terminal I/0 buffer
6. - Pointer to next available byte in terminal I/0 buffer
7. Terminal output inhibit flag
8. Pointer to user's UTT entry (set by the CALL/360-0S Executive)
A complete list of .the contents of the communications area is given

under "Communications Area™ in this appendix.

180

USER TERMINAL TABLE

The user terminal table (UTT) is a table that is maintained by the
CALL/360-0S Executive in its own area. It is primarily for the use

of the Executive. However, it also contains information that is needed
by the compiler. It may be read, but not written, by the compiler.
Some of the items contained in the UTT are:

1. Length of user's work area
2. Location and length of source program
3. Information as to whether disk files have been attached

The contents of the UTT required by the compiler are listed under "UTT
Data Available to Language Processor" in this appendix.

The UTT is assembled as a DSECT macro and is available to all processor
writers. It will be supplied either on cards or through the macro
library.

ADDRESSING

All processors and user programs in the system must be interruptable
and relocatable at any time (with two exceptions which are described
below). When a processor or user program is relocated, the Executive
will update all 24-bit addresses referencing the relocated area before
returning control to the point of the interrupt. All updating will

be made by performing fullword adds. To make this possible, the
location of these values must be specified in the communications area
of the user program. This is done by means of six words (CSPTR through
PSREG): three describing those values to be relocated with the
processor and three describing those to be relocated with the user
program. The first word in each set points to the beginning of the
contiguous block containing that type of saved value. The second word
indicates the extent of the block. The third word specifies the first
and last registers, in the order used in an LM instruction, containing
such values. The implications of this method are as follows:

1. All stored values referencing a processor or user program must
be kept in the specified contiguous locations, and these
locations must contain only this type of value.

2. All values referencing the processor and the user area which
are kept in registers must be kept in the registers specified
by CSREG and PSREG. The registers specified by CSREG and PSREG
must be in sequence and contain only this type of value.

Note: Register 0 is considered to contain absolute values and is never
updated.
I/0 PROCESSING

There are two types of I/0 processing done by a processor or user
program: terminal and disk.

Terminal I/0

The terminal I/0 buffer (TMBUF) is at the end of the communications
area. This buffer is used for all input or output operations with
the terminal. Input from the terminal is requested by means of a call
to the Executive. The input is placed at the beginning of this buffer

181

and is terminated by a new line (NL) character. Only one line of input
at a time can be requested.

A word in the communications area (BUFPTR) indicates the next available
byte in the buffer when it is being used for output. As output is
placed in the buffer, this pointer is updated. The Executive empties
the buffer and resets the pointer to zero under the following
conditions: '

1. When it is full. This is indicated by means of a call to the
Executive.

2. When input is requested.

3. When the program is swapped, except when the output inhibit
flag (OPFLG) is ON. This flag is set during the time interval
in the output routine when the output pointer does not correspond
with the actual contents of the buffer.

4. on final exit.

The output inhibit flag allows the compiler to defer output during
any time-slice interrupts. This is necessary when certain values,
such as the terminal buffer pointer, are being changed. :

Since the same buffer is used for input and output, it is not possible
to place output data in the buffer unless all the input has been
processed. The Executive assures that all output has been performed
before a line of input is requested. The compiler (actually, the run-
time library) considers it an error if more input is provided than

is needed by the GET statement. If less data is provided than is
required to satisfy the GET, additional lines are requested, one at

a time, until the correct amount has been entered. To request input,
a '?' character is typed out on the terminal.

Note: The Executive places an end-of-file (X'01') character in the
byte indicated by the output pointer, so the last byte in the
buffer must always be left empty. An end-of-file character
placed in the buffer by the user program will be treated by
the Executive as an end-of-file. Other undefined characters
are reserved for use of the Executive terminal handling routines.
The presence of these characters in the terminal I/0 buffer
may cause unpredictable results.

Disk I/O

The user is permitted up to four open disk files in his program. These
files may be in any combination of input or output modes. Files may
be closed and the same or new ones opened in either input or output
mode. Each active file has an I/0 buffer of 3712 bytes assigned to

it. The first 3440 bytes are used as the I/O area to read and write
one half track of data. The number of half tracks of disk space
available per file is established by the user through the FILE command.

Disk input or output is accomplished by calling the Executive. The
Executive is in no way concerned with the internal format of the data
files. It performs the physical I/0 in buffer-size blocks (3440 bytes)
in the user area. Data files can be "reset"™ by special use of the

SvC.

182

INTERRUPT HANDLING

During execution, a user can specify the actions to be performed if
end-of-file or arithmetic interrupt conditions occur by use of ON
statements. The runtime library determines the processing required
by ON-conditions.

The compiler can control which arithmetic interrupts are in effect
by use of the Set Program Mask (SPM) instruction. Upon entry to the
compiler, the contents of the program mask are indeterminate.

When an arithmetic interrupt occurs, it is processed by the Executive
as follows:

1. The program check old PSW is stored in an entry (PSW2SV) in
the communications area (to be used by the processor). The
PSW contents are updated when a program is swapped. The update
is performed on the language processor's base address if SVC
code 11 has not been given, and on the user program base address
if SVC code 11 has been given.

2. Control is transferred to a routine that alters the base register
and branches to the appropriate interrupt processing routine.
During compilation, the displacement of the interrupt routine
from the beginning of the compiler is found in location ARINTRP;
during execution, the interrupt routine itself begins at location
ARINTRP. When all processing for the interrupt is completed,
and execution is to continue with the instruction following
the interrupted instruction, the Executive is informed by the
use of SVC code 7 or 8. To resume processing at a different
point, the address portion of the saved PSW can be modified
by the processor prior to issuing the SVC.

3. The Executive saves the contents of all registers at interrupt
time in the user communications area. As indicated above,
requests to the Executive are issued by loading a request code
in register 0 and executing the SVC instruction in the
communications area. Thus, the call to the Executive (requesting
return to the interrupted code) causes execution of an SVC
instruction. Since the SVC is an interrupt itself, the register
save area contains the contents of the registers at the time
the SVC was given, not the contents of the registers at the
time of the arithmetic interrupt. Therefore, if registers are
to be preserved, the lanquage processors must save and restore
all registers while processing an arithmetic interrupt.

An end-of-file condition is detected by a special return from the
Executive from a read request. When this situation occurs, the run-
time library branches directly to the library end-of-file routine.
SWAP-INHIBITED SITUATIONS

During the process of compilation, the contents of the registers cannot
always correspond with the relocation specification in the
communications area. This situation normally occurs twice:

1. When the program is being initiated.

2. When the program area is being changed from its compile-time
configuration to its runtime configuration.

Each non-swap interval may have a maximum duration of 16 milliseconds.

In 1 above, no special action must be taken as swapping will not take
place during the first 16 milliseconds. In 2 above, the processor

183

and the program can be made non-swappable (non-relocatable) by setting
a word in the communications area to nonzero (SWPFLG). The swap flag
may be set only once during a compilation.

END OF COMPILATION

When compilation is completed successfully, the compiler must perform
at least three functions before relinquishing control to the user
program. These functions are:

1. Determine whether there are one or more unused 2048-byte blocks
at the top of the program area that are not needed for data
files. If so, these must be returned by means of the SVC.

2. Adjust the processor and program relocation information to
reflect the new situation. While this is being done, the program
is made non-swappable.

3. Go to the Executive with an SVC code 11 to indicate that
compilation is complete (return is to the first byte of the
user's program (PRGBN); see SVC code 11 write-up).

When control is transferred to the user's program, the user program
must:

1. Indicate that the program is now swappable by setting SWPFLG
to zero.

2. Open all data files that can be opened at this time and specify
how much additional memory will be required. During compilation,
the language processor should keep track of the maximum number
of data files that can be open at any one time and calculate
the additional core required to hold these files. In addition,
language processors should keep track of the files that are
to be opened during the execution of the program and do a
multiple OPEN at this time. The reason for combining these
functions is that every call for an OPEN will result in a swap
and every call for more memory will probably result in a swap.
Therefore, if all four data files are used, the Executive can
open all four files and obtain the additional memory required
with one swap instead of five.

DETAILED FORMAT DESCRIPTIONS

The communications area of the user work area and specific portions
of the user terminal table provide the basis for compiler/Executive
interactions. The formats of these areas and of data file tables
maintained for active data files are described below.

COMMUNICATIONS AREA

The names and sizes of various fields in the communications area, as
well as their starting locations, are given below.

Location Size In
(Hex) Name Words Description
0 PRGBN 16 Initial entry point of compiled

program.

184

Location Size In
(Hex) Name Words
40 CSPTR 1
u4 CSLTH 1
ug CSREG 1
uc PSPTR 1
50 PSLTH 1
54 PSREG 1
58 BUFPTR 1
5C OPFLG 1
60 SWPFLG 1
64 ARINTRP 7
80 PSW1SV 2
88 PSW2SV 2
90 PSW3SV 2
98 PSWUSV 2
AO BASPROC 1
Ay BASUSER 1
A8 BUFLTH 1
AC UTTLOC 1

Description

Compiler save pointer. Contains
displacement from beginning of program
of start of block of values to be
updated when processor swapped (relo-
cated).

Compiler save length. Contains length
in bytes (must be multiple of four) of
area occupied by values to be updated
when processor swapped.

Compiler registers. First halfword
contains first register used for
values to be updated -when compiler
swapped, second halfword contains
last such register.

PSPTR through PSREG are used in the same
way as CSPTR through CSREG for values

to be updated when user program is
swapped.

Buffer pointer. Contains displace-
ment from beginning of terminal I/O
buffer (TMBUF) to next available byte
to be used for output.

Output inhibit flag. Normally is 0.
Set to 1 if output buffer should not
be emptied when program swapped.

Swap flag. Normally is 0. Set to

1 at the time when a program cannot
be swapped.

Location to which control is trans-
ferred on arithmetic interrupt.

Save area for PSW when program or
compiler swapped.

Save area for PSW when arithmetic
interrupt occurs (can be referenced
by program).

Same as PSW2SV, but used by the
Executive when swapping only.

Special PSW save area.

Processor base address at swap time.
User area base address at swap time.
Length of terminal I/0 buffer.

Address of UTT (user terminal table)
of this user.

185

Location Size In
(Hex) Name Words
BO SAVREG 24
110 DATE 1
11t PDMPBGN 1
118 PDMPEND 1
11cC FILEPTR 1
120 NOERMSG 172
122 FILENBR 1/4
123 FILE2K 174
128 SAVERO 1
128 STATTAB 1
12C SVCINST 172
1I2E 2172
138 USCCW 262

55¢ TMBUF Any length

Description

Locations in which registers are
saved when program is swapped.
Registers are saved in the order
fixed-point 1 through 0 then floating-
point 0 through 6.

Address of the location where the
current date is maintained by the
Executive in the form YYMMDD (6 bytes).

Displacement to beginning of area
to be PDUMPed.

Displacement togng—of area to be
PDUMPed (SVC codé 13) or number of
lines to dump (SVC code 14).

Pointer (displacement) to a table
containing four logical records
concerning data files.

Number of error messages output to
terminal during compilation.

Logical file number (file reference
number) to be read/written.

Number of additional 2048-byte blocks
of core required when an OPEN (SVC
code 21) is issued.

Language processor saves register 0
here prior to issuing an SVC. The
Executive restores register 0 from
here prior to returning contreol.
Pointer to the statistical table.

SVC instruction for execution by
language processors.

Locations reserved for additionalk
communications cells.

User program CCW's (used by the
Executive).

Terminal I/0 buffer

(between 256
and 5900 bytes,
specified by BUFLTH)

UTT DATA AVAILABLE TO LANGUAGE PROCESSOR

Fields of the user terminal table which can be read (but not modified)
by the CALL/360-0S PL/I compiler are described below.

186

How Long How

Name Function (Bytes) Adjusted
L#LANG Language processor name 1 BB

(coded value, 0-N)

L#LADR Address of this language 4 WB
processor's entry in the
language processor table

L#N2048 Number of 2048-byte blocks 1 BB
allocated

L#SOURC Length of source program 2 HWB
(in bytes)

L#SADDR Displacement from base of 4 WB

program area to beginning
of source (in bytes)

L#WIDTH Line width (in characters) 1 BB

L#NLINE Number of lines of source 2 HWB
statements

L#FLG2 Expanded user program 1 BB

storage allocated (bit 6)

Set when Reg 2 on SVC code 6 = 0

Not set when Reg 2 on SVC code 6 # 0
Not set on initial entry (bit 6 can be
addressed symbolically as L#ESBIT)

L#FILE1D Record number of data file 1(ea.) BB
through link that was just read/written

L#FILEU4D

L#FILE1E Number of data file links 1 (ea.) BB
through in the file

L#FILEUE

L#FILE1F Maximum number of permissible 1 (ea.) BB
through data file links

L#FILELF

L#FILE1G File type and state 1(ea.) BB
through

L#FILEULG

WB = word boundary HWB = halfword boundary BB = byte boundary

DATA FILE TABLE

Data file tables (16 bytes long each) are maintained by the language
processor and the Executive. Four of these tables may be active at
any one time (although the design is such that the tables may be
expanded).

The table addresses (displacements) are in a table that in turn is

pointed to (displacement) by FILEPTR in the communications area. This
addressing hierarchy is illustrated schematically by Figure F-2.

187

Table of FCIB

FILEPTR

(Communications
Area)

Figure F-2.

Notes:

#1.
Addresses
>
FCIB
> #
| > FCIB-
#3
FF - - - FH
FCIB

Referencing Data File Tables

1. The table of addresses must begin on a word boundary.

2. The table of addresses is terminated by a word of all 1's (binary
1111 = hexadecimal F).

3. The file tables must begin on word boundaries.

4. Entries in the table of addresses point to file tables in
ascending numerical order, that is, first address is logical
file #1, second address is logical file #2, etc.

5. If an entry in the table of addresses is 0, then the
corresponding file table does not exist.

The format of each data file table is detailed below.

Byte
0-10

11

188

Contents

Filename (left-justified with blank padding). If this
field is 0, then the file is not in use.

OPEN/mode flag

bit 7
bit 6

bit

bit
bit

weEo,m

bits 2-1
bit 0

set by the compiler if the file type is input
set by the compiler if the file type is output
(both bits 6 and 7 ON is legal)

set by the Executive after the file has been
opened

set by compiler before Executive opens the file
set by the compiler after OPEN status has

been validated

not used at present

set by the Executive when the last link of the file
has been read/written

Byte contents
12 OPEN/1I/0 return code

A. Set by the Executive after an OPEN as follows:

0 = OPEN successfully done.
1= OPEN not done because of an unrecoverable
I/0 error.
2 = OPEN not done because file does not exist.
3 = OPEN not done because file is locked (this
code can only occur if bit 6 in byte 11 is ON).
4 = OPEN not done because file is already in use.
5 = Not used.
6 = Not used.
7 = OPEN not done because file is not a data file.
8 = Not used.
9 = Not used.
Byte Contents

B. Set by the Executive after an I/0 as follows:

READ/WRITE successfully done.

Unrecoverable I/0 error.

READ/WRITE not done because user's data

"file space is exhausted.

READ/WRITE not done because file mode (input
or output) is incorrect.

4 = WRITE not done because no room in save storage.

N O
L

w
It

Note: Bit 0 will be set ON if the last link was just

read/written.
13 Record number of data file link that was just
read/written (same as L#FILEnD).
14 Number of data file links in the file (same as L#FILEnE).
15 Maximum number of permissible data file links (same as

L#FILEnF).

Before a language processor can open a file, the following actions
must be performed:

1. Set the filename in bytes 0 through 10.
2. Set bits 4 and 6 and/or 7 in OPEN/mode flag ON and bit 5 OFF.

Upon return from the OPEN, the language processor will find bit 5 in
the OPEN/mode byte set ON and a return code will be set in the OPEN/I/O
return code byte. Language processors should not alter bit 5 in the
OPEN/mode flag as this could cause erroneous opens to be performed.

OUTPUT BUFFER FORMAT

The output buffer (TMBUF) starts at a fixed increment from the beginning
of the user program (and communications) area, (location hex 550).

The Executive always supplies the EOF. When the Executive decides

that a time quantum is up, it places the EOF character at the end of

the present string of output (provided OPFLG is not set). An output
buffer pointer is maintained by the user program so that the Executive
knows where to place the EOF character. When control is returned after

189

an SVC code 1, 2, or a time quantum swap, when OPFLG is zero, the
Executive resets the pointer to zero.

FORMAT OF DATE INFORMATION
As noted under "Communications Area"™, the location of the area
containing the current date is stored in the communications area,
beginning in location hex 110. The format of the area containing the
date is:

YYMMDD
where:

YY is last two digits of the year (69, 70, 71, etc.)

MM is month (01-12)
DD is day (01-31)

SUPERVISOR CALL (SVC) INSTRUCTION

The use of an SVC is one way that language processors have of
communicating their needs to the Executive. In most cases, control

is returned to the instruction following the SVC. Because CALL/360-
0S uses sO many SVC codes, the probability of conflict with other user-
defined SVC's is very high. 1In order to minimize this conflict,
CALL/360-0S uses one SVC and passes a code in register 0 indicating
the kind of action required. Prior to loading register 0 with the

SVC code, the language processor saves register 0 in the communications
area at SAVERO. After the Executive gets control from the SvVC, it
moves SAVERO into the proper place in SAVREG. The Executive then uses
SAVERO as a temporary working area. The SVC to be used is placed in
SVCINST by the Executive. A language processor simply executes this
location. 1In cases where parameters are passed back and forth (other
than the SVC code), they are usually passed in register 2.

SVC code 0 -- Final exit. Control is not returned. Any terminal
output that is in the output buffer is transmitted to the terminal.

SVC _code 1 —-- Output buffer full exit. Control is returned after the
output buffer has been transmitted to the terminal. The Executive
will place the EOF character in the buffer and reset the pointer to
zero.

SVC code 2 -- Input from terminal required. The job is swapped out
and placed in the new job queue. Control is returned after the output
buffer has been transmitted to the terminal and an input line has been
received from the terminal. It is required that the program RUN
routines place a "?' at the end of the output buffer to indicate to
the user that input is required. To ensure that this *?°' is printed
on the terminal only when the terminal is ready to read data, the
Executive detects its presence, turns on the L#QMPT bit in the UTT,
and places an EOF in the last position of the output buffer. If only
a '"?' is to be printed, L#EFBT is also turned on to eliminate the need
for further processing of the buffer by MH#LISO. MHISRD will finally
write the *?' on the terminal as part of the CCW chain which issues
the read to the terminal in preparation for receiving the data input.

The input line is placed at the beginning of the output buffer and
is terminated by a new line (NL) character. Only one input line at

a time is allowed. The input line must be used or removed before the
next input line is requested or the buffer used for output.

190

SVC code 3 —- Write to disk. Control is returned after the write has
been completed. The address to begin writing (displacement) is placed
in register 2 and the file reference number (1-4) to write is set in
FILENBR in the communications area. Upon return, the file's record
number will be incremented by one and the OPEN/I/O return code byte
in the appropriate data file table will be set with a code as follows:

0 = write successfully completed

1 = unrecoverable I/0 error

2 = write not done because user has filled his
available space

3 = write not done because file type is input

4 = write not done because no room left in save

storage

In addition to this code, bit 0 of byte 11 will be turned ON if the
last permissible data file link was just written.

This SVC (and SVC code 4) operates in a special mode in order to
implement the RESET (data file pointer) function. If register 2 is
negative when the SVC (and SVC code 4) is issued, the Executive will
not perform any I/0 but will simply reset the user's internal pointers
to the initial value of the data file disk address, reset the
appropriate record number counter to zero, and return control to the
caller immediately.

SVC_code 4 —-- Read from disk. Control is returned after the read has
been completed. The address to begin reading into is in register 2
(displacement) and the file reference number (1-4) that is to be read

is placed in FILENBR in the communications area. Upon return, L#FILEnD

(n=1,2,3,0r 4) and the appropriate counter in the user's data file
table will be incremented by one and the OPEN/I/O return code byte
in the appropriate data file table will be set with a code as follows:

read successfully done

unrecoverable 1I/0 error

no more data

read not done because file type is output

WN O

In addition to this code, bit 0 of byte 11 will be turned ON if the
last data file link was just read.

See special case for RESET described in SVC code 3 write-up.

SVC code 5 -- Memory give-back. Control is returned immediately.
Register 2 contains the number of 2048-byte blocks that are being
handed back. The Executive assumes that the memory being given back
comes from the top (high address) of the user program area.

SVC code 6 —- Need more memory. This SVC operates in two modes. If
the amount of memory is known, the number of 2048-byte blocks needed
is specified in register 2. Under this condition, the Executive will
allocate the required number of blocks and return control to the
instruction following the SVC. The program will probably be swapped
while waiting for memory to "free-up"™, and will be located at a
different place in core when control is returned. The additional
allocated memory is adjoined to the end of the original program area.
When register 2 contains a nonzero value, the LH#ESBIT bit of L#FLG2
in the UTT is not changed.

If the amount of additional memory is not known, register 2 is set
to 0. 1In this event, the Executive will add an arbitrary amount of
core, set LH#ESBIT in the UTT ON and restart the job.

191

The Executive will permit more than one request for more memory.
However, there will be an arbitrary upper limit (3-5) to the number

of times this will be permitted. If this limit is exceeded, the program
will be aborted. Optimally, processors should not seek additional
memory more than once because this activity degrades system performance.

A halfword (NOERMSG) is provided in the communications area for language
processors to save information pertaining to error messages output
during compilation. When more core is requested and the amount is

not known, the user should not see error messages repeated at his
console. To avoid reissuing compilation error messages when the program
is restarted, the Executive will save NOERMSG in the communications

area upon an SVC code 6 exit. It will restore this halfword when the
program is restarted. This halfword will be set to zero the first

time the user calls for a compilation.

SVC code 7 -- This SVC code is the same as SVC code 8.

SVC _code 8 -- Exit from arithmetic interrupt routine. Control is
returned to the instruction following the instruction that caused the
interrupt unless the compiler has modified the address portion of
PSW2SV. In this case, control is returned to the specified location.
Boundary limits are checked and IL#ITPB is reset. PSW2SV is moved to
PSW1SV, and control is returned by a relinquish.

SVC _code 9 -- This SVC code is presently unassigned.

SVC code 10 -- This SVC code is a combination of codes 3 and 22.
However, if the write is not successful, the close (code 22) is not
performed.

SVC _code 11 -- Compilation complete. This is used by the Executive
to facilitate user program space management. It should be executed
when an object program is about to be entered from the compiler.
Return is to the first byte of the user program area (PRGBN) and is
immediate. No register modification is performed by the Executive
while processing the SVC. Thus, when the SVC is issued, all registers
must contain the values assumed by the object program.

SVC code 12 - This is a debugging feature. It will cause the user's
area to be dumped onto the printer, provided the printer is not
presently being used for any other purpose (the printer I/0 does not
queue). No return is made after this SVC. This SVC is allowed only
from the command console.

SVC _code 13 -- Not used.
SVC code 14 -- Not used.
SVC code 15 -- Not used.

SVC code 16 ——- Not used.

SVC code 17 -- End of CALL/360-0S PL/I phase 1 compilation.

SVC code 18 -- Not used.

SVC code 19 -- Not used.

SVC _code 20 -- Not used.

SVC code 21 -- OPEN data file(s) and request additional memory. This

SVC will cause each file whose OPEN/mode byte in the data file table
has been properly set (bit 6 and/or 7 ON, bit 4 ON, and bit 5 OFF)
to be opened and additional memory equal to the number of 2048-byte

192

blocks specified in FILE2K in the communications area to be added onto
the user's area. A return code will be provided for each file that
was marked to be opened. FILE2K will be cleared by the Executive
before returning control to the user program.

Logical file n can be closed and reopened under a different or the
same name. The act of reopening the file informs the Executive that
old file n is closed.

SVC code 22 -- Close data file n.

The logical file number (n) of the file to be closed must be contained
in the communications area, byte FILENBR, before issuing SVC 22.

Upon return, byte 12 of the appropriate data file table will be set
to 0 to indicate that the close was successfully done.

SVC _code 23 —-- Controlled abort. This SVC is issued when the compiler
detects a condition that “"should never happen" but did. An error code
(range 0-999) is placed in register 2. The Executive will print this
code on the communications console as a debugging aid for compiler
writers. Control will not be returned after this SVC.

193

APPENDIX G — CALL/360-0S PL/I COMPILER MAINTENANCE

MODULE STORAGE

The compiler source and object code is kept on disk files in
partitioned data sets.
data set names, and their usage are:

DISK PACKS:

External Label

OSSPLI

DATA SETS:

RTS1.PLI.SOURCE
RTS1.PLI.OBJECT
RTS1.PLI.MACLIB

UPDATE AND ASSEMBLY

//UPDTE

/77
//SYSPRINT
//SYSUT1
//SYSUT2
//SYSIN

-/

VA

//A

//ASM
//SYSLIB
//SYSUT1
//SYSUT?2
//SYSUT3
//SYSPRINT
//SYSPUNCH
//SYSIN
//SYSGO

/%

Notes:

1.

194

JOB
EXEC
DD
DD
DD
DD

The names of the disk packs,

Internal Label System
RTSLC2 OS/RTS

Compiler source
Compiler object
Macro library

PLI,RTS,MSGLEVEL=1

PGM=IEBUPDTE

SYSOUT=A

DSNAME=RTS1. PLI.SOURCE,DISP=0OLD
DSNAME=RTS1. PLI.SOURCE,DISP=0OLD
*

CHANGE NAME=member name

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkdkkkkkkkkEk

*

CARDS TO BE ADDED OR CHANGED *

Fkkkkkkdkkhkkkkkkhkkkkkkkkhkhkkkkkkhkkkhkkkkk

766 ,K,MSGLEVEL=1

PGM=IEUASM,REGION=50K, PARM=LOAD

DSNAME=RTS1. PLI.MACLIB,DISP=0OLD
DISP=0LD,DSNAME=SYS1.UT1
DISP=0OLD,DSNAME=SYS1.UT2
DISP=0LD,DSNAME=SYS1.UT3

SYSOUT=A

DUMMY

DSNAME=RTS1. PLI.SOURCE (member name) ,DISP=OLD
DSNAME=RTS1.PLI.OBJECT (member name) ,DISP=0OLD

The member names in the CALL/360-0S PL/I source data set and
macro library are listed under "CALL/360-0S PL/I Member Names"

below.

To update a member in the MACLIB, the JCL in the UPDATE step
must be changed from RTS1.PLI.SOURCE to RTS1.PLI.MACLIB.

For update, cards in the deck that have the same sequence numbers
as cards on the disk will replace the cards on the disk. Other
cards will be inserted into the proper place. The cards in

the deck must be in collating sequence.

Cards can be deleted from a member by placing the following
card (in collating sequence) in the change deck:

./ DELETE SEQl1=nnnnnnnn,SEQ2=nnnnnnnn

where SEQ1 is the first card to be deleted and SEQ2 is the last
card to be deleted.

An entire member from the data set can be replaced by using
the following card instead of the CHANGE card:

./ REPL NAME=member name

When needed, the NUMBER card may be used to renumber the updated
member. Place the NUMBER card after the CHANGE or REPL card.

./ NUMBER SEQ1=ALL,NEW1=100,INCR=100

The ADD card may be used to add a new member. The JCL cards
in the update procedure must be changed as follows:

/7/ EXEC PGM=IEBUPDTE , PARM=NEW
Remove the SYSUT1 card and insert the following card.

./ ADD NAME=member name

LINK EDIT

A load

module can be created and saved on disk so that it can be

executed. The link edit procedure is shown below for one phase of
the compiler.

//MERTON JOB 1600, *"MERTON L,880",MSGLEVEL=1

//JOBLIB DD DSNAME=RTS. LOAD, DISP=(OLD,PASS) ,UNIT=2314, X
Vo4 VOLUME=SER=ATPDO7

//LJED EXEC PGM=IEWL, PARM='XREF, LIST,LET, NCAL', REGION=96K
//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSNAME=SYSIN

//SYSLMOD DD DSNAME=RTS.LOAD(PH1) ,DISP=OLD, UNIT=2314, X
Vo4 SPACE=(1024, (200, 21,1) , VOLUME=SER=ATPDO7

//SYSUT1 DD - UNIT=(SYSDA,SEP= (SYSLMOD,SYSLIN)), X
77 SPACE=(1024, (200,20))

//SYSLIB DD DSNAME=RTS1 . PLI.OBJECT ,DISP=0OLD, UNIT=2314, X
7/ VOLUME=SER=RTSLC 2

//SYSIN DD *

/*

Note:

INCLUDE SYSLIB (S$CCONT)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* INCLUDE CARD FOR EACH MEMBER ¥
kkkkkkkkkkkkkbhhhhhhkkkkkhkkhkkkkkkk

The load module for this link edit step will be stored in the
data set RTS.LOAD (PH1) on disk pack ATPDO7. The load module
can be put on any disk pack under any data set name by changing
the SYSIMOD control card.

195

CALL/360-0S PL/I MEMBER NAMES

The member names in the CALL/360-0S PL/I source data set and macro library are
listed in two groups, "Compilation Member Names" and "Runtime Member Names."

COMPILATION MEMBER NAMES

The phase in which each routine is used is indicated by P1 for phase 1
(compilation phase), P2 for phase 2 (wrap-up phase), or P12 for both phases.

$ABAL - P1 $DRET -P1 §NCSDV - P1
$ACGEN - P1 $EDGN - p1 $NCVT - P1
$ANCRE - P1 $ENDES - P1 $NEXP - Pl
$APRC - Pl $ENDON - P1 4NLSIB - P1
$AREXP - P1 SEXPND - P1 $NMULT - P1
$ASIDX - P12 $EYPND - P1 §NOPCV - P1
$ATKN - P12 $FIND - P12 $NOPRT - P1
$BEGIN - P1 $FLG - P1 $NPRE - Pl
$BGET - P1 $FMT - pP1 $OPEN - Pl
$BLPRC - P1 $FNB - P12 $OPMZO - P1
$BONSA - P1 $FORI - pP1 $SCDV - Pl
$BPUT - Pl $FPDL - P1 $sve - P12
$BRNH - Pl $FSYM - P1 $TCODE - P1
$CALL - Pl $FVAR - Pl $TOPR - P1
$CATEG - P1 $GPUT - P12 $TRIAD - P1
$CCONT - P1 $GTRIAD - P1 $VASGA - P1
$CERR - P12 $HAINI - P2 §VASGC - P1
$CIF - P1 $HCTP - P2 $VCLR - Pl
$CNT - P1 $HDVTP - P2 §VDSAC - P1
$CON - P1 $HLNTP - P2 $VGTMP - P1
$CRVT - Pl $HRTLL - P2 $VINSA - P1
$csToP - P1 $HSCAL - P2 $WBACK - P1
$DCLGN - P1 $HTCR - P2 $WCONT - P2
$DDS - P2 $MCWU - P2 $WCTCT - P12
$DEXP - Pl $NATTP - P1 $WEXP. - P12
$DIOS - Pl $NCALL - P1 $WSTEP - P12
$DOCS - Pl §NCONS - P1 $XERR - Pl
$DOG - Pl

RUNTIME MEMBER NAMES

The runtime routines are all loaded in phase 2. However, none are
executed until the runtime phase.

IHEABU - P2 IHEIOD - P2 IHESQW - P2
THEABW - P2 IHEIOG - P2 IHESQZ - P2
IHEABZ - P2 IHEIOP - P2 IHESVC - P2
IHEATL - P2 IHEIOX - P2 IHETHL - P2
IHEATS - P2 IHEJXI - P2 IHETHS - P2
IHEATW - P2 IHELDI - P2 IHETNL - P2
IHEATZ - P2 IHELDO - P2 IHETNS - P2
IHECLOSE - P2 IHELNL - P2 IHETNW - P2
IHECSC - P2 IHELNS - P2 IHETNZ - P2
IHECSM - P2 IHELNW - P2 IHEUPA - P2
TIHECSS - P2 IHELNZ - P2 IHEVCA - P2
IHEDCN - P2 IHEMXB - P2 IHEVCS - P2
IHEDDI - P2 IHEMXL - P2 THEVFA - P2
IHEDDO - P2 THEMXS - P2 IHEVFB - P2
IHEDDP - P2 IHEMZU - P2 IHEVFC - P2
IHEDIA - P2 IHEMZW - P2 IHEVFD - P2
IHEDIB - P2 IHEMZZ - P2 IHEVFE - P2
IHEDIM - P2 IHEONREV - P2 IHEVPA - P2
IHEDIO - P2 IHEOPEN - P2 IHEVPB - P2

196

IHEDMA
IHEDNC
IHEDOA
IHEDOB
IHEDOM
IHEDUM
IHEDZW
IHEDZZ
IHEEFL
IHEEFS
IHEERN
IHEERR
IHEEXL
IHEEXS
IHEEXW
IHEEXZ
IHEGPUT
IHEHTL
IHEHTS
IHEIOA
IHEIOB

IHEPDF
IHEPDL
IHEPDS
IHEPDW
IHEPDX
IHEPDZ
THERSET
IHESAD
IHESAF
THESHL
IHESHS
IHESMF
THESMG
IHESMH
IHESMX
IHESNL
THESNS
IHESNW
IHESNZ
JHESQL
IHESQS

IHEVPC
IHEVPE
IHEVSC
IHEVTB
IHEXIB
THEXIL
IHEXIS
IHEXIU
IHEXIW
IHEXIZ
IHEXXL
THEXXS
IHEXXW
IHEXXZ
IHEYGF
THEYGL
IHEYGS
THEYGW
THEYGX
IHEYGZ

197

APPENDIX H - DIAGNOSTIC MESSAGES

COMPILATION ERROR MESSAGES

Ident.)
Code Error Message Calling Routines
1 PROCEDURE STATEMENT SUPPLIED SCNT
2 ILLEGAL ' ' STATEMENT--NULL CLAUSE SUPPLIED SCNT
3 * ' NOT STATEMENT TYPE, IGNORED SCNT
4 NOT STATEMENT TYPE, ASSIGNMENT ASSUMED SCNT
5 EXTRA ')*', IGNORED SATKN
6 *{]* NOT SUPPORTED--CHANGED TO *|°* SATKN
7 IDENTIFIER TRUNCATED TO 8 CHARS SATKN
8 EXPONENT MISSING SATRN
9 CONSTANT NOT SUPPORTED--DECIMAL USED SATRKN
10 DELIMITER OR SEPARATOR MUST FOLLOW CONSTANT SATKN
11 BIT STRINGS NOT SUPPORTED--CHARACTER USED SATKN
12 ' ' NOT SUPPORTED, BLANK ASSUMED SATKN
13)" SUPPLIED BEFORE ';° $SATKN
ia . ' ILLEGAL DELIMITER--IGNORED SATKN
15 ILLEGAL ASSIGNMENT STATEMENT SACGEN
16 ERROR AT °* . $ABAL $CSTOP
SANCRE $DCLGN
$SAPRC $DCOS
$BEGIN $DDS
$BGET $DIOS
$BONSA $DOG
$BPUT $DRET
$BRNH SEDGN
SCALL SFLG
S$CIF SFMT |
SCON $FORI
SCRVT $ACGEN
SCLOSE S$OPEN
17 * *NOT ENTRY NAME SCALL
18 STRUCTURES NOT SUPPORTED--"' ' IGNORED SDCLGN
19 NO FORMAT ITEM FOR DATA SFLG
20 ILLEGAL USE OF °* * ATTRIBUTE $SANCRE
21 PREVIOUS DECLARATION OR USE OF °* e $DCLGN
22 ILLEGAL *DO' INDEX $DOG

198

Ident.

Code

23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40

41

42

43

4y
45
46

47

48
49

50

Error Message

ARRAY EXPRESSION ILLEGAL

MAXIMUM NO. OF BLOCKS EXCEEDED
ILLEGAL ‘WHILE®' CLAUSE

DUPLICATE *'__ * CLAUSE

' ___' AFTER '"END' ILLEGAL--IGNORED
UNDEFINED FORMAT

ILLEGAL USE OF °* *

UNLABELED FORMAT STATEMENT

FILE NAME NOT INPUT FILE

¢ ' WHERE °',' EXPECTED--SKIPPING TO °*

ILLEGAL USE OF '___ ' IN DATA INPUT LIST
"SKIP' OPTION ILLEGAL HERE

* ' NOT FILE NAME--IGNORED

*TO" MISSING AFTER "GO'

ILLEGAL STATEMENT LABEL--STATEMENT IGNORED
ITERATIVE °DO' REQUIRED

‘THEN®' CLAUSE MISSING--NULL ASSUMED

FILE NAME MISSING

! ' NOT FILE NAME

"EOF*®* ON 'SYSIN® USELESS

ILLEGAL FILE DESIGNATION

UNRECOGNIZABLE ON-CONDITION
LABEL ILLEGAL HERE--IGNORED
LABEL MISSING

ILLEGAL RETURNS ATTRIBUTES--
DEFAULT RETURNS ATTRIBUTES USED

ILLEGAL OPTION ON EXTERNAL PROCEDURE STATEMENT

FILENAME NOT OUTPUT FILE

NON-PRINT FILE--°*SKIP' OPTION ILLEGAL

Calling Routines

$AREXP $NOPRT
$CNT
$DOG
$DOG
$EDGN
$EDGN

$EDGN $NOPRT
$FLG $NEXP

SFMT
$BGET
$APRC
$BGET
$BGET
No longer used
$BRNH
$BRNH
$DOG
$CIF

$BONSA $OPEN
$CLOSE

$BONSA $CLOSE
4CALL $OPEN

No longer used

$BPUT $CLOSE
$BGET $OPEN

$BONSA
$CON
$APRC

SANCRE $APRC

$APRC
$BPUT

$BPUT

199

Ident.

Code Error Message

51 RETURN STATEMENT ILLEGAL IN ON-UNIT

52 RETURNS ATTRIBUTE ILLEGAL IN EXTERNAL
PROCEDURE--SKIPPING TO *;°

53 ILLEGAL RETURNS EXPRESSTION

54 FILE NAME MISSING--'SYSIN' ASSUMED

55 * ' NOT FILE NAME-—-ON-CONDITION IGNORED

56 MULTIPLE DECLARATION FOR *'__ '--THIS
DECLARATION USED

57 USE OF '____ ' HERE CONFLICTS.WITH PREVIOUS
USAGE

58 ILLEGAL LIST AFTER ATTRIBUTE *'___ ' FOR
IDENTIFIER *___ °*

59 FOR IDENTIFIER *____ " ATTRIBUTE °'__ °*
CONFLICTS WITH PREVIOUS ATTRIBUTES

60 LIST MISSING AFTER ATTRIBUTE *__ °

61 *____' ILLEGAL ATTRIBUTE--IGNORED

62 PRECISION ATTRIBUTE IS ILLEGAL——DEFAULT USED

63 ILLEGAL PARAMETER ATTRIBUTES FOR °'__ '

64 ILLEGAL SCALE FACTOR FOR '___ '"--IGNORED

65 NOT ALL DIMENSION EXPRESSIONS ARE CONSTANTS

66 FOR STRING *___ *"--LENGTH NOT A CONSTANT

67 ‘ ____' HAS ILLEGAL LENGTH--255 USED‘

68 "' HAS ILLEGAL '#*°' DIMENSION OR STRING
LENGTH

69 ATTRIBUTE FOR FILE '___ ' CONFLICTS WITH
PREVIOUS DECLARATION OR USE

70 DUPLICATE *___ ' DESIGNATION--LAST USED

71 LIST MISSING AFTER *___ °*

72 *___' ILLEGAL OPTION--SKIPPING TO '___°*

73 DATA AND FORMAT LIST MISSING

4 FORMAT LIST MISSING

75 ILLEGAL I/0 EXPRESSION--SKIPPING TO °*__ °*

76 ILLEGAL DATA OUTPUT ITEM

77 EXPRESSION ILLEGAL IN 'GET' DATA LIST

200

Calling Routines

$DRET

$DRET

No longer used
No longer used
No longer used

$APRC $BLPRC

SANCRE
$BLPRC
$CLOSE

$NPRE
$OPEN

$ABAL

SABAL

SABAL
No longer used
SANCRE
SANCRE
$ANCRE $NOPRT
SANCRE
$ANCRE
$ANCRE

SANCRE

SANCRE

4$DOCS $DIOS

SBPUT
$DpocCs

$DIOS

No longer used
$DIOS
$DIOS
$DDS
$DDS

$DDS

Ident.

Code

78
79
80
81
82
83
84

85

86
87
88
89
90

91
92
93
94
95
96
97

98

29

100

101
102
103
104
105
106

Error Message

ITERATION FACTOR NOT PARENTHESIZED
L] L]

ILLEGAL FORMAT ITEM--SKIPPING TO °* '

INCOMPLETE FORMAT ITEM--SKIPPING TO *__ '
ILLEGAL COMPLEX FORMAT ITEM--SKIPPING TO *‘__ *
'___ ' NOT FORMAT LABEL--SKIPPING TO '__ °*
FORMAT ITEM HAS INCORRECT NO. OF FIELDS
CONVERSION ERROR--SCALE FACTOR TOO LARGE

PROGRAM INCOMPLETE--REQUIRED ‘END' STATEMENTS
SUPPLIED

WHERE OPERAND EXPECTED

‘ ___' WHERE OPERATOR EXPECTED

ARGUMENT LIST MISSING FROM SUBPROGRAM CALL
ILLEGAL OPERAND FOR COMPARISON OPERATOR

BIT STRINGS NOT SUPPORTED FOR COMPARISON
OPERATORS

OPERAND OF *____ ' MUST BE BIT STRING

PREFIX OPERATORS NOT SUPPORTED FOR BIT STRINGS
ILLEGAL ASSIGNMENT

INCORRECT NO. OF ARGUMENTS IN SUBPROGRAM
INVALID ARGUMENT ATTRIBUTE IN SUBPROGRAM CALL
INCORRECT NO. OF SUBSCRIPTS FOR ARRAY
EMPTY DECLARATION--IGNORED

CONVERSION OF CONSTANT PRODUCES EXPONENT OUT
OF RANGE

CONSTANT VALUE OR PRECISION TOO LARGE

COMPILER ERROR

EOF MISSING

PROGRAM TOO LARGE

INCOMPLETE COMMENT OR CHARACTER STRING CONSTANT

IMPROPER ARRAY BOUND
OPERAND INCOMPATIBLE WITH REQUIRED ATTRIBUTES

LINE NUMBER NOT FOLLOWED BY BLANK

Calling Routines

$SFLG
$FLG
$FLG
$FLG
$FLG
$FORI
$TCODE

$ASIDX

SNEXP
SNEXP
No longer uéed
$NOPRT

No longer used

$NOPRT

No longer used
SNOPRT

SNOPRT SNPRE
SNOPRT
$NEXP $NOPRT

No longer used

SNCVT

$NCVT

SNEXP STCODE

SNOPRT

No longer used
No longer used
SATKN SFNB
$ANCRE

SNOPCV SNOPRT

SASIDX S$ATKN

201

Ident.

SOURCE STMTS AFTER END OF PROGRAM IGNORED

EXECUTION PREVENTED

IMPROPER RELATIONAL EXPRESSION
SPACE FOR COMPILED CODE EXCEEDED

(iixxxxxx) PROGRAM ERROR - COMPILE TERMINATED

Code Error Message

107

108 SEVERE DIAGNOSTICS,

109 ILLEGAL STATEMENT

110 ILLEGAL TITLE DESIGNATION
111 '___ ' ILLEGAL OPERATOR
112

113

114

115

STRING TOO LONG -- FIRST 255 USED

EXECUTION ERROR MESSAGES

Ident.

Code Error Message

002 ERROR

024 PRINT OPTION FORMAT ITEM FOR NON-PRINT FILE
025 EXTRA INPUT DATA IGNORED
123 ILLEGAL FILENAME

124 NOT OPENED

125 UNRECOVERABLE I/O ERROR
126 DOES NOT EXIST

127 LOCKED

128 IN USE

129 PROTECTED

130 NOT A DATA FILE

131 A SHARED FILE

132 NOT INPUT TYPE

133 NOT OUTPUT TYPE

134 ILLEGAL ATTRIBUTES

135 EXCEEDS FOUR FILES OPEN
136 *DIRECTORY MISSING

140 END OF FILE ENCOUNTERED
200 X LT 0 IN SQRT(X)

202

Calling Routines

$EDGN
$EDGN
No longer used
SCLOSE $OPEN
$NEXP
SNEXP
SHAINI
SCERR

$ATRN

Calling Routines

No longer used
IHEIOX

IHEIOA IHEDDI
IHERSET IHECLOSE
IHEDDI THERSET

IHEIOA TIHEOPEN
IHEIOG

IHEOPEN
IHEOPEN
IHEOPEN
No longer used
IHEOPEN
No longer used
No longer used
No longer used
IHEOPEN

IHEDUM TIHEOPEN
IHEOPEN IHECLOSE
IHEIOG TIHELDI

THESQL THESQS

Ident.
Code Error Message Calling Routines

201 X GR 174.6 IN EXP(X) THEEXL IHEEXS

202 X LT OR = 0 IN LOG(X) OR LOG2(X) OR LOG 10(X) THELNL THELNW
IHELNS TIHELNZ

203 ABS(X) GE (2*%50)*K IN SIN(X) OR COS(X) (K=PI) TIHEEXZ IHESNZ
THESNL

204 ABS(X) GE (2%*50)#*K IN TAN(X) (K=PI) THETNL TIHETN2Z

205 X TOO NEAR SINGULARITY AND WILL GIVE OVERFLOW No longer used

206 X=Y=0 IN ATAN(Y,X) IHEATL TIHEATS
207 ABS(X) GT 174.6 IN SINH(X) OR COSH(X) No longer used
208 ABS(X) GE 1 IN ATANH(X) IHEHTL IHEHTS
209 X=0, Y LE 0 IN X**Y IHEXIL IHEXIW

IHEXIS IHEXIZ
210 X=0, Y NOT POSITIVE REAL IN X#**Y IHEXXW IHEXXZ
211 Z=+I OR -I IN ATAN(Z) OR Z=+1 OR -1 IN ATANH(Z) IHEATW IHEATZ

212 ABS(X) GE (2%#%18)#*K IN SIN(X) OR COS(X) (K=PI) IHEEXW IHESNW

IHESNS
213 ABS(X) GE (2*#%18)#*K IN TAN(X) (K=PI) IHETNS IHETNW
300 OVERFLOW ITHEABZ TIHESNW

IHEDZW IHESNZ
IHEDZZ TIHESQW
IHEEXW THESQZ
IHEEXZ IHETNL
IHEMZW IHETNS
THEMZZ TIHETNW
IHEPDF IHETNZ
IHEPDL IHEXIL
IHEPDS IHEXIS
THEPDW IHEXIW
THEPDX TIHEXIZ
IHEPDZ TIHEYGF
IHESHL TIHEYGL
IHESHS TIHEYGS
IHESMF IHEYGW
THESMG IHEYGX
IHESMH IHEYGZ

IHESMX

301 INEXPLICABLE I/0 ERROR IHEDUM IHECLOSE
THEIOD IHERSET
IHELDI

320 FIXEDOVERFLOW IHEABU IHEMZU
IHEABW

330 ZERODIVIDE THEDZW IHEMZU
IHEDZZ

203

Ident.

ERROR IN CONVERSION FROM CHARACTER STRING TO

ERROR IN CONVERSION FROM ARITHMETIC TO

ERROR IN CONVERSION FROM FIXED TO FLOAT
ERROR IN CONVERSION FROM FLOAT TO FIXED
INCORRECT E(W,D,S) SPECIFICATION

F FORMAT W SPECIFICATION TOO SMALL

A FORMAT W UNSPECIFIED AND LIST ITEM NOT

A FORMAT W UNSPECIFIED ON INPUT

MAXIMUM STRING LENGTH EXCEEDED

IMPROPER NO. OF SUBSCRIPTS FOR DATA INPUT

DATA NAME NOT FOUND IN SYMBOL TABLE

Code Error Message
340 UNDERFLOW
500 SUBSCRIPT RANGE
600 CONVERSION
601 CONVERSION ERROR IN F-FORMAT
602 CONVERSION ERROR IN E-FORMAT
604
ARITHMETIC
605
CHARACTER STRING
606
607
700
701
702
TYPE STRING
704
705 SUBSTRING NOT IN DATA AREA
706
802 END OF OUTPUT FILE
803
VARIABLE
805
806 SUBSCRIPT NOT IN USER AREA
807 RECURSIVE BLOCK OR ON-UNIT
808 DATA I/0 ON INTERNAL FILE
809 ILLEGAL LABEL VARIABLE GO TO
810 EDIT I/0 ON INTERNAL FILE

204

Calling Routines

IHEDZW THESMH
THEDZZ THESMX
IHEMZW IHEXIL
THEMZZ THEXIS
IHEPDF THEXIW
IHEPDL IHEXIZ
IHEPDS IHEYGF
IHEPDW TIHEYGL
IHEPDX IHEYGS
IHEPDZ THEYGW
IHESMF IHEYGX
IHESMG IHEYG2Z
IHEDDI

IHEVPE

No longer used
IHEVPC

IHELDI THEDCN
IHELDI

IHELDf
IHELDI
No longer used
No longer used

IHEDOB

IHEDOB
IHELDO
IHEIOD
IHEIOD TIHERSET

IHEDDI

IHEDDI
IHEDDI
IHESAD
THEDDI
IHESAF

IHEDIO

Ident.
Code Error Message Calling Routines

811 DECLARED ENVIRONMENT NOT COMPATIBLE WITH INPUT IHEIOA
FILE

902 PROGRAM ERROR - EXECUTION TERMINATED IHEERR

205

APPENDIX I - MAXIMUM SIZE OF SOURCE PROGRAM

The maximum size of a CALL/360-0S PL/I source program is determined
by storage requirements at various stages of the compilation and
execution processes. The values stated in this appendix apply to
operation of the CALL/360-0S system on a System/360 computer having
512K bytes of main storage. These values are subject to change and
should be regarded accordingly.

STORAGE REQUIRED AT INPUT OF PROGRAM

Maximum area allocated to hold source statements of a program to be
compiled under CALL/360-0S provides for 28,848 source characters or
800 source lines. The effective maximum is determined by whichever
limit is reached first. Either limit permits approximately 800
CALL/360-0S PL/I statements at 30 characters per statement.

STORAGE REQUIRED TO COMPILE PROGRAM

The size of this area is determined by six items. Three of them are
fixed in size and three are variable. They are listed below.

Fixed
Communications area 1,360 bytes
Terminal I/0 buffer 3,000 bytes
Compiler fixed-size 14,960 bytes
working storage

TOTAL 19,320 bytes
Variable
Source program (28,848 byte max.)
Object program
Compiler variable-size working storage

The size of storage up to the maximum provided to the CALL/360-0S PL/I
compiler (112K bytes) is determined by the following formula:

Size of area = 39,000 + 4*(bytes of source program)

STORAGE REQUIRED TO EXECUTE PROGRAM

The size of this area is determined by eight items. Two of them are
fixed and six are variable. They are as listed below.

Fixed
Communications area 1,360 bytes
Terminal I/0 buffer 3,000 bytes

TOTAL 4,360 bytes

206

Variable

Object program size }
Static and constants storage (62K byte max.)

Address constant area (1.6K byte min.)

Runtime library (7K min. & 60K max.)

Disk I/O buffers (multiples of 3,440 bytes) (max. of 4)
Dynamic storage (array and string storage)

The maximum size of this area as allowed by the CALL/360-0S system
is 112K bytes.
EXAMPLES

Three examples to illustrate storage requirements follow.

EXAMPLE 1

. A source program containing 290 source statements requires main storage
locations as shown below.

1. Input storage used - 8176 bytes
2. Compiler area required -

39,000 + 4(8176) 71,704

73,728 bytes allocated

3. Execution area used -

Communications area = 1,360

Terminal I/0 buffer = 3,000
area

Object program size = 15,056

Static and constants = 1,176
area

Address constant area = 1,752

Runtime library = 23,792

Disk I/0 buffer area = 0

Dynamic storage = 0

TOTAL 46,136 bytes

207

EXAMPLE 2

A program containing 15 source statements has the following requirements
for main storage.

1. Input storage used - 344 bytes
2. Compiler area required -

39,000 + u4(34u4) 40,376

40,960 bytes allocated

3. Execution area used -

Communications area = 1,360

Terminal I/0 buffer = 3,000
area

Object program size = 632

Static and constants = 600
area

Address constant area = 1,780

Runtime library = 16,572

Disk I/0 buffer area = 0

Dynamic storage = 0

TOTAL 23,944 bytes

EXAMPLE 3

A program containing 434 source statements requires main storage as
follows.

1. Input storage used - 18,287 bytes
2. Compiler area required -

39,000 + 4(18,287) 112,148

112,640 bytes allocated

3. Execution area used -

Communications area = 1,360

Terminal I/0 buffer = 3,000
area

Object program size = 27,056

Static and constants = 3,124
area

Address constant area = 3,000

Runtime library = 26,516

Disk I/70 buffer area = 0

Dynamic storage = 0

TOTAL 64,056 bytes

208

APPENDIX J - REFERENCE LISTINGS

CALL/360-0S PL/I COMPILER SUBROUTINES

Under CALL/360-0S PL/I naming conventions, subroutines of the CALL/360-
0S PL/I compiler are named $xxxxx, where xxxxx is a mnemonically
suggestive symbol of functions performed. These subroutines are
discussed in functional groups in Section 3, Volume I, of this manual.
They are listed below in alphabetic order according to their mnemonics.
If more than one entry point exists for a routine, multiple entry
points are noted in the leftmost columm. The next leftmost column
shows the mnemonic commonly used in general discussion of the routine
(for example, in this manual). A brief statement of function and the
chart number for each routine are provided.

Note: The CALL/360-0S PL/I compiler subroutine names follow the naming
convention stated above. However, there are some exceptions
in the member names assigned to certain routines when stored
in CALL/360-0S PL/I libraries. For the reader's convenience,
the exceptions are noted in Figure J-4, which is a cross
reference of compilation module calls to other compilation

modules.
Entry Routine Manual
Name Name Function Location Chart
SABAL SABAL Prepare bit mask and list I-135 27
of pointers for explicitly
declared attributes for an
identifier
$ACGEN $ACGEN Prepare an assignment I-77 9
statement for analysis
$ANCRE $ANCRE Translate attribute table I-138 28
(3ABTBL) into dictionary
attribute node
SAPRC $SAPRC Analyze syntax, create I-78 10
'~ parameter declarations,
and generate triads
for internal procedure
SAPRC2 SAPRC - Analyze syntax, create I-78 10
parameter declarations,
and generate triads for
external procedure
SAREXP SAREXP Generate error message I-419 70
A for illegal array expres-
sion
$ASIDX -$ASIDX Advance scan index to - I-56 5
next character in source
stream
$ATKN $SATKN Create token table entries 1I-57 6

for syntactic units in
source stream

209

Entry
Name
$ATKN2
$BGET
$BEGIN

$BLPRC

$BONSA

$BPUT
$BRNH
$BRNH2

$CALL

$CATEG

$CCONT

$CERR

SCIF

SCNT

$CON

$CRVT

$CSsTOP

$DCLGN

Routine
Name

Function

$ATKN

$BGET

$BEGIN

$BLPRC

$BONSA

$BPUT
$BRNH
$BRNH

$CALL’

$CATEG

$CCONT

SCERR

$CIF

SCNT

$CON

SCRVT

$CSTOP

$DCLGN

See above. Used for
initial entry only

Analyze a GET statement

Check syntax of BEGIN
statement and generate
part of prologue

Define the address of a
statement label or entry
name

Check legality of ON-
condition and identify it

Analyze a PUT statement
Analyze a GO TO statement
Analyze a GOTO statement

Analyze the syntax of a
CALL statement '

Determine whether next
statement in token table
is assignment statement

Initialize every area
required for compilation

Signal hardware interrupt
or unrecoverable error
caused by the compiler

Analyze the syntax of an
IF statement

Direct entokening of
statements and determine
which statement processor
is required

Analyze syntax of ON
statement and generate
code to establish ON-
condition address

Analyze a REVERT statement

Analyze the syntax of a
STOP statement

Direct analysis and encod-
ing of attributes for
identifiers in a DCL
statement and construct
dictionary attribute list

Manual

Location Chart
I-57 6
I-168 33
I-80 11
I-141 29
I-81 12
I-170 34
I-82 13
I-82 13
I-84 14
I-39 1
I-40 3
I-420 71
I-85 15
I-42 2
I-86 16
1-88 17
I-89 18
I-142 30

Entry
Name

$DDS

SDEXP

$DIOS

$DoCs

$DOG

$D0OG2

$DRET

SEDGN

$EDGN2

SENDES

$ENDON

SEXPND

SEYPND

SFIND

$FLG

SFMT

Routine
Name

$DDS

$DEXP

$DIOS

$DOCS

$DOG

$DOG

$DRET o

SEDGN

SEDGN

SENDES

SENDON

SEXPND

SEYPND

SFIND

$FLG

SFMT

Function

Direct generation of triads
required for a data list

Build the triads required
for an iterative DO-loop

Find file, skip, and data
specification pointers
of GET or PUT statement

Find file, title, and
input/output attribute
sections of OPEN or CLOSE
statement

Check syntax of and gen-
erate triads for DO state-
ment and create entry for
program structure table

As above, except for DO
specification in I/0 list

Analyze the syntax of a
RETURN statement

Generate triads and per-
form housekeeping for
closings associated with
END statement

As above, except only
closes END statement gener-
ated by SEYPND to complete
an iterative DO-1loop

Perform processing required
at end of ELSE unit

Perform processing required
at end of on-unit

Determine dimensionality

of an array expression,
generate required DO state-
ments, and build temporary
variables for indices

Generate END statements to
complete DO-loops of $EXPND

Search dictionary name

list for name entry for an
identifier; if none, create
one

Perform syntax analysis
and code generation for
a format list

Direct translation of a
FORMAT statement

Manual

Location Chart
I-172 35
I-90 19
I-174 36
I-175 37
I-92 20
I-92 20
I-94 21
I-95 22
I-95 22
I-97 23
1-98 24
I-99 25
I-100 26
I-60 7
I-176 38
I-179 39

211

Entry

Name

$FNB

$FORI

$FORI2

$FPDL

$FSYM

$FVAR

$GPUT

$GTRIAD

$HAINI

SHCTP

$HDVTP

SHLNTP

$HRTLL

SHSCAL

$HTCR

$MCWU

212

Routine
Name

Function

$FNB

$FORI

$FORI

$FPDL

$SFSYM

$FVAR

$GPUT

$GTRIAD

$HAINI

$HCTP

SHDVTP

SHLNTP

$HRTLL

$HSCAL

$HTCR

$MCWU

Advance scan index to
next nonblank character
in source stream

Create FED for expres-
sion in a format
specification

As above, but for constant
only

Process format list for
edit-directed 1/0

Find definition for iden-
tifier in higher-numbered
block

Find definition of vari-
able; if none, create one

Edit 120-character line
and place in terminal
buffer

Get next available triad
from triad table

Convert adcons to true
addresses and reset user
area relocation constants

Process constant table

Set pointers of dope
vectors of all static
arrays and strings

Process line number table

Determine and load
required library routines;
allocate fixed and address-
modifiable library work
space

Process initialization
table and dope vector list
to initialize constants
and adcon areas

Collapse C, D, and 1
tables and J list during
wrap-up

Perform housekeeping to
prepare code and start
execution

Manual

Location Chart
I-62 8
I-180 40
I-180 40
I-181 41
I-144 31
I-145 32
I-421 72
I-422 73
1-392 62
I-394 63
I-395 64
I-396 65
I-397 66
I-399 67
I-u401 68
I-403 69

Entry
Name

SNATTP

$NCALL

$NCONS

$NCON

$NCSDV

$NCVT

$NEXP

SNLSIB

$NMULT

$NOPCV

$NOPRT

SNPRE

$OPEN
$CLOSE

$OPMZO

Routine

Name

$NATTP

$NCALL

$NCONS

$NCONS

$NCSDV

$NCVT

SNEXP

$NLSIB

$NMULT

$NOPCV

$NOPRT

SNPRE

SOPEN
SOPEN

$0PMZO

Manual
Function Location

Chart

Obtain attributes of argqu- I-209
ment of CALL or function
reference

Generate triads to call a I-210
function or subprogram

convert constant; search I-423
constant table for simi-

lar entry; if none, create

one

As above, except S$NXFLG I-423
indicates the type of
conversion required

Process subscript list of I-212
an array cross-section

and begin construction of

dope vector

Convert arithmetic source I-425
constant to arithmetic
target type

Control generation of I-214
triads to evaluate expres-

sions, assignment statement,

and CALL statement entry

name and argument list

Provide pointer to adcon I-426
for a library entry name

Generate triad to multiply 1I-218
subscript value by dimen-

sion multiplier of current

array dimension

Convert operand to I-219
required type

Process all operators in I-222
operator stack whose

priorities are greater

than or equal to the

current operator

Process top entry of I-225
operand stack

Analyze an OPEN statement I-182
Analyze a CLOSE statement I-182
Determine the effective I-270
signs of triad operands

and arrange them to opti-
mize referencing

43

44

74

74

45

75

46

76

47

48

49

50

42
42

52

213

Entry
Name

$SCDV

$svc

$TCODE

$TOPR

STRIAD

$STRD

$VASGA

$VASGC

$VFREE

SVRSYN

SVSAVE

$VCLR

$VDSAC

$VGTMP

214

Construct initialization
table entry for dope

Interface with the
CALL/360-0S system

Generate symbolic instruc-
tions from entries in a

Process operands of

Generate a single entry
in triad table by refer-
ring to $NLOPN, $NROPN,
and top entry of operator

Same as above but using
contents of registers GO,

Select a register for
assignment from adcon
register portion of
register table

Select register or pair
of registers for assign-
ment from computational
register portion of
register table

Determine whether a
designated register

Remove synonyms from a
designated register

Store contents of desig-
nated register into
temporary storage

Allocate space for and
initialize register table

Convert compiler's repre-
sentation of a storage
address to a machine

Routine
Name Function
$scDv

vector
§svc
$TCODE

triad table
$TOPR

current triad
$TRIAD

stack
STRIAD

P3, and P4
$VASGA
$VASGC
$VASGC

can be freed
$VASGC

table entry
$VASGC
$VCLR
$VDSAC

address
$VGTMP

Allocate temporary storage
in dynamic storage area
for a block

Manual

Location Chart
I-271 53
I-452 82
I1-272 Sy
I-279 55
I-226 51
I-226 51
I-280 56
I1-281 57
I-281 57
I-281 57
I-281 57
1-284 58
I-285 59
I-288 60

Entry Routine Manual

Name Name Function Location Chart
SVINSA SVINSA Generate machine-language I-290 61

instructions (object code)
from symbolic instructions

of $TCODE

$WBACK SWBACK Step from one segment of I-428 77
a table to the preceding
segment

SWCONT SWCONT Initiate second (wrap-up) I-uy 4

phase of the CALL/360-0S
PL/I compiler

SWCTCT SWCTCT Release segment of a table I-428 78
to free pool

SWEXP SWEXP Add segment to a table I-428 79
and adjust pointers to it

SWSTEP SWSTEP Step from one segment of I-428 80
a table to the preceding '
segment

$XERR S$XERR Construct, parameterize, I-431 81

and print diagnostic
nessage

CALL/360-0S PL/I RUNTIME LIBRARY

Routines of the CALL/360-0S PL/I compiler library provide interface

and computational services. Under CALL/360-0S PL/I naming conventions,
library module and entry names begin with the prefix "IHE". Module
(routine) names are composed of these three letters and three additional
unique letters that identify the specific routines. An additional
unique letter is appended to identify an entry point in the module.

The CALL/360-0S PL/I runtime library routines are discussed in
functional groupings, corresponding to recognized packages of the
library, in Section 5, Volumes II and III, of this manual. They are
listed below in alphabetic order according to their mnemonics. A brief
summary of the function of each routine is provided.

Note: The CALL/360-0S PL/I library runtime routines follow the naming
conventions stated above and applied in this manual. However,
there are some exceptions in the member names assigned to certain
routines when stored in CALL/360-0S PL/I system libraries.

For the reader's convenience, those exceptions are noted below:

10B, IOD, IOP, IOX, and LDO (which are referred to in
documentation as IHEIOB, IHEIOD, IHEIOP, IHEIOX, and IHELDO).

215

Routine
Name

Function

IHEABU

IHEABW

IHEABZ

IHEATL

IHEATS

IHEATW

IHEATZ

IHECLOSE

IHECSC

IHECSM

IHECSS

THEDCN

IHEDDI

216

Binary Fixed Complex ABS -
Calculate ABS(z) = SQRT(x*#2 + y%*2)
where z = x + yI and x and y are
binary fixed real numbers.

Short Float Complex ABS -

Calculate ABS(z) = SQRT(x*#2 + y*%¥2)
where z = x + yI and x and y are
short floating-point real numbers.

Long Float Complex ABS -

Calculate ABS(z) = SQRT(x**2 + y*%2)
where z = x + yI and x and y are
long floating-point real numbers.

Long Float Real Arctan -
Calculate arctan(x) or arctan(y/x)
where x is a long floating-point
real number expressed in radians.

Short Float Real Arctan -

Calculate arctan({x) or arctan(y/x)
where x is a short floating-point
real number expressed in radians.

Short Float Complex Arctan/Hyperbolic
Arctan - Calculate arctan(z) or hyper-
bolic arctan(z) where z is a short
floating-point complex expression.

Long Float Complex Arctan/Hyperbolic
Arctan - Calculate arctan(z) or hyper-
bolic arctan(z) where z is a long
floating-point complex expression.

Close -
Close a disk file.

Character String Compare -
Compare two character strings and
return condition code.

Character String Assignment -
Assign a character string to a
fixed-length target.

Character String SUBSTR -

Produce an SDV describing the SUBSTR
pseudo-variable and function of a
character string.

Character String to Arithmetic -
Convert a fixed-length character
string containing arithmetic constant
or complex expression to an arithmetic
target with specified scale, mode, and
precision.

Data—-Directed Input -
Handle data-directed input operations.

Manual

Package Location
AFUNC I1-118
AFUNC I1-120
AFUNC I1-122
MFUNC II1I-9
MFUNC III-S
MFUNC III-16
MFUNC III-19
I10MP II-40
SIMP II-111
SIMP I1-113
SIMP I1-115
TCP II-88
I0oMP II-41

Routine
Name

Function

IHEDDO

IHEDDP

IHEDIA

IHEDIB

IHEDIM

IHEDIO

IHEDMA

THEDNC

IHEDOA

IHEDOB

IHEDOM

IHEDUM

IHEDZW

Data-Directed Output -

Handle data-directed output, per-
forming any necessary conversion
operations,

Perform Calculation of the Subscript
Values for an Array Element -
Calculate subscript values for an
array element using FCB and ADV.

F/E Format Input Director -
Convert F/E-format external data
to an internal data type.

A-Format Input Director -
Convert A-format external data to

an internal data type during edit I/0.

C-Format Input Director -

Convert C-format external data to
an internal C-format representation
during edit I/0.

Edit I/O0 Director -
Interpret format code and direct
control to required library routine.

Arithmetic Conversion Director -

Set up intermodular flow required to
convert data from one arithmetic data
type to another.

Arithmwetic to Character String -
Convert an arithmetic source with
specified scale, mode, and precision
to a character string.

F/E-Format Output Director -

Convert an internal data representa-
tion to an external F/E-format
during edit I/0.

A-Format Output Director -

Convert an internal data representa-
tion to an external A-format during
edit I/0.

C-Format Output Director -

Convert an internal data representa-
tion to an external C-format during
edit I/O.

Program Termination -
Terminate current program, closing
all disk files.

Short Float Complex Division -
Calculate z1/z2 in floating-point
when zl=a+bIl and z2=c+dI, and a,b,c,
and d are short floating-point real
numbers.

Package
IOMP

IOMP

TCP

TCP

TCP

IOMP

TCP

TCP

TCP

TCP

TCP

HIP

AFUNC

Manual

Location

II-u3

II-45

II-76

II-78

I1-80

II-47

II-96

I1-90

I1-82

II-84

II-86

I1-63

I1-130

217

Routine
Name

Function

IHEDZZ

IHEEFL

IHEEFS

IHEERN

IHEERR

IHEEXL

IHEEXS

IHEEXW

IHEEXZ

IHEGPUT

IHEHTL

IHEHTS

IHEIOA

218

Long Float Complex Division -
Ccalculate z1/z2 in floating-point
when zl=a+bI and z2=c+dI, and a,b,c,
and 4 are long floating-point real
numbers.

Long Float Real Error Function -
Compute the error function of x or
the complement of this function,
where x is a long floating-point
real expression.

Short Float Real Error Function -
Compute the error function of x or
the complement of this function,
where x is a short floating-point
real expression.

Table of Error Messages and
Indicators - Provide action codes
of execution errors and runtime
error messages.

Error Routine -
Identify error condition and deter-
mine required action.

Long Float Real EXP -
Compute e**x where x is a long
floating-point real expression.

Short Float Real EXP -
Compute e**x where x is a short
floating-point real expression.

Short Float Complex EXP -
Compute e**x where x is a short
floating-point complex expression.

Long Float Complex EXP -
Compute e**x where x is a long
floating—-point complex expression.

Output Director -
Place 120-character line in terminal
I/0 buffer.

Long Float Real Hyperbolic Arctan -
Calculate hyperbolic arctan(x)
where x is a long floating-point
real expression.

Short Float Real Hyperbolic Arctan -
Calculate hyperbolic arctan(x)

where x is a short floating-point
real expression.

List- or Edit-Directed GET Initiation
and Termination - Initiate or termi-
nate list—- or edit-directed GET
statement.

Package
AFUNC

MFUNC

MFUNC

HIP

HIP

MFUNC

MFUNC

MFUNC

MFUNC

MOPP

MFUNC

MFUNC

IOoMP

Manual

Location

I1-132

III-25

I11-22

II-64

I1-65

ITI-30

III-28

III-32

III-34

II-70

III-14

I1I-12

II-48

Routine
Name

Function

IHEIOB

IHEIOD

IHEIOG

IHEIOP

IHEIOX

IHEJXI

IHELDI

IHELDO

IHELNL

IHELNS

IHELNW

IHELNZ

IHEMXB

Output Initialization with or without
Skipping ~ Initialize PUT statement
with or without SKIP option.

Output Data to the Buffer Area and
Communication with CALL/360-0S -
Place converted data in buffer and
request an SVC to Executive when
buffer is filled.

Get Data Field from Input Buffer -
Collect data from an input buffer.

Perform SKIP(w) Function for SYSPRINT -
Perform the SKIP function for output
print file.

Edited Horizontal Control Format

Item - On input, space over next

w characters. On output, for control
format item, insert w blanks; for
COLUMN(w), insert blanks up to

w—-th character.

Interleaved Array Indexer -
Provide the byte address of the next
element of an array.

List- and Data-Directed Input -
Scan one item or the constant part
of an assignment and assign it to
internal variable.

List-Directed Output -
Handle list-directed output.

Long Float Real Log -

Calculate log(x) to the base e,

base 2, or base 10 where x is a
long floating-point real expression.

Short Float Real Log -

Calculate log(x) to the base e,

base 2, or base 10 where x is a
short floating-point real expression.

Short Float Complex Log -
Calculate the principal value of
the natural log of z where z is
a short floating-point complex
expression.

Long Float Complex Log -
Calculate the principal value of
the natural log of z where z is a
long floating-point complex
expression.

Real Binary Fixed MAX/MIN -

Find the maximum or minimum of a
group of real fixed-point binary
numbers.

Manual

Package Location
IOMP II-49
IOMP II-50
IOMP II-52
IOMP II-53
IOMP II-54
AMP III-89
IOMP II-56
IOMP II-58
MFUNC ITII-39
MFUNC III-36
MFUNC III-42
MFUNC III-44
AFUNC II-124

219

Real Long Float MAX/MIN -
Find the maximum or minimum of a
group of long floating-point real

Real Short Float MAX/MIN -
Find the maximum or minimum of a
group of short floating-point real

Binary Fixed Complex Mult/Div -

Calculate zl*z2 or zl1l/z2, where

z1 and z2 are fixed-point binary
complex numbers.

Short Float Complex Mult -
Calculate z1#*z2 in floating-point,
when zl=a+bI and z2=c+dI and a,b,c,
and d are short floating-point real

Long Float Complex Mult -

Calculate z1#*z2 in floating-point,
when zl=a+bl and z2=c+dI and a,b,c,
and 4 are long floating-point real

On-ENDFILE and REVERT Initializer -
Initialize the on—-ENDFILE condition
unit to the current unit.

Open a disk file.

PROD-Interleaved Real Fixed Array -
Equate a long or short floating-
point real target to the product of
all elements of an interleaved array
of fixed-point real expressions.

PROD-Interleaved Real Long Float
Array - Equate a long floating-point
real target to the product of all
elements of an interleaved array of
long floating-point real expressions.

PROD-Interleaved Real Short Float
Array - Equate a short floating-point
real target to the product of all
elements of an interleaved array of
short floating-point real expressions.

Routine
Name Function
IHEMXL

numbers.
IHEMXS

numbers.
THEMZU
IHEMZW

numbers.
IHEMZZ

numbers.
IHEONREV
IHEOPEN Open -
IHEPDF
IHEPDL
IHEPDS
IHEPDW

220

PROD-Interleaved Complex Short Float
Array - Equate a short floating-point
complex target to the product of all
elements of an interleaved array of
short floating-point complex expres-
sions.

Manual

Package Location
AFUNC I1-128
AFUNC I1-126
AFUNC II-134
AFUNC I1-136
AFUNC I11-137
HIP II-68
IoMP II-59
AMP I11-91
AMP III-95
AMP ITI-93
AMP II1I-99

Routine
Name

Function

IHEPDX

IHEPDZ

IHERSET

IHESAD

IHESAF

IHESHL

IHESHS

IHESMF

IHESMG

ITHESMH

PROD-Interleaved Complex Fixed Array -
Equate a long or short floating-point
complex target to the product of all
elements of an interleaved array of
fixed-point complex expressions.

PROD-Interleaved Complex Long Float
Array - Equate a long floating-point
complex target to the product of all
elements of an interleaved array of
long floating-point complex
expressions.

Reset Disk Files -

For output, write current half-track
and reset disk and current buffer
pointers; for input, reset disk and
current buffer pointers.

Initial Prologue, Expand DSA, End
Prologue, Object Program Initiation -
Provide DSA for block, obtain auto-
matic storage for declared elements,
and determine space required for
object program.

GO TO Interpreter -

Update current DSA address if neces-
sary and free chain elements up to
the DSA to which the specified
label belongs.

Long Float Real Hyperbolic Sin/Cos -
Calculate hyperbolic sin(x) or hyper-
bolic cos(x), where x is a long
floating-point real expression.

Short Float Real Hyperbolic Sin/Cos -
Calculate hyperbolic sin(x) or hyper-
bolic cos(x), where x is a short
floating-point real expression.

SUM-Interleaved Real Fixed Array -
Equate a long or short floating-point
real target to the sum of all elements
of an interleaved array of fixed-point
real expressions.

SUM-Interleaved Real/Complex Short
Float Array - Equate a short floating-
point real or complex target to the
sum of all elements of an interleaved
array of short floating-point real

or complex expressions, respectively.

SUM-Interleaved Real/Complex Long
Float Array - Equate a long floating-
point real or complex target to the
sum of all elements of an interleaved
array of long floating-point real or
complex expressions respectively.

Package
AMP

IOMP

MOPP

MOPP

MFUNC

MFUNC

Manual

Location

I1I-97

III-101

II-60

II-71

II-73

IXII-54

III-52

ITI-103

ITI-105

III-107

221

Routine Manual

Name Function Package Location
IHESMX SUM-Interleaved Complex Fixed Array - AMP II1I-109

Equate a long or short floating-point
complex target to the sum of all ele-
ments of an interleaved array of
fixed-point complex expressions.

IHESNL Long Float Real Sin/Cos - MFUNC ITI-49
Compute sin(x) or cos(x) where x
is a long floating-point real
expression in radians.

IHESNS Short Float Real Sin/Cos - MFUNC III-46
Compute sin(x) or cos(x) where x
is a short floating-point real
expression in radians.

IHESNW Short Float Complex Sin/Cos - MFUNC III-57
Calculate hyperbolic sine, hyperbolic
cosine, sine, or cosine of an argu-
ment z, where z is a short floating-
point complex expression.

IHRSNZ Long Float Complex Sin/Cos - MFUNC III-60
Calculate hyperbolic sine, hyperbolic
cosine, sine, or cosine of an argu-
ment z, where z is a long floating-
point complex expression.

IHESQL Long Float Real SQRT - MFUNC ITII-66
Compute SQRT(x) where x is a long
floating-point real expression.

IHESQS Short Float Real SQRT - MFUNC III-63
Compute SQRT(x) where x is a short
floating-point real expression.

IHESQW Short Float Complex SQRT - MFUNC I1I-68
Conmpute the principal value of the
square root of z where z is a short
floating-point complex expression.

IHESQZ Long Float Complex SQRT - MFUNC ITI-70
Compute the principal value of the
square root of z where z is a long
floating-point complex expression.

IHESVC Library SVC Director - MOPP II-74
Interface with the CALL/360-0S system.

IHETHL Long Float Real Hyperbolic Tan - MFUNC III-80
Calculate hyperbolic tan(x) where x
is a long floating-point real
expression,

IHETHS Short Float Real Hyperbolic Tan - MFUNC III-78
Calculate hyperbolic tan(x) where x
is a short floating-point real
expression.

222

Routine
Name

Function

THETNL

IHETNS

IHETNW

IHETNZ

IHEUPA

IHEVCA

IHEVCS

IHEVFA

IHEVFB

IHEVFC

IHEVFD

IHEVFE

Long Float Real Tan -

Calculate tan(x) where x is a long
floating-point real number expressed
in radians.

Short Float Real Tan -

Calculate tan(x) where x is a short
floating-point real number expressed
in radians.

Short Float Complex Tan/Hyperbolic
Tan - Calculate tan(z) or hyperbolic
tan(z), where z is a short floating-
point complex expression.

Long Float Complex Tan/Hyperbolic
Tan - Calculate tan(z) or hyperbolic
tan(z) where z is a long floating-
point complex expression.

Zero Real or Imaginary Part -

Zero real part of complex arithmetic
data and move pointer from real to
imaginary part or zero imaginary part
and/or get address of imaginary part.

Data Analysis Routine -

Create a DED to describe the scale,
mode, and precision of a character
representation of an arithmetic value.

Complex External to String Director -
Direct conversion of character repre-
sentation of complex data to internal
string data.

Float Intermediate to Packed Decimal
Intermediate - Direct conversion of
floating-point intermediate to packed
decimal intermediate.

Float Intermediate to Fixed Binary -
Direct conversion of floating-point
intermediate number to fixed-point
binary.

Float Intermediate to Float Short or
Long - Move a floating-point inter-
mediate number into a floating-point
short or long target data item.

Fixed Binary to Float Intermediate -
Direct conversion of a fixed-point
binary source to a floating-point
intermediate number.

Float Source to Float Intermediate -
Move a short or long floating-point
binary number into LCA to make it
available for use as a floating-point
intermediate number.

Package
MFUNC

MFUNC

MFUNC

MFUNC

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

Manual

Location

I1I-75

III-72

III-82

ITI-84

II1-92

II-109

II-93

II-99

II-100

II-101

I1-102

II-103

223

Routine
Name

Function

IHEVPA

THEVPB

IHEVPC

IHEVPE

IHEVSC

IHEVTB

IHEXIB

THEXIL

IHEXIS

IHEXIU

IHEXIW

224

Packed Decimal Intermediate to Float
Intermediate - Convert a packed
decimal intermediate number to a long
floating-point intermediate number
and store in LCA.

Packed Decimal Intermediate to
F-Format - Convert a packed decimal
intermediate number to an F-format
character string and store in
target-string data item.

Packed Decimal Intermediate to
E-Format - Convert a packed decimal
intermediate number to an E-format
character string and store in
target-string data item.

String with Format to Packed Decimal
Intermediate - Convert a character
string paired with an F/E-format
element to packed decimal inter-
mediate and store in LCA.

Character String to Character String -
Assign a fixed- or variable-length
character string to a fixed- or
variable-length character string.

Table of Powers of Ten -

Table of long-precision floating-
point numbers representing powers of
ten from 1 to 70.

Real Fixed Binary Integer EXP -
Calculate x**n, where x is a real
fixed-point binary number and n is
a positive integer.

Real Long Float Integer EXP -
Calculate x**n, where x is a long
floating-point real number and n is
an integer between -2**31 and

2%%31 - 1.

Real Short Float Integer EXP -
Calculate x**n, where x is a short
floating-point real number and n is
an integer between -2*%31 and

2%%31 - 1.

Z**N, Z Fixed Binary Complex -
Calculate z*%*n, where z is a complex
fixed-point binary number and n is a
positive integer less than 2#%#%31.

Z**N, 7 Short Float Complex -
Calculate z**n, where z is a short
floating-point complex number and n
is an integer between -2**31 and
2*%%31 - 1.

Manual

Package Location
TCP IT-104
TCP II-105
TCP II-106
TCP II-107
TCP II-95
TCP II-108
AFUNC II-138
AFUNC II-142
AFUNC II-140
AFUNC IT-144
AFUNC II-146

Routine
Name

Function

IHEXIZ

IHEXXL

IHEXXS

IHEXXW

IHEXXZ

IHEYGF

IHEYGL

IHEYGS

Z**N, Z Long Float Complex -
Calculate z#*#*n, where z is a long
floating-point complex number and
n is an integer between -2%%*31
and 2#%31 - 1.

Long, Float Real General EXP -
Calculate x**y, where x and y are
long floating-point real numbers.

Short Float Real General EXP -
Calculate x*#*y, where x and y are

short floating-point real numbers.

Short Float Complex General EXP -
Calculate zl1*#*z2 where zl1l and z2
are short floating—-point complex
numbers.

Long Float Complex General EXP -
Calculate zl1**z2 where z1 and z2
are long floating-point complex
numbers.

POLY(A,X) (A and X Real Fixed) -
For vector X, calculate:

n-m j-1

Am) + Z am+ie JT xe+d
j=1 i=0
For scalar X, calculate:

n-m

E A(m + j)eXesj

i=0

POLY(A,X) (A and X Real Long
Float) - For vector X, calculate:

j=1

n-m
A(m)+z am+p+] xo+0
i=0

i=1

For scalar X, calculate:

n-m

Z A(m +)*Xasj

i=0

POLY(A,X) (A and X Real Short
Float) - For vector X, calculate:

n-m j-1
A+ Y am+e [X+
j=1 i=0

Manual

Package Location
AFUNC I1I-148
AFUNC II-152
AFUNC II-150
AFUNC II-154
AFUNC II-156
AMP III-111
AMP III-117
AMP III-114

225

Routine
Name Function
For scalar X, calculate:
n-m
E A(m + j)rXexj
i=0
IHEYGW POLY(A,X) (A and X Complex Short
Float) - For vector X, calculate:
n-m j-1
A(m) + Z Am+] xe+0
j=1 i=0
For scalar X, calculate:
n-m
5 A(m + j)*Xxj
j=o0
IHEYGX POLY(A,X) (A and X Complex Fixed)
For vector X, calculate:
n-m j-1
Am) + z Am+][] x@+9
j=1 i=0
For scalar X, calculate:
n-m
E A(m + j)*Xkx
i=0
IHEYGZ POLY(A,X) (A and X Complex Long

226

Float) - For vector X, calculate:

n-m j-1
A(m)+z Am +iy T %@+
i=1 i=0

For scalar X, calculate:

n-m

E A(m + j)*Xskxj

j=0

Manual

Package Location
AMP II1-123
AMP III-120
AMP I11-126

MACRO-MACRO CROSS REFERENCE

CALL/360-0S PL/I compiler support macros are described in Appendix
C of this manual. Runtime support macros are discussed in Appendix
D. Some of the macros in each group call other macros to perform
required functions. Figure J-1 provides a cross reference between
a macro and other macros called by that macro. (Refer to the named
appendices for details.)

Called Macros

W e A A H A HHHDQQQ OO
HOopmoOmmEomEoDEnEdNSEE 0> >
O tx b7 b b b b bbb bbb O
NZNOOEFMrEEOON > DR MK X
< PHODHEOMIRAPRID ZXHH
O "WR<ABEEESHDIEE>O %)
S
CALL CALL
CALLERR o CALLERR
CALRTS ® CALRTS
CKFCB [[CKFCB
csve csve
DED DEL
DNODE DNODE
LXPG o] |®] EXxPG
FAREA ®| FAREA
FIB O FLB
GCURR GCURR
GENER ®| GENER
GETKN GETKN
GFRST GFRST
GNEXT. ®| GNEXT
GNODE ®| GNODE
GPREV ®| GPREV
GTRD ®| GIRD
LHEADC I[HEADC
I HEBRA IHEBRA
IHEBXT THEBXT
IHECAL IHECAL
THEDCV) [HEDCV
LHEDIF LHEDTF
; THEERRCD
THEEXT
IHEFCB
IHEFCLIB IHEFCIB a
IHEFROM IHEFROM B
THEHDR THEHDR —
THELOD o (o | LHEIOD g
[HELBE [HELBE Q
THELIB o |o THELLB =
LHEMOPP LHEMOPP o
[THENAME ITHENAME Q
LHEOPENT o @ [HEOPENT 8
THFPCH [HEPCH
IHEPRV [] [HEPRY
LHERET LHERET
THLRST LHERST
LHI'SAV [HESAV
THLSCV LHESCV
LHESDR
LHESYM [] IHESYM
ITHETLR THETLR
[HLZAP IHEZAP
LNODE INODE
TINS L INS1L
LIBDEF ° 00 LIBDEF
MNODI MNODFE
RCON RCON
READDISK o ® READDISK
READTERM [READTERM
[RFIB
RISSVC
SETDISK
SLETERRCD
SETFLCA
SLrsnv
® SKPTK
SYMDEF (] SYMDLF
TALLY (] FALLY
TGLNER O TGENEK
DR o N N HHEODOOO OO0
HormomI@@mammEdSEmo >
WOoOmMmMmMEIE M E M EMmmmx -3 2 c e
mMZNOWLOEEEMEOMOOE>0 XED X
< PHROEHEBOXIAPIO ZXWH
(g} ~ﬂ3<mwmrn~azmr->n 1%}
©

Figure J-1. Macro-Macro Cross Reference

227

MODULE-MACRO_CROSS REFERENCE

CALL/360-0S PL/I compiler modules are discussed in detail in Section

3 of this manual. Runtime library modules are described in Section

5. Many of these modules call CALL/360-0S PL/I macros to perform
required functions. Fiqure J-2 provides a cross reference between

a compiler module and macros called by that module. Figure J-3 provides
a cross reference between a runtime library module and macros called

by that module. (Refer to the named sections for details.)

228

CALL
CALLERR
CALRITS
CKFCB
csvce
DED
DNODE
LEXPG
FAREA
FIB
GCURR

GNEXNT
GNODE
GPREV
G'1RD
THEADC
I HEBRA
THEBXT
THLCAL
THEDCV
LTHLDIF

IHEEXT
THEFCB
THEFCIB
THEFROM
THEHDR
LHETOD
IHELBE
THELIB
IHEMOPP
THENAME
ITHEORENT
IHEPCH
THEPRV
LHERET
LHERST
THESAV
THESCV
IHESDR
[HESYM
FHETLR
LHEZAP
INODE
INST
LIBDEF
MNODL
RCON
READDILSK
READTERM
RFLB
RTSSVC
SETDISK
SETERRCD
SETFLCA
SETSDV
SKPTK
SYMDEF
TALLY
TGENER

Figure

Calling Modules

CALL
CALLERR
CALRTS
CKFCB
csve
DED
DNODE
EXPG
FAREA
FIB
GCURR

GNODE
GPREV
GTRD
LHEADC
IHEBRA
THEBXT
ITHECAL
IHEDCV
LHEDIF
I RRCD
ITHEEXT
IHEFCB
IHEFCIB
ITHEFROM
ITHEHDR
IHEIOD
IHELBE
IHELIB
LHEMOPP
IHENAME
LHEOPENT
IHEPCH
LHEPRV
THERET
THERST
LHESAV
IHESCV
ITHESDR
THESYM
THETLR
IHEZAP
INODE
INST
LIBDLF
MNODE
RCON
READDISK
READTERM
RFIB

RISSVC
SETDISK
SETLRRCD
SETFLCA
SETSDHV
SKPTK
SYMDI'F
TALLY
TGENIR

P311®D2

S010®B

o O OOOO00O W ww >
NMUOZRECHHXZZOZOOHMUOUROZHmEAOD> WO - g : : : ; : ; g w
HORXEFHQOZY I OUOHQOOOXNEHLZHMIOHNENEZAZYEHQRHED OO P>
R gZZom=2M v on QoH MZERCTD A VO HZOXOREE

oo Zwn =z - Q >0 = > o=
LUOROOROOROORO oleoje| [oj0j0! 0000000000 ojeje
[] (10]
[]
[(]
[] (] []
@ o0 [] (]
[] @ DO0O0R0 [3010) [] [] []
ol 00000 00006 [] [I
(J (0] L] 90600 |O® (] (] o/e®
@
@ [] e |0 [] o006 |®
() ® 06|00 0 [1] (]
(] L10] 010000 [] 000 []
ee (10 o [ejoje| 6000083 (000000 []
L]
[[]
(1000
(J [] (100 0] [] (]

JERO0 o eol0|® 10000 1000)| @ 000
ojo/0o/0/0/0/0/00 0000006 00000000 o000 /00/000 00600
LIL (] LJ (] LILdC] []

o i@ (] [1L
DB DDODDODLOLDLDNDLDDBDLDLDLDLLDDLDLDRLDLDDODLDLDODDDLLOLLDDNVNOLNNLN
HEEmE OO OO0 000000000OF R EE®E>>>>>>D>
NMUPWOZRUHNKXZZOWOOHNNUOWNWNNOZHEOPPIYOHFOmSnIYZAOW
HKOXEHOQZYYOUOMNQOOXnNEHSZMMMIOARArNZcZYUmMmoOXHEI OO
- Eala] UZZOm=Z+H ©nwnv [2N=N1 mZmrHrom AN HEHZOXO D

gozZzw z v —_o »0 z o M=

3 - .

J-2. Compilation Module-Macro Cross Reference (Page 1 of 2)

229

Calling Modules

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmmm
MO NTEn<<9<<<<HHHOWNOOZZZZZZZUZUZUIITIITTIITIQQT
HomoorHODAPPEWOQ<QRTVOORCEOOOQAPOHOIEDOPHTY I
7a-1><»-30:>z»-]mt-'mmr—o*uoou:zmpu'u-acmx<mu:>v-3!:00r-iz<»qr-=uc:>
WHYOSONRPIOQP»IU <NzZmmmOQUHESMUZrEScRPEAESY2HMSD
o HHRXRPTYO a» o =1 [«] H <= W <t [l aalia- M- r—l:;
CALL ® o) |0 [0 |0 /0] o/oje/0oje |6 (000 | [J [J CALL
CALLERR CALLERR
CALRTS - £ CALRTS
CKFCB b4 3 CKFCB
csve vl D ® D 0 ® csvce
DED = ® D D D DED
DNODE DNODE
EXPG = EXPG
FAREA x D ® ® FAREA
F1B - ® FIB
GCURR ® ® e Je GCURR
0 ololole 00 D) GENER
D ® e @ ©| GETKN
® D o lel |® GFRST
® © o |e] [® GNEXT
GNODE ® e (o] (o] || Tel® elelele ®| CNODE
GPREV D00 ® ® [® e (@ GPREV
GTRD ® GTRD
THEADC IHEADC
IHEBRA IHEBRA
IHEBXT
IHECAL
IHEDCV
IHEDIF
IHEERRCD
) IHEEXT
THEFCB IHEFCB
IHEFCIB IHEFCIB
IHEFROM IHEFROM &
THEHDR THEHDR =
THETOD IHEIOD o
[HELBE IHELBE ..
THELTB IHELIB N
IHEMOPP IHEMOPP J
IHENAME IHENAME ©
LHEOPENT IHEOPENT
IHEPCH 0/0/0/0/60/C00 6O 66 0666 6 006006006 ®|®] IHEPCH
THEPRV IHEPRV
LHERET THERET
" 1HERST IHERST
THESAV IHESAV
THESCY IHESCV
IHESDR IHESDR
THESYM IHESYM
IHETLR IHETLR
IHEZAP IHEZAP
TNODE ®| INODE
TNST (] INST
LIBDLF LIBDEF
MNODI. olele D © MNODE
RCON RCON
READDISK READDISK
READTERM READTERM
RFLE ® RFIB
RTSSVC
SETDISK
SETERRCD
SETFLCA
SETSDV
® (] SKPTK
00000 0000000000n0000000RD000000O0000RO0DEY 1]
o |eo ® ® I'_ D ® ®! TALLY
TGLENER | TGENER
w LB onULO LN ooy £ s »n
> C<m LA ARl H NN O0O QYL AL LD mmn QO
™ HOooAaAOPPrRIOO<OTWTWYWOOKXKIMAO ToP-Yg
-] UHONEFNUOUHTONMUOULOMOXWYCWLXT < H =G
= nELPEmOQ U <SNZmuOor-=YS YL H MR
- Neol [~ m [=] H<Hw o P—'g

Figure J-2. Compilation Module-Macro Cross Reference (Page 2 of 2)

230

Calling Modules

!—1L—dHHHNNHF‘HHHHHH”HHNHHHO—‘P‘NHHHHNHHHNHHHHHD—I

R EEEEEEEEEEEEEEEEEEEEEEE R R

SEEERENEEEYERECgE3SSEISSCSScanusRREEREEEE

:»u:r-'ggcmr'wzwrNcﬁglubonu»woazm:ncuamr‘x:::

g ~

CALL CALL
CALLERR CALLERR
CALRTS [] CALRTS
CKFCB ® 3 CKFCB
csve g csve
DED] DED
DNODF 11 1] DNODE
EXPG ~ LXPG
FAREA FAREA
F1B FIB
GCURR GCURR
GENER GENER
GETKN GETKN
GFRST GFRST
GNEXT GNEXT
GNODE GNODE
GPRLV GPREV
GTRD GTIRD
THEADC IHEADC
THEBRA % (0@ 00 oleele] | @@[® ® 00 IHEBRA
IHEBXT OEO0 0o 00 ®]®] | IHEBXT
THECAL 100 IHECAL
THEDCV o |ee ool 00 C100W0O0 IHEDCV
IHEDIF seleee IHEDIF
[HEERRCD [B]@]® ® ® ® @] |ee] 8@ IHEERRCD
IHEEXT eele[® 000 C IHEEXT
[HEFCB ® IHEFCB
ITHEFCIB @ @ [] IHEFCIB a
THEFROM 0 ® ITHEFROM g
IHEHDR NO000A0 NOOOE0OE0O0U00 ele[e[e [©[0]e[0] [0[®]®| IHEHDR =
LHETOD NEO0 olole IHEIOD 2
IHELBE IHELBE »
THELTB cle[ele[e[e[® eeee oe0ee 10 ®lo0[c] [6[90(0/8[®[@|e] IHELIB B
IHEMOPP) IHEMOPP a
THENAME ® ®® ® (100 IHENAME °
LHEOPENT [®) IHEOPENT
THEPCH ® ® ® ® e @e IHEPCH
THEPRY IHEPRV
[HERET 0 ® ® OI0E) ® THERET
IHERS® ®| |e|8|0]® ole/eo (06 (6 DO 8/6(0[6] o|0®® (0@ @ I[HERST
IHESAV ®0| (000® 9005 60606 oee /@] |0] [0|®0[0] [0(®|®] IHESAV
THESCV Do IHESCV
THESDR © ® ele)e 0 IHESDR
[HESYM IHESYM
IHETLR DR000A0 DO0OE00D00000ON oloe[a/ec[@[0/ae| [6[0|® [HETLR
IHEZAP ® IHEZAP
INODE INODE
INST INST
LIBDEF 0 00 O [D00 ® LIBDEF
MNODE MNODE
RCON RCON
READDISK READDISK
READTERM READTERM
RFIB RFIB
RISSVC EO000000OEO000000N000EROA0 o[[o] [e[e[e[e[®] [e][®] | RrrssvC
SETDLSK SETDISK
SETERRCD SETERRCD
SETFLCA L] SETFLCA
SETSDV ® SETSDV
SKPTK SKPTK
SYMDEF SYMDEF
TALLY TALLY
TGENER TGENER

el elalsisialslolasliclnlaisiaslioicisinisiclcloiainsisialclisisinisiciolcialisliclals]

DR N NN DN N RO R Enm

R R s s R R R s R R R R R N R R R R R R R R R Rl

HEOE@mQOMEMEEMEENOoUDUCgDUDODUOODEOOTODOQOQOQPEEPEE>>

OHHTWMMUXMXIIMTINNCZOQOORXRHMHNHMRODODUONLVUFEHH-SSESOEE®

>mr‘sNI:M{“NZV!!“N!::lﬁ:‘H>>°=W>'UOH2M=08NEU)[“ENEG

(]

Figure J-3. Runtime Module-Macro Cross Reference (Page 1 of 3)

231

Calling Modules

sfafelaleiofaialalafsjaioisiafaiolalafaiajajojagnpapapajngngepuyejeleleperetel
ey e el R h R R R R R R R s R R R R R R s R s R e R]
MmumnnnNnNnnNNnnYIYRYTYRPWOOIREBIRERIZ I M G H
Pz Z22Z LR 2R XPPNUD U UUDUNZNNNMMMYLLLLODUNXOOOOO
l"NZ‘.mr‘xIOMMF"!UNNNSWF’H;:NCCMF&N«V’F‘O"‘Hr’?"’OUW
- <
CALL CALL
CALLERR 0 D CALLERR
CALR1S ® CALR'TS
CKFCB A CKFCH
Csve =4 |] csve
DED b= =1 ben
DNODL 3 Zl_] paobe
LXPG -] exec
FAREA = FAREA
'-’__ FI1B
GCURR
GENER
GETKN
GFRS'T
GNEX'T
GNODI GNODE
GPREV GPREV
GTRD GTRD
THEADC IHEADC
IHEBRA el® 0000 Q00000 (] IHEBRA
IHEBXT L3 (1] o0 THEBXT
I HECAL e|e| 0|0 ®| IHECAL
THEDCV QO CUOICI0000010) 000000 o |eje ® LHEDCV
THEDTF IHEDIF
LHFERRCD (] [[1030) [0 ®/®| |®(® IHEERRCD
IHEEXT CIC30I0) 1030000 IHEEXT
[HEFCB eje|® 1HEFCB
ITHEFCIB ee @ [HFFCIB
LHEFROM @0/®| [® LHLEFROM
THEHDR 0000000000 O0000000000000 [] THEHDR
THETOD ' LHETOD
IHELBE 1HELBE
IHELIB ©(0|0/0/00® 0¢6 L1030303030) 000000000 (] THELIB
ITHEMOPP [1(] IHEMOPP
ITHENAME [10] ©®[®| |® IHENAML
ITHEOPENT ®| LHEOPENT
LHEPCH [] C10] ITHEPCH
THEPRV [HEPRV
[HERET LI0)0) ®le ®e 0/®|®(® [HERET
THERST CICICICICCICI0IICN] CICICN0I0) ele CIC) [HERST
LHESAV 00000000000 oleloje[o]e (210 o [HESAV
THESCV J [D ITHESCV
ITHFSDR 00 o6 10 0/0|0(®/® [HESDR
THESYM THESYM
: o/o(0 000/ j0/0/0® ..Q........O%%%‘::C..Q [] [HCTLR
IHEZAP
INODE INODE
INST INST
LIBDFF OOOROOOORA0 o0 ee0/0/0j® LIBDLF
MNODI MNODE
RCON RCON
READDISK @ @ READDISK
READTERM [[] READTERM
RFIB RFIB
RTSSVC DOO000aR000 L0 RLISSVC
SETDISK SETDISK
SLITERRCD
(] @ SETFLCA
SLTSDV ()
SKPTK °
SYMDEF
FALLY
TGLENER TGENER
Ll B I e I e I e R B T R I e T e B I I I I I I e I I I I e R R I e B e B R e I R N I e
IO ME T TG RSN TSRS IR MG MDD RS S LD N ID A S D ID ST OIE MY WM OO mm Gr X T
mMmmmEmE T mmEm e E i m Mmoo mmemmm
Hhunhwnunununuwn,onmonomigyymgY'YoOo LMLl X FEr G e
LU LZ I LI mP P VNUUDUD U Y UNNNKKIM L L4000 OOC
r‘NZwl‘%.":n-nmr*ﬂ'lu:!\lxzmr-'ngzNzcmt*wNvJ(nr"CH'—'z*vGUbu
<

Figure J-3. Runtime Module-Macro Cross Reference (Page 2 of

232

SO01DBj; PalT®)

Z9X3IHI
X9XdHI

MOAFHI
SOXIHI
TOATHI
J9XIHI
ZXXAHI
MXX3IHI
SXXAHI

TXXAHI

ZIXAHI
MIXEHI
AIXIHI
SIXAHI

TIXIHI
GIXIHI

Calling Modules

SLATHI
OSAFHI
AdAFHI
OdAdHI
HdAZHI
VdAdHI
FIATHT
AIAdIHI

JJAIHI
CIATHI
VAAIHI

SOAAHI

VOAFHI

VdniIHI
ZINAHI
MNIZHI
SNILIHI
TINLIHI

SHIAHI

THLIHI

JASIHI

ZOSIHI

MOSHHI
SOSHEHI

CALL

CALLERR

CALRTS

CKFCB

csvce

DED

DNODE

EXPG

FAREA

FIB

GCURR

GENER

GETKN

GFRST

GNEXT

GNODE

GPREV

GTRD

ITHEADC

1HEBRA []

IHEBXT

[10]

IHECAL

IHEDCV (0|

]

THEDIF

IHEERRCD

® []
@ [®] |e|e

IHEEXT ®

ee
ole
@

IHEFCB

IHEFCIB

IHEFROM

IHEHDR ®

@
®
[]
[]
[]

@

©
@
®
[
@

[]

@
(]
@

IHEIOD

IHELBE

IHELIB

@
]
&|
&

(]
®
9
(]
@
[]

(]
®
@
(]
@

IHEMOPP

IHENAME

IHEOPENT

IHEPCH

IHEPRV

IHERET

IHERST L]

IHESAV ®

30

®
e
[10]
e|e

@|e

(10
o|®

IHESCV

@[S0

IHESDR

IHESYM

IHETLR LICIC]

IHEZAP

INODE

INST

LIBDEF

MNODE

RCON

READDISK

READTERM

RFIB

RTSSVC Q010

O

®

SETDISK

SETERRCD

SETFLCA

SETSDV

SKPTK

SYMDEF

TALLY

TGENER

Z9XIHI
X9AdHI

Figure J-3.

MOXIHI
SOXFHI
TOREHI
J9XIHI
ZXX3HI
MXXAHI
SXXAHI

TXX3AHI

ZIXIHI
MIX3HI

NIXAHI
SIXIHRI
TIXIHI
SIXAHI
GIAFHI

OSAFHI
AdATHd
JdAFHI
€dATHI
VJ4AJHI
JIAIHI
Q3ATHI

JJdAZHI
SIAFHI

VIAIHI

.SOAZHI
‘'VOATHI

VdnaHI
ZINIHI
MNIJHI
SNIFHI
INIFHI
SHIIAI

THIIHI

JASIHI

zdsdAH1

MOSIHI
SOSAHI

CALL
CALLERR -
CALRTS
CKFCB
csve
DED
DNODE
EXPG
FAREA
FIB
GCURR
GENER
GETKN
GFRST
GNEXT
GNODE
GPREV
GTRD
IHEADC
IHEBRA
IHEBXT
IHECAL
IHEDCV
IHEDIF
IHEERRCD
IHEEXT
IHEFCB
IHEFCIB
IHEFROM
IHEHDR
IHEIOD
IHELBE
IHELIB
IHEMOPP
THENAME
IHEOPENT
IHEPCH
IHEPRV
IHERET
IHERST
IHESAV
IHESCY
IHESDR
IHESYM
IHETLR
IHEZAP
INODE
INST
LIBDEF
MNODE
RCON

" READDISK

READTERM
RFIB
RTSSVC
SETDISK
SETERRCD
SETFLCA
SETSDV
SKPTK
SYMDEF
TALLY
TGENER

Runtime Module-Macro Cross Reference (Page 3 of 3)

s010®) P2IT®D

233

MODULE-MODULE CROSS REFERENCE

CALL/360-0S PL/I compiler modules are discussed in detail in Section

3 of this manual. For each module, other routines called by the module
are listed under "Routines Called™. This interrelationship of modules
is summarized in Figure J-4. -

In Figure J-4, names are given exactly as they appear in program coding.
That is, names which do not follow the prescribed naming conventions
(begin with $§) are identified.

234

T
JZEo%X=z2, 23, .88 FS% Sow 28529, s«
S02CEgr e85 utZ2rg8uo88832888z958z0><
e I p 2B IMOCHO0000000R0000WWWWLELT LT WL
0o bl v 1@l 1 i1 i el 111l lcoo_
S00® N b A d b d 1 1800w
Q=0@ b d b i 1e=0w__
powxo L T e owXa
o L el el | 1eiel | 1 1 111 1elc0n
eo-oz el 1@l | | 1 1 1 b i iel lso a0z
SerOoa NV 1 i rjooroa
om>k L e o>
oz bbb i le el i rrrirriiriiieoz
OZk___| 1ol el _| |eleielel_loieieiel | @ |eieielel | | | ieeeiee | O o | I || 0oz
Oz b el e jo—w
OQuae L e owee
@OOOZHL I | b 1 e Lt el i1l 1eo00zkF
Orwo L 1 L e o rweo
O L ielocaa
@ezz L e L r b r el lmezx
@aDkE_ L e 1 el el I I I I e I 1 | el |elma>+_
@Oz N 11 1 T 1eimoZze
oeco 1L r el jmdeco
@owk L e el el i | iel I || iel |emowr
@WoO-—2z |1 e i r i jeowo—2z
Sexz e el e i i<Exz
Lo o X L <o —ox
ewxa L E r i i wxa
<eco_ el le | L1 le 1 1 I L i it iie 1 iiili<aco
o8 Lzoxw 1ol | |_1e | 1 1 1 | 1 1 1 1 _I_1e§_1_1_1_1_1___ {11 I itz ocw
3 <oowz LIl L L 1 e i iee i i1l | lqoow=z_
S <o L e
» -
=5 ahmmmnuwmmN”mT.MMMT.H.LmWW_H T.me Y T“wawmwm_u =J=C
3% 582fc5r 00952225 8CutbZ2E QU388 R85 2952505<
20 <L CN DN DBOOOCHRO00O00000E0LO00 0N WLWWWLL LLEWLWwWwio

Compilation Module-Module Cross Reference (Page 1 of 6)
235

Figure J-4.

MMPWWHMRU_DI.HMWTPB.UWWE mV %RMM@RMW%W.MN o o
FCESE>ZF003 <0 >Xn2080arZ2SAh. 00 d10FZ<QRS -
RLIeRJEoR020000UW 3008 Wa00O0ELS0C0922072Y

—_ Or86804868000880000008800000nnbbbabbbaanz=ss
000 el LI i I I il i (i1 iriileel e |lcoo
Qoo L L e b bt iel jecon
Q=ow | Ll it rrirlei_ile=own
eOowxa | (@ || [| 11 1e T 111 1 I T 1 i1 ielel I || |#0wxa
cow el L I lel I iel I I 11 1 1 le I It 11| | I lel I |le ||caaw
SO TOZ e | etz _
CwrFOoa el 1L L e rr e | lonroa
oa>r- 1@ L1 i e L el lox>F
ooz el L L e et bt le lel I jlvoz
ozF_ el e e i ler lel oz
o—w el Lt rer b rr et lelel_je i jo-w
Owae 1@ L L C b e Jowee
wooOoZHI L L L L L Lt rrie e 11| lee ||| |j#ooozr
o< FwWo | L L L i L E e i o<rwo
o<oo e Lt r e el o aa
waczT L@ L e et ie | leezz
waDr- L Ie L el | i@ 1 1 1 1 1 1 e i 1e | l@a>+ —
@oZo < L el | mozw
@O 1@ e el | moiaxo
wOwk IO L L e el | jmows
@wwo=2z [e I L L rrrrie el | jowo-=z
<E¥Z UL e lelel el 1<~z
<o =aX el el |_I<w —ax
gewxa L e el s wxa
<o wo e U T e e < wo
<z ocw el LI T 1 11| 1 1el el I I I (I 1 ® I I_I_I I_I'leele | I<zocw
TG owz el el | <o owz
e T O T Y e =

8 MMPWWuMRuquWTPBMWWE mv %R%%%RMWMWWQPHR

38 S5ES5335E82853888852588855038¢40802285%04

=5 @mwwwwwwwwwmmwmwmmmmwmmswmmmwwwwwwmmwwww

Compilation Module-Module Cross Reference (Page 2 of 6)

Figure J-4.

236

zW v > o< ob aZ o wZaao

S o L S PR P

I:I.||||.“mummwM“muwmnmmwmwmmmmwmuwuwmwmmwnvCﬁuD.umeﬁunuD,::hE,u:hH,rc.H_rc.F.F
wZzowo S L LU L i i i i iiiiiiiiiliiim»mzona>
@wzoozal LI L i il li(ll®zoozn
ezo< Il L L i i ezo< o
Gz<rErEal L L i T il lill|ez<rra
@=0ZD | L L b L L L E i T r il 1esos>
RS =3 T T T T I A N N N
GToOo<L L L L Lt r i il leTooxd
eTa ool L il jlecaecrad
eTozral LU Lt r it i i ilerizra
@To>kFal L L L i il iireao>ra
@eTora LU e e b e Tora
eT<—z— L L e e -z~
eorFoc—<U L LU EE L b rr e r i rrrrrr i ljeore=—x
©aDrk bbb e rreesr_
w><ae L L e rr o res>ce
wo>s L L el e fee>s
wao o Lt e e v
wom— L b b e e~
wzo et ez
WS e b el ese
woo e b e e el lex=o
we=za L e =zo
w>aza LU L e e r e e jw>azo
wxaza LI UL LE L L Er b r et i il juxazo
WZoozZ e jwzooz_
wZowe L JwZoww
wooz LT el T el i lelel I I I_I_lel_I | | lwoo=z
Cawr L I® e loew

8 ZE Sxz, _0O< oz aZ a wZaoo
32 28CEIoSGHESEESE0E L 2508028800588288%0r0EaE<
S8 333 <2<nRa8553338583588825383828Zxxzs&ee

Compilation Module-Module Cross Reference (Page 3 of 6)

Figure J-4.

237

Ss.EE 7c2Fd23ce2o0kw_S> 8258255825 &«
EFCESE>ZE 00200 > Xn268a0ZSn,.. 00NN JBE2<OFRS -
DFLCO0JXETRFOCO000WI=200awWapgLOOErd<0o00En00X0nw
535555066 6566066060006650300hbhabbbssssBBs
@zowo >l el i i1 e i e eZ0wna>
wzoozal | 1L LI i e 1 i1 i1 i1l I iiiilil|iIiell|l®zo0zan
wzo<I I LU L C L C i e i I iei | le lwzo<ad
K e I A I Ry
wSOZD> [0le[eeleeeee® | | i | I I i | I I 1 (e [[(il iiiiililj|jl®so=z>
eIro@ || e L | sTFox
@Too< L L L C b C et i1 | |leTnocy
ST o I® L e T leTaraa
eTazral | LUt et b e j»xazra
@To>kal | L L L i il fieIo>ra
@Tora [L L1 UL e bt el Il ®tora
T <—2Z 1@ | b e ez =
worFac—<| | UL L EC L el 1 mora=-<
@ask L C el loasr
w> < Lt e s>
Co>s LT C L e i iiice>s
oo e e el jeaaa
woao = | 1@ I | 11 111 I 1e 1 1@ I\ i lel el | o= =
wzao el ez
wsE e el el e S
woo el el el L el el oo T
woZa e =za
w>aza LU e | jw>aza
wxaza | Ie L L L bt rrr el lele 11| jluxaza
wZzaoz |Iel | e i lwzooz
g Wwzoww |1 1 LU el wZowe
€3 wooz el LI I I i rrrilee I I I_I_1_11lel_leel i® | lucoz
Saw el el el 118l | lorw
8. Sz.8E32s2Fi22c0208ky By 22988385025 B¢
32 5353330538800 80885328008xz<2080Z800X%X0bu
S5 B0LZZ33425522222222225%%00bhha00000580828255

Compilation Module-Module Cross Reference (Page 4 of 6)

Figure J-4.

238

e o s . e — ———— ——— — —— S . s s e s, i S e e e, i e i e e s e, St e e, S i S e,

Compilation Module-Module Cross Reference (Page 5 of 6)

Figure J-4.

239

———— e e e —

S — s (s s S s s i et e e e, i i e .t e it s e, i i i o

e i e e e s . s e e

e e o e o e s e — i e

e e i . e S, s e S, e e | e S S e e et . S et et e . st bt i

S e, St o e e e e . S, it e, . e, e, it i o ot St e st .

e it it e, i, e . s St i S . s . . . e, e ot et S s e i b s e, s it i, o i e it

e e i G o S e i e e . e, et o, e i, e o i S S i S, b i, i i s i it S St St e it sl

e o s . e e o e e . i . e et e S, et St s oot St St St . bt et St s, i, i, Mo, St it S i skt e

i e e e P

i i, ., et e e i e, s . e

i s e . . e e, . . i e S e . . e i b (i it e e S St i i, et it S et st St s s . s, i e S, e e e e . .

s e e e i e S . e e e e, et i s | s it et . bt o St i ki e |

B e e p——

e it s o s St S it S S s o —

e e e e e e e e e e e e e e e e et e st e et e b e, i | i i, s b i e et St S oo s, S, e, o e e o o o T

MWTPBHWWE mV :DLRMM%RMW%W.MW &
8353388552530 052z2%0862585%58
5355555550330 0hhh0008000808258
EEEEEEE N
T
A
llllll AR
e 1B w e
N . =
||||||||||||| el el
i eregoy
o _I_|_1e_| I 1 1 | 1 1@l | | lelel ieiel 1@ 1 I 1 | I I |
I el 1 e
e el
AN
| elel
L es><cnog
era—<ol | e el 1|
el j el 1 i
o _lel 18 | | | |_leielel_ el | | | | leleiel ielelelel | 1»-o0Qw
lllllllllllllllllll RN
L el
NI N
1 1@ 1 1 1 1 le I 1 i1 e
L el el 1 lel
o | | i1elelel 1@l I | | I | lel_| I I_I 1 |el lelelele
O | L Ll it liel 1111111l lelel lel
BN L L N T
HEEEEEE R
IR oo | | | leleie | I _I_I_|_ 18l I | | I | _|el_lelelelel | |
a1 el lel
.MWTPB.T._WNE mV MRADAMCRMWAWWN &
Om>Xm2aaaczsSn OPlsmLSTMAOTPTR
EE2EZ222 83000 ESS0005 2502y
APAPAPAPAHLBHAO AN HLLOPLRDLOPPLPLEZIBS

Compilation Module-Module Cross Reference (Page 6 of 6)

Figure J-4.

240

READER’'S COMMENT FORM

: CALL/360-0S PL/I GY20-0570-1

Systems Manual

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of M. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GY20-05701

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-

lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your mM
system should be directed to your 1BM representative or the 1BM branch office serving your

locality.

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY...

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention: Technical Publications

TBIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

ceecsesscssscen

R A R I

secemessonee

1-0LS0-0CAD "V'S'N Ul pajulid [enuepy swaisAs |/7d SO-09€/11VD

GY20-0570-1

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, New York 10601
(USA only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{international)

1-0LS0-0ZAD ‘V'S'N Ul pajuld jenuep swaisAs |/1d SO-09E/11VD

