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MATHEMATICAL FUNCTION PACKAGE

The following routines constitute the Mathematical Function Package
(MFUNC). They support CALL/360-0S built-in functions and can be grouped
as shown below. Descriptions of these routines are given on succeeding
pages of this manual, in the order indicated.

Note that, as far as possible, the general groupings are listed in
alphabetic order according to the mnemonics of the routines. Within each
grouping, discussion of short floating-point precedes discussion of long
floating-point, and discussion of real precedes discussion of complex.

Arctangent and hyperbolic arctangent - ATAN, ATANH:

Short Float Real Arctan (IHEATS)

Long Float Real Arctan (IHEATL)

Short Float Real Hyperbolic Arctan (IHEHTS)

Long Float Real Hyperbolic Arctan (IHEHTL)

Short Float Complex Arctan/Hyperbolic Arctan (IHEATW)
Long Float Complex Arctan/Hyperbolic Arctan (IHEATZ)

Error function - ERF, ERFC:

Short Float Real Error Function (IHEEFS)
Long Float Real Error Function (IHEEFL)

Exponentiation - EXP:

Short Float Real EXP (IHEEXS)
Long Float Real EXP (IHEEXL)
Short Float Complex EXP (IHEEXW)
Long Float Complex EXP (IHEEXZ)

Logarithms - LOG, LOG2, LOG10:

Short Float Real Log (IHELNS)
Long Float Real Log (IHELNL)
Short Float Complex Log (IHELNW)
Long Float Complex Log (IHELNZ)

Sine and cosine, hyperbolic sine and hyperbolic cosine - SIN, COS,
SINH, COSH:

Short Float Real Sin/Cos (IHESNS)

Long Float Real Sin/Cos (IHESNL)

Short Float Real Hyperbolic Sin/Cos (IHESHS)
Long Float Real Hyperbolic Sin/Cos (IHESHL)
Short Float Complex Sin/Cos (IHESNW)

Long Float Complex Sin/Cos (IHESNZ)

Square root - SQRT:

Short Float Real SQRT (IHESQS)
Long Float Real SQRT (IHESQL)
Short Float Complex SQRT (IHESQW)
Long Float Complex SQRT (IHESQZ)

Tangent and hyperbolic tangent - TAN, TANH:

Short Float Real Tan (IHETNS)

Long Float Real Tan (IHETNL)

Short Float Real Hyperbolic Tan (IHETHS)

Long Float Real Hyperbolic Tan (IHETHL)

Short Float Complex Tan/Hyperbolic Tan (IHETNW)
Long Float Complex Tan/Hyperbolic Tan (IHETNZ)



SPEED

The average execution times given in this subsection are based on
information in IBM System/360 Instruction Timing Information (A22-6825)
and include times for the modules called.

ACCURACY

In order to appreciate properly the meaning of the statistics for
accuracy given with each module, some consideration of the limits and
implications of these statistics is required. Because the size of

a machine word is limited, small errors may be generated by mathematical
routines. In an elaborate computation, slight inaccuracies can
accumulate and become large errors. Thus, in interpreting final
results, errors introduced during the various intermediate stages must
be taken into account.

The accuracy of an answer produced by a routine is influenced by two
factors:

1. The accuracy of the argument
2. The performance of the routine

Most argquments contain errors. An error in a given argument may have
accumulated over several steps prior to the use of the routine. Even
newly converted input data may contain slight errors. The effect of
an argument error on the accuracy of an answer depends solely on the
nature of the mathematical function involved and not on the particular
coding by which that function is computed within a routine. 1In order
to assist users in assessing the accumulation of errors, a guide on
the propagational effect of argument errors is provided for each
function described in this subsection. Wherever possible, this guide
is expressed as a simple formula.

The performance statistics supplied in this document are based upon
the assumption that the arguments are perfect (that is, without errors
and, therefore, having no argument error propagation effect upon
answers). Thus, the only errors in answers are those introduced by
the routines themselves. For each routine, accuracy figures are given
for the valid arqument range of respective representative segments.

In each case, the particular statistics are those most meaningful to
the function and range under consideration.

For example, the maximum relative error and the root-mean-square of

the relative error of a set of answers are generally useful and
revealing statistics. However, they are useless for the range of a
function where its value becomes 0, since the slightest error of the
argument value can cause an unbounded fluctuation in the relative
magnitude of the answer. Such is the case with sin(x) for values of

x close to pi; in this range it is more appropriate to discuss absolute
errors.

The statistics tabulated herein were derived from random distributions
of 5000 arguments per segment, generated to be either uniform or
exponential, as appropriate. It must be emphasized that each value
quoted for the maximum error refers to a particular test using the
method described above, and should be treated only as a guide to the
true maximum error.

This explains, for example, why it is possible that the maximum error
quoted for a segment may be greater than that found from a distribution
of different arguments over a larger range which includes the test
range.



HEXADECIMAL TRUNCATION ERRORS

While the use of hexadecimal numbers in System/360 has led to increased
efficiency and flexibility, the effect of the variable number of
significant digits carried by the floating-point registers must be
noted in making allowance for truncation errors. 1In the production

of the CALL/360-0S PL/I library, special care has been taken to minimize
such errors, whenever this could be accomplished at minor cost. As

a result, the relative errors produced by some of the library routines
may be considerably smaller than the relative error produced in some
instances by a single operation such as multiplication.

Representations of finite length entail truncation errors in any number
system. With binary normalization, the effect of truncation is roughly
uniform. With hexadecimal normalization, however, the effect varies

by a factor of 16 depending on the size of the mantissa; in a chain

of computations, the worst error committed in the chain usually prevails
at the end.

In short-precision representation, a number has between 21 and 24
significant binary digits. Therefore, the truncation errors range

from 2*%*%-24 to 2#%*-20 (5.96*10#%*%-8 to 9.5%10**%-7). Assuming exact
operands, a product or quotient is correct to the 24th binary digit

of the mantissa. Hence truncation errors contributed by multiplication
or division are no more than 2##%-20. The same is true for the sum

of two operands of the same sign. Subtraction, on the other hand,

is the most common cause of loss of significant digits in any number
system. For short-precision operations, therefore, a guard digit is
provided which helps to reduce such loss.

In long-precision representation, a number has between 53 and 56
significant binary digits. Therefore, truncation errors range from
2*%-56 to 2*%#*-52 (1.39#%10#%*-17 to 2.22#%10**-16). Assuming exact
operands, a quotient is correct to the 56th binary digit of the
mantissa. Therefore, truncation errors resulting from division are

no more than 2*#-52., The accuracy of a product, on the other hand,
depends on the necessity for post-normalization. If the mantissas

of both operands are close to 1, the truncation error of a product

is about 2**-56. If the product of the mantissas is about 1/16, the
truncation error is about 2#*#*-52. On the other hand, if the mantissas
of both operands are close to 1/16, the intermediate product has seven
leading zeros, and post-normalization introduces four trailing zeros.
In this case, the truncation error can be close to 2#%*-48(3.5%10#%%-15).
In particular, multiplication by 1 in the long-precision form has the
effect of erasing the last hexadecimal digit of the multiplicand.

Normal care in numerical analysis should be exercised for addition

and subtraction. In particular, when two algorithms are theoretically
equivalent, it usually pays to choose the one which avoids subtraction
between operands of similar size. There is no guard digit for long-
precision additions and subtractions.

HEXADECIMAL CONSTANTS

Many of the modules described below discriminate between algorithms

or test for errors by comparisons involving hexadecimal constants;
where decimal fractions are used in the descriptions, the fractions
are only quoted as convenient approximations to the hexadecimal values
actually employed.



TERMINOLOGY

Maximum and root-mean-square values for the relative and (where
necessary) the absolute errors are given for each module. These are:

Let f(x) = the correct value for a function
g(x) = the result obtained from the module in question

Then the absolute error of the result is
ABS(f(x) - g(x))

and the relative error of the result is
ABS((f£(x) - g(x))/f (X))

Let the number of sample results obtained be N; then the root-mean-
square of the absolute error is

N
SQRT(Z (ABS(f(xi) - g (xi)**2)/N)

|
and the root-mean-square of the relative error is

N
SQRT ( E (ABS((f(x1) = g (xi))/f(xi))*#2)/N)

ARGUMENTS

Any restrictions on arguments are noted under two headings:

Range: This states any range of arguments for which a module is valid.
Arguments outside the given ranges are assumed to have been excluded
before the module is called.

Error and Exceptional Conditions: These cover any conditions which
may result from the use of a routine:

P - Programmed conditions in the module concerned. Programmed
tests are made where not too costly and, if an invalid argument

is found, a branch is taken to the entry point IHEERRB of the Error
Routine. (See "Handling of Interrupts Package®™ in Volume II.

Error Routine is part of EXEP, which is a subpackage of HIP.)

An appropriate message is printed and the ERROR condition is raised.

I - Interrupt conditions in the module concerned. For those
routines where SIZE and FIXEDOVERFLOW are detected by programmed
tests or where hardware interruptions may occur, the OVERFLOW and
UNDERFLOW conditions pass to IHEERR and are treated in the normal
way. The machine is assumed to be enabled for all interruptions
except significance, which is masked.

O - Programmed conditions in modules called by the module concerned.
These occur when invalid arguments are detected in module called.

H - As I, but the interrupt conditions occur in the modules called
by the module concerned.



TITLE: SHORT FLOAT REAL ARCTAN (IHEATS)

Program Definition

Purpose and Usage

Short Float Real Arctan is used to calculate arctan(x) or arctan(y/x)
where x is a short floating-point real expression in radians. The
result range is:

arctan(x) (radians) *pi/2
arctan(ys/x) (radians) #pi
Description
Method:

1. ATAN(y,x)
If
x = 0 or ABS(y/x) 2> 2#%%24

the answer, SIGN(y)**pi/2, is returned except for the error
case, x =y = 0. Otherwise

ATAN(y,x) ATAN(y/x)if x > 0 or

ATAN(y,x) = ATAN(y/x) + SIGN(y)#*pi if x < 0

Hence the computation is now reduced to the single argument
case.

2. ATAN(x)
The general case may be reduced to the range 0 < x < 1 since
ATAN(-x) = - ATAN(x) and
ATAN(1/ABS(x)) = pi/2 - ATAN(ABS(x))

A further reduction to the range ABS(x) < TAN(pi/12) is made
by using

ATAN(x) = pi/6 + ATAN((SQRT (3)*x-1)/(x + SQRT(3)))

Care is taken to avoid the loss of significant digits in
computing SQRT(3)*x - 1.

For the basic range ABS(x) < TAN(pi/12) use an approximation
formula of the form

ATAN(X)/xXx = a + b*x**%2 + c/(d + x*%2)
with relative error less than 2**-27.1.

Effect of an Arqument Error:

Let
t = x or y/x

Then the absolute error of the answer approaches the absolute error
in t divided by (1 + t#**2). Hence, for small values of t, the two



errors are approximately the same; however, as t becomes larger, the
effect of the argument error on the answer error diminishes.

Accuracy:

[ == IS
| Arguments | Relative Error |
| | *10¢ |
[--=--- T |
| Range |Distribution | RMS | Ma ximum |
e e e e ——— o J
IHEATS1

r T T T T T T T T T T T T T T e T e e s e e e 1
| Full | Tangents of | 0.443 | 0.958 |
| Range | numbers | | |
| | uniformly | | |
| | distributed | | |
| | between | | 1
| | -pi/2 and | | |
| | pis2 | | |
L O -l
IHEATS2

== - == |
| Full | y = sin and | 0.449 | 1.42 |
| Range | x = cos of | | |
| | numbers | | |
| | uniformly | | |
| | distributed | | |
| | between | | |
[ | -pi/2 and | I |
| | pis2 I [ [
S S S 4

Implementation:
e Module size: 408 bytes

e Execution times:
Approximate execution times in microseconds for the System/360
models given below are obtained from the appropriate entry point
in the tables:

k = TAND(15)

| IBM System/360 Model Number |

| aBs(x) | 30 | 0 | S0 | 65 | 715 |
L e e e e e e e e o e e e e o o e e e e e e e e e 4




THEATS1

- —— - ——————————— - -

r

| <k | 3162 | 858 | 279 | 78.4 | u8.4

| + + e
| k < | | | | |

| ABs(x) | 4345 | 1136 | 347 | 97.8 | 58.0

| <1 | | | | |

|-==- ¥ + fmmmmmmmn pmmmm e fmmmmmmee
| 1< | l | | |

| ABS(x) | S0S51 | 1301 | 381 | 108 | 64.1

| <17k | | | | |

| 4 + B B e
| 21/k | 3868 | 1023 | 313 | 88.7 | 5u4.5

L e e e e e e o o e o e e e 2 o e e e i e o o e -

IHEATS2
R ——
| <k | 8193 | 1138 | 363 | 106 | 67.3

| t + fmmmmmme fmmmmmmmm fmmmmme
| k< | | | | |

| ABS(x) | 5376 | 1816 | 431 | 126 | 77.0

| <1 | | | | |

|- + + fmmmmmmee fmmmmmme fmmmmms
| 1< | | | | |

| ABs(x) | 6082 | 1581 | 465 | 136 | 83.1

| <1/k | | | | |

|--- + + fmmmmmmee frmmmmme S
| 21/k | 4899 | 1303 | 496 | 117 | 73.8

L

Errors Detected

Error and Exceptional Conditions:

P: IHEATS2: x =y = 0 (206)
Local Variables
None

Program Interface

Entry Points

IHEATS1 - Entry for ATAN(x)

P7 = A(PLIST)
PLIST = A(x)
A(target)
IHEATS2 = Entry for ATAN(y,Xx)
P7 = A(PLIST)
PLIST = A(y)
A(x)
A(target)

Exit Conditions

Normal.
Abnormal.

Returns to caller via the link register.
Branches to EXEP via the entry point IHEERRB.

e e — — — — —— — —— — o



Routines Called
EXEP Execution Error Package
Global Variables
None
Comments

IHEATS1 is called by compiled code. IHEATS2 is called by compiled
code, IHELNW, and IHEATW.



TITLE: LONG FLOAT REAL ARCTAN (IHEATL)

Program Definition

Purpose and Usage

Long Float Real Arctan is used to calculate arctan(x) or arctan(y/x),
where x is a long floating-point real expression in radians. The
result range is:

arctan(x) (radians) tpi/2
arctan(y/x) (radians) tpi

Description
Method:
1. ATAN(y,X)

If x = 0 or ABS(y/x) > 2**56, the answer SIGN(y)*pi/2 is returned
except for the error case x = y = 0. Otherwise

ATAN(y,x) ATAN(y/x) if x > 0 or
ATAN(y,x) = ATAN(y/x) + SIGN(y)#*pi if x < 0

Hence the computation is now reduced to the single argument
case.

2. ATAN(x)
The general case may be reduced to the range 0 < x < 1 since
ATAN(-x) = - ATAN(x) and
(ATAN(1/ABS(X)) = pi/2 - ATAN(ABS(x))

A further reduction to the range ABS(x) < TAN(pi/12) is made
by using

ATAN(x) = pi/6 + ATAN((SQRT (3)*x-1)/(x + SQRT(3)))

Care is taken to avoid the loss of significant digits in
computing

SORT(3)*x - 1

For the basic range ABS(x) < TAN(pis/12), use a continued fraction
of the form

ATAN(x)/x = 1 + al*x*x/(bl + x*x + a2/(b2+x*x + a3/(b3 + x*x
+ al/(blt + x*x))))

with relative error less than 2#%*(-57.9).

Effect of an Arqument Error:

Let
t = x or y/x

Then the absolute error of the answer approaches the absolute error
in t divided by (1 + t**2). Hence, for small values of t, the two
errors are approximately the same; however, as t becomes larger, the
effect of the argument error on the answer error diminishes.



Accura H

THEATL1

r - 1
| Arguments i Relative Error |
| | *102s |
| U |
| Range | Distribution| RMS | Maximum |
I-= ¥ -- |
|-1<x<1 | Uniform | 0.0u438 | 0.207 1
L -_ -1

Implementation:

e Module size: 544 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the table:

|

r 1
| | IBM System/360 Model Number |
| |
| Entry | 30 | 40 | 50 | 65 | 75 |
| Point | I | | | I
| 1 4 --- - {-- |
| IHEATL1 | 20472 | 4389 | 826 | 181 | 100 |
| IHEATL2 | 23523 | 5042 | 967 | 217 | 123 |
L J

Errors Detected

Error and Exceptional Conditions:

P: IHEATL2: x =y = 0 (206)
Local Variables
None

Program Interface

Entry Points

IHEATL1 - Entry for ATAN(x)

P7 = A(PLIST)
PLIST = A(x)
A(target)

IHEATL2 - Entry for ATAN(y,Xx)

P7 = A(PLIST)
PLIST = a(y)
A(x)
A(target)

Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.

10



Routines Called

EXEP Execution Error Package

Global Variables
None
Ccomments

IHEATL1 is called by compiled code.
code, IHELNZ, and IHEATZ.

IHEATL2 is called by compiled

11



TITLE: SHORT FLOAT REAL HYPERBOLIC ARCTAN (IHEHTS)

Program Definition

Purpose and Usage

Short Float Real Hyperbolic Arctan is used to calculate hyperbolic
arctan(x), where x is a short floating-point real expression in radians.

Description
Method:
1. ABS(x) < 0.2
Use a rational approximation of the form:
ATANH(x) = x + x*¥*¥3/(a + b*x*%*2)
2. 0.2 < ABS(x) < 1
ATANH(x) = -SIGN(x)#*0.5%*LOG((0.5 - ABS(x/2))/(0.5 + ABS(x/2)))

Effect of an Arqument Error:

The absolute error caused in the result is approximately equal to the
absolute error in the argument divided by (1 - x*#*2). Thus as x
approaches +1 or -1, relative error increases rapidly. Near x = 0,
the relative error in the result is of the order of that in the
argument.

Accuragz:
r TTTT T 1
| Arguments 1 Relative Error |
| | *10° |
|-=----- —--4- mmmmmmmommomooo |
| Range |Distribution]| RMS | Maximum |
e m— -4~ fmmmmmmmmmoes |
|-0.8<x | Uniform | 0.480 | 1.32 |
|<0.8 | | | |
| 1 rmmmmmmommees |
|-0.9<x | Uniform | 0.389 | 1.14 |
1<0.9 | | | |
B B LS. 1

Implementation:

e Module size: 192 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

12
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ABS(x) | 30 | 40 | 50 | 65 | 15

<0.2 | 2520 | 667 | 208 | 52.0 | 31.3
+ t frmrmmmn e

10.2< | | | | |

|ABS (%) | 7091 | 1829 | 606 | 163 | 94.8

!_<1 | | | | |

Errors Detected

Error and Exceptional Conditions:

P: ABS(x) > 1 (208)
Local Variables
None

Program Interface

Entry Points

IHEAHSO
P7 = A(PLIST)
PLIST = A(x)
A(target)

Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.

Routines Called

IHELNS Short Float Real Log
EXEP Execution Error Package

Global Variables
None
comments

Called by compiled code and IHEATW.

13



TITLE: LONG FLOAT REAL HYPERBOLIC ARCTAN (IHEHTL)

Program Definition

Purpose and Usage

Long Float Real Hyperbolic Arctan is used to calculate hyperbolic
arctan(x), where x is a long floating-point real expression in radians.

Description
Method:
1. ABS(x) < 0.25

Use a Chebyshev polynomial of degree 8 in x**2 to compute
ATANH (x) /x.

2. 0.25 < ABS(x) < 1
ATANH(x) = -SIGN(x)*0.5*LOG((0.5 - ABS(x/2))/(0.5 + ABS(x/2)))

Effect of an Arqument Error:

The absolute error caused in the result is approximately equal to the
absolute error in the argument divided by (1 - x*#%2). Thus as x
approaches +1 or -1, relative error increases rapidly. Near x = 0,
the relative error in the result is of the order of that in the
argument.

Accuracy:

T i)
| Arguments | Relative Error |
| | *1013 |
- --——----=—-} o-moo-o--- |
| Range |Distribution]| RMS | Maximum |
- + 4 $-- ----
|ABS(x)<]| Uniform | 0.0650 | 0.223 |
10.25 | | | |
P R t == [
|ABS(x)<| Uniform | 0.133 | 0.397 |
{0.95 | | | }

Implementation:
e Module size: 262 bytes

s Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:
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r

| | IBM System/360 Model Number

| - e e e e e o o o o e e e e e - -
| ABS(x) | 30 | 40 | 50 | 65 | 75

| - -
[<0.25 | 12252 | 3037 | 562 | 121 | 68

| 1 1 - 1 +

10.25< | | | | ]

|ABS (x) | 20448 | 4900 | 1040 | 202 | 137
|L<1 | | | | 1

Errors Detected

Error and Exceptional Conditions:

P: ABS(x) > 1 (208)
Local Variables
None

Program Interface

Entry Points

IHEAHLO
P7 = A(PLIST)
PLIST = A(x)
A(target)

Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.

Routines Called

IHELNL Long Float Real Log
EXEP Execution Error Package

Global Variables
None
Comments

Called by compiled code and IHEATZ.

e . o ——— — — o)
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TITLE: SHORT FLOAT COMPLEX ARCTAN/HYPERBOLIC ARCTAN (IHEATW)

Program Definition

Purpose and Usage

Short Float Complex Arctan/Hyperbolic Arctan is used to calculate
arctan(z) or hyperbolic arctan(z), where z is a short floating-point
complex expression in radians.

Description

Method:

Let

z=x +yl

Then
REAL (ATANH(Zz)) = (ATANH(2#*x/(1 + x*x + y*y)))/2
IMAG (ATANH(z)) = (ATAN(2*y, (1 - x*x - y*y)))/2 and
ATAN(z) = -(ATANH(zI))I

Effect of an Arqument Error:

The absolute error in the result is approximately equal to the absolute
error in the argument divided by (1 + z**2) in the case of IHEATTO,

or by (1 - z**2) in the case of IHEAHTO. Thus the effect may be
considerable in the vicinity of z = #1I(IHEATTO) or

z = +1 (IHEAHTO).

Accuracy:

Arguments

— o

|

|
- ._.._.._l. ........................
|Range|Distribution | i

e B g g B S

i
*106 I
|
|
4

IHEATTO

r- 1
|Full | o | |
|Range |Exponential | 0.216 i 2.88 |
L- 1

—— o o - ———— ——

THEAHTO

-

1
(Full | . | I |
|Range | Exponential | 0.208 | 1.18 |
L 1

Implementation:

e Module size: 304 bytes

e Execution times:

16



Approximate execution times in microseconds for the System/360
models given below are obtained from the appropriate entry point
in the table, where

a = ABS(2#*u/(1ix*x+y*y))
u = y for IHEATTO

= x for IHEAHTO
2 -
| | IBM System/360 Model Number |
| == e e |
| | 30 | 40 | 50 | 65 | 75 |
L — —————————— e e 3
IHEATTO
- - - - 1
|a<0.2 | 12235 | 3306 | 1033 | 279 | 173 |
| + 1- S +-- . |
|0.2<a ] 16056 | u4u54 | 1408 | 462 | 276 |
<1 | | | I | |
b e e e e 3
IHEAHTO
2 1
|a<0.2 | 12100 | 3267 | 1017 | 275 | 171 |
| + 1 -==1- RIS L S |
10.2<a ] 15921 | 4415 | 1392 | us8 | 274 |
IL <1 | | | | | JI

Exrrors Detected

Error and Exceptional Conditions:

1T (211)
31 (211)

P: TIHEATTO =z
IHEAHTO =z

Local Variables
None

Program Interface

Entry Points

IHEATTO - Entry for ATAN(z)

P7 = A(PLIST)
PLIST = A(2)
A(target)

IHEAHTO - Entry for ATANH(Zz)
Linkage as for IHEATTO
Exit Conditions

Normal. Returns to caller via link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.



Routines Called

IHEATS short Float Real Arctan
IHEHTS Short Float Real Hyperbolic Arctan
EXEP Execution Error Package

Global Variables
None
Comments

Called by compiled code.
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TITLE: LONG FLOAT COMPLEX ARCTAN/HYPERBOLIC ARCTAN (THEATZ)

Program Definition

Purpose and Usage

Long Float Complex Arctarn/Hyperbolic Arctan is used to calculate arctan(z)
or hyperbolic arctan(z), where z is a long floating-point complex
expression in radians.

Description

Method:

Let

Z =X +yl

Then
REAL (ATANH(z)) = (ATANH(2*x/(1 + x*x + y*y)))/2
IMAG(ATANH(Z)) = (ATAN(2%*y, (1 - x*x - y*y)))/2 and
ATAN(z) = -(ATANH(zI))I

Effect of an Arqument Error:

The absolute error in the result is approximately equal to the absolute
error in the argument divided by (1 + z#*#*2) in the case of IHEATMO,

or by (1 - z#*%2) in the case of THEAHMO. Thus the effect may be
considerable in the vicinity of z = #1I(IHEATMO) or

z = *1 (IHEAHMO).

Accuracy:
r 1
| Arguments | Relative Error |
| | *1025 |
[-===-=- R ]
| Range |[Distribution]| RMS | Maximum i
............................. J
IHEATMO
- T T T T TS T T T ST T T T T T 1
| Full |Exponential | 0.141 | 7.93 |
| Range | | | |
L e e e e 1
TIHEAHMO
—_ e e e 1
| Full | Exponential | 0.0826 | 1.20 |
|IRange | | | |
b et e 3

Implementation:

e Module size: 296 bytes

e Execution times:
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Approximate execution times in microseconds for the System/360
models given below are obtained from the appropriate entry point
in the table, where

a = ABS(2%u/(1 + x*x + y*y))
u = y for IHEATMO
= x for IHEAHMO
r 1
| | IBM System/360 Model Number |
I |
| | 30 | 40 | 50 | 65 | 75 |
L - 1
IHEATMO
r === 1
|a<0.25 | 43477 | 9977 | 2006 | 455 | 260 |
| t e e 1 |
10.25<a | 51673 | 11840 | 2406 | 576 | 329 |
<1 I | | | | |
L - e J
IHEAHMO
r - -1
|a<0.25 | 43293 | 9923 | 1987 | 450 | 258 |
| 1 1 B B B |
10.25<a | 51489 | 11786 | 2466 | 571 | 327 |
I< | | | | | |
L 3
Errors Detected
Error and Exceptional conditions:
P: IHEATMO =z = #1I (211)
IHEAHMO =z = #1 (211)
Local Variables
None
Program Interface
Entry Points
IHEATMO - Entry for ATAN(z)
P7 = A(PLIST)
PLIST = A(z2)
A(target)
IHEAHMO - Entry for ATANH(Zz)
Linkage as shown for IHEATMO
Exit Conditions
Normal. Returns to caller via the link register.

Abnormal. Branches to EXEP via the entry point IHEERRB.

20



Routines Called

IHEATL Long Float Real Arctan
IHEHTL Long Float Real Hyperbolic Arctan
EXEP Execution Error Package

Global Vvariables
None
Comments

Called by compiled code.
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TITLE: SHORT FLOAT REAL ERROR FUNCTION (IHEEFS)

Program Definition

Purpose and Usage

Short Float Real Error Function is used to calculate the error function
of x or the complement of this function, where x is a short floating-
point real expression.

Description
Method:
1. 0 < x < 1.317

Compute ERF(x)/x by using a Chebyshev interpolation polynomial
of degree 6 in x*%2, with relative error less than 2**-24,

ERFC(x) = 1 - ERF(x)
(ERFC(x) > 1/16 in this range.)

2. 1.317 < x £ k, where k = 2.04000092

Compute ERFC(x) by using a Chebyshev interpolation polynomial
of degree 7 in (x-k), with absolute error less than 1.3#%2%%-30.

ERF(x) = 1 - ERFC(x)
(ERFC(x) > 1/256 in this range.)

3. k < x < 13.306

ERFC(x) #XxEXP(x**2) is computed by using a Chebyshev interpolation
polynomial of degree 6 in x*#*-2, with relative error less than
1.2%2%%-23:

If x < 3.9192, ERF(x) 1 - ERFC(x)

If x 2 3.9192, ERF(x) 1
4. x = 13.306

Results 1 and 0 are returned for ERF(x) and ERFC(x) respectively.
5. x<0

ERF(x) = -ERF(-x)

Effect of an Arqument Error:

The absolute error caused in the result is approximately equal to the
absolute error in the argument multiplied by EXP(-x*%*2).

ERF(x): As the magnitude of the argument increases from 1, the effect
of an argument error diminishes rapidly. For small x, the relative
error of the result is of the order of the relative error of the
argument.
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Accuracy:

r 1
| Argunments | Relative Error |
| | *106 |
| To———-——-——} -==- -1
| Range |Distribution| RMS | Maximum |
12 -1
|ABS(x) | Uniform | 0.139 | 0.934 |
I<1.3 | | | |
|=-==---% } == ¥
11.3< | | | |
|ABS(x) | Uniform | 0.0372 | 0.263 |
<2 | | | |

S } -- -1

|12< | | | |

|ABS(x) | Uniform | 0.0347 | 0.0605 |

1<3.9 | | | |

L 1
Implementation:

e Module size: 376 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the table:

r 1
| | IBM System/ 360 Model Number |
- |
|ABS (x) | 30 | 40 | 50 | 65 | 75 |
L - ¥
IHEEFSO
r 1
|<1.32 | 4354 | 1191 | 392 | 100 { 57.2 |
| + + 1- 1 -+ [
11.32< | | | | | |
|ABS (%) | 4613 | 1266 | 418 | 110 | 62.0 |
|<2.04 | | | | | |
| 1 1 1 ¥ |
[2.04< | | | | | |
|ABS (x) | 10013 | 2843 | 868 | 228 | 140 |
1<3.92 | | | | | |
- 1 4 1= ¥ S |
1=3.92 | 1530 | 473 | 183 | 50.7 | 32.0 |
L - 1

Errors Detected
None
Local Variables

None



Program Interface

Entry Points

IHEEFSO - Entry for ERF(x)

P7 = A(PLIST)
PLIST = A(x)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEEXS Short Float Real EXP
Global Variables
None
Comments

Called by compiled code.
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TITLE:

LONG FLOAT REAL ERROR FUNCTION (IHEEFL)

Program Definition

Purpose and Usage

Long Float Real Error Function is used to calculate the error function
of x or the complement of this function, where x is a long floating-
point real expression.

Description

Method:

1.

Effect

0<x<1

Compute ERF(x)/x by using a Chebyshev interpolation polynomial
of degree 11 in x**2, with relative error less than 1.07%2**%-57,

ERFC(x) = 1 - ERF(x)
(ERFC(x) > 1/16 in this range)

1 < x < 2.04000092

Compute ERFC(x) by using a Chebyshev interpolation polynomial of
degree 18 in (x - 1.999999), with absolute error less than
1.5%2%%-61.

ERF(x) = 1 - ERFC(x)
(ERFC(x) > 1/256 in this range)

2.04000092 < x < 13.306
ERFC(x) is computed by using a Chebyshev interpolation polynomial

of degree 20 in x**2 for ERFC(x)*xEXP(x*#*2), with relative error
ranging from 2*#%-53 at 2.04000092 to 2**-51 at 13.306:

If x < 6.092, ERF(x) 1 - ERFC(x)

If x 2 6.092, ERF(x) 1

x > 13.306

Results 1 and 0 are returned for ERF(x) and ERFC(x), respectively.
x <0

ERF(x) = -ERF(-x)

of an Arqument Error:

The absolute error caused in the result is approximately equal to the
absolute error in the argument multiplied by EXP(-x*#*2).

ERF(x):

As the magnitude of the argument increases from 1, the effect

of an argument error diminishes rapidly. For small x, the relative
error of the result is of the order of the relative error of the
argument.
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r 1
| Arguments | Relative Error |
I | *101S |
|-=m===mwmmmmem—momay : |
| Range |Distribution| RMS | Maximum |
b e e = 4
| ABS (x) <| Uni form | 0.0280 | 0.202 |
11.317 | | | i
[======- ¥ frmmmmmmommee |
11.317< |Uniform | 0.0107 | 0.0291 l
|ABS(x) | | | |
[<2.08 | [ [ |
S e S |
|2.04< |Uniform | 0.00803 | 0.0170 |
|ABS(x) | | | |
1<6.092 | | | |
P — 1
Implementation:

e Module size: 744 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the table:

r 1
| | IBM Systen/360 Model Number |
| === I
|ABS (%) | 30 | 40 | 50 | 65 | 75 |
| TTTTTTmTsT oo oo———— e |
|<1.00 ] 16567 | 4154 | 805 | 180 | 103 |
| + 1 t------—-1 1 |
11.00< | | | I | |
|ABS (x) | 24413 | 6095 | 1175 | 263 | 147 |
|<2.04 | | | | | |
| ¥ + fmommms ¥ + |
12.04< | | | | | |
|ABS (x) | 45574 | 1105 | 2142 | 477 | 269 |
1<6.09 | | | | | |
| + + +- -t + |
126.09 | 2493 | 707 | 222 | 58.0 | 36.3 |
b e e e —— 4

Errors Detected
None
Local Variables
None

Program Interface

Entry Points

IHEEFLO - Entry for ERF(x)

P7 = A(PLIST)
PLIST = A(x)
A(target)
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Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEEXL Long Float Real EXP
Global Variables
None
Comments

Called by compiled code.
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TITLE: SHORT FLOAT REAL EXP (IHEEXS)

Program Definition

Purpose and Usage

Short Float Real EXP is used to compute e to the power x, where x is a
short floating-point real expression.

Description
Method:

If x < -180.2, a zero result is returned immediately. Otherwise,
EXP(x) is calculated as 2** (x*L0G2(e)).

The calculation is performed as follows:
x*L0G2(e) = £ + N

where N = 4h + g, h is an integer such that g = 0, 1, 2, or 3, and
0 < f<1.0.

Then, by subtracting 0.5, this is reduced to the range -0.5 < £ < 0.5.
Next, 2**f is calculated as (a + b/(c + x*x) + xX)/(a + b/(c + x*x) - x).

This is multiplied by 2#*%*0.5 and then shifted in the appropriate
direction to give the effect of multiplication by 2**g. Finally,
the exponent of the result is obtained from h.

Effect of an Arqument Error:

The relative error caused in the result is approximately equal to the
absolute error in the argument, that is, to the argument relative error
multiplied by x. Thus, for large values of x, even the roundoff error
of the argument causes a substantial relative error in the answer.

Accuracy:

r 1
| Arguments | Relative Error |
| | *10° |
- P S |
| Range |Distribution]| RMS i Maximum |
I-= ¥ ommmmmmmmees |
|-1<x<1 | Uniform | 0.132 | 0.490 |
- S t o= |
| Full | Uniform | 1.29 | 2.61 |
|Range | | | |
0 SR 4

Implementation:

e Module size: 232 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:
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r 1
| | IBM System/360 Model Number |
| - == I
| | 30 | 40 | 50 | 65 | 75 |
| - |
| { 3847 | 1172 | 356 | 90.0 | 58.0 |
L 3

- -

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW if x > 174.673 (201)
Local Variables
None

Program Interface

Entry Points

IHEEXSO
P7 = A(PLIST)
PLIST = A(x)
A(target)

Exit Conditions

Normal. Returns to caller via the link register.
Routines Called

None

Global Variables

None

Comments

Called by compiled code, IHEXXS, IHESHS, IHETHS, IHEEFS, IHEEXW, and
IHESNW.
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TITLE: LONG FLOAT REAL EXP (IHEEXL)

Program Definition

Purpose and Usage

Long Float Real EXP is used to compute e to the power x, where x is a
long floating-point real expression.

Description
Method:
If x < -130.2183, return zero result. Otherwise, let

x/L0G(2)
4*a - b - c/716 - 4

y

where a, b, and ¢ are integers, 0 < b <3, 0 < c £15, and 0 < 4 < 1/16.
Then

EXP (x) 2%y

16%*a*2%* (~b) *¥2%*(-c/16) *¥2**(-d) .

nn

Compute 2**(-d) by using the Chebyshev interpolation polynomial of
degree 6 over the range 0 < d < 1/16, with maximum relative error
2*%*(-57). If c > 0, multiply 2#%**(-d) by 2#*%*(-c/16). The constants
2*%*¥(-c/16), 1 < c < 15, are included in the subroutine. If b > 0,
halve the result b times. Finally, multiply by 16**a by adding a to
the characteristic of the result.

Effect of an Arqument Error:

The relative error caused in the result is approximately equal to the
absolute error in the argument, that is, to the argument relative error
multiplied by x. Thus, for large values of x, even the roundoff error
of the argument causes a substantial relative error in the answer.

Accuracz :

r 1
| Arguments | Relative Error |
| | *102S |
|---=--- mmmmoommmommooemmoooee- |
| Range |Distribution] RMS | Maximum |
|-1<x<1 | Uniform | 0.0674 | 0.216 |
|Full | Uniform | 0.867 | 2.30 |
|[Range | | | |
- - ——l
Implementation:

e Module size: Uu48 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:
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| IBM System/360 Model Number

;
| |
- mm oo |
| | 30 | 80 | 50 | 65 | 15 |
|-
|
L

| 12131 | 2901 | 616 | 343 | 194 |

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW if x > 174.673 (201)
Local Variables
None

Program Interface

Entry Points

IHEEXLO
P7 = A(PLIST)
PLIST = A(x)
= A(target)

Exit Conditions

Normal. Returns to caller via the link register.
Routines Called

None

Global Variables

None

Comments

Called by compiled code, IHEXXL, IHESHL, IHETHL, IHEEFL, IHEEXZ, and
IHESNZ.
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TITLE: SHORT FLOAT COMPLEX EXP (IHEEXW)

Program Definition

Purpose and Usage

Short Float Complex EXP is used to calculate e to the power z, where z
is a short floating-point complex expression.

Description
Method:
Let

z =x +ylI

Then

n

REAL (EXP(z)) EXP (x) #*COS (y) and

IMAG (EXP(2)) = EXP(x)*SIN(y)

Effect of an Arqument Error:

Let
EXP(x + yI) = S*EXP(KI)

Then k = y, and the relative error in s is approximately equal to the
absolute error in x.

Accurac y:

Relative Error |
*106 |

Arguments

Maximum

Range |Distribution

Uniform

|
|
|ABS (y) |
|

|

|ABS(x) | Uniform
1170 |
lpisz2< |
|ABS(y) |
{<20 |
L

Implementation:

e Module size: 136 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:
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r 1
i | IBM System/360 Model Number |
' ==
| | 30 { 40 | 50 | 65 | 75 |
| -- - -—-—-|
| | 14240 | 4058 | 1244 | 326 | 200 |
L - 4

Errors Detected

Error and Exceptional Conditions:

O: ABS(y) 2> 2##18%pi (212) in Short Float Real Sin/Cos (IHESNS)
H: OVERFLOW (300) in Short Float Real EXP (IHEEXS)

Local Variables
None

Program Interface

Entry Points

IHEEXTO
P7 = A(PLIST)
PLIST = A(2)
A(target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHESNS Short Float Real Sin/Cos
IHEEXS Short Float Real EXP

Global Variables
None
Comments

Called by compiled code and IHEXXW.



TITLE: LONG FLOAT COMPLEX EXP (IHEEXZ)

Program Definition

Purpose and Usage

Long Float Complex EXP is used to calculate e to the power z, where z
is a long floating-point complex expression.

Description
Method:
Let

zZ=x +yl

Then

REAL (EXP(2)) EXP (x) *COS (y) and

IMAG (EXP(2))

EXP (x) *SIN(y)

Effect of an Arqument Error:

Let
EXP(x + yI) = s*EXP(kKI)

Then k = y, and the relative error in s is approximately equal to the
absolute error in x.

Accurac y:

Relative Error
%1015

Arguments

—

5
5
§

Range |Distribution

l
|
|
|
|
|ABS (x)
<1

|ABS(y)

+
|
| 0.478
|

|<pi’z2 |
+
|
I
|
I

N
[ ]

N
o

|

| ABS (x) Uniform
|<20
|ABS (y)

|
|
+
|
i
Uniform | 0.136
|
|
+
|
|
|
[<20 |
L

S S S
e o S o S o S c— - — — s — oy s o)

Implementation:

e Module size: 136 bytes
e Execution times:

Approximate execution times in microseconds for System/360 models given
below are obtained from the table:
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r - -1
| | IBM System/360 Model Number |
- -- =mmmoommmmmomooo- [
| | 30 | 40 | 50 | 65 | 75 |
[ == oo |
| | u2838 | 10560 | 2174 | 505 | 287 |
lm e e e = 3

Errors Detected

Error and Exceptional Conditions:

O: ABS(y) > 2%*50%*pi (203) in Long Float Real Sin/Cos (IHESNL)
H: OVERFLOW (300) in Long Float Real EXP (IHEEXL)

Local Variables
None

Program Interface

Entry Points

IHEEXMO
P7 = A(PLIST)
PLIST = A(2)
A(target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHESNL Long Float Real Sin/Cos
THEEXL, Long Float Real EXP

Global Variables
None
Comments

Called by compiled code and IHEEXL.
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TITLE: SHORT FLOAT REAL LOG (IHELNS)

Program Definition

Purpose and Usage
Short Float Real Log is used to compute:

Log x to the base e LOG(x)

Log x to the base 2 LOG2 (%)

Log x to the base 10 LOG10 (x)
where x is a short floating-point real expression.
Description
Method:

Let

X = m*l6**p

where 1/16 < m < 1 and p is an integer.

Two constants, a (= base point) and b (= -LOG2(a)), are defined as
follows:

1/16 < m < 1/8: a = 1/16 b=4
1/8 < m < 1/2: a = 1/4 b =2
172 < m< 1: a=1 b=20

Let
y = (m - a)/(m + a)

Then

8
1]

a*(1+y)/(1-y) and ABS(y) < 1/3
Now

X = 2%% (4*p-b) ¥ (1+y)/ (1-y)
Therefore

LOG(x) = (4*p-b) *LOG(2) + LOG((1+y)/ (1-y))
LOG((1+y)/(1-y)) is computed by using the Chebyshev interpolation
polynominal of degree 4 in y**2 for the range 0 < y**%*2 < 1/9, with
maximum relative error 2**-27.8. LOG2(x) or LOG1l0(x) is calculated

by multiplying LOG(x) by LOG2(e) or LOG1l0(e) respectively.

Effect of an Arqument Error:

The absolute error caused in the result is approximately equal to the
relative error in the argument. Thus if the argument is close to 1,
even the roundoff error of the argument causes a substantial relative
error in the answer, since the function value there is very small.
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Accuracy:

Arguments

Relative Error
*10°6

|
|
+
|

Range |Distribution

RMS

Maximum

P e e e ey

IHELNSO

[ Y |

| Exclud-
ling

| |
| o
]0.5<x | Exponential|
| |

0.032

0.577

|<2.0
L—-

IHEL2S0

.

|Exclud-|

ling |

|0.5<x | Exponential
I

0.342

0.754

e e e e e,

[<2.0
L

IHELGSO

e o o e s d

r
|Exclud-| |
ling | |
[0.5<x | |
|<2.0 |

Exponential

0.170

| IR,

e ey et s aoven e

Arguments

Absolute Error
*10€

|
|
- 1
|

Range |Distribution

= —— o

RMS

Maximum

[ S

IHELNSO

-
10.5<x | Uniform i

0.0960

0.394

[<2.0 | |
L-

IHEL2S0

r

]0.5<x | Uniform |
1<2.0 | |
L-

0.177

TIHELGSO

-
10.5<x | Uniform |

[<2.0 | i

0.0526

e e e ol
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Implementation:
e Module size: 256 bytes
* Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the table:

r - - 1
| | IBM System/360 Model Number |
[ -- -- |
|Entry | 30 | 40 | 50 | 65 | 75 |
l Point { | | | :
| THELNSO | 4669 | 1238 | 385 | 173 | 95.7 |
| $ + B e N |
| IHEL2S0 | 5041 | 1342 | 417 | 180 | 101.3 |
| + ¥ - : 1 [
| IHELGSO | 5054 | 1366 | 417 | 180 | 101.3 |
L - -3

Errors Detected

Error and Exceptional Conditions:

P: x < 0 (202)
Local Variables
None

Progqram Interface

Entry Points

IHELNSO - Entry for LOG(x)

P7 = A (PLIST)
PLIST = A (x)
A(Target)

IHELGSO - Entry for LOG10(x)
Linkage as for IHELNSO
IHEL2S0 - Entry for LOG2(x)
Linkage as for IHELNSO
Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.

Routines Called

EXEP Execution Error Package
Global Variables: None
comments

Called by compiled code, IHEXXS, IHEXXW, IHEHTS, and IHELNW.
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TITLE: LONG FLOAT REAL LOG (IHELNL)

Program Definition

Purpose and Usage
Long Float Real Log is used to compute:
Log x to the base e LOG(x)
Log x to the base 2 LOG2 (%)
Log x to the base 10 LOG10 (x)
where x is a long floating-point real expression.
Description
Method:
Let
X = 16%%p*2+#%(—q) *m

where p is the exponent, g is an integer such that 0 < q < 3,
and 1/72 < m < 1.

Two constants, a (= -base point) and b (= LOG2(a)), are defined
as follows:

1/2 < m < 1/SQRT(2): a = 1/2, b=1

1/SQRT(2) < m < 1: a=1, b=0

Let

y = (m- a)/(m + a)
Then

m=a*x(1l + y)/(1 - y)
and

ABS(y) < 0.1716
Now
X = 2%%¥(4*p - q - bD)*x(1 + y)/7(1 - y)
Therefore
LOG(x) = (4*p — g - Db)*¥LOG(2) + LOG((1 + y)/(1 - y))
LOG((1 + y)/(1 - y)) is computed by using the Chebyshev interpolation
polynominal of degree 7 in y*#*2 for the range 0 < y*#*2 < 0.02944, with

maximum relative error 2**(-59.6).

LOG2(x) or LOG10(x) is calculated by multiplying the result by LOG2(e)
or LOG1l0(e) respectively.

Effect of an Arqument Error:

The absolute error caused in the result is approximately equal to the
relative error in the argument. Thus if the argument is close to 1,
even the roundoff error of the argument causes a substantial relative
error in the answer, since the function value there is very small.
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40

Arguments

Relative Error
*1015

|
|
- +
|

Range |Distribution

Maximum

[ s ]

RMS |

| Exclud-|
ling |
I
|

10.5<x Exponential

0.0530 0.329

1<2.0
L-

IHEL2LO

[ el ]

r
| Exclud-|
ling |
|
|

|

|

10.5<x Exponential |
|

0.443

[<2.0
L

THELGLO

h |
|
|
2.60 I
|
d

| Exclud-
ling
[0.5<x
1<2.0

L

|

| .

| Exponential
I

0.155

Arguments

Absolute Error

|
|
- ¥
|

Range |Distribution

= —— e c—

Maximum

1

*1015 |
|

RMS | |
1

IHELNLO

-

[0.5<x | Uniform |
1<2.0 | |

0.192 |
|

| IS,

IHEL2LO

1
0.507 1
|
4

10.5<x | Uniform |

1<2.0 | |
L——

-

0.245 | 0.466

IHELGLO

—
[0.5<x | Uniform |

.......... h |
0.0318 | 0.0625 |
| |

1<2.0 | |
L-—



Implementation:

e Module size: 360 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the table:

r 1
| | IBM System/360 Model Number i
| === - |
|Entry | 30 | 40 { 50 | 65 | 75 |
| Point | | | | | :
| IHELNLO | 16216 | 3926 | 788 | 178 ] 98.5 |
—————————— t ¥ e e |
|IHEL2LO | 17315 | 4196 | 834 | 190 | 107 |
—————————— S e R e
| IHELGLO | 17284 | 4192 | 828 | 188 | 105 |
i U S - -1

Errors Detected

Error and Exceptional Conditions:

P: x < 0 (202)
Local Variables
None

Program Interface

Entry Points

IHELNLO - Entry for LOG (x)

P7 = A (PLIST)
PLIST = A(x)
A(Target)

IHELGLO - Entry for LOG10(x)
Linkage as for IHELNLO
IHEL2L0 - Entry for LOG2(x)
Linkage as for IHELNLO
Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.

Routines Called

EXEP Execution Error Package
Global Variables: None
Comments

Called by compiled code and IHEATL.



TITLE: SHORT FLOAT COMPLEX LOG (IHELNW)

Program Definition

Purpose and Usage

Short Float Complex Log is used to calculate the principal value of
the natural log of z (that is, -pi < imaginary part of result < pi),
where z is a short floating-point complex expression.

Description

Method:

Let

LOG(x + yI) = u + vI

Then
u = LOG(ABS(x + yI))
= LOG(SQRT (x*%*2 + y**2))
= LOG(x*%*2 + y**2)/2
v = ATAN (y,x)

In computing u, the exponents of x and y are modified if necessary
to avoid OVERFLOW or UNDERFLOW, with the appropriate correction being
applied after the logarithm has been taken.

Effect of an Arqument Error:

Let
z = r*EXP(hI)
and
LOG(z) = u + vI
Then the absolute error in u is approximately equal to the relative

error in r. For the absolute error in v (h = ATAN(y,x)), see
corresponding paragraph for Short Float Real Arctan (IHEATS).

Accuracy:

r 1
| Arguments | Relative Error |
| | *10¢ |
| - - -——% - - -1
| Range |Distribution| RMS | Maximum |
- 4 ---4 - -1
[Full | | | |
|Range |Expanded | 0.150 | 2.27 |
|except | radially, | | |
|within | uniform | | |
|10 |round origin| | |
|of 1+01I]| | |
L—- -1
Implementation:

e Module size: 272 bytes

¢ Execution times:
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Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

. - 1
| | IBM Systemv 360 Model Number |
| == |
| | 30 | 40 | 50 | 65 | 75 |
| |
| (1) | 11511 | 3814 | 1078 | 308 | 183 |
| ===~ % + - + $--- |
| G1) | 11688 | 3489 | 1104 | 318 | 190 |
|-=-- } t -— + + [
| (ii) | 11800 | 3520 | 1117 | 321 | 193 |
L 1

(1) ABS(x) and ABS(y) < SQRT(8) *16**31 and either ABS(x)

or ABS(y) = 16**-30.
(ii) Either ABS(x) or ABS(y) > SQRT(8)*16**31.
(iii) ABS(x) and ABS(y) < 16#%*-30.
Errors Detected

Error and Exceptional Conditions:

O0: x =y = 0 (202) in Short Float Real Log (IHELNS)
Local Variables
None

Program Interface

Entry Points

IHELNTO
P7 = A(PLIST)
PLIST = A(2)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

THELNS Short Float Real Log
IHEATS Short Float Real Arctan

Global Variables
None
Comments

Called by compiled code and IHEXXW.



TITLE: LONG FLOAT COMPLEX LOG (IHELNZ)

Program Definition

Purpose and Usage

Long Float Complex Log is used to calculate the principal value of
the natural log of z (that is, -pi < imaginary part of result < pi),
where z is a long floating-point complex expression.

Description

Method:

Let

LOG(x + yI) = u + vI

Then
u = LOG(ABS(x + yI))
= LOG(SQRT (x*%2 + y*#*2))
= LOG(x#**%2 + y*%2)/2
v = ATAN(y,x)

In computing u, the exponents of x and y are modified if necessary
to avoid OVERFLOW or UNDERFLOW, with the appropriate correction being
applied after the logarithm has been taken.

Effect of an Argument Error:

Let
z = r*EXP(hI)
and
LOG(2) = u + vI
Then the absolute error in u is approximately equal to the relative

error in r. For the absolute error in v (h = ATAN(y,x)), see the
corresponding paragraph for Long Float Real Arctan (IHEATL).

Accuracy:

r 1
| Arguments | Relative Error |
| | *101S |
| B |
| Range |Distribution]| RMS | Maximum |
| + P S I
| Full | Exponential| 0.0558 | 1.46 |
|Range | radially, | | |
|except | uniform | | |
|within |round origin| | |
j10-s | | | |
|of 1401 | l |
L 3

Implementation:

e Module size: 288 bytes

e Execution times:
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Approximate execution times in microseconds for System/360 models
given below are obtained from the table:

{ | IBM System/360 Model Numb;r }
% | 30 | 40 I-_-EE- | 65 | 75 :
‘-(1) | 44101 | 10166 |--5086 I- 480 | 274 :
| Giy | wesos | 10316 | 2155 | s07 | 290 |
'l"éli) | Twwass | 10325 | 2156 | soT"T"ESB"'!
(i) ABS(x) and ABS(y) < SQRT(8)*16**31 and either ABS(x)

or ABS(y) > 16*%-26.
(ii) Either ABS(x) or ABS(y) > SQORT(8)*16%%*31.
(iii) ABS(x) and ABS(y) < 16**-26.
Errors Detected

Error and Exceptional Conditions:

O0: x =y = 0 (202) in Long Float Real Log (IHELNL)
Local Variables
None

Program Interface

Entry Points

IHELNMO
P7 = A(PLIST)
PLIST = A(2)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHELNL Long Float Real Log
IHEATL Long Float Real Arctan

Global Variables
None
Comments

Called by compiled code and IHEXXZ.



TITLE: SHORT FLOAT REAL SIN/COS (IHESNS)

Program Definition

Purpose and Usage

Short Float Real Sin/Cos is used to compute sin(x) and cos(x),
where x is a short floating-point real expression in radians.

Description
Method:
Let
k = pist
Evaluate
P = ABS(x)*(1/k)
where x is in radians using long-precision multiplication to safeguard
accuracy. Separate p into integer part q and fractional part r, that

is, p=q + r where 0 < r < 1.

Define

ql q (if SIN is required and x 2> 0)
ql = q + 2 (if COS is required)
gl = g + 4 (if SIN is required and x < 0).

Then for all values of x, each case has been reduced to the computation
of SIN(k*(gql + r)) = SIN(t), where t > 0.

Let
q2 = MOD(ql, 8)

If q2 0, then SIN(t) = SIN(k*r)

If g2 = 1, then SIN(t) = COS(k*(1-r))
If g2 = 2, then SIN(t) = COS(k#*r)
If g2 = 3, then SIN(t) = SIN(k*(1-r))
If q2 = 4, then SIN(t) = -SIN(k#*r)
If g2 = 5, then SIN(t) = -COS(k*(1-r))
If q2 = 6, then SIN(t) = -COS(k*r)
If q2 = 7, then SIN(t) = -SIN(k#*(1-r))

Thus it is necessary to compute only SIN(k#*rl) or COS(k*rl) where
rl =rorl-rand 0 <rl < 1.

This is performed by using the Chebyshev interpolation polynomials of

degree 3 in rl1**2, with maximum relative error of 2**-28.1 in the sine
polynomial and 2#*#%-24.6 in the cosine polynomial.
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Effect of an Arqument Error:

The absolute error of the answer is approximately equal to the absolute
error in the argument. Hence, the larger the argqument, the larger its
absolute error and the larger the absolute error of the result. Since
the function diminishes periodically for both sine and cosine, no
consistent control of the relative error can be maintained outside the

range -pi/2 to pi/2 radians.

Accuracy:

r - .
| Arguments | Absolute Error |
| | *10¢ |
-- T --=----|
| Range |Distribution]| RMS | Maximum |
L- —1
IHESNSO

- T T T TS T T TS TS T s 1
|ABS(x)<| Uniform | 0.0557 | 0.126 |
ipiz2 | | | |
|- 4 + -- |
Ipiz2< | I | 1
|ABS(x) | Uniform | 0.0553 | 0.148 |
<10 I | | |
- 1 } f--mmmmmmmome- |
[10< | I | |
|ABS(x) | Uniform | 0.0560 | 0.143 |
I<100 | | | |
L - 1
THECSSO

-= 1
|0<x<pi | Uniform | 0.0553 | 0.149 |
- + + 4 |
[-10sx | | | |
|<o0, | Uniform | 0.0571 | 0.154 |
Ipi<x | | | |
<10 | | | |
- § + == |
[10< | | | |
|ABS(x) | Uniform | 0.0553 | 0.142 |
I<100 | | | |
- 1
r - -
| Arguments | Relative Error |
| | *10° |
| —-———-——--——} -= S I
| Range |Distribution| RMS | Maximum |
L- -1
IHESNSO

= —1
|ABS(x)<| Uniform | 0.198 | 1.40 1
lpis2 | I | |
L- -_— 1

Implementation:

e Module size: 320 bytes
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e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the appropriate entry point
in the table:

v 1
| | IBM System/360 Model Number |
| == |
|ABS (x) | 30 | 40 | 50 | 65 | 75 |
L - 1
IHESNSO

r - 1
|<pi/t | 4091 | 1120 | 333 | 85.0 | 50.6 |
|2pi/t | 386 | 1190 | 362 | 92.5 | 53.8 |
L — J
IHECSSO

T - 1
|<pisu | 4078 | 1115 | 329 | 83.6 | 49.9 |
|Zpiszu | 4373 | 1184 | 357 | 91.0 | 53.1 |
L e e — 1

Errors Detected

Error and Exceptional Conditions:

P: IHESNSO, IHECSS0: ABS(X) > 2%*18%pi (212)
Local Variables
None

Program Interface

Entry Points

IHESNSO - Entry for SIN(x)

P7 = A(PLIST)
PLIST = A (x)
A(Target)

IHECSSO - Entry for COS(x)
Linkage as for IHESNSO
Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to the EXEP via the entry point IHEERRB.

Routines Called

EXEP Execution Error Package
Global Variables: None
Comments

Called by compiled code, THESNW, and IHEEXW.
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TITLE: LONG FLOAT REAL SIN/COS (IHESNL)

Program Definition

Purpose and Usage

Long Float Real Sin/Cos is used to compute sin(x) and cos(x),
where x is a long floating-point real expression in radians.

Description
Method:
Let

ABS(x)/(pis4) for x in radians and

~
]

q + r, q integral, 0 < r < 1

w
1}

Take

ql q for SIN with positive or zero argument

ql = q + 2 for COS

gl = q + 4 for SIN with negative argument and
g2 = MOD(q1l, 8)
Since

COS(x) = SIN(ABS(x) + pi/2) and

SIN(-x) SIN(ABS(x) + pi)
it is only necessary to find
SIN(pi/t*(g2 + r)), for 0 < g2 < 7

Therefore compute:

SIN(pi/li*r) if g2 =0 or &4
COS(pi/tu*(1-1¥)) if g2 =1 or 5
COS(pi/l*r) if g2 = 2 or 6
SIN(pi/u*(1-1)) if g2 =3 or 7

SIN(pi/t*r1l) where rl is r or (1 - r) is computed by using the Chebyshev
interpolation polynomial of degree 6 in r1#*#*2, in the range 0 < ril**2
< 1, with maximum relative error 2**(-58).

COS(pisu*rl) is computed by using the Chebyshev interpolation polynomial
of degree 7 in rl1*#*2, in the range 0 < rl**2 < 1, with maximum relative
error 2**(-64.3).

Finally, if g2 > 4, a negative sign is given to the result.

Effect of an Arqument Error:

The absolute error of the answer is approximately equal to the absolute
error in the argument. Hence, the larger the argument, the larger

its absolute error and the larger the absolute error of the result.
Since the function diminishes periodically for both sine and cosine,
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no consistent control of the relative error can be maintained outside
the range -pi/2 to pi/2 radians.

Accuracy:
IHESNLO

r 1
| Arguments Relative Error |
| *102s |
| |
| Range [Distribution]| RMS | Maximum |
| -- |
|-pi/2<x| Uniform 0.0542 | 0.381 |
I<pisz2z | | I
L - -— 1
IHECSLO
— T 1
| Arguments Relative Error |
| *102S |
l TN S ————— !
| Range |Distribution RMS | Maximum |
| L S |
|-pis/2<x| Uniform 0.0604 | 0.168 |
I<piz2 | | I
L- ——————————— 4

Implementation:

e Module size:

e Execution times:

416 bytes

Approximate execution times in microseconds for the System/360
models given below are obtained from the appropriate entry point

in the table:

{ | IBM System/360 Model Number }
‘Entry { 30 | 4 | S0 | 65 | 15 ;
| Point I I I | | |
IIHESNLO | 13654 | 3290 | 661 | ;;g- | 8;.3 =
iIHECSLO | 13641 T 3288 |- 65u---T 15;—--T--§;?;--i

Errors Detected

Error and Exceptional Conditions:

P: IHESNLO,
Local Variables

None

50

IHECSLO:

ABS(x) > 2**%50%pi (203)



Program Interface

Entry Points

IHESNLO - Entry for SIN(x)

P7 = A(PLIST)
PLIST = A (x)
A(Target)

IHECSLO - Entry for COS(x)
Linkage as for IHESNLO
Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to the EXEP via the entry point IHEERRC.

Routines Called
EXEP Execution Error Package
Global Variables
None
Comments

Called by compiled code, IHESNZ, and IHEEXZ.
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TITLE: SHORT FLOAT REAL HYPERBOLIC SIN/COS (IHESHS)

Program Definition

Purpose and Usage

Short Float Real Hyperbolic Sin/Cos is used to calculate hyperbolic
sin(x) or hyperbolic cos(x), where x is a short floating-point real
expression in radians.

Description

Method:

For IHESHS, if ABS(x) < 1, use a polynomial approximation of the seventh
degree. Otherwise

SINH(x) EXP(x)/2 - 0.5/EXP(x)

COSH (x) EXP(x)/2 + 0.5/EXP(x)

These two versions of EXP(x)/2%0.5/EXP(x) are preferable to the
equivalent versions of (EXP(x) - 1/EXP(x))/2 because, in floating-
point, 0.5 has three more significant bits than 1.0.

Effect of an Arqument Error:

The relative error caused in the result is approximately as follows:

SINH: The absolute error in the argument divided by TANH(x), that is,
of the order of the absolute error in the argument for large x,
or of the relative error in the argument for small x.

COSH: The absolute error in the argument multiplied by TANH(x),
that is, of the order of the absolute error in the argument.

Thus, for large values of x, even the roundoff error of the argument
causes a substantial relative error in the answer.

Accuracy:

Arguments | Relative Error
| *10¢
- 1
|

Range |Distribution

RMS | Maximum

= e . o
e o o o e

IHESHSO

10< |

[ABS(x)<| Uniform

11 |

- ¥ -
1<

|ABS (x)<| Uniform
A

0.200

e o, ot e s
oot D cro - o o
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IHECHSO

—— - - -

1
|ABS(x)<| Uniform | 0.367 | 0.908 |
11 | | | |
R— 1 R |
1< | | |
|ABS (x)<| Uniform | 0.192 | 0.700 |
12 | | | |
L- 1

Implementation:

e Module size: 216 bytes
¢ Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the table:

— — s, — .

Entry !l 30 | 40 | S0 | 65 | 175
point | | 1 I
- > > > - — — —— - — '
| IHESHSO | | | | | |
[ABS(x)<1 | 2544 | 692 | 228 | 56.3 | 33.0 |
|ABS(x)>1 | S647 | 1693 | 526 | 14t | 91.8 |
| | + fommmmmi S
|IHECHSO | 5500 | 1648 | 509 | 139 | 8s8.u |
e ———— J

Errors Detected

Error and Exceptional Conditions:

H: OVERFLOW (300) in Short Float Real EXP (IHEEXS)
Local Variables: None

Program Interface

Entry Points

IHESHSO - Entry for SINH(x)

P7 = A(PLIST)
PLIST = A(x)
A(Target)

IHECHSO - Entry for COSH(x)
Linkage as for IHESHSO
Exit Conditions: Normal. Returns to caller via link register.
Routines Called
IHEEXS Short Float Real EXP
Global Variables: None

Comments: Called by compiled code.



TITLE: LONG FLOAT REAL HYPERBOLIC SIN/COS (IHESHL)

Program Definition

Purpose and Usage
Long Float Real Hyperbolic Sin/Cos is used to calculate hyperbolic
sin(x) or hyperbolic cos(x), where x is a long floating-point real
expression in radians.
Description
Method:
For IHESHL, if ABS(x) < 0.3465736, compute SINH(X)/x using polynomial
approximation of degree 5 in x*#%2, with relative error less than
2*%-61.9. Otherwise, compute

s = EXP(ABS(x))

then

COSH (x) (s + 1/s5)/2

SINH(x) SIGN(x)*(s - 1/s)/2

Effect of an Arqument Error:

The relative error caused in the result is approximately as follows:

SINH: The absolute error in the arqument divided by TANH(x), that
is, of the order of the absolute error in the argument for
large x, or of the relative error in the argqument for small
X.

COSH: The absolute error in the argument multiplied by TANH(x),
that is, of the order of the absolute error in the argument.

Thus, for large values of x, even the roundoff error of the argument
causes a substantial relative error in the answer.

Accuracy:

Relative Error

1

Arguments |
*101S |
|

|

—n o i
|
]

Range |Distribution RMS | Maximuam
o e e e e i e i 1

= — —— -

IHESHLO

r
|ABS(x)<|] Uniform 0.0530

[0.34657]

| +
|0.34657] Uniform 0.0870
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IHECHLO

-
|ABS(x)<| Uniform | 0.123 | 0.429
l5 | | |

[ S

Implementation:

e Module size: 264 bytes
e Execution times:

Approximate execution times in microseconds for System/360 models
given below are obtained from the appropriate entry point in the

table:

r 1
| | IBM System/360 Model Number |
| - |
| ABS (x) | 30 | 40 | 50 | 65 | 75 |
L 1
IHESHLO

r 1
1<0.347 | 9024 | 2279 | 450 | 101 | 59.0 |
| ¥ ¥ 3- ¥ $ |
10.3u7< | | | | | |
|ABS (%) | 18634 | 4338 | 938 | 215 | 125 |
|<174.6 | | | | | |
L _— ¥
IHECHLO

r - 1
|1<174.6 | 18493 | 4300 | 924 | 211 | 123 |
1 4

Errors Detected

Error and Exceptional Conditions:

H: OVERFLOW (300) in Long Float Real EXP (IHEEXL)
Local Variables
None

Program Interface

Entry Points

IHESHLO - Entry for SINH(x)

P7 = A(PLIST)
PLIST = A(x)
A(Target)

THECHLO - Entry for COSH (x)

Linkage as for IHESHLO



Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEEXL Long Float Real EXP
Global Variables
None
Comments

Called by compiled code.
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TITLE: SHORT FLOAT COMPLEX SIN/COS (IHESNW)

Program Definition

Purpose and Usage

Short Float Complex Sin/Cos is used to calculate sin(z), hyperbolic
sin(z), cos(z), and hyperbolic cos(z), where z is a short floating-
point complex expression in radians.

Description

Method:

Let

z =x + yI

Then
REAL (SIN(z)) = SIN(x)*COSH(y) and
IMAG(SIN(z)) = COS(x)*SINH(y)
REAL(COS(z)) = COS(x)*COSH(y) and
IMAG(COS(2z)) = —-SIN(x)*SINH(y)

REAL(SINH(Zz)) = COS(y)*SINH(x) and

IMAG(SINH(z)) = SIN(y)*COSH (x)
REAL(COSH(z)) = COS(y)*COSH(x) and
IMAG (COSH(z)) = SIN(y)*SINH(x)

To avoid making calls to evaluate SINH and COSH separately, and thus
frequently having to evaluate EXP twice for the same argument, SINH(u)
is computed as follows:
1. u > 0.3465736
SINH(u) = (EXP(u) - 1/EXP(u))/2
2. 0 < u < 0.3465736
SINH(u)/u is approximated by a polynomial of the form
a + al*u**2 + a2*%u**84 (which has a relative error of
less than 2#*%-26.4).
3. u<o
SINH(u) = -SINH(-u)
Then
COSH(u) = SINH(ABS(u)) + 1/EXP(ABS(u))

Effect of an Arqument Error:

Combine the effects on SIN, COS, SINH, and COSH according to the method
of evaluation described in the above paragraph.
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Accuracy:

Relative Error
*10¢

r
Arguments

RMS | Maximum

——
[T

|
|
l
| Range |Distribution
L

- -

THESNTO

r
|ABS(x) | Uniform 0.721
|510/' l
|ABS(y) <|

11 |
L

— i c— c—
L L |

IHESHTO

r
| ABS (x) Uniform 0.561
|<10,

|ABS(y) <

i1
L

— — —— s
— — c—— —
e s e e e

IHECSTO

r
|ABS(x) | Uniform 0.5u46 2.00
|=10, |

|ABS(y) |
1<20 |

L—— —— -

—— et c e
—— e cvnn w—
o Ll )

IHECHTO

|ABS(x) | Uniform 0.558 2.35
I<10, |
|
|

| ABS (y)
|<20
L e e e e o o o e e e e e e i e e e e e o e o o e T e > o = >

Implementation:

e Module size: 320 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the tables:
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SIN,COS : ABS(y)>0.3465736
SINH,COSH : ABS(x)>0.3465736
r - == 1
| 1 IBM System/360 Model Number |
| —mmmmmmmm—meeo—- |
| Entry | 30 | 40 | 50 | 65 | 75 |
| Point | | | | | |
== $ R  E— [
| THESNTO | 15826 | 1508 | 6u8 | 363 | 75 |
—————————— B it et
| IHECSTO | 15898 | 1518 | 653 | 366 | 225 |
- 1 e S fr-oo---- [
| IHESHTO | 15930 | 1520 | 653 | 366 | 226 |
== + -+ t--- B S |
| IHECHTO | 15900 | 1519 | 655 | 367 | 227 |
L ———————————————————— 1
SIN,COS : ABS(y)<0.3465736
SINH,COSH : ABS(x)<0.3465736
5 i h |
| IHESNTO ] 16896 | 1585 | 674 | 381 | 232 |
- - % R S B B |
| IHECSTO | 16968 | 1595 | 679 | 384 | 234 |
|- ¥ ¥ B -t |
| IHESHTO | 17000 | 1596 | 679 | 384 | 234 |
| ---=m=-—f e P |
| IHECHTO | 16970 | 1595 | 681 | 384 | 235 |
L —— - -1

Errors Detected

Exrror and Exceptional Conditions:

0: TIHESNWS, IHECSTO: ABS(x) > 2#**18#%pi (212) in Short Float Real
Sin/Cos (IHESNS)
H: OVERFLOW (300) in Short Float Real EXP (IHEEXS)
Local Variables: None

Program Interface

Entry Points
IHESNTO - Entry for SIN(z)

P7 = A(PLIST)
PLIST = A(Target)

IHECSTO - Entry for COS(z)
Linkage as for IHESNTO
Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHESNS Short Float Real Sin/Cos
IHEEXS Short Float Real EXP

Global Variables: None

Comments: Called by compiled code.



TITLE: LONG FLOAT COMPLEX SIN/COS (IHESNZ)

Program Definition

Purpose and Usage

Long Float Complex Sin/Cos is used to calculate sin(z), hyperbolic
sin(z), cos(z), or hyperbolic cos(z), where z is a long floating-point
complex expression in radians.

Description

Method:

Let

z=x +yI

Then
REAL (SIN(z)) = SIN(x)#*COSH(y) and
IMAG(SIN(z)) = COS(x)*SINH(y)
REAL(COS(z)) = COS(x)*COSH(y) and
IMAG(COS(z)) = —-SIN(x)*SINH(y)

REAL(SINH(z)) = COS(y)*SINH(x) and

IMAG(SINH(z)) SIN(y)*COSH (x)

REAL(COSH(z)) COS(y)*COSH(x) and
IMAG(COSH(z)) = SIN(y) *SINH(x)

To avoid making calls to evaluate SINH and COSH separately, and thus
frequently having to evaluate EXP twice for the same argument, SINH(u)
is computed as follows:

1. u > 0.3465736

SINH(u) = (EXP(u) - 1/EXP(u))/2
2. 0 < u < 0.3465736

SINH(u)/u is approximated by a polynomial of the fifth degree
in u**2 which has a relative error of less than 2**-61.8.

3. u<o
SINH(u) = -SINH(-u)
Then
COSH(u) = SINH(ABS(u)) + 1/EXP(ABS(u))

Effect of an Arqument Error:

Combine the effects on SIN, COS, SINH, and COSH according to the method
of evaluation described in the above paragraph.
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Accuracz H

1
Arguments | Relative Error |
| #1015 |
|
|
3

- - o -

= — e o —

Range |Distribution| RMS | Maximum

- -

IHESNMO

.
|ABS(x) | Uniform
|<10, |
|ABS(y) <|

11 |

L

2.11

— . oo, w—

IHESHMO

Uniform 0.180 2.31

— e coon
e e e s e o

Uniform 0.389

—— — — —
— — —— —
g |

Uniform 19.4

Implementation:

e Module size: 368 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point in
the tables:
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SIN,COS : ABS(y)>0.3465736
SINH,COSH : ABS(x)>0.3465736
v 1
| | IBM System/360 Model Number |
| |
|Entry | 30 | 40 | 50 | 65 | 75 |
| Point | ] | | | |
- 4 ¥ e el
| IHESNMO | ue584 | 11267 | 2363 | 552 | 313 |
+--- 4 1- B e 4
| THECSMO | 46656 | 11294 | 2373 | 555 | 315 |
[ + + - ---1 -1
| THESHMO | 46726 | 11317 | 2378 | 557 | 316 |
- 1 1- - 1 + -
| THECHMO | u66u0 | 11304 | 2374 | 556 | 316 |
L - - -4
SIN,COS : ABS(y)<0.3465736
SINH,COSH : ABS(x)<0.3465736
(o - -
| IHESNMO | 5S4173 | 13141 | 2656 | 612 | 345 |
[ + t --o--=—=4 -+ |
| IHECSMO | 54245 | 13168 | 2666 | 615 | 347 |
| + 4 --= 4 1 [
| IHESHMO | 54325 | 13191 | 2671 | 617 | 347 |
| + ¥ I R B |
| IHECHMO | 54247 | 13177 | 2667 | 616 | 3us |
L —— 1

Errors Detected
Error and Exceptional conditions:
0: TIHESNZS, IHECSMO: ABS(x) 2> 2**50*pi (203) in Long Float Real
Sin/Cos (IHESNL)
H: OVERFLOW (300) in Long Float Real EXP (IHEEXL)
Local Variables: None

Program Interface

Entry Points

THESNMO - Entry for SIN(z)

P7 = A (PLIST)
PLIST = A(z)
A(Target)

IHECSMO - Entry for COS(2z)
Linkage as for IHESNMO
Exit Conditions: Normal. Returns to caller via the link register.
Routines Called

IHESNL Long Float Real Sin/Cos
IHEEXL Long Float Real EXP

Global Variables: None

Ccomments: Called by compiled code.
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TITLE: SHORT FLOAT REAL SQRT (IHESQS)

Program Definition

Purpose and Usage

Short Float Real SQRT is used to compute the square root of x, where
x is a short floating-point real expression.

Description
Method:
If
x = 0, SQRT(x) = 0
Otherwise, let
X = 16*%*(2%p + q)*f
where p is an integer, q = 0 or 1, and 1716 < £ < 1. Then

SORT (x) = 16**(p + Qq) *z

where
Z = SQRT(f) ifgq=0
Z = SQRT(f)/4 if g=1

An initial approximation, y0, is taken in the hyperbolic form
a + b/(c + £f) with different sets of constants for the two cases:

1. q=20 a = 1.80713
b = 1.57727
c = 0.954182

The maximum relative error in this range is less than
2%#*%(-5.44), with an exact fit at £ = 1 to guard as far as
possible against loss of the last hexadecimal digit when
f is nearly 1.

2. q=1 a = 0.428795
b = -0.3430368
c = 0.877552

The maximum relative error in this range is less than
2%% (-6) *f*+(-1/8) .

Then
Yyl = 16**(p + q)*y0

Two Newton-Raphson iterations then yield:
y2 = (y1 + x/y1)/2
SQRT(x) = y2 + (x/y2 - y2)/2

-
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For case q = 0, the final relative error from this algorithm is less
than 2**(-24.7), and, for case q = 1, less than 2#*%*(-29).

Effect of an Arqument Error:

The relative error caused in the result is approximately half the
relative error in the argument.

Accuracy:
= T "
| Arguments | Relative Error |
I I *10¢ I
| PR -mmommmmoomee |
| Range |Distribution| RMS | Maximum |
e 1 ¥ R |
| Full | Exponential| 0.230 | 0.924 |
|Range | I I |
b e e e e e e e e e J

Implementation:

e Module size: 168 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r === - Tmmmms s 1
| | IBM System/360 Model Number |
| Tmmmmmmm oo |
l | 30 | 40 | 50 | 65 | 75 |
|---- == -= --=--|
| | 3180 | 793 | 227 | 68.4 | 40.7 |
L J

Errors Detected

Error and Exceptional Conditions:

P: x < 0 (200)
Local Variables
None

Program Interface

Entry Points

IHESQSO
P7 = A(PLIST)
PLIST = A(x)
A(Target)

Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to the EXEP via IHEERRB.

Routines Called

EXEP Execution Error Package
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Global Variables
None
comments

Called by compiled code, IHEABW, and IHESQOW.
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TITLE: LONG FLOAT REAL SQRT (IHESQL)

Program Definition

Purpose and Usage

Long Float Real SQRT is used to compute the square root of x, where
X is a long floating-point real expression.

Description
Method:
If
x = 0, SQRT(x) =0

Otherwise, let

X = 16%%(2%p - q)*f

where p is an integer,

q 0or1l1l, and 1716 < £ < 1
Then

SQRT(X) = 16%*p*2**(—2%q) *SQRT (f)
An initial approximation, y0, is taken by using (2/9 + 8/9%f) for
SORT(f). Multiplication by 2**(-2) when g = 1 is accomplished by using
the HALVE instruction twice. The maximum relative error of this
approximation is 1/9.
Four Newton—-Raphson iterations of the form y(n+l1l) = (yn + x/yn)/2 are
then applied, two in short precision and two in long precision, the
last being computed as

SORT(x) = y3 + (x/y3 - y3)/2
to minimize the truncation error.

The maximum relative error in the result from this algorithm is
2%%(-65.7).

Effect of an Arqument Error:

The relative error caused in the result is approximately half of the
relative error in the argument.

Accuracy:
r X 1
| Arguments | Relative Error |
| | 1015 |
[-=====- -o—m—=——=oef |
| Range |Distribution]| RMS | Maximum |
I- 4 1 $- [
|x>10-52| Exponential| 0.0276 | 0.124 |
- - 1
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Implementation:

e Module size: 160 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r 1
| | IBM System/360 Model Number |
| --mo---m—- -1
| | 30 | 40 | 50 | 65 | 75 |
| - el
| | 8282 | 1733 | 376 | 97.7 | 57.2 |
L 4

Errors Detected

Exrror and Exceptional Conditions:

P: x < 0 (200)
Local Variables
None

Program Interface

Entry Points

IHESQLO
P7 = A(PLIST)
PLIST = A(x)
A(Target)

Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via IHEERRB.

Routines Called
EXEP Execution Error Package
Global Variables
None
comments

Called by compiled code, IHEABZ, and IHESQZ.



TITLE: SHORT FLOAT COMPLEX SQORT (IHESQW)

Proqram Definition

Purpose and Usage
Short Float Complex SQRT is used to calculate the principal value of
the square root of z (that is, -pi/2 < argument of result < pi/2),
where z is a short floating-point complex expression.
Description
Method:
Let
Zz =x + yI and
SQRT(z) = u + vI

If

Then
u = SQRT((ABS(x) + ABS(x + yI))/2) and
v = y/(2%u)
3. x<0
Then
u = y/(2*v) and
v = S(y) *SQRT((ABS(x) + ABS(x + yI))/2)
where
S(y) =13if y =20
=-1if y< 0

Effect of an Arqument Error:

Let
z = r*EXP(hI) and
SQRT(z) = s*EXP(kKI)
Then the relative error in s is approximately half the relative error

in r, and the relative error in k is approximately equal to the relative
error in h.
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r - 1
| Arguments | Relative Error |
| | *10¢ |
- --- - -
| Range |Distribution] RMS | Maximum |
- 4 ¥ $-- |
| Full | Exponential]| 0.513 | 1.51 |
|Range | radially, | | |
| | uniform | | |
| | round | | [
I | origin | | |
[ _ -1
Imnplementation:

e Module size: 152 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

T 1
| | IBM System/360 Model Number |
| mommmomemmmoooo——m—eoooo—os |
| | 30 | 40 | 50 | 65 | 75 |
l - - -

| | 11130 | 3023 | 1006 | 265 | 164 |
b e e e 1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
H: OVERFLOW (300) in Short Float Complex ABS (IHEABW)

Local Variables: None

Program Interface

Entry Points

TIHESQTO
P7 = A(PLIST)
PLIST = A(2z)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHEABW Short Float Complex ABS
IHESQS Short Float Real SQRT

Global Variables: None
Comments

Called by compiled code.



TITLE: LONG FLOAT COMPLEX SQRT (IHESQZ)

Program Definition

Purpose and Usage
Long Float Complex SQRT is used to calculate the principal value of
the square root of z (that is, -pi/2 < argument of result < pir/2),
where z is a long floating-point complex expression.
Description
Method:
Let
z = x + yI and
SQRT(z) = u + vI

If

Then
u=v=0
2. x20
Then
u = SQRT((ABS(x) + ABS(x + yI))/2) and
v = y/(2%u)
3. x<0
Then
u = y/(2%v) and
v = S(y) *SQRT((ABS(x) + ABS(x + yI))/2)
where
S{y) =1ify >0
=-1ify< o0

Effect of an Arqument Error:

Let
z = r*EXP(hI) and
SQORT(z) = s*EXP(kI)
Then the relative error in s is approximately half the relative error

in r, and the relative error in k is approximately equal to the relative
error in h.
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[T T T T T T T T S T T T T T T T T T T T ST s T s 1
| Arguments | Relative Error |
| | *1015 |
I —mmmme- - e |
| Range |Distribution]| RMS | Maximum |
— - } fmmmmmmmmmmmn |
|Full | Exponential| 0.263 | 1.54 |
|Range | radially, | | |
| | uniform | | |
| | round 1 | |
| | origin | | I
b e e e e e e 4
Implementation:

e Module size: 144 bytes

e Execution times:

Approximate execution times in microseconds for System/360 models

given below are obtained from the table:

. -
| | IBM System/360 Model Number

|_- ............................
| | 30 | 40 | 50 | 65 | 75
|-..-- e o i e e o o S S S o S S e . S S S 4 S S o o -
| | 26996 | 5957 | 1352 | 341 | 203
L - — - - - - - - - -

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
H: OVERFLOW (300) in Long Float Complex ABS (IHEABZ)

Local Variables: None

Program Interface

Entry Points

IHESQMO
P7 = A(PLIST)
PLIST = A(2z)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHEABZ Long Float Complex ABS
IHESQL Long Float Real SQRT

Global Variables: None
Comments

Called by compiled code.
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TITLE: SHORT FLOAT REAL TAN (IHETNS)

Program Definition

Purpose and Usage

Short Float Real Tan is used to compute tan(x), where x is a short
floating-point real expression in radians.

Description

Method:

Evaluate
p = (4/pi)*ABS(x)

Let q and r be respectively the integral and fractional parts of p.
If q is even, then s = r
If q is odd, then s =1 - r

Let

gl = MOD(q,4%)

Then
If q1 = 0, then TAN(ABS(x)) = TAN(pi*s/4)
If q1 = 1, then TAN(ABS(xX)) = COT(pi*s/4)
If q1 = 2, then TAN(ABS(x)) = -COT(pi*s/u)
If q1 = 3, then TAN(ABS(x)) = -TAN(pi*s/4)

Compute TAN(pi*s/4) and COT(pi*s/U4) as the ratio of two polynomials:

TAN (pi*s/l4) = s*p(s**2)/q(s*+2)

COT (pi*s/U4) = q(s**2)/(s*p(s**2))
where

p(s*%*2) = 212,58037 - 12.559912%s**2

g(s*#*2) 270.665736 ~ 71.6U45273*s*%*2 + s**4
Finally, if x < O,
TAN(x) = -TAN(ABS(x))

Effect of an Argument Error:

The absolute error of the answer is approximately equal to the absolute
error of the argument multiplied by (1 + TAN(x)**2). Hence if x is
near an odd multiple of pi/2, an argument error will produce a large
absolute error in the answer.

The relative error in the result is approximately equal to twice the
absolute error in the argument divided by SIN(2*x). Hence, if x is
near a multiple of pi/2, an argument error will produce a large relative
error in the result.
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Accuracy:

r - = 1
| Arquments | Relative Error |
| | *10° |
| fmmmmmmmmmm oo moooee |
| Range |Distribution]| RMS | Maximum |

- ¥ -- |
|ABS(x)<| Uniform | 0.319 | 1.92 |
lpizt | | | |

--——-—4 } $-- ----1
Ipiszu< | | | |
|ABS(x) | Uniform | o0.u65 | 1.24 |
1<1.5 | | | |
|- : + +-- [
Ipiszt< | | | |
|ABS(x) | Uniform | 3.14 | 170+ |
I<pisz2 | | | |

--===-—{- : $-- -1
Ipisz2< | | [ [
|ABS(x) | Uniform | 1.25 | 70.6% |
1<10 I | | |

——————— } $ -4-- --=-1
|10< | | | |
|ABS(x) | Uniform } 3.57 | 205+ |
| <100 | | | }

*These maximum errors are those encountered in a sample of 5000
points; each figure depends very much on the particular points
encountered near the singularities of the function.

Implementation:

e Module size: 280 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r - - 1
| | IBM System/360 Model Number |
| === |
| ABS (%) | 30 | 40 | 50 | 65 | 75 |
[ 1 1 e T
|<pi/u | w429 | 1172 | 336 | 85.8 | 51.0 |
| ¥ ¥ 3 t -- |
|=2pizu | 4788 | 1262 | 368 | 95.1 | 55.0 |
L _—— 3

Errors Detected

Error and Exceptional Conditions:

P: ABS(x) > 2#*18%pi (213)
I: OVERFLOW (300)

Local Variables

None



Program Interface

Entry Points

IHETNSO
P7 = A (PLIST)
PLIST = A(x)
A(Target)

Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.

Routines Called
EXEP Execution Error Package
Global Variables
None
Comments

Called by compiled code and IHETNW.
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TITLE: LONG FLOAT REAL TAN (IHETNL)

Program Definition

Purpose and Usage

Long Float Real Tan is used to compute tan(x), where x is a long
floating-point real expression in radians.

Description

Method:

Evaluate
p = (4/pi) *ABS(x)

Let q and r be respectively the integral and fractional parts of p.
If q is even, then s = r.
If q is odd, then s =1 - r.

Let

g2 = MOD(q,4)

Then
If q2 = 0, then TAN(ABS(x)) = TAN(pi*s/4)
If q2 = 1, then TAN(ABS(x)) = COT(pi*s/i)
If q2 = 2, then TAN(ABS(x)) = —-COT(pi*s/4)
If q2 = 3, then TAN(ABS(x)) = -TAN(pi*s/4)

Compute TAN(pi*s/4) and COT(pi*s/4) as the ratio of two polynomials:

1

TAN (pi*s/4) s*p(s**2) /q(s**2)
COT (pi*s/4) = q(s**2)/(s*p(s*%2))

where p(s*#%#2) is of degree 3 and q(s*#*2) is of degree 4 in s*#*2, and
maximum relative erxror is 3.4%10%*-19,

Finally, if x < O,
TAN(x) = -TAN(ABS(x))

Effect of an Arqument Error:

The absolute error in the result is approximately equal to the absolute
error in the argument multiplied by (1 + TAN(x)**2). Hence, if x is
near an odd multiple of pi/2, an argument error will produce a large
absolute error in the result.

The relative error in the result is approximately equal to twice the
absolute error in the argument divided by SIN(2#%x). Hence, if x is

near a multiple of pi/2, an argument error will produce a large relative
error in the result.
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Accuracy:

r- - ]
| Arguments | Relative Error |
| | *1015 |
. |
| Range |Distribution]| RMS | Maximum |
e -4 S |
|ABS(x)<| Uniform | 0.091 | 0.530 |
lpizs | | | |
|-=-----1 1= -—4-- |
Ipizu< | [ [ [
|ABS(x) | Uniform | 0.437 | 2.31 [
I<1.5 | I I |
I-- ¥ + e R |
lpize< | | | I
|ABS(x) | Uniform | 7.75 | 416* |
I<piz2 | | | |
- + + B |
Ipiz2< | | [ |
|ABS(x) | Uniform | 18.3 | 1140+ |
<10 I | I |
P ¥ mmmmmmmmmmms |
j10< I | | |
|ABS(x) | Uniform | 271 | 13400% {
15100 | | | }

*These maximum errors are those encountered in a sample of 5000
points; each figure depends very much on the particular points
encountered near the singularities of the function.

Implementation:

e Module size: 352 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

- R |
i | IBM System/360 Model Number |
[ - —mmmoommmeoooo—o- |
|ABS(x) | 30 | 40 | 50 | 65 | 75 |
l_- - -
|<pi/u | 15440 | 3622 | 687 | 154 | 87.2 |
| + 1 1- 4 - |
|=pist | 16130 | 3817 | 747 | 169 | 93.9 |
L ———————————————————— 4

Errors Detected

Error and Exceptional Conditions:

P: ABS(x) 2> 2#%*50%pi (204)
I: OVERFLOW (300)

Local Variables

None
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Program Interface

Entry Points

IHETNLO
P7 = A(PLIST)
PLIST = A(x)
A(Target)

Exit Conditions

Normal. Returns to caller via the link register.
Abnormal. Branches to EXEP via the entry point IHEERRB.

Routines Called
EXEP Execution Error Package
Global Variables
None
Comments

Called by compiled code and IHETNZ.
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TITLE: SHORT FLOAT REAL HYPERBOLIC TAN (IHETHS)

Program Description

Purpose and Usage

Short Float Real Hyperbolic Tan is used to calculate hyperbolic tan(x),
where x is a short floating-point real expression in radians.

Description
Method:
1. ABS(x) < 2%#%-12
Return x as result.
2. 2*%-12 < ABS(x) < 0.54931
Use a transformed continued fraction of the form:
TANH(X)/x = 1 - ((x*%2 + a)/(x**¥2 + b + c/x%%2))
with relative error less than 2#*%-27.
3. 0.54931 < x < 9.011
TANH(x) = 1 - 2/(EXP(2*x) + 1)
4. x 2 9.011
Return result 1.
5. x < -0.54931
TANH(x) = -TANH(-x)

Effect of an Arqument Error:

The relative error caused in the result is approximately twice the
absolute error in the argument divided by SINH(2#*x). Thus for small
values of x, it is of the order of the relative error in the argument,
and as x increases, the effect of the argument error is diminished.

Accuracy:

-

1
| Arguments | Relative Error |
| | *10° |
|---= - - |
| Range |Distribution]| RMS | Maximum |
|-=-==--4 ¥ B |
|-0.5<x | Uniform | 0.174 | 0.867 |
1<0.5 | | I |
|-==--=- + == |
| | 0.0720 | 0.782 |
L 1

-9<x<9 | Uniform

Implementation:

e Module size: 200 bytes

e Execution times:
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Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r 1
| | IBM System/360 Model Number |
| |
| | 30 | 40 | 50 | 65 | 75 |
| o= oo - -1
|ABS(x) < | 791 | 263 | 102 | 28.7 | 21.7 |
|2-22 | | | | | |
1 1 4 --- $m-----—-4 -1
| 2-12< | 3033 | 785 | 231 | 64.1 | u43.9 |
| ABS(x)<0.5] | 1 | | |
| 1 1 1 1 et |
10.5<x | 5934 | 1805 | 562 | 152 | 117 |
1<9 | | | | | |
| t % f--------4 + [
| x>9 | 1095 | 363 | 139 i 40.5 | 35.2 |
L 1

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

IHETHSO
P7 = A(PLIST)
PLIST = A(x)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEEXS Short Float Real EXP
Global Variables
None
Comments

Called by compiled code and IHETNW.



TITLE: LONG FLOAT REAL HYPERBOLIC TAN (IHETHL)

Program Definition

Purpose and Usage

Long Float Real Hyperbolic Tan is used to calculate hyperbolic tan(x),
where x is a long floating-point real expression in radians.

Description
Method:
1. ABS(x) < 0.54931

Compute TANH(X)/x using a rational approximation, with relative
error less than 2#%*-64.5.

2. 0.54931 < x < 20.101
TANH(x) = 1 - 2/(EXP(2*x) + 1)
3. x 2 20.101
Return result 1.
4. x < -0.54931
TANH(x) = -TANH(-x)

Effect of an Arqument Error:

The relative error caused in the result is approximately twice the
absolute error in the argument divided by SINH(2#*x). Thus for small
values of x, it is of the order of the relative error in the argument,
and as x increases, the effect of the argument error is diminished.

Accuracg :

r 1
i Arguments | Relative Error |
| | *1015 |
- TP =mmmmmeee|
| Range |Distribution]| RMS | Maximum |

- 1 ¥ $-- |
|ABS(x)<| Uniform | 0.08u40 | 0.211 |
10.54931] | | |
- t 1 |
10.54931] | | |
| <ABS (x) | | | |
| <5 | Uniform ] 0.0250 | 0.199 1
L 1
Implementation:

e Module size: 280 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:
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-

|
|
ABS(x) | 30 | 40 | 50 | 65 | 75 |
--- o $mmmommn fmommmee e |
|<0.549 | 12745 | 3030 | 564 | 123 | 67.9 |
[ ¥ L AR E— e |
10.549< | | | | | |
| ABS(x) | 16400 | 3918 | 878 | 205 | 119 |
1<20.1 | | | | | |
| ¥ S e e |
|220.1 | 1239 | 372 | 135 | 39.3 | 25.5 |
L - - ——1
Errors Detected
None
Local Variables
None
Program Interface
Entry Points
IHETHLO
P7 = A(PLIST)
PLIST = A(x)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEEXL Long Float Real EXP
Global Variables
None
Comments

Called by compiled code and IHETNZ.
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TITLE: SHORT FLOAT COMPLEX TAN/HYPERBOLIC TAN (IHETNW)

Program Definition

Purpose and Usage
Short Float Complex Tan/Hyperbolic Tan is used to calculate tan(z)
or hyperbolic tan(z), where z is a short floating-point complex
expression in radians.
Description
Method:

Let

z=x +yl

Then
REAL (TAN(z)) = TAN(x)*(1 - TANH(y)*#*2)/(1 + (TAN(x)*TANH(y))**2)
IMAG(TAN(z)) = TANH(y)*(1 + TAN(x)**2)/(1 + (TAN(x)*TANH(y))**2)
TANH(2z) = - (TAN(zI))I

Effect of an Arqument Error:

The absolute error caused in the result is approximately equal to the
absolute error in the argument divided by ABS(COS(z)**2) for IHETNTO
or divided by ABS(COSH(z)*#*2) for IHETHTO. The relative error caused
in the result is approximately twice the absolute error in the argument
divided by ABS(SIN(2%*2z)) for IHETNTO, or divided by ABS(SINH(2%z))

for IHETHTO.

Accuracy:

| Arguments | Relative Error |
| | *10° |
- T | mmmmmmmomomee |
| Range |Distribution]| RMS | Maximum |
L

- - e e e > 4

IHETNTO

- TTTTTET T T 1

|ABS(x)<| Uniform
i1

|ABS (y)<|
o

IHETHTO

r
ABS(x)<| Uniform

19
|ABS (y)<|
11 |

0.430

Implementation:

* Module size: 184 bytes
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¢ Execution times:

Approximate execution times in microseconds for the Systemv/360
models given below are obtained from the formulas:

IHETNTO: a + time for execution of IHETHS with argument y
IHETHTO: b + time for execution of IHETHS with argument x

- —— - -

| IBM System/360 Model Number |

|
|
|
|
|
|
|
|
|
]
|
[}
|
[}
|
|
|
|
]
]
|
]
]
[}
|
]
|
|

‘
|

| | 30 | 0 | 50 | 65 | 15 |
| === -mmmmmmee [
| a | 9094 | 2310 | 696 | 186 | 111 |
| b | 9197 | 2854 | 716 | 191 | 115 |
L —— -1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
0: ABS(u) > 2%#18%pi (213)

x for IHETNTO
y for IHETHTO

where

u

u
H: OVERFLOW (300) in Short Float Real Tan (IHETNS)

Local Variables

None

Program Interface

Entry Points

IHETNTO - Entry for TAN(z)

P7 = A(PLIST)
PLIST = A(2)
A(Target)

IHETHTO - Entry for TANH(z)
Linkage as for IHETNTO
Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHETHS Short Float Real Hyperbolic Tan
IHETNS Short Float Real Tan

Global Variables
None
comments

Called by compiled code.



TITLE: LONG FLOAT COMPLEX TAN/HYPERBOLIC TAN (IHETNZ)

Program Definition

Purpose and Usage
Long Float Complex Tan/Hyperbolic Tan is used to calculate tan(z) or
hyperbolic tan(z), where z is a long floating-point complex expression
in radianmns.
Description
Method:
Let
z =x +yl

Then

REAL (TAN (2)) TAN(x) *#(1 - TANH(y)**2)/(1 + (TAN(x)*TANH(y)) **2)

IMAG (TAN(2)) TANH(y) #(1 + TAN(x) **2)/(1 + (TAN(x)*TANH(y))**2)

-(TAN(zI))I

TANH(Z2)

Accuracy:

Arguments | Relative Error |

| *1015 |

- - e o o e s e e > o e l
Range |Distribution]| RMS | Maximum |

- o o o e e o e e e e o o o e e e 4

r
|
|
|
|
L

IHETNMO

- - - — - -

|ABS(x)<| Uniform
(!

|ABS (y)<|

19 |

— s ——
e . e . o and

IHETHMO

- - -

|ABS(x)<| Uniform
19

|aBS (y)<|

11 |

| . - e e o i s e

Implementation:

e Module size: 184 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the appropriate entry point
in the tables:
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r 1
| { IBM System/360 Model Number |
| |
| ABS(y) | 30 | 40 | 50 | 65 | 75 |
L 3
THETNMO
r 1
1<0.549 | uwosu3 | 9625 | 1s8u4 | 411 | 233 |
| t t --- 1 4 I
10.549< | | | | | |
|ABS(y) | 44498 | 10513 | 10365 | u493 | 284 |
[<20.1 | | | | | |
[ ¥ ¥ e + |
1=220.1 | 29337 | 6967 | 1415 | 327 | 190 |
1
r - 7
| | IBM System/360 Model Number |
| -- -= [
| ABS(x) | 30 | 40 | 50 | 65 | 75 |
L -— ———-1
IHETHMO
r - TTSTTmT o T s e 1
|<0.549 | 41122 | 9709 | 1871 | 419 | 236 |
' ——-----|
10.549< | | | | ] |
|ABS (x) { 44777 | 10597 | 2185 | 501 | 287 |
1<20.1 | l | | | |
+ + 1= et [
1220.1 | 29616 | 7051 | 1442 | 334 | 193 |
L 1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
O: ABS(u) > 2##50%pi (204)

where

= x for IHETNMO
= y for IHETHMO

H: OVERFLOW (300) in Long Float Real Tan (IHETNL)

Local Variables

None

Proqgram Interface

Entry Points

IHETNMO - Entry for TAN(z)

P7
PLIST

A(PLIST)

A(z)

A(Target)

IHETHMO - Entry for TANH(z)

Linkage as for THETNMO
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Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHETHL Long Float Real Hyperbolic Tan
IHETNL Long Float Real Tan

Global Variables
None
Comments

Called by compiled code.
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AGGREGATE MANTPULATION PACKAGE

The following routines constitute the Aggregate Manipulation Package
(AMP). They support the CALL/360-0S built-in functions PROD, SUM,

and POLY. Descriptions of these routines are given on succeeding pages
of this manual, in the order indicated.

Note that the four general groupings appear in alphabetic order
according to the mnemonics of the routines. Within each grouping,
discussion of short floating-point precedes discussion of long floating-
point, and discussion of real precedes discussion of complex.

Indexing:
Interleaved Array Indexer (IHEJXI)
PROD:

PROD-Interleaved Real Fixed Array (IHEPDF)
PROD-Interleaved Real Short Float Array (IHEPDS)
PROD-Interleaved Real Long Float Array (IHEPDL)
PROD-Interleaved Complex Fixed Array (IHEPDX)
PROD-Interleaved Complex Short Float Array (IHEPDW)
PROD-Interleaved Complex Long Float Array (IHEPDZ)

SUM:

SUM-Interleaved Real Fixed Array (IHESMF)
SUM-Interleaved Real/Complex Short Float Array (IHESMG)
SUM-Interleaved Real/Complex Long Float Array (IHESMH)
SUM-Interleaved Complex Fixed Array (IHESMX)

POLY:

Real Fixed) (IHEYGF)

Real Short Float) (IHEYGS)
Real Long Float) (IHEYGL)
Complex Fixed) (IHEYGX)
Complex Short Float) (IHEYGW)
Complex Long Float) (IHEYGZ)

POLY (A,X) (A and
POLY (A,X) (A and
POLY (A,X) (A and
POLY (A,X) (A and
POLY (A,X) (A and
POLY (A,X) (A and

P4 DX X

SPEED

The average execution times given in this subsection are based on
information in IBM System/360 Instruction Timing Information (A22-6825).

EFFECT OF HEXADECIMAL TRUNCATION

Allowance must be made for a certain amount of truncation error in
System/360 handling of hexadecimal numbers. The accuracy of values
returned by the built-in functions SUM, PROD, and POLY is governed
accordingly. (See "Hexadecimal Truncation Errors®™ under “"Mathematical
Function Package.")

ARGUMENTS
Any restrictions on arguments are noted under two headings:
Range: This states any range of arguments for which a module is valid.

Arqguments outside the given ranges are assumed to have been excluded
before the module is called.
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Error and Exceptional Conditions: These cover conditions which may

result from the use of a routine; they are listed in four categories:

88

P - Programmed conditions in the module concerned. Programmed tests
are made where not too costly and, if an invalid argument is found,
a branch is taken to the entry point IHEERRB of the Error Routine.
(See "Handling of Interrupts Package"™ in Volume II. Error Routine
is part of EXEP, which is a subpackage of HIP.) An appropriate
message is printed and the ERROR condition is raised.

I - Interrupt conditions in the module concerned. For those routines
where FIXEDOVERFLOW is detected by programmed tests, or where
hardware interruptions may occur, the OVERFLOW, UNDERFLOW, and (when
the conversion package is called) ERROR conditions pass to IHEERR
and are treated in the normal way. The machine is assumed to be
enabled for all interruptions except significance, which is masked.

O - Programmed conditions in modules called by the module concerned.
These occur when invalid arguments are detected in the module called.

H - As I, but the interrupt conditions occur in the modules called
by the module concerned.



TITLE: INTERLEAVED ARRAY INDEXER (IHEJXI)

Program Definition

Purpose and Usage

Interleaved Array Indexer is used to find the next element of an array
and to return its byte address in register P7. ‘

Entry point IHEJXIY is used to initialize the routine for byte addresses
and to provide the address of the first element in the array. Entry
point IHEJXIA is used thereafter to obtain the addresses of subsequent
elements of the array; one address is returned for each entry into

the routine.

Description
Method:

Arrays are stored in row-major order. Let Li be the lower bound and

Ui the upper bound of the ith dimension, and n the number of dimensions.
Starting with the element A(L1,L2,...,Ln), the routine varies the
subscripts through their ranges to A(U1,U2,...,Un), changing the nth
subscript most rapidly; in this way the elements are referenced in

the order in which they are stored.

In the initializer part of the routine, it is determined how many of
the last dimensions in the array are stored contiguously. This is

done by comparing Mj for equality with U(j+1) - L(j+1) + 1 for j =

n-1, n-2,...,1. The contigquous storage of elements is ended at the
first point where this equality does not hold. This dimension is saved
in the storage location called S. The count of the number of contiguous
elements is calculated during this process and saved. An array INDEX
is set to the lower bound values for all dimensions.

Initially the base address is equal to the address of A(L1,L2,...,Ln).
Each subsequent contiguous element address is generated from the
previous one by adding the multiplier Mn from the array dope vector
(ADV) and reducing the contiguous element count by 1.

When the count reaches 0, the next subscript to the left is increased
by 1, the next element address is recalculated using the values in
INDEX, and the contiguous element count is restored. If increasing
the INDEX value for a dimension causes it to pass the upper bound
value, then the next dimension to the left is increased by 1, and so
forth. In any case, when increasing a dimension by 1, all dimensions
to the right are reset to their lower bounds.

Range:
0 < number of dimensions < 255

Implementation:

e Module size: 1196 bytes
Errors Detected

None

89



Local Variables

NDIMS Number of dimensions

ELE Number of contiguous elements

COUNT Number of contiguous elements left

Q Current dimension processing

S Dimension ruining continuity

MN Last multiplier

BNDPTR Pointer to bound slot for dimension Q
R Leftmost dimension being worked on
UBNDPTR Pointer to upper bound for dimension Q
INDEX Current subscript value array

Note: Storage for these local variables is kept in the routine itself;
thus this routine is not reentrant. However, it can easily
be made reentrant by moving its storage to the LCA area, since
the storage needs to be preserved between calls to this routine.

Program Interface

Entry Points

IHEJXIY Entry to initialize for byte addressing, and to locate
the first element of the array.

P7 = address of parameter 1list
parameter list: A(Source ADV)

IHEJXIA Entry to locate the next element of the array

Linkage: WNo explicit arguments.
Implicit arguments: LCA

Exit Conditions

Normal. Returns to caller via the link register with:

1. P7 = the byte address of the first or current element of the array.

2. GO = 0, if the last address of the last element of the array
provided was not the last element.

3. GO = 4, if the last address of the last element of the array

provided was the last element.
Routines Called
None
Global Variables

WJIXIDVA Dope Vector Address
WIXILADD Last Element Address

Comments

Called by:

IHEPDF IHESMF
IHEPDX IHESMX
IHEPDS IHESMG
IHEPDW IHESMH
THEPDL
IHEPDZ
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TITLE: PROD-INTERLEAVED REAL FIXED ARRAY (IHEPDF)

Program Definition

Purpose and Usage

PROD-Interleaved Real Fixed Array is used to equate a long or short
floating-point real target to the product of all the elements of an
interleaved array of fixed-point reals.

Description

Method:

The elements of the array are used in row-major order to multiply the
current product. For fixed-point arguments, each element is converted
to floating-point by using the Total Conversion Package. The precision
specified in the source DED determines the precision of the target.

Implementation:

e Module size: 144 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the following formulas.
'*Short' or 'long' refers to the floating-point result.

Target
short a + Tl + R¥(e + T3)
long c + T1 + R*(f + T3)

Constants used in the formulas are:

R = number of elements in the array

Tl = sum of times required toc execute THEJXI using IHEJXIY
and IHEJXIA

T3 = time for the appropriate conversion using IHEDMA
r 1
| | IBM Systemv/ 360 Model Number |
| a— |
| | 30 | 40 | 50 | 65 | 75 |
| === |
| a | 1075 | 365 | 141 | 37.8 | 25 |
| c | 1124 | 382 | 147 | 39 | 25.9 |
| e | 645 | 201 | 69 | 18.2 | 12.1 |
| f | 1363 | 371 | 81.5 | 20.2 | 13 |
L - 1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None
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Program Interface

Entry Points

IHEPDFO
P7 = A(Parameter List) where Parameter List:
A (ADV)
A(Array DED)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHEDMA Arithmetic Conversion Director
IHEJXI Interleaved Array Indexer

Global Variables
None
Comments

Called by compiled code.

92



TITLE: PROD-INTERLEAVED REAL SHORT FLOAT ARRAY (IHEPDS)

Program Definition

Purpose and Usage

PROD-Interleaved Real Short Float Array is used to equate a short
floating-point real target to the product of all the elements of an
interleaved array of short floating-point reals.

Description

Method:

The elements of the array are used in row-major order to multiply the
current product.

Implementation:

e Module size: 88 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formula.

a + Tl + R*b
Constants used in the formula are:

R = number of elements in the array

T1 = sum of times required to execute IHEJXI using IHEJXIY
and IHEJXIA
r - I |
| | IBM Systemnv 360 Model Number |
| === |
| | 30 | 40 | 50 | 65 | 75 |
| === oo -- |
| a | u1s | 178 | 8o | 23.7 | 17.5 |
| b | w92 | 143 | 3.3 | 11.4 | 7.2 |
- - 1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables
None

Program Interface

Entry Points

IHEPDSO
P7 = A(Parameter List) where Parameter List:
A(ADV)
A(Target)
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Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEJXI Interleaved Array Indexer
Global Variables
None
Comments

Called by compiled code.
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TITLE: PROD-INTERLEAVED REAL LONG FLOAT ARRAY (IHEPDL)

Program Definition

Purpose and Usage

PROD-Interleaved Real Long Float Array is used to equate a long
floating-point real target to the product of all the elements of an
interleaved array of long floating-point reals.

Description

Method:

The elements of the array are used in row-major order to multiply the
current product.

Implementation:

e Module size: 88 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formula.

a + T1 + R¥b
Constants used in the formula are:

R = number of elements in the array

T1 = sum of times required to execute IHEJXI using IHEJXIY
and IHEJXIA
r Rt |
| | IBM System/360 Model Number |
| mmmmmmoommm—mmoo—o- |
| | 30 | 40 | 50 | 65 | 75 |
| -1
| a | =290 | 8.8 | 67.5 | 20.7 | 15.5 |
| b ! 1264 | 331 | 63.8 | 14.8 | 9.2 |
L ——— J

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables
None

Program Interface

Entry Points

IHEPDLO
P7 = A(Parameter List) where Parameter List:
A (ADV)
A(Target)
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Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEJXI Interleaved Array Indexer
Global Variables
None
Comments

Called by compiled code.
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TITLE: PROD-INTERLEAVED COMPLEX FIXED ARRAY (IHEPDX)

Program Definition

Purpose and Usage

PROD-Interleaved Complex Fixed Array is used to equate a long or short
floating-point complex target to the product of all the elements of

an interleaved array of fixed-point complexes.

Description

Method:

The elements of the array are used in row-major order to multiply the
current product. For fixed-point arquments, each element is converted

to floating-point by using the Total Conversion Package. The precision
specified in the source DED determines the precision of the target.

Implementation:

e Module size: 272 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formula.

Source Target
binary short a + T1 + R¥(e + 2%T3)

Constants used in the formula are:

R number of elements in the array

Tl = sum of times required to execute IHEJXI using IHEJXIY
and IHEJXIA

T3 = time for the appropriate conversion using IHEDMA
- TTTTTTT TS - -
| | IBM System/360 Model Number |
|==mmmmmmmm oo |
| | 30 | 40 | 50 | 65 | 75 |
| === oo |
| a | 1382 | 497 { 208 | 56.8 | u41.2 |
| c | 1374 | 501 | 205 | 56.7 | 40.8 |
| e | 2047 | S7u4 | 182 | wu.4 | 26.3 |
| f | 5097 | 1306 | 250 | 56.9 | 33.2 |
L s 1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None
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Program Interface

Entry Points

IHEPDXO
P7 = A(Parameter List) where Parameter List:
A (ADV)
A(Array DED)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHEDMA Arithmetic Conversion Director
IHEJXI Interleaved Array Indexer

Global Variables
None
Comments

Called by compiled code.
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TITLE: PROD-INTERLEAVED COMPLEX SHORT FLOAT ARRAY (IHEPDW)

Program Definition

Purpose and Usage

PROD-Interleaved Complex Short Float Array is used to equate a short
floating-point complex target to the product of all the elements of
an interleaved array of short floating-point complexes.

Description

Method:

The elements of the array are used in row-major order to multiply the
current product.

Imnplementation:

e Module size: 120 bytes
¢ Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formula.

a + T1 + R*b

Constants used in the formula are:

R = number of elements in the array
T1 = sum of times required to execute IHEJXI using IHEJXIY
and IHEJXIA
T T T T T T T T T T T e T Tt 1
| i IBM System/360 Model Number |
I - I
| | 30 | 40 | 50 | 65 | 75 |
| |
| a | -814 | -96 | 12.1 | 8.9 | 12.5 |
| b | 1694 | 52 | 132 | 32 | 17.7 |
L ¥

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables
None

Program Interface

Entry Points

IHEPDWO
P7 = A(Parameter List) where Parameter List:
A(ADV)
A(Target)
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Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEJXI Interleaved Array Indexer
Global Variables
None
Comments

Called by compiled code.
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TITLE: PROD-INTERLEAVED COMPLEX LONG FLOAT ARRAY (IHEPDZ)

Program Definition

Purpose and Usage

PROD-Interleaved Complex Long Float Array is used to equate a long
floating-point complex target to the product of all the elements of

an interleaved array of long floating-point complexes.

Description

Method:

The elements of the array are used in row-major order to multiply the

current product.

Implementation:

e Module size: 120 bytes

e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formula.

a + Tl + R*b

constants used in the formula are:

R = number of elements in the array

Tl = sum of times required to execute IHEJXI using IHEJXIY
and IHEJXIA
¢
| i IBM Systenv 360 Model Number
| _ - -
| | 30 | 40 | 50 | 65 | 75
|
| a | -3841 | -852 -61.5 | -4.7 | 4.2
| b | 4830 | 1214 | 211 | 46.1 | 25.7
bl ———————
Errors Detected
Error and Exceptional Conditions:
I: OVERFLOW (300)
UNDERFLOW (340)
Local Variables
None
Program Interface
Entry Points
IHEPDZO
P7 = A(Parameter List) where Parameter List:
A (ADV)
A(Target)

e e e, e o e s d
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Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEJXI Interleaved Array Indexer
Global Variables
None
Comments

Called by compiled code.
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TITLE: SUM-INTERLEAVED REAL FIXED ARRAY (IHESMF)

Program Definition

Purpose and Usage

SUM-Interleaved Real Fixed Array is used to equate a long or short
floating-point real target to the sum of all the elements of an
interleaved array of fixed-point reals.

Description

Method:

The elements of the array are added to the current sum in row-major
order. For fixed-point arguments, each element is converted to
floating-point by using routines of the Total Conversion Package.
The precision specified in the source DED determines the precision
of the target.

Implementation:

e Module size: 136 bytes
e Execution times:
Approximate execution times in microseconds for the System/360

models given below are obtained from the following formulas.
'Short' or 'long' refers to the floating-point result.

Target
short a + Tl + R¥(e + T3)
long c + T1 + R*(f + T3)

Constants used in the formulas are:

R = number of elements in the array
Tl = sum of times required to execute IHEJXI using IHEJXIY
and THEJXIA

T3 = time for the appropriate conversion using IHEDMA
r- -= T TTT TSI 1
| | IBM System/360 Model Number |
| -mmm=-es - |
| | 30 | 40 | 50 | 65 | 75 |
| -ommsmmmomoes |
| a | 1074 | 363 | 141 | 37.3 | 24.6 |
| c ] 1123 | 381 | 147 | 38.5 | 25.6 |
| e | 400 | 139 | 54.4 | 16.2 | 10.9 |
| £ | 418 | 139 | 53.2 | 15.1 | 9.8 |
L- - 1

Errors Detected

Exrror and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)
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Local Variables
None

Program Interface

Entry Points

IHESMFO
P7 = A(Parameter List) where Parameter List:
A (ADV)
A(Array DED)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHEDMA Arithmetic Conversion Director
IHEJXI Interleaved Array Indexer

Global Variables
None
Comments

Called by compiled code.
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TITL

Prog

E: SUM-INTERLEAVED REAL/COMPLEX SHORT FLOAT ARRAY (IHESMG)

ram Definition

Purp

ose and Usage

SUM-Interleaved Real/Complex Short Float Array is used to equate a
short floating-point real or complex target to the sum of all the
elements of an interleaved array of short floating-point reals or

comp

Desc

lexes, respectively.

ription

Method

od:

The elements of the array are added to the current sum in row-major
r. For a complex argument, the summations of the real and imaginary

orde
part

Impl

s are developed concurrently.

ementation:

Erro

Erro

Module size: 128 bytes

Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formulas.

Real a + Tl + R*b
Compl ex c + Tl + R¥4

Constants used in the formulas are:

R = number of elements in the array
T1 = sum of times required to execute IHEJXI using the IHEJXIY
and IHEJXIA

r~ - - “=="
| | IBM System/360 Model Number |
| -- |
| | 30 | 40 | 50 | 65 | 75 |
=== |
| a | 935 | 314 | 121 | 2 | 21.4 |
| b | 167 | 43.9 | 15.2 | 4.2 | 2.1 |
| c | 1129 | 372 | 142 | 6.8 | 24.6 |
| d | 334 | 87.8 | 30.4 | 8.3 | 4.2 |
e e e e e s 4

rs Detected

r and Exceptional Conditions:

Loca

None

I: OVERFLOW (300)
UNDERFLOW (340)

1 variables
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Program Interface

Entry Points
IHESMGR Entry for real arrays.
P7 = A(Parameter List) where Parameter List:
A (ADV)
A(Target)
THESMGC Entry for complex arrays.
Linkage as for IHESMGR
Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEJXI Interleaved Array Indexer
Global Variables
None

Comments

Called by compiled code.

106



TITLE: SUM-INTERLEAVED REAL/COMPLEX LONG FLOAT ARRAY (IHESMH)

Program Definition

Purpose and Usage
SUM-Interleaved Real/Complex Long Float Array is used to equate a long
floating-point real or complex target to the sum of all the elements

of an interleaved array of long floating-point reals or complexes,
respectively.

Description

Method:

The elements of the array are added to the current sum in row-major
order. For a complex argument, the summations of the real and imaginary
parts are developed concurrently.

Implementation:

e Module size: 128 bytes
e Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formulas.

Real a + T1 ¢+ R+*b
Complex c + T1 + R#d4

Constants used in these formulas are:

R = number of elements in the array

Tl = sum of times required to execute IHEJXI using IHEJXIY
and IHEJXIA

- - TEmmmmm— 1
| | IBM System/360 Model Number |
| e —————— |
| | 30 | 40 ] 50 | 65 | 75 |
| - |
| a | 887 | 298 | 111 | 30.9 | 20.4 |
| b | 366 | 116 | 42.4 | 12.3 | 7.9 |
| c | 993 | 337 | 125 | 3.4 | 23.5 |
| d | 514 | 157 | 55.9 | 16 | 9.8 |
L - — J

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None
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Program Interface

Entry Points
IHESMHR Entry for real arrays.
P7 = A(Parameter List) where Parameter List:
A(ADV)
A(Target)
IHESMHC Entry for complex arrays.
Linkage as for IHESMHR
Exit Conditions
Normal. Returns to caller via the link register.
Routines Called
IHEJXI Interleaved Array Indexer
Global Variables
None
Comments

Called by compiled code.
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TITLE: SUM-INTERLEAVED COMPLEX FIXED ARRAY (IHESMX)

Program Definition

Purpose and Usage

SUM-Interleaved Complex Fixed Array is used to equate a long or short
floating-point complex target to the sum of all the elements of an
interleaved array of fixed-point complexes.

Description
Method:

The elements of the array are added to the current sum in row-major
order. For fixed-point arguments, each element is converted to
floating-point by using routines of the Total Conversion Package.

For a complex argument, the summations of the real and imaginary parts
are developed concurrently. The precision specified in the source
DED determines the precision of the target.

Implementation:

e Module size: 224 bytes
¢ Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the following formula.

Source Target
binary short a + Tl + R¥(e + 2%*T3)

Constants used in the formula are:
R = number of elements in the array

T1 = sum of times required to execute IHEJXI using IHEJXIY
and IHEJXIA

T3 = time for the appropriate conversion using IHEDMA

= -7
| | IBM System/ 360 Model Number |
| _— -- -1
| | 30 | 40 | 50 | 65 | 75 |
|- - - |
| a | 1327 | 511 | 229 | 63.8 | 47.8 |
| c | 1319 | 515 | 227 | 63.7 | u47.4 |
| e | 712 | 232 | 87 | 25.1 | 16.4 |
| f | 770 | 240 | 89 | 24 | 15.2 |
b e ————1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None
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Program Interface

Entry Points

IHESMXO0
P7 = A(Parameter List) where Parameter List:
A(ADV)
A(DED for Array)
A(Target)

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHEDMA Arithmetic Conversion Director
IHEJXI Interleaved Array Indexer

Global Variables
None
comments

Called by compiled code.
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TITLE:

POLY (A,X) (A AND X REAL FIXED) (IHEYGF)

Program Definition

Purpose and Usage

POLY (A,X) for real fixed A and X has two options:

1.

Vector X:

Let the arqguments be arrays declared as A(m:n) and X(p:q).
Then the function computed is:

n-m j-1

A(m) + 2 A(m + j)* II X(p +1i)
i=0

i=1

unless n = m, when result is A(m).
1f

qgq-p<n-m-1,
then, for

p+1i>q, X(pti) = X(q).
Scalar X:
This may be interpreted as a special case of vector X, that
is, a vector with one element, X(1), which is equal to X. Then
the function computed is:

n-m

E A(m + )X ¥

1=0

A floating-point result is obtained in both cases.

Description

Method:

1.

Vector X, (q-p2n-m-1):

POLY (A,X) is evaluated by nested multiplication and addition,

that is, (... @AM)*X(k)+A(n-1)) *X(k-1)+A(n-2))*...+A(n+1))*X(p)+A(m)
where k = p + n - m - 1.

Vector X, (q-p<n-m-1):

In the expression above, the terms in X with subscript ranging

from k down to q are all made equal to X(q). The evaluation

is treated as for scalar X until sufficient terms in X have
been made equal to X(q), when the computation continues as in 1.

Scalar X:
Terms in X with subscript ranging from k to p are equal to X.

For fixed-point arguments, each element is converted to floating-
point, by using the Total Conversion Package.
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4. The target precision is determined according to the highest
precision specified in the source DED's.

Implementation:

e Module size: U432 bytes
e Execution times:

Let the arguments be declared as A(m:n) and X(p:q), or X, and T

be the time for one conversion using the Arithmetic Conversion
Director (IHEDMA). Then the approximate execution times in
microseconds for the System/360 models given are obtained from

the appropriate formula. "Short' or 'long' refers to the floating-
point result.

Scalar X:

short a + 2%T + (n-m) * (b+T)
long c + 2*T + (n-m) * (4+T)

Vector X, (- p2n-m- 1):

short e + T+ (n—m) * (f + 2%T)
long g+ T+ (n-m) * (h + 2%*T)

Vector X, (q-p<n-m- 1):

short i+ 2%#T + (n-m) #* (b+T) + (gq-p+l) * (j+T)

long k + 2*%T + (n-m) * (A+T) + (g-p+l) * (1+T)

TTTTmTTs TS s e 1
| | IBM System/360 Model Number |
| =mmmommmmooeoe-- |
| | 30 | 40 | 50 | 65 | 75 |
|-_ - - |
| a | 2297 | 834 | 338 | 929 | 67.1 |
| b | 904 | 387 | 100 | 26 | 17.1 |
| c | 2608 | 870 | 351 | 102 | 69.2 |
| d | 1706 | 484 | 124 | 30.4 | 20.2 |
| e | 2629 | 910 | 370 | 97.1 | 6u.6 |
| £ | 1480 | 459 | 155 | 41.2 | 26.3 |
| g | 2740 | 9u6 | 383 | 99.4 | 66.7 |
| h | 30u4 | 84y | 200 | 50 | 32.6 |
| i ] 3370 | 1197 | 491 | 140 | 9y |
| 3j | 258 | 91 | 35 | 9.5 | 6 |
| k | 3581 | 1233 | 504 | 143 | 96.1 |
| 1 | 280 | 101 | 39 | 10.7 | 7.1 |
L 1

Errors Detected

Exrror and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None
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Program Interface

Entry Points

THEYGFV Entry for vector A and vector X.

P7 =

A(Parameter List) where Parameter List:
A(A ADV)

A(A DED)

A(X ADV)

A(X DED)

A (Target)

IHEYGFS Entry for vector A and scalar X.

P7
PLIST

Exit Conditions
Normal. Returns

Routines Called

A(PLIST)

A(A ADV)

A(A DED)

A(X)

A(X DED)

A(Target)

to caller via the link register.

IHEDMA Arithmetic Conversion Director

Global variables

None

Comments

Called by compiled code.
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TITLE:

POLY (A,X) (A AND X REAL SHORT FLOAT) (IHEYGS)

Program Definition

Purpose and Usage

POLY (A,X) for real short float A and X has two options:

1.

Vector X:

Let the arguments be arrays declared as A(m:n) and X(p:q).
Then the function computed is:

n-m j-1

A(m) + E am+j) = [T xwo+i)

i=1 i=0
unless n = m, when result is A(m).
If
q-p<n-nmn-1,
then, for
p+ti>q, X(p+i) = X(q).
Scalar X:
This may be interpreted as a special case of vector X, that
is, a vector with one element, X(1), which is equal to X. Then

the function computed is:

n-m

E A(m + j)#X#%j

i=0

A floating-point result is obtained in both cases.

Description

Method:

1.

114

Vector X, (- p2n-m-1):

POLY (A,X) is evaluated by nested multiplication and addition,

that is, (... (A(n)*X(k)+A(n-1)) *X(k-1)+A(n-2))*.. . +A(m+1))*X(p)+A(m)

where k =p +n-m- 1.

Vector X, (- p<n-m-1):

In the expression above, the terms in X with subscript ranging
from k down to q are all made equal to X(g). The evaluation

is treated as for scalar X until sufficient terms in X have
been made equal to X(q), when the computation continues as in 1.
Scalar X:

Terms in X with subscript ranging from k to p are equal to X.

The target is short precision.



Implementation:

e Module size: 240 bytes

e Execution times:

Let the arguments be declared as A(m:n) and X(p:q), or X, and T
be the time for one conversion using the Arithmetic Conversion

Director (IHEDMA). The

microseconds for the System/360 models given are obtained from

n the approximate execution times in

the appropriate formula.

Scalar X:

a + (n - m*b

Vector X:

(- p2n-m- 1): c + (n - m)#*4
(-p<n-m-1): e+ (n-m*b ¢+ (@ - p + 1)*f

r - - -
i | IBM System/360 Model Number |
| === oo |
| | 30 | 40 | 50 | 65 | 75 |
! . ===
| a | 1232 | 430 | 182 | 9.5 | 33.3 |
l b | 461 | 121 | 37.6 | 9.8 | 5.3 |
| c | 1871 | 623 | 259 | 69.6 | u5.4 |
| d | 490 | 128 | 40.9 | 10.5 | 5.7 |
| e ] 2140 | 733 | 304 | 83.6 | 54.7 |
| f | 29 | 7.5 | 3.3 | 0.7 | o.4 |
L- - 4

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None

Program Interface

Entry Points
IHEYGSV

P7
PLIST

IHEYGSS

P7

Entry for ve

A(PLIST)
A(A ADV)
A(X ADV)
A (Target

Entry for ve

= A(Parame
A(A ADV)
A(X)
A (Target

ctor A and vector X

)
ctor A and scalar X

ter List) where Parameter List:

)
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Exit Conditions

Normal. Returns to caller via the link register.
Routines Called

None

Global Variables

None

Comments

Called by compiled code.
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TITLE:

POLY (A,X) (A AND X REAL LONG FLOAT) (IHEYGL)

Program Definition

Purpose and Usage

POLY (A,X) for real long float A and X has two options:

1.

Vector X:

Let the arquments be arrays declared as A(m:n) and X(p:q).
Then the function computed is:

n-m j=1

A(m) + Z A(m+j)*H X(p +1i)
j=1 i=0

unless n = m, when result is A(m).
If

q-p<n-m-1,
then, for

P +1i>q, X(pti) = X(q).
Scalar X:
This may be interpreted as a special case of vector X, that

is, a vector with one element, X(1), which is equal to X. Then
the function computed is:

n-m

E A(m + j)*X k]

i=0

A floating-point result is obtained in both cases.

Description

Method:

1.

Vector X, (q-p2n-m-1):

POLY (A,X) is evaluated by nested multiplication and addition,
that is, (... (@AM *X(kK)+A(n-1)) *X(k-1)+A(n-2))*...+A(m*1))*X(p) +A(m)
where k = p +n-m- 1.

Vector X, (- p<n-m- 1):

In the expression above, the terms in X with subscript ranging
from k down to q are all made equal to X(q). The evaluation

is treated as for scalar X until sufficient terms in X have
been made equal to X(q), when the computation continues as in 1.
Scalar X:

Terms in X with subscript ranging from k to p are equal to X.

The target is long precision.
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Implementation:

e Module size: 240 bytes

e Execution times:
Let the arguments be declared as A(m:n) and X(p:q), or X, and T
be the time for one conversion using the Arithmetic Conversion
Director (IHEDMA). Then the approximate execution times in
microseconds for the System/360 models given are obtained from
the appropriate formula.
Scalar X:

a + (n - m#*b

Vector X:

(-p2n-m-1): c + (n - m)*d

(- p<n-m-1): e + (n - m*b + (q - p + 1)*f
2 1
| | IBM System/360 Model Number i
| == oo |
| | 30 | 40 | 50 | 65 | 75 |
o |
| a | 1320 | u51 | 189 | 89.6 | 33.3 |
| b | 1281 | 308 | 56.9 | 13.1 | 7.3 |
| c | 1959 | eouu | 266 | 69.7 | us5.4 |
| d | 1270 | 316 | 60.2 | 13.7 | 7.7 |
| e | 2228 | 755 | 311 | 83.6 | 54.7 |
| £ | 29 | 7.5 | 3.3 1] 0.7 | 0.8 |
SR . - - 1

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables
None

Program Interface

Entry Points

IHEYGLV Entry for vector A and vector X.

P7 = A (PLIST)
PLIST = A(A ADV)
A(X ADV)
A (Target)
IHEYGLS Entry for vector A and scalar X.
P7 = A(Parameter List) where Parameter List:
A(A ADV)
A(X)
A (Target)
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Exit Conditions

Normal. Returns to caller via the link register.
Routines Called

None

Global Variables

None

comments

Called by compiled code.
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TITLE:

POLY (A,X) (A AND X COMPLEX FIXED) (IHEYGX)

Program Definition

Purpose and Usage

POLY (A,X), for complex fixed A and X has two options:

1.

Vector X:

Let the arguments be arrays declared as A(m:n) and X(p:q).
Then the function computed is:

n-m j-1

A(m) + E A(m+j)*H X(p + i)

=1 i=0

unless n = m, when result is A(m).
If
q-p<n-m-1,
then, for
p+i>qg, X(pti) = X(q).
Scalar X:
This may be interpreted as a special case of vector X, that

is, a vector with one element, X(1), which is equal to X. Then
the function computed is:

n-m

Z A(m + j)*Xkxj

j=0

A floating-point result is obtained in both cases.

Description

Method:

1.

120

Vector X, (q-p2n-m- 1):

POLY (A,X) is evaluated by nested multiplication and addition,

that is, (... (A(n)*X(k)+A(n-1)) *X(k-1)+A(n-2))*...+A(m+1))*X(p)+A(m)
where k = p + n - m - 1.

Vector X, (q-p<n-m-1):

In the expression above, the terms in X with subscript ranging

from k down to q are all made equal to X(q). The evaluation

is treated as for scalar X until sufficient terms in X have
been made equal to X(q), when the computation continues as in 1.

Scalar X:
Terms in X with subscript ranging from k to p are equal to X.

For fixed-point arguments, each element is converted to floating-
point, by using the Total Conversion Package.



4.

The target precision is determined by the highest precision

indicated in the array/scalar DED's.

Implementation:

e Module size:

688 bytes

e Execution times:

Let the arguments be declared as A(m:n) and X(p:q), or X,
be the time for one conversion using the Arithmetic Conversion
Then the approximate execution times in micro-
seconds for the System/360 models given are obtained from the ap-
*Short' or 'long' refers to the floating-point

Director (IHEDMA).

propriate formula.

result.

Scalar X:

short a + L*T + (n-m)*(b+2*T)
long c + 4*T + (n-m) *(d+2%T)
Vector X, (q-p2n-m- 1):
short e + 2%T + (n—m)*(£+4*T)
long g + 2*T + (n-m) *(h+4*T)
Vector X, (- p<n-m- 1):
short i+ 4*%T + (n—m)*(b+2+T)+ (q-p+1) * (§+2+*T)
long k + 4*T + (n-m) *(d+2*T)+ (g-p+1) *(1+2%*T)
B e s L L
| | IBM System/360 Model Number
| .........................
| | 30 | 40 | 50 | 65 i 75
l____ ——————————————————————— - - -
| a | 3285 | 1174 | 478 | 142 | 95.4
| b | 2345 | 664 | 220 | 58.3 | 33.5
| c | 3471 | 1221 | 496 | 145 | 97.6
| d | 5519 | 1433 | 301 | 73.2 | u42.6
| e | 3187 | 1114 | 447 | 127 | 83.5
| f | 4368 | 1226 | 399 | 103 | 58.1
| g | 3533 | 1161 | 465 | 129 | 85.7
| h | 10636 | 2746 | 556 | 133 | 76.4
| i | 4087 | 1459 | 592 | 171 | 114
| 3 | 545 | 187 | 72.8 | 21.1 | 12.7
| k | 4243 | 1506 | 610 | 176 | 116
| 1 | 567 | 196 | 76.8 | 22.3 | 13.6
L o e e e o e e o o . o o o e 2 o e e o o e

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None

and T
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Program Interface

Entry Points
IHEYGXV Entry for vector A and vector X.

P7 = A(Parameter List) where Parameter List:
A(A ADV)
A(A DED)
A (X ADV)
A(X DED)
A (Target)

IHEYGXS Entry for vector A and scalar X.

A(PLIST)

A(A ADV)

A(A DED)

A(X)

A(X DED)

A(Target)

P7
PLIST

[}

Exit Conditions
Normal. Returns to caller via the link register.
Routines Called

IHEDMA Arithmetic Conversion Director
Global Variables
None
Comments

Called by compiled code.
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TITLE: POLY (A,X) (A AND X COMPLEX SHORT FLOAT) (IHEYGW)

Program Definition

Purpose and Usage
POLY (A,X) for complex short float A and X has two options:
1. Vector X:

Let the arguments be arrays declared as A(m:n) and X(p:q).
Then the function computed is:

n-m j-1

A(m) + Z Am+ ) <] @+

j=1 i=0
unless n = m, when result is A(m).
1f
q-p<n-m-1,
then, for
pt+ti>gq, X(pti) = X(q).
2. Scalar X:
This may be interpreted as a special case of vector X, that

is, a vector with one element, X(1), which is equal to X. Then
the function computed is:

n-m

E A(m + j)*Xxxj

i=0

A floating-point result is obtained in both cases.
Description
Method:
1. Vector X, (- p2n-m-1):
POLY (A,X) is evaluated by nested multiplication and addition,
that is, (... (A(n)*X(k)+A(n-1)) *X(k-1)+A(n-2))*...+A(m+1))*X (p) +A(m)
where k = p +n-m- 1.
2. Vector X, (- p<n-m- 1):
In the expression above, the terms in X with subscript ranging
from k down to g are all made equal to X(q). The evaluation
is treated as for scalar X until sufficient terms in X have
been made equal to X(q), when the computation continues as in 1.
3. Scalar X:

Terms in X with subscript ranging from k to p are equal to X.

4. The target is short precision.
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Implementation:

e Module size: 280 bytes
e Execution times:

Let the arguments be declared as A(m:n) and X(p:q), or X, and T
be the time for one conversion using the Arithmetic Conversion
Director (IHEDMA). Then the approximate execution times in micro-
seconds for the System/360 models given are obtained from the
appropriate formula.

Scalar X:

a+ (n - m%*b

Vector X:
(g-p2n-m-1): c + (n - m#*4d
(@-p<n-m-1): e+ (n-m*b + (@ - p + 1)*f
T TS T TSI 1
| | IBM System/360 Model Number |
| === s m oo - -=--1
| | 30 | 40 | 50 | 65 | 75 |
P |
| a | 1396 | 475 | 198 | 5.9 | 36.1 |
| b | 1672 | 425 | 126 | 30.5 | 15 |
| c | 2035 | 667 | 275 | 75 | u48.1 |
| d | 1701 | 432 | 129 | 31.2 | 15.4 |
| e | 2304 | 775 | 320 | 88.9 | 57.4 |
l £ | 29 | 7.5] 3.3 | 0.7 | 0.4 |
- - 4

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables
None

Program Interface

Entry Points

IHEYGWV Entry for vector A and vector X
P7 = A(PLIST)
PLIST = A(a ADV)
A(X ADV)
A (Target)
IHEYGWS Entry for vector A and scalar X
P7 = A(Parameter List) where Parameter List:
A(A ADV)
A(X)
A (Target)
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Exit Conditions

Normal. Returns to caller via the link register.
Routines Called

None

Global Variables

None

Comments

Called by compiled code.
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TITLE: POLY (A,X) (A AND X COMPLEX LONG FLOAT) (IHEYGZ)

Program Definition

Purpose and Usage
POLY (A,X), for complex long float A and X has two options:
1. Vector X:

Let the arguments be arrays declared as A(m:n) and X(p:q).
Then the function computed is:

n-m j-1

A(m) + Z A+ [T Xo+)
j=1 i=0
unless n = m, when result is A(m).
Iif
q-p<n-m-1,
then, for
p+i>q, X(pti) = X(q).
2. Scalar X:
This may be interpreted as a special case of vector X, that

is, a vector with one element, X(1), which is equal to X. Then
the function computed is:

n-m

E A(m + j)*Xnxj

i=o

A floating-point result is obtained in both cases.
Description
Method:
1. Vector X, (- p2n-m- 1):
POLY (A,X) is evaluated by nested multiplication and addition,
that is, (...#*A(n)*X(k)+A(n-1)) *#X(k-1)+A(n-2))*...+A(m+1))*X (p)+A(m)
where k = p +n-m - 1.
2. Vector X, (q-p<n-m-1):
In the expression above, the terms in X with subscript ranging
from k down to q are all made equal to X(q). The evaluation
is treated as for scalar X until sufficient terms in X have
been made equal to X(q), when the computation continues as in 1.
3. Scalar X:

Terms in X with subscript ranging from k to p are equal to X.

For fixed-point arguments, each element is converted to floating-
point, by using the Total Conversion Package.
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4. The target is long precision.

Implementation:

e Module size:

280 bytes

e Execution times:

Let the argquments be declared as A(m:n) and X(p:q), or X, and T
be the time for ome conversion using the Arithmetic Conversion
Then the approximate execution times in
microseconds for the System/360 models given are obtained from

Director (IHEDMA).

the appropriate formula.

Scalar X:

a + (n - m)*b

Vector X:
(- p2n-m-1): c + (n - m#*d
(g-p<n-m-1): e + (n - m*b + (@ - p + 1)*f
—
| | IBM System/360 Model Number
|
| | 30 | 40 | 50 | 65 | 75
| -
| a | 1572 | 517 | 211 | 54.9 | 36.1
| b | 4824 | 1183 | 203 | uws.2 | 23
| c | 2211 | 710 | 288 | 75 | u48.1
| da | 4853 | 1192 | 207 | 44.9 | 23.4
| e | 2480 | 821 | 333 | 89 | 57.u4
| f | 29 | 7.5 | 3.3 | 0.7 | 0.4
L

e e o —— — — —— ——

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
UNDERFLOW (340)

Local Variables

None

Program Interface

Entry Points
IHEYGZV

P7
PLIST

IHEYGZS

P7

Entry for vector A and vector X.

A(PLIST)
A(A ADV)
A(X ADV)
A (Target)

[[]

Entry for vector A and scalar X.

= A(Parameter List) where Parameter List:

A(A ADV)
A(X)
A (Target)
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Exit Conditions

Normal. Returns to caller via the link register.
Routines Called

None

Global Variables

None

Comments

Called by compiled code.
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