Application Program

CALL/360-0S
PL/1 System Manual Volume II

Program Number 360A-CX-42X

The CALL/360-0S PL/I compiler (to be used with
the CALL/360-0S System on an IBM System/360
Model 50 or higher) is described in the four
volumes of this publication. The publication
is addressed to system programmers and customer
engineers who require a detailed knowledge

of the compiler. It contains a general overview
of the compiler and detailed information on

the compiler and runtime routines and macros
that perform required functions. Additional
information required to understand CALL/360-

OS PL/I compiler operations is provided in
several appendices.

Volume II contains information on runtime
support modules and the first part of a
directory to runtime routines.

GY20-0568-0

First Edition (August 1970)

This edition applies to Version 1, Modification Level 0, of CALL/360-0S
(360A-CX-42X) and to all subsequent versions and modifications until
otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for reader’s comments. If this form has been

removed, address comments to: IBM Corporation, Technical Publications Department, 112 East Post
Road, White Plains, New York 10601.

© Copyright International Business Machines Corporation 1970

CONTENTS - VOLUME II

Section 4 - Runtime Support Summary. .
Library Interface Services (LIBINT). .
I/0 Management Package (IOMP). . . .
I/0 Record Format.
Stream-Oriented I/0.
Handling of Interrupts Package (HIP)
Management of Object Program Package

Library Computational Services (LIBCOMP)

Total Conversion Package (TCP) . . .

Structure of Total Conversion Package.

Conversions - Type Arithmetic. . .
String Manipulation Package (SIMP) .
Arithmetic Function Package (AFUNC).

Definitions. . . . « ¢« ¢ & ¢ ¢ o .

Module Description

Summary.

Mathematical Functlon Package (MFUNC).

Definitions. < . . .
Module Description
SUMMAYY. « « « « o« « o & .
Aggregate Manipulation Package (AMP)
Definitions. . . . <« ¢ « & ¢ . . .
Module Description
SUMMAYY. « « « o « o o o o o o« o =

Section 5 - Runtime Routine Directory.
I/0 Management Package
Close (IHECLOSE) « o o .
Data-Directed Input (IHEDDI) o o o
Data-Directed Output (IHEDDO). . . .
Perform Calculation of the Subscript
Array Element (IHEDDP)
Edit I/0 Director (IHEDIO)

(MOPP) .

-

.

Values for an

List- or Edit-Directed GET Initiation and Termination

(IHEIOA) « o . .

Output In1t1a112at10n with or w1thout Sklpplng (IHEIOB)
Output Data to the Buffer Area and Communication

CALL/360-0Ss (IHEIOD)

Get Data Field from Input Buffer (IHEIOG).
Perform SKIP(w) Function for SYSPRINT
Edited Horizontal Control Format Item (IHEIOX)
List- and Data-Directed Input (IHELDI)

List-Directed Output (IHELDO). . . .
Open (IHEOPEN) e s o o
Reset Disk Files (IHERSET) « o o o
Handling of Interrupts Package
Program Termination (IHEDUM)

Table of Error Messages and Indicators

Error Routine (IHEERR)

(IHEERN) .

On-ENDFILE and REVERT Inltlallzer (IHEONREV)

Management of Object Program Package .
Output Director (IHEGPUT).

(IHEIOP)

with

Initial Prologue, Expand DSA, End Prologue, Object

Program Initiation (IHESAD). . . .

GO TO Interpreter (IHESAF)
Library SVC Director (IHESVC). . . .
Total Conversion Package
F/E-Format Input Director (IHEDIA) .
A-Format Input Director (IHEDIB) . .
C-Format Input Director (IHEDIM) . .
F/E-Format Output Director (IHEDOA).
A-Format Output Director (IHEDOB). .

RONANWN ==

C-Format Output Director (IHEDOM). < ¢ ¢ « o « « « « « - 86
Character String to Arithmetic (IHEDCN). 88
Arithmetic to Character String (IHEDNC). ¢ <« ¢« « « « - 90
Zero Real or Imaginary Part (IHEUPRA) . . . e o o s e o o = o o o 92
Complex External to String Director (IHEVCS) e e e« e e e o e« o « o 93
Character String to Character String (IHEVSC). 95
Arithmetic Conversion Director (IHEDMA). ¢ &« « « « « « « 96
Float Intermediate to Packed Decimal Intermediate
(IHEVFA) e o e e o e e e e e e e e e e e <« 9
Float Intermediate to leed Blnary (IHEVFB). e e« e o e e =« « - « . 100
Float Intermediate to Float Short or Long (IHEVFC) 101
Fixed Binary to Float Intermediate (IHEVFD). 102
Float Source to Float Intermediate (IHEVFE). 103
Packed Decimal Intermediate to Float Intermediate
(IHEVPA) « . . - e o e . o . e o o e o + o < < 104
Packed Decimal Intermedlate to F- Format (IHEVPB) e e e e « o « o < 105
Packed Decimal Intermediate to E-Format (IHEVPC) 106
String with Format to Packed Decimal Intermediate
(IHEVPE)« « . . e e e e e e e e o e = o = e o « - <107
Table of Powers of Ten (IHEVTB). e e e e e o e 2 e + e e o « <« . < 108
Data Analysis Routine (IHEVCA) . . . ¢ ¢ ¢ & « o« o « o o « « « « « 109
String Manipulation Package. ¢ ¢ ¢ ¢ 4 « s e o « . - o 110
Character String Compare (IHECSC). . o « o « o o o = o = « « « « « 111
Character String Assignment (IHECSM) « ¢ ¢ « « « « « 113
Character String SUBSTR (IHECSS) ¢ ¢ o o « « =« « « « « « « 115
Arithmetic Function Package. ¢ ¢ ¢ ¢ ¢ o o« o o« « « « « « - < 116
Speed. « ¢ ¢ ¢ ¢ e e e e e e e o o o e o o e e e e o e e o « « - < 116
ACCUYACY « =« o o o o o o o o o o o o o o o o o = s o o o« o o« o« « « 116
Arguments. < < . . e e e e e e e e e e o e o o « - <117
Binary Fixed Complex ABS (IHEABU). e e o o e e + e o e o e « « o o 118
Short Float Complex ABS (IHEABW) « <« « « « « « « 120
Long Float Complex ABS (IHEABZ). . . . « + ¢ o o o o o o o « « « « 122
Real Binary Fixed MAX/MIN (ITHEMXB) <« ¢ ¢ « o o o« o « « o« 124
Real Short Float MAX/MIN (IHEMXS). . o« <« o o o o o « « « o « « « « 126
Real Long Float MAX/MIN (IHEMXL) . . . ¢ ¢ o o « « « « o « « « « - 128
Short Float Complex Division (IHEDZW). « « <« « « . . . 130
Long Float Complex Division (IHEDZZ) ¢« « ¢ « « o « « « « o« 132
Binary Fixed Complex Mult/Div (IHEMZU) « « « « « 134
Short Float Complex Mult (IHEMZW). ¢ ¢ ¢ ¢ o o « « « « « « 136
Long Float Complex Mult (IHEMZZ) . . . ¢ . ¢ o « o « o« o « « « « « 137
Real Fixed Binary Integer EXP (IHEXIB) « « « « « « « . o 138
Real short Float Integer EXP (IHEXIS). ¢ « « « « « « - « 180
Real Long Float Integer EXP (IHEXIL) . . . « o« ¢ o « o« « « « « « - 182
Z**N, Z Fixed Binary Complex (IHEXIU). ¢ ¢ o o « o« « « « o 1044
Z2**N, Z Short Float Complex (IHEXIW) ¢ o « « « « « « « « « 146
Z**N, Z Long Float Complex (IHEXIZ). . . « « « « « « o « « « « « o 148
Short Float Real General EXP (IHEXXS). . . <« ¢ <« ¢ « « « « « « « o 150
Long Float Real General EXP (IHEXXL) . . . <« ¢ ¢ ¢« o « o « « « « o 152
Short Float Complex General EXP (IHEXXW) ¢ « « « « « « - « 154
Long Float Complex General EXP (IHEXXZ). . . « « <« « « « « « « « o 156

FIGURES - VOLUME II

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

4-1.

GET and PUT Compiled Code Structure
Executable Format Scheme.
Modular Linkage through Stream-Oriented I/O .
Changes of Data Type and Form
Total Conversion Package Structure.
Arithmetic Conversion Subpackage Structure. .
Flow through Total Conversion Package
Arithmetic Operations <« . . . « . .
Arithmetic Functions.
AFUNC Level 0 ¢ ¢ ¢ « o o o o o o =
AFUNC Level 1 ¢ ¢ ¢ o o o o o o o o =
AFUNC Level 2 . . . ¢ o o o o a o o o o o o =
Mathematical Built-In Functions
Mathematical Functions with Real Arguments. .
Mathematical Functions with Complex Arguments
MFUNC Level 0 . . < ¢ ¢ o o o o o o o o o o =
MFUNC Level 1 ¢ ¢ ¢ ¢ o o o o o o « =
MFUNC Level 2 o o o o o o o o o o« «
Array IndexersS. .« « ¢ ¢ o o o o o o o o = o =
Arithmetic Array Functions.

SECTION 4 - RUNTIME SUPPORT SUMMARY

General information pertaining to the modules which support the run-
time function is presented in this section. The modules are divided
into two main services:

1. Library Interface Services (LIBINT)

2. Library Computational Services (LIBCOMP)
Individual routines (modules) are explained in detail in the section
that follows.

LIBRARY INTERFACE SERVICES (LIBINT)

The CALL/360-0S PL/I library is the primary interface between the
CALL/360-0S PL/I object code and the system at object time. Most
system macro instructions are issued via library calls; this minimizes
the compiler's dependency on stability of the structure of SVC's
(Supervisor Calls).

The Library Interface Services (LIBINT) modules perform the following
general functions:

1. Handle stream I/0 requests from the CALL/360-0S PL/I object
program by interfacing with the I/0 access methods. LIBINT
modules which perform this function are grouped into the I/O
Management Package (IOMP).

2. Handle conditions which cause interruption to the main flow
of a program at object time by interfacing with the system.
LIBINT modules which perform this function are grouped into
the Handling of Interrupts Package (HIP). The execution error
package (EXEP) is a subpackage of this package.

Note: 1In the text of this manual, all lowercase letters (rather
than initial uppercase letters followed by lowercase
letters) are used for subpackages to distinguish them from
packages.

3. Achieve dynamic management of the CALL/360-0S PL/I object program
(housekeeping, including GO TO interpretation, and allocation
and freeing of dynamic storage). LIBINT modules which perform
this function are grouped into the Management of Object Program
Package (MOPP).

I/0 MANAGEMENT PACKAGE (IOMP)

The following I/0 Management Package routines support CALL/360-0S PL/I
stream-oriented statements, options, and built-in functions:

ITHECLOSE IHEIOA IHEIOX
IHEDDI THEIOB THELDI
IHEDDO IHEIOD THELDO
IHEDDP IHEIOG IHEOPEN
IHEDIO IHEIOP IHERSET

I1/0 Record Format

Each record of a CALL/360-0S disk file is 3440 bytes long. The first
seven bytes are used for record description. The remaining bytes are
used for data.

The record description information is coded as follows:

bytes 1-4: number of bytes used in record
(includes first seven bytes)
byte 5: bit 0: =0 This is not last logical record
in file.
=1 This is last logical record in
file.
bits 1-7: zero (Not currently used.)
byte 6: bit 0: =0 Internally coded file
=1 Externally coded file
bit 1: =0 All items in record of same

arithmetic type (Note: cannot
be used if strings in record)

=1 Not all items in record of same
arithmetic type or for externally

coded file
bits 2-7: zero (Not currently used.)
byte 7: zero (Not currently used.)

Externally Coded Files

Bytes 8 to 3440 contain a stream of EBCDIC characters. The number
of characters in the file is determinable from the record length.

Internally Coded Files

If the record is of the type that all items in the record are of the
same arithmetic type, then byte 8 contains the code and the data items
follow in a continuous stream. The record count (bytes 1 to 4) is

used to determine the number of items in the record. (Notice that

this gives proper boundary alignment for all arithmetic items in the
record.) Though internal records formatted as described above are
processed correctly, CALL/360-0S PL/I internal I/O formats all intermnal
records as described below.

If all items are not of the same type, then starting in byte 8, each

record consists of a series of specifications concatenated together

(the record count is used to determine the number of specifications).

Each specification consists of at least three fields. The syntax of

a specification is:

Code{mp“caﬁonimn1.‘}
length item . . .

where:
Code is one byte in length and contains:
bits 0-4: zero

bits 4-7: =0001 if character string

=0010 if fixed item =1010 if fixed complex item

=0011 if short float item =1011 if short float com-
plex item

=0111 if long float item =1111 if long float complex
item

Replication is one byte indicating the number of fixed or float
items following it.

Length is one byte indicating the length of the character string
item following it.

In this record format, specifications are not split across records,
and boundary alignment for arithmetic items is not assured.

Input End of File Detection

On input, end-of-file can be recognized either by a record length of

8 or by bit 0 of byte 5 being set to one. Before obtaining the next
record from disk, this bit is checked. If it is one, there is no need
to read the next record because the record just processed was the last
record in the file.

Coding of Byte 6

The codes in byte 6 are set so that a test under mask of bits 0 and

1 together determines the type of record. An all ones result identifies
an externally coded file. Mixed ones and zeros denotes internally
coded, not of same type. All zeros signifies internally coded, all

of the same type.

Coding of Code Field for Internal Format

If bit 6 of the code field is one, the type ‘is arithmetic. If

arithmetic and bit 7 is one, the scale is float. Bits 5 through 7 give the
length of the floating item. If the scale is fixed, then making bit 7

a one gives the length of the fixed item. (All lengths are length - 1 -
as required for MVC command.)

Stream-Oriented I1/0

The use of stream-oriented I/0 allows a program to ignore record
boundaries and handle data fields instead. The GET and PUT statements
are used to transmit data between storage and records which exist in

a buffer. IOMP modules assume that the compiled code for the GET and
PUT statements will have the general structure of three call sets to
the library, as illustrated in Figure 4-1.

1 Initiahization Includes checking
the specified file and performing

Initialization
I tializat any necessary operations

Call Set

2. Data Specification This series of
calls performs one of the three types
of data speeification
a, List-directed
b. Data-directed
c. Edit-directed—differs from
hist-directed and data-directed 1n that
matching of data-list items with forma
list 1items 1s performed at object time
by compiled code instead of at
compile time.

Data
Spectfication
Call |

< ——— ooo

Data
Specification
Call n

3. Termination: Performed by the same
library module that performed the

3 Termination Call initiahzation.

Figure 4-1. GET and PUT Compiled Code Structure

The data-specification call-set is handled differently for edit-directed
I/0 than for data-directed or list-directed I/0. The matching of data-
list items and format-list items at object time by compiled code is
necessitated by the CALL/360-0S PL/I language specifications for edit-
directed I/0. Format items may have expressions for replication factors
and format subfields, and these expressions may be evaluated with

values read in during the same, or another, GET operation. Furthermore,
due to this use of dynamic replication factors and to the use of array
data-list items with variable bounds, there may not be a predeterminable
matching between data-list and format-list items.

To implement dynamic matching, the "executable format scheme™ is used.
Basically, this scheme calls for two location counters, one for a
compiled series of data-list item requests (the "primary code®™) and
the other for a compiled series of format-list item specifications
(the “"secondary code").

‘The executable format scheme depends upon the edit-directed I/O
directors (IHEDIA, IHEDOA, IHEDIM, IHEDOM, IHEDIB, and IHEDOB) in the
Total Conversion Package (TCP) of the library to determine and supervise
the performance of the necessary conversion, as dictated by the internal
representation of the data item (described by its data element
descriptor) and its specified external representation (described by

a format element descriptor).

Figure 4-2 illustrates the executable format scheme when there are
three data items in the data list and two format items in the format
list. Note that the number of data-list items determines the duration

of the operation of the executable format scheme. The secondary code
is reused from the beginning until all the primary code is exhausted.

Figure 4-3 describes the modular linkage through stream-oriented input
and output.

Primary Code Secondary Code Edit-Directed

QET./PL{T 1/O Directors
Initialization —

A

Request Specify Edit-directed
datum 1 format 1/0 director
transmission 1 A
13
J Total
Conversion
Package
Request \ Specify Edit-directed
datum 2 format 2 1/0O director
transmission J 2 - B
(2)
Request
datum 3
transmission

l

GET/PUT
Termination

Figure 4-2. Executable Format Scheme

IHEDDI i IHEDDO * hd IHEIOX * IHEIOB IHFI0A .
Output List- or Edat-
Data-Directed Data-Directed Edit-Directed Eg::::‘:_‘::,:":‘ Imtialization Directed GET
Input Output 1/0 Directors . a with or Initiation and
tem
without Skipping Termination
IHELDI * IHEDDP IHELDO * IHEIOP IHEERR
Perform Calcula-
List- and Data- ton of the Sub- List-Directed P":o"'f SK]:_’ W) Error
Dluecled script Values for Output unmovl\N;r Routine
nput an Array Element SYSPR
IHEDCN IHEDNC IHEERR
Character Stnng Anthmetic to Error
to Anthmetic Character String Routine
IHEVCA IHEVCS IHEVSC
Data Analysis Complex External Character Stnng
Routine to to Character
o Stnng Director String

IHEIOD

Output Data to
the Buffer Area
and Communi
cation with
CALL/360-0S

Note 1) An astensk indicates that the module can be entered directly from the compiled code
2) The edit-directed I/O directors are IHEDOB, IHEDOM, and IHEDOA They and
IHEDCN, IHEDNC, IHEVCA, IHEVCS, and IHEVSC are part of the Total Conversion
Package of the CALL/360-0S PL/I library.

Figure 4-3. Modular Linkage through Stream-Oriented I/O

HANDLING OF INTERRUPTS PACKAGE (HIP)

The Handling of Interrupts Package routines handle conditions that
cause interruption to the main flow of a program at object time. These
conditions are CALL/360-0S PL/I-defined execution error conditions

(for which it is possible to specify an on-unit).

Execution error handling is performed by the routines IHEERR and IHEERN.
These two routines and the routine IHEDUM make up the execution error
package (EXEP). EXEP and the routine IHEONREV constitute HIP.

Control is passed to IHEERR as the result of an execution error. If
IHEERR determines that an error message must be printed, it calls
IHEERN to do the printing.

For CALL/360-0S PL/I-defined conditions, the following main sequence
of events takes place in IHEERR:

1. Recognize the condition.
2. If condition disabled, return to interrupted program.
3. If there is an on-unit, generate code to call the on-unit.

If there is no on-unit, take standard system action for the
condition and return to the interrupted object code or terminate.

To carry out these operations, IHEERR depends on information passed

when the actual interrupt occurs, along with information set by the
compiled code in the DSA for each procedure. The information passed
when the actual interrupt occurs is contained in the user's
communications area. The information set by the compiled code is
contained in a fixed portion of the DSA for each procedure. The
compiled code prologue allocates space in the DSA for every ON statement
appearing in the block, and for each ON-condition which is disabled
within the block. Standard system actions are performed for the enabled
conditions which have no on-units associated with them.

For errors in the library modules, an error-code is set in the library
communications area (LCA). This error code is used by IHEERR to
determine what action is to be taken.

MANAGEMENT OF OBJECT PROGRAM PACKAGE (MOPP)

The Management of Object Program Package (MOPP) is concerned with the
dynamic management of a CALL/360-0S PL/I program. The general
housekeeping requirements are performed, along with the allocation,
freeing, and control of dynamic storage.

The requirements for block housekeeping are as follows.

1. Proloques and Epiloques. Proloques and epilogues are the)
routines executed on entry to and exit from a procedure or begin
block. The MOPP modules support certain sections of the prologue
and epilogue which are common to all prologues and epilogues.
These common functions are:

a. To preserve the environment of the invoking block.
b. To obtain AUTOMATIC storage for the block.

c. To provide chaining mechanisms to enable the program's
progress to be traced.

The epilogue functions performed by the GO TO Interpreter
(IHESAF) release storage for the block and recover the
environments of the invoking block before returning control
to it. Since there are two types of block, a means of
identifying the storage associated with each one is provided.

2. Treatment of GO TO. In CALL/360-0S PL/I, a GO TO statement
involves not only the transfer of control to a particular label
in a block, but also the termination of contained blocks.
Therefore, both a return address and a means of identifying
the AUTOMATIC storage associated with the block to be made
current are required. A pointer address constant area for each
block is required. The logic for interpreting GO TO statements,
in order to perform these housekeeping functions, is contained
in IHESAF.

3. AUTOMATIC Variables. A special type of AUTOMATIC storage area
is necessary for variables whose extents are not known at compile
time. The storage obtained for a particular block must be
associated with that block for epilogue purposes.

LIBRARY COMPUTATIONAL SERVICES (LIBCOMP)

The Library Computational Services (LIBCOMP) modules operate on data
and shape it to the user's requirements.

A library computational services module exists for any one of the
following reasons:

1. To support one of the built-in function names listed under
"Mathematical Built-In Functions®™ in Appendix A of the
CALL/360-0S PL/I Lanquage Reference Manual.

2. To support one of the built-in function names listed under
"Arithmetic Built-In Functions®" in Appendix A of the
CALL/360-0S PL/I1I Langquage Reference Manual.

3. To support often-used arithmetic operations.

4. To support one of the built-in function names listed under
"String Functions" in Appendix A of the CALL/360-0S PL/1
Language Reference Manual.

5. To support often-used string operations.

6. To support one of the built-in function names listed under
"Generic Functions for Manipulation of Arrays"™ in Appendix A
of the CALL/360-0S PL/I Lanquage Reference Manual.

7. To support data representation conversion.
8. To perform services for other LIBCOMP routines.
The LIBCOMP modules can be organized in two groups:

Conversion
Total Conversion Package (TCP)
--includes arithmetic conversion package (ACP)
String Manipulation Package (SIMP)

Function Support
Arithmetic Function Package (AFUNC)
Mathematical Function Package (MFUNC)
Aggregate Manipulation Package (AMP)

Note: In text of this manual, all lowercase letters (rather than
initial uppercase letters followed by lowercase letters) are used
for subpackages to distinguish them from packages.

Some built-in function names are supported by in-line code generation.
Built-in function names in this category are:

SIGN HBOUND

FLOOR DIM

CEIL CHAR

TRUNC COMPLEX

MOD IMAG

CONJ REAL

LBOUND ABS(real argument)

TOTAL CONVERSION PACKAGE (TCP)

CALL/360-0S PL/I restricts the user in selecting the form of
representation of his data, both on the external medium and in storage
internally. However, considerable flexibility is permitted in

specifying changes of data type and form. The Total Conversion Package
controls editing and data conversion. It is designed to implement

the full set of editing and conversion functions. The complete language
range is specified in Figure 4-4, except for complex items, for which
the real and imaginary parts are treated separately.

TO
FROM Internal Data Type Output Format
FIX| FLT| CS F E A
FI1X X X X X X X
temal - Jprl x| x| x| x| x| x
Data
S X X X X X X
(F X X X X X
Format { E X X X X X
Items
A X X X X

Figure 4-4. Changes of Data Type and Form

To avoid unnecessary duplication of code, use is made of standard
intermediate forms. This reduces the number of library routines
required to cover logical converstions to less than 25. All the
routines contained within the Total Conversion Package are called by
means of the CALL/360-0S PL/I standard calling sequence.

All data conversions are handled by the Total Conversion Package.
The routines in this package differ from the routines in the other
four LIBCOMP packages in three major ways:

1.

The TCP routines do not exist to support built-in functions
specified in Appendix A of the CALL/360-0S PL/I Lanquage Reference
Manual, but rather to implement the rule that conversion should

be possible from any one CALL/360-0S PL/I data representation to
any other.

The TCP routines do not return a new value; rather, they return
a new representation of the same value they were presented with
as an argument.

Some of the TCP routines function as directors. Given the input
representation and the desired returned representation, a
director routine is incapable of performing this conversion
within itself. However, it does supervise the linkage to other
TCP routines (including other directors) which can perform this
conversion. This linkage to other routines is transparent to
the user.

The TCP routines can be organized in the following functional groups:

1.
2.
3.
4.
5.
6.

Edit-directed 1I/0 directors

Type conversion directors

Mode conversion director

String conversion routines

Arithmetic conversion routines and director
Constant analysis routine

The edit-directed I/0 directors supervise the conversion that is
necessary during edit-directed stream I/0. On input, a character-
string in the data stream (which is described by a format item in the
format list of the GET statement) must be converted to an internal
data representation (which is described by the attributes associated
through a DED with the identifier which appears in the data list of
the GET statement). On output, the process is reversed.

The director used for a particular I/O operation depends on the type

of format item being used and whether the operation is input or output.
There are three general types of format items: real arithemtic, complex
arithmetic, and string.

The TCP routines which are directors for real arithmetic format items are:

System Name Format Item Type
IHEDIAA Input with F-format item
IHEDIAB Input with E-format item
IHEDOAA Output with F-format item
TIHEDOAB Output with E-format item

The TCP routines which are directors for complex arithmetic format
items are:

System Name Format Item Type
IHEDIMA Input with C-format item
IHEDOMA output with C-format item

A C-format item is two real arithmetic format items, the first for
the real part and the second for the imaginary part. They need not
be of the same type.

The TCP routines which are directors for string format items are:

System Name Format Item Type
IHEDIBA Input with A-format item
IHEDOBA Output with A-format item (field-

width specified)

IHEDOBB Output with A-format item (no field-
width specified)

The type conversion directors supervise conversion between string and
arithmetic data. These directors have an application during list-
directed and data-directed I/0 operations where character-string
representations of arithmetic and string constants are converted to
internal data representations. The TCP routines which perform type
conversion are:

System Name Conversion Function
IHEDCNA From a character-string representation

(which includes a character representation
of a valid arithmetic constant or complex
expression) to an arithmetic representation
(of specified mode, scale, and precision)

IHEDNCA From an arithmetic source (of specified
mode, scale, and precision) to a character
string

10

The mode conversion director handles complex arithmetic data.

System Name Function

For a coded complex representation, zero
IHEUPAA the real part and return a pointer to
the imaginary part

For a coded complex representation, return
IHEUPAB a pointer to the imaginary part and/or
zero the imaginary part

The string conversion routines perform representation conversion from
one string type to another string type. There is one string type from
the point of view of these routines, fixed-length character-string (FLC).

There are two string conversion routines:

System Name Conversion Function
IHEVCSA Complex character to internal string
IHEVSCA Character-string assignment (from FLC)

The arithmetic conversion routines perform all conversions where both
the input representation and the returned representation are arithmetic.
An arithmetic representation includes not only the intermal arithmetic
representations (defined in the discussions of MFUNC and AFUNC), but
also character strings in the data stream that are arithmetic
representations by virtue of being in the form of arithmetic constants
under list-directed and data-directed data transmission, or by virtue
of being paired with arithmetic format elements under edit-directed
data transmission.

The Arithmetic Conversion Director (IHEDMA) performs the function of
director for a given conversion. IHEDMA sets up a sequence of calls
to two or three other arithmetic conversion routines. At the end of
this sequence, the desired arithmetic conversion will have been
performed. However, this sequence is transparent to the user and
IHEDMA appears to return the returned representation.

The user, compiler, or library cannot invoke any of the other arithmetic
conversion modules directly; instead they must be invoked indirectly
through director entry point IHEDMAA. The functions of these modules
are not specified here, but each is described in the next section.

The constant analysis routine scans the character representation of
an arithmetic constant, determines its mode, scale, and precision,
and then creates a DED that reflects these attributes.

System Name Function
IHEVCAA Create a DED for an arithmetic constant

Structure of Total Conversion Package

To perform a change from a source data item to a target data item may
involve a succession of steps and the use of several individual library
routines within the Total Conversion Package. The structure of the
package is shown in Fiqure 4-5.

11

Compiled Code

[

C-Format o= Two directors at thus level .

Input/Output Directors
(IHEDIM, IHEDOM)

F/E- and A-Format <= Four directors at this level.

Input/Output Directors

(IHEDIA, THEDIB,
IHEDOA, IHEDOB)

Two directors at this level, s Character String/
Arnthmetic Directors

(IHEDCN, IHEDNC)

Arithmetic
Conversion Director
(IHEDMA)

T

Arnthmetic
Conversion Routines String
(IHEVFA, IHEVFB, IHEVFC, Conversion Routines
IHEVFD, IHEVFE, IHEVPA, (IHEVCS, IHEVSC)
IHEVPB, IHEVPC, IHEVPE)

Figure 4-5. Total Conversion Package Structure

In association with each individual step, knowledge of the attributes
must be available for the source fields, target fields, or both. The
required information is provided in the calling sequences with each
data item, by means of the FED or DED.

In certain cases, when the form of the data on the external medium
is not known until object time, it is necessary for the library to
generate dynamically the control information it needs in this
interpretive scheme.

There are director routines at four levels, as illustrated by Figure 4-5.
1. Complex Format Directors.
2. Input/Output Format Directors.
3. String to Arithmetic and Arithmetic to String Directors.
4. Arithmetic Conversion Director.
These routines are used for two main purposes:

1. The matching of source element with target element, which may
not be known at compile time.

2. The controlling of the flow at object time by means of
interpretive information passed to them.

The latter function is best illustrated by the Arithmetic Conversion

Director (IHEDMA); a single call to IHEDMA determines the flow through
a subpackage of nine arithmetic conversion routines.

12

Each group of directors can be called directly from compiled code or
other library modules, and any director can call any other below it
in the structure. Further details are provided in the explanations
of the individual routines in the following section.

Conversions - Type Arithmetic

The library subpackage for arithmetic type conversions carries out
editing and conversion activity for all source fields of type arithmetic
that have target fields also of type arithmetic. Included in the
scheme are format items and constants, which are representations on
the external medium of arithmetic type data. The flow control through
this subpackage is achieved by the Arithmetic Conversion Director.

The method employed is to use an intermediate form of representation,
according to the form of the source data, and to relate this
intermediate form to the target data, either by direct conversion or
by use of a second intermediate form. The latter case implies radix
change. The two intermediate forms in use are referred to as packed
decimal intermediate (or decimal intermediate) and float intermediate.
In machine terms, the first is 16 digits and a sign together with a
one-word scale factor (SWCF) in binary, representing powers of ten;

the second is the standard long floating-point internal representation.
The logical flow through the package is best indicated by Figure 4-6.

Character String Character String Fixed Floating Source
Paired with Paired with Binary Binary Representatives

F-FormatElement E-Format Element i l
|
! ! IHEDMA : : Anthmetc Conversion
: : ' 1 Director
Character String Character String Fixed Ho*nng Source
Paired with Paired with Binary Binary Representatives
F-FormatElement E-Format Element
r - - el e |
| SOURCE |
! IHEVPE IHEV FD IHEVFE ROUTINES |
! . |
]
Tl ______ A I
r=-— —=- - — "
1
! |
HEVPA H\‘
Library Packed | ' Library Float Intermediate
Decimal intermediate Intermediate Representatives
(PDI) | | (FLI)
IHEVFA
! !
| INTERMEDIATE |
L _ ROUTINES_ _ |
- - =4 = N e N |

| TARGET :
| r IHEVPB J L IHEVPC IHEVFB IHEVFC ROUTINES
| |

Character String Character String Fixed Foating Target
Paired with Paired with Binary Binary Representatives
F-Format Element E-Format Element

Note In addition, module IHEVTB 1s used by radix conversion routines IHEVPA and IHEVFA.

Figure 4-6. Arithmetic Conversion Subpackage Structure

The Arithmetic Conversion Director links the routines required for
a particular arithmetic conversion. It is called either by compiled
code directly or by other director routines.

13

The flag bytes in the source and target DED's are interrogated to
determine which routines are required for the current conversion and
their order of execution. The library communications area (LCA) is
used to record information required by successive modules, as follows:

WBR1 Address of entry point of second routine.
WBR2 Address of entry point of third routine (if required).
WRCD Target information.

Control is then passed by the Arithmetic Conversion Director to the
first routine in the chain. The first transfers to the second, and
so on, until the conversion is complete. The last routine returns
to the program which called the Arithmetic Conversion Director.

All the routines which can be first in the chain set up by Arithmetic
Conversion Director use the source parameters passed to it. With one
exception, the first conversion is always to the intermediate form

of the same radix as the source, and this result is stored in LCA in
the slot named WINT for binary radix, and in slots WINT and WSFC for
decimal radix. (The exception is converting from a fixed-point binary
to an F/E-format data item, in which case the intermediate form is
packed decimal direct.)

Three routines in the arithmetic conversion package deal with data
on the external medium to handle the output of F- and E-format items
from packed decimal intermediate, and conversion from F- or E-format
items to packed decimal intermediate. In each case, a corresponding
format element descriptor is required, and its address is contained
in the LCA slot WFED.

There are nine routines in the arithmetic conversion package (ACP).

To perform one arithmetic conversion, three or four of these routines
are executed in a sequence, called the ACP sequence. The first routine
in the sequence is always the Arithmetic Conversion Director (IHEDMA).
The only way a user can call the ACP to perform an arithmetic conversion
is by calling IHEDMA. The function of IHEDMA is to choose which of

the other routines in the ACP will be the second, third, and (possibly)
fourth routines in the ACP sequence.

The user need not know which routines are used as the second, third,

or fourth routines, or even that there are other routines in the ACP
beside IHEDMA. From the user's point of view, he need only call IHEDMA
with a list of four parameters (the source address, the source
descriptor address, the target address, and the target descriptor
address), and the target representation desired by the user will be
available in the parameter list target address when control is returned
to the user.

The source representations recognized by the ACP and the target
representations that it can produce are shown in Figure 4-6. The
conversion from any one of the representations in the source column
to any of the representations in the target column is performed (from
the user's viewpoint) by simply calling one routine--IHEDMA.

The conversion logic flow is shown in Figure 4-7. Each box indicates
the entry point name(s) and the library level assigned to the module,
together with a brief description of the function performed. The
arrows denote the direction of logic flow. Segments connected by dual
arrows indicate that program control returns to the calling module

upon completion of the function for which the called module was invoked.
The invocation direction is downward. The return direction, if any,

is upward.

14

St

1HEDIMA

LEVEL 4

External C-Format
Data to an Internal
Data Type

e

!

IHEDIAA

LEVEL 3

!

+

IHEDIAB

IHEIOGA

LEVEL 3

LEVILO

b Format Data to
an Internal Data
Tvpe

&

E Format Data
to an Internal
Data I'ype

Venfy a Record
1/0 Request

¥

$

3

IHEV(CAA

LEVEL O

IHEVCSA

IHEVCSB

LEVEL 3

LEVEL 3

Data Analvsis

Complex Character
10 Internal String

Complex Character
to Coded Complex
Only

||

IHEIOGA IHEVC AA IHEVCSA
y IHEDNCA IHEUPAB
\ [
- LEVEL O LEVEL O LEVEL O LEVEL2 LEVILO
enfy a Record Data Analysis Complex Character To Raturn A(Ilmag)
1/0 Request to Internal String ::{‘:mﬁgg:g;f: Part it Switch 1s On
Mode, and Precision- and Zero Imag Part
to a Character String if Swatch s Off
IHEDMAA IHEUP B -
LEVEL O LEVEL O LEVEL-0

To Set Intermediate
Fow to Convert

from One Anithmetic
Data Type to Another

To Return A(Imag)
Part 1f Switch 1s On
and Zero Imag Part
1f Switch s Off

Assign Character
String to Character
String.

!

!

v

IHEVPEA

IHEVFDA

IHEVEEA

LEVEL O

LEVEL-Q

LEYEL-Q

F/E-Format Item
to Packed Decimal

Fixed Binarv Integer
with Scale Factor to
Long Floating Point

Floating-Point Num-
ber with Specified
Precision to Long
Floating Point

|

!

+

IHEVEBA

IHEVECA

Intermediate
IHEVPCA IHEVPBA IHEVPAA IHEVEAA
LEVELO LEVELO LLVELO LEVEL O

Packed Decimal
Intermediate to
t Format Item

Packed Decimal
Intermediate to
F Format Item

Packed Decimal In-
termediate to Long

LEVEL O

LEVEL O

Long Floating Point
to Packed Decimal

Long Floating Point
to Fixed-Point B
nary with Precision

Long Floating Point
to Floating Point wath

|

'

IHE VEBA

LEVEL 0

Long Hoating Point
to bixed Point Ba

Hloating Point Intermediate oo Seale [Specified Precision
IHEVECA IHEVPBA IHEVPCA
LEVELQ LEVEL-0 LEVEL-Q

Long Floating-Point
to Floating-Point

Packed Decimal
Intermediate to

Packed Decimal
Intermediate to

Figure 4-7.

nary with Precision with Specified
and Scale Precision b tormat ftem b Format Item
¥ 3 1 i
v
Return to Caller of
IHEDMAA

Flow through

Total Conversion Package (Page 1 of

4)

91

IHEDIBA

LEVEL-3

A Format Data to
an Internal Data
Type

e oK
IHEIOGA IHEDCNA
LEVEL-0 LEVEL 2 LEVEL-O
Venfy a Record Charact:t Stnng to Assign Character
I/O Request an Anthmetic Target Stringto Character
/ 9 with Specified Scale, n gt:)mga
Mode, and Precision
IHEDMAA IHEUPAA IHEUPAB
LEVEL-0 LEVEL-O _LEVEL-Q

To Set Intermodular
Flow to Convert from
One Arithmetic Data
Type to Another

To Zero the Real

Part of Complex Item
and Return A(Imag)
Part

To Return A(Imag)
Part if Switch 1s On,
and Zero Imag Part
if Swatch 1s Off

!

¥

IHEVPEA

IHEVFDA

IHEVFEA

LEVEL-0

LEVEL-0

LEVEL-0

F/E-Format Item to
Packed Decimal

Fixed Binary Integer
with Scale Factor to

Floating-Point Num-
ber with Specified
Precision to Long

+

3

Intermediate Long Floating-Point Floating-Point
IHEVPCA HEVERA IHEVPAA IHEVEAA
LEVEL-0 - LEVEL-Q LEVEL-Q

Packed Decimal
Intermediate to
E-Format Item

Packed Decimal
Intermediate to
F-Format Item

IHEVFBA

Packed Decimal
Intermediate to Long

Long Floating-Point
to Packed Decimal

LEVEL-Q

IHEVFCA

LEVEL-Q

Long Floating-Point
to Fixed-Point Binary

Long Floating-Point
to Floating-Point
with Specified Pre-

Floating-Point Intermediate “}";:' Precision and
€
IHEVFBA IHEVFCA IHEVPBA IHEVPCA
LEVEL-0 LEVEL-O LEVEL-Q LEVEL-0

Long Floating-Point
to Fixed-Point Bi-
nary with Precision

and Scale

Long Floating-Point
to Floating-Point with
Specified Precision

Packed Decimal
Intermediate to
b Lormat Item

Packed Decimal
Intermediate to
E-Format Item

¥

+

+

cision

Figure 4-7.

Return to Caller of
IHEDMAA

Flow through Total Conversion Package (Page 2 of #)

LT

IHEDOMA

LEVEL-

Internal to kxternal
C-Format

:

IHEDOA 7

LEVEL 3

Internal to External
F Format

!

Internal to Fxternal
F-Format

3

and Zero Imag Part
1t Swatch 1s Off

A IHEDOA e IHEUPAB IHEVCAA IHEVCSA IHEVCSB
-~ LEVEL O LEVFL-Q LEVEL-3 LEVEL-3

LEVFL-3 To Return A (Imag) Complex Character

Part 1f Switch 15 On, Data Analyss ffﬂ'.'l‘.:f'é‘::.’,fé" to Icyoded Complex

[

1

<
4
b
IHEHIODP IHEIX NA f
LEVEL O LFVEL2 IHEUPAB IHEDNCA
To Space Data in The Character Strng to an LEVEL-0 LEVEL-2
Recorded Buffer Anthmetic Target To Return A (Imag) Anthmenc Source of
with Specified Scale, Part if Swatch 1s On, Specified Scale, Mode,
Mode, and Precision and Zero Imag. Part and Precision—to a
1f Swatch 1s Off Character String
IHEUPAA IHEUPAB IHEDM A IHEUPAB IHEVSCA
LEVEL O LEVEL 0 LEVEL-0 LEVEL-0 LEVEL-0

To Zero the Real
Part of Complex ltem
and Return A(Imag)
Part

To Return A (Imag)
Part 1f Switch is On,
and Zero Imag Part
if Swatch 1s Off

To Set Intermodular

Flow to Convert from
One Arithmetic Data
Type to Another

J'; ¥
IHEVPEA IHEVFDA IHEV FEA
LEVEL 0 LEVEL-0 LEVEL-Q

F/b Format Item to
Packed Decimal
Intermediate

Fixed Binary Integer
with Scale Factor to
Long HFoating-Point

Hoating-Point Num-
ber with Specified
Precision to Long
Hoating-Point

To Return A (Imag)
Part 1f Switch s On,
and Zero Imag. Part
1f Switch s Off

L

4

3

Assng'n Character String
to Character Stnng

IHFVPCA

LEVEL O

IHEVPBA

IHFEVPAA

IHEVEFAA

LEVEL O

LEVEL-O

Packed Decimal Inter-

mediate to E Format

Packed Deamal Inter
medute to k- Format

Packed Decimal Inter-
mediate to Long

LEVFL-0

Long Floating-Point
to Packed Decimal

ftem Item Hoating-lPomt Interme drate
IHI VI BA IHEVECA IHE VPBA
LEVILO LEVEIL-0 LEVEL-0

{

]

HEVFBA

IHEVFCA

LEVEL-0

LEVEL-0

Long Floaung-Point
to Fixed-Point Binary
with Precision and

Long Floating-Point
to Floating-Point with
Specified Precision

Scale
L

Long Foating-Pomt
to bixed Point Binary
with Preasion and

Long Floating-Point
to Hoating-Point with
Speaified Precision

Packed Decimal Inter-
mediate to k- Format

Sale
P

Item
'

3

IHEVPCA

LEVEL-0

Packed Decimal In-
termediate to E-
Format ltem

¥

Figure 4-7.

v
Return to Caller of
THEDAMAA

Flow through Total Conversion Package (Page 3 of 4)

IHE DOBA

LEVIL 3

Internal Datato bx
ternal A(w) ornat

|

IHE DOBB
LEVEL 3

Internal Datato bx
ternal A Format

]

IHEIODP. IHEDNC A IHEVSCA
LEVEL O LEVEL 2 LEVEL O

To Space Data in
the Recorded Buffer

Anthmetic Source
of Specified Scale,
Mode, and Preci-
sion-to a Character
Stnng

Assign Character
String to Character
String

3

1HEDMAA
LEVELO

To Set Intermodular
How to Convert from
One Anthmetc Data

Tvpe to Another

[

T

j!

LEVELO

IHEVSLA

To Return A(Imag)
Part 1f Switch 1s On
and Zero Imag Part
if Switch s Off

LEVEL O

Assign Character
String to Charac ter
String

F/E-Format ltem to
Packed Decimal

Fixed Binary Integer
with Scale Factor to

P 3 P 3
IHEVPEA IHEVFDA IHEVFEA
LEVEL O LEVELO LEVELOQ

Floating-Point Num
ber with Specified

Intermediate Long Floating Point Precision to Long
Floating-Point
IHEVPCA IHEVPBA IHEVPAA IHEVEAA IHEVEBA IHEVECA
LEVEL-Q LEVELO LLVELQ LEVEL Q LEVEL 0 LEVEL-Q

Packed Decimal
Intermedate to
I Tormat Item

Packed Decimal
Intermediate to
1 Tormat Item

Packed Decimal In
termediate to Long
Hoating Point

'y

IHEVIBA

IHEVEC A

LEVLL-O

LEVEL O

Long Hoaung-Point
to Fixed-Point Binarv
with Precision and
Scale

Long Floating Point
to Hloating Point
with Specified Pre
asion

1 ong Mloating Point
to Packed Decimal
Intermediate

Long Hoating Point
to hixed Point Bi
nary with Precision
and Scale

Long Floating-Point
to Hoating-Point
with Specified
Precision

—

¥

IHE VPBA

IHEVPC A

LLVELOQ

LEVEL O

Packed Decimal
Intermediate to
F Format Item

Packed Deamal
Intermediate to
b Format ltem

¥

¥

i

Figure 4-7.

Flow through Total Conversion Package (Page 4 of 4)

v

Return to Caller ot
THEDMAY

STRING MANIPULATION PACKAGE (SIMP)

The String Manipulation Package contains modules for handling character
strings. The modules are listed below.

CALL/360-0S PL/I

Operation Character String

Compare IHECSC
Assign IHECSM
Character String SUBSTR IHECSS

The operation of comparison of two strings is supported by IHECSC.
Two strings are compared for equality and a condition code returned,
differentiating the lower-valued string from the higher-valued one.

The general design of the String Manipulation Package assumes that
complete evaluation of the rightmost side of an assignment statement
occurs before the assignment. There is usually an intermediate stage,
in which a partial result is placed in a field acting as a temporary
result field.

18

When an aggregate of strings is processed, indexing is handled by
compiled code, which passes the individual string elements to the
required library routine.

Some concepts that are basic to string manipulation in CALL/360-0S
PL/I follow:

1. Character strings are allowed.

2. Internal to IBM System/360 computers, character strings are
always byte—-aligned. One byte represents one character in the
string. There is one type of character string.

Fixed Length - The number of characters in the string never
varies, and the field width (in bytes) that the string occupies
is equal to the number of characters in the string at all times.

3. The description of the string representation itself is stored
in a data element descriptor (DED) for the string.

4. The description of the field the string occupies is stored in
a string dope vector (SDV) for the string. Information contained
in the SDV includes:

a. The byte address of the beginning of the string
b. The maximum length of the string, m

Linkage to the string routines is by external and internal calling
sequences. String information is passed to the library by means of
string dope vectors. All string lengths supplied in string dope vectors
are assumed to be valid and nonnegative. Certain length fields in

the string dope vector are ignored by these string routines and need
not be completed by the caller.

The CALL/360-0S PL/I Lanquage Reference Manual lists string built-in
function names under "String Functions" in Appendix A.

Function Name Function

CHAR Converts an argument to a character
string of specified length.

SUBSTR(S,i,]j) Creates a substring of string S, starting
at position i and extending to j position
(to position i+j-1).

CHAR and SUBSTR are more efficiently implemented by compiled code than
by calls to the 1library.

ARITHMETIC FUNCTION PACKAGE (AFUNC)

Library arithmetic routines support all arithmetic generic functions
and operations for which the compiler does not produce in-line code.
Linkage between the object code and the library arithmetic routines

is performed by means of external (all functions) and internal (all

operators) standard calling sequences.

Where the functions and operators are applied to aggregates of data,
indexing is handled by compiled code which passes the individual
elements to the required library routine. Where evaluation or
conversion of an argument is necessary, it is done before the library
is called.

19

Fixed-point data often require data element descriptors (DED) to convey
information about precision. The calling sequence sets up addresses

of arguments in a standard order with each fixed-point item followed by
its DED. If the DED is not needed by a routine, it need not be set up.

Floating-point arguments are assumed to be normalized in aligned full-
word or doubleword fields for short or long precision respectively;
the results returned are similarly normalized.

Complex arguments are assumed to have real and imaginary parts stored

next to each other in that order, so that the address of a real part
suffices for both of them. Both parts are also covered by the same DED.

Definitions

Some of the definitions required to understand arithmetic function
evaluation in CALL/360-0S PL/I are discussed below:

1. There are four internal representations of floating-point data:

a. Real short float
b. Real long float
c. Complex short float
d. complex long float

These representations are defined under "Mathematical Function
Package (MFUNC)."

2. There two fixed-point data representations:

a. Real fixed
b. Complex fixed

These representations are defined as follows:

Real fixed representations occupy four bytes as shown:

o —— e
! 2]

0 31

The binary digits are right-adjusted, and the four-byte field

is always word-aligned. Halfword (2 bytes) real fixed binary

representation is allowed in the IBM System/360, but it is not
supported by any of the LIBCOMP routines.

complex fixed representations are two real fixed-point
representations, one representing the real part and one
representing the complex part. The two real representations
must have the same precision and scale factor. They must be
contiguous in storage and the real part must precede the
imaginary part; thus, a pointer to the real part is needed to
obtain both parts.

3. The description of an arithmetic representation is stored in
a data element descriptor (DED) for the arithmetic datum. The
attributes specified in the DED are:

a. Real or complex (mode).

b. Fixed or float (scale).

20

c. Short or long (applicable to floating-point representations
only; fixed-point representations are always short, that
is, four bytes long).

d. Precision (p) (which is the total number of digits in a
fixed-point representation and the total number of digits
in the fractional part of a floating-point representation).

e. Scale factor (q) (which is applicable only to fixed-point

representations and is the number of digits to the right
of the implied radix point).

4. In functions where two arithmetic representations are involved
and conversion to the highest characteristics is specified,
the following attributes are the highest of their pair:

a. Complex (over real)
b. Float (over fixed)

Module Description

The CALL/360-0S PL/I Language Reference Manual lists the following

built-in function names under "Arithmetic Built-In Functions"™ in

Appendix A.

Function Name

SIGN (x)

FLOOR (x)

CEIL(x)

TRUNC (x)

MOD (x1, x2)

CONJ (2z)

COMPLEX (x,y)

REAL(z)

Arquments and Function Value

Given a real argument, returns an integer
indicating the sign of the argument (+1
for positive, -1 for negative, and 0 for
zero).

Given a real argument, returns the largest
of the group of integers not exceeding the
argument.

Given a real argument, returns the smallest
of the group of integers not exceeded by
the argument.

Given a real argument, returns the integer
part (FLOOR(x) for arguments > 0, CEIL(x)
for arguments < 0).

Given two real arguments, returns the
positive remainder left after obtaining
the integer quotient (x1/x2). The scale
is the highest characteristic of x1 and
x2.

Given a complex argument, returns the
conjugate of the argument.

Mode conversion. Given two real arguments,
returns a complex representation. The scale
and precision of the complex representation
are the highest characteristics of x and

Y-

Mode conversion. Given a complex argument,

returns the real part. The scale and
precision are unchanged.

21

The
the

Function Name Arquments and Function Value

IMAG(2) Mode conversion. Given a complex argument,
returns the imaginary part. The scale and
precision are unchanged.

ABS(t) Given a real argument, returns its positive
value. Given a complex argument (for
example, x+yI), returns its positive
magnitude:

(\/x2 + y2)

The mode and scale of the result are the
same as for the argument.

MAX(x1,x2,...,Xn) Given a list of real arguments, returns
the value of the maximum argument. The
scale is the highest characteristic of all
the arguments in the 1list.

MIN(x1,x2,...,Xn) Same as for MAX, except returns the value
of the minimum argument.

following built-in functions are more efficiently supported by
compiled code than by a library call:

SIGN CONJ

FLOOR COMPLEX

CEIL REAL

TRUNC IMAG

MOD ABS(real argument)

The following built-in functions in the area of arithmetic function
evaluation are supported by AFUNC:

ABS(complex argument)
MAX
MIN

These built-in functions may specify any expression as an argument.
However, the AFUNC modules which support these built-in functions
accept only arithmetic scalar values having the following

characteristics:
1. Real fixed arguments must be stored in four bytes, word-aligned,
with 0 < p < 9.
2. Floating argquments can be short or long, and must be normalized
(same as argquments for MFUNC modules).
3. Complex arguments have both parts stored contiguously and the

same DED describes both parts.

The compiler is responsible for:

22

1.

Evaluating the expression argument presented by the source
program's built-in function and converting the resulting scalar
value to one of the representations that will be accepted by
the AFUNC module.

Choosing, from the several entry points which support a given

built-in function, the proper AFUNC module entry point to invoke.

This choice is strictly dependent on the representation of the
value of the input argument (s).

Following is a list of the AFUNC entry points which support ABS, MAX,
The built-in function ABS is supported in AFUNC only for
The built-in functions MAX and MIN are supported

and

complex arqguments.

Constructing a list of arguments to present to the AFUNC module.
In general, if B is the number of arguments presented by the
built-in function, the list presented to AFUNC module will

contain 2B+2 arguments if DED is needed, or 1B+1 if no DED is

needed.

MIN.

in AFUNC for real arguments only.

Function Name

ABS(z)

MAX(x1,X2,...,Xn)

MIN(x1,X2,...,XN)

Entry Point

IHEABGO
IHEABTO
IHEABMO

IHEMXFO
IHEMXSO
THEMXLO

THEMNFO
IHEMNSO
IHEMNLO

Arqument Attributes

Fixed (complex)
Short float (complex)
Long float (complex)

Fixed (real)
Short float (real)
Long float (real)

Fixed (real)
Short float (real)
Long float (real)

In addition to supporting the built-in functions listed in the
CALL/360-0S PL/I lanquage Reference Manual, AFUNC supports four

often-used arithmetic operations.

1.
2.
3.

4.

Integer exponentiation }

General exponentiation

Multiplication }

Division

They are:

For both real and
complex operands

For complex operands only

Integer exponentiation, general exponentiation, and multiplication
and division are supported as follows:

Operation

Integer exponentiation
(t*#*n)

General exponentiation
(t1*%t2)

Multiplication
(z1%22)

Division
(z1/22)

System Name

IHEXIFI
IHEXIST
IHEXILI

IHEXIGI
IHEXITI
IHEXIMI

IHEXISF
IHEXILF
IHEXITF
IHEXIMF

IHEMZGO
IHEMZTO
IHEMZMO

IHEDZGO
IHEDZTO
IHEDZMO

Arqument Attributes

Real fixed
Real short float
Real long float

complex fixed
Complex short float
Complex long float

Real short (float)
Real long (float)
Complex short (float)
Complex long (float)

Fixed binary (complex)
Short float (complex)
Long float (complex)

Fixed bonary (complex)
Short float (complex)
Long float (complex)

23

Summary

The library arithmetic modules are summarized in Figqures 4-8 and 4-9.

—— o e e . . . S —————————— T ————~ —————— — ——— — —————

Integer exponentiation: x#*#n |
General exponentiation: x**y |
shift-and-assign, shift-and- |

l

Multiplication/Division: |
z1%z2, z1/z2 |
Multiplication: z1%z2 |
Division: z1/z2 |
Integer exponentiation: z*#*n |
General exponentiation: zl#*#*z2|

Binary | Short
Fixed | Float
1 Operations

IHEXIB IHEXIS

|

- | IHEXXS
|
I

|

l -

| IHEMZW
-— | IHEDZW

| IHEXIW

| IHEXXW

IHEXIL

IHEDZ?Z
IHEXIZ
THEXXZ

- —— -— - e o o — — ——————————————— o — — o —————— — o — — =

Figure 4-8. Arithmetic Operations

o . ot o

| IHEMXS |
| -—=

r
i | Binary
| Function | Fixed
|

| R
|

| MAX, MIN | IHEMXB
| ADD | -=

|

|

Complex Arguments

| ADD I -=

| MULTIPLY | IHEMZU
| DIVIDE | IHEMZU
1 ABS | IHEABU

Figure 4-9. Arithmetic Functions

| -
| IHEMZW |
| IHEDZW |
{ IHEABW |

Figures 4-10 through 4-12 show the modular interaction within the

library and indicate the modular 1

24

evel assignments.

IHEABW(SFLC) IHEABZ(LFLC)
LEVEL-0 LEVEL-0
ABTO-ABS(z) ABMO-ABS(z)
IHEMXL(LFLR) IHEMXS(SFLR)
IHEABU(FIXC) IHEDZW(SFLC) IHEDZZ(LFLC) IHEMXB(FIXR) LEVEL.0 LEVEL-0
LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0 MXLO-MAX(X ...X)| | MXSO-MAX(X ...X)
ABGO-ABS(2z) DZTO-DIV(z,/z,) DZMO-DIV(z, /2,) MXFO-MAX(X,...X) MNLo-MlN(xl...xn'} MNSO-MIN(X ... X
lHihéég(LFéxc) IHEMZW(SFLC) IHEMZZ(LFLC) IHEXIB(FIXR) IHEXIL(LFLR) IHEXIS(SFLR)
MZGOMULT(2, *2,) LEVELO , LEVEL-0 . y Fll,z;:zvil_-o” LEVEL-0 xxsll.l;\;ibou
DZGO-DIV(2,/2,) MZTO-MULT(z, *z,)| |MZMO-MULT(z *Z) IFI-EXP(X**n) XILI-EXP(&**n) -EXP(X**n)

Figure 4-10.

IHEX XS(SFLR)
LFVEL-1
XISE-GEXP(Xx**y)

AFUNC Level O

IHEXXL(LFLR)
LEVEL-1
XILE-GEXP(x**y)

LEVEL-1

IHEXIZ(LFLC)

XIMI-EXP(z**n)

LGS0-LOG10(x)

IHELNS(SFLR) EXG(S IHELNL(LFLR) ") X .
1 EVEL-0 IHEEXS(SFLR) LEVEL-0 IHEEXL(LFLR) IHEMZZ(LFLC)
LNSO0-LOGE(x) LEVEL-0 LNLO-LOGE(x) LEVEL-0 LEVEL-0
L2S0-LOG2(x) FXS0-FXP(x) L2L0-LOG2(x) EXLO-EXP(X) MZMO-MULT(z,*2,)
LGLO-LOG10(x)

IHEXIW(SFLC)
LEVEL-1
XITL-EXP(z**n)

IHEXIU(FIXC)
LEVEL-1
XIGI-EXP(Z2**n)

IHEMZW(SELC)
LEVIL-0

MZT(’)—MUL'I(zl‘z2

IHEMZU(FIXC)
LEVEL-0
MZGO-MUL I(z;*2))
DZGO-DIV(Z/Z))

IHEABZ(LFLC)
LEVEL-1
ABMO0-ABS(z)

IHEABU(FIXC)
LEVEL~1
ABGO-ABS(z)

IHESQL(LFLR)
LEVEL -0
SQLO- SQRT(x)

IHESQS(SFLR)
LEVEL-0
SQS0-SQRT(x)

Figure 4-11.

AFUNC Level 1

25

LNSO-LOGE(X)
L2S0-LOG2(x)

ATS2-ATAN(Y/X)
ATS1-ATAN(X)

I NLO-LOGE(X)
L2L0-LOG2(X)

THEXXW(SFLC) IHEXXZ(LFLC)
LEVEL-2 LLVEL-2
XITE-GEXP(2* 2, XIME-GEXP(Z, **2,)

IHLLNS(SFLR) IELNW(SFLC IHEPXW(SELC IHELNL(LEER) : : : .

GVELT IHEL ~(. .C) () e IHLLNZ(LFLC) IHEEXZ(LELC)
LNSO-LOGE(X) LEVFL-1 1HVLL-1 INLO-10OGE (X, LEVEL-1 LEVEL-1
L250-LOG2(x) LN10-10GE(z) IX10-LXP(Z) 12L0-10G2(x) LNMO-LOG2(z EXMO-EXP(Z
LGSO-LOG10(X) 1 GLO-LOGIO(X) (= i i

IHFI NS(SFLR) IHFATS(SFI R) IHFLNL(LFL R) IHEATL(LFLR)
I} VEL-0 LLVFL-0 LEVEL-0 LEVEL-0

ATL2-ATAN(Y/x)

Figure 4-12.

AFUNC Level 2

LGS0- LOG10(X) 1 GLO-LOG10(X) ATL1-ATAN(x)
IHEEXS(SFLR) IHESNS(SFLR) 1H1 SNS(SELR) IHEEXL(LI1 R) IHLSNL(LFLR) IHESNL(LFLR)
LEVEL-0 LIVEL-0 LEVI L-0 LEVEL-0 LFVEL-0 LEVEL-0
FXS0-1 XP(x) SNSO0 -SIN(X) CS50-COS(X) 1 XSO-F XP(x) SNLO-SIN(x) CSLO-COS(x)

MATHEMATICAL FUNCTION PACKAGE (MFUNC)

The library supports all floating-point arithmetic generic functioms,
and has separate routines for short- and long-precision real arguments,
and also for short- and long-precision complex arguments where these
are admissible. Linkage between the main program and the library
mathematical routines is performed by means of the external standard
calling sequence.

The calling sequence generated in compiled code is the same as that
required for passing the same arguments to a CALL/360-0S PL/I procedure.
Therefore, the names of any of the floating-point arithmetic generic
functions can be passed as arquments between procedures, according

to the normal rules for entry names.

Where functions are applied to aggregates of data, indexing is handled
by compiled code, which passes the individual elements to the required
library routine. Where evaluation or conversion of an argument is
necessary, it is carried out before the library routine is called.

The arguments are assumed to be normalized in aligned fullword or
doubleword fields for short or long precision respectively; the results
returned are normalized similarly.

Complex arguments are assumed to have real and imaginary parts stored
contiguously in that order, so that the address of the real part
suffices for both of them.

Source fields may also be used as target fields in all cases where

this is not explicitly forbidden in a routine description (see next
section).

26

Definitions

Some definitions which are basic to understanding mathematical function
evaluation in CALL/360-0S PL/I follow.

1. The floating-point representation of a numeric value in IBM
System/360 computers occupies a fixed-length field, but this
field may be either of two lengths.

Short floating-point representations occupy four bytes as shown:

r 1
	Exponent	
s	Part	Fractional Part
	(Powers	(6 Hex Digits)
	of 16)	
e e 3
0 7 8 31

The fractional part value represents six decimal digits (short
float decimal).

Long floating-point representations occupy eight bytes as shown:

r 1
	Exponent	
s	Part	Fractional Part
	(Powers	(14 Hex Digits)
	of 16)	
L e ————— - ———
0 78 63

The fractional part value represents a maximum of sixteen decimal
digits (long float decimal).

2. Both short and long floating-point representations are
normalized. This means that the leftmost hexadecimal digit
(leftmost four bits) of the fractional part is nonzero.

3. The representation of a complex floating-point number is two
real floating-point representations, one representing the real
part and the other representing the imaginary part. The two
real representations must both be long or short. They must
be contiguous in storage and the real part must precede the
imaginary part. Thus, a pointer to the real part is needed
to obtain both parts.

4. Most mathematical functions are multivalued for complex
arguments, but a principal value can be chosen as the value
returned from the function.

Module Description

The CALL/360-0S PL/I Language Reference Manual lists mathematical
built-in function names under "Mathematical Built-In Functions." All
of these built-in function names are supported by the LIBCOMP
Mathematical Function Package (MFUNC). All of the modules in MFUNC
are devoted to supporting them.

The specification of a built-in function name may be supported by
multiple MFUNC entry points. The entry point used in a particular
case depends strictly upon the mode and length attributes of the
normalized floating-point scalar argument that is presented to the
module.

27

Four of the built-in function names (LOG2, LOG10, ERF, and ATAN with
two arguments) are supported only for real arguments, so there are
two MFUNC entry points for each of these names: one accepts a real
short argument and the other accepts a real long argument. The other
names (EXP, LOG, SQRT, ATAN, ATANH, TAN, TANH, SIN, SINH, COS, and
COSH) are supported for both real and complex arguments, so there are
four MFUNC entry points for each of these names: one each for the
acceptance of real short, real long, complex short, and complex long
arguments.

The compiler is responsible for knowing the mode and length attributes
of the input argument and calling the proper MFUNC entry point
accordingly. Figure 4-13 shows the relationship between built-in
function names and MFUNC entry points for each of the argument types.
The following symbol definitions apply:

real argument, or real part of complex argument
imaginary part of argument

complex argument

real part of complex returned value

imaginary part of complex returned value

< e NN N
LI T T 1}

All MFUNC routine entry points (with the exceptions of ATSH4, ATL4,
ATS2, and ATL2) require the same two arguments: a pointer to the
normalized floating-point scalar input value and a pointer to the field
in which to put the returned value. The returned value is always a
normalized floating-point scalar with the same mode and length as the
input argument.

28

Built-In Entry Ar
t
Function Point %l;,gl: " Function
Name Name
SIN(x) SNSO real short Sine of x . '
SNLO real long x expressed in radians
SING) SNTO complex short Principal value of sine of
SNMO complex long z=SIN(x) COSH(y)
+ ICOS(x)SINH(y)
x and y expressed in radians
SHSO real short Hyperbolic sine of x
SINH(x) SHLO real long x expressed in radians
SINH(z) SHTO complex short Principal value of hyperbolic
SHMO complex long sine of z=SINH(x)COS(y)
+ ICOSH(x)SIN(y)
x and y expressed in radians
CSS0 real short Cosine of x
COS(x) CSLO real long x expressed in radians
COS(2) CSTO complex short Principal value of cosine of
CSMO complex long z = COS(x)COSH(y)
- ISIN(x)SINH(y)
x and y expressed in radians
CHSO real short Hyperbolic cosine of x
COSH(x) CHLO real long x expressed in radians
COSH(2) CHTO complex short Principal value of hyperbolic
CHMO complex long cosine of z= COSH(x)COS(y)
+ ISINH(x)SIN(y)
x and y expressed in radians

Figure 4-13.

Mathematical Built-In Functions (Page 1 of 3)

29

Built-In Entry
Function Point Ar%?nwnt Function
Name Name ype
ATAN(x) ATSI1 real short Arctangent of x
ATL1 real long x expressed in radians
(%<mmmMVmw<%)
ATAN(z) ATTO complex short Principal value of
ATMO complex long arctangent of z
= (LOG(1+2)/(1-2))/2
(Errorif z=+1 or -1)
ATANH(x) AHSO real short Hyperbolic arctangent of x
AHLO real long (Error if ABS(x) > 1)
ATANH(z) ATTO complex short Principal value of
ATMO complex long hyperbolic arctangent of
z = IATANH(z)
(Error if z = +I or -l)
TAN(x) TNSO real short Tangent of x
TNLO real long x expressed in radians
TAN(z) TNTO complex short Tangent of z
TNMO complex long x and y expressed in radians
TANH(x) THSO real short Hyperbolic tangent of x
THLO real long x expressed in radians
TANH(z) THTO complex short Hyperbolic tangent of z
THMO complex long x and y expressed in
radians

Figure 4-13.

30

Mathematical Built-In Functions (Page 2 of 3)

Buil‘t-‘ln En‘t y Argument Function
Function Point Ty
pe
Name Name ’
EXP(x) EXSO0 real short eX
EXLO real long
EXP(z) EXTO complex short e
EXMO complex long
LOG(x) LNSO real short Log, x
LNLO real long (Error if x< 0)
LOG(z) LNTO complex short Principal value of log, z
LNMO complex long =-n<z<nm
(Error if z = 0)
SQRT(x) SQSO real short Positive square root of x
SOLO real long (Error if x < 0)
SQRT(z) SQTO complex short Principal value of z?
SQMO complex long =u,ifu >0, or
=v,ifu=0andv>0
LOG2(x) L2so real short Log, x
L2LO real long (Error if x < 0)
LOG10(x) LGSC real short Log,, x
LGLO real long (Error if x < 0)
ERF(x) EFSO real short Error function of x
EFLO real long 2 X 42 dt
=— re
NS
ATAN ATS2 real short Arctangent of (x1/x2)
(x1, x2) ATL2 real long x1 and x2 are in radians
(Error if x1 =0, x2 =0)

Figure 4-13.

Mathematical Built-In Functions (Page 3 of 3)

31

Summal_:x

The library mathematical modules are summarized in Figures 4-14 and

THESQL
IHEEXL
IHELNL
THESNL
IHETNL
IHEATL
IHESHL
IHETHL
IHEHTL
IHEEFL

4-15. These figures identify routines for real and complex arguments,
respectively.

(e e e

| |

| |

| Function | Short Float

—— -mmmmmmmommoes T —

| SQRT | IHESQS

| EXP [IHEEXS

| LOG, L0G2, LOG10 | IHELNS

| SIN, COS | IHESNS

| TAN | IHETNS

| ATAN | IHEATS

i SINH, COSH | IHESHS

| TANH | IHETHS

| ATANH | IHEHTS

| ERF, ERFC | IHEEFS
S pp——

Figure 4-14.

Figure 4-15.

LOG

SIN, COS, SINH, COSH
TAN, TANH

ATAN, ATANH

Mathematical Functions with Real Arguments

IHESQW
IHEEXW
IHELNW
IHESNW
ITHETNW
IHEATW

THESQZ
IHEEXZ
IHELNZ
THESNZ
IHETNZ
IHEATZ

Mathematical Functions with Complex Arguments

Figures 4-16 through 4-18 show the modular interaction within the
library and indicate the modular level assignments.

32

IHEEFL(LFLR)
LEVEL-1
EFLO-ERF(x)

IHEEFS(SFLR)
LEVEL-1
EFSO-ERF(x)

IHEHTL(LFLR)
LEVEL-1
AHLO-ATANH(X)

IHEHTS(SFLR)
LEVEL-1
AHSO0-ATANH(X)

IHESHL(LFLR)
LEVEL-1
SHLO-SINH(x)
CHLO0-COSH(x)

IHESHS(SFLR)
LEVEL-1
SHSO0-SINH(xX)
CHS0-COSH(x)

I

H

1

i

J

l

EXLO-EXP(x)

EXS0-EXP(X)

L2L0-LOG2(xX)
LGLO-LOG10-(X)

L2S0-LOG2(x)
LGSO0-LOG10(X)

EXLO-EXP(X)

IHEEXL(LFLR) IHEEXS(SFLR) IHELNL(LFLR) IHELNS(SFLR) IHEEXL(LFLR) IHEEXS(SFLR)
LEVEL-0 LEVEL-0
LEVEL-0 LEVEL-0 LNLO-LOGE(x) LNS0-LOGE(x) LEVEL-0 LEVEL-0

EXS0-EXP(x)

IHETHL(LFLR)
LEVEL-1
THLO-TANH(x)

IHETHS(SFLR)
LEVEL-1
THSO-TANH(X)

i

:

IHELNW(SFLC)
LEVEL-1
LNTO0-LOGE(z)

!

!

IHELNZ(LFLC)
LEVEL-1
LNMo0-LOGE(z)

1

!

:

IHEEXL(LFLR) IHEEXS(SFLR) ll*EII:ENS(SLL”(L)li) IHEATS(SFLR) IHELNL liF(;-R) IHEATL(LFLR)
LEVEL-0 LLVEL-0 LNS0-LOGE(x) LEVELO LNLO-LOGE(X) LEVEL-0
EXLO-EXP - , L2S0-LOG2(x) ATS2-ATAN(Y/x) L2L0-LOG2(X) ATL2-ATAN(y/x)
EXLO-EXP(X) EXS0-EXP(X) LGS0-LOG10(x) \IST1-ATAN(X) LGLO-LOG10(x) ATL1-ATAN(X)
Note- X denotes either a real argument or real part of a complex argument.
y denotes either a real argument or imaginary part of a complex argument.
z denotes a complex argument.
(XXXX) describes the arguments. The first letter specifies the precision (Long or Short) the next two, the scale

(Float or Fixed), the last, the mode (Real or Complex).

Figure 4-16. MFUNC Level 0

33

IHEEXZ(LFLC)

IHEEXW(SFLC)
LEVEL-1 LEVEL-1
EXTO-EXP(z) EXMO-EXP(z)
] | :
IHEEXS(SFLR) IHESNS(SFLR) IHESNS(SFLR) IHEEXL(LFLR) IHESNL(LFLR) IHESNL(LFLR)
LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0
EXS0-EXP(x) SNSO0-SIN(x) CSS0-COS(x) EXLO-EXP(x) SNLO-SIN(X) CSL0-COS(x)
THESNW(SFLC) IHESNZ(LFLC)
LEVEL-1 LEVEL-1
SNTO-SIN(z) SNMO-SIN(z)
SHTO0-SINH(z) SHMO-SINH(z)
CST0-COS(z) CSM0-COS(z)
CHTO0-COSH(z) CHMO-COSH(z
IHESNS(SFLR) IHESNS(SFLR) IHEEXS(SFLR) IHESNL(LFLR) IHESNL(LFLR) IHEEXL(LFLR)
LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0
SNSO0-SIN(X) CSS0-COS(x) EXSO0-EXP(X) SNLO-SIN(X) CSL0-COS(x) EXLO-EXP(x)

Figure 4-17.

34

MFUNC Level 1

IHEATW(SFLC()
LEVEL-2

ATTO-ATAN(2)

AHTO-ATANH(2)

IHEATZ(LFLC)
LEVEL-2
ATMO-ATAN(z)
AHMO-ATANH(z)

IHESQW(SFLC)
LEVEL-2
SQT0-SQRT(z)

ATS2-ATAN(y/x)

LNS0-LOGE(x)

ATL2-ATAN(Yy/z)

LNLO-LOGE(x)

SQS0-SQRT(x)

IHEHTS(SFLR) IHEHTL(LFLR) THEABW(SFLC)
LEVEL-1 LEVEL-1 LEVEL-1

AHSO-ATANH(X) AHLO-ATANH(x) ABTO-ABS(2)

IHEATS(SFLR) IHELNS(SFLR) IHEATL(LFLR) IHELNL(LFLR) THESQS(SFLR) IHESQS(SFLR)
LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0 LEVEL-0

SQS0-SQRT(x)

IHESQZ(LFLC)
LEVEL-2
SQMO-SQRT(2z)

S S

IHEABZ(LFLC)
LEVEL-1
ABMO-ABS(z)

!

IHETNW(SFLC)
LEVEL-2

TNTO-TAN(z)
THTO-TANH(z)

IHETHS(SFLR)
LEVEL-2
THSO-TANH(x)

!

IHETNZ(LFLC)
LEVEL-2

TNMO-TAN(2)

THMO-TANH(z)

.

)

IHETHL(LFLR)
LEVEL-1
THLO-TANH(x)

!

IHESQL(LFLR)
LEVEL-0
SQLO-SQRT(x)

IHESQL(LFLR)
LEVEL-0
SQLO-SQRT(x)

IHETNS(SFLR)
LEVEL-0
TNSO-TAN(X)

IHEEXS(SFLR)
LEVEL-0
EXS0-EXP(x)

IHETNL(LFLR)
LEVEL-0
TNLO-TAN(X)

IHEEXL(LFLR)
LEVEL-0
EXLO-EXP(x)

Figure 4-18.

AGGREGATE MANTPULATION PACKAGE (AMP)

MFUNC lLevel 2

The library supports the array built-in functions SUM, PROD, and POLY,
and also provides indexing routines for handling simple (that is,
consecutively stored) and interleaved arrays.

Llnkage between the main program and the library array function routines

is performed by means of the external standard calling sequence.

Calls

to the indexing routines are made using the internal standard calling

sequence.

The array routines accept array arguments and perform their own

indexing, unlike other routines which require that indexing be handled

by compiled code.

Calls to conversion routines are included in the

SUM, PROD, and POLY routines with fixed-point arguments, so that these

arguments are converted to floating point as they are accessed.

Information about arrays is passed to the library routines in the form
of array dope vectors (ADV); fixed-point arquments need an additional

data element descriptor (DED).
is contained in the ADV.

The number of dimensions of the array

No overlapping of source and target fields
is permitted for any of these routines.

35

Definitions

Some definitions required to understand aggregate manipulation in
CALL/360-0S PL/I follow:

1.

Arrays are always stored in row-major order, that is, the
rightmost subscript varies more rapidly in choosing the element
of the array to be stored. For example:

The elements of the array A(2,2,3) would be stored in the
following order:

A(1,1,1), A(1,1,2), A(1,1,3), A(1,2,1), A(1,2,2), A(1,2,3),
A(2,1,1), A(2,1,2), A(2,1,3), A(2,2,1), A(2,2,2), A(2,2,3).

Simple arrays are arrays whose elements are stored contiguously;

interleaved arrays are arrays whose elements are not stored

contiguously.

If the elements of an array are arithmetic, the array as an
aggregate is described by an array dope vector (ADV). Informa-
tion contained in the ADV includes:

b.

a. The virtual origin of the array. This is the byte address
of the element whose subscript values are zero, that is,
A(0,0,...,0). This origin is called virtual because this
element may be hypothetical and its address not included
in the area of storage actually allocated to the array.

b. The upper bound and lower bound for each dimension of the
array.

c. A multiplier for each dimension i as a function of the
multiplier for dimension i+1l, the upper and lower bounds
of dimension i+1, and the length of array elements (which
is the same for all elements in the array).

d. The number of dimensions in the array.

Given the information in the ADV, three functions can be per-

formed:

a. Given an array, the elements can be stepped through in row-

major order.

Given the subscript values of an element, the element address

can be obtained.

Given an element address, its subscript values can be ob-
tained.

All elements of an array must have the same attributes, so the
data element descriptor (DED) which describes one of these
scalar elements describes each of the elements in the array.

Module Description

The CALL/360-0S PL/I Lanquage Reference Manual lists the following
built-in function names under "Generic Functions for Manipulation of
Arrays."

36

Function Name Function Value

LBOUND(x,n) Returns current lower bound of nth dimension
of array x.

HBOUND (x,n) Returns current upper bound of nth dimension
of array x.

DIM(x,n) Returns current extent of nth dimension
of array x.

SUM(x) Returns sum of all elements of array x.
PROD(x) Returns product of all elements of array x.
POLY (a,x) Given two vectors, a and x; evaluates them

as if a were the coefficient vector and
x the variable vector in a polynomial
equation.

For the built-in function POLY, both vector arguments are assumed to

be stored in a simple manner, so only one set of AMP routines is
provided. However, alternate entry points are provided to differentiate
the case where argument x is a scalar from the case where it is a
vector. These entry points are shown below.

Element Attributes

Function Name System Name of Array x
IHEYGFV Real, Fixed Vector
IHEYGFS Real, Fixed Scalar
IHEYGXV Complex, Fixed Vector
IHEYGXS Complex, Fixed Scalar
IHEYGSV Real, Short Float Vector
POLY (A, X) IHEYGSS Real, short Float Scalar
IHEYGWV Complex, Short Float Vector
IHEYGWS Complex, Short Float Scalar
IHEYGLV Real, Long Float Vector
IHEYGLS Real, Long Float Scalar
IHEYGZV Complex, Long Float Vector
IHEYGZS Complex, Long Float Scalar

The AMP routines are unique; they accept entire arrays as arguments,
rather than one element of the array at a time. An AMP service routine,
IHEJXI, performs the operation of indexing through the input arrays

for other routines in AMP. One call must be made to IHEJXI in order

to obtain one element.

LBOUND, HBOUND, and DIM are not supported by the library. These
functions can be most efficiently performed by in-line code, rather
than by a library call. The remainder of the built-in functions (SUM,
PROD, and POLY) are supported by the LIBCOMP Aggregate Manipulation
Package (AMP).

For each of the built-in functions SUM and PROD, a set of AMP routines
is provided for interleaved arrays; separate routines are provided

for each of the possible combinations of attributes the array elements
may have. (The library may be simplified by always assuming interleaved
arrays. This would sacrifice execution efficiency for these routines.)

37

Function Name

SUM (x)

PROD (x)

Summarg

Interleaved Set E

lement Attributes

System Name

THESMFO
IHESMXO0
IHESMGR
IHESMGC
ITHESMHR
ITHESMHC

THEPDFO
TIHEPDXO
THEPDSO
IHEPDWO
IHEPDLO
IHEPDZO

of Array x

Real, Fixed

Complex, Fixed

Real, Short Float
Complex, Short Float
Real, Long Float
Complex, Long Float

Real, Fixed

Complex, Fixed

Real, Short Float
Complex, Short Float
Real, Long Float
Complex, Long Float

The library array modules are summarized in Figures 4-19 and 4-20.

Figure 4-19.

Interleaved string arrays with

fixed-length elements

THEJXI

Array Indexers

Note: IHEJXI is used for indexing through interleaved arithmetic
arrays.

- - Tt - M
| | | Floating-Point Arguments |
| | , e [
[[Fixed- | | [
| | Point | Short | Long |
|] Arguments | Precision | Precision |
| | === B |
| Function | Interleaved | Interleaved | Interleaved |
- - B W mmmmmmmmmmmmoe- |
| suM real | IHESMF | IHESMG | IHESMH |
| complex | IHESMX | IHESMG | IHESMH |
| | | | |
| PROD real | IHEPDF | IHEPDS | IHEPDL |
| complex | IHEPDX | IHEPDW | IHEPDZ |
| | | | |
| POLY real | IHEYGF | THEYGS | IHEYGL |
i complex | IHEYGX | IHEYGW | IHEYGZ |
- - - - ——— -1

Figure 4-20.

38

Arithmetic Array Functions

SECTION 5 - RUNTIME ROUTINE DIRECTORY

As noted in the preceding section, runtime support for CALL/360-0S

PL/I applications is provided by the Library Interface Services (LIBINT)
and Library Computational Services (LIBCOMP) modules. The individual
routines that form these modules are explained in detail in this
section. The routines are grouped within the organizational framework
introduced during the general discussion. Thus, runtime support is
described in detail in this section as follows.

Library Interface Services (LIBINT):

I/0 Management Package
Handling of Interrupts Package
Management of Object Program Package

Library Computational Services (LIBCOMP):

Total Conversion Package
String Manipulation Package
Arithmetic Function Package
Mathematical Function Package
Aggregate Manipulation Package

I/0 MANAGEMENT PACKAGE

The following routines constitute the I/0 Management Package (IOMP).
Descriptions of these routines are given on succeeding pages of this
manual. The routines are discussed in alphabetic order, according
to their mnemonics, as indicated. .

Close (IHECLOSE)

Data-Directed Input (IHEDDI)

Data-Directed Output (IHEDDO)

Perform Calculation of the Subscript Values for an Array Element (IHEDDP)

Edit I/O Director (IHEDIO)

List- or Edit-Directed GET Initiation and Termination (IHEIOA)

Output Initialization with or without Skipping (IHEIOB)

Output Data to the Buffer Area and Communication with
CALL/360-0S (IHEIOD)

Get Data Field from Input Buffer (IHEIOG)

Perform SKIP(w) Function for SYSPRINT (IHEIOP)

Edited Horizontal Control Format Item (IHEIOX)

List- and Data-Directed Input (IHELDI)

List-Directed Output (IHELDO)

Open (IHEOPEN)

Reset Disk Files (IHERSET)

39

TITLE: CLOSE (IHECLOSE)

Program Definition

Purpose and Usage
The Close routine is used to close a disk file.
Description

If the file is an output file, this routine is used to write current
buffer of data and close the file.

Errors Detected
ILLEGAL FILENAME. (123)
*DIRECTORY MISSING. (136)
INEXPLICABLE I/0 ERROR. (301)
Local Variables

None

Program Interface

Entry Points

IHECLOSE Linkage: P7 - A(FCIB)
P8 - RETURN
P9 - ENTRY
Called by: Compiled Code

Exit Conditions

Normal exit. <Return to caller.
Abnormal exit. Exit to IHEERRB.

Routines Called

IHEERR Error Routine
THESVC Library SVC Director

Global Variables

None

40

TITLE: DATA-DIRECTED INPUT (IHEDDI)

Program Definition

Purpose and Usage

The Data-Directed Input routine handles initiation of data-directed
input operation and assignment of input data to internal variables
according to symbol table information conventions.

Description

An item is read from the specified input stream according to the rules
specified for data-directed input. The item is scanned as follows:

1. Any leading blanks are ignored.
2. A search is made for an equal sign or a left parenthesis.

3. If an equal sign is found, the input contains a scalar item
and control passes to L.

If a left parenthesis is found, the input contains an array
item and scanning is continued until an equal sign is found.

4. The List- and Data-Directed Input routine is called to scale
the value part. (Entry Point: IHELDIC.)

The address of the symbol table is provided in the FCB (file control
block). The symbol table is searched for a name the same as that just
scanned. If there is no such name, an error is recognized. (For
details of the symbol table, see Appendix E.)

Dimensionality must be correct:

1. If the name is a scalar and if subscripts appear in the input
stream, an error is recognized.

2. If the name is an array and if no subscripts appear in the input
stream, an error is recognized. This routine checks the
subscripts of the input item and addresses the specified element
of the array.

The value of the input item is assigned to the internal variables using
list-directed input (Entry Point: IHELDID).

If the transmission terminator is found, return is made to caller.
If a NL character is found before the terminator, another item is
scanned as described above.

Errors Detected

EXTRA INPUT DATA IGNORED. (025)

NOT OPENED. (124)

NOT FILE TYPE. (132)

SUBSCRIPT RANGE. (500)

IMPROPER NUMBER OF SUBSCRIPTS FOR DATA INPUT VARIABLE. (803)
DATA NAME NOT FOUND IN SYMBOL TABLE. (805)

SUBSCRIPT NOT IN USER AREA. (806)

DATA I/0 ON INTERNAL FILE. (808)

Local Variables

None

41

Program Interface

Entry Points
IHEDDIB Data-directed input with or without data-list
Linkage: P7: A(FCB)
Called by: Compiled Code
Exit Conditions

Normal exit. Return to caller via link register.
Abnormal exit. If end-of-file condition has been raised, call IHEERR.

Routines Called

IHELDI List- and Data-Directed Input

IHEERR Exrror Routine

IHEIOA List- or Edit-Directed GET Initiation and
Termination

Global Variables

BUFLTH Terminal Buffer Length (Communications Area)

BUFPTR Buffer Pointer for SYSPRINT (Communications Area)
FCBDEF File Control Block Definition

UTTLOC Address of User Terminal Table (Communications Area)

L#INFLA Status of List Links (UTT)
SYMTABLE Symbol Table
FCIBDEF File Control Interface Block Definition

42

TITLE: DATA-DIRECTED OUTPUT (IHEDDO)

Program Definition

Purpose and Usage

The Data-Directed Output routine is used to convert data according
to data-directed output conventions.

Description

Scalar Variable (Entry Point: IHEDDORA):

The output string is created as follows:

1. Obtain the variable name from the symbol table and place it
on the output string.

2. Insert = immediately following the name.

3. Call IHELDO to direct the conversion and place the converted
data in the output string.

4. Step down the symbol table. If the variable is not the last
name, then repeat 1, else return to the caller.

Array Element (Entry Point: IHEDDOB):

1. Call IHEDDP to evaluate the subscript values of the array
element.

2. Obtain array name from the symbol table and place it with its
subscript values into the output string.

3. Insert = following the array name.

4. Call IHELDO to direct the conversion and place the converted
data in the output string.

Termination (Entry Point: IHEDDOC):

Insert ; in the output string. This is used to terminate a data list.
Errors Detected

None

Local Variables

WORKREL Offset from the relocatable library work space where
SDV (string dope vector) is to be created.

WORKDREL Offset from nonrelocatable library work space which
is used as working storage area.

Program Interface

Entry Points

IHEDDOA Linkage: P7: A(FCIB)
Called by: cCompiled Code

IHEDDOB Linkage: P7: A(FCIB)
Called by: Compiled Code

43

IHEDDOC Linkage: P7: A(FCIB)
Called by: Compiled Code

Exit Conditions
Normal exit. Return to caller.

Routines Called

IHEIOD Output Data to the Buffer Area and Communication with
CALL/360-0S

TIHEDDP Perform Calculation of the Subscript Values for an
Array Element

THELDO List-Directed Output

IHEERR Error Routine

Global Variables

FCB File Control Block
SYMTABLE Symbol Table

4y

TITLE: PERFORM CALCULATION OF THE SUBSCRIPT VALUES FOR AN ARRAY
ELEMENT (IHEDDP)

Program Definition

Purpose and Usage

The Perform Calculation of the Subscript Values for an Array Element
routine is used to calculate subscript values of an array element with
the address information provided by FCB (file control block) and an
ADV (array dope vector).

Description

The algorithms for calculating the subscript values are given as
follows:

Si = FLOOR(Ri/Mi) for i=1,2,...,(n-1)
Sn = Rn

where:
Si = ith subscript value

Rl = array element address - virtual origin
Ri = MOD(Ri-1, Mi)
n = the dimensionality of the array

the dimension under consideration

e
I

Mi = ith multiplier
M= n
IT

i=1

The array name with its calculated subscript values will be placed
in the output string.

Errors Detected
None
Local Variables

LNGTH (Register GO) Length of array element
DIMENS (Register G2) Dimension of the array

Program Interface

Entry Points

IHEDDPD Linkage: P7 (FCB)
Called by: IHEDDO

Exit Conditions

Normal exit. Return to caller.

45

Routines Called

IHEIOD

Output Data to the Buffer Area and Communication
with CALL/360-0S

Global Variables

FCB
SYMTABLE
ADV

46

File Control Block
Symbol Table
Array Dope Vector

TITLE: EDIT I/O DIRECTOR (IHEDIO)

Program Definition

Purpose and Usage

The Edit I/0 Director accepts a format code in register G1 and directs
control to the proper library routine.

Description

Using the format code as an index, either an input or output director
depending on the file type. The director is then

table is accessed,
called.

Errors Detected

EDIT I/0O ON INTERNAL FILE. (810)

Local Variables
None

Program Interface

Entry Points
IHEDIOA

Exit Conditions

Call to proper I/0

Routines Called

IHEDOM
IHEDOA
IHEDOB
IHEIOX
IHEIOP
IHEDIM
IHEDIA
IHEDIB
IHEERR

Global Variables

None

director.

C-Format Output Director

F/7E-Format Output Director

A-Format Output Director

Edited Horizontal Control Format Item
Perform SKIP(w) Function for SYSPRINT
C-Format Input Director

F/E-Format Input Director

A-Format Input Director

Error Routine

47

TITLE: LIST- OR EDIT-DIRECTED GET INITIATION AND TERMINATION (IHEIOA)

Program Definition

Purpose and ﬁsage

The List- or Edit-Directed GET Initiation and Termination routine
initiates or terminates list- or edit-directed GET statements.

Description
Initiation (Entry Point: IHEIOAA):
If the input file is a disk file, the following tests are performed:

1. If the current buffer address is not equal to the buffer address
given in the file control block (FCB), return is made to the
caller.

2. If the two addresses are equal, a new record is read. If no
error, then return is made to caller. If error, the error

routine is entered.

If the input file is a terminal file, a new line is read from the
terminal. Then return is made to a caller.

Termination (Entry Point: IHEIOAT):

If the input file is a terminal file, a scan is required up to the
NL character. If nonblank characters are found, an error condition
is raised. Processing continues.

Errors Detected

UNRECOVERABLE I/O ERROR. (125)
DECLARED ENVIRONMENT NOT COMPATIBLE WITH INPUT FILE. (811)

Local Variables: None

Program Interface

Entry Points

IHEIOAA Initiation of an input operation

Linkage: P7: A(FCIB)

Called by: Compiled Code, IHELDI, IHEDDI
IHEIOAT Termination of an input operation

Linkage: P7: A(FCIB)

Called by: Compiled Code
Exit Conditions
Normal exit. Return to caller.
Routines Called

IHEERR Error Routine
IHESVC Library SVC Director

Global Variables

FCB File Control Block
BUFPTR Buffer Pointer for SYSPRINT (Communications Area)

48

TITLE: OUTPUT INITIALIZATION WITH OR WITHOUT SKIPPING (IHEIOB)

Program Definition

Purpose and Usage

The Output Initialization with or without Skipping routine initializes
PUT statements with or without SKIP option.

Description

If the output file is OUTFILE and the current buffer address is equal
to the buffer address in the FCB, the control bytes (first seven bytes
for each disk file record) are set according to information provided
by FCB. If no SKIP function is to be performed, return is made to
the caller; otherwise, IHEIOP is called to perform the SKIP function.
Errors Detected

None

Local Variables

None

Program Interface

Entry Points
IHEIOBA To initialize the PUT operation
Linkage: P7: A(FCIB)
Called by: Compiled Code
IHEIOBC To initialize PUT, and perform SKIP
Linkage: P7: A(FCIB)
Called by: cCompiled Code
Exit Conditions
Normal exit. Return to caller.

Routines Called

IHEIOP Perform SKIP(w) Function for SYSPRINT
IHEERR Error Routine

Global Variables

FCB File Control Block

49

TITLE: OUTPUT DATA TO THE BUFFER AREA AND COMMUNICATION WITH
CALL/360-0S (IHEIOD)

Program Definition

Purpose and Usage

The Output Data to the Buffer Area and Communication with CALL/360-

OS routine is used to place the converted data string in the proper
location in the buffer area and update the current buffer pointer
provided by FCB. An SVC (Supervisor Call) to the Executive is issued
when the buffer is filled. The routine determines when an NL character
should be placed on the output string for terminal buffer.

Description
If the output file is a disk file:

1. If the current buffer pointer is equal to the buffer starting
address, set the first seven bytes of the buffer according to
information provided by FCB. (The first seven bytes are used
for record description for disk file.)

2. If the disk file is an external print file, use the procedures
described for the terminal file (SYSPRINT).

3. If the length of the data plus total characters generated on
the buffer is greater than the buffer size:

a. Place an EOF at the location given by the current buffer
pointer.

b. Request an SVC for writing the record to disk.

c. Set current buffer address to buffer address and repeat 1.

4. If the disk file is an internal disk file (data stored in
internal form), two additional bytes for each data element are
set to describe the data type and replicator. The data element
is transferred to the output buffer according to information
given in the string dope vector (SDV).

If the output file is a terminal unit:

1. If the length of the converted data string + number of bytes
used for one line > the width of the terminal unit:

a. Insert an NL to terminate the line.

b. Set number of bytes used to zero.

c. Update the buffer pointer.

d. If the remaining buffer size is less than the width of the
terminal unit, request an SVC to transmit the data to
output terminal.

e. Place the converted data string to the terminal buffer and
update the number of bytes used and the buffer pointer.

2. If the length of the converted data string + number of bytes used
for the line = the width of the terminal unit:

a. Place the converted data string to the terminal buffer and
insert an NL to terminate the line. Set number of bytes
used for the line to zero.

b. Do 1.d.

3. If the length of the converted data string + number of bytes used
for the line < the width of the terminal unit, do 1.e.

50

Errors Detected
INEXPLICABLE I/0O ERROR. (301)
MAXIMUM STRING LENGTH EXCEEDED. (706)
END OF OUTPUT FILE. (802)

Local Variables

COUNT1 (Register G3) Counter for number of characters generated
in a line for print file

LENGTH (G1) Length of source string

TOTCHAR (G5) Total number of characters generated in the
buffer

BUFFSIZE (GO) Buffer size

LINEWDTH (GH4) Line width for print file

BUFPOINT (P2) Current buffer pointer

ADSDV (P5) Address of SDV

BUFADD (P8) Buffer starting address

ADDED (P4) Address of the data element descriptor

SOURCEAD (P8) Buffer starting address

NUSPEC (G3) Number of specifications for internal disk
file

PUSPEC (P4) Address of old or last data specification

Program Interface

Entry Points
IHEIODP Linkage: P7: A(FCB)
P5: A(SDV)
Called by: Edit-directed I/0 directors, IHEIOX, IHEIOP,
IHELDO, IHEDDO, and IHEDDP.
Exit Conditions

Normal exit. Return to caller.
Abnormal exit. Call IHEERR on I/0 error.

Routines Called
IHEERR Error Routine

Global Variables

FCB File Control Block

SDhV String Dope Vector

WTOTCHAR Total characters generated for the SYSPRINT
buffer (ICA)

WTOTCHDK Total characters generated for the disk output
buffer (LCR)

WCOUNT1 Number of characters generated in a line for
SYSPRINT (LCA)

WCOUNTDK Number of characters generated in a line for
disk print file (LCA)

WDISBUFS Disk Buffer Size (LCA)

WTERBUFS Terminal Buffer Size (LCA)

BUFPTR Buffer Pointer for SYSPRINT (Communications Area)

OPFLAG Output Inhibit Flag for SYSPRINT (Communications
Area)

SPEC Pointer to old or last data specification field

in buffer

51

TITLE: GET DATA FIELD FROM INPUT BUFFER (IHEIOG)

Program Definition

Purpose and Usage

The Get Data Field from Input Buffer routine is used to collect the
data field from the input buffer. If more than one record is to be
read, the data is stacked in the library communications area (LCA).

Description

If the input file is a disk file, the buffer is scanned from the current
buffer address to the current buffer address plus the data length.

If no EOF character is encountered, P7 (register 13) is set to the
current buffer address. Then the current buffer address in FCB is
updated and return is made to the caller. If an EOF character is
encountered, the current part of the data is stacked in LCA. A new
record is read and the remaining data is stacked in LCA. P7 is set

to the address of LCA where the data is stacked.

If the input file is a terminal file, a similar procedure is performed.
However, the NL character is scanned instead of the EOF character.

Errors Detected

UNRECOVERABLE I/O ERROR. (125)
END OF FILE ENCOUNTERED. (140)

Local Variables
BUFPOINT (P2) Current buffer pointer

STARTAD (P4) Start address for the data field in buffer
STACKAD (P5) Address in LCA where data is to be stacked

COUNT (GO) Counter for the number of characters scanned
LENGTH (Gl) - Length of data field to be scanned
FLAG1 (G3) Zero sufficient characters in buffer. For new

record read, data is stacked in LCA.

Program Interface

Entry Points
IHEIOGA Linkage: P7: A(FCB)
Gl: Length of data field
Called by: Edited input director. Upon return, P7
contains (source), and G1 (length).
Exit Conditions

Normal exit. Return to caller.
Abnormal exit. Call IHEERR.

Routines Called
IHEERR Error Routine
Global Variables

FCB File Control Block
WFCS Area where data is stacked (LCA)

52

TITLE: PERFORM SKIP(W) FUNCTION FOR SYSPRINT (IHEIOP)

Program Definition

Purpose and Usage

The Perform SKIP(w) Function for SYSPRINT routine is used to perform the
SKIP function for output print file.

Description

W-NL characters are created in the nonrelocatable library work space.
THEIOD is called to transfer these characters to the output buffer.

Errors Detected
None

Local Variables

ADSOURCE (P5) Address where NL characters are created
LENGTH (G1) Length of the number of NL characters to be
created

Program- Intexface

Entry Points

IHEIOPB Linkage: P7: A(FCB)
Called by: IHEIOBC

Exit Conditions
Normal exit. Return to caller.
Routines Called

IHEIOD Output Data to the Buffer Area and Communication
with CALL/360-0S

Global Variables

FCB File Control Block

53

TITLE: EDITED HORIZONTAL CONTROL FORMAT ITEM (IHEIOX)

Program Definition

Purpose and Usage
The Edited Horizontal Control Format Item routine is used in two ways:

e Input: Spaces over next w characters in input stream.

e Output: For control format item, inserts w blanks in the
output string. For COLUMN(w), inserts blanks up to
w-th character of current or next line.

Description
Input (Entry Point: IHEIOXA):
If disk-file then:

Current Buffer Pointer for Disk File = Current Buffer Pointer
for Disk File + w

else:

Current Buffer Pointer for SYSIN = Current Buffer Pointer for
SYSIN + w

Output:

1. Edit-Directed X(w) Format (Entry Point: IHEIOXB): Insert w
blanks in the output buffer and update current buffer address in
FCB and the global variables in LCA.

2. COLUMN(w) Format (Entry Point: IHEIOXC): If w is less than or
equal to the number of characters generated in the current line:

a. Insert an NL character in the output string.
b. Insert w blanks after the NL character.

If w is greater than the number of characters generated for the
current line, insert w (number of characters generated)
blanks in the output buffer.

Errors Detected
PRINT OPTION FORMAT ITEM FOR NON PRINT FILE. (024)
Local Variables

COUNT1 (G1) Number of characters generated in a line

W (G2) Width of data field in characters

LNEWDTH (G0) Line width for print file

BUFSIZE (G3) Buffer size

TOTCHAR (G4) Total number of characters generated in the buffer
ADUTT (G5S) Address of user terminal table

NEWIDTH (G5) Secondary count of width of data field in characters

Program Interface

Entry Points

THEIOXA Linkage: P7: A(FCB)
Called by: Compiled Code

54

IHEIOXB Linkage:
Called by:

IHETIOXC Linkage:
Called by:

Exit Conditions

P7: A(FCB)
Compiled Code

P7: A(FCB)
Compiled Code

Normal exit. Return to caller.

Routines Called
IHEERR

Global Variables

Error Routine

FCB File Control Block
BUFPTR Buffer Pointer for SYSPRINT (Communications Area)

55

TITLE: LIST- AND DATA-DIRECTED INPUT (IHELDI)

Program Definition

Purpose and Usage
The List- and Data-Directed Input routine works in two ways:

e For list-directed input, it scans one item in the input string
and assigns it to internal variable according to rules specified.

e For data-directed input, the constant part of the assignment is
scanned and assigned to internal variable.

Description

List-Directed Input (Entry Point: IHELDIB):

1. External Files: Data in the stream is scanned as follows:
a. Any leading blanks are ignored.

b. If the first character is a quote mark, a string constant
is assumed to follow, and a search is made for a subsequent
single quote mark. Otherwise, an arithmetic constant is
assumed, and a search is made for an item delimiter (blank
or comma).

c. According to the DED of the internal variable and the type
of constant (or string), TCP (Total Conversion Package)
modules are called to do the conversion and assign the
converted data to internal variable.

2. Internal Files: Source and target specifications are checked
for compatibility with respect to type (arithmetic or string)
and, if arithmetic, to scale (fixed or float). Should the
source and target be incompatible, an appropriate error message
is printed. Otherwise, source data is moved to the target.
Account is taken of any differences in the precision and mode
of the source and target to preserve the validity of the data
moved and the integrity of the user area.

Data-Directed Input Constant Scanning (Entry Point: IHELDIC):

The scanning process used for list-directed input can be used for data-
directed input. However, a return code is set as follows:

Return Code = 0: Not last item.

Return Code 4: Last item.

8: End of file encountered before complete data
field collected.

Return Code

Errors Detected

END OF FILE ENCOUNTERED. (140)

INEXPLICABLE I/0 ERROR. (301)

ERROR IN CONVERSION FROM ARITHMETIC TO CHARACTER STRING. (605)
ERROR IN CONVERSION FROM FIXED TO FLOAT. (606)

ERROR IN CONVERSION FROM FLOAT TO FIXED. (607)

56

Local Variables

DBFLAG (G6)

COUNT1
COUNT 2
COUNT11
COUNT22
OF SWC
Local Offsets
PLIST

WORK

Program Interface

Entry Points

IHELDIB Linkage:

Used to flag the existence of double quotation
marks in string for non-print file:

0
u

No double quotation mark
Double quotation mark

Length of real part of source

Length of imaginary part of source

Length of real part of target

Length of imaginary part of target

Length adjustment switch used to effect proper
update of buffer source pointer

Offset of parameter list in the relocatable
library work space

Offset of string dope vector describing the
source string

P7: A(FCIB)

Called by: cCompiled Code

IHELDIC Linkage:

P7: A(FCB) with word 3 of FCB containing
a (VARIABLE) and word 4, a (DED).

called by: IHEDDI

Exit Conditions

Normal exit. Return to caller.
Abnormal exit. Call IHEERR.

Routines Called

IHESVC Library SVC Director

IHEDCN Character String to Arithmetic

IHEDNC Arithmetic to Character String

IHEERR Error Routine

IHEVCA Data Analysis Routine

IHEVSC Character String to Character String .

IHEIOA List- or Edit-Directed GET Initiation and Termination

Global Variables

BUFPTR
FCB
WFCI

Buffer Pointer for SYSPRINT (Communications Area)
File Control Block

Addresses of source, target, source DED, and
target DED (LCA)

57

TITLE: LIST-DIRECTED OUTPUT (IHELDO)

Program Definition

Purpose and Usage

The List-Directed Output routine is used to output data under the rules
for list-directed output.

Description
If the file is an internal disk file, the output file is created without
proper conversion. If it is an external file, a TCP routine is
called to convert arithmetic data to external form before placing it in
the output buffer. For string variables, transfer of the string to the
output buffer is performed by this routine.
Errors Detected

SUBSTRING NOT IN DATA AREA. (705)
Local Variables

LENGTH (GO) Length of source string

Program Interface

Entry Points

IHELDOB List-directed output (single variable)
Linkage: P7: A(FCIB)
Called by: Compiled Code

IHELDOC Data-directed output
Linkage: P7: A(FCB)

Note: FCB has been modified
similar to FCB for list-
directed output.

Called by: IHEDDO

Exit Conditions: Normal exit. Return to caller.

Routines Called

TIHEDNC Arithmetic to Character String

IHEVSC Character String to Character String

IHEIOD Output Data to the Buffer Area and Communication
with CALL/360-0S

THEERR Error Routine

Global Variables

FCB File Control Block

BUFPTR Buffer Pointer for SYSPRINT (Communications Area)

WCNP Location where parameter list is passed while
calling TCP routine (LCA)

WCOUNTDK Number of characters generated in a line for
disk print file (LCA)

WCOUNT1 Number of characters generated in a line for
SYSPRINT (LCA)

WTOTCHAR Total characters generated for the SYSPRINT
buffer (LCA)

WTOTCHDK Total characters generated for the disk output

buffer (LCA)

58

TITLE: OPEN (IHEOPEN)

Program Definition

Purpose and Usage
The Open routine is used to open a disk file.

Description

If the file is already open, the OPEN is ignored. An I/0 buffer and a

file control block (FCB) are assigned to the file.
Errors Detected

UNRECOVERABLE I/0 ERROR. (125)
DOES NOT EXIST. (126)

LOCKED. (127)

IN USE. (128)

PROTECTED. (129)

NOT A DATA FILE. (130)

A SHARED FILE. (131)

ILLEGAL ATTRIBUTES. (134)
EXCEEDS FOUR FILES OPEN. (135)
*DIRECTORY MISSING. (136)

Local Variables
None

Program Interface

Entry Points

IHEOPEN Linkage: P7 - A(FCIB)
P8 - RETURN
P9 - ENTRY
Called by: Compiled Code

Exit Conditions

Normal exit. Return to caller.
Abnormal exit. Exit to IHEERRB.

Routines Called

IHEERR Exrror Routine
IHESVC Library SVC Director

Global Variables

FCIB File Control Interface Block
FCB File Control Block

59

TITLE: RESET DISK FILES (IHERSET)

Program Definition

Purpose and Usage

For output files, write current half-track, reset disk pointers to
start of file, and reset current buffer pointer to start address.

For‘input files, reset current buffer pointer to start address and
reset disk pointers to start of file.

Description
SRESET attributes relative to the statement:

CALL SRESET [(filename, filename)l;

DECLARE $RESET ENTRY
Do not use IHERSET

1. Contextual

2. Implicit - Used as a variable
Do not use IHERSET
3. Explicit - DCL $RESET [ATTRIBUTE];

Do not use IHERSET
- LABEL: PROC

Do not use IHERSET
- LABEL: STATEMENT
Do not use IHERSET
ENTRY
Use IHERSET
- Other

Do not use IHERSET

|

4, Tentative

Errors Detected
ILLEGAL FILENAME. (123)
NOT OPENED. (124)
INEXPLICABLE I/0 ERROR. (301)
END OF OUTPUT FILE. (802)
Local Variables

MINUS Used by SVC 3 and SVC 4 to reset disk
pointers to one less than their current values.

Program Interface

Entry Points
IHERSET Linkage: P7: A(FCIB)
P8: Return Address
P9: Entry Point Address
Called by: Compiled Code
Exit Conditions

Normal exit. Return to caller via PS8.
Abnormal exit. Exit via IHEERRB.

Routines Called

IHEERR Error Routine

60

Global Variables

FCBFNAME

FCBUFAD
FCBCUBUF

File Codes:

00 SYSIN
01 INPUT
10 SYSPRINT
11 OUTPUT

Address of Buffer
Current Buffer Pointer

61

HANDLING OF INTERRUPTS PACKAGE

The following routines constitute the Handling of Interrupts Package
(HIP). Descriptions of these routines are given on succeeding pages
of this manual. The routines are discussed in alphabetic order,
according to their mnemonics, as indicated.

Program Termination (IHEDUM)

Table of Error Messages and Indicators (IHEERN)
Error Routine (IHEERR)

On-ENDFILE and REVERT Initializer (IHEONREV)

62

TITLE: PROGRAM TERMINATION (IHEDUM)

Program Definition

Purpose and Usage

The Program Termination routine is used to terminate the program.
Description

All open disk files are closed. Final exit is made via SVC 0.
Errors Detected

EXCEEDS FOUR FILES OPEN. (135)
INEXPLICABLE I/0 ERROR. (301)

Local Variables
None

Program Interface

Entry Points

IHEDUMP Linkage: None
Called by: Compiled Code or IHEERRC

Exit Conditions
Control is not returned to the caller.
Routines Called
RTSSVC Runtime support macro to transmit any information
contained in the terminal buffer or disk buffer and
to terminate the program (see Appendix D)

Global Variables

FCB File Control Block

63

TITLE: TABLE OF ERROR MESSAGES AND INDICATORS (IHEERN)

Program Definition

Purpose and Usage

The Table of Error Messages and Indicators (IHEERN) contains the action
code of the execution errors and the runtime error messages.

Description

IHEERN contains no executable statement. The routine contains four
tables:

1. EINDEX Error Index Table
2. ERTABL . Exrror Table

3. MESTAB Message Table

4. ROUT Routine Name Table

EINDEX contains the offset to ERTABL according to type of error, that
is, I/0, CONVERSION, OVERFLOW, etc. ERTABL contains the offset to
MESTAB for each individual error and action indicator. For routines
in the Mathematical Function Package (MFUNC), ERTABL also contains
the offset to the routine name table. MESTAB contains all runtime
error messages and an error index associated with each message. ROUT
contains all routine names used by the MFUNC routines.

During execution, when an error is detected, an error code is set in
the nonrelocatable library work area (IWE). The format of the error
code is given below:

1 2 3 Byte
r - T 1
| Index | Index | File- |
| To] To | Type
| EINDEX | ERTABL | Indicator |
L ———————————— e e 1

The specific entrance in ERTABL can be located with the two indexes
given in the error code. The file-type indicator is meaningful only
when I/0 errors occur. The action indicator given in ERTABL provides
all information required for IHEERR to direct specific action to be
taken (on-unit action or standard system action to be taken after the
error message is printed).

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

IHEERNA Linkage: None
Called by: IHEERRB

Exit Conditions: None
Routines Called: None

Global Variables: None

64

TITLE: ERROR ROUTINE (IHEERR)

Program Definition

Purpose and Usage

Error Routine is used to determine the identity of the error or
condition that has been raised, and to determine what action must be
taken on account of it. Several actions are possible, including
combinations:

1. Entry into an on-unit.

2. Print error message and terminate.
3. Print error message and continue.
4. No action. Return to program.

Description

Arithmetic Interrupts (Entry Point: IHEERRA): There are four types
of arithmetic interrupts:

1. FIXEDOVERFLOW (interrupt code = 8 in PSW).

2. OVERFLOW (interrupt code = 12 in PSW).

3. UNDERFLOW (interrupt code = 13 in PSW).

4. ZERODIVIDE (interrupt code = 9 or 15 in PSW).

PSW2SV (location hex 88 in the communications area) contains the PSW when
arithmetic interrupt occurs. In the fixed portion of each DSA, there

is a corresponding word for each interrupt, which is used to specify

the action for the interrupt. The format for each test-word is as
follows:

r 1
| C | On-Unit | Code = 0: Not specified.
| o | Object Code | Code = 1: Standard system action.
| D | Pointer | Code = 3: User's action (on-unit).
| E | |
L - 1

Test-Word Note: On-unit object code pointer is

meaningful only for code = 3.
0

Depending on the interrupt code given in PSW, the proper word in the
DSA is examined:

1. If code = 0 and the DSA containing the test-word is the first DSA
or code = 1, standard system action is performed:

a. FIXEDOVERFLOW: Comment and raise the error condition.

b. OVERFLOW: Comment and raise the error condition.
c. UNDERFLOW: comment and continue.
d. ZERODIVIDE: comment and raise the error condition.

2. If code = 0 and this DSA is not the first DSA, the correspon-
ding word in the previous DSA is used as the test-word and step
1 is repeated.

3. If code = 3, a call is generated to the on-unit. (Saving and
restoring information of all registers is done by the on-unit.)
The last three bytes of the test-word contain an offset into
the adcon area where the on-unit adcon area is located; the
address of the on-unit entry point is stored there.

ON or Non-ON Execution Errors (Entry Point: IHEERRB): All execution
errors are handled by IHEERRB. Possible actions to be taken are:

65

1. On-Unit Error Standard System Action: Comment and raise error
condition.

2. On-Unit Error Standard System Action: Comment and terminate.

3. On-Unit Error Standard System Action: Comment and continue.

4. Comment and raise error condition.

5. Comment and terminate.

6. Comment and continue.

For on-unit errors, the on-unit test-word in the DSA is examined.

If no on-unit is specified, standard system action is taken as specified
in the error table in IHEERN. The error messages and routine names

are also given in IHEERN.

Error Conditions (Entry Point: IHEERRC): Same procedure as arithmetic
interrupt is used to determine whether standard system action (terminate
the major task) or user's action is to be performed for error condition.

Restore Registers and PSW for an On-Unit (Entry Point: IHEERRR): This
routine is used to restore the second word of PSW2SV in the user's
communications area and general and floating-point registers for an
on-unit. Control is then returned to CALL/360-0S.

Restore Reqgisters and PSW for On—ENDFILE Unit (Entry Point: IHEERRN):
This routine reinitializes PO through P5 and transfers via P9 to the
next statement following the statement which caused the on-ENDFILE
condition.

Subscript Not in User Area (Entry Point: IHEERRZ): This routine is
scheduled by the first six bytes of object code in the user's area
when a string or array reference is made to a location greater than
the user's area or less than the start of the static string storage
area.

Errors Detected
PROGRAM ERROR - EXECUTION TERMINATED. (902)

Local Variables

LNGTHMES (Register G5) Length of the error message in IHEERN

ADBUFFER (P2) Output buffer address

ADL#TAB (P8) Address of object code address-line number
table

Program Interface

Entry Points

IHEERRA Linkage: None
Called by: EXEC on Arithmetic Interrupt

IHEERRB Linkage: RA: A(Error Code)
Called by: Library Modules

IHEERRC Linkage: None
Called by: Compiled Code and Library Modules

IHEERRN Linkage: P7: A(On-Unit Adcon Area)
Called by: On-Unit

IHEERRR Linkage: P7: A(On-Unit Adcon Area)
Called by: On-Unit

IHEERRZ Linkage: None
Called by: Compiled Code

66

Exit Conditions
Depend on the type of errors.
Routines Called

THEERN Table of Error Messages and Indicators
IHEDUM Program Termination

Global Variables

BUFPTR Buffer Pointer for SYSPRINT (Communications Area)
OPFLG output Inhibit Flag (Communications Area)

67

TITLE: ON-ENDFILE AND REVERT INITIALIZER (IHEONREV)

Program Definition

Purpose and Usage

The On-ENDFILE and REVERT Initializer is used to initialize the on-
ENDFILE condition unit to the current unit in effect.

Description

All ENDFILE filenames are searched to find the one in this block with
the same FCIB. If none is found, an entry is created and the new on-unit
information word is stored.

Local Variables

None

Errors Detected

None

Program Interface

Entry Points
IHEONUN Linkage: P7: A(Parameter list)
Parameter list: Address of on-unit adcon
Address of FCIB
IHEREVT Linkage: P7: A(FCIB)
Exit Conditions
Normal exit. Return to caller.
Routines Called
IHEERR Exrror Routine
Global Variables

None

68

MANAGEMENT OF OBJECT PROGRAM PACKAGE

The following routines constitute the Management of Object Program
Package (MOPP). Descriptions of these routines are given on succeeding
pages of this manual. The routines are discussed in alphabetic order,
according to their mnemonics, as indicated.

Output Director (IHEGPUT)

Initial Prologue, Expand DSA, End Prologue, Object Program
Initiation (IHESAD)

GO TO Interpreter (IHESAF)

Library SVC Director (IHESVC)

69

TITLE: OUTPUT DIRECTOR (IHEGPUT)

Program Definition

Purpose and Usage

The Output Director places a 120-character line in the terminal buffer.
It also removes trailing blanks and checks line width.

Description

A 120-character line is processed and placed in the terminal buffer.

If there is insufficient space, the buffer is emptied. Trailing blanks
are removed from the line. If the line exceeds the line width, it

is broken into segments of the maximum length. Before return, the

line is cleared to blanks.

Errors Detected

None

Local Variables

None

Program Interface

Entry Points
Normal linkage to IHEGPUT. Register P2 has address of line.
Exit Conditions
Normal exit. All registers restored. Line cleared.
Routines Called

IHESVC Library SVC Director
Global Variables

Communications Area

70

TITLE: INITIAL PROLOGUE, EXPAND DSA, END PROLOGUE, OBJECT PROGRAM
INITIATION (IHESAD)

Program Definition

Purpose and Usage

The Initial Prologue, Expand DSA, End Prologue, Object Program
Initiation routine has the following functions:

1. Initial prologue: Provides fixed part of the dynamic storage
area for a begin or procedure block.

2. Expand DSA: Obtains automatic storage for elements declared
within the block. ~

3. End prologue: Checks to see if sufficient space is available
for the object program. If not, an SVC for more space is issued.

4. Object program initiation:
a. Calculates space required for the object program.
b. Sets certain global variables in LCA.
c. If disk file has been declared, checks to see if links have
been provided.

Description
Initial Prologue (Entry Point: TIHESADA): DSA is aligned to a double-

word boundary. If the fixed space required is greater than the size
of the program, additional space is requested.

For procedure blocks, nonvolatile, nonrelocatable general registers
and floating-point registers are saved in DSA. All on-unit informa-
tion words in DSA are set to zeros.

Expand DSA (Entry Point: THESADB): The automatic storage required

for string variables and subscript variables is allocated. For
subscript variables, the array dope vector and string array dope vector
are set. The algorithms used are given as follows:

Mi =Ui -1Li +1

Mi = ith multiplier
Ui = ith upper bound
Li = ith lower bound

Virtual Origin = Address of current location of DSA-base address of
object program address:

(...(L1#M1 + L2)*M2 + ...) + Ln)*Mn

n
Size of Array = II Mi where Mi = Ui - 1Li + 1
=1

End-Prologque (Entry Point: TIHESADC): The size of the program is
compared with the current DSA address. If more space is required,
the RTSSVC macro performs this function (see Appendix D).

71

Object Program Initiation (Entry Point: TIHESADD): The size of the

program is calculated with the information given in UTT. The address
of the last byte of a user's program is stored in the adcon area.

Time Function (Entry Point:

IHESADE): Convert time from binary to

EBCDIC.

Errors Detected

RECURSIVE

BLOCK OR ON-UNIT.

Local Variables

DIMENS (G1)

VIRTUAL (GO) Virtual
ADDOPEV (P4) Address
ADDED (P5) Address
ADFCB (P2) Address
ADUTT (G4) Address
ADCOMMUN (P5) Address

Program Interface

Entry Points

IHESADA

THESADB

IHESADC

IHESADD

IHESADE

Linkage:

(807)

Dimension of the array

origin

of
of
of
of
of

Called by:

Linkage:

array or string dope vector
data element descriptor
file control block

user terminal table

user's communications area

P7: A(BAR)
Gl: Length of DSA
Compiled Code

P7: A(Parameter List)

Parameter List: A(Dope Vector)

Called by:

Linkage:

Called by:

Linkage:

Called by:

Linkage:

Called by:

Exit Conditions

Normal exit.
Abnormal exit.

Return to caller.
Call IHEERRB.

Routines Called

IHEERR

A(DED)
Compiled Code

None
Compiled Code

None
Compiled Code

P7: A(TARGET)
Compiled Code (Entered at
IHESADE)

Error Routine

Global Variables

72

BAA
L#2048

Block Adcon Area
Number of 2048-byte blocks allocated (UTT)

TITLE: GO TO INTERPRETER (IHESAF)

Program Definition

Purpose and Usage

The GO TO Interpreter frees all chain elements up to the DSA to which
the label belongs.

Description

If the pointer to BAA (block adcon area) is not equal to the pointer
to BAA in the present DSA, this routine:

1. Sets the BAA's DSA address to the base address.
2. Updates the current DSA address.
3. Repeats the test.

If the pointer to BAA is equal to the pointer to BAA in the current
DSA, a branch is made to the specified label.

Errors Detected

ILLEGAL LABEL VARIABLE GO TO. (809)
Local Variables
None

Program Interface

Entry Points
IHESAFC Linkage: P7: A(Parameter List)
Parameter List: Offset to Label
Offset to BAA
Exit Conditions
Normal exit. Return to caller.
Routines Called
None

Global Vvariables

CDSA Current DSA Address

73

TITLE: LIBRARY SVC DIRECTOR (TIHESVC)

Program Definition

Purpose and Usage

The Library SVC Director handles all SVC interfaces with the CALL/360-0S
System for the library except for SVC 8.

Description

The SVC code is picked up from the parameter list in the halfword
following the return point, and the proper SVC is executed. Return
is to the location immediately following the parameter list.

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

Normal linkage and entry at IHESVCA. Halfword SVC code immediately
after BALR to this routine.

Exit Conditions

Return is to the location two bytes after BALR.
Routines Called

None

Global Variables

None

74

TOTAL CONVERSION PACKAGE

The following routines constitute the Total Conversion Package (TCP).
The routines can be organized in functional groups, as explained in
the previous section of this manual and detailed below. Descriptions

of the routines are given on succeeding pages. Within each functional

group, the routines are discussed in alphabetic order, according to
their mnemonics.

Edit-directed I/0 directors:

F/E-Format Input Director (IHEDIA)
A-Format Input Director (IHEDIB)
C-Format Input Director (IHEDIM)
F/E-Format Output Director (IHEDOA)
A-Format Output Director (IHEDOB)
C-Format Output Director (IHEDOM)

Type conversion directors:

Character String to Arithmetic (IHEDCN)
Arithmetic to Character String (IHEDNC)

Mode conversion director:
Zero Real or Imaginary Part (IHEUPA)
String conversion routines:

Complex External to String Director (IHEVCS)
Character String to Character String (IHEVSC)

Arithmetic conversion routines and director:

Arithmetic Conversion Director (IHEDMA)

Float Intermediate to Packed Decimal Intermediate (IHEVFA)
Float Intermediate to Fixed Binary (IHEVFB)

Float Intermediate to Float Short or Long (IHEVFC)

Fixed Binary to Float Intermediate (IHEVFD)

Float Source to Float Intermediate (IHEVFE)

Packed Decimal Intermediate to Float Intermediate (IHEVPA)
Packed Decimal Intermediate to F-Format (IHEVPB)

Packed Decimal Intermediate to E-Format (IHEVPC)

String with Format to Packed Decimal Intermediate (IHEVPE)
Table of Powers of Ten (IHEVTB)

Constant analysis routine:

Data Analysis Routine (IHEVCA)

75

TITLE: F/E-FORMAT INPUT DIRECTOR (IHEDIA)

Program Definition

Purpose and Usage

The F/E-Format Input Director directs the conversion of external data
with F/E-format to an internal data type.

Description

Functionally speaking, entry points IHEDIAA and IHEDIAZ are equivalent,
as are IHEDIAB and IHEDIAY. IHEDIAA and IHEDIAB receive parameter
requirements via a parameter list; IHEDIAZ and IHEDIAY receive parameter
requirements via a file control block.

The ILCA switch byte WSWA is used to direct processing:

Bit X'40*' identifies C-Format Input Director as the caller of
the module, and

Bit X'01' indicates conversion to involve the imaginary part of
a complex data item.

A source dope vector with a string length of zero or less leaves the
target unchanged. Acceptable DED flag byte patterns follow in
hexadecimal format:

Cc8-C9 F-format character string

CA-CB E-format character string (single precision)
DA-DB E-format character string (double precision)
2B-2B A-format character string

8C-8D Fixed-point binary

8E-8F Short floating-point binary

9E-9F Long floating-point binary

Errors Detected

None

Work Area

Library work area is obtained from level three.

Local Variables

NWRK Nonrelocatable library work area
PWRK

PLIST Relocatable library work area
PRAMS

Program Interface

Entry Points

IHEDIAA - Entry for F-format input string
P7 = A (Parameter List)

where Parameter List:
A (Source)
A (Target)

A (Target DED)
A (Source FED)

76

IHEDIAB - Entry for E-format input string. cCalling sequence is
as described for entry IHEDIAA.

IHEDIAZ - Functionally equivalent to IHEDIAA

P7
PCB

wu

A (FCB)
A (Buffer)

A (Current Buffer)
A (Target)

A (Target DED)

A (Real FED)

IHEDIAY - Functionally equivalent to IHEDIAB; calling sequence is
as described for entry IHEDIAZ.

Note: Library Common Variables:

WSWA
WSWA

Exit Conditions

X* uo*
X* o1°*

If module is called by C-Format Input Director.
If component to be converted is the imaginary part
of a complex data item.

Normal exit. Return to caller.

Routines Called

IHEDMA
IHEDNC
IHEUPA
IHEVCA
IHEVSC

Global Variables

WCNP
WCN1
WFCB
WFED
WSDV
WSWA
WTEMP

Arithmetic Conversion Director
Arithmetic to Character String

Zero Real or Imaginary Part

Data Analysis Routine

Character String to Character String

77

TITLE: A-FORMAT INPUT DIRECTOR (IHEDIB)

Program Definition

Purpose and Usage
The A-Format Input Director supervises the conversion necessary during
edit-directed stream I/O to convert an external A-format data item
(described by an A-format) to any internal data representation
(specified by a DED) in the data stream.
Description

1. FED field width w is tested as follows.

a. If w is less than or equal to zero, test target type.

(1) An arithmetic target type is considered an error.

(2) If target is a character string, call Character String
to Character String routine (IHEVSC) to effect transfer
of source string to target.

b. If w is greater than zero, test target type.

(1) If target type is character string, call Character
String to Character String routine (IHEVSC) to effect
transfer of source string to target.

(2) If target type is arithmetic, call the Character String
to Arithmetic routine (IHEDCN) to effect conversion
from source string to target.

2. IHEIOG is called to obtain data from buffer. WAFORMAT is set
to X'FF' before the call to allow IHEIOG to accept a carrier
return as a valid input character. WAFORMAT is reset to X'00°
on return.

3. Return is made to caller.

Errors Detected
None
Work Area
Library work area is obtained from level three.
Local Variables
PLIST Relocatable library work area

Program Interface

Entry Points

IHEDIBA - Entry for A-Format
P7 = A (File Control Block)

where File Control Block:

A (Buffer)

A (Current Buffer)

A (Target/Target Dope Vector)
A (Target DED)

A (Real FED)

78

Exit Conditions
Normal exit. Return to caller via the link register.

Routines Called

IHEDCN Character String to Arithmetic
IHEIOG Get Data Field from Input Buffer
IHEVSC Character String to Character String

Global Vvariables
WFCB
WSDV
WTEMP
WAFORMAT
Comments

Called by compiled code.

79

TITL

E: C-FORMAT INPUT DIRECTOR (IHEDIM)

Program Definition

Purpose and Usage

The C-Format Input Director supervises the conversion necessary during
edit-directed stream I/0 to convert an external data C-format data
item (described by two F/E-format elements) to an internal C-format
representation (specified by a DED) in the data stream.

Description

1.

2.

The C-format switch in LCA (address WSWA) is set and the target
data type is tested.

A.

If data type is string, construct DED's describing the real
and imaginary parts of the source complex number string.
The Data Analysis Routine (IHEVCA) is used to initialize -
the DED. For complex components for which the F/E-Format
Input Director (IHEDIA) is specified, the precision and
scale factor are placed in the respective DED. If any
director other than IHEDIA is specified, call the Complex
External to String Director (IHEVCS) to effect the
conversion. Otherwise, call the F/E-Format Input Director
(IHEDIA) to effect conversion.

If data type is not string, construct DED and compute
precisions and scale factors as described for item a, above.
Call the F/E-Format Input Director (IHEDIA) to effect
conversion of source strings to target.

Return is made to caller.

Errors Detected

None

Work

Area

Library work area is obtained from level four and level E.

Local Variables

DOPV
DEDS
SWIT

PLIST
RFPSV
RGPSV
QLIST

} Nonrelocatable library work area

Relocatable library work area

Program Interface

Entry Points

80

IHEDIMA - Entry for C-Format
P7 = A (File Control Block)

where File Control Block:

A (Buffer)
A (Current Buffer)
A (Target/Target Dope Vector)

A (Targe
A (Flag
A (Flag

Exit Conditions

Normal exit. Return to user via the link register.

t DED)
Byte, Real FED)
Byte, Imaginary FED)

Routines Called

IHEDIA
IHEIOG
IHEVCA
IHEVCS

Global Variable

WCNP
WCN1
WFCB
WRCD
WSDV
WSWA
WTEMP

Comments

Called by compi

F/E-Format Input Director

Get Data Field from Input Buffer
Data Analysis Routine

Complex External to String Director

S

led code.

81

TITLE: F/E-FORMAT OUTPUT DIRECTOR (IHEDOA)

Program Definition

Purpose and Usage
The F/E-Format Output Director supervises the conversion necessary
during edit-directed stream I/0 to convert an internal data

representation (described by a DED) to an external F/E-format data
item (specified by an F/E-format element) in the data stream.

Description
1. E- or F-format output is indicated, according to the entry point
by which the module is accessed. Entering at IHEDOAA specifies
F-format output; IHEDOAB specifies E-format output.
2. The source data type is tested.

a. If source is a character string, call Character String to
Arithmetic routine (IHEDCN).

b. If source is arithmetic, call Arithmetic Conversion Director
(IHEDMA) .

3. Return is made to caller.
Errors Detected
None
Work Area
Library work area is obtained from level three.
Local Variables
PLIST Relocatable library work area

Program Interface

Entry Points

IHEDOAA - Entry for F-Format Output
P7 = A (Parameter List)

where Parameter List:

A (Source/Source SDV)
A (Source DED)
A (FED)

THEDOAB - Entry for E-Format Output
Arqguments as for IHEDOAA

IHEDOAZ - F-Format Output with File Control Block
P7 = A (File Control Block)

where File Control Block:

(Buffer)

(Current Buffer)
(Source/source SDV)
(Source DED)

(Real FED)

i e

82

THEDOAY - E-Format Output with File Control Block
Arqguments as for IHEDOAZ

Exit Conditions
Normal exit. Returmn to caller via the link register.

Routines Called

IHEDMA Arithmetic Conversion Director
IHEDCN Character String to Arithmetic
IHEIOD Output Data to the Buffer Area and Communication

with CALL/360-0S
Global variables

WBUFF
WFCB
WFDT
WSDV
WTEMP

83

TITLE: A-FORMAT OUTPUT DIRECTOR (IHEDOB)

Program Definition

Purpose and Usage
The A-Format Output Director supervises the conversion necessary during
edit-directed stream I/0, to convert an internal data representation
(described by a DED) to an external A-format data item (specified by
an A-format element) in the data stream. If the internal representation
is a character string, the A-format element may be implied.
Description

1. The FED's w specification is tested.

a. If the w specification is less than or equal to zero, test
the source data type. An arithmetic data type is considered
an error. Otherwise, test length of character string.

If a string length is less than or equal to zero, the target
remains unchanged. Otherwise, set w equal to the length
of the data string and set up character DED.

b. If the w specification is greater than zero, set up character
DED.

2. A target SDV is set up, and the source data type is tested.

a. If data type is a character string, call the Character
String to Character String routine (IHEVSC) to effect
assignment of the source string.

b. If data type is arithmetic, call the Arithmetic to Character
String routine (IHEDNC) to effect the conversion and
assignment.

3. Return is made to caller.

Errors Detected

A FORMAT WIDTH UNSPECIFIED AND LIST ITEM NOT TYPE STRING. (702)
A FORMAT WIDTH UNSPECIFIED ON INPUT. (704)

Work Area
Library work area is obtained from level three.
Local Variables

PLIST Relocatable library work area

Program Interface

Entry Points

IHEDOBA - A(w) Format Output
P7 = A (File Control Block)

where File Control Block:

(Buffer)

(Current Buffer)
{Source or Source SDV)
(Source DED)

(Real FED) IHEDOBA only

i

84

IHEDOBB - A-Format Output
Arguments as for IHEDOBA
Exit Conditions

Normal exit. Return to caller via the link register.
Abnormal exit. Call IHEERRB to raise error condition.

Routines Called

IHEDNC Arithmetic to Character String
IHEVSC Character String to Character String
IHEIOG Get Data Field from Input Buffer

Global Variables

WBUFF
WFCB
WSDV
WTEMP

85

TITLE: C-FORMAT OUTPUT DIRECTOR (IHEDOM)

Program Definition

Purpose and Usage

The C-Format Output Director supervises the conversion necessary during
edit-directed stream I/0 to convert an internal data representation
(described by DED) to an external C-format data item (specified by

two F/E-format elements) in the data stream.

Description

1. The source data type is tested.

Ade

b.

If data type is string, create DED's for each part of the
complex number to be output. Call the Data Analysis Routine
(IHEVCA) to initialize the DED(s). Compute FED parameters
as required. Test mode of source.

(1) If source string is real, set for zero imaginary part.
Ooutput the C-complex via the specified real and imaginary
output directors (IHEDOA, IHEDMA, and IHEDCN).

(2) If source string is complex, call the Zero Real or
Imaginary Part routine (IHEUPA) to delimit the real
and imaginary parts of the C-format. Output the C-
complex as described in item (1), above.

If data type is arithmetic, compute FED parameters. Test

mode of source. Output as described in items (1) and (2).

2. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level four.

Local Variables

WORK
PSWT
DED1
DED2
DED3
NFED
PSTRG

PWRK
PARAM
PLIST
QLIST
PNOW
PNXT

3\

q Nonrelocatable library work area

Relocatable library work area

s

Program Interface

Entry Points

IHEDOMA - Entry
P7 = A (File Control Block)

86

where File Control Block:

(Buffer)

(Current Buffer)
(Source/Source SDV)
(Source DED)

(Flag Byte, Real FED)
(Flag Byte, Imaginary FED)

PP

Exit Conditions
Normal exit. Return to user via the link register.

Routines Called

IHEUPA Zero Real or Imaginary Part

IHEVCA Data Analysis Routine

IHEVCS Complex External to String Director
IHEDOA F/E-Format Output Director

Global Variables

WCNP
WCN1
WCN2
WFCB
WORK
WRCD
WSWZ
WTEMP

87

TITLE: CHARACTER STRING TO ARITHMETIC (IHEDCN)

Progqram Definition

Purpose and Usage
Character String to Arithmetic converts a fixed-length character string
containing a valid arithmetic constant or complex expression to an
arithmetic target with specified scale, mode, and precision.
Description
1. Source string length is tested as follows.
a. A null string constitutes a valid string.

b. A string containing all blanks is considered an error.

c. A string containing embedded blanks in data is considered
an error.

d. A string type not compatible with target data type is
considered an error.

e. A valid string is converted to target specifications via
the Arithmetic Conversion Director (IHEDMA). Prior to
calling IHEDMA, description parameter values required by
the module must be computed. The Zero Real or Imaginary
Part routine (IHEUPA) is used to supply zero real or
imaginary components, as may be required by complex target
data types.

2. Error exit is to IHEERRB with the error code set to IHEERRCD
54.

3. Return is mad> to caller.
Errors Detected

CONVERSION. (600)
ERROR IN CONVERSION FROM CHARACTER STRING TO ARITHMETIC. (604)

Work Area
Library work area is obtained from level two.

Local Variables

TESTC Beginning of string-scan section
ENDCN Beginning of conversion section
WORK Nonrelocatable library work area
PRAMS

PLIST Relocatable library work area
HPSAV

Program Interface

Entry Points

THEDCNA - 1Initialize on source information and then convert
P7 = A (Parameter List)

where Parameter List:

88

A (Character SDV)
A (Character DED)
A (Target)

A (Target DED)

Exit Conditions

Normal exit. Return to caller via the link register.
Abnormal exit. Call IHEERRB to raise conversion error.

Routines Called

IHEDMA Arithmetic Conversion Director
THEUPA Zero Real or Imaginary Part
IHEERR Error Routine

Global Variables

WCN1
WCN2
WFED

89

TITLE: ARITHMETIC TO CHARACTER STRING (IHEDNC)

Program Definition

Purpose and Usage

Arithmetic to Character String converts any arithmetic source of
specified scale, mode, and precision to a character string.

Description
1. The scale and mode of the source are tested.

a. If source is real arithmetic, calls Arithmetic Conversion
Director (IHEDMA) to convert real source to an F/E-format
character string; then calls the Character String to
Character String module (IHEVSC) to move the generated F/E-
format character string to the target area.

b. If source is complex arithmetic, makes multiple calls to
the Arithmetic Conversion Director and Character String
to Character String modules (IHEDMA and THEVSC, respectively)
to effect the required conversion. Calls Zero Real or
Imaginary Part module (IHEUPA) as required to generate
intermediate real/imaginary zero F/E-format character
strings.

2. Return is made to caller.
Errors Detected
None
Work Area
Library work area is obtained from level two.
Local Variables
PSWT
EDIT Nonrelocatable library work area
DOPV
NWRKW

SAV1
SAV2 ¢ Relocatable library work area

SAV3
PLIST

S

Program Interface

Entry Points

IHEDNCA - Entry
P7 = A (Parameter List)

where Parameter List:
A (Source)
A (Source DED)

A (Target Dope Vector)
A (Target DED)

920

Exit Conditions
Normal exit. Return to caller via the link register.

Routines Called

IHEDMA Arithmetic Conversion Director
IHEUPA Zero Real or Imaginary Part
IHEVSC Character String to Character String

Global Variables

WCFD
WFDT
WINT
WRCD
WSWA
WTEMP

91

TITLE: ZERO REAL OR IMAGINARY PART (IHEUPA)

Program Definition

Purpose and Usage

Zero Real or Imaginary Part sets the real or imaginary part of complex
arithmetic data item equal to zero and moves a pointer from the real
part to the imaginary part or gets the address of the imaginary part
only.

Description

Entry at IHEUPAA zeroes the real part and moves pointer to end of real
part. Entry at IHEUPAB zeroes the imaginary part and/or moves pointer
to the imaginary part of the complex, depending upon the contents of
LCA address WSWA. If WSWA contains an X'04', only an update occurs.
Errors Detected: None

Work Area

Library work area is obtained from level zero.

Local Variables

Standard relocatable and nonrelocatable library work areas

Program Interface

Entry Points
IHEUPAA - Entry to zero real part of complex and move pointer
to imaginary part of complex target
P7 = A (Parameter List)

where Parameter List:

A (Real Part of Data)
A (DED)

IHEUPAB - Entry to zero imaginary part of complex and/or
move pointer to end of imaginary part of complex target

Arguments as for IHEUPAA
Input Parameter
WSWA = X'04' Update Only Switch
Exit Conditions

Normal exit. Return to caller via link register. WRCD is set to the
address of imaginary part of complex.

Routines Called: None
Global Variables
WRCD

WSWA
WSWC

92

TITLE: COMPLEX EXTERNAL TO STRING DIRECTOR (IHEVCS)

Program Definition

Purpose and Usage

The Complex External to String Director directs the conversion of
character representation of complex data to internal string data.

The character data is first converted to complex with attributes derived
from the real and imaginary parts of the source data (according to
arithmetic conversion package rules) and then converted to string.

Description
Compute the scale and precision of the resulting complex as follows:

s
p

max (gl, g2)
max (p1 - q1, p2 - gq2) + s + 1

where (pl,ql) and (p2,q2) denote the precision and scale of the real
and complex components of the source complex, respectively.

Set scale equal to 128+s.

1. If m < p £n (wvhere m and n denote the minimum and maximum
precision values possible for the mode, respectively), set the
precision equal to p.

2. If p is less than m, set precision to m.

3. If p is greater than n, set precision equal to n.

Test caller's point of entry.

1. If entered via a call to IHEVCSA, call the Arithmetic Conversion
Director (IHEDMA) to output F/E-format data strings. Two calls
to THEDMA are required, one for the real component and one for
the imaginary. The Zero Real or Imaginary Part routine (IHEUPA)
is used to locate address of the imaginary part of the complex
source.

2. If entered via a call to IHEVCSB, a single call to the Character
String to Character String routine (IHEVSC) effects the
conversion and transfer of the source to target.

Errors Detected

None

Work Area

Library work area is obtained from level three.

Local Variables

DED1
DED2
PSWT Nonrelocatable library work area
ENTY
INTR

PRMS Relocatable library work area
PLIST

93

Program Interface

Entry Points

TIHEVCSA - Complex extermnal to string conversion
P7 = A (Parameter List)

where Parameter List:

(start/End Addresses of Real Data)
(Real DED)

(Start/End Addresses of Imaginary Data)
(Imaginary DED)

(Target Dope Vector)

(Real FED)

(Imaginary FED)

L

IHEVCSB - Complex external to coded complex conversion
P7 = A (Parameter List)

where Parameter List:

(start/End Addresses of Real Data)
(Real DED)

(Start/End Addresses of Imaginary Data)
(Imaginary DED)

(Target)

(Target DED)

(Real FED)

(Imaginary FED)

PP

Exit Conditions
Normal exit. Return to caller via link register.

Routines Called

IHEDMA Arithmetic Conversion Director
IHEDNC Arithmetic to Character String
IHEUPA Zero Real or Imaginary Part

Global Variables
WFED

WRCD
WSWA

94

TITLE: CHARACTER STRING TO CHARACTER STRING (IHEVSC)

Program Definition

Purpose and Usage

Character String to Character String assigns a fixed or varying length
character string to a fixed or varying length character string.

Description
1. The length of the source string is tested.
a. If source string length is greater than or equal to target

string length, set source string length to target string
length.

b. If source string length is less than target string length,
compute the blank fill required to pad target string.

2. Source string is moved to target string.
3. Return is made to caller.
Errors Detected
None
Work Area
Library work area is obtained from level zero.
Local Variables
Standard relocatable and nonrelocatable library work areas.

Program Interface

Entry Points

IHEVSCA - Entry
P7 = A (Parameter List)

where Parameter List:

A (Source SDV)

A (Source DED)

A (Target SDV)

A (Target DED)
Exit Conditions
Normal exit. Return to caller via the link register.
Routines Called
None

Global Variables

None

95

TITLE: ARITHMETIC CONVERSION DIRECTOR (IHEDMA)

Program Definition

Purpose and Usage

The Arithmetic Conversion Director sets up the intermodular flow to
effect conversion from one arithmetic data type to another. (See
Figure 4-6 in the general discussion of the Total Conversion Package.)

Description

This module sets up one of two transfer vector patterns, depending
upon the source and target formats. They are:

1. Type 1

a. Source to intermediate (PDI or FLI)
b. Intermediate (PDI or FLI) to intermediate (FLI or PDI)
c. Intermediate (FLI or PDI) to target

2. Type 2

a. Source to intermediate (PDI or FLI)
b. No operation
c. Intermediate (PDI or FLI) to target

Note: PDI refers to Packed Decimal Intermediate. FLI refers to Float
Intermediate (a long-precision number).

The execution of the first module in the chain is effected through
a direct transfer from module IHEDMA. Subsequent executions are
effected indirectly through the setting of appropriate pointers in
the ICA.

The first routine to be executed is determined by inspecting the DED
describing the source data item. The third routine is determined by
inspection of the DED describing the target data item. The selection
of the second routine, if required, is determined by the need to convert
from one intermediate format to another in order to go from source

to target format.

Acceptable DED flag byte patterns follow in hexadecimal format:

7E E-format Reserved for use by other total conversion
7F F-format directors

8C-8D Fixed-point binary

8E-8F Short floating-point binary

9E-9F Long floating-point binary

C8-C9 F-format character string

CA-CB E-format character string (single precision)

DA-DB E-format character string (double precision)

Possible source to intermediate routines are:
1. F/E-Format to PDI (IHEVPE)
2. Float to FLI (IHEVFE)
3. Fixed Binary to FLI (IHEVFD)

Possible intermediate to target routines are:
1. PDI to F-Format (IHEVPB)
2. PDI to E-Format (IHEVPC)

3. FLI to Float (IHEVFC)
4. FLI to Fixed Binary (IHEVFB)

96

Possible intermediate conversion modules are:

1. PDI to FLI (IHEVPA) The modules require the use of routine
2. FLI to PDI (IHEVFA) IHEVTB which is a radix conversion table.

The last routine in the chain transfers control back to caller of
module IHEDMA via the link register.

Errors Detected
None
Work Area
Library work area is obtained from level zero.
Local Variables
ACO1 Length of the table containing the list of binary processors
ATO1 Table of target processor pointers
AT21 Table of source processor pointers
XTO01 Table of function index values

AT11 Table of base-conversion processor pointers

Program Interface

Entry Points

IHEDMAA
P7 = A (Parameter List)

where Parameter List:
A (Source)
A (Source DED)
A (Target)
A (Target DED)
Input Parameters

WFED = A (Input FED)
WFDT = A (Output FED)

Exit Conditions

Normal exit. Transfer control to IHEVFE, IHEVPE, or IHEVFD. This
module sets WRB1 to address of second routine, WRB2 to address of third
routine, and WRDC to contents of target and target DED.

Routines Called

IHEVPE String with Format to Packed Decimal Intermediate
IHEVFD Fixed Binary to Float Intermediate
IHEVFE Float Source to Float Intermediate

Global Variables

WRCD

97

Comments

Called by:

98

Compiled Code

IHEDIA
IHEDIB
IHEDIM
IHEDOA
IHEDOB
IHEDOM
IHEDCN
IHEDNC
IHEVCS

(F/E-Format Input Director)

(A-Format Input Director)

(C-Format Input Director)

(F/E-Format Output Director)
(A-Format Output Director)

(C-Format Output Director)

(Character String to Arithmetic)
(Arithmetic to Character String)
(Complex External to String Director)

TITLE: FLOAT INTERMEDIATE TO PACKED DECIMAL INTERMEDIATE (IHEVFA)

Program Definition

Purpose and Usage

Float Intermediate to Packed Decimal Intermediate directs the conversion
of a floating-point intermediate number to a packed decimal intermediate
number and stores the result into the library communications area (LCA)
to make it available to the routine scheduled next for execution by

the Arithmetic Conversion Director. (Intermediate arithmetic values

are long-precision numbers.)

Description

The long floating-point number currently. residing in the LCA address
WINT is converted to a packed decimal number with scale factor and
stored into WINT and WSCF, respectively.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

WORK Nonrelocatable library work area

Program Interface

Entry Points
IHEVFAA
Input Parameters

WINT
WBR2

Long floating-point intermediate number
A (Next routine entry point)

Exit Conditions
Normal exit. A branch is made to the address contained in LCA address
WBR2. This routine sets WINT to seventeen-digit (nine-byte) packed
decimal number and WSCF to scale factor in a binary word.
Routines Called
None
Global Variables
WBR2
WINT

WSCF
WSWC

929

TITLE: FLOAT INTERMEDIATE TO