
:==--- -- --- ----- ---- ---- -- ===::;=- -- -. Application Program

CALL/360 - OS
PL/I System Manual V olume II

Program Number 360A-CX-42X

The CALL/360-0S PL/I compiler (to be used with
the CALL/360-0S System on an IBM System/360
Model 50 or higher) is described in the four
volumes of this publication. The publication
is addressed to system programmers and customer
engineers who require a detailed knowledge
of the compiler. It contains a general overview
of the compiler and detailed information on
the compiler and runtime routines and macros
that perform required functions. Additional
information required to understand CALL/360-
OS PL/I compiler operations is provided in
several appendices.

Volume II contains information on runtime
support modules and the first part of a
directory to runtime routines.

GY20-0568-0

First Edition (August 1970)

This edition applies to Version 1, Modification Level 0, ofCALL/360-OS
(360A-CX-42X) and to all subsequent versions and modifications until
otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for reader's comments. If this form has been
removed, address comments to: IBM Corporation, Technical Publications Department, 112 East Post
Road, White Plains, New York 10601.

© Copyright International Business Machines Corporation 1970

CONTENTS - VOLUME II

Section 4 - Runtime Support Summary.
Library Interface Services (LIBINT) •••••••

I/O Management Package (IOMP) ••
I/O Record Format. • • • • •
Stream-Oriented I/O. • • • •

Handling of Interrupts Package (HIP)
Management of Object Program Package (MQPP) ••

Library Computational Services (LIBCOMP) •
Total Conversion Package (TCP) • • • • • • •

Structure of Total Conversion Package.
Conversions - Type Arithmetic. • • • • • • • • •

String Manipulation package (SIMP) • •
Arithmetic Function Package (AFUNC).

Definitions. • • • • • • •
Module Description • • • • • • • • • • • • • • •
SUIDIIlary. • • • • • • • • • • • • •

Mathematical Function package (MFUNC) ••
Definitions. • • • • • • • •
Module Description • • • • •
Summary. • • • • • • • • • •

Aggregate Manipulation Package (AMP)
Definitions. • • • • • • • • • • • •
Module Description • • • • • •
Summary. • • • • • • • • • • •

Section 5 - Runtime Routine Directory.
I/O Management Package • • • • • • • • • • • • • • • • • • •

Close (IHECLOSE) • • • • • • • • • • • • • • • • •
Data-Directed Input (IHEDDI) • • • • • •
Data-Directed Output (IHEDDO). • • •••
Perform Calculation of the subscript Values for an

Array Element (IHEDDP) • • • • • • • • • • • • •
Edit I/O Director (IHEDIO) • • • • • • • • • • • •
List- or Edit-Directed GET Initiation and Termination

(IHEIOA) •
Output Initialization with or without Skipping (IHEIOB) ••
output Data to the Buffer Area and Communication with

CALL/360-0S (IHEIOD) • • • • • • • • • • • •
Get Data Field from Input Buffer (IHEIOG) •••
Perform SKIP(w) Function for SYSPRINT (IHEIOP)
Edited Horizontal control Format Item (IHEIOX) • • • • •
List- and Data-Directed Input (IHELDI) • • • • • •
List-Directed Output (IHELDO). • • • • • • ••••
Open (IHEOPEN) • • • • • • • • • • • • • • • • • • •
Reset Disk Files (IHERSET) • • • • • • • • • • • •

Handling of Interrupts Package • • • • • •
Program Termination (IHEDUM) • • • • • • • • • •
Table of Error Messages and Indicators (IHEERN) ••
Error Routine (IHEERR) • • • • • • • • • • • • • • • •
On-ENDFILE and REVERT Initializer (IHEONREV)

Management of Object Program Package • • • • •
Output Director (IHEGPUT). • • • • • • • • • • •••
Initial Prologue, Expand DSA. End Prologue. Object

Program Initiation (IHESAD). • • • • • • ••••
GO TO Interpreter (IHESAF) • • • • •
Library SVC Director (IHESVC) ••••

Total Conversion Package • • • • • •
F/E-Format Input Director (IHEDIA) •
A-Format Input Director (IHEDIB) • •
C-Format Input Director (IHEDIM) •
F/E-Format Output Director (IHEDOA) •••
A-Format Output Director (IHEDOB) ••

1
1
1
2
3
6
7
8
8

11
13
18
19
20
21
24
26
27
27
32
35
36
36
38

39
39
40
41
43

45
47

48
49

50
52
53
54
56
58
59
60
62
63
64
65
68
69
70

71
73
74
75
76
78
80
?2
84

C-Format Output Director (IHEDOM) ••••
Character String to Arithmetic (IHEDCN).
Arithmetic to Character String (IHEDNC) •.••••
Zero Real or Imaginary Part (IHEUPA) • • .
Complex External to String Director (IHEVCS)
Character String to Character String (IHEVSC).
Arithmetic Conversion Director (IHEDMA) ••.•••••
Float Intermediate to Packed Decimal Intermediate

86
88
90
92
93
95
96

(IHEVFA) . • . • • •• 99
Float Intermediate to Fixed Binary (IHEVFB) ••••
Float Intermediate to Float Short or Long (IHEVFC)
Fixed Binary to Float Intermediate (IHEVFD) ••••
Float Source to Float Intermediate (IHEVFE) ••••
Packed Decimal Intermediate to Float Intermediate

(IHEVPA) •
Packed Decimal Intermediate to F-Format (IHEVPB) •
Packed Decimal Intermediate to E-Format (IHEVPC) •
String with Format to Packed Decimal Intermediate

100
• 101

· • . • 102
103

• • • . • 104
• • 105
• • . • • . 106

(IHEVPE) . • • • • • • • • • • • • • • • 107
· • • 108

109
• • 110

Table of Powers of Ten (IHEVTB). • • ••••
Data Analysis Routine (IHEVCA) • • • • • • .

String Manipulation Package. • • • • •
Character String Compare (IHECSC) ••••
Character String Assignment (IHECSM)
Character string SUBSTR (IHECSS) • •

Arithmetic Function Package. • • • • •
Speed. • •• •• • • • • • • • •
Accuracy • • • • • • • • • • .• • •
Arguments. • • • • • •••••
Binary Fixed Complex ABS (IHEABU) ••.
Short Float Complex ABS {IHEABW} .
Long Float Complex ABS (IHEABZ) •••
Real Binary Fixed MAX/MIN {IHEMXB}
Real Short Float MAX/MIN (IHEMXS) ••
Real Long Float MAX/MIN (IHEMXL) •
Short Float complex Division (IHEDZW).
Long Float complex Division (IHEOZZ) • •
Binary Fixed Complex Mult/Oiv (IHEMZU) •
Short Float Complex Mult (IHEMZW) ••••
Long Float Complex Mult {IHEMZZ} • • • •
Real Fixed Binary Integer EXP (IHEXIB) •
Real Short Float Integer EXP (IHEXIS) ••
Real Long Float Integer EXP (IHEXIL) • •
Z**N, Z Fixed Binary Complex (IHEXIU) ••
Z**N, Z Short Float Complex (IHEXIW) • •
Z**N, Z Long Float Complex (IHEXIZ) •••
Short Float Real General EXP (IHEXXS) ••
Long Float Real General EXP (IHEXXL) • •
Short Float complex General EXP (IHEXXW)
Long Float Complex General EXP (IHEXXZ).

• • • . . . 111
· • l1:t

• . • 115
· • . . 116

• . . • . 116
• • • • • 116

· 117
• • • • • • • • • . • 118

. . • • • . • • • 120
• 122
• 124

• . . 126
• 128

• • • 130
• • • 132

• • •• • • 134
• . • • ••• • • 136

· •• 137
• 138
• 140

• • • 142
• 144

· • • 146
• • • • • • • • 148

• • • 150
• • • • • . • • 152

• • 154
156

FIGURES - VOLUME II

Figure 4-1-
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11-
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.

GET and PUT Compiled Code Structure • •
Executable Format Scheme. • • • • • • •
Modular Linkage through Stream-Oriented I/O • • • • •
Changes of Data Type and Form • • • • • • • • •
Total Conversion Package Structure. • • • • • •
Arithmetic Conversion Subpackage Structure.
Flow through Total Conversion Package •
Arithmetic Operations •
Arithmetic Functions. •
AFUNC Level 0 • • • • •
AFUNC Level 1 • • • • •
AFUNC Level 2 • • • • .
Mathematical Built-In Functions •
Mathematical Functions with Real Arguments. . • • • •
Mathematical Functions with Complex Arguments •
MFUNC Level 0 • • • • • • • • • • • •
MFUNC Level 1 • • • • • • •
MFUNC Level 2 • • • • • • • • • • • • • •
Array Indexers. • • • • •
Arithmetic Array Functions. •

4
5
6
9

12
13
15
24
24
25
25
26
29
32
32
33
3q
35
38
38

SECTION 4 - RUNTIME SUPPORT SUMMARY

General information pertaining to the modules which support the run
time function is presented in this section. The modules are divided
into two main services:

1. Library Interface Services (LIBINT)

2. Library Computational Services (LIBCOMP)

Individual routines (modules) are explained in detail in the section
that follows.

LIBRARY INTERFACE SERVICES (LIBINT)

The CALL/360-0S PL/I library is the primary interface between the
CALL/360-0S PL/I object code and the system at object time. Most
system macro instructions are issued via library calls; this minimizes
the compiler's dependency on stability of the structure of SVC's
(supervisor Calls).

The Library Interface Services (LIBINT) modules perform the following
general functions:

1. Handle stream I/O requests from the CALL/360-0S PL/I object
program by interfacing with the I/O access methods. LIBINT
modules which perform this function are grouped into the I/O
Management Package (IOMP).

2. Handle conditions which cause interruption to the main flow
of a program at object time by interfacing with the system.
LIBINT modules which perform this function are grouped into
the Handling of Interrupts Package (HIP). The execution error
package (EXEP) is a subpackage of this package.

Note: In the text of this manual, all lowercase letters (rather
than initial uppercase letters followed by lowercase
letters) are used for subpackages to distinguish them from
packages.

3. Achieve dynamic management of the CALL/360-0S PL/I object program
(housekeeping, including GO TO interpretation, and allocation
and freeing of dynamic storage). LIBINT modules which perform
this function are grouped into the Management of Object Program
Package (MOPP).

I/O MANAGEMENT PACKAGE (IOMP)

The following I/O Management Package routines support CALL/360-OS PL/I
stream-oriented statements, options, and built-in functions:

IHECLOSE
IHEDDI
IHEDDO
IHEDDP
IHEDIO

IHEIOA
IHEIOB
IHEIOD
IHEIOG
IHEIOP

IHEIOX
IHELDI
lHELDO
lHEOPEN
IHERSET

1

I/O Record Format

Each record of a CALL/360-0S disk file is 3440 bytes long. The first
seven bytes are used for record description. The remaining bytes are
used for data.

The record description information is coded as follows:

bytes 1-4:

byte 5:

byte 6:

byte 7:

number of bytes used in record
(includes first seven bytes>

bit 0:

bits 1-7:

bit 0:

bit 1:

bits 2-7:

=0 This is not last logical record
in file.

=1 This is last logical record in
file.

zero (Not currently used.>

=0 Internally coded file
=1 Externally coded file
=0 All items in record of same

arithmetic type (Note: cannot
be used if strings in record>

=1 Not all items in record of same
arithmetic type or for externally
coded file

zero (Not currently used.>

zero (Not currently used.>

Externally Coded Files

Bytes 8 to 3440 contain a stream of EBCDIC characters. The number
of characters in the file is determinable from the record length.

Internally Coded Files

If the record is of the type that all items in the record are of the
same arithmetic type, then byte 8 contains the code and the data items
follow in a continuous stream. The record count (bytes 1 to 4> is
used to determine the number of items in the record. (Notice that
this gives proper boundary alignment for all arithmetic items in the
record.> Though internal records formatted as described above are
processed correctly, CALL/360-0S PL/I internal I/O formats all internal
records as described below.

If all items are not of the same type, then starting in byte 8, each
record consists of a series of specifications concatenated together
(the record count is used to determine the number of specifications).
Each specification consists of at least three fields. The syntax of
a specification is:

COde{rePlica~ion item 0 0 oj
length Item 0 0 0

2

where:

Code is one byte in length and contains:

bits 0-4: zero

bits 4-7: =0001 if character string
=0010 if fixed item
=0011 if short float

=1010
item =1011

if fixed complex item
if short float com
plex item

=0111 if long float item =1111 if long float complex
item

Replication is one byte indicating the number of fixed or float
items following it.

Length is one byte indicating the length of the character string
item following it.

In this record format, specifications are not split across records,
and boundary alignment for arithmetic items is not assured.

Input End of File Detection

On input, end-of-file can be recognized either by a record length of
8 or by bit 0 of byte 5 being set to one. Before obtaining the next
record from disk, this bit is checked. If it is one, there is no need
to read the next record because the record just processed was the last
record in the file.

Coding of Byte 6

The codes in byte 6 are set so tpat a test under mask of bits 0 and
1 together determines the type of record. An all ones result identifies
an externally coded file. Mixed ones and zeros denotes internally
coded, not of same type. All zeros signifies internally coded, all
of the same type.

Coding of Code Field for Internal Format

If bit 6 of the code field is one, the type ~s arithmetic. If
arithmetic and bit 7 is one, the scale is float. Bits 5 through 7 give the
length of the floating item. If the scale is fixed, then making bit 7
a one gives the length of the fixed item. (All lengths are length - 1
as required for MVC command.)

Stream-Oriented I/O

The use of stream-oriented I/O allows a program to ignore record
boundaries and handle data fields instead. The GET and PUT statements
are used to transmit data between storage and records which exist in
a buffer. IOMP modules assume that the compiled code for the GET and
PUT statements will have the general structure of three call sets to
the library, as illustrated in Figure 4-1.

3

)

2

InitializatIOn
Call Set

Data
SpeCificatIOn
Calli

Data

I
• • •

~
Speufll.:a tlOn
Call n

It

Termination Call

1 Initlailzatlon Indude ... lhelklng
the ~Pt'lIflt'd hie dnd rt'rformll1~
JIl) Ilt:Lt! dr} opefdtion'l

2. Data SpoclflcatJOn fhls ... erle ... of
calls perform'! one of the three type~
uf ddta "'penflcatlOn

a, List.dlrected
b. Data-directed
c. Edlt .. directed-dlffers from

list-directed and data-directed In that
matching of data-Itst Items With forma
list Items IS performed at object hme
by compiled code Instead of at
compIle time.

3. TerminatIOn: Performed by the same
lIbrary module that performed the
initializatIOn.

Figure 4-1. GET and PUT Compiled Code Structure

The data-specification call-set is handled differently for edit-directed
I/O than for data-directed or list-directed I/O. The matching of data
list items and format-list items at object time by compiled code is
necessitated by the CALL/360-0S PL/I language specifications for edit
directed I/O. Format items may have expressions for replication factors
and format subfields, and these expressions may be evaluated with
values read in during the same, or another, GET operation. Furthermore,
due to this use of dynamic replication factors and to the use of array
data-list items with variable bounds, there may not be a predeterminable
matching between data-list and format-list items.

To implement dynamic matching, the "executable format scheme" is used.
Basically, this scheme calls for two location counters, one for a
compiled series of data-list item requests (the "primary code") and
the other for a compiled series of format-list item specifications
(the "secondary code").

'The executable format scheme depends upon the edit-directed I/O
directors (IHEDIA, IHEDOA, IHEDIM, IHEDOM, IHEDIB. and IHEDOB) in the
Total Conversion Package (Tep) of the library to determine and supervise
the performance of the necessary conversion, as dictated by the internal
representation of the data item (described by its data element
descriptor) and its specified external representation (described by
a format element descriptor).

Figure 4-2 illustrates the executable format scheme when there are
three data items in the data list and two format items in the format
list. Note that the number of data-list items determines the duration

4

of the operation of the executable format scheme. The secondary code
is reused from the beginning until all the primary code is exhausted.

Figure 4-3 describes the modular linkage through stream-oriented input
and output.

Primary Code

GET/PUT
Initialization

~
Request
datum 1

transmission

Request
datum 2

transmission

Request
datum 3

transmission

~
GET/PUT

TermmatIOn

~

Secondary Code

Specify

format

~
I

"\
,.J

Specify
"\ "\ . format

,.J 2 ,/

'\ "\
./ ,/

Figure 4-2. Executable Format Scheme

Edit-Directed

I/O Directors

Edit-directed

I/O director

A

(I) (3)

Total
ConversIOn

Package

Edit-directed
I/O dlfector

B

(2)

5

IHEDDI . IHEDDO IHEIOX . IHEIOB . IHFIOA

Edited Honzontal
Output list· or Edlt-

Data-DIrected Data-DIrected Edit-Directed
Control foonnal

IDitlahzation DIrected GET
Input Output 1/0 Duectol'S with or Initiation and

Item
Without Slupplng Ternnnation

1 I I I • • • IHELDI . IHEDDP IHELDO . IHEIOP

Perfonn Calcula-
Perronn SKIP (w) Llst- and Data- bon of the Sub- List-Dlfccted

Directed scnpt Values for Output Function for
Input an Array Element SYSPRINT

•
1 I

~ • •
IHEOCN IHEDNC IHEERR

Oaarac::ter Stnnl Anthrnebc to Error
to Anlhmetlc Character Shin, Routine

IHEVCA IHEVCS IHEVse

Data AnalySIS
Complex Ex ternal Character Stnng

Roobne

Figure 4-3.

to to Character
Stnng Director Stnng

IIIEIOD

Output Data 10
the Buffer 4.rea
and Commun ..

callan With
C ALL/360-0S

Note I) An astensk mdleates that the module can be entered directly from the compiled code
2) The emt-duected 1/0 duectors are IHEDOB, IHEDOM, and IHEDOA They and

IHEDCN, IHEDNC, IHEVCA, IHEVCS, and IHEVSC are part of the Total Conver..H>ll
Package of the CALL/360-0S PL/I library.

Modular Linkage through stream-Oriented I/O

HANDLING OF INTERRUPTS PACKAGE (HIP)

I
• IHEERR

Error
Routine

.

The Handling of Interrupts Package routines handle conditions that
cause interruption to the main flow of a program at object time. These
conditions are CALL/360-0S PL/I-defined execution error conditions
(for which it is possible to specify an on-unit).

Execution error handling is performed by the routines IHEERR and IHEERN.
These two routines and the routine IHEDUM make up the execution error
package (EXEP). EXEP and the routine IHEONREV constitute HIP.

Control is passed to IHEERR as the result of an execution error. If
IHEERR determines that an error message must be printed, it calls
IHEERN to do the printing.

For CALL/360-OS PL/I-defined conditions, the following main sequence
of events takes place in IHEERR:

6

1. Recognize the condition.

2. If condition disabled, return to interrupted program.

3. If there is an on-unit. generate code to call the on-unit.

If there is no on-unit. take standard system action for the
condition and return to the interrupted object code or terminate.

To carry out these operations, IHEERR depends on information passed
when the actual interrupt occurs, along with information set by the
compiled code in the DSA for each procedure. The information passed
when the actual interrupt occurs is contained in the user's
communications area. The information set by the compiled code is
contained in a fixed portion of the DSA for each procedure. The
compiled code prologue allocates space in the DSA for every ON statement
appearing in the block, and for each ON-condition which is disabled
within the block. Standard system actions are performed for the enabled
conditions which have no on-units associated with them.

For errors in the library modules, an error-code is set in the library
communications area (LCA). This error code is used by IHEERR to
determine what action is to be taken.

MANAGEMENT OF OBJECT PROGRAM PACKAGE (MOPP)

The Management of Object Program Package (MOPP) is concerned with the
dynamic management of a CALL/360-0S PL/I program. The general
housekeeping requirements are performed, along with the allocation,
freeing, and controi of dynamic storage.

The requirements for block housekeeping are as follows.

1. Prologues and Epilogues. Prologues and epilogues are the
routines executed on entry to and exit from a procedure or begin
block. The MOPP modules support certain sections of the prologue
and epilogue which are common to all prologues and epilogues.
These common functions are:

a. To preserve the environment of the invoking block.

b. To obtain AUTOMATIC storage for the block.

c. To provide chaining mechanisms to enable the program's
progress to be traced.

The epilogue functions performed by the GO TO Interpreter
(IHESAF) release storage for the block and recover the
environments of the invoking block before returning control
to it. Since there are two types of block, a means of
identifying the storage associated with each one is provided.

2. Treatment of GO TO. In CALL/360-0S PL/I, a GO TO statement
involves not only the transfer of control to a particular label
in a block, but also the termination of contained blocks.
Therefore, both a return address and a means of identifying
the AUTOMATIC storage associated with the block to be made
current are required. A pointer address constant area for each
block is required. The logic for interpreting GO TO statements,
in order to perform these housekeeping functions, is contained
in IHESAF.

3. AUTOMATIC Variables. A special type of AUTOMATIC storage area
is necessary for variables whose extents are not known at compile
time. The storage obtained for a particular block must be
associated with that block for epilogue purposes.

1

LIBRARY COMPUTATIONAL SERVICES (LIBCOMP)

The Library computational Services (LIBCOMP) modules operate on data
and shape it to the user"s requirements.

A library computational services module exists for anyone of the
following reasons:

1. To support one of the built-in function names listed under
"Mathematical Built-In Functions· in Appendix A of the
CALL/360-0S PL/I Language Reference Manual.

2. To support one of the built-in function names listed under
·Arithmetic Built-In Functions· in Appendix A of the
CALL/360-0S PL/I Language Reference Manual.

3. To support often-used arithmetic operations.

4. To support one of the built-in function names listed under
·String Functions· in Appendix A of the CALL/360-0S PL/I
Language Reference Manual.

5. To support often-used string operations.

6. To support one of the built-in function names listed under
"Generic Functions for Manipulation of Arrays· in Appendix A
of the CALL/360-0S PL/I Language Reference Manual.

1. To support data representation conversion.

8. To perform services for other LIBCOMP routines.

The LIBCOMP modules can be organized in two groups:

Conversion
Total Conversion Package (TCP)
--includes arithmetic conversion package (ACP)
String Manipulation Package (SIMP)

Function support
Arithmetic Function Package (AFUNC)
Mathematical Function Package (MFUNC)
Aggregate Manipulation Package (AMP)

Note: In text of this manual, all lowercase letters (rather than
initial uppercase letters followed by lowercase letters) are used
for subpackages to distinguish them from packages.

Some built-in function names are supported by in-line code generation.
Built-in funct~on names in this category are:

SIGN
FLOOR
CEIL
TRONe
MOD
CONJ
LBOUND

HBOUND
DIM
CHAR
COMPLEX
IMAG
REAL
ABS(real argument)

TOTAL CONVERSION PACKAGE (TCP)

CALL/360-0S PL/I restricts the user in selecting the form of
representation of his data, both on the external medium and in storage
internally. However, considerable flexibility is permitted in

8

specifying changes of data type and form. The Total Conversion Package
controls editing and data conversion. It is designed to implement
the full set of editing and conversion functions. The complete language
range is specified in Figure 4-4, except for complex items, for which
the real and imaginary parts are treated separately.

~ FROM
Internal Data Type Output Format ----- --..........-

FIX FLT CS F E A

I FIX X X X X X X

Internal
FLT X X X X X X

Data

I CS X X X X X X , F X X X X X

Format E X X X X X
Items

t A X X X X

Figure 4-4. Changes of Data Type and Form

To avoid unnecessary duplication of code, use is made of standard
intermediate forms. This reduces the number of library routines
required to cover logical converstions to less than 25. All the
routines contained within the Total Conversion Package are called by
means of the CALL/360-OS PL/I standard calling sequence.

All data conversions are handled by the Total Conversion Package.
The routines in this package differ from the routines in the other
four LIBCOMP packages in three major ways:

1. The TCP routines do not exist to support built-in functions
specified in Appendix A of the CALL/360-0S PL/I Language Reference
Manual, but rather to implement the rule that conversion should
be possible from anyone CALL/360-0S PL/I data representation to
any other.

2. The TCP routines do not return a new value; rather, they return
a new representation of the same value they were presented with
as an argument.

3. Some of the TCP routines function as directors. Given the input
representation and the desired returned representation, a
director routine is incapable of performing this conversion
within itself. However, it does supervise the linkage to other
TCP routines (including other directors) which can perform this
conversion. This linkage to other routines is transparent to
the user.

The TCP routines can be organized in the following functional groups:

1. Edit-directed I/O directors
2. Type conversion directors
3. Mode conversion director
4. string conversion routines
5. Arithmetic conversion routines and director
6. Constant analysis routine

9

The edit-directed I/O directors supervise the conversion that is
necessary during edit-directed stream I/O. On input, a character
string in the data stream (which is described by a format item in the
format list of the GET statement) must be converted to an internal
data representation (which is described by the attributes associated
through a OED with the identifier which appears in the data list of
the GET statement). On output, the process is reversed.

The director used for a particular I/O operation depends on the type
of format item being used and whether the operation is input or output.
There are three general types of format items: real arithemtic, complex
arithmetic, and string.

The TCP routines which are directors for real arithmetic format items are:

System Name

IHEDIAA
IHEDIAB
IHEDOAA
IHEDOAB

Forma t Item Type

Input with F-format item
Input with E-format item
Output with F-format item
OUtput with E-format item

The TCP routines which are directors for complex arithmetic format
items are:

system Name

IHEDIMA
IHEDOMA

Format Item Type

Input with C-format item
OUtput with C-format item

A C-forrnat item is two real arithmetic format items, the first for
the real part and the second for the imaginary part. They need not
be of the same type.

The TCP routines which are directors for string format items are:

system Name

IHEDIBA

I HEDO BA

IHEDOBB

Forma t I tern Type

Input with A-format item

OUtput with A-format item (field
width specified)

output with A-format item (no field
width specified)

The ~ conversion directors supervise conversion between string and
arithmetic data. These directors have an application during list
directed and data-directed I/O operations where character-string
representations of arithmetic and string constants are converted to
internal data representations. The TCP routines which perform type
conversion are:

System Name

IHEDCNA

IHEDNCA

10

Conversion Function

From a character-string representation
(which includes a character representation
of a valid arithmetic constant or complex
expression) to an arithmetic representation
(of specified mode, scale, and precision)

From an arithmetic source (of specified
mode, scale, and precision) to a character
string

The mode conversion director handles complex arithmetic data.

System Name

IHEUPAA

IHEUPAB

Function

For a coded complex representation, zero
the real part and return a pOinter to
the imaginary part

For a coded complex representation, return
a pointer to the imaginary part and/or
zero the imaginary part

The string conversion routines perform representation conversion from
one string type to another string type. There is one string type from
the point of view of these routines, fixed-length character-string (FLC).

There are two string conversion routines:

System Name

IHEVCSA
IHEVSCA

Conversion Function

Complex character to internal string
Character-string assignment (from FLC)

The arithmetic conversion routines perform all conversions where both
the input representation and the returned representation are arithmetic.
An arithmetic representation includes not only the internal arithmetic
representations <defined in the discussions of MFUNC and AFUNC), but
also character strings in the data stream that are arithmetic
representations by virtue of being in the form of arithmetic constants
under list-directed and data-directed data transmission, or by virtue
of being paired with arithmetic format elements under edit-directed
data transmission.

The Arithmetic Conversion Director (IHEDMA) performs the fUnction of
director for a given conversion. IHEDMA sets up a sequence of calls
to two or three other arithmetic conversion routines. At the end of
this sequence, the desired arithmetic conversion will have been
performed. However, this sequence is transparent to the user and
IHEDMA appears to return the returned representation.

The user, compiler, or library cannot invoke any of the other arithmetic
conversion modules directly; instead they must be invoked indirectly
through director entry point IHEDMAA. The functions of these modules
are not specified here, but each is described in the next section.

The constant analysis routine scans the character representation of
an arithmetic constant, determines its mode, scale, and precision,
and then creates a OED that reflects these attributes.

System Name Function

IHEVCAA Create a DED for an arithmetic constant

Structure of Total Conversion Pack~qe

To perform a change from a source data item to a target data item may
involve a succession of steps and the use of several individual library
routines within the Total Conversion Package. The structure of the
package is shown in Figure 4-5.

11

"---C-'F-oL.rma- t --.., _Two dlJeCtL at tlus level.

Complied Code

Input/Output Directors
(IHEDlM, IHEDOM)

F/E- and A·Format _ Four directors at tlus le.el.
Input/Output Directors

(lHEDlA, IHEDlB,
IHEDOA,IHEDOB)

Two directors I.t tlus leyel. _r--C-ha-r-ac-te r-St-n-ng-'--,

Anthmetlc Directors
(IHEOCN, IHEDNC)

Arithmetic
ConversIon DIrector

(IHEDMA)

Anthmetic
Conversion Routmes

(IHEVFA, IHEVFB, IHEVFC,
IHEVFD, IHEVFE, IHEVPA,
IHEVPB, IHEVPC, IHEVPE)

Stnng
ConverSIon Routines

(IHEVCS, IHEVSC)

Figure 4-5. Total Conversion Package structure

In association with each individual step, knowledge of the attributes
must be available for the source fields, target fields, or both. The
required information is provided in the calling sequences with each
data item, by means of the FED or DED.

In certain cases, when the form of the data on the external medium
is not known until object time, it is necessary for the library to
generate dynamically the control information it needs in this
interpretive scheme.

There are director routines at four levels, as illustrated by Figure 4-5.

1. Complex Format Directors.
2. Input/Output Format Directors.
3. String to Arithmetic and Arithmetic to String Directors.
4. Arithmetic Conversion Director.

These routines are used for two main purposes:

1. The matching of source element with target element, which may
not be known at compile time.

2. The controlling of the flow at object time by means of
interpretive information passed to them.

The latter function is best illustrated by the Arithmetic Conversion
Director (IHEDMA); a single call to IHEDMA determines the flow through
a subpackage of nine arithmetic conversion routines.

12

Each group of directors can be called directly from compiled code or
other library modules. and any director can call any other below it
in the structure. FUrther details are provided in the explanations
of the individual routines in the following section.

Conversions - ~ Arithmetic

The library subpackage for arithmetic type conversions carries out
editing and conversion activity for all source fields of type arithmetic
that have target fields also of type arithmetic. Included in the
scheme are format items and constants. which are representations on
the external medium of arithmetic type data. The flow control through
this subpackage is achieved by the Arithmetic Conversion Director.
The method employed is to use an intermediate form of representation,
according to the form of the source data, and to relate this
intermediate form to the target data. either by direct conversion or
by use of a second intermediate form. The latter case implies radix
change. The two intermediate forms in use are referred to as packed
decimal intermediate (or decimal intermediate) and float intermediate.
In machine terms, the first is 16 digits and a sign together with a
one-word scale factor (SWCF) in binary. representing powers of ten;
the second is the standard long floating-point internal representation.
The logical flow through the package is best indicated by Figure q-6.

Character Stnng
Paired with
F·FormatlElement

Character String
Paired with
E·Format Element

"Ixed
Binary

Ioloaung
Binary

Source
Repre,.entdllve,

IHEDMA Arithmetic Converston
Dtrector

Character String
Paired with
FaFormatElement

r

I
I
I L ____ _

Character SlrIDa
Paired with
£.FormatElement

r

Labrary Packed
DeCimal Intermediate

(PDI)

r
I

L

1
INTERMEDIATE I

L _ .!0I!JI~ES __ J

l<ixed
Binary

Source
Representatives

- ------------------1
SOURC!:. 1
ROUTINES I

I
______ 1

Intermed.ate
Representatives

- - --,
TARG~,T I
ROUTlN~,S I

I

Tarlet Character SUml
Palled With
F-Format £lement

Character Stnnl
Paired wllh
E-Formal Element

Iolxed
Bmary

"loatmg
Bmary Represen ta Uve\

~ In addItion, module IHEVT8 IS used by radix conversIOn routmes IHEVPA and IHEVFA.

Figure q-6. Arithmetic Conversion Subpackage Structure

The Arithmetic Conversion Director links the routines required for
a particular arithmetic conversion. It is called either by compiled
code directly or by other director routines.

13

The flag bytes in the source and target DED's are interrogated to
determine which routines are required for the current conversion and
their order of execution. The library communications area (LCA) is
used to record information required by successive modules, as follows:

WBRl Address of entry point of second routine.

WBR2 Address of entry point of third routine Cif required).

WRCD Target information.

Control is then passed by the Arithmetic Conversion Director to the
first routine in the chain. The first transfers to the second, and
so on, until the conversion is complete. The last routine returns
to the program which called the Arithmetic Conversion Director.

All the routines which can be first in the chain set up by Arithmetic
Conversion Director use the source parameters passed to it. With one
exception, the first conversion is always to the intermediate form
of the same radix as the source, and this result is stored in LCA in
the slot named WINT for binary radix, and in slots WINT and WSFC for
decimal radix. (The exception is converting from a fixed-point binary
to an F/E-format data item, in which case the intermediate form is
packed decimal direct.)

Three routines in the arithmetic conversion package deal with data
on the external medium to handle the output of F- and E-format items
from packed decimal intermediate, and conversion from F- or E-format
items to packed decimal intermediate. In each case, a corresponding
format element descriptor is required, and its address is contained
in the LCA slot WFED.

There are nine routines in the arithmetic conversion package (ACP).
To perform one arithmetic conversion, three or four of these routines
are executed in a sequence. called the ACP sequence. The first routine
in the sequence is always the Arithmetic Conversion Director (IHEDMA).
The only way a user can call the ACP to perform an arithmetic conversion
is by calling IHEDMA. The function of IHEDMA is to choose which of
the other routines in the ACP will be the second. third, and (possibly)
fourth routines in the ACP sequence.

The user need not know which routines are used as the second. third,
or fourth routines. or even that there are other routines in the ACP
beside IHEDMA. From the user's point of view. he need only call IHEDMA
with a list of four parameters (the source address, the source
descriptor address, the target address, and the target descriptor
address). and the target representation desired by the user will be
available in the parameter list target address when control is returned
to the user.

The source representations recognized by the ACP and the target
representations that it can produce are shown in Figure 4-6. The
conversion from anyone of the representations in the source column
to any of the representations in the target column is performed (from
the user's viewpoint) by simply calling ~ routine--IHEDMA.

The conversion logic flow is shown in Figure 4-7. Each box indicates
the entry pOint name(s) and the library level assigned to the module,
together with a brief description of the function performed. The
arrows denote the direction of logic flow. Segments connected by dual
arrows indicate that program control returns to the calling module
upon completion of the function for which the called module was invoked.
The invocation direction is downward. The return direction, if any,
is upward.

14

IIUUIM-\
llyn.

EXiernaJ c· tormat
Bald 10 an Inh:rnoll
ndla Type

J. J. ~ J. "l
IIII:DlAA IHI: Ulo\8 lilt-lOtI-\. nu.V(o\A IHI:.Vt.·SA UUVC~B

LEVEL J LEVEL J It-VI L 0 U.VtLO U·.Vt.L J UVI-L J

I I- ormal l).u.J 10 VlCnh ..I R':l.onJ «. om pie" «. haral.llCr l .. mple. (, haracler
1-. turmat Data Data o\ndh\l\ III (, udt'd ("omple. dn Inlernal Bald tu an Inlernal 1/0 Rel.lUICSI to Internal ~lnnll!

Onh hpe naU I)pe

--.J I J 1- 1 - ~ L I
IHI:VlAO\ I nU.VCSA I

LEVt.lo LlVI:L 0 U.VI:L 0 IHtUNtA IIIHJPAB
U·Vt.L·l II-VllO

Venfy a Record I Ddld AndlY\ls I I Compl.:x tharcl4.lt'r I I Anthmebc Source I It H.lurn A(lmag)
I/O Requnl 10 Inl.:rndl '->Inn~ of ~peclfied Sc.t.le, Pari II ~wlh.h 15 On

Mode.and Precislun· and lern 1m ... P,ut
10 a (."haracter ~Inng If '-> II~ h IS Off

IHEOMAA ntl UP ,,0
LI:VI:.L 0 LI:Vt-.lO LI:VEL·O

To Sel Intermedldle To Relurn A(lma,) Ass11" ("har.e ler
I-10\\- 10 (oovert Part If S\\-Ilch 15 On Slrtnglo ChancIer from One Arlth meu .. and Zero Imag Part

Stn.n~ nala lype to Another If ~Wlh.h IS Off

--' J.
IHI:VPI:.A IHEVFDA

Vt..o .<vi."
l"/l.-l-onnal Item "xed Oldarv Integer floating-Point Num-
10 Pac: ked Beclmal 'th S .. d.le I- ador to ber with SpeclfilCd

Intermed'ale long I-Inatmg Pomt PrecISion to long
tloatmg POInt

j "I
J. J. ~ J. "T

IHI:VP<.'A HI-VPR-\. I IHI:.VP .H'V, 'H'VI R. IfHVl-lA
nvt. n UVI-.L 0 LYl. --<l L1.V.t..L 0 LI:V.t..L 0 U·V .. L 0

Pal. ked l>eclm.d 1 I P"k.d n."m,' I I P"k.d ''''c,ma' In· Long Floatmg POint lonl noallng Pmnt Long t-Inatln, POlo I
Intennedldle 10 Intermedldte 10 termedlate to Long 10 Packed l>tumal to taxed·Poant 01 10 Hoallnl POint Wlth
I t-ormat Ih:m f- t-urmdlitern I-lu311ng Pmnl Inlermedlale nary With PreclsII," pe('lfled Pre .. lS.on

and Scale

~ 1 1
UII Vf-8A IHEVI-CA IHI:VPR-\ IHI:.VPCA
LEVI-L 0 L.t..VEl·O

long Hoatlng POInt Long .. loatlng·Poml PolCked [)eclmal Packed neclmdl to II"lli.ed PUIIII 81 to HO.llmg-Poml Intermediate to Intermediate to ndr) \\uh Prel.I .. lun Wllh ~pccltied .. lormat Item I- I-ormal Ite dnd ">edle PrecIsion

i .&. .&.
-~

~ Return 10 (.llkr uf
VI IHH1M,\-\.

Figure 4-7. Flow through Total Conversion Package (page 1 of 4)

...
CI'I

!
IHEVPCA
LEVEL-O

Packed Ueclm.lI
Intermediate to
E- Format Item

l
IHEIOGA
lEVEl-O

Verify a Record
1/0 Request

!
ItIEDMAA
LEVEl-O

To Set Intermodular
1-low to Conyert from
One ArithmetiC nata
Type to Another

I
~

ItIEVPEA
lEVEL-O

FIE-I- arm at Item to
Packed Decimal
In termed'8te

IHEVPBA
lEVEL-O

Pa<: ked Decimal
In termechate to
F-Format Item

'"
~

IHEVFBA
LEVEL-O

Long Aoatmg·Pomt
to Fixed-POint BI-
nary WIth PrecISIOn
and Scale

.I.

IHUJlBA
LEVEl-J

A "urmat Data to
an Internal nata
Type

IHEDCNA
lEVEL 2

i:a.{~tth~~:I~nla~~t
with SpecIfied Scale,
Mode, and PreCIsion

IHEUPAA
LEVH-O

To Zeto the Real
Part of Complex Item
and Return A(lmag)
Part

" IHEVFDA
LEVEl -0

hxed Bmary Integer
With Scale !-actof 10
long Hoatmg-Polnt

I

" IHEVPAA
-0

Packed DeCimal
In termed late 10 Long
1-)oatmg-Pmnt

IHEVFCA
LEVE -0

Long Hoatlng-Pomt
to Hoatlng-Pomt wuh
SpeCified PrecIsIOn

.t ...

Return to Caller of
IHUlMA,\

!
IHE is.-
lEVEl-O

Assign Character
S'rmgtoCharacter

Strang

l
IfIEUPAB
L1VE _-0

10 Return A(lmag)
Part If SWitch IS On.
and Zero Imag Part
If S~ltch IS Off

~
IHEVFEA
lEVll-O

.1oafing-PolDt Num-
ber With Specified
PreClSlon 10 Long
I-loatlng-Pomt

~
IHEV~AA IHEVFBA

- I~. -0 -EVE. -0
lonl Hoatlng-POInt long "loatmg-Polnt
to Packed DeCimal to Fu,ed-POInt Binary
Intermediate With PrecIsion and

Scale

I

~
I1:i£VPRA IHFVPCA

LE'''_' _0 LEVH-O
Pac ked Dec 1m al Packed l)eclmal
Intennedlate to Intermediate to
l- lormat lIem ".-Format Item

~ ~

Figure 4-1. Flow through Total Conversion Package (page 2 of 4)

" IHEVFCA

LEVE .-0
Long floattng-Point
to I-loatmg-Pomt
With Specified Pre-
CISlon

~
~

1
IIHIlO~ 7

UVl-I J

Inl~rn.d III I· x I('rn.!..l
I- l-orm ... 1

J.

1
~

1111 IOIW
lJ-Vl-lO

To ~P"l(' Doll ... In Th('
J{('Lurded Huff('f

1
IHJ-UI'AA

UVI-L 0
[0 Zero the }{('al
Part of (!lmple\ 1[.... 111

.1Ild KelUrn "(lmd!!)
Part

L
HnI>O~ ~
UVFl-3

Internal lu J-xkrnaJ
J--J-ormal

J.

~
IIHIX N-\
UVl-l·2

(hJrdcl('r ~tr1ng. 10 ,m
-\nthmelll T ... rg.el

.... uh ~p(,lIfied 5lak,
Mod(', and Pr('cl\wn

IHEUPAH

LEVEL 0
Tu }{('tum A (lmdg)
Pari If S ll(h 1\ On,
an d Zero Im ... g Part
If S lllh I'; Off

• IHI-VPCA
U.VI-L 0

Polck~d Declmdi int~r-
mediate to E torm ... 1
Item

Figure 4-7.

Itll- DM \ \

U-VI-l·o
To Sel into:'rmodular
Ao to Con\ rt from
On(' Arllhmetlc D ... td
Typ~ to A.noth r

• IHFVPl-A
LFV," l. 0

1-/1- I-mmJlltem til
P ... cked (>eClm:ll
hliermedlJlc'

L
IHI-VPHA.
UVJ-lO

PJl. ked Dt'lImJ.! intt'r
medlJIt' to /. hJTmdt
hem

I

..
lHi VI HA

f------LI VI Lil_
Long '·'oJIIIl!!·I'OlOt
to I !x~d Plllnt Blnan
\\lth Prell~lllfl .md
SL,\k

•

IHI-DOMA.

UVFI.-.l

lnl~rnal 10 l_xl~rnal
C-I-ormat

1
J

IHI \IP-\B

L J-VI L 0
Tu R~lum A (lmag)
Pari If SWitch I'; On,
dnd Z('ro Im ... g Pdfl
It SWllch I~ Off

• IHFVFDA

I tV ,-0

I-i ... ed Bm ... ry IntegeT
\\'Ilh Sc.!..le I- ... c tor 10
Long Hoatmg·l'omt

I

l
IIHVPAA
Ll V Ll-O

Packed IleClmal lnler-
medlalt' 10 Long
l-lodtmg,l"lIll I

I
L

IlII'Vll -\
LI VI L-O

L()ng I-l0Jlmg'P(Hnt
to 11odtlllg-Poml '\ltt!
SjlellfH~d I'reLl~lon

.%.

Relurn to (.Iller ()f
11 II 1)\1 \ \

1 T
UII-VCAA IHEW'S,

_ LFVF _n - IFI _

1).11.1 AnalysIS
Complex Characl~r
10 Internal Stnng

I

f
IHEUPAB

LEVEL-O

To Return A (lmag)
Part If S\\'Itch IS On,
and Zero Ima~. Part
If SWitch IS Off

I
'''"' p<R
lEVEL-O

To Return A (lmag)
Part If SWitch IS On,
and Zero Imag, Part
If Switch IS Off

J.
IHEVFEA

FV _n
Hoatmg-Pomt Num-
her n"llh Speclfi~d
PreCl\lOn 10 Long
llodltn!:-POInt -.

1 • • nHvF~A HEVFRA
UVFL-o LEVEL·O

Long HOdtmg·Pomt long Hoatmg-Pomt
to Poll ked Ilo:'Clma/ to Flxed-Pomt Binary
lnl~rm('dl ... te Wllh PreCision and

Scale

I
,

• • IHI- VPBA IHEVPCA
U VtL·O lEVEl.-O

I''''l.'kt'd Ilt'llm ... l Inter- P;lck~d DeCimal In-
medldte 10 i··l-urmolt termedlale to E-
Item I-ormat \tt'm

• "

Flow through Total Conversion Package (Page 3 of 4)

!
IHEVCSH

LEVE -3
Compl~x Charact~r
to Coded Complex
Onl,

I

J
1

IHEDNCA

LEVEL-'
Anthmeflc Sourc~ of
Specified Scale, Mode.
dnd Precislon~to a
Character Stnng

•
]

IHEVSCA

LEVEl-O

AsSI~ Character StnnFI
to C aracter Stnng I

I

• IH<v"r
LEVEL-O

Long Floatlnj!.-Pomt
to Hoatmg-Pomt "'"lth
Specified PreCISIOn

IHII)OU-\. IHf.I)()UU
UVIL J U-Vl-L I

Inlern" 1)0110111) 10" Intunal Ual. 10 10"
lern .. 1 A(w) I orm .. 1 lern .. 1 A turmal

I I

1 1
IHI-IOI)P IHI:.DN«"A IHI:.VM,\
UV".L 0 LEVEL 2 LtVtL 0

To Space Da.a In
Anthmebc: SouKe A~w,n l har Ie,

the Recorded Burrer ::~:,:~s:~e. ""mit 10 «.. h .. ' I.:o'

lion-tO. Characl.:or Sinn,
Sinn

I

! T 1
IIII:.DMAA ~ .,,-,=. v.

V LI:.VI:. 0 U .. Vt..lO
o Set Inlermodullr To Relurn A(lmaa) ~'ilan«"h.'dcler tlow 10 ('unvert rrom Pari Ir SWltlh IS On

One A,uhmC'ul O .. IB and leru Im .. a P.1l1 SlnnalH «.. harai.ler
hpC' to Another Ir S"ICi.h IS Ofr Sinna

I
• • .I.

IHEVPt.A IHEVfDA IHEVFEA
U .. VEL 0 V

fIE· formal Item lu "ud BInary InlelC" tluatlna'POInt Num
Packed lleclmal _llh ScalC' taCl(K 10 her with Spe<'lrled
Inlermedl.I.:o Lona tloalma 1'0101 Precision to Lon,

"lualm"Pulnt

1 I t
I

~ ~ ~ ~ 1 ..
IHEVPCA IHI-VP8A IHtVPAA • V IHI-V .. BA IHI:.VtCA

V LEViL 0 ,v,-n U: .. VI:.LO LEVE .
Packed Decimal ked DeCimal Packed J)eclmalln I ona Huaunlt Puml Lon, lIoatma POInI Lonl iluallnl,PolAl
Intermediate 10 Inll'rRled'oIle In termedlate 10 Lunlt 10 Pal ked U ... umal 10 "I" ... d POlnl 81 10 iluannl·Poant
Ilurmollllcm II"rnlollllem 110aun, POInt (nlermedldle liar) \\uh Prl'cismn wllh speclrlt~d

dnLl oI!e Prectslon

I I I

J. J. J. • IHEViUA IHiVH \ IHiVP8A IIIl-VPt 0\
V V V Llvn

Lunl HOBnna'POInt Lonl l-Juaun, PUlnl Packed I>eclmal P"lked J)eumal
10 ilxed'POInl Blnarv lu .. luallna Pmnl Inlermedlale It) Intl',mt'dlale to
Wllh PTI'U5UJn .. nd ~:~nSpeurled PTl' I- ""rmat It~m .. formdlltem
~ .. Il'

~ _t 1 1

-r
Return 'n (.ilI .. , III

IHlIl\1 \ \

Figure 4-1. Flow through Total Conversion package (Page 4 of 4)

STRING MANIPULATION PACKAGE (SIMP)

The String Manipulation Package contains modules for handling character
strings. The modules are listed below.

CALL/360-0S PL/I
Operation

Compare
Assign

Character String SUBSTR

Character String

IHECSC
IHECSM
IHECSS

The operation of comparison of two strings is supported by lHECSC.
Two strings are compared for equality and a condition code returned,
differentiating the lower-valued string from the higher-valued one.

The general design of the String Manipulation Package assumes that
complete evaluation of the rightmost side of an assignment statement
occurs before the assignment. There is usually an intermediate stage,
in which a partial result is placed in a field acting as a temporary
result field.

18

When an aggregate of strings is processed. indexing is handled by
compiled code. which passes the individual string elements to the
required library routine.

Some concepts that are basic to string manipulation in CALL/360-0S
PL/I follow:

1. Character strings are allowed.

2. Internal to IBM System/360 computers. character strings are
always byte-aligned. One byte represents one character in the
string. There is one type of character string.

Fixed Length - The number of characters in the string never
varies. and the field width (in bytes) that the string occupies
is equal to the number of characters in the string at all times.

3. The description of the string representation itself is stored
in a data element descriptor (OED) for the string.

4. The description of the field the string occupies is stored in
a string dope vector (SDV) for the string. Information contained
in the SDV includes:

a. The byte address of the beginning of the string
b. The maximum length of the string. m

Linkage to the string routines is by external and internal calling
sequences. String information is passed to the library by means of
string dope vectors. All string lengths supplied in string dope vectors
are assumed to be valid and nonnegative. Certain length fields in
the string dope vector are ignored by these string routines and need
not be completed by the caller.

The CALL/360-0S PL/I Language Reference Manual lists string built-in
function names under ·String Functions" in Appendix A.

Function Name

CHAR

Function

Converts an argument to a character
string of specified length.

SUBSTR(S.i.j) Creates a substring of string S. starting
at position i and extending to j position
(to position i+j-l).

CHAR and SUBSTR are more efficiently implemented by compiled code than
,by calls to the library.

ARITHMETIC FUNCTION PACKAGE (AFUNe)

Library arithmetic routines support all arithmetic generic functions
and operations for which the compiler does not produce in-line code.
Linkage between the object code and the library arithmetic routines
is performed by means of external (all functions) and internal (all
operators) standard calling sequences.

Where the functions and operators are applied to aggregates of data.
indexing is handled by compiled code which passes the individual
elements to the required library routine. Where evaluation or
conversion of an argument is necessary. it is done before the library
is called.

19

Fixed-point data often require data element descriptors (DED) to convey
information about precision. The calling sequence sets up addresses
of arguments in a standard order with each fixed-point item followed by
its DED. If the DED is not needed by a routine. it need not be set up.

Floating-point arguments are assumed to be normalized in aligned full
word or doubleword fields for short or long precision respectively;
the results returned are similarly normalized.

Complex arguments are assumed to have real and imaginary parts stored
next to each other in that order. so that the address of a real part
suffices for both of them. Both parts are also covered by the same DED.

Definitions

Some of the definitions required to understand arithmetic function
evaluation in CALL/360-0S PL/I are discussed below:

20

1. There are four internal representations of floating-point data:

a. Real short float
b. Real long float
c. Complex short float
d. Complex long float

These representations are defined under WMathematical Function
Package (MFUNC). W

2. There two fixed-point data representations:

a. Real fixed
b. Complex fixed

These representations are defined as follows:

Real fixed representations occupy four bytes as shown:

r----------------------------------,
I I I
151 I
I I I
I I I
L----------------------------------J o 31

The binary digits are right-adjusted. and the four-byt~ field
is always word-aligned. Balfword (2 bytes) real fixed binary
representation is allowed in the IBM System/360. but it is not
supported by any of the LIBCOMP routines.

complex fixed representations are two real fixed-point
representations. one representing the real part and one
representing the complex part. The two real representations
must have the same precision and scale factor. They must be
contiguous in storage and the real part must precede the
imaginary part; thus. a pointer to the real part is needed to
obtain both parts.

3. The description of an arithmetic representation is stored in
a data element descriptor (DED) for the arithmetic datum. The
attributes specified in the DED are:

a. Real or complex (mode).

b. Fixed or float (scale).

c. Short or long (applicable to floating-point representations
only; fixed-point representations are always short. that
is. four bytes long).

d. Precision (p) (which is the total number of digits in a
fixed-point representation and the total number of digits
in the fractional part of a floating-point representation).

e. Scale factor (q) (which is applicable only to fixed-point
representations and is the number of digits to the right
of the implied radix point).

4. In functions where two arithmetic representations are involved
and conversion to the highest characteristics is specified.
the following attributes are the highest of their pair:

a. Complex (over real)
b. Float (over fixed)

Module Description

The CALL/360-0S PL/I Language Reference Manual lists the following
built-in function names under ·Arithmetic Built-In Functions· in
Appendix A.

Function Name

SIGN (x)

FLOOR (x)

CEIL(x)

TRUNC(x)

MOD (x1.x2)

CONJ(z)

Arguments and Function Value

Given a real argument. returns an integer
indic~ting the sign of the argument (+1
for positive. -1 for negative. and 0 for
zero).

Given a real argument. returns the largest
of the group of integers not exceeding the
argument.

Given a real argument. returns the smallest
of the group of integers not exceeded by
the argument.

Given a real argument. returns the integer
part (FLOOR(x) for arguments ~ O. CEIL (x)
for arguments < 0).

Given two real arguments. returns the
positive remainder left after obtaining
the integer quotient (x1/x2). The scale
is the highest characteristic of x1 and
x2.

Given a complex argument. returns the
conjugate of the argument.

COMPLEX (x.y) Mode conversion. Given two real arguments,
returns a complex representation. The scale
and precision of the complex representation
are the highest characteristics of x and

REAL(z)

y.

Mode conversion. Given a complex argument,
returns the real part. The scale and
precision are unchanged.

21

Function Name

IMAG(z)

ABS(t)

MAX(xl,x2, ••• ,xn)

MIN(xl,x2, ••• ,xn)

Arguments and Function Value

Mode conversion. Given a complex argument,
returns the imaginary part. The scale and
precision are unchanged.

Given a real argument, returns its positive
value. Given a complex argument (for
example, x+yI), returns its positive
magnitude:

(v?+7)
The mode and scale of the result are the
same as for the argument.

Given a list of real arguments, returns
the value of the maximum argument. The
scale is the highest characteristic of all
the arguments in the list.

Same as for MAX, except returns the value
of the minimum argument.

The following built-in functions are more efficiently supported by
the compiled code than by a library call:

SIGN
FLOOR
CEIL
TRUNC
MOD

CONJ
COMPLEX
REAL
IMAG
ABS(real argument)

The following built-in functions in the area of arithmetic function
evaluation are supported by AFUNC:

ABS(complex argument)
MAX
MIN

These built-in functions may specify any expression as an argument.
However, the AFUNC modules which support these built-in functions
accept only arithmetic scalar values having the following
characteristics:

1. Real fixed arguments must be stored in four bytes, word-aligned,
with 0 < p ~ 9.

2. Floating arguments can be short or long, and must be normalized
(same as arguments for MFUNC modules).

3. Complex arguments have both parts stored contiguously and the
same OED describes both parts.

The compiler is responsible for:

22

1. Evaluating the expression argument presented by the source
program's built-in function and converting the resulting scalar
value to one of the representations that will be accepted by
the AFUNC module.

2. Choosing. from the several entry points which support a given
built-in function. the proper AFUNC module entry point to invoke.
This choice is strictly dependent on the representation of the
value of the input argument(s).

3. constructing a list of arguments to present to the AFUNC module.
In general. if B is the number of arguments presented by the
built-in function. the list presented to AFUNC module will
contain 2B+2 arguments if DED is needed. or IB+l if no DED is
needed.

Following is a list of the AFUNC entry points which support ABS. MAX,
and MIN. The built-in fUnction ABS is supported in AFUNC only for
complex arguments. The built-in functions MAX and MIN are supported
in AFUNC for real arguments only.

Function Name

ABS(z)

MAX(xl,x2, •••• xn)

MIN(xl.x2, •••• xn)

Entry Point

IHEABGO
IHEABTO
IHEABMO

IHEMXFO
IHEMXSO
IHEMXLO

IHEMNFO
IHEMNSO
IHEMNLO

Argument Attributes

Fixed (complex)
Short float (complex)
Long float (complex)

Fixed (real)
Short float (real)
Long float (real)

Fixed (real)
Short float (real)
Long float (real)

In addition to supporting the built-in functions listed in the
CALL/360-0S PL/I Language Reference Manual. AFUNC supports four
often-used arithmetic operations. They are:

1- Integer exponentiation

2. General exponentiation

3. Multiplication

) 4. Division

) For both real and
complex operands

For complex operands only

Integer exponentiation, general exponentiation, and multiplication
and division are supported as follows:

Operation

Integer exponentiation
(t**n)

General exponentiation
(tl**t2)

Multiplication
(zl*z2)

Division
(zl/z2)

System Name

IHEXIFI
IHEXISI
IHEXILI

IHEXIGI
IBEXITI
IHEXIMI

IHEXISF
IHEXILF
IHEXITF
IHEXIMF

IHEMZGO
IHEMZTO
IHEMZMO

IHEDZGO
IHEDZTO
IHEDZMO

Argument Attributes

Real fixed
Real short float
Real long float

complex fixed
complex short float
Complex long float

Real short (float)
Real long (float)
Complex short (float)
Complex long (float)

Fixed binary (complex)
Short float (complex)
Long float (complex)

Fixed bonary (complex)
Short float (complex)
Long float (complex)

23

Summary

The library arithmetic modules are summarized in Figures 4-8 and 4-9.

r--,
I Binary I Short I Long

Operation I Fixed I Float I Float

Integer exponentiation: x**n
General exponentiation: x**y
Shift-and-assign, shift-and-

load

Real Operations

IHEXIB IHEXIS
IHEXXS

complex Operations

Multiplication/Division: I
z1*z2, z1/z2 IHEMZU I

IHEXIL
IHEXXL

Multiplication: z1*z2 I IHEMZW IHEMZZ
Division: z1/z~ I IHEDZW IHEDZZ
Integer exponentiation: z**n IHEXIU I IHEXIW IHEXIZ
General exponentiation: z1**z21 I IHEXXW I IHEXXZ

l--J
Figure 4-8. Arithmetic Operations

r--,
I Binary I Short I Long

Function I Fixed I Float I Float

MAX, MIN
ADD

Real Arguments

IHEMXB IHEMXS

complex Arguments

ADD I

IHEMXL

MULTIPLY IHEMZU IHEMZW I IHEMZZ
DIVIDE IHEMZU IHEDZW I IHEDZZ
ABS I IHEABU I IHEABW I IHEABZ

l--J
Figure 4-9. Arithmetic Functions

Figures 4-10 through 4-12 show the modular interaction within the
library and indicate the modular level assignments.

24

IHEABW(SFLC)
LEVEL-O

ABTO-ABS(z)

IHEABU(FIXC)
LEVEL-O

ABGo-ABS(Z)

IHEMZU(FIXC)
LEVEL-O

MZGO-MULT(ZI 'Z2
DZGO-D1V(ZI 1 Z2)

Figure 4-10.

IHEABZ(LFLC)
LEVEL-O

ABMO-ABS(Z)

IHEDZW(SFLC)
LEVEL-O

DZTO-D1V(ZI /Z2)

IHEMZW(SFLC)
LEVEL-O

MZTO-MULT(ZI 'Z2)

IHEDZZ(LFLC)
LEVEL-O

DZMo-D1V(z 1 1'1. 2)

IHEMZZ(LFLC)
LEVEL-O

MZMO-MULT(ZI 'Z2

AFUNC Level 0

IHEMXB(FIXR)
LEVEL-O

MXFO-MAX(X1,,_Xn)

IHEXIB(FIXR)
LEVEL-O

XIFI·EXP(X' 'n)

IHEXXS(SFLR) IHEXXL(LFLR)

I.FVEL-I LEVEL-l

XISI'-GEXI'(x" Y) XIL~-GEXP(x"Y)

: J

• • • t
IIILLNS(SFLR) IIH.EXS(SF LR)

I EVEL-O
IHELNL(LFLR)

IH~.EXL(LHR) U:VEL-O
LNSO-LOGE(x) L~.VEL-O LNLO-LOGE(x) LEV~.L-O

L2So-LOG2(x) rXSO-FXP(x)
LGSO-LOGIO(x)

L2LO-LOG2(x) EX LO-I,X P(x)
LGLO-lOGIO(x)

IHEXIW(S~ L(') IHEXIU(t1XC) IHEABZ(LFLC)

LEVEL-I LEVEL-I LEVEL-l

XITf-EXP(z"n) Xltol-EXP(Z"n) ABMo-ABS(z)

IHEMZW(SHl')

LEVI L-O

MZTO-MUL1(zl' z 2

IH~.MZU(FIXC)

LEVEL-O
MZGO-MUL [(ZI'Z2

IlZ<;O-1l1 V(Z liZ 2)

IHESQL(LFLR)

L~.VEl-O

SQLO- SQRT(x)

Figure 4-11. AFUNC Level 1

IHEMXL(LFLR)
LEVEL-O

MXLo-MAX(x I'" x)
MNLO-MIN(X 1,,_ x n1

IHEMXS(SFLR)
LEVEL-O

MXSO-MAX(X!""X)
MNSO-MIN(X 1,,_ Xn1

IHEXIL(LFLR)

LEVEL-O
XILI-EXP(" 'On)

IHEXIZ(LFLC)

LEVEL-l

XIMI-EXP(z· 'n)

IHEMZZ(LFLC)

LEVEL-O

IHEXIS(SFLR)
LEVEL-O

XISI-EXP(x' 'n)

MZMO-MULT(ZI' Z2)

IHEABU(FIXC)

LEVEL-I

ABGO-ABS(z)

IHESQS(SFLR)

LEVEL-o

SQSO-SQRT(x)

25

IIIEXXW(SI·I.Cj IHI·.XXZ(ULC)

LEVEI.-2 LI.VU.-2

XIII'~~GEXP(Zi"2 XIM I ~G~.XI'(ZI··z2

!

• • •
IIII.LNS(S~ LI{)

IH~LNW(SI'LC) III1I'XW(SI'LC)
U.VEL-O

1111 LNI.(III J(I IIII.LNZ(LHC) 1111 tXZ(l.1 u·)
LLVJ I . f)

LNSO-LOGE(X) UVFI.-I II VI.L-I I NUI-I O(d(x, LI,V~ L-I LEVI~L-I

L2 SO-LOG 2 (X) LN 10-1 OGE(Z) I X IO·I.XI'(Z)
LGSO-LOGIO(X)

121.0-IO(;1(XI LNMO-LOG2(Z) ~.XMO-EXP(Z)
I (;LO-LO(d O(x I

..1 ;

• IHFl NS(SHI{) IHFATS(SH I{) IHFLNL(UII{) IHEATL(ULR)
I I VEL-O L1.V~ 1.-0 LI VEL-O LEVEL-O

LNSO-LOGE(x) A rS2-A rAN(Y/X I
L2S0-LOG2(X)

ATSI-ATAN(X)
LGSO~ LOG I O(x)

I NLO-LOGE(x) A TL2-ATAN(11 X
L2LO-LOG2(X)
I (;LO-LOGIO(X) ATLI-A rAN(x)

• ~
j

IHEEXS(SFLI{) IHESNS(SI' LI{) 1111 ~NS(SI LI{) IHI·.EXL(L1I I{) IIILSNL(LFLI{) I!lESN L(LFLI{)

LEVEL-O L1V~L·O l.l-.VI L-O LI VI 1.-0 LI'VEL-O LEVLL-O

FXSO-I XP(x) SNSO~SIN(x) (,~SO-COS(X) I X So- ~ X 1'(x) SNLO·SIN(x) (,SLO-COS(x)

Figure 4-12. AFUNC Level 2

MATHEMATICAL FUNCTION PACKAGE (MFUNC)

The library supports all floating-point arithmetic generic functions,
and has separate routines for short- and long-precision real arguments,
and also for short- and long-precision complex arguments where these
are admissible. Linkage between the main program and the library
mathematical routines is performed by means of the external standard
calling sequence.

The calling sequence generated in compiled code is the same as that
required for passing the same arguments to a CALL/360-OS PL/I procedure.
Therefore, the names of any of the floating-point arithmetic generic
functions can be passed as arguments between procedures, according
to the normal rules for entry names.

Where functions are applied to aggregates of data, indexing is handled
by compiled code, which passes the individual elements to the required
library routine. Where evaluation or conversion of an argument is
necessary, it is carried out before the library routine is called.

The arguments are assumed to be normalized in aligned fullword or
doubleword fields for short or long precision respectively; the results
returned are normalized similarly.

Complex arguments are assumed to have real and imaginary parts stored
contiguously in that order, so that the address of the real part
suffices for both of them.

Source fields may also be used as target fields in all cases where
this is not explicitly forbidden in a routine description (see next
section) •

26

Definitions

Some definitions which are basic to understanding mathematical function
evaluation in CALL/360-0S PL/I follow.

1. The floating-point representation of a numeric value in IBM
System/360 computers occupies a fixed-length field, but this
field may be either of two lengths.

Short floating-point representations occupy four bytes as shown:

r----------------------------------,
I I Exponent I I
151 Part I Fractional Part I
I I(Powers I (6 Hex Digits) I
I I of 16) I I
l----------------------------------J
o 1 8 31

The fractional part value represents six decimal digits (short
float decimal).

Long floating-point representations occupy eight bytes as shown:

r---,
I I Exponent I I
151 Part I Fractional Part I
I I(Powers I (14 Hex Digits) I
I I of 16) I I l---______ J
o 1 8 63

The fractional part value represents a maximum of sixteen decimal
digits (long float decimal).

2. Both short and long floating-point representations are
normalized. This means that the leftmost hexadecimal digit
(leftmost four bits) of the fractional part is nonzero.

3. The representation of a complex floating-point number is two
real floating-point representations, one representing the real
part and the other representing the imaginary part. The two
real representations must both be long or short. They must
be contiguous in storage and the real part must precede the
imaginary part. ThUS, a pointer to the real part is needed
to obtain both parts.

4. Most mathematical functions are multi valued for complex
arguments, but a principal value can be chosen as the value
returned from the function.

Module Description

The CALL/360-0S PL/I Language Reference Manual lists mathematical
built-in function names under -Mathematical Built-In Functions.- All
of these built-in function names are supported by the LIBCOMP
Mathematical Function Package (MFUNC). All of the modules in MFUNC
are devoted to supporting them.

The specification of a built-in function name may be supported by
multiple MFUNC entry points. The entry point used in a particular
case depends strictly upon the mode and length attributes of the
normalized floating-point scalar argument that is presented to the
module.

21

Four of the built-in function names (LOG2, LOG10, ERF, and ATAN with
two arguments) are supported only for real arguments, so there are
two MFUNC entry points for each of these names: one accepts a real
short argument and the other accepts a real long argument. The other
names (EXP, LOG, SQRT, ATAN, ATANH, TAN, TANH, SIN, SINH, COS, and
COSH) are supported for both real and complex arguments, so there are
four MFUNC entry points for each of these names: one each for the
acceptance of real short, real long, complex short, and complex long
arguments.

The compiler is responsible for knowing the mode and length attributes
of the input argument and calling the proper MFUNC entry point
accordingly. Figure q-13 shows the relationship between built-in
function names and MFUNC entry points for each of the argument types.
The following symbol definitions apply:

x
y
z
u
v

=
=
=
=
=

real argument, or real part of complex argument
imaginary part of argument
complex argument
real part of complex returned value
imaginary part of complex returned value

All MFUNC routine entry points (with the exceptions of ATSq, ATLq,
ATS2, and ATL2) require the same two arguments: a pointer to the
normalized floating-point scalar input value and a pointer to the field
in which to put the returned value. The returned value is always a
normalized floating-point scalar with the same mode and length as the
input argument.

28

Built-In Entry Argument
Function Point Type Function

Name Name

SIN(x) SNSO real short Sine of x
SNLO real long x expressed in radians

SIN(z)
SNTO complex short Principal value of sine of
SNMO complex long z =SIN(x) COSH(y)

+ ICOS(x)SINH(y)
x and y expressed in radians

SINH(x)
SHSO real short Hyperbolic sine of x
SHLO real long x expressed in radians

SINH(z) SHTO complex short Principal value of hyperbolic
SHMO complex long sine of z = SINH(x)COS(y)

+ ICOSH(x)SIN(y)
x and y expressed in radians

COS(x)
CSSO real short Cosine of x
CSLO real long x expressed in radians

COS(z) CSTO complex short Principal value of cosine of
CSMO complex long z = COS(x)COSH(y)

- ISIN(x)SINH(y)
x and y expressed in radians

COSH(x) CHSO real short Hyperbolic cosine of x
CHLO real long x expressed in radians

COSH(z) CHTO complex short Principal value of hyperbolic
CHMO complex long cosine of z = COSH(x)COS(y)

+ ISINH(x)SIN(y)
x and y expressed in radians

Figure 4-13. Mathematical Built-In FUnctions (Page 1 of 3)

29

Built-In Entry
Function Point Argument

Function
Name Name

Type

ATAN(x) ATSI real short Arctangent of x
ATLl real long x expressed in radians

(-~~ returned value ~~)

ATAN(z) ATTO complex short Principal value of
ATMO complex long arctangent of z

= (LOG(I +z)/(I-z»/2
(Error if z = + I or -I)

ATANH(x) AHSO real short Hyperbolic arctangent of x
AHLO real long (Error if ABS(x);;;' I)

ATANH(z) ATTO complex short Principal value of
ATMO complex long hyperbolic arctangent of

z = IATANH(lz)
(Error if z = +1 or -I)

TAN(x) TNSO real short Tangent of x
TNLO real long x expressed in radians

TAN(z) TNTO complex short Tangent ofz
TNMO complex long x and y expressed in radians

TANH(x) THSO real short Hyperbolic tangent of x
THLO real long x expressed in radians

TANH(z) THTO complex short Hyperbolic tangent of z
THMO complex long x and y expressed in

radians

Figure 4-13. Mathematical Built-In Functions (Page 2 of 3)

30

Buil t-In Entry Argument Function Function Point Type
Name Name

EXP(x) EXSO real short eX
EXLO real long

EXP(z) EXTO complex short eZ

EXMO complex long

LOG(x) LNSO real short Loge x
LNLO real long (Error if x..; 0)

LOG(z) LNTO complex short Principal valu.e of lo~ Z

LNMO complex long =-7r<Z";7r

(Error if z = 0)

SQRT(x) SQSO real short Positive square root of x
SOLO real long (Error if x < 0)

SQRT(z) SQTO complex short Principal value of Z2

SQMO complex long = u, if u > 0, or
= v, if u = 0 and v ;;;. 0

LOG2(x) L2S0 real short Log 2 x
L2LO real long (Error if x ..; 0)

LOGIO(x) LGSO real short Log 1o x
LGLO real long (Error if x ..; 0)

ERF(x) EFSO real short Error function of x
EFLO real long '1 x 2

= -=::... f e-t dt
v'1io

ATAN ATS2 real short Arctangent of (x I jx2)
(xl, x2) ATL2 real long x I and x2 are in radians

(Error if x I = 0, x2 = 0)

Figure 4-13. Mathematical Built-In Functions (Page 3 of 3)

31

summary

The library mathematical modules are summarized in Figures 4-14 and
4-15. These figures identify routines for real and complex arguments,
respectively.

r--,
1 Real Arguments
1-----------------------------------

Function 1 Short Float 1 Long Float
----------------------------------+-------------------+---------------

SQRT 1 IHESQS 1 IHESQL
EXP 1 IHEEXS 1 IHEEXL
LOG, LOG2, LOG10 1 IHELNS 1 IHELNL
SIN, COS 1 IHESNS 1 IHESNL
TAN 1 IHETNS 1 IHETNL
ATAN 1 IHEATS 1 IHEATL
SINH, COSH 1 IHESHS 1 IHESHL
TANH 1 IHETHS 1 IHETHL
ATANH 1 IHEHTS 1 IHEHTL
ERF, ERFC 1 IHEEFS 1 IHEEFL

l--J
Figure 4-14. Mathematical Functions with Real Arguments

r--, 1 1 Complex Arguments 1
1 1-----------------------------------1 I Function 1 Short Float 1 Long Float 1
1----------------------------------+-------------------+---------------1
I SQRT 1 IHESQW I IHESQZ 1
I EXP I IHEEXW I IHEEXZ I
I LOG 1 IHELNW I IHELNZ I
I SIN, COS, SINH, COSH I IHESNW I IHESNZ I
1 TAN, TANH I IHETNW 1 IHETNZ I 1 ATAN, ATANH 1 IHEATW 1 IHEATZ I l-------__ -----------------J
Figure 4-15. Mathematical Functions with Complex Arguments

Figures 4-16 through 4-18 show the modular interaction within the
library and indicate the modular level assignments.

32

IHEEFL(LFLR)

LEVEL-l

IHEEFS(SFLR)

LEVEL-J

IHEHTL(LFLR)

LEVEL-J

IHEHTS(SFLR)

LEVEL-l

IHESHL(LFLR)
LEVEL-J

SHLO-SINH(x)

IHESHS(SFLR)
LEVEL-J

SHSO-SINH(X)
EFLO-ERF(x) EI'SO-ERF(x) AHLO-A T ANH(x) AHSO-ATANH(x) CHLO-COSH(x) CHSO-COSH(X)

I Z I : I t
IHEEXL(LFLR)

LEVEL-O

EXLO-EXP(x)

IHEEXS(SFLR)

LEVEL-O

EXSO-EXP(x)

IHELNL(LFLR)
LEVEL-O

LNL()'LOGE(x)
L2LO-LOG2(1I)
LGL()'LOGJ()'(x)

IHELNS(SFLR)
LEVEL-O

LNSO-LOGE(x)
L2S0-LOG2(X)
LGSO-LOGJO(x)

IHEEXL(LFLR)

LEVEL-O

lXLO-EXP(x)

IHEEXS(SFLR)

LEVEL-O

EXSO-EXP(x)

IHI:LNW(SFLC) IHELNZ(LFLC)

LEVEL-J LEVEL-J
IHETHL(LFLR) IHETHS(SFLR) LNTO-LOGE(z) LNMO-LOGE(z)

LEVEL-l LEVEL-J

THLO-TANH(x) THSO-TANH(X) , i
: : • • • • IHEEXL(LFLR)

LEVEL-O

EXLO-I:.XP(X)

IHEEXS(SFLR)

LI:.V~_L-O

EXSO-~_XP(x)

IHELNS(SFLH) IIIEA TS(SFLH)
LEVEL-O LLVEL,O

LNS()'LOGE(x)
L2S()'LOG2(x) ,-\TS2-ATAN(Y Ix)
LGS()'LOGJO(x) \lSl-.\IAN(x)

IHELNL~LFLR) IHEATL(LFLR)
LEV L-O LEVEL-O LNLo-LOGE(X)

L2L().LOG2(x) ATL2-ATAN(Y/x)
LGL()'LOGJO(x) ATLJ-ATAN(x)

x denotes either a real argument or real part of a complex argument,
Y denotes either a real argument or lInagll1ary part of a complex argument.

denotes a complex argument.
(XXXX) descnbes the arguments, The first letter specifies the preCISIOn (Long or Short) the next two, the scale

(Float or Fixed), the last, the mode (Real or Complex),

Figure 4-16. MFUNC Level 0

33

IHEEXW(SFLC) IHEEXZ(LFLC)

LEVEL-I LEVEL-I

EXTO-EXp(z) EXMO-EXp(z)

~

• • • • IHEEXS(SFLR) IHESNS(SFLR) IHESNS(SHR) IHEEXL(LFLR) IHESNL(LFLR) IHESNL(LFLR)

LEVEL-O LEVEL-O L EVf~L-O LEVEL-O LEVEL-O LEVEL-O

EXSO-EXP(x) SNSO-SIN(x) CSSO-COS(x) EXLO-EXP(x) SNLO-SIN(x) CSLO-COS(x)

IHESNW(SFLC) IHESNZ(LFLC)
LEVEL-\ LEVEL-I

SNTO-SIN(z) SNMO-SIN(z)
SHTO-SINH(Z) SHMO-SINH(z)
CSTO-COS(z)
CHTO-COSH(z)

CSMO-COS(z)
CHMO-COSH(Z}

~

• • • • IHESNS(SFLR) IHESNS(SFLR) IHEEXS(SFLR) IHESNL(LFLR) IHESNL(LFLR) IHEEXL(LFLR)
LEVEL-O LEVEL-O LEVEL-O LEVEL-O LEVEL-O LEVEL-O

SNSO-SIN(x) CSSO-COS(x) EXSO-EXP(x) SNLO-SIN(x) CSLO-COS(X) EXLO-EXP(x)

Figure 4-11. MFUNC Level 1

34

IHEA TW(S FLC) IHEATZ(LFLC) IHESQW(SFLC)
LEVEL-2

ATTO-ATAN(z)
AHTO-ATANH(z)

LEVEL-2
ATMO-ATAN(Z)
AHMO-ATANH(z)

LEVEL-2
SQTO-SQR T(z)

l
I I --- ~

IHEHTS(SFLR) IHEHTL(LFLR) IHEABW(SFLC)

LEVEL-J LEVEL-J LEVEL-J

AHSO-ATANH(x) AHLO-ATANH(x) AllTO-ABS(z)

• • , 1
IHEATS(SFLR) IHELNS(SFLR) IHEATL(LFLR) IHELNL(LFLR) IHESQS(SFLR) IHESQS(SFLR)

LEVEL-O LEVEL-O LEVEL-O LEVEL-O LEVEL-O LEVEL-O

ATS2-ATAN(yjx) LNSO-LOGE(X) ATL2-ATAN(yjz) LNLO-LOGE(x) SQSO-SQR T(x) SQSO-SQRT(x)

IHESQZ(LFLC)

LEVEL-2

SQMo-SQRT(z)

IHETNW(SFLC)
LEVEL-2

TNTO-TAN(z)
THTO-TANH(z)

IHETNZ(LFLC)
LEVEL-2

TNMO-TAN(.t)
THMO-TANH(z)

; J.- ;
I --- I 1

IHEABZ(LFLC) IHETHS(SFLR) IHETHL(LFLR)

LEVEL-J LEVEL-2 LEVEL-\

ABMO-ABS(z) THSO-TANH(x) THLO-TANH(x)

• • • IHESQL(LFLR) IHESQL(LFLR) IHETNS(SFLR) IHEEXS(SFLR) IHETNL(LFLR) IHEEXL(LFLR)

LEVEL-O LEVEL-O LEVEL-O LEVEL-O LEVEL-O LEVEL-O

SQLO-SQRT(x) SQLO-SQRT(x) TNSO-TAN(x) EXSO-EXP(x) TNLO-TAN(x) EXLO-EXp(x)

Figure q-18. MFUNC Level 2

AGGREGATE MANIPULATION PACKAGE (AMP)

The library supports the array built-in functions SUM, PROD, and POLY,
and also provides indexing routines for handling simple (that is,
consecutively stored) and interleaved arrays.

Linkage between the main program and the library array function routines
is performed by means of the external standard calling sequence. Calls
to the indexing routines are made using the internal standard calling
sequence.

The array routines accept array arguments and perform their own
indexing,. unlike other routines which require that indexing be handled
by compiled code. Calls to conversion routines are included in the
SUM, PROD, and POLY routines with fixed-point arguments, so that these
arguments are converted to floating pOint as they are accessed.

Information about arrays is passed to the library routines in tne form
of array dope vectors (ADV); fixed-point arguments need an additional
data element descriptor (OED). The number of dimensions of the array
is contained in the ADV. No overlapping of source and target fields
is permitted for any of these routines.

35

Definitions

Some definitions required to understand aggregate manipulation in
CALL/360-0S PL/I follow:

1. Arrays are always stored in row-major order, that is, the
rightmost subscript varies more rapidly in choosing the element
of the array to be stored. For example:

The elements of the array A(2,2,3) would be stored in the
following order:

A(1,1,1), A(1,1~2), A(1~1~3). A(1,2,1), A(1.2.2), A(1,2,3),
A(2,1,1), A(2,1,2), A(2.1.3), A(2.2.1). A(2,2,2), A(2,2,3).

2. Simple arrays are arrays whose elements are stored contiguously;
interleaved arrays are arrays whose elements are not stored
contiguously.

3. If the elements of an array are arithmetic, the array as an
aggregate is described by an array dope vector (ADV). Informa
tion contained in the ADV includes:

.a. The virtual origin of the array. This is the byte address
of the element whose subscript values are zero, that is,
A(O,O, •••• O). This origin is called virtual because this
element may be hypothetical and its address not included
in the area of storage actually allocated to the array.

b. The upper bound and lower bound for each dimension of the
array.

c. A multiplier for each dimension i as a function of the
mUltiplier for dimension i+1, the upper and lower bounds
of dimension i+1, and the length of array elements (which
is the same for all elements in the array).

d. The number of dimensions in the array.

Given the information in the ADV, three functions can be per
formed:

a. Given an array, the elements can be stepped through in row
major order.

b. Given the subscript values of an element, the element address
can be obtained.

c. Given an element address, its subscript values can be ob
tained.

4. All elements of an array must have the same attributes, so the
data element descriptor (DED) which describes one of these
scalar elements describes each of the elements in the array.

Module Description

The CALL/360-oS PL/I Language Reference Manual lists the following
built-in function names under "Generic Functions for Manipulation of
Arrays."

36

Function Name

LBOUND(x.n)

HBOUND(x,n)

DIM(x,n)

SUM (x)

PROD (x)

POLY(a,x)

Function Value

Returns current lower bound of nth dimension
of array x.

Returns current upper bound of nth dimension
of array x.

Returns current extent of nth dimension
of array x.

Returns sum of all elements of array x.

Returns product of all elements of array x.

Given two vectors, a and X; evaluates them
as if a were the coefficient vector and
X the variable vector in a polynomial
equation. .

For the built-in function POLY, both vector arguments are assumed to
be stored in a simple manner, so only one set of AMP routines is
provided. However, alternate entry points are provided to differentiate
the case where argument x is a scalar from the case where it is a
vector. These entry points are shown below.

Function Name

POLY (A, X)

system Name

IHEYGFV
IHEYGFS
IHEYGXV
IHEYGXS
IHEYGSV
IHEYGSS
IHEYGWV
IHEYGWS
IHEYGLV
IHEYGLS
IHEYGZV
IHEYGZS

Element Attributes
of Array ~

Real, Fixed Vector
Real. Fixed Scalar
Complex, Fixed Vector
Complex, Fixed Scalar
Real, Short Float Vector
Real. Short Float Scalar
Complex, Short Float Vector
Complex, Short Float Scalar
Real, Long Float Vector
Real, Long Float Scalar
Complex, Long Float Vector
Complex, Long Float Scalar

The AMP routines are unique; they accept entire arrays as arguments,
rather than one element of the array at a time. An AMP service routine,
IHEJXI, performs the operation of indexing through the input arrays
for other routines in AMP. One call must be made to IBEJXI in order
to obtain one element.

LBOUND, HBOUND, and DIM are not supported by the library. These
functions can be most efficiently performed by in-line code, rather
than by a library call. The remainder of the built-in functions (SUM,
PROD, and POLY) are supported by the LIBCOMP Aggregate Manipulation
Package (AMP).

For each of the built-in functions SUM and PROD. a set of AMP routines
is provided for interleaved arrays; separate routines are provided
for each of the possible combinations of attributes the array elements
may have. (The library may be simplified by always assuming interleaved
arrays. This would sacrifice execution efficiency for these routines.)

37

Function Name

SUM (x)

PROD (x)

Interleaved Set
System Name

IHESMFO
IHESMXO
IHESMGR
IHESMGC
IHESMHR
IHESMHC

IHEPDFO
IHEPDXO
IBEPDSO
IHEPDWO
IHEPDLO
IHEPDZO

Element Attributes
of Array ~

Real, Fixed
complex, Fixed
Real, Short Float
Complex, Short Float
Real, Long Float
Complex, Long Float

Real, Fixed
Complex, Fixed
Real, Short Float
Complex, Short Float
Real, Long Float
Complex, Long Float

Summary

The library array modules are summarized in Figures 4-19 and 4-20.

r--~
1 1 Interleaved string arrays with 1
1 1 fixed-length elements 1
I---------------t--1
1 Indexers 1 IBEJXI 1
L--J
Figure 4-19. Array Indexers

Note: IBEJXI is used for indexing through interleaved arithmetic
arrays.

r--~
1 1 Floating-Point Arguments
1 1---------------------------------
1 Fixed- 1 1
1 Point 1 Short 1 Long
1 Arguments 1 Precis ion 1 Precision
I-----------------+-----------------t---------------

Function 1 Interleaved 1 Interleaved 1 Interleaved
------------------t-----------------t-----------------t---------------

SUM real 1 IBESMF 1 IBESMG 1 IBESMH
complex 1 IBESMX 1 IBESMG 1 IBESMH

PROD real
complex

1 1 1
1 IBEPDF I IBEPDS 1
1 IBEPDX 1 IBEPDW I
I 1 1

IBEPDL
IBEPDZ

POLY real 1 IBEYGF 1 IBEYGS 1 IBEYGL
complex I IBEYGX 1 IBEYGW 1 IBEYGZ

L--J
Figure 4-20. Arithmetic Array Functions

38

SECTION 5 - RUNTIME ROUTINE DIRECTORY

As noted in the preceding section, runtime support for CALL/360-0S
PL/I applications is provided by the Library Interface Services (LIBINT)
and Library Computational Services (LIBCOMP) modules. The individual
routines that form these modules are explained in detail in this
section. The routines are grouped within the organizational framework
introduced during the general discussion. Thus, runtime support is
described in detail in this section as follows.

Library Interface Services (LIBINT):

I/O Management Package
Handling of Interrupts Package
Management of Object Program Package

Library Computational Services (LIBCOMP):

Total Conversion Package
String Manipulation Package
Arithmetic Function package
Mathematical Function Package
Aggregate Manipulation Package

I/O MANAGEMENT PACKAGE

The following routines constitute the I/O Management Package (IOMP).
Descriptions of these routines are given on succeeding pages of this
manual. The routines are discussed in alphabetic order, according
to their mnemonics, as indicated.

Close (IHECLOSE)
Data-Directed Input (IHEDDI)
Data-Directed Output (IHEDDO)
Perform Calculation of the Subscript Values for an Array Element (IHEDDP)
Edit I/O Director (IHEDIO)
List- or Edit-Directed GET Initiation and Termination (IHEIOA)
Output Initialization with or without Skipping (IHEIOB)
output Data to the Buffer Area and Communication with

CALL/360-OS (IHEIOD)
Get Data Field from Input Buffer (IHEIOG)
Perform SKIP(w) Function for SYSPRINT (IHEIOP)
Edited Horizontal Control Format Item (IHEIOX)
List- and Data-Directed Input (IHELDI)
List-Directed output (IHELDO)
Open (IHEOPEN)
Reset Disk Files (IHERSET)

39

TITLE: CLOSE (IHECLOSE)

Program Definition

Purpose and Usage

The Close routine is used to close a disk file.

Description

If the file is an output file, this routine is used to write current
buffer of data and close the file.

Errors Detected

ILLEGAL FILENAME. (123)
*DIRECTORY MISSING. (136)
INEXPLICABLE I/O ERROR. (301)

Local Variables

None

Program Interface

Entry Points

IHECLOSE Linkage:

Called by:

Exit Conditions

Normal exit. .Return to caller.
Abnormal exit. Exit to IHEERRB.

Routines Called

IHEERR
IHESVC

Global Variables

None

40

Error Routine
Library SVC Director

P7 - A(FCIB)
pa - RETURN
P9 - ENTRY
Compiled Code

TITLE: DATA-DIRECTED INPUT (IHEDDI)

Program Definition

Purpose and 'Usage

The Data-Directed Input routine handles initiation of data-directed
input operation and assignment of input data to internal variables
according to symbol table information conventions.

Description

An item is read from the specified input stream according to the rules
specified for data-directed input. The item is scanned as follows:

1. Any leading blanks are ignored.

2. A search is made for an equal sign or a left parenthesis.

3. If an equal sign is found, the input contains a scalar item
and control passes to 4.

If a left parenthesis is found, the input contains an array
item and scanning is continued until an equal sign is found.

4. The List- and Data-Directed Input routine is called to scale
the value part. (Entry Point: IHELDIC.)

The address of the symbol table is provided in the FCB (file
block). The symbol table is searched for a name the same as
scanned. If there is no such name, an error is recognized.
details of the symbol table, see Appendix E.)

Dimensionality must be correct:

control
that just
(For

1. If the name is a scalar and if subsc~ipts appear in the input
stream, an error is recognized.

2. If the name is an array and if no subscripts appear in the input
stream, an error is recognized. This routine checks the
subscripts of the input item and addresses the specified element
of the array.

The value of the input item is assigned to the internal variables using
list-directed input (Entry Point: IHELDID).

If the transmission terminator is found, return is made to caller.
If a NL character is found before the terminator, another item is
scanned as described above.

Errors Detected

EXTRA INPUT DATA IGNORED. (025)
NOT OPENED. (124)
NOT FILE TYPE. (132)
SUBSCRIPT RANGE. (500)
IMPROPER NUMBER OF SUBSCRIPTS FOR DATA INPUT VARIABLE. (803)
DATA NAME NOT FOUND IN SYMBOL TABLE. (S05)
SUBSCRIPT NOT IN USER AREA. (S06)
DATA I/O ON INTERNAL FILE. (80S)

Local Variables

None

41

Program Interface

Entry Points

IHEDDIB Data-directed input with or without data-list
Linkage: P7: A (FCB)
Called by: Compiled Code

Exit Conditions

Normal exit. Return to caller via link register.
Abnormal exit. If end-of-file condition has been raised, call IHEERR.

Routines Called

IHELDI
IHEERR
IHEIOA

List- and Data-Directed Input
Error Routine
List- or Edit-Directed GET Initiation and
Termination

Global Variables

42

BUFLTH
BUFPTR
FCBDEF
UTTLOC
L#INFLA
SYMTABLE
FCIBDEF

Terminal Buffer Length (Communications Area)
Buffer Pointer for SYSPRINT (Communications Area)
File Control Block Definition
Address of User Terminal Table (Communications Area)
Status of List Links (UTT)
Symbol Table
File Control Interface Block Definition

TITLE: DATA-DIRECTED OUTPUT (IHEDOO)

Program Definition

Purpose and Usage

The Data-Directed Output routine is used to convert data according
to data-directed output conventions.

Description

Scalar Variable (Entry Point: IBEDDOA):

The output string is created as follows:

1. Obtain the variable name from the symbol table and place it
on the output string.

2. Insert = immediately following the name.

3. Call IHELDO to direct the conversion and place the converted
data in the output string.

4. Step down the symbol table. If the varipble is not the last
name, then repeat 1, else return to the caller.

Array Element (Entry Point: IHEDDOB):

1. Call IHEDDP to evaluate the subscript values of the array
element.

2. Obtain array name from the symbol table and place it with its
subscript values into the output string.

3. Insert = following the array name.

4. Call IHELDO to direct the conversion and place the converted
data in the output string.

Termination (Entry Point: IHEDDOC):

Insert ; in the output string. This is used to terminate a data list.

Errors Detected

None

Local Variables

WORKREL Offset from the relocatable library work space where
SDV (string dope vector) is to be created.

WORKDREL Offset from nonrelocatable library work space which
is used as working storage area.

Program Interface

Entry Points

IHEDDOA

IHEDDOB

Linkage:
Called by:

Linkage:
Called by:

P7: A(FCIB)
Compiled Code

P7: A(FCIB)
Compiled Code

43

IHEDDOC

Exit Conditions

Linkage:
Called by:

P7: A(FCIB)
Compiled Code

Normal exit. Return to caller.

Routines Called

IHEIOD

IHEDDP

IHELDO
IHEERR

Global Variables

44

FCB
SYMTABLE

Output Data to the Buffer Area and Communication with
CALL/360-0S
Perform Calculation of the Subscript Values for an
Array Element
List-Directed output
Error Routine

File Control Block
Symbol Table

TITLE: PERFORM CALCULATION OF THE SUBSCRIPT VALUES FOR AN ARRAY
ELEMENT (IBEDDP)

Program Definition

Purpose and Usage

The Perform Calculation of the Subscript Values for an Array Element
routine is used to calculate subscript values of an array element with
the address information provided by FCB (file control block) and an
ADV (array dope vector).

Description

The algorithms for calculating the subscript values are given as
follows:

si = FLOOR(Ri/Mi) for i=1.2, •••• (n-1)
Sn = Rn

where:

si = ith subscript value

R1 = array element address - virtual origin

Ri = MOD(Ri-1, Mi)

n = the dimensionality of the array

i = the dimension under consideration

Mi = ith multiplier

M = n

II Mi

i = 1

The array name with its calculated subscript values will be placed
in the output string.

Errors Detected

None

Local Variables

LNGTH (Register GO)
DIMENS (Register G2)

Program Interface

Entry Points

IHEDDPD Linkage:
Called by:

Exit Conditions

Length of array element
Dimension of the array

P7 (FCB)
IBEDDO

Normal exit. Return to caller.

45

Routines Called

IHEIOD output Data to the Buffer Area and Communication
with CALL/360-0S

Global Variables

46

FCB
SYMTABLE
ADV

File Control Block
Symbol Table
Array Dope Vector

TITLE: EDIT I/O DIRECTOR (IHEDIO)

Program Definition

Purpose and Usage

The Edit I/O Director accepts a format code in register G1 and directs
control to the proper library routine.

Description

Using the format code as an index, either an input or output director
table is accessed, depending on the file type. The director is then
called.

Errors Detected

EDIT I/O ON INTERNAL FILE. (810)

Local Variables

None

Program Interface

Entry Points

IHEDIOA

Exit Conditions

Call to proper I/O director.

Routines Called

IHEDOM
IHEDOA
IHEDOB
IHEIOX
IHEIOP
IHEDIM
IHEDIA
IHEDIB
IHEERR

Global Variables

None

C-Format Output Director
F/E-Format Output Director
A-Format Output Director
Edited Horizontal Control Format Item
Perform SKIP(w) Function for SYSPRINT
C-Format Input Director
F/E-Format Input Director
A-Format Input Director
Error Routine

41

TITLE: LIST- OR EDIT-DIRECTED GET INITIATION AND TERMINATION (IHEIOA)

Program Definition

Purpose and Usage

The List- or Edit-Directed GET Initiation and Termination routine
initiates or terminates 1ist- or edit-directed GET statements.

Description

Initiation (Entry Point: IHEIOAA):

If the input fi1e is a disk file, the following tests are performed:

1. If the current buffer address is not equal to the buffer address
given in the file control block (FeB), return is made to the
caller.

2. If the two addresses are equal, a new record is read. If no
error, then return is made to caller. If error, the error
routine is entered.

If the input file is a terminal file, a new line is read from the
terminal. Then return is made to a caller.

Termination (Entry Point: IHEIOAT):

If the input file is a terminal file, a scan is required up to the
NL character. If nonblank characters are found, an error condition
is raised. Processing continues.

Errors Detected

UNRECOVERABLE I/O ERROR. (125)
DECLARED ENVIRONMENT NOT COMPATIBLE WITH INPUT FILE. (811)

Local Variables: None

Program Interface

Entry Points

IBEIOAA Initiation of an input operation
Linkage: P1: A(FCIB)
Called by: Compiled Code, IBELDI, IBEDDI

IHEIOAT Termination of an input operation
Linkage: P1: A(FCIB)
Ca1led by: Compiled Code

Exit Conditions

Normal exit. Return to caller.

Routines Called

IBEERR
IBESVC

Error Routine
Library SVC Director

G10bal Variables

48

FeB
BUFPTR

Fi1e Control Block
Buffer Pointer for SYSPRINT (Communications Area)

TITLE: OUTPUT INITIALIZATION WITH OR WITHOUT SKIPPING (IHEIOB)

Program Definition

Purpose and Usage

The output Initialization with or without Skipping routine initializes
PUT statements with or without SKIP option.

Description

If the output file is OUTFILE and the current buffer address is equal
to the buffer address in the FCB. the control bytes (first seven bytes
for each disk file record) are set according to information provided
by FCB. If no SKIP function is to be performed. return is made to
the caller; otherwise. IHEIOP is called to perform the SKIP function.

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

IHEIOBA To initialize the PUT operation
Linkage: P7: A(FCIB)
Called by: Compiled Code

IHEIOBC To initialize PUT. and perform SKIP
Linkage: P7: A(FCIB)
Called by: Compiled Code

Exit Conditions

Normal exit. Return to caller.

Routines Called

IHEIOP
IHEERR

Global Variables

Perform SKIP(w) Function for SYSPRINT
Error Routine

FeB File Control Block

q9

TITLE: OUTPUT DATA TO THE BUFFER AREA AND COMMUNICATION WITH
CALL/360-OS (IHEIOD)

Program Definition

Purpose and Usage

The OUtput Data to the Buffer Area and Communication with CALL/360-
OS routine is used to place the converted data string in the proper
location in the buffer area and update the current buffer pointer
provided by FeB. An SVC (Supervisor Call) to the Executive is issued
when the buffer is filled. The routine determines when an NL character
should be placed on the output string for terminal buffer.

Description

If the output file is a disk file:

1. If the current buffer pointer is equal to the buffer starting
address, set the first seven bytes of the buffer according to
information provided by FCB. (The first seven bytes are used
for record description for disk file.)

2. If the disk file is an external print file, use the procedures
described for the terminal file (SYSPRINT).

3. If the length of the data plus total characters generated on
the buffer is greater than the buffer size:

a. Place an EOF at the location given by the current buffer
pointer.

b. Request an SVC for writing the record to disk.
c. Set current buffer address to buffer address and repeat 1.

4. If the disk file is an internal disk file (data stored in
internal form), two additional bytes for each data element are
set to describe the data type and replicator. The data element
is transferred to the output buffer according to information
given in the string dope vector <SDV).

If the output file is a terminal unit:

50

1. If the length of the converted data string + number of bytes
used for one line > the width of the terminal unit:

a. Insert an NL to terminate the line.
b. Set number of bytes used to zero.
c. Update the buffer pointer.
d. If the remaining buffer size is less than the width of the

terminal unit, request an SVC to transmit the data to
output terminal.

e. Place the converted data string to the terminal buffer and
update the number of bytes used and the buffer pointer.

2. If the length of the converted data string + number of bytes used
for the line = the width of the terminal unit:

a. Place the converted data string to the terminal buffer and
insert an NL to terminate the line. Set number of bytes
used for the line to zero.

b. Do 1.d.

3. If the length of the converted data string + number of bytes used
for the line < the width of the terminal unit, do 1.e.

Errors Detected

INEXPLICABLE I/O ERROR. (301)
MAXIMUM STRING LENGTH EXCEEDED. (106)
END OF OUTPUT FILE. (802)

Local Variables

COUNTl (Register G3)

LENGTH (G1)
TOTCHAR (G5)

BUFFSIZE (GO)
LINEWDTH (G4)
BUFPOINT (P2)
ADSDV (P5)
BUFADD (P8)
ADDED (P4)
SOURCEAD (P8)
NUSPEC (G3)

PUSPEC (P4)

Program Interface

Entry Points

Counter for number of characters generated
in a line for print file
Length of source string
Total number of characters generated in the
buffer
Buffer size
Line width for print file
CUrrent buffer pointer
Address of SDV
Buffer starting address
Address of the data element descriptor
Buffer starting address
Number of specifications for internal disk
file
Address of old or last data specification

IHEIODP Linkage: P1: A(FCB)
P5: A(SDV)

Called by: Edit-directed I/O directors, IHEIOX. IBEIOP.
IBELDO, IHEDDO, and IBEDDP.

Exit Conditions

Normal exit. Return to caller.
Abnormal exit. Call IHEERR on I/O error.

Routines Called

IHEERR

Global Variables

FCB
SDV
WTOTCHAR

WTOTCHDK

WCOUNTl

WCOUNTDK

WDISBUFS
WTERBUFS
BUFPTR
OPFLAG

SPEC

Error Routine

File Control Block
String Dope Vector
Total characters generated for the SYSPRINT
buffer (LeA)
Total characters generated for the disk output
buffer (LeA)
Number of characters generated in a line for
SYSPRINT (LeA)
Number of characters generated in a line for
disk print file (LeA)
Disk Buffer Size (LCA)
Terminal Buffer Size (LeA)
Buffer Pointer for SYSPRINT (Communications Area)
Output Inhibit Flag for SYSPRINT (Communications
Area)
Pointer to old or last data specification field
in buffer

51

TITLE: GET DATA FIELD FROM INPUT BUFFER (IHEIOG)

Program Definition

Purpose and Usage

The Get Data Field from Input Buffer routine is used to collect the
data field from the input buffer. If more than one record is to be
read, the data is stacked in the library communications area (LCA).

Description

If the input file is a disk file, the buffer is scanned from the current
buffer address to the current buffer address plus the data length.
If no EOF character is encountered, P1 (register 13) is set to the
current buffer address. Then the current buffer address in FCB is
updated and return is made to the caller. If an EOF character is
encountered, the current part of the data is stacked in LCA. A new
record is read and the remaining data is stacked in LCA. P1 is set
to the address of LCA where the data is stacked.

If the input file is a terminal file, a similar procedure is performed.
However, the NL character is scanned instead of the EOF character.

Errors Detected

UNRECOVERABLE I/O ERROR.
END OF FILE ENCOUNTERED.

(125)
(140)

Local Variables

BUFPOINT (P2)
STARTAD (P4)
STACKAD (P5)
COUNT (GO)
LENGTH (G1)
FLAG1 (G3)

Program Interface

Entry Points

Current buffer pointer
Start address for the data field in buffer
Address in LCA where data is to be stacked
Counter for the number of characters scanned
Length of data field to be scanned
Zero sufficient characters in buffer. For new
record read, data is stacked in LCA.

IHEIOGA Linkage: P1: A(FCB)

Exit Conditions

Gl: Length of data field
Called by: Edited input director. Upon return, P1

contains (source), and Gl (length).

Normal exit. Return to caller.
Abnormal exit. Call IBEERR.

Routines Called

IHEERR

Global Variables

52

FCB
WFCS

Error Routine

File Control Block
Area where data is stacked (LCA)

TITLE: PERFORM SKIP (W) FUNCTION FOR SYSPRINT (IHEIOP)

Program Definition

Purpose and Usage

The Perform SKIP(w) Function for SYSPRINT routine is used to perform the
SKIP function for output print file.

Description

W-NL characters are created in the nonrelocatable library work space.
IHEIOD is called to transfer these characters to the output buffer.

Errors Detected

None

Local Variables

ADSOURCE (P5)

LENGTH (Gl)

Program Interface

Entry Points

Address where NL characters are created

Length of the number of NL characters to be
created

IBEIOPB Linkage: P1: A(FCB)
IHEIOBC Called by:

Exit Conditions

Normal exit. Return to caller.

Routines Called

IBEIOD OUtput Data to the Buffer Area and Communication
with CALL/360-0S

Global Variables

FCB File Control Block

53

TITLE: EDITED HORIZONTAL CONTROL FORMAT ITEM (IHEIOX)

Program Definition

Purpose and Usage

The Edited Horizontal Control Format Item routine is used in two ways:

• Input:

• output:

Spaces over next w characters in input stream •

For control format item, inserts w blanks in the
output string. For COLUMN(w), inserts blanks up to
w-th character of current or next line.

Description

Input (Entry Point: IHEIOXA):

If disk-file then:

else:

Current Buffer Pointer for Disk File = Current Buffer Pointer
for Disk File + w

Current Buffer Pointer for SYSIN = CUrrent Buffer Pointer for
SYSIN + w

output:

1. Edit-Directed X(w) Format (Entry Point: IHEIOXB): Insert w
blanks in the output buffer and update current buffer address in
FCB and the global variables in LCA.

2. COLUMN(w) Format (Entry Point: IHEIOXC): If w is less than or
equal to the number of characters generated in the current line:

a. Insert an NL character in the output string.
b. Insert w blanks after the NL character.

If w is greater than the number of characters generated for the
current line, insert w (number of characters generated)
blanks in the output buffer.

Errors Detected

PRINT OPTION FORMAT ITEM FOR NON PRINT FILE. (021J)

Local Variables

COUNT1 (G1)
W (G2)
LNEWDTH (GO)
BUFSIZE (G3)
TOTCHAR (GIJ)
ADUTT (G5)
NEWIDTH (G5)

Program Interface

Entry Points

Number of characters generated in a line
Width of data field in characters
Line width for print file
Buffer size
Total number of characters generated in the buffer
Address of user terminal table
Secondary count of width of data field in characters

IHEIOXA Linkage: P7: A (FCB)
compiled Code Called by:

51J

IHEIOXB

IHEIOXC

Exit Conditions

Linkage:
Called by:

Linkage:
Called by:

Pl: A(FCB)
Compiled Code

Pl: A(FCB>
Compiled Code

Normal exit. Return to caller.

Routines Called

IHEERR Error Routine

Global Variables

File Control Block FCB
BUFPl'R Buffer Pointer for SYSPRINT (Communications Area)

55

TITLE: LIST- AND DATA-DIRECTED INPUT (IBELDI)

Program Definition

Purpose and Usage

The List- and Data-Directed Input routine works in two ways:

• For list-directed input, it scans one item in the input string
and assigns it to internal variable according to rules specified.

• For data-directed input, the constant part of the assignment is
scanned and assigned to internal variable.

Description

List-Directed Input (Entry Point: IHELDIB):

1. External Files: Data in the stream is scanned as follows:

a. Any leading blanks are ignored.

b. If the first character is a quote mark, a string constant
is assumed to follow, and a search is made for a subsequent
single quote mark. Otherwise, an arithmetic constant is
assumed, and a search is made for an item delimiter (blank
or comma).

c. According to the DED of the internal variable and the type
of constant (or string), TCP (Total Conversion Package)
modules are called to do the conversion and assign the
converted data to internal variable.

2. Internal Files: Source and target specifications are checked
for compatibility with respect to type (arithmetic or string)
and, if arithmetic, to scale (fixed or float). Should the
source and target be incompatible. an appropriate error message
is printed. Otherwise. source data is moved to the target.
Account is taken of any differences in the precision and mode
of the source and target to preserve the validity of the data
moved and the integrity of the user area.

Data-Directed Input Constant Scanning (Entry Point: IHELDIC):

The scanning process used for list-directed input can be used for data
directed input. However. a return code is set as follows:

Return Code = 0: Not last item.

Return Code = 4: Last item.

Return Code = 8: End of file encountered before complete data
field collected.

Errors Detected

56

END OF FILE ENCOUNTERED. (140)
INEXPLICABLE I/O ERROR. (301)
ERROR IN CONVERSION FROM ARITHMETIC TO CHARACTER STRING.
ERROR IN CONVERSION FROM FIXED TO FLOAT. (606)
ERROR IN CONVERSION FROM FLOAT TO FIXED. (601)

(605)

Local Variables

DBFLAG (G6)

COUNTl
COUNT2
COUNTll
COUNT22
OFSWC

Local Offsets

PLIST

WORK

Used to flag the existence of double quotation
marks in string for non-print file:

o = No double quotation mark
4 = Double quotation mark

Length of real part of source
Length of imaginary part of source
Length of real part of target
Length of 1maginary part of target
Length adjustment switch used to effect proper
update of buffer source pointer

Offset of parame.ter list in the relocatable
library work space
Offset of string dope vector describing the
source string

Program Interface

Entry Points

IHELDIB

IHELDIC

Exit Conditions

Linkage:
Called by:

Linkage:

Called by:

P1: A(FCIB)
Compiled Code

P1: A (FCB) with word 3 of FCB containing
a (VARIABLE) and word 4, a (DED).
IHEDDI

Normal exit. Return to caller.
Abnormal exit. Call IBEERR.

Routines Called

Library SVC Director
Character String to Arithmetic
Arithmetic to Character String
Error Routine
Data Analysis Routine
Character String to Character String .

IBESVC
IBEDCN
IHEDNC
IBEERR
IBEVCA
IHEVSC
IHEIOA List- or Edit-Directed GET Initiation and Termination

Global Variables

BUFPTR
FCB
WFCI

Buffer Pointer for SYSPRINT (Communications Area)
File Control Block
Addresses of source, target, source DED, and
target DED (LCA)

51

TITLE: LIST-DIRECTED OUTPUT (IHELOO)

Program Definition

Purpose and Usage

The List-Directed OUtput routine is used to output data under the rules
for list-directed output.

Description

If the file is an internal disk file, the output file is created without
proper conversion. If it is an external file, a TCP routine is
called to convert arithmetic data to external form before placing it in
the output buffer. For string variables, transfer of the string to the
output buffer is performed by this routine.

Errors Detected

SUBSTRING NOT IN DATA AREA. (105)

Local Variables

LENGTH (GO)

Program Interface

Entry Points

IHELDOB

IHELDOC

Exit Conditions:

Routines Called

IHEDNC
IHEVSC
IHEIOD

IHEERR

Global Variables

58

FCB
BUFPTR
WCNP

WCOUNTDK

WCOUNTl

WTOTCHAR

WTOTCHDK

Length of source string

List-directed output (single variable)
Linkage: P7: A(FCIB)
Called by: compiled Code

Data-directed
Linkage:

output
P7: A(FCB)
Note: FCB has been modified

similar to FCB for list
directed output.

Called by: IHEDDO

Normal exit. Return to caller.

Arithmetic to Character String
Character String to Character String
Output Data to the Buffer Area and Communication
with CALL/360-0S
Error Routine

File Control Block
Buffer Pointer for SYSPRINT (Communications Area)
Location where parameter list is passed while
calling TCP routine (LeA)
Number of characters generated in a line for
disk print file (LeA)
Number of characters generated in a line for
SYSPRINT (LeA)
Total characters generated for the SYSPRINT
buffer (LeA)
Total characters generated for the disk output
buffer (LeA)

TITLE: OPEN (IHEOPEN)

Program Definition

Purpose and Usage

The Open routine is used to open a disk file.

Description

If the file is already open, the OPEN is ignored. An I/O buffer and a
file control block (FCB> are assigned to the file.

Errors Detected

UNRECOVERABLE I/O ERROR. (125)
DOES NOT EXIST. (126)
LOCKED. (127)
IN USE. (12S)
PROTECTED. (129)
NOT A DATA FILE. (130)
A SHARED FILE. (131)
ILLEGAL ATTRIBUTES. (134)
EXCEEDS FOUR FILES OPEN. (135)
*DIRECTORY MISSING. (136)

Local Variables

None

Program Interface

Entry Points

IHEOPEN Linkage:

Called by:

Exit Conditions

Normal exit. Return to caller.
Abnormal exit. Exit to IHEERRB.

Routines Called

IHEERR
IHESVC

Global Variables

Error Routine
Library SVC Director

P7 - A(FCIB)
PS - RETURN
P9 - ENTRY
compiled Code

FCIB
FCB

File Control Interface Block
File Control Block

59

TITLE: RESET DISK FILES (IHERSET)

Program Definition

Purpose and Usage

For output files, write current half-track, reset disk pointers to
start of file, and reset current buffer pointer to start address.

For input files, reset current buffer pointer to start address and
reset disk pointers to start of file.

Description

$RESET attributes relative to the statement:

1. Contextual -

2. Implicit

3. Explicit

4. Tentative

Errors Detected

CALL $RESET [(filename, filename)];

DECLARE $RESET ENTRY
Do not use IHERSET
Used as a variable
Do not use IHERSET
DCL $RESET [ATTRIBUTE];
Do not use IHERSET
LABEL: PROC
Do not use IHERSET
LABEL: STATEMENT
Do not use IHERSET
ENTRY
Use IHERSET
Other
Do not use IHERSET

ILLEGAL FILENAME. (123)
NOT OPENED. (124)
INEXPLICABLE I/O ERROR. (301)
END OF OUTPUT FILE. (802)

Local Variables

MINUS Used by SVC 3 and SVC 4 to reset disk
pointers to one less than their current values.

Program Interface

Entry Points

IHERSET Linkage:

Called by:

Exit Conditions

Normal exit. Return to caller via P8.
Abnormal exit. Exit via IHEERRB.

Routines Called

IHEERR Error Routine

60

P1: A(FCIB)
P8: Return Address
P9: Entry Point Address
compiled Code

Global Variables

FCBFNAME

FCBUFAD
FCBCUBUF

File Codes:
00 SYSIN
01 INPUT
10 SYSPRINT
11 OUTPUT

Address of Buffer
Current Buffer Pointer

61

HANDLING OF INTERRUPTS PACKAGE

The following routines constitute the Handling of Interrupts Package
(HIP). Descriptions of these routines are given on succeeding pages
of this manual. The routines are discussed in alphabetic order,
according to their mnemonics, as indicated.

62

Program Termination (IHEDUM)
Table of Error Messages and Indicators (IHEERN)
Error Routine (IHEERR)
On-ENDFILE and REVERT Initializer (IHEONREV)

TITLE: PROGRAM TERMINATION UHEDUM)

Program Definition

Purpose and Usage

The Program Termination routine is used to terminate the program.

Description

All open disk files are closed. Final exit is made via SVC o.

Errors Detected

EXCEEDS FOUR FILES OPEN. (135)
INEXPLICABLE I/O ERROR. (301)

Local Variables

None

Program Interface

Entry Points

IHEDUMP Linkage: None
Called by: Compiled Code or IHEERRC

Exit Conditions

Control is not returned to the caller.

Routines Called

RTSSVC Runtime support macro to transmit any information
contained in the terminal buffer or disk buffer and
to terminate the program (see Appendix D)

Global Variables

FCB File Control Block

63

TITLE: TABLE OF ERROR MESSAGES AND INDICATORS (IHEERN)

Program Definition

Purpose and Usage

The Table of Error Messages and Indicators (IHEERN) contains the action
code of the execution errors and the runtime error messages.

Description

IHEERN contains no executable statement. The routine contains four
tables:

1.
2.
3.
4.

EINDEX
ERTABL
MESTAB
ROUT

Error Index Table
Error Table
Message Table
Routine Name Table

EINDEX contains the offset to ERTABL according to type of error, that
is, I/O" CONVERSION, OVERFLOW, etc. ERTABL contains the offset to
MESTAB for each individual error and action indicator. For routines
in the Mathematical Function Package (MFUNC), ERTABL also contains
the offset to the routine name table. MESTAB contains all runtime
error messages and an error index associated with each message. ROUT
contains all routine names used by the MFUNC routines.

During execution, when an error
the nonrelocatable library work
code is given below:

1

is detected, an error code is set in
area (LWE). The format of the error

2 3
r---,
I Index I Index I File- I
I To I To I Type I
I EINDEX I ERTABL I Indicator I
l---------------------------------------~-------------------J

The specific entrance in ERTABL can be located with the two indexes
given in the error code. The file-type indicator is meaningful only
when I/O errors occur. The action indicator given in ERTABL provides
all information required for IHEERR to direct specific action to be
taken (on-unit action or standard system action to be taken after the
error message is printed).

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

IHEERNA Linkage: None
Called by: IHEERRB

Exit Conditions: None

Routines Called: None

Global Variables: None

64

Byte

TITLE: ERROR ROUTINE (IHEERR)

Program Definition

Purpose and Usage

Error Routine is used to determine the identity of the error or
condition that has been raised, and to determine what action must be
taken on account of it. Several actions are possible. including
combinations:

1. Entry into an on-unit.
2. Print error message and terminate.
3. Print error message and continue.
4. No action. Return to program.

Description

Arithmetic Interrupts (Entry Point: IHEERRA): There are four types
of arithmetic interrupts:

1. FIXEDOVERFLOW (interrupt code = 8 in PSW).
2. OVERFLOW (interrupt code = 12 in PSW).
3. UNDERFLOW (interrupt code = 13 in PSW).
4. ZERODIVIDE (interrupt code = 9 or 15 in PSW).

PSW2SV (location hex 88 in the communications area) contains the PSW when
arithmetic interrupt occurs. In the fixed portion of each DSA, there
is a corresponding word for each interrupt, which is used to specify
the action for the interrupt. The format for each test-word is as
follows:

r----------------------,
I C IOn-Unit I
I 0 I Object Code I
I D I Pointer I
I E I I l----------------------J

Test-Word Note:

Code = 0:
Code = 1:
Code = 3:

Not specified.
Standard system action.
User"s action (on-unit).

on-unit object code pointer is
meaningful only for code = 3.

iI

Depending on the interrupt code given in psw, the proper word in the
DSA is examined:

1. If code = 0 and the DSA containing the test-word is the first DSA
or code = 1, standard system action is performed:

a. FIXEDOVERFLOW:
b. OVERFLOW:
c. UNDERFLOW:
d. ZERODIVIDE:

Comment and raise the error condition.
Comment and raise the error condition.
Comment and continue.
Comment and raise the error condition.

2. If code = 0 and this DSA is not the first DSA, the correspon
ding word in the previous DSA is used as the test-word and step
1 is repeated.

3. If code = 3, a call is generated to the on-unit. (Saving and
restoring information of all registers is done by the on-unit.)
The last three bytes of the test-word contain an offset into
the adcon area where the on-unit adcon area is located; the
address of the on-unit entry point is stored there.

ON or Non-ON Execution Errors (Entry Point: IHEERRB): All execution
errors are handled by IHEERRB. Possible actions to be taken are:

65

1- On-Unit Error Standard System Action: Comment and raise error
condition.

2. On-Unit Error Standard system Action: Comment and terminate.
3. On-Unit Error Standard System Action: Comment and continue.
4. Comment and raise error condition.
5. Comment and terminate.
6. Comment and continue.

For on-unit errors, the on-unit test-word in the DSA is examined.
If no on-unit is specified, standard system action is taken as specified
in the error table in IBEERN. The error messages and routine names
are also given in IBEERN.

Error Conditions (Entry Point: IBEERRC): Same procedure as arithmetic
interrupt is used to determine whether standard system action (terminate
the major task) or user's action is to be performed for error condition.

Restore Registers and PSW for an On-unit (Entry Point: IBEERRR): This
routine is used to restore the second word of PSW2SV in the user's
communications area and general and floating-point registers for an
on-unit. Control is then returned to CALL/360-0S.

Restore Registers and PSW for On-ENDFILE Unit (Entry Point: IHEERRN):
This routine reinitializes PO through PS and transfers via P9 to the
next statement following the statement which caused the on-ENDFILE
condition.

Subscript Not in User Area (Entry Point: IBEERRZ): This routine is
scheduled by the first six bytes of object code in the user's area
when a string or array reference is made to a location greater than
the user's area or less than the start of the static string storage
area.

Errors Detected

PROGRAM ERROR - EXECUTION TERMINATED. (902)

Local Variables

LNGTHMES (Register GS)
ADBUFFER (P2)
ADIatTAB (PS)

Program Interface

Entry Points

IBEERRA Linkage:
Called by:

IBEERRB Linkage:
Called by:

IBEERRC Linkage:
Called by:

IBEERRN Linkage:
Called by:

IBEERRR Linkage:
Called by:

IBEERRZ Linkage:
Called by:

66

Length of the error message in IHEERN
output buffer address
Address of object code address-line number
table

None
EXEC on Arithmetic Interrupt

RA: A (Error Code)
Library Modules

None
Compiled Code and Library Modules

P7: A (On-unit Adcon Area)
On-Unit

P7: A (On-Unit Adcon Area)
on-unit

None
Compiled Code

Exit Conditions

Depend on the type of errors.

Routines Called

IHEERN
IHEDUM

Global Variables

BUFPTR
OPFLG

Table of Error Messages and Indicators
Program Termination

Buffer Pointer for SYSPRINT (Communications Area)
Output Inhibit Flag (Communications Area)

67

TITLE: ON-ENDFILE AND REVERT INITIALIZER CIHEONREV)

Program Definition

Purpose and Usage

The On-ENDFILE and REVERT Initializer is used to initialize the on
ENDFILE condition unit to the current unit in effect.

Description

All ENDFILE filenames are searched to find the one in this block with
the same FCIB. If none is found, an entry is created and the new on-unit
information word is stored.

Local Variables

None

Errors Detected

None

Program Interface

Entry Points

IHEONUN Linkage: P1:
Parameter list:

IHEREVT Linkage: P1:

Exit Conditions

Normal exit. Return to caller.

Routines Called

IHEERR Error Routine

Global Variables

None

68

A(Parameter list)
Address of on-unit adcon
Address of FCIB
A(FCIB)

MANAGEMENT OF OBJECT PROGRAM PACKAGE

The following routines constitute the Management of Object Program
Package (MOPP). Descriptions of these routines are given on succeeding
pages of this manual. The routines are discussed in alphabetic order,
according to their mnemonics, as indicated.

Output Director (IHEGPUT)
Ini tial Prologue, Expand DSA, End Prologue, Object Program

Initiation (IHESAD)
GO TO Interpreter CIHESAF)
Library SVC Director (IHESVC)

69

TITLE: OUTPUT DIRECTOR (IHEGPUT)

Program Definition

Purpose and Usage

The output Director places a 120-character line in the terminal buffer.
It also removes trailing blanks and checks line width.

Description

A 120-character line is processed and placed in the terminal buffer.
If there is insufficient space, the buffer is emptied. Trailing blanks
are removed from the line. If the line exceeds the line width, it
is broken into segments of the maximum length. Before return, the
line is cleared to blanks.

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

Normal linkage to IHEGPUT. Register P2 has address of line.

Exit Conditions

Normal exit. All registers restored. Line cleared.

Routines Called

IHESVC Library SVC Director

Global Variables

Communications Area

10

TITLE: INITIAL PROLOGUE, EXPAND DSA, END PROLOGUE, OBJECT PROGRAM
INITIATION (IHESAD)

Program Definition

Purpose and Usage

The Initial Prologue~ Expand DSA, End Prologue, Object Program
Initiation routine has the following functions:

1. Initial prologue: Provides fixed part of the dynamic storage
area for a begin or procedure block.

2. Expand DSA: Obtains automatic storage for elements declared
within the block.

3. End prologue: Checks to see if sufficient space is available
for the object program. If not, an SVC for more space is issued.

4. Object program initiation:
a. Calculates space required for the object program.
b. sets certain global variables in LCA.
c. If disk file has been declared, checks to see if links have

been provided.

Description

Initial Prologue (Entry Point: IHESADA): DSA is aligned to a double
word boundary. If the fixed space required is greater than the size
of the program, additional space is requested.

For procedure blocks, nonvolatile, nonrelocatable general registers
and floating-point registers are saved in DSA. All on-unit informa
tion words in DSA are set to zeros.

~Ex~p~a~n~d~D~S~A~~(En~~t=ry~~p~o~i=n~t~:~~I~HES~~AD~B~): The automatic storage required
for string variables and subscript variables is allocated. For
subscript variables, the array dope vector and string array dope vector
are set. The algorithms used are given as follows:

Mi = Ui - Li + 1

where:

Mi = ith multiplier

Ui ith upper bound

Li = ith lower bound

Virtual Origin = Address of current location of DSA-base address of
object program address:

(••• (L1*M1 + L2)*M2 + •••) + Ln)*Mn

n

Size of Array = IIMi where Mi = Ui - Li + 1
i = 1

End-Prologue (Entry Point: IHESADC): The size of the program is
compared with the current DSA address. If more space is reqUired,
the RTSSVC macro performs this function (see Appendix D).

71

Object Program Initiation (Entry Point: IHESADD): The size of the
program is calculated with the information given in OTT. The address
of the last byte of a user's program is stored in the adcon area.

Time Function (Entry Point: IHESADE): convert time from binary to
EBCDIC.

Errors Detected

RECURSIVE BLOCK OR ON-UNIT. (801)

Local Variables

DIMENS (G1)
VIRTUAL (GO)
ADDOPEV (P4)
ADDED (PS)
ADFCB CP2)
ADUTT CG4)
ADCOMMUN (PS)

Program Interface

Entry Points

IHESADA

IHESADB

IHESADC

IHESADD

IHESADE

Exit Conditions

Dimension of the array
Virtual origin
Address of array or string dope vector
Address of data element descriptor
Address of file control block
Address of user terminal table
Address of user's communications area

Linkage:

Called by:

Linkage:
Parameter List:

Called by:

Linkage:
Called by:

Linkage:
Called by:

Linkage:
Called by:

P1: ACBAA)
G1: Length of DSA
Compiled Code

P1: A(Parameter List)
ACDope Vector)
AWED)
compiled Code

None
Compiled Code

None
Compiled Code

P7: A (TARGET)
Compiled Code (Entered at
IHESADE)

Normal exit. Return to caller.
Abnormal exit. Call IHEERRB.

Routines Called

IHEERR

Global Variables

12

BAA
L#2048

Error Routine

Block Adcon Area
Number of 2048-byte blocks allocated (UTT)

TITLE: GO TO INTERPRETER CIBESAF)

program Definition

Purpose and Usage

The GO TO Interpreter frees all chain elements up to the DSA to which
the label belongs.

Description

If the pointer to BAA (block adcon area) is not equal to the pOinter
to BAA in the present DSA. this routine:

1. sets the BAA's DSA address to the base address.
2. Updates the current DSA address.
3. Repeats the test.

If the pointer to BAA is equal to the pointer to BAA in the current
DSA. a branch is made to the specified label.

Errors Detected

ILLEGAL LABEL VARIABLE GO TO. (809)

Local Variables

None

Program Interface

Entry Points

IHESAFC Linkage:
Parameter List:

Exit Conditions

Normal exit. Return to caller.

Routines Called

None

Global Variables

P7: ACParameter List)
Offset to Label
Offset to BAA

CDSA Current DSA Address

73

TITLE: LIBRARY SVC DIRECTOR (IHESVC)

Program Definition

Purpose and Usage

The Library SVC Director handles all SVC interfaces with the CALL/360-0S
System for the library except for SVC 8.

Description

The SVC code is picked up from the parameter list in the halfword
following the return point, and the proper SVC is executed. Return
is to the location immediately following the parameter list.

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

Normal linkage and entry at IHESVCA. Halfword SVC code immediately
after BALR to this routine.

Exit Conditions

Return is to the location two bytes after BALR.

Routines Called

None

Global Variables

None

14

TOTAL CONVERSION PACKAGE

The following routines constitute the Total Conversion Package (TCP).
The routines can be organized in functional groups, as explained in
the previous section of this manual and detailed below. Descriptions
of the routines are given on succeeding pages. Within each functional
group, the routines are discussed in alphabetic order, according to
their mnemonics.

Edit-directed I/O directors:

F/E-Format Input Director (IHEDlA)
A-Format Input Director (IHEDIB)
C-Format Input Director (IHEDlM)
F/E-Format output Director (IHEDOA)
A-Format OUtput Director CIHEOOB)
C-Format Output Director (IHEDOM)

Type conversion directors:

Character String to Arithmetic (IHEDCN)
Arithmetic to Character string (IHEDNC)

Mode conversion director:

Zero Real or Imaginary Part (IHEUPA)

String conversion routines:

Complex External to String Director (IHEVCS)
Character String to Character String (IHEVSC)

Arithmetic conversion routines and director:

Arithmetic Conversion Director (IHEDMA)
Float Intermediate to Packed Decimal Intermediate (IHEVFA)
Float Intermediate to Fixed Binary (IHEVFB)
Float Intermediate to Float Short or Long (IHEVFC)
Fixed Binary to Float Intermediate (IHEVFD)
Float Source to Float Intermediate (IHEVFE)
Packed Decimal Intermediate to Float Intermediate (IHEVPA)
Packed Decimal Intermediate to F-Format (IHEVPB)
Packed Decimal Intermediate to E-Format (IHEVPC)
String with Format to Packed Decimal Intermediate (IHEVPE)
Table of Powers of Ten (IHEVTB)

Constant analysis routine:

Data Analysis Routine (IHEVCA)

75

TITLE: F /E-FORMAT INPUT DIRECTOR (IHEDIA)

Program Definition

Purpose and Usage

The F/E-Format Input Director directs the conversion of external data
with F/E-format to an internal data type.

Description

Functionally speaking. entry points IBEDIAA and IHEDIAZ are equivalent.
as are IHEDIAB and IHEDIAY. IBEDIAA and IHEDIAB receive parameter
requirements via a parameter list; IHEDIAZ and IHEDIAY receive parameter
requirements via a file control block.

The LeA switch byte WSWA is used to direct processing:

Bit X'40' identifies C-Format Input Director as the caller of
the module. and

Bit X'01' indicates conversion to involve the imaginary part of
a complex data item.

A source dope vector with a string length of zero or less leaves the
target unchanged. Acceptable DED flag byte patterns follow in
hexadecimal format:

F-format character
E-format character
E-format character
A-format character
Fixed-point binary

string
string
string
string

(single precision)
(double precision)

C8-C9
CA-CB
DA-DB
2B-2B
8C-8D
8E-8F
9E-9F

Short floating-point binary
Long floating-point binary

Errors Detected

None

Work Area

Library work area is obtained from level three.

Local Variables

NWRK Nonrelocatable library work area

=T}
PRAMS

Relocatable library work area

Program Interface

Entry Points

IHEDIAA - Entry for F-format input string
P1 = A (Parameter List)

16

where Parameter List:

A (Source)
A (Target)
A (Target DED)
A (Source FED)

IHEDIAB - Entry for E-format input string. Calling sequence is
as described for entry IHEDIAA.

IHEDIAZ - Functionally equivalent to IHEDIAA
P7 = A (FCB)
PCB = A (Buffer)

A (Current Buffer)
A (Target)
A (Target DED)
A (Real FED)

IHEDIAY - Functionally equivalent to IBEDIAB; calling sequence is
as described for entry IBEDIAZ.

Note: Library Common Variables:

WSWA = X' qO' If module is called by C-Format Input Director.
WSWA = X· 01' If component to be converted is the imaginary part

of a complex data item.

Exit Conditions

Normal exit. Return to caller.

Routines Called

IHEDMA
IHEDNC
IHEUPA
IHEVCA
IHEVSC

Global variables

WCNP
WCN1
WFCB
WFED
WSDV
WSWA
WTEMP

Arithmetic Conversion Director
Arithmetic to Character string
Zero Real or Imaginary Part
Data Analysis Routine
Character String to character String

77

TITLE: A-FORMAT INPUT DIRECTOR (IHEDIB)

Program Definition

Purpose and Usage

The ~-Format Input Director supervises the conversion necessary during
edit-directed stream I/O to convert an external A-format data item
(described by an A-format) to any internal data representation
(specified by a DED) in the data stream.

Description

1. FED field width w is tested as follows.

a. If w is less than or equal to zero, test target type.

(1) An arithmetic target type is considered an error.
(2) If target is a character string, call Character String

to Character String routine (IHEVSC) to effect transfer
of source string to target.

b. If w is greater than zero, test target type.

(1) If target type is character string, call Character
String to Characte~ String routine (IHEVSC) to effect
transfer of source string to target.

(2) If target type is arithmetic, call the Character String
to Arithmetic routine (IHEDCN) to effect conversion
from source string to target.

2. IBEIOG is called to obtain data from buffer. WAFORMAT is set
to X'FF' before the call to allow IHEIOG to accept a carri~r
return as a valid input character. WAFORMAT is reset to X'OO'
on return.

3. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level three.

Local Variables

PLIST Relocatable library work area

Program Interface

Entry Points

78

IHEDIBA - Entry for A-FOrmat
P7 = A (File Control Block)

where File Control Block:

A (Buffer)
A (Current Buffer)
A (Target/Target Dope Vector)
A (Target DED)
A (Real FED)

Exit conditions

Normal exit. Return to caller via the link register.

Routines Called

IHEDCN
IHEIOG
IHEVSC

Character String to Arithmetic
Get Data Field from Input Buffer
Character String to Character String

Global Variables

WFCB
WSDV
WTEMP
WAFORMAT

Comments

Called by compiled code.

79

TITLE: C-FORMAT INPUT DIRECTOR (IHEDIM)

Program Definition

Purpose and Usage

The C-Format Input Director supervises the conversion necessary during
edit-directed stream I/O to convert an external data C-format data
item (described by two F/E-format elements) to an internal C-format
representation (specified by a DED) in the data stream.

Description

1. The C~format switch in LCA (address WSWA) is set and the target
data type is tested.

a. If data type is string, construct DED's describing the real
and imaginary parts of the source complex number string.
The Data Analysis Routine (IHEVCA) is used to initialize·
the DED. For complex components for which the F/E-Format
Input Director (IHEDIA) is specified, the precision and
scale factor are placed in the respective DED. If any
director other than IHEDIA is specified, call the complex
External to String Director (IHEVCS) to effect the
conversion. otherwise, call the F/E-Format Input Director
(IHEDIA) to effect conversion.

b. If data type is not string, construct DED and compute
precisions and scale factors as described for item a, above.
Call the F/E-Format Input Director (IHEDIA) to effect
conversion of source strings to target.

2. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level four and level E.

Local Variables

DOPV
DEDS
SWIT l

~~} RFPSV
RGPSV
QLIST

Nonrelocatable library work area

Relocatable library work area

Program Interface

Entry Points

80

IHEDlMA - Entry for C-Format
P7 = A (File Control Block)

where File Control Block:

A (Buffer)
A (Current Buffer)
A (Target/Target Dope Vector)

A (Target DED)
A (Flag Byte. Real FED)
A (Flag Byte. Imaginary FED)

Exit Conditions

Normal exit. Return to user via the link register.

Routines Called

IBEDIA
IBEIOG
IBEVCA
IBEVCS

F/E-Format Input Director
Get Data Field from Input Buffer
Data Analysis Routine
Complex: External to String Director

Global Variables

WCNP
WCN1
WFCB
WRCD
WSDV
WSWA
WTEMP

Comments

Called by compiled code.

81

TITLE: F/E-FORMAT OUTPUT DIRECTOR (IHEDOA)

Program Definition

Purpose and usage

The F/E-Format Output Director supervises the conversion necessary
during edit-directed stream I/O to convert an internal data
representation (described by a DED) to an external F/E-format data
item (specified by an F/E-format element) in the data stream.

Description

1. E- or F-format output is indicated, according to the entry point
by which the module is accessed. Entering at IHEDOAA specifies
F-format output; IHEDOAB specifies E-format output.

2. The source data type is tested.

a. If source is a character string, call Character String to
Arithmetic routine (IHEDCN).

b. If source is arithmetic, call Arithmetic Conversion Director
(IHEDMA) •

3. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level three.

Local Variables

PLIST Relocatable library work area

Program Interface

Entry Points

82

IHEDOAA - Entry for F-Format OUtput
P1 = A (Parameter List)

where Parameter List:

A (Source/Source SDV)
A (Source DED)
A (FED)

IHEDOAB - Entry for E-Format Output
Arguments as for IHEDOAA

IHEDOAZ - F-Format Output with File Control Block
P1 = A (File Control Block)

where File Control Block:

A (Buffer)
A (Current Buffer)
A (Source/Source SDV)
A (Source DED)
A (Real FED>

IBEDOAY - E-Format Output with File Control Block
Arguments as for lHEDOAZ

Exit Conditions

Normal exit. Return to caller via the link register.

Routines Called

IBEDMA
IBEDCN
IBEIOD

Arithmetic Conversion Director
Character String to Arithmetic
output Data to the Buffer Area and Communication
with CALL/360-0S

Global Variables

WBUFF
WFCB
WFDT
WSDV
WTEMP

83

TITLE: A-FORMAT OUTPUT DIRECTOR (IBEDOB)

Program Definition

Purpose and Usage

The A-Format Output Director supervises the conversion necessary during
edit-directed stream I/O, to convert an internal data representation
(described by a DED) to an external A-format data item (specified by
an A-format element) in the data stream. If the internal representation
is a character string, the A-format element may be implied.

Description

1. The FED·s w specification is tested.

a. If the w specification is less than or equal to zero, test
the source data type. An arithmetic data type is considered
an error. Otherwise, test length of character string.
If a string length is less than or equal to zero, the target
remains unchanged. Otherwise, set w equal to the length
of the data string and set up character DED.

b. If the w specification is greater than zero, set up character
DID.

2. A target SDV is set up. and the source data type is tested.

a. If data type is a character string, call the Character
String to Character String routine (IHEVSC) to effect
assignment of the source string.

b. If data type is arithmetic, call the Arithmetic to Character
String routine (IBIDNC) to effect the conversion and
assignment.

3. Return is made to caller.

Errors Detected

A FORMAT WIDTH UNSPECIFIED AND LIST ITEM NOT TYPE STRING. (102)
A FORMAT WIDTH UNSPECIFIED ON INPUT. (10Q)

Work Area

Library work area is obtained from level three.

Local Variables

PLIST Relocatable library work area

Program Interface

Entry Points

84

IBEDOBA - A(w) Format Output
P1 = A (File Control Block)

where File Control Block:

A (Buffer)
A (Current Buffer)
A (Source or Source SDV)
A (Source DED)
A (Real FID) IBIDOBA only

IHEDOBB - A-Format Output

Arguments as for lHEDOBA

Exit conditions

Normal exit. Return to caller via the link register.
Abnormal exit. Call IHEERRB to raise error condition.

Routines Called

IHEDNC
IHEVSC
IHEIOG

Global Variables

WBUFF
WFCB
WSDV
WTEMP

Arithmetic to Character String
Character String to Character String
Get Data Field from Input Buffer

/

85

TITLE: C-FORMAT OUTPUT DIRECTOR (IHEDOM)

Program Definition

Purpose and Usage

The C-Format Output Director supervises the conversion necessary during
edit-directed stream I/O to convert an internal data representation
(described by DED) to an external C-format data item (specified by
two F/E-format elements) in the data stream.

Description

1. The source data type is tested.

a. If data type is string, create DED's for each part of the
complex number to be output. Call the Data Analysis Routine
(IHEVCA) to initialize the DED(s). Compute FED parameters
as required. Test mode of source.

(1) If source string is real, set for zero imaginary part.
output the c-complex via the specified real and imaginary
output directors CIHEDOA, IHEDMA, and IHEDCN).

(2) If source string is complex, call the Zero Real or
Imaginary Part routine (IHEUPA) to delimit the real
and imaginary parts of the C-format. Output the C
complex as described in item (1), above.

b. If data type is arithmetic, compute FED parameters. Test
mode of source. Output as described in items (1) and (2).

2. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level four.

Local Variables

WORK
pswr
DEDl
DED2 Nonrelocatable library work area
DED3
NFED
PSTRG

PW'.RK

I
PARAM
PLIST
QLIST
PNOW
PNXT

Relocatable library work area

Program Interface

Entry Points

IHEDOMA Entry
P7 = A (File Control Block)

86

where File Control Block:

A (Buffer)
A (Current Buffer)
A (Source/Source SDV)
A (Source DED)
A (Flag Byte, Real FED)
A (Flag Byte, Imaginary FED)

Exit Conditions

Normal exit. Return to user via the link register.

Routines Called

IHEUPA
IHEVCA
IHEVCS
IHEDOA

Global Variables

WCNP
WCN1
WCN2
WFCB
WORK
WRCD
WSWZ
WTEMP

Zero Real or Imaginary Part
Data Analysis Routine
Complex External to String Director
FIE-Format Output Director

87

TITLE: CHARACTER STRING TO ARITHMETIC (IBEDCN)

Program Definition

Purpose and Usage

Character string to Arithmetic converts a fixed-length character string
containing a valid arithmetic constant or complex expression to an
arithmetic target with specified scale, mode, and precision.

Description

1. Source string length is tested as follows.

a. A null string constitutes a valid string.

b. A string containing all blanks is considered an error.

c. A string containing embedded blanks in data is considered
an error.

d. A string type not compatible with target data type is
considered an error.

e. A valid string is converted to target specifications via
the Arithmetic Conversion Director (IBEDMA). Prior to
calling IBEDMA, description parameter values required by
the module must be computed. The Zero Real or Imaginary
Part routine (IBEUPA) is used to supply zero real or
imaginary components, as may be required by complex target
data types.

2. Error exit is to IBEERRB with the error code set to IBEERRCD
54.

3. Return is mad~ to caller.

Errors Detected

CONVERSION. (600)
ERROR IN CONVERSION FROM CHARACTER STRING TO ARITHMETIC.

Work Area

Library work area is obtained from level two.

Local Variables

TESTe
ENDCN
WORK

PRAMS I PLIST
BPSAV

Program Interface

Entry Points

Beginning of string-scan section
Beginning of conversion section
Nonrelocatable library work area

Relocatable library work area

(604)

IBEDCNA -
P1 =

Initialize on source information and then convert
A (Parameter List)

where Parameter List:

88

Exit Conditions

A (Character SDV)
A (Character DED)
A (Target)
A (Target DED)

Normal exit. Return to caller via the link register.
Abnormal exit. Call IHEERRB to raise conversion error.

Routines Called

IHEDMA
IHEUPA
IHEERR

Global Variables

WCN1
WCN2
WFED

Arithmetic Conversion Director
Zero Real or Imaginary Part
Error Routine

89

TITLE: ARITHMETIC TO CHARACTER STRING (IHEDNC)

Program Definition

Purpose and Usage

Arithmetic to Character String converts any arithmetic source of
specified scale, mode, and precision to a character string.

Description

1. The scale and mode of the source are tested.

a. If source is real arithmetic, calls Arithmetic Conversion
Director (IHEDMA) to convert real source to an F/E-format
character string; then calls the Character String to
Character string module (IHEVSC) to move the generated F/E
format character string to the target area.

b. If source is complex arithmetic, makes multiple calls to
the Arithmetic Conversion Director and Character String
to Character String modules (IHEDMA and IHEVSC, respectively)
to effect the required conversion. Calls Zero Real or
Imaginary Part module (IHEUPA) as required to generate
intermediate real/imaginary zero F/E-format character
strings.

2. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level two.

Local Variables

PSWT
EDIT
DOPV I
NWRK 1 SAV1
SAV2
SAV3
PLIST

Nonrelocatable library work area

Relocatable library work area

Program Interface

Entry Points

90

IHEDNCA - Entry
P7 = A (Parameter List)

where Parameter List:

A (Source)
A (Source DED)
A (Target Dope Vector)
A (Target DED)

Exit conditions

Normal exit. Return to caller via the link register.

Routines Called

IBEDMA
IHEUPA
IBEVSC

Arithmetic Conversion Director
Zero Real or Imaginary Part
Character string to Character string

Global Variables

WCFD
WFDT
WINT
WRCD
WSWA
WTEMP

91

TITLE: ZERO REAL OR IMAGINARY PART CI HE UPA)

Program Definition

Purpose and Usage

Zero Real or Imaginary Part sets the real or imaginary part of complex
arithmetic data item equal to zero and moves a pointer from the real
part to the imaginary part or gets the address of the imaginary part
only.

Description

Entry at IHEUPAA zeroes the real part and moves pointer to end of real
part. Entry at IHEUPAB zeroes the imaginary part and/or moves pOinter
to the imaginary part of the complex, depending upon the contents of
LCA address WSWA. If WSWA contains an X'Oq', only an update occurs.

Errors Detected: None

Work Area

Library work area is obtained from level zero.

Local Variables

standard relocatable and nonrelocatable library work areas

Program Interface

Entry Points

IHEUPAA - Entry to zero real part of complex and move pointer
to imaginary part of complex target

P7 = A (Parameter List)

where Parameter List:

A (Real Part of Data)
A (DED)

IHEUPAB - Entry to zero imaginary part of complex and/or
move pointer to end of imaginary part of complex target

Arguments as for IHEUPAA

Input Parameter

WSWA = X'Oq' Update Only Switch

Exit Conditions

Normal exit. Return to caller via link register. WRCD is set to the
address of imaginary part of complex.

Routines Called: None

Global Variables

92

WRCD
WSWA
WSWC

TITLE: COMPLEX EXTERNAL TO STRING DIRECTOR (IBEVCS)

Program Definition

Purpose and Usage

The Complex External to string Director directs the conversion of
character representation of complex data to internal string data.
The character data is first converted to complex with attributes derived
from the real and imaginary parts of the source data (according to
arithmetic conversion package rules) and then converted to string.

Description

Compute the scale and precision of the resulting complex as follows:

s = max (q1. q2)
P = max (p1 - q1. p2 - q2) + s + 1

where (p1.q1) and (p2.q2) denote the precision and scale of the real
and complex components of the source complex. respectively.

Set scale equal to 128+s.

1. If m ~ p ~ n (where m and n denote the minimum and maximum
precision values possible for the mode. respectively). set the
precision equal to p.

2. If P is less than m. set precision to m.

3. If P is greater than n. set precision equal to n.

Test caller's point of entry.

1. If entered via a call to IBEVCSA. call the Arithmetic Conversion
Director (IBEDMA) to output F/E-format data strings. Two calls
to IBEDMA are required. one for the real component and one for
the imaginary. The Zero Real or Imaginary Part routine (IBEUPA)
is used to locate address of the imaginary part of the complex
source.

2. If entered via a call to IHEVCSB. a single call to the Character
String to Character String routine (IBEVSC) effects the
conversion and transfer of the source to target.

Errors Detected

None

Work Area

Library work area is obtained from level three.

Local Variables

DED1
DED2
PSWT
ENTY
INTR

PRMS
PLIST

}
}

Nonrelocatable library work area

Relocatable library work area

93

Program Interface

Entry Points

IHEVCSA - Complex external to string conversion
P7 = A (Parameter List)

where Parameter List:

A (Start/End Addresses of Real Data)
A (Real DED)
A (Start/End Addresses of Imaginary Data)
A (Imaginary DED)
A (Target Dope Vector)
A (Real FED)
A (Imaginary FED)

IHEVCSB - Complex external to coded complex conversion
P7 = A (Parameter List)

where Parameter List:

A (Start/End Addresses of Real Data)
A (Real DED)
A (Start/End Addresses of Imaginary Data)
A (Imaginary DED)
A (Target)
A (Target DED)
A (Real FED)
A (Imaginary FED)

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

IHEDMA
IHEDNC
IHEUPA

Global Variables

94

WFED
WRCD
WSWA

Arithmetic Conversion Director
Arithmetic to Character string
Zero Real or Imaginary Part

TITLE: CHARACTER STRING TO CHARACTER STRING (IHEVSC)

Program Definition

Purpose and Usage

Character String to Character String assigns a fixed or varying length
character string to a fixed or varying length character string.

Description

1. The length of the source string is tested.

a. If source string length is greater than or equal to target
string length, set source string length to target string
length.

b. If source string length is less than target string length,
compute the blank fill required to pad target string.

2. Source string is moved to target string.

3. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

Standard relocatable and nonrelocatable library work areas.

Program Interface

Entry Points

IHEVSCA - Entry
P7 = A (Parameter List)

where Parameter List:

A (Source SDV)
A (Source DED)
A (Target SDV)
A (Target DED)

Exit Conditions

Normal exit. Return to caller via the link register.

Routines Called

None

Global Variables

None

95

TITLE: ARITHMETIC CONVERSION DIRECTOR (IHEDMA)

Program Definition

Purpose and Osage

The Arithmetic Conversion Director sets up the intermodular flow to
effect conversion from one arithmetic data type to another. (See
Figure 4-6 in the general discussion of the Total Conversion Package.)

Description

This module sets up one of two transfer vector patterns, depending
upon the source and target formats. They are:

1. Type 1

a. Source to intermediate (POI or FLI)
b. Intermediate (POI or FLI) to intermediate (FLI or POI)
c. Intermediate (FLI or POI) to target

2. Type 2

a. Source to intermediate (POI or FLI)
b. No operation
c. Intermediate (POI or FLI) to target

Note: POI refers to Packed Decimal Intermediate. FLI refers to Float
Intermediate (a long-precision number).

The execution of the first module in the chain is effected through
a direct transfer from module lHEDMA. Subsequent executions are
effected indirectly through the setting of appropriate pointers in
the LeA.

The first routine to be executed is determined by inspecting the OED
describing the source data item. The third routine is determined by
inspection of the OED describing the target data item. The selection
of the second routine, if required, is determined by the need to convert
from one intermediate format to another in order to go from source
to target format.

Acceptable OED flag byte patterns follow in hexadecimal format:

7E E-format } Reserved for use by other total conversion
7F F-format directors
8C-8D Fixed-point binary
8E-8F Short floating-point binary
9E-9F Long floating-point binary
C8-C9 F-format character string
CA-CB E-format character string (single precision)
DA-DB E-format character string (double precision)

possible source to intermediate routines are:

1. F/E-Format to POI (IHEVPE)
2. Float to FLI (IHEVFE)
3. Fixed Binary to FLI (IHEVFD)

Possible intermediate to target routines are:

1. POI to F-Format (IHEVPB)
2. POI to E-Format (IHEVPC)
3. FLI to Float (IHEVFC)
4. FLI to Fixed Binary (IHEVFB)

96

Possible intermediate conversion modules are:

1-
2.

PDI to FLI (IHEVPA)
FLI to PDI (IHEVFA) } The modules require the use of routine

IHEVTB which is a radix conversion table.

The last routine in the chain transfers control back to caller of
module IHEDMA via the link register.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

ACOl
ATOl
AT21
XTOl
ATll

Length of the table containing the list of binary processors
Table of target processor pointers
Table of source processor pointers
Table of function index values
Table of base-conversion processor pointers

Program Interface

Entry Points

IHEDMAA
P7 = A (Parameter List)

where Parameter List:

A (Source)
A (Source DED)
A (Target)
A (Target DED)

Input Parameters

WFED = A (Input FED)
WFDT = A (output FED)

Exit Conditions

Normal exit. Transfer control to IHEVFE, IHEVPE, or IHEVFD. This
module sets WRBl to address of second routine, WRB2 to address of third
routine, and WRDC to contents of target and target DED.

Routines Called

IHEVPE
IBEVFD
IBEVFE

String with Format to Packed Decimal Intermediate
Fixed Binary to Float Intermediate
Float Source to Float Intermediate

Global Variables

WRCD

97

Comments

Called by:

98

Compiled code
IHEDIA (F/E-Format Input Director)
IHEDIB (A-Format Input Director)
IHEDIM (C-Format Input Director)
IHEDOA (F/E-Format Output Director)
IHEDOB (A-Format Output Director)
IHEDOM (C-Format output Director)
IHEDCN (Character String to Arithmetic)
IHEDNC (Arithmetic to Character string)
IHEVCS (Complex External to String Director)

TITLE: FLOAT INTERMEDIATE TO PACKED DECIMAL INTERMEDIATE, (IHEVFA)

Program Definition

Purpose and Usage

Float Intermediate to Packed Decimal Intermediate directs the conversion
of a floating-point intermediate number to a packed decimal intermediate
number and stores the result into the library communications area (LeA)
to make it available to the routine scheduled next for execution by
the Arithmetic Conversion Director. (Intermediate arithmetic values
are long-precision numbers.)

Description

The long floating-point number currently_ residing in the LCA address
WINT is converted to a packed decimal number with scale factor and
stored into WINT and WSCF,. respectively.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

WORK Nonrelocatable library work area

Program Interface

Entry Points

IHEVFAA

Input Parameters

WINT = Long floating-point intermediate number
WBR2 = A (Next routine entry point)

Exit conditions

Normal exit. A branch is made to the address contained in LeA address
WBR2. This routine sets WINT to seventeen-digit (nine-byte) packed
decimal number and WSCF to scale factor in a binary word.

Routines Called

None

Global Variables

WBR2
WINT
WSCF
WSWC

99

TITLE: FLOAT INTERMEDIATE TO FIXED BINARY (IHEVFB)

Program Definition

Purpose and Usage

Float Intermediate to Fixed Binary assists in arithmetic and/or string
manipulations.

Description

Floating-point intermediate numbers are converted to fixed-point binary
and stored in a target item.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

Standard relocatable and nonrelocatable library work areas

Program Interface

Entry Points

IHEVFBA

Input Parameters

WRCD = A (Target Field), A (Target DED)
WINT = Long Floating-Point Intermediate Number

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

None

Global variables

100

WINT
WRCD

TITLE: FLOAT INTERMEDIATE TO FLOAT SHORT OR LONG (IHEVFC)

Program Definition

Purpose and Usage

The Float Intermediate to Float Short or Long routine moves a floating
point intermediate into a floating-point short or long target data
item. (Intermediate arithmetic values are long-precision numbers.)

Description

If the target item is a short floating-point data item, the floating
point intermediate is truncated to short floating-point binary and
moved into the short floating-point target data item. However, if
the target item is a long floating-point data item, the floating-point
intermediate is moved directly into the target item.

Errors Detected: None

Work Area

Library work area is obtained from level zero.

Local Variables

Standard relocatable and nonrelocatable library work areas

Program Interface

Entry Points

IHEVFCA

Input Parameters

WINT = Long Floating-Point Intermediate Number
WRCD = A (Target), A (Target DED)

Exit conditions

Normal exit. Return to caller via the link register.

Routines called: None

Global Variables

WINT
WRCD

101

TITLE: FIXED BINARY TO FLOAT INTERMEDIATE (IHEVFD)

Program Definition

Purpose and Usage

Fixed Binary to Float Intermediate assists in arithmetic and/or
character string manipulations.

Description

A fixed-point binary source is converted to a floating-point
intermediate number.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

WORK Nonrelocatable library work area

Program Interface

Entry Points

IHEVFDA
P7 = A (Parameter List)

where Parameter List:

A (Source Data)
A (Source DED)

Input Parameters

WBR1 = A (Next Module Entry Point)

Exit conditions

Normal exit. A branch is made to address in WBR1. WINT is set to a
long floating-point intermediate number.

Routines Called

None

Global Variables

102

WBR1
WINT
WRCD
WSCF
WSWC

TITLE: FLOAT SOURCE TO FLOAT INTERMEDIATE (IHEVFE)

Program Definition

Purpose and Usage

The Float Source to Float Intermediate routine moves a short or long
floating-point binary number into the library communications area (LCA)
to make it available for use as a floating-point intermediate by
routines scheduled for subsequent execution by the Arithmetic Conversion
Director. (Intermediate arithmetic values are long-precision numbers.)

Description

If a short floating-point number is input, it is expanded to a long
floating-point number and placed into the LCA at address WINT; however,
if a long floating-point number is input, it is simply moved into the
LCA as previously noted.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

Standard relocatable and nonrelocatable library work areas

Program Interface

Entry Points

IHEVFEA
P1 = A (Parameter List)

where Parameter List:

A (Source Data)
A (Source DED)

Input Parameters

WBR1 = A (Next Module Entry Point)

Exit Conditions

Normal exit. A branch is made to the address contained in LCA address
WBR1. WINT is set to a long floating-point intermediate number.

Routines Called

None

Global Variables

WBR1
WINT

103

TITLE: PACKED DECIMAL INTERMEDIATE TO FLOAT INTERMEDIATE (IHEVPA)

Program Definition

Purpose and Usage

The Packed Decimal Intermediate to Float Intermediate routine converts
a packed decimal intermediate number to a long floating-point
intermediate number and stores the result into the library
communications area (LCA) to make it available to the routine scheduled
next for execution by the Arithmetic Conversion Director. (Intermediate
arithmetic values are long-precision numbers.)

Description

The packed decimal number with scale factor currently residing in the
LCA addresses WINT and WSCF. respectively. is converted to a long
floating-point intermediate number and stored back into LeA address
WINT.

Errors Detected

None

Work Area

Library work area is obtained from level one.

Local Variables

WORK Nonrelocatable library work area

Program Interface

Entry Points

IHEVPAA

Input Parameters

WIN'!' = seventeen-digit (nine-byte) packed decimal number
WSCF = Fixed-point scale factor for WINT
WBR2 = A (Next module entry point)

Exit Conditions

Normal exit. A branch is made to the address contained in WBR2.
WINT is set to a long floating-point intermediate number.

Routines Called

None

Global Variables

104

wBR2
WIN'!'
WRP
WSCF
WSWC

TITLE: PACKED DECIMAL INTERMEDIATE TO F-FORMAT (IHEVPB)

Program Definition

Purpose and Usage

The Packed Decimal Intermediate to F-Format routine converts a packed
decimal intermediate number to an F-format character string and stores
it into a target string data item. (Intermediate arithmetic values
are long-precision numbers.)

Description

The packed decimal intermediate number with scale factor cqntained
in library communications area (LeA) addresses WINT and WSCF.
respectively. is converted to a character string according to an F
format element pointed to by LCA address WFDT. The generated string
is stored into the string data item specified in LCA address WRCD.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

WORK Nonrelocatable library work area

Program Interface

Entry Points

IHEVPBA

Input Parameters

WINT = seventeen-digit (nine-byte) packed decimal number
WSCF = Fixed-point scale factor of WINT
WFDT = A (FED)
WRCD = A (Target). A (Target DED)

Exit Conditions

Normal exit. Return to caller via the link register.

Routines Called

None

Global Variables

WFDT
WINT
WRCD
WRP
WSCF
WSWC
WTEMP

105

TITLE: PACKED DECIMAL INTERMEDIATE TO E-FORMAT (IHEVPC)

Program Definition

Purpose and Usage

The Packed Decimal Intermediate to E-Format routine converts a packed
decimal intermediate number to an E-format character string and stores
it into a target string data item. (Intermediate arithmetic values
are long-precision numbers.)

Description

The packed decimal intermediate number with scale factor contained
in library communications area (LeA) addresses WINT and WSCF,
respectively, is converted to a character string according to an E
format element pointed to by LeA address WFDT. The generated string
is stored into the string data item specified in LCA address WRCD.

Errors Detected

CONVERSION ERROR IN E FORMAT. (602)

Work Area

Library work area is obtained from level zero.

Local Variables

WORK Nonrelocatable library work area

Program Interface

Entry Points

IHEVPCA

Input Parameters

WINT = Seventeen-digit (nine-byte) packed decimal number
WSCF = Fixed-point scale faotor of WINT
WFDT = A (FED)
WRCD = A (Target), A (Target DED)

Exit Conditions

Normal exit. Return to caller via link register.

Abnormal exit. Call IHEERRB to raise FED error condition, and
IHEERRCD 53 is given.

Routines Called

None

Global Variables

106

WFDT
WINT
WRCD
WRP
WSCF
WSWC
WTEMP

TITLE: STRING WITH FORMAT TO PACKED DECIMAL INTERMEDIATE (IHEVPE)

Program Definition

Purpose and Usage

The String with Format to Packed Decimal Intermediate routine converts
a character string paired with an F/E-format element to packed decimal
intermediate and stores it into the library communications area (LCA)
for use by the next routine scheduled for execution by the Arithmetic
Conversion Director. (Intermediate arithmetic values are long-precision
numbers.>

Description

The source character string described by a DED is paired with an F/E
format element descriptor and converted accordingly to a packed decimal
intermediate number with scale factor. The F/E-format element
descriptor is contained in LCA address WFED. The packed decimal
intermediate result is stored into LCA addresses WINT and WSCF,
respectively, for use by the next routine scheduled for execution by
the Arithmetic Conversion Director.

Errors Detected

CONVERSION. (600)

Work Area: Library work area is obtained from level zero.

Local Variables

PWK Relocatable library work area

Program Interface

Entry Points

IHEVPEA
P1 = A (Parameter List)

where Parameter List:

A (Source Field)
A (Source DED)

Input Parameters

WBR1 = A (Next module entry point)

Exit Conditions

Normal exit. A branch is made to address contained in LCA address
WBR1. WINT is set to 11-digit (nine-byte) packed decimal number.
WSCF is set to the fixed-point scale factor of WINT.

Abnormal exit. Call IHEERRB to raise error condition if the source
field is invalid, and IHEERRCD 51 is given.

Routines Called: None

Global Variables

WBR1
WFED

WINT
WSWC

WRP
WSCF

101

TITLE: TABLE OF POWERS OF TEN (IHEVTB)

Program Definition

Purpose and Usage

The Table of Powers of Ten is used by the two radix conversion routines,
IHEVPA and IHEVFA.

Description

This module is a table of long-precision floating-point numbers
representing powers of 10 from 1 to 10.

Errors Detected

None

Work Area

None

Local Variables

None

Program Interface

Base Address

IHEVTBA

Exit Conditions

None

Routines Called

None

Global Variables

None

108

TITLE: DATA ANALYSIS ROUTINE (IBEVCA)

Program Definition

Purpose and Usage

The Data Analysis Routine creates a DED (flag byte, p-byte, q-byte)
to describe the scale, mode, and precision of a character representation
of an arithmetic value.

Description

Gets start/stop string delimiters from LCA address WCNP. Scans
character string for the following characters:

E
+

I

o
1
2
3
II

5
6
1
8
9

1. If designated characters or digits are encountered, appropriate
construction of the DED block is accomplished.

2. If other characters are encountered, the scan continues, ignoring
such characters in the calculation of the DED parameters;
however, said characters remain embedded in the string.

3. Return is made to caller.

Errors Detected

None

Work Area

Library work area is obtained from level zero.

Local Variables

CODE Nonrelocatable library work area

Program Interface

Entry Points

IHEVCAA Entry
P1 = A (OED)

Input Parameters

WCNP = A (Start/end address pair delimiting character string>

Exit Conditions

Normal exit. Return to caller via the link register.

Routines Called

None

Global Variables

WCNP

109

STRING MANIPULATION PACKAGE

The following routines constitute the string Manipulation Package
(SIMP). Descriptions of these routines are given on succeeding pages
of this manual. The routines are discussed in alphabetic order,
according to their mnemonics, as indicated.

Character string Compare (IHECSC)
Character String Assignment (IHECSM)
Character String SUBSTR (IHECSS)

Execution times given in this subsection are based on information in
IBM System/360 Instruction Timing Information (A22-682S). They are
intended to be simp1e enough to give a good general guide to performance
while averaging out many logical variations, the effects of which
are relatively small.

110

TITLE: CHARACTER STRING COMPARE UHECSC)

Program Definition

Purpose and Usage

Character String Compare is used to compare two character strings and
return the resulting condition code.

Description

Method:

The two strings are compared in storage. If the strings are of
different lengths and are identical up to the length of the shorter,
the remainder of the longer is compa~ed with blanks.

The condition code is returned as bits 2 and 3 of a fullword target
field as follows:

00 If strings are equal

01 If the first string compares low at the first inequality

10 If the first string compares high at the first inequality

The shorter string is treated as though extended with blanks to the
length of the longer one.

The target field is used to preserve the rightmost 32 bits in the PSW
for the calling routine. The second word of the PSW contains:

Bits

0 to
2 to
4 to
8 to

Implementation:

1
3
7
32

Contents

Instruction length code 01
Condition code as above
Program mask (calling routine)
An address in IHECSC

• Module size: 364 bytes

• Execution times:

Let

Ll = the length of the strings compared up to
inequality (proceeding left to right)

L2 = the length of the additional part of the
compared with blanks if necessary

Mi = FLOOR«Li-1)/256)

Ni = MOD(Li-l,256)

S = SIGN(L2)

where i = 1.2

the first

longer string

111

Then the approximate execution times in microseconds for the System/360
models given below are obtained from the following formula:

a + b*Ml + c*N1 + S*(d + e*M2 + c*N2)

r---,
I I IBM System/360 Model Number I
1---I
1 I 30 I 40 I 50 1 65 I 75 I
1---I
1 a I 849 1 284 I 116 I 36.8 I 27.1 1
1 b 1 1469 I 790 1 289 I 114 I 110 I
1 c 1 5 I 2.8 I 1.0 I 0.4, 0.4 1
1 d I 620 I 210 1 88 1 27.3 I 21.1 I
1 e I 1474 I 794 I 290 I 114 I 110 ,
L---~

Errors Detected

None

Local Variables

None

Program Interface

Entry Points

IHECSCO
P7
PLIST

Exit Conditions

= A(PLIST)
= A(SDV of first operand)

A(SDV of second operand)
A (target)

Normal exit. Return to caller via the link register.

Routines Called

None

Global Variables

None

Comments

called by compiled code.

112

TITLE: CHARACTER STRING ASSIGNMENT (IHECSM)

Program Definition

Purpose and Usage

Character String Assignment is used to assign a character string to
a fixed-length target, with blank padding as required.

Description

Method:

The minimums of the source length and the target length are calculated.
If the source and target lengths are equal, the source is moved to
the target. If the source length is longer than the target length,
the source is truncated to fit and "moved to the target; if the source
length is shorter than the target length, the source is moved to the
target, and the remainder of the target is filled with blanks.

Implementation:

• Module size: 216 bytes

• Execution times:

Let

Ll = length for blank filling
L2 = length of the shorter of the source and target fields
Ml = FLOORC CLl-2)/256)
Nl = MODCLl-2,256) where Ll ~ 2 for both Ml and Nl
M2 = FLOOR C CL2-1) /256)
N2 = MODCL2-1,256)

S = SIGNCL1)

Then the approximate execution times in microseconds for the System/360
models given below are obtained from the following formula:

h + g*M2 + c*N2 + S*Ci + b*M1 + c*N1)

r---,
1 1 IBM System/360 Model Number 1
1---I
1 1 30 1 40 1 50 1 65 , 15 1
1---I
1 b 1 1111 1 696 1 316 1 101 , 95.2 I
I c I 4 1 2.5 I 1.1 1 0.4 I 0.3 I
1 g I 1196 I 106 1 319 I 108 I 95.8 I
1 h 1129814461190 I 51.41 40.61
1 i 1 400 1 129 1 51.6 I 18.5 I 13.1 I L---________ --J

Errors Detected

None

Local Variables

None

113

Program Interface

Entry Points

IHECSMF
P7
PLIST

Exit Conditions

= A(PLIST)
= A(SDV of source string)

A(SDV of target field)

Normal exit. Return to caller via the link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

TITLE: CHARACTER STRING SUBSTR (IHECSS)

Program Definition

Purpose and Usage

Character String SUBSTR is used to produce a string dope vector
describing the SUBSTR pseudo-variable and function of a character
string.

Description

Method:

Arithmetic is performed according to the function definition, using
the current length of the argument string. The result describes a
fixed-length string.

Implementation:

• Module size: 252 bytes

• Execution times:

Approximate ex~cution times in microseconds for the system/360
models given below are as shown:

r---,
I I IBM system/360 Model Number I
\---I
I I 30 I 40 I 50 I 65 I 75 1
1---I
I I 887 I 310 I 121 I 36.9 I 26.2 I L---------__ --J

Errors Detected: None

Local Variables: None

Program Interface

Entry Points

IHECSS2 -
P7
PLIST

SUBSTR (Character-string, i)
= A(PLIST)
= A(SDV source string)

AU)
DUmmy Argument
A(Field for target SDV)

Exit conditions

Normal exit. Return to caller via the link register.

Routines Called: None

Global Variables: None

Comments

Called by compiled code.

115

ARITHMETIC FUNCTION PACKAGE

The following routines constitute the Arithmetic Function Package
(AFONC). As noted in the previous section, these routines support
the ABS, MAX, and MIN built-in functions and multiplication, division,
integer exponentiation, and general exponentiation operations. The
particular routines in each group are listed below and explained on
succeeding pages of this manual.

Note that, as far as possible, the general groupings are listed in
alphabetic order according to the mnemonics of the routines. Within
each grouping, discussion of short floating-point precedes discussion
of long floating-point, and discussion of real precedes discussion
of complex.

Support of built-in functions:

Binary Fixed Complex ABS (IBEABU)
Short Float Complex ABS (IHEABW)
Long Float complex ABS (IBEABZ)
Real Binary Fixed MAX/MIN (IHEMXB)
Real Short Float MAX/MIN (IBEMXS)
Real Long Float MAX/MIN (IHEMXL)

Support of multiplication and division:

Short Float Complex Division (IBEDZW)
Long Float Complex Division (IHEDZZ)
Binary Fixed Complex Mult/Div (IHEMZU)
Short Float Complex Mult (IHEMZW)
Long Float complex Mult (IHEMZZ)

support of integer exponentiation:

Real Fixed Binary Integer EXP (IHEXIB)
Real Short Float Integer EXP CIBEXIS)
Real Long Float Integer EXP (IHEXIL)
Z**N, Z Fixed Binary Complex (IREXIU)
Z**N, Z Short Float complex (IHEXIW)
Z**N, Z Long Float Complex (IHEXIZ)

support of general exponentiation:

Short Float Real General EXP (IREXXS)
Long Float Real General EXP (IHEXXL)
Short Float Complex General EXP (IHEXXW)
Long Float Complex General EXP (IHEXXZ)

SPEED

The average execution times given in this subsection are based on
information in IBM System/360 Instruction Timing Information (GA22-6285)
and include the times required by the modules called.

ACCURACY

Statistics for accuracy of floating-point modules are given where
considered meaningful and helpful; an explanation of their use is given
under "Accuracy· in the subsection entitled "Mathemtical Function
package" which follows. Precise results are obtained from all fixed
point modules except complex division and complex ABS, where small
truncation errors inevitably occur.

116

ARGUMENTS

Any restrictions on arguments are noted under two headings:

Range: This states any range of arguments for which a module is valid.
Arguments outside the given ranges are assumed to have been excluded
before the module is called.

Error and Exceptional Conditions: These cover conditions which may
result from the use of a routine; they are listed in four categories:

P - Programmed conditions in the module concerned. Programmed
tests are made where not too costly and, if an invalid argument
is found, a branch is taken to the entry point IHEERRB of Error
Routine. (See -Handling of Interrupts package.- Error Routine
is part of EXEP, which is a subpackage of HIP.) An appropriate
message is printed and the ERROR condition is raised.

I - Interrupt conditions in the module concerned. For those
routines where SIZE and FlXEDOVERFLOW are detected by programmed
tests, or where hardware interruptions may occur, the OVERFLOW,
UNDERFLOW, FlXEDOVERFLOW, SIZE, and ZERODIVIDE conditions pass
to IHEERR and are treated in the normal way. The machine is assumed
to be enabled for all interruptions except significance, which
is masked.

o - Programmed conditions in modules called by the module concerned.
These occur when invalid arguments are detected in the module
called.

H - As I, but the interrupt conditions occur in the modules called
by the module concerned.

117

TITLE: BINARY FIXED COMPLEX ABS (IHEABU)

Program Definition

Purpose and Usage

Binary Fixed Complex ABS is used to calculate

ABSCz) = SQRT(x**2 + y**2)

where z = x + yI and x and yare binary fixed-point real expressions.

Description

Method:

If x = y. result is x*SQRT(2). Otherwise, let

Xl = MAX(ABS(x), ABS(y» and

Y1 = MINCABS(x), ABS(y»

Then ABSCz) is computed as X1*SQRT(1 + (n/X1)**21. where the fixed
binary calculation of SQRT(g) for 1 S g < 2 is included within the
module.

The first approximation to the square root is taken as g/C1 + g) +
(1 + g)/4, with maximum relative error 1.8*2**-10. One Newton-Raphson
iteration gives maximum relative error 1.6*2**-20 and suffices if Xl
< 2**(15-q) where q is the scale factor of z.

Otherwise a second iteration is used, with theoretical maximum relative
error of 1.3*2**-40.

Implementation:

• Module size: 324 bytes

• Execution times:

Approximate execution times in microseconds for System/360 models
given below are obtained from the following formula:

a = 2** (15-q)

r---,
1 1 IBM System/360 Model Number 1
1---I
I Xl I 30 1 40 1 50 I 65 t 75 I
1---I
1 <a 1 3809 1 1218 I 320 1 79.4 I 52.3 f
t I I I 1 1 I
1 ~a I 4601 I 1473 I 372 1 93.1 1 59.8 1
l---~

Errors Detected

Error and Exceptional Conditions:

I: FIXEDOVERFLOW (320)

Local Variables

None

118

Program Interface

Entry Points

IBEABGO
P1
PLIST

Exit Conditions

= A(PLIST)
= A(z)

A (Target)

Normal exit. Return to caller via link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

119

TITLE: SHORT FLOAT COMPLEX ABS (IBEABW)

Program Definition

Purpose and Usage

Short Float Complex ABS is used to calculate

ABS(z) = SQRT(x**2 + y**2)

where z = x + yI and x and yare short floating-point real expressions.

Description

Method:

Let

z = x + yI

If x = Y = O. answer is O. otherwise let

Z1 = MAX(ABS(x). ABS(y» and

Z2 = MIN(ABS(x). ABS(y»

Then the anSwer is computed as Z1*SQRT(1 + (Z2/Z1}**2).

Let X1 be the maximum. and Y1 the minimum. of the absolute values of
the two binary numbers thus obtained.

Then if X1 = Y1 = 0, result 0 is returned. otherwise. an approximation
to ABS(z} is computed as X1*SQRT(1 + (Y1/x1}**2), where the fixed
binary calculation of SQRT(g) for 1 S g S 2 is included within the
module.

The first approximation to the square root is taken in the form
A + B*(l + g) - A/(1 + g) with maximum relative error 2.17*10**-4, and
one Newton-Raphson iteration then gives a value with maximum relative
error 2.35*10**-8.

Multiplication by X1 produces a value for ABS(z) which is rounded and
converted to decimal, and this suffices if it has not more than seven
significant decimal digits. otherwise, this approximation is scaled
if necessary and used in a final Newton-Raphson iteration for SQRT(x**2
+ y**2) in decimal, with theoretical maximum relative error 2.76*10**-16.

Implementation:

• Module size: 298 bytes

• Execution times:

Let (P.q) = Precision of the argument

L = CEIL «p+1) /2) • that is, the length of each of the real
and imaginary parts of the argument.

D1 = Maximum number of significant digits in real and
imaginary parts of the argument.

D2 = Number of significant digits in result.

120

Then the approximate execution times in microseconds for the
System/360 models shown below are obtained from the following
formulas:

L S 5 and D2 S 7: a

L S 5, 7 < D1 < 10 and D2 > 7: b + f*L + g*L**2

5 < L S 8 and D2 S 7: c

5 < L S 8, 7 < D1 < 10 and D2 > 7: d + f*L + g*L**2

5 < L S 8 and 10 S Dl S 15: e + f*L + g*L**l

r---,
1 1 IBM System/360 Model Number 1
1---I
1 1 30 1 40 1 50 1 65 1 75 1
1---I
1 a 1 6220 1 1971 1 656 I 169 1 116 1
I b 1 13001 1 3785 1 1101 I 460 1 352 I
I c I 6666 I 2200 1 737 1 190 1 132 I
I d I 13447 1 4014 1 1182 1 481 1 368 I
I e I 139~8 1 4194 I 1279 1 509 I 391 I
1 f 1 82 1 61.61 40.11 7.91 5.21
I g I 56 I 7.51 0.01 2.01 2.31 L------------___ --J

Errors Detected

Error and Exceptional conditions:

I: FIXEDOVERFLOW (320)

Local Variables

None

Program Interface

Entry Points

IHEABTO
P7
PLIST

Exit Conditions

= A (PLIST)
= A(z)

A (Target)

Normal exit. Return to caller via link register.

Routines Called

IHESQS Short Float Real SQRT

Global Variables

None

Comments

Called by compiled code and IHESQW.

121

TITLE: LONG FLOAT COMPLEX ABS (IHEABZ)

Program Definition

Purpose and Usage

Long Float Complex ABS is used to calculate

ABS(z) = SQRT(x**2 + y**2)

where z = x + yI and x and yare long floating-point real expressions.

Description

Method:

Let

z = x + yI

If x = Y = 0, answer is o. Otherwise, let

Z1 = MAX(ABS(x), ABS(y» and

Z2 = MIN(ABS(x), ABS(y»

Then the answer is computed as

Z1*SQRT(1 + (Z2/Z1>**2)

r--,
I Arguments 1 Relative Error /
I I *1015 I
1------------------------------+-------------------------------1
I Range I Distribution / RMS I Maximum 1
1--------------+---------------+---------------+---------------/
I Full range 1 Exponential I 0.828 , 3.38 /
I 1 radially, 1 I 1
1 1 uniform I 1 1
/ / round origin I 1 /
l--J

Implementation:

• Module size: 306 bytes

• Execution times:

122

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r---,
1 1 IBM System/360 Model Number 1
1---I
I I 30 1 qO 1 50 I 65 1 75 I
1---I
1 1 14318 1 3191 1 695 1 174 1 104 1
l---J

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)

Local Variables

None

Program Interface

Entry Points

IHEABMO
P7
PLIST

= A(PLIST)
= A(z)

A (Target)

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

IHESQL Long Float Real SQRT

Global Variables

None

Comments

Called by compiled code and IHESQZ.

123

TITLE: REAL BINARY FIXED MAX/MIN (IBEMXB)

Program Definition

Purpose and Usage

Real Binary Fixed MAX/MIN is used to find the maximum or the minimum
of a group of real fixed-point binary numbers.

Description

Method:

The value of the current maximum or m1n1mum is set to the value of
the first argument; it is then compared algebraically with the next
argument and replaced by it if appropriate. The process is repeated
until a test on the argument list indicates that all source items have
been processed. The current value is stored as the result.

Implementation:

• Module size: 212 bytes

• Execution times:

Let N = the number of source arguments.

Then the average execution times in microseconds for the System/360
models given below are obtained from the following formulas:

I~EMXFO

N

a + h*l'I + i:* L {lii)

i = 2

IHEMNFO

N

a' + b*r-; + c* L (IIi)

i = 2

r---,
I 1 IBM System/360 Model Number 1
1---I
I I 30 , 40 , :>0 I 05 I T I
1---I
I a 1 391 1135.1 1 51.8 I 12.1 I 7.4 I
I b I 186 I 70.1 I 30.0 1 11.0 I 8.06 I
I c 1 54 1 21. 3 1 8.0 I 2.5 1 0.9 I
1 a' 1 356, 123.8 1 41.3 1 10.1 I 6.3 I
L---J

Errors Detected

None

124

Local Variables

None

Program Interface

Entry Points

IHEMXFO - MAXCx1,x2, ••• ,xn)
where x1,x2, ••• ,xn are real fixed-point binary expressions.

P7
PLIST

= ACPLIST)
= ACx1)

A(x2)

ACxn)
ACTarget)

IHEMNFO - MIN(x1,x2, ••• ,xn)
where x1,x2, ••• ,xn are real fixed-point binary expressions.

Linkage same as for IHEMXFO

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

125

TITLE: REAL SHORT FLOAT MAX/MIN (IHEMXS)

Program Definition

Purpose and Osage

Real Short Float MAX/MIN is used to find the maximum or the minimum
of a group of short floating-point real expressions.

Description

Method:

The value of the current maximum or minimum is set to the value of
the first argument: it is then compared algebraically with the next
argument and replaced by it if appropriate. The process is repeated
until a test on the argument list indicates that all source items have
been processed. The current value is stored as the result.

Implementation:

• Module size: 272 bytes

• Execution times:

Let N = the number of source arguments.

Then the average execution times in microseconds for the System/360
models given below are obtained from the following formulas:

IHEMXSO

N

a + h*N + c* L (IIi)

i = 2

IHEMNSO

N

a' + b*N + c* L (IIi)

i = 2

r---,
1 1 IBM System/360 Model Number 1
1---I
1 I 30 I 40 1 50 1 65 1 75 I
1---I
I a I 367 I 131.2 I 44.6 1 11.5 I 7.3 1
I b I 219 1 73.3 1 29.1 I 10.5 I 7.7 I
I c I 55 I 21.3 I 7.3 I 2.5 I 1.9 I
I a" I 332 I 118.6 I 40.1 I 10.2 I 6.2 1
l---J

Errors Detected

None

126

Local Variables

None

Program Interface

Entry Points

IHEMXSO - MAX(xl.x2, •••• xn)
where x1.x2 •••• ,xn are real short floating-point expressions.

P7
PLIST

= A(PLIST)
= A(x1)

A(x2)

A(xn)
ACTarget)

(High-order bit of last argument indicates end of parameter list.)

IHEMNSO - MIN(x1.x2 ••••• xn)
where x1.x2 ••••• xn are real short floating-point expressions.

Linkage as for IBEMXSO

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

127

TITLE: REAL LONG FLOAT MAX/MIN (IBEMXL)

Program Definition

Purpose and Usage

Real Long Float MAX/MIN is used to find the maximum or minimum of a
group of long floating-point real expressions.

Description

Method:

The value of the current maximum or m1n1mum is set to the value of
the first argument; it is then compared algebraically with the next
argument and replaced by it if appropriate. The process is repeated
until a test on the argument list indicates that all source items have
been processed. The current value is stored as the result.

Implementation:

• Module size: 272 bytes

• Execution times:

Let N = the number of source arguments.

Then the average execution times in microseconds for the System/360
models given below are obtained from the following formulas:

IHEMXLO
N

a + b*N + c* L (IIi)

1=2

IHEMNLO

N

a' + b*N + c* L (IIi)

i = 2

r---,
I I IBM System/360 Model Number I
1---I
I 1 30 1 40 I 50 I 65 I 75 I
,---I
, a I 367 I 133.2 I 46.4 I 11.7 I 7.3 I
1 b I 251 I 81.2 I 31.4 I 10.6 I 7.71 I
I c I 71 , 26.3 I 9.3 I 2.7 , 1. 9 1
I a' I 332 I 120.6 I 41.9 I 10.4 I 6.2 1
l---J

Errors Detected

None

128

Local Variables

None

Program Interface

Entry Points

IHEMXLO - MAX(x1,x2 ••••• xn)
where x1,x2, •••• xn are real long floating-point expressions.

P7
PLIST

= A(PLIST)
= A(x1)

A(x2)

A(xn)
A (Target)

(High-order bit of last argument indicates end of parameter list.)

IHEMNLO - MIN(x1.x2 ••••• xn)
where x1.x2 ••••• xn are real long floating-point expressions.

Linkage same as for IHEMXLO

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

129

TITLE: SHORT FLOAT COMPLEX DIVISION (IHEDZW)

Program Definition

Purpose and Usage

Short Float Complex Division is used to compute zl/z2 in floating
point, when zl = a + bI and z2 = c + dI, and a. b , c, and d are short
floating-point real expressions.

Description

Method:
1. ABS(c) ~ ABS(d)

compute

q = d/c

Then

REAL(zl/z2) = (a + b*q)/(c + d*q)
IMAG(zl/z2) = (b - a*q)/(c + d*q)

2. ABS(c) < ABS(d)

(a + bI)/(c + dI) = (b - aI)/(d - cI)

which reduces to the first case.

The comparison between ABS(c) and ABS(d) is adequately performed in
short precision in both modules.

Implementation:

• Module size: 252 bytes

• Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r---,
1 1 IBM System/360 Model Number 1
1---I
1 1 30 1 40 1 50 1 65 1 75 I
1---I
1 I 3546 1 875 1 221 1 60.8 1 35.7 I
l---J

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
ZERODIVIDE (330)
UNDERFLOW (340)

Local Variables

None

130

Program Interface

Entry Points

IHEDZTO
P7
PLIST

= A(PLIST)
= A(z1)

A(z2)
A (Target)

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

131

TITLE: LONG FLOAT COMPLEX DIVISION (IHEDZZ)

Program Definition

Purpose and Usage

Long Float Complex Division is used to compute z1/z2 in floating-point,
when z1 = a + bI and z2 = c + dI. and a. b. c, and d are long floating
point real expressions.

Description

Method:

1. ABS(c) ~ ABS(d)

Compute

q = d/c

Then

REALCzl/z2) = Ca + b*q)/(c + d*q)
IMAG(zl/z2) = (b a*q)/Cc + d*q)

2. ABSCc) < ABSCd)

Ca + bI)/(c + dI) = (b - aI)/Cd - cI)

which reduces to the first case.

The comparison between ABSCc) and ABSCd) is adequately performed in
short precision in both modules.

Implementation:

• Module size: 252 bytes

• Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r---,
1 1 IBM System/360 Model Number 1
1---I
I I 30 I qO I 50 I 65 , 75 I
1---I
I I 111q1 1 2515 I 234 1 92.5 , 51.1 1
l---J

Errors Detected

Error and Exceptional Conditions:

I: OVERFLOW (300)
ZERODIVIDE (330)
UNDERFLOW C 3 qO)

Local Variables

None

132

Program Interface

Entry Points

IHEDZMO
P7
PLIST

= A(PLIST)
= A(zl)

A(z2)
A (Target)

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

133

TITLE: BINARY FIXED COMPLEX MULTIDIV (IHEMZU)

Program Definition

Purpose and Usage

Binary Fixed complex Mult/Div is used to calculate zl*z2 or zl/z2,
where zl and z2 are fixed-point binary complex expressions.

Description

Method:

Let

zl = a + bI
z2 = c + dI

Then for multiplication, an incorporated subroutine is used to compute
a*c - b*d and b*c + a*d; these are tested for FIXEDOVERFLOW and then
stored as the real and imaginary parts of the result.

For division, the subroutine is used to compute a*c + b*d and b*c -
a*d. The expression c**2 + d**2 is computed, and the real and imaginary
parts of the result are then obtained by division.

The subroutine computes the expressions u*x + v*y and v*x - u*y.

Implementation:

• Module size: 488 bytes

• Execution times:

134

Approximate execution times in microseconds for the System/360
models given below are obtained from the following table:

r---,
1 1 IBM System/360 Model Number 1
1---I
I I 30 1 40 I 50 1 65 1 75 I
1---I
I 1 2421 I 689 1 256 I 56.6 I 37.1 I
L---J

Let

M = number of significant bits in z2*CONJG(z2)
N = FLOOR (M/4 - 8)

Then the approximate execution times in microseconds for the
System/360 models given below are obtained from the following
formula:

a + b + c + N*d

r---,
1 1 IBM System/360 Model Number 1
1---I
1 I 30 1 40 1 50 1 65 1 75 I
1---I
I a 1 3021 I 1340 I 420 I 94.1 I 64.2 1
1 b I 338 1 79 I 30 I 5.7 I 2.7 I
1 c I 78 I 24 I 18 I 6.6 I 2.1 I
1 d I 213 I 56 I 22 I 6.2 , 3. a 1 L---------__ --J

Note: b = 0 if M S 31
c = d = 0 if M S 32

Errors Detected

Error and Exceptional Conditions:

I: FIXEDOVERFLOW (320) in either routine
ZERODIVIDE (330) in the division routine

Local Variables

None

Program Interface

Entry Points

IHEMZGO -
P7
PLIST

The product z1*z2
= A(PLIST)
= A(z1)

A (DED for z1)
A(z2)
A(DED for z2)
A (Target>

IHEDZGO - The quotient z1/z2

Linkage as for IHEMZGO

P7 = A (PLIST)
PLIST = A(z1)

A(DED for z1)
A(z2)
A(DED for z2)
A (Target)

Exit Conditions

Normal exit. Return to caller via link register.

Routines Called: None

Global Variables: None

Comments

IHEMZGO and IHEDZGO called by compiled code. IHEMZGO called also by
IHEXIU.

135

TITLE: SHORT FLOAT COMPLEX MOLT (IHEMZW)

Program Definition

Purpose and Usage

Short Float complex- Mult is used to compute zl*z2 in floating point,
when zl = a + bI and z2 = c + dI, and a, b, c, and d are short floating
point real expressions.

Description

Method:

The real and imaginary parts of the result are computed as a*c - b*d
and b*c + a*d, respectively.

Implementation:

• Module size: 220 bytes

• Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r---, 1 1 IBM System/360 Model Number I
1---I
I I 30 1 40 1 50 I 65 f 75 I
1---1
1 I 1~79 , 550 I 172 I 41.9 I 23.3 1
L------------------~------------------------------------~

Errors Detected

Error and Exceptional Conditions:

I: Exponent OVERFLOW (300)
Exponent UNDERFLOW (340)

Local Variables: None

Program Interface

Entry Points

IHEMZTO - computes zl/z2 when zl = a + bI and z2 = c + dI, and
a, b, c, and d are all short floa..ting-point real expressions.

P7
PLIST

Exit Conditions

= A(PLIST)
= A{zl)

A(z2)
ACTarget)

Normal exit. Return to caller via link register.

Routines Called: None

Global Variables: None

Comments: Called by compiled code and IHEXIW.

136

TITLE: LONG FLOAT COMPLEX MULT (IHEMZZ)

Program Definition

Purpose and Usage

Long Float Complex Mult is used to compute zl*z2 in floating point,
when zl = a + bI and z2 = c + dI, and a, b, c, and d are long floating-
point real expressions.

Description

Method:

The real and imaginary parts of the result are computed as a*c - b*d
and b*c + a*d, respectively.

Implementation:

• Module size: 220 bytes

• Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r---~
1 1 IBM System/360 Model Number 1
1---I
1 1 30 1 110 1 50 1 65 1 15 1
1---I
I 1 5115 I 1301 1 251 1 62.3 I 31.3 1
L---J

Errors Detected

Error and Exceptional Conditions:

I: Exponent OVERFLOW (300)
Exponent UNDERFLOW (31l0)

Local Variables: None

Program Interface

Entry Points

IHEMZMO - computes zl/z2 when zl = a + bI and z2 = c + dI, and
a. b, c, and d are long floating-point real expressions.

P1
PLIST

Exit Conditions

= A(PLIST)
= A(z1)

A(z2)
A (Target)

Normal exit. Return to caller via link register.

Routines Called: None

Global Variables: None

Comments: Called by compiled code and IHEXIZ.

131

TITLE: REAL FIXED BINARY INTEGER EXP (IHEXIB)

Program Definition

Purpose and Usage

Real Fixed Binary Integer EXP is used to calculate x to the power n
(x**n), where x is a real fixed-point binary number and n is a positive
integer.

Description

Method:

The result is set initially to the value of the argument. The final
result is then obtained by repeated squaring of this value or squaring
and multiplying by the argument.

Range:

o < n < 2**31

The precision rules of CALL/360-0S PL/I impose a further restriction:
if x has a precision (p, q), this module will be called only if n *
(p + 1) - 1 S 31. This implies that n S 32/(p + 1) S 16 for all such
cases.

Implementation:

• Module size: 244 bytes

• Execution times:

Let

M = number of significant bits in the exponent
N = number of 1 bits in the exponent

Then the approximate execution times in microseconds for the
System/360 models given below are obtained from the following
formula:

-a + b*M + c*N

r---~
1 I IBM System/360 Model Number 1
1---I
I I 30 1 40 I 50 I 65 I 75 I
I--~------------I
I a I 238 I 9 I 5.5 I -1.46 I -0.6 1
I b I 708 I 188 I 63.8 I 15.6 I 9.8 I
1 c I 335 I 94 I 33.0 I 6.1 1 3.9 I
L---J

Errors Detected

None

Local Variables

None

138

Program Interface

Entry Points

IHEXIFI
P7
PLIST

Exit Conditions

= A(PLIST)
= A(x)

AWED for x)
A(n)
A (Target)

Normal exit. Return to caller via link register.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

139

TITLE: REAL SHORT FLOAT INTEGER EXP (IBEXIS)

Program Definition

Purpose and Usage

Real Short Float Integer EXP is used to calculate x to the power n
(x**n), where n is an integer between -2**31 and 2**31 - 1 inclusive,
and x is a short floating-point real expression.

Description

Method:

If the exponent is zero and the argument nonzero, the result is returned
immediately. Otherwise the result is set initially to the value of
the argument and the exponent is made positive. The argument is raised
to this positive power by repeated squaring of the contents of the
result field or squaring and multiplying by the argument. Then, if
the exponent was negative, the reciprocal of the result is taken:
otherwise it is left unchanged.

Accuracy:

The values given here are for the relative error divided by the exponent
for exponents between 2 and 1023: the arguments are uniformly
distributed over the full range for each exponent for which neither
OVERFLOW nor UNDERFLOW occurs. There are 2**(10 - k) arguments for
each exponent in the range 2**k ~ exponent ~ 2**(k + 1) -1, where k
has integral values from 1 to 9 inclusive.

r--, 1 RMS relative 1 Maximum relative 1
1 error/exponent 1 error/exponent 1
1 *106 1 *10 6 1
1-----------------------------+------------------------------1
1 0.00811 1 0.692 I
L--~

Implementation:

• Module size: 294 bytes

• Execution times:

140

Let

M = number of significant bits in the exponent
N = number of 1 bits in the exponent

Then the approximate execution times in microseconds for the
System/360 models given below are obtained from the following
formulas:

a + b*M + c*N for positive exponents
a" + b*M + c*N for negative exponents

r---, 1 1 IBM System/360 Model Number 1
I--~--I·
I 1 30 1 40 I 50 I 65 I 75 1
1---I
I a I -104 1 23 1 29 I 10.7 I 7.6 I
I b I 701 1 176 1 56 I 14.3 I 8.7' I
I c 1 342 I 90 1 26 I 5.7 I 3.2 I
I a' I 552 I 171 1 57 1 18.6 1 12.7 I L-----------__ --J

Other Information:

For large exponents (for example, those greater than 1023), it is
generally faster and more accurate to use the module IBEXXS rather
than IHEXIS, passing the exponent as a floating-point argument.
However, IHEXXS will not accept a negative first argument. It is
necessary to pass the absolute value of this argument, and also, in
cases where the exponent is odd, to test the sign of the argument in
order to be able to attach the correct sign to the numerical result
returned.

Errors Detected

Error and Exceptional Conditions:

P: x = 0 with n ~ 0 (209)
I: OVERFLOW-(300)

UNDERFLOW (340)

since x**C-m), where m is a positive integer, is evaluated as 1/(x**m),
the OVERFLOW condition may occur when m is large, and the UNDERFLOW
condition when x is very small.

Local Variables

None

Program Interface

Entry Points

IHEXISI
P7
PLIST

Exit Conditions

= A(PLIST)
= A(x)

A(n)
ACTarget)

Normal exit. Return to caller via link register.
Abnormal exit. If P type error, a branch is made to ·IHEERRC.·

Routines Called: None

Global Variables: None

Comments

Called by compiled code.

141

TITLE: REAL LONG FLOAT INTEGER EXP (:I HEXI L)

Program Definition

Purpose and Usage

Real Long Float Integer EXP is used to calculate x to the power n
(x**n). where n is an integer between -2**31 and 2**31 - 1 inclusive,
and ~ is a long floating-point real expression.

Description

Method:

If the exponent is zero and the argument nonzero, the result 1 is
returned immediately. Otherwise the result is set initially to the
value of the argument and the exponent is made positive. The argument
is raised to this positive power by repeated squaring of the contents
of the result field or squaring and multiplying by the argument. Then,
if the exponent was negative, the reciprocal of the result is taken;
otherwise it is left unchanged.

Accuracy:

The values given here are for the relative error divided by the exponent
for exponents between 2 and 1023: the arguments are uniformly
distributed over the full range for each exponent for which neither
OVERFLOW nor UNDERFLOW occurs. There are 2**C10 - k) arguments for
each exponent in the range 2**k S exponent S 2**(k + 1) - 1, where
k has integral values from 1 to 9 inclusive.

r--,
1 RMS relative I Maximum relative I
1 error/exponent 1 error/exponent I
I *1015 1 *102.5 1
I-----------------------------t------------------------------1
1 0.0995 1 1.13 t
l--J

Implementation:

• Module size: 302 bytes

• Execution times:

142

Let

M = number of significant bits in the exponent
N = number of 1 bits in the exponent

Then the approximate execution times in microseconds for the
System/360 models given below are obtained from the following
formulas:

a + b*M + c*N for positive exponents
a· + b*M + c*N for negative exponents

r---,
I I IBM System/360 Model Number I
\---I
\ I 30 \ 40 \ 50 I 65 I 15 \
\---I
\ a I -1535 I -322 I 0.1 I 4.1 I 3.7 I
I b I 1441 \ 355 \ 13 1 17.5 , 10.7 \
\ c I 1082 I 269 I 42 \ 8.9 I 5.2 I
\ a" ,1055 I 180 I 18 I 20.0 I 11.9 I
l---J

Errors Detected

Error and Exceptional Conditions:

P: x = 0 with n ~ 0 (209)
I: OVERFLOW (300)

UNDERFLOW (340)

since x**(-m), where m is a positive integer, is evaluated as l/(x**m),
the OVERFLOW condition may occur when m is large, and the UNDERFLOW
condition when x is very small.

Local Variables

None

Program Interface

Entry Points

IHEXILI
P7
PLIST

Exit Conditions

= A(PLIST)
= A(x)

A(n)
A (Target)

Normal exit. Return to caller via link register.
Abnormal exit. If P type error, a branch is made to IHEERRC.

Routines Called

None

Global Variables

None

Comments

Called by compiled code.

143

TITLE: Z**N, Z FIXED BINARY COMPLEX CIHEXIU)

Program Definition

Z**N, Z fixed Binary complex is used to calculate z to the power n,
where n is a positive integer less than 2**31, and z is a fixed-point
binary n~ber.

Description

Method:

The contents of the target field are set to the value of z. The final
result is obtained by repeated squaring of the contents of the target
field or squaring and multiplying by z. Multiplication is performed
by Binary Fixed Complex Mult/Div (IHEMZU).

Range:

o < n < 2**31

The precision rules of CALL/360-0S PL/I impose a further restriction:
if z has a precision (p, q), this module may only be called if n *
(p + 1) -1 ~ 31. This implies that n ~ 32/(p+1) ~ 16 for all such
cases.

Implementation:

• Module size: 310 bytes

• Execution times:

Let

M = number of significant bits in the exponent
N = number of 1 bits in the exponent

Then the approximate execution times in microseconds for the
System/360 models given below are obtained from the following
formula:

-a + b*M + c*N

r---,
1 1 IBM System/360 Model Number 1
1---I
I I 30 I 40 I 50 I 65 I 75 1
1---I
I a I 4169 I 1183 1 405 I 101 ,69.5 ,
I b I 2409 I 822 1 306 1 73.3 I 48.3 I
1 c I 2553 1 738 I 276 I 62.7 I 42.1 I
L---J

Errors Detected

None

Local Variables

None

144

Program Interface

Entry Points

IHEXIGI
P7
PLIST

Exit Conditions

=
=

A (PLIST)
A(z)
AWED for z)
A(n)
A (Target)

Normal exit. Return to caller via link register.

Routines Called

IBEMZU Binary Fixed Complex Mult/Div

Global Variables

None

Comments

Called by compiled code.

145

TITLE: Z**N, Z SHORT FLOAT COMPLEX (IHEXIW)

Program Definition

Purpose and Usage

Z**N, Z Short Float Complex is used to calculate z to the power n,
where n is an integer between -2**31 and 2**31 - 1 inclusive, and z
is a short floating-point complex number.

Description

Method:

If the exponent is 0 and the argument nonzero, the answer 1 is returned
immediately. If the exponent is nonzero, the contents of the target
field are set to the argument value. The exponent is made positive
and the argument raised to this positive power by repeated squaring
of the contents of the target field or squaring and multiplying by
the argument. Multiplication is performed by a branch to the complex
multiplication routine (IHEMZW). Then, if the exponent was negative,
the reciprocal of the result is taken; otherwise it is left unchanged.

Implementation:

• Module size: 424 bytes

• Execution times:

Let

M = number of significant bits in the exponent
N = number of 1 bits in the exponent

Then the approximate execution times in microseconds for the
System/360 models given below are obtained from the following
formulas:

-a + b*M + c*N for positive exponents
-a' + b*M + c*N for negative exponents

r---,
1 1 IBM System/360 Model Number 1
1---I
I 1 30 1 40 1 50 1 65 1 15 I
1---I
1 a 1 1446 I. 582 1 128 1 35.2 1 11.6 1
1 b 1 2125 1 565 1 114 1 45.8 1 26.9 1
1 c 1 1182 1 484 1 141 1 36.1 I 21.1 I
I a' I -142 1 -31 1 -12 I 4.6 I -6.3 1
L---J

Errors Detected

Error and Exceptional Conditions:

P: z = 0 with n ~ 0 (209)
I: OVERFLOW (300)

UNDERFLOW (340)
H: OVERFLOW (300) in Short Float complex Mult (IHEMZW)

UNDERFLOW (340) in Short Float Complex Mult (INEMZW)

Since x**(-m), where m is a positive integer, is evaluat~d
as 1/ (x**m). the OVERFLOW condition may occur when m is large
and the UNDERFLOW condition when x is very small.

146

Local Variables

None

Program Interface

Entry Points

IHEXITI
P1
PLIST

Exit Conditions

= A(PLIST)
= A(z)

A(n)
A (Target)

Normal exit. Return to caller via link register.
Abnormal exit. If P type error. a branch is made to IHEERRC.

Routines Called

IHEMZW Short Float Complex Mult

Global Variables

None

Comments

Called by compiled code.

141

TITLE: Z**N, Z LONG FLOAT COMPLEX (IHEXIZ)

Program Definition

Purpose and Usage

Z**N, Z Long Float Complex is used to calculate z to the power n, where
n is an integer between -2**31 and 2**31 - 1 inclusive, and z is a
long floating-point complex number.

Description

Method:

If the exponent is 0 and the argument nonzero, the answer 1 is returned
immediately. If the exponent is nonzero, the contents of the target
field are set to the argument value. The exponent is made positive
and the argument raised to this positive power by repeated squaring
of the contents of the target field or squaring and multiplying by
the argument. Multiplication is performed by a branch to the complex
multiplication routine (IHEMZZ). Then, if the exponent was negative,
the reciprocal of the result is taken; otherwise it is left unchanged.

Implementation:

• Module size: 432 bytes

• Execution times:

Let

M = number of significant bits in the exponent
N = number of 1 bits in the exponent

Then the approximate execution times in microseconds for the
System/360 models given below are obtained from the following
formulas:

-a + b*M + c*N for positive exponents
-a w + b*M + c*N for negative exponents

r---,
I 1 IBM System/360 Model Number I
1---I
1 I 30 I 40 I 50 I 65 I 75 I
1---I
1 a I 8524 I 2042 , 275 I 60.0 I 30.8 I
I b I 5393 I 1397 I 289 I 59.9 I 34.9 I
1 c 14918 11245 I 226 1 50.2129.1 I
1 a' I 95 I -374 I -53 1 -5.1 I -4.8 I
l---J

Errors Detected

Error and Exceptional Conditions:

P
I

H

z =0 with n :s 0
OVERFLOW (300)
UNDERFLOW (340)
OVERFLOW (300)
UNDERFLOW (340)

(209)

in Long Float complex Mult (IHEMZZ)
in Long Float Complex Mult (IHEMZZ)

Since x**(-m), where m is a positive integer, is evaluated as l/(x**m),
the OVERFLOW condition may occur when m is large and the UNDERFLOW
condition when x is very small.

148

Local Variables

None

Program Interface

Entry Points

IHEXIMI
P1
PLIST

Exit Conditions

= A(PLIST)
= A(z)

A(n)
A (Target)

Normal exit. Return to caller via link register.
Abnormal exit. If P type error, a branch is made to IHEERRC.

Routines Called

IHEMZZ Long Float Complex Mult

Global variables

None

Comments

Called by compiled code.

149

TITLE: SHORT FLOAT REAL GENERAL EXP (IHEXXS)

Program Definition

Purpose and Usage

Short Float Real General EXP is used to calculate x to the power y
(x**y), where x and yare short floating-point real expressions.

Description

Method:

When x = 0, the result

x**y = 0

is given if y > 0, and an error message if y ~ o. When x # 0
and y = O. the result

x**y = 1

is given. Otherwise x**y is computed as EXPCy*LOG(x», using the
appropriate mathematical function routines.

Implementation:

• Module size: 308 bytes

• Execution times:

Approximate execution times in microseconds for the system/360
models given below are obtained from the table:

r---~
I 1 IBM System/360 Model Number I
t---I
I 1 30 I qO , 50 t 65 I 75 1
(---I
I I 9809 I 2861 1 902 1 236 , 1lJ3 1
t---J

Errors Detected

Error and Exceptional Conditions:

P: x = 0 with Y ~ 0
0: x < 0 with y ~ 0 in Short Float Real Log (IHELNS)

y*LOGCx) > 174.613 in Short Float Real EXP (IHEEXS)

Local Variables

None

Program Interface

Entry Points

150

IHEXISF
P1
PLIST

= A(PLIST)
= ACy)

ACx)
A (Target)

Exit Conditions

Normal exit. Return to caller via link register.
Abnormal exit. If P type error, a branch is made to IHEERRC.

Routines Called

IHEEXS
IHELNS

Short Float Real EXP
Short Float Real Log

Global Variables

None

Comments

Called by compiled code.

151

TITLE: LONG FLOAT REAL GENERAL EXP (IHEXXL)

Program Definition

Purpose and Usage

Long Float Real General EXP is used to calculate x to the power y
(x**y>, where x and yare long floatin9-point real expressions.

Description

Method:

When x = 0, the result

x**y = 0

is given if y > 0, and an error message if y S O. When
x ~ 0 and y = 0, the result

x**y = 1

is given. Otherwise x**y is computed as EXP(y*LOG(x»,
using the appropriate mathematical function routines.

Implementation:

• Module size: 308 bytes

• Execution times:

Approximate execution times in microseconds for the System/360
models given below are obtained from the table:

r---,
1 I IBM system/360 Model Number 1
1---I
1 1 30 1 40 1 50 I 65 I 75 I
1---I
1 I 30444 1 7453 I 1579 I 358 I 203 I
l---J

Errors Detected

Error and Exceptional Conditions:

P: x = 0 with Y S 0
0: x < 0 with y ~ 0 in Long Float Real Log (IHELNL)

y*LOG(x) > 174.673 in Long Float Real EXP (IHEEXL)

Local Variables

None

Program Interface

Entry Points

152

IHEXILF
P7
PLIST

= A(PLIST)
= A(y)

A(x)
A (Target)

Exit Conditions

Normal exit. Return to caller via link register.
Abnormal exit. If P type error, a branch is made to IHEERRC.

Routines Called

IHEEXL
IHELNL

Long Float Real EXP
Long Float Real Log

Global Variables

None

Comments

Called by compiled code.

153

TITLE: SHORT FLOAT COMPLEX GENERAL EXP (IHEXXW)

Program Definition

Purpose and Usage

Short Float Complex General EXP is used to calculate zl**z2 where zl
and z2 are short floating-point complex expressions.

Description

Method:

When zl = O. the result 0 is returned if REAL(z2) > 0 and lMAG(z2)
= O. Otherwise, zl**z2 is computed as EXP(z2*LOG(zl» with the
provision that if lMAG(zl) = 0, then LOG(ABS(zl» is calculated by
a call to the real log routine, not to the complex log routine.

Implementation:

• Module size: 464 bytes

• Execution times:

Approximate execution times in microseconds for System/360 models
given below are obtained from the table:

a = lMAG(zl) c = REAL(zl)
b = IMAG(z2) d = REAL(z2)

r---,
I I IBM System/360 Model Number I
1---I
I I 30 t 40 I 50 I 65 1 75 1
1---
I a=O 1 1 1 I 1
I c > 0 I 20606 I 5834 1 1816 I 480 I 291
I I I I I 1
I a=O 1 1 I I I
I d < 0 I 21750 J 6171 1 1929 I 509 I 311
I I I I I I
I a*O I I I I I
I b = 0 I 27448 I 8022 I 2414 I 687 I 417
I I I I 1 ,
I a*O I I I 1 I
I b * 0 I 28263 I 8229 I 2576 1 711 I 424
l---J

Errors Detected

Error and Exceptional Conditions:

P: zl = 0 with either REAL(z2) ~ 0 or lMAG(z2) * 0 (210)
0: REAL(z2*LOG(zl» > 174.673 in Short Float Real EXP (IHEEXS)

ABS(IMAG(z2*LOG(zl») ~ 2**18*pi in Short Float Real Sin/Cos (IHESNS>

Local Variables

None

154

Program Interface

Entry Points

IBEXITF
P1
PLIST

Exit conditions

= A(PLIST)
= A(z1)

A(z2)
A (Target)

Normal exit. Return to caller via link register.
Abnormal exit. If P type error, a branch is made to IHEERRC.

Routines Called

IHELNS
IBELNW
IBEEXW

Short Float Real Log
Short Float Complex Log
Short Float Complex EXP

Global Variables

None

Comments

Called by compiled code.

155

TITLE: LONG FLOAT COMPLEX GENERAL EXP (IHEXXZ)

Program Definition

Purpose and Usage

Long Float Complex General EXP is used to calcplate zl**z2 where zl
and z2 are long floating-point complex expressions.

Description

Method:

When zl = 0, the result 0 is returned if REAL(z2) > 0 and IMAG(z2)
= O. Otherwise, zl**z2 is computed as EXP(z2*LOG(zl» with the
provision that if IMAG(zl) = 0, then LOG(ABS(zl» is calculated by
a call to the real log routine, not.to the complex log routine.

Implementation:

• Module size: 472 bytes

• Execution times:

Approximate exeGution times in microseconds for system/360 models
given below are obtained from the table:

a I MAG (zl) c = REAL(zl)
b = IMAG(z2) d = REALCz2)

r---,
I IBM System/360 Model Number

I 30 40 50 65 75

a = 0 I
c > 0 62440 15325 I 3206 745 426

I
a = 0 I
d < 0 65208 16062 I 3366 781 450

I
a :1= 0 I
b = 0 90418 21611 I 4524 1056 604

I
a :1= 0 I

I b:l= 0 I 92809 I 22197 I 4623 I 1077 I 616 I
l---J

Errors Detected

Error and Exceptional Conditions:

P: zl = 0 with either REALCz2) S 0 or IMAG(z2) :1= 0 (210)
0: REALCz2*LOG(zl)} > 174.673 in Long Float Real EXP (IHEEXL)

ABSCIMAG(z2*LoG(zl») S 2**50*pi in Long Float Real Sin/Cos (IHESNL)

Local Variables

None

156

Program Interface

Entry Points

IHEXIMF
P7
PLIST

Exit Conditions

= A(PLIST)
= A(z1)

A(z2:
A (Target)

Normal. Return to caller via link register.
Abnormal. If P type error, a branch is made to IHEERRC.

Routines Called

IHELNL
IHELNZ
IHEEXZ

Long Float Real Log
Long Float Complex Log
Long Float Complex EXP

Global Variables

None

Comments

Called by compiled code.

157

CALL/360-0S

PL/I SM Vol. II

READER'S COMMENT FORM

GY20-0568-0

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GY20..()568-O

YOUR COMMENTS PLEASE •••

Your comments on the other side of this form will help us improve future editions of this pub
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your mM

system should be directed to your mM' representative or the mM branch office serving your
locality.

fold fold
.. 'II

Attention: Technical Publications

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

Wh~te Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

.. :

fold

International Business Machines Corporation
Data ProcessinlJ Divisinn
112 East Post Road, White Plains, N.Y. 10601
[USA Only)

IBM World Trade CDrporation
821 United Nations Plaza, New York, New York 10017
[International)

fold

GY20-0568-O

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601
(USA only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

