
~I 
/ 

Systems Reference Library 

IBM System/360 Operating System: 

Time Sharing Option 

Terminal User's Guide 

OS Release 21.7 

The Time Sharing Option (TSO> of the IBM 
System/360 Operating System lets you use the 
facilities of a computer from a terminal. You 
define your work to the system through the TSO 
Command Language. This publication explains to 
all users of TSO how to use the TSO Command 
Language to perform the following functions: 

• Start and end a terminal session. 
• Enter and manipulate data. 
• Program at the terminal. 
• Test a program. 
• Write and use command procedures. 
• Control a system with TSO. 

After becoming familiar with the information 
presented in this manual. you may use IBM 
SystefiV360 Operating System: Time Sharing 
Option. Command Language Reference, GC28-6732 
for review and reference. 

File No. 8360-36 
Order No. GC28-6763-3 OS 



Fourth Edition (August, 1974) 

This is a reprint of GC28-6763-1 and GC28-6763-2 incorporating changes released 
in the following Technical Newsletters: 

GN28-2522 (dated April 15, 1972 - for -1 only) 
GN28-2555 (dated April 16, 1973) 

This edition applies to release 21. 7 of IBM System/360 Operating System. Information 
in this publication is subject to change. Before using this publication, be sure you have 
the latest edition and any Technical Newsletters. 

Requests for copies of IBM publications should be made to your IBM representative or to 
the IBM branch office serving your locality. 

A form for readers' comments is provided at the back of this publication. If the form has 
been removed, comments may be addressed to IBM Corporation, Publications Development, 
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments 
become the property of IBM. 

© Copyright International Business Machines Corporation 1971, 1972 

'1 



This publication describes how to use the 
TSO Command Language to all TSO terminal 
users. The commands can be used to perform 
the following functions: 

• Start and end a terminal session. 
• Enter and manipulate data. 
• Program at the terminal. 
• Test a program. 
• Write and use command procedures. 
• Control a system with TSO. 

This publication tells you what commands to 
use to perform these functions. For 
details on how to code each command, refer 
to the publication IBM System/360 operating 
system: Time Sharing Option, Command 
Language Reference, GC28-6732. 

Before reading this manual you should be 
aware of three facts: 

• Program Products are not discussed in 
this manual. 

• All examples in this manual show the 
user's input in lowercase letters and 
the system output in uppercase letters. 

• All examples in this manual assume that 
you are using an IBM 2741 
Communications Terminal, and that you 
must press the RETURN key to enter 
data. For information on your type of 

Preface 

terminal refer to the publication IBM 
System/360 Operating system: Time 
sharing Option, Terminals, GC28-6762. 

Additional publications referenced in 
this manual include: 

IBM Data Processing Glossary, GC20-1699. 

IBM System/360 Operating System: 

Assembler F Programmer's Guide, 
GC26-3756. 

Job Control Language Reference, 
GC28- 6704. 

Linkage Editor and Loader, GC28-6538. 

Operator's Procedures, GC28-6692. 

PL/I (F) Programmer's Guide, GC28-6594. 

Time Sharing Option Command Language 
Reference, GC28-6732. 

Time Sharing Option Guide to Writing a 
Terminal Monitor Program or a Command 
Processor, GC28-6764. 



4 TSO Terminal User's Guide (Release 21) 



SUMMARY OF AMENDMENTS FOR 
GC28-6763-l,-2 AS UPDATED BY GN28-2555 
OS RELEASE 21.7 •••••••••••• 7 

SUMMARY OF AMENDMENTS FOR GC28-6763-l 
AS UPDATED BY GN28-2522 COMPONENT 
RELEASE 360S-0S-586 • • • • • • • • •• 7 

SUMMARY OF AMENDMENTS FOR GC28-6763-l 
OS RELEASE 21 • • • • • • • • • • • •• 7 

SUMMARY OF AMENDMENTS FOR GC28-6763-0 
OS RELEASE 20 • • •• 7 

INTRO DUCT ION • 9 

WHAT YOU MUST KNOW TO USE TSO 11 
Entering Information at the Terminal .. • 11 
COmmands • • • .. • ft • .. .. • • .. • • • • 12 

When to Enter a Command or Subcommand 15 
How to Enter a Command or Subcommand • 15 

Messages • .. • • .. .. • .. .. • .. 15 
Mode Messages .... • .. .. ,. .. 16 
Prompting Messages. .. • • 17 
Informational Messages.. 17 
Broadcast Messages • .. .. 18 

The Attention Interruption • • 18 
The HELP Command .. .. '. .. • 19 

STARTING AND ENDING A TERMINAL SESSION • 21 
Identifying Yourself to the System .. 21 
Defining operational Characteristics • • 24 
Receiving and Sending Broadcast 
Messages • • .. .. • • .. .. .. • • 

Receiving Broadcast Messages .. 
Sending Messages .. ,. .. .. .. 

Displaying session Time Used • .. 
Ending Your Terminal Session .. '. 

ENTERING AND MANIPULATING DATA .. 
Identifying the Data Set .. • .. • 
Creating A Data Set ... • • • .. 
Placing Data into Columns 
Finding and Positioning the Current 

• • 24 
• • 25 
.. .. 26 
• • 27 
.. • 27 

• • 28 
• • 29 

33 
• .. 35 

Line Pointer • .. • .. .. .. • • • • • .. • • 37 
Finding the Current Li ne Pointer .. '.. 37 
Positioning the Current Line Pointer • 38 

Updating a Data Set .... • • • .. • • 40 
Deleting Data From a Data Set 41 
Inserting Data in a Data Set.. • .. 41 
Replacing Data in a Data Set • • • 44 
Renumbering Lines of Data 49 

Listing the Contents of a Data Set.. • • 50 
Storing a Data set .. • .. .. 51 
Ending the Edit Functions • • 53 
Renaming a Data Set • • 54 

Contents 

Deleting a Data set • • • • • .. 
Establishing Passwords for a Data Set 
Allocating a Data set • • • • 

• 56 
,. 57 

Assigning Attributes to a Data set • 
Freeing a n Allocated Data Set 

58 
61 
61 

Listing Inf ormati on About Your Data 
Sets • • • _. • • • .. • • • 

PROGRAMMING AT THE TERMINAL 
Creating a Pro;Jram ...... 
Compiling a Program • • • • 
Link Editing a Compiled Program 
Executing a Program 
Loa ding a Pro;J ram • • • • • • 

.Processing Background Jobs • • • .. '. • 
Submitting Background Jobs ... 
Displaying the status of Background 
Jobs • • I. • • I. • I. • • .• • . 
Cancellirq Background Jobs. '. 
Controlling the Output of a 
Bac kground Job. • • • ,.. 

TESTING A PROGRAM 

62 

• 63 
• 64 
• 65 
• 66 
• 68 

70 
• 73 

73 

• 75 
75 

,. 76 

,. 79 

USING AND WRITING COMMAND PROCEDURES '. • 81 
Using Command Procedures ,. '. ,. • .. ,.. • 81 

Calling a Command Procedure 81 
Assignil'J3 Values to Symbolic Values '. 82 

Writing Command Procedures • • 82 
Assignil'J3 Symbolic Values •• '. • • • 83 
Examples of Symbolic Substitution '. • 84 
Testing Conditions for Termination •• 85 
Ending the Command Procedure • 85.1 
A Compiler Command Procedure. • 85.1 
Nested Procedures • '. • ,. • • • 85.3 

CONTROLLING A SYSTEM WITH TSO • ' •• ' •• 86 
The OPERATOR Command • '. .. '. • 

Monitoring Ternli. nal Activity • 
Displaying TSO Information •• 
Cancelling a Session or Background 

• 86 
• • 87 
.. • 89 

Job .. • • • '. • .. • .• • • • • • 90 
Sending ~ssages to Terminal Users ' •• 90 
Modifying Time Shari ng Parameters 91 
Ending Operation of the Operator 
Comnand ...... '. • ,. .. • • .• .. • • 91 

The ACCOUNT Command • • • • • 91 
Adding New Entries or Data to an 
Entry • • .. • • • .. .. .. • • 92 
Deleting Entries or Parts of Entries • 96 
Changing Data in an Entry •••••• 100 
Displaying the Contents of an Entry .101 
Displaying All User Identifications .102 
Ending Operation of the ACCOUNT 
Comma nd ....... • • • • • 10 2 

GLOSSARY. .103 

Contents 5 



Figures 

Figure 1. TSO Commands and 
Subcommands, Including Abbreviations • 14 
Figure 2. sample Instruction Sheet 
for a Terminal ........,. '. .. ,. .. • • 22 
Figure 3. Descriptive Qualifiers 31 
Figure 4,. Default Tab settings 36 
Figure 5. Values of the Line Pointer 
Referred to by an Asterisk C*) 38 
Figure 6. Sample Data set .. .. .. .. • .. 40 
Figure 7. Allocating Data Sets for 
the Assembler F • .. • .. .. 60 
Figure 7,.1 Assigning Attributes to a 
Ila ta Set • '. • • .. .. .. .. .. .. •• • • • 61 
Figure 8. Creating an assembler 
source program • • .. .. .. .. • 64 
Figure 9. Data Set Names of the 
Compi lers ........................ • • 65 
Figure 10. COBOL Compilation 66 
Figure 11. Link editing and executing 
a program .. .. .. .. Q • Q .. .. .. 70 
Figure 12. Loading a Program .. .. • • • 73 

6 TSO Terminal User's Guide (Release 21.7) 

Figure 13. Submi tti ng a P~ogram as a 
Ba ckground Job • • • • .• • • • .. • 75 
Figure 14.. Symbolic Values for a 
Command Procedure .. '. • .. • • • • 82 
Figure 14 .. 1.. substitution Using 
Keyword Parameters •• '. • '. .. • • '. • 85 
Figure 14.2.. A Command Procedure. to 
Invoke the PL/I CF) Compiler 85.1 
Figure 14.J 3. Use of a Command 
Procedur~- • .. .. • • • 85.2 
Figure 14 .. 4. Implicit use of 
Procedure ........... '. • 85 • 2 
Figure 14 .. 5.. A Command Procedure to 
Invoke a User Program ........... 85.3 
Figure 14.6. A Command Procedure for 
a Compile-Load-Go Sequence ••••• 85.4 
Figure 14 .. 7.. Using a Compile-Load-Go 
Command Procedure • •• •• ,. • .. • .. 85.4 
Figure 15. The Simplest structure 
Tha t an Entry in the UADS Can Have '... 93 
Figure 16.. A Complex Structure for an 
Entry in the UAOO ............ 93 



Summary of Amendments 
for GC28-6763-1,-2 
as Updated by GN28-2555 
OS Release 21.7 

COMMAND PROCEDURES 

Symbolic substitution 
Examples added. 

Compiler Command Procedure 
A series of examples added. 

"when" Stat~ment 
Text changed to read that a command 
procedure ends when it finishes 
processing a true "whenn statement. 

EDITORIAL CHANGES 
Several minor editorial changes have been 
made. 

Summary of Amendments 
for GC28-6763-1 
as Updated by GN28-2522 
Component Release 360S-0S-586 

DYNAMIC SPECIFICATION OF DCB PARAMETERS 
The discussion about Allocating a Data 
set was expanded to include Assigning 
Attributes to a Data set. 

The discussion about Freeing a Data Set 
was expanded to include deleting a list 
of attributes. 

Summary of Amendments 

Summary of Amendments 
for GC28-6763-1 
OS Release 21 

QUOTED STRING NOTATION FOR FIND AND CHANGE 
SUBCOMMANDS 

The FIND and CHANGE subcommands, of the 
EDIT command, can now accept quoted 
string as ~ell as special delimiter 
syntax. 

STOPMN 
The STOP subcommand, of the OPERATOR 
command, is changed to STOPMN. 

EDITORIAL CHANGES 
Many editorial changes have been made. 

Summary of Amendments 
for GC28-6763-0 
as Updated by GN28-2483 
OS Release 20.1 

CTLX KEYWORD FOR PROFILE COMMAND 
Keyword added. 

COPY SUBCOMMAND OF TEST 
Subcommand added. 

Summary of Amendments 7 



8 TSO Terminal User's Guide (Release 21.7) 



Introduction 

TSO is the time sharing option of the IBM System/360 Operating system. 
TSO le~ you use the facilities of a computer at a terminal. A terminal 
is a typewriter-like device connected through telephone or other 
communication lines to the computer. A terminal can be at any distance 
from the computer -- in the same room or in another city. Because the 
system processes instructions much faster than you can enter them 
through the terminal, it can process input from many terminals at the 
same time it is processing work entered in the conventional manner in 
the computer room. However I due to the speed of the system,· you will be 
able to work as though you had almost exclusive use of the system. 

You can tell the system what work you want done by typing in one or 
more of the commands that form the TSO command language.. The command 
language can be used to: 

• Enter", store, modify, and retrieve data at the terminal. 
• Solve mathematical problems. 
• Develop programs written in Assembler, FORTRAN, COBOL, PLlI, or 

other languages. 
• Execute programs. 
• Control the operation of a system with TSO from the terminal. 

Your installation determines which of the facilities of the system 
you can use. That is, the installation determines which commands are 
available to you. 

When you enter a command in the system, the system performs the work 
requested by that command and sends messages back to your terminal. The 
messages tell you the status of your program and whether the system is 
ready to accept another command. You can interrupt the processing of a 
command at any time and enter a new one. 

If you make a mistake typing in a command, or if you fail to include 
some necessary information with the command, the system sends you a 
message prompting you for the necessary information. You may then 
respond by typing in the information requested. 

If you receive a message you don't understand, you can type in a 
question mark to request more information. The system will then send 
you a more detailed message, if available. 

Whenever you are not sure which command to use or how to use a 
particular command, you can type HELP. HELP is a command that provides 
you with information on all other TSO commands. 

This manual explains how to use the command language. The manual is 
divided into the following sections: 

1. What you must know to use TSO. 
2. Starting and ending a terminal session. 
3. Entering and manipul"ating data. 
4. Programming at the terminal. 
S. Testing a program. 
6. Using and writing command procedures. 
7. Controlling a system with TSO. 

Introduction 9 



The f~st three items must be known by all system users. Items 4 - 6 
describe specific functions a user may wish to perform,. Item 7 
describes capabilities that you may use if your installation has given 
you authorization. 

This manual tells you what commands to use to perform the functions 
mentioned above.· For details on how to enter each command, refer to the 
manual Command Language Reference. 

10 TSO Terminal User's Guide (Release 21) 



I 

What You Must Know to Use T50 

Before you begin a terminal session, you should know: 

• How to enter information at the terminal. 
• How to use the TSO commands. 
• How to interpret TSO messages. 
• How to use the attention interruption. 
• How to use the HELP command. 

Entering Information at the Terminal 

All TSO terminals have a typewriter-like keyboard through which you 
enter information into the system. The features of each keyboard vary 
from terminal to terminal; for example, one terminal may not have a 
backspace key, while another may not allow for lowercase letters. The 
features of each terminal as they apply to TSO are described in the 
publication, TSO Terminals. 

Certain conventions apply to the use of all TSO terminals. They are: 

• Any lowercase letters you type are interpreted by the system as 
uppercase letters. For example, if you type in: 

abcDe8-fg 

the system interprets it as: 

ABCDE8-FG 

The only exceptions are certain text-handling applications which 
allow you to type in text with both uppercase and lowercase letters. 
Text handling is discussed in the section "Entering and Manipulating 
Data". 

• All messages or other output sent to you by the system come out in 
uppercase letters. The only exception is the output from the 
special text-handling applications mentioned previously which comes 
out both in uppercase and lowercase. 

TSO also provides a method for you to correct your typing mistakes. You 
can request that the character you just typed be deleted or that all the 
preceding characters in the line be'deleted. You can define your own 
character-deletion and line-deletion control characters, or you can use 
the default characters in the system. For example, if the control 
characters are the quotation mark (") for deleting the preceding 
character, and the percent sign (%) for deleting all the preceding 
characters of the line, and you type the following message: 

first ent%Sect"onft""d ENR"try 

it is received by the system as: 

SECOND ENTRY 

Note that you can use the character-deletion character repetitively to 
delete more than one of the preceding characters in the line. 

What you Must Know to Use TSO 11 



The blank space produced when you hit the space bar is also 
considered to be a character, and you can delete it using the 
character-deletion or line-deletion characters. For example, if you 
type the following line: 

a blcd liE IIf 

it is received by the system as: 

CD EF 

After you type a line and make any necessary corrections, you can 
enter that line as follows: 

• Press the RETURN key on an IBM 2741 Communications Terminal. 

• Press the RETURN key on an IBM 1052 Printer-Keyboard (If the 1052 
does not have the automatic EOB feature, hold down the ALTN coding 
key and press the EOB(s) key.)~ 

• Hold the CTRL key and press the XOFF key on a Teletype 2 terminal. 

Notes: 

• All examples in this manual assume that you are using an IBM 2741 
communications terminal, and that you must press the RETURN key to 
enter a line.~ 

• If you want to enter a null line, that is a line with no characters 
in it, press the key used to enter a line (RETURN key on the 2741). 

You cannot use the character-deletion and line-deletion characters to 
make corrections to the line after you enter it. If the line you 
entered was a command, you must use the attention interruption 
(described later in ~his section) to cancel the command, and then you 

must reenter the command. If the line you entered was data, you can 
change it by using the EDIT command (described in the section, "Entering 
and Manipulating Data"). 

Normally.. you will use the default characters in the system, (usually 
the backspace and the attention key). However,. you can use the PROFILE 
command to establish your own character-deletion and line-deletion 
characters. The PROFILE command is described in the section, "Starting 
and Ending a Terminal Session". The ability to change the 
character-deletion and line-deletion characters is particularly useful 
when you use more than one type of terminal. For example, any time you 
have to use a terminal that does not have backspace and attention keys, 
you can use the PROFILE command to select two other suitable characters 
as the character-deletion and line-deletion characters. 

Commands 

You can communicate with the system by typing requests for work, 
commands, at the terminal. Different commands specify different kinds 
of work. You can store data in the system, change the data, and 
retrieve it at your convenience. You can create programs, test them, 
execute them and obtain the results at your terminal. The commands make 
the facilities of the system available at your terminal. 

~For information about the terminal you are using, refer to TSO 
Terminals. 

2 Trademark of the Teletype Corporation .• 

12 TSO Terminal User's Guide (Release 21) 



When you use a command to request work, the command establishe~ the 
scope of the work to the system. For some commands, the scope of the 
work encompasses several operations that you can identify separately. 
After entering the command, you may specify one of the separately 
identifiable operations by entering a subcommand. A subcommand. like a 
command, is a request for work; however, the work requested by a 
sUbcommand is a particular operation within the scope of work 
established by a command. 

The commands and subcommands recognized by TSO form the TSO command 
language. The command language~is designed to be easy to use. The 
command names and subcommand names are typically familiar English words, 
often verbs, that describe the work to be done. The number of command 
names and subcommand names that you must learn has been kept to a 
minimum. (Your installation can add its own commands to perform 
functions not provided by the TSO command language.) 

Besides entering the name of the command or subcommand, you are often 
required to specify additional information to pinpoint the function you 
want performed. You define the additional information with operands 
(words or numbers that accompany the command names and subcommand 
names). Most of the operands have default values that are used by the 
system if you choose to omit the operand from the command or subcommand. 
However, some operands do not have default values. If you fail to 
provide a required operand for which there is no default, the system 
sends you a prompting message asking you to supply the operands. The 
publication, Command Language Reference shows all operands for each 
command, indicates the default values where applicable, and describes 
how to enter the commands. 

You can abbreviate many of the command names, subcommand names and 
operands. Together, the defaults and abbreviations decrease the amount 
of typing required. (The abbreviations and their use are discussed in 
the publication, Command Language Reference.) 

Figure 1 lists the commands and their subcommands in alphabetical 
order. 

Wha t you Must Know to Use TSO 13 



r----------------------------------T-----------------------------------, 
I COMMAND (abbreviation) J COMMAND (abbreviation) I 
I SUBCOMMAND (abbreviation) I SUBCOMMAND (abbreviation) I 
~----------------------------------+-----------------------------------~ 

ACCOUNT I LOGOFF 
ADD (A) LOGON 
CHANGE (C) * MERGE 
DELETE (D) OPERATOR (OPER) 
END CANCEL (C) 
HELP (H) DISPLAY (D) 
LIST (L) END 
LISTIDS (LISTI) HELP (H) 

ALLOCATE (ALLOC) MODIFY (F) 
*ASM MONITOR (MN) 

ATTRIB (ATTR) SEND 
* CALC STOPMN (PM) 

CALL OUTPUT (OUT) 
CANCEL CONTINUE (CONT) 

*COBOL (COB) END 
*CONVERT (CON) HELP (H) 
* COpy SAVE (S) 

*PLI 
*PLIC 

DELETE (D) PROFILE (PROF) 
EDIT (E) PROTECT (PROT) 

BOTTOM (B) RENAME (REN) 
CHANGE (C) RUN (R) 
DELETE (D) SEND (SE) 
DOWN STATUS (ST) 
END SUBMIT (SUB) 
FIND (F) TERMINAL (TERM) 

*FORMAT (FORM) TEST (T) 
HELP (a) Assign (=) 
INPUT (I) AT 
INSER'!' (IN) CALL 
LIST (L) COpy (C) 

*MERGE (M) DELETE (D) 
PROFILE (PROF) DROP 
RENUM (REN) END 
RUN (R) EQUATE (EQ) 
SAVE (S) FREEMAIN (FREE) 
SCAN (SC) GETMAIN (GET) 
TABSET (TAB) GO 
TOP HELP (H) 
UP J LIST (L) 
VERIFY (V) I LISTDCB 

EXEC (EX) I LISTDEB 
*FORMAT (FORM) I LISTMAP 
*FORT I LISTPSW 

FREE I LISTTCB 
HELP (a) I LOAD 
LINK I OFF 

*LIST (L) I QUALIFY (Q) 
LISTALC (LISTA) I RUN (R) 
LISTBC (LISTB) I WHERE (W) 
LISTCAT (LISTC) I TIME 
LISTDS (LISTD) I **PROC 
LOADGO (LOAD) I **END 

I I **WHEN 
~----------------------------------~-----------------------------------~ 
I *Available as program products I 
1**For use in command procedures I L ______________________________________________________________________ J 

Figure 1. TSO Commands and Subcommands, Including Abbreviations 

14 TSO Terminal User's Gu~de (Release 21.7) 



WHEN TO ENTER A COMMAND OR SUBCOMMAND 

The system lets you know when it is ready to accept a new command by 
sending you the message: 

READY 

The ACCOUNT. EDIT, OPERATOR, OUTPUT and TEST commands have 
subcommands. After entering one of these commands the system lets you 
know it is ready to accept a subcommand by sending you the name of the 
cQmmand. For example, in the following sequence you enter the OPERATOR 
command after receiving a READY message. The system then sends you the 
OPERATOR message indicating that you can enter any of the subcommands of 
the OPERATOR command: 

READY 
operator 
OPERATOR 

If instead of entering a subcommand you want to enter a command, 
enter the END subcommand to make the READY message appear again. 

The system remains able to receive commands until you enter one of 
the five commands that have subcommands. The system then accepts only 
that command's subcommands until you request a READY message by entering 
the END subcommand. 

HOW TO ENTER A COMMAND OR SUBCOMMAND 

After you receive a message letting you know the system is ready to 
receive a command or subcommand, do the following: 

1. Type the command or subcommand name and the selected operands. 
2. Correct any typing mistakes with the character-deletion and 

line-deletion characters. 
3. Press the RETURN key. 

If all the operands do not fit in one line you should follow this 
sequence: 

1. Type the command and subcommand name and the selected operands. 
2. Type a hyphen (-) at the end of the line. 
3. Press the RETURN key. 
4. Continue entering the operands. If they do not fit in the second 

line repeat from 2,. 
5. Press the RETURN key to enter the command. 

You can type command and subcommand names and operands in either 
uppercase· or lowercase letters. You may prefer to type your commands 
and subcommands in lowercase since it is usually more convenient, and it 
allows you to distinguish your input from the system's messages in your 
listing. (The system prints in uppercase letters.) All examples in 
this manual show the user's input in lowercase letters, and the system 
output in uppercase letters. 

Messages 

There are four types of messages: 

• Mode mes sages. 
• Prompting messages. 
• Informational messages. 
• Broadcast messages .• 

What you Must Know to Use TSO 15 



MODE MESSAGES 

A mode message tells you when the system is ready to accept a new 
command or subcommand. (See "When to Enter a Command or Subcommand" • ) 
When ;~he system is ready to accept a new command it prints: 

READY 

When you enter a command that has subcommands and the system is ready 
to accept its subcommands, it prints the name of the command, which can 
be anyone of the following: 

ACCOUNT 
EDIT 
OPERATOR 
OUTPUT 
TEST 

You can then enter the subcommands you want to use. The TEST message 
also appears after each TEST subcommand has been processed. If the 
system has to print any output or other messages, as a result of the 
previous command or TEST subcommand. it does so before printing the mode 
message. (The use of mode messages in the EDIT command is discussed in 
the section "Entering and Manipulating Data".) 

Sometimes you can save a little time by entering two or more commands 
in succession without waiting for the intervening READY message. The 
system then prints the READY messages in succession after the commands. 
For example, if you enter the DELETE, FREE, and RENAME commands and wait 
for the intervening mode message between the commands, the output (or 
listing) will be: 

READY 
delete ••• 
READY 
free ••• 
READY 
rename ••• 
READY 

If you enter the same commands without waiting for the intervening 
mode messages, your listing will be: 

READY 
delete ••• 
free ••• 
rename ••• 
READY 
READY 
READY 

There is a drawback to entering commands without waiting for the 
intervening mode messages. If you make a mistake in one of the 
commands, the system sends you messages telling you of your mistake, and 
then it cancels the remaining commands you have entered. After you 
correct the error, you have to reenter the other commands. 

Unless you are sure that there are no mistakes in your input. you 
should wait for a READY message before entering a new command. 

Note: Some terminals "lock" the keyboard after you enter a command, and 
therefore you cannot enter commands without waiting for the intervening 
READY message. Terminals which do not normally lock the keyboard may 
occasionally do so, for example when all buffers allocated to the 
terminal are used. See the publication TSO Terminals for information on 
your terminal. 

16 TSO Terminal User's Guide (Release 21) 



PROMPTING MESSAGES 

A prompting message tells you that required information is missing or 
that information you supplied was incorrectly specified. A prompting 
message asks you to supply or correct that information. For example, 
data-set-name is a required operand of the CALL command; if you enter 
the CALL command without that operand the system will prompt you for the 
data-set-name and your listing will look as follows: 

READY 
call 
ENTER DATA SEn' NAME -

You should respond by entering the requested operand, in this case 
the data set name, and by pressing the RETURN key to enter it. For 
example if the data set name is ALPHA. DATA you would complete the 
prompting message as follows: 

ENTER DATA SEn' NAME
alpha. data 

TO specify whether or not you want to receive prompting messages, use 
the PROMPT or NOPROMPT operand of the PROFILE command. This command is 
described in the section, "Starting and Ending a Terminal Session". 

sometimes you can request another message that explains the initial 
message more fully. If the second message is not enough, you can 
request a further message to give you more detailed information. 

To request an additional level of messaqe: 

1. Type a question mark (?) in the first position of the line. 

2 • Press the REn'URN key. 

If you enter a question mark, when there are no messaqes to provide 
further detail, ydu receive the ~ollowing message: 

NO INFORMATION AVAILABLE 

you can stop a prompting sequence by entering the requested 
information or by requesting an attention interruption. 

INFORMATIONAL MESSAGES 

An informational message tells you about the status of the system and 
your terminal session. For examplel an informational message can tell 
you how much time you have used. Informational messages do not require 
a response. 

If an informational message ends with a plus sign (+) you can request 
an additional message by entering a question mark (?) after READY, as 
described in "Prompting Messages." Informational messages have only one 
second level message, while prompting messages may have more than one. 

What you Mu~t Know. to Use TSO. 17 



BROADCAST MESSAGES 

Broadcast messages are messages of general interest to users of the 
system. Both the system operator and any user of the system can send 
broadcast messages. The system operator can send messages to all users 
of the system or to individual users. For example, he may send the 
following message to all users: 

DO NOT USE TERMINALS # 4 , 5 AND 6 ON 6/30. THEY ARE RESERVED FOR 
DEPARTMENT 791'. 

You, or any other user, can send messages to other users or to the 
system operator. For example, you may send, or receive. the following 
message: 

ACCOUNT NO. 4672 WILL BE CHANGED TO 4675 STARTING 8/25 

A message sent by another user will show his user identification so 
you will know who sent you the message,. 

To find out how to send or receive broadcast m~ssages, refer to the 
section "Starting and Ending a Terminal Session". 

The Attention Interruption 

The attentiQn interruption allows you to interrupt processing of your 
job so that you can enter a new con~and or subcommand. The ability to 
interrupt processing prevents you from being "locked out" by the system 
while a long-running program executes or while voluminous output is 
displayed at your terminal. You can use the attention interruption for 
access to the system. 

When you enter an attention interruption, the system suspends 
processing and sends you a mode message,. If the system was processing a 
command, you receive the following mode message: 

READY 

you can then enter a new command. If the system was processing a 
subcommand, the mode message will be the name of the command to which 
the subcommand belongs: 

ACCOUNT 
EDIT 
OPERATOR 
OUTPUT 
TEST 

If you do not want to enter another subcommand, you should enter 
another attention interruption which will cause the READY message to 
appear. 

See the section "Displaying Session Time Used" for other uses of 
attention interruption. 

There are two ways to cause an attention interruption: 

1. Press the attention (or substitute attention) key: 

• ATTN key on an IBM 2741 Communications terminal. 

18 TSO Terminal User' s Guide (Release 21) 



• LINE RESET key on an IBM 1052 Printer-Keyboard. (If the 
"proceed" light is on, press the ALTERNATE CODING and "6" keys 
instead of the LINE RESET key.) 

• BREAK key on a Teletype terminal. 

If the attention key is also the line-deletion character key and 
you have entered any characters in a line of input, you must press 
it twice to enter an attention interruption. (You need only press 
it once if you have not entered any characters in the line.) 

2. Use a simulated attention key: 

If your terminal does not have a key that can be used for attention 
interruption, you can use the facilities of the TERMINAL command to 
simulate the, attention key. The TERMINAL command lets you specify 
a string of characters, such as HALT or ATTN, that when entered as 
a line of input is interpreted by the system as a request for an 
attention ~nterruption. The TERMINAL command also lets you request 
an interruption at specified intervals while output is being 
produced. The TERMINAL command is described in the section, 
"Starting and Ending a Terminal Session". 

Note: The attention interruption will not halt the output from system 
operator commands, such as DISPLAY A. 

The HELP Command 

The HELP command provides you with information about all other TSO 
commands. At the most general level you can enter: 

help 

This will cause you to receive a list of all commands and a brief 
explanation of their functions. 

If you want all the information available on a specific command, for 
example CALL, enter the HELP command and use the other command's name as 
an operand: 

help call 

If you want to know only the function, syntax, or operands, of the 
CALL command, enter one of the following: 

help call function 
help call syntax 
help call operands 

You can also obtain the same information for the subcommands of the 
ACCOUNT. EDIT, OPERATOR. OUTPUT and TEST commands. To do this, enter 
the command with any required operands and wait for the mode message. 
After you have received it, you can enter: 

help 

This will cause you to receive a list of all subcommands for the command 
that you specified. 

What you Must Know to Use TSO 19 



If you want all the available information on a given subcommand, 
enter the HELP command and use the subcommand name as an operand. For 
example, the following sequence could be used to obtain all the 
information available on the DISPLAY subcommand of the OPERATOR command: 

READY 
operator 
OPERATOR 
help display 

If you want to know only the function, syntax, or operands of the 
DISPLAY subcommand you would enter one of the following: 

help display function 
help display syntax 
help display operands 

There is one restriction on using the HELP command: you cannot use 
it before you use the LOGON command. As explained in the section 
"starting and Ending a Terminal Session", LOGON must be the first 
command used in your session because it identifies you as an authorized 
user of the system. 

Note: Your installation can add "help" information to the system by 
following the instructions in the publication. Time Sharing Option Guide 
to Writing a Terminal Monitor Program or a Command Processor. 

20 TOO Terminal User's Guide (Release 21) 



Starting and Ending a Terminal Session 

This section describes the commands you can use to: 

• Identify yourself to the system. 
• Define operational characteristics of your session. 
• Receive and send broadcast messages. 
• Display session time used. 
• End your terminal session. 

Identifying Yourself to the System 

The first thing you must do to start your terminal session is to turn on 
the power according to instructions provided by your installation. In 
many cases, you will find an instruction sheet such as the one shown in 
Figure 2 attached to the terminal. In the example shown in Figure 2. 
instructions 1 through 8 must be followed to turn on the power and to 
establish the connection with the system. If there is no instruction 
sheet attached to the terminal, consult the publication, TSO Terminals. 

After you turn on the power you must use the LOGON command to 
identify yourself to the system. You must supply, as operands of LOGON, 
the user attributes assigned to you by your installation. Your user 
attributes are: 

1. User identification (required) -- The name or code by which you are 
known to the system. 

2. Password (required if your installation assigns you one) -- A 
further identification used for additional security protection. 

3. Account number (optional) -- The account to which your terminal 
session is charged. 

4. Procedure name (optional) The name of a series of statements 
that defines your job to the system. 

starting and Ending a Terminal Session 21 



r--------------~-------------------------------------------------------, 
TERMI NAL #7 I 

(Available 9:00 a.m. - 3:00 p.m. 
For additional time call A. Jones ext. 1234) 

1. TUrn ON/OFF switch to ON. 

2. Make sure the COM/LCL switch is set to COM. 

3. Remove handset from telephone (data set). 

4. Press TALK button on telephon~. 

5. Dial ext. 5555, 5556, or 5557. 

6. Wait for a high pitched tone. When you hear this tone you 
are in contact with the computer. If you get a busy signal 
or no answer, hang up and repeat from step 3 trying another 
extension. 

7. Push the DATA button on the telephone. If DATA button light 
goes off at any point during session, repeat from step 3. 

8. Replace handset on the cradle. 

9. Enter LOGON command: 

logon_

t
_/ \ acct( __ ~( proc (-t-> size (-( [~:~~~es] [::!il] 

userid password account procedure nnnn 

10. The default TERMINAL command is: 

terminal nolines noseconds noinput break notimeout linesize(120) 

If you want to change any of the following defaults use this 
TERMINAL command: 

terminal lines{ ) seconds ( ) input ( ) linesize ( 

11. If you want to change your user profile, use the PROFILE 
command: 

) 

profile char(bs) l~ne(attn) no prompt . [Char ( )] [line () ][promPt] 

nochar I1ne(ctlx) 
[
intercom 1 rpause 1 [ms9id 1 
nointercomJ LnopauseJ nomsgi~ 

noline 

The following operands are recommended for this terminal: 
char (bs) and line (attn) 

Note: Please turn ON/OFF switch to OFF after you enter LOGOFF. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L __ ~ ___________________________________________________________________ J 

Figure 2. Sample Instruction Sheet for a Terminal 

Your user attributes are recorded in the system together with the 
attributes of all other terminal users. When you log on, the system 
compares the attributes you specify in the LOGON command to the recorded 
attributes of each user to determine if you are an authorized user of 
the system. 

22' TSO Terminal User's Guide (Release 21) 



You can have a simple set of attributes, such as the following: 

SMITH User identification 

+ LOCK Password 

79t45 Account Number 

+ P79 Procedure name 

or a more complex set, such as 

~SM~TH~ 
LOCK SEVEN REY 

User identification 

Passwords 
+ ~ + 

79345 79374 74325 Account Numbers 

+ I '\ \ 
P79 P80 P81 P82 Procedure Names 

The latter set has three passwords (LOCK, SEVEN, and KEY) associated 
with your user identification. If you use the password LOCK, you can 
have your processing charged only to account 79345 and you can use only 
procedure P79. If you use the password SEVEN, you can have your 
processing charged to either account 79374 or 74325. If you choose 
account 79374, you can use either procedure P80 or P81. If you choose 
account 74325, you can use only procedure P82. Another way of using 
procedure P82 is to choose password KEY. KEY only has account 74325 and 
procedure P82 associated with it. 

The LOGON command is a simple means of telling the system your user 
identification, password, account number and procedure name. For 
example, if you want to use procedure P8l, you must enter: 

logon smith/seven acct(79374) proc(p81) 

Whenever there is only one account number or procedure name 
associated with the user identification and password the system selects 
it by default. For example, account 79345 and procedure P79 are the 
only account and procedure associated with password LOCK. Therefore, 
when you log on you need only enter: 

logon smith/lock 

instead of: 

logon smith/lock acct(79345) proc(p79) 

Note: Some terminals have a feature which inhibits the printing of 
passwords on the console listing. See the publication, TSO Terminals, 
for more information. 

If you choose password SEVEN, you must specify which account number 
you want. If you select account 74325, you do not have to specify the 
procedure because there is only one procedure associated with the 
account. 

logon smith/seven acct(74325) 

If you select account 79374, you must also select a procedure name 
because there are two· procedures associated with the account. For 
example, 

logon smith/seven acct(79374) proc(p80) 

Starting and Ending a Terminal Session 23 



If you choose password KEY, you do not have to specify an account 
number and procedure name because there are only one account number and 
one procedure name associated with KEY. 

Note: In some instances your. installation may require a modification in 
the way that you enter the LOGON command; for example, you may have to 
precede LOGON with a quotation mark ("LOGON). Your installation's 
management is responsible for advising you of such a change. 

Defining Operational Characteristics 

Operational characteristics can be divided into terminal characteristics 
and a user profile. Terminal characteristics identify: 

• How you can request an attention interruption. 

• Whether the keyboard is to lock up if you do not enter anything for 
a while~ 

• What the length of the line that can be displayed or printed at your 
terminal is. 

A user profile identifies: 

• What your character-deletion and line-deletion characters are. 

• Whether you want to receive prompting messages. 

• Whether you will accept messages fro~ other terminals. 

Your installation establishes default terminal characteristics for 
all the TSO terminals. If you want to change any of those 
characteristics for the duration of your session you can use the 
TERMINAL command. After your session is over the defaults selected by 
the installation will again be valid for the terminal. For example, 
assume that the default for the number of lines of continuous output 
that are printed before you receive an automatic interruption is 50. 
You can use the TERMINAL command to request that 100 lines be printed 
before you receive an interruption. When you log on for your next 
session, 50 lines will again be the default. 

The system has a user profile for you. When you log on that profile 
will be in effect. If you want to change any item in your profile,. you 
can do so with the PROFILE command. Any change you make becomes part of 
your profile. That is, the next time you log on that cha~ge will be in 
effect. For example, assume that the line-deletion character in your 
profile is a percent (%) sign. You can use the PROFILE command to 
change it to a number (#) sign, throughout the.current session, When 
you log on for your next session your line deletion character will be 
the number sign. If you want to change it back to the original percent 
sign you must again use the PROFILE command. 

Receiving and Sending Broadcast Messages 

There are two types of broadcast messages you can re.c~ive: notices and 
mail. Notices are messages sent ~ the system operator to all users. 
Mail consists of messages sent by the oper..ator or other user directly to 
you. You can send mail to other users and to the system operator. 

24 TSO'l7erminal User's Guide (Release 21) 



RECEIVING BROADCAST MESSAGES 

You can use three commands to control which broadcast messages you 
recei ve: LOGON. PROFILE.. and LISTBC. 

When you log on, broadcast messages sent to all users (notices) and 
those broadcast messages intended only for you (mail) are displayed at 
your terminal. You can use the following operands of the LOGON command 
to prevent printing either type of message at your terminal: 

• NONOTICES suppresses printing of broadcast messages intended for all 
terminal users. 

• NOMAIL suppresses printing of broadcast messages intended 
specifically for you. 

For example. if you enter: 

logon smith acct(72411) nomail 

You will not receive mail but you will receive all notices that are 
available at the time. 

NONOTICES and NOMAIL suppress those broadcast messages outstanding at 
the time you log on. You will automatically receive any broadcast 
messages issued after you log on. You cannot stop the operator from 
sending you notices, but you can specify that you do not want to receive 
any mail by using the NO INTER COM operand of the PROFILE command. For 
example, if you enter the following commands: 

logon jones/cloud proc(ab) 
READY 
profile nointercom 

you request that all broadcast me~sages available at logon be displayed, 
but that all mail sent to you after logon be suppressed throughout your 
session. (Note that NOINTERCOM can be a default of your user profile, 
and therefore you may not have to specify it with the PROFILE command.) 

At any time during your session you can use the LISTBC command to 
request that either all available notices for users, or all your mail 
(or both) be displayed. If you enter: 

listbc 

you will get all broadcast messages. 

If you enter: 

listbc nomail 

you will: get only notices. 

If you enter: 

listbc nonotices 

you will get only your mail. 

The notices you get are both the notices available at the time you 
logged on and those issued throughout your session. This enables you to 
see what notices were availab,le at log on time, if you specified 
NONOTICES in your LOGON command. (The system operator can delete 
notices at any time. Consequently you will get only those notices he 
has not deleted.) 

starting and Ending a Terminal Session 25 



Mail.. messages sent directly to you are automatical..ly del..eted by the 
system after you receive them. Therefore the mail you get when you use 
the LISTBC command are those messages available at log on time, if you 
specified NOMAIL in your LOGON command, and those suppressed as a result 
of the NO INTERCOM operand of the PROFILE command. Af~er you use the 
LISTBC command to see your mail, the NOINTERCOM operand will again be in 
effect. 

If there are no messages available when ,you use the LISTBC command 
you wil..l receive the following message: 

NO BROADCAST MESSAGES 

If you want to cancel the effect of the NOINTERCOM operand, enter: 

profile intercom 

You will receive any mail issued after you enter this command. To 
obtain your mail messages issued before you entered INTERCOM, use the 
LISTBC command. 

SENDING MESSAGES 

You can use the SEND command to send mail messages to another terminal 
user or to a system operator. The SEND command can be used at any time 
after you log on. 

You can send a mail message to another user only if you know his user 
identification. For example, the command: 

send 'do not use procedure 245 until notified' user(jones,dept4) 

will send the message enclosed in quotes to the two users whose 
identifications are JONES and DEPT4. 

When you send a message to another user, he will receive it 
immediately provided that he is logged on and is accepting messages. If 
he is not logged on or is not accepting messages" you are notified and 
your message is deleted. For example, assume that SMITH is not logged 
on, JONES is not accepting'messages, and CLARK is both logged on and 
accepting messages. When you send the following message: 

send 'this is a message' user (smith., jones"clark) 

SMITH and JONES do not receive the message. you are notified, and the 
message is deleted. CLARK receives the message. 

You can request the system to save your message until the user you 
sent it to logs on or decides to accept messages., by using the LOGON 
operand of the SEND command. For example, if you enter: 

send 'this is a message' user(smith,jones,clark) logon 

SMITH will receive your message when he logs on, JONES will receive it 
when he uses the LISTBC command, and CLARK will receive it immediately. 

You can send a message to only one operator at a time. With the SEND 
command~ you can identify an operator by a number. For example, 

send 'important message' operator(7) 

26 TSO Terminal User's Guide (Release 21) 



If there is only one operator at your installation, you can omit the 
number. For example, 

send 'important message' operator 

If there are several operators and you omit the number, your message 
is sent to the main operator. A message is also sent to the main 
operator if no specific user is specified on the SEND command. 

Displaying Session Time Used 

You can use the TIME command to find out how much time you have used 
during the current session. If you-enter: 

time 

the system sends you a message telling you how long you have been using 
the terminal since you logged on. 

If you are executing a program, you can use the TIME command to find 
out how long the program has been running. You must first enter an 
attention interruption and then enter the TIME command. The system then 
sends you a message telling you how long a program has been running. If 
you want to continue processing the program, press the RETURN key and 
the program continues. If you want to ~top processing the program, 
enter another attention interruption and wait for the READY message 
before you enter_another command. 

Ending Your Terminal Session 

You can end your termi.nal session in either of two ways: 

• By entering the LOGOFF command. to end the session. 
• By entering the LOGON command to start a new session. 

The LOGOFF command: 

• Displays your user identification. 
• Displays the 1ength of time you have been using the terminal, and 

the time of day and date your session ended. 
• Logically disconnects your terminal from the system. The terminal 

remains physically connected and you can enter a new LOGON command; 
however" terminal characteristics established by a TERMINAL command 
during the previous session are no longer in effect. 

The LOGON command terminates your current session and starts a new 
session at the same time. LOGON must be specified as described in the 
section "Identifying Yourself to the System". In this case, terminal 
characteristics established by a TERMINAL command during the previous 
session remain in effect for the new session. 

Starting and Ending a Terminal Session 27 



Entering and Manipulating Data 

Almost all system applications are concerned with the processing of 
data. Therefore, you should learn how to enter data ,into the system and 
how to modify, store, and retrieve data after it has been entered. Any 
group of related data entered into the system is called a data set. For 
example, a data set may contain: 

• Text used for information storage and retrieval. 
• A source program. 
• Data used as input to a program. 

When you create a data set you must give it a name. The system uses 
the name to identify the data set whenever you want to modify or 
retrieve it,. 

The EDIT command;, which is used to create and manipulate data sets, 
operates in either of two modes: input mode or edit mode. When you use 
the EDIT command to enter data into a data set, you are using the input 
mode.. When you use the EDIT command to enter subcommands to manipulate 
the data in a data set you are using the edit mode. 

In input mode, you can type a line of data and then enter it into the 
data set by pressing the RETURN key. You can continue entering lines of 
data as long as EDIT 'is operating in input mode. If you enter a command 
or subcommand while in input mode the system adds it to the data set as 
input data. 

You can have the system assign a line number to each line as it is 
entered,. Line numbers make edit mode operations much easier, since you 
can refer to each line by its own number. Wh~n you are working with a 
line-numbered data set, you can request the system to print out the new 
line number at the start of each new input line. If the data set does 
not have line numbers;, you can request that a prompting character be 
displayed at the terminal before each line is entered. 

After you finish entering data in the data set, you can switch to 
edit mode by entering a null line. (Press the RETURN key to enter a 
null line.) 

The system lets you know you are in edit mode by printing the 
following message: 

EDIT 

In edit mode you can enter subcommands to point to particular lines 
of the data set" to modify or renumber lines, to add and delete lines, 
or to control editing of input. 

When EDIT is operating in edit mode, it uses an indicator called the 
current-line pointer to keep track of the next line of data to be 
processed.. The operations you indicate with the subcommands are 
performed starting at the line indicated by the pointer.. For example, 
the DELETE subcommand deletes the line indicated by the pOinter. After 
a subcommand is executed the system repositions the pointer. 

You may want to reposition the pointer before a subcommand is 
executed. You can do so by using one of two methods: line number 
editing or context editing. Line number editing can be used only if 
your data set has line numbers. You can specify a line number as an 
operand of a subcommand and the system will move the pointer to that 

28 TSO Terminal User's Guide' (Release 21) 



line before it executes the subcommand. Context editing can be used for 
data sets with or without line numbers. A set of subcommands (UP, DOWN, 
TOP" BOTTOM, and FIND) allows you to move the pointer up or down a 
specified number of lines, or to find a line with a particular series of 
characters in it and move the pointer to it. After the pointer is 
poSitioned you can enter the subcommand that performs the functions you 
require. The subcommand may use an asterisk (*) instead of a line 
number to specify the line indicated by the pointer, or it may operate 
on the current line by default. 

After you finish editing the data, you can switch to input mode by 
either of two methods: 

1. Entering the INPUT or INSERT subcommand .. 

2. Entering a null line,.. (Press the RETURN key to enter a null line. > 

The system lets you know you have selected input mode by printing the 
following message: 

INPUT 

You can terminate the EDIT command at any time by switching to edit 
mode (if not already in edit mode> and entering the END subcommand. The 
system then prints a READY message, and you can enter any command you 
choose. 

Note: If you want to enter a blank line in your data set, you must 
enter a blank by pressing the space bar, and then press the RETURN key. 
You can then enter other lines after the blank line. If you fail to 
enter a blank and press only the RETURN key, you enter a null line which 
causes EDIT to switch modes. 

The remainder of this chapter describes how you can use the 
sUbcommands of EDIT to: 

• Identify a data set. 
• Create a data set. 
• Place data into columns .. 
• Find and position the current line pointer. 
• Update a data set. 
• List the contents of a data set. 
• store a data set. 
• End the EDIT functions. 

The following functions described in this chapter are performed with 
commands other than EDIT: 

• Rename a data set. 
• Delete a data set,. 
• Establish passwords for a data set. 
• Allocate a data set. 
• Free an allocated data set. 
• List the names of your data sets. 

Identifying the Data Set 

The EDIT command is used to specify the name of a data set and whether 
you want to create it or edit it. If you indicate that you are going" to 
create a new data set, the system enters input mode. If you indicate 
that you are going to edit an existing data set, the system enters edit 
mode after you enter the EDIT command. For example, the NEW operand in 

Entering and Manipulating Data 29 



the following EDIT command specifies that you are going to create a new 
data set named ACCTS.DATA. After you enter the command the system 
enters input mode. 

READY 
edit accts.data new 
INPUT 

In the following example, the OLD operand of the EDIT command 
specifies that you want to edit an existing data set named PARTS. TEXT. 
After you enter the command, the system enters edit mode. 

READY 
edit parts. text old 
EDIT 

As you can see. the NEW operand specifies that you are going to 
create a data set. and t.he OLD operand specifies that the data set 
already exists. 

The name you give a data set should follow certain conventions. A 
data set name has three fields. 

1. Identification qualifier. 
2. User-supplied name. 
3. Descriptive qualifier. 

The fields must be separated by periods. The total length of the 
name, including periods, must not exceed 44 characters. For example, a 
typical data set name is: 

SMITH.ACCTS .. DATA 

Identification qualifier ______ ---'t 1 I 
User-supplied name -

Descriptive qualifier----------------------~ 

When you create a data set you need only specify the user-supplied 
name. The system supplies values for the other two fields. The 
identification qualifier is the user identification you specified with 
the LOGON command. The descriptive qualifier is one of those listed in 
Figure 3. The system infers the descriptive qualifier from the data set 
type operand entered with the EDIT command. If you do not specify a 
data set type the system prompts you for it. (You should carefully note 
the distinction, as shown in the following paragraphs, between data set 
type and descriptive qualifier.) If you prefer you can specify the 
descriptive qualifier as part of a data set name, for example: 

PARTS. DATA 

You may specify a fully qualified name (a name with all three 
qualifiers) by enclosing it in apostrophes. For example, 

'JONES.PROG1.ASM' 

This is a useful procedure when you have to use a data set with an 
identification qualifier other than your own user identification. 

30 TSO Terminal User's Guide (Release 21) 



r----------------------------------T-----------------------------------, 
I Descriptive Qualifier I Data set Contents I 
~----------------------------------+-----------------------------------~ 

ASM I Assembler (F) input 

BASIC 

CLIST 

CNTL 

COBOL 

DATA 

FORT 

IPLI 

LINKLIST 

LIST 

LOAD 

LOADLIST 

OBJ 

OUTLIST 

PLI 

STEX 

TESTLIST 

I 
I ITF:BASIC statements 
I 
I TSO comnands 
I 
I JCL and SYSIN f or SUBMIT command 
I 
I American National Standard COBOL 
I sta tements 
I 
I Uppercase text 
I 
I 
I 
I 
I 

FORTRAN IV (E, G., G1 or H) 
statements and free- or 
fixed-format code and go FORTRAN 
statements 

I 
I ITF:PL/I statements 
I 
I Output listing from linkage 
I 
I Listings 
I 
I Load module 
I 
I Output listing from loader 
I 
I Object module 
I 
I Output listing from OUTPUT 
I 

editor I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

command I 

I PL/I (F), PIntICheckout, or PL/I 
I 
I 
I 
I 
I 
I 
I 
I 

I Optimizing Compiler statements 
I 
I STATIC external data from ITF:PLI 
I 
I Output listing from TEST command 
I 

TEXT I Uppercase and lowercase text I __________________________________ L ___________________________________ J 

Figure 3. Descriptive Qualifiers 

Any name that does not conform to the naming conventions must be 
enclo$ed in apostrophes. For example, if you have a data set named 
RECORDS, with no identification or descriptive qualifiers, enter 

'records' 

The system will not append the identification and descriptive 
qualifiers to data set names that are enclosed in apostrophes. 

Entering and Manipulating Data 31 



You can refer to an existing data set by its user-supplied name. In 
some cases" you may also have to include the descriptive qualifier. For 
example, if two of your data sets were named: 

SMITH. PART1 .• ASM 
SMITH. PART 1. DATA 

and you want to refer to the latter " you should specify: 

part 1. data 

or specify the data set type as an EDIT command operand. For example: 

edit part1 new data 

You can also create and edit partitioned data sets. A partitioned 
data set consists of one or more data sets called members. Each member 
can be created and edited' separately and each has a name. The member 
name is enclosed in parentheses and appended to the right of the fully 
qualified data set name. For example, the fully qualified name of 
member MEM1 of the SMITH. PART1.DATA data set is: 

SMITH. PART1. DATA (MEM1) 

You need only use the user-supplied name and member name to refer to 
the member. The system appends the identification and descriptive 
qualifiers and moves the member name to the end to form the fully 
qualified name. For example, to refer, to member MEMl you can specify: 

part1( mem1) 

or you might specify 

part 1. data (mem1) 

In tQe second example, the system will append only the identification 
qualifier. 

The £ollowing examPle uses the EDIT command to create member ONE of a 
partitioned data set named JONES·. T42 .. DATA. The second EDIT command, 
creates member 'I'WO of JONES.T42.DATA. Note that the NEW operand must be 
specified in both cases. The third EDIT command, specifies that changes 
are to be made to member ONE .• 

READY 
edit t42.data(one) new 
INPUT 

READY 
edit t42.data(two) new 
INPUT 

READY 
edit t42.data(one) old 
EDIT 

32 TSO Terminal User- s Guj..de (Release 21.7) 



After you specify the data set name and the NEW or OLD operand, you 
should specify the data set type. The data set type is an operand that 
describes the purpose for which the data set, is to be or was created. 
The type operand is one of the sources from which the system can obtain 
the descriptive qualifier. The valid types are: 

ASM 
BASIC 
CLIST 
CNTL 
COBOL 
DATA 
FORTE 
FORTG 
FORTGI 
FORTH 
GOFORT 
IPLI 
PLI 
PLIF 
TEXT 

Note: Any user data set types, specified at system generation time, are 
also valid data set types. 

If the system cannot find the data set type from other ,~ources" you 
are prompt ed for it .• 

If you do not want your data set to have line numbers, use the NONUM 
operand.. For exampl e, 

edit ab75 new asm nonum 

Do not specify NONUM for the BASIC, IPLI, and GO FORT data set types, 
because they must always have line numbers. 

Except for TEXT type data sets. lines of input are translated to 
uppercase letters by the system. If you want the system to retain your 
input in the same form as you enter it (uppercase and lowercase), code 
the ASIS operand. For example: 

edit mydata new data asis 

The ASIS operand is not valid for all data set types. If it is invalid 
for your data set type .• a message will be printed at your terminal 
notifying you that translation to CAPS is in effect. 

Creating a Data Set 

You usually create a data set when EDIT is in input mode. You request 
input mode when you enter one of the following: 

• The NEW operand in the EDIT command,. 
• The INPUT subcommand while you are in edit mode. 
• The INSERT subcommand with no operands. 
• A null line if the system is in EDIT mode. 

After you enter the EDIT command with the NEW operand the system sends 
you the following message: 

INPUT 

Entering and Manipulating Data 33 



After this message is printed the system prints the first line number of 
your data set, unless you specified NONUMinthe EDIT command. The 

"' first line number print;ed -is 00010. Type the first line of input to the 
right of the line number and press the RETURN key to enter it. 1. The 
system then prints the second line number, which is 00020, and you may 
then enter your second line of input, and so on. 

Caution: A hyphen (minus sign) at the end of an input line indicates 
logical continuation- of the line. In inp~t mode logical continuation is 
meaningful only if you are using the syntax checking facility. Whether 
syntax checking or not, the input processor will delete the hyphen from 
the end of the line, except in a few special instances. The rules 
governing input mode handling of a hyphen at the end of a line are 
detailed in Command Language Reference. 

When you reach the end of the data you want to enter, press the 
RETURN key without entering anything (a null line) and the system 
switches to edit mode •. The following example illustrates the points 
just discussed: 

READY 
edit accts new data 
INPUT 
00010 #23942 5 
00020 #32135 21 
00030 #12174 12 
00040 #49213 35 
00050 #52221 50 
00060 (null line) 
EDIT 

0)2.75 
0)3.90 
0)1.80 
0)7.95 
0)2.35 

acme inc 
bbb corp 
alpha inds 
xyz dist 
beta mfg 

In the example, the line numbers have the standard increment of 10. 
If you prefer a different increment, you can use the INPUT subcommand to 
create the data set. To do this you must first request a switch to edit 
mode by entering a null line after you receive the INPUT message. Then 
enter the INPUT subcommand specifying the number of the first line and 
the size of the increment. After entering the INPUT subcommand the 
system switches to~ input mode and prompts you with the first line 
number. For example, to start with line 5 and use increments of 5, you 
could use the following sequence: 

READY 
edit accts new data 
INPUT 
00010 (null line) 
EDIT 
input 5 5 
INPUT 
00005 #23942 
00010 #32135 
00015 #32174 
00020 #49213 
00025 #52221 
00030 (null line) 
EDIT 

5 0)2.75 acme inc 
21 0)3.90 bbb corp 
12 0)1.80 alpha inds 
35 0)7.95 xyz dist 
50 0)2.35 beta mfg 

You can create the same data set in edit mode. However, you must 
enter the line numbers you wish to use. 

1.Internally, as the system enters the line into the data set, it places 
the line number at the proper position within the line. For example, 
the line number becomes the first six characters of the line for a 
COBOL data set, the first eight characters for a free format GOFORT 
data set. and the last eight characters for a PLIF data set. 

34 TSO Terminal User's Guide (Release 21) 



READY 
edit accts new data 
INPUT 
00010 (null line) 
EDIT 
5 #23942 5 
10 #32135 21 
15 #32174 12 
20 #49213 35 
25 #52221 50 

Q)2.75 
Q)3.90 
Q)1.80 
Q)7.95 
Q)2.35 

acme inc 
bbb corp 
alpha inds 
xyz dist 
beta mfg 

Note: Requesting an increment larger than 1, makes it easier for you to 
insert lines in your data set later on. (See the section "Updating a 
Data Set" for instructions on how to insert lines in your data set.) 

Placing Data into Columns 

You can use the TAB key of your terminal to align your data in columns, 
just as you would with an ordinary typewriter. However., this mechanical 
tab setting is not recognized by the system which interprets each 
striking of the TAB key as a space. For example, if you enter the 
following three lines and align them with the TAB key~ they appear at 
the terminal as follows: 

39427 
22 
987654 

abcde 
fghijkl 
mnop 

49211 
441 
2 

72669 
123456 
31 

ab4 
72de 
xyz 

but they are received by the system as follows: 

39427 ABCDE 49211 72669 AB4 
22 FGHIJKL 441 123456 72DE 
987654 MNOP 2 31 XYZ 

If you want the system to place your data into columns, you must 
establish logical tab settings with the TABSET subcommand of the EDIT 
command or else use the defaults provided by the system. If you have 
established logical tab settings for your data set, the system will 
arrange each item in its proper column whenever you press the TAB key. 
The mechanical tab settings in your terminal need not correspond to the 
logical tab settings. For example, assume that the logical tab settings 
for the data set are columns 10, 20, and 30, while the mechanical tab 
settings in the terminal are columns 5, 10 and 15. When you type in the 
following three lines using the TAB key: 

they are 

abc def ghi jkl 
ron 0 pqr stu vwx 
yzO 123 456 789 

I 1 

I L----.., column 15 

:~i= 
10 

5 
1 column 

arranged by the system as follows: 

ABC DEF GHI 
MNO PQR STU 
YZO 123 456 

JKL 
VWX 
789 

I 

&...-1 ----I ______ .... : ~~~~~ ~~ 
L-. ________________________ : .. column 1 

t 

Entering and Manipulating Data 3S 



You may find it convenient to make the mechanical tab settings 
coincide with the logical tab settings. Details for doing this are 
given in the section describing EDIT (TABSET) in the Command 
Language Refer·e·nce manual. 

If you do not use the TABSET subcommand, the default tab settings 
used by the system vary with the data set type. The defaults are shown 
in Figure 4. 

r-----------------------T--------------------------------------, 
IDescriptive Qualifier I Default Tab setting Columns I 
.-----------------------+--------------------------------------~ 

ASM I 10,16,31,72 I 
BASIC I 10,20,30,40,50,60 I 
CLIST I 10,20,30.,40,50,60 I 
CNTL I 10.,20,30,40,50,60 I 
COBOL I 8,12,72. I 
DATA I 10, 20, 30, 40 , 50 ,60 I 
FORT I 7,72 I 
IPLI I 5,10,15,20,25,30,35,40,45,50 I 
PLI I 5,10,15,20~25,30,35,40.45,50 I 
TEXT I 5,10,15,20,30,40 I 
user defined qualifierl 10,20,30,40,50,60 I _______________________ ~ ______________________________________ J 

Figure 4. Default Tab settings 

If you want to change the default settings or other settings you 
previously established, or nullify all tabs, you must use the TABSET 
subcommand. If you want to change the default settings, you will 
probably do so before· you create the data set. That means you must 
request edit mode after you enter the EDIT command., then enter the 
TABSET subcommand and return to the input mode to create the data set. 
For example, if you want to create a TEXT data set with the logical tabs 
at columns 10, 25, and 35, you can use the following sequence: 

READY 
edit series new text 
INPUT 
00010· (null line) 
EDIT 
tabset 10 25 35 

(null line) 

INPUT 
00010 

36 TSO Terminal User's Guide (Release 21) 



If you prefer" you can define tab settings by entering a line 
containing tis in positions corresponding to desired tab settings. For 
example, to establish tab settings in columns 10, 25, and 35 you can use 
the TABSET subcommand as follows: 

tabset image 
123456789tbbbbbbbbbbbbbbtaaaaaaaaat 

You must fill the spaces between the tis with blanks or characters 
other than t. Do not use the TAB key when entering the IMAGE line, nor 
the backspace except as a character-deletion character 

If you want to nullify the existing tab settings for the data set, 
enter the TABSET subcommand as follows: 

tabset off 

The maximum number of logical tab settings that can be defined is 
ten. 

Finding and Positioning the Current Line Pointer 

Unless you plan to use line numbers for all your edit operations, you 
should know how to find and reposition the current line pointer. These 
operations are described in the following paragraphs. 

FINDING THE CURRENT LINE POINTER 

The location of the current line pointer is determined by the last 
subcommand you entered. If you are editing an old data set, the current 
line pointer is ppsitioned at the last line of the data set upon initial 
entry into Edit mode. Figure 5 shows the location of the pointer at the 
end of each subcommand. If you do not remember this information, you 
can use the LIST subcommand with the * operand to find the line at which 
the pointer is positioned. For example: 

list * 
THIS IS THE LINE AT WHICH THE CURRENT LINE POINTER IS POSITIONED 

You can also have the system display the line at which the pointer is 
positioned every time the pointer changes as a result of the CHANGE, 
TOP, BOTTOM, UP. DOWN. FIND and DELETE subcommands. To do this use the 
VERIFY subcommand as follows: 

verify 

The VERIFY subcommand is in effect until you enter it again with the 
OFF operand: 

verify off 

Entering and Manipulating Data 37 



r---------------------T------------------------------------------------, I Edit Subcommands I Value of the Pointer at Completion of Subcommand I 
.-~-------------------+-------------------------------------~----------f 

BOTTOM I Last line (or line zero for empty data sets) 
I 

CHANGE I Last 1 ine changed 
I 

DELETE ILine preceding deleted line, if any, else zero 
I 

DOWN I The 1 ine n down trom where you were at the start 
lof the subcommand, or the bottom of the data 
I set. (n is the value of the 'count' parameter.) 
I 

END INo change 
I 

FIND IFound line, if any, else no change 
I 

HELP INo change 
I 

INPUT I Last 1 ine entered 
I 

INSERT ILast line entered 
I 

Insert/Replace/Delete Inserted or replaced line, or line preceding the 
deleted line. if any. or else zero. 

ILIST 
I 

Last line listed 

I PROFILE No change 
I 
IRENUM Same relative record 
I 
RUN No change 

SAVE No change 

SCAN Last line referred to, if any 

TABSET INo change 
I 

TOP I Zero value 
I 

UP IThe line n lines up from where you were at the 
Istart of the subcommand, or the top of the data 
I set. (n is the value of the 'count' parameter.) 
I 

I VERIFY INo change L _____________________ ~ ________________________________________________ J 

Figure 5. Values of the Line Pointer Referred to by an Asterisk (*) 

POSITIONING THE CURRENT LINE POINTER 

You can use the UP, DOWN, TOP, BOTTOM and FIND subcommands to move the 
current line pointer. 

The UP subcommand moves the pointer a specified number of lines up, 
relative to the beginning of your data set. For example, to move the 
pointer so that it refers to a line located five lines before the 
location currently referred to. enter: 

up 5 

38 TSO Terminal User's Guide (Release 21) 



The DOWN subcommand moves the pointer a specified number of lines 
down.. relative to the end of your data set. For example, to move the 
pointer so that it refers to a line located 12 lines after the location 
currently referred to, enter: 

down 12 

The TOP subcommand moves the pointer to the position preceding the 
first line of your data set. (For line numbered data sets, the pointer 
is set to zero. If line number zero exists, then line number zero 
becomes the current line.) TOP is often used in combination with the 
DOWN subcommand. For example, if you want the pointer to refer to the 
third line of your data set. use the following sequence: 

top 
down 3 

The BOTTOM subcommand moves the pointer to the last line of the data 
set,. 

The FIND subcommand moves the pointer to a line that contains a 
specified sequence of characters. For example, to move the pointer to 
the line that contains PLACED BEFORE ENTRY enter: 

find xplaced before entry 

The "x" inserted before "placed" is a special delimiter that marks 
the beginning of the sequence of characters the system has to search 
for,. The special delimiter can be any character other than a number, 
apostrophe, semicolon. blank, tab, comma,. parenthesis, asterisk, or one 
of the characters in the sequence you want to find. The special 
delimiter must be placed next to the first character of the sequence you 
want to find. Any blanks inserted between the special delimiter and the 
first character are considered to be part of the sequence of characters. 

An alternate method for specifying the sequence of characters fOr 
FIND is quoted-string notation. With this method, the specified 
sequence must start and end with an apostrophe. If an apostrophe is one 
of the characters in the specified sequence, you must enter two 
apostrophes for the single apostrophe in the specified sequence. For 
example. to find the character sequence: 

single 'quote' 

using quoted-string notation, enter: 

FIND 'single "quote'" 

If you prefer, you can have the system search for the sequence of 
characters starting at the same column of each line. For example, if 
you want to search for PLACED BEFORE ENTRY in column seven of each line, 
enter: 

find xplaced before entry x7 
or 

find "placed before entry • 7 

Note that the same special delimiter or apostrophe used at the 
beginning of the sequence of characters must also precede the column 
number. 

Entering and Manipulating Data 39 



The FIND subcamnand starts looking for the sequence of characters 
beginning with the line at which the pointer. is located.. Therefore, 
unless you are sure the characters are in a line following the one 
indicated by the pointer~ you should use the TOP subcommand to move the 
pointer to the beginning of the data set. For example: 

top 
find xplaced before entry 

Figure 6 shows a data set used to illustrate the examples of 
positioning the current line pointer. Although this data set has line 
numbers" they are not used in the examples. 

r----------------------------------------------------------------------, I 00010 TEMPERATURE DATA FOR 7/29/70 I 
I 00020 HIGHEST, 90 AT 12:30 P.M. I 
I 00030 LOWEST, 73 AT 5:40 A.M. I 
I 00040 MEAN, 83 I 
I 00050 NORMAL ON THIS DATE, 77 I 
I 00060 DEPARTURE FROM NORMAL, +6 I 
I 00070 HIGHEST TEMPERATURE THIS DATE, 99 IN 1949 I 
I 00080 LOWEST TEMPERATURE THIS DATE, 59 IN 1914 I 
I 00090 TEMPERATURE HUMIDITY INDEX., 81 I L __________________________________________________ ~ ___________________ J 

Figure 6. Sample Data Set 

Assume that you do not know the present location of the current line 
pointer, and would like to move it to the' fifth line (00050). Enter: 

top 
down 5 

To move the pointer from the fifth line (00050) to the third line 
(00030), enter: 

up 2 

To move the pointer to the line that contains FROM NORMAL enter: 

find xfrom normal 

To move the pointer to the last line (00090), enter: 

bottom 

Updating a Data Set 

The subcommands of the EDIT command all,ow you to update a data set. 
That is:, they allow you to: 

• Delete data from a data set. 
• Insert data in a data set. 
• Replace data in a data set. 
• Renumber lines of a data set. 

These functions are described in the following paragraphs. 

40 TSO Terminal User's Guide (Release 21) 



DELETING DATA FROM A DATA SET 

If you want to delete only one line of data you do not need a 
subcommand. Indicate only the line number or an asterisk. For example, 
if you want to delete line 30, enter: 

30 

If you want to delete the line indicated by the current line pointer, 
enter: 

* 
You can also use the DELETE subcommand to perform the same function. 
For example, 

delete 30 
or 

delete * 
DELETE also allows you to delete more than one consecutive line. To 

do so you can specify the line numbers of the first and last lines to be 
deleted, or the number of lines to be deleted starting with the line 
indicated with the current line pointer. For example, if you want to 
delete all the lines between, and including lines 15 and 75, enter: 

delete 15 75 

If you want to delete 12 l1nes starting with the line indicated by the 
current line pointer, enter: 

delete * 12 

If you want to delete all the lines in your data set, use the TOP and 
DELETE subcommands in combination, specifying for DELETE a number of 
lines greater than the number of lines in your data set. 

top 
delete * 99999999 

After the system deletes the lines you requested, the current line 
pointer is positioned at the line before the first deleted line. 

INSERTING DATA IN A DATA SET 

To insert only one line of data in a line-numbered data set, you do not 
need a subcommand; indicate only the line number. The line number 
referred to should not exist. (That is, it should fall between two 
nonconsecutive line numbers in the data set.) For example, if you want 
to insert "RECORDED DAILY IN CENTRAL" as line 22, enter: 

22 recorded daily in central 

The characters you want to enter must be separated from the line 
number or the asterisk by a single blank or a comma. Any additional 
blanks or commas are considered to be part of the input data. You may 
optionally use the tab key to separate characters from the line number 
or asterisk. In this case all blanks, including the first, resulting 
from the tab will be part of your input data. The number of blanks 
resulting from the tab is determined by the logical tab setting. The 
logical tab setting results from the TABSET subcommand or the default 
tab setting. 

Entering and Manipulating Data 41 



To insert one line of data after the current line, use the INSERT 
subcommand with the insert-data operand. For example: 

list * 
TAKE ME OUT 
insert to the ball game 

The rules for separating inserted data from the subcommand name are 
the same as for separating data from line numbers. 

To insert more than one line, use the INSERT or INPUT subcommands. 
INPUT or INSERT can be used for data sets with or without line numbers. 

The INSERT subcommand inserts one or more lines of data following the 
location pointed to by the current line pointer. 

For example, assume that you have the following data set: 

A. CARSON DEPT A72 
T. DANIELS DEPT 792 
C. DICKENS DEPT 981 
R. EMERSON DEPT 245 
E. FARRELL DEPT B32 
C. LEVI DEPT 229 
D. MADISON DEPT D49 

To insert three lines after the entry for E. FARRELL and before the 
entry for C. LEVII you must first position the current line pointer at 
the fifth line. Your listing would look like this: 

EDIT 
top 
down 5 
insert 
INPUT 
e. glotz dept 741 
p. henry dept 333 
h. hill dept R92 

(null line) 
EDIT 

You must enter a null line to indicate the end of your input. 

The INPUT subcommand is used in a manner similar to the INSERT 
subcommand if your data set does not have line numbers. Use an asterisk 
in the INPUT subcommand to indicate that the lines of input that follow 
are to be inserted in the location following the current line pointer. 
For example, assume that you have the following data set: 

A. CARSON DEPT A72 
T. DANIELS DEPT 795 
C. DICKENS DEPT 981 
R. EMERSON DEPT 245 
E. FARRELL DEPT B32 
C. LEVI DEPT 229 
D. MADISON DEPT D49 

42 TSO Terminal User's Guide (Release 21) 



ITO insert three lines after the line for E. FARRELL and before the line 
for C. LEVI, your listing would look like the following: 

EDIT 
top 
down 5 
input * 
INPUT 
e. glotz dept 741 
p. henry dept 333 
h.. hill dept R92 

(null line) 
EDIT 

Note that after you enter the INSERT or the INPUT subcommand, EDIT 
switches to input mode. 

If your data set has line- numbers, you can use the INPUT or INSERT 
subcommand to insert one or more lines of data between two existing 
lines of the data set. You can also indicate a smaller increment for 
the new line numbers so that they fit between the line numbers of the 
existing lines. For example, assume you have the following data set: 

00010 
00020 
00030 
00040 

1932 
2579 
4798 
5344 

$1.50 
$1,.39 
$1.75 
$2.49 

To insert three lines between lines 20 and 30, to have the first line 
numbered 22, and to increment this number by two in the following lines, 
your listing would look as follows: 

EDIT 
input 22 2 
INPUT 
00022 2795 $0.79 
00024 3241 $2.81 
00026 4152 $1.79 
00028 (null line) 
EDIT 

The updated data set would look like this: 

00010 1932 $1.50 
00020 2579 $1.39 
00022 2795 $0.79 
00024 3241 $2.81 
00026 4152 $1.79 
00030 4798 $1,.75 
00040 5344 $2.49 

Another way to insert three lines between lines 20 and 30 is to use 
the INSERT subcommand, as follows: 

EDIT 
top 
down 2 
insert 
INPUT 
00021 
00022 
00023 
00024 
EDIT 

2795 0.79 
3241 2.81 
4152 1.79 
(null line) 

(Note that INSERT automatically increments the line numbers by one.) 

Entering and Manipulating Data 43 



The updated data set would look like this: 

00010 1932 1.50 
00020 2579 1.39 
00021 2795 0.79 
00022 3241 2.81 
00023 4152 1.79 
00030 4798 1.75 
00040 5344 2.49 

If you do not change the increment, and there is no room for the new 
lines, you receive an error message. If you wish, you can renumber the 
lines of your data set. This procedure is explained in the section 
ftRenumbering Lines of Data". 

To enter lines at the end of the data set, enter the INPUT subcommand 
without operands.. If the data set has line numbers you will be prompted 
with the line number. For example: 

EDIT 
input 
INPUT 
00050 
00060 
00070 
EDIT 

6211 $3.95 
7199 $0.85 
(null line) 

REPLACING DATA IN A DATA SET 

You can replace an entire line, or a sequence of characters in a line or 
in a range of lines. 

If you are only replacing one line of data, you do not need a 
subcommand. Indicate only the line number or an asterisk. For example, 
if you want to replace the contents of line 70 with "SEVERAL REPORTS 
WERE MADE", enter: 

70 several reports were made 

If you want to replace the contents of the line indicated by the current 
line pointer, enter: 

* several reports were made 

The characters you want to enter must be separated from the line 
number or the asterisk by a single blank or a comma. Any additional 
blanks or commas are considered to be part of the input data. You may 
optionally use the tab key to separate characters from the line number 
.or asterisk.. In this case all blanks, including the first, resulting 
frem the tab will be part .of your input data. The number .of blanks 
resulting frem the tab is determined by the logical tab setting. The 
logical tab setting results frem the TABSET sub command or the default 
tab setting. 

Yeu can alse replace lines of data when you use the INPUT subcemmand. 
If yeu use the R eperand~ the lines starting with the line indicated by 
the line number .or the asterisk are replaced by tne lines yeu enter. 
Fer example, assume that you have the fellowing data set: 

COMPLETION SCHEDULE 
STAGE 1 7/19 
STAGE 2 8/15 
STAGE 3 9/29 

44 TSO Terminal User's Guide (Release 21) 



TO replace the third and fourth lines, you must first position the 
current I ine pointer at the third line. 

EDIT 
top 
down 3 
input * r 
INPUT 
stage 2 8/21 
stage 3 9/15 

Cnull line) 
EDIT 

Your updated data set would look like this: 

COMPLETION SCHEDULE 
STAGE 1 7/19 
STAGE 2 8/21 
STAGE 3 9/15 

In the following example, assume that the data set has line numbers: 

00010 
00020 
00030 
00040 

COMPLETION SCHEDULE 
STAGE 1 7/19 
STAGE 2 8/15 
STAGE 3 9/29 

To replace lines 30 and 40, your listing should look as follows: 

EDIT 
input 
INPUT 
00030 
00040 
00050 
EDIT 

30 r 

stage 2 8/21 
stage 3 9/15 

Cnull line) 

Your updated data set will look as follows: 

00010 
00020 
00030 
00040 

COMPLETION SCHEDULE 
STAGE 1 7/19 
STAGE 2 8/21 
STAGE 3 9/15 

If the data set has line numbers, you can replace a line and insert 
additional lines. For example, assume the same data set: 

00010 
00020 
00030 
00040 

COMPLETION SCHEDULE 
STAGE 1 7/19 
STAGE 2 8/15 
STAGE 3 9/29 

To replace line 30 and insert two lines with a line increment of 2, your 
listing should look as follows: 

EDIT 
input 
INPUT 
00030 
00032 
00034 
00036 
EDIT 

30 2 r 

stage 2 part 1 8/15 
stage 2 part 2 8/21 
stage 2 part 3 9/15 

Cnull line) 

Entering and Manipulating Data 45 



Your updated data set will look as follows: 

00010 COMPLETION SCHEDULE 
00020 STAGE 1 7/19 
00030 STAGE 2 PART 1 8/15 
00032 STAGE 2 PART 2 8/21 
00034 STAGE 2 PART 3 9/15 
00040 STAGE 3 9/29 

To replace more than one line with a greater number of lines, you can 
also use the DELETE subcommand to delete those lines and then use either 
INPUT or INSERT to insert the replacement lines. Use this procedure 
when the data set does not have line numbers. 

Use the CHANGE subcommand to change only part of a line or lines. 
For example, to change the characters "DAILY INVENTORY" to "WEEKLY 
REPORT" in line 12 of your data set, enter: 

change 12/daily inventory/weekly report/ 

The "/" placed before the characters to be changed and the 
replacement characters is a special delimiter that marks the beginning 
of those sequences of characters. The special delimiter can be any 
character other than a number, blank, tab, comma, semicolon, apostropne, 
parenthesis., or asterisk. Make sure the character you select as a 
special delimiter does not appear in the sequence of characters you 
specify_ If you leave blanks between the last character to be replaced 
and the special delimiter for the replacement characters~ the blanks are 
considered part of the characters to be replaced. The special delimiter 
need not appear at the end of the replacement characters unless other 
parameters are to follow. 

Instead of using a line number you can use an asterisk. For example 
if the change is to be made to the line indicated by the current line 
pointer. enter: 

change * xdaily inventoryxweekly reportx 

You can have the system search for a sequence of characters in a 
range o£ lines rather than in one line. You can indicate the range of 
lines by giving the numbers for the first and last lines of the range, 
or by indicating the current line pointer and the number of lines you 
want to have searched. For example~ if the-characters "DAILY INVENTORY" 
appear somewhere between lines 15 and 19~ enter: 

change 15 19 !daily inventory!weekly report! 

If the characters appear within the 10 lines starting with the one 
indicated by the current line pointer,. enter: 

change * 10 ?daily inventory?weekly report? 

You can change the sequence of characters every time it appears 
within the range of lines. To do this specify the ALL operand after the 
replacement sequence. The special delimiter must be used to terminate 
the replacement string before typing "all." For example, 

or 
change 15 19 !daily inventory!weekly report! all 

change * 10 !daily inventory!weekly report! all 

46 TSO Terminal User's Guide (Release 21) 



If you wish. you can have the system locate a sequence of characters 
in a line and print that line up to those characters. You can then type 
new characters to complete the line and enter the new line when you 
press the RETURN key. For example, assume that you want to change the 
characters "TUESDAY" to "THURSDAY" in the following line: 

00015 PARTS DELIVERIES ARE MADE ON TUESDAY 

Your listing will look as follows: 

change 15 /tuesday 
00015 PARTS DELIVERIES ARE MADE ON thursday 

If the characters you want to change are in the line indicated by the 
current line pointer, your listing would look like this: 

change * /tuesday 
00015 PARTS DELIVERIES ARE MADE ON thursday 

You can also request that the system print out a specified number of 
characters of a given line. Then you can enter the characters you want 
to replace the remaining characters in the line. For example, you can 
request that the first 26 characters of the line "PARTS DELIVERIES ARE 
MADE ON TUESDAY" be printed: 

change 15 26 
00015 PARTS DELIVERIES ARE MADE after thursday 

yOU can have the system print the first several characters of a range 
of lines. This is particularly useful when you want to change a column 
in a table. For example. assume that you have the following data set: 

00010 
00012 
00014 
00016 
00018 

ENROLLMENT DATES 
P. JONES MAY 15 
A. SMITH MAY 31 
J. DOE JUNE 7 
B. GREEN JUNE 9 

JUNE 12 
JULY 19 
JULY 17 
AUGUST 3 

If you want to change the data in the last column, which begins in 
position 17, enter: 

change 
00010 
00012 
00014 
0001~6 
00018 

10 18 17 
ENROLLMENT DATES 
P. JONES MAY 15 
A. SMITH MAY 31 
J. DOE JUNE 7 
B. GREEN JUNE 9 

june 25 
july 23 
july 31 
august 10 

If you want to change the data in the last column and the current line 
pointer is at line 10" enter: 

change * 5 17 
00010 ENROLLMENT DATES 
00012 P. JONES MAY 15 june 24 
00014 A. SMITH MAY 31 july 22 
00016 J. DOE JUNE 7 july 30 
00018 B. GREEN JUNE 9 august 9 

Entering and Manipulating Data 47 



You can insert a sequence of characters at the beginning of the line. 
For example. if line 15 of your data set is as follows: 

00015 EMPLOYEE ABSENTEEISM 

enter: 

change 15 //weekly report of / 

to obtain: 

00015 WEEKLY REPORT OF EMPLOYEE ABSENTEEISM 

You can also delete a sequence of characters using the CHANGE 
subcommand.. For example. to delete WEEKLY from line 15 above, enter: 

change 1<5 /Weekly// 
or 

.;': 

change 15 /weekly/ 

to obtain: 

00015 REPORT OF EMPLOYEE ABSENTEEISM 

In these examples of the CHANGE subcommand, special-delimiter notation 
has been used to specify character sequences. You may. however, use an 
alternate form of notation, the qu~ted-string notation. General rules 
for quoted-string notation are: 

• Begin and end each sequence with an apostrophe. (The system will 
not use the apostrophes in its operations on your character 
sequence. ) 

• separate character sequences with a blank. 

• specify two apostrophes in place of one whenever you wish to include 
an apostrophe within a character sequence. 

for example, to replace WEEKLY with DAILY in the current line, you 
can use the special-delimiter notation: 

change * /weekly/daily/ 

or the quoted-string notation: 

change * • weekly' 'daily' 

To delete"DAILY from the current line, you can use: 

change * 'daily' " 

instead of: 

change * /daily// 

To insert WEEKLY at the beginning of line 15, you can use: 

change 15" • weekly' 

or 

change 15 //weekly/ 

48 TSO Terminal User's Guide (Release 21) 



To replaqe characters after TUESDAY'S in line 30 of your data set .• you 
can use the special-delimiter notation: 

change 30 /tuesday's/ 
00030 THIS IS TUESDAY'S child 

or the quoted-string notation: 

change 30 'tuesday"s' 
00030 THIS IS TUESDAY'S child 

RENUMBERING LINES OF DATA 

You can use the RENUM subcommand to assign line numbers to a data set 
without line numbers, or to renumber the'iines of a data set with line 
numbers.. If you enter: 

renum 

the system assigns new line numbers to all the lines of the data set. 
The firs~ line will be assigned the number 10 and subsequent lines will 
be incremented by 10. 

You can assign a number to the first line of the data set. For 
example, if you want the first line to have number 5, enter the 
following: 

renum 5 

The remaining line numbers will be 15.,25,,35, etc. 

You can specify an increment other than 10 in addition to the number 
of the first line. For example if you want the first line to be number 
one., and the remaining line numbers to increase by 3., enter: 

renum 1 3 

If your data set already has line numbers you can specify that 
renumbering is to start at a given line. You must also specify the new 
number for this line (which must be equal to or greater than the old 
line number) and the increment. For example, if you want to start 
renumbering at line 23, and the new·line number is to be 25 and the 
increment is 'to be 5, enter: 

renum 25 5 23 

If you use the RENUM subcommand to renumber your data set, the 
renumber increment that you specify is used when you enter the INPUT 
subcommand the next time during the Edit session. For example, if the 
following sequence occurred: 

list 
00010 LINE 1 OF DATA 
00020 LINE 2 OF DATA 
00030 LINE 3 OF DATA 
END OF DATA 
renum 3 3 
input 
INPUT 
00012 line 4 of data 
00015 line 5 of data 
00018 (null line) 
EDIT 

Entering and Manipulating Data 49 



Your data set would look like this: 

00003 LINE 1 OF DATA 
00006 LINE 2 OF DATA 
00009 LINE 3 OF DATA 
00012 LINE 4 OF DATA 
00015 LINE 5 OF DATA 

If you want to override the existing line number increment' use the 
increment operand on the INPUT subcommand .• 

Listing the Contents of a Data Set 

The LIST subcommand allows you to display the contents of a data set at 
your terminal. To list the entire contents of the data set, enter: 

list 

your data set is listed here 

To list a group of lines, enter the number. of the first and last 
lines of the group. For example, to list lines 20 through 110 of the 
data set, enter: 

list 20110 

If your data set does not have line numbers. you can use the current 
line pointer and the number of lines to be listed. For example, to list 
the 20 lines that begin with the line indicated by the pointer enter: 

list * 20 

To list only one line." indicate the line number or the current line 
pointer.. For example, if you wish to list line 22, enter: 

list 22 

If you want to list the line pointed at by the current line pointer, 
enter: 

list * 
You can use the SNUM operand to suppress listing the line numbers of 

a line-numbered data set. (If your data set does not have line numbers, 
this operand has no effect.) For example, any of the following commands 
produces a listing of the lines indicated without their line numbers: 

list snum 
list 20 110 snum 
list * 20 snum 
list 22 snum 
list * snum 

The LIST subcommand uses a standard listing format. If you list a 
non-line numbered data set, or a line numbered data set using the SNUM 
operand (to suppress line numbers), the lines displayed will consist of 
only the data portion of the records~ For example, to list a non 
line-numbered data set: 

list 
LINE 1 OF DATA 
LINE 2 OF DATA 
LINE 3 OF DATA 
END OF DATA 

50 TSO Terminal User's Guide (Release 21) 



If you list a line-numbered data set, the system will suppress up to 
three leading zeros in each line number, and separate the line number 
from the data with a blank. The line number prints to the left of the 
data. For example, data with an 8-digit line number would print: 

list 
00010 LINE 1 OF DATA 
00020 LINE 2 OF DATA 
00030 LINE 3 OF DATA 
END OF DATA 

If you are editing a line-numbered COBOL data set, with a 
six-character sequence (line number) field, either one or three leading 
zeros will be deleted depending on the command. For the INPUT command, 
one leading zero is suppressed; for the LIST command three leading zeros 
are suppressed, as follows: 

edit a new cobol 
INPUT 
00010 identification division 
00020 program-ide calc. 
00030 environment division 
00040 (null line) 
EDIT 
list 
010 IDENTIFICATION DIVISION 
020 PROGRAM-ID. CALC. 
030 ENVIRONMENT DIVIVION 
END OF DATA 

Storing a Data Set 

The data set you have created or the changes you made to a previously 
existing data set are retained by the system only until you finish using 
the EDIT command and its subcommands. That is, as soon as you notify 
the system that you want to use another command and you get a READY 
message, your newly created data set, or your new set of changes, is 
discarded.. If you want the system to make your new data set a permanent 
data set, or if you want the system to incorporate your changes into the 
existing data set, you must use the SAVE subcommand of the EDIT command. 

For example, in the following sequence you create a data set named 
RECORDS and ask the system to store it as a permanent data set: 

READY 
edit records new data 
INPUT 
00010 
00020 
00030 
00040 
EDIT 
save 
SAVED 
end 
READY 

project 21 7/10-8/25 
project 23 7/10-9/12 
project 39 8/1-9/15 

(null line) 

a. jones 
.p .• smith 
r. brown 

Entering and Manipulating Data 51 



In the following sequence you add a line to the RECORDS data set and 
ask the system to make it part of the data set: 

READY 
edit records old data 
EDIT 
40 project 42 8/15-9/21 s. green 
save 
SAVED 
end 
READY 

In some cases you may want to preserve the existing data set intact 
and have the system make the changes to a data set that is a copy of the 
original data set. TO do this you must enter a new data set name for 
the copy when you enter the SAVE subcommand. For example, if you want 
to keep the RECORDS data set intact, and you want your changes to be 
made to a copy of RECORDS named PROJS, use the following sequence: 

READY 
edit records old data 
EDIT 
40 project 42 8/15-9/21 s. green 
save projs 
SAVED 
end 
READY 

Now you have two data sets. The one named RECORDS looks like this: 

00010 
00020 
00030 

PROJECT 21 
PROJECT 23 
PROJECT 39 

1/10-8/25 
1/10-9/12 
8/1-9/15 

A. JONES 
P. SMITH 
R. BROWN 

The data set named PROJS looks as follows: 

00010 
00020 
00030 
00040 

PROJECT 21 
PROJECT 23 
PROJECT 39 
PROJECT 42 

1/10-8/25 
1/10-9/12 
8/1-9/15 
8/15-9/21 

A. JONES 
P. SMITH 
R. BROWN 
S. GREEN 

52 TSO Terminal User's Guide (Release 21) 



You can use the SAVE subcommand whenever you are using the EDIT 
conunand,. For example" you can create a data set and save it. Then you 
can start making changes to the data set and once you are satisfied with 
those changes you can save them to make them part of the data set. For 
example, in the following sequence you create a data set, save it, 
replace line 30, insert three lines after line 50, list the data set, 
delete line 56. renumber the data set. and save it. 

READY 
edit phones new text 
INPUT 
00010 telephone listing - sales dept 
00020 j. adams 1291 
00030 c,. allan 2431 
00040 a .• bailey 3255 
00050 b. crane 4072 
00060 e. foster 1384 
00070 f. graham 2291 
00080 d. murphy 9217 
00090 (null line) 
EDIT 
save 
SAVED 
30 c. alden 2441 
input 52 2 
INPUT 
00052 1. davis 4119 
00054 j. egan 6835 
00056 e. foster 1384 
00058 (null line) 
EDIT 
list 

00010 TELEPHONE LISTING - SALES DEPT 
00020 J. ADAMS 1291 
00030 c. ALDEN 2441 
00040 A. BAILEY 3255 
00050 B. CRANE 4072 
00052 L. DAVIS 4119 
00054 J. EGAN 6835 
00056 E. FOSTER 1384 
00060 E. FOSTER 1384 
00070 F. GRAHAM 2291 
00080 D. MURPHY 9217 
delete 56 
renum 
save 
SAVED 
end 
READY 

Ending the Edit Functions 

Use the END subcommand to terminate the operation of the EDIT command. 
If you have made changes to your data set and have not entered the SAVE 
subcommand, the s¥stem will ask you if you want to save the modified 
data set. If so you can enter the SAVE subcommand. If you do not want 
to save the changes. reenter the END subcommand. 

After you enter the END subcommand you receive the READY message. 
You can then enter any command you choose. 

Entering and Manipulating Data 53 



Renaming A Data Set 

The RENAME command allows you to: 

• Change the name of a data set. 
• Change the name of a member of a partitioned data set. 
• Assign an alias to a member of a partitioned data set. 

If your LOGON user identification is SMITH and you have a data set 
named SMITH. RECPT. DATA and you want to change it to SMITH. ACCT. DATA., you 
can do so with any of the following RENAME commands: 

rename 'smith.recpt.data ' • smith.acct. data , 
rename recpt.data acct.data 
rename recpt acct 

Note that the fully qualified name must be enclosed in apostrophes. 

The simple user-supplied name can be used if you have only one data 
set with that name. However, if you have two data sets named 
SMITH.RECPT.DATA and SMITH.RECPT.TEXT. you must specify either 
RECPT.DATA or 'SMITH.RECPT.DATA' in the RENAME subcommand. If you do 
not specify the descriptive qualifier, the system will prompt you for 
it .• 

The following examples show how you can use RENAME to change the 
identification qualifier or the descriptive qualifier. 

rename • smith. acct .• data' • jones.acct • data' 
rename acct. data acct. text 

The following examples show how you can change more than one qualifier. 

rename • smith. acct. dat a" jones. recpt • text • 
rename acct. data recpt.text 

When changing the name of a member of a partitioned data set, you 
must specify the existing data set name and member name and the new 
member name. For example" to change the name of a member of SMITH.AB79. 
DATA from INPUT to ENTRY, you can do so with any of the following 
commands: 

rename 'smith.ab79.data(input)' (entry) 
rename ab79.data(input) (entry) 
rename ab79(input) (entry> 

Use the ALIAS operand to indicate that the new member name is an 
alias and not a replacement. For example to assign the alias DAILY to 
member INPUT of SMITH.AB79.DATA, use any of the following: 

rename • smith.. ab79 .data (input)' (daily) alias 
rename ab79.data(input) (daily) alias 
rename ab79(input) (daily) alias 

After entering this command the name of the member is either 
SMITH.AB79.DATA(INPUT) or SMITH.AB79.DATA(DAILY). 

sometimes you may have two or more data set names that are identical 
in all but one of their qualifiers. For example, you may have these 
data sets: 

or 

JONES. ALPHA. DATA 
JONES.BETA.DATA 

54 TSO Terminal User's Guide' (Release 21) 



or 

JONES. ALPHA. DATA 
JONES.ALPHA.ASM 

JONES.ALPHA.DATA 
SMITH. ALPHA. DATA 

you can use the RENAME command to replace one or both of their common 
qualifiers.. For example, you may want to change the group: 

to 

or to 

or to 

JONES. ALPHA. DATA 
JONES. BETA. DATA 

JONES.ALPHA.TEXT 
JONES. BETA. TEXT 

SMITH. ALPHA. DATA 
SMITH .• BETA • DATA 

SMITH.ALPHA.TEXT 
SMITH. BETA. TEXT 

In order to make the change, replace the dissimilar qualifier with an 
asterisk. For example, 

jones.*.data 

stands for "all data sets whose identification qualifier is JONES and 
whose descriptive qualifier is DATA". If your logon identifier is 
Jones, you can then enter the RENAME command as follows: 

rename *.data *.text 

to change the group 

to 

JONES.ALPHA.DATA 
JONES. BETA .• DATA 

JONES '. ALPHA. TEXT 
JONES. BETA. TEXT 

Enter the command 

rename • jones. *. data' • smi the *. data • 

to change the group 

to 

JONES.ALPHA.DATA 
JONES. BETA. DATA 

SMITH,. ALPHA. DATA 
SMITH. BETA .• DATA 

Enter the command 

rename • jones. *. data' • smi the *. text' 

to change the group 

JONES .• ALPHA. DATA 
JONES. BETA. DATA 

Entering and Manipulating Data 55 



to 

SMITH. ALPHA. TEXT 
SMITH. BETA. TEXT 

Deleting a· Data Set 

Use the DELETE command to delete one or more data sets or one or more 
members of a partitioned data set. 

If your LOGON user identification is BROWN, you have a data set named 
BROWN. INPUT. TEXT, and you want to delete it, enter 

READY 
delete input 
READY 

If you have two data sets named BROWN. INPUT. TEXT and BROWN. DAYS. DATA 
and you want to delete them, enter: 

READY 
delete (input days) 
READY 

If you want to delete member FIRST of the BROWN.ALPHA.ASM partitioned 
data set enter: 

READY 
delete alpha(first) 
READY 

If member FIRST has the alias LAST, and you want to delete both the 
member name and its alias, enter: 

READY 
delete alpha(first) alpha(last) 
READY 

You may have a group of data sets whose names differ only in the 
user-supplied name or in the descriptive qualifier. For example, 

or 

BROWN. LIST. DATA 
BROWN. LINES. DATA 
BROWN. DATES. DATA 

BROWN.WEATHER.ASM 
BROWN. WEATHER. DATA 
BROWN. WEATHER. TEXT 

To delete the entire group, place an asterisk in the position where 
the names do not match. (The asterisk cannot replace the user 
identification.) For example, to delete the first group use the 
following: 

READY 
delete •• data 
READY 

To delete the second group use the following: 

READY 
delete weather •• 
READY 

56 TSO Terminal User's Guide (Release 21) 



Establishing Passwords for a Data Set 

Use the PROTECT command to establish passwords for your data set. 
Passwords prevent unauthorized persons from reading (listing) or writing 
(making changes to) your data set. Whenever anyone attempts to use a 
password-protected data set, the system requests a password unless the 
data set is protected with the same password that was entered in the 
logon procedure. The system allows two chances to provide the correct 
password. If your terminal has the "print-inhibit" feature, the system 
disengages the printing mechanism at your terminal while you enter the 
password in response. However, the "print-inhibit" feature is not used 
if the prompting is for a new password you are adding to the data set. 

The PROTECT command also specifies what the person who knows the 
password can do to the dataset; that is, whether he is allowed to read 
it, or write in it, or both. You can require a password for both 
reading and writing; or just for reading and not writing. You can also 
assign one password for reading and a different one for writing. The 
operands that control the type of operations are: 

PWREAD -- you must specify a password before you can read from the data 
set. 

PWWRITE you must specify a password before you can write in the data 
set. 

NOPWREAD you can read from the data set without specifying a 
password .• 

NOWRITE -- you cannot write into the data set (with this password). 

There are three valid combinations of operands: 

PWREAD PWWRITE -- the password is required for either reading or writing 
your data set. 

PWREAD NOWRITE the password is required for reading. Writing is not 
allowed with this password. 

NOPWREAD PWWRITE -- you can read without a password. The password 
allows you to both read and write the data set. 

If you specify only one operand you get tWOlva1ues by default. They 
are: 

operand 
PWREAD 
NOPWREAD 
PWWRITE 
'NOWRITE 

Default Values 
PWREAD PWWRITE 
NOPWREAD PWWRITE 
NOPWRFAD PWWRITE 
'PWREAD NOWRITE 

The type of password operand, the number of times the password is 
used, and optional security information that you can specify are 
recorded in the PASSWORD data set of the operating system. 

The following example adds the password HUSH for reading and writing 
the BROWN. SECRET. DATA data set: 

READY 
protect secret add (hush) pwread 
RFADY 

Entering and Manipulating Data 57 



The following example adds another password, WHUSH, to the same data 
set. This password can be used only for reading the data set: 

READY 
protect secret/hush add(whush) nowrite 
READY 

Note how you must use the password in subsequent commands once you 
have established it. 

You can replace a password. For example, to replace the password 
SESAME for HUSH in the BROWN. SECRET. DATA. data set, enter 

READY 
protect secret/hush replace(hush,sesame) 
READY 

Note that when you are replacing a password you do not have to 
specify the function of the password. 

You can also delete a password. For example, if you no longer 
require the WHUSH password for reading the data set, enter 

READY 
protect secret/sesame delete(whush) 
REl\DY 

You can use the DATA operand to specify optional security information 
to be recorded in the system. For example, when you establish the 
password AB#72 for the BROWN.SALES.TEXT data set, you can also specify 
other information: 

READY 
protect sales add(ab#72) data(password changes on monday) 
READY 

To find out what the optional information is, the type of operation 
allowed, and the number of times the password has been used, use the 
LIST operand. For example, 

protect sales list(ab#72) 

Note: 

1. Data sets which are allocated as part of the LOGON procedure or by 
use of the ALLOCATE command cannot be accessed by the PROTECT 
command. These data sets should be freed by using the FREE command 
prior to issuing the PROTECT command. 

2. When a protected data set is renamed or deleted you should update 
the password data set to ref·lect the change. This procedure saves 
sufficient space for future entries. Updating consists of deleting 
all passwords for the old data set name and adding them for the new 
name.. This reqUires that two PROTECT commands be issued. 

Allocating a Data Set 

This section is intended for those users who are going to compile, link 
edit. or execute (or load) a program. Knowledge of a programming 
language (sucp as System/360 Assembler. COBOL, FORTRAN or PL/I) and of 
the Job Control Language (JCL) statements required to compile, link 
edit" and execute the program is useful for understanding this section .• 

58 TSO Terminal User's Guide (Release 21) 



The compiler, linkage editor, loader. and your own program require 
data sets in order to operate. In an operating system without TSO these 
data sets are defined with data definition (DO) JCL statements. In TSO, 
these data sets are defined through the EDIT and ALLOCATE commands. You 
can use the EDIT command to define and create input data sets. You can 
use the ALLOCATE command to define output and work data sets and 
libraries, and to allocate the data sets you created with the EDIT 
command. This section discusses the ALLOCATE command. 

Note: Compilers that have prompters associated with them will allocate 
data sets for you. Your installation can tell you if these Program 
Product facilities are available to you. The data sets for the linkage 
editor and loader are allocated for you by the LINK and LOADGO commands, 
respectively. You need only allocate them if you invoke the linkage 
editor or the loader with the CALL command. 

The number of data sets you need is determined by the program 
(compiler., linkage editor, loader, or your own program) you are going to 
use. (The publications associated with the IBM-supplied programs list 
the data set requirements.) The number of data sets you can allocate 
depends on the number of data sets assigned to you in your LOGON 
procedure. The LOGON procedure defines a series of data sets. Some of 
th~se data sets are fully defined and correspond to data sets that you 
always need in your processing. The remaining data sets are left 
undefin.ed; they are defined when you define a data set with an ALLOCATE 
or EDIT command. 

When you define a data set with the ALLOCATE command, it remains 
allocated until you use the FREE command to free the data set 
definition. (The FREE command is described in ftFreeing an Allocated 
Data set. ft ) 

When ,l"'Ju create a data set with the EDIT command, the system uses one 
of the undefined data sets in the LOGON procedure to define the data 
set. When you save the data set and end the EDIT command, the system 
saves the data set, enters its name in the system catalog.. and frees the 
definition in the LOGON procedure for further use. When you again use 
the EDIT command to make changes to the saved data set, the system finds 
the data set through the system catalog and uses another Of the 
available definitions to define the data set. When you end the EDIT 
command, the system frees the data set definition. If you want the data 
set to remain allocated in your LOGON procedure. you must use the 
ALLOCATE command. 

You can list the data sets allocated to you with the LISTALC command 
(described in ftListing the Names of Your Data Setsft). The system lets 
you know., as part of the LISTALC listing, how many DO statements are 
available for allocation. For example, if there are five available data 
sets you get the following message: 

5 DATA SETS CAN BE ALLOCATED DYNAMICALLY 

You can allocate as many data sets as there are available 
definitions. If you need more data sets you can free a previously 
allocated data set with the FREE command (described in ftFreeing an 
Allocated Data setft). After you free a data set .. you can use the 
available definition to allocate another data set with the ALLOCATE 
command .• 

If you have to allocate the same data sets every time you log on, you 
can have your installation allocate them in the form of fully defined 
data sets in the LOGON procedure or you can build a procedure containing 
your ALLOCATE statements and execute that procedure as soon as you are 
logged on.. (See section on "Writing Command Procedures ft. ) In either 
case you do not have to type the same ALLOCATE commands every time you 
log on,. 

Entering and Manipulating Data 59 



The example in Figure 7 illustrates the use of the ALLOCATE command 
for allocating the data sets required for an execution of the Assembler 
F compiler.. The assembler requires eight data sets for this 
compilation. They are: 

SYSLIB 
SYSUTl 
SYSUT2 
SYSUT3 
SYSPRINT 

SYSPUNCH 

SYSGO 
SYSIN 

The macro library (usually SYS1.MACLIB). 
Work data set. 
Work data set. 
Work data set. 
Output listing data set. Your terminal is allocated 
for this purpose. 
Data set for a punched deck of an object module. It 
is to be produced on the standard message output 
class. (To ch~nge this output class to a punch 
output class, see "Freeing an Allocated Data Set".) 
Data set for the object module. 
Input source statements to the Assembler. It is 
created with the EDIT command and defined to the 
assembler with the ALLOCATE command. 

r----------------------------------------------------------------------, 

READY 
edit input.asm new 
INPUT 

.source statements 

EDIT 
save 
SAVED 
end 
READY 
allocate dataset('sysl.maclib') file(syslib) shr 
READY 
allocate file(sysutl) new block (400) space(400,50) 
READY 
allocate file(sysut2) new block(400) space(400,50) 
READY 
allocate file(sysut3) new block(400) space(400,50) 
READY 
allocate dataset C.) file(sysprint) 
READY 
allocate file(syspunch) sysout 
READY 
allocate dataset(prog.obj) file(sysgo) new block(SO) space(200,50) 
READY 
allocate dataset(input.asm) fileCsysin) old 
READY 

______________________________________________________________________ J 

Figure 7. Allocating Data sets for the Assembler F 

60 TSO Terminal User's Guide (Release 21) 



As3igninq Attributes to a Data Set 

TSO data set characteristics are called attributes. Generally, you do 
not have to be concerned with attributes because TSO assigns them 
automatically. In some instances, however, you may want to allocate a 
data set with attributes different from those assigned automatically. 
The ATTRIB command provides a way for you to do this. 

Basically, you use the ATTRIB command to build a list of the 
attributes that you want to assign to a data set. Then you use the 
ALLOCATE command, specifying the name of the attribute list as the value 
for the USING (attr-list-name) operand. The attributes in the list are 
assigned to the data set when it is allocated. 

You can refer to the attribute list any number of times during the 
remainder of your terminal session. When you finish using the attribute 
list, you can use the FREE command to delete it from the system. 

The operands of the ATTRIB command correspond to data control block 
(DCB) parameters discussed in the following publicati ons: 

• IBM ~ystem/360 Operating System: Job Control Language Reference, 
GC2S-6704 • 

• IBM System/360 O~tinq System: Data Management Services, 
GC26-3746. 

You should understand the purpose of DCB parameters as presented in 
these publications before using the ATTRIB command. 

The example in Figure 7.1 illustrates the use of the ATTRIB command. 
In this example, the attributes are the logical record length, the block 
size, and the expiration date. 

r---------------------------------------------------~-------. ---------, 
I attr dchparms Irecl{24) blksize(96) expdt(72111) I 
I READY I 
I alIce da('attr.show') using(dcbparms) new bl(SO) sp(l,l) vol(231400) I 
I READY I 
I free attrlist(dcbparms) I L ______________________________________________________________________ J 

Figure 7.1 Assigning Attributes to a Data Set 

Freeing an Allocated Data Set 

Use the FREE command to release any data sets allocated to you. You can 
also use this command to change the output class of a SYSOUT data set, 
or to release attribute lists created by the ATTRIB command. 

To free ~ data set specify its data set name or its file name 
(ddname). If your terminal has been allocated as a data set, you must 
free it through its file name. You can use the LISTALC command to 
obtain the file names and data set names of the data sets allocated to 
you. (LISTALC is described in the Section, II Listing the Names of Your 
Data Sets n • ) 

The following examPle frees the data sets allocated in Figure 7 of 
the section "Allocating a Data Setn. The output class of the SYSPUNCH 
data set is changed to B. 

free dataset ( • sys1.maclib' .prog .obj" input.asm) file (sysut1,
sysut2,sysut3,sysprint,syspunch) sysout(b) 

Entering and Manipulating Data 61 



Listing Information About Your Data Sets 

Use the LISTALC, LISTCAT, and LISTDS commands to list the names of your 
data sets and obtain further information about them. 

LISTALC lists the data sets presently .allocated to youhand tells how 
many more data sets you can dynamically allocate using the ALLOCATE 
command. Other information can be obtained about these data sets 
depending on the parameters you specify. 

LISTGAT lists the names of all cataloged data sets that have your 
user identification. Cataloged data sets are those whose names are 
entered in the system catalog. The system catalog is a list the system 
keeps of the names and locations of cataloged data sets. 

LISTDS gives you information on specific data sets which are 
currently cataloged or allocated, or both. The information you receive, 
which is described in detail in the publication, Job Control Language 
Reference, includes: 

• The serial number of the volume on which the data set resides. 
• The record format. logical record length, and blocksi ze of the data 

set. 
• The data set organization. 
• Directory information for a member of a partitioned data set. 

In addition to the information listed above for the three commands, 
there are certain operands you can use to obtain additional information 
on the data sets. The operands and the commands to which they apply 
are: 

Operand LISTAlC LISTCAT LISTDS 

STATUS x x 

HISTORY x x x 

MEMBERS x x x 

SYSNAMES x 

VOLUMES x 

LEVEL x 

LABEL x 

The STATUS operand provides you with: 

• The file name(ddname) for the data set. 

• The scheduled disposition and conditional disposition of the data 
set. The 'Scheduled disposition determines whether the system will 
retain or delete the data set after it is used. The conditional 
disposition determines whether the system is to retain or delete the 
data set in case.of abnormal termination. The keywords that denote 
the dispositions are CATLG, KEEP, DELETE and UNCATLG.. CATLG means 
that the data set is retained and its name is kept in the system 
catalog. KEEP means that the data is retained but not cataloged. 
DELETE means that all references to the data set are to be removed 
from the system and that the space it occupies is to be released for 
use by other data sets. UNCATLG means that a previously cataloged 
data set is retained, but its name is removed from the catalog. 

62 TSO Terminal User's Guide (Release 21.7) 



The HISTORY operand provides you with: 

• The creation date of the data set. 
• The expiration date of the data set. 
• An indication as to whether or not the data set has password 

protection. 
• The data set organization .• 

The MEMBERS operand provides you with a list of the member names of a 
partitioned data set including any aliases. 

The SYSNAMES operand provides you the names assigned by the system to 
any allocated data set you did not name. 

The VOLUMES operand provides you with the serial numbers of the 
volumes on which your cataloged data sets reside .• 

The LEVEL operand lets you request a listing of only part of your 
cataloged data sets, or a listing of some other user's cataloged data 
sets. 

The LABEL operand provides you with the information in the Data Set 
Control Block, (OSCB) of a specific data set. 

Entering and Manipulating Data 62.1 



62.2 TSO Te-rminal user's Guide (Release 21.7) 



Programming at the Terminal 

You can use the TSO commands to compile, link edit, and execute (or 
compile and load) your source program at the terminal. TSO also allows 
you to use other programs, such as utilities, at the terminal. That is, 
instead of taking your job to the computer room to run it directly under 
the operating system, you can use the TSO commands to enter it through 
your terminal. These commands reduce your job turnaround time because 
you get immediate resul ts at the terminal.. since TSO commands are 
designed to operate on cataloged data sets, data sets created in the 
background for use with TSO in the foreground should be cataloged. 

You can also use the terminal to submit your job for processing at 
the computer in the conventional manner. That is, you submit your job 
through the terminal even if you do not want to get immediate results at 
the terminal. The results are sent to you from the computer room after 
your job is executed or you may obtain them at the terminal at a later 
time. Jobs submitted in this manner are called background jobs. 

Most compilers or assemblers that can be used 
system Gan be used from your TSO terminal. They 
results at the terminal, or for background jobs. 
programs, your installation may have one or more 
Program Product compilers and other TSO programs 
terminal. They are: 

under the operating 
can be used to obtain 

In addition to these 
of the special TSO 
f or your use at the 

• Interactive Terminal Facility (ITF):PL/I -- A problem-solving 
language processor. 

• Interactive Terminal Facility (ITF):BASIC -- A problem-solving 
language processor. 

• Code and Go FORTRAN -- A FORTRAN compiler designed for a very fast 
compile-execute sequence at the terminal. 

• FORTRAN IV (Gi) -- A version of the FORTRAN IV (G) compiler modified 
for the terminal environment. 

• TSO FORTRAN Prompter -- An initialization routine to prompt you for 
options and invoke the FORTRAN IV (Gi) Processor,. 

• FORTRAN IV Library (Mod I) Execution-time routines for use with 
either Code-and-Go FORTRAN or FORTRAN IV (Gi). 

• Full American National Standard COBOL Version 3 -- A version of the 
American National Standard COBOL modified for the terminal 
environment. 

• TSO COBOL Prompter -- An initialization routine to prompt you for 
options and invoke the full American National standard COBOL Version 
3 Processor. 

• TSO Assembler Pranpter -- An ini tializa tion routi ne to prompt you 
for options and invoke the Assembler (F). 

If an installation has the as PL/I Optimizing Compiler or the PL/I 
Checkout Compiler, the user can compile and execute PL/I programs under 
TSO. The compilers are Program Products and each includes the PL/I 
Prompter, which is an initialization routine that checks compiler 
options, allocates data sets required by the compiler, and then invokes 
it .• 

Programming at the Terminal 63 



If--your installation has one or more of the TSO Program Products or 
PL/I c?mpilers, it will provide you with documentation that explains how 
to use them. This~-section explains how to use the programs normally 
available under the operating system. The following paragraphs describe 
how you can: 

Create a program 
Compile your program 
Link edit a compiled program 
Execute a program 
Load a program 
Process background jobs 

It is assumed that you are familiar with a programming language. 

Creating a Program 

Before your source program is compiled you must introduce it into the 
system. You do so with the EDIT command, as described in the section, 
"Entering and Manipulating Data". 

When you enter the EDIT command you must specify the type operand or 
give a descriptive quali fier to the data set name. The type (or 
descriptive qualifier) tells the system which programming language you 
are using. If you are writing a program and JCL statements to be 
submitted as a background job, use CNTL as the type or descriptive 
qualifier. 

The EDIT command allows you to specify certain options for your 
source program. You can use the SCAN operand to request syntax checking 
when the data set type is GOFORT, FORTE, FORTG, FORTGI, FORTH, BASIC, 
PLIF, PLI, or IPLI. You can use the LINE operand to specify the length 
of the input line for PL/I source programs. The length of the input 
line for the Assembler, FORTRAN, and COBOL is 80 characters. 

After you create your source program you must use the SAVE subcommand 
to save the data set before you end the EDIT command. Your source 
program is now ready for compilation. 

The example in Figure 8 shows the creation of an assembler source 
program. 

r----------------------------------------------------------------------, 
I READY 
I edit progl new asm 
I INPUT 
I 
I 
I source program 
J 
I 
I EDIT 
I save 
I SAVED 
I end 
J READY L _____________________________________________________________________ _ 

Figure 8. Creating an assembler source program 

64 TSO Terminal User's Guide (Release 21.7) 



Compiling a Program 

If you are using a TSO Program Product compiler and prompter, you can 
ignore this section. The prompter allocates data sets and calls the 
compiler for you. 

You can use the CALL command to invoke the compiler that will compile 
your source program. Before you use the CALL command to invoke the 
compiler you must use ALLOCATE commands to allocate all the data sets 
required for compilation. Data set allocation is discussed in 
-Allocating a Data Set- in the section "Entering and Manipulating Data". 
The data sets required by your compiler are described in the Terminal 
User's Guide. . 

You must give the data set name of your compiler in the CALL command. 
The data set names are shown in Figure 9 (For the example, the compilers 
are stored in LINKLIB.) 

r--------------------------------------T-------------------------------, 
I Compil er IDa ta Set Name I 
~---------~--------------~-------------+-------------------------------~ 
IAssembler F I 'SYS1.LINKLIB(IEUASM) , I 
IAmerican National standard COBOL I 'SYS1.LINKLIB(IKFCBLOO) , I 
IFORTRAN E I 'SYS1.LINKLIB(IEJFAAAO) , I 
IFORTRAN G I'SYS1.LINKLIB(IEYFORT), I 
IFORTRAN H I 'SYS1.LINKLIB(IEKAAOO) , I 
IPL/I F I'SYS1.LINKLIB(IEMAA), I L ______________________________________ ~ _______________________________ J 

Figure 9. Data Set Names of the compilers 

Note that the data set name is a fully qualified name and must be 
enclosed in apostrophes. For example, if you want to use the FORTRAN H 
compiler, enter: 

READY 
call ·sys1.linklib(iekaaOO)' 

In addition to the compiler's data set name,,, you can enter the 
compiler options you desire in the CALL command. These options are 
those specified with the PARM parameter of the EXEC statement when you 
are running your program directly under the operating system rather than 
through TSO. For example, if you want to use the MAP, NOlO .. and OPT=2 
options of the FORTRAN H compiler, enter: 

READY 
call·sys1.linklib(iekaaOO)· 'map noid opt=2' 

Any messages and other output produced by the compiler will appear in 
your listing after the CALL command. Once the compiler completes its 
processing you receive the READY message. You can then free any 
allocated data sets you no longer need,. 

Figure 10 shows the commands required to create a COBOL source 
program, allocate the eight data sets required for compilation, call the 
COBOL compiler, and free all allocated data sets except the one that 
contains the compiled program (object module). It is assumed you are 
using your user identification as part of all data set names except 
SYS1,. COBLIB. 

Programming at the Terminal 65 



r----------------------------------------------------------------------, 
1 !:~Y prog2 new cobol I 
I INPUT 
I 
I 
I source program 
I 
I 
I EDIT 
I save 
I SAVED 

end 
READY 
allocate 
READY 
allocate 
READY 
allocate 
READY 
a.llocate 
READY 
al10cate 
READY 

dataset (. sys 1. cobl ib' ) file(syslib) shr 

file (sysutl) new block(460) space(700,100) 

file (sysut2) new block (460) space(700,100) 

file (sysut3) new block (460) space (700,100) 

file (sysut4) new block (460) space(700,100) 

allocate datasetC*) file(sysprint) 
READY 
allocate dataset(prog2.obj) file(syslin) new block(SO) space(SOOI100) 
READY 
allocate data set(prog2.cobol) file(sysin) old 
READY 
call '. sysl.linklib (ikfcbIOO) , 'map load nodeck flagw' 

COBOL listings and messages 

READY 
free file( syslib, sysut1, sysut2, sysut3,sysut4 ,sysprint,sysin) 
READY 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I --------______________________________________________________________ J 

Figure 10. COBOL Compilation 

Link Editing a Compiled Program 

The LINK command makes available to you the services of the linkage 
editor. The linkage editor processes the compiled program (object 
module) and readies it for execution.. The processed object module 
becomes a load module. Optionally, the linkage editor can process more 
than one object module and/or load module and transform them into a 
single load module. For complete information on the linkage editor, 
refer to the publication, Linkage Editor and Loader. 

In your LINK command you must first list the name or names of the 
object modules you want to link edit. (If you omit the descriptive 
qualifier the system assumes OBJ.) After the names of the object 
modules you should use the LOAD operand to indicate the name of a member 
of a partitioned data set where you want the load module placed. (If 
you omit the user-supplied name of the load module data set the system 
assumes it has the same user-supplied name as the object module. If you 
omit the descripti ve.qualifier the system assumes LOAD. If you omit the 
member name the system assumes TEMPNAME.) For example, if you want to 

66 TSO Terminal User's Guide (Release 21) 



link edit the load module in the JONES.PROG2.0BJ data set and place the 
resultant load module in member TEMPNAME of the JONES.PROG2.LOAD data 
set., enter: 

READY 
link prog2 

If you want to link edit the load module in the JONES.PROG2.0BJ data 
set and place the resultant load module in member ONE of the 
JONES .• MODS.LOAD data set" enter: 

READY 
link prog2 load(mods(one» 

The following example shows how to link edit the two object modules 
in the SMITH.PGMl.OBJ and SMITH.PGM2.0BJ data sets. The resultant load 
module is placed in member TEMPNAME of the SMITH.LM.LOAD data set. 

READY 
link (pg.m1,pgm2) load(lm) 

You can dontrol the link editing process with linkage editor control 
statements. These control statements can be in a previously created 
data set, or can be introduced through the terminal. You must give the 
name of the data set, or an asterisk (indicating that you will introduce 
the control statements through the terminal) in the list of input data 
sets. The following example shows how to link edit the object module in 
the CARTER.TRAJ .OBJ data set. There are control statements in the 
CARTER. CNTL .• DATA data set. The load module is placed in member TEMPNAME 
of CARTER,. TRAJ • LOAD • 

READY 
link (traj,cntl.data) 

Using the same example, if you want to introduce the control 
statements through your terminal, enter: 

READY 
link (traj .• *) 

The system will prompt you for the control statements at the 
appropriate time. You must follow your last control statement with a 
null line. 

You can also have the linkage editor search a subroutine library to 
resolve external references. (External references are references to 
other modules.) The subroutine library is usually one of the language 
libraries and it is specified with one of the following operands: 

Operand 
COBLIB 
FORTLIB 
PLILIB 

Subroutine Library 
SYS1.COBLIB 
SYS1. FORTLIB 
SYS1.PL1LIB 

In addition to., or instead of a language library,' you can use the LIB 
operand to specify the name of one or more user libraries. The 
libraries are searched in the order you specify. 

The following example shows how to link edit the object module in 
JAMES,.PRG,.OBJ. The load module is placed in JAMFS. PRG. LOAD (TEMPNAME) • 
The libraries SYS1.PL1LIB~ and DEPT39.LIB .• SUBRT2 are to be searched to 
resolve external references. 

READY 
link prg plilib lib('dept39.lib.subrt2') 

Programming at the Terminal 67 



The LINK command also lets you specify the linkage editor options. 
These options are those specified with the PARM parameter of the EXEC 
statement when you are running the linkage editor directly under the 
operating system rather than through TSO. For example, if you want to 
use the LET and XCAL options when the object module in AGNES.RET.OBJ is 
link edited and placed in AGNES.TBD.LOAD(MOD), enter: 

READY 
link ret load(tbd(mod» let xcal 

Linkage editor listings (specified with the MAP, XREF, and LIST 
options) are directed to a data set or to your terminal. You indicate 
your choice with the PRINT operand. The following example shows that 
the object module in BILL.PRGM.OBJ is to be link edited and placed in 
BILL.PRGM,.LOAD(TEMPNAME). The listing produced by the MAP option is to 
be placed in the BILL.LIST.LINKLIST data set. 

READY 
link prgm map print(list) 

Note that if you omit the descriptive qualifier from the print data set 
name, the system assumes LINKLIST. If you omit the user-supplied name, 
the system assumes it has the same user-supplied name as the object 
module. For example if the listing is to be placed in the 
BILL.PRGM.LINKLIST data set,. enter: 

READY 
link prgm map print 

Using the same example, if you want the listing to appear on your 
terminal" enter an asterisk in the PRINT operand. 

READY 
link prgm map print(*) 

Error messages are listed at the terminal as well as on the print data 
set when you specify a data set name instead of an asterisk. If you 
want the error messages to appear only on the print data set, enter the 
NOTERM operand. For example, 

READY 
link prg.m map print noterm 

Executing a Program 

You can use the CALL command to execute your program after it has been 
link edited,. You can also use CALL to execute any other program in load 
module form, such as utilities and compilers. 

Before you use CALL to execute your program you can use the EDIT and 
ALLOCATE commands to define your data sets. Use EDIT to create your 
input data sets, and ALLOCATE to allocate your input, work, and output 
data sets. 

You must specify the data set name and member name of the member that 
contains your program in load module form. If you want to execute a 
program that resides in DEPTB.PROGS.DAILY(NUM3), enter: 

READY 
call 'deptb.progs.daily(num3)' 

68 TSO Terminal User's Guide (Release 21) 



If you omit the descriptive qualifier and member name" the system 
assumes LOAD and TEMPNAME .• respectively. For exam~le. if your LOGON 
identifier is "JONES" and if your program resides 1n 
JONES.LIB.LOAD(MEM2)., enter: 

READY 
call lib(mem2) 

If your program resides in JONES.LIB.LOAD(TEMPNAME)" enter: 

READY 
call lib 

You can pass parameters to your program if you wrote it in assembler 
or PL/I(F). These are the parameters you would specify with the PARM 
parameter of the EXEC statement if you were running your program 
directly under the operating system. For example, if you want to pass 
the parameters OPTIONl and OPTIONS to a program that resides in 
JONES.ASMPG.LOAD(MEM3). enter: 

READY 
call asmpg(mem3) 'optionl optionS' 

Figure 11 shows how the COBOL program created and compiled in Figure 
10 can be link edited and executed. In Figure 10, the compiled program 
(object module) was placed in PROG2.0BJ. After link editing, the load 
module is placed in PROG2.LOAD(TEMPNAME). Your program requires three 
data sets for execution. The input data set, INPUT. DATA, is created 
wi th the EDIT command.. ALLOCATE commands are used to allocate the input 
data set, a work data set, and an output data set. CALL is used to 
execute your program. The PROG2.COBOL, PROG2.0BJ, PROG2.LOAD, and 
INPUT. DATA data set are deleted. (The other data sets, allocated in 
Figure 10. are automatically deleted because they were not given a data 
set name when allocated.) It is assumed you are using your user 
identification as part of the data set names. 

Programming at the Terminal 69 



r----------------------------------------------------------------------, I READY I 
I link prog2 print ( *) map I 
I I 
I I 
I I 
I I 
I linkage editor mess ages and listings I 
I I 
I I 
I I 

READY 
edit input. data new 
INPUT 

EDIT 
save 
SAVED 
end 
READY 

input data 

allocate dataset (input .• data) file (input) old 
READY 
allocate file(work) new block(100) space(300,10) 
READY 
allocate dataset(*) £ile(print) 

J READY 
I call prog2 
I 
I 
I 
I 
I ou~put from your program 
I 
I 
I 
I READY 
I delete (prog2.* input.data) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
J 

I READY I L ______________________________________________________________________ J 

Figure 11. Link editing and executing a program 

Loading a Program 

The LOADGO command makes available to you the services of the loader. 
The loader combines the basic functions o£ the linkage editor and 
program fetch. That is, the loader link edits and executes your 
program. Therefore, the LOADGO command combines the basic functions of 
the LINK and CALL commands. No load module is produced. For complete 
information on the loader, refer to the publication, Linkage Editor and 
Loader. 

70 TSO Terminal User's Guide (Release 21) 



The loader can process and execute a compiled program (object module) 
or a link edited program (load module). Optionally" it can combine 
object modules and/or load modules and execute them. (If you want to 
load and execute a single load module, the CALL command is more 
efficient,. ) 

Before you use the LOADGO command you can use the EDIT and ALLOCATE 
commands to create and allocate any data sets required to execute your 
program. 

In your LOADGO command you must list the name or names of the object 
and load modules you want to load. For example, if you want to load the 
object module in JONES.PROG3.0BJ, enter: 

READY 
loadgo prog3 

If you want to load the object modules in JONES.PROG3.0BJ, 
JONES. COB. OBJ, and the load module in JONES.COB.LOAD(TWO>, enter: 

READY 
loadgo (prog3 cob.obj cob.load(two» 

You can also pass parameters to your program if you wrote it in 
assembler or PL/I(F). These are the parameters you would specify with 
the PARM parameter of the EXEC statement if you were running your 
program directly under the operating system. For example, if you want 
to pass the parameters OPTIONl and OPTIONS to a compiled program that 
resides in JONES.ASMPG.OBJ, enter: 

READY 
loadgo asmpg 'optionl optionS' 

You can have the loader search a subroutine library to resolve 
external references. The subroutine library is usually one of the 
language libraries. If so, it is specified with one of the following 
operands: 

Operand 

COBLIB 
FORTLIB 
PLILIB 

Subroutine Library 

SYS1.COBLIB 
SYS1.FORTLIB 
SYS1.PL1LIB 

In addition to, or instead of, a language library you can use the LIB 
operand to specify the name of one or more user libraries. The 
libraries are searched in the order you specify .• 

The following example shows how to load the object module in 
JONES .• PRG.OBJ. The libraries SYS1.PL1LIB, and DEPT39.LIB.SUBRT2 are to 
be searched to resolve external references. 

READY 
loadgo prg plilib lib(' dept39 .• lib.subrt2' ) 

Programming at the Terminal 71 



The LOADGO command also lets you specify the loader options. These 
options are those specified with the PARM parameter of the EXEC 
statement when you are running the loader directly under the operating 
system. For example, if you want to use the LET and EP(MAIN) options 
when the object module in JONES.CIR.OBJ is loaded, enter: 

READY 
loadgo cir let ep(main) 

Loader listings (specified with the MAP option) are directed to a 
data set or to your terminal. You indicate your choice with the PRINT 
operand. The following example shows that the object module in 
JONES.PRGM.OBJ is to be loaded. The listing produced by the MAP option 
is to be placed in the JONES.LISTING.LOADLIST data set. 

READY 
loadgo prgm map print(listing) 

Note that if you omit the descriptive qualifier from the print data 
set name, the system assumes LOADLIST,. If you omit the user-supplied 
name, the system assumes it has the same user-supplied name as the 
object module. For example" if the listing is to be placed in the 
JONES,.PRGM.LOADLIST data set, enter: 

READY 
loadgo prgm map print 

Using the same example, if you want the listing to appear on your 
terminal,. enter an asterisk in the PRINT operand. 

READY 
loadgo prgm map print(.) 

Error messages are listed on the terminal as well as on the print data 
set when you specify a data set name instead of an asterisk. If you 
want the error messages to appear only on the print data set,. enter the 
NOTERM operand. For example, 

READY 
loadgo prgm map print noterm 

Figure 12 shows how the COBOL program created and compiled in Figure 10 
can be loaded. The loading operation shown in Figure 12 is the 
equivalent of the link editing and execution shown in Figure 11.. The 
same data sets required for execution of your program in Figure 11 are 
required in this example,. The object module resides in PROG2.0BJ. A 
load module is not produced by the loader. therefore~ only PROG2.COBOL, 
PROG2.0BJ. and INPUT.DATA are deleted at the end. It is assumed you are 
using your user identification as part of the data set names. 

72 TSO Terminal User's Guide (Release 21) 



r----------------------------------------------------------------------, 
READY 
edit input. data new 
INPUT 

EDIT 
save 
SAVED 
end 
READY 

input data 

allocate dataset (input. data) fileCinput) old 
READY 
allocate file(work) new block(100) space(300,lO) 
READY 
allocate dataset(*) file(print) 
READY 
loadgo prog2 map print(*) 

loader listings and output from your program 

READY 
deleteCprog2.* input. data) 
READY -------_______________________________________________________________ J 

Figure 12. Loading a Program 

Processing Background Jobs 

You can submit background jobs for processing if your installation 
authorizes you to do so. This authorization is recorded in the system 
with your user attributes. If you have this authorization, the system 
lets you use the four commands (SUBMIT, STATUS, CANCEL and OUTPUT) that 
control the processing of background jobs. You can use those commands 
to submit a background job, to display the status of a background JOD, 
to cancel execution of a background job, and to control the output of a 
background job. 

SUBMITTING BACKGROUND JOBS 

Before you submit a background job with the SUBMIT command you can use 
the EDIT command to create a data set (or a member of a partitioned data 
set) that contains the job or jobs you want to submit. Each job 
consists of Job Control Language (JCL) statements and of program 
instructions and/or data. 

The JCL Statements required for a job must conf orm to Systeml360 
Operating System (MVT) standards. They are described in the 
publication, ~ob_£ontrol Language Reference. 

Programming at the Terminal 73 



The first JCL statement in the data set is usually a JOB statement. 
The jobname in the JOB statement can be up to eight characters in length 
and consists of your user identification followed by one or more letters 
or numbers. For example SMITH23 or JONESXYZ. 

If the jobnarne consists of only your user identification, the system 
will prompt you for a single character to complete the jobnarre. When 
you submit the job with the SUBMIT command this allows you to change 
jobnames without re-edi ting the data. For example, you may submit the 
same job several times, and supply a different character for the job 
name each time you are prompted. 

If the jobname does not begin with your user identification, you can 
su.t>mit it with the SUBMIT command and request its status with the STATUS 
command, but you cannot refer to it with the CANCEL or OUTPUT command. 

If the first statement of your data set is not a JOB statement, the 
system generates the following JOB statement when you submit it with the 
SUBMIT command. 

//userid JOB 
// 
// 
// 

, GENERATED JOB STATEMENT 
userid, 
MSGLEVEL=(l,l) , 
NOTIFY=userid 

You lII1ill be prompted for a character to complete the jobname. 

When you enter the SUBMIT command you must give the name of the data 
set (or data sets) that contains the background jobs. You can also 
specify the NONOTIFY operand to specify that you do not want to be 
notified when a background job with a generated JOB statement 
terminates. 

Figure 13 shows how to create and submit a background job. The data 
set type on the EDIT command should be CNTL for best ,system perf or-mance. 
Submitted data sets must have a fixed record length of 80 bytes and must 
not contain lowercase characters. 

You may include more than one job in one data set. You can omit the 
JOB statement for the first job, but all jobs after the first must have 
their own JOB statement. Although you submit all jobs in the data set 
with one 3UBMI'!' command, you can subsequently refer to each job with 
separate STATUS, CANCEL, and OUTPUT commands. 

If an error occurs while the jobs are being processed by TSO before 
actually being submitted, further processing will be terminated. No 
other input specified by the SUBMIT command will be processed. When you 
submit more than one job with a single command, and TSO finds an error 
while processing the first job, the second job is not processed. An 
error that occurs in the second job does not affect the first. Any jobs 
processed prior to the error are submitted for execution; jobs that were 
not processed because of the error cannot be submitted. 

74 TSO Terminal User's Guide (Release 21.7) 



r---------------------------------------------------------------------, 
READY 
edit backpgm new cntl nonum 
INPUT 
//smith3 job 7924,smith,msglevel=(1,1) 
//step1 exec plllfc, parm,.pl1l=' nodeck, list' 
//pl1l.sysin dd * 

source statement 

/* 
//step2 exec plllfclg 
//pl1l.sysin dd * 

source statements 

/* 
//go.sysin dd * 

input data 

/* 
(null line) 
EDIT 
save 
SAVED 
end 
READY 
submit backpgm nonotify 
READY 

Figure 13. Submitting a Program as a Background Job 

DISPLAYING THE STATUS OF BACKGROUND JOBS 

Any time after you submit a background job you can use the STATUS 
command to have its status displayed. The display wi 11 tell you whether 
the job is awaiting execution, is currently executiIlJ, or has executed. 
For example, if you want to display the status of SMITH23, enter: 

READY 
status smith23 

If you want to know the status of all the jobs with jobnames consisting 
of your user identification plus one character., enter the STATUS command 
without operands: 

READY 
status 

CANCELLING BACKGROUND JOBS 

You can use the CANCEL command to cancel execution of a background job. 
If the job has already been executed, the CANCEL command has no effect. 

For example, if you want to cancel job JONESAB, enter: 

READY 
cancel jonesab 

After you enter the CANCEL command, the system will send you a message 
telling you that the jobs specified have been cancelled. 

Programming at the Terminal 15 



CONTROLLING THE OUTPUT OF A BAC~ROUND JOB 

You can use the OUTPUT command to: 

• Direct the JCL statements and system messages (MSGCLASS) and system 
output data sets (SYSOUT) produced by a background job to your 
terminal. 

• Direct the MSGCLASS and SYSOUT output from ·a background job to a 
specific data set. 

• Change an output class used in a background job. 

• Delete the output data sets (SYSOUT) or the system messages 
(MSGCLASS) for background jobs. 

Unless you use the NONOTIFY operand of the SUBMIT command, a message is 
written to your terminal or placed in the broadcast data set when the 
background job terminates. You can then use the OUTPUT command to 
control the output produced ny the job on the MSGCLASS and SYSOUT 
classes before the system processes them. 

For example·, assume that job GREEN67 produces output on classes A, B, 
D, G, and M. If you want the output on classes G and M listed at the 
terminal, enter: 

READY 
output green67 class(g m) print(*) 

If you want the output of class B to be listed in the GREEN.KEEP.OUTLIST 
data set, enter: 

READY 
output green67 class(b) print (keep) 

If you want to change the output in class A to class C, enter: 

READY 
output green67 class (a) noprint(c) 

If you want to delete the output from class D, enter: 

READY 
output green67 class (d) noprint 

If you wish, you can enter the PAUSE operand in the OUTPUT comroand. 
PAUSE will make the system stop after each data set is listed on your 
terminal or on the data set you indicate with the PRINT operand. When 
the system pauses it sends you the message OUTPUT. You then have the 
option of pressing the RETURN key to continue processing or entering the 
CONTINUE or SA V£ subcommand. 

The CONTINUE subcommand allows you to continue processing your output 
after an interruption occurs. An interruption occurs when: 

• An output operation completes and you used the PAUSE operand in the 
OUTPUT command. 

• An output operation terminates because of an error condition • 

• You press the attention key. 

76 TSO Terminal User's Guide (Release 21.7) 



When you enter the CONTINUE subcommand. the system will resume 
printing with the next data set being processed or with the next message 
if a block of messages is being processed. In the following example you 
request that the data sets in output classes Band C be listed at your 
terminal. The system pauses after printing the data set in B. You 
enter the CONTINUE subcommand to resume processing with the data set in 
C. 

READY 
output jones2 class(b c) print(.) pause 

output class B 

OUTPUT 
continue 

output class C 

If the interruption was not caused by a pause, you may prefer to 
resume printing at the beginning of the data set being processed or a 
few lines before the interruption. If you want to resume printing at 
the beginning, enter: 

OUTPUT 
continue begin 

If you prefer to resume printing approximately 10 lines before the 
interruption occurred. enter: 

OUTPUT 
continue here 

The CONTINUE subcommand also lets you respecify the PAUSE operand of 
the OUTPUT command.. If you entered PAUSE in the OUTPUT command" you can 
enter NOPAUSE in the CONTINUE subcommand. for example, 

READY 
output smithc class(d) print (data) pause 

OUTPUT 
continue begin nopause 

If you did not specify PAUSE in the OUTPUT command, you can do so in the 
CONTINUE subcommand. This causes the system to pause at the end of each 
data set processed subsequently. 

Programming at the Terminal 77 



The SAVE subcommand allows you to place the data set listed before 
the paus~ into another data set. This allows you to retrieve the dcita 
set at a' later tin)e.. In the following example, if your logon identifier 
is Brown, you request that data sets in output classes E and F be listed 
at your terminal. After listing the data set in E you request that it 
be saved in the BROWN.OUTDATA.OUTLIST data set.. You continue processing 
th~ next data set after saving the dataset in class E. 

Note: If you want to list output at a terminal when submitting one or 
more job cards~ the name you specify must begin with your userid and end 
with a single alphameric character. This character must be unique for 
each job card. 

READY 
output brownb class(e f) print(.) pause 

OUTPUT 
save outdata 
OUTPUT 
continue 

The END subcommand is used to terminate the OUTPUT command. For 
example, 

READY 
output dept30a class (a) print(.) pause 

OUTPUT 
end 
READY 

78 TSO Terminal User's Guide (Release 21) 



Testing a Program 

The operating system provides you with facilities to test your program 
from the terminal. They are the test facilities, if any, provided by 
your compiler, ~nd the TSO TEST command. The compiler test faciliti~ 
are described in the publications associated with the compiler. A brief 
description of the TEST command follows. 

The TEST command allows you to "debug" your program. That is, it 
helps you to test a program for proper execution and to find programming 
errors. To use TEST effectively, you should be familiar with the 
assembler language. If you are using another language, for example 
COBOL, you can still use the TEST command to obtain listings and other 
information to give to your installation's system programmer who can 
help you debug your program. (You can use the full facilities of the 
TEST command to debug your program if you can correlate the statements 
in your source program listing to the resultant assembler language 
statements in the object listing.) 

If you are an assembler language programmer, refer to the 
publications" TSO Guide to Writing a Terminal Monitor Program or a 
Command Processor and Command Language Reference for a complete 
description of the facilities of the TEST command. 

If you are not an assembler language programmer, your system 
programmer will probably provide you with a· test procedure. The most 
common situation he may provide for occurs when your program is 
executing and you receive a message that the program has abnormally 
terminated,. He may tell you to enter the TEST command and then the LOAD 
subcommand with the name of a program that will test your program. For 
example, if the name of the program that will test yours is DPTEST, use 
the following sequence,. 

READY 
test 
TEST 
load (dptest) 

If the system programmer does not give you the name of a testing 
program, he may instruct you to use the TEST command and a set of its 
subcommands that produce listings of your program and other pertinent 
information. For example, he could ask you to perform procedures 
similar to the following,. 

Example 1: 

READY 
test 
TEST 
listpsw 
SYSTEM MASK KEY AMWP INTRPT CODE ILC CC PROG MASK INSTR ADDR 

11111111 D 0101 0061 11 00 0000 061A~8 
TEST 
where 61ab8. 
61AB8,. LOCATED AT +38 IN (load-module name.csectname) UNDER TCB 

LOCATED AT 660DO. 
TEST 
list 61ab8·.-32n length(32) 

First" you begin testing by entering the TEST command. You can now use 
the subcommands of TEST to "debug" your program. 

Testing a Program 19 



Enter the LISTPSW subcommand to determine the address of the instruction 
that failed in your program. The last five characters of the PSW that 
is listed can then be entered with th~ WHERE subcommand and the system 
will then provide the location and the program name in which the ABEND 
occurred. When LIST is entered in the preceeding manner, the thirty-two 
bytes of instructions prior to the ABEND will be displayed. 

At this time all the registers may be listed in the following manner to 
aid you in solving the problem: 

list OR:15R 

If you wish to trace the execution of your program you may enter the 
following: 

Example 2: 

at +0:+200 (go) 
at +32 
at +8c 
at +10a 
go +0 

In this case breakpoints will be set at every instruction in your 
program between relative addresses 0 and 200 (inclusive) " stopping at 
the first invalid opcode encountered. Breakpoints set at relative 
addresses 32, 8C, and lOA supplement the previous settings. The last GO 
causes the program to resume execution from the beginning (assuming the 
first address contains a valid instruction) '. Before execution of the 
instruction at any of the breakpoint location a message is printed at 
the terminal. If the location is other than 32, 8C, or lOA, execution 
continues because of the GO subcommand in the subcommand list of the 
first AT. (other subcommands could also be executed automatically here 
prior to GO; see the AT subcommand description under TEST in the Command 
Language Reference manual,.) Before 32, .. 8C, or lOA are executed, the 
associated AT subcommand causes control to return to the terminal so 
that you can enter any TEST subcommands before continuing execution. 

Example 3: 

To supply new values for a range of registers,. you can enter: 

Or= (x • 0 • " x • 0 • , x • 0 • ) 

The values specified would be assigned starting with register 0., 
register 1, etc. until all values in the list have been assigned. 

Example 4: 

If you want to display storage at a known relative address you may 
enter: 

list +34 
+34 47FOC220 

If you want not only to display storage" but also to find out the 
absolute address associated with the relative address, you can enter: 

list +34+0 
A0680. 47FOC220 

If you prefer, you can elect not to test your program. Simply enter 
any command you wish after receiving the abnormal termination and READY 
messages,. 

80 TSO Terminal User's Guide (Release 21) 



Using and Writing Command Procedures 

In many cases a given function is performed by a sequence of commands. 
For example, several commands are needed to allocate data sets for a 
compilation. Every time you want to accomplish that function you must 
enter the same sequence of commands, or else, you can simplify your work 
by using a command procedure. A command procedure is a set of TSO 
commands, and, optionally, subcommands and data that have been placed in 
a data set. Whenever you want to accomplish the functions performed by 
the command procedure you can use the EXEC command to call the 
procedure. The cOJIlITland procedure you call may c ontai n symbolic values. 
A symbolic value stands as a symbol for an operand or the value of an 
operand. Symbolic values are used so that the command procedure can be 
easily modified when it is called by the EXEC coremand. 

This section consists of two parts. The first part, "Using Command 
Procedures", describes how to call a command procedure and how to assign 
actual values to symbolic values. The second part, "Writing Command 
Procedures" describes how to write a command procedure and place it in a 
data set. 

Using Command Procedures 

Use the EXEC command to call a command procedure and to assign values to 
any symbolic values it may contain. You will not get any prompting 
messages once execution of the command procedure has begun. 

CALLING A COMMAND PROCEDURE 

To call a command procedure, enter an EXEC command. In the EXEC command 
you identify the command procedure in one of two ways: 

1. If the command procedure is in a data set, enter EXEC followed by 
the name of the data set. The following example, if your LOGON 
identifier is JP, calls the command procedure that resides in the 
JP.COMPROC.CLIST data set: 

READY 
exec c omproc 

Note that if you omit the descriptive qualifier the system assumes 
CLIST. If the descriptive qualifier is not CLIST you must enter 
the fully qualified name enclosed in apostrophes. For example, if 
the command procedure resides in the data set JP.COMPROC.CP, you 
must enter: 

READY 
exec 'jp.comproc.cp· 

2. If the command procedure resides in a member of a partitioned data 
set called a command procedure library, enter only the member name. 
(The command procedure library must have been defined by your 
installation.> The following example shows how to call the command 
procedure in member PRoe 3 of your command procedure library: 

READY 
proc3 

Using and Writing Command Procedures 81 



ASSIGN ING VALUES TO SYMBOLIC VALUES 

If the command procedure contains symbolic values, the installation 
should provide you with a list of the symbolic values used" what meaning 
is associated with each symbolic value, whether you must supply an 
actual value for each symbolic value, and whether a symbolic value will 
assume a default value if you fail to provide one. Figure 14 shows a 
sample sheet for a command procedure such as your installation may 
provide you 

r----------------------------------------------------------------------, I Command Procedure: LISTUPDT (member name) 
I Purpose: Update inventory list 
I Symbolic values: 
I WEEKIN WEEKOUT NEW OUTPUT(*) 
I 
I WEEKIN: Required. Replace with name of input data set. 
I WEEKOUT: Required. Replace with name of output data set. 
I NEW: Optional. Code NEW if output data set does not exist. 
I Omi t if output data set already exists. 
I OUTPUT<*): Optional. Directs reports prepared by procedure to 
I your terminal. If you want to direct reports to a 
I data set, replace the * with the data set name. If 
I OUTPUT is not specified, reports go to a central 
I printer. L _____________________________________________________________________ J 

Figure 14. symbolic Values for a Command Procedure 

After you decide which values you are going to replace for the required 
symbolic values, and which optional symbolic values you are going to 
use, enter the values in the EXEC command used. to call the procedure. 
The values must follow the name of the da ta set or member that contains 
the procedure. If the procedure resides in a data set, enclose the 
values in apostrophes. The required values must be entered in the order 
given to you. Optional values can be entered in any order after you 
enter the required val ues. The following example calls the procedure 
shown in Figure 14. The name of the input data set is JP.W26IN.DATA. 
'l'he name of the output data set is JP.W260UT.DATA. The output data set 
does not yet exist. The reports produced by the command procedure are 
directed to the JP.W26REP.DATA data set. 

READY 
listupdt w26in w260ut output (w26rep) new 

Note: If syntax errors or certain other error conditions arise in 
executing a command within a procedure, the procedure will be terminated 
and the remaining commands will not be executed. 

Writing Command Procedures 

FUnctions that are performed on a regular basis, such as calling a 
compiler, can be simplified when the commands that perform the fUnctions 
are kept as command procedures. Once the commands are placed in a 
partitioned or sequential data set or in a command procedure library (a 
partitioned data set), any terminal user who wants to perform those 
functions need only enter an EXEC command. 

Command procedures contain commands and, optionally, subcoromands, 
data and line numbers. A command procedure may also contain command 
procedure statements (PROC, WHEN, and END) that control execution of the 
procedure. The PROC statement defines symbolic values in the procedure,. 
The WHEN statement initiates or terminates a procedure according to 
certain conditions. The END statement may be used to mark the end of 
the procedure. 

82 TSO Terminal User's Guide (Release 21.7) 



The command procedure is entered in the data set or into a member of 
a command procedure library with the EDIT command. The descriptive 
qualifier normally used is CLIST. You must also use the SAVE subcommand 
to save the command procedure. 

ASSIGNING SYMBOLIC VALUES 

When you enter the canmands and subcommands in the procedure, you can 
include symbolic values for any operand or value of an operand. A 
symbolic value is characterized by a name preceded by an ampersand (&). 
The name consists of letters and numbers, but it must begin with a 
letter. For example, if you want to substitute the symbolic value 
&DSNAME for the 'data set name' operand in the following statement: 

EDIT data set name NEW DATA 

enter: 

edit &dsname new data 

If the symbolic value must be immediately followed by a special 
character (such as a right parenthesis, apostrophe, or period), the 
symbolic value must end with a period. For example, if you want to 
substitute the symbolic value &DSNAME for the "data set name" operand in 
the following expression: 

DATASET(data set name) 

enter: 

dataset(&dsname.) 

A command procedure that contains symbolic values must begin with a PROC 
statement. The symbolic values that are identified by ampersands are 
defined by the operands of the PROC statement. There are two types of 
symbolic va lues: 

• Positional -- a required operand that must be replaced by the user 
in the EXEC command. It can contain up to 252 characters • 

• Keyword -- an optional operand that can be replaced by the user if 
desired. It can contain up to 31 characters. 

The PROC statement must indicate the number of positi onal symbolic 
values to be supplied by the user. (If none of the symbolic values are 
positional, enter zero.) After the number, list the positional symbolic 
values omitting their ampersands,. After the positional symbolic values, 
list the keyword symbolic values omitting their ampersands. For 
example, assume you have the following command procedure named PR39: 

PROC 3 INPUT OUTPUT LIST LINES() 
ALLOCATE DATASET ( &INPUT.) FILE (INDATA) OLD 
ALLOCATE DATASET(&OUTPUT.) BLOCK(lOO) SPACE(300,10) 
ALLOCATE DATASET ( &LIST .• ) FILE (PRINT) 
CALL PROG 2 '&LINES.' 
END 

Using and Writing Command Procedures 83 



'lhe PROC statement indicates that the three symbolic values &INPUT, 
&OUTPUT, and &LIST are required, and that the symbolic value &LINES is 
optional. When the user substitutes values for the positional symbolic 
values in the EXEC command he must provide the values in the same order 
in which they appear in the FROC statement. The keyword va lues can 
follow the positional values in any order. For example, if the user 
wants to replace ALPHA for INPUT, BETA for OUTPUT, COMMENT"for LIS'l', and 
20 for LINES, he would enter: 

READY 
pr39 alpha beta comment lines(20) 

In this case, the following substitutions will be made in the command 
procE::dure: 

ALLOCATE DATASET(ALPHA) FILE(INDATA) OLD 
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10) 
ALLOCATE DATASET(COMMENT) FILE (PRINT) 
CALL PROG2 '20' 
END 

You can also use the PROC statement to assign default values to optional 
symbolic values. That is, if the user fails to provide an actual value 
for the symbolic value, the system will use the def ault value to replace 
the symbolic value. You assign a default value by enclosing it in 
parentheses after the symbolic value in the PROC statement. For 
example, in the command procedure illustrated above, you may want to 
assign 35 as a default value for &LINES. To do this, enter LINES(3S) in 
the PRoe statement. That is, the PROC statement would be as follows: 

PROC 3 INPUT OUTPUT LIST LINES(3S) 

If the user enters the following EXEC command: 

READY 
pr39 alpha beta comment 

the following substitutions will be made in the command procedure: 

ALLOCATE DATASET(ALPHA) FILE(INDATA) OLD 
ALLOCATE DATASET(BETA) BLOCK(100) SPACE(300,10) 
ALLOCATE DATASET(COMMENT) FILE (PRINT) 
CALL PROG2' 35' 
END 

EXAMPLES OF SYMBOLIC SUBSTITUTION 

• positional parameters (These must be specified on the EXEC 
statement) • 

Here is the procedure statement for a CLIST data set called PR1: 

PROC 3 PARMi PARM2 PARM3 

If the user enters at the terminal 

exec prl 10 20 input 

TSO makes the following substitutions within the command 
procedure: 

10 replaces 
20 replaces 
INPUT replaces 

& PARMi 
&PARM2 
&PARM3 

84 TSO Terminal User's Guide (Release 21 .• 7) 



• Keyword parameters (These need not be specified on the EXEC 
statement) • 

Here is the procedure statement for a CLIST data set called PR2: 

PROC 0 KEY1 KEY2() KEY3(10) 
(The zero indicates there are no positional parameters) 

Figure 14.1 describes the results of substitution within the 
command procedure: 

r------------------------------------------TT--------------------------, 
I EXEC COMMAND II VALUES SUBSTITUTED FOR I 
I ENTERED AT TERMINAL I I &KEY1 &KEY2 &KEY3 I 
.------------------------------------------ft--------.--------T--------~ 
I exec pr2 I I null I null I 10 I 
I II string I string I I 
.------------------------------------------++--------1--------+--------~ 
I exec pr2 'key1 key 2 key3' II KEY1 I null I null I 
I II I string I string I 
.------------------------------------------+t--------1--------+--------~ 
I exec pr2 'key1(8) key2(input) key3 (5)' II (not I INPUT I 5 I 
I I I va lid) I I I l. __________________________________________ .J..J. ________ -'--_______ .J. ________ J 

Figure 14.1. substitution Using Keyword Parameters 

TESTING CONDITIONS FOR TERMINATION 

The programs invoked with a CALL or LOADGO command can issue a return 
code (a number) to indicate its relative "success". The return codes of 
IBM-supplied programs are listed in the publications associated with the 
program. Only those user progr ams wr i tten in the asserobler language or 
PL/I can issue return codes. (For description of how to issue return 
codes, see Assembler F Programmer's Guide and PL/I (F) Programmer's 
Guide.) User return codes are usually standardized in each 
installation. 

You can insert a WHEN statement after any CALL or LOADGO command or a 
processor (such as a compiler or link editor) in the command procedure 
to test its return code. If the test you request is true, you have the 
option of ending the command procedure or of executing another procedure 
or another command. If the test you request is not true, the command 
procedure will continue its course. The test is specified with the 
SYSRC operand of the WHEN statement. For example, assume that you want 
to end a procedure named proc4 if a given CALL command produces a return 
code of 8. Enter the following WHEN statement after the command you 
want to test: 

call 'sys1.linklib(ieqcb100)' 'nodeck' 
when sysrc(eq 8) end 

Using and Writing Command Procedures 85 



If instead of ending proc4 when the test is true, you want to execute 
another procedure that resides in the JONES.PROC5.CLIST data set, enter: 

when sysrc(eq 8) execproc5 

If the test is true, procS will replace the procedure that requested its 
execution. WhenprocS is done, nO other commands in proc4 will be 
executed. Now the system will be ready for a command from the terminal 
or will return to the command procedure that invoked proc4. If instead 
of executing a procedure, you want to enter a LIST command, enter: 

when sysrc(eq 8) list pgm.list snum 

ENDING THE COMMAND PROCEDURE 

You may write an END statement after the last line of the corrmand 
procedure. When the system encounters an END statement in a command 
procedure it sends a READY message to the terminal so you can enter 
another command. 

A COMPILER COMMAND PROCEDURE 

Figure 14.2 shows a command procedure that could be used to invoke the 
PL/I (F) compiler. 'Ibis procedure would be created with the EDIT 
command as a command list (CLIST) data set, under an appropriate member 
name, such as PLIF. 

r----------------------------------------------------------------------, 
11 PROC 1 NAME I 
12 ALLOCATE DATASETCiNAME •• PLI} FILE(SYSIN) I 
13 ALLOCATE DATASET ( &NAME •• LIST) FILE CSYS-PRINT} BLOCK (125) J 
14 SPACEC300,100) I 
IS_ALLOCA-~E--DATASETC iNAME •• OBJ) FILE CSYSLIN) BLOCK (eO) SPACEC2S0, 100) I 
16 ALLOCATE FILE(SYSUT1) BLOCR(1024) SPACEC60,60) I 
17 ALLOCATE FILE (SYSU'!'3) BLOC K (80) SPACE C2S0 ,100) I 
18 CALL ·SYS1.LINKLIBCIEMAA)' 'LIST,ATR,XREF,STMl',MACRO' I 
19 FREE FILECSYSUT1,SYSUT3,SYSIN,SYSPRINT) I L ______________________________________________________________________ J 

Figure 14.2. A Command Procedure to Invoke the PL/I CF) Compiler 

At 1 in the sample procedure is a PROC statement, defining a single 
positional parameter to be supplied by the user when ~he procedure is 
invoked, in this case, the name of his program. Whatever value the us er 
specifies when calling the procedure will be filled into the following 
commands wherever "&NAME" appears. 

Records 2 through 7 perform the data set allocations required by the 
PL/I compiler. Record 2 allocates the input data set containing the 
source program. Although this data set is probably already allocated, 
since the user has most likely just created it with EDIT, this ALLOCATE 

85.1 TSO Terminal User's Guide (Release 21.7) 



command will reallocate it with the DDNAME "SYSIN." This data set is 
always OLD; no BLOCK or SPACE values have to be supplied. The data set 
name will be formed from the program name supplied by the EXEC command, 
followed by the characters ".PLI". Two periods are necessary in the 
model command, since the first one indicates the following characters 
are to be concatenated to the supplied value. Records 3 through 5 
similarly allocate and assign standard names to the data sets to hold 
the program listing and the object program. Since these are new data 
sets, the BLOCK and SPACE values must be supplied. Records 6 and 7 
allocate the two utility, or temporary work, data sets the compiler 
needs. No data set name is specified, so a system-generated name will 
be assigned to them, and the data sets will automatically be deleted by 
a ~'REE command. All the other data sets will be kept and cataloged. To 
use the same procedure again for the same program, the user should enter 
DELETE commands for SYSIN and SYSPRINT. 

Record 8 invokes the PL/I (F) compiler by its load module name, and 
passes to it the list of options to control execution. When the 
compiler completes processing, the FREE command in record 9 releases all 
the data sets except the object module. 

Figure 14,.3 shows how the procedure might be used from the terminal. 
At 1 is the EXEC command invoking the procedure.. The LIST keyword on 
the command specifies that each command is to be printed out at the 
terminal as it is executed. Note that the name supplied with the EXEC 
command has been filled in as part of the data set name field in the 
ALLOCATE commands. 'I'he system continues to list commands through line 
8, then notifies the user it is again ready to accept commands from the 
terminal with the READY message in line 9. The user enters the LOADGO 
command to bring his compiled object program into storage for execution. 

r----------------------------------------------------------------------, 
1 exec plif 'exp' list 
2 ALLOCATE DA'l'ASET(EXP .• PLI) FILE (SYSIN) 
3 ALLOCATE DATASET(EXP.LIST) FlLE(SYSPRINT) BLOCK(125) SPACE(300,100) 
4 ALLOCATE DATASET(EXP.OBJ) FILE(SYSLIN) BLOCK(80) SPACE(250,100) 
5 ALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60) 
6 ALLOCATE FILE(SYSUT3) BLOCK(80) SPACE(250,lOO) 
7 CALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO' 
8 FREE FILECSYSUT1,SYSUT3,SYSIN,SYSPRINT) 
9 READY 

10 allocate dataset(*) file(sysin) 
11 READY 

12 allocate dataset(*) file(sysout) 
13 READY 

14 loadgo exp.obj pl1lib l ________ -----________________________________________________________ _ 

Figure 14.3. Use of a Command Procedure 

If the procedure is a member of the command procedure library, the 
user can use the EXEC command implicitly, as shown in Figure 14.4. When 
the system does not find "PLIF" defined in the command library, it looks 
for the command procedure in the command procedure library. The 
individual commands are not displayed at the terminal. When the 
procedure completes, the READY message is displayed, and the user can 
load his program for execution. 

r------.... -, 
Iplif expl 
I READY I L ____ --__ J 

Figure 14.4. Implicit use of Procedure 

Using and Writing "Command Procedures 85.2 



NESTED PROCEDURES 

A command procedure can be made into a compile-lead-go sequence -- the 
equivalent of the RUN command -- by using the procedure nesting and 
conditional execution capabilities. For instance, in Figure 14.3" note 
that the user enters two ALLOCATE commands, defining terminal input and 
output for execution time, and a LOADGO command to invoke his program. 
Like the commands used to invoke the compiler, these would normally be 
used every time the user wants to invoke his program, and therefore can 
be reasonably placed in a command procedure. This second procedure can 
be called from the compiler-invoking procedure, making it a 
compile-load-go procedure. 

The procedure to load and execute the user program might be defined 
as shown in Figure 14.5, under a suitable name such as LDGO. The FREE 
command in record 2 is the same as the one in the PLIF procedure. It 
needs to be repeated here since it will not be executed in that 
procedure, as explained below. Records 3 and 4 allocate the terminal 
for an SYSIN or SYSPRINT I/O statements in the user program, and 
statement 5 is the LOAOGO command causing the program to be brought into 
storage and given control. 

r----------------------------------------------------------------------, 
I 1 PROC 1 NAM1 I 
I 2 FREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT) I 
I 3 ALLOCATE DATASET ( *) FILE (SYSIN) I 
I 4 ALLOCATE DATASET(*) FILE(SYSPRINT) I 
I 5 LOADGO &NAM1 •• 0BJ PLILIB I 
I 6 END I L ______________________________________________________ ~ _______________ J 

Figure 14.5. A Command Procedure to Invoke a User Program 

It ~ould be possible to call this procedure from the PLIF procedure 
by inserting a record containing: 

EXEC LDGO '&NAMl!:' 

However, it would be preferable to call it only when the return code 
from the compiler indicates successful execution is likely, that is, no 
serious errors were detected during compilation. To test the compiler 
return code, the user inserts a WHEN statement: 

WHEN SYSRC(LE 4) EXEC LOGO '&NAME' 

The WHEN statement immediately follows the CALL command invoking the 
compiler (record 8 in Figure 14.2). I f the compiler return code is less 
than or equal to four ("LE 4"), indicating that no errors or only minor 
errors were detected, the EXEC command is executed, and the procedure 
ends. If the return code is greater than four, the EXEC command will be 
ignored, the FREE command is executed, and the procedure ends. The 
terminal returns to command mode, and the user will probably use the 
LIST command to display the compiler listing. determine the errors in 
the source program, correct them with the EDIT command, and reinvoke the 
procedure for another compilation. Figure 14.6 shows the modified PLIF 
command procedure. A DELETE command has been added for the object 
module, since it is not executable. Figure 14.7 shows a use of the 
procedure for a successful compilation. The LIST operand is specified 
to display each command as it is executed. 

85.3 TSO Terminal User's Guide (Release 21.7) 



r----------------------------------------------------------------------, 
IPROC 1,NAME 
IALLOCATE DATASET(&NAME •• PLI) FILE(SYSIN) 
IALLOCATE DATASET(&NAME •• LIST) FILE(SYSPRINT) BLOCK(125) SPACE(300,lOO) 
IALLOCATE DATASET(&NAME •• OBJ) FILE(SYSLIN) BLOCK(SO) SPACE(250,lOO) 
IALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60) 
IALLOCATE FILE(SYSUT3) BLOCK(SO) SPACE(250,100) 
ICALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMr,MACRO' 
IWHEN SYSRC(LE 4) EXBC LOGO '&NAME.' LIST 
IFREE FILE(SYSUT1,SYSUT3) 
IDELETE &NAME •• OBJ 
ImD L _____________________________________________________________________ _ 

Figure 14.6. A Command PIOcedure for a Compile-Load-Go Sequence 

r----------------------------------------------------------------------, 
lexec plif 'derv' list 
IALLOCATE DATASET(OERV.PLI) FILE(SYSIN) 
IALLOCATE DATASET(OERV.LIST) FILE(SYSPRINT) BLOCK(SO) SPACE(300,100) 
IALLOCATE DATASET(OERV.OBJ) FILE (SYSLIN) BLOCK(SO) SPACE(250,lOO) 
IALLOCATE FILE(SYSUT1) BLOCK(1024) SPACE(60,60) 
IALLOCATE FILE(SYSUT3) BLOCK(SO) SPACE(250,100) 
ICALL 'SYS1.LINKLIB(IEMAA)' 'LIST,ATR,XREF,STMT,MACRO' 
IWHEN SYSRC(LE 4) EXEC LOGO 'DERV' LIST 
IFREE FILE(SYSUT1,SYSUT3,SYSIN,SYSPRINT) 
IALLOCATE DATASET(*) FILB(SYSIN) 
IALLOCATE DATASET(*) FILE(SYSPRINT) 
ILOADGO DERV.OBJ PLILIB L _____________________________________________________________________ _ 

Figure 14.7. Using a Compile-Lead-Go Command Procedure 

Using and Writing Command Procedures S5.4 



Controlling a System With T50 

Two commands are used to control TSO: OPERATOR and ACCOUNT. The 
OPERATOR command is used to regulate the operation of the system from a 
terminal. The ACCOUNT command is used to maintain the list of 
authorized users of the system. 

You must have authorization from your installation to use either the 
OPERATOR or the ACCOUNT command. This a uthorization is recorded in the 
system with your user attributes. Use of the OPERATOR command is 
restricted to terminals that have the transmit-interruption capability. 

The OPERATOR Command 

The OPERATOR command, through its subcornmands, allows you to perform the 
following functions: 

• Monitor terminal acti vi ty (MONITOR and STOPMN subcommands). 
• Display TSO information (DISPLAY subcommand). 
• Cancel a terminal session or a background job (CANCEL' subcommand) • 
• Send messages to terminal users (SEND subcommand). 
• Modify time sharing parameters (MODIFY subcommand). 
• End operation of the OPERATOR command (END subcommand). 

Note: 

1. The OPERATOR command is supported only for those terminals for 
which the BREAK operand of the TERMINAL command is valid, that is, 
for those terminals which have the transmit interruption 
capability. 

2. The attention interruption will not halt the output from system 
operator commands, such as DISPLAY ACTIVE. 

You must first enter the command and then the subcommand you wish to 
use. For example, use the following sequence to enter the MONITOR 
s ubc ornrnand : 

READY 
operator 
OPERATOR 
monitor ••• 

Subcommands of operator which are also system operator commands follow 
the 08/360 operator command language syntax. For further information on 
system operator commands and procedures refer to the publications, Time 
Sharin~ii2~L-£9mmand Language Reference, and Operator's Procedures. 

86 TSO Terminal User's Guide (Release 21.7) 



MONITORING TERMINAL ACl'IVITY 

The MONITOR subcommand lets you keep track of the users of the system 
and of any background jobs submitted with the SUBMIT command. 

If you want to be notified whenever a terminal session starts or 
ends, enter the SESS operand of the MONITOR subcommand. For example, 
after using the following sequence: 

READY 
operator 
OPERATOR 
monitor sess 

you will receive messages, such as the following, interspersed with 
other messages and input at your terminal: 

IEF125I JONES LOGGED ON 

IEF125I SMITH LOGGED ON 

IEF126I JONES LOGGED OFF 

IEF125I BROWN LOGGED ON 

IEF126I BROWN LOGGED OFF 

IEF126I SMITH LOGGED OFF 

You can also request the time at which the session starts and ends as 
part of the message. You do this by entering SESS,T with the MONITOR 
subcommand. For example, if you enter: 

monitor sess.t 

the message informing you that JONES logged on may appear as follows: 

IEF125I JONES LOGGED ON TIME = 1.35.05 

The LOGON time is shown in hours, minutes and seconds. 

You can request that the system display information about all tasks 
by entering: 

monitor a 

the message may appear as: 

IEEI02I TSO DATAPROG 02 00240K 00290K 3 ••• 

(This message is explained in Messages and Codes.) 

Controlling a System With TSO 87 



If you want the name of each background job submitted during a 
terminal session displayed when the job starts and ends l you must enter 
another MONITOR subcommand. For example, after using the following 
sequence: 

OPERATOR 
monitor jobnames 

you will start receiving messages, such as the following" interspersed 
with other messages and input at your terminal: 

IEF403I JONES79 STARTED 

IEF403I COPYDS STARTED 

IEF404I JONES79 ENDED 

IEF404I COPYDS ENDED 

You can also request the time at which the background job starts and 
ends as part of the message,. You do this by entering JOBNAMES,T in the 
subcommand. For example, if you enter: 

monitor jobnames,t 

the message informing you that job COPYDS ended may appear as follows: 

IEF404I COPYDS ENDED TIME = 17.11.58 

where the time the background job ended is shown in hours" minutes" and 
seconds,. 

You can also use MONITOR subcommands to obtain information on data 
sets and space available on direct access devices. The following 
subcommand: 

monitor status 

'requests that the data set names and volume serial numbers be displayed 
whenever data sets with dispositions of KEEP, CATLG" or UNCATLG are 

I freed. 

The following subcommand: 

monitor space 

requests that the system display in demount messages the amount of space 
available in a direct access device. (Demount messages are explained in 

I,the publication, Operator's Procedures,.) 

The following subcommand: 

monitor dsname 

requests that the system display within the mount and K-type demount 
messages, the name of the first nontemporary data set allocated to the 
volume to which the message refers. (These concepts are explained in 
the publication Operator's Procedures.) 

88 TSO Terminal User's Guide (Release 21) 



You can use the STOPMN subcommand to stop the monitoring operations 
of the MONITOR subcommand. For example, if you issue the following 
subcommands: 

READY 
operator 
OPERATOR 
monitor jobnames, t 
monitor space 
monitor status 
monitor sess 

and you want to stop receiving messages about background jobs and freed 
data sets. enter: 

stopmn jobnames 
stopmn status 

DISPLAYING TSO INFORMATION 

You can use the DISPLAY subcommand to obtain information about users 
currently logged on. If you enter: 

display user 

you will get the number of active terminals, the identification of each 
user and the corresponding region number of each user. If you want to 
know only the number of active terminals. enter: 

display user=nmbr 

You can request that the system display information about all tasks by 
entering: 

display a 

the message may appear as: 

IEE102I TSO DATAPROG 02 00240K 00290K 3 ••• 

(This message is explained in Messages and Codes.) 

You can also use DISPLAY to obtain a list of the jobnames of background 
jobs on the input, hold" output. BRDR, and ASB queues. (These queues 
are described in the publication, Operator Procedures.) To obtain this 
list enter: 

display n 

If you want only the jobnames in up to four specific queues enter the 
input work queue name (A-O), SOUT for system output queues" BRDR for 
background reader, or HOLD for system hold queue. For example, if you 
want the jobnames of background jobs in queues B, F" M, and the hold 
queue, enter: 

display n= (b" f , m. hold) 

If you want to know only the number of entries on the input. holdlf 
output, BRDR and ASB queues, enter: 

display q 

Controlling a System With TSO 89 



You can also obtain the number of entries in up to four specific queues, 
for example: 

display q= (b., f,.m" hold) 

You can enter a jobname as the operand of DISPLAY to obtain status 
information about that job. The status information consists of jobname, 
class, job priority" type of queue the job is in, and the job's position 
in the queue. For example, to obtain the status of job JONES79'I enter: 

display jones79 

DISPLAY also lets you obtain a listing of messages from background jobs 
that are awaiting reply from an operator. To obtain such a listing 
enter: 

display r 

If you want to know the time of day and the date, enter: 

display t 

CANCELLING A SESSION OR BACKGROUND JOB 

You can use the CANCEL subcommand of the OPERATOR command to cancel a 
terminal session or a background job submitted by a terminal user. To 
cancel a session enter the U=user identification operand in the CANCEL 
subcommand. For example, if you want to cancel the session of user 
SMITH. enter: 

cancel u=smith 

SMITH will be presented with information that notifies him of the end of 
his session. 

To cancel a background job. enter its jobname in the CANCEL subcommand. 
For example, if you want to cancel job AB999, enter: 

cancel ab999 

You can also request that when the job is cancelled a dump be taken of 
any step of that job currently being executed, for example, 

cancel ab999,dump 

In addition to the dump. you can request that all input and output for 
the job be cancelled. For example, 

cancel ab999,dump..all 

SENDING MESSAGES TO TERMINAL USERS 

You can use the SEND subcommand to send broadcast messages (notices) to 
all users or to individual users. For example, if you want to send the 
message TSO NOT AVAILABLE ON TUESDAY 9/29 to all users. enter: 

send 'tso not available on tuesday 9/29' 

90 TSO Terminal User's Guide (Release 21) 



If you only want users SMITH and JONES to receive the message, enter: 

send 'tso not available on tuesday 9/29'.user=(smith,jones) 

SMITH and JONES will receive the message only if they are logged on and 
are not suppressing messages. If you want to make sure that smith 
receives the message when he logs on, enter 

send 'tso not available on tuesday 9/29',user=(smith).10gon 

When the LOGON operand is specified with Smith's userid, and Smith is 
already logged on and is not suppressing messages, he receives the 
message immediately. Until Smith receives the message, it is retained 
by the system and printed .the next time smith logs on (or requests mail 
with the LISTBC co~n~nd). 

When you specify the LOGON operand with a message that you are sending 
to all users, the message is retained by the system. given a number, and 
printed at each users termial. This message is printed each time a user 
logs on (or if the user has logged on suppressing messages, and now 
requests the messages with the LISTBC command) until the message is 
deleted by the operator.. If you want to receive a list of all retained 
messages, enter the following: 

send list 

If you want to delete a given message, enter its number in the SEND 
subcommand. For example, if you want to delete message number three 
enter: 

send 3 

If you want to list a given message without deleting it, enter the LlST 
operand. For example 

send 3"list 

MODIFYING TIME SHARING PARAMETERS 

You can use the MODIFY subcommand to change the time sharing parameters 
specified during system generation or specified ~ the system operator 
with the START command. For information on this subcommand refer to the 
publications, Conmand Language Reference" and Operator's Procedures. 

ENDING OPERATION OF THE OPERATOR COMMAND 

Whenever you want to end the OPERATOR command, enter the END subcommand. 
After you enter the END subcommand you receive the READY message. You 
can then enter any command you choose. 

The ACCOUNT Command 

The user attributes of each authorized user of TSO are recorded in the 
User Attribute Data Set (UADS). There is an entry in the UADS for each 
user. Each entry contains: 

1. A single user identification. 

2. One or more passwords, or a single null field. associated with the 
user identification. 

Controlling a System With TSO 91 



3. One or more account numbers, or a s in9le null field,· associated 
with each password. 

4. One or more procedure names associated with each account number. 
Each procedure name identifies a LOGON catalQged procedure that is 
invoked when the user be9ins a terminal session by enterin9 the 
LOGON command. 

5. The main storage region size requirements for each procedure. 

6. The name of the group of devices that the user will be permitted to 
use. Data sets allocated via the catalog are an exception.. (See 
the ALLOCATE command.) 

7. The authority to use, or a restriction against usin9, the ACCOUNT 
command. 

8. The authority to use, or a restriction a9ainst using, the OPERATOR 
command. 

9. The authority to. use" or a restriction against using, the SUBMIT, 
STATUS" CANCEL, and OUTPUT commands. 

10. The maximum main storage re9ion size authorized for this user. 

Figure 15 shows the simplest structure that an entry in the UADS can 
have. and Figure 16 shows a more complex structure. 

The ACCOUNT command allows you to update entries in the UADS. 
Specifically, it allows you to: 

• Add new entries or more data to an existing entry. 
• Delete entries or parts of entries. 
• Change data in an entry. 
• Display the contents of an entry. 
• Display the user identifications for all entries. 
• End operation of the command. 

These functions are performed with the subcommands of the ACCOUNT 
command.. You must first enter the command and then the subcommand you 
want to use. For example, use the following sequence to enter the ADD 
subcommand: 

READY 
account 
ACCOUNT 
add •• '. 

ADDING NEW ENTRIES OR DATA TO AN ENTRY 

You can use the ADD subcommand to add a new entry to the UADS or to add 
new data to an existing entry. 

To add a new entry" enter the user identification, password" account 
or procedure name. For example, to add the following entry: 

For example, to add: enter: 

JONES 

zz~ 
nX3 

add (jones zzz d993 procab) 

pJOCAB 

92 TSO Terminal User's Guide (Re].ease 21) 



r-----------------------------------, 
I UADS I 
I data set I 
L-----------------T-----------------J 

I 
r-------~-------, 
I user I 
lidentification I 
L-------T-------J 

I 
r-------~-------, 
I a null I 
I field I 
L-------T-------J 

I 
r-------~-------, 
I a null I 
I field I 
L-------T-------J 

I 
r-------~~------, 
I procedure I 
I name I L _______________ J 

Figure 15. The Simplest Structure That an Entry in the UADS Can Have 

r-----------------------------------, 
I UADS I 
I data set I 
L-----------------T-----------------J 

I 
r-------~-------, 
I user I 
lidentification I 
L-------T-------J 

r------------------~-----------------, 
r-----~-----, r-----~-----, 
I password I I password I 
I I I I 
L-----T-----J L-----T-----J 

r-------------~--------------, I 
r-----~-----, r-----~-----, r-----~-----, 
I account I I account I I account I 
I number I I number I I number I 
L-----T-----J L-----T-----J L-----T-----J 
r------~------, r------~-----_, I 

r-----~----, r-----~-----, r-----~-----, r-----~----, r-----~-----, 
I procedure I I procedure I I procedure I I procedure I I procedure I 
I name I I name I I name I I name I I name I L ___________ J L ___________ J L __________ -J L ___________ J L ___________ J 

Figure 16. A Complex Structure for an Entry in the UADS 

Controlling a System With TSO 93 



If either the password or the account (or both) is a null field, 
enter an asterisk to indicate its absence. For examp le, to add the 
following entry: 

SMITH 

• null 
~ 

null 

PRt7 

enter 

add (smith * * pr07) 

In addition to the user identification, password, account., and 
procedure name, you can enter one or more of the following operands: 

Operand 

SIZE (integer) 

UNIT (name) 

MAXSIZE(integer) 

ACCT 

OPER 

JCL 

Meaning 

Region size (in units of 1024 bytes) of the procedure 
added. For .example for a 10K region size specify 
SIZE(10). If you omit this parameter the minimum 
region size established by the installation is 
assumed. 

The name of the group of devices that can be used for 
the user's data set. 

The maximum region size (in units of 1024 bytes) that 
the user can request when he logs on. If you omit 
this parameter, no maximum 1imi t is enf orced. 

Authorization to use the ACCOUNT command. 

Authorization to use the OPERATOR command. 

Authorization to use the SUBMIT, S~TUS, CANCEL, and 
OUTPUT commands. 

You can use the MAXSIZE, ACCT, OPER, and JCL operands of the ADD 
subcommand only when you are adding a complete entry to the UADS. (See 
section "Change SUbcommand" for description of modifying these four 
operands.) 

For example, if you want to add the following entry 

BROWN 
t 

null 

• DEPT 5 
+ 

PR37 

and you also want to establish the region size for PR37 as 12K, and 
authorize the user to submit background jobs, enter: 

add (brown * dept5 pr37) size(12) jcl 

94 TSO Terminal User"s Guide (Release 21) 



You can follow a similar procedure to add data to an existing entry. 
Por example, assume the following entry already exists in the UADS: 

MCS 

+ 
HUSH 

+ 79325 

+ PR067 

If you want to add the password SECRET with account 3925 and procedure 
PR053, enter: 

add (mes) data(secret 3925 pro53) 

the resulting entry will be: 

~MCS~ 
HUSH SECRET 

+ + 
79325 3925 

+ + 
PR067 PR053 

Now assume you want to add to password HUSH, account 83241 and procedure 
PR077. Enter: 

add (mes hush) data (83241 pro77) 

The res~)ting entry will be: 

/MCS~ 
HUSH SECRET 

/' + 79325 8~41 3925 
• + • 

PR067 PR077 PROS3 

If you want to add account 4522 and procedures PR054 and PROSS to 
password SECRET, enter: 

add (mcs secret) data(4522 (proS4 proSS» 

The resulting entry will be: 

~MCS~ 

/HUSH,\ /SECRET" 

79325 '83241 3925 4522 

+ • • L' PR067 PRO 77 PROS3 PROS4 PROSS 

If you want to add the same data to all user identifications, or 
passwords, or account numbers, replace that field with an asterisk. For 
example, if you want to add account 9999 and procedure PR099 to all 
passwords in the MCS entry, enter: 

add hncs .> data (9999 pro99) 

Controlling a System With TSO 95 



The re$ulting entry will be: 

~MCS~ 

/HUSH~ ~SECRET~ 

19325 83~41 9999 3924 4J22 9999 

+ + + + /' t PR067 PR077 PR099 PROS3 PROS4 PROSS PR099 

When you are adding data to an existing entry, you can specify the SIZE 
operand. to give the region size of the new procedure. For example, if 
the region size of procedure PR099 is 2SK, enter: 

add (mes *) data(9999 pro99) size(2S) 

Note: You cannot add a password or an account number to an entry that 
has a null field for that item. You must delete the old entry ~hat has 
the null fields. then add a new entry including the new password and 
account number. -

DELETING ENTRIES OR PARTS OF ENTRIES 

You can use the DELETE subcommand to del~te an entry or portions of an 
entry. 

To delete an entire entry, simply enter the. user identification in 
the DELETE subcommand. For example, to delete the entry for SMITH, 
enter: 

delete (smith) 

To delete a password, and consequently all accounts and procedures 
associated with the password, enter the password in the DATA operand. 
For example, assume the following entry: 

/JONFS~ 

SECRET HUSH~. 

/ " /-'" 2S31 2922 2922 3998 

~ + ~ / "-
PROCA PROCB PROCC PROCD PROCA 

If you want to delete password SECRET and its accounts and procedures" 
enter: 

delete (jones) data(secret) 

The resultant entry is: 

JOrES 

/HUSH, 

2922 3998 
~ /, 

PROCC PRO CD PROCA 

96 TSO Terminal User's Guide (Release 21) 



If the password happens to be the only password associated with the 
user identification, the entire entry is deleted. For example, if you 
now enter: 

delete (jones) data(hush) 

the entire entry is deleted. 

To delete an account number, and consequently all procedures 
associated with the account, enter the account number in the DATA 
operand. For example, assume the following entry: 

JAMES 

/" '" ALPHA BETA 

~ ;' " 221 223 224 

~ ~ I " A91 A92 A93 A94 

To delete account 224 and its procedures, enter: 

delete (james beta) data(224) 

the resultant entry is: 

JAMES 

/ " ALPHA BETA 

211 213 
All A9~2 

If the account number happens to be the only account associated with 
the password, then the password is also deleted. For example, if you 
now enter: 

delete (james beta) data(223) 

The resultant entry is: 

To delete a procedure, enter the procedure name in the DATA operand. 
For example, assume the.~lowing entry: 

To delete procedure PR3" enter: 

delete (jason who 3456) data(pr3) 

Controlling a System With TSO 97 



the resultant entry is: 

JASON 

+ /WfO" 
1234 2345 3456 

t t t 
PRl PR2 PR4 

If the procedure happens to be the only procedure associated with the 
account, then the account is also deleted. For example, if you now 
enter: 

delete (jason who 2345) data(pr2) 

the resultant entry is: 

JASON 
t 

/WHO 

" " 1234 3456 
+ t 

PR1 PR4 

If you want to delete the same data from all user identifications, or 
passwords, or account numbers, replace that field with an asterisk. For 
example, if you want to delete password SECRET from all user 
identifications in the system, enter: 

delete (*) data(secret) 

To delete acconnt 3994 from all passwords in the system, enter: 

delete (* *) data (3994) 

If you only want to delete account 3994 from all passwords in the 
following entry: 

,~A,R~' 
NO, YES MAYBE 

/' " ,/, 
3994 39t5 3996 3994 3997 ,/" , . / \ 
ONE TWO THREE FOUR FIVE SIX SEVEN 

enter: 

delete (acr *) data(3994) 

the resultant entry is: 

~A¥R~ 
NO Y,S MAYBE 

3J95 3996 39t7 

T£ ~EE FJUR six ~VEN 
To delete procedure P67 from all account numbers in the system, 

enter: 

delete (* * *) data(p67) 

98 TSO Terminal User's Guide (Release 21) 



If you only want to delete procedure P67 from all accounts in the 
following entry: 

/GER~ 
/AA" /BB,\ C{ 

112,\ 2~3 )4\ 4f 5*6 

P65 P67 P68 P67 P62 P67 P67 

enter: 

delete (roger * *) data(p67) 

the resultant entry is: 

ROGER 

/" AA BE 

/'\ + 
12 23 34 

* ~ * P65 P68 P62 

To delete procedure P67 from all accounts under password HUSH of the 
following entry: 

~KS~ 
/SEC, /USH, 

999 888 777 666 

~ /" + /, 
P67 P68 P69 P67 P67 P70 

enter: 

delete (ks hush *) data(p67) 

the resultant entry is: 

/KS", 
SECRET HUSH 

/'" * 999 888 666 
+ /"x + 

P67 P68 P69 P70 

The asterisk is also used to denote a null field. For example. 
assume the following entry: 

MARY 

+ 
/11" 

/
777 888 

\ + 
AB CD EF 

to delete procedure CO, enter: 

delete (mary * 777) data(cd) 

~: You cannot delete a null field. 

Controlling a system With TSO 99 



CHANGING DATA IN AN ENTRY 

You can use the CHANGE subcommand to change any item of data in a UADS 
entry. For example, if you have the following entry: 

JONES 
J 

CHECK 
J 

AB25 
J 

P792 

and you want to change the user identification to SMITH, enter: 

change (jones) data (smith) 

If you have the following entry: 

JONES 
J 

CHECK 

+ AB25 

+ P792 

and would like to change password CHECK to PASS, enter: 

change (jones check) data(pass) 

The resultant entry will be: 

JONES 

~ 
PASS 

~ 
AB25 

~ 
P792 

If you have the following entry: 

SMITH 

+ 
foPHA 

/' "-B222 B212 
+ • 

P9292 P1314 

and would like to change account B222 to B333, enter: 

change (smith alpha b222) data(b333) 

The result will be: 

SMITH 

+ 
/ALPHA, 

B333 B212 
+ • 

P9292 P1314 

100 TSO Terminal User's Guide (Release 21) 



If you have the following entry: 

BOB 
~ 

/BETA" 

BA Be 
J25 B75 

and would like to change procedure B25 to B88, enter: 

change (bob beta ba b25) data(b88) 

The result will be: 

BOB 
~ 

/BETA", 

BA BB , , 
B88 B75 

In addition to changing the user identification, passwords, accounts, 
and procedures, you can change any user attributes. For example, if you 
want to authorize user JONES to use the OPERATOR command, enter: 

change (jones) oper 

If you want to take away the authorization to submit background jobs 
from user SMITH, enter: 

change (smith) nojcl 

DISPLAYING THE CONTENTS OF AN ENTRY 

You can use the LIST subcommand to display the contents of all entries 
in the UADS, of one particular entry. or of parts of one entry. To 
display the contents of all entries. enter: 

list (*) 

To display the contents of entry GREEN, enter: 

list (green) 

If you want to display all the account numbers under password BBB of 
entry GREEN, enter: 

list (green bbb) 

If you want to display all the procedures in account 3399 of password 
BBB of entry GREEN. enter: 

list (green bbb 3399) 

Controlling a System With TSO 101 



DISPLAYING ALL USER IDENTIFICATIONS 

You can use the LIST IDS subcommand to list al.l user identifications in 
the UADS. The contents of each entry will not be displayed. To list 
the user identifications. enter: 

listids 

ENDING OPERATION OF THE ACCOUNT COMMAND 

When you want to end the ACCOUNT command. enter the END subcommand .. 
After you enter the END subcommand you receive the READY message. You 
can then enter any command you choose. 

102 TSO Terminal User's Guide (Release 21) 



The following are definitions of words and 
phrases which are unique to this 
publication. For words and phrases which 
are in general use in IBM publications, 
refer to IBM Data Processing Glossary, 
GC20-1699. . -

character-deletion character: A character 
within a line of terminal input specifying 
that the immediately preceding cnaraCTer is 
to be deleted from the line. 

default option: A language statement 
option that is selected by the operating 
system control program or a processing 
program in the absence of a selection by a 
user. 

file name: A name of a collection of data. 
(The file name corresponds to the data 
definition name). 

LOGOFF: The TSO command that terminates a 
user's terminal session. 

LOGON: The TSO command that a user must 
enter to initiate a terminal session. 

Glossary 

LOGON procedure: A cataloged procedure 
that is executed as a result of a user 
entering the LOGON command. 

national characters: The characters #, $, 
and 0). 

profile (user): The set of characteristic~, 
that describe the user to the system. 

receive interruption: The interruption of 
a transmission to a terminal by a higher 
priority transmission from the terminal. 
Also called a nbreakn. 

storage dump: A recording of the contents 
of main or auxiliary storage so that it can. 
be examined by a programmer or operator. 

~: Under TSO, anyone with an entry in 
the User Attribute Data Set; anyone 
eligible to log on. 

Glossary 103 



104 TSO Terminal User's Guide (Release 21) 



Indexes to systems reference library 
manuals are consolidated in the publication 
IBM System/360 Operating System: systems 
Reference Library Master Index, Order No. 
GC28-6644. For additional information 
about any subject listed below, refer to 
other publications listed for the same 
subject in the Master Index. 

abbreviations 13 
access to the system is 
account 

message 16 
number 21 
number, delete a 97 

ACCOUNT command 91 
ADD subcommand 92 
adding data to the UADS 92 
alias, assign an 54 
ALLOCATE command 65 
allocating a data set 58 
ammendments, summary of 7 
ampersand, use of 83 
apostrophes, use of 30 
assign symbolic values 81 
assign attributes to data sets 60.1 
attention inte~ruption 8,12,18 
attention, simulated 19 
attributes 

data set 60.1 
user 21 

background jobs 63,86,87 
canceling 75,90 
controling the output of 76 
displaying status of 75 
submitting 73 

blank line 29 
BOTTOM subcommand 38 
break key 19 
broadcast messages 14,18,24 

displaying 25 
receiving 25 
sending 26 
suppressing 25 

CALL 
command 65,68,84 
command, authority to use 91 
subcommand 90 

CANCEL command 75 
change 

data in the UADS 100 
output class 61 
part of a line 46 

CHANGE subcommand 46,100 
operational 24 
terminal 24 

character-deletion character 11,12 
CLIST 82 
columns of data 35 
command 

language 9 
procedure 

using 81 
writing a 82 

commands, 
ACCOUNT 91 
ALLOCATE 65 
CALL 65,69,84 
CANCEL 75 
definition of 12 
DELETE 56 
EDIT 28,64 
EXEC 65,81 
FREE 61 
function of 13 
HELP 19 
how to enter 15 
LINK 66 
list of 14 
LISTALC 59,61 
LISTBC 25 
LISTCAT 61 
LISTDS 61 
LOADGO 71 
LOGOFF 27 
LOGON 21,27 
operands of 19 
OPERATOR 86 
OUTPUT 76 
PROTECT 57 
RENAME 54 
SEND 26 
STATUS 74 
SUBMIT 73 
syntax of 12 
TERMINAL 19 
TEST 79 
TIME 27 
TERMINAL 19 
WHEN 82,85 
when to enter 15 

communication lines 9 
compile 63 
compi"ler 59 
compilers, data set names 65 
context editing 29 

Index 

controlling output of background jobs 76 
conventions 11 
correcting mistakes 11 
create 

a data set 33 
a program 64 

current line pointer 28 
finding 37 
positioning 37 

Index 105 



data definition statement (DO) 58 
data set, 

allocation 58 
attributes 60.1 
cataloging 62 
changing the name of 51 
creating 33 
definition of 28 
deletion 41,56 
entering 28 
freeing 61 
inserting 41 
listing contents of 50 
listing names of your 61 
name compiler 65 
naming 19,30 
manipulating 28 
password 57 
protecting 57 
renaming 54 
replacing 44 
storing 51 
type 30 
updating 40 

data control block (DCB) parameters 60.1 
DD statement 58 
debug 79 
default 

tab setting 36 
values 13,82 

delete 
account number 97 
data set 57 
procedure 97 

DELETE 
command 56 
subcommand 96 

delete data from 
data set 41 
UADS 96 

delimiter, special 
CHANGE subcommand 46 
FIND subcommand 39 

descriptive qualifier 32,82 
DISPLAY subcommand 89 
displaying 

broadcast messages 25 
contents of UADS 101 
status of background jobs 75 
time used 27 

DOWN subcommand 38 

edit 
function, end the 53 
line number 28 
message 16 
mode 28 

EDIT command 28,64 
end 

subcommand 91,102 
the edit function 53 

END statement 82,85 
ending a terminal session 27 
entering 

a line 12 
data 28 
information at terminal 11 

entering and manipulating data 28 

106 TSO Terminal User's Guide (Release 21) 

error messages 68 
errors, correcting 11 
EXEC command 65,81 
execute 63 
executing a program 68 
external references 67 

FIND subcommand 38 
free a data set 61 
free a list of data set attributes 61 
FREE command 61 
fully qualified name 30 
function of 

command 13 
subcommands 15 

glossary 103 

HE LP comma nd 19 
hyphen, use of 15 

identification 
qualifier 30 
user 21 

identifing yourself to the system 21 
increment, line number 34 
information, requesting additional 17 
informational messages 15,17 
input 

line, end of 35 
mode 28 

INPUT subcommand 34,43 
inserting data into a data set 41 
interruption, attention 8,12,18 
introduction 9 

JCL statement 58,74 
job statement 74 
jobname 74 

keyboard 11 

library, subroutine 67,71 
line-deletion characters 11,12 
line 

entering 12 
renumbering 49 

line number 
editing 28 
increment 34 

.line pointer 28 
finding 37 
positioning 37 

lines, renumber 49 
LI NK comma nd 66 
link edit 63 
LIST subcommand 37,50,101 
LISTALC command 59,61 
LISTBC command 25 
LISTCAT command 61 
LISTDS command 61 
listing 

contents of data set 50 
data set names 61 
line numbers 50 



load 63 
module 66 
program 71,73 

loader 59 
LOADGO command 71 
locking the terminal 16 
logical tab settings 35 
LOGOFF command 27 
logon procedure 21,25 
LOGON command 21, 27 
lowercase letters in examples 15 

mail 24 
manipulating data 28 
message 9.,15 

broadcast 18,24 
error 68, 
informational 15,17 
mode 16 
output 16 
prompting 13,17 
sending 83 

mistakes, correcting 11 
mode 

edit 28 
input i8 
messages 16 

modifing time sharing parameters 91 
MODIFY subcommand 91 
module, load 66 
MONITOR subcommand 86 
monitoring terminal activity 86 
msgclass 76 

naming conventions 30,31 
NO INTERCOM 26 
NO MAIL 25 
NO NOTICES 25 
notices 24 
null line 29 

object module 66 
operands 14 

default values 13 
definition of 13 

operational characteristics 
operator message 16 
OPERATOR command 86 
output class, change the 61 
OUTPUT 

command 76 
command, authority to use 
data set CSYSOUT) 76 
message 16 

parm parameter 65 
partitioned data sets 32 
password 21,5-7 

data set 57 
delete a 97 

PROC statement 82 
procedure name 21 
procedure, delete a 97 
profile, user 24.,25 

24 

91 

PROFiLE command 12 
program execution 68 
program, loading 71,73 
prompting 9 

messages 13,15,,17 
messages, response to 17 

PROTECT command 57 

qualified name 30 
qualifier 

de$cription 32 
identification 30 

question mark" using a 9,17 

ready message 15 
receiving broadcast messages 25 
RENAt-m command 54 
renaming a data set 54 
RENUM subcommand 49 
renumbering lines 49 
replacing data in a data set 41 
requesting session time 86 
reference, external 67 

SAVE command 64 
SEND 

command 26 
subcommand 90 

sending boradcast messages 26 
session time 27,86 
simulated attention 19 
special delimiter, 

CHANGE subcommand 46 
FIND subcommand 39 

starting and ending a terminal session 21 
statement 

END 82,85 
JCL 58,74 
JOB 74 
PROC 82 

status command, authority to use 92 
STATUS comma"l1d 74 
storing a data set 51 
subcommands, 

ADD 92 
BOTTOM 38 
CANCEL 86 
CHANGE 

ACCOUNT 100 
EDIT 46 

definition of 13 
DELETE 96 
DISPLAY 89 
DOWN 38 
END 91,102 
FIND 38 
function of 19 
how to enter 15 
INPUT 34,43 
INSERT 42 
LIST 37,50,101 
LISTDC 25 
LISTIDS 102 
MODIFY 91 
MONITOR 86 

Index 107 



GC28-6763-3 

subcommands (continued) 
operands of 20 
RENUM 49 
~AVE 51,64 
SEND 90 
syntax of 13 
TABSET 36 
TOP 38 
UP 38 
VERIFY· 37 

SUBMIT command 73,92 
submitting background jobs 73 
subroutine library 67,71 
summary of amendments 7 
suppressing broadcast messages 25 
symbolic values 81 

assign 83 
types of 83 

syntax of 
commands 12 
subcommands 13 

sysout 76 
system 

access 18 
catalog 61 
pause 77 

tab settings 35 
default 37 
logical 37 

TABSET subcommand 36 
terminal 9 

characteristics 24 
ending a session 27 
locking 16 
monitoring 86 
using a 11 

I1rn~ 
~ 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plalnl, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Terminal User's Guide" TSO 1 
termination, testing conditions for 84 
test 

message 16 
program 79 

TEST command 79 
text handling 11 
time 27,87 
TIME command 27 
TOP subcommand 38 
TSO 9 
types of 

data sets 32 
symbolic values 81 

UADS (user attributes data set) 91 
UP subcommand 38 
updating a data set 41 
uppercase letters 

in examples 15 
in output 11 

user 
attributes 21 
identification 21 
profile 24 

user-supplied name 30 

VERIFY subcommand 37 

what you must know to use TSO 11 
WHEN command 82,85 

!f 
~ 
CD 

3 
......... 
w 
0') 
o 
o 
en 

cri 
o 
;I 
~. 
::s 
~ 

C 
CII 
CD 
"""I 
CII" 



load 63 
module 66 
program 71,73 

loader 59 
LOADGO command 71 
locking the terminal 16 
logical tab settings 35 
LOGOFF command 27 
logon procedure 21,25 
LOGON command 21,27 
lowercase letters in examples 15 

mail 24 
manipulating data 28 
message 9.,15 

broadcast 18,24 
error 68 
informational 15,17 
mode 16 
output 16 
prompting 13,17 
sending 83 

mistakes, correcting 11 
mode 

edit 28 
input i8 
messages 16 

modifing time sharing parameters 91 
MODIFY subcommand 91 
module, load 66 
MONITOR subcommand 86 
monitoring terminal activity 86 
msgclass 76 

naming conventions 30,31 
NO INTERCOM 26 
NO MAIL 25 
NO NOTICES 25 
notices 24 
null line 29 

object module 66 
operands 14 

default values 13 
definition of 13 

operational characteristics 24 
operator message 16 
OPERATOR command 86 
output class, change the 
OUTPUT 

command 76 
command, authority to 
data set (SYSOUT) 76 
message 16 

parm parameter 65 
partitioned data sets 32 
password 21,5.:'1 

data set 57 
delete a 97 

PROC statement 82 
procedure name 21 
progedure, delete a 97 
profile, user 24,,25 

61 

use 91 

PROFILE command 12 
program execution 68 
program, loading 71,73 
prompting 9 

messages 13,15,,17 
messages, response to 17 

PROTECT command 57 

qualified name 30 
qualifier 

description 32 
identification 30 

question mark" using a 9,17 

ready message 15 
receiving broadcast messages 25 
RENAME command 54 
renaming a data set 54 
RENUM subcommand 49 
renumbering lines 49 
replacing data in a data set 41 
requesting session time 86 
reference, external 67 

SAVE command 64 
SEND 

command 26 
subcommand 90 

sending boradcast messages 26 
session time 27,86 
simulated attention 19 
special delimiter, 

CHANGE subcommand 46 
FIND subcommand 39 

starting and ending a terminal session 21 
statement 

END 82,85 
JCL 58,74 
JOB 74 
PROC 82 

status command, authority to use 92 
STATUS c omma'Dd 74 
storing a data set 51 
subcommands, 

ADD 92 
BOl'TOM 38 
CANCEL 86 
CHANGE 

ACCOUNT 100 
EDIT 46 

definition of 13 
DELETE 96 
DISPLAY 89 
DOWN 38 
END 91,102 
FIND 38 
function of 19 
how to enter 15 
INPUT 34,43 
INSERT 42 
LIST 37,50,101 
LISTDC 25 
LISTIDS 102 
MODIFY 91 
MONITOR 86 

Index 107 



GC28-6763-3 

subcommands (continued) 
operands of 20 
RENUM 49 
~AVE 51.64 
SEND 90 
syntax of 13 
TABSET 36 
TOP 38 
UP 38 
VERIFY 37 

SUBMIT command 73.92 
submitting background jobs 73 
subroutine library 67.71 
summary of amendments 7 
suppressing broadcast messages 25 
symbolic values 81 

assign 83 
types of 83 

syntax of 
commands 12 
subcommands 13 

sysout 76 
system 

access 18 
catalog 61 
pause 77 

tab settings 35 
default 37 
logical 37 

TABSET subcommand 36 
terminal 9 

characteristics 24 
ending a session 27 
locking 16 
monitoring 86 
using a 11 

~rnllv1! 
(J) 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Terminal User's Guide,. TSO 1 
termination, testing conditions for 84 
test 

message 16 
program 79 

TEST command 79 
text handling 11 
time 27.87 
TIME command 27 
TOP subcommand 38 
TSO 9 
types of 

data sets 32 
symbolic values 81 

UADS (user attributes data set) 91 
UP subcommand 38 
updating a data set 41 
uppercase letters 

in examples 15 
in output 11 

user 
attributes 21 
identification 21 
profile 24 

user-supplied name 30 

VERIFY subcommand 37 

what you must know to use TSO 11 
WHEN c ol11llland 82.85 

~ 
~ 
3 -w 
CD o 
o 
en 
-I 
en 
o 
;I 
~. 
:::::s 
~ 

C 
(I) 

CD 
'"'I 
(I)" 



IBM System/360 Operating System: 
TSO Terminal User's Guide 

GC28-6763-3 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? 

Number of latest Technical Newsletter (if any) concerning this publication: 

Please indicate your address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



GC28-6763-3 

Your comments, please •.. 

This manual is part of a library that serves as a reference source for system analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold Fold' I 
--- - - ------ - - - ---- - -----~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

I 
Iff 
I S 

Poughkeepsie I ~ 
New York ~ 

First Class 
Permit 81 

I 
I 
I 
I 
I 
I 
I 
I 
t 

o 
en 
-I 
en 
o 
;I 
~. 
:::l 
~, 
C 
en 
(I) .., 
en" 

---- -- -- --- ----- ---'-- - - -- --- - --- -----------1 
Fold 

l1rn~ 
<r> 

International Business Machines Corporation 
Data Pro ceiling Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold I 
I 
I 
I 
I 


